-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCentDiff.m
44 lines (39 loc) · 1.17 KB
/
CentDiff.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [y] = CentDiff(F,M,K,C,dt,x0,v0)
% [y] = CentDiff(F,M,K,C,dt,x0,v0)solves numerically the equation of motion
% of a damped system
%
%
% INPUT
% F : vector -- size: [1x N] -- Time series representinf the time history of the load.
% M : scalar -- size: [1 x 1] -- Modal mass
% K : scalar -- size: [1 x 1] -- Modal stifness
% C : scalar -- size: [1 x 1] -- Modal damping
% dt : scalar -- size: [1 x 1] -- time step
% x0 : scalar -- size: [1 x 1] -- initial displacement
% v0 : scalar -- size: [1 x 1] -- initial velocity
%
% OUTPUT
% y: time history of the system response to the load
%
% author: E. Cheynet - UiB - last updated: 14-05-2020
%
%%
% Initialisation
N = size(F,2);
% preallocation
y = zeros(size(F));
% initial acceleration
a0 = M\(F(1)-C.*v0-K.*x0);
% initialisation of y (first 2 values).
y0 = x0-dt.*v0+dt^2/2*a0;
y(:,1) = x0;
A = (M./dt.^2+C./(2*dt));
B = ((2*M./dt.^2-K).*y(:,1)+(C./(2*dt)-M./dt.^2).*y0+F(:,1));
y(:,2) = A\B;
% For the rest of integration points
for ii=2:N-1
A = (M./dt.^2+C./(2*dt));
B = ((2*M./dt.^2-K).*y(:,ii)+(C./(2*dt)-M./dt.^2).*y(:,ii-1)+F(:,ii));
y(:,ii+1) = A\B;
end
end