forked from sjackman/stat540-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalize.r
165 lines (131 loc) · 5.84 KB
/
normalize.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
###################################################################
##### Normalization of 3 separate data files of clean, raw data
##### Output: Normalizated data sets
####################################################################
### 1.) Plot distribution of beta-values
### 2.) Normalize with bmiq
### 3.) Re-plot distributions
setwd('~/UBC Stats/STAT540/Group Project/')
library(plyr)
library(ggplot2)
library(IlluminaHumanMethylation450k.db)
##### Load data and normalization script (SET PATH!!!)
load('Data/All_3_metasets.Rdata')
load('Data/All_3_sets.Rdata')
dataList <- list(ALL = ALL.dat, APL = APL.dat, CTRL = CTRL.dat)
source('Scripts/BMIQ.R')
### For this to work, one must first install the package "RPMM"
#########################################
##### Set up for BMIQ Normalization
##########################################
### Requires knowledge of Type I and Type II probes:
probe_design <- IlluminaHumanMethylation450k_getProbes()
#### Type I comes in R and G.
#### Also requires vector of 1s and 2s (from above) in order of probes
type1 <- with(probe_design$I, union(R$Probe_ID, G$Probe_ID))
type2 <- probe_design$II$Probe_ID
design <- rep(2, nrow(ALL.dat))
design[rownames(ALL.dat) %in% type1] <- 1
rm(type1, type2)
#############################################
#### BMIQ Normalization
#############################################
### Normalizes sample-by-sample WITH NO NA's!!!
### So do it like this:
### 1.) Remove NAs
### 2.) Normalize
### 3.) Plot nice density plots
### 4.) Save object for later since normalizing takes about 1 minute per sample (52 total)
### 5.) Put NAs BACK IN to original spots
### 6.) Decide what to do with them later
### List of 3 (data sets)
### Each is list of normalized vector (without NAs) and set of NA indices
data.norm.noNAs <- lapply(dataList, function(dat){
lapply(dat, function(x){
na.ix <- which(is.na(x))
samp.norm <- BMIQ(x[-na.ix], design[-na.ix], th1.v = c(0.2, 0.7))
list(pnbeta = samp.norm, na.ix = na.ix)
})
})
save(data.norm.noNAs, file = 'Data/normDat_rawList.Rdata')
#################################################
######## Plot each in panels a la CheckBMIQ
#################################################
data.t2norm.densities <- lapply(data.norm.noNAs, function(dat){
ldply(dat, function(.list)
with(density(.list$pnbeta$all[design[-.list$na.ix] == 2]),
cbind(x = x, y = y)))
})
data.raw.densities <- lapply(dataList, function(dat){
ldply(dat, function(samp){
na.ix <- which(is.na(samp))
t1dens <- density(samp[-na.ix][design[-na.ix] == 1])
t2dens <- density(samp[-na.ix][design[-na.ix] == 2])
cbind(t1x = t1dens$x, t1y = t1dens$y, t2x = t2dens$x, t2y = t2dens$y)
})
})
data.t2norm.densities <- with(data.t2norm.densities, rbind(ALL, APL, CTRL))
data.raw.densities <- with(data.raw.densities, rbind(ALL, APL, CTRL))
all(data.t2norm.densities$.id == data.raw.densities$.id)
data.norm.densities <- cbind(data.t2norm.densities, data.raw.densities[-1])
plotDat <- with(data.norm.densities,
data.frame(Sample = .id, x = c(x, t1x, t2x), y = c(y, t1y, t2y),
Type = rep(c('T2-Norm', 'T1', 'T2'),
each = nrow(data.norm.densities))))
### Finally... plotting time
colors <- brewer.pal(3, 'Set1')
plot.settings <- list(superpose.line = list(col = colors))
pdf('Figures/Normalization_bySample.pdf', height = 11, width = 8)
xyplot(y ~ x|Sample, data = subset(plotDat, grepl('ALL', Sample)), groups = Type,
xlab = 'Beta', main = 'Density of beta-values', type = 'l',
par.settings = plot.settings,
auto.key = list(space = 'top', columns = 3, lines = T, points = F))
xyplot(y ~ x|Sample, data = subset(plotDat, !grepl('ALL', Sample)), groups = Type,
xlab = 'Beta', main = 'Density of beta-values', type = 'l',
par.settings = plot.settings,
auto.key = list(space = 'top', columns = 3, lines = T, points = F))
dev.off()
###################################################
##### Put NAs back and save
##################################################
rm(list = ls())
load('Data/normDat_rawList.Rdata')
### Function for putting NAs back into indices
naMergeIn <- function(vec, ix){
foo <- rep(0, length(vec) + length(ix))
foo[ix] <- NA
foo[-ix] <- vec
foo
}
### List of 3 data sets with NAs inserted where they should be
dataList.norm <- vector('list', 3); names(dataList.norm) <- names(data.norm.noNAs)
for(i in 1:3){
print(i)
tmp <- data.norm.noNAs[[i]]
dataList.norm[[i]] <- llply(tmp, function(.list)
with(.list, naMergeIn(pnbeta$all, na.ix)), .progress = 'text')
}
dataList.norm <- lapply(dataList.norm, data.frame)
dataList.norm <- lapply(dataList.norm, function(x) {rownames(x) <- rownames(ALL.dat); x})
ALL.norm <- dataList.norm$ALL; APL.norm <- dataList.norm$APL; CTRL.norm <- dataList.norm$CTRL
save(ALL.norm, APL.norm, CTRL.norm, file = 'Data/All_3_sets_normalized.Rdata')
rm(data.norm.noNAs, i, tmp)
###################################################
##### Plot distributions of samples
###################################################
library(ggplot2)
### Load non-normalized data
load("All_3_sets.Rdata")
GSE42865<-data.frame(beta=rowMeans(CTRL.dat), Series=as.factor("GSE42865"),norm=as.factor("Pre-Normalization"))
GSE42118<-data.frame(beta=rowMeans(APL.dat), Series=as.factor("GSE42118"),norm=as.factor("Pre-Normalization"))
GSE39141<-data.frame(beta=rowMeans(ALL.dat), Series=as.factor("GSE39141"),norm=as.factor("Pre-Normalization"))
## Rename normalized objects
GSE42865.n<-CTRL.norm
GSE42118.n<-APL.norm
GSE39141.n<-ALL.norm
Norm.Not<-rbind(GSE42118,GSE39141,GSE42865,GSE42118.n,GSE39141.n,GSE42865.n)
png('Density_3_series_beta_norm.png', height = 500, width = 600)
ggplot(Norm.Not, aes(beta, color=Series)) + geom_density()+
labs(title = "Comparison of Beta Value Distribution", x="",y="Beta Frequency") +facet_grid(norm ~ .)+
theme_bw()
dev.off()