-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_rt.Rmd
194 lines (157 loc) · 5.41 KB
/
get_rt.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
title: "Define the retention times"
author: "Mar Garcia-Aloy"
output:
BiocStyle::html_document:
toc: true
number_sections: false
toc_float: true
---
# Parameters
```{r}
study <- "standards_dilution" # specify "internal_standards" OR
# "standards_dilution"
mixnum <- 17 # specify which MIX
polarity <- "POS" # specify "POS" or "NEG"
da <- 0.01
#' Define the path where we can find the mzML files:
MZML_PATH <- "C:/Users/mgarciaaloy/Documents/mzML/"
```
# Preliminaries
```{r, message=FALSE}
library(xcms)
library(magrittr)
library(CompoundDb)
library(Rdisop)
```
# Data import
In the file `XXXX_files.txt` there is the information regarding
the injection sequence.
```{r}
injections <- read.table(paste0("data/", study, "_files.txt"), #import the file
sep = "\t", header = TRUE, as.is = TRUE)
myfiles <- injections$mzML # get file names
myfiles <- myfiles[grep(polarity, myfiles)]# select files names of our polarity
if(study == "standards_dilution"){
myfiles <- myfiles[grep(paste0("MIX ", mixnum, "K"), myfiles)]
}
myfiles
```
Import the information regarding the standards that are in the samples.
```{r}
std_info <- read.table(paste0("data/", study, ".txt"),
sep = "\t", header = TRUE, as.is = TRUE)
std_info$name <- c(substring(std_info$name, 1, 33))
if(study == "standards_dilution"){
std_info <- subset(std_info, mix == mixnum)
}
std_info$mzneut = NA
for(i in seq(nrow(std_info))){
if(grepl("C", std_info$formula[i])){std_info$mzneut[i] =
getMolecule(as.character(std_info$formula[i]))$exactmass}else{
std_info$mzneut[i] = as.numeric(std_info$formula[i])}
}
std_info
std_info <- std_info[!is.na(std_info[, grep(polarity, colnames(std_info))]),]
mzvalues <- c()
for(i in seq(nrow(std_info))){
mzvalues <- c(mzvalues,
unlist(mass2mz(std_info$mzneut[i],
adduct =
as.character(
std_info[i,
grep(polarity, colnames(std_info))]
))))
}
```
# Inspect data
Steps:
* Import the file `j`.
* Get the EIC for the compound `i`.
* Annotate the RT of the highest peak in the dataframe `myrt`.
* Get the spectrum of that RT.
* Annotate the mz corresponding to compound `i` in the dataframe `mymz`.
* Annotate the relative intensity of the mz within the spectrum.
```{r}
mymz <- data.frame(matrix(ncol=nrow(std_info), nrow=length(myfiles)))
colnames(mymz) <- std_info$name
myrt <- data.frame(matrix(ncol=nrow(std_info), nrow=length(myfiles)))
colnames(myrt) <- std_info$name
myint <- data.frame(matrix(ncol=nrow(std_info), nrow=length(myfiles)))
colnames(myint) <- std_info$name
if(study == "internal_standards"){
colnames(mymz) <- gsub(" .*","",colnames(mymz))
colnames(mymz) <- gsub("L-", "", colnames(mymz))
colnames(myrt) <- gsub(" .*","",colnames(myrt))
colnames(myrt) <- gsub("L-", "", colnames(myrt))
colnames(myint) <- gsub(" .*","",colnames(myint))
colnames(myint) <- gsub("L-", "", colnames(myint))
}
```
```{r}
for(j in seq(length(myfiles))){
# Import the file "j":
raw_data <- readMSData(paste0(MZML_PATH, myfiles[j]),
mode = "onDisk")
for(i in seq(nrow(std_info))){
# Get the EIC for the compound "i":
chr <- chromatogram(raw_data, aggregationFun = "max",
mz=c(mzvalues[i] - da,
mzvalues[i] + da))
# Annotate the RT of the highest peak:
myrt[j,i] <- [email protected][[1]]@rtime[which.max([email protected][[1]]@intensity)]
# Get the spectrum of that RT:
sps <- raw_data %>%
filterRt(rt = c([email protected][[1]]@rtime[which.max(
[email protected][[1]]@intensity)] - 0.5,
[email protected][[1]]@rtime[which.max(
[email protected][[1]]@intensity)] + 0.5)) %>%
spectra
sps.df=as.data.frame(sps[[2]])
if(length(sps.df$mz[which(
sps.df$mz > (mzvalues[i] - da) & sps.df$mz < (mzvalues[i] + da))]) > 0){
# Annotate the mz corresponding to compound "i":
mymz[j,i] <- sps.df$mz[which(
sps.df$mz > (mzvalues[i] - da) & sps.df$mz < (mzvalues[i] + da))]
# Annotate the relative intensity of the mz within the spectrum:
sps.df$irel <- (sps.df$i*100)/max(sps.df)
myint[j,i] <- sps.df$irel[which(
sps.df$mz > (mzvalues[i] - da) & sps.df$mz < (mzvalues[i] + da))]
}
}
}
```
# Output
## RT
```{r}
t(myrt)
cbind(colnames(myrt),
matrix(apply(myrt, 2, function(x) round(median(x, na.rm = TRUE)))))
if(study == "internal_standards"){
t(apply(myrt, 2, function(x) round(range(x, na.rm = TRUE))))
}
cbind(colnames(myrt),
matrix(apply(myrt, 2, function(x) round(diff(range(x, na.rm = TRUE))))))
```
## mz
```{r}
(mymz.t <- data.frame(t(mymz)))
cbind(colnames(mymz),
matrix(apply(mymz, 2, function(x) round(median(x, na.rm = TRUE), 5))))
t(apply(mymz, 2, function(x) round(range(x, na.rm = TRUE), 4)))
round(abs((((mymz.t) - mzvalues) / mzvalues) * 1e6)) # error in ppm
round(abs((((mymz.t) - mzvalues)) * 1e3)) # error in mDa
```
## Intensity
```{r}
t(round(myint))
cbind(colnames(myint),
matrix(apply(myint, 2, function(x) round(median(x, na.rm = TRUE)))))
if(study == "internal_standards"){
t(apply(myint, 2, function(x) round(range(x, na.rm = TRUE))))
}
```
## All
```{r}
cbind(t(round(myrt)), mymz.t, t(round(myint)))
```