-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_policy_reward_walkerv2.py
73 lines (62 loc) · 2.65 KB
/
ppo_policy_reward_walkerv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Training command: python3 -m spinup.run ppo --hid "[64,64]" --env Swimmer-v2 --exp_name ppo_swimmer_v2_300 --epochs 300
# Agent demo: python3 -m spinup.run test_policy /home/dhruva/spinningup/data/ppo_swimmer_v2_300/ppo_swimmer_v2_300_s0
import gym
import numpy as np
from spinup.utils.test_policy import load_policy_and_env
import tqdm
import matplotlib.pyplot as plt
trajectory_location = '/home/dhruva/Desktop/DMP-Imperfect-Demonstrations/2IWIL_Repo/demonstrations/Walker2d-v2_mixture.npy'
PPO_policy_location = '/home/dhruva/spinningup/data/ppo_walker_v2_300/ppo_walker_v2_300_s0'
_, ppo_policy = load_policy_and_env(PPO_policy_location)
def get_obs(qpos, qvel):
position = qpos
velocity = qvel
observations = np.concatenate((position, velocity))
return observations
def reset_gym_env(environment, traj_file, start_timestep):
observation = environment.reset()
first_traj_init = np.load(traj_file)[start_timestep]
old_state = environment.state_vector()
qpos = np.append(old_state[0], first_traj_init[:8])
qvel = first_traj_init[8:17]
environment.set_state(qpos, qvel)
return get_obs(first_traj_init[:8], qvel)
def get_reward(start_timestep):
env = gym.make("Walker2d-v2")
observation = reset_gym_env(env, trajectory_location, start_timestep)
traj_iteration = 0
total_reward = 0
while traj_iteration < 10:
action = ppo_policy(observation)
observation, reward, done, info = env.step(action)
total_reward += reward
if done:
traj_iteration += 1
observation = reset_gym_env(env, trajectory_location, start_timestep)
env.close()
return total_reward/traj_iteration
def plot_reward_vs_timestep():
total_timesteps = int(np.load(trajectory_location).shape[0]/100)
timestep_rewards = []
for i in tqdm.tqdm(range(total_timesteps)):
curr_reward = get_reward(i*100)
print(f'iteration {i} reward {curr_reward}')
timestep_rewards.append(curr_reward)
plt.plot([i for i in range(total_timesteps)], timestep_rewards)
plt.show()
def visualize_timestep_initialization(start_timestep):
env = gym.make("Walker2d-v2")
observation = reset_gym_env(env, trajectory_location, start_timestep)
traj_iteration = 0
total_reward = 0
while traj_iteration < 10:
env.render()
action = ppo_policy(observation)
observation, reward, done, info = env.step(action)
total_reward += reward
if done:
traj_iteration += 1
observation = reset_gym_env(env, trajectory_location, start_timestep)
env.close()
return total_reward/traj_iteration
visualize_timestep_initialization(1*100)