-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathtrain.py
234 lines (195 loc) · 6.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*-coding:utf-8-*-
import argparse
import logging
import time
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torchvision.transforms as transforms
import yaml
from easydict import EasyDict
from torch.utils.tensorboard import SummaryWriter
from models import get_model
from utils import (
Logger,
adjust_learning_rate,
count_parameters,
data_augmentation,
get_current_lr,
get_data_loader,
load_checkpoint,
mixup_criterion,
mixup_data,
save_checkpoint,
)
parser = argparse.ArgumentParser(description="PyTorch CIFAR Dataset Training")
parser.add_argument("--work-path", required=True, type=str)
parser.add_argument("--resume", action="store_true", help="resume from checkpoint")
args = parser.parse_args()
logger = Logger(
log_file_name=args.work_path + "/log.txt",
log_level=logging.DEBUG,
logger_name="CIFAR",
).get_log()
config = None
def train(train_loader, net, criterion, optimizer, epoch, device):
global writer
start = time.time()
net.train()
train_loss = 0
correct = 0
total = 0
logger.info(" === Epoch: [{}/{}] === ".format(epoch + 1, config.epochs))
for batch_index, (inputs, targets) in enumerate(train_loader):
# move tensor to GPU
inputs, targets = inputs.to(device), targets.to(device)
if config.mixup:
inputs, targets_a, targets_b, lam = mixup_data(
inputs, targets, config.mixup_alpha, device
)
outputs = net(inputs)
loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
else:
outputs = net(inputs)
loss = criterion(outputs, targets)
# zero the gradient buffers
optimizer.zero_grad()
# backward
loss.backward()
# update weight
optimizer.step()
# count the loss and acc
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
if config.mixup:
correct += (
lam * predicted.eq(targets_a).sum().item()
+ (1 - lam) * predicted.eq(targets_b).sum().item()
)
else:
correct += predicted.eq(targets).sum().item()
if (batch_index + 1) % 100 == 0:
logger.info(
" == step: [{:3}/{}], train loss: {:.3f} | train acc: {:6.3f}% | lr: {:.6f}".format(
batch_index + 1,
len(train_loader),
train_loss / (batch_index + 1),
100.0 * correct / total,
get_current_lr(optimizer),
)
)
logger.info(
" == step: [{:3}/{}], train loss: {:.3f} | train acc: {:6.3f}% | lr: {:.6f}".format(
batch_index + 1,
len(train_loader),
train_loss / (batch_index + 1),
100.0 * correct / total,
get_current_lr(optimizer),
)
)
end = time.time()
logger.info(" == cost time: {:.4f}s".format(end - start))
train_loss = train_loss / (batch_index + 1)
train_acc = correct / total
writer.add_scalar("train_loss", train_loss, global_step=epoch)
writer.add_scalar("train_acc", train_acc, global_step=epoch)
return train_loss, train_acc
def test(test_loader, net, criterion, optimizer, epoch, device):
global best_prec, writer
net.eval()
test_loss = 0
correct = 0
total = 0
logger.info(" === Validate ===")
with torch.no_grad():
for batch_index, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
logger.info(
" == test loss: {:.3f} | test acc: {:6.3f}%".format(
test_loss / (batch_index + 1), 100.0 * correct / total
)
)
test_loss = test_loss / (batch_index + 1)
test_acc = correct / total
writer.add_scalar("test_loss", test_loss, global_step=epoch)
writer.add_scalar("test_acc", test_acc, global_step=epoch)
# Save checkpoint.
acc = 100.0 * correct / total
state = {
"state_dict": net.state_dict(),
"best_prec": best_prec,
"last_epoch": epoch,
"optimizer": optimizer.state_dict(),
}
is_best = acc > best_prec
save_checkpoint(state, is_best, args.work_path + "/" + config.ckpt_name)
if is_best:
best_prec = acc
def main():
global args, config, last_epoch, best_prec, writer
writer = SummaryWriter(log_dir=args.work_path + "/event")
# read config from yaml file
with open(args.work_path + "/config.yaml") as f:
config = yaml.load(f)
# convert to dict
config = EasyDict(config)
logger.info(config)
# define netowrk
net = get_model(config)
logger.info(net)
logger.info(" == total parameters: " + str(count_parameters(net)))
# CPU or GPU
device = "cuda" if config.use_gpu else "cpu"
# data parallel for multiple-GPU
if device == "cuda":
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net.to(device)
# define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
net.parameters(),
config.lr_scheduler.base_lr,
momentum=config.optimize.momentum,
weight_decay=config.optimize.weight_decay,
nesterov=config.optimize.nesterov,
)
# resume from a checkpoint
last_epoch = -1
best_prec = 0
if args.work_path:
ckpt_file_name = args.work_path + "/" + config.ckpt_name + ".pth.tar"
if args.resume:
best_prec, last_epoch = load_checkpoint(
ckpt_file_name, net, optimizer=optimizer
)
# load training data, do data augmentation and get data loader
transform_train = transforms.Compose(data_augmentation(config))
transform_test = transforms.Compose(data_augmentation(config, is_train=False))
train_loader, test_loader = get_data_loader(transform_train, transform_test, config)
logger.info(" ======= Training =======\n")
for epoch in range(last_epoch + 1, config.epochs):
lr = adjust_learning_rate(optimizer, epoch, config)
writer.add_scalar("learning_rate", lr, epoch)
train(train_loader, net, criterion, optimizer, epoch, device)
if (
epoch == 0
or (epoch + 1) % config.eval_freq == 0
or epoch == config.epochs - 1
):
test(test_loader, net, criterion, optimizer, epoch, device)
writer.close()
logger.info(
"======== Training Finished. best_test_acc: {:.3f}% ========".format(
best_prec
)
)
if __name__ == "__main__":
main()