-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
134 lines (111 loc) · 5.56 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import math
import sys
from typing import Iterable
from util.utils import to_device
import torch
import util.misc as utils
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0,
wo_class_error=False, lr_scheduler=None, args=None, logger=None, ema_m=None):
scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
if not wo_class_error:
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header, logger=logger):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
with torch.cuda.amp.autocast(enabled=args.amp):
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
if args.amp:
# amp backward function
optimizer.zero_grad()
scaler.scale(losses).backward()
if max_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
else:
# original backward function
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
if args.use_ema:
if epoch >= args.ema_epoch:
ema_m.update(model)
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
if 'class_error' in loss_dict_reduced:
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
resstat = {k: meter.global_avg for k, meter in metric_logger.meters.items() if meter.count > 0}
if getattr(criterion, 'loss_weight_decay', False):
resstat.update({f'weight_{k}': v for k,v in criterion.weight_dict.items()})
return resstat
@torch.no_grad()
def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir, wo_class_error=False, args=None, logger=None):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
if not wo_class_error:
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
iou_types = tuple(postprocessors.keys())
try:
useCats = args.useCats
except:
useCats = True
if args.dataset_file=="coco":
from datasets.coco_eval import CocoEvaluator
coco_evaluator = CocoEvaluator(base_ds, iou_types, useCats=useCats, coco_path=args.coco_path)
elif args.dataset_file=="crowdpose":
from datasets.crowdpose_eval import CocoEvaluator
coco_evaluator = CocoEvaluator(base_ds, iou_types, useCats=useCats, coco_path=args.coco_path)
for samples, targets in metric_logger.log_every(data_loader, 10, header, logger=logger):
samples = samples.to(device)
targets = [{k: to_device(v, device) for k, v in t.items()} for t in targets]
with torch.cuda.amp.autocast(enabled=args.amp):
outputs = model(samples)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['keypoints'](outputs, orig_target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items() if meter.count > 0}
if coco_evaluator is not None:
if 'keypoints' in postprocessors.keys():
stats['coco_eval_keypoints'] = coco_evaluator.coco_eval['keypoints'].stats.tolist()
return stats, coco_evaluator