-
Notifications
You must be signed in to change notification settings - Fork 335
/
Copy pathmodel_fns.py
72 lines (54 loc) · 2.55 KB
/
model_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from functools import partial
import numpy as np
import tensorflow as tf
from optimizers import create_train_op
from metric_fns import *
def gpt2_model(features, labels, mode, params):
from models.gpt2 import gpt2
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if params["precision"] == 'bfloat16':
with tf.contrib.tpu.bfloat16_scope():
output = gpt2.model(X=features, params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
output["logits"] = tf.cast(output["logits"], tf.float32)
else:
output = gpt2.model(X=features, params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
loss_batch = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output["logits"], labels=labels)
loss = tf.reduce_mean(loss_batch)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = create_train_op(loss, params)
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
if mode == tf.estimator.ModeKeys.EVAL:
from metric_fns import perplexity_metric
if params["use_tpu"]:
# Metric inputs are transferred to CPU and must preserve batch dimension
return tf.contrib.tpu.TPUEstimatorSpec(mode=mode,
loss=loss, eval_metrics=(perplexity_metric, {"loss": loss_batch}))
else:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss, eval_metric_ops=perplexity_metric(loss_batch))
if mode == tf.estimator.ModeKeys.PREDICT:
from models.gpt2 import sample
if not "top_k" in params.keys():
params["top_k"] = 0
output = sample.sample_sequence(
params=params, length=params["n_ctx"],
context=features,
batch_size=params["batch_size"],
temperature=1.0, top_k=params["top_k"]
)
predictions = {
"tokens": output
}
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, predictions=predictions)
else:
return tf.estimator.EstimatorSpec(mode, predictions=predictions)