-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathInputExamples.txt
57 lines (54 loc) · 2.73 KB
/
InputExamples.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Calculator Examples:
Equations with unknown Variables:
s^3+5s^2+8s+4=0
To get the multiplicity of the solutions use: roots(s^3+5s^2+8s+4)
x²+3x-4=0
x^20+5·x^19-3·x^18+2·x^17+18·x^17+2·x^16+19·x^15+2·x^14-19·x^13-99·x^12+x^11-14·x^10+3·x^9-15·x^8-12·x^7+70·x^6-104·x^5+x^4-3·x^3+x²+2·x-5=0
WARNING: This one will take a while... You do not want to input this on a slow PC
Integrals:
integrate(sqrt(sin(x))/(sqrt(sin(x))+sqrt(cos(x))),(x,0,pi/2))
Alternatively: integrate{(0)(pi/2)} sqrt(sin(x))/(sqrt(sin(x))+sqrt(cos(x))) dx
Or with Unicode Symbols: ∫{(0)(π/2)} √(sin(x))/(√(sin(x))+√(cos(x))) dx
int {(0)(3)}int {(0)(x)}a^2da+x dx + int {(0)(3)}x^2*dx
Interpretable by WolframAlpha (but not by AMaDiA, yet):
(integrate (integrate x^2 dx , x=0..y) + y dy, y=0..3 )+ integrate x^2 dx , x=0..3
((3)(∫ d(x²)/dx+x dx)(2))/6
Ordinary Differential Equations:
d(y(t))/dt=-λ·y(t)
x'(t) *x(t)^2 = sin(0.2 + t)
∫x² dx - ∫sin(t+0.2)dt
This solves the (Differential) Equation x²dx=sin(t+0.2)dt if you rearrange the solution to x=...
(Automatic rearranging equations is on the TODO List)
∫1dy+∫7x*dx=0
y''(x) = 0 , y(4)=1 , y'(1)=2
d(x(t))/dt = 5x(t)-3 , x(2)=1
y(x)·(2x^4+y(x))·y'(x)=(1-4·x·(y(x))^2)·x^2
Compared with WolframAlpha's solution:
(-3*x**8/(-81*C1/2 + 27*x**12 - 27*x**3/2 + 27*sqrt(9*C1**2 - 12*C1*x**12 + 6*C1*x**3 - 4*x**15 + x**6)/2)**(1/3) - x**4 - (-81*C1/2 + 27*x**12 - 27*x**3/2 + 27*sqrt(9*C1**2 - 12*C1*x**12 + 6*C1*x**3 - 4*x**15 + x**6)/2)**(1/3)/3) = ((sqrt((81*c_1 - 54*x^(12) + 27*x^3)^2 - 2916*x^(24)) + 81*c_1 - 54*x^(12) + 27*x^3)^(1/3)/(3*2^(1/3)) + (3*2^(1/3)*x^8)/(sqrt((81*c_1 - 54* x^(12) + 27 *x^3)^2 - 2916* x^(24)) + 81*c_1 - 54*x^(12) + 27*x^3)^(1/3) - x^4)
Partial Differential Equations: (autodetection (to avoid the need for "pdsolve") will come in the future)
pdsolve(1 + (2·(d(u(x,y))/dx)/u(x,y)) + (3·(d(u(x,y))/dy)/u(x,y)))
pdsolve(1 + (2*(d(u(x,y))/dx)) + (3*(d(u(x,y))/dy)))
Sums:
Sum(1/(k-3),(k,4,8)) = 137/60
Complex Numbers:
z**6 = 1
z**3 = -2+2*I
Set Theory:
4 in ImageSet(Lambda(x, x**2), S.Naturals) # Checks if 4 is a square number
1 if 4 in [1,2,3,5,6]+[4,8] else 0
1 if 4 in [1,2,3,4,5,6] and 4 not in [4,8] else 0
Conditional:
2*2 if 2>3 else 2*3
Transformations:
inverse_laplace_transform(1/s,s,x)
laplace_transform(exp(x),x,s)[0]
Units (with units turned on in the options):
convert_to(7foot+3inch,[m])
LaTeX Examples:
d(y(t))/dt=-y(t)·λ
y(t)= C1*exp(-λ*t)
Plot Examples:
integrate(sqrt(sin(x))/(sqrt(sin(x))+sqrt(cos(x))))
sqrt(sin(x))/(sqrt(sin(x))+sqrt(cos(x)))
(0<x)(x<1)+(x>1)·(x<3)·x+(3<x)·(sin((x-3)*8)/8+3)
(abs(sin(x))>0.3)(abs(sin(x))<0.7)*(-sin(x)+0.3*(sign(sin(x))))+sin(x)