From 754a80045694c7decf64cc312e990ac706de9ded Mon Sep 17 00:00:00 2001 From: Misha Mikhasenko Date: Wed, 12 Oct 2022 05:53:05 +0200 Subject: [PATCH] BEHAVIOR: add systematic (detector) uncertainties (#184) * FIX: swap uncertainties D(1600)/L(1600) Co-authored-by: Remco de Boer <29308176+redeboer@users.noreply.github.com> --- data/model-definitions.yaml | 16 ++++++++-------- docs/uncertainties.ipynb | 12 ++++++------ src/polarimetry/lhcb/__init__.py | 13 ++++++++++--- 3 files changed, 24 insertions(+), 17 deletions(-) diff --git a/data/model-definitions.yaml b/data/model-definitions.yaml index 83349fbf..9e2a3389 100644 --- a/data/model-definitions.yaml +++ b/data/model-definitions.yaml @@ -43,10 +43,10 @@ Default amplitude model: AiL(1520)1: 0.044324 ± 0.022276 ± 0.12 ± 0.02 ArL(1520)2: -0.160687 ± 0.075604 ± 0.69 ± 0.03 AiL(1520)2: 1.498833 ± 0.032468 ± 1.3 ± 0.0 - ArL(1600)1: 4.840649 ± 0.080342 ± 9.8 ± 0.2 - AiL(1600)1: 3.082786 ± 0.313304 ± 1.4 ± 0.2 - ArL(1600)2: -6.971233 ± 0.180278 ± 7.2 ± 0.2 - AiL(1600)2: 0.842435 ± 0.300438 ± 2.1 ± 0.1 + ArL(1600)1: 4.840649 ± 0.080342 ± 5.0 ± 0.1 + AiL(1600)1: 3.082786 ± 0.313304 ± 3.7 ± 0.1 + ArL(1600)2: -6.971233 ± 0.180278 ± 8.7 ± 0.1 + AiL(1600)2: 0.842435 ± 0.300438 ± 2.0 ± 0.2 ArL(1670)1: -0.339585 ± 0.013871 ± 0.35 ± 0.01 AiL(1670)1: -0.144678 ± 0.022591 ± 0.22 ± 0.02 ArL(1670)2: -0.570978 ± 0.059400 ± 0.46 ± 0.02 @@ -65,10 +65,10 @@ Default amplitude model: AiD(1232)1: 3.051805 ± 0.264359 ± 1.4 ± 0.1 ArD(1232)2: -12.987193 ± 0.433180 ± 12 ± 0 AiD(1232)2: 4.528336 ± 0.493430 ± 3.7 ± 0.3 - ArD(1600)1: 11.401585 ± 0.437580 ± 5.0 ± 0.1 - AiD(1600)1: -3.125511 ± 0.473191 ± 3.7 ± 0.1 - ArD(1600)2: 6.729211 ± 0.283501 ± 8.7 ± 0.1 - AiD(1600)2: -1.002383 ± 0.331137 ± 2.0 ± 0.2 + ArD(1600)1: 11.401585 ± 0.437580 ± 9.8 ± 0.2 + AiD(1600)1: -3.125511 ± 0.473191 ± 1.4 ± 0.2 + ArD(1600)2: 6.729211 ± 0.283501 ± 7.2 ± 0.2 + AiD(1600)2: -1.002383 ± 0.331137 ± 2.1 ± 0.1 ArD(1700)1: 10.378280 ± 0.253080 ± 7.2 ± 0.3 AiD(1700)1: 1.434872 ± 0.485532 ± 5.2 ± 0.2 ArD(1700)2: 12.874102 ± 0.233827 ± 13 ± 0 diff --git a/docs/uncertainties.ipynb b/docs/uncertainties.ipynb index b868e589..32c9a728 100644 --- a/docs/uncertainties.ipynb +++ b/docs/uncertainties.ipynb @@ -401,16 +401,16 @@ "np.testing.assert_almost_equal(\n", " np.array(stat_intensities[bootstrap_selection, event_selection]),\n", " [\n", - " [2177.066401, 5459.644607, 6256.06364],\n", - " [2263.337352, 5662.47171, 6339.399809],\n", - " [2036.602322, 5124.725992, 6120.279915],\n", - " [2060.930775, 5270.754879, 6131.571211],\n", + " [2181.869539, 5457.018803, 6252.331785],\n", + " [2272.483121, 5683.29221, 6329.830268],\n", + " [2036.791629, 5087.462553, 6125.017938],\n", + " [2053.192849, 5263.222729, 6142.861638],\n", " ],\n", " decimal=6,\n", ")\n", "np.testing.assert_almost_equal(\n", " np.array(stat_polarimetry_norm[bootstrap_selection, 0]),\n", - " [0.711835, 0.708065, 0.716237, 0.735825],\n", + " [0.71179, 0.709137, 0.71447, 0.734856],\n", " decimal=6,\n", ")\n", "del bootstrap_selection, event_selection" @@ -1361,7 +1361,7 @@ "source": [ "np.testing.assert_almost_equal(\n", " np.array(stat_decay_rates[\"L(1405)\"][:3]),\n", - " [0.0796555, 0.0804976, 0.0789567],\n", + " [0.0799202, 0.0809439, 0.0789926],\n", ")\n", "np.testing.assert_almost_equal(\n", " np.array(syst_decay_rates[\"L(1405)\"]),\n", diff --git a/src/polarimetry/lhcb/__init__.py b/src/polarimetry/lhcb/__init__.py index d4d0a225..240398ab 100644 --- a/src/polarimetry/lhcb/__init__.py +++ b/src/polarimetry/lhcb/__init__.py @@ -10,6 +10,7 @@ import re import sys from copy import deepcopy +from math import sqrt from pathlib import Path from typing import Generic, Iterable, TypeVar, overload @@ -377,7 +378,7 @@ def _to_value_with_uncertainty(str_value: str) -> MeasuredParameter[float]: >>> par MeasuredParameter(value=0.94, hesse=0.042, model=0.35, systematic=0.04) >>> par.uncertainty - 0.042 + 0.058 """ float_values = tuple(float(s) for s in str_value.split(" ± ")) if len(float_values) == 2: @@ -438,8 +439,14 @@ class MeasuredParameter(Generic[ParameterType]): @property def uncertainty(self) -> ParameterType: - # Will implement quadratic sum of uncertainties here - return self.hesse + if self.systematic is None: + return self.hesse + if isinstance(self.value, float): + return sqrt(self.hesse**2 + self.systematic**2) + return complex( + sqrt(self.hesse.real**2 + self.systematic.real**2), + sqrt(self.hesse.imag**2 + self.systematic.imag**2), + ) def get_conversion_factor(