-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathdata_aug.py
99 lines (85 loc) · 3.25 KB
/
data_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
"""
File Name: data_aug
date: 2020/3/26
author: 'HuangHui'
"""
import pandas as pd
import csv
import itertools
from sklearn.model_selection import KFold
import os
def load_data(filename):
datas = pd.read_csv(filename).values.tolist()
return datas
def data_aug(datas):
dic = {}
for data in datas:
if data[2] not in dic:
dic[data[2]] = {'true': [], 'false': [], 'class': data[1]}
dic[data[2]]['true' if data[4] == 1 else 'false'].append(data[3])
else:
dic[data[2]]['true' if data[4] == 1 else 'false'].append(data[3])
new_datas = []
id = 0
for sent1, sent2s in dic.items():
trues = sent2s['true']
falses = sent2s['false']
# 还原原始数据
for true in trues:
new_datas.append([id, sent2s['class'], sent1, true, 1])
id += 1
for false in falses:
new_datas.append([id, sent2s['class'], sent1, false, 0])
id += 1
temp_trues = []
temp_falses = []
if len(trues) != 0 and len(falses) != 0:
ori_rate = len(trues) / len(falses)
# 相似数据两两交互构造新的相似对
for i in itertools.combinations(trues, 2):
temp_trues.append([id, sent2s['class'], i[0], i[1], 1])
id += 1
# 构造不相似数据
for true in trues:
for false in falses:
temp_falses.append([id, sent2s['class'], true, false, 0])
id += 1
num_t = int(len(temp_falses) * ori_rate)
num_f = int(len(temp_trues) / ori_rate)
temp_rate = len(temp_trues) / len(temp_falses)
if ori_rate < temp_rate:
temp_trues = temp_trues[: num_t]
else:
temp_falses = temp_falses[: num_f]
new_datas = new_datas + temp_trues + temp_falses
return new_datas
def get_fold_data(datas, indexs):
result = []
for index in indexs:
result.append(datas[index])
return result
def write_fold_data(datas, filename):
with open(filename, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=",")
writer.writerow(['id', 'category', 'query1', 'query2', 'label'])
writer.writerows(datas)
def gen_kfold_data(datas, out_dir, k=5):
kf = KFold(n_splits=k, shuffle=True, random_state=42)
fold = 0
for train_index, dev_index in kf.split(datas):
train_datas = get_fold_data(datas, train_index)
dev_datas = get_fold_data(datas, dev_index)
base_dir = os.path.join(out_dir, str(fold))
if not os.path.exists(base_dir):
os.makedirs(base_dir)
train_file = os.path.join(base_dir, 'train.csv')
dev_file = os.path.join(base_dir, 'dev.csv')
write_fold_data(train_datas, train_file)
write_fold_data(dev_datas, dev_file)
fold += 1
if __name__ == '__main__':
datas = load_data('../data/Dataset/train.csv')
datas += load_data('../data/Dataset/dev.csv')
datas = data_aug(datas)
gen_kfold_data(datas, '../user_data/tmp_data/Kfold', k=5)