-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathmain.py
executable file
·470 lines (398 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from utils.utils import *
from utils.cocoapi_evaluator import COCOAPIEvaluator
from utils.voc_evaluator import VOCEvaluator
from utils import distributed_util
from utils.distributed_util import reduce_loss_dict
from dataset.cocodataset import *
from dataset.vocdataset import *
from dataset.data_augment import TrainTransform
from dataset.dataloading import *
import os
import sys
import argparse
import yaml
import random
import math
import cv2
cv2.setNumThreads(0)
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import torch.distributed as dist
import torch.optim as optim
import time
import apex
from utils.fp16_utils import FP16_Optimizer
######## unlimit the resource in some dockers or cloud machines #######
#import resource
#rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
#resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='config/yolov3_baseline.cfg',
help='config file. see readme')
parser.add_argument('-d', '--dataset', type=str,
default='COCO', help='COCO or VOC dataset')
parser.add_argument('--n_cpu', type=int, default=4,
help='number of workers')
parser.add_argument('--distributed', dest='distributed', action='store_true', default=False,
help='distributed training')
parser.add_argument('--local_rank', type=int,
default=0, help='local_rank')
parser.add_argument('--ngpu', type=int, default=10,
help='number of gpu')
parser.add_argument('--start_epoch', type=int,
default=0, help='start epoch')
parser.add_argument('--eval_interval', type=int,
default=10, help='interval epoch between evaluations')
parser.add_argument('-c', '--checkpoint', type=str,
help='pytorch checkpoint file path')
parser.add_argument('--save_dir', type=str,
default='save',
help='directory where model are saved')
parser.add_argument('--test', dest='test', action='store_true', default=False,
help='test model')
parser.add_argument('-s', '--test_size', type=int, default=416)
parser.add_argument('--testset', dest='testset', action='store_true', default=False,
help='test set evaluation')
parser.add_argument('--half', dest='half', action='store_true', default=False,
help='FP16 training')
parser.add_argument('--rfb', dest='rfb', action='store_true', default=False,
help='Use rfb block')
parser.add_argument('--asff', dest='asff', action='store_true', default=False,
help='Use ASFF module for yolov3')
parser.add_argument('--dropblock', dest='dropblock', action='store_true', default=False,
help='Use dropblock')
parser.add_argument('--nowd', dest='no_wd', action='store_true', default=False,
help='no weight decay for bias')
parser.add_argument('--vis', dest='vis', action='store_true', default=False,
help='visualize fusion weight and detection results')
parser.add_argument('--use_cuda', type=bool, default=True)
parser.add_argument('--debug', action='store_true', default=False,
help='debug mode where only one image is trained')
parser.add_argument('--tfboard', action='store_true', help='tensorboard path for logging', default=False)
parser.add_argument('--log_dir', type=str,
default='log/',
help='directory where tf log are saved')
return parser.parse_args()
def main():
"""
YOLOv3 trainer. See README for details.
"""
args = parse_args()
print("Setting Arguments.. : ", args)
cuda = torch.cuda.is_available() and args.use_cuda
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.save_dir, exist_ok=True)
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
save_prefix = 'yolov3'
# Parse config settings
with open(args.cfg, 'r') as f:
cfg = yaml.safe_load(f)
print("successfully loaded config file: ", cfg)
backbone = cfg['MODEL']['BACKBONE']
lr = cfg['TRAIN']['LR']
epochs = cfg['TRAIN']['MAXEPOCH']
cos = cfg['TRAIN']['COS']
sybn = cfg['TRAIN']['SYBN']
mixup = cfg['TRAIN']['MIX']
no_mixup_epochs= cfg['TRAIN']['NO_MIXUP_EPOCHS']
label_smooth = cfg['TRAIN']['LABAL_SMOOTH']
momentum = cfg['TRAIN']['MOMENTUM']
burn_in = cfg['TRAIN']['BURN_IN']
batch_size = cfg['TRAIN']['BATCHSIZE']
decay = cfg['TRAIN']['DECAY']
ignore_thre = cfg['TRAIN']['IGNORETHRE']
random_resize = cfg['TRAIN']['RANDRESIZE']
input_size = (cfg['TRAIN']['IMGSIZE'],cfg['TRAIN']['IMGSIZE'])
test_size = (args.test_size,args.test_size)
steps = (180, 240) # for no cos lr shedule training
# Learning rate setup
base_lr = lr
if args.dataset == 'COCO':
dataset = COCODataset(
data_dir='data/COCO/',
img_size=input_size,
preproc=TrainTransform(rgb_means=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225),max_labels=50),
debug=args.debug)
num_class = 80
elif args.dataset == 'VOC':
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
dataset = VOCDetection(root='data/VOC',
image_sets = train_sets,
input_dim = input_size,
preproc=TrainTransform(rgb_means=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225),max_labels=30))
num_class = 20
else:
print('Only COCO and VOC datasets are supported!')
return
save_prefix += ('_'+args.dataset)
if label_smooth:
save_prefix += '_label_smooth'
# Initiate model
if args.asff:
save_prefix += '_asff'
if backbone == 'mobile':
from models.yolov3_mobilev2 import YOLOv3
save_prefix += '_mobilev2'
print("For mobilenet, we currently don't support dropblock, rfb and FeatureAdaption")
else:
from models.yolov3_asff import YOLOv3
print('Training YOLOv3 with ASFF!')
model = YOLOv3(num_classes = num_class, ignore_thre=ignore_thre, label_smooth = label_smooth, rfb=args.rfb, vis=args.vis, asff=args.asff)
else:
save_prefix += '_baseline'
if backbone == 'mobile':
from models.yolov3_mobilev2 import YOLOv3
save_prefix += '_mobilev2'
else:
from models.yolov3_baseline import YOLOv3
print('Training YOLOv3 strong baseline!')
if args.vis:
print('Visualization is not supported for YOLOv3 baseline model')
args.vis = False
model = YOLOv3(num_classes = num_class, ignore_thre=ignore_thre, label_smooth = label_smooth, rfb=args.rfb)
save_to_disk = (not args.distributed) or distributed_util.get_rank() == 0
def init_yolo(M):
for m in M.modules():
if isinstance(m, nn.Conv2d):
if backbone == 'mobile':
init.kaiming_normal_(m.weight, mode='fan_in')
else:
init.kaiming_normal_(m.weight, a=0.1, mode='fan_in')
if m.bias is not None:
init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
init.ones_(m.weight)
init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, 0, 0.01)
init.zeros_(m.bias)
m.state_dict()[key][...] = 0
model.apply(init_yolo)
if sybn:
model = apex.parallel.convert_syncbn_model(model)
if args.checkpoint:
print("loading pytorch ckpt...", args.checkpoint)
cpu_device = torch.device("cpu")
ckpt = torch.load(args.checkpoint, map_location=cpu_device)
model.load_state_dict(ckpt,strict=False)
#model.load_state_dict(ckpt)
if cuda:
print("using cuda")
torch.backends.cudnn.benchmark = True
device = torch.device("cuda")
model = model.to(device)
if args.half:
model = model.half()
if args.ngpu > 1:
if args.distributed:
model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
#model = apex.parallel.DistributedDataParallel(model)
else:
model = nn.DataParallel(model)
if args.tfboard and save_to_disk:
print("using tfboard")
from torch.utils.tensorboard import SummaryWriter
tblogger = SummaryWriter(args.log_dir)
model.train()
if mixup:
from dataset.mixupdetection import MixupDetection
dataset = MixupDetection(dataset,
preproc=TrainTransform(rgb_means=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225),max_labels=50),
)
dataset.set_mixup(np.random.beta, 1.5,1.5)
save_prefix += '_mixup'
if args.distributed:
sampler = torch.utils.data.DistributedSampler(dataset)
else:
sampler = torch.utils.data.RandomSampler(dataset)
batch_sampler = YoloBatchSampler(sampler=sampler, batch_size=batch_size,drop_last=False,input_dimension=input_size)
dataloader = DataLoader(
dataset, batch_sampler=batch_sampler, num_workers=args.n_cpu, pin_memory=True)
dataiterator = iter(dataloader)
if args.dataset == 'COCO':
evaluator = COCOAPIEvaluator(
data_dir='data/COCO/',
img_size=test_size,
confthre=cfg['TEST']['CONFTHRE'],
nmsthre=cfg['TEST']['NMSTHRE'],
testset=args.testset,
vis=args.vis)
elif args.dataset == 'VOC':
'''
# COCO style evaluation, you have to convert xml annotation files into a json file.
evaluator = COCOAPIEvaluator(
data_dir='data/VOC/',
img_size=test_size,
confthre=cfg['TEST']['CONFTHRE'],
nmsthre=cfg['TEST']['NMSTHRE'],
testset=args.testset,
voc = True)
'''
evaluator = VOCEvaluator(
data_dir='data/VOC/',
img_size=test_size,
confthre=cfg['TEST']['CONFTHRE'],
nmsthre=cfg['TEST']['NMSTHRE'],
vis=args.vis)
dtype = torch.float16 if args.half else torch.float32
# optimizer setup
# set weight decay only on conv.weight
if args.no_wd:
params_dict = dict(model.named_parameters())
params = []
for key, value in params_dict.items():
if 'conv.weight' in key:
params += [{'params':value, 'weight_decay':decay }]
else:
params += [{'params':value, 'weight_decay':0.0}]
save_prefix += '_no_wd'
else:
params = model.parameters()
optimizer = optim.SGD(params, lr=base_lr, momentum=momentum,
dampening=0, weight_decay=decay)
if args.half:
optimizer = FP16_Optimizer(optimizer,verbose=False)
if cos:
save_prefix += '_cos'
tmp_lr = base_lr
def set_lr(tmp_lr):
for param_group in optimizer.param_groups:
param_group['lr'] = tmp_lr
# start training loop
start = time.time()
epoch = args.start_epoch
epoch_size = len(dataset) // (batch_size*args.ngpu)
while epoch < epochs+1:
if args.distributed:
batch_sampler.sampler.set_epoch(epoch)
if epoch > epochs-no_mixup_epochs+1:
args.eval_interval = 1
if mixup:
print('Disable mix up now!')
mixup=False
dataset.set_mixup(None)
if args.distributed:
sampler = torch.utils.data.DistributedSampler(dataset)
else:
sampler = torch.utils.data.RandomSampler(dataset)
batch_sampler = YoloBatchSampler(sampler=sampler, batch_size=batch_size,drop_last=False,input_dimension=input_size)
dataloader = DataLoader(
dataset, batch_sampler=batch_sampler, num_workers=args.n_cpu, pin_memory=True)
#### DropBlock Shedule #####
Drop_layer = [16, 24, 33]
if args.asff:
Drop_layer = [16, 22, 29]
if (epoch == 5 or (epoch == args.start_epoch and args.start_epoch > 5)) and (args.dropblock) and backbone!='mobile':
block_size = [1, 3, 5]
keep_p = [0.9, 0.9, 0.9]
for i in range(len(Drop_layer)):
model.module.module_list[Drop_layer[i]].reset(block_size[i], keep_p[i])
if (epoch == 80 or (epoch == args.start_epoch and args.start_epoch > 80) ) and (args.dropblock) and backbone!='mobile':
block_size = [3, 5, 7]
keep_p = [0.9, 0.9, 0.9]
for i in range(len(Drop_layer)):
model.module.module_list[Drop_layer[i]].reset(block_size[i], keep_p[i])
if (epoch == 150 or (epoch == args.start_epoch and args.start_epoch > 150)) and (args.dropblock) and backbone!='mobile':
block_size = [7, 7, 7]
keep_p = [0.9, 0.9, 0.9]
for i in range(len(Drop_layer)):
model.module.module_list[Drop_layer[i]].reset(block_size[i], keep_p[i])
for iter_i, (imgs, targets,img_info,idx) in enumerate(dataloader):
#evaluation
if ((epoch % args.eval_interval == 0)and epoch > args.start_epoch and iter_i == 0) or args.test:
if not args.test and save_to_disk:
torch.save(model.module.state_dict(), os.path.join(args.save_dir,
save_prefix+'_'+repr(epoch)+'.pth'))
if args.distributed:
distributed_util.synchronize()
ap50_95, ap50 = evaluator.evaluate(model, args.half,args.distributed)
if args.distributed:
distributed_util.synchronize()
if args.test:
sys.exit(0)
model.train()
if args.tfboard and save_to_disk:
tblogger.add_scalar('val/COCOAP50', ap50, epoch)
tblogger.add_scalar('val/COCOAP50_95', ap50_95, epoch)
# learning rate scheduling (cos or step)
if epoch < burn_in:
tmp_lr = base_lr * pow((iter_i+epoch*epoch_size)*1. / (burn_in*epoch_size), 4)
set_lr(tmp_lr)
elif cos:
if epoch <= epochs-no_mixup_epochs and epoch > 20:
min_lr = 0.00001
tmp_lr = min_lr + 0.5*(base_lr-min_lr)*(1+math.cos(math.pi*(epoch-20)*1./\
(epochs-no_mixup_epochs-20)))
elif epoch > epochs-no_mixup_epochs:
tmp_lr = 0.00001
set_lr(tmp_lr)
elif epoch == burn_in:
tmp_lr = base_lr
set_lr(tmp_lr)
elif epoch in steps and iter_i == 0:
tmp_lr = tmp_lr * 0.1
set_lr(tmp_lr)
optimizer.zero_grad()
imgs = Variable(imgs.to(device).to(dtype))
targets = Variable(targets.to(device).to(dtype), requires_grad=False)
loss_dict = model(imgs, targets, epoch)
loss_dict_reduced = reduce_loss_dict(loss_dict)
loss = sum(loss for loss in loss_dict['losses'])
if args.half:
optimizer.backward(loss)
else:
loss.backward()
#torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
optimizer.step()
if iter_i % 10 == 0 and save_to_disk:
# logging
end = time.time()
print('[Epoch %d/%d][Iter %d/%d][lr %.6f]'
'[Loss: anchor %.2f, iou %.2f, l1 %.2f, conf %.2f, cls %.2f, imgsize %d, time: %.2f]'
% (epoch, epochs, iter_i, epoch_size, tmp_lr,
sum(anchor_loss for anchor_loss in loss_dict_reduced['anchor_losses']).item(),
sum(iou_loss for iou_loss in loss_dict_reduced['iou_losses']).item(),
sum(l1_loss for l1_loss in loss_dict_reduced['l1_losses']).item(),
sum(conf_loss for conf_loss in loss_dict_reduced['conf_losses']).item(),
sum(cls_loss for cls_loss in loss_dict_reduced['cls_losses']).item(),
input_size[0], end-start),
flush=True)
start = time.time()
if args.tfboard and save_to_disk:
tblogger.add_scalar('train/total_loss',
sum(loss for loss in loss_dict_reduced['losses']).item(),
epoch*epoch_size+iter_i)
# random resizing
if random_resize and iter_i %10 == 0 and iter_i > 0:
tensor = torch.LongTensor(1).to(device)
if args.distributed:
distributed_util.synchronize()
if save_to_disk:
if epoch > epochs-10:
size = 416 if args.dataset=='VOC' else 608
else:
size = random.randint(*(10,19))
size = int(32 * size)
tensor.fill_(size)
if args.distributed:
distributed_util.synchronize()
dist.broadcast(tensor, 0)
input_size = dataloader.change_input_dim(multiple=tensor.item(), random_range=None)
if args.distributed:
distributed_util.synchronize()
epoch +=1
if not args.test and save_to_disk:
torch.save(model.module.state_dict(), os.path.join(args.save_dir,
"yolov3_"+args.dataset+'_Final.pth'))
if args.distributed:
distributed_util.synchronize()
ap50_95, ap50 = evaluator.evaluate(model, args.half)
if args.tfboard and save_to_disk:
tblogger.close()
if __name__ == '__main__':
main()