forked from NVlabs/noise2noise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
60 lines (49 loc) · 2.08 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import numpy as np
import pickle
import PIL.Image
import dnnlib.submission.submit as submit
# save_pkl, load_pkl are used by the mri code to save datasets
def save_pkl(obj, filename):
with open(filename, 'wb') as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
def load_pkl(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
# save_snapshot, load_snapshot are used save/restore trained networks
def save_snapshot(submit_config, net, fname_postfix):
dump_fname = os.path.join(submit_config.run_dir, "network_%s.pickle" % fname_postfix)
with open(dump_fname, "wb") as f:
pickle.dump(net, f)
def load_snapshot(fname):
fname = os.path.join(submit.get_path_from_template(fname))
with open(fname, "rb") as f:
return pickle.load(f)
def save_image(submit_config, img_t, filename):
t = img_t.transpose([1, 2, 0]) # [RGB, H, W] -> [H, W, RGB]
if t.dtype in [np.float32, np.float64]:
t = clip_to_uint8(t)
else:
assert t.dtype == np.uint8
PIL.Image.fromarray(t, 'RGB').save(os.path.join(submit_config.run_dir, filename))
def clip_to_uint8(arr):
return np.clip((arr + 0.5) * 255.0 + 0.5, 0, 255).astype(np.uint8)
def crop_np(img, x, y, w, h):
return img[:, y:h, x:w]
# Run an image through the network (apply reflect padding when needed
# and crop back to original dimensions.)
def infer_image(net, img):
w = img.shape[2]
h = img.shape[1]
pw, ph = (w+31)//32*32-w, (h+31)//32*32-h
padded_img = img
if pw!=0 or ph!=0:
padded_img = np.pad(img, ((0,0),(0,ph),(0,pw)), 'reflect')
inferred = net.run(np.expand_dims(padded_img, axis=0), width=w+pw, height=h+ph)
return clip_to_uint8(crop_np(inferred[0], 0, 0, w, h))