-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrat.lean
243 lines (214 loc) · 9.73 KB
/
rat.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
universe u
namespace field
structure q (α : Type u) [integral_domain α] := (n : α) (d : α ) (nz : d ≠ 0)
lemma q.ext {α : Type u} [integral_domain α] : Π (q1 q2 : q α), q1.n = q2.n → q1.d = q2.d → q1 = q2
|⟨n,d,nz⟩ ⟨_,_,_⟩ rfl rfl := rfl
instance (α : Type u) [integral_domain α] : setoid (q α) :=
{ r := (λ a b, a.1 * b.2 = b.1 * a.2)
, iseqv :=
⟨ λ a, rfl
, λ a b p, eq.symm p
, λ ⟨n₁,d₁,_⟩ ⟨n₂,d₂,h⟩ ⟨n₃,d₃,_⟩ (p : n₁ * d₂ = n₂ * d₁) (q : n₂ * d₃ = n₃ * d₂),
suffices d₂ * (n₁ * d₃) = d₂ * (n₃ * d₁), from eq_of_mul_eq_mul_left h this,
calc
d₂ * (n₁ * d₃) = (n₁ * d₂) * d₃ : by ac_refl
... = (n₂ * d₁) * d₃ : by rw p
... = (n₂ * d₃) * d₁ : by ac_refl
... = (n₃ * d₂) * d₁ : by rw q
... = d₂ * (n₃ * d₁) : by ac_refl
⟩
}
def setoid.restrict {α : Type u} (s : setoid α) (P : set α) : setoid ({a:α // a ∈ P}) :=
{ r := λ a₁ a₂, @setoid.r α s a₁ a₂
, iseqv :=
let ⟨r,y,t⟩ := setoid.iseqv α in
⟨λ a, r _,λ a₁ a₂ q, y q, λ a1 a2 a3 q p, t q p⟩
}
section restrict
variables {α β : Type u} [s : setoid α] {P : set α}
def quotient.restrict (P : set α) := @quotient _ (setoid.restrict s P)
def quotient.mk_restrict (a : α) (aP : a ∈ P) : @quotient.restrict α s P := @quotient.mk _ (setoid.restrict s P) ⟨a,aP⟩
def quotient.restrict_sound (a b : α) (aP : a ∈ P) (bP : b ∈ P) (h : @setoid.r α s a b) : quotient.mk_restrict a aP = quotient.mk_restrict b bP :=
begin apply quotient.sound, apply h end
def quotient.restrict_lift_on (q : quotient.restrict P) (f : Π (a:α), a ∈ P → β)
(p : ∀ a b (aP : a ∈ P) (bP : b ∈ P), a ≈ b → f a aP = f b bP) : β :=
@quotient.lift_on _ β (setoid.restrict s P) q (λ ⟨x,xP⟩, f x xP) (λ ⟨a,aP⟩ ⟨b,bP⟩ r, p a b aP bP r)
lemma quotient.lift_beta [setoid α] (f : α → β) (p : _) (q:α) : quotient.lift f p (quotient.mk q) = f q
:= begin simp [quotient.lift], apply quot.lift_beta, apply p end
end restrict
def free (α : Type u) [integral_domain α] : Type* := @quotient (q α) (by apply_instance)
variables {α : Type u} [integral_domain α]
namespace free
def mul_neq_zero (a b : α) (anz : a ≠ 0) (bnz : b ≠ 0) : a * b ≠ 0 :=
λ mz, have o : _, from integral_domain.eq_zero_or_eq_zero_of_mul_eq_zero a b mz, or.rec_on o anz bnz
def add : free α → free α → free α
:= λ x y, quotient.lift_on₂ x y
(λ x y, ⟦(⟨x.1 * y.2 + y.1 * x.2, x.2 * y.2, mul_ne_zero x.nz y.nz⟩ : q α)⟧)
(λ a1 a2 b1 b2,
assume p : a1.1 * b1.2 = b1.1 * a1.2,
assume q : a2.1 * b2.2 = b2.1 * a2.2,
suffices (a1.1 * a2.2 + a2.1 * a1.2) * (b1.2 * b2.2) = (b1.1 * b2.2 + b2.1 * b1.2) * (a1.2 * a2.2),
from quotient.sound this,
calc ((a1.1 * a2.2) + (a2.1 * a1.2)) * (b1.2 * b2.2) = ((a1.1 * a2.2) * (b1.2 * b2.2) + (a2.1 * a1.2) * (b1.2 * b2.2)) : by apply integral_domain.right_distrib
... = ((a1.1 * b1.2) * (a2.2 * b2.2) + (b1.2 * a1.2) * (a2.1 * b2.2)) : by ac_refl
... = ((b1.1 * a1.2) * (a2.2 * b2.2) + (b1.2 * a1.2) * (b2.1 * a2.2)) : by rw p; rw q
... = (((b1.1 * b2.2)* (a1.2 * a2.2)) + ((b2.1 * b1.2) * (a1.2 * a2.2))) : by ac_refl
... = (b1.1 * b2.2 + b2.1 * b1.2) * (a1.2 * a2.2) : by apply eq.symm; apply integral_domain.right_distrib
)
def neg : free α → free α
:= λ x, quotient.lift_on x (λ x, ⟦(⟨-x.1,x.2,x.nz⟩ : q α)⟧)
(λ a b,
assume r : a.1 * b.2 = b.1 * a.2,
suffices (-a.1) * b.2 = (- b.1)* a.2, from quotient.sound this,
by simp [r]
)
instance : has_neg (free α) := ⟨neg⟩
instance : has_add (free α) := ⟨λ a b , add a b⟩
def prod.ext {α β : Type u} : Π (p q : α × β) (l : p.1 = q.1) (r : p.2 = q.2), p = q
|⟨p1,p2⟩ ⟨q1,q2⟩ rfl rfl := rfl
--
lemma add_assoc (A B C : free α) : (A + B) + C = A + (B + C) :=
begin
apply quotient.induction_on A,
apply quotient.induction_on B,
apply quotient.induction_on C,
intros a b c,
apply quot.sound, simp [setoid.r],
show (a.n * (c.d * b.d) + (b.n * c.d + c.n * b.d) * a.d) * ((c.d) * ((b.d) * (a.d)))
= (c.n * (b.d * a.d) + (a.n * b.d + b.n * a.d) * c.d) * ((c.d * b.d) * a.d),
repeat {rw [integral_domain.right_distrib]},
generalize ah₁ : (a.n * (c.d * b.d) * (c.d * (b.d * a.d))) = a₁,
generalize ah₂: a.n * b.d * c.d * (c.d * b.d * a.d) = a₂,
generalize bh₁: b.n * c.d * a.d * (c.d * (b.d * a.d)) = b₁,
generalize bh₂: b.n * a.d * c.d * (c.d * b.d * a.d) = b₂,
generalize ch₁: c.n * b.d * a.d * (c.d * (b.d * a.d)) = c₁,
generalize ch₂: c.n * (b.d * a.d) * (c.d * b.d * a.d) = c₂,
have p : a₁ = a₂, by rw [<-ah₁, <-ah₂]; ac_refl,
have q : b₁ = b₂, by rw [<-bh₁, <-bh₂]; ac_refl,
have r : c₁ = c₂, by rw [<-ch₁, <-ch₂]; ac_refl,
rw [p,q,r],
ac_refl
end
def pure : α → free α := λ a, ⟦⟨a,1,one_ne_zero⟩⟧
def zero : free α := free.pure 0
def one : free α := free.pure 1
lemma zero_add (A : free α) : free.zero + A = A :=
begin
apply quotient.induction_on A,
intros a,
apply quot.sound,
simp [setoid.r],
end
lemma add_comm (A B : free α) : A + B = B + A :=
begin
apply quotient.induction_on₂ A B, intros a b, apply quot.sound, simp [setoid.r],
repeat {rw [integral_domain.right_distrib]},
cc
end
lemma add_zero (A : free α) : A + free.zero = A := by rw [add_comm]; apply zero_add
def nonzero (α : Type*) [integral_domain α] := quotient.restrict ({x: q α| x.1 ≠ 0})
def inv_guard (x: nonzero α) : free α
:= quotient.restrict_lift_on x
(λ p nez, quotient.mk $ ⟨p.2,p.1,nez⟩)
(λ a b az bz,
assume r : a.1 * b.2 = b.1 * a.2,
quotient.sound $
show a.d * (b.n) = b.d * a.n, from begin apply eq.symm, rw [integral_domain.mul_comm, r], ac_refl end
)
def mul : free α → free α → free α
:= λ x y, quotient.lift_on₂ x y
(λ x y, ⟦(⟨x.1 * y.1, x.2 * y.2, mul_ne_zero x.nz y.nz⟩ : q α)⟧)
(λ a1 a2 b1 b2,
assume p : a1.1 * b1.2 = b1.1 * a1.2,
assume q : a2.1 * b2.2 = b2.1 * a2.2,
suffices (a1.1 * a2.1) * (b1.2 * b2.2) = (b1.1* b2.1) * (a1.2 * a2.2),
from quotient.sound this,
calc (a1.1 * a2.1) * (b1.2 * b2.2) = (a1.1 * b1.2) * (a2.1 * b2.2) : by ac_refl
... = (b1.1 * a1.2) * (b2.1 * a2.2) : by rw [p,q]
... = (b1.1* b2.1) * (a1.2 * a2.2) : by ac_refl
)
instance : has_mul (free α) := ⟨mul⟩
def mul_comm (A B : free α) : A * B = B * A :=
begin
apply quotient.induction_on₂ A B, intros a b, apply quot.sound, simp [setoid.r], ac_refl
end
def mul_assoc (A B C : free α) : (A * B )* C = A * (B * C) :=
begin
apply quotient.induction_on₂ A B, intros a b, apply quotient.induction_on C, intro c, apply quot.sound, simp [setoid.r], ac_refl
end
#check field.add_left_neg
lemma add_left_neg (A : free α) : (-A) + A = free.zero := begin
apply quotient.induction_on A, intros a, apply quot.sound, simp [setoid.r],
repeat {rw [integral_domain.right_distrib]},
end
lemma add_right_neg (A : free α) : (A) + (-A) = free.zero := begin
apply quotient.induction_on A, intros a, apply quot.sound, simp [setoid.r],
repeat {rw [integral_domain.right_distrib]},
end
lemma one_mul (A : free α) : free.one * A = A := begin
apply quotient.induction_on A, intros a, apply quot.sound, simp [setoid.r],
end
lemma mul_one (A : free α) : A * free.one = A := begin
apply quotient.induction_on A, intros a, apply quot.sound, simp [setoid.r],
end
#check congr_arg
def congr_arg2 {α β γ : Type*} {f : α → β → γ} : ∀ {a₁ a₂ : α} {b₁ b₂ : β} , (a₁ = a₂) → (b₁ = b₂) → f a₁ b₁ = f a₂ b₂
|_ _ _ _ rfl rfl := rfl
lemma right_distrib (A B C : free α) : (A + B) * C = A * C + B * C :=
begin
apply quotient.induction_on A,
apply quotient.induction_on B,
apply quotient.induction_on C,
intros a b c,
apply quot.sound, simp [setoid.r],
repeat {rw [integral_domain.right_distrib]},
--rw [integral_domain.add_comm],
apply congr_arg2,
ac_refl,
ac_refl
end
#eval 1 + 2
lemma left_distrib (A B C : free α) : A * ( B + C) = A * B + A * C :=
begin
apply quotient.induction_on A,
apply quotient.induction_on B,
apply quotient.induction_on C,
intros a b c,
apply quot.sound, simp [setoid.r],
repeat {rw [integral_domain.right_distrib]},
repeat {rw [integral_domain.left_distrib]},
repeat {rw [integral_domain.right_distrib]},
--rw [integral_domain.add_comm],
apply congr_arg2,
ac_refl, ac_refl
end
instance : comm_ring (free α) :=
{ zero := zero
, mul := mul
, add := add
, one := one
, neg := neg
, add_assoc := add_assoc
, zero_add := zero_add
, add_zero := add_zero
, add_comm := add_comm
, mul_comm := mul_comm
, mul_assoc := mul_assoc
, add_left_neg := add_left_neg
, one_mul:=one_mul
, mul_one:=mul_one
, right_distrib:=right_distrib
, left_distrib:=left_distrib
}
-- -- def add : free α → free α → free α
-- -- |⟦⟨a,b⟩⟧ ⟦⟨x,y⟩⟧ := ⟦⟨a * y + x * b, b * y⟩⟧
-- -- [TODO] : prove it's a division ring
-- instance : division_ring (free α) := sorry
-- instance [comm_ring α] : field (free α) := sorry
-- -- instance [comm_ring α] [ordered_ring α] : ordered_field (free α) := sorry
-- -- [TODO] : the idea is to prove a chain of adjunctions, then show that division ring -> field is reflective.
-- -- lots of things lift in ways that I find interesting. Eg ring -> field lifts orderings.
-- -- [TODO] : write a functor (ordered field -> complete field)
-- -- I wonder if you do universal algebra first, you can get all of this structure for free?
end free
end field