-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpullf1500.mdp
193 lines (174 loc) · 6.11 KB
/
pullf1500.mdp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
title = Pulling simulation
;define = -DPOSRES_NC
; Run parameters
integrator = md
dt = 0.002
tinit = 0
nsteps = 500000 ;
nstcomm = 10
; Output parameters
nstxout = 1000 ; every x ps
nstvout = 1000
nstfout = 1000
nstxtcout = 1000 ; every x ps
nstlog = 1000
nstenergy = 2000
; Bond parameters
constraint_algorithm = lincs
constraints = h-bonds
continuation = yes ; continuing from NPT
morse = yes ; Convert harmonic bonds to morse potentials
; Single-range cutoff scheme
nstlist = 5
ns_type = grid
rlist = 1.0
rcoulomb = 1.0
rvdw = 1.0
; PME electrostatics parameters
coulombtype = PME
fourierspacing = 0.12
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
pme_order = 4
ewald_rtol = 1e-5
optimize_fft = yes
; Berendsen temperature coupling is on in two groups
Tcoupl = v-rescale
tc_grps = Protein Non-Protein
tau_t = 0.1 0.1
ref_t = 310 310
; Pressure coupling is on
Pcoupl = Parrinello-Rahman
pcoupltype = isotropic
tau_p = 2.0
compressibility = 4.5e-5
ref_p = 1.0
refcoord_scaling = com
; Generate velocities is off
gen_vel = no
; Periodic boundary conditions are on in all directions
pbc = xyz
; Long-range dispersion correction
DispCorr = EnerPres
; This selects the subset of atoms for the compressed
; trajectory file. You can select multiple groups. By
; default, all atoms will be written.
compressed-x-grps = Protein
; Selection of energy groups
energygrps = Protein
; COM PULLING
pull = yes
;pull-print-com = yes
pull-print-ref-value = yes
pull-print-components = yes
pull-nstxout = 10000
pull-nstfout = 10000
pull-ngroups = 6
pull-ncoords = 6
;parameters for all groups
pull-group1-name = 1_ACE_1
pull-group2-name = 1_NME_1
pull-group3-name = 1_ACE_2
pull-group4-name = 1_NME_2
pull-group5-name = 1_ACE_3
pull-group6-name = 1_NME_3
pull-coord1-type = constant-force
;pull-coord1-rate = -0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord1-k = 1500
pull-coord1-geometry = direction
pull-coord1-groups = 0 2
pull-coord1-dim = N N Y
pull-coord1-vec = 0 0 1
pull-coord1-start = yes
;pull-coord1-origin = 0 0 0
pull-coord2-type = constant-force
;pull-coord2-rate = 0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord2-k = -1500
pull-coord2-geometry = direction
pull-coord2-groups = 0 1
pull-coord2-dim = N N Y
pull-coord2-vec = 0 0 1
pull-coord2-start = yes
;pull-coord2-origin = 0 0 0
pull-coord3-type = constant-force
;pull-coord3-rate = -0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord3-k = 1500
pull-coord3-geometry = direction
pull-coord3-groups = 0 4
pull-coord3-dim = N N Y
pull-coord3-vec = 0 0 1
pull-coord3-start = yes
;pull-coord3-origin = 0 0 0
pull-coord4-type = constant-force
;pull-coord4-rate = 0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord4-k = -1500
pull-coord4-geometry = direction
pull-coord4-groups = 0 3
pull-coord4-dim = N N Y
pull-coord4-vec = 0 0 1
pull-coord4-start = yes
;pull-coord4-origin = 0 0 0
pull-coord5-type = constant-force
;pull-coord5-rate = -0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord5-k = 1500
pull-coord5-geometry = direction
pull-coord5-groups = 0 6
pull-coord5-dim = N N Y
pull-coord5-vec = 0 0 1
pull-coord5-start = yes
;pull-coord5-origin = 0 0 0
pull-coord6-type = constant-force
;pull-coord6-rate = 0.01 ; 0.01 nm per ps = 10 nm per ns
pull-coord6-k = -1500
pull-coord6-geometry = direction
pull-coord6-groups = 0 5
pull-coord6-dim = N N Y
pull-coord6-vec = 0 0 1
pull-coord6-start = yes
;pull-coord6-origin = 0 0 0
; Enforced rotation: No or Yes
rotation = Yes
; Output frequency for angle, torque and rotation potential energy for the whole group
rot-nstrout = 1
; Output frequency for per-slab data (angles, torques and slab centers)
rot-nstsout = 10
; Number of rotation groups
rot-ngroups = 2
; Rotation group name
rot-group0 = 1_NME
rot-group1 = 1_ACE
; Rotation potential. Can be iso, iso-pf, pm, pm-pf, rm, rm-pf, rm2, rm2-pf, flex, flex-t, flex2, flex2-t
rot-type0 = flex2-t
rot-type1 = flex2-t
; Use mass-weighting of the rotation group positions
rot-massw0 = yes
rot-massw1 = yes
; Rotation vector, will get normalized
rot-vec0 = 0 0 1
rot-vec1 = 0 0 1
; Pivot point for the potentials iso, pm, rm, and rm2 [nm]
;rot-pivot0 = 2.31852e+00 2.73201e+00 10.89800e+00
; Rotation rate [degree/ps] and force constant [kJ/(mol*nm^2)]
rot-rate0 = 0.0
rot-k0 = 2000.0
rot-rate1 = 0.0
rot-k1 = 2000.0
; Slab distance for flexible axis rotation [nm]
rot-slab-dist0 = 1.5
rot-slab-dist1 = 1.5
; Minimum value of Gaussian function for the force to be evaluated (for flex* potentials)
rot-min-gauss0 = 0.001
rot-min-gauss1 = 0.001
; Value of additive constant epsilon' [nm^2] for rm2* and flex2* potentials
rot-eps0 = 0.0001
rot-eps1 = 0.0001
; Fitting method to determine angle of rotation group (rmsd, norm, or potential)
rot-fit-method0 = norm
rot-fit-method1 = norm
; For fit type 'potential', nr. of angles around the reference for which the pot. is evaluated
rot-potfit-nsteps0 = 21
rot-potfit-nsteps1 = 21
; For fit type 'potential', distance in degrees between two consecutive angles
rot-potfit-step0 = 0.25
rot-potfit-step1 = 0.25