-
-
Notifications
You must be signed in to change notification settings - Fork 704
/
Copy pathAPI_DEMO_WORLD.py
251 lines (207 loc) · 8.59 KB
/
API_DEMO_WORLD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
print(
"\nHere are some demos for RWKV-4-World models (https://huggingface.co/BlinkDL/rwkv-4-world)\n"
)
import os, re
os.environ["RWKV_JIT_ON"] = "1" #### set these before import RWKV
os.environ[
"RWKV_CUDA_ON"
] = "0" #### set to '1' to compile CUDA kernel (10x faster) - requires c++ compiler & cuda libraries
from rwkv.model import RWKV #### pip install rwkv --upgrade
from rwkv.utils import PIPELINE, PIPELINE_ARGS
MODEL_FILE = "/fsx/BlinkDL/HF-MODEL/rwkv-4-world/RWKV-4-World-7B-v1-20230626-ctx4096"
model = RWKV(model=MODEL_FILE, strategy="cuda fp16")
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") #### vocab for rwkv-4-world models
########################################################################################################
#
#
#
print("\n#### Demo 1: free generation ####\n")
#
#
#
########################################################################################################
ctx = "Assistant: Sure! Here is a Python function to find Elon Musk's current location:"
print(ctx, end="")
def my_print(s):
print(s, end="", flush=True)
args = PIPELINE_ARGS(
temperature=1.5,
top_p=0.3,
top_k=0, # top_k = 0 -> ignore top_k
alpha_frequency=0.2, # frequency penalty - see https://platform.openai.com/docs/api-reference/parameter-details
alpha_presence=0.2, # presence penalty - see https://platform.openai.com/docs/api-reference/parameter-details
token_ban=[], # ban the generation of some tokens
token_stop=[], # stop generation at these tokens
chunk_len=256,
) # split input into chunks to save VRAM (shorter -> less VRAM, but slower)
pipeline.generate(ctx, token_count=200, args=args, callback=my_print)
print("\n")
########################################################################################################
#
#
#
print("\n#### Demo 2: single-round Q & A ####\n")
#
#
#
########################################################################################################
def my_qa_generator(ctx):
out_tokens = []
out_len = 0
out_str = ""
occurrence = {}
state = None
for i in range(999):
if i == 0:
out, state = pipeline.model.forward(pipeline.encode(ctx), state)
else:
out, state = pipeline.model.forward([token], state)
for n in occurrence:
out[n] -= (
0.4 + occurrence[n] * 0.4
) #### higher repetition penalty because of lower top_p here
token = pipeline.sample_logits(
out, temperature=1.0, top_p=0.2
) #### sample the next token
if token == 0:
break #### exit at token [0] = <|endoftext|>
out_tokens += [token]
for n in occurrence:
occurrence[n] *= 0.996 #### decay repetition penalty
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
tmp = pipeline.decode(out_tokens[out_len:])
if ("\ufffd" not in tmp) and (
not tmp.endswith("\n")
): #### print() only when out_str is valid utf-8 and not end with \n
out_str += tmp
print(tmp, end="", flush=True)
out_len = i + 1
elif "\n\n" in tmp: #### exit at '\n\n'
tmp = tmp.rstrip()
out_str += tmp
print(tmp, end="", flush=True)
break
return out_str.strip()
for question in ["Why is there something instead of nothing?", "我捡到了一只小猫,该怎样喂它"]:
chat_rounds = [
"User: hi",
"Assistant: Hi. I am your assistant and I will provide expert full response in full details.",
"User: "
+ re.sub(r"\n{2,}", "\n", question)
.strip()
.replace("\r\n", "\n"), #### replace all \n\n and \r\n by \n
"Assistant:",
] #### dont add space after this final ":"
print("\n\n".join(chat_rounds[-2:]), end="")
my_qa_generator("\n\n".join(chat_rounds))
print("\n" + "=" * 80)
########################################################################################################
#
#
#
print("\n#### Demo 3: CFG decoding ####\n")
#
#
#
########################################################################################################
def cfg_generator(with_ctx, without_ctx, cfg_factor=1):
out_tokens = []
out_len = 0
out_str = ""
occurrence = {}
with_ctx_state = None
without_ctx_state = None
for i in range(999):
if i == 0:
with_ctx_out, with_ctx_state = pipeline.model.forward(
pipeline.encode(with_ctx), with_ctx_state
)
without_ctx_out, without_ctx_state = pipeline.model.forward(
pipeline.encode(without_ctx), without_ctx_state
)
else:
with_ctx_out, with_ctx_state = pipeline.model.forward(
[token], with_ctx_state
)
without_ctx_out, without_ctx_state = pipeline.model.forward(
[token], without_ctx_state
)
# cfg decoding
out = with_ctx_out * cfg_factor + without_ctx_out * (1 - cfg_factor)
for n in occurrence:
out[n] -= (
0.4 + occurrence[n] * 0.4
) #### higher repetition penalty because of lower top_p here
token = pipeline.sample_logits(
out, temperature=1.0, top_p=0.2
) #### sample the next token
if token == 0:
break #### exit at token [0] = <|endoftext|>
out_tokens += [token]
for n in occurrence:
occurrence[n] *= 0.996 #### decay repetition penalty
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
tmp = pipeline.decode(out_tokens[out_len:])
if ("\ufffd" not in tmp) and (
not tmp.endswith("\n")
): #### print() only when out_str is valid utf-8 and not end with \n
out_str += tmp
print(tmp, end="", flush=True)
out_len = i + 1
elif "\n\n" in tmp: #### exit at '\n\n'
tmp = tmp.rstrip()
out_str += tmp
print(tmp, end="", flush=True)
break
return out_str.strip()
context_list = [ # test two questions
"RWKV (Recurrent Weighted Key-Value) is a type of recurrent neural network that does not require an attention mechanism, resulting in faster speed and lower memory consumption. It also supports GPT (Generative Pre-trained Transformer) mode for parallel training. RWKV was designed and further developed by Peng Bo, inspired by language models like AFT (Attention-Free Transformer), as a large language model.",
"RWKV 是一种无需注意力机制的循环神经网络,因此速度更快且更省显存。 它还支持GPT 模式并行训练。 RWKV 是由Peng Bo 受AFT(Attention-Free Transformer)等语言模型启发,设计并进一步开发的一种大型语言模型(Large Language Model)",
]
question_list = ["what is RWKV?", "RWKV是什么?"]
for q, ctx in zip(question_list, context_list):
chat_with_context = [
"User: hi",
"Assistant: Hi. I am your assistant and I will provide expert full response in full details.",
"User: "
+ re.sub(r"\n{2,}", "\n", ctx) + "\n"
+ re.sub(r"\n{2,}", "\n", q)
.strip()
.replace("\r\n", "\n"), #### replace all \n\n and \r\n by \n
"Assistant:",
] #### dont add space after this final ":"
chat_without_context = [
"User: " + re.sub(r"\n{2,}", "\n", q).strip().replace("\r\n", "\n"),
"Assistant:",
]
print("free generation without context, cfg_factor=0\n")
print("\n\n".join(chat_without_context[-2:]), end="")
cfg_generator(
"\n\n".join(chat_with_context),
"\n\n".join(chat_without_context),
cfg_factor=0,
)
print("\n" + "=" * 80)
print(
"generation with context, without classifier-free guidance, cfg_factor=1\n"
)
print("\n\n".join(chat_with_context[-2:]), end="")
cfg_generator(
"\n\n".join(chat_with_context),
"\n\n".join(chat_without_context),
cfg_factor=1,
)
print("\n" + "=" * 80)
print(
"generation with context, with classifier-free guidance, cfg_factor=1.5\n"
)
print("\n\n".join(chat_with_context[-2:]), end="")
cfg_generator(
"\n\n".join(chat_with_context),
"\n\n".join(chat_without_context),
cfg_factor=1.5,
)
print("\n" + "=" * 80)