-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
567 lines (435 loc) · 19.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
###############################################################################
#
# Functions and classes for loading and processing data.
#
###############################################################################
#
# This file is part of InvestOps Tutorials:
#
# https://github.com/Hvass-Labs/InvestOps-Tutorials
#
# Published under the MIT License. See the file LICENSE for details.
#
# Copyright 2022 by Magnus Erik Hvass Pedersen
#
###############################################################################
import pandas as pd
import os
from functools import lru_cache
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
import seaborn as sns
from investops.rel_change import rel_change, mean_rel_change
from investops.stock_forecast import StockForecast
###############################################################################
# Directory for the data-files on disk.
_data_dir = 'data/'
def set_data_dir(data_dir):
"""Set the data-directory where the files will be loaded from."""
global _data_dir
_data_dir = data_dir
###############################################################################
# Names for the data-columns.
# Date / timestamp.
DATE = 'Date'
# Closing share-price only adjusted for stock-splits.
CLOSE = 'Close'
# Closing share-price adjusted for both stock-splits and dividends.
ADJ_CLOSE = 'Adj Close'
# Another name for closing share-price adjusted only for stock-splits.
SHARE_PRICE = 'Share-Price'
# Total Return which is the share-price with reinvestment of dividends.
TOTAL_RETURN = 'Total Return'
# Dividends per share.
DIVIDENDS = 'Dividends'
# Sales Per Share.
SALES_PER_SHARE = 'Sales Per Share'
# Annual growth in Sales Per Share.
SALES_GROWTH = 'Sales Growth (Per Share)'
# Annual growth in Earnings Per Share.
EARNINGS_GROWTH = 'Earnings Growth (Per Share)'
# Dividend Yield = Dividend Per Share / Share-Price
DIV_YIELD = 'Dividend Yield'
# P/Sales Ratio = Share-Price / Sales Per Share
PSALES = 'P/Sales'
# P/E Ratio = Share-Price / Earnings Per Share
PE = 'P/E'
# Mean annualized return.
MEAN_ANN_RETURN = 'Mean Ann. Return'
###############################################################################
class StockData:
"""
Load share-prices and financial data for a stock, and plot the historical
data and use it in a model for long-term stock forecasting.
Please inspect the supplied data-files to see the required file-formats.
- The CSV-files with share-prices and dividends can be downloaded for free
from the Yahoo Finance web-site.
- The CSV-files with Sales Per Share data have been gathered manually by
the author. NOTE: It is important that this only has annual data-points!
NOTE: Most methods in this class have their results cached, so they can
return the same results instantly instead of e.g. having to reload the
data-files from disk every time the function is called. But this also
means that you must NOT modify the data that is being returned by these
class-methods, as that will also change the data being held in the cache,
and therefore corrupt any calculations using that data.
"""
def __init__(self, ticker):
"""
:param ticker: String with the stock-ticker name.
"""
# Copy args to self.
self._ticker = ticker
@staticmethod
def _read_csv(filename):
"""
Helper-function for reading a CSV-file in the correct format.
:param filename: String with the filename.
:return: Pandas Series or DataFrame.
"""
path = os.path.join(_data_dir, filename)
return pd.read_csv(path, index_col=DATE,
parse_dates=True, dayfirst=False, squeeze=True)
@lru_cache()
def all_prices(self):
"""
Get all the share-prices for this stock.
:return: Pandas DataFrame.
"""
filename = f'{self._ticker} Share-Price (Yahoo).csv'
return self._read_csv(filename=filename)
@lru_cache()
def prices(self):
"""
Get the closing share-prices for this stock.
:return: Pandas Series.
"""
return self.all_prices()[CLOSE].rename(SHARE_PRICE)
@lru_cache()
def total_return(self, normalize=True):
"""
Get the Total Return for this stock, which is the share-price with
dividends assumed to having been reinvested immediately.
:param normalize: Boolean whether to make the data start at 1.
:return: Pandas Series.
"""
# Get the Total Return data, which is the ADJ_CLOSE column from Yahoo.
tot_ret = self.all_prices()[ADJ_CLOSE].rename(TOTAL_RETURN)
# Normalize to begin the data at 1?
if normalize:
tot_ret = tot_ret / tot_ret.iloc[0]
return tot_ret
@lru_cache()
def mean_ann_return(self, min_years, max_years,
start_date=None, end_date=None, future=True):
"""
Mean annualized return for a range of investment periods between the
given `min_years` and `max_years`. This is calculated using the Total
Return data, so it takes reinvestment of dividends into account.
:param min_years: Int with the min number of investment years.
:param max_years: Int with the max number of investment years.
:param start_date: Only use the Total Return data from this date.
:param end_date: Only use the Total Return data until this date.
:param future:
Boolean whether to calculate future (True) or past (False) returns.
:return: Pandas Series.
"""
# Get the Total Return for this stock.
tot_ret = self.total_return(normalize=False)
# Only use the desired date-range. An index-value of None is ignored.
tot_ret = tot_ret[start_date:end_date]
# Calculate the mean and std.dev. for the annualized returns of all
# investment periods ranging between the given min_years and max_years.
mean, std = mean_rel_change(df=tot_ret, freq='b', future=future,
min_years=min_years, max_years=max_years,
new_names_mean=MEAN_ANN_RETURN,
annualized=True)
return mean, std
@lru_cache()
def sales_per_share(self):
"""
Get the Sales Per Share data for this stock.
:return: Pandas Series.
"""
filename = f'{self._ticker} Sales Per Share.csv'
return self._read_csv(filename=filename)
@lru_cache()
def earnings_per_share(self):
"""
Get the Earnings Per Share data for this stock.
:return: Pandas Series.
"""
filename = f'{self._ticker} Earnings Per Share.csv'
return self._read_csv(filename=filename)
@lru_cache()
def dividend_per_share(self):
"""
Get the Dividend Per Share data for this stock.
:return: Pandas Series.
"""
filename = f'{self._ticker} Dividend Per Share.csv'
return self._read_csv(filename=filename)
@lru_cache()
def dividend_yield(self):
"""
Calculate the Dividend Yield = Dividend Per Share TTM / Share-Price.
:return: Pandas Series.
"""
# Get the Dividend Per Share data.
dividends = self.dividend_per_share()
# Get the Share-Prices.
prices = self.prices()
# Estimate the Dividend Per Share TTM (Trailing-Twelve-Months).
# Note: We take the sum of a rolling window of e.g. 320 days which
# has to be less than a full year of 365 days, so we don't double-
# count the dividend payouts. This also has some flexibility for
# changes in the schedule of dividend payouts.
dividends_ttm = dividends.dropna().rolling('320d').sum()
# Up-sample to daily data and forward-fill missing values.
# The forward-fill limit is in case the company stops paying dividend.
dividends_ttm_daily = dividends_ttm.resample('D').ffill(limit=365)
# Ensure the dividend data and share-prices have the same index.
dividends_ttm_daily = dividends_ttm_daily.reindex(prices.index)
# Calculate the Dividend Yield.
dividend_yield = dividends_ttm_daily / prices
# Rename the data.
dividend_yield.rename(DIV_YIELD, inplace=True)
return dividend_yield
@lru_cache()
def val_ratio(self, kind, interpolate=True):
"""
Calculate a valuation ratio such as P/Sales or P/E.
:param kind:
String with the name of the valuation ratio: 'P/Sales' or 'P/E'.
:param interpolate:
Boolean whether to interpolate (True) the data, which is a form of
cheating because future values are being used in the calculation.
Or use forward-fill of the data (False) which only uses past data,
but this may lead to a visible step-pattern in the resulting data.
:return:
Pandas Series.
"""
# Get the divisor for use in the valuation ratios.
if kind == PSALES:
# The divisor is the Sales Per Share.
divisor = self.sales_per_share()
elif kind == PE:
# The divisor is the Earnings Per Share.
divisor = self.earnings_per_share()
else:
# Error.
msg = 'Argument \'kind\' should be either \'P/Sales\' or \'P/E\'.'
raise ValueError(msg)
# Get the share-prices.
prices = self.prices()
# Up-sample the divisor data to daily data-points.
divisor = divisor.resample('D')
# Fill in the missing values in the divisor data.
if interpolate:
# Interpolate the divisor data to get more smooth changes.
# This uses both the past and future value, so it is "cheating".
divisor = divisor.interpolate()
else:
# Forward-fill the divisor data to only use the last-known values.
divisor = divisor.ffill()
# Ensure the divisor data and share-prices have the same index.
divisor = divisor.reindex(prices.index)
# Calculate the valuation ratio.
val_ratio = prices / divisor
# Rename the data.
val_ratio.rename(kind, inplace=True)
return val_ratio
def pe(self, interpolate=True):
"""
Calculate the P/E or Price-To-Earnings ratio for this stock.
:param interpolate:
Boolean whether to interpolate (True) or forward-fill (False) data.
:return: Pandas Series.
"""
return self.val_ratio(kind=PE, interpolate=interpolate)
def psales(self, interpolate=True):
"""
Calculate the P/Sales or Price-To-Sales ratio for this stock.
:param interpolate:
Boolean whether to interpolate (True) or forward-fill (False) data.
:return: Pandas Series.
"""
return self.val_ratio(kind=PSALES, interpolate=interpolate)
@lru_cache()
def growth_sales_per_share(self, future=True):
"""
Calculate the annual growth in Sales Per Share for this stock.
NOTE: The Sales Per Share data is assumed to have ANNUAL data-points!
:param future:
Boolean whether to calculate future (True) or past (False) growth.
:return: Pandas Series.
"""
# Get the Sales Per Share data.
sales_per_share = self.sales_per_share()
# Calculate and return the annual growth-rates.
return rel_change(df=sales_per_share, future=future,
freq='y', years=1, new_names=SALES_GROWTH)
@lru_cache()
def growth_earnings_per_share(self, future=True):
"""
Calculate the annual growth in Earnings Per Share for this stock.
NOTE: The Earnings Per Share data is assumed to have ANNUAL data-points!
:param future:
Boolean whether to calculate future (True) or past (False) growth.
:return: Pandas Series.
"""
# Get the Earnings Per Share data.
earnings_per_share = self.earnings_per_share()
# Calculate and return the annual growth-rates.
return rel_change(df=earnings_per_share, future=future,
freq='y', years=1, new_names=EARNINGS_GROWTH)
@lru_cache()
def common_date_range(self, start_date=None, end_date=None):
"""
Get the common date-range between the Sales Per Share and Share-Price
data for this stock. This is useful for ensuring we are plotting data
from the same period, and for using the correct data in the forecasting
model.
:param start_date: Optional start-date to further limit the date-range.
:param end_date: Optional end-date to further limit the date-range.
:return:
- min_date: Minimum common date.
- max_date: Maximum common date.
"""
# Get the P/Sales data, optionally limited to the given date-range,
# and with all NaN-values dropped. We only need to use this data,
# because this will be NaN-values if either the Share-Price or the
# Sales Per Share values are missing.
psales = self.psales(interpolate=True)[start_date:end_date].dropna()
# Get the min and max dates.
min_date, max_date = psales.index[[0, -1]]
return min_date, max_date
def plot_forecast(self, min_years, max_years, rng,
start_date=None, end_date=None, cur_val_ratio=None):
"""
Fit a forecasting model to the historical data for this stock,
and plot both the forecasting model and the historical valuation
ratios and stock-returns.
Instead of using a fixed investment period of e.g. 5 years, a range of
investment periods should be used between e.g. 4-6 years, as this gives
smoother plots for the historical annualized stock-returns.
This uses the P/Sales ratio and growth in Sales Per Share, which
are much more stable than P/E and Earnings Per Share, and therefore
give a much better forecasting model and smoother plots.
Also note that the P/Sales ratio is calculated using interpolated
Sales Per Share data, which gives smoother plots but is "cheating"
as it uses future values to calculate intermediate data-points.
:param min_years:
Integer with the minimum years when calculating Mean Ann. Returns.
:param max_years:
Integer with the maximum years when calculating Mean Ann. Returns.
:param rng:
`Numpy.random.Generator` object from `np.random.default_rng()`
:param start_date:
Optional string to limit the start-point of the data.
:param end_date:
Optional string to limit the end-point of the data.
:param cur_val_ratio:
Optional valuation ratio to show as a vertical line in the plot.
:return:
- Matplotlib Figure object.
- InvestOps StockForecast object.
"""
# Get the common date-range for Share-Price and Sales Per Share data.
min_date, max_date = \
self.common_date_range(start_date=start_date, end_date=end_date)
# Get the historical P/Sales ratios.
# NOTE: This uses "cheating" interpolation to get smoother plots.
psales = self.psales(interpolate=True)[min_date:max_date]
# Get the historical annual growth-rates for Sales Per Share.
growth = self.growth_sales_per_share()[min_date:max_date]
# Get the historical Dividend Yields.
div_yield = self.dividend_yield()[min_date:max_date]
# Calculate the FUTURE Mean Annualized Returns.
mean_ann_rets, _ = \
self.mean_ann_return(min_years=min_years,
max_years=max_years, future=True)
# Average number of years for the Mean Ann. Returns of historical data.
avg_years = (max_years + min_years) / 2
# Fit a forecasting model with the historical data.
model = StockForecast(div_yield=div_yield, val_ratio=psales,
growth=growth, dependent=False,
years=avg_years, rng=rng)
# Create a standardized title for the plot.
title = model.make_title(ticker=self._ticker,
min_years=min_years, max_years=max_years,
start_year=min_date.year,
end_year=max_date.year)
# Plot the forecasting model overlaid with the historical data for the
# P/Sales ratios and the future Mean Annualized Returns.
fig = model.plot(title=title, cur_val_ratio=cur_val_ratio,
hist_val_ratios=psales,
hist_ann_rets=mean_ann_rets,
name_val_ratio=PSALES)
return fig, model
def plot_basic_data(self, log_shareprice=True, figsize=(10, 12.5)):
"""
Create a plot with the basic financial data for this stock.
:param log_shareprice:
Boolean whether to use log-scale on y-axis for share-prices.
:param figsize:
Tuple with the figure-size.
:return:
Matplotlib Figure object.
"""
# Helper-function for making a sub-plot.
def plot_with_mean_line(column, ax, percentage=False, y_decimals=None):
# Make a line-plot with the data.
sns.lineplot(x=DATE, y=column, data=df, ax=ax, label=column)
# Mean of the given data-column.
mean = df[column].mean()
# Create label for the mean.
if percentage:
# Convert y-ticks to percentages.
formatter = PercentFormatter(xmax=1.0, decimals=y_decimals)
ax.yaxis.set_major_formatter(formatter=formatter)
label_mean = 'Mean = {:.1%}'.format(mean)
else:
label_mean = 'Mean = {:.1f}'.format(mean)
# Plot the mean of the given data-column.
ax.axhline(mean, c='k', ls=':', label=label_mean)
# Show the legend.
ax.legend()
# Get the common date-range for Share-Price and Sales Per Share data.
min_date, max_date = self.common_date_range()
# Combine all the data-columns into a single Pandas DataFrame.
data = \
{
SHARE_PRICE: self.prices()[min_date:max_date],
SALES_PER_SHARE: self.sales_per_share()[min_date:max_date],
PSALES: self.psales(interpolate=True)[min_date:max_date],
SALES_GROWTH: self.growth_sales_per_share()[min_date:max_date],
DIV_YIELD: self.dividend_yield()[min_date:max_date],
}
df = pd.DataFrame(data)
# Create a new plot with rows for sub-plots.
plt.rc('figure', figsize=figsize)
fig, axs = plt.subplots(nrows=4)
# Set the main plot-title.
axs[0].set_title(self._ticker)
# Plot the Share-Price and Sales Per Share.
sns.lineplot(data=df[[SHARE_PRICE, SALES_PER_SHARE]], ax=axs[0])
# Use log-scale on the y-axis for the Share-Prices?
# This MUST be called AFTER sns.lineplot() otherwise result is wrong!
if log_shareprice:
axs[0].set_yscale('log')
# Plot the P/Sales.
plot_with_mean_line(column=PSALES, ax=axs[1])
# Plot the Sales Growth.
plot_with_mean_line(column=SALES_GROWTH, ax=axs[2],
percentage=True, y_decimals=0)
# Plot the Dividend Yield.
plot_with_mean_line(column=DIV_YIELD, ax=axs[3],
percentage=True, y_decimals=1)
# Adjust all the sub-plots.
for ax in axs:
# Don't show the x-axis label.
ax.set_xlabel(None)
# Show grid.
ax.grid(which='both')
return fig
###############################################################################