-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_flow.py
63 lines (58 loc) · 1.86 KB
/
data_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from prefect import flow
from app.api_data.weather_data_flows import data_flow
from app.inference.prepare_daily_data import data_prep_flow
from dotenv import dotenv_values
import argparse
import datetime
@flow(
name="DataProcessingFlow",
description="Data Processing & Preparation Main Flow",
validate_parameters=True,
log_prints=True,
)
def data_processing_job(data_url, params, db_token, running_date: str) -> None:
"""Parent Flow of Data Processing
Parameters
----------
data_url : str
API url
params : Dict[str, Any]
Parameters Needed to access API and get data
db_token : str
MotherDuck Database Credentials
running_date : str
date string format of batch job running date
"""
data_flow(
api_data_url=data_url,
url_params=params,
db_token=db_token,
deleting_thresh_dt=running_date,
)
inference_flag = data_prep_flow(db_token=db_token, date=running_date)
if inference_flag:
print("Inference Can be Started Safely")
else:
raise RuntimeError("Daily Data Preparation Flow Failed")
if __name__ == "__main__":
ENV = dotenv_values(".env")
default_date = datetime.datetime.strftime(
datetime.datetime.now() - datetime.timedelta(days=2), "%Y-%m-%d"
)
parser = argparse.ArgumentParser(description="ML Job Parameters")
parser.add_argument("--running_date", default=default_date, type=str)
args = parser.parse_args()
url_params = {
"latitude": 30.052723,
"longitude": 31.190199,
"start_date": args.running_date,
"end_date": args.running_date,
"hourly": "temperature_2m",
"timezone": "Africa/Cairo",
}
data_processing_job(
data_url=ENV["METEO_URL"],
params=url_params,
db_token=ENV["MOTHERDUCK_TOKEN"],
running_date=args.running_date,
)