-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscc_surv_ARP.m
224 lines (158 loc) · 4.95 KB
/
scc_surv_ARP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
function [U_output,Z_output,class_id_final] = scc_surv_ARP(X,Y,w,target_K)
%%% Matrix Update
[p1,n] = size(X);
alpha_X = 2/ norm(X - mean(X,2),'fro')^2;
UU = 2*ones(1,n);
logit = exp(UU) ; % row vector
temp = log(flipud(cumsum(flipud(logit'))));
delta = Y(2,:);
null_dev_Y = - sum( delta .* UU) + sum( delta .* temp') ;
null_dev_Y = null_dev_Y * 2;
alpha_Y = 1 / null_dev_Y;
alpha2 = 0.5;
alpha_scale = min([alpha_X,alpha_Y]);
alpha_X = (1-alpha2) * alpha_X / alpha_scale;
alpha_Y = alpha2 * alpha_Y / alpha_scale;
surv_time = Y(1,:); % row vector
delta = Y(2,:); % row vector
[p2,n] = size(surv_time);
[x,y] = meshgrid(1:n, 1:n);
A = [x(:) y(:)];
A = A(y(:)>x(:),:);
A_whole = A;
w_whole = w;
active = find(w~=0);
A = A(active,:);
[len_l,~] = size(A);
% Remove Redundant edges
w = w(w~=0);
l1_mat_org = zeros(len_l,n);
l2_mat_org = zeros(len_l,n);
for i = 1:n
l1_mat_org(:,i) = (A(:,1) == i);
end
for i = 1:n
l2_mat_org(:,i) = (A(:,2) == i);
end
% D: len_l * n
D = l1_mat_org - l2_mat_org;
% Stroage of Output
MAX_ITER = 500;
U = zeros(p1,n);
V = zeros(p2,n);
V = delta;
Z1 = zeros(p1,len_l);
Z2 = zeros(p2,len_l);
Z = zeros(p1+p2,len_l);
Lambda1 = zeros(p1,len_l);
Lambda2 = zeros(p2,len_l);
M1 = inv(alpha_X * eye(n) + D' * D);
alpha = 0.1;
BETA = 0.5;
gamma = 0.0001;
pen_t = 1.1;
k = 1;
U_output = rand(p1+p2,n,MAX_ITER);
Z_output = rand(p1+p2,len_l,MAX_ITER);
U_output(:,:,1) = [X ; delta];
Z_output(:,:,1) = rand(p1+p2,len_l);
ORACLE_APPEAR = false;
NO_ORACLE = false;
class_id_final = [];
while norm(Z_output(:,:,k)) ~= 0
Z_output(:,:,1) = zeros(p1+p2,len_l);
if k < 5
MAX_ITER_INNER = 50;
else
MAX_ITER_INNER = 50;
end
for m = 1:MAX_ITER_INNER
% U update
U = (alpha_X * X + (Z1+Lambda1) * D) * M1;
% V-update
logit = exp(V);
denom = cumsum(flipud(logit'));
denom = 1 ./ denom; % column vector
denom_delta = flipud(delta') .* denom;
denom_delta_cum = cumsum(flipud(denom_delta)); % column vector
gradient = logit' .* denom_delta_cum; % column vector
gradient = alpha_Y * (- delta' + gradient) + ((V * D' - (Z2 + Lambda2))*D)';
% backtracking
v_tilde = Z2 + Lambda2;
fx = cox_cvxclu_subproblem(delta,surv_time,D,v_tilde,V,alpha_Y);
v = - gradient;
t = .01;
while cox_cvxclu_subproblem(delta,surv_time,D,v_tilde,V + t * v',alpha_Y) > fx + alpha*t* gradient.' * v
t = BETA*t;
end
V = V + t * v' ;
% Z-update and Lambda-update:
for l = 1:len_l
tmp = A(l,1);
tmp2 = A(l,2);
Z1(:,l) = U(:,tmp) - U(:,tmp2) - Lambda1(:,l);
Z2(:,l) = V(:,tmp) - V(:,tmp2) - Lambda2(:,l);
Z(:,l) = group_soft_threshold([Z1(:,l);Z2(:,l)], gamma * w(l));
Z1(:,l) = Z(1:p1,l);
Z2(:,l) = Z((p1+1):(p1+p2),l);
Lambda1(:,l) = Lambda1(:,l) + (Z1(:,l) - U(:,tmp) + U(:,tmp2));
Lambda2(:,l) = Lambda2(:,l) + (Z2(:,l) - V(:,tmp) + V(:,tmp2));
end
end
[no_class,class_id] = group_assign_vertice(Z,w_whole,n);
if ORACLE_APPEAR == false
class_id_final = class_id;
end
if no_class == target_K
class_id_final = class_id;
ORACLE_APPEAR = true;
U_output(:,:,k+1) = [U;V];
Z_output(:,:,k+1) = Z;
k = k + 1;
gamma_lower = gamma;
gamma = gamma * pen_t;
gamma_upper = gamma;
elseif no_class < target_K && ORACLE_APPEAR == true && NO_ORACLE == false
U_output(:,:,k+1) = [U;V];
Z_output(:,:,k+1) = Z;
k = k + 1;
gamma = gamma * pen_t;
elseif no_class < target_K && ORACLE_APPEAR == false && NO_ORACLE == false
gamma = (gamma_lower + gamma_upper)/2;
gamma_upper = gamma;
Z1 = Z1_old;
Z2 = Z2_old;
Lambda1 = Lambda1_old;
Lambda2 = Lambda2_old;
if abs(gamma - gamma_lower) < 1e-3
NO_ORACLE = true;
gamma = gamma * pen_t;
end
elseif no_class < target_K && ORACLE_APPEAR == false && NO_ORACLE == true
class_id_final = class_id;
ORACLE_APPEAR = true;
U_output(:,:,k+1) = [U;V];
Z_output(:,:,k+1) = Z;
k = k + 1;
gamma = gamma * pen_t;
elseif no_class < target_K && ORACLE_APPEAR == true && NO_ORACLE == true
U_output(:,:,k+1) = [U;V];
Z_output(:,:,k+1) = Z;
k = k + 1;
gamma = gamma * pen_t;
elseif no_class > target_K
U_output(:,:,k+1) = [U;V];
Z_output(:,:,k+1) = Z;
k = k + 1;
gamma_lower = gamma;
gamma = gamma * pen_t;
gamma_upper = gamma;
Z1_old = Z1;
Z2_old = Z2;
Lambda1_old = Lambda1;
Lambda2_old = Lambda2;
end
end
U_output = U_output(:,:,1:k);
Z_output = Z_output(:,:,1:k);
end