-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathanalyzeimages.py
320 lines (258 loc) · 14.2 KB
/
analyzeimages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
r"""Analyze Traffic Images
This executable is used to annotate traffic images to highlight vehicle types and to produce stats
and graphs for the amount of time bicycle lanes and bus stops are blocked by vehicles:
Example usage:
./analyzeimages \
-path_images ./data/rawimages/
-path_labels_map data/car_label_map.pbtxt
-save_directory data/processedimages/
"""
import sys
from matplotlib.ticker import FormatStrFormatter, FuncFormatter
sys.path.append('./models-master/research/')
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
import argparse
from argparse import RawTextHelpFormatter
import time
import numpy as np
import os
import tensorflow as tf
import csv
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
from collections import defaultdict
from io import StringIO
# from matplotlib import pyplot as plt
import matplotlib.path as mpltPath
from PIL import Image
import scipy.misc
def processimages(path_images_dir, path_labels_map,save_directory):
pathcpkt = 'data/output_inference_graph.pb/frozen_inference_graph.pb'
csv_file = 'data/csvfile.csv'
num_classes = 6
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(pathcpkt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(path_labels_map)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=num_classes,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
f = open(csv_file, 'w')
#f.write(
# 'timestamp,number cars in bike lane, number trucks in bike lane, '
# 'number cars in bus stop, number trucks in bus stop\n')
def load_image_into_numpy_array(imageconvert):
(im_width, im_height) = imageconvert.size
try:
return np.array(imageconvert.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
except ValueError:
return np.array([])
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
polygon_right_lane = [(178, 122), (188, 240), (231, 240), (187, 125)]
polygon_left_lane = [(108, 143), (0, 215), (0, 233), (123, 142), (108, 97)]
polygon_bus_lane = [(200, 155), (230, 240), (292, 240), (225, 157)]
pathrightlane = mpltPath.Path(polygon_right_lane)
pathleftlane = mpltPath.Path(polygon_left_lane)
pathbuslane = mpltPath.Path(polygon_bus_lane)
for testpath in os.listdir(path_images_dir):
start_time = time.time()
timestamp = testpath.split(".jpg")[0]
try:
image = Image.open(path_images_dir + '/' + testpath)
image_np = load_image_into_numpy_array(image)
except IOError:
print("Issue opening "+testpath)
continue
if image_np.size == 0:
print("Skipping image "+testpath)
continue
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
min_score_thresh=0.4,
use_normalized_coordinates=True,
line_thickness=2)
scores = np.squeeze(scores)
boxes = np.squeeze(boxes)
num_cars_in_bikelane, num_cars_in_bus_stop, num_trucks_in_bike_lane, num_trucks_in_bus_stop = 0, 0, 0, 0
for i in range(boxes.shape[0]):
if scores[i] > .4:
box = tuple(boxes[i].tolist())
ymin, xmin, ymax, xmax = box
center_x = (((xmax * 352) - (xmin * 352)) / 2) + (xmin * 352)
center_y = (((ymax * 240) - (ymin * 240)) / 2) + (ymin * 240)
classes = np.squeeze(classes).astype(np.int32)
if classes[i] in category_index.keys():
class_name = category_index[classes[i]]['name']
else:
class_name = 'N/A'
if class_name == 'car':
points = [(center_x, center_y)]
if pathrightlane.contains_points(points) or pathleftlane.contains_points(points):
num_cars_in_bikelane += 1
elif pathbuslane.contains_points(points):
num_cars_in_bus_stop += 1
elif class_name == 'truck' or class_name == 'police' or class_name == 'ups':
points = [(center_x, center_y)]
if pathrightlane.contains_points(points) or pathleftlane.contains_points(points):
num_trucks_in_bike_lane += 1
elif pathbuslane.contains_points(points):
num_trucks_in_bus_stop += 1
# write to a csv file whenever there is a vehicle, how many and of what type with timestamp
f.write(timestamp + ',' + str(num_cars_in_bikelane) + ',' + str(num_trucks_in_bike_lane) + ',' + str(
num_cars_in_bus_stop) + ',' + str(num_trucks_in_bus_stop) + '\n')
print("Process Time " + str(time.time() - start_time))
scipy.misc.imsave(save_directory + testpath, image_np)
f.close()
return csv_file
def initialize_datastore():
blankarray = [0] * 24
alldata = [[list(blankarray), list(blankarray), list(blankarray)],
[list(blankarray), list(blankarray), list(blankarray)]]
# alldata [ [cars_blocking_bikelane[24],trucks_blocking_bikelane[24],eitherblockingbikelane[24]
# [cars_blocking_buslane[24],trucks_blocking_buslane[24],eitherblockingbuslane[24]]
weekdaydata = [[list(blankarray), list(blankarray), list(blankarray)],
[list(blankarray), list(blankarray), list(blankarray)]]
# same as alldata above but for weekdays, weekenddata same but for weekends
weekenddata = [[list(blankarray), list(blankarray), list(blankarray)],
[list(blankarray), list(blankarray), list(blankarray)]]
return [alldata, weekdaydata, weekenddata]
def weekday(datevalue):
if datevalue.weekday() < 5:
return True
else:
return False
def incrementarray(array, blockagearray, delta_time):
timestamp_string = (blockagearray[0].split(".jpg"))[0]
datetime_object = datetime.strptime(timestamp_string, '%Y-%m-%d %H:%M:%S.%f')
hour = datetime_object.hour
num_cars_in_bike_lane = int(blockagearray[1])
num_trucks_in_bike_lane = int(blockagearray[2])
num_cars_in_bus_stop = int(blockagearray[3])
num_truck_in_bus_stop = int(blockagearray[4])
if num_cars_in_bike_lane > 0:
array[0][0][hour] += delta_time
if num_trucks_in_bike_lane > 0:
array[0][1][hour] += delta_time
if num_cars_in_bike_lane > 0 or num_trucks_in_bike_lane > 0:
array[0][2][hour] += delta_time
if num_cars_in_bus_stop > 0:
array[1][0][hour] += delta_time
if num_truck_in_bus_stop > 0:
array[1][1][hour] += delta_time
if num_cars_in_bus_stop > 0 or num_truck_in_bus_stop > 0:
array[1][2][hour] += delta_time
def incrementarrays(dataarrays, blockagearray, delta_time):
alldata = dataarrays[0]
weekdaydata = dataarrays[1]
weekenddata = dataarrays[2]
datetime_object = datetime.strptime((blockagearray[0].split(".jpg"))[0], '%Y-%m-%d %H:%M:%S.%f')
incrementarray(alldata, blockagearray, delta_time)
if weekday(datetime_object):
incrementarray(weekdaydata, blockagearray, delta_time)
else:
incrementarray(weekenddata, blockagearray, delta_time)
return [alldata, weekdaydata, weekenddata]
def buildsaveplot(list_to_graph, title):
label = ['', '', '', '', '', '6 am', '',
'', '', '', '', '12 noon', '', '', '', '', '', '6 Pm', '',
'',
'', '', '', 'Midnight']
index = np.arange(len(label))
plt.bar(index, list_to_graph)
plt.xticks(index, label, fontsize=10, rotation=30)
plt.title(title)
plt.plot()
plt.ylim([0, 100.0])
ax = plt.gca()
ax.yaxis.set_major_formatter(FormatStrFormatter('%.0f%%'))
plt.savefig("output/"+title.replace(" ", "") + ".png", bbox_inches='tight')
plt.close()
def analyzeresults(csv_file):
total_time_secs, total_time_bike_lane_blocked_secs, total_time_bus_stop_blocked_secs = 0, 0, 0
weekdaytotalseconds = [1] * 24 # where we are going to store how many seconds worth of images there are
weekendtotalseconds = [1] * 24 # for each hour this is necessary beecause we may be missing images
previous_timestamp = 0
dataarrays = initialize_datastore()
data = csv.reader(open(csv_file, 'r'))
data = sorted(data, key=lambda rowparse: datetime.strptime((rowparse[0].split(".jpg"))[0], '%Y-%m-%d %H:%M:%S.%f'))
for row in data:
datetime_object = datetime.strptime((row[0].split(".jpg"))[0], '%Y-%m-%d %H:%M:%S.%f')
timestamp = float(datetime_object.strftime('%s'))
hour = datetime_object.hour
if previous_timestamp != 0:
delta_time = timestamp - previous_timestamp
if delta_time > 30:
print("DELTA TIME LARGE")
delta_time = 30
total_time_secs += delta_time
if weekday(datetime_object):
weekdaytotalseconds[hour] += delta_time # necessary because there may be time stamps missing in images
else:
weekendtotalseconds[hour] += delta_time
dataarrays = incrementarrays(dataarrays, row, delta_time)
previous_timestamp = timestamp
weekendpercentageblocked = [[0] * 24, [0] * 24] # bike lane first array and bus lane second
weekdaypercentageblocked = [[0] * 24, [0] * 24]
for hour in range(0, 24):
total_time_bike_lane_blocked_secs += dataarrays[0][0][2][hour]
total_time_bus_stop_blocked_secs += dataarrays[0][1][2][hour]
weekdaypercentageblocked[0][hour] = 100 * (dataarrays[1][0][2][hour] / weekdaytotalseconds[hour])
weekendpercentageblocked[0][hour] = 100 * (dataarrays[2][0][2][hour] / weekendtotalseconds[hour])
weekdaypercentageblocked[1][hour] = 100 * (dataarrays[1][1][2][hour] / weekdaytotalseconds[hour])
weekendpercentageblocked[1][hour] = 100 * (dataarrays[2][1][2][hour] / weekendtotalseconds[hour])
total_time_seven2seven, blockedbikelaneseven2seven, blockedbuslaneseven2seven = 0, 0, 0
for x in range(7, 19):
total_time_seven2seven += weekdaytotalseconds[x]
blockedbikelaneseven2seven += dataarrays[1][0][2][x]
blockedbuslaneseven2seven += dataarrays[1][1][2][x]
print("RESULTS \n Total Time " + str(total_time_secs) + " blocked bike lane time " + str(
total_time_bike_lane_blocked_secs) + "blocked truck lane time" + str(total_time_bus_stop_blocked_secs))
print("Bike lane blocked " + str(100 * (total_time_bike_lane_blocked_secs / total_time_secs)) + "% of the time")
print("Bus lane blocked " + str(100 * (total_time_bus_stop_blocked_secs / total_time_secs)) + "% of the time")
print("Bike lane blocked " + str(
100 * (blockedbikelaneseven2seven / total_time_seven2seven)) + "% of the time durring weekday from 7 am to 7pm")
print("Bus lane blocked " + str(
100 * (blockedbuslaneseven2seven / total_time_seven2seven)) + "% of the time durring weekday from 7 am to 7pm")
buildsaveplot(weekdaypercentageblocked[0], 'Weekday Bike Lane Percentage Blocked by Hour')
buildsaveplot(weekdaypercentageblocked[1], 'Weekday Bus Stop Percentage Blocked by Hour')
buildsaveplot(weekendpercentageblocked[0], 'Weekend Bike Lane Percentage Blocked by Hour')
buildsaveplot(weekendpercentageblocked[1], 'Weekend Bus Stop Percentage Blocked by Hour')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Analyze traffic images to determine rate of blocking bike'
'and bus lanes', formatter_class=RawTextHelpFormatter)
parser.add_argument('-path_images', help='the folder with all the downloaded images in it')
parser.add_argument('-path_labels_map', help='the file with the integer to label map')
parser.add_argument('-save_directory', help='the directory you want to save the annotated images to')
args = parser.parse_args()
#csv_file = processimages(args.path_images,args.path_labels_map,args.save_directory)
analyzeresults('data/analysis10days.csv')
analyzeresults(csv_file)