-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPARTrain.py
500 lines (400 loc) · 20 KB
/
PARTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '3'
import argparse
import pickle
from collections import defaultdict
from datetime import datetime
import numpy as np
# from mmcv.cnn import get_model_complexity_info
from torch.utils.tensorboard import SummaryWriter
# from visdom import Visdom
from configs import cfg, update_config
# from dataset.multi_label.coco import COCO14
from dataset.augmentation import get_transform
from metrics.ml_metrics import get_map_metrics, get_multilabel_metrics
from metrics.pedestrian_metrics import get_pedestrian_metrics
from models.model_ema import ModelEmaV2
from optim.adamw import AdamW
from scheduler.cos_annealing_with_restart import CosineAnnealingLR_with_Restart
from scheduler.cosine_lr import CosineLRScheduler
from tools.distributed import distribute_bn
from tools.vis import tb_visualizer_pedes
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR
from torch.utils.data import DataLoader
from batch_engine import valid_trainer, batch_trainer
from dataset.pedes_attr.pedes import PedesAttr
from models.model_factory import build_loss, build_classifier, build_backbone
from tools.function import get_model_log_path, get_reload_weight, seperate_weight_decay
from tools.utils import time_str, save_ckpt, ReDirectSTD, set_seed, str2bool
from models.backbone import swin_transformer, resnet, bninception, vit,convnext
# from models.backbone.tresnet import tresnet
from losses import bceloss, scaledbceloss
from models import base_block
from dataset.hehuang.PAR import HehuangPAR,HehuangVAR
from models.base_block import FeatClassifier,SwinALM,PoolingSwin,FPNNeckSwin,CSRAClassifierFPN,PoolingSwin2,SSCA
from models.mssc import MSSC
from dataset.hehuang.PAR import collate_fn
# torch.backends.cudnn.benchmark = True
# torch.autograd.set_detect_anomaly(True)
torch.autograd.set_detect_anomaly(True)
from dataset.hehuang.PAR import collate_fn
def main(cfg, args):
set_seed(605)
exp_dir = os.path.join('exp_result', cfg.DATASET.NAME)
model_dir, log_dir = get_model_log_path(exp_dir, cfg.NAME)
stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
save_model_path = os.path.join(model_dir, f'ckpt_max_{time_str()}.pth')
visdom = None
if cfg.VIS.VISDOM:
visdom = Visdom(env=f'{cfg.DATASET.NAME}_' + cfg.NAME, port=8401)
assert visdom.check_connection()
writer = None
if cfg.VIS.TENSORBOARD.ENABLE:
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
writer_dir = os.path.join(exp_dir, cfg.NAME, 'runs', current_time)
writer = SummaryWriter(log_dir=writer_dir)
if cfg.REDIRECTOR:
print('redirector stdout')
ReDirectSTD(stdout_file, 'stdout', False)
"""
the reason for args usage is CfgNode is immutable
"""
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
else:
args.distributed = None
args.world_size = 1
args.rank = 0 # global rank
if args.distributed:
args.device = 'cuda:%d' % args.local_rank
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.rank = torch.distributed.get_rank()
print(f'use GPU{args.device} for training')
print(args.world_size, args.rank)
if args.local_rank == 0:
print(cfg)
train_tsfm, valid_tsfm = get_transform(cfg)
if args.local_rank == 0:
print(train_tsfm)
######### dataset ##########
############################
if cfg.DATASET.TYPE == 'PAR':
rootpath = '/media/ubuntu/data/hehuang/train2'
# rootpath = '/media/ubuntu/data/hehuang/release_data'
train_set = HehuangPAR(root =rootpath, phase=cfg.DATASET.TRAIN_SPLIT, transform=train_tsfm,
target_transform=None)
valid_set = HehuangPAR(root =rootpath,phase=cfg.DATASET.VAL_SPLIT, transform=valid_tsfm,
target_transform=None)
elif cfg.DATASET.TYPE == 'VAR':
# rootpath = '/media/ubuntu/data/hehuang/car/train'
train_set = HehuangVAR(root =rootpath, phase=cfg.DATASET.TRAIN_SPLIT, transform=train_tsfm,
target_transform=None)
valid_set = HehuangVAR(root =rootpath,phase=cfg.DATASET.VAL_SPLIT, transform=valid_tsfm,
target_transform=None)
else:
raise EnvironmentError
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
else:
train_sampler = None
train_loader = DataLoader(
dataset=train_set,
batch_size=cfg.TRAIN.BATCH_SIZE,
sampler=train_sampler,
shuffle=train_sampler is None,
num_workers=4,
pin_memory=True,
drop_last=True,
# collate_fn = collate_fn
)
valid_loader = DataLoader(
dataset=valid_set,
batch_size=cfg.TRAIN.BATCH_SIZE,
shuffle=False,
num_workers=4,
pin_memory=True,
)
if args.local_rank == 0:
print('-' * 60)
print(f'{cfg.DATASET.NAME} attr_num : {train_set.attr_num}, eval_attr_num : {train_set.eval_attr_num} '
f'{cfg.DATASET.TRAIN_SPLIT} set: {len(train_loader.dataset)}, '
f'{cfg.DATASET.TEST_SPLIT} set: {len(valid_loader.dataset)}, '
)
# labels = train_set.label
# label_ratio = labels.mean(0) if cfg.LOSS.SAMPLE_WEIGHT else None
# label_ratio = np.array([0.491,0.405, 0.10225, 0.00175,0.247, 0.75075, 0.00225, 0.24625, 0.727,
# 0.02675, 0.4065, 0.03, 0.08575, 0.03125 ,0.1845 , 0.01675 ,0.053 , 0.0285,
# 0.0515 ,0.369 ,0.0435 ])
label_ratio = None
backbone, c_output = build_backbone(cfg.BACKBONE.TYPE, cfg.BACKBONE.MULTISCALE)
classifier = build_classifier(cfg.CLASSIFIER.NAME)(
nattr=train_set.attr_num,
c_in=c_output,
bn=cfg.CLASSIFIER.BN,
pool=cfg.CLASSIFIER.POOLING,
scale =cfg.CLASSIFIER.SCALE
)
if cfg.PIPELINE == 'Swin_Neck_Part_CSRA':
model = FPNNeckSwin(backbone, classifier, bn_wd=cfg.TRAIN.BN_WD)
elif cfg.PIPELINE == 'Swin_Neck_Pooling_CSRA':
model = PoolingSwin(fpn_backbone = backbone , classifier = classifier,num_classes = train_set.attr_num,bn_wd=cfg.TRAIN.BN_WD)
elif cfg.PIPELINE == 'Swin_Neck_Pooling2_CSRA':
model = PoolingSwin2(fpn_backbone = backbone , classifier = classifier,num_classes = train_set.attr_num,bn_wd=cfg.TRAIN.BN_WD)
elif cfg.PIPELINE == 'Swin_FPN_ALM':
model = SwinALM(backbone, classifier, bn_wd=cfg.TRAIN.BN_WD)
elif cfg.PIPELINE == 'Swin_FPN_MSCC':
model = MSSC(backbone, classifier)
elif cfg.PIPELINE == 'Swin_SSCA':
model = SSCA(backbone=backbone,batch_size=cfg.TRAIN.BATCH_SIZE, bn_wd=cfg.TRAIN.BN_WD)
else:
model = FeatClassifier(backbone, classifier, bn_wd=cfg.TRAIN.BN_WD)
if args.local_rank == 0:
print(f"backbone: {cfg.BACKBONE.TYPE}, classifier: {cfg.CLASSIFIER.NAME}")
print(f"model_name: {cfg.NAME}")
# flops, params = get_model_complexity_info(model, (3, 256, 128), print_per_layer_stat=True)
# print('{:<30} {:<8}'.format('Computational complexity: ', flops))
# print('{:<30} {:<8}'.format('Number of parameters: ', params))
model = model.cuda()
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
else:
model = torch.nn.DataParallel(model)
model_ema = None
if cfg.TRAIN.EMA.ENABLE:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEmaV2(
model, decay=cfg.TRAIN.EMA.DECAY, device='cpu' if cfg.TRAIN.EMA.FORCE_CPU else None)
if cfg.RELOAD.TYPE:
model = get_reload_weight(model_dir, model, pth=cfg.RELOAD.PTH)
loss_weight = cfg.LOSS.LOSS_WEIGHT
criterion = build_loss(cfg.LOSS.TYPE)(
sample_weight=label_ratio, scale=cfg.CLASSIFIER.SCALE, size_sum=cfg.LOSS.SIZESUM, tb_writer=writer)
criterion = criterion.cuda()
if cfg.TRAIN.BN_WD:
param_groups = [{'params': model.module.finetune_params(),
'lr': cfg.TRAIN.LR_SCHEDULER.LR_FT,
'weight_decay': cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY},
{'params': model.module.fresh_params(),
'lr': cfg.TRAIN.LR_SCHEDULER.LR_NEW,
'weight_decay': cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY}]
else:
# bn parameters are not applied with weight decay
ft_params = seperate_weight_decay(
model.module.finetune_params(),
lr=cfg.TRAIN.LR_SCHEDULER.LR_FT,
weight_decay=cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY)
fresh_params = seperate_weight_decay(
model.module.fresh_params(),
lr=cfg.TRAIN.LR_SCHEDULER.LR_NEW,
weight_decay=cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY)
# param_groups = [{'params': model.parameters(),
# 'lr': cfg.TRAIN.LR_SCHEDULER.LR_FT,
# 'weight_decay': cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY}]
if cfg.TRAIN.OPTIMIZER.TYPE.lower() == 'sgd':
optimizer = torch.optim.SGD(param_groups, momentum=cfg.TRAIN.OPTIMIZER.MOMENTUM)
elif cfg.TRAIN.OPTIMIZER.TYPE.lower() == 'adam':
optimizer = torch.optim.Adam(param_groups)
elif cfg.TRAIN.OPTIMIZER.TYPE.lower() == 'adamw':
optimizer = AdamW(param_groups)
else:
assert None, f'{cfg.TRAIN.OPTIMIZER.TYPE} is not implemented'
if cfg.TRAIN.LR_SCHEDULER.TYPE == 'plateau':
lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=2)
if cfg.CLASSIFIER.BN:
assert False, 'BN can not compatible with ReduceLROnPlateau'
elif cfg.TRAIN.LR_SCHEDULER.TYPE == 'multistep':
lr_scheduler = MultiStepLR(optimizer, milestones=cfg.TRAIN.LR_SCHEDULER.LR_STEP, gamma=0.1)
elif cfg.TRAIN.LR_SCHEDULER.TYPE == 'annealing_cosine':
lr_scheduler = CosineAnnealingLR_with_Restart(
optimizer,
T_max=(cfg.TRAIN.MAX_EPOCH + 5) * len(train_loader),
T_mult=1,
eta_min=cfg.TRAIN.LR_SCHEDULER.LR_NEW * 0.001
)
elif cfg.TRAIN.LR_SCHEDULER.TYPE == 'warmup_cosine':
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=cfg.TRAIN.MAX_EPOCH,
lr_min=1e-5, # cosine lr 最终回落的位置
warmup_lr_init=1e-4,
warmup_t=cfg.TRAIN.MAX_EPOCH * cfg.TRAIN.LR_SCHEDULER.WMUP_COEF,
)
else:
assert False, f'{cfg.LR_SCHEDULER.TYPE} has not been achieved yet'
best_metric, epoch = trainer(cfg, args, epoch=cfg.TRAIN.MAX_EPOCH,
model=model, model_ema=model_ema,
train_loader=train_loader,
valid_loader=valid_loader,
criterion=criterion,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
path=save_model_path,
loss_w=loss_weight,
viz=visdom,
tb_writer=writer)
if args.local_rank == 0:
print(f'{cfg.NAME}, best_metrc : {best_metric} in epoch{epoch}')
def trainer(cfg, args, epoch, model, model_ema, train_loader, valid_loader, criterion, optimizer, lr_scheduler,
path, loss_w, viz, tb_writer):
maximum = float(-np.inf)
best_epoch = 0
result_list = defaultdict()
result_path = path
result_path = result_path.replace('ckpt_max', 'metric')
result_path = result_path.replace('pth', 'pkl')
for e in range(epoch):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
lr = optimizer.param_groups[0]['lr']
train_loss, train_gt, train_probs, train_imgs, train_logits, train_loss_mtr = batch_trainer(
cfg,
args=args,
epoch=e,
model=model,
model_ema=model_ema,
train_loader=train_loader,
criterion=criterion,
optimizer=optimizer,
loss_w=loss_w,
scheduler=lr_scheduler if cfg.TRAIN.LR_SCHEDULER.TYPE == 'annealing_cosine' else None,
)
if args.distributed:
if args.local_rank == 0:
print("Distributing BatchNorm running means and vars")
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
if model_ema is not None and not cfg.TRAIN.EMA.FORCE_CPU:
if args.local_rank == 0:
print('using model_ema to validate')
if args.distributed:
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
valid_loss, valid_gt, valid_probs, valid_imgs, valid_logits, valid_loss_mtr = valid_trainer(
cfg,
args=args,
epoch=e,
model=model_ema.module,
valid_loader=valid_loader,
criterion=criterion,
loss_w=loss_w
)
else:
valid_loss, valid_gt, valid_probs, valid_imgs, valid_logits, valid_loss_mtr = valid_trainer(
cfg,
args=args,
epoch=e,
model=model,
valid_loader=valid_loader,
criterion=criterion,
loss_w=loss_w
)
if cfg.TRAIN.LR_SCHEDULER.TYPE == 'plateau':
lr_scheduler.step(metrics=valid_loss)
elif cfg.TRAIN.LR_SCHEDULER.TYPE == 'warmup_cosine':
lr_scheduler.step(epoch=e + 1)
elif cfg.TRAIN.LR_SCHEDULER.TYPE == 'multistep':
lr_scheduler.step()
if cfg.METRIC.TYPE == 'pedestrian':
train_result = get_pedestrian_metrics(train_gt, train_probs, index=None, cfg=cfg)
valid_result = get_pedestrian_metrics(valid_gt, valid_probs, index=None, cfg=cfg)
if args.local_rank == 0:
print(f'Evaluation on train set, train losses {train_loss}\n',
'ma: {:.4f}, label_f1: {:.4f}, pos_recall: {:.4f} , neg_recall: {:.4f} \n'.format(
train_result.ma, np.mean(train_result.label_f1),
np.mean(train_result.label_pos_recall),
np.mean(train_result.label_neg_recall)),
'Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}'.format(
train_result.instance_acc, train_result.instance_prec, train_result.instance_recall,
train_result.instance_f1))
print(f'Evaluation on test set, valid losses {valid_loss}\n',
'ma: {:.4f}, label_f1: {:.4f}, pos_recall: {:.4f} , neg_recall: {:.4f} \n'.format(
valid_result.ma, np.mean(valid_result.label_f1),
np.mean(valid_result.label_pos_recall),
np.mean(valid_result.label_neg_recall)),
'Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}'.format(
valid_result.instance_acc, valid_result.instance_prec, valid_result.instance_recall,
valid_result.instance_f1))
print(valid_result.label_f1)
print(f'{time_str()}')
print('-' * 60)
if args.local_rank == 0:
tb_visualizer_pedes(tb_writer, lr, e, train_loss, valid_loss, train_result, valid_result,
train_gt, valid_gt, train_loss_mtr, valid_loss_mtr, model, None)
cur_metric = float(np.mean(valid_result.label_f1))
if cur_metric > maximum:
maximum = cur_metric
best_epoch = e
save_ckpt(model, path, e, maximum)
result_list[e] = {
'train_result': train_result, # 'train_map': train_map,
'valid_result': valid_result, # 'valid_map': valid_map,
'train_gt': train_gt, 'train_probs': train_probs,
'valid_gt': valid_gt, 'valid_probs': valid_probs,
'train_imgs': train_imgs, 'valid_imgs': valid_imgs
}
elif cfg.METRIC.TYPE == 'multi_label':
train_metric = get_multilabel_metrics(train_gt, train_probs)
valid_metric = get_multilabel_metrics(valid_gt, valid_probs)
if args.local_rank == 0:
print(
'Train Performance : mAP: {:.4f}, OP: {:.4f}, OR: {:.4f}, OF1: {:.4f} CP: {:.4f}, CR: {:.4f}, '
'CF1: {:.4f}'.format(train_metric.map, train_metric.OP, train_metric.OR, train_metric.OF1,
train_metric.CP, train_metric.CR, train_metric.CF1))
print(
'Test Performance : mAP: {:.4f}, OP: {:.4f}, OR: {:.4f}, OF1: {:.4f} CP: {:.4f}, CR: {:.4f}, '
'CF1: {:.4f}'.format(valid_metric.map, valid_metric.OP, valid_metric.OR, valid_metric.OF1,
valid_metric.CP, valid_metric.CR, valid_metric.CF1))
print(f'{time_str()}')
print('-' * 60)
tb_writer.add_scalars('train/lr', {'lr': lr}, e)
tb_writer.add_scalars('train/losses', {'train': train_loss,
'test': valid_loss}, e)
tb_writer.add_scalars('train/perf', {'mAP': train_metric.map,
'OP': train_metric.OP,
'OR': train_metric.OR,
'OF1': train_metric.OF1,
'CP': train_metric.CP,
'CR': train_metric.CR,
'CF1': train_metric.CF1}, e)
tb_writer.add_scalars('test/perf', {'mAP': valid_metric.map,
'OP': valid_metric.OP,
'OR': valid_metric.OR,
'OF1': valid_metric.OF1,
'CP': valid_metric.CP,
'CR': valid_metric.CR,
'CF1': valid_metric.CF1}, e)
cur_metric = valid_metric.map
if cur_metric > maximum:
maximum = cur_metric
best_epoch = e
save_ckpt(model, path, e, maximum)
result_list[e] = {
'train_result': train_metric, 'valid_result': valid_metric,
'train_gt': train_gt, 'train_probs': train_probs,
'valid_gt': valid_gt, 'valid_probs': valid_probs
}
else:
assert False, f'{cfg.METRIC.TYPE} is unavailable'
with open(result_path, 'wb') as f:
pickle.dump(result_list, f)
return maximum, best_epoch
def argument_parser():
parser = argparse.ArgumentParser(description="attribute recognition",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--cfg", help="decide which cfg to use", type=str,
default="./configs/pedes_baseline/pa100k.yaml",
)
parser.add_argument("--debug", type=str2bool, default="true")
parser.add_argument('--local_rank', help='node rank for distributed training', default=0,
type=int)
parser.add_argument('--dist_bn', type=str, default='',
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = argument_parser()
update_config(cfg, args)
main(cfg, args)