-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathth_acc.v
96 lines (77 loc) · 3.08 KB
/
th_acc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Omega.
Set Implicit Arguments.
Tactic Notation "eq" "goal" "with" hyp(H) :=
match goal with |- ?b => match type of H with ?t => replace b with t; auto end end.
Theorem nat_rev_ind (P : nat -> Prop) (HP : forall n, P (S n) -> P n) x y : x <= y -> P y -> P x.
Proof. induction 1; auto. Qed.
Reserved Notation "f ↑ n" (at level 1, left associativity).
Fixpoint iter X (f : X -> X) n x :=
match n with
| 0 => x
| S n => f (f↑n x)
end
where "f ↑ n" := (@iter _ f n).
Fact iter_plus X f a b (x : X) : f↑(a+b) x = f↑a (f↑b x).
Proof. induction a; simpl; f_equal; auto. Qed.
Tactic Notation "rew" "iter" constr(f) :=
repeat match goal with
| |- context[f ?x] => change (f x) with (f↑1 x)
| |- context[f↑?a (f↑?b ?x)] => rewrite <- (iter_plus f a b)
end.
Section Tortoise_and_Hare_tail_recursive.
Variables (X : Type) (eqdec : forall x y : X, { x = y } + { x <> y }).
Infix "=?" := eqdec (at level 70).
Variable (f : X -> X) (x0 : X)
(Hx0 : exists τ, 0 < τ /\ f↑τ x0 = f↑(2*τ) x0).
Let R (c d : X*X) := match d with (x,y) => x<>y /\ c = (f x, f (f y)) end.
Let tortoise_hare_tail_rec :
forall i x y, Acc R (x,y) -> { k | i <= k /\ f↑(k-i) x = f↑(2*(k-i)) y }.
Proof.
refine (fix loop i x y H { struct H } :=
match x =? y with
| left E => exist _ i _
| right C => match loop (S i) (f x) (f (f y)) _ with
| exist _ k Hk => exist _ k _
end
end).
* split; f_equal; auto; omega.
* apply Acc_inv with (1 := H); constructor; trivial.
* destruct Hk; split; try omega.
revert H1; rew iter f; intros H1.
eq goal with H1; do 2 f_equal; omega.
Qed.
Let Acc_eq x y : x = y -> Acc R (x,y).
Proof.
intros; constructor 1.
intros [] (? & _); tauto.
Qed.
Let Acc_f0_ff0 : Acc R (f x0, f (f x0)).
Proof.
destruct Hx0 as (k & H1 & H2).
apply Acc_eq in H2.
revert k H1 H2; apply nat_rev_ind.
intros ? H.
constructor 1.
intros (u,v) (_ & Huv).
inversion Huv; subst.
rew iter f; eq goal with H; do 3 f_equal; omega.
Qed.
Definition tortoise_hare_tail : { τ | 0 < τ /\ f↑τ x0 = f↑(2*τ) x0 }.
Proof.
refine (match tortoise_hare_tail_rec 1 Acc_f0_ff0 with
| exist _ k Hk => exist _ k _
end).
destruct Hk as (? & Hk); split; try omega.
revert Hk; rew iter f; intros Hk.
eq goal with Hk; do 2 f_equal; omega.
Defined.
End Tortoise_and_Hare_tail_recursive.
Recursive Extraction tortoise_hare_tail.