-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathmain_plot.py
42 lines (39 loc) · 1.62 KB
/
main_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
import h5py
import matplotlib.pyplot as plt
import numpy as np
import argparse
import importlib
import random
import os
from utils.plot_utils import *
import torch
torch.manual_seed(0)
if(0): # plot for MNIST convex
numusers = 5
num_glob_iters = 800
dataset = "Mnist"
local_ep = [20,20,20,20]
lamda = [15,15,15,15]
learning_rate = [0.005, 0.005, 0.005, 0.005]
beta = [1.0, 1.0, 0.001, 1.0]
batch_size = [20,20,20,20]
K = [5,5,5,5,5,5]
personal_learning_rate = [0.1,0.1,0.1,0.1]
algorithms = [ "pFedMe_p","pFedMe","PerAvg_p","FedAvg"]
plot_summary_one_figure_mnist_Compare(num_users=numusers, loc_ep1=local_ep, Numb_Glob_Iters=num_glob_iters, lamb=lamda,
learning_rate=learning_rate, beta = beta, algorithms_list=algorithms, batch_size=batch_size, dataset=dataset, k = K, personal_learning_rate = personal_learning_rate)
if(1): # plot for Synthetic covex
numusers = 10
num_glob_iters = 600
dataset = "Synthetic"
local_ep = [20,20,20,20]
lamda = [20,20,20,20]
learning_rate = [0.005, 0.005, 0.005, 0.005]
beta = [1.0, 1.0, 0.001, 1.0]
batch_size = [20,20,20,20]
K = [5,5,5,5]
personal_learning_rate = [0.01,0.01,0.01,0.01]
algorithms = [ "pFedMe_p","pFedMe","PerAvg_p","FedAvg"]
plot_summary_one_figure_synthetic_Compare(num_users=numusers, loc_ep1=local_ep, Numb_Glob_Iters=num_glob_iters, lamb=lamda,
learning_rate=learning_rate, beta = beta, algorithms_list=algorithms, batch_size=batch_size, dataset=dataset, k = K, personal_learning_rate = personal_learning_rate)