-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
178 lines (160 loc) · 6.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch, os, glob, cv2, random
import numpy as np
from torch.utils.data import Dataset, DataLoader
from argparse import ArgumentParser
from model import Net
from utils import *
from skimage.metrics import structural_similarity as ssim
from time import time
from tqdm import tqdm
parser = ArgumentParser(description="PCT")
parser.add_argument("--start_epoch", type=int, default=0)
parser.add_argument("--end_epoch", type=int, default=1000)
parser.add_argument("--phase_num", type=int, default=20)
parser.add_argument("--learning_rate", type=float, default=1)
parser.add_argument("--block_size", type=int, default=32)
parser.add_argument("--model_dir", type=str, default="model")
parser.add_argument("--data_dir", type=str, default="data")
parser.add_argument("--log_dir", type=str, default="log")
parser.add_argument("--save_interval", type=int, default=100)
parser.add_argument("--testset_name", type=str, default="Set11")
parser.add_argument("--gpu_list", type=str, default="0")
parser.add_argument("--num_feature", type=int, default=32)
args = parser.parse_args()
start_epoch, end_epoch = args.start_epoch, args.end_epoch
learning_rate = args.learning_rate
N_p = args.phase_num
B = args.block_size
nf = args.num_feature
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_list
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
gpu_num = torch.cuda.device_count()
print("device =", device)
print("gpu_num =", gpu_num)
# fixed seed for reproduction
seed = 2024
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
batch_size = 32
patch_size = 128
iter_num = 1000
N = B * B
cs_ratio_list = [0.01, 0.04, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5]
# training set info
print("reading files...")
start_time = time()
training_image_paths = glob.glob(os.path.join(args.data_dir, "pristine_images") + "/*")
print("training_image_num", len(training_image_paths))
model = Net(N_p, B, nf)
model = torch.nn.DataParallel(model).to(device)
class MyDataset(Dataset):
def __getitem__(self, index):
path = random.choice(training_image_paths)
x = cv2.cvtColor(cv2.imread(path, 1), cv2.COLOR_BGR2YCrCb)
x = torch.from_numpy(x[:, :, 0]) / 255.0
h, w = x.shape
max_h, max_w = h - patch_size, w - patch_size
start_h = random.randint(0, max_h)
start_w = random.randint(0, max_w)
return x[start_h:start_h+patch_size, start_w:start_w+patch_size]
def __len__(self):
return iter_num * batch_size
def lr_func(z):
warm_up_epoch = 10
cos_epoch = 640
ft1_epoch = 200
ft2_epoch = 100
ft3_epoch = 50
T_max = 2e-4
T_min = 1e-4
ft1_lr = 1e-4
ft2_lr = 1e-5
ft3_lr = 1e-6
t = warm_up_epoch
if z <= t:
return ((z + 1) / (warm_up_epoch + 1)) * T_max
t += cos_epoch
if z <= t:
return np.cos((np.pi / 2) * (z - warm_up_epoch) / cos_epoch) * (T_max - T_min) + T_min
t += ft1_epoch
if z <= t:
return ft1_lr
t += ft2_epoch
if z <= t:
return ft2_lr
t += ft3_epoch
if z <= t:
return ft3_lr
dataloader = DataLoader(dataset=MyDataset(), batch_size=batch_size, num_workers=8, pin_memory=True)
optimizer = torch.optim.AdamW([{"params":model.parameters(),"initial_lr":learning_rate}], lr=learning_rate, weight_decay=0.0)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_func, last_epoch=start_epoch-1)
model_dir = "./%s/layer_%d_block_%d_f_%d" % (args.model_dir, N_p, B, nf)
log_path = "./%s/layer_%d_block_%d_f_%d.txt" % (args.log_dir, N_p, B, nf)
os.makedirs(model_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
test_image_paths = glob.glob(os.path.join(args.data_dir, args.testset_name) + "/*")
def test(cs_ratio):
with torch.no_grad():
PSNR_list, SSIM_list = [], []
for i in range(len(test_image_paths)):
test_image = cv2.imread(test_image_paths[i], 1) # read test data from image file
test_image_ycrcb = cv2.cvtColor(test_image, cv2.COLOR_BGR2YCrCb)
img, old_h, old_w, img_pad, new_h, new_w = my_zero_pad(test_image_ycrcb[:,:,0], block_size=B)
img_pad = img_pad.reshape(1, 1, new_h, new_w) / 255.0 # normalization
x_input = torch.from_numpy(img_pad).to(device).float()
q = (torch.tensor([[cs_ratio * N]], device=device)).ceil()
q_G = (0.6 * q).round()
q_DCT = q - q_G
x_output = model(x_input, q_G, q_DCT)
x_output = x_output.cpu().data.numpy().squeeze()
x_output = np.clip(x_output[:old_h, :old_w], 0, 1) * 255.0
PSNR = psnr(x_output, img)
SSIM = ssim(x_output, img, data_range=255)
PSNR_list.append(PSNR)
SSIM_list.append(SSIM)
return np.mean(PSNR_list), np.mean(SSIM_list)
if start_epoch > 0:
model.load_state_dict(torch.load("./%s/net_params_%d.pkl" % (model_dir, start_epoch)))
print("start training...")
best_psnr = 0.0
best_epoch = -1
for epoch_i in range(start_epoch + 1, end_epoch + 1):
start_time = time()
loss_avg = 0.0
for x in tqdm(dataloader):
x = x.unsqueeze(1).to(device)
x = H(x, random.randint(0, 7))
q = torch.randint(low=1, high=N+1, size=(gpu_num,batch_size//gpu_num), device=device)
q_G = (torch.rand(gpu_num, batch_size//gpu_num, device=device) * q).round()
q_DCT = q - q_G
x_out = model(x, q_G, q_DCT)
loss = ((x_out - x).pow(2) + 1e-6).pow(0.5).mean()
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
loss_avg += loss.item()
scheduler.step()
loss_avg /= iter_num
log_data = "[%d/%d] Average loss: %f, time cost: %.2fs, cur lr is %f." % (epoch_i, end_epoch, loss_avg, time() - start_time, scheduler.get_last_lr()[0])
print(log_data)
with open(log_path, "a") as log_file:
log_file.write(log_data + "\n")
if epoch_i % args.save_interval == 0:
torch.save(model.state_dict(), "./%s/net_params_%d.pkl" % (model_dir, epoch_i))
if epoch_i == 1 or epoch_i % 10 == 0:
for cs_ratio in cs_ratio_list:
cur_psnr, cur_ssim = test(cs_ratio)
if cur_psnr > best_psnr:
best_psnr = cur_psnr
best_epoch = epoch_i
torch.save(model.state_dict(), "./%s/best_params.pkl" % (model_dir))
log_data = "CS Ratio is %.2f, PSNR is %.2f, SSIM is %.4f, best PSNR is %.2f, best epoch is %d." % (cs_ratio, cur_psnr, cur_ssim, best_psnr, best_epoch)
print(log_data)
with open(log_path, "a") as log_file:
log_file.write(log_data + "\n")
torch.save(model.state_dict(), "./%s/final_params.pkl" % (model_dir))