-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
128 lines (110 loc) · 3.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import glob
import shutil
import tensorflow as tf
import keras_tuner as kt
import usgoc.utils as utils
import usgoc.models.gnn as gnn
import usgoc.models.baseline as baseline
def create_model_builder(
instanciate, with_conv=True, with_inner_activation=False,
add_hps=None):
class HyperModel(kt.HyperModel):
in_enc = instanciate.in_enc
name = instanciate.name
def __init__(self, **config):
self.config = config
def build(self, hp: kt.HyperParameters):
hp_args = dict()
if add_hps is not None:
hp_args = add_hps(hp)
if with_conv:
conv_activation = hp.Choice(
"conv_activation", ["relu", "sigmoid", "tanh", "elu"])
if with_inner_activation:
conv_inner_activation = hp.Choice(
"conv_inner_activation", ["relu", "sigmoid", "tanh", "elu"])
else:
conv_inner_activation = conv_activation
hp_args.update(dict(
conv_directed=True,
conv_batch_norm=hp.Choice(
"conv_batch_norm", [True, False], default=False),
conv_layer_units=[hp.Int(
"conv_units", 32, 512, 32)] * hp.Int("conv_depth", 2, 6),
conv_activation=conv_activation,
conv_inner_activation=conv_inner_activation,
pooling=hp.Choice(
"pooling", ["sum", "mean", "softmax", "max", "min"])))
return instanciate(
node_label_count=self.config["node_label_count"],
fc_dropout_rate=hp.Choice("fc_dropout", [.0, .5], default=.0),
fc_layer_units=[hp.Int(
"fc_units", 32, 512, 32)] * hp.Int("fc_depth", 1, 3),
fc_activation=hp.Choice(
"fc_activation", ["relu", "sigmoid", "tanh", "elu"]),
out_activation=None,
learning_rate=hp.Choice("learning_rate", [1e-3]),
**hp_args)
return HyperModel
def tune_hyperparams(
hypermodel: kt.HyperModel,
train_ds, val_ds=None,
max_epochs=200, patience=30,
hyperband_iterations=1,
overwrite=False, ds_id="") -> kt.Hyperband:
project_name = f"{ds_id}/{hypermodel.name}"
tuner_dir = f"{utils.PROJECT_ROOT}/evaluations"
tuner = kt.Hyperband(
hypermodel,
objective="val_accuracy",
max_epochs=max_epochs, factor=3,
hyperband_iterations=hyperband_iterations,
directory=tuner_dir,
project_name=project_name,
overwrite=overwrite)
stop_early = tf.keras.callbacks.EarlyStopping(
monitor="val_loss", patience=patience)
tuner.search(
train_ds, validation_data=val_ds, verbose=2,
callbacks=[stop_early])
# Remove checkpoints after tuning to reduce storage overhead:
checkpoint_dirs = glob.glob(
f"{tuner_dir}/{project_name}/trial_*/checkpoints")
for ck_dir in checkpoint_dirs:
shutil.rmtree(ck_dir)
return tuner
def get_best_hps(tuner: kt.Tuner) -> kt.HyperParameter:
return tuner.get_best_hyperparameters(num_trials=1)[0]
def get_best_model(tuner: kt.Tuner):
best_hps = get_best_hps(tuner)
return tuner.hypermodel.build(best_hps), best_hps.get_config()
MLPBuilder = create_model_builder(gnn.MLP, with_conv=False)
DeepSetsBuilder = create_model_builder(gnn.DeepSets)
GCNBuilder = create_model_builder(gnn.GCN)
GINBuilder = create_model_builder(gnn.GIN)
GGNNBuilder = create_model_builder(gnn.GGNN, with_inner_activation=True)
WL2GNNBuilder = create_model_builder(gnn.WL2GNN, with_inner_activation=True)
RGCNBuilder = create_model_builder(gnn.RGCN)
RGINBuilder = create_model_builder(gnn.RGIN)
models = dict(
Majority=baseline.MajorityClassifier,
MLP=MLPBuilder,
DeepSets=DeepSetsBuilder,
GCN=GCNBuilder,
GIN=GINBuilder,
GGNN=GGNNBuilder,
WL2GNN=WL2GNNBuilder,
RGCN=RGCNBuilder,
RGIN=RGINBuilder
)
evaluate_models = [
# "Majority",
"MLP",
"DeepSets",
# "GCN",
"GIN",
# "GGNN",
"WL2GNN",
# "RGCN",
# "RGIN"
]