-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsummarizer.py
45 lines (40 loc) · 1.53 KB
/
summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from collections import defaultdict
from string import punctuation
from heapq import nlargest
class FrequencySummarizer:
def __init__(self, min_cut = 0.1, max_cut = 0.8):
self._min_cut = min_cut
self._max_cut = max_cut
self._stopwords = set(stopwords.words('english') + list(punctuation))
def _compute_frequencies(self, word_sent):
print "sum Compute freq"
freq = defaultdict(int)
for s in word_sent:
for word in s:
if word not in self._stopwords:
freq[word] += 1
# frequencies normalization and fitering
m = float(max(freq.values()))
for w in freq.keys():
freq[w] /= m
if freq[w] >= self._max_cut or freq[w] <= self._min_cut:
del freq[w]
return freq
def summarize(self, text, n):
print "sum summarize"
sents = sent_tokenize(text)
assert n <= len(sents)
word_sent = [word_tokenize(s.lower()) for s in sents]
self._freq = self._compute_frequencies(word_sent)
ranking = defaultdict(int)
for i,sent in enumerate(word_sent):
for w in sent:
if w in self._freq:
ranking[i] += self._freq[w]
sents_idx = self._rank(ranking, n)
return [sents[j] for j in sents_idx]
def _rank(self, ranking, n):
print "ranksum"
return nlargest(n, ranking, key = ranking.get)