-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsubmit_muti.py
executable file
·206 lines (175 loc) · 7.74 KB
/
submit_muti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from mmdet.apis import init_detector, inference_detector, show_result, draw_poly_detections,inference_detector_2
from mmdet.apis import draw_poly_detections_2,init_detector_2
import mmcv
from mmcv import Config
from mmdet.datasets import get_dataset
import cv2
import os
import numpy as np
from tqdm import tqdm
import DOTA_devkit.polyiou as polyiou
import math
import pdb
def py_cpu_nms_poly_fast_np(dets, thresh):
obbs = dets[:, 0:-1]
x1 = np.min(obbs[:, 0::2], axis=1)
y1 = np.min(obbs[:, 1::2], axis=1)
x2 = np.max(obbs[:, 0::2], axis=1)
y2 = np.max(obbs[:, 1::2], axis=1)
scores = dets[:, 8]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
polys = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
hbb_inter = w * h
hbb_ovr = hbb_inter / (areas[i] + areas[order[1:]] - hbb_inter)
h_inds = np.where(hbb_ovr > 0)[0]
tmp_order = order[h_inds + 1]
for j in range(tmp_order.size):
iou = polyiou.iou_poly(polys[i], polys[tmp_order[j]])
hbb_ovr[h_inds[j]] = iou
try:
if math.isnan(ovr[0]):
pdb.set_trace()
except:
pass
inds = np.where(hbb_ovr <= thresh)[0]
order = order[inds + 1]
return keep
class DetectorModel():
def __init__(self,
config_file,
checkpoint_file):
# init RoITransformer
self.config_file = config_file
self.checkpoint_file = checkpoint_file
self.cfg = Config.fromfile(self.config_file)
self.cfg_2=Config.fromfile(self.config_file)
self.data_test = self.cfg.data['test']
self.dataset = get_dataset(self.data_test)
# self.classnames = self.dataset.CLASSES
self.classnames = ('1', '2', '3', '4', '5')
self.model = init_detector(config_file, checkpoint_file, device='cuda:0')
self.cfg_2.data['test']['img_scale']=(1666,1666)
self.cfg_2.test_cfg['rcnn']['score_thr']=0.25
self.model_2=init_detector_2(self.cfg_2, checkpoint_file, device='cuda:0')
# config.test_cfg
# print(self.cfg.data['test']['img_scale'])
def inference_single(self, imagname):
img = mmcv.imread(imagname)
height, width, channel = img.shape
# slide_h, slide_w = slide_size
# hn, wn = chip_size
# TODO: check the corner case
# import pdb; pdb.set_trace()
total_detections = np.zeros((0, 9))
# print(self.classnames)
chip_detections = inference_detector(self.model, img)
chip_detections_2=inference_detector(self.model_2, img)
# for i in range(5):
# print('result: ', chip_detections[i])
# for i in tqdm(range(int(width / slide_w + 1))):
# for j in range(int(height / slide_h) + 1):
# subimg = np.zeros((hn, wn, channel))
# # print('i: ', i, 'j: ', j)
# chip = img[j*slide_h:j*slide_h + hn, i*slide_w:i*slide_w + wn, :3]
# subimg[:chip.shape[0], :chip.shape[1], :] = chip
# chip_detections = inference_detector(self.model, subimg)
# print('result: ', chip_detections)
# for cls_id, name in enumerate(self.classnames):
# # chip_detections[cls_id][:, :8][:, ::2] = chip_detections[cls_id][:, :8][:, ::2] + i * slide_w
# # chip_detections[cls_id][:, :8][:, 1::2] = chip_detections[cls_id][:, :8][:, 1::2] + j * slide_h
# # import pdb;pdb.set_trace()
# # try:
# total_detections[cls_id] = chip_detections[cls_id]
# except:
# import pdb; pdb.set_trace()
# nms
# total_detections=chip_detections
# print(chip_detections.shape)
# for i in range(5):
# # print(len(chip_detections[i]))
# if len(chip_detections[i]):
# # print(chip_detections[i].shape)
# # print(total_detections)
# total_detections=np.concatenate((total_detections,chip_detections[i]))
# # print(total_detections[1:].shape)
# total_detections_=total_detections[1:]
# print(chip_detections)
# totol_class=np.zeros((0,1))
# for i in range(5):
# total_detections=np.concatenate((total_detections,chip_detections[i]))
# total_detections=np.concatenate((total_detections,chip_detections_2[i]))
# # print(chip_detections[i].shape[0])
# temp_class=np.ones((chip_detections[i].shape[0],1))*i
# totol_class=np.concatenate((totol_class,temp_class))
# temp_class=np.ones((chip_detections_2[i].shape[0],1))*i
# totol_class=np.concatenate((totol_class,temp_class))
# print(total_detections.shape)
# keep = py_cpu_nms_poly_fast_np(total_detections, 0.1)
# totol_class=totol_class[keep]
# # print(totol_class.shape)
# total_detections=total_detections[keep]
# print(total_detections.shape)
for i in range(5):
# print(chip_detections[i].shape)
chip_detections[i]=np.concatenate((chip_detections[i],chip_detections_2[i]))
keep = py_cpu_nms_poly_fast_np(chip_detections[i], 0.1)
chip_detections[i] = chip_detections[i][keep]
return chip_detections
#
def inference_single_vis(self, srcpath, dstpath, slide_size, chip_size):
detections= self.inference_single(srcpath, slide_size, chip_size)
# print(detections)
img = draw_poly_detections(srcpath, detections,self.classnames, scale=1, threshold=0.05)
cv2.imwrite(dstpath, img)
if __name__ == '__main__':
import tqdm
roitransformer = DetectorModel(r'work_dirs/faster_rcnn_RoITrans_r101_fpn_1x_all_aug/faster_rcnn_RoITrans_r101x_fpn_1x_anchors_augs_augfpn.py',
r'work_dirs/faster_rcnn_RoITrans_r101_fpn_1x_all_aug/epoch_140.pth')
threshold=0.05
class_names=('1', '2', '3', '4', '5')
import os
path="/media/ubuntu/data/huojianjun/科目四初赛第一阶段/test1"
file_img_name=os.listdir(path)
result_file=open("./科目四_莘莘学子.txt",'w')
# print(file_img_name)
count=0
for name in tqdm.tqdm(file_img_name):
# count+=1
path_img=os.path.join(path,name)
detection_result=roitransformer.inference_single(path_img)
for j, name_cls in enumerate(class_names):
dets = detection_result[j]
for det in dets:
bbox = det[:8]
score = round(det[-1],2)
if score < threshold:
continue
bbox = list(map(int, bbox))
# print(bbox)
# print(score)
# print(name_cls)
result_file.writelines(name+" "+str(name_cls)+" "+str(score)+" "
+str(bbox[0])
+" "+str(bbox[1])+" "+str(bbox[2])+" "+str(bbox[3])
+" "+str(bbox[4])+" "+str(bbox[5])+" "+str(bbox[6])
+" "+str(bbox[7]))
result_file.writelines("\n")
count+=1