-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_centroid_EM.m
180 lines (158 loc) · 5.11 KB
/
multi_centroid_EM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
function [W] = multi_centroid_EM(W,X,nsou,nfreq,Nb,Nc)
% Reference:
% [Wang L. Multi-band multi-centroid clustering based permutation alignment
% for frequency-domain blind speech separation[J].Digital Signal Processing,
% 2014, 31: 79-92.]
% kelsey Leng 20190110
% Parameters:
% nsou: source number
% nfreq: number of frequencies
% W: unmixing matrix,nsou × nsou × nfreq
% X: mixture signal, nsou × number of time frame × nfreq
% Nb: number of frequency bands
% Nc: number of centroid in step2
pe = perms(1:nsou); % all combinations
pe = pe(end:-1:1,:);
numpe = size(pe,1);
irow = zeros(1,nsou);
irowck = zeros(1,Nc);
row = zeros(1,numpe);
N = size(X,2);
%% Stage 1 Full-band permutaiton alignment with one centroid clustering
oldrecordPe = zeros(1,nfreq);
recordPe = zeros(1,nfreq);
ite = 0;
while 1>0
ite = ite+1;
v = power_ratio(W,X,nsou,nfreq,N); % Power ratio(Time activity sequency)
c = centroid(v); % Calculate centroid
for k = 1:nfreq
for i = 1:numpe
for insou = 1:nsou
irow(insou) = correlation(transpose(v(pe(i,insou),:,k)),c(:,pe(1,insou)));
end
row(i) = sum(irow);
end
[~,maxindex] = max(row);
W(:,:,k) = W(pe(maxindex,:),:,k);
recordPe(k) = maxindex;
end
if isequal(recordPe, oldrecordPe)
break;
else
oldrecordPe = recordPe;
end
end
%% Stage 2 Permutation alignment with M-centroid clustering inside one subband
[indexBlock,Len] = auxiliary.divide_Equal(nfreq,Nb);
% %{
for iband = 1:Nb
% one centoid clustering
clear oldrecordPe recordPe
oldrecordPe = zeros(1,Len(iband));
recordPe = zeros(1,Len(iband));
ite1 = 0;
while 1>0
ite1 = ite1+1;
v = power_ratio(W(:,:,indexBlock(iband,1):indexBlock(iband,2)),X(:,:,indexBlock(iband,1):indexBlock(iband,2)),nsou,Len(iband),N);
c = centroid(v); % Calculate centroid
for k = indexBlock(iband,1):indexBlock(iband,2)
for i = 1:numpe
for insou = 1:nsou
irow(insou) = correlation(v(pe(i,insou),:,k-indexBlock(iband,1)+1),c(:,pe(1,insou)));
end
row(i) = sum(irow);
end
[~,maxindex] = max(row);
W(:,:,k) = W(pe(maxindex,:),:,k);
recordPe(k-indexBlock(iband,1)+1) = maxindex;
end
if isequal(recordPe, oldrecordPe)
break;
else
oldrecordPe = recordPe;
end
end
% multi-centroid clustering
clear oldrecordPe recordPe
oldrecordPe = zeros(1,Len(iband));
recordPe = zeros(1,Len(iband));
ite2 = 0;
while 1>0
ite2 = ite2+1;
v = power_ratio(W(:,:,indexBlock(iband,1):indexBlock(iband,2)),X(:,:,indexBlock(iband,1):indexBlock(iband,2)),nsou,Len(iband),N);
for insou = 1:nsou
[idck{insou},Ck(insou,:,:)] = kmeans(transpose(squeeze(v(insou,:,:))),Nc);
end
for k = indexBlock(iband,1):indexBlock(iband,2)
for i = 1:numpe
for insou = 1:nsou
for ick = 1:Nc
irowck(ick) = correlation(transpose(v(pe(i,insou),:,k-indexBlock(iband,1)+1)),Ck(pe(1,insou),ick,:));
end
irow(insou) = max(irowck);
end
row(i) = sum(irow);
end
[~,maxindex] = max(row);
W(:,:,k) = W(pe(maxindex,:),:,k);
recordPe(k-indexBlock(iband,1)+1) = maxindex;
end
if isequal(recordPe, oldrecordPe)
break;
else
oldrecordPe = recordPe;
end
end
end
%}
%% Stage 3 Permutation alignment between subbands
% %{
for iband = 1:Nb-1
pband = iband+1; % The band to be permuted
v = power_ratio(W(:,:,indexBlock(iband,1):indexBlock(pband,2)),X(:,:,indexBlock(iband,1):indexBlock(pband,2)),nsou,Len(iband)+Len(pband),N);
cband(:,:,1) = centroid(v(:,:,1:Len(iband)));
cband(:,:,2) = centroid(v(:,:,Len(iband)+1:end));
for i = 1:numpe
for insou = 1:nsou
irow(insou) = correlation(cband(:,pe(1,insou),1),cband(:,pe(i,insou),2));
end
row(i) = sum(irow);
end
[~,maxindex] = max(row);
W(:,:,indexBlock(pband,1):indexBlock(pband,2)) = W(pe(maxindex,:),:,indexBlock(pband,1):indexBlock(pband,2));
end
%}
end
%% *************************************************************************
function [row] = correlation(vi,vj)
% Calculate correlation coefficient between two time activity sequences
coe = corrcoef(vi,vj);
row = coe(1,2);
end
function [v] = power_ratio(W,X,nsou,nfreq,N)
S = zeros(nsou,N,nfreq);
v1 = zeros(nsou,N,nfreq);
v = zeros(nsou,N,nfreq);
for k=1:nfreq
S(:,:,k) = W(:,:,k)*X(:,:,k);
end
% Power ratio(Time activity sequency)
for m = 1:N
for k = 1:nfreq
A = inv(W(:,:,k));
for i = 1:nsou
v1(i,m,k) = norm(A(:,i)*S(i,m,k),2);
end
v2 = sum(v1(:,m,k));
v(:,m,k) = v1(:,m,k)./v2;
end
end
end
function [c] = centroid(v)
[nsou,N,Lenv] = size(v);
c = zeros(N,nsou);
for i = 1:nsou
c(:,i) = sum(v(i,:,:),3)/Lenv;
end
end