-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemonstrace.nb
11957 lines (11816 loc) · 646 KB
/
demonstrace.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 0, 0]
NotebookDataLength[ 661677, 11956]
NotebookOptionsPosition[ 656335, 11788]
NotebookOutlinePosition[ 656672, 11803]
CellTagsIndexPosition[ 656629, 11800]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Support Vector Machines ", "Title",
CellChangeTimes->{{3.5436676228604937`*^9, 3.5436676363825817`*^9}, {
3.544897381709528*^9, 3.5448973875950193`*^9}}],
Cell["\<\
Demonstrace funkce a pou\[ZHacek]it\[IAcute] SVM klasifik\[AAcute]toru\
\>", "Subtitle",
CellChangeTimes->{{3.543667640575199*^9, 3.543667642200035*^9}, {
3.5464274692468367`*^9, 3.546427479012259*^9}}],
Cell[CellGroupData[{
Cell["P\[RHacek]\[IAcute]prava prost\[RHacek]ed\[IAcute]", "Section",
CellChangeTimes->{{3.546440152121821*^9, 3.5464401609938793`*^9}}],
Cell["\<\
Nejprve na\[CHacek]teme v\[SHacek]echny pot\[RHacek]ebn\[EAcute] knihovny.\
\>", "Text",
CellChangeTimes->{{3.546439126279229*^9, 3.54643915079475*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Quiet", "[",
RowBox[{"<<", "MathSVM`"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Needs", "[", "\"\<VectorAnalysis`\>\"", "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.543675054699823*^9, 3.543675064833311*^9}, {
3.543675922752283*^9, 3.543675930033881*^9}, {3.543678083141732*^9,
3.543678088241193*^9}, {3.543680095205223*^9, 3.543680098095798*^9}, {
3.546357180728202*^9, 3.5463571878960543`*^9}, {3.546373271548612*^9,
3.546373276239609*^9}}],
Cell["\<\
A inicializujeme funkce, kter\[EAcute] jsou d\[AAcute]le \
pou\[ZHacek]\[IAcute]v\[AAcute]ny.\
\>", "Text",
CellChangeTimes->{{3.5464391852417994`*^9, 3.546439216462862*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"SVMPlotMy", "[",
RowBox[{"\[Alpha]_", ",",
RowBox[{"X_", "?", "MatrixQ"}], ",", "y_", ",", "opts___"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"x1range", ",", "x2range", ",", "sv", ",", "df", ",", "x1", ",", "x2",
",", "K"}], "}"}], ",",
RowBox[{
RowBox[{"K", "=",
RowBox[{
RowBox[{"KernelFunction", "/.",
RowBox[{"{", "opts", "}"}]}], "/.",
RowBox[{"Options", "[", "SVMPlot", "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"x1range", "=",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"Min", "[",
RowBox[{"X", "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}], "]"}], ",",
RowBox[{"Max", "[",
RowBox[{"X", "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}], "]"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"x2range", "=",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"Min", "[",
RowBox[{"X", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}], ",",
RowBox[{"Max", "[",
RowBox[{"X", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"sv", "=",
RowBox[{"SupportVectors", "[",
RowBox[{"\[Alpha]", ",", "y"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"df", "=",
RowBox[{
RowBox[{"Total", "[",
RowBox[{"\[Alpha]", "*", "y", "*",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"K", "[",
RowBox[{
RowBox[{"{",
RowBox[{"x1", ",", "x2"}], "}"}], ",", "#"}], "]"}], "&"}],
",", "X"}], "]"}]}], "]"}], "+",
RowBox[{"Bias", "[",
RowBox[{"\[Alpha]", ",", "X", ",", "y", ",", "opts"}], "]"}]}]}],
";", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"X", "[",
RowBox[{"[",
RowBox[{"Flatten", "[", "sv", "]"}], "]"}], "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Hue", "[", "0.6", "]"}], ",",
RowBox[{"PointSize", "[", "0.020", "]"}]}], "}"}]}]}], "]"}],
",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Extract", "[",
RowBox[{"X", ",",
RowBox[{"Position", "[",
RowBox[{"y", ",", "1"}], "]"}]}], "]"}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"{", "Red", "}"}]}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Extract", "[",
RowBox[{"X", ",",
RowBox[{"Position", "[",
RowBox[{"y", ",",
RowBox[{"-", "1"}]}], "]"}]}], "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Green", "}"}]}]}], "]"}], ",",
RowBox[{"ImplicitPlot", "[",
RowBox[{
RowBox[{"df", "\[Equal]", "0"}], ",", "x1range", ",", "x2range",
",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Thick", "}"}]}]}], "]"}], ",",
RowBox[{"ImplicitPlot", "[",
RowBox[{
RowBox[{"df", "\[Equal]", "1"}], ",", "x1range", ",", "x2range",
",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Dashing", "[",
RowBox[{"{",
RowBox[{".01", ",", ".01"}], "}"}], "]"}]}]}], "]"}], ",",
RowBox[{"ImplicitPlot", "[",
RowBox[{
RowBox[{"df", "\[Equal]",
RowBox[{"-", "1"}]}], ",", "x1range", ",", "x2range", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Dashing", "[",
RowBox[{"{",
RowBox[{".01", ",", ".01"}], "}"}], "]"}]}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"RemainingOptions", "[",
RowBox[{
RowBox[{"{", "KernelFunction", "}"}], ",", "opts"}], "]"}]}],
"*)"}], "]"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"KernelRBF", "[",
RowBox[{"x_", ",", "z_", ",", " ", "b_"}], "]"}], ":=",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "b"}], " ",
RowBox[{"(",
RowBox[{"x", "-", "z"}], ")"}], " ",
RowBox[{"(",
RowBox[{"x", "-", "z"}], ")"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"KernelPolynomial", "[",
RowBox[{"x_", ",", "z_", ",", "c_", ",", "d_Integer"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{"c", "+",
RowBox[{"x", " ", "z"}]}], ")"}], "^", "d"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.543674966023142*^9, 3.5436749928640747`*^9},
3.543675219378708*^9, 3.54367536717935*^9, {3.543675482596974*^9,
3.5436754844077272`*^9}, {3.543677015921831*^9, 3.5436770831769447`*^9}, {
3.5436776346346893`*^9, 3.5436777538213043`*^9}, {3.5436781580577583`*^9,
3.543678204064865*^9}, {3.5436786257229013`*^9, 3.543678626190954*^9},
3.5436805101515417`*^9, {3.543680804223134*^9, 3.543680804430056*^9}, {
3.543680884059518*^9, 3.5436808863387747`*^9}, {3.544878981476243*^9,
3.5448790629467077`*^9}, {3.5463546592475243`*^9, 3.546354675764206*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Pou\[ZHacek]it\[IAcute] SVM na jednoduch\[YAcute]ch datech\
\>", "Section",
CellChangeTimes->{{3.546439311469438*^9, 3.546439320083727*^9}}],
Cell["\<\
Vygenerujeme jednoduch\[AAcute] data, kter\[AAcute] budeme pomoc\[IAcute] SVM \
klasifikovat.\
\>", "Text",
CellChangeTimes->{{3.546439333299815*^9, 3.5464393554620132`*^9}, {
3.546440186886922*^9, 3.5464401907116756`*^9}, {3.546448000617547*^9,
3.546448002282073*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"points", "=", "20"}], ";"}], "\n",
RowBox[{
RowBox[{"x", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"RandomReal", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{
RowBox[{"-", "2"}], ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"points", "/", "2"}], ",", "2"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"RandomReal", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"2", ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"points", "/", "2"}], ",", "2"}], "}"}]}], "]"}]}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{"y", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"points", "/", "2"}], "}"}]}], "]"}], ",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"-", "1"}], ",",
RowBox[{"{",
RowBox[{"points", "/", "2"}], "}"}]}], "]"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.5436676834883137`*^9, 3.543667755072508*^9}, {
3.5436764725877237`*^9, 3.5436765261741123`*^9}, {3.5436784801114607`*^9,
3.5436784828321037`*^9}}],
Cell["\<\
Data si m\[URing]\[ZHacek]eme prohl\[EAcute]dnout v grafu.\
\>", "Text",
CellChangeTimes->{{3.546439363888116*^9, 3.546439388923065*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Extract", "[",
RowBox[{"x", ",",
RowBox[{"Position", "[",
RowBox[{"y", ",", "1"}], "]"}]}], "]"}], ",",
RowBox[{"Extract", "[",
RowBox[{"x", ",",
RowBox[{"Position", "[",
RowBox[{"y", ",",
RowBox[{"-", "1"}]}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Green"}], "}"}]}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.543667761125177*^9, 3.5436678029373617`*^9}, {
3.5436764034384527`*^9, 3.543676462360197*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[1, 0, 0],
PointBox[{{-1.8159331806053036`, -3.109590647694514}, \
{-2.467457724315463, -2.0541896499590444`}, {-2.361665981040003, \
-1.093788912510888}, {-1.1686922524189405`, -2.841633355662382}, \
{-1.2351277429334373`, -3.1835791033244556`}, {-2.2268141158091437`, \
-1.773088498532056}, {-1.7451829247483046`, -4.461604989220694}, \
{-3.0183271731549164`, -2.1754373122965247`}, {-0.8395888230244903, \
-1.4518431823400397`}, {-2.324458232208721, -5.141837173494578}}]},
{RGBColor[0, 1, 0],
PointBox[{{1.793864885752963, 3.6928228501013054`}, {0.8668854543938054,
2.6286128060046345`}, {4.116828183711347, 3.4428379825195776`}, {
1.2070541604786365`, 2.547123395978609}, {2.624098724648716,
1.7240929399981832`}, {-0.3428802730356435, 2.21906431535169}, {
3.553062422182623, 1.9723982771026463`}, {0.3183633292842323,
1.2334250313291153`}, {3.030157442654918, 2.485594175557423}, {
0.3327100613434031, 2.8817433724746517`}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.54643942909527*^9, 3.546439492981842*^9,
3.546448009493587*^9}]
}, Open ]],
Cell["\<\
Vid\[IAcute]me, \[ZHacek]e data jsou velmi jednoduch\[AAcute], obsahuj\
\[IAcute] dv\[EHacek] t\[RHacek]\[IAcute]dy- \[CHacek]ervenou a zelenou. Na \
prvn\[IAcute] pohled je jasn\[EAcute], \[ZHacek]e data jsou line\[AAcute]rn\
\[EHacek] separabiln\[IAcute]. Nyn\[IAcute] na datech natr\[EAcute]nujeme SVM \
klasifik\[AAcute]tor a zobraz\[IAcute]me si jeho v\[YAcute]stup.\
\>", "Text",
CellChangeTimes->{{3.546439524741148*^9, 3.546439555249432*^9}, {
3.546440206407469*^9, 3.5464402679011183`*^9}, 3.5464480186067657`*^9}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"t", "=", "0.01"}], ";"}], "\n",
RowBox[{
RowBox[{"a", "=",
RowBox[{"SeparableSVM", "[",
RowBox[{"x", ",", "y", ",", "t"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"SVMPlotMy", "[",
RowBox[{"a", ",", "x", ",", "y"}], "]"}]}], "Input",
CellChangeTimes->{{3.5436678180616913`*^9, 3.543667820681541*^9}, {
3.543668783137475*^9, 3.543668783243845*^9}, {3.543674890944028*^9,
3.5436748943384113`*^9}, {3.54368124918498*^9, 3.543681258840225*^9}, {
3.546439507930298*^9, 3.546439510925684*^9}}],
Cell[BoxData[
GraphicsBox[{{{},
{Hue[0.6], PointSize[0.02],
PointBox[{{-0.8395888230244903, -1.4518431823400397`}, {
0.3183633292842323, 1.2334250313291153`}}]}, {}}, {{},
{RGBColor[1, 0, 0],
PointBox[{{-1.8159331806053036`, -3.109590647694514}, \
{-2.467457724315463, -2.0541896499590444`}, {-2.361665981040003, \
-1.093788912510888}, {-1.1686922524189405`, -2.841633355662382}, \
{-1.2351277429334373`, -3.1835791033244556`}, {-2.2268141158091437`, \
-1.773088498532056}, {-1.7451829247483046`, -4.461604989220694}, \
{-3.0183271731549164`, -2.1754373122965247`}, {-0.8395888230244903, \
-1.4518431823400397`}, {-2.324458232208721, -5.141837173494578}}]}, {}}, {{}, \
{RGBColor[0, 1, 0],
PointBox[{{1.793864885752963, 3.6928228501013054`}, {0.8668854543938054,
2.6286128060046345`}, {4.116828183711347, 3.4428379825195776`}, {
1.2070541604786365`, 2.547123395978609}, {2.624098724648716,
1.7240929399981832`}, {-0.3428802730356435, 2.21906431535169}, {
3.553062422182623, 1.9723982771026463`}, {0.3183633292842323,
1.2334250313291153`}, {3.030157442654918, 2.485594175557423}, {
0.3327100613434031, 2.8817433724746517`}}]}, {}},
GraphicsComplexBox[CompressedData["
1:eJxl3Xm0VePj+PHb7TZ3myMlY0gRoVJonxSSUIkyJFEhpAwfyhQSUSkNRJo0
oRIaUOyb0qSoaJ7nebzN3errt9Z5Pfe3bn991mvtte9xO+/n2c9+zj37c/Hj
zzdpk5qSkjIgf0rK//vf34d+OOWDy/JnjC82YMYtfUplDD728OdZI/IGd250
9RsdKuQJfmDM6Zabv8odfF3KwlubX5oaXKT5sMvmD08J/rfllmJd6p2OuUfR
D5Y+WfdkcL240qB7bz0WnNV+QasadQ4HT7ygwxUXJg4GLxt02cr0N/cG357V
rs2a17YHT3p4wv6xnTYG1//frqPH9i4Pvrvd7vOvXTI3eGiXC4ZuntUjuObn
2z+47+ZZEdfutWPch5csC57w5Hd/vtx3Q3Cd/O0So/pvC148psKkpZ/uCf5+
xL5+uRccCD5+qOHf5f46lH3+bd8UuOHvo8Hd++er13DhieBFW1q/2XrRqeD0
cq0eqf10SoKrzvi407wduYLvf+a3AQ+0yx3cqeSeHzfuTAv+cmq5Re2fyRs8
/YkGe0/syhe8pVCnQu8/WyC4wMTRFUvuKRh89SNLbxvyXOHgxml5nqi8Nz34
5bHXd5nSvmjwvZW+/2vYK8WC9fb+tPOHVf6qZOiN9cZ6Y72x3lhvrDfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLdwfrI31hvrjfXGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb4899dWb500qEXpjvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6y2cn+yN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWW81SlR7JN7t46I31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431xnpjvbHeWG+st3B+sjfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv
/43cmoeXFwu9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w3
1hvrjfUWzk/2xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb623JsvZVZi0p
GnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6y2c
n+yN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWW7drXt8x7Hh66I31xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st3B+sjfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvNd7vPuKN8oVDb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9hfOTvbHeWG+sN9Yb6431
xnpjvbHeWG+sN9Yb6431xnrbvnZAywfrFAy9sd5Yb6w31hvrjfXGemO9sd5Y
b6w31hvrjfXGemO9sd5Yb6w31hvrjfUWzk/2xnpjvbHeWG+sN9Yb6431xnpj
vbHeWG+sN9Yb621g9RFlq7XJH3pjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431xnpjvbHeWG+sN9Yb6y2cn+yN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv
rDfWW4Ne3y8p1j1v6I31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431
xnpjvbHeWG+st3B+sjfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvJ7f8
1nv32LTQG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhv4fxkb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd7G3jL/rjkLU0Nv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72F85O9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemvRf0XeEYdSQm+sN9Yb6431
xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvYXzk72x3lhvrDfW
G+uN9cZ6Y72x3lhvrDfWG+uN9cZ6O3/lgnfPXHs61hvrjfXGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb+H8ZG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHe3uy+/fjkV0+E3lhvrDfWG+uN9cZ6Y72x3lhvrDfW
G+uN9cZ6Y72x3lhvrDfWG+uN9cZ6C+cne2O9sd5Yb6w31hvrjfXGemO9sd5Y
b6w31hvrjfW2/sbcHdpnHAm9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd5Yb6w31hvrjfUWzk/2xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6+3W7eW3XpY/M/TGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9
sd5Yb6w31ls4P9kb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st/rXdPzp
lyF7Q2+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpj
vYXzk72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6K9xr1Igrr9kWemO9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrLZyf7I31
xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9bb0BVTLq76xrrQG+uN9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv4fxkb6w31hvrjfXG
emO9sd5Yb6w31hvrjfXGemO9sd4qfnrJiSKDFobeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnoL5yd7Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWG+uN9Zb/riUVF4z/IvTGemO9sd5Yb6w31hvrjfXGemO9sd5Y
b6w31hvrjfXGemO9sd5Yb6w31ls4P9kb6431xnpjvbHeWG+sN9Yb6431xnpj
vbHeWG+st16rin7TruG8SG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvYXzk72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
q33tl683y7c69MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWWzg/2RvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3h2uet/jm
l7aE3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
C+cne2O9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfX26cpNWxZs3h16Y72x
3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+stnJ/sjfXG
emO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31tuOW5a9/l2lg6E31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd7C+cneWG+sN9Yb6431
xnpjvbHeWG+sN9Yb6431xnrj8DyHXtPyHtt4OPTG4XkOSYfnOSQdnueQdHie
Q9LheQ5Jh+c5JB2e55B0eJ5D0uF5DkmH5zkkHZ7nkHR4nkPS4XkOSYfnOSQd
nueQdHieQ9LheQ5Jh+c5JB2e55B0eJ5D0uF5DkmH5zk43/Mckg7Pc0g6PM8h
6fA8h6TD8xySDs9zSDo8zyHp8DyHpMPzHJIOz3NIOjzPIenwPIekw/Mckg7P
c0g6PM8hab1dtm5Y78QXx0NvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72F85O9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
eptxzftlu993KvTGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9
sd5Yb6w31ls4P9kb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st2sT1Rdv
fy8loTfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3sL5yd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9vbW94rnpj6eG3lhv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6C+cne2O9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfX2V+9yj1StnRZ6Y72x3lhvrDfW
G+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+stnJ/sjfXGemO9sd5Y
b6w31hvrjfXGemO9sd5Yb6w31lv5mkWG3V82b+iN9cZ6Y72x3lhvrDfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLdwfrI31hvrjfXGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb89uSNna6Ui+0BvrjfXGemO9sd5Yb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9sd5Yb+H8ZG+sN9Yb6431xnpjvbHeWG+sN9Yb6431
xnpjvbHepnbPrDR4cYHQG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfW
G+uN9cZ6Y72x3lhv4fxkb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd4K
Xrf1+d/HFwq9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w3
1hvrjfUWzk/2xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6+2hlcsnbv0w
PfTGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31ls4
P9kb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG/h369h5phb2+TL+Lztgz/c
UDb7eeV8W5c2s988t1iCnc/Ov65by0/+HVQ49MvOz+mcr+956Y6H588nj+f8
7/fzfj5Se0KbP/JljJh6tNbP95fKaHB/obt631EswY7ffu2gr9aUTE84zv57
c57v9Z2f8/Wd73jO57/7eX5+ztf3855oPqhjx/FFEtXrPLa5T96U8Pvz0ZbF
yi64qmBiQdVVtVc1zYrL5Y9qPDiuUHA04bmmW65OD/bz+KMnu/5e8ds8iWs2
HJ74yaBj8XdFf1w3sXK+4H+mbMhKjM0f7PW47rlXfFDsm9REn97FKjfYfCh+
Mr5/5KBKacF+Po+7pXqr5Y2yosyo8rBcVx2Ij/Ts+8X+xmeCL3z+WLuuV+ZK
sJ/PSxpe8MPHd2dG36z9qMoL23bG5b98bffoe44Et9mz/PKMe48Hez0+NqVw
3l79Nkftb5ledsP/NsUfNp/d+bcBO4N7ZmW88krD/cFej6/5YWvtLc9PjFrf
uCd9aOHl8bg9VWo+dNGi4L+rjLhkaoU1wV6PV5wz6tkrD6yNl+/6bv7JB36P
pyy59t05uxcHN2uyt+3gYVODvR73/l+dgn3j/fHV1x1O67N0ctSr4Zwhh1/f
FXz62/TKf3TeEuz1+KknH/x51e/H49SPFz81a8C/0UXnZr05Y/qR4OWzBtf7
NiMz2OvxsXylqhT+40z86/br6x+auiGaMGVyZuaMrGA/Pzirf/tKrdMyjnc/
/fB7V+2I6jV9svHgTanBF4298YYST+QK9vM5zD/9N9f46J79UY8RMz+avDlP
sJ/P5jPjQ+85v1/vuPnSeNB3zu9TO27+ZPOz8aD3nN+nddx8zeZ/40PvOb8/
6bjri/Gg75zfl3Pc9YZdz4wHfef8vpTjrm/s+mk86Dvn92Ucdz1l12vjQd85
vy/huOs3Wx8YD/rO+ffyjlsvsPWI8aDvnH8v7bj1CVv/GA96z/n3so5bD7H1
lfGh95x/H+m49ZvxoPecfw/nuPUcWx8aH+H6nbT1Ij+buv3VfkWKJupVuWNU
8QvPxCkFH7l4f4+CiVFrWp0/t+3JuF/xhXPvKpQ3kb/n6590GX80bjj9hY+v
L5g70e7mT/PfeCQzjvsseP6C4qei+bu+f3PfLfvjbUMnZSxJPxQ9XH3gjrsL
7YjPf+ymS8uW3hpd2P+vJdM+3xCPOX51qUtrZUSztuXr2qzpv3HvWfWvK75/
VVyz/7yOS+ZPirPqNT068PS+uEmt2wasWPV79EDJ37/pn3o8HrpuysEi9y6P
tv74+oWz0s7Ehftc3rPMZ5uilk0aPJkvLS2j/nUHhn6df1f00PhG7e65p0ji
0HtNW+259VS8d9LMEt/M/+++v9rzy0Z8eDx+59cbp+a5K0/ip83d735k8eG4
1nOruuy5MzVRtt+IGSXLHoy/2DG4ySe9T0bHu7354oAZu+MZx7p9dWfPg9Gv
W35smee+LfG/Rdduz1VqU5TaffGn22euistt3PhN/mVDo1I9O6/vMXtu3OfH
t/+56Pj6eOlvb708dcmQaPi85WVWvHUgbl17z9o31i6MOk/dP/vid0/Eq7u8
k3dovC7KM/7+C76+NSXjmw2Fzm3VaFvUcdSGl++emZax9Z2llQ5m7I1c/80/
bH5z/Te/sPnM9d18wuYr12Pjnc0vrrfGM5s/XE+NVzY/uF4aj2z8ux4ab2x8
u94ZT2z8up4ZPxz+vj15/dE7h7+3TF5vbtw6d/o/eQ8F+/uuLg+89f7Kv7LH
R4lHM6+pfnehMD6st1xf2PtTPe8ld/++oHDosf5DPz+cv1d68Kg2Ty7v82f2
+LL+8n6z93Ne+oDD5RvmDz2vbnV1WuvC2X1bj+mBvd+Pli44uNO83KH/Dk8P
Gxt/mBa8uWZWj2/6nA7j2fpMP+x6dc4fY59oNTcljJ+K59V7YXT3XMGF7ty8
plWvw2E+sF5zfWK93TewTpnOHx8L4++VOh2q5S12IrjthM9aXHfOjjCfWL/p
l/V5pNF9ix8vsy+M3yGNmnf7tfCB4Hm1vjr1bu35YT6yntM767nb2tu3D790
ZRj/PeIu43eUWB+ccnmvX9fvWRLmM+s744P1P21u1TFnFs+IzR/PXHLwROda
3wX/cOjItLdP7Q7zofWe8cTGyyVNb67f+OTWMP+szL0uveaJTcHXPdO3Z4F3
job51PrP+GPja2fZ6vcd6HIozF+zXshXvU1KZrD1oPHJ4fsGhe5JrdX1VJjv
Bj9x4ZZxubOC7z79Q/PpdXOH+dv6MIznpF0vr3yg603VZuQK8+W5qXuu2pea
bfdfv+9o8dCXNx8I60fXRzb++99TrO+KennDfPvuiVe79u2aJ9j60vh3v8bW
k+aDCj98WPv19MLB4ftsyfH908+nty77KF+w9Zrx5Xrk+srGm/Wi49aHxqv1
m/HleuY4G2/Wk46ndSx9f7kCKQkO319Ijl/rO+PN9dFxNv6sNx2/5kCJk3uK
HA22vjSerf+MP9dbx9l4tB51fHzKkU8bnLs72PrT+D5yS48XX7j43+Dw/+eT
HK9rC47u89iyv4OtH42/diMGvvN01o7g8P335HgqMqN1hzdyHcl2cn2mZ9d7
6xfWt/Wh4+F5JMnxYf2mZ+sFx1nf1o+O3/RNuQavvZsaPHr46GEX5skeL3p3
/bE+dL3Su+uL9aLrj971bP3o+mJ94TjrW3+uH9Ybemb96sn1wfpDn6xHfZj/
9WE+tT41/1qv6JH1pyfzv57C/UZyfWv+1ZP50nrXfKqncD+QXP+aL61fHGf9
eH/Nh9YzOe+v9eH9N99Zv3h/2frDesT7x9YX1hveL/b+uv7592HXL9cz/z7s
euT65Pfn8P3A5PUn/L5J5/x+kr7N5/p2/+/3N5/r2/293998rm/3o34/84n3
3/2m38984v13P+n3M594/60fXV+s/1xPrOdcH6wnzGfWA+Yv13Pzleuz+cd6
z3iy38DGq/FnPWe82F8I+2nJ8Wr8Wa9ZH9lPYOPV+LIeM17tH7DxaPxaP1j/
u39m40X/1gfuB9xPs/FS7JNGQ6aXyYzsN+nFfhF7v/Rjv0k/9ofY+6kn+0vG
k/0h9n6bL+2v6M9+COtBj/ZT9Gj/g/WiT/sn+rTfwXrSq/2SsP5K7neE/Ypk
b+YrvZnf3V/k7Mt87n4hZ09hfk6u/3P2Y/1tPZ+zF/Oj9WbOPtwfWj/m7MF8
aT8i5/tvvrQ/kfP9Nl/ar8j5/pov7T/kfD/Nl/Yjcr5/5kv7Eznfr/B94OR+
hfdnc5tGLzXckr2/Ov1/Db67pH/Bs54/efy1juNXP3wqHvx+vZ3H6uU96/mC
WXNWb9j26vHQ8+nS9Utn9j8c5pfUJ36sf/qH7P3MsYM/rjHy9MEwnxR47JZj
JYbuCuvdR5YdXvJYjeznkxU5UbLllSuz9yMf7zj/5lc6bo3ffGNVhdT3Jp+1
/3hFxSUfvVUxe//xr3Nuv6NcszXx1IHHBqevX33W8zjG9996Ze8Bf8bPFui3
adyEfWc9b2F/8WNLvs8/KDq1cclr37x67Kzv059z9w/3PtpwURgP7/VInV7m
2fVhfnrrYOWHUq/bHtaPV7324usTP8/+vnbn5vdn7jq6L+zvbd3WbfugOw6E
9eHlGwaVHvzYnmj76snP33hX0cTNZR55c+sHp+M2X+w++fDSgomCed56/+iE
E/HGBy/54K1WeRPLDwzrnX/FkfjVv1JeO3nlqahOsSGPXX7h/viFu57te2vi
UHThiXf/ad9re7y093fNSo7bGk39Z+6W3mvXxxdULntJt7Yzou8eunB/mxaL
455H6vUcmrkivuH55iMb7Rkd3//2n6VvXbA3nvnGJz0vnTkn+r5u54MPNjoW
j/noluELpq+Kjoy8cuiIM6fjIY+3q7tgxKbozVLrZow/lDsjtXuFqt823RVd
Pm1RtXnF0hNf9dqTum9QVlxlSsVN5dqlJ+quve3Vozuy4q865/t9zxf5Ex1f
K1Y45Y9jcVba7Pl5/8qfKFJz2okb9h+LL6p5yz3Fr0hLJJ66vnTxPYfieU3a
TD5QNS2xqu91b7xw5FB8bZ18iZ8rn4nG7B1z5rus/fHp99scfebvlMTKgemr
yxc6GP+5um7JjzMPR9s/qZ22Ks/O+HCP6vkunHQsapzeal6Ltrvjv/anLJj7
vx3R2/UrF3igxMZ4Tcl60fwB+6K9W0etfmvy5vjLctXXT+y2Kir59oo1ddNX
xqfX13i9RSIjHvDUvLRiD/8RX7Tpznkje34f93mi5q21+s2J7zldvUr3TVvi
Y61ubv33nB+iqnkWligwfHN8V5l7x7TdNjaqkjrhv4Qz49vbvDtxX/H/1kdt
K0+u0j0zXvnKtX8eefef6Ib36rWt/kdWnHfFydlLftoQPf7n3o3Np2fFTbt9
+1iXSRuiTeeueH96VmrGzwt/ezjP1zuiaZnHuyd+yZWx6OU7ak17fVtUel6t
wUs/y5fRO/3pyrf9tT9KVJt56vxr8mbcMChXxc+v2hfmt78GrrtsQq7sz1ca
Z17Zo1LmmTC/Ldra4MGpF2R/nnJvon9crVhWfF/7BX1q/Fr4rM8j/7l+co9Z
N2V/ftKkZ0pm4upj8bVvzZ6f/lz+sz4/uX/lM5c3bHAoLtx7er7N56ed9XnK
29NOjX91RPb9cfMrlj3Y7Mn94X43T8nFM/O9uy9eWOeV914amP15ZNuX2lQ/
Oubs+9dC48ZUvuDXbXH3J545edHx7M8fa1/1Y/M7im8+63704l6nKzy9d138
XsF44+ff7z7r88TKv397sP/jC+M9X9zz5bYNS8/6vPCzWRcUar78w7CefOyn
tB+b15wet/hleukFtWfHOT8f7Ppt5qaL2i0I68vycZ0nvpg2NapQ+YMHHyq2
7azPAycPazhiU2Jt9nrzpksLnei8NFqe+ffkLhUPnfX5xYrcUwe3zf3fenDx
qsS/c7LO+jzjnejTnun3bg73q4uf3lyj0dyd4f7z9ZEZlx8ttTu6YfmLW/pO
zP784oHZnb75NS37876MMQ2qriyQO/Hipa83K300M75l6/wOuwvmTvSqtHBN
rmOZcemnlk4cvyYrmliwZ8abWfviH3KX/KDryMzonoxOfxzPvz0eWHvI5Ikr
N0dbX24776XS6+PXRlzY/omiZ+K9zTsMafXDpuj5rh0XzLo0LeO+r979fOvI
XdH7DWc2yVWlSKLDPyMydn5yKp566fSKF/cpkuh9x5hzn9p+Kk4rdGJthZ8L
JGpnzJ578pfjcfeOLUsUPlwg8fDwCz4fufd4/Pbca56pXy9PovC4nYsLbzoc
N4tPnTzSPE+i4ql+5286dDhuWaZ5qa9250qMXjtz4Hm5MuPJ48rV6bnvRLRz
wN+33d9kbzyh0vsP/pvnYNStQ+nmrwzfGje5d8um6jdujG7rN/nf67asiVMb
l7jmtqrdo+O9uh7cU3BB/PL4GdtT7/sxynpg1OB1dRfG86Y9+8vY9hvil75O
3D6o/kfRqSbtszLzrI+Xf7j/wnbVXomf3TCvXtFhB+JSTUb9mlJrYbSl54lK
FW46EDccefcXT5X6O3qxdcur5nx4Il45uOzAaQPXRXce/LXZPS+eiF96ckHd
2h3XRY88ke+5Al+mZNy4e/lvM3tvidaNWLR+S/E8GV+U6Dt2eGJP+Hyi85Kp
pZrdfSZ8/tD5kivqP97uZPi84Y3nP3ntufePhvv9q2+7bVGl9Oz7+ZYVWhV4
tmn2/Xqb32p0eKfXxnC/vXjC+eOr9lkSPi94oe8V+zqV/il8PnDDX8Wf21F4
Rtj/L/7jqu13lFgR7o8rVsl/59dvZN//Fp9XpuPcYfujO3s/2P7yn4om1k4o
OGX51tNx2cuuPf3PiqKJEb/UaLE595m49NqjzYqfXygxptDbNc/ZcyIesKnN
h0dbF0p0GP1Q28OVs/f/Kzyau0aByVlxs7S7ZrYZkp4oWHXuht3nnoo3VR5Q
J+utvImX2h6del/mkbjE8C/OKbc/byLq98bzeZtm7/df8W37dqX+ORb/+3uX
Rt0rFUgsK79756koez+/0rEVX164/1Dc+O3Jq8dOSkuMKlj0UJGnDscrHs38
9Lo7TkdjfugcVfg8e79+WZeLMxY1Pxhflj5oy4ZpKYlDzQoNuejkgfj7TjdU
3rYpV+LW6c/V7nP8YFxl4dr38j2aK5G4eccv5bodjBevenRCpxaHo921b+rT
rmv2fv0PX5y37eddu+PNk14aPLDOseidNrnrTkvdHZ/qNfLKER+fiMrdOOft
L8/siR8of2WFBxYfj8o3KfPBg4/siT/7vl+ft7dtjz4o8/ZXPf7N3q//qdr+
uxdetiVO+erxTWtL7I3Kldt/R42im+OBlTZmdWp2IJq0Z2K3MoW3xvd+3u/m
L7fvj36p/Ojnr43dEucZun3BkvPmR9dmXXP+8Fv+jS8fP75A1Gh+dMfmns+0
uDN7/77zkJ5PL4hXxk9PnFKy9G3LojbDfh7Yusby+MketwwdUnt9NPD2/64U
VVfHF7dIadrn5LpobMH6D950fFXcr85583/9Z2nc5cvLPnvsoe/jgpM6nzfz
zSXxmRZtE91G/Rj2L/KNfrn9oSdnxWte6dnkk4fGxbNfG33y9HVz4wFP942u
X7kn3vhQraGbLpod9X1s66p/Ptkd9243acANu2eG/YwFG1rufqLl91GPNY0P
lf16U3z5K2l7NlYdFV17Xs/5dS87Fke/15312iurokY/vr/kkuuPxsVS/758
6ZIVYb+j3cx2V4/d9E+0oOOvrW7/7WA8blWpmscuWxz2O66Zs/a7eMqG6J9D
je88M/pkXKtfvYIrf18f3TO/TbWSbXNnVKv33IvfPboz7K8vmXzvMw9v3Ro1
+zZx67QluTIuPn38/Apjt0Xzao/Jmjw+JeP9ytXW3vrdlqjHt11OjqicKyOt
au/XM7ptjRalX/v1vpX5Mu6e1HfC7fmy99sXnt8p7baxe6PuLYY3X9Qxb8YH
9dPLfD1kX5S1v0DJ+Q3yZOx9uf6K2cP3REX3NHj+7aF5Mp5s1qDd4OrZ++1f
Tbn7y3dHn45HTW46q8YNxRKFWpS8eeObZ+LnTh9b0f/5YokqZZ974M4t/9/+
e9rPC3vNPBHPqryuTN/MQolld1a/LXPUyXhYg95fnlO3cOLwS5uWd9uVvR8/
pnGFtM83HInr7iw1cvKb+RIjqz94T9rfR+PnP6vyfq7R+RLT/37w4ZkHjsYf
P7ZoeO3XUhPpbw999dzXM+POn9W+7O9D2Z9/2Z8fMO72zF6NM+O6pboMWJE/
+/PxRINDw1t2zN6fP7d2kUdnFs6KJq/qlrtx/X3xuCYdMxrcmb0fb3++6uEn
7r5hzd641r4tE59ufSYqcv8DF1xSOvvvOSZt71r2j/w74mPPbC9TeFH2/nzx
qZ3+V+jSzOi+SfNLv/jZtrAfX+PjWhMbnLstvv7ZxgsmdD4S/fTuwXvads7+
+45f3nn47VW3bogfL/dz+Y6ttof981Id5pUf+cLmaE35yxpVWrQu7L+/2uSS
6r8PXxs/tLjTn/su3hU1bXFjqw/mbQz7qW/VbL1w0/HF8YDPhh07OWhxtOG5
rK1Nqy3Nfj76sx/t79rh27jbixNGbiuwKH6860VVWj8wNX7kl29rX1Hjz/jK
8y6/Y9LQjLD/vnraOxXfu2lOtCjKNbxN851xy2bLh9xWanrUekrVKy+ovSM+
etE9DX596Lewf/p4pX6z+n+9Ktp3Sf+fdpX+777m1ce+XbtjWXRu4pE6NZcd
jouU/6X+z28siyqX67X2uSIpGc+MvjjX3M83R8PX7099q0f2frz9+WYt8uTZ
cGhzdOq+SQ8MnpO9Hz/+keZNGryblvHXglV7RzXYHf3x95HZY1Zn77/bj288
o8rgeb/sjsp33T3qlWWpGU+fmTTpx6d2REP/mFy2acN8GVtL/LSofo/90ZR+
t2wYNK1IYunLXYZsTz8dV7vvxecy7iiYGPH4V2OOVzsRf1/86+ObFudJvHDv
rO8LPnok/iva/dTCREripaNVT13Y+0DcL6vuzm2fHo3em/N14cc77IrPz3w0
z6OP7IkuHr7vgq4Zm+IqjQq9/PnxidE5iya81L7jwvi8lc88u7z4sqjz0XaP
N7x4eVzsxqK53nhqbby03py+V5brExduvPyK5e/uj4/0fr5riUHzoxL/Plu0
z3PH4zqlx5b/Y9yaaM9NL5ZZXT8148tfTh+d8sL2qMMbt/T46de8GV06rD7Y
oPj+6P8AS/2pZg==
"], {{{}, {}}, {{},
TagBox[
TooltipBox[
{Thickness[Large], LineBox[CompressedData["
1:eJwNyWVglmUYhuFvDNhopEEQRnc3CEp3jG4Y0rCRghKKqHRvk+7u7i5FurtD
QBEUDBCQ48fxntf9PmERUeGRQYFAINhndUgg0CQ0EDirWXQ0r+xYXaXN9Jw2
1RY0Z407lX7PSL7jH/8CukO/1b+1gZ7WzDqKf+0YXaHhekYbamMasdKdUr9h
BMP5y7//2c4LXnKSet5OaX1drh9oCp7b0bpUtzHMrkVtPuIrvuYPb39ynDru
E1pXl2kyTc5Te6ou1q0MtqtRnUwMYSi/e3vGz9RwH9OaukSTaFKe2FN0oW5h
kF2JymTkC77kV2+/8RNV3Ee1qi7SRJqYR/Yknaeb+dwuz8d8yEAe+z9Z52tF
/VEr6Kd8wgJ3Qu3PA7ufPtR3bKKPuy+lOOzOoAP4xZ6oc7SMHtHSWo6yzHUn
0Cju2pF6T9+ykZ7uXhTloDu99ua+PUFnaXE9pMW0JCWY7Q7VbnSnK7f9e8MG
urhvaQHdr+m0B3fs8TpDC+kBLahFKMxMd4h+Ric6ctO/zvpa/+M6N9hLPv/3
aX6drvE0PlfscfqDrqe9nYvcpKUDEVz1do3d5HHv0bw6TYM1LhftsRqj62hj
ZyM7aWhLOy55u8xOcrh3aU6N1SCNw3l7jEbrWlraYWQlNa1ozQVv7wET4Iqj
"]]},
"0"],
Annotation[#, 0, "Tooltip"]& ], {}, {}}}],
GraphicsComplexBox[CompressedData["
1:eJxl3XmYV/PiwPGZaZqZlkmFSiGh0CJCUur7TaWkyB5KlsjNkuxLiLJEtBEq
XS03VFoUWeIcbYiSJVKifd+XmZapfn7P8319vs8z/XWf13PumZk73/fnfD7n
nOZza9ze4+o7szIyMkbnZWT8/3/Oeu+VGS/XzIsnlR86u+mg4+KR+24eVjQ2
J/jJDvWefuD0ksHXf3C4y5oxJYIbZCy6pONpWcHlOo6q+ePojODfuqwt37vl
4Yj7H/Py791aHAxuGdUeceUl+4KL7l9w24XN9wZPP/mBM6ondwX/MaLm0vxn
tgVfWtT9zuVPbQj+5OYpOyY+sSq4zaObC/dtWxLcvvuWE89Z/H3we71Pfm/N
vP7BFw3b8PI1F89LcLPXN370yql/BE/pNvmHR4asDG6e1z057s31wb98cPon
v7+1NXjq2O1vlFiwM3j/nnY/VVu4J31+q/Glzv+pMLjfm7kt2y06EPzz2q7P
dP35UHB+tds6NftPRpLPnT3gifkbM4Ovu+frodd3LxH8xLFbp63alB387pfV
fr7/npzgb+5ou+3A5tzgtWWeKPPSvaWCS01//8xjt5YOrtfp91b/va9s8FXZ
Je+osy0/+JGJ5/Wecf8xwVfWnrpw1GPlg/X20swTR9UZc2zojfXGemO9sd5Y
b6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3cH6qN9Yb6431xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+33j3mmRM+qRh6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+stnJ/qjfXGemO9sd5Yb6w31hvr
jfXGemO9sd5Yb6w31ttFx9XulPtthdAb6431xnpjvbHeWG+sN9Yb6431xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG/h/FRvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN
9cZ6Y72x3v4duRftXVI+9MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN
9cZ6Y72x3lhvrDfWWzg/1RvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3
xX/cf/a8xceE3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfW
G+uN9cZ6C+enemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfX2Yv1eG0ft
zw+9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfUW
zk/1xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6+3Cl/qNffqksqE31hvr
jfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd7C+aneWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvW34e2iXG5uXDr2x3lhvrDfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9RbOT/XGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb6w31hvr7Z2GY6tecGde6I31xnpjvbHeWG+sN9Yb6431
xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st3B+qjfWG+uN9cZ6Y72x3lhvrDfW
G+uN9cZ6Y72x3lhvbV+furh8v5zQG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72x3lhv4fxUb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd4Orv164JaJ2aE31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w3
1hvrjfXGemO9sd7C+aneWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvU1s
+uPl3y3KCr2x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfW
G+uN9RbOT/XGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrrfObf+aM3ZMR
emO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrLZyf
6o31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9bbiUsX9DlyzuFIb6w31hvr
jfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9hfNTvbHeWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6431xnp7pt+G/Z8+fiD0xnpjvbHeWG+sN9Yb
6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9ZbOD/VG+uN9cZ6Y72x3lhv
rDfWG+uN9cZ6Y72x3lhvrLcVjUo8cH9cEHpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG+sN9Yb6y2cn+qN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfW2yUbTlpXM2936I31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9Yb6431xnpjvbHeWG+st3B+qjfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvber3/OyL/24LvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431Fs5P9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+ut7Ovj
xp5Vf33ojfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Y
b6y3cH6qN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG/v/TmjxrlP/xN6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+stnJ/q
jfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31tuZb516oNyIRaE31hvrjfXG
emO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd7C+aneWG+sN9Yb
6431xnpjvbHeWG+sN9Yb6431xnpjveVdvvjMBZOGh95Yb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGegvnp3pjvbHeWG+sN9Yb6431
xnpjvbHeWG+sN9Yb64319vqyY8Z3bzc/oTfWG+uN9cZ6Y72x3lhvrDfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3sL5qd5Yb6w31hvrjfXGemO9sd5Yb6w3
1hvrjfXGemO9NTvn3V435P4VemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvr
jfXGemO9sd5Yb6w31hvrLZyf6o31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9bbzRed8MvFD68NvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431Fs5P9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+vtraWr
1y5YsyX0xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9ZbOD/VG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLeNTf/oNbn2rtAb
6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG/h/FRv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y71x2M/h9Zk5+1btDb1x2M8h5bCf
Q8phP4eUw34OKYf9HFIO+zmkHPZzSDns55By2M8h5bCfQ8phP4eUw34OKYf9
HFIO+zmkHPZzSDns55By2M8h5bCfQ8phP4eUw34OKYf9HFIO+zk4334OKYf9
HFIO+zmkHPZzSDns55By2M8h5bCfQ8phP4eUw34OKYf9HFIO+zmkHPZzSDns
55By2M8h5bCfQ8p6q/nPqIHJ4ftDb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd5Yb6w31hvrjfXGemO9hfNTvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431xnqbXf+lqv2uORR6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWG+stnJ/qjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31ts5
yYa/bHghI6k31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd7C+aneWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvT274czK+bdn
hd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGegvn
p3pjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431tnBgtU7nNssOvbHeWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431Fs5P9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+vtpIvKjbquak7ojfXGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3cH6qN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG/3rsxY90RBbuiN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLdwfqo31hvrjfXGemO9sd5Yb6w31hvr
jfXGemO9sd5Yb1/221175C+lQm+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpj
vbHeWG+sN9Yb6431xnpjvYXzU72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN
9cZ6K91gXY9Zk8qE3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv
rDfWG+uN9cZ6C+enemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfV209Il
09e9kh96Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfW
G+stnJ/qjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y38Ptrt/uDS+7MjYfd
dePH51dN71fOrXrf+e0zlcsn2fns/AYvdhn824iyoV92fnEX//72S3c87D+f
Ol785/f1Pi9oNuXOubnx2C8LG39+3XFx2+vKXD6wdfkkO37pOSPGLD82P+k4
+3mLn+/7O7/493e+48X3f/f1fP3i39/X87/3lmVZ3w4okx9Xy0tceONHZZLl
zyv//D31y8SJKfddu7ZefvAdHUf07DmpXLDzefIx0/6ZXic3Gb9yUtPW15SK
f52xsig5MS+4sEv5qgvqlg72/bhF5TNeLj8+K/ngqtr7Tn0sN+4WXfe/EbWz
g1/t1nfWmRNKBvt+/FHThrct6VCUOLVxo2mHh5WMC14bMnzHVUeCq/fY173v
WZlJ9v14cbuTPx7Qfnfit0Gt7l/69b/3pe8+teX9KwqC79y6pFZ85f5g34/3
zSib8/obaxJ9N1591qerMuNXOn775NdDNwW/VhQ/9li7HcG+H9f/eF2ztT2m
Jxo2v3XNoJyM+KOtZ1900yk/B/909thTvzx9ebDvxzMWn9Pnuy2/RAvOXdZs
2bVF0Q1Xb7tr5Kgvg319fr3dd//d22tzVH/l3umDR+yLDk/IrzP3ybXBf1Ya
d+9ZO/8O9vX5lMpFz8z+piAaNLB8nbZr9kRL5o1sOSHeHTzw0ealh0Q7gn0/
3pd73Nll5x6JdifqjMqsuzOaMuPT3btnFwXf3e3Gz5fN2h/s+4XjRW/eX7tr
djz+71fPfnD9pqjltd2uGrk6K/iUiY3Or3hHZrDvx8b3/U2/qbry0dVR/7Fz
Xv10TclgX5+NL+NF/8X3JzQe9F18/zjHXR/Z9dd40Hfx/cMcdz1m13vjQd/F
949y3PWfzS/Gg76L7x/kuPmGzWfGg76L7x/juPmNzZ/Gg76L7x/iuPmUzdfG
g96L7x/huPmbrQeMD70X3y/AcesN40Hfxf8+3HHrD7a+MR70Xfzvgx233mHr
KeNB38X/PtRx6yu2fjMe9F787wMdt55j60Pjw3zD1ots/ml77rxPXnyjbHz6
x68065VfNln08q8P3P5Z6fizzw+v++PV3OTEFSvqNPsrL273zYMDzitdInlL
o23rTsjIjaNBC3qcXOFQotzAg6P2nlYyXv/eJ/Hi/D2JeH1e559bl4hPvLXJ
aVWPX5d4IFGpykf3ZMYf7K933GmN40TLs1uPq1D9SPR36fcH3frHT9G45bed
+P1dB6PuY995/j9FG6O813oN7j2pMCo3u+sDT2cWRN0vfiuvUcHuaN20XtXn
ZR+Jftw89ZntTXdEXa5u2y03Ozu+ueE7G9uX2Rj1vv7Zl5YuPCZ5+vJ2Qx4e
VyaueMvu+g3b/3tfdf5NV3SYXyoed2e3JYN+yEm+2L9bqbrbcuPG9y3rvfWy
rGTDNQ/Pya2YEw/fOPLqwQMPJjY0ef7Z1Rdkx7P3vTjmstd2Jd4eMqBxdGNW
/Nsxf2/IPG51ou3mEXuHPZ0RV1u1anzeH+8l9rxw7W1bLzkUZdR6/asVWxdH
11/Q44+xr+yPPt5TMPO5Q1uiz9b0a9/pl71Rg3uGvFbq+cKo6htjZx9bdVdU
ctJ1J394SUa8/8VnHho6e0vUc9zKR9rPyY6/WjutS8lr1obrm8/H/O/6wq5n
5nfXD3a9Mn+7PrDrkfnZ+GfXG/Ov8c2uJ+ZX45ddL8yfxiu7HpgfjUc23s2H
xhsb3+Y744nD39On5rMw36Qc/l47NV8ZHxz+XjU1P3VttDX/vbJLgv19XMOc
U9vPWpAeP9Zn5ic2P900qUP3K64oF3q9N2vD42+US/c7P3/o3pPa5YXxZ71m
fmKf/7ZP5lQc/2Op0HtG6U41dvQvHXzL8aVHPjE/PX6t3/TEenn+q0Zflry8
ZBgvb1RY9P3lZdLjZ81FRf3HDzocxr/1nP5YX5XmTrzjtu8zwng784SWD77f
LzO4zGVrlt/2+t5w/bC+0yvr8Zp3mld5csC+MF4fa/7ABTnlDwTfNeXtzg0q
bQzXH+s9fbN+Czpc88vtVbaH8f7fDh1f/KrszuD5jccc6tPsx3D9sv4zHljv
L/596YbRpy0N14v+Ue9JGyuuCJ75/bkfHPlldrj+nXrtxW2uOrguXP+s94wX
Nh4GTXvu11P2rwjXm4Hz2jSosGNZ8KaqDa/Z2XtPuH5a/xlfbPyMnr+kyp/P
7gzXq6KW1xa+c3h78KwyV2Q17nsoXH+tB41HDvt5fLnj2xp9DoTr3fXHzhr/
Ztb+4PaHP+74TYsS4fptfRjWlykbn2dd37fJBbMzw/WyctbWutuz0nb/Vf3N
hYtnDlsZ1o/GOxvPb15RfsifLXPC9bbPgcf7DulbMth60Pg1v7ges/Fs/em4
9afrgfWh8Wt+cpyNZ+tVx9vc9PnNea/nB4f991LXB+tH49l85zgb39azjv91
W73srmVLBVu/ul5YXxrf5k/H2Xi33nX8gf+Mmhi9kh1sfev6kd3z+OuqlcpI
svWr60H9nRUPbi1XGGx9anxPyih4q23lLcHWn8ZrQdP+Dz1Y47dg60vjz3rQ
eDOfO87Gn/Wo4/ecuuvAk40nB4e//0yNZ+tF48/6wHE2Hq1fHV9a4p/8iw6s
DrZeNb6tJ41H6w3H2fi0vnV83oO5De/M2B1sPWu8W28an9YvjrPxav3r+Mg7
qq/9qERRcPj7otT4bzK+Wtun+mQFvz/6/VHVS6bHs/WO8chhf//U+DB/Wv8Y
b2x86d38aD1k/LDxol/zn37NJ9bD5h/9mh+sj80n+rVesl42P+hXj9bP1pvW
R85n6yk9+u9bL/l6rGd9mT+sn/TK+tSL+cF6Sn8c9ntKff5hPkh9/tZb1vOu
v9YPfr9s/rce8Ptl87n53e+Hzc/ma78P9vsz//j5OOy/kppPrAe5+H4Pfn7X
N324/w7Pm1LXN324v/bzu77pw/2zn9/1zeftftHPb3z5/bpf9PMbb1n9fnlr
w5xlkfWZ67H1leuv9ZHrrfWN66v52Xg2vxrP1sPGm+cxbDwbn9a75h/PX9h4
Nj6tZ60fPW9h49n60/MJvXu+wMaT8WE9pnfPF9h4Mj6st1w/PU9g48n4sJ4K
65fU84Nwv58aT9Y/5lu9ma/Z56k/z5P05/kP+7z16PmRHj3vYT3o0/MifXq+
w3rRq/lCr+Yb1pN+PR/Rr+cbrDc968313/1X8b5c791PFe/J+sb9UfF+XE89
Hyjei+un9XvxPlwvrceL9xD2L0utr4t//q6P1mPFP2/XR887in++ro+efxT/
PMP+tannIcU/P9dH64Hin5fro+cdPp+wH/SmL+4v7J5+Hvtc3lnr5pdP///R
nD3ogbynn0g/b82a/PezHaqn//9GJl9Ya3TWy+nnqX2ve+OE3+vlxedUvnV8
ybfSz0+Nj5yiy6bdfHFOvLnRtad8XLD7qP20Xxp9pN3KttnxpZ8MrPvVxHVH
7Zecd9kn6+769/f306rVt3WcMveo/XD7be/ee0u39P7Nleo2P3/NlqJwvajy
xMRu20vtD+vPWdNfvn7oden9Vk+YV3n4gVp7w/pxduaefqMeTO+neeKxfRaW
bJl+njjvii5fTRywK+p735Grf7gg+6j9xN648M2VPW7cGp4P7ll1oP+mrivC
+Hnn53vavDhkbdT9jPO3zrmsfLJweZvHyg8oG1+RP/Kuj04um+x87dKDVcaU
jn/44dddiz7MTc6Zf0/vGjPy4tavlHp2z/klknWbH8qu/UNO/PKgZyqd0/tQ
YvCM1/s1+Cc7fr7cprMfG7onsb/eKeWa7M6KCytNeL3XjesTt46dOrhFbmb8
3xZ5h2tXmZcYeMGLZ7/d8HD0wsIHe9S+/aforG637h177cFo8ucl7ymasDEq
vKbP4U96FUb/dKl80oxobzQ3OS7327G7o7WrJmQ/8OHhqNbNg2tMeWd7VNDg
lEff+L5EPOf8Jef9snF91H3IE2/tKJ+fXHowt9agMmXi8mf3ea/ajeWStd8Z
9Plx75SJL1pZ+bllD+clk2e1WD+5XKm4/5bP6ibWlEoOPOa0Zid9VCrOrf9p
93lLSiTfv/6ZDxZWyI1LTdj22e09Sib3vTB9Vs1vcuMX/3N6qxcPZCS7FLVq
ffbiknFOh+mjrymzPzHvwT9+aLixRPxI69aD2y/fn4ir3jC/V6Xs+MiP1b8c
VmNHot7GuzskDmXGx63uc+dp/9uROKPN4FeHn5AVrzyj3hUv/fNX4o0uB35r
XSEjnnYgc/WaacsTrz2yoN0XJ2bEvW8+O3nMtJnRulYVTvw4URRdVNDryzUV
RyVm71j4wIjkoSjxRv/mn+asi6a899LI7a32ReMb9uzTYtaKaODynU98dPf+
qO+kfu1faLInevrgoVPqtdsTdTq5/YdL2+6Mbpl/XJ+vB+6NNlZs/+Tkhw5F
ba5/eEz3q3dEt49aOXDI+QeiujMu7P/TZzuj8ys2ubjWgMx4b+tPan/zzeao
/+03tFn17+d4V26X7ytO2BLNuKbklKzsnHhwjYMXr66wJvr6uM9vKRxTMj44
8/KFr81YE55vdqz1VueRn6bvn++rvGLU9DvS989//Niu8LS56fvhLV+92aTx
g6XjoYvm5BzfNf3+5p+NTbr8vvno+9v7u16+OOqdF/dc+XXzzcem39fMPHDB
sInDj75f3VE6s0erATnxlbs+6/XN7Oyj3mc+OPXTvB/eTb9/OefvZU1eHloy
rlNi2oy3Hso46v3lrhvuHd1hYvp9y8d9By3O/1+JuMKZN61ddum+o95XPny4
xsW/f5F+v3JendY9hkzLjF8dMuLT8u23H/V+cvNlkyfMGHwovE/5z5j9FRr0
PRJlTirV6tcqfx31PuWeHV1bNR11MNy/Dv2lYMF/Dh6IXqn7Vv/Noz4/6n3K
fU0XPd7m68JwP/p29dszH6lSGJ04evwLax5eE9ZHj5+8ftD22kffX464d8H5
vS/YHV1Xf+WPc5em35/ERbuqtfgh/X7E/NH0oZ6LKv1vWzQ8f+v1Jzx18Kj3
iy3y21xY75916f1g479KnDprU7T7kV4PfJqfddT7kFY3TeveqGhVdPydz1+w
onP6/Uj/e2ucn9GifPLnd6od37hf2fjvWiuv2ryxTPK8b6//vWP/0vHEh59t
8nv73OSwPYPeemxAXvzUrJNqfjM1K5l56oKOQwfnxG0PLiza2nVR9PZfk3o1
b34wevDSbTf8MHpTdPuFNY8807owevelL5YM6FcQnTN4+HMz2++OMrc8XfKL
b45E+/88LW/P+9uinl8/8tXVjx6THNDkvrcrHlc23tprwmWPZpZJFkw9fGK1
M0vH3ZusXPxO/5zkLWcOHHXaxXnx+v2Vbv+qclZy7sgatep2yIm/e+Cdv75p
dTBR9/hp48//9/cy8JTHT+pYpyjR7cq8qp+8mR3HW7P35nXalRjyasv6TR/P
iuvNnL6j3u5diQW9Wiz79e2s+NHFK6q+t2ZV4kDm79Na9c+I+01e9VLuo6sT
DcY/M2LX8H/vJ+/9em2Dm99LnD/5oS9PbXYounxT++oLhy2JOp/64YUf3nIg
Ou/gT38vOWVbVPuYH5NfvFgQjepddH3NA4XR/oPbLvth0q7ot+faVN/eMyMe
+PNp4z77aGt0/eyKQ35Ylx3XnvCfz5YeWhs1+OCUE3b1yo6HDCif32P6uqhw
VMt6VTsc/b5j1rIS0/KrpO/fWzz/ebshtdL353PP7LGuygW54X3FpT+d3ntk
i5Lh/cS3jyw94fSrS4T3EW1OHDjtw1szw/uIN154ddgtf6ffPzQv9+vM8q3T
98eX3NxsR7Wu6fvfVh98eNoZz6Xvb9vsPe6GBiN3hPcFQ/tmHP/UoxvD+4F3
T/7jqUFTVkbPXld5b5uPyiYH1myz+a0V6fcDb+3vWXvlV2XiwiMVlu+9sFzy
uXM+f+T7V8rEfe4df+rBW45JnnFn97mZpcvGyUeLzp6xvlyyc/cjHwz5vUx8
8Nj2z93bKC9ZMPzPHu/tSb8fqPLeGXPu+rFUPK/9lHkrhpdKru+8p+GG10rF
V3/Rpuy6WaWTrw3+34un5JeOvzq/wZdLHyydnL1iYL0Rm0rFj//yfP7A2SWS
XSres+eDvPR6d9ilyztvWZobDxl+xZQfjmQnr3i1/r6cQblx9bz1exfVyknu
iVa0TpTPixvv7tb68KGSyTo3nPrx2MO58fj9H3xw+xOHE/l9P//P1uNKxptq
9Dyv27uHE3NfLnp86onp9wXVtg4u7LmxZLztuhf++fKVzOSNW6uVuuXYnHjG
1Hd/rfHv/cqgBdMafvTv+rrVm2ufatR8b+LhqXtql61SIl498q/LJ03bm6h3
5LVDn5+Tfl8wYkibQYWFJeJuK8ZFr5x5ILG/RasvP6mVHc+6reXIEytuSCz9
u/6W2tUy4y8uHPjdpiEbE0Meqf78rJbp9wMnNz5c++mcrLhL54pLfm62M3Hr
F78nvm6cFS+7o6BijZfmJXpX+f2mIRcfjibMG7F2deZPib1/3JY/dOrh8Pzg
vyumzck6PiOePv3ginPHr0h8e87dc+ZdkRE/e/nfL/V8fF40sNTFv43+6WC0
9e1Tzn295/qoc8Ety6cVpp/3bxta9Z9Zk/dHpVbVrjOq+8rocKlNTW9tuT+a
2GXwWVXe/TO6/KF2yxddciBaVKfKkPHHLI8Kn13QccLq/dEzP52e0Xv0nqjO
6ufWzame/vce21e/UHHhj3ujexd3nPXk1p3Rd11vjd9tuzcas+/K+1c02x5V
WjirS7nLCqKi127qP6bejmjuvTtum1mmIOp79efrG/U/FB34aez2xa3Tz/t3
nrOz1Z8bd0Y/XXTi9rE1D0ZvRr9fsqzDzujTWzffMeyPfdHqMy9adfmVu6Ks
Ctsf6lR5fzTkxmPvWXDermhck5d/3XJdibju7Ysv7zB1QzR307j1+xqXiAc+
MWDngn82hOcrmw5+tuu7/C1R9vxvPnolIzOe2//eDTNnbImWbN24MXNXbjyn
8qwOP3y1ImpTt+fNiyfnxnWuWVxiR/308/4dbw648Z/Wa6KXyvSv0e2RkvGt
d3184O/ctdFVfQprPpZVPjm77LKXBl1VNj7zu9Ybz+qffn7veX7hgOw5icZl
44XX9nmzdIf08/uT556+pMLAMsmz+txbdtidpePsP5ufnnFx+nm95/ePNfyi
89w2pePJ7w7ss6ZJfnJ2wSdLK52c/vckNz6UNejDX/Pi9+98etGKI+nn78P7
3NT1gmq5yUH7Dw0c/UT6ef2Bv3oUtr0hL67Tad4xed/mJWvf17pL9Qbpf1+y
7ITPatdflRO/8OhjZWZMTj+vr3zJwB0dx2Ul9/UYcPyE13LC/eBTfWoOWnRn
Tvxh1aLhda7OTg5evWT1GZemn2feHN83Z/qO7Ljtx3d0GPnFkcS+G7vffc5N
JePbNm5559M7MpLTPuv+ec030s/nl9912i2Nj2TFLev/dPfaRQWJWxcd3NLo
/hJxp/sr5bYYUJg4Yd3/nmz5Vvp5fZf8Pwuj/Mz4yY6PZN24cHNi3qWv9Wz+
fGZccOy46edO2pLofezKJncMSz+/j7uddNqrjQ5HS8a+fdfCvb8mOj3ZdMuQ
ukeiDkObffrFU78lFjzX6ECJJkeimVffsXREhYXh+fvcD/pM2Fnzt2j2nL6V
3v/zQDTlpaaFNT78Izzv9Dx/4uxExd4fHIgKBg5J9jzpy6hgQuVp77UtipoM
mtK23Nz08/ueSzeN7b5uczRo6vvVP8ssjLr2/vSYRsdvDffznt9PLj+h1atz
C6K6jzcprH7h2mj2241nTn0w/e9Ler7SZOI1y3ZH62t1nbw0K/38PrmjVONt
fxVEXUbOP/P7s9LP66d0rvTE0FW7opMSDVa3eWF3NPiFznNnDUv/e5O1k9pH
X+3YHtUt+cBFZ49Jv5+79KGRNd6fdyS6udKyO6aP2Rbux7tfV+LGFke2RqfN
mjc/s0dRdOuDvRf+Oiv9PH5rm9Nr/VZ7Q/Tm6Ho3dv533drp60snf794Y3TC
T9tfW392Vvzd+cNeOXfSpqjKmsIfL6qRGx94q/83m2uuii5/7qqxRfNz4i6b
Xhww8YtV0Yq1pSr2np+fLPj2tPlv3lwm7jQ2MXLMdaWSnZt9csXIHqXiP29/
pPa3K/6dv6df+uu4PrnxGZn99++7vSjRZd0pw6aNyo5PfaawQvKJ3Yl5nT4+
eeYnWXHDgrnXlqu+NlHv1xZj5nyfEdd7bn3dNZ2+SJw1ZPyVw748FC09fvGq
w0NGR52v2D1o5Nyi6N4brv9q6r/rvtpNKg2fvHVfNHNSYl6Fu3dFhWdcNDY+
fm8069zfPpp/1cFo3nGdPvq56c6o1lPvZJ/TMTvet/2UR3/fvS76P2mtUYw=
"], {{{}, {}}, {{},
TagBox[
TooltipBox[
{Dashing[{0.01, 0.01}], LineBox[CompressedData["
1:eJwNyWVgUGUYhuFDjtFdgjC6u0FEumN0l3SXoIQKKh1Kj210d3eHIt3dIaAI
CgYIyPXjPtfzfiesQ5/w3jGCIAj1WR8SBK3iBUFr5dR0zdD/3gNeYhteZltu
YFqm0xt7Addyr36wm6m5cmiqpumtf+90QS3cF9mS65iGU/TKnszXjMc9nMhJ
aqhz7uz8Xv/Z87majXmejdhUTbTGnZrj9bc9jv8whLs5hmNVV2fc2ThB/9rz
uJL1eZb1GK4GWuVOxW/1nb7RS29xuYuj+II1eIpZOVp/2XO5nLV4mjVZR7W1
wp2SX+lrfak/vMXhTo7gc1bnCWbhSP1pR3MZU/AknyrKXsIdGmpXVhWFaZiG
63f/numYqrqPsxqXMhmT64kdyUXcriF2BX2izPpcX+hX/37TUVV0/8xKXMwk
TKpf7DlcwG0aZJfTR8qkzzRYj/x7rB9V3v0TP+ZCJmJi3bcjOI9b1d8uqVL6
UAM0UA/8e6gjKu0uqzKa707Ivrpj9+FdxuYW9mJvFdEhd0b20z17NqNZjIdZ
lCVUXHPdCdhDN+3uvMVY3Myu7Kb8OuDOwJ66bc9iJAvyIAuwsAopyh2fndRZ
n+q6t5jcxI68xlzcxw/YRTfsmYxgHu5nbuZTXs1xh7K9OqidrnqLwY1Mzyt8
Dx9Zjq4=
"]]},
"0"],
Annotation[#, 0, "Tooltip"]& ], {}, {}}}],
GraphicsComplexBox[CompressedData["
1:eJxl3XmYT/XiwPHZ7UtSClFKoZRUtuJ8Ky03ispSWhUldUk3RJJwQyEUJbJE
dAktCinfQYiyZpd9F7IOY/31e57v6zPPM/66z+s598w0zfuznHO+c7rqubaP
tExJSkoakzcp6f//d86o96b1Lp83c3LRIXNrDyyeOeLkE5+eGZsR3Llh5bde
vSY9uMmX557ZMSY1uGrSsrseuzoluPBjo8v//nlS8MpndhbtVvdcnPsW6b36
xbtPB9eNVxre4K6TwWfaLG5e/c7jwVPLvHpd2diR4DXDy68v1PVg8L1nWrfc
+Oae4O+f+PrQV522Bd/f4a8TJw+uDX6w9f7SVVYtDB7VrcyoHfP7Btf8dE/v
R++YH3Gd/nsnvVduTfDXL075rf2HW4PvzNs6Nm7w7uAVX17z/eqPDwR/M/bv
j1IXHw7OPlZ/aaklx3LOv2dCvluXngjuMzhP3frLTgUv39mia4vlZ4MLlWr+
ZJ2XkmJ889wPOi3amxzc+OVZQ5q0Tg3udPGB77btSwv+bGap5W1ezgie/fwD
B0/9lSd4Z4FOBXq9ki8439TxFS4+kD+48pOr7xn574LBD6elP3/9wULB7b+6
pdu0NkWCG1T6ZsnojkWD9dbrp9Kjrx9zceiN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLdwfqI31hvrjfXGemO9sd5Yb6w31hvr
jfXGemO9sd5Yb8+2GtP18u+Lhd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd5Yb6w31hvrjfXGegvnJ3pjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431VrN4pSfzLLgo9MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWWzg/0RvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3f0Zu
zeNri4beWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431
xnoL5yd6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9bZqTZsb568qEnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6y2cn+iN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfW27s3ddk7OrtQ6I31xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st3B+ojfWG+uN9cZ6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhv1Xv1GfvWFQVDb6w31hvrjfXGemO9sd5Y
b6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9hfMTvbHeWG+sN9Yb6431xnpj
vbHeWG+sN9Yb6431xnrbs2nIM4/fmT/0xnpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG+sN9ZbOD/RG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrLeh1caWvK1l3tAb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9Yb6431xnpjvbHeWG/h/ERvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3h7o/82qon0yQm+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431xnpjvYXzE72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6O71z1oD9
X6WF3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
C+cnemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfX2Ve3f6/26LCX0xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9ZbOD/RG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLenBq/LGHssKfTGemO9sd5Yb6w3
1hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31ls4P9Eb6431xnpjvbHe
WG+sN9Yb6431xnpjvbHeWG+st9LrF/c4X+VcXG+sN9Yb6431xnpjvbHeWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvYXzE72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWG+uN9cZ669pnT/YPb5wKvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
6431xnpjvbHeWG+sN9Yb6431Fs5P9MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv
rDfWG+ttS43UV9tkZoXeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHe
WG+sN9Yb6431xnoL5yd6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9XbX
nit2lc97NPTGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Y
b6w31ls4P9Eb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+st/tvajf9x5EH
Q2+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvYXz
E72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6K9h/3NiKN+0OvbHeWG+s
N9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431Fs5P9MZ6Y72x
3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+tt1LppV9381ubQG+uN9cZ6Y72x3lhv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv4fxEb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9sd4qfFzuVOHhy0JvrDfWG+uN9cZ6Y72x3lhvrDfW
G+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72F8xO9sd5Yb6w31hvrjfXGemO9sd5Y
b6w31hvrjfXGestbb1WFxZOHhd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9sd5Yb6w31hvrjfXGegvnJ3pjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb
64311n9DkQmt6y+K9MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6
Y72x3lhvrDfWWzg/0RvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6y3OlU+
69I0z5+hN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpj
vbHewvmJ3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y709UfPyFXe8vjP0
xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9ZbOD/R
G+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLeP12/fuXjH/tAb6431xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG/h/ERvrDfWG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3vbWXtNlSqUjoTfWG+uN9cZ6Y72x3lhv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3sL5id5Yb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGeuPwPof+P2Wc3HY89MbhfQ4Jh/c5JBze55BweJ9DwuF9
DgmH9zkkHN7nkHB4n0PC4X0OCYf3OSQc3ueQcHifQ8LhfQ4Jh/c5JBze55Bw
eJ9DwuF9DgmH9zkkHN7nkHB4n0PC4X0OCYf3OTjf+xwSDu9zSDi8zyHh8D6H
hMP7HBIO73NIOLzPIeHwPoeEw/scEg7vc0g4vM8h4fA+h4TD+xwSDu9zSDi8
zyFhvZXfPHpAbFh26I31xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431
xnpjvbHeWG+st3B+ojfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvc2/q
VbLPo2dDb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
emO9hfMTvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnqrEqu2Ys9/k2J6
Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+stnJ/o
jfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31tvbeyqUKPRcSuiN9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrLdwfqI31hvrjfXG
emO9sd5Yb6w31hvrjfXGemO9sd5Yb0sGlHry5jppoTfWG+uN9cZ6Y72x3lhv
rDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3sL5id5Yb6w31hvrjfXGemO9
sd5Yb6w31hvrjfXGemO9XVGz8OjGJTNCb6w31hvrjfXGemO9sd5Yb6w31hvr
jfXGemO9sd5Yb6w31hvrjfXGemO9hfMTvbHeWG+sN9Yb6431xnpjvbHeWG+s
N9Yb6431xnp7ZWvSrk5ZeUJvrDfWG+uN9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x
3lhvrDfWG+uN9cZ6Y72F8xO9sd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXG
epvZ52ilESvyhd5Yb6w31hvrjfXGemO9sd5Yb6w31hvrjfXGemO9sd5Yb6w3
1hvrjfXGegvnJ3pjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431lr/qrrZz
JhcIvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431
Fs5P9MZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhvrDfWG+ut2fq1U3e9Vyj0xnpj
vbHeWG+sN9Yb6431xnpjvbHeWG+sN9Yb6431xnpjvbHeWG+sN9ZbOD/RG+uN
9cZ6Y72x3lhvrDfWG+uN9cZ6Y72x3lhv4d9f/aNf3tUyT+anLzz+7a0lc95X
zvd0a7mga4miMXY+O7/qu88MWjm8YOiXnZ/bub+/96U7Ht4/nzie+5/f15uR
VefrlvPyZI6deaLWjMbFMx9oXKDegPuKxtjxe6sMH7Px4kIxx9k/b+7zfX/n
5/7+znc89/vffT1fP/f39/Wef2x4u3aTC8da1DhQaFTBtXE/P594pmjJxTfk
j639a8rvp5vMiZfKG1V/fFKB4OjrfzfaWblQsK/H77/Yc06FiemxylWPpw1c
/UM0pch3m6denyf4j2lbz8S+yhvs+3HZtidb96yYHEv5YEWr+UNWRneXuK53
0QkpwS/GG38xvFJasO/HLQ+svTazQXb0855b7j82c2s0qXa15msbngnO6vfh
sEMPnw/2/bjfmcyOHesfirL7nHvivzfsjVbVL/PtBw8eDb7iszf3j38oK9j3
46U3ji0385qN0aeDd1R//6FD0clpBTP6f7Qj+L3HFnSeNWRfsO/HN327q87O
tlOjGrsWzv4j41g06cCNNZtduTzY1+d1l457peLhTfHV1abUKx0/EU1bVaXH
r/tXBDd95OALI0bPDPb1eUCHO/N/GD8Uf73XR6tadDwd9a//68jjXf4KPjex
0PXzOu8M9v241YuPz9gwJztebG2nZybddD66ssSZrnNnZwWvnT+i7sTMo8G+
X/j/f1Xj1mLPJ2c+9tGUY6f+kxw7maf4jQXnnY/z19N+OHp07plg34/7jv3l
/R92pGeOu+PzmmUbpsZanRncplKLtOC6jV58eMT2lGDfj433rB0fdb37hvTw
9dh8ZnzoPffnyR03XxoP+s79+WHHzZ9sfjYe9J3786OOm6/ZemA86Dv35wcd
tz6w9cd40Hfuz485bj1i653xoO/cnx9y3PrH1lfjQe+5Pz/iuPWWrd/Gh95z
f17AcfsD40HfuZ8PO26/wPYjxoO+cz8fdNz+hMP7vRPjQd+5nw85Ht73nbD9
lvGg79zPB8J4Sey/2P7OeNB/7vvDjtvvsf2i8WL94VdS9rzxUeEisfm78/Rs
2mhlPCn/k1cd6ps/VnPwonarfv8+/tFFyxbWK5ARe6TWPUPWbZgTVbi87mvj
+yTHRm2edqRwg7VRxztfvS2j6Kmo4MBr+132yfZoZMPH3v254OHo/qqHR/0v
719R33i3yXuLbYnm7H2q2Wd3HI6+zK5c/OpamdGzte7esfPYsWjA/PurXnRo
Q/zcexXa3DjpZHSmbqMTQ8/9HR++odDJDi3PRE0unjNhcEp2vPSQ7MzNhZNi
JVIO3PB3SnLmK3X2p6f9lRzrceqNnh/2TM/8cdemByos+GdfNblh64ceKhwr
3q/zlr4LFsYPfv9LsQm/54utnvV2+5mrRkbdf64xM71eeqxFnQOb3tq0LLp0
3lfPN1+YFPuzW/eMUfHN0aND77ys8wcnowlbC5Ro3nB3lNXw0RXPXfZ3tKv7
6kpHMg9G7266d8/nV6+Pig5qOHL2ZUejUtu2Tci7ZlQ0edttFfMvz4oGfvfO
H1dmb4nXv6XUd4/0ORV9vmjtZevePhzf1yOp9rA7z0WdZx5acFWPU/G6+17b
fvhMUqxik5633zY3OXPQoJYVLl2XEhv8UNEP19XNyNxW67F/1/o+LeyPzD9s
frP+m1/YfGZ9N3+w+cr6bX5g85H12fhn84311/hm84n11Xhm84X103hl84H1
0nhk4996aLyx8W29C+MvYePXema8sPFpvTJe2Pjr1uTtXuuX5IyfYk8fvana
gwXC+LEfs/6w31+1jHIPzllcMPR6f7MZT+TtXyh4XMsX1w78LWf82Z/pgf2+
FxUacvyK+nlD7382r5zWomBO/7X+vaHbgX+lhPFrv6Yf1sfTl+Qf0WlRahgv
r740+qv4e2nBw/aOeGTQgNNh/Nu/6Y31tKPmmb4TBp6LjLe0dpc0LpUvZ/zN
PfnumH/1OxLmD/s5fbL+Cvxrx8bm/Y+H8XrT4WKnDxQ+EbyyyKY9ycW3h/nH
/k7PrNcXvv7kqaqX7g3jfXJS1scPlNgfvKjWmLM96vwe5q+ka/v/vOXAqjB/
2c/pnfX808Kbvzy/Ym7cfPFyuSOnOteaEvztsayf3jm7P8x/9nfGB+u/XKM7
7n/49K4w36xP3Vyo5qntwVVf/rBfvu4nwvxpv2c8sfGyr2S1Rw93Oxbmq/mv
5anWMulocPrkxmX+d1dSmH/t/4w/Ds/XCzyUUqvn2TDfjXi+7M5JqWeC243b
2v7BX9LC/G0/aLxyeH597tvHZt+dGubL2yeUeuDNHinB9ou594/Gq+sz8+v4
z8ePLpueY/tJ49n+z/i1vjjOxrP9p+Ou7zj8908S84P9ofFsvXKcjW/7Vcev
+fa9Ol0KFQy2PzVf2D8a39Y/x9l4t591fPqMc7vWvJ8nOPy9cmL+qD/7tQ9u
yZ8aHP7ePjEfxAcublvmorPB4X0RifG9e9T3masKHQu2vzReSz97+9UlL9kV
HP77TYnxZ79nvFmPHWfjz37T8azaff/z2lUrg+03jWf7QePP+u44G4/2p45v
yj9+4LNrlgbbjxrf9ovGo/2C42x82r863nrs0O4vndkbHN4Xlxjv4b9Xkxif
9h+Os/Fqf+t44bktXn0rOSvHnsclxv+u77qUnZ92Ps72q8bzM4888GKetJzx
bf/Spvbskls7bA/7GX9fbryk9Fnx8Z5fNoT9jfHHxpv+rZf2N8YTGz96th7q
2fpif2s90rP1wn7X+qJn+x/7X+uFnvVpP2z/aL/jfLY/0qf/v/2Pr8f61pv1
xH5Iv6xX/Vgv7I/0yOHzm4kerAd6MN/an5uP9WD/ZL9uvjU/1+3Xa+6LefME
e55sP+L3w/YT9hd+P2x/YL/g3y9b763//n1y+PuIxHoW1pOEw+e3EuuTn4+t
N9aX/B8s/6D+mPRwv1Cfetev638/r/lVj67v/bzmVz26fvfzml/16Prcz2t+
1ZfrUT+v8e336XrTz2t8+33aH1oP7O/M//Zn5nv7K/O7/YH5xPpu/rB/tp65
X8PmA+Pb/th+1P0ZNh/Yz7qfYby4H8HGo/Flf2e8uB/BxqPxZf9mPg7//a+E
jUfjy/7Mfsj9BjYe7afcHzCeXP+zHqtsf+DbpwdmxKz3erNfYL9P/blfpT/3
l9jvW4/uT+nR/aRwPzXRgz7dj9Kn+0esF71ar8L9kcR6F+5/JHrSr/sv+nW/
hPWmZ71ZP1yv5e7L/sn1V+6ezM/uH+Tux3zs+iB3L+Zf+/3cfVi/7d9z92A+
dX8h9+/ffGo/mPv3bT51vyT379d86v5J7t9nWM8S91Ny//7C520T+5Hcvy/z
qfslfj/m09kvDnm9+Y514f5tt+q9epb+5pewf19W/KXTjxZeGt4nsSjzjsyL
F08N92eTKmZ0WjG2alSj2n1fH34w+YK/304ptW3xySuXRtf37776g9PZF/x9
bqd1dw9tUHpztG1Kh/p3PHH4gr+//P6R31pe1Gh3VHvMqp7L22+94O/rvpl+
7Nypy/8O803TIkXqH2l7NMwnjeaMuWz3Izn3Nye8u6BiLE9WmD8ebl9j54bb
cu5fjqv5ZNat+3L+PqdBhcXfLLss5/7kF/sPzam4+Gy07a49HZ+8Jed+pPGz
fOmc+4qsTYqlVz14x7s90i/4/GnDioUm91mY83npJd2bFk+bmfN5wzGj5r2/
5tl/1ofTJ64qc2WRWMudHW4aOe6P+J8zKk++c2L+WKfn8jfsV+qbeLM3nq/V
slpGrGmr7YW/uXl+tKba0Pm9ZyfHjiTteu6jN9ZH4/Z99sVjQ09FG6+tXLbC
/h3RqBfzzRo55XAUe3B3wYzh+6NbFu79avH7W6MVMxqePVz+SPRJsRvu3To1