From ad6c5496e99985f2f45425746f8d52ee57c5df40 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 14 Mar 2023 06:04:15 +0100 Subject: [PATCH 001/172] Get coverage and upload to codecov --- .github/workflows/tests.yml | 4 +++- requirements.github_actions.txt | 1 + 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 2a66eb8e..402eabc6 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -39,6 +39,8 @@ jobs: pip install . pip install -r requirements.github_actions.txt - name: Run Pytest - run: pytest + run: pytest --cov=scopesim - name: Run notebooks run: ./runnotebooks.sh + - name: Upload coverage reports to Codecov + uses: codecov/codecov-action@v3 diff --git a/requirements.github_actions.txt b/requirements.github_actions.txt index fb366c05..6613272a 100644 --- a/requirements.github_actions.txt +++ b/requirements.github_actions.txt @@ -1,4 +1,5 @@ pytest +pytest-cov numpy>=1.16 scipy From 582cad708411c24b3e7fb31bd24b69734d23285e Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 21 Mar 2023 16:04:57 +0100 Subject: [PATCH 002/172] Run markdown link checker on push (#190) * Run markdown link checker on push * Fix ScopeSIM url * Add missing figures from Anisocado * Fix links in joss paper * Try to put references in a block to placated markdown link scanner * Revert "Fix ScopeSIM url" This reverts commit 389400829862cf9aa1f706b90d3c0a52aacfc00c. * Fix README.md without adding all kinds of weird things --- .github/workflows/markdown_link_check.yml | 14 ++++++++++++++ README.md | 4 ++-- docs/joss_paper/Ks-band_psf_grid.pdf | Bin 0 -> 493317 bytes docs/joss_paper/Ks-band_psf_grid.png | Bin 0 -> 517872 bytes docs/joss_paper/anisocado_full_text.md | 7 ++++--- docs/joss_paper/paper.md | 2 -- 6 files changed, 20 insertions(+), 7 deletions(-) create mode 100644 .github/workflows/markdown_link_check.yml create mode 100644 docs/joss_paper/Ks-band_psf_grid.pdf create mode 100644 docs/joss_paper/Ks-band_psf_grid.png diff --git a/.github/workflows/markdown_link_check.yml b/.github/workflows/markdown_link_check.yml new file mode 100644 index 00000000..ea13451d --- /dev/null +++ b/.github/workflows/markdown_link_check.yml @@ -0,0 +1,14 @@ +name: Check Markdown links + +on: + push: + schedule: + - # Run every day at 5:00 UTC + - cron: "0 5 * * *" + +jobs: + markdown-link-check: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@master + - uses: gaurav-nelson/github-action-markdown-link-check@v1 diff --git a/README.md b/README.md index 18ea2633..4d402f62 100644 --- a/README.md +++ b/README.md @@ -17,14 +17,14 @@ and astronomical objects and then pushing the object through the optical train. The resulting 2D image is then broadcast to a detector chip and read out into a FITS file. -This code was originally based on the [SimCADO](www.univie.ac.at/simcado) package +This code was originally based on the [SimCADO](https://github.com/astronomyk/simcado) package ## Documentation The main set of documentation can be found here: https://scopesim.readthedocs.io/en/latest/ A basic Jupyter Notebook can be found here: -[scopesim_basic_intro.ipynb](docs/source/_static/scopesim_basic_intro.ipynb) +[scopesim_basic_intro.ipynb](docs/source/examples/1_scopesim_intro.ipynb) ## Dependencies diff --git a/docs/joss_paper/Ks-band_psf_grid.pdf b/docs/joss_paper/Ks-band_psf_grid.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a9b63764b4d376140831b6ff61c7ddec07d721a0 GIT binary patch literal 493317 zcmb@s1yEhh5;b~och?-;;o$Bb+}+)s0KwheLx2DY?g4k!z4maZlqIB?SeZExsVWwMP;KoHQ$)D}@d0LY?jVrAh5 zWCORT0$J3(oh^VY;wJ7U_D)tnAt6KyNAstSJpULV>E$l1=5FF{0p$2SNXp649mxK> zu59A&ZsF<(ivKBPfd)VpHER=d z8%HZ3*YDxlN~X3JX6``lXXXEf!wLd7{53$-(b37>4Lk*Syf_$&g(LWh_qPIRS0@i= z;FFo+YCskV3r`y}3sq_G)Ziy|R})7!XA@ToM>FrgmjCV#o`^-k!raD0%*hL^_h~Y2 zw%-DtL-}cl`(KZ#TDUoRxSD}o_~fI1x$w!W|M1@voWFRbZ0x}<04 zxC1A_RH7c-p70$@LSL#b`4_S0+lplGU;7n#^5~w3s}RWhgC|5n-5GUDkXC+-zHF^w}l(aP4`t+^kUNE>zbvT9fAYV|}69j_KU$@*$LpC5rs8 zZ(pKISg#Wmn8HVPT(33X{>b?v8UV5B?&gpBhNN|2s*C5{1uRW8-l`b|eZC;XSiv|M z|G9c4nLG^WlkZ52tN5w8T4sUrV^iedPsJ5Cvfa#j&IV2X4R$`%5AC?b+7rFPHOi z39NhOl0WJaN_<^v^#{+Y;)Hvd$s>KGEaZpoC&VsbC?+Mj3dt3Ra3+DCBovVSR_YzC zi)<*yTI}S3zOeU$Z#F;Jz~7d+MDj_fOz%@fI$s0VSw}2|x;V*WePKmW@hx=++w9G6 z`YqAd1A{)8?9WSuCXNETAjB2KXQ$)f$?`-)pocPsH0YLC1r`RM|YozN2Bs7)Gr;1 zkWsjj!RMT|a-hQ|HXJ);y3Ev!4h@h#()?k;-~*ei{M+!!*Nspibtf(%6SB7#EzXcNTb+W!UN)2aBsAmn8G4}|Po?CM}&)vANoxKuz~9FV41Vc6o#`S6ixLoirF z5cMKuu1)!aZpPqZ0s!}pHVtM@Di^-7(@G0TjtTG)dvs( zUoJW;wY+ZP!(>xiG6|1>&P8SnS37~tDm3P7l2VO(yI)x2Xyg&J<)c>q>k^J$$P%Wz_2F`v%S0Ce0cnAy z6E`F&R!-h{KhtcLN?oZ^h>{|qMV1%6RGAxE$yy$n-F|}Vc+h>BEmyBKM{_q=QD$SO zf{U;q*3z(hTx|sL&BM?lrLBcj78Ki_dLvd{oiWT7%qM|M_QMkW?a+v~gEiZVtObjf zQiT4G3+E4zuh~Fm|HZneH2l9<$Hns>#<8<=sezPhK#-UpK7=D~Nu?vwh3kt5{f*^e z#^E4F3Z%qzVrFq9GmwL+eUY)HDXh5;kQLZ60dT#-O!_Za{>e!GZ>JFJe+JR>DHPZZ z-b?_(RLK4RqWFJJ)ofrA^3OcYsXT-t&IEkGtZqP1SSs;lpD|k_vcBesEr^pLsRSfjMP~q?is-r6?SW3NR)& z)Ct_LlHiq_h<~5w)Y^B6CIV3V`2Thd`#)VHX5wb?O#HyC%GN~FLk&!(z%0w!#Px~u zxdAzzSQD55N;-lG&J(2*5I|&+u(7nXcp_Y2x}*nWX9Kc;378p}NP>VY&rHnT!V=66 zpR2AmR@Ux74h|rTnUjNq36RCw+u7Q}5y-&gN6g4-AXt3AosAa>v99Vq*m|ad5E%S-E*RfUIon>`zSc zsf&b#o0+SPv%8Zkko}q6fz^PU6-?Y+ZJvoCGYIsQ4Z(l^s)2{foBWxH?Fp2ki36D5 z{o6^1ENUL6?$12?iEXq0rJlc?sbypCZtVtS|34Y;^ZbAJo~WDI69eUC<9*`l&N3Fy zt^(Wj1o-I<6B|3%Gr_b1s{(uIf3)}igbHTn;12;CGf_t?dkY{4Oo~mso&f?`*}=(| zMa|v9LG#IvRT;{R7Y?5sTCz+(k+aDjk4 zVE=Nlb0P9_f@wZDA+m9E0@=Z|;Ym2bIG^4>^=Ic|{au3X0QdjD3F6=P?BKpn@}%Rh zaI&)kSwT+@;NbuZSP?G|keeI)4Bix+;K{k41k4K9csUWl0_5W40*5$Q2{=x+Bq0NANrgCpYhN$;%DK3vTCPWdj@ddtMIkyqw@o#LoLPjswUEE_uMtdMclV z?WrHvvlE`mr}>{3?a6^)3}DA1KF!Gq9`o#!zu=zA=SX{+iR0-3^yH!^*iWWCm0)>Z zm#67|3nJ&AHT##U-xV;x-zwO^7K4XzKA{35{~HE>m+Nl{UNXeLK%O;laI-#{{S5yp z4*sS8sn?TD&%p!^sHf+DX?X$#0wF%X`=fxDix>D;o&w=_3_Qibf6BA3!Ex~v6aSFs zczBA5zw#U_e`4Y(9{wp$xSpTEI-X+VuRK}K1>yv+AsFjZ4Ez`2gO~5 znec-j{$_$dcMeZ^0GubDzrO#SML7OkLHskBJYOsP%@bgH`8?!L3i|W;{+wDkp05v{ z()-_I3*7ZDFsY|Ve;)ep_y6SDqO89!97MtVhX*Odv2nF+XANa!EB|G|gQ5OClCzn_dqUin*LMe27-b8ZUrA4 z&j7(1z~|I&eE;^_v!nhlpO}rio3e$gxRZl3IB>wp63i#Wo$Q@l)t;%yzb}cvbmjSS zM%l#G!R_~wK6L|U)aL;n4q(E=3f^AeOD^zTk=YYV_)Q7HT;spo@cc=J&m;ca_JH@+ zGyH!Mg6E5|zx3tr48o`ryltGKYa=(hJEAe7CAEds9iFQ*pX799^&`A(ZY% za)sQ-SXWdiy|@<)+CXSFv5%b}Ha#D6%D&9xP_PRbeO21RcRS$oD|S-}DbRjB!rG@K zCG{20NJ45bp!yN&4(P%w0T5AF2aIhYJjmWd0n{a+%Z?x4^kh`7HVifND8xfaN4&g4 z3^aO~u9QA1dAcwIgv9(J4(%_BgWQcjRE;h2M}W?}h4D|`f_#VXR;RBb&)_jm-kmRRu-r$}kWG&oaQS0k zl=Qc)ALODrh$LKo^!3Jxe5sa)&T&>PLHR+(?${}!hbi08=?f{Ru=*JyB1JF!xFZVr zNe($AsQM@Odjfd~s3;!=ijM;eKaQCFoRJB{Cf={5&=nQX)77`|*ekxoAhUR@R|>lu zFnP|Ho7sh1ccK>uv6>q9SUckWxR?s;&pZ<1piDsZmS?@u#|m>%#LCdLyGHdFRmH%I zrK@(^jrGaI&u%KrW4HI$rr2xukcGluFYs1X6V;G89|=kvyQ%97Vs@5Wsa7*ecC*dx z)ljum%~q%9w`y)Oj+N31tYqFdib3q#nE?Kz7?d?o7=+g~7GOTgA?Us=W zDjzuId)yHs(Ok{lZX$AYu?UT*69J&YnCt0jCTWx-SpnkpdN(yoI!YT9J}TnxghIZd zh!+OgUHzUA}G0Flp`RrN>L$gQ$=90mSAg%&m5 z38_G#bhkUyIjjman;?_kr!d^sZkO-h!Vq@A@Je+w%xrmRmTqJYjw?C68{$2KP$jt+ zf6Y2y#bK7JBBsq0)t*%6q@c-(lT73jQQHwLj87TBfJE%@Esm=X^5@`SDd0--?riVG z=tkzCS+RB#9Y&G9@2C{gwCnVGIG~IpZARO(lymBwRSX^`c9zRtPe8;-0d5QJdnuv6 zT(?(vy+KD9vu<#Ti=vw?#0yO4li|Egv)tCJmv{0?l8br+pbm{t|)Y zl{MzFY~wM#KC>wcLrU5ldg_HBr?RaVxrLdHw%d4;Xkmh-_^wV%Ww{Lo zXqcC z6m1$o??J>dpYckq@S*5WyS0{Hc@y7VFCd2y!^dWp;y4ZCHKQ~5@3BUvSj;PT?$QEC z#F7m_=3ULPar($KgZZ2`angB^%AGTz{KD=en_hzsDUJN$wU?PzTpgRiIG_=r)(4{R zJ;crS7YC48P28EXJ_cL{n{XPbz^rsG$D&EhoA(X4syno9ct&M)J9N4t=)(C5!e|JO zMyhlvD=Xz7zb_vUgE^fYl97c&+LH!ENK7tEJ=!pl)3PKxtbVSV~sa^R~1 zdn`EM$9Weq_0yr76ET#Oy+w42c*P|9=B98kIKmLW(`dovka;vjCeEtIe&x9rSYrJp zpLR>#o3fRJFD{hpMd~F0Awpy?^2R>Sk4yqraEqR71?zKM>`CVV_~JQbe0yI^pwA9p zr2-jv8-8mLesWLJg3$4EH79@R==4|2D2c!C*OXuJ5jC&IY8kF)mEnJLR`HX0v6#|?G@-QhBO&sGg&hZ!wtst^K=UYuFCG{Ey*Uu0uXRaZw;0Xd2X(DtN?WfsI!1!FRz7j|HjLN71X<^*L~}E#o zl{wS6j^En15G(Aoy8(m5C$7kpGF$_zkBo$Zg>8g&vc_w6yk`PgLyq&*u&urAT!n3$Pf3`BddBQW$BsGcLhp~fx zx!NuBauWHCA+g@cAX%C+wj#94FIsgR*^sU3AED5UKMNT&z0927$>m5&4|R5#GO5|j zp7JR`+ns)sW>Lep^dfXNmYkq(I#}c;o8wOq?_F8XswSW18X$&?=-RhmR1c)ikSP^oUUF*sH+^K*`DGcI_a<#n)g_m$#M>5 zg@8G^AX9mpX!pU{^|^~n9?KVgu9TVcA)*1Ecbr0KLTLV>E&U5Wu6GhYLODiEWpv-a zv$Z5*m>580*LnWcq*Q}my9xM#d zK>Wd!P$o|=^VLPdZGra7*|ogeF1vq9rD)n!$2bj@?pYn@95?F1N`up~F|M^OGT`C? zB2elJ-362H_p>P0{hv+%iJtN7$m4Bym$Lo_DxAj{-*Vx>2AF{9Tlq{}{gDh7Tw~P3 zL8;rQ@@w5T`hYzXtkFRJ(~dW$GCuf_`EWm}*L>D3kK~=OxS9(xsi*~A3JWCwb#h0H zul8ae+Q?351Uj61j%S-W_qmfE7|ibB{6bB#Qfe?C9M=Rg_R;;3V?_%;;;xVc_VLNV zh{~s|kxNp4ttdqIc2VoK2~L`^$rMK}Q^sP>XcrCMn4Y_;Hb@EF^IJ$`H|Q#i!Yd1f z8riJka}Po`1eih-)T$UPGoErPj5`(xqE}E2ak8ZkX6G8e8qUYKc0BnNQF{qexZXCw zio5W_mPQxJzY9Q^aG1x`cpL9ytz^O*Rky4-^X>8z>KY7EMNlxaVP8abg+80D z48Lc3K|rn;{UIs6{#|r(B6_m(S_?J^$27*s{ijya{_(1&3KjZ>(^0358solqA>wG45}6T{G|zcr;H zX6BXzMzaDUd1;Ta&tRuzk1nIgB|Ulpho*&89RDeO=*`%N9x2DHA?*m=pU|B-9RHitfF$PEUyeJ8Zln z|JKNRgFh>bI?xp#WC>8Cs9!!;kX<{O1+4gIEc;5nxZAOcr6{w_vDECTQDz*KiW~`6 z7FL5$bD39wk(NG6NzjQxVTU9~g1*GNT+8KrVM~pR6On|39`sTMvitzCkNv)QgmF<8 zpv908k{kYt%?rS&gfx`CN)K{qOnA+}l$G<*%hlRX9aFq(x#D=D_(A3ae#Zx|&t`UZ z+KA^PKix3j{v@8KL+0}7S>3tsizL3#EmrkOv}GkxGQfR>p40ORO#UazkAm@rBQ2}ql;8sUcbB!*r5pB(C=qiu{5*v(n7)wr+pN3l1rmQ z4kj-cS)Pjc1)_v@AY|_BxgYZ=v5bw(4-wNTofb*cobF+hqRa}{;F4)Txg_e1J36|% zKsAnG{lV@1x_f4<&$g*JV)@k^*Vu8ba-IkDcm9&^bT0yi8FZarJFdk-zkge#9Sdm0 zB?v-R$k83q@{;v~+dv?5!MFc*`YlNCwW} zK}+R1g^_ZkBxZrVCN&V>LX~G^eBM_r9=Wzd7$4yPqV^{DTx50m%eh9jmMQop+5m5I zeU-|crD?CDQoXhe6fZswSBRYF1lXMb*lDPPVF`fSi8<&>*cmVDs7^hxnO7+`@sla_ zu-~6|>C0)BeoAcl9L0L|5O0;@aF*55a~gZ8&rrmN1#ycKh%bBUUBSyS$F+EL(#Rs> zd_CS8%_-efkViO&XOqO!@;X}<2BlDVc&14bS5f9?X7kQK6Q{}8C|TKb3M<6?uLj3F zcoUx<++2B{ZVE1p;1Fl@Rj-G}Y52km1d!%|$9Ww&$)P}?QQJxBo^P{CXYf3hG z3I|3B!kK32!TtBt3%yG_{ol}XU;3N===A=kq7Fe!;)w6|c2?GdSq^8k{eGi)QT9;J z`7LU?Rg>?EYwP(8i+SBM^}ZI$T(k%$u%@tpr@+d>;S z$3-UFlUcqV>j&SlWH$hva3~UJr@WTEdOB1@GeCPMQM7MaJF;t^Ue~(W9cz%hwK|he zPU&-Fs{xG*m=1YIJa;8gp|HUfrV-;QU8)xv5;i3xU!+VIt^k7O zDpGD^LLLgUJ<-xzA6kJHvm}yuw4#^?8Y9R?>(m0 z-Clbq=v2o9O1gz3uvSZ+Y|$ zK&Ooqra>WnIy3=1fyfo93dit!I3_o=+ju{?s3i*-(Yh7OHvife?SMqHmGz)LigU|_ z4S%aw)NA}>;+8J{?h@ zw}F+G)+HkYm(WrjU*UOnl#wF?j5l2^r_%z-$dX}$Y9K<9@nF9q1xn4_N55>O-Ek!U zlnIoMV8R`!8yGhB4*q0G5AZm2ec@)i#1 z%h{>?&oNWAQ^_?3lw{P<6z*xX*h#RKScR)v2E3W)LrJOCP3$OZh z&uJP38=DylS{0zzPo3I(kjeaw6gLTg#{($SlZ>({FO`i0f_#gLL)Vhlr2R99)zVh9 zSM3a>7v0Dts_r6(EOmOBDCW3_cw zt(H8OJQGh(kk``%rs;w-^T83Koc4LXk_ri31mN5md0@&!S_s`u&3b56@v)VToMTeL zVl%X0JuH&dl+etksASuOnUb}k%+n3BMwE7&J&VMnhh9y_t*uQU=dIVFgDSAx{v|1= z>Rxu=ooAKq1>c+7I6W-)Il|tK##bN1Z<%oGp;`~lrxC08-tTY5&FJBgJI`@+!i&yp z3hSs#eEl|`iZVC{fN8Y+04Ij9tk%RUWxp1TjuSlb0Wq|VO(Id_I|VVB#P+81VbE5b zViJNLGc*Nj8@FGegyU(H@vc)+3N;Ro5L0u#anl$0QNIU=pBemb`WqvB1q|*mz4Ng^ zZ-!8Ci=<_((NXN-JGidDnnQ?b4}7o{HuOsvjUe#5xu=rd#8k@Ny;e47LdB(nWK{tO zmPGV8w?nI1_aiUGP=2^H7-aCBb#U-@|A0{)QB9BWCA$g6N#fUKOSroo#GTvX`viTD zw>evkEa`haoVhQ<5kk%@Rxex#E(@wUaqC>jV5F?oY+TbI6kEtkgQ;_i%=~H5`NY^W z5+hY$!v?|%6ZK}fSz!xXpu57p7yHGqXB_gA^~2_BPB9Nvf1se-rKr^5R4T2AHG2Pz zG8v8Uh+j7(%U2*qB|~TkH$5$LYgG|?I{A2@TFoL176aCudA(+!Ne-S4>I#U>k@O}Q zu^7{r)GmERtl%p{J(T zZwsSK&BYik{{RQt@i@Rh-y+)?XNuq5!jj4v^ zXVK0U>#qWQpb{$|{iTaFMZ@qU`noD5Lxf)XxV*7^SE3=+k7~8jD&{m3@-uphsro!1 zeE*~pQgTx1qI13Vg_(fXxHk-p zhw|~XNSuD+5nQj8WG^r>!9&Do&x*U~ochjrELyN$eX5uaQDa6-{G_!~t{GZ+YP;{? zU+lKEbudC7oZ}&x`mOI}+&D}>ch7qXw8YM`hT2=M!#GF+8V^y<-6p4dyO2mBCPEZ# z=%2&9Je~xvV)f)b8L3gVwL=D!D86fU@+0nGY}t|1MR+!pm}#`d!_YpSx-{sjR9frE zx6q@EauyA_9@rU$*mcPpMz!!Vfg)^Dc$)R#E1d$oigh}R6nij4d zn$zd>S))h&%m~t+8>ISBfjFmBIEBQ0Gvq*{28(X_T8$e#PfIkNWr9{~!6_`3 ztzIP`k0KFxgQu@Q%Mf_}*-KZ(*M%|)q8}$4B(0PRA_K06PBIs)(dXJ>x=|6G!kv|C z82IurvhmzYSOzg9_Plg#gWrJ#9-mjOS6+*3=i@>0VP7E9Ir`kq#HK@s+YP{&o>Gy*OiBp(i*E*AxbUM{>%d8f^0*KnpJd;O?GV$lY;#-2d3sN~zBBYDwUpVL zO@9>gR|(U@mOz7P-uBDX;XLE>R|4tgP$|F2@w6yYxb!AmG&t&^HMI^(`#&HP9v9I5 zoDQWIh@o+PYxp)*W1MuCA5GAaJe@H{e1jTj-@Sgc+hq2-*b@@}bIm)!0qW7^wW}mg zZg}&^bNq9F92EMjB08IdE3`#tqnuXbQF+(RwGF))Gj$J5U6NAZ^wA{!HB7_7_jR?=%#B8fb0}ZtwtO zxf!;J@t4Bsm%^;K4o;V~rBTV$eSOrz4ma`)DG(OTRD8_%a$gA#qj5S0PhTXOjQQYO z1?7-w?{-;M8(LAJ+5%XLldP8ha6UF%)Mxc@#B2=KeY2Q!#L=ox&k6vR=X8{9 z!)v`O78#jix0`71SZq3g&yzql`Xbi)nB;pqx#WLqpL#ML?r<}++$MD7)OUMt`M7Mb zoT79p`N9rg{iE24O(rCN7@dH3Vd~6{Y%Gr?C1#x*L-Vu|W6ihEGzdl=x95V|YKy$* zJl@%~5$etP2MBO?ciPTG1@GbC)X6fzMOsq_0XPW!QI^>^@ys)3)0>P#4o0*iVjw|> zUXOidkDp)MH~)AXZG7u>H$K+x`})!6^=*W3z&-f#T3Nsm0D=y^kawSt<%@|Q>RMsH z50S)7k#?4q$nq`1-0eBQ8Z;)j%#b|T>@gY?GrTBVEkz0>2Ck?-A?g@%Mej6nAwekK+OiXy1cc;i)iv0#QoGPQDu4+JoRhsOH!Idc=} z+MY95LA{7EHgoCj`qpA|m37)eB(L{vl&?u8hmxt}I;T9U4PbFmzbPGq>g9I{qodWA zs94=o8QEQ1!jM+LDdr$D0Q34ye=7!g4H4Vtml_irCzl6#{`Ucovajz3E{Il&h3`-C z8ph*ixZFf{$&_W#!oo#;BqaH^A7E23QK&hHb~}f}KkV|fC;EhoVfD0!k-Vf9uXq1g zvVpXz2CY3z%G}nMV6sfLyenpN-O76kr$J*!e|F?{paVKf#%B@ExzydY7cdHx z59uJM46}1pGN%^T_s9T zye$oPms01|b=NJ1`O7<+omCGdH6^i?UK1sw)${V#s2};yvc^h(006G|O}3hG5^u67 zPz8bU=jT-U`!|r&IuYr36{p)-GdVidHzww?JtJVg+lCB3AJz{xhJq^Aeyb>i>J55#rhCr! zW&;d%D^&ig$j(o<7I*a$oLWK_3RzSa$K`Pzexp7_l>XMyx`B1N!*bsbp=Zd540c^( zj?y<15-0Dhibf=Ae2FCOk}(H4ZR|y_ZaF`#U(Fs~t`EHkxV;MSzsh_3)=p@&|B$!v zX63}l&mQ{m#`AFq9W4iMHecyu2~$ayyD6J0 zx6LlV?+$PbUOrg%ygl8#-c<6xx$<1^yErK>{DOi*8u07l*Q0G?yUAi0kN>(o>3b-C zcjW}-4Bl)y{8A}wW|}1DTZr!Duu0VlTf_0H40nu^2D4lGdwJmQxUU9ivc$Z3(Gg2 zM2o}neT6&A_QH3|H=Cn{RU-VoBn_Qd6$kmB3p~Ag6Vl)?qy%l!bebp7<=R8=U*(&J zMDh()7^FB6Bvzd!YSiv(YX={k?=S?^2XaUHw&1%=a7nIO`#q@UXb^_3!(rsJk~}3 zzI!XFI?l8)X?;#l3P&_*;R7NJ|vAS>o=sHp?n+H$P{UXnXs8?Y==-veIQQT*ifuy!Ii_n;xOeebz2A)zp`&4^(Mybx* zV!;b@md0@hvO>ut0`FL}pbK)LM&|w9jF090jT6N?IWO+BG&KWrb9fuYNfjw)2;;J( zz@;MRZjJ?NKJvA>_ACb;e`WOB&$2WUMQ=Pc=gyCrs<3bJNx4XnlUwPOQmO;W`fKs# z7`u2J*sQH;S6hqRdAS0lJ1@sOU-3zq-bb0+p{DJMs;e)&N`MiP7;8Hm(0^CML=WkV z1w_oB=c$aBhB<&0%vWlFYmkOMTW1DdymDNYhwZ+*nZDWAVS+m77lha&2v>+Bu#yy= z>WIc4n%Ir?7n)0UMA15lQh=(dP%b(0H)-2z&OSa*lfIG*@_@;``O+$#1FF<~-o1c+s<_;zGeW(ho6@ zjRvI!RSZyiXpJvoFt|yah`4Q*BRhxbX6bCU98h}`9h*{dPT7}3Y>7@xmxcIe{15@Y zR?Jrj_1xp$S{zuBudt}!_^e4}em>KPjf!Qz6V!5Qr>0FBfMlsNh!JF0mh4f%nKspw z?5R@@@$^E5zFM=nVY{Y9)`ZAcvODUwi&8>;QS&A4vs7gex3jR-Y*}?BvDx5<;5S3t z3pz4+1RQ`*$Mikx!%8sa8NdJwlyq>&)Z|_?0wA$h*9<7j#|vLp=9XcmN(mO#c?J{6 zkyjQNM{}uKg)rkEOvRfHY$3iWaz3}YA-*AY6S<%7{%jhJzc6_|Ztxl~cH6K)T3f2r z{P}|FI0x7Mx(IpNbWCxtgr~8sU$dH-j6K$^NiD`d-OH=0P+w95(^R+0qe5IDsU&_h zZXUw?Hr~g$)8;26;(QmjuO$L8j|8r9Xbqj%rn^(WgaekKJpV6V$amM}Y41OgDf=P& zq58SsM+(C2H<+jipnA77FcAk?h^=Xu&7c{je(*f`?0bmmBTK99^x$ei{#`8Oh=g#O zcN%p$13=lAJA`PV%T9tmK?nqX*jVE=5RVJo@Yq!uT_a1j8Q}}2m5Z=!f8VhuWi@?H z!1e9KrSh-@MSOk~jX+L|+~{V4Z3kh+dn#8D!chYxAMbxE-px2+P^rDCv&p_q>|W z7z+0p4tg?~E|o%&qe>8Cnz#ME{1vV7!YvZI?+{I)Mxf3Qd{4y*w(_<<6@Of#5ucwd zm;nTCzMzqWpjE*D48P|Jf?uS`11>jjQJ=%gt8IlW&Y|vhyANwmEUZe@2I|y|i*B(X zm}Y3cn1@Sum{=_zh43al<)I}vU=0_D{}gJ8syl9J*3qa!n{xHm^~d6`?`-4OKF%r_ zmKi-r4O}90*zRW=Z?u}?-gHfN^X`LQtl1k|<*Oz#so!hL+#N__1MtPlx~w&~GD}Q@ zk`)FJ;HfJGw++14n7VMHyaZ}`AM3D@l53X;JGSv&_uR%A)n{EcqFtwx#4@Co3byOT zDCSbV&cWF{za&03BG?n&UJt`GV33mI{(`quw54co15||fn=Vf+Q@G$pENxh9?2*Cw zjtRt}T_rQl2PrEa20%GP-a`!os}Bprd8`S z%S|juXrI+7539sq;;{6^qvjPImX?U)kCfrtTHidB4*jfy3x~MX7}ERr9<2IVivo%sjvXwjG=1->2ba>R zQdb4-SfNN>;cRJ8=%$(CwrDJOROQEf*_EL12?|oDvXMJ5jh72il~dU39a^>Kf0=`+ z@m+fql1r8S)yhAODQO`|w+o1e&~vkJQ^RD zXA4lNC2-aTTIfB1os;(&-;=PrqvzsMwn9Ns?rkfd=_HnxfS!9udwd? z;A!{pju@)Q>)ej4eGFC+)|$%+vZt0Hk_k9$$i$Y@`V~-%C)$X*ZlZ6c73i@#~A4LM( zoh43{Okvce`O$q+vLHe`0ttlRe#fz;!Ty|K46flGmG`nb5;_(g3>@$TE9}1zNe0oS zL*I;zmC=07*A@v0wgqVWams8_gyO3zEXv%z{TK6u91S!PgJQeZDHeWc z-!`;;DjdFXPbIOgeC8oBD0C_h;fv#(+cUv_t8bOmM@2>m1rI74@}s2*Npy|IRv9jk zjLtMst~%*&cr|T|GUf=vP7aUsYNF8Lwy7=sh^>6lqimUhOf9jB_!0II?p^S$fg?A- z8tw&2!1Z?_p|;WZkKy;=|D*Q?HjZ3=8=hQ_fzKXnt4AXq4a5BPqoVO3TAq1YLt89o z8v1h#K9qjT$7INNawXKSXFMoDDP>)yoR9=NIlYwP%K2jIUpdcckfiYS@04L!E5tlD zl7qZ-`#k&($NU}gJX!hA4rM2-4;{~ZyG)VAt0?LdvKDE-Py#fTDHle+JH!~Iwm^0# zy)g+iB_}C!tGjZnMrDnV-OWcv3Z99}8|8n8JSLCq79$a1&|HSwzhq4w5ARxvM`gDm zeq6;dRPf?Jpw?HrC|QgTO`q@!PHM5eY2QzUU=98jVm~QtNfo@(*6>RPwuVKL#SWKz zG4l3zM?pJ!$JeN@6W~VQXs$MhtM5Yun$^4ta!S~iZ1p%-BvPX(Lts1AL3{aVPbY{l z!5=iO7ZusZK}FWC8_ENOEh3}b7!NG+a!*PbuGqKQ8_PiE5UXOJ>&_tElggCs@kT}Q z#Vb2Xr1&Z26~hVj!M;lxN!_`G1R3}Bu0+L+bddn&UTaW!w6?K6 zA^0s>cCBy}5|p4w2;I>UIuwQtNrTj>eL-EfW`<^<)(btsYY>lrgC$ZjxIpO@JeBqC z%}{UN%+JN9=+%_>(0LznzLn6!bR;_P_F*%Ts7k+v3*xdFtZI8{{v$(4H{@t!VT$(% zCD09XBK4Mf*7pVbdOCMlilwICoj5TYo8%CMvJS4@>-TFEpih%XG* z$5VorDKA+SxedjxmlR3p0DwP}C zirK$$N{(Z77MM%>(udZU$?>&qzyWQ}*LP)`Xn2f}6m33{#YmZ`i3t=`L@Yg{my3VY z^hIM3$ZbgT-6xdbc(}2^D-nT3_zeyPq!^h@iDs+auU`h{^|^@#4np<*`nJ!4)>dM32Kn=IhS{~52$4vEwqoJMx z@0x%}+TqOA)Jtr_>bsP>b-2Ywu@|Kdm7|wuIofOMITcl5mI8+E<*+1V4`cmvdAekn zH0SY7M?9!kz3E?^fSV0xdvEsn18xZV*z@WJ>eN+ce8Nvd?NAF9j}LZrvzsKvvN{=1 zWy$5#y;eDp&&vEQFw~u z;;CeDwnh(UofmxT3jGlE5tbcQ97_G?*0EWC!;VwH*M+ysOY6F;Tn!GYux+w0QWo2W z4>@m2FI$h1IGIhbh>@>esvM0;gJjvVb~9J4K0+BdNfgk2YVBE6Su71og&^P9SbGhq zHeraMtP&tFbGy8*Rfs4#w!B-pF%N zbSksTEONTAx#6*F9y07{sNTz0054La;VS`W_nWrwdcP3Jta)L4tH&0tq6XH!$znq| z+J9|krmjsj(&zeo%1YK9DFi>{Owm6jLC`^tnd^3nrI$zYdcZQs?L>(=U#BjqSDUy^ zkF=f_(&Mv>A^qlJ>>KLknpc{g7CN2%0l1cugaj# zq$zyjURDW7NABhWPSBVLO%|8z~wdvmTj!%~_nZJ9> z4RMn1Tv*8r1Qxg@8(Q#nCGayeX zau@CL>NRrlH;K@03CW{ZcZ2 zs@S$|e{pWk8TU4B_iz2(-CAR>G3MTD&i8p%7ju=Pa}%W<@JA_2p|sKnA)(oG`xWk6 zyGHGDgaf{kDL2L#XE2Il3iq<| z8r!NDnh2Fi%hakz9J1Estq&U#$Jnorl^2=aexjxTn=3#ksWSW@Q~jWV&TI>SJ^uF` z7KnGnaT+uoG%XUCLH}Ii-WlfZNwYT+ScUVD23W+-gqr|EUG~^W=Ygq>BFW#aVYdEL zoW1op0_G0%9+aOXamb)h;`Nb2&T=7Dz#vYOtDXN7Hy`U0rZL`>f-U4j$m7sg!RgLB z+sQ|WoZQ-Z(TO`5jTt=+Hdk-1BjpZO4ZABNOmg;+qUy4gJq&_t4L+-QUAO76o=S^5 zH|&tqR@7=nrAO_!2YUSB6H{vD-;j`G^#^TX{^yPR9F)~2uTCZX^`7vUES8CW{nD#K z@OKbs*#s#J>+c3;mATn;QwL7l(V^^t6_Gqv3T?k3s}n^_3)m@6rV=Y<~YOc4fU6MHwZf9)owRIDe)HLr^4_^x_#5$z~k za-b+$X5{oqqfid(ChP9_&2Kbs{(~RGK|SHcrFX!g_>yyg76rUet}_#~cd^{NNI=B&z<# zMQi4!h>_h*`*DI6Hmw(m;m5X`i3#lR=8#z8l3P=-Cf1NA^}92(>J?B^^>FX!{xB4P z%J-WCXhFCp@+JfoOqwob&5jZ6*`_BAp|S*UPN^3~={RgI4^9P#Y1ueXmlmKHPoLT0 z&4kwKKOe>%ljN{z(I;2nXOpUEAAe;0YW+hp_zmq4_K+sg-B$8=d|7QGv;sb`HK1)R z02oedFUC!nTJJRZu6;+&TH*9}+o$?KUEgPrx6q|$4L@CYj@;oTR5_K|MoiBc18NQ$1D6S{uA!~=DppJb1H1Q}_I)gdrK;tz3HzG*u9y~m*ZvoK zby!_z+AafRSMZ5SNn2uKadI@Wp@VC)*BwNW-vlIW0780%Cm{XAzt8E0m^ z{@8AprX*RW2tT7(i)}T;iizRNmHj&60hrW3{tHab*E=s_yc0}o_6NH%eb4AAE37ei z&31<-yiwqU%3T8!s*@BpQIKuI1~Co%mDx1p+ZJ52TxxhK`THKJ*Sw(0>Zx3{Xe?w5 z4`-%xKZ_cb8I~q4OR-#+FJe3gp%SOcu95TnU~qXg%=sB&*Py?@_W6yJM0dys!%X!) zsx7beH;ep1w!i^)LFUHOUj4JX_tk(#S`T4v$|9p(E6LD8%EJDWnu=&a#BTDR7HJ|YxNd6ewR%Aa99 zl>S4><6V&6rlWV(@ew?((EWP+oBJ^iBH(So(((J!e+Lr|p^!ABs8?3?j_tuxrZZ>5 zmVwMop$_WCBna9y451XB)Kz6$61E^!BT@&@G<3;w>yKxW@8T6JxD)nWnk;VLjjy(n zoUKE6=t?S4Up=V<714=nr>ch);MzWpRsjSIlvm){PHZD*#SGrwQoonR?6*LbmK9hY zC@{Z&$%~q`GRWGoYKKX|??JS>SAKaXE5e#;`~P-6xU^vaF9WdKilidDONxJ%=C+1P$6*~a9#_Lg+KdLN}d&nq*ygOnFA(Fo?3QWB>V#+1aW?5Riqt8%oY!nGbFR{`(uY# zkyze9U|r__)CIkSpi7dTR5Ns#vi3^#e-mbPcOKn`?kSS~P%qq_HW_1?D5Ol~ZqPE@ zC1qX;)EE3J^|2fe)M8H@;hs6S{&AqrsAG79zST#@OG~Rw(`Tb$^XHbD){R|$9#0oE zl$Sr!Ye@r--v{%xeIs1fGYNLVh?pGAL<@ShFfn7HYT8PU2A6T@FUcsx(s;Y=(>%cA z@r9P};+U~KyX_9%y%#OSAbtt^K{k!({2lxFP@7^cYePfB*>iiE?Bk0F+7tZ#KMI8Z z-wO9%Z2dnt{ZBS74$l9lNcgV`;C~}z|9`av|3k=Lrj|}7h4R72^a!OM$VJuI&`?2v z3)_L0#tI$$Hw}f1JT&ShToyaebO7KB*!yWwzF3gAxTxlQ*bThsCfk@?8aAN!a=%Cv zLvo6%snT&U@_HUjsa|f?duN>Y1EYLDF(3sT$fEj_r|sy2eo_F6z`wFkoia2M17Nsr zJ;g?E4~>@{{Ig0a62QY3dVlihVgkYwgoK4{0CgAuX%icBUta+n|I?S>sQbshj-w7d zEDMm-wjKC)c1tp&aV#?7%N8a3eZGR@cIm`HQmEQG+macn-1HV-?fiVMLR3Lt(H|7Q z6T*93xs1D4kz$ihBCj-V5`P=?t3NnC0u5R4q0-V4wf*SAxfD>By=&`O7c1!3t%K5!mG_`B}HwL>aH5wC=JD>GS*S*`C*nLr6KzY8#ZKe^jnp?Mt5=+fDOS*+to_pH;)M`QjsnYPU`Y;ns`&F0ZX-7d-(YDoYT1`OqDDt z!9mt?W;F>ovC`Y#Z~6N-F41CE^v{r-^~T2wQu+M~3R$U=(%ERRkP1KB@l~3A8_>2F zI*Ozpm(rIMr0#nP)F zb)b1`s7c;(*wPGPti*qX=fG7s8v~ zkp)SeAQ6~*1=IaL`EboY+ZbtmzH3hMxL`}kWB%-31Bs>m9QR4YaP84orl0h!eyVYQ z5BDjyb3)>X7DYKZcAR9kf=H@1cRh-nIRd*_Tw?Ty18_-L;jel=d0MY9)tsXBr;j|c z1(h1wb(^Aj6~O;F9|q@KN&d@HE;107W`B|N&K*2%8Fa5Q6z{uZ$%CS@IsWC1t&_@OmW3tv3G&( zz>_;jK!4Udebco$!lYX3(z2oah?K-7l2{S=nquEAsxD32$=QJ+ED8G+F4p7*?1bth zR}{HZtH;!J?NS_S%Ycmtb&_I)rP%q9nx6W+*x|}7IfG7@f(?_-!O8}>Q~v1VQvL*R z@M{!#8N6Jy?dlX&oH~l2V-hm!hm!J2nB0BOC$Ic$&86npXbX9}jWD#Ht0xr5N=QJX zoirT;;OV1i`LZb5w^#6O{}##~9LS{fWG7o;m<9hh!xc_0%Z&)1SYoHv*Xpq`T?^*w z)s1dL;rcN~q=}!=|MP&gsuM#3&AJ{d%g%Acv0leqB)CJAKp%9!QJNCxQ_=18=u+}| zh!JP9=~~2pTA=v}49Wq2UYx>FyjtPtO|#$>*p?riZw+WJ+3k5C3T{2b%*buUR!UgG z)fSnO6x{@gVvB%^=p?Vkl7jF38(Zxk<@dC#Lb^`1xgWY@x$r1)N_#FdZPp!PLHC2| zK(;p>Rk9$mM9GJ16yUTmC>{P#`os< zdKWVPT5`M1mq+J7&hL)Xa9w_yH>%uTCf6X%Jxo*?u$rv)WhL1XLZu1onA4J#+lwJ3 ziL>Nk1l_9a+}#(|?BZ>xrM`S$&4Zw6y;pOV3dao_M>6}$!9`7hm68WfK+{JB0f+fFrW_{XsKXQ@2N zB!+%`_-#^kNHZmxVC&M>)+&7S*@{w!+i#nW)=&OOF;)(DmKx6iS+0L!!5)r&#L3{U zcFr9_s$+jyI)c_L;?T5v-_V?*BArR8&3>_So0J|hRNsC~c?}q+24~IU%JjFOguUx= zfxt9_54!;DiTOBGun@@gIX%8v>q zCjoBC%%cZUrNC35c>WAu37AncC4Sf07GV}=Ssbv`_+9v(kd{wTJhwVnKw6S7AeGx@ zk4@&bI^UE5Q-t>QQYQX9VOXSj2uNui(pt%&W4<|6$c@->K(RY6H1#+@rNz zq}bx<+0`L^)|&z?GlYR@{;c~hSR4}&XV@(Hk?oWqszk|jdl*v7=*jyq?gqH39C`tv zmDK4Uk0t^#;iJytTJ9_D)@sm7=ffo`W?Dca4|5;W@KWP#Pf?5uHO83mDE{;VB^H`u zUJ@hPffS|-HiT8^y-SQwf#&LfE-I=zU1ac7(rlSUUif|=@J_7@AQw0Ifi8Obbr>5& zF|!6P25$)!=L0i*j%JJPjAno?U5kcTFN1xqejH2#>i1WO>X!nUf#EQH`D&7QVn@hu zZI|A`05HEe8?f+wXjDXVM~r@I3#S(LHQ~C1LxvAa@y=(`5O8X`YjBF=Ti?Sbe_wI7 z2}RKIi5Wdjds%}verbTwaGlC;7`9>yX2~w103L9+-+Js+;Ti3^WBoeRhP3jM9W*eS z)8zEF7G`+>yc&(P8}~e+>eCM}Sx(ocAv^t-*T6!^aiXvo5h9=%KRM_K*WWAOV06bd zc-79vO^a$>XJ@our-_ibV;dZp;YnEwU{|VBBj|HUj+Hm$@kKowAl4-ZUde)(ZGxmiyVbq?pisjPQ0OZdbA?L7$)vr0 z5L>ag8a{8?j%>a2J2{vs<7I^Eewr!7MDitEx(okgA6VyCN?dczDH4x&bKyXB`ebS| z;_Md~lEYAZ75;N317Kn}M=P#u-ULjp{@?SYruP3h`Wm44X z2)^x>99TT+%-hR!TBh4IHz<82w!r(-tA{06{~Ri@;{7V8lBuFCx&l7f0g6m0>dE=n zEU&p=4PK@sg{?Lq%El-Py(g&nu4(Ku$&(6q>uEK+)^#x`-vCOhhyW zGd%|T@#x|m&)-&vZafMr)4~O^rwJlIK%Spxls;IG{;n@#i46x7R`7)9qvqB%I22tG zX6!b!XXN8RCbYczJb4+cFH#a(W$ajX5^n$7ql});Mh7*7iw~V14 zmO$7Z@nHij!vRHX{oX9?GHdWMNq*;@)raZeKH2Q4yLX>(e*V$?5+Z^y9D=}Rxt+m{ zYt)`MmMD1Qu>u}=zts<1}A7lV9E#TV3Y$XmQbb7!E(_=5==n>36}2An&_gZv+|E?KgC^@ z07_d0ObaHJ2*Ll%=-&${Gb$16uMC1PO9+*=Tz{QG=6trdPsrFXN=O?=;o-(Xq|Fw> z5*^TAw0y`pJF=OML`Fz!=4pV1~I{)emD|bAgXf&(?a2D zld_h(_c_Snw;{y(o$?jF1QB_Cg>q`!QUmb{34`nTR{0q0Iv$b)68f-lR6_+NjraegZoS32B)BZf!4HyFr4G4NF__v&BX-S%n1 z14E(*?8K&5w5t_k#pMG|J>;dz%tNz6GoU$-8;X~)(oXja0XvtW`hLG{UN>uU?y;3^ z&tlP=99~@67p3kRZe793*G9O>+^OETRr@yxGV*gbtZB#DtO`9!`c!qLPm7Ep4d)7! zAp57bCw|*NKcv=^H|4;dj7XDK4O5~D1Hp9+V4T{`FHiP}y-mTTt6chwB05J*_B0pm zJr9iP)JNPqPai`Q(v@*yLkic1`RG9XJ`)4*CVrsJI#0PK^3Hew&9d|QkhSguxFc{= zF;Gcy*_~rY>yMqz{tQE7?l?-83b$t(<-;dI2lk95roaNkfEtei>9>zGXh~>DKP1 zc*?GUN~u^`N%D;NyCX91Rgj?O+TVo)q@hZ4_2=c}WzM6EW@AU1!{+94M>dES=cNl$ zav>z8WXAkoofH*Q8NQrk6gf#Kz z?hyiLp232Z7OoFh!Ht7`$f(%Ma@WVtn;upwJ$pW1nI|hpfs~1xv)$s9a-2Mpm7j>G_w|l>X z(CJrlnXVUSzZ`JxzH<#J_wjoZV(1#C*9JYm(Ul)v%7=kJgUPoDPyd8gM~0bx&C=se zR+)bEc(M+(%VGHE5i?^Pqdh`N3^D+{I(__e1{0P`p-Ox;(bUnpnx0xHXyu+N9&>h+ zIO};L|237iHL%sq$Bz~;_c)e{Wew4M>YK}@=<8!;uy^_WU@_%s^9hWIXdIQC&1nf| zwkU_wL;jXfI5v`5L26l!%PEbcNIIiq7$Hn3GnvUmLh?95A%pKlFET4=REi?h5J80F zh}$hg5h78iP~|l`%*}a&WPy!2q0zkRQZ%0dpj)nZCymh7d6Xw#?R_yIrn5VaK(ax8 z!E=S=n@P1+UGfyE`qQD$< zidPDTjW-8vyX{l5zAcDJmumOrxhoQf0+o!Omah9jRAl53X9OHXUW(d)s{>+JnSnx4 z8s?wK4h!7B!hK%L_X_qIWN3>R><2>tDcH{EPD?)92q@dk$Ip3Dy0c98ZqoSXv)PLe z0(;tn<)2p8xh|eP19>YSf1ACc-D@;BG^?Jufc0_8!>f1Kjn*5zBL?!9J3{e;^ zJ51XyD#~i62-D-e72zsBK5Tmi8R*qw3XIdA?|=8^=`~%^9&FNKM#|V2bG1qhwRNKP z&D{CC9yNC95`;0W!fY4St1#dj%Sp7wvcZwqeItm))O@VU86oa&8$?^>UUO3AC$vP6 zAfOKN^2o^* zZ#Ljj27#i1?d-U{u74*c!yb$i-~$nsP$UP7&?t{V`dD#B$XCuVV7U9;_JdS3xyXp4 zJk}=MU6M`D#MJ|{oZhMl(8^GRqkn-ln{IC#T?3bo4iohB;}bvbbYsJ|wp|onpKsz^ zUnlLJFW~@9rhbphYe@XA1YuiS1W7y;bTp#HGcp*%cT1T5nN)kvsdCKsyd~jU@#@N* zlpZ}@c9-&aw5sBL(^Pb3Rs7~AVOo4k)b@wuoM_I3o+UGhZ!(Zz|JK9LVB9H_s;m@p zK3Cd_nD&h&tejiB(SNZ^;!|f*vIR9m^MzeWkvE*76t93p>du{4Qn@pmwY$#Vw4?U+ zv}}K;;3W2^x4*0L_o|yq&Xa2yxe+&rR>oM2Z1|9m=S2Au>8TE{5;-6W2Cs5St=ZQT zFu_U8SuoNfyPSw^IYo*R@Qn*IU32oS;mbMGNQB7?m>y=N^AXRSX{Qn^TY{HXXq}Rs zyf)uQ8_|mm^)mV6D-NnKqi|%=gov{vu!gxqb4KDk#3jH*e#dD_Gh*;p@~1xq>Fl1v z0XB)cbYEU0_Gdm2`486^86>IJz3Y=e%OEELf`aRyi~Pw3H91F{Mxgv0<)=Ad;RbpW zhb{1tjbnii_XGff%rX@PlP(FB>3houbW)R+V@w$7Bsh2|REd~oobI^ZT1cs%)gDyw zf8kc?vVf7EV-g*OE(q+;lsG2OZKb&^0AF5fe`v1C^eeZcsO`@oTb4=(O`f zRY#~X39R*Mwm)i6o|RKNS4{>?S2_XqKcKurF53yzLak6KGP3L*fhK1pT-Z z&>8wbgK6Io`t=lL`O^;rHm(bC(tzsXSXe=wJtM&IuAs;?l9o}ksC*d;QJPl4cb0uO zca6%xraeHrG1vF#dq9R)z!G2FhZ_^*cW2dU0}@++cf!?3o)qZo`)jg!{LK0lat*p~ z9z-=kS;6%;2grb>|C}%e!xseP)Djjbz#Q9%#vVi}05>j9eD4?92Modp0n}~fVVnbv zsMJa{D)auX+-VP3Uk+(SH_g6$@^L82G2mzd^^ukvPfnUQ->XnMa`XymgXq3h_VjRQ zeNiUP8UM7DgV(j&4_^AlaW)l88_AAtG{?b1V@*$6Pg#<8fMJ!vV#j(+6|sY6a13T# z$zMe}BTv3x1SZDf;fAx-iLR#kPl_J<^1G+k@^E(X&SB_MAYp5z ztp@MYE^V7?sg!E)k^Dj+z-E-eusU2Z^lpIf1B~)q(ZVqM8ExOzR;M$Fy67nK&<*xe zMs1$L2szpJHi0gDSWsZpGzLKJB@4pj2J;X^Uz5YI_m{=Xl$xW5yLs&H14$E!JdM)E z#L@s#%e_5{$*SmrbsBR`ecK z1Q^iLq(1Bt356^S<05D%T192drH0eR!&PF3nX=s;3Q*DF)i~>qa%ttvgLl$5gb2t1NX`p^3=6_gM_2j4h=q zayYT0{q`va*lB_fG9Nz~dBbir8}>+7JV+j)3L}S*X9I4avjW|>%56UoED!o?Ra7^t zcQshT2Q3O2Y=hmnb#*8g8hg%mFp&?346%AlM?dRwj%^T~aOLXtIX#XrFkSmAo!2V) zS{mcX=363BQ+UVuYApUeJ;w6&`1cq%Y%B0pkn1Z?2)7OF;rW|j-`yX)-#1bY=T>^1 zont2axaTRNU;qWZZZ4n0+=~tc<`R&S7d7ijN&+wN81+@m4Kdh5tCm&%aZu+A6u0%8Tr}iD?KQWG+b_vQ7CmYMy@yQ>} z>)S3%W8(dT=aD@45PvCbxk}= z6X{j$6OD8TtX4$CEqg4WYW0&@?Ynwajm5ogGvp{@Jc+Xgua?V1U#@0F2!DkRho*+ERu)*vHkTn~UwN~ZghdWjuD~zg81zKMW1?9pYKG$N5Se`#} z<=Q7XOY%}s&=lw|BrPk@_2ZlYNB2rhb>I>RDJo>AiX|c{RLxspRr40wD?~(yj$ne) zU3xn%y+u8KP8)O`fJ&SfY!L<5WY)sEU z1P%PZGIGk9P5FJ!r;tkvak&NNVeewzp({z$%$n<|%Y{{EaVO+U`eS)#R+T~gIh-}K zN&GK%u{Ct(uTRN3rME`WUI@>6%mOir z3`G{yEXZ zAKFYH$}}n2JVu9eyBRZ{vL4%h(Zq}<)4}9Yyu?wW|m1dFuE~2kTQ@3NjV{5{R)Xif@SJWs=ks&M zFIDH08Qy$wu$FsYd0F9mHmt=0xUSEAKuamB@#AJF3MSf=Z>`iAPR+(4&X}ar*b_ST zNZAZneYYH8WPN>ETaCb!!yuvI!mF+8U(1DI%6(z~K0*`D=0{NIqM}wBKAhc&ud@7AaxVhaKHeQ=w zmhtKaC>nNv33@g?n3reRtXees$qdt4jCg5QK0>aqFw~6;6T;nFueg5;EpVhqVxb!; z!Or2UJ5rdDj>U;+iwcit&(qV}{3qj!PF4akVc1|jOP6qzF4fvxss+kXk6{NL!TjGh zqN)C_DYI7Pe~seQ=y7BDONBS?2Wo^&dj>P;>`o3A?8iZ&JJTW}6m7b*#=Yo)tWb~z zl)PrdV1fPsx<`NDomu^@Tiir9>f@U71CMi?$%Cgg5V18RkiCPpn3To`zi}ao@3@D} zE@Pf(F;o)>x&Pq4?e|5N)2x-X{I?+`TQC@p$c;=x$3b0P>Q z3(6A+y2?|EoMxua^~ zq&D3YbP4`f%d`bx!D-|Jo8?uf`=zfr@yq%fJkOidV$X`{&19EFGt^CMfgz zdS7MIF=sIruy_j2^3$#LZ)9sv9*MtEyt+vw47=7(HmMDnG?<|X5td)svi1tH>H3m- zLN9d0Lbx1wMP(0UPU1}qT}ZPuC{YKH2*hDpgc`bnrKFPs+G*lKsF)o z)#@|4tpPFm+k#2@uFB?PKllA#W(j*&`F#^rzl(7P5Q1$0 zao3wEXv#o?A6kaz6rwLA8S)9$`+~IR4|Sj>gdeZ*91$Td{_O@WI(rf|NQ}x{oTa_nRxP`6B*GBA|_thu@F3PxtqJe8g~1 zj|jMLJaxw#tn7Gh;#Y{FY-gTxbhB%$a^2K{xw01Gyt1(T78p9_*2YMgd{~@0IVw=KB59?tXvU;(alvH6=l^DI*3*|7AmMCxS{$V2-oap<5SU z@{U4Lb_%_d$VYR=4w|__g2RDaaD<+Av-U&HK6COdt9oc)hrMwY3PzBzz%nsiR*=Yf zrcv~TixoT!tOd?Vx!Rf?PyQu4t<4<0&WhMAT%{FMI!A+215Qy#T`HagGr8z{!{!Wg z+N_q}pVidGJqmx%DQ>yE*b>H!BYj*6NM3(^`o6TtlmX?UPuFZ2-yU7N^lKjVw-^M% z#0?>M_cij$bz$nggGu6mD}Lpc(k)jXvRA8no8ZhiE|=`DMsj!N-qM;E zL}^iZS1CYM9K9HTl0>Z-5@U&0D?a0ik(vnf=Jt4^mml!Gyu(kdH@}bE&)Tn@r?1cZ zH@mO5uMYvP&sxS8qR$2&t~D31Iv=XwyOSUkMCxb$jBEbrTtz$r=93f@)Ot}VBetqhT;->FWmu{d$Sl5OyvaY32AOi2p^(B&cdAk?htRuJp3S*b!R%Di;;Hm{ll$(Uw;5{~ zk^|g8s!L|Gg zlJGdYLlNIw^b2Ny-JH$UN_>7q(us16uKGOu8A65+MtAJg$>#>mPIoM`$oO! zMbI=u_w1Q5(EI!f_>5|Y$8<)1HbG4dM;UGI5dAj*!kjiPkR1^`svRbq22gNnX4G^i zDSBmKT*7=Q3`mJ*_7bG?lyomcSM8o-s6qzNt|h3>zilrIc)n!z<^p?Dd)a-yBpChf z1$^Say;`gwqev?ur~VC9al%_9G-?{`xJpi>!I><$jabYPpqY9(d9#7I>L zBkUB12XY=+T%7lOUNb^hV#?_$vkZj40#U8WGOHdc!2JqjXzkw3i2R;X^=s4Zz6x|d zSBG=EKjA*#ktU+bxn;v(lfzV@sRa%w!zB_n%ElO)qAqm-YZL=q0W-Yr ze(N=@#&2%hPrdJV0`G}mU7uq$e%W?^Z;5=Z1>Y>ZUaVS&omUsxD-7PmswyuV2`oJ$fF5OdhzuU3?07N#8=nA;Ee1-@P|j~M(aNgD4_&>4;HVQrUZp?f zNSlxNb$095*6I_TZoeIVI?R#@d>YcXlA!@}Yij+pZ2i`e{hOY)OI!_CCQwdQKvZ2nYqI6=T?5B5(!PGbX*Q{* z3meaYnnMuul~7i0c+*3kd3_sK`bSda4XrKr4}$T|7!B)dTZFS`)cmeH!}8TbH@5A{ zPEJzm^Y(kprd@l1Olq@hsUcID>LN@~SwK>DicixZK&o_AJjiqBIGi1yUTe}=6Epgy zw7jL}lXJpfL5Pcv_{G~Cg`MZnrRn=LnSIn}KmZu+rfj9>v#5Sx`ay68wQ}!>ylaUS z{*ry@Wdx>Uuh&`M6$aw!Ek)dt`*_!?zJ&+>Qbt_Ov<%Cvwu|il?gP}kv^d?=X6Y}+ z3AEl+%|z>$N8k+=t4DP#f}Ps%3vjxy`3vE$H}I6{FjO-{a4X7&bs z=XQ{Du+}VtvaqGB#KM4tdo`(=rcmb`3v|o1qkicJ?xDzwJh@`Q@;U2`!*h>?J_GtQ z-&peCY7@WefmAeD1I$^Ku=UfLTvqO~F}VZXkH_ae3(Z=g_GEUSxRvtzhhCU-&eyt@ z-!3r)BCmsj*yV>e!v6heEF*T3^o~%ZmwZ9=vS9Hv$`SIOG4gc*@ao2qNtKr(mt*_M z$SrOj#V(#r&aBCQ3rX^QIzj5_ldrv4AGFWmQUihE-))Zl_>_aMD8e|Oe?AohzZM(I zO`o{*&751qe{!7}wjK{&p8o8+O5`K>D+xm(;qdz!`*wfsF$T9Pfu4a3J^+)8WE5qz z4pI3MQ8B_h;N2gQyY8|C97SA|JI<|0_Yko+i7LgGh~~OPRDE{A7DBMR1l66Z(!KT< ztY<%e0ZXZ5KY?w8*{v?4p>&%X-xvbuuN0tCIEwGNq~~c88267AFw@*%ys6Vmy%@X= zWYcv(s_FXa+;F&pN~c$LuDj>0xM2vH-B5rJV9BX0*^nz@<52#DY;Mt%CL_CY2czpS zKg@7hs3_n2y>3 z5s~>^Mm^k!KwT#OckA#)eX7;RWTmd-%VE6Vl?)d*Dwx4u3ke0j+FQ&PsJAPIH9@^A z!-G7Rh&E#VQ_{i~K_(LdbpDdiKZrKQ`1!j^p? zlJRTdQzB_f)a*N)%MWd0_J1(QLoS>`rbGJP-p*ETFxn^ZB{Mcx@iNUc$(@Chhsw_kl>4y{$_X-Ljnw1#CRK?whcABPE2#zT+H_y#T_^y4&pqFXyZP$f7?`fBn7OeZJ-0An zw)I$OK7ZuZHSOxZRs2KX#j}|dHJm8R*%Sy-jb1!qJ+B&~F^#SvSUODBnGm)sSeE0@ z0R45tAVO`8Sc?lTXu*z)9BPK!WMPC9?!KR;noJ}eHfKl}fIx6=S!+!_4Qg26i2 z6J%n=+4lj>zlG#=F$SOEw9mhRUY~ z8~L|LL42o3wQ^IUYWD`(%^c52E(#KK^L4_lj9rvdf4a_l>LQ6o&A^z8`=S<-@5cT$;1% z$i*g!I?I%BZ5+(&CFsg@mdtVwYJdn=D2qSvUlfeCzRZ1tSsg?L3T~)uX7>ajMeXY2%4?a!H`&(R$@~@x(P_!+*23qeyqyM( zih?XL)VzjbxGj&;crL{6QCgz5UVfnq);6MxVoly=fB80)`Dmmz89J=VtYnFZHr%{7 zCaI{8qf+tgGG2OK^%RdL!eO2J89-C>k&MsEbAF%akUZR!vuzLVRoYa9gI@Bm=v% zF8*>8bq450ZnEn?oLIoN@yWp~Y8F?MZ3Iw;yv;?MqIMs0mj_Gs{iGRGn{|#Yk>(Vb zdS)tXz_p_VK0`&)(RhHBcd(8|;qHu>*`u0$3W zZGTb&x_`|x+Ra+yQpJS7gez=WS>+Fv*uw=c(zQzz|t2;B$yr7mx(=2P-mkQOs;VyPmK3wp>$tDwYgi| z)+BFYu+9tKhL9dbc-Yd<2n0gZnkUSllQAh&38Eh-RNAtV#Pph}LufmSRuCBMyJZX8EGLpEo;jH4Fho*v9@Xm9WOb7s8Rzvgm%5+M*Amo zCE7U8(%VA(8%5%ov|F*f_03yJq;$EV>BmPc^(^6Nkbwq8(`pX7d%Lq+IBSbY3m9$@ z;u1dCDe_&+OC;G3UGt`*XIW>bbw8=RhOoRJ3m=QUgGZnP0h?{oFr)G+9Sii=g=-%H zOLNPN8|-f{SU%oG`dfe1p5XB=rMXx38 z#~fbJ_-hsiOz}yB1uZ8H5KM2jj-7*%tK)-i#g+X0+bpx6E*uZSoZ(3K(HA&stvOvl zoJr^2apCVuXC0tqK7x50X^^@*|F=NI6hBSJrjJ>bj&K}85LGA ze)_2X823B0!W++adVPwnW&DmW5PI^`QN|!bigoCHQwWvaK7C<{V%bL2D_s$mv85!u z6bxN75<=XB+(zqsNyLN*Vv-h`LgNhQEp2<%T`2trB(j8{q#O=&#LS4Eq{m342XM_L z7+6BQ!Lsw%Ttj+2R-3QKGkgLQ%6bJ^K64;(8@Ay~0V}Ym-Hy@{1l;;CDqpeS7QNVMKRNlM`LFSzJ$D4{4YWu!ZWVtSj*>U*U*O2hDe+wrqx1^p{Kj8d; zKRw~%N77Rf0Q^@^4!KY0DoyE6{Ukn{{!^NKr>#DIgFp@dq0ciJ`74wUI$#4SngWa0K2o|6{XdGMimDVK|>eepqG+5$1UTQ^!}=}#UD3TW@{ z^>T(1?6CIs5R!jwTVKzNsdxh;tI4?IrTS@V8uXofufaMQ8fF+y(w;B-lz(V~(j?k4 z`7De2^m;+;j4gDW6t9mWKHh&b}4dj$0A!=*}v_!gz>dem#Sx$K=Cp z!f6Wo&XnZkhv-ioRTYc09{cWol6Mtrt4}vI+H&hEGRj%O&wp|IX9N9vvwUyPvD{-Z z9x9SFf1PrguAZtq7`D0OIPc8YcIsWGtgn!8qD(JTa{deeLufLSdOd{BjNn|itAt_T za8GR(c73zscDhy4dU*qAsx zT0*z`0&R7t&(^v|(AzHD>HXkvm8Nsr-0qj$*{J-dgn%aLzeK@ zUNnzm>wM|ppO<{R`KvQmfu?;9rQ~g!tHncWGu$?$R(8ExMk^orzb7S(oBpH@tALZT zT?x?t!`WE{#T9hzdT@7lcXxM};1Jv$g1dWg4-zy$aCdjtV1v86I|D!8_n$gf=jz<; z+BH43t7d9<_v&Xo@2DV^=8$B1k!5+r=Gih`3DB!;U*xUIu=@R=N=AX|M|cat~f1BgT}0 z>Nh^iSVwAa;9ny>?+0o|vll zO|-C!2ZyOV3(u7lYLteLZ{bs1Vy%HC&A)5u@L+GSB;BU885p+MpNVNF8s^&A+3i1j zCuOv`QfR1SF{^Sf1%RH?#V|-|dQS*S_>y}~zvwr#jc58#Fm}|Gi=rVVeOP_BUC1C} z_Vmg#a&&w%e^K_*s((xL9^)Fxy<`%TwzR&l6aQ|!$y~zV-sKPY2QmaKkL0|e)#}kT z?3}4MOoa(odRxvR!>v`I89=xv$J#{V0xzB|cckRSUEqg82mlh}uC=KPfASmTrpoSa z+_DL3pb9HRgXSY=U2PWeHVHEfF-0mZ zWBUEBgsR@Yx}CBUp#Us6hed_9TX2%a=jV{g)QKQ`D?=4KOAW#iHhso z=oHGZjcHq=Y-Ues=mHyH-RIB29m2KZt_P;P%uqUWgKLrJJf7FmDW+(Aq?6seXK&v7 z@`*7t@zRo+*uTvFSe83LarIhPmyj`1rZesW-K7Jrq z*!}=;e)x2D-yTGaY;w&lV=`%F3SYK!6~#^zXCH@@f>8^3G#_fgtBGeC1T|uL)i7So zFUZJG9`v%CLm=eF!JdhYSxjdz2b|jM(ky8N{_PTzJY`kUCfBF(Ss|+GZ$?-rO9LEuO>NUUZ~pH!g~>Bh9{St@9_6 z%!>s%+cqvy*@swL&EUt}o{p+NHO;G|p1zX@R5~F{uud#ISzg?E>t15Zwgm*Y{p@hK zx#Dt{NTS;7Eqn?wN)vXIZq%i3@zVD%o>holT7!WEW${&J@D=5iHgSmXm1eRy6_xI* z|Hl750)yVj;cMbC_g@FQt{YK4F6{B;nO|fgT2b>}Sund2KykJSB)zdty5#)5i&EIR zHi)awj?~F4CBr`jpX{w;yd;4+YY#WZvg?dneJa;!iE-pk+x}gn4>NSj?D+3UjeVHM zTut}RLB!htc$dSf=YD0O3qz~DVe05@q2d7XkNF8K%7o}73GvN#v4QrcV8*bbtm}PfVRr4Wi`~Tqt}WyIO)$J4c-0)pTTby* z9#v(l6m;q67rF{?)}%D4{byLciU&|`J$s|CtpgnH)i|Ta1C`&r1p5hV=B*9iiTQ_7 zOOwnz1RrakK-Nt78Xc^D4Wde5S6QWJP;d=T*@XhL@#JyL$SI_kEk07t&xD|arf#Zl%(6#NAiZ`jjKu{q@>qMxv$-XE7W0~dUJh$Drc0c*u>?-l!!b1j_Ry@>fv|& z$@l#S!B@xY!!2;apK61|dTMFoAnTFn$}^el39vtzO0G$-TE*jfV`XSH6wk83tW10B zb~U^FxnM|N)z=sG_bItU7^Gnx_Z1HWmKn<$qr?GxvH6!@f%Bj4iuU}QkXF9drUR|iQwOoH zn~{je`n=jGYZp$g>C^QnxY}f#en~PvA9$8>!r>3h+x_Hh!ZR}=yHwW6cZ(m~T*;k3 z{P*RbJ!aK3$BBX9rishTA8SJ+VH^U-nuXa%bu3fs)3)Ta93}eUm!7hX4;vzgXC%bJ zBjDXoz!%3oRx&06+qlex3mqI!_>2jE4HR8PY&`v4Pa3&7AH)&FACjNgXWq37h#p9U zr6z;+fLKHx(%uKnS?QwkT;{brKK$CHhZ+bjYr!-nRM=!YS#CvjSKFtys;rhmzNj$O z)KWHF*D4DvX)cxlkz%wkCv?(QiV?AMZI=P$Ohx6^VyXFsOW_3u0t}aU;P@ z?XJ>Ke;UuXb|ApONaG-XwIT#zOW*NRTl}IwS|$4ZuYD&4y*UJ%k(^_lq~zn(T@|eA zq$Dq?LBBucbRh9ifG=o)+LJDTALDGX^!r?eSHL1@L(Pp<>~&O=11R-nZK~`*pYjpwV(Db=W;Z< zH{vsvEjQM1IXGc}n*`lFS!h{R$0&SV`d{-9>Nc5BJU?M|?QVo)*qEY5ZoM;>&zUbW*ia;%5~1q}?@!@CTWUEJ zGkdHa27z)Ew#UXqHhl|R%d^3pq?i+(j*rA9`HoZZp1)6MpGX)kBa)U1UO=IV475+u zQG;@Cn%k)C=?6$5z@Nn#AuIGD3gp;{nv;vVZzYklqiBS4Wn4h1t``Bj_GoukQrs*1~sO+Jx2O%V|L+r~Rz!eoL1%L<1mcUSyX}*0RR@QyDi)ZdVQ};^g z&Rk^`BK{4TwU}aaBX?8zJvF(x^YCjwVzrCLz#G#b#_RDTaCPxFd;q?T9d9`y+Hor~ zk!V(R@{q_9NjvnZ&_D>}Us-V)u@^Dls9Eb9eKC?J52Qxm(1Uv()JvMUDvAa*<1}YQ zkVI@p_W+0F_o`nj#EAJO~5s&3@l8{OIX>R20Kv(UK=9a zw|PHBQQn&rN1a;C_3E1g(4R%ndG1tlzJR@t;QX+_PcBJrS&>&*Y5|<-k*!r%Uo#R1 zw2RV$7ul`b7*ttMW7Cig=dU%Vj&X?nCT9(@gsk6C9(-!JO^C0weAEz`rn@k#^(W-C zIF~rQlTSDOe^ChI$wfmwT@TUiyrMzNC9J<{I<7X<+*S%?@PjOQ!4+K(UHk2VkVOOq zITorOU$egsjP5?3_a;hE8U`YPnF^pR5{f8p8uLmT60Y}*)x$LX$){~HU!Q-M^Nq+H zZ>L9LhQ+?fU(U3(<)Q(z7Cu8-bmwUksQi?Y;iHrNgfI9SI9dxRxT}~bHJnAx)WZ3A zB0^9IKi0(#^fP?VZGevUlg7hu{GfCHX?E}jxbG2cCPN4Zj2JP)enAQE+??g~4}p_= zh(Vz{GD7b3%k~JUJt|!J(h{Zof%>f@GolT4j{|{Hpf9xy&b;a=TuyOofR}AO>xhp70$|7##=Bi@hBH{SM$(b28+(N~~<%cWje}?||W3Hqe|Gjem z;owTj#_=^;#l^zh#>~ypg_MnzR9G0EMcT&R&BBG0McUrP&EkK*gp@_r!p6$l?SDro zS~ys_S(9?He?6BPDa-$tE9SiGTLa@nGErlijJf88>!m+R8C6qe7%D6t2Ao+Cn<>2d z2VgkQoRnJ8q#sdnGEosoT6uE01iBQmx+j?#tbN)G4G^u;OXLf-kUq%s7VI{ooX zj6N|n#yO@RzD&Graqfm(dfDl;WZPh-hXTY8Z_ZAO@xmC?K!6I-I37PZ=?o!v3~z4T z>0aCgp(!3ZNtJ7@`Lj(-UsU#-~3m-5MoosE{GQ`GXJOkD8FZ~E>p@U=w%+et#^qt^B z1f|}{5oc!SvpbGYK_|PE3aVGfLc*n#M+Eg+xJ})x01?Lrvz0+K`NRIie`RtBLgzDO z+Fo-6m?<|f*p|rIVY&3~AFdyQx#idfJeqs6C;T)krfeFBl)5EvDZ`a5S-K(PATJ;L z2EQB&=sb$t88ccxc83{s{1$waM^mX-N!3n!{Fe9r0M=s>L3!^syja?B%aFp7-wf2- ziO!q5Dc=wvWO00aGv!H@&oKLAz(Do}a=!|yytq=d&tZ~t3*2E6n>EBEZAXKuC{ht) z&dtzk+KE~InrMhObPULHsNC`eN08%WH^AF;2MG4>RnY7e&%}`Rs?}E7uoh_H&g#n3 zhT&T-gsXYA<>OK{el!+!G4fGHP7M#Fy3NFMx7#Z!mJ>-Ony^W!S%wf#YTOH73BU^o(n6&?8A*C%biJ%)ojPK$6{`* z1D|s#p5&-1>boG~1V-zcKC)@mbH|>Pdq_B%o8M{I-4U6}WlSh$xR{Z)l-~GBC)p7Vp22(zBrw<;Eo=DWHmwXj8+eh*#A_;Fy(K2XmBY*J*6B~fC=F5UtY#(32V#*M%)XxnK#X2n=dx!dN@7As3Ft;FDrO8N=>p@BtIJ!u+3^OAX z0rGlvGC?gCiED_;3XScdi&6&3?x(<@`OUUrdF9VeRWY@8yMH#%J&v z=pQPE`)*7}7V6xTn-10nZ__w6&hnn|$$}qcm+L6Fi$sGcJdI^9^m++oS27F6{H?tjKx;r`=>`M!v* z|MG&-eg`$O)*v1K7kTJitxYuar5BE9!@E&k+&Kv-cG@EHvNr77(DTCe-FgW(jt1qn zlO+!7G@cnT5E_v12yQdin&dacPiadfbifzx{K3{K%iDtV_m~$o#O){B&t=%ISM1gD zYJ&A0xiP=yfOCXm_VL)c3ME<6rf}XI^*98J2;@g~u{-$Sa)gul{xF1hdx&Cn#bP>& zHWIo&bS23gp#$h)>EpUP)n+&L{f%?Qbz>_k@U|eZiNwlaq~XdVv%l?bGhX3L>ISN%;22m?n5n-?uQMtzXT%6DtUte~kT4U=$q~% zABs9HeePJP;3j$Tr=4KNiQt>;%QLazETDSq-I$;DSoc5g`JmJJ1MB5-2b}i3J!Dd< zduG{I`&XA3yW8%gp^ml9fBXik{V}I-j71JBA!Tbn$S7WxgbF?mDht9c_v$3l()sl?=6T-)zi zruV$M?gmgruTId46k=2eHRrXQNQLGz3N2pR#AvSrHcj1IO1##|LNuE6NuTzxMgepp z01UBKv$gjLq;NuRiA&|)8cc^QU4;ji9Sf74ScrRk9HbQ_2@*_4upm};&P|7Q120bh zz!^sxMNWl77lv$kp_eJ3H)1vsIKxcFk2){q1YYNNINDOCT-&+yFb*lHenk^_Y)3Xu z7927TTqQxF3uv5S$9M_Y<$h;F?Ed`?vSj~B<0q%@?j8FQ(E8%w2Eg)5)|&|&1D;LK zrsirB!1B-h_1O+3<1WV7O02J%pzLYr5<^6lZSJ*4Xln0LP6DWrhOIs{Vke;Xt>{xp zy*a-B?vI+v&v56-+4RgdlLr+?slTPTglFTcmx}Yk z_G15RM3rt+!5#sUmrC@zz+0)1rl)$Zri4uUs^Ti3X`|*3fFLE6&#S5`R%=@jJeLH7 z`AG!U=ZnEArCJb}38>ad#JtWvG7w;D((wocuMUKHTL8cra7-3!&{rG zky{D$HSU04hTwjE^k)U^57fk?GPI6DMU7Iy^W$yegXPE#^M)vdu&4LKM>LkoduP#G ze{Z4o1+u#u{*r3SY99mJEC+XHPT3Q*efxjKqoT<*s6e$fxJ$)0X>|qe*HnLRgnl_u zXOT&Sz%r?{J*fM+mffw%NY+(|8Snxw`b9zMAc9#E`x>5jd<$-CWc|nBHum|ZU4s); zt!A30K1a9(x!$&%O?iJZDA+Y)4u<}{JyMGP>^lTS7^Q~dkiAS0j`8uDIh7wwAE1b^bIDSsER_rIk;IHzWTeDXsE7thrA6lMzVjP zGSn7)Gd%^^MThQ0MVK5Ec$CF+vLurg>g$Vziy}=m1i36k(5BRIa-p(_-wQ>0V)}rv zH?R+@IzE_1HLtPa1~(!DQnXt8h8?{WBLggodw}cSYPHyR+)|c&Gu82{@73QAAlv=v zv1pM+t&t!TFKuVz%lrjHT)dI|C$gq6WYQWbNTp&2h=@F1N5UAfC)-uV6~fO~(!T_z zBHzo`Om#vsFiSM7lAA765r5LZdNQNpb~ntz zLVuLlP;X$?vxHAYlQ^qRNWiELv!7G~7YWiK>T8V35MlCsA;ZZAO1VE9kL{*bYhwXo zf4vhP*9i+5xJT!0!v^}dcO(z{$6KN^`|P%~21phj(F|B%hh*ujv^|ff-zQ`=4Uvz~ zD>Foxo>MbiSHB5~TnUZ+L&vQWjsJ;x=JNzkswTnCsw-c=%bs+cd#*I-BHOCeZ4B$} zwL0IYUjR5`Cl=dsA~x%W6#B|bV&z2*wgmXr?(K>@AX*g6m5lWbmGFvZGY6rA#lT|LTTi>E=f!`3Xj=g$3!r~D9Y}%=lv~w z3ET4Zb9HxtiQ3r;EoAK6%O8ho#xWA|t+Vf#5GUpFq%a(&_#3Xd)+&kLg>B432)T;v z<_U5|2udYO@KH;CX;9@u)x$JuwZr;{R3qPuwt))`wT@=gUF1AM73pznOb*W}*_Qa~ zMdOVThqS{dX@hahIDRkUqE}aBxjbK~H@ZhGTTYbvKo66;C^x)ZSKfupjAy?qUAGnS zd8_zj;Wth+C^(V4nXRGyCJ<8r(WgOL%?^#nRaI z7M^_kGqxI|UOQ}=%j7D%Otg;B3~tXG#CICE#Okd-r7d2&cZ@D8dN59pj4a%j7uLz_ zMZUX$U3tECU(*2E?r~ha5Wv2lQ`SG#Yy@(a-&<|=Mtm@-gEtrgI z4o!|OL8W+?fNI;Zlz1tFFmg8M&2d;g(4RZkU;1mjOMZp+gYcj9>?F57Q{m|z-qm`J zUHi`Uc6ty|EsWj>@-D3W=*lm%4U$G#B(Ok^c~BmLH$UZY%&qTFc*$mBt@Dk$g@Ldt zt{;Ui%{Aop=p;4lUYhD5aton^H~rB;L5<_%!?&K##lWYfj3VTo&XW?BRr>hhlRKGO z+T^Ah9DNq2laJB+nTN;+R_YU!oBLD^mAW0xeK&}4nq$RL@Yx(gg@9IFvTTPbjd69> ziJxqj|L7=_IKfgO;QONh){*Wb_;X;Q>=?D?I--!FRw(k%v&~%QlJ#v_ex0X@-wHw!);*`o^=0 z+G>YiXw#(l1FWi4-HfyGXq*KIrQ0wL(&Sbrx0JV9Z5O?_1$OI6$Q2*0#Dm_e9*=sOQ&BRz>y3;YESM}akVUh7TU`5&OTG& zMas~Ex5ef;nPmAzP@7a-iQL4L9ee~ipv1HbM`Og4MBMxlDD7Z447hQWC{i1DXgI!vcB{wUq_wsBM?_#rTV(YCDh-K5SMoR?h$b0cgHuQM&uxML*{ma zTM&t_B~q&hSVm8r!1Lf;oq!+Mzu0VPIbqs4?Ux$Wc~F5n+ghq`B+P!wV^HNVYjImLAn45(f%^jwCeM*FX~g-;-g z`HhVHJ<4mTD75?eQJzzmvB>>}0Bfwh6aD0QsN$CHoKf%}lDEFXzj|hchE}^Lf8><& zC#JdfPSgO1hKlZ@p>6M|%CG`~PyqZq46x%UnsiQ4?tBhf7zHCe@-o>reCcG?KTyR! z0qSp(2@w+5QFm9K#=WChfimxJ9t!$Sgs`vVyXDTArhdK@`EL?$@tJnLy3Sq4^|LaQ zH`cGuveQVSUAJdAKYqOhKcO@YCzKp10Js0nh3bFPuO^vin!*t{i&oPJudqLs&*J`G z&Eb?Dl9@L{BkyP#zXxBBkVopSqgKjxXkn5)HITx~%K|zFrxs>UY`4d|y+O7_cHOtF z;KH6y&-!v+hV}$3eL+%~6-vysP&?;F*)Bvs%ugGKN0e~l%>+ZQms5Il#!p;|-9_N; zcssB+xD(gcbYkATcXa4NxkB&)alo%lb@TfseD)qB*D%N_)KrxxvDa6@5qJCEL{Td6 zzm1a?5Rhlx>)&U7m%SkTiN=Az<)q8BTrS&Qn6sjpnW~-<<&>=ZQ*ijPk}%Eg>)#r1 zY%SqC=|uQ())E_V$cmmG=jceA# z0zNrAmj^y*LIWSLqoD*32vx%cnZ~Kv`tq5Z|iAAY>f3O?hk0JbZ` zQ@uFd65JWRd-?ULgdz0l)IeVp#wlwy>j($>bFDBVrPEtQ{I@dgagh4lrs0FpCpD} z9k<@q#z$^aAsb}x=?W>wTPGoDPs1N8upGZC>S4Ly^S@ z`?x)F4xqDL0)(kMoXbEz8VXmhw)mLz1PAtLw>$v>W!cjox@Yqp-GN4TKRB$a-WF;n z>!5qpw8zhluGL}`0;x58j-C>dRioo!!(b54rhyL+Q!G&CN{_8jqzrJ`hRcv@Uyf61 z>cJ|UU-G3M@)jB0WSw-WqVORPQc80tjS)p$lS?nGW4xoik$hCYH8H2ba(+B??C8~1 z?Y0gS-d972+PxnL1l4QaSLc^nF`IO1JpB^1prZ{RTF7H)2way4%dB`_m^MC6Bo?p~ zQ_e;`DKml4tJ(5sM1zF?u^hcc4-n?3Mq}54GRDQm8TlgoQ4LSraq*}jdqZGN6_q#Y zA%VahRqvA^nnT!`C}aewos<{&Ayeof7(uxD(McXNHeV4yt!KbFm;C_kzB-w|`E`UV z#`>x*=Pon?lOrPZ@*-QMp_UH@dl_F*2^<^=n)JO=f-lRl2=;HX7z}(t zIan*tUm8Rt{-)wWRn!zP`5fsTz?Hi(jTncek2@@BUy<|f5rdVDcw&D}T%B$!{t?`# zwp9YIup~Zk2TVM-Zo1}E}4nTF8t#l0>0)L$Q z$;`%K&zV~A-pfAAYQW4TlS+2I4bon_nSOnU8ncD~AGl2Axy?x8A#%{tAF7IiSg#oy z4lwRC2~BJ5BAo`eSh)&7^j_c!tHNK7}ELJm;bDam!&oz-rjE zvVz>4R9X*F&(~7tXX3Q_i1!$g_E-c))t?Sx0hTpCEz;ZAnszPjqqm%`D=tI>z0~AF zX_;haW|2rZViXlGHNeq7l%s`Xteb5^(ct*+3_lxP457Ot!=AbCL<@2`PXnfv0kt+o zhp{ls=B^nhwt}ya1%f^=kAU8U9GQ8G7_q(CTiY=`53iqW^UD!{dQ=VtPbLw(->8A_ zN&oe`Y^bH%qY{UH-#$PuZ`j@#jX(B54CkuXGT{DnS+o>f*FBnjK9jK|Spe^4X$ss> zu_lT8sgm1--8Sik*Ou$SEW1Y7nZ^7=h^@}R0ZaiZ{($xnV7h%v77eg3T$LKc@rP!p z!NV8 zyuS!5Ef`rJ2ltO7jT){6v5L+hUxEp4RRXKnvr7_<4QC3G2I`{JJsSZ)Q{s%=oo&t6 zn-Z#*8BcRe>tYQ;l)FL&o9U*`j7D!{)`{@9`6nf@-oUKOeL}Ynqw^NFE1D+pJ>Ei+~%V5_|YXTjX?e;y3k4@tA34eXq z4e7zMBwthe?ph2fX6|+9aqmT;xuJSj@$^+FeFsWKR2A(rImARz&nH&bGAsMd8&_Q=ay7p>E?2x`&msTb5BRvOb4)wT)K>ts)j zK7M^ShXX3W)4)*FG7>9yVvr9gjxb^jBU;9Y+`vNR-(0iFOX^JrBf zoy&Soip@hc>qv>uV2!6vVR8DM4&6m^7$LtEsxrq2s+jw< zz>l>Xgr>ILE047Uja;o%{bE3Em$H6}y4dT;T!sYnqPvXJEQz-b2jU?S6j#_48n#bd zf_8Uz?1_<8dbDYg*0QzeXLEvKCxA8g7y6c!62gpna(lzM`3@F4@8T+*G;${K^?8R9 zlBMj%9$u8l_A*Oaa~@Tc->hc>Xy>w`Pkj0;m{0JFlxEnF8nDC3|Ar+yi(GphTUW?S zZp&03)84?fbrCYlS{eGCj5RP_{)&f4LQ8<;V3mF|z8qOq|Hb6!#)@|>3n}_0#mUVJX;>JR$yn!QsM)HNS;zG z{gw9NCp$x|(BC#|c0Yeo{YS{f!a!5!;mjVcSk$6$DA)H@G>;iB0RSr1?=$XZBjYvZ zZpVr}kt@(^Ytg4+2C`5op!7RBM=_!-lWjTqS)jrIMf(u^5Q12}w33KC@&%z!RAwF5 zyUPM7^M;w@*Nx#py0OUlevLcq2nzf6h{iSWjnSu$XYZHF@ScxdxgazvTB>0t{yb~A z5isM80??gegRp{H@eVu@e467+JJU!pPYVZ19y#-cYAU zU}ME%BY2kptdYgyEj+f^v_jcT`jfI8H(D3f;9pRK(cfI#R@e3Z4i@YmJrb&o*17uG zki&L%b0Wln#xe_b1Pi}F-b%Azg$Uscbvg@cc&6mp8}NDxlwYWwC956=*-SKol=^#o z(-;GQ#us|}{?-Dz?8G73R`CieV6h~EpVEspDu1;w$oI{@-vlvq(bHWM z97Us7!SpkHk(x5xRXzFz&K9eUrEWGvGFE5wX)o2zoGlxBnP*R=r{8{!;M_%jkwcdY zL~A@RP=IlXtxvT0&+D6qqn`pKPg5uiI6a$>6M2nK6TbpLx1YmyW^bC^R5HEs0Yge1 z??@9}5~W-5utLjZ#2`sXJSgqj-XL2}39gHum!8^Vk80_0jWjL8e}P{%?zzq1`i$Y} z3NHEGK~RXe$qpw`gt--eCoL1?)4-|!=J=KCh(}m^8qn8#UnqEkNPziWh^hZoP7=9a zD8k8*+GHiYWrnAf(qHtrjT{boX$7Laggii`8<`8`-93+kloRp-T(_Re1Mix+&jVZ1 zKi}$&91cWY9v^s~90PS70^7irFX=m~1LHte;Iy7rEs>f(1#En4p1gAE5C-xcjz&vy zzc;nouhPr;2PRZ|wid)3P`VRw&~{!oVx*ZzF$3gqwb*$LVR> zt$GeV3YygU$YkKf7A4KD-y+gZt}UmtNZck-xs`ejK_i~A?5(CF$j=5ODBMlpcrAgP zf%U`5cgqb9fmI<1_4A9V3dhw|uT6ks90n50C+NZp|2M7iOOUOhD)KTJOQ#=i&||SK zC}1n#Bk(zmE^}7aP2!7ZAW~K)}zDE7wDel zhng&-DGwPp31(mobnkDCQL|?IZ12R!=pu5avbfx77eXfK*mMNuEa6Ll8|P+qr@mVt zkYgK=ton*2eAiCtE9RQG{6F1?)Z5kC~ma9q$rN2%+yHWwK&aPk=w1)KOT?X zTSx-0w*0#=13o=Lw~iton`@sVk2CG51~L-dXm-Xh9i6`&A2E%Ia8dkE#$ifv^{k9K zC#c-|P5A{`2`G|XIM=UgUBs*EXa{#|3gi4u?2XMv8ucQZBVd&Fs9)X$p8PFX&4N`M ziRJ+zO$DA80x{w8wj%e=GIV|&&TEZVysL~>Dok!8bDr3jghV;h(}_dNSfg>EqQiI7 zx0!IG^T+Q~$j?w9({uRT#(*Q|)U}J}kAw%7&&8h7Pw#}LBcqSJFEb3qm(%8>^dS`R z8VVDTdMHdiq-{JzQ)%g%m$?*i8mIGtntFjZX26^O%`o*aJ`wR|@HBF7 zJAW-%5qu821?E%{wXUmBTr2{vUP|Qr)Xwa1R_wwEm5yN6lmA9xDj5tl+d-VbS_bgq z0<_xO5a^Ax5$q&rqawKw7f#LJeUPodx8cHWoqH9=uJJTfgDexabiGSAV7G65{odO* zHa*@-w#Iv2P6A&WK5ai!0$vQtu-;3y~4GeL;V9pY7~nttfpYp@iyI~Uju+N2|KP+u^Er3@9(6-Kd|6MHa8jLIewZEt`?XXq zrE!KjS#gBU-?}dC{9yLB7H|XIy@EX6Ztn`;8;ppb5IpQYZ=Ab`EMGq+E^d#wSaThN zT0hf3Arm#%afYnF4GFgCv1h3tlOA*4uWARZ_K*wf&3`}ndqhfl3KHWJMezpK*9!ar ztZktpeaCO7Tf!vEztet@a;Q7v~I*B^jl_9%VtgIJCga*RiJKj-s8l>_P0xq^Ctf_ z=0Me&9EY!oFTU5QGV%;}gh_*V0`9p^w z<#m0Z!P`gU#8)_AdR3{_Lb2y(>t5gYask}4%^d^U&;=7{FQ8i}Y#BSoCZoDXLZ4ox zXS}tid?$5vh3e>8MmzhbKo$jFa8k6;sjr{eo9Tf`lATJAKuGK*EefI0Y~v!^wBSzGx0F%B&d;dX&xjX-o6LQG=`5xpC01tV1W8Bf4%Ur6d-ga zXZBWn^IpNU3qX#hX5@G^o>{b|fE>W1jH@Q4s=>QyealCv6$BQ8|xt(;Xy&PR@1MH zc+rQgW2-!?7HdsMa6H;1Qw!64RZn5IjH+V7G=VWOKw*?_5K!eY7*CG>!}8aP4_y7j zD}Na$)bX)Ug*UK{eZcvhHCYJWDhOcY;gG>9mm_?9t*shDn>6oTGV|l_TF;V?WJ6+ewB1(beXFozt>JeNVH5 z0>V+<=J{7M!XdGDgIp9J?T2ec>;@|AGvpiKXL3C^^a0}B8w^E7{f}wBY|FXft`<0v zXi>rRtHZaWP)1Mza*0Bxn2<@r(H?@cuHK@*K*>87rPj6a=H!qpa>|l~LchIAL!tYQ z+oaSSMl#^p=G<&|?cHZKH#sv$0nN-AP1vll&tT$9bD7i|5MRzc{5J%cZ;;aBzX703~ z-FN&u+o+T1?#hsSUXMZL5gt%Mk3D2bzLKihn%2-^lpJcJ4gM#flp#kRKp}x|T?=6X zL7~8ju-|0f$2T7AGlMRDmSmLRLP>!Wnk#L=);zY zz@PG~ix_!4{CNB~-eouyQNA0wh;#N`X>X+V6ERt5$(32AkKpp#N(0|W;7f^bamx&@ z7*jO%_omU+Hl4|5HrXxtH{BI^(D9AL8Vs6HC-N4p1Yf-jG1M9uoqy`@D5u_0Z=8Bl zhUjzO(@d^fI_F1P?&;SQvmz}bG#^-Hh=8gQWzF!lC#}t>aut=T`^gTN-C8%)SoOP}jhw>Z-B=wf4W2J0Q)p5htywLBv98=Q5PRvU*#^^|OU{D?! z+QjA_80zrRIzd961>^Q&Cw?4o?kDXN^cc%Qr6J6;0eS|79a4U0_JuC{LA#h#ylT&L zf33(;+Sjffi>_c)-}X3_6ZJ^F{AqgN0vD(1u!Vf?(T|9jiHJh2WrDHj02Dm(u{$N% z0vEsVT&t!#S8w`0^9bWSL&M_o%0t(S76MT}I5GTD&#_3Y#41tM{>8F|ULKfP4ML`m z+plGn_qlYSU`ZFZT?l2*k1mXv{sb6Pz2mNk`LveO5Jv7WSNBx0``+h|FVda{)H72R z2%PyP$Srbo68%W(JnX(hLpAjzHtRSA-W=;>c4_t))YA*`yzoZsowUIiR0%RgZ|BIU z7iG{CCb-hfVa}v7&+I0u*ZLf~Sbl3}IWWZQ1s*$SY)^y!So~Jw;R%P;#oaOp|OG=0TrML zC^f2=34tD&Wj{Wev#PkF{bOb#=}FogRG7%B#&a{sr5XITy+YD0X}znR&(<@@KBi)|yWEj+7_cOI zZO!EV0r0k<6Ks;nY#JNMlMN@@QQ8UD2z?R{bNn9s#ReEfg`jq!(Ns*2yIfAF?RhXu zFvxJP0$^^GWvy(6QyCA@1rZ{L*|_Q`+hK%SB)!|G+$<<`bfrs03S)n&bN4Pc(UrB) zA(Gh5WZ;e2U?cnRDYkTotxJGX5 zs)bg)N6N;7grHz8*S6xdg11llAs%`R32bl17cy#aVJp6#B|}ikG$R|efDWoRj8}X_ z3?bU3HIX!5;GKbHh^g^;%zR#$_ZhXZhn!%{&Z|I67qS>$i>p5^!6dIDDl@GhHsJPe zyERLQV_V5i*!w%OlW8j2ACwz^;jPHxn%|nJ(g>z2?T1>Ri?4$eJVLF&*1{Bn10cMx zZ?R&sdeyRG;J;)#M(rS>u}AQ9$6mQTKk|u>#2pul@;?v88m9h+O-L^ce0-^&A3Wi7 z%SIGm9;@T~KB{=P$Q9%+e~H+Ab9~M}WVYaLCt^hQLuLdbv&-#rw;s%xiC5PlLQcXc z8ij3lo#HyL*4wYc4GzwBTg^C>1}PW{J+B>IDM7WRBCw6z?LGaf@V-~I1vYGX*1yp~ z;cgMiO`98edYjSvG21IwjiQ3u9bw+XnX`VHC^@$X9fK~=rCLI_&kd3V(_i-R+k9)> z?;)CW*_ZcAD@nEJjNA*Nw?Dcnu?c<6i{)E>P}?oGTf~w69)~7H6rN&vQ%Sq!G7~;} zq<7-e{7=ICI1A&)BuCXx2^^OEmw&2W(~*L>84_|xLLEq(G>NAIx;S3>AwF|8nbxA1 zJB$X4;b!%IqoHyf+Kf9L6OuaN?i@w5E4-cF^rm3oznTkG971R+XOK?I#g;Hf@zpoT z!Fb)T4khGlJa`O|qLH4oH*Kv0j!n<&xAG1Joq<{}2MEzSqdAzUpsmm=xSM^H;;MTS zWW?F7UmLUdB50B&HrKUoVqiOnuPttww-ir z+qS!7+qP}nR>!t&+v(W0Cg1n2HAizcC-V>X+BbGp?W*hA&##k!oYTZ!yAk`PIIlgW z=ebUJ8+Gvxf8bN_Fx<@dvhNq()KGF!vgYY{SdB_;^6v=2X8qHbbuD&32NWPK*fo&)A(=39TcRj1ka~$@lvX2 zIbtr=!qaF6!ld3fdMOZ^aCFC$(Dv5*!anU4n25RT*usxDfS-kzuK+My@MiO_0qP_9 zmUGXHn+STVu}fieQ)pBIYO8_i+6CvGo6+9^m$_6NIvo6;wu*|5ZGIX$?D=X^wyz~N z1OD9DwxJlYzhs;pcC}*$-<=lnpPP&+bWj0!v&5tEhA~Jo@bYm}Ppil>;P`WD>Tj+EgS~$pi@RnY#BaL{SE<+Rj}!W^O!o7jMo7 z55p4)ojSGFJak{5yzIjwMebto@97!mV>_b%BxoZBZzcl>TWAQe7Q~~n7l=d3m}hwB zsfO)*GZHanM?J58$x(H5!Hdx?Fwj6mTTec;mQ#LvfiI|`hRvS=iX%>}3S~lvKw_Z} z9?+8r?;+gu@o~ee0naJM>XFgo<@2mFluR;)RyB`{Io1o8Lc|0e2G^|;5`@P(;fnqu zS~ZodZyKi@FXyg0Y!3jp%|04{c#EOCNFt~^DJ zS{VSImx@)8@cd7CS zX}N!U>g1Q7V|D1^`@teKpCxcj~yu66loTm-hf+~XiJs1?BrKEqCF3+U#Z8)v1a%n2N_PwrRd`-QqCSu`YSCKDi2@HCrYmvv{{SMsk6wSK8t4Ld)+jd;OC&kqx~TjzAW0(R?W7A?do zB$&a`IN4+N${4&n7cPG_oFu0W<$HaPMzwFSvLA6jC2E2pN~^d!%dfJ9uSPApv+zaG zhV(nfMcW=1b7cIb_}U_*3LgYisfK?=j06>zvJrte)L{8*_`X!-+a2F`&sjq(UQsYJfgQH zFrmW8#|c-??ZlHzMY!*_uzNJ?8?tgA`&U4+mG*kCfQVgoQWZ}TTr&uCl9ti&v|d^E zUPiC?kUWMQD|;0w88BA;*n(V;{h|zbcgjimo}SCq9Ii^C{R+#PKA2$s1;I{HFBOGf z#pm+5-b6rS;(N@mfXUvu^>NIu!~S)6o$w5<#!RXRXXQoYNWX83rXz5^Cc&9e= zxcurt94jPjYewe(Mv~8Q8Fg|n-edEMv&SLlYkU$hJmdJO3yMO}-3uy_u8c@d^#d=O zK2oUAeEZufZkQ=X2xt`D_$npRFg7n-bHaiCjoY_~8=VUCJ#G8wa!8*t4ENL3*}}dF z;ZVU!)lC!&OGx<{%nWyXn(|vOAvM|Y)0ALMEnb#0Xav4(fnmq=jg&awF09SivBC41&~yTX}dzA))4#Ha&7ALSwFSQk}}0OoJ<2}jM?IRX`bEfM8VNkSSB0Iv46QzXGtdA8X1-dFG`QFR=%^#q46x9i10D3kxZdA7F!rG`w#vD~@V zy6Wdxu{Lmm=@@}x%7JY2l~n@7>TeE$*Jy!*;CZpkH+J(CskAM1w%V}}ofBhMVQLmJ zCIdc3)p2W-(@O|LLHg#tGc~X$0mjs?n>RdETpyA@ZUSiEJeJ7gL|5PRe}-qBkj^%c z4DVT`R?x;`T=4vfFury>x35%HX>0za^&Ay5-8Y-fMS54R7kGYeK!g+Zo3AeWmnH9A zC70aStR*@pBR+YkTXYP>2x4{xu8-5(_FV^;)@Ji6AcQw&((ZEw6!Ml$3N)(OA0%TA z>3>0=Kr&5>u{a}Yhi7Xf5liFvqV=}zjY;Da{TPCYYq*LrEl?BbE1<+Ms%pn_X+*g8 zw@@0A>mot@mVfMS{^iZGn#M@@p0FArks6-BsEu=<3&|e)_}P&!Pbm|zBO!3K^;hb! z8z&<#_7J@rtaBusn@S^fQCmgN`J_P+EU^v0-NwgQ5`4suPFD!=n$p+(NGU7kWoX^!TzzlC*T7qe*aF6W=$6VHNm1k2BXH}t}{y-`VEjrtFNiS611I9 zl0qLs66OgegutmSEB4Jq_d?8$(mD{^8*&Vp;$Nq-cWK|QB7IU7#!%IRj<4z?^cEWI z0G*gQ8Dkfy5LnpgEOQ>fgnuF`cKt`)IcdgLtT7IOBViONGs z5)t&EVyA>%4F-WY0vVpYpiGQe&d_yhPP&aFz- z6<|jeYy}Gt>&{+ao3b}zYnQdsHB>Es+~Ge{0OG?oKHtV-utX8(6C`YvC{riTdgA>yj&)c`PHPoTq%jC zm?@yBg9)|=F-Jj%qdCU5KuO}4yLy%dxcJ_nbL8BJwcW8fdu`Bf>CdPOJ)X@xVWF`9 z`0G=_VW-LCue0m%foqw21sETaFXO&Okyr1Nm!)`-5^y5hkA*3TALn#m$fAIi-?I>Kbi7XT%Vn1Attwq8<*PP;PxA_o zFsfrglTUCadcG+aon>*|Z|(OKa{5(c0M@ApxUUl@2wWbUjqeulxu*&0wB?Qp@g~Tm z0X&&rAZ}-|rr^)eSR@7Yz91*lG}{HKB23zp~OpG1}>X@t$%_&8HC zenoBMK`=N5{Jjt9wG>#1&iI!?L2JNlD^Mje$SuEWSV%St;t4VjNJo8D^&O2A_V8r(`#^yolL zyqW-{rD3IVwL~4|YqM<6{r#Wrve#Zr&JQ&*z0P|TN7ef|O?w)&&(kZ%3q-k}Iy@K{ zOB|P#KkQWMO%y4=i^JH!PS!r(j%)Iig?~qbryC5H##JCj8cyD@Q&wClDjozs{_(+p zSuiSz3mHIu6FqtCdr+`U}|i*oP;DCM|Dk6{eyeb z5694gs19-Xe^w)-tM8>r_ph`n?|C>WUMJzDq>p`iVse5-c7wCHg>-yjxEcl!{Q3`^ zYmu+1nbkuPx3t+%r!lL&>K} zx&@lsfa5$FU5`8aBfC-n;{5DR%l50+J$s&GvL19Bi5A!+nzGXdPCQVMjRZVh)yKH= zeIU_(LK*Z=D2PHl@oDPqQuriOrZIFJjcUbWL+Z3?>f%aABvV+O9$;0sskXSzg{JB! z86+r5W1Ypn3&%L9m7MtF-Ruhq!pLtmv)cYxVT`uLP9`Wh$j)z08R&=ns$0Yx@q_SRWNSF2<;^^atlD!Sw$pIn^KPc+vaD4DP&?~gG@702`6eQoSs z^+VeqylTV7{b=r+;pm^Qt~hShx6$DG8Q*yp?p5ag7KN53I6tkdyzv!OHVxC~N;n6^ zubo+M*sb+WgtHbvZE+dde~qW(Tbr27&}uB43_0n9ns**2M*o^ov#zAB_Fu!O?1b;* zsBajtTAQnf(0=0M2{nu0VaZfXMY?=i<#L%xrlc9CQNywR!zy++B40ml^2U4oY2tn3 zwnuT!=gby*#Mz(yFY6H2Fs+!3YwWy~5 zpm-^}gypWgyAMI|_aLl29Q_9OBqoX_TQxkJpvJTGxJ)*hz;g`W zgNcqWoseR5#gO9T>6Ut;kj?nD_cl;ge^ptK z$(1cA=AB1H#05Bsz4j`S0hl!d`RjQMokAX7*Iudgsw|YAe-oVGI>A?blv;{e<{E8} zzm(j0dbF%lw!M%|O|5Z>Q>2yV#fWQr-XC@@P5bZOJ8d_6R8BeOx(WQ^Qx`hao2?$L zQXx#8gFEL|PS9rt?<@Q>;Zp&L#gJ?zv!`=*j-jq2rYr8GLAGVr-{q_%@<{#`Hx2h6xnzNyc^n?*0#q)`! zppB3zOeY2ueH8F6U7426v&ieWBR-kIV%-Gcq(pY*2xBdTBW-9Dq}{JLDjc?i{1Y@% z4~oVXb-V_(PErrNGy>2)^No=v2Gx~JPg_4^5ytDSK1JYRbJ z?cR}1v(;MYJ%7tLGK&mE^gX{G36#M6Eh7}bWPgW&7>Za52!L^rmycPaS_uP?aI-3B zrGvrn>*V{v=J3+vyM|8;^OG)u6Vg!-XC9N^8@}I`xntfRPXXysx^ufOhAiLR{&Tr) zo)wB+05p`NTw`shHa@)xP=?Xo6(@YiWSbO@@Ip2Q41@MZG|!6 zAgfV`n)>rb0#K4WQQmei`U8t>IpEgrc5&235s7!)m=bC3Q)s{t2n*0eDPd1o%-Wdl z0`BcTufyAE_alS4DusG`wHxzWo?X9hrwlf;khKY0VjdhaU`Sk9cxexE!IqNADE&?x z8g8Fc58Wb+3{P zq3iYlvmo_q6Zv4avAk2CYYpj{onf40V1cHinfGII>$SHyIchR_YU8ZttmXYq!Vve9 zLif>6bH3Jb6m&Wf11pLi?CR6^8JAJ3`#HuR`PIX$wRO9jydfYP1U6ZV{`Ju61sVw zVYBIeir{nL42w%*Vad3{Ls9pxptc0hZfmn5#^-l>c>iv7a1g3uI4T2Pfj|MKh zNy?dp15ExTp#u$Ql4kP+X9YivIgQT#S2{*xxD4=eR5g7@NiUwp6~iw0hdJF8zYKD- zH~d4{Z=47HVg{I;{yM06(Px@lY%EtN`3wa3L5Jmmwl51wCQETLG- zqC`Wbr!;f<22^4z`L}*N{J#Y)FC-}W(+{goL)kKOfACuvs?{k?l<)q1#;9ayj4;KvsKM6& z1Y>bYFZVOLzg`d6Z7)!{^rX5`SS;Q}@M90AXC?T{L*~cONlmQO7OkHx>uN^y+{noM z+mhCp8I+S!xseP|9GAqs$>~{>$aVrkp7f9sgOt^oHLJJpwdRCJER=V6Vf%U6imttK zs98#!Y}dv{s5i}6fehjKF95ed<8f8*;Ic%c?sDPha_yAIjCplIM_AeJ=XR;N|~`zTA-4A z4cGVhy>ud3U;Q}CM9nI0fM5m5|r5YZBEy=lmCXD z-*V$#bb3@2*;J9V+wQV}v4jcHZ{Nr>h39<%37}}*p6JQMt_}X_I8a~fL?aGDScqPT zo)oYw7ZJax}@8$odgx$)9dSDRw1l3+gPZnX#|Pe& zCc(u(i-Z;c^Xvf};WumG{uk5o9A>obl3W>8njuGbzI`?obTgC*@D$zSbzFb4FWgk0 zwy6%Ail#}>tFMsnNm6fLrkq zO@|w|qvq|_>2DY!N=ASOWZy1ypZmyXdaDb|-?$7sI^4lbF>r?s$W1KWsJns%62nbj zLPZ^#hO+*v&%+FnCgs;lKuao^fDQ*T9L`KFm?%H*KLgYvh2;GSl1h~_6$(}AC+~Jw zvS$kP|5F-&Ia4##h|VM6DuMe8Yb8o^l5cj+KQa}JHObDQHP*T|#vR`8Cu%&==qo+Y4C5+j>S;QA|N7D_21*UY0k0EkN^Qwm6cE8~Z@ zYKO^_H5RO|`bGfzTb(fl7(g*c147(rBt{bd^F28GThd@JNhPF8BYHnQ!q~ER`JQaF zv|_?wvSd^L(61ms+NP|WG|C@=IoT-yW|SHj!@cTz=Wuivp56Q2h0@t<;BmukoX;Ms zz72YJiH3(pq9zs1sI=gOE4U0n`N;g~VCex!xX78i3SL5X%VWjw;NCz(B9iiEBGeia z;ud%iCAfh^K~F3s&^mv33y@+psQK~Dsu?+oZw`l@m)=94#+`@S^EB15+h{I;;FqSa z!y%4c0?-+^sxc(W(PZsTZwawtr&lU$R2zrg#@F+*oABXLpfI2jv}fd~V%haue!1yT zQzc<7rG_1qzVt=I8FSbRF(jUb5eC+) zibj9ilSQ=(LIHTmK==O!|B+x+Rh$Y8<5n60hWLSM=lr^-4W0e4b=|u@=f_n>R#S%7mNkhz>j;+&#_1k2O9Ru)jXshF`D)5Sk_B&;9-Uwl&NeL1G zt{yR;bo1JPT*zd8*19(TUmsu zz+43eSX#NNWdT5U+~*X2RA8hVli5Kg$n(+IX%y<0rTv9C^YcWMrcky49s@E)P}`JK ztwuwOFp6N<6P)sPUmD@XkX6h05ecz3rmXJm6IWMOZ({aux9~GA`!0%;%*sUU@A~52 zETVgYrSma6K;x$41agPxk$HGIP7Dg<(n(SCrP~<_C8bVHWU!m^H*CJ=|hYb|R7~ z=B}hZtxEAsKe|fkD9xMludf({KrN(FfLj~kLw?b_A?%Ca2J49TjUl74 zhEy3s1<)Q=*4C=P{E5cK#h^*dw>WAW4}xw%pk#zbJCG%B3(2$>@;stu7#eK3Pi48= z*sbQ#35=4OA7EmsSdm#JvE(5w)%G9t4d9-Er{F^-WLmoP6ZQsm360PJ%XS3yxP z)t6-ub;v66-Z(*Us z^66L?N#vxMzC3{PYgeRFk`T1u0Rj$^*~bccxA#k)Z7lm_4;lWdQ<@a<2@*L*k`wdX z21CuNR-7oGQAHg27_uq&ZLOlb5Vi8$NTGKl`5Xc8@YN02orv`Lh**BB<3z8GW5D(ooZ?jMINI9bRhk~R?l0l`d9SQufv zNh+3`_=v5t-rkh9&oum%zZ;Pzj8F;1tK)2kXoq@qlG#V-x=aZYEkYUL#PO_$DZ+Htmpfs?#5H$PfT)hJKJop{W73RLwW<=jOR06ypQ>;G)vj}HJ##)L43r2 z@d`SBXB)#%96s`|aGHyu8ZY3Lm4@v=B-n%-oc8M|oI)vQ!8tok0Y`QVB@Odj!Yhrl z^eY#nQeu7s`h#>D9fQFBEPa6O$XtDhF^gds#nM6V~@JW=XU3N^Xtu(#yEWM z=p05@w~?+gx}k+&1|w$LSQhTdi2>MPR=|dX3DPi(zory3kM4&+zrR73{DnEX0JtsM ze3K_+QVb~3nzUEc;+6V z@hI=sb>}d*zxNE$N&1KwF&`?ZYZ)ir>V56Qq)8U+G7bX5@rg82j7LSNd0FWPku7Y>cCVpqyZ1cY(og zkO@+RMW!_(ArWvDZi*(iF9rrfI}LFIFpCCF57p4A4z++qfUhq`-*gZ3QugZ&GY z{rac><1{_J8ivnne;1wb-KGm%F_fM<(@i3aHA%jFUHWv@Vd#0m1h829q@&NiKJ7)K zRTOkLXCC7;I;q{$K^w|V0|n!cs=6uEv#Q@$wE zQN=Tb(qgFDREy+h)o;%4DTBqJ+zKd;;0fGUjSWOazxO1O=I^ZS#X98|{yfx(Nm+M( zERLRDB77rIoY~nLPr6HgFQj~wn{_%A4^NITWc)oFKB3keKKgo|QW@CxZvQ2)pKkZ; z*4E?PZ`aEW`zGhT!vYQa8>XA*A35EC$Y(h6XCa@G_hEUbjzZ?u^T*xAGZ_QO?8i@q z8!u@cQ*Jnmi(4z}g)mRUXGwKFDuG*=SSWIgVd~RPdZtq@ujW3ZkmP(%L$%%oNKfiH zw0{~43?x{rfOH01AP+TN?N%lvrQgLxU0a>ypHkJ^=S-l^n0@4|fo0srIrWO@27Zj( zym|KEe*NmXWh+-70u5B^Po|u(20Bo>_7sI2Qu^dDq@;jDfV26!itrpTsKnIBs&_(@ z344&Wm=Tu82jL{Qht)MHSEfXjST;O&nu|JVJ`aix*~!w)NRdS(YYs2{TZs+uFby}n zMU2c(aXG^PAwWri9z^z|0^aY2xr^oYgM58&c2vI%t!dSMUHv%L{n+1Eu#``2H)4Al zmA6`TDLDQHinDZ0VmiTv9fMPS)oL%cBoWJ9pf&ydNrFR0fmt8EmJJRrFHp^|$}T!{ z2jGcQU&V)-7ES@@tfY*JOQ6AUu0_IT8DLrNJDvzuPiqZrfZ2~(}l!MCZc^I1xJ-Ku(;ZoUtS!?uCSvubjWn$e{gz40gB)A zB!^w1B4_@WU2hN)VtT#lty=~+0bK>ML+b9a2PSX)czw?8FcNy+ZM|h(cOFeUA6Nj? zg_)j4-R_F3ulL-`TLsH?_G*mxTg#%gqH19iSkRq;1kUAQiRel+#b3}2Qmn*n3|@6y zZH7fXm6sFHet(+(EDrPDX-6(6T=S@+6j?DC-8b6E1+QnJPrYO+@oEe0Nq6y7S=ONAGj!e=EmWzhG zX!{BuE&}@~vy5i%J>S})ddM9h{>2iBk_9KG`4FNygCy>87X-bJ<8J|y*JX;9YpLrY zPT;^t74QJbbiV<5&heMVk4sjT&DnkOQC2Nn zj3?S|Kc~6cp9io|V=@S1JEg$DN*G~eA>>n~u|$qPTP2drRCn0VovPg)pTA*wru=w3 z^rGqM-`@I1Vs^gd2wZjOK$^}jw|v||{8BATc!5g05w_Q#*;7D38!#h@$}Bk*5YA6X#7 zlHKOPP|`&A6Z)y=X2YE4y#UzOjwqY$R6{K{LxqMCn49gA&*a0sN3pz`$3k!apiSkel5h6eZf^-fx+>91~V_wF|K{>tq*Wq307#<8X ze$k>jC3^<?W`I$Akb%VrU+3< z<&E>}S9v8DOB&zb`aQj*sBt^WcI~#BJ9fY-yZ3v@d*Be$OEXPgUDHdccy(WMcD2TM z`~{;JH@eeA4#)sO+8{Ci)Fe;_XL3udqcj3Qp1yD>hQd3Mw_GZt;A2ThcQnPFm3ZT5 zvg1&g89MgbgpaHT4qi663Ke|~{61xS8yP$)sULodPOy95 zS&*@_tMq`5+T!sU4w)XKnmUEl@jz30h?L+ij0LYlggP{gEQ_0PbdPOX{vc%s4sU7Z z9hH1(Z-hqMWPsZqF$e1eyobhznn}ZXSx%tQCM#WfPmPN-S@ZjVBvajr^C2y1L+y{8 znAwQunV&Ob2BMJ*O6KnqYD#6m37ef435dLXq5=Sbk3*1Jm~!SZwDZoKwzd)4-IKq3 z;XBVm<z${23C{d7!r?VQ}~jZqU(I1 z0^j;UO%|Fy>>`4QN^|`x6G#_X6FjxH*{qV*YFVWQh{dnRXuOSvFB(Bx=%VFB$%`Y8)`~NA{$l8Y7z!lDt*X>Iw}K6zt$%@IbTzwB{|4<4#W%Fi>RBW5W**)x6>Kc;pbRAQ}n zb%aw#3DrUCjKf$3=PKx)POyqrL1#NULt0y>jxDJAr)%3=@p)Hmy91=R!HXV&rK|gL z$XXAi0L^!0K}*HASfJ4tW3>A>oCuyCBK}uF-g~{@!99|M)|Mz-X%kzV_(V0i{3uYw zQnYL}ES2VngK!rP567+G*ogUImO4X4Jy9lbvLr+J=^lD9j~~4GknorpnlXYfazJSH zB5->0dsa2Llp-|{RIHvG{ZCDB#}jh(PlU?8k7(F&{rV%c>k@d|54)F*b!0zZ0_+sU zd$F59G!AY&#{yg`7YiCNGpjefm@V$hLWZe$HdE9-cxGmB`WifBv}kd11;!h{F`D%R z<6R7SK9@2xV!8&v+m{8(w>l~i#=ITCEx=Rpycjvb5HOj#oMSHER4gS|llr^`-%Q!T z__{;qWN_IjLSr4tu3`6f*SCIoDrsYD#aJYDkhI-$#Hxaku>SGchJDVVkx+4$S|!e{ z5dKqjWDb|VqanwW7*QU^X6RpHBzRXPCU4`!$78`Luhp)qss*1Us;;gvdH|+{NFzg5 z;BnkY(es~916AQ}#z*8Kbe>8QLA$D%fKGbGPV#RGr%r5C^Q5e$m$v@+s@8a&z*zzF z6!(j@;|$18jDznx7$l+q zc6hp-XMD(s!x01Oo*!Vmxd-DexChon`tpUfA0HOmt*)UxFEWkfU&U=Mw4%acw6n&{ zrn0=Mcunr0HPdMJ*yM$kw?5SQH1J{U(t7a;?P$h}Pcg|>D2t{OeTKZw;cutk!B7rj zDP;az@Hm|X8^k|SakQ3a!3D=P+m}Vl3W}2ESyF)XXHg93v29^I ziHMXfL(dZ%*{NK1K#|s5wI4osa+Wg(RbB@UbAohvCmED*50pn8muZrZ%zNnQ*fKkbDf}~{*mz1Y*V<87iVy=+* z_#+1AvZHQ9cpW%j73@sW>R#N_c-&;(1!30;lFr14^0}V#Z}KS8GR8ERb~8d7__#{&KaML82|e z0}3Qz@$=8}?kOa~?`--w-u(b{=L+#n-b6$a1g0O+R7Dx4o&B?V4n9nbFq1ZCw8JKtinmY(=a_a9g_+%!1+;Xc7yL&+!Cx0h z@4J8F`r{4mQB2ghNI^FeI@LBdO@3nLhYzT(*V|6Pgk%_ynzOo_HQRwH_Ra(hMo3GQ!p>gp|>pj^O+8Cm~`z(6?Mxm5&o!~{CK zE=VdtGSll}PhKVt9+4D*BuByrl>au6l-{(||D04Ot)QJz^63&N3|9=V25-$HLT=z?I; z^Zcegr+Bq%R+7V4&oLeomDMpAmNzF;A8g+U#SI#>;h^-LIg>^p@m>?`Wr$1i(xQn5 zk+k2M&VedKU-kq}jqkvrFw}_u1p9aE>KE~jnvWMp=2@!oYj$f@(@rNEJhvdQ<{mxHIY$a5m`zO9g4XcAxWbSKbks7{J!ZTFs+fYke&bg zLt6A>WXsOtVX;oiNyTt`>L+_@>UV?JXV2oAWuZ5CHUfB4+ z=Q@NQmdU0_!q)G!-%LuW#E2sYGelY`YZOMB)s?9;5*3y#CcJOAQ@lTO2c*X-XfM_U z;lNH+mTZb?TvG({Y>ikR^nZ})3c#S}4C?+0hIYkEfLq1@Q0YRh9FU<8(8ch#x?hCo zDOfo(>l-f2i)U-U58hS?bamKW`S?_JpfPl9lYPHGKOG8d_&-HKcEMI`t-qB%`kUw3 zu4*2JQeubLAj~zXT|p25f{}gxV1#Ha+C+tMa#9BdU`CD9Q{^mxb1B2?z7=l4r3fKA z$y?AuY#plJ@o9{Q?yt{Lo3LJ^r`UA!bWnq?^2s+FlzT>nN2U7YV>5Bzy3zAqj-&Bb4l^v0z=HyhvHw|^c9 zd^f)?zP=DHpEN=2KFN?)bRS-zx`zuw>8&sdr3owQJ8}!wC+2n1km5R|fUvj3n%E=$ zqQ-4L;RdZ@Nu2%B^d|H-1BEf^NKpn-WicCUt1^xd7q1X{g5Bo3D!kk=BPyQ^laES; zr=*!T8!a|sPCcR!dzSGUo8%8f-2x}93-8`#Qw!Z#1ue>iqX0Xa2{HRUf!{qmeOlP^6}BF?5z7f<$nD@O?E!7zxV3D zuXX9(`J2A?d_Q7+UtLq`n?FZDmoGCctG5(%D=$s~ufS}LL;X*+bE*wnq(+XRQnW{r zSb5ovg82|(a96~?y>{3PDb=LNLZuk?l~{~aU@xpw4f(Uvu2e8XsG$AC$aNAhv$YLM z5PX0+!aCd72l7P5HmyiCxDzA^qMYJ|F}Nh#6!jeYm7 zmpGb}fI#}9G_;7|ZZ#6+2)+CuM`q=aU+5mx6$TOTZoI{yVl*(t7XZ`j(_EYnBFzIv zimK)M8X!Q^u(fJ$5c$Z@I-%Ms{3|iLCIVF<>gB@**$Sw)2FA5UbGFgX#kR-e3v7}e zdmENM!lAkost;p6VOAB`UO^6l0L=}o^)Kf=2fAJ#T|FNjv|jJ2mv_FK-&c3TE}XCe z9ZV-761yq+RUm;k=~Rp!j3MYTS+Z%68nz0ICR%ZE@^HgPa&h|uoZjpKyw>ZRyM88U z^Q+p0AB7YAvQXl#^JZ`Vx|CfR2{A20xf=2a1v(;>cc`o=HK5TbB?$eR^e7+p!O}!m z^`_`lFZ^->paX|>@M-z{^}h|6s;{@{N&+5bQODseS9PtwJ1!k6-aqepx<0#N32J=T zy1!g^zQ*|9b-zJEyFOmuyD`45giPHL!6STt@S4Fir7Q&*;{Z{Upb4WD(*oeU+|zSt zq_Jy6hDnA|uPvyRU?c->gCw-P#>DN)fHCrve&@Xt>SD+;_C;+)aZx(X?(F-yx>;xy zaF@ZwAx;)s6%o3%CWFzE^F|x;%tF~rq`|{|x~t0CTA9B+m=)q=%M@fusmNoHE4fWP z53O^m)wa;e4|l3>FYI)!OK-9K)!!e7J+BzwKTBR&znijJy0h($U*Dl`;RbqvR%yiX z0>k+|YZFw+BM>Us`@5W=p0N+h-qk~_0T^qF7AK)PYPwbIaar5ShvQSYUA|28FULy8Sld0T;qsKzN+`VKtM`#Xgryh9YcIA&* zmx0R4AfG3yR=|9vW!XxW!%RPryed6pj|PgsNzTFkq$* z#Q4tvQL~1D5@`#XwHT!;?)!RxwP=YeJTIr2puUCJWKMOatU6;e&&gF-W3DwTWtg(i z1@yaqq(ALCxN={>q@aXS=Q_MQ2QNWvq!J(`29lH z?z3xL1;3|liGH36@@cm{9*)XD_W+t^w%1HWJ()CW&y_Cl1U6|jNxpepY&m|UD8k4@ z@cu}#4iiY^!{-9M*gQ2E){u)tuxI(1sjJ7#Sn+G_O+Hur-rO2rH#d=iF$3?{=$#wW zfe&H+$#kLwgewD*N|+WXTdDe*R%D&|s~J=CO0dwH)==f&3oDo=f#6H2io4{;WUAV6 z2h-QuyV?tAWTd>jJ6J+1(>7w2D0dNNJwXYSWsyFY!}j#gXQ8;lGa~W9KxcBK)pBz2 zry04!*b75X7TRcg=_z~=uR&vy6GyKr`4NJJxx(Tu4~*;p?jyG+KC29gwrz5f8*o2- zRG?ilH?loAkBxg%&Z>5DH<=V?pxTcqZoo!$H+Ff$EXG?q%@6hZJvCTX_p99dBU?!q zC{NoA?$G}YxhcF(3RP-yxIH}cngR#YD#!FFoKkpZ8THFNXuc3K9H}9eT1I+Lf+V8# zWKFoDV@+)lPUedn>bwPf&#%-b-^I%tYQf#wS#VlH-hlFrjjT;erK(u{3>Ag8z?DS zh1qn@B`+j^VD@5G!@9UhMxC<&wED(J>2m0}__^i80XfZkFJa>{>l($a!Mvufv~VJ% z=%Vxdnr3*_GA>b&TfHzS_jD>Qs_1Gm7*pp(xj-J*Bs~QUu^6?zQMFTNeFe<#TKe_N z4|L?t+feh51V-lic=O#|$fGP{(j}PBP!?J42~TaRo@at{JelhOCGds*H3xtCg$*;) z=Gfl~v<6jQOgqkccOg)bfV5oN=LO*UZpRRAF~oK;B@g#@5Btr6xpF2-1d#|BxK^auN#o>{dpXKOA@)$H97_*8jJ*eGf}hdwE}iWH5w-6wKXR3~2mM%`ab^dOFeY!9qh7GDt! zRRa{PeHhaLT8Ig7Xt(!ht}i2AqX4OFzwJ!-m2QnW0ECUnZ{l6U6T&V^mh)VYvbuCo z|4+(bAxE;@LQj0Dz3Oses5$cUuCJ?}?cE2$&qIHP+D0|e-n&A9?3vCrv{HLtvoTq{ zKkvc3Q#CUP*5Q$(^6{IxLqVoE+E0&;P#!=y@h=6e+8bI0p~i1Z)Ol^YekE}l51kRH z;AktJ-!ODe#m6gw=Pzw&j8Y9>xbNlGC+KhP7Oo|fAs1oDtaq#Te zQ!QqyF@um}hjBHG)Yy}q{td!aX#*@t;g+%8z5^DcwZ!lWP61zuO6$F0!=*|O&1Lhd zQtgV>YT`ECMByIy^9tz(B5qZ`r)yzJeLUS|e3SHJ^gv#N?wWMV@fGcI?|SNlfW1sP zt*qh{aD)|A!QUnm{j_4e<%SwtfyY)-IgATe(q85Jng!K4dcLYhs5VLLgT|7u;9;^g z;W(ZrGr8Qq-`NO8;Mm&b;?&e#+Yg7sBh$Luv)DV=6W7omtiD2L^@I{%=uiK3k4_Wp){y!pT*A~(%XX>z*GHcPlvK!^jD-=7}g48*E(;Qd^?Odef#-(tC^ z9^8tUv?Fw($L?+=IBq63lyK#`zOQiwaLsI{Xxp!*P zMTy#M-&$p^(k|P!ZDW;f+qP}nwr$(CZM*AyC!(+Vu5bD;WJYA>oH^!r=CdA4L6!qY zgFlDGxODVr&`n|EPBqBv$aByFlBAtt@ zKovemWZwMtoLZ~X<2Z;c{3#>zb)cZk8p#@%d8!KQjvVy^S=he`RdzS2s$c4GI%u7) z)u#N4Nl%(@b{s5Yf;W-WtM`b&GaPa#plXLwZz?@S0Mu8jiSLK5uA7-l zagM>khy8^A^pt?wXPLI3!%rKJW#7a7IDW=qkDP~HHHr4Rm!C~f?b|DqoI0jm^3~Ls zPV0NR_0=1WUDV?_PefP4wQKhP4hs|7C3|Cp#Rssf>u}8^56y_*0X65t5WJ9fMOGO@V*dj2q!F+oFC_fja!n*9RX*uWxKvhF(wx~y<% zydh}7TVr#zD173@2rCoy4mLbd7`OarCo5-#NsHRuUCRD^Wh;4uxqRdsW0Wrn)Y{4l zXj{M~yu3kPJnf3IcOFDPPUK1kjfD%ni4hNN-hOuHDe69M6$4*7LByBysg}XQmyY9j*G^YOYEc)wd?Nc2Gd*~ z;eJ_OcTT?E*Q|M;iotuk(z>}xtN41Jc9K^A#~r4hJWH?Eei`84SS##DDwOL&2GJ8+ z5M|(a#|eD#?f%t&H?@oGKb0A5?dvZDTi3jw@UM1inZS&r5ZCwX5&Z*O zvL8NMJlx~T-u&(mMPxV#;*Dr*YBvo|KRb+B)58=MFE3DC+`m6pIwQqSWbY2ZtT~F)c8-ajWghm&9ITx5MP*I) zDl)}rhL~VmrgvDL8lih zrNqGUHv=ria7chDxlwkh%z%vlKSM#SV*3k-kHIgK6iO*RysgRTP7jW|yzzEjHp+^( zvWkYWXO!R*z9pI}$-xTGCY`Ygf$O_s{k~;jFUf~#PQm4^c~9UFdj~r(v*v1blns_1 zR@E_*VxoW9ND)AZ`Nyu7ot2s>RvTo}+1jBwzy2)AHNB|KKL0-~EusXt)Q^{NtdQ$T zII`^PF^&liub=1Qfy-}yV3LkTcE0jQnF`(>WPo5wMSzydE~TJ+mqf`7eP_srI#ad@ zUA)4i-V9VO@F92=^5^cNiXs(X=9X}i#qXZ&4amRkRJM-hTWnAcwl{gNbJr$dX{<7y zxm{dR8KeNcP@??H^u6Gg3XKj-5s;LA1o;$Nx7r*P0sxOZ~iw3h{ z*I9nvP_>n>l$=^Fmb^dl3vz63zU@*5ywIJx679q&?lMk-Wt65mNX||DqJ7OAeX{qla5v&i z1!$%5^a9F_>G0Y7tF5p29DJbb4;D1b4cD zZmnLd!0km%v}roG{ylelpxoZ&xs9y9xLj_m_8}QVdgsJ9hkEgnl$EHss? zp^vo|`wy&OFUBPs)h*1Y=ShcBoBgV|DN})Zu{Wk!)ILYYg#>BQBcF@8-YpnM=FtTZ z?Q!b|FuvB~J~VZkrBV%J_lZc@09f^I@h_7kFhV6{X`Blna|50=2z)?cb1aVTi;?dc zb~Ww1jaOqBzkJfefwj*wQu2`)Y8Dzt4=)>g`ONWFs$Sm2xKk1*4)+tKytKm_3KevC z-cw-?UaWfY4~#tc8Y&za9^Q@b)PJ&rIB2jB?;t4(oUm-O|E)9}KQt(k2-$|x)eRt@ zp^-)^`uE{R!$`7WliqONoVr?uT3vKG(0twa%6MA3dq8K@18Qq@YN@^_Xs>?WEIitd zv^NoJRN~tVyvQ2Su5l7GZZgzX=1qzEW3LZi4hQvoqM~^mx^kihAt(oTB_Lw6_}T_= zBe$4Iaf~h(2ic`;dEojCQ@?Aa*4nhwj_*1(f4_@4V%F}XqVrpk!{D*&J>Yj0VFZBV zu4r1c=Kd_3@_H^AXzcD^M09s1PON{Qw|swR_o$<2)7*xBq8q4e;P@ESvCmLX%Vu`1 z1TG#m_Q_61t1~__;bhHKy-Xgri>(kbHvjuHYZno$Xp?o0b_LnzlFeX077X`>Aapwg z=8nMAwEVuHd)IB9VZfcIc80oLMd+L0hcLm4rl@Tp1Q75iO!Vh?&p!3*biYWa0aZqL zxrJ%9z}wQuw;N!7$oFnvbET`ql2?tclY^!-Q4Z+HE!Y(-csq9aa&mB#Ir3I_`A25D@KUZa4;7e@^~`Ibyn~+xFU}d+krSV|!!ep-y)@D@Bbp_Ne9Vfx0tP z`)aEs{nP{&7rwY47y&tkf<6OKw87#$t`k#tOLvsy!`Fmt5Cwl1siprfJZ zSmsSAY%>wjQEHkS(l@v~1VN56fRs|p9k_iQG8D_?cAS78e#^~w5*pC8cvp3(N9jfC zDn2n{^5*F!{j{wMfpxyI0?)^Y=xXBUZ9_{xaix)L=Gr$JatDg81j@CUCp$UPuc?W% zJ-~g5R88?e3Qr*(Ou<|w-Pv4;67@Br@GR^r5;Hu5h9hj|{^m{Bllfu{dpv9ab?~p2 zC5*1Vo_({nI+@KS=INE z1MeNabaeS87yG`xGl|_hCyx+I(~EAMg~-;BpuPc+%aGdb13ZL%XfpWb@#Jpc8 zuLlt#+;Pfu`S*vGi7}y;3<-j599{#q)AFnz=URk$@p9gIpSbGVaD{qK{ATOVTnwpX zd+f7l7|2^H@1w5Ssue7|SuQ({hZ?EU>KDVlGD z#6S^cl+l1lbH_4~Jr{@_3O7a+&Ahxtcyv2F4|Bz+7;gzZq<~x2F)hZshrX#~AsG6t zu?wD+D3JQ{~SgWHG=Q=ETW-o!IrDcEBAu_CdMGv zxBa1?{=nhCRsb6F6!T{tJ(_RcFgjYHEnVvADP!3lohUE;x9Vc0;Y`{gnj(Pt@56DH z;6I|FvI0A`@SDQW z29GSBFi`NEX%5((SEVy<*^M!v@aqrs?=);wDM_N7e<2P?RD6x6 zFvr1>k7VtwPet%?mKE*4iJ4FNPI^K)8N2czWh0?aqW$Esac#kf212V=&R#F&tDz0b zU0nt{309Or7v(FMkysnsLzv0_qiz*rkRoc&^vedUGn=VA)aRopz#bzPsrr&OUi4f< zF6rXA$Qz*YhF7|4oFWj^sNGkpo?ZyH8S|3_k^+R=esgGwrjC7DdXp*sRwrJPk>^`3 zZI#v{ggqrexc2_g9!6pWG@!PUw^h|JBZC*>oritmC9xR&C6Lu02ZV?M`|OJt1{u9* zkEuEy3tu#01<;m_P-^xc6~IlR%^DV_)lTBWmamQm&2UX9J{=A>JT{1Q33>_j{MO%{ z4LMHQNZE#`NPj%5nen-((ptVYh+qPmBKSbMe7S@Nh zWmbUltB!CtGpQue%<8(D(+jv|&RVs&e(~x1y1lx$W=0kF2@pKrZXTUCcRzF-O!Fge zw!D&Jg0D+K#cNUUXT>{i?G)F%JwF}4{)6Ew7?5L3?Agwra<^9fxG+-1Yi1KcE5K@| z#>%Z(V7NXvy-03B7$1<{?#OZd0F8Y#le7>*?Wjk_a|ycPTD$J0A#4A9LD^5EPOPKP z?p-LBg%v05ubnA(Sygt#l9&)$S~5@BQ^?gotW;7zd0hO-qge*afJ2MD6c3<|Dy*>N zR{-x9EKYRZ=l}M8%JnDqDs*llepudA|M9O&-ZK4?qDB6onD|A<%(TV{w#{5jrE1n*v13M1_=hqAE=U>YS@j1Iu!}QRD`@^}inp~$XX2_Y zlMN(}h7%=wWq=UGgR#{@oC{+TTK(koDbUP-1uv-sskVa+4UYAZ!5eL%op4KecI>>! zBK8rgVtj7k3vm{EU_OVoRvH*9rca5!|skK*}0yQf&|?hG+AjaMdUC1;v5*=F4?~0IV$d5j~u22rx1F^=V=@w zgsaf=hv_a`as9B~M%?(&P=`zDAEI@dT~OegX%#G7@8g-buq5=q*uRNT3@PTFx4RT{ zolv;wTy4ST+${AOc0l?WnNp|hv(vT>BT@b=*B9jFXCl+P@L=5QS5g+IW0N2`kBjlA zT&N4oki%a880K6lnWe2ySY>#$P1@Bd!c0_mdc5SV5u7uCS7-Vzc|Z3;lk1;Fo~B}+ ztqXXE7xwz+xffO^jlH9EUBdAde~|Qfa>xm3EH2fDy80;{r-898gca*fScLe7kNSrL z=kBe&jZfLCQNNAJLoiV*d0~%Bss{H_%==6aNvp8E!iEu~%Q*0FNr&HK-cKt?4RNxK z`2v7evjvzD`ZD8!J^cOUYgL#}eoec1lMBx3NReZN?zq%PjRwdhN{kpFK;S6}sG0CU zc#Ks+(yP2~j1LGxO==^?In!95!cxy?8eYr7O%JMh%l^Wa5E%)mVMQ!T>e&AX{tfIZ zj2{Ao`SfINUsc$d==(d@l*c)~lgEet8cG_ zT;*Zz86g@4x=UC|opqK9oqrj@r2f|dowv7?ZKa)3cM=g(#vU`ji1qT%G{i5b`2Mki z(O@gRn5=hBTYvj~JUc79F}Z8)RD4h5eDo=PDvpS|nb4`@Ml@t~o4Zd#6rC*>NP^v; z&-=2>o8fXV_tG$99EhFR%I(^wtjIAj&mbwXpaq<}*#bQzLXv-mdEhJ0>Vgy411?&U z!;VEZ*NrZl4ryJ1NwlhuS#d>9gM#&KH6Hrl;d1HNd%ff149$wdq!72KNBh=Z;nATY zs_DG)QABpW;8EY&4sqj8P>Iqkk9)KW@@ik}=8Vh@| zWBQJCjmS@)roA$aI4lz>WP+cd-Eq2W-CK#JF6A#?PX2egI|h*Jby>iIi|9oc0L@2? zMK(lcTy#ow>svuiu*cO#m`AqdAMNFb>!4wcmrf^w>TMU9xJ_c9NyjVVr9}x_sLr$=)>Ki0_r&_D5t_=sy;};bkK(nnw4Qg*g_02~q?kX3IhT$ZJZ@z)K08SWY?utVun} zw2VJA8?RUj{>PWy2O&(4&<`F_&^Q$3&u@NXK5uFH%Qd%$iAXConDOy-T-!_qPIsS! zR#pZl0|U?I=43K8qsxhp*$*>d7QmN{TR!K?PLM+iOm}QX1W5HWv;YttsZ7=Gv^I72 z+U;`j2Ov~;LZpf2FWq%g0T8SF0t2^yLHYZZt%p$RnX~8;mhPwojS0eQj+xGaa}}mh z{G+>)nr3R;rJ#en0}x;L9ZxZrsGJoW=4updOwoOfshVRaU+Nj=@&9m#o9-Q)654qo zjh%Hm%}0$NJu>+YtVTAdar?2i6o^=IfJM@eoZM4{hS`%>Y`_proUF$%X;S;JuTdeR zmN5WK0njIqh#SegE+Jy_V6FF8^%t<`Gxc_Qq&6PkpLVB>CTpHc%6*;Zy$>^}a#j~+ zWt8@bt_Nw2+E?NR)h%*2r40{(+fQuAW7TCeseZe3!hx-lyX%g2a`(Sh|?)M z&LJR>^u9!nBW?oo<-~WZRef5dzS--?;V%X^?pSQH09Pz`u6v+!?H(O72^CGRxw$6c zmc_m+`>gsc+?eJ+?^%*w&1G8cneIlt*~$5S8f@f%XnQBwwOvYKZ6m>m6ri-_vn2_b2vma~@MXfRg=JkZ zNRiXEe}>S&ly)1zj7Z4~?kN^*6L;6=(HN{47+5O6!D`XpdA#Drj~@~3T-+MjY2Y-& zur&NN-#(?n<0MI!1fJrF14G8EERA5Oow62Sn(+Ku>{Q~;ULDR*zKi|yskq{%ujV&8 zyML%=@w&H~A4MGa79s6jSN3wL-|4k;Y_%Fon$GODmXH*T%UF}gj z#|c$`F$6o9#jtLq7(9DhB`wSrf`ef00JmV`TXpJTO9H`7{B9pgFa>S85jv1=J>7Yn zxT4=@5>sgMa^eJvyoLujbcgdX2D(p3HB-#)vB3SpCCs`zd7`Zq{~1o9;%4E}g%>}x zc3v)ddxAQBuYT*U2UF^H@ST`^yv-xh#%c5B`6<3QZi&QOCPQ@vGZYM=wJ0udu}wnM zt`5&Ogx3Mkkw63Oxi0+to-|&jaMCp6446iwA(- z7gnd0gF3iwvxPsnQ@t#(_3q%HHxIk6-+%t0Cu;|rH!id3LXI1r{D;CDhA>XGWfjHS zWwGPx?72<4jzc#|McC0GYr`A6vD}z6fXNEGxq2aw5UNU%1NCj^98N>Q+!+V5nD7^1 z9PE{mUGp*s>ZTrm5F;4$E)dc`vYPV^+1>T(bYOep$Ys$HSZgy2KH%ILk8Jo9r;+XgX7sZmYJ9$Q z@xYurlX1&VjB|&~&KTEE^hhFyCXvJkNdHuIyYpCB6mAFT#$s?h*+T~(cxFU!F3fPm zbky=$ig0x*;0_bon3~DmY6#sXcyyxXU*pS)%SO5wP6|*;?sSmx!%~0u7VaAGy?|FB zG(F!7_O)e+d(Z00!7OdhZo%6~iGJqOwAH~?@Ce~`7SW*^{;m>lHw0?{B;%h|w#7~t zP1z;$&DzzM6iWM@IvWtjo&=$S%{MpjFt3%3Y?c$Yh8p5bZlhXeDT5|WHzn+bNG6@k zf1hLFnT;(*$h4%AfW=5bKTAY+&9W>s?Q?O4ts9Q;LAi^JP3^Fk;0-$OSi&xV27*BQR1Hy#T0AKd zB4W_{U<3A~?1NC4frHo*wXDi+#|=wZ08`9)rA_Ew;|TO$v|(zE3XV-^PrGat&~B>} zTB#WwZ1C7=AV=|QNrA*@1BZG%s2dn+%BA9NF=QWX*98|49SD+6kQwv+6>JMPZ^%Fl z&t^*?BJa;&O9l_m(;a&d!c7nlbq+M&p9{$0^TohsV8^C@^%wBwC>vI>yF`F(W`l*K zdccY9DigpM>W&I)@DFiGbs^ek|Nbad01kD4!6#i3;+Z-aR!(aEqYc+3ng~4sk}7I1 zr1?qMA?({z_7{#DHdSxAi`RBQNlmpy=T+y{;~hR~i&Z@Z!1O>?uTI>4w%P6G5(9c* z+)MVGi)+wMC=}q^qIJWXo%NPj{UGH!?6}o1fr4IO#GN3_CbCQ5zsNN5hQy8E ze)=+vT!LUsKn|qBkFggYH{BV83bLaPb_UE!cv_T%L3_}Ema#OM>++svj==yi7y`OqJ+)VNoSX~#0hhjB%k0E zNo3G&AfWjwN2>11#;XF2G`7MZ7|PJT;@<;#Q+kpbPiaVd?Q&RJ(Of}D`?Y3W^Nt!$ zU-P1;*sp$ta&uyk6ngy!|IR=Pe7e0BPPlJbHO7vwsN)5%=L-a?9pQ(qejhh>-*I){ z0oEJDv-se&w)lcGNL6FpYutn_)PllN?(`u_|DyJmuF7eEL2Es|4c>3r=E0EUe$@4> zH3*VQbQzxl_3(iP$NrQk!L+jRu;YJ<4Xv$^*itE0I-TVU!wbE_LyGMA+x! z$?LN^nb~<{bIf$3^R1Rdj6wp`9FjsFfbortjWa|cBY}Th&AS=j4aCAma1ZXw1e?9H zB22QeYSVJf-ojrEb#(TJG*LE~6v0)GNRxBTtQva~6Y`1V{q;NsOrh!7Kk^|Kz#@CB zn9trLxRR5E9hP-WE5wLqH&~fcE2P_R-2gk!MDj2c&bj5gY~h}H#BaihVP66Og7TR> ztKt)ZQ|VeG`=vSlQ%@D~%fc{ARqlvjWmbM@7Vb>z?uJi~ciAVY6}m#$!^Q z&u*icG5t4R(uZ+aYq&_;SVo;jlc#{It}2(%R> zJm0&WcS^wS{0XCwQ=XDGcwvwd+AB4Ucy{(*Gm^j$@*=%Bl0JFfrINO6@h^&Q%^2Ga zh*K^l828~I0L5_6XL(ax;1og7^6M4mvviNQ>>v!lWTdUohB-C92Ht9LLo$t2D_=*( znuT!C?%0;g=u4i?8NJi()7?UD!0#1CujtSz1a%m zf*F>B>z2;K0?z7*TgjIW*ZMyZkNFZ^cL_Ag9fR3M8PuWtC69PCSs?Myo)A-ZJe}1f zfBZrDzk>w%)kJ391^({vU?x7F4YisQgg$k#UuUb4wkx|_Em2ixTwg6c z2Wxv?z_}xR2STTc794N@$fadc94c+!#-R%m`pFKs$dL z?L&Q{i`iEwMYSHHt9eY~F0fvJ5|3>m%b%6Jex(}3S1J~`h^P}Del5oRPh&P&tP=$< zlm?C_(edm3AyJv%ef_;)TQ5FByubc~giYVOin_58Uj?y~oF)sATyxbytaE!1c2XuV ziJJ~*i&`IZlcB&D{Xed(#+-Q z14{xj(z2}l>Qsi;c(un%$>F1XZlTpEM`lfx!-wmM6J@Os!fy}t-ZhJyf=ilcTweE( zJeR1EOWoB?#B~vmDZk)C-YIJd|5$G(Qdf~ut9PBd=@hiZZ|C~+zpj)(UwlLtDM1pj&jEYT@}Y!cuIOI0 zR00y@h!mPp;Y|IN{Apt{^_~`|L3jD!>d^UqBY9%ueGzgvjfEk*jA5E~vNAUqO=!4j z<_FDpU$8c;Sft%PzosSix2(f|glR|p_Z0h2+J4iMF!oh=gM)(>y9_a`=gnb~*^mAU z0yr)y-s`+W)Qb2HjGCVf|su1?FA^Hz%@Oo<8YN^!{S= z`{q(;(uc`|Sj$tgcjW7Dw%b|4auKDCY^mozaF#QrD;EFz8#F^88YP(2+u?}i$7}*- zx>0LmuH?J+@tADfe&sIPpYifo1QLHquVJ^Y-&9?1=E-bSFU-DQfuAK`aC^AS4lFNe zH?LPR-|9pz2W*C3V=pDwAYVY7Iw4WfP+;QBdjd8BPTc^b+(9~mk5!Vd%t>MI{os)O z{Dt(=LFDNzvSK2<`N0Xm8WGx?P+XpTfw6ZOYy|vv|E1;l^-(^po$Xp9mB7}1*{pewko3~q%V5x}v}%*}aroU!ig`-3=go%&iNlQyFahXsJ62k{RT zc_|Tdbhbm;RR@k+(3niwF`F|AKkXT(6BE2`T)xDo1@|hip_M2u15O19@N|HWR3yY0 z_zFR*Kq?b3It_c!S#mLL?;*(I+*qpZP9ZQ$)v=H@#A0 zG3qO}TZolTt1Oy;{|AHMYc5nE@t++)VDM~78Ub?11J+sqb1DjG00vUHlQtfWJ0XpA zSj`~)_}7!TGt2q?j+$k199K~P!1ZPa?%O@kmA^hDKXJ#_JsNv-Dc-^j@6!zOlS^UF zgqKo8CSG10r)WxC!}}u=g&@{Tix@6Z>VR*V?_hbbA)S*0XtjdcmYlD_g&<=?{?j^1 z3MoYoC-csRd(6=TE_v7!ZVut>MM6HT)fQV=zOSwLY9c3pwAMI>seoxoF%mlkFSTCx zzG5Xr?P`7i(7F^eHTn}JmyxuILCB@A>CA`|y>J#+tI5Q~BTB6bQ43K=gyV5?0t}c& zdI7iChESgfXH=BdC29z12#YX*HOd=oYNNOqFR#Oiw;e-SWhov|s^4wXw?ba7ooA#T zO6EU2Gkwgo0KzNCJe8=54vC1ROETUK#mCfY2#{Q70+TMAPfe5?53scve{*7ZZW*4s zJQWI|DTCj`Vk6s%v4_jvW_eClg3L<8@yHAfLTqMn8$C&DlSHsyR)*>vWPqh)H5vc~g)z;~ z^F*-xgVZlwN*Zuu93zvGZdL%ioV2415Vf2~xM7<>ioA?=P=h+VD$eN%J3QF^in}~7 zC8D=YyW?0bGoYHaa)TTR%<3r_f6Wznh+4iYyxwt zhq#iaCoPMpe!i_WhQ{pLty?NSI!SzqonmuPs@yBu-x9nS+&h5`rTCJhgXA2m4qSoJ zA#Me)DNue04{102+f*t#3SaBujQcS9c8AwH0)%SakzVJ4xV_RWL=_-p>Ok@Jps%Xk z^)&JfzS$hH62<~yW=O>JkXIm$1P*uGoOV-;B30;{PA?&p)q&wz5=rRRV4HhnBeI#m z^!(rGng9Y&0$wfX0H_^d9k}~sKsPwZW4=%VgA%Z8AJtj@Ht?bpE>e3vv(L_M?MK|G z^uF%Pi?j{r2#=3+&&($mV^+X64d_4BO7b6$%t;xo1cwVpeUk*bgQ2d zAG;)xwY>Kad1Sma25UwZkFXIc1UR(`3j^NTc~_)}Tq7Yk6t?-L%`gpPvqua>oloZ`ObHQ&odzX&5Ic9o%C zpeRW-qRWO!+A8Dvt#5;Z)11fRNk-wBBUmL>P;3%4H6_Vm4w}{5k_L=vC(343-iybw z{{YlgTA84nTWzLxT-`VRg71m|oH;u1)(UK>382QQicWBbp4@(Pky|J@qg*VPR`yWs zK|?@gxx>t*m$f!f_T8275}yGIbaIT?jC|E5=CK(fOyl=eWDpaRFH8YXf_?7sBj}rr zZ|)WpdQg^RSjWP}ycYi!IUE}Wx%9eb4Fr7%O*dS?i3mF`_v({p8|!ZRm@>9FiCZtX z|AT&Ll9S#XojB(N(JjtG3-hdrZ_}e@K2AaZhtYA_s+`mh{08jL_y`LOk6dElzaoANQYLq4P z(J5A6eRjGXrg7obv`!hea@dkNn^61kmL2nsi#x`coT%t8)Ui@nF796q5Zuca21AU> zxXIE}K_nUjG-K*dmA_hiIr{=yt7=0MomPpR)&*oUtvy#mK=l{Lx8}%%J4glN=pmW} zaQ4R1Y*jVHqG1iY9F{yHa-KARi^Rz_osGk_UuG598P6X5D+&;ub9L3y?ep@mrHAd~timV77?QYn=4kL=ARcJ{uW@aVl@ z8mqg+yLM6PCp%{fQyb={*L~;W+9rGXb&;L*7Y{egeN^^4g~L?cDdyRtiKFG#bH+%}`0`@Xae!`JR&1uPsur;F zBXVAzUmLzkem1s$jQ;BncRsh|^3neYbb7?R+;yJu^(}YQ4Az;9^kCb}e)zY4XS~HS zB7mBwO{?%^N4%qGK_g7b$JPU?yxv$2BPVyARNYE-*CcV#6h-H37^jikDC~)ph3u>e z?Fu1B+=0uXHN?H=8ZIkIet#&0oA2ZB(eTk?6SIBw@FD#YT>R{PfAgrbZBu{sr31<5 z6LBv03f2Pz{?6%znzdZyI=VL#`Ct1oUWHAmT1yrj!+a%z83u@d6iJ(?Op3hnXY5RZ zd_Auh@&R{Kjj~{5vwbe%^;eg)pa4D*u@7SjBA7%K2dp@qY;O*1k^1%4Qg0LE` zmqa?>tH#I-?-uTe^N){reaBlz&rihh#?|Xzo@bwnhmW40sx3?aCjgwYHg5-l{FHbH z)LxNHq{IWbLR%&`OF(D9pl6x6m1cjOgmW{8Dp6y2;tAO;u!FvOH zjB8Uv(AC!xph2s{_Q0YCA4yE_yTQ4n-UXeN@%>jSaqVQxqRnKMwfru;iB#&YQGBC| zHhy{$FY3ayK#(mKdx*y6C4*`g8$J%Dv~1!|SA+qXB&~|uJ)gVm$GB<%Fk5@Cb%L#W zI~lS1$ofM4S>ye(`F{R+d|CgZ^?on;j(O|(Z237mnQPu~`}PE$<$>sja|On5U8aUH z9jF+p`URU~oBH;`0q_#z6jN+~SrFPIThN?hk=mnZl<09z>ph1XP(EWKE7A;f;`^YxxNK@<{eGL06$u37}?}G5i*c*Sg*-_5uQr zT9^69=bEdZ_wSaUebyacoo_XtkBAuFmV{=P22Z*jP~VMAu|n$7qg16L`XcDF-wu1} z@V`P`w7=;!z{7V0wUPJf&AhNH4lddd3zTKaGb(Li&$!=JKc1d0Z^X1T5qL=zrN=v= zK|DaBC;~0&_hPEx2!5053=>{y+o7%hyw!sFsL`nfF!@)*S`)Fu`YHusM|S4DFTOjz zeqOh7ex7nZA7`F2e)d{^=6K(Be&Pna-&=ZeOfGsh@KtG}Ysllv7jm>j39*$2t=S8R zgildbpd!ju>E=l&UdyF29T50P5G?O%eAiPKkWnOW(_8oHzs{A)vFax3i#EbHEBy^; z5TYj@13MLEJ~Zha|0xN9A~cnR{3mq{I;9j{QxEAZ@%PzfRxbuC-o|HaB4RhPE?LJw9pi65azrz$-$|5tJ&GP?cf%c@lDgDD~1t}ndDt4CzU}T8BlKkQ&we|)(dR(7`RQG z|IBWFK2P^m)qwZyxuK}O+*EQ>l=Nr&gBcsBkBY@df~Wz;mpEIYOdY2&)k6+B)M4Vr zR89%RNo?S7#_5%k6$b4Y0JA{~c*NfM)|qR$`N@9E!MXZkf?B*=<++aPv3y3up<93_ zuc}onf+B|eQ|B#))l-TLg2`XaE&q%YAD(f{n|&=0IzjI0uM{CkDt z>dU@O$hz~hJf1*Mz=$Z9C)CnkPC2efelgNRDBK*IpZ0R+2orr`$7|#*s+(R+hwuY) z`&<5M;o9ff`BUUXLs6zdIM6UZg_8-dGu_tul@ z7D+TKwCGs*5FX1cg>|%iks|2)A;tmcBJk1ekc>K!P1O4Vea^j^auJ@^0Qneq>EpQU zlk>56OXVjA4V@wFbliH#;hUsAz#9J~~wa#SLn%n4ZUZ&}`r9glkND`77J)F=RIATF7z98t6pap<bL)5BS=xGc>mU9;3?aZAn1xCy=E(t-?TNRlg)Y>D2nCWJiDGe zpS9?GT7&JrlIJ$N_FoILvMudOGm^up(w2MR_sGH1>)^xj8fB%Zd}D6Nliqt6)ee8l zmS{a0deGQs*vTdZee&rtk2SAX1QO&`sG+DEF}1N_LgGbGuaYtLfK~{3fRKQAv`h)j z8ih=|;P9?psqFYT0k$iB40;g2c6Kovr^?@4%T@O#2;Rf2=sNokEmGC!n@%lge`;$& zf{osR)f*5Yv6Rta$~wahtz;vgHcR%%A6SSCJ9R_)F%y&`P1%)Ynu4rDSML`MeNh}# zKIF+=vseh5h>i$4Hm|wQPhWJjf*-b~S(`%uo8C)q`8|0(^l4MQcyP`DgQSnT zJwzWY9H53_cPgHDVP+eub186fjYWN>rPP~t83ya(DSJ}ZD8rOe9BoOE?Nio*1s<8~ z>2R3VHHhEtl8tef38IuaE}R;`qNncWmb-+jb^yR^+F?3>8iEi$9HN$UrEcG}WHwoT z!6L~?>mM17gzP}zX3T;g8juzknfy|<1yELg1lOY)LtWNY%DTG=4fLefOx{@r`!5=y z{SVsENE8Ooy%E>+W@9SY1yXbNJF5xU2+BJ};^(*Qs-ndA6Z z#ct~0bxdb)hr;*5ChWNYY%H3>;=py+mA3^~ zW=z6$C#N^`BQ_t^Y1-}#Ov!-I+%;*}lgq2MH>Eq6!{_lKgdeF?ETu6`xiI4Ug|0V0 zI0l*Z**IdhuE{NGuWeT~B-ApziIHirmYbDqc|&H8cPb;YF=j2 z+g8U;$4(|QbIz=0H=EhjvZ~Ihuj+g2dG0mAJf=^_$B7X>lZ>;4@h!z|1W@N(fkUTP z>_Z|;LHSx%Zr$B-(emgm(G49L=BivQpQ$EiX*wIO<~1Ss0Q15x7@l}@8k?5wR4>Q$ zDjt)sJ=fUDhz_*JMl*Qt(XkU&TXo+r{U-lewN;K-V!22Hx^kPepIF_%?bFGWY&yio z&En*_I36=!bmX;u42n_Fcvj+cE%k`BlsIw_W6mz2!!Mthm&0Z>+<5lAsJZ&eOgl?? zH%@AMDQ_4&naW|q8h!-7md7ImTzc-0C?%lLk&53;X}U$}D!tgC_OnPipN4)9>;WEG zFi?V5kKCx`Bd((9R$GEYAJkz zb_pC8lqHJ^PGEcdZI6l@xP!w+9!Uivl3u5S_Qt{Ga*Mo{Z=*rDYx!29U9O@3%yxt z1Igb_8Z>wJU$2Y}vtzUPcp=%GW-ogS# zKnu$L+QLUWShX^L$m37(nt!;QrVAiuX=IW}L&50W!Sr{sh1pH8iXe0jrVmJI{GTubwB@geD3 z)IM1xXEKV2jGj(BhwlruRi9t9nMOOq_#<6!LItEpktQ~D`hd91l= zxXhQF4q=U|IE^h`djb>#7K>CIo+OXXaS5+mVNISK43vZL7bZ~gLDq6SPi}!vbU|L54d3~!?AC7}Ecf8hgPuum^ucrh6 zp{wUE$;m;aLsItMh6ta_W4^GZs^A2jsHJd^4$e%)wif(Gu`&N7rSL?IY3J~&AFNgW zs%DCG9(cx#`zbzgR)Us*t42|K5s4iH#+LzG9B(4PI}C zwZ?+QVXssZJ>|TXUE*y!uTGHN?$gxozpTAk^&^E>NL@R#+K^g;i(N&mvUtqDs)1qs zM<&nPieeaL2QvIoaCy?K1u%y44KYQ!${!jx{N;=NX)$e7JX0i@i`6(Gh?giZsjl_r zT$CMfsMhwv^xcb%X_t{q5g9f5C2E7mdv|t$rAw} zWjt>$Uar;1NP1GW3{g{k2T-&!o^L6%4A z1*Rj~k!_>)Hv)6tmW%d$j*L@&SM^8Im3P-RgP`ri`T)&%%;WO*KN4%wwW0FiebuMC zxUva{K^KrwV;AOCA|X>DW;{n7_KJ2aD#TQ*A%Fiv*Xy(z0;>=|b6FK~y~tU*lD_RGA#9%Xz4ub*08 z#9KtrFVUINI6fZx8?mcRT= zgcDJi1yj#7bsor7I#IUgPGgC_1Jq?nyGbPz(Yd3n?n(=2wZQqbl19cT@LtFU{qR~? zgm6PI0{q3^D4TH~5~vYcJOBnDK>qrj8nkK!5`p0x&H+pMZBQ#bSvXG%rzT^jNH zZ|0JM(|V17hsc$aub zi@$#`TyBPvmpCeSu!^-zRoE6~INM+4S@ZE(VlX6rJ3u=TQpK(Z(aee@_BS&{^Tnb` z4%4z-&3Q^3>z|=i9}>o0@d7sQ{3@MO#P(Xdx5yJSOOqyy!v!fgjE*Ke+I84xaA?Ocqghsmtg)RxEsjG1Ozyaa+(cpZ z-FC8sqx%}*g0GWjZii>bx4rYvb7X`H@KAF%=qW#nGB>#&FYey6!*o94=QFGUMmC&7 zzVc6nrl{9xg8ofzuezBcv>#+vfJ$%%f&9!B`R=vwqSgZR2>f?c@kIab9=k>dd3t@k z3i@9N$A4gJ(cHknG&WA<*v7GT1_)ki54HE7SBm<92v1L&$d4D?u?T-%1%;%IcRV@| zk0_5L*Wc1jZ!Q0feD+(!BraR!7(z|5;@~bhiu`@fqM8IMyf|fNd(;`YIUBlzus~2` znWH~}`$f>A0GtqDNYGj3dP1;@%fAc875bZUn`N8xi>R-A_7$SP3KvF1y?bdhdHQG% zP&)4*FTEe7-KTt+tdNqnO`O*lJagg{1Q0*(V}J{e`S0~1BV;YRIg_W&#gmT=bJ^Z9 zblS@;p|H4J1HqTHw%8|tvO^33Ygyx&Ad$PaxODmGf)~;d>ar+g+|Z0-p&_*S@*XL= zD;(K2Ht?4s_Pa`!(kE$7>#3pVM@xrjf-}z#*A zgF0JUc)|nVa2ie;*x#6Cs%dwP3fW3qTt|YgUUo|IJs)&0E%)8%)X1p}&3hh*IMFjy z5@f5Qc5sv1Sq&c5YcTEa+Ojma6;25fHbmX;EJ6hi>Si_7fjpxzwYVb;EJT=UV;v1R z9)*Y4J8*=ZZOM3A4nG248l;}8^92Ei5i^pWSvICj!a~Aitgn~k`lds}tprW{$u@bMrlkelkQ*0A z16^5Yw-^Npv%ZeB@Z_c2LK*gvrkmqjhmD&Lli;GV@lDQcJC(ZXzKFt7I9mn{DkeTo zrqse-<&7r(HP@mtNf2{-DAifv8bm34Ke`@@&Vgn-+nEKXB|1}Xawo0p73gCKGu2wN z8Qo?QUgwtCIE)+tm|?8Ua_eRU=S%z_?bn0cy%^Nfxsp$m5iztG4C*uGv~zJYe-9d? zlw?-03iyPci7!$%+G5$122>0)HRvqrV1a%*dN{4t2+N6tF*feHeGtD&6(FpLNvj!S zBk4pK(GT=ezi`Oj<|8UZpz~bKbcYw`9AD2=i^_34{fd0l-~5%b!Nb_p&YV+^>!Xj4 z^-!;#5Wd}g=+x~TVe+) z&ox+N!r<@?V&GUyc`Xlb!HD$Sjl$^qeOgMkxd4G-WONn%mMT2jjjdeRu329AMv#^S zt=UTcU?(?<&pt1zv2&+|YVd=E=Z=GR=0mx$1;N6OjJ+tbp0%R5hu}1E_0S=U)IwI5t&6^nr0vL>u#@)f`o20Nk+ zONZJ^(&*WAo4)aPLj7$QU?PW)7uVs1Yak@~EBl~Kg=UZEm09BQJ9hagOOp##UcDw4-zPsK5Iq}m#?*f4* zrJ}xEiOCEYUzATnj0?$}p-m{$;^w=N^7!-qo=9ANj&%RqzkoE-^@2&-;=u{$;t2(Rf>HI3cYWuiY!J*x*4o8w z$8NCeNeyeYw84DH+En#6{iJO7-!Z@!Gt9@<1w@+XCZa0+6JM?PXV!H&YqYq7tRa-$ zH{CK$Z+abNNYgOR+J=4MS!|{PP=bu zg|Vq-Dnq_QRZM9UFd}gA?PNUf3{>!hzd3`C%%0Ex6DD9-Fee8u@5W8cdcY46pn_t( zzwF}XkxQP#7YAl7#n-`oz$J6rOuVj1+Lj=2-kgoUHEYAG3Y0t%G4esyqAsM?PEY@0ESS5N@Hfno1j~vs1Z= zo7ViQHLSb6VT~2Bm#(S8-3!z%6#pH`^9v&jFa?clm{mE)m+s4ePu~y$PpU2hn z3o?Z04#K(Ie19~YsfKCCLI;o*)y^q4gC_<82Ez^JO?ZWUl|PVx!hCmxeuM-RW(h%3 z()@=#H)N1hOE8QS1`xtv| zp(VSu4TAAMCz71KkwohK3~?6Ol5=hs0MN%$sKo=i3Pzo@`B_B|lVG<+gbdc14*{+EMdF z3QC7Wxxy*t)5JQp0?9%ATF0F@sD(nUVuWXR2@*RTXQ9^B(?(~kU!>mNa&7zm%8|xY z)O1$2(tFxPYrph{*YjXxCIxF6 zErnsKnCVR*e_cgy`t_siLWJkeVhDKaHlZe>%fj*SO0Vob95$XFsNb;65+4ki;^21g zM?*t^IF>yU**KFP(8ouXQ}zk!>M5h0Gc+HoZ&!`8 zHcAqpc6&Tm>7_MO9h6z@EnJ8~U159K3DP7=OGeNTExB#y<1c%YrKeAm)d8+6yrRW+ zA`xXBW(est!SkSI%Sui_z*2Ra>efs};+?Rz9tp=DuQ8c>&5DXSn4=TMLJP10TKxXU zAToNf0%5B$LL3pD<23fE%gXmmO0QS@mT``sHm=|8^{2ls#K=K0)V9**sMbn<|CzQV zRJ_z9onCxPs=DBnY%)VG8|l_1MKugorV<1myf`6t0Cdf{Zbb^|mdnre@wZ2;0RmAl zQ?=IGz*5Mh+(v}A#dw`dlZH{(J7J|^&QYMnnB!U%&7xy0OV0jz`4oq={_8ph#)h*; zBG$-fA!m;1v#qMfqVXomse~4rY~#oQYQl3Zu_@Wk(e}T+LVpQ%(=!=a*vZ zhV%ad1NhH+{eQs#I9b>^{|5%Z_5TzG!0~^B0VFX@BoZ{GNSa>h9cR6D=pX=_I0_Od z)8<&yjo!i8O)6M~&@78kdH~35f~G(5Ko>vSo^mSI(^39T_X-F)X=HCKaCum+Ojob} z<`dc+*h*!3irDSh?E!}onmn5MFqFBGO#j!=3wuna-gts)v6H=JMnCQ zrm)7e^quvY>)L-~6RZ>$c+QZ9Kb7S9CSJEZ;MuGZtn}*cluIOxpr`J`l_3BJG&`k9 zlY7~v)UrO@L@75zHTf@>%kR#hZClTW5CBz2OxqYwLHr+c0a+i}AghkOi_!PzQOqzc z0)$|~GOMkO30|ItL~@l?ACp;gxYNVQ|D2Ay#Ue@|4cS^CQTy9KrP-3toFI14d%ApKlJgN4rI$MjW zX|_GLE~6D|F20hGL@@<1y9B?7=;Oy``Fk>O)lWQ5MrN3pkuo|I5WEG2$e&+WC;pCdyUG8Du z;S-cRiU`P!+1r%(;eDBk%YBiP+aUm+vY+sr!f>2hv>zNpM%WHKd8q|=;FO4O}k&uhktDe)$&)GMQ~Sk61N zM5U(lMX}uE!?GFo>I^|ZOG7-{9iQoJ@Id%x;Cj!y7qhq7_FngIpj<qF zg0o}@Y^1+IK|a@y7(F`d^e4BO@$n+w=bPWShKDjIy=6abfCIOvf5yNl{*XZq#8FF7 z=3dR3Tl^^H_`%n{Dq>jYVdE+^OpdkChw4H`j_pKg+59saE@t9Y))uX5=I`|ti+O?m zUEHxrh=My9XT4^?wp6s--E(L`YV_E^6hLVrwR-WeJ=J9iUXgA|E*+KHEeD7xNJ1D; zazs66q#q4}(o}Md)RX7)0SdUjR#~pV(s1k3#$~a=MM%<(f z1!=G?XZvj6LYB1nyGTy@^J3=t(9Ry|`xIc_90hd3QVy46%q+RAY zG0Nl+68}-{+)u>B1?}JsXTlP!fH05PSc^6clgAax+a?=pg3FGf4-@x;rT}areWT%v z!B-!y5gSTrpR#FA_tW5mW?LqG#boaCJ2jFwVhnl;)CCb2j(U-jaeA$rM~tlGY97$L zr+)`RKP=;l|J#dI0&7h8UTJ1CmZqzqX;892h+%NWWNY#{Qpxjq^S@H2ejM;TWJpo6 zND@_6E5@_QIbsS?$(iHRIh?@20IZ#)la^Q^X?sLFKC@gfdp|b*Mc$Z#5q%5fVyd;u zHyg4`Ki=VV7WSL=^U&;KXS0^?_!lF=;xyL-gca2*eQUqh$NF_&4QulByNvXO1Z*C* zpZ;rE@gcw@!BHH5tbbUah=-JSmdap`rC{IQRELr4u|#8ukMFT#|A^Lf83xZ?iw=zl zcX0@~+qk_wh%aQ80ZCsao zNE+b~lds#PV9YP2q8$tbi_8M#sWyczYH<*aqY?(0*DE_@efN8SVdPyqb!NOhp;wRL z04TJTmmTx%Q85&0R)f#Fva`f2zFi!bh@Ik2`jSE0#y9!5;ivGN&}?5rnfKS)6OSg9qY?H9gSano9wO$og-1%Z z)GEe)TqM!4o}Xz6Toc=U&}9GndJTQ*Bnba}B?vH$eNWLLiqlD{WqSQ^1wg3`I1)z+ z5CW<&kD`+&T}_6?Px{rtrO)m&Cb_SbsE(=S@7HF~# z-^~pPz#L}fvvPKRRzH+&Z`p*flU#9a@De_T+rW}Ig>hoP+y-sLjk=n%XNZV@`!{q zPbJWX;A~BYD9X7a?$f!V>ebMqR`AQG<+sQ)dU(>T?FZmKPPO3Yk6r>Na=gLuiUeep zE@usm)VB7WcZ`6?FmW|;P$ArKi_cEStxVj(@~w@l8+hB>b@&oSi2*v<@2MLx(x6rD zpSEG+eMr2g%GQfmtJOTk9%(2`0>6HN_iZl9z@QTcnPR&lb2VEs3Z%gMlC#7uiJeq} zz+hIHVVT_CipRHy?H@R1Q0@L9j@+=*Dapu&FgH?hr^;XRb;mYd4`3ZnL>{{^IpYyV zK=JT$%t^4aS#t(fHd7G=UA9E?-E@i1fGF`gun+7z$R_$mRg|T|uanbMsdowSx7_%d zBsvsTufe0z_{BG=4y-Oj2&RNm*liUj??#Fgp+01}nH(gN;e`prteISlUAW`mQ^+d) zBjlrdcSvFAr*fac;*7Y`q?%RLCaH48C*FlW<_i_MARCU4OFEW{r+@X$LHg9QihMft z8(V_B1ouOlo7p=L>!+|5LET_$36Z>s8r<4vfer}vt<%aAJ>x%ZTTijw`Tm%=mSi%> zE)_s@%Q9AlZodXxd=Qw6oa0|fA*<|l=QqQn*rdM+j;H1qaUs>6@x+)@J$mGEcr&2D zU;Wv=PC1Y^o@vBy7Yi*9e$a;x&9H1N}K1-Cl_ z{doZbJn<`ACipV|b$as!dlv0zjTjTBQ|We|C7)P4?20`b@Ps#QESVgc4!!|wjbX@o zF}$oQ_vSpB^lerC9M$|1A$oZURwBMxoY}h3A{OTv04pM=F*@H7h$4i-Z)^=y9^uYz z=~)Ixk)u=TZ~4J6&F|SR{gd zd~b3KdAotJdONAx1Xx$`&F8=$*1==|%KC$UeHW;YXiSbnTgkYSn=4ZR?C%bBbKqW* znwOg8V7}Uqn8R-%8(}DwY`XxqSOZ6|0dwHGlLBuyYvWdRi65c=@ufwliL?t^!#-i z#Hlrb#}Zj%NW5UP?8)HwX-!#ZH_G{({shs%S}q!%ONK?6^IA&t$>53=tutoV;QJqh z^Omv*w1F{U(-pjK*a^j)D!owFG=)YO{4l!~x(7BEArb6s$UV@;CRgZhn_S8Y>RSx*pM8@quU&PYQ;R^v}kMmBD1ApyZVZ>%@^f zQ`fwLUY;a|*Vi}z1O1Cqrm~ox?)9Kc;%q86`y&SA!W}Es;{bq1D*?Go-$}cO|KGXK zc9$@5qOzwj5Z!y*k-5g9Sp(BT{SjS<#^WLf&iskRTMk4JDPvM8akkorxa5dt0|u0U zJ^`JtbJ8}2+Z^VFiE2X$PNu6+38>OKFHj|HF=z(bK<0t&jZ{7-()5uCV7XgXk~AJt zy{H<16c`4S?L-3PHTT8_Lu+;#`92%$fZ`UJv%kuyhJ8O)v6A6NKY|mZwI7O5CHm|0 zOgH*RS9wXXL<%B>OWL0dL^3srS$DuI`srayq8i4oQitKnUpSbgm(IS!^_!Z(pcK!b z8agvcn%6C6?YRtdF~!@T<8Eh1keGe&>s}3Vn#(!Gm(uSa_0fI9tGk)}7{m9hl2avXU=aOeTE1SN9V{ z{Sry)-w`gAEB9TLMFvEYaq^Wd@DU=5w7*f zlyS*HUH)QtCgahP7gn%yTLoMA1KMId`7bO$Q9j47N!TRX8Dmi!oK}KnU=N(^q1FXG zC+@2BHYZ>%f3GRKGxcP4Q_>L)p=)OsUAG+NuU;%25@XaDpEEDuRpn~$-{hMB&8nMZ z?lPRb3fhTJ234GfulT=_A6#M-g)b1~voH`}y?fF&@AxEEEVuwvd?t_sQ}PDvv3ZZI zlnz<IHAZrjyc>Caz$OMcFuZdB)9xKClr> zb=?=m%uCZqmu`!3d4&pbIUjxNXFlubbxqUZ+`g>F2{(hC)sSzP-BbMNr~miw7Mlf;{seth+OS5#nkBIAf83 z!)b)UTcq-y?|>~5`58>QLtdM?)h!K-9)5;5b`sL@EQziVdjYPkG+T^fVJ_#t-*etx z1EuLCb4gm9CYC6`HixQ@*cP++s;QR>xRqm?$8He>3ZN-4&;9l~^N_tT*K*c)y+4zu ziEc@MhpZHuc56>kUDYXG6`@=vD1Jldj3Lic5JYI&N`fm#9t+I zEc0K@|Wk>t4VIxJit7o#*)=W z-<$Cx9_Xg>-xw^FL36TvPMX%RGLt;6Xi7g+peR{z#s^M6fNz{*l0BmGEycTBx#CQ0 z*IGhfW%-|Fa1*E14%>w+TFnoxq|@~fN~T)Ex4J*-GG3;uv^`6p z+oWVnk(|TE{u@m`=OV9kM)Li{pN}g@;a?>qkt2PDdCO&s%VGOn_kHsDlk4JN0Shdk zCpl~t zi?Ni{J3>Ol4cd^V;KyaQawZ2$+>a#wTuCD7u*XERl$lQ!*hgwub(MuOsh>WdCXZ+bRb=DFj<}VGdw%j{dM< z@i-U985*$dyTkXCsvn$>mnpy^sPv5b7s`ug+QRkX-G>Q?}q^8s0?`Tcif^|e;R-CT42rFZr z9SsXq_4et=!`;pK?N}3`&RsIqR@EJ7Fj{g{Iq#2p`;_bpwB_MP=KL*A`z&z7rztzU z>G4JtQ#)AlE+OBvBa3{>%L%<}K0vox#hPs+!vUJ2fNq((8ie;ud^L+5!t4y55QH}|RT$f7UxVo%C zl<|p3YJ-D&zX4%vGZOfTOdcS5K z&ubl}>(m%1J~~$H`2bs^KxqM{NYM%ylDdO@&@je$G=y_L$JC z;Po_=a@lf9sSFONysgS%96GqsnSX;6jy>C+%nJK;xFx3oiOhj_jfI`fe%1U~)moLw z?Y7#@l>(W6G|CneAnbg9B@>DlNO{Itj_W3Nm~X zv5bVd^g^ft&uCcg@B9EBKmn7+ORBDe`(yN7x(;W-WjOTpsXX3`v6{Cm~BIuoENr}!XJ%>p~H645yN)oGR5Yumg}3OY{Qhft?a=(kLpqg zv?`GX7-JPvSY4@cLo~x#zt#!j8~r;_p_%H(L1drnu)a6=bFr1#@_u}}_8zq7I&b}} zkyk*+>F%&iJ8rbGrGMYR+*tcM(o;qw^Om|$ZJ^;Khdv736>?!{a2>}RWlN=#s-pO5 z9H_EWWEPkn7+;jRx_tgsI*!9G-g)e%fGop7Mn7{Kh(ehPa?q4XC6FQvk;&x&DyTpn zf=H`o2*aEwToGOV;*;#uG%_O71mrSX#xmFmRw6eFKbmN1SCirDQkZ z;K^LX(f9~@sn$+(OL|OPzY4*V171A+vm(GBy2S;ZG6V%m!Lmfu#xdIyyYlU%y{1;@t}@Bf&U9R%EYJl$XW%*VQz~2R?uT~E)hknq|~Q6 z&N%h-r*Q9Sb^9}>&s4jc?Bx%`(d!tsLMd_3KXX*|ep3(D74BB-l%l?uL9wMwW5XVD zVBi@6;5UaP(R1y9fSmda7!IYxC+>ock)Stqw@r}CA815nUgr#a3QH+B)%l>P&U^2# z#}7`oB&!j+%v{Xe`!ChfKRXPra1z0G>bHZS#g;s^_2Hu(lJ2zRRQ_4va z)~ZYcv}dCduI9*PSZz`WX@~kVQ7%&e7A5GvtukQ1D${3K*W_AtdrDeVDnQ~FTCO`l zh+R!yNG~y?Q?lx8GEQ`3DFTYzN=6FvGE~YCNee_T&u^&>>rY^_G5#p)-+1P+3P=0| z9q|yTYvks{t@UB&hP8pDu<~xHBPuD*Mb5*YVL>DBx!Iet09K%j1S^ohVXRBBnRR7? z8Awj5qS^QS+(N$s>r@d~s)fzF6b-g>`ea<EzW-8w*-qtkGG$`ZaRa?ll zho6F%jfdq4hIwF?KlVT_%0j(wL3Vef%Oobbpi%y#8Y#+UwYcUx6PF`>uxhc}Z0Em5N5jz(cwR`O~+ zNGZElo5?K5QlLYT#8-LXu2`}fwU^5BH0cyR>(!D>x#z@=N)$)|xXviDvoYMPvwNC?(T{G@cCX55?hOE<2RBCf{5ezz;`XoygD zIf=>ttRwR5z?i+CI+;h}DU08+s|YAD9jL$H;xbp44Lk5AG=5h3qkH4C5|rAYXxkFU zwy;B{OIJfopksiX9h}&h)d*%8I!*eWCXbVa1fWjwF`BcQiO(qH@8l!ya-O?94^~$P z89d`Z|F?m(H)BuN>(je+C(gyhvw|%Hh+OXRk3z|fJix6Gr91>5BrmmKrZc$~yxx~f zL%}z}iwxnE-J1OyO(w?1ZV=GCJ;{0)vPk_%Ux!U;0|P*fHvf8WMM5Pw7djVXj9QH& zleyW}AP}E~`gcjHM&J7?Il`Q6Bv+YwepaLg{ z;3DQ|c5j28JT%9U2MiSZoO@ql;r$Ba(Es2i@|i0YL*B7+_qclumm2~y2wg=~-wBfP{LT|#`K+rFC<6{%yy_ql=+c2p3 zyh{EPiEa7w&}Zu9iATT!l|Miy`dj5_REGdi-f^M6iSzIECc}cKOv_%=L66QB0L~ z)J84>LgT1#iuP2#qD9f;7@yL+J~k_rZy`X2Bz3g4p^xUcY&d!141$RHFp!|3S8dHX zDMbc)GU}?{)WW&Z$8&`7GcjYZ(HHL@uM3PJ=GPzO$hnhA;%+%Zp0k{cG92bQ(Wf@i zjhD~dlvE*ap*Y(w1O55Hr=Hmld*>I+5uumQhtiQ+wW14vqOdS51H=cvqeygWJTMPt z0I6>!bg=MgzRv> z&)3GA|NG9@hJT6wo9o-mH_caI!WJwZ?q~FG06~lN5H4d|L&p0f6D)^_Oo(- zwWT^cb6*1_CKyhbd(5I}{?lW?9h?Yl9Gm`u;zM^j-RjOMYsSmQSySwkVsX@_cg}#b zcEx*qxB?@4(UElRi@)O#rO1mppYG?b;P_mrcnTYFSLXEHV8#ow0Nq9IlPJzx5GYBk zVx~2_$(ULv+iG&R*RfDTPsi7mko<_jfqn1O_pzRD;O{0|hCC5xQlE?}G$_udhI=L3-sbFBZ<^Y=Y*1MB|!+4<2q zlDqSnb8L`-qX{0cI4uVDZ`lft1OBr~0Y4l|M4ffKIe*viX|`Mufm;zi?YUudIe&5!PI@+CW;5Q5GoxQQ4s8u{9z zX^crqhhM)nv5ZDj!%AbISRH2`EP6YdD@$mKdA(u9OK*oL&wc38OCfj2!K`XT03cdG zg|PJ<=Lof(pL}ijJG~boK{e;Fv=A3Z^!YpDtW-R#wiBdiJ`qF;DsIJh=lnCZ_QC(_ z(f)Jg>($_^y!+kY)@k6ypqt9%#q8_VyFg_T5xqD7!wU(1Djx~U5O3G^h}}s4Q#$T) zfe3M-zU)4!F--s*`%qBgO(}0rv#FTw2zJ{~?#zdqgYpS^Soj`bn^p6B){YRT*_Z!bh-X4 zjPvb{1n3;fBh(%es9F4hJ$Ceg%&bYnP^)~!?=ok@<_{oMFu1QTFd05EC(@cgD!N#` zhJ|HjCA5`zMA_y<^RpnE67PMw>px*y2<62YcbDl~kLZT3F1B7&LC8G9VM=JR zv1s6SpcJ*Ci&#kR7YKI`3|@;t-5+gUTi-B!kcQRi!zM+Yb2M4dx@h?pBegJ;n69S* zpkmtn`pB5N_3pFM5@PS&WStP9zoDeN9i5{7!WafO=Z{1p-1zklH{p2sSYJQW?1?eI zwh0;LpA*OM7p6G#y-@5=T6`BActQdqY#URW=|nAmXaer2a=GI^ur{_Aqx?Wj|A=qE z3tw6OoMc#9TjCTS1U6O!o(Emt2iy>N1`=x~0vxLPTE~&G{5?V;5f7lI?jrI1WoLEs z4qopbU?==5Ya7%38btc5adePfR4txNPT@Jlxhy1jNvMj1e-)#h*16zfJp7oh?Gv}D zb$e_7&7^D~UU4`O&3^rH@d}M|u-#Xv7hx6fgWV|~X?b_7x;hBg>RAaKH&-a|;P7|{ zd|9(ZUvNoUDCgbs)l#GKj5eRg63y$3yZR~IVUN8W)4B**dCtv3lsCbrlk!|{3lce_ zoNpaLnR_oK_0P4x!G_+nJt%2UW)=`M8C#+z-wh2w8Q-V@)s@BO<=A0I>BpvvDQNTO zOTZ&!27O_z;pIHQnMi&*HEy&tQ9&ab+~6NO&vYY$L!BGTgJpU>;$+3=@u|5+BD+WP zj>nicc2tO0rVzX22139)?@wk*9T>x8;}@fsy8GGpZNLfT!;c~oA)7C?kxiC6^&}ve zrYsxHk!>uN;_kG+-po?a6sx@&3)y1VemM9mY=T&qz6RRP$>}=LYosRpf)}L1Q@O9y zv9OSAuq2nr2{7L_hl2pD&fN~tZN7iH2vuLvVQ?@F=BEK;2Z;djsj{kBD7!(+>>5_l zKns_>AP3+f2XG=!)AGm4&sP5#xw%DlV+b!2BYpuO)$GzFPcYZndg6@vdm$}g4jk7f zP9ox$>jcH)jHwXXn1+m4IMl0S#^e2n(E) z8C0yo4Lz#dFnpv4;afuiCcDUSHOsbLaG*N$_UzH?}dc?M&=s;y1Q!+qN~aZQHhO+nG3-Xg0sS*sHzUoBap6Ki$>! z^ix&md=GXt&&*48m+FYuW7tKRCh~|m%nM6qDjeGz9|RHK6Nonhgg71B>^*OO(|nxy zLf6}-+(Y^wjA&5QwyF*A!NBJZW|)l;W;^AK53G*<#bnGYlYW(vcTakK*FF^^5;MWi+) zo@aHzkngz1qA1$2RJZ3}!W03=tNIkA!HE@-n2T#h)Gk3s0%rcNjQuP78PL#Swrny$ zIa3U5&I^$<`_;X!a*?5842EKiiiJ5N49)re^gX0ttFhNqLt>%id^4W4mS3T%e@UUF zfhQ|hX4F`Vak?WbmrU%ffH6%r&pR|lZI%1RqZ5*ND___gg-eB z(ejb`IiG6RoYo3ofd0I5Q<@yMsB|+OSZO{D#yBO;685+YuGA|IAV;O5?OdIN3?lxH zEidP%Jl)6it;!pEO^s7SonpbEI}P)`M@e=)hpuFA<_0ny96ON|wyxVdmQi+Dw4c*$lld$a1gpdh2T z{_2S`=aF|IfAe9{^qc~VhYh((u0HZi>c4kN6j?DVy$zv0*hVgdRTfkT|8WTGw1CT`-EM70F ziy*;}gHhpeqb6=3Ar8sOV5#VHrGCivHW3owwZe$&4}N>S_dYIah=rRUF+_*5DnHnv ze~Fa(2!8t?lHtc#{ZI{I0v|oI9yfP9gvw=>MGQ2yDM`vv$4s~Aq!go>1}16IusqwS z1ZZI^Cw+9q>afp5X&*o#uNFj7^ah2eg{zLhi#O-TlQIgd-WE&B^&Oj`io>SMtn#tO z56Z>*(LSNCSRZoGO^#0T6ihhlaxtlCrk^O**e98&VsBiDYlN)2ejoN#RH>tkv%ohf zAVBQeS02-zc%C8B^qwijT{3qU%sEmT0lwE%!4nWIfqAMvE3#ym5ICQBk_y8OcUI2h z?UV8;cM6IYR4!z!EfFR# z!_K3_0Y#&1qYe#RLj+3qzMWMSNH=RhlB^M(`@rEN+;4X+|uE zQ5%Y$*}6x#TS@txJ@t$0n+tpHfCoNjt1zvP+h`yWEvOj>=8rNwiLaRGyp!6FgV?bQ z!Rk3P2J_HYDh45Os6=JdG}kQ_z8SQsi>urtNd-UF468`o zD_KIN9%I?AOi;rfOxw9Yk{n}+Z*ydfguK<~Tea4202qODBnDd1od!9(1vDWnr%c7) z81L?yS0#lMOxhov;e3AHSv~Wy+w4W?lM<&*1v^}|p65SX8<|$ju4nHZt#)kz3u}>z zF18<;?~blLXElU`bSDL=2BQ}j8Z$;#V}B3IRUr+`$7XkbcS4s>eko1I2IF{p0B+vuB!`;j+DUm3GGfz{vxyrnpv2|79T5>e)T9 z8SMGHFt3ExXR`c33@(tbeVO?wxrMpi9Bey9bTE0ane*3oCg$o#R6ewlC#YRXBEb|B zgd!cGofB?PJ&ODlUt`%k1_H_xL=mc!MH%d!PxT(H^thKvO3q5#ccc*&HHd=2e79ZC z6YsAxABvHsp)y*zVf{Lr`hz)p+eAYR@9u3kwDZbYn&sQ?vO*KCtvdhQ?P5e-i^A6J zV=u|OWRGbvaVTQ*>CZaaV^8|= zhsJEOXMTRC{+eeldUBhATxI&M%TU?nWtSnSo}zB|cqH|<{aKaYG!Y;^yg)_KL+@hlMUS?C89PX?gWx+Ka%>}(>U3y^5bjkPm9DX z7{)N@oioDm;^3QA5$&Q$qYY7LlX_4syOE`FTIx`KEQ&NJ6HrchXL3{=IE=kO0ZPd1 z;@ag7TKeIyqvou{nyIKPd(mO4&J|{xeRu#rRZ#~R)~D(bF6Vk zZ5Oj~=J$>Ran)18OY&!d;g*H0dcI~U8##iSFGf-FDJn|<`R?vrb)3y&me9C?!h1S* zydGm~Yp;V%i)uIs{9(6089b|;)q7v=^lepb-@@qj-6;+TwED)|m)n%o17-PxfAM&<)Ql5fmNf(G?87)jvBUe)gQW}m;BBK^ARWpm`&>(llzYJnANz(Kdi;9`(BK!kVj6MO*y05 zRboCPLt%ZKjCLO$I0RGwR5_+V8!fm|A{L>2(QuNr{?jCm&`6n18E%nAEv9?$8Ywv* zu;?1hEYD}_A*7;i2*|RY?6%A+Ly!^XmXm6Y&%yfJMi8Dh1Kp;P{AGZoaQhjHSthfhSHG*S;n?++)2SsXOQcsgu+ z%rS)sLoY5C_21J1E$+WJTL}CvG3xvlslB^sMK<<}=WFKJ9xhwp7{}UHL;Opp9g%Sy z6foq>WV63z11%ohD9UA*Yyzn{oGNGH>|px$9_Jy*8Yvp&7_iHZs5+_VYUukEcQ886 z$yQH?76*(poQS+oj7w_lXOug|kp}1UFQ@|C&e?&8RadM9rjq4R@J3neDVgEl@T}b} z2D01WK3pz~e$dS>ijJ(zY)E7MTrP4m*95sqEhpd6em;k+$gbPrhTDW36hPc1`z$o@ z*q90($r^ph+hJZsPB|?*nuwRoZFV$+@+!8`vb)P0tv-Gv(Hh8EFHJblcIuI5F1U3t zo0Dka+)utC6tSRn!`)MR(GRR?Xwolntrhw4Z#uI^KK*qAdjc!ZU<|4w}`e>}gN8Hp?JRlapM}D7DKu z&>Ef?op6%FgfCz0M1RE+ zn6A)AebN(%3&Jo&jEc|mWWu{QLS}ndOncJq&xv>oB~u$rn%m5jxLMgomQ1Dl-6wW$ zy?*kIx^pyUwf%9;AwKiXlmONCu5J~kWA%zF^O;UiF|*Ra1H6GBCww|{j;`diIyw`W zXbTA`&Bb%Js72biSPA&Krm``$IKq=O3@We$X>q}@(Tc|*-`%Rx#tuS?Vs7;h*UwH< zyLd8`1p6Ge^iRb)QMCWsrAD?~!Nh?Nnt+pnZg^?g#B>&d)VH%kgFWSC8O>wmuhP_| zy~>c=_gIdMzwH=WR-w%opc`RLeWGw=6@>6=p^@fMzE%??G{9m;0_moZwC>5y53PQ+ zcg64Odc8<+%>jJu){hn;6kXU$y{{AiG_|Z|6%xwXmgefk_R^QhD?p}4AbTZA>hTHw zT!Zux#KEh0;kjb|Uc09oO&<@EZBr^=Aq7ID z5kW7Qgn-E*U{uOALKN}aya@ft{h21K2hL=+i}NkLgt|M<8N4u8OAP-|CxQe-jBCLy z>r^?X=aIIqxFO(onOK?M9qe~2`bj8d4et=znqdQ4qm$$-vP1maDO|?E#4d^qK|Sx; zvNAi9&{=Pj+IE?%cKv&hr|jbvnR)-%53DdGm$C(Ei1&F$iCTXCeCExx7Tn?Qs#4`8 z06c!~>z($1)HS+~aFdRDJoo1(q;PMc+UrB1`~&W}2(-i~>{_jGZ=SrVhE!xz>bz)$ zW@J-}w3(DKVzpdvaSVdRffd)1^SUH@^oG^)z-cy?X&ptFS&E99`P&YCb(}+Z{y)glAJqdvrSNR;zkF z%0D{Xqj@qr6&+RQ2SGT1p9K^tKNRFbzaX@J7c=lT=s_1A7NeQ2-78)%uA0?W8+}zZ z_wqdb$&_Gm15_*j417v0I0kmfM@!OId(O*7&!Xj@T})Kl(JQ}GpA!>_D0c_KbgA8X zOYep!;Y-MgV=k*0%(-%;0Ij%o939aof)=VY-`aKIaK)--tnHGVBPCA>w{C9z2iRX$ z@+LD|FZ#&Z{euW4!8U)O5BzCf_z0?!O1Ef*muZ7k3s-{~cHa^FlVO#XMmDZ^gTmZa zwP6XM{Qu$^D=Xvk#K`jhEgD!u`(wh^C>lAha5XKsR37(wqnLDWME9=@M+s6?5Z7dM z?&en6wj3@nBLmm#cP{1BBb{`FR?EuORk;xAx1Xy_nN8Wp@qbDtYC}@5u|Lmf?JzGT@O^0bgUvpsv8Wl`tD;JS_L8nghs4q z++q^AfECM`JiIWEaq+P%Quwm|B^-O#Nwm05N~#7sQ=hOErovE2n;4hTv&j2ZIw8z4 zx!rFIXdEe#h7}@I7265kFeTs|dQUB~e1J~N*e|;Si-32ljKv>9>*QNr-Z&btQD-L+ zAqh~gE`dC!XDp7YBAqv3y#*av8Jr5>1V{~~R4-A%$3?+I^Kkd$adLjCX2wWd37PNB zuJ{M@xv8tnXJEMB6EnIUMZbu{tN!qQgrU`ZxKh%++4@Nkh5#;M0F*Z5v+2M?|Awlp z4F)9B?DiP$US0d-2>4H-;&b^w4NzMgVb2IzWSZ^%d3JnIh2@chRq!$t-S1hSoR-KT z#}Q?E)$|B8J0ntm>uZH$H!5eZps?!Tf8@KOri;)G2k*0KRIE~sRf}OAYaGKrDnlO< z)gEo02^4@RK@T)^QI7a2QdOQae9Z7}+N^0MJwPTaJ#l?PMzBMe52(e>{+{vk-`d~& zP(?i8nge9H(nXQgG_p*WmgasU5+P_JodgVj`=h1h+gnbL?^Bb{t0cgaJ85^usv8U`!&QK$?QlT_M-#kdh%OmUG`w&Jq zFTb3I{Lb3+@SBL>;e#`*(TlC*+L<3s)u0TA~pWx-z-ziaC#0E z@~MW_DXELYi*Pt*dVBdjookjkY^25UxA9Vn^S;+LZ9%#$tBF7M+*L(jh;Os&( zUCH>m=d00>{d-QiCO&I}o!ze6ca`VB*Qh2n4;HbpB{8%< zSotsA1pb?>#)N&c6f4DK_I_UJ(|)I*UKyiOqx0G9m=xtHfyDOuEd~tU$=%78v-YqP zb34Olz>PMGSd@S!qNZE3=!sL0MtPO!1SQWPzix#3M2 z-v3^BD!%$GW<(@x=O4S`KUte>i#vnK1ua>XF}qfbdY7 zD)wM+Gh1j#D6b06(t25T6S>N7swKxG$wDb(h#v=RnW${S&Lg#Kw8H_8!EY<3sSivE zv2*Ud#AbbJ#D$9qs!^Mf-QA=S1Yvs9D=nKVS9DX|+~@Gn zP{L<3RZg~r3gIA3>cBsK62fMO&})a0=t54v$`{Fwhh}>xY7L9~qThE2o7`0fG&=Vs z&UfgF{p-vkN*9qOH-7QFjaW$8sZvG~i{y{z$+S9!7mK_zMW}#_P3o|rG=>w5jf6Q>;Zz0 zn<3gOo*Q%~n)4Av!B(9QLn*9Q_&H@#`sX8i2+-t&kn|HrEQ z6ORhOy5S3 z7g_e!B7%`|jic=Q%65N#jO05loHRO#a?dOJWP$d}pN$#aKbP+b!i-hO?CyA86Xhr6 z!H|hwcLfQ?<44fd5ATmFt$u_jmAoD{p!w~Ml0Q2~K4joEo01N}R6n&ZdosgOI5e5d zL^##OXj|pUPKmUxwVA$5nw^5qc^E3C1()6nkf*Cgt&b!1!H_*b7C&LxtR$GfqhUG~ z;^|x1=b@ie8x3?6Me@aKk2^Z0ZldvcK3FKxu42RHcvVsFm1-!s)vc~Od-T9E zPOaIO*SNjb*C-pv6cR#Ak^xahckwwd(k6nQ4l2gd-!c6%mlD_0SP$W`Zh3c&s^wP2 z%6C}r{-O)peK@xsf~&}h2u5%p^{_-F1pM&N!GiD(FSVz9u9xq;aQQTl zSvxMstn|zp>3eKp3AitgS0$&fqVZ?;aH04(OD}=8^O6?%`Ou@`Xt11t6FC}0{Rols zSo4LxtS3$z)QmgUseA}ltbMW)ulpPV_DkiPmo@c0?Lr~RO5jd0RX!S>n^8zR1rs-8 z1U}Jg|9!fES75WrP(JXPbj~T09>A(~yIOqvz=L;4^Uz9lmI;Qy+GoUL_9E~DqC*8?MPz`)etYjFt*d&VS!w8x!0k_!1y${x(}6V zdWvQ`tdd!QA-iAcA?5BX>#<8b(LTw2YvLZ~8qOpi4)#fNQaU`e!c_ps!8ihXY43b! zFnQ0>#@1ht^2TzVht&_I;t5SpDnep23f-7$VcHV0uNOYjfGsoW3TJu9TDv<*E|f>< zj;UAdQNaN@rj5o`=16`SHC~RlA0Mf!c3(t|9v#OIW`wr?&hIox7m8#481-T8EI@s2 z?1WWPSmO@e^eI5F<<_epdx~K(Bbi>V<2Yg+bU1|KUoF@rf%jBGCbUS zD%M{L@I!v}KqLLDvvL)f;d{aPx4G{J00=UCT;(Nj4Z`14ApTX;YZZtlGYCyegZHl} zRE@_I=htRJ1Q4AcS6pJ4l9BgkQ}>4_3H}20*92*jJHQl+CHv<8~^JXkilLevTnA|FjH77>H#yG%u$98Y(TxhpMI zTmbfV__+wE6O^mt_ZU70_Q1x%epJS@6jPMCPJ*+XRB0+iT6V{Q3O+nLrNV<_foamV z$e>DMx#T?BM?y8bEIOG0C15ULB~dHVP)n&9Dm_M2<2QKxMP@P})9SeaC+J|{zqKsn z3SVi!keiTLM^ONw@NP*1#+_?eFo+ad3Zy3cJ!y57k353AbpzZ zGz*~{rJ^%{y+9gsX~3=Np0Kj%6t);nGe+7Se~ESDBK*zYFI&fwp)3VhfC@mqT76ZW zyW+|BCqPrrz8S`iwu#M@R+|a9Fj=Wl0PbJIzPO41t|kP0W(h9)Q* zFF27s2?;<2f*?4~xo7->&-zi`d+(d7NbZ2gW-O8QgF&my8lGVqKx8an%n)j`s3uj0 zzJpl>>Hko%iJ+)u0|0)9GU_mgyaho!z_~5KDlG3-RV1ZJpS=}U6L`RXKeVxzAxsL9 zS~a(9!J+jARK^G~3%QM`Rz3>rZwblb*V0*UABem(9Mj)*%kRoSG1TQvO5H<~jS1vU zk$h&2D%ow@7pS~|k;(B~0#-6DcGc6CW|W9k>iD6oglMh)<}C=}7NO{b--0BRAW3;P zgywU~G`h8Sa>MfKfofQpjtVps~7K71fk>B6>$X{dnYzze20b;vHq&xL#d<+S#3zxu$cmTE7Yzw zx{{tjQ`|Eo-kv;rTeT+xHGQ_ze)I9$V<|`4Hm)F8Iu&_f>(r28b59p!{~;?D)r9V;7pW|4#EG zx+&kn)NR`|so-_OW%WUjMJi+s_JwCc1<5zSODT?XjR5BuvVGz?IjBF2OU6df=xylg z>wGH{{7^97Q}I#&t%_U!tPUa#1Z%)n(w!MRqDpVpp*WfrBZ- z$j4F&j2dTx2gIXo)mQzlvsr8Dq#+ePrP?}H%p8#_nbXwj=U15~`2qmaL!}!{6J7N# zvC^|C060)7ktQm<_OJMZ_Rifmqc?5RRQu&(&DJ!XVY!V`wCpR+eq8(OBeY;` z?X_Cd2_tK&WamhLRHw?^Y<5N~m@^X@bh4qyle`=JVkbrhHFmN+`m=BUwh0wRE4Hb- zXP+u7V^yf12(hFkq($!MCB>zJ?AZkqmM`HZ-XA$da|Xw#8AsEfdYIRqS&%AY%ZExE z^T#qYnc9NQi^jcwn+38KFQ*V0^H$3?kbRS)r{x~Y z?~_AzgQ?Z#y^iA5tc!!#rgTpPiy;6@lc~cE;g{E1$!wWEu5(^?y}jc|&GJyyK54Fc z?iGX^8{O26o1EW%FFpLx>~`mFx%Dn3r-TTgLBf8q&)3xyzeHEs9 z%-CiFNCSb7&>68`09z>$N6TJLNi5zlIjb?(c-1(GD`Y{7Iq zq-atUU3|~I8^#|>t?{r(M)r>W-o6(EH`iEzYf*qy`)|4vUtedQ#p-pvRDD(GUH z`~cgC^&`czmAA7$k;%BdF?7=~Z?V`IzK_Ikka!W|C0v?|QC+nJ3n+{_#&ghW+ck47 zRtmE$dEvNVv1glO^qjhpGt>!1NVybAz+)6w7$YI3VH?+zStyKL%C|*qlffC=L#MgQ z^lQfe;{@a|??J+^X;$y!Y2y3Tf?dYj^KmkG(;ybhr8^&e8qVqDJXjN=Nd*EB2zN4l zHLO*QYk7RWL^8z5Vg{g7xv^gz)Hp=}v<_&ZgsWOofmK?Og+_O<8w7{g`6FOhk&w?* z6Q_rQyV*jtHY1>SW&se|W#R$ifTX~O@m$%T_bDB`c+Ko!dcd{@DpAe-z(*H&Urug# zr#{Cv@z>wx@+JgVgI;{P3pVAu{}2JAiNJG-?KuW^MDKsG0$)W9ArXqyX+IFTO41nN zN+X0qw_TL&>VexgEAB`+t3 zXDRS4ZTOH-Y#x(&W|k}`C{BIelm^r8%S?yPN4j9QP?Bd;BJuKQz==u`W81;v|Q+l zfWuB5$QrDq*sEQAI~4ESxv+^1Xt_;WMbHXB*(|Zr3VA0xV7=c5O|@;kao_^L3rB5c zUhewHD~_MdxC9L;CZqih*>NWYV@a5j)Js2bkO$`mv=;DR9tL)z9;g@pf)usLXc=rg z7!_l;+~6<`?YSi(<-aM0*^_ujfkY}yQX}7(#w-2CRzm%}QEXi+Ak}2fs2?LUwyNN# z*kZ`ndAg2$^?ixoiqFgGtejcZdid!o$8DBPk=@X4pY5SlrL1cPF=HcHTFWKGwJgldSqrKf%P_0`FNQ3g?Y`tar4Sjjh+O9!O^ivX=-m}vK zoa2-Qux(3}z7Ts3GS{KF(9%CViM`USeZ9E87GH&Ruq}$XnS&M`y*T7ELWI4gf$=Lu z!6*g0b;4znk|#R;S~qLQUDb~Mao*^sB_8RLofU2A$w~5nW^r&9C!%LN$=3E_xxw6u z+0Gr-PwjU4RR7{ri2HDaYv;humF1Fg-zR#@r_&$RxT8X=xHYYB=T2)mkCiW3Be&6{ zo}~=D+mD_q)Bz$x=^fMBYsN-P9sSX%aEbe#R&&sR)D{FX!WnKkfIAvci28+fh~F|n zxT4tuNTx&6Jl$thhE(^8GL@2^`xA-=ri5;c*qgU zf8t#+CPS;6c5(F`Ed0BT8k%^Lm_MQ{`Ismr8v{0I_1Pd$pm4`$BbxC zEx2o8C<{Qpl`euxxStk$*|kev z2PR_&PJPt3oO53t*#}ebp z|CFV!N?7=Iho=1Z_U!vlag-W8K2J1A! z84NpOBL?*L2G28D?zl7Oiu3#zo9SYu{B+`^SU!4T=SRyz))L+w*=h8Pgq)yX3Du+2 zzKhtdj3=?`Ma16`c9i>-=9k>?Ny_wKwWBW173%mabTVjdMU6*EC(tJ10t-}^0h$1$ zkHw(GWm#1o=QBvG?SuXB!c8v?OIZ;D8y`)3xw1r_+nqr+zPvlWgbX_$- z|EN=3N489sdJC68?1MJQkI-2lEz76saQ(gTqT1OZoUX$EmWzAZ6lYjYQCZc>TEeS?PE|aJ zZ?@ft$j#=CO!D~eb`OW%-=e)$QXz>I+7ZHSxk9A=kPMB z_zMUtc2N`c+hB~of3Z3i^-u1Qx|tH)C3J1f zni@ZMO3x0(!(8Xjm|vYA4;jiw>&R;ixFI#*%KKmtEEKN}NG3U$59Ke>kRU<9Q^qOC z1>si_;{}kSwg8f7WM?J@?5h9BtYgzz1#clWb(ltv5NCEb-$_xxMfX>EDO$%5@v6K- z^y4^v$NB{!%sDXhYN>&u0qVbs%Sed;!({^S>@KPPUUX)pKHexiEXdmY6@nYlY=dO( z)XLhmK{cnz)NL_>RbhZsJIhJ_$&>pFzK5?+;n@XPzU^KzC`YH zrHBu=!HRv1id4TUHk;u>HVrjF=Elc?wUMGLhItAc3hn$wbRAv47*SyzsQNiLjmDar-C0=j&kEBV)nN4~)gz19Fd0ppY_Og|^He z2qwNa2+_R4$Vg0|Nl}CjqZ+Ty(W|RcIT4^1yA3LYathUiXr9A7`wkZ$tk$hd+>csX zA7F$Z?O_!bB)Ss>MEwmxb!_QGh!5si%594Y=h>>>>C8(;4=!dgVl*&(C)S8xwT*}Z z5f%)k*Hugq*xD>tH7Ayj`-@h(P$0*hYk!f&_g|tvJWGkOT%2duYf^g>yPVPnms*U5 zJAb9}zi*$#Ik%V;P4WC6oV%Sr#(xppK;mhYb5{_k4X~6eQx>pF-XSs}S#ofC!m9I< zvONX|t2eC?6a_Cpyd73<(2H7kw)-zPVaNexUn+soObt!(g4Qdsqroqq$2@%sS@ubu z;EE2s12DWXV=!9#U66RoWpsi}fRCRWtZS!gJ{~gwcdpC*D(Xhg(_*d$VMKdTEg_({ z``loF?Hg&^>qSiw3p>5 z5mLl685%@6NS;^`-2=}*=hbmk#{te@TBIhC3j#-n?W>gRrTCA1>xbVc_A3qd+_ZZ~ zw_779iz0%vv-C``i#9QqlMd15^L8wj&2|EN=OF&un9~n8;*k_;Ns4o8UoBq7GhLm@ zKB6OYb|FqG<{9zKv9{c;` zrEI&E>BJf^3poGK==T=QsQ0|zI2rPXV6zbPX%Y??K{@xdqHXr_srZ6&nS`Iu%;4M^ zVpOe(JI$-nMu`QbE1NMgx5P}y7L(B-QmJX2C?kB&%(i@LD9+w_y^eC0L&2ow5u|;WNM=9T!ZFhfQg6)vf_ag~=~xFy@jl&|P&qRtvBlMfG2 z8h0Q)+zh3UJ7^zcZKO22YuL4K{19iT@Oo)-C6V#qBz6F0x&f_%797lJVkn+(fIt>o zF{HEWL`~>XPzdfy)#qnOz|FY}17ZSc2=W&k^mthSv{^;?@cgzjiZay7PLDLMMub*O z+w$m;$j*oF0AfExH2PveLRZ!D{5AiMY8{A{LOH-uS=37B>6}Flt;+xx@8>KfKYyQe zZqMse#VW1c31jUBZ0We~C+)vmXn(8z-hXjz(^<1=sc(aF(jyj%rIMh0a+Q__{&A~(&AN!)sW>o z?ozfw?v_B}OUJ+^Ww#GY+G=lYL^VWXQLH+fND-;h_`5ryR5a~`td+@1Pi9V~d!)F_ zRx^M_`QYixlbgWWsN9!l<0w>**OJT1n@3!*YrIS`UZWGjtwcns6KQn_W0=@nJImiG zXPiru$G(4HAK!xmAGLXsKhehGjbOI`shQVHxZTb}%WIr~C>J7#^Pl$ll3$w{<=nb<&~d!v zITR8VGm{#n^<30N)gh=+PKco-f9%w^G1&$aUzZQ-Eq_FyZf7hs%23(3tMg1P#)CqW zKtFq$;UA$Kv>vTn)6*elgf1c9k&f1b_}6ofBWgA(PvJWLI#m+ElT=LDzNVY6!7JPr zOgySkv@f^7?b%zI9?iI;5uVv0Wzu4@+%1Q!q^7pya) z+mh$3^DuE>0A)oG4a@G8S)pE5YM?%zm0Gl35#-X6>c9lB+@N`Rc95Ff3 zyN$@KtE*)qP)8O72QeF|%l0-hOMTem#KjgOKOpJE-z9jD`TOgN29?~_F#w3o&Lz2D7mHe75c4qt;*lC3DxX@F$lUft zOL|jHjz6Pjo&}Vdp89R7F4?0pD3&HKXL@6tK-G>L5{9~t2=%xazXs)QPoCDpUfxdd zQ)O1Q=36^=k=qKE!(CF~mZ)Wrd zGmU3$5fR*w9`bZHpuysQnirwRAiL)5`X={Xg>Gf=u@(-d1neZ{YwcSs7)5z;#(o`R z>*X*bKJRz0$gI)=y1&hC z(v~oUVA1)PMuJEtncL_gvndLR3UxA7dBQ_IB-N2Bd>BP@iFaXUk*3{&q7hXy7gdVv zv!Q|~Bphu&vhh`;Nn|Ott_Sm%AkOBkQcZgN?o|EVEHayCAQWlEn2jc?Q^4jL3~A|e z6)J35qIq*~r@j82%r_nr=Ag(RZ?$9Unu&6I=xD95>FQ@>I99SnCX=YIu+~l3($+S9 zS5h)nyAAIt$Kv*}GHamCLOqcSTy0@)TDUzFIC2gZNwwfmRX&!aIEO@Vw9PaMT|)tW z$5a2rArZ;!vTaBW5!+70-i1KTMyCGJFw}rTx*<&9}149Il<_g$l_HN-ttv1Q#KIz@) zuKsSn&zm0obI35pT7J=&;FRE$}3{M zNCw3fBz5QnOSL}(ISo1O%mO}?nlC-TnwsjyNbx7_OtnMF=ApaXK`|Lx0k7TcK0$=X zxaQC3BoGWgk*a@ral+~}qNQX6UKi;GV`J&2VN^evRjiK@mY5O0yXE(&xN$|G*8Hj2 z#|>2Q3^d#8rQJjrT=eG`S*-1%QyQwLahC zUwIie`es|Dgqm=YQ8PW09G0Jzh)NQ!5NPIUT4qyOR|f0g@hcpmKt%(jQV^OonBJmZ z*fB!>CuZ?YQGYSG+(@J|7>-ENz>a)FwINt#+cHJwb~kK|-BZarvgsdvN5rAZ*ov|! z%8?El%||wcC0h$$e!rK)%x3-<|j2_jlI1~lV{`BPFfY)KtY?$LHQXN>wX#cS@g4lMHVYd zO!6)>rdy>Y5jhDf7J-=GZAd7@MqIc6opihX@52OY!mOwMizM|VTk;G8mmnm9(Dxf% z@nC|nF;&fdQtl*w)e6F^`PcIv&nk?ABQT?rHqL@!|3Eu8{jwWz^vma*KpKpjn7-61 z45FSLM<(T#n8Ur^FZ=h#Fwchl_Mh7uz3vv04n6)N5joK&tfdSKaVn?1&X`}!!OU;v2f*l+&(czP%eTP z52zd*)G;NcCcy6H@o^LIWVZHGZay}7Cy7Fg@?tA~VkZ&!vm8|O+2tkCKKS)%S}j$8 zw?m9zrNbHcvJ8YzNuJ!Gkdi&Ns4zoIU_b3J_#p?xf^1ve^;YlU0mJgkctDzk<-L%v z&a>WB(%sSEQYhcn2u3x;tG=2*@FGcOpuG>^A7B9~BIjlR1z0sos-goIph}8Ai(DHuWk5n`WwE*9XqnyEQZRpOOSPwn@&EG?lUXpNG z!fZz z5@2dUuA1pYtO7w28c&08<4Qmcja^9s+|XFo(o52cy*6* ziN_=qpr>O40zS9@K5vFOw#+eEDD-&vGw?fh)=3Az`HP~wiKt(sW9^Ar2vKoV0%p>wph(v zgw;JtGhyIaBkq%bukyG6oW30|1fNZ z!T3k7M;rI3_-b4)R?eWc9K@ZT`aL)C|D5%F{eY z30p#An}>q0HMH4ae2JyyIZ>rnZ3sjsz1)KOtPDb}03DA-!#dYl&35qD%?6V6CAH~( zC!;?#O1aUl=>&0(U&rvw@xSn>;JoZCH0dHMd1`UHrOm@%j&z%-+1Z7qd0X<~qT3J; zBqk(%tI~dT7Y*CcGnJgCKa_+ePF1~K&l0A%1>3)sZzzIzf0?B|;rFLVHX`uwm%tSF zbAdB;O|U0{Ji&8^skH|bCGS8CVW6hbj(iahZH#wsKjUe)aj45$ z*_~`WZLa3c;GagXTMGzh9>MeSz!ykmwvX-pc^1NG}9U z+ye(dWy(rjFZV?)Otbf}a|HXv{iUMpJah@?$rCP*gD9+h$&WM*U{bd(Jsr-S&}081bWoNBd{NDypW1 zP~$Z+r24XPoIJXU+Wnh(V}Zd%)}^^CVZED4*MDnsTi`&l`2U`d7EEonwrlTw3!W_t zX9KkrC;_+8*8zVc_nS-i@kzY>ZSp`VA^e*zen7UCo_Fv9x?pTw*S+x{yq@Dh#DN(Tuy>gE#hAj=<;OWVO6p-e=LM2!g6ba=j4BMzu$*xYm<3l;Yy#~ zUT13FiU``b9j^qUuIZe5F`smkV&i`Exh?W#1;fewPFL1+G_$9d&qVWyQ8)X*CNLLe zBI=rY2tksfzENp>nbjCa&%Qt>ogVDok40?;EP>1WPn^IiG{PRn2afZmB8s zvB=y_6T$n-gr7?aUcFX5zjjeqUat33I01Tv1m$KA;mOd%gH~R(9?;~qkhqff!|&z2 zH`Cywve^BGMV%c%StOHD zR=#+I6+w=HgiME}gjqvdH4Het+fLC{{@63uPKODiPSaS}Iz!LJN&NZpm2ZU$f_t_k z&MwDM#%No;cf}8<ckNg1Jpe*NfZP4ge}GO@@eR5a({!I2W19h?C-kx0;w>23j%2 z)~{!+Wp{j$%s0~aMUIcV*GK!>#e{IKM%nB?IBK38WDrox5!H*2j)Klty!~P zr8j<)ZY8^QVjC{>0iCkH9;NwDr*A|5gU~|1*_G8T*G1{(Jl9WSm^g|LN@4OV!=R3#8HFr8k$vqU&8U=Y8wy z{$1ehF3nwOIli}Hdjb|Xl~2)Im`xUhU5((5U%z%w(6FZ6b6hZU&csc)h!yfv%|s_a z^iO<{$MhU~&1ja< zRd2Jk2bcbm2!ZGwqAXN&89`iNcA9Tc&msU<%IKDL0xQDmK7=IY3%U+Qx7N?6I&XbiFk8KN8H~^}LU(RV-(tfyE)}CuvcN47^oBdX|2=WvQ;7c_8XUhvK zOquDS8cQVBLbCFbX~kc%aWlUb8#Tf(7bLLABh|fu>;)uMo4m-v<`jVY!jxL5qnlV7 zg!xlqEANac>>%oN1NXisufiDW9PEG%E`lkjQ#%prYNf-{#gUIef`;u?g0J^hKrI&q zOI8;KrU0tPxEzuYbBlFIhf+_C2kRxtA2&%5C1zG7_$ya9fT$NRc&2zdKY#AJ zH8|2MJU%?<@>nl+u{@_=G+NFI%Y*4+eCbh9kGsU6wo$|0E}4jT}ehs@lCVeQ_TnS$AiDsNBhA2>&(Z2A*z4i zd~=O1i2)*zIjO%8?X-Hk@~&UNw2kgIy+%&kvV$XAAH!tNGdNC1Jl;z4QLc1PqRjcz z)AK3OUKC}F9fAZM9hjmwdxiWUnI%gsI&_?w&xfYZz)V-}%kL%1p+7o0;S;4JJh$VL z13@5k&Rsy;7fUMNmlXGiR>z}ZQxPH_=zAa$u`3tdpR!NzsWfpPdkt{Cefw+O%>0oi z`;B-hs7{j=FI1#1Z1vvjJ0T5h!ER0Ak88 zHge4xs9_d?Ry-<3ydKitn6$FdthXDb<&$Dvzc*aSQ6uVjo^albKYP!|2MBOy20nV4 zLC7;A2TUyhU-a$_OGdgc6@VMin@00>7l1AM}6)jCnM@lcRZuxyNS3`7kTzR@bS! ziN{OsC+?5YM#1lZ-L&g#h@-c}?B@LGVAWjVc1z-{uhB}AjIFK}FGujh0P)D44b>XJ zCjL^V*}g_;Wm9DkE%?j2J|kywfJ&vuByvlaWvC{{SxDR#(e^oUAV?|r03OL_*wPAQ zJ*rysk%KO#d~A4CdzD#EFpj2g>(2X`dPTZHae;#oWMsg7#OrdM-G&*7ClZc7=``*^ zgxBTu-I?!wm>)g6KQZ=*Z0&oF!@9=aZ7ORw=#kDeC8wYX^PTROL!YBeLT#H+RRefM zFL_)HEQFhchqa%y)`i(z^yAPUo&E7z=T$-KI(Q*56*x_F?ov(@mfx7?`YeClQ64^; zMp=3r&ciLcL-4#wkpbu4lpDOknqp1>!+LvAJ^P^s_|UZ4RQM4Q0u9$c<5khk+bbv- zq$`up!&*_6BJep0H!y z0}D-8`k-hdGIin1W`Tc3k|Os!5-}zBvdnHVgn&~37Qe)w13{Vdw}cVu2@YdTXmvtw z&Cr*$Q(NDWcAKU@uCS9B372a8UdqY#Ney0;eK`Q26a$=EU98XMwT-`cqi)U^uPs-R z3Y;_lVQP1AX0Dnp=Ev9(nsB>DgDHACmn%{03_INvhz$3={S+~VMYGO)0{?Y4IOhXO zipj{33?FQoabW%k9Gr2wA5n9mmXdopIC>M`had@3)YS0AVh=`>Z>)Cn!Qq$OF-;)h<6It(cwS8Ju7{<;p3p zk*lsH_^y$a6zIJRl_H>@n&}v0zjX*?97^d=Gy(QjZ)}K#rn;CirI@OmbcBDnHa2^h zNx^>!=$=eOoDDDAS0eRk+-Cn4pwrM`2S+45ohg;!xT<5A&3|hy0<&XcMEEbp)DY_o zlF-9@A2UdnK|IG6BmS+A)r61lWz;tx`d&my$EAPli~DyI4y7MEf-jv}C3onOjIHdpPTKQAXgi2(?Up?<4R9w^#yw<*=vKVO&0&zye+|+5c9J3&0G}bJv5=)Z@X5J zN?+4|_b(KOwAX@U3z)=b9UgjYeWBa4%~W?ILx7m6*HhGS%?TNkkpH~-^$@!5qEy@G zOOsdBhU*nT%4IY<-}D39p(0>a7F3r5RfZsQlV`pG2NFZ7{AS5SRvJB?9qk(a^E|+3 z@!U}YsH2HgL(t2WybT!RLMS#JH&&cDCXU0~&wxOAiJMXb(P@kT(?+!7a>y&z$q4Xi z=EIMk+X2k&1Yaq$x;_y6i^?o-j>1;?IB(YsJFodm?nteb7-~v9495i6CljT$hRms& zgSO&@s1m`R9kusQzn68R7oC@OOY|SOnihN*t*&05EQJ03bX+-AZuQ)#P3Jj8#Pu&? zysb_Gm!DH<>*Hq#htFf(9A9TcyA9~cv&%2vqD*U4J!CdHO;>z}z!meGxBF+#r*EKm z!6Vz6m9|kNwr3FnTbp0TJ#d|&qeFi5ylVd?V5^A6SlF1EHOiRRB+w?!M{)Hs+Kd8a z4|S*NboH8g@{Y~0=2Yh=GKIQs zEXkVkq44NZRWWH%u&|9Tx*;7{it>V1h?m~8Gcau9ueK&67 zW=$fQu87v}5jx$dc2jX(+0UN2o95g1+*(UotE>s#@Np1%CdQGO_^vp+>a@DeO@a=1 zq0)999fe3dfkZ)Th#W$s%ArwZiaU9dYJjtu+D+Ce7um=3EOpISg*6Pa8~Nv6=LBOk z+yL5K!XfMG*}2mISo(bIp-~I})U8^Kvh!{dvJU07HA}ybP~A|88dyI!I{3qL)-91` zYl6Gzd;9Wn)LC*A{XJprSM|%1I5;Rsb9fU|MILqC_k=@}{`?P6Dd-<;Y_%%1Xmgx( zcSI}nlI~i_T+I|g%D-)aSgO!z@3xXp4&_kkEg3pP?n>pKJ8wT*D&ODS&=wd@RTZy9 z6X&JoyPm*7S;~<}S*)}*HmY6^R^wi;@Y{U(N)?6p-@JM%cN$cnhURR;#6eXsHkdcy zbGOaR4p6{vnX90s_)Sw)gvBVoyOpg7&?)KVH!#pO9Y5jJVd>XF)AV)U^m~&bqaGA~ zRs1-5_yM2R!M=g?5guqZ3rC>$hRwFu!>#T;AAK1gaYy>tu>9Zw$vmzyMQ|l>II}y` zBSMv7n@>(=(DF+B7lV^{3m>qg7R0(i7j0AT{h|oXbX!gQN6YsXXFdQ4$m9`qi(_jN zM_!Tc=pEIeQT<1L!W$kn2gRbxuKGM4HwVEUo0&Vcgi|IKm6Fz~mFUwHf6WoNUc%MeO?gIQ9OPrDWsgHVuo~8}{%NRX#ud(Zrdr5k&XO$K@N{k(9ZvmChlN z5@aC+)d=>ik_|0*ovnShx3jS1h}rI6P94B&Le!;C(@0bE&7@hK7=d8&<3S^yV}en9 z%e?JE#ScC~VaBBsvZe>?FA{!UB(+TjhLBPq?~T)v=Kx8!Jv{)f^1J_hJ!jC8V1zC6 zyl8l*hsj3s)+^@efwk+o^w4wqqhr5}dv)laip zkrX%8o+5sXTS)`tsS&@AnfcFGjhPv_@tzl)vdFx=xA~u`QLeiaoNh=*BsWWy_Reua zl@GNK-lBIx%tbjiHI*6`zRr#5Zlgxdh8)MmEq{P11@0+(L@1?4}NxI`cq2bhk-#x7orZRqCj=o%~O$PA4w_tV2Y7d@uS zp(kNA|Bj%<4^B{Se74$alfj9W#lw4R;P3Iv^g_7)-S;&-m>;J~U|~-LBdsMo7yB&X zUJ1=WWfy@w&KWOHI|_#3*0VgG@~V{yL4mJuCL2+~{DRY}6u9RnyH(k|x^_`{VU`EK z7mH%eI@RQW?dtsdh*fTsVNMl<=^{z!?|NGKFQg)Aq83%p42|5`E-iNy&4qD~eWGM; zu7c;nivye4K~bn8O1Q$YF~nnxEjheUH8n@>Hn!i+l%cQNry90~1PhGd`wt59gjSzI zvR%7JrfYn7ww3%*@(rY3oWxHv(&skOf+&^LPPrXzwP!!e3O{W~-0=%)$$tT{l(-j7 z)e*#{s8%HA^oPiOjgV|R15=lQssqr?&5r3NzU)i=oQ`I)A|I9jSL#q!fkZUNMWyY} zr~6>ncpZ^Ij-LLQ8MIvT@k;ltMJXD z6aFJk4s7elkcyU2gv@O4>GHXGU2^+ew$X23RI?=MDmb){b!HQw{0Th3i3rL%lkKwH zhXcSJZJPY+qu!YJtsy}IpuY`5>E@IeExQINwhP3vmC~PefXA92{H(1S+O7w`ISq7K z&UlCI1ED-ly_Tl}Kj)LuY{#efA>npk^27q|r~lh0JwKIk)Rj`!8Q>!mHCb7!>F%%m zG5GqP&F<{wT*XEqRwx7g>m-z4gwFoH2d6~CEJT$Y3i=l}H#a{=)ESbb#2J8nAPw>_k$x7+XkvrRd6X_<1L!d!?jPSfe##T625Tvjzy+Wtk{4L&xiy5^ zPZ!`UM;HlcUmOhVAF&QRVN0l*&=ONQBUlGa49qBjV*Q`K9njL;9eO`s!2{!HU%RSm zB0Z5DxGS#@`Q;J?#Zz!XAwo)w~fu?NuO=R3#(5bdioYGZZIj3^G2r@q(TX4bAStl zrgFO-Tin%*|IPy;K+od+jr6hiV=Fhf&iai7$dphE18B(+js)F8L@V%Xiu{ z1irWGORy*;k;{KzKKIYM9?#U_QBh48m}@t5YL6KwrDGBs+*rz23;)_MBO2J>akB@M zCZ>H6t*^a2QkmPy(9}SW85H#!qw=XGlhk?`o?f8N6FQ+G8H-{AhLgApb-LX7>$+$fnqk{;BAWqGEolzh+l=@x`gHXkW}3p3 z1A&_9Yey_wq$^c6>R(tIIx0lAHI=ho^};ngoGyPCUyU!AJ-#r&t*!jM7wK-{y-|LW zXnXz#V$lI}H|i4|sDI%0#5wRuE)-?b`Fv+>J>H100UnG=e&y*ByxXz#qgXfvFV)YB zGfC@EE~%7fWT@077oh=GaaCRWt$Pka^G;b^U0BJQf=f=+Q%C;?>J$*n!nXn@BpI_U zLZ0}r#t?J!8)&;MDB`Zx^?Fi2!DBmN$a(}B2M)J>ol`dumP!8Y$}hP}!QD>gS?@{@ zEs@LWF3^qgBt9?TkUD9u7x>5jSQ8pJ*yq3<0)(Kdjl!S@CCkw#C8bL#2Iu`K-os1< zhuJD22GT|(5d6RmcxzTRq&HE|y{T;cn~shFCyB zyAM~Vw6z?61CU@h+R;#1j9Arv#t%pYI&e=H?FBt3F-1pcl|q+X{JL)e_k>fXQo|*B zaybZ{$_D*&4m~3-ML-FG3{OIyJdWc@eT0ZBXNzd4)3ljDKi7yBwmGiZ0-Uwn8qzoZ zQbhlj;Gv8gPj>^I{&#pU*6wxg$c!*#^oQ;x2XAj}8>Vr2>?}PVq0N+}gCm!A`{{$( z%7bSZx{P8sgvtX0DXG4%0u%1j`v^o*ErD|a4EcGseYJq)qUePm zq#v%`4Phswuujo8+SFO%@%J;5q{Ourap2*UvhhCFwFK584J^SSif|@WLzM||bMzjY zrYwA`cgf8<*Y49q9MxHPanNBkm~5@VLJscaZU1V1LNK`(?+*J%Pb;c{-`6-cn9whe zNBJNSv9efn()<(8K;kJM;lMpq{t(V2U!Pu|h>`yF4}(Wfw_|R4kgX(%64Q)XYkwZ8 z@y1^K*5nq9rHjY61=hpaPXP%BKp+}N4IE*#{xdY;{b~m_;;xZm4^htwFH}N}Q>gG? z#z4)kx&k0GAgbP>{|App0srVEy#>&9=%jVKSfxIQxh`O3hUeDdj)cnion4X&qPMG6992HR^33)zAgI9S4MzPInO`|sk2I|Dh(X;)#I8pXs{8JtNWGsfZiN(F06~aX0#eIC2T5`=O%Q;FAx&dAs(2&jY;?cddvo@y4aNznqX%zGqv@Qm)` zsnsiM_oe7=5hk0w7Wc@{)Pk~BPNO$gvEbY!Jg&6)2`>|DLW=P=KxW@zk`ri7mVFeP zGfyjiL$J1CjUIK1|HC;xzh381b6!pPBc6Pz!{-(&3PAo_oIo>0{+=W-HR#ujR&Gzh zs`_ffmc_mnDVC~0X##K;xLoBeHRA0%Ga5`1RNjbX$j2&&TwTLumjVaT7DII4CPsj4 zf0KD?lkU`;`w3^)%Im_oWw zL8dtlS}msTni`H^nsvkkpG|ak;n)0RwY32&+;YZ4V}!HLlsZjVNJBfv}#G%4ePWambGSHbZ5g~2p93NBBasP z^d>_*Bv_Aet@PSa>aDfj6~?xXxoGXx^*l$d3Q58*CL3bn=$OxpB(`icr{RU2FjM0GsOsRMO$;}BZeURC-U!$um~82AD5xVSt&#oE z>pTgPzrM~&8@F}Tr>C5E;^$AbBL%np&6vW{3(_h`iqoZ^5&fP*FjP_<6r-Y=gr^pGZP8Qs(+{ham`MtH05>}vLgJsV#&)0#NI@+jOf0a(-@<_*r_>KJ z!DwEV`DN{%Uoh@)w<4CaX{Dx%eo)*`X4~}u>ebIXiz(;-wX4*y#i1M126^4TCgEWu z6;tj;;3*?5$7&4T(WR}%P_~~vKUsaVxZpUIuH0z=ATC$w7YpSv`}T-ps%JF0$ZJ+= ztUbA5Q#rYnTbJ2((vQZn%Xr$WPR(1h5mS!(h0!eeuIAnjj!%ctH~%Ovd;SRoh*X%s zK9X5}-VynO6YcB$`Uc6RcpTm@DR;D1E3yvs&Fo5l51Zn>sd1ABrcP|Z({brL&Ar-# zF;Mm_YP1@xcI9>m%3H!_GN1Yny6+{}duhfSfKK6*iZ}S+KupqvzvC;fpM=Kj!_r+pV4*Ige+A zW<Qo4bY|bT`GqTX#3}qm_2x4dFyNUB*ZhAIc57;l~oUIUZpiDubWhQ^pfoxsCSy zN5Zkee6i156tJG>jrKyB`b*8?{89>RRGofeS_5@v=tui|s3Khge19@f*HD}A%qDU( z(~WNvC~?O_V~t!mWFI~>x{Y_KP^%X~@mqKH_1jszCS59AYsjl*cRNpx`TU8a zoV@R!voFmmy{us2*FZ7qDm)hb%!XvTuv-n91Q&ZO&m|4l`8(BDpADNsjUsJ%T_5DZ z-#>n^!DmpPYv)yI;8fGbrKvb2Cb!vDCven*di=*8xRJrv)v!g?OXT>XHN9_wKmI%K z+~@n7cz91bMEU4xZSeZcmY#})E_Z-T5e9)N8CuvTm8&qOZ?q85EF<8Q=djv!jnPNM zLooe4k?Tz>TB-J2BAU86zZQ@GO@I_(#K<>aD3p~&3aX3OW#f%L+wXJ@&0=gg8-rq` z-#v)6JzIx|%}`gWIx1UR?(tpU9(SG8=V5-JH)roq|AE2EXnaI<{zcGleF}Q=zbVIL zJXdXz6ufpjSBO`Rq=^8MI}e;3nF!~qYs90_Qat%lka6$i_$uP+eWgaK!qSFSAFnCF zl&*H_;+0zVDJc}HN-0MBSjU~|2>(v7v9A0^i!t_fgWxB=A$RtV4v$9k#>iXdH_f9R;g%EOi}T7&76sCixQ+c1@x@KlH9vNUp6l|gG}-u zIIhyIi}@l892>RJk?VLJMz(p!B4e!&DCw14wO z+;G$Waf0+jAdGAr?Ah0S(Y57iF{O>0-H>4DNW1%;;ETS=p7xo>hEULHzM?K^v!oG` ziCRa*9Q+?FUDRH@c+ccHjw!t1=lZx~qP5>t<{OenOvnh1=PpO%IOxQAf`d6{;6R*| zee&?qvNq#Di``}-&a5VD5y6~lQL|hg%G-k=E7&7PO762`fv+^=c%RevLtSSNK3|=7G1s?!(y8-a2z{?wcnc*&sul1bU=aSH`@Q!g z)pIUeJ8EbJIxr?ITZfCnie;zP--_QuE6P5r_#1Z{WZ)?6h-@1lSI>k`3SYX?#D)r~ z>hF$!!wF_TkBo*b|7Q$#n=Pv|*x%3pu1Fp`#)NCGrg_~i(Dw?3I-Wn`M*3fP zEcZ*!yDWzo2+`w$PeOt7q{J~De$E?NS9uwwM^8z<7JL0$%;c)%g3xuaO6aYgtosrtmD-8>t*?r zLi|oNP^!$U;%4;~vbd> zt%-urg?~{t<9pr>M0E1%{G&bf^eHScXGDW=UW2qariD z6o6qB$@fF7`lG^diRa?YvuBulXmW!llLOtBd#0og-k+t4vrQsI1kmDDr@1SW3rmN! zq0&u7WrCO`%6}+WAKDam<&u&)59P+e4HFS)I>#!9%}c6&h{h46Lkmke%91FMiM}lIsFxa`b0pWd z_p`#T@d(a|{qzSJfE9S*C1Q71;0A->hS-WtK{{=xazczteD!DVNXHzwR*k;7j2g_q z%rk8b0nLL`>S7p2Nv?+54qQJ}Njr?J?3RuQ0s6ws#MkBmpgWO)1WcNQ3p5 zUfnq19QNqi^LOv{e`a--lS^`VeI^!1kl5sU7Z;pyFz}Shm3}$sH|c;#nd#>K5fc~F z?+^e9gV~kVzLRwecC;=*+tdAVmlP=-m!sz55~U}NF8IP0x7mD0fa`&fB*@A9jUh`wQ`gI_Y61j%|WyhAN@kz zDc}|WLPRQTIn#9i-2X?>V7p4ArM*z|{vde{52%s)nW}o9B{)c6KmFtW?>J{{xkY>q z?L;~>q19R8_RY~l&rdpIMadb5`rrqyl9 z4}R1R9!UQAsG9p1-EZN)ZlKQeGWxq}Wb4UXetzzB7B=T4Is4}h6};!4Ri4dnMZ5Dl z@uq*%45PkJKkutTS@Ng!uK%Uwe7|1a%G;@1KX~t{)4UdTAD3_Wzi=`Chcx*=Tue4r z7PkMx#pM0}l#9vz|HQ?Vt)rAp`hM?QSZQ%E;mu6WZgW(U3B$EAc(iRSV&L&N641}i z+;vHMEn+e)aP*-_QVMzOhdNf4&AeM~~!S;(Z>Xj*tK+g};sabkiPFR0W%LgKggnqtpDUVd`l297UVR7?Y~2~)S|qEv`7JCdTj>~zQ?oZb)4e| zW{mPAiI{wV$AifhzAHO;%tYo~R6sMOKod%1hvw!RO2W~D40Z~XYE#!!E)hG1) z3fErjyvw#&k2vhXvy+)BoeTF86*O>_G?1T9GrmW`A}P+gxChYO^)me5N}RM+*6cbZ zYt#>**$Mf+23G3P9b&hy$E|^}6UZlN1~^~v*`OATqV&x4>Jb5o(fT9*bDFib3U=w) z%G-w?h+b2~QsW{XRa^uSgyhuOxss}iO@4|=nQvQ#39Sw}QXB4xJhz+Yg2SK?6QM0% z>w*dut*-3u8RvL;%c2{+ILk!;fw*|E?(*U+JXVcDRB|#GCh*@N^hy`IlF3Pi@@5X;1 zv=3B}4<^Vg$V&D zfv6t;v$wU&@@inR+?`*Fb8|WnfBnDnhuwy5c>qJ}gLxE@SA>>^QS^3;&h!~^(4|i! zmNwnNuv})cT+6dAEoaixWh&apOs;eW%N05v-*VX#$X7kc6J{d}e#Hd5vbYx$N~wzpA5l@{V=r z1d`~NBRx3TOS=08lnhmBv6nvSV^X@~=af-||2O=X5QY5vz@U*eP05*zA?en>{o0ff z@_;cQz!NOktK9u22n)Dyt`|1&H(EaUA&>{^w&V8rd(H6!BHZqL$+55-Wk_N>yUuzT zx{GYfUn}3!KNSOz&{^lQ*_OZ#??)wehFdeXHc#m6uRJiEY;B70+{b{C+s`z1`%3nL z9duW*p~%F59RO!#V50;H@J^EyE~QMpOWo~AyQ!-jnTHA>_Szdb+3N}P4aZw?hi|_9 zJySvuV)y4hWbA_$HUyBG#eRwVsG=5YA(d3ze&d>l7+`W@eS)Nhc1o!LTbjyl9ZHb& z5__gb%hF;VYBhm10teVl)pBU{s%i#1n2Ks8JKxm035mqsKo2ugu8%&wOf*@$$LOM7 z-_c)u)vz76wgg?pbeRX+NTGinz;fVUoL^4eX)HmO2cIBf_;~!yJmUlZwMKg3dxxa{ z^5!yYG0DXUs=+6B$-7W_Vsc+mj7N8U@$k1w!y8In6kv5#I^NGMi}8lirKgE#Slk4y zx<1dx->rl?rjQ!C`Tqu{lPT^MKj#w$q?N(Gf% zT0_RtMIl{$a48^&k%C1_5}gEC z=uA*jIIS!h^}RS_7=V%Aqifz<0$f5sGw_1L=oVlV)o7v7C`kV$kX+Mi6e)%GMhopoNr>9_!_@B{`)RIgTE z!&Coe+&iUh8FZf#@X70al9y*yOK#LmHb~v%e*mY@aJhILQ{hg2mAUU$__mB~?Zb1l ziy;XWLEscdx5Plf`!m@(oP_eQWglZ@CnVyGM2bM!OcZ^P5$=~W2!`&^R-OPY=mq>b*iem~Jbg(gGZ6~i`70EYw{7#3FEpUnbxLyJEB)HjmK*PI(Nx z_Y(*T{~85m>`&fQ_z38r;}Z@**l2~RY%J0|c(kVRsLOR|*PUXwddb(rkKtD<$xFbI z;D8alE0?ADKC9s}X27g;GBhmUG-)gEuAfBFqx&>6IAx$j28qoapat^4TPLf-vxmDN z>1%z>y}(gnjBs^#KaS5KQ9jnN`nl&_+Jam{Lz1$plxb zE9Cx@^&v%oBtJ^k*3N#k1Cbs2l<(y-KvmbVh_24Gx<QtPyUXcHB! zGmv+wWr3vTIg~KG?JKlI4C5oWp7c=IUT1838;nEy$o<9-!~|oQySL`{CT&o<4#>wZ zHEp(!6JWacvJWH=8PlO$5UB#;Sd z5sO`{2kV`Ht;r7(feE2g9+X(*A-s)o^Low|kDpj9{Zh#_ z1K_#K1vOq=UPW4T#ek612D(B#`zK0#hr|DK{i2Jx4M%(!!D;%_`fbMCjvi7Hc6PyV zm#JHPRYfOr!cRyJP=v2hF0qep+;;+K(bH)Ow2)1v(^p*lIG2^KZN03u2y~6e6a$)P zZyAfBm^ToLobw;#s@1l@p>gJ-K6^Byr_*=){dz~PZ~ZFd`(?VxWn4ffFCP7RqRK#8 zn@tSP=w{uP{Z=54@eolMJv_H^YHhdq?8K-=PQY@jpLhbYcmOvK%jptXMj?PTVN(w`GiC8X8s_p=K8b3&Y;bLelh!~0{i6m%@@Tt zLBaZqQ@*vvff!cA0G%oQv6g+9TmwkQc@-|y%3T!aiGVn4c)|YPi8%?N=WrTsc}sHF z1u^f#PH#7HpRowCcf~^CN!<1Ge(N#UuZzU5%cq>NyRQI&_Ga;LL7h{ohnMTmKQ_>z z5pdV~fq*ek1%Rc9cFcn1uvZcoP)6dt=e#a+Csg9r98{~<)=Tj-(59ubRDtK95=bcB z8P^kDEsq%JdvVv|>)8(FIF0GSI{yGdlKV5EF7@> zS;^U<+wO5-efP?h$9Yif8P@&y{uee2ugOa@)uDSfd;nr1=+}N@-a^jk+I{p|CIsGG zp5W{bdfRR{b+3z0>B^Ce)nxOgd1MNJ+Ne1WyG^KkF_;F5dS<(RDk8wFsrqd31 z^1YVC8(J<@LPA{3vGZ980zxhMo^bkm*fo2Xj`s931Jz`5fcDpDzP8Sy2^_tO8zDza z+0>1Xi%#4}!?$XheNf)Ivl@cLyUk zue3>u87)oD(&Xuzh(x1e(Kec{P=>UJHNvI1{X3F`-oh1p6m%(iItFsrt$0Mm-B`~r zkn5$bpFuiIwC#P$x2)vQt&9hp576T8j`HpyWkAl;38;N$AdlHKM;jD%Qxel_hJ~$+M;HfV6q6eD3qwrf+VF;444~0KAsI$2lEs< zHCc&HgT>AbIu4UTwCMGTS&a9|L8|Ct@)qjc7k;?4IiARbl&2n=QA^U%_G5P5Tx9vw zu1h`y;5Fyo*H=$q``2$ci1vo3_Vlwxu!TIzcFG|}-3B3+p=A0?7Sdja79Vw*55JvwVpAe%yKliPv+6RTlQ| zKV)_ixSsKg!+P3p(RQM^s0O8Toc^5pA*h6)q_~zdin#pUK1p0wZxs(^rs7e zsYGSDQ<(L?_D4}G@AXYtyH;*>9Ay;ig?ngi6nI4KEm=D4v#^UuJS?P&{S!fTx`r?6 z;O7PIZx7|37quEwG5SA8`zwqU0rpT2IRZGYZ!D z*`?ROnp$>MF_vU)P6bqQ#m)$^vFmETI<2x)qBO&`K=duL(!Cu5H+}+H6N*f@x=o8- z^xTrw(Rb?;WT8q9&qwmGee<%U@k^2x`)zHTt#`2i5Pk5u5!caj zZak@<9#513=4|U~UtaKf@gy1{@OZR`WBZ1$W{x-K+9Kx;{n}S6w4pLyE+|ZhT;#Ip zF8mDv&wUZ-Wg`Hpd0wDhyk!b%rbaUpS`v+7gj8czR(n^a5-_kTt5RW6Gzf*v%35(p z>%gp~^?Ql7TVk(j?@eCnJJooKu;5y7hm7^<1Tz8b%VNuF(+m+)MF{LW>pKE=xo+=g z_Twi2NC~z65fc4_z9O7*9(wuNPwY5wUiJGQfSWGT%vu5D^=;029ofC__7mFM1(z!T z+xi!`$n4_Ne+DsYKcTZ;diz&1KR2}x2t+kmD{Irv-Jd_0p}95xA#NYQ?fki}%JQ1zmcPOH4ftwASm zEadl95di}{g51zQnvm6;-1E1!C``ts0+1yeX??OlnVlWKXOF&W+-!;z>r&IvmC9wc zd4bU`BLHzk;Ce;h>xXkac45l$BlP9f=H&+80SLijKnV02c3GNvY@X#hNmVXu`z|@# zOGZjO3^p$)?{P`ph*ZFYSTi0@`gi~-m$}8g-#;tZ@Zfv*tpK#u_FZ)IczwQ$p|p$G z?5cg#B%XRWOke~8HHbwT!D>`U)drG!ne1qrpAw-)VFlG#8>D1W8Z&FgC1U|n_!?pJ z-KKZFiT;9BJ>j;Yvmqe{mTGJEs=(IVx^{$4oj}!=)rDrL)yjsk*2-yth)t8ND_ZNX z(B?&d{LJIg_9QPQ9uIgtBL;qcvCCC1V;IHWE?6_Vgr9z!KO6u^*6^#}VOi;|uwPyg z15-k+jot=!*Qz~Ol_RZ)lq5yBGeis zzGm2!F*Z7&@9}uH(*QF`$;|BaviHt24CU#te(V6qqQmnEKYkI?=9#CXosU>nUdD!V z++%KADSm%@2x48d&|r721v|jJq0vTa3S|hIxMy*wjT(@umO*RDw-n=MUDEXkut*EE zBw5$64H6U!g>;EotaD&Nj_B z^mZJO^Q{Ne(-&!AM?=Nt#kaUk6R#aywdz+02zLyb^F6j}f4m#W1OB`qXIukH@l?HS zr68z4DdD<$Ghw)9UPd#83Q~fqyp2d{{j-mC2;H-UxACh2=!Vt1!M4-jx1oJ>H*G1@ zAzGxYDymdteQ#55A~d^6KKDIi?^6TEfo!W)Bdik@QiH6uy;ayiSkrd_=050>Z9@YH zK_8Fhspon~zy5@`tDO!M@qCG|m-I3KkYm@-5L56*5!k%o^D|PsEsX?piM84^`x)9a z)&OI4ZIzSLH$Dxpy#v-c9#hLjet1ro9=OvQI3ewL#?QX1gR`Qo-@$i;4IN^@l3lF{ zGgLzmuQVH^=I|xp?Fq6dSG7Qk;;Y;MX~!1?8iUc}{LaKs1D$-6tN^6C5Mj zk?^3R%DVZ(ZSz`SBe{c^8FMjbZkDyl6CKhftq*oS;D^twJ-UQ-MTO0C`0W<}ayqbK zYX(O@w>EiOS64@|F+&~t9w~AaD+M7$Z)t;%f>5)%+C~%HrWk~q;uLEBVtsz$TiCZS zLg2$$&qEssv8>&fS?0p$w>?3y<4~UttQwXKvgr%&wr5-4Mx=sjGFO__A=V*KO;$yK zg@&-1P$RXY5mHRD(bfDNYv;MZRtl|3ZKqa~Fp|aS8JFMV&9p#;kqCsgdH@l~#fDVR zy{w&lx%j@6Pp{p$AO>D0qc|(is&=^mu(t~UT(5@K9Ys@;=(?6oY~Hw$HS0>@tzks% z)PnP-BYhQnR8f=*41)pm8Kcvz~j)8=6Uf0$6OlI zW5!|74-fg1JliU^vkmrlM5US?A(WN$x&YljH){1mhFeaT`g5k0YEtjywEAPu)*5$f;zDDo@^t|mM)EW)yS}DnAIY=D|m`}6Oyw~ zAgO98pi5XYO0^U@E$KJKf;1iIp|?m)Vo|teyIkAc9l+Iqw;>LWQoBiVHg5@0z0KtE zcDuA?YSJ12qN(wHirmC-X0R1%NP%5ybdHZK87Es7jAOHwZbLr~2YWi}A#pDJ{!{qj zxz|UKyv}=ZYC~s-1FLabEQY4wErvi8ZEgA?Sda}S5Sp4aeVP>0B;_FaNH;vINomTP z_NO=&4kIj}rtM59(zS9`Dj<-oTnxIkh=i6*%Rb(wDnzu4VuoDo(Alx)xOia?fb*Ju z7!fGX7rR{f^yo@pj&n1H$BUe8U0Xx|P>OANGR;g2bVD`waa4dulRqNXf6&)m8t(qC z+>JokSSIv+n>o_*eF16HCh7O$V;Jn=Se^#$gQO6b2YY_wKmM*|5GeuBZy)o=1Bmox z=2a0As?nwU0L`>Z@VduLvRa@cnD8VmN$sWf)JSo6yJ*YSTvKE%9e0NoR+DPA695`e zI|3mrD#a8cEkC3|n5#vxUI54{GOjKK;j+@UcF7d-(|~Ud>B}5`d;wtN#LEcxKaUUf z>7+xHwFt>^wxu-U{JD8@he(daHn8*Oh8e$mm!=+jg~+GSEVQ%%||ZV|#Y>72VqgW}}W`=#`1TEj(qUV2Ksq~?0 zs;Hax)w>>5#XFMxO|B!y$@x=Du^eOR2_h`!N5=`Vovh4{X?==Dq^riMT40MSY($&| zmY(H++7kqI*FtSRa7LUBKv+SVqi|u>up*yBKC-3&bp4MLqyYz<3RF4eIM&+5+OeFw z@QG06+m)9QThYj(;@yza2r#oYYJeedFP*p1h9sMh@mArx@kcH8I1#$8pfJUaEv?ly z%@mf!?q?i^;EJl-6pQU}=(2cX&Ew%VvBw9ONZ@gBzbu!f0j2;{&?m37opA}Pg~j?G zCwgCF7Xg%WCqC=+NC`RLCOeL^M1hD6Js-}t zEMSyF*aqCS8G<&BPEPW0;MOt7T5Zjii+e9!cV`YO*}LY@v<7OZcZa5Z_=Zl#h%W8g zM9<&sj>2J#=sVk66-5w(cF{;#GB2a8>rG|oJyyA()cCea(eS#;+vr%h6C~vr(rcEr zf{=`KQK?!|kZR>1^M{~aJ0(&OR?rj%6V?v7hg5_Gaa8b@#nleAliFMVtddnD<6OHJ z;wkth*C_cZ0nje=-&d?zUarGh>f>;081`n04Y4-w!Z{9>BA(8$6GYSnt@-9N+9iT6 z@i6TDGni&vuIA^#n-@2Uvejyhj&nz}&uzOiOnYf5+yLxbXmMySH(h;elLSB_1|yj( zRrxmBIH5~zxOJ&0m9CdF3tz6`3z|yQOiz7&hyXM)0W`!>qglF?+6O6C2N{17%8`<- ze{Qf%Ik0rpjMgZDLJ;V?~8^OHh8--N1A%pvr&b->& z1>-s>A&?Gdh4?$x; z{B8okTo1o`1yCOc3u1kww{ti)BSH~tBdhBz0il=`tn0oS?Go9wL2U*$VAv$h+g@#p z=A-ZctJ})^zd9spJ|`St>R`I52?Ar>m(^;e@jh#~`zqu<@wyb6`1EZ0Wb0b3Y71RH zYU4cU!-?C-Jg5((vG_c5S^?Ox&mRwAsmQeq0e}?MAj5OzC)1AOPeSbpAYPEJW`c5} zrkhTU2FZw5OBdt^0;oO4pUCO^+P$H6G$JetgmMt=qtu*#dJ0Pg5P$dDrZbSO1!wz@ zW|r%XAlS;9hHv7oUz3E0?PI|9i|8nJ-g1zHtWL_W>zaG zlop)m@nyrkce0L$0f1}UOt*>U&Wo!tMwhdqR+}d4k{uG3+%h7!<-BrQ>UWO-rk@`{ z4Bt-#!lJyY6h%V1*!54k@h4&t>CFK2ueLrgp9q628%OR4P>1yc)5Q)yDuDR|*GHBi zp8u&He$1Lg);fGfKKZ`E@-b>k01iVK{{Bb1A0^{g3@u>zShlv@L=c9-J3AYb*><*K z_RiCrlz?5w7*VTEGc32WQMciiX8sz~>OEDFLi2It*w~#dHL!KvPtx5HQL9Se-Er2| z;0RCiyggxAZJexD?h?Hq*t+jn)Yi=7(E3SoL6_EV1_1daVKrt&(eyl9l>F3(xy~QE z%b!U(AYCwgQGcaIbgxzpoPKWk(JUGZ;~S2@Wt^-WSOx$%e71b%`h<&wbWy3ce(Z+t zr!W;(<5EGCfdG~du|E!cy|(Gk*rv2FHnKQv99UJr&?O!Z76aFe>$ne(eD`Dvz|>kH z)FmLX6f3z+U)_7k9Oulr?R)uZ(B2=fKd>u;!YEdy4UKjY&eiAAXb$jv{34jSf8VB8!Tytb!|vkRa+Xc_O3*s zz|^0NVAoM{MoN|oC^GaQZCUnm(@M62O%>$5r9psXC0n@->1QAh2RWY*qs@z5ua*l# zV%J%%O?d4yV>DVRLc%AFU9Xm37=o=UpB_2%=EIbLHq*3Jt_AbLzPB#HRWC7M&0(ql zlCb+cbIle*dFbblq7fjCWJR2C{!J-I0noka@BUM%e>r|UPeo-K`kd0KV4o9 z$7deD``^6}8|Qzj`61R08VR#}qDDD>IK(d_MEdWqn$B)Wjx% zO88z8Nnw}Z<19)+j13r%5%X+n5<+_yM;yAuhm*x1LF$)hD}^!Q;iN+^YgX@HaeBhc z$6)d>SPD(PB!ap+P#qS^b#V!tMF*-8<^m#4IQ>Rl;{o997cu|E{O#j7=eYh~PuR3K^TA20XThM<5Z8|%lI?V$n=(_Bok;7R7HyNHpS}!uKd~_ zI>Q*vpEFPjLO|SxOl+;7b~;E1`r{|NT+K`#AMxSA0FJZmr$xumfRi!s-l5Jx-zYP$aUVfd5*j6V;@hXug=w@>&F zr~l@!|JT3hKmGgpyZ`?G{?F#Wdm8@rr{m*%{j(0h)BjtS5Apo#b$J|WkN7eVUkcir#7O;E8A(dTre-XW+xOJST%ql$itZ_ zxnUTieEW?pi+=gSadb;a-|Mp2I3Wfr?~+t=wb4e!BM9b-WwrCs)7;vN9#XiBh(RuE z|E2H0EbF(2+A~fjYt09q<_e&k?G(#(?mql2{>%URfBSDg{4akR>OUR+KL4xmKmSkv z`Qb8-?fyV<%(JQQ0#^|_?e@i(Gb~>={IJJjq zaOlzZECr>oxOAvNQUDNx59mO>c~q;4E;;sWp{aR6GM6}4xvb^8!MQ__w>mr+fRe+@ zU*RwMPd^X!yKqum|Hbg*zx|g$4nvnMHCV(07%MCwpW^X{*VIXyWLm2pl9#%Y_qlL) z`7Q}*v<pM)vvJC?X(&Phx z#ef*CRxXRJs}qv8EcW`wzHbqM^wF)pfL2tmfY5mz@%r7LIWR8`C!1%VT@n4+T2@N^ z{6(%~%awi6Qe+6aEViyS7XZ>F8G4%+y-pHi0}E=^&(BOzK0JAzrmq*r6r}6aLu(60 zMiQkmN<(_8x$8g(Sk^dh({8S_4IQf1hkpJhGbgP4PkibqHxP?SdwR#kx<^+h0D^p8c0D z%nL+h%KqtbuACNkGVQo~Mw2UV^F3T76Rb--9{6@qPsW}ec^K?E>GKQh#a}DuljW>$ z7XWfNSgn=|D&%nB=>#E`rsKrh#l{J$I?bL9L<$WpjnifEq07xS$0LuObV=VXwyyNY zZVdxsw3jzqRvr%k`0zl}_5e%((%@SkCe8a98XkjNUZkz}s#LV6V(B)MMX2U{sP-Wr zkxwj7Ls+mr;qvF*={Gq)1OTUh#OGfO$DickuU?kFdHT2i=YKK&q8xu6vivo24*+5D;~6`h`#ps{)XvqE>W?dt-t_%ih`JQ*buXx$$n~ zk>hV&qKG&)@908~oQ@m@mg0-a(-DWkIZVqFfL7Q5J7O9C8NNZi=7N=i?sk~G zs%q;lY-bs*>@sXq=ic5JBM*a(lfJx4t=@+RfFYPS!ER6YbDznsgBen+M_1}FJsdc# zh(WSaQG4cxB*kjS@n_OM2aSy;82_RF($}YlG5+)3M*>wmHyj!P8%@_J0a?9cyL z{XHe~`X^EjfT0f20;GUGPTN#ZeeInnGi+of*k*$;h){ z8><@jVHFNeR;!glsA5@cU9BpTwWoBI(!>P-?rR&$Hp&e6XX+l)*57MpxiF@^EgRS* zSJ&zG>)W^C(96@K4W0D8KELS8E665Kpg#~$sb(QqRr+H_{8$}_+@!gbd>a0Kw$#Pv z>F}vvo&=;6GeJJ%@~7eWg92EddXxi;ahUu(8y;rV1;Y!4!efpP#~FR%Lf89Dpl zT$Cf4m7$eef}fF7bS7_qlWIyC3ieKR9OLBifxB0cywfG4w-k zUDN~5|8R{zJ5ViMG>u_>!1~DHxxLT)QO>`z;m2+~QNEFWkZsbF10>s@mW1QnKNkR+5)9S{?ZWc0OV`qUS<5-a zxt@P5mp={KVfuyuhG)}+^@%VXe?$HwoRTx4CajN4S97J#{82!3FF5|7{g-UQc+GW) z79~B;mc-kG0Cb<*vuXD4%r0rX!;aUyO#;>SAlRJSU@2{#pp`*qb#Jz1 zOil$fKH7cQ-PoQ#BG!Mz=Kg zsQqoo>&})^F@58W^XOjf_(PS|@;Sz9g&?0Ji@EHi`?AK%3V`FHPbaRWJu0Ire8i<@ zf1>o>)o!K1Hps<$4Vj`R+Fy%B(*`>H_rQge~xpT+y+mp zn%Rv|s1;Tqfg!*&wj9pwc?Xxa$D>lVx7#Mf;6`J&P2}12%|gx3woXTHN8aXpZDf+( zS{_6|aw+<)p0qX;4h@%b9)w{7I>-w<= z*?-d7hdQ)gyLioL!$8yyJphg~Q}Txx+pbCWV(#(59*z+4X*#!=A+`D|ZJJOkQ^fH= z+$r4DtQ5<|0qlL*+Zn3Znis#4kGwY$0EB=|X~!VY7NuIt-SNodV10)a+t5!{klH2o zi80u9Y{MH#x>$0}h(SM`EJ}Ety;Cl{E$Ns5)PopdLGn4&j@^r-v6LaO*ztFD`5>j| zdLjU+pdwu@U0m1>4Umkmg4%{vxq?6=q%_+|Hdl$}hqOF}kgfX+z_mMwW8K-N`r%w3 zJDEzHR|K&>Q56f?Gp4ojc(BKl_Q~g4w9b0Z$m@27944T+!W~;h(e$17k3D%8S+KFC zDK5Z{mBT1?cs&@S5+=6riG=rR*!v;^U)5Sa|d=SV7;4CAW~0h zeMsT4>whO8}pBoFLBCIAEVSxtZ6MRUY zWD~EuR)p2ks4S*|l2wD`vuHwC0YHkT*9;(DR!@BO!)f~YvG(krCH@fFH01qZ<^a3S z&PR(POXhX5adx`1Daf$tL)#K<)AP4JlXoh3zdXvgIx0o%1H&LnA1@K)kHg?urt``Ipd%G|OJ@+X%=U={p!jxpbpT;+R=M`ATR+8VX-(NF4pW+jMZqM8V%(b zG%&1)W2G9ZMxWhL)E|4ke0NwM1?FK)xHpZqb|~2SsOO$V`8L|y+yB?z*Dgnr<48I{ zG9oflQdRf#&f1>cJE$(epNad(qQCkCm1Us`0jkZ!w>#oP(YcJycG{Em5;S zNS_-peLRP&)B1wb{#(4snqIuaCd)%YkR>N3#NK+C4rI{+OA86%5%**1w)CSzXiddf|)&0OYa7))<^ zr$!q|4WJZ3Y)@XjT1u>RhZF8eJ_KkSg`+8~i-yvB>K2d=iLN(+PDNx+7%97Ot=v=<)w4~N9Zqn3Tl zI9hQ~yA*v06eFEadKxWonY|?67AB(mY@aGakdX_ga33svNPqv} zN&wJWhd<3Y)v6s!plABncFz812#D=V(W4W_o+oQ7P^FZt zC~l_lK90+}ix{XtEHyalxU_|a=FNy0DS`sKm9SO!tW01-IF5+X#46==k|FX^!ut&$ zcSmO%)gj!o3;}>fCL$dNsPb**HJU9#um<2ESTm(57s9B#0*xe*>d4kw<%?jGa8rBk zXq9+Vp`Z$7Sc%#Prf66-timSMOGKj1C8j2hv=)Q3>AFBw&J)#2v%u8)wpPhCQpSC@ z&TM>tEpL-df!7*EC}*HIBd8sQaGH1=9bOSp5t<}?=Psz_t|jk@Z*E;i=Ia>|A@$#h=_6_ z^B!F@04{<+AfhS?j{sanz$_*J61EoxP$qbv9-5Tm2>`}{Vni<5++ln%wN+ufY5@8tE5Cmt z*8kAgA-Gxcl}lSa-cWDlCL^Yrek=g@=IN<{mA${encSXf8Br0=LPb%kRe#IByn$e8 zo1Q0RgSrQ`W+fuqnMjy7?**#^Yb1(Fs$5hfG!Pd}H%qR_Wv4olZj(|01)DCFRZof- z;gmNa(VEy7qN>UH0y}%lHR$19L@v;ji@aXy+ZZ0%1-6>xFXc)pDL~Vx(+Ge*Z+d@p zIa@Gc9HDI!3c)1|a%qiMO?JZafR-%89ns+(_x77RXj#DuN-lBP_%bSFyN+fV= zO0O!3WgvsvIIHbC8ja=z&h5Bk`u#<@s6>{L0fbFx+vWT%43dgVni^jv1WnPDW#pV> z2)udCg+CwTywQEubyF3JQ7|>#6)YmhL3p3k@hDV{n3-8W(v<lj>-Hm zfW>9TI9IB|Yt_gaNtsC07zegobYMwjly(*e1;DC-Op;G4dKSRdrT5IQF)TGKMJ*-C z@?@LIQ0A`F*KU%iN_b?xE#@cYeEvY$5|2ZybS!{yLstAi#Q!A%0r!d)OLN~;OMTaQOmY~2KkumJ+Dt&!Gv^6nI7?OwG_mA#6XR!!?OfkPS0jcYYD`1F#Szj;sxTe4TG|vpwy6Xb! z&U4u5iA)-TS-QdEUho(2S_6|3l&MGJL(#f5WD`2P)(6Sc^tOH0#FCh+^5(j`VXc&f zaCfrnQ;-+y)W#b#k_Bjd|$^R{BcLl^4l+@ikuBI)tB@3eFPvQQ_&bB@`l># zd$rQ#j9tGnB`6q5 zB$2ucQ^>CBZX14`Lb(KG!Xlwswx(uuVXxWy+)qgfCT`uQl(}*EP#qOf9t+)O2#9w=>6Y*8!ig!B^#m$Ca3n8C|(FX)uT33v{ZyZ z-`87XXqte#|i8lp)dU3q00 z=`^|l*0I)P!)$^&T{>FS1Rh+WZ_Q3uIVByVuTE7EdBsK5787qxQdwF~rAk7)3Kh!; zl#RlnrgMR?RNkm7#rc^*#O!933FTud2vYi^?QAtcqw$d>+Md);O*+ADbeMu)5zyZ{&?4A^}UCN!G3{S zVMRSzk&*-8W~0Tdfi(r&$t^8`l~V(2DRiGP4v0ZdBdn3U6Q;OriF)t@_g}H50A@S- zz*vrB(8${D#Hy0Qv@1!J+Wc)vfuiE8d5^!sGX}OC*MbZ+qZVcvf@#6?=A+{4*gB9} zy4_tjpF9E%lh1^qVA-ANc6Y504j2+vd5R@50;|pojU&#dzIt>Viu=PP6@9w3QpY|4fv0ex zN^7=Ms#kq@D=MOqO^;VOxEqp^+eP%9QoTCYcP3v4RjAm?YoBa=gbJ!+?lT(LvUXGr zYo#^sp0#E_BD)($55;arq1ryZ6{Ks$TycNwH86nAX8>xBhwoRp-TC7h9*cRxQV2Lr zc)ftg`?(%7<-*HGkHtEocF7~XUiEr4M>)X6r-Ba2or25}=w~~h8sVYsJrKpOuX-LS zS6m<7okY#G8IBma8>BwxSjCOUfWuL@D%DC{H3akQBQ*~f@hMDgaoD78n!kL5$@_j@ZEjFt)5@}Kjeq%WMbl z1`bsQMhuz)h)i3``Grh95dg4nJbmR6Aw?Mztm4wp4%e#`P_3rMZi-Z724nJU&;)># zl(e?wOWh&6TNhFDi$n7{vGm>UQ%8ol8z%uWMNNUK@_nUcv(Ih!|K)gPmF#Bqk)n>t zf7mcLx;{{f<_sdbT+F+f9*h3*uIongipCQ4&g|1f=U+82-5$+<`83qaNZ-%l^~~>A z06Nb)&sbJ9)r)b^^N2Ozv1k>-rXO2dk_smJyoY&3shYEPm`|S*Q)|&?@`nOTWZ1k;A)i+?k#l zp-j)K3U&Pp+BW%!4@b6I!!QAeBJ%S_d$xGJB0gBw#)#f zfVwAjlq=g|ncRYjL?D0}0*Avs@eD%{=y=pWJZrCQxv`n5G9xl6uvV&dKcb4VNne*r zRl0e!e-Z2$Rhx4KIM9+!lS>rrCrB{S=>>sJ9fckv0@HmKW5~7=0|0tWdLA_~uZ2G! zdcS*dy8i9&e7o~s|Dw%qP)k8dMlsMT_`G7Cy$pV|ANR*e2!T@4(}*FVR1&p@{~eYF zkfQCJO4&QsZO6`qjxmr35Yi?}VF(+upHfv(wBtHpcWQ(v=h}m(WqsWufz%1l$Kj-0 zQN&73|DV9ctnS!Zp=y?usP(HwnT-vRYgE`Ws)ABf4mc1IIOvw~d4;IhsE{)|I>Jp` z3HJp*e%8kWw)gN~f72o1_n-Rj|H9@A;)RxvQvzE-?Z7BDJ^g4;|N8$x9Uv%-iqVuL}|2a@deoYC=& zii+pfJ6FWa3LG)sus|c83HbOhd6_yf3#%O+Pxw7XeNK!)oL$S zo1pc8A;IMvT#?Gp>Bi16UX78kOEb1+?xY$J)7z^Ij!Z@X^v6ePbB8YHHi;M_+ToyX z3Sd&?rR+P9DnxZzx^R`BrH^|_cQt8#0XxT)++*a(dezflyaQefZH3?)k8c%wY_Spg z+G|H(mse^T0i04VeQ2p=`8p+yOjSLtcN#RiqiAu~gZhlA4ufI`K^!Bn+R~O?)m_y; z)j03c?6-~oREn=csfN+{Kw91Jb7ocgyhQ-@=R3WBASFx_O{2FRi?|oFrG~a{h|wWu zIjHy>|5z34wyR=y0kq@AE)W1|Ax;DwnwU%b+C?xJ>=q5}_o^CTB@^xA4Lo^_vS)Yh zgxOyM6Tmp&=r*fTlrd`HFz4O9-1>e^cc9(&KEuA`gl&6w`d@D#?62&-=|l1aByUc_ z?rNid*g)jf0TG2C*57!XG=p|o}pE36F(L?~6)4S5CJ zV%BAft(Og;anw@uen$v&xgc*5fP>gX^79?@VmH3$X5)x&F9?B_Rd09QvfoFFdY)i~ zO4B>^&S9n))Cl>_z-9;EER8Nr>%=l(-@~hGsk_pzl9Z+&(n3F+r?G>Qz!QtZAG-F) zV?suH#M8X(f)N>|(!BYo+rSWE%Va)kL!?}3UiY(({eSOkw1BLNTAOY_1(T;sr<0Gj zs@u748BFx@qNfq6__!fIRJD^vY_R#;o4#H=b30CiJ}PuRfmk088j_qx4S_9tAwnto z@k#5XFJ}Nc4n)-4?j{`vWimW`w>^Ern00^Rb~+)l6N%>wTJL^4Gn(psrLRoILc>Nb#8%Ive`I7rldjBG=-jMUEKEx-Vv zEvqT?T4VZ@&qI>w|oByy@KLOkxx@8(i zyuCtIuQ$AZ0-)EI-n6IVpec~$C(>*-cPEtR`T~GMO?H2jrJ@Qk%M^8BszPhopLh?L zXgU`CP@+wqD7Xpf&SCTS_7opaM6CazuhuQMuFl12Ik=1i zYNf!sEciqBJqgfX-t?4sNU-9>_2v@00Oev6P3Og09(=C#O~~T=K?l+Id;rYaG=)%w z9}B6cXu3C1m(hz73fkY_R9dSr@-Yk1K;=_`%KC-2dh-+rVfJ3Q`s$kh{ zIjT9U8vi}Te)QH}T`UzjQ!eho+QP<8Z~B*C>dVNFjQ3A$S+}hB2MtNLOyhuYFzN)) zlj*tXx*Cbzs-@3mO}jsF@jsLJpqC52ztNWE#~+l7ybL-a~D*J$@X7*JCZAUT#*}j2UOVFY^DR|GssM4;8NK+ z0%J6#V`~1uzN?p=>gT0#>6<)3KxoItFQ;iKp0-(sqHX@Y6?EOS6ic0L3&LrV^8|qJ zGnR&4-j}cjy52D)c|GZv7@%#llO;XecGrCw4~wKRbxeH9ewQ}@nEBX-;?nK5sF#)c zWU)1I8q4blB3_Cb0aaL`6a!9^HoZ
l2)J+BHyNX= z=-?k)M*r$kb!ZNZy9xed{6n|S@bVeG*dF%u>I_U9h7HdSTpbCYY-7=yd9Q~A&@-qD z=9+M%SK#Vjj<~kIgt6Uzy?E!!vNdivIv&g=;EQQl1tuiA%eBpey1A779T;~27e@Bq z?AiHD0v&(Aic`bWWHal$@NV%JD}g#Zs~OT8GPzL98h)YVD6S~01qMX}xH+M?M>I+e zy3)1~7Ohw}#oz>Bi&W%uk(0 z{^s(7HY44WL>H`P&^eZ z6bis>pX}DXELcQ}M41Td`ZwQ;Ah++}RebXH*SgZ>h^1mN5x*>8OF?7=Q<7w` z=ZNIHHiRntEp4vnQ*$4H*vfT0O|EwBzlCG0_a@eV!TogA5Vsgc@cR2hvbY-b9`-ZW zM~zEM__sdeQB`=-(q#GVo+$uIcXc1t+kEeBq9#K+5@3-Fz3tpgys)ob81hTV@x*>j zgaB~rYum6j`t|T`B~uHrHD@8>8^oiTd+X5-x`*4I)l58{16DT*Paw1*+YcTuq+03;Xc#6ALi^0eZbAl@8RfC{iyO<(| zJcxA9P4S)&z3XU>vR_I&XTrucH8hstXHM;`*& zk;aT16cQr&vFQb|e41O%O$#v@C)B7_ zuG-QrmPW1O{_eN6wS7dj`yLUC&%Sw`?iF?~s|S!NRM8n?&ZC3;ZVx)`G`Y zX7NGTDDCe`ROcK;_jI9x0Hw*-0FB^sS&v3t^t>SFmqiw0lmn8)ew(~HQhj&;e*h%l z=rtlP;xj-&f-WMjE5G9D9%xFWg#t1#n#IrqdLgIt8x?I|d0Y5Fr20Ao3!jw;e3R1$`)`t4%Tjh~1Ad$X!cz0&W%{{07w ze(OAkh_gJ^GSvZSNUZ2*jr$+#FMF9>3JO0N?HN=R_|_lyB)ni+ebwP9Kj3FLd3`SU zJexl4ekn2-kZV6#9u9hm@JT}Mg?JeO2fER#K#bFeV~~MVW`MAZwf(%{Y+AVJ1S1@A$=YJHr0_ePU55lTZLWB4(pLM<1jAkFY{>L#eXODLNvyv<4o12e*WsTyxw@C+S(w^nG5KW3yzZN?Xr2L|+N|L-agCEvC=9wgjv{%9zGOOW6xXXf`Z> zI*bhMW&u$D5&_|Xb6M?o zw^az+W4P=)GB0RuxXyGBA@GJ|(W`mAwJaWV?S0+O#S6$rp@%p>1I7>dkAO+d(Nw7o zpR~sKN^`=wa@AdPG>2N)pUgecLKN4vI+qD50gwU_PXxN$RVpLsIUlX_%iRT;Q#sVz zst!B)+Jxg;xOlMq5(XypcNt#g`4JyF?3HxBhW_pMe548>2&dAqX$*p4(a;j*?%jm0 zEJ|jYXjKvh_{t&u-KM|ujUxNUEC2Dy!>$5N_{Cb?-*<`z^5w__}ugD@sGK;tn_ zVJY)|(S3frZ`s8P+JD%<_vmzczjEt*k&2&c$CcV@$_r*yP#xn+hL;K88h55W9}{IIIk=p(BuQ4_vJFR#PhcF6wsbJg8`YAUsUv+npeuUomC zj12HUGk@pmB7dxDsY!jji`E!VBzw;(nLxGE0&CbX0rTY8-+Qb}4#gM@)^cfPMn;j3 z$33T{7IOrx=zLMw3RX-ErI=Yt*rTHDTmVXAnZtI$wx$stzhXJm=ab^#?%(d$Gsd`sax6lij@jiZ9dq^TgrC*Y3^-?z^-X*0P1{jS#>E%7XcO z1U6`>U4CIhpKmeeBb9yWld^VFdx3&V~1vei>8k;d+hSBDI>N}7k@*;P?~IETO; z>w@d_4)$V5pXNC6u*&W`A>`1gPJyL9u>X4sPMlJ*Ke#b83|+xBl>;vV15X#dV0x23 zF~vSY8k_AbxkC@ExgW8G2Qz9){iUr&fCza0C$R7ckO9p9)h48vdc(#c2-Maqs(z|a zX(}~3Wlt0>JMt=fBqofPrtcJ>EL~#mNs2DD@pY)`uI(J=m?)OX+ccZTUL( zW%?|@^Tj_j-|F!JVeEd8?;-c|LfDdSd*4%t!Q;y;X7oiua^M<6yr&Q9rArO^M9 zu)nao1-p&{k^`<>(>g0G&*`myV^?1=TPq)LZ)1@n21X}#cS==nheG-hr~T@)m49-| z9jgh%R;m(LKV#&@EOzmyge0GjoiSvDVN03viOcp9L(zMpCrcP)sbxxiigaBMw;f}M9!#)2# zBUo78u`+98Ea{@dT_sarIek3eXxW{eSSWGLBS_t?+XJxF zSb2G#hw8f!e#)(cs`cu9k{vjAvq8!sOH=x7(BmZ84R~U|20?Ht zu5CccCB6&4ky>T6@c^09%svRmD2KZ*X7Cg>v4n3Yw1W3Prf~WjFUzMkr;854e~|nf zX1k>8**GAUBM(gX!gjigU^8F#(fr&Bbh@n3hTgreqq}WgGw+JiJq^1fw(suke5?|z zUAF^IQHgZ&QK$g(!B-K|y(m^3_>pTT4^5u8I<#A=6TZJsHJMp$SVJ+wxLey{t&i52 zGAtc21G5ylPrTm8>`}i#{5A>lOjNOZ<8W3KDq{+{lS}xN4R=^XGewWrq+)QXnjA`i zwhj#K@wniru%(x4=#KoP4KG~$0J`5a5alf5Ub>3i@jh`j^NC<&8@VY#`;6AeE@2qtyfZ0-8-W1l+>J(y$LmRYi_U?Vl}=gErAMOGtPKMyo9w(K z=ktfU$3Yq{7flyCps9=;1S{XV_v+Sa&VMJ9>ca4o>tL+5-Uxj4ON*AUpJy@CwcHd1 zyed&|14SlwYKJ)oi}3ZfvCi(fQEB%06sH&!)lrN$e7&UTnDa&pbg>R>`Q9p3|!3ssBxtrYAKiCcPK zcQ1r$pH1ON!bqgUm8l`;Bh_p5ffJ-aPWz`@qOtVHu_ysIX@7-MooiMPv1)b!d%U9v zUm+g!hE8)Iw~X#nVvS#8@lUxO7(Zvl3JZfywR9<7GR;T?htE@FzsHLlSjRTrh{zyJ zfZ=)jcEnT3A5J(vA)HI(lXVd}`s$`E#K+eG| z!V2MMmOARm&R^>x*L>&KL%EvtI{r+V4+t!NN1!n*%D16d8#R)TMprj|1TjcA7F;dq z#LcfXHW>;u%7Zron^c>NRcI4KAQ#?i8`u@A8JIl@v7NtA06~7T79&Kn7{yu>TQ{To z2Hv4)8?*ANaqHxd;Y_P8)&sbb?HZ0#VS@Zwv{HYvyOilW=}yxCi-A~%g14NDFZpzSYMXzF)!25aA7fAZJB? zkyKG&8~Xn^K=qQyH9@WIPzzd`FQYB-Pf!g!Xfzkn01=2NS%LdbBIUgv1}t8`_xeRH z`6tpk>%oWN5ujswT0D|O`pBih!L_}SYP9ZDcmu^|;jV=*(T(~~56^fj7q#dG*Z`4{ z)TL5|qDqe$6~0jCawQos3yj~bA7|stc?h$k>vNvoM2sMChV>l8 z^vf42QA_4|IPiy9tc+D*#>F@lV!2z2i-extUTzwM5J!eGt-qpyu9T}UWyd+9-|^wb z#@EXB3cYy3z66&5GYPY@lIqj_^m@(~?=^F;|;szLO$CO*1 z6_|swty>y3kA(#>6w!3jCpoJV4`G&8-NdqO&aOG#vZOpVXSxM zF)mv_rE_GCC1dANDuycwpNA%BEw9(5B~?`*$I7Zp>Y2p;!(U~LTiD1MmKqoOwxQ*C zwr;>f&1ssogiQx*Q3CDojk5>-hG~%S*Ld*GwKB|oYJFv~inb4Pn zRqah2m1jJ^)%ptbrI@AhZ9hu0DE)#G$5haXa0nI(LIL?ROq}LeNanP@q{*6wS|03>WohaV4b2zdVvIbZt1sk|6*&9-aC-R!! zgh}v<7&C#3b3@csIG zNKz`%<~k)QDUvQp{6n9P4f(`~8o4a+nibGrprApB7$~FNKRm33F2v`YFK5E>>olpjM2CbOfcLaw}%3>vKj>vC@A*j(J&%)@g@Innd8^ZcRx z`bCy-OmdDyp*X3E(zfJ=FJ_`W601yrmW|`AwJA8{XetbgDgd-2xlZ+|O2$B#BPMKa zkowRif%sOb{|%ndP5d|R67go^cStElL4pric58FQmO&>}_v0_I21_v&W`9{HXf#>; z+32#?VWdH#y|U+(dGa6S{5%*_jqr8I5_1iLjPiyw)|Mml~ zBXh(VzQRV+!onPh?+A2R0Q3O@Lc*>URnwO3J~*$0!5JjewEH*5k+V6(!q;Z z(%j206*gYh>3+>ow2$4h&!Zc0(a~kuY9AiIw^t)nM&+8*C&(#Wx~c4n3FObu^6M2w zge=mT^cqCnmI2$rRrc)EE%G|GDfcHHyMnry9=zMGlgcq28Xg$dOVV?!dfCy}(iHSQ zS;#2fy@5_z+hwnwH%IrjB;Pmk9{4QNvZV~BdsZd-`?rcx3F75FzQWB{O3%n%b}-Tl zKRBze>K|c1#|X2{MxQpaH}FMk4g6QQ3?itN-o+rT1Ng8*h6FdRxz zQ3))REkOD4*?IUnb80gh;^o_*!t{~DIa)-k%ewa8`lZkg;?M2kKRsr0n``#LNHJ+u zA_GFd>_;Jl<1F%!PCQ25*mSN9aoB#e&%AnoX8)jqGN*Z8ic{Is zIY*1KnaB((mLjvalB%T+Hzf*O=cv5o!ihctpT2B0e*F+_D-%hH2MLlj-#C1ygG-2z z&cM+p2bY~oGCjyLf$DUh3g#!=@0{~qc2P!;P-OVYiP(e&+DV5b3y=vm0wa6FYU&30 z8g@OCueUMDIC=-tk@=$N&PYDrsvDL6QVhPQcoxG<+=Y@SpD$I?GTHZ zF&GSJG|$ zep+TGA#JQUnXq^}hxNPf{`WSe+>rZ=05Y^XV&HJrtTK=Sr%x7ix?h)wTB;JdPdipz z*?J2+q7DSKraBQLPs%zVY{)z75=v6l@TM9{HJOPLwKf?b@(AjUKK~Q(dKzMXBt&Uy z6dxcIx6@tSlMRrG{AF}&Gj~2^ftCsj;Em>~z5U#cef_(#TCDXE7;@mlL=rk}O@gIJ zjG0yN;ICjQ9{zpyM-tU}M|t^D)sp)COY8Sl)5TC9Zq1@3-!%L5S?)W{?KVo8qBEnl zu;n##cErBr~rl40Qnrl^|mMW04m!j*1sc}g?dwSZ4n5+3`MrsL$=x?DohGk;# zmI*AHO+K6u^c&qvU{z|a@9jj?w(fwDE}r2okyIYE0sfjlRr$J92RtO~jYv_DUG+tK z<786|NH`Hkt=cPYF^6nr$eY?R>6p;nbvXpxF z=nYOpsyv59dKaWekcN zNmf}OquYb1l2c+yk;S*eDv#Ej+2ZjT`Y&WPB40uMrp0i-%Aq`~65ASivAPxu zM@XMgB^YRQWGMcFIcw1Yt4-;WbG~7h&#L_Sp#v^l)u9WK5EGEV;WNp&n?yW!{=M)> z3Fm^E0yUrARX$*rW0qs@hS8*rjUhy!G+gdy*fU>GO?!=V*NcKa{p}@*GEB?d7LLz* zAK@?G#p2nQqJ_NpQ`UBn<@#ll0qX!RT`sLfZ~~otyD2$!PICOhS~*oD_aV_G3{*Q= zB~2~4Vkx0c81xCKr0D+q5-0yUmF+T`p_g>Q!3(ow=rcC5@g-TjVJHw6lLeT6OdR(C zK+g1AgK0EUAJ62}v2byI{%8JA1R|stcL#~*2T$+pKUB^g=a+KBe=pC9spbx=7DkUH zKmV+lK6HhK^!fN}8H)01#wURNH7gvd@@IqC7^9=}PgVxAqH@k(B4DAYxkr#QfmTk#Mw3pLc6&JE z9q>3Bc+m3kl%R%)Ta(ZdfV^CyQyFbJZ#Zi{Lz?4IV(O}Uc*pm2J}jjB=n+>;M7#}< zp?kMCD~<4h_?Oz}OIZO`D%8FI&`=k|%f_m6w&ErvY>3`xD|Krej2(m3hFipUtT7Zl;y0k!LcJuV!v=nLLCS`Rc|#>* zCWezh51Udvam5nP{#(N{;dUPpVAd$H@GLKJPxxv%oYCVIIQHhFXJe~iurS_W z6YcwAdkE;_SBT)l_<^AML+l$78z!SY{t_(1iwvl<ZQ( zwvA9R`C)u(Jqzxal+*+~klrHh(8g4}ixj@&tiRv7QWg(s#r+AwEGp|?aqC@d+BjqL z^mX{hH2K2pA-*7H%y*UXS393V#1R}xyUt`sIzi;;P0hL3UBocT!}P_1$gw^f;}*e` z?+feVgv8Fw?!)A@I)H12YeqwjZ7I@W_AZR=Z@oEse+i+sb^;8=YiFptXn97XYnps6 zsO$@N0mwyvpOyNt>D;U7(2YJbw#0okMo zhIG#$Q~W@O{bqU&PQJ`cC5+1laipBULjAPdcsV+ip+p9#Bk{T7hj}`gz;R-C*QlwG zi5AOL3J#Cirs%n7$bhE<)so4H`PYcLOJkbn<7BpU0}!rma4`f|-<= zs!pxKg})%8K~g_eO10g+$rt$oOEuF8f@3y8Hc=Yw;->`T+$n^=EPgNnDd>VXhVdv6 z1q|RJ>p{TARQp}%c=UKWw0~Y+dv)CDe-%vGDo6`Ti80MmKX)4Cbiw&F5k8GbLisDr zFN6{2tDrQ8eBr13h%30vl3L?lwi%fYj$w*}LYk+LGK9iy%vDlVY})5CaI*}eJYEkh zHTB*i@n3|V8QCq;Q5=+#{mShfs=8X$%(qNQE_L zJ-iJ6f?EAi*qnghEfU}O+txMgd}1`_e6b9CIT3#q1&a&sseP?g)+V?&M37E>ldwQ! zc`!xK34`3+`t!JrllBS)Xp<3hMC78C}6_J}=F^jlONw-?3A_gOMSipu1Ca#d_kH-Em zHlsknCCG$}$E>-VsECN;Wp4F(wS2a76&KtLBw7%`RC;K5Nv#IqA2D>Q<_?q9h^pMh zT804PKVPTqn)CobAm^+3bwdfUqErUmCks3@XJ0~S*KyDC1d=b}oGpYO9I=n@ z`A*FA&p|)aV5pM#kf3or_sF@j7*{bTy~RS?O_74Qg64#J z+KUz@j)*FBcE?AJ@&-cmk05DHP4rCBpK)P{(NnxH_V&cM7Zn(@N!XzD?x7rkg}zND zi|bv)Pv#W9>r0jl>X~^De#Cu;xH|FUGpEDTOnTArb+G^25<9n(-$uCXc<-BYBwC#jzV*X<-pgda)dx5 zNI^W(y7l=K-6h>6{w0p<`HPn5FO`T|q4JQq7XhuUYbP_+*G^Hu!!dW4FA=#6s%&8k zeq<|VV{r)3Hf)agH)q*1?w1DoIk3{m4Wwy*h#m=GK`aN3myss@wl2zub%6nY`BZ^p zK#qF356|Ns)$rTxDrij~47Hcz?+JUQQWBHpU&iCDuFY2;S+~5cN4|mXgCHAEw^w~T zqKn##u2bP#a56i&{wsTGcmN#3^2Pv$UxWxrK`QJJOMo^7XkZX$#WUq-}uDaFwxOEe2?F{jAj7hG%*xF>Cru0yt&qr#Qgytg1C=D8U}!Xw6YU>akNfZMEgZYf+S;}=@PHgIn$ zGEEgcv(vW;FO!wC~UOW`6N3%#etm=E7;t0upy z2(3(80f@v>>C(j5mWquwTWp#8+k(<>vUV#mze;nWn04LDMrOAjj}y0C5FfQOpZ|A! zgOiXY4)0IrNi0P5dLwyW#PA!yg&?xHc}0N_Y0Avw)xzuDpXTDb=gLLgfEs>`Qz4-^ z9T)>r&}lLfj%eVoE|lA6hom^P09?`Azvd}O7hx79n%64lQ(cY1IAf1f8^35g;E-7K zin11Nj#`}Fr|Sje(N$92YZ<@BIpf^(6j1LFz|0=*ecUW#IYSj8`_a>=-V9M16?i@$ zW`5PF@q=s*8b}B19pb9(<2(8{Qedy``Qd5o5k3O%w)Ummq^uD ze(f?{OU?9<1!rp%m}PNqJMFXZ6EF0v{`P&+ABnoX!G|N14#1%is_gNQ7J*mIgY4+u zn;_)elNVreoi$h?m=LynoJvuZF`qiEvqsCcZXU@T-d}`r1>Zr!b(_|cV{ag#fv=%B zF3ieo&`-ELy24=1nzMql66cF|$mf1pPnQ;*QD3HtI>hjWyP|l;RJMcP;f6o)IWHBqyJs%taD?zXu7KkbW8aw{ zVihi=8d*aMSheAbbs*wE4+UBZRoa#`(2J zMk}bwzNw$ItiqUzA~Vk>O3DX@^jb|!{hb7bO~$a!KWp}L=k=j_GGRzumq}Dtx&~)ozeSjJq?=gS5PHSkCnq)?FH2wXX zW?cey#4;*l_E%|*6V#Zs*x2&3x4SYm`|P;b;WU#+P{4d-n4#2yDhH?;T43|ph3>r7 zgeIMB1KV$ra0l*p&5{zLx1Cz|qkWr+%$@f%4J*&4F_D~i({;rg8!@to$wkI%+$Z%H zAnj!}WN-cwSeBanYEsYUfHQFpMWPph1EQ*tj|L`}$lfJKd!8!(AK15m$V3Sf2jTi4 zE`su^M4_drokO^*Cyw~NL@3#@|FO)5KZpG&H=e_40|+~US*ld5DgRVcX(5w_aM^@b zUK16F$q9j4H7v-vQ$gxved%Cn`~4@0hPdjq9{bX zA(qCkLS{}mkk*D^_Si*ycert>wppBA>TbQY`^=_+ed2Q$s7@N>RSE62sp(9ce_mNC zT_+ZYl)W!#z)fY5az?&I4h_h*sCdUiEd2cz$AJeqhMyv0k;1lG%nZ}pulv~}ik`lZ zbu9y$+J4EtN=3RWe`he6K;!d;0n4h#qN-yEn$$^RUwr3M+DGC?BNZ*&@L*xAzrzY@ zzy(H1K_%fFbCA;c1@G3AiL)s|?=iU-)<0Q(BuQzj$(_h6MBpp1A|V@2c#%3mFES~p zR;{;Ig)mW{Uz;dSefl9PAwKfemJ z&K`Af+oo9@ryx0RJ*w{67IY3Ycta@PDVU=$- z^WUn5wR3-SW#2zU>D+%v6^}u>Kg3msP#lN1$ULpN75Xr@NQq<~k=a%rcO>E0d1M-E zg99y;zggB3MO1)f`&H>#n7kXmF`RB&#jSHvzHb@2iXfb0x-(pU#q})b-Gl9nU@H2K zz6;*-e#xB-#i>tjSKsoWa85r!ncQZI1r5t04-0RDgPjd@>Z5|7`-hXflT9)!WiV8c zDju#kLK0=L*-1Ojmw!n9=lRnu*FU9&l!toOXK4_H>3fZAZbq^ycxAWh=hXM+RVQ7FkqGvqHtQ4MHB|-qiOC36)%@~X)xT8< zEJjS=Q(W2sYMBHPREbPcl^g~NlD3zUYVAlX2*${n%OJ7-vT|gCm!f_FVj#+3JMphT z254~@+cjzFD|xE$PUZ3ix5yhIdVce*@y)*_VYRP}k5w{Iio)LtcKukWs(nXMU_RCc zk3fRT1!wzF=8{nb@*}eb%2$oYS)*A#)C_%82-ikFz&XeuOV)-H>Kt!9pWe35p=YWK zvpM~v#3&KPdDq5u0}T;4{sMaju_)7M%;3%pL)?dO8+Ya5e zW!0_V%Wev{tbS>x*6(>-e5uGSLIS=^#=lH))+ zX@G(c@`ZyWfl|;so~IBGHA-2PmCCNTtgKj2wuabqq)2TL%oU{UkGrITG`n9=lvdxN zMPJqiD52&3nV*18MQwlD>13x}{#`?;&dtFP;6f^kaO3I~j4fkn#u{?>B-XKMaQ&TD z%%ky&+bt4WR+M})^G7r=43bh8p7|wGPvK6It+TW2i(w}indP&mXb%r^MNdh#%zB3` zmSAr`531!}Y$u*PsQ*`Pn5_TXPtD$J!quA zRMUx9wtK3MGX}6X8w+5?!KS#hAlRmVrxL2~z>B$^w;@DT=w2~JJvnC43Y06{i=wu` z!_Y0zSz=;v2q;qq)Fc=`+r|+~+-im@c07{-C$Vxguo7gZI8|p6rkEqKfZ1{Bd^$hU zKe@lA{-7}JVWexpJjoBf623;PYcfoBgIZb@v5e+jbkMgWC@Ht!=7t&=6}BTw^%;i% z?`T5x&YR=Kj)bYWtyx{kQfl2t;@3}VranRa_b_?a=}^aqx@Mc7;F5m=HXJB zH=q|W6e74UT#H;82dZ8d+iJ2;K>)=U{)0I1j>ACzz>2(xw*Z{b>RNPkUG+wj^9Sln z+G>P9S7F^f_06A;l-475o?*N<9C{?{xBL6W#Y(Ug?aDy`fvuZS0WnI^Hem*oY|)?M zEg`>C+xG>ixYoC3B;Pi?FUn!;k{f5|PZY)1;3CU_*<~3AJE*4i5&&oCd2l-J4ac7+ z6-qqdzYt2gd)!!43PO)J2r`T&ywf}(moS0lb`svVOf8GOY`u=x#@nH+L8UxfbxZp} zLa2O<-^janb|)H++4Hq~>t>j(-!|~{o=P3oy?>9T@LnNyQKd=+l?7C_)VRmq6xNv5 z;-++-fwxKq9ZBsh3GAro>&!CIY@!39o0&gm(&Ld!4%`o9bQ@uGE0KQp!%J5nruPK)+m>KpJ5@K)s?^E?_qrt0q?g=*u}(SG)mjyV zqD$)kKoC)}UP$24G{SS#>dF-fmen%3yFPcCRbCI>T~jeqYZ<=3n4SX1d(aV`bBO*( zkn_(e%0X#8eMb)x@RCW}0%I!@QR-^;1#JIMO&HdaDQ|7 zr#rVhP6$H}@4Kb1@lP#0PmGs;VqBy21ZxqYwV^2t7rx_>v3s31yc&$o)&2}_8@ZzV zS+1)aDe5-#uAyTc;uoJ)PdACB-25f$BiGNzJfE!-KH)O*z6UheliLqpfGe^smH!2W z{2#dRf1{9@*;xMvh0MbE{}hGH@qa=g%f`}5rr^6yvpGG5jZQx4sjAD*+#8HyBY}Y? zKsn?Gw=RgmRyQN(eNkEzM}PWZfQks@L50Pcje`8v*iwDqV`k~+pS+se%W(hGU9t95 zfFCT>4TbnsXXVO2&HIG&wXy3900_{(U*yGe4!~ViAiSvSx9~@i8HOaK!TD7bs>R`n z^XV`m0EkWxE6&l)$jJM$srtf_1cX5Sv_P8V_b|j_NE7l^wruMLC!hh7b+%e5wFEzE z-U>^={mi~8Cl!mW86_ZqmH<=lJIf|lh+2L^q=U(YB4RKDm&wSZ!>O*(Kgx?0XMn%k ze4GSS@ha7Ef9XH^|ALK%Vphhn6jPMCPJpuBvC5TP)e!jE8U0H;?}wSM5Z%-q}6i)j?los6SOVl3!kaM zkeU!#N00#_aBfNcCLFoWIVQu^d0dVZ5!43Yy@uv@d3b|(c67%aXEz1JAiY`|)bkfQ{M6ewT^~o<5XooK ztdiTZeS*yMAD$S?C154fW>-4~HY10xP{j>q#YbuPHE%))0|lev69h3 zTQ)pA&N@oqiD4<8d-H-!rVHEdr=b9n1I`%xTXV-gEZVK(P|VlaC+~DMwK2cqIN^v? zsiopkQ?3w~qfrwr@L0*o6Ms?+VC=AneWSaP5{bZBq9veFfB|(N4zx5N(O^Qg!)3)j z_$&aSm3NzyKZJ*~0#~;Y-hcXY6sx}d_Q<&9ST7p4kgBPIR_l^AY-UnD73vr3ok@?N zDSt8~ULQPqT687?w7j>{5_tLSu~Z^#8<*iNor>JCb!*75xu%LY;F!UqOl0NW;!&o+ z^U(gL(y~K`Yn!641Psi$ZOsR1(M&QT;B;6a{lu$&ZLjBYZ2#h^u?xxCeWS*VYRb1T zbK5dYDtI1uS-BHnkq%ykdEy>dMfCCaRF36XCBQlS(Kh~=9N3q|DQhEO{5p7X@`?lq z#rqlbS$`K^iW(vlokc+xY3t-x^G6?JH5H+mUSf=ZaJ?b(_hNJQf=Xo?i&MfY*Y-y} zmO}X5xRPMOB9L$NE$^+b4X2@BBsrqm;1{%mnG*?h3i>juRHAYfP;28^ujC_C>IbQO zqFGb3xy=o+T)3$?yKu77pGF-F)g7AzVBmQ3zQM=M^8j~7<6x4?+@iS~39&!M*-3ZB zK|NV!8y5j<2^sVX?m_)yJj;mU6s|Ku{vst+mWx_}njSqzE|ODe61%EZFf4Q#dOntN zK;#%B93T#Lv%V^!&Sn+ZK}{-rOu2celsPP2GOMNC$EP|)@(BQ>hsZRVCA#XLW2I+P z0B|5vB1~0z?4R)m?47%=My}idj6lX-8LIko;`F`_4@Ti?-YX`hq|kI(fL~FAh4z5E z6$9;9vAer5t}CG+g5n*?RvJr)U@gnRWZU^d&E^!XQMt{x{plHJH@5Bh9!j9L_ENp+ zh=Da#vSZj^x5Y8N3R+y zLsf{c2(hH)4~yK7bBc3Cxsx+SEFZ!RylZ(Sb9%?fX-6|=eT++wtRJeQOZ&>}bBD6j znK}Z^3no1;&HPyl=TkjjUCXu-as4&7UPt?2TOSiFKzM-EoYj)ekKPH<<8t?E!;p@Y8dxWVUQC=P3`n{@=q0t@04HUK!4Mu4VWu z8@<%^tDFSir*6I|cDqxz+^ez$uu7Wu|%svC0R$-gL9wSpDrrU zBzMkfZu-n+bb2^LiH@3cR9Wv<$+O+61rfI@+={@(G^D)Vx%ne-Kry?%fxe_zYvDZ< zQA7<{vE;|6e&+DD}>U5^=01Sf@U}I6;ymoh=v-2bD~V zqKa?1c0&0=s5I{u$OxHBk&A&YiB(g;>eb`QE(*PGaa585Oo(7jGxA7As6@vVV0X5jJ%3%BgUOL~iDbBW#d ze&$nt`Fm(?6K%yT56jQ4?WUT?XMi;PPxu2?qpl!~1l-24h0zjXnzpgsnT5hgrM#QOHW?f--LzUOj6&On z=tm&?d3O@NO*8uM591*?*6gxg9`_SL8-_7hE?xO(Q?O1)r$Jf}O{x%p0NA6ciy`f5 zT+74LMUp`dmfrwc)hqjz0nKA%Kuf)k9 zxSK6ROEWxLM-~9SO*Rf74oC{P8_ShrzD;T8!E0s*)0b*(pcK{G4Y+rK^WorvbLw?$ z6@N}JS1={G81UrPo3|<7`9c7UBubr1Y|YZMBY1tq@P8IH1cxh8rC}m)mZUMjmWB&2 zcRt&ML=O0AH4o@_eBrNZdF3QX!6Pb^A_L}VkwWl*L8@=|Ed$?|3lvDo!8zolS!Ea=Hthc+MskSXw4x9iu;mD25^Br#m zrLmJ~m%u@#WYmP{eTYC{462|)B(_7DQ9BMCsMej z1sh?5GqbR7trYQ58TWACi1qmooWG2YSQ!hH5SB!2&h)=b#lhar!aFBkMBMc3*41n( zeLszgjzo)#+~hr;{7erYe&lW2w(8w1i2uD3WHd-4w$eS9zN1=r0Vx8?Y8$TK85e)c zrEnMr|GFh1=D#Y1+LL%ifNDRTFWKGoIHa$KqqEgpP_0)BNQ3m`X!*yO0Cj%W(xyp8#4HI#=h5K~{_B_p zuw_e>J|A-mGTW{+59}M7z+P_Fxm;LVjjO`i+Y&|C$U%*YS{U>mCc@s-L>CHHG)}>8 z8F$(E$sHAUsh73=N6n7ze$JTL5|4Dz&Wfh==qR~gt2ii&1Hq$>WOHkw+;DdJ_x24I zvrZdbs$cOj#BCV-rE@^X@>0o|&jX$1!!c$x?ug(DZcWSUsncrCedSZu@V_Whk5YP` zt$PnuDu0o|^!6#8RTJaI_P(f8*u-5At63;ODiEHGaGFaV@CQ{&km`wbkk2w+xT4uz zicFWfd8*gA46*JRc`_wEml=`;EH%J`k+B1CWu8KG8F|VVgM1YgI9;f;w`{0}5(xI! zW;azG)|{twl*STA^!BjA)S?C+iP&H?q%=`#%)jQ2wU6cqqG^j9tX#{T&loR>0_=UF zF=eQB#V>B*%`Hr4;<97|k22N z13!8?Oz|F=Hg|DE+}qTl5(C!NvCqOBnlU&Trsd_wAmRNE5asHhr~+Hq0C#ly=jC&O3L=>%jQU z+xF*N41@>WI@`Fc2$vlcxC}?LRu~JWd{3#2ZFr|JFv|W!nvB5-tk3|L>{y~*`5v+~ z)Cdb-Z%}opaRG9PvZx_ZXYnSmg6oGUK?I`R3~5T}afEAVa3!ivStul$>M%~j96>O{ zHeymJrn^*FNpT1YnVWtj_|!2(`w%HJIZ;D8ouotRl!Z}Mno^xjcf>(=R9!W|;GjcX zSFTKsY7>`0?42gim(ZC%Ez7%Vf9B7e zr^?l4dvGM9!+m$9BqRkR zc2*OaU^q(Gw@@8}a-BP<@mm>TF5;@5h;lBwF~ii7gJ9>KvE;u1gFt-0%vZV2-8qk` za1>Z*%kIA+T)4mq1Mt4b#XUS?Ps%MT09?-gbkdMg*dCB@aNYdn)#pYNG=L91q41W5 z*vM=t9iPl!ZxMNDUGK<$uzx!w5&XBt_>BZ&DFEzz;===m9I#3xNyDKBfJm~DNG3a| zI6yfCf2xgp081%pN+MaEo0EaxSQneHHC@*Pwj*Y7%@m18F?eX+mQfoNfK~UT*&T&@ ztMLwhH|P5pLIp!O!o>J$SrJ(RfY%!@Ck+WXWdM4;rmgs=&zhI??osp7PHp)?3&vWw z1~I!^oZoE{XeygtwqpuaE(TZVo|Q5?pF#}2EWsM!X$oe~{(P#=)2Yd3-PEI91nkkK zPv_R8JsYxXHpnO=V62XvF6vI05|K^reQ`9iCcKR?%mfD$>Gwt16kw$eQPiGN>gm3_ zo3O9Bop{xs*0znby2eb}oo-xn+3y_3Yy1ga==|r5=K}wNI?jMxh%*D@>z5o_IOo(=&emlYk5}resf#dc63Qxs*0fQ`$LK zjahg;t5pB^QPt@>MoTKC(eE1Z-tT1j4!8l3D^#D>4Jlz5RI8TK7^eFLn+7wU8or0E zpp>0?!^5rHYzH&Ol*6tLfx8B{s>)Qz>0I2>|f{ZY-w2(k-){e)7_x*1^^vpDCaIkH0za79}| zN_=?G!dDyyt`oT(uxlgVuDkt2+I zYR4cCiS{HD1*rj`Mx-qBJO6ao$r5tHID{(?v_$G2a&g`4mYvj){NZf#k`Zv$vhq4B z;N}AY#Or?Z7%n0QxrrjTYKfL(2W6`=Ak*43cTAnQ<$P1Vqk&HsXqCJ48SiVBy(|D;m+IAo+LO6Ll!INy{<-j zz2W5*GD$^g z6;xa83HhDc7!coq0L-Ak_W-CJE)3-5qRYvL%vw3G*h(WqCF{-=(3BMvc3!&Iq8V{e zW#K>rghYXYAS8MU#|+#H1%%+C31D^ZV1ey)hVHCOKVMaL?d#wx)fyV|G)3uM%e%W& z{m$u0spYrkRm5i=jfFY_-YrC(Yy`qsyfTOwNCK;7TiACs9qz?vy8w>{tkxC>ipxb7a3Ce?icB_khwXll#5jgS*{7AOAY{YK8G$F6VJlHv3km0wh8%u@ zKb$qC26T4Hu7>1;g&Wqa{r!c3?&)(dmcrPl@5 zh1Kyor!}KGwt^w+a)Q)Ucl>HAt$bV#R}N%F7_e=ML`$cT@$o^I6I_v;*2}AUF*sB5 z50C4&X8>ub!{_()cR$$2PyTwd#|OT9)OFVSd5?s4kWHl=vvUpbNQswoBdvumhepu3 zGx^MP8tY~B!2bjMuZm0zi`(X*%D6Lp4R6v1fQ&wX_288W&G*w?NS@5#s3O>WtUIO< zq3he+l7wuY$l@(4;qp^14+DT$(CM}U9Tkl`r;gI@vDjAN-jZG^;a=Z!%oWD)Sqcs@ zx1wd~#iY)0h+M@{v$rR|%^U~5e*&QAXM6XEZ{G8^_>VtDISv7I@43;YLfe|DI$m!G zk31!wCP=Ez%UP$fIVq&Ag%XQ%4u&G{Z&=+HHN%tm)#I^h7l{(xn$ojPC~bIHJIvFN z0tg}q_IhU>9|rE1l>vPTaM46W6!%a9F#UDsBK6K12jo}W36{!jkQPdWeif{%8`tm5`N zq#Zs;txYfydtNRu>N;~8{pqZfY+gBUDAh{6XRZLzdd#>-rrkm?kmf_Mxj#SzKSm`$ zuwyLTP&lx8WpOS7Gz~?Eoxe@iDb-W5Ddo>g(`?p2Ia^D*763LH@7QAp42`JHdAS=f zbOa=&9VE>#?gZ5Pc%c{2g#24VL`^T5VcYQI$Mkvw(EKzbbLKFh6u-^s&wk_Q+*ZjB zm6Lq9AZNV1w#tHCP5~MYoe#Wj@QR#R#d+p+ZUv!%o#b@4(q=v;Wj1%f`uZ3wM!!+| z?%C2NAr#R8y{!>w7Ny~Jgy1ppL6?jIN!?vx07lQylz8o>MQrLJJud)|53}>D^|ws()M61m+R;CXu zCj-F>+d^f<=m3Nwrg6bRVHa3iXGDkueGxWABPg4XW}Dj#09HILwW-7{%6H5YEF8J+ z&S1lvWY2C64R;Uopk3Ms1CTOkq!f)1cAnpUmB8$V+?qW!qr;Yg-jktQ;c3!ii+ebZ z{^c28o-q#g;l0*P*DCL&Ux!t%_AW6{OIU@rP%MX1#(%iLB1* ztWq}5hCt>bH@Fv_9afAYPA6OK!=cm#=+SGJWxjv$R)BYDo3+jbQY%I=W6G_T1JJT! zD=nWxfWh$MLKz1Th=vRV49k8t2K(1B3RZmu*z;L zud_d#H6&JV+I-A%rMbwcY)Wm?u^@E|ucM!sh;Ro45S}O^tw6-Ap%_U=H%NqxZOsuZ zvZ5Wj^})*HAR^DzZiTKOHQtH&jgSP^=CC!tW7o|0m2?OY4=dy#o_^jv)7;P73p|>m z9P9x1HrXR|UsiN}fvOY0kbO*Iv}H*E@bNQ0!q+VvGi;?X8kPkyQzKg%4Bpf$H(qW8 zTHS$xYXMN+od9f4Sw@Q}(&(u#5kkf~vW`tWwjr%CdEo`J_6`)PYASIaec z%Y3tVSo?6{JeiC##A1zXP}6mxoLdg?4U@2u4jP@|ZCYsm!&|k;K|E&7NOVi1QtqGR z+-eHkkyfo6*0njBuJ9>1je2^}dE{-y4vq{FK?cwCD7XtyX=~Lx;mBH5 z_ztl|nkMW9DTc~3t$;2iDkUq<(j5m^ek}lODJbq^QZg&ft#PK?<9JWvr6d!gJa5n8 z9*KF$S~8530Tq8ltpA{oLs%+Brz9SG>X~84$eCt`C^9isY~>BqF%EjX`1^~G$x=#N z(dTFU?gxa<2sQZYZ_0-YjOoW0JU?@o5QMkh;jS@5FDI0$*DHY5jZKO=nEE)?hoMd> zbjbL*+EN3-lp!>gjGhU?D)Q`J3BVJ5fQ)p|#aJ{9yCPO7L74zp5O{$SSVd#_2uiG@ zQI=*8NQo}nS`m^4^C>G)iALB86o131k8tgk%nI*;`-uy`;?wQZP}hI8L$m8yp`01cU2 z+0nLutLuly`fjXK5|QSbuFcMshoPL45+aCEf@gYWsBNpTs0wj;LWm8bRapV6KnOI1 zEoresa*0qf7Nzc_!KDOG#)@12>ah5Y1*6Skn!}dS9IdMNS@ESocxr{EQmPVsx8&#!gW*5 z90&i^yY2m%)rWr&dKAU2VBK11=B|gczrWPW=*etzTdLhkKyBN@P|gW#!A*G26zHPU zGiz!VCA?=a@Ke-8Pe^MsKaG;O4-p|_IU4|7nQ!5A!B#0Bob|!#lvtE*C7NM%gAX2t z`|e&xgdWJqR$AdBI+TD`svqpp`02iStQF$q17qg6IHJXXf^T-L_4Di!XH zz?ZBQAimymFjTgURovp0oYRVb477V%H}ix zw$!n>C#z>GXRBjt<^ceLwb%s!0zrVlDmpyTGh|HR(GkL10ubN{K2S8e((H8Qxyr~M zsYDKt0IS2pU1lRG9vQzoeRn^4F>HTSwdG~|B8v`-do`u?HX=Xo)q}46yn9Hw!~Xqd ztxKXD-XRTZT{wdG)k+MOmCM>DOHSo!s%I0CHs`uw7f(tU2DsPXd|19a0~mjr^AFDo zJnB%bplsVyUfx+bQK{Wogc4#Lt?bGTdm@!CEAoLp!ZQJ+B|0tw0Bf^JRuoFo2d1U{ zkmVl#v#YheVL@ZW`CIBQ?x+D>tp;!Rs*mUndwZ9tvbSS>k2N#%MliH}S>S+YHykru z@SR|P%sUOe$bH_pYQX$0VpC(awUvb~?m*@owmKE5iM zrjhHWF>fDE7k#V^w-y_;N)~Fe~3Z0jQT@ z_;`zTkQN_5Ei5%k0R7$h_S=VYw$LzXQNDSAE)Z$ZtAi4%0?CdO80lTtopFF(ok}9W zl(=3!5Ki^8OLr^SU4uBu?TtIoKKDCS8u#APv|bQXdRsbon9&UD#=T`%Z*PZ~d}=)# z6m22GlaZ8CeVjtQq{VG5FsA33^QMQB%&hwD&mWd|gmC()+EM|0{%4o<9l@4Kvkf~w zrU|9NIRr4g$~Ke%^$a?PSGj?tmEHx!6;?_XMG67g!2*&|mq&Y(#{MD1+R44$_8eTe zH&{+PCwP@`|Fo~{sdrsB3)}OdW}V;}om?2(oR$~7Ra9?+fe0M$oOZ^wO?jT#Qi zpD&0gy5BPkdRwpBe73iK*FN}&w^Z0Cjjt_?Sc7<;kBpX9U^>yZJ+`t1%R~b7Y4Vd>AE}sya{f0*?b-Je03ai zqsI@Am$ImDiLmrO%BeM*Dfc#n+P%hb+u~aGX6VBghy=#|iITlJVW;3!54J6ft9E{R z(3dx_j}w69+X=w*Q&pTt(;e*|UOS!f7^^lh{L+Y%3OZZ_o}v7``|^ieTqJuK z8%*f%?VDQgL_l!3<<^1{*j?v)G3LD^85`z?w`rkHK!_xN=hoO=TAj_+=tZF+65GH7 z$`;d2iLkW39|4q$*(Mo1o2?b(_I^rpUA`H={L@@67(eUs{ThO-6Cb`W^Ec`FpW6CC zJ_@dU<@kl%;5|8>R``hWAdu5fpaU6cX|ZYyW1L(j=DEQTcai)f>!C$jiOSiEbL;u# zpDm!HhF4BJ4&zsuwnP7#KO)wD&_{S~30_f(EWP%Eu&?2R|k6u z%YJl~7_eBdJ6WT=pPqa9hZ+#6L?qt68|%c&_gJ5-Tp(inq8+L^|9<=aznWhEs-$=G zFjO-KP)d4v9>?#8@#8&PYAeE7P$oBRXUa6Zhz<&AZT@k4{6K)z+_rm#w>pmp*gZ7D zkeYASkkDUjQxOGR^t(aXJB{siyKl=JyJL+6uU~o9%o)?D*b}1EJ>+a2b9Cy8VGrNG z^`!S!q9%zQBAw#!VTx5uq3 z;Hrbc=wnL_$mkii;Plb!$s$63`R#D~tM%Rc+p=c+zn&guy#7U<{@?NT{yhElmv>Ls zkH4|u%LE|Jpd-JcoFRf0tOs`)u-f(-vD#U_>Y>l>E;k$16oh9}Vp@Pw=#32$6e6nJ zdxoZPnp!~*fjfE$$jD^yw~qCF^+b+9Y8?dZEoHD&pm)IPD>US^4`_?4{m`!F@P9=I zfe^YuFeNIPf;P4@C=&ttKmc_li?!SuX&bD-2i6f*U>oN5Hrxc@`e!)3TL9?)d7S@x z{_p>b|MM?TKm6_d-T(A&{^k5PPvc*IJU=blyAiKyGM0RdB{*71V z;*mq+K!!*QU+yc#rA`}G#|yRt=P5?DRBlD-Fud;A`_c4zU?R4SXqs$CtP@XD12J2t z{0gbn&ZGD4lu*^`Y@$-}(?kKgFOm=9l?p12N9NDB~%2aJSN7*O^Z>F4xmfojr zjfs&~S;2N;J<&G!fO3gu1=t?-FqC;29{&#i&42f=|Hp6s_uuC7_vh^Y8UMF`{a@ey z$v6yUIR)}WO-;If93y2y9RB)?6Z8%o4 z#*GQyWKLW+dQTS6_S|TT%>ksm_v48g=^S4(nvX?ufq2M>{6jXu;#9A0<)Ot8pqzZn z+@s>qirMZAE`#ocHdH<~eq>kzkv>?!`$|xv9G-jrhNvSwgN{1V2YBST2N9^%p8pDe zdHV6Ux%^3b0ABy{^yB<%`Ig3^C<#E?ns`!;9744o z*!!AkJEh(8)7p)S#w^l;Jk>Zxz1<9YARklA@0%4hJOv3ZmZDl)k*0zYXGGth?JkDq zitODN_P(E~VFB*8Zxyzq1EH@|>pr}+5a?)en~Cac zi13WZ!U}8zdnB3nx)n-S}HY~`sZW%AewbI@Ft~Dg-p7;29ZaIdEt(ffmT)!HRAxd z31}sK`;~Wyw{hvkV?Z1@0`?#r9d$M;(Wh__1Vh`Dg;qTJv1pgP$0Ol{#H~)ZG6Q|GGF7%A?2HRB506;b3CxNs^t|+3DmfL0| z2&!n#D!L2SYV)k4b8lc9!;p4oI^Lbt1H6yc^D#{|rk;Wa_?ZRUxKmlQ6fE^@;G9p*40mU#p zw-_ZY7``9BjF+d!oBi`o*XyKPe*G8Q>9P*VpFf|^e>1-S|5gC?WVY$~&j+7iA3K+- z!dBVlbk!*}*I)|(rkR;m*yY~Z^R{UU04UzNzy+<)9qVST#dSU8fexC@z4=^6i% ztg&Ox72~s~xn90Unqwj(D29E`!AcO)B$5ue%TiMSdW+V0@50oF zVuyyg>$k6lYwy7pE9vdgdfYit3cTj~9%DT0k#oFImp@D0(>D4_6XHCO$-{l%Xb zr}YPU^OZ`x^jTijT?1lwUWeSs+Qk_<7}8nghmrXT27vMnXDXb|-R_3KbrC z9o8Gf#wSNJeB2vz&l2?CwpQ(3qJKoJ|Dcc9Z_VM>%k&QE)tybyEe($o;h2%ry#r*x zv8)jM%{g)6+r`wIb+l+E(#gTa-Tx39iJ*>T)%cm^(sDC(LRw%el;Ig5l*tiRl&?7d zR9N)g-OzVGmLqK%E|(9!K++Ao07jes3 z;jshjet2#^f)&XdT|H2oaN&GtjKJYl+ap6fN=OUR0v1^X3(}^vf>rZ3X?a{kGm z{@wHZri)^TsW+sDO$&K20P?Y+8)MBn}DmsFhhtswWa*|Vbmh=c+K!OwcBy*a-zSYiAk0FVFSw*2Pu z^4knz`s|!HnGGLrysbJ7(bFT^G}Ot)FB|8rt%ESeYj=p$@%4C{=q{eD)%Uh7V>(XL zJ+$WOwW^)3`5t#G75_YlqjkP*gY?zVceGA9yXcdk!Qk!n$z?fh*Xeo$g>ZxKK--; z@F~sTCJN)T&j0Zhk}Vt7t$zEcA>|)l{FHq(09KV=7Oqm*3a(-@n?+4dcM;Tz~bne0Q?dvqbkaR{-g{*_UhNJ^ksSK25fk z^yAvzw>9JM0?0|HQL%+jV8Of2@Wv8lDQySCsCIU?#n7}O-ef^{2?3yGxRBF*(+|Gg z<_|!1qDbP#H~Q*0;F5}4Z*LoDn~%|kD6zZ^mD(bK53E!0|3zspa*r%>1iMP8Bk~NZ z@0{OHmEsYbpJelW4UCXlo{6@LNvk{&2G6ujRvJu_YVUe)@(j;V6oe4rT|_=KEt~=PB|%A=DBb?YekeGQfr5(6lA>#>4=O&HU^R$ydurVuX`>J6s36^@>ut)25Wz zQ^l}NR#2xXS`%G?xdDg-QPfh`flt=Xx4XhWJG}ZYg)@5~l#ku*pt#SaZQS?32(|Iibe6%_l zi_+o%(&B^hP%(A)8t96esI-a|QUC6_SBCDb;39D+SdoQe9mNGM0OcV;DQer&Qe{@( zk3J=lwt2d)_W8=!TZ`3m*5jpJ_cpWCd@X75{P|`-e$l$|a;o3H^Ha{BZ-|b;)e-&K z%plkLmMO50&l|<=jdpST(1pETDs7%5ABXxd1lgn6{MVaB zt*FF@i>5Jpp7Hh8`qv&0_8o@2_x}t!&M{W~s$-}5o3Qjw({1C_oQ1u!cQmlQ7qZ^1 zks(_^SjxsKTZ*}3Lt9DFM_}``^!}c%Xenu%%Ug%ZRw9}a>10FWLo-s&RBQ8)TDH`x zY|{`897B*EO<2St+Z<9fRjXqc%I`(I8KP=md?dQUXD=j%vM# zw*uB%+Jw@r%^H>H;XKe1^X#d$#!+v<1{umju2XZtZPoC+a0rF8{0!?NOe z1E6gME#^4KGm>eZLF2sU?>}Q+qWu;CK0YdXNq_vJ&(Ahw){(cBFMR`+)=%HGZCW>` z3QsVL&UmfxruDVk`D;?Gt%Je6X-kxaG*Q2$#O(~cmOIk!x$V}d<=)*{JjIq$L#hu$ zIVU>u%N7mRokW$@s%&9ktlWcBH{7Xy-unwBiU^a_RF*fF0fALl(6P(rtAiD`Ie_80 zor<1!CDVjeRtk|{YW7v!$15^ z|LONk2A8@s-3tGQfn?AH8eIJqGUUEDRD08l@Q;Y~ANaA?_jucy>Z@Z1bsBH&ZS7nf z4oEW7l$0!3dXeai7LoJ@fYwujG2JSQYp{F!P696UtR2x*-(M!vF1`eGKX1r~z?vEFp2W}NFH?vZugxEf}?@zYW&$0n}Vy9Jt_kBzKdUp=N?qP zEfG25dLhK4GhI6tuzzT#A<1QHvDI1KZU!T(d`##lj%C^!i@!^bpkVbLr*+z<(h46M zn+JleJ-*o?#MFB2+9qyoW@t2w;lbCI!Wgp%TPv4Ums5S3DA~)#+Y&n%0toIBwheu! zdu@e7<~V9yVW!JTW9HoZM1Fc6uCrcW+om8n^K#aC!XCYDD*y$mCV$hgHGwTRhh!9w0 z2fkHfLOWR0`l_KDnEiDc4Y--BMnwZ;@I(Vt8SFI_x3zNKVCG}Cwb=8_=U13<9J=A@ zMmHtoP8p1LrLo)jvKhcHFVPEC&(BK9zWWxZiJzbS(`S~7b>qu5b_(ep^VX_vbB;c$ z_pbMQLG?Z_qn&H5s#RuvbF!Fr$6#|`H0q?aeuemnPD8tHFF|H;V{NsDLn;p$#&j*V zwls;&;MRwrhrc`;biaSpP|@%g99DF11G?w3yg3o!0<xQl9=>bFL>kadK-?^@owvlM0#pK$yCXd%EJ{Nzz_N_P)|Ljk;KY0gWSk@SHZks>9 zL|1`ObUdFm&w6=nBP_+Y?VmWPtJupuJPQS4-HL-dJu{lfuUouy#cb%0K}JdHA@EA6_r$h7xKko4t6>t+vUfBpa4`<5-obtFl10DMS_%&M+ecYjd- z!~Fi7Gjn=#t1=@(qDTU8>xDZ&DsJ|^7Nu2Wgi;~_0&q7sH#;yMC=75w!7wC?9bTH#4ZIy*0?0l$OeVT#OB_;zSWX@VfDVx&p=exov4w8V zp%&MOU_4px=ECLaF~a#3L{efY9VK%IYJkha&rep3fB6&UDJb>ld;0MPAdV^gysNE= zc?xegs`BSMN|8N7l@^8DP>&GC#%K!O;ehsK{T1*Le~LRE}|UMEg5tObu% zs$$vFda~qAktr|+87Sqb*ZQ!&qItfpDa9-(qM%X=jl8VgpR}RfUL7Yw)liS=ak~Wj zmV&6&xv{l{3GEufTEbprtKsqVvb4#PrFfXs+4=umU1s}s1C`tEvU0TwqC`h!0CXc) zP`Pa~j`7cb;`bW>TxS0LANarj-=2fI@2FMAG5qlle7ne&WqIndNGZsPBc>js zL^7+zbwR--9x2dHdn03d3Vb$1@U=pEPa&H|hc;bYL)Ero#bYmXn4;e>@H!(!sN%Vq zJSMkYL@-T~B1``g`oYk3>d&tjB_+#VWm&PiS;%3Mm=Yac^Jq(~KXBb-9Kz+|c5VQs zk(UWUu&(gwQPSd>S5**0R-iVWn?Ai7M&Ld+q z2PZBIx{Wf4btRk*-~=ctB?vOwQSHA}qS_c1ynl3kRS6QleFGrh-=O6CN4-Df$2%U2 zZaeoKLBeHrC+k`P=(f3$(zffK0VI;{)4Q&)7{)(d7z1LUs_fPVcIrp?LWd(cC1>yL zMQVjMMwR*u0hZQuKEg3WQd@4{_B0!1yGdJH1Vyc(@HGzXaewzGl~x1P6QM2&NMzp| zIFE+1gk@#(0&SZC9lW>PupfRs>TN&U+=wAG7B^k5a=jn~E=&FKew3?CcWp@eT=85F zkv3`dfp#S8kDq|&Cz8^?Akly7R{|izz;8E%AlnX8#{&?8lu9d-l9)zLgP%;KCk_RRKyb^ow;1HeS9noBN-QTHq#A64%(tx+41>ElxeI0M8qDO6cLdQ~Sc0yD4_>*(c_V@}V&=1~*zai2<1=nJ45TrODrS zcN;)r43`<>AS7}zgRmnp3W6XKgKk+rK5SMjG%$y2wp>&8EbFHK_^InAF(d%;hi@DQ zeBANd&v2ca_$V=t2!g%o9d+r5QssAr3cqtzsZEs^02+jPkQ9%xwf-iL!ow-xZi9Xl z5v*mB8j9m{@LJe~YFLtHvs!&e{QgARrY;!YOx^2aKM)st_4iDtQb+xnI zRi*cx+jgMKR!}fC&KUYB6)qzHt{Y2kX1XKH1G(`=WgKN3ku$f=3QlGPr+dbp!|f{n z`L}wT#s&PND8%hmNMS`52nEVjmIx!Xa+DVx56yA)M)r zozp2p^BUUSY7mO-8BBAJps-r!SJP8a|BoWpx_tB$iU1fkz+HS_yh13O(Y?5+8)kCB5^~h--(lkcf1Af493Upb*C>){= zQ4A>Rg4v`eyv@akF3@ojw(ZNkyBM|aLRF6-x_Fw2s$8#DH*r+o{D+5xaRilnW>o}{ z@ggxW7wp-jiD{)Ewr8l;P~BRZ&*xEjDaBV0)t9VA1l?+v#4y^lIS_MSa0l;?1VA5) ztSe%~I35)Ej<+jWid46*d#PdLbe7tPSKT(OD~w7ITI5y=L?lMY002~7w|+j6#GYjmzzr<;Soq_oJrfCln~Lu{*G;;R zcyU>mqo>}UyBOW0vK?r$WhglW%VbYC|EszKWxNa;(Za1@Y$LHN0J3CU)qBvH7$_k-aU6r{=5S9Xw z@b(5krV#+Qo$JQDBgFXqO>Q^Ts-JgV7ND|Z0AjU4W&FcU-fmddMx}* z5d!B4@ia`e%HxS~;4}ijkk|qQj)MmXdp>RbuhVlp$l?KBA6B)5E-(Zg6Ney#>?ij~ zgAaOWpr^Tc2@&-d--y?oDMrqtOe6NpoNc}UuvG55q$Jbmxlye$ju2rff_nD+k{A(^ zq$J~r7*Gn=ja9?-Dwo-eB)RSS`Dqho?=sj*Uu(3tfj}|!zmGvoU*hz0Iv@=iO=d+J{Cl{2$&FgHo&W@Pkw7*%y zi~(*iQz=z3ZK!PrP~SgfNb%2q0>Jx&d)Ci;01zW`mKekLZyg@98RBzAh$!V>i1k19 zD*?csS&FM00lp;1fu%wM_iU8=W1o7v>YT!m9jkiZn!SP`CPO`}^eO8ORW45ikzuec z&N@0+E0(8)12Roea@`PPxXjGOPH0B~G;rIn=df-vj!x$gK@cN^NRarqzw-M{mR0}p zlX+*!x-3RM4VQ~m(*ejjW8Kh@g*H94zL;tGK(}o{E7vOX%-cnB;eA1=kb%tt9o=e4 zUC$d+Z>C5I!NO>UKqdTO#IVSU@`-X<^S(7BBr z!Kjl$B9k_Gr67o0uNaa%J(jbLw^OJrMFkMPy~!{@7wzOgs@JMZ(PhEo;kS9Zo%rn= zr@@y&-s4~YD)Xd2-}Up;$Et0%-9M2^TP=wVd?ei}#rUOm(l|djC0=K}&0)(}p0aMi z=|7EwI*s}^BLsQwvTi<_UDmWiJ4Q`1CA)q?Si-Ml5b5RQ4nVv-I?t!^K?e^2O`aSvm<4+f}G zHSEPW1=zD#PmG00A#fV%Z32+?ay+o6*=qzPD^lcgJm760I3(G#!N%U})0)%ID@=?K z;YO5tSejUZWekWR@iIb09?xSP`>9(GlPH@8GmoI6DDMwYy-&fQ9aW5jq(su%l{BH^|!z4V==^2VzeGr4l%@NFoZr9KA*P20ASk@+Qa32V_= z>vU`lBr(|ab+xLVlX~#_TqPIoJE&k_&LZM-UP>p;%5y`lm_~U=W^-}zN-D~GnqghK^d1xg`6HQ9BD_&(N;BI$x*zs$+m2-)_kRhCWG-D$u%V;ap{ zS(erDQ=IG{0S-~75xK~^^<&06;)6$Gwuw2ZaYz<=@a!H`odgPiDav#6?D#r!h|=(z zQMrON%m3hr6|;d~l>uJO-*lIzSL@Adu& zml+cHc@M+Db@d!sx?og*G^F3AL4u5pX@b$+mgGz3;r=d1lR77o4$>UvVkpCK?G{V&qxvRoy;{|B(lpH&#rm+0>Kxk2C1u@3=`IWhaqe{K$rcbDpFP8!?Y4mymE|Ib zrl+`Jfo9{h95tJ>YCt`mtU+X+I3)Duf@uWlaaSo}SrLLUdz}{2ilrZ0RV79v zxwBS%JlO?2YNZk)yASJ%yPTAS6(joylZ`RseV+&1o6##Jt}q{N(^7CKEVrPB}rh&==>=Kz|ez?Aq-FBwJv zEZGWu|3a+)sbAJO@BMkc#W%#v-6)zg5NtQkrLP8mFsn7VM1(*9wR*2t<4B$aDiqyO zy(J}L2%AAW=RL56vySm}m73E5b~HBwh=F6$F-jFVA5`ZLG>Td&1SG{Te`iB3#LXwz zYdoE2`$8^sP%d-Z{O4N3Jjpm9M?Tl{E~iGq>f!DQa&>D(03n*r3)>F)8X8!CsHI3G ze|Lv1tFK@6sFf@gq3!SIFSd}+q7fWn*l|i*&^)ALq-~PybNbrv7Eif!LFbqDb7P5y zAi2ukTF&|a_4@ZP7%Pf;5r zF$CH;J<>vFe^y?$O*sZcjpNt_!-56GGNfZxTDa^=J}uTduNFQ=vVEQ{RWBf# z?O9bkSLW;|qyuq9HnH@&7k&;!Z4sozX|Vc@JU8b(r^ZFi*&mvmWm)68BNrMKMuMc| zsG5k^1=1*&gyQ`O5F&`=LegzYN+jdo)8{1~3VpmdeZfsO+ zt701!+h*tQp7yLKJv(Qe$-&y+I(zTudtRZ3ziG9~rhM0EJ_xOygQiKOKt3~yivp6+ zZ_IBVTu_dC^sRZj58o{_+e^u%IDNi47Kh;3<+~T=U9r({RZ3Ny9KYA=Ym>0h&mIvG z6*BDLlM;k-sH{?xbqcjLFM>PJ&v;6S7LUr)aC3_>kVJ#v*yA?8#J4zJFdGby@b>*^@U2?7KKNdoLie7$K@qXc=Tc!+KfqE+}A z=4;LXcK~fz`25Cm9nY`z|0r54cNvtlR~kM=;+LO6RnnHJ>JOPh{rC=(iVxePT(PCV z_-wkd-{1t+=lTC`j~}}%=}nZS7Ols^Pcon_D^}%rFS%#P|3Q>_JGc0>20YjN``k{e z*;45LtnNRMn)$4lJ&NuH2Cf@wGQST0tr*&RwosUxJ)4Hieoe`;+@XT@o>}4D#3jXJqC@Q8-Pa?^47p=IE;KMn#Dc9#%7jFJpo z3-IAi9W2`o)oM`~ws__&8rDnzpzPJF)D}5RwuE>iR|JPwtkR5d+DhO6G=$gxPTyLc zx~#bx9b>0DBXET_R#Hw5+a5Wm0xaV zPW16MCQ+=Yd>_x6!JiyTxpFz|l87jVHs)x8M(=9@m*Yq|ae>}eF$FHOcL!Xz*J{o| zFXBq?Y1-RT+RIA4suWifP=gsGVRCiKPhp7#TX+4AqlBN3GM*4=ShV77EUN_-K1)Q8 zH33t~tTlv?pFdV}XU_x=r>X{Z=rDUzzrQHTDNwBvBGAo1E#ZGX{%(XoN;PrPYn*>3 z^gq-4C2J%luz_Wse!Z%cC)6I?8DUk;SV@f+qG3?@t{X^?&Lfo$gQGOS!K2!%(V7zp zHT?dre*;C|bu=gm$32lw3^tnu5wJS`RGI0}H-@?6SJYT8? zF~G5=@XgO3p*(v%@d<9MAsM&ln{&VBQAsh(!Kj_m0i~-a!ipQRS$2>JH+ficB%KiAIt#heEU$ zPHM-42Sg1;S0oV@1gOQ+*Y3Zmx3NnE5xvco@X${9S}J4dhnCRaVsa3 zTLy5r5W*55IT88bM#Ct_S2EB`e#!IT)We1;s1~9qfx1KRa?KsicW`eBiHaY@gcL^| z?TP~kKFuW+KPf34kN}U_j|48^c&<(Q_s(I%98k0O(82)-fajaRg@WOK$cw=el4&V| z;OTlX(=_*lKU*ss2L;+00&n`|e!CtOYumz~R*x1@6O31CS488mown(T%T9vCaXgg6 zvzd2ljlsZ6!o0sy^cd_2zyzicdQQ9Mvo|?*UUsix+{0W8uJAVhLCgao*)oLI(qCbq zpX!E99-OxNQd%qo_>u2Gme=k-f3POMW~1e#wgxC{m4&?8SS3{sEwsn&F{CSxh){7GAt;jqtkli0I`M1h=Ym`XlG0eW5CcF ziZ4;R^Zeey0hgB=i{&^v9=-bbY<7eg6xX*kUS6n44aMVld?0RsHp4_;;t9GJ_VJL# zcOJ^i_Ocz`Ar8q0j$9dV$=^!xOBwg7oVWD97U+HS>BHo=e-gKlHmJiu8*M7uKN-1E zB+vgURFwNTn|j)Ja71~3zog+mvSxhzZg{b%X|zSC^b|`-I&wa=b^!|ym{$}Hr1~lG zu2^giOtg*)iv%F^7~3>{XY7~INizOScmOw#s3UZ#uq5tr!hs38g=Ju3nR}R^q{2R_1HEJo7gB;-(z-7{tAY@U&NQZ z+KE$xs89T=G}9Rila;V^Xjx#SaQG4m)gZ1kN)SKjGj&30kMBN1mYPk5q@qeSfkV+5 zTZBf@l90ja2o4Tl>mrxDzz$8{E#CH#<%Zq!zIGLPZ4Nu(5UTfan3T5Yla^#LaguDof`(rpCcN0)0BA+{a zdD&2xmk%F7+?x)R_o`Fr!yHZnf$*}te>}Z5__sJZB<($NWc%#vR~7G*hq)w_YuBlm zK_xWw1HllHS%5svhVXekE|S0K#37b->P}gJ7JFbgWye;n1%LOCi-(^87>uRoEz8Xj z2{bu&qmSCslcX$xZ9KP#t)h0u;sN{mSLN5C$DcVrvi*(a-(G&Pc=EzvAj01}*J@Tk zCAD0tA~n+q?fDFG%;F4Fly_{AHsFJ$^2r2L!*d0+?l#@>hQeBjrK9MHLgH~a`jbl* z!a#pkM^KRktsbp^Sz>Yq_9T<4yI~>!+SjvqQkslQS0He|GOd2Uf45-9Dh)EfD zHye^X>eGglJGsjk=e<;;Iiyw03+q+}-!+HP?l~d6UMgJ30!gAOUrrZqSX&gqm^(>-Q7A z_^LxQh=)l@B59@wZeE0Q+sjzAV5uGj| zp+U2Mc`iaY^`}l+&W>ATCWnihDnZ5EKk%Ng`HO*^xa(1w#cz;&KM356^H21uyk}@> zV3Pm2DAqYvLaZ`P_s0qsISBEYjd@_FgotJMU<0wM$LHhbZn*?hvPwEd{J!1pQyB+n z+-0!2A}=*)W>vPxXj}+Lb`XyG!$i(0{3OIDA59}Lya0F+etfryd^`>qU4TA^3_zKg z+BpsHqp}r4U*l*Blevx_*w|%*4GQ(I)yoq<5j<{LO|{?p`kAIqvVew2mY8zTP5ux?y5-+FTSY0z0=6XAjh^=6cb#ag}FtV2wLussa>aRvrF3MgG9 z>g-b)=zfZkJU@r3kzUVFZCvY-O7itX6jIWeoNft46T=YJH;1ba^JX`7FG8XzGHCQQ zNij`w`Zxnh^{Z6t)%9$rAp_E<6p9K3PVZ}wA;V|fq8l1Qz|GPtQD#lO3#=o*$k9mF z-4m`7D1r_@;RM;BABX^hq3^mKjUYXUJ&P77wDNxEblmb9qw|CWhhW>!T;yk#Kf}O2rNRi;6X5q zH~mu`+6=O$2bo%&)~M@h3_(9L)cB#}JJF5CW3MU0T*S|m*7>IIfd+phX?1~z(pjS@ z{1DTeDUf%+8?rF2)j`~WL@}XyZaUrz#)X-)dTO&NkgDa)Qx=zyyYIxa)(S}U!Li|! z<@_GFiLS7#NMqOS(;3yYw7OAhg}6C$*gvXr-SCIv%u-fE`b=1q*Q_=aB=A%`I6evf zB%js+3Rm;Ay$-eks? zmv{gp!?O~W(%9~<)sS=2Y#I;8118jhEgQ|lAb?jh5v6?ZQL9+sznPC#w{S_4(#LSH zZ+G^?GxdYhM&<>E!{40h4-1{RL1XhbT*zRursT4c95wgxDG`lEOlU#9LI$6wA^ONI< z}z)W$Kc$Z$Xy#F~S!|{~5hV8$u|1=3e=Nutvk=t=opjwl2)<@wLEq>$L zi4wN_qnnqf0Q_6E^!}Edl|B$R7x4V6D1Q-=EbeP!YH+ZWD++z;L^!AO5{+n;k~9aI z3`Ft7L0YNADq4+5)Sh~tClKAvYu3$}*VBDNSA39~Y{ zmRR4whYfN-0`GVEA@volWKsw-6B(BWk}5 z8`QjUA#lm#>)&h?c&^kjiQlo#M6)Pui3AOFr#c*8W75|>q&;O@;iT+xn^XDZ$eo+U zk0F-rgZwF9`-F;?)UxF>r-+12YI$>FpAi?#XVO4VhGs12Ztz2(OL-NRoLkFc=4z1v zNSeZFMsl#&O{`6O?V}lc*gHsKXu7ay+iv;KiM7luE9I=oY|PJhc{fq)U(>&U`mDUD z*|li(sJ}l|I9oQH)(Rk+vP#|g$sJ+x#&4jZ3|NvG{b>^CyzBqCwKY#6i&a9qA=@T6&nhwk|nuZ{5JfSf65?k0OW>Q_U2jdMTG&52c;@b{Sm=^EVg64l_ zG9N7X;Doxilym&N$Cyu`jKTpFg1Dl_;gjj7OvUZ+nu!{L-3SW%dS{H>_{(ye+<+O- zPD6Hk+R^m7j57vO$JRFHw=%SU-{Tlin4?DpT=@Yn8W%fP<_DZRng%p^R;?!Qp^X99A*^Kmx{XxV33l?pSXH8w@X&9+p8@(iO*Uc8^ zi7&^^*$p)Ve|SrsCj$ZX94|AS$Hu*c25^=N0!)@t{yM3Jrz3l`k&X53#SkvRI>W2` z{E7_VcbV3fd)kj&C(Q80O-4DKCi^DBnU8NT#}TVqkjs7bYsS~7za*V(CRvZ$ z%o+{Y;#Bz_*JP1UIq_VMuyjcG&?SaM1vCfddEQ)R?sFF8T2Gs<_GR)lFf15uQFO=R za4dZ@zl<}qX{3T=Y4}~qp&|w%Xt5N>9w&W7%CUPfSLad|nHJ67A54rYyWvy-bK0o- z?w1i7@`EMFjI~cTYH%YHtX2}WR2ou7;yCDw<0ydS#D(bNuEi@)iYlIAoBeF0^jJ%T zD!P6TTC~c}Dv;k!Q8A8PtV_U`FJjVi`>ANo>Er9Loa}MQ2h206FJ7+qzy5o`2is8g z3yZBHWJW>2Mb{Qyew@!8LrqEphMEoUZ~yT-@RfU1rdwROsc4%gSCWO}QcvWw6!cMw zFm_z!v{}HW*Ld$vK3NB)X09iC^DU&>b6(cC19=nYO6a9_`n1D;)yc7yqjA^V-C04< zLfHxb+*#M27eT=tWr*_WCcip<@#*vZWPsbYe;3yF)egvk%A`*?>e_H1Z#B48(llMC zGV_pyT;!Jw60W{E-TUjD!wSF?244HJ;+akW=^7s1JoT zc&WgRAWvaDfMe7Gr3IHh(ngLJ>@Xt#(KU#vrxc#lwOLM};Agq`y<-jZ7?+7HRCHR~ zeWe3&&-2S=q}+{lzF$C#Mimc74)+%1EtbwNhVORV^(uqLS0z7#=GefGayX726Vn}6 z9NO*08@JiA9f75i^hzs(K9O<fM70P6w47l0r9jdojkfASL%AyxbLewWL_^9n zaID0>tkdqgD<}n?qlwD#+%3hs4L_w^UkHnC z#UCbU)oJa#sep@k-}D$+dZbKnO5HXy&uq;v;<{<-57g-59@6{~GfK0xcn>gdb~o0G z0{JJ2+2NDW+i$ly=ck>wWA>==G75?5wKMq;HE9D_#z?eEG<|8a9jfi3O(Pk7av7SC zv4Wso_gqC16HHvWg~K*cbWEbhA1g* zzu#advwtB@~IlH-ttx3n|)~RGYX6lbQYwE9P zW!do;v_FOK{tYj`)aZCxiZ6-kwzdmXaD|9qExvFdh+3gL zkZ&%f!A8$7x2|fMBlW9wo#MA?LZdbil=y@%ow$4!UYf#r-s&v9O{Y&c5!yk*X?Zia zO>u+wq@H)x-5c<(&CGv)?on{NJbRwd%d>ghaA<$!w3%woCS0q(7-a`#H%!{KA5o|F zhBrdb)e-hwxz9U9gkL}}vC9s7LI2J~SYhP*W;dx-6NZ~*-p@s(z@V`jalOFylU9JG{J^Ff( z=1qrNZ@ulqp)KVa!{V`aKL!oz$PNzr=SrUzPT2QcQJCf)c%PCr-9_9dH95vv5&=|`vi=?=LwEKP$Ju+(T+9w zu;K=FRJd-$VYOI{KJIiWFZD-oEWS-W?LGCVlV)+1VI!c{rZLtpFY1suNu>^zvqo=U ziqx{mafgihpk6Z^EfEC0xI^@w*b1s9w|ufqg>g3tX^Q`N+TjpqIe)TK zBKUWhw1R3H9vhe%r|0MVPBQg~-Ys z%hvKjIq&U$s>78BKb z+mfRIU}FR*C&UsdUJgfAy9WZ#kPy}u_{Z}%+dl!yeK*OOmh>BR`!4t}V>YRi8rF~J zZs2G^b{$MA=4O;E+x`gC=0h0yJPxLwHyu-} zLjo#pDsz|z_pS|QU!g_gPBzE0!lU*#6g8kxxd<+CaI-lt8Xqc~D>HdLmb-XTp+N^D z9I-*7u6GymKL~=UPq@qQJtVFJJJgt#p;6A*+62r=V;T@~_Z!?!1nZ#|QLq=Di8T2ASj-*DvGorO=koJDc7u|y5ZpN zAxesJtf^D-!?#lfV$d|cwZeoZS9=+<+&&rr*4ALsMEmq8Zv2wQbnOMdAz`dRVc%d>9vgESo1{7 ze-_9(EGzUtTjg`^T3ZpH^v2bbbtaHFHJk$7h^mfyrbgdY@HymMte~>9jN0!?R#VG3 zL}n+B_-QP;7~9x=a2z=JLguoCBZvqXzBtc?rqCGZ8)jL{m(<r zS^+^hbs2D6YDtg0`D?==ui75#VCPa8B&9y5Oadwksn=B?aCFz5x0l0vmm9L>h;OVs zth~F=RdPygMi+QV5LNe&JMvkrCw zV1;wv^43*V@!NY4T$dSlVyD#ez0+y5>S zkX3Y7#s=_-f?dOL&r2PcDSI@RyeYz0wjGNsi#qhbHVU_|v&p5FktMEFng{7mM<-s) zP|CC0r4rK*_GO}-rvj{sF@M=)z(G``PqVKmHh=3bZqg_ROPFiAYy%^8H+v>O$Bs$O zs- z$H@zC2Tf(;+f++ZT$GENM>xfXLD_x1GhqcR#}o@yAw$4gmF2ML$b>MG8P~*c>{i;q zyntxe5L&2#&pQ_nb#VD$UJ#hGeyu?Y!mMH`+bG)9HPSUI72wyJ%XLJYKvYP8=L?0q zXH`D*LM_ZfziUGEbY{pTB|D>2@6?PG=dqbz@t=y%k-PRL#JjotSB_I3_{v)F((f%E zjgWBr+B;@}EcT0nLOD6-IFZ7x21lA{e7qAbJVbF zyhfHQAp;=RF2>RGQG&r)ns*K$9c1JA(r)o*a$zJ%x82gIEGo!ctcIv%_vo`&gjfr; zsgn7t_um%DRH66KSRW@JBWAr=Q>b^pTO~HS@!22tG&bhhG)Mmr?zl!`lsgUYg`=|h?H7eY+#Lo#<5LRDwBrIi5oPdQ*o;avbLB zoLq~s=S60iHQPk7BJK3Jgy}G*e7^F$Z|Y^cKqI41S5Rm+R@(QQ zcz)y)vO*UOGKg^i!kE+|0o1pg`}Iyph&|pxB}EvzBK@|n^VH0cD1D7i7G*W-R+p}) z7zK-ALw@2-PMeCUs~(rGnHbs9!iCbuL>x=tr}IeGaQ(+n{;j-7Q_oxlo7Qlg^@!7O zxbryR#`VqJ+pmGzO}WVB4NFP{-j2;RhwuA-fh*^qtwlVK2hv3}zYkg{#lYyCRgN(p z%a-)0x}6hJdsauMWkFU#6ezL>8*7Fb&Wpz5N3LMV*!TU3I^U~oxyNNGz>h}UwHuna z*LwL5u#}QA2I~C@uK3;HjIlpEQ6p!L#!0&rjrmS;GD`7SYsDX1#Mhoba#Pbpd`05z zKaC7$gCD!6-yL0_t%pUPKkiG0YqSc_0IH&*@Jvweg3e+wX$inQxPFx0r5^(YkNvLG zFmdRJ15sWywt!s@C)}1t66i$+VPu!~%s6oN9J3s`lK0MzY~E`{o=mY5$hx7pOqh+e zM1#F^xI`$=opksyCsup#4T+S)+?9v+MJWwLE4xWwzFR+x>j_c^mjh@{aP!OB8r}UmQ3Qcw6&PvAf(*&xsge z*6YvOAjNo`Trr&+K_>%iT-Y!1H1wKA~y%P_Ju1}@*_x9o3t&f~TqYOM< z$e{U235csj8w4)Ij|LUOpEzRL?DL=eNg$d-Y{jD|RbPVrTBO0Ed*gJRN5+4v;yE^~ z2F3YHLs-g!S~Ug7dUo@Q?$S7ykhjkVr>-cEjehJz8v_Wtw-<`FUV>xUMs?PrCKx{& z|DJ0b23mf;Y<)DoeFc3#>wNBttaYyhFzk;%XM>2L802!5$boz_5@n#`nHe-0QL?&2Q|19}@-y+HL9DMLm$sKgEs2mmoi09KFZG7PzKkR46 zU;g}?+zFGWnQ>Z}i;pMy_!V(dA{k!O4pumu1SSg;zvRDl`jJ+1ANcv;__6f)V)R+o z^=5SA(*JDKMPv4C@%iGLuQ88|SrmljgMv5#LcuX6*tS35G%@^;i$9+uL7uBCy-TkD zEd+_XFD(74mbatZP{eQmzZsx-;>XKH{ON+A?7BCy&Hz7y%#xxn*HXd}L z(K_^plQr7iwqt7n>gY^w+5yl5G%S0IB^WeAxtB!amoCN3h1qz|>={^g%3Vbzqz6s34@$%C5Pfy2SnC&kl`;`#jR`wkGji+<&ufWc5kiot( zQq4Y*mQ^SGp|c-!X7z6@t%?`I4oePP!60%Kqr19%v!NqP61_2$!n5T|cz9NJ;+qiI zoPeiN8W!}}{b^G5sJ{-xvxuvEf&IOu{nmxwaAVh`hKF4c54d=@C5we>=`p?oV zE{8wmkO(qLeH5i8H0q7{x7+ws^BRQ-LoIy|av zyZx1%gWPjFUi%dmW-R0Bz@Tb4H;To}EtN!qpRn5IA)25Z=O196JvJK9GA7TeGi?Z2Hf8IJ&^eNld8vpoGN>p|Dxgqdi{V#-h-LAjU)_InEsZx_i}p=KNeU~ zQ=cC2N35?3&j8g;)9TUe7?E3&$4Z)?jHXaDstDt_)(s!)UTU(YSJJM=yz>hY)34rdv*Z6T`qjE9vtf1+PI^{L_pG-^hfz$%hD?@nr3 z=VhSL+V@FEaPscVEFgFau5>lX0|P*vP_F~ik;UQT+~z%QqUW}5-YU`Pz(IFlABUs5 zJsJ3YY9VBT-BF8;V!mVdC*%u!qC|(G4#w8e@hZtnq%Pu|546f-nZN9zsE9(S43F3m z5M-ajMFdgn>45Ap+c#N=Zm8-sFz_2r$%wg)Oo;SYUDM(Rr%}`N3Ql2v6OW@X7vMez zaHLGv)M*o7Z}^1T*rc#FNDzsYFb9xrbZby1nrUx7a>f2N_d93?65lUgIwHz_jOt;^ zTm)lO$7Yc&hg{BwJv-WU?$o1-L}6)i&YPN6q5i@~NVqSNR~zFwAvRVXOz{C zf1_BSX%>Q7b?mq$FirE5LxGl+V&7z6Bj9l$30DH@-SmANk5#$P-O>l;DGJ$B%j8jh z<*Vxp0xez2*rIc7Tr!Mk6!{X7O8ub$aN}4$EW_n+cX?crkCHV%5(JiJO@;QmtP5jY zN({R`6UT{po^;2dO%7~HrQJO;qPK|K60t$z8UN0lCc(o8xw0t%WvsFAIgg}n+-En2 znuVt7u~_P{TGm!9aP-IjCT^fbo6UX4|0Ea4%`_6)83YypgNh5}Onf-`GNVVD%+p;s z`OKm`jrg6oJB)N22R)VA(*+*=uk7sAEYCV{%NOMwYB1NW3jY}1;IaM-c?=4JL-p}9 z<(lDRnWjyn4h+?Fg*-cS%Xh`iYWMx^(x4{=s;n6UlT5)kg9@U;CtcXHIu_FIm^N4x z3O1f`Yxu2#C#BfP2vGu}#~P)v zR#&_Jsa4P4^`d9{=Utp#$73khT`_Q&I^a^c)1cdhK-5>4K5xPRT?AM7oD`4jEDW<< zXrkC+!RwDxr0E5J42W3}oUbn*Cdfs&m?JDKCH!R>yFI0A2o5$(5Tu)|bR2d4;~4~x zVdNT8G-%3KeD;=SQTMe{qRxq3;b#i-#x-;zwrC)%&2rxm_Brkw-tDs*KO%R^SH&6@ zLNz{)#cg)ksO!;>GpFC4T1eZ-qwD#-rCd=quiL}%n*)wg;&*>jVJrgbpKR%%22HH;{`mBW^K_sf0}2djWYwT> z&-ZULR!5|3bAC%ouXf<0_qut(HH=U5467RJ(b4UbR+145g8uc`bmb1S4&tF%{G=_G zyZ%B1JQD#lczDSWr)$X5D7-n9mI*IJS=K=tJU#+ ziSa0|Ci8{wi**AISIN)--$fRJAjqrp?blH$Q(OX2M0+iNimUS#F9*{hBuWhnZYD|H}QV*M=a8Q+NSQfmXnU^W1d}+}C zZ%Ge8Ew2VlPU-?ppoy=R*jF$I=Ux*H-e{d8_57O4RLgnIeM)m*4~J&1Zn#J6BhH@+ ze2u4_Dis^Su1s2Cf|VW34(}inUHXMDd6|UMF!0T(k~VFaWlH`9Mjjx29-xZtL^i`5 z1-xNR^^(iof^dscL_+Kas`&t7WU&u*rzGc16GLW_57OZH5su0P{QOg&Bo#-fU9=?| zl}NYsyfN4QT;N3*SA0in8S2)CQW8w&$LW_ z#G{jz($SwcSI3zaaE)=6%pRCVv_vF+9IWugd2+ovAG`h@{J2Jsd zyRaRmL&$T?WwjctVr5lr-(RW>k^m6IZc$hmh1Ysi+}5xp@VrXp&#``;)lV8~sn`rS z?GZwOepy{JaU0x)m}9bs4f&gVH9p7e&GoE{mgiG9F1A|^fZ63Jb$5ri%vTqWuA{F$ z4aS4~G?U?z6TL|@+mYv;GHqxRtC6X#q;}Y{u@8-j1fr30`*JyO)#vX9%>*oUyi03- zHZ$MIP0>YynlF8Pm9~Lt8SWd)XTPtR0r+|HOQ{~^6VJ>f23=bR_WfPYvojhPJr)aZ zWRN1DZ>O2>a_iU|jbRSsq&s6fYdOyWld)$w(I8k2A8^OwWa4pFD0M~>M^}QbIyBWY zq59GpEF`phs6upC>r(h@|Eg^U#Zh02)SShZQfpRPIxsbpnNG*9dqMFdf9j$6fl>yQ zLE~Ecx}9k!hh$Sdzs?O$jN^(a`h}~nvO*v6O?&2{)7^}&292xJ-$_nz-U-|K@2;f% zgA2lW8}8#on%%q*l~%y;vdUD^IYR4jQ#A9xt}B1UXtr(|{BggTng!Di7DM~WTaqd* z;1NRTV86g^ag=K`({W5vVcbrEaVF1OHj`6K3J59Za=P^t) z<4#$N?-REOTLi#x9$ihL$pb_$I4XN#l(GdXqy!wz%V_%qx4Aq2Xq z5yhY>`3Rc=PNM+J)YTkO{YSHC)l{u{fNE#wmM;EU5l47@U%?Hd7h#vVot^K_nspTd z6w#pPWrn~KZ`JmP7gI}R%NH2kx;4%Ng;7_3_1N7aPo4$q|BAU7u3nk43^4iO;Vq+F zIT44k%1=cf)7TDk#&KIEzGGW2IYH{!w5fyVR(Z*|7kg_ce&20c=IUJA*J~Thjo;G1 z(LTyGyb{C~Hxr3wg59vfGxpDg3A>8G9LG-DuIJIr7Io;L5y%_esulYl6%Oz3YPNNI z%Oje0S?Q7rYc}gigItL5LC;Is{HaeCsh2vDI@qL$Uc`9oJ5;>iXWh}CSq9?jBB7=G z6P#r?)@hShilijLucFYLkc0c&LLBjX61GL}*M|v;+SPj;c9kH@6zZYphAyw%o}G!1 zg6Gqd7*^x6w6~&yx$xxjR-H)J%Aa%{s{$x6R&4@Z?q8hntE~axq#m7XJb(ZM-@q$W z*8;GFSLoy!%&qB^qPTJE10ih&8zO|RsdF*8-~4YDWw{L+&!y{s?BRfw$ar>7{5~h} zlC(Et+#DgZo~N*8~eAK_VE|C8|8?nr7L4a_Y+NWKy?pK}ljp>_DNP5VXz~8LoTwff5vCg?Jk;_8^G;b9ka4l)-{q=}<*o(= z)p=D69O)w;GdH*~Ov);`hD)zcFAREwQKYJ&r+oDhd|K&-9{3PeAnXrfBy!({2GFEK zS4_7KouuAyCtxW)WDFKnN9BK3>VcTf|8OUA3iLM#o6~OcJZRp2&zV3h8h}1aRO?wK znD(Ac$xB3Kjr<%(06&7OL`@kJp5MLA5)-SUr9l>x_aOYfUv1b28c6m3#1@Qm5VCoA ziK@RkRXB^^ODoQ^OyE^e3`=M6sWN0eSTc~;(9MoQoLirF zxc&gSt03puKO_yZA4BM7BGGV6Pdn>ZrE&khzp`Hda~&JwdqAsM$btO*M^keVK!VJgy0p_8F9)5}6_|a?n9G=K;m5&%I>!pcoV1Mr6 zq$Ql;_WnhAloHh?&w7?n#X+8fJ!kzOa~dO;rf#{=@p6$9c8nn1A`L7s<4!A@9*{EE z0MaZR$n9D=UUXeMKSgM^6ZtfiG0GqPP8qbyJl{AZ&7?z#{~*R?MbJ(^-u|HkcsG351s98J>kRfZ(7n%>=&KMn3erxv8Sy=RPlIv;7xMp`qR76uoq8#R?DSF z4%tyarY!h3zp7>lMo!=OQvZoWElb<)gn$>w{ls@S-r>cZW*0YNi*I6L8q*29O*&Eb z?zSR<9%)>xO)iM!fBMxpLJj!fxEN&OQLnGG8RGh(rLfm~2kWLL=-hpni^KePn|jCN zT&Y{dx9Cu97P0XWL;oTu!2Wq`TElh|gEn?_#DG5(B{9KeLjmigmb2^128CBWIe8FubUd9TdgK7! zw(5opkqS?o6kZqe0s02EQ)-E2T=Ua)(%b0^ROMh3L(tuFEm*-$T#PNt)zJwmw zNy|5k!|8+JD}aVCS3B5KMbpp_E`^mR*LYL4a}0NqREtL0B85EEZ&KJz#j{>VdKvS%aG-4wiU;=9m=K^6Vc$t<>(L5Yi`wrr15^<;W{qNQx!*&hTm?L;?)J1VsWi2---|BMd1z-sHg zhWIIly&rl(iK+bS=uXBkXrJ=i?jlXGYFoC8{A&j<+CR#(X}&)iglA;aNVZs%vfwtI zuk-Xn#6uL-Pzkyxdw2h=5kSzdFE!YUw6u|ua(ps2+VHj(Ch7s}ERtlAe1d|HQ>o=7 z-?g#tuR2~R0cEBsnCyk`s(g1R8`i(S-*DWE3XaI8QS@$i-m22}y;Hq&zQOQeb1mGf z0);|3LmmYeYToAO!agE3e-$&x7ubGx0S>dtj;%96U%u+4W_x389j~%Hz;N1nEr15s;j`Y(1}B0{~g5qG0FXHUaN*0Yn}_!eH=R@Gv1{m~fpTW>#7 zahUxj>`oBZPJ))XpYE=gZ=sF4R+Q%osmQ@im~OLA4U%ds_C7_?WHrAQX zkuK1yw6i430?ohT1yPzqqtO0LKVm&nQ;^v-K6=it@)7?V+h`h>7{A`~RuB1MWSl>i40}Xn>#GGco`O`* z78$0J>ws{O25=0!trJz&$7o<4nB9g;EVy3E5d>v$@P(Jx4+pQ-I?6`M0d%X1p^uqZ zilQqiW-K_bz=sz5$AftR3InNC^R$TZ(TK1D{Jn&{ydT<`v9f1kR@+mHL199kx>_?C zSY9_|ES`HYk1~kbIDU6<4Encc8ip6^?8HBjAZ1PD6-|Zg+XyiM9b3!&!N2IYx=gpu z&i!*lg2vH__=4{H=&bkfCdI5XEw?ToTyC}D1ytbGd`+ePb*+p|$mUStOR+xbdxu*d zk?OwmG$U}Em2sC-+qMbc37yd~MjA#y_Sn~}S8B)U#Bz?*j}YyZVh%`s8*ZEo5rHbk z3^8@rjAWOrEXx_(XMP1X>f0*zQ7S9`JwKo%-XsA5Y6!BwM*Ped`wI$JCzM}yhAz`M zDYTtHRq8O%|CfwH0-nq$3nyGLQXi~;K5@|Fmg3$GW_%v`LR-zN>qMd2d1p+YFz8}x zZ^b{ipw3cMKqlrk#Yfuij?Ah*kMR)eFb&ZPCFrbM#Qb9h;b_EQi=@`rfw1r^uxq|J z?o<)!@R(8OC3$Nw!Qa<$%jll*dsSEhi|1JID%kQD39Pt--mFf`9^S<@=&UGQ*4^k^ zyeYdN5WcJdZy*$4do`P*BX2bgug6WV5uMXLjP}bfE&Hx23ui>&Xb%rJM>kht=!AM- z!IeRQsEYe~nJE0;9i{r&`dHWYL7%e$J7(vo%4%XBT&M(-Iul(|5sC5^SjCt6)p`{G z6ZDFt^!&hmXJhm7lG7D%-{Aiw2k_zkY58*M*(H)Mv&pdzX3K)rUB`AXGL?M=C+1xl z$C62tQ?2#bG2U5RQTi($qe!1_5^SnGjNabBMfzSJMDBkP<0%+nG^!)m^J;QYXJ|ALcgxm65)*I~Shon1$w zuF$#KKe@G12IP++-!}sZ`8)wR_tho+0@jz65C>Lw73N5z?wc=wvjYRTnDKEVRIR7{ zd`z?H@%m9d47MURvzzcp*f4D=Gi8sL-D=o#mgg)~ucI&n5xKf9JFwDU@tJOc=vXe! zigz#{r@(6YdR*b(dab5g5vx`G{k_p8CE7<8h3n}H1`ONG-ON_8^LCW>JR)Kyh_Q^E zlZ7RvV_bF=f=(vTU}0**|1ajwp*^#x!J==BN>Z_H+j(Of6+0E%w(V4G+qP}nsaO@e z^Yx@BJ?lyTfjc<&x%X)AwX`|vZNGoi_PtfI$cRpij<7LOB}iH@vqKxQK2P6ki&W&V zt83oK7A2?>E_{awrxSA0_ce84qw%%H)NI&lzA)5wQenQ;ltbTne&NAXRjh%YCbp2^ z5TFY7;#z4|BbiD9<)Xu(WP!911jasF1~Qwl({K$N&5*xC(Ce~E${k~T%&c1vk!i0Q zQNcpIYUD;lR~Jb*eyHBma`VRW1??o28~AzGRjlD^-`RNONQOBj_bD7Sl<>)PrK3%O zVi*Xcy41C=gs|xW^y)zbs-UA#*#ha&;7reW&F`Y#sJCr`MmLpyjgCEu({0)!zgpAq z;*a?8D5a&-TR@v#<>CjB!Ry&0jYJsVx8>dNJ3x!*zM7r_x{Vu&}|)>3`Nf!jYg=^j{6yy0&3) zS$?!^PtQ|uMOmR9A@Ahxjpl?8YQV{XT}!|e97KN5`|%3`qJ6f&&0Ope z47gZ$)wd9Hw0r7tZ7O3x0l*k&{_Ol>a9#kT>0Q5z+iqVoQBb0dVvV$u+EaV-r65`ci~cjj!4@>C8P|yY8`NU#!Z^xRe0aRreSh zC{sU3v+Q=PqeLYbOc(MxO$J%LyAMyAUjnUi5lP!B-)hOiG4UmfqCt!tM7bODa0Z4| zj?(WZ+g@V~=Q+;*ZEzIjp8Iw|g7zt#j2ixXEZY@;87-IH+4i_3%uC9JAr-ys3>1jN z3#Y9c+8g_|@*b8{{CrT4;=4OS_UIIGmyX+HLNW+b_0YED!SsXNzR^rJ+_5%V+cH;f zQlw?I)#Pcy^cZy3{r9ibppt+5WNE6AYhyoqVMy;Fiyknom*dUeP|zIyHOC1k<*e@SVdqellSWH|?Wj%nyyaDbQR>`l3m2I=$zMu-* zzB{!XfUC%h2!wMVcC&>4!S-%eoQF>e_Q&wc#)R++E3u<^tW)SXbN(=pT|LUrsPM=f z?!9kj@&8v8r%FawN$tnv?o9rEl2#0D>nS6`eAlhvV6c>q9WfF}bq|q!U;T-?q$f@j z*n~6Mp?m;Vr2Tg}PWLewOi1O5r+M=GvkQSFE&g$guJYdC)PzLRA&|Hc&HsT~^Y!5j zUXH~kOL50*+%c<6vJb1)jl@zzJCQ)vnCvcc<$dL?BdRDH3E89>ZB`~2mQ7eJgZSmg z<%<+L30=H_HF z9gFMnw^EJ`FbfdKCMchC`wkORfHD3xCk3SX8(9KKkJP4WcUqe|d+m3Df`LfYozQ9G z`AfH*v;gEP|Dd345dDpREn9bCbTg+hCG6eNiCPmRSKKq51!rokqeMryB{j`-1WUmO zc?aNr9y?wVuF*LwwrthtcsSzw-=>tm&VF<=Y~yGI!%hDjofF&nVN6`~IxR*`?maUF z4y;Eu=m`4pwtkVa=YWZ&A31xZhzxTjuh>E&n>yQ!;n1h{;ay?CL@#3lSOb3?!ys=Y z^Sg#hC_%RVyR1KlKbxtyH=wZf{Cu}RX*6B)T2k%nJnOxi!BDh5H!q`cNOC(!Yt+4z zG^}n>ye@6H3)+6*{5w`%MxQF2U{Zz{rn~SC{1&fOjT}s>L?BP6?6`!2!!Y@gI*qss z&6ktiu2%KwQ21r9|BZMuy#59T$bZ+7J%Il}&UAb9%%#-67esSSqAiPkmk!~}5`S|w zf`K+SMOOKi`z@OHCeUwgqi?_*wLmPBDf)ppLtNRmW#N*=lG&N5w;oDa$a+nY5)Fbp4VdqX(Y_td(|IK9v-I?x2 zgW1XXetJCAz!(Q-`L$gdQC(x<$P|#Y<xdalc4*X3S2>(exx3Zdrx;B4}tjSsnisvlA2y?*@W{dIykaH5cc6E5RA)*d|g#r=e z06h2if6#ggC)ae3$>X-KQNA5E0o^?=zc*N$2fM@pSmCsv`{Z1O8d)E#X$FMFw7C3k<%6(uL7?kE^hQ zHv`V?gH=b5oLQqxU4Dv?xTYJ}f}}WS!|KgjtrI&*dYx_DEgk@RpE#UX4(brP%@;rk zrh3`o>ph?#uJ3l;K0y_*l66BY8kafsVaAP)(a`zBk;ZAatfTq6EO*>oytXOU@fjy+ zNje(jZTaIimK*;J;BdfiuAVC)g{f2Lz<%1hM9@>Sb;g4)CjJDNgm`CU*E|hExNCl& z-3kZ43WfHMtmb^eba&l--t@d$7Tr0{nsrM_=pNV(dNIWmbdZPNps`ByRW47`?yW5_ z;!3e7By%;xH%uF!6fj6cV$)L(X)Dd zFw4-hTktYc@;mck+WO!!WQ61@i}X-~Xjg^58=4~!h6Qw$bFtG^TYkx6vv&0Ye8|{I5O?u& zNrBX81Gi=ZggYcg%7yZ7F-#wP*EtY`5gbJ?*qrU(C437nf9OCg-)2h?GXK|LO9mg` z!!1`Z(seK&UCs{y&~upKv&EohFsG(|%_pelXj=}6+a!QpW`m`)X5g{@Dl5PQ_LdfR z5R|N>x)Afde}9xV5T7p4@SX7w@~I{yZcb|cy)EzpQ;dliMIECT#^N~q5dP&M`y1bn zN84NO>b)IUQd4c&dD*#je@leXVqH%SFguVpsFQSNGtKu$daAXX^9tjXvS2jqIzIqw90UrONI^2R2-Q2I0wMl@F_{Wk5y^y> z?z4uDqK=`E%vO83d$<+J;vmD1RSj=KP*vhWQgg{=;*GqB!gVy_R^F0YPM0AUL^+8S z>X95Wr0sEn1vqYe+#zg&+_+?vZL~jtJNR$vi&$=Qz@wmY+pA)ivvqF)3aKpNuijhF zfxnI)z3qRpA0!yB%1I^i@!F;;j?16wz(v#=9I7u_zpVJFFvcx$n@^>ieKa@Y*!6EY1j?_I= zO;&{(>Fq?pu~mQgNq!FGO&LgQJ*1)RwJYN4!~la)_G`_%=AE>hKjy_x@Sgn(73U;i zs15oL6i&elzJuHg$GkTjT4R4N=@Nvm<_mTamdO8NXOS6dE_L<3N7@(Q%j>f~p4qwQbjoyR z^sAOejz$6098$m>KnjeEjWb81qCmY}&byo34#dGn@(%9Hg_yr`AWd>|=rRCjZxAns zIy(D9n`jzLix8?uWT}8Nt0rD#Bm!c2KfV3}rZ5d0?gfww;88tSEN1^9xlxgaAC`4Y z|B4mQZm>3^`<3pnbq(e+6UE0|IOm@4x-_DK`%4Fa-#e&Nn5sn?P+$R_JwZzr6fX~MNnSeukHoJ{!&Wbi)(uaLm zYqZGFSVosdpQMRu)e$z;9ibQ!4|5U~DOWnBZknxt?8g0~WIiw6NygQOb}eb59d769 zf{_exuStFwY+c|gFBtagqDY0W_DJy-?oUPkkO zfxEuH))k_H3F9m_h}qG>!;P>ck*j|wBGrWy$@gQ%dZ7J*##})m^t;`8r2*{DAG3%! z=c(vI6$YzdKGV@lW@rC2Cl7j~Dl&*C?^EJmDrw7>{GjgEjJ^`x0c?<^wsE2#r z%bVhZrig==zhUN&vOPZXgKz-Tk+woxw$y|gMC-u~=`;$Rd_6fEc9KE+zji?54<$wy ztWNiL4F(B#3AgI^5=@3_sMVGt@vV#dI9-jhTiFG+L|2^xKU#VY*7m%?a!2|OL{5|~ zxe)*`OUo4aw7PzcL*GJ@$zTKtc(;1}AM0Wo4Re;vd^4}X)M&pyK{YxIy_ z&f}1ELG}Vv`0NVVL09tnRcer*Y1t7XqmTInby)V_O*rLokAHciH*hzJk6-N%iOYSz z*Y63o_53Z==K~D}K7H>p`r1}<72IBWnle;+%}o!v&izi*S(Vr{ek!;MtG;gNmR7+t z3_NqXxR9;GXIl@H2oZ;>ED}3mcec9`@+utiH>0y!1FF*N@qCFiC$jl6iUY5`%_y*P z8ik^Eezj)G%+}Tn{y6*~E@|j<;Lr-EW!QUVBorB24m$VV6>E^WvoYi~wYmV}n$5DB2~+ovgOY*Gua^bfO%YpTkK4c0 zYIfg0RZpf+Kmn0b~o*J*=6u@@D^9Vn}C7is6Cds<60k0)ov+nO$ z_H2QUWoErHzsYu%`O!T(-2a67qS{OYo``n_*!!UrMk3*c<;_4VBt?ZxtsNb~+FvP{ zHYQi^WqA^On-8V=Bj0}{Phz|;QW3wgFm#tCT-#n=?i#xZlOWCFp!xO#-j)NGqTBc6 zc2@Hx>rjCt?Wq4B_5Opd|MVoBLlxoR;GpF$b1cVMbGUT&eZWHb6HZQ&7#Ml31c*{q zyShRLBzKUexx90`!Ww_@4K*Y#C`&FF?;?~1snzoIafh>f{p6-jl6E2vv?AL!cRo9z)u^HEka_v_TWhoWh94>Q#DM{PU8c}amgKAQP&@eCIc7h8pgeVudijX0n2K(` z@c?i~MD`|>mnWa#92^H50khbTvWkMg(cf)c>|5hnmUmiC%3Qb$OXXKg1_r}3gJhkc z@;o*u)=Fh1*b#MzTVQpJNfh8sRohv-L!+=@6NM&O#6oAc^8<=EK|0CxhO_*o`XG@}oP2SQ;53l0@|tB`Sbw!_+22aQ|O zn@-uYS+Iyc?3sLbA73^uo)XeRdR5mjOO%%ZCql%8dSFLtQWDGpg%DNXm5JD$Mm<>U zxj1(JpeetNUe)#|&^RS)Vbt+SDrhMLH*&~t^t)xan$fIa@PC=g$ltgEh*--0UWER_ zwK{b~x<;|~dK`1AA`S;}Zr_^my6me}xv4SvT<)A}KWRrayVPJe?kl!mh?7mLESf-6 zfJ5@L5GjyCvj+$bo-WBE!3=rA+X&%IMS~2$!H9M;Bw+F;rg02w7^eSy%h=wT<@tQY z$TIyKUr>Jse6fe}>mKOJUmsGMxaI5~jXS!K>~l-Qd(qanPF|XHo|byMJ82%y^BBMD7AcS2kx1aRu_(+>7mOkvAJlub%#Oa2j8$&C1FrPNxoC3tdNw?|FO-2AD>9g0kF()|`l7QI^#w zZ3t}$k2Hlh&KqoMqdp%muftEU8$(}ZFCI{--);MCjk;Vr&q6npEO>ZocAsepLRgS_ zB2^U=8X3p<$7DB*2uG(OP*alX5H8 z0U>*v{V`buCMyl!Gczn0xtZO4^f;|e8p&o^6}EGbSA&VO9j`P!V}cp){nc@^DKl=p z$ii-vGl-~w{VpT;E&SkURYk)>hGp2cmM(d&MZIA3&{!;rC+v`BJkQI zRxTyoyZ~(Z&yFfU+-e@_nsWjr>LSKb1NQW?IHxE4@L=~N{^G2Zl*umbmU~5WY&)MA z)wA58&E+}Lo+M|Wu7u#H3>Tp#o&iRw|FV(!_#iEw9Iml2CdNVYbM{fik-h}|=L5Hd zzoIXOQkqEwg24px^CN)&Tc?4GoA41K*piPP_fX*gaMSYn*PW&l+D;qnRSz@6SH&gpeps6QpxJ^rb8lMOkF^<4vu} z51g*ux~1ZyJMo~7@o1}pcObhvR0^?0@b^S&~~Gr zO{L2;pS+bhi?w1FaKj?^D_ztwfS9!4IaHk%_?!r7tC zjYwJV@(N^8pb&1F)2@rrWeWY$nWRLrI~fE6#WoXJAJInFgpfcI32Pw+ zAnZx%pgbl6yP?4E^F{M#*BMDf}9LOMUf>GTm3XdcqK_3<-MR(Q3l-&LqPy-=D?m!q zY{Zt7MFCn9$c_M0s2Y@;P^%CW%?c@B<=9$E8GD-n&UNYQ&bF3xO-m=ri?(`cMg;|W8o@A)Km(z87?xr(cMiauh@xT2< zB%B`iCfkDwH37vOD1>b2R?GELv7OVZ*%c3K>6bD^>pZyUU@LWM2?{(`tUj2#7+=Tibg zlXHGocp@qXlZ}XjQ)Q#~siJS2w5!88$XRy|B0Z6u2RiC4A z5}DgvN-2N5Wx)b$uS7hnr%q1KcLmmeNm*AMcN}+HE`i?PU=^bxF$o|p$9c!Cx25h< zv5vOAj+1gm;w=S5f5?&v6qc?9!^E(CP%kGU6N|dm<{)5s|@(P zzYPvaa~Vq@A4Oz~sM*aR1UrZK39gcC}hs*~4&v2!)X64Y!b8*4aSc z_fREFdIbDpRAj+p5vVq`h|3UT9sgHF2|Y3S#2WY@+~<)ng0 z-%??b+o@3)XwWrlDC|pOw&4mzO44z$SD!rFSa;pWnz6-0)_Spx_T#QeQFe25;*1Ae zzc>ps+^Z&`&47;WZwi(IZVwOlibHGM&}*KF$w8W2?}NAiszv~l;{yGTl4KK8e`Tu@ zDnC%Ak}ewb9oa3W)``~?5q3Mb>fU_vw6P!jX!|0_dN%8lo?DZ!rrO8wYprwdk!RP* zx{=cm>PoA*K{q_Quj|RW7wB|E%EcgO?PmyNchBg7)j5^DV3g(%%kvJ!(}+6c!SAWtVDNcc>gsc?7l!Xb zVs2kdwH(aK&y7C8%9$^aOTCv!KKu^;isUFzzSzdi{;MZBdM%j7?Jn`DU6lFC&Y8l| zg*y+kVz&A6Cp^XM<(`Q>FhGldz&vR)ag*cjwVfB*1IN`5&ew37B@*_f(0L05WZD9K zgnHI4G1iE7e!prLVoHejkP&ZPZSzfdG12s}z$hIYoSCOKJxMyRbV@$q8u7yG6x-L$ z9)8YmoCi$LKNiaBLGRjvBh*+w+|;1B=3J@bhmAx3ZR-|5v3ry4mMw)0Oy5l!b1jAO z+p_)&w)G8nNwGcQ0ci}Kwtaj?`BokFNTK}{lY=Kr>;V7_p9Ch;vh0kxgn4I5H>yXX zYQ;|SJ*UY$B7{@sG6x?|w$aE%Xhxs@Q)X(f8ngNm63wOrBV1ykfR(F_gXDH^Q->1Z zO0yf=f)@=}_n@BVj3J9rT+bOJ#}vqmO~(hhab2;UzN}in&5z7^dVFs9DEZph{xU}E zk8nA&0{Z@b3v#~4x!84?@$)Np(hkv^jPm5%%)V3Dzctxn9}&XH(`ESeU{AKAY)LOl zBf!}Mq59q0hf`F%`cvIXd)p*+-W1K~Vid2H+$idWl7;G`{lg7fk*tG&TW5%O&n-e; zn(E)72tmHD<6Fa9i*4-o<=r>XETs6+=il|c-nMQ1<%b@OfN$iP;xl9q2-GW&H%8WS zk=y9rOcYxCGGT>nsYXi{0`q(&k~ubbKs0%qxLk^o>U-QwqEbD-H|hazQ;n){RI@`a z$<;@ftgsLfDVZ-z2{NQq6*s&js^esE{@~5S;PSxu!h)y$XIcgd6A@IG*!jh@XN`blGPw0(t8CSTunh6^EmPhd2nG?j zBIv>_ymU*wL72#{{)-O{ca-a_z89w+D#a397y5?J_JM`Fwb#aI%vlFT4Kx}n(#gF zSRqGJ)BElSuBo@dr)2_YrBYYUChWSb=2^?HqMInC9$LlM`k3P<=LzDjtP8~15^;x^ zKyNt=`?!d4Se0c{55^*Fm_M@W1l{ww%l<5@mH_j$*IH-zs+Z#t>$j{AjITBR58Kbj zuluL<4+fvtlF!(ep7)lo)8o134fjtkuvtFnegro#Y`0}PIJ1F@p(+vpaa>d1UIYM9 zYMgqC6EF+TaAXIOQ!G|{6oVc!&VyQkmlz#LrWyLCt`!#rL$cBMO^!7PEh=~0E7ya* zxhOzlR8)u>CWHqUjWRSHIml}7q)uacZr5^W)_i*H z`?lg+v-NfLh_jpGd$Z8nn3-Fp56bb8dT?K*OHe;h#Dlz;k@$7>E&1Jyl z`UeCT89OQ3xG$*hYdG$~Ayt4LYXQT+3xwE$j0j+3SHsQWI#@W$Fp&Fa3v8EIM;Zx3 zE(cYc`%82q^yo?{(xE(x>r~iH4D^wNe=17k2oa#eq7%XqTn%qc!VB-K6owz!nfE#W?D+V4-pcuU$a%k?dC2(M zYx$bvf7$tpAMkl?>B%uY@7W+yXNakxN+@5*(Ge%XQysM7Dj*d-!BB&ZELUfoC#QZc zm&tTQ5+Fyix~=hBPhCJom%d4F-DmnZQz^%-o2W0^h}f(QFq%P%nYa(?RF-?wW^z(c z5rIHzDhWlCxq_HdiK(fFagqA@=sIf8NWkbn;oBP(@0ol$6Kli-kJJOp!X`~{r))>< z98}{>^gk4fnf3WX3J}ZL>=bv>Ni5YoMu|PR+2sBtGD%Jzpd8FHklZFPT;D(unI&)& zGDTf#6njh?F~rLx>`U;{PdPTLodxY?`R_5>sCj#Pq=>yE@VU;x;r@`1eagYFda2pj zx#{2)mGeu}W-NvilAGjTD5sFa8X3@RfK*jyo;C<-^c=WJnt#u3emqO}Q`bWD>$#?` zzSvZ8R+bLn1jUI9`i+4rK#r^hDUdW4*h z5DhZQPvK!D>`b>XbF)|~r4+)Vue=`2rd*1s1`(llL zQ7vlXM|l-XuRv%3B%+r5vky7=g80%>mm-2#3Qi0v+dA2QkclOk7g~0#yoruwmclz( zJ;@Mvev#or0f~L}JEWtJ<&zA)ARcqCr(8v+wZPxTUHiB%`V@T~+*1XqAi`!SI-R!e zas(zB4sgf6hOLWS_V>Ci{yU+rh1KGZuAA|fwA5UBK-fbXvpQ&=2-TJRY zIXIVgWm%{Y)EUY>iFyPd_>Hqt)IM=Glqmjr8rKeg%9rRo74B&a@dPIa_iULGnKcfbcE#skyHwlpbp~u# z`Wp5iLGJA0G)|SjxRtB#O%T6^TQhd{A6lkrFg2Z6GJMt6goYTuf@wA&!{Dl7!IgDJ z7+K3lJ#3cjQQfhV8g=T2_Twa~M454^$~6VsgsuKtH1b1tRC`mRa?4^TX(Bx$?%2HI zJv({Q(+RoTn&xN@1#J2(x##!f^)RJP^%5eu@U3C7&5r5Dtz!hMzlp0+e1V%T+d|GC z;0}VLu8qbF?q~!8xXjtU`g9CwLQ9&HVs!l;j1$R{@`nzg(3@irykP?)t0WEU9m;O;f! zrdaxLyd$j5dhPHV)ag}V6Ir~>e_Nj-2Ua%I!ve=CY7GCp)$Jks;^Koe413V>y^6Bg z(w@mcNopOGVJ?HI|P;#`L zdx1@}b5kr>JSbN1S?}YTp+oGo$!C_PRdkw)L+eQg!eMZ4ZWay;?8bpT((iZ9MdU(OuBYoVDl7%|6i5(jkVG-^IEyMWuKktkZV3y&Me%5ktgX1r+0X^0LAQ&72A zV0A9_2sRhnvk{`tE}_CLpO}`xrq|!P_r0h%drM6_N_aL*YI-Pb=sg+9V8ZHu1iqHV z!TVjhAB-r*qtFnG+)k;xL~1L(SRwZ_NjRPce;?Qb+%jRH_^uu~k;_J$h0-jxDm2ST zq^L%#OKXkwd*~5eI46lo&v;6RVA)Ng6|G_(RCGdGMxL#`0mx49>;`@T0Y87&tPn^~ zy52g8$?c&!8lA|d-(ODc z*hYQu_IF#;@n?*Us@wZq8F3$r2kE0$z#SpuV*W_DRrcdRyVPm^&AIIaY!X3@I@ zh{5CJG>>cE-p8&}>Sml{zlUXK7_ZmG-+IJ=&Hho7N5yfESPU}( zdfJp>@&t(zo!L7i9fry}v=s2<4wstO4|sDd&A-J3rEO7qWfGl9DIn0hJ8&JnFVs|i zeo zaSFBtP}%TkHx&ee^?vj%V|prJ%%vJr!c*$-TP^*kp+tRkhL(*e1 zOTpqwbn6%w^Y|yA&XtXZbQt==04g%bT!!P$$s2)gXr5F?>G)|rrawK2e*`IwY(W3u zqOqc{LxmK)DYgQp@s~HZZNl5=+!{==UVYJdiDPZJ}TuJ79 z7=5|==t6C!54Brh*8C(v)kor$cjs2UfbE1jKlM2DV7bt~s?%L;>G-373&_Z^i*Eu^&{U8y z*WY$q1skScgcQs{fH3ohDBT8CG1nR;NrPOzC$^|1g>>cpeZ%p67%?ee3ZFZhv3$9( z#l#EcK~Ra#ltm!s3?t_kxZP{!AUbi|W$vC^DG%Q3r-ldN76Ejb1m|>Hv?K%h@6~-u zV(1*MY#|}n`s0AOs;W4m;R4i#zu**A?2(Gtl;EA^@E{Zn3N1(tyHgQ6gZW|uDf*Z# z6;`l(&>#pbepTtSfTOFMBK$gI6(-#%4awKTdr*bzO^)s^1It#NZr@T@FQ1r80O^p43F|`h9*_ZlA`(4+>Y1w64Y5)y()!$C zEWvw#vNUlwv3MdXXO!7haRH^qWInaHfj$zv7qVVAv<4PFRNn&+cd<9pYTSzmYJ?gG zfCliByMCtxtz3bGr+e}nw$JBzBjNU1MzPYeawF$Omr4q;He``>JU>z2=4UY<@5Wtc4?J>?yK`^GGH?7>g}#f-mab)=QdbR^%|2fQ`My)AWSA92IZ-w zp*^~9wyaac*C1XvyT^vN^eVr932aEK*AR3hR{-Co63L^f_^sLjMF{=INNrO03uQXy zb9MZDa3!Q3NH(@<{p&bf&v&Rf&(jLM_vz`Pd!_^b=g<^>wpKn!ovo|~t=3`EV9yF(~50)GSwX?qbKfXGm2?__0^q zfXzFf3ddyO{TA1&j`jnenag}V421}2*N;3L%1l$xprETlX}e7Q#97c4_@6=ZU;!!Z z)`80sDlA%3$~St^v+7YLjUa2{N6D&dmCoQ3TE z;|b}8<6j^qqPZ(KveETvDLISx+Azhc1QjEh^Ms~9FoTYtIhD`G}9#uo@W2a5m}6%`d9LUWW|z8QGZGiSuR*Mf^0Gtj@_ef(N(?m^h!fUQMwnhd70uq(wh zjJ450a8tUeyvtrG==#GyJ#8XBUU0_1?>Y1FOa9(*>p1#LejL93mS*(NyldpM-z+*| z*&UoV(nS8nAuG$RR?o#z-xY)jf-KV%^$FZ3j2a2x01rci$}H0p zgi%zsot9UwyD76-x;ejy{JQ^L9*ihh7!mU9rOx2$qdr9HxP!d(e3W#Z@@BC3nYeA} zxJKum9V^d^@Od9?vS6S0UKcb%(!85JdD>Jo`A9dH*Xs zLgTfR{yh^Qc-I=6CKr|eLL5X{8i|MBB*|_$ zHT3*wZWo1jM!Xz8Ar>m~?B;SG%6Dzw59xPpTU&g+^U$GJYfTM@e`qqCij@ks7rjg| z?W$HTU15!FkJs7DN=~}(h3cWkCUeUC-KWBIGveek@ge)d$JFYwxp z7!&o(vM^-e7vLvhe7z*qH6H12#jE2^w#s2OE-h#W-8$LpX-h-9M9YgA_qC^nCN2Fd zkYXKaygkmb+qnHO3@j`i-~84t{;I9&3o9u3VNIt-!N9}LkW$dAw9yD$b1p0u2Qj6E zQl1s4Mv%buq3I#(7-+Jwo>^d6qA}tmb6MeQ=KWJo{OE?J8Xzllv=^a=iz@Qyhz??jbTw7 z_@$qrMq^eBYvQA&gVkaQznp*{ZRM)n2N6*s4`D$_Tty!fP9sQSt>=9qF^7j=BBgM9S_f8_y0rEFshnFrXN z0$JD=Q4RsAyl7^20(4h8-96r?f836r3r{*AN7VRb$3`p_fC+>v!FKcBgBp87iJ^0jgjIrz*%kb4E4zEjeJeo zngHVzXH3vyn}&dz;tve>*;TkVd@~$B{GX#^@SeXewC)zgPEZU>o>*I@P04sTz_GN7 zW9T4`r9)P$2?JEPk=dZD)Z5es9s4?BrJA+3Q6)X702= z1#S@k+oQ-FK#nZ zi}#faL6FcjP_DZtZ&M|rYD>sOI46EiHC)Fj zXI>zhYQ&Ie6XNgbOW-$ojLa`>U56e&@_e7h6D<~5QM^IJ7p0zns^W@M9zH|furgcR z#Ck!35@-+PYH55*s*30Vx!B;*2Fi;fUjQH6V|iyTKPXzyeO5-G0G(Z;OL8{|wUF1l zTvzsc&e_C7sKn}hLRQwcgUigqVbEKa_!SJ^yyya8f2l*#p!O5hdNy6AZ+#t*|Je8$ z%HZO}wtHaf@ry@f9hUy0+UI&@6ubP6-r}i@qcGH4ud;s=1QzsgDM0X!39!!jPnscw zz=|~t!3j2!`>(fpeAO7I-Mb1)8@Sn?FV-gJ3;tiHRC{dpfV z$`GU+gW?mSz>*;n7=JDjpWhXTtaH5UJttuWZ#uHpCSpByi&;mkU!$Q3=0(z~th4DO zVSVt92ELeXI=0R$*fcj0S>c=TY5|;C*JiKQ;0&;YP;%XLNk6^qwU;7JMLTO9roM7C zVLv3PmxMyA)V6ndyv*YF9{BK|>EOH0J-r>>z;W-mE%^>&66E;wP>5sb8w5`{*Sx%> z)64jTnO>n+%?$}H8eE45m{gDA)o%V9b-X-O~jnq@<^6V<3OBzkW{1@L& z#&gd=`A&dM={zL1JiebWe#3m(**LkkF2a@rJ_vwcNR|i7PA+aaq}e>NV3ra*?VN`k zQvaF=*VTzz<9Yu&(h=Hau7%h3HgrHlf#%ZS{xm${lhrV2U~Mx2%H5-w-p(RVHrg_h z_(@Hj00j{W86kgvT39u3!3x0|F`!Q8+6qzBb_Qxcbxb>kiHwZxn=qp~?*W~A28Q+x zXEhIRVKv-yTMJ`^-kTe!V9`n1=xdNW_S)wwd1kU%So8OHC6yHkPgu|(F-)jPixZ5o zvh{+VM6}>ISn`V$cbSS)+wSs~a&I|X*)DOn^A?%-&+k}32lKvB=PqUc81H?YJIUYx zy9k8RE)!sa0c^%r&NOMlT?cnD-`zsEGj3a~Ki3E8CeT{Ii)(kt%29D~`|IZK*a~rn zJhmsT6B90<-*$L82>!Cy5K;p|mb(5eMi^FU=&gjcf+3QsNMGYH>iX|_X4@A|%=&8; zVd%-Z9lRS;$*7BAHssaA-$9`Vf`MOSZM2KAozGI+_c3q0t9ap@a#uJ#T?OBT59c1e zemrvEgxC2&>Qb3~P5Py1&3GQjS-az(ktns)tuxa_s?n$l?5UB*s7$YahAH=xoTW|? z>*X#AL)pO?FdwU~tOp-?EG>Ul4)lXK`Om5=tR&7(WhQQ0@+#Lb?)Hb(R)k-^O3)DT ze>y|aJ+h-$F79Wle6*$@d^OfrP~z5sy$6a>ZA{t9{e~nqN1VAs>AKp4*hG zJ&pX7Fb|3=1U+F9Cpy1o|BJbEh|cT@yZsy6PCDvXZ=CMfW+&;`wr$(CZQHi(bZlE+ zzW*KG;ho&!S!YtK&N@}~Jhk_4KbgoNS=U#g@zHvKQ=W3)Vdc5Tt@=#Od%tluq4yie zfMJ36aLY6>LejxG3wjMRW_wLGRGCjUsquodW}G3E_K8Ur)B%6mtY$Ll$m^A9A?c%O zi@9iI35A==JHOx3n5bDskNGdfBbm9t+9gh|_meYk(H%4eG~B@I#(+&e8ukcl3r99gjzIYveGG$ zWp4o&;g;hUIjx(=%-lcUj+yZ!tMW~`pgPL8j0>>KN_0~W8^@DS+C)laPcWax*C=I) z_hVMu?u0;1WUJ*uT)T>pSm4<5RWF~`+oQZfHUBMDx9%+;Do=(_Wps%yAEk2xGl%bb zi*Yl5NYD*pq8J(^DP^iptEMwv6fZ|?=~Wk7fTAayrA;#ffw`$oN$E|Z2u39f3UJG; z)b(vylR<9{NoA|}d#Uuy-EC9M*}TPAOYq^q=Lhco586JX1Qad4y%JhU)T8K#2SSH- zJ}|`j?k3~-i&JH9vF|6=d4V4m$euA8e5xF#mwcZ!rmpp}l8n zdA(uXX)UwV=-!$aWO*aT&%Y(}@Ox+v4(imj8`1{S=rxvqr06B7eh@h9MAehPDteRR z>GXB;CsbM|mpXJWK@?23s(rpnpmCJDPdTXW72j~U?hj8VVNIbW(M=Z8zj5cTDQHf; zew3W^v)`Ev8r?dL|K-eo!6o@Q`Gae1f`sN^4~c%*E>6`O8)vE(-X2do)|_raE2e zmtN@3mybeOW_i&L(jY)hf?pRQx@G0zEqRlnsYR912Cl)ktjc^W5^f%(18FzT{_xk5 zi4-57vEnw_sgZ)%J$7|16pkfEc_RCY2^Di7OFf8@8enE*l6XzWKXSedVW~V!6cUkT zH~Oi;#QFS_RVQf@C=&F6qvKZ3sFE7W(M3*RS1VVrMO4Zf=#efN^^$>TH zu^NX4W!;W0HaG!nZKRugh&e|FQ-XrL_+>4{Q)TU zL+=u9Av!$)Fk)gvxl3sG{z)zy&fAq7##fm*yH?@8sqQZORd2^Q&NhODb3CcBH@k;c zO%|)ccf8GCs4P-Yk$1d0q%eGQH;gaCGWLMtYmH%n}SlXJ7%Bpf22_B#l#Pu&C-a>C*lAp@P*xWWc zVbWHFaMh&+JJ2@4Z@g@sEGuI2k2%i<7tKUX!h1VPrLRzJ2Ty6CkAYZTN>n^IS!O=k z-63|M3mb;MJquK*;~yz3XNi~h%a?U|zQeb*`T|w>Wyy_9cf-mu&zZf4ufI_#u|~3W zuBZVTf8$qg&vNev?{@c&NKMl1Riw~(FpuBL{PrQ!|Asp3d_~k7#SLJSsKHPri`V%4x%8}<9yeV zqJ#y=yJ{0kNEDNobr<_AX@O<~SN_LZo8EOs`RvLmF0z*jU;aGwO5s489x-p80|s73 z_meA6HHJO9*~2NvLQVr2UOZD~{xcB~Ykj^YO%ZSAv~&+5vH^M-B|dWBgqY?{40pE#yI*mc4rx%YYw{0XY* z`F(8O1c7}uSkflbI7c}jwOO@}z84^)Awn8t8M=xtqqqlG!?J!S;{B|4l200i$t%mD z9dXwM1?@){_#8vVcACoa9zpAAay%vzYVFhy77e8ebCrjMXMBZyjCZb|A}ql;OTxs1 z#V540xq8$h%egl`T)c|>=I3Hmyr~D3C&6s#*|JVQv&xhP-tmT9er!SA*Ad_bl9n3o zMyyUHld;43nvpqIB;`4>pTEfY*Q1gc<_O{gDeisd2Wzy7<7K-PPZ{O)4Us0<7Swp^LEy|T z=w(`Dy4LCdJ8gMN7w**8atnn!NIt&;=~)R&xyXGOI%r7bTO)NdrJYTPpBfmM70u}k znZenq6dK3@g)s@78|?1Y@odLn6bbi9Q79Q588bS29;*)cBmy}H=hhz=Ets0i2kONn zi8iflL^@N9<)~2Z|NMUBsXeUd>|YeA)n3f|{6IY6GGShs*U}X-*LR)K@bV+re2gIT z1Nq{tvAq(>OOM>W2^3?gO#dyho2@>#1S@D^?T7NNjcA<0)kvHHXN z=&g7>k#8JdH>1xI_bbrTO@QoJ?=dMUI{skZCn_mt90`iDxB{HS`*l{^x`X%n7q9vH zo$%C%Fskt%vM!s8JjNm>WS>0)_av^jc@)4O%eHuTreB(nANKuqH4e0*U_|+t`IrfQ zOEO`x3-S(~GqQ+dAc34)i#i|zy8|=R)&yS~Sd|c$_n+dlMQcOve?=E578o3qd(K=Z zCt=Mr0mw6ZwmD1yAgv@5bk)74UP2N?B?6~++Q;vdkc7#(8~dInikk^=!7Uxsxe9U_ z*hz`*Bp21%fT_O%6VXum$Ljrc`_%%@f#M836wGK?)S6)@LywD?SzJF-?rnG=8&kwM z80b(i{NSG4K*M}y^ju4^&ClRQS}!OR&?OnNwCCDplEF8EnE;QG-5y7E$9sZ}btxOF z@W~kJgpH1YZ!l1Z>I~56nJH<{uswaM?o#7ol_&>2uH9zSZvbLte+Taz^dWW64UiqT z*@rmX!`fU~#!EVboZRHB_bf&X4|ywMwG*F=R`QHX%5U5OiA&yZkQ@~toD`%55Ajr} zVHxCP3$+=6wzSU}{f5xRqjzPbuAMthgIW)tAS5m`2((F% z9-20tL=$@vCgw-)WC=g@|LwSXWG6*QXA?UAOqzj_56d=j>+%EPP)e5o;p0dvM=rF% z=E@ii)Kz{ZgjZB$OacW^&eDRBG#H4G#(w_~j=tu!xQh~T$&$#Pj}LIxzdFC!dd)4^ zaM&!FG&%fpP++Z-77l7<51{P7C;=u^YFI-(s=H?hz;pMmJ_vXH`R{pHR>iB_ZGB`~RC{9Sl`Fyy%S7W_EoIM|k>u8P}Adk%uQICT{Y zb>!rS$+%gCC02$ZZF6!%gcCirTyCY@Fyu0}mXp~?fQSZz1&gFPEkhmsOSk!_ixv%a z0?uM`$bmAhnC?3RkG7r-N)#?U1Dg1AZzO`@Z(9L|_>&Og!O*k~by>HQeYiS%tIGIX zKnL9Uw{eS?VMGLQHnxtCj4^rhS@nkBc>1>9E5BW}d!$zl#x$Ue--ZXw}5hYa>>0jv}WeqzAo z1NKu)mF#qeH*EcAgo+tu|M>Sr49cZj$R6_0jtvKQc}nVN!tQ<1|C+hJNVn!ROGMKh z^-EMy+N!eA2H2>&bmq(#!W3OSY3S|tLy@#!k@O7fi5nGr?}Vrldf0de8#jAb6ky9S zS3&?5moIBr0I=TrMhw4l$K zvny)9Ho-Rxd6{W=XAAI%)9i%24OaRmr$xu6F-LV$!>b&XG+cFPelJl6$@Csv?>Eq! z{qlY4^5!w_DhLzTZm7{s+-Tk-4!n0LB#+-s@_$J;6>i12*VE>^P#=FS4Q|Me4V5 zq9iS)Or;fZyu2b`;?fV{<#+YIMEn1$TXub5D${?;(l~~gAp)XSkrQ-&6oUUECY@yN zOz71(Np&M&y{{Zm;R!ByuUzdG;Mj`oYpcDgKT8Zv+3*PkMpMBO@hdrGkdCn#(${2AMC};P!E2#`ybFaP4zI2AWig$W7ehnd341KQ4- zqXtP9yqtgk5YHvxYJizy+Xm}@NEHSpK}H{aXAog;;>JM#?ggQJrn1g8jRd z0q?hc^z>~NN<~umOGU#;r2&8nylB&fC}UPZdns4n7*zg=d^Vw!aX%<1W_qIhFvATp zk?i;fT&1k5N-x)&^*})ON8L1 z-G6`EGdg%ue$2sy#xlvr!p#_}!cVqd)feMtl@`ocn?-pp&v^OF%;(=yRB`BpEVhrH)6 z;B&XuQ4EEl!~gQ9I2fw%{a#pU+4hA3jW{9cJ`Y1F<+J7;GgIX7q&Lx0u+PLiQrL?> zvmpyN>oXPDmT4wyu66@5?25v2E6OmmknU-D@Ycepz7W!1RrQIrN|)2eL~Vbw5aU2)>uuN{1XGGu3>5q zvM!yscC&lCPf#6X56EF-A%!~!YCtT{w?o1w2ytQ!45~r*X@arPjmY7)<2oY=?*)sD z+4CjV_-I4Ei=|qIwW!QI=o;W)U5Wb)?yaGzK?S*LFM2S=@WuXKLHE z58sC=dU_Qsua~|~py2I>6G9=3jw;i2Jc}i1u54}UROLbNS>8CPNZW+H*PbrjdAvmg zY!`bD;}j;D&EtM8PkRaT61_NXPhyc6zRUW^-ZW>OD|qmA0c3hSA|rl|QXTp&X4t5tD>oWX zM<*V!0VKxcbd@XBsjmlGHp0a+6^4r|OAtEtj*WmwW0nAOEl0itVr!@G0@O#lYi4uv zVOG)kV%@gUarYok&Gwq<`pMa2qhIJF6!jyYN8av>TL{!z0Aocv(Su@*9w6YGBnlrcH<6 z&sazc$>D)=klDrQoRBGzr;aZfnmx%zpD>*R$As=+>0+eJAeJ^olvI>w1Kdv`3~iF2 z@={(*GeGfCQDO#=tIzB2b-~?6bNWEPyfxXYUIbUSXuhnxA8Ehu?a7(TCbt=|J&wp) ztT^QzeSyT7J0~z5|9~GwP=3*9D>Nq+$)2Y(R{S8vBd5f!3ti2Ggp}p0;#K}7Jbeq` zicwu5fSD3Zf@H6tiinA$#d54c9jgGbS>Mh3Q0pbId1d%9t+rZnsDfEVV`7HTXq394 zMPdU$XPs^t(jq1c<~F=EUq_x&Fc+l`N!#1oi$MV3Ci|^pkT&60+E(MN#p)C#mv?Ic zaz?iZZH&?OE2`$;tlD*CQZ)pNrTe5UF^i>v-tP(|+AVT{dVRv?Xo)&F54ru6igTm~ zox(z=z89UZP+}rFJ*h35de?rPdD4TbuF?BOue|uZj%{#aI-adPC7ri!joa@y0QC9k z?gs6y^2^V+?28*Y^R-`9SZ_Dx1*-*Bf=2M*+x>CuOG9Fj6&Qbh!ZLiP%eOLk)N-`y z7j#!#jKli;ZTh<~#C@w7z7%)GrHoc!!C-LLU?mf{mVr6>oGzD}ET|C3itB~!_|Cg> zrki?;mXC$o!;vKf51H%u2Wl8ib@FI2^})-lP6VZ0hpI)h@#51q7{#t@<9=Qlpf;iL z{#gWhpRaZC}ce0i$Vkp2`u7D`C7Zbw3ur`miFtJ z#b-vi$R6fGFmsy`m>0Uga`=a2CV@7qZNd1o*Ea$c0XmMc7lsdu7UoTvy|NJ&%^Zx! znl9hFxys*rh+soFHlz`-Y>oKV=A=wSZuarx%-Eu3$dN=0)5f#a&2SYfrzDz`*OV!--4G+2v#kyZzfn z@LF`HC@u;HN;<9zqkjLje$m0i(Q8B3Mqpe$ns7T~Byf6&gGWXTs?0Y=P>DS>Lxm^5 z$$_JyjqD@xQO(YTJIi?nu&o|aHQ6W!n{NaQ48}1x^7#KG>b&Cq)5^Q7By@N74)wfHhW@8cdX3sWB^1d_)Ow6o%5G%JmI9-{zf_v~9kbOJKm>#6;u zLw87Y5A1;t7~Y(u9|bEN{>Q@3B6|omu}b7GY9okk2a1>u?z82n9MaF%Yj*kvs)E`R z@8{353J#VOp3=HqorH)n8>%+V*6Q0|fR$gKZ$WSVgG|p&v^lkn&&8ruy-k@_YGbkI zj3S(v4&zy1{e&q4B)pRoAZhH0&C&LfNB~*-{J|(n&v@=KiL|`;MFH)RBv)3F^}~@8 z97J-o(7=m7{6=mQh;kCg&y}dK-vWCc@@@n~>A*^K%vH#{q^&Jf$b^JG#7Q83*PbIk zV@GH4K9I)j;Ryki9;=EbiOhaqU2>3&@HT`6zg>tXID|ZdlW1g@ZAx}OX&V85arzCN zVsUqvR@11T(-t`k=NPh^){BNo&2dSFufZxKRdQE_gDg?~Yo9b-)q?##C1G9VuZ)Pv zu=}ZxBV!t}ffHJ~;xP@C0^pd<#)A}0);3-a03g64OwLa_bsOA%V@_FJ5B}CtES-DL zaZ&p+)n=ypFX?mTcY(5;-o=F!P?N}%ADtAu$kDH4NB|D{RB-Iru8Te zA|tfvy5z`$H2cG3QY7J<0~_p~fM_XXk8sxL98y?vYzd+=Bp7zd7X;A`Zh<#lxxSGa zuub?slZB(9yq@l$@2>4&3M7~p%HH&?I0u;=VFYBK^F|@6)9iy{ajf#6)04Cv_mvP^ z-f75#Q-_>{kkM(cUZnhi;njhYs~b&9DJ|wjYw|{aY?xFt*@YrybAZW;CLM7xZU)1} zqbEHaspr7igqHdZBz-}wv=sxAh99pM1<|c&MS2>rX8rOlUcLJBO@<%mU3W)U;P;Q; z6=$-ty0UQVBmDa#_gFOvUp`5VrcV~rCUk z*!)Iv*37H{!C`gj=N?5vYV{#jysz|8krzI?P}27|0+O&4AMYBzh#t{64#>0CIol(s zq6KSVbi`n-Kyu`DO~qM6Dq*r6o}#R-(M0D}{?oSZDgU^wvflpY_Htu};b?0=AF$Se z$iebln$c17Eaa*6Mj7msh7u#vL&g5g%XzEw*}p>()7TV7C~jnn5go6hkR1UDTa1*h zf~Qs=wiE2cF)wU8<5%|ed-=XAQDZQ#^I@8sLrZm?i>dm~z^J7sfTMO0#nVq=xraew2oS0?1T6oCEECwkxXR$^6>@v|m zWqamO*;`r)e6eALAzX&OMMlCmWfF>3b^?4Btg;%-%E}tZ3F4}%YJ+=FI;a$KR5>pD z^&}nNsT6P}&L#q6E+WUt1R;#e>T%eFC)@_qWKrL7!5gB6?$lW+Ci;x$!ZGz54^il%RHx zH*<{lSuuDbAYF6)jMsM%oOySk+9;pi@U~+^B0E*pbY}&|;k+w9n({5E@fd9^u`{X7 zFUwyN+v!Zyn%p+H;bkokv_AB_7&|qdy@K1D@MDvVGUZAlfx=JFS6RGm^xIep0WA5< zrFjoi8SoKVnwHXgS9$=<6!FgEpK6DzIc6LP95cNcbgbZLDegsiD1R43KptA>#}bIi z*wS>|aZw%0r2GHSnJV`o22RYdXQ9h#Az+V_Ep7V+#bStZRFLDCwI{i+kIw;(n(I6$ zU_CTJRGeOI-(EZu-{t>pit8~hhW;#1Oz(|Y4hI+%9mR>8XK_fl8#d(sW{J-h5FLBK zVqdb?4hyY?Q0imqX^UYuP|KZj% zu5pIPclNt?nJUVs%OqjW4h+u%%2@@CTVbt(@0VYb68$8<&D}%gQu5Zee(hr&Xpi1f zhWkNN@-}O`rpU+736+8%#0K2j-8wxg+GY~QB?xCrdt)51RMt7-?~VRqrHMhTHO>tN zEN!criLuv)V2cd!zuc4MpF%L;Wq20#2(4@IL_5!iaV_~OK|J$4VEgz0%UB76d zu)_l<$!@Ri){Lo$Cn8dAuw$ZO z26;AxJX1ej9~Uj+fAs=&@;+$0DFZUf=ODM-nPI#P1xUdG@6`^a z24Qfol_}vg?BuI6K=ru(%FM0JnFQ@VXzY&)C_afjuz|tOY|Q{!Jk|;P%O~fn4Wjea zw|@2hitr#JY*-+t9S)mp9i1XOKJ5(fQq}2cqhvzS_e;)N<_$ncdRPd{2=a?K8B-{3 zFWA~X#V*hH@#!qC;GxUa>iDg8{zd0G(HYzjtkV`h>s|_O1UvLv;;DP)h!4si{bE3dt%U<}t({dn8nhijQV&_%`gHN82n@k#;^-bw>A?8k2F8K}P@Eqpk z4=ZAz5UxlBS%A2hrh0b)Ti)V<<>RF5Ik+z0_5N4ATR9dzsreKOZFKOFP>BxQ=EYOh z>k9-RiPMK1cnrrpZUjw|vbq#N1-mzIddLUP%w&*blE8v=Xrn`+X3#s|lL^uJJt7YYrWLw3{<9GULvf)cta&$s{#Dfvwx!>%H^C@VS zmRz!jGEyQ3TZRlXl1;tQwpx_hC)eGWgOx%Xb0oBkLh~2lNB{rXSbJ5ODTX7go(HtV^m(sw=9Mc;0W)4LesJoTGC>#`-_j zpmcDIHiY6f6;l+M8*E%QP_ z9V*S){-khB63VhQ;JDHMMFr+Tz|QK`mhuO8#)?6jM*+}*L6>%@u=|)I1e;yY0`!!u z?CEv&=ca`-HDCL$%Y@omznpn^l(u29w5=1pzdkYlMFtoyFdj}fbo9)ri|RMS*&z0R_US1YtTM!5(1y2K+BQOhN~pD>KQVy!!| z0ZW}3V#g6bObU!i1f@3kpp;Np(k^gvL3Xejx)r>i-L{(wKf~z_i@mPbzdUdLJ`j3u ze4c-PB3(SHgV}tLqbzIRKf`nl}0YsU_WT3UuFicdmT;LIYi{~=`V%vncY$8N9A{mj2 zcFts^(11DlkW%DH%42kb*B^ZolBhPccl$TmprdyPaNvV_3=$lRXeH>Duf5P~{Zs1f zjJ)>q0PE}SqWk&j>&W}x8%C^A79Xefwqp@#csg0JL7~uHhOOayuxr zX{8B))J6b;d0dEV88)D?Vlands7M{hQeVY4N=;73G{RS0to(ud;~+PqK~hK>HIWAN zN64cy70tVnplrsr(o(9T88P_i;GgSq)+5)@9>o)N^vGOM^>L4Mj1Q|~FP|=tl!oey zI#y-DAd~YA6fKI%gAEp;bLL||unfMqWi>9QR}1Ii0WNQ^c|T@<(tj;(e_Va-)_q-R z1K)TXzjnRfqrG38lj@p2hQXIE(#)$i<+Ll#PXI5VYz>2bk2SN(^_ye{_Q4W#hv7Im znGO88P$3AHB#Iu}Z2D9x66C=W414k{21@YfmdX0OnJJe_*g@2=J|YxaaoCxfdPPWH zpua;pT7UKD2#s!7kg0LTi4#UR#0p|@h`0XHvF~Lf1k=+^SERucfwe-01%a(7v$%${ z;7stbF7%r1c6>YYmTTgr*G}*HYNzl1u>SI0sMt8|g5~R+rEkEez7Bi{IzU9}niIId zQ=b6%(-)**gavk~kSc`f!WEtaj5ANN@!pBm_ZcZG zm+GoP0F6VI$~^%T!{6hCX)X7y!0sIPSB9#S4H;m|quJ~q(-_Ix!aNh%8jH=dN_gn0 zUwjXR>58j5i28tAkz;!SI{*PR)w9+;pLOqRd%Smczq`?Syd_`UdT)GP-VQmj!}GN> z9S4c+B;{6u`Cq3}GrBPbVMb+0r$DP&%P|^h#Kg!V3?0hE?DeyI{_^9tT-(_3F~XQz z(ae9(ALo^Z5p|w3dHvU^;LJ#bZ63@~pF_mg9;UEOZ9%05i$Ntu9`F^+7tkz6iI!KyT>$z&?UbXH2;VS1KGPW?`CUfV3i=9 z1{Ma{S*(?WfUAvqBSmKoRut*^(&;Dz2YbNFikcd!(r)Z>QSv29@`Pm6QRwCDMy~so zS>-BgScUsr<=5w5z?Q|=Xx^%?_k->itgr7OFR$HBS}fjLcg3!4(>HU1Ji{tA;CVpc zDb830d0q*|1dsw=2Rx zZK0P-ALL#y&6G4*S*8h!HKOeP9`e9Varl7M`Dy6dzE#D$`5?P>`6Rr!CcFM%_-lUs zN&RIrj-b{zs0}pe7FrFdC@YD~XoKDty2z#JxQVbLBca*O0zXv*ar|nrOq> zvWK-KbGq+v4v7AGJUzM#Lie9}A>@6IBq# ze|E^~)eKZ9o3N~fXq7QvSN*I7iyWajSxtm>%_K&%%F`uPX&X5X&Vp*QEg4BeRQXQ$ z_OjxR!#7k!4hc3v`Tko?zfU3EnJTfG$}6|yXj(rn|1>2^dpsRzz9DUN>$D!doom~C zbdD(zbhj?j&rw4^?zF`sQ0r;$!_v<5m?)_xl11z~1O1QT6Gjqbo5n%z3} zMU;Cy6)y(m%z&a4q5;lUth%ZZUTgYd!ql`JD6pzASW$Xz0oTYEcp*`KoA{7OT{C89 z{8DpUa}JA&l9O`_Ph?@-N}?3uD#WbAFNU@x)a!K6miqA|5R-pOEIQ!tNP)6aMj`q* zEprfkuJ6u57ilXwNdV?CU`Tpw?{O(ROgKNAU)bq}mFdTM=<>*8ktWuH*+$_amE;Ig^FGN5Sg-2BEvuiwdTpcKb_Tp92TE&ymU+Hs%4>t< zXqq4#_`aexhSo};OH2&4g{EIo;$d5486SpH2~IDef0_o&m{6)FXAP)1Gl-uh@Pq|h(lwySBuIn{dT@U5+aqD zjc1*5g8T?)&S%st3mc_W+4I1wuD#?h29FA#nvd;JQ#^O$)-N)y&|KO^CSxKBE++!9wVoC7WPcc?CSf2KqPI0DcWA9GL-<@tzI^(C z58ry~tN#_lN?#jmy1fm0kY-G{fbbg3AkRMLs!7&yk8_MAciyK0J=eYZ&6|2|#muxZ zT3U`#uk4L&!(Qhq050U0l1=wC4_en{AH*qQUvA$<$zZ6<^5D~V6mj|)vTD+rkiY%M zLhaYpC|lZCf?ZAm5k=bfohOd1$6yz~6uQpB&~ViEaJ0j@VawmnV0#`9Db-rKT-$5D zizMAu@SR)D#yrgvtOhs{V%Q&tJ~BgG4rvdhS+u_yLnslBsrZ-f4dx6D6h4W?q0Ely zSl|I>$_|KYARu+trY_`|_a0V6386gt#H!YqSV%ivQrh6BDY>D&Z{*1KR9aTinIm** z@pp9uFLqnMGUyQtGwOy2B4PZUN44IwQ~93RDDH+_hU%OcOeR;3I1T9 ztARtb4Po2C3NQfS~XNi}Y>4+}2RbGq_HiduO_IB2>y?rNVy6H~SSSiQbdX~$PKLMSCD>V1i8xmFf za_&t#l+y#??H+ztJbcl#%SjbR`se_OWC29u|B@i8JYkiPs(m(v9ap#NmgA@JF&RPf z4mV?Y^@C@XygcH#O6h{50ITq0dodlsbM?w?M*atveR2@~>UoD2X zO6Z9F_m}6ik`f!XyB!~49#;&5{Oqi~ShZEH$<#0cYa7WQGP{Xb)}cBHw|s}>~I(@#fFyg@_34rTJH4gFO<4zFPc{5 zYnClm;Z`5!9$Ls`u+E*ydKB)e=apyac`6@ZTE%hq8;U{#hsak2 zW4InoWU@=YGLZ}*aW%_CX=pmP?hl5Br?j_baJR3A$W`H)dou1ic#U|K)@W)1?sJ3)DRJbc5^*1X zWw5Nr3$vHm`s)An^&D79!h+(Eh=18xtzx6><&v;k)R*EHN~5$kT>}HEp1*XXU9Zs6BAd3t(gaBvIbkpsjkUC1|I2 zyi}d^EuuJTy4tq4hz{C7Q>)zl0IL+9CimQM?YteQ0c>8S{=B_t=VrU-P9rwe{7t~< z7h#*Qf`Ts*Mz(fB37W~YkO=S~F8ZYH?pfJcek z;L2N&g*89#Ow<|S zBFu}T3VMDjwOBGvb!fh%XTJwyDH)rW#VUIJwOrYD>GTt_jHnzG41C%&h-Ork3O7x~ zY(NRPpk~7f^T;gyf@_cQu~867)qsL_<&SdA2V>gjP{7g(q1*WT5DrjVsUo`_ytr&) zEg?9Bf*SG_2JJ3}u*)=Q#zCGk8qK;z{Bn4Y#UDNmy=eRn6fZlOn*3*{P<-r=dd^o} zZ8D|j;o4hgFnU%; z!p)6s7u*YNtm)%q7LD1@`W0Gwk!U@m9bxste27qupW!!7!j*3B%WuIvm+vordMi!? zMS!!sL6^>*J;Wb)aL!rl!))Gw9Uc2i7I`>k;&#|sZ>FI6)C zmWH{Xme!n-F8^s%zfMLIyLtxEs3RXl%geF^$!l!dp=k&G3oiW)@R`&FS&>=+ny3igjax6<+rjh8~ z>m9B-b8GXgyp0W8#v2e(Ix%?%HwZTeL;n;qDw@9Njn9N8*l?!_$A0U|@)>=X`ZwA> zYy%&&G%em;ELahB7B|j5YXzk9(P_7TQq*``DM<2a2h5mZI&Nhf>ssXEzs(~2kv^-a z&RRjI9!VDyY^@lrzi9OIKC>(kIA z`H@_#Z($J>k!&z1z>?G;yI87E$&X53s1m-DuH^nKqv^nPi7Hns43u)R^rG~lA z*8NLml)Q*kE(Cw~Q}KYM7f|@bgW>Iuyb+fCmpd5{_!1G2#nN*rSf52vN&}y1s=~D0Pg~{9gSlpF%)PA*-picTaRi`c z`Xjfqa|)9bpa)ize~GaN%0i*Ro+TWH#`k9)wWdxWh?PB73c$8?LBxJMKXTkR%vUVS ztWM^$J~EJLl)OTQlaF71VGe-%F+tTf4{mKCzpv7s&*r`jk~72e*pCZQP=zt6u*cm* zyB6xQuBY0@9fKFCQ6)ajMF6mC9(wZ^SsZ)NpNXNEv9eZ1w0T>&51vo zZVnt5TLi=lGT;6Bb`La9yk>7Z5G~%F(acRQJ*aR?j%p?}A-HP}iS)0rW!YDqA3zii zWFf4veZ635DP8<^Y(87`dMD1$w!ZqbO&;)kvec()rGGUBXTS6L$j(r=QSAfCDK)S% zg4!NARGPmXmnRN)>}A|YxnD#pO6j-F#g133^qMo8=D4u1n^TmM9Oi$alB?8uszn#~ zIA5X3C(*!!6ipjagj5S$gWjnXuGrbh{@;_E*?B~*t5k41Y~y24L?iqjzywE0iM zy_lvcqfW2HEiO7O{&z$oZbP{q%3^2Y_EMl%5&n*eI&>8Lumcz%nLoe6fO>vvzEXCX zYQ#dh6h`QDU=bYU$Sm$WMviU%6S00{-N4%8d|E0NLk~QjR_ig@W z*ohX<0`%|%$%$_F-ayjQ-98{#H(9+HTL0@FNl>`v^sP`1*WcC+z@QB*P}BG6nnp#OZ8KLR1>G;BF2}fqBR9SsO-CBDTJ~c#XHTMRFGmkyXMx(?*B64@ zT_D$%PnJ-2qQ+Xlj!n78E_cl9n_So7wI}EE^_5;UBN(sjxOx%yEM3weE7GaeH_3lF z*@CWYuM*;50BO^UP)Z46_o<|M)U`ms3B{xk9NDuz{6r1Y%$e55IJx;`95!b6Z^Y9#w z0ID5fT|e%}TI`#KPLouMLCil=^51|Tb*^zw6Xfth#gwU>^Wd}n9@Qv(AfdBt4sHt( zuj#hcZM+Q^qqyJtq`N&U??<$x12L>jY>sZ;-|S`6hnp$7x#MGwiJS!74>a=9_N$n* zaACO*1=&O~YDHi0@=&W-h?GP`S3Z*%vI7Lz2zRgG$qJkZzh^L(>kseh70HEcLKtfM z(NC}`A{70438Ua8f8$eJab6v}ScF)fb=m_zu6$%XEZp4T((3><)!H?*pX2lwUoYnF ztp{2gsMX4Gt@@sn4cM0i3F%kqs>^dGq=L-YuQZ_t@y#^_tHBzgsTB(OO9U9-)#T?PAw~d;KXAG}8Ez?Ydb97Fy*DEN!n!h>F{PE*`*0R(yf^uttxK*n05e0< z$%u#nj=W$+gP%7@n_cN*#3MOK4X^TJS9&Qmc4bBC-!Rza>$A$Y`u958{qn26%F|k8 zy3*J7Txae~agTU9CjTDWyeYEQAIZ}XwJ<|#F}{QSz^7HPXb?Ky{gE_s7r)ZL-ol@C zy2!Ie3&=`UE{LknI!7cqGuDm;L;{s3h+ z$nxna+C-ueuyY_FA02Gno+@n2y_hwF=gLkpBC%(9Z~!XlkkV?oidk;zz<_U6TJFvO zWaL=ljW1|57SaCOI6J7Pf4&cn9;pu_rJB=!eLrX*mci{Xjy&{|ljkVZuVenIVqb^Z zgVtGeWXR&h(?juYQyYxnbY%&Zha2A6$j{q~op$5`lx*VqXE^8v5>)|`V?9TCbf8yV z9c!~k_!Oa%>~|2BOg4~=w?eVKu^cJtV@T~$&|4^GZ~})&(!~AAo2D!C!5n(OUk_pL zS0zglRdqRYXWv`gG043awpj3zd-{2A%9_*sQ&me32Xa8^hl-2!gvoJ4F_ABoLS6wTiQ1_AVOx=mI z0j+GeT_%u;s=4Ae^740;f<+hGdHdmD18r*Uy~{ujzPd&R<5OHV8&VTFxW7%1#>(Ra z$%eD%21y`?%*=4`))t7+qppMego*rJtE7C0=LRYWa5yH?(-;x{A{U}IWkQZ)nho*; zW_IePxwhMoJ$mPVm^-KL%%UiZez9%awrx8VTa~0@+jdg1lZtJ#V%x6R=9hH3dyIbS zw|?p0aPQc6pL^DtQ(FxrfQGIr>xKQ~H2BTf&qC@~i|UBE=@-((Hz~>l;V-6nmp;lR zoNjWw8#N*^B|G3nN?mYB??<)2N!3?be2>Jhw(NQd&8Beu9~_o66&O1`u~Y2WXnS7$ z4d9*?Bc|$@qim++dONl$Joz9zutf1v*wz)T5~JHu1$ZmwCB#cO;Y9*UE*bHDy)4b8 z3t@1tP2I>8?9{v`)90p=^JjEnlZrOndZj*hcJ^8uB4_Y=Skc1Yvxt$dl|ZGcpu!jK zlLD8*#Nmr&`kheZN)2SpM>>dW^l-jq!~AfCscfmYx14i(bfTh6dDZ=wt{YXSRGKKB z^1I6{DF*pad6A=bMGDE#AL`7CkrVhbw6!8vFCD3{>tSKJm|QqswQOukTpL^Dkn;|9XN-rZspRiZ#7_X9Fi(S4pp zT+^&R?1ywi?*$-ZWD%Tg6Rft=dnH)2REw^SRgJ66u?1x~-Tqc|95=)u70onwT116*916mK#!o|t5+Zn zA)fW2A9q1%2`TVGO#Mm<>Ph`pz#z?|U@y=xaNuD05+3{rk6^aztHQI*Br%do{ffg< z>=$4)TX*H=XGoNZ0E=XPQKT@4@$Se`!yuzm9J_)zO5Lb;)>A2t*;lR z_^RWaR<7&cAkrK6;2V^59*Tc|EABFV zQwMKi!ps~O&T&DuQ0grwR*|ycE@2cLu703!4)#&U=f2AjrS2r5;Z4wGfAml)I-5Kc z;f4M>%L?r*LhsgV#>Bm?KC**Eh}g;)p*tt8%foG?@Q5~z<8Bjr=HNC9uu~Zrnu0wr zkXWK{cR9f;Jfl}j!fzhiFuo55w4Cg76!N*@-bQ4q=U&KuJ>87W!R2h#E4}dfr0Jl6 z#Q)*RN{*B)k~=>IiDN_oNomdbrvk!SaGY%&Xc&NUK0bxOYR2qp_2ZesCyG_x7hWmc z9}@|ZeN>24aoxMqjRY+FQmadgMxeQ3|G9Uy;jbFvJZZoVG;U7AK{UeR%&!&fpf&ZI zIAZqW>7`Y|Q=Z>5NsH>n$xxHp;_RQqWgN2a=TJ!5eie^&idA3+#I5u`jrW zv#>o)6OyA`Mx5PGcRR?KMD{fiB}GIyUnqQ$uQTpKfL%}jz$fxMnt6@ z37+?`m~_IAwZH*0?5oT==RwDzV0X-=C}?2Wp+g&KskPJVt7?bhmIbyt(|;lKu@{lr z@Fe*-75`*cBs9FRH!v@-usUhs7i;7mMWX(NW+IqJL&j)xp)=GyK<6?IMqneMUVqFf zEXXj^e!d-*)X+aZ?hgBtna8z3TcOTQb-|8P#HGyyBFp5GsFUbwn@LT-b zNhOsTVXlR6Fvx1IC^cf502x5g8G8V1veeEm@zUhB8I~zQ*=rVHe7HJ zsI+9PY-A8(w(3xYRUuEddld0z?GcN-Y5Wff`KMD|-(`vBd#!@yAPHOOtYoanKb#sm z1j?k!gS%?u{{Rxg#)>yDKX}+#`bU`CcQHUZ^@ZObiBBDh!^`o^9PC5*OutO6L_fr| zH`r96IpO(M1vz?0$VWkLlULGb-Q*+YpGWW*lsn-H_Lg#g8Kl)8N5_}*e5+ybpOvk` z1M^Dm9xB;Pw=zqp`{oQxw%^8cb8?$fyVp)+_9V|nACsmM$pu=-TsyC&!dJHi`gNsn zxbs0|d4h!fF3SB_FZS{;%(BKocqo2(UfGxbaY-pK{T)-(3MJ5DgA*PtCo;n^2rT$@ z&Ijg=7$?W;$f=a?$(+lKwywr5Ro%~_zM`T_%k{dN1b1+Mv2^6O-uZrt{fpMJn5ehc z;KoVq!MQTF`K;E!NkrHbptfCRO3B2j?qJW!Rfqbh?UG8-*?LWH!#Wx9LaPlK~Q4T(6f@H5j37sTVLJb1xf z>bx6(?Jv!#6s|ZfH6^w6siq><>tQb;sMM;=bn))-*R0mpunR@*abZy~K=CB+gi2Wc@oN*r{p~+BtTQSIKDEV|PnEo?gJfdL=}V-H zyyb_lpBbciO|GJQH?;WgC2OY{y>C7Xr6a%4;z7;wE?lw%Jp>fb)OaoXD94!VR}L#5kU-d!Mxwx&RZ00{4WdQxhYs6WZacgu7P99`Kddy)FxuEk;@hK-}>5+_VTclzuH3 zun2|i>64wt0DRBj_Rf{&)s;WC_zJw_DZ4=%Y6t?Fa!f7b2&Ve>lY8buK*N$?%JckV zR%}=dj2wVKA6AY~4Mv=bBUPB{LDy81_VXx+Prrgfe4?o65gp#a+L|R@WIWp4Up4>A z2fq$7Kx)u54V+BR0VarF;++(JW^N(7^W+S8x=${ra(yBoSVn$~*Pw~r+`|kIvVSyP z`->ubG>|Y`E)y?sF;lMPF^`9yd<%tXftVeVOY8dS{K=nNfvL}>aWHqvOSNXgq7F~4 zQ~I7fT-BPT6EqI=@Um_6$uWn_Bg>sJrS@U9n?c2G#YK8Dk%$pj>9WOb{TT3LJ`v)V z^=!w9p$@eODk{ySqufn!+}=-CfCH1p^777*C005|ABYA4+Um>vF0A(8NY=W5O3E#C zg-U2q7mctU4X7qdfsej0MXl{1Wcp*QF51{RD9xsP#}gPvik006`?JT7f8d~!>Y!vM znxs#)uIeXqp(gg6jx2QuuEk=gsz-Z1Hbv8CQ*k#v4|y1cr~az}Bo}4@7GLlXXPk^t z_^MzIWY;#=B=Nj-E~_vtKGNZMs{sjRvd}4`oXjfeZG9!jE2}08^}TXk{&B?0?#l#a<0i)I67%xQ(2n7x_Vy;l7_fr(7| zgnYV_DRFD*p22or_c!1D!&Ueoo2D@xjU;R7L4lZ-1(_f>HVHuvS%^rB5=vRLx;6~U zw9G1ytyHUC1C%?{OUQEgqZ%jRNA}am0n!#58ko%r zT#r;0FA)kU5Z0q#(mcpmBY3Z0g*2@OWyUb+x%;@pmqBIM8u2;92u?`wGuq@fkm;6_ zeF&16GE8}fIDlfLhalf?HD>|61!s{&tC*7LjHR>3AQv63q~pvLp`rTM`CBRf0OB`8 z5r0U>Cf7$r5s1+_tUBtavcW$WhGTOzPV#L#EB*IrtXfA|_qZhf&+@BHB4Ui^euX1Y9RI_w;7tzPdjq*4m2 z`~3fX#aUv{azg!BLe+bHMeDeS7};o)jQfK)^r6}=9Q@h`L$Kx9q$cW^xGZwkD)hQB z?A_S=%JIW$1v{1s>8^_@7UC?95#ApX5dQ@FbG|LnXNZ^FnnK`^C)DwirAwN-72(eb zH*%0mI7|2{boU$PdPNQ1=AO)$PmA9LTnX!V%zUMyG;wn%caB;toOu}HlbXmqY+wc4 z>B2w=+=ne#iJE)~4Ou%8O#w}55?k;fYDn6+&R&h_t?fY5d`bP-nlh|45M&~uDiC3~ z>e%#8hs(?uhu(hIa-AZ5YP2$x^^oRT=cWps&Os{@9A}kxgRUB6J#E4ROOLaotiR}k z`6=vyTA5%UHS>~aXa!|ZoU;s>3N@XurL>SB$eOTB(?Tv*aJ08Kt6@@%OMNG~zV#c- z4KW>{FYxN=JUr^Q=h%y^UQ>@VMk26TR`huP32`i_dA zQ2JRJw<8bIxkmMPW+)dq02kIQT2wx*5fj7*pL;!ehcid>3X0Hs+h_y%=)r5w)l}D~ zNSKJp2ukKMMkxPv)q;6mbjo-G3Yip^; zCP|QbvmWvD0mdkRMhJi=(q_8xF@X?@&nb4L)K`mcm!%{3=(J~UycYxZfQyB&h9E|S zZVwW`%*wuP*P-vh?(08ePbJSTcjQEuEi3Rkwd@I>O#n(alm4sTLn)ry@dJjsj3L*0 zJ}rbzLSjJP7#7o>g`EkDgbiDfU*HlFYuG+c40?6I(ExMc-xf)d@1)VQ!w=Wae`1h& zqM-WA6<5r+6Il9O+wRRRHO7F|@chlWPDP_``j{#V027w&M_Ahru06km&q*;81p^>;QJ%v!j^Dh7Z0}O>=0nq-ZCEF`4m@eQt5$ze7}NQ z;Rbph2*?G4J+K9|84&Mr?;>=c0~JxLEBX97&L$9~;Bpf9zT0F^RAFS~xKXS=>`O_1 zLFgg50fu@C|R%C;_pVcFGVyGLOe!mSsefnw73t1m22}h-%%v)do<`tx{J{LUO|Q5WoK`aQp4Nlz@ z0^6IIXX#wVzTUNJu>xvTO;Xk7@pr&C+gG#6A5Q=Bch8uCp#JEHkf1&P2K$GQtIH4B zN(EpUootv<_^=Fk^&Gt!mqlo!>Wq0~0NR8eJ`;;jjEha$41~|#q2dUt$@E$RTeM(n zes~B6>v(p`{$xZ;^7U7O*nw@KB?Gza)S0LZk%0h>G=E7FXRt(mdo_2Gr>X%Xl?Dsg zmKaVdQWElcB}+?48x-_h?#HN!3uIEsYpT4(4oe3YuF<+>MJ+>12Z`hy!P4ZD}(^$%DrWH#PNC} z`mh7(?sASGUY^o{6%b|FKAsked&;9ufpZb;c9Xpn@&eQd;kz$;zh?)gXWk) zS=wvuFXL$s@#)P&q$9LSbYUhJlyo;W?*c;C0%NnN*ww;u;ppdH&#=U*Vyw(MvJLyJ zi6^-iihrG?zj1O#(4HRa3;lY9fOA$tksSv@(;jdEv<4hzZsb4UPOHEMi9l& z=si|+I777J>@HjGOu;MY*6+vF(+whQV=b_lzV{$|608wRkI%Eox@Sz7n8%e&ca-dF zu;E;%D0&~VwE!mIEVQ4;&k@EiktD`LDXzB{E*q>CqF$#JGBBhP@lm|Hyx3T0Z%Wxs z$|X>l7Q4Y<_mZ4#fvZ+L-V}C3J$#z_HY)xQ>G(9H07_LN+jC zAQq<4rSq(m>(@{Wl}%sK>F2DG}UyeTo@eOzCew!gY+={sSe$`xc=|hp8oR~fc zSuzj(q7=ZWIhoUhO0QwlVC&{rjC1mra+&ll)+u&aDDYE?w zn?lo5%0r>TJVFqxba0t{tK@fLTdX9k7yK zjM&?CTFSIe8#jFVt!$!BYOcl7V{$nC9Q`(%Mm#c8o+8~oq^K*`?`iyV0UM_}ksk$} z%Q2AiYttdgwwqEPS7V+CXStfCAx~rnNdbc$hy++gxQ^h?gG9al1NbBbGKm(-ot%sU zZmC{L(5WRGu%F1J8>mzV;s3l`j!#(h`rKb%V*nWOw(Y1Ps_z}G95`XvNZZXeT)O*m zzV{=7!C2Yv5$tb0CjThsJ&C%G2wO^HFT@^IIw##Si0_&vdM$WE3ASLV$!3cqZL zq8ii!8*yTZPNk{9wT{?#C>Cg-oxQ-{;O!(z-V(K)cXB)m@5-{z+B_TTJ2RIx(@E6z zeN&)$dl+lHIly)ZEby%>1hkA_LJE&0o&x(HGU|){JC2smI`+I!#v;n5Umrmc3_j~l zA5^e4%>x$OEAr02QecJ3Q37{G7T6i2d4-Uhm7NJ(M3n5j_}L&tw2DTfMHGcxeBsD# zpxE>|u|0%VuX!Gth4=lS86%~N_~OW{AndX>Z#@9Bz_<~xYxnJ%`lc1+%qOrb8(!Bi z7}EQb+fhSOpqc?=hyERq$lC&;O$a2tH4yWl6^pWD-(uvz4+FVbQ=jhT=Fr;*gDWoUIfeU=*$}i77)Gn z7yZ#SEi$m&KP`|^%Ac6#I5<@Wz#GWB3J14;AS*%h`9lD3^Uy#}BB|2Yg*o%tsG;Nx zbxF&m+i@k6m=;<;dJPdulM5o0|!E0ZJ*z zn$Tg3b9akqf$03tx{?EPAuWp$?>V^FZv_~*j9#h8NDZ-fVVLbi@XPG1X?R2tE6$WZ z_+~Y^S9|=_sl-(X=AOF~bBi-!b3;4&-E&WyCYU1##~%yy#zZH-f5PkFQG5f9luT7c zX%cgD9Ta}Q|6LfV5?5iIxDbyt>p|}!xJ?Vh|dEOf1cf^dE7He-$oyxK@GCeDc6@7YK`{o4}aP;(U z&yO1yHF?3=4URS683vn_oy!FqFrkhM*i%=81q7?2l}Gi&TJsuNs867J&MXPC%CK7s zQ)l(#Vt%>YY(>*|rT4E52N9{kme+n5?^=om7nz5dxGxsw_53y6ct+~>FXQX&K5*>Q zABod>eS`xwhB~GksXtzvIcp=%k_#;M&D-N%#BKkTpd}AwF^NI0^>DcE*8^(gyiL?~ zod{l0z3(-aRO#7#$W0J;Uxd9`fL233LMb2?p&qzWcNcuG7v}fzL=M+fh3nbSZxfNa zN4yYhijgLQWIkm!PYjgg1Yd6Q%GTol;3tetB%wHMc+9JHVd!iYeo#H+% zTUHd)7;k@?)CTNUg{FA0yTrTFd-n0_Q3!(R(Wn9)*8n$G>lNFK4##tO%Y^VVDZyl; zbX{Kgq-M%8I`WcM={2R;inmT2xx+$=w|yuVK$H!$D0{h#v!=xJiKd@xL1CsUj#yA(lzV`pU2FE|0BOO zWeNpc_$g-mlYAB%db8j8P#qt+O#yF|exNBL+f3ZGrH7y?vX5CyBT;5x?Q8IIe04ZP zY#N0D8~^zxlM;+5g5S^SmU9T1?c^s&+38pg{MA^re!auPpvymaK>gi`@hi`s{?s{N z=Zr6VR)k&E$2_E?sfbepQI8M2ORm zMWzP&G)T^`$Id<7`s)3*!J>y6FkzdIL%x6pjfa~2GD}9|F7@Z%{N^;&p+k##bdCO- zVj&roFN@PgCkcdn79vX7$fxDTV7j$CZcQlQu)kKLc4z^Dyp$-cnh-|Vm{=pKe-V)l zPF=BaD8c)JpiShJwi>{fm-kdWPXnlqpl2cx;UxBwUtxz#Acvs%VH!p!xlCESg#dN# zeit0JgVg`jNPNw1!kp1I*LB$UA>kl&-k1Q^mw$8TX$Y$yrHaHavy~eQ*F&+RPjZrf z-j!RfJ&J&i0in%*kk<}hw(jd1JI9r~doj*(S!I0$$@znPf^4@2o z7X&LxOe+?^R`th$?AY+5dQ|yY`Qe?~uNNXd0|LaTF^MC#igu(I2l8CYd5TM6V2Ds8 z9~9%gnNEZ-GfAS+aQS7RE!}^s6A<~Dhze9wl0oIOrFAZ^-H)k9+pT=wV@P@nUG$9T zuWiK<`m$qd_gM0dU_ZC7<8g!}@_>R-W-Gs&vt%XaswIcn!<7YuxI%7a5Z6h~o`hht zqRLtHmsuR{RVmKEk}S^qIfJQeBl%pM5J;J(FcjPC?#nFUz9rcx2lyl9aNg~JEOKlU z(=6C6t4Zyosbk^!Vm(Y|G!47Y)PeS0^;^^cX08~Nvm1UQ9CVoKH3X?Ls`K%HN>yF_ z97#Ar3|J|ks4R@}nEA;D!kH?DjIMn_5V$a%uq7Kn8yyAKMPA5ub8@)B)7gx{Y)W(? z5Upex;sPUTG0X#451CeylbM%D?Iq~_UUk9~rqxC~#|X5>!qBP&P_=Ta6#i=cf>&Hh`;Rz$Jk%DK&$?UNoj?YVA@(tCwof6`D^K&pgH10Rv8wS;m= z;(6B*gZF=oDS!)j-LKPz84r&bn zraN||Q2_r0t5X8l3aEw}-HhO1B>GJ#(^8>tKor>M367znzyRTRItO-7c4ZX091_Ru zaJFc}>mRDrj>Q1gt1Jk!fnto*Ktw$(>;ii#Rcv!YW$nK_@y6KI@ysGGPKi`M*^>#> zk(VSMSnvQEV&|l;EF0dQZScW&=-ax|$7)ouEuJXRHFqXth@Q5DtA}x6S$4YKgC7d22KG5-|2*6) zOc7oOVgdMk>k7ko1JMCUG+8IhJA+!7$*dX@6kY( zlPQM+Me`fHJ%x4+dfd0*;@4~}J?zFyrm48I3YUl-SU?F^`rwr1L&1$R2 z*~`ym@v@*)I#@iAjN^5&G!CnI2^Ke%tYbwU{SB^qxuxk38dN9oVYvJv?Y80OI;!aI2hCNa zMroXN=rRrhUP+}*kwM4A6>xul&z2BTxmSxCVIy0Ub}lCndSbcu;Zo0{N=%SmSLR?i zH{Z^D??Y6%i%P~gt|9M8OuUTM$jyTs(N=0jbKb3*T)}F_k9s~U>eQ>>obeR5SaF60 zp%F8b^iN2VqtK1ViB+Yn_^wpV3H2>ZdpAC#w55U1=~yGf)$cg4M3i`NHfG6pqpOj1 zwQxq)yr)(l{Pl1+dQS$z{qm}CVl6a2>W5gDviz-8`+Ve8EcuBNPz;YydGu8)gbR`K zq3S&hpd?C~eW92*k9u5zTkz*CLPe7p`t0TtVWU|~a|x4)2R^lcs-Yxcg^ZLr+JQ`y zA+j2V%=SpmudmT|*&k`xiv}-?>M;CU&$2N7TlCJwF+OaYBP$lFoq28kw+;gCf%1_V zSE<;afN^|hfbg1Fo)#fv^dk=74Z;s1fedl?1+>@b&la_CNIw^Gg^fF)?79vN2-{mo z2=V!S{CfKiuOXHsTK#l-KD(2x2K+CN^KL6pt^ zp05sB$+0qIDe{1TB~8hf{Z9S#k)9!x8)%<1eONfHDG+cn*VoW~Jhz1@5jHOx%JqH| z&SQj$2LQ|T`i**6NVttSJ1}BSWeRoMTlJ_ImzgN!kOu4>Bk7S=Np>83%#op%h5O-r z-~yOEG!qHj^7$c8mFMg?d&>RD^M)DYHjQ9`Ix&d(K23Y9aB}}1;Eifwo1)I_&p)n| zVBMd(bAc$9)D*)Eym?kIBOpdwg}{6HMnO5%l08@g*aWv0g!)mm8srbij(!H6@_YKJ1m-2C~olZSlYW>J5#0#O@myDjnb<;S%U|OTWs;Sx1elBHd zcYv};FX+F+=k;xjdhT=F^5+vSLPNR$x_aOz3XUpGR+>&l8kq@W%3G2YGG=E^2|ZL) z2o70u#WAnwLn*``^x>s{90+-$dZid?HlMa17T^S$YyZGeqW)xIjurnS&rwu@PLB=1 zCKOZu>k81p6b%6x_q}^wXY+nSA3uouM-h}mjO;`3{BtJJ>p$T zmmmtaiy1olfc$+Uku}in<=a{_-wNEv18HJ1e-Di*F{xBCmHZ;Fz>d;E)}IY%H2jlm z-R8VG(8+}Pt5-~=$tqVb8+_QtW?qQU-$-iF25<2<&{J^^qzEpQu3md_1IL6kdka=q zj+`Jvz=By9jbtVYPD1S?u6c|OK;;ej_d?mTjewEtJNNVUd!y5vr57Ly6rL68spr3W zLA&(tUCN6)U!Kx4;Ts2T9Nry2zVSg?wUoRmej&VJ(C!8TD?!?TOCW*aEAG!1fha&Y zlgnG_w$a5-j*#FvDWn{L^%&|L{o$)fyCrGKwsC4k!Jj%nw~Z)R`#MfhB{YUu;B#7u zde!gN??Tnw$87*zH!aN#-fDiQ3bvMS=~kR|vqk*v=P9+}F+R<8e42(eo4%9aiu5(?nj=^TcmI z;N91-jp@5a4~0};oZpaQ=Lf<>w^-Ru9JIhH2_aA%90x+Ht}novU5w*0{K{Qx>`65( zwu!2B_|LMF=*awbrXGE0nw(R9PXGiwc9Pv`Bz|t?pGk{&*;G)7K^dcCAOJ~?-*gJCG?iu?jnW*UfY&YUV|RN(hSW6^6p>8 zflBdte$G4375?|loEQGBXw0HU6BmvcE_V-*gu-vY}aXJeEs8V+}jL1J3(iA@+ucommD$I+OXUCCb&zZ zUttV>Sh>6sYqu`VffQ~{R)Yy? z`2N>c3g5P4!RGL^SX~X9b@#td{KoZOQt3D`#ffv9cktAc8>?wdVt0uYE@kdRknrbB z2kU8YvU7g%a`zKh9xFh{<%Z#;`_)D}|LUOlhJ~dRxs#gew`RZz79EkrGi1@F@4M#s z70}v11#y*xsmq5u;Hg9h=(pqd>HlK*#r1XO|I+z&E>ts;=exEp#Pl`s^_FGo31>nMc$e*fDpk-Y6eOQpz2)+Dz&&w4?cB|zfL3TW4 zs!9Z_$!_M1*kP6S`E>lzO5}gNx% zLN_A7M)Ex!hbqI?wKVLSpl}&5;pJz>BTI5(-@LAK60NSM{<~jW6zgkjYh*goq#Mx^ z2BmmF`TEZH>}$?!8mQ7lumA{ZE_A=-iw>2w7J6`$qVef;+-SPyUZ=NIW^fsqcgMWK zC&-zeP8eFn7>xxMAAOj-&x9IYJpGtLe1QO(T)^fw`5il^Y+Sy4#(x7>mU_#+JmZ^> z4L|d~x<1La>_$Gz9)kgIq04CP+G3tBpIK)Zk3}g*)J;by%B|fCQddF_<1}6nQ?IZ_ zbT|u{bW@Mx6JhWA&m#}k3pe7Gffvv_AP$w0n>unOB|@NTWdx4T9gKG8B~J7ZX>g{! z`R`;V;(-uzorLksZH(#z*On48abgeJ@mipZVJ3 zOM4TSfnTD1%a<+khsoize8_W5ASLN;1`wXHQ?xoo!v}SD1Decw?-H|-^T7U38HdcK zwft4F8zWxL%1x^3Ow;BZZ0uvWEoYGa3%I)KXg@0gqd*=Y&Nl_SLInmuIx&P`d@C!?nop9}E*4e0iMcVG0;Xh`@B=VtSD z>)1_T@%A}!d3VggoNFJ@_LT|@ny9^rHDJy(z}uz8oTGe7e9HN_t{b#GKrCu7%Y62A zix79`C&c|0bNV;b@f85p*v4&^b-QEklj8lqqd_LWm28rA6-!l?hw`;pT5X@Gt z{dHRMo+ci56|USanteAI{Z(pvO?yEB`XfsGJ#k0S5RV0S$hyTPI`2AQ?e%mEOOi=~ zq~<N3m468EpRgZ>{CeAwsPd-~MDi^h;1 z%Pzst<*aDi^lEPL{km1|aaQiKU6eJIDx>G=9jsq`S!6hYiBSS)-ae-9CWpp}Hp;zx zK`~dChZ{91&T(3(JFX`j9g=xUgBiS6A#ZBy4HN+a^2m1jia zR9~hN>&xgla|NIYI%6-iS#SOhfLLq`t511HdnY3qFG7r}btK`x_fkVT+Kex9w*v1SgYS(KD9($!hy8itRMawMM1PIYr*RW) zKCS*I#!WiRjf`NUc0dXKvL931T4_!-#)<~-WVBhT4yxt4fy{IjS=pFj0&QZD%rH&g zuiEWz94YQEi{EQrFb$7yyyff=Cno}xp3C*DgN`4}NdmBz0RTfcyL4um9O+vflcM|k zw5Xk>v=8GpE12rsR4*VEXk^SMS}3W;WG%!P4j%;(Ugyh+*JAAnmX2CG-AkyS9M=Nw z;=voYGeU%)f@R~j3gI0BaMsdO= zUJ@9PrY;BMf|@DvN2&$HG7QCCo^K633<7Hp&`JKucDPQ+X0XyWUA7T+Cf9vS4pLy5*bLlK72O{VF=+TlOS-04xT6&<;Fkf>?!;kn6!6UW>ptw zMhea(qa=pHW&&7O`lB12P>$9$g zOZxB4m?0;L*ra;Z+D$t}$auuauJHM#Whxeo_1fk#Dr(ObaWLIgOBzjN#ts!|Z7R@O zydsO}xU>7?B{kSUXqVxBvkR0%P2{A1GuzWHksY>=kUDs}be5@DtFw|diMTpaU;D}? z3B%1C=cjs-AOb}Z7D|AvCzsoEqIa7(e2w7$L#yEz6h;nLXxi1Ytsxb z{?+%jMxGJ>*HZ72)){OOhA7M*&7+LJFV(mS&6I%~4PlUuP3C=`J%#2soeo(3sG zhz$@L-;~TqhrUrytOgUhs0;72430V)$0use>9=IlVod@RFK8t&zv>YsjnIu}&F#pO z-kvhWD|P&=fs2v$G;mZIq2DOrd8q%KKtphv4BRGSIAK{9nJ{2+a3f3y;EBCy8R{57 zf>?<(Mo!dG!A1BTPdk1YRD_n8z6d9`az4;KYHDB;Dq*^EA_)yRT;vaBB0RCb?`NI3_Jzg{EVsEFQ(K`4OE$VpVV&a>CRV;FN>h|lTdWom)P zp?*2`EWOdD7o{i=-lU#}p;0K55)p5XijG zF(EGMLccH9Ai4HGJu-aM@=WQ zLCEjQzSLno>=2QNQ|Wyfs1sUA{XVs0&=ij9S)Zh^BOj|(JWmf^Vq;YwwUW+1`4A8? z5Rj?1PS6)00s}`r_ou{LVd55F>Qr^+8%#cCo}e6OsFf>goVG*hSMxJO?dC|S6{k}b#XD2YqtB!;&g>_s)p;E`StztH9U9>DEuYw_?@j|} zzeyGl-0oA2-li+3S1~{PsS)us>97w)W{4Fdh6cluSD1w9uVt_AH2ATpLPQn0tV}`* zWN1W*d_|XK^7MZq!;l=l_aAH)p`3LQfpt2IvGKz|X*c2s^^GQ?8@Cdf5rCv$ zAFj2dWm5sqw~dUl=&{EjKeW@9h6@0xq&j0zXw0s$$~$Sas0rk<2Tp`;O|(k!a?Q!# z@2$g5u2SGR08}7GU)lSt+AWT$WTjJ48nfRTGu_XWGshceS8%IhA&GH&^``R_B>Kf& zZiz1l=XAvd#tMJ=RRSj5PODj$wnClt{ zG8(wjfWqW}zA!b&FK@_MRB?FARNh+T;j@dk)bTfaDolFjbN?77vV5l=HK5efKg;H zN+&7}`Lx)p)%d#JN7H!ybk}MC`c`??+IA>~(GbnItTN=Mv$m2ATCjQIhi&rhqFiTp znnZ*k=9e00-)b{Wc{>d}k`v0O=`5} z+Z2UqjadEdubzuHh)vyfkSY%d**M@}WXu&>mfV)Gwu!$)gHOPhJ6doB3>%$TN^a&z z;1n}VNk+{f0~!qCy*4cTJ!N;vh8JBOtLOPKDu2Jk5#TC&1>bXfa=|-fy69>nWJvN$Y6L8! z+vRG%0mO)bTgNU;M$9k@iDiG2>?W`7n;7W=17p3bY7|U`5D0;q*MX`SuhLrS-%jfC zk#=45(5KQ09kM#-+hiwqzXai;#fdn*OYixV?UAcWR!Qj!x8UZ;-Y`v&lv|97M&s{P zBc{{u0?vf)D}AJ}&=#9HM3pA}ZSS=dSB*-~y(D-q&{2+w?{8VE*ztkbZMEJZjPP|k zGA<@_7s;DS+^>+D@X{r|7oFyP7UacR96upCu6d4Uv*5idsD4XB2;iiP&mju7BW~6p zobu~td*cQB%GF@lh-Bc=lrfU0p-~3P<6(U$K45|}4gn1fZ^=!**0N?FQdE+}>G+3_j z-A|K-p3}u$yOAVSnb)6E^@86RI{j;gH{|-2d%wTds{U|dQBY^3#@RUbT8s)=g$;%( z=O=^_EfqgbC~@oDBwT*@^Jhk6j7ad11IKa8X-6P`5d*H8r(UlhhL%t>j{Q1VJ~`;# zW$G*Z7R4>lV8BdfGro@jfZZQ2t+Q~0bZ}*+)8cUw#8Xr_H@iL)8>B~kg5G~ISb3u6 zGOo_DgNBlwDs9%2tE^00(zUbo( z5Mb@&FARzhy4kX8g8oRg<=Q*rA&%K*?p74r93GQ|-ezLCcENM!VOBoqHkXFSh)4Jx ztElYU7NTdwov)$b{9NKR5z32iABvMKr{w8$s2el+>atb>ZnC5@!UPe_vUyFbM4t*l z&j!M|mqFbxe#TFr0N1d1v8N>Bdq(E@*p9@$G(*(io5>*J zR(fKb1*w>v1+uU*wi$tW+F=L(%w%kZQSU2KMcU48L`lX4W_qaDUy~1Q6*ONykPBMq z5%Xt&KT#*PMe^Z8VDYg39xzjg@1Z=53GpLq0MDuB+R?G&74sZ3G_3NbwzZFoxxW@J zMahUdO|IL%P2R@_kt%`WdbL#?Z#t*kFX!$CoDTqxte(vVsyp8izklRj7pt#HE;kR9 z3)WyxLA+e_*-}Kwy!k3Rb@E=ke^`ezPdh-lo0H)@CY+(%j%TyfI2F`>9(ALtBE?gg zvmLSq*(ik9>#tF^JY_4Q}nyFbpj68kAS&IswT&_FkHS6R+GL6zrqM*Ju*nSvX`Oaw*vjz$by(&lPK zEh}CXJtTK%xwCUiFlLr^_ur{3K%2(r1KMbnXZ&EP)GR8*taTJFC9N zZzB8Pno{?(`FS?CpE6W)S4oHoEkzO~Ya8IEo@`t|M$fvV@V(#}sVQtk6qf}C>-`PF zqGLyj|FYrqGAeKT#ZT&jU={Z%Ka}8)(T2;~DzC1Zd;jYy*5}mAYVvRJZZzEoC zQS-y3?bg{{uYldUnMDh+3JDfS3?N7JUMZ88=fWjP!%0%=P@dQKXk_~a8^;m%Q-T%* zvb373v-~Q1*lOgWJ1bu}eMrA^Y?SSB5ofw;I@K6V>*b9FR;yg34$1JCU#~M|N&=x) zsQIXgopA}1ZV+p56gWzMzGNGiMkc#*MSk7J0h|dANo=VHhA!c-QKbB$mgUY87a>$6 z^n>=!7smCl24wX1wV>=leN4V$<`f;jE(g9#4Nb-yOr-lF0&pdvK37)Tp`$ znlgJj(*O^UCC6I(-G+5gykXWEoy*f(I0VkboFTVz4AWpZy8-B!hQa|EDOsI?YfeTL zlP_ft@xg@Y`#rxApY*bEQZ`u*{m}V_aSW|^*3LgYitS)~=j06gp&Z^__!9?{yF z|N1X;`e1^E1d4;IUMiBHiqGY9y@`;{#P^tA0gIz^>*JV1m*ea3I{q0_orPQx!PMub z)u}k($c$@K(bB=P;7)z!arxDQG)73+){MgcjVzDzGV#eL++$ckg2+%0H@l`^sX>4Aw=7bBYg4ef*7nK6{ zJ#G8wa>$rGjPTRd*}}02)N|vCz5laPYo3jBNJt;BE528YkY<=WKgvwmuqHF@gya1tGYF;wM6E>W5U`-W6{?m-E2(pyPh(+Q!M!#s z2$&A8>tdS%U+La|_Y|q11?c_|K1QNHiNw=3*O_dh?oe3=jKP5H8hG?+FWRoa?Dx%O z3z^bCQ|Cf`=2rmLmRw0l0GPmE)x|>J?9Q}PTiFz|A$>PU+xrSWC7O<7_MYId<#zp8 zC}ql@KhO3ypu~vTIEFjNT2JE~JH`eZ>Nj6q_AiUyyNWNlui1)qPey!l(YF|wNRh=R@~ygVgO#EgU>(AQsSz;B$4yx2qaZm`Xf0XLOK>LRxapYzCr!dYV)RNThLSmS-f zk7M~lLIM#o_7{pwK@L3{)Q4VQDGg0{wqb`oJd7^z`JR509RK@C?;jZyD=ENr!~l$3 zBFMs4wZAy?=?(enU9n!DlK;GXWqZ>V5L#OL{;mAZje!+8zjk>Ffs1HcQfXX%_%vd0 z5*m{KIr;F1Z}a~I`4Zg0)tFV(euLXT|59V|OM?Alcuyb)lKuXj9L<_6{%eBAd<;g9 z!CPmMH1ZpujM7+BhbL@1pCpGpgeJ-rj1NIjUsmj!iRy)#9i?|5wKw7%G9|c9;po!2 zT}An%DTt=22OnQGKs@vZ;7sZ6DIx4O#E zb+}f@Vd;^*m{S1kKNFRQkt8PULC0Fn6hD@kgX6)gcy322=Ptln|0P4-?S+b`)Ocg0 z1&&=UPt63sZRii+lQ_33(NKUNS+Et%N3J`2fp5y%h^bxHPSgBj`SAwvGX)?%Y%|`g zFcattdX6{Cr=6^CL(pM@&=c2Ev0cqN@EQFcNEXcw>oGP#Zn%NH8clirdYSNCFcc&0 zKeg35^1;hx5|LL;-piGoaEg@-jy@P~dk}pTbU2!AYzvYoez~h}nU6={4L(Q7ja=Iu zlfBml`a@WaO8PD=Co}mG9I40ag zxfYY?3kiAEbFXhs2(?xNCUFLFX4s{Po1O5(@a-50WG5asu*gq$6( zll*cS#e1tt7fN}58X%{6g-3pCV8c>Q024gllnc)?x$d|2dkTPl)xQAiG=$vO2@`}a zkIlw+3k2NLgmpS{M+Nv36w&~m3@;z|mOQE1OQ1%s=;;FGY135$( ztnDJqm{!ZT3_!NJ-xBmYN%<`lDL4_i07N6klf5P3hR+35Oho>-G==LhYWA|y&Q3$d zqs*rF+JO@2n4u=O(i9^m2s5u10A*=dsa!olSNYm3%X5GKr@QR67Yq2IPNCm@{_t$F zpI0qw6SC-ea^)=gbJyF~fxw8aypQ&6dgNBeOVr@tp8UfxG(WOK9Pyvk$mr^ON#gx0z1n*&ZnD=&SPA)KpT3x! zVBwD^7q5VU?>{_ELnwZO2jE)7Yf47-Q24Fwu&z&C#lQ9;2uweMS7k>lXdROi*59W0 zvamd;OCUIM`kW@@Lh-AnT6%+pDaf+vHkW+R)Rh}67O)*Tr!Wp2=^YO}Eb1sv`dSL0 z-uWL}ajrI7X&u_Xg&W$uKBR7e<~Gn+&)=@co&6DA$pCSF4yR@N)$5);&oNmKhK&RZ zoDnVAX+tL-80bbqp04U+y!k$`C_kZe#wRpnA)dHYjdm#lvMJMO2F^zHBC#P2`cw^Z zr6aN_>`o7es@oJ>Jm&&ajgxdTG^Mf5B9($MPFf`={x~=L0>b|&Z?!VpRIPrEw#7`w zD>=x{Z%!E+gpkxN;*a>jq|m2t9!FHkXX23!%w&1%u41ZJvY7fuFi#a;@=#7LP8cMZ z>kJf6*i!aKo1=^4`|rLscCY$j>zxQ=%ZJ(G`fL9+o@}t{zI~iH|4LES!fmLoo&A@@bXJWhRN5Zk$dX z*IJcL>~2K9e%$1Z_xRJq`^IgL>YUG+J@g3JpY<>E5Z)-Y-86ZW=WI3Co`69`+K-8M znbNLj)TBy!?&kIQRm@sc%YRV3ghRq|*WKNRF!*~AUPAs)O^!zO>k`d+oLVg72KOWu znk9QRBDM;Y6us!qZIuaV6kid(5tVIN zms9DL*F`FFp!CKHFiY=KPx+vU!G;B(f50eX)iw|7w%o89Y(Tq=r!JA6V${y|5rneL zmP1N?(V*%D(%vP$K|J(YG%F+U#Fr`j@cryeE{QlmgiJSc@LiKtu0HFik1{IfH2zNs zy=n4lcpG!<7CFr1DLpoeD($4Nxmr(E?qGY0W^7oSQjzJKBIdEV4QSc~7y*ecRjK8y z74hhC7<_8)t*1FGgM!O&d~=J!Ph=glI25Csar9F=D8_G);Vral;4KnzsRW#!fr_ET z#W5`PM53DU>+Efyt&&t(P{@@oDCV9=hQ|gtiM{qJQUF-A0{QECjGRIqUe{h}^s6kC zo>d4>@SG4UK1wXbEOY*DkG~Y(d3v<0Q@6cPOiitEiBqMPd#h>R;dxC%psg}E5{qKK=u`=PWV(nV>2aL$?WN#o&VDKV~PQr zAx{+7vwnx@KJt;N#%lzLL3ghDvB`8_=^Sh2c}WSD+folo>b2b#;16HT#Br;NuceC9 z<5pEHPIoqRkrqD!qIf>B6todCh2_MAW`G9Sr6<#}c@}Z~cEl$$Sfm#(oS49&9B!m?m^YqqJiI_-bv2ttr@|B(Y+5Ik{Q!tpbe1={S8E7FKJQ9 zZxO&+Zo#FB>9(bIGnJ{#i1nEXaOzkbY#fz>z>gN}ScN@cGn`?_6(Zi#1a6`0Wzbl3 z)4US0KiU}>D~Ip2(>@^ume4uk^>XqYtFY~uurAQo3y6YuF-9Ld&#u6uqpkUW=T55% zF19ai%awc%@?(>w?*3n>IscPG^S`M%Kn~#lq2{pte@e|^`G271Ty{y<&`Bp#Jb0TN zq0~JCDI4nR%gJ$I+i_D_p@RlfQAo)`B45K~uyRfM0X~3#zs<{*@^hD#RGkjHo-evc zH>Z|I^yxj_E)qnM9Am31wd@T&Uj~w^R$6pF7#DoOC_YZ~NdN~jsD3|hS`YM#98d`U zor&t0{wKj726*csI(B<#v|{g%`ithE@s#G0F4|lsdj2 zz={-PZ$bU?LiiCpAlVNy1$4Gd$U%vUJl0B9-OPm|NXA%Kb2u~bWg^c6&*{rMG-z2w zNV7E@pzs4vZmY9=6xC}{>Kxn6UVN?(THdKr47+)ZUzLn-hHzAqi&e*+M)hB=(fEgl zN6$Hv^OvcDB{?Y2O4hVG9y>;A$Ll?B|He5=)RO)MlC#d}cu_L1PhLJVMM5eI4Hi=V zcN?B^lTSU`&SHC^)PpRS`L3(fXG^>q>>+#t0rx*PIc|IRa`gBSLhsJr)oBX#Lw&^E zv?R%-$aB%ON=Pkeo@#31_iVOQ1LRd(-fFtOHUtQzn^|?fgsT{JWoJmX;L2p;xXHR= zVaQ1QS?a~G#t&ox5=Te`<{p7G-!EPqv#(Z0TJMsamZS-R=Hkb^xqtP<7IyPoC*dPC zN8cH~Qnz|3Mt$8}r&vz$38Nb1Wn@^f5?S)XDVkh$D6(b(YCs%Y1(3TBl6zn451>~lrAZwuLo09fLaJ0}GylnpVZCOLe>QnnO- zGW#|4aI!@%X8`8<%TlUPUE0u>tUQVN94so;NrD7kXb?sDt>hRIM6H(s2LgBj%Iu;e z1#52ard{|XiZ9(*Kb&iZdt5e>ZN$X&B z6WlRx>~T47@_FEU40#2-Or-Vd6jh8m62E;4GLuSCX*E>#zWa+uZm#-LeSEB$tj$^o zTGzz`3S>3dzrj|D4g&D>S-5gp80FI=@VWZ7czQT&wl zTzbZ|E7+Wlit<3FCktDaXz%G+y~e!f(UWbVJ7MrLK+_rT?VGJ8WH$MLFC>G&djwiD zX+rWjGn#X8u+EjRF=Lq)*y^$Jw1&;heywXUk zaxcCKBh~)*d?H^JUjSI5GAFHxDW%?mBUf8aooFV+8ayzx0QROkXSKzt;JY+I2!skt zdA^0wqwU7$=Jp<4`j?-X6ZiXka%uYH-Kh-T%L~09%qVzL_9ogjUWuT$9a$m)bpl{CTer7-@kNNTa=86WANI=t zheCtg9ejzBz+G&e+67g{2U*$!*Ue+mG<)9B93vx~NT^M<*}49f95PhheolM#8>Iwg z&f!S+HKT-n=mJ4tnm~zO{z`reun;e%qQau>6CR@-%oxD#v3KjWyw*ZDBec+_@41Dt zEcleF{XkV--%zoJ-@5_{hd-gWI;;_WhvMmfgpPfXpQ8(0@l1X;RZ75yrUjS@@+8S3 zb3`7EV;{LO!K6gMO{rPb0IDQ-G8FfJBUk*U)JzFKakg2A#YqMmEG2FazB{=2O9a=o z78a12=mSXMvi`>=eOr}h!hk7E`*tZEcOE|?+%)`5VHMm`!JuWfHC@1k*nU91Hz7Fv z*iWg!(QS{M=L~VaF60oslH6p>(>rrA&^V5Ij%^E}Uja8c8vrCGm#mca{6iB>bikys z&%ppjCedl-(M4Qje)QsEpEl=3j+PP3z_f7Ibr&Rt35YdllK9MWj2BU)V7fgFu3_}x zd6;koTvZIeg3wB6^-V+(J~QE=&f!?>EAG|&p_R&mOHjx#hejUZI;P>F#@(4FpAc+_ z{>!cK+ZU8baGH5plyDbPh%U$gR=(#hAubsj*bZG-Sb4g{;GwAAJcqpa^FH7mTNXhs zZtwz}b@gg7HVLEW^quwJ%*~*giBWqL~9mAGNt-GyA$wZTum_r-fL@3rR3IHQhBh z`SGpKVWXdq7~7-*XxZefuDYF!ek-38z;L8i*%*ec$edZClhB_V+|^i@oiZ%FO=rAM zi`sxzPNJO#Mtz2i-p1TC7l2#+C-ufHSFq~z6HJEFrE%C+@AWO90CIvbG+LPOS(J|q zbQCyv*ff<&Vxd?WpGChhupXg9=Ll#%qy$NDf zeBhZxV0||H{HCw7L_fO|dG~00g|toh6+JKjXT1m?ga6+5Q)a(VK9~WuMfmV^u3zbOQt5T%%OnsWz z{liQsK#e|$+LS2k^`|o<1W%dooJpTqmMwqih)DPYQ6)Vm06%An{!hLQ!wRO%vSz3A z^KtCLf8saw?p{=6Q>TU^(}}RDtr*FMF`?10X+9O^Wy1_aG=?8dgWW__(XNNFC88_0{OXKQzRYR7Fcrwl%dFxj>(SuG(l5~w|AKPv zusqb9+IsuKD}waB`nL2uY{>ZLH}5A;{f#9G0?Ty1tk{{I$U}mip??%nGg;`M25@m9 zGZX$~QxYCt8d2g1JEPugfEBoBVH@9f3)_rp+zevl+_Sn+Eu1Ioe`;=BC!AmZsecO+ zLKqA~V6oiJ;>0#+E*OdDKk@QRWxBToL4fG4Dn5PLG2B*Aw}aW^*C5A8i|9*$sxhg>{}9? zb+uN9fcwdAD)>;E%3vBWDTD}qXNE(spvt?Bdts$6=KG_Y`^eA73MWw6e<$wAXYnX|R z>8Ef@Zp_2&f_3pz&?~DZEO+=W6m9YJuBU&r4!nq&$jV=ymJB$fbBo@IFBES~?n*0U zrbsvqC@6|2j{MJZ5A1W*+{gVoDzf3~u5W2*$;BT0;W0lVt6ApiE)C$CqV=PLKz*^r zfgmdL_%niGs#7u+d-vJMVYk6VdL44*KKS9ey#=zWJCglz^6>*3d6sz?>{{*;_~Lpo z{+wno{u31Q3zyXKce5T<>qx=oH+S(i8~{!id|vyBl{#!ErsGk3Gg*r8>{3WQK^CNq zoBGGx*1WLA1Oso6ag0LAFbV-2b-$hiyX%E(a(M0kvapSniYn}Hz!AfK3NQMyPz=14 zD?NIbcelOj@Xx_f{kEbrtD02`F=BH5r|xo+rDh?SA?eVZ$Mr=kzfw>43jn*9A$q>X z)^A(Y+4opVHfJ&DjrOlD>`Rh&^|vlyW$U9{q;8ZSJ1Tvf`005$n^v?FY?cM?#l0#z zQm2JRkOuSlijaNNJCnxN&<`nfWR2OdC!o|Q3iBD6)jtMSUAK|3~_5Dil$DO1?n{%3WN#L1ve>Tm^ z?M2qO_vZ@7Nx?uR!C`lb8LK;XJo|418gth{qC}`I!!Qp%5jvoIJRupLz(R9$STL`8 z8&u6Ntk@hs=$;nFD|~`1==bIH8mfE*npnM&9wQ*uAD(io3XF35b9zHnOHc|T>?em_ zb@~3IB+{wbOZJdi2bEN|w3Of;^>agH{#Q z;fkmiDauU~pa3EyCTBz&+q=MyR}o+wesf&&`N0&NNTS@TpjL$Kd!#O}kM?WqAf^({ z2Dl-PXU$i(^e5iBow)MfmafNu3J?-LJxyoc=X^m@?_VPLZSM?7$LF%6cgyT8q(dB; z^e4wT3PAq#pW{Egne4LhGf zej<+3dbS^TKVBk5=b1V&_RD^!t~;0DGH>5^L59u|dQH&t8y&f^vy=bA{QQ?sB&TLNO7{@{%jEK*v;$LaFrj5rj~|j3lPN;u6Q<^69*%wmagkTM0oTNdlVc*PLf(5 z*bcF$#6Yef1v4bP%K|r4u+L-hQO-V#3~e5b^6)>R4Zu*N z=x%7j?vRG@^Zr2uy_n~2G^h5STywvKrF}>!Ot&9po9*gB?o>Xl#+s9an9l2EgeI(>O@qzf!TADI z;=apZ`H|AY)Sbe@%qH?sU7lNEVA=6u>kCMKj|NjftlmQ3hZlE`$*Sf+qZTt#`sTQc zWlD&RBdt%y?$`C0k#na2j7cSCn}}|?KJR#Tg3T{$Z1KH!{1{C2$I9$cqOR5fv^B1E zM-@H-3j}d|>Oc>kU6`0AIo-OeTaWIn8bwR5w%Z@mW9Lp2p(3fE5M)Gal1OxEUwZ>Z zb`~I)j7;HX6CP#YStOv19jC`-aB?d2!6+U+0AU$LVxSO>;uxft6?>Fy^$Y`stIu^m zP+1*FN)+k7KI!J1WO62^7Le)qUWJcViXs%H4c26`vtxMuymE9Hud5fA@Oh^b6S}?Q zEdTa$6YKIeW&3go2WT|$eOy^b;&Z|Ov60{>a+A~1h!o9AV~pG_WBO%K{(DK0WxnSr z4%3KJQ|h2_@9wm{l*6S}5$m0yq%*DLGy5B=!MjXtcSy#G=0xC8Je%+?4GA{15q1XS zMv+))DWCnd+D6EC#e}+=D3KF3+e_lc9#%$W= zGI!I4+SA><;|0C6dErTXVlokGKgexR_G}c{A99-BqR$Yn_gRg=w z?I}=e?;H-WMffAgd<);7{Y2zDTxVpEpxp4PO9U;2ob(S2s)a7}BOOrZ9BUkf@^z4# z;edtf?@1Uj$3r%Xd49OZ2jFLvD$D=v6jz?Pw|GD&`P+Pq2_uyV2M>iR9^Hi9728t- zDfzp~oic6^ZjCPUIl^OHyuH8~f&GO7`|nF@Ne&CZhsVkf8d#Bb<$4sk^EGUv_4bPY z?CA?Sm7)-) zYUE#N1n%XmQ|eo{`D-@h_#BNu0dVtK;);54q62;JEIX`0V)AiMfDL4c0X{z3Q%w_R zR&S8&(7g*FD)CD4F2)=n{T6=nLKqC+5RlW$zd!+IScWuqAd>z#v9V(Rw9!6c5JvH# zZYvIB?P)|LSEEpw_xEH^yTN+1Ny@uu_T`d}Lr{(ZN0X?Jv|PBdQapK{1yT`XS4f+L z_boD~hr=67(y>l>rzJn6$u3`bsT+s6lwX=iwsd3J_U?bybv1RBBzXE6))>rpt;SUl z+i3>IVI~y)1O(wtC-l3klhxo1*P&By1ixiCGtsEm8wV3f97Cq;)NL9rWY?a9-B@#f z(R)fAjuXoDBvQPwX`ww>$-z%pcc*>k%Jm7uM4La{aJD$oRX6>YtjoUg@nZ`e$tv1C z3|S5!XsNLI!}GL9+p1C`sS*xIhqc~SEH^_QH+qbdN>IkGR zJc>AUh5eFNT_86^PV%{prwbbq;2$%I22gv-fH1kjJOt8LXEXd8Wbrhi=IG{X8o&EQ zQb!_7rLg{Mp%1Cy))vWRS$M%Z;5mZG@XP1DT+dr^`n2R4maM<^hi9dzgoEJl=2((# z+EIQha*rzf?BCp|HsTxsg)9W)EMOo~NofRBMQ?7>8^PN~Zq=4uTUrkyh^4x}sR)^h z8g!Wg%x~WnxaS7xK+@TTrHJLwTxF+tSU)pGLz{fxsN}kKrOIlVh*SehQ%2+)3C((5 zL_tc~k}D%d6588tpQ4{T{^Efw#7#xqup7>WKGGEpkcF$j$RgxggX?RpLiet5+4Tp> zfoiXb=w$Y+1&Mp3MIwW3vKzIm4d*~(&D#tl@M4o9R*h@vWnRv+4WJXO{y4YNVhIA$ zG{4h$ER(LKFpjLbGTy5T?l|9!#I`{gfBCo%JqC=}@PFs$_{b5!?L2pL560Vd^#$$s zj+Vi>mRx6Ln+iSt^AMKThl1WPlgnoAL5Bi!_D{}@oO2-|hUb5b{4U~x80bYvAaVCvi|msLF~*Sy%oi7j7$N@~Zx!NHhLl%?HZ=BJi|{QxrQ| zTf|IEQ8jJsI4_Tj^$q+u+PeSM8_-tDK6iXQ?m*rhxnJq^thO*pNc4D#T<)i%7MJSJ zCkqo5GStsnpY*#JGaJoj~`1q^pdynNeE%j;D9W=&ui z3;L*Sy0L-Sp1LI zr3fR2`#;$-&6Dh9IY}sJa`ac?=2hsr2~Pi`dqt*NaB+lWWztiHVqs;imv&)!G_`J`jkxL42xcC=f@1j4TD~MH1o9d{`gjD8mCgqCzVt8iP zltBDAoYb?3{Vw*f{^%@RpRz5?T_Gq8#5%CF0k$e%@cufgQ%5bdFOvMmiS*f2wk}mQ zp%dNFjp6^EuLkz4NHlVJG*Xl6(Qi0-jwQnguNQ%1sAuoB9!#ymu8UFbRmPu7ZI7Y7 z5}b9L24EB#1nfW1e&-o;sha6W)INhZG>9MYC~OrtN}5eGQ1*VQka2&V>+W}QoZ^-o zM;DKm3{EamcD<3sc9Ki}&OGed3H5gV#Ymf;|}uXZL2hH zjo&sA5#t*sB>iVp9XH#Yr(?eHpc?v?*Sj1Dx15DL*B~ycZl8m;)?N$}@;OXFL9+m> zA?mjBd$OA^qzPYyX-cBgCx7b2!4G;rqc8eu?4jKeC;8yqjM&qr8f}X{w$DH$)mvDwze%y-1RCYT> z5&zpC0mWlG4|jYnAoRyk0A*nM6??Ia5`nCYi2U*I)}yU(AE(OthGF4aR57lmB0SH9 z$4uinudfqci5jo;$kv0smF&mr>niVyLCr6K%f|dCw4{Th+MkQ*hB?AE-7fTxl0Sul<+k$dL`75YAoSf~DPbD!3 zH@CYZM(YbJ(w9zp1#wlU4r=7&cgsl4WegOVw8AD*iIm zW7q))Fu#w@D9XWgCDzKk?=kFZU9Mk#l3@+|0e^yLJc1as_NE5%_hX^ZooEpe3b))? zV_$VaR>?{Ii{H|te}PgxyG4ECo>>moE^VP3_5!DU!DC%#bKz4M*W$vKOr=;+} zZ=4C^+V5erN|`5{4OIDq??1V2`+SgP)oWxdhBn0_Cf&u%5_Ml*!4Ha}`7{|Dq(sh& z-5K+DPXyp(Aezyq#itC%i040ahbQ!R{d zWSclF{8G>Fk2NMOGZrI$^QWLpU!5Ai2DY}O(YPChtD6LZ&}+S@o!^pA=mieH5H9=QP}u{R6M0fY7E>+si`4+c{IQtkAqFmB$!TPOHk#OAO6JN3 zEJI=5G!@ti?EhSd|>VrKe^V0?z7VK8QcJsj?fvlrsdoCnOi2TAK}kq%8w?$Ddvml@ zE;QDR4E33RZJkZW=g+xxIS1(K_M*3p_4UV>?fw3a`NvXrOLDwKV|w&6{kJu>tuQJP zz8Us2E_=fq6pR34 zzC}Wsi~yn2Y=g)vkQF=>tQpQxsmh8SSMD_{wbcy0){@9IOt}SAD*F$`A2oU*-DYC{k`f%JLBFLC|-<@4GsUHU8=b-HfD`2Oh9 zsaO4|x6QyGDrNw|v;QZzOb4dUD~LGudDXYfLaO=dQ^wPyY5-JZKB3${7s2y&X-pah z9^vG%OU`zLGIXO`39)ycDviGuLafcqDkw7XeG`A*>~#N1`bUDHoBT_En97rTxDg^{ zCNh8S0-=N_j3Z0LF5oz_N!r0~J;C;_dSV6#xct0R_}o+4qQ@WIW%d0)4j033`&!fd ze(CWV(Xvt#bKNuc<^vLo7=zf$u5i2d$de&%<8hMbPj3i*5&|ZR23x=FLgL(4pljK? z?dfPWB1t66j^&9j{B!3+<#NZ=oMH!_Kx9v~H5Kq(xIB1(zKxkv&kW9dZ!6vV1UkQmFf8gc1QjMRjnH@C-=J$!(lX`c_NVmcDpVx!F|PTdaujg!nNN~YQ0qh_4cRKkaFm|vm;s&sn5M3-vR8YD{pS!T z_-^^vuC_$K6F})SuM5q-A~JcCaHsy0(9e)n4}lbFyi<{EK7`(*^k~YV3}UC85lf-h zo!WQ%x=mllC<{*6$8GRYX0Y~6)cd6U`1QT?eY^AZgBCwu!K^zuqdnoL4i+;fju${NQT8+yKPdrhI)=^u4KSN0O#^{QfKKa_D+3kv9 zc38HjW1UcEE)Sex=$bn-diFZMdVWE*#br7pJDa4YhNFlwvyU3|hcKg!4PZwEk8Fd< zq5^O>!BtaQ0I1Rs;!$C714YS-D zuojE5!?s%X%@Z~G{V!@YTqXQ$B#*B~T|cLmgUE9QLO*jTzTLbGIL8Fgr=$wXFnCJQ z_|t4mE{KpS5k}d`4-aJBGl87dySE5R3$#V<@+5xCmq#2bD<>0>g(zLc8ri8vv zDS9<&w%_?WUuz>dU0-ltA4rptWn40$ut}jR(A4|~6k+1=n{xLopSVs}D7(e!R(We? zM86vunWT}l!{J-!;gj`?LFC?RNN?ApKvR<0lJ)tuyPfyg#lR4v{^9*`Ak%7Luc+JN zdKiN^S&N<)CTCn&#o8~`WL>yGaNy$23}wCNG7|mBNlP{eeuTK_F0{^l)dTqnI&42Q zn$MXF-w*!p+eiNDYR|8+?4pRc_=1R#wSoaHaRhDJ zOs;s-#L4))LgGV6;a2#^NrW6ljW<^RIYpDZSdzsg%qPPG97MxO4@*ev&eCy)#>h(@ zz&d$9(0`W4&3B`^#pvC2=c(u8j{hU!hoduI?VDvgcuVMGCGc+U`D)oR;t2s+_ z-4zfmAVjN}3MYVlnDtmwz4P4JMUY~-RFqzaufeaU`+fcK_^sH1+WS=fY01@%8nT#( zXnj47H1T}Iq}dT1n1mR_YGVUT5YOnCl70sru)dMow;`Y7CRzqcJIY-<1+tYU_ zCF$++onez~ys-A@uRa7pUkzd9f;TzjUeL34p?@Sn-qhH3`^2B4Q5*|=xNpFwSUEjer=T~&w)Dg#K&O7?CX07#asi3NJ>9*42x z(Q8Z@sbfaHmXtMDe{oLw$qNGMh+e(SP}sQ-og05{lUYZ-`uKpcE{Ya!aJTcu-3?@av&K6Ru6MlDP;AuE}NONVnk+7NA>v9Ypz}+*p|fZ9lKg~ z|Ih<-&iPi`Z0sDJFZ?zjfK_&QBjneI#xiOvLGJ)Xa>*M=F9Q}wqZBUZ5iM8i53gnv zkyvpld^x_Kgxu`vUgYf2=){^dSU{ZT-2qZdpLFfX`k;9ZmlE(C_LJt=k4rxIjwFcn z9`Y{l*IsHUGkF5)nL4$E{RW;Hv>Xpyp8oE=O5nvGlz<@@w>Q4Vy4|0DjK-;qr)MCA z_s0YhkD-j!A}U=XDujFafA}GC)m|2Zqlk%c#kv;i93u84QYPCF(p(pdsLd_fKnRo- zqq+er+-kI8J^J|aSxO}O@NL3PZ*>?Aq*_&Z#}Poalb;pCP<+lMJWdnAxTsdaOmc#7 zr%x|+qj5KpO*Q~2CL5>oBVqE&9iCY^ZXUN{2EnAZ!~WiYWyjJa17P^(q1*}S{E`Vx zdRE0QM(1H(sKJV0VV>8?-4>otapjhj_n13}7nENkuAdYC%c{=diO1YTu;(GOplSt2 z0!wuY%<=nfzC^n`j@2<~1ZrP^iS8=?^1ZqFw63h7zXtq@XFh_v5G>-{yks%&SPMnD z>|SwDe7?mqTCf*&l?cK=2_|U}HtKQy1Cth>Ub=aV7`l1(*nfe3iyrZbx!^i^!%m|^ z`rC1??y%7fh|K5GYGH=>YSMAWEh86oDVCp86*>;DhjG4F(m*a$F#Uhc#N>FYKW-sV zFBc3e{5ltg2RWdyCSu)F;^H=b1``6sIg^3Nfm*a$e;u_mLw#j?g9H&@a zPts_xFzZW9FeYKhe2&PYmj9JxH|TT>>Iy)CW-qF?tSuwDN_BZA?{i2m_JYwTmrbsf zl`*$+n<^{Xy)0j z=`(9vfA!xEcfmR!M(jucHj};EOU*3hARac=WT|zrfo(4w+yGGq&PTs5bM@q8hMkYL z&u>$?6hxgOA>+tly|7@#jm$i#KN^;ZUvpjS>uZ{7YoI`W%h;eTtV zr1?2OqOPE@dv9!EuFBQR}RydL{;N2A0}x{ z3fbnb$nvFwYTqyjQ(Ga{;D8I5v*RF#nBp{=8zP0d?Psba5lV&58xZ&-;GY=+X~Km% zfZT|5|ePenRtYBY9rTJM0Z?G`EzvW9xW-OHFEAkB(Lu$xP-J79HO@ezuR6>nw)=YV*KSxG2r zUTU;nJ-7Ahqa$iyCwG|y{}Up9&L4g+qA7{$;N}&!h%5kTA;}`pg&Iw|+$*)1{d2_BWh{EE-iZ8JE5#q5X=MnaR5%3 z2d6B5X~wQ48_ z)zh5gL%+$|wE@&;flcLYO{=lq_ASyo+1eCF{{sYx4F zLgywt9r_Il0xZ$gJO-jT&5u&J&O{%P8X`8Hz9EZN)*?%yjb5gMyqikAG?H5k?N+3g zGK7Siu3no{l+?$ODL+y%9>Zo``IC#Z1(`{m%Z|SbZMaIvW?%PKI5&7R1W3Hhm-9*< zOhs;Fdv#3;WU}MG&v=UmCbk3`WSkyzyNi`B&QIbJ@P7y3uB>^y^BiY@yb?)ZkgLGe zOu8yj7VbmSQ%NbWPjwtQFm~!be9GEh^Bw6td&;m| zAT-!`RCj1b_!G!m5Tqt%9E7d5`Wr8IR*m@0TC>h-53@K$COfAICf4gTpf1=HEGC8; zpQi@!RAJA_LEEAH@^whp0A=4gJw<-V85-C=1Ei^@u%RhX}4LM6^y zCB42ra`UQJxb8dA+--2YFWAP$J4P11lX6Lcb!r2CK=YrqF-W}`QUo(9X=;*)?``g` zE0kNLV0TtU->xD~0G)^}cD;uabJ$j1S(qjDqAJo&e~RGu`6v_Au0yV}Ac@}JGy|%0 zPBFz&ocz--Or`ZWwzSVLP!V)A?qFr@tYeWlyQ8K#5Z7RK<*HpG-~tDRQk_2zsorK{ zYwcdS%tE#G%z6 z!Zz#w!Q44@XBKs7^o?!Xwr$%sDz=k~ZQB*wwq3E4iftR6Z}b>_)pvcC_t{_B) ziqUH+`hnO&^HxIOARQu+SFetA;<9+MI_G>>af`Co*H&~s@6b~<9NwPw27X}qI^)fr zm7f+W2Oasz50^O7{q+(~WpT;R;3%?^c}gG|i$oI4P8%zPo+rq2(F&&5*peqEdvg$a zuc6x9E$-`*H?bJ!1@9vWk0Ly58E1F`A!^N2=8!4qWU6>Ek5ejb*~w!1%~T;Y9Yu0! zyT9_>`>?O$_%a_>9edBq`2Xo$6IjKh$-NtE!8@;L%RU zFCi?Vxkrji_+X~WcQG#$IT*M)K519oNY9HDTJ|%96M&dAooGM% z0>^DMX9@_jXgxYE{M~460+cMq&~Kv*({>kz3Pj9s({*h7m{n=ble&P%GUc9vAvGCwx9r`~lgvxH8zOW>*9Am20 zu1Kr6QX*b5`Yvh-A#Qwb;|;!KLVP$eNlQ(kN&54aw!P{ur2YdUS$tq(4##;yW_T~+ zV+7&@nC22R3?bfN*#%6l5&a(Pe{aXLd;(L-`UTlO^FZ;Nb`i?~tI){ZPSO&1+y+o8 z-*KRpqg~cw6J5z%#l|#U|6Fi45iWl#MLXLtaq`FTU*kf0q8@Z_*Q0rH?W;RS*JWjys0`TX;r*5o^F_3;~g<^bUPypWK-LHM8o zHlYpl3)o$YXiQ@_QKdH7ZODwF0osEmab@4>U1Fi`?c&aZB`%Yt)_8eKk#?w_`5ijr zMz#vSg;;>!L0Fzq=$TEmpM4pt+LQz?Lket@`zQ>J@~bJ6mKZlL9Xn@Y9K84<{Ek}s zQzn7}+PiyyyFdtb*m!#i$-lL2Y-Gh&yn~R`WZv;oFqxSJ{UqOOFiu8B=|_{b7s|fm zADSRE3ARkb=LGlXo=r-wNbWF}%I8PjJ!6}@JmXX>xT`De6#O}FaMUA?ea#e9vD%hd z+g$H{HwowM)Mc@Ny`iSxgJJlQIj+){UU_`235Cf6Zs?&%Od()TwDC2mL&yr%i(svn zOZ&l%yt(biJuWz{qEm)PbEr<;km!3RD$uNa`1NALcO}=bZ$mWEY7RAs+WwyKsXEB# zU90=wBWC713y|5{Z&cq}vT2SU_os@kibL3l`|vo)zlyUnpq(E7fs}}hb5`*4U)+XoqW(NA z-sCkWx?N3V+yL3#$ne@kDwwI~N&dOQN8OI%3&Cky% zk&SN{g4XK@o7YeG?#<#5t}ll$3|U)S4+}GG`unO_^I#DP7?$J1plh!4`JOYR#iLd0 z$dz&Mme5pbqtdTVpdm-R7rQeZ8jF5ca_!4hzUMB`wGH>ExB?|%tnw8<#zkn0dQ^ zmwi#wJvz@eXj%)lKa1YGThTAMh`xAbe8=Wlx$OL;@$fA7WkOapKOniI#ez$huu`RW zZnQUL@pboNc$``nN(aMV|KKcKow*4#?Q)$e1`^XQSlra4B zC;oAJos{iL0FUvKsSS&!6`56pZk?}El`ea<9|*ix>(_i7R!hi`*@m>@Ts=c3rUEO| zC#c{XoAWP6PlkA@Zo3P00WCfU&2@3kpM{N19B~n;fP~=QJFP8Ast`=K(4zd+QPm6a;NR^2aq<4v!)$OT1N6a zxv>~aGjLpsAx5Zr{VsftiLcW$qnN!B4+-!DO3-djoq=GA4vSAcRW;Q_&+Z88o08CE zOQIl;My<}h;#qbVFM)td)p>@I#}?ghPNDv%X*e@*in6P$P!tI&>c#kb$B76eYG0=! zJxA+zMha;krHWj<=Q!JF?iHPoxS7R6y|9Mi7JVs=Yq!sjc2FO%I-2v2RHsALxO=W> z_cxfo%F}Ef9%`c!Ne{#|G1@X5bNTYcY*$QL*a><#5CTmh|txGme zEm&cdp#MVnoU`Q;))sEMKB_=fGDVdszlbn+j^wDNg}mfIp<91^VY#0*((Y56Yt(@E zHDC4nPunRw9_+`ad{k6uwGAa&a&ZBgNFEOX@KiT>y_BGNV?h)?AGdKHM`Q{$N*T@o z0gWtv@R;Hzho?c#G!w<;Jpb?&o;8a!a4^b$N!gG2@~$wH&EKD+_1n`8T0?)Y4urEJ{dE z9riJsg23d)K%NVY|C&yx_dT=Rqgu@?UZdz|8~2}M6rOPwB+nPRjS4Y1x9f`|x3mOi3+K>x6dfyDPYA;7iZicTX#EK%@?e0^ zwu*^Y@WR(r*0Y`8*HZE!r+Bm1(RFYGOT&c-(29m8%8R*Z+mCPE`31smGdB`qD!bY( z5U>1p2c3kE(2U-!9dY%$WJTjA&&tOvu1Z6Iu=FM|^oH<889$8sMln^Aj7asB)I=VCwgibu85${*+7jm>^WlAoJn<=p&YwXc4(;fqXuo8oD`4N+624J*Y@ll zhQ1F1ciXMIA5;}O(X`pe`^eJN)r>Kv)g_%A%_= z8KT|wn6U|eS%cRX_S6f_4nN?-6g-q|>Kh6jkuGHYv7(v@3xnI#KLT-Lf#)7gghFAJ z9Zy&Fkf^No`)Ds$JOu^wmsr5tJd&83f_grYZE@4JPAWp=(ga=>v~u9Am6TBRNE`+h zZg_A{b%h#OJ|{}0GnsGMd9^zUIQZ>wzDRPOokWk@E=;14#ziKGnEngX{ZOo$?7j-6 z++zY%-RkmXjrXVH>uGNBrjN)^tr4&c@) zXPBQ4R{tjLK0-_xbNT|9E-|Z+L;DJjNFk;fK$PuhSy=_U7SC${<;`naztX9&`Ew(NW>d&HLt?OT!lD zr}6rDw>;@X_K(2g@5;Z!tS7u{_e7#+z`;~9u^P2fHHY)9xxV>uEW$%nM zMSbe({{D#K=fqC_PgRSUIFM1GjA+Ivd6wl@%h~)&#NwgsIUDd{3GyfCFoEiQmG^u! zREoK1bs*5AWcjNV-RE0IqpWNmp}4$<(A^HZF;8+u&4qV9^?daom9N-yC;o320|B?q z1?4fuZj4;x=bJHL<*69m(nM}9;5PlRwVF|94-gr@;&mbAZ{*Q3c4MlyH|&2F-d&g6 zD3ZjZRqc(2x8Gi8KJG~-7>yv^KdH&MBU{wFgT!pya}z%6WX7qFU$*RQiCwln2huNY zbINKH_{+e?@vEy}8^fc)EIcP_h1tjT41YJLt%xaEN_9i7+$EbH{|UgJ6X5fY0{4I| zzuNCJ64BvU#bm@?YGJrTr%(E*B52E^W9ja>Q%KEw!H&Y(ihiS?d)6(&y20U=84cM0 zqG34*`ySQi#EU9&={NGYu7k$5XRPva7PqUg28Jp&$pu)`#oKoAx;!qddJeF+#=>%#82K z{~bYv?r5Cg*V=lI07`e%;*jcuDk_xs1@@OLg&-+cd;fy1s@JfNrSCge@kr{)SZCzJ z&jig{O0v9_x~ph`|V&06U%65Sa- zDSdDf&I=j~v@Ee+#lCuWiGX%Oz6tb{dyy9t*d||f4gKnZgT^N@_1?m-WE^XB>weaP zY}UE#3X=_Lg`yZ}LRv2?zK?6+BtLj(P-?+u{@Bt+C}aQVF|GhRAYJ1mvlg14+7 z=WUX`RvqeQ&FznCd+GBc_iti8kBt}a!U#_on<%@az#Akv561N9_PXwn5FYXuV6{$`xOvd%}&1J?fV0=&E|i`7qW z**^=T`>&V%$x?*I!SLk_na?Z&k_dJR(<%xAwvY7nqg36g=N+QoUb9yVKZ?Tlv*Td> zlHc%|bT1pLMS~`-T>6yAj?+e9`AMZC$EOEzKjG`;u{uD(edT1C{v3RUI>y&C9*j)L zi8i{QxBf?NBY32@I2Lx(7nN(6$>E>n1GfMZ30$b<&`}fgSA>wRtvOboKq#rlCet4Y!<&1xbL~#&Gts&ygi)679QbF=MVf3kYvk9o) zLqn5{K+f605#MGL12fhha};CA0)a$$$&oaTZ~VKa_i=#55}q&KOQI?&pr&f<;IxsK zMk4x^qf-uk=C|-bo0~p>-f*iE1GJkQ^Ibpf^1Yc%IF^3R&q^8x?na6;xnJO^tRkc)`7j+2Kl|1&8bI$L zvs0^LkmzicJEEp+rktrt&12r)W*9B5;a^REVGsp9dOA;dOfn&*C(n(#5b%Y&Kndi{ zy9xXPMa)d*gWZ29k_RMS7N3my7ieiVI*JLXj%~}W%otV(;k7!|A9gMNWZx87ti~;$ zst!t7*cS{fo;McL*bfFRLnTBJ&M3V)^@;iqvqe-22%(%*K**xPIts|=SulNrBh@l3 zqck@@(>^1|Uy6HUaDTSURD`o{jDUpwwyhP0PHb7f<0ZGl7hyCV=M+7B*T)3MLd2z( zVM(T#++MSAIi(Ud*e{gvM;0AS0|ssPlA4x)jqO)&E<06TI=nb+Il zrxqA&bTf>+p8dXXdmtdUi%#BSHH%K-%R4w&J#)k%w?IerN423&2O!v)UekE}3fm=R z&064l%)hDjhhGT700ZdXq8W>#LzcK8iz{e94 z<$xElkNfjmgEz^`cKP~4L@;^k(d%+xCSgdh=v8(b9bQ2L zIfx^Km2zxfnL&@xM!miedhNg@M|o!}AOdw1)WXENjj3L_ZR9VifwsT4gY~*v^|mK^ z>dDUa*%+f-BT#K=z+#&!h#79njv;XI7n7G#jQtk<)|rJMy+BODfa+aN4@2zY$2X&8 zn{}7O2$jQ@(L#_?rQEo*P@0_vU*uk(YJNIhvoAHh1$|Hie^Ua) zl45?Q$gF~krWg?1+|K}gvCbJ7SWJcL!ehEG$68xTwB89S5>2j zI6rx}m>y+Q-pNOjjuJ3M_;Wq*J$Qixacl&$Y+`(fMA7+!7R@d4)hX26i@JTreulnD@}Q27l&WY_K}WU!fLY~$bSX?zoiUD#sU z;O8GJGhAkH=_|JhX3t+8)V1Rrv|By?*>XUFGeRfl>EvZ5&K}iHu<2-Iq6(w!s;Q=d z0suAWe{^vbvec48j-t*Rl->8Qvd(8LzDd4Qy*1@EbcV_S=T&7FMu; zr!OFX@ouUoI`5VH2&Ri;dw}ThTxR&qiHl>!SPL22ca(Rfz(fm}-_pBmI=b$38Uwl^ z{MCf`dqm}{b`Q1Rxe>~YKhIrXma(K4CU8E)G5Ma?zS*^`Jqmk!K{^>ZpJQR6D4;>+ zn%4b1`m2ZNmV&p>VfbdXo$Z1n;fu!P6T&ChC?ly3`O9vPH|+w^7dBd`unBz!&wrF# z224mcX^&Wpe5k4r(bG|7#4<2p*)m-Own7nwKCM?M@L*}}rB*M=|J-LIg+*_mFao0@ z7-agehTA0oRv%ytidC$ZHgjgL`VBI|pjYvO5&#O>K ztVKu(BV%z|CRXzeRC!sTu$t69IkdwqlPQ>}RUvR^yC(ct#NP{9j_7&1PfdyhK4rKg zn`7X4z>^U|?(c-jXa-OrY21F0liIso1?>2yZF`Fme4Ls`lT=t`o2d`iDbmh}hffD8 z3a9|7IIhcqNl08L#c4&ru>cdpfIee9@8z-)SdpWng(bis21rW+S6)JovV4|K({4%u zG-%R-azovjJpi-{Fq5gf)Qq;RaldKkGP0XIoGg4)kwpf!t8V5?za&dA`${}IO{}do zp&zD?osn~nao4F}*}aB$Pd`V)ai6qHmA&GvnD7+z(HYm+FWya|kvSc}V5mKo63G>t z<(#X49OLMmt!9FOd1;HQRYUywubmyv-$-fsR5}Pakqz}X_cxK9KlMlyYuneOJ%tHCL2XI;z8qQmopgtf|-1XI+PhMC1lGeXtaC0pR0aYkaUuRosP z4WpR;ad`e7T%H}ZYAX%fc3)$ky{T8sa|K=DDO;f;@SCF1cKB_#7Y$mRQ=}OUXhp{g zfR)SE)(32O&dS)7A_#bHp_twbu!Tm4z&@M8k1#80Mvt2I15sKM7iGJK$T(h~-uMft z#hUz)OQN@oY1L~P$=gQ3PPPfX^_)tdqv&ij-5`I)3EMrn`1j*hn90c-^gL-y(0RV-~n5e z*@fXU_;@D%BSv*Ve}fg5CB2GkHm{v}fef$F01@X4=Z;d^JeBOzN82PkqCJ4DTyKR+ z2MNm8h-8l=J^81msVc#TY(MK;01E|qAUGD`Nqjb<0&1Fc1KFJ$D*Z0WA!Z_}4r=kk zfUb;sd2@V6X9UyBSFCxG?R`ea@Llw?E=>_P3eY>8Kc>{3XB8Lg8vEw;Z7YMI!|PmE zB%4HAK_2!RhGhb0$L~xjFt|d2spU2?ba~0+^!C&7Ha4T#8KR1%BqpHs#}>OhNF%Rd z^julaK@xVPz#s?2U61~9i{3J)65|h_b9^0;zGdECa{VdY2sgRb^_lYQJq61=xl4mM zfpnA9z_CyAjghU>vA+np(!R$3`aS(pOmyPSIE0?h^!^OA-QPboE#t+vR;yqg z{(%}}n1rK&F94fNHd3n&0S%L#C>1-~;m0Eg_b-#@srN^NvbL?$_d_F|m5BupHJDKs zyn(_b->_>TVIoW4@TGClBMXCkrUtPl1yrQO>q3r{v|XwW&xL5Ytsh%;Q2MX26G;uH zSMEpqK=y4}kAuct3Hnm?rTF6R@Idc9ex zfuaMJg8tyHy@*!H9k7Qe`S}6kVJUM7L||6Jvw+r?>jVddEK152DN=>XF@mxeDfZC8 zPKH?BYUu1w?tluL;fVe@k_of09Wfwo`{%GB1{z1f$K`{2@(*V9;2gvI6ItWqytkk6 zL7s&dA91*c7Ldi(+JfFVYy>W?*;w5mr#`G=*Rz@CWWT?KImR9dmP2BQVuzKWDoc%m zJv$B@Y9VdOte-I)&P*uISWZ~jHb5kuU&%jRk1L)@U**@ohpW)b4GZN^?``k`XwpUuw&NaTTjpnh&S2U4;UqRFxxorHFqc9 zD9&j&Zx!u z#l$*2QX+Ct5|lvNpLTq?~LT2kB7b z+nfHY1cJD-Y&Vk%V5BwdDZwNLgNqiBc$nu#TSTb6((08(#Y{16Nadk(`z1J3RC*9l zWq{5YdGg3*I{jaK^aKC~C!j({EW)y~Tq=f;(YvTLcrRg3!Z!_9C1po**IG|v)0s%L z<|BO4OlyRWw2{$e{CRN=!*gh6y0Hh!%Rmb~d}7&QV>f?Gw%5lnT2pJ+e9LXiE&lEn zc0ZMOi7G%n|L24#rgW}XlffVg0v!6oFOBK&3qc3TnXb&Mn!2cnSr#ci_w?{)=XhM%Dic=PNaM39pJ$GKxYcMs z{jfA*bWmK@ut)k@-J3$+>ChWNx-K7)>!)?h1S&tv{Xfh{;ns( zO{@XHTFpuzgrT-o+PK7R_5u;n0_RJhgL{}o=Tm6(Kz|(el}}u-Hz>n7!!Zb4RF)HPDCiW^tUZYfknNEko-0Fk7y4 zC{)lx)$Wrc)^kBkKYD{B5tz7ziltKukbDPmc_4Xik%=!QBDXM0T70+?c*uB2VZ6>N z2NQT<2k1b^N~up2OWG9=(HMBH`Xc>gZ3zk08A-Jkn?iY2v_bJ-(nJLAYaZ>O3~$~j zr8NFY^wgB}qg{E>rNo=@T9scR;7H&u^!s(=Z8DHlATNZdtO;3x(51-Ul)n@s;UOtc zd`t<^k%58Jl=xH#7YXY?tb#CA4!9{v)T=$Ji!kTpM2QnRq$QnhSENw*Rj8iTo+f|I z_TqmR$E6)=oGbY}WK-)8j#CSZXt$Saa%|dfs&*tK=Teok26bIOxq;;WY+UD;MT-Iz z0S_+Qx^665AR9|=^?XtFUTxNP6ufvNwqQlTc2_1pdF3ZL>I2HmCDQpJWR?vjT)-8e zm`^Sg(8p+0qhg_zv$tf%N_+ZK97Sb2b{K?_tjrEKkK&NZxyG|wo*+ym_^rlM2)jQw zytpznYwaU;mb!^^EeC!}yCG&1LpQ-#QhTN~e(a=HuQ#gK?y28Al^>n8imphPEw|oe zO-XH+pZx?x7tx%5oqA7|o3A1$OKt3`YMjLyW<}R#ix+JL7KHf=j>TuT3*YDz%|+kA zvDrQ)mMe+77V7mruEx(GpAjn`%OA44f4#&hdZKB<5Y|VV?%7G@yu7||4_l57h25rwR-`Ys7}`9DM*DLI=)$Br&2w*`p)XY*0 z7}O8HLN9L$`{ePSdUfnT!h0!Lhz1JGcu}5D+(Lg6CJ``_X2!7;WDMn|R#vAsA_rK7 z-!Rg_Bq;i()Paz_g)H@G2&FTnl7VNX2_Vv^2ocL8H7?w{GNsNQwLpwGP7Bann;6YLVzyI>U2N_2JTq!4 zlFK`UG+NI0o~;&xOCtF1jMT%}@5W3#q{JJq(t)aUpcR%%)$S6{Md0yfVd(0v()d4g zdT2{}JCa5KjiF^SN+={V5)tkPFVGk4QRiACJCotuLEKlW>3MV0GIM^4ng!6r4@=wi zK%RmV-aORoSHB9LVKaB^% z%kL=G9+^gfBNG&_-6m7h6P7|L`Ya0KsQ;Csp55h;)r-N8>h!M5sA)RbwGiRQ`(C75 zK>>gWHaT19XqW{{TFOc93Xj$^`O;2>#SE$A>$3Q+7{v(4=Q9?~H7NE&v)*-5#9q)G z`+FJZ1|&r0u9U})jyw^jFW#3`NC@$nCNZCranIKiIoI$m1}BdfTP;OV*;C04S#FcZ zU;-jvJ_T&KAf6-c-R!&c2S^iLygiM&-@>X#^fUAr(z`C3^yxeun!_NKt|h{)g`#=? zwGbH7-QPmNix>^QhdmGU>V7^JsyIqBw5A4^?(iU6Y4K1u^t2O%Q{mMm83r3wSO?4v zDtei!uF31SCCk@1-?ZQ48Wa%4S`{P@k~R_3aqe0m-c6bUZ0Zc0Cd$_0WzWB0;&m2K zEo2yGnE&(O}W6jQm0D&ish?UewJ1qqJ%e7w*Q3G43J+O$|RChl|+w^4gAQx3@K39 zWYRT$8>BeL56H*6uxGwPHmf*1k#tx(*KF($eoHQ=_hi=8d9o%F)kBR-3~=<3ZrF zBTl7_5;-6zv>DvLK5H}iUFrsm*;)68Z=8H)d+#N|jRVp&`~mX;AOnK9Dv!u4>IC|$ zzg0$~^}2H4?bVXngr0nuq9H-Sf9ZOG`W39@a%CT3XUvAG!D!AaS><&r0bM~-`w2-o zTh-iA70K1g^g_GKK5B4^;v-F-PZoOzC0q4 zd~}pt!1hg+CJE?QI~g}UrpyrbRU}&9#2rDr(X1Dyc|bOi=GlN*t-d)KycK|nT!hh_J09GttxNVk04AZpL)HcJQ%W2K9C}74bkMB{F?@ofx_J7|qtvMbabF;nP zzrVeHzlRCpx#}>8W=)LYVA=PAXQ3Gk_?^Kk8CNK;;BH+-E`^Ez;2s01SKfPP0)l zJ6Gu*Y&J=_JwNy+wml;azZIV2{JcNT{a)?A&ujg@2)4gZ{NCKZFW>Y0K5q#=?flM1 z-9YO2h=PB(I5^CZv0+jQgr+;jW9y@0!BMF7Rtj_qE}7=(up&lXliwJ{$@ShLn;=%N zrbuxd&posmFNO8}8Q(U7@2XGx?;`{6kM50@xI!dWuEV+-?!B7kMSp*ol=3%JB*gO*kyKSp)(>yNraG4Aumxe?vpR@ zBxE>pR-Ci`Ns*E>&fa*hP+^qe-Vi)#a*;-trm_Q=LlscXDSY~#(Kw@Rvh6cr%g?T4 zA7zInL~b<-YwG)J=SwZd`$S9zf$V4PGaFt5f7ze`!x%}VNQVuGj*rsk-fwe(t$@5Q zo6Yb2RzHVtn9r9mRunE!{{^^p65S>E$H*EXtkM$+h>xTOkAaUtVdO{8NERj?xa6ex zE^2kSv@W;j#~B~uTBqw4M?V>w%^ z_RYxD-4JfGffKGS##kAYGBo;+y+Lm8`{k$K>+`qG%B@20$MN^gW!(45_kM4?4_s&K zCoN!o(2@uSTyubPV*GHo$n+E?cxeT(W zo5~nhpBXP4QeTTmZT|-CDVdck&}AYVy)&n%>(s-z_=OMiqG{1OZyYh}MC1uJOBLUj&E|pJrgTc`->SE#rl8)Sw1YX=^^y!rE%24;3W49g+|&FrF7bJy zwfse~4{(-$=QXi@C2~`RikYR4*b;}lRV-FoWfou#`q>3;Uv9g--yOalD)_#=xb2TV z-If-1!=d5(Jw82tTebEYZH93A?%UuOgYdX0#wn(8Wl~|5i=)z0BsjePS_TJ8_?Pj= zVjLtr>Tuekvgis4MqfUBWyRHGYQ^z6duT#7ty+h+BzT_`HnEwYbecge(NU?ei+KTr zi?UAcNLCh?4Q!c{fpjr!)nL=_O>SfR%?)RBN_MpHblXPYWBcuJrm#kkX9TaMAEoLt zzq7#2V9#N(@2-7{^G$@>VvPv(>9xJ})E?%wvOj9%P^5K-muhE|) z+`9wQah_dl*TUyZIa>`Y*m4>D66&7<2(iDQH<(sOr2l%V6Z)CR&FW}NBT_K`!=<~^ zH;v8p0r(>rZBR=D<~qm*M6<|mbXgSPXlY7VD};S?LBm;+*|El@I)@2zjWD9nO6ZNV z0|oHdG)fBJ^9D?iK6bF1Nr`%-L;D(G?JuJw;P9yLfkTaOeC@nrnS3?_EV5vH6kULP zU%2zk8~kZO*h#=saFXi=&xR1d1cPbQcl6U-yn!ucRzjD}jl>Rt!#X>{YNby|YCqLk z0A`EiJwwE$-f~+h=dd{qKq(yda$FnzgM+x;`z=kU-)`mGdjK+4?Dwe9x?IXa1Ftt- zSql)Q1vWYeP)8V|Y@RD!omLB&4>|+`vzaA%$nOoI`{#G`^|uyzYnUBL86gx3uN)

B1WHgCen&(9Zm zx62Cp@hULJZ3A2FxjQqtl}Vi{h-=SD@BqVgWzHfK^VF?JR-XZmF(C{GDm_}DPTSYsQt8<&>)h4opLRp znmm#|pT=e40qvYU$Vclc_gn=o@3v%3&Dl1nJJiNB(qh0%4vaIy?V)!o6DeZ9Ud|Gb zTsP6{%OU~Xp*57oU;pM@`&>&tev8Y_EL;2+i^#u zg^3UETk0(B9B6?7Wmfh7lsqmf)2Ww2 zsRg`g9r_xg;kAgtO5})>E>j+QuR<3zK<7~@;+(%|ZTefQ>2cx?>mjWR8nXtdMutqk z(IAty&m{Al7|!JEGT=%Ss8*XEPw9%z_Qx+BayfS}?qas2qIcGTX8hUcNaQq7Wo*CE zLget<59YQhG7jX2u|1C%Wg)U`b?=n}xnB~48iUhhZDK5I@__ZWmNlZ=B1Uy!?Pg}+ zwlor;kp)&A6t*b(G8zqiL9-`U?TgM8K$f~(lL?*Y zG))q87&3;uETV&rVDS+%=#=ESc(A*z8{Un^kb{0q`#kn6@4n9jK24fs=6b4VsoD;z4Dv%|LKdbK(3L`^7lvhbWy&bcFJpvoluXC z3~6RyOCB{g!E=`WM;)rT>(AGg>Gto0>?%D!1397o_zAwO1{b7CG$wU>!)aIm~6ST{y1L&ZRu_asQq#xP+L@lG}&q>QY zVjyo)0wx>piyC@WvR6f6q~kIfrS&p}g^zEl)1J+40D9eh-YTZFDEErSNXiBMbt^u?*W@?;O@71pB zbZm#&IWDsPmsz$uAx~{G$02AHiQcTk21kR>*6#%AXCC!}Wf!sY=}~h+LKRXW=AQ98 zKrB1buW{IMy7s%SELCLU%d`LH^!g5ddlyIK=NoWS5}Fp+KRAGPx5yY87wmi(q(Nr3; zhTXjq1kOIp(e9k)c<88sOws0ID*Z)G9-xj%B9>OJNxN@waF|%u?z9f1S0TW(>wGgM zpk{GMLQBH_CRpa}5J-}*^gE!nSvv``lh+M&J|q3@KV*AO;BVhizW)@o+&{h{X`r6h zMbL78`67DZc5ASAK!R3W#lhFsZVxp=l7iRO*SpT1pQgUN3}|aeKtu3p24B?uVg}tB zAsPXQEjD*u3w(axan2Q$as*|M35kfX9m_{7o8HMp^kMBhYB!~=89r3l0}+m%RYl+> ztI*$P+4P}>AWylWVM_~;QVe>LmT*MJc!a@o1yJUR0-#or&yo)VsfNd~63D5TVL|W&8lNdXPk|mPFyWRH$QQclP7wC)BUvpwn7} z71kCoYu9omuj#b>qWdOrkFItWgBfb({38OV%Pty{Fnx-L}J7BrIU8eE99 zr>E?zi<2{_qIU+zmKP5g1V$ndvM{)6)Shf%$>N;T^An8GnxVDjadD*t`tpqOH(BK9 zRzTl>qW*jpr+(X{-}>{DI55|nK*Elq?#5gj`$k)qFp(G)R^9=Kp)>XejWRJ2>YR?- zO9i;2Y_vIYWDJJmh`>p9W+rr5MTTcnVh{>Iigrd9CjKo>K36ig#a_Bi+6eIJ>U5&cOgT z-Z*RaJX4$V*suTXd|}NuJu$}ERG#W&4!^dwWC><@fOZUgX;!~EDtawLE}EhGi!7qG zDWY`)-PX4KG^6PAXGNaT`xVRuyp|3bAY2C2G3c7@8-N(_WUTT7o78>%sG$hB|0x@_*;*u zxep{ciX_IZx&PPKapqojR5okYlBO-*w<2u_piM@BV+4bn0Kbm*0BcPsG%j*1D zWkvH?cLS|=j>tBz8$V|hwP&d^vf8@7CQhkKNQ`Zh<@{*tyTyACoO90T=IE{*WM}6D zTg2=S?=aKL3UOQCBXZU+$7o3jO%!@9It3vk5VAo4Ffo)^Rz!11O>8$qya;QvfOF|~_B{(sZ!~seAY%?`DS$F>` z=&HmyQ`Zw6%&lEreBLRk(ffeL*3pOyiYsWD^Smg6#3JbGoICstI5wj6Sehqs@&WMm z2D+T3E!(;Z(GX4Db!EpWr{TPnd&e}TF1uJ=CeVUU9Ehpxvlw`K2GRVX@hI!d- zw`ZtznzU~6{FI+XpzX2mu%0I;Ukijx2t6_AvWhb@woyx}{Os7HQmIE8N3dLjwL40u zwrxOb=LoT4rg8YYO+F8F$_`P)h2*>GiCh-gLw0YyO7u@g4Mg&N(0oLZR$1sDvvZ>Rvvr z8}O#=)CLjtnsTjASXTM`*RNtYyj^!p;X8PH6x0-j)Fy$F$C)ylvt|ZNY3RbeK?v3i zTH+Z-bJlHvK#P!3FRZ{F2L*7!75g&?s|m9~eKkE}SwhREFjyV#_B{ZQ*1s4OIWfA3 zV_dw_+G;mj-|4{#xBH3)+vxZudN^{pZaCsVdp-w8gx5`Z8Lomjh)Nz1rJgi$_vrjj!4>^?&{i^)e%Ue-j9izY|>$Rk3yTMv9Jb0uD3!rqnB`NyxF> zVPOQ;=wP5l<<(^v5gedjJU60UriB3{O}`Vj02P4FaIYR{r zLV8;T2C5`N#>YUVAiZn-_?#q*1@y82cqAXU(C;?NgrXF%)!(jQ{vC$b4%)D+wnfJ` zg_at!$p~yBH-nw$eL+?SJ6-$it~)Tx3eE}TuTQ9_jQqZegKoo|@_3KtgtUvn`#1yc zkjrO6oyjxEu~ca+F>)OM90sX6Bh4nfT_3?8;^r)ICV4a!a3U?chr(X-DyRG>n2m_g zI!!1~GtxRCeR~rped;rLbX$>MWuDj5)L^Cv&(Gd#Dd5*vdEX-(ISZ*%mvMizVMJwS z3&pv!gl6B@k{|_HS7;PMh+3R zJ885x?cX35v{fYS$l}ht&uQI9kwW#H1(8v>A*C>^w+GI-$wHSg583f9U^Onmw$z8| zPde|TEC~09?okB!+9A8PXfSbCTFVn5)zp$N7PtZgDbhLN@wvBvD%l|(l+B>a8GJcw zDYBqBX;OH*3Y`$TYL>jrx_+s@X8~Hj?{?EqG61FK+Aj_ z74>&nMN%W0B@3wVQMP(#6;PV8Ms+Ia=?T@cBpiqcY}iCG<(J3nrI0;C=d`;rQ-LpQZQ8CWYvMK*9wQhKlz z@QXO-ps;S)Jpka88#DTypsocr<=&!KZTA=)gqS%@y;FX7-Xl0aYQ&`yzknNRUa#&B z3|e-wyLY(bW93aqBOn@L|YU+&SdD5~b4M@hN z&7O^Af4eqoS-CS3xD46#M;-S3Lm-PQ1F7~|ME|k{*6F$mgx9u5KAn_c?Eid{pd@VG zjF~QVbme}~=B%L$L-5u1ac3s1_hVw>UTIUiu>IHOJOff17SK~3%!&?5VWdT!3F~NJ zL8@_D=^Ehytmr6MRxq~03`kHu&(bpW#}BbXr>Vixw+;30|0TOVT_gw}$zI1%OY7|7 z0Sav?srH%3>w^VzyEXQJOUi;&v3;P99RhbPNJk|+Da_x>;8Rk9XPGxUlIQ50yG*D} zJ=pzzA87u8C*CmFO2FRsZ}|o(VbV3l&tb}nw29e$*`{rG#aZ3OIAOJ~3K~!#8UR%58?0g$^Q`Arh^(NqCDj?UYfcA#+H5jbS8)Gv~R>w1*&WDnK=7q(Tfd3(_WdHYJ$@LgBi8?_v#- zA)`FNtIiJ?NC|b8j9q%uXITp9eZge&er;<7XJv4=ZMN>j@|^g-szMn7(H}P7ZGG9c z-cG$2@OqRHjn$|Z?q!RH?X(qi9dazdWTi>!tWss<>n3wh>wDd?$O-kNXhzKFGfF=9kR5IqX3Ho=ql< zwLMYSTJB*-gnZjLvL(mhmB|gavb|O}PKX4eW!?ASLss;ZE%yZQl%%!hRzbBkR3OG@*?c0o`&M#+ zb!+WQOA&tx5F7HgwDrSyUNkXEKtP4+^B-FZn$O3Kj#Yjf)*S@+Q{e5uM|aQ%<6yTa zMkmFb;K2!r`}GE#wp}})gvDIl^``O&O+5w*_TrMqyM~HL)lydj?tR&#ZpSSdN(>dTOg^S`WS9 z9G;&m5X%xC8HQ$%JuspKkU2~-IANbhLL`I0*Dx;$-V@dLkAyepSqu}K*URbRV^>V3f>f3D)*{VR#63j$zLFI&ag_A`5hGoj=R%8axCsg@?wlj#*}qdNr2 zfgwvii445H$+pU(XSWUYZISDqPC|S!Xi0iuB zJ;6Ee^a$E^AF4|bh~vPa{4dx}@;hZ)OiGlqAScsWKo-%;;rTIxvGwJyF`=n}3_eew zl3Q@Lkj{Mumew{<*8Jq>K6a+VT2HCjPL%9jU`|7+ZISeRYZkmw@Ls~Q(hjGp3@GE(rRht zzg@i+f+8A~lsVU3G7(Sd+V6&L`dr6AvQ&CnJs z9-QiapFwd=cJ=|RZj2DFIF9;`KFHWP>3|Z;$l4xzr?y&V-7ihj5yak$bp!#VHnB7( zk~Je%zMg?ZNN;N^S5W5Pv=&D##f)Oi`uVy)z$rO6;@*v82+9J@KYMkLHpd!Bkfv{ukmT`m9sQ^xj}3qU}ATY-1&p0aKL zw?Ih0qK{(70(C|RPzNQvFYD@3|G*r#l8{FoaUB?teCDhj8l@hz((k6=ymNccg1`{y zDyxH1PZR1zcy`iOyBbzoBhC5foC$L_A`g#m$IdzTdx$bL1fgu3+eo#wij}Oo?&8Or z)1q=(Wd0hGkvM^^jaq5<0aB7G?)i#fG7m@q`zC~vzNVbd!2kLWASG!h`17?9yQ)oU zB%ox>;zZ79?WG?~qSx%_CvrG)d-%P+pg+MG`M-Yn``QPae)%`hJ96fn9|WxcgtA~79(IS&vpHP~YPxeI8H!agXT!9Z&fWi*9lUz=eEg12R; z=A={ah?o*ZQ>bk<&@6cE`$zlZ7-76+JnjIV3bb}PkIcw>Z*)qh)!lG`%Y{YZxw5yu zpx6wRk`N^pb-t~yZ7BlLJLz&0;kvJHz}pq9b#v}qno-9s92?s*x$_PHEP)+1nJ{u7 zodQMc)P*=J92Oy9QGul}^= z26|I?p6P;88*!Aa?>f?Tb5?iOjDfGTU2v*pEx5996@*J$eQb14!1pbcw8V~FO zwDBHkBV=W2XH9BQfwQ&8K-VY}7VL5;aH7WYo&Z`4^3Ohl&2tu+(3Xp2J+}iw4W;yY z8qoI=5OJY>+OCvg4CqEZ@yJ=jIPP&(*t#7$&X_*-xf%AAk^~^uaWY7Qt!e`Wf0Z_N z-?vLJ1Q`4d4T9bo*=5ONHW2_%VLMcQVvvdu)_v~l+5zMR$hQ`N;7lM*I@oX6J%jlC z07V@tuhFssEPO6}y8(ay)?mAUl!qw`KBXki`SsQZl?>@QpnxJ8jw=Io^P2TIJo9cg zab+Qiee@BLt$!q-9oMBnM{w9q>a2DpO{qcItwa<+V@o%?J{>sc(cuR6`wZX7iQB(5 zd}qFa5r7&hD=Ll(m35tic>(C!P%no1wM2?%$WZR0`jkTIWBZzgFIj9P_=dq6P= zGAEGcRtW;Sp0Gf>qe^&ScWaGGiWq)cQpyq;t4~E=W?7ZqA7H zfEJkX@I0C?BC-_9MTh`WLZFV!N3$rhmiOBMaZ+fI56_TnRrP5Ct)*kO7pGkjIq!>< z2b^YqH(d)sUo#3&)$mHKWom4p!|~m!UiNmV!{>(^TB79RD0vXSQ`^Q7elc@Z4~|O! zpC&2iD2f_cio{;^U3Q6FLUZ10w1Jw_(enhs=l)p!5fLa|ITYaVcL1&KJjxT>$(#PL zFQ^jowXZj~@;xey6y@AZ&)DL(RuJSF(v&5kGiA{HA{;J3ck;S|zWtQ=+UuLNH+^|V znrHB~2_MFY23l8}F zQbVt$DO#=vLPJN@>SbS?(G#YQ_RN$Oc~e`jd291%x{;-m3IXDWX&DITq#5^vGAMui z!Oxi!OHo>~+#W@t5H%=4r~anjF^wIiI7IY|mz zJsm4SP!6@~WK8YJGliCwNE^3E+SDRyoxfU<<_ zpIs_du|f%_*^g)dVk;0B;-ztz&OO^wByv0JY+GsFRn zz+lNT#t8AF4D)EKRZPjrwWzLITia*K z{aqO{$etl3d1STr?ZW`c(mcAJI4JSx=AhN3o6R)9Je>fJxi9TA8)wd_r!0ISg^(6q z`xZex7?KW<`c)wTl{vGkfsXTSkcmE%*xNw}_K;`&LJ3kt5O#JC6!{ln_$=3?6ZE&p zMkW$gYdxQ!57SUG655)rn;>&SXugXA8K)?qm?<{|sr^jvcMh;|yJ)wF!!pp1K7Li+0krpJ^V_+t#<@z}aRf9b z_enZfIFE-K^xiU);N>Emt!$5)y**~a4IyIXTdB!|qiEybw(sB@bcou7W&^=KYqx>Y z>@54P&IHsXc6_#*1gw(>XGr-+(w1_7lrSkdUbpU8rhL*)Csll@j^`^Nm@!X+a860O z|J+v9=TV^1Y+OTOmC_?5w1r$(>f{8Z_5R%WZ;p@cpaXyG!P&wT>ysnA@m`Hdm3nYq zH&9IqwIy-dO)!H)$a4mtvlt~y5ZuZF-v~X9yBc46uG(H_gp)YHXLXBaAZ`U1`o6k4l+R_w2=ZDgyJ(8Mun^ zzyRoc5=dRnQco8R?aQRW7(Lgv32eyP5?URq)iGKf6SG5biGfNc6Xc3(B=ae=%0z^A zMI~mUUJ+o9Hdp08YcYj_MjjG^S?(CIbv2M6S=tbYj_jUP85RPp0}d%;acTr|$;eQO z5KU68eOZSd2SA({lZzwyG2>cZ{J{iyuyLedD}$@G^3vz3B_7fiZIkuGgR04oYle4~ zdAx0)B_X{fEoYMVW-R2g#y6O&b?G2xC2C`>%7<`&R0nV96aG7N>&5`zwh57?$--J%u+V+k^vv z?C&GzM0Gnz>QECYSy^omS!Z{Tk3Y2%r7oz$ZH_n6w~>rHC>?g zPITJsX9$rUgo^=9&(sX?*%BiO`5NX949vvQ8~z8U8PJ}DpA8s@Q;3|pXfEAoKuCFf$v zGKb^Bd->(~lbmzl5ghbrjQ-Jx-@S-e+@9J>?QPR^A8Vb1Nowg3Ytjohhg)m5>SaPb zPXGh?eQgR)&kvxhLl;)ZtnBUT9H_u}#Cb9W)QBQ>+4CTbzZ%WXk!NWi$NDfLh%=&! zF9l*3Czyzfi9WAtfvXCnTD|TDjNVB4)d&WuGy0B^O*0rGVb%i*JPXf%c|rMdmdxGv z_ioXot$NnLkQFs)hDGaSJ#zzegjk2pxfyA}ppy)}$sjt%MVPB4qn-dIH)+Rqoe%6f zSpow_BovV@qKsmoLy7J-235)4?nvV9&EKeCEZVHCsk&p#P^3wno~@OiKXPj+uFkjM zfgyWt_P6b8oD78}(=l*4_$f=3Ud7AWWgGcCOVIW-fvzMDCmw4SGPDSb$d_reC9663Qh3 zKS=eSJmYjN;=FIopt3+7Y2SF#;GYLOEXxudX%B!GH{gsPfR|Mq`Vkofc)L7amfnGR zOM8UJ;breQ z=kgu-J~1#Q8E^8r7-fiaFfUhG&l~p$p`K*NR4US~w%|goz&6~hbt=FG(?2rk`>R}Y z-H@&em}gnb?U_7Zz%Ne{p!)IZHRt1cO+ir-&o)|kSspr zaJ{MW5D~X=gt_8D)XJf6_MP*4ZMKpHYT$`8wd`_?$wwzz?TtE7NI53i8;V z!+NmR8yRt}pqtv25kYIi(6w=Rax=Wsh{)38Xn5bQd;Wy+@f~!ab3n*g0d+WIuZ6$>Tpk2s;vrkf*j;Als~%Ab>+yM$*6^qCl26I{?+ODc~-L(aduW*lTE3J$hG z{DEC&vynBl_kr=dc(DLs`6B^}4>=6-2{laB>fnM7?ruuj$*@W|{_woXWvCq!;Oayg zN!ADdenr}(FFIFYa_6tlSpT0FlygRY+nTKxNTWCn>Fv#3tjlD{S6?oytgBC z2>0YfM}fs1YJ^AwHWVz)#}W$Z1&mH6#QV4=Gu8)D)IPWZYOJU9j z6p9~W2EQgJ+T10Slbkd!dTwUel0uGrA>Ee%OrTPweOj%^uLXR~BJV+;b_fwGd9fbo zr8KfbcThsmG3t3DA-yW84@TMfl|0Mk;E$BbeZWCx^HdgVIugd+Ge`#_LkrlrlhRHu z|C(*%x;^X@jP_KjWSMntS_g!3PAIdMYLsz34ErZ7@0if9>(*H#>VR;o=7a+PRq}P) z0#seelZqcH^xcAFoC)jmgc(47+Z-X7iq(3s|Ho58dCEX~!L$|7&o}V4fxf?rle}(i z%}@jm*M=JLc4{?roT#<8aibG&c54c)*kYS0d!HJ#GDO@XkDb5pi>&xvn0wskC;>Pe z6I-8kEze?N&K%&GI`Yq*qiv44%TYK#u=fejt{v@rmxshMjaCHIS2zxOFX~WRS+0Nz z2ex!*Ul|7uiL!$eRS`vWD8YONI)&fcJx=G2TldxF>juh!& zn-!j^wBcFvfDGtgkfBb(cg9#cX53@8-YnqIb9Z#c9&T7S0Ua@@;q$$eww(!wqi?wuhReeSB+vTwkYAUH1eZUmB9nqzs=l9e`Cz1_qE1;dpmPXfYxX0~TPiGd zu#pc&oev($oZ5@)w|Ch;J2t*sYrm#hb6!J;7o09_eL3P)gPV zxl(Y3xp%m2O(eM=hRpM7?Y-lg)j6L4NMPr6R>vYZ4`V-QIc~6#xXFNgCRr|5ATNx( zs4k18cFfWmu1Hx*JrmX>rCigp_4m0o{g$tr^t?VL@Y6}4?zIZyV_9WRdqRR`t*8tp zE!VL1AeL%cM~9gZB3rhG5*Q;*4%SIZobs(*n+(-L zV*k)4<$Cp$P|s3tKPMo)ZvaAB3v0lcSseRQLYWijG9lO65=Dk69G|Hrf`SflPK@0H z<~IM$c{e>{cI=VO6%ls9CjOn{V>{>vW0x@pTC`?#*2hK2oL{RYxicxeC6Z5!aGor! zT|BxMa#)k^zz>JSA~NszuHq3M+}iDr&^lxi`8j8xo-|-ev*4gYK{y z`!8frOmTUeHMHYAf^5nRXig8%vVywZuh(VawO_P8Uip5$^DkI+tYN+!Pa6}5t0@OKuxb(t8diF%c0M7owRM4){J}0KwXO^lc;*akyUV`&a;BSSYr*& z`rO`R=VbOvBGqFEFw5|Gt+udM5KC}*{;4(RQ|bdxMEX8zdnW6q9SWs{jEc6PN=Xqw zx|WwB^|*jKD@wdL#hVewU0UO{eLVwTZaxooWMq#rlC;%wDpsz_w-MKvUN88%6XnE4 zw5d{RPDivMva}K;hOA2mhIb?cC1y||B!<_#%A8f1@Ju1KHfn0qSk0_C?=Z(k?o!33aWZ|}0#m$hqPI%??Xm*X2-No;^64yW&O7Xklv+WS&fy&-b zFfv^ujf*1}_PTdsAgvmlJrlN?F>7|c>Ux{DR@Rr6g2~9Sllo8gFlq(Y-WT&E=p-bd zu|=;3GlI?45Lp=B<$=Qn*e&oE539P+t2kMkNhq3dnx*+#6I%?BtGnDd2V8EBTzetay4~F&FJ; zd0RxjazcHU4hZ!!BVAjy45e5A03ZNKL_t)k2yKk%y-3Do5}B%V!gdiR_o%qis^909 zIW&mZ$W-kal`OuSphudMZVnI5|DgW9pB z2B%)1m+zaZ)-F~hmK$Wl=7RtGcqw!a&Yb<-IcHn}h|w%Ho93_wHuuV4-r7_klE9P8 zj~Z!44yOSYTGn2c06jOv;46%DEjU%lCeT*>{g#skt!4>Q*`UJ63IgyrQEKRsvFw9w zou^(NEKAY_ZXx^Dlk7y-rbkkhtYYV!6FmD5B+*~$l+0@ZYai@g02OFP)Ut|mpR)wP z&nMv2&wuhBx0WRj(Dt01q|&nPw5&p;wQksD4kLMHeb74e$c1y55m%W25ZT$0k~=3y z@6~K2x0@1#@G0v#6b;llD{K)X8N>i>z=Rs+WN^44c2O4;wcr!=`#PGc`+ex4x=D3F zQ5~>CNE0hO8BsI97YSU38=tiZB(eR?BY3;}oG@$4oY zhY3C#5jhfl2=x_4=Kgq`1(JMjTG^^Pr2^9H16B!}=ey z@ZFCebb#uK1d)NfN@+(b2*@tcIiQ5;O(I-oJEf(9Q--6EGofe_hPQ-tD~^y&w<7C< z*75uFqYR?Ko?&*R8qeg!a{$z*3E6RbSLWXZ+sP9pwMvQD0n#+e!Ji=$596R83RQHt z;~2B7W47F)D}(dBJBPjSxR0~$lJhK(wXm=(!<E>3G>#WhApo)Xrt8S9h4 z8S~8qgRmKN@nleU?2I$n8J)vm^}Dn+1C3QVb^CSBSj&2QCT2MAy&(~5?i_r3hQ{RX zL=(GX2PfrUA(eYjB?BNpdj3f?Jk*?#)A?%_J-+`^R3QWhA5g1C7tq@xwg1!9Y(#PNLRhgt;l~{MV+%d=gZfG^;t3+c~O~2gzaKT6QG{ZJLr}r zso^tZe%1^@EGHn}EPx~q2^|n-0YC+bEo4wlRv5nR%ftM&-#^S_3t|b9L==V)h!s~d zUF|uux1-uY++&?Ju#=aEG`#+3R!9{#uUpHY=Y}G2Bi6H3s|H9+CNyA`2vDDomQ@V# z5TK$et?**`ReoQ=OVC%$l7TP>eIiV&1Vz)vzE+o+v<4Uwu(~woM$X-kR+do_B1Nqw z+(^3*2nr-w_s}Z)m5b=1)6Z7+kyi~4aFdJHE=%Qi)%AW0?F9>WZ3B06`nCeOxC2Nr zpj4`mzFEl(;F&;aeX6y)cK(o69LFJZ^#j(R|KVXqti#?I#6t$%M$s}4mP7<4fRRPF zB$gnnJ^!I@omg5O5#$|FVGowN;}M;a)SPESF-ZWmeP1@8 z^UF`?~mQyhZ-&unflst z8wPD3`U!I+fFts@Qvl@oTP+&^kY-Ury}3j`Lq;74*U*1+YMGmmiQ&uCdMPhe2&9OR zuVQ%AQ&!k|kO=_OwatU&E3iE`QWRGCd zIfjvDH3BQ#2|S^9%9&feRcx_#lyS84`)AqrkFbr>2*Z1zVHxwI)`R|CtV;%(0j(rT zu?~&aO#@dgXoZwp4`M*xO_T?qy|a}YT5GF12bKM&qN_X4i)Gdc`BsI4NOYxfg0=#j-sC*xEaxq2JFf(>!a81A>JovL6|&!{&%o#S zuhwwp#>O7!bSVuPQU_F&)d|+xTJh-f?e_Zx5uCK6d_bA7thkL(2GXHM5(G9K6CQ~h z)E&*}bR%Ob3q*QzLbA4xTVLwZL&K)vzRk^DGd$t{zF(b3g-D zv#rmuE*5UjSU{_uS}DinAB_2(vAl?ro|lB_eUn;WWa(6(^PE-*ECY}}@aGwPUByY) z7HAO>6+bs8Q3)zb1&a0P)b|wRVfRh}ng1grdz42S2z0v){GD3tM;Z4LdvS2%WLl%%z+Ub&= zV_t(?>9v~u#^~VeNAeR9hNkQPBzgGI4*EZRXh(HY(eTpIk-*t^0~~&2DRnqYh~jjP zd5ne`%!`bTo!k+&T0=X3P11r%Cacugrj3yofzU2rH7a`sz>+-_hGscm1>~(0fyp9L z!9XJhZ6v~}4u}&*%$H@X!78&qYO=D&zP$wTV%7xuj~qt>~1o;1hKlZJEL9q!AO+B)~jo zRsf)7LT=m@@foYEjR|SRY<&OMTc$oeQ z5p05!E{Ust!qA0obDZBV^P`}EMjQ(%!6VH$hWFNW(u&=B4J-qVe7;)^xRul~pmQ$z zIr{btXOlD`XrYeg(?mZk{97~|&uSAI_?qts`wtp+FNLjQ-F3jga+|@KP+p!q7*T$F z)c4g^AVZPTi^e^RtwLF=df0diYQ?rqr<9@ry{@pW_G#JogAa5epao#vYVr!>Q`>Qd zC!!zIUv%lf{`)qwyL}wMy55_8y_CP70O|34;@jCnc3U;TwJPINAK!kL*Be7u=0?kU zS`B)6mngM`H0l1ra{juLH<<4db}t%+$A)E}L=aT0zu8FdVT~N14y}4<2 z`5M6J_F#bm`_36aBiAWH66S(mmV~pU2&ax^o*di2%&P?CKB4iM2IyzwDZsvcJknS$ zQQWuSeDnIK((V~^z-t>g(@NCGYfTXrLN>!7@R;0C+bHLc^{i=@bIf<5QVl2#w=&uQ zEVr_WG*|28i*@MoegKiEF?xi|06KRd0|2i6sOPwp3H(XNwr1?&_(=`I9E*B+le@;@ zS-uTLhvHm+RfO0;i+NCq&NG4b`1ZW=!20J;0SOC!V#q)JFj2OX`*>M(Q zt@lNL;{0e;!GeIos0c5%Wl@j|R?af#ix2b0&`=2M^Rtn_vP=^YToZUy#O-DM;-ntZS}Q##*k4^lxt zx4Z#&mWW@&4PbvAXx`8f<@B_^kNz`CA?y7~bmic@sUQ>e_5NcVC;c{*^%d!gyr> zg}cwf%BYn$*#xZYS4~)O>2ur8NYG5(EgwYhobE|QhdH@gtLj$%M@vT_C*G15fqY>4HaUe6a*M$_gvb=DGLMR_!(0f%=IxWMVP zX<^KFLcy{P#cRDZa3h4^l~sw;I5S)MPQv=3R=|l+9;?*nE~=bsf!Glw7-@2 z5Gp=AX;F6);2Q7cJJgY|+yW0J(v!~G&m5eCYGv`=FqP)V4d51vUJKguW{9psHm zUIB4d27+rwtg_wfwO#^VRmuojT3@GljJAO!grEzndV8(s_YPr=^GxnF?-Gz}ap5{$ z9GB*BJjRkFF@R*|@fu)nrFZLdhv#*9^}uR2j1ivq7wc;h(8ivy@Y8O@L;bzq(%#bNs9d z(v6Ykfr{GgD0W719UlYpm+teWAlD~2KHC62W=o^PA2)?d(X9y1V+K6{?ei=-1!Yn_ zPYOzmc3!|~?3V55Mng`YHHt_b$*EPbN1^lxluhXLxrDj{%7LBURR_tE%9sYo4&a1_N-dau+EDS!!J#gxqJGvOfC zo76LkL`aL)-0llfZCGwI9^Xq?ZVBaqF+9j*T5ghvSREOBOPJnbEO!hZWv-`*kWSR~ z7Hr8_Z1Z7&NvT{=JHm?o2w;^_5he@Z`U+}8Tfn{&hI7yY0qH4$tViNg8O80r)9VbR z^E$&bFx0T>^L%YJ=*A#m3u3IlKQ~?hxDMWQJvVyprJ!G9Z7l^@pvpxOYjwId0qg4? zf&*mzzq4ipDgab)$}T2aciMilvY7a>O8@1O9JEYtiAY?UdeExwbZyu6Xv;H3y=mYg zEv)imLb;bYA1T852=JZMu!9NZz#gC~4-KSs<*7<`x(#xzmfMWs1%a9c)IwHJGkDZ4 z%~9^aPfK2CQAUCRatlIj?t$MQ>qwE40vULge48of#&A(gn0#i!l^)cx&%&7@r6jCuD|s@V5{7%i?n6mP zw4!BB5d5*+BusBfFl_gc0d4elgj&)ftvMY$fok)XY3|lHJ$Uo^1L-7uJ#v-~teh%w zw<{Z$GT@{wA0vxvd;hoKJf7d~oKr_Lr2 zx9y4RRGARf*5~6td(FjYpHhBTk>e08x9rN3w5rYPR`=@CF)?#qgGLAgtRR)Gl(H)R%_bk!mruI91Zb027 zj2|snZlnh~01OZ8lyqv0;gN9vCBot7D(I~Vd8kN9vW|60m>&n^4-3jeWE4n=NzIa7 z>1w}1=gJ3o3&b?{aI|FAts?z~yit~M&f!F)%_eE}s ze)f%euV%w~4dWHsh6?AgU9*@`)j3W%2p^g{yOsz@{hDNH<31y8zw|UFdZ_eBUbF#u z)*8`mUsfwUnHM>tnuSe5L|ASU>W(lxHng0iw1cH~*0L9Ekoxq~ zyNv0*1?Aa{-B6KI12bWnGmiHo#_tvEKIrwUXPnC|4e?|(GQoSz%Y zV_Ri2rM}#1(3@spWlozAkbh6VAI;|}0ZIj~l0C0FcV9sZi+R7f`%KB2x zzCq>-=}%bwIO6&%uQcUoE@C_0o{eShuD)I+EO!m{odxA)!B}i96`Ppf8FBL$8PEQ* z`!uNn!-Hu4EVp8R`Ot8Br(hTpb|0Kz49I+HXuEJ#OJLtv3p#60s;c;wvAn1|VwrTr zhr*sqqoXHkG>npLD<2H}JCsWmiE-SbdEN$5Y1i&VbwR zChULEYtV^B#CplnRmw^P>jX*Ark!GkS8E6QMzp22 z+w(TrNsqNnBY<%ctUB*^D2kv$+gfgvzQypq=1Kd`)}0*y9Nr^5eq}*^YeHs1J!aHa zkoF7qw-a{z8He47_Q4M65bBJZeVFk62`i;ur|jA>0l1&_Cg;9D*k@ZU7^}zoCT)FE zjSB2amUdpdHx6bt_YX!FyJVCXHk@l2<~%*&(9%$VVH9DkWl@@s)hb7)D}gq(#7l8#R_P6r=ZQ=|`S; z1!7k8_RtS~wa`0dGt6JDlQLCP2j}V#GqqkL)sNCQ)_df@MK>=Ksf;S+TM&PxgA##} zf!0C#>iJSY`<;N1c|kj!0e8Z=4l;@VE)7p!ikCqC| zRjAxK`JC{vH1DmPGod`Fts;R7VZKdhMS9QL94?cnubX0ZJ~1A?1k68o!rk)|S|gl} z1KOOB$A;a0!ualj$8iU0JKX-2zBdEIOGX=dn<=WY|4fuHeniN}DglA}+4r+FON*(M zFq|ox%OVu^oI&F#Wj@o? zYtSS8_Zoq@jwq`5E8UPFY}AtGwhDGBCTihVgXYi&xAbp+I3W5e!GEx=7hW3No?XUpiLQ68ixG> zdhZdB;~vxoy!|bib1ehAmlg9}MjHurAf!oJuCJ2`x}7wbhcj2?nq~No2c3VGL`)^19_TMwYL9_S!)@b+Y8FJ`a2UwQ!K&U(1g;MApYrs93U@k;8r zDj1=hWzox7RNpNNmC`Es!OWmsK)W4KvVil`30M>~?ndxXKnDiTlEx!*5`ez0Sx|V^ z`>vT43*e-Q6!-%1-ll4-4#}L4FGR%6zTbRDn0|W3v$u|zrUL%<9m)bsKUI@;-~<3q(|Vm4$nQbQ*+C;up=WfszuxQqiFRw(Hdc(9i|j+) zBXqr?ct7JDUZ2zs7JD$=5d)T<^sx1d?bY&JW4MB|voZi^hKw6}w~quDg(D&lqNXbA zcWt`1tGh1^R8| zO)GkW&#qqrc+p^^vI15@yh#C9vkQXrd%9she45F=&ptqp<6 zBq?Ml<)rr&G!PEN_Gxl1sL&4i@iEhGkt_q^fMm)olC|nr4iRE7MQT&kwN2*q4ujsF zKm-im+2QzeGycgp|2@8b`+a=-@E(5qkH3M#_iyq1i!U+k7tBS#NSUD77M;M{!8Zvm z)87N_8F1q^s=EW14Ori1(^nbvhVHoOLL@>F4c=zTuleTZCi~K}mErLmfZnxkHkERRLBoHz!STxz{_Ai4K7L{UBmCL%UHprG z{~MV9{0{l6FEQNBsM_{zxR=eWoO+BW&A{-;E_UMJyauKRcW`dPa7^S1)@~OH&MiC2 zE~l;ZYKxfw03ZNKL_t*7H3pwr0~X1u!fC%yAu zvkl8C0kZy=p;Ou8m}W3f0`TIss#P+KIf>J2tb}Qjz|>K*fBQXL&E3wwxNz2mTn9vNic?OKDJII-7{Ai+ve*8EmZ>KkyT>*c2(8(t>{=|xu;sT;GHT` zftN8@InFg^)VEzBF5!vVoRP~Luq`j3)!&jCmY}(`9K4V?iC}u;!n%?ZyH-1Gz4bx?oLNc@c6F7&L2ImzeeRXY;s z8p6I$0)Tgby0qtC%BXvH1p8c{p1*WG0KJsn+Gz{$HVS;aU9?iCT*=>%$YnGN%^G;i zrZ7B%uGze({3(=neO)rZ4$la-Y*8rl%ZmoGxm>!|MKts zG5-7a{#SfCpYZM{M&!?8#ul*q6`(Y)i-HtDKXlx(JgZBq&*1@v`1#mO3j)( zsQ1m-qjbG?(&)Wg16$SQTC{7~+&43xc&yXrF3=P$3kCGd?iJJAX&ga23Cy@7TJ?H1 zrH=v|x}rE?RElg;c3jTDIJl!l=ov+hw0OIB4!%3Bu?@L*%S#H{p*B$xssVIkjkM5f zR(p=mx6;u->YP-cLGS~|9{W6lYX#3s2Y3<0 z0bDA#|oUY8kkdn>__iGd|B~=u{8xX7|MsW;4}7`Ic>i|5 z@@pBt_kaHby!?5wiRDf{L!KD(T|%BJ(wxu+pp6N;4;Qpu5-M+#04wK&x>GvuqLke^ zP()K-|2d_uUlB)bI{$6G(NyES_Vc4X@yxkX z-m8}NZ1(UN_>=?sI!Xr27XT$BJRER{qmqbGj`Emgx0Bh#&{f=9VGNmZIE>i+FySBn zqd!{h6Z1C{{;&V%H}T@D1$n5L-;(cNM_MIG>RvjBYV5F{`EqeWQ>CCk6l)L);ZG>s#8&k3N?_X$fs+B&D~IWSA0 za+t-uY>Z zIgPkM>d!9$TL4aPuc^Nl8OXWeco=iOR-@Nf*v|G|x))g)nsv|F23WlGQunb>A((p|06it81NDd{fOTZV=Cc>vF@r@h_(g2G6{h@ob}6TZ1ABK?lBGa1I3+;{XhT zLT!dKmNnhYXuUwcX9gUiPD4taR)?OALVkwI_xRe)5Ana;G1`=Y zq55RaC!memYAS0VPnK*9lk`lNdh-C_^_m*R-Km-xo>`O{$kxHRPe+!3RIGDzW{GYd zq1BXpx&B%r>LOU74W1m>5L+S<(MmIb3~*lIpfX6%Y8+ROvkJ8d&9n8_C};=JOG3h4 zK{*T9ZyiXAb6n(_Hp5JT208kTZY@>bV8S zD~a>hri{ZE7+=}g#8+;9h=29d@;r@8&(v7fh6Ql&D4@rHzk{|0@Gg1J=VsplICt>P zQN6UD*D8B>5O+guVAlHEoI$rYvL5L@;bjqfC=#9Es=-CiB0dp_%2@!Zeh-=#@O*(5 ze+9$W2iqrX{o(f7eL_!g=G?MrEVR~xjV799`*I_!t8j#t$}Rc2$w-pHGjOC8;mHm&-_lYkuxF+QNf_aeRmOX`iLXs@Y9wmHOV*t;)}=58J?#3B;*V{j z&i#K~)2vJ<^hNidm+oH>E+#$>CpZ8nA zfKyQ7y)f{yF_Km9XuT({5)7O>f~{$k46cTKt%I4RZq0&9TMCb>yxO%30V}&llvdZ6 zLht5_dJh(Pru98y&9a*wfn^&gYBPiyBinD*7b2~49ipQ-C}TB=J&5be*6CR2A|y@!f5ufV?T8imOEsKPt8{hD=eI1>_eyW2e8Sl1=Jk3pp)(9H~*a#pxa3j7)`NDniWt( ze14C{07#SCL}KiIl<@7x&*MAKZeV!gJBN3X7DCbvAog9F2Ct~Z4p#sdz?isAOHd;F z5KzA@1{*j8ABaH24#NG~slvPUPG_*(wj}x$PVZm&yO(d@HYsw36}NceQyA9)&~1~S z)iH=v!T`iqk$a#!YHSldfQ<%7>x)3)4I_dIpO^;PEm%f98}1bL)Svfr*)d77hg^b# z1j!6iqYl^spb~0L*xyWe`PL5q`v3bC45{L)H$T9iK7Ike`v<>@@wU_8%Y%H#e3Emd zMZaPbimye%C<1Zr>wL00+h#xYD{BNB&|~VRox7V_q{e5l&IP!28Aq#2;4 z$=6<52j-p~?9@=nwp&Id3y^^-e#eNt-WN7yYZHQt8OLN9u0U;^ssoa%%ZO|TGuq=L zNb8m3u=;YYtpjsFvaO{E2%IK)ol>QFnuTtiGw5ay8V0esKk%Z%Up!(T`F zd(~^uf9sEa4dqLW{eH%DDkujzu8yLS_X*k46{xVad&nXZ$1HSRo4>oAP|}Y_p|J;Ml(QUE6pl&(hqa%E(pB7-r7Kp~ zlMBxA62!Nzanve7D`g|BeJ7(p>v|G9eOT+Yr7A5u9CuRtDp}^fwT=WNU~Bp%;BF^L z=-nLFP3!a#v&?Dkoeek<@~OIxPa6a*QzMM`4f&Wgo5$LEP~K{Ik#L+d#{GiB&oF-H z_kSJ3-*5QZ%@6Qr$9M7DfBX%k&o|uMOgNp22V|`?LK{fVt3tcWjRqV{KvdWDF3=@F z1BHa9&wU@H4Uk|^2L+@8s>~|^IUY3Nv{VV2$8(t7u>q$XS{Ony>sEfYgmtPdzPGUL z^_P-c*D@B(V8v^&)v96(%$vqQNM_U^Y}NqlV!)+mWntx=V4w*&mgB?wsSn;Ee5mCn zdog(+*Zry(V71fD$_mW#drZQW2f{QJ47&x(9piU@|5uUzKI50~{u_4f4Er3$%v`#rRX>O9 zJ#K3`odvu^xRh7>%b8}(r;zZw4uEdMGf?417!4O2fM*%MI6PynVA#O93Hg|#5rbp2 z`Q5?#`Z4x@6pSl8XVh5(=@~A(z!?%Op#FYo0p?@DZa3rR3y(Pd^&S4@zxhqnn}*#F zGWG(WtcTqV9|A6WJJN)+V{6j2nb(@%f>3{)1{qcaCALtyejB#Srfxt!DOVJ_}dH}M? zEPa8uO(IPVG)rxAO5d-5FmUPeG066PDRo8dl*VB$XE^tK4ZEqghB{4sENIbeS?A${#0`Pyba=?aR%yM{F{7I|4AXm$~QDU60MzO-Qy%1 zs`jFL!Ycc!3^dZ9o$V!@GptRX1TezQv3(|Iu>%XZBl%-}?Xlpo3SSx!xkiDw?bs&t z8pL;rT`9KgClewgxzF+#{2q7qNPiD$mBwo@fv~2M1a1HU>b-o)VXFwU>G_Pn$V_O4 z8AyB>o=5}}V`2`#?nA=#&H#RILH)`RyKmj#_x{B<@vpz|>qy50-Zkug_7MbNIu5R7 z<(MZ+;zC65;K@W6s8eUHm$e#bH*5uCwfC)0fxEvCdERE~3D)Vve9#qBC;F*& zjAyPM%up_kkFgMWuR*0|_{4LAWvA@Q0RezxV{g>|dBz-@ z$Wkz-RSSd|k+O3(0$vVy93;|v^RxHTxA0hS{7OaMS0rN0AMJ7b7a8LV?w^B!`I&sq zG^>*6AOJkgJzEZ-FZ=xpNSw`ddF@&TYbTagACTd^6H3kX!)6aq2mK-^Am;5>)U21VO# zn3jXtOome0#X({XFhx3V{&2wKZim}vC#0{u#PJ}#JWpR;Q1&x20mmQjaQlA2{zJ{Q zu>gzd-6T}{+UKiKB%5Z!`HW3NO8;~PUQ|$3DsQ@=C<+L5m$@so+nATWK`hJ0IWTIw zIJ#`W-?CZ?OxXJ3Mmn{P?Y+I0v7zQ}hfr!SKkr#r(pD|Zy`Q!FK{}Jz?883!i?R1MoNr_7kiA~E3W=7f~17$Z9*NT*LoWyNal66Sy&t#Ixwun zzM>kg&1HK`bz_Lt=xYTXrw#;5k@u&Q&_M?`2mXMPGqsWw$udjY&RtL;3cOng9lkby$1vQ947O0JWXA7D0O;&ex zO?B-t%DSH`vV^un_w$P-qt`SpbxYa$o6%2d4et1ajIGsG6SK4cGZ#V=S0qy&9>B7< z((;bjNsl#K&YIY=+I4T`41_v!4QQ!wr_kCNbuX_kkL$T`+P$o#_$H0JacoTy3DU5GGjC3NjAMJ4eEMwR&C}RbehSn15DI>ioxcjSw zo9}l+ObbwVYEZ1SmziO8=~?R;!Ry|G24XyWu0~>6a}&CVz}=2R1m|}Bl?LQ3sJ4q> z1m8v_iqx%bmOYMG+jzxw=s?(Hqf^VF)=-~wW#vuBgRKKgRX2MRW*qVgpgUv2*(l+? zePhy>=Pv%n8J^*&gE%CwrRF>HJ!+PE49r4?&C8 zRsv(aJ&tD9t!`gctU1ovc%Rs)iX46im={nbpXe- zQ}H*wcUEQ)2dOw5kkA{q1X zzG1pc-8oCZas#C2J^=~cYWbdw z`58$aubEi}%1QMZ7E_i^Sni6exKm|e-7J02wICIjEbGORg_@g^WN86mEm%oT5@m5O z(^;1FdQ~@T5@|~{3zBHSsvVBNiTdNKgHmtB)+!jAdvYyfyH${Vk<1q(0xAhz+JjJ= zm38Q^8<7dJ&7Rx!HpZykM?snraMBh-Y4AO22!7GwcCg!aQE{yXw?|}DE-KjmRA@hos;PA05Y#{z9&J=$1f(dw`b)2 zf}}l_=c(Xu%Aos#G!bGdoC)9(viMkIm=#FZ56F$Xi%D|6m|eHW3GB7%`sI5vgwPf5 zBOZ9&yxjy@RyK6$*lhs)6CBqA&|j4qii?*0yHHo|FORSDj34#jm}LMj(c(1fBd=Tk zTV>EaqX-APD?uLW&l!~peeH%(M$(CZ(|}qA0r3o^Q^NiwVfT@?iqcFY02TTXqt7Rx z9M>wkDU2|T8^VrMR?}@6>dlu{C7}$1W^6PIaRJz_e zbOQ^CaF#u!)H5L@&%2UuqBS7gP}f&&p&VESfj8AjSOv1weqwnC>oJ`zVs+_ynj+^g zF`bqT1NGKrGy^E;ilI67(ZH&kBiT1Q|k4-uyt@wQA43NaL%&9Xn=6tLWnoOd%ZDGbdpVmcNM@gmO|g0 z_<}RmPbgGv2A<9)e%1#`=8e=Qc#}cm#z0$~>P%TF(ty^K*K>!JNI-m4g)+5kBB5pj z=gfup)9lJK!_=MeU`K5rEVl{yBmpAMgrb0hb;hH0yBp_QJ2*x zZ3Abi7tDu*{k>>A)Lk!uGTjFdkWLb`;zTG1Mm|d4buI*Ek~VKc*z>Zr+%!*19oeA> zH8=JcwrgRn0^{>3$@L@xWj#j?0g^yFq}EjET1#=5Fh@a40-wyjo(0GB{;1y|<#6PI$j-#m0VIJPqQ@JT_VDpG%<0zz9g}WcLvxPZ_6o_E_#1JedDP7$#D`i=EC30BnMAs?)n*3P_4QJB6(C8(Z375(ESnu4Gu(aWXfO(9)3-ql4+e>4(iWSO-W90Sv0BN9tB{9-lWK(AmL`^EaHol&$ z)**g9IJczVCmgi;YyL1T{|3apqzAZhWt!3 z_2=xRYAjZVn+^aigfvqZgGeIwQw}|vTn90v@g-w;&}>Ky5TI|CDZ$GrMb#P(%)Lz- z>tRL<-T>#=a>}#eHQWQwvn zSCv6%K@5%p*ihTD_cU;x`UVr(Bu1T0))mYsgGy_+IZCWRf<&w*W;k511VDZyl>6ku zhnA7AdjaV-SLZtcZ^H}5&4&%;u>uXqvpA=%5VAU|X<-qg1d#71$(Ac{SX~#WQ)HbD zVr|n(vAsJ?90N}qm0j;|?)Qt=fbl8jgU$th%6_h4xW+weQc`f7^hB+XT*o;^sIRNRReH$vZ_LY330c zjPW;p#hUk79&s&r-S;;K*Skw>flKR;>HTtF#n!*pKuf4eH%EIT=T*6C`E$>1-QawL?#JHk+lo!xWlr} zJ_x~n(ACcyqnsR}_Cy(zi@22&d%|!3Au!G2C%KsDNmv@ot=R;SCPEuB+8{|j>-t2s z+ogOzWsywe`$z2j=AYd_JKz*|2jQ2Npr@9lL>j1w0h7PsxM)j%d$w?;T*f!!&3H53 zj5p)Wcr)INH{;ECGv16h$tehmMZKIkJPU`bo-{)gfeO+XzL@=ytK9cs`L0^sISk^Hs5aePB0Wp4ZuPpl5dVK13@sT>-wk>&jOd%2?{AuO|~BjQ$(5cM>TdKFV88 zJE=!s8YpYGkD;L4ONM>EE1=4_`+mjYr!tmX{fHwWX-UX(6ZWSBnfU7aq^fg1Zk@_b zBxPe+CXh`iPBWXSvNOUY)2Tm6>W5>=lZzd8UHvK!LiAw!^piJfNmqwPa2=sf4piu=}d*w ze-h4Z5P|?hxlwQmNUTdY#do8+bCF5ajBe8UW@3(3S`>sV;*`}LIlvws#OX46OP+zj zde|P!ohuSnf5Ax-~S09*N4@?X;Aft3AN_{umXhm&87yjX%z3+K_8(L>8-;J0-Q*#j)I?cW**Sk?Ro%>_A1Ea4uRVv;p zwTH3lPixoJzvRYQO7v>yX+y({pg;b8wcs3Z8*p&GwF%Q}2#;?8%o+XhiT8-0dt3Ig z3VgA8DrQevH5+n5+hw2IX_h(YHlg-m!QHx3;IT0BvDd)XJv!i6Ab|rb%QE}Wk5G4T zz*LSB+--xDgybV5&+715kXjwZGwb#w=wPbtk11#Ej)OVc8SPQ3MsO)4=?U zumqd1x95tL7K%{b`?bjvd8vmbK%lkfv9;{#dO$!?QppR_06@Ra>Qk|5`5?4svsSw+ z>b11xB5OlvwfjMj@Q?xHrG1hHGkExL|+*0!>?Y44(5S1NM~(JYkx-} zHCWJxVeR?I&ZTp%4P9uOPQhm<1}LfKl+3ebpD^tS<=8OZH=Ohy&$rfoP4pDfsh^*k zlz+6`OFwL+s^Hwf^aiA_>e6FQA+2p>J6`qNrLij60zMuN*p`%BI_6UZ=fGzipr1KU zmlTR4ULfao!m?J-8KOih=6CyN!1)3uxniuRRYc3vGYZMN27?5@&t!UjX1H++#7Tpk+rY#)0fmBo3O+Y%aWJU~(c%}ktV7{63UUP2a zQs(>u5MTAJzm#G3jLD~GK>xoSTN`+)X3#Qx20H#G*>iKC^46~Otq2Z2x>#HfP+2g_ zTBr5T7=CY1kt(=N0Ad$Z;UaNN62M~XCl0kMMi*Yx?7Os2)1cKs6y4`riC_wcAhYCKTv+3Ur0!5 z)!|+M9P|od%+LII9T2m}6*N$^iI4prbZ%2N(&q1IU;cUpJjxc~OjvI8^E5`9)cGRo zYJgP`iwm#}gna7jJ!hbe!M4oyRB4D>H#KS-HZQA)LD)-#H^iZ0hXZ>zsHq zaJF7>LJxQVm)RqLuWNqItNCPsS(35dgRD(z0Qx?XW-n|XQXo%FRON9yqCS)P(dL4D ze}W|d%KZeYLugOMr~{!6gi#X{fcP}^2538Y0>tXi*ZUTC4IuPjaLWOB1RxUYZe36m z_PhaUbTmO7tFKx{8Nh0QwV2`zz=U+8KeY<=XJCsaB+t z)TbAA?6N1!w+Z7z!=OT=Ehp3)lA81+NsLxxPch9PpRBDDW|H+oH~gV?APKt;n!Qt1 z(AJ^wygU}J`4fXTHX}B)=^$laewE7KV7sT@=h9=B7$~36_)G(IK#dA`y(2|Ig*rds zcx`~Y_h?SkGaDvs^>O$0II)2)60+^;5`&&foAT^9#90F1S-%|Ge5_8R6WFqgX<|`p z*Z#JWZBZa{V3fzE>g^IC@b_8T`g2zx&n>8h#^>5PV;&avDE{Wrc2cUTy(nRwjem;v z=#;Sj+E>xqueMD{6VbL;W=pN@Q_euiYrt^nx*6aoS-^NoYqjZD*+W9V*&BMhpPu{Q zk_8VA4RxCUYbMZoq9=H{NIn5PYX&62MdoCE(0xuRifLk3^))d?pxXo|ayCibE45N7 z?Yy@380Qd-|H48SY26q6Xz_)X|{u-9WeKH zQx^sYM$FX>Zs4}{nAXpWsF+^gp+M->@cXdM!ctB^Df;?B6|6f@6@kpQ4%7hay~zF^ z^6Gg&*Fn8qb(eyGTXLJQeI%cxRZiOp7&o9@4nR}Zh}jGZcZ{HWjAavhuuGgXK(Z-$ z3LlTfUWf^$HU;wXU9203m6aedIAwWkX1PXY6K8;#fZYf-_59YPL?p0KxOJPLSz6;! zPM}->3`&I$_Q>qL>?0UAuzszXa{x~U@&NRVcS5%bZI=c>u5qop-h}yWdrD6InC;%8 zwq)6K06nN>ud)3mQ0!@`!eF{pfWFH}rwm#e+O5o)G*>iaa3Ks24Rs_eH-!0yJRm#X zGnPgCpf;+2;w1p00j!wKv&>&oHdbVz7?818=+^=O z76o-GUPoyiq-8WcC&{%>3{l0`Yspe(A_182d7_xCeby^Xd|YIkt&&SIs7UL3W3P2T zRv!w?LZq~29>(`zYhM`yyKCyZEBx!cL6ZiNCcx?0c80U4@~L_tcX()85|yy*f=xV_ zO(;IlVAZPib5(G$ougR-1J>Dq8i0-6oFyq0z^}#@&s>6N<{H^+qYsIWtt825K|{Ni z5)_fH2pTQ1?jKv`NgN-yyVT!ceC7eVk5^>8S0mDMpL~rhm>rPYEY-Inctq>9A1i|S zu$cSgB?HdX&kZ_4&KKDvms4iIXf<~}&iRECg**tc&pnNmV!1)%K zMGXc63%J@oYx@5WUB?P!EkVSp*zBK%K7*L?q0#1z`Xt%I33$?1xb%y+&Pw4ED z7)WZtE`Sb1G}BItIZSZ1cXPzbL8y=t{U#7M)P2EnlaZ$e-0P*#2z5Hnpwr}=EAK|| z%?O$n0Tz0F0Ib0sH*ubJW2bp44UvEzh~k);Qn10St-=aW8%VPt3|yu#UTU#-Z6N)L z@{T97r#TDoPRXgEGVf*wgaCkHlvZp*0b7vEPp)<3O@lE(#ozZ7Jr8F>+ZS0+XH^;} z2@qL7^O(h`BcT;p=ZWE6uF8Q$24o;#?+wTs9XBaWJ=%qrf$(OJX+WN(^`O-QrYg2u z2YJp|Ev6rlCfQT0w=M4qcu1hBAzN?s1l6nvdk3?uFXJEqLuR25=iGrBbZs)5GS&%6 zphP}E2Ibnb=GMdhic8I3IbtpHg?vGY_Wh*?sE_5eiB_`Hv~V{!MU9)J|6-o_PA5u z^*##4T-&2rAarWTnz=JNJ1T?sgMjp76=rNEU}+d%$~s<0TD8Zt1ctPRB@gUcNv?^rJ$v5RYO8AI}Q_l3gVZGno^mmyXI@Aoatbpz>VnBz6}VE*tY zY&V~IfF4`3ymGL%LjWWyl{QARJuk~KsPYF}pT7)%2u-6mD{x?SBB_H35p3I>-y9?R zGePUR`|=#4Z$9Z;m`~KfzfJVCz_TIHtRSgamSsR_k&P*zT5kiQ8+03z3J+1KGhZ)k5Em%!tH-uNTd$(2T=Qs6vU%H@aT}yg zlFmSHGQ?L<& zPe}cDhHMyV>Gs13;2pqK#I-D2m?yId?%;f3KqNF=bIgtcW%+f zjPmk?`~n>?Z+dP^A7*u6=LI}X()T2`1M>~Yq86Wz^7nR_XxQnbStdFI_e7h=S_78agIab!N|u1lIDkq9r)Ax0ub)u%lObcdE1)H# z9IBtof!2};y{Et5Rq&=dAmVk zfUNbPeO?0Eu3&yvz?m>SEXa?fLZUdQRF|x*1<9_{G<*N~et*&#gWpv>!K$s<*WUg811u>%>CA(2~_Bx@t z8-3RWuyikxl0v;kAwD6cR^cbB@5J4X`gH-4Yxy965ZU{r8nJ=r4IqiWETLyp8zar? zKiN9t0RmnhzYVm9cAqPMi7b?f5#ST5vx$JlNhv$!q!daTway6+VLBQk_Ze|!D{ZhS;`zBzEEll zbbB#Y8}s@f(Cy@j@k#qmpLu`|V6(WqW>Im+Rt+lB-TfvhATV&AQ*eR=tOI>r||{19SlVpGlgZ2)6l+eOrBXp7j+rF}y0jnxDA zeXI&Xjoy1rW3`V85T~K94LmP!kPd(s1@JNBZtD0U>&MJ}66x?@m@!etK>}9>`~kN$ zUaDt_!Hl-cs5b=z5z*1&@I>s$b4p>Qet}*1RmfS zLd(Pf9he(%munUPyV^voJGbPB0fY`>I^Z_;Ni6B2U|(@qX(cLqCy{>ty5IF$f!zqs zx7l;sCkXO^EBu~cV<7izTw-r-*O(+e(aLX1{dMH)yxP(R%#)r&v=h+RM^eRi1NT{M zuVn&{38gafLDoc4hbLEd-=`ck$ebkkmL}EjNU}Q^J1cxynWFwBg|`{;}{Nm zh5ZC%o<^3I2bKCiD@E*p-2O4Pfq*sW-`EYKm)o}110Ac({W&mSox^k+?6^9KJxBGqir4P=@IIn4j?Guu)LL@Mu!%AbiE92oqYOq_mFU>T5brBpiou zEQd*}Ek4rRojGrl#sP?E7S%HRX=+GQMVjgwINMt*4cFtaVkjFJ3*f z9b=dmGEA!T#Sdk8ovN!)#}bMDL1DBh%#eAy3SKE70oFF5uU|7;`g2zHk!lA&{(exW zDFf9UyP1&>75TV!IswQvn;A$6ZOlTOJXNH}sc+6D17#;5@HF{xJQT?iHp%!oy^~YF z2a&F5_GNP$@MA71RQq?=`^#n_e(3-xqumrWv96YuE#9&nq27oj%(qusl2&fve1Z<7MpR-&O zUix~k{{+_C{o7>4lYn%})&3C8GPghNS->xN8O3xg&CZODg0r;GI0Bh@i z0c+4g)R`-gb&6PnnkBEmKHctxK`}3S?glzcNYft6T|wO!q>_bIQP%Wg5J{WAd%}Dx z0j`?!Sy0#ot12T;;=}OV86lh?T@HZmm#r>Xv>9IcamfO|=HJ;r|C~C{EpEDWfMg|; zmi_ZBS~ZYFBM6qSk=g*Y@~&Pl6ajwF2q5Add-4&Qd~kBn{s7^NCL+8TO&UI~&xU zwS-mXkY$?D{VZajEz;7t6`gNAiQfVHrKuO^eAriL6YTZlHaIB7V3<9uH1t*JhlBL< z{pVG~U*7_@+h)g{Q&U8UWw zQKaX$3PKWP>!~807NnzWrUFt5P!e#OL8c_Rx!x2hxKCxwx6eJ1HD7_23(sFINH@x% z1z_5_0{B^7)pj9z3Y_}}1c0=5E|Xtpb1kb-=9D)AEoYi7{GTo z;GrNr9Dt)zGb6pqK%3R9Z|D1VgnH5LOtwzf1@w1~)?1BeJpLzXJ^2|JUa#gE*S4lY zM=-6=b8S){Wal92f>#%YXAwBj^%FpvDu$N}e9I<)K@M^y z@CDx}WKUt#5l)%4@C1+B7PPC41enj6|@TlmzTN%jC{KX-|a!C8T8^o*3ZWy$_E)}xBVPM z!nA<+HdL$oZ|PJq0GMwJ+K$jxRD1-$jIQaxVoR)kq-mwBDC_nWHUTRF`~D=YZqc*q zI6oc`uu>G9ci>HErfGBnvRxO=cFOyynQr~p3xL7dWznyC9k7UgnFda-l8G4Bg2)Vs zkHry7EY{2fTCXdXQMcq&unXyiq4U8?KmlMkNZ@~NqHEKdv{8EjQ3M6FWGGCOlz^oH zNwVtcw18Sh-Afj|nGQn)%7B;4GHIY_(HM}~Me2z|07>P26!cazmz@S9KZej)3ArnK0uFyS)yFA6~gA9WZurf!IL9t zL|&;PM%T4EK3Ca9U({WJT_>Pr>zXMeVh!T$qjy?}ct-vF@jIS>#MMM^{k@Gk6>AIS zbB2kpRK+xPTDvV494R|S8EFmq;UtD+8;LnXMQJ+zg#b*m)LyDVxO#CS5xJU|^P2Rh z4B^t_uXC=h(fNvwi3%z8zT|;D5(UZ@tt(IFNIhX2N@M4o1?a^LMHOW3^A-@>$(_#b zA93CYwNYPmTk3O~p})s^DBiR%iMQD3@%p%L5awLz@2Yas|V#e{JAURsbl_(2Sqe_p{QhiKwf(bIjn9T>G3v_rb*C z!t){+NZq~ww35(@wD?L(XBFk6WRKgJ1DG&G-u-9KAm}^>DH|o>ED$Rl4_Jg3?YT?N z6$=eGYC>#Ftx{#r5Jo|(RUp~s8Z*kVDl;IwVM%EF3?`DSy3u^+1>Q5A2)rLP%c|u9 z#}jaxF0)0nl^6Xd_TF|$a%4vibp*-Gs_vO{w9oA#Mq#fb>>ycpEACMb<`UJI%z)y7TP>RW z1Eg&jTsV17lIJY{({QB2S8F$V#;I!yu0aJk%BQ(+L~>rIgL)P}%eyC|-8oDkDw z~l$WzBkgvWk!9u7z6xTQK}P{>e?0%RChkq2*^6bf*Rs$-5P?3?|Z_Zwj+GjF?Kbu zntp-EZ1XW0zfsb`UiCbNe=pMnyuLtQU!e13@8Rtodb^qKW;ue_z01cPg{=n3%{`ZQUpak<2u&O^3SO)0znwJ*ADRzww24v*GOX| zP8`PwfzI3_pY=?SU~h59eC-i)*(Q5zD6}~MWEi~MH%Lijy=;#;Ay5|PKX_1}dJ?W$ z5^cW}Lzyr!A+*QDlZmNxDml}}r`4SM=;Be^Hl5u?KP7)gbK+Yqd4H~Mo3u`c6Q4>< z>SSqs5j7j<1e$($Z&Lv~8d&M^ze5-NC+Le`+d&@%C}321b=3yPrIFwf)%YF0UNXay zezSehR%rm3d#62)u?wb04LAq@pr*e$Nr41abpe$2QD{ifSx=dYkr953P-SJoEC?Mb z01cw(Ebh521lu!Ez@^q?aJdAHMk<~5ZAbBbwH;HX2$V|ru|n>v8=l2rYwe4uo&<*(Svhgismg9t`bj@8J#zGZ?!^-?}!Le|mZk|< zSJcO95&ST$Y8c6y;dn_Vq|~SG_nb#KY98PKnoK|yx@~=+m(MX7uu;FB5Gc`B&uet$ zv0AP9tG(wyTL37x%@9ht_c_qZ2hhvJZZbiLU!I?=7ccOjF~oX1!vk1~R^NB#pd)Q7 zJRbsi)e*)49U6sM#?}#JIB0YufXPo)OmC|NadVCHWid8mRml4t@>o&k3Az_EMjxx` z3lR%~067hqg?)%fwy*?ERX;L7CWhs~1O-iN(n; z_Z{$cOy(K7uF#JgUbA3ss<4_gDXJTBhuFxdzl?06Cj_PbeP9dw+? z*PZF|uZaILwYT z9XomOsyxi`F6(Y<3ZGSQRZKxlYC-717N$*=_u=2MxbWJZEZK2JwAz)^xxDP|D~ti( zKkJw6b`q-BlY5I|Y`Y~sE(Tebb&KQ3#~tOdcIy^^7Sv3{zCr5jJW=pquX@+1;5P8K zWMwtGn#hfPk={;XeN)yK0+3)Xz8bRS2fdW+u1J)?Whu!J_aQl4lTSx=rFqWtvm`*6 zJl(W)IjBi)?FAg)ONP0hp%wo<2g9pMd)9W_!{(f|&+&lQTu`rbF#DJL z-r!7(ux_R-*ybZc(St-Wzb;keCYn(j6?4`1-BN(L}ucc_(pnnl2(ad~|~{rh)6gh2oGf1v*3kM3BJm2w3t^K6&5*C4=B z_m1RPUk8wIiGXzK^-@ia@xiPFBj}|wr0E8m zY@xKe{Vhw@;HuR0OSxqe!ZCR8S9s zWqyG?&YVp??`L+@(};B^>C|x2Bk0#V?y}70m~$|zUc_2R!W@OSDP!_ZczBCK)A{~`feO`_I6csuk)GhE30BE!=#T_o*a>Eb1`3l z=4iJP4s<$%-!;c1$qvvm@BBXLA^@#GQopu~>hu)=oy9tdxII^HM&b(+DQ2@LCpU^; zSasI!K$Hx2(m3ZwnfYfOk$&}&h(+Ub{(DErghG!Fdmef1*|tX9J5SKpE9#5243x~x zFi-8XBO7J&wJk&BX`4hLe;Kazcx?J`Z@(eV$59&w#I2{4JFWB@~AY0@)iYd_08xV}Z_spQW9{olNm&ae4v zgH}&2VPE5Ge2uU1HNM8z_!?j1YkZBb@io52{~hDk&!CSZM+r0B-Jy*Kc52q+rV%Z} zJS(AIk-Lq{`*oZu(nj2l_Xq6(jM|&R*m6uF_!J15m$LnS+mGN6- zx3rI1Nom=_KSN9a?fRa5Fxm^CtH%}b`r1^x8Bn4G7X`XdpDt5hY9S3y2=o!v>coM? zqnzlDV`%L@|w- zhN)#In~XZdt+wd4szP30p|4lS{Q+f`+ z+XY&z4Gt<2QI*ekM`B?H4!kKTlfe4HSn~y;LndZMoKZbz&4r(lWR)V2Ac$ivU|btg z8%Jg=QU`%jhv(zx69_~NHBc{;bpd&&o}g^2mCQ`VuAvmD!=B~#0MHa5(rr&pM*(!;V%8lXPwnzLjFnlFu}AT_hBdbwDVP*H_aoUT$E28()dF zYTFwc;%~nhlH`w{W(&MrZ7z7ZP{@HeK`E~-$)e7NY$S=4>-OfB8YR?=nKG`<*t}nQ4-3woXP6fcCJW@G>uqKPR~)+%6xyLlCjoud zHO~EHF!p~o^7Ao5f^$35*PX@#qrnjaz-)xvCY3xG%i=n`y;CDg-Wy3K_j$RPPWrf8 zsff41lWlJ$deu;pjpP;$&OVv%Ld1!<-2o@776r(&4@JNd?)!E{jDNivUOx&XE}(d>6z1a2ApQePe-;9{*w?^&*7jG ziZZqj%0vzS1pY3yLb*D7-A0VmrcHK5QAOFC($GY-5JtXFID>_#TU78FoShr~r(Q=T z4c(jlhS8up8DXgT#7_v}lWkLQfkLp?sNs-t5+|6UWVlo~=x$6+Q)6uhtZmA=8B8af z3h|ml-_{9x*rQu?Xz`KZyFgns6EO^c<7eRCCy2k=AZ-0?{2B4dXB+?k!g6u)Dl?${ zTwBGYMnXb36=i~?aR!@GFBNTpE)pVQmnL$O=5D1eqMeh@TJn)>N9m;C#5t$veIiRi zNRqC%>@^^U?Icuc8bO4(2(sX>R?Dm}7wBbaHOc_=;{)<|03SD0@A(UoD!p8-4xQVQ zA(rgys_vB2u$Cqtl#7#~)JOpJtb?RE|8x{_or1Rb0=7=E?l#GbdL5zEYD9ltGd+Ji z%plt<^yAClTbt`VRrBv#CpR;Hi_;=0E2T1H~N?7LBIiF=Pm0 z@0=r?^TxP4I2pO#HW_Jj_ z&?<_KJkWJ|k)Z|KvyE`b^BU4^;KWP*QADi%))z#rY8(I=2Jf9BWGc3vZB7vP{$X|K z|G1b;JXYZK#r9ift0li)fDbQ$bGh*o+rK20?Y@JP4ho8wg;*Jhm-9_Pcq9PG3uHl9 z-X~fzB?Y>GK~H3z0`y&d82Hs*4mxtU!HFq;tV&L!%n7tArqu~p_ZrTZ&JK4*b!Tk2 zz>#$9Gp+@$aR7oKj%2Lw zb*?i920umn?;3$(n)g|+oH*wh<{nV|Bs16))8=+rE)5aC?p&6e{_VsJQmwB+6lS!^LeIKXJ z|9J!{oR97bhuimkqD4Un1iH!9MSIn<>0w;?q%M!$YdMC=eUc4{2oxtdo%ibO#g9b% zM#X)-G!iUdkOUj>Sgl?yWqFn7$nQ4JJ+SYdDV{Uod&a@qq%pw3K?j`AnpyRDcEj`M z;=k`L)8M2eU6eKmXIvRfk_;PPPq_$F6cmB-AhC%TeFF+iHMNnVqrqAz`Y4i=2$I2c z7EH~GMiJycb{yNUJe+Bo-<>^Uzt`59Cj~e7JZ^XUkK?fdSRvnDA=eA^=Nt6RdZ**D z8q=}2_@eyOG|xMR_I*baobx%~Iq}avN(q8JO?{vF-c%K`ZDuHu2>SV(%FDaMw1;B zo&0bcARAB!*=N^O?@9Oq6l~(>b)K z0pR{HJ9)4E-b#CqNl(aLp-8RXh_u@kg53~;b3t8NK-37K(PGbofkVVpi_H0iAEwo4 z6Lrq{;Fymja$PGnZkzY3{lB)KqmxB|S*%BVt%km&BTk)_6DecDQ8PJQLYZ_)DLzsU zTx7Dkzi9m04mxmjYm3l&e`|Rp!na`I z_5Ev_=y|bFH6u#3^@ZekxuX8|&7YAo?h-1uuIXIfR%M=y9L^c5Eo%6QQt2K@!rweI z=}(|WDj;(oDIZ5hnN&0xV8&@q45Boqw%QbdDo`d=Z@X3=z8$w+t2x)XJY-LfwQC4M z-D4X<-z&OawSwk!K`G=&ag=~;X-;PYi}1*;1|mRIfz^z{2;|jz?zHFi z=dnVz&E|Q$AA$V-JL-S^9Z*GK##|M8yQ6;GVvdWmy_btIR@aXYSkvbMXp)^g@^{6z z^~{J?g?s|8_?3r@PPUY`tVR}gEbADMS>hQ%W@6W^t##WDDO+;_mKodMUH}26_tpBL z`@AT(wP$cwpMNPE9?ZL3YCCuyQ7MS*90?6wYLLlwDil*V4gGWJkXfCaBz@w~gaNO< zKf1Rf%-0SelhTb@K3R8@uk4@~%a(7yUjbDtt96Qisy*l2quU9|WS*>z-R&0d2YW)Q zWQUv`7yNUumFMlAbZ||Osl;Nd88)qooD#I`c$>fF+qYUDm-LjUD& zHn)GgL*L&+e)R1fvMja+Q?IBVWa2Q=cSLHz6Bh8mFiS?b-d9*0hfsGOCwik-J$fEM zXMYJd$udJbWwg@k?+{y`+CusJ z9LWC)~o|#LVvyOz~evK$sy}h*hp^40D^F>Gbko1oqKkPGY{z+_p z;-^GVs}3@NqO;lP5gME82EEKu5p>y(^UT4%7w*ROo zr3OSs&+Fz4o`(qfM9_*8-XVyTEzuTVh&c|N8d3SH&M8k0 zNXHn8_Pw3E1+a8BOqy)k<{=P@IUEm0W6_Qg&vM%=V>Ci+Sub^4t*zR!0A+$cZY{Vm z&nW-xzuG0fUQvF$h4IV#>h3-F>mG;Kjml@G55M|IjQhG*$YlbGw||W85fbG#U8bDR zv~E%7E%5tzBBu zoz^pc$f$ajRf<5qe}ggr|8YnC*MBo~gI04$t{&97->uE+)sZFnoo$;33Q|cT<nWTUVjjLeBL50A4P^qY?G&ety}LQ=a{r>i>(3xbITX zqrM742T8J10&ST58bDB#C}H~?$wYka6_It_}$_@|b+I1Dk=WFCA3gXQ9 zh#Emoc4ojSfC6BH2MZ_+Uhfp}^cv20KwkKLj;?o)Q+tD_s$~&tHRrtUkQc8zqte$3 znJ*DZ)XSXUjGo2f!dKN4%(B>`mU^*v&N;`k*4~!%t|VmvnH8r@tf>YX=nM{>CRDGR zmD!0*R_kkK&NHlTa91-5_SO<6W`+9y6gJngA%uxic6`I}01l`VJ14sH#IE7w_p(I8D1y5+m651B@Dy%;e*X*x4*;_6 zn0GaJ`(B~1*QU39p6hinWC8%a_}cRidnWBbo(WuL$hU7MqwCg47pd1&yE^!%9PVgy z-Jydlm&MwrO@>m~f4(JsJ?Pl$1^T_!lFP?OBgCxLf-J8uCRhLSA6C}m4*V%s%4hF` z_FSOkl3fKv7TTQdlVfCu89l18l^JRi9ytcc=%A<{rw{BVMJPeJ1TB@ zGlJdXBx05U)h=O_*QC0Xbl#I=Pm|UAPX)4W;k3m22=tHuhXU&-7_>9@-PR^1f&fFK z6|vTTM0n=*X`;3t4<~prjoS%$Io8wq(vZ-+T8K?|3ozIb2;d6Lpd8nA`PaxYPVRC zXdxWfvqh2-9%&|kY}FM70#XH-vM^u7`@jlJ2|&!=lcX5(EY2BqZN|2YR#l1#drrz(( zNZ!%I4E>rEaN!uD_fs)PM5Gy7+;)s~Ju}pu!_g&xPcwHSn3?Dx*-=C8^Wp6I(J9<_ zs7I6|D@X-ELxoum?i$Xy8&-r9c8)gZH|4^!9d1a4Qb;mm$HuuF(4bNrpj7dD@Jhho zgNZ%2&>^pAYYWio?%k2k*AmYuy@M9~C>A-t-HhPn#WJ$`{$b9y!`Zu$l}g<`h#>xe zcdPGwxtgNcw&v)MFGw$M0p3oeGm0*Ewaidr+~A2eW}a`H%k{iUUob$cZD7&mF`-+7MaH z_VKuZ&~gLM0|s%J(Md>7`KWVc-9f@Jb;vXxo;{zZV_iA3C5B5zK%zwq)w3*?trh7z zh(sOC5Kw!zk=J&ufJz|QrC2aemIXS`D31r~Z8s;yGvhX2r#@hx9e`;v^w9lb4*xtG z0w}TVcVpyxNFxY&S$7Vk;LT)#-@T&T?KoP@&Z+!+@HGPkDKObdne(PcTsLtFdv;RA zkSC4rXLK;y=XOGW-U01RzejMZ>72NZt$LQRAwDCC!tCiNZ&~KL#L8~uyhN33dqV$Y zdsLq;h}(_)EIMX(m=2gGbJDjBx}}6v%& zEp)fL!Qb9K>^##1ynon2rVe{ckRTe-s(OrKPE(42?$4=csyE6I0Ty@S2yOBjC`t1e zK#Qtp2L9WMDZhU*iIZGuS94yX#fO0X{}^NCo42gGE&7r5;CyEEHg`i%lOv0;x=a)e zn~KmzEuSa@epQm6AJ@{H4EW(06ez2~^_$Z_%x@83ZVHpNO&#eXl2KHODeRGRhuI2e ze6KePSe4(tLzV^gj~~#F50oEow*C7A{rL`$^ci`~>nl(z>f0NXd=7g>eSdFIcqx!& zMwulXcX>7^JtG-PX=?->wQYkwe8zI^01W9<3a}cHrK&>SZy^(+YJ`{~0o#>rZ{KC7 zJk3C5#6D#L4Ox=p#f_3qCg9t6P%F?`9{822sPiz{(ey+PY;{gN&@$k0jR-@iY{@yN zK1q&57fA5m4iNb6*fL(CKL>3YpjsgxhVId;v3^T6vbgDoXTs+KdB3}pZU!jpnAJ;5 ztV>9>I`tg%nkH*+NQbeMvn%@Lht-GZDi`iR`hpkPl$<+a62LQ#Ko>LB?sRp}jY zIvTk=Q3c3JkdeeK{#19)cWv!Cfe8HC{=?j-%_+~Al)|8Rn+nKhqbx`5Qw4K=75fY`)3&=ih$n%z~(xD+tTi2Th8@i zYfc69{gyJ{Y5{q`>{!*ts}XVo1iCHT8VpR)9_g-C?R`oLXtL#`YTG)?$gWUHc357w z{ogRVa&jf+wx63{i=l)81Sc0qp3`UDL0TfFch1M4SB9;(?X@AZYVCBTR2cE~y%Fch zz1g)Iq`98VjaJar-bqF=iWnN2HSB-!__ZDM3_~oFk;VY+Mbrve*QWFVi^NZp!4UV| zUWf}!*-~Uz1WF@nY~KdhA*O{oqPuw_ z$K;pZh)SpL7)7~&BTrsL_B+K_DPqpK6JTLlq4y2=pZ|#GPX!^<1S}V8ze1L4hXN@higXx7%#d3aQ#|YAX*1{| z0(jN}Kp0rqcdPYdZIi0ibuzNPZsuUn`N*yD0GA(=jWM7js#ep+b|B+5>Cs6KqbM0W zI`vLQWZf%L3pIydr5ZXpnTr{E8`;9heE6cj!<~?nEq5oODQk;JYl@7^Rs#;j9@rf@ z5077piC--I{dKB42=eV4goH7d1@-3}_W$?4`{g7Ddzw&w|J@joA1ma3hu-g~x#x2{ z0H9p2HW#)H_3Z-(l*uy;&p62C(pYm>C$l1J`~4neGg!Rj=CW7@@aMZZ>F*yXbo4@g zrYIfJrS=fH(`#vlPlKmxIQ7w9W>XZm&NC~u?dP(TvuFwwkA03Fa5%-xcBiR026}ym z&>dyV-=obh8jlI$&h|HUQ3$k544z*cNj4%+=$td4_naZcFL3N%QS=N?< zDa#ZnrWix^mqAwx9ye#4C=w|OY*u^AK+~BX0f54&6&;H>2afUsBxgi>=RB?z$vMw@ zwBKyxbWq;6ss%N+73Jqg+dj7`ye!7Uux{S&*53omeDZlNi#_MZ1blqhHqSJu7wN#U zUpW&KyW7LA<8|Mygz0*<=XNiEqu_A6*&4({GttEC`#jsb7;D*UDnSz?v&?nr)`#2z zye1Q-Z-Vr4nHyoCo!IAo`z%}wRUirau0@g^#(H!#euAr6rCsY2_6|d&)3@?SnZFU1p2(HDtn4&} zGXg1)>)dD1mj(KAF$eYj=(r!AW)uN1wV>7B9CQF+>40w9sAPlk~ zScD#BhnIpR4>=h_eK`ipsL$%r!RQ>1?2L3}2TdP!&jTyCI+MCxz)OlPC8)o zn{(of^q95-_Q5`%daee)c0n;lbI!Sh`p78cxYo&&BJRh8?UlBpOdLx{(7x9c#5$=* zryO+t3g`Y1!0Mdy!QNu$ovVvTTHP>bMm>xnchb`(MZY|04oKIkrVNXJ zWKZn7Tyt19?LOzx!Kgm7b;2nb45Ad#V(ocAch!tSVZ^l#MkbF{t3_D3c#IBvT!U>B z5SzM8Q#_8X)iEY5y;znc+#ze629#C>F%0$L>1qyA19XU=&KRe6>X91MIGjJBq_ z%S?zB5!m;eIdY5=FSC*Vgh8;idjFkm`ATG#F-#p zZg)U$sL>I@<;9I(d3iBo`R5zz{f_$c4f0_%?7FRBcDTI008*lFx^AlxWR-`@(UTfo zs#fps9VF~KUrR&`(KF8towKfxA8#frJDK0TB@X#GZVy|>nDxCsfQQ$!eHQ#p*AqX( zWk%eFC&X){)9d!%PWM;STTZ_WxOk|WvcZtjeiP zf1K#0!FiXxwi@)Td)U&8JQ^RcvZ>qM0wuYR{XAQ?oS7)twz6%IM+=BO+sJE@J|50% z&`*H!`syTc_DuEhK>f!bCI`Oml1goH4WA=O@NWvMa{# zB1sTsLq7kU_e3W&vaASPx-l+tpxt1Z2niSC+Ova|?5k5fGnQ~j+lM{M4_UuY9FIfY zdDMlU$xLm?uKXLi`aI$!Q+@K0p~d3$X- zhlvo%3+01rK@cL_dME1!tnlE7@5@9L(EJ9LT&s%JKblBB<>Ym)+6L%Xx#xIvKm6ehrSNsiL1-RnGc?` zdjC5{O%X&ju1CYgNfhyMvs%tf>@rQCLP>w=;ejfB zJj@}Prfywg{i}#1M9#x9N#c`tL}Ah4yDkL)d&!kmjHvOPC!l>$78h#4TP1hP(^HCssMKp0V z*tU)3-OlYl4m=R;hL2gz!!sE&8#$|Sh}y!pA(TIA7Yht#mJYnkmVMbOa7*<`UHzB# zs1lB8fI?4`y$g5*|1J$Z^8VhDU6sq?@3=reZpP%kZq^YYM~BPQZ(rot!tDu$EHmV{ z-)!D`*N7NJtc;1oSXvFDc)b{GkpyDf2D#naJ0s$x6eDe_0OnSPb3miysQ-?JI?0(` z0dy{n@Fry*jA^5aV|N1o}kX6f!^8K5=zuWCk zF6!4DvdoZguK-|c$j7ZcdnpEOuhlYrswginke92iGmq6W>yOpSZI~5bSLZXavOz<})EB;XoHO+BCE8r%jWuLGf~xs<4&l^#|=d~!t=T{T)iA$LR&X4};HhR`Flx(798 zM4P=4dgTPA*k$A?yOmkTK0A1dG#Rt!1ztXe_AGd=K>e((b!s*F!8DodtVa5GTKdPV z?^L3!3b*@lyI*~H>7)R*hCBwuP9}`2)yWX8mR!ATGti(UC1j?Ys1yK7wso}iD3^f( zi1OWz-95_&OBDy12&4&Ma|_-McY>jUD*#wcdhFxNt`;;Rx0T37ZL;BOaBcyeM?+cR z++WF=aGsYoS@u`XbtkffR`MwAa6wO!Sv_ z&|}QA^{}lMtG6TxQq@+63xLqxGsb0u_xd8odX9DL9T387Cs!mp`gUn2PDs?-vIfxM ziJ4eL_M|-gx`9-$el`Y(i2a=>H4wEM>3oOYvvkgRpA24nQcv5UCxeiDR$B(xqE(9Z z&1Rqkh<06s3UO#+dyU$hG8t*d=1|kjwn(FOGR9c(wmjJOr>rl86ssS9SbcG-nD|c%6AR1WJM2AB{OVtx0--^7?)Z0B1)uYQkMdc$rjR#*`ck z8Z~s5g>pu@I+_2jdpL4isZWEy98Lz;wd({Lv7+|p(_B*a83cZmTRw+uP_2H~*$Cx+ z_eawK)z_EVNW)~?Tdn9wvgE-keYu!kBEp$i70!L_oDBd`Uf9*-x+U1ksLq}9L#atNKMBoU z)BO*nh|!rRg3Z1TmC`znkY^?bjb}@A>2)!i^s!ob&l3&8|7A8ZQM_C&NZ~q_97mS$ z@MlMU1qKDxIDqQ?ekifjk6Ub$gCuObnL82zNI`a&jWM|8Iz~J(=r<9+_1z3A6a|9X z?C!KShfT&n8Og3GBP_Stb>Osa_84uoaKr~Wl6{Z~4{$}&@Xws{B=ep8bKmqi>dM3C zNuTrc8FX+s-|^f9vb>nxBx3UO<)Hs>4$m6NRGfiw4gv+O-eScgP>j9{+(0GK)sU5o zc1~RUxWK_D){e-02ptgEcjl<5MM(?m0bw(GbLEf+1whkhj?W@R9Gt}C-)GKw9VT%i zREYh!NRTl%FaEKp>!EGUsK8EJuZ=C)7>&%1c~&%RZ?HO{-}-=Vj*{T9_Pt*Om)SDy zbk1+Lr*ua2@c=$PwhZBpXsL&(wdo*foCmUOhyI<3_k*^&&C(mxU2o@O z#vO3uoy2jwn(&MUkx0}wg=nVzgU10$_PA@Fdim1xq7QUVMXvw`=iDRI#?4ThkpzTH zn1X51*-jBSE9j{tYXw&A=6!CHCR0g{duil;A0McX71R9=T|FZl1at$T(z2LQJx{h) zete)lp);b774rUJ!6-MrLMC!MM$Sc&h&e%AFt}&qiqCj&*{X=lR}EvQaeSn6(5Y}F zRlw8l0m5Wwq_s?qJEN264` z9RIx?+tDW^QqAWJxvV{sg}-G4PkR1=IC)r4XSsU@HwU=F7J7+cy6_IwPIDq;`bafeGT)b!)m^q}f6vsV`vLEVQ}IrhZ1Gm9-YU#q*HMr6qZ? z?FoBkBqfIPG!Q9je!`H*piE@Wiy+>0G*(RxG|UD#L!9WgL-2s?gNs+(Mgu}7g4EP~ z7lAqJrgz-APKiZv`$`p!LyJ1bZhW{H%5bks$j$W`YO&R+_krkB(!|>KJNPhp?k8uw zlMTv%qlCi;^uYRo$QOW!qpg_`d_0aF!v2Hf*LKiZ+<(7A>mHELrtEvt5i*OSX7ac+ zvV&L=Ou4b}!zUJvsoc5-z#+fpnXX{3t^nM|3Wo)15G$Ow_xQ9gXHpF9eCVT4X>^&G zijMg(hCAiqZ1_E#J|DKA*!LDK6LA|TMa}bmj1W$i4G#i2Udtz}>$=x~TXjzS0n(z4 z^_@(l<2KJQRG~lL%&7V8d+V18^zX_)>$>(()H8CJG4hz8r(JXtXfQkuIw{$a_v`2k z{~XQK^y)eyMRX{XCSPf!j|ay*Z!Xn>K{MNi1;&P&aXOZMg8#;a(|%w{daSu z4>HkUfu@XG3nG!EN)PkRb=+B>?DSpCH)q0qJ+))0@-z^iEiC)EJLhV`B+Z~d# zs-KY{7J;zM=VdWstXhG4Z2=o8eU^=x$f*E(T1V+z(CNrouL^*jc0AS``iClvjz>+G zDwL}<3G*DLj!C}(?f27p8wn5YGorEvISN9#6nGl9O~;Do!Dr6E9lXQPXC;TV2C-u9 zr#_0rhgJe-^0tWOECA^ z`q6ipb3adH=iPRw3TM@|?NocBI3US{O?YL$Z?2^zh4YL$CmGR=xr|U0R-)_Wg)BQf z*iubw+E*edDR67Y8~lwiK|&cEeU6MQIdjgl?BrzY;X2cMq`U;GH?K>r&6;>?HTBYv z)8ylSVEoz+I$)6IsTh0r&!5(!E4MS6r!Es^@QqeG7}<{#qgD255GiLvY(GddrgBD{ zt#a~I^|l6G-7U~hp4^sAq&MsY=SqZMdGJ8S$)274>~x&LsA%|bfjTJx=#T~?1_$}1 z6-NkreqKP!&^zHW1BF$_r+4(lg_37Xb3okbKO@ zzLnl7ALXUNAvLlnKyP$)`+TApI%j<@9^lJ?j1n1kmEGj!OfejuB@n$%;fwyZ0UHje zlI%Q1MuRQdB9q8^%W6u!2=w9GJRatp-tUmh1=HXD{*;-K^80TFTmSI`_22%dF-&Jg zJX^~~cnv!H)B~_JX0L#*eNZr?MLby4!LYM4k+&cJ&RKNd=THwzM}xnG!|Hz~IPalF zlshC**Iv+N^J71twXPW*3N#rs$T8wNjMJn)o+?lrZrhlGqm0StH2mCK)$$Qqtz__&U7ZG-7>q0>L~L60mi|KmEUYBlCuYfq9YTFT&9XaumL z8v>B#vVuvMF1W>CMH;)cp36cWo#WA#^)^>UdQOR|rznwdIL2%tfPk#;?YYRAOjI=n zYoN2w4z?C`#@-MUy6=XZD1!3)Z_y3snTEVv4K4Ei4*l`d%4heiC)g9a@%rR)B8?Kk z<7A1lpM3|W^p1c}16}RH+<#C7P+RbS>$~2vIm)G>&^OdHKL$r8dZ(R=l5@rWrqH* ze?SS@0y>%C(~Zx3Z+u^F;PAK+z0ZybKMyrf+2@w6b`#qcb2rvdn-P@)QJnkA>)`O# zY^G#@L(r;Q;L+wk&_Nn|7*+c_>Zry{dNz*oa0MZ`u0Q{_ZRdfgv@VgG!HBL%MzZz% z8I$ymh~1E7syqOx-kvMBQe%rGxm+;)KmQH-dWHOWJ6_MPK3-o?e}9Es7s$Wj+pmX@xiY*2s@$8LDLF28)Wq8D4G_h_SWEZTk#6z1v(A5f2M2vK zwE!fa^E3gI2d%cvdPH9?kbn8R$;2N=C-avcRUzMAq2FIIT^8*B{a*u-1Gr3FF0Qjz zTWc1}u;;*_&~avPpXO9=aU{(oGa>&^LFGv z8J{f!f2h{;Tzp&FztlJL4Eg)-(CY>A$Is*WfAJxgi#cNRg!;#it{hB6y7rtX64~^w zZaF0@07P;r`y!#+Id9Kw~zOH=@C&<({ZxSi0g2pvPe5eUgy4lGu!Mh z_9uRA2OVgR;^anEj&L~KQ~3hq6N71lYUN4)Nz@kb$s-bp7BlXd(n$4CTp$(UsK=qw zq>`|1`fE{b!qJlkX-7VlosQVn9g71*1h9#ioeDbUXGYIhe=ZJ>;j>Lpse=HF$1Bd@ zPKEz?bkN1NaMf<{6OrS)07A)#LxtpWNe1?blKa(%KW|-Tt3STo+9L0SCdzkG&JCun zzC4a=%0W}+7=XWH?P2Xc8b^Z$yj6fG5wYx>JNTnqsL$yWnJ}4`V^kKVn>wYyeX6wY z$2zBc>}=prQH;GafslzH2ov%8THl5XJZqaqho9dUfymTI-&6tIdL)Chze3GG7VJ?b z5J;eS0MdeA03ZeB^~L0k*Yj+H3Y#4cGDER?+2d9ZLqaT$S}&42N%y1ZQNy*=yT z`m)R@-(OKv+)kFcIUicB-h7(u#cOgnmIY*L2N3p`I4NU;$Pa7Z_&3S?N^N?+BppQL z)}*HaWSip^NHQb4G9uO8Hu-^|6;h@9EgY3Ioyh%D^ttD6s3BX2pz%q)_?h!@$QA;< ztnk^e9I76Ptw30_%SC^G8oF9Upe%`+Om5|R2_B878)|b%fFRB5Z6bHz)>PIR95cyA z&GqGZl-9Wj<63rNb6e?}Ex^LL9`JTYv#9Z2#W`a;=PV&gF%iSbR*#;cNYtl`48h?d z%|_$3r~UF*XBlw&dpKXL=Yx%Q=9t$}o{|p9*Wnp(BkIc+C7m8S9Xww41+&dOCtva} z9KXEw(c7(es57ZTaRoysUT{O(If+R)?;HJfbHqaepI* zjK@zC&kktE5gaEu(!?DnddI9JD*yl>07*naR2&OE6TNEBdYBe}Mq`8MXs^h%tf5#k zc~w<=-drElYsJR41(_s{@HaoECa5*wYZ7bQS*{=sG0t@$j(`wm3rkwOK0MO(gm7Mc zd$V_5+{suj&5)tN!{-}}h`z5s2f4C5;O1T;PeJ4s)w&IOf0 zo?;Pb?$ZUHD1KRvMupMM_xxZ^lmhq9MpA0eL0M5J-jQ8fZ8D86-ZO(;Jl1Tj>x@hW zX!uaHxgCg;YO=GLL91kh9S}e2wY5g-B5@sESq}g>d6p!EkiMBrJY!2K{rP4!aU7SW zJzKuJGY$-QFgl3)7$n@h-h3*@-~9NUtN@4X#u=}P)-;zVao&ewf#984MKqcC%m8tu z)#;#|o&~z-6R7_-I3Fqk%;K5Bv?h;P4jr6zB4=`zoR0b6pa@Yqs=<*m4jqvz)yetN zajYdP^~<#d=bXtu^u-g6`r~J-?FL$VEg+op1JM=GWMbQT+bazVy6;hP(@v@h-d?)D zCF*29M>9y(D918n#ROf*yHQi-T>8L}-BkP=M7|`+ir;*`XIpV}){}$YZW!%1@r)xg zr;4L&~*>*$pdXKmR;_?=1`Aw1jM?=ypK!l^u+G%xcp}3+1{xt2iBa_69j(N9TnwP01vB?C3@wLe~>*>Xu z^e&4|{)Qa@tehGHi%wGJ|olh=nq9i>fo$guVU=w&tUJ_d3JzoqR@TX9ULr0tSi z2oqHiICCF_&pOAcZr=L&FD`}pwH@^8JqOp#+NCgy9>2R090IdLnMo%Ug)i-p5kwd- zLU=n3EzZWAWr%aSk<~#&fYxrRzXfv?sxi$cV-3LIT%cEOyg!^MfKQx_xaLtA*#yJz2#kL?wT1f%NaS9(98G@8sva>zTjY7Y$Ae(C#hQCD>~QFQayx*b+iG;Z*O zk*`PP&~`*P5~sw9Ky%Iy3x1ZnBrBjJLYWvk4|pcS$V6&yu%0<<-SrmFc)FuL5c5O^ z3or)WFsLR7BMkeF8o>*fp+q`ENS@yA(4TL;WB)`$KW^Ub!+R>TH4b13d)s=M&^5is z(#ypd5XufD_Zi`ZdB5x^NahdGp5Q8vT_K{@)-xeBI+;*yr=z@QM`Ik+bAD~P-tf=| zJ89#Lcp_AjV#e%O(0g@5sUOte3~EQqCe;*_r>4%F#lm#x-(8sZf_p z$^L35c7wY>=K?`-gBx9-YfO^Z_kNsc8)b8vL|8c>6@P>*G^`feOyS zV$&1DT+=9z<)A{ z#T~jFN$mQSb7Azw#2lCO9{H}SLTl?)Pe+}{63<{h+mOq}WMbW*kB8eEDd;jjOCTu} zuV0=ALy1}A?2rJxTugF&-tKG*N@_=#_oKW>lL=q2SwDNYzZ|(bAptrNzNKwjHZU7k zLzI?}hl-2~Go7%((F)~IJXFjmE)gPB=;Ii^%f^5X!7;fkjR0=1k)hJ6Elcj1b!^Ge zpJ#L8A1kB?%4Ini)Xy;FdbJGn{bAh=Jc|av9J=hJjZi*uJ#ks=ozuADn$@)%9G)%b zNS@32y`E*{J!2t2pXJypifW(vVvsgqyXeUf$5)-^Zr3aQwA_Qo=#3*$zeYz_$zB`M z#LG_D`2Yn__O7NZQSapEkPRwcC)Wf?Ygf_}xz0Is$d-&#m8P4vgy1U9>h9<&xm?cC z6TkS7%f;m2en)+*D8(IIm=0Cye<>E!ON{Pp`zRMjXZg13EbqaCK_WT6r=eRyvx6#B zCCb!JgSx7&XOi*c=oOht=NubJsYbHIKAi{IEMqQxtEnu@CrOdRvm9k2&u0eD&Nxi6 z?m2TT@^$jJZp|1H9l6H8)<$~C{U&KPK+g6$EI!`fJoh%)vkaEZtZTb}E)BW8@R>7C z6bQ>cwj>km1hPy{p!kUnX0i|n+rc{QOhZtVn`pD6Ikw&A6iJjvea3T-jPsl$s=co= zrGQq<&EdK~YYDv%&i5b_rwr}Dxm=9fgbmr-W61mQ`((E&3I5`}`C5@n5`h*_SzFo8 zUmeW-wHjBG&don=!T zVHc*cKnNb(Ey04jOK^7?VDQ1+-2;O=!5xy|?(XhBxD$dqgDmgvzFYeX_R~&vbv-rJ zGWAqLMKSF`5ZCW$u&HM7xdt0^Es*)Dkh|)zm%C6g z7djG(viSA@G>FnKTir!du$m;fuwA3gC5~X{|}^RjL>N^KLQsEaTlOsWX(Bu`toqw@y( zyO8(iAKKxi>eJ4_7Rm<3?pqV|p;JV`v=8p#zN^$=nktsTqqk5Hxig^r8Tn#S%?|j{ z-M!*n=-7wwBt;BGJ~_cto-Ka*`>FkNHbvMXWdh^0#bn2%AW2r1s>g%3BXk-)Eu(Mt zC9^I-DG>J_@#ae>A(PtVVNQZEmtSH8j%g+bw5$%TK{@%t=Py}-IZ5oMz*kysLPU!I zR~>@AQCQ5pkoHFJ~&vD$UI|#}0TUE&} z%u$W##scj?J{ncutC~x_QIK9=_)UsGrz@BR?2ogNPp+p(#IQ>MQR_oDjZ{sZOS4Y~&lR@`npr32JJBkimAdwT{v@Xu# zgJCz88^cV7O5>_7X(WP#P!j-(pgzmX_40 z8@1AcEExv@#SFtpN#>K*5A`NSsdzps6e%W`tg#!V(GOPtTSN z+wMiHzh_TQA-0(xUST*)ie2froxEn;PF1~f7Z#l{gN68eY|~Me`P;@-Si}-5Dn_zy zBYOz{SY9ivYSCH6$XpSzivrziOX_Y^>Ba;x2#&67$UwoS5*$w*jZreEnD^F5RcE1Q zY1fTUKF(st)l63Dw5!8r3^$7}7Mh5^z=LEFtHTGA zsoWN(<)%9vEO0A_=t`eE{*q&eej2^EfwrHc`G0M!z=@!vfrSa-M>D0N*QVe z#5wUJ7fVox8yHR)d%dxSJ92<}JMYQ?NaJ~*iJF(>^~U=FWxt%QbzCC@U3kSZVtdL| zDHjGKj+n%j<*JDpYY0d$Duqiu29-~i-d5oB1CMOvzsBD2!FfpJO5n8JsWi?|$Pe-S z=ztj`3qr-JxrY;V@W{hSKHn4!bZ+8`EBY!4XQkHZXTyGZ&9o=gG?DdS5z1^&gPp)v zl}d<^sL(uT{2PqcEMl9T{;9gC;i!*YevzYz-V2y@+Ms15c}_CdU5nv|iBkQTxZzU{ zbzO}5uEj$VtRUa&Md+MLYD4kYb_k2>5ME#S&7Ya}I7jMNug#>Q;VDhPN|4g+-(S^t zf^s#r#a@4>`ToUK#)S)g`-$AE23Rz`uZM8>`PmKm`8ceYVEAq$gT60K7*E*nS|>+b zK|Fj);ub=V&mLN0W4LYq!_#;&XIkC6dBmW)rf)s8GFWun^|{tP_H z_eB|booGy~%v>otG5m%-g$oD$zX(GA7f$Gvg|y2ZaXp=mtLX=vuAyy}s(N>AWJ?n( zweruXo=rI`!c{wX_lR+sc?npwlFYm|v0%}MP1sJbmc`i+%5QArlZ`{{ViFsZp>lV! z7I!vjhx87MFwl5bE(u3%U^*u1TDfEfPNZd5s%!hJQr zf%t3nM?cLxBBvM}t34fL#I*$8qG+f(S^<(XDf_e>%0Wv$(H-g2>&8fE?^dKYfZ~3H zohA@8t6nuhL210`NkPRoEb(NQjBJjoS4JHErBcehz{P5Xf5V*L+T~0= z%S#%n9~^;ih9z=Mt6F(Z4Z+eho1Xt2aUBu8-pmV{=ptz`Tq}+%Q;zzd6u(?{*YQE+ z61_n@VOW;^& zH6u)*ebNZRn0l@6o8*6z(?PF6l5O>fW9ZAA_|8?osE|VwSY?*H!Hy}8V@(9KX`{LZ9gMkdpd2eu3r!WWQM;Jp>V}^!4Ey5!Td(1O09~xcfKRxD6{Cy<-K!+ zjX+cN?fKbCR!VG|P}X1pIs|DpA@!CHd$26< zAWsC5?^I`v1$Yd5w{G-%?8DPtSO(;i*6EnNj9ek^FP%eLf`C%}Yod|v#oJGhuhu71 z&~UNxfzfP}9B(_<`P!N0-RGiOktAe$jw>89S|IMuhUmK?_EU`}iawfI77Yid{UD#= zDUlVzzLzAm^+V2{ZjXHJF};Q=ZC7QQw)h3ZU-+3bH|L{$Z^4`e3~v=%NKi(W(2$Yh6ldqsxEx1WG7n&Q2CK67`;7P*!eXd^Z@uL(GdgAn0CL z!=NC3Sn5SCxG=in27zK`+16I#KQ#4D36{B@+k&G?FM=y>)nOUl!PmoMcj%|t4C9Lh z!ZM9XI5ykXv0|yXOW51xoEBo93f)_GjF($(hh8}=%XJDk$8DizK-u(Rze&GL1qp`h z`3IHuTZ;>%wP=z#xsQkt){%hvD!;}&T*vAC4ET`j(|VsjL%~;1aO>Rj7!JyZvRxGJ zK%PAN7}JQ8&k!M6NHcUvKtoIp|K@2;f>V1-+W;} zgTnI_x;JOmuWJ<>YIq%OBXI24Eu20}$uxNxR{zZQ@FbAFd#r(v`b#fEF_Sf4A8Z;W zLRz2l=a3-SjYfE0RXgZsI5vKb7Ui2X`f;Z90$d!lnry6f_G!FN|?e%NfI03#M7TS2FE*}Y0b^l&4gUK`Hv7;Y^iou+C;hEW-bl^a#~ zWd!V%M&aTj;xEC#*6=G6HO^cnSU+hK@cM~j&cKZsNz8oJ2jjClLSh(h8qD&!3kXsZ7aKB> zN~A1{)%!+a-ex)Xe(4kG5RWMn-kEWYa{sw>$gTTHE9TKDVtK4}8VyRRK1-n1F4h*2 zdl!${n2Pj6x!*J_g|}sR?cJkOKw4e)1MA+tHM?pgDBpgA*yDXZaNFxb{W%srS^y|b zY5214N+B96GO!ujI4c8Ruuss((;uW}ZvPY$0ve>lSXK5b&;=F`b(vtKzR&-A?hY{= zI8dEvsEbmV0j!0#7i0&TCEVca@?tbtb@N9 zGAGEM#!K8w`yeUn=s|x`BV9C`^KX9%#|e7ATPL}JkQ%|5F<`MG7(Kn*e%L8Le~(Xv z?I#e&J`Pq2H^QZP(zd^cild`eOSt$9YX-g_74NIA5_Tbp%vDE-kr5il7S}!jcDntj~Y!C zt@nv%+g9(6gDdLXiBq!MXBZgzMag}L4Ta~8`IH8E+yO-`{7jQ}rT{rloy{?|8Szs& z#*<}V&aec9j+G!tAnY{^`n6St{7WqAHVKVAf#cbSeBL^U?i#AR@u5KpDt(n^bL~_>)(ZN*laYfBXMRSx)BS-mjNwpecqnH;9rZ>{; zHDdAXo?+FCG`aKzUj=ieeOtgMU)*0?;W^uDMSHTG_xYracdq4P2aOS;pzql&6nHc( zZ2;cUy76E5{w96qiisuZpw|bhpEdjuA<2!rl{CB=crxqvvAC&9P!98nYw(Ya!Y!%N zLpdWqk~+{NetehWedk)>W7-&i=8iM{Q~3MtP^v5BkC&SbnFEKL`n#t?|(ORTVmu&GN`aC{P04;Cs(3WX*7s;idJ2I?xFq` zpcT__1B}!A`kN(`$M+WuoHhHt)G*?&FE81#33;TBQpb9U&UFQ&hKBk! zQVlgIEchRCzdu&rj^N1*Ow_voqQ&KUV}fR`Bb znz|S6HizRYZkqL-)5&qNDu=Am!hY>}bi+=lW&)Xz z%B)rTE#*!MF;Aw>(C>bMiR>rfoP6y^Uy`;$BM;GPgMKyrK84MbOT*>Kcn{&H^D(i& z`0Y<`UUrsA2~&Hn*L z@xaKc)NjI)Ij?ayI))^hFDfxSzP-)XVEaf@ z1wr$noJ5K$0+Y8|^kvr?cBkVqRP>+GZUojw&c2#!dQ8zDDKYJM!@K^v(=0sftcwMk zXX?8Sh3xz~RqnoJ3od1UWuizNLp*@vj!E|O0Z23#?<;p-+43tsa<3#{Ej6t z`pGCu;@m;$I0j{Lv7?%bYT3hmIRi#cR%Vl6*0_L&e@*+PTvCYjVd8@BXVgYvTC9y~ z{A@6UrTT zDzozN3Jd(N7r-MSZfgY?Rl==g_Pz5f_Dfi-$SygFflMxgBvIp^GQS?W3M&SZj9VRz zKj7b2P^h+_lFSV5%#t{@{AMbvBs_{WAuYS=bm+0>i&j3*$aXrjv?DFHm~&wk`pJI|FU<->D&IRWIo(AI=(DAxfrqXOg`jUb83GL zy=v&6`d27;^jOM&$Xv#4-r=xr1+#8d#qbSq4$uaQcj>MScHVmx+yu%-!`%NHV51@~ zZYn;PMQy^eZAT}h^_im5)k0y^OyIILZh}BN{VfA8I{zqaT~i5Lq<9LONdOu{tKJ|7 ziiZ*sVL2R5B+RlR!LjPr7@eXPAz7$B;p^Vtik7yFKJZq)RYWW4>We3SWr4r5(Y8Ry zNWb$(nQdAu*IZg%wMz&#nlG`D$HGE(H}D_`9a|{_YorrxZ#!%XMD2xhPh&A%*(-V_ z;$(*ID3V)WT)}*rDeaIGvnx>St~g_0Ja-88)5aM6gjgmiwF+7g!~T0}@~J&}hwG&9 zzBKaJ?*-1{l?U^rs|}L&Y2!W)JddJU@(b8JFm; z=7OI?OVHx7Yt*_u>+Cvi7BdqX3oVvz0I5fW2jKIKVd$-uX^dU&rJ2uXC?wYH6Q!w z<0U{9_fFW0_7BEMdE3Ie^8bw2K4hg48x0)LSB3K1gTOgY4*=7~3E?gg9r)lnd5O62 zRTmHR^S0qzhSRak$q|*3>#VRE7l6cHNwY55$7ZPiW?y?3X&Yd)mFtM!M+YTl zRyVHJl+j@UZPy(*VL<=t-z7MYw)nR#mV{_v-v<|$O&;VBB{d3hO9914l!oyvyI1_| zD1W+#c34pRu5rq7auO(_KUiix_|tOf#?^6|= z_+{mm@==HgBdmm+x-W5VcD*Bjr1gN_y0p4=E(Tikrwms^_8`<58H|(O75?odHKCWr zfX9)i(5*0VtfoZ#H9=EiqA_rQuZ(2Mp~{Cw3vFM0DN1T2e7vD#60I$+)-I&4z)sJh z-L35pIu6vL{J3opiWx}Vl!p4qj|DHz5_V_tCxjBIPfx;o#p>IPMp_ccdXr1#ee<*V z$W$_Y7G3mKn-GIjl=vJ<|1KT!AiwisA@A*%jCV5E`!$qS9EWzK#FugU2DvX+EV6GU zV;ZBwuDgU4Cu@}8HBYa=_N=(QT&(u+;e23|;c- zO5fh}kC3jluf&Ouwld``NEmxEiSSdzPbJD`xsP*XZSjNcfc74cSUZtV$&!-%ZAJ6Ncw^bnaXP)hyc95SuaH;?3n=`4gL;h{aWXn$dz?c4nd_ z9;<*ifY9#AEOnz6IURYEmu{t@ee)eA=}j%peP>l+@JsMui-6LspqHLSQ1759bZE2awVb`?+2pp)GgSDXjKQjeG2f$aIvMk%|CXv2kG`owAkgVmtKG(R zrHBV}U};%W;!c%DLa^2#!_woyFFB%lEa=`}bd{2%>!iT#dgEJBRk*=-O}xu6XSUj4 zH-z%2`P?oUA43oTpT6tHvblt7BT2z%Y|2QZ9>=(%0&@8tOFXSc-*-^eMZ=BX6L>HQ zQMU^h)t>FTtav13-jKSwyX~X~yo&#wGW^F^n&j;G`@3O_!{2DJMcgMAQGX}9^Cg2M zB3D7TPw64XRY>cyRhuOJ@zm{|cQvIDn$jCqiC0$n1v)Q{sxtH==s~3-eC9$<=VC3sbj0_e!X*I!X6rOMBVYUj{Eh4 zIfMjto~E{l&QYN_>P@_cmlGK|5;tRE@AuG`s~JW+Sz;nYujMg{aCo*>1IYGyMn>~J zjpOzzQcIGn5P<_&sp-`5--F-SL`J>sqo3-*-B~|2+dz{5g06zY5Elh$Md$`x2s}vp zyc0}Pi((=YroFa8Q3e0l;78nk7IHE|0M*4gj9HnBOhK9hv|BQsKx z@=Nv^UPl#!X#%!##Y=I=dD|W_Ogf)A+gKg=sPl9ZoxVy6X6)99jJ3F{uuFqGhO7Kz zXs3l+Dw05B$z#-n(Ac!jeA^GG+t-1LSdq49+sx#~Ec?q_p}VG++%J<@!`-z~PGA3u z(n+F7Jx`a>5dG89PTk>;Or`%PG@*qti{@aqJbyfx7%QyYQ`JJcPB?*7>hS#;;LiBghLoDeV%|7lVC}= z0-INlOjkh2t+hC;>U4Xa|H8FT>mUyh#vXjw< zU;EOu-tNR%qYRZ$T9yV8LQ@HU`BHITapnKLA*NAwHvRc9>-6&!>^ce{g=$@PKOB73 zeqX!oDLAFZ=F=Mz=BAHP>y)FudhId9Qk$Ygw(|MJD_W~Aw=gj`f6kq3)gWyeV1x{yd+R3`v9LerkJ}1zR*Y?m zWKMI$0W^P1cGR8ly8{QzLWD?9%%<$ty8M3LK^$iN4WYf{CuVkfD0HyDcQ5^@T}H9a z#OFq4PnZp7E_kWw%lcpm6P(-5=*b;>CSQ}ME3`4?~tHdRudbW;%WTO%z_ZR^XagGkqj8DV4 zcoBx4^8nLdGkNUiPI>53)n7EJM^WT`UO*3SrXgm2++bG>H26TrO@K>^j+!+0yao~u zzBjV;N%`zx?2LYw%an-APP_WTJl6HfbVY6hx17Q4I(l6`5oDc=-ayEVom1h|cHb(P z@ESm}%chR96wFl#$UfatVKxn0sJ-c!FIx!DrKhov*C+#G>~ft=8ohmLeD9vZ?05<( zaX~)#I*hOp?t<#P{@vs3V2Loki7| zy1@Bjtg1H8P|>b+pGg=loQ;Ub4x*Y1zHXE8u;0HLFmv3^@C~@&Jtx0Go@w}OiZ3K2 zVJ2go8%;`XIFr^>^HWl=W1U?EeWu??aMz_mD`E3>Zl3}ae{>i;gVeXTg^D^fA%HR9 zb7&ZGwT1frQrC4<)<$}d!DWkdI{8R(q1#(cL$?FL@-=zUG=^0U610&jyQX}AeXJz%+z*O zRBx|wGJv9eg>XO#h1{IuM02BWPW1umJ>%;${)w_kV^C}d$BPA4Q5<-98I_*<99im# zC$q1fVMBD%S~}BTWlq+)lmsVhr5_&+*-?hj>NTg&2&1_p1-~m)$UtCeqS3f#dJwN0T^&+@oqn_j2f;jWvex2&(IgA z=adRoF#Gzh_EmZw<52?t5asj{TJkP3Mq0Xwwra{KpJ&D@1_}YAitl@C>d&t`IQJ#A z3ZGZb>0rHvBN($r*ZqhCx(qnkgO7~GCd^4s`s$1wTaH9naOn*^xNZ=^v0RKKmc#Yu z-sp5QzYXzcP7`RHk!cAy=Zs{*f6hiAU zfIdbEwIZAfj&d$gLBDOwp2TL7v$-Pu*y)*`EBZaPKY2k|4dE7u?boAbW_KhX-x`7b zXbok-Fy#Z=KaW`U95>Bfl0p7%r!u~g-a_}oS?l*dU+HyZkua&)&4Q_0>6Q!jq#~OX zUpqEvDHjl<_rY3~X8MAMmuN64?Bv3q=|G2B@;rTA-Y-Cr-FR>~vT{>QOVwVdK7TR( z_?@u%8o>2}e1BzhQ(R;G^otWBNyqP1i~h}dZ53x9zrspow=&?{`FV-Jz8!`9^nD-4 z$^e=_XUuiB>6)qv(1CXuF8rK4Hz2c1gs*gHywA1VGJJ1?nG)hOkF4yfgdn>pN&NDT z)dFZR*-{QC+LAX3VS0Z5gLmOfupTiA5*X|8SjPQ3#62xWQt#Az^`n)9R(zhgf71!9 zlW8FNVX!sjkP}V04I5cbA3O*RlJh{XcheWGh1omWu&o`Ah4mbKZsw8@Jv68Y5=T>G zzYr2)C@Nv1I`S1PYWZQ>;P|T)K4nnb2&2<%aWGvq(D0Xwuef;KI8tvmtT`|h4?J3yYY?crZ@qyW@b~O?78L{BQ+X< z)C}=oCCb!DT@7egn<@o}5C6EFm$A-6X!hp}1ys8`T&}1=;!iq4rHJ-jC4Cn;T+O{YGW^>z0PtcxAeYV-H|57FvWh=|l@M&6E_8Fq>f zcZ*F*QD_7Xg)XF^{FdmVsUV-tGtUQ~`0V^je&T-Ybnq1}nln%92>}J_;q{d9`enCD zqB?nqkYo5gS<{fcf81&%zX|})tv}*u)#rS&1kX%E5v>QH*J`TG^E_CG0bGGo*y;OXcs0g2uGxRwschmXfMT>i{{zliEDjeQ=b) z#ic=7@Gi>te+1qHH^y6(LUS1}sBmz_)n`;KuMaauXu-?&9tpKxhtrKq!pHz%8_`uE z#bd{K63v}mHa$|E#=JI7tg%W(%j_vP!>GmuU>kUZ5cPAk&9$)kT3+<=A71h& z5)IA2FDnC*%(ejVuICr_v2U$Gh=qvR&c%^jw5zd7rFFTx1$c&ix0_pzHh!x7#B~n_ zyc_mz2S1~vIenE~H;4FQj3HiBsk@$Xbg_JwqCS6Q+=<$WYU;&{;$(SUz8C$?`!X&F zy(HWcnt=%mipLF=r=ujStcuW2-C$%MmB@LkbIM5xATMM0_orWNd9gm}AF6C4si*0~ zvk5;p^pPtbSuv{apNGa<|2rQE%c)A(-dJhX*-8tH2D=_=+a&7Ih%{8eAy}XTc;3m%t zPwxFp>Yvq%iP?WA%o~_|<)=rg8Z7_^P4n$mrHt57tRZ2?Gsm>QKz@ zA1U8gIZ@=o!NP&9I=t@ct!+y`3L?e_b}Ch6qkO6N}0tZsG?_2k(|FubpwN(?{aU zXR-Pp4$V8MF`7)5N`0(}yNnmYmFG06_f94KA!K2S(0L~i;*!N&cB*-oKH4f+saB{kQgbKX+kqmjQk zTMCIy22WFV|8M7dm0tduCYN=3^@?3CccU~=WZ>_ifun6l6s6h8nR}Tci^zUAo$nGP zeq7Z`p*~!k>Ed$EyoSgCj6LGky?=yy=7;$Q`nII#PiNE86qB1y*_g+wh6!vL(R}6Q ztMGIsBPYm1HtW_?7epDmav~lytJv;Lxd{=**~2auw%M3`6Wt^pr}4rDrt@o1W=1Md zf?731EU~Ji>L<`(b(uxRtT`Oi@T#~e`^8{T)S)2;=s|9rG*@qvD^vAhwM^Jn`3LwM z`A;`%KYjw+3-d=5nv3N#u9}oxeNym#i_Ejx4iv?f+Ov|ofAQR_UoA_n7*%tJKz#$A{pnnL zWTq5rc08_fFd9}D?Xh=-O2`hGe#kl0FQ3OPz?~PCKX~$3Z0D9VPQ`?iW0hmS#XTAk z?M>tV+qkRHzJ1IKm>A(RMPA3$uVL$`q*|f~3F#Aw@!|bQ;ZY;S?bNC?-icqyGJ2AZ z&A|O(uo(kAtbMM#$8z#Xsa)V^JG%0yfb)9GW?9}LDCA6Y-#A#{k1#I9$z*w*FbiNa zn`qcLo50&xEbNLP?E3Sdzx#0iJAZ(Eli9UhrmfLTIcr41obEQ0x7(C;)(j5vm3(l= zmgVVzEa}7ARF8o`jbDlL1#;(4#Y=X?RxtRSiy#7nlPJ-+nw*Fgfx0-NnTm~bqO>5l zOTV5ip3L%J0YP+1V-$|8qLO0-lkF7EESd|QRN8!>mN3!>t19njJMt5lp0B7smeaOR z|2EJMR1V-rc(Pa+@N^M+ZdR`MbhWpMExhaN$y^(4)pUv{sZ;!lKbxDCL$woCMWXK7 zKl)?%K|3Q%qJBp#*9}Xxb{Zkok7!6pluA=#w9)1z2{fXJC6k5;F~h#UfG5GFr}5=p zh*%dW(0m&7;#3O8%0H}Z6We>kBRZV3SsMi8CYAVXy5H{-JeN!VW+vgef z&7nEsuu<$eHg(39`is?-^}GBCz9$u|_knbqKQ(pZBd%`6_jcWrsW*i{JI|3*6l)Gb zDIi&}0u-qpAaqbRdt*?~$%Fdh=ggACv5p*@VRy}UhY7>B+t%J?^~+xTK|+Iq)xgY?bSsz))NpakaA${a>dzbiIv`Tbs>onY8P8HunLCdr!@OPpkUFhN9I z)!_$>6@-aKtUp%O7UC==54%Jx_}NBzzax%Bhuj4zV}7MsD0K|cf91`gF3IYK&uwb{ zc>k!L(}|yd>a*F&sD`Kf>y9oEfiF!GntG8=kbr+Iw{**JwckNZ4PpME*ScpT9!W7M z>B`>|q!Gz*E#p*fp5@@j*7JI_F+D_UNZ8aEX?kyh*ws;DT4UY%QY-WAw0S{8%l~hS z#X2!nLy6vQI}kV-3C=aNWFO*x*}lQ~l*u z;1P(Qlr1Y^254Ptq;a0JU$nzjY+;c!OQQ6vu6K5XK@G#+$mBp?FFX(H1| zIm_)NS&ER2JX10MycA)JV3Zwr2D{rU%;V}2w|iup&AM{u_FdwWJFdM zsD@d~v6C*b!-oqweMzvZ_G=S4kkl%;d6q7@kgvSxTZJ;#>vqJZfwdf3qy01&b2RIi zO`mPc3p z%s!9OBr(JH{H{USrpbg+tb{PDaG2}8tX98Dra$YfY?j8()C`BemZ5-~7TUee&?RGW zD`37?o&5TBLY7%D(La^J>g^{Twn~ZC^^JL-V9q!6>?~o+!y8NT$sfOWxO4wupy*T} z9p*|`NJ=zLoFqCad%OM)`=IS=d-!;u_ho>^+Z$u%Mq8^}DS4UKLAabxg!)Er+Vq!C z`_je-?V`AS|5?X!XHG|I9glb^^xd_>1#{M=i&ya#Nj0@KPmIluu!@gP$_lSx6{txy z8fV)LD}0x4o$`-`V-gY2KhmIjN|2LD7DhNZnw#P}%k|Nm?WwQox6|?&rvJQC1v9nt)>s&X+e*=_;vpS zC$6Xoni@(?YKqq}d|U6nW(D*<_@Tb?D~oFf>-g9P7WPX43=BL#RzghUBJJ>gFFNsv zZ{4FTDut{VY}%=r5Qnj@#X`oyDB9;n*?WZlbI_yQI5L*N)9N}jeW<7KhjUd3EPED5 z$-yLQ$?w1c7bSdH+kAJCpJf{ITovp5raCvTq2-+feZCn%E^|0h-0~~g{1pm(-y_>{ zx?h{7PBn|xZy!U_T7}0n_=weY#C6rhd8J-VLLDJ*WqeM<3N^djyghlmgGW;uu-1pp z_%SgM;ONjqZWOr{7;FK5n6yh$%-dFElNE4Qzu6Zz8RBMQq{aVm(OklK=th-u?@yfR zK$_t!+}yZw9ogZ#HdE)?QLx~W?pd#7Ypkc7MSLQGcG7FHhp)UR`xrBU(eSIh%zNm2jofWR%vK4Heju_%(t^8m?TbuaD&bB$iRLWk|KgWV0I{NQ;7+VxR x`+uL~qZgcI9`=6^{Qpn#->Lt9GF^dh@LONrdx#nw Date: Thu, 23 Mar 2023 08:57:23 +0100 Subject: [PATCH 003/172] sed -i "s/MAORY/MORFEO/g" $(rg -l MAORY) --- docs/source/5_liners/loading_packages.ipynb | 4 ++-- docs/source/examples/1_scopesim_intro.ipynb | 6 +++--- docs/source/examples/2_multiple_telescopes.ipynb | 4 ++-- docs/source/examples/3_custom_effects.ipynb | 6 +++--- docs/to-do-list.txt | 2 +- scopesim/effects/psfs.py | 2 +- scopesim/tests/__init__.py | 1 - .../mocks/MICADO_SCAO_WIDE/MICADO_SCAO_WIDE_2.yaml | 2 +- scopesim/tests/mocks/yamls/MICADO_full.yaml | 10 +++++----- .../tests/tests_integrations/test_3_custom_effects.py | 2 +- 10 files changed, 19 insertions(+), 20 deletions(-) diff --git a/docs/source/5_liners/loading_packages.ipynb b/docs/source/5_liners/loading_packages.ipynb index 6cada7a5..eba6f8b9 100644 --- a/docs/source/5_liners/loading_packages.ipynb +++ b/docs/source/5_liners/loading_packages.ipynb @@ -13,7 +13,7 @@ "\n", "- Locations (e.g. Armazones, LaPalma)\n", "- Telescopes (e.g. ELT, GTC)\n", - "- Instruments (e.g. MICADO, METIS, MAORY, OSIRIS, MAAT)\n", + "- Instruments (e.g. MICADO, METIS, MORFEO, OSIRIS, MAAT)\n", "\n", "We need to amke sure we have all the packages required to built the optical system. E.g. observing with MICADO is useless without including the ELT." ] @@ -63,7 +63,7 @@ " 'LFOA',\n", " 'LaPalma',\n", " 'MAAT',\n", - " 'MAORY',\n", + " 'MORFEO',\n", " 'METIS',\n", " 'MICADO',\n", " 'MICADO_Sci',\n", diff --git a/docs/source/examples/1_scopesim_intro.ipynb b/docs/source/examples/1_scopesim_intro.ipynb index 7fc13958..6b6b1f1a 100644 --- a/docs/source/examples/1_scopesim_intro.ipynb +++ b/docs/source/examples/1_scopesim_intro.ipynb @@ -51,7 +51,7 @@ "text/plain": [ "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\Armazones.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\MAORY.zip',\n", + " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\MORFEO.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\MICADO.zip']" ] }, @@ -61,7 +61,7 @@ } ], "source": [ - "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MORFEO\", \"MICADO\"])" ] }, { @@ -182,7 +182,7 @@ "import scopesim as sim\n", "import scopesim_templates as sim_tp\n", "\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])\n", + "sim.download_packages([\"Armazones\", \"ELT\", \"MORFEO\", \"MICADO\"])\n", "\n", "cluster = sim_tp.stellar.clusters.cluster(mass=1000, # Msun\n", " distance=50000, # parsec\n", diff --git a/docs/source/examples/2_multiple_telescopes.ipynb b/docs/source/examples/2_multiple_telescopes.ipynb index 52784fc7..9c50ea06 100644 --- a/docs/source/examples/2_multiple_telescopes.ipynb +++ b/docs/source/examples/2_multiple_telescopes.ipynb @@ -51,7 +51,7 @@ "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\Armazones.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\ELT.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\MAORY.zip']" + " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\MORFEO.zip']" ] }, "execution_count": 2, @@ -61,7 +61,7 @@ ], "source": [ "sim.download_packages([\"LFOA\"])\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MORFEO\"])" ] }, { diff --git a/docs/source/examples/3_custom_effects.ipynb b/docs/source/examples/3_custom_effects.ipynb index f84dcfc4..3deafa42 100644 --- a/docs/source/examples/3_custom_effects.ipynb +++ b/docs/source/examples/3_custom_effects.ipynb @@ -8,7 +8,7 @@ "3: Writing and including custom Effects\n", "=======================================\n", "\n", - "In this tutorial, we will load the model of MICADO (including Armazones, ELT, MAORY) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system.\n", + "In this tutorial, we will load the model of MICADO (including Armazones, ELT, MORFEO) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system.\n", "\n", "For real simulation, we will obviously leave all normal MICADO effects turned on, while still adding the plug-in Effect. Hopefully this tutorial will serve as a refernce for those who want to see **how to create Plug-ins** and how to manipulate the effects in the MICADO optical train model.\n", "\n", @@ -58,7 +58,7 @@ "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\Armazones.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\ELT.zip',\n", " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\MAORY.zip']" + " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\MORFEO.zip']" ] }, "execution_count": 2, @@ -68,7 +68,7 @@ ], "source": [ "sim.download_packages([\"LFOA\"])\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MORFEO\"])" ] }, { diff --git a/docs/to-do-list.txt b/docs/to-do-list.txt index ecd73939..45d66192 100644 --- a/docs/to-do-list.txt +++ b/docs/to-do-list.txt @@ -81,7 +81,7 @@ IRDB - Add a MICADO_ETC package WHAT: Add consolidated transmission curves, PSFs, detector characteristics to enable high-speed windowed simuations -- Updates to MICADO, MICADO_Sci, MAORY, ELT, Armazones packages as new data becomes available +- Updates to MICADO, MICADO_Sci, MORFEO, ELT, Armazones packages as new data becomes available WHAT: Add new modes, updated values and data files - Automatic documentation for each of the packages diff --git a/scopesim/effects/psfs.py b/scopesim/effects/psfs.py index 90417674..b87a587d 100644 --- a/scopesim/effects/psfs.py +++ b/scopesim/effects/psfs.py @@ -556,7 +556,7 @@ def plot(self, obj=None, **kwargs): ################################################################################ -# Discrete PSFs - MAORY and co PSFs +# Discrete PSFs - MORFEO and co PSFs class DiscretePSF(PSF): diff --git a/scopesim/tests/__init__.py b/scopesim/tests/__init__.py index 82644b75..b8001f6f 100644 --- a/scopesim/tests/__init__.py +++ b/scopesim/tests/__init__.py @@ -1,5 +1,4 @@ from scopesim import rc - rc.__config__["!SIM.tests.run_integration_tests"] = True rc.__config__["!SIM.tests.run_skycalc_ter_tests"] = True rc.__config__["!SIM.file.use_cached_downloads"] = False diff --git a/scopesim/tests/mocks/MICADO_SCAO_WIDE/MICADO_SCAO_WIDE_2.yaml b/scopesim/tests/mocks/MICADO_SCAO_WIDE/MICADO_SCAO_WIDE_2.yaml index 9316443e..5f12d0e3 100644 --- a/scopesim/tests/mocks/MICADO_SCAO_WIDE/MICADO_SCAO_WIDE_2.yaml +++ b/scopesim/tests/mocks/MICADO_SCAO_WIDE/MICADO_SCAO_WIDE_2.yaml @@ -42,7 +42,7 @@ effects : - name : telescope_psf class : FieldVaryingPSF kwargs : - filename : MAORY_SCAO_FVPSF_4mas_20181203.fits + filename : MORFEO_SCAO_FVPSF_4mas_20181203.fits - name : telescope_surface_list class : SurfaceList diff --git a/scopesim/tests/mocks/yamls/MICADO_full.yaml b/scopesim/tests/mocks/yamls/MICADO_full.yaml index d7d3fe13..d2cd2e65 100644 --- a/scopesim/tests/mocks/yamls/MICADO_full.yaml +++ b/scopesim/tests/mocks/yamls/MICADO_full.yaml @@ -104,11 +104,11 @@ effects : --- -### MAORY RELAY OPTICS +### MORFEO RELAY OPTICS object : relay_optics -name : MAORY +name : MORFEO alias : RO -description : MAORY AO relay module +description : MORFEO AO relay module properties : temperature : !ATMO.temperature @@ -123,10 +123,10 @@ effects : effects : - name: relay_surface_list - description : list of surfaces in MAORY + description : list of surfaces in MORFEO class: SurfaceList kwargs: - filename: LIST_mirrors_MCAO_MAORY.tbl + filename: LIST_mirrors_MCAO_MORFEO.tbl --- diff --git a/scopesim/tests/tests_integrations/test_3_custom_effects.py b/scopesim/tests/tests_integrations/test_3_custom_effects.py index ee55cd98..b4d4112a 100644 --- a/scopesim/tests/tests_integrations/test_3_custom_effects.py +++ b/scopesim/tests/tests_integrations/test_3_custom_effects.py @@ -4,7 +4,7 @@ # 3: Writing and including custom Effects # ======================================= # -# In this tutorial, we will load the model of MICADO (including Armazones, ELT, MAORY) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system. +# In this tutorial, we will load the model of MICADO (including Armazones, ELT, MORFEO) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system. # # For real simulation, we will obviously leave all normal MICADO effects turned on, while still adding the plug-in Effect. Hopefully this tutorial will serve as a refernce for those who want to see **how to create Plug-ins** and how to manipulate the effects in the MICADO optical train model. # From daa6ea4f44170babb35a9089f719924f850e25f7 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 3 Apr 2023 09:56:49 +0200 Subject: [PATCH 004/172] Move joss paper to Papers repository See https://github.com/AstarVienna/Papers --- docs/joss_paper/Ks-band_psf_grid.pdf | Bin 493317 -> 0 bytes docs/joss_paper/Ks-band_psf_grid.png | Bin 517872 -> 0 bytes docs/joss_paper/anisocado_full_text.md | 135 -------------- docs/joss_paper/joss_ideas.md | 48 ----- docs/joss_paper/paper.bib | 239 ------------------------- docs/joss_paper/paper.md | 90 ---------- 6 files changed, 512 deletions(-) delete mode 100644 docs/joss_paper/Ks-band_psf_grid.pdf delete mode 100644 docs/joss_paper/Ks-band_psf_grid.png delete mode 100644 docs/joss_paper/anisocado_full_text.md delete mode 100644 docs/joss_paper/joss_ideas.md delete mode 100644 docs/joss_paper/paper.bib delete mode 100644 docs/joss_paper/paper.md diff --git a/docs/joss_paper/Ks-band_psf_grid.pdf b/docs/joss_paper/Ks-band_psf_grid.pdf deleted file mode 100644 index a9b63764b4d376140831b6ff61c7ddec07d721a0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 493317 zcmb@s1yEhh5;b~och?-;;o$Bb+}+)s0KwheLx2DY?g4k!z4maZlqIB?SeZExsVWwMP;KoHQ$)D}@d0LY?jVrAh5 zWCORT0$J3(oh^VY;wJ7U_D)tnAt6KyNAstSJpULV>E$l1=5FF{0p$2SNXp649mxK> zu59A&ZsF<(ivKBPfd)VpHER=d z8%HZ3*YDxlN~X3JX6``lXXXEf!wLd7{53$-(b37>4Lk*Syf_$&g(LWh_qPIRS0@i= z;FFo+YCskV3r`y}3sq_G)Ziy|R})7!XA@ToM>FrgmjCV#o`^-k!raD0%*hL^_h~Y2 zw%-DtL-}cl`(KZ#TDUoRxSD}o_~fI1x$w!W|M1@voWFRbZ0x}<04 zxC1A_RH7c-p70$@LSL#b`4_S0+lplGU;7n#^5~w3s}RWhgC|5n-5GUDkXC+-zHF^w}l(aP4`t+^kUNE>zbvT9fAYV|}69j_KU$@*$LpC5rs8 zZ(pKISg#Wmn8HVPT(33X{>b?v8UV5B?&gpBhNN|2s*C5{1uRW8-l`b|eZC;XSiv|M z|G9c4nLG^WlkZ52tN5w8T4sUrV^iedPsJ5Cvfa#j&IV2X4R$`%5AC?b+7rFPHOi z39NhOl0WJaN_<^v^#{+Y;)Hvd$s>KGEaZpoC&VsbC?+Mj3dt3Ra3+DCBovVSR_YzC zi)<*yTI}S3zOeU$Z#F;Jz~7d+MDj_fOz%@fI$s0VSw}2|x;V*WePKmW@hx=++w9G6 z`YqAd1A{)8?9WSuCXNETAjB2KXQ$)f$?`-)pocPsH0YLC1r`RM|YozN2Bs7)Gr;1 zkWsjj!RMT|a-hQ|HXJ);y3Ev!4h@h#()?k;-~*ei{M+!!*Nspibtf(%6SB7#EzXcNTb+W!UN)2aBsAmn8G4}|Po?CM}&)vANoxKuz~9FV41Vc6o#`S6ixLoirF z5cMKuu1)!aZpPqZ0s!}pHVtM@Di^-7(@G0TjtTG)dvs( zUoJW;wY+ZP!(>xiG6|1>&P8SnS37~tDm3P7l2VO(yI)x2Xyg&J<)c>q>k^J$$P%Wz_2F`v%S0Ce0cnAy z6E`F&R!-h{KhtcLN?oZ^h>{|qMV1%6RGAxE$yy$n-F|}Vc+h>BEmyBKM{_q=QD$SO zf{U;q*3z(hTx|sL&BM?lrLBcj78Ki_dLvd{oiWT7%qM|M_QMkW?a+v~gEiZVtObjf zQiT4G3+E4zuh~Fm|HZneH2l9<$Hns>#<8<=sezPhK#-UpK7=D~Nu?vwh3kt5{f*^e z#^E4F3Z%qzVrFq9GmwL+eUY)HDXh5;kQLZ60dT#-O!_Za{>e!GZ>JFJe+JR>DHPZZ z-b?_(RLK4RqWFJJ)ofrA^3OcYsXT-t&IEkGtZqP1SSs;lpD|k_vcBesEr^pLsRSfjMP~q?is-r6?SW3NR)& z)Ct_LlHiq_h<~5w)Y^B6CIV3V`2Thd`#)VHX5wb?O#HyC%GN~FLk&!(z%0w!#Px~u zxdAzzSQD55N;-lG&J(2*5I|&+u(7nXcp_Y2x}*nWX9Kc;378p}NP>VY&rHnT!V=66 zpR2AmR@Ux74h|rTnUjNq36RCw+u7Q}5y-&gN6g4-AXt3AosAa>v99Vq*m|ad5E%S-E*RfUIon>`zSc zsf&b#o0+SPv%8Zkko}q6fz^PU6-?Y+ZJvoCGYIsQ4Z(l^s)2{foBWxH?Fp2ki36D5 z{o6^1ENUL6?$12?iEXq0rJlc?sbypCZtVtS|34Y;^ZbAJo~WDI69eUC<9*`l&N3Fy zt^(Wj1o-I<6B|3%Gr_b1s{(uIf3)}igbHTn;12;CGf_t?dkY{4Oo~mso&f?`*}=(| zMa|v9LG#IvRT;{R7Y?5sTCz+(k+aDjk4 zVE=Nlb0P9_f@wZDA+m9E0@=Z|;Ym2bIG^4>^=Ic|{au3X0QdjD3F6=P?BKpn@}%Rh zaI&)kSwT+@;NbuZSP?G|keeI)4Bix+;K{k41k4K9csUWl0_5W40*5$Q2{=x+Bq0NANrgCpYhN$;%DK3vTCPWdj@ddtMIkyqw@o#LoLPjswUEE_uMtdMclV z?WrHvvlE`mr}>{3?a6^)3}DA1KF!Gq9`o#!zu=zA=SX{+iR0-3^yH!^*iWWCm0)>Z zm#67|3nJ&AHT##U-xV;x-zwO^7K4XzKA{35{~HE>m+Nl{UNXeLK%O;laI-#{{S5yp z4*sS8sn?TD&%p!^sHf+DX?X$#0wF%X`=fxDix>D;o&w=_3_Qibf6BA3!Ex~v6aSFs zczBA5zw#U_e`4Y(9{wp$xSpTEI-X+VuRK}K1>yv+AsFjZ4Ez`2gO~5 znec-j{$_$dcMeZ^0GubDzrO#SML7OkLHskBJYOsP%@bgH`8?!L3i|W;{+wDkp05v{ z()-_I3*7ZDFsY|Ve;)ep_y6SDqO89!97MtVhX*Odv2nF+XANa!EB|G|gQ5OClCzn_dqUin*LMe27-b8ZUrA4 z&j7(1z~|I&eE;^_v!nhlpO}rio3e$gxRZl3IB>wp63i#Wo$Q@l)t;%yzb}cvbmjSS zM%l#G!R_~wK6L|U)aL;n4q(E=3f^AeOD^zTk=YYV_)Q7HT;spo@cc=J&m;ca_JH@+ zGyH!Mg6E5|zx3tr48o`ryltGKYa=(hJEAe7CAEds9iFQ*pX799^&`A(ZY% za)sQ-SXWdiy|@<)+CXSFv5%b}Ha#D6%D&9xP_PRbeO21RcRS$oD|S-}DbRjB!rG@K zCG{20NJ45bp!yN&4(P%w0T5AF2aIhYJjmWd0n{a+%Z?x4^kh`7HVifND8xfaN4&g4 z3^aO~u9QA1dAcwIgv9(J4(%_BgWQcjRE;h2M}W?}h4D|`f_#VXR;RBb&)_jm-kmRRu-r$}kWG&oaQS0k zl=Qc)ALODrh$LKo^!3Jxe5sa)&T&>PLHR+(?${}!hbi08=?f{Ru=*JyB1JF!xFZVr zNe($AsQM@Odjfd~s3;!=ijM;eKaQCFoRJB{Cf={5&=nQX)77`|*ekxoAhUR@R|>lu zFnP|Ho7sh1ccK>uv6>q9SUckWxR?s;&pZ<1piDsZmS?@u#|m>%#LCdLyGHdFRmH%I zrK@(^jrGaI&u%KrW4HI$rr2xukcGluFYs1X6V;G89|=kvyQ%97Vs@5Wsa7*ecC*dx z)ljum%~q%9w`y)Oj+N31tYqFdib3q#nE?Kz7?d?o7=+g~7GOTgA?Us=W zDjzuId)yHs(Ok{lZX$AYu?UT*69J&YnCt0jCTWx-SpnkpdN(yoI!YT9J}TnxghIZd zh!+OgUHzUA}G0Flp`RrN>L$gQ$=90mSAg%&m5 z38_G#bhkUyIjjman;?_kr!d^sZkO-h!Vq@A@Je+w%xrmRmTqJYjw?C68{$2KP$jt+ zf6Y2y#bK7JBBsq0)t*%6q@c-(lT73jQQHwLj87TBfJE%@Esm=X^5@`SDd0--?riVG z=tkzCS+RB#9Y&G9@2C{gwCnVGIG~IpZARO(lymBwRSX^`c9zRtPe8;-0d5QJdnuv6 zT(?(vy+KD9vu<#Ti=vw?#0yO4li|Egv)tCJmv{0?l8br+pbm{t|)Y zl{MzFY~wM#KC>wcLrU5ldg_HBr?RaVxrLdHw%d4;Xkmh-_^wV%Ww{Lo zXqcC z6m1$o??J>dpYckq@S*5WyS0{Hc@y7VFCd2y!^dWp;y4ZCHKQ~5@3BUvSj;PT?$QEC z#F7m_=3ULPar($KgZZ2`angB^%AGTz{KD=en_hzsDUJN$wU?PzTpgRiIG_=r)(4{R zJ;crS7YC48P28EXJ_cL{n{XPbz^rsG$D&EhoA(X4syno9ct&M)J9N4t=)(C5!e|JO zMyhlvD=Xz7zb_vUgE^fYl97c&+LH!ENK7tEJ=!pl)3PKxtbVSV~sa^R~1 zdn`EM$9Weq_0yr76ET#Oy+w42c*P|9=B98kIKmLW(`dovka;vjCeEtIe&x9rSYrJp zpLR>#o3fRJFD{hpMd~F0Awpy?^2R>Sk4yqraEqR71?zKM>`CVV_~JQbe0yI^pwA9p zr2-jv8-8mLesWLJg3$4EH79@R==4|2D2c!C*OXuJ5jC&IY8kF)mEnJLR`HX0v6#|?G@-QhBO&sGg&hZ!wtst^K=UYuFCG{Ey*Uu0uXRaZw;0Xd2X(DtN?WfsI!1!FRz7j|HjLN71X<^*L~}E#o zl{wS6j^En15G(Aoy8(m5C$7kpGF$_zkBo$Zg>8g&vc_w6yk`PgLyq&*u&urAT!n3$Pf3`BddBQW$BsGcLhp~fx zx!NuBauWHCA+g@cAX%C+wj#94FIsgR*^sU3AED5UKMNT&z0927$>m5&4|R5#GO5|j zp7JR`+ns)sW>Lep^dfXNmYkq(I#}c;o8wOq?_F8XswSW18X$&?=-RhmR1c)ikSP^oUUF*sH+^K*`DGcI_a<#n)g_m$#M>5 zg@8G^AX9mpX!pU{^|^~n9?KVgu9TVcA)*1Ecbr0KLTLV>E&U5Wu6GhYLODiEWpv-a zv$Z5*m>580*LnWcq*Q}my9xM#d zK>Wd!P$o|=^VLPdZGra7*|ogeF1vq9rD)n!$2bj@?pYn@95?F1N`up~F|M^OGT`C? zB2elJ-362H_p>P0{hv+%iJtN7$m4Bym$Lo_DxAj{-*Vx>2AF{9Tlq{}{gDh7Tw~P3 zL8;rQ@@w5T`hYzXtkFRJ(~dW$GCuf_`EWm}*L>D3kK~=OxS9(xsi*~A3JWCwb#h0H zul8ae+Q?351Uj61j%S-W_qmfE7|ibB{6bB#Qfe?C9M=Rg_R;;3V?_%;;;xVc_VLNV zh{~s|kxNp4ttdqIc2VoK2~L`^$rMK}Q^sP>XcrCMn4Y_;Hb@EF^IJ$`H|Q#i!Yd1f z8riJka}Po`1eih-)T$UPGoErPj5`(xqE}E2ak8ZkX6G8e8qUYKc0BnNQF{qexZXCw zio5W_mPQxJzY9Q^aG1x`cpL9ytz^O*Rky4-^X>8z>KY7EMNlxaVP8abg+80D z48Lc3K|rn;{UIs6{#|r(B6_m(S_?J^$27*s{ijya{_(1&3KjZ>(^0358solqA>wG45}6T{G|zcr;H zX6BXzMzaDUd1;Ta&tRuzk1nIgB|Ulpho*&89RDeO=*`%N9x2DHA?*m=pU|B-9RHitfF$PEUyeJ8Zln z|JKNRgFh>bI?xp#WC>8Cs9!!;kX<{O1+4gIEc;5nxZAOcr6{w_vDECTQDz*KiW~`6 z7FL5$bD39wk(NG6NzjQxVTU9~g1*GNT+8KrVM~pR6On|39`sTMvitzCkNv)QgmF<8 zpv908k{kYt%?rS&gfx`CN)K{qOnA+}l$G<*%hlRX9aFq(x#D=D_(A3ae#Zx|&t`UZ z+KA^PKix3j{v@8KL+0}7S>3tsizL3#EmrkOv}GkxGQfR>p40ORO#UazkAm@rBQ2}ql;8sUcbB!*r5pB(C=qiu{5*v(n7)wr+pN3l1rmQ z4kj-cS)Pjc1)_v@AY|_BxgYZ=v5bw(4-wNTofb*cobF+hqRa}{;F4)Txg_e1J36|% zKsAnG{lV@1x_f4<&$g*JV)@k^*Vu8ba-IkDcm9&^bT0yi8FZarJFdk-zkge#9Sdm0 zB?v-R$k83q@{;v~+dv?5!MFc*`YlNCwW} zK}+R1g^_ZkBxZrVCN&V>LX~G^eBM_r9=Wzd7$4yPqV^{DTx50m%eh9jmMQop+5m5I zeU-|crD?CDQoXhe6fZswSBRYF1lXMb*lDPPVF`fSi8<&>*cmVDs7^hxnO7+`@sla_ zu-~6|>C0)BeoAcl9L0L|5O0;@aF*55a~gZ8&rrmN1#ycKh%bBUUBSyS$F+EL(#Rs> zd_CS8%_-efkViO&XOqO!@;X}<2BlDVc&14bS5f9?X7kQK6Q{}8C|TKb3M<6?uLj3F zcoUx<++2B{ZVE1p;1Fl@Rj-G}Y52km1d!%|$9Ww&$)P}?QQJxBo^P{CXYf3hG z3I|3B!kK32!TtBt3%yG_{ol}XU;3N===A=kq7Fe!;)w6|c2?GdSq^8k{eGi)QT9;J z`7LU?Rg>?EYwP(8i+SBM^}ZI$T(k%$u%@tpr@+d>;S z$3-UFlUcqV>j&SlWH$hva3~UJr@WTEdOB1@GeCPMQM7MaJF;t^Ue~(W9cz%hwK|he zPU&-Fs{xG*m=1YIJa;8gp|HUfrV-;QU8)xv5;i3xU!+VIt^k7O zDpGD^LLLgUJ<-xzA6kJHvm}yuw4#^?8Y9R?>(m0 z-Clbq=v2o9O1gz3uvSZ+Y|$ zK&Ooqra>WnIy3=1fyfo93dit!I3_o=+ju{?s3i*-(Yh7OHvife?SMqHmGz)LigU|_ z4S%aw)NA}>;+8J{?h@ zw}F+G)+HkYm(WrjU*UOnl#wF?j5l2^r_%z-$dX}$Y9K<9@nF9q1xn4_N55>O-Ek!U zlnIoMV8R`!8yGhB4*q0G5AZm2ec@)i#1 z%h{>?&oNWAQ^_?3lw{P<6z*xX*h#RKScR)v2E3W)LrJOCP3$OZh z&uJP38=DylS{0zzPo3I(kjeaw6gLTg#{($SlZ>({FO`i0f_#gLL)Vhlr2R99)zVh9 zSM3a>7v0Dts_r6(EOmOBDCW3_cw zt(H8OJQGh(kk``%rs;w-^T83Koc4LXk_ri31mN5md0@&!S_s`u&3b56@v)VToMTeL zVl%X0JuH&dl+etksASuOnUb}k%+n3BMwE7&J&VMnhh9y_t*uQU=dIVFgDSAx{v|1= z>Rxu=ooAKq1>c+7I6W-)Il|tK##bN1Z<%oGp;`~lrxC08-tTY5&FJBgJI`@+!i&yp z3hSs#eEl|`iZVC{fN8Y+04Ij9tk%RUWxp1TjuSlb0Wq|VO(Id_I|VVB#P+81VbE5b zViJNLGc*Nj8@FGegyU(H@vc)+3N;Ro5L0u#anl$0QNIU=pBemb`WqvB1q|*mz4Ng^ zZ-!8Ci=<_((NXN-JGidDnnQ?b4}7o{HuOsvjUe#5xu=rd#8k@Ny;e47LdB(nWK{tO zmPGV8w?nI1_aiUGP=2^H7-aCBb#U-@|A0{)QB9BWCA$g6N#fUKOSroo#GTvX`viTD zw>evkEa`haoVhQ<5kk%@Rxex#E(@wUaqC>jV5F?oY+TbI6kEtkgQ;_i%=~H5`NY^W z5+hY$!v?|%6ZK}fSz!xXpu57p7yHGqXB_gA^~2_BPB9Nvf1se-rKr^5R4T2AHG2Pz zG8v8Uh+j7(%U2*qB|~TkH$5$LYgG|?I{A2@TFoL176aCudA(+!Ne-S4>I#U>k@O}Q zu^7{r)GmERtl%p{J(T zZwsSK&BYik{{RQt@i@Rh-y+)?XNuq5!jj4v^ zXVK0U>#qWQpb{$|{iTaFMZ@qU`noD5Lxf)XxV*7^SE3=+k7~8jD&{m3@-uphsro!1 zeE*~pQgTx1qI13Vg_(fXxHk-p zhw|~XNSuD+5nQj8WG^r>!9&Do&x*U~ochjrELyN$eX5uaQDa6-{G_!~t{GZ+YP;{? zU+lKEbudC7oZ}&x`mOI}+&D}>ch7qXw8YM`hT2=M!#GF+8V^y<-6p4dyO2mBCPEZ# z=%2&9Je~xvV)f)b8L3gVwL=D!D86fU@+0nGY}t|1MR+!pm}#`d!_YpSx-{sjR9frE zx6q@EauyA_9@rU$*mcPpMz!!Vfg)^Dc$)R#E1d$oigh}R6nij4d zn$zd>S))h&%m~t+8>ISBfjFmBIEBQ0Gvq*{28(X_T8$e#PfIkNWr9{~!6_`3 ztzIP`k0KFxgQu@Q%Mf_}*-KZ(*M%|)q8}$4B(0PRA_K06PBIs)(dXJ>x=|6G!kv|C z82IurvhmzYSOzg9_Plg#gWrJ#9-mjOS6+*3=i@>0VP7E9Ir`kq#HK@s+YP{&o>Gy*OiBp(i*E*AxbUM{>%d8f^0*KnpJd;O?GV$lY;#-2d3sN~zBBYDwUpVL zO@9>gR|(U@mOz7P-uBDX;XLE>R|4tgP$|F2@w6yYxb!AmG&t&^HMI^(`#&HP9v9I5 zoDQWIh@o+PYxp)*W1MuCA5GAaJe@H{e1jTj-@Sgc+hq2-*b@@}bIm)!0qW7^wW}mg zZg}&^bNq9F92EMjB08IdE3`#tqnuXbQF+(RwGF))Gj$J5U6NAZ^wA{!HB7_7_jR?=%#B8fb0}ZtwtO zxf!;J@t4Bsm%^;K4o;V~rBTV$eSOrz4ma`)DG(OTRD8_%a$gA#qj5S0PhTXOjQQYO z1?7-w?{-;M8(LAJ+5%XLldP8ha6UF%)Mxc@#B2=KeY2Q!#L=ox&k6vR=X8{9 z!)v`O78#jix0`71SZq3g&yzql`Xbi)nB;pqx#WLqpL#ML?r<}++$MD7)OUMt`M7Mb zoT79p`N9rg{iE24O(rCN7@dH3Vd~6{Y%Gr?C1#x*L-Vu|W6ihEGzdl=x95V|YKy$* zJl@%~5$etP2MBO?ciPTG1@GbC)X6fzMOsq_0XPW!QI^>^@ys)3)0>P#4o0*iVjw|> zUXOidkDp)MH~)AXZG7u>H$K+x`})!6^=*W3z&-f#T3Nsm0D=y^kawSt<%@|Q>RMsH z50S)7k#?4q$nq`1-0eBQ8Z;)j%#b|T>@gY?GrTBVEkz0>2Ck?-A?g@%Mej6nAwekK+OiXy1cc;i)iv0#QoGPQDu4+JoRhsOH!Idc=} z+MY95LA{7EHgoCj`qpA|m37)eB(L{vl&?u8hmxt}I;T9U4PbFmzbPGq>g9I{qodWA zs94=o8QEQ1!jM+LDdr$D0Q34ye=7!g4H4Vtml_irCzl6#{`Ucovajz3E{Il&h3`-C z8ph*ixZFf{$&_W#!oo#;BqaH^A7E23QK&hHb~}f}KkV|fC;EhoVfD0!k-Vf9uXq1g zvVpXz2CY3z%G}nMV6sfLyenpN-O76kr$J*!e|F?{paVKf#%B@ExzydY7cdHx z59uJM46}1pGN%^T_s9T zye$oPms01|b=NJ1`O7<+omCGdH6^i?UK1sw)${V#s2};yvc^h(006G|O}3hG5^u67 zPz8bU=jT-U`!|r&IuYr36{p)-GdVidHzww?JtJVg+lCB3AJz{xhJq^Aeyb>i>J55#rhCr! zW&;d%D^&ig$j(o<7I*a$oLWK_3RzSa$K`Pzexp7_l>XMyx`B1N!*bsbp=Zd540c^( zj?y<15-0Dhibf=Ae2FCOk}(H4ZR|y_ZaF`#U(Fs~t`EHkxV;MSzsh_3)=p@&|B$!v zX63}l&mQ{m#`AFq9W4iMHecyu2~$ayyD6J0 zx6LlV?+$PbUOrg%ygl8#-c<6xx$<1^yErK>{DOi*8u07l*Q0G?yUAi0kN>(o>3b-C zcjW}-4Bl)y{8A}wW|}1DTZr!Duu0VlTf_0H40nu^2D4lGdwJmQxUU9ivc$Z3(Gg2 zM2o}neT6&A_QH3|H=Cn{RU-VoBn_Qd6$kmB3p~Ag6Vl)?qy%l!bebp7<=R8=U*(&J zMDh()7^FB6Bvzd!YSiv(YX={k?=S?^2XaUHw&1%=a7nIO`#q@UXb^_3!(rsJk~}3 zzI!XFI?l8)X?;#l3P&_*;R7NJ|vAS>o=sHp?n+H$P{UXnXs8?Y==-veIQQT*ifuy!Ii_n;xOeebz2A)zp`&4^(Mybx* zV!;b@md0@hvO>ut0`FL}pbK)LM&|w9jF090jT6N?IWO+BG&KWrb9fuYNfjw)2;;J( zz@;MRZjJ?NKJvA>_ACb;e`WOB&$2WUMQ=Pc=gyCrs<3bJNx4XnlUwPOQmO;W`fKs# z7`u2J*sQH;S6hqRdAS0lJ1@sOU-3zq-bb0+p{DJMs;e)&N`MiP7;8Hm(0^CML=WkV z1w_oB=c$aBhB<&0%vWlFYmkOMTW1DdymDNYhwZ+*nZDWAVS+m77lha&2v>+Bu#yy= z>WIc4n%Ir?7n)0UMA15lQh=(dP%b(0H)-2z&OSa*lfIG*@_@;``O+$#1FF<~-o1c+s<_;zGeW(ho6@ zjRvI!RSZyiXpJvoFt|yah`4Q*BRhxbX6bCU98h}`9h*{dPT7}3Y>7@xmxcIe{15@Y zR?Jrj_1xp$S{zuBudt}!_^e4}em>KPjf!Qz6V!5Qr>0FBfMlsNh!JF0mh4f%nKspw z?5R@@@$^E5zFM=nVY{Y9)`ZAcvODUwi&8>;QS&A4vs7gex3jR-Y*}?BvDx5<;5S3t z3pz4+1RQ`*$Mikx!%8sa8NdJwlyq>&)Z|_?0wA$h*9<7j#|vLp=9XcmN(mO#c?J{6 zkyjQNM{}uKg)rkEOvRfHY$3iWaz3}YA-*AY6S<%7{%jhJzc6_|Ztxl~cH6K)T3f2r z{P}|FI0x7Mx(IpNbWCxtgr~8sU$dH-j6K$^NiD`d-OH=0P+w95(^R+0qe5IDsU&_h zZXUw?Hr~g$)8;26;(QmjuO$L8j|8r9Xbqj%rn^(WgaekKJpV6V$amM}Y41OgDf=P& zq58SsM+(C2H<+jipnA77FcAk?h^=Xu&7c{je(*f`?0bmmBTK99^x$ei{#`8Oh=g#O zcN%p$13=lAJA`PV%T9tmK?nqX*jVE=5RVJo@Yq!uT_a1j8Q}}2m5Z=!f8VhuWi@?H z!1e9KrSh-@MSOk~jX+L|+~{V4Z3kh+dn#8D!chYxAMbxE-px2+P^rDCv&p_q>|W z7z+0p4tg?~E|o%&qe>8Cnz#ME{1vV7!YvZI?+{I)Mxf3Qd{4y*w(_<<6@Of#5ucwd zm;nTCzMzqWpjE*D48P|Jf?uS`11>jjQJ=%gt8IlW&Y|vhyANwmEUZe@2I|y|i*B(X zm}Y3cn1@Sum{=_zh43al<)I}vU=0_D{}gJ8syl9J*3qa!n{xHm^~d6`?`-4OKF%r_ zmKi-r4O}90*zRW=Z?u}?-gHfN^X`LQtl1k|<*Oz#so!hL+#N__1MtPlx~w&~GD}Q@ zk`)FJ;HfJGw++14n7VMHyaZ}`AM3D@l53X;JGSv&_uR%A)n{EcqFtwx#4@Co3byOT zDCSbV&cWF{za&03BG?n&UJt`GV33mI{(`quw54co15||fn=Vf+Q@G$pENxh9?2*Cw zjtRt}T_rQl2PrEa20%GP-a`!os}Bprd8`S z%S|juXrI+7539sq;;{6^qvjPImX?U)kCfrtTHidB4*jfy3x~MX7}ERr9<2IVivo%sjvXwjG=1->2ba>R zQdb4-SfNN>;cRJ8=%$(CwrDJOROQEf*_EL12?|oDvXMJ5jh72il~dU39a^>Kf0=`+ z@m+fql1r8S)yhAODQO`|w+o1e&~vkJQ^RD zXA4lNC2-aTTIfB1os;(&-;=PrqvzsMwn9Ns?rkfd=_HnxfS!9udwd? z;A!{pju@)Q>)ej4eGFC+)|$%+vZt0Hk_k9$$i$Y@`V~-%C)$X*ZlZ6c73i@#~A4LM( zoh43{Okvce`O$q+vLHe`0ttlRe#fz;!Ty|K46flGmG`nb5;_(g3>@$TE9}1zNe0oS zL*I;zmC=07*A@v0wgqVWams8_gyO3zEXv%z{TK6u91S!PgJQeZDHeWc z-!`;;DjdFXPbIOgeC8oBD0C_h;fv#(+cUv_t8bOmM@2>m1rI74@}s2*Npy|IRv9jk zjLtMst~%*&cr|T|GUf=vP7aUsYNF8Lwy7=sh^>6lqimUhOf9jB_!0II?p^S$fg?A- z8tw&2!1Z?_p|;WZkKy;=|D*Q?HjZ3=8=hQ_fzKXnt4AXq4a5BPqoVO3TAq1YLt89o z8v1h#K9qjT$7INNawXKSXFMoDDP>)yoR9=NIlYwP%K2jIUpdcckfiYS@04L!E5tlD zl7qZ-`#k&($NU}gJX!hA4rM2-4;{~ZyG)VAt0?LdvKDE-Py#fTDHle+JH!~Iwm^0# zy)g+iB_}C!tGjZnMrDnV-OWcv3Z99}8|8n8JSLCq79$a1&|HSwzhq4w5ARxvM`gDm zeq6;dRPf?Jpw?HrC|QgTO`q@!PHM5eY2QzUU=98jVm~QtNfo@(*6>RPwuVKL#SWKz zG4l3zM?pJ!$JeN@6W~VQXs$MhtM5Yun$^4ta!S~iZ1p%-BvPX(Lts1AL3{aVPbY{l z!5=iO7ZusZK}FWC8_ENOEh3}b7!NG+a!*PbuGqKQ8_PiE5UXOJ>&_tElggCs@kT}Q z#Vb2Xr1&Z26~hVj!M;lxN!_`G1R3}Bu0+L+bddn&UTaW!w6?K6 zA^0s>cCBy}5|p4w2;I>UIuwQtNrTj>eL-EfW`<^<)(btsYY>lrgC$ZjxIpO@JeBqC z%}{UN%+JN9=+%_>(0LznzLn6!bR;_P_F*%Ts7k+v3*xdFtZI8{{v$(4H{@t!VT$(% zCD09XBK4Mf*7pVbdOCMlilwICoj5TYo8%CMvJS4@>-TFEpih%XG* z$5VorDKA+SxedjxmlR3p0DwP}C zirK$$N{(Z77MM%>(udZU$?>&qzyWQ}*LP)`Xn2f}6m33{#YmZ`i3t=`L@Yg{my3VY z^hIM3$ZbgT-6xdbc(}2^D-nT3_zeyPq!^h@iDs+auU`h{^|^@#4np<*`nJ!4)>dM32Kn=IhS{~52$4vEwqoJMx z@0x%}+TqOA)Jtr_>bsP>b-2Ywu@|Kdm7|wuIofOMITcl5mI8+E<*+1V4`cmvdAekn zH0SY7M?9!kz3E?^fSV0xdvEsn18xZV*z@WJ>eN+ce8Nvd?NAF9j}LZrvzsKvvN{=1 zWy$5#y;eDp&&vEQFw~u z;;CeDwnh(UofmxT3jGlE5tbcQ97_G?*0EWC!;VwH*M+ysOY6F;Tn!GYux+w0QWo2W z4>@m2FI$h1IGIhbh>@>esvM0;gJjvVb~9J4K0+BdNfgk2YVBE6Su71og&^P9SbGhq zHeraMtP&tFbGy8*Rfs4#w!B-pF%N zbSksTEONTAx#6*F9y07{sNTz0054La;VS`W_nWrwdcP3Jta)L4tH&0tq6XH!$znq| z+J9|krmjsj(&zeo%1YK9DFi>{Owm6jLC`^tnd^3nrI$zYdcZQs?L>(=U#BjqSDUy^ zkF=f_(&Mv>A^qlJ>>KLknpc{g7CN2%0l1cugaj# zq$zyjURDW7NABhWPSBVLO%|8z~wdvmTj!%~_nZJ9> z4RMn1Tv*8r1Qxg@8(Q#nCGayeX zau@CL>NRrlH;K@03CW{ZcZ2 zs@S$|e{pWk8TU4B_iz2(-CAR>G3MTD&i8p%7ju=Pa}%W<@JA_2p|sKnA)(oG`xWk6 zyGHGDgaf{kDL2L#XE2Il3iq<| z8r!NDnh2Fi%hakz9J1Estq&U#$Jnorl^2=aexjxTn=3#ksWSW@Q~jWV&TI>SJ^uF` z7KnGnaT+uoG%XUCLH}Ii-WlfZNwYT+ScUVD23W+-gqr|EUG~^W=Ygq>BFW#aVYdEL zoW1op0_G0%9+aOXamb)h;`Nb2&T=7Dz#vYOtDXN7Hy`U0rZL`>f-U4j$m7sg!RgLB z+sQ|WoZQ-Z(TO`5jTt=+Hdk-1BjpZO4ZABNOmg;+qUy4gJq&_t4L+-QUAO76o=S^5 zH|&tqR@7=nrAO_!2YUSB6H{vD-;j`G^#^TX{^yPR9F)~2uTCZX^`7vUES8CW{nD#K z@OKbs*#s#J>+c3;mATn;QwL7l(V^^t6_Gqv3T?k3s}n^_3)m@6rV=Y<~YOc4fU6MHwZf9)owRIDe)HLr^4_^x_#5$z~k za-b+$X5{oqqfid(ChP9_&2Kbs{(~RGK|SHcrFX!g_>yyg76rUet}_#~cd^{NNI=B&z<# zMQi4!h>_h*`*DI6Hmw(m;m5X`i3#lR=8#z8l3P=-Cf1NA^}92(>J?B^^>FX!{xB4P z%J-WCXhFCp@+JfoOqwob&5jZ6*`_BAp|S*UPN^3~={RgI4^9P#Y1ueXmlmKHPoLT0 z&4kwKKOe>%ljN{z(I;2nXOpUEAAe;0YW+hp_zmq4_K+sg-B$8=d|7QGv;sb`HK1)R z02oedFUC!nTJJRZu6;+&TH*9}+o$?KUEgPrx6q|$4L@CYj@;oTR5_K|MoiBc18NQ$1D6S{uA!~=DppJb1H1Q}_I)gdrK;tz3HzG*u9y~m*ZvoK zby!_z+AafRSMZ5SNn2uKadI@Wp@VC)*BwNW-vlIW0780%Cm{XAzt8E0m^ z{@8AprX*RW2tT7(i)}T;iizRNmHj&60hrW3{tHab*E=s_yc0}o_6NH%eb4AAE37ei z&31<-yiwqU%3T8!s*@BpQIKuI1~Co%mDx1p+ZJ52TxxhK`THKJ*Sw(0>Zx3{Xe?w5 z4`-%xKZ_cb8I~q4OR-#+FJe3gp%SOcu95TnU~qXg%=sB&*Py?@_W6yJM0dys!%X!) zsx7beH;ep1w!i^)LFUHOUj4JX_tk(#S`T4v$|9p(E6LD8%EJDWnu=&a#BTDR7HJ|YxNd6ewR%Aa99 zl>S4><6V&6rlWV(@ew?((EWP+oBJ^iBH(So(((J!e+Lr|p^!ABs8?3?j_tuxrZZ>5 zmVwMop$_WCBna9y451XB)Kz6$61E^!BT@&@G<3;w>yKxW@8T6JxD)nWnk;VLjjy(n zoUKE6=t?S4Up=V<714=nr>ch);MzWpRsjSIlvm){PHZD*#SGrwQoonR?6*LbmK9hY zC@{Z&$%~q`GRWGoYKKX|??JS>SAKaXE5e#;`~P-6xU^vaF9WdKilidDONxJ%=C+1P$6*~a9#_Lg+KdLN}d&nq*ygOnFA(Fo?3QWB>V#+1aW?5Riqt8%oY!nGbFR{`(uY# zkyze9U|r__)CIkSpi7dTR5Ns#vi3^#e-mbPcOKn`?kSS~P%qq_HW_1?D5Ol~ZqPE@ zC1qX;)EE3J^|2fe)M8H@;hs6S{&AqrsAG79zST#@OG~Rw(`Tb$^XHbD){R|$9#0oE zl$Sr!Ye@r--v{%xeIs1fGYNLVh?pGAL<@ShFfn7HYT8PU2A6T@FUcsx(s;Y=(>%cA z@r9P};+U~KyX_9%y%#OSAbtt^K{k!({2lxFP@7^cYePfB*>iiE?Bk0F+7tZ#KMI8Z z-wO9%Z2dnt{ZBS74$l9lNcgV`;C~}z|9`av|3k=Lrj|}7h4R72^a!OM$VJuI&`?2v z3)_L0#tI$$Hw}f1JT&ShToyaebO7KB*!yWwzF3gAxTxlQ*bThsCfk@?8aAN!a=%Cv zLvo6%snT&U@_HUjsa|f?duN>Y1EYLDF(3sT$fEj_r|sy2eo_F6z`wFkoia2M17Nsr zJ;g?E4~>@{{Ig0a62QY3dVlihVgkYwgoK4{0CgAuX%icBUta+n|I?S>sQbshj-w7d zEDMm-wjKC)c1tp&aV#?7%N8a3eZGR@cIm`HQmEQG+macn-1HV-?fiVMLR3Lt(H|7Q z6T*93xs1D4kz$ihBCj-V5`P=?t3NnC0u5R4q0-V4wf*SAxfD>By=&`O7c1!3t%K5!mG_`B}HwL>aH5wC=JD>GS*S*`C*nLr6KzY8#ZKe^jnp?Mt5=+fDOS*+to_pH;)M`QjsnYPU`Y;ns`&F0ZX-7d-(YDoYT1`OqDDt z!9mt?W;F>ovC`Y#Z~6N-F41CE^v{r-^~T2wQu+M~3R$U=(%ERRkP1KB@l~3A8_>2F zI*Ozpm(rIMr0#nP)F zb)b1`s7c;(*wPGPti*qX=fG7s8v~ zkp)SeAQ6~*1=IaL`EboY+ZbtmzH3hMxL`}kWB%-31Bs>m9QR4YaP84orl0h!eyVYQ z5BDjyb3)>X7DYKZcAR9kf=H@1cRh-nIRd*_Tw?Ty18_-L;jel=d0MY9)tsXBr;j|c z1(h1wb(^Aj6~O;F9|q@KN&d@HE;107W`B|N&K*2%8Fa5Q6z{uZ$%CS@IsWC1t&_@OmW3tv3G&( zz>_;jK!4Udebco$!lYX3(z2oah?K-7l2{S=nquEAsxD32$=QJ+ED8G+F4p7*?1bth zR}{HZtH;!J?NS_S%Ycmtb&_I)rP%q9nx6W+*x|}7IfG7@f(?_-!O8}>Q~v1VQvL*R z@M{!#8N6Jy?dlX&oH~l2V-hm!hm!J2nB0BOC$Ic$&86npXbX9}jWD#Ht0xr5N=QJX zoirT;;OV1i`LZb5w^#6O{}##~9LS{fWG7o;m<9hh!xc_0%Z&)1SYoHv*Xpq`T?^*w z)s1dL;rcN~q=}!=|MP&gsuM#3&AJ{d%g%Acv0leqB)CJAKp%9!QJNCxQ_=18=u+}| zh!JP9=~~2pTA=v}49Wq2UYx>FyjtPtO|#$>*p?riZw+WJ+3k5C3T{2b%*buUR!UgG z)fSnO6x{@gVvB%^=p?Vkl7jF38(Zxk<@dC#Lb^`1xgWY@x$r1)N_#FdZPp!PLHC2| zK(;p>Rk9$mM9GJ16yUTmC>{P#`os< zdKWVPT5`M1mq+J7&hL)Xa9w_yH>%uTCf6X%Jxo*?u$rv)WhL1XLZu1onA4J#+lwJ3 ziL>Nk1l_9a+}#(|?BZ>xrM`S$&4Zw6y;pOV3dao_M>6}$!9`7hm68WfK+{JB0f+fFrW_{XsKXQ@2N zB!+%`_-#^kNHZmxVC&M>)+&7S*@{w!+i#nW)=&OOF;)(DmKx6iS+0L!!5)r&#L3{U zcFr9_s$+jyI)c_L;?T5v-_V?*BArR8&3>_So0J|hRNsC~c?}q+24~IU%JjFOguUx= zfxt9_54!;DiTOBGun@@gIX%8v>q zCjoBC%%cZUrNC35c>WAu37AncC4Sf07GV}=Ssbv`_+9v(kd{wTJhwVnKw6S7AeGx@ zk4@&bI^UE5Q-t>QQYQX9VOXSj2uNui(pt%&W4<|6$c@->K(RY6H1#+@rNz zq}bx<+0`L^)|&z?GlYR@{;c~hSR4}&XV@(Hk?oWqszk|jdl*v7=*jyq?gqH39C`tv zmDK4Uk0t^#;iJytTJ9_D)@sm7=ffo`W?Dca4|5;W@KWP#Pf?5uHO83mDE{;VB^H`u zUJ@hPffS|-HiT8^y-SQwf#&LfE-I=zU1ac7(rlSUUif|=@J_7@AQw0Ifi8Obbr>5& zF|!6P25$)!=L0i*j%JJPjAno?U5kcTFN1xqejH2#>i1WO>X!nUf#EQH`D&7QVn@hu zZI|A`05HEe8?f+wXjDXVM~r@I3#S(LHQ~C1LxvAa@y=(`5O8X`YjBF=Ti?Sbe_wI7 z2}RKIi5Wdjds%}verbTwaGlC;7`9>yX2~w103L9+-+Js+;Ti3^WBoeRhP3jM9W*eS z)8zEF7G`+>yc&(P8}~e+>eCM}Sx(ocAv^t-*T6!^aiXvo5h9=%KRM_K*WWAOV06bd zc-79vO^a$>XJ@our-_ibV;dZp;YnEwU{|VBBj|HUj+Hm$@kKowAl4-ZUde)(ZGxmiyVbq?pisjPQ0OZdbA?L7$)vr0 z5L>ag8a{8?j%>a2J2{vs<7I^Eewr!7MDitEx(okgA6VyCN?dczDH4x&bKyXB`ebS| z;_Md~lEYAZ75;N317Kn}M=P#u-ULjp{@?SYruP3h`Wm44X z2)^x>99TT+%-hR!TBh4IHz<82w!r(-tA{06{~Ri@;{7V8lBuFCx&l7f0g6m0>dE=n zEU&p=4PK@sg{?Lq%El-Py(g&nu4(Ku$&(6q>uEK+)^#x`-vCOhhyW zGd%|T@#x|m&)-&vZafMr)4~O^rwJlIK%Spxls;IG{;n@#i46x7R`7)9qvqB%I22tG zX6!b!XXN8RCbYczJb4+cFH#a(W$ajX5^n$7ql});Mh7*7iw~V14 zmO$7Z@nHij!vRHX{oX9?GHdWMNq*;@)raZeKH2Q4yLX>(e*V$?5+Z^y9D=}Rxt+m{ zYt)`MmMD1Qu>u}=zts<1}A7lV9E#TV3Y$XmQbb7!E(_=5==n>36}2An&_gZv+|E?KgC^@ z07_d0ObaHJ2*Ll%=-&${Gb$16uMC1PO9+*=Tz{QG=6trdPsrFXN=O?=;o-(Xq|Fw> z5*^TAw0y`pJF=OML`Fz!=4pV1~I{)emD|bAgXf&(?a2D zld_h(_c_Snw;{y(o$?jF1QB_Cg>q`!QUmb{34`nTR{0q0Iv$b)68f-lR6_+NjraegZoS32B)BZf!4HyFr4G4NF__v&BX-S%n1 z14E(*?8K&5w5t_k#pMG|J>;dz%tNz6GoU$-8;X~)(oXja0XvtW`hLG{UN>uU?y;3^ z&tlP=99~@67p3kRZe793*G9O>+^OETRr@yxGV*gbtZB#DtO`9!`c!qLPm7Ep4d)7! zAp57bCw|*NKcv=^H|4;dj7XDK4O5~D1Hp9+V4T{`FHiP}y-mTTt6chwB05J*_B0pm zJr9iP)JNPqPai`Q(v@*yLkic1`RG9XJ`)4*CVrsJI#0PK^3Hew&9d|QkhSguxFc{= zF;Gcy*_~rY>yMqz{tQE7?l?-83b$t(<-;dI2lk95roaNkfEtei>9>zGXh~>DKP1 zc*?GUN~u^`N%D;NyCX91Rgj?O+TVo)q@hZ4_2=c}WzM6EW@AU1!{+94M>dES=cNl$ zav>z8WXAkoofH*Q8NQrk6gf#Kz z?hyiLp232Z7OoFh!Ht7`$f(%Ma@WVtn;upwJ$pW1nI|hpfs~1xv)$s9a-2Mpm7j>G_w|l>X z(CJrlnXVUSzZ`JxzH<#J_wjoZV(1#C*9JYm(Ul)v%7=kJgUPoDPyd8gM~0bx&C=se zR+)bEc(M+(%VGHE5i?^Pqdh`N3^D+{I(__e1{0P`p-Ox;(bUnpnx0xHXyu+N9&>h+ zIO};L|237iHL%sq$Bz~;_c)e{Wew4M>YK}@=<8!;uy^_WU@_%s^9hWIXdIQC&1nf| zwkU_wL;jXfI5v`5L26l!%PEbcNIIiq7$Hn3GnvUmLh?95A%pKlFET4=REi?h5J80F zh}$hg5h78iP~|l`%*}a&WPy!2q0zkRQZ%0dpj)nZCymh7d6Xw#?R_yIrn5VaK(ax8 z!E=S=n@P1+UGfyE`qQD$< zidPDTjW-8vyX{l5zAcDJmumOrxhoQf0+o!Omah9jRAl53X9OHXUW(d)s{>+JnSnx4 z8s?wK4h!7B!hK%L_X_qIWN3>R><2>tDcH{EPD?)92q@dk$Ip3Dy0c98ZqoSXv)PLe z0(;tn<)2p8xh|eP19>YSf1ACc-D@;BG^?Jufc0_8!>f1Kjn*5zBL?!9J3{e;^ zJ51XyD#~i62-D-e72zsBK5Tmi8R*qw3XIdA?|=8^=`~%^9&FNKM#|V2bG1qhwRNKP z&D{CC9yNC95`;0W!fY4St1#dj%Sp7wvcZwqeItm))O@VU86oa&8$?^>UUO3AC$vP6 zAfOKN^2o^* zZ#Ljj27#i1?d-U{u74*c!yb$i-~$nsP$UP7&?t{V`dD#B$XCuVV7U9;_JdS3xyXp4 zJk}=MU6M`D#MJ|{oZhMl(8^GRqkn-ln{IC#T?3bo4iohB;}bvbbYsJ|wp|onpKsz^ zUnlLJFW~@9rhbphYe@XA1YuiS1W7y;bTp#HGcp*%cT1T5nN)kvsdCKsyd~jU@#@N* zlpZ}@c9-&aw5sBL(^Pb3Rs7~AVOo4k)b@wuoM_I3o+UGhZ!(Zz|JK9LVB9H_s;m@p zK3Cd_nD&h&tejiB(SNZ^;!|f*vIR9m^MzeWkvE*76t93p>du{4Qn@pmwY$#Vw4?U+ zv}}K;;3W2^x4*0L_o|yq&Xa2yxe+&rR>oM2Z1|9m=S2Au>8TE{5;-6W2Cs5St=ZQT zFu_U8SuoNfyPSw^IYo*R@Qn*IU32oS;mbMGNQB7?m>y=N^AXRSX{Qn^TY{HXXq}Rs zyf)uQ8_|mm^)mV6D-NnKqi|%=gov{vu!gxqb4KDk#3jH*e#dD_Gh*;p@~1xq>Fl1v z0XB)cbYEU0_Gdm2`486^86>IJz3Y=e%OEELf`aRyi~Pw3H91F{Mxgv0<)=Ad;RbpW zhb{1tjbnii_XGff%rX@PlP(FB>3houbW)R+V@w$7Bsh2|REd~oobI^ZT1cs%)gDyw zf8kc?vVf7EV-g*OE(q+;lsG2OZKb&^0AF5fe`v1C^eeZcsO`@oTb4=(O`f zRY#~X39R*Mwm)i6o|RKNS4{>?S2_XqKcKurF53yzLak6KGP3L*fhK1pT-Z z&>8wbgK6Io`t=lL`O^;rHm(bC(tzsXSXe=wJtM&IuAs;?l9o}ksC*d;QJPl4cb0uO zca6%xraeHrG1vF#dq9R)z!G2FhZ_^*cW2dU0}@++cf!?3o)qZo`)jg!{LK0lat*p~ z9z-=kS;6%;2grb>|C}%e!xseP)Djjbz#Q9%#vVi}05>j9eD4?92Modp0n}~fVVnbv zsMJa{D)auX+-VP3Uk+(SH_g6$@^L82G2mzd^^ukvPfnUQ->XnMa`XymgXq3h_VjRQ zeNiUP8UM7DgV(j&4_^AlaW)l88_AAtG{?b1V@*$6Pg#<8fMJ!vV#j(+6|sY6a13T# z$zMe}BTv3x1SZDf;fAx-iLR#kPl_J<^1G+k@^E(X&SB_MAYp5z ztp@MYE^V7?sg!E)k^Dj+z-E-eusU2Z^lpIf1B~)q(ZVqM8ExOzR;M$Fy67nK&<*xe zMs1$L2szpJHi0gDSWsZpGzLKJB@4pj2J;X^Uz5YI_m{=Xl$xW5yLs&H14$E!JdM)E z#L@s#%e_5{$*SmrbsBR`ecK z1Q^iLq(1Bt356^S<05D%T192drH0eR!&PF3nX=s;3Q*DF)i~>qa%ttvgLl$5gb2t1NX`p^3=6_gM_2j4h=q zayYT0{q`va*lB_fG9Nz~dBbir8}>+7JV+j)3L}S*X9I4avjW|>%56UoED!o?Ra7^t zcQshT2Q3O2Y=hmnb#*8g8hg%mFp&?346%AlM?dRwj%^T~aOLXtIX#XrFkSmAo!2V) zS{mcX=363BQ+UVuYApUeJ;w6&`1cq%Y%B0pkn1Z?2)7OF;rW|j-`yX)-#1bY=T>^1 zont2axaTRNU;qWZZZ4n0+=~tc<`R&S7d7ijN&+wN81+@m4Kdh5tCm&%aZu+A6u0%8Tr}iD?KQWG+b_vQ7CmYMy@yQ>} z>)S3%W8(dT=aD@45PvCbxk}= z6X{j$6OD8TtX4$CEqg4WYW0&@?Ynwajm5ogGvp{@Jc+Xgua?V1U#@0F2!DkRho*+ERu)*vHkTn~UwN~ZghdWjuD~zg81zKMW1?9pYKG$N5Se`#} z<=Q7XOY%}s&=lw|BrPk@_2ZlYNB2rhb>I>RDJo>AiX|c{RLxspRr40wD?~(yj$ne) zU3xn%y+u8KP8)O`fJ&SfY!L<5WY)sEU z1P%PZGIGk9P5FJ!r;tkvak&NNVeewzp({z$%$n<|%Y{{EaVO+U`eS)#R+T~gIh-}K zN&GK%u{Ct(uTRN3rME`WUI@>6%mOir z3`G{yEXZ zAKFYH$}}n2JVu9eyBRZ{vL4%h(Zq}<)4}9Yyu?wW|m1dFuE~2kTQ@3NjV{5{R)Xif@SJWs=ks&M zFIDH08Qy$wu$FsYd0F9mHmt=0xUSEAKuamB@#AJF3MSf=Z>`iAPR+(4&X}ar*b_ST zNZAZneYYH8WPN>ETaCb!!yuvI!mF+8U(1DI%6(z~K0*`D=0{NIqM}wBKAhc&ud@7AaxVhaKHeQ=w zmhtKaC>nNv33@g?n3reRtXees$qdt4jCg5QK0>aqFw~6;6T;nFueg5;EpVhqVxb!; z!Or2UJ5rdDj>U;+iwcit&(qV}{3qj!PF4akVc1|jOP6qzF4fvxss+kXk6{NL!TjGh zqN)C_DYI7Pe~seQ=y7BDONBS?2Wo^&dj>P;>`o3A?8iZ&JJTW}6m7b*#=Yo)tWb~z zl)PrdV1fPsx<`NDomu^@Tiir9>f@U71CMi?$%Cgg5V18RkiCPpn3To`zi}ao@3@D} zE@Pf(F;o)>x&Pq4?e|5N)2x-X{I?+`TQC@p$c;=x$3b0P>Q z3(6A+y2?|EoMxua^~ zq&D3YbP4`f%d`bx!D-|Jo8?uf`=zfr@yq%fJkOidV$X`{&19EFGt^CMfgz zdS7MIF=sIruy_j2^3$#LZ)9sv9*MtEyt+vw47=7(HmMDnG?<|X5td)svi1tH>H3m- zLN9d0Lbx1wMP(0UPU1}qT}ZPuC{YKH2*hDpgc`bnrKFPs+G*lKsF)o z)#@|4tpPFm+k#2@uFB?PKllA#W(j*&`F#^rzl(7P5Q1$0 zao3wEXv#o?A6kaz6rwLA8S)9$`+~IR4|Sj>gdeZ*91$Td{_O@WI(rf|NQ}x{oTa_nRxP`6B*GBA|_thu@F3PxtqJe8g~1 zj|jMLJaxw#tn7Gh;#Y{FY-gTxbhB%$a^2K{xw01Gyt1(T78p9_*2YMgd{~@0IVw=KB59?tXvU;(alvH6=l^DI*3*|7AmMCxS{$V2-oap<5SU z@{U4Lb_%_d$VYR=4w|__g2RDaaD<+Av-U&HK6COdt9oc)hrMwY3PzBzz%nsiR*=Yf zrcv~TixoT!tOd?Vx!Rf?PyQu4t<4<0&WhMAT%{FMI!A+215Qy#T`HagGr8z{!{!Wg z+N_q}pVidGJqmx%DQ>yE*b>H!BYj*6NM3(^`o6TtlmX?UPuFZ2-yU7N^lKjVw-^M% z#0?>M_cij$bz$nggGu6mD}Lpc(k)jXvRA8no8ZhiE|=`DMsj!N-qM;E zL}^iZS1CYM9K9HTl0>Z-5@U&0D?a0ik(vnf=Jt4^mml!Gyu(kdH@}bE&)Tn@r?1cZ zH@mO5uMYvP&sxS8qR$2&t~D31Iv=XwyOSUkMCxb$jBEbrTtz$r=93f@)Ot}VBetqhT;->FWmu{d$Sl5OyvaY32AOi2p^(B&cdAk?htRuJp3S*b!R%Di;;Hm{ll$(Uw;5{~ zk^|g8s!L|Gg zlJGdYLlNIw^b2Ny-JH$UN_>7q(us16uKGOu8A65+MtAJg$>#>mPIoM`$oO! zMbI=u_w1Q5(EI!f_>5|Y$8<)1HbG4dM;UGI5dAj*!kjiPkR1^`svRbq22gNnX4G^i zDSBmKT*7=Q3`mJ*_7bG?lyomcSM8o-s6qzNt|h3>zilrIc)n!z<^p?Dd)a-yBpChf z1$^Say;`gwqev?ur~VC9al%_9G-?{`xJpi>!I><$jabYPpqY9(d9#7I>L zBkUB12XY=+T%7lOUNb^hV#?_$vkZj40#U8WGOHdc!2JqjXzkw3i2R;X^=s4Zz6x|d zSBG=EKjA*#ktU+bxn;v(lfzV@sRa%w!zB_n%ElO)qAqm-YZL=q0W-Yr ze(N=@#&2%hPrdJV0`G}mU7uq$e%W?^Z;5=Z1>Y>ZUaVS&omUsxD-7PmswyuV2`oJ$fF5OdhzuU3?07N#8=nA;Ee1-@P|j~M(aNgD4_&>4;HVQrUZp?f zNSlxNb$095*6I_TZoeIVI?R#@d>YcXlA!@}Yij+pZ2i`e{hOY)OI!_CCQwdQKvZ2nYqI6=T?5B5(!PGbX*Q{* z3meaYnnMuul~7i0c+*3kd3_sK`bSda4XrKr4}$T|7!B)dTZFS`)cmeH!}8TbH@5A{ zPEJzm^Y(kprd@l1Olq@hsUcID>LN@~SwK>DicixZK&o_AJjiqBIGi1yUTe}=6Epgy zw7jL}lXJpfL5Pcv_{G~Cg`MZnrRn=LnSIn}KmZu+rfj9>v#5Sx`ay68wQ}!>ylaUS z{*ry@Wdx>Uuh&`M6$aw!Ek)dt`*_!?zJ&+>Qbt_Ov<%Cvwu|il?gP}kv^d?=X6Y}+ z3AEl+%|z>$N8k+=t4DP#f}Ps%3vjxy`3vE$H}I6{FjO-{a4X7&bs z=XQ{Du+}VtvaqGB#KM4tdo`(=rcmb`3v|o1qkicJ?xDzwJh@`Q@;U2`!*h>?J_GtQ z-&peCY7@WefmAeD1I$^Ku=UfLTvqO~F}VZXkH_ae3(Z=g_GEUSxRvtzhhCU-&eyt@ z-!3r)BCmsj*yV>e!v6heEF*T3^o~%ZmwZ9=vS9Hv$`SIOG4gc*@ao2qNtKr(mt*_M z$SrOj#V(#r&aBCQ3rX^QIzj5_ldrv4AGFWmQUihE-))Zl_>_aMD8e|Oe?AohzZM(I zO`o{*&751qe{!7}wjK{&p8o8+O5`K>D+xm(;qdz!`*wfsF$T9Pfu4a3J^+)8WE5qz z4pI3MQ8B_h;N2gQyY8|C97SA|JI<|0_Yko+i7LgGh~~OPRDE{A7DBMR1l66Z(!KT< ztY<%e0ZXZ5KY?w8*{v?4p>&%X-xvbuuN0tCIEwGNq~~c88267AFw@*%ys6Vmy%@X= zWYcv(s_FXa+;F&pN~c$LuDj>0xM2vH-B5rJV9BX0*^nz@<52#DY;Mt%CL_CY2czpS zKg@7hs3_n2y>3 z5s~>^Mm^k!KwT#OckA#)eX7;RWTmd-%VE6Vl?)d*Dwx4u3ke0j+FQ&PsJAPIH9@^A z!-G7Rh&E#VQ_{i~K_(LdbpDdiKZrKQ`1!j^p? zlJRTdQzB_f)a*N)%MWd0_J1(QLoS>`rbGJP-p*ETFxn^ZB{Mcx@iNUc$(@Chhsw_kl>4y{$_X-Ljnw1#CRK?whcABPE2#zT+H_y#T_^y4&pqFXyZP$f7?`fBn7OeZJ-0An zw)I$OK7ZuZHSOxZRs2KX#j}|dHJm8R*%Sy-jb1!qJ+B&~F^#SvSUODBnGm)sSeE0@ z0R45tAVO`8Sc?lTXu*z)9BPK!WMPC9?!KR;noJ}eHfKl}fIx6=S!+!_4Qg26i2 z6J%n=+4lj>zlG#=F$SOEw9mhRUY~ z8~L|LL42o3wQ^IUYWD`(%^c52E(#KK^L4_lj9rvdf4a_l>LQ6o&A^z8`=S<-@5cT$;1% z$i*g!I?I%BZ5+(&CFsg@mdtVwYJdn=D2qSvUlfeCzRZ1tSsg?L3T~)uX7>ajMeXY2%4?a!H`&(R$@~@x(P_!+*23qeyqyM( zih?XL)VzjbxGj&;crL{6QCgz5UVfnq);6MxVoly=fB80)`Dmmz89J=VtYnFZHr%{7 zCaI{8qf+tgGG2OK^%RdL!eO2J89-C>k&MsEbAF%akUZR!vuzLVRoYa9gI@Bm=v% zF8*>8bq450ZnEn?oLIoN@yWp~Y8F?MZ3Iw;yv;?MqIMs0mj_Gs{iGRGn{|#Yk>(Vb zdS)tXz_p_VK0`&)(RhHBcd(8|;qHu>*`u0$3W zZGTb&x_`|x+Ra+yQpJS7gez=WS>+Fv*uw=c(zQzz|t2;B$yr7mx(=2P-mkQOs;VyPmK3wp>$tDwYgi| z)+BFYu+9tKhL9dbc-Yd<2n0gZnkUSllQAh&38Eh-RNAtV#Pph}LufmSRuCBMyJZX8EGLpEo;jH4Fho*v9@Xm9WOb7s8Rzvgm%5+M*Amo zCE7U8(%VA(8%5%ov|F*f_03yJq;$EV>BmPc^(^6Nkbwq8(`pX7d%Lq+IBSbY3m9$@ z;u1dCDe_&+OC;G3UGt`*XIW>bbw8=RhOoRJ3m=QUgGZnP0h?{oFr)G+9Sii=g=-%H zOLNPN8|-f{SU%oG`dfe1p5XB=rMXx38 z#~fbJ_-hsiOz}yB1uZ8H5KM2jj-7*%tK)-i#g+X0+bpx6E*uZSoZ(3K(HA&stvOvl zoJr^2apCVuXC0tqK7x50X^^@*|F=NI6hBSJrjJ>bj&K}85LGA ze)_2X823B0!W++adVPwnW&DmW5PI^`QN|!bigoCHQwWvaK7C<{V%bL2D_s$mv85!u z6bxN75<=XB+(zqsNyLN*Vv-h`LgNhQEp2<%T`2trB(j8{q#O=&#LS4Eq{m342XM_L z7+6BQ!Lsw%Ttj+2R-3QKGkgLQ%6bJ^K64;(8@Ay~0V}Ym-Hy@{1l;;CDqpeS7QNVMKRNlM`LFSzJ$D4{4YWu!ZWVtSj*>U*U*O2hDe+wrqx1^p{Kj8d; zKRw~%N77Rf0Q^@^4!KY0DoyE6{Ukn{{!^NKr>#DIgFp@dq0ciJ`74wUI$#4SngWa0K2o|6{XdGMimDVK|>eepqG+5$1UTQ^!}=}#UD3TW@{ z^>T(1?6CIs5R!jwTVKzNsdxh;tI4?IrTS@V8uXofufaMQ8fF+y(w;B-lz(V~(j?k4 z`7De2^m;+;j4gDW6t9mWKHh&b}4dj$0A!=*}v_!gz>dem#Sx$K=Cp z!f6Wo&XnZkhv-ioRTYc09{cWol6Mtrt4}vI+H&hEGRj%O&wp|IX9N9vvwUyPvD{-Z z9x9SFf1PrguAZtq7`D0OIPc8YcIsWGtgn!8qD(JTa{deeLufLSdOd{BjNn|itAt_T za8GR(c73zscDhy4dU*qAsx zT0*z`0&R7t&(^v|(AzHD>HXkvm8Nsr-0qj$*{J-dgn%aLzeK@ zUNnzm>wM|ppO<{R`KvQmfu?;9rQ~g!tHncWGu$?$R(8ExMk^orzb7S(oBpH@tALZT zT?x?t!`WE{#T9hzdT@7lcXxM};1Jv$g1dWg4-zy$aCdjtV1v86I|D!8_n$gf=jz<; z+BH43t7d9<_v&Xo@2DV^=8$B1k!5+r=Gih`3DB!;U*xUIu=@R=N=AX|M|cat~f1BgT}0 z>Nh^iSVwAa;9ny>?+0o|vll zO|-C!2ZyOV3(u7lYLteLZ{bs1Vy%HC&A)5u@L+GSB;BU885p+MpNVNF8s^&A+3i1j zCuOv`QfR1SF{^Sf1%RH?#V|-|dQS*S_>y}~zvwr#jc58#Fm}|Gi=rVVeOP_BUC1C} z_Vmg#a&&w%e^K_*s((xL9^)Fxy<`%TwzR&l6aQ|!$y~zV-sKPY2QmaKkL0|e)#}kT z?3}4MOoa(odRxvR!>v`I89=xv$J#{V0xzB|cckRSUEqg82mlh}uC=KPfASmTrpoSa z+_DL3pb9HRgXSY=U2PWeHVHEfF-0mZ zWBUEBgsR@Yx}CBUp#Us6hed_9TX2%a=jV{g)QKQ`D?=4KOAW#iHhso z=oHGZjcHq=Y-Ues=mHyH-RIB29m2KZt_P;P%uqUWgKLrJJf7FmDW+(Aq?6seXK&v7 z@`*7t@zRo+*uTvFSe83LarIhPmyj`1rZesW-K7Jrq z*!}=;e)x2D-yTGaY;w&lV=`%F3SYK!6~#^zXCH@@f>8^3G#_fgtBGeC1T|uL)i7So zFUZJG9`v%CLm=eF!JdhYSxjdz2b|jM(ky8N{_PTzJY`kUCfBF(Ss|+GZ$?-rO9LEuO>NUUZ~pH!g~>Bh9{St@9_6 z%!>s%+cqvy*@swL&EUt}o{p+NHO;G|p1zX@R5~F{uud#ISzg?E>t15Zwgm*Y{p@hK zx#Dt{NTS;7Eqn?wN)vXIZq%i3@zVD%o>holT7!WEW${&J@D=5iHgSmXm1eRy6_xI* z|Hl750)yVj;cMbC_g@FQt{YK4F6{B;nO|fgT2b>}Sund2KykJSB)zdty5#)5i&EIR zHi)awj?~F4CBr`jpX{w;yd;4+YY#WZvg?dneJa;!iE-pk+x}gn4>NSj?D+3UjeVHM zTut}RLB!htc$dSf=YD0O3qz~DVe05@q2d7XkNF8K%7o}73GvN#v4QrcV8*bbtm}PfVRr4Wi`~Tqt}WyIO)$J4c-0)pTTby* z9#v(l6m;q67rF{?)}%D4{byLciU&|`J$s|CtpgnH)i|Ta1C`&r1p5hV=B*9iiTQ_7 zOOwnz1RrakK-Nt78Xc^D4Wde5S6QWJP;d=T*@XhL@#JyL$SI_kEk07t&xD|arf#Zl%(6#NAiZ`jjKu{q@>qMxv$-XE7W0~dUJh$Drc0c*u>?-l!!b1j_Ry@>fv|& z$@l#S!B@xY!!2;apK61|dTMFoAnTFn$}^el39vtzO0G$-TE*jfV`XSH6wk83tW10B zb~U^FxnM|N)z=sG_bItU7^Gnx_Z1HWmKn<$qr?GxvH6!@f%Bj4iuU}QkXF9drUR|iQwOoH zn~{je`n=jGYZp$g>C^QnxY}f#en~PvA9$8>!r>3h+x_Hh!ZR}=yHwW6cZ(m~T*;k3 z{P*RbJ!aK3$BBX9rishTA8SJ+VH^U-nuXa%bu3fs)3)Ta93}eUm!7hX4;vzgXC%bJ zBjDXoz!%3oRx&06+qlex3mqI!_>2jE4HR8PY&`v4Pa3&7AH)&FACjNgXWq37h#p9U zr6z;+fLKHx(%uKnS?QwkT;{brKK$CHhZ+bjYr!-nRM=!YS#CvjSKFtys;rhmzNj$O z)KWHF*D4DvX)cxlkz%wkCv?(QiV?AMZI=P$Ohx6^VyXFsOW_3u0t}aU;P@ z?XJ>Ke;UuXb|ApONaG-XwIT#zOW*NRTl}IwS|$4ZuYD&4y*UJ%k(^_lq~zn(T@|eA zq$Dq?LBBucbRh9ifG=o)+LJDTALDGX^!r?eSHL1@L(Pp<>~&O=11R-nZK~`*pYjpwV(Db=W;Z< zH{vsvEjQM1IXGc}n*`lFS!h{R$0&SV`d{-9>Nc5BJU?M|?QVo)*qEY5ZoM;>&zUbW*ia;%5~1q}?@!@CTWUEJ zGkdHa27z)Ew#UXqHhl|R%d^3pq?i+(j*rA9`HoZZp1)6MpGX)kBa)U1UO=IV475+u zQG;@Cn%k)C=?6$5z@Nn#AuIGD3gp;{nv;vVZzYklqiBS4Wn4h1t``Bj_GoukQrs*1~sO+Jx2O%V|L+r~Rz!eoL1%L<1mcUSyX}*0RR@QyDi)ZdVQ};^g z&Rk^`BK{4TwU}aaBX?8zJvF(x^YCjwVzrCLz#G#b#_RDTaCPxFd;q?T9d9`y+Hor~ zk!V(R@{q_9NjvnZ&_D>}Us-V)u@^Dls9Eb9eKC?J52Qxm(1Uv()JvMUDvAa*<1}YQ zkVI@p_W+0F_o`nj#EAJO~5s&3@l8{OIX>R20Kv(UK=9a zw|PHBQQn&rN1a;C_3E1g(4R%ndG1tlzJR@t;QX+_PcBJrS&>&*Y5|<-k*!r%Uo#R1 zw2RV$7ul`b7*ttMW7Cig=dU%Vj&X?nCT9(@gsk6C9(-!JO^C0weAEz`rn@k#^(W-C zIF~rQlTSDOe^ChI$wfmwT@TUiyrMzNC9J<{I<7X<+*S%?@PjOQ!4+K(UHk2VkVOOq zITorOU$egsjP5?3_a;hE8U`YPnF^pR5{f8p8uLmT60Y}*)x$LX$){~HU!Q-M^Nq+H zZ>L9LhQ+?fU(U3(<)Q(z7Cu8-bmwUksQi?Y;iHrNgfI9SI9dxRxT}~bHJnAx)WZ3A zB0^9IKi0(#^fP?VZGevUlg7hu{GfCHX?E}jxbG2cCPN4Zj2JP)enAQE+??g~4}p_= zh(Vz{GD7b3%k~JUJt|!J(h{Zof%>f@GolT4j{|{Hpf9xy&b;a=TuyOofR}AO>xhp70$|7##=Bi@hBH{SM$(b28+(N~~<%cWje}?||W3Hqe|Gjem z;owTj#_=^;#l^zh#>~ypg_MnzR9G0EMcT&R&BBG0McUrP&EkK*gp@_r!p6$l?SDro zS~ys_S(9?He?6BPDa-$tE9SiGTLa@nGErlijJf88>!m+R8C6qe7%D6t2Ao+Cn<>2d z2VgkQoRnJ8q#sdnGEosoT6uE01iBQmx+j?#tbN)G4G^u;OXLf-kUq%s7VI{ooX zj6N|n#yO@RzD&Graqfm(dfDl;WZPh-hXTY8Z_ZAO@xmC?K!6I-I37PZ=?o!v3~z4T z>0aCgp(!3ZNtJ7@`Lj(-UsU#-~3m-5MoosE{GQ`GXJOkD8FZ~E>p@U=w%+et#^qt^B z1f|}{5oc!SvpbGYK_|PE3aVGfLc*n#M+Eg+xJ})x01?Lrvz0+K`NRIie`RtBLgzDO z+Fo-6m?<|f*p|rIVY&3~AFdyQx#idfJeqs6C;T)krfeFBl)5EvDZ`a5S-K(PATJ;L z2EQB&=sb$t88ccxc83{s{1$waM^mX-N!3n!{Fe9r0M=s>L3!^syja?B%aFp7-wf2- ziO!q5Dc=wvWO00aGv!H@&oKLAz(Do}a=!|yytq=d&tZ~t3*2E6n>EBEZAXKuC{ht) z&dtzk+KE~InrMhObPULHsNC`eN08%WH^AF;2MG4>RnY7e&%}`Rs?}E7uoh_H&g#n3 zhT&T-gsXYA<>OK{el!+!G4fGHP7M#Fy3NFMx7#Z!mJ>-Ony^W!S%wf#YTOH73BU^o(n6&?8A*C%biJ%)ojPK$6{`* z1D|s#p5&-1>boG~1V-zcKC)@mbH|>Pdq_B%o8M{I-4U6}WlSh$xR{Z)l-~GBC)p7Vp22(zBrw<;Eo=DWHmwXj8+eh*#A_;Fy(K2XmBY*J*6B~fC=F5UtY#(32V#*M%)XxnK#X2n=dx!dN@7As3Ft;FDrO8N=>p@BtIJ!u+3^OAX z0rGlvGC?gCiED_;3XScdi&6&3?x(<@`OUUrdF9VeRWY@8yMH#%J&v z=pQPE`)*7}7V6xTn-10nZ__w6&hnn|$$}qcm+L6Fi$sGcJdI^9^m++oS27F6{H?tjKx;r`=>`M!v* z|MG&-eg`$O)*v1K7kTJitxYuar5BE9!@E&k+&Kv-cG@EHvNr77(DTCe-FgW(jt1qn zlO+!7G@cnT5E_v12yQdin&dacPiadfbifzx{K3{K%iDtV_m~$o#O){B&t=%ISM1gD zYJ&A0xiP=yfOCXm_VL)c3ME<6rf}XI^*98J2;@g~u{-$Sa)gul{xF1hdx&Cn#bP>& zHWIo&bS23gp#$h)>EpUP)n+&L{f%?Qbz>_k@U|eZiNwlaq~XdVv%l?bGhX3L>ISN%;22m?n5n-?uQMtzXT%6DtUte~kT4U=$q~% zABs9HeePJP;3j$Tr=4KNiQt>;%QLazETDSq-I$;DSoc5g`JmJJ1MB5-2b}i3J!Dd< zduG{I`&XA3yW8%gp^ml9fBXik{V}I-j71JBA!Tbn$S7WxgbF?mDht9c_v$3l()sl?=6T-)zi zruV$M?gmgruTId46k=2eHRrXQNQLGz3N2pR#AvSrHcj1IO1##|LNuE6NuTzxMgepp z01UBKv$gjLq;NuRiA&|)8cc^QU4;ji9Sf74ScrRk9HbQ_2@*_4upm};&P|7Q120bh zz!^sxMNWl77lv$kp_eJ3H)1vsIKxcFk2){q1YYNNINDOCT-&+yFb*lHenk^_Y)3Xu z7927TTqQxF3uv5S$9M_Y<$h;F?Ed`?vSj~B<0q%@?j8FQ(E8%w2Eg)5)|&|&1D;LK zrsirB!1B-h_1O+3<1WV7O02J%pzLYr5<^6lZSJ*4Xln0LP6DWrhOIs{Vke;Xt>{xp zy*a-B?vI+v&v56-+4RgdlLr+?slTPTglFTcmx}Yk z_G15RM3rt+!5#sUmrC@zz+0)1rl)$Zri4uUs^Ti3X`|*3fFLE6&#S5`R%=@jJeLH7 z`AG!U=ZnEArCJb}38>ad#JtWvG7w;D((wocuMUKHTL8cra7-3!&{rG zky{D$HSU04hTwjE^k)U^57fk?GPI6DMU7Iy^W$yegXPE#^M)vdu&4LKM>LkoduP#G ze{Z4o1+u#u{*r3SY99mJEC+XHPT3Q*efxjKqoT<*s6e$fxJ$)0X>|qe*HnLRgnl_u zXOT&Sz%r?{J*fM+mffw%NY+(|8Snxw`b9zMAc9#E`x>5jd<$-CWc|nBHum|ZU4s); zt!A30K1a9(x!$&%O?iJZDA+Y)4u<}{JyMGP>^lTS7^Q~dkiAS0j`8uDIh7wwAE1b^bIDSsER_rIk;IHzWTeDXsE7thrA6lMzVjP zGSn7)Gd%^^MThQ0MVK5Ec$CF+vLurg>g$Vziy}=m1i36k(5BRIa-p(_-wQ>0V)}rv zH?R+@IzE_1HLtPa1~(!DQnXt8h8?{WBLggodw}cSYPHyR+)|c&Gu82{@73QAAlv=v zv1pM+t&t!TFKuVz%lrjHT)dI|C$gq6WYQWbNTp&2h=@F1N5UAfC)-uV6~fO~(!T_z zBHzo`Om#vsFiSM7lAA765r5LZdNQNpb~ntz zLVuLlP;X$?vxHAYlQ^qRNWiELv!7G~7YWiK>T8V35MlCsA;ZZAO1VE9kL{*bYhwXo zf4vhP*9i+5xJT!0!v^}dcO(z{$6KN^`|P%~21phj(F|B%hh*ujv^|ff-zQ`=4Uvz~ zD>Foxo>MbiSHB5~TnUZ+L&vQWjsJ;x=JNzkswTnCsw-c=%bs+cd#*I-BHOCeZ4B$} zwL0IYUjR5`Cl=dsA~x%W6#B|bV&z2*wgmXr?(K>@AX*g6m5lWbmGFvZGY6rA#lT|LTTi>E=f!`3Xj=g$3!r~D9Y}%=lv~w z3ET4Zb9HxtiQ3r;EoAK6%O8ho#xWA|t+Vf#5GUpFq%a(&_#3Xd)+&kLg>B432)T;v z<_U5|2udYO@KH;CX;9@u)x$JuwZr;{R3qPuwt))`wT@=gUF1AM73pznOb*W}*_Qa~ zMdOVThqS{dX@hahIDRkUqE}aBxjbK~H@ZhGTTYbvKo66;C^x)ZSKfupjAy?qUAGnS zd8_zj;Wth+C^(V4nXRGyCJ<8r(WgOL%?^#nRaI z7M^_kGqxI|UOQ}=%j7D%Otg;B3~tXG#CICE#Okd-r7d2&cZ@D8dN59pj4a%j7uLz_ zMZUX$U3tECU(*2E?r~ha5Wv2lQ`SG#Yy@(a-&<|=Mtm@-gEtrgI z4o!|OL8W+?fNI;Zlz1tFFmg8M&2d;g(4RZkU;1mjOMZp+gYcj9>?F57Q{m|z-qm`J zUHi`Uc6ty|EsWj>@-D3W=*lm%4U$G#B(Ok^c~BmLH$UZY%&qTFc*$mBt@Dk$g@Ldt zt{;Ui%{Aop=p;4lUYhD5aton^H~rB;L5<_%!?&K##lWYfj3VTo&XW?BRr>hhlRKGO z+T^Ah9DNq2laJB+nTN;+R_YU!oBLD^mAW0xeK&}4nq$RL@Yx(gg@9IFvTTPbjd69> ziJxqj|L7=_IKfgO;QONh){*Wb_;X;Q>=?D?I--!FRw(k%v&~%QlJ#v_ex0X@-wHw!);*`o^=0 z+G>YiXw#(l1FWi4-HfyGXq*KIrQ0wL(&Sbrx0JV9Z5O?_1$OI6$Q2*0#Dm_e9*=sOQ&BRz>y3;YESM}akVUh7TU`5&OTG& zMas~Ex5ef;nPmAzP@7a-iQL4L9ee~ipv1HbM`Og4MBMxlDD7Z447hQWC{i1DXgI!vcB{wUq_wsBM?_#rTV(YCDh-K5SMoR?h$b0cgHuQM&uxML*{ma zTM&t_B~q&hSVm8r!1Lf;oq!+Mzu0VPIbqs4?Ux$Wc~F5n+ghq`B+P!wV^HNVYjImLAn45(f%^jwCeM*FX~g-;-g z`HhVHJ<4mTD75?eQJzzmvB>>}0Bfwh6aD0QsN$CHoKf%}lDEFXzj|hchE}^Lf8><& zC#JdfPSgO1hKlZ@p>6M|%CG`~PyqZq46x%UnsiQ4?tBhf7zHCe@-o>reCcG?KTyR! z0qSp(2@w+5QFm9K#=WChfimxJ9t!$Sgs`vVyXDTArhdK@`EL?$@tJnLy3Sq4^|LaQ zH`cGuveQVSUAJdAKYqOhKcO@YCzKp10Js0nh3bFPuO^vin!*t{i&oPJudqLs&*J`G z&Eb?Dl9@L{BkyP#zXxBBkVopSqgKjxXkn5)HITx~%K|zFrxs>UY`4d|y+O7_cHOtF z;KH6y&-!v+hV}$3eL+%~6-vysP&?;F*)Bvs%ugGKN0e~l%>+ZQms5Il#!p;|-9_N; zcssB+xD(gcbYkATcXa4NxkB&)alo%lb@TfseD)qB*D%N_)KrxxvDa6@5qJCEL{Td6 zzm1a?5Rhlx>)&U7m%SkTiN=Az<)q8BTrS&Qn6sjpnW~-<<&>=ZQ*ijPk}%Eg>)#r1 zY%SqC=|uQ())E_V$cmmG=jceA# z0zNrAmj^y*LIWSLqoD*32vx%cnZ~Kv`tq5Z|iAAY>f3O?hk0JbZ` zQ@uFd65JWRd-?ULgdz0l)IeVp#wlwy>j($>bFDBVrPEtQ{I@dgagh4lrs0FpCpD} z9k<@q#z$^aAsb}x=?W>wTPGoDPs1N8upGZC>S4Ly^S@ z`?x)F4xqDL0)(kMoXbEz8VXmhw)mLz1PAtLw>$v>W!cjox@Yqp-GN4TKRB$a-WF;n z>!5qpw8zhluGL}`0;x58j-C>dRioo!!(b54rhyL+Q!G&CN{_8jqzrJ`hRcv@Uyf61 z>cJ|UU-G3M@)jB0WSw-WqVORPQc80tjS)p$lS?nGW4xoik$hCYH8H2ba(+B??C8~1 z?Y0gS-d972+PxnL1l4QaSLc^nF`IO1JpB^1prZ{RTF7H)2way4%dB`_m^MC6Bo?p~ zQ_e;`DKml4tJ(5sM1zF?u^hcc4-n?3Mq}54GRDQm8TlgoQ4LSraq*}jdqZGN6_q#Y zA%VahRqvA^nnT!`C}aewos<{&Ayeof7(uxD(McXNHeV4yt!KbFm;C_kzB-w|`E`UV z#`>x*=Pon?lOrPZ@*-QMp_UH@dl_F*2^<^=n)JO=f-lRl2=;HX7z}(t zIan*tUm8Rt{-)wWRn!zP`5fsTz?Hi(jTncek2@@BUy<|f5rdVDcw&D}T%B$!{t?`# zwp9YIup~Zk2TVM-Zo1}E}4nTF8t#l0>0)L$Q z$;`%K&zV~A-pfAAYQW4TlS+2I4bon_nSOnU8ncD~AGl2Axy?x8A#%{tAF7IiSg#oy z4lwRC2~BJ5BAo`eSh)&7^j_c!tHNK7}ELJm;bDam!&oz-rjE zvVz>4R9X*F&(~7tXX3Q_i1!$g_E-c))t?Sx0hTpCEz;ZAnszPjqqm%`D=tI>z0~AF zX_;haW|2rZViXlGHNeq7l%s`Xteb5^(ct*+3_lxP457Ot!=AbCL<@2`PXnfv0kt+o zhp{ls=B^nhwt}ya1%f^=kAU8U9GQ8G7_q(CTiY=`53iqW^UD!{dQ=VtPbLw(->8A_ zN&oe`Y^bH%qY{UH-#$PuZ`j@#jX(B54CkuXGT{DnS+o>f*FBnjK9jK|Spe^4X$ss> zu_lT8sgm1--8Sik*Ou$SEW1Y7nZ^7=h^@}R0ZaiZ{($xnV7h%v77eg3T$LKc@rP!p z!NV8 zyuS!5Ef`rJ2ltO7jT){6v5L+hUxEp4RRXKnvr7_<4QC3G2I`{JJsSZ)Q{s%=oo&t6 zn-Z#*8BcRe>tYQ;l)FL&o9U*`j7D!{)`{@9`6nf@-oUKOeL}Ynqw^NFE1D+pJ>Ei+~%V5_|YXTjX?e;y3k4@tA34eXq z4e7zMBwthe?ph2fX6|+9aqmT;xuJSj@$^+FeFsWKR2A(rImARz&nH&bGAsMd8&_Q=ay7p>E?2x`&msTb5BRvOb4)wT)K>ts)j zK7M^ShXX3W)4)*FG7>9yVvr9gjxb^jBU;9Y+`vNR-(0iFOX^JrBf zoy&Soip@hc>qv>uV2!6vVR8DM4&6m^7$LtEsxrq2s+jw< zz>l>Xgr>ILE047Uja;o%{bE3Em$H6}y4dT;T!sYnqPvXJEQz-b2jU?S6j#_48n#bd zf_8Uz?1_<8dbDYg*0QzeXLEvKCxA8g7y6c!62gpna(lzM`3@F4@8T+*G;${K^?8R9 zlBMj%9$u8l_A*Oaa~@Tc->hc>Xy>w`Pkj0;m{0JFlxEnF8nDC3|Ar+yi(GphTUW?S zZp&03)84?fbrCYlS{eGCj5RP_{)&f4LQ8<;V3mF|z8qOq|Hb6!#)@|>3n}_0#mUVJX;>JR$yn!QsM)HNS;zG z{gw9NCp$x|(BC#|c0Yeo{YS{f!a!5!;mjVcSk$6$DA)H@G>;iB0RSr1?=$XZBjYvZ zZpVr}kt@(^Ytg4+2C`5op!7RBM=_!-lWjTqS)jrIMf(u^5Q12}w33KC@&%z!RAwF5 zyUPM7^M;w@*Nx#py0OUlevLcq2nzf6h{iSWjnSu$XYZHF@ScxdxgazvTB>0t{yb~A z5isM80??gegRp{H@eVu@e467+JJU!pPYVZ19y#-cYAU zU}ME%BY2kptdYgyEj+f^v_jcT`jfI8H(D3f;9pRK(cfI#R@e3Z4i@YmJrb&o*17uG zki&L%b0Wln#xe_b1Pi}F-b%Azg$Uscbvg@cc&6mp8}NDxlwYWwC956=*-SKol=^#o z(-;GQ#us|}{?-Dz?8G73R`CieV6h~EpVEspDu1;w$oI{@-vlvq(bHWM z97Us7!SpkHk(x5xRXzFz&K9eUrEWGvGFE5wX)o2zoGlxBnP*R=r{8{!;M_%jkwcdY zL~A@RP=IlXtxvT0&+D6qqn`pKPg5uiI6a$>6M2nK6TbpLx1YmyW^bC^R5HEs0Yge1 z??@9}5~W-5utLjZ#2`sXJSgqj-XL2}39gHum!8^Vk80_0jWjL8e}P{%?zzq1`i$Y} z3NHEGK~RXe$qpw`gt--eCoL1?)4-|!=J=KCh(}m^8qn8#UnqEkNPziWh^hZoP7=9a zD8k8*+GHiYWrnAf(qHtrjT{boX$7Laggii`8<`8`-93+kloRp-T(_Re1Mix+&jVZ1 zKi}$&91cWY9v^s~90PS70^7irFX=m~1LHte;Iy7rEs>f(1#En4p1gAE5C-xcjz&vy zzc;nouhPr;2PRZ|wid)3P`VRw&~{!oVx*ZzF$3gqwb*$LVR> zt$GeV3YygU$YkKf7A4KD-y+gZt}UmtNZck-xs`ejK_i~A?5(CF$j=5ODBMlpcrAgP zf%U`5cgqb9fmI<1_4A9V3dhw|uT6ks90n50C+NZp|2M7iOOUOhD)KTJOQ#=i&||SK zC}1n#Bk(zmE^}7aP2!7ZAW~K)}zDE7wDel zhng&-DGwPp31(mobnkDCQL|?IZ12R!=pu5avbfx77eXfK*mMNuEa6Ll8|P+qr@mVt zkYgK=ton*2eAiCtE9RQG{6F1?)Z5kC~ma9q$rN2%+yHWwK&aPk=w1)KOT?X zTSx-0w*0#=13o=Lw~iton`@sVk2CG51~L-dXm-Xh9i6`&A2E%Ia8dkE#$ifv^{k9K zC#c-|P5A{`2`G|XIM=UgUBs*EXa{#|3gi4u?2XMv8ucQZBVd&Fs9)X$p8PFX&4N`M ziRJ+zO$DA80x{w8wj%e=GIV|&&TEZVysL~>Dok!8bDr3jghV;h(}_dNSfg>EqQiI7 zx0!IG^T+Q~$j?w9({uRT#(*Q|)U}J}kAw%7&&8h7Pw#}LBcqSJFEb3qm(%8>^dS`R z8VVDTdMHdiq-{JzQ)%g%m$?*i8mIGtntFjZX26^O%`o*aJ`wR|@HBF7 zJAW-%5qu821?E%{wXUmBTr2{vUP|Qr)Xwa1R_wwEm5yN6lmA9xDj5tl+d-VbS_bgq z0<_xO5a^Ax5$q&rqawKw7f#LJeUPodx8cHWoqH9=uJJTfgDexabiGSAV7G65{odO* zHa*@-w#Iv2P6A&WK5ai!0$vQtu-;3y~4GeL;V9pY7~nttfpYp@iyI~Uju+N2|KP+u^Er3@9(6-Kd|6MHa8jLIewZEt`?XXq zrE!KjS#gBU-?}dC{9yLB7H|XIy@EX6Ztn`;8;ppb5IpQYZ=Ab`EMGq+E^d#wSaThN zT0hf3Arm#%afYnF4GFgCv1h3tlOA*4uWARZ_K*wf&3`}ndqhfl3KHWJMezpK*9!ar ztZktpeaCO7Tf!vEztet@a;Q7v~I*B^jl_9%VtgIJCga*RiJKj-s8l>_P0xq^Ctf_ z=0Me&9EY!oFTU5QGV%;}gh_*V0`9p^w z<#m0Z!P`gU#8)_AdR3{_Lb2y(>t5gYask}4%^d^U&;=7{FQ8i}Y#BSoCZoDXLZ4ox zXS}tid?$5vh3e>8MmzhbKo$jFa8k6;sjr{eo9Tf`lATJAKuGK*EefI0Y~v!^wBSzGx0F%B&d;dX&xjX-o6LQG=`5xpC01tV1W8Bf4%Ur6d-ga zXZBWn^IpNU3qX#hX5@G^o>{b|fE>W1jH@Q4s=>QyealCv6$BQ8|xt(;Xy&PR@1MH zc+rQgW2-!?7HdsMa6H;1Qw!64RZn5IjH+V7G=VWOKw*?_5K!eY7*CG>!}8aP4_y7j zD}Na$)bX)Ug*UK{eZcvhHCYJWDhOcY;gG>9mm_?9t*shDn>6oTGV|l_TF;V?WJ6+ewB1(beXFozt>JeNVH5 z0>V+<=J{7M!XdGDgIp9J?T2ec>;@|AGvpiKXL3C^^a0}B8w^E7{f}wBY|FXft`<0v zXi>rRtHZaWP)1Mza*0Bxn2<@r(H?@cuHK@*K*>87rPj6a=H!qpa>|l~LchIAL!tYQ z+oaSSMl#^p=G<&|?cHZKH#sv$0nN-AP1vll&tT$9bD7i|5MRzc{5J%cZ;;aBzX703~ z-FN&u+o+T1?#hsSUXMZL5gt%Mk3D2bzLKihn%2-^lpJcJ4gM#flp#kRKp}x|T?=6X zL7~8ju-|0f$2T7AGlMRDmSmLRLP>!Wnk#L=);zY zz@PG~ix_!4{CNB~-eouyQNA0wh;#N`X>X+V6ERt5$(32AkKpp#N(0|W;7f^bamx&@ z7*jO%_omU+Hl4|5HrXxtH{BI^(D9AL8Vs6HC-N4p1Yf-jG1M9uoqy`@D5u_0Z=8Bl zhUjzO(@d^fI_F1P?&;SQvmz}bG#^-Hh=8gQWzF!lC#}t>aut=T`^gTN-C8%)SoOP}jhw>Z-B=wf4W2J0Q)p5htywLBv98=Q5PRvU*#^^|OU{D?! z+QjA_80zrRIzd961>^Q&Cw?4o?kDXN^cc%Qr6J6;0eS|79a4U0_JuC{LA#h#ylT&L zf33(;+Sjffi>_c)-}X3_6ZJ^F{AqgN0vD(1u!Vf?(T|9jiHJh2WrDHj02Dm(u{$N% z0vEsVT&t!#S8w`0^9bWSL&M_o%0t(S76MT}I5GTD&#_3Y#41tM{>8F|ULKfP4ML`m z+plGn_qlYSU`ZFZT?l2*k1mXv{sb6Pz2mNk`LveO5Jv7WSNBx0``+h|FVda{)H72R z2%PyP$Srbo68%W(JnX(hLpAjzHtRSA-W=;>c4_t))YA*`yzoZsowUIiR0%RgZ|BIU z7iG{CCb-hfVa}v7&+I0u*ZLf~Sbl3}IWWZQ1s*$SY)^y!So~Jw;R%P;#oaOp|OG=0TrML zC^f2=34tD&Wj{Wev#PkF{bOb#=}FogRG7%B#&a{sr5XITy+YD0X}znR&(<@@KBi)|yWEj+7_cOI zZO!EV0r0k<6Ks;nY#JNMlMN@@QQ8UD2z?R{bNn9s#ReEfg`jq!(Ns*2yIfAF?RhXu zFvxJP0$^^GWvy(6QyCA@1rZ{L*|_Q`+hK%SB)!|G+$<<`bfrs03S)n&bN4Pc(UrB) zA(Gh5WZ;e2U?cnRDYkTotxJGX5 zs)bg)N6N;7grHz8*S6xdg11llAs%`R32bl17cy#aVJp6#B|}ikG$R|efDWoRj8}X_ z3?bU3HIX!5;GKbHh^g^;%zR#$_ZhXZhn!%{&Z|I67qS>$i>p5^!6dIDDl@GhHsJPe zyERLQV_V5i*!w%OlW8j2ACwz^;jPHxn%|nJ(g>z2?T1>Ri?4$eJVLF&*1{Bn10cMx zZ?R&sdeyRG;J;)#M(rS>u}AQ9$6mQTKk|u>#2pul@;?v88m9h+O-L^ce0-^&A3Wi7 z%SIGm9;@T~KB{=P$Q9%+e~H+Ab9~M}WVYaLCt^hQLuLdbv&-#rw;s%xiC5PlLQcXc z8ij3lo#HyL*4wYc4GzwBTg^C>1}PW{J+B>IDM7WRBCw6z?LGaf@V-~I1vYGX*1yp~ z;cgMiO`98edYjSvG21IwjiQ3u9bw+XnX`VHC^@$X9fK~=rCLI_&kd3V(_i-R+k9)> z?;)CW*_ZcAD@nEJjNA*Nw?Dcnu?c<6i{)E>P}?oGTf~w69)~7H6rN&vQ%Sq!G7~;} zq<7-e{7=ICI1A&)BuCXx2^^OEmw&2W(~*L>84_|xLLEq(G>NAIx;S3>AwF|8nbxA1 zJB$X4;b!%IqoHyf+Kf9L6OuaN?i@w5E4-cF^rm3oznTkG971R+XOK?I#g;Hf@zpoT z!Fb)T4khGlJa`O|qLH4oH*Kv0j!n<&xAG1Joq<{}2MEzSqdAzUpsmm=xSM^H;;MTS zWW?F7UmLUdB50B&HrKUoVqiOnuPttww-ir z+qS!7+qP}nR>!t&+v(W0Cg1n2HAizcC-V>X+BbGp?W*hA&##k!oYTZ!yAk`PIIlgW z=ebUJ8+Gvxf8bN_Fx<@dvhNq()KGF!vgYY{SdB_;^6v=2X8qHbbuD&32NWPK*fo&)A(=39TcRj1ka~$@lvX2 zIbtr=!qaF6!ld3fdMOZ^aCFC$(Dv5*!anU4n25RT*usxDfS-kzuK+My@MiO_0qP_9 zmUGXHn+STVu}fieQ)pBIYO8_i+6CvGo6+9^m$_6NIvo6;wu*|5ZGIX$?D=X^wyz~N z1OD9DwxJlYzhs;pcC}*$-<=lnpPP&+bWj0!v&5tEhA~Jo@bYm}Ppil>;P`WD>Tj+EgS~$pi@RnY#BaL{SE<+Rj}!W^O!o7jMo7 z55p4)ojSGFJak{5yzIjwMebto@97!mV>_b%BxoZBZzcl>TWAQe7Q~~n7l=d3m}hwB zsfO)*GZHanM?J58$x(H5!Hdx?Fwj6mTTec;mQ#LvfiI|`hRvS=iX%>}3S~lvKw_Z} z9?+8r?;+gu@o~ee0naJM>XFgo<@2mFluR;)RyB`{Io1o8Lc|0e2G^|;5`@P(;fnqu zS~ZodZyKi@FXyg0Y!3jp%|04{c#EOCNFt~^DJ zS{VSImx@)8@cd7CS zX}N!U>g1Q7V|D1^`@teKpCxcj~yu66loTm-hf+~XiJs1?BrKEqCF3+U#Z8)v1a%n2N_PwrRd`-QqCSu`YSCKDi2@HCrYmvv{{SMsk6wSK8t4Ld)+jd;OC&kqx~TjzAW0(R?W7A?do zB$&a`IN4+N${4&n7cPG_oFu0W<$HaPMzwFSvLA6jC2E2pN~^d!%dfJ9uSPApv+zaG zhV(nfMcW=1b7cIb_}U_*3LgYisfK?=j06>zvJrte)L{8*_`X!-+a2F`&sjq(UQsYJfgQH zFrmW8#|c-??ZlHzMY!*_uzNJ?8?tgA`&U4+mG*kCfQVgoQWZ}TTr&uCl9ti&v|d^E zUPiC?kUWMQD|;0w88BA;*n(V;{h|zbcgjimo}SCq9Ii^C{R+#PKA2$s1;I{HFBOGf z#pm+5-b6rS;(N@mfXUvu^>NIu!~S)6o$w5<#!RXRXXQoYNWX83rXz5^Cc&9e= zxcurt94jPjYewe(Mv~8Q8Fg|n-edEMv&SLlYkU$hJmdJO3yMO}-3uy_u8c@d^#d=O zK2oUAeEZufZkQ=X2xt`D_$npRFg7n-bHaiCjoY_~8=VUCJ#G8wa!8*t4ENL3*}}dF z;ZVU!)lC!&OGx<{%nWyXn(|vOAvM|Y)0ALMEnb#0Xav4(fnmq=jg&awF09SivBC41&~yTX}dzA))4#Ha&7ALSwFSQk}}0OoJ<2}jM?IRX`bEfM8VNkSSB0Iv46QzXGtdA8X1-dFG`QFR=%^#q46x9i10D3kxZdA7F!rG`w#vD~@V zy6Wdxu{Lmm=@@}x%7JY2l~n@7>TeE$*Jy!*;CZpkH+J(CskAM1w%V}}ofBhMVQLmJ zCIdc3)p2W-(@O|LLHg#tGc~X$0mjs?n>RdETpyA@ZUSiEJeJ7gL|5PRe}-qBkj^%c z4DVT`R?x;`T=4vfFury>x35%HX>0za^&Ay5-8Y-fMS54R7kGYeK!g+Zo3AeWmnH9A zC70aStR*@pBR+YkTXYP>2x4{xu8-5(_FV^;)@Ji6AcQw&((ZEw6!Ml$3N)(OA0%TA z>3>0=Kr&5>u{a}Yhi7Xf5liFvqV=}zjY;Da{TPCYYq*LrEl?BbE1<+Ms%pn_X+*g8 zw@@0A>mot@mVfMS{^iZGn#M@@p0FArks6-BsEu=<3&|e)_}P&!Pbm|zBO!3K^;hb! z8z&<#_7J@rtaBusn@S^fQCmgN`J_P+EU^v0-NwgQ5`4suPFD!=n$p+(NGU7kWoX^!TzzlC*T7qe*aF6W=$6VHNm1k2BXH}t}{y-`VEjrtFNiS611I9 zl0qLs66OgegutmSEB4Jq_d?8$(mD{^8*&Vp;$Nq-cWK|QB7IU7#!%IRj<4z?^cEWI z0G*gQ8Dkfy5LnpgEOQ>fgnuF`cKt`)IcdgLtT7IOBViONGs z5)t&EVyA>%4F-WY0vVpYpiGQe&d_yhPP&aFz- z6<|jeYy}Gt>&{+ao3b}zYnQdsHB>Es+~Ge{0OG?oKHtV-utX8(6C`YvC{riTdgA>yj&)c`PHPoTq%jC zm?@yBg9)|=F-Jj%qdCU5KuO}4yLy%dxcJ_nbL8BJwcW8fdu`Bf>CdPOJ)X@xVWF`9 z`0G=_VW-LCue0m%foqw21sETaFXO&Okyr1Nm!)`-5^y5hkA*3TALn#m$fAIi-?I>Kbi7XT%Vn1Attwq8<*PP;PxA_o zFsfrglTUCadcG+aon>*|Z|(OKa{5(c0M@ApxUUl@2wWbUjqeulxu*&0wB?Qp@g~Tm z0X&&rAZ}-|rr^)eSR@7Yz91*lG}{HKB23zp~OpG1}>X@t$%_&8HC zenoBMK`=N5{Jjt9wG>#1&iI!?L2JNlD^Mje$SuEWSV%St;t4VjNJo8D^&O2A_V8r(`#^yolL zyqW-{rD3IVwL~4|YqM<6{r#Wrve#Zr&JQ&*z0P|TN7ef|O?w)&&(kZ%3q-k}Iy@K{ zOB|P#KkQWMO%y4=i^JH!PS!r(j%)Iig?~qbryC5H##JCj8cyD@Q&wClDjozs{_(+p zSuiSz3mHIu6FqtCdr+`U}|i*oP;DCM|Dk6{eyeb z5694gs19-Xe^w)-tM8>r_ph`n?|C>WUMJzDq>p`iVse5-c7wCHg>-yjxEcl!{Q3`^ zYmu+1nbkuPx3t+%r!lL&>K} zx&@lsfa5$FU5`8aBfC-n;{5DR%l50+J$s&GvL19Bi5A!+nzGXdPCQVMjRZVh)yKH= zeIU_(LK*Z=D2PHl@oDPqQuriOrZIFJjcUbWL+Z3?>f%aABvV+O9$;0sskXSzg{JB! z86+r5W1Ypn3&%L9m7MtF-Ruhq!pLtmv)cYxVT`uLP9`Wh$j)z08R&=ns$0Yx@q_SRWNSF2<;^^atlD!Sw$pIn^KPc+vaD4DP&?~gG@702`6eQoSs z^+VeqylTV7{b=r+;pm^Qt~hShx6$DG8Q*yp?p5ag7KN53I6tkdyzv!OHVxC~N;n6^ zubo+M*sb+WgtHbvZE+dde~qW(Tbr27&}uB43_0n9ns**2M*o^ov#zAB_Fu!O?1b;* zsBajtTAQnf(0=0M2{nu0VaZfXMY?=i<#L%xrlc9CQNywR!zy++B40ml^2U4oY2tn3 zwnuT!=gby*#Mz(yFY6H2Fs+!3YwWy~5 zpm-^}gypWgyAMI|_aLl29Q_9OBqoX_TQxkJpvJTGxJ)*hz;g`W zgNcqWoseR5#gO9T>6Ut;kj?nD_cl;ge^ptK z$(1cA=AB1H#05Bsz4j`S0hl!d`RjQMokAX7*Iudgsw|YAe-oVGI>A?blv;{e<{E8} zzm(j0dbF%lw!M%|O|5Z>Q>2yV#fWQr-XC@@P5bZOJ8d_6R8BeOx(WQ^Qx`hao2?$L zQXx#8gFEL|PS9rt?<@Q>;Zp&L#gJ?zv!`=*j-jq2rYr8GLAGVr-{q_%@<{#`Hx2h6xnzNyc^n?*0#q)`! zppB3zOeY2ueH8F6U7426v&ieWBR-kIV%-Gcq(pY*2xBdTBW-9Dq}{JLDjc?i{1Y@% z4~oVXb-V_(PErrNGy>2)^No=v2Gx~JPg_4^5ytDSK1JYRbJ z?cR}1v(;MYJ%7tLGK&mE^gX{G36#M6Eh7}bWPgW&7>Za52!L^rmycPaS_uP?aI-3B zrGvrn>*V{v=J3+vyM|8;^OG)u6Vg!-XC9N^8@}I`xntfRPXXysx^ufOhAiLR{&Tr) zo)wB+05p`NTw`shHa@)xP=?Xo6(@YiWSbO@@Ip2Q41@MZG|!6 zAgfV`n)>rb0#K4WQQmei`U8t>IpEgrc5&235s7!)m=bC3Q)s{t2n*0eDPd1o%-Wdl z0`BcTufyAE_alS4DusG`wHxzWo?X9hrwlf;khKY0VjdhaU`Sk9cxexE!IqNADE&?x z8g8Fc58Wb+3{P zq3iYlvmo_q6Zv4avAk2CYYpj{onf40V1cHinfGII>$SHyIchR_YU8ZttmXYq!Vve9 zLif>6bH3Jb6m&Wf11pLi?CR6^8JAJ3`#HuR`PIX$wRO9jydfYP1U6ZV{`Ju61sVw zVYBIeir{nL42w%*Vad3{Ls9pxptc0hZfmn5#^-l>c>iv7a1g3uI4T2Pfj|MKh zNy?dp15ExTp#u$Ql4kP+X9YivIgQT#S2{*xxD4=eR5g7@NiUwp6~iw0hdJF8zYKD- zH~d4{Z=47HVg{I;{yM06(Px@lY%EtN`3wa3L5Jmmwl51wCQETLG- zqC`Wbr!;f<22^4z`L}*N{J#Y)FC-}W(+{goL)kKOfACuvs?{k?l<)q1#;9ayj4;KvsKM6& z1Y>bYFZVOLzg`d6Z7)!{^rX5`SS;Q}@M90AXC?T{L*~cONlmQO7OkHx>uN^y+{noM z+mhCp8I+S!xseP|9GAqs$>~{>$aVrkp7f9sgOt^oHLJJpwdRCJER=V6Vf%U6imttK zs98#!Y}dv{s5i}6fehjKF95ed<8f8*;Ic%c?sDPha_yAIjCplIM_AeJ=XR;N|~`zTA-4A z4cGVhy>ud3U;Q}CM9nI0fM5m5|r5YZBEy=lmCXD z-*V$#bb3@2*;J9V+wQV}v4jcHZ{Nr>h39<%37}}*p6JQMt_}X_I8a~fL?aGDScqPT zo)oYw7ZJax}@8$odgx$)9dSDRw1l3+gPZnX#|Pe& zCc(u(i-Z;c^Xvf};WumG{uk5o9A>obl3W>8njuGbzI`?obTgC*@D$zSbzFb4FWgk0 zwy6%Ail#}>tFMsnNm6fLrkq zO@|w|qvq|_>2DY!N=ASOWZy1ypZmyXdaDb|-?$7sI^4lbF>r?s$W1KWsJns%62nbj zLPZ^#hO+*v&%+FnCgs;lKuao^fDQ*T9L`KFm?%H*KLgYvh2;GSl1h~_6$(}AC+~Jw zvS$kP|5F-&Ia4##h|VM6DuMe8Yb8o^l5cj+KQa}JHObDQHP*T|#vR`8Cu%&==qo+Y4C5+j>S;QA|N7D_21*UY0k0EkN^Qwm6cE8~Z@ zYKO^_H5RO|`bGfzTb(fl7(g*c147(rBt{bd^F28GThd@JNhPF8BYHnQ!q~ER`JQaF zv|_?wvSd^L(61ms+NP|WG|C@=IoT-yW|SHj!@cTz=Wuivp56Q2h0@t<;BmukoX;Ms zz72YJiH3(pq9zs1sI=gOE4U0n`N;g~VCex!xX78i3SL5X%VWjw;NCz(B9iiEBGeia z;ud%iCAfh^K~F3s&^mv33y@+psQK~Dsu?+oZw`l@m)=94#+`@S^EB15+h{I;;FqSa z!y%4c0?-+^sxc(W(PZsTZwawtr&lU$R2zrg#@F+*oABXLpfI2jv}fd~V%haue!1yT zQzc<7rG_1qzVt=I8FSbRF(jUb5eC+) zibj9ilSQ=(LIHTmK==O!|B+x+Rh$Y8<5n60hWLSM=lr^-4W0e4b=|u@=f_n>R#S%7mNkhz>j;+&#_1k2O9Ru)jXshF`D)5Sk_B&;9-Uwl&NeL1G zt{yR;bo1JPT*zd8*19(TUmsu zz+43eSX#NNWdT5U+~*X2RA8hVli5Kg$n(+IX%y<0rTv9C^YcWMrcky49s@E)P}`JK ztwuwOFp6N<6P)sPUmD@XkX6h05ecz3rmXJm6IWMOZ({aux9~GA`!0%;%*sUU@A~52 zETVgYrSma6K;x$41agPxk$HGIP7Dg<(n(SCrP~<_C8bVHWU!m^H*CJ=|hYb|R7~ z=B}hZtxEAsKe|fkD9xMludf({KrN(FfLj~kLw?b_A?%Ca2J49TjUl74 zhEy3s1<)Q=*4C=P{E5cK#h^*dw>WAW4}xw%pk#zbJCG%B3(2$>@;stu7#eK3Pi48= z*sbQ#35=4OA7EmsSdm#JvE(5w)%G9t4d9-Er{F^-WLmoP6ZQsm360PJ%XS3yxP z)t6-ub;v66-Z(*Us z^66L?N#vxMzC3{PYgeRFk`T1u0Rj$^*~bccxA#k)Z7lm_4;lWdQ<@a<2@*L*k`wdX z21CuNR-7oGQAHg27_uq&ZLOlb5Vi8$NTGKl`5Xc8@YN02orv`Lh**BB<3z8GW5D(ooZ?jMINI9bRhk~R?l0l`d9SQufv zNh+3`_=v5t-rkh9&oum%zZ;Pzj8F;1tK)2kXoq@qlG#V-x=aZYEkYUL#PO_$DZ+Htmpfs?#5H$PfT)hJKJop{W73RLwW<=jOR06ypQ>;G)vj}HJ##)L43r2 z@d`SBXB)#%96s`|aGHyu8ZY3Lm4@v=B-n%-oc8M|oI)vQ!8tok0Y`QVB@Odj!Yhrl z^eY#nQeu7s`h#>D9fQFBEPa6O$XtDhF^gds#nM6V~@JW=XU3N^Xtu(#yEWM z=p05@w~?+gx}k+&1|w$LSQhTdi2>MPR=|dX3DPi(zory3kM4&+zrR73{DnEX0JtsM ze3K_+QVb~3nzUEc;+6V z@hI=sb>}d*zxNE$N&1KwF&`?ZYZ)ir>V56Qq)8U+G7bX5@rg82j7LSNd0FWPku7Y>cCVpqyZ1cY(og zkO@+RMW!_(ArWvDZi*(iF9rrfI}LFIFpCCF57p4A4z++qfUhq`-*gZ3QugZ&GY z{rac><1{_J8ivnne;1wb-KGm%F_fM<(@i3aHA%jFUHWv@Vd#0m1h829q@&NiKJ7)K zRTOkLXCC7;I;q{$K^w|V0|n!cs=6uEv#Q@$wE zQN=Tb(qgFDREy+h)o;%4DTBqJ+zKd;;0fGUjSWOazxO1O=I^ZS#X98|{yfx(Nm+M( zERLRDB77rIoY~nLPr6HgFQj~wn{_%A4^NITWc)oFKB3keKKgo|QW@CxZvQ2)pKkZ; z*4E?PZ`aEW`zGhT!vYQa8>XA*A35EC$Y(h6XCa@G_hEUbjzZ?u^T*xAGZ_QO?8i@q z8!u@cQ*Jnmi(4z}g)mRUXGwKFDuG*=SSWIgVd~RPdZtq@ujW3ZkmP(%L$%%oNKfiH zw0{~43?x{rfOH01AP+TN?N%lvrQgLxU0a>ypHkJ^=S-l^n0@4|fo0srIrWO@27Zj( zym|KEe*NmXWh+-70u5B^Po|u(20Bo>_7sI2Qu^dDq@;jDfV26!itrpTsKnIBs&_(@ z344&Wm=Tu82jL{Qht)MHSEfXjST;O&nu|JVJ`aix*~!w)NRdS(YYs2{TZs+uFby}n zMU2c(aXG^PAwWri9z^z|0^aY2xr^oYgM58&c2vI%t!dSMUHv%L{n+1Eu#``2H)4Al zmA6`TDLDQHinDZ0VmiTv9fMPS)oL%cBoWJ9pf&ydNrFR0fmt8EmJJRrFHp^|$}T!{ z2jGcQU&V)-7ES@@tfY*JOQ6AUu0_IT8DLrNJDvzuPiqZrfZ2~(}l!MCZc^I1xJ-Ku(;ZoUtS!?uCSvubjWn$e{gz40gB)A zB!^w1B4_@WU2hN)VtT#lty=~+0bK>ML+b9a2PSX)czw?8FcNy+ZM|h(cOFeUA6Nj? zg_)j4-R_F3ulL-`TLsH?_G*mxTg#%gqH19iSkRq;1kUAQiRel+#b3}2Qmn*n3|@6y zZH7fXm6sFHet(+(EDrPDX-6(6T=S@+6j?DC-8b6E1+QnJPrYO+@oEe0Nq6y7S=ONAGj!e=EmWzhG zX!{BuE&}@~vy5i%J>S})ddM9h{>2iBk_9KG`4FNygCy>87X-bJ<8J|y*JX;9YpLrY zPT;^t74QJbbiV<5&heMVk4sjT&DnkOQC2Nn zj3?S|Kc~6cp9io|V=@S1JEg$DN*G~eA>>n~u|$qPTP2drRCn0VovPg)pTA*wru=w3 z^rGqM-`@I1Vs^gd2wZjOK$^}jw|v||{8BATc!5g05w_Q#*;7D38!#h@$}Bk*5YA6X#7 zlHKOPP|`&A6Z)y=X2YE4y#UzOjwqY$R6{K{LxqMCn49gA&*a0sN3pz`$3k!apiSkel5h6eZf^-fx+>91~V_wF|K{>tq*Wq307#<8X ze$k>jC3^<?W`I$Akb%VrU+3< z<&E>}S9v8DOB&zb`aQj*sBt^WcI~#BJ9fY-yZ3v@d*Be$OEXPgUDHdccy(WMcD2TM z`~{;JH@eeA4#)sO+8{Ci)Fe;_XL3udqcj3Qp1yD>hQd3Mw_GZt;A2ThcQnPFm3ZT5 zvg1&g89MgbgpaHT4qi663Ke|~{61xS8yP$)sULodPOy95 zS&*@_tMq`5+T!sU4w)XKnmUEl@jz30h?L+ij0LYlggP{gEQ_0PbdPOX{vc%s4sU7Z z9hH1(Z-hqMWPsZqF$e1eyobhznn}ZXSx%tQCM#WfPmPN-S@ZjVBvajr^C2y1L+y{8 znAwQunV&Ob2BMJ*O6KnqYD#6m37ef435dLXq5=Sbk3*1Jm~!SZwDZoKwzd)4-IKq3 z;XBVm<z${23C{d7!r?VQ}~jZqU(I1 z0^j;UO%|Fy>>`4QN^|`x6G#_X6FjxH*{qV*YFVWQh{dnRXuOSvFB(Bx=%VFB$%`Y8)`~NA{$l8Y7z!lDt*X>Iw}K6zt$%@IbTzwB{|4<4#W%Fi>RBW5W**)x6>Kc;pbRAQ}n zb%aw#3DrUCjKf$3=PKx)POyqrL1#NULt0y>jxDJAr)%3=@p)Hmy91=R!HXV&rK|gL z$XXAi0L^!0K}*HASfJ4tW3>A>oCuyCBK}uF-g~{@!99|M)|Mz-X%kzV_(V0i{3uYw zQnYL}ES2VngK!rP567+G*ogUImO4X4Jy9lbvLr+J=^lD9j~~4GknorpnlXYfazJSH zB5->0dsa2Llp-|{RIHvG{ZCDB#}jh(PlU?8k7(F&{rV%c>k@d|54)F*b!0zZ0_+sU zd$F59G!AY&#{yg`7YiCNGpjefm@V$hLWZe$HdE9-cxGmB`WifBv}kd11;!h{F`D%R z<6R7SK9@2xV!8&v+m{8(w>l~i#=ITCEx=Rpycjvb5HOj#oMSHER4gS|llr^`-%Q!T z__{;qWN_IjLSr4tu3`6f*SCIoDrsYD#aJYDkhI-$#Hxaku>SGchJDVVkx+4$S|!e{ z5dKqjWDb|VqanwW7*QU^X6RpHBzRXPCU4`!$78`Luhp)qss*1Us;;gvdH|+{NFzg5 z;BnkY(es~916AQ}#z*8Kbe>8QLA$D%fKGbGPV#RGr%r5C^Q5e$m$v@+s@8a&z*zzF z6!(j@;|$18jDznx7$l+q zc6hp-XMD(s!x01Oo*!Vmxd-DexChon`tpUfA0HOmt*)UxFEWkfU&U=Mw4%acw6n&{ zrn0=Mcunr0HPdMJ*yM$kw?5SQH1J{U(t7a;?P$h}Pcg|>D2t{OeTKZw;cutk!B7rj zDP;az@Hm|X8^k|SakQ3a!3D=P+m}Vl3W}2ESyF)XXHg93v29^I ziHMXfL(dZ%*{NK1K#|s5wI4osa+Wg(RbB@UbAohvCmED*50pn8muZrZ%zNnQ*fKkbDf}~{*mz1Y*V<87iVy=+* z_#+1AvZHQ9cpW%j73@sW>R#N_c-&;(1!30;lFr14^0}V#Z}KS8GR8ERb~8d7__#{&KaML82|e z0}3Qz@$=8}?kOa~?`--w-u(b{=L+#n-b6$a1g0O+R7Dx4o&B?V4n9nbFq1ZCw8JKtinmY(=a_a9g_+%!1+;Xc7yL&+!Cx0h z@4J8F`r{4mQB2ghNI^FeI@LBdO@3nLhYzT(*V|6Pgk%_ynzOo_HQRwH_Ra(hMo3GQ!p>gp|>pj^O+8Cm~`z(6?Mxm5&o!~{CK zE=VdtGSll}PhKVt9+4D*BuByrl>au6l-{(||D04Ot)QJz^63&N3|9=V25-$HLT=z?I; z^Zcegr+Bq%R+7V4&oLeomDMpAmNzF;A8g+U#SI#>;h^-LIg>^p@m>?`Wr$1i(xQn5 zk+k2M&VedKU-kq}jqkvrFw}_u1p9aE>KE~jnvWMp=2@!oYj$f@(@rNEJhvdQ<{mxHIY$a5m`zO9g4XcAxWbSKbks7{J!ZTFs+fYke&bg zLt6A>WXsOtVX;oiNyTt`>L+_@>UV?JXV2oAWuZ5CHUfB4+ z=Q@NQmdU0_!q)G!-%LuW#E2sYGelY`YZOMB)s?9;5*3y#CcJOAQ@lTO2c*X-XfM_U z;lNH+mTZb?TvG({Y>ikR^nZ})3c#S}4C?+0hIYkEfLq1@Q0YRh9FU<8(8ch#x?hCo zDOfo(>l-f2i)U-U58hS?bamKW`S?_JpfPl9lYPHGKOG8d_&-HKcEMI`t-qB%`kUw3 zu4*2JQeubLAj~zXT|p25f{}gxV1#Ha+C+tMa#9BdU`CD9Q{^mxb1B2?z7=l4r3fKA z$y?AuY#plJ@o9{Q?yt{Lo3LJ^r`UA!bWnq?^2s+FlzT>nN2U7YV>5Bzy3zAqj-&Bb4l^v0z=HyhvHw|^c9 zd^f)?zP=DHpEN=2KFN?)bRS-zx`zuw>8&sdr3owQJ8}!wC+2n1km5R|fUvj3n%E=$ zqQ-4L;RdZ@Nu2%B^d|H-1BEf^NKpn-WicCUt1^xd7q1X{g5Bo3D!kk=BPyQ^laES; zr=*!T8!a|sPCcR!dzSGUo8%8f-2x}93-8`#Qw!Z#1ue>iqX0Xa2{HRUf!{qmeOlP^6}BF?5z7f<$nD@O?E!7zxV3D zuXX9(`J2A?d_Q7+UtLq`n?FZDmoGCctG5(%D=$s~ufS}LL;X*+bE*wnq(+XRQnW{r zSb5ovg82|(a96~?y>{3PDb=LNLZuk?l~{~aU@xpw4f(Uvu2e8XsG$AC$aNAhv$YLM z5PX0+!aCd72l7P5HmyiCxDzA^qMYJ|F}Nh#6!jeYm7 zmpGb}fI#}9G_;7|ZZ#6+2)+CuM`q=aU+5mx6$TOTZoI{yVl*(t7XZ`j(_EYnBFzIv zimK)M8X!Q^u(fJ$5c$Z@I-%Ms{3|iLCIVF<>gB@**$Sw)2FA5UbGFgX#kR-e3v7}e zdmENM!lAkost;p6VOAB`UO^6l0L=}o^)Kf=2fAJ#T|FNjv|jJ2mv_FK-&c3TE}XCe z9ZV-761yq+RUm;k=~Rp!j3MYTS+Z%68nz0ICR%ZE@^HgPa&h|uoZjpKyw>ZRyM88U z^Q+p0AB7YAvQXl#^JZ`Vx|CfR2{A20xf=2a1v(;>cc`o=HK5TbB?$eR^e7+p!O}!m z^`_`lFZ^->paX|>@M-z{^}h|6s;{@{N&+5bQODseS9PtwJ1!k6-aqepx<0#N32J=T zy1!g^zQ*|9b-zJEyFOmuyD`45giPHL!6STt@S4Fir7Q&*;{Z{Upb4WD(*oeU+|zSt zq_Jy6hDnA|uPvyRU?c->gCw-P#>DN)fHCrve&@Xt>SD+;_C;+)aZx(X?(F-yx>;xy zaF@ZwAx;)s6%o3%CWFzE^F|x;%tF~rq`|{|x~t0CTA9B+m=)q=%M@fusmNoHE4fWP z53O^m)wa;e4|l3>FYI)!OK-9K)!!e7J+BzwKTBR&znijJy0h($U*Dl`;RbqvR%yiX z0>k+|YZFw+BM>Us`@5W=p0N+h-qk~_0T^qF7AK)PYPwbIaar5ShvQSYUA|28FULy8Sld0T;qsKzN+`VKtM`#Xgryh9YcIA&* zmx0R4AfG3yR=|9vW!XxW!%RPryed6pj|PgsNzTFkq$* z#Q4tvQL~1D5@`#XwHT!;?)!RxwP=YeJTIr2puUCJWKMOatU6;e&&gF-W3DwTWtg(i z1@yaqq(ALCxN={>q@aXS=Q_MQ2QNWvq!J(`29lH z?z3xL1;3|liGH36@@cm{9*)XD_W+t^w%1HWJ()CW&y_Cl1U6|jNxpepY&m|UD8k4@ z@cu}#4iiY^!{-9M*gQ2E){u)tuxI(1sjJ7#Sn+G_O+Hur-rO2rH#d=iF$3?{=$#wW zfe&H+$#kLwgewD*N|+WXTdDe*R%D&|s~J=CO0dwH)==f&3oDo=f#6H2io4{;WUAV6 z2h-QuyV?tAWTd>jJ6J+1(>7w2D0dNNJwXYSWsyFY!}j#gXQ8;lGa~W9KxcBK)pBz2 zry04!*b75X7TRcg=_z~=uR&vy6GyKr`4NJJxx(Tu4~*;p?jyG+KC29gwrz5f8*o2- zRG?ilH?loAkBxg%&Z>5DH<=V?pxTcqZoo!$H+Ff$EXG?q%@6hZJvCTX_p99dBU?!q zC{NoA?$G}YxhcF(3RP-yxIH}cngR#YD#!FFoKkpZ8THFNXuc3K9H}9eT1I+Lf+V8# zWKFoDV@+)lPUedn>bwPf&#%-b-^I%tYQf#wS#VlH-hlFrjjT;erK(u{3>Ag8z?DS zh1qn@B`+j^VD@5G!@9UhMxC<&wED(J>2m0}__^i80XfZkFJa>{>l($a!Mvufv~VJ% z=%Vxdnr3*_GA>b&TfHzS_jD>Qs_1Gm7*pp(xj-J*Bs~QUu^6?zQMFTNeFe<#TKe_N z4|L?t+feh51V-lic=O#|$fGP{(j}PBP!?J42~TaRo@at{JelhOCGds*H3xtCg$*;) z=Gfl~v<6jQOgqkccOg)bfV5oN=LO*UZpRRAF~oK;B@g#@5Btr6xpF2-1d#|BxK^auN#o>{dpXKOA@)$H97_*8jJ*eGf}hdwE}iWH5w-6wKXR3~2mM%`ab^dOFeY!9qh7GDt! zRRa{PeHhaLT8Ig7Xt(!ht}i2AqX4OFzwJ!-m2QnW0ECUnZ{l6U6T&V^mh)VYvbuCo z|4+(bAxE;@LQj0Dz3Oses5$cUuCJ?}?cE2$&qIHP+D0|e-n&A9?3vCrv{HLtvoTq{ zKkvc3Q#CUP*5Q$(^6{IxLqVoE+E0&;P#!=y@h=6e+8bI0p~i1Z)Ol^YekE}l51kRH z;AktJ-!ODe#m6gw=Pzw&j8Y9>xbNlGC+KhP7Oo|fAs1oDtaq#Te zQ!QqyF@um}hjBHG)Yy}q{td!aX#*@t;g+%8z5^DcwZ!lWP61zuO6$F0!=*|O&1Lhd zQtgV>YT`ECMByIy^9tz(B5qZ`r)yzJeLUS|e3SHJ^gv#N?wWMV@fGcI?|SNlfW1sP zt*qh{aD)|A!QUnm{j_4e<%SwtfyY)-IgATe(q85Jng!K4dcLYhs5VLLgT|7u;9;^g z;W(ZrGr8Qq-`NO8;Mm&b;?&e#+Yg7sBh$Luv)DV=6W7omtiD2L^@I{%=uiK3k4_Wp){y!pT*A~(%XX>z*GHcPlvK!^jD-=7}g48*E(;Qd^?Odef#-(tC^ z9^8tUv?Fw($L?+=IBq63lyK#`zOQiwaLsI{Xxp!*P zMTy#M-&$p^(k|P!ZDW;f+qP}nwr$(CZM*AyC!(+Vu5bD;WJYA>oH^!r=CdA4L6!qY zgFlDGxODVr&`n|EPBqBv$aByFlBAtt@ zKovemWZwMtoLZ~X<2Z;c{3#>zb)cZk8p#@%d8!KQjvVy^S=he`RdzS2s$c4GI%u7) z)u#N4Nl%(@b{s5Yf;W-WtM`b&GaPa#plXLwZz?@S0Mu8jiSLK5uA7-l zagM>khy8^A^pt?wXPLI3!%rKJW#7a7IDW=qkDP~HHHr4Rm!C~f?b|DqoI0jm^3~Ls zPV0NR_0=1WUDV?_PefP4wQKhP4hs|7C3|Cp#Rssf>u}8^56y_*0X65t5WJ9fMOGO@V*dj2q!F+oFC_fja!n*9RX*uWxKvhF(wx~y<% zydh}7TVr#zD173@2rCoy4mLbd7`OarCo5-#NsHRuUCRD^Wh;4uxqRdsW0Wrn)Y{4l zXj{M~yu3kPJnf3IcOFDPPUK1kjfD%ni4hNN-hOuHDe69M6$4*7LByBysg}XQmyY9j*G^YOYEc)wd?Nc2Gd*~ z;eJ_OcTT?E*Q|M;iotuk(z>}xtN41Jc9K^A#~r4hJWH?Eei`84SS##DDwOL&2GJ8+ z5M|(a#|eD#?f%t&H?@oGKb0A5?dvZDTi3jw@UM1inZS&r5ZCwX5&Z*O zvL8NMJlx~T-u&(mMPxV#;*Dr*YBvo|KRb+B)58=MFE3DC+`m6pIwQqSWbY2ZtT~F)c8-ajWghm&9ITx5MP*I) zDl)}rhL~VmrgvDL8lih zrNqGUHv=ria7chDxlwkh%z%vlKSM#SV*3k-kHIgK6iO*RysgRTP7jW|yzzEjHp+^( zvWkYWXO!R*z9pI}$-xTGCY`Ygf$O_s{k~;jFUf~#PQm4^c~9UFdj~r(v*v1blns_1 zR@E_*VxoW9ND)AZ`Nyu7ot2s>RvTo}+1jBwzy2)AHNB|KKL0-~EusXt)Q^{NtdQ$T zII`^PF^&liub=1Qfy-}yV3LkTcE0jQnF`(>WPo5wMSzydE~TJ+mqf`7eP_srI#ad@ zUA)4i-V9VO@F92=^5^cNiXs(X=9X}i#qXZ&4amRkRJM-hTWnAcwl{gNbJr$dX{<7y zxm{dR8KeNcP@??H^u6Gg3XKj-5s;LA1o;$Nx7r*P0sxOZ~iw3h{ z*I9nvP_>n>l$=^Fmb^dl3vz63zU@*5ywIJx679q&?lMk-Wt65mNX||DqJ7OAeX{qla5v&i z1!$%5^a9F_>G0Y7tF5p29DJbb4;D1b4cD zZmnLd!0km%v}roG{ylelpxoZ&xs9y9xLj_m_8}QVdgsJ9hkEgnl$EHss? zp^vo|`wy&OFUBPs)h*1Y=ShcBoBgV|DN})Zu{Wk!)ILYYg#>BQBcF@8-YpnM=FtTZ z?Q!b|FuvB~J~VZkrBV%J_lZc@09f^I@h_7kFhV6{X`Blna|50=2z)?cb1aVTi;?dc zb~Ww1jaOqBzkJfefwj*wQu2`)Y8Dzt4=)>g`ONWFs$Sm2xKk1*4)+tKytKm_3KevC z-cw-?UaWfY4~#tc8Y&za9^Q@b)PJ&rIB2jB?;t4(oUm-O|E)9}KQt(k2-$|x)eRt@ zp^-)^`uE{R!$`7WliqONoVr?uT3vKG(0twa%6MA3dq8K@18Qq@YN@^_Xs>?WEIitd zv^NoJRN~tVyvQ2Su5l7GZZgzX=1qzEW3LZi4hQvoqM~^mx^kihAt(oTB_Lw6_}T_= zBe$4Iaf~h(2ic`;dEojCQ@?Aa*4nhwj_*1(f4_@4V%F}XqVrpk!{D*&J>Yj0VFZBV zu4r1c=Kd_3@_H^AXzcD^M09s1PON{Qw|swR_o$<2)7*xBq8q4e;P@ESvCmLX%Vu`1 z1TG#m_Q_61t1~__;bhHKy-Xgri>(kbHvjuHYZno$Xp?o0b_LnzlFeX077X`>Aapwg z=8nMAwEVuHd)IB9VZfcIc80oLMd+L0hcLm4rl@Tp1Q75iO!Vh?&p!3*biYWa0aZqL zxrJ%9z}wQuw;N!7$oFnvbET`ql2?tclY^!-Q4Z+HE!Y(-csq9aa&mB#Ir3I_`A25D@KUZa4;7e@^~`Ibyn~+xFU}d+krSV|!!ep-y)@D@Bbp_Ne9Vfx0tP z`)aEs{nP{&7rwY47y&tkf<6OKw87#$t`k#tOLvsy!`Fmt5Cwl1siprfJZ zSmsSAY%>wjQEHkS(l@v~1VN56fRs|p9k_iQG8D_?cAS78e#^~w5*pC8cvp3(N9jfC zDn2n{^5*F!{j{wMfpxyI0?)^Y=xXBUZ9_{xaix)L=Gr$JatDg81j@CUCp$UPuc?W% zJ-~g5R88?e3Qr*(Ou<|w-Pv4;67@Br@GR^r5;Hu5h9hj|{^m{Bllfu{dpv9ab?~p2 zC5*1Vo_({nI+@KS=INE z1MeNabaeS87yG`xGl|_hCyx+I(~EAMg~-;BpuPc+%aGdb13ZL%XfpWb@#Jpc8 zuLlt#+;Pfu`S*vGi7}y;3<-j599{#q)AFnz=URk$@p9gIpSbGVaD{qK{ATOVTnwpX zd+f7l7|2^H@1w5Ssue7|SuQ({hZ?EU>KDVlGD z#6S^cl+l1lbH_4~Jr{@_3O7a+&Ahxtcyv2F4|Bz+7;gzZq<~x2F)hZshrX#~AsG6t zu?wD+D3JQ{~SgWHG=Q=ETW-o!IrDcEBAu_CdMGv zxBa1?{=nhCRsb6F6!T{tJ(_RcFgjYHEnVvADP!3lohUE;x9Vc0;Y`{gnj(Pt@56DH z;6I|FvI0A`@SDQW z29GSBFi`NEX%5((SEVy<*^M!v@aqrs?=);wDM_N7e<2P?RD6x6 zFvr1>k7VtwPet%?mKE*4iJ4FNPI^K)8N2czWh0?aqW$Esac#kf212V=&R#F&tDz0b zU0nt{309Or7v(FMkysnsLzv0_qiz*rkRoc&^vedUGn=VA)aRopz#bzPsrr&OUi4f< zF6rXA$Qz*YhF7|4oFWj^sNGkpo?ZyH8S|3_k^+R=esgGwrjC7DdXp*sRwrJPk>^`3 zZI#v{ggqrexc2_g9!6pWG@!PUw^h|JBZC*>oritmC9xR&C6Lu02ZV?M`|OJt1{u9* zkEuEy3tu#01<;m_P-^xc6~IlR%^DV_)lTBWmamQm&2UX9J{=A>JT{1Q33>_j{MO%{ z4LMHQNZE#`NPj%5nen-((ptVYh+qPmBKSbMe7S@Nh zWmbUltB!CtGpQue%<8(D(+jv|&RVs&e(~x1y1lx$W=0kF2@pKrZXTUCcRzF-O!Fge zw!D&Jg0D+K#cNUUXT>{i?G)F%JwF}4{)6Ew7?5L3?Agwra<^9fxG+-1Yi1KcE5K@| z#>%Z(V7NXvy-03B7$1<{?#OZd0F8Y#le7>*?Wjk_a|ycPTD$J0A#4A9LD^5EPOPKP z?p-LBg%v05ubnA(Sygt#l9&)$S~5@BQ^?gotW;7zd0hO-qge*afJ2MD6c3<|Dy*>N zR{-x9EKYRZ=l}M8%JnDqDs*llepudA|M9O&-ZK4?qDB6onD|A<%(TV{w#{5jrE1n*v13M1_=hqAE=U>YS@j1Iu!}QRD`@^}inp~$XX2_Y zlMN(}h7%=wWq=UGgR#{@oC{+TTK(koDbUP-1uv-sskVa+4UYAZ!5eL%op4KecI>>! zBK8rgVtj7k3vm{EU_OVoRvH*9rca5!|skK*}0yQf&|?hG+AjaMdUC1;v5*=F4?~0IV$d5j~u22rx1F^=V=@w zgsaf=hv_a`as9B~M%?(&P=`zDAEI@dT~OegX%#G7@8g-buq5=q*uRNT3@PTFx4RT{ zolv;wTy4ST+${AOc0l?WnNp|hv(vT>BT@b=*B9jFXCl+P@L=5QS5g+IW0N2`kBjlA zT&N4oki%a880K6lnWe2ySY>#$P1@Bd!c0_mdc5SV5u7uCS7-Vzc|Z3;lk1;Fo~B}+ ztqXXE7xwz+xffO^jlH9EUBdAde~|Qfa>xm3EH2fDy80;{r-898gca*fScLe7kNSrL z=kBe&jZfLCQNNAJLoiV*d0~%Bss{H_%==6aNvp8E!iEu~%Q*0FNr&HK-cKt?4RNxK z`2v7evjvzD`ZD8!J^cOUYgL#}eoec1lMBx3NReZN?zq%PjRwdhN{kpFK;S6}sG0CU zc#Ks+(yP2~j1LGxO==^?In!95!cxy?8eYr7O%JMh%l^Wa5E%)mVMQ!T>e&AX{tfIZ zj2{Ao`SfINUsc$d==(d@l*c)~lgEet8cG_ zT;*Zz86g@4x=UC|opqK9oqrj@r2f|dowv7?ZKa)3cM=g(#vU`ji1qT%G{i5b`2Mki z(O@gRn5=hBTYvj~JUc79F}Z8)RD4h5eDo=PDvpS|nb4`@Ml@t~o4Zd#6rC*>NP^v; z&-=2>o8fXV_tG$99EhFR%I(^wtjIAj&mbwXpaq<}*#bQzLXv-mdEhJ0>Vgy411?&U z!;VEZ*NrZl4ryJ1NwlhuS#d>9gM#&KH6Hrl;d1HNd%ff149$wdq!72KNBh=Z;nATY zs_DG)QABpW;8EY&4sqj8P>Iqkk9)KW@@ik}=8Vh@| zWBQJCjmS@)roA$aI4lz>WP+cd-Eq2W-CK#JF6A#?PX2egI|h*Jby>iIi|9oc0L@2? zMK(lcTy#ow>svuiu*cO#m`AqdAMNFb>!4wcmrf^w>TMU9xJ_c9NyjVVr9}x_sLr$=)>Ki0_r&_D5t_=sy;};bkK(nnw4Qg*g_02~q?kX3IhT$ZJZ@z)K08SWY?utVun} zw2VJA8?RUj{>PWy2O&(4&<`F_&^Q$3&u@NXK5uFH%Qd%$iAXConDOy-T-!_qPIsS! zR#pZl0|U?I=43K8qsxhp*$*>d7QmN{TR!K?PLM+iOm}QX1W5HWv;YttsZ7=Gv^I72 z+U;`j2Ov~;LZpf2FWq%g0T8SF0t2^yLHYZZt%p$RnX~8;mhPwojS0eQj+xGaa}}mh z{G+>)nr3R;rJ#en0}x;L9ZxZrsGJoW=4updOwoOfshVRaU+Nj=@&9m#o9-Q)654qo zjh%Hm%}0$NJu>+YtVTAdar?2i6o^=IfJM@eoZM4{hS`%>Y`_proUF$%X;S;JuTdeR zmN5WK0njIqh#SegE+Jy_V6FF8^%t<`Gxc_Qq&6PkpLVB>CTpHc%6*;Zy$>^}a#j~+ zWt8@bt_Nw2+E?NR)h%*2r40{(+fQuAW7TCeseZe3!hx-lyX%g2a`(Sh|?)M z&LJR>^u9!nBW?oo<-~WZRef5dzS--?;V%X^?pSQH09Pz`u6v+!?H(O72^CGRxw$6c zmc_m+`>gsc+?eJ+?^%*w&1G8cneIlt*~$5S8f@f%XnQBwwOvYKZ6m>m6ri-_vn2_b2vma~@MXfRg=JkZ zNRiXEe}>S&ly)1zj7Z4~?kN^*6L;6=(HN{47+5O6!D`XpdA#Drj~@~3T-+MjY2Y-& zur&NN-#(?n<0MI!1fJrF14G8EERA5Oow62Sn(+Ku>{Q~;ULDR*zKi|yskq{%ujV&8 zyML%=@w&H~A4MGa79s6jSN3wL-|4k;Y_%Fon$GODmXH*T%UF}gj z#|c$`F$6o9#jtLq7(9DhB`wSrf`ef00JmV`TXpJTO9H`7{B9pgFa>S85jv1=J>7Yn zxT4=@5>sgMa^eJvyoLujbcgdX2D(p3HB-#)vB3SpCCs`zd7`Zq{~1o9;%4E}g%>}x zc3v)ddxAQBuYT*U2UF^H@ST`^yv-xh#%c5B`6<3QZi&QOCPQ@vGZYM=wJ0udu}wnM zt`5&Ogx3Mkkw63Oxi0+to-|&jaMCp6446iwA(- z7gnd0gF3iwvxPsnQ@t#(_3q%HHxIk6-+%t0Cu;|rH!id3LXI1r{D;CDhA>XGWfjHS zWwGPx?72<4jzc#|McC0GYr`A6vD}z6fXNEGxq2aw5UNU%1NCj^98N>Q+!+V5nD7^1 z9PE{mUGp*s>ZTrm5F;4$E)dc`vYPV^+1>T(bYOep$Ys$HSZgy2KH%ILk8Jo9r;+XgX7sZmYJ9$Q z@xYurlX1&VjB|&~&KTEE^hhFyCXvJkNdHuIyYpCB6mAFT#$s?h*+T~(cxFU!F3fPm zbky=$ig0x*;0_bon3~DmY6#sXcyyxXU*pS)%SO5wP6|*;?sSmx!%~0u7VaAGy?|FB zG(F!7_O)e+d(Z00!7OdhZo%6~iGJqOwAH~?@Ce~`7SW*^{;m>lHw0?{B;%h|w#7~t zP1z;$&DzzM6iWM@IvWtjo&=$S%{MpjFt3%3Y?c$Yh8p5bZlhXeDT5|WHzn+bNG6@k zf1hLFnT;(*$h4%AfW=5bKTAY+&9W>s?Q?O4ts9Q;LAi^JP3^Fk;0-$OSi&xV27*BQR1Hy#T0AKd zB4W_{U<3A~?1NC4frHo*wXDi+#|=wZ08`9)rA_Ew;|TO$v|(zE3XV-^PrGat&~B>} zTB#WwZ1C7=AV=|QNrA*@1BZG%s2dn+%BA9NF=QWX*98|49SD+6kQwv+6>JMPZ^%Fl z&t^*?BJa;&O9l_m(;a&d!c7nlbq+M&p9{$0^TohsV8^C@^%wBwC>vI>yF`F(W`l*K zdccY9DigpM>W&I)@DFiGbs^ek|Nbad01kD4!6#i3;+Z-aR!(aEqYc+3ng~4sk}7I1 zr1?qMA?({z_7{#DHdSxAi`RBQNlmpy=T+y{;~hR~i&Z@Z!1O>?uTI>4w%P6G5(9c* z+)MVGi)+wMC=}q^qIJWXo%NPj{UGH!?6}o1fr4IO#GN3_CbCQ5zsNN5hQy8E ze)=+vT!LUsKn|qBkFggYH{BV83bLaPb_UE!cv_T%L3_}Ema#OM>++svj==yi7y`OqJ+)VNoSX~#0hhjB%k0E zNo3G&AfWjwN2>11#;XF2G`7MZ7|PJT;@<;#Q+kpbPiaVd?Q&RJ(Of}D`?Y3W^Nt!$ zU-P1;*sp$ta&uyk6ngy!|IR=Pe7e0BPPlJbHO7vwsN)5%=L-a?9pQ(qejhh>-*I){ z0oEJDv-se&w)lcGNL6FpYutn_)PllN?(`u_|DyJmuF7eEL2Es|4c>3r=E0EUe$@4> zH3*VQbQzxl_3(iP$NrQk!L+jRu;YJ<4Xv$^*itE0I-TVU!wbE_LyGMA+x! z$?LN^nb~<{bIf$3^R1Rdj6wp`9FjsFfbortjWa|cBY}Th&AS=j4aCAma1ZXw1e?9H zB22QeYSVJf-ojrEb#(TJG*LE~6v0)GNRxBTtQva~6Y`1V{q;NsOrh!7Kk^|Kz#@CB zn9trLxRR5E9hP-WE5wLqH&~fcE2P_R-2gk!MDj2c&bj5gY~h}H#BaihVP66Og7TR> ztKt)ZQ|VeG`=vSlQ%@D~%fc{ARqlvjWmbM@7Vb>z?uJi~ciAVY6}m#$!^Q z&u*icG5t4R(uZ+aYq&_;SVo;jlc#{It}2(%R> zJm0&WcS^wS{0XCwQ=XDGcwvwd+AB4Ucy{(*Gm^j$@*=%Bl0JFfrINO6@h^&Q%^2Ga zh*K^l828~I0L5_6XL(ax;1og7^6M4mvviNQ>>v!lWTdUohB-C92Ht9LLo$t2D_=*( znuT!C?%0;g=u4i?8NJi()7?UD!0#1CujtSz1a%m zf*F>B>z2;K0?z7*TgjIW*ZMyZkNFZ^cL_Ag9fR3M8PuWtC69PCSs?Myo)A-ZJe}1f zfBZrDzk>w%)kJ391^({vU?x7F4YisQgg$k#UuUb4wkx|_Em2ixTwg6c z2Wxv?z_}xR2STTc794N@$fadc94c+!#-R%m`pFKs$dL z?L&Q{i`iEwMYSHHt9eY~F0fvJ5|3>m%b%6Jex(}3S1J~`h^P}Del5oRPh&P&tP=$< zlm?C_(edm3AyJv%ef_;)TQ5FByubc~giYVOin_58Uj?y~oF)sATyxbytaE!1c2XuV ziJJ~*i&`IZlcB&D{Xed(#+-Q z14{xj(z2}l>Qsi;c(un%$>F1XZlTpEM`lfx!-wmM6J@Os!fy}t-ZhJyf=ilcTweE( zJeR1EOWoB?#B~vmDZk)C-YIJd|5$G(Qdf~ut9PBd=@hiZZ|C~+zpj)(UwlLtDM1pj&jEYT@}Y!cuIOI0 zR00y@h!mPp;Y|IN{Apt{^_~`|L3jD!>d^UqBY9%ueGzgvjfEk*jA5E~vNAUqO=!4j z<_FDpU$8c;Sft%PzosSix2(f|glR|p_Z0h2+J4iMF!oh=gM)(>y9_a`=gnb~*^mAU z0yr)y-s`+W)Qb2HjGCVf|su1?FA^Hz%@Oo<8YN^!{S= z`{q(;(uc`|Sj$tgcjW7Dw%b|4auKDCY^mozaF#QrD;EFz8#F^88YP(2+u?}i$7}*- zx>0LmuH?J+@tADfe&sIPpYifo1QLHquVJ^Y-&9?1=E-bSFU-DQfuAK`aC^AS4lFNe zH?LPR-|9pz2W*C3V=pDwAYVY7Iw4WfP+;QBdjd8BPTc^b+(9~mk5!Vd%t>MI{os)O z{Dt(=LFDNzvSK2<`N0Xm8WGx?P+XpTfw6ZOYy|vv|E1;l^-(^po$Xp9mB7}1*{pewko3~q%V5x}v}%*}aroU!ig`-3=go%&iNlQyFahXsJ62k{RT zc_|Tdbhbm;RR@k+(3niwF`F|AKkXT(6BE2`T)xDo1@|hip_M2u15O19@N|HWR3yY0 z_zFR*Kq?b3It_c!S#mLL?;*(I+*qpZP9ZQ$)v=H@#A0 zG3qO}TZolTt1Oy;{|AHMYc5nE@t++)VDM~78Ub?11J+sqb1DjG00vUHlQtfWJ0XpA zSj`~)_}7!TGt2q?j+$k199K~P!1ZPa?%O@kmA^hDKXJ#_JsNv-Dc-^j@6!zOlS^UF zgqKo8CSG10r)WxC!}}u=g&@{Tix@6Z>VR*V?_hbbA)S*0XtjdcmYlD_g&<=?{?j^1 z3MoYoC-csRd(6=TE_v7!ZVut>MM6HT)fQV=zOSwLY9c3pwAMI>seoxoF%mlkFSTCx zzG5Xr?P`7i(7F^eHTn}JmyxuILCB@A>CA`|y>J#+tI5Q~BTB6bQ43K=gyV5?0t}c& zdI7iChESgfXH=BdC29z12#YX*HOd=oYNNOqFR#Oiw;e-SWhov|s^4wXw?ba7ooA#T zO6EU2Gkwgo0KzNCJe8=54vC1ROETUK#mCfY2#{Q70+TMAPfe5?53scve{*7ZZW*4s zJQWI|DTCj`Vk6s%v4_jvW_eClg3L<8@yHAfLTqMn8$C&DlSHsyR)*>vWPqh)H5vc~g)z;~ z^F*-xgVZlwN*Zuu93zvGZdL%ioV2415Vf2~xM7<>ioA?=P=h+VD$eN%J3QF^in}~7 zC8D=YyW?0bGoYHaa)TTR%<3r_f6Wznh+4iYyxwt zhq#iaCoPMpe!i_WhQ{pLty?NSI!SzqonmuPs@yBu-x9nS+&h5`rTCJhgXA2m4qSoJ zA#Me)DNue04{102+f*t#3SaBujQcS9c8AwH0)%SakzVJ4xV_RWL=_-p>Ok@Jps%Xk z^)&JfzS$hH62<~yW=O>JkXIm$1P*uGoOV-;B30;{PA?&p)q&wz5=rRRV4HhnBeI#m z^!(rGng9Y&0$wfX0H_^d9k}~sKsPwZW4=%VgA%Z8AJtj@Ht?bpE>e3vv(L_M?MK|G z^uF%Pi?j{r2#=3+&&($mV^+X64d_4BO7b6$%t;xo1cwVpeUk*bgQ2d zAG;)xwY>Kad1Sma25UwZkFXIc1UR(`3j^NTc~_)}Tq7Yk6t?-L%`gpPvqua>oloZ`ObHQ&odzX&5Ic9o%C zpeRW-qRWO!+A8Dvt#5;Z)11fRNk-wBBUmL>P;3%4H6_Vm4w}{5k_L=vC(343-iybw z{{YlgTA84nTWzLxT-`VRg71m|oH;u1)(UK>382QQicWBbp4@(Pky|J@qg*VPR`yWs zK|?@gxx>t*m$f!f_T8275}yGIbaIT?jC|E5=CK(fOyl=eWDpaRFH8YXf_?7sBj}rr zZ|)WpdQg^RSjWP}ycYi!IUE}Wx%9eb4Fr7%O*dS?i3mF`_v({p8|!ZRm@>9FiCZtX z|AT&Ll9S#XojB(N(JjtG3-hdrZ_}e@K2AaZhtYA_s+`mh{08jL_y`LOk6dElzaoANQYLq4P z(J5A6eRjGXrg7obv`!hea@dkNn^61kmL2nsi#x`coT%t8)Ui@nF796q5Zuca21AU> zxXIE}K_nUjG-K*dmA_hiIr{=yt7=0MomPpR)&*oUtvy#mK=l{Lx8}%%J4glN=pmW} zaQ4R1Y*jVHqG1iY9F{yHa-KARi^Rz_osGk_UuG598P6X5D+&;ub9L3y?ep@mrHAd~timV77?QYn=4kL=ARcJ{uW@aVl@ z8mqg+yLM6PCp%{fQyb={*L~;W+9rGXb&;L*7Y{egeN^^4g~L?cDdyRtiKFG#bH+%}`0`@Xae!`JR&1uPsur;F zBXVAzUmLzkem1s$jQ;BncRsh|^3neYbb7?R+;yJu^(}YQ4Az;9^kCb}e)zY4XS~HS zB7mBwO{?%^N4%qGK_g7b$JPU?yxv$2BPVyARNYE-*CcV#6h-H37^jikDC~)ph3u>e z?Fu1B+=0uXHN?H=8ZIkIet#&0oA2ZB(eTk?6SIBw@FD#YT>R{PfAgrbZBu{sr31<5 z6LBv03f2Pz{?6%znzdZyI=VL#`Ct1oUWHAmT1yrj!+a%z83u@d6iJ(?Op3hnXY5RZ zd_Auh@&R{Kjj~{5vwbe%^;eg)pa4D*u@7SjBA7%K2dp@qY;O*1k^1%4Qg0LE` zmqa?>tH#I-?-uTe^N){reaBlz&rihh#?|Xzo@bwnhmW40sx3?aCjgwYHg5-l{FHbH z)LxNHq{IWbLR%&`OF(D9pl6x6m1cjOgmW{8Dp6y2;tAO;u!FvOH zjB8Uv(AC!xph2s{_Q0YCA4yE_yTQ4n-UXeN@%>jSaqVQxqRnKMwfru;iB#&YQGBC| zHhy{$FY3ayK#(mKdx*y6C4*`g8$J%Dv~1!|SA+qXB&~|uJ)gVm$GB<%Fk5@Cb%L#W zI~lS1$ofM4S>ye(`F{R+d|CgZ^?on;j(O|(Z237mnQPu~`}PE$<$>sja|On5U8aUH z9jF+p`URU~oBH;`0q_#z6jN+~SrFPIThN?hk=mnZl<09z>ph1XP(EWKE7A;f;`^YxxNK@<{eGL06$u37}?}G5i*c*Sg*-_5uQr zT9^69=bEdZ_wSaUebyacoo_XtkBAuFmV{=P22Z*jP~VMAu|n$7qg16L`XcDF-wu1} z@V`P`w7=;!z{7V0wUPJf&AhNH4lddd3zTKaGb(Li&$!=JKc1d0Z^X1T5qL=zrN=v= zK|DaBC;~0&_hPEx2!5053=>{y+o7%hyw!sFsL`nfF!@)*S`)Fu`YHusM|S4DFTOjz zeqOh7ex7nZA7`F2e)d{^=6K(Be&Pna-&=ZeOfGsh@KtG}Ysllv7jm>j39*$2t=S8R zgildbpd!ju>E=l&UdyF29T50P5G?O%eAiPKkWnOW(_8oHzs{A)vFax3i#EbHEBy^; z5TYj@13MLEJ~Zha|0xN9A~cnR{3mq{I;9j{QxEAZ@%PzfRxbuC-o|HaB4RhPE?LJw9pi65azrz$-$|5tJ&GP?cf%c@lDgDD~1t}ndDt4CzU}T8BlKkQ&we|)(dR(7`RQG z|IBWFK2P^m)qwZyxuK}O+*EQ>l=Nr&gBcsBkBY@df~Wz;mpEIYOdY2&)k6+B)M4Vr zR89%RNo?S7#_5%k6$b4Y0JA{~c*NfM)|qR$`N@9E!MXZkf?B*=<++aPv3y3up<93_ zuc}onf+B|eQ|B#))l-TLg2`XaE&q%YAD(f{n|&=0IzjI0uM{CkDt z>dU@O$hz~hJf1*Mz=$Z9C)CnkPC2efelgNRDBK*IpZ0R+2orr`$7|#*s+(R+hwuY) z`&<5M;o9ff`BUUXLs6zdIM6UZg_8-dGu_tul@ z7D+TKwCGs*5FX1cg>|%iks|2)A;tmcBJk1ekc>K!P1O4Vea^j^auJ@^0Qneq>EpQU zlk>56OXVjA4V@wFbliH#;hUsAz#9J~~wa#SLn%n4ZUZ&}`r9glkND`77J)F=RIATF7z98t6pap<bL)5BS=xGc>mU9;3?aZAn1xCy=E(t-?TNRlg)Y>D2nCWJiDGe zpS9?GT7&JrlIJ$N_FoILvMudOGm^up(w2MR_sGH1>)^xj8fB%Zd}D6Nliqt6)ee8l zmS{a0deGQs*vTdZee&rtk2SAX1QO&`sG+DEF}1N_LgGbGuaYtLfK~{3fRKQAv`h)j z8ih=|;P9?psqFYT0k$iB40;g2c6Kovr^?@4%T@O#2;Rf2=sNokEmGC!n@%lge`;$& zf{osR)f*5Yv6Rta$~wahtz;vgHcR%%A6SSCJ9R_)F%y&`P1%)Ynu4rDSML`MeNh}# zKIF+=vseh5h>i$4Hm|wQPhWJjf*-b~S(`%uo8C)q`8|0(^l4MQcyP`DgQSnT zJwzWY9H53_cPgHDVP+eub186fjYWN>rPP~t83ya(DSJ}ZD8rOe9BoOE?Nio*1s<8~ z>2R3VHHhEtl8tef38IuaE}R;`qNncWmb-+jb^yR^+F?3>8iEi$9HN$UrEcG}WHwoT z!6L~?>mM17gzP}zX3T;g8juzknfy|<1yELg1lOY)LtWNY%DTG=4fLefOx{@r`!5=y z{SVsENE8Ooy%E>+W@9SY1yXbNJF5xU2+BJ};^(*Qs-ndA6Z z#ct~0bxdb)hr;*5ChWNYY%H3>;=py+mA3^~ zW=z6$C#N^`BQ_t^Y1-}#Ov!-I+%;*}lgq2MH>Eq6!{_lKgdeF?ETu6`xiI4Ug|0V0 zI0l*Z**IdhuE{NGuWeT~B-ApziIHirmYbDqc|&H8cPb;YF=j2 z+g8U;$4(|QbIz=0H=EhjvZ~Ihuj+g2dG0mAJf=^_$B7X>lZ>;4@h!z|1W@N(fkUTP z>_Z|;LHSx%Zr$B-(emgm(G49L=BivQpQ$EiX*wIO<~1Ss0Q15x7@l}@8k?5wR4>Q$ zDjt)sJ=fUDhz_*JMl*Qt(XkU&TXo+r{U-lewN;K-V!22Hx^kPepIF_%?bFGWY&yio z&En*_I36=!bmX;u42n_Fcvj+cE%k`BlsIw_W6mz2!!Mthm&0Z>+<5lAsJZ&eOgl?? zH%@AMDQ_4&naW|q8h!-7md7ImTzc-0C?%lLk&53;X}U$}D!tgC_OnPipN4)9>;WEG zFi?V5kKCx`Bd((9R$GEYAJkz zb_pC8lqHJ^PGEcdZI6l@xP!w+9!Uivl3u5S_Qt{Ga*Mo{Z=*rDYx!29U9O@3%yxt z1Igb_8Z>wJU$2Y}vtzUPcp=%GW-ogS# zKnu$L+QLUWShX^L$m37(nt!;QrVAiuX=IW}L&50W!Sr{sh1pH8iXe0jrVmJI{GTubwB@geD3 z)IM1xXEKV2jGj(BhwlruRi9t9nMOOq_#<6!LItEpktQ~D`hd91l= zxXhQF4q=U|IE^h`djb>#7K>CIo+OXXaS5+mVNISK43vZL7bZ~gLDq6SPi}!vbU|L54d3~!?AC7}Ecf8hgPuum^ucrh6 zp{wUE$;m;aLsItMh6ta_W4^GZs^A2jsHJd^4$e%)wif(Gu`&N7rSL?IY3J~&AFNgW zs%DCG9(cx#`zbzgR)Us*t42|K5s4iH#+LzG9B(4PI}C zwZ?+QVXssZJ>|TXUE*y!uTGHN?$gxozpTAk^&^E>NL@R#+K^g;i(N&mvUtqDs)1qs zM<&nPieeaL2QvIoaCy?K1u%y44KYQ!${!jx{N;=NX)$e7JX0i@i`6(Gh?giZsjl_r zT$CMfsMhwv^xcb%X_t{q5g9f5C2E7mdv|t$rAw} zWjt>$Uar;1NP1GW3{g{k2T-&!o^L6%4A z1*Rj~k!_>)Hv)6tmW%d$j*L@&SM^8Im3P-RgP`ri`T)&%%;WO*KN4%wwW0FiebuMC zxUva{K^KrwV;AOCA|X>DW;{n7_KJ2aD#TQ*A%Fiv*Xy(z0;>=|b6FK~y~tU*lD_RGA#9%Xz4ub*08 z#9KtrFVUINI6fZx8?mcRT= zgcDJi1yj#7bsor7I#IUgPGgC_1Jq?nyGbPz(Yd3n?n(=2wZQqbl19cT@LtFU{qR~? zgm6PI0{q3^D4TH~5~vYcJOBnDK>qrj8nkK!5`p0x&H+pMZBQ#bSvXG%rzT^jNH zZ|0JM(|V17hsc$aub zi@$#`TyBPvmpCeSu!^-zRoE6~INM+4S@ZE(VlX6rJ3u=TQpK(Z(aee@_BS&{^Tnb` z4%4z-&3Q^3>z|=i9}>o0@d7sQ{3@MO#P(Xdx5yJSOOqyy!v!fgjE*Ke+I84xaA?Ocqghsmtg)RxEsjG1Ozyaa+(cpZ z-FC8sqx%}*g0GWjZii>bx4rYvb7X`H@KAF%=qW#nGB>#&FYey6!*o94=QFGUMmC&7 zzVc6nrl{9xg8ofzuezBcv>#+vfJ$%%f&9!B`R=vwqSgZR2>f?c@kIab9=k>dd3t@k z3i@9N$A4gJ(cHknG&WA<*v7GT1_)ki54HE7SBm<92v1L&$d4D?u?T-%1%;%IcRV@| zk0_5L*Wc1jZ!Q0feD+(!BraR!7(z|5;@~bhiu`@fqM8IMyf|fNd(;`YIUBlzus~2` znWH~}`$f>A0GtqDNYGj3dP1;@%fAc875bZUn`N8xi>R-A_7$SP3KvF1y?bdhdHQG% zP&)4*FTEe7-KTt+tdNqnO`O*lJagg{1Q0*(V}J{e`S0~1BV;YRIg_W&#gmT=bJ^Z9 zblS@;p|H4J1HqTHw%8|tvO^33Ygyx&Ad$PaxODmGf)~;d>ar+g+|Z0-p&_*S@*XL= zD;(K2Ht?4s_Pa`!(kE$7>#3pVM@xrjf-}z#*A zgF0JUc)|nVa2ie;*x#6Cs%dwP3fW3qTt|YgUUo|IJs)&0E%)8%)X1p}&3hh*IMFjy z5@f5Qc5sv1Sq&c5YcTEa+Ojma6;25fHbmX;EJ6hi>Si_7fjpxzwYVb;EJT=UV;v1R z9)*Y4J8*=ZZOM3A4nG248l;}8^92Ei5i^pWSvICj!a~Aitgn~k`lds}tprW{$u@bMrlkelkQ*0A z16^5Yw-^Npv%ZeB@Z_c2LK*gvrkmqjhmD&Lli;GV@lDQcJC(ZXzKFt7I9mn{DkeTo zrqse-<&7r(HP@mtNf2{-DAifv8bm34Ke`@@&Vgn-+nEKXB|1}Xawo0p73gCKGu2wN z8Qo?QUgwtCIE)+tm|?8Ua_eRU=S%z_?bn0cy%^Nfxsp$m5iztG4C*uGv~zJYe-9d? zlw?-03iyPci7!$%+G5$122>0)HRvqrV1a%*dN{4t2+N6tF*feHeGtD&6(FpLNvj!S zBk4pK(GT=ezi`Oj<|8UZpz~bKbcYw`9AD2=i^_34{fd0l-~5%b!Nb_p&YV+^>!Xj4 z^-!;#5Wd}g=+x~TVe+) z&ox+N!r<@?V&GUyc`Xlb!HD$Sjl$^qeOgMkxd4G-WONn%mMT2jjjdeRu329AMv#^S zt=UTcU?(?<&pt1zv2&+|YVd=E=Z=GR=0mx$1;N6OjJ+tbp0%R5hu}1E_0S=U)IwI5t&6^nr0vL>u#@)f`o20Nk+ zONZJ^(&*WAo4)aPLj7$QU?PW)7uVs1Yak@~EBl~Kg=UZEm09BQJ9hagOOp##UcDw4-zPsK5Iq}m#?*f4* zrJ}xEiOCEYUzATnj0?$}p-m{$;^w=N^7!-qo=9ANj&%RqzkoE-^@2&-;=u{$;t2(Rf>HI3cYWuiY!J*x*4o8w z$8NCeNeyeYw84DH+En#6{iJO7-!Z@!Gt9@<1w@+XCZa0+6JM?PXV!H&YqYq7tRa-$ zH{CK$Z+abNNYgOR+J=4MS!|{PP=bu zg|Vq-Dnq_QRZM9UFd}gA?PNUf3{>!hzd3`C%%0Ex6DD9-Fee8u@5W8cdcY46pn_t( zzwF}XkxQP#7YAl7#n-`oz$J6rOuVj1+Lj=2-kgoUHEYAG3Y0t%G4esyqAsM?PEY@0ESS5N@Hfno1j~vs1Z= zo7ViQHLSb6VT~2Bm#(S8-3!z%6#pH`^9v&jFa?clm{mE)m+s4ePu~y$PpU2hn z3o?Z04#K(Ie19~YsfKCCLI;o*)y^q4gC_<82Ez^JO?ZWUl|PVx!hCmxeuM-RW(h%3 z()@=#H)N1hOE8QS1`xtv| zp(VSu4TAAMCz71KkwohK3~?6Ol5=hs0MN%$sKo=i3Pzo@`B_B|lVG<+gbdc14*{+EMdF z3QC7Wxxy*t)5JQp0?9%ATF0F@sD(nUVuWXR2@*RTXQ9^B(?(~kU!>mNa&7zm%8|xY z)O1$2(tFxPYrph{*YjXxCIxF6 zErnsKnCVR*e_cgy`t_siLWJkeVhDKaHlZe>%fj*SO0Vob95$XFsNb;65+4ki;^21g zM?*t^IF>yU**KFP(8ouXQ}zk!>M5h0Gc+HoZ&!`8 zHcAqpc6&Tm>7_MO9h6z@EnJ8~U159K3DP7=OGeNTExB#y<1c%YrKeAm)d8+6yrRW+ zA`xXBW(est!SkSI%Sui_z*2Ra>efs};+?Rz9tp=DuQ8c>&5DXSn4=TMLJP10TKxXU zAToNf0%5B$LL3pD<23fE%gXmmO0QS@mT``sHm=|8^{2ls#K=K0)V9**sMbn<|CzQV zRJ_z9onCxPs=DBnY%)VG8|l_1MKugorV<1myf`6t0Cdf{Zbb^|mdnre@wZ2;0RmAl zQ?=IGz*5Mh+(v}A#dw`dlZH{(J7J|^&QYMnnB!U%&7xy0OV0jz`4oq={_8ph#)h*; zBG$-fA!m;1v#qMfqVXomse~4rY~#oQYQl3Zu_@Wk(e}T+LVpQ%(=!=a*vZ zhV%ad1NhH+{eQs#I9b>^{|5%Z_5TzG!0~^B0VFX@BoZ{GNSa>h9cR6D=pX=_I0_Od z)8<&yjo!i8O)6M~&@78kdH~35f~G(5Ko>vSo^mSI(^39T_X-F)X=HCKaCum+Ojob} z<`dc+*h*!3irDSh?E!}onmn5MFqFBGO#j!=3wuna-gts)v6H=JMnCQ zrm)7e^quvY>)L-~6RZ>$c+QZ9Kb7S9CSJEZ;MuGZtn}*cluIOxpr`J`l_3BJG&`k9 zlY7~v)UrO@L@75zHTf@>%kR#hZClTW5CBz2OxqYwLHr+c0a+i}AghkOi_!PzQOqzc z0)$|~GOMkO30|ItL~@l?ACp;gxYNVQ|D2Ay#Ue@|4cS^CQTy9KrP-3toFI14d%ApKlJgN4rI$MjW zX|_GLE~6D|F20hGL@@<1y9B?7=;Oy``Fk>O)lWQ5MrN3pkuo|I5WEG2$e&+WC;pCdyUG8Du z;S-cRiU`P!+1r%(;eDBk%YBiP+aUm+vY+sr!f>2hv>zNpM%WHKd8q|=;FO4O}k&uhktDe)$&)GMQ~Sk61N zM5U(lMX}uE!?GFo>I^|ZOG7-{9iQoJ@Id%x;Cj!y7qhq7_FngIpj<qF zg0o}@Y^1+IK|a@y7(F`d^e4BO@$n+w=bPWShKDjIy=6abfCIOvf5yNl{*XZq#8FF7 z=3dR3Tl^^H_`%n{Dq>jYVdE+^OpdkChw4H`j_pKg+59saE@t9Y))uX5=I`|ti+O?m zUEHxrh=My9XT4^?wp6s--E(L`YV_E^6hLVrwR-WeJ=J9iUXgA|E*+KHEeD7xNJ1D; zazs66q#q4}(o}Md)RX7)0SdUjR#~pV(s1k3#$~a=MM%<(f z1!=G?XZvj6LYB1nyGTy@^J3=t(9Ry|`xIc_90hd3QVy46%q+RAY zG0Nl+68}-{+)u>B1?}JsXTlP!fH05PSc^6clgAax+a?=pg3FGf4-@x;rT}areWT%v z!B-!y5gSTrpR#FA_tW5mW?LqG#boaCJ2jFwVhnl;)CCb2j(U-jaeA$rM~tlGY97$L zr+)`RKP=;l|J#dI0&7h8UTJ1CmZqzqX;892h+%NWWNY#{Qpxjq^S@H2ejM;TWJpo6 zND@_6E5@_QIbsS?$(iHRIh?@20IZ#)la^Q^X?sLFKC@gfdp|b*Mc$Z#5q%5fVyd;u zHyg4`Ki=VV7WSL=^U&;KXS0^?_!lF=;xyL-gca2*eQUqh$NF_&4QulByNvXO1Z*C* zpZ;rE@gcw@!BHH5tbbUah=-JSmdap`rC{IQRELr4u|#8ukMFT#|A^Lf83xZ?iw=zl zcX0@~+qk_wh%aQ80ZCsao zNE+b~lds#PV9YP2q8$tbi_8M#sWyczYH<*aqY?(0*DE_@efN8SVdPyqb!NOhp;wRL z04TJTmmTx%Q85&0R)f#Fva`f2zFi!bh@Ik2`jSE0#y9!5;ivGN&}?5rnfKS)6OSg9qY?H9gSano9wO$og-1%Z z)GEe)TqM!4o}Xz6Toc=U&}9GndJTQ*Bnba}B?vH$eNWLLiqlD{WqSQ^1wg3`I1)z+ z5CW<&kD`+&T}_6?Px{rtrO)m&Cb_SbsE(=S@7HF~# z-^~pPz#L}fvvPKRRzH+&Z`p*flU#9a@De_T+rW}Ig>hoP+y-sLjk=n%XNZV@`!{q zPbJWX;A~BYD9X7a?$f!V>ebMqR`AQG<+sQ)dU(>T?FZmKPPO3Yk6r>Na=gLuiUeep zE@usm)VB7WcZ`6?FmW|;P$ArKi_cEStxVj(@~w@l8+hB>b@&oSi2*v<@2MLx(x6rD zpSEG+eMr2g%GQfmtJOTk9%(2`0>6HN_iZl9z@QTcnPR&lb2VEs3Z%gMlC#7uiJeq} zz+hIHVVT_CipRHy?H@R1Q0@L9j@+=*Dapu&FgH?hr^;XRb;mYd4`3ZnL>{{^IpYyV zK=JT$%t^4aS#t(fHd7G=UA9E?-E@i1fGF`gun+7z$R_$mRg|T|uanbMsdowSx7_%d zBsvsTufe0z_{BG=4y-Oj2&RNm*liUj??#Fgp+01}nH(gN;e`prteISlUAW`mQ^+d) zBjlrdcSvFAr*fac;*7Y`q?%RLCaH48C*FlW<_i_MARCU4OFEW{r+@X$LHg9QihMft z8(V_B1ouOlo7p=L>!+|5LET_$36Z>s8r<4vfer}vt<%aAJ>x%ZTTijw`Tm%=mSi%> zE)_s@%Q9AlZodXxd=Qw6oa0|fA*<|l=QqQn*rdM+j;H1qaUs>6@x+)@J$mGEcr&2D zU;Wv=PC1Y^o@vBy7Yi*9e$a;x&9H1N}K1-Cl_ z{doZbJn<`ACipV|b$as!dlv0zjTjTBQ|We|C7)P4?20`b@Ps#QESVgc4!!|wjbX@o zF}$oQ_vSpB^lerC9M$|1A$oZURwBMxoY}h3A{OTv04pM=F*@H7h$4i-Z)^=y9^uYz z=~)Ixk)u=TZ~4J6&F|SR{gd zd~b3KdAotJdONAx1Xx$`&F8=$*1==|%KC$UeHW;YXiSbnTgkYSn=4ZR?C%bBbKqW* znwOg8V7}Uqn8R-%8(}DwY`XxqSOZ6|0dwHGlLBuyYvWdRi65c=@ufwliL?t^!#-i z#Hlrb#}Zj%NW5UP?8)HwX-!#ZH_G{({shs%S}q!%ONK?6^IA&t$>53=tutoV;QJqh z^Omv*w1F{U(-pjK*a^j)D!owFG=)YO{4l!~x(7BEArb6s$UV@;CRgZhn_S8Y>RSx*pM8@quU&PYQ;R^v}kMmBD1ApyZVZ>%@^f zQ`fwLUY;a|*Vi}z1O1Cqrm~ox?)9Kc;%q86`y&SA!W}Es;{bq1D*?Go-$}cO|KGXK zc9$@5qOzwj5Z!y*k-5g9Sp(BT{SjS<#^WLf&iskRTMk4JDPvM8akkorxa5dt0|u0U zJ^`JtbJ8}2+Z^VFiE2X$PNu6+38>OKFHj|HF=z(bK<0t&jZ{7-()5uCV7XgXk~AJt zy{H<16c`4S?L-3PHTT8_Lu+;#`92%$fZ`UJv%kuyhJ8O)v6A6NKY|mZwI7O5CHm|0 zOgH*RS9wXXL<%B>OWL0dL^3srS$DuI`srayq8i4oQitKnUpSbgm(IS!^_!Z(pcK!b z8agvcn%6C6?YRtdF~!@T<8Eh1keGe&>s}3Vn#(!Gm(uSa_0fI9tGk)}7{m9hl2avXU=aOeTE1SN9V{ z{Sry)-w`gAEB9TLMFvEYaq^Wd@DU=5w7*f zlyS*HUH)QtCgahP7gn%yTLoMA1KMId`7bO$Q9j47N!TRX8Dmi!oK}KnU=N(^q1FXG zC+@2BHYZ>%f3GRKGxcP4Q_>L)p=)OsUAG+NuU;%25@XaDpEEDuRpn~$-{hMB&8nMZ z?lPRb3fhTJ234GfulT=_A6#M-g)b1~voH`}y?fF&@AxEEEVuwvd?t_sQ}PDvv3ZZI zlnz<IHAZrjyc>Caz$OMcFuZdB)9xKClr> zb=?=m%uCZqmu`!3d4&pbIUjxNXFlubbxqUZ+`g>F2{(hC)sSzP-BbMNr~miw7Mlf;{seth+OS5#nkBIAf83 z!)b)UTcq-y?|>~5`58>QLtdM?)h!K-9)5;5b`sL@EQziVdjYPkG+T^fVJ_#t-*etx z1EuLCb4gm9CYC6`HixQ@*cP++s;QR>xRqm?$8He>3ZN-4&;9l~^N_tT*K*c)y+4zu ziEc@MhpZHuc56>kUDYXG6`@=vD1Jldj3Lic5JYI&N`fm#9t+I zEc0K@|Wk>t4VIxJit7o#*)=W z-<$Cx9_Xg>-xw^FL36TvPMX%RGLt;6Xi7g+peR{z#s^M6fNz{*l0BmGEycTBx#CQ0 z*IGhfW%-|Fa1*E14%>w+TFnoxq|@~fN~T)Ex4J*-GG3;uv^`6p z+oWVnk(|TE{u@m`=OV9kM)Li{pN}g@;a?>qkt2PDdCO&s%VGOn_kHsDlk4JN0Shdk zCpl~t zi?Ni{J3>Ol4cd^V;KyaQawZ2$+>a#wTuCD7u*XERl$lQ!*hgwub(MuOsh>WdCXZ+bRb=DFj<}VGdw%j{dM< z@i-U985*$dyTkXCsvn$>mnpy^sPv5b7s`ug+QRkX-G>Q?}q^8s0?`Tcif^|e;R-CT42rFZr z9SsXq_4et=!`;pK?N}3`&RsIqR@EJ7Fj{g{Iq#2p`;_bpwB_MP=KL*A`z&z7rztzU z>G4JtQ#)AlE+OBvBa3{>%L%<}K0vox#hPs+!vUJ2fNq((8ie;ud^L+5!t4y55QH}|RT$f7UxVo%C zl<|p3YJ-D&zX4%vGZOfTOdcS5K z&ubl}>(m%1J~~$H`2bs^KxqM{NYM%ylDdO@&@je$G=y_L$JC z;Po_=a@lf9sSFONysgS%96GqsnSX;6jy>C+%nJK;xFx3oiOhj_jfI`fe%1U~)moLw z?Y7#@l>(W6G|CneAnbg9B@>DlNO{Itj_W3Nm~X zv5bVd^g^ft&uCcg@B9EBKmn7+ORBDe`(yN7x(;W-WjOTpsXX3`v6{Cm~BIuoENr}!XJ%>p~H645yN)oGR5Yumg}3OY{Qhft?a=(kLpqg zv?`GX7-JPvSY4@cLo~x#zt#!j8~r;_p_%H(L1drnu)a6=bFr1#@_u}}_8zq7I&b}} zkyk*+>F%&iJ8rbGrGMYR+*tcM(o;qw^Om|$ZJ^;Khdv736>?!{a2>}RWlN=#s-pO5 z9H_EWWEPkn7+;jRx_tgsI*!9G-g)e%fGop7Mn7{Kh(ehPa?q4XC6FQvk;&x&DyTpn zf=H`o2*aEwToGOV;*;#uG%_O71mrSX#xmFmRw6eFKbmN1SCirDQkZ z;K^LX(f9~@sn$+(OL|OPzY4*V171A+vm(GBy2S;ZG6V%m!Lmfu#xdIyyYlU%y{1;@t}@Bf&U9R%EYJl$XW%*VQz~2R?uT~E)hknq|~Q6 z&N%h-r*Q9Sb^9}>&s4jc?Bx%`(d!tsLMd_3KXX*|ep3(D74BB-l%l?uL9wMwW5XVD zVBi@6;5UaP(R1y9fSmda7!IYxC+>ock)Stqw@r}CA815nUgr#a3QH+B)%l>P&U^2# z#}7`oB&!j+%v{Xe`!ChfKRXPra1z0G>bHZS#g;s^_2Hu(lJ2zRRQ_4va z)~ZYcv}dCduI9*PSZz`WX@~kVQ7%&e7A5GvtukQ1D${3K*W_AtdrDeVDnQ~FTCO`l zh+R!yNG~y?Q?lx8GEQ`3DFTYzN=6FvGE~YCNee_T&u^&>>rY^_G5#p)-+1P+3P=0| z9q|yTYvks{t@UB&hP8pDu<~xHBPuD*Mb5*YVL>DBx!Iet09K%j1S^ohVXRBBnRR7? z8Awj5qS^QS+(N$s>r@d~s)fzF6b-g>`ea<EzW-8w*-qtkGG$`ZaRa?ll zho6F%jfdq4hIwF?KlVT_%0j(wL3Vef%Oobbpi%y#8Y#+UwYcUx6PF`>uxhc}Z0Em5N5jz(cwR`O~+ zNGZElo5?K5QlLYT#8-LXu2`}fwU^5BH0cyR>(!D>x#z@=N)$)|xXviDvoYMPvwNC?(T{G@cCX55?hOE<2RBCf{5ezz;`XoygD zIf=>ttRwR5z?i+CI+;h}DU08+s|YAD9jL$H;xbp44Lk5AG=5h3qkH4C5|rAYXxkFU zwy;B{OIJfopksiX9h}&h)d*%8I!*eWCXbVa1fWjwF`BcQiO(qH@8l!ya-O?94^~$P z89d`Z|F?m(H)BuN>(je+C(gyhvw|%Hh+OXRk3z|fJix6Gr91>5BrmmKrZc$~yxx~f zL%}z}iwxnE-J1OyO(w?1ZV=GCJ;{0)vPk_%Ux!U;0|P*fHvf8WMM5Pw7djVXj9QH& zleyW}AP}E~`gcjHM&J7?Il`Q6Bv+YwepaLg{ z;3DQ|c5j28JT%9U2MiSZoO@ql;r$Ba(Es2i@|i0YL*B7+_qclumm2~y2wg=~-wBfP{LT|#`K+rFC<6{%yy_ql=+c2p3 zyh{EPiEa7w&}Zu9iATT!l|Miy`dj5_REGdi-f^M6iSzIECc}cKOv_%=L66QB0L~ z)J84>LgT1#iuP2#qD9f;7@yL+J~k_rZy`X2Bz3g4p^xUcY&d!141$RHFp!|3S8dHX zDMbc)GU}?{)WW&Z$8&`7GcjYZ(HHL@uM3PJ=GPzO$hnhA;%+%Zp0k{cG92bQ(Wf@i zjhD~dlvE*ap*Y(w1O55Hr=Hmld*>I+5uumQhtiQ+wW14vqOdS51H=cvqeygWJTMPt z0I6>!bg=MgzRv> z&)3GA|NG9@hJT6wo9o-mH_caI!WJwZ?q~FG06~lN5H4d|L&p0f6D)^_Oo(- zwWT^cb6*1_CKyhbd(5I}{?lW?9h?Yl9Gm`u;zM^j-RjOMYsSmQSySwkVsX@_cg}#b zcEx*qxB?@4(UElRi@)O#rO1mppYG?b;P_mrcnTYFSLXEHV8#ow0Nq9IlPJzx5GYBk zVx~2_$(ULv+iG&R*RfDTPsi7mko<_jfqn1O_pzRD;O{0|hCC5xQlE?}G$_udhI=L3-sbFBZ<^Y=Y*1MB|!+4<2q zlDqSnb8L`-qX{0cI4uVDZ`lft1OBr~0Y4l|M4ffKIe*viX|`Mufm;zi?YUudIe&5!PI@+CW;5Q5GoxQQ4s8u{9z zX^crqhhM)nv5ZDj!%AbISRH2`EP6YdD@$mKdA(u9OK*oL&wc38OCfj2!K`XT03cdG zg|PJ<=Lof(pL}ijJG~boK{e;Fv=A3Z^!YpDtW-R#wiBdiJ`qF;DsIJh=lnCZ_QC(_ z(f)Jg>($_^y!+kY)@k6ypqt9%#q8_VyFg_T5xqD7!wU(1Djx~U5O3G^h}}s4Q#$T) zfe3M-zU)4!F--s*`%qBgO(}0rv#FTw2zJ{~?#zdqgYpS^Soj`bn^p6B){YRT*_Z!bh-X4 zjPvb{1n3;fBh(%es9F4hJ$Ceg%&bYnP^)~!?=ok@<_{oMFu1QTFd05EC(@cgD!N#` zhJ|HjCA5`zMA_y<^RpnE67PMw>px*y2<62YcbDl~kLZT3F1B7&LC8G9VM=JR zv1s6SpcJ*Ci&#kR7YKI`3|@;t-5+gUTi-B!kcQRi!zM+Yb2M4dx@h?pBegJ;n69S* zpkmtn`pB5N_3pFM5@PS&WStP9zoDeN9i5{7!WafO=Z{1p-1zklH{p2sSYJQW?1?eI zwh0;LpA*OM7p6G#y-@5=T6`BActQdqY#URW=|nAmXaer2a=GI^ur{_Aqx?Wj|A=qE z3tw6OoMc#9TjCTS1U6O!o(Emt2iy>N1`=x~0vxLPTE~&G{5?V;5f7lI?jrI1WoLEs z4qopbU?==5Ya7%38btc5adePfR4txNPT@Jlxhy1jNvMj1e-)#h*16zfJp7oh?Gv}D zb$e_7&7^D~UU4`O&3^rH@d}M|u-#Xv7hx6fgWV|~X?b_7x;hBg>RAaKH&-a|;P7|{ zd|9(ZUvNoUDCgbs)l#GKj5eRg63y$3yZR~IVUN8W)4B**dCtv3lsCbrlk!|{3lce_ zoNpaLnR_oK_0P4x!G_+nJt%2UW)=`M8C#+z-wh2w8Q-V@)s@BO<=A0I>BpvvDQNTO zOTZ&!27O_z;pIHQnMi&*HEy&tQ9&ab+~6NO&vYY$L!BGTgJpU>;$+3=@u|5+BD+WP zj>nicc2tO0rVzX22139)?@wk*9T>x8;}@fsy8GGpZNLfT!;c~oA)7C?kxiC6^&}ve zrYsxHk!>uN;_kG+-po?a6sx@&3)y1VemM9mY=T&qz6RRP$>}=LYosRpf)}L1Q@O9y zv9OSAuq2nr2{7L_hl2pD&fN~tZN7iH2vuLvVQ?@F=BEK;2Z;djsj{kBD7!(+>>5_l zKns_>AP3+f2XG=!)AGm4&sP5#xw%DlV+b!2BYpuO)$GzFPcYZndg6@vdm$}g4jk7f zP9ox$>jcH)jHwXXn1+m4IMl0S#^e2n(E) z8C0yo4Lz#dFnpv4;afuiCcDUSHOsbLaG*N$_UzH?}dc?M&=s;y1Q!+qN~aZQHhO+nG3-Xg0sS*sHzUoBap6Ki$>! z^ix&md=GXt&&*48m+FYuW7tKRCh~|m%nM6qDjeGz9|RHK6Nonhgg71B>^*OO(|nxy zLf6}-+(Y^wjA&5QwyF*A!NBJZW|)l;W;^AK53G*<#bnGYlYW(vcTakK*FF^^5;MWi+) zo@aHzkngz1qA1$2RJZ3}!W03=tNIkA!HE@-n2T#h)Gk3s0%rcNjQuP78PL#Swrny$ zIa3U5&I^$<`_;X!a*?5842EKiiiJ5N49)re^gX0ttFhNqLt>%id^4W4mS3T%e@UUF zfhQ|hX4F`Vak?WbmrU%ffH6%r&pR|lZI%1RqZ5*ND___gg-eB z(ejb`IiG6RoYo3ofd0I5Q<@yMsB|+OSZO{D#yBO;685+YuGA|IAV;O5?OdIN3?lxH zEidP%Jl)6it;!pEO^s7SonpbEI}P)`M@e=)hpuFA<_0ny96ON|wyxVdmQi+Dw4c*$lld$a1gpdh2T z{_2S`=aF|IfAe9{^qc~VhYh((u0HZi>c4kN6j?DVy$zv0*hVgdRTfkT|8WTGw1CT`-EM70F ziy*;}gHhpeqb6=3Ar8sOV5#VHrGCivHW3owwZe$&4}N>S_dYIah=rRUF+_*5DnHnv ze~Fa(2!8t?lHtc#{ZI{I0v|oI9yfP9gvw=>MGQ2yDM`vv$4s~Aq!go>1}16IusqwS z1ZZI^Cw+9q>afp5X&*o#uNFj7^ah2eg{zLhi#O-TlQIgd-WE&B^&Oj`io>SMtn#tO z56Z>*(LSNCSRZoGO^#0T6ihhlaxtlCrk^O**e98&VsBiDYlN)2ejoN#RH>tkv%ohf zAVBQeS02-zc%C8B^qwijT{3qU%sEmT0lwE%!4nWIfqAMvE3#ym5ICQBk_y8OcUI2h z?UV8;cM6IYR4!z!EfFR# z!_K3_0Y#&1qYe#RLj+3qzMWMSNH=RhlB^M(`@rEN+;4X+|uE zQ5%Y$*}6x#TS@txJ@t$0n+tpHfCoNjt1zvP+h`yWEvOj>=8rNwiLaRGyp!6FgV?bQ z!Rk3P2J_HYDh45Os6=JdG}kQ_z8SQsi>urtNd-UF468`o zD_KIN9%I?AOi;rfOxw9Yk{n}+Z*ydfguK<~Tea4202qODBnDd1od!9(1vDWnr%c7) z81L?yS0#lMOxhov;e3AHSv~Wy+w4W?lM<&*1v^}|p65SX8<|$ju4nHZt#)kz3u}>z zF18<;?~blLXElU`bSDL=2BQ}j8Z$;#V}B3IRUr+`$7XkbcS4s>eko1I2IF{p0B+vuB!`;j+DUm3GGfz{vxyrnpv2|79T5>e)T9 z8SMGHFt3ExXR`c33@(tbeVO?wxrMpi9Bey9bTE0ane*3oCg$o#R6ewlC#YRXBEb|B zgd!cGofB?PJ&ODlUt`%k1_H_xL=mc!MH%d!PxT(H^thKvO3q5#ccc*&HHd=2e79ZC z6YsAxABvHsp)y*zVf{Lr`hz)p+eAYR@9u3kwDZbYn&sQ?vO*KCtvdhQ?P5e-i^A6J zV=u|OWRGbvaVTQ*>CZaaV^8|= zhsJEOXMTRC{+eeldUBhATxI&M%TU?nWtSnSo}zB|cqH|<{aKaYG!Y;^yg)_KL+@hlMUS?C89PX?gWx+Ka%>}(>U3y^5bjkPm9DX z7{)N@oioDm;^3QA5$&Q$qYY7LlX_4syOE`FTIx`KEQ&NJ6HrchXL3{=IE=kO0ZPd1 z;@ag7TKeIyqvou{nyIKPd(mO4&J|{xeRu#rRZ#~R)~D(bF6Vk zZ5Oj~=J$>Ran)18OY&!d;g*H0dcI~U8##iSFGf-FDJn|<`R?vrb)3y&me9C?!h1S* zydGm~Yp;V%i)uIs{9(6089b|;)q7v=^lepb-@@qj-6;+TwED)|m)n%o17-PxfAM&<)Ql5fmNf(G?87)jvBUe)gQW}m;BBK^ARWpm`&>(llzYJnANz(Kdi;9`(BK!kVj6MO*y05 zRboCPLt%ZKjCLO$I0RGwR5_+V8!fm|A{L>2(QuNr{?jCm&`6n18E%nAEv9?$8Ywv* zu;?1hEYD}_A*7;i2*|RY?6%A+Ly!^XmXm6Y&%yfJMi8Dh1Kp;P{AGZoaQhjHSthfhSHG*S;n?++)2SsXOQcsgu+ z%rS)sLoY5C_21J1E$+WJTL}CvG3xvlslB^sMK<<}=WFKJ9xhwp7{}UHL;Opp9g%Sy z6foq>WV63z11%ohD9UA*Yyzn{oGNGH>|px$9_Jy*8Yvp&7_iHZs5+_VYUukEcQ886 z$yQH?76*(poQS+oj7w_lXOug|kp}1UFQ@|C&e?&8RadM9rjq4R@J3neDVgEl@T}b} z2D01WK3pz~e$dS>ijJ(zY)E7MTrP4m*95sqEhpd6em;k+$gbPrhTDW36hPc1`z$o@ z*q90($r^ph+hJZsPB|?*nuwRoZFV$+@+!8`vb)P0tv-Gv(Hh8EFHJblcIuI5F1U3t zo0Dka+)utC6tSRn!`)MR(GRR?Xwolntrhw4Z#uI^KK*qAdjc!ZU<|4w}`e>}gN8Hp?JRlapM}D7DKu z&>Ef?op6%FgfCz0M1RE+ zn6A)AebN(%3&Jo&jEc|mWWu{QLS}ndOncJq&xv>oB~u$rn%m5jxLMgomQ1Dl-6wW$ zy?*kIx^pyUwf%9;AwKiXlmONCu5J~kWA%zF^O;UiF|*Ra1H6GBCww|{j;`diIyw`W zXbTA`&Bb%Js72biSPA&Krm``$IKq=O3@We$X>q}@(Tc|*-`%Rx#tuS?Vs7;h*UwH< zyLd8`1p6Ge^iRb)QMCWsrAD?~!Nh?Nnt+pnZg^?g#B>&d)VH%kgFWSC8O>wmuhP_| zy~>c=_gIdMzwH=WR-w%opc`RLeWGw=6@>6=p^@fMzE%??G{9m;0_moZwC>5y53PQ+ zcg64Odc8<+%>jJu){hn;6kXU$y{{AiG_|Z|6%xwXmgefk_R^QhD?p}4AbTZA>hTHw zT!Zux#KEh0;kjb|Uc09oO&<@EZBr^=Aq7ID z5kW7Qgn-E*U{uOALKN}aya@ft{h21K2hL=+i}NkLgt|M<8N4u8OAP-|CxQe-jBCLy z>r^?X=aIIqxFO(onOK?M9qe~2`bj8d4et=znqdQ4qm$$-vP1maDO|?E#4d^qK|Sx; zvNAi9&{=Pj+IE?%cKv&hr|jbvnR)-%53DdGm$C(Ei1&F$iCTXCeCExx7Tn?Qs#4`8 z06c!~>z($1)HS+~aFdRDJoo1(q;PMc+UrB1`~&W}2(-i~>{_jGZ=SrVhE!xz>bz)$ zW@J-}w3(DKVzpdvaSVdRffd)1^SUH@^oG^)z-cy?X&ptFS&E99`P&YCb(}+Z{y)glAJqdvrSNR;zkF z%0D{Xqj@qr6&+RQ2SGT1p9K^tKNRFbzaX@J7c=lT=s_1A7NeQ2-78)%uA0?W8+}zZ z_wqdb$&_Gm15_*j417v0I0kmfM@!OId(O*7&!Xj@T})Kl(JQ}GpA!>_D0c_KbgA8X zOYep!;Y-MgV=k*0%(-%;0Ij%o939aof)=VY-`aKIaK)--tnHGVBPCA>w{C9z2iRX$ z@+LD|FZ#&Z{euW4!8U)O5BzCf_z0?!O1Ef*muZ7k3s-{~cHa^FlVO#XMmDZ^gTmZa zwP6XM{Qu$^D=Xvk#K`jhEgD!u`(wh^C>lAha5XKsR37(wqnLDWME9=@M+s6?5Z7dM z?&en6wj3@nBLmm#cP{1BBb{`FR?EuORk;xAx1Xy_nN8Wp@qbDtYC}@5u|Lmf?JzGT@O^0bgUvpsv8Wl`tD;JS_L8nghs4q z++q^AfECM`JiIWEaq+P%Quwm|B^-O#Nwm05N~#7sQ=hOErovE2n;4hTv&j2ZIw8z4 zx!rFIXdEe#h7}@I7265kFeTs|dQUB~e1J~N*e|;Si-32ljKv>9>*QNr-Z&btQD-L+ zAqh~gE`dC!XDp7YBAqv3y#*av8Jr5>1V{~~R4-A%$3?+I^Kkd$adLjCX2wWd37PNB zuJ{M@xv8tnXJEMB6EnIUMZbu{tN!qQgrU`ZxKh%++4@Nkh5#;M0F*Z5v+2M?|Awlp z4F)9B?DiP$US0d-2>4H-;&b^w4NzMgVb2IzWSZ^%d3JnIh2@chRq!$t-S1hSoR-KT z#}Q?E)$|B8J0ntm>uZH$H!5eZps?!Tf8@KOri;)G2k*0KRIE~sRf}OAYaGKrDnlO< z)gEo02^4@RK@T)^QI7a2QdOQae9Z7}+N^0MJwPTaJ#l?PMzBMe52(e>{+{vk-`d~& zP(?i8nge9H(nXQgG_p*WmgasU5+P_JodgVj`=h1h+gnbL?^Bb{t0cgaJ85^usv8U`!&QK$?QlT_M-#kdh%OmUG`w&Jq zFTb3I{Lb3+@SBL>;e#`*(TlC*+L<3s)u0TA~pWx-z-ziaC#0E z@~MW_DXELYi*Pt*dVBdjookjkY^25UxA9Vn^S;+LZ9%#$tBF7M+*L(jh;Os&( zUCH>m=d00>{d-QiCO&I}o!ze6ca`VB*Qh2n4;HbpB{8%< zSotsA1pb?>#)N&c6f4DK_I_UJ(|)I*UKyiOqx0G9m=xtHfyDOuEd~tU$=%78v-YqP zb34Olz>PMGSd@S!qNZE3=!sL0MtPO!1SQWPzix#3M2 z-v3^BD!%$GW<(@x=O4S`KUte>i#vnK1ua>XF}qfbdY7 zD)wM+Gh1j#D6b06(t25T6S>N7swKxG$wDb(h#v=RnW${S&Lg#Kw8H_8!EY<3sSivE zv2*Ud#AbbJ#D$9qs!^Mf-QA=S1Yvs9D=nKVS9DX|+~@Gn zP{L<3RZg~r3gIA3>cBsK62fMO&})a0=t54v$`{Fwhh}>xY7L9~qThE2o7`0fG&=Vs z&UfgF{p-vkN*9qOH-7QFjaW$8sZvG~i{y{z$+S9!7mK_zMW}#_P3o|rG=>w5jf6Q>;Zz0 zn<3gOo*Q%~n)4Av!B(9QLn*9Q_&H@#`sX8i2+-t&kn|HrEQ z6ORhOy5S3 z7g_e!B7%`|jic=Q%65N#jO05loHRO#a?dOJWP$d}pN$#aKbP+b!i-hO?CyA86Xhr6 z!H|hwcLfQ?<44fd5ATmFt$u_jmAoD{p!w~Ml0Q2~K4joEo01N}R6n&ZdosgOI5e5d zL^##OXj|pUPKmUxwVA$5nw^5qc^E3C1()6nkf*Cgt&b!1!H_*b7C&LxtR$GfqhUG~ z;^|x1=b@ie8x3?6Me@aKk2^Z0ZldvcK3FKxu42RHcvVsFm1-!s)vc~Od-T9E zPOaIO*SNjb*C-pv6cR#Ak^xahckwwd(k6nQ4l2gd-!c6%mlD_0SP$W`Zh3c&s^wP2 z%6C}r{-O)peK@xsf~&}h2u5%p^{_-F1pM&N!GiD(FSVz9u9xq;aQQTl zSvxMstn|zp>3eKp3AitgS0$&fqVZ?;aH04(OD}=8^O6?%`Ou@`Xt11t6FC}0{Rols zSo4LxtS3$z)QmgUseA}ltbMW)ulpPV_DkiPmo@c0?Lr~RO5jd0RX!S>n^8zR1rs-8 z1U}Jg|9!fES75WrP(JXPbj~T09>A(~yIOqvz=L;4^Uz9lmI;Qy+GoUL_9E~DqC*8?MPz`)etYjFt*d&VS!w8x!0k_!1y${x(}6V zdWvQ`tdd!QA-iAcA?5BX>#<8b(LTw2YvLZ~8qOpi4)#fNQaU`e!c_ps!8ihXY43b! zFnQ0>#@1ht^2TzVht&_I;t5SpDnep23f-7$VcHV0uNOYjfGsoW3TJu9TDv<*E|f>< zj;UAdQNaN@rj5o`=16`SHC~RlA0Mf!c3(t|9v#OIW`wr?&hIox7m8#481-T8EI@s2 z?1WWPSmO@e^eI5F<<_epdx~K(Bbi>V<2Yg+bU1|KUoF@rf%jBGCbUS zD%M{L@I!v}KqLLDvvL)f;d{aPx4G{J00=UCT;(Nj4Z`14ApTX;YZZtlGYCyegZHl} zRE@_I=htRJ1Q4AcS6pJ4l9BgkQ}>4_3H}20*92*jJHQl+CHv<8~^JXkilLevTnA|FjH77>H#yG%u$98Y(TxhpMI zTmbfV__+wE6O^mt_ZU70_Q1x%epJS@6jPMCPJ*+XRB0+iT6V{Q3O+nLrNV<_foamV z$e>DMx#T?BM?y8bEIOG0C15ULB~dHVP)n&9Dm_M2<2QKxMP@P})9SeaC+J|{zqKsn z3SVi!keiTLM^ONw@NP*1#+_?eFo+ad3Zy3cJ!y57k353AbpzZ zGz*~{rJ^%{y+9gsX~3=Np0Kj%6t);nGe+7Se~ESDBK*zYFI&fwp)3VhfC@mqT76ZW zyW+|BCqPrrz8S`iwu#M@R+|a9Fj=Wl0PbJIzPO41t|kP0W(h9)Q* zFF27s2?;<2f*?4~xo7->&-zi`d+(d7NbZ2gW-O8QgF&my8lGVqKx8an%n)j`s3uj0 zzJpl>>Hko%iJ+)u0|0)9GU_mgyaho!z_~5KDlG3-RV1ZJpS=}U6L`RXKeVxzAxsL9 zS~a(9!J+jARK^G~3%QM`Rz3>rZwblb*V0*UABem(9Mj)*%kRoSG1TQvO5H<~jS1vU zk$h&2D%ow@7pS~|k;(B~0#-6DcGc6CW|W9k>iD6oglMh)<}C=}7NO{b--0BRAW3;P zgywU~G`h8Sa>MfKfofQpjtVps~7K71fk>B6>$X{dnYzze20b;vHq&xL#d<+S#3zxu$cmTE7Yzw zx{{tjQ`|Eo-kv;rTeT+xHGQ_ze)I9$V<|`4Hm)F8Iu&_f>(r28b59p!{~;?D)r9V;7pW|4#EG zx+&kn)NR`|so-_OW%WUjMJi+s_JwCc1<5zSODT?XjR5BuvVGz?IjBF2OU6df=xylg z>wGH{{7^97Q}I#&t%_U!tPUa#1Z%)n(w!MRqDpVpp*WfrBZ- z$j4F&j2dTx2gIXo)mQzlvsr8Dq#+ePrP?}H%p8#_nbXwj=U15~`2qmaL!}!{6J7N# zvC^|C060)7ktQm<_OJMZ_Rifmqc?5RRQu&(&DJ!XVY!V`wCpR+eq8(OBeY;` z?X_Cd2_tK&WamhLRHw?^Y<5N~m@^X@bh4qyle`=JVkbrhHFmN+`m=BUwh0wRE4Hb- zXP+u7V^yf12(hFkq($!MCB>zJ?AZkqmM`HZ-XA$da|Xw#8AsEfdYIRqS&%AY%ZExE z^T#qYnc9NQi^jcwn+38KFQ*V0^H$3?kbRS)r{x~Y z?~_AzgQ?Z#y^iA5tc!!#rgTpPiy;6@lc~cE;g{E1$!wWEu5(^?y}jc|&GJyyK54Fc z?iGX^8{O26o1EW%FFpLx>~`mFx%Dn3r-TTgLBf8q&)3xyzeHEs9 z%-CiFNCSb7&>68`09z>$N6TJLNi5zlIjb?(c-1(GD`Y{7Iq zq-atUU3|~I8^#|>t?{r(M)r>W-o6(EH`iEzYf*qy`)|4vUtedQ#p-pvRDD(GUH z`~cgC^&`czmAA7$k;%BdF?7=~Z?V`IzK_Ikka!W|C0v?|QC+nJ3n+{_#&ghW+ck47 zRtmE$dEvNVv1glO^qjhpGt>!1NVybAz+)6w7$YI3VH?+zStyKL%C|*qlffC=L#MgQ z^lQfe;{@a|??J+^X;$y!Y2y3Tf?dYj^KmkG(;ybhr8^&e8qVqDJXjN=Nd*EB2zN4l zHLO*QYk7RWL^8z5Vg{g7xv^gz)Hp=}v<_&ZgsWOofmK?Og+_O<8w7{g`6FOhk&w?* z6Q_rQyV*jtHY1>SW&se|W#R$ifTX~O@m$%T_bDB`c+Ko!dcd{@DpAe-z(*H&Urug# zr#{Cv@z>wx@+JgVgI;{P3pVAu{}2JAiNJG-?KuW^MDKsG0$)W9ArXqyX+IFTO41nN zN+X0qw_TL&>VexgEAB`+t3 zXDRS4ZTOH-Y#x(&W|k}`C{BIelm^r8%S?yPN4j9QP?Bd;BJuKQz==u`W81;v|Q+l zfWuB5$QrDq*sEQAI~4ESxv+^1Xt_;WMbHXB*(|Zr3VA0xV7=c5O|@;kao_^L3rB5c zUhewHD~_MdxC9L;CZqih*>NWYV@a5j)Js2bkO$`mv=;DR9tL)z9;g@pf)usLXc=rg z7!_l;+~6<`?YSi(<-aM0*^_ujfkY}yQX}7(#w-2CRzm%}QEXi+Ak}2fs2?LUwyNN# z*kZ`ndAg2$^?ixoiqFgGtejcZdid!o$8DBPk=@X4pY5SlrL1cPF=HcHTFWKGwJgldSqrKf%P_0`FNQ3g?Y`tar4Sjjh+O9!O^ivX=-m}vK zoa2-Qux(3}z7Ts3GS{KF(9%CViM`USeZ9E87GH&Ruq}$XnS&M`y*T7ELWI4gf$=Lu z!6*g0b;4znk|#R;S~qLQUDb~Mao*^sB_8RLofU2A$w~5nW^r&9C!%LN$=3E_xxw6u z+0Gr-PwjU4RR7{ri2HDaYv;humF1Fg-zR#@r_&$RxT8X=xHYYB=T2)mkCiW3Be&6{ zo}~=D+mD_q)Bz$x=^fMBYsN-P9sSX%aEbe#R&&sR)D{FX!WnKkfIAvci28+fh~F|n zxT4tuNTx&6Jl$thhE(^8GL@2^`xA-=ri5;c*qgU zf8t#+CPS;6c5(F`Ed0BT8k%^Lm_MQ{`Ismr8v{0I_1Pd$pm4`$BbxC zEx2o8C<{Qpl`euxxStk$*|kev z2PR_&PJPt3oO53t*#}ebp z|CFV!N?7=Iho=1Z_U!vlag-W8K2J1A! z84NpOBL?*L2G28D?zl7Oiu3#zo9SYu{B+`^SU!4T=SRyz))L+w*=h8Pgq)yX3Du+2 zzKhtdj3=?`Ma16`c9i>-=9k>?Ny_wKwWBW173%mabTVjdMU6*EC(tJ10t-}^0h$1$ zkHw(GWm#1o=QBvG?SuXB!c8v?OIZ;D8y`)3xw1r_+nqr+zPvlWgbX_$- z|EN=3N489sdJC68?1MJQkI-2lEz76saQ(gTqT1OZoUX$EmWzAZ6lYjYQCZc>TEeS?PE|aJ zZ?@ft$j#=CO!D~eb`OW%-=e)$QXz>I+7ZHSxk9A=kPMB z_zMUtc2N`c+hB~of3Z3i^-u1Qx|tH)C3J1f zni@ZMO3x0(!(8Xjm|vYA4;jiw>&R;ixFI#*%KKmtEEKN}NG3U$59Ke>kRU<9Q^qOC z1>si_;{}kSwg8f7WM?J@?5h9BtYgzz1#clWb(ltv5NCEb-$_xxMfX>EDO$%5@v6K- z^y4^v$NB{!%sDXhYN>&u0qVbs%Sed;!({^S>@KPPUUX)pKHexiEXdmY6@nYlY=dO( z)XLhmK{cnz)NL_>RbhZsJIhJ_$&>pFzK5?+;n@XPzU^KzC`YH zrHBu=!HRv1id4TUHk;u>HVrjF=Elc?wUMGLhItAc3hn$wbRAv47*SyzsQNiLjmDar-C0=j&kEBV)nN4~)gz19Fd0ppY_Og|^He z2qwNa2+_R4$Vg0|Nl}CjqZ+Ty(W|RcIT4^1yA3LYathUiXr9A7`wkZ$tk$hd+>csX zA7F$Z?O_!bB)Ss>MEwmxb!_QGh!5si%594Y=h>>>>C8(;4=!dgVl*&(C)S8xwT*}Z z5f%)k*Hugq*xD>tH7Ayj`-@h(P$0*hYk!f&_g|tvJWGkOT%2duYf^g>yPVPnms*U5 zJAb9}zi*$#Ik%V;P4WC6oV%Sr#(xppK;mhYb5{_k4X~6eQx>pF-XSs}S#ofC!m9I< zvONX|t2eC?6a_Cpyd73<(2H7kw)-zPVaNexUn+soObt!(g4Qdsqroqq$2@%sS@ubu z;EE2s12DWXV=!9#U66RoWpsi}fRCRWtZS!gJ{~gwcdpC*D(Xhg(_*d$VMKdTEg_({ z``loF?Hg&^>qSiw3p>5 z5mLl685%@6NS;^`-2=}*=hbmk#{te@TBIhC3j#-n?W>gRrTCA1>xbVc_A3qd+_ZZ~ zw_779iz0%vv-C``i#9QqlMd15^L8wj&2|EN=OF&un9~n8;*k_;Ns4o8UoBq7GhLm@ zKB6OYb|FqG<{9zKv9{c;` zrEI&E>BJf^3poGK==T=QsQ0|zI2rPXV6zbPX%Y??K{@xdqHXr_srZ6&nS`Iu%;4M^ zVpOe(JI$-nMu`QbE1NMgx5P}y7L(B-QmJX2C?kB&%(i@LD9+w_y^eC0L&2ow5u|;WNM=9T!ZFhfQg6)vf_ag~=~xFy@jl&|P&qRtvBlMfG2 z8h0Q)+zh3UJ7^zcZKO22YuL4K{19iT@Oo)-C6V#qBz6F0x&f_%797lJVkn+(fIt>o zF{HEWL`~>XPzdfy)#qnOz|FY}17ZSc2=W&k^mthSv{^;?@cgzjiZay7PLDLMMub*O z+w$m;$j*oF0AfExH2PveLRZ!D{5AiMY8{A{LOH-uS=37B>6}Flt;+xx@8>KfKYyQe zZqMse#VW1c31jUBZ0We~C+)vmXn(8z-hXjz(^<1=sc(aF(jyj%rIMh0a+Q__{&A~(&AN!)sW>o z?ozfw?v_B}OUJ+^Ww#GY+G=lYL^VWXQLH+fND-;h_`5ryR5a~`td+@1Pi9V~d!)F_ zRx^M_`QYixlbgWWsN9!l<0w>**OJT1n@3!*YrIS`UZWGjtwcns6KQn_W0=@nJImiG zXPiru$G(4HAK!xmAGLXsKhehGjbOI`shQVHxZTb}%WIr~C>J7#^Pl$ll3$w{<=nb<&~d!v zITR8VGm{#n^<30N)gh=+PKco-f9%w^G1&$aUzZQ-Eq_FyZf7hs%23(3tMg1P#)CqW zKtFq$;UA$Kv>vTn)6*elgf1c9k&f1b_}6ofBWgA(PvJWLI#m+ElT=LDzNVY6!7JPr zOgySkv@f^7?b%zI9?iI;5uVv0Wzu4@+%1Q!q^7pya) z+mh$3^DuE>0A)oG4a@G8S)pE5YM?%zm0Gl35#-X6>c9lB+@N`Rc95Ff3 zyN$@KtE*)qP)8O72QeF|%l0-hOMTem#KjgOKOpJE-z9jD`TOgN29?~_F#w3o&Lz2D7mHe75c4qt;*lC3DxX@F$lUft zOL|jHjz6Pjo&}Vdp89R7F4?0pD3&HKXL@6tK-G>L5{9~t2=%xazXs)QPoCDpUfxdd zQ)O1Q=36^=k=qKE!(CF~mZ)Wrd zGmU3$5fR*w9`bZHpuysQnirwRAiL)5`X={Xg>Gf=u@(-d1neZ{YwcSs7)5z;#(o`R z>*X*bKJRz0$gI)=y1&hC z(v~oUVA1)PMuJEtncL_gvndLR3UxA7dBQ_IB-N2Bd>BP@iFaXUk*3{&q7hXy7gdVv zv!Q|~Bphu&vhh`;Nn|Ott_Sm%AkOBkQcZgN?o|EVEHayCAQWlEn2jc?Q^4jL3~A|e z6)J35qIq*~r@j82%r_nr=Ag(RZ?$9Unu&6I=xD95>FQ@>I99SnCX=YIu+~l3($+S9 zS5h)nyAAIt$Kv*}GHamCLOqcSTy0@)TDUzFIC2gZNwwfmRX&!aIEO@Vw9PaMT|)tW z$5a2rArZ;!vTaBW5!+70-i1KTMyCGJFw}rTx*<&9}149Il<_g$l_HN-ttv1Q#KIz@) zuKsSn&zm0obI35pT7J=&;FRE$}3{M zNCw3fBz5QnOSL}(ISo1O%mO}?nlC-TnwsjyNbx7_OtnMF=ApaXK`|Lx0k7TcK0$=X zxaQC3BoGWgk*a@ral+~}qNQX6UKi;GV`J&2VN^evRjiK@mY5O0yXE(&xN$|G*8Hj2 z#|>2Q3^d#8rQJjrT=eG`S*-1%QyQwLahC zUwIie`es|Dgqm=YQ8PW09G0Jzh)NQ!5NPIUT4qyOR|f0g@hcpmKt%(jQV^OonBJmZ z*fB!>CuZ?YQGYSG+(@J|7>-ENz>a)FwINt#+cHJwb~kK|-BZarvgsdvN5rAZ*ov|! z%8?El%||wcC0h$$e!rK)%x3-<|j2_jlI1~lV{`BPFfY)KtY?$LHQXN>wX#cS@g4lMHVYd zO!6)>rdy>Y5jhDf7J-=GZAd7@MqIc6opihX@52OY!mOwMizM|VTk;G8mmnm9(Dxf% z@nC|nF;&fdQtl*w)e6F^`PcIv&nk?ABQT?rHqL@!|3Eu8{jwWz^vma*KpKpjn7-61 z45FSLM<(T#n8Ur^FZ=h#Fwchl_Mh7uz3vv04n6)N5joK&tfdSKaVn?1&X`}!!OU;v2f*l+&(czP%eTP z52zd*)G;NcCcy6H@o^LIWVZHGZay}7Cy7Fg@?tA~VkZ&!vm8|O+2tkCKKS)%S}j$8 zw?m9zrNbHcvJ8YzNuJ!Gkdi&Ns4zoIU_b3J_#p?xf^1ve^;YlU0mJgkctDzk<-L%v z&a>WB(%sSEQYhcn2u3x;tG=2*@FGcOpuG>^A7B9~BIjlR1z0sos-goIph}8Ai(DHuWk5n`WwE*9XqnyEQZRpOOSPwn@&EG?lUXpNG z!fZz z5@2dUuA1pYtO7w28c&08<4Qmcja^9s+|XFo(o52cy*6* ziN_=qpr>O40zS9@K5vFOw#+eEDD-&vGw?fh)=3Az`HP~wiKt(sW9^Ar2vKoV0%p>wph(v zgw;JtGhyIaBkq%bukyG6oW30|1fNZ z!T3k7M;rI3_-b4)R?eWc9K@ZT`aL)C|D5%F{eY z30p#An}>q0HMH4ae2JyyIZ>rnZ3sjsz1)KOtPDb}03DA-!#dYl&35qD%?6V6CAH~( zC!;?#O1aUl=>&0(U&rvw@xSn>;JoZCH0dHMd1`UHrOm@%j&z%-+1Z7qd0X<~qT3J; zBqk(%tI~dT7Y*CcGnJgCKa_+ePF1~K&l0A%1>3)sZzzIzf0?B|;rFLVHX`uwm%tSF zbAdB;O|U0{Ji&8^skH|bCGS8CVW6hbj(iahZH#wsKjUe)aj45$ z*_~`WZLa3c;GagXTMGzh9>MeSz!ykmwvX-pc^1NG}9U z+ye(dWy(rjFZV?)Otbf}a|HXv{iUMpJah@?$rCP*gD9+h$&WM*U{bd(Jsr-S&}081bWoNBd{NDypW1 zP~$Z+r24XPoIJXU+Wnh(V}Zd%)}^^CVZED4*MDnsTi`&l`2U`d7EEonwrlTw3!W_t zX9KkrC;_+8*8zVc_nS-i@kzY>ZSp`VA^e*zen7UCo_Fv9x?pTw*S+x{yq@Dh#DN(Tuy>gE#hAj=<;OWVO6p-e=LM2!g6ba=j4BMzu$*xYm<3l;Yy#~ zUT13FiU``b9j^qUuIZe5F`smkV&i`Exh?W#1;fewPFL1+G_$9d&qVWyQ8)X*CNLLe zBI=rY2tksfzENp>nbjCa&%Qt>ogVDok40?;EP>1WPn^IiG{PRn2afZmB8s zvB=y_6T$n-gr7?aUcFX5zjjeqUat33I01Tv1m$KA;mOd%gH~R(9?;~qkhqff!|&z2 zH`Cywve^BGMV%c%StOHD zR=#+I6+w=HgiME}gjqvdH4Het+fLC{{@63uPKODiPSaS}Iz!LJN&NZpm2ZU$f_t_k z&MwDM#%No;cf}8<ckNg1Jpe*NfZP4ge}GO@@eR5a({!I2W19h?C-kx0;w>23j%2 z)~{!+Wp{j$%s0~aMUIcV*GK!>#e{IKM%nB?IBK38WDrox5!H*2j)Klty!~P zr8j<)ZY8^QVjC{>0iCkH9;NwDr*A|5gU~|1*_G8T*G1{(Jl9WSm^g|LN@4OV!=R3#8HFr8k$vqU&8U=Y8wy z{$1ehF3nwOIli}Hdjb|Xl~2)Im`xUhU5((5U%z%w(6FZ6b6hZU&csc)h!yfv%|s_a z^iO<{$MhU~&1ja< zRd2Jk2bcbm2!ZGwqAXN&89`iNcA9Tc&msU<%IKDL0xQDmK7=IY3%U+Qx7N?6I&XbiFk8KN8H~^}LU(RV-(tfyE)}CuvcN47^oBdX|2=WvQ;7c_8XUhvK zOquDS8cQVBLbCFbX~kc%aWlUb8#Tf(7bLLABh|fu>;)uMo4m-v<`jVY!jxL5qnlV7 zg!xlqEANac>>%oN1NXisufiDW9PEG%E`lkjQ#%prYNf-{#gUIef`;u?g0J^hKrI&q zOI8;KrU0tPxEzuYbBlFIhf+_C2kRxtA2&%5C1zG7_$ya9fT$NRc&2zdKY#AJ zH8|2MJU%?<@>nl+u{@_=G+NFI%Y*4+eCbh9kGsU6wo$|0E}4jT}ehs@lCVeQ_TnS$AiDsNBhA2>&(Z2A*z4i zd~=O1i2)*zIjO%8?X-Hk@~&UNw2kgIy+%&kvV$XAAH!tNGdNC1Jl;z4QLc1PqRjcz z)AK3OUKC}F9fAZM9hjmwdxiWUnI%gsI&_?w&xfYZz)V-}%kL%1p+7o0;S;4JJh$VL z13@5k&Rsy;7fUMNmlXGiR>z}ZQxPH_=zAa$u`3tdpR!NzsWfpPdkt{Cefw+O%>0oi z`;B-hs7{j=FI1#1Z1vvjJ0T5h!ER0Ak88 zHge4xs9_d?Ry-<3ydKitn6$FdthXDb<&$Dvzc*aSQ6uVjo^albKYP!|2MBOy20nV4 zLC7;A2TUyhU-a$_OGdgc6@VMin@00>7l1AM}6)jCnM@lcRZuxyNS3`7kTzR@bS! ziN{OsC+?5YM#1lZ-L&g#h@-c}?B@LGVAWjVc1z-{uhB}AjIFK}FGujh0P)D44b>XJ zCjL^V*}g_;Wm9DkE%?j2J|kywfJ&vuByvlaWvC{{SxDR#(e^oUAV?|r03OL_*wPAQ zJ*rysk%KO#d~A4CdzD#EFpj2g>(2X`dPTZHae;#oWMsg7#OrdM-G&*7ClZc7=``*^ zgxBTu-I?!wm>)g6KQZ=*Z0&oF!@9=aZ7ORw=#kDeC8wYX^PTROL!YBeLT#H+RRefM zFL_)HEQFhchqa%y)`i(z^yAPUo&E7z=T$-KI(Q*56*x_F?ov(@mfx7?`YeClQ64^; zMp=3r&ciLcL-4#wkpbu4lpDOknqp1>!+LvAJ^P^s_|UZ4RQM4Q0u9$c<5khk+bbv- zq$`up!&*_6BJep0H!y z0}D-8`k-hdGIin1W`Tc3k|Os!5-}zBvdnHVgn&~37Qe)w13{Vdw}cVu2@YdTXmvtw z&Cr*$Q(NDWcAKU@uCS9B372a8UdqY#Ney0;eK`Q26a$=EU98XMwT-`cqi)U^uPs-R z3Y;_lVQP1AX0Dnp=Ev9(nsB>DgDHACmn%{03_INvhz$3={S+~VMYGO)0{?Y4IOhXO zipj{33?FQoabW%k9Gr2wA5n9mmXdopIC>M`had@3)YS0AVh=`>Z>)Cn!Qq$OF-;)h<6It(cwS8Ju7{<;p3p zk*lsH_^y$a6zIJRl_H>@n&}v0zjX*?97^d=Gy(QjZ)}K#rn;CirI@OmbcBDnHa2^h zNx^>!=$=eOoDDDAS0eRk+-Cn4pwrM`2S+45ohg;!xT<5A&3|hy0<&XcMEEbp)DY_o zlF-9@A2UdnK|IG6BmS+A)r61lWz;tx`d&my$EAPli~DyI4y7MEf-jv}C3onOjIHdpPTKQAXgi2(?Up?<4R9w^#yw<*=vKVO&0&zye+|+5c9J3&0G}bJv5=)Z@X5J zN?+4|_b(KOwAX@U3z)=b9UgjYeWBa4%~W?ILx7m6*HhGS%?TNkkpH~-^$@!5qEy@G zOOsdBhU*nT%4IY<-}D39p(0>a7F3r5RfZsQlV`pG2NFZ7{AS5SRvJB?9qk(a^E|+3 z@!U}YsH2HgL(t2WybT!RLMS#JH&&cDCXU0~&wxOAiJMXb(P@kT(?+!7a>y&z$q4Xi z=EIMk+X2k&1Yaq$x;_y6i^?o-j>1;?IB(YsJFodm?nteb7-~v9495i6CljT$hRms& zgSO&@s1m`R9kusQzn68R7oC@OOY|SOnihN*t*&05EQJ03bX+-AZuQ)#P3Jj8#Pu&? zysb_Gm!DH<>*Hq#htFf(9A9TcyA9~cv&%2vqD*U4J!CdHO;>z}z!meGxBF+#r*EKm z!6Vz6m9|kNwr3FnTbp0TJ#d|&qeFi5ylVd?V5^A6SlF1EHOiRRB+w?!M{)Hs+Kd8a z4|S*NboH8g@{Y~0=2Yh=GKIQs zEXkVkq44NZRWWH%u&|9Tx*;7{it>V1h?m~8Gcau9ueK&67 zW=$fQu87v}5jx$dc2jX(+0UN2o95g1+*(UotE>s#@Np1%CdQGO_^vp+>a@DeO@a=1 zq0)999fe3dfkZ)Th#W$s%ArwZiaU9dYJjtu+D+Ce7um=3EOpISg*6Pa8~Nv6=LBOk z+yL5K!XfMG*}2mISo(bIp-~I})U8^Kvh!{dvJU07HA}ybP~A|88dyI!I{3qL)-91` zYl6Gzd;9Wn)LC*A{XJprSM|%1I5;Rsb9fU|MILqC_k=@}{`?P6Dd-<;Y_%%1Xmgx( zcSI}nlI~i_T+I|g%D-)aSgO!z@3xXp4&_kkEg3pP?n>pKJ8wT*D&ODS&=wd@RTZy9 z6X&JoyPm*7S;~<}S*)}*HmY6^R^wi;@Y{U(N)?6p-@JM%cN$cnhURR;#6eXsHkdcy zbGOaR4p6{vnX90s_)Sw)gvBVoyOpg7&?)KVH!#pO9Y5jJVd>XF)AV)U^m~&bqaGA~ zRs1-5_yM2R!M=g?5guqZ3rC>$hRwFu!>#T;AAK1gaYy>tu>9Zw$vmzyMQ|l>II}y` zBSMv7n@>(=(DF+B7lV^{3m>qg7R0(i7j0AT{h|oXbX!gQN6YsXXFdQ4$m9`qi(_jN zM_!Tc=pEIeQT<1L!W$kn2gRbxuKGM4HwVEUo0&Vcgi|IKm6Fz~mFUwHf6WoNUc%MeO?gIQ9OPrDWsgHVuo~8}{%NRX#ud(Zrdr5k&XO$K@N{k(9ZvmChlN z5@aC+)d=>ik_|0*ovnShx3jS1h}rI6P94B&Le!;C(@0bE&7@hK7=d8&<3S^yV}en9 z%e?JE#ScC~VaBBsvZe>?FA{!UB(+TjhLBPq?~T)v=Kx8!Jv{)f^1J_hJ!jC8V1zC6 zyl8l*hsj3s)+^@efwk+o^w4wqqhr5}dv)laip zkrX%8o+5sXTS)`tsS&@AnfcFGjhPv_@tzl)vdFx=xA~u`QLeiaoNh=*BsWWy_Reua zl@GNK-lBIx%tbjiHI*6`zRr#5Zlgxdh8)MmEq{P11@0+(L@1?4}NxI`cq2bhk-#x7orZRqCj=o%~O$PA4w_tV2Y7d@uS zp(kNA|Bj%<4^B{Se74$alfj9W#lw4R;P3Iv^g_7)-S;&-m>;J~U|~-LBdsMo7yB&X zUJ1=WWfy@w&KWOHI|_#3*0VgG@~V{yL4mJuCL2+~{DRY}6u9RnyH(k|x^_`{VU`EK z7mH%eI@RQW?dtsdh*fTsVNMl<=^{z!?|NGKFQg)Aq83%p42|5`E-iNy&4qD~eWGM; zu7c;nivye4K~bn8O1Q$YF~nnxEjheUH8n@>Hn!i+l%cQNry90~1PhGd`wt59gjSzI zvR%7JrfYn7ww3%*@(rY3oWxHv(&skOf+&^LPPrXzwP!!e3O{W~-0=%)$$tT{l(-j7 z)e*#{s8%HA^oPiOjgV|R15=lQssqr?&5r3NzU)i=oQ`I)A|I9jSL#q!fkZUNMWyY} zr~6>ncpZ^Ij-LLQ8MIvT@k;ltMJXD z6aFJk4s7elkcyU2gv@O4>GHXGU2^+ew$X23RI?=MDmb){b!HQw{0Th3i3rL%lkKwH zhXcSJZJPY+qu!YJtsy}IpuY`5>E@IeExQINwhP3vmC~PefXA92{H(1S+O7w`ISq7K z&UlCI1ED-ly_Tl}Kj)LuY{#efA>npk^27q|r~lh0JwKIk)Rj`!8Q>!mHCb7!>F%%m zG5GqP&F<{wT*XEqRwx7g>m-z4gwFoH2d6~CEJT$Y3i=l}H#a{=)ESbb#2J8nAPw>_k$x7+XkvrRd6X_<1L!d!?jPSfe##T625Tvjzy+Wtk{4L&xiy5^ zPZ!`UM;HlcUmOhVAF&QRVN0l*&=ONQBUlGa49qBjV*Q`K9njL;9eO`s!2{!HU%RSm zB0Z5DxGS#@`Q;J?#Zz!XAwo)w~fu?NuO=R3#(5bdioYGZZIj3^G2r@q(TX4bAStl zrgFO-Tin%*|IPy;K+od+jr6hiV=Fhf&iai7$dphE18B(+js)F8L@V%Xiu{ z1irWGORy*;k;{KzKKIYM9?#U_QBh48m}@t5YL6KwrDGBs+*rz23;)_MBO2J>akB@M zCZ>H6t*^a2QkmPy(9}SW85H#!qw=XGlhk?`o?f8N6FQ+G8H-{AhLgApb-LX7>$+$fnqk{;BAWqGEolzh+l=@x`gHXkW}3p3 z1A&_9Yey_wq$^c6>R(tIIx0lAHI=ho^};ngoGyPCUyU!AJ-#r&t*!jM7wK-{y-|LW zXnXz#V$lI}H|i4|sDI%0#5wRuE)-?b`Fv+>J>H100UnG=e&y*ByxXz#qgXfvFV)YB zGfC@EE~%7fWT@077oh=GaaCRWt$Pka^G;b^U0BJQf=f=+Q%C;?>J$*n!nXn@BpI_U zLZ0}r#t?J!8)&;MDB`Zx^?Fi2!DBmN$a(}B2M)J>ol`dumP!8Y$}hP}!QD>gS?@{@ zEs@LWF3^qgBt9?TkUD9u7x>5jSQ8pJ*yq3<0)(Kdjl!S@CCkw#C8bL#2Iu`K-os1< zhuJD22GT|(5d6RmcxzTRq&HE|y{T;cn~shFCyB zyAM~Vw6z?61CU@h+R;#1j9Arv#t%pYI&e=H?FBt3F-1pcl|q+X{JL)e_k>fXQo|*B zaybZ{$_D*&4m~3-ML-FG3{OIyJdWc@eT0ZBXNzd4)3ljDKi7yBwmGiZ0-Uwn8qzoZ zQbhlj;Gv8gPj>^I{&#pU*6wxg$c!*#^oQ;x2XAj}8>Vr2>?}PVq0N+}gCm!A`{{$( z%7bSZx{P8sgvtX0DXG4%0u%1j`v^o*ErD|a4EcGseYJq)qUePm zq#v%`4Phswuujo8+SFO%@%J;5q{Ourap2*UvhhCFwFK584J^SSif|@WLzM||bMzjY zrYwA`cgf8<*Y49q9MxHPanNBkm~5@VLJscaZU1V1LNK`(?+*J%Pb;c{-`6-cn9whe zNBJNSv9efn()<(8K;kJM;lMpq{t(V2U!Pu|h>`yF4}(Wfw_|R4kgX(%64Q)XYkwZ8 z@y1^K*5nq9rHjY61=hpaPXP%BKp+}N4IE*#{xdY;{b~m_;;xZm4^htwFH}N}Q>gG? z#z4)kx&k0GAgbP>{|App0srVEy#>&9=%jVKSfxIQxh`O3hUeDdj)cnion4X&qPMG6992HR^33)zAgI9S4MzPInO`|sk2I|Dh(X;)#I8pXs{8JtNWGsfZiN(F06~aX0#eIC2T5`=O%Q;FAx&dAs(2&jY;?cddvo@y4aNznqX%zGqv@Qm)` zsnsiM_oe7=5hk0w7Wc@{)Pk~BPNO$gvEbY!Jg&6)2`>|DLW=P=KxW@zk`ri7mVFeP zGfyjiL$J1CjUIK1|HC;xzh381b6!pPBc6Pz!{-(&3PAo_oIo>0{+=W-HR#ujR&Gzh zs`_ffmc_mnDVC~0X##K;xLoBeHRA0%Ga5`1RNjbX$j2&&TwTLumjVaT7DII4CPsj4 zf0KD?lkU`;`w3^)%Im_oWw zL8dtlS}msTni`H^nsvkkpG|ak;n)0RwY32&+;YZ4V}!HLlsZjVNJBfv}#G%4ePWambGSHbZ5g~2p93NBBasP z^d>_*Bv_Aet@PSa>aDfj6~?xXxoGXx^*l$d3Q58*CL3bn=$OxpB(`icr{RU2FjM0GsOsRMO$;}BZeURC-U!$um~82AD5xVSt&#oE z>pTgPzrM~&8@F}Tr>C5E;^$AbBL%np&6vW{3(_h`iqoZ^5&fP*FjP_<6r-Y=gr^pGZP8Qs(+{ham`MtH05>}vLgJsV#&)0#NI@+jOf0a(-@<_*r_>KJ z!DwEV`DN{%Uoh@)w<4CaX{Dx%eo)*`X4~}u>ebIXiz(;-wX4*y#i1M126^4TCgEWu z6;tj;;3*?5$7&4T(WR}%P_~~vKUsaVxZpUIuH0z=ATC$w7YpSv`}T-ps%JF0$ZJ+= ztUbA5Q#rYnTbJ2((vQZn%Xr$WPR(1h5mS!(h0!eeuIAnjj!%ctH~%Ovd;SRoh*X%s zK9X5}-VynO6YcB$`Uc6RcpTm@DR;D1E3yvs&Fo5l51Zn>sd1ABrcP|Z({brL&Ar-# zF;Mm_YP1@xcI9>m%3H!_GN1Yny6+{}duhfSfKK6*iZ}S+KupqvzvC;fpM=Kj!_r+pV4*Ige+A zW<Qo4bY|bT`GqTX#3}qm_2x4dFyNUB*ZhAIc57;l~oUIUZpiDubWhQ^pfoxsCSy zN5Zkee6i156tJG>jrKyB`b*8?{89>RRGofeS_5@v=tui|s3Khge19@f*HD}A%qDU( z(~WNvC~?O_V~t!mWFI~>x{Y_KP^%X~@mqKH_1jszCS59AYsjl*cRNpx`TU8a zoV@R!voFmmy{us2*FZ7qDm)hb%!XvTuv-n91Q&ZO&m|4l`8(BDpADNsjUsJ%T_5DZ z-#>n^!DmpPYv)yI;8fGbrKvb2Cb!vDCven*di=*8xRJrv)v!g?OXT>XHN9_wKmI%K z+~@n7cz91bMEU4xZSeZcmY#})E_Z-T5e9)N8CuvTm8&qOZ?q85EF<8Q=djv!jnPNM zLooe4k?Tz>TB-J2BAU86zZQ@GO@I_(#K<>aD3p~&3aX3OW#f%L+wXJ@&0=gg8-rq` z-#v)6JzIx|%}`gWIx1UR?(tpU9(SG8=V5-JH)roq|AE2EXnaI<{zcGleF}Q=zbVIL zJXdXz6ufpjSBO`Rq=^8MI}e;3nF!~qYs90_Qat%lka6$i_$uP+eWgaK!qSFSAFnCF zl&*H_;+0zVDJc}HN-0MBSjU~|2>(v7v9A0^i!t_fgWxB=A$RtV4v$9k#>iXdH_f9R;g%EOi}T7&76sCixQ+c1@x@KlH9vNUp6l|gG}-u zIIhyIi}@l892>RJk?VLJMz(p!B4e!&DCw14wO z+;G$Waf0+jAdGAr?Ah0S(Y57iF{O>0-H>4DNW1%;;ETS=p7xo>hEULHzM?K^v!oG` ziCRa*9Q+?FUDRH@c+ccHjw!t1=lZx~qP5>t<{OenOvnh1=PpO%IOxQAf`d6{;6R*| zee&?qvNq#Di``}-&a5VD5y6~lQL|hg%G-k=E7&7PO762`fv+^=c%RevLtSSNK3|=7G1s?!(y8-a2z{?wcnc*&sul1bU=aSH`@Q!g z)pIUeJ8EbJIxr?ITZfCnie;zP--_QuE6P5r_#1Z{WZ)?6h-@1lSI>k`3SYX?#D)r~ z>hF$!!wF_TkBo*b|7Q$#n=Pv|*x%3pu1Fp`#)NCGrg_~i(Dw?3I-Wn`M*3fP zEcZ*!yDWzo2+`w$PeOt7q{J~De$E?NS9uwwM^8z<7JL0$%;c)%g3xuaO6aYgtosrtmD-8>t*?r zLi|oNP^!$U;%4;~vbd> zt%-urg?~{t<9pr>M0E1%{G&bf^eHScXGDW=UW2qariD z6o6qB$@fF7`lG^diRa?YvuBulXmW!llLOtBd#0og-k+t4vrQsI1kmDDr@1SW3rmN! zq0&u7WrCO`%6}+WAKDam<&u&)59P+e4HFS)I>#!9%}c6&h{h46Lkmke%91FMiM}lIsFxa`b0pWd z_p`#T@d(a|{qzSJfE9S*C1Q71;0A->hS-WtK{{=xazczteD!DVNXHzwR*k;7j2g_q z%rk8b0nLL`>S7p2Nv?+54qQJ}Njr?J?3RuQ0s6ws#MkBmpgWO)1WcNQ3p5 zUfnq19QNqi^LOv{e`a--lS^`VeI^!1kl5sU7Z;pyFz}Shm3}$sH|c;#nd#>K5fc~F z?+^e9gV~kVzLRwecC;=*+tdAVmlP=-m!sz55~U}NF8IP0x7mD0fa`&fB*@A9jUh`wQ`gI_Y61j%|WyhAN@kz zDc}|WLPRQTIn#9i-2X?>V7p4ArM*z|{vde{52%s)nW}o9B{)c6KmFtW?>J{{xkY>q z?L;~>q19R8_RY~l&rdpIMadb5`rrqyl9 z4}R1R9!UQAsG9p1-EZN)ZlKQeGWxq}Wb4UXetzzB7B=T4Is4}h6};!4Ri4dnMZ5Dl z@uq*%45PkJKkutTS@Ng!uK%Uwe7|1a%G;@1KX~t{)4UdTAD3_Wzi=`Chcx*=Tue4r z7PkMx#pM0}l#9vz|HQ?Vt)rAp`hM?QSZQ%E;mu6WZgW(U3B$EAc(iRSV&L&N641}i z+;vHMEn+e)aP*-_QVMzOhdNf4&AeM~~!S;(Z>Xj*tK+g};sabkiPFR0W%LgKggnqtpDUVd`l297UVR7?Y~2~)S|qEv`7JCdTj>~zQ?oZb)4e| zW{mPAiI{wV$AifhzAHO;%tYo~R6sMOKod%1hvw!RO2W~D40Z~XYE#!!E)hG1) z3fErjyvw#&k2vhXvy+)BoeTF86*O>_G?1T9GrmW`A}P+gxChYO^)me5N}RM+*6cbZ zYt#>**$Mf+23G3P9b&hy$E|^}6UZlN1~^~v*`OATqV&x4>Jb5o(fT9*bDFib3U=w) z%G-w?h+b2~QsW{XRa^uSgyhuOxss}iO@4|=nQvQ#39Sw}QXB4xJhz+Yg2SK?6QM0% z>w*dut*-3u8RvL;%c2{+ILk!;fw*|E?(*U+JXVcDRB|#GCh*@N^hy`IlF3Pi@@5X;1 zv=3B}4<^Vg$V&D zfv6t;v$wU&@@inR+?`*Fb8|WnfBnDnhuwy5c>qJ}gLxE@SA>>^QS^3;&h!~^(4|i! zmNwnNuv})cT+6dAEoaixWh&apOs;eW%N05v-*VX#$X7kc6J{d}e#Hd5vbYx$N~wzpA5l@{V=r z1d`~NBRx3TOS=08lnhmBv6nvSV^X@~=af-||2O=X5QY5vz@U*eP05*zA?en>{o0ff z@_;cQz!NOktK9u22n)Dyt`|1&H(EaUA&>{^w&V8rd(H6!BHZqL$+55-Wk_N>yUuzT zx{GYfUn}3!KNSOz&{^lQ*_OZ#??)wehFdeXHc#m6uRJiEY;B70+{b{C+s`z1`%3nL z9duW*p~%F59RO!#V50;H@J^EyE~QMpOWo~AyQ!-jnTHA>_Szdb+3N}P4aZw?hi|_9 zJySvuV)y4hWbA_$HUyBG#eRwVsG=5YA(d3ze&d>l7+`W@eS)Nhc1o!LTbjyl9ZHb& z5__gb%hF;VYBhm10teVl)pBU{s%i#1n2Ks8JKxm035mqsKo2ugu8%&wOf*@$$LOM7 z-_c)u)vz76wgg?pbeRX+NTGinz;fVUoL^4eX)HmO2cIBf_;~!yJmUlZwMKg3dxxa{ z^5!yYG0DXUs=+6B$-7W_Vsc+mj7N8U@$k1w!y8In6kv5#I^NGMi}8lirKgE#Slk4y zx<1dx->rl?rjQ!C`Tqu{lPT^MKj#w$q?N(Gf% zT0_RtMIl{$a48^&k%C1_5}gEC z=uA*jIIS!h^}RS_7=V%Aqifz<0$f5sGw_1L=oVlV)o7v7C`kV$kX+Mi6e)%GMhopoNr>9_!_@B{`)RIgTE z!&Coe+&iUh8FZf#@X70al9y*yOK#LmHb~v%e*mY@aJhILQ{hg2mAUU$__mB~?Zb1l ziy;XWLEscdx5Plf`!m@(oP_eQWglZ@CnVyGM2bM!OcZ^P5$=~W2!`&^R-OPY=mq>b*iem~Jbg(gGZ6~i`70EYw{7#3FEpUnbxLyJEB)HjmK*PI(Nx z_Y(*T{~85m>`&fQ_z38r;}Z@**l2~RY%J0|c(kVRsLOR|*PUXwddb(rkKtD<$xFbI z;D8alE0?ADKC9s}X27g;GBhmUG-)gEuAfBFqx&>6IAx$j28qoapat^4TPLf-vxmDN z>1%z>y}(gnjBs^#KaS5KQ9jnN`nl&_+Jam{Lz1$plxb zE9Cx@^&v%oBtJ^k*3N#k1Cbs2l<(y-KvmbVh_24Gx<QtPyUXcHB! zGmv+wWr3vTIg~KG?JKlI4C5oWp7c=IUT1838;nEy$o<9-!~|oQySL`{CT&o<4#>wZ zHEp(!6JWacvJWH=8PlO$5UB#;Sd z5sO`{2kV`Ht;r7(feE2g9+X(*A-s)o^Low|kDpj9{Zh#_ z1K_#K1vOq=UPW4T#ek612D(B#`zK0#hr|DK{i2Jx4M%(!!D;%_`fbMCjvi7Hc6PyV zm#JHPRYfOr!cRyJP=v2hF0qep+;;+K(bH)Ow2)1v(^p*lIG2^KZN03u2y~6e6a$)P zZyAfBm^ToLobw;#s@1l@p>gJ-K6^Byr_*=){dz~PZ~ZFd`(?VxWn4ffFCP7RqRK#8 zn@tSP=w{uP{Z=54@eolMJv_H^YHhdq?8K-=PQY@jpLhbYcmOvK%jptXMj?PTVN(w`GiC8X8s_p=K8b3&Y;bLelh!~0{i6m%@@Tt zLBaZqQ@*vvff!cA0G%oQv6g+9TmwkQc@-|y%3T!aiGVn4c)|YPi8%?N=WrTsc}sHF z1u^f#PH#7HpRowCcf~^CN!<1Ge(N#UuZzU5%cq>NyRQI&_Ga;LL7h{ohnMTmKQ_>z z5pdV~fq*ek1%Rc9cFcn1uvZcoP)6dt=e#a+Csg9r98{~<)=Tj-(59ubRDtK95=bcB z8P^kDEsq%JdvVv|>)8(FIF0GSI{yGdlKV5EF7@> zS;^U<+wO5-efP?h$9Yif8P@&y{uee2ugOa@)uDSfd;nr1=+}N@-a^jk+I{p|CIsGG zp5W{bdfRR{b+3z0>B^Ce)nxOgd1MNJ+Ne1WyG^KkF_;F5dS<(RDk8wFsrqd31 z^1YVC8(J<@LPA{3vGZ980zxhMo^bkm*fo2Xj`s931Jz`5fcDpDzP8Sy2^_tO8zDza z+0>1Xi%#4}!?$XheNf)Ivl@cLyUk zue3>u87)oD(&Xuzh(x1e(Kec{P=>UJHNvI1{X3F`-oh1p6m%(iItFsrt$0Mm-B`~r zkn5$bpFuiIwC#P$x2)vQt&9hp576T8j`HpyWkAl;38;N$AdlHKM;jD%Qxel_hJ~$+M;HfV6q6eD3qwrf+VF;444~0KAsI$2lEs< zHCc&HgT>AbIu4UTwCMGTS&a9|L8|Ct@)qjc7k;?4IiARbl&2n=QA^U%_G5P5Tx9vw zu1h`y;5Fyo*H=$q``2$ci1vo3_Vlwxu!TIzcFG|}-3B3+p=A0?7Sdja79Vw*55JvwVpAe%yKliPv+6RTlQ| zKV)_ixSsKg!+P3p(RQM^s0O8Toc^5pA*h6)q_~zdin#pUK1p0wZxs(^rs7e zsYGSDQ<(L?_D4}G@AXYtyH;*>9Ay;ig?ngi6nI4KEm=D4v#^UuJS?P&{S!fTx`r?6 z;O7PIZx7|37quEwG5SA8`zwqU0rpT2IRZGYZ!D z*`?ROnp$>MF_vU)P6bqQ#m)$^vFmETI<2x)qBO&`K=duL(!Cu5H+}+H6N*f@x=o8- z^xTrw(Rb?;WT8q9&qwmGee<%U@k^2x`)zHTt#`2i5Pk5u5!caj zZak@<9#513=4|U~UtaKf@gy1{@OZR`WBZ1$W{x-K+9Kx;{n}S6w4pLyE+|ZhT;#Ip zF8mDv&wUZ-Wg`Hpd0wDhyk!b%rbaUpS`v+7gj8czR(n^a5-_kTt5RW6Gzf*v%35(p z>%gp~^?Ql7TVk(j?@eCnJJooKu;5y7hm7^<1Tz8b%VNuF(+m+)MF{LW>pKE=xo+=g z_Twi2NC~z65fc4_z9O7*9(wuNPwY5wUiJGQfSWGT%vu5D^=;029ofC__7mFM1(z!T z+xi!`$n4_Ne+DsYKcTZ;diz&1KR2}x2t+kmD{Irv-Jd_0p}95xA#NYQ?fki}%JQ1zmcPOH4ftwASm zEadl95di}{g51zQnvm6;-1E1!C``ts0+1yeX??OlnVlWKXOF&W+-!;z>r&IvmC9wc zd4bU`BLHzk;Ce;h>xXkac45l$BlP9f=H&+80SLijKnV02c3GNvY@X#hNmVXu`z|@# zOGZjO3^p$)?{P`ph*ZFYSTi0@`gi~-m$}8g-#;tZ@Zfv*tpK#u_FZ)IczwQ$p|p$G z?5cg#B%XRWOke~8HHbwT!D>`U)drG!ne1qrpAw-)VFlG#8>D1W8Z&FgC1U|n_!?pJ z-KKZFiT;9BJ>j;Yvmqe{mTGJEs=(IVx^{$4oj}!=)rDrL)yjsk*2-yth)t8ND_ZNX z(B?&d{LJIg_9QPQ9uIgtBL;qcvCCC1V;IHWE?6_Vgr9z!KO6u^*6^#}VOi;|uwPyg z15-k+jot=!*Qz~Ol_RZ)lq5yBGeis zzGm2!F*Z7&@9}uH(*QF`$;|BaviHt24CU#te(V6qqQmnEKYkI?=9#CXosU>nUdD!V z++%KADSm%@2x48d&|r721v|jJq0vTa3S|hIxMy*wjT(@umO*RDw-n=MUDEXkut*EE zBw5$64H6U!g>;EotaD&Nj_B z^mZJO^Q{Ne(-&!AM?=Nt#kaUk6R#aywdz+02zLyb^F6j}f4m#W1OB`qXIukH@l?HS zr68z4DdD<$Ghw)9UPd#83Q~fqyp2d{{j-mC2;H-UxACh2=!Vt1!M4-jx1oJ>H*G1@ zAzGxYDymdteQ#55A~d^6KKDIi?^6TEfo!W)Bdik@QiH6uy;ayiSkrd_=050>Z9@YH zK_8Fhspon~zy5@`tDO!M@qCG|m-I3KkYm@-5L56*5!k%o^D|PsEsX?piM84^`x)9a z)&OI4ZIzSLH$Dxpy#v-c9#hLjet1ro9=OvQI3ewL#?QX1gR`Qo-@$i;4IN^@l3lF{ zGgLzmuQVH^=I|xp?Fq6dSG7Qk;;Y;MX~!1?8iUc}{LaKs1D$-6tN^6C5Mj zk?^3R%DVZ(ZSz`SBe{c^8FMjbZkDyl6CKhftq*oS;D^twJ-UQ-MTO0C`0W<}ayqbK zYX(O@w>EiOS64@|F+&~t9w~AaD+M7$Z)t;%f>5)%+C~%HrWk~q;uLEBVtsz$TiCZS zLg2$$&qEssv8>&fS?0p$w>?3y<4~UttQwXKvgr%&wr5-4Mx=sjGFO__A=V*KO;$yK zg@&-1P$RXY5mHRD(bfDNYv;MZRtl|3ZKqa~Fp|aS8JFMV&9p#;kqCsgdH@l~#fDVR zy{w&lx%j@6Pp{p$AO>D0qc|(is&=^mu(t~UT(5@K9Ys@;=(?6oY~Hw$HS0>@tzks% z)PnP-BYhQnR8f=*41)pm8Kcvz~j)8=6Uf0$6OlI zW5!|74-fg1JliU^vkmrlM5US?A(WN$x&YljH){1mhFeaT`g5k0YEtjywEAPu)*5$f;zDDo@^t|mM)EW)yS}DnAIY=D|m`}6Oyw~ zAgO98pi5XYO0^U@E$KJKf;1iIp|?m)Vo|teyIkAc9l+Iqw;>LWQoBiVHg5@0z0KtE zcDuA?YSJ12qN(wHirmC-X0R1%NP%5ybdHZK87Es7jAOHwZbLr~2YWi}A#pDJ{!{qj zxz|UKyv}=ZYC~s-1FLabEQY4wErvi8ZEgA?Sda}S5Sp4aeVP>0B;_FaNH;vINomTP z_NO=&4kIj}rtM59(zS9`Dj<-oTnxIkh=i6*%Rb(wDnzu4VuoDo(Alx)xOia?fb*Ju z7!fGX7rR{f^yo@pj&n1H$BUe8U0Xx|P>OANGR;g2bVD`waa4dulRqNXf6&)m8t(qC z+>JokSSIv+n>o_*eF16HCh7O$V;Jn=Se^#$gQO6b2YY_wKmM*|5GeuBZy)o=1Bmox z=2a0As?nwU0L`>Z@VduLvRa@cnD8VmN$sWf)JSo6yJ*YSTvKE%9e0NoR+DPA695`e zI|3mrD#a8cEkC3|n5#vxUI54{GOjKK;j+@UcF7d-(|~Ud>B}5`d;wtN#LEcxKaUUf z>7+xHwFt>^wxu-U{JD8@he(daHn8*Oh8e$mm!=+jg~+GSEVQ%%||ZV|#Y>72VqgW}}W`=#`1TEj(qUV2Ksq~?0 zs;Hax)w>>5#XFMxO|B!y$@x=Du^eOR2_h`!N5=`Vovh4{X?==Dq^riMT40MSY($&| zmY(H++7kqI*FtSRa7LUBKv+SVqi|u>up*yBKC-3&bp4MLqyYz<3RF4eIM&+5+OeFw z@QG06+m)9QThYj(;@yza2r#oYYJeedFP*p1h9sMh@mArx@kcH8I1#$8pfJUaEv?ly z%@mf!?q?i^;EJl-6pQU}=(2cX&Ew%VvBw9ONZ@gBzbu!f0j2;{&?m37opA}Pg~j?G zCwgCF7Xg%WCqC=+NC`RLCOeL^M1hD6Js-}t zEMSyF*aqCS8G<&BPEPW0;MOt7T5Zjii+e9!cV`YO*}LY@v<7OZcZa5Z_=Zl#h%W8g zM9<&sj>2J#=sVk66-5w(cF{;#GB2a8>rG|oJyyA()cCea(eS#;+vr%h6C~vr(rcEr zf{=`KQK?!|kZR>1^M{~aJ0(&OR?rj%6V?v7hg5_Gaa8b@#nleAliFMVtddnD<6OHJ z;wkth*C_cZ0nje=-&d?zUarGh>f>;081`n04Y4-w!Z{9>BA(8$6GYSnt@-9N+9iT6 z@i6TDGni&vuIA^#n-@2Uvejyhj&nz}&uzOiOnYf5+yLxbXmMySH(h;elLSB_1|yj( zRrxmBIH5~zxOJ&0m9CdF3tz6`3z|yQOiz7&hyXM)0W`!>qglF?+6O6C2N{17%8`<- ze{Qf%Ik0rpjMgZDLJ;V?~8^OHh8--N1A%pvr&b->& z1>-s>A&?Gdh4?$x; z{B8okTo1o`1yCOc3u1kww{ti)BSH~tBdhBz0il=`tn0oS?Go9wL2U*$VAv$h+g@#p z=A-ZctJ})^zd9spJ|`St>R`I52?Ar>m(^;e@jh#~`zqu<@wyb6`1EZ0Wb0b3Y71RH zYU4cU!-?C-Jg5((vG_c5S^?Ox&mRwAsmQeq0e}?MAj5OzC)1AOPeSbpAYPEJW`c5} zrkhTU2FZw5OBdt^0;oO4pUCO^+P$H6G$JetgmMt=qtu*#dJ0Pg5P$dDrZbSO1!wz@ zW|r%XAlS;9hHv7oUz3E0?PI|9i|8nJ-g1zHtWL_W>zaG zlop)m@nyrkce0L$0f1}UOt*>U&Wo!tMwhdqR+}d4k{uG3+%h7!<-BrQ>UWO-rk@`{ z4Bt-#!lJyY6h%V1*!54k@h4&t>CFK2ueLrgp9q628%OR4P>1yc)5Q)yDuDR|*GHBi zp8u&He$1Lg);fGfKKZ`E@-b>k01iVK{{Bb1A0^{g3@u>zShlv@L=c9-J3AYb*><*K z_RiCrlz?5w7*VTEGc32WQMciiX8sz~>OEDFLi2It*w~#dHL!KvPtx5HQL9Se-Er2| z;0RCiyggxAZJexD?h?Hq*t+jn)Yi=7(E3SoL6_EV1_1daVKrt&(eyl9l>F3(xy~QE z%b!U(AYCwgQGcaIbgxzpoPKWk(JUGZ;~S2@Wt^-WSOx$%e71b%`h<&wbWy3ce(Z+t zr!W;(<5EGCfdG~du|E!cy|(Gk*rv2FHnKQv99UJr&?O!Z76aFe>$ne(eD`Dvz|>kH z)FmLX6f3z+U)_7k9Oulr?R)uZ(B2=fKd>u;!YEdy4UKjY&eiAAXb$jv{34jSf8VB8!Tytb!|vkRa+Xc_O3*s zz|^0NVAoM{MoN|oC^GaQZCUnm(@M62O%>$5r9psXC0n@->1QAh2RWY*qs@z5ua*l# zV%J%%O?d4yV>DVRLc%AFU9Xm37=o=UpB_2%=EIbLHq*3Jt_AbLzPB#HRWC7M&0(ql zlCb+cbIle*dFbblq7fjCWJR2C{!J-I0noka@BUM%e>r|UPeo-K`kd0KV4o9 z$7deD``^6}8|Qzj`61R08VR#}qDDD>IK(d_MEdWqn$B)Wjx% zO88z8Nnw}Z<19)+j13r%5%X+n5<+_yM;yAuhm*x1LF$)hD}^!Q;iN+^YgX@HaeBhc z$6)d>SPD(PB!ap+P#qS^b#V!tMF*-8<^m#4IQ>Rl;{o997cu|E{O#j7=eYh~PuR3K^TA20XThM<5Z8|%lI?V$n=(_Bok;7R7HyNHpS}!uKd~_ zI>Q*vpEFPjLO|SxOl+;7b~;E1`r{|NT+K`#AMxSA0FJZmr$xumfRi!s-l5Jx-zYP$aUVfd5*j6V;@hXug=w@>&F zr~l@!|JT3hKmGgpyZ`?G{?F#Wdm8@rr{m*%{j(0h)BjtS5Apo#b$J|WkN7eVUkcir#7O;E8A(dTre-XW+xOJST%ql$itZ_ zxnUTieEW?pi+=gSadb;a-|Mp2I3Wfr?~+t=wb4e!BM9b-WwrCs)7;vN9#XiBh(RuE z|E2H0EbF(2+A~fjYt09q<_e&k?G(#(?mql2{>%URfBSDg{4akR>OUR+KL4xmKmSkv z`Qb8-?fyV<%(JQQ0#^|_?e@i(Gb~>={IJJjq zaOlzZECr>oxOAvNQUDNx59mO>c~q;4E;;sWp{aR6GM6}4xvb^8!MQ__w>mr+fRe+@ zU*RwMPd^X!yKqum|Hbg*zx|g$4nvnMHCV(07%MCwpW^X{*VIXyWLm2pl9#%Y_qlL) z`7Q}*v<pM)vvJC?X(&Phx z#ef*CRxXRJs}qv8EcW`wzHbqM^wF)pfL2tmfY5mz@%r7LIWR8`C!1%VT@n4+T2@N^ z{6(%~%awi6Qe+6aEViyS7XZ>F8G4%+y-pHi0}E=^&(BOzK0JAzrmq*r6r}6aLu(60 zMiQkmN<(_8x$8g(Sk^dh({8S_4IQf1hkpJhGbgP4PkibqHxP?SdwR#kx<^+h0D^p8c0D z%nL+h%KqtbuACNkGVQo~Mw2UV^F3T76Rb--9{6@qPsW}ec^K?E>GKQh#a}DuljW>$ z7XWfNSgn=|D&%nB=>#E`rsKrh#l{J$I?bL9L<$WpjnifEq07xS$0LuObV=VXwyyNY zZVdxsw3jzqRvr%k`0zl}_5e%((%@SkCe8a98XkjNUZkz}s#LV6V(B)MMX2U{sP-Wr zkxwj7Ls+mr;qvF*={Gq)1OTUh#OGfO$DickuU?kFdHT2i=YKK&q8xu6vivo24*+5D;~6`h`#ps{)XvqE>W?dt-t_%ih`JQ*buXx$$n~ zk>hV&qKG&)@908~oQ@m@mg0-a(-DWkIZVqFfL7Q5J7O9C8NNZi=7N=i?sk~G zs%q;lY-bs*>@sXq=ic5JBM*a(lfJx4t=@+RfFYPS!ER6YbDznsgBen+M_1}FJsdc# zh(WSaQG4cxB*kjS@n_OM2aSy;82_RF($}YlG5+)3M*>wmHyj!P8%@_J0a?9cyL z{XHe~`X^EjfT0f20;GUGPTN#ZeeInnGi+of*k*$;h){ z8><@jVHFNeR;!glsA5@cU9BpTwWoBI(!>P-?rR&$Hp&e6XX+l)*57MpxiF@^EgRS* zSJ&zG>)W^C(96@K4W0D8KELS8E665Kpg#~$sb(QqRr+H_{8$}_+@!gbd>a0Kw$#Pv z>F}vvo&=;6GeJJ%@~7eWg92EddXxi;ahUu(8y;rV1;Y!4!efpP#~FR%Lf89Dpl zT$Cf4m7$eef}fF7bS7_qlWIyC3ieKR9OLBifxB0cywfG4w-k zUDN~5|8R{zJ5ViMG>u_>!1~DHxxLT)QO>`z;m2+~QNEFWkZsbF10>s@mW1QnKNkR+5)9S{?ZWc0OV`qUS<5-a zxt@P5mp={KVfuyuhG)}+^@%VXe?$HwoRTx4CajN4S97J#{82!3FF5|7{g-UQc+GW) z79~B;mc-kG0Cb<*vuXD4%r0rX!;aUyO#;>SAlRJSU@2{#pp`*qb#Jz1 zOil$fKH7cQ-PoQ#BG!Mz=Kg zsQqoo>&})^F@58W^XOjf_(PS|@;Sz9g&?0Ji@EHi`?AK%3V`FHPbaRWJu0Ire8i<@ zf1>o>)o!K1Hps<$4Vj`R+Fy%B(*`>H_rQge~xpT+y+mp zn%Rv|s1;Tqfg!*&wj9pwc?Xxa$D>lVx7#Mf;6`J&P2}12%|gx3woXTHN8aXpZDf+( zS{_6|aw+<)p0qX;4h@%b9)w{7I>-w<= z*?-d7hdQ)gyLioL!$8yyJphg~Q}Txx+pbCWV(#(59*z+4X*#!=A+`D|ZJJOkQ^fH= z+$r4DtQ5<|0qlL*+Zn3Znis#4kGwY$0EB=|X~!VY7NuIt-SNodV10)a+t5!{klH2o zi80u9Y{MH#x>$0}h(SM`EJ}Ety;Cl{E$Ns5)PopdLGn4&j@^r-v6LaO*ztFD`5>j| zdLjU+pdwu@U0m1>4Umkmg4%{vxq?6=q%_+|Hdl$}hqOF}kgfX+z_mMwW8K-N`r%w3 zJDEzHR|K&>Q56f?Gp4ojc(BKl_Q~g4w9b0Z$m@27944T+!W~;h(e$17k3D%8S+KFC zDK5Z{mBT1?cs&@S5+=6riG=rR*!v;^U)5Sa|d=SV7;4CAW~0h zeMsT4>whO8}pBoFLBCIAEVSxtZ6MRUY zWD~EuR)p2ks4S*|l2wD`vuHwC0YHkT*9;(DR!@BO!)f~YvG(krCH@fFH01qZ<^a3S z&PR(POXhX5adx`1Daf$tL)#K<)AP4JlXoh3zdXvgIx0o%1H&LnA1@K)kHg?urt``Ipd%G|OJ@+X%=U={p!jxpbpT;+R=M`ATR+8VX-(NF4pW+jMZqM8V%(b zG%&1)W2G9ZMxWhL)E|4ke0NwM1?FK)xHpZqb|~2SsOO$V`8L|y+yB?z*Dgnr<48I{ zG9oflQdRf#&f1>cJE$(epNad(qQCkCm1Us`0jkZ!w>#oP(YcJycG{Em5;S zNS_-peLRP&)B1wb{#(4snqIuaCd)%YkR>N3#NK+C4rI{+OA86%5%**1w)CSzXiddf|)&0OYa7))<^ zr$!q|4WJZ3Y)@XjT1u>RhZF8eJ_KkSg`+8~i-yvB>K2d=iLN(+PDNx+7%97Ot=v=<)w4~N9Zqn3Tl zI9hQ~yA*v06eFEadKxWonY|?67AB(mY@aGakdX_ga33svNPqv} zN&wJWhd<3Y)v6s!plABncFz812#D=V(W4W_o+oQ7P^FZt zC~l_lK90+}ix{XtEHyalxU_|a=FNy0DS`sKm9SO!tW01-IF5+X#46==k|FX^!ut&$ zcSmO%)gj!o3;}>fCL$dNsPb**HJU9#um<2ESTm(57s9B#0*xe*>d4kw<%?jGa8rBk zXq9+Vp`Z$7Sc%#Prf66-timSMOGKj1C8j2hv=)Q3>AFBw&J)#2v%u8)wpPhCQpSC@ z&TM>tEpL-df!7*EC}*HIBd8sQaGH1=9bOSp5t<}?=Psz_t|jk@Z*E;i=Ia>|A@$#h=_6_ z^B!F@04{<+AfhS?j{sanz$_*J61EoxP$qbv9-5Tm2>`}{Vni<5++ln%wN+ufY5@8tE5Cmt z*8kAgA-Gxcl}lSa-cWDlCL^Yrek=g@=IN<{mA${encSXf8Br0=LPb%kRe#IByn$e8 zo1Q0RgSrQ`W+fuqnMjy7?**#^Yb1(Fs$5hfG!Pd}H%qR_Wv4olZj(|01)DCFRZof- z;gmNa(VEy7qN>UH0y}%lHR$19L@v;ji@aXy+ZZ0%1-6>xFXc)pDL~Vx(+Ge*Z+d@p zIa@Gc9HDI!3c)1|a%qiMO?JZafR-%89ns+(_x77RXj#DuN-lBP_%bSFyN+fV= zO0O!3WgvsvIIHbC8ja=z&h5Bk`u#<@s6>{L0fbFx+vWT%43dgVni^jv1WnPDW#pV> z2)udCg+CwTywQEubyF3JQ7|>#6)YmhL3p3k@hDV{n3-8W(v<lj>-Hm zfW>9TI9IB|Yt_gaNtsC07zegobYMwjly(*e1;DC-Op;G4dKSRdrT5IQF)TGKMJ*-C z@?@LIQ0A`F*KU%iN_b?xE#@cYeEvY$5|2ZybS!{yLstAi#Q!A%0r!d)OLN~;OMTaQOmY~2KkumJ+Dt&!Gv^6nI7?OwG_mA#6XR!!?OfkPS0jcYYD`1F#Szj;sxTe4TG|vpwy6Xb! z&U4u5iA)-TS-QdEUho(2S_6|3l&MGJL(#f5WD`2P)(6Sc^tOH0#FCh+^5(j`VXc&f zaCfrnQ;-+y)W#b#k_Bjd|$^R{BcLl^4l+@ikuBI)tB@3eFPvQQ_&bB@`l># zd$rQ#j9tGnB`6q5 zB$2ucQ^>CBZX14`Lb(KG!Xlwswx(uuVXxWy+)qgfCT`uQl(}*EP#qOf9t+)O2#9w=>6Y*8!ig!B^#m$Ca3n8C|(FX)uT33v{ZyZ z-`87XXqte#|i8lp)dU3q00 z=`^|l*0I)P!)$^&T{>FS1Rh+WZ_Q3uIVByVuTE7EdBsK5787qxQdwF~rAk7)3Kh!; zl#RlnrgMR?RNkm7#rc^*#O!933FTud2vYi^?QAtcqw$d>+Md);O*+ADbeMu)5zyZ{&?4A^}UCN!G3{S zVMRSzk&*-8W~0Tdfi(r&$t^8`l~V(2DRiGP4v0ZdBdn3U6Q;OriF)t@_g}H50A@S- zz*vrB(8${D#Hy0Qv@1!J+Wc)vfuiE8d5^!sGX}OC*MbZ+qZVcvf@#6?=A+{4*gB9} zy4_tjpF9E%lh1^qVA-ANc6Y504j2+vd5R@50;|pojU&#dzIt>Viu=PP6@9w3QpY|4fv0ex zN^7=Ms#kq@D=MOqO^;VOxEqp^+eP%9QoTCYcP3v4RjAm?YoBa=gbJ!+?lT(LvUXGr zYo#^sp0#E_BD)($55;arq1ryZ6{Ks$TycNwH86nAX8>xBhwoRp-TC7h9*cRxQV2Lr zc)ftg`?(%7<-*HGkHtEocF7~XUiEr4M>)X6r-Ba2or25}=w~~h8sVYsJrKpOuX-LS zS6m<7okY#G8IBma8>BwxSjCOUfWuL@D%DC{H3akQBQ*~f@hMDgaoD78n!kL5$@_j@ZEjFt)5@}Kjeq%WMbl z1`bsQMhuz)h)i3``Grh95dg4nJbmR6Aw?Mztm4wp4%e#`P_3rMZi-Z724nJU&;)># zl(e?wOWh&6TNhFDi$n7{vGm>UQ%8ol8z%uWMNNUK@_nUcv(Ih!|K)gPmF#Bqk)n>t zf7mcLx;{{f<_sdbT+F+f9*h3*uIongipCQ4&g|1f=U+82-5$+<`83qaNZ-%l^~~>A z06Nb)&sbJ9)r)b^^N2Ozv1k>-rXO2dk_smJyoY&3shYEPm`|S*Q)|&?@`nOTWZ1k;A)i+?k#l zp-j)K3U&Pp+BW%!4@b6I!!QAeBJ%S_d$xGJB0gBw#)#f zfVwAjlq=g|ncRYjL?D0}0*Avs@eD%{=y=pWJZrCQxv`n5G9xl6uvV&dKcb4VNne*r zRl0e!e-Z2$Rhx4KIM9+!lS>rrCrB{S=>>sJ9fckv0@HmKW5~7=0|0tWdLA_~uZ2G! zdcS*dy8i9&e7o~s|Dw%qP)k8dMlsMT_`G7Cy$pV|ANR*e2!T@4(}*FVR1&p@{~eYF zkfQCJO4&QsZO6`qjxmr35Yi?}VF(+upHfv(wBtHpcWQ(v=h}m(WqsWufz%1l$Kj-0 zQN&73|DV9ctnS!Zp=y?usP(HwnT-vRYgE`Ws)ABf4mc1IIOvw~d4;IhsE{)|I>Jp` z3HJp*e%8kWw)gN~f72o1_n-Rj|H9@A;)RxvQvzE-?Z7BDJ^g4;|N8$x9Uv%-iqVuL}|2a@deoYC=& zii+pfJ6FWa3LG)sus|c83HbOhd6_yf3#%O+Pxw7XeNK!)oL$S zo1pc8A;IMvT#?Gp>Bi16UX78kOEb1+?xY$J)7z^Ij!Z@X^v6ePbB8YHHi;M_+ToyX z3Sd&?rR+P9DnxZzx^R`BrH^|_cQt8#0XxT)++*a(dezflyaQefZH3?)k8c%wY_Spg z+G|H(mse^T0i04VeQ2p=`8p+yOjSLtcN#RiqiAu~gZhlA4ufI`K^!Bn+R~O?)m_y; z)j03c?6-~oREn=csfN+{Kw91Jb7ocgyhQ-@=R3WBASFx_O{2FRi?|oFrG~a{h|wWu zIjHy>|5z34wyR=y0kq@AE)W1|Ax;DwnwU%b+C?xJ>=q5}_o^CTB@^xA4Lo^_vS)Yh zgxOyM6Tmp&=r*fTlrd`HFz4O9-1>e^cc9(&KEuA`gl&6w`d@D#?62&-=|l1aByUc_ z?rNid*g)jf0TG2C*57!XG=p|o}pE36F(L?~6)4S5CJ zV%BAft(Og;anw@uen$v&xgc*5fP>gX^79?@VmH3$X5)x&F9?B_Rd09QvfoFFdY)i~ zO4B>^&S9n))Cl>_z-9;EER8Nr>%=l(-@~hGsk_pzl9Z+&(n3F+r?G>Qz!QtZAG-F) zV?suH#M8X(f)N>|(!BYo+rSWE%Va)kL!?}3UiY(({eSOkw1BLNTAOY_1(T;sr<0Gj zs@u748BFx@qNfq6__!fIRJD^vY_R#;o4#H=b30CiJ}PuRfmk088j_qx4S_9tAwnto z@k#5XFJ}Nc4n)-4?j{`vWimW`w>^Ern00^Rb~+)l6N%>wTJL^4Gn(psrLRoILc>Nb#8%Ive`I7rldjBG=-jMUEKEx-Vv zEvqT?T4VZ@&qI>w|oByy@KLOkxx@8(i zyuCtIuQ$AZ0-)EI-n6IVpec~$C(>*-cPEtR`T~GMO?H2jrJ@Qk%M^8BszPhopLh?L zXgU`CP@+wqD7Xpf&SCTS_7opaM6CazuhuQMuFl12Ik=1i zYNf!sEciqBJqgfX-t?4sNU-9>_2v@00Oev6P3Og09(=C#O~~T=K?l+Id;rYaG=)%w z9}B6cXu3C1m(hz73fkY_R9dSr@-Yk1K;=_`%KC-2dh-+rVfJ3Q`s$kh{ zIjT9U8vi}Te)QH}T`UzjQ!eho+QP<8Z~B*C>dVNFjQ3A$S+}hB2MtNLOyhuYFzN)) zlj*tXx*Cbzs-@3mO}jsF@jsLJpqC52ztNWE#~+l7ybL-a~D*J$@X7*JCZAUT#*}j2UOVFY^DR|GssM4;8NK+ z0%J6#V`~1uzN?p=>gT0#>6<)3KxoItFQ;iKp0-(sqHX@Y6?EOS6ic0L3&LrV^8|qJ zGnR&4-j}cjy52D)c|GZv7@%#llO;XecGrCw4~wKRbxeH9ewQ}@nEBX-;?nK5sF#)c zWU)1I8q4blB3_Cb0aaL`6a!9^HoZ

z7BMDe90wM9ZczI3L=?8xB+0NTX_HZ*hrs zdm2adNQWfnf#*!yfjDr;I~;M?vH>;@W|vBjWk1cdr=u}gL#WGIi_)5%&;08*0CGxv zTk-zsL9AATcjaY}$T1LGYG4KI7%eL{*U2vFqNSi|!5j-T)!l}fjV)=Jal`%R3RqA5VbQAGujVHj99qcS;80l2b- zHjmUDc?`-*xzHNnD!yLX^qaK9<00#H2)rv1*hpL1&CZ)`@O+$9z36G>D8Ts?w%k)h zsW3j&I9La{jFEEX7#-uca>MmbFDFDsi$iW&GB3{F`s1C)QG0&}u(!imTY!~+Qlwqi z;LjH^0+FFZ0M=FKMODcTSt^u9|32$VTjodR$EvqG4FiZYXNaP%1VG290!a*Vo)DQo zLG#*`A)P1!^cOqR+Ws>JluBDxPUufiiXBii5D{U^d?RxS)G<(1tlGIX8iOqbt2(1s zacm6QxHMM=dQFndro0ACMYPNnjFq5G`HTc2k-o%HpL zT=e})rO5|*^^mQGCg+K_O!wJ$qkb~CN<^FHByOwcyObTUdYfZg1h#2YT>!|-q$vQE zaM(-G3ZU_T$r`?HQQhk!KAf~=R6z`KnRE=Hs_)P_^Yw1eL6;TZUv(V#2I4wIn9|KOIIV+j!1=oDrUhzJ!Mq^Cl@dXthM=PRe`ut1CB;O{zpr32-YGG z0#YPVRV4}t2Q0uSDcR;)gbHGGI$)Er?W@PjJtnc!1;dPB-jm=!ngXSWHSZ&*`X!e` z->cT_J4E{*6`{5AWAX6SLstKq{n#V|CZlIiZ^9T8Rl(+r1Ac5^_O>3Y({ymiGN#B- zCFW+bDEe6T&|=U&6PjNW1$MJO0P6w7Go0IV6VW}fK3?8_<$ITPGH5RLNXQ^2>%H6W zvMV42DC<1Ozf%|z-5x4Jmvf67#o;I_f6cHf{^Ci><0+ z%}-;dN=9A~(Q&Z6L#;Z{%hJa{&4f}(#CpUqB#eV@xk1#0KJUI`TQOe!)Je>`W%{ol zX&k%@-ksjmv)}#&t!Uj37&bP{6j*c7d2tGrO7A4J^%}c0Zo6ICwLU~>8fltPD`f6} z(KaXT@*zhB%McI)m8g#ej|DN{^`fbHV2YwsaP?5Kv#A$@7n9a)FSJ;wImpEMKmK&v z`yh6N;>&CP{C3CaKy{zKvr22Ir%l&&*Vkz%xQ1{zmP*?m(V~{)%5|3kwR!9&r>*l8jqR_3QWT(g(#r{# z6T0``yf!S>XRaStJ2)?bbt6p<@pgQL8BA(sG=}r{M!Vc#?|xn((iA;MZ`2=Zs;2%j zKZ>$1#3L%B>VT6f%^S=l+BP%eMj4V~W}!BgTgJpXjm^xRMN}M7w}qR=-Q6{~1a~L6 zrg0|_q=De>?u6hD!6kST+}+(RxVziq|Hp6kCU01)Cbd@8J-6=J`+QrjandJrwuo^3 zp;t5KWc}B{ZC+4xwn$-xuu{}>Wh2oPYq?oHmf7ujno+s!%}9}oS>{1&{H=D{VM^^&$0y&x5cxCaB7cfp)?piM2U^<{a1Q34w6Hd#scSS}<%AiV{%*#U?=lO8Tr-CS zeNN7WZUcacKTUI(DAt1yFxb!@z@?cZu}sj)In_}mIWSx`(E*%R?0*8zrcsg`RuE_L zR3imXTnk*;dn%r0oBm`SLIDa-0(yy19s3~xL1np-&w)f?l~uU723mFBj&B)HnJdxU z&%)a~K5}vH=)nW_Ug5%*e1=rZSKHf#h3d$3%^JahL4Q}H17p==Y{QM|xnthGG=_dp zY2FrN5LjNDkb7S7IVnZ5PpX@oK2ZCzgc4N($tp?T*}yjcAq#MJo`zu&Tygw#P^K;f z!;4nb-r>fToFBHoLY8hi;*;tHKZg$~wU_m|;%J=hpZ%g;j{W&%sh7sDe}!vRvn}k z+|pUg7m3!G>eL^4c<}=4_&>4jra2_!R?sR=g=R_6zc#s4g*gvMoKrTqQn!p;dQR&C z3LTr^kqQ+@J0e@Nx>Sv9UNb|m?QNss>(j1>YYJXU72C%fGgRe!3EpFI4mBDGcK$R* z->YC~tv~Ha$tGXfwzI=fF5_Cw@^VQqHj$^bUEl^ki&OxMMg zWG!1(*RY|MFDGvm_m{tl1x1UN2hJb%h2H*-_(mwI`0X$ej;`On1I}pHzWy&Lyw+jq)yr<_|Mz#Ki7$*A1Q-y5x6Hy z=1e=|#nIDx;=Tc(Y5EZmXC+EtX?3~gaOSdfZa;4fwC$h7h5vBlgxe#-++WApCi!-7 zc)03w7tz);c51Wq+3D^2#)uLo!6Nh?UoQN?9!k6N;Y64Q5PrjpO(_NhSV~vsQpjX~ zB8CUBZ~H)=p(WzkgLI$yVIor*0kcTP&#QOhk`f3db7!2vLQ1E<7r-M(8mf0}7R`Pj zEPxq|RT(`j%>bq((4TvyHkVN`4=z_Ygvh!<_x14ZQ|!-ujb}Yj%i1Z&c@8cx2vA)% z*u+vwq_|O)QQw%Br#UmBwY~wQfFz*?w9}t=pvv}#Q?LgS*87dpCETe522wmTGKmGm zb1ZsHk01c%BuZ1i_sU{2;etno34WTktkvq4(qNjcKyfU_Q|y2-KGR;q0#lKLRUHsH z!qf7|+TZzrVjpmD{-B**@C*W_ym=`C6lg^TDjp85Mtzy}@(W%7<0!k5EB|A$)7ak$ z_Bvgt9~%Rax?{ZLA7fcSc5?ttpcI2E4q1pq2XU$~(aQIhOi5z|rM)-0x;x2ARbeFi zl$ehbF^)9oI_yNn=6Lv-`OSiJ2Z*?OwykHl2xAQA56ZK)upI!fQ(K7}%V4HDjGcxS z*53zzz|SJTHVj0c+WYt@G-RqJ&3tgGhYO7jnfHC%8e_27X^Ot#utp^TK^+-s9969o z`kDaOoYT{>GP}>!x_L^v9ot7A%)^>Lx!RSJuVX0RqEAtaew;4xAcR3lJp6)wBWO{= z_9$k}G2jRURw}Ve$ogYgySA7a>gQYd{IY`+m&J@%HD9rtC;ze{Qi2=xGk9f1*FhVY zfY8f#aNVaKPh004Wn#?_EjC^fNq`BQkIuB!ag9-1aSciurfg!=W5{^$Sy*meO!w)l zU<^i?rU`~H(8j1XsJrrCwkcU7X_>&)R%RG6sP&SemnTv7LKv2Rk>mNK1fP^wN3h7& zEvyWLbrMu!6ms30MIxz+IdJnH@^U!wHyMN=l-15EnXjzq6L9!Tm7eiz*1mKjFUNyX z@OsPG!_TALo+&;MdUfZb%Gjn-l`BlP+~;noSI$?Jbt}=ja#V#uA)oYv0bx*fj0F5N z<;~>{eq9*GtM^a%*<}8uYAs~Er%N!$$?%J!hPcz21UH+n{ZIui?gv^fKBgxS;(pucZ&qq_XIf;IZ=!>INk98vOe^|3)gFqo=tjJ^O5!Vgeu$?&K z-IcU}1j~MVIltXP0tm>&QmFCh@-d3B_$66g2Kn>0=_o?o4?&}3htVJBs?*oa{C5O; zhR{_qK}&A(@d!d#TGEpCGzh65bTaS4j_*&7e(E7)Oy%kkbV{v1){k-8_80F82g}b) zVr;JX8Lm`GVL*%4$!5fsLBRneyZJgOm@qbOvY7s`CZLKYSY+FM?y({S zp$*^xQAIxi2J|S{aB~W(lR~x51y+nQ3~Hz4!rrN^O!ZeWGQe;=xvtH?)+?r2 z2rM%`0KzW{EQ2)hc3RVRQs4o3IK$ss$=J9q-4z=OKN|?$d^d!eNnT3r9?ii%fEs%4 z#3|HvU86~E9RjDsERpFubLe4|)Mls(#sK)La^RVL!%maN{yw748Ov-4=R6vot`8QR z`m19Af$_-wKWD-}Y>a1avSJ8|HER;V{27E^!E1qm9`h>pifZkza5jH(3=8+ibN2I! z##(LGB)EM>^@H^4im)KG!b(j4?mB0EHlW0!OMnyO`aDVs%|a0KvWDHD2I5PC)1JEQ z1fkEO2KU1BK*};oX~CG1VGjob6Og6d@~`|D=vODvk&-!KZ?B(a^te3P{tqPs?asA(ExHo^)026(FBDkVK8XiqMek}HpX^~0} z+NyX;89GXjA2tGqS=yqj^#sBi%M!hAYR(BWk;R$P>KCSKtC2`~$t5lYc)gjw($EUg z^$^jEl*uitEH8yhq8xk#H!Q!R8GmV7%&j1sWuX5|qip7N!A(9RUecHBjiBZgS@-30 zaJ95gJBc_EnR)YoJ?LjXY6M6JNnL`$u}uTFi6UhTD)&Z;`DRj~;qlX2N;XJs0gv@p z$=s^RS6ly79VZuS1Yn$wf;6jMMKn%K0W^R6$_t$xx~W(+3yBiuh^g*<;RbVcny`h4 z0a&p$v#H__?-<_CTTkSTSBzpcQQv9vE%p!esnE4!|Mu1~^+)$rU?FrVaawA(GyPab z;UT@WIG)mfdAoZ8BOMY{QHs{wxAKE#n2Z9!R@RkBm8l9=qBq>!yp+9e#xf;B8tURs z%oYQAzni;fG!!Pm#*PdjSC9SYok|M5uCEzKHF&M=BU+bA?H57)$SIJ1l zAx8`O=qaHh3d&V=!dPlW7X0i9jOAi2uQqiU>zf$b?rX#kKgx0C+r@9TdLiLF&EJDz zRVPA^kc-Bq^^1eg43pM&G>{9Q#^!&1b67Q}9PZAo@E9o!lro96Py~96l9)N5 zhBbR|FsYPq88X7Othi!-8)f5~#F9XifjGR^bJJ|}$CSp`_C|~V1x)ey5jz%P4xs8> zCCTXDZ;8tyw6p+v*uursgG-a~F}L}mkmn$D#6k*uxGpZ!G0%=Dw)JKRpbL7|3Y^@E z6AA!jrCeNnBhO}u)F-yIIbJs9jNDDKiXR!8uZa7i;H<9&KpI=`6DOT5opYrx6d#;d zwGM*GRBct4N14g^5&O%W^nuFbsE=C&lZrJM z!~n3nM~&(!n?7@Ix1T)L+I=| z)2)%r|FXR|!5PC<*8+tr5hWhBm@PuOa_%F=pd0PaB|xk;E+S0xbN{ZQsb!^^uz)umAO?wrb_xfCs#PJ=Z` zbn!IIQCI>Q`;rSyrsD<-A>xfp;?6G2f9gr*&8;j()Z3p?{T{4ToB@PzB1R`%wTvRZ zwT(-*X{c-W_w z^Bbj0T{b#az1_ttm2d%x!mGijbg@nR#3)0u^UEaP)Y4C7z$>V%oE;OG)9bBKe((!s z1F2@6TvTxDzuOEdHTxxVY5s8+-$kZ_`lhF|-VTvq%I93@y&sUQ#0-UpFX++yMaXI^ zQsD{)9V#~7H}eAYSs~1}ULk0#_Qc$MWJCo4+s2u%Uc4=>7G*l1e#;5`R0l(~@`2yA z79z=aw8eQ%Zrm^&n9!-n!lS}RGN-o!=oY%MSQ&t$uKqF!OUh*efH9QX7A@h%^T5df zvNZ81QuWuw<@i7)o_2o7YWJvV^>sLo-12e89SNT0R&vXZ5`l1?Rg#59jiCq9#Kg-{ zpZYh}RQwW-@Tvk|&&rKgndCl+P4@U5_KRIY@tc7-&la<>?CHbR1;Xh<~ zP@U^Tr)vWmiKUDq`6#5Zp@s$m)!l73J0#gKtXih;YvHy0@p&(IcR&9SVu2&2B0ajF zg{c;!w+xNlIbBFG_khO~G7N`0n~S9-JQdCTWccO=YTC27RNr~r!3au%l=GpK;0~0f zBU@05Cz>``Ri`1(!#I_t>(bNxy@NHQIQ=b}>wU z70PnwH!*zk*M2uN3NwWmiMxKo7Ov6eB%NYxspE)?1qg8Y!*%}95sgY`_O3xBY7id{ z>Kf}A2yK{Da7EIr6SG59Jy0%uB+ex>MyT6+j0>hp=ru% zlF{IAK3oLxdrOjPnw-;w6z6AkuSTd;GM-D_!NdnmKB)7k=axXbCAcADh{cY}b|JeA zQy7*hLUfjA^&est=-4x7nXqE+&q^e4<)HKXCr{fIGZM^?{ijIN@%0efs0sin%bJPc zizxveD^>AAsoDhZ>lB6mG~9K*gfS_h@B1~A6$-`m_LH>r58uz<_yG@Ow9C8|?k9jS zYtMQMDl{bl99t?Lo*WvdntXuJcOLwsJ<$Vy$~$5pg;KSgWpN64s_E!%_k_z-b}+=A zw`C0~m!~=XcfMv)*$=e%PfSgVp;F~gVOIfZtjKF2Zh>E39}uy4q`t$~5!Yt!aCP-z z_tFe5femhNkxXDHQtE__gwCW63+>%z8@ihmYBI#bavE`}{3`d-yuuaZCS$$4f9>9V z@(%$V3VPNFtBJ|0l}NaF1?8 zR|%6gwg7E)Mpt#RMnj9Tz}e+~W!1bYI{stAzIOOyo1XHZ_G1f|B^bzRwHzKv+wcY$ zFX+KoP2j)&5TClZY=-t=aPii~1e*H)LT=k*GtEmPBXO?Av6ZLL!6{595$e5EU(@EB z=M^av_or`H=Q3MYkm_H%PZb1O{)+9+cLvB=U5#^sxM$%uA|B52dU64#G?6UjqP26e zROp8W;$5&?@oRXzcURPsmL%xk(+Uv~xf%v4gu9&oASjZ4=j6`+l7Le*NU+BMbL1~c&RY__JBmQJCXG4(J(WDQ(CF+VXiIQ~u%A_F*&;T#R9 zcnhqgZVK_Pf9Ke~wJW@EwjL@C(mIpi)!%U^#m_1rs^&D(UCCrZRgr+y*#y4 zd&m6C>pBg6hTitC>Zm1f&w<)}i$$2~#2S!w)i1^-mbjPEgP99>nuwA+n~1B$6a&pm zHgHu3$gpnH%W!c6MMgk6iFQko`9x!4zk^z(-K2^cl-T}+s}}sE;|VQ7{%ujQw@U+@=Y5bW`kPW#g-IpvUuJS=I&}rvGwo5c>ey8dvC zNrIJuJ_}x{`wjuX009_uE=YK1U_E_jCZ>G`rkRh?8%Cq(=^ITW=WexN6a zmp{v0WF>Xgw|W6ycaV3&QGsY&K*~eFX$;k>zjnCRap)kgD^^mlR)^8aR^|gl|F7sc zCMGDWm9><(e2nq$Bcd}4e?J(A?S}hDMsNObzM^!QjLz9aa4i931&@wzOjVG^*pl1W znV!YHKMHHnRlD5!L$(sqf*F_GaG16ntEWM~OsMb{;X)1T-uLT6X!n#raBN$teVD#} zB-A~1y|;k(5<2(*fjaVEdrL6fr9vGXC&i^LMCmI76xZ(ER|ETdt68;)HAbKoMm^TJ z_b_CjHxqs$j|usGtIXbS+;xy6sr382I8_08NW3EA^GD{ zmEx8s^Bn2Wf$+OY%K48Gq&B<|?nW9vl2j_knz5V=c7$mFWpZD0$0hCsV^Bm;%wo7L z2_1lkZTHEhALd>~m@t=z$n;?kdSD8&;u-gw`a2+uhP)kUd>@u_B@n?YlL2=o{z= zbkStHEf*dk#z0tUT`MT_gLz|E(fx-Pz}yG$872AR{hE~hWjsyvrNCZGkCPl7@chav z-&_hhrO8m|t72c_mtU8|2C9P#>*ye8h;AZk(7pMy8bC?~@k7L6JdnN2Y@y@gtdEcI zY>`5Ko*?`ZfgE?F6#`wZpTt~fejvhYRb*}Y&TziWif9Yb!fH4=r7>VWx{wN{YSK%P z19a-ybK5^NG@O?uE0D9N@K#UlSa{*xZDlI2IX5pT7`~t@FQr}9gl)h%%SXd!HA}vV zay+a!vg8;bTlFW!v{CT7+Rqw+AR$Wz`{#4CKHvAf<;Yd>o5Qbch=B6GI5)hce0oNk z8Z(nU%LXEg7m+@W-!3sr#%t69oxbq-XnC=wfz<>6);-5sv6xvJF4-bx+z`|q*K|81 znPH-x<{vr^B_+%0HOz{LGYFjwp&wPTmh2GDE5z9lOPQ#iOrwAg>M+*Sy)CU2djeJ{;UW|r9*C{0&~=mGKx)pqU<7pzceO(g(>&{R^GYxWJaCllaScUK734X&K; zuweU5$n4smC#b?bWXwHpctbr(uUb|^&@d)%DOXzam@R$y0tqOayPK_54oZ&8G;j zn3K8+E6t`xP4LQ|P}VR_>2lTMZAas!u`=RS#b&{RBeL`lu+GnL_5zMTLIJ{yHqP3| z9i{WlO4he)7H0K0mYqIOU5Un_7|h?9ZS4JoglY**X#^trq8WxKIx0oIx*nMu!^Su@ zBy3T5%ZAy9GZBY<`i^nWUK;bwE9r5MBlT4q5aohz{L^T*&k%VQ7T};PgEHEgi+-~I zT1l7(`tMFk;}UZlvi(Lg?VXRBaaLZWLcUi~!d$w^EyWk&;mm7D;*KZsUK7>QM?cd3 zibNlZgy0e`Bd>XAjz)wDBVO@!TtT~znwQS!rAOSX)qNW_gh%b00Y94J&|cr86)~9^ z_U^8Z-*X$NFaGZz3yb67jTZogkU=#Bk#cX)@wCuClZD)Q)+<5+5XF1#ye&g1h<_nQ zVAHY}?{zK;p4I1}oum}_0k0m}uV(_%ImWBhL2^Oi+Ad=mIydEG<>k!~t0qEC@6G=t zHg7&7%`__uNcd=Qp+Mo4MgYE>o(BA6wMMS=-}rpIe%7pYIh3|K-O@!)J6E|>KOb@X_YbRpxN_Y$>mzWHrzq5n zvmwsjJ3e-q#=r<U;uRJcohRqsP@j2>w8XBmQ}Y)ETiVmxs6UhD8hxwAS^W zFN=xVF(4M0iX~gjVoZ<^8rHzil)ACHq$3ATzgyzo#mx7SU(!?bSg`zFn~g3qpZnW7 z>Tc%XbFFPMBx|iebykK{V$$3lLoJ=n29EJiy4NlIEHqqHxUIAY6kn+^3$qiXKfXly zRAc~xwkI1?gxG1DAl-@T*z+IiC8w-AX-FqJdw|URPGH#Ax}yixlzjXdaRiopwDF~Y z3XP{N2yXp@w!4?Hnc6)e#hvHvB`Yd#noNQwqY8F5n>VwoU%eIH2vNHqGL?7RvRQJK zA($xDYkip|Kx2!O7j$y zlavQIToK>8DVjpV+@g7k)dy5RK~YAjdtJC}QgZ?NI}-D{_=T5w0${Bdn{rGV;w#t6 z7)ppivNabaCZ*=q^-rEiFHa9bR{kcE9y$FaO#XdHt47JqP ziKD$Y&dvKB(|?R}kI-N3;R zL^ZN-TzL-~1;EbFzA=za6?YpIh$F2*tL1geR|mUS^{7ONW)-Ops19JeBoy|?x%qla zVi04OyD^{x;;HsRW-Qt8Mev?)n$_63Bhkd?#WSHel`{P$2vG90pa!Y6^|1&@Dg zK>u)tWxOq8>vxdm7v+zO{z_R0-g`d zK0T`#HW90qQY1BIfxNcuUn|c_fa%$qN!isQ>jJFbORKl+t~Y-~u+e*`t?7QN|4#aL z<*eKh#jSayz1v=NAttMLYm`-S3JjD_U|G9H)_9-|IVo@!taESFHo@>*{c{|6{wh4L z*h(l$e7JYe*?)`lnxwgNhY#KDm4?V1E|W)CcS-N4F3IH5v$;++em*^#e$c6_RDXb2 zns!t0CAX%yzw4JyCq``uA!UnoKHdD!C>Zpv8M$ej2vK2#MUNdHxsJBo5v^V3tCP0B8fu^Hc;7wMPx8;Ops%^gQ7r!0sb-8} zz7PX|`6HWUNy0Q`p%89!S#uTZCtK;uhmH(%bGw0#-v(uQvwX`~RxQPUCmNw#GGzPu z?3(rQUEC3Lke}jz0^kKHG59$FDfTIS?uRm_X58?yKYhW}>n00WCbt;FF_m3MXurH) zbpLM7B$LWCGf%WTrOCQC`S6_uojB*%Y5Q*1ypp&8N~hg{C$5;3O)SLy7ml$h7e)f= z5&t9F($uyLC$tW;yU?L?Q*U}Yg5<3r_1`0y=EdO4v8+mPa1D{A$wbm0KamQ!;rc1k#s zX$Ef=iatrc_*|EwM7)?|| z2Z%?~tQJF2?Np^p=G?cZ@xcao-!8<>*k2!u678W=y?^*mj4D0Jeh}{7ZlN>TAUcJ3 z^(rKIh?VYfvVfFiZ|+*N#7u1agbiI}GH(Mmh?PRt7fnxWR|hZ`vOoV*kjcOpsJ|Iu zxH$C!PeJKQEaUuhLu)=+H7NH7=kW_bPGDf{R5MOx&;i}cUGHySh)Qb;OE9WC%L{i; z=#ak#PFIJ`t)aFbOPq$Zsf4%{n3?h=ki+n%T)1H@JOSExBOwF+s0In zy*=Q_yqcb;2u~)|uAzYCwZ-AbG<>x^AhkT;eU8WY>Th=rHzJfR0n>$tei7c=)yu>( zk|*^h9pa~3lAnRUN7uzigkIcA^gK_|!!9Ozb}5nt7_>ZHC4q@ZrT)1^nvb*DE}rZx zgn;8T7k}8`z-oUaQq?cIA4?~|1!iz2&gCi3Icv`TsSloqJ2WbB? zU7gQD8@1j2%i8H?`lHnEu&{s|;sHi|Aem+X?r09?iH8u8$Tey{Nk#oTlKnu=(kcBi zX5nHVK%m=0R>b%W7(|MhgkkIk>R{Fm9Tmc_zR@d_-;4V{68}V=v&(PIXH-2#JVO(?AD4>Xm=516ZJuKVI<)_*7hnQEbEl#{F{k zs|FtR<|%!C;fncYhsN1>G8uD1c6U77q8n*!YWDD&nWZqIpM0YeW|V~*=$psx`GmY0 z1N2@;&4lpRO(t)}54^A+$uW*Mj>}cZH0q|!+P7(ipKtR?1YUC4m&r&ImkBEA_HJmg z^mdhqPvF(t|ify122QCV!3ccx;YoBVGslnD};IxkRJ4y$kI{Wxo41h%s(g*y(N!>Db(=$5$S* zV$hBKCC%~%Mb<~o@%|PD zl>k3${2V0m4|){Wl)Vmz3s!TjxL%;IG;I80p2aP3`FQnAchtDPQ(&5^8wjXK1nLk$ z#v%vUM&C{@9SzHdw?z)HzEu=o3uMi&SUt6{zfQe30|(hmo@&N7dIj>M6T7`lNNLtg zQ$g^Eb^YR-g$`oBoRiZL%F?h2dz-e$42lq-oTN+jI*Q1@Iep86I4FwT&5rB7$6K&e!wNFWmCt*?y@%Ysq_4r>8* z*K*H6ebv{n)1ycg!@CjN2V9NqXtyf##j)G(=I&)~ z`*xz|_#UzIK`n$pbomAKSWJJaI!8?#H8&B$|6#cg_{tdx%fX4)Kz|{kX_cFwQ$k6z zzxp|watUKA=6yw*!{N#7)=&}n<=ddJMvl!z6M5umCI$fKjx*{hCZ>r3+9zGB(PkxD z|NI;jKPWSeWlYRiRvEqVU9`TAyg8v^&h0?FscvDBAWY^LFs^rXUQQ;pGW$R=>jhj~ z+!sCaejV+{_nz|p;P)K1jqbHv-k!1WR~(l6*P_*vqX=R7DC{b+zz$V@@5EC+*PdjUmx@wzpls*Db%t8Es#m z$VXAM_wDza9D{c%R7npZCVv6;9ELvQ66)(T2fKe$QVd0MtM}CszhpJLquUPACMoif z0s`7Nr&~U)tP%o$aGp_XK-pn`&GOAqkgPHT1ZrpsD%1I+`yjDzua2)C3a02}FYu-wW!0B7v)=pOs1BE@I{_fNAw}_%$4ahih!ib66~WdpV0tfOBJW zU^M|m(pozb*Vf7^LwLcH6MYlnhbXMLL!*||q#cP$#RPg0iyF%=%TFkqmlB6e?E;#0 zIIodnwAv}*kuudZfAe1#?QWS^HDtysX-4Mc)~Lr&9?W!f8BK`3-|_<+jZz+XuN!CV z)84zugT=}{ct>Xe$5k)@3zM)EqO~u8HAMGQHzfD{M$%|K)nu|d7dq^PKtnMB^@kM@ z+5j+Qef%u&hIeP4Z9%ZEa#`qF7A#eD{};?ddb1_aa267ys|)2Ii`V!4sQz@f?Pxij zRL5s8SWa}%e>u`6SZ=;Lk}c+2gV>Pfm*fa_cHe0i4yD9EXWjvv>5K}S%>I`STx;$T!$^FiqrVG%3q%$CU5QO zNs^9I4=*!6a%hQO!E8Sqr%7o#x5dO+=VW%A5c zKkYh4Js6$FDb|IUZ8dLkLrD_+$;DsXZRu}>-b&@GG}#x`6ui`1)j-v4-QEgRxZ4+n zikJuXYY(PazZtMwcMa}wG)h!$B&|O}xz)d`fZ}t#@XM?By@83)#w}-$w9_2#<~4Y| z?kn;?#n(hqqHS3{8*x)#V3BeM@wH*j*r8y^o+06C&F2of$)_<`)#D0>!Sf>0J*^70 zA+?h}ML}&UYG|rUJcfCtKacjsT-aR5`R2d)mmm+xo1|F(_VUoAZ6nxpJA595(nSu$ z$w(S0?75m=*MVBdu$Dn+UgMnQnC%*YK`BQeucMQ*H-D15lBUtqM-k&Ud7~40ZNcq) zqI?^A7xL38KF%3Nn8OEfU5W@h#ggT69ln_o28qw`e zf_ye;JD|RX`Up)HtR|K++~W82J%0V)ZS2LSxbA6>OZperbWlr>OtKuDjosl@xyLJe zuyjwwA<-4*{JyK?kn8Kr)=I~4ic!ddQT775#gI1UnYSl3PI~$mC{=hse3CjqGL>b= zVt}I3(LsBx-Izt75U!SUa20bZ#b#TFZyX5wDi&}O_-qb6bXvzTaCJ! z4R{~l>(KPKMnlzN7r5BUb`JS;=>T)+Oj`q)e4Dbjp&k%M}afbjQzeq-^C#Lo9_A>^L)U)s4^h?eJ{_d`Be?(;-%5z9ZjH`?#N%D8;geb z@&G{aFY6F)$neHSP3J>^_uwcEIgtq@WjtX{d_}g8su%XM-L?|VIcXK;QR);~DKN-M z;_4t6y@T(4x_?6Q^LYF26|!1EiezR<+uh%A+utPI5AeLSxOQ|U2(;W|w{)vKchH|E zmM-0U4}+4k46m|j-Ag6ZM2=Ie6{1zbsv_KZ8cQ@>xOTJ2GWE?z(>I!as3{1WlN%;< z$w%X212S|2iJbjmEyeWX|5S$A9Lwf4@MT2))xMCy$?KSA&V&l4FK|wkB(|zuxtupd z>@1D;oT9bzjCx_><-xr*`PDt=ZuoWS5_9{Cjn? zo&=q*nOB+W>?_=0I~?&-h8JRNB>$LT9g=yzQZYJ%-m2 z35T|H2*5E5z>$TD5y(}ZL_iKl{MX1A<`=MbJ7e~F!xd< z>!0CQr0RAvJ?P+XcS3JRQ|DLxLR9w!W?ruK;i|0Ji5~(rk+IT9258`25EhtRS7@+` zKIxn3Cs;$QXs^P_gO@z?l0+}e2acReV`A4gb2WAaDe>2)uVerupyrA*On?m9O@K)#tNxcJ;j ze+UUfpgMN4YYe$N@-M|`I65-2*nuo|Fzltt9}W@I_29hD;Pe+5`6!$6rw979B1I*B z@HzEGtt<+j^si2A*UOsKY1iw1REtmXNY7P^@r^+UZkVNAH*ST6EsMB}wtH>pL~zoh$@z*1&@M(d) z8{V}e5%;@~Ml0JYIm0^1_TCf`YPK(52ecADYLvBg=-?&Sub49hyk6K03%-^by20c% zeCSP-Cy3O~J^fJAP#%%c#rqc6OAos7r8+UygCwCsa&u`~`7aW%?BXD78-}Bw8xD!6 z01CVBsJD^p{m^GZ3F@Ob{H?!rO1pGN@&=IgIa_l#hqNLI;4`pZ3dRb}iY&rev?m$% zigCszpT>yo(G%0#pJBvuR5I%%v0VOL)iLPfGnZ$5`LlatzcIW}{DK9wQPK6W5hsH~4s6A@g zAPYKSp`2pHbxye!WNUo!q`7PcLn8J0>%mFBXXE|l_Y+L72V0fpmMypGh>M9}lw|70 zQp+;!yCy^zq+Kjym7Wh@-DN7&V7l-lsju$QkLli*YlWw0-gW$sE?-q0Gp3k3(UpQW z+q5U)q)nV{4e|>WZ%Tx<4_k}~aIA5mCG@?%EJ*K2KO(po znAmC_rY0BS>{j1}SE^E1QK!31A9Kao+`pE*)5l_LV=L4iY@_-6x(?MTM$~O>au{DT z87K?#JR-9Esh_31E4Y*uxrNM?D`yG~@>%nD>#roG7W;a;=fXyRl2C6e`#wd{?91om zvz-W5ZM5|k!Eam02Fx!k&#e{H2Emcnj1kX@xERo(9wk#3Fo(K2+-7)874<=4|p-3WP9qR>U(&*KqxqZ=U zr`7HuJLada%#jt%P@FxYvG6egSGWjj0>}{-!)|HN5iNZ&mBy=VN^sW`yLTRUr%!X9 zENH0(nlt@YBMSYu76K~Qj2Nl@zJNWi%>h*7hoD)GGNd2hVO+?sJ+OXSe+wW5#`q}v zC`kH!-=QP@drSEq9Uf-LMs93`1i7^H{UeFOr{tN<46B1IYH;dm-+&0P0#Mv@KL{z> zdlSO-T8h2}a}oHfKe)pCTLG*h&CRBdV+%qF(?Nc>4n0>ZDTCN(bze za|QKB?q=C{HEil_QZ4w%%T{tHx3?_bC2$RRNw$oZ#wy08bg$k*O5y{PvPd5qoS|Qm zh>SK22cKR)bct*0`nYQ{&v%o!)#@+@+f{{M1>K{qRMkWMaYigh)XCoT5#(Yvh5uYr zbXlaw%iG#7y=zlGl|b^i0dH^5H=eaKgX(%>9B4vWCzls#cp~1|abY2Vyrk|kp0p?} z-ECb(*4-7DT(rDwn)Rf-{Om-aHm$X z_OSzv#}G_Kz}zr1#MTWIp7H`R$_(Bx$+(jBl%E%F9N;kQp~%kZE@5Ws9Dnm#>u9^C z_DWFaS3l*JC)e||@!J{I$qd!4-&>1uN96|%mWi;28#EpSxZFmRNI)mIE{UbuqEuvE zEp%r8`KjmY`IXv>yosA!V*~aS5<^Wz*!$E5Hn<-gqnx7PK}86R`xs2QJmijsmY8fT zZxw=`nU7`+%tB0RuaL)sXCR)HJL%M z>Ql?n!qk_95?;&;>ui0x?zTQCp|&Ox152^BmmLtilyY+5zIbmLLsddUmh{P`9u9-@ zj+N7FF8tSe_@~ol<9S=Yh6TNEHXWbW_~&tgeO)IVH1GsgeET{X8}kl=+@(nm9gIvAnWBZ zy^rXh`RT1}(Ts;+Ve~qJWBHg^ROmTkK~q=Wrs;w{DVb5r3(P6E5)B_4w2Q)>5&Fbc z8|!FruquZMv!tB%%Npz8hXS>0lpK`x8XaAO0uk?US2o-Vn7XEe{`BO*V&kpi&ZCx4 zHmHKp>9Q8@I$2lVBMops@Q-CA`5(#oCU{>d4N`-Bens}+J!9R3VSAx0xWx*$mtSSi z!-laeu3{U#`%xts3L3wE;q>{F*($U^?w4TX^C_in?JRj@KGk02FERZ0lI7S~0(AwK zg=hk~bdU(1T$dE{ZC=;<0Hf`erH`HeBZ?t`?Bx>0Y8O|2C>{EJe{9;*jm_j2J6GAn z*D4~(cMK=;AV*FeYeqVSys~U8=NwfthC~IJ+@R_bZ%q#kNfcKigGM49GTg#tnKKvF zfl)~KdKuQKwm3}9hv_Wydj@`}al>*ez&O(PYk(-fZ0ggc<(=#9Bh7Y+z5U;fm5ZWw z!IzhAy5isQfj@|R6x-L%cqYOzafB=wV%SgW1i^|cgfX_|Wm*lrq3hR`{ie45fmQt! z0+YdLLA3(ufn(mbzzcB{v|JxL;vPBI*or+2n@NEV!d=33}H!bZ}WTaLi*mqrh1^($R7UN(y zq+oajbuFd5N#3&zdvP_a=6qnJAHl*vGuZeI_U7s&!SaqCw%eHJoJC38%=r`eL$DeB z%vX^QGv3`_6=prd3EL^%!sH4{kxgpJOD9mKT3QsRLREieKsg$5a-=hDqAxQe%TUU=2kQ?ehQyq?VH{>Ze%>01 zLWwB;>H993QusD;ezO*n`E6~n0^Ss1rr z%$-AYCQz5P->{NYY}>YN+qPA)ZQHg{v2EL`*tR;~{||c7v!3)?cYY^#-F5akXFnSO z=bVdMhny_e52%U-*6(TZT2hG9b1Kf{TgBZGN#pDm;9VsPExo_aERo?C1nLU;*TlZq zcehUHeel_u;^ovGi9Wp`3IQrYS}NRkbHlaLs#La6Hr}C_hX}2E>I-9ufe8mmv54l( zJLD%ty$%yxnkf0KG%PKur?qe(j{j&66Cc>{o()9*4;;t&JC_WSVnHdD;b8k&JCF4K zBaQRJRhr=}gMz*?1A~@f$wZOq{+Z+x1_*orcnE|IjFtn2Wjo6VJUv0)K@ta!+_4t5V8!VG84=iTRj=Uc9=r)4&VSExSUB3DrPwjW01s%PH| z_;$!iu>zc~W#8la>fvun)Z$e{GnONV^1)U(5Ac~zb;nPVj~_GM=i*fAq^_|s~g7zFoS;MZ8TD(WIsvY zA9;Hyp-Ih&2A31D6eA*3cc?Jdzb@3#Mouh92r1gE8RFmrEEIciw#sZ{1FQGGkoc)PhYUTp+qE0mN7XdPYBLfA z0q>=~F=Vrtwbuv}{`GT;@l2_><|mi{U39A3Ab^G=Xq7FOY8Ef|;&YJ}89P^&O6uMs zpGV$Io(fn!_Qm6ZqtbsX%Wgl__=3R+S-#OPCB%eGHKrb)9WkY7^%EQl2(Q{nt-i+MN<->G?f zg5^(Lf?<}-hd0N3WJGM3j$GFtd-}YPq5iQ3e%7>&{(S=u(*HB#1Mp-0Lazr*g$)Rr zM1bmV`GMCB13(Q!!rj&v1J{^cC08Ix^Px}(cr2!X%`;|+LlK~q+n#1uqQT@y%x=WR z=VLyZUPad*{uVFtABQSl@1kg_HPyyKln+P#RtC{$8K7{+Opq>?VUHdLgx;X#)qmO%X5}4W?Eiza_4)B;t2j4J%Pv zmxP#1 z$YDi+pM_HEhJE@9NuaOmw8h;n^xRpj@&-sEf0F6hiK5JC&=*GWQhy0+Ez~pUDeNmi>g?A=7%8o=XuTOrG4lrLkZ$HdP1& z2%pt8uX*sXYX=8>-=Q#!wp`!o_1sQ0SaShT4ol<1j5YE#f)zfI5twG#C!!=&$~74; z*CugIHhTNA2x66Kib)S9$BUX2A(pS0`UBXIp=HD&Db_q*&`lz)v|Yar{GET`vceP{ z6BVK<$X+Q#xribb>!9nvYWU|e4~9d&D-KqfC^j%je4%iy6v$=k%r1dgF(giE!WQ+g zzZ&;(0GbqI_s9WLHf)jY zIDq0luR>#u@Ucp~!kmW;QnT!Qc1oq+LW4zv$m&LgC5vYpY~c3z@5$QmAcp)TSrKFv zXA9TfRI4^d$)-|a?-((x{V|Y#IR2i6e!B$l#5OJzHhBt78i9dg#ieq{vqqQ9P_z1}XIAN(om&2VMGb`&2qek%LYGYp+} z0165bP7MzuSW-a}mOtNnfhlXnReGLiimg5m(e8u*)5e&W{x!+7mgZbMYpWR<%GwOv zc+r^K&P5ClTf9I606<@7I^{)4s~!o9H=L^n-H$cBWTEXc4LfSm>`SCy-&XX_Y1m)k z6@{1aw1)$sl6{m<5C;}={7@2aQ8Q%0bV_Qh@>Di!P5KP|C)+7jk$q z!p)PrDZNRkzeUlWPJ=q9we6eUg;y$dMFGsU?UzCGfxSXO2BZoiJfeDgbDba>-V#at z*~^x8h#8PY#zG1wS`dS$Gs-sibx41(sku&-LWE3jIL4Ak%F4;x>SZt zqW}78n0D04=HGdMgS6|eHNlK|J?4Hz`Ii8A2t~T0iq6zQvOzfu-w~W^8ABUR=439FLE3oj z;hbFd#eV#%Q&N~yS(S44Ibuw_pe;`lEUVfd`!6ayTQG}7P8VTIB{^mo7S=I7@Kspb zcH|r{Wd%mujOtLRVE)wKGDvBY4%OXTd4dDN1Sj1S%}s2J z{Mk9QY+a0Gqs79q^(xhZ@g2J}Kpl@)VROLkF4AK2ZzN|>r8*Hh$X>t}7xo1y0Z8!` zs0M{wjkIPn$hfE__nZ}8o1Azn;WXZS9-t*mCZ9RBOGaASDwTOxy5Q*wv+e$n`{Ll? z^M?U{^z(eaDJITBT`WXq?DtmC2FoT0?bxQcmZJ@e&WGMAfXeuGs;>N%ji^?)=TSGw zOPU2y-fLi#{7f(kEZh8|YlX>b@DrRq8VGyHjAnH#0jWC_X;qy)Ivm4psSy9SnABs}r zucWxYDyk*59J{soiSMO_=8r2W6dh@S&Bq?!U3F1C+=2KPki(ocl#@ru+I9JfTRJvv zT|hia%(!}^T`Ld=Mp|G8khg4Tl81p(D`f+LnQPNlVnOP3+ymv}k3k?)WQhQt5Vl{I6@UYk-8@23g;*w=EKz3tt~lA~xZ;u_((5TueZ5uc@%`1Sr)z-? zPsA|CY#CwfqJ0U>k-gr1Vv*_1T?nPMk~dPXxM}swXbD9g-mK#Z+CuLwE)0_YM_g0% zSTrab^Xn#EZo=9sMe9&+1F-@)i10!ljG!)Y`S6>=Gi}LSnxU0}G=7LplNG*AZn?b> zSyNNO7Fa2DY-j0xtNOSly6X4a?bi3_3l$GxRn2BIhyfGtFta=@asX}Q2Q92qMFQpb zy;@h40rrINH#omf_Z8p+P^Gs z8ybwtKBWsq?Gao=f^(6zK@GSNZ}qcB3EJ?LfQ_o+0%hxtsXh6Jr!wCgo4_(p>yz%mYHAut$bZ7v^nI|)TFXCnF)s(j799^X-S+IIs z_d={yrsxBhBH>htW07mu-0=o`gu)maiWV{R9zmPtW?zHU>-dff5?R%bLL8#B zu`4;P_nagxuZD3`X-weDSAwpqf}plpAHkcqT-;x&Lo*^$#i?X6bMP}nzL0Q55-Kc; zdfdD7+fvQ2Q=NIPg&a34bZ>9M6#q8xJUSHgvsYxB_ULLK4pofuTC_gD26P2n@!Sew z8&va|9{t8j&$G6SKC2zXp^eBufU^!xc)riy~L)wCGiA7*2k+tz6_|9JhLXo}SQ zsPw@^!)4E>hJieM8vrTP{VYyqyYQ;q)yaGB4`gpFiOpy z>7$`0<@JWZ}0?j5(xnDxRU*(wEcI*OUrRab{#4D@*u0R-N=s9bQ2 zjo@-N;sP3VmxD;uxWJ?71-}#g!kevi=z>ZvI*)(d`P$@Dfb$uBXe&Q#1=jeUA!c*J zauQ#pr%cfzT&t2nRA-8<%gXJzwAV@tx3y{mn9`bPVvjDKQyLN9!;r{wK?!dl>#zP? z^e$IvE`r-W1xj^Jxdxpop0G}AbbQv){^sKgt<`hdI&0xuT@>-`FOihygn4+Y+9fvz_^htbfTK>sc-G&d5A z8oW>~(6&F?iWE&72(rltNp6}Un&xjHgN$1TYRm}>6nFHWY`4K**8ZtjcfOju+HSH2 zn#Z_Xs0itquXz(OV01`JebYYTy*ue@Aq1*LBN3#@!5HyD_i^&t(BHESEXY~B^REKa zCJH%hK`?>!Pk%J;Bs!+9h;7?F7y!Si=>pnfDUgL7_RcGw0^D>Oj3cv+ym~`yLF)bG z@#f$C`>>xt$A&azzb(E3Ps#p4W9db)gFyAKZpi$!#V7b*S`|j_%`!mM$%X+?Fd)E* z0Sp+gldz{3F6zRKR6hyOX;|+%`B+T%l3qhO~zG*BIAp z?>~jzqX ziFPwUqfdnex76B7a&6m<+fx>!`D#sGK{9YZGyBd$e8&gMHN_y5Ur4a}(FLyOlMYT| z$4)c2r_*h%-i)vxz6rT&E1D7vQ2y9(i~+D^3V*SD%t>xK5AObiU=Umy{_qZ#%)H|l3SZ?X zZJkbSra+Ji9}vnZKLar=J+vr|qzj~gf&9-2o-I4>!L$PY%sK4zMO=Al&XB-!>dT$L0k4zM1qJ z#h957<#1h<3jsIS)n0`guME1V_zwCJw7DT5$PiUvFNwD>KcCS*JoQu_tRi#>Nu7d_ ziQNZdjNBNm?2FV+3@RAU6bk0*U4TE~lBY$<e@f%iGkpnhTopE05zxdc{xW`&tfGpQtq5osNofxvX^rcD_0; zbAE-ArmTEB$EoRaF~)NuWXV%%tgX=HW!3q8q4DK4y7WG;w|#q6)3j>XiW=)+OnLfJ z$wHXSFT9o+xZkvTk(%{MJ-~dOoZRtl=m?-A;vzes#oX|%WdmYp%ibW zEz4Fv60FB@^;kkNf>sDWMZPSiF$m{1jw|DZE0o4)7+o&L|^rW@%$5X%E>FF&4)V#|S`eG9*OnjL7oxQa{u-JkeQYig)eKh#rB;wXx6 z^-WTO_-grdK^Mmis(r_89PuedjEJ6hm4fzWgof6(`ud2VET}%MF?~M3USj;#aOo|} zkrVLrhL%V#`>8irrv#y(Eerg;cQ<<7sNgsSl_KunaBVH`D>wnCPtACM$Nh#ztO7aH zUq%?Xl%l=y6+DcbF=87+l$Lp5JWu3JP+%pswNBZ9yohbv_9`(Susl^AHsD_4)4wVF zO`Pj}!b<%=bzfP4i3kNRi*3&aBgs_y5ldA^IE6<`z#3cDBW<*02BAt{&fM@|Qz!;Q_=Mm(-PMcI%c>7OJJHO)7d!?>`;yLJ!uFuDkpqlu@gi$jE6JqpXmTD@TiM^04}=e4zo;U)MR>yIZ4U0N27F92nIf z(*Oj|fb%ZbAC;(Aj8^0e^2RmZ!YiGV(n}Fflrvirvu3G)a{;Dj$AHVHyDFdDxRJCH*Kg= z+93$hsokA6xFpiA3%T_|mDBF7_1}WBj-$sb1P-$o16npFsD80{^0-Pj3;X*^-_r6N zJ^l;(-+)LOEz#NIv#z5N5xTxKpf!{dzeOPH8NZ^_xN0IIX=~lM-AZwIIzHD_=%B6o(3Xq4A zc#PTp!BW=S0qnCZWx7V>M(pB~9v;T`Wi+Db*cLf;kMsAvIHw@+Yg9Jx8#V#6=8IwhCh{g`K}Tx zP4B3ThE^vyqDcX_G*(~~XlwG4XIOF1i%z@=K>XKAY|sj}C|&y}fS0%NRIJG#lPOHw z3k$Zy6Rk5$_8hjK_9k0*C%(@ox3h2AGrUyHz6u+kaujF+sv%tY*w|8v1BNV7)bw`Gn4p=%QBhk3Jxb!v*Us^1|7-)J7hmhp_2E?C98es zmK|_%d-G0&ry_}zRO;nBLNEsQaDMR8gOXCPy@z8Dcx(?z!OeSp@goTEYPD!ns+zHT zJg5zsNGKZdU%rFAld8RseaOxI@hDdQ9-$x-PYT%ng9|7zmN49TdHgNe_ov_)n`9u$ zNf1$rAbdoq`qcXTB!x;E^f+8ofy&6*z)}>jIQ^xROZke9c92&O@8{v`k!^wc$8ARL zAFQS}Rm5C#3AXepqX%pcs&d$$i84LsUhhd6o*E$_x(C>D*N(WBGVJj zYIWGi?KvFyqrfRKhrUsph3>wnD{?Ti$X`;AQDhQBfK5uPMt z(qlbhD--arRvXZ^(%+CTcYBH0sBEpR#Zo*D`MwZJU&!Zop`)4xi)-_9i4Zcv)D&Rv z!vdIB z^TLF(B$;G2e(WvZkqk%<4-CQmT2|Dru6Edvr>d;8v$R1Gh(X3m4dqe^MY+=Imb1Eb zbZ-SU)9^sO`c{7UFq~9l+f0t-41IiaK$-3{CBVm-s>WjXnFaTOrkwA({_zP z2Lg}6wDs}jrr4Wg$xc={*ox93Ij^?MM(sBK4O#lR_u|b(xlE7r%eSh5j6IK}n0`J# zy(7*N$G?g&v<#(^g}Y;2ShY!i=O3lSsd6p@$`ojx>#RCsroi=l`1Tyat*BrmDC-(PWRd{&?h zLOG_Cf+M+Z%yg8!2p-XwWOtc9iGS|Xo`+)t0JGH|e1PATpINV+44_I|mvCRVO|d7= zfg-L1_0>TN$XhfV8^~^smbQ^l)bPe>ik(JYi2Htx-^kzNxO=1f_5Jg0P7xj*4a7dg zUI>ZcYX9NcHKl*Wj$N*2hmQCWNM1T$hb$wV}#QmkTV96$)sh zf^>17m`#{#KRlO@7SXXU}m?8G%hI;JL|s>R(e& zG&dsLdmkU;Bhmb0VqL_q)S#L}PTDI2(ZWDNB=-}?NG>msQWMS%5{tq>OlKRChJjJT1 zMLzwwq;B^Qc0RewB1(f4Mu5KiQ*ml*q0fowAimsQdR}RstH1AfAP^pH--lP!xN)H# zI#d9hTB|`GsZ>fnn8)XOmcJ`mBv2ZON5rdrW^~+e7oVu;V?%5fYzjNBvWp}YTswDw zZko>@htbg-sXO-BF`f_#>Aqs>jsrlkC{mMhrN(3c+FMnF%g#A<{ar;kUikQ%1Y*SG z$B-P7Kr)C?$YceF%|bQXmo9Vt^0e#IwWH@UvB&^9evX)HZHd)Q`e(6M{LjnsztU_eI}*p zxSnXp8F7#4iOdetnCSA&QlRujTxvRr2X&-865<{Dcyb3(bYm3F#j6LB>8YV3hrJiv z!DZ+}0^~lx{f3A`#_kS>w;$aG_lc`_p~CN*6QKhbnX4PtCZcz`3y`64KMMw;PqMXO z4vWtn{dpPaRn7HPk0H8dQ)x&~A(db50#dQ2OIn_l$FOsl=53STzkqD(J2cJ0h^!0L zNxu(F@RZmbUjQpwFgzBOQNQ=aA_)#UxBd5H@sTaT`1z|f7?73F<)Q52rtaV<@->ZW zsYU#7;qdXz{qDTPno`gd5sqFTD+`nvy!1_h-(g+nE;iJz|?iU3??RQ#Lw(tNSw*WAHGe_UhBakHQ zzat1|x7%b3wGu2%!!2B!&RHN(D&5_NI}cAWU%TB#mF%bw>Qp5RlLFUNMqS{?)xf(p zq0AH*Jh;riy>AXnQn5UapJ4%8&RJolu@GJ)!Bj#S?-;4X?tJ%~eTXu5%=!#~f{Eho z&*R+NCvfUMQ!1~vy+iQSE4VE@d$lYi>6y#n440=t)AXgHIn&i#MjQwlIdhpFubCMu zpx%@so=5}10gVTz8Gk-1&Rg%985FkgiiCJ70epiTR86NDB+}JPeV|Td^uj`JtV87@ zg)0o4f!V^V*Qc82XDWd2uKdw#d?i=A)zE_!&YG@XtIDH)9U4uAvt(7U)?*7>r~iQ; z+-PeI(1F7w3UPUZN>YGhUaI_VJQ0M};lyvhs`ZqBhWf|KAg>Lk<6nw-{BOl@V#-qc z*i5ZdfAtly9dgYQ)+M3AvS{L*2zz5yP<5IL=xdWE{!tm?w}dq4aMmQ#u`N^1?`;2- zwgqt#rfoZVRY1p)=+9Wg>%`A9@R zTP8P$A=_5XAQztV8n>!|t5~W(8us+N)T;kO@SYH7CycrHgFel(#FWmw1q~rKPcl zn}lyA`Xa6>MpDffQ9Wa$l<0xyyc%6hfBT$nWU`?Ur6p6b|A~w514St|th%R&%(t`M zphT8|svcEbuspYBe8wwZ?$=azi8qGJ*kMVE*Df3>rIlzipj3=8)F{sa1f?tko5N!> zaVK*N&7QPWQmmg(hH8~{%#WUwV)r_bDr|D}5MEesE zt<Kc921;w=e)N4AooACJKc|-zS*CC4JRRIhJ4PYU# z2J9_O2pgA%4Advzl8Q_@sSkHZ6g6i*PuDMiG(8CK)P`Hmv&A-MhX&EGlCN=VOO{{U zqJ#^iukP-0`;36jcyjOl9-XJX&ej$Aqm%vfy&9Z&lVWcdmqJYmYRT5?30kNC{OFAx zFM;!qLmSjVWh$cfut0mq>CooNa;O*ys@^ca2F%wFxX{TL;fdo4DdqGYlUe4BAOqtY zgq2XDSD1hpA-uInhh%gB#PK96@;JM%#BFeH`1;@hi|O?l**}LRNmHqY4T}d5gCiP% z#|&J1C5-Z9ArObRA(O-li<{V{Y3czNvRQwbXJ|xKfJL5ysb7&@!C8a zUZYEcg^D?wiXzu%vc@<(}KZE~9D_al&!~?VO2foRp$ME1EZ* z8PkZT#`F{TPPlKEa@;+_nv&eO9^CR&J>DYq7xLLfd+QSzEtQ9uVia^zPbQ2OU)Yc( zRGv?685aARWwbAR4@^-kxsQh; zwQM#h)n>_6kEK~e>PzBQyx5g2(oaZ*6E_W1ku6Y#uSNZ(Y_%2`7YKa#L06$|K~Ubk ziHuO&-U>_9Ccz}&dhpR@U?6(!Z(w3=*9dTbbD5!{5NC|ehz`4XFWn1RK<{##OhygB zQd+RAWDwmgy^FLfz&2pC4xe4O@KBg-weC!}+?z2tYV}wLRGl|=$Hi}elnh?F&N(h5 zsPL#wKjR)O(?O#BDG;%VG~s`N+Rp(gv9|!>74<>~1||D@lUuuZWGE;G)MrUJG;Qaa zl~54t*{&@;KH=_X$E@x4#sWDvB7%zOK${3%t6ig~iu$K%Df|vJV49u-;jg}DM_D^Q z|GjC3rM|yLkAumNhuX6eG`-Eo?BK?Wmw*D-FAC}fT`pj_>5-yg& zH}&-%9b8BtkHUvNUOMM8QndfGXJZKzp($o%E~9AtPYrg%;|?}nLMZay z7B^e7?Wq#rf$fH^5c>r}^5*HiX#ZB{;2bH#NnU@KJXnVMcG%HRijIrVxy-BY|2m^r zpGh?gczt~|Cp8ibWZh!{$Q$)yqQIB!o{mBYzd6=#MwwdbY#YcnoGj10;(9x6r#L*? zKL(T5CFr<}X-;pX%*~y6`1ZW1PlS$Og7q#lBP?t7(hhIHMDk6n4j8Vo*(9$-VUMgW zQ$2btsM@>m%DSwq(HbO_i9Durz9U=E+BK7lverMgW(tU6h|B_!?3J*ajSUOW`^~DV z$(LP7-2|2#kF8n^Z!KyfI|L|U*i^s(^;X&MDEy9L%H%IevNVw|Zsk-#A8ke@EQe|v zNQ{Wd%UhPO{7?O5pY`!obHCVz4}qV#9`Q#Rn8`=nFl+Cb2?8pK-_3kWByo~?s{MCPs+Ca`G^?3o4h{^V z8Cby9AJ)bcYGddp^V5i*kV*fG(>6`_UNu|;OEdzM^H-V8A0dg zwai}thG6j-Mz}6Z8?aNIkv=$XCz|z^$?JmS61^peF6*zq!HXB4K_FKT!Yz~_Hga1B z8~@&nIeD~?63i&l8>F)RqHG_g0IR0}DD1wu%&{^-$)9gs6mxHFy-X4G#=4WwK1(8b z*!<)NYCO}nPREubQY~`*Em8<0X>od@-9Fa;qPgE}l2B*&_C#`hGuv+Sc@FL;!_AdhIMh-yRmMDM zZ*Ijr56$W#!55Ty+&T}_UiTsd&?PD`pU+_w)IShH)N$d=)N{A`C!?nPU9iJVSRAxn z7=Z688ry3lma{-$qPMzk^wFlZjMG$r4qP!Z zMz$(iidkjC$k#v)`>uUx5JeLkJscw~WABsB>z@0 z$0pj&_b7lz47@vJUO=>ogR^WJ2?sd<$|w*UvnWHyW$7RJ{0mQv)i~6MT`L7u&E*fO zq8h2LAWa3y8WGb)h><+{#Cb2ZR?B2kI_jL~bhGwf3Bx#bQMU*6cfcwY0qTAw9S;4> z;_r@)LZXi-&k~$KZt%4pYh4Z5<5M)|mpm-pj2zWuIHKM%L5!;Cw(*72Wa%`*eaQY0 z+T=9G6J!y4mqCfO0Tc|0(kB@#A`D3%1E|mR1usGuHO~4p+YaBhde`^UOUorVmF%f) zIlx&Uq-RM0@$DaODn_fA!s#g!(t5}ztRNLoq@g#`dOMFMPeQrGYVbcTi2sjKsLgY}p_reZjURh=`_JJzUL92COylf-8-hSY# zBAs@Ye)Dk_tqXT2>7)u!O=U`C#EpPV>eT2#!MJ>YJ{p!Lu#pK-%%Dt_q6$jFT?Q{*WOHJPgGtjAX(TBL2r**_ zmn;8kt8>(Pw4td$l?&e1c z!-qPn5AKUsL&u8^VJPtDUSmE4P>4kN+OaGg3WeVN(%|^^nqxC=@tqIwsOMEC)LIUur%-?t&LB@Rvtqo|*F8Gv zbj?tTlilYv9c5FaGHtrlDk2=dv88EASyTgohAR_Rj zvQwJE*Ts$7zE*F072G-XctDN-A+(DNSBKqR$w>r?S;t#pBo6v=omKuV5i9gDFLCq{!>Fk zST56>tzF_pHLv?CkqhT@Mv>LS75_8cAaz3%fYyO>vFtamwPy1uew_Q)n_u*YiY^@Z z-yORc>lgA#-T~ODGMi>14)wDx?%dzNS!^8cA5=igm*R%hUUib#F~jQu!Kfh0o2gG> zs?9efHy0RJd;6-65KlbyvB{F3xd6te5S~*Yl~g{h9ZzId9y0HqBB<*13k#;UzTDrVM!5sb?K#%VYCX=*(G?dXw* z^nGXnNwj^utK9Z->22yvi|!fMb#wz2xQ_Oh%9>pKusx zNllrDCAoWNr5(NC7n%7@ADJo3g5p3!x#NF3B@BDsT5k6pj zIW_ChRE(Rb0u$Lwqb_7L9ejswQ@o`CukpQkvn@_@QHs`rJ`n2PcHX0*h9QDJ4;@>Y zRkczzAZA6+Ymmvp{05{&`!>1aOV-^$exu|}Dd@)O;O-L4@n&!RIPkg*ze=2Y4RoyQ zU@_jJ+2wb-xEa|)DITyk&Q)U+cQ`?}qH69S_(E<>z2zuU#ip5QV{v(zHc$z%(%riw zX%Ce(DnQ%N28PzWb|>PaYaC8;iVlx4T7^1Z(o()MLcs5chVQ*!SWTgXf!6)`t#Vu% zJgP;`^CtL<83cxJni%usP|gIm!FTphoK_LW!6`jR3~`QjCuLJyZLcd_lRH+PVS6)q zzFKqiq+Si*<+20pMAh0lq7)AAvyDJaSW;-Qybb2^#*={j$+f+*2;zq4uytPSrDqz$ zoLc*CTToqWsnMUL54@IPL|tp*>*(WAR^||_T1mcl{7y!4uC83M)yOsbQGjHzBm?hZ zcu>)<%fr7ISLea4^nc;ZEidT0`4H%DXaU{a*?D+B-%DAr1#J49?)g-QE2>f%qT~zi z05h8Q2t5_huK;&g%I1^ci6TXuwhQOdwUX>Dt|T-NMyk zlJl2iY0+u~j5Jmtq=F_Awkf;6 zws^l^9jl#lU6|s($+{#H1qGMIrV$5HE(D;QUxB9o7PO}nfHX-BxmzL)f3075Ic=0; z>mj-xQ`u!uN+&}rg-bzhe&zbR;+_j;^L=s@ zI1WWfD8sFfxM%RzDgX-kS;51oSz7XL%p*#!)w63~+QWzZVdfK;;sMN84hbXu2oAP* zwu_Lm;`BMhF1+>wJRM!er4JMSq7LMuuH+8T(RugvEY)S@=?Kuhd?Cuwvv~(wK0t9& z3>P~wZ}A$vllK;G7B-}q4iWvUg&xLD0B|>uF8?SaK=PB)3UvArYGev>_vlNZa?>{9 zQbr=l-#xpxdv_=*db!{0uM=vCq0=gADKkhb`90&VH@eve8G;*(& zd+}cX4oYR#(T~bY6r5OqyQlo~PeUyYnj&gX?$hVaM)y~;_p90&9iSKXoc;GhghMFH z1J;E9U0ALXA#)TqRj$Up^Itz@QF!2jhR1Mw$g+??`>|w^f$(m zg&F!L029VBVa`41Z8~)J$fz_>om6nprl`@zhqFiv%zXkJEj?6UIw&-}0vfCq{jY4O z7THF-7~h+hyTg+$+#OeLDAt|stPj^|z3$C78_!oQpjlan<-M_t%AQ`Ty}vnf=4)+n zD&YbcK=7PQPsZa+2T1BQdcZ0K*mEmx76>uCMuQ2rpi#gtRF1H|IO;}jW5jGDm!=z+ zWM9gnNt1C49)`M055<)dI;k*~?Xr>YeBQ~$#jxjD_M2=caj252+y? z>|4_vhIra+)~y(Sps*Z&+T4PohEybg-g4VYlk?o}-2HZB95|kQxEp=eFyTV|NX!Vo zTHC?p=#Lz_!RPZxZAde+>$H|88FrZj*lVP%o-E*4&v%K>>x0erwwdd39`g_;+ zMejTDGPh^l_eJTmaQ}7$toO1d$;5OY>!MQ4ytPgN=w*?S(+ zoqsaVFdn+%WW~53d{uDc<3PQYf{w6WLB3TpBEJ#g?~%^A$k4ip%aDd?#k{FWWJk$8 zE)h+3;2Z$Y zDfX{emJvzZ4FYMaX4PK6F=gasiJEV~Y3VW41uQo;sg4D15Ku)HDB12|t2qN8S z-1?lx2a_-xW*m=sE5JqFY~PpN%gpxoMQ!(%pWavd_4mrB+&NdHvuLHWI(XBxf&x&2 z(0*Mgg{{5m;2eZY*FfBU@YymOG5*8JzGm-YBI5wvj3_v-Hw#%{t7xr&_Uv1hx7(>H zB6J`k4uix2;<1ppNvGI4`*Bu(6wh4a-a?at0!)M=sfpwIg*;Yz^^8kDt1wnLOqANT z8?JLt_Oaaq-Z^D2g~BSVfv$s35J00kh``9>I^7k$pAhxA?Qz$GC37n3S0jAE&&)AKVcVqBw zN#z43Z8r5KLxk%NlG4gckUj04h{_c_VZ^zeXZ|BOTgq-4~q_n-7c98v&XaO_Y*DEZ{fPY`f!!+nMfA9(0 z8;JTdBaM2x>eFjfA~zPn^QJEx81O#s$JcZn5Wf@UqNH#&mzmym`R6YYQ;Whmc4H%d z9um{kJ_}`69{Va-J^PPqdjS(LhhdWch8hRj^NL0pd-D0{%I99;hvHG;3 zc?Ru_A1fIm#|yj+AY%d_%?V0w4H05cYm5rHt0O>EB-kKVevc*YR)j>Cn9v6C7=N8V zv}PQR{rzW-mF;h}LDXJ1eM&H8ZdnjZ{-3<45eGs8YJx#R1W0Ic`G>^<2rSL2>vUyJ zAzv|Hf3zT(ygn+Qd$q5}@4jbWHz`%+GP3bN{LX;60opP@zif_;4O#BjTsgaMVo2Ux zMxcIplVReR9ES$V*5W3ddO4O zMwTdal)}Iq+)Z&!miU`Q1&pi|s1#Bwk2Sl_x?iZrY-Pr4?@x*E!%vc&-Cs??tl%6Jf)q5&`_3Xy9o7;Kf#CnSZ` zTy~wpaOEct5gyN%ILBy_hEK0UwtSCoG53{CSSowTYw+`aDJli*7kw821He$+-^~gY z5{-8t@1yRzW4dzbyBr0Bd}OuvuMpaKdJIjF*or(08N7fXIO8a~^Xm`4W$l8w**I-b zWAWz@e9&af2sbOH>e(!5MO=T<-Wb8MSx)@N>|?c!?)USZ=Jy>sz%<>3=bG=_)6rpH z_k!&SO!pkyi%(OkFcUDeu2^M(XrhJi%ie-9!a%M%^jrU*j}tf95OB$_d|N_UI&W^Z z7YzlLa6DxxK1iO#TD&Km!L8iJ0J0MOIe5YqXcz{WW5oo1qu6m$lTcteEhXg4wL>in zwk*Bs?Z-DZ9Kd%`mY&;3$ngqcKN~q_hg2gyEex*N>c6-qvMRYP=sSCE*5Rnd!yc(H zrJ6nBA7i`kl3|_pzwUpWZ`Tp(zw3sR&_aPx-+C|l!5Xd~g!n92CXaH;WmhKK11ZMz z>hhBzwbQ|om+0FIP^!Ddw$$EtSjv8+L**7OOz(=Xd*jNyURBqPS21NF{#4Ao0&Xg^ zkeL9)8bdXiVoGCF)I6_8h;M0|wgb^7Vo-s}8vX3b=-sRudr`7XW-cJOw+?PV|jGEC$tw^ulu_bM$MJ; z9k+MIw;wSFP$%g)d)D1)-CEVHzUH8rFHBJy)_x5W^_jYyhLR!ZU_^q#t%XZe48vue zJBo8b%|%2)43o`H(+sl4>S^E4?Y$Y=_3jaX#a&(b0 z-BKoqI5f<2#DRk{Qnf%WbxkbX^mJm?BXkrgF13UGbNOE7!L_RKSB* zhmjOy&-Jabyz}k05YMen8{2~!omZ~l*DPmtYUKW|8vsR#AetdO9N!~CVCY0X|2j|0 z-73|WZ((oo88&6skjJCOVULmqjkvs{X=S}zeP`|2{GoW|#wem>j_kNk%3#lQD%oQ8 z<57Uh&3|RiyKHey^99}6gNK9%xI<|ITalO^xAG-QbZ!lzXZ#z3B`O>3I0rb@`z0}C z*pf4<`?{$^a-sqs9jG~y>fsbPFPbt%?ng{|^rS;|)q#dGA3bM)=5>x`JZmA$=~=e5 zXycRKSpt4F-$z){1O$Lpln~pmgdzUKfL=9zLKIS7l z`j=<=ny2M-`gB=_Eic6{FZswd_fSYkr}orJU!^ZqJx@v=TNp2&!7%3O0`D+pRn+ou z>3B7Kk~dVNW=|PZ6eo`3BlXQ*D14}P{EU96Y|V~W9Z6IEeyR!q9d1>osSQ1-R9|4T z%2&NI9Rfwlwb!LlPFl%Ct{KbBvU5SZHW(d{g7#uga9&yyRpP%@;kPwTpG~aP<9S~U zFtdjH_hzT;e!2~F7|KMoI%f=s7ZYYFemD{8yFJv9dvZVLd$MwSO3TJ9%TCKfhIZoe z!2D4e)W5MLxx4^e_yC{KlP(7cdgO8XLQAnBpC{ZXPJ~fJn&{i*qWsQe6GG&8BMyD3 zlvM7kXW9`;>0Qk>8?IzNJig@=)?`iLrvHN0>C}E&$PLuazptx=6&*A#s?5dOcs+T@ zUU&V=RfYSRo^Y6r_QWwBXI#Fi)j`!h!&7}__{Zzv21@Sy6izH zte2x6A~icfQQ|P_CZ>r<8&=5UTGCpMg3upx`c1$#ZMulUiy3pGK!Hm)rem=UZh?8s zjcaIZ2&NPnOH++JE6+N3p=0f64t+4!Jd3Wa9J}36r9pkw3E33#!GQ&Ed=BT=J*P=|omF*07ip>9uoDr*`LmAYUNyi$7O)BWc+li|gRt?fuga%sNuBmIQ#LXls<>6>y_`En=zgT* zqng&P&UaxDOum~RCNQ~4HZF|^R5|vSrwpWYDJ)0(#{>7NdEKb7JXjt1%9lxI^xHA1 zX6t%Z3uJ_ZT&*|{<`U#^OX6SK!#Ka`kZt|_y>BT$PR_z{w#5iT`^!3JT%{(RS5|8q z&6~a9ya(42yJ_!TEqr;=kz(-e?w_#-=o?1`s>>D&FA~M-ltlo)n1%8p}50-Li7D!f~{{(X?AOZ(P}b+ehK(G$mm}r56}QZoeIW!4 z935K3GY$1C)N9w&JkP5m=gcS9?M9U*9}`)mH}V&sLo1`|Tt4!lXYJoBC5V5>-q~$W zR!Qc;I1+K(p?R#1{ZNwHlmP^xSr!PhUUzvGrgcziaGqzT90J+8Z5Jo8%5d{dI3r*~ zxnowNd#@|IK1K;yT^Af|;B=Ch$t%PVb_S0vU1%dKT+z(WSkX4vLXuySW1agL>(uz< z{8|r(!(Kx@3UYPYPG9yXJozaZF~rMh@P_};E;5dQ|~^2*qn4b!nH) z@dP682XD1|)1{iVE2fodT6z3~=;jX+2buLk+h_nSH-oH&`mnc*IA#=Bq#aSbjInoY zY~2D@nb!=@w^SjuD?Hm*CS3+JyV@`t2wEkT=vAa$&VNQto&~eW3zet4ZaIu#P&KZO zB$56u6e;RADOLdtarL*QGr~pGJSt~_(kh>IT;8-P*$RHa3-P9Tn1FLhW(n#>`4xx? zr-;|lNwglxqh|~&CNtgH%Q9qf_k{e`lp{gicN40q-JeJDG-M`w-p~}Q+Op4V&Gf4D zST(9v>e^n^`SYx;jxF!Hghc(o+=O(3>o~lL+2-(Wx@_t08H_ot6eDgb(Tw{p*3Oo8 zpgs7)ak?i!YD5x1=CnF{Xz@*Kp@!fJhBsb)K*hmHDP5|m3xzO@kwa}@2M24lGgDwz zmzxbn7Y_S9M=yo2e1#fh0`ngYm-)tJ`LaKln4urz~Hego4J@)a2m zX3MIlEbm%>#ZpFtk}a-+uS^cDK2m_m zsw9TImDBO6UFI0smICacJ(cz<*Wv#JQuuFSOmzphvXtA> zgq9`2)6K6~r*_ith?F!txs)P&h1fKp$_-cyJ;HA`lADXGs^(Ar0mq8mj#5Fdp|t(0 zHCMYX0~Qeu_Jf%eFs0vdU}vKf|eoNj=&xdp}6DZ zXECus+qQjn#A8OvXNK5|J5d&r-0_6d;F66Ucpsoms>RzNrKAngZS0eL9fG`7Z=Xa$_TUPhmJ>nM(*%}v^Q z_Nr;i<#LGKu?FF=ecu&>;daBHTAPTgano`zF4>U0iONvcuoi?j#PfOGQ7+KE zv$3>Oq-f&je@+(K|Mn;F(=A;FyO^kg1G#?RDA7nPniNi1OQ&(?ARD3O=*dg~6W9#} zQWkyD$kQ+vhrk`CQKP9R)#_H&BKcmQOzne)*XtZiPW-d=L^GK}YjrOweESO7-)XL1 zPB%!ncg=GhamIU{W*U|dc{6}6JV0CMEPtl9$wqOzfcTxyzmP7rt8M1F7KA*q0qM8u z>^P32C8ZfYqG;6q$QcwEt+_lj(?B9a6fJ{JrkhlYhny|r`8gBC;mizY?{e(ZmB%fs zL(C0t^u^pn-Hz|!t9GSzwzo`AA^MZG;>vHZUY*JRgFF)Rz^NSUgT4QXP}s;aQ=*JL z*1asODAoz1{^FQkaSI-F;L|`G^fcwvy1Gm^)~{p%8B3U_e`)|T7@3vU8VwL~Xl!lM zEd+@kU(fIP{BCG}N8sBrnLtHM*=<`{& zWEj6%MNhv`=JTF#_1qFWs84DLE}7V8fWVk(7MViQQjdbMh%0_In^gR_k{VH!2^FDe zlY8@!ly15*7tm7fdXz3jx^HH+;=1t0@)nP%7sMn@h%IX>l7{?R*vjs$ySQvq9FN+; z#kB;u7i4^qXgki<_)Ivh0CF&;c?~pL7}`o6e98FZvHCjhndGo*wb-}rLs-6HtDABy zBxq$ftST-nXRU%!xi3;#A*G4T+FTkw9SS2R$swz;Z+x)#tKP}Olm?u5icRgT!!o22 zQO-&pI3X959&UYNIR=g?uf;+=s zV790%jYa!AUB@P7^AJf1j|bi3f39_W7u zi{d{%rOsDc|Q)u*KmT_7o>cK$o#J%#t zxtv;j<`vt9B|T^-=k0GucqHY5uGsC+S`8SLH-ip08gKrgHT1dKP&b;x`fKWtJUf!$ z2o-0GO|p3{Z=DAPsL3|#+Gx4vidKluXgT~X3L}XN5!G=S7h2bVP}tph`}0<@Xjx4^ zR#VH!2Hwrjf{DfB>Pn!Bd;y>^eG--$7go)Fd6d#L-Z%@Kj+%7f@lvQ_ZC-M(rXc}e zmEKh=A6Gf$OMDCVKgaM$|NiLc8H43CWh|&_1%6K!&U4N>9toypP;Ph~OdemcG~BVk z-Y>Bew>rJsYqtUEp|7^vU-De6z393+1h^mgahc=QUtSu_<0*uqBm!y3xFER zw9B4{cnqsE-g+F?=eZ^aq@=7|BMkdPZI7P>OCf@I!3%{&U0T2;pcp3ZTZfA&;im#T zyjTOhw7GYOJT7^*r5kfGY*vT3&WIHTJX!_k-2b`$m2Euw^V{Y4Nqa979{a_|0%>P3yDSSl!TjdC%G$+wb{^yY@Ka<(hn7hzJ~G#-J=3w5XZ< z=}*dMP*62&pSZMY{G(@|`8Dp^IE7x9JQFchFI~)b)EZ!A`Ww!rq0;v{kTCV9-gkcz0_LN9$K9XY)B)|3rQ%}*gyw%lz5~Vn*P!_h@l*!)t`Jd*sS1iVFf)z zsXGq88lofY)O2fNeq7jFIw9QnJNQGukm3=N4=&du{QoCLCs=hpc6Ar}%F=A$K~z z`6OQ8D@ZY;avs@@dT(bY;5Hjc&ZZDQ@MEaxEZV6dN*h-o9`XKpyO4Nw=nX40$QR1A z6QgPuPOb-^W&1OZ0J1*&3HiL;-r08FZ#r}kN=p{NrB)M7u$V>1=8s`l{+foqf)(*Y zJ&Q5+ISDVgQiO3CdbAK*Q8>=()OyLX9^2D}w+`lN6`Q3s>U9_aNSjmAh0S>Y77gHd zf3LZ~UCa)$GiSfEA>=zvBJ@?+{9HmXQC=mJnJLLP3l=cVXiuP9+0)QfRq)^9%| zTuv;c@8!(avF(iG<7-z=(#bxOcOybcTio*_(;J}E$AfODbp04*p3!=vNp^NH&-lys&k2Q!m+7LGYl<}V8UT7 znEN{P=pt}rcsk+w7f|Yhm&+Q7eJ0r*j{MQBwr_2E!RguX9)VH4vuHX|H?YG;Cz`NU z|L2cpTi?9H^{U$5%F;z%T}h(r*1?JjDm+>nnSDk((vnGTnoG&`?qQdiB*M zdz9RJ#f><3&AyCZ|KL)ku>u>}JW>8$RY}F$-o)yO+1V&Rn}t~EdKOjc=VYx%Yua@~ zM{&sxkYvPe9ch}@mi%^_d45!_L<9By~+e{SYOZ*fae z`aTuEJq`Y6zQ+4?ItIF!zO^0bdD!&}5>KHGQ1eGmq1@;7YBBYC;b~ThwUsSK=ucnPuOVqA)4dapPq;m<=+ zpxQySY-NFXN^;PkJosu0ivI?wN~?MFG_28e{L)KKt2fDqf#Urn@px900Ocu0jFOpD zP*V_J_cq)JS8!4oBRYr{bhFHQ@(zPx;IEjC_M<%*L1+A8C&rm5f(;KUpCe;NXdCs> z^zUWh`tmzu=LmD4Yi}0_V`X(KYB-(@x^ZkhS_CNkv$wfJO<_1)zUw~ZRCn1--#Z<^ zLOn@;Td?=Y@ErVU=~9MhiZs+i;c)-=|qn>E5q>m2dCfT}Xe&=5|lUPkEWPKaTAm>L=|6^$V-`f(z&B!??FH zQQmGG@}m-wM$vIT$=lAdp)Kv-#G+;MZ;Ocg8_rb$&>Br~SVQ1gMxk%z13Y5txikKu zteQja*=IhFD>9qygp#$O$#Fc3&=gikeW&*28_gvWGRr*7T{ALUrAx5yjLG@8ZZ1s)&)3k%8hUK`6DJ(_^J-P> zGEh+z2-P#`eO&$LO-1?rsFUa#S?Mv&K{5C#Pw1m^V%@qx#L%=oN~p4UK)$Na2h%n> z_vI%JcURA$qR`&imNHUCzXh01GBtsE+G>p%8T=lTu4Y~wBL8Wd>f|>b{ze(fG+r8` zuWq@t8~)52wog*cF^N6Spkymde-)>2;1Z)wUm-*$rfG0tLpS;Hn9}6dXeW=1q@P zVu5uXw?A(o(Tn-OXVu>YVv_$lu7}-YIV)-#{L)%f-JN2{Lew9gp1do8fg|qL<>}pl z=a_izUw}f-mE45KZ0Olj6V_nKGAOkXTb|8~aoL0`f9^BqN|m@2*V5Mh_ib9u#(f<_Vu-(hsdv4p7gJ`lG4(t^Zb*SGKiKjRr4JXL02-zRhdV>I7)82?%ylz zif?gr7p)*!idx&!k93y(HfYfrC@@VXU{MtKqfRIU{Ee(^J>V(ym%_xsm15@Mr*$vb zYAtGE{$f_`Kf&+Ttj#93Q-k^$_x;D* zsZk5ZJU2nNfBpQNx|*K!*dq&sW=?r!bF8ZPhOXDlW0!XD9gt+Ueb;sS$ja~KyZrvy zH-_`L$~e9c(Ztk<)Cv5_IXA2|@?#P&A;%K$(0jj(`ij{3NPyD0)aOm5ICl`w|1zzn zf6Dkn`Fww{N*6s0u@uJjraeOhPyACC4>wR&4cPFhW!@K@cz}d&tyf zW>b;u*KJs;&^t}z}TC|50eDd6A@$Ybq z--|LrYItzN&p%BDS~d;vSZggm!JMI=%mVL<@}&csncYek zj6aW1TuAqQhwtI@1@1BQu>JBHk})%)y9`1FXj4f_a$)`bc-d(K^vpI~pTTpQ-)>z5 zfU2?VUtHAP_?XeIX4xz^>3~PlkovB3Z&VYrh||Ag<3GXg;C$4t29-~NL%oGtkGK^U zxUIG;8|E5039%It=$$eI#^qeKZQmt)_BaYt5@xSnq4Zpgc7X&pnldLxtp7FskwuXn z%Jlmb{JhJdfh?OrT=;D}y4mKl~*s zAr{?lz<+tlGIA+tRQh+{Ns%$PqDpxD6yv<&NCNJvLOTly~{XRhv_iMw$30h7z%lm2dGq|Q_xH5l! z-@6=Qd`Wj69jMB+$M3~~?ynb2LFnK!c6;OM0VskGP>etLXjhj1c<}sSN{|0|c7L%Q z0O4Cg2t?aQMi=E5uI81xdVjtxS-d}temyj+qw{5Rz;ExTRC&jc3rw};qF84<@q+c& z6I)n#LZDSe0-QqMofXSiy*`t%5CWhMVfJzIo2ssdE>->>Z5yy1l^YBx3eoOWDS1|b z-ySc2xct67i-^cW5rf!M=*)K=hzjHOoH|LtM36hzdBGbhVzk^A&T(tEFU`v@4WI*b*?^z8V6*wQET*d8KAHPU{zCB` zzA&a#r_zDm)fsYCSLpT{!ddZ2OG(jNw0I=BWy+tXME;wqmxLrsWNOl-uISpf!2NsI z#-!2`Zq|{q;BJpCAGa_lZ@Tyg?c+3Vq*;TpS13NOaw)_H_Ib`>#@qNweZGgzfEAyXNP01 zhPW0#<#)BE3=r285MG$=idhwmwjY(?LqC}{n(BMaeJV8T7h~}&wY!%sn-C+L@lG8=X zb<>kY^2A~f7#Unz+@BQMj1d^?Jxm;`L7Vj>^LCNl_?F2Ug|8 z>9+;U`~0fnv*`(nbe8puZQJbD{zMGRk%C1)O8dR;DSQw^{=1eQ-x7B{|SB1T@m`!{)00RDM(g7B87HprPR=L)eQY>n`!jyc zPwJ+Tu48)^D|0txq zFYF@YnRzCVDnad*0yY2Du7uNvY^6d!1`TTCT(C_BkP$F6=kMO_H|(#|p<{pFN41q- z6aujZLNnGKM-1`Gl&6&-tkUk&Js<)?AoU`#fW$HZV)fUj=sZTKu>Dh%r6}^LqF7Dn zw*Ua-J#?;f`|19Wsy&XubJZ>(09Txk)|7qJ5E_mm7{`(vLSK*X{{A?1+!BsOON|C~ zT4ue7xV_(5bfkjY>TlY(CSt#L1G3y(sYjq36DH#9y7Ryv)J6(zVS%U}|727LkBOvl zk}e*$O+iL!hl2YEs9jyhfxod?_L3d#2o3sWN5Trw2VuEf`IvSZHFRgVmHz>=^t#fx zn{_lC4 zOBGjqNViewAB3%~AxD8z$iuv1ez*_5$D~u64o|#X>t9}e_L`bIJ?m>&DfEruM3WmcH~gJ@lrh= z^FAl7yRE%p>$E|`?=sIxouN81#pb*qHt@F0Yhb;%r@whOx!Pr7h(uj=WERV+w=I`D zS|{dY7Bgcwbw+wxP!e!5wO&S#PZd1v?X^NkDhmUrg>GEmkC-_`$#ChkDD0_=s|L$O z0@^?ujE~<|&6D2c0|L<6UdNj3+s z*%Bwb4#@T7kZ%qfLwPf&;-0_wS&$$^1R6CP@K1CS(s88kdn{->Mb9Ueu%1A~CUOdr z$TS0SkQR1FPFt2PG{pw+z{!q>Q>NQ!y{;^6V7cW;PXp3O#()++hV5SB5v*S?!CiUT zQ~SdV)z1jdsQ9m91K5%WjgXARkm7mq)e!!9pNW5B zi|ripIhV4{%$XoJ9ZaMJe}hfzdy{>sWP2yZZozd6oyP-n5o7=5kmej}Blxe>^~P)F zLl7o2VJl)jZ2isOUxI<$_}nBo{Sga&>wZ+;{ff29*5U&goY}X=em=1192n>9B5?wS zIt05MGdOg-?D6J0bX$MkKK%28WeL*XJ94qocW`P{h6w~xzy=ZSMg}G>2zN_`D_Czt zqjXAmh}ocJs7yrky|<L0Xy?9Q&J?k2=MqmQdrit>8Fh?J=zS*fj6*nAOyy z5;*Dl7m0b{NSd;_6s9^fo(fzWs~GgqhwuQ=E^9chjn)tzIiN~+)|EgzpYX)b#MWU= zaEe247y|OI?gyNbW>ADA44-Pzh~}< zymvb`(joE6+IEt~0L@1)BGbFeBrn7xC zCxDiwtg5*2WtWec^r7ZK0j4drgtu=l>x1-Uls2gXbc*OEbrem=`(J}G3ruowb=Xa9 zOLYO;_O|_Z=KlT(3gpiGM?X>)scQAHQS<^Yx&;ZM%?M|IZmoo*iCvIb9T_`aLTvum zf*=5f@}iontuaab4!F2)7c4e%ANndzIR zB?gTK>?Utz^;pxEZIn(nr2^A<%?FXe#yy|?*{>1xZ$Z6&Gh+c`bb$@B3j@E{C1ejY zVGRZ|k8^VwB(snQzzcNRUV4Gsomld(aDleuv^OPJH+-~f*fMf-2fkMheY71ozvv-J z9yuXUvpw6oi`>$melJ^&j_vHvg>uSF{IY2dZkji2%}u(blo5=6>B~cJ{w~LYjvd}# zzy|7c8YFl4J#xjOwTZsFk%PQnL{90U{Dia_rlqLJtlCQhjhT9GoL&15&Hp9%5M?cT z%Yu!Fb_7>!iw_CL%`h2996t&1_Sv|~Gypkyexi%p9{(i zCV4?mcT3J3+yN-4ry%n1+(MIyffesqKz=de;}o;gG;@VBrGbKRe5jWsAK_bfS6ITJ z)K-5ok6~Ujp`Mrmg@RUQ!L8hEW%uIfwBD*_YtOaMzHwm7`Dp_f< zj@SsUttQg2@}{waIHQD==s3^&L2}HJrsiTHT}VC3>lq9bvE^YB2$XJwh`E=a=llvO z$kHkyMdtQ3CIqgtoEIJ%7C%&Afp1tpLX+&kRcJ^#K zF+6k`NT!CrWPS$&u%+hr7U(b3D~iBS};%EG5Q7{H`Xg^%Pk5@f)y_;UahP7<%Qy zfB+=LjRV5-!CLz?@0-P?paFp#rKC01(T{bR^DYiNkBjr#?+%|{E}0!$qkMs@QkLNP z^~)LkE4uS&vkNxEpGA#7I^uVOZgf03XS13;1Gp-ccII<0)VXyOtItds{xW`mKtF&< zYyh^vk~2$WLtDC$VI!RTGHP9%_rcD3m!5URy`YLZYOw%tVEGp?(L#gBL>`9&*M(uM z;o|S}Tc|OU?7*_KxS?;QrF+F?hg{hHkpO8eEbBkO(brXq1IvT1;7{nqx<*v@YlWfL z6`h)O;gQPj6#PaBRcqTy+n%BSOT#R2Ji7QQAx4(01eQ7$w~< zZLec@Jy8PoIHT(IS*6!SNI7fR^2>9Xhg#E3)kSW(?`nm9F-47!!y_1%j_$A~vMziJ zO@BCB=!9(Ts3eD6vP+#gWfH9uXEwxWK7Py^w+{0tM4c4hxCxsnN|n;a5&jp>fX zh!Y@WyJ_61*43RtppsD!v?SG*x~w-#%d=L9e+NwCD}fg-B#J^3^H}CEz%-DsT+}`= zYupr&>wFbzt-!jW+N4`dy6YqI;R~E<-0C@XTT{k^X=q|iA<2hodf9Nm!3w4 zqYe>@<(j`XAWRaI>r+(fd?G$)--A{Q>WyctbIhh>`s%T6gFr>=u#t9&^V2Ct-$a$8 zb>Tv~%e3Sd0D*I=D)c+pVxTFol(ZO>Z`sGFVkZkN9u%_rD74oy^oOpC{W)P?T;Q-Q zsJ9m9sm4$ttC(PTYrkAVVRT>vZ;GbWFy4Fy4=}7`ef*>~Qp15i)heq(`q0Cf}3mx@wzj46HZ+yOerD#8{FN#;2wFXUu!iQx7nx81rh3=cY zTX(l~k<{5Wsoyo+!zUJZ0_gY^g##!VA)eb zVuun_C3ZoJCJpsn@~l+hS4!$<2f;KfWM4c5eIXnF zwkwJSwr3G{bfJWq8~RHy0o)zr#F0Z#D+~(Vh=Stq$4taIs}$KxT9cY*DOH;DOSoC= zZzFe8miJAOJ?Q}}-?IR^HE!p8q2ZhQC!R`X-5)Jk-)kPOe{RCR3)A3bBk+cdGwYcS z8?;vv>0~Qo1fjgXPnY<&0g2b1E@Thu()jG%5GiZ7EAEhN^02w@{}fk*(UVx+lqxr& z<_!T3UhNL1(ntrB;6Xh&N--z!;_)bSG>iPnZUMaTHrzU#BZ$~Z|JDN}KBlQcPG$uR zjDRrQBkXAsX4+1YNwqTlKWoZ-^w$2U0+up8_h)VX#45{38Kk7=D6cO*8xJs%99!%u zkKk$haTH~kx?qP``sgYDopih?8veOn+ZsqWDVPiVvn#;%3!ovmosBwm4UI+cP=$p( zdrA_>NPbOB5Rzc%flimxD=d7FqXwX=_B;uLKPB8Lv^g455#gd&!5l*eJ6^ciAb5g9 z+~dip`HE&5EsfJe-gH<|wk2VVp|g&4hju}9_W64Np+w|8LemILw@RzIvt6~SllQ$# z+{JKsp*@*!&qrN|pW$PYjidngMC1LDM2>$6SZ+GxN%e&Xj*Xv?r|l#TFSJ8{Xp0IW zmzF0qbD1n$!W{HL6r_sSlFk~fNU1=H(ajDyCEROfL{IOp@YV3H zy|Z@l{yO|t`}W}Tod8%>1#3n?u5<4fdU^^f)!(w=7`G1WB68^U6572cmpS!4@p*Y3 z5Dq)FPOQ~eDwP9J-!vPsv?za~NT_W9h6rQzKsSTBN6!x%NYCRp8?(ThpbA0jWu$$N^RQ)6z^!!a?c=!&Or4#2Ws8P^a&cT#|8_s!V)^Cl^WZXQY!BcR<~!q2G%#u@poBsJ2;PpHSSsTw9+(hf-^Pi!T2R)ZUOG&cOXovVQezAIr1Kb1y# zGi>Oc^sH+B&8Vit8iz(^aB#>J#@H9i;LvssE9;xs7wI-~@4akQWK1>^7vK?5!-$Wr z(B{WxnvhmqxE&c*_qt#UoyGwcu%FTk)ef?FIN#8(B70? zXw?mLAUk_k2d6z=ja^ufRzldCNJI1B9I%&A=qebw$+dd^a8i8>pNCr1F+=&q)MJg@ zuuD@-O&{>qta{$;df<$VZyC2TpdkiRxS8!oEeKRwc|v-SdDacQAnG`Hzp-;!q=SKi z%sLQ>xxlSo{vmrod9zUxFS(lA$vjU{_Z0peAO#&zT*qfvZ&}%duZxj^3v|nlBHu~s ziidx^2P#9m8_59}5cPqG9)p^*stn9qD|tHsthcUJa?snX&zoE&sE({|8v!*}hpRy9 zYTc-Mv>HUc=>buQm`jV)N<6gK{dCyi41&LbHY-fFG+D@&;n@%a$PK2)DRRQ&Uw5@C z96Mi;IF?;)kB04Yf~?#dgFt|#EoKKhLwBPorXx$^WzZV$fw@oqA;>PG-zNdA(MhvN z#=uw+bwg8-+$AurY z=-WLF-nG|48`~eX9LOz{Kcg)6?z;ectY7-#1QwCBC%{Y?EHlks9oqdSScnLiimX5g zEAv<-#Qx4G^<0!$knjIs=^HZuQ!U33mb;>Cal+&JhCzH7Y1ol%os7o83aTaJpkv)O zv0%MC9Ak7`0Vybmzjwfv_G4J!b?pJ2k);shWEu=)iMzy}$@LJ{hevZ&8OT2uDsw^+Z`J9-MH zn^@iGMAIbXJvs>voJAdr$y7^f?^~#GNFAOK3bvk11KFj5_~Y;XFs4ee^GY zqQ5u?w9Bgx*6izILND;`z+B3&g8J!r8?-B!cGYa}BwbK(k5w%M(gBw2yiD~hAkL5x zGv|aw5i~REdj&!TSE#gG&g4WAoF+>TXTF9 zyh*wHhFAC!LCo=mr{RIry8>~k%wYtRXwyZ`^V(BEX#1#3dQCa!u}R^=AU}moVbLG| zv2YP;Ya>$1(hb|czAtjFGSmy>@cV-oYqSeBQX=7V4zTwTdQFE3P(q<2rzm3b6=`S6 zgrESF)F=!X@~Gq`Ss#Tw1ne%l2?5>yxR0fe70$xpU`fjZ>x4WONuz8hp0{Z}$84nF&D?F#ZF zbpGa$!}4hQUC*6h6QxzuSrbLeQTc%b$QN?U8C!o~Ar8_&67#W}22X>SDZaD0bG>@W zmr-7FYsq~!IN919{;T1!^_-fLY6qDteV;*t(!E?86<>vu&iXZ=pv#Im%sh2eL+ zIPo8!$Y{PnK+6TUC@KE5XszY$G7v1ipEuOU zzV{&yiYL@6z2JH?e}3SpfS#U^;hfu7SFCQ9a@)kn>8a~(n&v%9?SIr%5)^USjH^J%o>W_!?Ly&HlX{$jOC!o*6E64Lj2HP~SK8o9PHO8d) z@=&@$Pv)z%UQ>WSj9#e0Qo`Mvg`*kQ6-$i4Ki*A644iI3aO9AF@}xjngLme}Z~ga| zj%VBVRcgbk~ac0Nxq2ZQR5`iqfFNhE1;~ng{+_}!Zle=y{^(sdJLZmF|a0W zLS;wbeetvi-Te7&+K#ip8nk{FDwAi2xa6!ny1V}Ss5!<)>&4gW^$sqE|32os{K~iO z$@k`QJjds|u>OJ?z&2w5;q{k1Mh#R4Ek4YJ?1ZcF_~3^Qr+dYfQeW)}5klp8qHerxNHyf4b7FQ%d}AKq%}MRbiX$^@L1V&!)s zIeB}>i3^LMJ+x4@+PfclrRM_tndAM`{r&Ohd-wb9`TBdB-}~dz_o4gi_%O#?_j`YP z)2AL+kIL`xxd=(f&~nZs@z}F|TMcH&`bUbXjpYTuP^yT?Kg-MkRuqV^h0$mwdol(q zf$>PvDgm!B!9KMy_C3ukc_b!WEeg*(G4;j+q!YK3PK%M%)eu3Sdi?e(8UDolEGIrx zJkO3I>Rqtyt+Cd$e2D(F{JqHkdi{O${qcNuJIzn~_3P62L;QQNiS~T$=@(Fs+6YRV z41woU9$hgRqF+2#3#4_^>m$ zGO`j>dePYB>W!szqfcWR@1nh(Hoqmi`_5&z^P|5);5&sQ#RNQ1`m$X%W_O{~rN^SXGx+?G6z4p=M*Hz-i_ z*Zt@l)yn=GX2_!=OuIXxR`ZuPqe!3LDsd&Q@lzuo7u$nr3-`ic z!8>d65Ht2`1{18(Z7G9zmKGSBE5NmP^q!n4q$e9NfX5T<(2l$PJ@6g+eTl#3d*u6d zoAUj9|L1f6`;)(M`{aJ@DSyq8Mi>W{ALO@=+}BLaME~NUo6d0p9nKo6nO>BxDxKvE zUS_A~C?By@Im>e-%mG_;PS3)&# zw%+o(nxVNg&m{cJ>~bE(zO$Fjkjk=If{#oyoh%<4Q&>m;OGRj{L9}26^d1Fp+CcBG z(@SKmo#7U7E^&9U>d*9RMBpZW$0tI2+6xAsb5OM`l?p$T6N>%FH}TOirY( zTpnasjs83I@#VYIefH_EUtK<*O@`EZ-(p(b7lkj&+uk(3wM*CjdV+b|gySL_M+rEY zizmW7UP&|6NYg2HVTdwmACWBYWt}l++u!XT zAv}s$@nk+n==t8ES@?c0I6xV5%GiY&2|?AUg8 z(8jin#*G>~|H;f;*PP7ZoXjV9j~=|wTI+Yq%R_RuTzn;X`L8$7EwqPBnxhKZ0j-ufVB)k_O_^;6zC zGr`MXkHQN3KbO8OO5H#RgMK1qk{NBo<+1X6 zb~Y#@(Qh(i1XssxjrGR`{e-A-P^XS?Z^nP<8Z zN6)e|#0_+!n4qKy7haB8TXRwlWa?}bdC2@$%O?19tF^KR6EH44kiyJN^jFf@#b4RB z(Le0+jCP^iC73+~6)Cbbshy#ptD@+9T~K)}c}IHALvm*ErpHj!dMD6x)`Q(C-~+NV z@fJz*zlZZ754><(`pB2@Y-zF&rkr$(qCJrb^g20ZDGy4OY80f`iRK?K)t};kkH`b0 z%!c3Ez`g^8uj$m7S51?B#`Wa%q73hR-+qM{Bv_pML1B`GO|e-b-c6@C{?k^AN!tx@wci z1BQ|KVcZZZLw2zjjT%<(W`&dbGw#EGjcH`ihl$co!w-?POjRJBpLJRi(F3eZiX?yx zL=#@j^?H>nI@JpT7pejA0v+I@KC4V(-{P=L^80GC#S=emIuNoMkw|E!`8ilebuQm| zs;k-rDpb;xb>xz^4HkdRH+2Q;_iviOa{HNCPW-7TKr83Ei>E#I1pY02GN((USfp!T zj#wj5m?MD)=vzYFbb*?=JH_argZ=wy*`K5=A;OcK!NVNdLOeWk$o?l|D`;52EZa(~ zVx0Ba!JRfhJYG)mXiq!~DHXr>S6Z}`=V%(RH2&J`Y?u`C>r&%=B?By9LzgT4tr=!m z3C-6RpN(K?sc%6B(VWB`t(KVvJcns!)vG4ZYM`-RuWTw`WbA1qB_!u#D1v=4nG^B$ zZ+6uU@cvji_j*`<6s;STp^Rv>u+qSeg0%7M{Gyu;cM|@LyE})ksg3Ej#~sWAWA>v} z>I8E!BWMNLY&-hbryB3ekZ-1Ir_X7B!JT|7XB~05X!{vaJXP!Y*B&l}@7(?{Pzuc} zHC{RAnZ9V>S5pE_^N~|^PS;NV@i5%7(P&Ynadws6KOS*&+x#I1u{Tu0$9J7OuA22I z2{4bR&Hy(7%DUu;24JFq#}*g z+5oq^%mb3}a)(tf7@`J?CUmpw%*ZV@m1+z;4_`Z0!Ga$$ww~*7J+PWHOKn6y<)1@% zCr=dn71vESD)6X06aUj<+^LcBSkHc#CZCZ6HW=G*QC1&77{=DYX)cm01D18Svq!d3 z8+QBskm<@xNM|8}7c8ZX2?QV-6)7MnU+tI}a#u$K9aq0U`dyOIOrk*5;(2qMVCrrZ zRk{iK@$-r~i#Kr~wHGLi^r(NIu(&a=k07g0Tf8#TJo!S&E^kMNn|sG##RAstDBCx? zpWoenivDoCt$!KMLfzjJ_ia00tmS{x3l)kC{%ekxVCCgGQ#VlFl2Gdm*-o-@=&{71 zkKHZ^5EROgeKl8Y63!fZHm|nS*$!}Yo70J-gmHr*K%8o{XDW*QO%gug1`x%I$fEqI z0%^M4(up2CKd#D0D*TuOR(#c=cp2XPZ63lKKuEi_ftJG_^xiey&lWJ>cQZx)C08m% zqJVYaA7T$TVD2VU!#-$<2m1n<+2 zA8nfgl>e&)Z1j>7>pn-0m&{hf9f}pieYd8N@h9OXb*LpkWu+tAF2udVR8V?2kf>Ii z#vTwSBDHlac5TxY*!`5mxc2b+3r{hx5(O=x#x#uQ4-gpJ}q= z{i@RQD8&pMl-Y#Aeix9G*rzv9crygFvPv&!?3Vb8awM5sY{pCcUOrGj*_G7sDOa1Q z?rD0E%&2+r`V`IO4XcP;aKGvgGxYi%(|vaeJ2xi6|T zSiyr4@RBF|Pl(qcdz0onzWev)64}By3~H@AgK;G-(i0G`{Y)gd5JY(17|zLjXi@Ld z`I_-*@*P;cn{-&@MDrBBaQ~fkY*8PVXtDSR{|i%O6--}pp_iRgcJV1$_9nF`~Q{2F6p6gJ^4a3wFk zT12JevWDa#_qr>d`C__o(c1;P_;9r-=(&3vsZiaLh6gzagN=m3%_(bZJ_F-c-1ITM zI?ZJ!T6Jf&N80r$Js8a|dLZiV2P`EXZXcZ`Xmf5A3+Kz^8?2|n6(YkDml_DN%;9|{ z1&SN^OTY8>_rh2Ooo0EoKG6x=$KxC*L7ZtF=c1*Nw5DcZ1EhoGc^Id z@EM`djCgzEIGo*rHr1wmD-7zFDbF15pex*G>dWqDal$XRN#RC5LDf9W#=jt=nUnmP zjpIYPZ5AuJiDB?Wzf*(gpC@3AaWL^%oFC* z)ck+ht!rKN1{8Lssy10l)l^$l)I4a|nNSIN813B*SoHt?Y^IL6D$nwFS-UVT>G`MX z?XVLc0~1v7j9gkV81raoht`@RjV_u5?agI9Rm|^^*Mb(jk_YI>Y#CTcMLY=+&`nH- zA7@Gi(KWE9O+p@k=r2HHT66#{Ym6_>aa?$*4nGur)YZ^a8F^$O|8~q)5j&$_?Y$oi zhQYR!9teyLx84P>GUMGErOtJ}<<8oEO?|<~d(kZ)ecxy;B+xG0;VP2Tme>m#fzDza zgKz1TL@8yZ8H48``_qF;FrvQ;G>WRf8(f9H67tpDpBvpR8U+;lKiS^BRM_u?g2;Hv z1GZ7r1hfw8UiaXd#XA0U#Ae0pK0y!*E5Gl}U(!_*b5S-sxyhu05Z&p+hzc|0OBt&q z;`o28I(V~w&oiKYfipq3z_zjec@p~-WAzj*3caujKR@!F3@WKNf(bl8%cODl1OY?7 zw%?S`D(hPi|0_rzU`zifbkPao7MC)oc+&TtMYP)G}iFmFl+Y*G=3W@nh?+H9B!=w)T2H?7s9-aUEIP zg7oDWI@2glGgtv#@`Z){8r}qOhmg^|+{fS;g=J%$d{)Ljf7_~YRE@PRPg2F}B1|V?!d~!1VeDA(bof6(KoRmNu8mWYo&1Ce z7uA-r>=H8kx4G6OzFnwbVU+FpS85E*3a*Zm{<@+pQ;X@PEM6?$8A*Wic%Gq(8>}|2mY6ZskB}jw=z*O3I@M_`fonKmsR6t2uVJsGAAsKam_>{C=bBo zAwce7cFnXH9h_~0d583u_&Dy>9j06?26BN#p0J9RL=|aZG;YM=F%#O_0=UCdq4P6L zYDxB-s@fvngGM4wf?MQx{Xb%f?y?p^D`4r{whK@4kMr2HxJ@EtuBS+m8L}SxV+4L- zM%KGQ_Vz-h%XvPbY#+xT?}c7d(upkv+)u`{ST4Vum}ow=nY&If?)*u83gw7#hnk%J zq~A=Z&Hp`NgJUd)3Y_Mo6`qm0qCf8Zo#6vX54FV1 zowN@mwb7h{{V6m{3Py!DW-PL9Q?p~wM*!4%X!fi#-c+XPVcv6@>g;YF|?$jTYR29#&D)YUh3e0rI8paCdZItnVMDe$rjVy1>#*iSd|FYrrcJ-eKw-A&;M6s_oHxFWi?sQpU{)5ez1A3B8W? z=8(^)t%2>VJlN|iexr<;4NGEv{h1*(@z1X+y5F^bHkq>FV{Gxnn)_mF`d)@A@S{=C z&i8`4_U;`LN>SRyaUolU+fN)Z$G{EI*+*H5kTrmPaTKM)BWDy*Y_z{_D5gz6GwtNg zm9&Y#Kqqf)WAuiaO>TzS{k-1 z->k6LsE}M?4>9Pg!sq*Q@eiE-{%eq;#hf!2Yy(+^ zJ|yd?0V~dVu>@)UX5zt^K2(68^XAQwM&g^lyZNF^Jy{@|QfC^&Q1;I@sVOcZ-U<~= z>5SMQNAL54@l~DQH<4q`+_Q!w=%Ba`oU%eM2SHyMIQjnOX568d6Iu71T)&hseB!7L zli4Zxzlz|7l~%O_P=O6ZC?a8nLOz6EyZ;XL1zZZ;^el!pX#9*XN0?-n>@RAe#LR4g zD&jBEe{T(jt87=Px{PD~s@JUQ{KlKBRL@>rC+i`i1F1E95L1>@Tfji%p||8=xgCJr zaC77H!;sHX>>D%c5KYwqpl=i99P{|iA=S0|`syHCYea~Tq))wdDL&N31a|%PO1omj zvU1L(l*37IQ4^0l!3Nb65s(;mwSk6vkf|bj;A!x2x1BMu`%!$7@tZkPpJnti{o*iv z7Su3GJ{Y9}Vtd*s5YqR%w~0-DHPf?19uiuK(LA5)_mF0mx{8R~5tBL3gT>+_NfIn4 zr_nVl4BnxNw5qF`7>#zbNzx}h6d1jsse4&GM~0dSlTl$ej36|0xJEplVlpT4kO9_e z{r*U}iu<^Yp3ct0wCi^mcAI3Yv>sxJ!Pruolmra`W)!DNM{P6$yUHHXwqIkaT`VEW z8zEZ11-DgOEk*87tR95WTBLsS+9UA``I>&gBsn)Hr5eaRxk(Gz{o{UC)!)gMev`at z*-IG#2obM}7|EN8?l%db9W9~s1j#{RZ>@m+lwtZBc2BPU7-nSBwr3DOYJJuf75IR^ zb{zK;ruomRkiZzapw50cPmV$LpJu*Sz9O?EkoriIn`ytr zLqf{oE0U49vDRY1V}{`%b|mbd2?BooK;|E@pFcoI=d|23(%Goi&;bs0GdZLz3cici zDv;ieI4ll=?IgpxjDOdni{J8W{|2KP{^kb|U5Eb(ACwK47PZjw&H9M~l1$npSZt3YkkNmiBelQ(DOVmj4i zdTG;xzmqcOl|#zn8Jkp~fZ`Fff%QieRhV>s7ZK3boRug!+CNVSMjLcJqZl%`*-9Hf zpgMArvN?tC@`5uzBu|Jp z<+dj;4vm90*oO@t1x@}#ZdDiD=51izKQG3x&NqGbIWB*Oh=quvcSdQtxvrJ*L+% z0V9-GV^$X<#1jBp#IB<}BCr1FQhM;UUsz2n=jS9Wc{+Iep40PzIgfU})r_Q2VcJsK0dqdSy9x z&JQEg@4>xD^;f4vNl+a)ePfuzRj@QxxOwOHE&_njrO4AU?%2O~*mM@m@9t>4aibb< z*?i;o8{x1Aci57J%{2nbb+MbUijWCUL;&K^AIv2LbuDYe+Tgp1S3_wIKRgh^G1z@u{#14vXipW4myaz&E`}TN`-8{e{5Br@L-_h<}SDEW<*GEH;}hML?LslgJa; z;PY7X#-nf+m%_Vc8(65vM40AIR?09aSChWA{)X(wYDr+yOy~GPI1(?;##$%&$j` z0O5{86|rUo^>AW zBkJ|B+$8*>K??!HfqQRQJ4Ym=DI;w5M(F9IMbVZ$<1jwyLuY<2T_$#Hps(3SCPvYq zJ=@n$)AO!6L~_(hZW2(286-3+*0lhAb8rv*)GJ|lMHE`G)lu{5&D@g=BOrI>)7rV8!ODGU6!W9OsCGn}aHtP}gOBP?cy(~A*5aVLKxu_d(eT|@W z&Li)Vt$C*MZD>O7IKH~WjXSJ9(Q=j0%r-41-ybF|5~Kmh<=CQ*0z|+}{C}ES8DPNF zQ$S|^>9W@Yf*@N_)7GT!N6EK-tJz~E0S026;43?nCfE^@emR*wB8L(yBYc#dB9Icz zypaRni#~QwB*8Q`Fh3LKJQWIm0TI5D%-50a?=SNzGiXhXJDP|P&(4g!$BW3wbh z9h<<)IgmLq1*Ae8B|#>A0T*vW`IY0mCP=E{KH62PbP#RE9c=NAapkbNl+W9YOESiV zDF$X4XP0G?#!$W%tnItNZpmx2j_0?#J8V`5JhxA0%W~kWw~csMd2_b7Cl9hlUWW^@ zn^BHHeyKT~sx=a#D@RNMab)toj-3saz-p$*?JK`XJ(J)4u{|cggbAQcq0zp3U+J)> z-F4S~LvEYvD|9#nD~uO)aI5_Q+9qtyoYXszSqWgUb%FM}dXAwLOkE-jb`;suzrEr& zXRC*#F#Wprc6{$F!M^bO3(b5Jsy3@sDhe`W5V<-fNve1ST^s4#*9X|p8{*w3e#6cE z&fT!zl(txZwp%IA0jDfk(>o>&mo(YB*ZPOy4ieAzB9&itG|t(Vk&exI#9 ze57Di6zo$gr~&`xm%*!g)kl=sigs$I=8)1Xw~5e&XPQt7PU@WS_yl9l{2 z=RC-cXBM~m!wv}Q-T9U*qL9k=0vEg3@}PrP?jH!crP-Uo12NskfK@kzRFtMs+0}!Xw*=~QNd8rv zqK3`LodbN47efa@G5KVe-ogJhxoWBX9mr|js<2`Q*{;Xt)_ulX;9)YQ7{t9mTz3Zk zT1gO`|M|r@NU}rr^g1lyO7Qd6^i(dJ$`HGfaBell&`Icb@l}Xn@rxT)hU-}?8@!Fb z=q1@4rem;Bd`Fk;rV^{t@`YWm-l4Z)pZ^jI@%w1-pP2VG*!xrw^%vV;R-Ll2ZM+_4 zn*45P$oAPM3~?`6Yi%i`cW%7D5s$(|j4TsAQ8g9ZC{ogTl090pfx9@WAry?s7a-w7J5x14kIln>`(7xKq9_{1bqnB(9q703OD%yZFFD#K_UcF zb)}=|r<=T6jy3}h$|QuD)d45b`QZB0`z?P_@7vP)0JLvwA|jNU62P^mJh9At!f%$U z*EgQ^NKWVRbXcqFRyVK2Pv&+g|GhReEkPF?Wb2_#-FW3}G}mEFP__JqLJ!iR+nde&hFObbSr;u#M*?hVZmKMk1B@LFvMkD zpG`uj@V~qVTzfD$L(!U;TM?yXw`uQql}+<}rg%8pZxv(F3SC&6PD?-L2P9#o&@~`c zwDlKBlA-yzFkws95yxalOX$Cxp#5^tlok~^JWyuPC)_Mu=us{kz=otE0;YTul5u3< z{ga3ul2C|1Yfd3WoMMOvsiPT7y6%qVwI^rUWFj}m4i&1zFP}T6gqL<((DYfc`To7S z9cqlSd~K3*t}&#?Zjy*o5sM10<+@l>S_@dm(e9~T4plMq<|zKDyG|uvX3KKi5h8CH zO$koF7#X8K%jndMouAuAZsq%4w>(m?AjDm=Opp|-rp3*>(zNV<&gWwJk)$ZYvjy$d z#uAVH5YwCSMW{HG0`vbtXRbBJ;T`fUVdV#;K2Z=BQLv=6FJ#aVeM~^pY_Fj3MM?A5 zJwBqbu_sHiIP*viP5$AVW?nvg1eWDtpy?NAz{PXbMZ)(ajSKV*-Z+$?hurUV*uOHb z{k5@IZ46c@P_7etjpG?d2%YfJq-B0yg?lJuGJAH_Ig=w;4I(#ZWDJ+1ftUH!OGQyh zdGD<+v>)4$ep@7ky|K~nbopBIl#$?+dt`Ct#hjf9iz`15r5Q0H?*8B5iAEArrMuZ9 z2s`x5Vp~H03-HAoohS#~LjI;F*!Rod-RX2D}i2`jum^t({4b4C8k z>JTE;MMO;WxHy>~zJhAUU#YP>z<%p+aJ}0{;mRVQslSd}pAHHoGbVx6>`71lHPE#|XDUj#3x2!6)ww=f?3X&O`4$ z!~Q*_svlx)5Ohb%h}uvY52mWZeP6fl>5PaL+FeA$i1*yx?SER3PdvDakQP`s{8#tZ zpXFACa*S$+zATp4avT_?DGMnDD`A}QOT!p%LJzei&;~d5m7!fJPaG6$id@a7RWr&? z9~`DZ{rx9e=y^FknW+#$Op?nchEf;U)~bigaMe6XJS(hP>P6>ODd>leh_x-NXKDbD zBN7Yh*|qkv1au|E+h>ca&scSTw0 z_FqMlq5ZOItRIOqEe^P6d8mPxpNjww5 ze*Ts_el^wIyMCO+Q&DtkeaYxz;*1a*m>WQvQ(8py)&*rhh){BPYB32&`jk82yRPo) ztLdree`uV{Q&b#I4`J;&!$ZYy+SZnq;kmi%O%|iVFRYROC5i*G2$sl)2E{Sy+2NOJ zwSg$V`D7u3;bqIC(cdl8ATbiDOhER85MnqcJNJ`1@C2dhh#IQ+&=hRYzkeM;YK)w& zh7(u}39-{`HV1wp%Rhf&0m4mJfp4#foU#Bh3IGtr`s2|Yy3fZNolz?@onkD?2BZSG zXy3TB2I~Sp^}_q`%~qVy0K-uc)D2P*RX!!Y@^uG<8fwa4c z3_t3M+MHBW!;(w0hb=7CYLW;wukjul;xXEaS9Tq;26-sRp=AMtn$z*s(epEIeuNN> zKXf?(s8C_LK-=KCDQfANmM@-Gr+0^Lz~$nA138NpX+R%hOvnuMs?z|0tsBOZ3=ajk zSd3<$xZ?yUmn>VaMo@&4{c6diMG7_KqfU!nc?}2f&3^c3O|!P3#bu9ktxxJzz>BR+ zcyyyN$DpG_D-{LYlR6y-j)_nOd?UewhX^iu&|A>=cgGtU!>-c=I3fd4_!pOQ^ns2^ zgBzbR1u((O6L}brQ(qB#58OlO{}x0W9Ywfbp)P*H{OIF)O|zNlEZ&Voo7jS9`_3r| zug%E93t(%rDw~T(78mJp2GwDI+%CI5K26(bl{42YV~PY0aTRm#Xm=ZWY`!xl&L4K} z%As%JdO_ahYPNVBd89A{_B`er8Up;6;dN(z4-)ODSaG(js79CXf-d$e=IkDdqD7!T zaibu_RsU{hZLrQq89-N$l8rt+%p%rl)}&L*CFxYQeLQort~!q85rk$JwGB$dr-&EE zZU7235$m|`m}saX#cIitOV5l+;Hs zBqk%o`B1ePU43kF(a|9lURFB%#S-_qBizGM;;-#htFu2A@BzB7nH10?&DEi?Mfuw|kr-8j**QKyRcNF*>-inx=dZ~K#$lEkkyQb>l$GM4s%0iCgX1A&` z`!=nHhF*=w(OKQfP$xzG4IX1I^_D=$R;bw_XhsR?a$Ud!8)ueo5<2;nm1~QO|uKl=OwBIDRB<=--=A=*HV}!FyB+&Z? zTghw3_8KwSOcFRbCCz@j8@mJBBzi1cT}Di@i7oH2Ohd%&QtuH&v%3<~L>qlUHgw|n zkU~G8`~xBT?hwj0HgnSvF_f_^`h;Bc>a_nE!65YI=r4jeG$~4>Bb>?Zpqyi#cjslY zOC$DZeYS!n`wS~ROI?C6%KB1vsi49jJbk6>9eyLX6!l?#rR?ICXH_u+%;l+8eZ6?X!Jt zwlc`NyiANAjs}ZX!<)G=fH{va`nkpd;*CldS;Z87H{#1P=vkXdyAGHGc<#tx3YQ$+ znqNjtcm@6KR)9`s#reRb z&m$tP(i?J{F{~NB80EFD>hi}FBLKAukEP8uhmZPncpgHZ6N3cOE|p^Y_i{)qgNmD< zh+KVV-Df?&=U4ZV;f1dxkQjCn%!yZ*O&A4%x(_&%FnhlG*_)@vV9eT8tEi^Tsh*0R z)SN;wcDAm+xQWsx;1IIHhFrMTMX6GY5}cyVNbHMG7rbER5oc2VLrtw#j!YWKP4(qPR zd>qn~*^6WN`Q*ty&FbC!O8iqsZzSK|hcmQ{L4L3t5t(@#d^34A2E2JH_?Wm&<;W04FYf^IuQaXT zFVjl+_+bD)&*Pyh>kb*fzUR737Id}q@^0BC0nMu7N$7*U%HB7H`u-rMl|=w-3)2w{ zg*!ubnw2fgSr=?9g5{DSysyFwOLxT{)LoeYql}MKx|Qa?c=k7&S0wN!JnqXCz~1;k z_wmP{<7^+s*LK*K9+Tlo*1GP7t(Ub z0DDq;$S)5q-rCwABlG0(rdG~dp*NlpW_nUlpC#|R^3Ubi&4rSHpWS}e&aOGpN%(W`Mrse0ZcTi0%d_~IT( z>)-HsEH~2R@~BqwU+!6x z?^ko>qP^01tP0t^(D-JkL(9wn!uAfgJE)i*7@>c`@~FG+T`n-KdAXH>PO+A?1;v-} zctg;3;|gV3?FzmLzB4W?h34#LetfB6stMzTy@`b=E7ZJ@>qJ|e!MySRvq)g~dIYo? zeBW20&4pd@bUwUjCB>k!SXkwa(j|^0l_MRHo%Q)z22HiX!;r|7vnu#--8+D_qm5}d zgT1L_tbY0{JU)QI~|;j*sQk@I{$opn|gqm5rUDQ(KN%@c~g3bj#Yd6>&V{%JS46g*P*sWF5YYzjq`7D{oB#yXp2o*Zz6g z?*85S2y_Lb6gpInEAd5pu{N~(C|qMLNzT+yw>R`#F3F)D;Z(Xt_g%im~* zd^`*Akr`L*xr{dS7FqX+WN;LN-zhGSCQ7`t%F9@JPDiKAwp(-<+EF z0&X>D9%&;k`6H4KgT^zbi34Do78>iFJ(tTw0f{?hGIkni$lS=|RJBy7iIPqQOR-jM z`Y1@5Fh9iV^34(YgS!O)&czzXpMh z8~e6UJ5z0299Q|cBv$(tr$L=}@7|mya?Bv0p_t^sw?60lkhd+?>voC9AlX0?%aM4{ zGxI^a{tUn@*i1+^@0F)d$Zp?ll z#~AY;+n;Y_Kj8O5#iWYgXd8%51DUw5C!exU-0JCD1uXvLYZ&0l{Droc1s(X226XSa zM$jrFhUZ}dqNrEu+nJzMfzZK*wc0~tT$GpFQ$EE|yZZBwRfjPCGrB148kK-NR~D-Z zAIPvQ0DR$q=L_+;ixje|B>gcANif&_z}yQvg=oOi-PFojPOnjL@3*@V^|RV;ER+DA zrN0fF;h@%}*iF4Kb+ngMG!zIwkgosmOEp&K_^^^i z^|{uhblRCooKljWU_3drqKL2iIBvL7Op8OV5sPXZ`t8d)Nbs)zV_aN-(FP|vMKZK{ z@$;iQDN;hiRx+MtMcg4Hj${KmYU2|SbvTS-5y{0S8+0rw$gTwFbTn+i3r7Cad#7yV z*Lz`cVKJYhlV_0d5{KcDbb z-n44#`|SCpwqj$B!KDKRO@8VbEDZ^I+v%?diBSlOLT!T%Wn|@&Je6pS^RLTnIXuKsl59+M_lgdOFnU>N@iXvr zI7w(jE?)Je)dIFT{LM25?$PG*BfULfaOwBjMg1g29lideUXa&6=Eb`7ufg?0M+rzH zM>*mMyH#XAao&V_(xMLV4vXr+9hQcah5>I4_$T|$41AH>CjG5@^P;7MBHzVcH1Owjv&~fG&h-I>;6(ayIx82+B$n{-;0mG|1y4(A%t)D_FJFbwurTXbBH4 z7fPbRn91g&^wle#`MSus5z>9VekRq-NFGwidEYY;Bp@p=*q!l_jWD8C&`W8FFu2Zc z+=%Uow>S-vt*q@)1l2~;(4oQi#(zQfuVcicJA_wV&ex&G3l(R4Ye$5iuQD%JQ1S_Y zi-*uvq;ibkpT?5tv;w;<+sf36^IcPec1L`VO?Qwh0Yb1|4pe$yXaCd%3*z3vhmZM1 z40K-x*s3x|G*YIgqsD?3WF16(&3cc}xtogswwjc7;`It})N|eEGu^)Ty|l25v}&_D z;*x+gr^cb#6wkPhI*Q-uq(U8$U2vxr@h2rFu*JjX!wAM#W$4(-|6xOZR@MdAu_JT| zv8(4ZtN!S|P?60_`*|Px`;$5JqV;{TDuC|{oknLXZvc_+@EbPho1ju9N<-#u(V4dN zj*;K>2S5I>1<^Qin~&lq$$+od!cV)7qxxx~-Ynj4jtVDa`J624%w}zWE*E~hpj(1! zxhKINd1%a{0WMO6g(zkEETx0P(R{9~Q)nPa3THwLNQJh%?r+n`WzHR=f|%=Q4XAfJ z=FdhP=Ydss<0DIID!@wELKTgLkvVfji&Rz}f1fyXbI`?)cI?t>rZO}~WaXGH?`7qm zAXx2mL;G!SgDZ+SuH`E+K#nI#GVlRSje4$Zu-a%!rC2*LtT&Gt=6Irm2(W}`BW3un zx3;|=UnUW1s%QN1DtkUt2#`Ml)7Ac1Z|c&=Pfh9{Kl<0K@dsesa4Nl;eZyyky@?CF zCFJqo?i&8nh4Zr;>~iOVe()I0=3S*^ z-y-qK7R|pcd0mdxx?L2~>QgIjt)-C#U7U+*wvoB(X3chM71{toh_Nn7OU}T>5aA_5 zG^#lKuJ3QHz${)gb;$vQmzcl0%g72&PyhLHx)VP92#?<4a61bqS%lWA2X~-!FjY?t=kbAL zR(j7}j4Zbgc{aBM0p0J8+jE4E7m!Kbcksd0oh<&{zIW4P%g6J|MkbV*I30*u86(zf z%?ic>J6K@Rg`4n4(-`%mOGLosPSbFgp2kSu2`y17#8xvilK#(3n_L-R-CfLqSao)4 zk^D=pYyWCYoE+g{AW7(rdGCYt9F-;7&@a{kThrd$I0z;w}+ zzL0=yyyyS|)xy~(&!0je7Cv+%%WHx~I#(ti7QU0)*sILs#O2d^W0Za zs1y#XlO-7FgjjLNC}}@wpKxbs@s*sT=D($#>`BNBy^e_HkF0w-J>s?1&ob1A4QOO| zzsdD&5q(yifH^2+ZBdqMXE3SnVW~_%AB3jy`^HmJO)}Y_ikNvpwV9p1QOGFGhwPlw zFzfCf+WTX+l3Kovy)6?V*pNfv0rTM#IiR+SR;`X`eAi(^FTn>om_iS`eI!>UWn$4@ zywiRqjm+4d(4X$ewM9Me$0dm$W}D01qbZEnc;O<0LA!d7V+o;V3eq$iH4)Wu(d<39 z+jzh@Drt3b0R8Rf>{~N^JpuDZvb$pZ0I#$|6iaRQH>yq2WV>_mftrngeWKM1C9iXN zl2xabiB$!g)^}WsKE5@db}=7=M#mlpGb|P&J4xi%o2p-mA|?yF{`=aUD5;FBym z(EHXwamIxJGVAchDbcHDEk3gVvQ7VZCRgJOagWUpOe<2rx9vGK^Qg0awqjca>&TQm zC_GXbu>VnRi~cDsfGRq1^CLCDtoqi0+*jXG5AWR@4PU(wzdF3bk`sq_V)UDh8fjd; z(MJk-OG^_@I4E3OFoEZ?i$H~fda9Q9h?H$pT&E_d1J`Z8*#mKpDtfKsa0vsEZo z#q{vGL{HqN_TNYsmM?pb-i3Z}e)(YtN&YkwiWaz`^6q4d2nWru&*cIAUI-$YdsFD| z;!xec<_(wW{B(8-v1EHYi7Xe!089uTR8^~pd{`p$q%LvGI!P^-hyoLcwPe18wdT5- z0H33CB6*Lib)aq~xF^yC!*RYMVz}@`ZWNxpr!Ii7X>ml?mG)*%jw-10>U`(+?EUw; z&;~jf_qg~V*k_N#{DOdHK2PLPJs=5}PHV-U;vYGuH2L?1Qm9<`t2C2}QLjcd1}*R$ z)ICXfGyrkgxrQA+xKXp-;JTqymUD+Ej^e*#Z~}*anS#{r%d})s2k#;w0Po~syxWpU z-4Dbh+v&)JlMAb}lKz)c0=CIRa=SmBcPxNkS;PCAm){Ab$p8jq9678Y3J<&ovcXMY zlE?8c4UTXAUW23|y%xuP)X|{PSE0uEv+JEsM|`-r5Iu^+uChr$VH+uq@8Z7qyS|Se z{voNR;mKiqF$vPiya&G#^!bPr%27Z>Pj_0B>5DH>24pb!-uZ&9mO;T`SGbM-8QU*Y zIm(h$PId^Ol|_66x&$O?nOV~>kasXS#leICv5Y{c2aY3O&nF1%&g&PK3mv0hf4Kfl zKBhl<>Hxk$V?ZeGofX~O{O^?;P1d`wg-JznSdJf02Wecbn`F^P={mLc&y*UMj zxwQZNyTb{df>Jm)O}|!%*7w7^q}$YxLf7t^6|xtc56RvkQ28apKX6 z%!ESSk@3rVTx)0LfLJi$QmE0+7Nu0$3}(qW{s99wMH2DWT5j{=0X zy`6=v3RGO=>hwuj4~t|yZiGP-c}8eVbdF6ks*11Ons~U$E|^lqdh}kncuV9KZ4z;M z$6<0Hz$pgZck|xVyoWjK@&2kqgjyISM@o|!w%%Zi!@P0v^b@);Kayv(k;e-gi{jpe z6XuCjAFum4`E1lJfY5g29JXbqz&C?I@DgKeftXz%89k+Zi>as1)nGq`A>kjiUUk0m zgGM-IZMuTlS08_eImEc39!@Zf`nGgbfi!hzEF>#nrhATEf`^6(#grfl)+VE zk+)aUpViG;$>`p!=ast59?Xn6{ID%z3PnmO*8BRMmcp|<(t3!jNPr;#^Zukk#Z-WZ z5wMem0`@SJ;$b^OKP>y#6yVU|Nc$qs9XBpMIL=F`Ru564*@{d)`hlM?94xQQbv}|C z_5LwVdC(R)8EHMGrHPuMb5y}}|U!P*Bbo0>q@BZlzP*1;>7aUREF zV?+R@s~*sPK_!bK0~QPr8vN)FxPNGb&wcIO_;Z4!cfIsk(_|u+pzyVwr$Km zAd0JmOn2f)%~PnNOnjOO^TR<8#A{W>!k(huyR~6YT>n1IgcidZtajGl-aPq5lvW{7 z^sTA|FqfrUu&A>7+(n3hQO}*>m(fNYVCfccLA8djI$kXxo%{1}!ojI5GsCzgWxtCZ zPf#TTQo+I}83)jtisNFq@dC*i>_zUmmlCy*{9ohc(C!^o;AWApI!?Y-rz|wNtW)QX zmW3!yN=?(^RAuyKl>u~pT5U%kUa|R8)SMOhk4JZofWb)$r-t3mBOUTKj=X#R+g;GQV zVFWn52QGe2%f0tYdq&yr$vaz&e|ciln)=*!ufcEzg2pg%X`B%>#waUcLt;krQx%<- zwa<`UkO_5W*}-JPc342Hxg`L&-c4u+s(U7J)n{$bv~JA_?I;O#EW}HBkJrB&jhfp@Bn(L%5s_$bn=P~ z*g*}RGziQ5L}W&ALy-jsK@8PsD8;lEK}nRe!@Lkx@wx#;uGFQF z19kdZC921{1*!4Yw@Z5|@*;@_0?R7#)~Dx`2G#lmY*wcFa@J{;7CzlI~VX#^3-Hyl!> zBqwc9s-_?M@U{T?ckp+-FjOU!8K@E8Fb6DP6xaDrC4qt1@gM2;&RSL9>}G-2DIwg7 zP`LpLB>y`|?Rq?4=fsEDn7qV|P$sEkCRAlLyKWad%uK<)3RzHa+hE&F+^Ig(ruf<3 zaUO5qTz~^Rin1{R={jK9mRkwL64yck@jL#$pWGZc@E|48;2W1wHE6RrDK6|I$Pn^g z!POJYJr7+LZ!I_@X$U(wCl=NMDwr%?03nRML@U>#K$BA>KMNXGGq?hS#liktZQt6? zP^QuunzJ4!D)e79rYU>PvQzUaI!BYuT2&zZbsIv~m|jr;OrO9i*SKuR&V7 zNchIS=5~Mtg11^`e#k&OKb9fQ2{H(C#XRrL7^UKT)-=*!p{CclS)dqbsY<-DYK4Ur z*?zu}T2y{uJ-dvuypjay4a^p58Fn@Ihw6TnCG7eWjeu0zYN%p1xZp~ths~`vN-0aN zR%aut44ziDa3?#OHEBR?8G4bnR|Tb#i90$jF`?=sj=@5qr%)AaGbF`aSITzU3~W$X z6BI=>t={V%NSP}%BA^4(jdPl;CLpX5?B35AzU$lJ1v%0r{mrErJ(dpFNXbVB6EjJ7 zb>emLodHz1AwH?*8(xy3@{?WxMG%i-OEofGv3zjwU5rLOXYQ4zF^~i=z-9i{22Li* z0dJz&AS-!0!?a=EU}LIi@whJAgbxDXYRol!gE};w6v-hy!maCq#?l|mEy)E3kYnw{ zP?xmd$Feawsf(K0fXOZ1x?ToYqQV)o8P(C*!`qJK9}M(*$?`;(L{_n;xa)8bviux& z=vdlu#MtLlTqoPo-@baeisj@r3gF>K1cEJgB3iIXfDA9Icvk@F89V|RHm%0E0L(&~ zM#1QC86izvTQ&{4{%GeBMosf^2!ibk@0ra=c^|Wy7E5UCfe5#8#+@Y9xL6r}Q-Cop zeSfq&wsFrNA9_jOUKvJK1%04`*t=UMfyySG>H(FQYj1-WpF75YTth44rBMhrZ2Xbg z+jSGvGd|nR-RbNMq9@S1eGq?v3zHAaE(sn2Ehz83Rlc&G6S%0Sm{vLRL=k!iO3>4? zU%3v{@XJs4zjBAWI9?(dB-uHFm@B25VpnOCuZ=xP;rDIg@^ijMRi_Gt>ZQaq{C5e+{h--75P6NtgaGpSH(kPR4q&iDqok(+~7e0 zGm2FeY;`S->mrb^=DapwxN*M@5{y5O;@tZt;|$g)c^hqs+@*MP*Eosp|J~(z9xhN# zcx9M;g%g$#Kv69t5&7a&)Joq-@8zQUK86qi6Wp4~W(DzyQuB#)*PoBoNw~5^zT$(Uu|*70%ELaRa^~%3i|x z={nE=FD39scfq#x{acS|Zh>w~;WKZx=baJxMWXoWP93kx)o5RXYWFCmZWb6f7Ieb+ zmKouIdyJpnVwCRu3Zhv&B&Fs`K$r?)Lw#(JE$TZ+8$T4XP@9sJ!h4hy>vO18{#o#S z4KU`f!WXHr8XVT*X}fnCZ_4qU&~+q|FC$qEo)2{pU4MobuyYz&0qyoOiH25dJWJsi zYKvI_z+~@cZDk^OlYGvX2(mYtC(W4fWJ36+^A{p%_|9PbqmV%8Y{>;l;lF)7kj575 zbYXHryenDrQ^?J@Y;UN2ODYvJ>l zQlM&Tu6&~PA$`ksL2S52VFk!awiwiefKAr(yg<~8$&6_we)r9xz{$_L2cFwnu1>Ab z-b*sz?R!dLK06{XPKlugfmGbemOfT1GhA(O^3FJWQJ zkX#ZE!dEwdRWPph9x3`^`+PqTl}~bheVOV;L=VI$ zIDuJFju&x+F%~&}#!ZlX(NNys$Qy-#xiepW21WcY9uPS|ys+ZqUSZ%hjDl}Fbm2W# z8pi*PYX6;RF3i8=@WKaoAK}5))jSJ_;{eGvNX{TrTzKTDcde&o{FpbKz$)ybrjbWA z2uFu1t#mDd$9rXRH$mCa=&&#DzSZ@MD?&g2N|15u&$|%jUDlAD!ildiQoshBGKh6C+l3bVf=*3jWzrLg-Zjw&k_0R<{x&C!DBf z{FGV*NF8*4zP{z-HX!cWW;FiQO^La-o|47udKWG~yADM^2~v&N_j_blAGP)^EaR`~ zmk{}**WfWLhB&Sf2=3zvQ~a-c*mJn2+V}KBq~&V^dl~r$1K-r`pC9{fpDFvV1HA9^ zH97kB0v}46J<))#w#nM_p3}2TN8;yH6eqrAZd^oKU(*Abz}khcGj#`!4)@P!tJ#E+;(H_tsU;S zB+_SL?(SyGi<%S^;*sg&ZMzG2URZq+-$iYoWK{gGTCEJ4RY0Y{%8MsN?Z-OS8&%8K zk;2!LK$_qC(>c=DN6#lyvj3aW>wJzp)A{Q;h~TUL4CT<^nyg%|RwtLs)sI2MPohtU z-WOU&`9REAGcqK}*AFs5ckUA4Rqt57&2L;Eo!>mCmGq1EfffAf-j}UcTZ*+-wT>sv z5bfxe26fHOn`=5@G^EIH^6=bL9Dg=?CWtDxZ4OyB-Pk<7Zfh}lxvUIj0J#zAa<~(d z4Z^r<069a5a1KFOKw|@9-Bz>9r}H;jaPRBcLExk2i@LEV{p{=iO{dwo&K^9R7=YhslW#w79}arL9I znoOUD`J0=#d`Ih0PPxSK0;NH^(MmlWx7!`KP$UQcdu{}d_LEQ)NVnc*-I>T0dO*Yp z@~Z0l6!?cbNbP)``?$*wLnM-`PxF-rmXAGt4Zfu`2y4Mo0;c;=VP-&4@O#*!#J)lg z)*8}oW$WkY{r+KGG=;24-3p8x!p|1wK=DG`r%HzzK_d7vckNquqPHp`gvlo@@V_R+ zKHx6UnB*RBXVq;RgR!K@>9npA2wlbKGJU9~4iiMe^bZf!n3BE<%pM*6YCIBP1!p88 zrZz^7B;@VDUU#4(F-l-9-|6a`;?1PWwP>rV!k{lb5Hwd+@oh$O-J31RT(%6sf5^Y* z^M)N{B3cS0 z_kwP!ul#og1mB*H!p+oqD`eHKB0rdS&#|Usw+s|gOcN7<{gdmbu!gm#&aWc4-nW0X z)$nJVQb+AN`kIO5d^-0(%;Urz&x!%>@hY*}EYZ~LJR0K5U;qc2e11u~ z`&RThUn`%({&&;!0(RNnpJCsvm#{}i`fv8t*&z@m1goTdge6U%`C?H1uCBnR+aO9Z!)r%DPWGfRg=M_cdFnKN$bALDdB>ds?WouUY z{at`B&jv9E`Cr5Q>)Kogdv#hhUoyjMR;|P>f16i9h&>d%`>ch96~XNym02FdH{^S+ z)9ZFm@c`MB*wFI{k8{wj(`%2HF00SHiLcS+_ZoqBg|Bu0hsU_}7lGjC=;s_?h@ZY0 zQv#230+mbR*1{`-Y|A}qD~^BWUg;e>fAaQki8VR2v0pgLycQ?%BO<43ZCk;g{LsPZ z&@6H9QEo){GMK9I`NDx)?dFdTEe?vFqe3%8ps4dU!&j`KJocx=jLI9C| zpWb+#dMYde1`m0MC;*756}F~wUC9NL?X^zV%#N@2{ZX7l|FwGK`J;=M;oo$(u0w&H z(aZFm&szS;@v_S6o#Q7D*p6@RKTtV|=rgR6KyzHg!_eu%E7Aph;j0+rdr+{?5ks|W z&bjEK2%X!yfwr(F`IUtwlw{h(O{X~Eqa*Y_&*ObU{v)Wg`^g2LN{u%jVJAXXs4(Q9ty*^#_kK<%}>X!M{rPAD14+|FsHMKHJF%wzjwH> z;rIRA2X@-dt1@G-+3Iw5#?0rG#C@rc%L0r<{EV`M&Q~cIDRD?LB-S`;5wg7vgBuBo z+Yp5<1J$2E{vD}9IE$P!z^Ar~-p6bZdxB0*;<>a zrI6}(MNHarGyk=!|M`7R+b?-2&;rtYYl04e`PSx#KOXtN%^yT@O+|D`7DF{!n=xrPh~us6!oBA}v}iMns@wh1%^j0M`ysz}eq;hD}+r zw9EVD=1)Pnk!kRspF9jy)!PxK?`H-}yUq^Ow%bVOCAB`oE)6bhfbl0#5wF4L)lg0d zWDVzF0u4>T;vOX6cFD7$3wDtI52EsZ)*;}TdweTrYmoWcWGxG2$As+R1PPz*vlj%Q z`qhK-DS-baKy=%^(Au?3KaKlHGp)-TiQXu^Hv z;=V;rV#{waiF+R_gP#t8fyJ~yOGa1$a%i_)9$kt(N|=3nEXrI_u`hq>^52QYb&#`5 zb0>NJvQJ!0CZCPZ`o!nqZSO+v*XyEvz*Dx_&RaH}o(6(}T>k3WR1uR}Hj zgo9pc{Jq_EIzkF9vx;K7#e4UfJPlku?ChLSYC@u&h90H%%%}a8Ky*Keli8N9$pw&X zMXm>EOJ|@7EJeN801EzUz7J;Lp|&W?T&~lq$=5(Eh0D}Zce|n@0`oo&dDFX zvlO6(#9NtWGp(sn9^)$CSR|3owRh(vb92K*FGR}37Hbg)Zxxg!0sd1Lf~Ed@I~y#S+_VFqzuwqzGv8-d;U!<4X`^(vizENbXaKur>nY|#rfB< zpA$T{sEn}?VjB5Lls66e*%a9bV!d7h8zdaOj)_vdV;R4oor_BtcZ7JfX!`<(q~^mZ z)4xZW=7jaIfNCnc5+?R;yX5}Y3N48t89aY)Fs+1A$~UMA zd?x%J9a_B~ujA2s<#t$~gxB52d1Yg^g6A!awaB*c>B4A`y&&B*APA>8Uy7^za$lhSXlK=a=zE%?U4DR+4$L17gEDkv{ehiTYpjDNd*< zDj}1ALa||{WP6NB7kDETw52p$ocj8-RPkva8x!`_CK~&ke9GdeV#M&bxgz~)h%;ol zk;>n6G93kHWDEo*hwG2Y9S6#-!hTSHF8VG<)fv0zjQ5j_=)A#jAgNNGJQ0*n# zG{DFc@sOVRIb1QO%5A;XQ@K%SMs{g!x!_IbC9w2rei{C?w)~#2x&x^atI!?FYlP3- zH!I)&??v?#rgo&{t$f+uitQ1|KTp&(6;&vu+wR2v;!-7Y&h001#;WWh`AReu^fI-l z;+%Qof#rVl2YeuFPoamM(W#w@MNq#D|JNfdTUO{Ju+j0F(L$~!qq8bGU+&F;n-02; zm|GI>FX+77K=G|MPxiekLt;5?{%lfLxXk&Dtf)jn{+0z>o;ZqH7#QVS_(e?WFt&5p z0)Ly0_b}$0#9^;Y7(5Eko0Kro!NRo>QAT>FMVMb;8%S<*wI_mcpnYMGy0!Cnx=ttD z;XAQN5hv^yu7{t$^sqz{-1Hg}R>M`D$2-U&?FnO-=Z*6K}9PI0Jb zU0h}7XW?i3={HeaQdMy^nJCIi>H~HJ5>A|?XLqNKG?+3rmo$>gq=|_5Q@a)8yCgd& z>~-8!1!>OT2eHi~7$?Yw=lJWEGGT8Hkuht2U+0w^d0#zQhaaUFGD>R-CXn^g`FM;N0DKtFf37w)U{- zT^@PgcwHy^*;xTra;3`Iae}I6RWe9$TuckC2>H1T=HkhZ&h@aSenl0NfrSrRce8ne zP3>pocekxiR?yNE#c9V^n@E3MJ)m`VXAec_qaEWm2&*ti-ijKOL{#p+Hhx67VK&&DzqFp^JCq;DT?I{M4~ z)5lTuldR^FDYD@k|<3`17z-A`t>ksS0XAkIwBC`11ajn<%?#uf7Ht- zNE3WcBLPI98_hC!A=EbO$9 z_El%OtJpz(BMnbdEh~246Q3e`T7Gl_5n}_Ge(~KY z$S#Zg#jZp)9OoysfL$E*-WJQNN|iQvkzZP=-_2^Ax4F9wgROj%YN2H$MK{`z-F7-< zj^N&%oLHH6yGUExauR{^L`d_5sH75E#ux-ch71F!Q~KKZLW$rn!$8Gz!#VWV%uM!U zItmvZ8jZqIkwVhjY^%{J9eYO6kOE0B!4`N_i%O+SA$EF3GSf)rf2^a(1MGM8N*dLB zub2`F)mLnbaVuxH&c^}*>g#}JH{`O|URhuIH$q&O?PCjG9T=8gP4<$}%ei&|xv~j< zT@A*vZaLz@>HeIGN$v1!<1k$BuBlE^F8)@sl3^N>e`RwrM`m|E88Ahl7=Q}O#Z=HL zi0hnctFGV~?&*SSGyi|>95DOsj@Juf`U>2l+H_KbKk)bCI;m@IG!*Y34vSuEpMBvD zFBAPU06(o->CzSdn9MYkeWvsBRILW(=4=e#$wBWXEROhjheHQ0%*kdT$8P>W?Q^{% z)R;yT?uq`$1O&5(2vigHx5ScI8EUf{K*}ZOa|5E6lyc@+){f&ZjuvQSI=)>a7)36Q zMV%vw==89D>tQW!-8Ans$B%}x_9ZHGoIHe{BLs*OwG~y(@1S}&nlX=$ZzzDd8dZQ^ z5AEb({M02|&2X}9K0sr%^~b2k4hSA;Ob$xg^6LPcILj`hI|(4XM*G^q0$}SvT0XC7 zN4e9xVPYtL-mB8iO76);#+oFq1F~Z=4(^pIge!Dmlu^nm2|hJ$jv!Q0$``DwRN=5Y zCF)Zv(rx1#xnVm>x|wtmnqrvg`V*mMrd zmMvW%cRX@UH7QioVf&t!4rN=z_iI5{))_Y7bNu?@>5pjS)6i2)J)UX9qIZ?pg=Ot+s$RIQ7=zSG_3HCT*+F(uPe)% zJsi|aOtF8}@8;jX50Hah*c%EPYO`4fS+*YaJy}N&HDKPj3h8prmV&ZTMZ8rr~*T+spSXpfe-4 z>Ap0wjpcB9cun#}N*e7oNV9b$B#>i+_gti^y3L;0F0$m-J>^aL==yBovJ-OplsG2X zXg%BUa9sxTd0}RZR1jH^tO}OZC+ApqtGrMNvm8_6{>OX&1Oldlrod9mRH=f7p(z`y zTX-CBIslg}h+ANPrjrU}V%r@|Qni}%P8u<~wtQDwUly=kab2SWT5e{QGyj;b*(!)2 zbTRbO4?7-R5OG+)9MY$N1jI)0U!QLKKj+;$pd2{;R@s}gn$+a9C#WL8jX@8J4ML0< z3gmYrdkEv7db0e z;T|4Vngj$~KCds=$-bw8#%*4VER%pu%Wr*x?=&f2Cem%J0yuuRsNQeFVH@k^6)8#s z5&gVXT_w4x!1LMjnk)%5LDt4nUV~{^hYX$DXf*tK?&1~koceelS{lH*mcK!D?eVG` z%VFRqZ=l_4-29boUF~z}FRj*Y@+k;9dDuY6n82e5=|ww{szlVuhK6{Mg~-fF^SK{8 zzzkjnJFS$-rtEpfqpN@5a?2P1y(zD3f?hqis?`A^(tE0TFWz?rYcP)k3yHFc{b%3b zVK(!b;s77LI{Wvw8Prk^^gjf+vZHG(?aHMb%$5w41vkK9uWwLJH8w*0B&q_68%Rg) zg@R9X?oA1L_(=;^8f1Cab;T&YPgu^EwK%*~Ng(LC z@2p+W=^7!N3$ZduX-K-MP*|?}PoI-b=GpWIKZ$4;uJa$c54E-{_37wyY}3YZj<@sY zo?Z(BdH)8y;({Ran`R!agvvhb4PimrX7pJ(55;<7J5I=abzx?ffZ%_h6(sM8UNJys zfT!m;qK)Pn+F$_1bJ$*V4koHB$OZG)j7E%5tb`53l}gOeB~j9NljvzQkdxJoOMm+m zu!)huMozV)qtWzE7rlfAnwUA@X>*<`*B-t_R@72?(M&zz*es*oTKaKkk#KvWv`D@u zB+917CI^Hi{wXWJ6QtmD!xUJ0tE#%k@Ax0_#utvK)nJxi&9KO3kO_39dO4|q`-Y?j zjhH@L@lh>g>4U77+m5~KaH*E7KD6P{Qt~i0Dy{OxX)(IB_M(N9#C+swkmf_`y1Sj~ zUiFYJI{oQ#e-1BNFJZpLMA5l8kynM4URg&~t#R%Fu2j`6LJhWigTDMvSEspx{Ju zy~O^$Srnu3jxQ)utXex1+O(Dn+>cx-0%4KTKs$2InCY9SVM-N0AZ_We*HW^Qe1DY| znOoAmZbfgRhXt@{9W_>th^fiqtO#U1Ir%}`+i5#n6B`+!k8EnOqcKgqKec%~PWhcAk-GP&CvZ{j2n&ehX zDf0D*sUCN$NdI^+woDOE~D z%dD|JehR!jH8}_+!$n$Rt+Co^sXbU0@?j453XU(@QVIX`qhb@TB|2+&Ja4bYhJ0_? zwj4*H^~zow#~woe{6P9>ea*OfW>ggv-4EZABS)8gEPgw7Emf3$L<=KM+YEQNX=v_k zpDp*(6eZCsDu9b9czb@pzGZZG$d+C+wJWFH`+e{FwouXcg^7$EeqUWs5K zi$Ihoq8f|Z&~8Eztg$nw$rL%BeErMFRQ5q~^MnY96*8ET$cimiVz}d!9mJEtqwn>g z)gr7!&w`w;HC=wN``A?iTz()|dAED&wS+Q|4Q*DS4Wayma6%?yMv!tI%CbtINhf@o z;QbkWqUSWLObyPOcB*Z*iP$0`D+$v@W^pgS4~@~axk&zn=${N{r-dNXghrX&_IBP| z`a1QjK|v}lRRXfVv$Utwf=HZSYAJUOGc)7YE;!=oJ{na+^^GH{%RB`XW=z7|1bhW^z-qPZkN8b15p_+`a)d0 zO>U&%SH*&==N%_9<-@!>cumxch4kmk?3zrO;mO`XM>Gw$Yzh%*(lqk z$62zxa*Xm%lx*zFMP)=np(e^4jWv#~8eWt#9QScTWf$FH#qk|5tVZ|xcEM;u9{gv* z>$AQ_4Q|`Q(RyWQ(ZZID>l07#o&Hm+++J(N&xuDW%c=46Dj3i=+i5X3s+T124;$_by6IW0BY+#$M8_mBQCir^@VTxI38)_ zEr`@TqB*RP7!B_?&NlhH`>7eKeApJE8BQtc-2+OHWvxgEy4|icM&H1NP>J?x9Lq!= zsfb3<_caJr^&$MWJs{#}wL4a%uI-1kH}|R4FKE5%=AC3+lWDTkhr(k|34|L{|JXdq zJJAU*1LT5i@sxer&8n|AC^@tVX!r<53#65!Rj}Z<^6@h_;$YvL=+u0{ClX+o7TJ=1 z{Gx_6{>{JQJ7~4nR-B;=h(`3@LIsl6u98Q2S+~n6m8E|q@ZD{`muL-(_hSsby8^ojJi zIZQp(pl6B%hcJ|is@fWB#7Vo?gn8J>rI?yrW|nn{{%N;$6_C6$Gp{^H!$%cx?=(xI z1U+Ud2m1z$E}8s+I#F}!wTAm}H9M=6H>xGGi+s;&70w$c3DYDTtX$~%s}xhf1s${~ zoJ8?jJ7XVWptl4qdfxdUlw^iE;4u(z(aQ6}u#r>geve3w=TUMVNiqxc1U)F(RZK8` z3k8xBpdQWEE15k;V&%5*{MdOi0GaXqF4NWqx`5G~jjzgG4XYvSud=d`r1+CAea$dM zp~G1(5lTYP1xd-|5#_X-sRfqC7JPmm!1hSKfhnLf=abU<;KUS>AWf$qhya$W zZ2#qZj%#CG{EHBIp2XxpP+(>g`pX?p)XAY}6U4XyH z1vZe$qCIn#+nTMXD6}oh+<0jzfla!|Y<}s$i*4A%sC*54YVBP`lt%nM)>Q-=7(=_K zJ^~Mh=Cq_utsr@-l*`sTsPF$$WFW3jyCtAhuHNt4_ah(Eqfr*%L0~wdHC6tLQ6A#< z{RBtwf`_D)gC=R3%GWzj`C*z!H6!zPY{D=|0At0{QN&p@K|olT(Hdc@&Q18aj3ZLV zaRmlczF&4kssC4>j{04uC{WIe3#50l><@2j_T3PmKtc1U!M)6i=JT}ZH-mkoi-Fl` z=+6T6V8Ncw)A-KJIy1o9TY?jAKt;I^*Lmtm_n3+U-k>OpwN1O7ek@mOBc_fXQj4Dx9Kn$3)Qcb1{7jZL$xKk~dt? z`E*|^<-&2TttrFeb!#Z_UL_k6xyL%=hi2XlMT2a0^-u6tMVmM(`*3kW-#jlime2N1ngByH_NH&PR!euQ0n^Mt4|+RTe|&_Q2no`ZIBVqz4LN^ zpJlU$6H0LAr}5GRFt&9uU5%j1g?wwOtm|E6yLNj-oQ_GCA?k?9I&wA^g{KxLM}d#HO-=ENxqLEVij9PL!lCoz^x#rh)K~ zV|WYVdiafqh`w{YD%Va11H3xWbmx!(UK&bU%d^v~`hSC|m(;SbmcDcDTz7}?#(Ek~ z{W@xD&8qH_-A%J2+yo>uz&y-0CgeO%R=2Q;2y2PRb~Bgwq{?beKc1%%L#Dr0Sfs9| zHDKG@ToiVj6(JJ~=|W0gqM?w~PX#TipYx_zl*GgrT2Jj|tAC9GO3VMrbIiLIC=Yba z{64&s-WL>2=e+zTz7KZY-%5k&GvR`jojnY_(TJDv-~41^nqwAJYl-d!B5HEBZN6M4 z9Z5AK0oqk@A=51iB}INuPa|t?33z0m`UqeDdntPwoS?~(UlY5I`iN+wAcO?xr_BJ& zh#}Ni%T-v@ysy`IWuJDRy@hGGJAw6rzP64ge^?KNBj39n$92qw{6mCCgkd4HmqH-e zZVCLgYdTCn*X1P&zr+XhpiOTRY2Xf~e(-yyd&|a@u=KCSc58QN-6HwLSig1RRNR6! zCieM^7$l7lg-&uxJjXJ74$;!_?%}R%bNibDAwqe?5IQHw6i94>*9JY@y@^G-p(#D6|v#i4%OuP#A%Agiq2SHE$>t$W+ z=r8HB>3#LN__hEbKC%+;>$5_h%wPAgdj=S&D@}Y7EEvQx2{~c zNyPcH8acW%U2%!`An@L}Y113hag3Bjq52EqTmrZE1I7_*jL1jg=+kx!ts5zok+1MM@Q!KVx zNNAs?^~kCK9i+^{?JW!jQ*H#Yc;qO42Ltyso9MyaP?Of>s)wU0-qJ?T7ohj}4~}dd z>$J-4$`UTg%uAt2|7HwSmU)HB3Qgg9Kh0Tve`GwS^?HTs6h^|R`gXwM($5}&1gv%r z1rGfDO)1t$g6HjoDyk))W)-I*BT-)3$GY%??f*rOyx#QU~vT8*_sX}4Uq>Gjq!jH$(^cgidl^}?@=83kg zus2%vN#3Mctf!v0zlQF>;Vj%Bg9#lAJY%*t!5)H^w}lQMtu{}v&F(wl{4FkmJ^Uk* zmaOota7m;bycveem3zr*d??YeBe=xdHg7$P&|j7f;`gRbQ6f?P){ax{nKf=PxbDou z1o&*7bOVSfS6Ksoa;Zck>*%Uecomnidh7Wx{aC{(H0o{GgSuV}`v|tSQw*#fjCZR$ zaZ=B4VH&$DEZ2^_o@C~Y;Fv>R;CvGbl&9KX z<2vtCSU z_cYkIzs4ShO8y*E&!4=|upr4|hN7G{Yjx)4lhOgo5xSxrSA@Sm0y5P;BdOCxD~SVe z#je)bLo6<>q$A?q0&dJ5<7R8Mdf-*mi!Ff)mA7bK_zQmwoZ12#*EC$pu664H+s8!I z*kf_Z11+u_mx}cYFsu;i>^*Je!eqKYPv?K>D)rT}d6*?uyyTvzpw!ydkr*y1)At~L zzgN^|H@_A;U2FyZ#~vX+dp>;5Gaq=;Jo<2!Bu6J$Iun25#L*nenBn77P8|YpsY;&2 zN3q@+$LaYhKaNPh8J7EeR?(h4799C(L8r(c$JrnGo8GWg+=UjE1+!Vjonuj|>9B0F z7)@*E=CElw4xDyLM*)*olkq5-?S2TPBc))ce07w`B+??XpU{6}#Z|b@34ai{A3ts@ zI|~A9p0A@8cYecsSR+!birZMUPo)hJ+&2`HWx#03Py)Q$A$es`ADpskrRYPuq@Ms! zEr7?BMZc4jQ%S7pOFnOASQZ{a&5 zM2DFbE^Ijp=8GQaDY5W|92gYg#yUAwO`?#ri~Zu%e7Tm>iT zZtL3`W^G)34ltZ2+xfouuvSXeXk2clOph&o@(VX9A!b%=VU24p#%J%ph~zpp4#%HQ zp1?f9{WT4Q>C%P&NyE-=OI>El8EKk)xBA;AnBT0B-_pWmgRN(m94-RZaMroTR+n_{$D%2ZGro4 zuy9)9C1pngXeuf?f}0|-(Fyg=Sr#QM-><|>&+N+!n=&VZ3obLQXTA{cIadssRAdj_ zu4kFbr;bN?CM-h8#^Q6@^C6aBs~d3&@RBIv9b6vGvTnGA?tZ?5*V{gXvvJd(AH!H^ z!ogc+Um_)irvoqR?22jyXF8rwGP;I97Bx1#+4da*J{yI|fH$Zgr!(3xi0)7CJmL)v zcNikdskdv_O>y~4{b|9jxvOXWBFK^SX8qivIh zk~?P<_eQq8kOtnv@2l3|!;5b0PLv7Df96}9lg?S?62k24IP6hPL}!2)W4hqGVvbXb zS>e7})zW(O(zRTbN<;%=b^xcQ8NT4U3e`qP>Om|G;VUrYk7s&0Up1SAO(?VgQ49mJ z&MxMnuhAJkeF>|-<){X$VQbtBcqxE@=KS@eIB#Yvz@^|6wZ1~b%qmT5(beH{k-u(} zdp6Yq>9K1*rW4n5U~#`_6DX1?%0m$wb>sjB{d8Ef2MzsGvc z?kfuvvuo4#O7MPA^uYCXE$Cm7Q{K^q%`Pul;*XBD>ysC!=DuY@%6L4*y`6@w(E)@pF)5ye( zm`T*k&C0|~Swa~0yJ_NJYNlx9Wamu$pRWH6b0%i{Z_Cxr-kF$%?Yp<4lbNZNiHn01 zF$*&>KR+y!xRtGonG-RSxUG?k+5Zee%p_@MWnt;^KRsm4>@8d@i8)xm*QHF%q~dDq z;`#G?ZYet>3o}?I)&D+dDi~XvnYa)$X;_(l2mfcP@4=m2oXm{uU_CM~y2h*NWquPh zPi*WHq_u4yZ%AyHSD#g5mJ5LfL!uK01_Kc9K^7EehOP2@kRhxn17eE*3cLP!=zPjv z_B)uG@CfTjgFH$*M$aIc37VSi<&cXNNw7pK1w&SM*`@1GJGda}y%Tg!_6XNlrz{)!@28)! z|1vuzq5-DZs)^&EQwf`-cdE-Hyhjv%UZlhCM}&aPdB5%)XfHkr5{CIX0P3Kn>;oyal|gEIg+AvUX%aIPL% zMJxWvupie&%TxXMNPAeVZzQ7~jI{a^G_E-ipqdTYK}4rv-ajv&00 zzE4z?8m>yl>J#A(z1=KvB;K!HGNJ>3tDzb!luu zrWZHf0{z#}h$mzK2i_Q4mPL4JX&13)O?i028Ld92vIl?{l2aCN!8(=J8D=7?B-aBi zxQ|r~FPM}%5$l>B_~1l4!i9X^PHq#$qLnEgNQ(h+*e1^gumt3ijQpr8WsItpX%Dk| zc=5wEY4^yUul*!irLTP^v;o4G!OueY60@deNk8+PjKW^ zM0Tb)&Ur%eAP;a=J7pc+d?3B+u3zp0RgT!j>2G~XL&nzRxvP%tAc2**OD?$``oj^d zHB$*stkcgwR=tXX&NDkYVjOCUZmJC|wU7(S&u|Y`KmdOj;g;Dwmipv46)QH<%kw|1(ZBPc2YiQZ)uT}9cstFr)ZDQ-CVi_~dd)Ceytc>*|7l1n;mjEw;z!JJQyLgDHQea^OZtVEf%z}v`)&4 zwaP~kl1Ez0g3Y<}nTQ?EG#r(E-G3^6|C23&8CJokT2Gx$sG%;k3zsaRA>?t2{daLk z267O9O*7q8RyaX!q0i^-U#GclvTi=siCEymr~3Sweuhe7y)CnBP#qmNEsx%TDSAUl zdw`!gZ$^@%qy-2_{~DclLv_{*(kj8x5;u!LcERu2z`M(2o&LIE)=~w_RT`ns#zqCX zHMj~aUX-$!PY#F@R&&k1#8yt8H#Zr2eu)nu9uOpv6j03W=+HsuVyYliV1>v1)diCT z!L?+y#GbnAtg=4-cK`&SK>--+Y)hPGiZ>Jet5kU2{ocmq4uI76KtxXq6H8Gm(B(LK z4<+3<#oXWGwNxpi6`Q4Yi!QAMG1S|iM^ixKe6YB~3ZXU2j>I2-U1hM?vg24-D3$(8 zt-$2OEkxe-!!6~wupAW4z%88MI8A)kRSAO!9#@?}91w4r;k8BR7Ee8JQ*vFPo7}jn z2oUU~2hY-XCyey@_E+3b=`&RA5ytzm~w!Es;kbv(eia##^S>?zz zB*csRx;7LLl}Q^)kZav1B?7zy2beom1`1A?fdt6&i4sf4?(!{S$YEZBNgH4@5VxbWKGzMeLS-1X#S zH3NM!>=AEkJah;I>dInh@npZ8k-HA~7(Wo} z2K76%LjzUL3bBYw_EUdBc>~(%+v!95ToAl?NyW=)#~Pl!X0Y36(Y8!L(MYMMxxTe~ z5z%iUk2rQie?TrvdkYd^FDwL^W_n?wAGDBGRUqdL+cmq5zO))yOe6qW)fJ)q6=zGd z4w#k?=*4X$qUTIB+NmJmKtLn_tX{8rkFnb05lAo(aM4Fq3l;Q6&u#4d7)HuzrQLMj z{(k_^Krp{zoWjRPZfeRijS&)62}qz>MRi_aj*cBUr|TleBjve{F} zKSmWL7K;s3mM-(s^)gKW$a@f{{AQYES;=RX(#t&48SiS0h;Z9hfAV!`3)jv3yC37} zluRZoY(Z(a#nqPAfX8R)I>6~PVO{0*0Dy0AWYf?zr|@XerDy&jHeYQ$(T%m7~e z^d$XY$(;6s*(K$f{MApEUG9hAMdalb>#EB_MPb+#7fYXJFd0jdz~?;cJR1;4mIJ^r zTmYB-*7@`h*~wBRGD~+1Uoo)^gRPE+)efCTfeKfR<;IvM-fgKY_37DgkuIw;OU_hf zt|)LiC72$gPP3}gris@z&5=(%x=uyq)Zt6GJk2=u8Y7p5E{jn<8l&a*YT*~4c?K~* z+{LSwm!OA}4kLMwrpBh>EQ>FDi_GL4Z(GC|4@X^B!;n~46gh~sAGoctCY&bAO0lzC zmC91vT0J|W@a}`5L0d$bXLolOa|b30f^o7Zq&#=mR~mw)#tDCim7D`R3mN1X>Oss+ zMNN~oWB8oI5|Jk4=3I&~b`sab7mz=53YLMYlK14jE-Q#p6m;QEHmz0#4`VzWdE3VQ z!M%ITmuu?B@ciPguI$U@aFk`G%)>b)ViBDt@)_lsj1w`D&j9GD!!YVNa#LH*#8rvR zW15JG+J-`q*xQ4-w$!SCBO2%U`~pCx*>76iG$7)B5VN+-Q&oY8`VsStx}v6z`-4;E zs*EqM?#x=rI9m2?z*mk(zPpklr)}f9R=VD}H2~~fe16G(tbASK({ntXxUOXwc+={( zrBiRK$87^3zP`da&Yf6jNMV~`uF_WWVx7kNgy3y?!CxeyW+3wdOMTBd3LqLI8N~oV zVv29hXq3hhky=^%; zrmC{1lzBEJoqWCbP}OOsqM$6(bLIhJ4T09c1N7;Iih}QMPNM=He+Vwime0zgD(?huM(7G%%&X|_a_5QnWw=8S^PWyR7j7C}fvf)06ihJ7$TOp> zbqzW%5F>SrJU-Lf<|}cvr4VVFbr?W|%uAU;Kq9o+;NgbWK!+0mEUSAt(%RTpQCYY= zM^ONf{a$}~&!?>(jsQ5%=;k_^;WQ`XJ$9DQ>$2DhcGo*x? z@I6hVl@(kf`W{4(Xz1fJ=XSO_qPhYgZG|<`AxGcKFu3Pe570P=X>vdLHe6La2Y2iM zgu~H74l#vuG$K_haw-ZL27G!nAn)#P)iI5;jw9z8vP`ErQHLssNR)n6Y330ZtgG29 z$XuU;DnuyHlcje(oI_b?p3!C_`#riI0N-3|=BX_7Oiju-@ur0;tr0O&o{@U0N{Gh8 zQRf+Lja>`C&2v1R0O+#F>)|so&uqyS<(b`Ghk<9MAsPJZE-$heMX-ZS`b^{R=A!ab^Jj?4ry6%!*CGK)raqQ%91VFoOIx)^s<}pE* zl@I}FpV(E6;_mO@z12}LFC+>Pb<9Np^KxYYW~h>5;|mO5P>5!1mZLxv&e61BS+yUm zxP|K-irhDKc=y3YF}qaf$Y%*qSe|aV&a!AfBzE|Vk4CWynSc8RWq~#5I6~C5jdnc% zId(j+s4~r*+inw-aL(P{*ah%T{|k1F$iSfoKutq+Nks8@gsOHO0B$N{_uRI{n|mjM z{Xxfx$`bwL`$<1O8PaffH(C`45hBWr%tIPiReCtexvXSw8xKdjyW4Had+mE7;;S9J zgB&o=$2c#r&X?w7$8+Wopis~5V$Pe{T%@Hj`~r%UZO zUnKlEbGKHemE%drk#BEw+aN?$CFc@g&9g*80|;kcWLe>&M$s7gtRPTT%=4L20yi~8 zbXlbzDD#$XCp=abkf>8i)FG-n7ILA=b#4CHw3?U{^bT|TV*E`BG z4FSul7tUNoMG?Y9N^xE_h7p(jfWtBNBNc_^g8<_5p7P9p^A%KO|0=JCM92alGEosB zOG|7&_a5GxLg=$QC4w)=I{+G@&KHhV03a(+6qIF%QO8kEosn2n7F^dl&(e=D+sZt= zCjcQxKkBlalY6Gjlihb&jC*$5ma0lal>I(FJp*unRt3DHwqaEnNB!}Aa?WQ0+maco zD-D5`MV?VS}KbabsaN1?R%MK%(Hr7q!Zx1 z6+=ytqw8ul5vW++K+dToQb(rQ^mWE|rxUPkq|RxL?&%OeezKoaRT;yt%OY#wm{IGg zD3E1ea>VKQUUU9baGT=@dSG zN~Df|`$lheN`z^~v{;yecU0t(-BzzQ%1pz=j&+=%n&hP+K!Po+oUwJ< zW9JM_!MUVz0w7U7d`jzB6kJv2vZ$)4u0X_^QVorfswzEdiaL?$>WYa2Hh- z@3zQ1xarvdxvUz(XCe>K7^Uk;1b~iHT3HkH#)ud%SDIBCxo5Rk0KD1I)mHP& zYTokkQB~dj9m)bB>M-cCkoQ!UV1@|1rxHlAp+?#g%rvi@Wf0M-kfv16Jg!Wn=2eOU znb$m{O~WST%{*^6@D9r=$CHecr77GtRM!yEY0_~@60pouo|6ebmeuNPN#UGlh*5_n zQGZ!xDOWmP0OnaGrdpyXRCJsWMW-_v8lyQ0BO@G>yK1Cx>e>B_e(CbU%|btXl+(%G z-Vzbzxflx@MW+d(SXV2X0tyA0RCTszB4Wn6>S#}cu4`JJfpVdO$%ns zv#x=&jJF%wwptab7!yUhj<*|X8>s53lT%M79wT60beym(06~?@LfcC7i~w2!Eh|J& zz zsQrL-qg?3`Cgb zxPP_NX1qu`kyg0?5JC!9#)}_LIGhlpoJ+Yn%{o1%TJO~^g|t&=OcX?|vZ+MG?8X`M zB3+-b_&BEQe!S5oSFeafB&hDbEuo`cgY43P27=>W8Grw9-q-I*z)o6a^w? zSU}oSdq;P5g_|p6o~K2RCmqHMbTZFRS*F7nPbV%4SV0+psG5??Bx%>Xc)Ow7Eq?eI zfA#m|GY^2sG7OY?Dhi9Dnpc4@3!O}<~jLW1&AODB9jnyl1`ZAO;CBwF*L%K}kFOj!;yL{ycFf;KI+ z4dz9TC)vM}2$cmylAd%~d6*b5CJ<-ghjm_9qMAHM2$cM!fSJ9gt8Kh$HDh<0sOybZ zr<*H;sK=AcGeoH$IYjD)IM43pnl>%g#Qn#o7doEun`_-RmVtQlwm2M35Cgz;q^@an zQv=|630)W8f4sO0a*l7Vb=QjVcdDTuu&g`!w40t7np!g&kYhpCRY`NcS^NWVSb?qMRwJsH)VUm|UVssC8+EmFwjWaukHJ~c7+r*}XBU%C<2R(HO z8rd3Mpl#PPK-&%Kii=#kUJpk-0B5oXA;fndKL@09P7UWQ!N9pZXbk}vM@wkPIrg5* zTs5P4)iu!l9e{Ydfxr>r{fBru;dDxc51&z8YhBX#nb#-v;m7y%p3L+A6D9hO`r`q} zFmPSF@4l5yMZ-+L{{cX1Mv0MJdmzEK~%SikwMS z@|>#@M0z^O(-T*fh_#&<;RMp;Nc?x-YLU}8>*-`f6io}(U~a>;4IXYCfI}z8qsC}d zqtK?6O%?0hhqDVFMtV75oMP7#6JKBJSGTdw-D&1wkmna(*3=5RER=b^xx%(Js+5LF zyB_mQXTP6>!RECmr0`}Ty=^YJp?x7=?Qp$|Z3Ra>u6WwZsiUSL?{r!8c>0qb5+X2T zS#jng6i}pKBdSRYXqP!hMb1|{%(EPiJkPY)JAl7Z8x#y#&aniGZ z2HvB{XmVjL;Y-L{pk$E9;ogq%}A$B~R@WikO# zxNQNrmtGG?>$0FrJt>h?3U*YLWZb?8R3L&y^wc3ncYOsw+ZvhYd8KL5{XyrMZ?2Jf zJ)U%&`0azVB~2>;98Q>Lcu!@iO=V?6S|g1M4U^6@0ZG1`XAse2C#R0vhRTw?*LlJ5 zgmtB+)~Zm`8mPukPi|je(_jss*-xfKexD&s;$9;#j0l06M%!AO5_yJY(XLN{Y8b_| z{7kgQRF5A=U4v^IjZx1Mc*IDZ#*RMZ+wA_>uCAHyarSjbi+NvW|J?qCiz5N2(~V zL60Y$X0A$pxHG{D)D+1LjbyK9U%KxbiJA@b`I8|po(eM zu1_Gs4yy@w*MP3aCw32a$b9U2cYhmy@&qc=P12AodZHXw%S{4FhAmgMMEEhDj?(DhEMg60)~zU*ZUlz9!oKz0&R z-QOP7y7K(`8NNa6@{;oU<$|?>4k)wHw0wkERR9&2GLe0jMJ=+=oY< z=J@hThm&>JQkF^X)iaxD!qV+|Q4@}rg|5M;I;nFB?O8*m`B_n(11-VW9i3(kE4MAy z6*21P&SL;jQF(dgs??hu0C{|NZyx0SiuwuPkExlhDwB9oMPp2LIXhU(O3Rw~Y$Cqe z>9QgU8;lN-=0zR5aiyrPpYiS!0LnAkY-nBO)Y0QJKe5%ytS`_L=j)~&_6#$!?TG!MBK?FK8Z)-?>*akX6aQAn*ZT;aCpZ9#V#npy~ zLB;l%97DJ>}LPX>}$!br`1v2sw=#IJX{TW-yad)i`0iT}f_8Mhj zeO`Fp=T|j=(B^JRWay>%4dU4KteToh3~N|lQB}sS$25bw*93=b>@{XpI1j&Qj;x%{9E&msB9IrX((k zR4K`mE}6zzmX)rr5X2ux{oy@TCGEC4OmaNIxpQSmsmySDjm*<9;d!sq49ry5^vzqT zGFk%fI{r0KYJ(6#q{C>3;}TK0Dp3@e=Oo5w(tfncjrNHwrm|2X z5Mt^4&6WK24{o=mvLx4OjB+^oKV|^jZbQo|XZ03{fz(DI{ebRsMov5)a~}6i8lphI1Gv?gs69`sQuCZE21?&E!4pwpwHW;9T64VUsJ9 z8%m#NJk6TwZtj?B9lO=S>1JprKSJvmm}7(0T-5nE~) z0ZPDHhJi05R#erR7j5mVgQ%7}Wm<<5(48-s*G@f&I9~pqg$n7t}mj0PfXOQAVy;10HS%RrfW~O8k>ohFa2RYec}m;R zrd6XdPrWIdX$fu#bnHcyuXg(Oetu}wQ}JogmpuTA(M^F5gM?u2LdGdg)rgU|8<=?E ztazfL#BL*XMnU}Rq(6S(H}|ovxEuAuBLHe@iozeBI7U>ZwJhm0XZt*JPWv83p_|6M zC03QY9j;pX;iKE1VtX6fOdV%28ed>-0#aoxEl!;-Yht5^f!c=hj9yRvs)DL@Qn$J+H=*9bxT z!Srcz>WophdVWd*s*;#7&fes~uLo46dgop{9Y*=e%&9xp+ zSXSO{;-@D+&r}rg*a6_%YspwVsb`E+e0sT*e*kb*UYx;Y$PkESS?TqVnt3lB14f$_ z1(;IvAu0Z0hXS4Tv1Hp2R=Aw25?M|~4(||!4##*p(dk5?0-zxp;^OT_9Tb!GIA zzUyHSX__fSZ7L$tX~xZtZm;On>;900!Kc1>m%$M~9pdAY`?GJPsc2rP8+85bqjZ{O z7%0!VZ9t^+k^)|ylZY&pFaP1KkjGr*XLT98d^wYO+$eoS64Qq z0M>$P0@^jmG-F+LnyhV=ng(~*>untx59b_tectQ)Px$n#$5VprKlyt8?j~*uH;X<# zbK4Lg`$Ljktt-E|r?%1iE3m_{1A(_&@*ZoTJj2~h{Q7o&y9ur5pd7V)TI&Dw$bbAm zL1r@v-QYInO%*k>rf+hJDUN#EcLiLQPGX*Lmivtv=jfx8c0d!;#8@ zvP@qOYmn8mMb?Glk1qi9)W@H`UH;;p6#lfh!-yEAEW%Y8Yfte$e;SIv`7MCr_G*2* z3yohl8`6!NV*c@@KYXAf*CMBNMHH!X0GfM#dZD(7_d7n0^8GuiD-cr<$yf?LWW7b5i z2RC{@M(PGG3aYE{-NSfSQq(F$%;!FkX@y0IaZ&&ex9h_;w3&F~RkP!g{qf1J48Qnh z*=8IydzsvaJ#4n*q074}JnX_IU+(HG{}zDzu+M-0=-yl{*JWs2EPX6?rE~h>k)kL& z?Rp+J0Ms*>w5i57m401SyUP9MM}&oreRisXX0)6Y!f)@^+lGQ;TY%D%s?LJFH=h;&1q-!rrFzGN#*Qqd4`xOx!X#ki}6kiH!l7`)+z-6IPFp9zKmtPrBq@aF`*?ug)e^e2&sS1{ALM191OB?D zVNRGf_v(oPFwMFwyxW2u*5z|wzX^2Cg)xnh3lHZg%TN}ytQsRBs&jl+--8KfjUzrI zHygRLET2iL^ZWv0(g;~rIyV|zgw82RvfM335lu=kQ#KVjRCx|G%og6{=~*9@&Jz1| zmxqc0xJjrRR8&p)YAW1yS$_U@d|N}I@mp(Z7800$^R zod*iH?21<@KaBwVr$ZXB79#)tL;c(gzqp@n+}f0lf0O;~Z>g>=h|0%DF!Qm``fVsF z6cnzC+v_1qc7rT4D52|$H6ZhR-^iwc zzzq}jhs!_(u4~$DQprTs&FW{Vemtc%)thSo@nOfOiTZK5&O=FgC;1OA@E%tiJiX$2 zw|sN8wjMyJd96rtK#_M^J%{YLNa4o2eBN@XC}wWiGyw89Rq?W9e|Q9-Z*J-Nwfg?J zY_Hdvrkgx(TdfM&)d1Y%L7raZ^-%q;1g>M5OfZS@(!f3jK&QdwUOnrkcHz#Z=J0L{ zqsFa$2e2*=a*o>aB1}&`Czr{6CKXQeSk?=Rmc~w8&dQ(6AXEX|MNtkSm_k|vA)rs0 zEwW6j0+&V($C^3G9EfOK@p909pfiO-WuZlmal$<3hs7oTdvLS&oKJPemLzYPD> z7%|Uh&dog7m$BrFk4C{IlVV3nlcqM>2!NXS{VdDVB1<)rH5z84s=`^npf)RES#=Hm z{oY5>t}~^)etkFJ=CJw|15vV5Ea&Kd^B&hbI`;9ayO)2yUAE*0-Trn0kpH+JesMoM zK&(BA_zsdgNAGXss zvGiD1C5j~jhz0v^?&$9a$}@RkXP0b?kb|JZ;((B+p|v5aZ{`(3=(^fZg)ff0oLxqcp$%glX1IgZ&Zr*P1!{@O=1J zf8KrVNU{5EsDFP1@c7?dFIyr7FCbB6Qe#5|U`Pff_{hT=bc&|!pQoBc;bx-8b8{JET=a*h)@c@Gthf_1ft zU7rOcUx-F7ofE0v=5EtttqAU@kh>?oI%6R}}i8hbG zdURmrvhI*nELI#l<9byk?|HX{b2y%mXGA2+%J*AREnZdt`44-2JyP4?@kPITyWG|J z(|~O&p0Zx+r`Z0#?;roiZviYjqKN8Aw!ay(53l%Qz;<}EJN&#J?|Hr=08js7`|y8$ zjMZKD)`f!P?ixhn*OlM?S@r7=Akuy;|Mrgn2rD`d2l8)U`p#2EF>b zZu?vJ^2-`PXz1~OcyssfU#kzVPGO>ICN+8cITYDCD6wJJqzo|g7g4>WnQ8FGc_`KS7^pxL{_{jIN)!1ldyyn^ zhcT>GiDix5IZ~ac5}ap-+Hg#lgm9PXR(Vc!MZ`AIP*uTfe*q!s)~b@W8}lJ?S+p)= zQ@C*@;4^PHjCkJb&%OoF|Fl)2wx7v4o@4ej;Ppgxng9Or@GrkPedE-jdQ<>+|M$Do zKYugaIk%#Hx0XK~E&fg4Zo99tr+=}jp5)E{@gBgZfBn^TNALgj_0@k~+rRlCesx2` zRKFkR+d>^_o{bNA%yR(s_UGmQ^P5zWGV&Ng%qVh*n2sztH!F!1Ih%EklT|XgC}4tY zi#?YU<2{vy{lx`27|KI=~6Z$YT6GV4d}jb;HpY7 zn*RUdOu$4%4pSi)IhZj{ay)5_RF(EOAt*RQ4It1ObzXS8Nj`d>si}vr8URbneoDh{ zvhSbZc>T+-v-hvvKYR1~a~En9uekoz5kUXTho$Aazddz7X+HeReEy$qG*?Imv8G|eQ>8niD+Jw5Gn#N-T3n1RzE#c zk*D!sQPc^Y9R{CglB96pGTk)DJWUIqdd%~AaG`vTE_Q~Z5I{waBIg*RsY)&cja_zb z%vaU(fVF@6{A2xi8*3ugd}N0s5qU^|-o?3#yzMd^S!1N4NGg*xoYPE!b6hK#By${1 zL!;-JF$sFEftN`AsDM@l#i;4vvJtf$kaa@)qeh{EkN@r0Yfab3dA{OUffU7y^0)#} zqMN^Y`Q5+0n|``f+rIUYNdYXu{rJlSN6!`q_Rhtqf2 zvi;`j|N1@JS`Vk<5JTw!kR(~QS|G6om_T|_ii>JoVYws|O*7}YdUtL|9WR*ebG%Ve z(bQJI2Fi1pXArx#!KJPSq{TdspCsoz0Av{hV(rME!JA7NzIQy%ay;p>81sfT$S{y| zHgyh}U|q z(0PIP>o+&U9g8O|y)sdNA93>^j>|&}p!vI}-~6v{^e?)*c8WsXP{h^wJht`JJS?wO z_1pjDtDpUE?*Yu;-Q4_Ym~Wd{AQl9|+EUD1`_ni6{T@wS{&0%r7630w-Kcp+M94hV zRdP7Y@Q#S|JmihHEmf5qj`H|K)5d0rxVu|q*}0?EmRxO?5w{Iul&-fi@my83X+gx! zefdWm(vI4od9}7!Bo^oMh%d)fdoonz+n9p8H~WJV5EERw}$kxh|OLqJPF zLjWcH0XCrjr-cAX3qf0{p#cKa5GZwv6pLMC4VhUPnGtWelh5vEcCKfP!#03B&eSf8)U*F95#( zPv5#9^sl#VH>TrX?6R7g-*Wli6!ojB`pNNj+kX6^z5h?%0@(e0H1$}0S2XX~CzKop z@|hU;!dfC(mwdd~rUJlTWSUg`rhR^7geO+39xPi3Z8u?Eur>bu2X*f@ceir813+z0 z!*VLCe@)j>lAtV^I5cex^$7uKqQXkO1uwfLNQl^+b~aoUO7@9=>I3y7LeP9DNT77a zXmvD8X{vLiNbT$gLxgpu{_na<5Cn{CS_bLQ6DyX<7-71K=;1t))aM3(Ph)FM*7D$! z7IqNK&Sx+^wtsaz|75@U*%?6lMZQ`00J^`~@sHa-`@KK^GJE{hKY#UK{q#Sm|7M^6 z!ToB}*FVSr-2M63{LXgwvv#;yy8`CnlpoeEBOX1N;e#3_0thUWBr?wkLS-IOYnWke z$gTP-#?K6hVX=I*U6ci3pr`E zI=2dm_3fD6{)PPMfA(+wZ2Nz{G2y%X8~;!EU;X$0QTsb-p15Wm0C3Zf+s*nf8=h7^ zr}1~*tiKw@yVRa~VWNHvx0`vz0N9CC1@1dYfT>{AU)4%tA|`fa{Y^6u3Hm_;xzP3D za-m@e(`5ELSnEGN=#`}HhPP{fI7Q>_vP5E~A41=g_mT1lP?1ZPQV3kP;dBnu9GN;A z`6Q)=(+B{X=P*ucKB5^YGSAYq;vA(3lH^K{rm767ICRHFdvA_i_sMMp2-8GN{E%XVN#@x;{ULpkJ-spE z&Qw7AMfUXg?~$Etna+|#?Mkpfny`m67dyPERt7+;qBfBdjeF15NZKoF-_901*0t`kty%mt?p!rYPWCm?kO;#mQl< zc+W{9iA9!1;n_6nSB<*+>z7wZYIbH8032|R{-tz3c0q`IRL7BrTKTjirVps#`*ae!s=ufV=zBQC(;ap4Khkj5caOgTdUZ}`pa+Wa&0jh3LSE#xn zW8##dC?baxpv6m+`Y{Y6Bv=K1!Z66Aqqd`KZWI%el&w|u5b5}~C@9aR>%zG<)<)OP zY4#rlbeW0zo&DQB=7?7k)&Xvwzr*HL=Ycqjo6uY zMR#kaRet+F|JwZci;z;-ud;Ips{%k$^Dx^gn;!mz{_DT~6Z8AwhuOo|-%M9_NPgT>8c4$S^{n z$z_Fl5x_M7T#_kf;@{y*GtGJ1ag6v zBtq!iK?TRoAq1Wr#)%B8dPXa^UhVu;8GWxZwP?f7VBR&=b!9-f#eBDY=1)_ zgxo|G(d^6=0GPpJo=_FBW(k4RH_(N+9bFqB5rk_%NB|RV-<{m6SQ0r+HR8lxJ#<1T_z_5z%|`k{5!Tc*X##(hGIXIzG_a;i{?yXaMWf_&F)OC0|vh#X?K}iwb(=^K>s-iBDVW2#h5GYMm)DTh%`wgFJ7&g5lkC0)$ z$;~VwrS?e*K3}O_%dz#(#fUm7`&KI#>3q{FDFT1Ayt> z4gvKS#ucD|P^QAfPI&Z+0*7~ZK4kzrF^s`D!8s%ejb76tg(BQVNdookZ99`D==w0t zT;$?hcslSrN3P-3i1Dg@2oinKoTD_Q*+0sPab}h zl$)Wj!oh0uM0#KHYuS%`l zD3~nIrR&895}{!XZO6C!kXv*H01`{K0uY{#^5I@)$5lbQEs4mb@yF9*^2YJ5Xwu|j zI2G-J`##JwrRg=*GG4yKMl<1QW^GHsL~Lm>@Vg>(;uiE;nL1TTRY^$`+1#3_22f(n zDv#K65U2w?k>n|DH#9ECBcAmL6hw6Du5uJLqX;585Kl2~O}Sl%JVTc5{`LFr_urb{ zm7~A>pqw@|?%_5$0G{RPpTGU=U$x!8%b$L-z3hS{LK9_2e)m(q`ucMC_M2a3$@>FT{kq@GD~>sbf~zK3J3j%WDne>_aWYlzKcz`%CQ1`33Z3y& zo-vc!K;jyeIL*;cT=9Fgiu7J)7wQ^7G#>(pN%_(+Mw%u}v%TKxXq|PPHQ5AA*ZFA} zM{bQ$Nn-lIb;S@Z>Iezrh;ig`M3F205gGW`&>3Y*hd|6?79V|p%0lj+^1}{5u$Bap zrIMNcZJ9k~E%G7eVaV~ z(Yk!})lcsMJpRX@3L!gS{ob$s@9)55|Mt7^=GL#XAsKEb_g*W6HE1fO?(KN^627o{9+UkA>m;9 zf6y=bQ~s9#7AIG}#(l=XscF^;>$61`mgfKEd82dOm*zr?88OtM@T%%EhSbwj={`g{ zk;Ki8`caWn|KrbnZnLkS!nUe^w5EXdPoKg%@86dB6 z=2CH$$WKl>S^sSxw~PBi=Zwn{#n0SrI9;VESQ?!9c+?xwO&4FDWY zcy&X=6z(6XEaP$g`c^FSq4p1tl%~-mZkm;OA>POQp*)k>srM!=JU18-)G1KH)-L$SGUWs9ISN8#ZY0tbQtuOauN$6YtSMN_Gbu7*su_X0ggh=sMj(j^P z4*%?L#%iTUMDypjJnaCOUwtq^V3=o@-W6_T!ls~p?r%-~S+)A$U;S?%@BhUc0OJjP z{12<*A#8uq*^eqej;-$ec6a*8y1!#F0FXb)-T(S+{l}klcP43N{{d2FtO)Rv| z2$H%PLh&?t=2At6KC)JPu+VyuiG+T`Bu>F?rbraN&PK7Q@t%(#4-aAzy<^6xZCdQV zriqH2$NaCVrbZZ+{SstGT3R2u2&s}_DtQa9oQuPPXZb1F%|lH?r| zJA5Ga(0E04RSu4{dD0H|?<@@BC`MDmuxD<=Z@$FMDlDb4K$gbpOHGQ~R;DQ~BWtNB zs47+X8c}o+a-N$m98ZdN#7CQmvn-4wG4X1xcB+(T;ZoarKkgF%^U9?AwHe0gw?8q1 zGk^OnUfsaj?O&gLvYXb_ev%~h4B*ZG_+9@yug0C7OPW{YN(2L*k+eu_v3*D{zWkd9 z0MomD`^G?!on`&=hLQx`h)d&s_nps7{cr}wrN2>Z z|M%RYh|$Ku4*uh0H^gTdeS6Dh$t+%>RBRL%GQR%@p|?sI!oTeTK{GzhVA`1 z+&_ZIynoEr830!r5G7|GY8ZKg!J(_fPJ3KWjhD%p|#C z1eiVmNa~rsdlY>TfAHyaTbkaP^95-l%3BX1dcJs1+fCSSq(~xKDv4Y}5`BnyKhqTY z0ZfQ~jUjpwI)~pF@BHQ+x+)YRw_zNw&e&M60|^rPfxM@#$3jnuVP;`53=4wUkqC)k zu_2^9ll>-?X|Njx!o#C3bB)r|Tkba5w6*3YFS1m=`xxpb`_%&g`)W(=01+W_1$Ce1 z+v96GoWt#oPxboGyZOsk<4p=+T5)%miOtAuvP&o)Cw}zvCO!VMH*-ZG@Pwon07(|M-JX+uz!_jI$FLNeb_2oT3-HPD@u6 zZnlyb>SwN7XDKt^*HxlP5O?k74|F>bI|sk3U^A7wy5sB2@btg=w0G?h50D#7St*M9|IE_kW{?8|Nl zr*m}JYFe<7dCCuy&$3|Af4(XEkv={lO=Ozw&wib(Dgf^Fc6eQkJN7A!Tb@=q34%qi zAc5_qc=Gv&762b>>4r#XeK;UVrXRcthU_5eagw&hH1px4*O82&^{Rch9ygJSM25qq zm97`9fb_NB`gKk|@TvA6AEGKjiN05R0xSj5G+o1lt`@#=>dFL@>TX0tk#%hhEfn~m z&@2}@mH9J;emRrKCOTJ_dDhS*&az0K1g=j(bY)J`7=7lP7!D~*63J}z*(XwF=GcV8 z5zg7uX!prf@m#TNDmq{2%_{(EyFrOffBuo&>+vRa1$V#uDtlU+`xAyiQCa}@{#srk@pIi$Wr1QnFu=>xoVa2km)+FpOaw zqaEQAWk6{HHl%@S-s7rJSQb#g%c_@1j3Ib&v*-xKd+{Oidzr3Sz*Sx((*(5oAgDXz6r}IZDgRVs-vBYzk_72{HOH z6p39`(sfeiWLUm_U--Avo3+nPNO-&}Y>{YR$v^)#{o?I(SI)aEq&N07U>ISH-xhA2 zB1nE5`Ku2Au&%~0ZswH*!Hgk2j^?{3sT-6{guAjzVOnfC;7@m005+9`W!P&y06(-M(<8F=I$w zpkd_201F`mH9uRWQA=~J+`2vlp=;v2NEpT#u&68KPx)WQRd&6@I;9v#O?B0fy9n4M ziAoYRt%o)0P2EqurzDY8DOt*G?|=Q?ym=k&w(!DFr|1V}4DGjJUD51tI8&ZUnNv3e zMM@TA@Txy~)`CkAA0o~ey!*W`+D|h8KBc6S^84O?f5bSccrRMXBzC?j$JVW7|#|o)`^J*w|@o+qN2>*w#Dw&Ba{J z-Q3Kdu%G>T)>?ag^{+}!w~W!aTJK7BfgTM8UCZU=hH+og=`vBLLZEGNPR71Pla8+| zD6wWBLHJ42vOVf5;pVNI)!_ylqg!j!@ymplWxt4e6X8JeiCDDc#Fj6-vRR{(hH*AV zfA$NFAjk`4HwW3wX8#>UjY5^#km|UKlm_IkcD85r_;X#Tc_u5nX;}7b%WaH#k-l8Q zE|0#5Q^>e4AzrkontIt3IhKvOc;RZnFy6HdyrHgE4>WT|Qojs6`8?tW+gRzUZjats z%3{hgMgcAGOljm)rgDGWRie@&Zhn0rbfSyq!PvDvzHeeeYY^9gaF$Kr5y8T138b^J86!W%p zPU3EQqy0Oj>6h6|lX<-?@Ol%i#&^%!P2-@k0;n6M!H=3yt$Z(eYw|^RKAs|;hh9(^ z2;(HjUHvxmYgl$B_p8g1$#u7*mU8TD8Q1SRA7lw7Ypml$43q$RqrQX9L1P3xaseg^ zjte$v15x9Q_HwyL?^ZidqtQt82xatu`No6nW%fnXD7KS|`EAxl;_dF+%Kq$)S=8rU z@EtRFEK5D|uBaZef*v4)iA32M$@b^M9OT^qq0XE0GBLBcHO^W1bwt1@q8~X8CojEg z**{Zti2MOQL1HQc;)BfSZ1+@|e9prvX!Y1MagEey{o^mHin)zEF6PHhBGu{6f`}UC zv7nhG$J^|q`*#GJhO|``ixfQDx9cs;pjH-cJDoF9lBqLofVic2zh_I@n>4GsZiGDL zoq`Pole5h;%-=YllKmk931Q5Ez@DS#(%K$MgmODPGA%Mt!{AnO}VcYDO1#*M0cJJ~^y~kj~9so0sQnsI;jVFKO7B_EC`f752DCmt?VCG}8^v9M!sv&lOLlgNDv&EQW?DvO>xv#j> zvV5ZuO=~ep2ShyTxhpqpcX@B6DC#Vg+&({wiM&o#LRS8jF9X7m=h8w|s!hLhp8Zln zz)5?)lgN(^NU(yYX|^b%1EIQPi7t+**ChP}`#~n{^v4m(@;{AD zD2(3av^V@GxD)=SUB!|vCb!9W=D7ah;G-mO1XC1T8-WwJ*Y^b#%cI4AYIeth!PYHj zAE`!e)hjP51AIZe!()n|y_TM1VM7R7zwf-h?e4p~vT>GE7bL+|47U7FH^0P1O{I1- zyv597Fr`9UPnZZnNM$= zsrK!vHbxiTOl`Y7e2>pKfpcE91vOKTjbbtvm9nUUl@}w>?9yx1IM{IdZGIcKH3&hw zK~;!M*^2+C48zRed_{;G`xI}kbJ%k*XMZUBREmX0>RxCz%ipx_=fw*-Ply2-n*u&1 zz~b@SD^4QWK>kbot2F;>Y=@Sqj4^CNLPF<;oau=H14VDg#rr@Dz~AP#+t?fw$c#!J z&DzsDE!r)~kwoN_YN6<2YOnlv>G9hvYW6BGb(!3lnvTSR{bioN;aP2bDNe&oHT$vz z2)DG$_xl9vo@L}p%kJ6J7)y7{2A3g$Nc_yNwCN$|X1hRTGP}^{K$4TZVal) zHm-7r-v{_Rm)NnvK!Qh^mGZ@`d8}<|Y*oK!eak-}0f^v$jy2uEcF^GRiN$1UsTpCxZqD*W0!L_&VzT2$@hVtQn9>Ns6AM z{9@BNki8O=YatzHD2))K0^WH)-LV(DrO*3<|jzYj$#RIe&=WDki21 zNC2tQr}zAM^|d#vB5ng-y~eUd8M{d|@n`5au)MuxWwOyuga;i`_x=41TjQ3;KV^}3 ze}BX9l;4P%W(=0whesU&I2U{x7yK=oPy!`rj5K>_K{u*xuz9MxIJhiO&(@hrtT`tY$x#(UZ zwnQxk`pCJPwIM>`-%^}xvR!{UGdkcDMY$Z=g1$U%!x#R`CC|Xqu7$zCgtnKUd3xU+ z9qio$^=~;7Z;x(u0*xe>c7|)kNODz=imq0xLOE?vO=SFraiNMf(>fQxX+oEJGvu!x zY9E&*Pni(OI`w`iK*#Y&k}z`bh)iZaEc}o`j6ZP3bg>Q zem3i2PU$q2*u*yTqs5YJk?Rx`kB`5fwY+)$e!+hbMaO}2Gs5w4`b8utQF&?Rc>6*p zsUoz$bLBKv^EV8tYtT7VBKSnO_--#(9cFc5;V)Hx5#@rlJ?+}oT$AKC{*Z>fAl$!< z&|JQnH$(#>wRn9mO4b$!L&;edl{1KueoNl=@HP7IxNwA_K7F-UdNzSfOJ@0Xr|-%z zF@d|@-_k)goS9aEWJ`n&_ zsU^tMF1mXcIU6{eGyWC*3%^F#7};t8t+dt+C>GOa2&AOq8|%+1STNP&D%fnYP-s_e zwE6i;rm66B3dwi~1s1Z6I13Abp6;Fb^oi8<<+O?_JSwTV&>7Ic+^)TM&0$otL>)Q~ zoq+*7j@~G9!yhz5RDH!L9);@8Mz!YI2fK6ym(k$LxHt7yM;gdMrGNb1%bUv#aq?Re zD-4?#0ZF}xJVHvifNn=xMH}JH{VU!#n+ zsAkA7I?O{X8M3;E(^AuD>zKc?)cTmedpMLu3)8!~nBI*2x^cXwj9?oDY1Uc6Uxj zfuWhOdlU7VdrM?P;Unic;=tm;^wC=x-9pF(9f7m=fmRt>k>WvD9uDteCW#5uov@e^ zMu8Y8OFH*&K<#KUkFcBpYoV0lO}NJG8VYLGJ`zG2_iB3K$a3?mA&L#F3b!)+j*E>t zb83lzFOBL6Vts=1Q!2iaSm?)V*fH+;Ws*Z2>87|~&wtd8>H!tUxiZB>lyK|*PcUY; z$|ht`E_eRCp#E*1Q6TjXC$i*?^{rSZPhJoKcQL+|U~c~jQKYDCIyz4D6K9N(dOWk> zwXk)Gy`a?>p0%#DRaH)3S7B|anl@g%e613^N}0ReIt%+bzm#`vcboJqUD+A{)=hR!cbZROv#D4*yUA8;RPC)WhEPEkN+2Nfh( zm0xgCGAmJ87aKhFHP+b&-YEOD;23mO+f)Nvxhiv6nJ;`wbL=$G5|2&ahV3(t+J)IO zf3ALh);D|#VOfPIERqHQ|LaM>y3n~>M&#Nuj0iugVwp83ni)CDF?GKC?^~)5F9f_|^Mggf5HPT2NOgBg-lZ$0AEm6QRLHugDsvxqu>{al1 zzaKBn^&EsXs9+22@1{spXjwBHW-a}f1J39T7AVb2f88Nb=jPY?Cm#m?beG`Kx8P(W zcYVq~;Gd4M-0OHFKrOsNX~SdRVr+nOyF4M~_CiInVA9}diV7&Ac|cJ5h@*ESZqt5? zA9Fx(vZU^)<(LM(FGKQHgB{Aw8$|{)`>R^AE7B8!Ill+5lM}^fgDrd1cM`0Vq^JgH zKSU=xbt{Jg@o1n?Wn$qGAcD*3nWM`LCe@(7DasppKQ3BFB(L-+EQFaz!Vgk218vf5 zexS)Qa*payJr*rPhLC+(`(;|<)0E}3b^}d`8lKcv*ke0)<}6|2+C*078`po03l?6K zIUb(S4#-G}4Ue)011B&}AW;ikc9TgAj@sDI2dPBXv3bZlW8iNeJ^@KA!aR17n zNo4NUJ?6h3;6UpBhr+4IsgweS7hd!TYmq<$7m)j;_2HS!qdDRKD2n2y_^ZVf>i+Y) zSy{zmk@PzAVv{(mPVMBnhJ&F!a5Md5{SGPs)A^$xRK79%Vm@&&&$UO&> zr4)5mm>N^E6_?w_)OF@TA5|=l=EIBOz|h$Rg2*vULR?bHn)IJbyTI1vqsH;p_FuPP zMo|xIBW}@$A-*8Dq1K$vPGd*G=RibWAm{H&4$@&ADH8nJrw%dEN$OSrl93AUtAW>+ zQWoDR?j@|(WmM%bq5s&Vxe*VAN5M3>=QKK`Fb_>f(9IM~eAbW5`@(z;i;cu~TzOX7 zCcqNSL^fK1^jn!*c0}0!0njk^?vVBNsVUG9HWdpGInWjH;r$(PTI(sz14oeN7WCV;sAd0UBT3BO`Q*~cvnlb%Ef+?*lFbxWr@Luj!DFC| zeE-g>2`Y7mVvf7wAA%~}Ig*#|v@A(pzf=ZVXX2x+4~PKug|Xe%eaft=g5CDDk6C^m9r?vQb$vaH|RegT7jGIid3j$S4sQ# zWkqk3Xyq?QUom2$Bb@gL3GemNj+KyJW>kU)RAwoq>IPnQ>lZqtm^JRZfA z5)G`zSt^N@%m)MwIY;vjQ*e>v-T*BINNbT=<_Vejh&gvQMTg#1F4-d1iE>~D@5B#Z zx~UlkCvV|P(W`A5%hw|IMq)+*QE|3}nYR!Y9WsBW}beD}I~fN&+nnk6+YhI7XAjeMVz%ll66k#!;Uc z0k1F@HC1c}>va^5d0q#fWjS3>I2x$%yT_YL8-Pv+H~001oc91JN?XWcTnQgDY1;;)=vWX00N#lH%H&{l^aZm-ES_C0rZGKV?2qC@Dg$}P6j;kf6i)@;{S1;)}R3Tva+=6 zcdm;KTj}Jze5SP6--M9fN}&!jcd(2tDM(hxl3m<)x_LH`x6UDCG&5S9ifqsZFTL1K zt_|KIOIu?bNhRG&5L*ii4$~# ztQv(pl=N?o7yq6&&eQ}&429krG=B*}>^CM@C0#Me2Jk>>(c+=xDYSi+sq+-(%TuC% zMF)yf<#PuJCY9E;EUg~DS65_Ytb9$jbVyLTm6ycz^aJ#iEbeuH$tfc{Bu}#$mzC%@o6~`unHy|J?Uz3yxU|{XmzE6S+SmXE$`e zytNfm(Cqe({=1g3u@!!U2297f6BExM1?yUEv~Hb^uqu4I!;*POERV8&{?Eel)dE6h z#V!>?mQ3?oZ#uqmJO+b@B1V7Pvgtt8%I-xqi@Lt~F8C)DJSnNQX1M_{1~O`?!B92y zxan`~bD54*z%~UECJ&2W{H`X<7agK~yX(L0=uuCYI0{X=Um)}5oLpLdyFV3@Np{9v z_d@ss9o1C~*8c_%{-`fb~EIVxujv#bWQpzJ&Ub>Gtdo8sh{td25 z>}gz}^*WzvXEKFq{q;Kpps1hXEAV=5bNk-|lSk;=DIrG>%y083_R^1C_;8`vn~^&Y z^ASym99E+stF$4)e8&=D3eu#jV+uZvXr#({JkOl~)(cn#Jv4Pq`cQoBZ_=9MoS08}b__cn=2Tb}yGdZc|QC0PXSrhWKc;X@C)^fPWqO zbnFJ8^blKQo4-RSv^X9aIqNyA zAj)Jsu7=anGm7xjm8{Vf*`pAyqt*^UJz;G~J~4_H)Lo{+O1=)(NV zGrZ`6w$9&=Qjx)9N|zwBg+9k--8!hMO+yc&yxSnPq9I0P@x~gBDoPD?f3<}E%N$pN z_a}v3!xpXDS8?%Ck~A*3psr$oY;{~xQIve1cQbY2b<2I*qECr}Y5mgr_d1Z$SP}UD zXPU$~7fdhvjRc5qZ9d7ht}4Qr5dSI*u+b-w4yv(;A8D$RZ1wSc z`6Ss~7llru6#pvZUqRj&U}I!#K76QwY;BzyF03onY)j1~)ZKZ!YOT1a)>`N#vhh@0 zZ$r>Y!Cv8z;wT;n`}x$T10rb=8JCYvY}W7apK9*eCq#IFht6Lk*_Frv*-d-Tj=$3o z&+Nr(>Z)NS5dKvpq^SN42(rEbvk&BmrN5FjN-}#sj4RX@0eiMSXd|g}aKEaGIr|j& zQ?SK3#{;*IGmJ5AGrOf*Ic*(>Ez03JubOY1xRK+2+gR1WJ>B%#YZ+tyD(~hI^X^$P zQy@j8NA$2`74_!NsO(!1-%GMt-eM%+dl1r%p%7abFaGm^WATSDK9AV|>qb)cw=;hO z*Y1t6R%(^}BnsS(oK;Hi8CQueh&wqq0$r?Z)C9?g1vu?G+e`j~o^18&H6mlO!^?HH9t{UDoq-m|eH(ZaP` z#?VZbEse~CNO8+lv!9@$VvtX-wrKQU`0L!0M7DRu8P656+wP!I6dbI{P8d<@5f?@ zh9FL@wHaG!5uPiQNERb9-DIEm6#yMx(uI=2b*zysk&N#0E(HJ<*@VhqX+H;3;7-8z z|4y&jXN<|8<~(z_CM8WdrUYQaV3OCl$RU!|k++n5;dsID$&wN1!Yauspx3*@XaQ$U zim?3f;3g2Zm<@dc#}?WpY2RRF9P{QZs_S9K$tJ&Ilj&f4vS4BRlE-jIH9Pu{L_}Y< zzAWQu8jyCTC?S`hte@9aB*p~c*Sw@O6}#f@2^k0t**I4d4((!4idOcaDA=vfFAc3& zsl7QQSXR>1<{HDIEzsTFkm#~zW#uIr8iFM$sJch)I7EpF+cnqnzv~oM8mXEp=etJ_ zh2krICR*{0uhr*wOEPFI7;Km-O;ZseBA<@v%&GyPg)^jGDk@&&xVfAXodVFC@FdE)1L!OFTfNZfU58^{zPEV+RW)cHZ zmsx3nuZSJGW1NxQD|$Z+R7ClVXwh9bDrY1MAv5yP2eYY7h(3zj5Wr#zL~{WKZt@<; zVnJ&SEj{3+XzkQiL862ec2GSQ;GwIAFZIXp@}SJ?GW79B9_!29@my zfkawRAM&NwM%<^QpWr|DeEAd_S`GV0eX0tqeIQO2Zd!t5-`i+z0NcktMNovK1kk1e zAqj#EK`*rTt9r=`0A`ZvYrG(Ba^xf#syc^s@aDnGBIC69wxTBK#4R|HAO9KGDKmj>{fK4ViOg1Qlm zlXc0+ktm_u8%Dl-6Fdb44rv#PZwG%O!M`uu?qFdZ>21KvK^pDIfbaIlf2_zLMTEXgSU$@Jtw| z1!wpaNd5-VxFFK0QN_Bz-v|~gGka-DIa_}*?849rhC&prZ=A52X|Ov&tcU7h%r`4Yfv%a`whHl!xm%6J+7m&EE4U##VO*1x^ZCA?gKln*joh=FvkITJ8op`gYLPDrs+&qXu3$>^m^1*l$h#x?`8 zfe~f8q9C@12p`jvf|reqzIjB0+J*6nhdADTdfHS$S48&rESe>?n-Lk2=|2vvF46_l zMiosT|L#h35<>!$g)j~Unl%>kXKTolyh1qC>R}nx+Gvu8IrGP4nH7^9wBG^UIQd92 zrKKH6am??Ep?L5mvJ|Sh%z1w*c0dHjtySfVTAA8p^uJ)VGp{d{d~3`>5|=_haD6P##6=`}A2~0!S28nRw zJJ(GN$>qO86HTu_o~p=|&>0YvVY@Hfk{5ITX?}_lGTKTKcfV~ zF(f6XPQ5Gca!U(Y?6HhRt+DKY`SxM_b0?gK#~1y4VW{grqX~p9nnaz@jqksmrSm$PhmjCter2SHp_mQM zBnH=CYgU|~;t&=RTcgP>gfH(~+;jvqoBA-1K?A;*Kl)5!)t=tYPOy#(miyT>`eOgb z_~<|EU&He=uh3#3pzV)g9+H$s9~Pgqu%O?dz{o{!A%y4vmc@T!lBNq#=q_P32|IG~ zVxpGP3$b5n0v}L0VIwwJ^ZS00jg>a?(4Djv{ zYcW>I9+?a2!h)(~r#6ltaPHv|D>7>nc`hXJAd{Sv1$eq6+x9MyZV&n!oT=Rv>K!Dc z{;*aoQY`ZJ7BuuvrFdX%NsF=au{*Ldf8$M8zTLlJ11=+B+&P zrzU~ds2og_lemWco2#Q+)ji)4cXVi;c;e2Z0D zcE~-vGLXUWG9^H?ck>iT^mxjjx%LDQqS!yT?SJ%3^X!i-n!-d+(nWB{V%06S#Mk4IDJULQ*|2F>(T^3h1ETxGy{ z^ZJEln~vS5Zdfm#$+8nFU??)2sx)b4h8r26lV#}W+0hp%6~;yZ4L=7;J+0jcq}hq5 zx2gWqGQTg-ezz;pAbY-3{q9h#>~NR4Ksa*RZclhz}plDV7G*n9MQGwF%u)c+ur? zj}BC(C^R%^#XkY}Bu+(5W#;Qbm#T_-EoIUv8puyj!1UMd<%;pJv+yQ zf%Q-6Jec66@oaR+$@t$74_t$2*YhHO9fi4Gq0WE9*z|I~rdUn47VJczj&H)V{@{>+ z*J5Di0kAe%6wk&Yi3xW)=T>8V+%CC3K22F^mM~Q=VF(8fau#rHYjqfSY`inX&mFYx z$f9lHctL)N;2S&+J(8FJ|2*buYXkh3;B}^Z1_-y6EjSvMRe&Wsx#zp3v$hX^fWpw9 zIFS%yDyLf+>nwAT`p^|4q$5ucGYHihm8n#+3EE{%AI}^tD~_Yt_#v5png+yUlf?3) z*8%w&2-RG7vcw_G3@cMCqiBp)hAnRr-^7v46LQkV$+qgC(SG5pCF7Z#LfknL zCXuMhaNMch28j)0Wae=mzi=5#ty zxr$GIj)Cnou=?8iIO>R`M!YD?i_1&P7tclkT|k1Lx$lpF`_0W1F0jDAOTcB;2cm|< zRtD%W1nuAuUqal$Q{P^<{X$5-BeLxb-hzmYYO!MF(Azj!tFrvT=IkfG@;u0KqeDfB zZHq=-UAI#6u)R;D<|?GS+$0jP`*!6G0vK<-=Bt=10cJtnU3FSY3rQPqSV$0b1zZQ7 zn;DasrQi00OS}UbJVHUJ`-OI{GGrHcvgl!=OJ3@oO^%B~l2Sp1e%908LC$!r@w1j4 z9c)s=@S5rueZDe6q8+u_N*Ofr=$1qn$_<8JHYEWRvgh9#pfcd2s|iC#pLSmKJ=@j~ z}b{Uf{vgciYD&e=*FABYzTL3rRJ-( z8H2QmlOZ-07K^?w^Rz};nMBRXaUiZ`M^7rUYID0_zd>eB)CC9urHcxe|N_8rCe|(~99i z3fe&V2SWDVeJfty$Vx>(SHd*w6?D<9*19%?`PK{4TgYYCATI)jJCoi)IY&M3%t>b! zh5w`R*$kHGH7N5eatT5&?oHaEgkBX1@!-;g`{k)S6*In{5187GODOL{L=UYg5;=C&r_(rB!}(0 zwLx|h^CB6^S&60iGgfpSHpf5BpCBP;4FBQ}(7_HRGYdYOxiLK2@F(Zvb$jMao~3(P(|S41$m3rMH3 z+mI1Audmqx(8{DR_xb!Zafg>iQQ@h-3S4d%X!n`)PeJhw7egwyvP-^OjP&ZzM(pr; zM8HveLuxXDHNg|5xYAKs`j}(@pp@e>H@Sj%sg8%{AoMuUi6L#1$+vozenrzOyZH&r z*0ffC*6?}q(*H3y_m!|Cf}LpNz^%?Ch=f4d1ssT*JYW9q%2uT}Vrj2ZP*vhkOU6p5 zPa+>ZS<_qCKyKo9__fT6l)u_epGo23{1h%3!`{BWQjiYY8`xve3Kb8Kuj&hm5{^4M^hTT#x7XJ5T(X&hhNZr3LSyyLa_5EG#Uq z{&9=lw%V>&?#kb$yjp*I!l(>xcJ$QG)_a`XEX~Jd+XpVIFsRl0m{&h~qKlNCOUWVu z>`CY#5p1PmEiLua(!q~6RkGglU9k)>Qxgh$%-KJbelJCD%ohgy?(n;RUxaWw&$aM1 zH@;+>o7A!8d5feGiZehAd`03K2I`&Y(tpnz=MQ^+H~(og2hw(?O|?tI^4}nIDxyC|*KO5aNgjRSd_#7VvFf5ACc5 z-glL0vS61zoe$0%Nzf_H=2v(kb%-KJWJ&sEW_-SWgSslAAxI>O8D%`Uj%~o|;rf)D z{=dmY%s#qHUGusP*P!U!Vk}!F+DN+y`jsh9`j{DI?galXy)o`MZpoOAZ?f@F5zxWS zcVD8v1-=?T1Sgef&exWwridU7D+aD z`r?eCh6jO9Q6_005Cq-p`bY~_@Nv38f&zH--nzSrNT}3A0 z`2_sFJh%CKhCE?vik$Wg0Hf zyBTZ1VsYlDH7p#pc+tHMA&DW^o%}_0l_SU5Tq?_q40;ovP(sS2&nuH#CDHHVQJ2O% zVF_z2AAYY0CRoHU@Xo)^ET=<($LY1iRZrC7 z#~&@BHJ)JSH)6#&V*FeGW>jUI@Z!GmG_p(NN6)?lk;r!>3<-8}_4+$|vFDeiW#pzh zy2k^!V2Qn#FarwN*w7s6iicO1TC}e60h@X9zNt6QrtDp8?^qIKM);LjkA`(Y9KOFM zNJldOAL%ib&I_P{xA2-z1ihmu{B}VJkXWH(r-cBee^`jxvt-0If=6}HoM<;}s{P>x zTkVn8(pJ7sEt5h+6(L_bDWU+Fy7|8~&YnxfB7peqVrg6T6eKRBG0G}Rlz0iJyv1mX zCOu@tbQl}a>KxN=eZd|40Otbrqp_<^S21;1-uvrZegM2`CvwAYZ}L@#n_g>x>G=yE zd^X+4C4<;&gAQ2zAJOL=E9ZkTz~Sh5YLdB0I(;Dwi!aX8P^CVT9ros2has%lY(@CF z*o|#Vu$i%{DTcFTOailclS9ASyX)Vq22#`jptgYc!M6tVW6;|g^L4AxV}P_jf%#A@ z=$UE1S#L}x$q1Fd0DIgk&)Culw`1#)ip|USzgAFXw)pWa0gFwzA<^#XH-Mr;%Z-T* zQj`(jk^R|v<^x_AR8+Fqjh4R1lpQ12)x=XK*sX@Hk>6}DM_nIB`V`t;CU@VDB%tG; zYdDP(LRdBiAd+girkN31#SS{yph|0Sl#}9OYtp9xYDaJGvHSqWe_98*S-lL9?aFLX z>H`^?0f5i%_k1B5bCE<+k)S(*Ar9ue@1K2PBNqu+yqjEJ1$7w)cTwLBtDRJJU?K-_ zFP_$Ngyl9SL~rPZs-eClqas8232&t6Xm%UD;%1r>?b@5$l?klzQdK6a02II=2{t5q@$8o|GqZ%Bt44GA8&~9JWas}@CKE}lO8LY5@NfIFy z3!fhy2@&Gz))KMI%VG{`F~sZ8k?Ws;$b%tdvj|RBnV=&H0X9WItD`{!ZZOhb*PW7~ zU)Q^(d)vXL8k;2l-Cje7}}r9 zi@~GFF=BI@{wrViH+{HW+4>vNi0~gb6FEG%(ydi2OHa`C?l(*S4k^H+e?^`WBa?qk zGh&J_^xZiIl&L6;?}QNf@LRq<1SEJ&2~);C^B{?-{loXKW3$jQCWN?~+Qbl9gm`h5`e4YteS3{CaVCbEdufY9D4h(n*h$+| z7;#8#7H-9b#XOcN{LM2v&f&(=Bb_~9V6kWQyk>&DnojRgH^}RnX`wnbrabw;Q5@3H zQI;s&b_K~#j3=&!T(OTmh%-~AZ2*|zw>Aa`NEoWTo|L5^ElJrQ6qitabqV2Ho^E7UId zeW(!ZO7!{kS#G4Lcf893pXFIQI+V@r2TFo0kW}$*8(M$%tyA+BerVNTu?u|}!?O#WUMz#qq+nujMj^;~GcvlYzK3}C@E}`V& z0Ot=OD~KiNJ)cGrXf*sg%v(xS3Ulp~1Ga~}k9BvD%K?J0UJjJHU%h|woEhQY{)dn0 zc@%VSTAM`~NF+kKv!&9ECf72E>Wbz5TkB5Nw>FCjDJLGU07qTdU0&m@d*2H)^9YM3 zi$hLvNK-28?;B!iSCNOY>#dY1!!q;kG{XKQMEKUYSiI=Lcq;TQn>jXCWGBV#a4p+{ z7Z5wTJ~L{M?(?OYEHt0@(LJ9`A?Jf~Z8@x&670(0p>~u9ljd+RuQ8c4?On{oFG%3;}svSte0)A<3Ny&>`iUvOB1!kcypKMg%a{P-{`{ zwoRW6+0O#Y@5Y7~Rh8|^VDpvL=Z9xa5zLZVwEcZz&`fjBZJM!)Dj17V9g&ox+P#;Q ze&@n!r5f08dFx-2$8auPiUL5M#EEtfsH#-6#RC#nNi8a(NEsL9T;$IHyQbU{GQFid;%V~w#(FCP_&f9%Mq$zL15n89Rf1>3sMGFu&I z+oqt$gS%_kZ$qxtsgs0e$LR`_j5UJh*uN9oU8gGhysLtzXi{+#wpb<3d3|l8-#6~c zBzhN!mN&m&Z_4SguT<|KlT;jAaA__M&+A~HSFjGxUe#+fTPo885I~H!OPF&6F8mT& zG(e?{!E67qXUt3_mKtqW=fDxHtgHmPQSUuax6*w1!|@gmof7l-w8-%Lg2PE$wEJP4 zGVzK&re7Pg*Z1ng0D=pQ?v7&8yyN3*Uk-PI2b(b9CcE27K;c)MT1{IEatmX{qd!`W zjY>G@f-@7|E$Pg(Wk~Rg3lhHx*x+8YJsZCpEBQtD1*qfmJ!xVKf2I@GOnhxZPZi(> z11m>5ayPmdC&Kj`7p-z@=jXxS5FotEx8eZmW@x2N=XI%o)iXk)9lXM&SJaf_oij>E z(Q1V;;ec76e_A((*rKRhmaKP5ybr2cT(8`6tosJ+!}InZV`*rkW)4rW|RW z+S)yH1>cNw8lM#)$K!{bCxHV{#mNw|>9)Cmn<1R4L{%i)Beou=9Qlme>!w5;djBg8 zh%O(WbnMSQ1d5rnRklC5d^CK>dWP3Hvs9LJ4lH~tmyu($V|Ga)svqN4J5-V0h3A>C zf?yFGW-D{BofAUo0fU77gnitdx!JtSKUM!ttwc`(Cg?Q;RDUF$h7gi8Y)T$t)pHpsRrmp8RNbw>$ zgKB5o-9x%;X3D7Kn%J7szXcnx%RgW|d?E!@wbQ6p6OQdTtn0@4KnIiSVl@wEDJP9D z*o(E=FQ+&vn@c#Y*R(Cas=bvhOjXe1#{u~HFI9{riQ z=W-hh7(*ecCntdT2FLWi0$W*a)@NE>Y%3FAW5`66YH;B57;GKIal;L zlOtYnS{`4Kw`zRHG3(`B^=TIM(f{k%>0pA%OlT{C^mB78ptN>ulQByoZ8);tDQTTE6cKc!9|J)7%Z#SGqE{gQX z*>YzrxeD^<0!QKvDmp4RNbTw!x}NbKqg)c&g`#ky0?s+b!{B<`1OjOO>~sZ|ZB4b> zZ`Q|!!a-$?JZ}AdGw?Tj@s%pSJ?wXoRJX@pC{w24ed)Mh;B_^z(-N2?`M?L%m29%d zFa4tPt%l-=`2|R?#vP+TE1xm@%mB#LU2{*Y#2DZlneH2xCbiu*gDU4xX8f#0H}lqz zD7cZiCDUO4qu3JJE6RiV19tNx(Z?vKZb9m;X{mwt?gGMB%*U<_Z8L*naKVN>tW=0& zYJYtskv26o;Dmz0v;^X~FWT{y$*Cr*cn(QeH^j6nK`l6LyY(Ij|2WeUC;`Ytx}BT( zqUDSapNn)vO{)J5w`2OUfppLHf^$j^ei7$PF(PZW)t23XHwm#(4SHQ3(C!5x61g@6 zPZtKOuj|)crgBo*$VC(FZN)QO7y>XLxKUIr!gF8=O%vM1%&R3dnZxsbLaZk8#;w*@ zR|fbTo)OA$uX~%*s**wO*cW-=4hp ztO>58wc#8U><9b&BQ`z9|2~&3{HPX?fJ3XfY)^ho#vw)aW4;I~3;r_YXX%L7UsZa| zwpplq;xHfpVad6Y4L7~ zo4^E*qi%I}YJaZ*l3!hBN4-?Q+>uwozp*D*+pUgxa52Ah$q(9#Cjj|PB-p+SyWa15 zKDu}ZBpL?bgV+LMMDUykpCRtE+%Y|~i{@C_QZgW}p=*2&8GQMO)Zx$~O;l;o;5UWKaba1>oUkAj}#myFz}RQSKx zI>+G5qGoMBv2EKEYhv5BZQBz&nTc)N=EQdL#I`2(m-jtionPnQ+PivT@2XYRt5^4R z`*vsK>Sj`X-P~aWPJ+pt8zx`NL}>e9T~e>Bh$5?Z%<$Us%mt-y;VAS-{P09}gXTlq zQgER)lK+7~-kQ>5KBl&{ypPWld&yg8ZHZ7MW(2Y581sOFnIRlf(N#sQmV4|@Slo2u z^1yhug)dqvq%am@ghK&o55e4YoiiRj25w}Rc>i|!s>q%x0cWbFzv5%&PDFOvkb*8* zz##)-Zfk8~sQ?xowlZ~G+{GYLgBhw*Pn_~AG9tsG0a3x*dQ~XIV7r}E!F=SNuV91! zAJPQu)Rx`EfS*GoviJJEp>Y>|+T;CID?d3OLWZa+J!Fl}28(gs!pSFiUUnGANF9d< zIvUBn6D!0Mp*B|MbHeF}iyyA#@Hu4Tbgp*_Ezc#&=sZ5NHav1-$;OYaYG<9@MB3OJ zaIK1L`3IE{(yC+`qwBFJ#RoPPdt3#hD6P2Pau^Cp~_ z$V(ht!RLQ_CHzy-pq7B_$#`C-N$*Bam%#x%LoVf3!vYf z&?%kt-ZKd}usc-0$a2MujtPwR;H}bv6>cyil8$)b!VPJc zmS;O3&J2J57$e%i3d(Co8Ysf5ga?hHPD6a@n$9o(KPYjtgW2)U3p zq`M9{#AYBcA*RS%_uKsnG||b{aHnh|CfPrHd2ULJO%rjggq!%1yh2OOg|6E36#ixt z&yN4=gA4e>sJd)ZSb_ z?!ikc<<6%pZv@PyY342{tUPz%!l2Z!r}(5allz&v_+5~#Vk?eSaEoRBIT*KdC{9h$ zZ%o|nV8-H6NCA~G@k+n|bpOV1(gnVNvIcq(yYD21&nJAilpH8=p17T``-%WqDwuf5-#9k)7tHR^^J_SGm!B|D zWHL^k+neSg)XUXR36T|J2kyGa_jb>&Cv~gTM9gVK4fTFFcO?I-L<{5&e@#NpF}+*c zEL22locbY!2MQ=3ukP>k@OKcd^&EEr4ZBw#SceTP4((#}=K9|3mZ;0fDWvCmlKVwc zM1$c3IJ^h0{?03X_se@mIUXrHTMU1B;?kS@-FL6Q6ZM0~G4g0!5H!Xqt6)Q8#|qLE zomaHakX?}pb>`T?WW#ruL9DqY0Jz_Ys71xyKZ%TahMc1?VMMx`cfUyzHN}41%`XsP zo@36NikYz@K7{M|<(S(oyNtb{lBM;&S!ei{Gy}v-d&Q&b>=4fcux{{xA5v8nG$-if zl^d`_8a(L`mIX=34B&<$i!{P~1;Q<~>1E^d9r_R0MBzP%$cPQMf&bz+HaWKzB&-cM z7nEL{XkQSqcv~D12lfM3WDwUGe2sE1xI^j|Z(2YM)o3Wiw3a|glykzp5moVe0L5<9 zWsrmQ`dX!`$9aWm3D&pEd#UmwNd^KdDhbx7=adFD`UI?4M+5Pt?(&C&=viIuN6&61 zc;hOIiFT-RvRH}L>2Ab=+n&Kp`C?;41>buZ~$k=itZ2;v(F ztyYqgHYiim4|{l9g#0`7J3$z#3d#)Bh;M`g7BGhE@~4WxK~8Z+@O12X++Y;{?+6Y~@?-r4Y+pi;2YV`1}5H^Wba;sYwQ)fxFd1Hk(u8!oGs^ zq3@Mky&>ES(B%o%g0qr_utW1=;jN&8Dbj@y!r05Sa;*w9xyABxpy9Pct1ws`?7!9a zt?dkDs$8Hs8*rk-{?%Zbve(Xd63>)8F>~#uXBp9n! zT3C_o7Z|BU7X&r1%P7k$Nr2wKY@wE8*KmKR?pIsFu0PQTNTsiZDdvC+u7-Kq+-jqg zG1qBzHL=LxY2^rav7=d&2G*6M7i)W0QYx8vpyLt~sy^ZvEEahQRl~MGQp|U!Zl}+} z28TC8QN+;dz3zdOyFnuYIw9RTXUJ*;!>hpV{axU@i7Dujqf9d1TwBoN=x~jce04A} zlXcf7UzgtLL4_L=l4~*55i(UAe<+{`;!$j=Mr9~g3=O@D(WvLnztS`Xk>CZoF5KF{ z$wWKgO|}?hr)+1MHZB-!OcyU5*XNk*y0xkheKhi8(bIHX6pbzRYz2ST_dx!?eD zEL|AtlJ@&pHYO+a(bF3+c_mxdD*#JWIAd0$dOCY}+wp>f!9H(Uo|w|8YL-+F9S%Zf z#}S9lp0%4ctlue|pJF8V39O^!TC>R;NRnpCIYqTlX#$KfG`!?|fxnEE3E?WE1Ghf}amoSBbc5;$g9>7N!JMughlc z@SuQM#p+7d`qrj(5y)3_UK=pn_+JN!#-B&=9{p4C20%*QCR-v8Dc(FFC(-@CyL_+1 zMXE{fOp~t&!cqbVEAqfL+Q2&8DW5*eKTSdT*n)5gwu70)Hl6Q<(0ROn5cVy2zTD(% z)6J-qgOgHsAAPJo1XiY8%v(!RI8&eSsSdn{>8HWftHgc1$o)d}=jz-CBkqLt!nxONBuGz(;Lq)mHP@`F zzIw)7D%!6qFbVhd6KunT0>rl15GGqcZ7b8v5DX?8FnZ)6HWmhso(z=K?RYoJK-c;O zhfLd+cUrwq!#syg(F|hrOn>`9vD#i3z}e))Hxxtyp}jc~cMKA3ITBIf47~_9(9;gt zTeu)Y2O8k51m5H!*uK7h>p8 zPMFX-D;#)_;pihq>A|lcn$1H}X0F5rQz>kyj}5X#eFtgdk3tq^Q<_?IkCJMA4zq@EP9rOz-BB*l*k+Aq zDI7~}F$Vyc?A-uYCqp*L=lzHv`(k*~jR{XCg>SlkA(BSy3?)1Y353m+UXT?1+t&kW zYQ@eFCMQIGyG4D9@9w+`b|A2t+QvW%3v691NZZauyS^~v+USH?k9FQ2hp+4NMg_PP zJ&!8|six)0Cs`ll1X;}ygPIhu$$nlCh<-7dHLb$$xj7U#ajbvfxvk^s z()#SXBxAdMPc14yh>0G0fR?r-10+%2mi(TIOT3|?6uO(X>D_PPgf9#H)9_#@F2=#XM}E?+2msNiOWKW)GujZwnlr@Cj7WZ`QNN`jB58&>@fN zff$7(GAYXOB91b|A!p3G3z9Dx$_E(vpb#*170Az`i2uc7Lk<)#s{FWD7<>(<;M)#c ze2QR;P9om7RGsl4 z9FBq{Vf{ZXY`^9%_r0oVC+uvs23Ds_FW)mSA9w=@k5U7m0Cu7s+Fk{Sv(PkUtZYo1 z)NwoH2ns2@`xHHiJcM|bs6>)ygM z|C)XYkw1D59kXDF;~IhBKAtcp{JMudhkL4f&p1R{xi+wuk$*7oOWSt**mwU--G3eA zeP5`})wdV;P}1y;0n9HMN@68hXp%3L)d6Dpx}{iYJbLhp`ghsW78 ztzSn9Urz$*{_jucNM9elpNuI1Z$_^Rx$=zXuje3wuK}}^!$Uw>xjd~dF4wD{Lx`V5 zpALO5v`+Ftm~m!gNRqD~WP%>trEFJy;{`UqaeZ}u^PE=wSh^3YV(sfBEQMQb5n8r+31}ls@k?WWZraV_58Z6!{p_%GL!-2MP|t1 zPEIun;{pM4h7b`Pg0O(5M#TE97S~Ug&y}yeuV)8=kJ>NlrrwON>wl%Y0iOn+6YB!< zCKatNPxb`J9Ci5!mSFn`xKDcA2wT>{e`JGH3wQa0x?t}0MJ3N40FSRp)k+vs$V0?6 zkH%^;{Tk+P?&9*DZNs@0632^_1{p@H4RGA*c6FTg6jBA*WMIwrc|y)+f)^X{C=>3=BX;a%}TEOuqKX=GU|xekzWZ==F!-l_j`{ zkpjuPpquWm_?-#Cx2L0UGkx9$S-q>s59ZT*tm)Jv1BDdZ%t&DWN*8&izmGcyXt*Vu2mRHa}fn({yaSDy()(G&MWV#)NVhz=0;8 zf3ohr)sNh-)z6WDyO{+6yBwd-@bA`3_@mPgo5B{t!!8Zroy!s)uewtg8yD@QLW z>S=hlKNr*pi=8b6U~`huY#0TX2n&Y7QRC`YFH+!BZH&mAR}@hr(+>%Nr;)oIoI$PBMpw34<0Y+eN+_E7Ndvlkav1-FY;=6Dd_ zkng!puRFZN17%a=!p&q2FSuRUM7tv>T7zs6SHYX#mFzSaXC9^=-Gs+PsAg;xbxS9;S|o&L=&Yj$X7zi^RxElK7_M9$FKwt_$T zse{p}S?bZN+=T9JFkS2Wg#)+VS=@VY9mneX(l>bihHl9DFb9TFSCKc68Fr;P^*2?8 z03zc)qv<;BR9FNI9`X)R01#UzY)$31ng=G^XPu#$lThRLvn2P&*V>KO&u(7&e=|M0 z4uy6`FEe+(z=D(G6_wXJr%xWR9lyMPpmGv1XIP~{=D3K5VKYTnq>K8(SFy2kN1fMkD$^XCl`DwwLW-+T?pA> z##qjpNrkv(Dq|R(B_rYxc7NDzK?ZgMf`ht3(IfSuIh{qE!Q{;Q zy~BkKzu)IRTbJ#EDia2)txi{0>_Tp7{FnNKEWk*_-zZz?e2s#E5{D#H0?1K^kmF+* z(nL_wjwoyyr2Yi*??@fOMdX|wKCMmkKB3d!r>x)sdaPu2Z=#|15)zunkfSH{7xcCf z{kGjd;tCUkNUv>=Q6wxfe7vNMhYn#Mi5&OC+%*)QS2_lZ%}C`~OOf0O@fZVk(}tj^ zwz@1Wg*5*wV$$B5g|9XJ&+l{Ee(6J@78}jCPtYl_(AM(s$FtzK`GY8~sfaGgQkX`o z9Mlio>m<~-ql%AQ0NcHBpn1!&GFjUohlBT{`E7mDmF2?eCRE4kEXBwn*86Escup$+ z?G>lInaK6xfKY9s>NjrEgKD3j2M`D>v%btn9qzmmY1L{qA_65V((a%ExOIX8&i*FQ zZ_1LTU*4~@dQjt6fs(;4!rcjMrTlcxd8 zLoO6ic<`neGy#=Oxq`-s)NRjEsbVSJY3W#C@L%v^B*4D+_uY2Osl_^f*kNa#f0otJ zq{r&TeXE?rmj6;R_dZr8KOF)+vuUB0jIaXa@NR`Xx)gh~F#Gm+w7H^Uf5G(SzY~k= zU>DbxF7kpE-}u-pJ{#Zl$vzQw$+*CqSFryR4Lw;Vb>4Fm(pk7?l%jIG|2#Mf-D z2T7hl3j(K0MBr?y<6p6EG8${J$4Q=Wi7)M4`%5?t38~6eRYZr%cXr`o_2(GM?{rURje%*k(>}Wr(fE4E)}fj zei@`hLu+g-=VMcl?&k2ou&4ANVHSNNSr!A%?uTTirP#WnBPh|(lZcTEek z%dca9XLxQ=8Dk;Dbn=sE9~$zrX|hqo2E9a9NH};M6Qu;Fa(+QOSJ!avNbwlajztbh z&4*LQe~&aRiRYVX(c%Y>tr#1}3r$$Z&Cv60*;U;Bq7{jY^o zXVg@c&?!KX*a%~aJ;szPypampayl+fLqmF+_>8ZO342;IjeTwbWl3}iV#M2gv3?E2 z8M54H)o(hP&cZV?dIFQf^~aRXgO=;|`&jQCeK|)Bz62`K~X z1tEV3qRt&5LsNR%K5RDdiqOK(`JRRqtzC{f`J&<7MrQ+GI@skr@J;6>sO)NC1^%_J;-0Uj6R8TT$OFoI zl+WBRyCC52Ma?v(c9i6;eEHt0?Gea7FI1q4DwNV~Ptrh1nG!kY_7gcnbxyH-6`Bfq zx!O}n?t<~)%7FO;J{wDKk*A%}shx>M@PG~f*CQ-zcGx3ZlhZYWgI8S1%Cpp&F2R> z#i5>cNwuB7g}?Eq|71yNb>-Dmk|+zQFW3=C1aY#S-JLelQ0n-6@@O8TCL*Gvb{ocT z#Jt?_*9lVlDo@b(KWRge(4iw79DnXdp@U z~3xiv{5F^iPD4NdyLfsm9Sc!x@tG-gZp!ziU z>^c#)rs$nxEa&_rM~xO1$3sQt(UD)CdG+yFZ&}_mUqWovRLjoP9?z^C)}+vfJGt_vA=5qPLj?T zRd^tf%dE7uH8YSF>!Inr+a@{Y${u$KRC&}U+*HM{(0Dqb0k%881X^OG(D0Bab&9L` zpHld%CY^6r*qE6Iy6cc^MK$qah#8|OFNl-FivIz-DsABH;w}wl0DIiUz4ZG;0e8dw zwxBflDfI6`ic3~i0qp?G)S?(g@+v;tSZT1G6G4qa{Ptryek7m|j@`5?Gl4t>HP-n$ zWHM$Pj74dG=X`WR+0;+(d!TD*MTw^@5(^8^g=8wVSl}|n`khqIBW9+58p|p>4(|y) zAT#wYpS*vfzKi|rtPm@uO6BZ0QPrzD1tcUswv|?d{9Fce>EvhEdU*4IqKe7j;s>pV z*@D65He#<~(Qm%Ycqe(IgV!$tTQ3$~a&D!W`A z_JLyZO}hE05ouVXQw)v0NzBHi2}gsCueHJ$sxefo>B4fq?0xiVDrW{G`Sd~(xZ0)r zak+o`IHrD*-BNl*#H+?1-?QmwVvF+?sre<+yYci4(Gcr5tw#_Qk>bevJO9||1mHH; z=Z%})u#OQVnUtxlLUahxf5-}l&qF!9ScuxCg zgM6Yi!RHJTKm@wUERz>PZL>kHHV9fKu19JE&ij;Ypfh2u@10tR;~r*%qpX4cz5{MLbg0XL+oZ#V*#FPmw*nASRKBp%F~K zw+{1?6R=!!a$TEte2W{AH zJA*P;aPLk|tlXzVq`iG5nLv3mv}ICMQi&{c9D+Vmh91;819-kzD)`GVNb%fo9{n{d zi~X36!c~Vxqo_=zi1aqcYHV7^o)w5fdV*vs6bwG)aZv?vPpTnZj$cfPWnvF#8=&*NbBM3f!XFbW%e<@%Q7qsOxMr6z?Doi(l)W z{ooESlL9gUj#h1S8H#^QW*f^tGkAHb*MjqMH%9K{pm!6OM*V#vpo13YWiyfEHh-e_ zyIm1#%peN)#(ZP}LfAtEY6u5f<4CLwwOI@x-di*06-nZ5@k;UnTDX?;A!~Lpv z)OGLwDqMuowqQF1kyC_=mCA9!4&5Cs`Tn-1P`+|ce2)42p=LC@7;lZ$zILzx*gB9_ zENI$M?(}V#7>b|wsdTWAdvTGmB#Y~Oiv~}Cd#4HE3SAgwma#~JPfwU52$h!ch3G0( zI_yr1`ql|~Ioy*7pEqH`kCk-4O7Uj&+orsNKodw3ynxfKYW|^Eh|8I47_!T)#MK-z zoyW3e%@D|&hyto6hlx6D-}BO;Y-{*^E$Yg;zy^L!Tt7Vh5si8peu{0tGi|(F1lZ}% zW=N#&aeITh)q1WOopqXL($c4=$X1_QHGpiL=!G8?O2+%Ry8@f^^2J2Mi~h)!0uz5- zS=R31pk88%{i}I5|4ttu2fMI06gJdmwGOsyJL=CDtQXqjj<1vY(pd|Rs69&FC>E#) zdGq5GoPmrvxB4sHbPemxDj^9dNxYbaM*$oqdao@1r10ZZuqd`s=yLS(#&Q<`t zS^-E@VOC^UI(0BK<`DA;enYV#Cm%(D&)g>SC%-(s9k7Fv0;AgTyR%Fq^5M2u?wLVn zM{hIyXk?oz;PmjC<%^XxI%<*T>Pbi-$A|8@NL6)Pys%wm$*p@UnhVhNStDd8<@70W zOt8^wE}0Rx!2Zl67s|wSIGChqwd9{PVRUc#t+u@^V!PqG#RRtA%zaZRO@X!w zA_(2|eLqH=jxLBetX~d)q=E#-Me<*tZU;Q)-#efjIR94Jo41*W_K zO0yyQ`>47}a#Mj9u;({h5^90~$5UTJXjp~~UD|0h{Cn>b6!Dz=@*N0HJ?b|TeDs8fxN2_TD6SySfo zKX=$NdFk!6Qm2}878s7M{(;M_U;y-{y>kfq^x&%328l@TsTRC>-xaLEJP#}+$|v`q z{eFkrEM$oTeD&(>-`i(V%Q(>g5a7y=0hv3L%Q%=U=_w0u*hakd>T7DS5fY|Q6;Rwk zI`b|Rd}H!%O3@=uTCvh0E3&UE$MAjAi%e6Wu&KiNXiUV*O+lgJ`OZ%^7u%`D;iXE0 zK+pZ=?1E2$gmA9J$|Pl>8Ky$vc^;0wC!0)j84vyvF|J(aKl2{yY*!mH(C1lajN_ed z7tX!B7YFnI4SL51Ll!j8K3oZvf7lzsg0#=-vv3}Y^~QCckooDt%r3Km|9w`FyeE3a z0GVYwJ;xDkGS|=s11O%u_MvkyQe{Ifn!jc?VT55NZXm8!VTLV>k|vnM%%FjstZiHd z*r$R`jt(_(swE$dWpugfB{tH;&a<7iq$|_QO$*vL zBsFNl^xaB`ZY9eYV!7OQ>RX3Pvt09~jfjzwhpAO*lP^h+)vdD^EutjmBTt7kA6D1h z?Naw{fOORv$dLQ9G*z#athe=0pYaI0OO0p^odH_;nwz%c3=b_ESo2-t4h@1Y_$_bs z+O8_guC6wh(ejw^)x6tGiiz7+o%<~yT6Sh9M9((kowG#EFmxElC(Xu{RQPeXitQT< zt(u)@RO&djJM50E_V-1-d0-=)cF53IuA+ZsIT>n<^O|?UYf-R^9Vi`AW}ogrNBYD( zYIZYfw~44xE*(~?RHI!vHl9vRR)>b&A}bn!vH-m)c2DTFX8+d&9L3tNY_$e2Q`+#F zfvKk8Tzmur#z+7-b*^f)B3w&2pagAAWJIHF!!Z7iZmATtlUH1T88QD2SL-KD)V-%p zd=Rcyf{QqBsM%YlKvQjz8U-3@_lBLQAvKa+_!(j|xhW>l75T^N$z{ znfWs*Me1VZs#6cVRO%-Z7-*PtsP&eNenLc?KDp3yfUC~bZYTL92m}3AyW&QSqZ6Ru zL~^^t{=Qihqwz^7ELN-r9tv$*%LVO6trmkYOKG4Txn$1vPu4P~i64-*cG_zxSxLUX zN{h@d>t45^H~)YIuxcGORgH?N$>OXEWIs9kL)+VFyKv?dgwxNgyDX9o3n45tX5O=R z-?^l)>RkuQ(7hq;j^T(>KeeHI_nxIJDFqvBC6M+6%zk~~8BFJ-xaZ%2lWwx8g3OuZ z)krDw^@^%>*u*2k=)D_5%w#=!|0N{2MO1-&5X@SmLkS$Q9W>;2>oD8oP%iNrW}0KO zn*Pibb>%)i7ds9DPKwOGff{qqcxQYQN2(;sbwXtI$9sl4gwgjUk8vh7)uB4&3v(z{ zN=3`9u|6CH-kzErgi_$5EU|zrc3Nr=mPLG+BYlDsOSV+Pj{a1v!gWMv9Zu&RHQ12v zt=pCpD74-=zzOVO^v@5ZkG9v$t7isPLDBt)Eje;@*~gN%W4AIz=|{A1;`Gf351Yo8 zzK*#He@#&mz2ZW+$hLzr7b;NMu`HZPHgd@oHy4z7Ct`EH8)%FO#m0pS;*#L^!&k9R z&>J?ONQIdaKn^XvLxCZ~gLr&)UANxeUD5sJK1!R&u$}A!MD(xiPwusDa9;z2ewHf{ zEMyUgiX>EHQ5)J#C;}imy_!t1)5+Jr%q(SJBzG@}z&Ig;X^HH(5+(XOPT3(m8N45T zp0rwoRp{A}Gj*mb4|X5BN`T7`{hj4KrB+1Zf-+0F^XVO!m>wihvI3*NM3U|-cCIoakefGlf(o+* zNgkhA(T}wK*?&fo9_#;zZ(&v4)<@BiBR9C8KJVl;y&d`-&+Q$9Ct~v0n_23LV@qKw z?!8ibO3tSyW8kBYYAu zF3a4H%L+OL@+C9NJT1C)k8aM;xh{HO;N!Z9pJ=pwfBs?Q!Z za*XJ9qaS+1+F`?-UUxdc-AHt-k1tyNyR0 zbqgYOk7y1nBu2wKR1TSP-t*J~RWV`<(E_Iw{q6}R$P6qNg6^;@i`6%9B~+rln!qxV zM=GWf^m`3PRegxK?FfuKTI-1usc-)&?ZbU)^$S|>x@9Lt*JOt5^r7h3O9J7>G$1Zt z@=kQp+W@&RM?7`kcC-5H4N4Ae5*j{|!2)UZXbmjntzzQLojAlVHzut>@QH*iT#Ia3 zKVeD38vo{B$sM%XYa7nDvOyDiUy%YyTX*TBysZ0awYoykgC$!FstAoc*3|I)1kTTe z4zDCL`BwF*P6;(ALOXNw1_oR9F$)%W@TvoPqss3q?bu}A#S5|&Su7sJ}3fGav^ zaRiCtwRYw{#9&`3TFipWK^Vy_Q{ZC|;G&J^g?=Nq%Htl99M7}#Jc?wF%?tFPbXPIa z_$`c$oB;J`u0hG{F$ycMmFMTqlL5%A-*=g|Hk&IL&Dq47+|`I0!u}cyGf8Ry>GIbs zV>CLP^%4Pe9kyR=hnZSXSzO`g_W^8=hARYYmT@8jG=pxI(+ z_tZz>!O)zSwW$>(PnGgm`-b!bUWyIG^=Y>Rlq%E*{Q7?uV0t#m0z3%}N42Iaelf^H z+`gaS2ww1zv~kcR&rtdK4>tl5rs>>7oXa>N zbskq@Ko$7sM3x17_3NnLWr?!Md2@mEO_l%Qjmx1^msHRYzc&%Vq;s}f>q-bS2!hso}Y{9TWFJgc$U85 zf-YqESt%DyXl+d!maJPtf%hrdkkAEzl_88dGkfV`ArcOS?T`o>a_1tGp^RPn^OE3r zw0h7F)%-k?+7?KFi!HRr6Nc{XK5ZDkoEC9L9sMqjaa&N1i7KkLDK{h?99RBDoqQG) z*70q|bbY8a!$t~uR&Z{80y)))3nCycJ+>xaDmB9j&~5>u^a5lKXmxyA8=r3BqlPk0<)pan1d7lG8S*__p32gF!Raj#-^ciNv^7T2y zUcWq&FpY=r-karaW|#mCE}6VaCfyFecMu!ganT$BVHQ@UProEMFA3BCdfEmV_1ZhH z2=HAodpMy4XL_0_O9W$G7t_@Uu39XxrpmtFRkrJ}N5tuzavi3QoT@h$j&a>Nm=P>R z2t4`qHqd_3QcjCgg9aKq*RmivrW?wCJ&&7hj!kST8^qkcRnKgjcH&G)`qE`>^K*s` z9&#LSQCttd2@%n6o>%4C*1DHbI$@rBk?NBP=cqrkF?fASm)ZiUK& z-LtT95!8s<@CD7DbXGzh`EUHMayjb54DQum8Q2KMhUN8XnGIeW0&xV<{ij!x6~$?#J<+^P&F`;Sph&3GJm2 z2)0{;e(jo${Fv|d7KLBtWAmiVXcuYZ4xxVVf2MoO!IZEJsKIvcaA?~i`Nhz%b>dvo ziZw3w`HUDWjS!7aa!NeUJa-P!+WGG3p=@*en*t$HgsCoFSrsEG%Bjd|(QRn~9ud)X zS)4=@Qsj<2;C=0Lzm_=e>y?o^zR4W6pD*fgsM*rSm)onn(*sPr8urSd4qXR9PyOp< zUF_&D>9gs5&AIrt03ac%3h(Q)Ql2b8_poP{ElA4&u2i!9WQ*!P?Le4g%g3WzR1$1x zM?2^}NxQs{iL?3YT7vUazfvP~TxA2JiM@JSOniDIU|v~D^r?efuJHZb;Po6iWmsqV z9Knb)leEL$*C5tcwDgaDEfSNRB;c8`*DC7$LyzBq4IaHPMVOS0ynXZDy|jDL^rm3z z%9Wc$oIksXqbJJ^mv|2X?~R)_qcH==NLeHX@a>%LIykuUukrnfrz^I6&{ZqG!#O~^ zR0}a)+~TtXoE**v_$8~r(#*Gzg1fHj7y0W-4Ep(aI`awxqy14WVkWSEw0ORkpYv$j*(KBTAKzzd=34 zVXK9P^=n#>t_jdV$}HaA!eB7wMG}igjp29FbI-7f9^4H#YhA8+I;r9=j7F z>flh|z%SU8Vu>Pn-cGEhTJ~M}^f<=V6isX#(lBiotByM0Ap+&w*Q-ufd~!+>CdVFV=T&>Kupfd9mKIZI7dMoq*IU|eGL7qSc+ zIC}iYz5fAtDXrz!?opL_P*oh_u-(O-z?zv|ClW>#27@MDyi6Z)Jdv)?pvkEOLCm#4 zv~7jG(YjCaCe3U;{k;7(d=v3$xyR`}S5WKQ2bO33!d4g?r-vt+7aS`Gf z5ShGeg>QvRBIV#iKT@IGM^@`giH;q~CEmVy>s5^YvSN_1H+_l{h4Qy6b?hDrGop28Ri}?urhiAh z7}f4+uy22jKMa@tIi_AXd7)uOlEn-|Ic?GE$}1qH15_Y%M?0+we}4pIntf(+m#bDX z2jGfbt*e($n^bnypWz@?kiSL^0swphusN4|nmTYG0xgrrRW zgZTYkal73DFm9&A3jB{fLP5?##JpDl+eypV!&$N%onYB)!ih6SOBh3@uWto)D8RKk zWeOj~dS?Qs_p9PKGUH}M?(Lf!gX%MgTVd7 zaeMh$Fj&h%J+-*Y8|DL$NU=J8W63^^HdJumP)wE{qcu|r@NS3Xok@Lg%A%F35AB+9 z!ggxGc3f5bJ6So6#QI0+x45mWFTW7D79m66XmI^^Y?S^FQY(SIAvZ(9os@TK78iI1 zRRC19su*9iY+^~GJ7i@i=A*(~Dd_KdMK?V&t@o`b`Gp9lBINrX-&-uM^MwQ$wc`CP zd>4e6aI>PtEhoVO(E~jtX5P>PgJRq`XXonaD_?OO?S-rMiclR>xZ}Eg`P9?RfMc4g zkYwF$eOtrqjjPW=`tuY!zZYMYD#==n%gxl8@ug3G;btYotjaB{3C*R1oc$M(Jg26S zg!8Erm`Aw3ra>^>y6|5q=W;UaacA|-$oWP$ynYjZWe4jtZs519D+i~4a)A_#^ z1ablvkm@JGc_aTk#3@S>G5@-{HwzIY1-eJE-YjfcUUyvC3Vh*Kz)!FaFmB`jwbR=c zxbFdrpe0^bb~1pbqM{?XDHa=>RPUN&R>Jc8O3L!exxBC`cQ&}-GShnI3-y_I!;ncs z_QdUemZ^H`e3WOzB7|%zIj21zX8yId5w8F*i6Y*~<=GBV4?MpZpKlAx9 zf`uj=vSs!qQd)F6__EHfs8)EUry6g_PXPbYi`er`}V{K@( zZ_-e5=Z@jt$aWObzxNlZJ9rfK$^VEriGhsg?XDL757uh2NVM$=Y&b+}R- zpxf+`L$yfy?I^hUWjS5!ev^F@uGq5o06iCCu-c8w)=MB4mobJ2*Ma?55Usk0|Fh4f*L;0{CY?%V>dzUTQ=W1B4*6U-+LZ+XnYk)qlT?HSVw9 zb&@94tkR+cUC$HqGJ$xG7m-m)NNJfGsna5g}s-@K0cY_}jUlx2pBhHt#Ur-Xm`CI=7 z0{TBt<^Lj}Sva{^{ucqw@&DiQ@)9!&Te-R@nmLO&*f~1bo7uY(|0HG|oKYGvZ; z;7rWSM9j|*%P4MT>uTmq%qVVatGlksYjO)?z|AjD31P{1NOJ$;&~0RgcR(LBi7AOrgR5WtHJ`%)RQ^{`cpj&qaiWBxmgkz3*bI2Q0MNoHZqCJ=T9P053okPVnR^ZqPIV=2dw1PWtM6X|Bg>~`!lsxPsS-Tdz^JOwuJEoeWjk=Bfr z>h)0L*ifEis8z*(#po%kfn^cP2tBhmvQ)CbwPGN?p}mW+d*X)~nb>|4(eq=riF;YI zO2J(>d1_SJG(Z~+p{8pMA~H}qQM9nbWPN|B+?pgZJ{~#v`)^&RdBgAIJ&JU%k3glU zU9EcXwfYX3J!{e}hcciK`iDf_0Y^su=(yUg?58)*5}2P6$T>*gxgTPG%61CF7)^t6T#y%eUgfUtZ=UPM#!S_#N~LanP#=^#um!xixLyMzVi{bUZK5;nFNZ@ z*cxiXY`ra#>)Gj4o?lr0iviGM2YKR-#}UxBl%{$6Xc-`dgdQ+*@l9i<)q~yD8}`st z>h&GQU-eHOI^4`s#R^jy5gf1YB1IeK9{%dji$`#Aue1 zQ*5G+Qcx_L8(?7ohnQ$w7v63#W3A{NOUJRt^pwP6=*pInECw3-0W*I32#wM6iG2?r ztM1T_T3HHeMa%$zb%`;ZpZMd+==^c`evCm`bN=?(VG47`v3bH z!Z+iaAH#5cG~g7kr0`{!w$(_7VnW6Iiclc5n}%A^Ukt7$#BjyKdAsp;OLyISG)d@b z;sO%}OhASEsT+j~Rgk0(m8FCS_h+lHdIz!4a-iMP*@>|L#q zJU_wEhl^*bIXV-G4GW7>5OecKB;9)=LJM2$`S%==rSeaHqx;IohTr{?+JH;&wJyBh z(Hfr5oWkAJckKs4lkRsN2i_tr_Yi=N0UXMq)>w*t`HWJ+mqcsnuGaM26pakkG3scX z0ahTf-cc(*?%_yu{7$V=!x$_TwbF%cn*n123OP!_-})Q=>Bi@QfAv?`4=6y8VM5Ss zyyh^HR4M7L12s%}&%gsfLIblzkN}jbKqFZB_Ku-335etA6xNI<&ZdxB3i^To2=fY{ zb-U@~##V70VfU`#ApjjmJ}qW9$zlo(D1{tqCkJ3(KJ)YEn9FJnG+S3J70*rErX#z< zbw$XmJ8O-Z%UTh`eY6u#`l)(@Pcj)1(c5*zZxyvDTth&N;DMGEa(c{_%Ot)$Hr+un zOmd|2iV5LfbHt61opDLLyAZTss^&vc3gn2OI-?nIS+FkZ9j&2Ow5DIanLD;!$NoYG z0HA>!urjqUCqW?Z))4b(Spd)-%YssHG;jbyIRLqW?|~Wi!-LJ!A>C|QK&mw&Jql}u zQQsWBV_mQ;scNBi{`Do;oQm5T04`ELv|N57*F8cmN?zzr>6Yw998?`*K|^tP$&?+sf9}T2cV5>6fo? z@qWjrj|`H(eoG0p#%;&8qj%hH0O;Ek59I2e11eXy^j;E+C63Ql6Rrqp{rh*8Vjp*Z zJhkuo^pTS+t}w`T;ku|bx>!s{VEv-rPq-Z6jtjRNi|P5)bBk~%2|bcazyoNiT9j7@)L~J zs-^0_K*D|?ScB+cF?`(haYF^Z~ug!J}BwArM;485S;vBYr(ppJC0qC=+POQ z$C%Je&p}B5=+4`!FCQv}&wYH@Atg==4O#2Sh-%TC^YNU6Yy|O!L5LExkqS%+?zA14hiBq?IOGgB%jn z;mGN@*6dnF#2yAF=f{`Nx-ER}YHbWVPbKMsnIy^q)cnVA_>vH8`RxXGJvW%ch+M%l5>!P>U>o-J^Kw@1W;W*G7 zEAvE&Qo?h?wln6vMoZQek>6_#I8JdGYr-~K@}V7H%3?Z>eb%8rulaN)`dVCgJEo$WX#J93vxO!)HU1&*gDY9@V3@4S+pCr zeNTm2+m(Y^eW}h9IeGIVhnn_Dz3t*}E^ueRyIMiKm9*qFp70;On zJBjlXtkrB~V0mM5P=Jb`spU}2OlKKtMMTk8__Qo%SfG(`yNYCX_=V*Z+K%37HX<#^ z9Y)?h5({`@mK;YPl@amxWUgj~&~+$naD%Rs&@|4kG5~N-w+ci`e&jnwHNmxOZ^aig z=@|lxbfpW&aZ0Eb6oV?!)Lq-2U-6!x9N9G@(1TzIm>@P0y zCo_e-0Hm`hB6@q?7EO-~N4(S%_+vgfMsQkZcMWDN2@7-dvq>k&KHGUw))*;VSoUa- zF}eBsErIA`OOD(fk)F6p;u@3opCvdZRGA|)C+Jm9;mfC64QM{i2AMTUt!dj4wFX>Q zM6}rYS>O@SQxcSO(>?qo=QNpDc4c;l23^;oiHDDLU#6XAn=KE}=$bfA7GQ zSK5b*sh!QLCA;UE_=hBFq!Nf)I3v>$f+Rr@e4vK;TI!f6$u?&7+9*&#fO{EQ<3lgw zH~`x@zEeV1d8C;6GUrGcS%ls(GbA&L2%2$FI0MVOlvkyxBN-9@uO+d2K-+$R#BEJFCvKB)uaIAYK;KQxGWJeCy^Wtz8GX#c7c9M zLbaSG7s63q60OpZ1S0J{AW)Q-K(6O=E;q;(3gr?l&032&pI*mW6J8FuEW?R5 zhs;i~&Bw;Pd@F2!b6QJPEj${cj^k>9f=j$DSQmbKD51f!=(eg9c45!t{{^%-NUaOj zMed9l_fo1kAAPM^9VkwE?>{c4TvA|)LbM_KP|z|GT&=^$CsSoPcux`rux8+C$aDaP z-?qziv3GeWK&>%f1gMy9E2_brTYIrWKi~yf{*yfohKwjl8Rt#qf@Xsut3`2xoy%qb zpmpwtY*97bR<>TJCE>kg6rSd^!dUG!^k_ z>zHH-hS?bf9@-CfhYMW{gYc%#R~Y(!#pD=kPJVz)T9;F4dJ9CCr~$yy$d(-Nx}5Ou zXbDoM%d7*k&nIV1!HABp?HsBA<7=DwBAz!t6e?ndl6_Gv0CZmf;IVUeNM|a*EFsLb zNXZP_&TS8=|B({?gT5-K&VJmrR7UhOuM-^*X459TF*-7$cSar7o3kxr?c7hV`FZLt z0Kk#2TXMAqx5k{91MFQ`%Ye%O=t>_x<5P}+I{qm6ZQ8V25T*3jAS`-RBhgz&;9WR(aI+K-d5u2t(Y*5qZR#{IZN_(dN#Rm0Kw z+}T|d!VRmarG^`1*KE+WSJ|a&RA84VJ!~VOLKLbRNFJR>hkFbOo)=oET_HBKY~;l!sue}qo&0H@Ua76ch#bg zRZHQ~@qG){>O>G2@QP%NUKUbGaOcrp@CJ}EL74svXpxaVtmm8^wdh{cE9yd90h(%& zvE&fykX({o21PBaS=`T~vt2@;qbUk7qhJBx#F<8xq6qi{P=pJ#)Sm42g#Hs`N^qu- z0&z4)b9N~U(#DM-%mTlJbU2?Nu|ot3wG5kFK?!{S>DE8r0F>{0b|&=OOdmJD2bbFM*m(#xPz<2^qEgsH7nL=5Q?1 zig7HH(7NcBC0m?<{jjQjU)pb00M?v)Q*2^r5@Vsj&x|JBp7d6VihrS2B!hw1L6pEqs3M@d+xlC7iHtxAtC&K$k@{c%t z7WQR3(~Rs#>K_><$d>}ZjvjAG6O#CX*S6(6n12oekdn+$ExjX&rEnMYx{QP;Oi&?b zcFm>M8O44PK`M&fPrjzUEdRNJE_WVHy}!_cm#h?zUY>^OA>y|&7n;MYe_4I8@@#f} z{^kEy|9U=u%m8byg<6UT+dJc>dwW4sv+*_@WVyuQ5jbDLA#nMYs&vBkK74!RA;)yN z%-XZ9Q>y?K`dYObTPfdmx+`q}Vi3x+0r16M=J)j668Fot2(w4P)Uf*U#i%sTPkN_c z!uZ$Ao-Hj*AE+@30VGI%tG*7ObKwY7sBqE7>4Ze$`uK>$2~`upF1lj)l9C8a9Nn1I z+|dHv1W|-5uk1{l?16hKiZ&kmOzCr#^% zX|Z9xA!E$NpGHLyd9aI;uO-SNP2yQ32mlJO1aPai9cUfJ{J#39MMgHaXTywCNEoz~ z5x!jb&8cHC!$=Xcd0B^FsKwYUI>jzKJdI~ennKYCs5$3LcYo6lQIP0kz^4MenHjw9 z3Np3+dIu&Mb>(J;NY39@(_*TIKm_jgbeM&S&wysJzL<5fr?3TGUvz27_)PF>UJXL& z4$@bHkz;_^m9;IB%vg~&R$`OwEyhTe%-)o}uLfaywX|>X(y#}G@~Ae6=}Z**Vzj}{ zd#<-iF;`PHkrpOlw$ITy zBW2OUpON~fc;3|FDzE?;6LC$zHVt%Gg>ZC7&p{u?&?`ZzX?ROnWX$Tsfv4A*9!MYv zonOFQ@VGgVSpTvD=r;>1YR@A<`EWL><{wM@y!c`O%GS%HQSc=qf3OY0k?>;F7-+{h2Z>^u zHC7QhP7fK8d9`#Bu7Gp(36boY89CK64IyK0`Q*4l1KF9#N*o2EB2~)R?@PZ0zd$>@ zWDiq38dF3@U##E5?NyPsce+I8wCpj-@G=|X6C(r}1kypti=iUJ)nPWu7UYGq%a;Oz zE;L6MX2h)##&LMFnQJg`TD&W$LuO|G$XNeDUsquLLwpbyUz5HD`S|XN+zNduz80^v zE(74=?&Rsfe6_wB2x~$cS`x<71~?4u2^Uoupq8;;felN-)cxgKE04ybrz^^}I}Fy& zwzm8ZY&BnfH(v%ZG5VYFO$3Hv&K;b)=C}|l-l0NY2%&7WJp))A9!eXaG)#p7glD`F zBRU3b_@Wbh34JyxBi46la838lE5N0V#3cm8QrjOe+ql@>4ziC;4TE@|j3?lgzLF00 z^8uY!@Y+B+3Of z5nhLv5_rJ6LXiDdWwb8a-R2s+?zRU`v$hnb8vtGOfaw6~RTh{fG;)qxEMzD9odC;I zb~uex_^JUJ0{bkqCW|5vS31jqn}*6{1UiU$OOkN1bH?<&yp)&$ct>upw9Wa|jAnlY z|D~t`B^JA|xZ!4zmA?_k3A1mvu%6tw|2Hq^YA0M03NASsfSP&J?sS zUo|7A@-OSk9q| zu)VUc0AR-`CM=LK5Ky$Jebg9e0M@{+5Gn|El|x~vGKwnc-q?l0b|Y7oP31TxL}}nj z0rU!A$j;CVHotb~f`jLZjH~B<8OgBBd@F&wK4)eQ#}i&zgYZt5pegUW(gb!2EL#}~ z<`GmPut24kWXzyB?$FFe4?k=!3k$=vU@F8B#R?5ZKci zs3U=O6tg-hoe2A)3@^2t0M5AQ2WsI(HjzWiU}A(m7?~T3y1g-Eg;7?h%LK~5ZIA`Q zJUGfOI)axJ5lY|%*5i*f4qozpuk0&ju&7JiwLE0Im)+UaZ?^wQwWj*5*N6Aj`Yjc! z-y$&q3q=V-*E9ACtLPaFu^fUEf;E7GAP$6M3<)7!sWe#82y7|AqquDPvvYevnW4l2 zd1rID-ben`hP|$+241|&WO^t9a>8`xK#}N{21r@v%x@zK~RG16z7<2!TJC})z2+Gkh3;^692v7u}h$O#-4grj~DXn3Ju=i-J3|G zW=s^ES3?J+Gh~Jcbf5uc7__u|7kOX2%an~Q{BRDz9I}uN!dl$WJ_w;aQn{ahlYJ#S z!pGP?lmloVL(dKYSiXZDDrgHql`Wb?>!G`t11-WUsKI7A(;FoXhzR{dW(*hgqBJ@o zTwD<;PAKq(0q6PHpMKBiopO@fgSa!^{eW`1G9y(Y9F?L!SRLdGXbcgJY>7V+$Eh; zpbk4iuT#%BQCWDJkPxy-5wYgb8|A_!uuI`F3W~*FneFe_58&$+SYN)-TNw1?75?UG z34faR4E;C}_7wAQ&Zm`2N#q;^ROk~}*I`%)O56e9_`>iLc3}A?YdAh}|6Hsml@~v^ zhUKe{FX4OOg=JIO713o?g7jPi4v= zbV%!TIWwRM8yFpxC3x`-dV_;f$# z=uKMs2MJwZ!XFvyKj`a>d+5pvl&fF4Cg^|@7hqtA_)}6EfSd&~F+65CFiyhR2`r`F9$>G^=iui_gyQzbyB^sO#_HOSU|ao8ROct-~vH zuxyeABX?ThTs6yK$9O@{)35yWn&kt(cF$|Yc60&#g(1;QxtnpZKElBAO5)(ljT`GveO)?^kVbj9v zM1(h~2Nlw#IhB173M8XMd*-#x67@~K;57iMr?@7hzKVC2Pgt_8XH3c;DiMRQnaow- zK>O9{rWa`U`pbHqdKQoJAP71dYauxxHN ziL3y+Acb?$+1c@vWU6P3`eUGj(7W+&a+c#oI$%asQPYXJW_%*=A4M_(otJBX>`Be> z@;Mz05M0L8uGzuki|$``0{x$T_P_u9Z~x){^7rrm&p&#%zxgDO?(S4%Deq5kJv0I0dGI5Z)NIYfk9O3`iLD zB)LcqQOq~a+{*vYGfCz~L$5^+GtAEVJON#i;F>KMoxZe+FPP{0`ALcPGxtwN#;4Oa z6h(cc-+fuyw%6qs{@4H2Kl$(f=KuWn>haG%E&dPffBZ-P#kMW$+V&3tz*oo=kxd|b z_MtAPCJ}&=8n_5-w)xEtX!LPB({!L&ldpIq={jqQh{Fl z!pU2njfi4ARYNV|$WwdhQ0t7|xY> zoz3MLkp9pa1+942no&dxiJdSd^9pC@N|A+tWAKHKBfBx~8 z|M&B6{p0`rKegZJ^V;^K+H)*J91K4LN?lL>(6G$I)#Z3y=aViR+7)MCj9ykQYWN{z`H%m7|M-`-eun;&uL7Q5 z*V|WOXiPlK4$#rpp(x{Zd~L>6*JqP{O}8#iJ~lFlyu&>rm&V{jlqqUK-(q&uac$qVzpR>ju zD3C{%K647w!N$=J!+Z?@sxz0$>}Mn(hIGRnM!mpBU$VZ5f~o-8kxlyeOYYn4``;<{ zo1@-3@6E+ytNYh_|BJf(f?Q$d@C9ClIL)BL4zOk22q$|zA+9nXc*dJALzvGz(es4k zxlvL`LRaZ>?P7vm>jee5~EVhE~5b^OZ_3;;F`x~`=mMY4D`!}wCEl}-a2vX=b&|y36fOVj! zY~t;Dv$49gDn90zN&nU>BB7aLcvB`j(aO)s0#fiOmU}U7KS`K|wBNQ8h}9Z?DMcGM z6I7SMrE9st*?S@uRt+Z=F-D9O)>}d`@Vve1q-jC(@>I zfH8p%3x=eRwkp9ir=jcFJ5I=u-bK)LL(bFjyj(wK-hOt^bun*!{Q|g-@(Wb|_3OlS z7lalmhWW{vMIZevnw4Xr;6BO_tw~Nqbs|ry4Ga3pvT6CM{y_l!hT{vDufJAnz~f6Y zY~_jiRA1pM*^rf?mUx|d!Apq?1{IydJsr~9K+hXquW99`tpo5*yIsdQel=w?8S9@6 zH2$4sGnyjL#qK9>n$wDM&5BV?_#VP>Dr$ZmD6_CFi#J@W_@bSR4G%dYkJ0&skS zFKi!F!T#mk0s(+3`a%fxy8zVh=qvh-AWBy#3i=3yT~MadLGT#C=|tZB6w+(u)F@m5 ziJbU9QJpCj8!IEHNOb=5txN|mr64o67C`<&spaknugERY0e~`CQOgX%T!t8fH33h= zYKrWzQ)T>Npvzj$bj9jkB}Wj&8$z7@(4BD1x~g9TfN81e{^GjXs$hH}7~K(K2)GL1HC zdZQ$<><*XT%qwkI6uy5Yg?1n+bz%f#L4=pYY?CXrp2a$0nPoty$uIbAbSHg5 zj7d!8;6a!Rk{G?dl!!!j$CPWNjPGIT#U27P?wNS*M{B0o5J{xJRD)co1USHqnF(ZM zT4NspvX3>0QJ0i!>jkneS*jUTuO(*LsIjKgE4;8C8X!0-p$7S1&^~y4vT|5`c>UJv zclFiwKdr|{B89MHWm6P~0%vx(RRXYF-i_kPbZ~^&QOH=fi{sI2iQ$M(tvj0%g(o{O zXt%-H%&_#O4DrpZ&Fd$=2j?cHFUE1~wUdRS%&d0mYzKij>ultHL=Sh8j82;PDWTzd zR6-9__A^k>SZZ4Kqt_ImRa^z-uA=2ur8Lrh|FgQ}43w zcNBhHr8+e4iu%qJLmFQS7m-Wp{SYt-_|WjjV72wjI{wb<{Fi6t+76J3N+1 z`eIPAJ(tM%Vya|U-Fu6&ZLAp%FDM_~pceBIOHK9TLaI#76v9Cp9%yc& zaHgQtelbnd}}Tz5u^yYuJ<(8xYEaG4{+JT!qAn+$5Ki~BX-GtAup))xgjcS;)n zJU4Bb+a*RAbVjnHNT7=mBvtcU$xT%r=bkrg&W5?5o*L`0gflJVW3F+y`j-A*Mr*3y zkL00mCHI8V^hPhp(^?iA#kMyp7S01CYEG{i$BZ#LgV2*K0N6G5`pAd-YW-dyRfn~) zW&8^v9jJsXgvXYcBReOZUguXV8~(^x|AAi@U_BNczQ`~uJzqDUav-Aa(+(&!W&$=K zck`mo6|KG&5VkwII2KhQDK)*YBMx(q#ltchfL%O&ss8S77eB*;o3a5=hS&9`Eqd+&1R6EU{~M7%Kx0T{pao zGH`Q$+fmJWr(3SoBI$1P1gCV)uBG(P6@=~G9tXz$o~kx2UcLf|EsuOHUW|e@XVa)P z90eCYMkJmnNoF%E4*<<;bGw`wA!F=lmn821-6x8hwAmyJehio*NB0u<%+dduwAi|? zTOn$sP-mD;sw3PZBsLEemjjKQ5w^Q36DjcG+mgs~PR}{IW^pXkS$vXN-Z32JYmHDB zU2(J#E1V@K#MrThUF@+tY+^`uPh#{8*niS@kisY*XeurqK6V-j5MN-$_Rgcj5K|M) zUxD>&5cz9fClCN9FNt~;=8J@+S2+V1hwjApr67i&Io*lep)o6atn_;Y5nJ6vS)RER z2idv^PtJI>hf*}_+;lIt?#sruv$OyB&Lk*-a zCCCUiAL6_Y8OB=QYh8z~^TXE!?mT)_;n2t5p~nECeD`Sc`KN5&f}S5XrhVNFQ94!R zt@_{xvOu@uw~CmF-}eC=Jx=`K(d{Uz95f=bZ*xbIo(gm+gBzfhN~9~PLW?v_DFU%Er$tqd`(Bu7A6s8VQB@3A#?jL6ygt5=JZXlz+|F?uP7i?^8FJ1M3SSIrG? z&J%sQN}!;@Q+OE%oI_7{?1NX0%4|F5OUUL-=*9m#0HF-W7H4mdYD&sqG$Y(zNYo4n zCeXChINt++Jq_K_`Xmt&r!=?c!L6Z~U}MeHm^TwQ&O-oj$)wEISuxjVa~d7kt#PZo*I!^ZJ%!}r7yrSmkh5K{L%l1D-*x-VJ^ zw~psVm$u#FjF`BgmMoBW;z9^=3JGV3bKQC=#)Zwfb<~&#ro!00_Hxh#(Vbi4cBt6t zCt}7K*g76NHw&nFp43bSz{g&Xj_!FLYbf+M<1cYR(z1Q};9RefFyxhuobxOuXq*5r z>?cSZ&3^xw5>45xi`L4c$GN%u{(Rf@2&JkPmOMlDk}ZwX$TZG~2~NTVoCyNp61vW_ zUE}H9xi`dG)HpKqQf_sLWE-cHxeql8qR3w-te*$u=sfG`5+p-0nyIXz zH{-AyGa2#>j9TJAj&w+4f7ZE0^0n-CApPr#l#AON3^ezKKF%M!Y~~3$Ju5Hs!!fp? zP3_S*JehfJY5bsf%tel~pEdVh&l7RJZ!9JLRxP^c5%YW=d7w!g7R0e{;+65uktI9> zf-}o-jFZggJax>aB>4m%XTk7tniXC^4r|RbCq2$Y?kVQDzm|CdDFf6kHILzI9%od{ z29rF`9=Q$(UMrzyurh?l6^!COPr@)<(eLhgVE;! z?m^_3A&%`+oOXA->=A#ewsfmnE4t!Pr*qa!Uf^U-U*cr;jJ|znSH$E zWalaC98q(u8tj03o@H6tDw<%b!krNHnKT95Om**etDqh827w0-&;7vz%A8a8`7l3qTnXp;GkQu5f> z?Z^{z=V92x7^u_)%9rCuU%GSs=T)1{2Fi#!HwTdCUZpiF0f4z3af0uNcrr?zC#wdy zsN>+kqWdC=&x4OG`jeJK%J6%sh{1Bf&yXUo{m9ejW;N{G&Gbhje*LgJYI^J>tn>T= z158D6Zqk`gHG4q{np<-UaCt~^4!0{$v2hq#D~iFLv2Aalp>b&9nUspfvt4IIb&Ukx z#1jibCkWcI3+E>@RLY^YJi`(|YcG8<)5i_Bb(+TtK*zzY#EG?9mz3x8avrf6TUVUe z+Q;!ZudzttJ+t$WoAVT|OMlWK`L(xvDs^RsTt~|z4<|IbfVA`SQIr&N0^kM%ddpL^ z&#F96Tt9(qfCULhd(S<0$2>`(yd0i=HYs|O)8YqO;rf3}W6*Fk2CpBdS^_V}TQ3#s zqCy^>+m7SNS_6H1aNF_aQ;z$5bYjzSt{;9dO}LaQ#F>+|M9efBH>Xb$MV5+xZg}hC z$=6rE@rKB7HP2ke5T1*-6{VneZ995L2TH-RvKGYo=SXy#n|qOi7#xS%U(d`+>P)$> z*0fRMo}Xs{f(ja^OPv8(wtU_s><5tt&Cd~5p2_JrnmrxgALBlvf^=h=Zj!jh{v0nB8~+-rUe#QTuNN!|cz#j>#Y^~8D9 ziu)}N#3iZY0KnS~>k{VsZIW`T@9yK7RmMCx9l%nw)Qo~>Uk2Iw?pCM9WT?Z zhGng(%EyRvXOCJQ>kI?VgGWy>T!k83ZSM-^%q(IXbw_KgRlog>?u-5M zh|QUt5^BM1#dFIrsAj|}i4ojQ%R`>R0M1Ozq{nAde!8Xh58e8Ss&Qlirmz9DCV;i7 zWz>e=A=l%9Cu5Q(ciUQj=kN?s`7Y9RgYl%ci+%+@*fJ@1K4&pebfv8E4IV)8rZ=#qJ%( z(8#o+0QQz#!xV-F;>sC0T7E5QivDSy3+pE}B}JJIW(0k0tx-wFV=vY3uT$HCDWxevo~=^?~oXWW#@<0Iv7L}%s# zrjXwJp>&l*Ui1D@Wv^|=aYRx_F(TvG;*?GF$B2GOK!m`I`S}&m#7Y_$%yZyMK?D^K z!@v{>hXf!dL|D9Nzyz*SEpTCPM}Rn;0>%;R`4A(zqcvTk5xCI1M&oG)DO*x&FxJj> z!BPom+vmCM6Z@l(_Z!S`G#!V!6AdxDmywSMzV13xfOoK$kG=SkDH3K3pAe{~HJWK%U`Bww z3$E_y8;=9G6~M?6#i<4*Wfq+4Y;igO$JB=C$Tf=U^Asp!E&Oy3H;czp`^hM;Kx6&%6#JG$gSU)xz#jO#>c{+;$lG`4a$aySj7R(+QeKx0hF--w>5o#Oh+dx`22x&VJ-UQD*!#Wpie-u z6%<4FoH99oPc2DC`P@t9H3MV?0IR7rJst=L&>G@!FaYa>?q~5FoR_fMu<}ll3LHfaaTJbS$3^;w#HJfiZvZM zKY!AF#eU%X6W-+=$C1V`Y+VqQ$DxR1yvYT5mBi_Lak^h>FrK}mcPuMEf8c2P{$T66 ztqLFxs5Kp)mSF+}4ioP>DYAgP2+aB#gr|oOqGjc>=<(3^M&eTQuHp`nb^y-yhg^ zk~rE_0^V-=bO*_8*Y_thqb1L=(~$J!kJA~H03b;)hvj`fxhy&2v9u}$xg^YMEji7l z`r{dYXg^@IkGu9m`@v<;=1n>(92J1>Y7Mal#vQ>)N5C6xqh(zf4c?)iO(oG?Z8-T_ z6ugER%@k{$mj&yR0~pc@2(TY|ZZPV;VyO(SwgcU&s~ql6az@CtM03+@jGX)aU8G`#5|8CAWH;XFxQ@m%^cndYdN>uqmfb+8D(&O zEsl|%PaKCrA4Tj3jAtUNJG$6A9#3?~x};6xh+#E=WBd{BZQInHH?kHT$TSi_xh}~u zNGwGWPVYOc!0Z&WoV8|*IcoFdvQhx}w#}JHG8j^|#&uIuS6sp5VH?<^)S%afMsnOfi)v`WUjAQh|{y zzVCQ${J5hO?0f12E%Aa;&rPI1o?I$E?&uwlr~01nU03w3eP=0L7xa!M7Mn&jui>$j z)2{Q=M+AuqucMKH?w->zw`DUFV%zxrIXz8|7>VXNUylZio@z88bBWhDcxCkrSt% z;Ur5@YwDe)2vB#fg{5dexKxsw9wpM6B-hoye(hg7fb!)}xUSlF7;~B1WIMic@3#H(G)4DL61c27`^;-^NYy9}YZPm92jy4aHJ_!rrE9h;&?(LtOI(^9m0?AVcQhyXU%(E8iE1$mkC`O2ME0rhoac=Z@B~ zZKr<*;7ymbg|;!f2P0sS9{l!A&+)_KKv=MS*Kv`f}%0=8K&bGzv`pLJi%On)`f9IffOT^J1k zGyi*uZ9_2vyuEGG7D72UtGuYyU`HHs9W&gqi6}x^x;Upm6FEU#sDxQ&PFwrQ`B{%= z5s@^GQG11hTMi{^)822sVQ!&6$3R=^)`PXll6lZt!&ar#( zB_H82%3K!hFRW-Hh~DvdCLG5Fg~rty_am{N@k}Bob|3a;FuA%issT)*geagOId+#0 zknOLllIw;w)s;mhL8I>^w;y;xHa72J|ZpG|J&Xb zWVsE(Pzh|DnfA4(>Lq&rBTOc-0jY~G1lXCbyC|!%Lp&gX^z|hig-|Gh;L#Y#KcZ^t z#O1!*dO}*S+Va&9?D)1NhzqTW*VWH?>GRo1Sg4cQif4l`69?=B$4r5%DvOx!>B|96 zIr;p3?{zA011Dc%WgC&1wN~DDrOh_}k#%rv+@cdFJnUv*%|-T|eUB57D6b2rwZWl7 z9}jzREEGen9Eq8TLR$If558?wML#~|<4!7C8r!7OyiTRU6apg~Ymp{AM{X)N;*Jo3 zji3o9Vj)Bvkz5x7S5%4~*>n$g;7Me$UrEq01Awsuyg1E<9MZbAN7*&|A&XfEcrfl6eEBDt09 z#>gq@mbg@k(a_xtv^Yks)yALFJT;@$8IOulRW&!(vDJL*IB{hCk4#54+yr;EE{qiQ ziM^I~_zP{MYn|`}m)Nq47vwh76P|gL!b-mTq&)t1p_u|2mWpNe)oJOwV?mv0r%Dbco>hlW?K)aj{Us1mckl!C|joxTr_6=SJNo%Ek_kONK) zHw83+OqtP!$4UTqz}@5+yPnzGTRowO@x@#nn)ggRy){L$fq4%Ho)>ae4$x<`*8W0m zm{^!k^W)h;ORyH~rHb2q^mo?#*V{e#4m2D}8mp+)$vFXk*dH50$xU{X+$6~~XFv6$ zR;~9{@K&m#m0ErG;Bf!cKy`O#wm7B~f|=;3YNOVO6R72^u}Rqdc4X*^bXI>zvHI{Y z>jhfr&$-8;gsmx!Y9%Z~{aCf?XbBGE+Mb6)h;rH9?tPw-=R zIfAu-U*yZGKk^Ax5(5?j6VQq7Qq(~kQ-`hhF-47dqiB-O;?IfDgDz)Nt{A2#_X|`c z5=n#$I4>c`)#HK)kF{S%kZx-=Gwxv0S~iH~PYWy;dR2Xs_BB`KF)^ccN$|F02toSw z;!t^6m~$n>+G7T*L0R^2xOyob33;k;c)ZlN&3_)4|Ex9itZdBm|HoRx`v0l5hWY==S~FckEt&W~)|yMl zt4`ha&CQhB{NP)VS%D9DL6a~D$D@z%s5q(+@FP4T50fa(2KuX}ZlCK-$EWJCs6jk} zdWT%c?coPZuj0Rd9iOYqwNc^`>I{U9NWLw`=eK%7(eIU9oMkU7zW*ijAO&$0tg8p2OCLPN+)PHy{(hi1ULyQs0MIlXaC?G%tr8P z_E(v5CiY5h!?lX|Qkisj0&S`bUBw_klr;%CeanAMKb3V9CoNi`vpl1I-~Q4pKFgc-EQoxoy4xq$H++h3V5lW)hzTg>) zxIfBC08tV@d|0sR)av{sg;EOSI9x-X($GrZLIkid^`)3g@rsUikXHxq=i%#-ZH{X1 zHZ8jctD!|1F%+nMmT!;Zp|+hkD76_h9S$C^iy;Zo8>}fgD7B5^&|vz$UkgTQSC&g? za>7xi1{=9Giw%DiI4SDTJ7PWG)f;t125K7lTkzrLlJ6wp(th~) zMa64bu7-3gYE%HxUb!wWXz4lG`EQ7hLfR`TQ<)L_>dJb#68hTv~{V z9Q1uiV-~xLJGcV<3&HuASJIy{my>Yvo{w=3x@cyGyC&NJ(y@r&fNPHZW6>dzUP5bA z|DcOeU~_LnO=5(9c(=2D>6}L^q(n=4*}I?G7IWj#C)5>g`OQibA>C=uV_t6M;Xq8c zv%HE2CX_kJIIH1fcj=C}Ut*|#5bpPqf?idX!@3-0MXjxcH41+WGG=Nhr*bIDm1dW$ z<*lQ83y7&+ANj-iB(+HL6l3UehZljkmJZEUSYv@J_VMA~!46oDi)5n3$&i)S%g~=jjTnM zj^|Nx1uC%C7{%fExJ5G7MkD~0wZQN#P`ObFqB)XY4J}7z_x8^NwVWW={VJcKzsGUcde`gw=i96TJUZGh zyAV4;B>b!WhiBK6zGYiB+3syxqDLS(seEnHphTuaGs@R|-c^xK9X64QTZww_a3vF@ zKSvd7&V*oH8BeNF+g)c(_iT^j>lUf`C`%Dl3Vrrt+4jdNVoB>ERRlb_!x^5y;hFmo z;#)R&jAvnZ>Ou9pR<8|=@|T|x+4>uug~(l98svbtZtIMlfFXqz+mp@f=kWGEc)@>% zxF6|0_sQ3ApWWXY!$6P@Y7w69JA*cTYM#H}pan)Q$_;N#nce--$Hx))bxg|g;}#4A z86$$dI z(1r!+V%#wujHBMF*A_5{<90ckKz{cN?mC9E?IwLK%3T|Le|DZd$2g?4U!)Q`tD1`uBm}OC!z)aa(n51rGBpZzT*Z*c(i#RT2|%4 zfqZCJ25@Mu1bL)VD*F66KG(H?s$dpJX&@RFtMZxFcEeeCqNIxrv7WasY`@Abl8|@p z*ao_3I)5BOM{}fV-)F;kLMWvDim5#g0Kp_rP0E!Vl?G^SRt_vV=hXIf7GZng;ceiH z5|JH4uuA|*BSs;U792JSR&QOp1g3X)zOH8u{-RSGK%DU_KKZ)I^@WADZq`g=?)KU3 zDs0XmyIaogn__JEj~>7Tme)^{^Y`+q0y%_Xez*kgP^khu##iP6MbC-b(eE zkfP;$q9$X&Ii@2tJxF7u%{NVf)Dw28?jRb_mh?!7cj)EL9YE2EQ7{v$>QAPlf{q;W z{y_kx=|TczKfwG3i9$y24u`fL-3IoFs&*j5@0${#0~na9>Q~33x4R0Ep>aM7`lC;> zHDL~m&mH}F=;>6<^i+<)J7-d}Y)7NC55RqFJ}is*8XwsDhpaOC+K zhBZ{eemHP=cxHZgUZRaDXbK2Nua6Z4O7vcOCcy8ouCo{Gs$Cr?KDrAjhDlc$af*GQ zm1t>9=r7pdg*OZ2xV8>O! zJJz90>qHfKBJDv`X0x4-0TUS>2>+@n7ndL{|kk$@==}K(qx9 zMHffSWio;4MbZ&eRZB{NQ$qb27_ow|k(IIFUc|waf*J1^sYLF)_Zz*4(sxXH^nil# z;;ql)+}kHGs$LUHuh!i|u+%HKO29y- zX-lAgQ)lfbWjn(MQ|FSP|s4&UpM=A&>8^7*144 zavzJah4P=C0+vIrX~LQWG-wueoD)G$tTL*0V*y=F()b>w0bX-Ry*5X6GA-*8#oYGR zKPj7EPC_)TN3Zhe*y3GU^%4W?KR+?UNk#lODAD|9ey*>G<>@d1NoQBw!g_m*;ATD& z;X2Ib&0)xvWz(+<&pGv56~I+2rTw}E!S#KRWGtbt&-xJfC3-+%?26%2U`v30USgCu zD3#QJ(Ync@p#t0dl#1|_Zn*qjH9Nxy=~A;RC>O*5cl?2hd;4KamQYMQC_0cyoH$G5 z(f}i#jr1&J{3WzzK|+o2b7*&`y%0}F*U!g!C=z3bg{_TNU5~rYxxRbUzIAXP`@3s= zLU#P3;|d@38tBUXF{<}|UXA?WW!TkCM86As{J||s(!_@JYM>k;`2}=)n~d^i1Mg)P8ZDBT?l{QP?XX3%4R9(iG^c!R`MJ4fMcW(6?FSV)he;z6R*&h>LB zz=q9-ihCAEOesk{Ggs*dO#z`X&tj47L;;p)mUO!9pQa3_95^MKQ=i=6%P2#_b}8Wu zZm8!%!TGZinzxuZ^c&s+`L2%sQU&(&Ly;bZviVFPimX{NmMwd*zjKKyuW*|r+w73TWGeV#gbyZd{R`)tYgL;VP}f`waX!E!|S)N6wqM377|yyP|PMoWjGCA10b3& zpC!dM6#{x_N{x3^@5(vDDhTiY+#u0Mosf)MPdz5HI|+~UjHpO}>smzNyh?!nfIciZ zX1|?ZS~H%YcOF-g>vpyq7d?x6W{z|Xv~ z?ZtooacGS?phQX778YpdI2GDdQ3e?!PT3RYSO4er11@ypMQHrETv92$+jxd4BS_!q z24Ojr@D(N?Mi6&3(jgfg0De5df;`6ND}EcC8@@Jhz-)4TM!M&)C}AR5zi$5UOaF)( z;4uwX|7@Uf#NbxAQAN)}#5E?5XI6dwk$e2am39gEF!tVmNOr z4xCeLn@ZR89~_f16MglZpd4gBB~)i07vtd6fc-?dehJB8^K=&NzxF(_{5&nzjPY9B z>s}*^1BD7X8w$eLXEH|E++~AY@*wh%(F}%3>XR+DD=s6d<8eZ={cRkHsvHy|g3B5= z9T`)Ir$%(+cuqKPm$F>lLK+fWI38Sbl-=IKbr*8kMZ0U`7|j)je?-Y?C7+BL%)hW8 zN+>;_+%nAfHA-m+ZIkt8O1H+@!&O&=u@UufaeS8&#d0nq6r@B*>&F$qjjs2j>MU21rr=rSqKq zLYxwp%H%Wd!6N-vv_Cl_7NG|GZxFj#AVs!jAl#xJ=)j<4e{V7?7mo~ig@C#&afimO zT+sd{_H;C*#k)Saa&fOMesvXx<{WmPJ%+k z;&>*$-XjC^31m@tu*Zw%oQ4W^_Pf>=KoJ_EmS)llMtiET>mGNo@xsDztViIQ9&-Y? zd`-WtF?DPxhTij^p9i$oQ;O5=sMV7!eddXBg< z08KHc0><*&ik1$hL2m}HSGaul`}x0fxaN?j&PKgYL->S5kCmuJ^zR=*5x0Lvr>nET z(^#Brjn=0MfCrWvmVE5jFXA^(?*+TJS_kJyX%4cwyX1jV)VIU-J`!{sJdPzEJ^$Bf z-MUQ5A;9bFqZx^zKp@L5GeFL;=MM^e>CWj0xX_zp-A0s&h4z-dO#R8y^ec|H(^iVZ zqupaLNo|6*%c#cGddlqViHC3Zo7#Bj@E_2gB_@O=jUJkzb(l!r@s)mq6;|uy7{*M#k|Yabx#AWMW%Q9IRDv?d z*8aqZn7q6txr+bJUv^m^U)A>ut$5&gnQIaDO2CXhVg_OBXhs_vPv6|CJx-0wQD+!= z0+-4l?S-cd8BBR`oXmn&AJy~>z9JFzX-VLaNqlZ*o5G0`Op|R;IjNS0QP3==jyc#c z1g4+?oAxXXDO5(#PiChP<$A0B7pJWn?n|qt@vqS!ujC9wuvBfjOO~whewr@|w*EcT9pZMX=q7T$% zoR)**Fn}pbp2PyrSM$3)r}%j4Q0avNYD_O+&3aQ_rJI>H>(8I+6=^Qc%)-IulF3r0 z0Xs8Gra5R97jfR8%;T0hn6}y%L4Xcnf!SORgMi+FAfmPlN2ad3<({;v(s#i&7eR5* zR$&01t4M5*wP?;fzOnAgn&C&Q<`Q;e0XlHyFhuia_a>lJ4ahAkg5v#?UV=rK*_;pd z^%&W*XfbAm5hGt6IqbXUpqEBoYpyAB2HFHfBMZmeayN^7%KeD2q|3A)96js;Y}U zs)8zsjsSHz@hTzXMTnss`uKSdm1grqQab9a=Twu{KXHRNH4(Q5wRgY@B|hqY1uZt+ z^a51-dLiLQlxGQcAQ#wbx0Q~%%<(B2(@P$vPDYMOG8|z~sQ^Z0bnDpsX|hxr!9GM^ z2u*St!wIsmoy&muYCj5w_}?dKOhOC^AAQKr^m#7=7gdhBG@Ewc);ibs(@Tp*IOXig zEm^=>AcSX00MV^I7bSybOySg|vB?t_Em}6S$%hvJlnBtyIz_{cOXk>-V0+{ohbvht zpHFr4BFD1($W+Nj{f&DJ;+z%%mmxo~#w5x=VoZ`1!v|yH!wBHoi~$4uHA=LSGg;L% zem<{a6zy8+t0*VoSD>ad)O?I<&icufxT5HDQv z#>7-&b7Li*`%TxEJN75;tLyVNQpmQkZ(9YrKrZqT3&c1z~kg$r28 zj-78SR7=wvN(j?5EO{T^>R3fOiDA#?&C7cTnp#>3#KlQ;*3n!z4n0)JEGR-vV-(Bi zryodCpm~tsh|@94fX(sJ_V{TQUj7*1P*QN$SBN4|f(~;VVSpFSkm+7o*I)wXd7A9r zz`HeL!)&)~vH+VzHxDFoGvIYidzCbHdhbUxFq)N~{t|Xfj z_X=14$wip~ioH;VjCNJKcDlW|NY5J0PS9a_82d?08&xlZ7ca6oFvUQnsEgE-6!`_2 zFoepK_F8KlH6LwhDH=TY_oLW484@Ke8+3zX;f9sgKaK+yDA2-npQ8=cptUou+;06< z(S8GdXFB4U3uP#X1YkU0G2o76iX@W4p`o40czSrmR~+{5)X_=cV=o!~Jpr8BDF(p! zZhB28$hg}+USC;NSM^X%nZzoVvmXHu3VXmIVQ`<8hp3r=@KM_}KUW-!6bq3H1&=xl zdz&f!WA;cWr5`1bw3E$#l#LKlArYjNJm*NkSvw}=%r~W6>w(1`!Bl7BLx6QLRdjdr zqk!Q>ozVmH#jU30!2&nnx4&1P3jq`&QM|S<357!9^$8V1Q%Sk1V({kwt8;%n>@AcY zMv);O-Y^rws2vOtSTM0GfLa_F+gf#O!YRJ<0Uq(Z%7k3aq3{$8ki;I~PG(Ywm;Aa% zCwcrm^!EJrvN8b0H7(vx*E!8M70*6$6H$KD?#_kzhONO7?~$d~Bjttc)0Rb_JrNiyC;!v^`QethRlNa#xf zLrJKry#CVAf;qJjl~Y)g@k`5brqhX;PmL^Fs_~6 zB|u&FrBby7B)?8f1^wA?A-;HuuK=YL1Ldd@-`cXRT{33IfdQ0LAI51X`Dt=2|Ly3J zo8*0P9!aEath3DKa`A2QOq2E*$8}^K6}Xn>xALlOF*IaPz%Yd@ZAD+ulp-<29O^7F zKXG-bhXt8?M};k&z!$06O)sel^SnZTeVOB;sNSKv1!hp66lu+h;~|GR7X1@rQ7j!} zJ#ozqB8WCfJ$?+a;21BK%ZN;p;1Z+1HLFLR&pIF}bgXk7VF7B^ICOt;4JyA6N0=8_ zPgd0`G!^3}s=!$0(y$X5O&ial%LI3^-)n4l&UBN*OoY6pp!XLQl&$wjs6mK;&qMpB zMrDm;^)J(+=T(SgAwGSQqJ8UJu|=ycAiohZ#uRj;bTD^urg+o0K5Td$`rjqaJ^I>K zwXhg((QIoTq2v#k>*p#l3fmkYn^Dzw;JhI>Cf>5-siIR%G_g25jO(ZbnCb3a zku--&>g6Doe7x~SDWi{*W~u)XV{)h z?yr^{UCCF2ciHR!TM^aP_9*$o`)orHW9AeZOmF?!ys;!8e=;qvEd02kSuE`rJE`f0 zFsGK@+h$Z38!GfCsROSi7!lX%_*%Mnl;v3j%NFAAZNHP@oU1EWELAd%J`^AsOo_mI z7;aRw>$31KhLt%mOTFLNvrF?jZa(;W>zY6}ceWnh&-aq%tN|N7r@KB?;R-601}OOg z+rSJa-GWaAbj!f)7Bcz7xFSdqr)@&Hv@K+MqYgPskm#R2sUb9vA8HnXr8>5^Ubk>H zf5`aCFg0n^1BM&Q5mH1v*nS8-31hw1Ud>-8`ZOqZNk}Q*Wmsfz!XOr`oL#pssI5xw zug%`?SI4U7oEIi|Z!#{)gh9cjv1vqs6!QTn=T{)eA$N-;;jeY`FQ*NX ztlfmyqslwBpD*9yGQo*CPeK0L&W$F!VNizj}-r#zg^KCSR*Gvu<~_+v?-q0V9KPTzjIDCk!wG2QVTOE{#?0 z2*sfY3TC+V5_J#US_VKOKg)X~#OL_Q^JxqV%kUxO>$|7N;AHl&E z&vX({l%GC_*oN19fTg2LyY&8nzo`9nQCo5cXz#fDdY0_8^mGL1T)q(I=vu#nE*+pa zDTIrjm^FKi+{t+hH3=DzPlbs5(?k#B!UwqPOO<_;;v@M&~iJ?=LB;Utjvqyygk=_x)V5Jj z`WEEIF4bXx0^4<^D{-X^M)m)93J67f2K*72ZzS{f>Q=IeD56^r<1SqvllTY%BNDk= z!?kd)_k)nmIQmg~iGUIDb9I+}+Sk`mqbZ3(NJ zHp?{F#`xa6+#Q~5;%vKeL9%RjWqr6#>2__rS$n=}0?o*PFYS(IRCM=H?*7Y>HCt_s zQx50H0D|XWd@>qiJU~*b)&*9^$C_PsGe?NwF&s#^1&IQFp>%}x#a1(P8zo{LzBF0C zB>hqnNt%e8_b|{|d?>CE*G`40Xp@P2=k-o5E`~kNvfE%ik&U(OZp9V7{620@WzF$D z(EYkz>$)2DeR#SXetzaPWv2vi0{O!*y?}YZW65DBUZcH|txW=#Ssdu+qad=VaFZC& z!oD@$VTh&8WZjDL1q#XXrOnPOs7poy=q$D@H8{>~&)si_$AII>hPu#a3=%HXjzkUd zs6+|`E>eSi14|NVOF(wPPL?^NcH5TpMUZuEiYq-n?47=&$>T&zuI{}b-(1V?nYBivEs%t%XL_bnVa+?RNj+3ixrEf&fwKTy zr`Ug@S%$=MHyBhxm^RdqPLh&+i`(J?1dgeJ@>&c>i1D*JT*arUn?Ef-agSsWnr39| zn}gsE)%>uDe`}`)g_dZ}4mE;3R%#?q{LpbD5>}?>bZ)P^KQ4JGhIuQuzdE?SM$fmo zzKD*<#$2B_I|<$op(*4#Ka}T?jFCUB209QvYQJs?g%Y#r?i~%CjQT{Xk+7$iM~;IHLpI;v zvmaYmKlquqj!U%m%aL(Yr~lcS{tX>Q91GE+AXqOwh_HxALLcGLBlDov`If`l@|n{8 z(Xh;W`4zjZ`+Yb5{gC=S$ouK){XRN|mi)bg28eC0+7JxOLjt3vpogjT@-uSd;8`EI zTU7plNt;Q1$q?qegP^eV5`L~3GVl#r3Xl>BY0q8VVjB%J>f?dug5rq8#p=wTA{nm_P_ z>6-ron8h&8e?yG}>3&6{h`oHzMf>Qi?{Mm30UXQYZd-m@ zQ$K@r#E+H?lHmqk29Pp>jpPI+w}c4Nt2RW1+|}YED&Vh^DZR%Mbtyogi;rvl@)&!a zJG5dLiiNVDWnukSr60B1MVAsxky{$XoNu2OHS9p3PlZ1~fB*q4Cik#V0FJ3qd7ZAL zA?PdW>yH*Bo!3k0bFcdK_}%;L>n5q9R7yG)h}RJ?+fP&K=a3xM7D%a!M$ZiEVi=;*F~PR zGPFRUr4RyU=W2{=w7}aSEMQZeSb=PA9|AD==y5(eO0xh zJz;&q^a_z<~fppslWTwy8QTM z`042lZ59VTQ1E)JQjLY|$Xz?*?zJz(=Woszj~K~-sDul?Arb&%EFZbLjKNy*d_r7E z#cA6i1Xp(Q5aIEBiG7R~Y4G$qXv6#X7IRwUysXH-WveTThZfS0u9{uNv+PnW(C0!x8=K7$7k1ZNaQdw%`lx1?1tI}@h` zVkGt)f(MfPC&JB=v1%quN&&~8q$ft8bcO@(G5c6`z3csayXk$K7BEG7;koKN`*d{J z+cj@<0@F3i`r^}=D#Qp3ts`1dAd+Y<^s+l|gwUU>2L0A&|8e3b69Ojjm2X2JL+j0@ z`l2q+9FD6b$qT`qScCh7J+PVE5I|a@Hw#a&3=KmseXNkcXBaz1VjK!AtEq^bxq7H+ z&YGoLwe|SMiVgTK%F=cF2svIR=wl`O(=ORSM+1Xny0RD7NLneo34LeB#WEDNaM&#w zrdYj8sqAjoUZJaLp$CbK-z7Dzs- zTbrK@p_LAXyhztp@MBdF-Bf+wW-k319V#|)V0xB)-5ZwYbSpb=yoxCb@g`&D;YAO;l}uhPvdkNgXLkbIC;o9pDgU{g!Ye>day z$jSc$nTEXeU_Q;w|JuLEv!Fcep{!c7B_>hWZ&0aDmuYgiY9xn_`-Jvl<8^;`!l1Ey zzU}s|@b)vz0n~`w&z^O*TQ*m8s;=3o=L%C4hqPY9M0_SMry!;A+kZ+6aBAQZ6~b^> zW{=`rP;(KH5W{4$(=>vtFuU9Kb9-(Ecf5N>aT{oWN|&9sb?e7Yn2RfTDIrw(fgD{V zO*WPABMuGn9I@db4OPrh|GFj?Zg@Je=n^;z7yrFJVNKz@n3W$6_YuELyp{(QWwh-5?Rtw9637to_;P(tic53AQjvD|)5kHzfJRHv>f`9NtF8?}D z)7>)Fmv?@5;Tbk%#(>+S+F_T18jYx|y>WT1OKp4g+3cZs`NlA!WR~=}S5kl1WHQ-& z=Hro{(#?N)*1L3JRpSNS*@K&y8@OF@97}rr>8Fw`DE>qHu8p^tS zEQEjbugLN>OV91}>9Po0UP@SA@{w)sArq5I>#38v%2=v?o)kYeH(EY}qR-a>-l5N~ ztmER)_G3D#*f)D2|Dn?H6a7%wm>#b>5~oIgst5obZdIkL4m~K> zTwpTGRlhPE0!7NU|4S#Iw3LoqGm@TV<$!c;Fgzdz>BX2}zqBH#!hNg8ZEKu9n^>vG z@xB;fWDfW5%}L$;bQ@+fkdA6~&KwZ^i=VCV;e@Z}_E1ae$@yI9$;{~~B@??WGc5-m z+KJ5tWve`>cVj_xc>%ca0Y0H6UJl^*$Y=M3lw?6VPrOl>2qTL$*0ak)mdIieKwx_# z41K8*SL&;0*bzwWUCl8au3|hqzGWBGU{2+v{esl))OuRT3;Zcr{8t4nJZMx>mG@`k z_2eOE-8Gt{8v8RN@h}JViETXIsA5yIgQ9(gtLDnU*6ZQq=Be|gswq|NSj6S&ZPS~w z{6QeBm#zMHT27*Z*kRO7Y!iVNw1CI8xRop!zCXtF8=p=3bP1UkBgRCLJcmwf$6_1I z0^^t)$I#diR2kAA4OPGvjHY?`(T%yt9i2DMd>tKRJMF2atff6vu&d8|*>?=l z{D{X#HLP5n@4|jF_-=j}L**q~yEGn9AyXvKOk6C;IL68+j9#*&~xvhnx#z9s)SISa?y7QqkgFYlOfm7H{5 zS*>f3tCIF!E*HktTPHq~HAubrFUtHVT`vDH$IXRCYGDx_fv8|FvpC^R{TD%P>JWv# zI(T)F!CC$;395HZsv&CC?$zWD!5ShBKD0E8rCIr)M?}3e%dE(p)A{iLklT_0P%NO< z9~uQ6?{(;Ky89lOP~JLTty%h(tyvw>$ZN|$SN-k6av3n77wAb$21hr@ za@sh%6$o1_uqVbgNo)j|*9A2>AT;vmt!vdcpYP{=XC=y*)2^3Kb{wxknb72>Juy9@ zjlEA{#!pXVPFo)uf+}t{ZOnmyi%u2RsVmtT!V$DFl(akimeC>%tK+y||7T|H>XtZU z((sd`t~rP>dnd&g`9-2VSjeWEBU*kI@aI&uhdNm)WYP2^BwDLWb&uVPPr*fsVP6N$W}^Fa2<68rWXm+5|#7m zkzY+#CY&Tq-RjFAp;`4t_lDSe$uc$|W+->N+WPO_-Tp!Ap$WTWaA2L%)0niEn~Gi~ z3{6V~YNyo-YZvbk{OA-2penOyK7oOjMU9gdC-N;i>eA4jMWbKThhx@7W3DzC$^t4N zc;@dKk)NHqqEv${gxSV-6VT1%#q33@7T%NMa<%py2E-`{2=nt{!$vO6%aPLDid$Cf zz5qNrmNqrQnY!8)%C&1+zUS4EbJmmVcB68WkFgBm8|jPBp`~F>9uMizvzEk4DS|D@ zJFCsfD$zVBTN0K#B$wr}A98Y=5&$nW+Z=w@>n`8i$o63l!P z)(GfO-k9a+-s{S)k6~hV*99937>zha$_n9cJN?I&F4U0~ju^)0KQY#r0^(odW1aix z>y)^pyqXV(!(Kx@^0NQ5oWAT&xC&DrgM7;qXP?58i6^W=J+`RZc6`wsQFg(aawt4KnJ6wow6EZU&i)^`LL*u}sPS5O+jz z)5qPhuypfTW?j=g-%^Cst#EB$8F%SZ?P@`7z-yLPp;Z%iIopmJKl5jk7AsA6-Le@% zp{QRSi6cfYlql#mDO3Xtu=Td3GQ)*bJ*sAb(yN}eUEZ|FS&HCb1-R2ajKMg>v-x$R z{ECDHQ$_#Lh_xQcp=Ay$q%hps%g|+W_Jl}i$P%IKy9w0R?aw268ZeSPZ)k{AZ`o(H zW_eY4tQyuRc5N?e+dgZlVamBKAyPgtHX)v1I}UGRv^l(+EL*sH24hSs#)_JVHDkYv zw6mliXbrxwo$m1w8xjSOIIYeentv0TtHQg2;*8fEP_VI+OOxp;tQ!eDC5^=x?5JpcV2VG2B>eZ2CkV`+x?r$wxa-@pqU zW3K4kpm!Zig3GagUM(YBz9IX>@?wW?yo2F^$%&C`n(T+2GNSe~*su@?EX!n<+raPy ze?`K9+Oq5^&%f4Nv5;0LXUQ)GamyjRj?b%RDV!Sdw1}qWT-2_*f9J#@)ljqwymNrc zzO_HO^~>zo=Q31%+xUBvfe^1uIb^~DWi`J~kDP9iNZAA%A#JZ7nPqp%rY?E)Sf_A- z^rM$FH$9HiE?B2D9LEZq2%knUS(+lz2g@8B=;YwfS zVkB-CqwlD*q6gwF32|{wd68F79~lll+Uu*B9${a_O0xN?x$HfEfZx+hSf@={?ufFP zQ#Ywcc3RAOUUZi&z4%N!XxWsDqY(C(w5Co|1&LaK0wQPi=)~*hDaw}USuH3*Rd%qe z$~Y~IshJWz-TeM)*G(E65fkU6l#zw65Sj#3y8(-!MflA|a&mA~*V+~yu&v1MC>He^ zNZG$yakT5u{UN}jUp5?d?hC|snSFqgCA6DKIYS?pIVkC(?chaT&j>Pu*EE3H;oIZF z7j>Nc{7b0cwr!si@tB$VnJMz(PLPc#dpzMZxMVHVWH*3?gepiMZw7OWPwN=iAB)Ki zZ3YEFl0ro=Xz`BmGz2RcM&xpFYBzbJ8PE+pNc{m*L>kI6jj28+TnS^Zo7rd9I*O%W zeUpBkvue_Exg275td2iy-*-i4u-#x=XB}}hZc+itArq26Q5DJ@)&l>Aa9%m2io3fi z%mK1@HkN*h7(@76;AE~ zXEzi`Uh+jHN5%Lz1m-ZE5>+j^PN%vK(f9gfY9A!LUi)BjqQJ%z)p!cE)xD(n?JHz| zr@3Z1LqGA}HQ#l_8RvDHVOUJ)O&_xO0Cl0W;+fJq2ifi7w?rZD4@$hNW$L*Wgfy}N z?zigfIF6+$sS!S+VA%f19uyd(u{<=>KqO5NBaKF)lU#>`lq2o=ITOX^%m`!ea_rNU z&ncr#$O&us#n?pIj_cv8dZl@`w@gbWyuJP4%B#O#lf_G~+b-gPRW;ZLeg739zmaXK zNd6-rx-72zs~tx9#Wua-7Ch*{qmDZ0X~M2~b(vwLSH<*eEODOpsR2}fWL8RZG(f1zRVK);BlR-@#WD)P!rNMq34E+utJdD z=d*mtAYrwdmUg4u=RNW2xg~B;kJtcAJgH9~o<7SoGL@*M9vOWRTl8u+`EPU;C4veA z3Vg{X=jI_X&2&{B;0HuM%8(@9H?>@GU3g=9OF+;KVvxeelra%XM|v%8W%brsT(`p1r+*P^JI+!6OgyawaxkHK4K!RB+DaLG$+Y!YeI55qcG$IC>|6K2uh_8B zNxc@}x3n8p5fzlRQbw=Z7pkh1)IefxE(@Oyg%S~GlTqI{I@p7&ck(cy0wbJaQ9bLh z2&qDlwGv4aSy;+J#5Rp!c)EH)shWTRVb%|hZc7jP z!Ro5+T=uPh=e=tWmq97E*ztc?!Zd;5T8<59p*@qv<9kMx&R$Gg^+Fw|v_C?#zAPBs ztCv)i!#B0Ct=rXJp_L&;sEdgaaJx`s8jKXhbnb28-d>?xwedRn9;gf&pT31<5emKf z6aPYe{x@OICi~4S2$8HghYoT8N6t`vj1ZaTPk3Xi>*3ENyKR=8{5raQ! z%Z94te&I8|B_*VD$K@Aa&-S$kml%acX~f`AX$DhoT#3hY8m|_adOt=vyJeCt6y#3) zD-VpzsrhIAUz@Px2d$L+{S7gX@iv%5o7Zwy`4E8G9Mi6imTQg}`IyX>LkVFhaqQnw9hdQ;{~F+nyE|`x?kW~7 zYG}u5>*!g)x_Ox}{&2av;;A5A0LV<91SQ7>RdQY)B{hsT&H|^SCLOrEh0J-%|whowJWef~o108eRue##by1 zcFZyNOYKB0Pw)2Ht$+2<*4XW`F@R_Hy=!-hatNeuZ9jg(0Ca80f?0q0c^g)tHD_n= zffz`)%bbUJ46D)KdK}j0yQT!BrmkGW5Bo!GkDmlfBK-1#6$p#EG>1t9rQE`kI#oJop@EEzkUkIJG)mHDg*Pnm4P& z1Tc3aQnl`-rsqxBFn|6XpshiVVw-?3Eo!7Jil=fpELZ)qPi{TRHz*V$>J1bhQ+Ic? z9&H%c0}T$-I`;`h7-ly~o3YXTp+P4ep02vRR9jRZpt*{J9=#@V#ZnUT z@KlKg@AhUyDmGC)8n{Ff7?!BIG!u)-%f1xcq~kEY(pXM<$afc zJB{CbGB@xQxQJl|m&``Jw=)B9o3%K5Q-~kfF+@x@_0$l#wJQ*pX#c!jNP-&Vh9xTa z3wip9VT}tr$AizZ{TW*TNuT|MT>ftFY`gC_4caeq3nsv&W)oGghFL7#59(?alc_c8br>E#d!c4 z72tS(ud%@Sm-W}qoc+#*fbTSsz*klCb1B|LMYVKRp%e-cX}IN{mx6=6f|yZIFZzjT zzx{|{1)+eRmorPpwlkKGuU!REC+kT55x?eO)3b;h?+98wnidbduQqQ+Gz3}j8@E^Hp zy^CZzWhcn-r5#sXxA*m9XWPi4&F!q!`?-AkCdXGPo!sOjapUL8$!LlX@!MPWGP#W*X-d>-iz*3xyuga!bUr%8jY1iSQd#Y*P7}Y-VSEgckC{v1=$=_ z>gUrq@*g*AB}V6GCt?(z(m+9Rj$!e!$*R{haJ2Lg)mq(kiH1Yw&P?L!n0W^4tcCoF z?(gnK`}XTv0pdEpJiYH-$&%|ISKYR#ev^;Vw9>1rBjlF`c+_;{$l&D(r7eW#7rWap2tHTa+l{m9a zMUk(1eD>M<&W32KHJtvw0IILJ!g7hQ0G@lh!hQd$WzB#hkik4kWXOb$Kz8&rv#TSH zVjy(hgO&PADbx2#A23%>-P;oEJv2CjdRPX@kW5iPxG5U!eZSo>T6uXTarE@g(vO4p zI$0x&l^hJ#4Q7kWd%s#UkRCjk9hiywGhgu;<7Iuxx$!pLc>d%ffN+)_V?2*>3%gkY};{3jL9M(E=}gCM=)jI63uim1X|m5>gBR)8<_6>*i-fN?A?JGJueyfnV82KDUdCYpoQrB)%ibIc=KfORR#Z6Q3uF@a2zH7Z8$7 z3=RDk!tto8(o&AuVG+b!5!>yoN>+Og9V%9vN@Wxm1lT*K6xYij$j@xa1()uw;KKWJ zL@aGXu7a@x9f20$uA zrY?0HB~qZT=Kap3t^Rezf#cQLeW)a&cea(Hys4bXmxD|lU{_1+cQ#hP+oZFp2gk^K zJ#+nn#$7q=fz0oa5tiz|r#}Z@^9CJ~G;_@2_A}_YiqapY=^Xi_7}6Ihu&5XtT)8lg zcue;abTTgK1KJ?S+;kNLp>;nE*vWm_Mr;JKR*<$|Nl2G_}0F%^6|{>r^D=cURF{Ikz9b3epELv8C!f10tA9 zXZWh}SmuX6*{%3@E4Yza?p?*G%9i2O{_Vv)%6{s%Yz`Eeq!qC&4*b|oC;~)BRyFSk z6#2^&5R=HW3kWm)DqL?a{>%QxuGxD))~QpSrIEIu2+!f!4l@kf?CXoBo3Fn4O#qOi}5F>jyW-={96C*5`_0dXzp&usTK)t>MSn*@HQ?Ysvh z{n)tbxV+^Q_VQhLe(f0{zFlG)-G&2yX~b*?z4Fcs>JELF#7jRBO1Bw4pGLh!Y`!EQ z=${%1rqUfdN*BDDSF_w@*wf!%?<_IL48lRe_@4BpC{d|C`r_^?jvEPD=BEM;Iy}R; z8frGUKVRU;*^@mK>oT)H)7qQxkT`6x)JB+e%A=^@c%Rn9IVtw=-}o*b1ui0BeD76;;bw$nxNJ5ZD1k;8+obA(ZLXyrboBkw&s!f|%QB{C--lA}A z3%wlUA&;6oGh8AUjxRT_DE5sMW$^yvk%61d2pVaw6(*lC@l$*Odc2jz{0|tJ|A1Nk zKSqX|gY~~LGCcoBF*02LD~ycd2Sz5IrXji6Q{tq3lJ~sh{!6`3`jL_b4m{^n>AXo- zoG4maZ|rvf6!ic+!kkzs42=%QJobE+_U)IA!S?-=*sz~&?67;J82jtk+r-}w4i8to z@50-A$4{-7zBs*I-xyLr$D4=T$W%e8A>dUHBjf77dj&KGhhzU=y~-{R9pzlV8Lb-QC;PZ#k|E=0~25h zZCOqSLp_Kg4)Wt%smuMWkO!M97))r@sPlSw_bKN0zWTGSM(f%s+j$NSC=gInKGe)q zMyRk+ozc*gmZv#8`E7jzL=H|u@$aBJ??jOq2qR|=Bxvv*qm92)4hSHB{>&iaAIG-% zYi1N4FfUe?`lC+fDM-Zufh{a8 zkF?{R2P6_fhr=7VvuiU8Pa$Vk1`pI&kpjlS!q%!SGha&M`hOl{RdnTjEO8qDJIPwF z^8v{jjL;e9CIig6fmqD|)BzIouGpl(Vx2^(MuaOrS~JCs;1&1YXzTC9t5gIL?Ng%d z(N(b}HLgQXl&z0Po*CcF*>^w)t7qG~28+-}uznhOR_3;Y09GnXQ6njgREP1?kfMhB zpe|#Ph_8)Ve6_g4Cz(-NYN^iDEh$k%L!z--YG#R6*b{ZGW829 zgP~pcRp><=_ofkuDk2V?+=tw3PQ1Vy&ym+(C#xnFLgyr zMWb&wy3y+W6J9o{UzutvDfj6T^l>uWqObwZOeX%#=Ia2ka0&6Wc$kFVPlv*PHVj*p z0b)~Rr!4k+Jd7Lo*L2pdK+Iy}`!j0B0QD2$X{XqRxVc?U8bbx!!k&Ek@X@)0_^GZ> z`X+d8>>g2;x{1d89u5*k(e5N{CF3uOTr=JU&l^Jw8xyDzT+WO%o*sVP$O+ShE!tB> z1BjH%=`#3ZS3#xYC~?Ga8L)kTXqn$d zlz1!P8S|`{{Y~>Ku|6f!NFK;4R|Jc7S(t^@oU5OaI*Xx+pS*clYql|3+-As74ln#5 z2E7>0=yHCCxflqLi78+EtJ~W!+B`wLrX2j|ZPQVRY5deF|i3q8I+Ir^;&pD~@Qi{B-&{@5_iZaYx2D;Oj8VSf_O6sJcHH(0)9c1?G;ozUSX~Oz(%4={L|k0?0A7M z!ut1ubRddy3Q7Lx(ve>d`oKS+dO~k;9$+xeDN{+f> zRUVxM<%1u$9C4MxmWUCWJy>%VQEgz_t){A3dW9#fgrF8t1MAZMT(poxo#51CKTpOc z{RdzWDEhY&BL0Pn6Xq)tn^B;YOzAK5%96hPF?|d)$YfAuqa+-vR@`{ZBf}!4ERj8PMv`=SlTnlwRkA$=Q# zw#??rKiuQEzi&N|HeS(7RE2$J%(hq;TO0+h9S63zj;Ts8%J~*TmJ(+^#ysiAQt}V! zWhHSGe#_fElj!N-z{)bzmj0EW)FY(i@U}9pgenZxFk*dSW@crq^|KZ!;gZ0MI}uxS zr2QVw-mwtqcxyXS_*`Aq-*?I>bUHq!Y&ABJy7mdZ=1O=I@qcY+9yLI8^RMC&3d4@( za#7O)#pD#LY6LM<3QTy}ljzGO-#pvZpsjAAX?m^^0Ag{+Rc{vsEDZvJd71@7q17h> zkKl`@=Jkt%FZ5GZcGTbt@1~Z2zVn#1r)=)dZE)x*^b}HwbwGUG&*B)0swH$>4hFS* zu+XU#uo+TkXb45*c(C0ZCgUERku2*iU_dw2oTW{28+Hgl zBP-?N>N{CBQ-mIoh4t~W346qDl4acJFr+e8THaaj8vt>9yQq78{iqkc31 zt7puxfui{f=cWr(ynaFt1wh z^R!6e0mf$PPxf(RHxnxiquV<>a(CGbmA6~ex4HZ7%Y6U+>^dY!Ezc!Vk~cbR+F@mH z5}1KkdMZU3_WZM5aBicXQ86ENGL;f~hp{QGXnA|OQk!shH+X+os2$?c&jDW6Xsy0* zrX%N^6Jf%G4JXQSL1_n{rnt z=ZDuoipe^WKJuyY^^nKB4`0D6_p4$E@4ml24K-922p1h#y<_j5Hm~jQMHa|6yFC+WoG~ZtdQXeN8M*3pSmUn zr|H-n;v#c+PjCD2zZB zAv1OUO+*q#5j^CQSis@I05x~p%}#L^bj#M6`#QL9et6uMySrb03NXQvP?8+o&q3FS z&{>4U?3^y7nEiso5HJV>p3TS55S$9<5A!CnOw<(UUC6h#ItfJ zm7L>K6JY#)vCZ9<7(1qlHbhM)uU>PV^f|r7Mh}x2=e~U(Cm!@K{>Yo*)72i8-dMtT(*l?r5Hjn zP2i)lJZkZSu9y;IeDt4UO~=I5xIAk%oF}?e z<5;np8>nI(w69$p_S<0B`4ZZ=l&(KvHY)_k@%Edf?GMlI0zCf*QkrG%O7{~$sFg>9 zIVGwhAGR$e7gr9oQ*Ay#;0G7p(Vp;uAH^LJh+MHo)}kcEX1e+4Zuf-4L}n=1p1XAo zn9J3YUXZVuRQ?k+?h`}vVu(ZqF!ahljTvbz*eyW%^#K8sOX3GyJyBie4o7!CRv-1y zl8yfDEut|rc}l&Yp}?8MVUfMtTw_nOd~JqkXigJ$wQtp4nrE0o>{N`WSHkYyC%<68 zA-_lcM?{63YN?ouXJFpi)MqY)_STX!*U3@7)r)c_;%XAw(s_u&%pww z7wv}Gid)0wzPq9lw;)FQkyZqcz|lBZDcJ4&2VQ~X2RmoJbUb$P5c!_ycAei2&(Y{o z2pwDBDbbM5Me2C1SZH?7gI)c?9}O$NGZDv?=aHfYH@hX11G6OXC~AP^j2M;zBJN`H zmv3>n{XrbxmY6e&33`gXByuI$)EtBVg2P9nny+flboPqpXR9+YKm+~&xkfWf8Rku5 z32Ivea~4BKZoB4s+aP)_uFba8va)FuQ-)p!u#CRTC&nj+M#q8_0aAeTIQG$?vKQY< z>ZSnq`VY44Tf3qQXRG0|z;9<_+L5&c8t=C#4Rr2rmk zrG&I45~ctb&)ri0vP>mv+wm60!Nxk5+pl+P4A`k(Xm?DK1%nbs)3$T%zr8%Q)_6t# z%j-T3d4}5dtM07Bch3QCzQw>#cVQ07xayT)5sBSP=|a!@KTSr;o=wKqVTfoz#2Yzk z{H2(;>7+O~K|-S%+KF~c5&4AUA_akMl5P?u^olHh!c+=>({hCrBNdoeE_p$vbt71! za(O&uUT2qbT^pFC@9Yw==}fq`FQvN$Fw>V{nKro0n_V6dG^QgexM=6@`3LGv+|4_= z{{o-;R{GwPm`0(CMtQXy%q|Ud)jo#YM=;)9HI77SkT zfxH(yQ}-SGLH>NuXdK|Mu7C!*u1pO33=C6m!#DJ%5C0Q&bgu76$bk(RVV_17LYZb^ z5CulpYB?0Ve@X(%uqT<0Zy0*xk*QrqiLo7IH8y?TYJq{yF}-KhqWJ*m2^s7SK1j|jW=mAZ$S>qi2e zQ`dWQI8T9tJc%kt-fJ&0`ny!%!EsV-+CrqB5jdKrO z3TiX{H`2I(@Asifx{+E*{3Tr`=L#ZAbQ45~$l^uWSPvU}}#bAOI$EYLa z{tP8a-p>Ty8|?PzwGrBi=fk(Zj%?lSd6x4^l|^ILZ`Itu!V&X8vUlBM2tZ$N;izW2r8o_M`O6?LpTjbRN{`EB97=?zx3;9qqgeZ)kA`=eIbAE-4fjj$q55 z?of*ld~oN40sVk^w=mR}Yr}eXJ?g&X6r1wx^;;wcxUNO(hx0BNEp$Z?2zFTRxJ^Z!QB3rxP**K0vm&+E7 zx7%~!;G^{g71zH7X4+=k8dUcD;RZ1F1H8wGrM+I0vZW`|gkK8nzv;4*p#h#>x#e2Q zG)}2A)Oe~{S9s;tWwAhNHbwQcU{nM*Ayufp{5f?Hg}mq?!U(R0z0_Qhd|{UFgrYwmnFlOvnT)7K;>9;;niblBBwbI;pY!q(2ZHLm*<@8!c1%z4nF8Yv1Y!^fIp$w&fnqK$X8iW@y;Gc=YTt!uYFXesPDIa(3BGcpq$!D8ZsB*L652SBiS z^W?bO%^&pq)Nc`iB1|v4H_8;NT{J-eCrd&>oLkB%+)$e}VfuhXn=RGef)wt2^03Nz ziL21EY$}v^&+JJhb(55CS6%K7RBmcZLv9r;CQMjD3qOCW{0wJL&?qAltabdc z8QY?0b-QM6+JJ4*4`pqlhSB4?eI7AcYLl@&3TZgR`;1i0Aq8k0EV2))*Xzv-bJX?;bc z3qgc;36ql3JTyZk#DEs9{5m18RZqoD>;2LzYTD+$4HL|z`dyzFRbhCq|Iw0&)D&xX zSKIfwU86tl?;msXJoN4&ngol}%J42*~5GB1Y|C0#B zY*vzCP6iPFG2lW5;+BO2z8iBuk@&dS z07M5XMkUG->WfUHH-@2dyjd13Nz+8Pq2}l3G?0G!Wqv~RSP{&4*CLj*pTPdb5|Td6O?m6zuVim~Z}lYQwfZpZGT5}J zm4Av084$DC{gN_LyNzdbKG85|+O`}*QT(}4E_!5{HL=u>A!s$Cx5CK?yf*-+cod!-i> zwW2kcpevVbF-kBryiqX+f2Y)s*C!o0u>0N;^(|(;k0wY?(_zB!dTutkNPQV-@2tO> zhs(9H&JeG&)Tp;KpcIkh>>O_GYSDL$1L|D2@-k6#P~x=F9FTvd!YIm)m;5-1a;ZoF zcr6bWhH#P7c7ECumGS34R7*}-caq>PG**8p$WB1$*ZQLem6UwESy6bVeAJ00|4Q|z zEig{QgOW^H6 zRL}KgCV%xkd@*bB($G7*8C2~FJHRuVuSlhDbu~*v$pY`XhDBzVt4%bA_`D*7oMMXN z0GlKHdk=YYNT^#BSBcu7$|oR2q?+f2%O({EV4yQGubWqJnadx>YOy)TxG}D3t(?A; zNJFOfqSUy|%&OtZ1M%gF*p4B^W_`0XBC*uUdXK}y8h?NO4|g9t!bh=>$tg!E^KoM9 z=!FyF%&#RPpb&>8?-4(#{~=pQ-{pKf127erSAG2P_?nqFg|e9 zyeTR`RN26G@${|>$eLcABo+F5d#yoRKccrrF>BgPPP+q%AuNM3j)P(PRSC)LMCy%f zVq&}U8Zz{Ufy}+plT4TN7#4~mu0g5h^~lu(xmWipM+#>Zs|>0PV!6Z@4aBS^^#(QYJNFc%p zHF+s5Ogz&B;kkxm2GArZb=U=AfhJSUoA8MD=pueX{NZgLDrn$Fd73JVPmUKZQdwQ~ z?O_ssJWuYsTeQhs+BwzAtTFGP_>9;X#J)UA89sZGJoH+f{S2 zN94C=5%z9-QAHTcUTu+Q8n1G_yDxVheI}#eLdscSFI$T%~e(~3iw`^zo?&!B&#^Z(U!{_hx zE$6?R;F58QiZ=|p_xZp+C|VM65UfL2Av|Ub|Gn>nb6i;Wyu$R?$msaX1ovq z*ziWQ$PkBW$^hYSbD47$8m8LlDu$2rb#i+^j^Br5xU+o9nN}@C3la^HFX^*=ymw9e zc`okoJIPM*J^^q873qDQK;-)r-uJ^9)3a{4*`K5_bbCnsm&we>u}x&w;X5wx7u|oD zF-WB{%t8ovr!|@PrXGGUp%LXAJ8j?XnpF`M0<}9FxME94SVV%|6R?d;IMCx!j(8tY zm!`L+*rBu;-31PvoBPt!;l*$Hss0{8w=9kXy98km6$JAUA{>6kF$UrG@%FX$g`#{T z@zn!b#6Odv-3v$TUR}NTc3yTY{)*V>%qrKp8seX01C$01c_ENhCkHhTl{|NFzLs&{ zSCVECso6C9b5ro^7IR~POQW3QE$fM6Lb;g#dKr+Pe~VnbD_b}~wPn{_iUM*scy@EM$NACoh$OKG<+GN`G9y72=L}qpJs`Eh|9zgz=<07z4krT87N6nbmtHaM+tthDGNK37 zCN09JTjJjV1!L=?qXI8(rMe!cXrULAy}RVeeDvQuT*X0&h-H4c#hQ$H3a5ZMQloSmBme29&3wH+4cWRF+eeBPDUq2wDefC=B6{p!I- zT?mDD0*;7Jc1WzX2ZIqicz5TQTT~OZb?qK*3!?;j)RRwC{H&5dBVEh*J&%BAlfUlk zn5h8Xy7APl=z%BJBN_Vf#&Lx*se1j4X~#B=;PY)hG2crr>oO@x;xc{}?cNOyrtYpH z(J5p~ui~p|MVjlRGeBWP8SU$`W}}H5x??N7Rki zrHdQ;8M4>NUym)(?L_M~-o`#XS1wU#?e7A6k(uv4jUu17EA4c)hPAD4)#9oSnbB#- z|B_^RX+$(cKyYan@s#qEBNw}n9_W5_CGvOnVw-(y<$_s*3XF%F zGkOjb`Uf?JW5QaG%>kpiR?@)NUluxX0bz1WTs~es(-|{r=;E89>;VBP6G7U9;PHq- zma(^!OGkt9k!_&^%Bz>2Vit2 zxM6rR*Jv4bY8XmrsH=F6f0|v@KbwOSL}>mw86=U)5CKBOxb?BNW?E1T$7U|1>R#?W z7|3KcYQ$a7HHJI=#_+F~zaBttsPgXq`1B}LP5*AlvK@WRaouCbN2|$=_&oY=J z51-J>?a4pp0O}NKP)5)IEtfvQaxB=2Dijjk#gKSLP30_SHqDbmEd_3Q@Jx>U2*1OK zU-?>@ogC6-Y_TiG(vh?*^JxVi-NvX~3mKh~JJNDnMB~pdvVn8)&hokuq4Wa&yy)$% z7dL#Bxp)gWd*XardYH?tO%w%k7&X-}h!MLs@{?A`^~SL9JImXy@9UQDihQlO^*IMC5rej0R}%l)*SkNqf)BtGzYtX(-QQ>va9zsVhJ*uJyGq4s8i(mi2nZV z>@%&OR#pi>KiSWy)PZ(bU$cBN*r8TUYSxNCp=8i_5s4hnF3*oIhe(Kmr*{D@+U(be z(cd~K;1DxaH4AvJi+8t-EgLiA6g4Aqa%R4A68Q(!C1(Hq-8kJQp_$` zhp%Q&P8_L$JaL&CZw&`wLE*TbPcqkAB6Ppd8-8^&7~feNx1L&@<0$0Fx(FIS_zKH^SNKGxjqNRPA3W2>9}qn7@JIaN?_Iw7x4|6vKL4+i>y- z7C)mQHOP6S$eZ?m9mbjWvcgLAaVLq9tI?6`&sk7*mB3juF7>LLs=_iIL3( zZu>XXQXQen*ryj?*ny%3rD3vS=Yi)OURq^YUHAu3z z@{sU~9kTB#KJ5BByS36el42OVV3@stWx#3iW##8a7e%m>M< z938aAJB*n4ieT&5hgLDBQ>?eOc_u(GuOdNq8#+7VQl_T9-v#lzP7#5W-)q%Wt!?)4 zK7h;x>W$Tl-8Lnbw)04*O9vRkXIkn=WZM*drRV0=bvmQAtz+$Ts#8)Ky$Ob`A+igqXoRc&lY@2|HXp24e?B#5RKG(7{2w*$?B0|1W?X1${;et^XutA$(Dxr5#ek!0E4 zdni!WBCOiFZ7-ET6Dd}qPJl)cvzlP%X*|(j;o8kQ%fu%iRnKtdp|&t|UUr1QB_EZ8 z1w`KiB6RkHu@KRV`%@KaeJqpL$deKASL;FwJFjzwF%uX>SLmE7PGniPatSd&=qiiz zjyr8_++$0UK*KIVLti$yxATVD?6*0d?zxN+^CQVSPVLlYS+m1A$gVis`1k5&HKlRB zW>#&Yy)S=*<#5DH5mto0k^FO#aimg4G%%=Ht}IqKjkFWL^y;Rm>9&^~<`_;}C=ANN z!5`byA6o_(&6le*1&A)%Qsp^o%GKR z;IE->0tH(4;!iDy3}XR3yeOURytTd$x7J>~-H%P9X1@@cgu{)qvfs^NbA25~l=Xyu z{_-#2jKigC9RO5eVw{`%-$DaYxzmXY@8nRn910M&ZTQRgHokEOT>d69eWseK3<%X& zuZHToI0FFNnnZXyR&h&+xNT)dpWop@Y+s7FmdkTur_?eP6HNMe7I}<_S!t1nf6Pxk z`7^rzST&O3D6b`(AJs$8k0q$3HvXgM^tu;7w>4OyT(00Yf1Ml7C)dIdRC4a5H;jnR zR}(YUJ&x29@t1ro3=IiMiy(*s>vv4SG6%{kRY zoeVOrWI`8~>t*fgjO+CPiutEF#OLb8xTZjOH;l6G8@HmO)#H)>A^R^Xemv!rm<_#k0vA5-J4u6Zlhs(fxDI6~{EjABh(wd^*E5V)+ ze;OyUM@vlac!n0qQO>Lv$8`C3RZp*n$5@di{b%>aeq&^zfCFDt58 ziFGvP=H19Vv}ZYGMKF$^4=}IGD$BaJBzu54Nf*ELv~V5f&3|kdvvJ$}GyY z?wS!?5O*<+lzTt+>Mm1(L+OH#BtAMvKWF-0uH~Pex!3VNrhL`)j2I&Bgje!fEHfSi zQvz`?GhH_E8ICpI-rKx`A&X^7y3V?vyp@!7{ld*CtDeaM+uWFh9Ad2UzV1Q&kVBJ3 z2edvOecHQix?LEi!W>s?6a7;FYxQh-BGd})&W)s{bFR;yJkLMET{X9kviseLtW|#n zp?YskVcph~cO}(5$JQX#$vvxgG>#=t&x8pHMYgs{iT_%N<^DnLfV zeYN4EwYy4sgulHd{lCTe9!Nm_emW*_Qm$qVxOLYd@pw4&M zvy_+9qHI$VWn+RJ)l^+64LJG|BeC@U&}Fem);!oB?~XYyd(g2;3&mm)yk*7=2zE}% z#5eIaYK&vFksh(WBru>c`1O+o|6lN`{FE2(P{e;vnhNu^Ys4*nc1dNO-uX}_DHj}f z+Ii~*=6-gxbPDn;*;$X?{}v^LX^TcS?w)~g;c@PCBM}M^S;u@qo-%wjZ|PXH+-b9W z$d3N)BXwj+JsfL~U?g~q&k-hs60hM1gKoDp+vl_AwmtwheF&Nr$isSZokm5xT7&DS4YvRiP_(y_x4gLT zj~!Z)zqb_cQDLD5EM!K8h~P^*pFiTrJc=IKj4;|r!uqGK_KgStO91&j=YxQPy%zy& zpM~&S5C^`W+J7QhECH4pk6O$8)v>8aY7K1jqbkg7!qR|B+$MWlPzU+gm2DQrJe^B-_sxM#@HIw69(QilT#4GKe1h+}l!qkEFWeY!1tm7$hz-g~|%K$OaSYr~o?DIau!ITGTlpE~Z#N@xgi2 zS}S?PuI=5*1_C)Zc!nt{vJnG%%L0kl7S}e__80zfvC_v8#Ujxu>O_TtEL!X#eb>Vi z2{4WmdYZ_xlTZtohCgn#$&`&;KykNE$jcG4t$RA3QasbMC~lS-MSWkbT8hA1Fe|Gw zC{Hu0BW03$TP-1;>t1Nw(3m18gW09|E~WQ9lY8zR3f_PhVC|b==hL0NdOvb$Rc#&| zoavRUeXIbZ zad;CU8&2q1BCAGn4>>+5C3-LDWE}AZiZ2T{4zTF_qp2tf`kvZt^zVnpDW=J}P~Zb%Ka44thn!JRVpB~OZ30kJ zY+7;dLQ5++fWhwM{(8E4oF@KQ+fU|RjF=#s269(I_l#Yxl|&n&RP8FI+RQ*0wdv(3 zL8?mvF;B*Yb(Ve|cUy1d5L;uh!KIkG%T6$EN(C8cU$n2BzB;}!OY-DW7n@#b$I@vo z7w&5V+|%i@5yY0KaY6UHb?28gUI=!OkL#3!+=i*ow}q99)|Tr=F9lZF#PWN%!QU*( zbn`S@9<&Sn0|&^a4DEt#Rv8T~mFJYV=r-Caa)0^O)4f0pDFM*u3-hW+bhcVWlQ`Z&r8eD?A zySuwXK>@+tgL`mycc{YM-5mn?3GN;skjw47*6Y2_8{@RkZtb<#T=GqwN8b-NrZIbf zyua_#F;Yk#{YTA)6))lX%zX^U);Woo@LSBfuA!o1=M6)829ut@6PLnvJVIjlAu3O9 z9{f4Z1o~wk=p6EbYDy@7yGgk-$Xyaihw(g?nEm?TxFF~3 zC7<@*NG$aa)14yRjmrSYM5k0-Q-JMJsBXoWrUY9Q-c%K!>#HS&>P2kQPHaGqSH2~C z<*7bC1Bw1wgMFzl0o(jJbe3nAOAu)e-s%CE#|CMKiV4VPz24eCc^$sc9#pxwbnI<^ zQox1&{vD#LEKLq`B@R^X+r8qQkH*3kwq;ECdeJK6q`Xa(0IIFg1CK=hyssa#1cih( zj!_COM4*Sa2I;r7mj ze5Y&aPaddrEoz;!s76j=x8YemYB7NIGJfZY3`|&xDbp78hkl*n~r8W2Nmb6 zqEVuED?eocnLQt!V2yfpMUonI+m#8`Ow7fZ!IFis?6N##HPaDXh!Y7U;mRBHwBUvF z*K{0eOl3;YKdH>}kNN9|-Gn^r-Hkc~OT^`}`;zSn71-hYVnB{8;o2r84t2?SdWA;j zC>Ghdkgy2@ec>nKng>1PY35o{O3;5c+2)^)uRD&x*)1TjP8C)8V2fKJCnN&a8>z*{ zwLEygN$PFn*@^MbsV~mg?2>pap zln)+RJs+;JEEhO5%(Xc-nMagsjN? zSmU@YF{>J?k+4>E;UlZrqWUdb?2+VxES33XADT}Y%AgILbJ4>|)asSA{zTG2>y)uU z@1$8!HvJBymOUvtHiVY~*V)bG;jc8u8RWe0yk)8V+G$Q@du*Ng{WWeKU+m|@xLW3WIR5u9p=1xH92DzlLN{D_-9=DM1{8Lb2V(n34aa ze18<^r$wN&DEqydhNm1GtG-)@v-xGYi7jrX)u3u*4W%4Zb}K~GGw`>So^M14Q@XyoAH+bRFRGQGcy@NXX3+Q%wEIm z6S{cjDjK(9F{VB7BPVw2T-=uVqU0!p{0C9{5VSUdLPe758Rl9SUnbpq77rtGtB5ooT^%C3jgK5-p_GNfQeq; zmqdvQ1~mf6?bsVjy@?7`*Y!xu!uhjPCpfjY%zscL<*hhs#_Cjgf5QG8!lQC=}0Zy+%eOF#%RVL)J9$lfb zEY!Z%!_32^wBGdnouq$nNGy02SEQeFGnj6r20S&-w{wM`!w{fd2|z#&jg+2OOT$j5 z7I0*w%)@K+Aw7LTqB1x2*cI-#Ufab<4?;^IDGPbo0($}z4D;sPhW%&Os+n|ju(Bxh z*N0laj39AXMKX9h&lYO(EIuXtK}^e`%oRnY&wnEAR_Qp*E@X_9W=MzZ8Z3h*XG@^~ zF$<>l4G%#sUGRW^cX%8V?bml^{kPMtPC@{@!^)IsYlC8g?;7v8SX>MI)A0&A)rOpx zn=|A#+XI7nR7u*b<#fMirpmyYh-+6|Lt%Wls4DVEjGKOc2yJ4ojJ-d8hkBysKua@r zPuIw1;09#S6k^LbY{70p>rtMoJXnqfue&+s;(^f8#G)`d7;&q%xV^$j62ExpNjo&7 zBeWfm0sP&zt7Bmd|NS|$OA@Frd`hAZD_bqO{;4ht4j)n4d`tMQWsM1Xtgxv|{CKn-AWV@-5vM6UI{fOI|E} z&DrvGAoB*uD&1Bo`i&@&m*JOhgngsJ8>hNX)KDVQH-VP3s1LLSxgr)q*dkq~yO$8* zplLrefghE;s7m>66=@F?W`}}JNgp}k1B5T<1TVMC=fA&|4di(9kh;rHSU**Lm{~^6 zxj{ulN@vDIQ?2UYNUNX!`h!;0L9X>Y4Nj^*k2LN4bIWc^^6;30zQ*M|1sHuCiQGsE*w&Pp<>vUv*ZAcs8$A?Y=;cOBA;KNr7j>`0v3V9g$tMl`@Zu=+%k>J0b_C#30N% zlAkUNGBaGc>^PFi+a|}^+1k*6)?jT7PV$`kDCFvC0UKX0C;ddZv}&_Xy<|%F{ybFo<5lz`beEU1+|uipGvrE>SQFd;Xom~el8i8% zlp1`C(%m*TyLnu4{EBkDkP^1HS z_?V@`uy5u?LH`)1&!W5>WaeFetrLt?O;fw@%?hn0SeBiSzSclhiS5;0g=$+dZ~R=s z-(jeLNaDRUplOBJ5S0KsLlPRL>5pp3ghPTlr~^npFbKwVUz;#g<8CQ0fI2k`x87*j2_VF#(;+KjPkGE@oBRAWz7$@(s)dKL z%#BYFpE-fZ3^5QBf7te~f%4KY#oy!& zWshYe@`*ogvel-Y95aj#&9<>?pd+X+)ZwU_eykn-6Y$SkwO8io;Gjzx{MIp zD#bN4RB(pY%ADL=ecP=+ZcnH~dA;5J_x^`jgu1R_2LfZkB|65f&W0Pt7WbD8-J>Rz z>EFFxZ@dNRbnriT@u0rNuYb-#BuhoUjqO6wj55O!+J=@QsQlm6^+#$8BDXfB7#$d2 zpHyo)RC&8D+qe1cQCB2nIiII1dR8YDsXBz5Kpw1IGmu}_SlU$DPDj&mI-nV%Ed9>&i>Cow{d#sXshb1>bY4@Sm@Mb zG+C2ZYDRAbX+{C9Q?|;)(3dY%y;mg>oeM#dH?M`{2$`evGD_u{^eT&(^EAOo7-b4N zJep?0`%6ESAn3C_Mc$W$QK$jqrTO> zEzI)2V|vs{;$NKemSnf8GkJ75vNL7Vio^RZ<^?HgRS{pIrQrOZ)Y#nOW5DtFwada z9-KQk4zT80@U)UL5AP;2FMi*#(5%Y74e)QEq|E-nUR;K?%(hDlb1hEm!H=Us^}~i^ zGVGr_8U<@_wT7>4x+q77B%R^e3)14xDp|q#-kSgTzH~lfm7?7XUo(G4I=d7g&=i8vn61eiLnN?4!X- zRMXto|BnKkSA#1fOB& z3!)3sUSwy?vSD58(j(UA%5ABt?Rj-IDob~E7z4Pnz^q9}7ta}O*l*D|^o6k0H%QG_ z-!2B$>I_%lou9&$dS<;NPBl+>r??1tsSC2(p(wz&vK}GLxs%0jA zH69~h-p)tG7!Uv3EuAi6B&9Ac&lzTfnviMyl%l?)kZ$&iE*jXa*5_ze_7hZ;@=|*% z$@q~A-4bKhqun^!tlLh&2w{T$K2`s(} z&zde3aE2jG=1EavwtdrbCiS;q zr&(uL8<)TAQY>yg=G7KBo|=f%>67AEJR?r__N$L~hT(hPJ0geV>e%1F?~1v1;!-gi z;&dHznGi-SrI=xG& zLsp4)_M-(tSJhI`tuBpMG1luNUOK@eAyl0{SXe4FHKeQZ?cC32Umu?OYkzNGbxSFo z!qCgzeu%0iKEHt}-eL>!n``}-QUPQczG{aJ*%_$xV& zHAk^@;yQg60}u}fGFB;uN;p+_>g_^Gz{R!4DdPk3r|N_4zc-$k4ShY1$_j;?OeFR` zx-Sb5qUbW#|9K|snG12I2x8@_GZ}2Ivlrzxg?tc*6}5Q{Ja2XW3#e!9FmRT&HX)kz z4`x=kR?2~81eg*R3^ z6ZVJS*kqfo(>6@ZfZz^7@;o$? z<-_R-&MDqd&izZamH7j$I>7nz?~_$hH56)a=|?}rjWs~1yyCz6li)c+1D*PZW~Lc3 zO&OuV877!uqo7{Y^28Cnf63cNVp_4|vgf^(umd?!QH>qJK{9yDx=)*2?+@sgL?{Mc z162iT5}$5<3fWbk`3CQ-Br+WxgfYAT@ya&0qfJ2 z3~{jF)}XZ3&}ZIP6=oyDD9Yp9zs>n&Hv5RDt~-X&uRUy&FYl2p0hmLrGgz=VHUh3h zMaz!N=;M7inu81O^i%aPd+>4*zHp{!RILnDh9YmF!a}f_p}PvONWkAf?{xk)7^26E zM(0{VSuTGi(o&eqcLH+gj;12*Nz_bKJUK<`?}>ffe2NFr70VrNv0YVwQ7PSu%Ba#_Jsl3P*cyuzR^}%r{Wm354|6_~N z$~uIhId!=+hF8QvxKP_F)j93!-9nL6b)Pt1r*d1k7&Zdg;D;npsFQ2mEFT=K{!>;L z=nq{!_y>q%HKO~!KsWyvWBI?(O->FD4(|U0-4yu$6uQax{{-DsXrxt0rF#l2sj)qp z_GhQ&ay%{1f#Ka4KK*4OZtAli0~q9D@42D46StfbzE#Gg9JJ}mHMi=j>8fqvr1_8a z3Q}Ezh*4sD#a`pvC`E)FIzjNUv#YIb^U|j_^2ZGAADKe5I9^bUdB1$cC)Y93uzu}r zJ$dINvxpK=vIr5NB~uUBc=jT#y9O-8uTM7MM9|Kn0x>mVsVEU^pl{5i5pSLe!rIuV z5ET#GLfQ@h015s^eXg0GfgrA|-tK%taY?++khWr}On~{UF{ff@Z-F%8*H+DmVKxmbXD`n}}=YW*9#CakS4p5b;v)#k@h-vl)(w4%|{yV*0rpLN{?5S7<`glo4{ zutt3RBGBln@lzGaA}Si482&0$lpIM66!8R9;kykUDk?;$2$00n&R~uN^aAFX-QYLZ zaGP-JlPFKm5C5I(VZJU^LCiR$dN;>jfA@#gelVy!6Z zggeu1^J>NViRx1TCX73dwgvxO#_iyrJ+os~rAo&a0eqe<_lP{XAQN6coO9C%OVi!n zz=qAXt(PY|L`Pm8D^T($x%bH4NK! zFY|$?;o|A;Mg&LDd``ZoL09)@9Zcx7WE&LYERp)J1md?%v4I#G}5z zrY&-+#fH}2KGhoSi@5?V^TJ`#NQyI7ZS_EXm#C}h?VIF&d(UMWzP`-CR7PAq+VOaE z7h5P_!if5(m%e;=g_7)b@_1UMV9i*v#bSup2{4!Csz+R(G0w5Lav5={*H&881PIoY zq~*Go>VMi0^?jZ$FCU`&Jn(@PpRXgs_$Kn|wh4)MrqaGZw{1u0k}mFibEq5-9>3ms zIQn>Uyw95D<)B9NTEEz%lpV1Ltf6A#+Vg0sQx2XTeF+PZuIJ;53ZZ1dQ|cqCFfhS{ zk!+%zfh!M_#zf4eQa~(@q~xW&45PDH+-7|Kvi*;3`z@xud8 zzadKN_yy3k5@119EuNOuE+Qmt!t#v`fl?Y#JISuUy~qA`Xr{_rNS5d4Tqx1br|--` zbFUJBrTy6^meem=U&lP|7uay_k}T{dpas`}>1b5(dvz4|*dH*+QaV`r)d#wN^X~sC z85fK;a2?kywPz4p68YNz%R^x65Z$8r^-uM=Yl zkYH(?B*=v9T-wRQlrmR@nV8a>rIqj zNfY&Bbe{x`nr>*=9LP|9DQ`xxcj&w|YmPc(0SNJhi1e%XzKg&DuHBo&OoPqWkCcTA zb$da4KKpmv%G+X{?l;^k2eD@4P76C6$KMZ7orD^c`UYp?0n&y$ypF%5@uCLN$=u<# zEPyu2-GenpW;5-r(Y}XRFp7sc7G5Y+Z+Kyk)w`-}EO;Ss4yKN3+adm$GGZ098IKtU zU77cdHDk+AA!L5Pht7ZZg$70uZg|7DJxtA)6Gwm+pCTsyF~UXwGIF_Y2>xhjCD_WQ zmUZ5H79xgNo&(R3wJ4PK(+3HP6_QnWkcFK^SWK<{`X^t(sqYZM))Nua&%ZG4YSxT7p4$`G!L(CYGf z#(yp4s7jD?M63Xx{hUid$UYGHP4Hto!_}YH8f;mB6;@9~?NNBG@xtc4p_+v0`Q{Vs zkV!a_u`0~rsdjc)P#NzJWyH)7-Mso!chmEAIq7lZ`?quoGq2z&%1fHapNTNqzS#k# z&Dz^;I3$AST0#o#Wf|>Xo;*;#>SQ2eiJ&7|H;i?^o1O&~Y=m_-pVddwvm(|~!;5&u zLyH$MXYK%5usPabuLXA%(fdmc88!c1bh}**WgWQ8R3PE5fY6@T{l(q>Nl?r9LDEsA zH@ra{nT-j=?J=>j~oM}^ta*j^5_@@*4jF?N$1m;A9ek6hon``NT zF4NS7rd9&(2B18Fhgsq2&*5%KYw^d=`?$#QJ;}be>vqE0-}H( zn<=4vE%W5=8S8HVD_p{$|7`-jo5)!GwZ5QG zi89ux^#XsNJ*#+UA_+F_R?%$4cW!`bbP)qe5pdiz$>i&BjzOA?#hP1>p$1-H3tRI_ z28UmC*RUFtKI%;}ez+$V__%F?8F0aG>VKF_T(WN-nteEPUmYN9h)F~;w9UyV_QlaQ z(}!Pwj*z~}ka5Q?VXvQhC+ZA-vxd4H5(5btBfRxkTOM#2tz-u*$fZHU0xnYb3Lgi_ zRegFdV#3ph%H@$cZ20|jfBo{*W?53e+#bhHCUrPy*;@hBYtY0JuJ`mXSXpP z_n09yDJS8F6UNF{X9%5xAuQl`t?F3}|I`GuXC@ML70%2fb72mY!8tjVVo(SE4S_oU zgDz9VpQCVcf8X3DmZJ{pN!IixvKThF3L{Z(JC5gcVe+C_O(&4^co!lU^o8KtO^Bw^ zw^F7?tGaq|2Z3%WiTj~-CH=LdM9HS&sAO=7Jq+J7Wltx~c`BJ813&wflEG@kNosir z@H&Ly)0Yq5qTxR{^<)uU&=D;qA~)41i`(T`bL7>Ukso=^rW{+Gx$-Rk^1Wz1);Bc# z5S&94o<*e1VA&b*%|=5tPJn?v6oZ~burDD)?_B7-I@3TI%xR~O6P9$Hk z@Oy7@IrIxzVwJO(TdbTnIuBSa_xb|*tcIT6w$%B_RWtrW>$y=!`y}`=Ui>JZu=tvU z4w$F+p(6|5ZJj51i1+e)Es#o@Uadf?;hhKYKNfsKTW@Y-Y{#0DWdA zePJ-wOcrzXweppMTtoX!gKem1bdDsYP2Qe`B$`b#iTIV!QGr$i7!HG{0R7dc4Ks_m zH^}t^wW%FNG!SX7)niiFurLYpZo1Y~&VW-A&isDIiR(eQko6c*3^S^rW_IhK?eg3l ztSD^1H%K zzI^HKzu@ugn0BAhhpdlu_XOqW7&nU+bpU ziKzNIrrg!Qi2Ro`{6LhPsqEVwDuAQqTIAlg-ec(g@=Ty9LCdN;YETtn&a4{#!{$d2AOu)GOy;HR^y#d-6N^Ki-lZu;2Y&&=oo!N4B8C@Vp5N|fp~;}XN5kEjgaRgXs{vn287FMN9{0;ohE$UK|90Pz ze-thEY71*H?&znn3v~q7RH*PD)libibtm>k)hQu{23|jc1ARN8zRh9#a4bLTA}cOV z>&(=p+1q9j)Ma!0=V7@HW?-_Uay6LgUuK(KI_n&srRheWok!b8PR{-AHC&XAUT}Ah z4gXU zW>}z;G1Q)X;3s+b6evO{l_wP?*e<%@segl0?iqQ}Nk|B=C$1KxiAnU8`l6VhV7Ht- zx;nEiO*PY~0R|{>f*swZ)A+{K_oCnI6*6}JU3U}wF?+9LI3b@&IY=+#@(=4_eeEro z59}kdMuGbC`mR8&=zeN@`Q$yi)Ij(xl?4_ZMxLDkizceCKDGPd9&1l{P}!6nD?~&j z%|$Jh=WiA$kGS|NsyxzCnN9t`gJ6-8a`i8hkZP!@Ve|3gK}9a#%EJ!twTUrJ@0;02 zEp0A`)O_1<2aqmWeO+;Oj6NbJrZ)t&ZKFd*(tK@ZfuYdEQalbFm$AiagEpcwvIQ>P z>*Q1hdXGTlkBCR<%NZqKOYR^Ft)4^iM{RkuJ@wCW9 zo?|D1$T+UI4@`M2hQun*O`%>2hI7OB9g|h)sW@R~|hZr%Jf(apRz&T9Iq}D^u`C!X|8aVOZg4 zs<)`~lq4j@k?U;BOV;q`<)xb`J!XQv{faM9`_C)%cE6Xb{dV=xJBpR%`W??|-4Q$A z3X@B+N25l6873o#X3E~I8{pgQaI{QgSf88XHeBZ3Z0Ir*#)#RJlFRy(7N&_Qsbs6o zcO68~knf91LVMw(7rQ1G=R5)O=cOv5_go7ghHSa_|NZMr*@=RKkLYZ6;mo{X4qL*n z4pNUWr;e88dPXZF9+6Kf^6HQ3g7q8=Gz#QdSqf88#I&4+ux$K91FWgkfjM>{wv>Dy zb-1->k-uI>`qqyLKF-=tx08(BVb#Tg2anm^gzx5q5^-M+!3J(L*LAvC+!uDU$|7nA zYN}iLogt*Anhvy>NOwCBzkk=JHoaZXv>js_KcoVzv!Damj5#^z=cs@%B_5ZpB{|%iIwX5_Ys)yB%^h zV)df*b(z5ma{XPx_d&wB)2eI)My;!U%zQF+agRIGRNvKHUQd-^2bL8mlGbEw4?8-3 zwm&8SbeY39PR);D+ztbp&g~mBbCVSj>!X`3+JzEHe(SV0(}Vkjs%r=jO&WGOP5#E@fn#La zD8sjwYU!UMaF%fde~V0JY`#ubVip4+zF+I651UK51X}A}&*<736a=_DF1#j|j_9YZCTzXGDQH8zJkK&f-;9c?vTcFRwsyv_)CHMK;y=}FZDOj`w9w#2{5~^f_)YG7psxJUKL%oC*$BK=F+CGn^@(lTH*}4Pe>{cdg1VTt zoCYqVVrj`BUI?8FL3?#NU)wz$&;#U=z#mxH@8Nyad2Zx>FPmx?{H~^tZxkW9Y)dnS zP`@8RbADu-z1L4TTibA%%z*7zg7%4v|CWQ{IUL1`TTT7m^tiH)UfVH`lWs#kB05FbGGt9@Y^#1_Lyx6jlN zU+pensGZ`BYSPAHPIZUpB}rG_e2+&{7f;FAIB#N>z9^k>2eDy|XlZ;50K)4lFA7{? zqf8#Pu2+97NmZ@w8LyY1cVYSctb+vwBOJD~AeNK7nzwV`4rWjuD~C@0LgEnEBA%U3 z)^C^82i$Rr#XZ+tUQC~|0sDq7ve5v(N$>l~?43usi+EW~-O)T8t{xr2??E9BT8bk+ z5PKQq_&OCF3M%NZIli$8Y%9qs3ZwF}GhBaD*p1d6h|uRESAF#XFlKg+_U?%>Z`|zr zKi31=R-a5f?tKFL;)>hiHZE!cS7;0T_?69Jp?RWZhzEh%@~iNve%TlHxrNxpvKDZw z`Xpu68pK?VV_&SGH2)A=-0xO+_r`pL>4^M-6t_}Q!Dj#+pK1oycDlSGRP)7GGgiOb zR;^A&Hm^-Nghs3UsAo1jZ(KN%3I02Cu=qsF{)HUFN0S64(~ zP_7s$Kz{9}cF)4#w7$vA6bnX6vOeJ_yw@Q-YZi{oR&s;vKEmR#Y%6psAHMOTA_WiN z5%ZqWP+T8XJa48ZbcGU3aET}$J6TdeJ2ML}jw7L{Yfyvh30q7S4b)tz5mYUf!VPh> zX!x19sJcC7*SgZ!5>B_QuWKwTKt^dfJ+$2XaS=|U(`S5hO0*oWHvdgfTxUF`5=T@N zI{Ey!J&7_XZ)Q~k2%uge{?cc=kJhnW~aiJcbHU(V(CQ63y zk;H$mW1Vq|3I}RlM|2nwNjrL_LZ?lk$t}jOm)2sgYFH@X*xd@ygP@Ta|U=4hir+i9>Ys?KWe^C zq$|Qx=KHMspGyLOn_!cLBfOkgJFl;io}OGYhZNZ>IinjMGaQw)i$i!)n0jm1mMqRr z1z|+)f4IO8%fO&tMjP#4CHIF7=A}pwo9lKn4UUG6+eIXr4%7?L>xeT@TTW4~A$CT4 zvSndFPQ9E}sx>Ng6NMa|EKTK>#nr!Lj>nw?y2$m4pi12zUsFdQ=EAnyn?whf?NyUq}QHi6%XmF0KyWci{rI4`nXbR^1%Z zD~JvT4i-|6d~adKjft17#w->vFkZI9;ZH@??uNO9D-CPoRp$1w?~cCaCn|djN*?11 zR_6~;)+#RMNYhkzj53A$RFC2NR2@0AD=Cur7$(49j!+L7f2kcSiWy6;p=xhE32uo) zPrus2xaKlnvOQ+XRm91l(G6@=AD1IV>l1wacbq;GTkTt zZ8+Bx)w@>QWL9A<4K&CD-4{ERj^}4IX*RJCzRH$&9OTgXETryFRF|v&*uh6kK91|b ztU2mkEay#_D?m?QOSKP0i)g^lxQrSyVbxKE5*I-1Szv5$8r-@I6Kr}YaH5&ZU`y~> zooKSpTBYt}_KEewNo`f9tOha`Dd}@5f^h{{Px(f}xXDh6+vQa(H9Bm&jkkBm23AAb zsn8QOyA|AcU63?-XMf*$b+_37mxuu+)whAMJ0q^PO?aQ?W+p(7#3U9XdL#UJtJVx> zDKT^ef5CIAZ)|@*wEq0+T$fAkne+b!l(LJ0sr_ci5?Qg&8Yzwo0=-h{C!^6}=Hze( z=HM>V9#X!@^9k1~I85a}Rr2Gb)36j(Tq-jxf!%bND3j}qQMw zBaJT>Hk*$-d@L|R?sI|&u^8qFx{Y5RP87`(-MJ#iK3E~_2bPs{K0!w#+P!7v14@DDl= z`)IJiWQ1C9p|~H1iGHv-(!s*6SuB48%(f}rbd4*w7#7iF-O#csT$Vqr$ba+hwx3=z z*0N?L^NzyT{Q(5y0EpFvps84xMscZG#mXeIYGs;D0TWD|4Qz0~T9zPQlel-wAui~r z)1*NGQ050C(}>SvNf?i(Wm0Ki#K~`va-MuXy!v)HznuLXRqw!Mr_YVZLm%&*UCL@! zcgNW~*rEpF%_SSI1MXUoATpM-Ayqeh4aa?IN%ZnkUF?1Hmz;x(IYW$U(y$dYetpiA zNB#{=flOOM@gEbK7Ph!Fd2Vb`>gXla#X$1EP%8yISg_0^wO@vyc|xX|3`xl-UtEE1`8H+4 zIq3P9QZgH!McjYP@Io5K8oE{fbez+5Bl#IxvPK}Q6VYf|-e-|q_BRAImxfTxn?siPMKQ!x#b5R;8ZO&wrfRl@vMN6F zgp1rh3d_I0(selMZzVA(WA5NR#44ft0xP*L|jY= zT6Wrcvk}Vi8j^OOkeV2U;ygDHVWE!4_3a9&jq;ExJv?h+{W;RIldl$^S=`=QH1-t( zPg4bX=rcaH%*waqz^xU45AHZB;>y<3f$9?{`r_MO;2)d|lEE{THwVm>Up~x#ZMYk% zv{xuRb95HrK8PqVe=p~@NbW~?q?od=gua2T?M1M9gi2@-Xc%|jE{m&hq~wODPUE|d~&sQ`GqC*hPq zA><)z3mo#VZH;a<=XKx2s2^^pXJQ#GPL%w&o4oWnvcL-rp>k!BF{qpuY7er8q#P-*V;GR3-y#a_{^qs=+uQd|n6ikFB*UJDWU$+{>g zWkawz>O!9=-XbKx&=9|4o_Nl>$f>3yfzo_H>J=B2CI&R6sjg}|55`_no7JW9o7AVK z64;{?N^F%5jYbopn1isGr%7$V?|_NIcoS7s?_BrSI3^51vl(&z>?YoJ=**klM+

l2)J+BHyNX= z=-?k)M*r$kb!ZNZy9xed{6n|S@bVeG*dF%u>I_U9h7HdSTpbCYY-7=yd9Q~A&@-qD z=9+M%SK#Vjj<~kIgt6Uzy?E!!vNdivIv&g=;EQQl1tuiA%eBpey1A779T;~27e@Bq z?AiHD0v&(Aic`bWWHal$@NV%JD}g#Zs~OT8GPzL98h)YVD6S~01qMX}xH+M?M>I+e zy3)1~7Ohw}#oz>Bi&W%uk(0 z{^s(7HY44WL>H`P&^eZ z6bis>pX}DXELcQ}M41Td`ZwQ;Ah++}RebXH*SgZ>h^1mN5x*>8OF?7=Q<7w` z=ZNIHHiRntEp4vnQ*$4H*vfT0O|EwBzlCG0_a@eV!TogA5Vsgc@cR2hvbY-b9`-ZW zM~zEM__sdeQB`=-(q#GVo+$uIcXc1t+kEeBq9#K+5@3-Fz3tpgys)ob81hTV@x*>j zgaB~rYum6j`t|T`B~uHrHD@8>8^oiTd+X5-x`*4I)l58{16DT*Paw1*+YcTuq+03;Xc#6ALi^0eZbAl@8RfC{iyO<(| zJcxA9P4S)&z3XU>vR_I&XTrucH8hstXHM;`*& zk;aT16cQr&vFQb|e41O%O$#v@C)B7_ zuG-QrmPW1O{_eN6wS7dj`yLUC&%Sw`?iF?~s|S!NRM8n?&ZC3;ZVx)`G`Y zX7NGTDDCe`ROcK;_jI9x0Hw*-0FB^sS&v3t^t>SFmqiw0lmn8)ew(~HQhj&;e*h%l z=rtlP;xj-&f-WMjE5G9D9%xFWg#t1#n#IrqdLgIt8x?I|d0Y5Fr20Ao3!jw;e3R1$`)`t4%Tjh~1Ad$X!cz0&W%{{07w ze(OAkh_gJ^GSvZSNUZ2*jr$+#FMF9>3JO0N?HN=R_|_lyB)ni+ebwP9Kj3FLd3`SU zJexl4ekn2-kZV6#9u9hm@JT}Mg?JeO2fER#K#bFeV~~MVW`MAZwf(%{Y+AVJ1S1@A$=YJHr0_ePU55lTZLWB4(pLM<1jAkFY{>L#eXODLNvyv<4o12e*WsTyxw@C+S(w^nG5KW3yzZN?Xr2L|+N|L-agCEvC=9wgjv{%9zGOOW6xXXf`Z> zI*bhMW&u$D5&_|Xb6M?o zw^az+W4P=)GB0RuxXyGBA@GJ|(W`mAwJaWV?S0+O#S6$rp@%p>1I7>dkAO+d(Nw7o zpR~sKN^`=wa@AdPG>2N)pUgecLKN4vI+qD50gwU_PXxN$RVpLsIUlX_%iRT;Q#sVz zst!B)+Jxg;xOlMq5(XypcNt#g`4JyF?3HxBhW_pMe548>2&dAqX$*p4(a;j*?%jm0 zEJ|jYXjKvh_{t&u-KM|ujUxNUEC2Dy!>$5N_{Cb?-*<`z^5w__}ugD@sGK;tn_ zVJY)|(S3frZ`s8P+JD%<_vmzczjEt*k&2&c$CcV@$_r*yP#xn+hL;K88h55W9}{IIIk=p(BuQ4_vJFR#PhcF6wsbJg8`YAUsUv+npeuUomC zj12HUGk@pmB7dxDsY!jji`E!VBzw;(nLxGE0&CbX0rTY8-+Qb}4#gM@)^cfPMn;j3 z$33T{7IOrx=zLMw3RX-ErI=Yt*rTHDTmVXAnZtI$wx$stzhXJm=ab^#?%(d$Gsd`sax6lij@jiZ9dq^TgrC*Y3^-?z^-X*0P1{jS#>E%7XcO z1U6`>U4CIhpKmeeBb9yWld^VFdx3&V~1vei>8k;d+hSBDI>N}7k@*;P?~IETO; z>w@d_4)$V5pXNC6u*&W`A>`1gPJyL9u>X4sPMlJ*Ke#b83|+xBl>;vV15X#dV0x23 zF~vSY8k_AbxkC@ExgW8G2Qz9){iUr&fCza0C$R7ckO9p9)h48vdc(#c2-Maqs(z|a zX(}~3Wlt0>JMt=fBqofPrtcJ>EL~#mNs2DD@pY)`uI(J=m?)OX+ccZTUL( zW%?|@^Tj_j-|F!JVeEd8?;-c|LfDdSd*4%t!Q;y;X7oiua^M<6yr&Q9rArO^M9 zu)nao1-p&{k^`<>(>g0G&*`myV^?1=TPq)LZ)1@n21X}#cS==nheG-hr~T@)m49-| z9jgh%R;m(LKV#&@EOzmyge0GjoiSvDVN03viOcp9L(zMpCrcP)sbxxiigaBMw;f}M9!#)2# zBUo78u`+98Ea{@dT_sarIek3eXxW{eSSWGLBS_t?+XJxF zSb2G#hw8f!e#)(cs`cu9k{vjAvq8!sOH=x7(BmZ84R~U|20?Ht zu5CccCB6&4ky>T6@c^09%svRmD2KZ*X7Cg>v4n3Yw1W3Prf~WjFUzMkr;854e~|nf zX1k>8**GAUBM(gX!gjigU^8F#(fr&Bbh@n3hTgreqq}WgGw+JiJq^1fw(suke5?|z zUAF^IQHgZ&QK$g(!B-K|y(m^3_>pTT4^5u8I<#A=6TZJsHJMp$SVJ+wxLey{t&i52 zGAtc21G5ylPrTm8>`}i#{5A>lOjNOZ<8W3KDq{+{lS}xN4R=^XGewWrq+)QXnjA`i zwhj#K@wniru%(x4=#KoP4KG~$0J`5a5alf5Ub>3i@jh`j^NC<&8@VY#`;6AeE@2qtyfZ0-8-W1l+>J(y$LmRYi_U?Vl}=gErAMOGtPKMyo9w(K z=ktfU$3Yq{7flyCps9=;1S{XV_v+Sa&VMJ9>ca4o>tL+5-Uxj4ON*AUpJy@CwcHd1 zyed&|14SlwYKJ)oi}3ZfvCi(fQEB%06sH&!)lrN$e7&UTnDa&pbg>R>`Q9p3|!3ssBxtrYAKiCcPK zcQ1r$pH1ON!bqgUm8l`;Bh_p5ffJ-aPWz`@qOtVHu_ysIX@7-MooiMPv1)b!d%U9v zUm+g!hE8)Iw~X#nVvS#8@lUxO7(Zvl3JZfywR9<7GR;T?htE@FzsHLlSjRTrh{zyJ zfZ=)jcEnT3A5J(vA)HI(lXVd}`s$`E#K+eG| z!V2MMmOARm&R^>x*L>&KL%EvtI{r+V4+t!NN1!n*%D16d8#R)TMprj|1TjcA7F;dq z#LcfXHW>;u%7Zron^c>NRcI4KAQ#?i8`u@A8JIl@v7NtA06~7T79&Kn7{yu>TQ{To z2Hv4)8?*ANaqHxd;Y_P8)&sbb?HZ0#VS@Zwv{HYvyOilW=}yxCi-A~%g14NDFZpzSYMXzF)!25aA7fAZJB? zkyKG&8~Xn^K=qQyH9@WIPzzd`FQYB-Pf!g!Xfzkn01=2NS%LdbBIUgv1}t8`_xeRH z`6tpk>%oWN5ujswT0D|O`pBih!L_}SYP9ZDcmu^|;jV=*(T(~~56^fj7q#dG*Z`4{ z)TL5|qDqe$6~0jCawQos3yj~bA7|stc?h$k>vNvoM2sMChV>l8 z^vf42QA_4|IPiy9tc+D*#>F@lV!2z2i-extUTzwM5J!eGt-qpyu9T}UWyd+9-|^wb z#@EXB3cYy3z66&5GYPY@lIqj_^m@(~?=^F;|;szLO$CO*1 z6_|swty>y3kA(#>6w!3jCpoJV4`G&8-NdqO&aOG#vZOpVXSxM zF)mv_rE_GCC1dANDuycwpNA%BEw9(5B~?`*$I7Zp>Y2p;!(U~LTiD1MmKqoOwxQ*C zwr;>f&1ssogiQx*Q3CDojk5>-hG~%S*Ld*GwKB|oYJFv~inb4Pn zRqah2m1jJ^)%ptbrI@AhZ9hu0DE)#G$5haXa0nI(LIL?ROq}LeNanP@q{*6wS|03>WohaV4b2zdVvIbZt1sk|6*&9-aC-R!! zgh}v<7&C#3b3@csIG zNKz`%<~k)QDUvQp{6n9P4f(`~8o4a+nibGrprApB7$~FNKRm33F2v`YFK5E>>olpjM2CbOfcLaw}%3>vKj>vC@A*j(J&%)@g@Innd8^ZcRx z`bCy-OmdDyp*X3E(zfJ=FJ_`W601yrmW|`AwJA8{XetbgDgd-2xlZ+|O2$B#BPMKa zkowRif%sOb{|%ndP5d|R67go^cStElL4pric58FQmO&>}_v0_I21_v&W`9{HXf#>; z+32#?VWdH#y|U+(dGa6S{5%*_jqr8I5_1iLjPiyw)|Mml~ zBXh(VzQRV+!onPh?+A2R0Q3O@Lc*>URnwO3J~*$0!5JjewEH*5k+V6(!q;Z z(%j206*gYh>3+>ow2$4h&!Zc0(a~kuY9AiIw^t)nM&+8*C&(#Wx~c4n3FObu^6M2w zge=mT^cqCnmI2$rRrc)EE%G|GDfcHHyMnry9=zMGlgcq28Xg$dOVV?!dfCy}(iHSQ zS;#2fy@5_z+hwnwH%IrjB;Pmk9{4QNvZV~BdsZd-`?rcx3F75FzQWB{O3%n%b}-Tl zKRBze>K|c1#|X2{MxQpaH}FMk4g6QQ3?itN-o+rT1Ng8*h6FdRxz zQ3))REkOD4*?IUnb80gh;^o_*!t{~DIa)-k%ewa8`lZkg;?M2kKRsr0n``#LNHJ+u zA_GFd>_;Jl<1F%!PCQ25*mSN9aoB#e&%AnoX8)jqGN*Z8ic{Is zIY*1KnaB((mLjvalB%T+Hzf*O=cv5o!ihctpT2B0e*F+_D-%hH2MLlj-#C1ygG-2z z&cM+p2bY~oGCjyLf$DUh3g#!=@0{~qc2P!;P-OVYiP(e&+DV5b3y=vm0wa6FYU&30 z8g@OCueUMDIC=-tk@=$N&PYDrsvDL6QVhPQcoxG<+=Y@SpD$I?GTHZ zF&GSJG|$ zep+TGA#JQUnXq^}hxNPf{`WSe+>rZ=05Y^XV&HJrtTK=Sr%x7ix?h)wTB;JdPdipz z*?J2+q7DSKraBQLPs%zVY{)z75=v6l@TM9{HJOPLwKf?b@(AjUKK~Q(dKzMXBt&Uy z6dxcIx6@tSlMRrG{AF}&Gj~2^ftCsj;Em>~z5U#cef_(#TCDXE7;@mlL=rk}O@gIJ zjG0yN;ICjQ9{zpyM-tU}M|t^D)sp)COY8Sl)5TC9Zq1@3-!%L5S?)W{?KVo8qBEnl zu;n##cErBr~rl40Qnrl^|mMW04m!j*1sc}g?dwSZ4n5+3`MrsL$=x?DohGk;# zmI*AHO+K6u^c&qvU{z|a@9jj?w(fwDE}r2okyIYE0sfjlRr$J92RtO~jYv_DUG+tK z<786|NH`Hkt=cPYF^6nr$eY?R>6p;nbvXpxF z=nYOpsyv59dKaWekcN zNmf}OquYb1l2c+yk;S*eDv#Ej+2ZjT`Y&WPB40uMrp0i-%Aq`~65ASivAPxu zM@XMgB^YRQWGMcFIcw1Yt4-;WbG~7h&#L_Sp#v^l)u9WK5EGEV;WNp&n?yW!{=M)> z3Fm^E0yUrARX$*rW0qs@hS8*rjUhy!G+gdy*fU>GO?!=V*NcKa{p}@*GEB?d7LLz* zAK@?G#p2nQqJ_NpQ`UBn<@#ll0qX!RT`sLfZ~~otyD2$!PICOhS~*oD_aV_G3{*Q= zB~2~4Vkx0c81xCKr0D+q5-0yUmF+T`p_g>Q!3(ow=rcC5@g-TjVJHw6lLeT6OdR(C zK+g1AgK0EUAJ62}v2byI{%8JA1R|stcL#~*2T$+pKUB^g=a+KBe=pC9spbx=7DkUH zKmV+lK6HhK^!fN}8H)01#wURNH7gvd@@IqC7^9=}PgVxAqH@k(B4DAYxkr#QfmTk#Mw3pLc6&JE z9q>3Bc+m3kl%R%)Ta(ZdfV^CyQyFbJZ#Zi{Lz?4IV(O}Uc*pm2J}jjB=n+>;M7#}< zp?kMCD~<4h_?Oz}OIZO`D%8FI&`=k|%f_m6w&ErvY>3`xD|Krej2(m3hFipUtT7Zl;y0k!LcJuV!v=nLLCS`Rc|#>* zCWezh51Udvam5nP{#(N{;dUPpVAd$H@GLKJPxxv%oYCVIIQHhFXJe~iurS_W z6YcwAdkE;_SBT)l_<^AML+l$78z!SY{t_(1iwvl<ZQ( zwvA9R`C)u(Jqzxal+*+~klrHh(8g4}ixj@&tiRv7QWg(s#r+AwEGp|?aqC@d+BjqL z^mX{hH2K2pA-*7H%y*UXS393V#1R}xyUt`sIzi;;P0hL3UBocT!}P_1$gw^f;}*e` z?+feVgv8Fw?!)A@I)H12YeqwjZ7I@W_AZR=Z@oEse+i+sb^;8=YiFptXn97XYnps6 zsO$@N0mwyvpOyNt>D;U7(2YJbw#0okMo zhIG#$Q~W@O{bqU&PQJ`cC5+1laipBULjAPdcsV+ip+p9#Bk{T7hj}`gz;R-C*QlwG zi5AOL3J#Cirs%n7$bhE<)so4H`PYcLOJkbn<7BpU0}!rma4`f|-<= zs!pxKg})%8K~g_eO10g+$rt$oOEuF8f@3y8Hc=Yw;->`T+$n^=EPgNnDd>VXhVdv6 z1q|RJ>p{TARQp}%c=UKWw0~Y+dv)CDe-%vGDo6`Ti80MmKX)4Cbiw&F5k8GbLisDr zFN6{2tDrQ8eBr13h%30vl3L?lwi%fYj$w*}LYk+LGK9iy%vDlVY})5CaI*}eJYEkh zHTB*i@n3|V8QCq;Q5=+#{mShfs=8X$%(qNQE_L zJ-iJ6f?EAi*qnghEfU}O+txMgd}1`_e6b9CIT3#q1&a&sseP?g)+V?&M37E>ldwQ! zc`!xK34`3+`t!JrllBS)Xp<3hMC78C}6_J}=F^jlONw-?3A_gOMSipu1Ca#d_kH-Em zHlsknCCG$}$E>-VsECN;Wp4F(wS2a76&KtLBw7%`RC;K5Nv#IqA2D>Q<_?q9h^pMh zT804PKVPTqn)CobAm^+3bwdfUqErUmCks3@XJ0~S*KyDC1d=b}oGpYO9I=n@ z`A*FA&p|)aV5pM#kf3or_sF@j7*{bTy~RS?O_74Qg64#J z+KUz@j)*FBcE?AJ@&-cmk05DHP4rCBpK)P{(NnxH_V&cM7Zn(@N!XzD?x7rkg}zND zi|bv)Pv#W9>r0jl>X~^De#Cu;xH|FUGpEDTOnTArb+G^25<9n(-$uCXc<-BYBwC#jzV*X<-pgda)dx5 zNI^W(y7l=K-6h>6{w0p<`HPn5FO`T|q4JQq7XhuUYbP_+*G^Hu!!dW4FA=#6s%&8k zeq<|VV{r)3Hf)agH)q*1?w1DoIk3{m4Wwy*h#m=GK`aN3myss@wl2zub%6nY`BZ^p zK#qF356|Ns)$rTxDrij~47Hcz?+JUQQWBHpU&iCDuFY2;S+~5cN4|mXgCHAEw^w~T zqKn##u2bP#a56i&{wsTGcmN#3^2Pv$UxWxrK`QJJOMo^7XkZX$#WUq-}uDaFwxOEe2?F{jAj7hG%*xF>Cru0yt&qr#Qgytg1C=D8U}!Xw6YU>akNfZMEgZYf+S;}=@PHgIn$ zGEEgcv(vW;FO!wC~UOW`6N3%#etm=E7;t0upy z2(3(80f@v>>C(j5mWquwTWp#8+k(<>vUV#mze;nWn04LDMrOAjj}y0C5FfQOpZ|A! zgOiXY4)0IrNi0P5dLwyW#PA!yg&?xHc}0N_Y0Avw)xzuDpXTDb=gLLgfEs>`Qz4-^ z9T)>r&}lLfj%eVoE|lA6hom^P09?`Azvd}O7hx79n%64lQ(cY1IAf1f8^35g;E-7K zin11Nj#`}Fr|Sje(N$92YZ<@BIpf^(6j1LFz|0=*ecUW#IYSj8`_a>=-V9M16?i@$ zW`5PF@q=s*8b}B19pb9(<2(8{Qedy``Qd5o5k3O%w)Ummq^uD ze(f?{OU?9<1!rp%m}PNqJMFXZ6EF0v{`P&+ABnoX!G|N14#1%is_gNQ7J*mIgY4+u zn;_)elNVreoi$h?m=LynoJvuZF`qiEvqsCcZXU@T-d}`r1>Zr!b(_|cV{ag#fv=%B zF3ieo&`-ELy24=1nzMql66cF|$mf1pPnQ;*QD3HtI>hjWyP|l;RJMcP;f6o)IWHBqyJs%taD?zXu7KkbW8aw{ zVihi=8d*aMSheAbbs*wE4+UBZRoa#`(2J zMk}bwzNw$ItiqUzA~Vk>O3DX@^jb|!{hb7bO~$a!KWp}L=k=j_GGRzumq}Dtx&~)ozeSjJq?=gS5PHSkCnq)?FH2wXX zW?cey#4;*l_E%|*6V#Zs*x2&3x4SYm`|P;b;WU#+P{4d-n4#2yDhH?;T43|ph3>r7 zgeIMB1KV$ra0l*p&5{zLx1Cz|qkWr+%$@f%4J*&4F_D~i({;rg8!@to$wkI%+$Z%H zAnj!}WN-cwSeBanYEsYUfHQFpMWPph1EQ*tj|L`}$lfJKd!8!(AK15m$V3Sf2jTi4 zE`su^M4_drokO^*Cyw~NL@3#@|FO)5KZpG&H=e_40|+~US*ld5DgRVcX(5w_aM^@b zUK16F$q9j4H7v-vQ$gxved%Cn`~4@0hPdjq9{bX zA(qCkLS{}mkk*D^_Si*ycert>wppBA>TbQY`^=_+ed2Q$s7@N>RSE62sp(9ce_mNC zT_+ZYl)W!#z)fY5az?&I4h_h*sCdUiEd2cz$AJeqhMyv0k;1lG%nZ}pulv~}ik`lZ zbu9y$+J4EtN=3RWe`he6K;!d;0n4h#qN-yEn$$^RUwr3M+DGC?BNZ*&@L*xAzrzY@ zzy(H1K_%fFbCA;c1@G3AiL)s|?=iU-)<0Q(BuQzj$(_h6MBpp1A|V@2c#%3mFES~p zR;{;Ig)mW{Uz;dSefl9PAwKfemJ z&K`Af+oo9@ryx0RJ*w{67IY3Ycta@PDVU=$- z^WUn5wR3-SW#2zU>D+%v6^}u>Kg3msP#lN1$ULpN75Xr@NQq<~k=a%rcO>E0d1M-E zg99y;zggB3MO1)f`&H>#n7kXmF`RB&#jSHvzHb@2iXfb0x-(pU#q})b-Gl9nU@H2K zz6;*-e#xB-#i>tjSKsoWa85r!ncQZI1r5t04-0RDgPjd@>Z5|7`-hXflT9)!WiV8c zDju#kLK0=L*-1Ojmw!n9=lRnu*FU9&l!toOXK4_H>3fZAZbq^ycxAWh=hXM+RVQ7FkqGvqHtQ4MHB|-qiOC36)%@~X)xT8< zEJjS=Q(W2sYMBHPREbPcl^g~NlD3zUYVAlX2*${n%OJ7-vT|gCm!f_FVj#+3JMphT z254~@+cjzFD|xE$PUZ3ix5yhIdVce*@y)*_VYRP}k5w{Iio)LtcKukWs(nXMU_RCc zk3fRT1!wzF=8{nb@*}eb%2$oYS)*A#)C_%82-ikFz&XeuOV)-H>Kt!9pWe35p=YWK zvpM~v#3&KPdDq5u0}T;4{sMaju_)7M%;3%pL)?dO8+Ya5e zW!0_V%Wev{tbS>x*6(>-e5uGSLIS=^#=lH))+ zX@G(c@`ZyWfl|;so~IBGHA-2PmCCNTtgKj2wuabqq)2TL%oU{UkGrITG`n9=lvdxN zMPJqiD52&3nV*18MQwlD>13x}{#`?;&dtFP;6f^kaO3I~j4fkn#u{?>B-XKMaQ&TD z%%ky&+bt4WR+M})^G7r=43bh8p7|wGPvK6It+TW2i(w}indP&mXb%r^MNdh#%zB3` zmSAr`531!}Y$u*PsQ*`Pn5_TXPtD$J!quA zRMUx9wtK3MGX}6X8w+5?!KS#hAlRmVrxL2~z>B$^w;@DT=w2~JJvnC43Y06{i=wu` z!_Y0zSz=;v2q;qq)Fc=`+r|+~+-im@c07{-C$Vxguo7gZI8|p6rkEqKfZ1{Bd^$hU zKe@lA{-7}JVWexpJjoBf623;PYcfoBgIZb@v5e+jbkMgWC@Ht!=7t&=6}BTw^%;i% z?`T5x&YR=Kj)bYWtyx{kQfl2t;@3}VranRa_b_?a=}^aqx@Mc7;F5m=HXJB zH=q|W6e74UT#H;82dZ8d+iJ2;K>)=U{)0I1j>ACzz>2(xw*Z{b>RNPkUG+wj^9Sln z+G>P9S7F^f_06A;l-475o?*N<9C{?{xBL6W#Y(Ug?aDy`fvuZS0WnI^Hem*oY|)?M zEg`>C+xG>ixYoC3B;Pi?FUn!;k{f5|PZY)1;3CU_*<~3AJE*4i5&&oCd2l-J4ac7+ z6-qqdzYt2gd)!!43PO)J2r`T&ywf}(moS0lb`svVOf8GOY`u=x#@nH+L8UxfbxZp} zLa2O<-^janb|)H++4Hq~>t>j(-!|~{o=P3oy?>9T@LnNyQKd=+l?7C_)VRmq6xNv5 z;-++-fwxKq9ZBsh3GAro>&!CIY@!39o0&gm(&Ld!4%`o9bQ@uGE0KQp!%J5nruPK)+m>KpJ5@K)s?^E?_qrt0q?g=*u}(SG)mjyV zqD$)kKoC)}UP$24G{SS#>dF-fmen%3yFPcCRbCI>T~jeqYZ<=3n4SX1d(aV`bBO*( zkn_(e%0X#8eMb)x@RCW}0%I!@QR-^;1#JIMO&HdaDQ|7 zr#rVhP6$H}@4Kb1@lP#0PmGs;VqBy21ZxqYwV^2t7rx_>v3s31yc&$o)&2}_8@ZzV zS+1)aDe5-#uAyTc;uoJ)PdACB-25f$BiGNzJfE!-KH)O*z6UheliLqpfGe^smH!2W z{2#dRf1{9@*;xMvh0MbE{}hGH@qa=g%f`}5rr^6yvpGG5jZQx4sjAD*+#8HyBY}Y? zKsn?Gw=RgmRyQN(eNkEzM}PWZfQks@L50Pcje`8v*iwDqV`k~+pS+se%W(hGU9t95 zfFCT>4TbnsXXVO2&HIG&wXy3900_{(U*yGe4!~ViAiSvSx9~@i8HOaK!TD7bs>R`n z^XV`m0EkWxE6&l)$jJM$srtf_1cX5Sv_P8V_b|j_NE7l^wruMLC!hh7b+%e5wFEzE z-U>^={mi~8Cl!mW86_ZqmH<=lJIf|lh+2L^q=U(YB4RKDm&wSZ!>O*(Kgx?0XMn%k ze4GSS@ha7Ef9XH^|ALK%Vphhn6jPMCPJpuBvC5TP)e!jE8U0H;?}wSM5Z%-q}6i)j?los6SOVl3!kaM zkeU!#N00#_aBfNcCLFoWIVQu^d0dVZ5!43Yy@uv@d3b|(c67%aXEz1JAiY`|)bkfQ{M6ewT^~o<5XooK ztdiTZeS*yMAD$S?C154fW>-4~HY10xP{j>q#YbuPHE%))0|lev69h3 zTQ)pA&N@oqiD4<8d-H-!rVHEdr=b9n1I`%xTXV-gEZVK(P|VlaC+~DMwK2cqIN^v? zsiopkQ?3w~qfrwr@L0*o6Ms?+VC=AneWSaP5{bZBq9veFfB|(N4zx5N(O^Qg!)3)j z_$&aSm3NzyKZJ*~0#~;Y-hcXY6sx}d_Q<&9ST7p4kgBPIR_l^AY-UnD73vr3ok@?N zDSt8~ULQPqT687?w7j>{5_tLSu~Z^#8<*iNor>JCb!*75xu%LY;F!UqOl0NW;!&o+ z^U(gL(y~K`Yn!641Psi$ZOsR1(M&QT;B;6a{lu$&ZLjBYZ2#h^u?xxCeWS*VYRb1T zbK5dYDtI1uS-BHnkq%ykdEy>dMfCCaRF36XCBQlS(Kh~=9N3q|DQhEO{5p7X@`?lq z#rqlbS$`K^iW(vlokc+xY3t-x^G6?JH5H+mUSf=ZaJ?b(_hNJQf=Xo?i&MfY*Y-y} zmO}X5xRPMOB9L$NE$^+b4X2@BBsrqm;1{%mnG*?h3i>juRHAYfP;28^ujC_C>IbQO zqFGb3xy=o+T)3$?yKu77pGF-F)g7AzVBmQ3zQM=M^8j~7<6x4?+@iS~39&!M*-3ZB zK|NV!8y5j<2^sVX?m_)yJj;mU6s|Ku{vst+mWx_}njSqzE|ODe61%EZFf4Q#dOntN zK;#%B93T#Lv%V^!&Sn+ZK}{-rOu2celsPP2GOMNC$EP|)@(BQ>hsZRVCA#XLW2I+P z0B|5vB1~0z?4R)m?47%=My}idj6lX-8LIko;`F`_4@Ti?-YX`hq|kI(fL~FAh4z5E z6$9;9vAer5t}CG+g5n*?RvJr)U@gnRWZU^d&E^!XQMt{x{plHJH@5Bh9!j9L_ENp+ zh=Da#vSZj^x5Y8N3R+y zLsf{c2(hH)4~yK7bBc3Cxsx+SEFZ!RylZ(Sb9%?fX-6|=eT++wtRJeQOZ&>}bBD6j znK}Z^3no1;&HPyl=TkjjUCXu-as4&7UPt?2TOSiFKzM-EoYj)ekKPH<<8t?E!;p@Y8dxWVUQC=P3`n{@=q0t@04HUK!4Mu4VWu z8@<%^tDFSir*6I|cDqxz+^ez$uu7Wu|%svC0R$-gL9wSpDrrU zBzMkfZu-n+bb2^LiH@3cR9Wv<$+O+61rfI@+={@(G^D)Vx%ne-Kry?%fxe_zYvDZ< zQA7<{vE;|6e&+DD}>U5^=01Sf@U}I6;ymoh=v-2bD~V zqKa?1c0&0=s5I{u$OxHBk&A&YiB(g;>eb`QE(*PGaa585Oo(7jGxA7As6@vVV0X5jJ%3%BgUOL~iDbBW#d ze&$nt`Fm(?6K%yT56jQ4?WUT?XMi;PPxu2?qpl!~1l-24h0zjXnzpgsnT5hgrM#QOHW?f--LzUOj6&On z=tm&?d3O@NO*8uM591*?*6gxg9`_SL8-_7hE?xO(Q?O1)r$Jf}O{x%p0NA6ciy`f5 zT+74LMUp`dmfrwc)hqjz0nKA%Kuf)k9 zxSK6ROEWxLM-~9SO*Rf74oC{P8_ShrzD;T8!E0s*)0b*(pcK{G4Y+rK^WorvbLw?$ z6@N}JS1={G81UrPo3|<7`9c7UBubr1Y|YZMBY1tq@P8IH1cxh8rC}m)mZUMjmWB&2 zcRt&ML=O0AH4o@_eBrNZdF3QX!6Pb^A_L}VkwWl*L8@=|Ed$?|3lvDo!8zolS!Ea=Hthc+MskSXw4x9iu;mD25^Br#m zrLmJ~m%u@#WYmP{eTYC{462|)B(_7DQ9BMCsMej z1sh?5GqbR7trYQ58TWACi1qmooWG2YSQ!hH5SB!2&h)=b#lhar!aFBkMBMc3*41n( zeLszgjzo)#+~hr;{7erYe&lW2w(8w1i2uD3WHd-4w$eS9zN1=r0Vx8?Y8$TK85e)c zrEnMr|GFh1=D#Y1+LL%ifNDRTFWKGoIHa$KqqEgpP_0)BNQ3m`X!*yO0Cj%W(xyp8#4HI#=h5K~{_B_p zuw_e>J|A-mGTW{+59}M7z+P_Fxm;LVjjO`i+Y&|C$U%*YS{U>mCc@s-L>CHHG)}>8 z8F$(E$sHAUsh73=N6n7ze$JTL5|4Dz&Wfh==qR~gt2ii&1Hq$>WOHkw+;DdJ_x24I zvrZdbs$cOj#BCV-rE@^X@>0o|&jX$1!!c$x?ug(DZcWSUsncrCedSZu@V_Whk5YP` zt$PnuDu0o|^!6#8RTJaI_P(f8*u-5At63;ODiEHGaGFaV@CQ{&km`wbkk2w+xT4uz zicFWfd8*gA46*JRc`_wEml=`;EH%J`k+B1CWu8KG8F|VVgM1YgI9;f;w`{0}5(xI! zW;azG)|{twl*STA^!BjA)S?C+iP&H?q%=`#%)jQ2wU6cqqG^j9tX#{T&loR>0_=UF zF=eQB#V>B*%`Hr4;<97|k22N z13!8?Oz|F=Hg|DE+}qTl5(C!NvCqOBnlU&Trsd_wAmRNE5asHhr~+Hq0C#ly=jC&O3L=>%jQU z+xF*N41@>WI@`Fc2$vlcxC}?LRu~JWd{3#2ZFr|JFv|W!nvB5-tk3|L>{y~*`5v+~ z)Cdb-Z%}opaRG9PvZx_ZXYnSmg6oGUK?I`R3~5T}afEAVa3!ivStul$>M%~j96>O{ zHeymJrn^*FNpT1YnVWtj_|!2(`w%HJIZ;D8ouotRl!Z}Mno^xjcf>(=R9!W|;GjcX zSFTKsY7>`0?42gim(ZC%Ez7%Vf9B7e zr^?l4dvGM9!+m$9BqRkR zc2*OaU^q(Gw@@8}a-BP<@mm>TF5;@5h;lBwF~ii7gJ9>KvE;u1gFt-0%vZV2-8qk` za1>Z*%kIA+T)4mq1Mt4b#XUS?Ps%MT09?-gbkdMg*dCB@aNYdn)#pYNG=L91q41W5 z*vM=t9iPl!ZxMNDUGK<$uzx!w5&XBt_>BZ&DFEzz;===m9I#3xNyDKBfJm~DNG3a| zI6yfCf2xgp081%pN+MaEo0EaxSQneHHC@*Pwj*Y7%@m18F?eX+mQfoNfK~UT*&T&@ ztMLwhH|P5pLIp!O!o>J$SrJ(RfY%!@Ck+WXWdM4;rmgs=&zhI??osp7PHp)?3&vWw z1~I!^oZoE{XeygtwqpuaE(TZVo|Q5?pF#}2EWsM!X$oe~{(P#=)2Yd3-PEI91nkkK zPv_R8JsYxXHpnO=V62XvF6vI05|K^reQ`9iCcKR?%mfD$>Gwt16kw$eQPiGN>gm3_ zo3O9Bop{xs*0znby2eb}oo-xn+3y_3Yy1ga==|r5=K}wNI?jMxh%*D@>z5o_IOo(=&emlYk5}resf#dc63Qxs*0fQ`$LK zjahg;t5pB^QPt@>MoTKC(eE1Z-tT1j4!8l3D^#D>4Jlz5RI8TK7^eFLn+7wU8or0E zpp>0?!^5rHYzH&Ol*6tLfx8B{s>)Qz>0I2>|f{ZY-w2(k-){e)7_x*1^^vpDCaIkH0za79}| zN_=?G!dDyyt`oT(uxlgVuDkt2+I zYR4cCiS{HD1*rj`Mx-qBJO6ao$r5tHID{(?v_$G2a&g`4mYvj){NZf#k`Zv$vhq4B z;N}AY#Or?Z7%n0QxrrjTYKfL(2W6`=Ak*43cTAnQ<$P1Vqk&HsXqCJ48SiVBy(|D;m+IAo+LO6Ll!INy{<-j zz2W5*GD$^g z6;xa83HhDc7!coq0L-Ak_W-CJE)3-5qRYvL%vw3G*h(WqCF{-=(3BMvc3!&Iq8V{e zW#K>rghYXYAS8MU#|+#H1%%+C31D^ZV1ey)hVHCOKVMaL?d#wx)fyV|G)3uM%e%W& z{m$u0spYrkRm5i=jfFY_-YrC(Yy`qsyfTOwNCK;7TiACs9qz?vy8w>{tkxC>ipxb7a3Ce?icB_khwXll#5jgS*{7AOAY{YK8G$F6VJlHv3km0wh8%u@ zKb$qC26T4Hu7>1;g&Wqa{r!c3?&)(dmcrPl@5 zh1Kyor!}KGwt^w+a)Q)Ucl>HAt$bV#R}N%F7_e=ML`$cT@$o^I6I_v;*2}AUF*sB5 z50C4&X8>ub!{_()cR$$2PyTwd#|OT9)OFVSd5?s4kWHl=vvUpbNQswoBdvumhepu3 zGx^MP8tY~B!2bjMuZm0zi`(X*%D6Lp4R6v1fQ&wX_288W&G*w?NS@5#s3O>WtUIO< zq3he+l7wuY$l@(4;qp^14+DT$(CM}U9Tkl`r;gI@vDjAN-jZG^;a=Z!%oWD)Sqcs@ zx1wd~#iY)0h+M@{v$rR|%^U~5e*&QAXM6XEZ{G8^_>VtDISv7I@43;YLfe|DI$m!G zk31!wCP=Ez%UP$fIVq&Ag%XQ%4u&G{Z&=+HHN%tm)#I^h7l{(xn$ojPC~bIHJIvFN z0tg}q_IhU>9|rE1l>vPTaM46W6!%a9F#UDsBK6K12jo}W36{!jkQPdWeif{%8`tm5`N zq#Zs;txYfydtNRu>N;~8{pqZfY+gBUDAh{6XRZLzdd#>-rrkm?kmf_Mxj#SzKSm`$ zuwyLTP&lx8WpOS7Gz~?Eoxe@iDb-W5Ddo>g(`?p2Ia^D*763LH@7QAp42`JHdAS=f zbOa=&9VE>#?gZ5Pc%c{2g#24VL`^T5VcYQI$Mkvw(EKzbbLKFh6u-^s&wk_Q+*ZjB zm6Lq9AZNV1w#tHCP5~MYoe#Wj@QR#R#d+p+ZUv!%o#b@4(q=v;Wj1%f`uZ3wM!!+| z?%C2NAr#R8y{!>w7Ny~Jgy1ppL6?jIN!?vx07lQylz8o>MQrLJJud)|53}>D^|ws()M61m+R;CXu zCj-F>+d^f<=m3Nwrg6bRVHa3iXGDkueGxWABPg4XW}Dj#09HILwW-7{%6H5YEF8J+ z&S1lvWY2C64R;Uopk3Ms1CTOkq!f)1cAnpUmB8$V+?qW!qr;Yg-jktQ;c3!ii+ebZ z{^c28o-q#g;l0*P*DCL&Ux!t%_AW6{OIU@rP%MX1#(%iLB1* ztWq}5hCt>bH@Fv_9afAYPA6OK!=cm#=+SGJWxjv$R)BYDo3+jbQY%I=W6G_T1JJT! zD=nWxfWh$MLKz1Th=vRV49k8t2K(1B3RZmu*z;L zud_d#H6&JV+I-A%rMbwcY)Wm?u^@E|ucM!sh;Ro45S}O^tw6-Ap%_U=H%NqxZOsuZ zvZ5Wj^})*HAR^DzZiTKOHQtH&jgSP^=CC!tW7o|0m2?OY4=dy#o_^jv)7;P73p|>m z9P9x1HrXR|UsiN}fvOY0kbO*Iv}H*E@bNQ0!q+VvGi;?X8kPkyQzKg%4Bpf$H(qW8 zTHS$xYXMN+od9f4Sw@Q}(&(u#5kkf~vW`tWwjr%CdEo`J_6`)PYASIaec z%Y3tVSo?6{JeiC##A1zXP}6mxoLdg?4U@2u4jP@|ZCYsm!&|k;K|E&7NOVi1QtqGR z+-eHkkyfo6*0njBuJ9>1je2^}dE{-y4vq{FK?cwCD7XtyX=~Lx;mBH5 z_ztl|nkMW9DTc~3t$;2iDkUq<(j5m^ek}lODJbq^QZg&ft#PK?<9JWvr6d!gJa5n8 z9*KF$S~8530Tq8ltpA{oLs%+Brz9SG>X~84$eCt`C^9isY~>BqF%EjX`1^~G$x=#N z(dTFU?gxa<2sQZYZ_0-YjOoW0JU?@o5QMkh;jS@5FDI0$*DHY5jZKO=nEE)?hoMd> zbjbL*+EN3-lp!>gjGhU?D)Q`J3BVJ5fQ)p|#aJ{9yCPO7L74zp5O{$SSVd#_2uiG@ zQI=*8NQo}nS`m^4^C>G)iALB86o131k8tgk%nI*;`-uy`;?wQZP}hI8L$m8yp`01cU2 z+0nLutLuly`fjXK5|QSbuFcMshoPL45+aCEf@gYWsBNpTs0wj;LWm8bRapV6KnOI1 zEoresa*0qf7Nzc_!KDOG#)@12>ah5Y1*6Skn!}dS9IdMNS@ESocxr{EQmPVsx8&#!gW*5 z90&i^yY2m%)rWr&dKAU2VBK11=B|gczrWPW=*etzTdLhkKyBN@P|gW#!A*G26zHPU zGiz!VCA?=a@Ke-8Pe^MsKaG;O4-p|_IU4|7nQ!5A!B#0Bob|!#lvtE*C7NM%gAX2t z`|e&xgdWJqR$AdBI+TD`svqpp`02iStQF$q17qg6IHJXXf^T-L_4Di!XH zz?ZBQAimymFjTgURovp0oYRVb477V%H}ix zw$!n>C#z>GXRBjt<^ceLwb%s!0zrVlDmpyTGh|HR(GkL10ubN{K2S8e((H8Qxyr~M zsYDKt0IS2pU1lRG9vQzoeRn^4F>HTSwdG~|B8v`-do`u?HX=Xo)q}46yn9Hw!~Xqd ztxKXD-XRTZT{wdG)k+MOmCM>DOHSo!s%I0CHs`uw7f(tU2DsPXd|19a0~mjr^AFDo zJnB%bplsVyUfx+bQK{Wogc4#Lt?bGTdm@!CEAoLp!ZQJ+B|0tw0Bf^JRuoFo2d1U{ zkmVl#v#YheVL@ZW`CIBQ?x+D>tp;!Rs*mUndwZ9tvbSS>k2N#%MliH}S>S+YHykru z@SR|P%sUOe$bH_pYQX$0VpC(awUvb~?m*@owmKE5iM zrjhHWF>fDE7k#V^w-y_;N)~Fe~3Z0jQT@ z_;`zTkQN_5Ei5%k0R7$h_S=VYw$LzXQNDSAE)Z$ZtAi4%0?CdO80lTtopFF(ok}9W zl(=3!5Ki^8OLr^SU4uBu?TtIoKKDCS8u#APv|bQXdRsbon9&UD#=T`%Z*PZ~d}=)# z6m22GlaZ8CeVjtQq{VG5FsA33^QMQB%&hwD&mWd|gmC()+EM|0{%4o<9l@4Kvkf~w zrU|9NIRr4g$~Ke%^$a?PSGj?tmEHx!6;?_XMG67g!2*&|mq&Y(#{MD1+R44$_8eTe zH&{+PCwP@`|Fo~{sdrsB3)}OdW}V;}om?2(oR$~7Ra9?+fe0M$oOZ^wO?jT#Qi zpD&0gy5BPkdRwpBe73iK*FN}&w^Z0Cjjt_?Sc7<;kBpX9U^>yZJ+`t1%R~b7Y4Vd>AE}sya{f0*?b-Je03ai zqsI@Am$ImDiLmrO%BeM*Dfc#n+P%hb+u~aGX6VBghy=#|iITlJVW;3!54J6ft9E{R z(3dx_j}w69+X=w*Q&pTt(;e*|UOS!f7^^lh{L+Y%3OZZ_o}v7``|^ieTqJuK z8%*f%?VDQgL_l!3<<^1{*j?v)G3LD^85`z?w`rkHK!_xN=hoO=TAj_+=tZF+65GH7 z$`;d2iLkW39|4q$*(Mo1o2?b(_I^rpUA`H={L@@67(eUs{ThO-6Cb`W^Ec`FpW6CC zJ_@dU<@kl%;5|8>R``hWAdu5fpaU6cX|ZYyW1L(j=DEQTcai)f>!C$jiOSiEbL;u# zpDm!HhF4BJ4&zsuwnP7#KO)wD&_{S~30_f(EWP%Eu&?2R|k6u z%YJl~7_eBdJ6WT=pPqa9hZ+#6L?qt68|%c&_gJ5-Tp(inq8+L^|9<=aznWhEs-$=G zFjO-KP)d4v9>?#8@#8&PYAeE7P$oBRXUa6Zhz<&AZT@k4{6K)z+_rm#w>pmp*gZ7D zkeYASkkDUjQxOGR^t(aXJB{siyKl=JyJL+6uU~o9%o)?D*b}1EJ>+a2b9Cy8VGrNG z^`!S!q9%zQBAw#!VTx5uq3 z;Hrbc=wnL_$mkii;Plb!$s$63`R#D~tM%Rc+p=c+zn&guy#7U<{@?NT{yhElmv>Ls zkH4|u%LE|Jpd-JcoFRf0tOs`)u-f(-vD#U_>Y>l>E;k$16oh9}Vp@Pw=#32$6e6nJ zdxoZPnp!~*fjfE$$jD^yw~qCF^+b+9Y8?dZEoHD&pm)IPD>US^4`_?4{m`!F@P9=I zfe^YuFeNIPf;P4@C=&ttKmc_li?!SuX&bD-2i6f*U>oN5Hrxc@`e!)3TL9?)d7S@x z{_p>b|MM?TKm6_d-T(A&{^k5PPvc*IJU=blyAiKyGM0RdB{*71V z;*mq+K!!*QU+yc#rA`}G#|yRt=P5?DRBlD-Fud;A`_c4zU?R4SXqs$CtP@XD12J2t z{0gbn&ZGD4lu*^`Y@$-}(?kKgFOm=9l?p12N9NDB~%2aJSN7*O^Z>F4xmfojr zjfs&~S;2N;J<&G!fO3gu1=t?-FqC;29{&#i&42f=|Hp6s_uuC7_vh^Y8UMF`{a@ey z$v6yUIR)}WO-;If93y2y9RB)?6Z8%o4 z#*GQyWKLW+dQTS6_S|TT%>ksm_v48g=^S4(nvX?ufq2M>{6jXu;#9A0<)Ot8pqzZn z+@s>qirMZAE`#ocHdH<~eq>kzkv>?!`$|xv9G-jrhNvSwgN{1V2YBST2N9^%p8pDe zdHV6Ux%^3b0ABy{^yB<%`Ig3^C<#E?ns`!;9744o z*!!AkJEh(8)7p)S#w^l;Jk>Zxz1<9YARklA@0%4hJOv3ZmZDl)k*0zYXGGth?JkDq zitODN_P(E~VFB*8Zxyzq1EH@|>pr}+5a?)en~Cac zi13WZ!U}8zdnB3nx)n-S}HY~`sZW%AewbI@Ft~Dg-p7;29ZaIdEt(ffmT)!HRAxd z31}sK`;~Wyw{hvkV?Z1@0`?#r9d$M;(Wh__1Vh`Dg;qTJv1pgP$0Ol{#H~)ZG6Q|GGF7%A?2HRB506;b3CxNs^t|+3DmfL0| z2&!n#D!L2SYV)k4b8lc9!;p4oI^Lbt1H6yc^D#{|rk;Wa_?ZRUxKmlQ6fE^@;G9p*40mU#p zw-_ZY7``9BjF+d!oBi`o*XyKPe*G8Q>9P*VpFf|^e>1-S|5gC?WVY$~&j+7iA3K+- z!dBVlbk!*}*I)|(rkR;m*yY~Z^R{UU04UzNzy+<)9qVST#dSU8fexC@z4=^6i% ztg&Ox72~s~xn90Unqwj(D29E`!AcO)B$5ue%TiMSdW+V0@50oF zVuyyg>$k6lYwy7pE9vdgdfYit3cTj~9%DT0k#oFImp@D0(>D4_6XHCO$-{l%Xb zr}YPU^OZ`x^jTijT?1lwUWeSs+Qk_<7}8nghmrXT27vMnXDXb|-R_3KbrC z9o8Gf#wSNJeB2vz&l2?CwpQ(3qJKoJ|Dcc9Z_VM>%k&QE)tybyEe($o;h2%ry#r*x zv8)jM%{g)6+r`wIb+l+E(#gTa-Tx39iJ*>T)%cm^(sDC(LRw%el;Ig5l*tiRl&?7d zR9N)g-OzVGmLqK%E|(9!K++Ao07jes3 z;jshjet2#^f)&XdT|H2oaN&GtjKJYl+ap6fN=OUR0v1^X3(}^vf>rZ3X?a{kGm z{@wHZri)^TsW+sDO$&K20P?Y+8)MBn}DmsFhhtswWa*|Vbmh=c+K!OwcBy*a-zSYiAk0FVFSw*2Pu z^4knz`s|!HnGGLrysbJ7(bFT^G}Ot)FB|8rt%ESeYj=p$@%4C{=q{eD)%Uh7V>(XL zJ+$WOwW^)3`5t#G75_YlqjkP*gY?zVceGA9yXcdk!Qk!n$z?fh*Xeo$g>ZxKK--; z@F~sTCJN)T&j0Zhk}Vt7t$zEcA>|)l{FHq(09KV=7Oqm*3a(-@n?+4dcM;Tz~bne0Q?dvqbkaR{-g{*_UhNJ^ksSK25fk z^yAvzw>9JM0?0|HQL%+jV8Of2@Wv8lDQySCsCIU?#n7}O-ef^{2?3yGxRBF*(+|Gg z<_|!1qDbP#H~Q*0;F5}4Z*LoDn~%|kD6zZ^mD(bK53E!0|3zspa*r%>1iMP8Bk~NZ z@0{OHmEsYbpJelW4UCXlo{6@LNvk{&2G6ujRvJu_YVUe)@(j;V6oe4rT|_=KEt~=PB|%A=DBb?YekeGQfr5(6lA>#>4=O&HU^R$ydurVuX`>J6s36^@>ut)25Wz zQ^l}NR#2xXS`%G?xdDg-QPfh`flt=Xx4XhWJG}ZYg)@5~l#ku*pt#SaZQS?32(|Iibe6%_l zi_+o%(&B^hP%(A)8t96esI-a|QUC6_SBCDb;39D+SdoQe9mNGM0OcV;DQer&Qe{@( zk3J=lwt2d)_W8=!TZ`3m*5jpJ_cpWCd@X75{P|`-e$l$|a;o3H^Ha{BZ-|b;)e-&K z%plkLmMO50&l|<=jdpST(1pETDs7%5ABXxd1lgn6{MVaB zt*FF@i>5Jpp7Hh8`qv&0_8o@2_x}t!&M{W~s$-}5o3Qjw({1C_oQ1u!cQmlQ7qZ^1 zks(_^SjxsKTZ*}3Lt9DFM_}``^!}c%Xenu%%Ug%ZRw9}a>10FWLo-s&RBQ8)TDH`x zY|{`897B*EO<2St+Z<9fRjXqc%I`(I8KP=md?dQUXD=j%vM# zw*uB%+Jw@r%^H>H;XKe1^X#d$#!+v<1{umju2XZtZPoC+a0rF8{0!?NOe z1E6gME#^4KGm>eZLF2sU?>}Q+qWu;CK0YdXNq_vJ&(Ahw){(cBFMR`+)=%HGZCW>` z3QsVL&UmfxruDVk`D;?Gt%Je6X-kxaG*Q2$#O(~cmOIk!x$V}d<=)*{JjIq$L#hu$ zIVU>u%N7mRokW$@s%&9ktlWcBH{7Xy-unwBiU^a_RF*fF0fALl(6P(rtAiD`Ie_80 zor<1!CDVjeRtk|{YW7v!$15^ z|LONk2A8@s-3tGQfn?AH8eIJqGUUEDRD08l@Q;Y~ANaA?_jucy>Z@Z1bsBH&ZS7nf z4oEW7l$0!3dXeai7LoJ@fYwujG2JSQYp{F!P696UtR2x*-(M!vF1`eGKX1r~z?vEFp2W}NFH?vZugxEf}?@zYW&$0n}Vy9Jt_kBzKdUp=N?qP zEfG25dLhK4GhI6tuzzT#A<1QHvDI1KZU!T(d`##lj%C^!i@!^bpkVbLr*+z<(h46M zn+JleJ-*o?#MFB2+9qyoW@t2w;lbCI!Wgp%TPv4Ums5S3DA~)#+Y&n%0toIBwheu! zdu@e7<~V9yVW!JTW9HoZM1Fc6uCrcW+om8n^K#aC!XCYDD*y$mCV$hgHGwTRhh!9w0 z2fkHfLOWR0`l_KDnEiDc4Y--BMnwZ;@I(Vt8SFI_x3zNKVCG}Cwb=8_=U13<9J=A@ zMmHtoP8p1LrLo)jvKhcHFVPEC&(BK9zWWxZiJzbS(`S~7b>qu5b_(ep^VX_vbB;c$ z_pbMQLG?Z_qn&H5s#RuvbF!Fr$6#|`H0q?aeuemnPD8tHFF|H;V{NsDLn;p$#&j*V zwls;&;MRwrhrc`;biaSpP|@%g99DF11G?w3yg3o!0<xQl9=>bFL>kadK-?^@owvlM0#pK$yCXd%EJ{Nzz_N_P)|Ljk;KY0gWSk@SHZks>9 zL|1`ObUdFm&w6=nBP_+Y?VmWPtJupuJPQS4-HL-dJu{lfuUouy#cb%0K}JdHA@EA6_r$h7xKko4t6>t+vUfBpa4`<5-obtFl10DMS_%&M+ecYjd- z!~Fi7Gjn=#t1=@(qDTU8>xDZ&DsJ|^7Nu2Wgi;~_0&q7sH#;yMC=75w!7wC?9bTH#4ZIy*0?0l$OeVT#OB_;zSWX@VfDVx&p=exov4w8V zp%&MOU_4px=ECLaF~a#3L{efY9VK%IYJkha&rep3fB6&UDJb>ld;0MPAdV^gysNE= zc?xegs`BSMN|8N7l@^8DP>&GC#%K!O;ehsK{T1*Le~LRE}|UMEg5tObu% zs$$vFda~qAktr|+87Sqb*ZQ!&qItfpDa9-(qM%X=jl8VgpR}RfUL7Yw)liS=ak~Wj zmV&6&xv{l{3GEufTEbprtKsqVvb4#PrFfXs+4=umU1s}s1C`tEvU0TwqC`h!0CXc) zP`Pa~j`7cb;`bW>TxS0LANarj-=2fI@2FMAG5qlle7ne&WqIndNGZsPBc>js zL^7+zbwR--9x2dHdn03d3Vb$1@U=pEPa&H|hc;bYL)Ero#bYmXn4;e>@H!(!sN%Vq zJSMkYL@-T~B1``g`oYk3>d&tjB_+#VWm&PiS;%3Mm=Yac^Jq(~KXBb-9Kz+|c5VQs zk(UWUu&(gwQPSd>S5**0R-iVWn?Ai7M&Ld+q z2PZBIx{Wf4btRk*-~=ctB?vOwQSHA}qS_c1ynl3kRS6QleFGrh-=O6CN4-Df$2%U2 zZaeoKLBeHrC+k`P=(f3$(zffK0VI;{)4Q&)7{)(d7z1LUs_fPVcIrp?LWd(cC1>yL zMQVjMMwR*u0hZQuKEg3WQd@4{_B0!1yGdJH1Vyc(@HGzXaewzGl~x1P6QM2&NMzp| zIFE+1gk@#(0&SZC9lW>PupfRs>TN&U+=wAG7B^k5a=jn~E=&FKew3?CcWp@eT=85F zkv3`dfp#S8kDq|&Cz8^?Akly7R{|izz;8E%AlnX8#{&?8lu9d-l9)zLgP%;KCk_RRKyb^ow;1HeS9noBN-QTHq#A64%(tx+41>ElxeI0M8qDO6cLdQ~Sc0yD4_>*(c_V@}V&=1~*zai2<1=nJ45TrODrS zcN;)r43`<>AS7}zgRmnp3W6XKgKk+rK5SMjG%$y2wp>&8EbFHK_^InAF(d%;hi@DQ zeBANd&v2ca_$V=t2!g%o9d+r5QssAr3cqtzsZEs^02+jPkQ9%xwf-iL!ow-xZi9Xl z5v*mB8j9m{@LJe~YFLtHvs!&e{QgARrY;!YOx^2aKM)st_4iDtQb+xnI zRi*cx+jgMKR!}fC&KUYB6)qzHt{Y2kX1XKH1G(`=WgKN3ku$f=3QlGPr+dbp!|f{n z`L}wT#s&PND8%hmNMS`52nEVjmIx!Xa+DVx56yA)M)r zozp2p^BUUSY7mO-8BBAJps-r!SJP8a|BoWpx_tB$iU1fkz+HS_yh13O(Y?5+8)kCB5^~h--(lkcf1Af493Upb*C>){= zQ4A>Rg4v`eyv@akF3@ojw(ZNkyBM|aLRF6-x_Fw2s$8#DH*r+o{D+5xaRilnW>o}{ z@ggxW7wp-jiD{)Ewr8l;P~BRZ&*xEjDaBV0)t9VA1l?+v#4y^lIS_MSa0l;?1VA5) ztSe%~I35)Ej<+jWid46*d#PdLbe7tPSKT(OD~w7ITI5y=L?lMY002~7w|+j6#GYjmzzr<;Soq_oJrfCln~Lu{*G;;R zcyU>mqo>}UyBOW0vK?r$WhglW%VbYC|EszKWxNa;(Za1@Y$LHN0J3CU)qBvH7$_k-aU6r{=5S9Xw z@b(5krV#+Qo$JQDBgFXqO>Q^Ts-JgV7ND|Z0AjU4W&FcU-fmddMx}* z5d!B4@ia`e%HxS~;4}ijkk|qQj)MmXdp>RbuhVlp$l?KBA6B)5E-(Zg6Ney#>?ij~ zgAaOWpr^Tc2@&-d--y?oDMrqtOe6NpoNc}UuvG55q$Jbmxlye$ju2rff_nD+k{A(^ zq$J~r7*Gn=ja9?-Dwo-eB)RSS`Dqho?=sj*Uu(3tfj}|!zmGvoU*hz0Iv@=iO=d+J{Cl{2$&FgHo&W@Pkw7*%y zi~(*iQz=z3ZK!PrP~SgfNb%2q0>Jx&d)Ci;01zW`mKekLZyg@98RBzAh$!V>i1k19 zD*?csS&FM00lp;1fu%wM_iU8=W1o7v>YT!m9jkiZn!SP`CPO`}^eO8ORW45ikzuec z&N@0+E0(8)12Roea@`PPxXjGOPH0B~G;rIn=df-vj!x$gK@cN^NRarqzw-M{mR0}p zlX+*!x-3RM4VQ~m(*ejjW8Kh@g*H94zL;tGK(}o{E7vOX%-cnB;eA1=kb%tt9o=e4 zUC$d+Z>C5I!NO>UKqdTO#IVSU@`-X<^S(7BBr z!Kjl$B9k_Gr67o0uNaa%J(jbLw^OJrMFkMPy~!{@7wzOgs@JMZ(PhEo;kS9Zo%rn= zr@@y&-s4~YD)Xd2-}Up;$Et0%-9M2^TP=wVd?ei}#rUOm(l|djC0=K}&0)(}p0aMi z=|7EwI*s}^BLsQwvTi<_UDmWiJ4Q`1CA)q?Si-Ml5b5RQ4nVv-I?t!^K?e^2O`aSvm<4+f}G zHSEPW1=zD#PmG00A#fV%Z32+?ay+o6*=qzPD^lcgJm760I3(G#!N%U})0)%ID@=?K z;YO5tSejUZWekWR@iIb09?xSP`>9(GlPH@8GmoI6DDMwYy-&fQ9aW5jq(su%l{BH^|!z4V==^2VzeGr4l%@NFoZr9KA*P20ASk@+Qa32V_= z>vU`lBr(|ab+xLVlX~#_TqPIoJE&k_&LZM-UP>p;%5y`lm_~U=W^-}zN-D~GnqghK^d1xg`6HQ9BD_&(N;BI$x*zs$+m2-)_kRhCWG-D$u%V;ap{ zS(erDQ=IG{0S-~75xK~^^<&06;)6$Gwuw2ZaYz<=@a!H`odgPiDav#6?D#r!h|=(z zQMrON%m3hr6|;d~l>uJO-*lIzSL@Adu& zml+cHc@M+Db@d!sx?og*G^F3AL4u5pX@b$+mgGz3;r=d1lR77o4$>UvVkpCK?G{V&qxvRoy;{|B(lpH&#rm+0>Kxk2C1u@3=`IWhaqe{K$rcbDpFP8!?Y4mymE|Ib zrl+`Jfo9{h95tJ>YCt`mtU+X+I3)Duf@uWlaaSo}SrLLUdz}{2ilrZ0RV79v zxwBS%JlO?2YNZk)yASJ%yPTAS6(joylZ`RseV+&1o6##Jt}q{N(^7CKEVrPB}rh&==>=Kz|ez?Aq-FBwJv zEZGWu|3a+)sbAJO@BMkc#W%#v-6)zg5NtQkrLP8mFsn7VM1(*9wR*2t<4B$aDiqyO zy(J}L2%AAW=RL56vySm}m73E5b~HBwh=F6$F-jFVA5`ZLG>Td&1SG{Te`iB3#LXwz zYdoE2`$8^sP%d-Z{O4N3Jjpm9M?Tl{E~iGq>f!DQa&>D(03n*r3)>F)8X8!CsHI3G ze|Lv1tFK@6sFf@gq3!SIFSd}+q7fWn*l|i*&^)ALq-~PybNbrv7Eif!LFbqDb7P5y zAi2ukTF&|a_4@ZP7%Pf;5r zF$CH;J<>vFe^y?$O*sZcjpNt_!-56GGNfZxTDa^=J}uTduNFQ=vVEQ{RWBf# z?O9bkSLW;|qyuq9HnH@&7k&;!Z4sozX|Vc@JU8b(r^ZFi*&mvmWm)68BNrMKMuMc| zsG5k^1=1*&gyQ`O5F&`=LegzYN+jdo)8{1~3VpmdeZfsO+ zt701!+h*tQp7yLKJv(Qe$-&y+I(zTudtRZ3ziG9~rhM0EJ_xOygQiKOKt3~yivp6+ zZ_IBVTu_dC^sRZj58o{_+e^u%IDNi47Kh;3<+~T=U9r({RZ3Ny9KYA=Ym>0h&mIvG z6*BDLlM;k-sH{?xbqcjLFM>PJ&v;6S7LUr)aC3_>kVJ#v*yA?8#J4zJFdGby@b>*^@U2?7KKNdoLie7$K@qXc=Tc!+KfqE+}A z=4;LXcK~fz`25Cm9nY`z|0r54cNvtlR~kM=;+LO6RnnHJ>JOPh{rC=(iVxePT(PCV z_-wkd-{1t+=lTC`j~}}%=}nZS7Ols^Pcon_D^}%rFS%#P|3Q>_JGc0>20YjN``k{e z*;45LtnNRMn)$4lJ&NuH2Cf@wGQST0tr*&RwosUxJ)4Hieoe`;+@XT@o>}4D#3jXJqC@Q8-Pa?^47p=IE;KMn#Dc9#%7jFJpo z3-IAi9W2`o)oM`~ws__&8rDnzpzPJF)D}5RwuE>iR|JPwtkR5d+DhO6G=$gxPTyLc zx~#bx9b>0DBXET_R#Hw5+a5Wm0xaV zPW16MCQ+=Yd>_x6!JiyTxpFz|l87jVHs)x8M(=9@m*Yq|ae>}eF$FHOcL!Xz*J{o| zFXBq?Y1-RT+RIA4suWifP=gsGVRCiKPhp7#TX+4AqlBN3GM*4=ShV77EUN_-K1)Q8 zH33t~tTlv?pFdV}XU_x=r>X{Z=rDUzzrQHTDNwBvBGAo1E#ZGX{%(XoN;PrPYn*>3 z^gq-4C2J%luz_Wse!Z%cC)6I?8DUk;SV@f+qG3?@t{X^?&Lfo$gQGOS!K2!%(V7zp zHT?dre*;C|bu=gm$32lw3^tnu5wJS`RGI0}H-@?6SJYT8? zF~G5=@XgO3p*(v%@d<9MAsM&ln{&VBQAsh(!Kj_m0i~-a!ipQRS$2>JH+ficB%KiAIt#heEU$ zPHM-42Sg1;S0oV@1gOQ+*Y3Zmx3NnE5xvco@X${9S}J4dhnCRaVsa3 zTLy5r5W*55IT88bM#Ct_S2EB`e#!IT)We1;s1~9qfx1KRa?KsicW`eBiHaY@gcL^| z?TP~kKFuW+KPf34kN}U_j|48^c&<(Q_s(I%98k0O(82)-fajaRg@WOK$cw=el4&V| z;OTlX(=_*lKU*ss2L;+00&n`|e!CtOYumz~R*x1@6O31CS488mown(T%T9vCaXgg6 zvzd2ljlsZ6!o0sy^cd_2zyzicdQQ9Mvo|?*UUsix+{0W8uJAVhLCgao*)oLI(qCbq zpX!E99-OxNQd%qo_>u2Gme=k-f3POMW~1e#wgxC{m4&?8SS3{sEwsn&F{CSxh){7GAt;jqtkli0I`M1h=Ym`XlG0eW5CcF ziZ4;R^Zeey0hgB=i{&^v9=-bbY<7eg6xX*kUS6n44aMVld?0RsHp4_;;t9GJ_VJL# zcOJ^i_Ocz`Ar8q0j$9dV$=^!xOBwg7oVWD97U+HS>BHo=e-gKlHmJiu8*M7uKN-1E zB+vgURFwNTn|j)Ja71~3zog+mvSxhzZg{b%X|zSC^b|`-I&wa=b^!|ym{$}Hr1~lG zu2^giOtg*)iv%F^7~3>{XY7~INizOScmOw#s3UZ#uq5tr!hs38g=Ju3nR}R^q{2R_1HEJo7gB;-(z-7{tAY@U&NQZ z+KE$xs89T=G}9Rila;V^Xjx#SaQG4m)gZ1kN)SKjGj&30kMBN1mYPk5q@qeSfkV+5 zTZBf@l90ja2o4Tl>mrxDzz$8{E#CH#<%Zq!zIGLPZ4Nu(5UTfan3T5Yla^#LaguDof`(rpCcN0)0BA+{a zdD&2xmk%F7+?x)R_o`Fr!yHZnf$*}te>}Z5__sJZB<($NWc%#vR~7G*hq)w_YuBlm zK_xWw1HllHS%5svhVXekE|S0K#37b->P}gJ7JFbgWye;n1%LOCi-(^87>uRoEz8Xj z2{bu&qmSCslcX$xZ9KP#t)h0u;sN{mSLN5C$DcVrvi*(a-(G&Pc=EzvAj01}*J@Tk zCAD0tA~n+q?fDFG%;F4Fly_{AHsFJ$^2r2L!*d0+?l#@>hQeBjrK9MHLgH~a`jbl* z!a#pkM^KRktsbp^Sz>Yq_9T<4yI~>!+SjvqQkslQS0He|GOd2Uf45-9Dh)EfD zHye^X>eGglJGsjk=e<;;Iiyw03+q+}-!+HP?l~d6UMgJ30!gAOUrrZqSX&gqm^(>-Q7A z_^LxQh=)l@B59@wZeE0Q+sjzAV5uGj| zp+U2Mc`iaY^`}l+&W>ATCWnihDnZ5EKk%Ng`HO*^xa(1w#cz;&KM356^H21uyk}@> zV3Pm2DAqYvLaZ`P_s0qsISBEYjd@_FgotJMU<0wM$LHhbZn*?hvPwEd{J!1pQyB+n z+-0!2A}=*)W>vPxXj}+Lb`XyG!$i(0{3OIDA59}Lya0F+etfryd^`>qU4TA^3_zKg z+BpsHqp}r4U*l*Blevx_*w|%*4GQ(I)yoq<5j<{LO|{?p`kAIqvVew2mY8zTP5ux?y5-+FTSY0z0=6XAjh^=6cb#ag}FtV2wLussa>aRvrF3MgG9 z>g-b)=zfZkJU@r3kzUVFZCvY-O7itX6jIWeoNft46T=YJH;1ba^JX`7FG8XzGHCQQ zNij`w`Zxnh^{Z6t)%9$rAp_E<6p9K3PVZ}wA;V|fq8l1Qz|GPtQD#lO3#=o*$k9mF z-4m`7D1r_@;RM;BABX^hq3^mKjUYXUJ&P77wDNxEblmb9qw|CWhhW>!T;yk#Kf}O2rNRi;6X5q zH~mu`+6=O$2bo%&)~M@h3_(9L)cB#}JJF5CW3MU0T*S|m*7>IIfd+phX?1~z(pjS@ z{1DTeDUf%+8?rF2)j`~WL@}XyZaUrz#)X-)dTO&NkgDa)Qx=zyyYIxa)(S}U!Li|! z<@_GFiLS7#NMqOS(;3yYw7OAhg}6C$*gvXr-SCIv%u-fE`b=1q*Q_=aB=A%`I6evf zB%js+3Rm;Ay$-eks? zmv{gp!?O~W(%9~<)sS=2Y#I;8118jhEgQ|lAb?jh5v6?ZQL9+sznPC#w{S_4(#LSH zZ+G^?GxdYhM&<>E!{40h4-1{RL1XhbT*zRursT4c95wgxDG`lEOlU#9LI$6wA^ONI< z}z)W$Kc$Z$Xy#F~S!|{~5hV8$u|1=3e=Nutvk=t=opjwl2)<@wLEq>$L zi4wN_qnnqf0Q_6E^!}Edl|B$R7x4V6D1Q-=EbeP!YH+ZWD++z;L^!AO5{+n;k~9aI z3`Ft7L0YNADq4+5)Sh~tClKAvYu3$}*VBDNSA39~Y{ zmRR4whYfN-0`GVEA@volWKsw-6B(BWk}5 z8`QjUA#lm#>)&h?c&^kjiQlo#M6)Pui3AOFr#c*8W75|>q&;O@;iT+xn^XDZ$eo+U zk0F-rgZwF9`-F;?)UxF>r-+12YI$>FpAi?#XVO4VhGs12Ztz2(OL-NRoLkFc=4z1v zNSeZFMsl#&O{`6O?V}lc*gHsKXu7ay+iv;KiM7luE9I=oY|PJhc{fq)U(>&U`mDUD z*|li(sJ}l|I9oQH)(Rk+vP#|g$sJ+x#&4jZ3|NvG{b>^CyzBqCwKY#6i&a9qA=@T6&nhwk|nuZ{5JfSf65?k0OW>Q_U2jdMTG&52c;@b{Sm=^EVg64l_ zG9N7X;Doxilym&N$Cyu`jKTpFg1Dl_;gjj7OvUZ+nu!{L-3SW%dS{H>_{(ye+<+O- zPD6Hk+R^m7j57vO$JRFHw=%SU-{Tlin4?DpT=@Yn8W%fP<_DZRng%p^R;?!Qp^X99A*^Kmx{XxV33l?pSXH8w@X&9+p8@(iO*Uc8^ zi7&^^*$p)Ve|SrsCj$ZX94|AS$Hu*c25^=N0!)@t{yM3Jrz3l`k&X53#SkvRI>W2` z{E7_VcbV3fd)kj&C(Q80O-4DKCi^DBnU8NT#}TVqkjs7bYsS~7za*V(CRvZ$ z%o+{Y;#Bz_*JP1UIq_VMuyjcG&?SaM1vCfddEQ)R?sFF8T2Gs<_GR)lFf15uQFO=R za4dZ@zl<}qX{3T=Y4}~qp&|w%Xt5N>9w&W7%CUPfSLad|nHJ67A54rYyWvy-bK0o- z?w1i7@`EMFjI~cTYH%YHtX2}WR2ou7;yCDw<0ydS#D(bNuEi@)iYlIAoBeF0^jJ%T zD!P6TTC~c}Dv;k!Q8A8PtV_U`FJjVi`>ANo>Er9Loa}MQ2h206FJ7+qzy5o`2is8g z3yZBHWJW>2Mb{Qyew@!8LrqEphMEoUZ~yT-@RfU1rdwROsc4%gSCWO}QcvWw6!cMw zFm_z!v{}HW*Ld$vK3NB)X09iC^DU&>b6(cC19=nYO6a9_`n1D;)yc7yqjA^V-C04< zLfHxb+*#M27eT=tWr*_WCcip<@#*vZWPsbYe;3yF)egvk%A`*?>e_H1Z#B48(llMC zGV_pyT;!Jw60W{E-TUjD!wSF?244HJ;+akW=^7s1JoT zc&WgRAWvaDfMe7Gr3IHh(ngLJ>@Xt#(KU#vrxc#lwOLM};Agq`y<-jZ7?+7HRCHR~ zeWe3&&-2S=q}+{lzF$C#Mimc74)+%1EtbwNhVORV^(uqLS0z7#=GefGayX726Vn}6 z9NO*08@JiA9f75i^hzs(K9O<fM70P6w47l0r9jdojkfASL%AyxbLewWL_^9n zaID0>tkdqgD<}n?qlwD#+%3hs4L_w^UkHnC z#UCbU)oJa#sep@k-}D$+dZbKnO5HXy&uq;v;<{<-57g-59@6{~GfK0xcn>gdb~o0G z0{JJ2+2NDW+i$ly=ck>wWA>==G75?5wKMq;HE9D_#z?eEG<|8a9jfi3O(Pk7av7SC zv4Wso_gqC16HHvWg~K*cbWEbhA1g* zzu#advwtB@~IlH-ttx3n|)~RGYX6lbQYwE9P zW!do;v_FOK{tYj`)aZCxiZ6-kwzdmXaD|9qExvFdh+3gL zkZ&%f!A8$7x2|fMBlW9wo#MA?LZdbil=y@%ow$4!UYf#r-s&v9O{Y&c5!yk*X?Zia zO>u+wq@H)x-5c<(&CGv)?on{NJbRwd%d>ghaA<$!w3%woCS0q(7-a`#H%!{KA5o|F zhBrdb)e-hwxz9U9gkL}}vC9s7LI2J~SYhP*W;dx-6NZ~*-p@s(z@V`jalOFylU9JG{J^Ff( z=1qrNZ@ulqp)KVa!{V`aKL!oz$PNzr=SrUzPT2QcQJCf)c%PCr-9_9dH95vv5&=|`vi=?=LwEKP$Ju+(T+9w zu;K=FRJd-$VYOI{KJIiWFZD-oEWS-W?LGCVlV)+1VI!c{rZLtpFY1suNu>^zvqo=U ziqx{mafgihpk6Z^EfEC0xI^@w*b1s9w|ufqg>g3tX^Q`N+TjpqIe)TK zBKUWhw1R3H9vhe%r|0MVPBQg~-Ys z%hvKjIq&U$s>78BKb z+mfRIU}FR*C&UsdUJgfAy9WZ#kPy}u_{Z}%+dl!yeK*OOmh>BR`!4t}V>YRi8rF~J zZs2G^b{$MA=4O;E+x`gC=0h0yJPxLwHyu-} zLjo#pDsz|z_pS|QU!g_gPBzE0!lU*#6g8kxxd<+CaI-lt8Xqc~D>HdLmb-XTp+N^D z9I-*7u6GymKL~=UPq@qQJtVFJJJgt#p;6A*+62r=V;T@~_Z!?!1nZ#|QLq=Di8T2ASj-*DvGorO=koJDc7u|y5ZpN zAxesJtf^D-!?#lfV$d|cwZeoZS9=+<+&&rr*4ALsMEmq8Zv2wQbnOMdAz`dRVc%d>9vgESo1{7 ze-_9(EGzUtTjg`^T3ZpH^v2bbbtaHFHJk$7h^mfyrbgdY@HymMte~>9jN0!?R#VG3 zL}n+B_-QP;7~9x=a2z=JLguoCBZvqXzBtc?rqCGZ8)jL{m(<r zS^+^hbs2D6YDtg0`D?==ui75#VCPa8B&9y5Oadwksn=B?aCFz5x0l0vmm9L>h;OVs zth~F=RdPygMi+QV5LNe&JMvkrCw zV1;wv^43*V@!NY4T$dSlVyD#ez0+y5>S zkX3Y7#s=_-f?dOL&r2PcDSI@RyeYz0wjGNsi#qhbHVU_|v&p5FktMEFng{7mM<-s) zP|CC0r4rK*_GO}-rvj{sF@M=)z(G``PqVKmHh=3bZqg_ROPFiAYy%^8H+v>O$Bs$O zs- z$H@zC2Tf(;+f++ZT$GENM>xfXLD_x1GhqcR#}o@yAw$4gmF2ML$b>MG8P~*c>{i;q zyntxe5L&2#&pQ_nb#VD$UJ#hGeyu?Y!mMH`+bG)9HPSUI72wyJ%XLJYKvYP8=L?0q zXH`D*LM_ZfziUGEbY{pTB|D>2@6?PG=dqbz@t=y%k-PRL#JjotSB_I3_{v)F((f%E zjgWBr+B;@}EcT0nLOD6-IFZ7x21lA{e7qAbJVbF zyhfHQAp;=RF2>RGQG&r)ns*K$9c1JA(r)o*a$zJ%x82gIEGo!ctcIv%_vo`&gjfr; zsgn7t_um%DRH66KSRW@JBWAr=Q>b^pTO~HS@!22tG&bhhG)Mmr?zl!`lsgUYg`=|h?H7eY+#Lo#<5LRDwBrIi5oPdQ*o;avbLB zoLq~s=S60iHQPk7BJK3Jgy}G*e7^F$Z|Y^cKqI41S5Rm+R@(QQ zcz)y)vO*UOGKg^i!kE+|0o1pg`}Iyph&|pxB}EvzBK@|n^VH0cD1D7i7G*W-R+p}) z7zK-ALw@2-PMeCUs~(rGnHbs9!iCbuL>x=tr}IeGaQ(+n{;j-7Q_oxlo7Qlg^@!7O zxbryR#`VqJ+pmGzO}WVB4NFP{-j2;RhwuA-fh*^qtwlVK2hv3}zYkg{#lYyCRgN(p z%a-)0x}6hJdsauMWkFU#6ezL>8*7Fb&Wpz5N3LMV*!TU3I^U~oxyNNGz>h}UwHuna z*LwL5u#}QA2I~C@uK3;HjIlpEQ6p!L#!0&rjrmS;GD`7SYsDX1#Mhoba#Pbpd`05z zKaC7$gCD!6-yL0_t%pUPKkiG0YqSc_0IH&*@Jvweg3e+wX$inQxPFx0r5^(YkNvLG zFmdRJ15sWywt!s@C)}1t66i$+VPu!~%s6oN9J3s`lK0MzY~E`{o=mY5$hx7pOqh+e zM1#F^xI`$=opksyCsup#4T+S)+?9v+MJWwLE4xWwzFR+x>j_c^mjh@{aP!OB8r}UmQ3Qcw6&PvAf(*&xsge z*6YvOAjNo`Trr&+K_>%iT-Y!1H1wKA~y%P_Ju1}@*_x9o3t&f~TqYOM< z$e{U235csj8w4)Ij|LUOpEzRL?DL=eNg$d-Y{jD|RbPVrTBO0Ed*gJRN5+4v;yE^~ z2F3YHLs-g!S~Ug7dUo@Q?$S7ykhjkVr>-cEjehJz8v_Wtw-<`FUV>xUMs?PrCKx{& z|DJ0b23mf;Y<)DoeFc3#>wNBttaYyhFzk;%XM>2L802!5$boz_5@n#`nHe-0QL?&2Q|19}@-y+HL9DMLm$sKgEs2mmoi09KFZG7PzKkR46 zU;g}?+zFGWnQ>Z}i;pMy_!V(dA{k!O4pumu1SSg;zvRDl`jJ+1ANcv;__6f)V)R+o z^=5SA(*JDKMPv4C@%iGLuQ88|SrmljgMv5#LcuX6*tS35G%@^;i$9+uL7uBCy-TkD zEd+_XFD(74mbatZP{eQmzZsx-;>XKH{ON+A?7BCy&Hz7y%#xxn*HXd}L z(K_^plQr7iwqt7n>gY^w+5yl5G%S0IB^WeAxtB!amoCN3h1qz|>={^g%3Vbzqz6s34@$%C5Pfy2SnC&kl`;`#jR`wkGji+<&ufWc5kiot( zQq4Y*mQ^SGp|c-!X7z6@t%?`I4oePP!60%Kqr19%v!NqP61_2$!n5T|cz9NJ;+qiI zoPeiN8W!}}{b^G5sJ{-xvxuvEf&IOu{nmxwaAVh`hKF4c54d=@C5we>=`p?oV zE{8wmkO(qLeH5i8H0q7{x7+ws^BRQ-LoIy|av zyZx1%gWPjFUi%dmW-R0Bz@Tb4H;To}EtN!qpRn5IA)25Z=O196JvJK9GA7TeGi?Z2Hf8IJ&^eNld8vpoGN>p|Dxgqdi{V#-h-LAjU)_InEsZx_i}p=KNeU~ zQ=cC2N35?3&j8g;)9TUe7?E3&$4Z)?jHXaDstDt_)(s!)UTU(YSJJM=yz>hY)34rdv*Z6T`qjE9vtf1+PI^{L_pG-^hfz$%hD?@nr3 z=VhSL+V@FEaPscVEFgFau5>lX0|P*vP_F~ik;UQT+~z%QqUW}5-YU`Pz(IFlABUs5 zJsJ3YY9VBT-BF8;V!mVdC*%u!qC|(G4#w8e@hZtnq%Pu|546f-nZN9zsE9(S43F3m z5M-ajMFdgn>45Ap+c#N=Zm8-sFz_2r$%wg)Oo;SYUDM(Rr%}`N3Ql2v6OW@X7vMez zaHLGv)M*o7Z}^1T*rc#FNDzsYFb9xrbZby1nrUx7a>f2N_d93?65lUgIwHz_jOt;^ zTm)lO$7Yc&hg{BwJv-WU?$o1-L}6)i&YPN6q5i@~NVqSNR~zFwAvRVXOz{C zf1_BSX%>Q7b?mq$FirE5LxGl+V&7z6Bj9l$30DH@-SmANk5#$P-O>l;DGJ$B%j8jh z<*Vxp0xez2*rIc7Tr!Mk6!{X7O8ub$aN}4$EW_n+cX?crkCHV%5(JiJO@;QmtP5jY zN({R`6UT{po^;2dO%7~HrQJO;qPK|K60t$z8UN0lCc(o8xw0t%WvsFAIgg}n+-En2 znuVt7u~_P{TGm!9aP-IjCT^fbo6UX4|0Ea4%`_6)83YypgNh5}Onf-`GNVVD%+p;s z`OKm`jrg6oJB)N22R)VA(*+*=uk7sAEYCV{%NOMwYB1NW3jY}1;IaM-c?=4JL-p}9 z<(lDRnWjyn4h+?Fg*-cS%Xh`iYWMx^(x4{=s;n6UlT5)kg9@U;CtcXHIu_FIm^N4x z3O1f`Yxu2#C#BfP2vGu}#~P)v zR#&_Jsa4P4^`d9{=Utp#$73khT`_Q&I^a^c)1cdhK-5>4K5xPRT?AM7oD`4jEDW<< zXrkC+!RwDxr0E5J42W3}oUbn*Cdfs&m?JDKCH!R>yFI0A2o5$(5Tu)|bR2d4;~4~x zVdNT8G-%3KeD;=SQTMe{qRxq3;b#i-#x-;zwrC)%&2rxm_Brkw-tDs*KO%R^SH&6@ zLNz{)#cg)ksO!;>GpFC4T1eZ-qwD#-rCd=quiL}%n*)wg;&*>jVJrgbpKR%%22HH;{`mBW^K_sf0}2djWYwT> z&-ZULR!5|3bAC%ouXf<0_qut(HH=U5467RJ(b4UbR+145g8uc`bmb1S4&tF%{G=_G zyZ%B1JQD#lczDSWr)$X5D7-n9mI*IJS=K=tJU#+ ziSa0|Ci8{wi**AISIN)--$fRJAjqrp?blH$Q(OX2M0+iNimUS#F9*{hBuWhnZYD|H}QV*M=a8Q+NSQfmXnU^W1d}+}C zZ%Ge8Ew2VlPU-?ppoy=R*jF$I=Ux*H-e{d8_57O4RLgnIeM)m*4~J&1Zn#J6BhH@+ ze2u4_Dis^Su1s2Cf|VW34(}inUHXMDd6|UMF!0T(k~VFaWlH`9Mjjx29-xZtL^i`5 z1-xNR^^(iof^dscL_+Kas`&t7WU&u*rzGc16GLW_57OZH5su0P{QOg&Bo#-fU9=?| zl}NYsyfN4QT;N3*SA0in8S2)CQW8w&$LW_ z#G{jz($SwcSI3zaaE)=6%pRCVv_vF+9IWugd2+ovAG`h@{J2Jsd zyRaRmL&$T?WwjctVr5lr-(RW>k^m6IZc$hmh1Ysi+}5xp@VrXp&#``;)lV8~sn`rS z?GZwOepy{JaU0x)m}9bs4f&gVH9p7e&GoE{mgiG9F1A|^fZ63Jb$5ri%vTqWuA{F$ z4aS4~G?U?z6TL|@+mYv;GHqxRtC6X#q;}Y{u@8-j1fr30`*JyO)#vX9%>*oUyi03- zHZ$MIP0>YynlF8Pm9~Lt8SWd)XTPtR0r+|HOQ{~^6VJ>f23=bR_WfPYvojhPJr)aZ zWRN1DZ>O2>a_iU|jbRSsq&s6fYdOyWld)$w(I8k2A8^OwWa4pFD0M~>M^}QbIyBWY zq59GpEF`phs6upC>r(h@|Eg^U#Zh02)SShZQfpRPIxsbpnNG*9dqMFdf9j$6fl>yQ zLE~Ecx}9k!hh$Sdzs?O$jN^(a`h}~nvO*v6O?&2{)7^}&292xJ-$_nz-U-|K@2;f% zgA2lW8}8#on%%q*l~%y;vdUD^IYR4jQ#A9xt}B1UXtr(|{BggTng!Di7DM~WTaqd* z;1NRTV86g^ag=K`({W5vVcbrEaVF1OHj`6K3J59Za=P^t) z<4#$N?-REOTLi#x9$ihL$pb_$I4XN#l(GdXqy!wz%V_%qx4Aq2Xq z5yhY>`3Rc=PNM+J)YTkO{YSHC)l{u{fNE#wmM;EU5l47@U%?Hd7h#vVot^K_nspTd z6w#pPWrn~KZ`JmP7gI}R%NH2kx;4%Ng;7_3_1N7aPo4$q|BAU7u3nk43^4iO;Vq+F zIT44k%1=cf)7TDk#&KIEzGGW2IYH{!w5fyVR(Z*|7kg_ce&20c=IUJA*J~Thjo;G1 z(LTyGyb{C~Hxr3wg59vfGxpDg3A>8G9LG-DuIJIr7Io;L5y%_esulYl6%Oz3YPNNI z%Oje0S?Q7rYc}gigItL5LC;Is{HaeCsh2vDI@qL$Uc`9oJ5;>iXWh}CSq9?jBB7=G z6P#r?)@hShilijLucFYLkc0c&LLBjX61GL}*M|v;+SPj;c9kH@6zZYphAyw%o}G!1 zg6Gqd7*^x6w6~&yx$xxjR-H)J%Aa%{s{$x6R&4@Z?q8hntE~axq#m7XJb(ZM-@q$W z*8;GFSLoy!%&qB^qPTJE10ih&8zO|RsdF*8-~4YDWw{L+&!y{s?BRfw$ar>7{5~h} zlC(Et+#DgZo~N*8~eAK_VE|C8|8?nr7L4a_Y+NWKy?pK}ljp>_DNP5VXz~8LoTwff5vCg?Jk;_8^G;b9ka4l)-{q=}<*o(= z)p=D69O)w;GdH*~Ov);`hD)zcFAREwQKYJ&r+oDhd|K&-9{3PeAnXrfBy!({2GFEK zS4_7KouuAyCtxW)WDFKnN9BK3>VcTf|8OUA3iLM#o6~OcJZRp2&zV3h8h}1aRO?wK znD(Ac$xB3Kjr<%(06&7OL`@kJp5MLA5)-SUr9l>x_aOYfUv1b28c6m3#1@Qm5VCoA ziK@RkRXB^^ODoQ^OyE^e3`=M6sWN0eSTc~;(9MoQoLirF zxc&gSt03puKO_yZA4BM7BGGV6Pdn>ZrE&khzp`Hda~&JwdqAsM$btO*M^keVK!VJgy0p_8F9)5}6_|a?n9G=K;m5&%I>!pcoV1Mr6 zq$Ql;_WnhAloHh?&w7?n#X+8fJ!kzOa~dO;rf#{=@p6$9c8nn1A`L7s<4!A@9*{EE z0MaZR$n9D=UUXeMKSgM^6ZtfiG0GqPP8qbyJl{AZ&7?z#{~*R?MbJ(^-u|HkcsG351s98J>kRfZ(7n%>=&KMn3erxv8Sy=RPlIv;7xMp`qR76uoq8#R?DSF z4%tyarY!h3zp7>lMo!=OQvZoWElb<)gn$>w{ls@S-r>cZW*0YNi*I6L8q*29O*&Eb z?zSR<9%)>xO)iM!fBMxpLJj!fxEN&OQLnGG8RGh(rLfm~2kWLL=-hpni^KePn|jCN zT&Y{dx9Cu97P0XWL;oTu!2Wq`TElh|gEn?_#DG5(B{9KeLjmigmb2^128CBWIe8FubUd9TdgK7! zw(5opkqS?o6kZqe0s02EQ)-E2T=Ua)(%b0^ROMh3L(tuFEm*-$T#PNt)zJwmw zNy|5k!|8+JD}aVCS3B5KMbpp_E`^mR*LYL4a}0NqREtL0B85EEZ&KJz#j{>VdKvS%aG-4wiU;=9m=K^6Vc$t<>(L5Yi`wrr15^<;W{qNQx!*&hTm?L;?)J1VsWi2---|BMd1z-sHg zhWIIly&rl(iK+bS=uXBkXrJ=i?jlXGYFoC8{A&j<+CR#(X}&)iglA;aNVZs%vfwtI zuk-Xn#6uL-Pzkyxdw2h=5kSzdFE!YUw6u|ua(ps2+VHj(Ch7s}ERtlAe1d|HQ>o=7 z-?g#tuR2~R0cEBsnCyk`s(g1R8`i(S-*DWE3XaI8QS@$i-m22}y;Hq&zQOQeb1mGf z0);|3LmmYeYToAO!agE3e-$&x7ubGx0S>dtj;%96U%u+4W_x389j~%Hz;N1nEr15s;j`Y(1}B0{~g5qG0FXHUaN*0Yn}_!eH=R@Gv1{m~fpTW>#7 zahUxj>`oBZPJ))XpYE=gZ=sF4R+Q%osmQ@im~OLA4U%ds_C7_?WHrAQX zkuK1yw6i430?ohT1yPzqqtO0LKVm&nQ;^v-K6=it@)7?V+h`h>7{A`~RuB1MWSl>i40}Xn>#GGco`O`* z78$0J>ws{O25=0!trJz&$7o<4nB9g;EVy3E5d>v$@P(Jx4+pQ-I?6`M0d%X1p^uqZ zilQqiW-K_bz=sz5$AftR3InNC^R$TZ(TK1D{Jn&{ydT<`v9f1kR@+mHL199kx>_?C zSY9_|ES`HYk1~kbIDU6<4Encc8ip6^?8HBjAZ1PD6-|Zg+XyiM9b3!&!N2IYx=gpu z&i!*lg2vH__=4{H=&bkfCdI5XEw?ToTyC}D1ytbGd`+ePb*+p|$mUStOR+xbdxu*d zk?OwmG$U}Em2sC-+qMbc37yd~MjA#y_Sn~}S8B)U#Bz?*j}YyZVh%`s8*ZEo5rHbk z3^8@rjAWOrEXx_(XMP1X>f0*zQ7S9`JwKo%-XsA5Y6!BwM*Ped`wI$JCzM}yhAz`M zDYTtHRq8O%|CfwH0-nq$3nyGLQXi~;K5@|Fmg3$GW_%v`LR-zN>qMd2d1p+YFz8}x zZ^b{ipw3cMKqlrk#Yfuij?Ah*kMR)eFb&ZPCFrbM#Qb9h;b_EQi=@`rfw1r^uxq|J z?o<)!@R(8OC3$Nw!Qa<$%jll*dsSEhi|1JID%kQD39Pt--mFf`9^S<@=&UGQ*4^k^ zyeYdN5WcJdZy*$4do`P*BX2bgug6WV5uMXLjP}bfE&Hx23ui>&Xb%rJM>kht=!AM- z!IeRQsEYe~nJE0;9i{r&`dHWYL7%e$J7(vo%4%XBT&M(-Iul(|5sC5^SjCt6)p`{G z6ZDFt^!&hmXJhm7lG7D%-{Aiw2k_zkY58*M*(H)Mv&pdzX3K)rUB`AXGL?M=C+1xl z$C62tQ?2#bG2U5RQTi($qe!1_5^SnGjNabBMfzSJMDBkP<0%+nG^!)m^J;QYXJ|ALcgxm65)*I~Shon1$w zuF$#KKe@G12IP++-!}sZ`8)wR_tho+0@jz65C>Lw73N5z?wc=wvjYRTnDKEVRIR7{ zd`z?H@%m9d47MURvzzcp*f4D=Gi8sL-D=o#mgg)~ucI&n5xKf9JFwDU@tJOc=vXe! zigz#{r@(6YdR*b(dab5g5vx`G{k_p8CE7<8h3n}H1`ONG-ON_8^LCW>JR)Kyh_Q^E zlZ7RvV_bF=f=(vTU}0**|1ajwp*^#x!J==BN>Z_H+j(Of6+0E%w(V4G+qP}nsaO@e z^Yx@BJ?lyTfjc<&x%X)AwX`|vZNGoi_PtfI$cRpij<7LOB}iH@vqKxQK2P6ki&W&V zt83oK7A2?>E_{awrxSA0_ce84qw%%H)NI&lzA)5wQenQ;ltbTne&NAXRjh%YCbp2^ z5TFY7;#z4|BbiD9<)Xu(WP!911jasF1~Qwl({K$N&5*xC(Ce~E${k~T%&c1vk!i0Q zQNcpIYUD;lR~Jb*eyHBma`VRW1??o28~AzGRjlD^-`RNONQOBj_bD7Sl<>)PrK3%O zVi*Xcy41C=gs|xW^y)zbs-UA#*#ha&;7reW&F`Y#sJCr`MmLpyjgCEu({0)!zgpAq z;*a?8D5a&-TR@v#<>CjB!Ry&0jYJsVx8>dNJ3x!*zM7r_x{Vu&}|)>3`Nf!jYg=^j{6yy0&3) zS$?!^PtQ|uMOmR9A@Ahxjpl?8YQV{XT}!|e97KN5`|%3`qJ6f&&0Ope z47gZ$)wd9Hw0r7tZ7O3x0l*k&{_Ol>a9#kT>0Q5z+iqVoQBb0dVvV$u+EaV-r65`ci~cjj!4@>C8P|yY8`NU#!Z^xRe0aRreSh zC{sU3v+Q=PqeLYbOc(MxO$J%LyAMyAUjnUi5lP!B-)hOiG4UmfqCt!tM7bODa0Z4| zj?(WZ+g@V~=Q+;*ZEzIjp8Iw|g7zt#j2ixXEZY@;87-IH+4i_3%uC9JAr-ys3>1jN z3#Y9c+8g_|@*b8{{CrT4;=4OS_UIIGmyX+HLNW+b_0YED!SsXNzR^rJ+_5%V+cH;f zQlw?I)#Pcy^cZy3{r9ibppt+5WNE6AYhyoqVMy;Fiyknom*dUeP|zIyHOC1k<*e@SVdqellSWH|?Wj%nyyaDbQR>`l3m2I=$zMu-* zzB{!XfUC%h2!wMVcC&>4!S-%eoQF>e_Q&wc#)R++E3u<^tW)SXbN(=pT|LUrsPM=f z?!9kj@&8v8r%FawN$tnv?o9rEl2#0D>nS6`eAlhvV6c>q9WfF}bq|q!U;T-?q$f@j z*n~6Mp?m;Vr2Tg}PWLewOi1O5r+M=GvkQSFE&g$guJYdC)PzLRA&|Hc&HsT~^Y!5j zUXH~kOL50*+%c<6vJb1)jl@zzJCQ)vnCvcc<$dL?BdRDH3E89>ZB`~2mQ7eJgZSmg z<%<+L30=H_HF z9gFMnw^EJ`FbfdKCMchC`wkORfHD3xCk3SX8(9KKkJP4WcUqe|d+m3Df`LfYozQ9G z`AfH*v;gEP|Dd345dDpREn9bCbTg+hCG6eNiCPmRSKKq51!rokqeMryB{j`-1WUmO zc?aNr9y?wVuF*LwwrthtcsSzw-=>tm&VF<=Y~yGI!%hDjofF&nVN6`~IxR*`?maUF z4y;Eu=m`4pwtkVa=YWZ&A31xZhzxTjuh>E&n>yQ!;n1h{;ay?CL@#3lSOb3?!ys=Y z^Sg#hC_%RVyR1KlKbxtyH=wZf{Cu}RX*6B)T2k%nJnOxi!BDh5H!q`cNOC(!Yt+4z zG^}n>ye@6H3)+6*{5w`%MxQF2U{Zz{rn~SC{1&fOjT}s>L?BP6?6`!2!!Y@gI*qss z&6ktiu2%KwQ21r9|BZMuy#59T$bZ+7J%Il}&UAb9%%#-67esSSqAiPkmk!~}5`S|w zf`K+SMOOKi`z@OHCeUwgqi?_*wLmPBDf)ppLtNRmW#N*=lG&N5w;oDa$a+nY5)Fbp4VdqX(Y_td(|IK9v-I?x2 zgW1XXetJCAz!(Q-`L$gdQC(x<$P|#Y<xdalc4*X3S2>(exx3Zdrx;B4}tjSsnisvlA2y?*@W{dIykaH5cc6E5RA)*d|g#r=e z06h2if6#ggC)ae3$>X-KQNA5E0o^?=zc*N$2fM@pSmCsv`{Z1O8d)E#X$FMFw7C3k<%6(uL7?kE^hQ zHv`V?gH=b5oLQqxU4Dv?xTYJ}f}}WS!|KgjtrI&*dYx_DEgk@RpE#UX4(brP%@;rk zrh3`o>ph?#uJ3l;K0y_*l66BY8kafsVaAP)(a`zBk;ZAatfTq6EO*>oytXOU@fjy+ zNje(jZTaIimK*;J;BdfiuAVC)g{f2Lz<%1hM9@>Sb;g4)CjJDNgm`CU*E|hExNCl& z-3kZ43WfHMtmb^eba&l--t@d$7Tr0{nsrM_=pNV(dNIWmbdZPNps`ByRW47`?yW5_ z;!3e7By%;xH%uF!6fj6cV$)L(X)Dd zFw4-hTktYc@;mck+WO!!WQ61@i}X-~Xjg^58=4~!h6Qw$bFtG^TYkx6vv&0Ye8|{I5O?u& zNrBX81Gi=ZggYcg%7yZ7F-#wP*EtY`5gbJ?*qrU(C437nf9OCg-)2h?GXK|LO9mg` z!!1`Z(seK&UCs{y&~upKv&EohFsG(|%_pelXj=}6+a!QpW`m`)X5g{@Dl5PQ_LdfR z5R|N>x)Afde}9xV5T7p4@SX7w@~I{yZcb|cy)EzpQ;dliMIECT#^N~q5dP&M`y1bn zN84NO>b)IUQd4c&dD*#je@leXVqH%SFguVpsFQSNGtKu$daAXX^9tjXvS2jqIzIqw90UrONI^2R2-Q2I0wMl@F_{Wk5y^y> z?z4uDqK=`E%vO83d$<+J;vmD1RSj=KP*vhWQgg{=;*GqB!gVy_R^F0YPM0AUL^+8S z>X95Wr0sEn1vqYe+#zg&+_+?vZL~jtJNR$vi&$=Qz@wmY+pA)ivvqF)3aKpNuijhF zfxnI)z3qRpA0!yB%1I^i@!F;;j?16wz(v#=9I7u_zpVJFFvcx$n@^>ieKa@Y*!6EY1j?_I= zO;&{(>Fq?pu~mQgNq!FGO&LgQJ*1)RwJYN4!~la)_G`_%=AE>hKjy_x@Sgn(73U;i zs15oL6i&elzJuHg$GkTjT4R4N=@Nvm<_mTamdO8NXOS6dE_L<3N7@(Q%j>f~p4qwQbjoyR z^sAOejz$6098$m>KnjeEjWb81qCmY}&byo34#dGn@(%9Hg_yr`AWd>|=rRCjZxAns zIy(D9n`jzLix8?uWT}8Nt0rD#Bm!c2KfV3}rZ5d0?gfww;88tSEN1^9xlxgaAC`4Y z|B4mQZm>3^`<3pnbq(e+6UE0|IOm@4x-_DK`%4Fa-#e&Nn5sn?P+$R_JwZzr6fX~MNnSeukHoJ{!&Wbi)(uaLm zYqZGFSVosdpQMRu)e$z;9ibQ!4|5U~DOWnBZknxt?8g0~WIiw6NygQOb}eb59d769 zf{_exuStFwY+c|gFBtagqDY0W_DJy-?oUPkkO zfxEuH))k_H3F9m_h}qG>!;P>ck*j|wBGrWy$@gQ%dZ7J*##})m^t;`8r2*{DAG3%! z=c(vI6$YzdKGV@lW@rC2Cl7j~Dl&*C?^EJmDrw7>{GjgEjJ^`x0c?<^wsE2#r z%bVhZrig==zhUN&vOPZXgKz-Tk+woxw$y|gMC-u~=`;$Rd_6fEc9KE+zji?54<$wy ztWNiL4F(B#3AgI^5=@3_sMVGt@vV#dI9-jhTiFG+L|2^xKU#VY*7m%?a!2|OL{5|~ zxe)*`OUo4aw7PzcL*GJ@$zTKtc(;1}AM0Wo4Re;vd^4}X)M&pyK{YxIy_ z&f}1ELG}Vv`0NVVL09tnRcer*Y1t7XqmTInby)V_O*rLokAHciH*hzJk6-N%iOYSz z*Y63o_53Z==K~D}K7H>p`r1}<72IBWnle;+%}o!v&izi*S(Vr{ek!;MtG;gNmR7+t z3_NqXxR9;GXIl@H2oZ;>ED}3mcec9`@+utiH>0y!1FF*N@qCFiC$jl6iUY5`%_y*P z8ik^Eezj)G%+}Tn{y6*~E@|j<;Lr-EW!QUVBorB24m$VV6>E^WvoYi~wYmV}n$5DB2~+ovgOY*Gua^bfO%YpTkK4c0 zYIfg0RZpf+Kmn0b~o*J*=6u@@D^9Vn}C7is6Cds<60k0)ov+nO$ z_H2QUWoErHzsYu%`O!T(-2a67qS{OYo``n_*!!UrMk3*c<;_4VBt?ZxtsNb~+FvP{ zHYQi^WqA^On-8V=Bj0}{Phz|;QW3wgFm#tCT-#n=?i#xZlOWCFp!xO#-j)NGqTBc6 zc2@Hx>rjCt?Wq4B_5Opd|MVoBLlxoR;GpF$b1cVMbGUT&eZWHb6HZQ&7#Ml31c*{q zyShRLBzKUexx90`!Ww_@4K*Y#C`&FF?;?~1snzoIafh>f{p6-jl6E2vv?AL!cRo9z)u^HEka_v_TWhoWh94>Q#DM{PU8c}amgKAQP&@eCIc7h8pgeVudijX0n2K(` z@c?i~MD`|>mnWa#92^H50khbTvWkMg(cf)c>|5hnmUmiC%3Qb$OXXKg1_r}3gJhkc z@;o*u)=Fh1*b#MzTVQpJNfh8sRohv-L!+=@6NM&O#6oAc^8<=EK|0CxhO_*o`XG@}oP2SQ;53l0@|tB`Sbw!_+22aQ|O zn@-uYS+Iyc?3sLbA73^uo)XeRdR5mjOO%%ZCql%8dSFLtQWDGpg%DNXm5JD$Mm<>U zxj1(JpeetNUe)#|&^RS)Vbt+SDrhMLH*&~t^t)xan$fIa@PC=g$ltgEh*--0UWER_ zwK{b~x<;|~dK`1AA`S;}Zr_^my6me}xv4SvT<)A}KWRrayVPJe?kl!mh?7mLESf-6 zfJ5@L5GjyCvj+$bo-WBE!3=rA+X&%IMS~2$!H9M;Bw+F;rg02w7^eSy%h=wT<@tQY z$TIyKUr>Jse6fe}>mKOJUmsGMxaI5~jXS!K>~l-Qd(qanPF|XHo|byMJ82%y^BBMD7AcS2kx1aRu_(+>7mOkvAJlub%#Oa2j8$&C1FrPNxoC3tdNw?|FO-2AD>9g0kF()|`l7QI^#w zZ3t}$k2Hlh&KqoMqdp%muftEU8$(}ZFCI{--);MCjk;Vr&q6npEO>ZocAsepLRgS_ zB2^U=8X3p<$7DB*2uG(OP*alX5H8 z0U>*v{V`buCMyl!Gczn0xtZO4^f;|e8p&o^6}EGbSA&VO9j`P!V}cp){nc@^DKl=p z$ii-vGl-~w{VpT;E&SkURYk)>hGp2cmM(d&MZIA3&{!;rC+v`BJkQI zRxTyoyZ~(Z&yFfU+-e@_nsWjr>LSKb1NQW?IHxE4@L=~N{^G2Zl*umbmU~5WY&)MA z)wA58&E+}Lo+M|Wu7u#H3>Tp#o&iRw|FV(!_#iEw9Iml2CdNVYbM{fik-h}|=L5Hd zzoIXOQkqEwg24px^CN)&Tc?4GoA41K*piPP_fX*gaMSYn*PW&l+D;qnRSz@6SH&gpeps6QpxJ^rb8lMOkF^<4vu} z51g*ux~1ZyJMo~7@o1}pcObhvR0^?0@b^S&~~Gr zO{L2;pS+bhi?w1FaKj?^D_ztwfS9!4IaHk%_?!r7tC zjYwJV@(N^8pb&1F)2@rrWeWY$nWRLrI~fE6#WoXJAJInFgpfcI32Pw+ zAnZx%pgbl6yP?4E^F{M#*BMDf}9LOMUf>GTm3XdcqK_3<-MR(Q3l-&LqPy-=D?m!q zY{Zt7MFCn9$c_M0s2Y@;P^%CW%?c@B<=9$E8GD-n&UNYQ&bF3xO-m=ri?(`cMg;|W8o@A)Km(z87?xr(cMiauh@xT2< zB%B`iCfkDwH37vOD1>b2R?GELv7OVZ*%c3K>6bD^>pZyUU@LWM2?{(`tUj2#7+=Tibg zlXHGocp@qXlZ}XjQ)Q#~siJS2w5!88$XRy|B0Z6u2RiC4A z5}DgvN-2N5Wx)b$uS7hnr%q1KcLmmeNm*AMcN}+HE`i?PU=^bxF$o|p$9c!Cx25h< zv5vOAj+1gm;w=S5f5?&v6qc?9!^E(CP%kGU6N|dm<{)5s|@(P zzYPvaa~Vq@A4Oz~sM*aR1UrZK39gcC}hs*~4&v2!)X64Y!b8*4aSc z_fREFdIbDpRAj+p5vVq`h|3UT9sgHF2|Y3S#2WY@+~<)ng0 z-%??b+o@3)XwWrlDC|pOw&4mzO44z$SD!rFSa;pWnz6-0)_Spx_T#QeQFe25;*1Ae zzc>ps+^Z&`&47;WZwi(IZVwOlibHGM&}*KF$w8W2?}NAiszv~l;{yGTl4KK8e`Tu@ zDnC%Ak}ewb9oa3W)``~?5q3Mb>fU_vw6P!jX!|0_dN%8lo?DZ!rrO8wYprwdk!RP* zx{=cm>PoA*K{q_Quj|RW7wB|E%EcgO?PmyNchBg7)j5^DV3g(%%kvJ!(}+6c!SAWtVDNcc>gsc?7l!Xb zVs2kdwH(aK&y7C8%9$^aOTCv!KKu^;isUFzzSzdi{;MZBdM%j7?Jn`DU6lFC&Y8l| zg*y+kVz&A6Cp^XM<(`Q>FhGldz&vR)ag*cjwVfB*1IN`5&ew37B@*_f(0L05WZD9K zgnHI4G1iE7e!prLVoHejkP&ZPZSzfdG12s}z$hIYoSCOKJxMyRbV@$q8u7yG6x-L$ z9)8YmoCi$LKNiaBLGRjvBh*+w+|;1B=3J@bhmAx3ZR-|5v3ry4mMw)0Oy5l!b1jAO z+p_)&w)G8nNwGcQ0ci}Kwtaj?`BokFNTK}{lY=Kr>;V7_p9Ch;vh0kxgn4I5H>yXX zYQ;|SJ*UY$B7{@sG6x?|w$aE%Xhxs@Q)X(f8ngNm63wOrBV1ykfR(F_gXDH^Q->1Z zO0yf=f)@=}_n@BVj3J9rT+bOJ#}vqmO~(hhab2;UzN}in&5z7^dVFs9DEZph{xU}E zk8nA&0{Z@b3v#~4x!84?@$)Np(hkv^jPm5%%)V3Dzctxn9}&XH(`ESeU{AKAY)LOl zBf!}Mq59q0hf`F%`cvIXd)p*+-W1K~Vid2H+$idWl7;G`{lg7fk*tG&TW5%O&n-e; zn(E)72tmHD<6Fa9i*4-o<=r>XETs6+=il|c-nMQ1<%b@OfN$iP;xl9q2-GW&H%8WS zk=y9rOcYxCGGT>nsYXi{0`q(&k~ubbKs0%qxLk^o>U-QwqEbD-H|hazQ;n){RI@`a z$<;@ftgsLfDVZ-z2{NQq6*s&js^esE{@~5S;PSxu!h)y$XIcgd6A@IG*!jh@XN`blGPw0(t8CSTunh6^EmPhd2nG?j zBIv>_ymU*wL72#{{)-O{ca-a_z89w+D#a397y5?J_JM`Fwb#aI%vlFT4Kx}n(#gF zSRqGJ)BElSuBo@dr)2_YrBYYUChWSb=2^?HqMInC9$LlM`k3P<=LzDjtP8~15^;x^ zKyNt=`?!d4Se0c{55^*Fm_M@W1l{ww%l<5@mH_j$*IH-zs+Z#t>$j{AjITBR58Kbj zuluL<4+fvtlF!(ep7)lo)8o134fjtkuvtFnegro#Y`0}PIJ1F@p(+vpaa>d1UIYM9 zYMgqC6EF+TaAXIOQ!G|{6oVc!&VyQkmlz#LrWyLCt`!#rL$cBMO^!7PEh=~0E7ya* zxhOzlR8)u>CWHqUjWRSHIml}7q)uacZr5^W)_i*H z`?lg+v-NfLh_jpGd$Z8nn3-Fp56bb8dT?K*OHe;h#Dlz;k@$7>E&1Jyl z`UeCT89OQ3xG$*hYdG$~Ayt4LYXQT+3xwE$j0j+3SHsQWI#@W$Fp&Fa3v8EIM;Zx3 zE(cYc`%82q^yo?{(xE(x>r~iH4D^wNe=17k2oa#eq7%XqTn%qc!VB-K6owz!nfE#W?D+V4-pcuU$a%k?dC2(M zYx$bvf7$tpAMkl?>B%uY@7W+yXNakxN+@5*(Ge%XQysM7Dj*d-!BB&ZELUfoC#QZc zm&tTQ5+Fyix~=hBPhCJom%d4F-DmnZQz^%-o2W0^h}f(QFq%P%nYa(?RF-?wW^z(c z5rIHzDhWlCxq_HdiK(fFagqA@=sIf8NWkbn;oBP(@0ol$6Kli-kJJOp!X`~{r))>< z98}{>^gk4fnf3WX3J}ZL>=bv>Ni5YoMu|PR+2sBtGD%Jzpd8FHklZFPT;D(unI&)& zGDTf#6njh?F~rLx>`U;{PdPTLodxY?`R_5>sCj#Pq=>yE@VU;x;r@`1eagYFda2pj zx#{2)mGeu}W-NvilAGjTD5sFa8X3@RfK*jyo;C<-^c=WJnt#u3emqO}Q`bWD>$#?` zzSvZ8R+bLn1jUI9`i+4rK#r^hDUdW4*h z5DhZQPvK!D>`b>XbF)|~r4+)Vue=`2rd*1s1`(llL zQ7vlXM|l-XuRv%3B%+r5vky7=g80%>mm-2#3Qi0v+dA2QkclOk7g~0#yoruwmclz( zJ;@Mvev#or0f~L}JEWtJ<&zA)ARcqCr(8v+wZPxTUHiB%`V@T~+*1XqAi`!SI-R!e zas(zB4sgf6hOLWS_V>Ci{yU+rh1KGZuAA|fwA5UBK-fbXvpQ&=2-TJRY zIXIVgWm%{Y)EUY>iFyPd_>Hqt)IM=Glqmjr8rKeg%9rRo74B&a@dPIa_iULGnKcfbcE#skyHwlpbp~u# z`Wp5iLGJA0G)|SjxRtB#O%T6^TQhd{A6lkrFg2Z6GJMt6goYTuf@wA&!{Dl7!IgDJ z7+K3lJ#3cjQQfhV8g=T2_Twa~M454^$~6VsgsuKtH1b1tRC`mRa?4^TX(Bx$?%2HI zJv({Q(+RoTn&xN@1#J2(x##!f^)RJP^%5eu@U3C7&5r5Dtz!hMzlp0+e1V%T+d|GC z;0}VLu8qbF?q~!8xXjtU`g9CwLQ9&HVs!l;j1$R{@`nzg(3@irykP?)t0WEU9m;O;f! zrdaxLyd$j5dhPHV)ag}V6Ir~>e_Nj-2Ua%I!ve=CY7GCp)$Jks;^Koe413V>y^6Bg z(w@mcNopOGVJ?HI|P;#`L zdx1@}b5kr>JSbN1S?}YTp+oGo$!C_PRdkw)L+eQg!eMZ4ZWay;?8bpT((iZ9MdU(OuBYoVDl7%|6i5(jkVG-^IEyMWuKktkZV3y&Me%5ktgX1r+0X^0LAQ&72A zV0A9_2sRhnvk{`tE}_CLpO}`xrq|!P_r0h%drM6_N_aL*YI-Pb=sg+9V8ZHu1iqHV z!TVjhAB-r*qtFnG+)k;xL~1L(SRwZ_NjRPce;?Qb+%jRH_^uu~k;_J$h0-jxDm2ST zq^L%#OKXkwd*~5eI46lo&v;6RVA)Ng6|G_(RCGdGMxL#`0mx49>;`@T0Y87&tPn^~ zy52g8$?c&!8lA|d-(ODc z*hYQu_IF#;@n?*Us@wZq8F3$r2kE0$z#SpuV*W_DRrcdRyVPm^&AIIaY!X3@I@ zh{5CJG>>cE-p8&}>Sml{zlUXK7_ZmG-+IJ=&Hho7N5yfESPU}( zdfJp>@&t(zo!L7i9fry}v=s2<4wstO4|sDd&A-J3rEO7qWfGl9DIn0hJ8&JnFVs|i zeo zaSFBtP}%TkHx&ee^?vj%V|prJ%%vJr!c*$-TP^*kp+tRkhL(*e1 zOTpqwbn6%w^Y|yA&XtXZbQt==04g%bT!!P$$s2)gXr5F?>G)|rrawK2e*`IwY(W3u zqOqc{LxmK)DYgQp@s~HZZNl5=+!{==UVYJdiDPZJ}TuJ79 z7=5|==t6C!54Brh*8C(v)kor$cjs2UfbE1jKlM2DV7bt~s?%L;>G-373&_Z^i*Eu^&{U8y z*WY$q1skScgcQs{fH3ohDBT8CG1nR;NrPOzC$^|1g>>cpeZ%p67%?ee3ZFZhv3$9( z#l#EcK~Ra#ltm!s3?t_kxZP{!AUbi|W$vC^DG%Q3r-ldN76Ejb1m|>Hv?K%h@6~-u zV(1*MY#|}n`s0AOs;W4m;R4i#zu**A?2(Gtl;EA^@E{Zn3N1(tyHgQ6gZW|uDf*Z# z6;`l(&>#pbepTtSfTOFMBK$gI6(-#%4awKTdr*bzO^)s^1It#NZr@T@FQ1r80O^p43F|`h9*_ZlA`(4+>Y1w64Y5)y()!$C zEWvw#vNUlwv3MdXXO!7haRH^qWInaHfj$zv7qVVAv<4PFRNn&+cd<9pYTSzmYJ?gG zfCliByMCtxtz3bGr+e}nw$JBzBjNU1MzPYeawF$Omr4q;He``>JU>z2=4UY<@5Wtc4?J>?yK`^GGH?7>g}#f-mab)=QdbR^%|2fQ`My)AWSA92IZ-w zp*^~9wyaac*C1XvyT^vN^eVr932aEK*AR3hR{-Co63L^f_^sLjMF{=INNrO03uQXy zb9MZDa3!Q3NH(@<{p&bf&v&Rf&(jLM_vz`Pd!_^b=g<^>wpKn!ovo|~t=3`EV9yF(~50)GSwX?qbKfXGm2?__0^q zfXzFf3ddyO{TA1&j`jnenag}V421}2*N;3L%1l$xprETlX}e7Q#97c4_@6=ZU;!!Z z)`80sDlA%3$~St^v+7YLjUa2{N6D&dmCoQ3TE z;|b}8<6j^qqPZ(KveETvDLISx+Azhc1QjEh^Ms~9FoTYtIhD`G}9#uo@W2a5m}6%`d9LUWW|z8QGZGiSuR*Mf^0Gtj@_ef(N(?m^h!fUQMwnhd70uq(wh zjJ450a8tUeyvtrG==#GyJ#8XBUU0_1?>Y1FOa9(*>p1#LejL93mS*(NyldpM-z+*| z*&UoV(nS8nAuG$RR?o#z-xY)jf-KV%^$FZ3j2a2x01rci$}H0p zgi%zsot9UwyD76-x;ejy{JQ^L9*ihh7!mU9rOx2$qdr9HxP!d(e3W#Z@@BC3nYeA} zxJKum9V^d^@Od9?vS6S0UKcb%(!85JdD>Jo`A9dH*Xs zLgTfR{yh^Qc-I=6CKr|eLL5X{8i|MBB*|_$ zHT3*wZWo1jM!Xz8Ar>m~?B;SG%6Dzw59xPpTU&g+^U$GJYfTM@e`qqCij@ks7rjg| z?W$HTU15!FkJs7DN=~}(h3cWkCUeUC-KWBIGveek@ge)d$JFYwxp z7!&o(vM^-e7vLvhe7z*qH6H12#jE2^w#s2OE-h#W-8$LpX-h-9M9YgA_qC^nCN2Fd zkYXKaygkmb+qnHO3@j`i-~84t{;I9&3o9u3VNIt-!N9}LkW$dAw9yD$b1p0u2Qj6E zQl1s4Mv%buq3I#(7-+Jwo>^d6qA}tmb6MeQ=KWJo{OE?J8Xzllv=^a=iz@Qyhz??jbTw7 z_@$qrMq^eBYvQA&gVkaQznp*{ZRM)n2N6*s4`D$_Tty!fP9sQSt>=9qF^7j=BBgM9S_f8_y0rEFshnFrXN z0$JD=Q4RsAyl7^20(4h8-96r?f836r3r{*AN7VRb$3`p_fC+>v!FKcBgBp87iJ^0jgjIrz*%kb4E4zEjeJeo zngHVzXH3vyn}&dz;tve>*;TkVd@~$B{GX#^@SeXewC)zgPEZU>o>*I@P04sTz_GN7 zW9T4`r9)P$2?JEPk=dZD)Z5es9s4?BrJA+3Q6)X702= z1#S@k+oQ-FK#nZ zi}#faL6FcjP_DZtZ&M|rYD>sOI46EiHC)Fj zXI>zhYQ&Ie6XNgbOW-$ojLa`>U56e&@_e7h6D<~5QM^IJ7p0zns^W@M9zH|furgcR z#Ck!35@-+PYH55*s*30Vx!B;*2Fi;fUjQH6V|iyTKPXzyeO5-G0G(Z;OL8{|wUF1l zTvzsc&e_C7sKn}hLRQwcgUigqVbEKa_!SJ^yyya8f2l*#p!O5hdNy6AZ+#t*|Je8$ z%HZO}wtHaf@ry@f9hUy0+UI&@6ubP6-r}i@qcGH4ud;s=1QzsgDM0X!39!!jPnscw zz=|~t!3j2!`>(fpeAO7I-Mb1)8@Sn?FV-gJ3;tiHRC{dpfV z$`GU+gW?mSz>*;n7=JDjpWhXTtaH5UJttuWZ#uHpCSpByi&;mkU!$Q3=0(z~th4DO zVSVt92ELeXI=0R$*fcj0S>c=TY5|;C*JiKQ;0&;YP;%XLNk6^qwU;7JMLTO9roM7C zVLv3PmxMyA)V6ndyv*YF9{BK|>EOH0J-r>>z;W-mE%^>&66E;wP>5sb8w5`{*Sx%> z)64jTnO>n+%?$}H8eE45m{gDA)o%V9b-X-O~jnq@<^6V<3OBzkW{1@L& z#&gd=`A&dM={zL1JiebWe#3m(**LkkF2a@rJ_vwcNR|i7PA+aaq}e>NV3ra*?VN`k zQvaF=*VTzz<9Yu&(h=Hau7%h3HgrHlf#%ZS{xm${lhrV2U~Mx2%H5-w-p(RVHrg_h z_(@Hj00j{W86kgvT39u3!3x0|F`!Q8+6qzBb_Qxcbxb>kiHwZxn=qp~?*W~A28Q+x zXEhIRVKv-yTMJ`^-kTe!V9`n1=xdNW_S)wwd1kU%So8OHC6yHkPgu|(F-)jPixZ5o zvh{+VM6}>ISn`V$cbSS)+wSs~a&I|X*)DOn^A?%-&+k}32lKvB=PqUc81H?YJIUYx zy9k8RE)!sa0c^%r&NOMlT?cnD-`zsEGj3a~Ki3E8CeT{Ii)(kt%29D~`|IZK*a~rn zJhmsT6B90<-*$L82>!Cy5K;p|mb(5eMi^FU=&gjcf+3QsNMGYH>iX|_X4@A|%=&8; zVd%-Z9lRS;$*7BAHssaA-$9`Vf`MOSZM2KAozGI+_c3q0t9ap@a#uJ#T?OBT59c1e zemrvEgxC2&>Qb3~P5Py1&3GQjS-az(ktns)tuxa_s?n$l?5UB*s7$YahAH=xoTW|? z>*X#AL)pO?FdwU~tOp-?EG>Ul4)lXK`Om5=tR&7(WhQQ0@+#Lb?)Hb(R)k-^O3)DT ze>y|aJ+h-$F79Wle6*$@d^OfrP~z5sy$6a>ZA{t9{e~nqN1VAs>AKp4*hG zJ&pX7Fb|3=1U+F9Cpy1o|BJbEh|cT@yZsy6PCDvXZ=CMfW+&;`wr$(CZQHi(bZlE+ zzW*KG;ho&!S!YtK&N@}~Jhk_4KbgoNS=U#g@zHvKQ=W3)Vdc5Tt@=#Od%tluq4yie zfMJ36aLY6>LejxG3wjMRW_wLGRGCjUsquodW}G3E_K8Ur)B%6mtY$Ll$m^A9A?c%O zi@9iI35A==JHOx3n5bDskNGdfBbm9t+9gh|_meYk(H%4eG~B@I#(+&e8ukcl3r99gjzIYveGG$ zWp4o&;g;hUIjx(=%-lcUj+yZ!tMW~`pgPL8j0>>KN_0~W8^@DS+C)laPcWax*C=I) z_hVMu?u0;1WUJ*uT)T>pSm4<5RWF~`+oQZfHUBMDx9%+;Do=(_Wps%yAEk2xGl%bb zi*Yl5NYD*pq8J(^DP^iptEMwv6fZ|?=~Wk7fTAayrA;#ffw`$oN$E|Z2u39f3UJG; z)b(vylR<9{NoA|}d#Uuy-EC9M*}TPAOYq^q=Lhco586JX1Qad4y%JhU)T8K#2SSH- zJ}|`j?k3~-i&JH9vF|6=d4V4m$euA8e5xF#mwcZ!rmpp}l8n zdA(uXX)UwV=-!$aWO*aT&%Y(}@Ox+v4(imj8`1{S=rxvqr06B7eh@h9MAehPDteRR z>GXB;CsbM|mpXJWK@?23s(rpnpmCJDPdTXW72j~U?hj8VVNIbW(M=Z8zj5cTDQHf; zew3W^v)`Ev8r?dL|K-eo!6o@Q`Gae1f`sN^4~c%*E>6`O8)vE(-X2do)|_raE2e zmtN@3mybeOW_i&L(jY)hf?pRQx@G0zEqRlnsYR912Cl)ktjc^W5^f%(18FzT{_xk5 zi4-57vEnw_sgZ)%J$7|16pkfEc_RCY2^Di7OFf8@8enE*l6XzWKXSedVW~V!6cUkT zH~Oi;#QFS_RVQf@C=&F6qvKZ3sFE7W(M3*RS1VVrMO4Zf=#efN^^$>TH zu^NX4W!;W0HaG!nZKRugh&e|FQ-XrL_+>4{Q)TU zL+=u9Av!$)Fk)gvxl3sG{z)zy&fAq7##fm*yH?@8sqQZORd2^Q&NhODb3CcBH@k;c zO%|)ccf8GCs4P-Yk$1d0q%eGQH;gaCGWLMtYmH%n}SlXJ7%Bpf22_B#l#Pu&C-a>C*lAp@P*xWWc zVbWHFaMh&+JJ2@4Z@g@sEGuI2k2%i<7tKUX!h1VPrLRzJ2Ty6CkAYZTN>n^IS!O=k z-63|M3mb;MJquK*;~yz3XNi~h%a?U|zQeb*`T|w>Wyy_9cf-mu&zZf4ufI_#u|~3W zuBZVTf8$qg&vNev?{@c&NKMl1Riw~(FpuBL{PrQ!|Asp3d_~k7#SLJSsKHPri`V%4x%8}<9yeV zqJ#y=yJ{0kNEDNobr<_AX@O<~SN_LZo8EOs`RvLmF0z*jU;aGwO5s489x-p80|s73 z_meA6HHJO9*~2NvLQVr2UOZD~{xcB~Ykj^YO%ZSAv~&+5vH^M-B|dWBgqY?{40pE#yI*mc4rx%YYw{0XY* z`F(8O1c7}uSkflbI7c}jwOO@}z84^)Awn8t8M=xtqqqlG!?J!S;{B|4l200i$t%mD z9dXwM1?@){_#8vVcACoa9zpAAay%vzYVFhy77e8ebCrjMXMBZyjCZb|A}ql;OTxs1 z#V540xq8$h%egl`T)c|>=I3Hmyr~D3C&6s#*|JVQv&xhP-tmT9er!SA*Ad_bl9n3o zMyyUHld;43nvpqIB;`4>pTEfY*Q1gc<_O{gDeisd2Wzy7<7K-PPZ{O)4Us0<7Swp^LEy|T z=w(`Dy4LCdJ8gMN7w**8atnn!NIt&;=~)R&xyXGOI%r7bTO)NdrJYTPpBfmM70u}k znZenq6dK3@g)s@78|?1Y@odLn6bbi9Q79Q588bS29;*)cBmy}H=hhz=Ets0i2kONn zi8iflL^@N9<)~2Z|NMUBsXeUd>|YeA)n3f|{6IY6GGShs*U}X-*LR)K@bV+re2gIT z1Nq{tvAq(>OOM>W2^3?gO#dyho2@>#1S@D^?T7NNjcA<0)kvHHXN z=&g7>k#8JdH>1xI_bbrTO@QoJ?=dMUI{skZCn_mt90`iDxB{HS`*l{^x`X%n7q9vH zo$%C%Fskt%vM!s8JjNm>WS>0)_av^jc@)4O%eHuTreB(nANKuqH4e0*U_|+t`IrfQ zOEO`x3-S(~GqQ+dAc34)i#i|zy8|=R)&yS~Sd|c$_n+dlMQcOve?=E578o3qd(K=Z zCt=Mr0mw6ZwmD1yAgv@5bk)74UP2N?B?6~++Q;vdkc7#(8~dInikk^=!7Uxsxe9U_ z*hz`*Bp21%fT_O%6VXum$Ljrc`_%%@f#M836wGK?)S6)@LywD?SzJF-?rnG=8&kwM z80b(i{NSG4K*M}y^ju4^&ClRQS}!OR&?OnNwCCDplEF8EnE;QG-5y7E$9sZ}btxOF z@W~kJgpH1YZ!l1Z>I~56nJH<{uswaM?o#7ol_&>2uH9zSZvbLte+Taz^dWW64UiqT z*@rmX!`fU~#!EVboZRHB_bf&X4|ywMwG*F=R`QHX%5U5OiA&yZkQ@~toD`%55Ajr} zVHxCP3$+=6wzSU}{f5xRqjzPbuAMthgIW)tAS5m`2((F% z9-20tL=$@vCgw-)WC=g@|LwSXWG6*QXA?UAOqzj_56d=j>+%EPP)e5o;p0dvM=rF% z=E@ii)Kz{ZgjZB$OacW^&eDRBG#H4G#(w_~j=tu!xQh~T$&$#Pj}LIxzdFC!dd)4^ zaM&!FG&%fpP++Z-77l7<51{P7C;=u^YFI-(s=H?hz;pMmJ_vXH`R{pHR>iB_ZGB`~RC{9Sl`Fyy%S7W_EoIM|k>u8P}Adk%uQICT{Y zb>!rS$+%gCC02$ZZF6!%gcCirTyCY@Fyu0}mXp~?fQSZz1&gFPEkhmsOSk!_ixv%a z0?uM`$bmAhnC?3RkG7r-N)#?U1Dg1AZzO`@Z(9L|_>&Og!O*k~by>HQeYiS%tIGIX zKnL9Uw{eS?VMGLQHnxtCj4^rhS@nkBc>1>9E5BW}d!$zl#x$Ue--ZXw}5hYa>>0jv}WeqzAo z1NKu)mF#qeH*EcAgo+tu|M>Sr49cZj$R6_0jtvKQc}nVN!tQ<1|C+hJNVn!ROGMKh z^-EMy+N!eA2H2>&bmq(#!W3OSY3S|tLy@#!k@O7fi5nGr?}Vrldf0de8#jAb6ky9S zS3&?5moIBr0I=TrMhw4l$K zvny)9Ho-Rxd6{W=XAAI%)9i%24OaRmr$xu6F-LV$!>b&XG+cFPelJl6$@Csv?>Eq! z{qlY4^5!w_DhLzTZm7{s+-Tk-4!n0LB#+-s@_$J;6>i12*VE>^P#=FS4Q|Me4V5 zq9iS)Or;fZyu2b`;?fV{<#+YIMEn1$TXub5D${?;(l~~gAp)XSkrQ-&6oUUECY@yN zOz71(Np&M&y{{Zm;R!ByuUzdG;Mj`oYpcDgKT8Zv+3*PkMpMBO@hdrGkdCn#(${2AMC};P!E2#`ybFaP4zI2AWig$W7ehnd341KQ4- zqXtP9yqtgk5YHvxYJizy+Xm}@NEHSpK}H{aXAog;;>JM#?ggQJrn1g8jRd z0q?hc^z>~NN<~umOGU#;r2&8nylB&fC}UPZdns4n7*zg=d^Vw!aX%<1W_qIhFvATp zk?i;fT&1k5N-x)&^*})ON8L1 z-G6`EGdg%ue$2sy#xlvr!p#_}!cVqd)feMtl@`ocn?-pp&v^OF%;(=yRB`BpEVhrH)6 z;B&XuQ4EEl!~gQ9I2fw%{a#pU+4hA3jW{9cJ`Y1F<+J7;GgIX7q&Lx0u+PLiQrL?> zvmpyN>oXPDmT4wyu66@5?25v2E6OmmknU-D@Ycepz7W!1RrQIrN|)2eL~Vbw5aU2)>uuN{1XGGu3>5q zvM!yscC&lCPf#6X56EF-A%!~!YCtT{w?o1w2ytQ!45~r*X@arPjmY7)<2oY=?*)sD z+4CjV_-I4Ei=|qIwW!QI=o;W)U5Wb)?yaGzK?S*LFM2S=@WuXKLHE z58sC=dU_Qsua~|~py2I>6G9=3jw;i2Jc}i1u54}UROLbNS>8CPNZW+H*PbrjdAvmg zY!`bD;}j;D&EtM8PkRaT61_NXPhyc6zRUW^-ZW>OD|qmA0c3hSA|rl|QXTp&X4t5tD>oWX zM<*V!0VKxcbd@XBsjmlGHp0a+6^4r|OAtEtj*WmwW0nAOEl0itVr!@G0@O#lYi4uv zVOG)kV%@gUarYok&Gwq<`pMa2qhIJF6!jyYN8av>TL{!z0Aocv(Su@*9w6YGBnlrcH<6 z&sazc$>D)=klDrQoRBGzr;aZfnmx%zpD>*R$As=+>0+eJAeJ^olvI>w1Kdv`3~iF2 z@={(*GeGfCQDO#=tIzB2b-~?6bNWEPyfxXYUIbUSXuhnxA8Ehu?a7(TCbt=|J&wp) ztT^QzeSyT7J0~z5|9~GwP=3*9D>Nq+$)2Y(R{S8vBd5f!3ti2Ggp}p0;#K}7Jbeq` zicwu5fSD3Zf@H6tiinA$#d54c9jgGbS>Mh3Q0pbId1d%9t+rZnsDfEVV`7HTXq394 zMPdU$XPs^t(jq1c<~F=EUq_x&Fc+l`N!#1oi$MV3Ci|^pkT&60+E(MN#p)C#mv?Ic zaz?iZZH&?OE2`$;tlD*CQZ)pNrTe5UF^i>v-tP(|+AVT{dVRv?Xo)&F54ru6igTm~ zox(z=z89UZP+}rFJ*h35de?rPdD4TbuF?BOue|uZj%{#aI-adPC7ri!joa@y0QC9k z?gs6y^2^V+?28*Y^R-`9SZ_Dx1*-*Bf=2M*+x>CuOG9Fj6&Qbh!ZLiP%eOLk)N-`y z7j#!#jKli;ZTh<~#C@w7z7%)GrHoc!!C-LLU?mf{mVr6>oGzD}ET|C3itB~!_|Cg> zrki?;mXC$o!;vKf51H%u2Wl8ib@FI2^})-lP6VZ0hpI)h@#51q7{#t@<9=Qlpf;iL z{#gWhpRaZC}ce0i$Vkp2`u7D`C7Zbw3ur`miFtJ z#b-vi$R6fGFmsy`m>0Uga`=a2CV@7qZNd1o*Ea$c0XmMc7lsdu7UoTvy|NJ&%^Zx! znl9hFxys*rh+soFHlz`-Y>oKV=A=wSZuarx%-Eu3$dN=0)5f#a&2SYfrzDz`*OV!--4G+2v#kyZzfn z@LF`HC@u;HN;<9zqkjLje$m0i(Q8B3Mqpe$ns7T~Byf6&gGWXTs?0Y=P>DS>Lxm^5 z$$_JyjqD@xQO(YTJIi?nu&o|aHQ6W!n{NaQ48}1x^7#KG>b&Cq)5^Q7By@N74)wfHhW@8cdX3sWB^1d_)Ow6o%5G%JmI9-{zf_v~9kbOJKm>#6;u zLw87Y5A1;t7~Y(u9|bEN{>Q@3B6|omu}b7GY9okk2a1>u?z82n9MaF%Yj*kvs)E`R z@8{353J#VOp3=HqorH)n8>%+V*6Q0|fR$gKZ$WSVgG|p&v^lkn&&8ruy-k@_YGbkI zj3S(v4&zy1{e&q4B)pRoAZhH0&C&LfNB~*-{J|(n&v@=KiL|`;MFH)RBv)3F^}~@8 z97J-o(7=m7{6=mQh;kCg&y}dK-vWCc@@@n~>A*^K%vH#{q^&Jf$b^JG#7Q83*PbIk zV@GH4K9I)j;Ryki9;=EbiOhaqU2>3&@HT`6zg>tXID|ZdlW1g@ZAx}OX&V85arzCN zVsUqvR@11T(-t`k=NPh^){BNo&2dSFufZxKRdQE_gDg?~Yo9b-)q?##C1G9VuZ)Pv zu=}ZxBV!t}ffHJ~;xP@C0^pd<#)A}0);3-a03g64OwLa_bsOA%V@_FJ5B}CtES-DL zaZ&p+)n=ypFX?mTcY(5;-o=F!P?N}%ADtAu$kDH4NB|D{RB-Iru8Te zA|tfvy5z`$H2cG3QY7J<0~_p~fM_XXk8sxL98y?vYzd+=Bp7zd7X;A`Zh<#lxxSGa zuub?slZB(9yq@l$@2>4&3M7~p%HH&?I0u;=VFYBK^F|@6)9iy{ajf#6)04Cv_mvP^ z-f75#Q-_>{kkM(cUZnhi;njhYs~b&9DJ|wjYw|{aY?xFt*@YrybAZW;CLM7xZU)1} zqbEHaspr7igqHdZBz-}wv=sxAh99pM1<|c&MS2>rX8rOlUcLJBO@<%mU3W)U;P;Q; z6=$-ty0UQVBmDa#_gFOvUp`5VrcV~rCUk z*!)Iv*37H{!C`gj=N?5vYV{#jysz|8krzI?P}27|0+O&4AMYBzh#t{64#>0CIol(s zq6KSVbi`n-Kyu`DO~qM6Dq*r6o}#R-(M0D}{?oSZDgU^wvflpY_Htu};b?0=AF$Se z$iebln$c17Eaa*6Mj7msh7u#vL&g5g%XzEw*}p>()7TV7C~jnn5go6hkR1UDTa1*h zf~Qs=wiE2cF)wU8<5%|ed-=XAQDZQ#^I@8sLrZm?i>dm~z^J7sfTMO0#nVq=xraew2oS0?1T6oCEECwkxXR$^6>@v|m zWqamO*;`r)e6eALAzX&OMMlCmWfF>3b^?4Btg;%-%E}tZ3F4}%YJ+=FI;a$KR5>pD z^&}nNsT6P}&L#q6E+WUt1R;#e>T%eFC)@_qWKrL7!5gB6?$lW+Ci;x$!ZGz54^il%RHx zH*<{lSuuDbAYF6)jMsM%oOySk+9;pi@U~+^B0E*pbY}&|;k+w9n({5E@fd9^u`{X7 zFUwyN+v!Zyn%p+H;bkokv_AB_7&|qdy@K1D@MDvVGUZAlfx=JFS6RGm^xIep0WA5< zrFjoi8SoKVnwHXgS9$=<6!FgEpK6DzIc6LP95cNcbgbZLDegsiD1R43KptA>#}bIi z*wS>|aZw%0r2GHSnJV`o22RYdXQ9h#Az+V_Ep7V+#bStZRFLDCwI{i+kIw;(n(I6$ zU_CTJRGeOI-(EZu-{t>pit8~hhW;#1Oz(|Y4hI+%9mR>8XK_fl8#d(sW{J-h5FLBK zVqdb?4hyY?Q0imqX^UYuP|KZj% zu5pIPclNt?nJUVs%OqjW4h+u%%2@@CTVbt(@0VYb68$8<&D}%gQu5Zee(hr&Xpi1f zhWkNN@-}O`rpU+736+8%#0K2j-8wxg+GY~QB?xCrdt)51RMt7-?~VRqrHMhTHO>tN zEN!criLuv)V2cd!zuc4MpF%L;Wq20#2(4@IL_5!iaV_~OK|J$4VEgz0%UB76d zu)_l<$!@Ri){Lo$Cn8dAuw$ZO z26;AxJX1ej9~Uj+fAs=&@;+$0DFZUf=ODM-nPI#P1xUdG@6`^a z24Qfol_}vg?BuI6K=ru(%FM0JnFQ@VXzY&)C_afjuz|tOY|Q{!Jk|;P%O~fn4Wjea zw|@2hitr#JY*-+t9S)mp9i1XOKJ5(fQq}2cqhvzS_e;)N<_$ncdRPd{2=a?K8B-{3 zFWA~X#V*hH@#!qC;GxUa>iDg8{zd0G(HYzjtkV`h>s|_O1UvLv;;DP)h!4si{bE3dt%U<}t({dn8nhijQV&_%`gHN82n@k#;^-bw>A?8k2F8K}P@Eqpk z4=ZAz5UxlBS%A2hrh0b)Ti)V<<>RF5Ik+z0_5N4ATR9dzsreKOZFKOFP>BxQ=EYOh z>k9-RiPMK1cnrrpZUjw|vbq#N1-mzIddLUP%w&*blE8v=Xrn`+X3#s|lL^uJJt7YYrWLw3{<9GULvf)cta&$s{#Dfvwx!>%H^C@VS zmRz!jGEyQ3TZRlXl1;tQwpx_hC)eGWgOx%Xb0oBkLh~2lNB{rXSbJ5ODTX7go(HtV^m(sw=9Mc;0W)4LesJoTGC>#`-_j zpmcDIHiY6f6;l+M8*E%QP_ z9V*S){-khB63VhQ;JDHMMFr+Tz|QK`mhuO8#)?6jM*+}*L6>%@u=|)I1e;yY0`!!u z?CEv&=ca`-HDCL$%Y@omznpn^l(u29w5=1pzdkYlMFtoyFdj}fbo9)ri|RMS*&z0R_US1YtTM!5(1y2K+BQOhN~pD>KQVy!!| z0ZW}3V#g6bObU!i1f@3kpp;Np(k^gvL3Xejx)r>i-L{(wKf~z_i@mPbzdUdLJ`j3u ze4c-PB3(SHgV}tLqbzIRKf`nl}0YsU_WT3UuFicdmT;LIYi{~=`V%vncY$8N9A{mj2 zcFts^(11DlkW%DH%42kb*B^ZolBhPccl$TmprdyPaNvV_3=$lRXeH>Duf5P~{Zs1f zjJ)>q0PE}SqWk&j>&W}x8%C^A79Xefwqp@#csg0JL7~uHhOOayuxr zX{8B))J6b;d0dEV88)D?Vlands7M{hQeVY4N=;73G{RS0to(ud;~+PqK~hK>HIWAN zN64cy70tVnplrsr(o(9T88P_i;GgSq)+5)@9>o)N^vGOM^>L4Mj1Q|~FP|=tl!oey zI#y-DAd~YA6fKI%gAEp;bLL||unfMqWi>9QR}1Ii0WNQ^c|T@<(tj;(e_Va-)_q-R z1K)TXzjnRfqrG38lj@p2hQXIE(#)$i<+Ll#PXI5VYz>2bk2SN(^_ye{_Q4W#hv7Im znGO88P$3AHB#Iu}Z2D9x66C=W414k{21@YfmdX0OnJJe_*g@2=J|YxaaoCxfdPPWH zpua;pT7UKD2#s!7kg0LTi4#UR#0p|@h`0XHvF~Lf1k=+^SERucfwe-01%a(7v$%${ z;7stbF7%r1c6>YYmTTgr*G}*HYNzl1u>SI0sMt8|g5~R+rEkEez7Bi{IzU9}niIId zQ=b6%(-)**gavk~kSc`f!WEtaj5ANN@!pBm_ZcZG zm+GoP0F6VI$~^%T!{6hCX)X7y!0sIPSB9#S4H;m|quJ~q(-_Ix!aNh%8jH=dN_gn0 zUwjXR>58j5i28tAkz;!SI{*PR)w9+;pLOqRd%Smczq`?Syd_`UdT)GP-VQmj!}GN> z9S4c+B;{6u`Cq3}GrBPbVMb+0r$DP&%P|^h#Kg!V3?0hE?DeyI{_^9tT-(_3F~XQz z(ae9(ALo^Z5p|w3dHvU^;LJ#bZ63@~pF_mg9;UEOZ9%05i$Ntu9`F^+7tkz6iI!KyT>$z&?UbXH2;VS1KGPW?`CUfV3i=9 z1{Ma{S*(?WfUAvqBSmKoRut*^(&;Dz2YbNFikcd!(r)Z>QSv29@`Pm6QRwCDMy~so zS>-BgScUsr<=5w5z?Q|=Xx^%?_k->itgr7OFR$HBS}fjLcg3!4(>HU1Ji{tA;CVpc zDb830d0q*|1dsw=2Rx zZK0P-ALL#y&6G4*S*8h!HKOeP9`e9Varl7M`Dy6dzE#D$`5?P>`6Rr!CcFM%_-lUs zN&RIrj-b{zs0}pe7FrFdC@YD~XoKDty2z#JxQVbLBca*O0zXv*ar|nrOq> zvWK-KbGq+v4v7AGJUzM#Lie9}A>@6IBq# ze|E^~)eKZ9o3N~fXq7QvSN*I7iyWajSxtm>%_K&%%F`uPX&X5X&Vp*QEg4BeRQXQ$ z_OjxR!#7k!4hc3v`Tko?zfU3EnJTfG$}6|yXj(rn|1>2^dpsRzz9DUN>$D!doom~C zbdD(zbhj?j&rw4^?zF`sQ0r;$!_v<5m?)_xl11z~1O1QT6Gjqbo5n%z3} zMU;Cy6)y(m%z&a4q5;lUth%ZZUTgYd!ql`JD6pzASW$Xz0oTYEcp*`KoA{7OT{C89 z{8DpUa}JA&l9O`_Ph?@-N}?3uD#WbAFNU@x)a!K6miqA|5R-pOEIQ!tNP)6aMj`q* zEprfkuJ6u57ilXwNdV?CU`Tpw?{O(ROgKNAU)bq}mFdTM=<>*8ktWuH*+$_amE;Ig^FGN5Sg-2BEvuiwdTpcKb_Tp92TE&ymU+Hs%4>t< zXqq4#_`aexhSo};OH2&4g{EIo;$d5486SpH2~IDef0_o&m{6)FXAP)1Gl-uh@Pq|h(lwySBuIn{dT@U5+aqD zjc1*5g8T?)&S%st3mc_W+4I1wuD#?h29FA#nvd;JQ#^O$)-N)y&|KO^CSxKBE++!9wVoC7WPcc?CSf2KqPI0DcWA9GL-<@tzI^(C z58ry~tN#_lN?#jmy1fm0kY-G{fbbg3AkRMLs!7&yk8_MAciyK0J=eYZ&6|2|#muxZ zT3U`#uk4L&!(Qhq050U0l1=wC4_en{AH*qQUvA$<$zZ6<^5D~V6mj|)vTD+rkiY%M zLhaYpC|lZCf?ZAm5k=bfohOd1$6yz~6uQpB&~ViEaJ0j@VawmnV0#`9Db-rKT-$5D zizMAu@SR)D#yrgvtOhs{V%Q&tJ~BgG4rvdhS+u_yLnslBsrZ-f4dx6D6h4W?q0Ely zSl|I>$_|KYARu+trY_`|_a0V6386gt#H!YqSV%ivQrh6BDY>D&Z{*1KR9aTinIm** z@pp9uFLqnMGUyQtGwOy2B4PZUN44IwQ~93RDDH+_hU%OcOeR;3I1T9 ztARtb4Po2C3NQfS~XNi}Y>4+}2RbGq_HiduO_IB2>y?rNVy6H~SSSiQbdX~$PKLMSCD>V1i8xmFf za_&t#l+y#??H+ztJbcl#%SjbR`se_OWC29u|B@i8JYkiPs(m(v9ap#NmgA@JF&RPf z4mV?Y^@C@XygcH#O6h{50ITq0dodlsbM?w?M*atveR2@~>UoD2X zO6Z9F_m}6ik`f!XyB!~49#;&5{Oqi~ShZEH$<#0cYa7WQGP{Xb)}cBHw|s}>~I(@#fFyg@_34rTJH4gFO<4zFPc{5 zYnClm;Z`5!9$Ls`u+E*ydKB)e=apyac`6@ZTE%hq8;U{#hsak2 zW4InoWU@=YGLZ}*aW%_CX=pmP?hl5Br?j_baJR3A$W`H)dou1ic#U|K)@W)1?sJ3)DRJbc5^*1X zWw5Nr3$vHm`s)An^&D79!h+(Eh=18xtzx6><&v;k)R*EHN~5$kT>}HEp1*XXU9Zs6BAd3t(gaBvIbkpsjkUC1|I2 zyi}d^EuuJTy4tq4hz{C7Q>)zl0IL+9CimQM?YteQ0c>8S{=B_t=VrU-P9rwe{7t~< z7h#*Qf`Ts*Mz(fB37W~YkO=S~F8ZYH?pfJcek z;L2N&g*89#Ow<|S zBFu}T3VMDjwOBGvb!fh%XTJwyDH)rW#VUIJwOrYD>GTt_jHnzG41C%&h-Ork3O7x~ zY(NRPpk~7f^T;gyf@_cQu~867)qsL_<&SdA2V>gjP{7g(q1*WT5DrjVsUo`_ytr&) zEg?9Bf*SG_2JJ3}u*)=Q#zCGk8qK;z{Bn4Y#UDNmy=eRn6fZlOn*3*{P<-r=dd^o} zZ8D|j;o4hgFnU%; z!p)6s7u*YNtm)%q7LD1@`W0Gwk!U@m9bxste27qupW!!7!j*3B%WuIvm+vordMi!? zMS!!sL6^>*J;Wb)aL!rl!))Gw9Uc2i7I`>k;&#|sZ>FI6)C zmWH{Xme!n-F8^s%zfMLIyLtxEs3RXl%geF^$!l!dp=k&G3oiW)@R`&FS&>=+ny3igjax6<+rjh8~ z>m9B-b8GXgyp0W8#v2e(Ix%?%HwZTeL;n;qDw@9Njn9N8*l?!_$A0U|@)>=X`ZwA> zYy%&&G%em;ELahB7B|j5YXzk9(P_7TQq*``DM<2a2h5mZI&Nhf>ssXEzs(~2kv^-a z&RRjI9!VDyY^@lrzi9OIKC>(kIA z`H@_#Z($J>k!&z1z>?G;yI87E$&X53s1m-DuH^nKqv^nPi7Hns43u)R^rG~lA z*8NLml)Q*kE(Cw~Q}KYM7f|@bgW>Iuyb+fCmpd5{_!1G2#nN*rSf52vN&}y1s=~D0Pg~{9gSlpF%)PA*-picTaRi`c z`Xjfqa|)9bpa)ize~GaN%0i*Ro+TWH#`k9)wWdxWh?PB73c$8?LBxJMKXTkR%vUVS ztWM^$J~EJLl)OTQlaF71VGe-%F+tTf4{mKCzpv7s&*r`jk~72e*pCZQP=zt6u*cm* zyB6xQuBY0@9fKFCQ6)ajMF6mC9(wZ^SsZ)NpNXNEv9eZ1w0T>&51vo zZVnt5TLi=lGT;6Bb`La9yk>7Z5G~%F(acRQJ*aR?j%p?}A-HP}iS)0rW!YDqA3zii zWFf4veZ635DP8<^Y(87`dMD1$w!ZqbO&;)kvec()rGGUBXTS6L$j(r=QSAfCDK)S% zg4!NARGPmXmnRN)>}A|YxnD#pO6j-F#g133^qMo8=D4u1n^TmM9Oi$alB?8uszn#~ zIA5X3C(*!!6ipjagj5S$gWjnXuGrbh{@;_E*?B~*t5k41Y~y24L?iqjzywE0iM zy_lvcqfW2HEiO7O{&z$oZbP{q%3^2Y_EMl%5&n*eI&>8Lumcz%nLoe6fO>vvzEXCX zYQ#dh6h`QDU=bYU$Sm$WMviU%6S00{-N4%8d|E0NLk~QjR_ig@W z*ohX<0`%|%$%$_F-ayjQ-98{#H(9+HTL0@FNl>`v^sP`1*WcC+z@QB*P}BG6nnp#OZ8KLR1>G;BF2}fqBR9SsO-CBDTJ~c#XHTMRFGmkyXMx(?*B64@ zT_D$%PnJ-2qQ+Xlj!n78E_cl9n_So7wI}EE^_5;UBN(sjxOx%yEM3weE7GaeH_3lF z*@CWYuM*;50BO^UP)Z46_o<|M)U`ms3B{xk9NDuz{6r1Y%$e55IJx;`95!b6Z^Y9#w z0ID5fT|e%}TI`#KPLouMLCil=^51|Tb*^zw6Xfth#gwU>^Wd}n9@Qv(AfdBt4sHt( zuj#hcZM+Q^qqyJtq`N&U??<$x12L>jY>sZ;-|S`6hnp$7x#MGwiJS!74>a=9_N$n* zaACO*1=&O~YDHi0@=&W-h?GP`S3Z*%vI7Lz2zRgG$qJkZzh^L(>kseh70HEcLKtfM z(NC}`A{70438Ua8f8$eJab6v}ScF)fb=m_zu6$%XEZp4T((3><)!H?*pX2lwUoYnF ztp{2gsMX4Gt@@sn4cM0i3F%kqs>^dGq=L-YuQZ_t@y#^_tHBzgsTB(OO9U9-)#T?PAw~d;KXAG}8Ez?Ydb97Fy*DEN!n!h>F{PE*`*0R(yf^uttxK*n05e0< z$%u#nj=W$+gP%7@n_cN*#3MOK4X^TJS9&Qmc4bBC-!Rza>$A$Y`u958{qn26%F|k8 zy3*J7Txae~agTU9CjTDWyeYEQAIZ}XwJ<|#F}{QSz^7HPXb?Ky{gE_s7r)ZL-ol@C zy2!Ie3&=`UE{LknI!7cqGuDm;L;{s3h+ z$nxna+C-ueuyY_FA02Gno+@n2y_hwF=gLkpBC%(9Z~!XlkkV?oidk;zz<_U6TJFvO zWaL=ljW1|57SaCOI6J7Pf4&cn9;pu_rJB=!eLrX*mci{Xjy&{|ljkVZuVenIVqb^Z zgVtGeWXR&h(?juYQyYxnbY%&Zha2A6$j{q~op$5`lx*VqXE^8v5>)|`V?9TCbf8yV z9c!~k_!Oa%>~|2BOg4~=w?eVKu^cJtV@T~$&|4^GZ~})&(!~AAo2D!C!5n(OUk_pL zS0zglRdqRYXWv`gG043awpj3zd-{2A%9_*sQ&me32Xa8^hl-2!gvoJ4F_ABoLS6wTiQ1_AVOx=mI z0j+GeT_%u;s=4Ae^740;f<+hGdHdmD18r*Uy~{ujzPd&R<5OHV8&VTFxW7%1#>(Ra z$%eD%21y`?%*=4`))t7+qppMego*rJtE7C0=LRYWa5yH?(-;x{A{U}IWkQZ)nho*; zW_IePxwhMoJ$mPVm^-KL%%UiZez9%awrx8VTa~0@+jdg1lZtJ#V%x6R=9hH3dyIbS zw|?p0aPQc6pL^DtQ(FxrfQGIr>xKQ~H2BTf&qC@~i|UBE=@-((Hz~>l;V-6nmp;lR zoNjWw8#N*^B|G3nN?mYB??<)2N!3?be2>Jhw(NQd&8Beu9~_o66&O1`u~Y2WXnS7$ z4d9*?Bc|$@qim++dONl$Joz9zutf1v*wz)T5~JHu1$ZmwCB#cO;Y9*UE*bHDy)4b8 z3t@1tP2I>8?9{v`)90p=^JjEnlZrOndZj*hcJ^8uB4_Y=Skc1Yvxt$dl|ZGcpu!jK zlLD8*#Nmr&`kheZN)2SpM>>dW^l-jq!~AfCscfmYx14i(bfTh6dDZ=wt{YXSRGKKB z^1I6{DF*pad6A=bMGDE#AL`7CkrVhbw6!8vFCD3{>tSKJm|QqswQOukTpL^Dkn;|9XN-rZspRiZ#7_X9Fi(S4pp zT+^&R?1ywi?*$-ZWD%Tg6Rft=dnH)2REw^SRgJ66u?1x~-Tqc|95=)u70onwT116*916mK#!o|t5+Zn zA)fW2A9q1%2`TVGO#Mm<>Ph`pz#z?|U@y=xaNuD05+3{rk6^aztHQI*Br%do{ffg< z>=$4)TX*H=XGoNZ0E=XPQKT@4@$Se`!yuzm9J_)zO5Lb;)>A2t*;lR z_^RWaR<7&cAkrK6;2V^59*Tc|EABFV zQwMKi!ps~O&T&DuQ0grwR*|ycE@2cLu703!4)#&U=f2AjrS2r5;Z4wGfAml)I-5Kc z;f4M>%L?r*LhsgV#>Bm?KC**Eh}g;)p*tt8%foG?@Q5~z<8Bjr=HNC9uu~Zrnu0wr zkXWK{cR9f;Jfl}j!fzhiFuo55w4Cg76!N*@-bQ4q=U&KuJ>87W!R2h#E4}dfr0Jl6 z#Q)*RN{*B)k~=>IiDN_oNomdbrvk!SaGY%&Xc&NUK0bxOYR2qp_2ZesCyG_x7hWmc z9}@|ZeN>24aoxMqjRY+FQmadgMxeQ3|G9Uy;jbFvJZZoVG;U7AK{UeR%&!&fpf&ZI zIAZqW>7`Y|Q=Z>5NsH>n$xxHp;_RQqWgN2a=TJ!5eie^&idA3+#I5u`jrW zv#>o)6OyA`Mx5PGcRR?KMD{fiB}GIyUnqQ$uQTpKfL%}jz$fxMnt6@ z37+?`m~_IAwZH*0?5oT==RwDzV0X-=C}?2Wp+g&KskPJVt7?bhmIbyt(|;lKu@{lr z@Fe*-75`*cBs9FRH!v@-usUhs7i;7mMWX(NW+IqJL&j)xp)=GyK<6?IMqneMUVqFf zEXXj^e!d-*)X+aZ?hgBtna8z3TcOTQb-|8P#HGyyBFp5GsFUbwn@LT-b zNhOsTVXlR6Fvx1IC^cf502x5g8G8V1veeEm@zUhB8I~zQ*=rVHe7HJ zsI+9PY-A8(w(3xYRUuEddld0z?GcN-Y5Wff`KMD|-(`vBd#!@yAPHOOtYoanKb#sm z1j?k!gS%?u{{Rxg#)>yDKX}+#`bU`CcQHUZ^@ZObiBBDh!^`o^9PC5*OutO6L_fr| zH`r96IpO(M1vz?0$VWkLlULGb-Q*+YpGWW*lsn-H_Lg#g8Kl)8N5_}*e5+ybpOvk` z1M^Dm9xB;Pw=zqp`{oQxw%^8cb8?$fyVp)+_9V|nACsmM$pu=-TsyC&!dJHi`gNsn zxbs0|d4h!fF3SB_FZS{;%(BKocqo2(UfGxbaY-pK{T)-(3MJ5DgA*PtCo;n^2rT$@ z&Ijg=7$?W;$f=a?$(+lKwywr5Ro%~_zM`T_%k{dN1b1+Mv2^6O-uZrt{fpMJn5ehc z;KoVq!MQTF`K;E!NkrHbptfCRO3B2j?qJW!Rfqbh?UG8-*?LWH!#Wx9LaPlK~Q4T(6f@H5j37sTVLJb1xf z>bx6(?Jv!#6s|ZfH6^w6siq><>tQb;sMM;=bn))-*R0mpunR@*abZy~K=CB+gi2Wc@oN*r{p~+BtTQSIKDEV|PnEo?gJfdL=}V-H zyyb_lpBbciO|GJQH?;WgC2OY{y>C7Xr6a%4;z7;wE?lw%Jp>fb)OaoXD94!VR}L#5kU-d!Mxwx&RZ00{4WdQxhYs6WZacgu7P99`Kddy)FxuEk;@hK-}>5+_VTclzuH3 zun2|i>64wt0DRBj_Rf{&)s;WC_zJw_DZ4=%Y6t?Fa!f7b2&Ve>lY8buK*N$?%JckV zR%}=dj2wVKA6AY~4Mv=bBUPB{LDy81_VXx+Prrgfe4?o65gp#a+L|R@WIWp4Up4>A z2fq$7Kx)u54V+BR0VarF;++(JW^N(7^W+S8x=${ra(yBoSVn$~*Pw~r+`|kIvVSyP z`->ubG>|Y`E)y?sF;lMPF^`9yd<%tXftVeVOY8dS{K=nNfvL}>aWHqvOSNXgq7F~4 zQ~I7fT-BPT6EqI=@Um_6$uWn_Bg>sJrS@U9n?c2G#YK8Dk%$pj>9WOb{TT3LJ`v)V z^=!w9p$@eODk{ySqufn!+}=-CfCH1p^777*C005|ABYA4+Um>vF0A(8NY=W5O3E#C zg-U2q7mctU4X7qdfsej0MXl{1Wcp*QF51{RD9xsP#}gPvik006`?JT7f8d~!>Y!vM znxs#)uIeXqp(gg6jx2QuuEk=gsz-Z1Hbv8CQ*k#v4|y1cr~az}Bo}4@7GLlXXPk^t z_^MzIWY;#=B=Nj-E~_vtKGNZMs{sjRvd}4`oXjfeZG9!jE2}08^}TXk{&B?0?#l#a<0i)I67%xQ(2n7x_Vy;l7_fr(7| zgnYV_DRFD*p22or_c!1D!&Ueoo2D@xjU;R7L4lZ-1(_f>HVHuvS%^rB5=vRLx;6~U zw9G1ytyHUC1C%?{OUQEgqZ%jRNA}am0n!#58ko%r zT#r;0FA)kU5Z0q#(mcpmBY3Z0g*2@OWyUb+x%;@pmqBIM8u2;92u?`wGuq@fkm;6_ zeF&16GE8}fIDlfLhalf?HD>|61!s{&tC*7LjHR>3AQv63q~pvLp`rTM`CBRf0OB`8 z5r0U>Cf7$r5s1+_tUBtavcW$WhGTOzPV#L#EB*IrtXfA|_qZhf&+@BHB4Ui^euX1Y9RI_w;7tzPdjq*4m2 z`~3fX#aUv{azg!BLe+bHMeDeS7};o)jQfK)^r6}=9Q@h`L$Kx9q$cW^xGZwkD)hQB z?A_S=%JIW$1v{1s>8^_@7UC?95#ApX5dQ@FbG|LnXNZ^FnnK`^C)DwirAwN-72(eb zH*%0mI7|2{boU$PdPNQ1=AO)$PmA9LTnX!V%zUMyG;wn%caB;toOu}HlbXmqY+wc4 z>B2w=+=ne#iJE)~4Ou%8O#w}55?k;fYDn6+&R&h_t?fY5d`bP-nlh|45M&~uDiC3~ z>e%#8hs(?uhu(hIa-AZ5YP2$x^^oRT=cWps&Os{@9A}kxgRUB6J#E4ROOLaotiR}k z`6=vyTA5%UHS>~aXa!|ZoU;s>3N@XurL>SB$eOTB(?Tv*aJ08Kt6@@%OMNG~zV#c- z4KW>{FYxN=JUr^Q=h%y^UQ>@VMk26TR`huP32`i_dA zQ2JRJw<8bIxkmMPW+)dq02kIQT2wx*5fj7*pL;!ehcid>3X0Hs+h_y%=)r5w)l}D~ zNSKJp2ukKMMkxPv)q;6mbjo-G3Yip^; zCP|QbvmWvD0mdkRMhJi=(q_8xF@X?@&nb4L)K`mcm!%{3=(J~UycYxZfQyB&h9E|S zZVwW`%*wuP*P-vh?(08ePbJSTcjQEuEi3Rkwd@I>O#n(alm4sTLn)ry@dJjsj3L*0 zJ}rbzLSjJP7#7o>g`EkDgbiDfU*HlFYuG+c40?6I(ExMc-xf)d@1)VQ!w=Wae`1h& zqM-WA6<5r+6Il9O+wRRRHO7F|@chlWPDP_``j{#V027w&M_Ahru06km&q*;81p^>;QJ%v!j^Dh7Z0}O>=0nq-ZCEF`4m@eQt5$ze7}NQ z;Rbph2*?G4J+K9|84&Mr?;>=c0~JxLEBX97&L$9~;Bpf9zT0F^RAFS~xKXS=>`O_1 zLFgg50fu@C|R%C;_pVcFGVyGLOe!mSsefnw73t1m22}h-%%v)do<`tx{J{LUO|Q5WoK`aQp4Nlz@ z0^6IIXX#wVzTUNJu>xvTO;Xk7@pr&C+gG#6A5Q=Bch8uCp#JEHkf1&P2K$GQtIH4B zN(EpUootv<_^=Fk^&Gt!mqlo!>Wq0~0NR8eJ`;;jjEha$41~|#q2dUt$@E$RTeM(n zes~B6>v(p`{$xZ;^7U7O*nw@KB?Gza)S0LZk%0h>G=E7FXRt(mdo_2Gr>X%Xl?Dsg zmKaVdQWElcB}+?48x-_h?#HN!3uIEsYpT4(4oe3YuF<+>MJ+>12Z`hy!P4ZD}(^$%DrWH#PNC} z`mh7(?sASGUY^o{6%b|FKAsked&;9ufpZb;c9Xpn@&eQd;kz$;zh?)gXWk) zS=wvuFXL$s@#)P&q$9LSbYUhJlyo;W?*c;C0%NnN*ww;u;ppdH&#=U*Vyw(MvJLyJ zi6^-iihrG?zj1O#(4HRa3;lY9fOA$tksSv@(;jdEv<4hzZsb4UPOHEMi9l& z=si|+I777J>@HjGOu;MY*6+vF(+whQV=b_lzV{$|608wRkI%Eox@Sz7n8%e&ca-dF zu;E;%D0&~VwE!mIEVQ4;&k@EiktD`LDXzB{E*q>CqF$#JGBBhP@lm|Hyx3T0Z%Wxs z$|X>l7Q4Y<_mZ4#fvZ+L-V}C3J$#z_HY)xQ>G(9H07_LN+jC zAQq<4rSq(m>(@{Wl}%sK>F2DG}UyeTo@eOzCew!gY+={sSe$`xc=|hp8oR~fc zSuzj(q7=ZWIhoUhO0QwlVC&{rjC1mra+&ll)+u&aDDYE?w zn?lo5%0r>TJVFqxba0t{tK@fLTdX9k7yK zjM&?CTFSIe8#jFVt!$!BYOcl7V{$nC9Q`(%Mm#c8o+8~oq^K*`?`iyV0UM_}ksk$} z%Q2AiYttdgwwqEPS7V+CXStfCAx~rnNdbc$hy++gxQ^h?gG9al1NbBbGKm(-ot%sU zZmC{L(5WRGu%F1J8>mzV;s3l`j!#(h`rKb%V*nWOw(Y1Ps_z}G95`XvNZZXeT)O*m zzV{=7!C2Yv5$tb0CjThsJ&C%G2wO^HFT@^IIw##Si0_&vdM$WE3ASLV$!3cqZL zq8ii!8*yTZPNk{9wT{?#C>Cg-oxQ-{;O!(z-V(K)cXB)m@5-{z+B_TTJ2RIx(@E6z zeN&)$dl+lHIly)ZEby%>1hkA_LJE&0o&x(HGU|){JC2smI`+I!#v;n5Umrmc3_j~l zA5^e4%>x$OEAr02QecJ3Q37{G7T6i2d4-Uhm7NJ(M3n5j_}L&tw2DTfMHGcxeBsD# zpxE>|u|0%VuX!Gth4=lS86%~N_~OW{AndX>Z#@9Bz_<~xYxnJ%`lc1+%qOrb8(!Bi z7}EQb+fhSOpqc?=hyERq$lC&;O$a2tH4yWl6^pWD-(uvz4+FVbQ=jhT=Fr;*gDWoUIfeU=*$}i77)Gn z7yZ#SEi$m&KP`|^%Ac6#I5<@Wz#GWB3J14;AS*%h`9lD3^Uy#}BB|2Yg*o%tsG;Nx zbxF&m+i@k6m=;<;dJPdulM5o0|!E0ZJ*z zn$Tg3b9akqf$03tx{?EPAuWp$?>V^FZv_~*j9#h8NDZ-fVVLbi@XPG1X?R2tE6$WZ z_+~Y^S9|=_sl-(X=AOF~bBi-!b3;4&-E&WyCYU1##~%yy#zZH-f5PkFQG5f9luT7c zX%cgD9Ta}Q|6LfV5?5iIxDbyt>p|}!xJ?Vh|dEOf1cf^dE7He-$oyxK@GCeDc6@7YK`{o4}aP;(U z&yO1yHF?3=4URS683vn_oy!FqFrkhM*i%=81q7?2l}Gi&TJsuNs867J&MXPC%CK7s zQ)l(#Vt%>YY(>*|rT4E52N9{kme+n5?^=om7nz5dxGxsw_53y6ct+~>FXQX&K5*>Q zABod>eS`xwhB~GksXtzvIcp=%k_#;M&D-N%#BKkTpd}AwF^NI0^>DcE*8^(gyiL?~ zod{l0z3(-aRO#7#$W0J;Uxd9`fL233LMb2?p&qzWcNcuG7v}fzL=M+fh3nbSZxfNa zN4yYhijgLQWIkm!PYjgg1Yd6Q%GTol;3tetB%wHMc+9JHVd!iYeo#H+% zTUHd)7;k@?)CTNUg{FA0yTrTFd-n0_Q3!(R(Wn9)*8n$G>lNFK4##tO%Y^VVDZyl; zbX{Kgq-M%8I`WcM={2R;inmT2xx+$=w|yuVK$H!$D0{h#v!=xJiKd@xL1CsUj#yA(lzV`pU2FE|0BOO zWeNpc_$g-mlYAB%db8j8P#qt+O#yF|exNBL+f3ZGrH7y?vX5CyBT;5x?Q8IIe04ZP zY#N0D8~^zxlM;+5g5S^SmU9T1?c^s&+38pg{MA^re!auPpvymaK>gi`@hi`s{?s{N z=Zr6VR)k&E$2_E?sfbepQI8M2ORm zMWzP&G)T^`$Id<7`s)3*!J>y6FkzdIL%x6pjfa~2GD}9|F7@Z%{N^;&p+k##bdCO- zVj&roFN@PgCkcdn79vX7$fxDTV7j$CZcQlQu)kKLc4z^Dyp$-cnh-|Vm{=pKe-V)l zPF=BaD8c)JpiShJwi>{fm-kdWPXnlqpl2cx;UxBwUtxz#Acvs%VH!p!xlCESg#dN# zeit0JgVg`jNPNw1!kp1I*LB$UA>kl&-k1Q^mw$8TX$Y$yrHaHavy~eQ*F&+RPjZrf z-j!RfJ&J&i0in%*kk<}hw(jd1JI9r~doj*(S!I0$$@znPf^4@2o z7X&LxOe+?^R`th$?AY+5dQ|yY`Qe?~uNNXd0|LaTF^MC#igu(I2l8CYd5TM6V2Ds8 z9~9%gnNEZ-GfAS+aQS7RE!}^s6A<~Dhze9wl0oIOrFAZ^-H)k9+pT=wV@P@nUG$9T zuWiK<`m$qd_gM0dU_ZC7<8g!}@_>R-W-Gs&vt%XaswIcn!<7YuxI%7a5Z6h~o`hht zqRLtHmsuR{RVmKEk}S^qIfJQeBl%pM5J;J(FcjPC?#nFUz9rcx2lyl9aNg~JEOKlU z(=6C6t4Zyosbk^!Vm(Y|G!47Y)PeS0^;^^cX08~Nvm1UQ9CVoKH3X?Ls`K%HN>yF_ z97#Ar3|J|ks4R@}nEA;D!kH?DjIMn_5V$a%uq7Kn8yyAKMPA5ub8@)B)7gx{Y)W(? z5Upex;sPUTG0X#451CeylbM%D?Iq~_UUk9~rqxC~#|X5>!qBP&P_=Ta6#i=cf>&Hh`;Rz$Jk%DK&$?UNoj?YVA@(tCwof6`D^K&pgH10Rv8wS;m= z;(6B*gZF=oDS!)j-LKPz84r&bn zraN||Q2_r0t5X8l3aEw}-HhO1B>GJ#(^8>tKor>M367znzyRTRItO-7c4ZX091_Ru zaJFc}>mRDrj>Q1gt1Jk!fnto*Ktw$(>;ii#Rcv!YW$nK_@y6KI@ysGGPKi`M*^>#> zk(VSMSnvQEV&|l;EF0dQZScW&=-ax|$7)ouEuJXRHFqXth@Q5DtA}x6S$4YKgC7d22KG5-|2*6) zOc7oOVgdMk>k7ko1JMCUG+8IhJA+!7$*dX@6kY( zlPQM+Me`fHJ%x4+dfd0*;@4~}J?zFyrm48I3YUl-SU?F^`rwr1L&1$R2 z*~`ym@v@*)I#@iAjN^5&G!CnI2^Ke%tYbwU{SB^qxuxk38dN9oVYvJv?Y80OI;!aI2hCNa zMroXN=rRrhUP+}*kwM4A6>xul&z2BTxmSxCVIy0Ub}lCndSbcu;Zo0{N=%SmSLR?i zH{Z^D??Y6%i%P~gt|9M8OuUTM$jyTs(N=0jbKb3*T)}F_k9s~U>eQ>>obeR5SaF60 zp%F8b^iN2VqtK1ViB+Yn_^wpV3H2>ZdpAC#w55U1=~yGf)$cg4M3i`NHfG6pqpOj1 zwQxq)yr)(l{Pl1+dQS$z{qm}CVl6a2>W5gDviz-8`+Ve8EcuBNPz;YydGu8)gbR`K zq3S&hpd?C~eW92*k9u5zTkz*CLPe7p`t0TtVWU|~a|x4)2R^lcs-Yxcg^ZLr+JQ`y zA+j2V%=SpmudmT|*&k`xiv}-?>M;CU&$2N7TlCJwF+OaYBP$lFoq28kw+;gCf%1_V zSE<;afN^|hfbg1Fo)#fv^dk=74Z;s1fedl?1+>@b&la_CNIw^Gg^fF)?79vN2-{mo z2=V!S{CfKiuOXHsTK#l-KD(2x2K+CN^KL6pt^ zp05sB$+0qIDe{1TB~8hf{Z9S#k)9!x8)%<1eONfHDG+cn*VoW~Jhz1@5jHOx%JqH| z&SQj$2LQ|T`i**6NVttSJ1}BSWeRoMTlJ_ImzgN!kOu4>Bk7S=Np>83%#op%h5O-r z-~yOEG!qHj^7$c8mFMg?d&>RD^M)DYHjQ9`Ix&d(K23Y9aB}}1;Eifwo1)I_&p)n| zVBMd(bAc$9)D*)Eym?kIBOpdwg}{6HMnO5%l08@g*aWv0g!)mm8srbij(!H6@_YKJ1m-2C~olZSlYW>J5#0#O@myDjnb<;S%U|OTWs;Sx1elBHd zcYv};FX+F+=k;xjdhT=F^5+vSLPNR$x_aOz3XUpGR+>&l8kq@W%3G2YGG=E^2|ZL) z2o70u#WAnwLn*``^x>s{90+-$dZid?HlMa17T^S$YyZGeqW)xIjurnS&rwu@PLB=1 zCKOZu>k81p6b%6x_q}^wXY+nSA3uouM-h}mjO;`3{BtJJ>p$T zmmmtaiy1olfc$+Uku}in<=a{_-wNEv18HJ1e-Di*F{xBCmHZ;Fz>d;E)}IY%H2jlm z-R8VG(8+}Pt5-~=$tqVb8+_QtW?qQU-$-iF25<2<&{J^^qzEpQu3md_1IL6kdka=q zj+`Jvz=By9jbtVYPD1S?u6c|OK;;ej_d?mTjewEtJNNVUd!y5vr57Ly6rL68spr3W zLA&(tUCN6)U!Kx4;Ts2T9Nry2zVSg?wUoRmej&VJ(C!8TD?!?TOCW*aEAG!1fha&Y zlgnG_w$a5-j*#FvDWn{L^%&|L{o$)fyCrGKwsC4k!Jj%nw~Z)R`#MfhB{YUu;B#7u zde!gN??Tnw$87*zH!aN#-fDiQ3bvMS=~kR|vqk*v=P9+}F+R<8e42(eo4%9aiu5(?nj=^TcmI z;N91-jp@5a4~0};oZpaQ=Lf<>w^-Ru9JIhH2_aA%90x+Ht}novU5w*0{K{Qx>`65( zwu!2B_|LMF=*awbrXGE0nw(R9PXGiwc9Pv`Bz|t?pGk{&*;G)7K^dcCAOJ~?-*gJCG?iu?jnW*UfY&YUV|RN(hSW6^6p>8 zflBdte$G4375?|loEQGBXw0HU6BmvcE_V-*gu-vY}aXJeEs8V+}jL1J3(iA@+ucommD$I+OXUCCb&zZ zUttV>Sh>6sYqu`VffQ~{R)Yy? z`2N>c3g5P4!RGL^SX~X9b@#td{KoZOQt3D`#ffv9cktAc8>?wdVt0uYE@kdRknrbB z2kU8YvU7g%a`zKh9xFh{<%Z#;`_)D}|LUOlhJ~dRxs#gew`RZz79EkrGi1@F@4M#s z70}v11#y*xsmq5u;Hg9h=(pqd>HlK*#r1XO|I+z&E>ts;=exEp#Pl`s^_FGo31>nMc$e*fDpk-Y6eOQpz2)+Dz&&w4?cB|zfL3TW4 zs!9Z_$!_M1*kP6S`E>lzO5}gNx% zLN_A7M)Ex!hbqI?wKVLSpl}&5;pJz>BTI5(-@LAK60NSM{<~jW6zgkjYh*goq#Mx^ z2BmmF`TEZH>}$?!8mQ7lumA{ZE_A=-iw>2w7J6`$qVef;+-SPyUZ=NIW^fsqcgMWK zC&-zeP8eFn7>xxMAAOj-&x9IYJpGtLe1QO(T)^fw`5il^Y+Sy4#(x7>mU_#+JmZ^> z4L|d~x<1La>_$Gz9)kgIq04CP+G3tBpIK)Zk3}g*)J;by%B|fCQddF_<1}6nQ?IZ_ zbT|u{bW@Mx6JhWA&m#}k3pe7Gffvv_AP$w0n>unOB|@NTWdx4T9gKG8B~J7ZX>g{! z`R`;V;(-uzorLksZH(#z*On48abgeJ@mipZVJ3 zOM4TSfnTD1%a<+khsoize8_W5ASLN;1`wXHQ?xoo!v}SD1Decw?-H|-^T7U38HdcK zwft4F8zWxL%1x^3Ow;BZZ0uvWEoYGa3%I)KXg@0gqd*=Y&Nl_SLInmuIx&P`d@C!?nop9}E*4e0iMcVG0;Xh`@B=VtSD z>)1_T@%A}!d3VggoNFJ@_LT|@ny9^rHDJy(z}uz8oTGe7e9HN_t{b#GKrCu7%Y62A zix79`C&c|0bNV;b@f85p*v4&^b-QEklj8lqqd_LWm28rA6-!l?hw`;pT5X@Gt z{dHRMo+ci56|USanteAI{Z(pvO?yEB`XfsGJ#k0S5RV0S$hyTPI`2AQ?e%mEOOi=~ zq~<N3m468EpRgZ>{CeAwsPd-~MDi^h;1 z%Pzst<*aDi^lEPL{km1|aaQiKU6eJIDx>G=9jsq`S!6hYiBSS)-ae-9CWpp}Hp;zx zK`~dChZ{91&T(3(JFX`j9g=xUgBiS6A#ZBy4HN+a^2m1jia zR9~hN>&xgla|NIYI%6-iS#SOhfLLq`t511HdnY3qFG7r}btK`x_fkVT+Kex9w*v1SgYS(KD9($!hy8itRMawMM1PIYr*RW) zKCS*I#!WiRjf`NUc0dXKvL931T4_!-#)<~-WVBhT4yxt4fy{IjS=pFj0&QZD%rH&g zuiEWz94YQEi{EQrFb$7yyyff=Cno}xp3C*DgN`4}NdmBz0RTfcyL4um9O+vflcM|k zw5Xk>v=8GpE12rsR4*VEXk^SMS}3W;WG%!P4j%;(Ugyh+*JAAnmX2CG-AkyS9M=Nw z;=voYGeU%)f@R~j3gI0BaMsdO= zUJ@9PrY;BMf|@DvN2&$HG7QCCo^K633<7Hp&`JKucDPQ+X0XyWUA7T+Cf9vS4pLy5*bLlK72O{VF=+TlOS-04xT6&<;Fkf>?!;kn6!6UW>ptw zMhea(qa=pHW&&7O`lB12P>$9$g zOZxB4m?0;L*ra;Z+D$t}$auuauJHM#Whxeo_1fk#Dr(ObaWLIgOBzjN#ts!|Z7R@O zydsO}xU>7?B{kSUXqVxBvkR0%P2{A1GuzWHksY>=kUDs}be5@DtFw|diMTpaU;D}? z3B%1C=cjs-AOb}Z7D|AvCzsoEqIa7(e2w7$L#yEz6h;nLXxi1Ytsxb z{?+%jMxGJ>*HZ72)){OOhA7M*&7+LJFV(mS&6I%~4PlUuP3C=`J%#2soeo(3sG zhz$@L-;~TqhrUrytOgUhs0;72430V)$0use>9=IlVod@RFK8t&zv>YsjnIu}&F#pO z-kvhWD|P&=fs2v$G;mZIq2DOrd8q%KKtphv4BRGSIAK{9nJ{2+a3f3y;EBCy8R{57 zf>?<(Mo!dG!A1BTPdk1YRD_n8z6d9`az4;KYHDB;Dq*^EA_)yRT;vaBB0RCb?`NI3_Jzg{EVsEFQ(K`4OE$VpVV&a>CRV;FN>h|lTdWom)P zp?*2`EWOdD7o{i=-lU#}p;0K55)p5XijG zF(EGMLccH9Ai4HGJu-aM@=WQ zLCEjQzSLno>=2QNQ|Wyfs1sUA{XVs0&=ij9S)Zh^BOj|(JWmf^Vq;YwwUW+1`4A8? z5Rj?1PS6)00s}`r_ou{LVd55F>Qr^+8%#cCo}e6OsFf>goVG*hSMxJO?dC|S6{k}b#XD2YqtB!;&g>_s)p;E`StztH9U9>DEuYw_?@j|} zzeyGl-0oA2-li+3S1~{PsS)us>97w)W{4Fdh6cluSD1w9uVt_AH2ATpLPQn0tV}`* zWN1W*d_|XK^7MZq!;l=l_aAH)p`3LQfpt2IvGKz|X*c2s^^GQ?8@Cdf5rCv$ zAFj2dWm5sqw~dUl=&{EjKeW@9h6@0xq&j0zXw0s$$~$Sas0rk<2Tp`;O|(k!a?Q!# z@2$g5u2SGR08}7GU)lSt+AWT$WTjJ48nfRTGu_XWGshceS8%IhA&GH&^``R_B>Kf& zZiz1l=XAvd#tMJ=RRSj5PODj$wnClt{ zG8(wjfWqW}zA!b&FK@_MRB?FARNh+T;j@dk)bTfaDolFjbN?77vV5l=HK5efKg;H zN+&7}`Lx)p)%d#JN7H!ybk}MC`c`??+IA>~(GbnItTN=Mv$m2ATCjQIhi&rhqFiTp znnZ*k=9e00-)b{Wc{>d}k`v0O=`5} z+Z2UqjadEdubzuHh)vyfkSY%d**M@}WXu&>mfV)Gwu!$)gHOPhJ6doB3>%$TN^a&z z;1n}VNk+{f0~!qCy*4cTJ!N;vh8JBOtLOPKDu2Jk5#TC&1>bXfa=|-fy69>nWJvN$Y6L8! z+vRG%0mO)bTgNU;M$9k@iDiG2>?W`7n;7W=17p3bY7|U`5D0;q*MX`SuhLrS-%jfC zk#=45(5KQ09kM#-+hiwqzXai;#fdn*OYixV?UAcWR!Qj!x8UZ;-Y`v&lv|97M&s{P zBc{{u0?vf)D}AJ}&=#9HM3pA}ZSS=dSB*-~y(D-q&{2+w?{8VE*ztkbZMEJZjPP|k zGA<@_7s;DS+^>+D@X{r|7oFyP7UacR96upCu6d4Uv*5idsD4XB2;iiP&mju7BW~6p zobu~td*cQB%GF@lh-Bc=lrfU0p-~3P<6(U$K45|}4gn1fZ^=!**0N?FQdE+}>G+3_j z-A|K-p3}u$yOAVSnb)6E^@86RI{j;gH{|-2d%wTds{U|dQBY^3#@RUbT8s)=g$;%( z=O=^_EfqgbC~@oDBwT*@^Jhk6j7ad11IKa8X-6P`5d*H8r(UlhhL%t>j{Q1VJ~`;# zW$G*Z7R4>lV8BdfGro@jfZZQ2t+Q~0bZ}*+)8cUw#8Xr_H@iL)8>B~kg5G~ISb3u6 zGOo_DgNBlwDs9%2tE^00(zUbo( z5Mb@&FARzhy4kX8g8oRg<=Q*rA&%K*?p74r93GQ|-ezLCcENM!VOBoqHkXFSh)4Jx ztElYU7NTdwov)$b{9NKR5z32iABvMKr{w8$s2el+>atb>ZnC5@!UPe_vUyFbM4t*l z&j!M|mqFbxe#TFr0N1d1v8N>Bdq(E@*p9@$G(*(io5>*J zR(fKb1*w>v1+uU*wi$tW+F=L(%w%kZQSU2KMcU48L`lX4W_qaDUy~1Q6*ONykPBMq z5%Xt&KT#*PMe^Z8VDYg39xzjg@1Z=53GpLq0MDuB+R?G&74sZ3G_3NbwzZFoxxW@J zMahUdO|IL%P2R@_kt%`WdbL#?Z#t*kFX!$CoDTqxte(vVsyp8izklRj7pt#HE;kR9 z3)WyxLA+e_*-}Kwy!k3Rb@E=ke^`ezPdh-lo0H)@CY+(%j%TyfI2F`>9(ALtBE?gg zvmLSq*(ik9>#tF^JY_4Q}nyFbpj68kAS&IswT&_FkHS6R+GL6zrqM*Ju*nSvX`Oaw*vjz$by(&lPK zEh}CXJtTK%xwCUiFlLr^_ur{3K%2(r1KMbnXZ&EP)GR8*taTJFC9N zZzB8Pno{?(`FS?CpE6W)S4oHoEkzO~Ya8IEo@`t|M$fvV@V(#}sVQtk6qf}C>-`PF zqGLyj|FYrqGAeKT#ZT&jU={Z%Ka}8)(T2;~DzC1Zd;jYy*5}mAYVvRJZZzEoC zQS-y3?bg{{uYldUnMDh+3JDfS3?N7JUMZ88=fWjP!%0%=P@dQKXk_~a8^;m%Q-T%* zvb373v-~Q1*lOgWJ1bu}eMrA^Y?SSB5ofw;I@K6V>*b9FR;yg34$1JCU#~M|N&=x) zsQIXgopA}1ZV+p56gWzMzGNGiMkc#*MSk7J0h|dANo=VHhA!c-QKbB$mgUY87a>$6 z^n>=!7smCl24wX1wV>=leN4V$<`f;jE(g9#4Nb-yOr-lF0&pdvK37)Tp`$ znlgJj(*O^UCC6I(-G+5gykXWEoy*f(I0VkboFTVz4AWpZy8-B!hQa|EDOsI?YfeTL zlP_ft@xg@Y`#rxApY*bEQZ`u*{m}V_aSW|^*3LgYitS)~=j06gp&Z^__!9?{yF z|N1X;`e1^E1d4;IUMiBHiqGY9y@`;{#P^tA0gIz^>*JV1m*ea3I{q0_orPQx!PMub z)u}k($c$@K(bB=P;7)z!arxDQG)73+){MgcjVzDzGV#eL++$ckg2+%0H@l`^sX>4Aw=7bBYg4ef*7nK6{ zJ#G8wa>$rGjPTRd*}}02)N|vCz5laPYo3jBNJt;BE528YkY<=WKgvwmuqHF@gya1tGYF;wM6E>W5U`-W6{?m-E2(pyPh(+Q!M!#s z2$&A8>tdS%U+La|_Y|q11?c_|K1QNHiNw=3*O_dh?oe3=jKP5H8hG?+FWRoa?Dx%O z3z^bCQ|Cf`=2rmLmRw0l0GPmE)x|>J?9Q}PTiFz|A$>PU+xrSWC7O<7_MYId<#zp8 zC}ql@KhO3ypu~vTIEFjNT2JE~JH`eZ>Nj6q_AiUyyNWNlui1)qPey!l(YF|wNRh=R@~ygVgO#EgU>(AQsSz;B$4yx2qaZm`Xf0XLOK>LRxapYzCr!dYV)RNThLSmS-f zk7M~lLIM#o_7{pwK@L3{)Q4VQDGg0{wqb`oJd7^z`JR509RK@C?;jZyD=ENr!~l$3 zBFMs4wZAy?=?(enU9n!DlK;GXWqZ>V5L#OL{;mAZje!+8zjk>Ffs1HcQfXX%_%vd0 z5*m{KIr;F1Z}a~I`4Zg0)tFV(euLXT|59V|OM?Alcuyb)lKuXj9L<_6{%eBAd<;g9 z!CPmMH1ZpujM7+BhbL@1pCpGpgeJ-rj1NIjUsmj!iRy)#9i?|5wKw7%G9|c9;po!2 zT}An%DTt=22OnQGKs@vZ;7sZ6DIx4O#E zb+}f@Vd;^*m{S1kKNFRQkt8PULC0Fn6hD@kgX6)gcy322=Ptln|0P4-?S+b`)Ocg0 z1&&=UPt63sZRii+lQ_33(NKUNS+Et%N3J`2fp5y%h^bxHPSgBj`SAwvGX)?%Y%|`g zFcattdX6{Cr=6^CL(pM@&=c2Ev0cqN@EQFcNEXcw>oGP#Zn%NH8clirdYSNCFcc&0 zKeg35^1;hx5|LL;-piGoaEg@-jy@P~dk}pTbU2!AYzvYoez~h}nU6={4L(Q7ja=Iu zlfBml`a@WaO8PD=Co}mG9I40ag zxfYY?3kiAEbFXhs2(?xNCUFLFX4s{Po1O5(@a-50WG5asu*gq$6( zll*cS#e1tt7fN}58X%{6g-3pCV8c>Q024gllnc)?x$d|2dkTPl)xQAiG=$vO2@`}a zkIlw+3k2NLgmpS{M+Nv36w&~m3@;z|mOQE1OQ1%s=;;FGY135$( ztnDJqm{!ZT3_!NJ-xBmYN%<`lDL4_i07N6klf5P3hR+35Oho>-G==LhYWA|y&Q3$d zqs*rF+JO@2n4u=O(i9^m2s5u10A*=dsa!olSNYm3%X5GKr@QR67Yq2IPNCm@{_t$F zpI0qw6SC-ea^)=gbJyF~fxw8aypQ&6dgNBeOVr@tp8UfxG(WOK9Pyvk$mr^ON#gx0z1n*&ZnD=&SPA)KpT3x! zVBwD^7q5VU?>{_ELnwZO2jE)7Yf47-Q24Fwu&z&C#lQ9;2uweMS7k>lXdROi*59W0 zvamd;OCUIM`kW@@Lh-AnT6%+pDaf+vHkW+R)Rh}67O)*Tr!Wp2=^YO}Eb1sv`dSL0 z-uWL}ajrI7X&u_Xg&W$uKBR7e<~Gn+&)=@co&6DA$pCSF4yR@N)$5);&oNmKhK&RZ zoDnVAX+tL-80bbqp04U+y!k$`C_kZe#wRpnA)dHYjdm#lvMJMO2F^zHBC#P2`cw^Z zr6aN_>`o7es@oJ>Jm&&ajgxdTG^Mf5B9($MPFf`={x~=L0>b|&Z?!VpRIPrEw#7`w zD>=x{Z%!E+gpkxN;*a>jq|m2t9!FHkXX23!%w&1%u41ZJvY7fuFi#a;@=#7LP8cMZ z>kJf6*i!aKo1=^4`|rLscCY$j>zxQ=%ZJ(G`fL9+o@}t{zI~iH|4LES!fmLoo&A@@bXJWhRN5Zk$dX z*IJcL>~2K9e%$1Z_xRJq`^IgL>YUG+J@g3JpY<>E5Z)-Y-86ZW=WI3Co`69`+K-8M znbNLj)TBy!?&kIQRm@sc%YRV3ghRq|*WKNRF!*~AUPAs)O^!zO>k`d+oLVg72KOWu znk9QRBDM;Y6us!qZIuaV6kid(5tVIN zms9DL*F`FFp!CKHFiY=KPx+vU!G;B(f50eX)iw|7w%o89Y(Tq=r!JA6V${y|5rneL zmP1N?(V*%D(%vP$K|J(YG%F+U#Fr`j@cryeE{QlmgiJSc@LiKtu0HFik1{IfH2zNs zy=n4lcpG!<7CFr1DLpoeD($4Nxmr(E?qGY0W^7oSQjzJKBIdEV4QSc~7y*ecRjK8y z74hhC7<_8)t*1FGgM!O&d~=J!Ph=glI25Csar9F=D8_G);Vral;4KnzsRW#!fr_ET z#W5`PM53DU>+Efyt&&t(P{@@oDCV9=hQ|gtiM{qJQUF-A0{QECjGRIqUe{h}^s6kC zo>d4>@SG4UK1wXbEOY*DkG~Y(d3v<0Q@6cPOiitEiBqMPd#h>R;dxC%psg}E5{qKK=u`=PWV(nV>2aL$?WN#o&VDKV~PQr zAx{+7vwnx@KJt;N#%lzLL3ghDvB`8_=^Sh2c}WSD+folo>b2b#;16HT#Br;NuceC9 z<5pEHPIoqRkrqD!qIf>B6todCh2_MAW`G9Sr6<#}c@}Z~cEl$$Sfm#(oS49&9B!m?m^YqqJiI_-bv2ttr@|B(Y+5Ik{Q!tpbe1={S8E7FKJQ9 zZxO&+Zo#FB>9(bIGnJ{#i1nEXaOzkbY#fz>z>gN}ScN@cGn`?_6(Zi#1a6`0Wzbl3 z)4US0KiU}>D~Ip2(>@^ume4uk^>XqYtFY~uurAQo3y6YuF-9Ld&#u6uqpkUW=T55% zF19ai%awc%@?(>w?*3n>IscPG^S`M%Kn~#lq2{pte@e|^`G271Ty{y<&`Bp#Jb0TN zq0~JCDI4nR%gJ$I+i_D_p@RlfQAo)`B45K~uyRfM0X~3#zs<{*@^hD#RGkjHo-evc zH>Z|I^yxj_E)qnM9Am31wd@T&Uj~w^R$6pF7#DoOC_YZ~NdN~jsD3|hS`YM#98d`U zor&t0{wKj726*csI(B<#v|{g%`ithE@s#G0F4|lsdj2 zz={-PZ$bU?LiiCpAlVNy1$4Gd$U%vUJl0B9-OPm|NXA%Kb2u~bWg^c6&*{rMG-z2w zNV7E@pzs4vZmY9=6xC}{>Kxn6UVN?(THdKr47+)ZUzLn-hHzAqi&e*+M)hB=(fEgl zN6$Hv^OvcDB{?Y2O4hVG9y>;A$Ll?B|He5=)RO)MlC#d}cu_L1PhLJVMM5eI4Hi=V zcN?B^lTSU`&SHC^)PpRS`L3(fXG^>q>>+#t0rx*PIc|IRa`gBSLhsJr)oBX#Lw&^E zv?R%-$aB%ON=Pkeo@#31_iVOQ1LRd(-fFtOHUtQzn^|?fgsT{JWoJmX;L2p;xXHR= zVaQ1QS?a~G#t&ox5=Te`<{p7G-!EPqv#(Z0TJMsamZS-R=Hkb^xqtP<7IyPoC*dPC zN8cH~Qnz|3Mt$8}r&vz$38Nb1Wn@^f5?S)XDVkh$D6(b(YCs%Y1(3TBl6zn451>~lrAZwuLo09fLaJ0}GylnpVZCOLe>QnnO- zGW#|4aI!@%X8`8<%TlUPUE0u>tUQVN94so;NrD7kXb?sDt>hRIM6H(s2LgBj%Iu;e z1#52ard{|XiZ9(*Kb&iZdt5e>ZN$X&B z6WlRx>~T47@_FEU40#2-Or-Vd6jh8m62E;4GLuSCX*E>#zWa+uZm#-LeSEB$tj$^o zTGzz`3S>3dzrj|D4g&D>S-5gp80FI=@VWZ7czQT&wl zTzbZ|E7+Wlit<3FCktDaXz%G+y~e!f(UWbVJ7MrLK+_rT?VGJ8WH$MLFC>G&djwiD zX+rWjGn#X8u+EjRF=Lq)*y^$Jw1&;heywXUk zaxcCKBh~)*d?H^JUjSI5GAFHxDW%?mBUf8aooFV+8ayzx0QROkXSKzt;JY+I2!skt zdA^0wqwU7$=Jp<4`j?-X6ZiXka%uYH-Kh-T%L~09%qVzL_9ogjUWuT$9a$m)bpl{CTer7-@kNNTa=86WANI=t zheCtg9ejzBz+G&e+67g{2U*$!*Ue+mG<)9B93vx~NT^M<*}49f95PhheolM#8>Iwg z&f!S+HKT-n=mJ4tnm~zO{z`reun;e%qQau>6CR@-%oxD#v3KjWyw*ZDBec+_@41Dt zEcleF{XkV--%zoJ-@5_{hd-gWI;;_WhvMmfgpPfXpQ8(0@l1X;RZ75yrUjS@@+8S3 zb3`7EV;{LO!K6gMO{rPb0IDQ-G8FfJBUk*U)JzFKakg2A#YqMmEG2FazB{=2O9a=o z78a12=mSXMvi`>=eOr}h!hk7E`*tZEcOE|?+%)`5VHMm`!JuWfHC@1k*nU91Hz7Fv z*iWg!(QS{M=L~VaF60oslH6p>(>rrA&^V5Ij%^E}Uja8c8vrCGm#mca{6iB>bikys z&%ppjCedl-(M4Qje)QsEpEl=3j+PP3z_f7Ibr&Rt35YdllK9MWj2BU)V7fgFu3_}x zd6;koTvZIeg3wB6^-V+(J~QE=&f!?>EAG|&p_R&mOHjx#hejUZI;P>F#@(4FpAc+_ z{>!cK+ZU8baGH5plyDbPh%U$gR=(#hAubsj*bZG-Sb4g{;GwAAJcqpa^FH7mTNXhs zZtwz}b@gg7HVLEW^quwJ%*~*giBWqL~9mAGNt-GyA$wZTum_r-fL@3rR3IHQhBh z`SGpKVWXdq7~7-*XxZefuDYF!ek-38z;L8i*%*ec$edZClhB_V+|^i@oiZ%FO=rAM zi`sxzPNJO#Mtz2i-p1TC7l2#+C-ufHSFq~z6HJEFrE%C+@AWO90CIvbG+LPOS(J|q zbQCyv*ff<&Vxd?WpGChhupXg9=Ll#%qy$NDf zeBhZxV0||H{HCw7L_fO|dG~00g|toh6+JKjXT1m?ga6+5Q)a(VK9~WuMfmV^u3zbOQt5T%%OnsWz z{liQsK#e|$+LS2k^`|o<1W%dooJpTqmMwqih)DPYQ6)Vm06%An{!hLQ!wRO%vSz3A z^KtCLf8saw?p{=6Q>TU^(}}RDtr*FMF`?10X+9O^Wy1_aG=?8dgWW__(XNNFC88_0{OXKQzRYR7Fcrwl%dFxj>(SuG(l5~w|AKPv zusqb9+IsuKD}waB`nL2uY{>ZLH}5A;{f#9G0?Ty1tk{{I$U}mip??%nGg;`M25@m9 zGZX$~QxYCt8d2g1JEPugfEBoBVH@9f3)_rp+zevl+_Sn+Eu1Ioe`;=BC!AmZsecO+ zLKqA~V6oiJ;>0#+E*OdDKk@QRWxBToL4fG4Dn5PLG2B*Aw}aW^*C5A8i|9*$sxhg>{}9? zb+uN9fcwdAD)>;E%3vBWDTD}qXNE(spvt?Bdts$6=KG_Y`^eA73MWw6e<$wAXYnX|R z>8Ef@Zp_2&f_3pz&?~DZEO+=W6m9YJuBU&r4!nq&$jV=ymJB$fbBo@IFBES~?n*0U zrbsvqC@6|2j{MJZ5A1W*+{gVoDzf3~u5W2*$;BT0;W0lVt6ApiE)C$CqV=PLKz*^r zfgmdL_%niGs#7u+d-vJMVYk6VdL44*KKS9ey#=zWJCglz^6>*3d6sz?>{{*;_~Lpo z{+wno{u31Q3zyXKce5T<>qx=oH+S(i8~{!id|vyBl{#!ErsGk3Gg*r8>{3WQK^CNq zoBGGx*1WLA1Oso6ag0LAFbV-2b-$hiyX%E(a(M0kvapSniYn}Hz!AfK3NQMyPz=14 zD?NIbcelOj@Xx_f{kEbrtD02`F=BH5r|xo+rDh?SA?eVZ$Mr=kzfw>43jn*9A$q>X z)^A(Y+4opVHfJ&DjrOlD>`Rh&^|vlyW$U9{q;8ZSJ1Tvf`005$n^v?FY?cM?#l0#z zQm2JRkOuSlijaNNJCnxN&<`nfWR2OdC!o|Q3iBD6)jtMSUAK|3~_5Dil$DO1?n{%3WN#L1ve>Tm^ z?M2qO_vZ@7Nx?uR!C`lb8LK;XJo|418gth{qC}`I!!Qp%5jvoIJRupLz(R9$STL`8 z8&u6Ntk@hs=$;nFD|~`1==bIH8mfE*npnM&9wQ*uAD(io3XF35b9zHnOHc|T>?em_ zb@~3IB+{wbOZJdi2bEN|w3Of;^>agH{#Q z;fkmiDauU~pa3EyCTBz&+q=MyR}o+wesf&&`N0&NNTS@TpjL$Kd!#O}kM?WqAf^({ z2Dl-PXU$i(^e5iBow)MfmafNu3J?-LJxyoc=X^m@?_VPLZSM?7$LF%6cgyT8q(dB; z^e4wT3PAq#pW{Egne4LhGf zej<+3dbS^TKVBk5=b1V&_RD^!t~;0DGH>5^L59u|dQH&t8y&f^vy=bA{QQ?sB&TLNO7{@{%jEK*v;$LaFrj5rj~|j3lPN;u6Q<^69*%wmagkTM0oTNdlVc*PLf(5 z*bcF$#6Yef1v4bP%K|r4u+L-hQO-V#3~e5b^6)>R4Zu*N z=x%7j?vRG@^Zr2uy_n~2G^h5STywvKrF}>!Ot&9po9*gB?o>Xl#+s9an9l2EgeI(>O@qzf!TADI z;=apZ`H|AY)Sbe@%qH?sU7lNEVA=6u>kCMKj|NjftlmQ3hZlE`$*Sf+qZTt#`sTQc zWlD&RBdt%y?$`C0k#na2j7cSCn}}|?KJR#Tg3T{$Z1KH!{1{C2$I9$cqOR5fv^B1E zM-@H-3j}d|>Oc>kU6`0AIo-OeTaWIn8bwR5w%Z@mW9Lp2p(3fE5M)Gal1OxEUwZ>Z zb`~I)j7;HX6CP#YStOv19jC`-aB?d2!6+U+0AU$LVxSO>;uxft6?>Fy^$Y`stIu^m zP+1*FN)+k7KI!J1WO62^7Le)qUWJcViXs%H4c26`vtxMuymE9Hud5fA@Oh^b6S}?Q zEdTa$6YKIeW&3go2WT|$eOy^b;&Z|Ov60{>a+A~1h!o9AV~pG_WBO%K{(DK0WxnSr z4%3KJQ|h2_@9wm{l*6S}5$m0yq%*DLGy5B=!MjXtcSy#G=0xC8Je%+?4GA{15q1XS zMv+))DWCnd+D6EC#e}+=D3KF3+e_lc9#%$W= zGI!I4+SA><;|0C6dErTXVlokGKgexR_G}c{A99-BqR$Yn_gRg=w z?I}=e?;H-WMffAgd<);7{Y2zDTxVpEpxp4PO9U;2ob(S2s)a7}BOOrZ9BUkf@^z4# z;edtf?@1Uj$3r%Xd49OZ2jFLvD$D=v6jz?Pw|GD&`P+Pq2_uyV2M>iR9^Hi9728t- zDfzp~oic6^ZjCPUIl^OHyuH8~f&GO7`|nF@Ne&CZhsVkf8d#Bb<$4sk^EGUv_4bPY z?CA?Sm7)-) zYUE#N1n%XmQ|eo{`D-@h_#BNu0dVtK;);54q62;JEIX`0V)AiMfDL4c0X{z3Q%w_R zR&S8&(7g*FD)CD4F2)=n{T6=nLKqC+5RlW$zd!+IScWuqAd>z#v9V(Rw9!6c5JvH# zZYvIB?P)|LSEEpw_xEH^yTN+1Ny@uu_T`d}Lr{(ZN0X?Jv|PBdQapK{1yT`XS4f+L z_boD~hr=67(y>l>rzJn6$u3`bsT+s6lwX=iwsd3J_U?bybv1RBBzXE6))>rpt;SUl z+i3>IVI~y)1O(wtC-l3klhxo1*P&By1ixiCGtsEm8wV3f97Cq;)NL9rWY?a9-B@#f z(R)fAjuXoDBvQPwX`ww>$-z%pcc*>k%Jm7uM4La{aJD$oRX6>YtjoUg@nZ`e$tv1C z3|S5!XsNLI!}GL9+p1C`sS*xIhqc~SEH^_QH+qbdN>IkGR zJc>AUh5eFNT_86^PV%{prwbbq;2$%I22gv-fH1kjJOt8LXEXd8Wbrhi=IG{X8o&EQ zQb!_7rLg{Mp%1Cy))vWRS$M%Z;5mZG@XP1DT+dr^`n2R4maM<^hi9dzgoEJl=2((# z+EIQha*rzf?BCp|HsTxsg)9W)EMOo~NofRBMQ?7>8^PN~Zq=4uTUrkyh^4x}sR)^h z8g!Wg%x~WnxaS7xK+@TTrHJLwTxF+tSU)pGLz{fxsN}kKrOIlVh*SehQ%2+)3C((5 zL_tc~k}D%d6588tpQ4{T{^Efw#7#xqup7>WKGGEpkcF$j$RgxggX?RpLiet5+4Tp> zfoiXb=w$Y+1&Mp3MIwW3vKzIm4d*~(&D#tl@M4o9R*h@vWnRv+4WJXO{y4YNVhIA$ zG{4h$ER(LKFpjLbGTy5T?l|9!#I`{gfBCo%JqC=}@PFs$_{b5!?L2pL560Vd^#$$s zj+Vi>mRx6Ln+iSt^AMKThl1WPlgnoAL5Bi!_D{}@oO2-|hUb5b{4U~x80bYvAaVCvi|msLF~*Sy%oi7j7$N@~Zx!NHhLl%?HZ=BJi|{QxrQ| zTf|IEQ8jJsI4_Tj^$q+u+PeSM8_-tDK6iXQ?m*rhxnJq^thO*pNc4D#T<)i%7MJSJ zCkqo5GStsnpY*#JGaJoj~`1q^pdynNeE%j;D9W=&ui z3;L*Sy0L-Sp1LI zr3fR2`#;$-&6Dh9IY}sJa`ac?=2hsr2~Pi`dqt*NaB+lWWztiHVqs;imv&)!G_`J`jkxL42xcC=f@1j4TD~MH1o9d{`gjD8mCgqCzVt8iP zltBDAoYb?3{Vw*f{^%@RpRz5?T_Gq8#5%CF0k$e%@cufgQ%5bdFOvMmiS*f2wk}mQ zp%dNFjp6^EuLkz4NHlVJG*Xl6(Qi0-jwQnguNQ%1sAuoB9!#ymu8UFbRmPu7ZI7Y7 z5}b9L24EB#1nfW1e&-o;sha6W)INhZG>9MYC~OrtN}5eGQ1*VQka2&V>+W}QoZ^-o zM;DKm3{EamcD<3sc9Ki}&OGed3H5gV#Ymf;|}uXZL2hH zjo&sA5#t*sB>iVp9XH#Yr(?eHpc?v?*Sj1Dx15DL*B~ycZl8m;)?N$}@;OXFL9+m> zA?mjBd$OA^qzPYyX-cBgCx7b2!4G;rqc8eu?4jKeC;8yqjM&qr8f}X{w$DH$)mvDwze%y-1RCYT> z5&zpC0mWlG4|jYnAoRyk0A*nM6??Ia5`nCYi2U*I)}yU(AE(OthGF4aR57lmB0SH9 z$4uinudfqci5jo;$kv0smF&mr>niVyLCr6K%f|dCw4{Th+MkQ*hB?AE-7fTxl0Sul<+k$dL`75YAoSf~DPbD!3 zH@CYZM(YbJ(w9zp1#wlU4r=7&cgsl4WegOVw8AD*iIm zW7q))Fu#w@D9XWgCDzKk?=kFZU9Mk#l3@+|0e^yLJc1as_NE5%_hX^ZooEpe3b))? zV_$VaR>?{Ii{H|te}PgxyG4ECo>>moE^VP3_5!DU!DC%#bKz4M*W$vKOr=;+} zZ=4C^+V5erN|`5{4OIDq??1V2`+SgP)oWxdhBn0_Cf&u%5_Ml*!4Ha}`7{|Dq(sh& z-5K+DPXyp(Aezyq#itC%i040ahbQ!R{d zWSclF{8G>Fk2NMOGZrI$^QWLpU!5Ai2DY}O(YPChtD6LZ&}+S@o!^pA=mieH5H9=QP}u{R6M0fY7E>+si`4+c{IQtkAqFmB$!TPOHk#OAO6JN3 zEJI=5G!@ti?EhSd|>VrKe^V0?z7VK8QcJsj?fvlrsdoCnOi2TAK}kq%8w?$Ddvml@ zE;QDR4E33RZJkZW=g+xxIS1(K_M*3p_4UV>?fw3a`NvXrOLDwKV|w&6{kJu>tuQJP zz8Us2E_=fq6pR34 zzC}Wsi~yn2Y=g)vkQF=>tQpQxsmh8SSMD_{wbcy0){@9IOt}SAD*F$`A2oU*-DYC{k`f%JLBFLC|-<@4GsUHU8=b-HfD`2Oh9 zsaO4|x6QyGDrNw|v;QZzOb4dUD~LGudDXYfLaO=dQ^wPyY5-JZKB3${7s2y&X-pah z9^vG%OU`zLGIXO`39)ycDviGuLafcqDkw7XeG`A*>~#N1`bUDHoBT_En97rTxDg^{ zCNh8S0-=N_j3Z0LF5oz_N!r0~J;C;_dSV6#xct0R_}o+4qQ@WIW%d0)4j033`&!fd ze(CWV(Xvt#bKNuc<^vLo7=zf$u5i2d$de&%<8hMbPj3i*5&|ZR23x=FLgL(4pljK? z?dfPWB1t66j^&9j{B!3+<#NZ=oMH!_Kx9v~H5Kq(xIB1(zKxkv&kW9dZ!6vV1UkQmFf8gc1QjMRjnH@C-=J$!(lX`c_NVmcDpVx!F|PTdaujg!nNN~YQ0qh_4cRKkaFm|vm;s&sn5M3-vR8YD{pS!T z_-^^vuC_$K6F})SuM5q-A~JcCaHsy0(9e)n4}lbFyi<{EK7`(*^k~YV3}UC85lf-h zo!WQ%x=mllC<{*6$8GRYX0Y~6)cd6U`1QT?eY^AZgBCwu!K^zuqdnoL4i+;fju${NQT8+yKPdrhI)=^u4KSN0O#^{QfKKa_D+3kv9 zc38HjW1UcEE)Sex=$bn-diFZMdVWE*#br7pJDa4YhNFlwvyU3|hcKg!4PZwEk8Fd< zq5^O>!BtaQ0I1Rs;!$C714YS-D zuojE5!?s%X%@Z~G{V!@YTqXQ$B#*B~T|cLmgUE9QLO*jTzTLbGIL8Fgr=$wXFnCJQ z_|t4mE{KpS5k}d`4-aJBGl87dySE5R3$#V<@+5xCmq#2bD<>0>g(zLc8ri8vv zDS9<&w%_?WUuz>dU0-ltA4rptWn40$ut}jR(A4|~6k+1=n{xLopSVs}D7(e!R(We? zM86vunWT}l!{J-!;gj`?LFC?RNN?ApKvR<0lJ)tuyPfyg#lR4v{^9*`Ak%7Luc+JN zdKiN^S&N<)CTCn&#o8~`WL>yGaNy$23}wCNG7|mBNlP{eeuTK_F0{^l)dTqnI&42Q zn$MXF-w*!p+eiNDYR|8+?4pRc_=1R#wSoaHaRhDJ zOs;s-#L4))LgGV6;a2#^NrW6ljW<^RIYpDZSdzsg%qPPG97MxO4@*ev&eCy)#>h(@ zz&d$9(0`W4&3B`^#pvC2=c(u8j{hU!hoduI?VDvgcuVMGCGc+U`D)oR;t2s+_ z-4zfmAVjN}3MYVlnDtmwz4P4JMUY~-RFqzaufeaU`+fcK_^sH1+WS=fY01@%8nT#( zXnj47H1T}Iq}dT1n1mR_YGVUT5YOnCl70sru)dMow;`Y7CRzqcJIY-<1+tYU_ zCF$++onez~ys-A@uRa7pUkzd9f;TzjUeL34p?@Sn-qhH3`^2B4Q5*|=xNpFwSUEjer=T~&w)Dg#K&O7?CX07#asi3NJ>9*42x z(Q8Z@sbfaHmXtMDe{oLw$qNGMh+e(SP}sQ-og05{lUYZ-`uKpcE{Ya!aJTcu-3?@av&K6Ru6MlDP;AuE}NONVnk+7NA>v9Ypz}+*p|fZ9lKg~ z|Ih<-&iPi`Z0sDJFZ?zjfK_&QBjneI#xiOvLGJ)Xa>*M=F9Q}wqZBUZ5iM8i53gnv zkyvpld^x_Kgxu`vUgYf2=){^dSU{ZT-2qZdpLFfX`k;9ZmlE(C_LJt=k4rxIjwFcn z9`Y{l*IsHUGkF5)nL4$E{RW;Hv>Xpyp8oE=O5nvGlz<@@w>Q4Vy4|0DjK-;qr)MCA z_s0YhkD-j!A}U=XDujFafA}GC)m|2Zqlk%c#kv;i93u84QYPCF(p(pdsLd_fKnRo- zqq+er+-kI8J^J|aSxO}O@NL3PZ*>?Aq*_&Z#}Poalb;pCP<+lMJWdnAxTsdaOmc#7 zr%x|+qj5KpO*Q~2CL5>oBVqE&9iCY^ZXUN{2EnAZ!~WiYWyjJa17P^(q1*}S{E`Vx zdRE0QM(1H(sKJV0VV>8?-4>otapjhj_n13}7nENkuAdYC%c{=diO1YTu;(GOplSt2 z0!wuY%<=nfzC^n`j@2<~1ZrP^iS8=?^1ZqFw63h7zXtq@XFh_v5G>-{yks%&SPMnD z>|SwDe7?mqTCf*&l?cK=2_|U}HtKQy1Cth>Ub=aV7`l1(*nfe3iyrZbx!^i^!%m|^ z`rC1??y%7fh|K5GYGH=>YSMAWEh86oDVCp86*>;DhjG4F(m*a$F#Uhc#N>FYKW-sV zFBc3e{5ltg2RWdyCSu)F;^H=b1``6sIg^3Nfm*a$e;u_mLw#j?g9H&@a zPts_xFzZW9FeYKhe2&PYmj9JxH|TT>>Iy)CW-qF?tSuwDN_BZA?{i2m_JYwTmrbsf zl`*$+n<^{Xy)0j z=`(9vfA!xEcfmR!M(jucHj};EOU*3hARac=WT|zrfo(4w+yGGq&PTs5bM@q8hMkYL z&u>$?6hxgOA>+tly|7@#jm$i#KN^;ZUvpjS>uZ{7YoI`W%h;eTtV zr1?2OqOPE@dv9!EuFBQR}RydL{;N2A0}x{ z3fbnb$nvFwYTqyjQ(Ga{;D8I5v*RF#nBp{=8zP0d?Psba5lV&58xZ&-;GY=+X~Km% zfZT|5|ePenRtYBY9rTJM0Z?G`EzvW9xW-OHFEAkB(Lu$xP-J79HO@ezuR6>nw)=YV*KSxG2r zUTU;nJ-7Ahqa$iyCwG|y{}Up9&L4g+qA7{$;N}&!h%5kTA;}`pg&Iw|+$*)1{d2_BWh{EE-iZ8JE5#q5X=MnaR5%3 z2d6B5X~wQ48_ z)zh5gL%+$|wE@&;flcLYO{=lq_ASyo+1eCF{{sYx4F zLgywt9r_Il0xZ$gJO-jT&5u&J&O{%P8X`8Hz9EZN)*?%yjb5gMyqikAG?H5k?N+3g zGK7Siu3no{l+?$ODL+y%9>Zo``IC#Z1(`{m%Z|SbZMaIvW?%PKI5&7R1W3Hhm-9*< zOhs;Fdv#3;WU}MG&v=UmCbk3`WSkyzyNi`B&QIbJ@P7y3uB>^y^BiY@yb?)ZkgLGe zOu8yj7VbmSQ%NbWPjwtQFm~!be9GEh^Bw6td&;m| zAT-!`RCj1b_!G!m5Tqt%9E7d5`Wr8IR*m@0TC>h-53@K$COfAICf4gTpf1=HEGC8; zpQi@!RAJA_LEEAH@^whp0A=4gJw<-V85-C=1Ei^@u%RhX}4LM6^y zCB42ra`UQJxb8dA+--2YFWAP$J4P11lX6Lcb!r2CK=YrqF-W}`QUo(9X=;*)?``g` zE0kNLV0TtU->xD~0G)^}cD;uabJ$j1S(qjDqAJo&e~RGu`6v_Au0yV}Ac@}JGy|%0 zPBFz&ocz--Or`ZWwzSVLP!V)A?qFr@tYeWlyQ8K#5Z7RK<*HpG-~tDRQk_2zsorK{ zYwcdS%tE#G%z6 z!Zz#w!Q44@XBKs7^o?!Xwr$%sDz=k~ZQB*wwq3E4iftR6Z}b>_)pvcC_t{_B) ziqUH+`hnO&^HxIOARQu+SFetA;<9+MI_G>>af`Co*H&~s@6b~<9NwPw27X}qI^)fr zm7f+W2Oasz50^O7{q+(~WpT;R;3%?^c}gG|i$oI4P8%zPo+rq2(F&&5*peqEdvg$a zuc6x9E$-`*H?bJ!1@9vWk0Ly58E1F`A!^N2=8!4qWU6>Ek5ejb*~w!1%~T;Y9Yu0! zyT9_>`>?O$_%a_>9edBq`2Xo$6IjKh$-NtE!8@;L%RU zFCi?Vxkrji_+X~WcQG#$IT*M)K519oNY9HDTJ|%96M&dAooGM% z0>^DMX9@_jXgxYE{M~460+cMq&~Kv*({>kz3Pj9s({*h7m{n=ble&P%GUc9vAvGCwx9r`~lgvxH8zOW>*9Am20 zu1Kr6QX*b5`Yvh-A#Qwb;|;!KLVP$eNlQ(kN&54aw!P{ur2YdUS$tq(4##;yW_T~+ zV+7&@nC22R3?bfN*#%6l5&a(Pe{aXLd;(L-`UTlO^FZ;Nb`i?~tI){ZPSO&1+y+o8 z-*KRpqg~cw6J5z%#l|#U|6Fi45iWl#MLXLtaq`FTU*kf0q8@Z_*Q0rH?W;RS*JWjys0`TX;r*5o^F_3;~g<^bUPypWK-LHM8o zHlYpl3)o$YXiQ@_QKdH7ZODwF0osEmab@4>U1Fi`?c&aZB`%Yt)_8eKk#?w_`5ijr zMz#vSg;;>!L0Fzq=$TEmpM4pt+LQz?Lket@`zQ>J@~bJ6mKZlL9Xn@Y9K84<{Ek}s zQzn7}+PiyyyFdtb*m!#i$-lL2Y-Gh&yn~R`WZv;oFqxSJ{UqOOFiu8B=|_{b7s|fm zADSRE3ARkb=LGlXo=r-wNbWF}%I8PjJ!6}@JmXX>xT`De6#O}FaMUA?ea#e9vD%hd z+g$H{HwowM)Mc@Ny`iSxgJJlQIj+){UU_`235Cf6Zs?&%Od()TwDC2mL&yr%i(svn zOZ&l%yt(biJuWz{qEm)PbEr<;km!3RD$uNa`1NALcO}=bZ$mWEY7RAs+WwyKsXEB# zU90=wBWC713y|5{Z&cq}vT2SU_os@kibL3l`|vo)zlyUnpq(E7fs}}hb5`*4U)+XoqW(NA z-sCkWx?N3V+yL3#$ne@kDwwI~N&dOQN8OI%3&Cky% zk&SN{g4XK@o7YeG?#<#5t}ll$3|U)S4+}GG`unO_^I#DP7?$J1plh!4`JOYR#iLd0 z$dz&Mme5pbqtdTVpdm-R7rQeZ8jF5ca_!4hzUMB`wGH>ExB?|%tnw8<#zkn0dQ^ zmwi#wJvz@eXj%)lKa1YGThTAMh`xAbe8=Wlx$OL;@$fA7WkOapKOniI#ez$huu`RW zZnQUL@pboNc$``nN(aMV|KKcKow*4#?Q)$e1`^XQSlra4B zC;oAJos{iL0FUvKsSS&!6`56pZk?}El`ea<9|*ix>(_i7R!hi`*@m>@Ts=c3rUEO| zC#c{XoAWP6PlkA@Zo3P00WCfU&2@3kpM{N19B~n;fP~=QJFP8Ast`=K(4zd+QPm6a;NR^2aq<4v!)$OT1N6a zxv>~aGjLpsAx5Zr{VsftiLcW$qnN!B4+-!DO3-djoq=GA4vSAcRW;Q_&+Z88o08CE zOQIl;My<}h;#qbVFM)td)p>@I#}?ghPNDv%X*e@*in6P$P!tI&>c#kb$B76eYG0=! zJxA+zMha;krHWj<=Q!JF?iHPoxS7R6y|9Mi7JVs=Yq!sjc2FO%I-2v2RHsALxO=W> z_cxfo%F}Ef9%`c!Ne{#|G1@X5bNTYcY*$QL*a><#5CTmh|txGme zEm&cdp#MVnoU`Q;))sEMKB_=fGDVdszlbn+j^wDNg}mfIp<91^VY#0*((Y56Yt(@E zHDC4nPunRw9_+`ad{k6uwGAa&a&ZBgNFEOX@KiT>y_BGNV?h)?AGdKHM`Q{$N*T@o z0gWtv@R;Hzho?c#G!w<;Jpb?&o;8a!a4^b$N!gG2@~$wH&EKD+_1n`8T0?)Y4urEJ{dE z9riJsg23d)K%NVY|C&yx_dT=Rqgu@?UZdz|8~2}M6rOPwB+nPRjS4Y1x9f`|x3mOi3+K>x6dfyDPYA;7iZicTX#EK%@?e0^ zwu*^Y@WR(r*0Y`8*HZE!r+Bm1(RFYGOT&c-(29m8%8R*Z+mCPE`31smGdB`qD!bY( z5U>1p2c3kE(2U-!9dY%$WJTjA&&tOvu1Z6Iu=FM|^oH<889$8sMln^Aj7asB)I=VCwgibu85${*+7jm>^WlAoJn<=p&YwXc4(;fqXuo8oD`4N+624J*Y@ll zhQ1F1ciXMIA5;}O(X`pe`^eJN)r>Kv)g_%A%_= z8KT|wn6U|eS%cRX_S6f_4nN?-6g-q|>Kh6jkuGHYv7(v@3xnI#KLT-Lf#)7gghFAJ z9Zy&Fkf^No`)Ds$JOu^wmsr5tJd&83f_grYZE@4JPAWp=(ga=>v~u9Am6TBRNE`+h zZg_A{b%h#OJ|{}0GnsGMd9^zUIQZ>wzDRPOokWk@E=;14#ziKGnEngX{ZOo$?7j-6 z++zY%-RkmXjrXVH>uGNBrjN)^tr4&c@) zXPBQ4R{tjLK0-_xbNT|9E-|Z+L;DJjNFk;fK$PuhSy=_U7SC${<;`naztX9&`Ew(NW>d&HLt?OT!lD zr}6rDw>;@X_K(2g@5;Z!tS7u{_e7#+z`;~9u^P2fHHY)9xxV>uEW$%nM zMSbe({{D#K=fqC_PgRSUIFM1GjA+Ivd6wl@%h~)&#NwgsIUDd{3GyfCFoEiQmG^u! zREoK1bs*5AWcjNV-RE0IqpWNmp}4$<(A^HZF;8+u&4qV9^?daom9N-yC;o320|B?q z1?4fuZj4;x=bJHL<*69m(nM}9;5PlRwVF|94-gr@;&mbAZ{*Q3c4MlyH|&2F-d&g6 zD3ZjZRqc(2x8Gi8KJG~-7>yv^KdH&MBU{wFgT!pya}z%6WX7qFU$*RQiCwln2huNY zbINKH_{+e?@vEy}8^fc)EIcP_h1tjT41YJLt%xaEN_9i7+$EbH{|UgJ6X5fY0{4I| zzuNCJ64BvU#bm@?YGJrTr%(E*B52E^W9ja>Q%KEw!H&Y(ihiS?d)6(&y20U=84cM0 zqG34*`ySQi#EU9&={NGYu7k$5XRPva7PqUg28Jp&$pu)`#oKoAx;!qddJeF+#=>%#82K z{~bYv?r5Cg*V=lI07`e%;*jcuDk_xs1@@OLg&-+cd;fy1s@JfNrSCge@kr{)SZCzJ z&jig{O0v9_x~ph`|V&06U%65Sa- zDSdDf&I=j~v@Ee+#lCuWiGX%Oz6tb{dyy9t*d||f4gKnZgT^N@_1?m-WE^XB>weaP zY}UE#3X=_Lg`yZ}LRv2?zK?6+BtLj(P-?+u{@Bt+C}aQVF|GhRAYJ1mvlg14+7 z=WUX`RvqeQ&FznCd+GBc_iti8kBt}a!U#_on<%@az#Akv561N9_PXwn5FYXuV6{$`xOvd%}&1J?fV0=&E|i`7qW z**^=T`>&V%$x?*I!SLk_na?Z&k_dJR(<%xAwvY7nqg36g=N+QoUb9yVKZ?Tlv*Td> zlHc%|bT1pLMS~`-T>6yAj?+e9`AMZC$EOEzKjG`;u{uD(edT1C{v3RUI>y&C9*j)L zi8i{QxBf?NBY32@I2Lx(7nN(6$>E>n1GfMZ30$b<&`}fgSA>wRtvOboKq#rlCet4Y!<&1xbL~#&Gts&ygi)679QbF=MVf3kYvk9o) zLqn5{K+f605#MGL12fhha};CA0)a$$$&oaTZ~VKa_i=#55}q&KOQI?&pr&f<;IxsK zMk4x^qf-uk=C|-bo0~p>-f*iE1GJkQ^Ibpf^1Yc%IF^3R&q^8x?na6;xnJO^tRkc)`7j+2Kl|1&8bI$L zvs0^LkmzicJEEp+rktrt&12r)W*9B5;a^REVGsp9dOA;dOfn&*C(n(#5b%Y&Kndi{ zy9xXPMa)d*gWZ29k_RMS7N3my7ieiVI*JLXj%~}W%otV(;k7!|A9gMNWZx87ti~;$ zst!t7*cS{fo;McL*bfFRLnTBJ&M3V)^@;iqvqe-22%(%*K**xPIts|=SulNrBh@l3 zqck@@(>^1|Uy6HUaDTSURD`o{jDUpwwyhP0PHb7f<0ZGl7hyCV=M+7B*T)3MLd2z( zVM(T#++MSAIi(Ud*e{gvM;0AS0|ssPlA4x)jqO)&E<06TI=nb+Il zrxqA&bTf>+p8dXXdmtdUi%#BSHH%K-%R4w&J#)k%w?IerN423&2O!v)UekE}3fm=R z&064l%)hDjhhGT700ZdXq8W>#LzcK8iz{e94 z<$xElkNfjmgEz^`cKP~4L@;^k(d%+xCSgdh=v8(b9bQ2L zIfx^Km2zxfnL&@xM!miedhNg@M|o!}AOdw1)WXENjj3L_ZR9VifwsT4gY~*v^|mK^ z>dDUa*%+f-BT#K=z+#&!h#79njv;XI7n7G#jQtk<)|rJMy+BODfa+aN4@2zY$2X&8 zn{}7O2$jQ@(L#_?rQEo*P@0_vU*uk(YJNIhvoAHh1$|Hie^Ua) zl45?Q$gF~krWg?1+|K}gvCbJ7SWJcL!ehEG$68xTwB89S5>2j zI6rx}m>y+Q-pNOjjuJ3M_;Wq*J$Qixacl&$Y+`(fMA7+!7R@d4)hX26i@JTreulnD@}Q27l&WY_K}WU!fLY~$bSX?zoiUD#sU z;O8GJGhAkH=_|JhX3t+8)V1Rrv|By?*>XUFGeRfl>EvZ5&K}iHu<2-Iq6(w!s;Q=d z0suAWe{^vbvec48j-t*Rl->8Qvd(8LzDd4Qy*1@EbcV_S=T&7FMu; zr!OFX@ouUoI`5VH2&Ri;dw}ThTxR&qiHl>!SPL22ca(Rfz(fm}-_pBmI=b$38Uwl^ z{MCf`dqm}{b`Q1Rxe>~YKhIrXma(K4CU8E)G5Ma?zS*^`Jqmk!K{^>ZpJQR6D4;>+ zn%4b1`m2ZNmV&p>VfbdXo$Z1n;fu!P6T&ChC?ly3`O9vPH|+w^7dBd`unBz!&wrF# z224mcX^&Wpe5k4r(bG|7#4<2p*)m-Own7nwKCM?M@L*}}rB*M=|J-LIg+*_mFao0@ z7-agehTA0oRv%ytidC$ZHgjgL`VBI|pjYvO5&#O>K ztVKu(BV%z|CRXzeRC!sTu$t69IkdwqlPQ>}RUvR^yC(ct#NP{9j_7&1PfdyhK4rKg zn`7X4z>^U|?(c-jXa-OrY21F0liIso1?>2yZF`Fme4Ls`lT=t`o2d`iDbmh}hffD8 z3a9|7IIhcqNl08L#c4&ru>cdpfIee9@8z-)SdpWng(bis21rW+S6)JovV4|K({4%u zG-%R-azovjJpi-{Fq5gf)Qq;RaldKkGP0XIoGg4)kwpf!t8V5?za&dA`${}IO{}do zp&zD?osn~nao4F}*}aB$Pd`V)ai6qHmA&GvnD7+z(HYm+FWya|kvSc}V5mKo63G>t z<(#X49OLMmt!9FOd1;HQRYUywubmyv-$-fsR5}Pakqz}X_cxK9KlMlyYuneOJ%tHCL2XI;z8qQmopgtf|-1XI+PhMC1lGeXtaC0pR0aYkaUuRosP z4WpR;ad`e7T%H}ZYAX%fc3)$ky{T8sa|K=DDO;f;@SCF1cKB_#7Y$mRQ=}OUXhp{g zfR)SE)(32O&dS)7A_#bHp_twbu!Tm4z&@M8k1#80Mvt2I15sKM7iGJK$T(h~-uMft z#hUz)OQN@oY1L~P$=gQ3PPPfX^_)tdqv&ij-5`I)3EMrn`1j*hn90c-^gL-y(0RV-~n5e z*@fXU_;@D%BSv*Ve}fg5CB2GkHm{v}fef$F01@X4=Z;d^JeBOzN82PkqCJ4DTyKR+ z2MNm8h-8l=J^81msVc#TY(MK;01E|qAUGD`Nqjb<0&1Fc1KFJ$D*Z0WA!Z_}4r=kk zfUb;sd2@V6X9UyBSFCxG?R`ea@Llw?E=>_P3eY>8Kc>{3XB8Lg8vEw;Z7YMI!|PmE zB%4HAK_2!RhGhb0$L~xjFt|d2spU2?ba~0+^!C&7Ha4T#8KR1%BqpHs#}>OhNF%Rd z^julaK@xVPz#s?2U61~9i{3J)65|h_b9^0;zGdECa{VdY2sgRb^_lYQJq61=xl4mM zfpnA9z_CyAjghU>vA+np(!R$3`aS(pOmyPSIE0?h^!^OA-QPboE#t+vR;yqg z{(%}}n1rK&F94fNHd3n&0S%L#C>1-~;m0Eg_b-#@srN^NvbL?$_d_F|m5BupHJDKs zyn(_b->_>TVIoW4@TGClBMXCkrUtPl1yrQO>q3r{v|XwW&xL5Ytsh%;Q2MX26G;uH zSMEpqK=y4}kAuct3Hnm?rTF6R@Idc9ex zfuaMJg8tyHy@*!H9k7Qe`S}6kVJUM7L||6Jvw+r?>jVddEK152DN=>XF@mxeDfZC8 zPKH?BYUu1w?tluL;fVe@k_of09Wfwo`{%GB1{z1f$K`{2@(*V9;2gvI6ItWqytkk6 zL7s&dA91*c7Ldi(+JfFVYy>W?*;w5mr#`G=*Rz@CWWT?KImR9dmP2BQVuzKWDoc%m zJv$B@Y9VdOte-I)&P*uISWZ~jHb5kuU&%jRk1L)@U**@ohpW)b4GZN^?``k`XwpUuw&NaTTjpnh&S2U4;UqRFxxorHFqc9 zD9&j&Zx!u z#l$*2QX+Ct5|lvNpLTq?~LT2kB7b z+nfHY1cJD-Y&Vk%V5BwdDZwNLgNqiBc$nu#TSTb6((08(#Y{16Nadk(`z1J3RC*9l zWq{5YdGg3*I{jaK^aKC~C!j({EW)y~Tq=f;(YvTLcrRg3!Z!_9C1po**IG|v)0s%L z<|BO4OlyRWw2{$e{CRN=!*gh6y0Hh!%Rmb~d}7&QV>f?Gw%5lnT2pJ+e9LXiE&lEn zc0ZMOi7G%n|L24#rgW}XlffVg0v!6oFOBK&3qc3TnXb&Mn!2cnSr#ci_w?{)=XhM%Dic=PNaM39pJ$GKxYcMs z{jfA*bWmK@ut)k@-J3$+>ChWNx-K7)>!)?h1S&tv{Xfh{;ns( zO{@XHTFpuzgrT-o+PK7R_5u;n0_RJhgL{}o=Tm6(Kz|(el}}u-Hz>n7!!Zb4RF)HPDCiW^tUZYfknNEko-0Fk7y4 zC{)lx)$Wrc)^kBkKYD{B5tz7ziltKukbDPmc_4Xik%=!QBDXM0T70+?c*uB2VZ6>N z2NQT<2k1b^N~up2OWG9=(HMBH`Xc>gZ3zk08A-Jkn?iY2v_bJ-(nJLAYaZ>O3~$~j zr8NFY^wgB}qg{E>rNo=@T9scR;7H&u^!s(=Z8DHlATNZdtO;3x(51-Ul)n@s;UOtc zd`t<^k%58Jl=xH#7YXY?tb#CA4!9{v)T=$Ji!kTpM2QnRq$QnhSENw*Rj8iTo+f|I z_TqmR$E6)=oGbY}WK-)8j#CSZXt$Saa%|dfs&*tK=Teok26bIOxq;;WY+UD;MT-Iz z0S_+Qx^665AR9|=^?XtFUTxNP6ufvNwqQlTc2_1pdF3ZL>I2HmCDQpJWR?vjT)-8e zm`^Sg(8p+0qhg_zv$tf%N_+ZK97Sb2b{K?_tjrEKkK&NZxyG|wo*+ym_^rlM2)jQw zytpznYwaU;mb!^^EeC!}yCG&1LpQ-#QhTN~e(a=HuQ#gK?y28Al^>n8imphPEw|oe zO-XH+pZx?x7tx%5oqA7|o3A1$OKt3`YMjLyW<}R#ix+JL7KHf=j>TuT3*YDz%|+kA zvDrQ)mMe+77V7mruEx(GpAjn`%OA44f4#&hdZKB<5Y|VV?%7G@yu7||4_l57h25rwR-`Ys7}`9DM*DLI=)$Br&2w*`p)XY*0 z7}O8HLN9L$`{ePSdUfnT!h0!Lhz1JGcu}5D+(Lg6CJ``_X2!7;WDMn|R#vAsA_rK7 z-!Rg_Bq;i()Paz_g)H@G2&FTnl7VNX2_Vv^2ocL8H7?w{GNsNQwLpwGP7Bann;6YLVzyI>U2N_2JTq!4 zlFK`UG+NI0o~;&xOCtF1jMT%}@5W3#q{JJq(t)aUpcR%%)$S6{Md0yfVd(0v()d4g zdT2{}JCa5KjiF^SN+={V5)tkPFVGk4QRiACJCotuLEKlW>3MV0GIM^4ng!6r4@=wi zK%RmV-aORoSHB9LVKaB^% z%kL=G9+^gfBNG&_-6m7h6P7|L`Ya0KsQ;Csp55h;)r-N8>h!M5sA)RbwGiRQ`(C75 zK>>gWHaT19XqW{{TFOc93Xj$^`O;2>#SE$A>$3Q+7{v(4=Q9?~H7NE&v)*-5#9q)G z`+FJZ1|&r0u9U})jyw^jFW#3`NC@$nCNZCranIKiIoI$m1}BdfTP;OV*;C04S#FcZ zU;-jvJ_T&KAf6-c-R!&c2S^iLygiM&-@>X#^fUAr(z`C3^yxeun!_NKt|h{)g`#=? zwGbH7-QPmNix>^QhdmGU>V7^JsyIqBw5A4^?(iU6Y4K1u^t2O%Q{mMm83r3wSO?4v zDtei!uF31SCCk@1-?ZQ48Wa%4S`{P@k~R_3aqe0m-c6bUZ0Zc0Cd$_0WzWB0;&m2K zEo2yGnE&(O}W6jQm0D&ish?UewJ1qqJ%e7w*Q3G43J+O$|RChl|+w^4gAQx3@K39 zWYRT$8>BeL56H*6uxGwPHmf*1k#tx(*KF($eoHQ=_hi=8d9o%F)kBR-3~=<3ZrF zBTl7_5;-6zv>DvLK5H}iUFrsm*;)68Z=8H)d+#N|jRVp&`~mX;AOnK9Dv!u4>IC|$ zzg0$~^}2H4?bVXngr0nuq9H-Sf9ZOG`W39@a%CT3XUvAG!D!AaS><&r0bM~-`w2-o zTh-iA70K1g^g_GKK5B4^;v-F-PZoOzC0q4 zd~}pt!1hg+CJE?QI~g}UrpyrbRU}&9#2rDr(X1Dyc|bOi=GlN*t-d)KycK|nT!hh_J09GttxNVk04AZpL)HcJQ%W2K9C}74bkMB{F?@ofx_J7|qtvMbabF;nP zzrVeHzlRCpx#}>8W=)LYVA=PAXQ3Gk_?^Kk8CNK;;BH+-E`^Ez;2s01SKfPP0)l zJ6Gu*Y&J=_JwNy+wml;azZIV2{JcNT{a)?A&ujg@2)4gZ{NCKZFW>Y0K5q#=?flM1 z-9YO2h=PB(I5^CZv0+jQgr+;jW9y@0!BMF7Rtj_qE}7=(up&lXliwJ{$@ShLn;=%N zrbuxd&posmFNO8}8Q(U7@2XGx?;`{6kM50@xI!dWuEV+-?!B7kMSp*ol=3%JB*gO*kyKSp)(>yNraG4Aumxe?vpR@ zBxE>pR-Ci`Ns*E>&fa*hP+^qe-Vi)#a*;-trm_Q=LlscXDSY~#(Kw@Rvh6cr%g?T4 zA7zInL~b<-YwG)J=SwZd`$S9zf$V4PGaFt5f7ze`!x%}VNQVuGj*rsk-fwe(t$@5Q zo6Yb2RzHVtn9r9mRunE!{{^^p65S>E$H*EXtkM$+h>xTOkAaUtVdO{8NERj?xa6ex zE^2kSv@W;j#~B~uTBqw4M?V>w%^ z_RYxD-4JfGffKGS##kAYGBo;+y+Lm8`{k$K>+`qG%B@20$MN^gW!(45_kM4?4_s&K zCoN!o(2@uSTyubPV*GHo$n+E?cxeT(W zo5~nhpBXP4QeTTmZT|-CDVdck&}AYVy)&n%>(s-z_=OMiqG{1OZyYh}MC1uJOBLUj&E|pJrgTc`->SE#rl8)Sw1YX=^^y!rE%24;3W49g+|&FrF7bJy zwfse~4{(-$=QXi@C2~`RikYR4*b;}lRV-FoWfou#`q>3;Uv9g--yOalD)_#=xb2TV z-If-1!=d5(Jw82tTebEYZH93A?%UuOgYdX0#wn(8Wl~|5i=)z0BsjePS_TJ8_?Pj= zVjLtr>Tuekvgis4MqfUBWyRHGYQ^z6duT#7ty+h+BzT_`HnEwYbecge(NU?ei+KTr zi?UAcNLCh?4Q!c{fpjr!)nL=_O>SfR%?)RBN_MpHblXPYWBcuJrm#kkX9TaMAEoLt zzq7#2V9#N(@2-7{^G$@>VvPv(>9xJ})E?%wvOj9%P^5K-muhE|) z+`9wQah_dl*TUyZIa>`Y*m4>D66&7<2(iDQH<(sOr2l%V6Z)CR&FW}NBT_K`!=<~^ zH;v8p0r(>rZBR=D<~qm*M6<|mbXgSPXlY7VD};S?LBm;+*|El@I)@2zjWD9nO6ZNV z0|oHdG)fBJ^9D?iK6bF1Nr`%-L;D(G?JuJw;P9yLfkTaOeC@nrnS3?_EV5vH6kULP zU%2zk8~kZO*h#=saFXi=&xR1d1cPbQcl6U-yn!ucRzjD}jl>Rt!#X>{YNby|YCqLk z0A`EiJwwE$-f~+h=dd{qKq(yda$FnzgM+x;`z=kU-)`mGdjK+4?Dwe9x?IXa1Ftt- zSql)Q1vWYeP)8V|Y@RD!omLB&4>|+`vzaA%$nOoI`{#G`^|uyzYnUBL86gx3uN)

B1WHgCen&(9Zm zx62Cp@hULJZ3A2FxjQqtl}Vi{h-=SD@BqVgWzHfK^VF?JR-XZmF(C{GDm_}DPTSYsQt8<&>)h4opLRp znmm#|pT=e40qvYU$Vclc_gn=o@3v%3&Dl1nJJiNB(qh0%4vaIy?V)!o6DeZ9Ud|Gb zTsP6{%OU~Xp*57oU;pM@`&>&tev8Y_EL;2+i^#u zg^3UETk0(B9B6?7Wmfh7lsqmf)2Ww2 zsRg`g9r_xg;kAgtO5})>E>j+QuR<3zK<7~@;+(%|ZTefQ>2cx?>mjWR8nXtdMutqk z(IAty&m{Al7|!JEGT=%Ss8*XEPw9%z_Qx+BayfS}?qas2qIcGTX8hUcNaQq7Wo*CE zLget<59YQhG7jX2u|1C%Wg)U`b?=n}xnB~48iUhhZDK5I@__ZWmNlZ=B1Uy!?Pg}+ zwlor;kp)&A6t*b(G8zqiL9-`U?TgM8K$f~(lL?*Y zG))q87&3;uETV&rVDS+%=#=ESc(A*z8{Un^kb{0q`#kn6@4n9jK24fs=6b4VsoD;z4Dv%|LKdbK(3L`^7lvhbWy&bcFJpvoluXC z3~6RyOCB{g!E=`WM;)rT>(AGg>Gto0>?%D!1397o_zAwO1{b7CG$wU>!)aIm~6ST{y1L&ZRu_asQq#xP+L@lG}&q>QY zVjyo)0wx>piyC@WvR6f6q~kIfrS&p}g^zEl)1J+40D9eh-YTZFDEErSNXiBMbt^u?*W@?;O@71pB zbZm#&IWDsPmsz$uAx~{G$02AHiQcTk21kR>*6#%AXCC!}Wf!sY=}~h+LKRXW=AQ98 zKrB1buW{IMy7s%SELCLU%d`LH^!g5ddlyIK=NoWS5}Fp+KRAGPx5yY87wmi(q(Nr3; zhTXjq1kOIp(e9k)c<88sOws0ID*Z)G9-xj%B9>OJNxN@waF|%u?z9f1S0TW(>wGgM zpk{GMLQBH_CRpa}5J-}*^gE!nSvv``lh+M&J|q3@KV*AO;BVhizW)@o+&{h{X`r6h zMbL78`67DZc5ASAK!R3W#lhFsZVxp=l7iRO*SpT1pQgUN3}|aeKtu3p24B?uVg}tB zAsPXQEjD*u3w(axan2Q$as*|M35kfX9m_{7o8HMp^kMBhYB!~=89r3l0}+m%RYl+> ztI*$P+4P}>AWylWVM_~;QVe>LmT*MJc!a@o1yJUR0-#or&yo)VsfNd~63D5TVL|W&8lNdXPk|mPFyWRH$QQclP7wC)BUvpwn7} z71kCoYu9omuj#b>qWdOrkFItWgBfb({38OV%Pty{Fnx-L}J7BrIU8eE99 zr>E?zi<2{_qIU+zmKP5g1V$ndvM{)6)Shf%$>N;T^An8GnxVDjadD*t`tpqOH(BK9 zRzTl>qW*jpr+(X{-}>{DI55|nK*Elq?#5gj`$k)qFp(G)R^9=Kp)>XejWRJ2>YR?- zO9i;2Y_vIYWDJJmh`>p9W+rr5MTTcnVh{>Iigrd9CjKo>K36ig#a_Bi+6eIJ>U5&cOgT z-Z*RaJX4$V*suTXd|}NuJu$}ERG#W&4!^dwWC><@fOZUgX;!~EDtawLE}EhGi!7qG zDWY`)-PX4KG^6PAXGNaT`xVRuyp|3bAY2C2G3c7@8-N(_WUTT7o78>%sG$hB|0x@_*;*u zxep{ciX_IZx&PPKapqojR5okYlBO-*w<2u_piM@BV+4bn0Kbm*0BcPsG%j*1D zWkvH?cLS|=j>tBz8$V|hwP&d^vf8@7CQhkKNQ`Zh<@{*tyTyACoO90T=IE{*WM}6D zTg2=S?=aKL3UOQCBXZU+$7o3jO%!@9It3vk5VAo4Ffo)^Rz!11O>8$qya;QvfOF|~_B{(sZ!~seAY%?`DS$F>` z=&HmyQ`Zw6%&lEreBLRk(ffeL*3pOyiYsWD^Smg6#3JbGoICstI5wj6Sehqs@&WMm z2D+T3E!(;Z(GX4Db!EpWr{TPnd&e}TF1uJ=CeVUU9Ehpxvlw`K2GRVX@hI!d- zw`ZtznzU~6{FI+XpzX2mu%0I;Ukijx2t6_AvWhb@woyx}{Os7HQmIE8N3dLjwL40u zwrxOb=LoT4rg8YYO+F8F$_`P)h2*>GiCh-gLw0YyO7u@g4Mg&N(0oLZR$1sDvvZ>Rvvr z8}O#=)CLjtnsTjASXTM`*RNtYyj^!p;X8PH6x0-j)Fy$F$C)ylvt|ZNY3RbeK?v3i zTH+Z-bJlHvK#P!3FRZ{F2L*7!75g&?s|m9~eKkE}SwhREFjyV#_B{ZQ*1s4OIWfA3 zV_dw_+G;mj-|4{#xBH3)+vxZudN^{pZaCsVdp-w8gx5`Z8Lomjh)Nz1rJgi$_vrjj!4>^?&{i^)e%Ue-j9izY|>$Rk3yTMv9Jb0uD3!rqnB`NyxF> zVPOQ;=wP5l<<(^v5gedjJU60UriB3{O}`Vj02P4FaIYR{r zLV8;T2C5`N#>YUVAiZn-_?#q*1@y82cqAXU(C;?NgrXF%)!(jQ{vC$b4%)D+wnfJ` zg_at!$p~yBH-nw$eL+?SJ6-$it~)Tx3eE}TuTQ9_jQqZegKoo|@_3KtgtUvn`#1yc zkjrO6oyjxEu~ca+F>)OM90sX6Bh4nfT_3?8;^r)ICV4a!a3U?chr(X-DyRG>n2m_g zI!!1~GtxRCeR~rped;rLbX$>MWuDj5)L^Cv&(Gd#Dd5*vdEX-(ISZ*%mvMizVMJwS z3&pv!gl6B@k{|_HS7;PMh+3R zJ885x?cX35v{fYS$l}ht&uQI9kwW#H1(8v>A*C>^w+GI-$wHSg583f9U^Onmw$z8| zPde|TEC~09?okB!+9A8PXfSbCTFVn5)zp$N7PtZgDbhLN@wvBvD%l|(l+B>a8GJcw zDYBqBX;OH*3Y`$TYL>jrx_+s@X8~Hj?{?EqG61FK+Aj_ z74>&nMN%W0B@3wVQMP(#6;PV8Ms+Ia=?T@cBpiqcY}iCG<(J3nrI0;C=d`;rQ-LpQZQ8CWYvMK*9wQhKlz z@QXO-ps;S)Jpka88#DTypsocr<=&!KZTA=)gqS%@y;FX7-Xl0aYQ&`yzknNRUa#&B z3|e-wyLY(bW93aqBOn@L|YU+&SdD5~b4M@hN z&7O^Af4eqoS-CS3xD46#M;-S3Lm-PQ1F7~|ME|k{*6F$mgx9u5KAn_c?Eid{pd@VG zjF~QVbme}~=B%L$L-5u1ac3s1_hVw>UTIUiu>IHOJOff17SK~3%!&?5VWdT!3F~NJ zL8@_D=^Ehytmr6MRxq~03`kHu&(bpW#}BbXr>Vixw+;30|0TOVT_gw}$zI1%OY7|7 z0Sav?srH%3>w^VzyEXQJOUi;&v3;P99RhbPNJk|+Da_x>;8Rk9XPGxUlIQ50yG*D} zJ=pzzA87u8C*CmFO2FRsZ}|o(VbV3l&tb}nw29e$*`{rG#aZ3OIAOJ~3K~!#8UR%58?0g$^Q`Arh^(NqCDj?UYfcA#+H5jbS8)Gv~R>w1*&WDnK=7q(Tfd3(_WdHYJ$@LgBi8?_v#- zA)`FNtIiJ?NC|b8j9q%uXITp9eZge&er;<7XJv4=ZMN>j@|^g-szMn7(H}P7ZGG9c z-cG$2@OqRHjn$|Z?q!RH?X(qi9dazdWTi>!tWss<>n3wh>wDd?$O-kNXhzKFGfF=9kR5IqX3Ho=ql< zwLMYSTJB*-gnZjLvL(mhmB|gavb|O}PKX4eW!?ASLss;ZE%yZQl%%!hRzbBkR3OG@*?c0o`&M#+ zb!+WQOA&tx5F7HgwDrSyUNkXEKtP4+^B-FZn$O3Kj#Yjf)*S@+Q{e5uM|aQ%<6yTa zMkmFb;K2!r`}GE#wp}})gvDIl^``O&O+5w*_TrMqyM~HL)lydj?tR&#ZpSSdN(>dTOg^S`WS9 z9G;&m5X%xC8HQ$%JuspKkU2~-IANbhLL`I0*Dx;$-V@dLkAyepSqu}K*URbRV^>V3f>f3D)*{VR#63j$zLFI&ag_A`5hGoj=R%8axCsg@?wlj#*}qdNr2 zfgwvii445H$+pU(XSWUYZISDqPC|S!Xi0iuB zJ;6Ee^a$E^AF4|bh~vPa{4dx}@;hZ)OiGlqAScsWKo-%;;rTIxvGwJyF`=n}3_eew zl3Q@Lkj{Mumew{<*8Jq>K6a+VT2HCjPL%9jU`|7+ZISeRYZkmw@Ls~Q(hjGp3@GE(rRht zzg@i+f+8A~lsVU3G7(Sd+V6&L`dr6AvQ&CnJs z9-QiapFwd=cJ=|RZj2DFIF9;`KFHWP>3|Z;$l4xzr?y&V-7ihj5yak$bp!#VHnB7( zk~Je%zMg?ZNN;N^S5W5Pv=&D##f)Oi`uVy)z$rO6;@*v82+9J@KYMkLHpd!Bkfv{ukmT`m9sQ^xj}3qU}ATY-1&p0aKL zw?Ih0qK{(70(C|RPzNQvFYD@3|G*r#l8{FoaUB?teCDhj8l@hz((k6=ymNccg1`{y zDyxH1PZR1zcy`iOyBbzoBhC5foC$L_A`g#m$IdzTdx$bL1fgu3+eo#wij}Oo?&8Or z)1q=(Wd0hGkvM^^jaq5<0aB7G?)i#fG7m@q`zC~vzNVbd!2kLWASG!h`17?9yQ)oU zB%ox>;zZ79?WG?~qSx%_CvrG)d-%P+pg+MG`M-Yn``QPae)%`hJ96fn9|WxcgtA~79(IS&vpHP~YPxeI8H!agXT!9Z&fWi*9lUz=eEg12R; z=A={ah?o*ZQ>bk<&@6cE`$zlZ7-76+JnjIV3bb}PkIcw>Z*)qh)!lG`%Y{YZxw5yu zpx6wRk`N^pb-t~yZ7BlLJLz&0;kvJHz}pq9b#v}qno-9s92?s*x$_PHEP)+1nJ{u7 zodQMc)P*=J92Oy9QGul}^= z26|I?p6P;88*!Aa?>f?Tb5?iOjDfGTU2v*pEx5996@*J$eQb14!1pbcw8V~FO zwDBHkBV=W2XH9BQfwQ&8K-VY}7VL5;aH7WYo&Z`4^3Ohl&2tu+(3Xp2J+}iw4W;yY z8qoI=5OJY>+OCvg4CqEZ@yJ=jIPP&(*t#7$&X_*-xf%AAk^~^uaWY7Qt!e`Wf0Z_N z-?vLJ1Q`4d4T9bo*=5ONHW2_%VLMcQVvvdu)_v~l+5zMR$hQ`N;7lM*I@oX6J%jlC z07V@tuhFssEPO6}y8(ay)?mAUl!qw`KBXki`SsQZl?>@QpnxJ8jw=Io^P2TIJo9cg zab+Qiee@BLt$!q-9oMBnM{w9q>a2DpO{qcItwa<+V@o%?J{>sc(cuR6`wZX7iQB(5 zd}qFa5r7&hD=Ll(m35tic>(C!P%no1wM2?%$WZR0`jkTIWBZzgFIj9P_=dq6P= zGAEGcRtW;Sp0Gf>qe^&ScWaGGiWq)cQpyq;t4~E=W?7ZqA7H zfEJkX@I0C?BC-_9MTh`WLZFV!N3$rhmiOBMaZ+fI56_TnRrP5Ct)*kO7pGkjIq!>< z2b^YqH(d)sUo#3&)$mHKWom4p!|~m!UiNmV!{>(^TB79RD0vXSQ`^Q7elc@Z4~|O! zpC&2iD2f_cio{;^U3Q6FLUZ10w1Jw_(enhs=l)p!5fLa|ITYaVcL1&KJjxT>$(#PL zFQ^jowXZj~@;xey6y@AZ&)DL(RuJSF(v&5kGiA{HA{;J3ck;S|zWtQ=+UuLNH+^|V znrHB~2_MFY23l8}F zQbVt$DO#=vLPJN@>SbS?(G#YQ_RN$Oc~e`jd291%x{;-m3IXDWX&DITq#5^vGAMui z!Oxi!OHo>~+#W@t5H%=4r~anjF^wIiI7IY|mz zJsm4SP!6@~WK8YJGliCwNE^3E+SDRyoxfU<<_ zpIs_du|f%_*^g)dVk;0B;-ztz&OO^wByv0JY+GsFRn zz+lNT#t8AF4D)EKRZPjrwWzLITia*K z{aqO{$etl3d1STr?ZW`c(mcAJI4JSx=AhN3o6R)9Je>fJxi9TA8)wd_r!0ISg^(6q z`xZex7?KW<`c)wTl{vGkfsXTSkcmE%*xNw}_K;`&LJ3kt5O#JC6!{ln_$=3?6ZE&p zMkW$gYdxQ!57SUG655)rn;>&SXugXA8K)?qm?<{|sr^jvcMh;|yJ)wF!!pp1K7Li+0krpJ^V_+t#<@z}aRf9b z_enZfIFE-K^xiU);N>Emt!$5)y**~a4IyIXTdB!|qiEybw(sB@bcou7W&^=KYqx>Y z>@54P&IHsXc6_#*1gw(>XGr-+(w1_7lrSkdUbpU8rhL*)Csll@j^`^Nm@!X+a860O z|J+v9=TV^1Y+OTOmC_?5w1r$(>f{8Z_5R%WZ;p@cpaXyG!P&wT>ysnA@m`Hdm3nYq zH&9IqwIy-dO)!H)$a4mtvlt~y5ZuZF-v~X9yBc46uG(H_gp)YHXLXBaAZ`U1`o6k4l+R_w2=ZDgyJ(8Mun^ zzyRoc5=dRnQco8R?aQRW7(Lgv32eyP5?URq)iGKf6SG5biGfNc6Xc3(B=ae=%0z^A zMI~mUUJ+o9Hdp08YcYj_MjjG^S?(CIbv2M6S=tbYj_jUP85RPp0}d%;acTr|$;eQO z5KU68eOZSd2SA({lZzwyG2>cZ{J{iyuyLedD}$@G^3vz3B_7fiZIkuGgR04oYle4~ zdAx0)B_X{fEoYMVW-R2g#y6O&b?G2xC2C`>%7<`&R0nV96aG7N>&5`zwh57?$--J%u+V+k^vv z?C&GzM0Gnz>QECYSy^omS!Z{Tk3Y2%r7oz$ZH_n6w~>rHC>?g zPITJsX9$rUgo^=9&(sX?*%BiO`5NX949vvQ8~z8U8PJ}DpA8s@Q;3|pXfEAoKuCFf$v zGKb^Bd->(~lbmzl5ghbrjQ-Jx-@S-e+@9J>?QPR^A8Vb1Nowg3Ytjohhg)m5>SaPb zPXGh?eQgR)&kvxhLl;)ZtnBUT9H_u}#Cb9W)QBQ>+4CTbzZ%WXk!NWi$NDfLh%=&! zF9l*3Czyzfi9WAtfvXCnTD|TDjNVB4)d&WuGy0B^O*0rGVb%i*JPXf%c|rMdmdxGv z_ioXot$NnLkQFs)hDGaSJ#zzegjk2pxfyA}ppy)}$sjt%MVPB4qn-dIH)+Rqoe%6f zSpow_BovV@qKsmoLy7J-235)4?nvV9&EKeCEZVHCsk&p#P^3wno~@OiKXPj+uFkjM zfgyWt_P6b8oD78}(=l*4_$f=3Ud7AWWgGcCOVIW-fvzMDCmw4SGPDSb$d_reC9663Qh3 zKS=eSJmYjN;=FIopt3+7Y2SF#;GYLOEXxudX%B!GH{gsPfR|Mq`Vkofc)L7amfnGR zOM8UJ;breQ z=kgu-J~1#Q8E^8r7-fiaFfUhG&l~p$p`K*NR4US~w%|goz&6~hbt=FG(?2rk`>R}Y z-H@&em}gnb?U_7Zz%Ne{p!)IZHRt1cO+ir-&o)|kSspr zaJ{MW5D~X=gt_8D)XJf6_MP*4ZMKpHYT$`8wd`_?$wwzz?TtE7NI53i8;V z!+NmR8yRt}pqtv25kYIi(6w=Rax=Wsh{)38Xn5bQd;Wy+@f~!ab3n*g0d+WIuZ6$>Tpk2s;vrkf*j;Als~%Ab>+yM$*6^qCl26I{?+ODc~-L(aduW*lTE3J$hG z{DEC&vynBl_kr=dc(DLs`6B^}4>=6-2{laB>fnM7?ruuj$*@W|{_woXWvCq!;Oayg zN!ADdenr}(FFIFYa_6tlSpT0FlygRY+nTKxNTWCn>Fv#3tjlD{S6?oytgBC z2>0YfM}fs1YJ^AwHWVz)#}W$Z1&mH6#QV4=Gu8)D)IPWZYOJU9j z6p9~W2EQgJ+T10Slbkd!dTwUel0uGrA>Ee%OrTPweOj%^uLXR~BJV+;b_fwGd9fbo zr8KfbcThsmG3t3DA-yW84@TMfl|0Mk;E$BbeZWCx^HdgVIugd+Ge`#_LkrlrlhRHu z|C(*%x;^X@jP_KjWSMntS_g!3PAIdMYLsz34ErZ7@0if9>(*H#>VR;o=7a+PRq}P) z0#seelZqcH^xcAFoC)jmgc(47+Z-X7iq(3s|Ho58dCEX~!L$|7&o}V4fxf?rle}(i z%}@jm*M=JLc4{?roT#<8aibG&c54c)*kYS0d!HJ#GDO@XkDb5pi>&xvn0wskC;>Pe z6I-8kEze?N&K%&GI`Yq*qiv44%TYK#u=fejt{v@rmxshMjaCHIS2zxOFX~WRS+0Nz z2ex!*Ul|7uiL!$eRS`vWD8YONI)&fcJx=G2TldxF>juh!& zn-!j^wBcFvfDGtgkfBb(cg9#cX53@8-YnqIb9Z#c9&T7S0Ua@@;q$$eww(!wqi?wuhReeSB+vTwkYAUH1eZUmB9nqzs=l9e`Cz1_qE1;dpmPXfYxX0~TPiGd zu#pc&oev($oZ5@)w|Ch;J2t*sYrm#hb6!J;7o09_eL3P)gPV zxl(Y3xp%m2O(eM=hRpM7?Y-lg)j6L4NMPr6R>vYZ4`V-QIc~6#xXFNgCRr|5ATNx( zs4k18cFfWmu1Hx*JrmX>rCigp_4m0o{g$tr^t?VL@Y6}4?zIZyV_9WRdqRR`t*8tp zE!VL1AeL%cM~9gZB3rhG5*Q;*4%SIZobs(*n+(-L zV*k)4<$Cp$P|s3tKPMo)ZvaAB3v0lcSseRQLYWijG9lO65=Dk69G|Hrf`SflPK@0H z<~IM$c{e>{cI=VO6%ls9CjOn{V>{>vW0x@pTC`?#*2hK2oL{RYxicxeC6Z5!aGor! zT|BxMa#)k^zz>JSA~NszuHq3M+}iDr&^lxi`8j8xo-|-ev*4gYK{y z`!8frOmTUeHMHYAf^5nRXig8%vVywZuh(VawO_P8Uip5$^DkI+tYN+!Pa6}5t0@OKuxb(t8diF%c0M7owRM4){J}0KwXO^lc;*akyUV`&a;BSSYr*& z`rO`R=VbOvBGqFEFw5|Gt+udM5KC}*{;4(RQ|bdxMEX8zdnW6q9SWs{jEc6PN=Xqw zx|WwB^|*jKD@wdL#hVewU0UO{eLVwTZaxooWMq#rlC;%wDpsz_w-MKvUN88%6XnE4 zw5d{RPDivMva}K;hOA2mhIb?cC1y||B!<_#%A8f1@Ju1KHfn0qSk0_C?=Z(k?o!33aWZ|}0#m$hqPI%??Xm*X2-No;^64yW&O7Xklv+WS&fy&-b zFfv^ujf*1}_PTdsAgvmlJrlN?F>7|c>Ux{DR@Rr6g2~9Sllo8gFlq(Y-WT&E=p-bd zu|=;3GlI?45Lp=B<$=Qn*e&oE539P+t2kMkNhq3dnx*+#6I%?BtGnDd2V8EBTzetay4~F&FJ; zd0RxjazcHU4hZ!!BVAjy45e5A03ZNKL_t)k2yKk%y-3Do5}B%V!gdiR_o%qis^909 zIW&mZ$W-kal`OuSphudMZVnI5|DgW9pB z2B%)1m+zaZ)-F~hmK$Wl=7RtGcqw!a&Yb<-IcHn}h|w%Ho93_wHuuV4-r7_klE9P8 zj~Z!44yOSYTGn2c06jOv;46%DEjU%lCeT*>{g#skt!4>Q*`UJ63IgyrQEKRsvFw9w zou^(NEKAY_ZXx^Dlk7y-rbkkhtYYV!6FmD5B+*~$l+0@ZYai@g02OFP)Ut|mpR)wP z&nMv2&wuhBx0WRj(Dt01q|&nPw5&p;wQksD4kLMHeb74e$c1y55m%W25ZT$0k~=3y z@6~K2x0@1#@G0v#6b;llD{K)X8N>i>z=Rs+WN^44c2O4;wcr!=`#PGc`+ex4x=D3F zQ5~>CNE0hO8BsI97YSU38=tiZB(eR?BY3;}oG@$4oY zhY3C#5jhfl2=x_4=Kgq`1(JMjTG^^Pr2^9H16B!}=ey z@ZFCebb#uK1d)NfN@+(b2*@tcIiQ5;O(I-oJEf(9Q--6EGofe_hPQ-tD~^y&w<7C< z*75uFqYR?Ko?&*R8qeg!a{$z*3E6RbSLWXZ+sP9pwMvQD0n#+e!Ji=$596R83RQHt z;~2B7W47F)D}(dBJBPjSxR0~$lJhK(wXm=(!<E>3G>#WhApo)Xrt8S9h4 z8S~8qgRmKN@nleU?2I$n8J)vm^}Dn+1C3QVb^CSBSj&2QCT2MAy&(~5?i_r3hQ{RX zL=(GX2PfrUA(eYjB?BNpdj3f?Jk*?#)A?%_J-+`^R3QWhA5g1C7tq@xwg1!9Y(#PNLRhgt;l~{MV+%d=gZfG^;t3+c~O~2gzaKT6QG{ZJLr}r zso^tZe%1^@EGHn}EPx~q2^|n-0YC+bEo4wlRv5nR%ftM&-#^S_3t|b9L==V)h!s~d zUF|uux1-uY++&?Ju#=aEG`#+3R!9{#uUpHY=Y}G2Bi6H3s|H9+CNyA`2vDDomQ@V# z5TK$et?**`ReoQ=OVC%$l7TP>eIiV&1Vz)vzE+o+v<4Uwu(~woM$X-kR+do_B1Nqw z+(^3*2nr-w_s}Z)m5b=1)6Z7+kyi~4aFdJHE=%Qi)%AW0?F9>WZ3B06`nCeOxC2Nr zpj4`mzFEl(;F&;aeX6y)cK(o69LFJZ^#j(R|KVXqti#?I#6t$%M$s}4mP7<4fRRPF zB$gnnJ^!I@omg5O5#$|FVGowN;}M;a)SPESF-ZWmeP1@8 z^UF`?~mQyhZ-&unflst z8wPD3`U!I+fFts@Qvl@oTP+&^kY-Ury}3j`Lq;74*U*1+YMGmmiQ&uCdMPhe2&9OR zuVQ%AQ&!k|kO=_OwatU&E3iE`QWRGCd zIfjvDH3BQ#2|S^9%9&feRcx_#lyS84`)AqrkFbr>2*Z1zVHxwI)`R|CtV;%(0j(rT zu?~&aO#@dgXoZwp4`M*xO_T?qy|a}YT5GF12bKM&qN_X4i)Gdc`BsI4NOYxfg0=#j-sC*xEaxq2JFf(>!a81A>JovL6|&!{&%o#S zuhwwp#>O7!bSVuPQU_F&)d|+xTJh-f?e_Zx5uCK6d_bA7thkL(2GXHM5(G9K6CQ~h z)E&*}bR%Ob3q*QzLbA4xTVLwZL&K)vzRk^DGd$t{zF(b3g-D zv#rmuE*5UjSU{_uS}DinAB_2(vAl?ro|lB_eUn;WWa(6(^PE-*ECY}}@aGwPUByY) z7HAO>6+bs8Q3)zb1&a0P)b|wRVfRh}ng1grdz42S2z0v){GD3tM;Z4LdvS2%WLl%%z+Ub&= zV_t(?>9v~u#^~VeNAeR9hNkQPBzgGI4*EZRXh(HY(eTpIk-*t^0~~&2DRnqYh~jjP zd5ne`%!`bTo!k+&T0=X3P11r%Cacugrj3yofzU2rH7a`sz>+-_hGscm1>~(0fyp9L z!9XJhZ6v~}4u}&*%$H@X!78&qYO=D&zP$wTV%7xuj~qt>~1o;1hKlZJEL9q!AO+B)~jo zRsf)7LT=m@@foYEjR|SRY<&OMTc$oeQ z5p05!E{Ust!qA0obDZBV^P`}EMjQ(%!6VH$hWFNW(u&=B4J-qVe7;)^xRul~pmQ$z zIr{btXOlD`XrYeg(?mZk{97~|&uSAI_?qts`wtp+FNLjQ-F3jga+|@KP+p!q7*T$F z)c4g^AVZPTi^e^RtwLF=df0diYQ?rqr<9@ry{@pW_G#JogAa5epao#vYVr!>Q`>Qd zC!!zIUv%lf{`)qwyL}wMy55_8y_CP70O|34;@jCnc3U;TwJPINAK!kL*Be7u=0?kU zS`B)6mngM`H0l1ra{juLH<<4db}t%+$A)E}L=aT0zu8FdVT~N14y}4<2 z`5M6J_F#bm`_36aBiAWH66S(mmV~pU2&ax^o*di2%&P?CKB4iM2IyzwDZsvcJknS$ zQQWuSeDnIK((V~^z-t>g(@NCGYfTXrLN>!7@R;0C+bHLc^{i=@bIf<5QVl2#w=&uQ zEVr_WG*|28i*@MoegKiEF?xi|06KRd0|2i6sOPwp3H(XNwr1?&_(=`I9E*B+le@;@ zS-uTLhvHm+RfO0;i+NCq&NG4b`1ZW=!20J;0SOC!V#q)JFj2OX`*>M(Q zt@lNL;{0e;!GeIos0c5%Wl@j|R?af#ix2b0&`=2M^Rtn_vP=^YToZUy#O-DM;-ntZS}Q##*k4^lxt zx4Z#&mWW@&4PbvAXx`8f<@B_^kNz`CA?y7~bmic@sUQ>e_5NcVC;c{*^%d!gyr> zg}cwf%BYn$*#xZYS4~)O>2ur8NYG5(EgwYhobE|QhdH@gtLj$%M@vT_C*G15fqY>4HaUe6a*M$_gvb=DGLMR_!(0f%=IxWMVP zX<^KFLcy{P#cRDZa3h4^l~sw;I5S)MPQv=3R=|l+9;?*nE~=bsf!Glw7-@2 z5Gp=AX;F6);2Q7cJJgY|+yW0J(v!~G&m5eCYGv`=FqP)V4d51vUJKguW{9psHm zUIB4d27+rwtg_wfwO#^VRmuojT3@GljJAO!grEzndV8(s_YPr=^GxnF?-Gz}ap5{$ z9GB*BJjRkFF@R*|@fu)nrFZLdhv#*9^}uR2j1ivq7wc;h(8ivy@Y8O@L;bzq(%#bNs9d z(v6Ykfr{GgD0W719UlYpm+teWAlD~2KHC62W=o^PA2)?d(X9y1V+K6{?ei=-1!Yn_ zPYOzmc3!|~?3V55Mng`YHHt_b$*EPbN1^lxluhXLxrDj{%7LBURR_tE%9sYo4&a1_N-dau+EDS!!J#gxqJGvOfC zo76LkL`aL)-0llfZCGwI9^Xq?ZVBaqF+9j*T5ghvSREOBOPJnbEO!hZWv-`*kWSR~ z7Hr8_Z1Z7&NvT{=JHm?o2w;^_5he@Z`U+}8Tfn{&hI7yY0qH4$tViNg8O80r)9VbR z^E$&bFx0T>^L%YJ=*A#m3u3IlKQ~?hxDMWQJvVyprJ!G9Z7l^@pvpxOYjwId0qg4? zf&*mzzq4ipDgab)$}T2aciMilvY7a>O8@1O9JEYtiAY?UdeExwbZyu6Xv;H3y=mYg zEv)imLb;bYA1T852=JZMu!9NZz#gC~4-KSs<*7<`x(#xzmfMWs1%a9c)IwHJGkDZ4 z%~9^aPfK2CQAUCRatlIj?t$MQ>qwE40vULge48of#&A(gn0#i!l^)cx&%&7@r6jCuD|s@V5{7%i?n6mP zw4!BB5d5*+BusBfFl_gc0d4elgj&)ftvMY$fok)XY3|lHJ$Uo^1L-7uJ#v-~teh%w zw<{Z$GT@{wA0vxvd;hoKJf7d~oKr_Lr2 zx9y4RRGARf*5~6td(FjYpHhBTk>e08x9rN3w5rYPR`=@CF)?#qgGLAgtRR)Gl(H)R%_bk!mruI91Zb027 zj2|snZlnh~01OZ8lyqv0;gN9vCBot7D(I~Vd8kN9vW|60m>&n^4-3jeWE4n=NzIa7 z>1w}1=gJ3o3&b?{aI|FAts?z~yit~M&f!F)%_eE}s ze)f%euV%w~4dWHsh6?AgU9*@`)j3W%2p^g{yOsz@{hDNH<31y8zw|UFdZ_eBUbF#u z)*8`mUsfwUnHM>tnuSe5L|ASU>W(lxHng0iw1cH~*0L9Ekoxq~ zyNv0*1?Aa{-B6KI12bWnGmiHo#_tvEKIrwUXPnC|4e?|(GQoSz%Y zV_Ri2rM}#1(3@spWlozAkbh6VAI;|}0ZIj~l0C0FcV9sZi+R7f`%KB2x zzCq>-=}%bwIO6&%uQcUoE@C_0o{eShuD)I+EO!m{odxA)!B}i96`Ppf8FBL$8PEQ* z`!uNn!-Hu4EVp8R`Ot8Br(hTpb|0Kz49I+HXuEJ#OJLtv3p#60s;c;wvAn1|VwrTr zhr*sqqoXHkG>npLD<2H}JCsWmiE-SbdEN$5Y1i&VbwR zChULEYtV^B#CplnRmw^P>jX*Ark!GkS8E6QMzp22 z+w(TrNsqNnBY<%ctUB*^D2kv$+gfgvzQypq=1Kd`)}0*y9Nr^5eq}*^YeHs1J!aHa zkoF7qw-a{z8He47_Q4M65bBJZeVFk62`i;ur|jA>0l1&_Cg;9D*k@ZU7^}zoCT)FE zjSB2amUdpdHx6bt_YX!FyJVCXHk@l2<~%*&(9%$VVH9DkWl@@s)hb7)D}gq(#7l8#R_P6r=ZQ=|`S; z1!7k8_RtS~wa`0dGt6JDlQLCP2j}V#GqqkL)sNCQ)_df@MK>=Ksf;S+TM&PxgA##} zf!0C#>iJSY`<;N1c|kj!0e8Z=4l;@VE)7p!ikCqC| zRjAxK`JC{vH1DmPGod`Fts;R7VZKdhMS9QL94?cnubX0ZJ~1A?1k68o!rk)|S|gl} z1KOOB$A;a0!ualj$8iU0JKX-2zBdEIOGX=dn<=WY|4fuHeniN}DglA}+4r+FON*(M zFq|ox%OVu^oI&F#Wj@o? zYtSS8_Zoq@jwq`5E8UPFY}AtGwhDGBCTihVgXYi&xAbp+I3W5e!GEx=7hW3No?XUpiLQ68ixG> zdhZdB;~vxoy!|bib1ehAmlg9}MjHurAf!oJuCJ2`x}7wbhcj2?nq~No2c3VGL`)^19_TMwYL9_S!)@b+Y8FJ`a2UwQ!K&U(1g;MApYrs93U@k;8r zDj1=hWzox7RNpNNmC`Es!OWmsK)W4KvVil`30M>~?ndxXKnDiTlEx!*5`ez0Sx|V^ z`>vT43*e-Q6!-%1-ll4-4#}L4FGR%6zTbRDn0|W3v$u|zrUL%<9m)bsKUI@;-~<3q(|Vm4$nQbQ*+C;up=WfszuxQqiFRw(Hdc(9i|j+) zBXqr?ct7JDUZ2zs7JD$=5d)T<^sx1d?bY&JW4MB|voZi^hKw6}w~quDg(D&lqNXbA zcWt`1tGh1^R8| zO)GkW&#qqrc+p^^vI15@yh#C9vkQXrd%9she45F=&ptqp<6 zBq?Ml<)rr&G!PEN_Gxl1sL&4i@iEhGkt_q^fMm)olC|nr4iRE7MQT&kwN2*q4ujsF zKm-im+2QzeGycgp|2@8b`+a=-@E(5qkH3M#_iyq1i!U+k7tBS#NSUD77M;M{!8Zvm z)87N_8F1q^s=EW14Ori1(^nbvhVHoOLL@>F4c=zTuleTZCi~K}mErLmfZnxkHkERRLBoHz!STxz{_Ai4K7L{UBmCL%UHprG z{~MV9{0{l6FEQNBsM_{zxR=eWoO+BW&A{-;E_UMJyauKRcW`dPa7^S1)@~OH&MiC2 zE~l;ZYKxfw03ZNKL_t*7H3pwr0~X1u!fC%yAu zvkl8C0kZy=p;Ou8m}W3f0`TIss#P+KIf>J2tb}Qjz|>K*fBQXL&E3wwxNz2mTn9vNic?OKDJII-7{Ai+ve*8EmZ>KkyT>*c2(8(t>{=|xu;sT;GHT` zftN8@InFg^)VEzBF5!vVoRP~Luq`j3)!&jCmY}(`9K4V?iC}u;!n%?ZyH-1Gz4bx?oLNc@c6F7&L2ImzeeRXY;s z8p6I$0)Tgby0qtC%BXvH1p8c{p1*WG0KJsn+Gz{$HVS;aU9?iCT*=>%$YnGN%^G;i zrZ7B%uGze({3(=neO)rZ4$la-Y*8rl%ZmoGxm>!|MKts zG5-7a{#SfCpYZM{M&!?8#ul*q6`(Y)i-HtDKXlx(JgZBq&*1@v`1#mO3j)( zsQ1m-qjbG?(&)Wg16$SQTC{7~+&43xc&yXrF3=P$3kCGd?iJJAX&ga23Cy@7TJ?H1 zrH=v|x}rE?RElg;c3jTDIJl!l=ov+hw0OIB4!%3Bu?@L*%S#H{p*B$xssVIkjkM5f zR(p=mx6;u->YP-cLGS~|9{W6lYX#3s2Y3<0 z0bDA#|oUY8kkdn>__iGd|B~=u{8xX7|MsW;4}7`Ic>i|5 z@@pBt_kaHby!?5wiRDf{L!KD(T|%BJ(wxu+pp6N;4;Qpu5-M+#04wK&x>GvuqLke^ zP()K-|2d_uUlB)bI{$6G(NyES_Vc4X@yxkX z-m8}NZ1(UN_>=?sI!Xr27XT$BJRER{qmqbGj`Emgx0Bh#&{f=9VGNmZIE>i+FySBn zqd!{h6Z1C{{;&V%H}T@D1$n5L-;(cNM_MIG>RvjBYV5F{`EqeWQ>CCk6l)L);ZG>s#8&k3N?_X$fs+B&D~IWSA0 za+t-uY>Z zIgPkM>d!9$TL4aPuc^Nl8OXWeco=iOR-@Nf*v|G|x))g)nsv|F23WlGQunb>A((p|06it81NDd{fOTZV=Cc>vF@r@h_(g2G6{h@ob}6TZ1ABK?lBGa1I3+;{XhT zLT!dKmNnhYXuUwcX9gUiPD4taR)?OALVkwI_xRe)5Ana;G1`=Y zq55RaC!memYAS0VPnK*9lk`lNdh-C_^_m*R-Km-xo>`O{$kxHRPe+!3RIGDzW{GYd zq1BXpx&B%r>LOU74W1m>5L+S<(MmIb3~*lIpfX6%Y8+ROvkJ8d&9n8_C};=JOG3h4 zK{*T9ZyiXAb6n(_Hp5JT208kTZY@>bV8S zD~a>hri{ZE7+=}g#8+;9h=29d@;r@8&(v7fh6Ql&D4@rHzk{|0@Gg1J=VsplICt>P zQN6UD*D8B>5O+guVAlHEoI$rYvL5L@;bjqfC=#9Es=-CiB0dp_%2@!Zeh-=#@O*(5 ze+9$W2iqrX{o(f7eL_!g=G?MrEVR~xjV799`*I_!t8j#t$}Rc2$w-pHGjOC8;mHm&-_lYkuxF+QNf_aeRmOX`iLXs@Y9wmHOV*t;)}=58J?#3B;*V{j z&i#K~)2vJ<^hNidm+oH>E+#$>CpZ8nA zfKyQ7y)f{yF_Km9XuT({5)7O>f~{$k46cTKt%I4RZq0&9TMCb>yxO%30V}&llvdZ6 zLht5_dJh(Pru98y&9a*wfn^&gYBPiyBinD*7b2~49ipQ-C}TB=J&5be*6CR2A|y@!f5ufV?T8imOEsKPt8{hD=eI1>_eyW2e8Sl1=Jk3pp)(9H~*a#pxa3j7)`NDniWt( ze14C{07#SCL}KiIl<@7x&*MAKZeV!gJBN3X7DCbvAog9F2Ct~Z4p#sdz?isAOHd;F z5KzA@1{*j8ABaH24#NG~slvPUPG_*(wj}x$PVZm&yO(d@HYsw36}NceQyA9)&~1~S z)iH=v!T`iqk$a#!YHSldfQ<%7>x)3)4I_dIpO^;PEm%f98}1bL)Svfr*)d77hg^b# z1j!6iqYl^spb~0L*xyWe`PL5q`v3bC45{L)H$T9iK7Ike`v<>@@wU_8%Y%H#e3Emd zMZaPbimye%C<1Zr>wL00+h#xYD{BNB&|~VRox7V_q{e5l&IP!28Aq#2;4 z$=6<52j-p~?9@=nwp&Id3y^^-e#eNt-WN7yYZHQt8OLN9u0U;^ssoa%%ZO|TGuq=L zNb8m3u=;YYtpjsFvaO{E2%IK)ol>QFnuTtiGw5ay8V0esKk%Z%Up!(T`F zd(~^uf9sEa4dqLW{eH%DDkujzu8yLS_X*k46{xVad&nXZ$1HSRo4>oAP|}Y_p|J;Ml(QUE6pl&(hqa%E(pB7-r7Kp~ zlMBxA62!Nzanve7D`g|BeJ7(p>v|G9eOT+Yr7A5u9CuRtDp}^fwT=WNU~Bp%;BF^L z=-nLFP3!a#v&?Dkoeek<@~OIxPa6a*QzMM`4f&Wgo5$LEP~K{Ik#L+d#{GiB&oF-H z_kSJ3-*5QZ%@6Qr$9M7DfBX%k&o|uMOgNp22V|`?LK{fVt3tcWjRqV{KvdWDF3=@F z1BHa9&wU@H4Uk|^2L+@8s>~|^IUY3Nv{VV2$8(t7u>q$XS{Ony>sEfYgmtPdzPGUL z^_P-c*D@B(V8v^&)v96(%$vqQNM_U^Y}NqlV!)+mWntx=V4w*&mgB?wsSn;Ee5mCn zdog(+*Zry(V71fD$_mW#drZQW2f{QJ47&x(9piU@|5uUzKI50~{u_4f4Er3$%v`#rRX>O9 zJ#K3`odvu^xRh7>%b8}(r;zZw4uEdMGf?417!4O2fM*%MI6PynVA#O93Hg|#5rbp2 z`Q5?#`Z4x@6pSl8XVh5(=@~A(z!?%Op#FYo0p?@DZa3rR3y(Pd^&S4@zxhqnn}*#F zGWG(WtcTqV9|A6WJJN)+V{6j2nb(@%f>3{)1{qcaCALtyejB#Srfxt!DOVJ_}dH}M? zEPa8uO(IPVG)rxAO5d-5FmUPeG066PDRo8dl*VB$XE^tK4ZEqghB{4sENIbeS?A${#0`Pyba=?aR%yM{F{7I|4AXm$~QDU60MzO-Qy%1 zs`jFL!Ycc!3^dZ9o$V!@GptRX1TezQv3(|Iu>%XZBl%-}?Xlpo3SSx!xkiDw?bs&t z8pL;rT`9KgClewgxzF+#{2q7qNPiD$mBwo@fv~2M1a1HU>b-o)VXFwU>G_Pn$V_O4 z8AyB>o=5}}V`2`#?nA=#&H#RILH)`RyKmj#_x{B<@vpz|>qy50-Zkug_7MbNIu5R7 z<(MZ+;zC65;K@W6s8eUHm$e#bH*5uCwfC)0fxEvCdERE~3D)Vve9#qBC;F*& zjAyPM%up_kkFgMWuR*0|_{4LAWvA@Q0RezxV{g>|dBz-@ z$Wkz-RSSd|k+O3(0$vVy93;|v^RxHTxA0hS{7OaMS0rN0AMJ7b7a8LV?w^B!`I&sq zG^>*6AOJkgJzEZ-FZ=xpNSw`ddF@&TYbTagACTd^6H3kX!)6aq2mK-^Am;5>)U21VO# zn3jXtOome0#X({XFhx3V{&2wKZim}vC#0{u#PJ}#JWpR;Q1&x20mmQjaQlA2{zJ{Q zu>gzd-6T}{+UKiKB%5Z!`HW3NO8;~PUQ|$3DsQ@=C<+L5m$@so+nATWK`hJ0IWTIw zIJ#`W-?CZ?OxXJ3Mmn{P?Y+I0v7zQ}hfr!SKkr#r(pD|Zy`Q!FK{}Jz?883!i?R1MoNr_7kiA~E3W=7f~17$Z9*NT*LoWyNal66Sy&t#Ixwun zzM>kg&1HK`bz_Lt=xYTXrw#;5k@u&Q&_M?`2mXMPGqsWw$udjY&RtL;3cOng9lkby$1vQ947O0JWXA7D0O;&ex zO?B-t%DSH`vV^un_w$P-qt`SpbxYa$o6%2d4et1ajIGsG6SK4cGZ#V=S0qy&9>B7< z((;bjNsl#K&YIY=+I4T`41_v!4QQ!wr_kCNbuX_kkL$T`+P$o#_$H0JacoTy3DU5GGjC3NjAMJ4eEMwR&C}RbehSn15DI>ioxcjSw zo9}l+ObbwVYEZ1SmziO8=~?R;!Ry|G24XyWu0~>6a}&CVz}=2R1m|}Bl?LQ3sJ4q> z1m8v_iqx%bmOYMG+jzxw=s?(Hqf^VF)=-~wW#vuBgRKKgRX2MRW*qVgpgUv2*(l+? zePhy>=Pv%n8J^*&gE%CwrRF>HJ!+PE49r4?&C8 zRsv(aJ&tD9t!`gctU1ovc%Rs)iX46im={nbpXe- zQ}H*wcUEQ)2dOw5kkA{q1X zzG1pc-8oCZas#C2J^=~cYWbdw z`58$aubEi}%1QMZ7E_i^Sni6exKm|e-7J02wICIjEbGORg_@g^WN86mEm%oT5@m5O z(^;1FdQ~@T5@|~{3zBHSsvVBNiTdNKgHmtB)+!jAdvYyfyH${Vk<1q(0xAhz+JjJ= zm38Q^8<7dJ&7Rx!HpZykM?snraMBh-Y4AO22!7GwcCg!aQE{yXw?|}DE-KjmRA@hos;PA05Y#{z9&J=$1f(dw`b)2 zf}}l_=c(Xu%Aos#G!bGdoC)9(viMkIm=#FZ56F$Xi%D|6m|eHW3GB7%`sI5vgwPf5 zBOZ9&yxjy@RyK6$*lhs)6CBqA&|j4qii?*0yHHo|FORSDj34#jm}LMj(c(1fBd=Tk zTV>EaqX-APD?uLW&l!~peeH%(M$(CZ(|}qA0r3o^Q^NiwVfT@?iqcFY02TTXqt7Rx z9M>wkDU2|T8^VrMR?}@6>dlu{C7}$1W^6PIaRJz_e zbOQ^CaF#u!)H5L@&%2UuqBS7gP}f&&p&VESfj8AjSOv1weqwnC>oJ`zVs+_ynj+^g zF`bqT1NGKrGy^E;ilI67(ZH&kBiT1Q|k4-uyt@wQA43NaL%&9Xn=6tLWnoOd%ZDGbdpVmcNM@gmO|g0 z_<}RmPbgGv2A<9)e%1#`=8e=Qc#}cm#z0$~>P%TF(ty^K*K>!JNI-m4g)+5kBB5pj z=gfup)9lJK!_=MeU`K5rEVl{yBmpAMgrb0hb;hH0yBp_QJ2*x zZ3Abi7tDu*{k>>A)Lk!uGTjFdkWLb`;zTG1Mm|d4buI*Ek~VKc*z>Zr+%!*19oeA> zH8=JcwrgRn0^{>3$@L@xWj#j?0g^yFq}EjET1#=5Fh@a40-wyjo(0GB{;1y|<#6PI$j-#m0VIJPqQ@JT_VDpG%<0zz9g}WcLvxPZ_6o_E_#1JedDP7$#D`i=EC30BnMAs?)n*3P_4QJB6(C8(Z375(ESnu4Gu(aWXfO(9)3-ql4+e>4(iWSO-W90Sv0BN9tB{9-lWK(AmL`^EaHol&$ z)**g9IJczVCmgi;YyL1T{|3apqzAZhWt!3 z_2=xRYAjZVn+^aigfvqZgGeIwQw}|vTn90v@g-w;&}>Ky5TI|CDZ$GrMb#P(%)Lz- z>tRL<-T>#=a>}#eHQWQwvn zSCv6%K@5%p*ihTD_cU;x`UVr(Bu1T0))mYsgGy_+IZCWRf<&w*W;k511VDZyl>6ku zhnA7AdjaV-SLZtcZ^H}5&4&%;u>uXqvpA=%5VAU|X<-qg1d#71$(Ac{SX~#WQ)HbD zVr|n(vAsJ?90N}qm0j;|?)Qt=fbl8jgU$th%6_h4xW+weQc`f7^hB+XT*o;^sIRNRReH$vZ_LY330c zjPW;p#hUk79&s&r-S;;K*Skw>flKR;>HTtF#n!*pKuf4eH%EIT=T*6C`E$>1-QawL?#JHk+lo!xWlr} zJ_x~n(ACcyqnsR}_Cy(zi@22&d%|!3Au!G2C%KsDNmv@ot=R;SCPEuB+8{|j>-t2s z+ogOzWsywe`$z2j=AYd_JKz*|2jQ2Npr@9lL>j1w0h7PsxM)j%d$w?;T*f!!&3H53 zj5p)Wcr)INH{;ECGv16h$tehmMZKIkJPU`bo-{)gfeO+XzL@=ytK9cs`L0^sISk^Hs5aePB0Wp4ZuPpl5dVK13@sT>-wk>&jOd%2?{AuO|~BjQ$(5cM>TdKFV88 zJE=!s8YpYGkD;L4ONM>EE1=4_`+mjYr!tmX{fHwWX-UX(6ZWSBnfU7aq^fg1Zk@_b zBxPe+CXh`iPBWXSvNOUY)2Tm6>W5>=lZzd8UHvK!LiAw!^piJfNmqwPa2=sf4piu=}d*w ze-h4Z5P|?hxlwQmNUTdY#do8+bCF5ajBe8UW@3(3S`>sV;*`}LIlvws#OX46OP+zj zde|P!ohuSnf5Ax-~S09*N4@?X;Aft3AN_{umXhm&87yjX%z3+K_8(L>8-;J0-Q*#j)I?cW**Sk?Ro%>_A1Ea4uRVv;p zwTH3lPixoJzvRYQO7v>yX+y({pg;b8wcs3Z8*p&GwF%Q}2#;?8%o+XhiT8-0dt3Ig z3VgA8DrQevH5+n5+hw2IX_h(YHlg-m!QHx3;IT0BvDd)XJv!i6Ab|rb%QE}Wk5G4T zz*LSB+--xDgybV5&+715kXjwZGwb#w=wPbtk11#Ej)OVc8SPQ3MsO)4=?U zumqd1x95tL7K%{b`?bjvd8vmbK%lkfv9;{#dO$!?QppR_06@Ra>Qk|5`5?4svsSw+ z>b11xB5OlvwfjMj@Q?xHrG1hHGkExL|+*0!>?Y44(5S1NM~(JYkx-} zHCWJxVeR?I&ZTp%4P9uOPQhm<1}LfKl+3ebpD^tS<=8OZH=Ohy&$rfoP4pDfsh^*k zlz+6`OFwL+s^Hwf^aiA_>e6FQA+2p>J6`qNrLij60zMuN*p`%BI_6UZ=fGzipr1KU zmlTR4ULfao!m?J-8KOih=6CyN!1)3uxniuRRYc3vGYZMN27?5@&t!UjX1H++#7Tpk+rY#)0fmBo3O+Y%aWJU~(c%}ktV7{63UUP2a zQs(>u5MTAJzm#G3jLD~GK>xoSTN`+)X3#Qx20H#G*>iKC^46~Otq2Z2x>#HfP+2g_ zTBr5T7=CY1kt(=N0Ad$Z;UaNN62M~XCl0kMMi*Yx?7Os2)1cKs6y4`riC_wcAhYCKTv+3Ur0!5 z)!|+M9P|od%+LII9T2m}6*N$^iI4prbZ%2N(&q1IU;cUpJjxc~OjvI8^E5`9)cGRo zYJgP`iwm#}gna7jJ!hbe!M4oyRB4D>H#KS-HZQA)LD)-#H^iZ0hXZ>zsHq zaJF7>LJxQVm)RqLuWNqItNCPsS(35dgRD(z0Qx?XW-n|XQXo%FRON9yqCS)P(dL4D ze}W|d%KZeYLugOMr~{!6gi#X{fcP}^2538Y0>tXi*ZUTC4IuPjaLWOB1RxUYZe36m z_PhaUbTmO7tFKx{8Nh0QwV2`zz=U+8KeY<=XJCsaB+t z)TbAA?6N1!w+Z7z!=OT=Ehp3)lA81+NsLxxPch9PpRBDDW|H+oH~gV?APKt;n!Qt1 z(AJ^wygU}J`4fXTHX}B)=^$laewE7KV7sT@=h9=B7$~36_)G(IK#dA`y(2|Ig*rds zcx`~Y_h?SkGaDvs^>O$0II)2)60+^;5`&&foAT^9#90F1S-%|Ge5_8R6WFqgX<|`p z*Z#JWZBZa{V3fzE>g^IC@b_8T`g2zx&n>8h#^>5PV;&avDE{Wrc2cUTy(nRwjem;v z=#;Sj+E>xqueMD{6VbL;W=pN@Q_euiYrt^nx*6aoS-^NoYqjZD*+W9V*&BMhpPu{Q zk_8VA4RxCUYbMZoq9=H{NIn5PYX&62MdoCE(0xuRifLk3^))d?pxXo|ayCibE45N7 z?Yy@380Qd-|H48SY26q6Xz_)X|{u-9WeKH zQx^sYM$FX>Zs4}{nAXpWsF+^gp+M->@cXdM!ctB^Df;?B6|6f@6@kpQ4%7hay~zF^ z^6Gg&*Fn8qb(eyGTXLJQeI%cxRZiOp7&o9@4nR}Zh}jGZcZ{HWjAavhuuGgXK(Z-$ z3LlTfUWf^$HU;wXU9203m6aedIAwWkX1PXY6K8;#fZYf-_59YPL?p0KxOJPLSz6;! zPM}->3`&I$_Q>qL>?0UAuzszXa{x~U@&NRVcS5%bZI=c>u5qop-h}yWdrD6InC;%8 zwq)6K06nN>ud)3mQ0!@`!eF{pfWFH}rwm#e+O5o)G*>iaa3Ks24Rs_eH-!0yJRm#X zGnPgCpf;+2;w1p00j!wKv&>&oHdbVz7?818=+^=O z76o-GUPoyiq-8WcC&{%>3{l0`Yspe(A_182d7_xCeby^Xd|YIkt&&SIs7UL3W3P2T zRv!w?LZq~29>(`zYhM`yyKCyZEBx!cL6ZiNCcx?0c80U4@~L_tcX()85|yy*f=xV_ zO(;IlVAZPib5(G$ougR-1J>Dq8i0-6oFyq0z^}#@&s>6N<{H^+qYsIWtt825K|{Ni z5)_fH2pTQ1?jKv`NgN-yyVT!ceC7eVk5^>8S0mDMpL~rhm>rPYEY-Inctq>9A1i|S zu$cSgB?HdX&kZ_4&KKDvms4iIXf<~}&iRECg**tc&pnNmV!1)%K zMGXc63%J@oYx@5WUB?P!EkVSp*zBK%K7*L?q0#1z`Xt%I33$?1xb%y+&Pw4ED z7)WZtE`Sb1G}BItIZSZ1cXPzbL8y=t{U#7M)P2EnlaZ$e-0P*#2z5Hnpwr}=EAK|| z%?O$n0Tz0F0Ib0sH*ubJW2bp44UvEzh~k);Qn10St-=aW8%VPt3|yu#UTU#-Z6N)L z@{T97r#TDoPRXgEGVf*wgaCkHlvZp*0b7vEPp)<3O@lE(#ozZ7Jr8F>+ZS0+XH^;} z2@qL7^O(h`BcT;p=ZWE6uF8Q$24o;#?+wTs9XBaWJ=%qrf$(OJX+WN(^`O-QrYg2u z2YJp|Ev6rlCfQT0w=M4qcu1hBAzN?s1l6nvdk3?uFXJEqLuR25=iGrBbZs)5GS&%6 zphP}E2Ibnb=GMdhic8I3IbtpHg?vGY_Wh*?sE_5eiB_`Hv~V{!MU9)J|6-o_PA5u z^*##4T-&2rAarWTnz=JNJ1T?sgMjp76=rNEU}+d%$~s<0TD8Zt1ctPRB@gUcNv?^rJ$v5RYO8AI}Q_l3gVZGno^mmyXI@Aoatbpz>VnBz6}VE*tY zY&V~IfF4`3ymGL%LjWWyl{QARJuk~KsPYF}pT7)%2u-6mD{x?SBB_H35p3I>-y9?R zGePUR`|=#4Z$9Z;m`~KfzfJVCz_TIHtRSgamSsR_k&P*zT5kiQ8+03z3J+1KGhZ)k5Em%!tH-uNTd$(2T=Qs6vU%H@aT}yg zlFmSHGQ?L<& zPe}cDhHMyV>Gs13;2pqK#I-D2m?yId?%;f3KqNF=bIgtcW%+f zjPmk?`~n>?Z+dP^A7*u6=LI}X()T2`1M>~Yq86Wz^7nR_XxQnbStdFI_e7h=S_78agIab!N|u1lIDkq9r)Ax0ub)u%lObcdE1)H# z9IBtof!2};y{Et5Rq&=dAmVk zfUNbPeO?0Eu3&yvz?m>SEXa?fLZUdQRF|x*1<9_{G<*N~et*&#gWpv>!K$s<*WUg811u>%>CA(2~_Bx@t z8-3RWuyikxl0v;kAwD6cR^cbB@5J4X`gH-4Yxy965ZU{r8nJ=r4IqiWETLyp8zar? zKiN9t0RmnhzYVm9cAqPMi7b?f5#ST5vx$JlNhv$!q!daTway6+VLBQk_Ze|!D{ZhS;`zBzEEll zbbB#Y8}s@f(Cy@j@k#qmpLu`|V6(WqW>Im+Rt+lB-TfvhATV&AQ*eR=tOI>r||{19SlVpGlgZ2)6l+eOrBXp7j+rF}y0jnxDA zeXI&Xjoy1rW3`V85T~K94LmP!kPd(s1@JNBZtD0U>&MJ}66x?@m@!etK>}9>`~kN$ zUaDt_!Hl-cs5b=z5z*1&@I>s$b4p>Qet}*1RmfS zLd(Pf9he(%munUPyV^voJGbPB0fY`>I^Z_;Ni6B2U|(@qX(cLqCy{>ty5IF$f!zqs zx7l;sCkXO^EBu~cV<7izTw-r-*O(+e(aLX1{dMH)yxP(R%#)r&v=h+RM^eRi1NT{M zuVn&{38gafLDoc4hbLEd-=`ck$ebkkmL}EjNU}Q^J1cxynWFwBg|`{;}{Nm zh5ZC%o<^3I2bKCiD@E*p-2O4Pfq*sW-`EYKm)o}110Ac({W&mSox^k+?6^9KJxBGqir4P=@IIn4j?Guu)LL@Mu!%AbiE92oqYOq_mFU>T5brBpiou zEQd*}Ek4rRojGrl#sP?E7S%HRX=+GQMVjgwINMt*4cFtaVkjFJ3*f z9b=dmGEA!T#Sdk8ovN!)#}bMDL1DBh%#eAy3SKE70oFF5uU|7;`g2zHk!lA&{(exW zDFf9UyP1&>75TV!IswQvn;A$6ZOlTOJXNH}sc+6D17#;5@HF{xJQT?iHp%!oy^~YF z2a&F5_GNP$@MA71RQq?=`^#n_e(3-xqumrWv96YuE#9&nq27oj%(qusl2&fve1Z<7MpR-&O zUix~k{{+_C{o7>4lYn%})&3C8GPghNS->xN8O3xg&CZODg0r;GI0Bh@i z0c+4g)R`-gb&6PnnkBEmKHctxK`}3S?glzcNYft6T|wO!q>_bIQP%Wg5J{WAd%}Dx z0j`?!Sy0#ot12T;;=}OV86lh?T@HZmm#r>Xv>9IcamfO|=HJ;r|C~C{EpEDWfMg|; zmi_ZBS~ZYFBM6qSk=g*Y@~&Pl6ajwF2q5Add-4&Qd~kBn{s7^NCL+8TO&UI~&xU zwS-mXkY$?D{VZajEz;7t6`gNAiQfVHrKuO^eAriL6YTZlHaIB7V3<9uH1t*JhlBL< z{pVG~U*7_@+h)g{Q&U8UWw zQKaX$3PKWP>!~807NnzWrUFt5P!e#OL8c_Rx!x2hxKCxwx6eJ1HD7_23(sFINH@x% z1z_5_0{B^7)pj9z3Y_}}1c0=5E|Xtpb1kb-=9D)AEoYi7{GTo z;GrNr9Dt)zGb6pqK%3R9Z|D1VgnH5LOtwzf1@w1~)?1BeJpLzXJ^2|JUa#gE*S4lY zM=-6=b8S){Wal92f>#%YXAwBj^%FpvDu$N}e9I<)K@M^y z@CDx}WKUt#5l)%4@C1+B7PPC41enj6|@TlmzTN%jC{KX-|a!C8T8^o*3ZWy$_E)}xBVPM z!nA<+HdL$oZ|PJq0GMwJ+K$jxRD1-$jIQaxVoR)kq-mwBDC_nWHUTRF`~D=YZqc*q zI6oc`uu>G9ci>HErfGBnvRxO=cFOyynQr~p3xL7dWznyC9k7UgnFda-l8G4Bg2)Vs zkHry7EY{2fTCXdXQMcq&unXyiq4U8?KmlMkNZ@~NqHEKdv{8EjQ3M6FWGGCOlz^oH zNwVtcw18Sh-Afj|nGQn)%7B;4GHIY_(HM}~Me2z|07>P26!cazmz@S9KZej)3ArnK0uFyS)yFA6~gA9WZurf!IL9t zL|&;PM%T4EK3Ca9U({WJT_>Pr>zXMeVh!T$qjy?}ct-vF@jIS>#MMM^{k@Gk6>AIS zbB2kpRK+xPTDvV494R|S8EFmq;UtD+8;LnXMQJ+zg#b*m)LyDVxO#CS5xJU|^P2Rh z4B^t_uXC=h(fNvwi3%z8zT|;D5(UZ@tt(IFNIhX2N@M4o1?a^LMHOW3^A-@>$(_#b zA93CYwNYPmTk3O~p})s^DBiR%iMQD3@%p%L5awLz@2Yas|V#e{JAURsbl_(2Sqe_p{QhiKwf(bIjn9T>G3v_rb*C z!t){+NZq~ww35(@wD?L(XBFk6WRKgJ1DG&G-u-9KAm}^>DH|o>ED$Rl4_Jg3?YT?N z6$=eGYC>#Ftx{#r5Jo|(RUp~s8Z*kVDl;IwVM%EF3?`DSy3u^+1>Q5A2)rLP%c|u9 z#}jaxF0)0nl^6Xd_TF|$a%4vibp*-Gs_vO{w9oA#Mq#fb>>ycpEACMb<`UJI%z)y7TP>RW z1Eg&jTsV17lIJY{({QB2S8F$V#;I!yu0aJk%BQ(+L~>rIgL)P}%eyC|-8oDkDw z~l$WzBkgvWk!9u7z6xTQK}P{>e?0%RChkq2*^6bf*Rs$-5P?3?|Z_Zwj+GjF?Kbu zntp-EZ1XW0zfsb`UiCbNe=pMnyuLtQU!e13@8Rtodb^qKW;ue_z01cPg{=n3%{`ZQUpak<2u&O^3SO)0znwJ*ADRzww24v*GOX| zP8`PwfzI3_pY=?SU~h59eC-i)*(Q5zD6}~MWEi~MH%Lijy=;#;Ay5|PKX_1}dJ?W$ z5^cW}Lzyr!A+*QDlZmNxDml}}r`4SM=;Be^Hl5u?KP7)gbK+Yqd4H~Mo3u`c6Q4>< z>SSqs5j7j<1e$($Z&Lv~8d&M^ze5-NC+Le`+d&@%C}321b=3yPrIFwf)%YF0UNXay zezSehR%rm3d#62)u?wb04LAq@pr*e$Nr41abpe$2QD{ifSx=dYkr953P-SJoEC?Mb z01cw(Ebh521lu!Ez@^q?aJdAHMk<~5ZAbBbwH;HX2$V|ru|n>v8=l2rYwe4uo&<*(Svhgismg9t`bj@8J#zGZ?!^-?}!Le|mZk|< zSJcO95&ST$Y8c6y;dn_Vq|~SG_nb#KY98PKnoK|yx@~=+m(MX7uu;FB5Gc`B&uet$ zv0AP9tG(wyTL37x%@9ht_c_qZ2hhvJZZbiLU!I?=7ccOjF~oX1!vk1~R^NB#pd)Q7 zJRbsi)e*)49U6sM#?}#JIB0YufXPo)OmC|NadVCHWid8mRml4t@>o&k3Az_EMjxx` z3lR%~067hqg?)%fwy*?ERX;L7CWhs~1O-iN(n; z_Z{$cOy(K7uF#JgUbA3ss<4_gDXJTBhuFxdzl?06Cj_PbeP9dw+? z*PZF|uZaILwYT z9XomOsyxi`F6(Y<3ZGSQRZKxlYC-717N$*=_u=2MxbWJZEZK2JwAz)^xxDP|D~ti( zKkJw6b`q-BlY5I|Y`Y~sE(Tebb&KQ3#~tOdcIy^^7Sv3{zCr5jJW=pquX@+1;5P8K zWMwtGn#hfPk={;XeN)yK0+3)Xz8bRS2fdW+u1J)?Whu!J_aQl4lTSx=rFqWtvm`*6 zJl(W)IjBi)?FAg)ONP0hp%wo<2g9pMd)9W_!{(f|&+&lQTu`rbF#DJL z-r!7(ux_R-*ybZc(St-Wzb;keCYn(j6?4`1-BN(L}ucc_(pnnl2(ad~|~{rh)6gh2oGf1v*3kM3BJm2w3t^K6&5*C4=B z_m1RPUk8wIiGXzK^-@ia@xiPFBj}|wr0E8m zY@xKe{Vhw@;HuR0OSxqe!ZCR8S9s zWqyG?&YVp??`L+@(};B^>C|x2Bk0#V?y}70m~$|zUc_2R!W@OSDP!_ZczBCK)A{~`feO`_I6csuk)GhE30BE!=#T_o*a>Eb1`3l z=4iJP4s<$%-!;c1$qvvm@BBXLA^@#GQopu~>hu)=oy9tdxII^HM&b(+DQ2@LCpU^; zSasI!K$Hx2(m3ZwnfYfOk$&}&h(+Ub{(DErghG!Fdmef1*|tX9J5SKpE9#5243x~x zFi-8XBO7J&wJk&BX`4hLe;Kazcx?J`Z@(eV$59&w#I2{4JFWB@~AY0@)iYd_08xV}Z_spQW9{olNm&ae4v zgH}&2VPE5Ge2uU1HNM8z_!?j1YkZBb@io52{~hDk&!CSZM+r0B-Jy*Kc52q+rV%Z} zJS(AIk-Lq{`*oZu(nj2l_Xq6(jM|&R*m6uF_!J15m$LnS+mGN6- zx3rI1Nom=_KSN9a?fRa5Fxm^CtH%}b`r1^x8Bn4G7X`XdpDt5hY9S3y2=o!v>coM? zqnzlDV`%L@|w- zhN)#In~XZdt+wd4szP30p|4lS{Q+f`+ z+XY&z4Gt<2QI*ekM`B?H4!kKTlfe4HSn~y;LndZMoKZbz&4r(lWR)V2Ac$ivU|btg z8%Jg=QU`%jhv(zx69_~NHBc{;bpd&&o}g^2mCQ`VuAvmD!=B~#0MHa5(rr&pM*(!;V%8lXPwnzLjFnlFu}AT_hBdbwDVP*H_aoUT$E28()dF zYTFwc;%~nhlH`w{W(&MrZ7z7ZP{@HeK`E~-$)e7NY$S=4>-OfB8YR?=nKG`<*t}nQ4-3woXP6fcCJW@G>uqKPR~)+%6xyLlCjoud zHO~EHF!p~o^7Ao5f^$35*PX@#qrnjaz-)xvCY3xG%i=n`y;CDg-Wy3K_j$RPPWrf8 zsff41lWlJ$deu;pjpP;$&OVv%Ld1!<-2o@776r(&4@JNd?)!E{jDNivUOx&XE}(d>6z1a2ApQePe-;9{*w?^&*7jG ziZZqj%0vzS1pY3yLb*D7-A0VmrcHK5QAOFC($GY-5JtXFID>_#TU78FoShr~r(Q=T z4c(jlhS8up8DXgT#7_v}lWkLQfkLp?sNs-t5+|6UWVlo~=x$6+Q)6uhtZmA=8B8af z3h|ml-_{9x*rQu?Xz`KZyFgns6EO^c<7eRCCy2k=AZ-0?{2B4dXB+?k!g6u)Dl?${ zTwBGYMnXb36=i~?aR!@GFBNTpE)pVQmnL$O=5D1eqMeh@TJn)>N9m;C#5t$veIiRi zNRqC%>@^^U?Icuc8bO4(2(sX>R?Dm}7wBbaHOc_=;{)<|03SD0@A(UoD!p8-4xQVQ zA(rgys_vB2u$Cqtl#7#~)JOpJtb?RE|8x{_or1Rb0=7=E?l#GbdL5zEYD9ltGd+Ji z%plt<^yAClTbt`VRrBv#CpR;Hi_;=0E2T1H~N?7LBIiF=Pm0 z@0=r?^TxP4I2pO#HW_Jj_ z&?<_KJkWJ|k)Z|KvyE`b^BU4^;KWP*QADi%))z#rY8(I=2Jf9BWGc3vZB7vP{$X|K z|G1b;JXYZK#r9ift0li)fDbQ$bGh*o+rK20?Y@JP4ho8wg;*Jhm-9_Pcq9PG3uHl9 z-X~fzB?Y>GK~H3z0`y&d82Hs*4mxtU!HFq;tV&L!%n7tArqu~p_ZrTZ&JK4*b!Tk2 zz>#$9Gp+@$aR7oKj%2Lw zb*?i920umn?;3$(n)g|+oH*wh<{nV|Bs16))8=+rE)5aC?p&6e{_VsJQmwB+6lS!^LeIKXJ z|9J!{oR97bhuimkqD4Un1iH!9MSIn<>0w;?q%M!$YdMC=eUc4{2oxtdo%ibO#g9b% zM#X)-G!iUdkOUj>Sgl?yWqFn7$nQ4JJ+SYdDV{Uod&a@qq%pw3K?j`AnpyRDcEj`M z;=k`L)8M2eU6eKmXIvRfk_;PPPq_$F6cmB-AhC%TeFF+iHMNnVqrqAz`Y4i=2$I2c z7EH~GMiJycb{yNUJe+Bo-<>^Uzt`59Cj~e7JZ^XUkK?fdSRvnDA=eA^=Nt6RdZ**D z8q=}2_@eyOG|xMR_I*baobx%~Iq}avN(q8JO?{vF-c%K`ZDuHu2>SV(%FDaMw1;B zo&0bcARAB!*=N^O?@9Oq6l~(>b)K z0pR{HJ9)4E-b#CqNl(aLp-8RXh_u@kg53~;b3t8NK-37K(PGbofkVVpi_H0iAEwo4 z6Lrq{;Fymja$PGnZkzY3{lB)KqmxB|S*%BVt%km&BTk)_6DecDQ8PJQLYZ_)DLzsU zTx7Dkzi9m04mxmjYm3l&e`|Rp!na`I z_5Ev_=y|bFH6u#3^@ZekxuX8|&7YAo?h-1uuIXIfR%M=y9L^c5Eo%6QQt2K@!rweI z=}(|WDj;(oDIZ5hnN&0xV8&@q45Boqw%QbdDo`d=Z@X3=z8$w+t2x)XJY-LfwQC4M z-D4X<-z&OawSwk!K`G=&ag=~;X-;PYi}1*;1|mRIfz^z{2;|jz?zHFi z=dnVz&E|Q$AA$V-JL-S^9Z*GK##|M8yQ6;GVvdWmy_btIR@aXYSkvbMXp)^g@^{6z z^~{J?g?s|8_?3r@PPUY`tVR}gEbADMS>hQ%W@6W^t##WDDO+;_mKodMUH}26_tpBL z`@AT(wP$cwpMNPE9?ZL3YCCuyQ7MS*90?6wYLLlwDil*V4gGWJkXfCaBz@w~gaNO< zKf1Rf%-0SelhTb@K3R8@uk4@~%a(7yUjbDtt96Qisy*l2quU9|WS*>z-R&0d2YW)Q zWQUv`7yNUumFMlAbZ||Osl;Nd88)qooD#I`c$>fF+qYUDm-LjUD& zHn)GgL*L&+e)R1fvMja+Q?IBVWa2Q=cSLHz6Bh8mFiS?b-d9*0hfsGOCwik-J$fEM zXMYJd$udJbWwg@k?+{y`+CusJ z9LWC)~o|#LVvyOz~evK$sy}h*hp^40D^F>Gbko1oqKkPGY{z+_p z;-^GVs}3@NqO;lP5gME82EEKu5p>y(^UT4%7w*ROo zr3OSs&+Fz4o`(qfM9_*8-XVyTEzuTVh&c|N8d3SH&M8k0 zNXHn8_Pw3E1+a8BOqy)k<{=P@IUEm0W6_Qg&vM%=V>Ci+Sub^4t*zR!0A+$cZY{Vm z&nW-xzuG0fUQvF$h4IV#>h3-F>mG;Kjml@G55M|IjQhG*$YlbGw||W85fbG#U8bDR zv~E%7E%5tzBBu zoz^pc$f$ajRf<5qe}ggr|8YnC*MBo~gI04$t{&97->uE+)sZFnoo$;33Q|cT<nWTUVjjLeBL50A4P^qY?G&ety}LQ=a{r>i>(3xbITX zqrM742T8J10&ST58bDB#C}H~?$wYka6_It_}$_@|b+I1Dk=WFCA3gXQ9 zh#Emoc4ojSfC6BH2MZ_+Uhfp}^cv20KwkKLj;?o)Q+tD_s$~&tHRrtUkQc8zqte$3 znJ*DZ)XSXUjGo2f!dKN4%(B>`mU^*v&N;`k*4~!%t|VmvnH8r@tf>YX=nM{>CRDGR zmD!0*R_kkK&NHlTa91-5_SO<6W`+9y6gJngA%uxic6`I}01l`VJ14sH#IE7w_p(I8D1y5+m651B@Dy%;e*X*x4*;_6 zn0GaJ`(B~1*QU39p6hinWC8%a_}cRidnWBbo(WuL$hU7MqwCg47pd1&yE^!%9PVgy z-Jydlm&MwrO@>m~f4(JsJ?Pl$1^T_!lFP?OBgCxLf-J8uCRhLSA6C}m4*V%s%4hF` z_FSOkl3fKv7TTQdlVfCu89l18l^JRi9ytcc=%A<{rw{BVMJPeJ1TB@ zGlJdXBx05U)h=O_*QC0Xbl#I=Pm|UAPX)4W;k3m22=tHuhXU&-7_>9@-PR^1f&fFK z6|vTTM0n=*X`;3t4<~prjoS%$Io8wq(vZ-+T8K?|3ozIb2;d6Lpd8nA`PaxYPVRC zXdxWfvqh2-9%&|kY}FM70#XH-vM^u7`@jlJ2|&!=lcX5(EY2BqZN|2YR#l1#drrz(( zNZ!%I4E>rEaN!uD_fs)PM5Gy7+;)s~Ju}pu!_g&xPcwHSn3?Dx*-=C8^Wp6I(J9<_ zs7I6|D@X-ELxoum?i$Xy8&-r9c8)gZH|4^!9d1a4Qb;mm$HuuF(4bNrpj7dD@Jhho zgNZ%2&>^pAYYWio?%k2k*AmYuy@M9~C>A-t-HhPn#WJ$`{$b9y!`Zu$l}g<`h#>xe zcdPGwxtgNcw&v)MFGw$M0p3oeGm0*Ewaidr+~A2eW}a`H%k{iUUob$cZD7&mF`-+7MaH z_VKuZ&~gLM0|s%J(Md>7`KWVc-9f@Jb;vXxo;{zZV_iA3C5B5zK%zwq)w3*?trh7z zh(sOC5Kw!zk=J&ufJz|QrC2aemIXS`D31r~Z8s;yGvhX2r#@hx9e`;v^w9lb4*xtG z0w}TVcVpyxNFxY&S$7Vk;LT)#-@T&T?KoP@&Z+!+@HGPkDKObdne(PcTsLtFdv;RA zkSC4rXLK;y=XOGW-U01RzejMZ>72NZt$LQRAwDCC!tCiNZ&~KL#L8~uyhN33dqV$Y zdsLq;h}(_)EIMX(m=2gGbJDjBx}}6v%& zEp)fL!Qb9K>^##1ynon2rVe{ckRTe-s(OrKPE(42?$4=csyE6I0Ty@S2yOBjC`t1e zK#Qtp2L9WMDZhU*iIZGuS94yX#fO0X{}^NCo42gGE&7r5;CyEEHg`i%lOv0;x=a)e zn~KmzEuSa@epQm6AJ@{H4EW(06ez2~^_$Z_%x@83ZVHpNO&#eXl2KHODeRGRhuI2e ze6KePSe4(tLzV^gj~~#F50oEow*C7A{rL`$^ci`~>nl(z>f0NXd=7g>eSdFIcqx!& zMwulXcX>7^JtG-PX=?->wQYkwe8zI^01W9<3a}cHrK&>SZy^(+YJ`{~0o#>rZ{KC7 zJk3C5#6D#L4Ox=p#f_3qCg9t6P%F?`9{822sPiz{(ey+PY;{gN&@$k0jR-@iY{@yN zK1q&57fA5m4iNb6*fL(CKL>3YpjsgxhVId;v3^T6vbgDoXTs+KdB3}pZU!jpnAJ;5 ztV>9>I`tg%nkH*+NQbeMvn%@Lht-GZDi`iR`hpkPl$<+a62LQ#Ko>LB?sRp}jY zIvTk=Q3c3JkdeeK{#19)cWv!Cfe8HC{=?j-%_+~Al)|8Rn+nKhqbx`5Qw4K=75fY`)3&=ih$n%z~(xD+tTi2Th8@i zYfc69{gyJ{Y5{q`>{!*ts}XVo1iCHT8VpR)9_g-C?R`oLXtL#`YTG)?$gWUHc357w z{ogRVa&jf+wx63{i=l)81Sc0qp3`UDL0TfFch1M4SB9;(?X@AZYVCBTR2cE~y%Fch zz1g)Iq`98VjaJar-bqF=iWnN2HSB-!__ZDM3_~oFk;VY+Mbrve*QWFVi^NZp!4UV| zUWf}!*-~Uz1WF@nY~KdhA*O{oqPuw_ z$K;pZh)SpL7)7~&BTrsL_B+K_DPqpK6JTLlq4y2=pZ|#GPX!^<1S}V8ze1L4hXN@higXx7%#d3aQ#|YAX*1{| z0(jN}Kp0rqcdPYdZIi0ibuzNPZsuUn`N*yD0GA(=jWM7js#ep+b|B+5>Cs6KqbM0W zI`vLQWZf%L3pIydr5ZXpnTr{E8`;9heE6cj!<~?nEq5oODQk;JYl@7^Rs#;j9@rf@ z5077piC--I{dKB42=eV4goH7d1@-3}_W$?4`{g7Ddzw&w|J@joA1ma3hu-g~x#x2{ z0H9p2HW#)H_3Z-(l*uy;&p62C(pYm>C$l1J`~4neGg!Rj=CW7@@aMZZ>F*yXbo4@g zrYIfJrS=fH(`#vlPlKmxIQ7w9W>XZm&NC~u?dP(TvuFwwkA03Fa5%-xcBiR026}ym z&>dyV-=obh8jlI$&h|HUQ3$k544z*cNj4%+=$td4_naZcFL3N%QS=N?< zDa#ZnrWix^mqAwx9ye#4C=w|OY*u^AK+~BX0f54&6&;H>2afUsBxgi>=RB?z$vMw@ zwBKyxbWq;6ss%N+73Jqg+dj7`ye!7Uux{S&*53omeDZlNi#_MZ1blqhHqSJu7wN#U zUpW&KyW7LA<8|Mygz0*<=XNiEqu_A6*&4({GttEC`#jsb7;D*UDnSz?v&?nr)`#2z zye1Q-Z-Vr4nHyoCo!IAo`z%}wRUirau0@g^#(H!#euAr6rCsY2_6|d&)3@?SnZFU1p2(HDtn4&} zGXg1)>)dD1mj(KAF$eYj=(r!AW)uN1wV>7B9CQF+>40w9sAPlk~ zScD#BhnIpR4>=h_eK`ipsL$%r!RQ>1?2L3}2TdP!&jTyCI+MCxz)OlPC8)o zn{(of^q95-_Q5`%daee)c0n;lbI!Sh`p78cxYo&&BJRh8?UlBpOdLx{(7x9c#5$=* zryO+t3g`Y1!0Mdy!QNu$ovVvTTHP>bMm>xnchb`(MZY|04oKIkrVNXJ zWKZn7Tyt19?LOzx!Kgm7b;2nb45Ad#V(ocAch!tSVZ^l#MkbF{t3_D3c#IBvT!U>B z5SzM8Q#_8X)iEY5y;znc+#ze629#C>F%0$L>1qyA19XU=&KRe6>X91MIGjJBq_ z%S?zB5!m;eIdY5=FSC*Vgh8;idjFkm`ATG#F-#p zZg)U$sL>I@<;9I(d3iBo`R5zz{f_$c4f0_%?7FRBcDTI008*lFx^AlxWR-`@(UTfo zs#fps9VF~KUrR&`(KF8towKfxA8#frJDK0TB@X#GZVy|>nDxCsfQQ$!eHQ#p*AqX( zWk%eFC&X){)9d!%PWM;STTZ_WxOk|WvcZtjeiP zf1K#0!FiXxwi@)Td)U&8JQ^RcvZ>qM0wuYR{XAQ?oS7)twz6%IM+=BO+sJE@J|50% z&`*H!`syTc_DuEhK>f!bCI`Oml1goH4WA=O@NWvMa{# zB1sTsLq7kU_e3W&vaASPx-l+tpxt1Z2niSC+Ova|?5k5fGnQ~j+lM{M4_UuY9FIfY zdDMlU$xLm?uKXLi`aI$!Q+@K0p~d3$X- zhlvo%3+01rK@cL_dME1!tnlE7@5@9L(EJ9LT&s%JKblBB<>Ym)+6L%Xx#xIvKm6ehrSNsiL1-RnGc?` zdjC5{O%X&ju1CYgNfhyMvs%tf>@rQCLP>w=;ejfB zJj@}Prfywg{i}#1M9#x9N#c`tL}Ah4yDkL)d&!kmjHvOPC!l>$78h#4TP1hP(^HCssMKp0V z*tU)3-OlYl4m=R;hL2gz!!sE&8#$|Sh}y!pA(TIA7Yht#mJYnkmVMbOa7*<`UHzB# zs1lB8fI?4`y$g5*|1J$Z^8VhDU6sq?@3=reZpP%kZq^YYM~BPQZ(rot!tDu$EHmV{ z-)!D`*N7NJtc;1oSXvFDc)b{GkpyDf2D#naJ0s$x6eDe_0OnSPb3miysQ-?JI?0(` z0dy{n@Fry*jA^5aV|N1o}kX6f!^8K5=zuWCk zF6!4DvdoZguK-|c$j7ZcdnpEOuhlYrswginke92iGmq6W>yOpSZI~5bSLZXavOz<})EB;XoHO+BCE8r%jWuLGf~xs<4&l^#|=d~!t=T{T)iA$LR&X4};HhR`Flx(798 zM4P=4dgTPA*k$A?yOmkTK0A1dG#Rt!1ztXe_AGd=K>e((b!s*F!8DodtVa5GTKdPV z?^L3!3b*@lyI*~H>7)R*hCBwuP9}`2)yWX8mR!ATGti(UC1j?Ys1yK7wso}iD3^f( zi1OWz-95_&OBDy12&4&Ma|_-McY>jUD*#wcdhFxNt`;;Rx0T37ZL;BOaBcyeM?+cR z++WF=aGsYoS@u`XbtkffR`MwAa6wO!Sv_ z&|}QA^{}lMtG6TxQq@+63xLqxGsb0u_xd8odX9DL9T387Cs!mp`gUn2PDs?-vIfxM ziJ4eL_M|-gx`9-$el`Y(i2a=>H4wEM>3oOYvvkgRpA24nQcv5UCxeiDR$B(xqE(9Z z&1Rqkh<06s3UO#+dyU$hG8t*d=1|kjwn(FOGR9c(wmjJOr>rl86ssS9SbcG-nD|c%6AR1WJM2AB{OVtx0--^7?)Z0B1)uYQkMdc$rjR#*`ck z8Z~s5g>pu@I+_2jdpL4isZWEy98Lz;wd({Lv7+|p(_B*a83cZmTRw+uP_2H~*$Cx+ z_eawK)z_EVNW)~?Tdn9wvgE-keYu!kBEp$i70!L_oDBd`Uf9*-x+U1ksLq}9L#atNKMBoU z)BO*nh|!rRg3Z1TmC`znkY^?bjb}@A>2)!i^s!ob&l3&8|7A8ZQM_C&NZ~q_97mS$ z@MlMU1qKDxIDqQ?ekifjk6Ub$gCuObnL82zNI`a&jWM|8Iz~J(=r<9+_1z3A6a|9X z?C!KShfT&n8Og3GBP_Stb>Osa_84uoaKr~Wl6{Z~4{$}&@Xws{B=ep8bKmqi>dM3C zNuTrc8FX+s-|^f9vb>nxBx3UO<)Hs>4$m6NRGfiw4gv+O-eScgP>j9{+(0GK)sU5o zc1~RUxWK_D){e-02ptgEcjl<5MM(?m0bw(GbLEf+1whkhj?W@R9Gt}C-)GKw9VT%i zREYh!NRTl%FaEKp>!EGUsK8EJuZ=C)7>&%1c~&%RZ?HO{-}-=Vj*{T9_Pt*Om)SDy zbk1+Lr*ua2@c=$PwhZBpXsL&(wdo*foCmUOhyI<3_k*^&&C(mxU2o@O z#vO3uoy2jwn(&MUkx0}wg=nVzgU10$_PA@Fdim1xq7QUVMXvw`=iDRI#?4ThkpzTH zn1X51*-jBSE9j{tYXw&A=6!CHCR0g{duil;A0McX71R9=T|FZl1at$T(z2LQJx{h) zete)lp);b774rUJ!6-MrLMC!MM$Sc&h&e%AFt}&qiqCj&*{X=lR}EvQaeSn6(5Y}F zRlw8l0m5Wwq_s?qJEN264` z9RIx?+tDW^QqAWJxvV{sg}-G4PkR1=IC)r4XSsU@HwU=F7J7+cy6_IwPIDq;`bafeGT)b!)m^q}f6vsV`vLEVQ}IrhZ1Gm9-YU#q*HMr6qZ? z?FoBkBqfIPG!Q9je!`H*piE@Wiy+>0G*(RxG|UD#L!9WgL-2s?gNs+(Mgu}7g4EP~ z7lAqJrgz-APKiZv`$`p!LyJ1bZhW{H%5bks$j$W`YO&R+_krkB(!|>KJNPhp?k8uw zlMTv%qlCi;^uYRo$QOW!qpg_`d_0aF!v2Hf*LKiZ+<(7A>mHELrtEvt5i*OSX7ac+ zvV&L=Ou4b}!zUJvsoc5-z#+fpnXX{3t^nM|3Wo)15G$Ow_xQ9gXHpF9eCVT4X>^&G zijMg(hCAiqZ1_E#J|DKA*!LDK6LA|TMa}bmj1W$i4G#i2Udtz}>$=x~TXjzS0n(z4 z^_@(l<2KJQRG~lL%&7V8d+V18^zX_)>$>(()H8CJG4hz8r(JXtXfQkuIw{$a_v`2k z{~XQK^y)eyMRX{XCSPf!j|ay*Z!Xn>K{MNi1;&P&aXOZMg8#;a(|%w{daSu z4>HkUfu@XG3nG!EN)PkRb=+B>?DSpCH)q0qJ+))0@-z^iEiC)EJLhV`B+Z~d# zs-KY{7J;zM=VdWstXhG4Z2=o8eU^=x$f*E(T1V+z(CNrouL^*jc0AS``iClvjz>+G zDwL}<3G*DLj!C}(?f27p8wn5YGorEvISN9#6nGl9O~;Do!Dr6E9lXQPXC;TV2C-u9 zr#_0rhgJe-^0tWOECA^ z`q6ipb3adH=iPRw3TM@|?NocBI3US{O?YL$Z?2^zh4YL$CmGR=xr|U0R-)_Wg)BQf z*iubw+E*edDR67Y8~lwiK|&cEeU6MQIdjgl?BrzY;X2cMq`U;GH?K>r&6;>?HTBYv z)8ylSVEoz+I$)6IsTh0r&!5(!E4MS6r!Es^@QqeG7}<{#qgD255GiLvY(GddrgBD{ zt#a~I^|l6G-7U~hp4^sAq&MsY=SqZMdGJ8S$)274>~x&LsA%|bfjTJx=#T~?1_$}1 z6-NkreqKP!&^zHW1BF$_r+4(lg_37Xb3okbKO@ zzLnl7ALXUNAvLlnKyP$)`+TApI%j<@9^lJ?j1n1kmEGj!OfejuB@n$%;fwyZ0UHje zlI%Q1MuRQdB9q8^%W6u!2=w9GJRatp-tUmh1=HXD{*;-K^80TFTmSI`_22%dF-&Jg zJX^~~cnv!H)B~_JX0L#*eNZr?MLby4!LYM4k+&cJ&RKNd=THwzM}xnG!|Hz~IPalF zlshC**Iv+N^J71twXPW*3N#rs$T8wNjMJn)o+?lrZrhlGqm0StH2mCK)$$Qqtz__&U7ZG-7>q0>L~L60mi|KmEUYBlCuYfq9YTFT&9XaumL z8v>B#vVuvMF1W>CMH;)cp36cWo#WA#^)^>UdQOR|rznwdIL2%tfPk#;?YYRAOjI=n zYoN2w4z?C`#@-MUy6=XZD1!3)Z_y3snTEVv4K4Ei4*l`d%4heiC)g9a@%rR)B8?Kk z<7A1lpM3|W^p1c}16}RH+<#C7P+RbS>$~2vIm)G>&^OdHKL$r8dZ(R=l5@rWrqH* ze?SS@0y>%C(~Zx3Z+u^F;PAK+z0ZybKMyrf+2@w6b`#qcb2rvdn-P@)QJnkA>)`O# zY^G#@L(r;Q;L+wk&_Nn|7*+c_>Zry{dNz*oa0MZ`u0Q{_ZRdfgv@VgG!HBL%MzZz% z8I$ymh~1E7syqOx-kvMBQe%rGxm+;)KmQH-dWHOWJ6_MPK3-o?e}9Es7s$Wj+pmX@xiY*2s@$8LDLF28)Wq8D4G_h_SWEZTk#6z1v(A5f2M2vK zwE!fa^E3gI2d%cvdPH9?kbn8R$;2N=C-avcRUzMAq2FIIT^8*B{a*u-1Gr3FF0Qjz zTWc1}u;;*_&~avPpXO9=aU{(oGa>&^LFGv z8J{f!f2h{;Tzp&FztlJL4Eg)-(CY>A$Is*WfAJxgi#cNRg!;#it{hB6y7rtX64~^w zZaF0@07P;r`y!#+Id9Kw~zOH=@C&<({ZxSi0g2pvPe5eUgy4lGu!Mh z_9uRA2OVgR;^anEj&L~KQ~3hq6N71lYUN4)Nz@kb$s-bp7BlXd(n$4CTp$(UsK=qw zq>`|1`fE{b!qJlkX-7VlosQVn9g71*1h9#ioeDbUXGYIhe=ZJ>;j>Lpse=HF$1Bd@ zPKEz?bkN1NaMf<{6OrS)07A)#LxtpWNe1?blKa(%KW|-Tt3STo+9L0SCdzkG&JCun zzC4a=%0W}+7=XWH?P2Xc8b^Z$yj6fG5wYx>JNTnqsL$yWnJ}4`V^kKVn>wYyeX6wY z$2zBc>}=prQH;GafslzH2ov%8THl5XJZqaqho9dUfymTI-&6tIdL)Chze3GG7VJ?b z5J;eS0MdeA03ZeB^~L0k*Yj+H3Y#4cGDER?+2d9ZLqaT$S}&42N%y1ZQNy*=yT z`m)R@-(OKv+)kFcIUicB-h7(u#cOgnmIY*L2N3p`I4NU;$Pa7Z_&3S?N^N?+BppQL z)}*HaWSip^NHQb4G9uO8Hu-^|6;h@9EgY3Ioyh%D^ttD6s3BX2pz%q)_?h!@$QA;< ztnk^e9I76Ptw30_%SC^G8oF9Upe%`+Om5|R2_B878)|b%fFRB5Z6bHz)>PIR95cyA z&GqGZl-9Wj<63rNb6e?}Ex^LL9`JTYv#9Z2#W`a;=PV&gF%iSbR*#;cNYtl`48h?d z%|_$3r~UF*XBlw&dpKXL=Yx%Q=9t$}o{|p9*Wnp(BkIc+C7m8S9Xww41+&dOCtva} z9KXEw(c7(es57ZTaRoysUT{O(If+R)?;HJfbHqaepI* zjK@zC&kktE5gaEu(!?DnddI9JD*yl>07*naR2&OE6TNEBdYBe}Mq`8MXs^h%tf5#k zc~w<=-drElYsJR41(_s{@HaoECa5*wYZ7bQS*{=sG0t@$j(`wm3rkwOK0MO(gm7Mc zd$V_5+{suj&5)tN!{-}}h`z5s2f4C5;O1T;PeJ4s)w&IOf0 zo?;Pb?$ZUHD1KRvMupMM_xxZ^lmhq9MpA0eL0M5J-jQ8fZ8D86-ZO(;Jl1Tj>x@hW zX!uaHxgCg;YO=GLL91kh9S}e2wY5g-B5@sESq}g>d6p!EkiMBrJY!2K{rP4!aU7SW zJzKuJGY$-QFgl3)7$n@h-h3*@-~9NUtN@4X#u=}P)-;zVao&ewf#984MKqcC%m8tu z)#;#|o&~z-6R7_-I3Fqk%;K5Bv?h;P4jr6zB4=`zoR0b6pa@Yqs=<*m4jqvz)yetN zajYdP^~<#d=bXtu^u-g6`r~J-?FL$VEg+op1JM=GWMbQT+bazVy6;hP(@v@h-d?)D zCF*29M>9y(D918n#ROf*yHQi-T>8L}-BkP=M7|`+ir;*`XIpV}){}$YZW!%1@r)xg zr;4L&~*>*$pdXKmR;_?=1`Aw1jM?=ypK!l^u+G%xcp}3+1{xt2iBa_69j(N9TnwP01vB?C3@wLe~>*>Xu z^e&4|{)Qa@tehGHi%wGJ|olh=nq9i>fo$guVU=w&tUJ_d3JzoqR@TX9ULr0tSi z2oqHiICCF_&pOAcZr=L&FD`}pwH@^8JqOp#+NCgy9>2R090IdLnMo%Ug)i-p5kwd- zLU=n3EzZWAWr%aSk<~#&fYxrRzXfv?sxi$cV-3LIT%cEOyg!^MfKQx_xaLtA*#yJz2#kL?wT1f%NaS9(98G@8sva>zTjY7Y$Ae(C#hQCD>~QFQayx*b+iG;Z*O zk*`PP&~`*P5~sw9Ky%Iy3x1ZnBrBjJLYWvk4|pcS$V6&yu%0<<-SrmFc)FuL5c5O^ z3or)WFsLR7BMkeF8o>*fp+q`ENS@yA(4TL;WB)`$KW^Ub!+R>TH4b13d)s=M&^5is z(#ypd5XufD_Zi`ZdB5x^NahdGp5Q8vT_K{@)-xeBI+;*yr=z@QM`Ik+bAD~P-tf=| zJ89#Lcp_AjV#e%O(0g@5sUOte3~EQqCe;*_r>4%F#lm#x-(8sZf_p z$^L35c7wY>=K?`-gBx9-YfO^Z_kNsc8)b8vL|8c>6@P>*G^`feOyS zV$&1DT+=9z<)A{ z#T~jFN$mQSb7Azw#2lCO9{H}SLTl?)Pe+}{63<{h+mOq}WMbW*kB8eEDd;jjOCTu} zuV0=ALy1}A?2rJxTugF&-tKG*N@_=#_oKW>lL=q2SwDNYzZ|(bAptrNzNKwjHZU7k zLzI?}hl-2~Go7%((F)~IJXFjmE)gPB=;Ii^%f^5X!7;fkjR0=1k)hJ6Elcj1b!^Ge zpJ#L8A1kB?%4Ini)Xy;FdbJGn{bAh=Jc|av9J=hJjZi*uJ#ks=ozuADn$@)%9G)%b zNS@32y`E*{J!2t2pXJypifW(vVvsgqyXeUf$5)-^Zr3aQwA_Qo=#3*$zeYz_$zB`M z#LG_D`2Yn__O7NZQSapEkPRwcC)Wf?Ygf_}xz0Is$d-&#m8P4vgy1U9>h9<&xm?cC z6TkS7%f;m2en)+*D8(IIm=0Cye<>E!ON{Pp`zRMjXZg13EbqaCK_WT6r=eRyvx6#B zCCb!JgSx7&XOi*c=oOht=NubJsYbHIKAi{IEMqQxtEnu@CrOdRvm9k2&u0eD&Nxi6 z?m2TT@^$jJZp|1H9l6H8)<$~C{U&KPK+g6$EI!`fJoh%)vkaEZtZTb}E)BW8@R>7C z6bQ>cwj>km1hPy{p!kUnX0i|n+rc{QOhZtVn`pD6Ikw&A6iJjvea3T-jPsl$s=co= zrGQq<&EdK~YYDv%&i5b_rwr}Dxm=9fgbmr-W61mQ`((E&3I5`}`C5@n5`h*_SzFo8 zUmeW-wHjBG&don=!T zVHc*cKnNb(Ey04jOK^7?VDQ1+-2;O=!5xy|?(XhBxD$dqgDmgvzFYeX_R~&vbv-rJ zGWAqLMKSF`5ZCW$u&HM7xdt0^Es*)Dkh|)zm%C6g z7djG(viSA@G>FnKTir!du$m;fuwA3gC5~X{|}^RjL>N^KLQsEaTlOsWX(Bu`toqw@y( zyO8(iAKKxi>eJ4_7Rm<3?pqV|p;JV`v=8p#zN^$=nktsTqqk5Hxig^r8Tn#S%?|j{ z-M!*n=-7wwBt;BGJ~_cto-Ka*`>FkNHbvMXWdh^0#bn2%AW2r1s>g%3BXk-)Eu(Mt zC9^I-DG>J_@#ae>A(PtVVNQZEmtSH8j%g+bw5$%TK{@%t=Py}-IZ5oMz*kysLPU!I zR~>@AQCQ5pkoHFJ~&vD$UI|#}0TUE&} z%u$W##scj?J{ncutC~x_QIK9=_)UsGrz@BR?2ogNPp+p(#IQ>MQR_oDjZ{sZOS4Y~&lR@`npr32JJBkimAdwT{v@Xu# zgJCz88^cV7O5>_7X(WP#P!j-(pgzmX_40 z8@1AcEExv@#SFtpN#>K*5A`NSsdzps6e%W`tg#!V(GOPtTSN z+wMiHzh_TQA-0(xUST*)ie2froxEn;PF1~f7Z#l{gN68eY|~Me`P;@-Si}-5Dn_zy zBYOz{SY9ivYSCH6$XpSzivrziOX_Y^>Ba;x2#&67$UwoS5*$w*jZreEnD^F5RcE1Q zY1fTUKF(st)l63Dw5!8r3^$7}7Mh5^z=LEFtHTGA zsoWN(<)%9vEO0A_=t`eE{*q&eej2^EfwrHc`G0M!z=@!vfrSa-M>D0N*QVe z#5wUJ7fVox8yHR)d%dxSJ92<}JMYQ?NaJ~*iJF(>^~U=FWxt%QbzCC@U3kSZVtdL| zDHjGKj+n%j<*JDpYY0d$Duqiu29-~i-d5oB1CMOvzsBD2!FfpJO5n8JsWi?|$Pe-S z=ztj`3qr-JxrY;V@W{hSKHn4!bZ+8`EBY!4XQkHZXTyGZ&9o=gG?DdS5z1^&gPp)v zl}d<^sL(uT{2PqcEMl9T{;9gC;i!*YevzYz-V2y@+Ms15c}_CdU5nv|iBkQTxZzU{ zbzO}5uEj$VtRUa&Md+MLYD4kYb_k2>5ME#S&7Ya}I7jMNug#>Q;VDhPN|4g+-(S^t zf^s#r#a@4>`ToUK#)S)g`-$AE23Rz`uZM8>`PmKm`8ceYVEAq$gT60K7*E*nS|>+b zK|Fj);ub=V&mLN0W4LYq!_#;&XIkC6dBmW)rf)s8GFWun^|{tP_H z_eB|booGy~%v>otG5m%-g$oD$zX(GA7f$Gvg|y2ZaXp=mtLX=vuAyy}s(N>AWJ?n( zweruXo=rI`!c{wX_lR+sc?npwlFYm|v0%}MP1sJbmc`i+%5QArlZ`{{ViFsZp>lV! z7I!vjhx87MFwl5bE(u3%U^*u1TDfEfPNZd5s%!hJQr zf%t3nM?cLxBBvM}t34fL#I*$8qG+f(S^<(XDf_e>%0Wv$(H-g2>&8fE?^dKYfZ~3H zohA@8t6nuhL210`NkPRoEb(NQjBJjoS4JHErBcehz{P5Xf5V*L+T~0= z%S#%n9~^;ih9z=Mt6F(Z4Z+eho1Xt2aUBu8-pmV{=ptz`Tq}+%Q;zzd6u(?{*YQE+ z61_n@VOW;^& zH6u)*ebNZRn0l@6o8*6z(?PF6l5O>fW9ZAA_|8?osE|VwSY?*H!Hy}8V@(9KX`{LZ9gMkdpd2eu3r!WWQM;Jp>V}^!4Ey5!Td(1O09~xcfKRxD6{Cy<-K!+ zjX+cN?fKbCR!VG|P}X1pIs|DpA@!CHd$26< zAWsC5?^I`v1$Yd5w{G-%?8DPtSO(;i*6EnNj9ek^FP%eLf`C%}Yod|v#oJGhuhu71 z&~UNxfzfP}9B(_<`P!N0-RGiOktAe$jw>89S|IMuhUmK?_EU`}iawfI77Yid{UD#= zDUlVzzLzAm^+V2{ZjXHJF};Q=ZC7QQw)h3ZU-+3bH|L{$Z^4`e3~v=%NKi(W(2$Yh6ldqsxEx1WG7n&Q2CK67`;7P*!eXd^Z@uL(GdgAn0CL z!=NC3Sn5SCxG=in27zK`+16I#KQ#4D36{B@+k&G?FM=y>)nOUl!PmoMcj%|t4C9Lh z!ZM9XI5ykXv0|yXOW51xoEBo93f)_GjF($(hh8}=%XJDk$8DizK-u(Rze&GL1qp`h z`3IHuTZ;>%wP=z#xsQkt){%hvD!;}&T*vAC4ET`j(|VsjL%~;1aO>Rj7!JyZvRxGJ zK%PAN7}JQ8&k!M6NHcUvKtoIp|K@2;f>V1-+W;} zgTnI_x;JOmuWJ<>YIq%OBXI24Eu20}$uxNxR{zZQ@FbAFd#r(v`b#fEF_Sf4A8Z;W zLRz2l=a3-SjYfE0RXgZsI5vKb7Ui2X`f;Z90$d!lnry6f_G!FN|?e%NfI03#M7TS2FE*}Y0b^l&4gUK`Hv7;Y^iou+C;hEW-bl^a#~ zWd!V%M&aTj;xEC#*6=G6HO^cnSU+hK@cM~j&cKZsNz8oJ2jjClLSh(h8qD&!3kXsZ7aKB> zN~A1{)%!+a-ex)Xe(4kG5RWMn-kEWYa{sw>$gTTHE9TKDVtK4}8VyRRK1-n1F4h*2 zdl!${n2Pj6x!*J_g|}sR?cJkOKw4e)1MA+tHM?pgDBpgA*yDXZaNFxb{W%srS^y|b zY5214N+B96GO!ujI4c8Ruuss((;uW}ZvPY$0ve>lSXK5b&;=F`b(vtKzR&-A?hY{= zI8dEvsEbmV0j!0#7i0&TCEVca@?tbtb@N9 zGAGEM#!K8w`yeUn=s|x`BV9C`^KX9%#|e7ATPL}JkQ%|5F<`MG7(Kn*e%L8Le~(Xv z?I#e&J`Pq2H^QZP(zd^cild`eOSt$9YX-g_74NIA5_Tbp%vDE-kr5il7S}!jcDntj~Y!C zt@nv%+g9(6gDdLXiBq!MXBZgzMag}L4Ta~8`IH8E+yO-`{7jQ}rT{rloy{?|8Szs& z#*<}V&aec9j+G!tAnY{^`n6St{7WqAHVKVAf#cbSeBL^U?i#AR@u5KpDt(n^bL~_>)(ZN*laYfBXMRSx)BS-mjNwpecqnH;9rZ>{; zHDdAXo?+FCG`aKzUj=ieeOtgMU)*0?;W^uDMSHTG_xYracdq4P2aOS;pzql&6nHc( zZ2;cUy76E5{w96qiisuZpw|bhpEdjuA<2!rl{CB=crxqvvAC&9P!98nYw(Ya!Y!%N zLpdWqk~+{NetehWedk)>W7-&i=8iM{Q~3MtP^v5BkC&SbnFEKL`n#t?|(ORTVmu&GN`aC{P04;Cs(3WX*7s;idJ2I?xFq` zpcT__1B}!A`kN(`$M+WuoHhHt)G*?&FE81#33;TBQpb9U&UFQ&hKBk! zQVlgIEchRCzdu&rj^N1*Ow_voqQ&KUV}fR`Bb znz|S6HizRYZkqL-)5&qNDu=Am!hY>}bi+=lW&)Xz z%B)rTE#*!MF;Aw>(C>bMiR>rfoP6y^Uy`;$BM;GPgMKyrK84MbOT*>Kcn{&H^D(i& z`0Y<`UUrsA2~&Hn*L z@xaKc)NjI)Ij?ayI))^hFDfxSzP-)XVEaf@ z1wr$noJ5K$0+Y8|^kvr?cBkVqRP>+GZUojw&c2#!dQ8zDDKYJM!@K^v(=0sftcwMk zXX?8Sh3xz~RqnoJ3od1UWuizNLp*@vj!E|O0Z23#?<;p-+43tsa<3#{Ej6t z`pGCu;@m;$I0j{Lv7?%bYT3hmIRi#cR%Vl6*0_L&e@*+PTvCYjVd8@BXVgYvTC9y~ z{A@6UrTT zDzozN3Jd(N7r-MSZfgY?Rl==g_Pz5f_Dfi-$SygFflMxgBvIp^GQS?W3M&SZj9VRz zKj7b2P^h+_lFSV5%#t{@{AMbvBs_{WAuYS=bm+0>i&j3*$aXrjv?DFHm~&wk`pJI|FU<->D&IRWIo(AI=(DAxfrqXOg`jUb83GL zy=v&6`d27;^jOM&$Xv#4-r=xr1+#8d#qbSq4$uaQcj>MScHVmx+yu%-!`%NHV51@~ zZYn;PMQy^eZAT}h^_im5)k0y^OyIILZh}BN{VfA8I{zqaT~i5Lq<9LONdOu{tKJ|7 ziiZ*sVL2R5B+RlR!LjPr7@eXPAz7$B;p^Vtik7yFKJZq)RYWW4>We3SWr4r5(Y8Ry zNWb$(nQdAu*IZg%wMz&#nlG`D$HGE(H}D_`9a|{_YorrxZ#!%XMD2xhPh&A%*(-V_ z;$(*ID3V)WT)}*rDeaIGvnx>St~g_0Ja-88)5aM6gjgmiwF+7g!~T0}@~J&}hwG&9 zzBKaJ?*-1{l?U^rs|}L&Y2!W)JddJU@(b8JFm; z=7OI?OVHx7Yt*_u>+Cvi7BdqX3oVvz0I5fW2jKIKVd$-uX^dU&rJ2uXC?wYH6Q!w z<0U{9_fFW0_7BEMdE3Ie^8bw2K4hg48x0)LSB3K1gTOgY4*=7~3E?gg9r)lnd5O62 zRTmHR^S0qzhSRak$q|*3>#VRE7l6cHNwY55$7ZPiW?y?3X&Yd)mFtM!M+YTl zRyVHJl+j@UZPy(*VL<=t-z7MYw)nR#mV{_v-v<|$O&;VBB{d3hO9914l!oyvyI1_| zD1W+#c34pRu5rq7auO(_KUiix_|tOf#?^6|= z_+{mm@==HgBdmm+x-W5VcD*Bjr1gN_y0p4=E(Tikrwms^_8`<58H|(O75?odHKCWr zfX9)i(5*0VtfoZ#H9=EiqA_rQuZ(2Mp~{Cw3vFM0DN1T2e7vD#60I$+)-I&4z)sJh z-L35pIu6vL{J3opiWx}Vl!p4qj|DHz5_V_tCxjBIPfx;o#p>IPMp_ccdXr1#ee<*V z$W$_Y7G3mKn-GIjl=vJ<|1KT!AiwisA@A*%jCV5E`!$qS9EWzK#FugU2DvX+EV6GU zV;ZBwuDgU4Cu@}8HBYa=_N=(QT&(u+;e23|;c- zO5fh}kC3jluf&Ouwld``NEmxEiSSdzPbJD`xsP*XZSjNcfc74cSUZtV$&!-%ZAJ6Ncw^bnaXP)hyc95SuaH;?3n=`4gL;h{aWXn$dz?c4nd_ z9;<*ifY9#AEOnz6IURYEmu{t@ee)eA=}j%peP>l+@JsMui-6LspqHLSQ1759bZE2awVb`?+2pp)GgSDXjKQjeG2f$aIvMk%|CXv2kG`owAkgVmtKG(R zrHBV}U};%W;!c%DLa^2#!_woyFFB%lEa=`}bd{2%>!iT#dgEJBRk*=-O}xu6XSUj4 zH-z%2`P?oUA43oTpT6tHvblt7BT2z%Y|2QZ9>=(%0&@8tOFXSc-*-^eMZ=BX6L>HQ zQMU^h)t>FTtav13-jKSwyX~X~yo&#wGW^F^n&j;G`@3O_!{2DJMcgMAQGX}9^Cg2M zB3D7TPw64XRY>cyRhuOJ@zm{|cQvIDn$jCqiC0$n1v)Q{sxtH==s~3-eC9$<=VC3sbj0_e!X*I!X6rOMBVYUj{Eh4 zIfMjto~E{l&QYN_>P@_cmlGK|5;tRE@AuG`s~JW+Sz;nYujMg{aCo*>1IYGyMn>~J zjpOzzQcIGn5P<_&sp-`5--F-SL`J>sqo3-*-B~|2+dz{5g06zY5Elh$Md$`x2s}vp zyc0}Pi((=YroFa8Q3e0l;78nk7IHE|0M*4gj9HnBOhK9hv|BQsKx z@=Nv^UPl#!X#%!##Y=I=dD|W_Ogf)A+gKg=sPl9ZoxVy6X6)99jJ3F{uuFqGhO7Kz zXs3l+Dw05B$z#-n(Ac!jeA^GG+t-1LSdq49+sx#~Ec?q_p}VG++%J<@!`-z~PGA3u z(n+F7Jx`a>5dG89PTk>;Or`%PG@*qti{@aqJbyfx7%QyYQ`JJcPB?*7>hS#;;LiBghLoDeV%|7lVC}= z0-INlOjkh2t+hC;>U4Xa|H8FT>mUyh#vXjw< zU;EOu-tNR%qYRZ$T9yV8LQ@HU`BHITapnKLA*NAwHvRc9>-6&!>^ce{g=$@PKOB73 zeqX!oDLAFZ=F=Mz=BAHP>y)FudhId9Qk$Ygw(|MJD_W~Aw=gj`f6kq3)gWyeV1x{yd+R3`v9LerkJ}1zR*Y?m zWKMI$0W^P1cGR8ly8{QzLWD?9%%<$ty8M3LK^$iN4WYf{CuVkfD0HyDcQ5^@T}H9a z#OFq4PnZp7E_kWw%lcpm6P(-5=*b;>CSQ}ME3`4?~tHdRudbW;%WTO%z_ZR^XagGkqj8DV4 zcoBx4^8nLdGkNUiPI>53)n7EJM^WT`UO*3SrXgm2++bG>H26TrO@K>^j+!+0yao~u zzBjV;N%`zx?2LYw%an-APP_WTJl6HfbVY6hx17Q4I(l6`5oDc=-ayEVom1h|cHb(P z@ESm}%chR96wFl#$UfatVKxn0sJ-c!FIx!DrKhov*C+#G>~ft=8ohmLeD9vZ?05<( zaX~)#I*hOp?t<#P{@vs3V2Loki7| zy1@Bjtg1H8P|>b+pGg=loQ;Ub4x*Y1zHXE8u;0HLFmv3^@C~@&Jtx0Go@w}OiZ3K2 zVJ2go8%;`XIFr^>^HWl=W1U?EeWu??aMz_mD`E3>Zl3}ae{>i;gVeXTg^D^fA%HR9 zb7&ZGwT1frQrC4<)<$}d!DWkdI{8R(q1#(cL$?FL@-=zUG=^0U610&jyQX}AeXJz%+z*O zRBx|wGJv9eg>XO#h1{IuM02BWPW1umJ>%;${)w_kV^C}d$BPA4Q5<-98I_*<99im# zC$q1fVMBD%S~}BTWlq+)lmsVhr5_&+*-?hj>NTg&2&1_p1-~m)$UtCeqS3f#dJwN0T^&+@oqn_j2f;jWvex2&(IgA z=adRoF#Gzh_EmZw<52?t5asj{TJkP3Mq0Xwwra{KpJ&D@1_}YAitl@C>d&t`IQJ#A z3ZGZb>0rHvBN($r*ZqhCx(qnkgO7~GCd^4s`s$1wTaH9naOn*^xNZ=^v0RKKmc#Yu z-sp5QzYXzcP7`RHk!cAy=Zs{*f6hiAU zfIdbEwIZAfj&d$gLBDOwp2TL7v$-Pu*y)*`EBZaPKY2k|4dE7u?boAbW_KhX-x`7b zXbok-Fy#Z=KaW`U95>Bfl0p7%r!u~g-a_}oS?l*dU+HyZkua&)&4Q_0>6Q!jq#~OX zUpqEvDHjl<_rY3~X8MAMmuN64?Bv3q=|G2B@;rTA-Y-Cr-FR>~vT{>QOVwVdK7TR( z_?@u%8o>2}e1BzhQ(R;G^otWBNyqP1i~h}dZ53x9zrspow=&?{`FV-Jz8!`9^nD-4 z$^e=_XUuiB>6)qv(1CXuF8rK4Hz2c1gs*gHywA1VGJJ1?nG)hOkF4yfgdn>pN&NDT z)dFZR*-{QC+LAX3VS0Z5gLmOfupTiA5*X|8SjPQ3#62xWQt#Az^`n)9R(zhgf71!9 zlW8FNVX!sjkP}V04I5cbA3O*RlJh{XcheWGh1omWu&o`Ah4mbKZsw8@Jv68Y5=T>G zzYr2)C@Nv1I`S1PYWZQ>;P|T)K4nnb2&2<%aWGvq(D0Xwuef;KI8tvmtT`|h4?J3yYY?crZ@qyW@b~O?78L{BQ+X< z)C}=oCCb!DT@7egn<@o}5C6EFm$A-6X!hp}1ys8`T&}1=;!iq4rHJ-jC4Cn;T+O{YGW^>z0PtcxAeYV-H|57FvWh=|l@M&6E_8Fq>f zcZ*F*QD_7Xg)XF^{FdmVsUV-tGtUQ~`0V^je&T-Ybnq1}nln%92>}J_;q{d9`enCD zqB?nqkYo5gS<{fcf81&%zX|})tv}*u)#rS&1kX%E5v>QH*J`TG^E_CG0bGGo*y;OXcs0g2uGxRwschmXfMT>i{{zliEDjeQ=b) z#ic=7@Gi>te+1qHH^y6(LUS1}sBmz_)n`;KuMaauXu-?&9tpKxhtrKq!pHz%8_`uE z#bd{K63v}mHa$|E#=JI7tg%W(%j_vP!>GmuU>kUZ5cPAk&9$)kT3+<=A71h& z5)IA2FDnC*%(ejVuICr_v2U$Gh=qvR&c%^jw5zd7rFFTx1$c&ix0_pzHh!x7#B~n_ zyc_mz2S1~vIenE~H;4FQj3HiBsk@$Xbg_JwqCS6Q+=<$WYU;&{;$(SUz8C$?`!X&F zy(HWcnt=%mipLF=r=ujStcuW2-C$%MmB@LkbIM5xATMM0_orWNd9gm}AF6C4si*0~ zvk5;p^pPtbSuv{apNGa<|2rQE%c)A(-dJhX*-8tH2D=_=+a&7Ih%{8eAy}XTc;3m%t zPwxFp>Yvq%iP?WA%o~_|<)=rg8Z7_^P4n$mrHt57tRZ2?Gsm>QKz@ zA1U8gIZ@=o!NP&9I=t@ct!+y`3L?e_b}Ch6qkO6N}0tZsG?_2k(|FubpwN(?{aU zXR-Pp4$V8MF`7)5N`0(}yNnmYmFG06_f94KA!K2S(0L~i;*!N&cB*-oKH4f+saB{kQgbKX+kqmjQk zTMCIy22WFV|8M7dm0tduCYN=3^@?3CccU~=WZ>_ifun6l6s6h8nR}Tci^zUAo$nGP zeq7Z`p*~!k>Ed$EyoSgCj6LGky?=yy=7;$Q`nII#PiNE86qB1y*_g+wh6!vL(R}6Q ztMGIsBPYm1HtW_?7epDmav~lytJv;Lxd{=**~2auw%M3`6Wt^pr}4rDrt@o1W=1Md zf?731EU~Ji>L<`(b(uxRtT`Oi@T#~e`^8{T)S)2;=s|9rG*@qvD^vAhwM^Jn`3LwM z`A;`%KYjw+3-d=5nv3N#u9}oxeNym#i_Ejx4iv?f+Ov|ofAQR_UoA_n7*%tJKz#$A{pnnL zWTq5rc08_fFd9}D?Xh=-O2`hGe#kl0FQ3OPz?~PCKX~$3Z0D9VPQ`?iW0hmS#XTAk z?M>tV+qkRHzJ1IKm>A(RMPA3$uVL$`q*|f~3F#Aw@!|bQ;ZY;S?bNC?-icqyGJ2AZ z&A|O(uo(kAtbMM#$8z#Xsa)V^JG%0yfb)9GW?9}LDCA6Y-#A#{k1#I9$z*w*FbiNa zn`qcLo50&xEbNLP?E3Sdzx#0iJAZ(Eli9UhrmfLTIcr41obEQ0x7(C;)(j5vm3(l= zmgVVzEa}7ARF8o`jbDlL1#;(4#Y=X?RxtRSiy#7nlPJ-+nw*Fgfx0-NnTm~bqO>5l zOTV5ip3L%J0YP+1V-$|8qLO0-lkF7EESd|QRN8!>mN3!>t19njJMt5lp0B7smeaOR z|2EJMR1V-rc(Pa+@N^M+ZdR`MbhWpMExhaN$y^(4)pUv{sZ;!lKbxDCL$woCMWXK7 zKl)?%K|3Q%qJBp#*9}Xxb{Zkok7!6pluA=#w9)1z2{fXJC6k5;F~h#UfG5GFr}5=p zh*%dW(0m&7;#3O8%0H}Z6We>kBRZV3SsMi8CYAVXy5H{-JeN!VW+vgef z&7nEsuu<$eHg(39`is?-^}GBCz9$u|_knbqKQ(pZBd%`6_jcWrsW*i{JI|3*6l)Gb zDIi&}0u-qpAaqbRdt*?~$%Fdh=ggACv5p*@VRy}UhY7>B+t%J?^~+xTK|+Iq)xgY?bSsz))NpakaA${a>dzbiIv`Tbs>onY8P8HunLCdr!@OPpkUFhN9I z)!_$>6@-aKtUp%O7UC==54%Jx_}NBzzax%Bhuj4zV}7MsD0K|cf91`gF3IYK&uwb{ zc>k!L(}|yd>a*F&sD`Kf>y9oEfiF!GntG8=kbr+Iw{**JwckNZ4PpME*ScpT9!W7M z>B`>|q!Gz*E#p*fp5@@j*7JI_F+D_UNZ8aEX?kyh*ws;DT4UY%QY-WAw0S{8%l~hS z#X2!nLy6vQI}kV-3C=aNWFO*x*}lQ~l*u z;1P(Qlr1Y^254Ptq;a0JU$nzjY+;c!OQQ6vu6K5XK@G#+$mBp?FFX(H1| zIm_)NS&ER2JX10MycA)JV3Zwr2D{rU%;V}2w|iup&AM{u_FdwWJFdM zsD@d~v6C*b!-oqweMzvZ_G=S4kkl%;d6q7@kgvSxTZJ;#>vqJZfwdf3qy01&b2RIi zO`mPc3p z%s!9OBr(JH{H{USrpbg+tb{PDaG2}8tX98Dra$YfY?j8()C`BemZ5-~7TUee&?RGW zD`37?o&5TBLY7%D(La^J>g^{Twn~ZC^^JL-V9q!6>?~o+!y8NT$sfOWxO4wupy*T} z9p*|`NJ=zLoFqCad%OM)`=IS=d-!;u_ho>^+Z$u%Mq8^}DS4UKLAabxg!)Er+Vq!C z`_je-?V`AS|5?X!XHG|I9glb^^xd_>1#{M=i&ya#Nj0@KPmIluu!@gP$_lSx6{txy z8fV)LD}0x4o$`-`V-gY2KhmIjN|2LD7DhNZnw#P}%k|Nm?WwQox6|?&rvJQC1v9nt)>s&X+e*=_;vpS zC$6Xoni@(?YKqq}d|U6nW(D*<_@Tb?D~oFf>-g9P7WPX43=BL#RzghUBJJ>gFFNsv zZ{4FTDut{VY}%=r5Qnj@#X`oyDB9;n*?WZlbI_yQI5L*N)9N}jeW<7KhjUd3EPED5 z$-yLQ$?w1c7bSdH+kAJCpJf{ITovp5raCvTq2-+feZCn%E^|0h-0~~g{1pm(-y_>{ zx?h{7PBn|xZy!U_T7}0n_=weY#C6rhd8J-VLLDJ*WqeM<3N^djyghlmgGW;uu-1pp z_%SgM;ONjqZWOr{7;FK5n6yh$%-dFElNE4Qzu6Zz8RBMQq{aVm(OklK=th-u?@yfR zK$_t!+}yZw9ogZ#HdE)?QLx~W?pd#7Ypkc7MSLQGcG7FHhp)UR`xrBU(eSIh%zNm2jofWR%vK4Heju_%(t^8m?TbuaD&bB$iRLWk|KgWV0I{NQ;7+VxR x`+uL~qZgcI9`=6^{Qpn#->Lt9GF^dh@LONrdx#nw10s) on-axis observation at the given wavelength. -For single-conjugate adaptive optics modes, the field PSF degrades as distance from the guide star increases. -This effect is taken into account by shifting the anisoplanatic phase screen relative to the calculated phase screen correction for the deformable mirror. -Figure \autoref{fig:psf_grid} shows how the PSF changes with distance from an on-axis guide star. -For a more detailed discussion of the mathematics behind anisoplanatism in the context of the ELT, the reader is referred to @clenet2015. - -![A grid of Ks-band (2.15um) PSFs for a range of distances from the natural guide star. -The PSFs were generated using the ESO median turbulence profile. -\label{fig:psf_grid}](Ks-band_psf_grid.png) - - -### Inputs -The final ELT PSF is the combination of many factors. The vast majority of these are irrelevant for the casual user. -AnisoCADO therefore provides three preset option, corresponding to the standard ESO Q1, Median and Q4 turbulence profiles. -All other parameters are initialised with default values. -For the case of a SCAO system (for which AnisoCADO was originally conceived) PSFs can be generated for multiple guide star offsets without needing to re-make all phase screens by using the special class method ``.shift_off_axis(dx, dy)`` - -For more detailed use cases, the following parameters are available to the user: - -| Atmosphere | Observation | Telescope | -|-------------------------------|----------------------------------|------------------------------| -| * turbulence profile | * natural guide star position | * pupil image | -| * height of turbulent layers | * central wavelength | * 2D pupil transmissivity | -| * stregth of turbulent layers | * pupil rotation angle | * dead/empty mirror segments | -| * wind speed | * Zenith distance of observation | * plate scale | -| * Seeing FWHM @ 500nm | | * residual wavefront errors | -| * Fried parameter | | * AO sampling frequency | -| * outer scale | | * AO loop delay | -| | | * Interactuator distance | - - - -### Outputs - -AnisoCADO is easily integrated into the standard astronomers toolbox. -PSF images generated by AnisoCADO can be output as either ``numpy`` arrays, or standard ``astropy.io.fits.ImageHDU`` objects. -The latter can be written to file using the standard ``astropy`` syntax. - -As AnisoCADO was written to support the development of the MICADO instrument simulator [@simcado2016; @simcado2019], it is also possible to generate ``FieldVaryingPSF`` objects using the helper functions in the ``misc`` module. -Such files are also compatible with the generic instrument data simulator framework, ScopeSim [@scopesim]. - - -Basic Example -------------- -The AnisoCADO API is described in the online documentation, which can be found at: . For the purpose of illustration, the following 5 lines were used to generate the grid of PSFs in figure \autoref{fig:psf_grid}. - -``` -import numpy as np -from anisocado import AnalyticalScaoPsf - -psf = AnalyticalScaoPsf() -psf_grid = [] -for x, y in np.mgrid[-14:15:7, -14:15:7].flatten().reshape((2, 25)).T: - psf.shift_off_axis(x, y) - psf_grid += [psf.kernel] -``` - - -# Acknowledgments - -AnisoCADO depends on the following packages: -Numpy [@numpy], -Matplotlib [@numpy], -Astropy [@astropy2018]. - -This development of this project was funded by the project IS538004 of the Hochschulraum-strukturmittel (HRSM) provided by the Austrian Government and administered by the University of Vienna. - - -# References - -``` -@misc{scopesim, - author = {{Leschinski}, Kieran}, - title = "{ScopeSim - A python framework for creating astronomical instrument data simulators}", - year = {2020}, - publisher = {​GitHub}, - journal = {​GitHub repository}, - url = {​https://github.com/AstarVienna/ScopeSim} -} -``` \ No newline at end of file diff --git a/docs/joss_paper/joss_ideas.md b/docs/joss_paper/joss_ideas.md deleted file mode 100644 index 4b8fcb34..00000000 --- a/docs/joss_paper/joss_ideas.md +++ /dev/null @@ -1,48 +0,0 @@ -# Contents -- metadata (see example below), - -- Summary - A summary describing the high-level functionality and purpose of the software for a diverse, non-specialist audience. - -- Statement of Need, - A Statement of Need section that clearly illustrates the research purpose of the software. - Mention (if applicable) a representative set of past or ongoing research projects using the software and recent scholarly publications enabled by it. - Where to find Documentation / Code - -- Acknowledgements, - Acknowledgement of any financial support. - -- References - A list of key references, including to other software addressing related needs. Note that the references should include full names of venues, e.g., journals and conferences, not abbreviations only understood in the context of a specific discipline. - ---- -title: 'Gala: A Python package for galactic dynamics' -tags: - - Python - - astronomy - - dynamics - - galactic dynamics - - milky way -authors: - - name: Adrian M. Price-Whelan^[co-first author] # note this makes a footnote saying 'co-first author' - orcid: 0000-0003-0872-7098 - affiliation: "1, 2" # (Multiple affiliations must be quoted) - - name: Author Without ORCID^[co-first author] # note this makes a footnote saying 'co-first author' - affiliation: 2 - - name: Author with no affiliation^[corresponding author] - affiliation: 3 -affiliations: - - name: Lyman Spitzer, Jr. Fellow, Princeton University - index: 1 - - name: Institution Name - index: 2 - - name: Independent Researcher - index: 3 -date: 13 August 2017 -bibliography: paper.bib - -# Optional fields if submitting to a AAS journal too, see this blog post: -# https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing -aas-doi: 10.3847/xxxxx <- update this with the DOI from AAS once you know it. -aas-journal: Astrophysical Journal <- The name of the AAS journal. ---- \ No newline at end of file diff --git a/docs/joss_paper/paper.bib b/docs/joss_paper/paper.bib deleted file mode 100644 index 7ef520b8..00000000 --- a/docs/joss_paper/paper.bib +++ /dev/null @@ -1,239 +0,0 @@ -@ARTICLE{numpy, - author={S. {van der Walt} and S. C. {Colbert} and G. {Varoquaux}}, - journal={Computing in Science and Engineering}, - title={The NumPy Array: A Structure for Efficient Numerical Computation}, - year={2011}, - volume={13}, - number={2}, - pages={22-30},} - - -@ARTICLE{matplotlib, - author={J. D. {Hunter}}, - journal={Computing in Science and Engineering}, - title={Matplotlib: A 2D Graphics Environment}, - year={2007}, - volume={9}, - number={3}, - pages={90-95},} - - -@ARTICLE{astropy2018, - author = {{Astropy Collaboration} and {Price-Whelan}, A.~M. and - {Sip{\H{o}}cz}, B.~M. and {G{\"u}nther}, H.~M. and {Lim}, P.~L. and - {Crawford}, S.~M. and {Conseil}, S. and {Shupe}, D.~L. and - {Craig}, M.~W. and {Dencheva}, N. and {Ginsburg}, A. and {Vand - erPlas}, J.~T. and {Bradley}, L.~D. and {P{\'e}rez-Su{\'a}rez}, D. and - {de Val-Borro}, M. and {Aldcroft}, T.~L. and {Cruz}, K.~L. and - {Robitaille}, T.~P. and {Tollerud}, E.~J. and {Ardelean}, C. and - {Babej}, T. and {Bach}, Y.~P. and {Bachetti}, M. and {Bakanov}, A.~V. and - {Bamford}, S.~P. and {Barentsen}, G. and {Barmby}, P. and - {Baumbach}, A. and {Berry}, K.~L. and {Biscani}, F. and {Boquien}, M. and - {Bostroem}, K.~A. and {Bouma}, L.~G. and {Brammer}, G.~B. and - {Bray}, E.~M. and {Breytenbach}, H. and {Buddelmeijer}, H. and - {Burke}, D.~J. and {Calderone}, G. and {Cano Rodr{\'\i}guez}, J.~L. and - {Cara}, M. and {Cardoso}, J.~V.~M. and {Cheedella}, S. and {Copin}, Y. and - {Corrales}, L. and {Crichton}, D. and {D'Avella}, D. and {Deil}, C. and - {Depagne}, {\'E}. and {Dietrich}, J.~P. and {Donath}, A. and - {Droettboom}, M. and {Earl}, N. and {Erben}, T. and {Fabbro}, S. and - {Ferreira}, L.~A. and {Finethy}, T. and {Fox}, R.~T. and - {Garrison}, L.~H. and {Gibbons}, S.~L.~J. and {Goldstein}, D.~A. and - {Gommers}, R. and {Greco}, J.~P. and {Greenfield}, P. and - {Groener}, A.~M. and {Grollier}, F. and {Hagen}, A. and {Hirst}, P. and - {Homeier}, D. and {Horton}, A.~J. and {Hosseinzadeh}, G. and {Hu}, L. and - {Hunkeler}, J.~S. and {Ivezi{\'c}}, {\v{Z}}. and {Jain}, A. and - {Jenness}, T. and {Kanarek}, G. and {Kendrew}, S. and {Kern}, N.~S. and - {Kerzendorf}, W.~E. and {Khvalko}, A. and {King}, J. and {Kirkby}, D. and - {Kulkarni}, A.~M. and {Kumar}, A. and {Lee}, A. and {Lenz}, D. and - {Littlefair}, S.~P. and {Ma}, Z. and {Macleod}, D.~M. and - {Mastropietro}, M. and {McCully}, C. and {Montagnac}, S. and - {Morris}, B.~M. and {Mueller}, M. and {Mumford}, S.~J. and {Muna}, D. and - {Murphy}, N.~A. and {Nelson}, S. and {Nguyen}, G.~H. and - {Ninan}, J.~P. and {N{\"o}the}, M. and {Ogaz}, S. and {Oh}, S. and - {Parejko}, J.~K. and {Parley}, N. and {Pascual}, S. and {Patil}, R. and - {Patil}, A.~A. and {Plunkett}, A.~L. and {Prochaska}, J.~X. and - {Rastogi}, T. and {Reddy Janga}, V. and {Sabater}, J. and - {Sakurikar}, P. and {Seifert}, M. and {Sherbert}, L.~E. and - {Sherwood-Taylor}, H. and {Shih}, A.~Y. and {Sick}, J. and - {Silbiger}, M.~T. and {Singanamalla}, S. and {Singer}, L.~P. and - {Sladen}, P.~H. and {Sooley}, K.~A. and {Sornarajah}, S. and - {Streicher}, O. and {Teuben}, P. and {Thomas}, S.~W. and - {Tremblay}, G.~R. and {Turner}, J.~E.~H. and {Terr{\'o}n}, V. and - {van Kerkwijk}, M.~H. and {de la Vega}, A. and {Watkins}, L.~L. and - {Weaver}, B.~A. and {Whitmore}, J.~B. and {Woillez}, J. and - {Zabalza}, V. and {Astropy Contributors}}, - title = "{The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package}", - journal = {\aj}, - keywords = {methods: data analysis, methods: miscellaneous, methods: statistical, reference systems, Astrophysics - Instrumentation and Methods for Astrophysics}, - year = 2018, - month = sep, - volume = {156}, - number = {3}, - eid = {123}, - pages = {123}, - doi = {10.3847/1538-3881/aabc4f}, -archivePrefix = {arXiv}, - eprint = {1801.02634}, - primaryClass = {astro-ph.IM}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@INPROCEEDINGS{simcado2016, - author = {{Leschinski}, K. and {Czoske}, O. and {K{\"o}hler}, R. and {Mach}, M. and - {Zeilinger}, W. and {Verdoes Kleijn}, G. and {Alves}, J. and - {Kausch}, W. and {Przybilla}, N.}, - title = "{SimCADO: an instrument data simulator package for MICADO at the E-ELT}", - keywords = {Astrophysics - Instrumentation and Methods for Astrophysics}, - booktitle = {\procspie}, - year = 2016, - series = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series}, - volume = {9911}, - month = aug, - eid = {991124}, - pages = {991124}, - doi = {10.1117/12.2232483}, -archivePrefix = {arXiv}, - eprint = {1609.01480}, - primaryClass = {astro-ph.IM}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2016SPIE.9911E..24L}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@INPROCEEDINGS{simcado2019, - author = {{Leschinski}, Kieran and {Czoske}, Oliver and {K{\"o}hler}, Rainer and - {Mach}, Michael and {Zeilinger}, Werner and {Verdoes Kleijn}, Gijs and - {Kausch}, Wolfgang and {Przybilla}, Norbert and {Alves}, Joao and - {Davies}, Richard}, - title = "{SimCADO - a Python Package for Simulating Detector Output for MICADO at the E-ELT}", - booktitle = {Astronomical Data Analysis Software and Systems XXVI}, - year = 2019, - editor = {{Molinaro}, Marco and {Shortridge}, Keith and {Pasian}, Fabio}, - series = {Astronomical Society of the Pacific Conference Series}, - volume = {521}, - month = oct, - pages = {527}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2019ASPC..521..527L}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@ARTICLE{clenet2015, - author = {{Cl{\'e}net}, Y. and {Gendron}, E. and {Gratadour}, D. and - {Rousset}, G. and {Vidal}, F.}, - title = "{Anisoplanatism effect on the E-ELT SCAO point spread function. A preserved coherent core across the field}", - journal = {\aap}, - keywords = {atmospheric effects, instrumentation: adaptive optics, methods: numerical}, - year = 2015, - month = nov, - volume = {583}, - eid = {A102}, - pages = {A102}, - doi = {10.1051/0004-6361/201425469}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2015A&A...583A.102C}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@ARTICLE{elt2007, - author = {{Gilmozzi}, R. and {Spyromilio}, J.}, - title = "{The European Extremely Large Telescope (E-ELT)}", - journal = {The Messenger}, - year = 2007, - month = mar, - volume = {127}, - pages = {11}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2007Msngr.127...11G}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@INPROCEEDINGS{davies2018, - author = {{Davies}, R. and {Alves}, J. and {Cl{\'e}net}, Y. and {Lang-Bardl}, F. and - {Nicklas}, H. and {Pott}, J. -U. and {Ragazzoni}, R. and {Tolstoy}, E. and - {Amico}, P. and {Anwand-Heerwart}, H. and {Barboza}, S. and {Barl}, L. and - {Baudoz}, P. and {Bender}, R. and {Bezawada}, N. and {Bizenberger}, P. and - {Boland}, W. and {Bonifacio}, P. and {Borgo}, B. and {Buey}, T. and - {Chapron}, F. and {Chemla}, F. and {Cohen}, M. and {Czoske}, O. and - {D{\'e}o}, V. and {Disseau}, K. and {Dreizler}, S. and {Dupuis}, O. and - {Fabricius}, M. and {Falomo}, R. and {Fedou}, P. and - {F{\"o}rster Schreiber}, N. and {Garrel}, V. and {Geis}, N. and - {Gemperlein}, H. and {Gendron}, E. and {Genzel}, R. and - {Gillessen}, S. and {Gl{\"u}ck}, M. and {Grupp}, F. and {Hartl}, M. and - {H{\"a}user}, M. and {Hess}, H. -J. and {Hofferbert}, R. and - {Hopp}, U. and {H{\"o}rmann}, V. and {Hubert}, Z. and {Huby}, E. and - {Huet}, J. -M. and {Hutterer}, V. and {Ives}, D. and {Janssen}, A. and - {Jellema}, W. and {Kausch}, W. and {Kerber}, F. and {Kravcar}, H. and - {Le Ruyet}, B. and {Leschinski}, K. and {Mandla}, C. and {Manhart}, M. and - {Massari}, D. and {Mei}, S. and {Merlin}, F. and {Mohr}, L. and - {Monna}, A. and {Muench}, N. and {M{\"u}ller}, F. and {Musters}, G. and - {Navarro}, R. and {Neumann}, U. and {Neumayer}, N. and {Niebsch}, J. and - {Plattner}, M. and {Przybilla}, N. and {Rabien}, S. and {Ramlau}, R. and - {Ramos}, J. and {Ramsay}, S. and {Rhode}, P. and {Richter}, A. and - {Richter}, J. and {Rix}, H. -W. and {Rodeghiero}, G. and - {Rohloff}, R. -R. and {Rosensteiner}, M. and {Rousset}, G. and - {Schlichter}, J. and {Schubert}, J. and {Sevin}, A. and {Stuik}, R. and - {Sturm}, E. and {Thomas}, J. and {Tromp}, N. and {Verdoes-Kleijn}, G. and - {Vidal}, F. and {Wagner}, R. and {Wegner}, M. and {Zeilinger}, W. and - {Ziegleder}, J. and {Ziegler}, B. and {Zins}, G.}, - title = "{The MICADO first light imager for the ELT: overview, operation, simulation}", - keywords = {Astrophysics - Instrumentation and Methods for Astrophysics}, - booktitle = {\procspie}, - year = 2018, - series = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series}, - volume = {10702}, - month = jul, - eid = {107021S}, - pages = {107021S}, - doi = {10.1117/12.2311483}, -archivePrefix = {arXiv}, - eprint = {1807.10003}, - primaryClass = {astro-ph.IM}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2018SPIE10702E..1SD}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@INPROCEEDINGS{clenet2014, - author = {{Cl{\'e}net}, Yann and {Buey}, Tristan M. and {Rousset}, G{\'e}rard and - {Cohen}, Mathieu and {Feautrier}, Philippe and {Gendron}, Eric and - {Hubert}, Zoltan and {Chemla}, Fanny and {Gratadour}, Damien and - {Baudoz}, Pierre and {Lacour}, Sylvestre and {Boccaletti}, Anthony and - {Sevin}, Arnaud and {Vidal}, Fabrice and {Galicher}, Rapha{\"e}l. and - {Perret}, Denis and {Le Ruyet}, Bertrand and - {Chapron}, Fr{\'e}d{\'e}ric and {Stadler}, Eric and {Rabou}, Patrick and - {Jocou}, Laurent and {Rochat}, Sylvain and {Chauvin}, Ga{\"e}l. and - {Davies}, Richard}, - title = "{Overview of the MICADO SCAO system}", - booktitle = {\procspie}, - year = 2014, - series = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series}, - volume = {9148}, - month = jul, - eid = {91480Z}, - pages = {91480Z}, - doi = {10.1117/12.2055220}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2014SPIE.9148E..0ZC}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} - - -@INPROCEEDINGS{farley2018, - author = {{Farley}, O.~J.~D. and {Osborn}, J. and {Wilson}, R.~W. and - {Butterley}, T. and {Laidlaw}, D. and {Townson}, M. and {Morris}, T. and - {Sarazin}, M. and {Derie}, F. and {Le Louarn}, M. and {Chac{\'o}n}, A. and - {Haubois}, X. and {Navarrete}, J. and {Milli}, J.}, - title = "{Representative atmospheric turbulence profiles for ESO Paranal}", - booktitle = {\procspie}, - year = 2018, - series = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series}, - volume = {10703}, - month = jul, - eid = {107032E}, - pages = {107032E}, - doi = {10.1117/12.2312760}, - adsurl = {https://ui.adsabs.harvard.edu/abs/2018SPIE10703E..2EF}, - adsnote = {Provided by the SAO/NASA Astrophysics Data System} -} diff --git a/docs/joss_paper/paper.md b/docs/joss_paper/paper.md deleted file mode 100644 index b1c5c9e9..00000000 --- a/docs/joss_paper/paper.md +++ /dev/null @@ -1,90 +0,0 @@ ---- -title: 'ScopeSim - A pythonic astronomical instrumental data simulation engine' -tags: - - Python - - Astronomy - - Simulations - - Telescopes - - Instruments - - Extreme Large Telescope - -authors: - - name: Kieran Leschinski - orcid: 0000-0003-0441-9784 - affiliation: 1 - - name: Oliver Czoske - orcid: 0000-0003-3127-5341 - affiliation: 1 - - name: Miguel Verdugo - orcid: 0000-0001-5027-557X - affiliation: 1 - - name: Hugo Buddelmeijer - orcid: 0000-0001-8001-0089 - affiliation: 2 - - name: Gijs Verdoes-Kleijn - orcid: 0000-0001-5803-2580 - affiliation: 2 - - name: Werner Zeilinger - orcid: 0000-0001-8507-1403 - affiliation: 1 - - name: Joao Alves - orcid: 0000-0002-4355-0921 - affiliation: 1 - -affiliations: - - name: Department of Astrophysics, University of Vienna - index: 1 - - name: OmegaCEN, Kapteyn Astronomical Institute, University of Groningen - index: 2 - -date: 28 September 2021 -bibliography: paper.bib - ---- - -# Summary - -- A pythonic simulation engine for astronomical instrument data products -- It - - -Documentation can be found at https://scopesim.readthedocs.io/en/latest/ - -# Statement of need - -- Why we need ScopeSim - - Each consortium invests time and effort in writing simulators specifically for their instrument - - Once the commisioning of the instrument is done, the simulator is forgotten - - At any one time there are few instruments being built, thus no effort has gone into keeping code and knowledge - - The majority of astronomical instruments contain the same optical elements - - There is no standard interface for desribing instrumental effects and no standard code library (like astropy) - - The ScopeSim framework provides the building blocks that each simulator needs, thus eliminating the need to start from scratch - - With a standard simulation engine for multiple instruments, it becomes much easier to make meaningful comparisons between output data. Compare apples to apples - -- Audiences - - Scientists, feasibility studies - - Scientists, observation proposals - - Data redcution pipeline developers - - New PIs, Proposals for new instruments - -# ScopeSim workflow - -## Connection to other packages in the software framework - -## Basic code example - - - - - -# Acknowledgments - -ScopeSim depends on the following packages: -Numpy [@numpy], -SciPy -Astropy [@astropy2018]. -SynPhot - -This project was funded by project IS538004 of the Hochschulraum-strukturmittel (HRSM) provided by the Austrian Government and administered by the University of Vienna. - -# References From 473cfa58e55dbc79d6e8e5af622acc526dcf3e06 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 3 Apr 2023 11:03:43 +0200 Subject: [PATCH 005/172] Add slack invite link Hope this doesn't lead to spam.. However, the link was already in the repository, so hopefully it will be fine. --- docs/source/index.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/source/index.rst b/docs/source/index.rst index 09593821..f3c6c81b 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -80,3 +80,5 @@ Contact - `astar.astro@univie.ac.at `_ or - `kieran.leschinski@univie.ac.at `_ + +- For friendly chat, join the slack at https://join.slack.com/t/scopesim/shared_invite/zt-143s42izo-LnyqoG7gH5j~aGn51Z~4IA From 1aaa66c7e62170c584da484e6bf69dbe0911ca46 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 3 Apr 2023 11:04:38 +0200 Subject: [PATCH 006/172] Remove slack_channel.txt, link is in index.rst --- docs/slack_channel.txt | 62 ------------------------------------------ 1 file changed, 62 deletions(-) delete mode 100644 docs/slack_channel.txt diff --git a/docs/slack_channel.txt b/docs/slack_channel.txt deleted file mode 100644 index c793b08f..00000000 --- a/docs/slack_channel.txt +++ /dev/null @@ -1,62 +0,0 @@ -Slack Channel -============= - -Possible Members ----------------- -oliver.czoske@univie.ac.at -miguel.verdugo@univie.ac.at -kieran.leschinski@univie.ac.at - -verdoes@astro.rug.nl -hugo@buddelmeijer.nl - -boekel@mpia.de -burtscher@strw.leidenuniv.nl - -jpott@mpia.de -carmelo.arcidiacono@inaf.it -messlinger@mpia.de - -Michele.Ginolfi@eso.org - -david.jones@iac.es - -born@astron.nl - - - -Initial Email -------------- - -Dear ScopeSim users, developers, and enthusiasts! - -New ScopeSim version - -Firstly, we'd like to announce the release of our latest ScopeSim version (v0.4). -This version contains an updated version of the long-slit spectroscopy mode, as well as various updates to how Source objects can be defined (FITS cubes, lone FITS images). -As always the new version is available via pip: - -pip install --upgrade scopesim - -ScopeSim Slack channel - -It's finally reached a point where multiple teams are now using, or will soon start to use ScopeSim. -Indeed ScopeSim has reached a point where I think it is mature enough that we can start building a community around it. -My hope with this (yet another) Slack channel is that we can bring everyone together, both developers and users, in such a way that we can all start to help and learn from each other. -Not only would this hopefully enable quicker responses to your user questions (i.e. not every query has to go through the Vienna team), it should also hopefully help to expand the developer base for ScopeSim. -Much like the astropy community, it would be great to be able to engage, and indeed profit from the wealth of instrumentation experience within the community. - -https://join.slack.com/t/scopesim/shared_invite/zt-143s42izo-LnyqoG7gH5j~aGn51Z~4IA - -You are receiving this invitation as you have a practical connection to ScopeSim. -If there are others in your group that you feel would also benefit from being part of this channel, feel free to pass the link on to them. - -Mailing List - -We realise that every man and his dog has a slack channel these days. If you would prefer to only be notified of major upgrades or events related to ScopeSim, then please let us know that you would like to be part of the mailing list. -Please send an email back to this address (astar.astro@univie.ac.at) with the subject list "Mailing list". - -As always, we look forward to hearing from you as we all continue to use and build on ScopeSim in the future! - -Happy simulating, -The ScopeSim team From e5f1217545c56463a97c2e153cc71c4a86eb934b Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 17 Apr 2023 06:52:09 +0200 Subject: [PATCH 007/172] Remove pysftp --- requirements.github_actions.txt | 1 - requirements.readthedocs.txt | 3 +-- setup.py | 1 - 3 files changed, 1 insertion(+), 4 deletions(-) diff --git a/requirements.github_actions.txt b/requirements.github_actions.txt index 6613272a..f50d1e8e 100644 --- a/requirements.github_actions.txt +++ b/requirements.github_actions.txt @@ -13,7 +13,6 @@ requests beautifulsoup4 lxml pyyaml -pysftp synphot skycalc_ipy diff --git a/requirements.readthedocs.txt b/requirements.readthedocs.txt index 9236de4d..988ae91c 100644 --- a/requirements.readthedocs.txt +++ b/requirements.readthedocs.txt @@ -8,7 +8,6 @@ requests beautifulsoup4 lxml pyyaml -pysftp synphot skycalc_ipy @@ -23,4 +22,4 @@ sphinxcontrib-apidoc nbsphinx numpydoc -# See https://github.com/sphinx-doc/sphinx/issues/7659 for why sphinx==2.4 \ No newline at end of file +# See https://github.com/sphinx-doc/sphinx/issues/7659 for why sphinx==2.4 diff --git a/setup.py b/setup.py index 7b06bc0d..0dccdd16 100644 --- a/setup.py +++ b/setup.py @@ -58,7 +58,6 @@ def setup_package(): "beautifulsoup4>=4.4", "lxml", "pyyaml>5.1", - "pysftp", "synphot>=0.1.3", "skycalc_ipy>=0.1.3", From 884e158a4dcb605f50e21acdbd2da9a38bb06346 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 17 Apr 2023 07:12:31 +0200 Subject: [PATCH 008/172] Update github action versions --- .github/workflows/tests.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 402eabc6..10ccd0d2 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -24,9 +24,9 @@ jobs: python-version: ['3.7', '3.8', '3.9'] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v3 - name: Set up Python - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Install dependencies From b75af4b874ed6c8182f11615a7614ec1d8b1ca2e Mon Sep 17 00:00:00 2001 From: Kieran Leschinski Date: Wed, 26 Apr 2023 11:27:02 +0200 Subject: [PATCH 009/172] minor --- scopesim/effects/rotation.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/scopesim/effects/rotation.py b/scopesim/effects/rotation.py index 33025b4f..28ac85ef 100644 --- a/scopesim/effects/rotation.py +++ b/scopesim/effects/rotation.py @@ -17,6 +17,8 @@ class Rotate90CCD(Effect): """ Rotates CCD by integer multiples of 90 degrees rotations kwarg is number of counter-clockwise rotations + + Author: Dave jones """ def __init__(self, **kwargs): From f21b4279b2b223dc519e41adae1e3862bb95f451 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:17:19 +0200 Subject: [PATCH 010/172] Add initial pyproject.toml --- pyproject.toml | 71 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100644 pyproject.toml diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..399150ad --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,71 @@ +[project] +name = "ScopeSim" +version = "0.5.8" +description = "Generalised telescope observation simulator" +readme = "README.md" +requires-python = ">=3.7" +license = {text = "License :: OSI Approved :: GNU General Public License v3 (GPLv3)"} +authors = [ + {name = "Kieran Leschinski", email="kieran.leschinski@unive.ac.at"}, +] +maintainers = [ + {name = "Kieran Leschinski", email="kieran.leschinski@unive.ac.at"}, + {name = "Hugo Buddelmeijer", email="hugo@buddelmeijer.nl"}, +] +classifiers=[ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", + "Operating System :: OS Independent", + "Intended Audience :: Science/Research", + "Topic :: Scientific/Engineering :: Astronomy", +] +dependencies = [ + "numpy>=1.16", + "scipy>=1.0.0", + "astropy>=2.0", + "matplotlib>=1.5", + + "docutils", + "requests>=2.20", + "beautifulsoup4>=4.4", + "lxml", + "pyyaml>5.1", + + "synphot>=0.1.3", + "skycalc_ipy>=0.1.3", + "anisocado", +] + +[project.optional-dependencies] +dev = [ + "jupyter", + "jupytext", +] +test = [ + "pytest", + "pytest-cov", + "scopesim_templates", + # Just so that readthedocs doesn't include the tests module - yes it's hacky + "skycalc_cli", +] + +[project.urls] +"Homepage" = "https://scopesim.readthedocs.io/en/latest/" +"Source" = "https://github.com/AstarVienna/ScopeSim" +"Bug Reports" = "https://github.com/AstarVienna/ScopeSim/issues" + +[build-system] +# Use setuptools >= 61.0.0 for package-data +requires = ["setuptools>=61.0.0", "wheel"] +build-backend = "setuptools.build_meta" + +[tool.setuptools] +packages = [ + "scopesim" +] + +# TODO: remove version.py +# TODO: move long description from setup.py +# TODO: Remove setup. +# TODO: Add real licence +# TODO: Remove requirements.github_actions.txt and requirements.readthedocs.txt From ca0294ba3c17fb091f0e1c2e4d39eea1bbc7db1d Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:19:19 +0200 Subject: [PATCH 011/172] Remove setup.py --- setup.py | 75 -------------------------------------------------------- 1 file changed, 75 deletions(-) delete mode 100644 setup.py diff --git a/setup.py b/setup.py deleted file mode 100644 index 0dccdd16..00000000 --- a/setup.py +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env python3 -""" -ScopeSim: A python package to simulate telescope observations -============================================================= - - $ pip install wheel twine - -How to compile and put these on pip:: - - $ python setup.py sdist bdist_wheel - $ twine upload dist/* - -Don't forget the 1 and the * at the end - -Errors ------- - -- 'long_description_content_type not found': - Can occur because the licence string is too long. - Consider just referencing the GNU licences rather than including the full - thing in the licence section. - -""" -from setuptools import setup, find_packages - - -with open('README.md') as f: - __readme__ = f.read() - -with open('LICENCE') as f: - __license__ = f.read() - -with open('scopesim/version.py') as f: - __version__ = f.readline().split("'")[1] - - -def setup_package(): - setup(name='ScopeSim', - version=__version__, - description="Generalised telescope observation simulator", - long_description=__readme__, - long_description_content_type='text/markdown', - author="Kieran Leschinski", - author_email="kieran.leschinski@unive.ac.at", - url="https://github.com/astronomyk/ScopeSim", - license="GNU General Public License", - package_dir={'scopesim': 'scopesim'}, - include_package_data=True, - packages=find_packages(exclude=('docs', 'docs_to_be_sorted', 'data', - 'misc', 'OLD_code', 'temp', 'tests')), - install_requires=["numpy>=1.16", - "scipy>=1.0.0", - "astropy>=2.0", - "matplotlib>=1.5", - - "docutils", - "requests>=2.20", - "beautifulsoup4>=4.4", - "lxml", - "pyyaml>5.1", - - "synphot>=0.1.3", - "skycalc_ipy>=0.1.3", - "anisocado", - ], - classifiers=["Programming Language :: Python :: 3", - "License :: OSI Approved :: MIT License", - "Operating System :: OS Independent", - "Intended Audience :: Science/Research", - "Topic :: Scientific/Engineering :: Astronomy", ] - ) - - -if __name__ == '__main__': - setup_package() From a219d994dbed0561da0b2b97440b3f0a8fcd8a45 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:20:57 +0200 Subject: [PATCH 012/172] Set version to 0.5.7, kinda like minor=odd=develop --- pyproject.toml | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 399150ad..52a97b23 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ScopeSim" -version = "0.5.8" +version = "0.5.7" description = "Generalised telescope observation simulator" readme = "README.md" requires-python = ">=3.7" @@ -64,8 +64,5 @@ packages = [ "scopesim" ] -# TODO: remove version.py -# TODO: move long description from setup.py -# TODO: Remove setup. # TODO: Add real licence # TODO: Remove requirements.github_actions.txt and requirements.readthedocs.txt From 0f47e410c85f4ceb7e1b861a9d7ead7715b5c298 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:25:21 +0200 Subject: [PATCH 013/172] Fix version in other files --- scopesim/__init__.py | 6 ++---- scopesim/version.py | 3 ++- 2 files changed, 4 insertions(+), 5 deletions(-) diff --git a/scopesim/__init__.py b/scopesim/__init__.py index 80620a8e..17c7b997 100644 --- a/scopesim/__init__.py +++ b/scopesim/__init__.py @@ -7,6 +7,7 @@ import logging import warnings import yaml +from importlib import metadata from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', UserWarning) @@ -75,7 +76,4 @@ # VERSION INFORMATION # ################################################################################ -try: - from .version import version as __version__ -except ImportError: - __version__ = "Version number is not available" +__version__ = metadata.version(__package__) diff --git a/scopesim/version.py b/scopesim/version.py index 0a6d7c81..b1371e98 100644 --- a/scopesim/version.py +++ b/scopesim/version.py @@ -1,4 +1,5 @@ -version = '0.5.6' +from importlib import metadata +version = metadata.version(__package__) date = '2023-03-13 16:00:00 GMT' yaml_descriptions = """ - version : 0.5.6 From 765f0673ec72bcda58d9a5bc582c16a2db908b2d Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:41:49 +0200 Subject: [PATCH 014/172] Remove now redundant requirements.txt --- .github/workflows/tests.yml | 3 +-- .readthedocs.yaml | 10 ++++++---- pyproject.toml | 9 ++++++++- requirements.github_actions.txt | 25 ------------------------- requirements.readthedocs.txt | 25 ------------------------- 5 files changed, 15 insertions(+), 57 deletions(-) delete mode 100644 requirements.github_actions.txt delete mode 100644 requirements.readthedocs.txt diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 10ccd0d2..542f1cdc 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -36,8 +36,7 @@ jobs: # ScopeSim will be installed when the github_actions requirements # are installed, because ScopeSim is a dependency of # ScopeSim_Templates. - pip install . - pip install -r requirements.github_actions.txt + pip install .[dev,test] - name: Run Pytest run: pytest --cov=scopesim - name: Run notebooks diff --git a/.readthedocs.yaml b/.readthedocs.yaml index b2a62860..c92119a5 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -10,12 +10,14 @@ build: python: "3.9" sphinx: - configuration: docs/source/conf.py + configuration: docs/source/conf.py python: - install: - - requirements: requirements.readthedocs.txt - - path: . + install: + - method: pip + path: . + extra_requirements: + - docs # If using Sphinx, optionally build your docs in additional formats such as PDF # formats: [] # ignore htmlzip. html is always run diff --git a/pyproject.toml b/pyproject.toml index 52a97b23..eb422301 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -48,6 +48,14 @@ test = [ # Just so that readthedocs doesn't include the tests module - yes it's hacky "skycalc_cli", ] +docs = [ + "sphinx>=4.3.0", + "sphinx-rtd-theme>=0.5.1", + "jupyter_sphinx==0.2.3", + "sphinxcontrib-apidoc", + "nbsphinx", + "numpydoc", +] [project.urls] "Homepage" = "https://scopesim.readthedocs.io/en/latest/" @@ -65,4 +73,3 @@ packages = [ ] # TODO: Add real licence -# TODO: Remove requirements.github_actions.txt and requirements.readthedocs.txt diff --git a/requirements.github_actions.txt b/requirements.github_actions.txt deleted file mode 100644 index f50d1e8e..00000000 --- a/requirements.github_actions.txt +++ /dev/null @@ -1,25 +0,0 @@ -pytest -pytest-cov - -numpy>=1.16 -scipy -astropy -matplotlib -jupyter -jupytext - -docutils -requests -beautifulsoup4 -lxml -pyyaml - -synphot -skycalc_ipy -anisocado -scopesim_templates - -# Just so that readthedocs doesn't include the tests module - yes it's hacky -skycalc_cli - - diff --git a/requirements.readthedocs.txt b/requirements.readthedocs.txt deleted file mode 100644 index 988ae91c..00000000 --- a/requirements.readthedocs.txt +++ /dev/null @@ -1,25 +0,0 @@ -numpy>=1.16 -scipy -matplotlib -astropy - -docutils -requests -beautifulsoup4 -lxml -pyyaml - -synphot -skycalc_ipy -anisocado -git+https://github.com/AstarVienna/ScopeSim.git@dev_master -scopesim_templates - -sphinx>=4.3.0 -sphinx-rtd-theme>=0.5.1 -jupyter_sphinx==0.2.3 -sphinxcontrib-apidoc -nbsphinx -numpydoc - -# See https://github.com/sphinx-doc/sphinx/issues/7659 for why sphinx==2.4 From 4a86f6f26c7717b6cf2d248473c271931d5b0e58 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:50:56 +0200 Subject: [PATCH 015/172] Add actual GPL3 license --- LICENCE | 675 ++++++++++++++++++++++++++++++++++++++++++++++++- pyproject.toml | 2 - 2 files changed, 669 insertions(+), 8 deletions(-) diff --git a/LICENCE b/LICENCE index 9228d3f1..f288702d 100644 --- a/LICENCE +++ b/LICENCE @@ -1,11 +1,674 @@ -We currently don't know much about licences, nor have we thought about them. -No doubt, this will change in the future. For the moment though: + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 -We invoke the licence of honour. Ask yourself, what would Thor do? + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. -If ambiguity ensues, ScopeSim will use the GNU GPLv3 software licence. -https://choosealicense.com/licenses/gpl-3.0/ + Preamble -TLDR; Give credit where credit is due, and reuse this licence. + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/pyproject.toml b/pyproject.toml index eb422301..bac27ff0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -71,5 +71,3 @@ build-backend = "setuptools.build_meta" packages = [ "scopesim" ] - -# TODO: Add real licence From 559f3bb44368e21fe0568e55743513a7e2d57808 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 21:53:11 +0200 Subject: [PATCH 016/172] Remove redundant build section --- pyproject.toml | 5 ----- 1 file changed, 5 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index bac27ff0..3c943e64 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -62,11 +62,6 @@ docs = [ "Source" = "https://github.com/AstarVienna/ScopeSim" "Bug Reports" = "https://github.com/AstarVienna/ScopeSim/issues" -[build-system] -# Use setuptools >= 61.0.0 for package-data -requires = ["setuptools>=61.0.0", "wheel"] -build-backend = "setuptools.build_meta" - [tool.setuptools] packages = [ "scopesim" From ef37ec11bf174f41eb5cb7c6c2db713bb22bca36 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 22:03:11 +0200 Subject: [PATCH 017/172] Drop Python 3.7 support --- .github/workflows/tests.yml | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 542f1cdc..4f8cdd9a 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -21,7 +21,7 @@ jobs: strategy: matrix: os: [ubuntu-latest] - python-version: ['3.7', '3.8', '3.9'] + python-version: ['3.8', '3.9', '3.10', '3.11'] steps: - uses: actions/checkout@v3 diff --git a/pyproject.toml b/pyproject.toml index 3c943e64..87c5cce3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ name = "ScopeSim" version = "0.5.7" description = "Generalised telescope observation simulator" readme = "README.md" -requires-python = ">=3.7" +requires-python = ">=3.8" license = {text = "License :: OSI Approved :: GNU General Public License v3 (GPLv3)"} authors = [ {name = "Kieran Leschinski", email="kieran.leschinski@unive.ac.at"}, From 6683a86b9af2408549c74e45356bfb12e618a872 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Sun, 30 Apr 2023 22:12:58 +0200 Subject: [PATCH 018/172] Workaround to get test dependencies installed --- .github/workflows/tests.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 4f8cdd9a..c2ee665f 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -33,9 +33,10 @@ jobs: run: | python -m pip install --upgrade pip # Install this version of ScopeSim. Otherwise the PyPI version of - # ScopeSim will be installed when the github_actions requirements + # ScopeSim will be installed when the test-requriments # are installed, because ScopeSim is a dependency of # ScopeSim_Templates. + pip install . pip install .[dev,test] - name: Run Pytest run: pytest --cov=scopesim From 6a86a62cf17d155f82b978ca4eb8f5285b68031f Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 1 May 2023 11:55:13 +0200 Subject: [PATCH 019/172] Recursively find packages --- pyproject.toml | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 87c5cce3..8f831090 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -62,7 +62,5 @@ docs = [ "Source" = "https://github.com/AstarVienna/ScopeSim" "Bug Reports" = "https://github.com/AstarVienna/ScopeSim/issues" -[tool.setuptools] -packages = [ - "scopesim" -] +[tool.setuptools.packages] +find = {} From 9e75da8b7f7c3f7fed0e76031fdbc9eda183b25a Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 2 May 2023 19:24:35 +0200 Subject: [PATCH 020/172] Make this an -alpha release so at least it is clear this is not a release --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 8f831090..bbdb5f4b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ScopeSim" -version = "0.5.7" +version = "0.5.7-alpha" description = "Generalised telescope observation simulator" readme = "README.md" requires-python = ">=3.8" From 5f9dd04b293e054934f1ae389a2f91e2f9c2dfe7 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 3 May 2023 09:44:54 +0200 Subject: [PATCH 021/172] Harmonize on American word LICENSE --- LICENCE => LICENSE | 0 MANIFEST.in | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) rename LICENCE => LICENSE (100%) diff --git a/LICENCE b/LICENSE similarity index 100% rename from LICENCE rename to LICENSE diff --git a/MANIFEST.in b/MANIFEST.in index ccaa808c..c479ef57 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,5 @@ include README.md -include LICENCE +include LICENSE include scopesim/defaults.yaml include scopesim/vega.fits recursive-include scopesim/data * From 2f5a3c1562e95e253d59afa674e01e34ffcf8fab Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 24 May 2023 14:50:48 +0200 Subject: [PATCH 022/172] Add functionality for broken symlink support under windows --- scopesim/commands/user_commands.py | 55 +++++++++++++- .../tests/tests_commands/test_UserCommands.py | 73 ++++++++++++++++++- 2 files changed, 123 insertions(+), 5 deletions(-) diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index 9b338721..b06ca99a 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -1,6 +1,7 @@ import os import logging import copy +from pathlib import Path import numpy as np import yaml @@ -285,6 +286,52 @@ def check_for_updates(package_name): return response +def patch_fake_symlinks(path: Path): + """Fixes broken symlinks in path. + + The irdb has some symlinks in it, which work fine under linux, but not + always under windows, see https://stackoverflow.com/a/11664406 . + + "This makes symlinks created and committed e.g. under Linux appear as + plain text files that contain the link text under Windows" + + It is therefore necessary to assume that these can be regular files. + + E.g. when Path.cwd() is + WindowsPath('C:/Users/hugo/hugo/repos/irdb/MICADO/docs/example_notebooks') + and path is WindowsPath('inst_pkgs/MICADO') + then this function should return + WindowsPath('C:/Users/hugo/hugo/repos/irdb/MICADO') + """ + path = path.resolve() + if path.exists() and path.is_dir(): + # A normal directory. + return path + if path.exists() and path.is_file(): + # Could be a regular file, or a broken symlink. + size = path.stat().st_size + if size > 250 or size == 0: + # A symlink is probably not longer than 250 characters. + return path + line = open(path).readline() + if len(line) != size: + # There is more content in the file, so probably not a link. + return path + pline = Path(line) + if pline.exists(): + # The file contains exactly a path that exists. So it is + # probably a link. + return pline.resolve() + if path.exists(): + # The path exists, but is not a file or directory. Just return it. + return path + # The path does not exist. + parent = path.parent + pathup = patch_fake_symlinks(parent) + assert pathup != parent, ValueError("Cannot find path") + return patch_fake_symlinks(pathup / path.name) + + def add_packages_to_rc_search(local_path, package_list): """ Adds the paths of a list of locally saved packages to the search path list @@ -299,13 +346,13 @@ def add_packages_to_rc_search(local_path, package_list): A list of the package names to add """ - + plocal_path = patch_fake_symlinks(Path(local_path)) for pkg in package_list: - pkg_dir = os.path.abspath(os.path.join(local_path, pkg)) - if not os.path.exists(pkg_dir): + pkg_dir = plocal_path / pkg + if not pkg_dir.exists(): # todo: keep here, but add test for this by downloading test_package # raise ValueError("Package could not be found: {}".format(pkg_dir)) - logging.warning("Package could not be found: {}".format(pkg_dir)) + logging.warning(f"Package could not be found: {pkg_dir}") if pkg_dir in rc.__search_path__: # if package is already in search_path, move it to the first place diff --git a/scopesim/tests/tests_commands/test_UserCommands.py b/scopesim/tests/tests_commands/test_UserCommands.py index 74853b5d..d00ef53e 100644 --- a/scopesim/tests/tests_commands/test_UserCommands.py +++ b/scopesim/tests/tests_commands/test_UserCommands.py @@ -1,10 +1,11 @@ import os import shutil +from pathlib import Path import pytest from tempfile import TemporaryDirectory from scopesim import rc -from scopesim.commands.user_commands import UserCommands +from scopesim.commands.user_commands import UserCommands, patch_fake_symlinks from scopesim.server import database as db tmpdir = TemporaryDirectory() @@ -114,3 +115,73 @@ def test_all_packages_listed(self): class TestTrackIpAddress: def test_see_if_theres_an_entry_on_the_server_log_file(self): cmds = UserCommands(use_instrument="test_package") + + +def test_patch_fake_symlinks(tmp_path): + """Setup a temporary directory with files and links.""" + # tmp_path is a fixture + + dircwd = Path.cwd() + os.chdir(tmp_path) + + dir1 = tmp_path / "H1" + dir1.mkdir() + + dir2 = dir1 / "H2" + dir2.mkdir() + + # Normal file + file1 = dir2 / "F1.txt" + with open(file1, 'w') as f1: + f1.write("Hello world!") + + # Empty file + file2 = tmp_path / "F2.txt" + with open(file2, 'w') as f2: + f2.write("") + + # File with a line that is too long to be a link + file3 = tmp_path / "F3.txt" + with open(file3, 'w') as f3: + f3.write("10 print hello; 20 goto 10" * 50) + + # A file with multiple lines + file4 = tmp_path / "F4.txt" + with open(file4, 'w') as f4: + f4.write("Hello\nWorld\n") + + # With slashes + fakelink1 = tmp_path / "L1" + with open(fakelink1, 'w') as f: + f.write("H1/H2") + + # With backslashes + fakelink2 = tmp_path / "L2" + with open(fakelink2, 'w') as f: + f.write(r"H1\H2") + + # A real link + reallink1 = tmp_path / "R1" + try: + reallink1.symlink_to(dir2) + except OSError: + # "A required privilege is not held by the client" + # That is, developer mode is off. + reallink1 = dir2 + + root = list(tmp_path.parents)[-1] + + assert patch_fake_symlinks(dir1) == dir1.resolve() + assert patch_fake_symlinks(dir2) == dir2.resolve() + assert patch_fake_symlinks(file1) == file1.resolve() + assert patch_fake_symlinks(file3) == file3.resolve() + assert patch_fake_symlinks(file4) == file4.resolve() + assert patch_fake_symlinks(fakelink1) == dir2.resolve() + assert patch_fake_symlinks(fakelink2) == dir2.resolve() + assert patch_fake_symlinks(reallink1) == dir2.resolve() + assert patch_fake_symlinks(fakelink1 / "F1.txt") == file1.resolve() + assert patch_fake_symlinks(fakelink2 / "F1.txt") == file1.resolve() + assert patch_fake_symlinks(reallink1 / "F1.txt") == file1.resolve() + assert patch_fake_symlinks(root) == root.resolve() + + os.chdir(dircwd) From 27e600bf10447090702c0c5cf18fb4842b17634a Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 24 May 2023 14:59:57 +0200 Subject: [PATCH 023/172] Remove test with backslashes --- scopesim/tests/tests_commands/test_UserCommands.py | 10 ++-------- 1 file changed, 2 insertions(+), 8 deletions(-) diff --git a/scopesim/tests/tests_commands/test_UserCommands.py b/scopesim/tests/tests_commands/test_UserCommands.py index d00ef53e..cb6ae303 100644 --- a/scopesim/tests/tests_commands/test_UserCommands.py +++ b/scopesim/tests/tests_commands/test_UserCommands.py @@ -150,16 +150,12 @@ def test_patch_fake_symlinks(tmp_path): with open(file4, 'w') as f4: f4.write("Hello\nWorld\n") - # With slashes + # With slashes. Backslashes would also work on windows, + # but not on linux, so we just do not include that case. fakelink1 = tmp_path / "L1" with open(fakelink1, 'w') as f: f.write("H1/H2") - # With backslashes - fakelink2 = tmp_path / "L2" - with open(fakelink2, 'w') as f: - f.write(r"H1\H2") - # A real link reallink1 = tmp_path / "R1" try: @@ -177,10 +173,8 @@ def test_patch_fake_symlinks(tmp_path): assert patch_fake_symlinks(file3) == file3.resolve() assert patch_fake_symlinks(file4) == file4.resolve() assert patch_fake_symlinks(fakelink1) == dir2.resolve() - assert patch_fake_symlinks(fakelink2) == dir2.resolve() assert patch_fake_symlinks(reallink1) == dir2.resolve() assert patch_fake_symlinks(fakelink1 / "F1.txt") == file1.resolve() - assert patch_fake_symlinks(fakelink2 / "F1.txt") == file1.resolve() assert patch_fake_symlinks(reallink1 / "F1.txt") == file1.resolve() assert patch_fake_symlinks(root) == root.resolve() From 9d74876f480ad6a1b5a547dcbc1e57a061e32237 Mon Sep 17 00:00:00 2001 From: oczoske Date: Fri, 26 May 2023 16:49:06 +0200 Subject: [PATCH 024/172] typo in docstring --- scopesim/effects/psfs.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/psfs.py b/scopesim/effects/psfs.py index 90417674..bf0c526a 100644 --- a/scopesim/effects/psfs.py +++ b/scopesim/effects/psfs.py @@ -570,7 +570,7 @@ def __init__(self, **kwargs): class FieldConstantPSF(DiscretePSF): """A PSF that is constant across the field. - For spectroscopy, the a wavelength-dependent PSF cube is built, where for each + For spectroscopy, a wavelength-dependent PSF cube is built, where for each wavelength the reference PSF is scaled proportional to wavelength. """ def __init__(self, **kwargs): From a2d78e28eaa443dc36b8c67a4b2e8fe582854aff Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 29 May 2023 22:19:59 +0200 Subject: [PATCH 025/172] dlam_per_pix now function of lambda --- scopesim/effects/spectral_trace_list_utils.py | 53 ++++++++++++++++--- scopesim/optics/optical_train.py | 8 +++ 2 files changed, 53 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 2cd58e75..ca1ac2ce 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -10,7 +10,8 @@ import numpy as np from scipy.interpolate import RectBivariateSpline -from scipy.interpolate import InterpolatedUnivariateSpline +#from scipy.interpolate import InterpolatedUnivariateSpline +from scipy.interpolate import interp1d from matplotlib import pyplot as plt from astropy.table import Table @@ -152,7 +153,6 @@ def map_spectra_to_focal_plane(self, fov): det_header = fov.detector_header # WCSD from the FieldOfView - this is the full detector plane - fpa_wcs = WCS(fov_header, key='D') naxis1, naxis2 = fov_header['NAXIS1'], fov_header['NAXIS2'] pixsize = fov_header['CDELT1D'] * u.Unit(fov_header['CUNIT1D']) pixsize = pixsize.to(u.mm).value @@ -212,13 +212,24 @@ def map_spectra_to_focal_plane(self, fov): # dlam_by_dx, dlam_by_dy = self.xy2lam.gradient() # if np.abs(dlam_by_dx(0, 0)) > np.abs(dlam_by_dy(0, 0)): + xi = np.array([0] * 1001) # ..todo: This may have to be generalised + lam = np.linspace(wave_min, wave_max, 1001) + xmm = self.xilam2x(xi, lam) + ymm = self.xilam2y(xi, lam) if self.dispersion_axis == "x": - avg_dlam_per_pix = (wave_max - wave_min) / sub_naxis1 + dlam_by_dx = self.xy2lam.gradient()[0] + dlam_per_pix = interp1d(lam, dlam_by_dx(xmm, ymm) * pixsize, + fill_value="extrapolate") + print("disp x:", wave_max, wave_min, sub_naxis1, np.mean(dlam_per_pix(lam))) else: - avg_dlam_per_pix = (wave_max - wave_min) / sub_naxis2 - + dlam_by_dy = self.xy2lam.gradient()[1] + dlam_per_pix = interp1d(lam, dlam_by_dy(xmm, ymm) * pixsize, + fill_value="extrapolate") + print(pixsize) + print("disp y:", wave_max, wave_min, sub_naxis2, np.mean(dlam_per_pix(lam))) try: - xilam = XiLamImage(fov, avg_dlam_per_pix) + #avg_dlam_per_pix = 3.23e-5 # ..todo: remove + xilam = XiLamImage(fov, dlam_per_pix) self.xilam = xilam # ..todo: remove except ValueError: print(" ---> ", self.meta['trace_id'], "gave ValueError") @@ -429,12 +440,21 @@ class XiLamImage(): The class produces and holds an image of xi (relative position along the spatial slit direction) and wavelength lambda. + + Parameters + ---------- + fov : FieldOfView + dlam_per_pix : a 1-D interpolation function from wavelength (in um) to dispersion + (in um/pixel); alternatively a number giving an average dispersion """ def __init__(self, fov, dlam_per_pix): # ..todo: we assume that we always have a cube. We use SpecCADO's # add_cube_layer method + print("Building XiLamImage, dlam_per_pix =",dlam_per_pix) + print(fov) cube_wcs = WCS(fov.cube.header, key=' ') + print(cube_wcs) wcs_lam = cube_wcs.sub([3]) d_xi = fov.cube.header['CDELT1'] @@ -447,22 +467,37 @@ def __init__(self, fov, dlam_per_pix): # This is based on the cube shape and assumes that the cube's spatial # dimensions are set by the slit aperture (n_lam, n_eta, n_xi) = fov.cube.data.shape + print(n_lam, n_eta, n_xi) # arrays of cube coordinates cube_xi = d_xi * np.arange(n_xi) + fov.meta['xi_min'].value cube_eta = d_eta * (np.arange(n_eta) - (n_eta - 1) / 2) cube_lam = wcs_lam.all_pix2world(np.arange(n_lam), 1)[0] cube_lam *= u.Unit(wcs_lam.wcs.cunit[0]).to(u.um) - + print("xi: ", cube_xi.min(), cube_xi.max()) + print("eta:", cube_eta.min(), cube_eta.max()) + print("lam:", cube_lam.min(), cube_lam.max()) # Initialise the array to hold the xi-lambda image self.image = np.zeros((n_xi, n_lam), dtype=np.float32) self.lam = cube_lam + try: + print("wavelengths:", self.lam) + dlam_per_pix_val = dlam_per_pix(np.asarray(self.lam)) + print("dispersion: ", dlam_per_pix_val) + except ValueError: + print("ValueError:", dlam_per_pix) + print("ValueError:", cube_lam.min(), cube_lam.max()) + print(dlam_per_pix((cube_lam.min() + cube_lam.max())/2)) + except TypeError: + dlam_per_pix_val = dlam_per_pix + print("Warning: using scalar dlam_per_pix =", dlam_per_pix_val) + pass for i, eta in enumerate(cube_eta): #if abs(eta) > fov.slit_width / 2: # ..todo: needed? # continue + lam0 = self.lam + dlam_per_pix_val * eta / d_eta - lam0 = self.lam + dlam_per_pix * eta / d_eta # lam0 is the target wavelength. We need to check that this # overlaps with the wavelength range covered by the cube if lam0.min() < cube_lam.max() and lam0.max() > cube_lam.min(): @@ -505,6 +540,8 @@ def __init__(self, fov, dlam_per_pix): self.interp = RectBivariateSpline(self.xi, self.lam, self.image, kx=spline_order[0], ky=spline_order[1]) + # temporary: write out xilamimage + fits.writeto("xilamimage.fits", data=self.image, header=self.wcs.to_header(), overwrite=True) class Transform2D(): diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 73cbac6c..3e67de06 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -166,6 +166,7 @@ def observe(self, orig_source, update=True, **kwargs): .. todo:: List is out of date - update """ + print("Starting to observe") if update: self.update(**kwargs) @@ -178,19 +179,25 @@ def observe(self, orig_source, update=True, **kwargs): # [1D - transmission curves] for effect in self.optics_manager.source_effects: + print("Applying sourve effect", effect) source = effect.apply_to(source) # [3D - Atmospheric shifts, PSF, NCPAs, Grating shift/distortion] fovs = self.fov_manager.fovs + print("Number of fovs:", len(fovs)) for fov in fovs: + print("Extracting from", fov.meta['trace_id']) + print(fov) # print("FOV", fov_i+1, "of", n_fovs, flush=True) # .. todo: possible bug with bg flux not using plate_scale # see fov_utils.combine_imagehdu_fields fov.extract_from(source) hdu_type = "cube" if self.fov_manager.is_spectroscope else "image" + print(" view ", hdu_type) fov.view(hdu_type) for effect in self.optics_manager.fov_effects: + print(fov.meta['trace_id'], "apply_to", effect) fov = effect.apply_to(fov) fov.flatten() @@ -223,6 +230,7 @@ def prepare_source(self, source): # Convert to PHOTLAM per arcsec2 # ..todo: this is not sufficiently general + print("Preparing source") for cube in source.cube_fields: header, data, wave = cube.header, cube.data, cube.wave From 533062e11165a47bbe5dbe5fdcfc68b9a1d860f6 Mon Sep 17 00:00:00 2001 From: oczoske Date: Tue, 30 May 2023 16:58:30 +0200 Subject: [PATCH 026/172] remove debugging print statements --- scopesim/effects/spectral_trace_list.py | 8 +- scopesim/effects/spectral_trace_list_utils.py | 150 ++++-------------- scopesim/optics/optical_train.py | 7 - 3 files changed, 36 insertions(+), 129 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index bd30270c..0dae902e 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -1,8 +1,8 @@ """ Effect for mapping spectral cubes to the detector plane -The Effect is called SpectralTraceList, it applies a list of -optics.spectral_trace_SpectralTrace objects to a FieldOfView. +The Effect is called `SpectralTraceList`, it applies a list of +`spectral_trace_list_utils.SpectralTrace` objects to a `FieldOfView`. """ from os import path as pth @@ -13,7 +13,7 @@ from .effects import Effect from .spectral_trace_list_utils import SpectralTrace -from ..utils import from_currsys, check_keys, interp2 +from ..utils import from_currsys, check_keys from ..optics.image_plane_utils import header_from_list_of_xy from ..base_classes import FieldOfViewBase, FOVSetupBase @@ -358,4 +358,4 @@ def current_trace_list(self): @property def display_name(self): name = self.meta.get("name", self.meta.get("filename", "")) - return f'{name} : [{from_currsys(self.meta["current_trace_list"])}]' \ No newline at end of file + return f'{name} : [{from_currsys(self.meta["current_trace_list"])}]' diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index ca1ac2ce..b3abd9b7 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -1,6 +1,9 @@ """ +Utility classes and functions for SpectralTraceList + This module contains - - the definition of the `SpectralTrace` class. + - the definition of the `SpectralTrace` class. The visible effect should + always be a `SpectralTraceList`, even if that contains only one `SpectralTrace`. - the definition of the `XiLamImage` class - utility functions for use with spectral traces """ @@ -10,7 +13,6 @@ import numpy as np from scipy.interpolate import RectBivariateSpline -#from scipy.interpolate import InterpolatedUnivariateSpline from scipy.interpolate import interp1d from matplotlib import pyplot as plt @@ -21,9 +23,7 @@ from astropy.wcs import WCS from astropy.modeling.models import Polynomial2D -from ..optics import image_plane_utils as imp_utils -from ..utils import deriv_polynomial2d, power_vector, interp2, check_keys,\ - from_currsys, quantify +from ..utils import power_vector, quantify class SpectralTrace: @@ -66,11 +66,13 @@ def __init__(self, trace_tbl, **kwargs): self.table = trace_tbl else: raise ValueError("trace_tbl must be one of (fits.BinTableHDU, " - "fits.TableHDU, astropy.Table): {}" - "".format(type(trace_tbl))) + f"fits.TableHDU, astropy.Table) but is {type(trace_tbl)}") self.compute_interpolation_functions() + # Declaration of other attributes + self._xilamimg = None + def fov_grid(self): """ Provide information on the source space volume required by the effect @@ -94,17 +96,10 @@ def fov_grid(self): def compute_interpolation_functions(self): """ Compute various interpolation functions between slit and focal plane - """ - if self.meta["invalid_value"] is not None: - self.table = sanitize_table( - self.table, - invalid_value=self.meta["invalid_value"], - wave_colname=self.meta["wave_colname"], - x_colname=self.meta["x_colname"], - y_colname=self.meta["y_colname"], - spline_order=self.meta["spline_order"], - ext_id=self.meta["extension_id"]) + Focal plane coordinates are `x` and `y`, in mm. Slit coordinates are + `xi` (spatial coordinate along the slit, in arcsec) and `lam` (wavelength, in um). + """ x_arr = self.table[self.meta['x_colname']] y_arr = self.table[self.meta['y_colname']] xi_arr = self.table[self.meta['s_colname']] @@ -144,16 +139,15 @@ def map_spectra_to_focal_plane(self, fov): xi_max = fov.meta['xi_max'].value # [arcsec] xlim_mm, ylim_mm = self.footprint(wave_min=wave_min, wave_max=wave_max, xi_min=xi_min, xi_max=xi_max) - #print("xlim_mm:", xlim_mm, " ylim_mm:", ylim_mm) + if xlim_mm is None: - print("xlim_mm is None") + logging.warning("xlim_mm is None") return None fov_header = fov.header det_header = fov.detector_header # WCSD from the FieldOfView - this is the full detector plane - naxis1, naxis2 = fov_header['NAXIS1'], fov_header['NAXIS2'] pixsize = fov_header['CDELT1D'] * u.Unit(fov_header['CUNIT1D']) pixsize = pixsize.to(u.mm).value pixscale = fov_header['CDELT1'] * u.Unit(fov_header['CUNIT1']) @@ -168,8 +162,6 @@ def map_spectra_to_focal_plane(self, fov): ymax = np.ceil(ylim_px.max()).astype(int) ## Check if spectral trace footprint is outside FoV - #print(fpa_wcsd) - #print(xmin, xmax, ymin, ymax, " <<->> ", naxis1d, naxis2d) if xmax < 0 or xmin > naxis1d or ymax < 0 or ymin > naxis2d: logging.warning("Spectral trace footprint is outside FoV") return None @@ -183,8 +175,6 @@ def map_spectra_to_focal_plane(self, fov): # Create header for the subimage - I think this only needs the DET one, # but we'll do both. The WCSs are initialised from the full fpa WCS and # then shifted accordingly. - # sub_wcs = WCS(fov_header, key=" ") - # sub_wcs.wcs.crpix -= np.array([xmin, ymin]) det_wcs = WCS(det_header, key="D") det_wcs.wcs.crpix -= np.array([xmin, ymin]) @@ -199,40 +189,25 @@ def map_spectra_to_focal_plane(self, fov): xmin_mm, ymin_mm = fpa_wcsd.all_pix2world(xmin, ymin, 0) xmax_mm, ymax_mm = fpa_wcsd.all_pix2world(xmax, ymax, 0) - # wavelength step per detector pixel at centre of slice - # ..todo: - currently using average dlam_per_pix. This should - # be okay if there is not strong anamorphism. Below, we - # compute an image of abs(dlam_per_pix) in the focal plane. - # XiLamImage would need that as an image of xi/lam, which should - # be possible but too much for the time being. - # - The dispersion direction is selected by the direction of the - # gradient of lam(x, y). This works if the lam-axis is well - # aligned with x or y. Needs to be tested for MICADO. - - - # dlam_by_dx, dlam_by_dy = self.xy2lam.gradient() - # if np.abs(dlam_by_dx(0, 0)) > np.abs(dlam_by_dy(0, 0)): - xi = np.array([0] * 1001) # ..todo: This may have to be generalised + # Computation of dispersion dlam_per_pix along xi=0 + # ..todo: This may have to be generalised - xi=0 is at the centre of METIS slits + # and the short MICADO slit. + xi = np.array([0] * 1001) lam = np.linspace(wave_min, wave_max, 1001) - xmm = self.xilam2x(xi, lam) - ymm = self.xilam2y(xi, lam) + x_mm = self.xilam2x(xi, lam) + y_mm = self.xilam2y(xi, lam) if self.dispersion_axis == "x": - dlam_by_dx = self.xy2lam.gradient()[0] - dlam_per_pix = interp1d(lam, dlam_by_dx(xmm, ymm) * pixsize, - fill_value="extrapolate") - print("disp x:", wave_max, wave_min, sub_naxis1, np.mean(dlam_per_pix(lam))) + dlam_grad = self.xy2lam.gradient()[0] # dlam_by_dx else: - dlam_by_dy = self.xy2lam.gradient()[1] - dlam_per_pix = interp1d(lam, dlam_by_dy(xmm, ymm) * pixsize, - fill_value="extrapolate") - print(pixsize) - print("disp y:", wave_max, wave_min, sub_naxis2, np.mean(dlam_per_pix(lam))) + dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy + dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, + fill_value="extrapolate") + try: - #avg_dlam_per_pix = 3.23e-5 # ..todo: remove xilam = XiLamImage(fov, dlam_per_pix) - self.xilam = xilam # ..todo: remove + self._xilamimg = xilam # ..todo: remove or make available with a debug flag? except ValueError: - print(" ---> ", self.meta['trace_id'], "gave ValueError") + print(f" ---> {self.meta['trace_id']} gave ValueError") npix_xi, npix_lam = xilam.npix_xi, xilam.npix_lam xilam_wcs = xilam.wcs @@ -292,8 +267,8 @@ def map_spectra_to_focal_plane(self, fov): img_header["YMAX"] = ymax if np.any(image < 0): - logging.warning(f"map_spectra_to_focal_plane: {np.sum(image < 0)} negative pixels") - + logging.warning("map_spectra_to_focal_plane: %d negative pixels", + np.sum(image < 0)) image_hdu = fits.ImageHDU(header=img_header, data=image) return image_hdu @@ -313,8 +288,6 @@ def footprint(self, wave_min=None, wave_max=None, xi_min=None, xi_max=None): If `None`, use the full range that the spectral trace is defined on. Float values are interpreted as arcsec. """ - #print(f"footprint: {wave_min}, {wave_max}, {xi_min}, {xi_max}") - ## Define the wavelength range of the footprint. This is a compromise ## between the requested range (by method args) and the definition ## range of the spectral trace @@ -451,10 +424,7 @@ class XiLamImage(): def __init__(self, fov, dlam_per_pix): # ..todo: we assume that we always have a cube. We use SpecCADO's # add_cube_layer method - print("Building XiLamImage, dlam_per_pix =",dlam_per_pix) - print(fov) cube_wcs = WCS(fov.cube.header, key=' ') - print(cube_wcs) wcs_lam = cube_wcs.sub([3]) d_xi = fov.cube.header['CDELT1'] @@ -467,31 +437,21 @@ def __init__(self, fov, dlam_per_pix): # This is based on the cube shape and assumes that the cube's spatial # dimensions are set by the slit aperture (n_lam, n_eta, n_xi) = fov.cube.data.shape - print(n_lam, n_eta, n_xi) # arrays of cube coordinates cube_xi = d_xi * np.arange(n_xi) + fov.meta['xi_min'].value cube_eta = d_eta * (np.arange(n_eta) - (n_eta - 1) / 2) cube_lam = wcs_lam.all_pix2world(np.arange(n_lam), 1)[0] cube_lam *= u.Unit(wcs_lam.wcs.cunit[0]).to(u.um) - print("xi: ", cube_xi.min(), cube_xi.max()) - print("eta:", cube_eta.min(), cube_eta.max()) - print("lam:", cube_lam.min(), cube_lam.max()) + # Initialise the array to hold the xi-lambda image self.image = np.zeros((n_xi, n_lam), dtype=np.float32) self.lam = cube_lam try: - print("wavelengths:", self.lam) dlam_per_pix_val = dlam_per_pix(np.asarray(self.lam)) - print("dispersion: ", dlam_per_pix_val) - except ValueError: - print("ValueError:", dlam_per_pix) - print("ValueError:", cube_lam.min(), cube_lam.max()) - print(dlam_per_pix((cube_lam.min() + cube_lam.max())/2)) except TypeError: dlam_per_pix_val = dlam_per_pix - print("Warning: using scalar dlam_per_pix =", dlam_per_pix_val) - pass + logging.warning("Using scalar dlam_per_pix = %.2g", dlam_per_pix_val) for i, eta in enumerate(cube_eta): #if abs(eta) > fov.slit_width / 2: # ..todo: needed? @@ -540,8 +500,6 @@ def __init__(self, fov, dlam_per_pix): self.interp = RectBivariateSpline(self.xi, self.lam, self.image, kx=spline_order[0], ky=spline_order[1]) - # temporary: write out xilamimage - fits.writeto("xilamimage.fits", data=self.image, header=self.wcs.to_header(), overwrite=True) class Transform2D(): @@ -599,7 +557,6 @@ def _repackage(self, trafo): trafo = (trafo, {}) return trafo - def __call__(self, x, y, grid=False, **kwargs): """ Apply the polynomial transform @@ -703,7 +660,7 @@ def fit2matrix(fit): for i in range(deg + 1): for j in range(deg + 1): try: - mat[j, i] = coeffs['c{}_{}'.format(i, j)] + mat[j, i] = coeffs[f"c{i}_{j}"] except KeyError: pass return mat @@ -833,46 +790,3 @@ def get_affine_parameters(coords): shears = (np.average(shears, axis=0) * rad2deg) - (90 + rotations) return rotations, shears - - -# def sanitize_table(tbl, invalid_value, wave_colname, x_colname, y_colname, -# spline_order=4, ext_id=None): -# -# y_colnames = [col for col in tbl.colnames if y_colname in col] -# x_colnames = [col.replace(y_colname, x_colname) for col in y_colnames] -# -# for x_col, y_col in zip(x_colnames, y_colnames): -# wave = tbl[wave_colname].data -# x = tbl[x_col].data -# y = tbl[y_col].data -# -# valid = (x != invalid_value) * (y != invalid_value) -# invalid = np.invert(valid) -# if sum(invalid) == 0: -# continue -# -# if sum(valid) == 0: -# logging.warning("--- Extension {} ---" -# "All points in {} or {} were invalid. \n" -# "THESE COLUMNS HAVE BEEN REMOVED FROM THE TABLE \n" -# "invalid_value = {} \n" -# "wave = {} \nx = {} \ny = {}" -# "".format(ext_id, x_col, y_col, invalid_value, -# wave, x, y)) -# tbl.remove_columns([x_col, y_col]) -# continue -# -# k = spline_order -# if wave[-1] > wave[0]: -# xnew = InterpolatedUnivariateSpline(wave[valid], x[valid], k=k) -# ynew = InterpolatedUnivariateSpline(wave[valid], y[valid], k=k) -# else: -# xnew = InterpolatedUnivariateSpline(wave[valid][::-1], -# x[valid][::-1], k=k) -# ynew = InterpolatedUnivariateSpline(wave[valid][::-1], -# y[valid][::-1], k=k) -# -# tbl[x_col][invalid] = xnew(wave[invalid]) -# tbl[y_col][invalid] = ynew(wave[invalid]) -# -# return tbl diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 3e67de06..ea8620b8 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -166,7 +166,6 @@ def observe(self, orig_source, update=True, **kwargs): .. todo:: List is out of date - update """ - print("Starting to observe") if update: self.update(**kwargs) @@ -179,25 +178,20 @@ def observe(self, orig_source, update=True, **kwargs): # [1D - transmission curves] for effect in self.optics_manager.source_effects: - print("Applying sourve effect", effect) source = effect.apply_to(source) # [3D - Atmospheric shifts, PSF, NCPAs, Grating shift/distortion] fovs = self.fov_manager.fovs - print("Number of fovs:", len(fovs)) for fov in fovs: print("Extracting from", fov.meta['trace_id']) - print(fov) # print("FOV", fov_i+1, "of", n_fovs, flush=True) # .. todo: possible bug with bg flux not using plate_scale # see fov_utils.combine_imagehdu_fields fov.extract_from(source) hdu_type = "cube" if self.fov_manager.is_spectroscope else "image" - print(" view ", hdu_type) fov.view(hdu_type) for effect in self.optics_manager.fov_effects: - print(fov.meta['trace_id'], "apply_to", effect) fov = effect.apply_to(fov) fov.flatten() @@ -230,7 +224,6 @@ def prepare_source(self, source): # Convert to PHOTLAM per arcsec2 # ..todo: this is not sufficiently general - print("Preparing source") for cube in source.cube_fields: header, data, wave = cube.header, cube.data, cube.wave From f68823c88f0c45d09038eb30684bf4e8b060381b Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 31 May 2023 21:38:53 +0200 Subject: [PATCH 027/172] Get dispersion axis from trace file --- scopesim/effects/spectral_trace_list_utils.py | 24 ++++++++++++------- 1 file changed, 16 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index b3abd9b7..32133aba 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -62,16 +62,18 @@ def __init__(self, trace_tbl, **kwargs): if isinstance(trace_tbl, (fits.BinTableHDU, fits.TableHDU)): self.table = Table.read(trace_tbl) self.meta["trace_id"] = trace_tbl.header.get('EXTNAME', "") + self.dispersion_axis = trace_tbl.header.get('DISPDIR', 'unknown') elif isinstance(trace_tbl, Table): self.table = trace_tbl + self.dispersion_axis = 'unknown' else: raise ValueError("trace_tbl must be one of (fits.BinTableHDU, " f"fits.TableHDU, astropy.Table) but is {type(trace_tbl)}") - self.compute_interpolation_functions() # Declaration of other attributes self._xilamimg = None + self.dlam_per_pix = None def fov_grid(self): """ @@ -105,10 +107,12 @@ def compute_interpolation_functions(self): xi_arr = self.table[self.meta['s_colname']] lam_arr = self.table[self.meta['wave_colname']] - wi0, wi1 = lam_arr.argmin(), lam_arr.argmax() - x_disp_length = np.diff([x_arr[wi0], x_arr[wi1]]) - y_disp_length = np.diff([y_arr[wi0], y_arr[wi1]]) - self.dispersion_axis = "x" if x_disp_length > y_disp_length else "y" + if self.dispersion_axis == 'unknown': + # ..todo: replace with gradient based method + wi0, wi1 = lam_arr.argmin(), lam_arr.argmax() + x_disp_length = np.diff([x_arr[wi0], x_arr[wi1]]) + y_disp_length = np.diff([y_arr[wi0], y_arr[wi1]]) + self.dispersion_axis = "x" if x_disp_length > y_disp_length else "y" self.wave_min = quantify(np.min(lam_arr), u.um).value self.wave_max = quantify(np.max(lam_arr), u.um).value @@ -120,6 +124,8 @@ def compute_interpolation_functions(self): self._xiy2x = Transform2D.fit(xi_arr, y_arr, x_arr) self._xiy2lam = Transform2D.fit(xi_arr, y_arr, lam_arr) + + def map_spectra_to_focal_plane(self, fov): """ Apply the spectral trace mapping to a spectral cube @@ -200,11 +206,13 @@ def map_spectra_to_focal_plane(self, fov): dlam_grad = self.xy2lam.gradient()[0] # dlam_by_dx else: dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy - dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, + self.dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, fill_value="extrapolate") - + print("Mean dispersion:", np.mean(self.dlam_per_pix(lam))) + print("Pixel size:", pixsize) + print("Dispersion direction:", self.dispersion_axis) try: - xilam = XiLamImage(fov, dlam_per_pix) + xilam = XiLamImage(fov, self.dlam_per_pix) self._xilamimg = xilam # ..todo: remove or make available with a debug flag? except ValueError: print(f" ---> {self.meta['trace_id']} gave ValueError") From d2528f9e6a90a9ea9d9d6c917a1b6627afa6d7dd Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 2 Jun 2023 14:19:56 +0200 Subject: [PATCH 028/172] Setting up the gitignore for spyder --- .gitignore | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/.gitignore b/.gitignore index 46d60b77..bb8f47fb 100644 --- a/.gitignore +++ b/.gitignore @@ -52,3 +52,10 @@ dist *TEST.fits *temp* *speclecado*.fits + +# Spyder project settings +.spyderproject +.spyproject + +# Pylint +.pylint.d/ From 933c6a56eb131b0612dd74bba47a125e3a7f4ccd Mon Sep 17 00:00:00 2001 From: oczoske Date: Fri, 2 Jun 2023 20:00:25 +0200 Subject: [PATCH 029/172] Instantiate SpectralEfficiency effect --- scopesim/effects/__init__.py | 1 + scopesim/effects/spectral_efficiencies.py | 49 ++++++++++++++++++ scopesim/tests/mocks/files/TER_grating.fits | Bin 0 -> 72000 bytes .../test_SpectralEfficiencies.py | 28 ++++++++++ 4 files changed, 78 insertions(+) create mode 100644 scopesim/effects/spectral_efficiencies.py create mode 100644 scopesim/tests/mocks/files/TER_grating.fits create mode 100644 scopesim/tests/tests_effects/test_SpectralEfficiencies.py diff --git a/scopesim/effects/__init__.py b/scopesim/effects/__init__.py index e232667f..af3a0fc8 100644 --- a/scopesim/effects/__init__.py +++ b/scopesim/effects/__init__.py @@ -6,6 +6,7 @@ from .obs_strategies import * from .spectral_trace_list import * +from .spectral_efficiencies import * from .metis_lms_trace_list import * from .surface_list import * from .ter_curves import * diff --git a/scopesim/effects/spectral_efficiencies.py b/scopesim/effects/spectral_efficiencies.py new file mode 100644 index 00000000..c7a32da5 --- /dev/null +++ b/scopesim/effects/spectral_efficiencies.py @@ -0,0 +1,49 @@ +""" +Spectral grating efficiencies +""" +from matplotlib import pyplot as plt + +from astropy.io import fits +from astropy import units as u + +from .effects import Effect +from .ter_curves import TERCurve +from ..utils import find_file + +class SpectralEfficiency(Effect): + """ + Applies the grating efficiency (blaze function) for a SpectralTraceList + """ + + def __init__(self, filename, **kwargs): + super().__init__(**kwargs) + self.filename = find_file(filename) + self.efficiencies = self.get_efficiencies_from_file(self.filename) + + + def get_efficiencies_from_file(self, fname): + """Reads effciencies from file, returns a dictionary""" + + hdul = fits.open(fname) + efficiencies = {} + for hdu in hdul[2:]: + name = hdu.header['EXTNAME'] + lam = hdu.data['wavelength'] * u.um # check units explicitely + trans = hdu.data['transmission'] + effic = TERCurve(wavelength=lam, transmission=trans) + efficiencies[name] = effic + + hdul.close() + return efficiencies + + def plot(self): + """Plot the grating efficiencies""" + for name, effic in self.efficiencies.items(): + wave = effic.throughput.waveset + plt.plot(wave.to(u.um), effic.throughput(wave), label=name) + + plt.xlabel("Wavelength [um]") + plt.ylabel("Grating efficiency") + plt.title(f"Grating efficiencies from {self.filename}") + plt.legend() + plt.show() diff --git a/scopesim/tests/mocks/files/TER_grating.fits b/scopesim/tests/mocks/files/TER_grating.fits new file mode 100644 index 0000000000000000000000000000000000000000..da324e8119ef26fb72616888840c84ccf65e2f73 GIT binary patch literal 72000 zcmeI530PEB8-QVOUsBW5((pAw z4Hrxz{7c2uQp!X{MOhS7U}T0F#Dz_E@V_(n%o*^39#s0DjBlQ&yfbI+H{W@`Gj`8= zPiMTGUEN(A8ODZb75Sk)w~jr>4IaW)_ws%&bP3Sv*aEhUqcdc&1J8XeCTPrzx$Q%8GS?Wk=uo_R9@Jn-Dq6(_cSp zugAITipH)tEXH&3W=nztxc`)M*W-S=D{Yp3l4|rPtJWo7V!rTA)22fv~W*yb@ z&)g~k#ovvi(jN;n;wGT)-{oSl;*-WU5m^S25LIfn6%-L+{8US_i9-4@7RlUpX z{wuFRo!n`&^%^HgIXtNF!puSNxRcG=Md$ZH+QRo2UoATbk1e$ixNhfsYw=4i@K_se z8f3Kps66&UXLzhhuV5u)o=b3ee?WJ59IH(bZY__gN?9KUkGbTy3?a+%!#9K$mMoe4 zK=#e97ZrBhSOe0ZoD-{drY0w|2AXWA4F&mUX%QZ=Ggt%CzdLr{c@@8s!WwAP_k=rD zCSE~ZhOh>tzq!$y{tR{rXAKt0-?r;F5)`iEomOx1W(^{y_50$y9Vk@(v)=pZ5Ni;X zUUPNcBv8(k_3JpHhBb)y$a;0~EKpV^4(#s#GHZ~O^xKS-rH~hzy6kxELDoR-v^#qF z*N}I!?@03?Q`X>7!t%mV(V!YP;KR!)Zf}My~lD)K*2ig;US4 zhM`f4xmLe|`dyD@1FxQ94ObeUJ*Bv&XcMize-@q%?wTdLe^RzWd)=jT>mfZ zC?3oTNIf_{VZ+?}vjS2Nj$gRI{tH$>>cR0%IulvW3P?RT{&7859$^Kf9=Xw*$Ltyy z#0p3~xcVhttjuBsq#j&-uL!JnvjS2N`Df|fHk@>01*9H1Csv!Bh~CHwNIkM|zI3~w z^J7*(>XBtR&3eumFV=|EgmVvR^WGS8i1ru!^njYvH*+D}jJJN61|MCx(f zZsLDG9<-S?BK1gH==|p6-+Hk|q#peD!;Cc|^|-2zZ0E6fJ8MMh!GFJ`tP!aP|NYy@ z8j*VN-_QB15vd3N{oTYGHT-_JCO3e6MFL0w2_OL^@OKeF|E!-6wX}a8Jr?~l)BN?% z=%4jNvDrs|yMN|ZZ=ru~b~*5kNB{{S0VL2$2tXO}#|g4)`)8PJg)-ug|19@0iZ!%^ zGUAUfZXH~>$m9xKyqTSGbV$Ek$@MgF_pp`7^R>)!2R zJdY29a^lZ2e(o*YA2tHYi7&g=k$toKg2Pb3&lDib-C}!R*UnHu{A7-u_liF2~pIRK~b7Ge9z@Ns5FkB{rkM*po~pD8!_?_RC4ltp?o6bdG!pLGawu)wfcPycLVP3pnt zzW}O9J-GgP?k*k))ubL=|6}~e4TWk_4=tar22f4v!Sh=KHKZOq-w&Zi=kK-ruR;x} z2VWmG)R21c^?Ma+NIm%a{t7ju9(?_+p@!7sx_1Zbx%MZameeD)(BG$H{w$~^_29>s z3)GT&B%2=V{6&}qYDqmVZXIekV*U=OCH3IPuZRBrigtV-{=4R(7#9g30VIF~kN^^B zJp|A{>nBPr?Vl|*`}H-pp9ijgrqJu{zk&XlQfdCd-|nBe|3Mi2bMxzg??eJf00|(0 z)?KLN(p_us5 zl+^>XFMMPT#l(-M3kTd^zbqL_h#$@9`m2}wq&`qW{OHXSrVl2qb%7G%N3(=K_KbKr z6iSF6%@OAn#0C5ZN{AnouNi!7)1VztLj35RZ-(`KeJ=y0{9Ffe*Pd^8Up5g+i62$? z4m|otmrtRT_)+C+2Wnm~HiuH;N0o6SzAU?=c~2v&xA)hU#*SD!Xx5G`Omuyn$_2u^}~EVBj6G7)qKA5 zpp4W**Pk*{4_$xDNIi5sboUQ*yma>ubUbzU4{n|q8f|43K<^)9bp7S`GJzYte~>O5 zc&g~_czXXpS5MvjgJe=~-TedIc+lNH(2W<}{R1+dTF*=rdx`{*01`j~NB{}676Ry> z_4A|__s^RBD9}GQcmHSf&-$U*?4!TkKXZFfqJM67Iq;2000|%gB+yC-zysntfA3Qn zb8f*zc;N3Z?jVST3*EbRJK{bD9>ja(Bu;jM^H$^NOfh_TZ)3< z;k2O!ODA1|>s6m8XE96RVQjBua3}z7?vT4?j0l55ekKChCL6tndqzQ_Zv8CVZRYNZ zOeiFN_)dyL#q_tjK_T(O3Wtds-!|?Ig~Sgl*HxC3nM{L1ogY4MBR|A74ho4MR&5yA z#-_s&C?bAXZL4G-#k>ne#1E@~d42pih4u$3ltGQ%s>AciijWP-~RxL zh#ywlDzZD~dQ)G|ecqSV53Q)L&m;Nhe7!DTov+vRN9XHx{nhz;Ion+pE!a+deYQzN zk7etk^uB(FyvKnGd+O^s-rmJ;`cYq>>N+4L_v%*a>$!R*tGAz}zMiY+D#ghx>g!3p zTgyBV`-udQ01`j~NB{{SftDhG{#id!YH|PE+J1i!_kY$8rY4T+{hr~AvH!D`&-45| zJMRD7#5lm0kpL1v0!ZM+CP4l3nbjW|)tIGG|C~5TZ5Ch^PW|)cno|ie_fAp&e62Em z#;))c)IX=s?caZT%+J(6XDBY5nx4So(mu+L8Ka`M#nd z>wZh7{`pSjvABy{Mo|B(7&P&OYTp{_pOwt}>;1N+Qva;XAMYwvc-wO2-R8s$(S5#sV*V~@@XTH6R`e*KZvu%6*sDI|-e_m~^rv91#{43Ny^Z9Y> z!^!$&KL5dVy*S^$M7myF+y5hv>3Z?oR;8vk_amu)&QK(}gdAB;{d4-x%%z-X6>8QKlAlH)Kc>x;KH4X6TS;s8$PjqRT2gTWWNkKgw`ZQb%A?i{c~=|9V<7rHGq2y<#xij z1W@egaq_M3YPgq_l+eBHG*ITRj0&sn1^12PXSR#u_G7*$oVR3IG29Q0lAmjH2UOo4 zHZ1sHHQY~#5U-xP2vlWV4;rkTPklP~e9it3YpG9HeH*vu=sP2*PtUvOmQixNH}&bt z{Lho(HVmgeU9qG4;Xl5eM16X0$L(%@%L}MamqWd0VIF~kN^^380w$T_IfSe zP&JbJ=gSixI;On5j{4`6yH+`g_lu~1zHw%+b#F+f{`q#qoqnU|BvJn??|)9X*UW_a z=Uk6-zk2N2L;bUIs`66B7AxwXRYOXWUWz_M{j>U~YW2OB3aNk2FWMk*mM)c$;K)R`TaT)c`1>Y=sFfzG-`e&|P^7F;-sek6qUwwgF->lnDgp2>)53kIi z{#pG~P0I9=JnElSLrU{LxYwEbXXR8?kB>k4fcocLkMnO#I37X$v%G)efvx8fseis5 zq1a~BR!aTzjWf|7KJI**`sb9pZ^yLl=|uhW<%u=p!Y7=g>$ypN{;BgY%nJ!10VIF~ zkN^@u01xrthwn4$G*<-T`H-kDV{qeGcmip(95|*;HN%Z~sPO$^VMjr>|iKo)b>jXLI>Qnyi>h*JtbU*X<9Y z>z{6a5WfG1>H6%n7}EjiSp(?$>|}%XmOopsrR%c^-+#ue39~=~NB{{S0VIF~kN^^R zRs!gs^^>R;_s{tIgSh@#KfJU@FPwiKkNa;tQ9^u*1dsp{KmtgB0R`EQ`S;;>hk5OSn z`8@Vm?mOKfuh&AkQ*19#oUU}8Tr(E({Qbop1hJ5}wL`%Cp`+>gYgL&dGHlom>c7=j zgdi*orv5v>uhh_VRDbHfx%ReojDq@a{`^Slzxnv%ssH9b--h~cKEJ-ye`l9ue(=uG zDC)m6Ws)kB?w6?l*7aYvKQ_;26!qUczqg)s9)ss00VIF~kN^@u0!RP}ych(~KkFw^ z=%2$w!}K^BJrYfDc64#@Vr&{~)$BJC93C`NB4tAS8JT$IZ1m4haC!m#v!&@1eR!Iu zj&2T5^LBhM5Yvp@_o$E51=K(1 z56ehom5km$hj;QlYy2Da&s_Ug{l1w&{WE|51HFIN#y6qYsJ}r~X;PXHieRf7bHb^ Date: Fri, 2 Jun 2023 20:03:13 +0200 Subject: [PATCH 030/172] Rename files to reflect class name --- scopesim/effects/__init__.py | 2 +- .../{spectral_efficiencies.py => spectral_efficiency.py} | 0 ...{test_SpectralEfficiencies.py => test_SpectralEfficiency.py} | 0 3 files changed, 1 insertion(+), 1 deletion(-) rename scopesim/effects/{spectral_efficiencies.py => spectral_efficiency.py} (100%) rename scopesim/tests/tests_effects/{test_SpectralEfficiencies.py => test_SpectralEfficiency.py} (100%) diff --git a/scopesim/effects/__init__.py b/scopesim/effects/__init__.py index af3a0fc8..85d6833a 100644 --- a/scopesim/effects/__init__.py +++ b/scopesim/effects/__init__.py @@ -6,7 +6,7 @@ from .obs_strategies import * from .spectral_trace_list import * -from .spectral_efficiencies import * +from .spectral_efficiency import * from .metis_lms_trace_list import * from .surface_list import * from .ter_curves import * diff --git a/scopesim/effects/spectral_efficiencies.py b/scopesim/effects/spectral_efficiency.py similarity index 100% rename from scopesim/effects/spectral_efficiencies.py rename to scopesim/effects/spectral_efficiency.py diff --git a/scopesim/tests/tests_effects/test_SpectralEfficiencies.py b/scopesim/tests/tests_effects/test_SpectralEfficiency.py similarity index 100% rename from scopesim/tests/tests_effects/test_SpectralEfficiencies.py rename to scopesim/tests/tests_effects/test_SpectralEfficiency.py From 10529c90276ecdec483ad1108736320f91767412 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 2 Jun 2023 15:00:21 +0200 Subject: [PATCH 031/172] Improve string formatting in many cases Change some instances of single quotation marks to our standard of double quotation marks, if double quotes are needed as character in string, use \" instead. Also changed some logging to recommended "lazy" style formatting. --- scopesim/base_classes.py | 8 +--- scopesim/commands/user_commands.py | 23 +++++----- scopesim/effects/data_container.py | 6 +-- scopesim/effects/effects.py | 65 +++++++++++----------------- scopesim/effects/electronic.py | 20 ++++----- scopesim/effects/psf_utils.py | 9 ++-- scopesim/effects/ter_curves.py | 29 ++++++------- scopesim/effects/ter_curves_utils.py | 6 +-- scopesim/optics/fov.py | 42 +++++++++--------- scopesim/optics/fov_manager_utils.py | 14 +++--- scopesim/optics/fov_utils.py | 21 +++++---- scopesim/optics/optical_element.py | 52 +++++++++------------- scopesim/optics/optical_train.py | 9 ++-- scopesim/optics/optics_manager.py | 28 +++++------- scopesim/optics/surface.py | 16 +++---- scopesim/optics/surface_utils.py | 8 ++-- scopesim/source/source_utils.py | 14 +++--- scopesim/system_dict.py | 27 +++++------- scopesim/utils.py | 27 +++++------- 19 files changed, 186 insertions(+), 238 deletions(-) diff --git a/scopesim/base_classes.py b/scopesim/base_classes.py index 0c91730a..0d1ef259 100644 --- a/scopesim/base_classes.py +++ b/scopesim/base_classes.py @@ -83,12 +83,8 @@ def __repr__(self): for key in self.dic: cmt_msg = "" if key in self.comments: - cmt_msg = " / {}".format(self.comments[key]) - - msg = "{} = {}".format(key.upper().ljust(9), - str(self.dic[key]).rjust(16)) - msgs += msg + cmt_msg + "\n" - + cmt_msg = " / {self.comments[key]}" + msgs += f"{key.upper():<9} = {value!s:>16}{cmt_msg}\n" return msgs def items(self): diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index b06ca99a..f406a0da 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -181,7 +181,7 @@ def update(self, **kwargs): if yaml_input == "default.yaml": self.default_yamls = yaml_dict else: - logging.warning("{} could not be found".format(yaml_input)) + logging.warning("%s could not be found", yaml_input) elif isinstance(yaml_input, dict): self.cmds.update(yaml_input) @@ -193,7 +193,7 @@ def update(self, **kwargs): else: raise ValueError("yaml_dicts must be a filename or a " - "dictionary: {}".format(yaml_input)) + f"dictionary: {yaml_input}") if "mode_yamls" in kwargs: # Convert the yaml list of modes to a dict object @@ -232,8 +232,7 @@ def set_modes(self, modes=None): if mode in self.modes_dict: defyam["properties"]["modes"] += [mode] else: - raise ValueError("mode '{}' was not recognised" - "".format(mode)) + raise ValueError(f"mode '{mode}' was not recognised") self.__init__(yamls=self.default_yamls) @@ -245,7 +244,7 @@ def list_modes(self): desc = dic["description"] if "description" in dic else "" modes[mode_name] = desc - msg = "\n".join(["{}: {}".format(key, modes[key]) for key in modes]) + msg = "\n".join([f"{key}: {modes[key]}" for key in modes]) else: msg = "No modes found" return msg @@ -277,12 +276,11 @@ def check_for_updates(package_name): if rc.__currsys__["!SIM.reports.ip_tracking"] and \ "TRAVIS" not in os.environ: front_matter = rc.__currsys__["!SIM.file.server_base_url"] - back_matter = "api.php?package_name={}".format(package_name) + back_matter = f"api.php?package_name={package_name}" try: response = requests.get(url=front_matter+back_matter).json() except: - print("Offline. Cannot check for updates for {}" - "".format(package_name)) + print(f"Offline. Cannot check for updates for {package_name}") return response @@ -352,7 +350,7 @@ def add_packages_to_rc_search(local_path, package_list): if not pkg_dir.exists(): # todo: keep here, but add test for this by downloading test_package # raise ValueError("Package could not be found: {}".format(pkg_dir)) - logging.warning(f"Package could not be found: {pkg_dir}") + logging.warning("Package could not be found: %s", pkg_dir) if pkg_dir in rc.__search_path__: # if package is already in search_path, move it to the first place @@ -428,9 +426,10 @@ def list_local_packages(action="display"): os.path.exists(os.path.join(local_path, pkg, "default.yaml"))] if action == "display": - msg = "\nLocal package directory:\n {}\n" \ - "Full packages [can be used with 'use_instrument=...']\n {}\n" \ - "Support packages\n {}".format(local_path, main_pkgs, ext_pkgs) + msg = (f"\nLocal package directory:\n {local_path}\n" + "Full packages [can be used with 'use_instrument=...']\n" + f"{main_pkgs}\n" + f"Support packages\n {ext_pkgs}") print(msg) else: return main_pkgs, ext_pkgs diff --git a/scopesim/effects/data_container.py b/scopesim/effects/data_container.py index 859673bd..30481bff 100644 --- a/scopesim/effects/data_container.py +++ b/scopesim/effects/data_container.py @@ -114,8 +114,7 @@ def _load_ascii(self): self.meta.update(hdr_dict) # self.table.meta.update(hdr_dict) self.table.meta.update(self.meta) - self.meta["history"] += ["ASCII table read from {}" - "".format(self.meta["filename"])] + self.meta["history"] += [f"ASCII table read from {self.meta['filename']}"] def _load_fits(self): self._file = fits.open(self.meta["filename"]) @@ -123,8 +122,7 @@ def _load_fits(self): self.headers += [ext.header] self.meta.update(dict(self._file[0].header)) - self.meta["history"] += ["Opened handle to FITS file {}" - "".format(self.meta["filename"])] + self.meta["history"] += [f"Opened handle to FITS file {self.meta['filename']}"] def get_data(self, ext=0, layer=None): """ diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 4bd4f940..99d36d0c 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -121,8 +121,7 @@ def meta_string(self): if key not in ["comments", "changes", "description", "history", "report_table_caption", "report_plot_caption", "table"]: - meta_str += " {} : {}\n".format(key.rjust(max_key_len), - self.meta[key]) + meta_str += f" {key.rjust(max_key_len)} : {self.meta[key]}\n" return meta_str @@ -223,28 +222,22 @@ def report(self, filename=None, output="rst", rst_title_chars="*+", params.update(kwargs) params = from_currsys(params) - rst_str = """ -{} -{} -**Included by default**: ``{}`` + rst_str = f""" +{str(self)} +{rst_title_chars[0] * len(str(self))} +**Included by default**: ``{params["include"]}`` -**File Description**: {} +**File Description**: {params["file_description"]} -**Class Description**: {} +**Class Description**: {params["class_description"]} **Changes**: -{} +{params["changes_str"]} Data -{} -""".format(str(self), - rst_title_chars[0] * len(str(self)), - params["include"], - params["file_description"], - params["class_description"], - params["changes_str"], - rst_title_chars[1] * 4) +{rst_title_chars[1] * 4} +""" if params["report_plot_include"] and hasattr(self, "plot"): fig = self.plot() @@ -265,36 +258,30 @@ def report(self, filename=None, output="rst", rst_title_chars="*+", # params["report_rst_path"]) # rel_file_path = os.path.join(rel_path, fname) - rst_str += """ -.. figure:: {} - :name: {} + rst_str += f""" +.. figure:: {fname} + :name: {"fig:" + params.get("name", "")} - {} -""".format(fname, - "fig:" + params.get("name", ""), - params["report_plot_caption"]) + {params["report_plot_caption"]} +""" if params["report_table_include"]: - rst_str += """ + rst_str += f""" .. table:: - :name: {} + :name: {"tbl:" + params.get("name")} -{} +{table_to_rst(self.table, indent=4, rounding=params["report_table_rounding"])} -{} -""".format("tbl:" + params.get("name"), - table_to_rst(self.table, indent=4, - rounding=params["report_table_rounding"]), - params["report_table_caption"]) +{params["report_table_caption"]} +""" - rst_str += """ + rst_str += f""" Meta-data -{} +{rst_title_chars[1] * 9} :: -{} -""".format(rst_title_chars[1] * 9, - self.meta_string) +{self.meta_string} +""" write_report(rst_str, filename, output) @@ -305,7 +292,7 @@ def info(self): Prints basic information on the effect, notably the description """ name = self.meta.get("name", self.meta.get("filename", "")) - text = f'{type(self).__name__}: "{name}"' + text = f"{type(self).__name__}: \"{name}\"" desc = self.meta.get("description") if desc is not None: @@ -314,7 +301,7 @@ def info(self): print(text) def __repr__(self): - return f'{type(self).__name__}: "{self.display_name}"' + return f"{type(self).__name__}: \"{self.display_name}\"" def __str__(self): return self.__repr__() diff --git a/scopesim/effects/electronic.py b/scopesim/effects/electronic.py index a889302c..59601575 100644 --- a/scopesim/effects/electronic.py +++ b/scopesim/effects/electronic.py @@ -88,19 +88,19 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - required_keys = ['mode_properties'] + required_keys = ["mode_properties"] utils.check_keys(self.meta, required_keys, action="error") - self.mode_properties = kwargs['mode_properties'] + self.mode_properties = kwargs["mode_properties"] def apply_to(self, obj, **kwargs): - mode_name = kwargs.get('detector_readout_mode', + mode_name = kwargs.get("detector_readout_mode", from_currsys("!OBS.detector_readout_mode")) if isinstance(obj, ImagePlaneBase) and mode_name == "auto": mode_name = self.select_mode(obj, **kwargs) print("Detector mode set to", mode_name) - self.meta['detector_readout_mode'] = mode_name + self.meta["detector_readout_mode"] = mode_name props_dict = self.mode_properties[mode_name] rc.__currsys__["!OBS.detector_readout_mode"] = mode_name for key, value in props_dict.items(): @@ -181,13 +181,13 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - required_keys = ['fill_frac', 'full_well', 'mindit'] + required_keys = ["fill_frac", "full_well", "mindit"] utils.check_keys(self.meta, required_keys, action="error") def apply_to(self, obj, **kwargs): if isinstance(obj, (ImagePlaneBase, DetectorBase)): implane_max = np.max(obj.data) - exptime = kwargs.get('exptime', from_currsys("!OBS.exptime")) + exptime = kwargs.get("exptime", from_currsys("!OBS.exptime")) mindit = from_currsys(self.meta["mindit"]) if exptime is None: @@ -219,8 +219,8 @@ def apply_to(self, obj, **kwargs): print(f" DIT: {dit:.3f} s NDIT: {ndit}") print(f"Total exposure time: {dit * ndit:.3f} s") - rc.__currsys__['!OBS.dit'] = dit - rc.__currsys__['!OBS.ndit'] = ndit + rc.__currsys__["!OBS.dit"] = dit + rc.__currsys__["!OBS.ndit"] = ndit return obj @@ -418,8 +418,8 @@ def apply_to(self, obj, **kwargs): elif isinstance(from_currsys(self.meta["value"]), float): dark = from_currsys(self.meta["value"]) else: - raise ValueError(".meta['value'] must be either" - "dict or float: {}".format(self.meta["value"])) + raise ValueError(".meta['value'] must be either " + f"dict or float, but is {self.meta['value']}") dit = from_currsys(self.meta["dit"]) ndit = from_currsys(self.meta["ndit"]) diff --git a/scopesim/effects/psf_utils.py b/scopesim/effects/psf_utils.py index 4f61fb9e..abe63773 100644 --- a/scopesim/effects/psf_utils.py +++ b/scopesim/effects/psf_utils.py @@ -64,9 +64,9 @@ def nmrms_from_strehl_and_wavelength(strehl, wavelength, strehl_hdu, strehls = nms_spline(wavelength, nms)[0] if strehl > np.max(strehls): - raise ValueError("Strehl ratio ({}) is impossible at this wavelength " - "({}). Maximum Strehl possible is {}." - "".format(strehl, wavelength, np.max(strehls))) + raise ValueError(f"Strehl ratio ({strehl}) is impossible at this " + f"wavelength ({wavelength}). Maximum Strehl possible " + f"is {np.max(strehls)}.") if strehls[0] < strehls[-1]: nm = np.interp(strehl, strehls, nms) @@ -178,8 +178,7 @@ def get_psf_wave_exts(hdu_list, wave_key="WAVE0"): """ if not isinstance(hdu_list, fits.HDUList): - raise ValueError("psf_effect must be a PSF object: {}" - "".format(type(hdu_list))) + raise ValueError(f"psf_effect must be a PSF object: {type(hdu_list)}") tmp = np.array([[ii, hdu.header[wave_key]] for ii, hdu in enumerate(hdu_list) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 31a3ae72..e8568ac2 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -1,4 +1,4 @@ -'''Transmission, emissivity, reflection curves''' +"""Transmission, emissivity, reflection curves""" import numpy as np from astropy import units as u from os import path as pth @@ -213,10 +213,10 @@ def plot(self, which="x", wavelength=None, ax=None, new_figure=True, plt.plot(wave, y, **plot_kwargs) wave_unit = self.meta.get("wavelength_unit") - plt.xlabel("Wavelength [{}]".format(wave_unit)) + plt.xlabel(f"Wavelength [{wave_unit}]") y_str = {"t": "Transmission", "e": "Emission", "r": "Reflectivity", "x": "Throughput"} - plt.ylabel("{} [{}]".format(y_str[ter], y.unit)) + plt.ylabel(f"{y_str[ter]} [{y.unit}]") return plt.gcf() @@ -376,8 +376,7 @@ def __init__(self, **kwargs): else: raise ValueError("FilterCurve must be passed one of (`filename`" " `array_dict`, `table`) or both " - "(`filter_name`, `filename_format`):" - "{}".format(kwargs)) + f"(`filter_name`, `filename_format`): {kwargs}") super(FilterCurve, self).__init__(**kwargs) if self.table is None: @@ -598,9 +597,9 @@ def fov_grid(self, which="waveset", **kwargs): def change_filter(self, filtername=None): """Change the current filter""" if filtername in self.filters.keys(): - self.meta['current_filter'] = filtername + self.meta["current_filter"] = filtername else: - raise ValueError("Unknown filter requested: " + filtername) + raise ValueError(f"Unknown filter requested: {filtername}") def add_filter(self, newfilter, name=None): """ @@ -627,8 +626,8 @@ def current_filter(self): @property def display_name(self): - return f'{self.meta["name"]} : ' \ - f'[{from_currsys(self.meta["current_filter"])}]' + return (f"{self.meta['name']} : " + f"[{from_currsys(self.meta['current_filter'])}]") def __getattr__(self, item): return getattr(self.current_filter, item) @@ -895,23 +894,23 @@ def apply_to(self, obj, **kwargs): def change_adc(self, adcname=None): """Change the current ADC""" if not adcname or adcname in self.adcs.keys(): - self.meta['current_adc'] = adcname + self.meta["current_adc"] = adcname self.include = adcname else: - raise ValueError("Unknown ADC requested: " + adcname) + raise ValueError(f"Unknown ADC requested: {adcname}") @property def current_adc(self): """Return the currently used ADC""" - curradc = from_currsys(self.meta['current_adc']) + curradc = from_currsys(self.meta["current_adc"]) if not curradc: return False return self.adcs[curradc] @property def display_name(self): - return f'{self.meta["name"]} : ' \ - f'[{from_currsys(self.meta["current_adc"])}]' + return (f"{self.meta['name']} : " + f"[{from_currsys(self.meta['current_adc'])}]") def __getattr__(self, item): return getattr(self.current_adc, item) @@ -920,7 +919,7 @@ def get_table(self): """Create a table of ADCs with maximimum througput""" names = list(self.adcs.keys()) adcs = self.adcs.values() - tmax = np.array([adc.data['transmission'].max() for adc in adcs]) + tmax = np.array([adc.data["transmission"].max() for adc in adcs]) tbl = Table(names=["name", "max_transmission"], data=[names, tmax]) diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index bc1cc0b5..3b149b8b 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -104,8 +104,8 @@ def download_svo_filter(filter_name, return_style="synphot", if error_on_wrong_name: raise ValueError(f"{filter_name} is an incorrect SVO identiier") else: - logging.warning(f"'{filter_name}' was not found in the SVO. " - f"Defaulting to a unity transmission curve.") + logging.warning(("'%s' was not found in the SVO. Defaulting to a " + "unity transmission curve."), filter_name) wave = [3e3, 3e5] << u.Angstrom trans = np.array([1., 1.]) @@ -154,7 +154,7 @@ def download_svo_filter_list(observatory, instrument, short_names=False, A list of filter names """ - base_url = f"http://svo2.cab.inta-csic.es/theory/fps3/fps.php?" + base_url = "http://svo2.cab.inta-csic.es/theory/fps3/fps.php?" url = base_url + f"Facility={observatory}&Instrument={instrument}" fn = f"{observatory}/{instrument}" path = find_file( diff --git a/scopesim/optics/fov.py b/scopesim/optics/fov.py index c00ec43d..84f24c0e 100644 --- a/scopesim/optics/fov.py +++ b/scopesim/optics/fov.py @@ -87,8 +87,8 @@ def __init__(self, header, waverange, detector_header=None, **kwargs): def pixel_area(self): if self.meta["pixel_area"] is None: hdr = self.header - pixarea = (hdr['CDELT1'] * u.Unit(hdr['CUNIT1']) * - hdr['CDELT2'] * u.Unit(hdr['CUNIT2'])).to(u.arcsec ** 2) + pixarea = (hdr["CDELT1"] * u.Unit(hdr["CUNIT1"]) * + hdr["CDELT2"] * u.Unit(hdr["CUNIT2"])).to(u.arcsec ** 2) self.meta["pixel_area"] = pixarea.value # [arcsec] return self.meta["pixel_area"] @@ -297,10 +297,10 @@ def make_image_hdu(self, use_photlam=False): # cube_fields come in with units of photlam/arcsec2, need to convert to ph/s # We need to the voxel volume (spectral and solid angle) for that. # ..todo: implement branch for use_photlam is True - spectral_bin_width = (field.header['CDELT3'] * - u.Unit(field.header['CUNIT3'])).to(u.Angstrom) - pixarea = (field.header['CDELT1'] * u.Unit(field.header['CUNIT1']) * - field.header['CDELT2'] * u.Unit(field.header['CUNIT2'])).to(u.arcsec**2) + spectral_bin_width = (field.header["CDELT3"] * + u.Unit(field.header["CUNIT3"])).to(u.Angstrom) + pixarea = (field.header["CDELT1"] * u.Unit(field.header["CUNIT1"]) * + field.header["CDELT2"] * u.Unit(field.header["CUNIT2"])).to(u.arcsec**2) # First collapse to image, then convert units image = np.sum(field.data, axis=0) * PHOTLAM/u.arcsec**2 @@ -465,10 +465,10 @@ def make_cube_hdu(self): field_data = field_interp(fov_waveset.value) # Pixel scale conversion - field_pixarea = (field.header['CDELT1'] - * field.header['CDELT2'] - * u.Unit(field.header['CUNIT1']) - * u.Unit(field.header['CUNIT2'])).to(u.arcsec**2) + field_pixarea = (field.header["CDELT1"] + * field.header["CDELT2"] + * u.Unit(field.header["CUNIT1"]) + * u.Unit(field.header["CUNIT2"])).to(u.arcsec**2) field_pixarea = field_pixarea.value field_data *= field_pixarea / self.pixel_area field_hdu = fits.ImageHDU(data=field_data, header=field.header) @@ -485,8 +485,8 @@ def make_cube_hdu(self): # ..todo: Add a catch to get ImageHDU with BUNITs canvas_image_hdu = fits.ImageHDU(data=np.zeros((naxis2, naxis1)), header=self.header) - pixarea = (field.header['CDELT1'] * u.Unit(field.header['CUNIT1']) * - field.header['CDELT2'] * u.Unit(field.header['CUNIT2'])).to(u.arcsec**2) + pixarea = (field.header["CDELT1"] * u.Unit(field.header["CUNIT1"]) * + field.header["CDELT2"] * u.Unit(field.header["CUNIT2"])).to(u.arcsec**2) field.data = field.data / self.pixel_area canvas_image_hdu = imp_utils.add_imagehdu_to_imagehdu(field, @@ -645,14 +645,12 @@ def background_fields(self): and field.header.get("BG_SRC", False) is True] def __repr__(self): - msg = "FOV id: {}, with dimensions ({}, {})\n" \ - "".format(self.meta["id"], self.header["NAXIS1"], - self.header["NAXIS2"]) - msg += "Sky centre: ({}, {})\n" \ - "".format(self.header["CRVAL1"], self.header["CRVAL2"]) - msg += "Image centre: ({}, {})\n" \ - "".format(self.header["CRVAL1D"], self.header["CRVAL2D"]) - msg += "Wavelength range: ({}, {})um\n" \ - "".format(self.meta["wave_min"], self.meta["wave_max"]) - + msg = (f"FOV id: {self.meta['id']}, with dimensions " + f"({self.header['NAXIS1']}, {self.header['NAXIS2']})\n" + f"Sky centre: ({self.header['CRVAL1']}, " + f"{self.header['CRVAL2']})\n" + f"Image centre: ({self.header['CRVAL1D']}, " + f"{self.header['CRVAL2D']})\n" + f"Wavelength range: ({self.meta['wave_min']}, " + f"{self.meta['wave_max']})um\n") return msg diff --git a/scopesim/optics/fov_manager_utils.py b/scopesim/optics/fov_manager_utils.py index db1bc76a..05165939 100644 --- a/scopesim/optics/fov_manager_utils.py +++ b/scopesim/optics/fov_manager_utils.py @@ -105,8 +105,7 @@ def get_imaging_waveset(effects_list, **kwargs): wave_bin_edges = [[kwargs["wave_min"], kwargs["wave_max"]]] if kwargs["wave_min"] > kwargs["wave_max"]: - raise ValueError("Filter wavelength ranges do not overlap: {}" - "".format(wave_bin_edges)) + raise ValueError(f"Filter wavelength ranges do not overlap: {wave_bin_edges}") # ..todo: add in Atmospheric dispersion and ADC here for effect_class in [efs.PSF]: @@ -173,7 +172,7 @@ def get_imaging_headers(effects, **kwargs): else: raise ValueError("No ApertureMask or DetectorList was provided. At " "least one must be passed to make an ImagePlane: " - "{}".format(effects)) + f"{effects}") # get aperture headers from fov_grid() # - for-loop catches mutliple headers from ApertureList.fov_grid() @@ -247,8 +246,7 @@ def get_imaging_fovs(headers, waveset, shifts, **kwargs): counter = 0 fovs = [] - print("Preparing {} FieldOfViews".format((len(waveset)-1)*len(headers)), - flush=True) + print(f"Preparing {(len(waveset)-1)*len(headers)} FieldOfViews", flush=True) for ii in range(len(waveset) - 1): for hdr in headers: @@ -302,8 +300,8 @@ def get_spectroscopy_headers(effects, **kwargs): # ..todo: deal with multiple trace lists if len(spec_trace_effects) != 1: - raise ValueError("More than one SpectralTraceList was found: {}" - "".format(spec_trace_effects)) + raise ValueError("More than one SpectralTraceList was found: " + f"{spec_trace_effects}") spec_trace = spec_trace_effects[0] sky_hdrs = [] @@ -334,7 +332,7 @@ def get_spectroscopy_fovs(headers, shifts, effects=[], **kwargs): shift_dx = shifts["x_shifts"] # in [deg] shift_dy = shifts["y_shifts"] - print("Preparing {} FieldOfViews".format(len(headers)), flush=True) + print(f"Preparing {len(headers)} FieldOfViews", flush=True) apertures = get_all_effects(effects, (efs.ApertureList, efs.ApertureMask)) masks = [ap.fov_grid(which="masks") for ap in apertures] diff --git a/scopesim/optics/fov_utils.py b/scopesim/optics/fov_utils.py index b745e422..43684c6e 100644 --- a/scopesim/optics/fov_utils.py +++ b/scopesim/optics/fov_utils.py @@ -45,8 +45,7 @@ def is_field_in_fov(fov_header, field, wcs_suffix=""): elif isinstance(field, (fits.ImageHDU, fits.PrimaryHDU)): field_header = field.header else: - logging.warning("Input was neither Table nor ImageHDU: {}" - "".format(field)) + logging.warning("Input was neither Table nor ImageHDU: %s", field) return False ext_xsky, ext_ysky = imp_utils.calc_footprint(field_header, wcs_suffix) @@ -230,8 +229,8 @@ def extract_common_field(field, fov_volume): elif isinstance(field, fits.ImageHDU): field_new = extract_area_from_imagehdu(field, fov_volume) else: - raise ValueError("field must be either Table or ImageHDU: {}" - "".format(type(field))) + raise ValueError("field must be either Table or ImageHDU, but is " + f"{type(field)}") return field_new @@ -326,7 +325,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): # OC [2021-12-14] if fov range is not covered by the source return nothing if not np.any(mask): - print("FOV {} um - {} um: not covered by Source".format(fov_waves[0], fov_waves[1])) + print(f"FOV {fov_waves[0]} um - {fov_waves[1]} um: not covered by Source") return None i0p, i1p = np.where(mask)[0][0], np.where(mask)[0][-1] @@ -393,13 +392,13 @@ def extract_range_from_spectrum(spectrum, waverange): mask = (spec_waveset > wave_min) * (spec_waveset < wave_max) if sum(mask) == 0: - logging.info(f"Waverange does not overlap with Spectrum waveset: " - f"{[wave_min, wave_max]} <> {spec_waveset} " - f"for spectrum {spectrum}") + logging.info(("Waverange does not overlap with Spectrum waveset: " + "%s <> %s for spectrum %s"), + [wave_min, wave_max], spec_waveset, spectrum) if wave_min < min(spec_waveset) or wave_max > max(spec_waveset): - logging.info(f"Waverange only partially overlaps with Spectrum waveset: " - f"{[wave_min, wave_max]} <> {spec_waveset} " - f"for spectrum {spectrum}") + logging.info(("Waverange only partially overlaps with Spectrum waveset: " + "%s <> %s for spectrum %s"), + [wave_min, wave_max], spec_waveset, spectrum) wave = np.r_[wave_min, spec_waveset[mask], wave_max] flux = spectrum(wave) diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index c20f638c..62255965 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -82,8 +82,7 @@ def add_effect(self, effect): if isinstance(effect, efs.Effect): self.effects += [effect] else: - logging.warning("{} is not an Effect object and was not added" - "".format(effect)) + logging.warning("%s is not an Effect object and was not added", effect) def get_all(self, effect_class): return get_all_effects(self.effects, effect_class) @@ -191,15 +190,15 @@ def __getitem__(self, item): return obj def __repr__(self): - msg = '\nOpticalElement : "{}" contains {} Effects: \n' \ - ''.format(self.meta["name"], len(self.effects)) - eff_str = "\n".join(["[{}] {}".format(i, eff.__repr__()) - for i, eff in enumerate(self.effects)]) + msg = (f"\nOpticalElement : \"{self.meta['name']}\" contains " + f"{len(self.effects)} Effects: \n") + eff_str = "\n".join([f"[{i}] {eff.__repr__()}" for i, eff + in enumerate(self.effects)]) return msg + eff_str def __str__(self): name = self.meta.get("name", self.meta.get("filename", "")) - return '{}: "{}"'.format(type(self).__name__, name) + return f"{type(self).__name__}: \"{name}\"" @property def properties_str(self): @@ -208,52 +207,43 @@ def properties_str(self): for key in self.properties: if key not in ["comments", "changes", "description", "history", "report"]: - prop_str += " {} : {}\n".format(key.rjust(max_key_len), - self.properties[key]) + prop_str += f" {key.rjust(max_key_len)} : {self.properties[key]}\n" return prop_str def report(self, filename=None, output="rst", rst_title_chars="^#*+", **kwargs): - rst_str = """ -{} -{} + rst_str = f""" +{str(self)} +{rst_title_chars[0] * len(str(self))} -**Element**: {} +**Element**: {self.meta.get("object", "")} -**Alias**: {} +**Alias**: {self.meta.get("alias", "")} -**Description**: {} +**Description**: {self.meta.get("description", "")} Global properties -{} +{rst_title_chars[1] * 17} :: -{} -""".format(str(self), - rst_title_chars[0] * len(str(self)), - self.meta.get("object", ""), - self.meta.get("alias", ""), - self.meta.get("description", ""), - rst_title_chars[1] * 17, - self.properties_str) +{self.properties_str} +""" if len(self.list_effects()) > 0: - rst_str += """ + rst_str += f""" Effects -{} +{rst_title_chars[1] * 7} Summary of Effects included in this optical element: .. table:: - :name: {} + :name: {"tbl:" + self.meta.get("name", "")} -{} +{table_to_rst(self.list_effects(), indent=4)} -""".format(rst_title_chars[1] * 7, - "tbl:" + self.meta.get("name", ""), - table_to_rst(self.list_effects(), indent=4)) +""" reports = [eff.report(rst_title_chars=rst_title_chars[-2:], **kwargs) for eff in self.effects] diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 73cbac6c..cf5b2612 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -111,8 +111,8 @@ def load(self, user_commands): elif isinstance(user_commands, UserCommands): user_commands = copy.deepcopy(user_commands) else: - raise ValueError("user_commands must be a UserCommands or str object: " - "{}".format(type(user_commands))) + raise ValueError("user_commands must be a UserCommands or str object " + f"but is {type(user_commands)}") self.cmds = user_commands rc.__currsys__ = user_commands @@ -319,13 +319,12 @@ def readout(self, filename=None, **kwargs): hdul = self.write_header(hdul) except Exception as error: print("\nWarning: header update failed, data will be saved with incomplete header.") - print("Reason: ", sys.exc_info()[0], error) - print("") + print(f"Reason: {sys.exc_info()[0]} {error}\n") if filename is not None and isinstance(filename, str): fname = filename if len(self.detector_arrays) > 1: - fname = str(i) + "_" + filename + fname = f"{i}_{filename}" hdul.writeto(fname, overwrite=True) hduls += [hdul] diff --git a/scopesim/optics/optics_manager.py b/scopesim/optics/optics_manager.py index e86f251a..5dacfeef 100644 --- a/scopesim/optics/optics_manager.py +++ b/scopesim/optics/optics_manager.py @@ -177,8 +177,7 @@ def image_plane_headers(self): headers = [det_list.image_plane_header for det_list in detector_lists] if len(detector_lists) == 0: - raise ValueError("No DetectorList objects found. {}" - "".format(detector_lists)) + raise ValueError(f"No DetectorList objects found. {detector_lists}") return headers @@ -283,20 +282,18 @@ def list_effects(self): def report(self, filename=None, output="rst", rst_title_chars="_^#*+", **kwargs): - rst_str = """ + rst_str = f""" List of Optical Elements -{} +{rst_title_chars[0] * 24} Summary of Effects in Optical Elements: -{} +{rst_title_chars[1] * 39} .. table:: :name: tbl:effects_summary -{} -""".format(rst_title_chars[0] * 24, - rst_title_chars[1] * 39, - table_to_rst(self.list_effects(), indent=4)) +{table_to_rst(self.list_effects(), indent=4)} +""" reports = [opt_el.report(rst_title_chars=rst_title_chars[-4:], **kwargs) for opt_el in self.optical_elements] @@ -343,20 +340,19 @@ def __getitem__(self, item): def __setitem__(self, key, value): obj = self.__getitem__(key) if isinstance(obj, list) and len(obj) > 1: - logging.warning("{} does not return a singular object:\n {}" - "".format(key, obj)) + logging.warning("%s does not return a singular object:\n %s", key, obj) elif isinstance(obj, efs.Effect) and isinstance(value, dict): obj.meta.update(value) def __repr__(self): - msg = f"\nOpticsManager contains {len(self.optical_elements)} " \ - f"OpticalElements \n" + msg = (f"\nOpticsManager contains {len(self.optical_elements)} " + "OpticalElements \n") for ii, opt_el in enumerate(self.optical_elements): - msg += f'[{ii}] "{opt_el.meta["name"]}" contains ' \ - f'{len(opt_el.effects)} effects \n' + msg += (f"[{ii}] \"{opt_el.meta['name']}\" contains " + f"{len(opt_el.effects)} effects \n") return msg def __str__(self): name = self.meta.get("name", self.meta.get("filename", "")) - return f'{type(self).__name__}: "{name}"' + return f"{type(self).__name__}: \"{name}\"" diff --git a/scopesim/optics/surface.py b/scopesim/optics/surface.py index 41721bad..4985fdb9 100644 --- a/scopesim/optics/surface.py +++ b/scopesim/optics/surface.py @@ -127,8 +127,7 @@ def emission(self): conversion_factor = flux.meta["solid_angle"].to(u.arcsec ** -2) flux = flux * conversion_factor flux.meta["solid_angle"] = u.arcsec**-2 - flux.meta["history"] += ["Converted to arcsec-2: {}" - "".format(conversion_factor)] + flux.meta["history"] += [f"Converted to arcsec-2: {conversion_factor}"] if flux is not None and "rescale_emission" in self.meta: dic = from_currsys(self.meta["rescale_emission"]) @@ -195,8 +194,7 @@ def _get_ter_property(self, ter_property, fmt="synphot"): response_curve = value_arr else: response_curve = None - logging.warning("Both wavelength and {} must be set" - "".format(ter_property)) + logging.warning("Both wavelength and %s must be set", ter_property) return response_curve @@ -256,8 +254,8 @@ def _get_array(self, colname): elif colname in self.table.colnames: val = self.table[colname].data else: - logging.debug(f"{colname} not found in either '.meta' or '.table': " - f"[{self.meta.get('name', self.meta['filename'])}]") + logging.debug("%s not found in either '.meta' or '.table': [%s]", + colname, self.meta.get("name", self.meta["filename"])) return None col_units = colname+"_unit" @@ -275,8 +273,8 @@ def _get_array(self, colname): elif val is None: val_out = None else: - raise ValueError("{} must be of type: Quantity, array, list, tuple" - "".format(colname)) + raise ValueError(f"{colname} must be of type: Quantity, array, " + f"list, tuple, but is {type(colname)}") return val_out @@ -284,6 +282,6 @@ def __repr__(self): meta = self.meta name = meta["name"] if "name" in meta else meta["filename"] cols = "".join([col[0].upper() for col in self.table.colnames]) - msg = ' [{}] "{}"'.format(cols, name) + msg = " [{cols}] \"{name}\"" return msg diff --git a/scopesim/optics/surface_utils.py b/scopesim/optics/surface_utils.py index e5097f2b..926333dd 100644 --- a/scopesim/optics/surface_utils.py +++ b/scopesim/optics/surface_utils.py @@ -66,7 +66,7 @@ def make_emission_from_array(flux, wave, meta): flux = quantify(flux, meta["emission_unit"]) else: logging.warning("emission_unit must be set in self.meta, " - "or emission must be an astropy.Quantity") + "or emission must be an astropy.Quantity") flux = None if isinstance(wave, u.Quantity) and isinstance(flux, u.Quantity): @@ -80,11 +80,11 @@ def make_emission_from_array(flux, wave, meta): flux = SourceSpectrum(Empirical1D, points=wave, lookup_table=flux) flux.meta["solid_angle"] = angle - flux.meta["history"] = ["Created from emission array with units {}" - "".format(orig_unit)] + flux.meta["history"] = [("Created from emission array with units " + f"{orig_unit}")] else: logging.warning("wavelength and emission must be " - "astropy.Quantity py_objects") + "astropy.Quantity py_objects") flux = None return flux diff --git a/scopesim/source/source_utils.py b/scopesim/source/source_utils.py index 01b2d6d9..ddd023c7 100644 --- a/scopesim/source/source_utils.py +++ b/scopesim/source/source_utils.py @@ -13,27 +13,27 @@ def validate_source_input(**kwargs): if "filename" in kwargs and kwargs["filename"] is not None: filename = kwargs["filename"] if utils.find_file(filename) is None: - logging.warning("filename was not found: {}".format(filename)) + logging.warning("filename was not found: %s", filename) if "image" in kwargs and kwargs["image"] is not None: image_hdu = kwargs["image"] if not isinstance(image_hdu, (fits.PrimaryHDU, fits.ImageHDU)): raise ValueError("image must be fits.HDU object with a WCS." - "type(image) == {}".format(type(image_hdu))) + f"{type(image_hdu) = }") if len(wcs.find_all_wcs(image_hdu.header)) == 0: - logging.warning("image does not contain valid WCS. {}" - "".format(wcs.WCS(image_hdu))) + logging.warning("image does not contain valid WCS. %s", + wcs.WCS(image_hdu)) if "table" in kwargs and kwargs["table"] is not None: tbl = kwargs["table"] if not isinstance(tbl, Table): raise ValueError("table must be an astropy.Table object:" - "{}".format(type(tbl))) + f"{type(tbl) = }") if not np.all([col in tbl.colnames for col in ["x", "y", "ref"]]): raise ValueError("table must contain at least column names: " - "'x, y, ref': {}".format(tbl.colnames)) + f"'x, y, ref': {tbl.colnames}") return True @@ -259,5 +259,3 @@ def make_img_wcs_header(pixel_scale, image_size): # "FLUXUNIT to the header.") # # return unit - - diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index 6a6c8c0c..446aeb07 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -24,7 +24,7 @@ def update(self, new_dict): "Catch any bang-string properties keys" to_pop = [] for key in new_dict: - if key[0] == "!": + if key.startswith("!"): self[key] = new_dict[key] to_pop += [key] for key in to_pop: @@ -34,7 +34,7 @@ def update(self, new_dict): self.dic = recursive_update(self.dic, new_dict) def __getitem__(self, item): - if isinstance(item, str) and item[0] == "!": + if isinstance(item, str) and item.startswith("!"): item_chunks = item[1:].split(".") entry = self.dic for item in item_chunks: @@ -44,7 +44,7 @@ def __getitem__(self, item): return self.dic[item] def __setitem__(self, key, value): - if isinstance(key, str) and key[0] == "!": + if isinstance(key, str) and key.startswith("!"): key_chunks = key[1:].split(".") entry = self.dic for key in key_chunks[:-1]: @@ -56,7 +56,7 @@ def __setitem__(self, key, value): self.dic[key] = value def __contains__(self, item): - if isinstance(item, str) and item[0] == "!": + if isinstance(item, str) and item.startswith("!"): item_chunks = item[1:].split(".") entry = self.dic for item in item_chunks: @@ -69,14 +69,13 @@ def __contains__(self, item): def __repr__(self): msg = " contents:" - for key in self.dic.keys(): - val = self.dic[key] - msg += "\n{}: ".format(key) + for key, val in self.dic.items(): + msg += f"\n{key}: " if isinstance(val, dict): for subkey in val.keys(): - msg += "\n {}: {}".format(subkey, val[subkey]) + msg += f"\n {subkey}: {val[subkey]}" else: - msg += "{}\n".format(val) + msg += f"{val}\n" return msg @@ -89,17 +88,15 @@ def recursive_update(old_dict, new_dict): old_dict[key] = recursive_update(old_dict[key], new_dict[key]) else: - logging.warning("Overwriting dict: {} with non-dict: {}" - "".format(old_dict[key], new_dict[key])) + logging.warning("Overwriting dict: %s with non-dict: %s", + old_dict[key], new_dict[key]) old_dict[key] = new_dict[key] else: if isinstance(new_dict[key], dict): - logging.warning("Overwriting non-dict: {} with dict: {}" - "".format(old_dict[key], new_dict[key])) + logging.warning("Overwriting non-dict: %s with dict: %s", + old_dict[key], new_dict[key]) old_dict[key] = new_dict[key] else: old_dict[key] = new_dict[key] return old_dict - - diff --git a/scopesim/utils.py b/scopesim/utils.py index d0599250..4551dca6 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -656,7 +656,7 @@ def real_colname(name, colnames, silent=True): if len(real_name) == 0: real_name = None if not silent: - logging.warning("None of {} were found in {}".format(names, colnames)) + logging.warning("None of %s were found in %s", names, colnames) else: real_name = real_name[0] @@ -847,9 +847,8 @@ def quantity_from_table(colname, table, default_unit=""): else: col = col * u.Unit(default_unit) tbl_name = table.meta.get("name", table.meta.get("filename")) - logging.info("{}_unit was not found in table.meta: {}. " - "Default to: {}" - "".format(colname, tbl_name, default_unit)) + logging.info(("%s_unit was not found in table.meta: %s. " + "Default to: %s"), colname, tbl_name, default_unit) return col @@ -870,9 +869,8 @@ def unit_from_table(colname, table, default_unit=""): unit = u.Unit(com_tbl[colname_u]) else: tbl_name = table.meta.get("name", table.meta.get("filename")) - logging.info("{}_unit was not found in table.meta: {}. " - "Default to: {}" - "".format(colname, tbl_name, default_unit)) + logging.info(("%s_unit was not found in table.meta: %s. " + "Default to: %s"), colname, tbl_name, default_unit) unit = u.Unit(default_unit) return unit @@ -954,11 +952,11 @@ def from_currsys(item): for key in item: item[key] = from_currsys(item[key]) - if isinstance(item, str) and len(item) and item[0] == "!": + if isinstance(item, str) and len(item) and item.startswith("!"): if item in rc.__currsys__: item = rc.__currsys__[item] else: - raise ValueError("{} was not found in rc.__currsys__".format(item)) + raise ValueError(f"{item} was not found in rc.__currsys__") if isinstance(item, str) and item.lower() == "none": item = None @@ -981,13 +979,12 @@ def check_keys(input_dict, required_keys, action="error", all_any="all"): if not keys_present: if "error" in action: - raise ValueError("One or more of the following keys missing " - "from input_dict: \n{} \n{}" - "".format(required_keys, input_dict.keys())) + raise ValueError("One or more of the following keys missing from " + f"input_dict: \n{required_keys} \n{input_dict.keys()}") elif "warn" in action: - logging.warning("One or more of the following keys missing " - "from input_dict: \n{} \n{}" - "".format(required_keys, input_dict.keys())) + logging.warning(("One or more of the following keys missing " + "from input_dict: \n%s \n%s"), required_keys, + input_dict.keys()) return keys_present From 62ba502200bd8c7e63d6565362918b0635a83031 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 21:21:23 +0200 Subject: [PATCH 032/172] Use string methods startswith and endswith instead of indexing for improved readability --- scopesim/effects/effects.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 99d36d0c..192ee96d 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -307,9 +307,9 @@ def __str__(self): return self.__repr__() def __getitem__(self, item): - if isinstance(item, str) and item[0] == "#": + if isinstance(item, str) and item.startswith("#"): if len(item) > 1: - if item[-1] == "!": + if item.endswith("!"): key = item[1:-1] if len(key) > 0: value = from_currsys(self.meta[key]) From e905a3cc1aaa2ed170de4793af44f62ea367231f Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 17:13:06 +0200 Subject: [PATCH 033/172] Since Python 3.8, this kinda f-string can be simplified --- scopesim/source/source_templates.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/source/source_templates.py b/scopesim/source/source_templates.py index e9f5cf28..5a900146 100644 --- a/scopesim/source/source_templates.py +++ b/scopesim/source/source_templates.py @@ -73,7 +73,7 @@ def star(x=0, y=0, flux=0): units=[u.arcsec, u.arcsec, None, None, mag_unit]) tbl.meta["photometric_system"] = "vega" if mag_unit == u.mag else "ab" src = Source(spectra=spec, table=tbl) - src.meta.update({"function_call": f"star(x={x}, y={y}, flux={flux})", + src.meta.update({"function_call": f"star({x=}, {y=}, {flux=})", "module": "scopesim.source.source_templates", "object": "star"}) From 2508ad5e136ec3b50d34235300ed99b7174db04e Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 22:51:08 +0200 Subject: [PATCH 034/172] f-string can just be a regular string in this case --- scopesim/effects/effects.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 192ee96d..cfc2e018 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -47,8 +47,8 @@ def apply_to(self, obj, **kwargs): if not isinstance(obj, (bc.FOVSetupBase, bc.SourceBase, bc.FieldOfViewBase, bc.ImagePlaneBase, bc.DetectorBase)): - raise ValueError(f"object must one of the following: FOVSetupBase, " - f"Source, FieldOfView, ImagePlane, Detector: " + raise ValueError("object must one of the following: FOVSetupBase, " + "Source, FieldOfView, ImagePlane, Detector: " f"{type(obj)}") return obj From 175ffeb6b78e8ae9a119688f706cc3eed463a8af Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 2 Jun 2023 15:19:30 +0200 Subject: [PATCH 035/172] No need to create a temporary list, use generator instead --- scopesim/base_classes.py | 2 +- scopesim/effects/effects.py | 2 +- scopesim/effects/effects_utils.py | 2 +- scopesim/optics/optical_element.py | 4 ++-- scopesim/optics/optical_train.py | 4 ++-- 5 files changed, 7 insertions(+), 7 deletions(-) diff --git a/scopesim/base_classes.py b/scopesim/base_classes.py index 0d1ef259..4f0f9ae6 100644 --- a/scopesim/base_classes.py +++ b/scopesim/base_classes.py @@ -42,7 +42,7 @@ def update(self, obj): self.dic.update(dict(obj)) if isinstance(obj, dict): - if any([isinstance(obj[key], (tuple, list)) for key in obj]): + if any(isinstance(obj[key], (tuple, list)) for key in obj): for key in obj: if isinstance(obj[key], (tuple, list)): self.comments[key] = obj[key][1] diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index cfc2e018..2918277a 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -116,7 +116,7 @@ def display_name(self): @property def meta_string(self): meta_str = "" - max_key_len = max([len(key) for key in self.meta.keys()]) + max_key_len = max(len(key) for key in self.meta.keys()) for key in self.meta: if key not in ["comments", "changes", "description", "history", "report_table_caption", "report_plot_caption", diff --git a/scopesim/effects/effects_utils.py b/scopesim/effects/effects_utils.py index ed64592b..fd797464 100644 --- a/scopesim/effects/effects_utils.py +++ b/scopesim/effects/effects_utils.py @@ -85,7 +85,7 @@ def make_effect(effect_dict, **properties): def is_spectroscope(effects): spec_classes = (efs.SpectralTraceList, efs.SpectralTraceListWheel) - return any([isinstance(eff, spec_classes) for eff in effects]) + return any(isinstance(eff, spec_classes) for eff in effects) def empty_surface_list(**kwargs): diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 62255965..9d5e7a18 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -101,7 +101,7 @@ def get_z_order_effects(self, z_level): if eff.include and "z_order" in eff.meta: z = eff.meta["z_order"] if isinstance(z, (list, tuple)): - if any([zmin <= zi <= zmax for zi in z]): + if any(zmin <= zi <= zmax for zi in z): effects += [eff] else: if zmin <= z <= zmax: @@ -203,7 +203,7 @@ def __str__(self): @property def properties_str(self): prop_str = "" - max_key_len = max([len(key) for key in self.properties.keys()]) + max_key_len = max(len(key) for key in self.properties.keys()) for key in self.properties: if key not in ["comments", "changes", "description", "history", "report"]: diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index cf5b2612..c9caf9a2 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -257,8 +257,8 @@ def prepare_source(self, source): cube.header['CUNIT2'] = 'deg' # Put on fov wavegrid - wave_min = min([fov.meta["wave_min"] for fov in self.fov_manager.fovs]) - wave_max = max([fov.meta["wave_max"] for fov in self.fov_manager.fovs]) + wave_min = min(fov.meta["wave_min"] for fov in self.fov_manager.fovs) + wave_max = max(fov.meta["wave_max"] for fov in self.fov_manager.fovs) wave_unit = u.Unit(from_currsys("!SIM.spectral.wave_unit")) dwave = from_currsys("!SIM.spectral.spectral_bin_width") # Not a quantity fov_waveset = np.arange(wave_min.value, wave_max.value, dwave) * wave_unit From 17761f3936c8ae0bb6f66808f14558f9d9dad190 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 2 Jun 2023 15:22:21 +0200 Subject: [PATCH 036/172] Use enumerate instead of range(len(...)) --- scopesim/optics/optical_train.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index c9caf9a2..83d3352b 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -199,8 +199,8 @@ def observe(self, orig_source, update=True, **kwargs): # [2D - Vibration, flat fielding, chopping+nodding] for effect in self.optics_manager.image_plane_effects: - for ii in range(len(self.image_planes)): - self.image_planes[ii] = effect.apply_to(self.image_planes[ii]) + for ii, image_plane in enumerate(self.image_planes): + self.image_planes[ii] = effect.apply_to(image_plane) self._last_fovs = fovs self._last_source = source From 395098a31432fc2c98a186ecf97a84c86bd3ec22 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 20:54:43 +0200 Subject: [PATCH 037/172] final newline --- scopesim/effects/effects.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 2918277a..43994a1c 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -322,4 +322,4 @@ def __getitem__(self, item): else: raise ValueError(f"__getitem__ calls must start with '#': {item}") - return value \ No newline at end of file + return value From fcb69068a65dce934ccc65d9493244e539eb2c13 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 21:09:30 +0200 Subject: [PATCH 038/172] Empty list is False, so len(mylist) == 0 is redundant --- scopesim/effects/effects_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/effects_utils.py b/scopesim/effects/effects_utils.py index fd797464..0258c83d 100644 --- a/scopesim/effects/effects_utils.py +++ b/scopesim/effects/effects_utils.py @@ -36,7 +36,7 @@ def combine_surface_effects(surface_effects): if isinstance(eff, (efs.TERCurve, efs.FilterWheel)) and not isinstance(eff, efs.SurfaceList)] - if len(surflist_list) == 0: + if not surflist_list: surflist_list = [empty_surface_list(name="combined_surface_list")] new_surflist = copy(surflist_list[0]) From 6ef82f8b3c40a2623c42035466d146e81e0ac05f Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 21:18:02 +0200 Subject: [PATCH 039/172] Fix bad indentation --- scopesim/effects/effects.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 43994a1c..47b7c944 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -296,7 +296,7 @@ def info(self): desc = self.meta.get("description") if desc is not None: - text += f"\nDescription: {desc}" + text += f"\nDescription: {desc}" print(text) From 8ee18a38b3f67b459c4cdc5b8e2166060552460a Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 3 Jun 2023 22:53:11 +0200 Subject: [PATCH 040/172] Set is preferred for "if x in y"-type statements --- scopesim/effects/effects.py | 4 ++-- scopesim/optics/optical_element.py | 6 +++--- scopesim/optics/optical_train.py | 4 ++-- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 47b7c944..beed36f5 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -118,9 +118,9 @@ def meta_string(self): meta_str = "" max_key_len = max(len(key) for key in self.meta.keys()) for key in self.meta: - if key not in ["comments", "changes", "description", "history", + if key not in {"comments", "changes", "description", "history", "report_table_caption", "report_plot_caption", - "table"]: + "table"}: meta_str += f" {key.rjust(max_key_len)} : {self.meta[key]}\n" return meta_str diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 9d5e7a18..4289fa0d 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -64,7 +64,7 @@ def __init__(self, yaml_dict=None, **kwargs): if isinstance(yaml_dict, dict): self.meta.update({key: yaml_dict[key] for key in yaml_dict - if key not in ["properties", "effects"]}) + if key not in {"properties", "effects"}) if "properties" in yaml_dict: self.properties = yaml_dict["properties"] if "name" in yaml_dict: @@ -205,8 +205,8 @@ def properties_str(self): prop_str = "" max_key_len = max(len(key) for key in self.properties.keys()) for key in self.properties: - if key not in ["comments", "changes", "description", "history", - "report"]: + if key not in {"comments", "changes", "description", "history", + "report"}: prop_str += f" {key.rjust(max_key_len)} : {self.properties[key]}\n" return prop_str diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 83d3352b..db8bd7ce 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -452,8 +452,8 @@ def write_header(self, hdulist): iheader["SPECTRAC"] = (from_currsys(eff.meta['filename']), "spectral trace definition") if "CTYPE1" in eff.meta: - for key in ['WCSAXES', 'CTYPE1', 'CTYPE2', 'CRPIX1', 'CRPIX2', 'CRVAL1', - 'CRVAL2', 'CDELT1', 'CDELT2', 'CUNIT1', 'CUNIT2']: + for key in {'WCSAXES', 'CTYPE1', 'CTYPE2', 'CRPIX1', 'CRPIX2', 'CRVAL1', + 'CRVAL2', 'CDELT1', 'CDELT2', 'CUNIT1', 'CUNIT2'}: iheader[key] = eff.meta[key] for eff in self.optics_manager.detector_effects: From c8db023d746278d4751df01452628b4986cd8fb7 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sun, 4 Jun 2023 19:54:17 +0200 Subject: [PATCH 041/172] Iterate over dict using .items() method if key and value are needed --- scopesim/base_classes.py | 12 ++++++------ scopesim/commands/user_commands.py | 2 +- scopesim/effects/ter_curves.py | 8 ++++---- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/scopesim/base_classes.py b/scopesim/base_classes.py index 4f0f9ae6..e80f52a2 100644 --- a/scopesim/base_classes.py +++ b/scopesim/base_classes.py @@ -54,8 +54,8 @@ def update(self, obj): def as_header(self): hdr = Header(self.dic) - for key in self.comments: - hdr.comments[key] = self.comments[key] + for key, value in self.comments.items(): + hdr.comments[key] = value return hdr @@ -80,7 +80,7 @@ def __contains__(self, item): def __repr__(self): msgs = "" - for key in self.dic: + for key, value in self.dic.items(): cmt_msg = "" if key in self.comments: cmt_msg = " / {self.comments[key]}" @@ -89,11 +89,11 @@ def __repr__(self): def items(self): items_dict = [] - for key in self.dic: + for key, value in self.dic.items(): if key in self.comments: - items_dict += [(key, (self.dic[key], self.comments[key]))] + items_dict += [(key, (value, self.comments[key]))] else: - items_dict += [(key, self.dic[key])] + items_dict += [(key, value)] return items_dict def keys(self): diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index f406a0da..2040785f 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -244,7 +244,7 @@ def list_modes(self): desc = dic["description"] if "description" in dic else "" modes[mode_name] = desc - msg = "\n".join([f"{key}: {modes[key]}" for key in modes]) + msg = "\n".join([f"{key}: {value}" for key, value in modes.items()]) else: msg = "No modes found" return msg diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index e8568ac2..2d7034e9 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -651,10 +651,10 @@ def plot(self, which="x", wavelength=None, **kwargs): for ii, ter in enumerate(which): ax = plt.subplot(len(which), 1, ii+1) - for name in self.filters: - self.filters[name].plot(which=ter, wavelength=wavelength, - ax=ax, new_figure=False, - plot_kwargs={"label": name}, **kwargs) + for name, _filter in self.filters.items(): + _filter.plot(which=ter, wavelength=wavelength, ax=ax, + new_figure=False, plot_kwargs={"label": name}, + **kwargs) # plt.semilogy() plt.legend() From cd87e9bc00e7a5ac36039447874db2f9aa8f922e Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:19:56 +0200 Subject: [PATCH 042/172] Removed duplicate import logging statement --- scopesim/utils.py | 1 - 1 file changed, 1 deletion(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 4551dca6..d602506b 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -6,7 +6,6 @@ from pathlib import Path import sys import logging -import logging from collections import OrderedDict from docutils.core import publish_string from copy import deepcopy From daf0b6261a8ee8be36f83d3b86dd0cf0732449b7 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:21:19 +0200 Subject: [PATCH 043/172] Remove redundant else/elif clauses after raise or return Remove another else clause by simply creating "otherwise"-output before. Also turn some temporary lists into pure generator expressions. --- scopesim/effects/surface_list.py | 20 +++++++++----------- scopesim/effects/ter_curves_utils.py | 10 +++++----- scopesim/utils.py | 26 ++++++++++++-------------- 3 files changed, 26 insertions(+), 30 deletions(-) diff --git a/scopesim/effects/surface_list.py b/scopesim/effects/surface_list.py index b1346a2b..d9348acb 100644 --- a/scopesim/effects/surface_list.py +++ b/scopesim/effects/surface_list.py @@ -25,6 +25,7 @@ def __init__(self, **kwargs): self._emission = None def fov_grid(self, which="waveset", **kwargs): + wave_edges = [] if which == "waveset": self.meta.update(kwargs) self.meta = from_currsys(self.meta) @@ -35,18 +36,15 @@ def fov_grid(self, which="waveset", **kwargs): throughput = self.throughput(wave) threshold = self.meta["minimum_throughput"] valid_waves = np.where(throughput >= threshold)[0] - if len(valid_waves) > 0: - wave_edges = [min(wave[valid_waves]), max(wave[valid_waves])] - else: - raise ValueError("No transmission found above the threshold {} " - "in this wavelength range {}. Did you open " - "the shutter?" - "".format(self.meta["minimum_throughput"], - [self.meta["wave_min"], - self.meta["wave_max"]])) - else: - wave_edges = [] + if not len(valid_waves): + msg = ("No transmission found above the threshold " + f"{self.meta['minimum_throughput']} in this wavelength " + f"range {[self.meta['wave_min'], self.meta['wave_max']]}." + " Did you open the shutter?") + raise ValueError(msg) + + wave_edges = [min(wave[valid_waves]), max(wave[valid_waves])] return wave_edges @property diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index 3b149b8b..5cc38a35 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -103,11 +103,11 @@ def download_svo_filter(filter_name, return_style="synphot", except: if error_on_wrong_name: raise ValueError(f"{filter_name} is an incorrect SVO identiier") - else: - logging.warning(("'%s' was not found in the SVO. Defaulting to a " - "unity transmission curve."), filter_name) - wave = [3e3, 3e5] << u.Angstrom - trans = np.array([1., 1.]) + + logging.warning(("'%s' was not found in the SVO. Defaulting to a " + "unity transmission curve."), filter_name) + wave = [3e3, 3e5] << u.Angstrom + trans = np.array([1., 1.]) if return_style == "synphot": filt = SpectralElement(Empirical1D, points=wave, lookup_table=trans) diff --git a/scopesim/utils.py b/scopesim/utils.py index d602506b..a242bc18 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -334,14 +334,14 @@ def seq(start, stop, step=1): # integer sequence npts = int(npts) return start + np.asarray(range(npts + 1)) * step + + npts = int(npts + feps) + sequence = start + np.asarray(range(npts + 1)) * step + # correct for possible overshot because of fuzz (from seq.R) + if step > 0: + return np.minimum(sequence, stop) else: - npts = int(npts + feps) - sequence = start + np.asarray(range(npts + 1)) * step - # correct for possible overshot because of fuzz (from seq.R) - if step > 0: - return np.minimum(sequence, stop) - else: - return np.maximum(sequence, stop) + return np.maximum(sequence, stop) def add_mags(mags): @@ -561,8 +561,6 @@ def find_file(filename, path=None, silent=False): while fname[:2] == './': fname = fname[2:] return fname - else: - continue # no file found msg = f"File cannot be found: {filename}" @@ -888,8 +886,8 @@ def has_needed_keywords(header, suffix=""): Check to see if the WCS keywords are in the header """ keys = ["CDELT1", "CRVAL1", "CRPIX1"] - return sum([key + suffix in header.keys() for key in keys]) == 3 and \ - "NAXIS1" in header.keys() + return (sum(key + suffix in header.keys() for key in keys) == 3 and + "NAXIS1" in header.keys()) def stringify_dict(dic, ignore_types=(str, int, float)): @@ -970,9 +968,9 @@ def check_keys(input_dict, required_keys, action="error", all_any="all"): input_dict = {key: None for key in input_dict} if all_any == "all": - keys_present = all([key in input_dict for key in required_keys]) + keys_present = all(key in input_dict for key in required_keys) elif all_any == "any": - keys_present = any([key in input_dict for key in required_keys]) + keys_present = any(key in input_dict for key in required_keys) else: raise ValueError("all_any must be either 'all' or 'any'") @@ -980,7 +978,7 @@ def check_keys(input_dict, required_keys, action="error", all_any="all"): if "error" in action: raise ValueError("One or more of the following keys missing from " f"input_dict: \n{required_keys} \n{input_dict.keys()}") - elif "warn" in action: + if "warn" in action: logging.warning(("One or more of the following keys missing " "from input_dict: \n%s \n%s"), required_keys, input_dict.keys()) From aef656244ad56c92a9b6d333ed8536ef6fed8110 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:21:47 +0200 Subject: [PATCH 044/172] Replace direct type-check with isinstance() --- scopesim/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index a242bc18..26c7ce42 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -921,7 +921,7 @@ def clean_dict(orig_dict, new_entries): """ for key in orig_dict: - if type(orig_dict[key]) is str and orig_dict[key] in new_entries: + if isinstance(orig_dict[key], str) and orig_dict[key] in new_entries: orig_dict[key] = new_entries[orig_dict[key]] return orig_dict From 5b45d3090edbb8964191e55d4de657e4e80773b5 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:34:04 +0200 Subject: [PATCH 045/172] General refactoring of this method. --- scopesim/effects/surface_list.py | 17 +++++++++-------- 1 file changed, 9 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/surface_list.py b/scopesim/effects/surface_list.py index d9348acb..7c5b2c44 100644 --- a/scopesim/effects/surface_list.py +++ b/scopesim/effects/surface_list.py @@ -76,17 +76,18 @@ def surface(self, item): self._surface = item def get_throughput(self, start=0, end=None, rows=None): - """ Copied directly from radiometry_table """ + """Copied directly from radiometry_table.""" if self.table is None: return None - end = len(self.table) if end is None else end - end = end + len(self.table) if end < 0 else end - rows = np.arange(start, end) if rows is None else rows - - thru = rad_utils.combine_throughputs(self.table, self.surfaces, rows) - - return thru + if end is None: + end = len(self.table) + if end < 0: + end += len(self.table) + if rows is None: + rows = np.arange(start, end) + + return rad_utils.combine_throughputs(self.table, self.surfaces, rows) def get_emission(self, etendue, start=0, end=None, rows=None, use_area=False): From 0f4d55d8338386680579116dc856603658431f5a Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:37:36 +0200 Subject: [PATCH 046/172] Return True if statement is True -> simply return evaluated statement! Added parentheses for clarity --- scopesim/optics/surface_utils.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/scopesim/optics/surface_utils.py b/scopesim/optics/surface_utils.py index 926333dd..550ec50c 100644 --- a/scopesim/optics/surface_utils.py +++ b/scopesim/optics/surface_utils.py @@ -134,10 +134,6 @@ def is_flux_binned(unit): """ unit = unit**1 - flag = False # unit.physical_type is a string in astropy<=4.2 and a PhysicalType # class in astropy==4.3 and thus has to be cast to a string first. - if u.bin in unit._bases or "flux density" not in str(unit.physical_type): - flag = True - - return flag + return (u.bin in unit._bases or "flux density" not in str(unit.physical_type)) From d1ecbdc257088a816ac8e73d64e190eff7867340 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 12:48:32 +0200 Subject: [PATCH 047/172] Turn class into dataclass, becuase it's only used to store data --- scopesim/optics/surface.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/scopesim/optics/surface.py b/scopesim/optics/surface.py index 4985fdb9..32e51976 100644 --- a/scopesim/optics/surface.py +++ b/scopesim/optics/surface.py @@ -1,5 +1,7 @@ import os import logging +from dataclasses import dataclass +from typing import Any import numpy as np @@ -17,12 +19,13 @@ make_emission_from_array +@dataclass class PoorMansSurface: - """ Solely used by SurfaceList """ - def __init__(self, emission, throughput, meta): - self.emission = emission - self.throughput = throughput - self.meta = meta + """Solely used by SurfaceList """ + # FIXME: Use correct types instead of Any + emission: Any + throughput: Any + meta: Any class SpectralSurface: From 25431b7368d100f61ee7fcda6a54915693247204 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 17:14:26 +0200 Subject: [PATCH 048/172] Change os.path to pathlib.Path --- scopesim/commands/user_commands.py | 13 ++++------- scopesim/effects/effects.py | 5 ++-- scopesim/effects/ter_curves.py | 11 ++++----- scopesim/optics/optical_train.py | 6 ++--- scopesim/optics/surface.py | 4 ++-- scopesim/source/source.py | 8 +++---- scopesim/source/source_templates.py | 4 ++-- scopesim/utils.py | 36 ++++++++++++++++------------- 8 files changed, 43 insertions(+), 44 deletions(-) diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index 2040785f..93029377 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -416,14 +416,11 @@ def list_local_packages(action="display"): """ - local_path = os.path.abspath(rc.__config__["!SIM.file.local_packages_path"]) - pkgs = [d for d in os.listdir(local_path) if - os.path.isdir(os.path.join(local_path, d))] - - main_pkgs = [pkg for pkg in pkgs if - os.path.exists(os.path.join(local_path, pkg, "default.yaml"))] - ext_pkgs = [pkg for pkg in pkgs if not - os.path.exists(os.path.join(local_path, pkg, "default.yaml"))] + local_path = Path(rc.__config__["!SIM.file.local_packages_path"]).absolute() + pkgs = [d for d in local_path.iterdir() if d.is_dir()] + + main_pkgs = [pkg for pkg in pkgs if (pkg/"default.yaml").exists()] + ext_pkgs = [pkg for pkg in pkgs if not (pkg/"default.yaml").exists()] if action == "display": msg = (f"\nLocal package directory:\n {local_path}\n" diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index beed36f5..cdd6feb7 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -1,4 +1,5 @@ -import os +from pathlib import Path + from astropy.table import Table from ..effects.data_container import DataContainer @@ -250,7 +251,7 @@ def report(self, filename=None, output="rst", rst_title_chars="*+", for fmt in params["report_plot_file_formats"]: fname = ".".join((fname.split(".")[0], fmt)) - file_path = os.path.join(path, fname) + file_path = Path(path, fname) fig.savefig(fname=file_path) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 2d7034e9..b1034994 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -1,7 +1,6 @@ """Transmission, emissivity, reflection curves""" import numpy as np from astropy import units as u -from os import path as pth import logging from astropy.io import fits @@ -576,12 +575,11 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - path = pth.join(self.meta["path"], - from_currsys(self.meta["filename_format"])) + path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) self.filters = {} for name in from_currsys(self.meta["filter_names"]): kwargs["name"] = name - self.filters[name] = FilterCurve(filename=path.format(name), + self.filters[name] = FilterCurve(filename=str(path).format(name), **kwargs) self.table = self.get_table() @@ -877,12 +875,11 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - path = pth.join(self.meta["path"], - from_currsys(self.meta["filename_format"])) + path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) self.adcs = {} for name in from_currsys(self.meta["adc_names"]): kwargs["name"] = name - self.adcs[name] = TERCurve(filename=path.format(name), + self.adcs[name] = TERCurve(filename=str(path).format(name), **kwargs) self.table = self.get_table() diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index db8bd7ce..70c0a793 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -1,8 +1,8 @@ import copy -import os import sys from copy import deepcopy from shutil import copyfileobj +from pathlib import Path from datetime import datetime @@ -359,7 +359,7 @@ def write_header(self, hdulist): # Image hdul # ..todo: currently only one, update for detector arrays - # ..todo: normalise filenames - some need from_currsys, some need os.path.basename + # ..todo: normalise filenames - some need from_currsys, some need Path(...).name # this should go into a function so as to reduce clutter here. iheader = hdulist[1].header iheader['EXPTIME'] = from_currsys("!OBS.exptime"), "[s]" @@ -439,7 +439,7 @@ def write_header(self, hdulist): isurface += 1 if efftype == "QuantumEfficiencyCurve" and eff.include: - iheader['QE'] = os.path.basename(eff.meta['filename']), eff.meta['name'] + iheader['QE'] = Path(eff.meta['filename']).name, eff.meta['name'] for eff in self.optics_manager.fov_effects: efftype = type(eff).__name__ diff --git a/scopesim/optics/surface.py b/scopesim/optics/surface.py index 32e51976..961c1390 100644 --- a/scopesim/optics/surface.py +++ b/scopesim/optics/surface.py @@ -1,5 +1,5 @@ -import os import logging +from pathlib import Path from dataclasses import dataclass from typing import Any @@ -47,7 +47,7 @@ def __init__(self, filename=None, **kwargs): "wavelength_unit" : u.um} self.table = Table() - if filename is not None and os.path.exists(filename): + if filename is not None and Path(filename).exists(): self.table = ioascii.read(filename) tbl_meta = convert_table_comments_to_dict(self.table) if isinstance(tbl_meta, dict): diff --git a/scopesim/source/source.py b/scopesim/source/source.py index 7adaa9ed..010279ec 100644 --- a/scopesim/source/source.py +++ b/scopesim/source/source.py @@ -32,10 +32,10 @@ # [WCS = CRPIXn, CRVALn = (0,0), CTYPEn, CDn_m, NAXISn, CUNITn """ -import os import pickle import logging from copy import deepcopy +from pathlib import Path import numpy as np from astropy.table import Table, Column @@ -197,7 +197,7 @@ def _from_file(self, filename, spectra, flux): fits_type = utils.get_fits_type(filename) data = fits.getdata(filename) hdr = fits.getheader(filename) - hdr['FILENAME'] = os.path.basename(filename) + hdr['FILENAME'] = Path(filename).name if fits_type == "image": image = fits.ImageHDU(data=data, header=hdr) if spectra is not None: @@ -324,7 +324,7 @@ def _from_cube(self, cube, ext=0): with fits.open(cube) as hdul: data = hdul[ext].data header = hdul[ext].header - header['FILENAME'] = os.path.basename(cube) + header['FILENAME'] = Path(cube).name wcs = WCS(cube) try: @@ -610,4 +610,4 @@ def __repr__(self): msg += f", referencing spectrum {num_spec}" msg += "\n" - return msg \ No newline at end of file + return msg diff --git a/scopesim/source/source_templates.py b/scopesim/source/source_templates.py index 5a900146..7c409105 100644 --- a/scopesim/source/source_templates.py +++ b/scopesim/source/source_templates.py @@ -1,4 +1,4 @@ -from os import path as pth +from pathlib import Path import numpy as np @@ -273,7 +273,7 @@ def uniform_source(sp=None, extent=60): def vega_spectrum(mag=0): if isinstance(mag, u.Quantity): mag = mag.value - vega = SourceSpectrum.from_file(pth.join(rc.__pkg_dir__, "vega.fits")) + vega = SourceSpectrum.from_file(Path(rc.__pkg_dir__, "vega.fits")) vega = vega * 10 ** (-0.4 * mag) return vega diff --git a/scopesim/utils.py b/scopesim/utils.py index 26c7ce42..eb194124 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -2,7 +2,6 @@ Helper functions for ScopeSim """ import math -import os from pathlib import Path import sys import logging @@ -250,14 +249,15 @@ def add_SED_to_scopesim(file_in, file_out=None, wave_units="um"): """ - file_name, file_ext = os.path.basename(file_in).split(".") + path = Path(file_in) if file_out is None: - if "SED_" not in file_name: - file_out = rc.__data_dir__ + "SED_" + file_name + ".dat" - else: file_out = rc.__data_dir__ + file_name + ".dat" + if "SED_" not in path.name: + file_out = rc.__data_dir__ + f"SED_{path.name}.dat" + else: + file_out = rc.__data_dir__ + f"{path.name}.dat" - if file_ext.lower() in "fits": + if path.suffix.lower() in "fits": data = fits.getdata(file_in) lam, val = data[data.columns[0].name], data[data.columns[1].name] else: @@ -541,26 +541,32 @@ def find_file(filename, path=None, silent=False): if filename is None or filename.lower() == "none": return None - if filename[0] == "!": + if filename.startswith("!"): filename = from_currsys(filename) + # Turn into pathlib.Path object for better manipulation afterwards + filename = Path(filename) if path is None: path = rc.__search_path__ - if os.path.isabs(filename): + if filename.is_absolute(): # absolute path: only path to try trynames = [filename] else: # try to find the file in a search path - trynames = [os.path.join(trydir, *os.path.split(filename)) + trynames = [Path(trydir, filename) for trydir in path if trydir is not None] for fname in trynames: - if os.path.exists(fname): # success + if fname.exists(): # success # strip leading ./ - while fname[:2] == './': - fname = fname[2:] + # Path should take care of this automatically! + # while fname[:2] == './': + # fname = fname[2:] + # Nevertheless, make sure this is actually the case... + assert not str(fname).startswith("./") return fname + # no file found msg = f"File cannot be found: {filename}" @@ -1010,10 +1016,8 @@ def write_report(text, filename=None, output=["rst"]): out_text = out_text.decode("utf-8") suffix = {"rst": ".rst", "latex": ".tex"}[fmt] - fname = Path(filename) - fname = os.path.join(*fname.parts[:-1], fname.stem + suffix) - with open(fname, "w") as f: - f.write(out_text) + fname = Path(filename).with_suffix(suffix) + fname.write_text(out_text, encoding="utf-8") def pretty_print_dict(dic, indent=0): From 0dbfd3dc23e8a3402e7b53e5f25bd9acc646233a Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 5 Jun 2023 17:42:03 +0200 Subject: [PATCH 049/172] Replace os.path with pathlib.Path and fix some redundant list comprehensions --- scopesim/rc.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/scopesim/rc.py b/scopesim/rc.py index 8ca95c12..e94e6627 100644 --- a/scopesim/rc.py +++ b/scopesim/rc.py @@ -1,17 +1,17 @@ -import os +from pathlib import Path import yaml from .system_dict import SystemDict -__pkg_dir__ = os.path.dirname(__file__) +__pkg_dir__ = Path(__file__).parent -with open(os.path.join(__pkg_dir__, "defaults.yaml")) as f: - dicts = [dic for dic in yaml.full_load_all(f)] +with open(__pkg_dir__/"defaults.yaml") as f: + dicts = list(yaml.full_load_all(f)) -user_rc_path = os.path.expanduser("~/.scopesim_rc.yaml") -if os.path.exists(user_rc_path): +user_rc_path = Path("~/.scopesim_rc.yaml").expanduser() +if user_rc_path.exists(): with open(user_rc_path) as f: - dicts += [dic for dic in yaml.full_load_all(f)] + dicts.extend(list(yaml.full_load_all(f))) __config__ = SystemDict(dicts) __currsys__ = __config__ @@ -21,4 +21,4 @@ # if os.environ.get("READTHEDOCS") == "True" or "F:" in os.getcwd(): # extra_paths = ["../", "../../", "../../../", "../../../../"] -# __search_path__ = extra_paths + __search_path__ \ No newline at end of file +# __search_path__ = extra_paths + __search_path__ From b8c960d261b8ce51d81c8670bc04a3c1efd653d7 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 01:15:10 +0200 Subject: [PATCH 050/172] Change "list += [element]" to "list.append(element)" in many places --- scopesim/base_classes.py | 4 ++-- scopesim/commands/user_commands.py | 4 ++-- scopesim/optics/optical_element.py | 8 ++++---- scopesim/optics/optical_train.py | 2 +- scopesim/optics/surface.py | 2 +- scopesim/source/source.py | 16 ++++++++-------- scopesim/system_dict.py | 2 +- scopesim/utils.py | 2 +- 8 files changed, 20 insertions(+), 20 deletions(-) diff --git a/scopesim/base_classes.py b/scopesim/base_classes.py index e80f52a2..99533db7 100644 --- a/scopesim/base_classes.py +++ b/scopesim/base_classes.py @@ -91,9 +91,9 @@ def items(self): items_dict = [] for key, value in self.dic.items(): if key in self.comments: - items_dict += [(key, (value, self.comments[key]))] + items_dict.append((key, (value, self.comments[key]))) else: - items_dict += [(key, value)] + items_dict.append((key, value)) return items_dict def keys(self): diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index 93029377..6db4ee0e 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -185,7 +185,7 @@ def update(self, **kwargs): elif isinstance(yaml_input, dict): self.cmds.update(yaml_input) - self.yaml_dicts += [yaml_input] + self.yaml_dicts.append(yaml_input) for key in ["packages", "yamls", "mode_yamls"]: if key in yaml_input: @@ -230,7 +230,7 @@ def set_modes(self, modes=None): defyam["properties"]["modes"] = [] for mode in modes: if mode in self.modes_dict: - defyam["properties"]["modes"] += [mode] + defyam["properties"]["modes"].append(mode) else: raise ValueError(f"mode '{mode}' was not recognised") diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 4289fa0d..f9206dc2 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -76,11 +76,11 @@ def __init__(self, yaml_dict=None, **kwargs): if eff_dic["name"] in rc.__currsys__.ignore_effects: eff_dic["include"] = False - self.effects += [make_effect(eff_dic, **self.properties)] + self.effects.append(make_effect(eff_dic, **self.properties)) def add_effect(self, effect): if isinstance(effect, efs.Effect): - self.effects += [effect] + self.effects.append(effect) else: logging.warning("%s is not an Effect object and was not added", effect) @@ -102,10 +102,10 @@ def get_z_order_effects(self, z_level): z = eff.meta["z_order"] if isinstance(z, (list, tuple)): if any(zmin <= zi <= zmax for zi in z): - effects += [eff] + effects.append(eff) else: if zmin <= z <= zmax: - effects += [eff] + effects.append(eff) return effects diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 70c0a793..0af74d58 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -327,7 +327,7 @@ def readout(self, filename=None, **kwargs): fname = f"{i}_{filename}" hdul.writeto(fname, overwrite=True) - hduls += [hdul] + hduls.append(hdul) return hduls diff --git a/scopesim/optics/surface.py b/scopesim/optics/surface.py index 961c1390..25123f0a 100644 --- a/scopesim/optics/surface.py +++ b/scopesim/optics/surface.py @@ -130,7 +130,7 @@ def emission(self): conversion_factor = flux.meta["solid_angle"].to(u.arcsec ** -2) flux = flux * conversion_factor flux.meta["solid_angle"] = u.arcsec**-2 - flux.meta["history"] += [f"Converted to arcsec-2: {conversion_factor}"] + flux.meta["history"].append(f"Converted to arcsec-2: {conversion_factor}") if flux is not None and "rescale_emission" in self.meta: dic = from_currsys(self.meta["rescale_emission"]) diff --git a/scopesim/source/source.py b/scopesim/source/source.py index 010279ec..c53cacda 100644 --- a/scopesim/source/source.py +++ b/scopesim/source/source.py @@ -221,7 +221,7 @@ def _from_table(self, tbl, spectra): if "weight" not in tbl.colnames: tbl.add_column(Column(name="weight", data=np.ones(len(tbl)))) tbl["ref"] += len(self.spectra) - self.fields += [tbl] + self.fields.append(tbl) self.spectra += spectra def _from_imagehdu_and_spectra(self, image_hdu, spectra): @@ -261,7 +261,7 @@ def _from_imagehdu_and_spectra(self, image_hdu, spectra): image_hdu.header["CUNIT"+str(i)] = "DEG" image_hdu.header["CDELT"+str(i)] = val * unit.to(u.deg) - self.fields += [image_hdu] + self.fields.append(image_hdu) def _from_imagehdu_and_flux(self, image_hdu, flux): if isinstance(flux, u.Unit): @@ -299,7 +299,7 @@ def _from_arrays(self, x, y, ref, weight, spectra): tbl.meta["x_unit"] = "arcsec" tbl.meta["y_unit"] = "arcsec" - self.fields += [tbl] + self.fields.append(tbl) self.spectra += spectra def _from_cube(self, cube, ext=0): @@ -355,7 +355,7 @@ def _from_cube(self, cube, ext=0): cube_hdu = fits.ImageHDU(data=target_cube, header=target_hdr) cube_hdu.wave = wave # ..todo: review wave attribute, bad practice - self.fields += [cube_hdu] + self.fields.append(cube_hdu) @property def table_fields(self): @@ -553,9 +553,9 @@ def make_copy(self): for field in self.fields: if isinstance(field, (fits.ImageHDU, fits.PrimaryHDU)) \ and field._file is not None: # and field._data_loaded is False: - new_source.fields += [field] + new_source.fields.append(field) else: - new_source.fields += [deepcopy(field)] + new_source.fields.append(deepcopy(field)) return new_source @@ -572,13 +572,13 @@ def append(self, source_to_add): for field in new_source.fields: if isinstance(field, Table): field["ref"] += len(self.spectra) - self.fields += [field] + self.fields.append(field) elif isinstance(field, (fits.ImageHDU, fits.PrimaryHDU)): if ("SPEC_REF" in field.header and isinstance(field.header["SPEC_REF"], int)): field.header["SPEC_REF"] += len(self.spectra) - self.fields += [field] + self.fields.append(field) self.spectra += new_source.spectra self._meta_dicts += source_to_add._meta_dicts diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index 446aeb07..d1462d0d 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -26,7 +26,7 @@ def update(self, new_dict): for key in new_dict: if key.startswith("!"): self[key] = new_dict[key] - to_pop += [key] + to_pop.append(key) for key in to_pop: new_dict.pop(key) diff --git a/scopesim/utils.py b/scopesim/utils.py index eb194124..8affaf60 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -1059,6 +1059,6 @@ def return_latest_github_actions_jobs_status(owner_name="AstarVienna", repo_name colour = "brightgreen" if job['conclusion'] == "success" else "red" badge_url = f"https://img.shields.io/badge/{key}-{value}-{colour}" params["badge_url"] = badge_url - params_list += [params] + params_list.append(params) return params_list From cf000d562b05693d0de4a752019160a60cce9853 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 15:37:18 +0200 Subject: [PATCH 051/172] A few more minor string fixes --- scopesim/source/source.py | 31 ++++++++++++++++--------------- 1 file changed, 16 insertions(+), 15 deletions(-) diff --git a/scopesim/source/source.py b/scopesim/source/source.py index c53cacda..23ac7a23 100644 --- a/scopesim/source/source.py +++ b/scopesim/source/source.py @@ -181,8 +181,8 @@ def __init__(self, filename=None, cube=None, ext=0, if image_hdu.header.get("BUNIT") is not None: self._from_imagehdu_only(image_hdu) else: - msg = f"image_hdu must be accompanied by either spectra or flux:\n" \ - f"spectra: {spectra}, flux: {flux}" + msg = ("image_hdu must be accompanied by either spectra or flux:\n" + f"spectra: {spectra}, flux: {flux}") logging.exception(msg) raise ValueError(msg) @@ -197,7 +197,7 @@ def _from_file(self, filename, spectra, flux): fits_type = utils.get_fits_type(filename) data = fits.getdata(filename) hdr = fits.getheader(filename) - hdr['FILENAME'] = Path(filename).name + hdr["FILENAME"] = Path(filename).name if fits_type == "image": image = fits.ImageHDU(data=data, header=hdr) if spectra is not None: @@ -281,9 +281,10 @@ def _from_imagehdu_only(self, image_hdu): try: bunit = u.Unit(bunit) except ValueError: - f"Astropy cannot parse BUNIT [{bunit}].\n" \ - f"You can bypass this check by passing an astropy Unit to the flux parameter:\n" \ - f">>> Source(image_hdu=..., flux=u.Unit(bunit), ...)" + print(f"Astropy cannot parse BUNIT [{bunit}].\n" + "You can bypass this check by passing an astropy Unit to " + "the flux parameter:\n" + ">>> Source(image_hdu=..., flux=u.Unit(bunit), ...)") value = 0 if bunit in [u.mag, u.ABmag] else 1 self._from_imagehdu_and_flux(image_hdu, value * bunit) @@ -324,22 +325,23 @@ def _from_cube(self, cube, ext=0): with fits.open(cube) as hdul: data = hdul[ext].data header = hdul[ext].header - header['FILENAME'] = Path(cube).name + header["FILENAME"] = Path(cube).name wcs = WCS(cube) try: - bunit = header['BUNIT'] + bunit = header["BUNIT"] u.Unit(bunit) except KeyError: bunit = "erg / (s cm2 arcsec2)" - logging.warning("Keyword 'BUNIT' not found, setting to %s by default", bunit) + logging.warning("Keyword \"BUNIT\" not found, setting to %s by default", + bunit) except ValueError as errcode: - print("'BUNIT' keyword is malformed:", errcode) + print("\"BUNIT\" keyword is malformed:", errcode) raise # Compute the wavelength vector. This will be attached to the cube_hdu # as a new `wave` attribute. This is not optimal coding practice. - wave = wcs.all_pix2world(header['CRPIX1'], header['CRPIX2'], + wave = wcs.all_pix2world(header["CRPIX1"], header["CRPIX2"], np.arange(data.shape[0]), 0)[-1] wave = (wave * u.Unit(wcs.wcs.cunit[-1])).to(u.um, @@ -462,13 +464,13 @@ def image(self, wave_min, wave_max, **kwargs): @classmethod def load(cls, filename): """Load :class:'.Source' object from filename""" - with open(filename, 'rb') as fp1: + with open(filename, "rb") as fp1: src = pickle.load(fp1) return src def dump(self, filename): """Save to filename as a pickle""" - with open(filename, 'wb') as fp1: + with open(filename, "wb") as fp1: pickle.dump(self, fp1) # def collapse_spectra(self, wave_min=None, wave_max=None): @@ -583,8 +585,7 @@ def append(self, source_to_add): self._meta_dicts += source_to_add._meta_dicts else: - raise ValueError("Cannot add {} object to Source object" - "".format(type(new_source))) + raise ValueError(f"Cannot add {type(new_source)} object to Source object") def __add__(self, new_source): self_copy = self.make_copy() From ac3e571ef63d8117dbb9ab91d341a35a578d46d8 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 15:41:40 +0200 Subject: [PATCH 052/172] Change single quotes to double quotes to match our standard --- scopesim/optics/optical_train.py | 136 +++++++++++++++---------------- 1 file changed, 68 insertions(+), 68 deletions(-) diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 0af74d58..95cf85fd 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -227,7 +227,7 @@ def prepare_source(self, source): header, data, wave = cube.header, cube.data, cube.wave # Need to check whether BUNIT is per arcsec2 or per pixel - inunit = u.Unit(header['BUNIT']) + inunit = u.Unit(header["BUNIT"]) data = data.astype(np.float32) * inunit factor = 1 for base, power in zip(inunit.bases, inunit.powers): @@ -241,20 +241,20 @@ def prepare_source(self, source): if factor == 1: # Normalise to 1 arcsec2 if not a spatial density # ..todo: lower needed because "DEG" is not understood, this is ugly - pixarea = (header['CDELT1'] * u.Unit(header['CUNIT1'].lower()) * - header['CDELT2'] * u.Unit(header['CUNIT2'].lower())).to(u.arcsec**2) + pixarea = (header["CDELT1"] * u.Unit(header["CUNIT1"].lower()) * + header["CDELT2"] * u.Unit(header["CUNIT2"].lower())).to(u.arcsec**2) data = data / pixarea.value # cube is per arcsec2 data = (data * factor).value - cube.header['BUNIT'] = 'PHOTLAM/arcsec2' # ..todo: make this more explicit? + cube.header["BUNIT"] = "PHOTLAM/arcsec2" # ..todo: make this more explicit? # The imageplane_utils like to have the spatial WCS in units of "deg". Ensure # that the cube is passed on accordingly - cube.header['CDELT1'] = header['CDELT1'] * u.Unit(header['CUNIT1'].lower()).to(u.deg) - cube.header['CDELT2'] = header['CDELT2'] * u.Unit(header['CUNIT2'].lower()).to(u.deg) - cube.header['CUNIT1'] = 'deg' - cube.header['CUNIT2'] = 'deg' + cube.header["CDELT1"] = header["CDELT1"] * u.Unit(header["CUNIT1"].lower()).to(u.deg) + cube.header["CDELT2"] = header["CDELT2"] * u.Unit(header["CUNIT2"].lower()).to(u.deg) + cube.header["CUNIT1"] = "deg" + cube.header["CUNIT2"] = "deg" # Put on fov wavegrid wave_min = min(fov.meta["wave_min"] for fov in self.fov_manager.fovs) @@ -275,11 +275,11 @@ def prepare_source(self, source): new_data[:, j, :] = cube_interp(fov_waveset.value) cube.data = new_data - cube.header['CTYPE3'] = 'WAVE' - cube.header['CRPIX3'] = 1 - cube.header['CRVAL3'] = wave_min.value - cube.header['CDELT3'] = dwave - cube.header['CUNIT3'] = wave_unit.name + cube.header["CTYPE3"] = "WAVE" + cube.header["CRPIX3"] = 1 + cube.header["CRVAL3"] = wave_min.value + cube.header["CDELT3"] = dwave + cube.header["CUNIT3"] = wave_unit.name return source @@ -336,55 +336,55 @@ def write_header(self, hdulist): # Primary hdu pheader = hdulist[0].header - pheader['DATE'] = datetime.now().isoformat(timespec='seconds') - pheader['ORIGIN'] = 'Scopesim ' + version - pheader['INSTRUME'] = from_currsys("!OBS.instrument") - pheader['INSTMODE'] = ", ".join(from_currsys("!OBS.modes")) - pheader['TELESCOP'] = from_currsys("!TEL.telescope") - pheader['LOCATION'] = from_currsys("!ATMO.location") + pheader["DATE"] = datetime.now().isoformat(timespec="seconds") + pheader["ORIGIN"] = "Scopesim " + version + pheader["INSTRUME"] = from_currsys("!OBS.instrument") + pheader["INSTMODE"] = ", ".join(from_currsys("!OBS.modes")) + pheader["TELESCOP"] = from_currsys("!TEL.telescope") + pheader["LOCATION"] = from_currsys("!ATMO.location") # Source information taken from first only. # ..todo: What if source is a composite? srcfield = self._last_source.fields[0] if type(srcfield).__name__ == "Table": - pheader['SOURCE'] = "Table" + pheader["SOURCE"] = "Table" elif type(srcfield).__name__ == "ImageHDU": - if 'BG_SURF' in srcfield.header: - pheader['SOURCE'] = srcfield.header['BG_SURF'] + if "BG_SURF" in srcfield.header: + pheader["SOURCE"] = srcfield.header["BG_SURF"] else: try: - pheader['SOURCE'] = srcfield.header['FILENAME'] + pheader["SOURCE"] = srcfield.header["FILENAME"] except KeyError: - pheader['SOURCE'] = "ImageHDU" + pheader["SOURCE"] = "ImageHDU" # Image hdul # ..todo: currently only one, update for detector arrays # ..todo: normalise filenames - some need from_currsys, some need Path(...).name # this should go into a function so as to reduce clutter here. iheader = hdulist[1].header - iheader['EXPTIME'] = from_currsys("!OBS.exptime"), "[s]" - iheader['DIT'] = from_currsys("!OBS.dit"), "[s]" - iheader['NDIT'] = from_currsys("!OBS.ndit") - iheader['BUNIT'] = 'e', 'per EXPTIME' - iheader['PIXSCALE'] = from_currsys("!INST.pixel_scale"), "[arcsec]" + iheader["EXPTIME"] = from_currsys("!OBS.exptime"), "[s]" + iheader["DIT"] = from_currsys("!OBS.dit"), "[s]" + iheader["NDIT"] = from_currsys("!OBS.ndit") + iheader["BUNIT"] = "e", "per EXPTIME" + iheader["PIXSCALE"] = from_currsys("!INST.pixel_scale"), "[arcsec]" # A simple WCS - iheader['CTYPE1'] = 'LINEAR' - iheader['CTYPE2'] = 'LINEAR' - iheader['CRPIX1'] = (iheader['NAXIS1'] + 1) / 2 - iheader['CRPIX2'] = (iheader['NAXIS2'] + 1) / 2 - iheader['CRVAL1'] = 0. - iheader['CRVAL2'] = 0. - iheader['CDELT1'] = iheader['PIXSCALE'] - iheader['CDELT2'] = iheader['PIXSCALE'] - iheader['CUNIT1'] = 'arcsec' - iheader['CUNIT2'] = 'arcsec' + iheader["CTYPE1"] = "LINEAR" + iheader["CTYPE2"] = "LINEAR" + iheader["CRPIX1"] = (iheader["NAXIS1"] + 1) / 2 + iheader["CRPIX2"] = (iheader["NAXIS2"] + 1) / 2 + iheader["CRVAL1"] = 0. + iheader["CRVAL2"] = 0. + iheader["CDELT1"] = iheader["PIXSCALE"] + iheader["CDELT2"] = iheader["PIXSCALE"] + iheader["CUNIT1"] = "arcsec" + iheader["CUNIT2"] = "arcsec" for eff in self.optics_manager.detector_setup_effects: efftype = type(eff).__name__ if efftype == "DetectorList" and eff.include: - iheader['DETECTOR'] = eff.meta['detector'] + iheader["DETECTOR"] = eff.meta["detector"] for eff in self.optics_manager.detector_array_effects: efftype = type(eff).__name__ @@ -392,12 +392,12 @@ def write_header(self, hdulist): if (efftype == "DetectorModePropertiesSetter" and eff.include): # ..todo: can we write this into currsys? - iheader['DET_MODE'] = (eff.meta['detector_readout_mode'], + iheader["DET_MODE"] = (eff.meta["detector_readout_mode"], "detector readout mode") - iheader['MINDIT'] = from_currsys("!DET.mindit"), "[s]" - iheader['FULLWELL'] = from_currsys("!DET.full_well"), "[s]" - iheader['RON'] = from_currsys("!DET.readout_noise"), "[e]" - iheader['DARK'] = from_currsys("!DET.dark_current"), "[e/s]" + iheader["MINDIT"] = from_currsys("!DET.mindit"), "[s]" + iheader["FULLWELL"] = from_currsys("!DET.full_well"), "[s]" + iheader["RON"] = from_currsys("!DET.readout_noise"), "[e]" + iheader["DARK"] = from_currsys("!DET.dark_current"), "[e/s]" ifilter = 1 # Counts filter wheels isurface = 1 # Counts surface lists @@ -405,62 +405,62 @@ def write_header(self, hdulist): efftype = type(eff).__name__ if efftype == "ADCWheel" and eff.include: - iheader['ADC'] = eff.current_adc.meta['name'] + iheader["ADC"] = eff.current_adc.meta["name"] if efftype == "FilterWheel" and eff.include: - iheader[f'FILTER{ifilter}'] = (eff.current_filter.meta['name'], - eff.meta['name']) + iheader[f"FILTER{ifilter}"] = (eff.current_filter.meta["name"], + eff.meta["name"]) ifilter += 1 if efftype == "SlitWheel" and eff.include: - iheader['SLIT'] = (eff.current_slit.meta['name'], - eff.meta['name']) + iheader["SLIT"] = (eff.current_slit.meta["name"], + eff.meta["name"]) if efftype == "PupilTransmission" and eff.include: - iheader['PUPTRANS'] = (from_currsys("!OBS.pupil_transmission"), + iheader["PUPTRANS"] = (from_currsys("!OBS.pupil_transmission"), "cold stop, pupil transmission") if efftype == "SkycalcTERCurve" and eff.include: - iheader['ATMOSPHE'] = "Skycalc", "atmosphere model" - iheader['LOCATION'] = eff.meta['location'] - iheader['AIRMASS'] = eff.meta['airmass'] - iheader['TEMPERAT'] = eff.meta['temperature'], '[degC]' - iheader['HUMIDITY'] = eff.meta['humidity'] - iheader['PRESSURE'] = eff.meta['pressure'], '[hPa]' - iheader['PWV'] = eff.meta['pwv'], "precipitable water vapour" + iheader["ATMOSPHE"] = "Skycalc", "atmosphere model" + iheader["LOCATION"] = eff.meta["location"] + iheader["AIRMASS"] = eff.meta["airmass"] + iheader["TEMPERAT"] = eff.meta["temperature"], "[degC]" + iheader["HUMIDITY"] = eff.meta["humidity"] + iheader["PRESSURE"] = eff.meta["pressure"], "[hPa]" + iheader["PWV"] = eff.meta["pwv"], "precipitable water vapour" if efftype == "AtmosphericTERCurve" and eff.include: - iheader['ATMOSPHE'] = eff.meta['filename'], "atmosphere model" + iheader["ATMOSPHE"] = eff.meta["filename"], "atmosphere model" # ..todo: expand if necessary if efftype == "SurfaceList" and eff.include: - iheader[f'SURFACE{isurface}'] = (eff.meta['filename'], - eff.meta['name']) + iheader[f"SURFACE{isurface}"] = (eff.meta["filename"], + eff.meta["name"]) isurface += 1 if efftype == "QuantumEfficiencyCurve" and eff.include: - iheader['QE'] = Path(eff.meta['filename']).name, eff.meta['name'] + iheader["QE"] = Path(eff.meta["filename"]).name, eff.meta["name"] for eff in self.optics_manager.fov_effects: efftype = type(eff).__name__ # ..todo: needs to be handled with isinstance(eff, PSF) if efftype == "FieldConstantPSF" and eff.include: - iheader["PSF"] = eff.meta['filename'], "point spread function" + iheader["PSF"] = eff.meta["filename"], "point spread function" if efftype == "SpectralTraceList" and eff.include: - iheader["SPECTRAC"] = (from_currsys(eff.meta['filename']), + iheader["SPECTRAC"] = (from_currsys(eff.meta["filename"]), "spectral trace definition") if "CTYPE1" in eff.meta: - for key in {'WCSAXES', 'CTYPE1', 'CTYPE2', 'CRPIX1', 'CRPIX2', 'CRVAL1', - 'CRVAL2', 'CDELT1', 'CDELT2', 'CUNIT1', 'CUNIT2'}: + for key in {"WCSAXES", "CTYPE1", "CTYPE2", "CRPIX1", "CRPIX2", "CRVAL1", + "CRVAL2", "CDELT1", "CDELT2", "CUNIT1", "CUNIT2"}: iheader[key] = eff.meta[key] for eff in self.optics_manager.detector_effects: efftype = type(eff).__name__ if efftype == "LinearityCurve" and eff.include: - iheader['DETLIN'] = from_currsys(eff.meta['filename']) + iheader["DETLIN"] = from_currsys(eff.meta["filename"]) return hdulist @@ -479,7 +479,7 @@ def shutdown(self): This method closes all open file handles and should be called when the optical train is no longer needed. """ - for effect_name in self.effects['name']: + for effect_name in self.effects["name"]: try: self[effect_name]._file.close() except AttributeError: From 101edeb64183cda4d993b2f1449ba86eec30c299 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 17:02:51 +0200 Subject: [PATCH 053/172] Fix missed closing parenthesis ... --- scopesim/optics/optical_element.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index f9206dc2..6a814357 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -64,7 +64,7 @@ def __init__(self, yaml_dict=None, **kwargs): if isinstance(yaml_dict, dict): self.meta.update({key: yaml_dict[key] for key in yaml_dict - if key not in {"properties", "effects"}) + if key not in {"properties", "effects"}}) if "properties" in yaml_dict: self.properties = yaml_dict["properties"] if "name" in yaml_dict: From dfe13b5e3f6093ea9f64d6ce9b90b774f34156d1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 20:33:47 +0200 Subject: [PATCH 054/172] Fix two small issues introduced by pathlib switch --- scopesim/effects/ter_curves.py | 1 + scopesim/utils.py | 4 +++- 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index b1034994..bced2792 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -2,6 +2,7 @@ import numpy as np from astropy import units as u import logging +from pathlib import Path from astropy.io import fits from astropy.table import Table diff --git a/scopesim/utils.py b/scopesim/utils.py index 8affaf60..871177a1 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -565,7 +565,9 @@ def find_file(filename, path=None, silent=False): # fname = fname[2:] # Nevertheless, make sure this is actually the case... assert not str(fname).startswith("./") - return fname + # HACK: Turn Path object back into string, because not everything + # that depends on this function can handle Path objects (yet) + return str(fname) # no file found From 731179f67d8e7a008ed23e5e392018ddacd8a3ce Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 6 Jun 2023 20:54:34 +0200 Subject: [PATCH 055/172] Turn Path object back into string until everything supports Paths --- scopesim/source/source_templates.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/scopesim/source/source_templates.py b/scopesim/source/source_templates.py index 7c409105..530422fc 100644 --- a/scopesim/source/source_templates.py +++ b/scopesim/source/source_templates.py @@ -273,7 +273,9 @@ def uniform_source(sp=None, extent=60): def vega_spectrum(mag=0): if isinstance(mag, u.Quantity): mag = mag.value - vega = SourceSpectrum.from_file(Path(rc.__pkg_dir__, "vega.fits")) + # HACK: Turn Path object back into string, because not everything + # that depends on this function can handle Path objects (yet) + vega = SourceSpectrum.from_file(str(Path(rc.__pkg_dir__, "vega.fits"))) vega = vega * 10 ** (-0.4 * mag) return vega From 0bcf441a5058f4fa1c2152232bdf612e5353ccac Mon Sep 17 00:00:00 2001 From: teutoburg <73600109+teutoburg@users.noreply.github.com> Date: Tue, 6 Jun 2023 21:07:40 +0200 Subject: [PATCH 056/172] Fix file suffix check Co-authored-by: Hugo Buddelmeijer --- scopesim/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 871177a1..c6aa2595 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -257,7 +257,7 @@ def add_SED_to_scopesim(file_in, file_out=None, wave_units="um"): else: file_out = rc.__data_dir__ + f"{path.name}.dat" - if path.suffix.lower() in "fits": + if path.suffix.lower() == ".fits": data = fits.getdata(file_in) lam, val = data[data.columns[0].name], data[data.columns[1].name] else: From 6e9458e034539c02fff138c70df024ae317d17f9 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 7 Jun 2023 11:31:51 +0200 Subject: [PATCH 057/172] Move running of notebooks to a separate action --- .github/workflows/notebooks.yml | 42 +++++++++++++++++++++++++++++++++ .github/workflows/tests.yml | 2 -- 2 files changed, 42 insertions(+), 2 deletions(-) create mode 100644 .github/workflows/notebooks.yml diff --git a/.github/workflows/notebooks.yml b/.github/workflows/notebooks.yml new file mode 100644 index 00000000..81e9a892 --- /dev/null +++ b/.github/workflows/notebooks.yml @@ -0,0 +1,42 @@ +name: Notebooks + +on: + push: + branches: + - master + - dev_master + - dev_spectroscopy + pull_request: + branches: + - master + - dev_master + - dev_spectroscopy + + # Allows you to run this workflow manually from the Actions tab + workflow_dispatch: + +jobs: + build: + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: ['3.8', '3.9', '3.10', '3.11'] + + steps: + - uses: actions/checkout@v3 + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip + # Install this version of ScopeSim. Otherwise the PyPI version of + # ScopeSim will be installed when the test-requriments + # are installed, because ScopeSim is a dependency of + # ScopeSim_Templates. + pip install . + pip install .[dev,test] + - name: Run notebooks + run: ./runnotebooks.sh diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index c2ee665f..c3df54fc 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -40,7 +40,5 @@ jobs: pip install .[dev,test] - name: Run Pytest run: pytest --cov=scopesim - - name: Run notebooks - run: ./runnotebooks.sh - name: Upload coverage reports to Codecov uses: codecov/codecov-action@v3 From f71cd2ccd7ad2975cf5e855d29c540e5dd60ef8f Mon Sep 17 00:00:00 2001 From: oczoske Date: Fri, 9 Jun 2023 13:43:20 +0200 Subject: [PATCH 058/172] efficiency works; with debug prints --- scopesim/effects/spectral_efficiency.py | 48 ++++++++++++++++++- scopesim/effects/spectral_trace_list.py | 3 ++ scopesim/effects/spectral_trace_list_utils.py | 13 +++-- 3 files changed, 58 insertions(+), 6 deletions(-) diff --git a/scopesim/effects/spectral_efficiency.py b/scopesim/effects/spectral_efficiency.py index c7a32da5..4798a86d 100644 --- a/scopesim/effects/spectral_efficiency.py +++ b/scopesim/effects/spectral_efficiency.py @@ -1,14 +1,19 @@ """ Spectral grating efficiencies """ +import logging +import numpy as np from matplotlib import pyplot as plt from astropy.io import fits from astropy import units as u +from astropy.wcs import WCS from .effects import Effect from .ter_curves import TERCurve +from .ter_curves_utils import apply_throughput_to_cube from ..utils import find_file +from ..base_classes import FieldOfViewBase, FOVSetupBase class SpectralEfficiency(Effect): """ @@ -17,9 +22,13 @@ class SpectralEfficiency(Effect): def __init__(self, filename, **kwargs): super().__init__(**kwargs) + + params = {"z_order": [630]} + self.meta.update(params) + self.filename = find_file(filename) self.efficiencies = self.get_efficiencies_from_file(self.filename) - + print("Hello, this is SpectralEfficiency init") def get_efficiencies_from_file(self, fname): """Reads effciencies from file, returns a dictionary""" @@ -36,6 +45,43 @@ def get_efficiencies_from_file(self, fname): hdul.close() return efficiencies + + def apply_to(self, obj, **kwargs): + """ + Interface between FieldOfView and SpectralEfficiency + + """ + print("Hello, this is SpectralEfficiency.apply_to") + print(obj.meta['trace_id']) + + if isinstance(obj, FOVSetupBase): + # I don't think this is needed for the Efficiency - we should get a fully formed FOV + print("Got FOVSetupBase") + if isinstance(obj, FieldOfViewBase): + # Application to field of view + if obj.cube is None: + print("Efficiency: no cube") + if obj.hdu is None: + print("Efficiency: no hdu") + else: + print("Efficiency: hdu", obj.hdu.data.shape) + trace_id = obj.meta['trace_id'] + try: + effic = self.efficiencies[trace_id] + except KeyError: + logging.warning("No grating efficiency for trace %s" % trace_id) + return obj + wcs = WCS(obj.hdu.header).spectral + wave_cube = wcs.all_pix2world(np.arange(obj.hdu.data.shape[0]), 0)[0] + wave_cube = (wave_cube * u.Unit(wcs.wcs.cunit[0])).to(u.AA) + print(wave_cube) + print(effic.throughput(wave_cube)) + np.savetxt(f"efficcurve_{trace_id}.txt", (wave_cube, effic.throughput(wave_cube))) + obj.hdu.writeto(f"before_{trace_id}.fits") + obj.hdu = apply_throughput_to_cube(obj.hdu, effic.throughput) + obj.hdu.writeto(f"after_{trace_id}.fits") + return obj + def plot(self): """Plot the grating efficiencies""" for name, effic in self.efficiencies.items(): diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 0dae902e..39264f6d 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -184,8 +184,11 @@ def apply_to(self, obj, **kwargs): # for MAAT pass elif obj.hdu is None and obj.cube is None: + print("Making cube") obj.cube = obj.make_cube_hdu() + print(obj.cube.shape) + print(obj.hdu.data.shape) # ..todo: obj will be changed to a single one covering the full field of view # covered by the image slicer (28 slices for LMS; for LSS still only a single slit) # We need a loop over spectral_traces that chops up obj into the single-slice fov before diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 32133aba..5917f2a1 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -375,6 +375,9 @@ def plot(self, wave_min=None, wave_max=None, c="r"): # Footprint (rectangle enclosing the trace) xlim, ylim = self.footprint(wave_min=wave_min, wave_max=wave_max) + if xlim is None: + return + xlim.append(xlim[0]) ylim.append(ylim[0]) plt.plot(xlim, ylim) @@ -394,12 +397,12 @@ def plot(self, wave_min=None, wave_max=None, c="r"): y = self.table[self.meta["y_colname"]][mask] plt.plot(x, y, 'o', c=c) - for wave in np.unique(waves): - xx = x[waves==wave] + for wave in np.unique(w): + xx = x[w==wave] xx.sort() dx = xx[-1] - xx[-2] - plt.text(x[waves==wave].max() + 0.5 * dx, - y[waves==wave].mean(), + plt.text(x[w==wave].max() + 0.5 * dx, + y[w==wave].mean(), str(wave), va='center', ha='left') @@ -434,7 +437,7 @@ def __init__(self, fov, dlam_per_pix): # add_cube_layer method cube_wcs = WCS(fov.cube.header, key=' ') wcs_lam = cube_wcs.sub([3]) - + fits.writeto(f"xilam_cube_{fov.meta['trace_id']}.fits", data=fov.cube.data) d_xi = fov.cube.header['CDELT1'] d_xi *= u.Unit(fov.cube.header['CUNIT1']).to(u.arcsec) d_eta = fov.cube.header['CDELT2'] From 49cc7f750eabd0737e32f91037c05c9522b01b75 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 12 Jun 2023 09:31:55 +0200 Subject: [PATCH 059/172] Optionally checkout IRDB when running notebooks This prevents the IRDB from being downloaded from the university servers, because that download too often fails. --- runnotebooks.sh | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/runnotebooks.sh b/runnotebooks.sh index 2f24fb53..d301960c 100755 --- a/runnotebooks.sh +++ b/runnotebooks.sh @@ -1,5 +1,25 @@ #!/usr/bin/env bash +if [[ "${1}x" == "--clone-irdbx" ]] ; then + # Cloning IRDB + if [[ ! -e irdb ]] ; then + git clone https://github.com/AstarVienna/irdb.git + fi + + # https://github.com/koalaman/shellcheck/wiki/SC2044 + find . -iname "*.ipynb" -printf '%h\0' | sort -z | uniq -z | while IFS= read -r -d '' dirnotebooks; do + echo "${dirnotebooks}" + dirinstpkgs="${dirnotebooks}/inst_pkgs" + if [[ (! -e ./docs/source/examples/inst_pkgs) && (! -L ./docs/source/examples/inst_pkgs) ]] ; then + echo "Cretaing symlink to irdb: ${dirinstpkgs}" + ln -s irdb "${dirinstpkgs}" + else + echo "Dericetory exists, not creating symlink: ${dirinstpkgs}" + fi + done +fi + + # https://github.com/koalaman/shellcheck/wiki/SC2044 find . -iname "*.ipynb" -print0 | while IFS= read -r -d '' fnnotebook do From 4b699139fdb7a621ea42dbddc6bfe82f881e6ee2 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 12 Jun 2023 09:35:44 +0200 Subject: [PATCH 060/172] Run notebooks with cloning of irdb, and also at night --- .github/workflows/notebooks.yml | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/.github/workflows/notebooks.yml b/.github/workflows/notebooks.yml index 81e9a892..d4c513fd 100644 --- a/.github/workflows/notebooks.yml +++ b/.github/workflows/notebooks.yml @@ -15,6 +15,11 @@ on: # Allows you to run this workflow manually from the Actions tab workflow_dispatch: + # Run every day at 2:00 UTC + schedule: + - cron: "0 2 * * *" + + jobs: build: runs-on: ${{ matrix.os }} @@ -39,4 +44,4 @@ jobs: pip install . pip install .[dev,test] - name: Run notebooks - run: ./runnotebooks.sh + run: ./runnotebooks.sh --checkout-irdb --delete From e762f8ae7d9f6c53807fca09bd71634b7629a743 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 12 Jun 2023 09:42:58 +0200 Subject: [PATCH 061/172] Make separate jobs for running notebooks with different IRDB downloads --- ...ooks.yml => notebooks_with_irdb_clone.yml} | 8 ++-- .../notebooks_with_irdb_download.yml | 39 +++++++++++++++++++ 2 files changed, 44 insertions(+), 3 deletions(-) rename .github/workflows/{notebooks.yml => notebooks_with_irdb_clone.yml} (85%) create mode 100644 .github/workflows/notebooks_with_irdb_download.yml diff --git a/.github/workflows/notebooks.yml b/.github/workflows/notebooks_with_irdb_clone.yml similarity index 85% rename from .github/workflows/notebooks.yml rename to .github/workflows/notebooks_with_irdb_clone.yml index d4c513fd..e7ad2e29 100644 --- a/.github/workflows/notebooks.yml +++ b/.github/workflows/notebooks_with_irdb_clone.yml @@ -1,4 +1,4 @@ -name: Notebooks +name: Notebooks with IRDB git clone on: push: @@ -15,7 +15,7 @@ on: # Allows you to run this workflow manually from the Actions tab workflow_dispatch: - # Run every day at 2:00 UTC + # Run every night schedule: - cron: "0 2 * * *" @@ -25,8 +25,10 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: + # Run only on a minimal subset of the matrix, as this is ran on many + # commits. os: [ubuntu-latest] - python-version: ['3.8', '3.9', '3.10', '3.11'] + python-version: ['3.11'] steps: - uses: actions/checkout@v3 diff --git a/.github/workflows/notebooks_with_irdb_download.yml b/.github/workflows/notebooks_with_irdb_download.yml new file mode 100644 index 00000000..22fe84e8 --- /dev/null +++ b/.github/workflows/notebooks_with_irdb_download.yml @@ -0,0 +1,39 @@ +name: Notebooks with IRDB download + +on: + # Allows you to run this workflow manually from the Actions tab + workflow_dispatch: + + # Run every night + schedule: + - cron: "0 3 * * *" + + +jobs: + build: + runs-on: ${{ matrix.os }} + strategy: + matrix: + # Run on the full matrix, because this is the first interaction + # that users have with ScopeSim / IRDB. + os: [ubuntu-latest, windows-latest, macos-latest] + python-version: ['3.8', '3.9', '3.10', '3.11'] + + steps: + - uses: actions/checkout@v3 + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip + # Install this version of ScopeSim. Otherwise the PyPI version of + # ScopeSim will be installed when the test-requriments + # are installed, because ScopeSim is a dependency of + # ScopeSim_Templates. + pip install . + pip install .[dev,test] + - name: Run notebooks + # No --checkout-irdb to download the IRDB as a normal end user would. + run: ./runnotebooks.sh --delete From c670b354c1c318c5af38780d41c3939f67989900 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 12 Jun 2023 10:54:50 +0200 Subject: [PATCH 062/172] Comment out downloading of packages when using --clone-irdb --- runnotebooks.sh | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/runnotebooks.sh b/runnotebooks.sh index d301960c..22d387bb 100755 --- a/runnotebooks.sh +++ b/runnotebooks.sh @@ -1,6 +1,6 @@ #!/usr/bin/env bash -if [[ "${1}x" == "--clone-irdbx" ]] ; then +if [[ "x${1}" == "x--clone-irdb" ]] ; then # Cloning IRDB if [[ ! -e irdb ]] ; then git clone https://github.com/AstarVienna/irdb.git @@ -11,11 +11,16 @@ if [[ "${1}x" == "--clone-irdbx" ]] ; then echo "${dirnotebooks}" dirinstpkgs="${dirnotebooks}/inst_pkgs" if [[ (! -e ./docs/source/examples/inst_pkgs) && (! -L ./docs/source/examples/inst_pkgs) ]] ; then - echo "Cretaing symlink to irdb: ${dirinstpkgs}" + echo "Creating symlink to irdb: ${dirinstpkgs}" ln -s irdb "${dirinstpkgs}" else - echo "Dericetory exists, not creating symlink: ${dirinstpkgs}" + echo "Directory exists, not creating symlink: ${dirinstpkgs}" fi + + # Comment out any download_package[s] in the notebooks. + pusd "${dirnotebooks}" || exit 1 + sed -i -E 's|"(.*\.download_package)|"#\1|g' -- *.ipynb + popd || exit 1 done fi From 8b6e085f070982e2cafee250f67ace68e51ff98d Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 12 Jun 2023 15:20:30 +0200 Subject: [PATCH 063/172] Column renamed to efficiency --- scopesim/effects/spectral_efficiency.py | 9 +++------ scopesim/effects/spectral_trace_list_utils.py | 1 - scopesim/tests/mocks/files/TER_grating.fits | Bin 72000 -> 92160 bytes 3 files changed, 3 insertions(+), 7 deletions(-) diff --git a/scopesim/effects/spectral_efficiency.py b/scopesim/effects/spectral_efficiency.py index 4798a86d..6261a567 100644 --- a/scopesim/effects/spectral_efficiency.py +++ b/scopesim/effects/spectral_efficiency.py @@ -38,9 +38,9 @@ def get_efficiencies_from_file(self, fname): for hdu in hdul[2:]: name = hdu.header['EXTNAME'] lam = hdu.data['wavelength'] * u.um # check units explicitely - trans = hdu.data['transmission'] - effic = TERCurve(wavelength=lam, transmission=trans) - efficiencies[name] = effic + efficiency = hdu.data['efficiency'] + effic_curve = TERCurve(wavelength=lam, transmission=efficiency) + efficiencies[name] = effic_curve hdul.close() return efficiencies @@ -76,10 +76,7 @@ def apply_to(self, obj, **kwargs): wave_cube = (wave_cube * u.Unit(wcs.wcs.cunit[0])).to(u.AA) print(wave_cube) print(effic.throughput(wave_cube)) - np.savetxt(f"efficcurve_{trace_id}.txt", (wave_cube, effic.throughput(wave_cube))) - obj.hdu.writeto(f"before_{trace_id}.fits") obj.hdu = apply_throughput_to_cube(obj.hdu, effic.throughput) - obj.hdu.writeto(f"after_{trace_id}.fits") return obj def plot(self): diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 5917f2a1..cf0f15c1 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -437,7 +437,6 @@ def __init__(self, fov, dlam_per_pix): # add_cube_layer method cube_wcs = WCS(fov.cube.header, key=' ') wcs_lam = cube_wcs.sub([3]) - fits.writeto(f"xilam_cube_{fov.meta['trace_id']}.fits", data=fov.cube.data) d_xi = fov.cube.header['CDELT1'] d_xi *= u.Unit(fov.cube.header['CUNIT1']).to(u.arcsec) d_eta = fov.cube.header['CDELT2'] diff --git a/scopesim/tests/mocks/files/TER_grating.fits b/scopesim/tests/mocks/files/TER_grating.fits index da324e8119ef26fb72616888840c84ccf65e2f73..42787cd1d672a5ea0d43eedb6a76c8cb48a732f6 100644 GIT binary patch literal 92160 zcmeI53vgZ4b%v!YN@>b;G8u;9mE?v}3MPUowgIb%|FL%wbbXReu1UE5ewSKH_(>GiC1LPhE5l78l^==H`A`E>aBip$E! zn)wEdt(lxJshm|)-8kSw{&62~8&^Jl?1;=C14cGf*8X+=(uSG!_2=ftjJUL+vZ*>h zxpMmCnbRwq(i6;2X{ei#FQ43$A2N7IaX+6qvh0e|if@i7O^CAEY`!5w2M)eqU~zxv z!oNAxV@c__5o627RHXAwZm4T)%vaSk)>k()R#)Y5{*CA6XH?eI4z$B{4OQuA|0gi6 zVtB>)bOEOGl~gy@OszdPKeA+O|L;H4v6->b^n{0}kA1G^A%Ezve}BAm#PDp@_Bmhi z@4x>Ky<+@f-gBhl&(?YSML` zubwicW^zq+ZTer|7jJr8@qER_X1?+fXXi)M)y_&?X)cWPR@FGUu0HkGj6pRGRg?1O z4p!OJ*STjmgT4mzHB~?rPz6*0Rp1Z`n6H!L%F0Kl|G&JXY;?u&ORgyG{pDa#eo{?s zWy5v(rpigvtMk>fo9vg+=TR(eIrxW13?ykI`NWTw?k{5@i6m6HJ|Ujp7E{^|BxMD=HCHs@lUL&I_x>Kn>3aA3AfGPk5H2&;=4HaL|PrUf> z;?Knw9&PdGFdy(ykj#IuPjT=y}Kuva|$h@5Y)c&z(r{V@(Nukl!{LVZvLQ~^~$75Jl4K;D^>{o@Y` zdFQEbynoY|o^tlPpS!sJu2n8nEAM{mtUU|=^ILxWp%ebL_0or&y_wJKqioKm8_QQ^ zb2{0@^>=&Q%y!mZXK%UGOn8~Me{TNW>TPp$-}u1U?`4N~vA5IN(kZ>29$Y%1v)><@ z{qwe&?){s*Z4U3QRnGn(JKeLrZO-)i0J@Us6&TJoLM|3_rBLD1&&TmKLuN~3(?uh)iGdlmBkw14v zdhCq+yED>fXXNi)kzTtZ|L=@p>DwNym-a~S_GtaINBXx%>uGo7 zkKK_!c1Ql$9rY~5wO;o`{@5G&V{hb-y^%lm zM*i3v`D1V7kB-P69g#meB7by5{^*GO(GmG$U*wN{kw5lD{@54!V_)QteUU%*S%1j& z4<1*1=9cTE)A~dH!=ATvT7P)k`a^y&t>KaU3;!*h)*tdC`?=C-uMhdz51XF3=7uim zwEmD^J~r?#t~};s>9YQiJ8OUXz4DD;lP>EIx%cLCa>tj=lP>EI`St0|o30*yi*#9k zNcv&FxaX}3>B4c%wK_|e^@luBddI8t|LF^|-}*zIUTY?}ME2u-&*HfETYt!WGu^m- zvfuhc7G@teO!ixU$Zw&;e(Mi;Y5Kp9`0DhO@v08fIk9F{W5B#wnpVtF_Y`AZ`aiR2J zo{h$PRaZ$5{Lyle`M_n;1Anw&zJu^bYj(Jo%R!uH>+I#-?N5x9gYZWy^gIZEw4Jej z&?&!qP7cB!ZQnj$uHX6tIS7BW+2crXc}SaGAV~qvr_K5^DS&_4wqzfe6yW^YcHVD1 zkQBgQZPs5&0nXRi@Sl4>&cDr`XHo!vy3d0iZT2xKfPdSv zZKIZ&BT5RP7tTK^g#TOH%?e+T6jHx=Mv!euA=X3djmM^nothLucywPrP*cyp42Ki2%}IipaLgFjZ=&q;Fd$Le8UfAPNU zwXhVo{iS!W&b5D;6u}?M zalA$F$Fi!cPD__~QUrf2O>aKwEiEa6KbD%&Gq)r~@W&Fn-jgEuquDI~(mRtP_@jCF zE$JD}Ns8c)-=!B_hf4mO=7r`IdX}tD&QUrf2w%2n~1b;kfuTPCX`=3KcJpOF> z;-iUw*7&nuO#M9T%~O9S;?F6)rSa!}oT)FX0;+&2pb8wd3TXV<{yxFa>;ie;{@!r5 z#-EKKK3|~m=j;c*TOUU#{wz)S-H-UQi$Cth>uGGx#6JY_XED(|6W>DoS?<8^V#J?i zj*V{!;?MH1{k<)SKg--K9C3~y{wz-;euen6JcsyR7B1McNEX`olOX;qFCrd^__Mr< zI0xd-@`jE72;$GO#QglfZ-*fMEX(luh(8PB6@vJ)ylKKG%X_2)@rgBD?Kd&+2=H^Yp`16~HTQUB;%7p(K9&zz! zt{=vqmuJIY@$qMzFXPWk5ua!Ld5Mj;x%hLly~17m`E~e(@#n=R`klt_8Gp{Aos&ij z4wAABJT_g*WEKQA)TwDOI@`11l>AB;agpM?h}xcKukI3LEJv+$^i7vuVP z(nJ@}$+`IRZ?Ik%f1Zmt9^=oCn#-$uw~IeNgg7GO&&W?CxY6-`;^NQu*!f-j8Tk$u zf41Sx2`>JO`<077+i>w!NdfL}SvsY2ZBl@E=l2n>W&HWy5HBsjasG?Vr?~j@KU#mf z`13#T@3C&KxAA%xf1YjgH!l9{Z0O`{Txa!+AKQ2*@BfTHdprC-!T7TuxA9JI+jyt9 z!|xvn;?Hi}ZBDbVF#hbvZT#8W_P*(Ddq4BGjX!(a`or7SAKtd{XK!17c-zLGy=~*q z-nRa5Hsa6Tw()0gTYq@l`or6iKM;TRlQfA-^%KM;TRlQe|F<;%O79SM^!)- zPz6*0RX`O`1yli5Ko#gu0p&M*>OuL9nf3iwnzK3`vVNWN8-6kM^XxOnZ=?lwl;7yb znfkISpbDr0s=!gJfbtt*d|&yEFn=RE!hDT@-;jSs-VOT)osIp2@?Gq2!Tv${3HC2x z|DfD~{ZZIIDEEUO!2UsbG~0esB0G_1e+oPT_7BSQ$lqfBpe#au7W)U~r7V4VrC|S{ z+kb@pgVKzB5ZFH`%gpYjGu8|C4+{4awIiSRru_vf*gq(1u-^v!hO9%r9Qy}l1NLQL z|DbF%yMa!7P_TbcTC(j@e?gq zj(k4(jit!blHb67565r3K^_D7=~r$3R>*I>1Rj9=#tY;*?DZ@QuztvI*mU^k9ltTp z?mrRo8+Q48!SNf9fmb2F!TdJ)4X#)68+U<6A-{1O^33Enkgs<82i^WauK4^3QApf5G2gwJ4-(Wn2{D!x~d@T75H;(;--VXDt;VZNOFh93{};p8{mIQ9>EJIrqj_zgcE=C8SbkmCuT;F0_WUnald?eP4_ zZ}{>an8!v&^^q zg$4DWWfAhrsQ)Z4p}r{UKg(k93#k9>>Z|Sm=fM5xno7oVE&%` z#&YD_$#1y#Lm$+Cbo>VQ%ah+&0zQHKhQ$Yt7xEj6!5fg@c-hv26!IItMLh)a8w*ii zfc(a@;1AlN^HcbH@*AeOsHw+Fe&b>6mnXk52mU0#;p$`9pU{$}^?rV<<2RVkC%=LH z<&NKAexCdW^YP?2uwUHq8)M*q@EiQ$&iWhP4)c%XH~e^*UnIZb#ZCr9$g=( zzv0G}-!Kc*^?zXf4eG=C8{Sra!w@h|53RqE{SVmbf%?zh4*4Y3fA-_y_dC{q_TwSH zlxY18N~4defGVI0r~;~hDxeCe0;<3fS3vmY<>2HE9pwkXZ@6*r8{UrgYlGi#E9p*;_{DvC`zv1mDUk!f4jf3Ct zcGQmm{DvQo`Vo-dV0{Sk8??!9#QjsU?j(aw71rPQIg|Pm{0`#$9{S8--1NAo+ zHgCFm_$|X+|CB}JvVtbA{>CDEg2MV6i@^J^{>CEA!~Q7?(Vv6;Qx_5Z)DZfFT6ZTJ;i~ck0pThn% z?4QE=B71P0tOvvXDRa_lBujTbAnc!VH~68ws3*hvBkZ3-K8XEOZiT=0f`eke9q=3S zU$q&5<@%?vehvGlu>VMh-EZys`LKTq`K}IoeGBWEuzw2cm+XU%%-O8VgD5J zWbB`EHR_$Pe~PnhzS8k%;5WRDbw^$e{Zria*Qxb4(v^C)(?j`mGDWLp@&p;@@q5Otl4ffel&u?6y{6@Sc)K&#l0aZX1Pz99V2QvXo}K{%u7AqHz}d|pU3(e%aE^U{f(?W$Q_Ga{f(8!oMb9$xcVC_XJsEK z-@*6A4H-4?^sxJ!pjpgi*g8cNdoIL^Z8%t1Eh5SY{^8e&FUfXIae0;_A zPkAM!8QPy1Ddaa^#PN~eScv>S`Hkn(qe)L$$ZtHo)(Cou<2P8Jg#5-M$iI`{xc|hP z&&eHsxwM13xQjf7-R~>pPuM?&d~MdxfZyQHX6>I6@mX4bBU{jJeRPHSSm}!RxBU?>u-{%E?(g@9`{8AObbs9+ z@nu?nBTJw={d&TDx%5Q-=!yKH{DuK2U#EUaL8y=N8_I8(E6A;nqL7D6io*Mm_D`Ww z`lt%10;+&2pbDr0s(>n>3LJR_l;7|<2<11F-|(x!K0E69jbX}f#A`xrRX`O`1yli5 z;M2lyxc%*0knd+coc&YoM1G$AQ& z5_JODKV=Pg3HDD}hk63+pR)0ktYCnAVC!#43wQi|RHk(Iu{04ay@*A$+#+S?+zbx86B@CxUztSDmQ|h+$ zY25pJEa&F!FrO|x_WwJ6Jo1O~8|H$&oBAXLA*0*lfS^OEc;TYzD`$!r%n6 zUXjh{gRutnAU1XCG4LfE#MKzZ?rU+1{C)S`HcH{)V?LkK^qqABy@Lemu&D?u_!GsK4RfkNO+lj`E?X zzv0Kj{2%+LxN+3q@OH!tv`6&?P=CX}-(C;ij(7p(H^O=k=%3>BLjM$JE5Bh9j<-5J zI-~2OGrB&yB3_^?%->2^bbTnlk@03u-|pys)g9fhy2Jdh@*5$4mK22REh(`7|EIo5 zLAd^s0$X3mkB9t9QV{j)P=13_WsgZNyxx;sAC0c)jQs|>9pbDr0s(>n> z3aA3AfGY5bE1>*_&p{}^q5Otl4fdJx8xw~Ph(-AbcIoJnkMM4Nt16%hr~;~hD)8A* z!0{XG-#~tY^%Tf&knbSBaXa`7@*DTucE>}mmyqAMtK*H;X^RWTZ`hBU;P{Q7elII=o{kK-l3 z!G0F3zrlVMn>3aA3AfGVI0r~<0MC#k^y0rzj!@&Et; literal 72000 zcmeI530PEB8-QVOUsBW5((pAw z4Hrxz{7c2uQp!X{MOhS7U}T0F#Dz_E@V_(n%o*^39#s0DjBlQ&yfbI+H{W@`Gj`8= zPiMTGUEN(A8ODZb75Sk)w~jr>4IaW)_ws%&bP3Sv*aEhUqcdc&1J8XeCTPrzx$Q%8GS?Wk=uo_R9@Jn-Dq6(_cSp zugAITipH)tEXH&3W=nztxc`)M*W-S=D{Yp3l4|rPtJWo7V!rTA)22fv~W*yb@ z&)g~k#ovvi(jN;n;wGT)-{oSl;*-WU5m^S25LIfn6%-L+{8US_i9-4@7RlUpX z{wuFRo!n`&^%^HgIXtNF!puSNxRcG=Md$ZH+QRo2UoATbk1e$ixNhfsYw=4i@K_se z8f3Kps66&UXLzhhuV5u)o=b3ee?WJ59IH(bZY__gN?9KUkGbTy3?a+%!#9K$mMoe4 zK=#e97ZrBhSOe0ZoD-{drY0w|2AXWA4F&mUX%QZ=Ggt%CzdLr{c@@8s!WwAP_k=rD zCSE~ZhOh>tzq!$y{tR{rXAKt0-?r;F5)`iEomOx1W(^{y_50$y9Vk@(v)=pZ5Ni;X zUUPNcBv8(k_3JpHhBb)y$a;0~EKpV^4(#s#GHZ~O^xKS-rH~hzy6kxELDoR-v^#qF z*N}I!?@03?Q`X>7!t%mV(V!YP;KR!)Zf}My~lD)K*2ig;US4 zhM`f4xmLe|`dyD@1FxQ94ObeUJ*Bv&XcMize-@q%?wTdLe^RzWd)=jT>mfZ zC?3oTNIf_{VZ+?}vjS2Nj$gRI{tH$>>cR0%IulvW3P?RT{&7859$^Kf9=Xw*$Ltyy z#0p3~xcVhttjuBsq#j&-uL!JnvjS2N`Df|fHk@>01*9H1Csv!Bh~CHwNIkM|zI3~w z^J7*(>XBtR&3eumFV=|EgmVvR^WGS8i1ru!^njYvH*+D}jJJN61|MCx(f zZsLDG9<-S?BK1gH==|p6-+Hk|q#peD!;Cc|^|-2zZ0E6fJ8MMh!GFJ`tP!aP|NYy@ z8j*VN-_QB15vd3N{oTYGHT-_JCO3e6MFL0w2_OL^@OKeF|E!-6wX}a8Jr?~l)BN?% z=%4jNvDrs|yMN|ZZ=ru~b~*5kNB{{S0VL2$2tXO}#|g4)`)8PJg)-ug|19@0iZ!%^ zGUAUfZXH~>$m9xKyqTSGbV$Ek$@MgF_pp`7^R>)!2R zJdY29a^lZ2e(o*YA2tHYi7&g=k$toKg2Pb3&lDib-C}!R*UnHu{A7-u_liF2~pIRK~b7Ge9z@Ns5FkB{rkM*po~pD8!_?_RC4ltp?o6bdG!pLGawu)wfcPycLVP3pnt zzW}O9J-GgP?k*k))ubL=|6}~e4TWk_4=tar22f4v!Sh=KHKZOq-w&Zi=kK-ruR;x} z2VWmG)R21c^?Ma+NIm%a{t7ju9(?_+p@!7sx_1Zbx%MZameeD)(BG$H{w$~^_29>s z3)GT&B%2=V{6&}qYDqmVZXIekV*U=OCH3IPuZRBrigtV-{=4R(7#9g30VIF~kN^^B zJp|A{>nBPr?Vl|*`}H-pp9ijgrqJu{zk&XlQfdCd-|nBe|3Mi2bMxzg??eJf00|(0 z)?KLN(p_us5 zl+^>XFMMPT#l(-M3kTd^zbqL_h#$@9`m2}wq&`qW{OHXSrVl2qb%7G%N3(=K_KbKr z6iSF6%@OAn#0C5ZN{AnouNi!7)1VztLj35RZ-(`KeJ=y0{9Ffe*Pd^8Up5g+i62$? z4m|otmrtRT_)+C+2Wnm~HiuH;N0o6SzAU?=c~2v&xA)hU#*SD!Xx5G`Omuyn$_2u^}~EVBj6G7)qKA5 zpp4W**Pk*{4_$xDNIi5sboUQ*yma>ubUbzU4{n|q8f|43K<^)9bp7S`GJzYte~>O5 zc&g~_czXXpS5MvjgJe=~-TedIc+lNH(2W<}{R1+dTF*=rdx`{*01`j~NB{}676Ry> z_4A|__s^RBD9}GQcmHSf&-$U*?4!TkKXZFfqJM67Iq;2000|%gB+yC-zysntfA3Qn zb8f*zc;N3Z?jVST3*EbRJK{bD9>ja(Bu;jM^H$^NOfh_TZ)3< z;k2O!ODA1|>s6m8XE96RVQjBua3}z7?vT4?j0l55ekKChCL6tndqzQ_Zv8CVZRYNZ zOeiFN_)dyL#q_tjK_T(O3Wtds-!|?Ig~Sgl*HxC3nM{L1ogY4MBR|A74ho4MR&5yA z#-_s&C?bAXZL4G-#k>ne#1E@~d42pih4u$3ltGQ%s>AciijWP-~RxL zh#ywlDzZD~dQ)G|ecqSV53Q)L&m;Nhe7!DTov+vRN9XHx{nhz;Ion+pE!a+deYQzN zk7etk^uB(FyvKnGd+O^s-rmJ;`cYq>>N+4L_v%*a>$!R*tGAz}zMiY+D#ghx>g!3p zTgyBV`-udQ01`j~NB{{SftDhG{#id!YH|PE+J1i!_kY$8rY4T+{hr~AvH!D`&-45| zJMRD7#5lm0kpL1v0!ZM+CP4l3nbjW|)tIGG|C~5TZ5Ch^PW|)cno|ie_fAp&e62Em z#;))c)IX=s?caZT%+J(6XDBY5nx4So(mu+L8Ka`M#nd z>wZh7{`pSjvABy{Mo|B(7&P&OYTp{_pOwt}>;1N+Qva;XAMYwvc-wO2-R8s$(S5#sV*V~@@XTH6R`e*KZvu%6*sDI|-e_m~^rv91#{43Ny^Z9Y> z!^!$&KL5dVy*S^$M7myF+y5hv>3Z?oR;8vk_amu)&QK(}gdAB;{d4-x%%z-X6>8QKlAlH)Kc>x;KH4X6TS;s8$PjqRT2gTWWNkKgw`ZQb%A?i{c~=|9V<7rHGq2y<#xij z1W@egaq_M3YPgq_l+eBHG*ITRj0&sn1^12PXSR#u_G7*$oVR3IG29Q0lAmjH2UOo4 zHZ1sHHQY~#5U-xP2vlWV4;rkTPklP~e9it3YpG9HeH*vu=sP2*PtUvOmQixNH}&bt z{Lho(HVmgeU9qG4;Xl5eM16X0$L(%@%L}MamqWd0VIF~kN^^380w$T_IfSe zP&JbJ=gSixI;On5j{4`6yH+`g_lu~1zHw%+b#F+f{`q#qoqnU|BvJn??|)9X*UW_a z=Uk6-zk2N2L;bUIs`66B7AxwXRYOXWUWz_M{j>U~YW2OB3aNk2FWMk*mM)c$;K)R`TaT)c`1>Y=sFfzG-`e&|P^7F;-sek6qUwwgF->lnDgp2>)53kIi z{#pG~P0I9=JnElSLrU{LxYwEbXXR8?kB>k4fcocLkMnO#I37X$v%G)efvx8fseis5 zq1a~BR!aTzjWf|7KJI**`sb9pZ^yLl=|uhW<%u=p!Y7=g>$ypN{;BgY%nJ!10VIF~ zkN^@u01xrthwn4$G*<-T`H-kDV{qeGcmip(95|*;HN%Z~sPO$^VMjr>|iKo)b>jXLI>Qnyi>h*JtbU*X<9Y z>z{6a5WfG1>H6%n7}EjiSp(?$>|}%XmOopsrR%c^-+#ue39~=~NB{{S0VIF~kN^^R zRs!gs^^>R;_s{tIgSh@#KfJU@FPwiKkNa;tQ9^u*1dsp{KmtgB0R`EQ`S;;>hk5OSn z`8@Vm?mOKfuh&AkQ*19#oUU}8Tr(E({Qbop1hJ5}wL`%Cp`+>gYgL&dGHlom>c7=j zgdi*orv5v>uhh_VRDbHfx%ReojDq@a{`^Slzxnv%ssH9b--h~cKEJ-ye`l9ue(=uG zDC)m6Ws)kB?w6?l*7aYvKQ_;26!qUczqg)s9)ss00VIF~kN^@u0!RP}ych(~KkFw^ z=%2$w!}K^BJrYfDc64#@Vr&{~)$BJC93C`NB4tAS8JT$IZ1m4haC!m#v!&@1eR!Iu zj&2T5^LBhM5Yvp@_o$E51=K(1 z56ehom5km$hj;QlYy2Da&s_Ug{l1w&{WE|51HFIN#y6qYsJ}r~X;PXHieRf7bHb^ Date: Mon, 12 Jun 2023 17:01:23 +0200 Subject: [PATCH 064/172] fallback: determine disp axis with gradient --- scopesim/effects/spectral_trace_list_utils.py | 19 +++++++++----- .../tests/mocks/MICADO_SPEC/TRACE_MICADO.fits | Bin 259200 -> 239040 bytes .../tests_effects/test_SpectralTraceList.py | 24 +++++++++++------- 3 files changed, 27 insertions(+), 16 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 32133aba..8937b769 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -107,13 +107,6 @@ def compute_interpolation_functions(self): xi_arr = self.table[self.meta['s_colname']] lam_arr = self.table[self.meta['wave_colname']] - if self.dispersion_axis == 'unknown': - # ..todo: replace with gradient based method - wi0, wi1 = lam_arr.argmin(), lam_arr.argmax() - x_disp_length = np.diff([x_arr[wi0], x_arr[wi1]]) - y_disp_length = np.diff([y_arr[wi0], y_arr[wi1]]) - self.dispersion_axis = "x" if x_disp_length > y_disp_length else "y" - self.wave_min = quantify(np.min(lam_arr), u.um).value self.wave_max = quantify(np.max(lam_arr), u.um).value @@ -124,6 +117,18 @@ def compute_interpolation_functions(self): self._xiy2x = Transform2D.fit(xi_arr, y_arr, x_arr) self._xiy2lam = Transform2D.fit(xi_arr, y_arr, lam_arr) + if self.dispersion_axis == 'unknown': + dlam_dx, dlam_dy = self.xy2lam.gradient() + wave_mid = 0.5 * (self.wave_min + self.wave_max) + xi_mid = np.mean(xi_arr) + x_mid = self.xilam2x(xi_mid, wave_mid) + y_mid = self.xilam2y(xi_mid, wave_mid) + if dlam_dx(x_mid, y_mid) > dlam_dy(x_mid, y_mid): + self.dispersion_axis = "x" + else: + self.dispersion_axis = "y" + logging.warning("Dispersion axis determined to be %s", + self.dispersion_axis) def map_spectra_to_focal_plane(self, fov): diff --git a/scopesim/tests/mocks/MICADO_SPEC/TRACE_MICADO.fits b/scopesim/tests/mocks/MICADO_SPEC/TRACE_MICADO.fits index e6a8658270b18fff5c8d4eb27b2f5a27dc5665de..0e235dd703c2bf92a4fc611b86eb97929dea5beb 100644 GIT binary patch literal 239040 zcmeFa?Xz6Rk>=;{``Z2^?l;=uC3yS2uOsFIMMAT1kOYH(W~5IH40)wRED16IXjbxH z@845(D)XsR)eu2k&4$-~Ct}3L>3&XDzExIMR@Sp8Uw-|?U zyUmB-J%0AtH&4EP4&Ik9etvWFrU?bfe0Trm=8vy``tjz?4=>+JpTECX!9Uw--ctLHc0-2eE~zutd;bNF_9ga5cWf4l46`%6FkhbPaTKmFzp zp}(8s&Hr`tzd!x#|G4?=r&pLuk?Wh6KmPm!rc-48$Cp3c-^hi%csqH?JMezEM=8F) zIYIF+|1-QrnHzmCzW@H_`N(<;vDm%sk{%_|449Jq4e z%7K3)4k(;__T=eT%$L7;^40TCfAhs-j}AV$`InckUcCP6&D$6M!ZZ|q{vvh%rt$Ok z{p05nj}uqS;*IScct6~~`qSJ0sCfMQ7Kz`yBMvEeOt3S&&E^8$J0|3>KYRK+!i_23 zO}}3F)9au9{PWGvFJ8a+kvQ=6e7*3G@4^#(x&A14bCeYK^WQ#s{KedlSobNPq&`G1AJ zBHxcf`M-Vn{jbI>^i{n7d!gf3W9j#WK0;CK_XVNZ+dsd){}A$S3Vjvt;pp2J`dx*45xaAA6`_4WpM9H-ObIjFDM9p`b>BaGQWNP zHlPd?V9Jq4e%7H5ft{k{>;L3q32SyHTAMNjM z_4oMyyuH2oc=PB`J}n;)`gp2OSsrd4-JW*0{D3c$1=>D3Y&WNU`7KZPk9PY#4>vsJ zV~>1u`=|mh$j3*w$J6fIzAWV9cH_v$?eXreLVWk6m_aKE|TwckSXv5W!cRDC{d58Eb%{Ucbn+q5tD$P)=34j9Km704J0;%~_N zyVE)3yMMGjpEsMv9FS#W<>OR>`@6%fapQKwuMPQddrq2nx94N1N{>8|;N}35psID> z9&XJB_jh-2eR&F>x5v%4eOw_A5+tM z-RXF{51M(;;T+sJ>^EsgND$Z%N{>8|;O-VhTCDr-(cS)T=f8!oq3uZUB%v*41+rAX zjA$ysExc%7zI${mqtD--4+nVNxUs$4@Ak$GLtabp@aPU}-L&6=e7Bc}4o+f3&gTsR zY+vqa9&PXdFK|K?>h94Acf4yu;J0^or!Wm9xI1=ycA6#q@>ihnqNnrmaB5`0XIu_` zrqPTEBG1qb>~k0HtEYJ)!P|ob(P%!v$xs!3d(sdB8FdCZwXXUgemj%k4n_ti@9@B9 z)Olf!kT;t{8z_ocbiQp63C~` zG1OZ$-yNCyE3c5?X1jCG-y^Rjc)%ky*4;fioCpKj@QDggj35%^JEDYq>NJlMyglDS z#xnf7N6>U~ZX8ee@9_Lvl>N{QmJ!Lw%G0R?PrFSJd46>3$o0?1oJ)3m{ZVzJaZRL=SA z$b$_QD{G7enIPAxI_#MT6Zs_fwR~LBJW7zs%Crtmz}GFxz;DlIW~)Hnfg8%-BTppA z3=;D`e8z4z#tmXI^BddEK3@bf5yCqpxZTP*RAo3n+U|*&Y_?(m;gGQuEdbh=d*o4q z=ktkqf0?^ME~^RCtGkTNK;Cb#_2tVen^8Qi!%6HcZb8S+Ge$L%3}&WWgC+s)3~Gb^B=dAo&G z?IXN$1PaYN{8wZ9fV`Fw0-v{gG&X(RM%EqNV78TdgpVy$>bJ9baLa@m8hgUJ&z*H|v}!Tr zvpnYvc_Kj~jPU#*AJ6#7)D516_m*yKa@hi}jOKA3+~01AMHfXnu{^xRfO8()ZU`YW ze%|cve75S5*AkS*Ci00XW!uyns+e&?3ebE!Z^I;enkN#(w}ma7N{ATA0sYq82+Mz5 zc}zfCLMD-UQG$E20d2e|QU?c?7ine80~S9MGNhB~ktY(|Y|dugLy(lT0P%~(T zS+Pi8ArCgVJDv7n8YevP5oTmm!16YD1@awQm|ExD7`-U7FMH(gXzZZur+Sr z`F)+@$P)?fZV7Wk>);Js4{j(jwHcOa5LF2&5I?+2g4<0_BF9JP9bU(Ndq;w!4Ige` zkwn|g1|4~nAZshBQvEW>M`C10Rxp;HuxgV!_zeQOZ6gEhx7OK+IJdxln%xK8RN2jCa>X`R;tV3Ob+nvW| z1ikvZ;6*og$5UwCu`Z@k>&Q@eWWFJ@X}0gk6AAj#<49&qKQ&Im=_X%vgOuwfP{_1+ zLLnbrCmner!Hs234v)^a%w0ZSIpk&dATxCZ>w20;FUrCsl^7;RA5N}{CZ`ER$_hS>sZ4WGNW{hVUR6AA8Er~`{f-qaYY-x7=%Hx3YO9?6hL3CjP5Er3iEU{O8!RkS_%tQCFx*wZ|b zAdVoG!yum_(`eqas5Ne|1r(|>AS*=RuZWEGAnHthb_tjdED!gDSn17JgoYhS>#)i8 zq8@o7!P^u28Vl3`_jU5D8UsKHlN&gZa9<$Hipta3YT}k8Vg!NgYAKO#RBg4#x0oa} zlfHDnVaO8+G8;wq@_?U|cTa9GIfa^m%#gxxdYUH^+!C2Lk%3HpBhowKTZnHZ!LcX@{VS^l$85h}`iC4T_y z;O=}@F0@(Mkp*z58C3BxXh!QuP(<3Wr+Felj4Zq;d`3d=CYBSr<9cv_aS&DJk(8M>3~*B0*Ln5pVEY_SWL# zmIU3cGFFv2dP+?d#))*&sD;kTPD zCK>j-CA|~=O33nsrjtqYD8VC>L`<4+<93TT%ikg|d#Ws%BO_e?E=dqYGU;pL3&z6d zldVHFB3mp=3W+?CAm$sx->FIps*)SHI@f11aQ@VhM+x5E!ny?tWD+N?&m^cKbP>(k zw~Be8qj|JJJU<5B^op&ft?k3ANGO~t$Yh3G>x|}!1PKaE`b>N2px~r$HG<4q1GLa* zM)wX0?zJf&jJ-pxLK%e2{z`kgBY(xZ#kgU}6A5mVyiR0{A<-#vm@V*hiWepGP!I=?sgs> zc_Kj^bWpWLMkto~4R(@EzJy{KBotl+H`djLcv1HI!xpxWjvMV$rS$h&@&vDla=e~F z8zS|~97J1H8)})xMq?6rq@pZL5~_F#$N(}bm1ndp4Qw*@v#vLI)< z&VXD7U=k#$W)nTBft*D6?V;5DH48nH+KY5nk35keM3^%_fb06qn$|7lct@>TD8EM3 z_&iDwMZou`^5e_gGZ36PpIMb#j>3^A5+smuS5N-gWu&}VQx*73aOwWaXr4%rbh|kU z7E`V&+x02^ZbKb-zP`Y}ACvHq08m1d&)|A)py%g?jhM6A6+PjzA7%%G}%rr3)rOJgm>Z zM)O31tR6!*Kt6%hprA^-gYBbeW_R3J*CVebNa3P+ehOZF{i_{=7y`)TenOx3Xwvei5ZTn8A~t9(kniKOx;(ou1B6okVqw# zJRoC(Rgp@)w~E0-8HB7|yi`%6c`ZTe7*DwN=ASo@j>s$m45-==ezhTh%)Xq*z&-Lx zf-J*ujmvrvKHqkkB6emn*(Ky{Zd3N$m`HFZueta-#b#yNj93MlgRzAh%!A1dO>AXE zv(*I41y&-iEoz5_Uw~P64Iu9ulVo@+d($;Be+3?`6KJ8(s}AA0hLh()!55*oW9m&>sOM?UASw2*NH?L|n?Xr4$A z=VmlhYTDVLSKSvr=jMxaGWk522g$*O`=ahk`(s532~M_ba1*&SB0;8%(P=j1i3C|X z8ZtpFmLXMX$Z5_(W@c|f>1m$WAo?4QQMH#^|7pFjAmcWSW@->(=`kP|)+{n27A3`s znuR`-*v%x2xWT;81PaXr>aH8cjZuQ6AaHjJ@>ypP^p`ZV>0>m@r&!EizFWUMN|2f< zicy#45?Nwa6V=!&H_pfO-q5Uit40RgFyx5@ceZ0fXu8*wk`ko6F0@_9-OfdaJlY`c zE5yxC%}&KTj-2xX$oo6?4>MGAnnxRCg%?^!ZOn9v*{lb&vD@3}FNAgL0| zP!ZKGrqTGEnj>x;vJ6a`Bckg7ClWlc{m>-HoWckGLN_Q8K;>YSJDmNrEM`k0ceO%EzNDyVtIvMhHcz#EQ z={8%PT--hKM1oX+hPZieIR)i>?zwR$h=?qN9Q!*YNaY@SR%C>H&!uW6k;%b?<{&{z z5uF=`JW7zDj+{&-Lz=UPJ>^A}&q^IM#tNA@#w6&-gAKCmRvgf1W|<}j7Fu^C%5SD2 zWU`y>BYf_W#Tx!9)E$gf&U`Ug{DyW@Q2vkWX*&)eWR(S(F%}56v+T$d39|RnqWX_1 z*x)UlZYXKI_*iIGwx=-%nkC)KHpu>26F2YW+yqg8@{^U%GnvM1n}a ztzk7HvUeSFSsoYGVcjfANi9TPv_l>xxP^Dict6&@mG;_l9wbv@T31foTtpUY_zMZb zibe)}zGK#?Pb)X}q!k-up_%hHO+^(mIGL@~gv_Vo0kh31o63gr!idFe$<7UI%8h%<{^0ltoPW)^HP z-rZ4Dml28PBg;jTpdn8rsB=G!IUo~E$1+XGEIre2u-m=(*lOL5JlLR)+46d+N9(f`` zHZq(WY(%yp6q*%%E<}oEtiQ1xvoh0G#07|U--xyBHL%$aSo?jCt9K|F9v z-Gj`23hBzEnE)$@1eppWOGrA+6A5zWBs@P6BYp!)s%eO3mCd9CnT-7@B4~=F@m8XX z{W6JgvLzB_JZ0^KX(Te9ugwcZ>vmM3q;(teM1t(#Hdg>LTnx5LMpTx&1SxKDt#jlR z&00QeG#@t`BzmN7%4jC7)D###<3oe(ythYQOHk(+mvUKXX7ITU&2QQC;pdg@Agh$E zee97(2@<)m@mi+|@tMk|n5@MO8G9lV^Se&US(g#baxw>UosE;s-O5ijV;7&*8Ns;0 zY~7rBkwPL*B&efmjn5#L?e2_KD7kU1WAC(?)f#z}AQk&gb6I<&XHY=tG_yryHfY>f z&x3f;+kGVW;D+W~n?vD*N;8`TwIB$AN(#x1i3G_%H!?uR5`0&ha@m}oq;+=uSyC|M z6*u;e7_1mj^_krz3d>EO89X9P>+X9jIPye-TdgMQZ=spfv6=jVIfP8{q8(5Bb&AnE zMl$TuMG2XZDJy6KMf&7HJ>Jl%T#xH|C$5q#&6(QZ?hsVL4O9;EU7+9w#p29fK{N4U7>;;NQMvLy(l`C^B{cYhb}=v{w4*Y0ul*c!|cct2{KnVDDjzW zW*D9LoYA$A*0a>%JaYM`dA_W#T!yY|_ijk2M zGD{%Ky0A5or65A?df=4AK|>yG5T|3hK~+U2VMKGTVhW#GYBnV-yh@r^>p_mUQ&HDy zwxOAvOu8T;bH?6m5VLYiF>Z_!WScd@9+0WdLd(+EF{3uGBAT^@pL4fnfyQT|AQVA= zhzygYDauh>+!czC#nBrwvxxf*WeS?%6!`}7M1rKB%~GfcB}j-kmc*df$Wflc2=b}X zJlY_&50MOk8>KM9X~yq2BH_kPMfl099=S4OQD71p@R=_(ede45{yC{4hulUaKKGSu z9iNAJkX^f&oyBJzi)uuQlhpp0Zm=^KFXAabt!$rpQPfOj`ITl>{1SZ`GO%IJ(9AJx z*JneXNDv)s(uZd9MAT44)`jGU*A%I2q`3k`BaXb%Iy#9_&C`S;WKK~yRn%_9WGz11 zroe!_mLLo1w!{OOghuBlIicT1gala}=h2TId18Yyl;-O&9HtcaW(Rh-8{5TaowZD@ zt5#QyZp96tI9eO)6mpEjmu}r`>c#W~@-1}*CIv%YOOP5WYkdGW*qG@eM%8ee*5RHa zWD++DYYWX28>GIl?T87P)1$H3#BY^FGH%fF$>rN4uO-N8w?To7E?_#Tb*%84wo8KN zTzV9(OPVJVB*2PT6h4y{cd8HrezVw-tQ!yIUKA1VcR_-9`p6>cy)1Iv7Styqk!i=_ z85>1_4S6C#D+LiU4GO}X#b?UHo0^FmDrirwbL5rQVS^;jf*bNz)?Nl=b)IsXnUBpA z_Q+)b%{1_$+Ou8AK!T)!yP1wE&rmaHW}n&Z$dE?~mi^uKBKBc9&Eb|p1ZguYNu(?Q zF1!jpkMkfWFlOkReqi>}eitkO77*z$?yRv&EaU6-kvQ1tC){9fmU?mjN`!QldcA6FC|9Oar%2 zV1A3T2azBX=7t;TktY%?Cz_WD7e4b-w?Xy~f;r+w*#-!1kl1Z}o=6Zc*`&{V*@f?@ zqTQKGP|bGCs~GY`g1B7M4T@QO$Ap+RVl(j>DMT;^HynAeL6XGj`E{C-!&+v);Dj3y zvd-nEZuH1&392DbThU|emNb^1gv*Z1VarYm#^)iDxwU#i_>3>>q5^8eJKa!yd(zB^ z_`Bpq@i0x1KIW`6^MDo8V(5OlLB&cDBuFO{d6Xct4?QNTX@IQ$qAmO=+|YJXcz({y zb^gkcM+q`(w0&41Q(ftP5+CCJnSd#beMR%InmBUm01+4E7oYiIOsOO@$xt<3N$V)E z@|C91Jh4G(Swq&DbdFD&EwC-g&#Tda%tRk1Da}bfk2XjSDdH=*p+eKf9NgC({y3BY zWcC{_AWtO7`oDcy$ZFe^g?xn8;!n`r=lPxHi5Im4Rv;4-rQZ#H+Pvg5du^G7Q97FH0H>J~WbH*g@>+r1;yzn2tcy0ytGlptl!6GXYaf1U>RZ zf_4B$$Otf2$NZMCFC3JRwOC$Ea)ms2QE5?g$RKOar-dKVD_nP*fAMu7XKl}byp|v> z2x6Ub)Lt7#xU44lEz_XsGwrWfcTZ`aNYIXrKr=ARxTYIcY+3m1CC!?A`MYF;+7Mh6 z7-ZJjYK<6Lr!!NHNRYi{XyH{Lj}pXr5!%%O3R&e2W+~)n+EekFjo64cR>-3SDWhnL zBxEXm+TNs#tm&W&)=LK8!e7z4i5DesYqkI~D^}d*vYLP@;<%We3UX{FN`gIdc}-I@ zih0UO+j@QwWJ)awInoBbqbA5&hBmhM$fFHvOQ4Nc+|bctPGY~32MK) z1)oADa&u0Sq==8AnYzvkG!HgN5{A`8*r3j{``nENx(%-0YuuPfkXqa3a-o@BSTs|!T^vD>b0~ii1b?>D>vO>NzlZ-LY_#Fz7S0)LM9F2 zu_zUTZDyAZvfC6&*wf65DsPsF;DB=@?UaV2+*hmz3(YDqtHv(mGxLJ;D!2i1Q51tx zqH{4TXhvR41g3Rl=nR>+_*3We;6-sbSGhz3eDJ2z852^F~d}X_=#p# z(98xxgn5z?$(|+!_)LbPo68J&l%O`I+IWSmI|R%Yh!}cgzPqqpQb?L75~S}`+o%#U zlUMXr6V2LEi1-;D>}J>=c`ZRw*)8=4vTDX+KSjuzV`B}A)^uLfkS8{XD~P$9at@Y2 zuCbf0PXfz>Oh=0wh0HRiOuQ&*q~>IF44ES}%_Jp3H##K9{1OS+9(f``LYL;ug{;+s z&4cW(*s2ZW&es{u6A99>y$xT-RkYh}R(7jm!<3+k;~U#oG>V*t(gSw}d?kIfjk=b}`Wauf*ioXjIBr_652ePh+Fn!kiYhIMh zuE45;>X9cBRH_8NOeuKLr7=P&xAVGO4nkm|i>mac1sT`3 zGh~(DB{xdvKRu-yd_XR*F&ktd-L^S|%uWrNO6P1JMAOL3K1?#kchFZokw;hg)Rs$P)=_Pu}zy@610W&1TM`nTX0H=(&QGK2u~uZlIANnlT(Qp@B?4 zH?wX`P;cgG)n`MVNYILx3Nm{HW+|Ld54XAFkfXfJVmR>GkykWpdsMra)yWiODiuwi zX?z&N7qTu8nbSN-kU1nPetBAsml-!`_|>3_Zg|ekXja!&pvzdx6c;7dq8@_+(ui!DCOz`L^e*us0 zU;6v{v!}oN>iHCpdd+UUe|r7XpMSpj`NiuOKi);=OqN-JARGK2#p!U%?wWwKee}8>2{#Cq(<6p&lIQ|v9k$?MNtAB^Wzt;y!^7;F4{i}En$G?jAaQ?60 zjr=?QTK$9X*zfD}L-DWTJskfk-ox>);Ent{@$c{Z_xShEzxwpc$Kv19Z$5wg&A0n+ zH>QA}Sj_i|IOA`^|MRE+^cWAVc=CrA)nOUj-~9RTg=b$7P(FPoya$=zK7aD;>(8Hj zqw&uC)h9%KZ+<42Qjq)o%h&hcy?tl6d-M3K&j*^X|8V8Nl>=7}Tsd&%z?B164qQ2K z<-nB#mpIVxr?6w?_u?IvyZ%RYzrcd2nvbqA_^;m6l0Hr;y zx_ijNQ@b7<1S(MEmqb;mt4L&Bd~s=~rlXmT6Pr@6#BW)W3YmRa+iPP_&uQk6l+~Mc zH1pf~SID5ng!cbzfE-BBQB0mznyJHW`(>p%OQp5B-);L=>pdV^A5eYPcG5*NMQ;?? z1u}e&jaTtmoi36ayoSFr-kAhxM$%*ivYO8t&1#O_HrLn@#PV zW1Z?`>|z@IR;4`}0(Jy4TsEON@=Su1XSLsgOoc)_`l0bsqaE9$LN>PdH1p+^4YD;3 z%~DZp5M*^NvI-pPe!`B#jb1m582vNkF-RJo^`o2ZZF?7LUbQnSlpwDcQ}JW8-!!Yrza1XcUdiipH#&QX}9 za2*iiyM$a=vkXuYq}g2vg^Ds*6Xp!Eol2G$<u)=5VwWw%H)asF~L>Qo-z=pZ4{aXdZ2lGeaR1HAAE3*ZAC9 zHwW{mRa*wQ;&WeF&AC*aO~P?hk-=xgO{bTTAk~FdLnS_kxIyMEZM>6tkUB5e)sVSy zE*d{dH?}&1u`m`1QcfBUsz;tluyp$iWDcZQB{|3Gyf+K2;G=a(d2iCp$CVeQJrb&+ z5CR+Iq=4G2w;_lsi_M@J=EMM3G>;PG5VlEB?Y`XebCfC63>yUc0yic$NVQ>*!HEo7 zJjaU)pS{x~y^^vZho@*@ttpy%Q5|M!!{@XP(^DK9(QmtZmsAMkzRr**62zT_{puW$ zF8@j^<19}E81PvlH0yTcQG&W9vDqM}b*N5qnm4q~XfG17T_DnP1Kp6K@K@AKUX(JY z2wYDbN6Hq~(ksqj#8Z$doR5z^@>E&jvq`6$5(mt+` z2MN+|BW)05EX68s^(f{AbujDB5p*<9B&dTU%XoF>(azCB6%}=cEG`3A+1}GUlVF}t z5udGXAe@97Isb}gjvFR&iLT1WsSVPMB|Pv^E>~l0RB_THi-$qRMDb|x6am#QsAfwQBqFDiBj0j|odsiaMvUG(k z9RA9PWP{XF$85zJUX0G`%xT>cjKxxL-Z9}y3JnTAkMkf01!B_Vd^blwC|nLsmctDT zW5o@-JyyIjNrfP5lCwBMe( z{&ngX6arl#uV{uj9HMFS0?3@v%q!>kEm5DXQ&>1hL9DdhxFI#Ge6T zfqDcti1|VZk)Uq-GOaV@i3EwoN*3(rYUBqik`kxf~+1xk<=wa!FSA7 zs0!=O^rEyE4X4^8Pb7%v53N%deYJUUWRFGB6L=HrZl`%|gStps5wyOH?So9L(#mut zBUZ zu}}ul%pK(Z^xYCvmHlFLbOd5Taheb6?U2?@RN#EZ;qX^EIeJklsZD}9%n=_MFF~$V z-BUL&y9#Z0gP76c_u;YAgTqC(mSy_*1_6fI}%jmr8WeOsE}F4JBeh-q6O<<4$Vp10S(ct z6TQuFlo~4ibA!)@Jh4Ifqeh0>*)dVrcv(A#)(P4AZT2*eHpn6kU05_nGmcg!Y2Cax zbP{eT9c%A(nnxSd@%~1$?uxPo1){1ui-)fxf?8Cir+Fels0h8160&YH39|m{Xjb3& zMAmGyjCYhE(`j0YdhT(3w~ZH|@ZRv51zm-zQGp>(B)GG68Ev<*K(~|unSU@TB+a7) zIran@iw%Oz1+Wpiz)7ycj%ABzrd^|r$Y~xV$XF%As-pBZOmH#?5QEoBxv1b zbyt*bz09b9%NfH3736+IN%JT{+z(VND|+=rRcGFmzAn^kL<(8y>C|VZc_Klw)eVYU z<5`wi7UIMt8OTVGE)n5IR(u{}QT!ai$wDN@f^>k;BuIuX*e;sYX3a*F+?Ys^kTCoP z{U=FD1d&ihQ*u01)k%${@?r>1u)#lEFHVIZYT!SdcqQLDw(PJdxl|`&1er z@73)L*|>%;OP;|i(Tr1dUK!1!1eFbG-GtKLXGCp29-EzL~^eO={x5nOK10WrF*W~ej-n75KRauUE@M5 zZk!}>6qy9kTrNxvos<*`RkN%b``vjtR8djSua;z+lcI-vxOsL5}2?=4XdG zTY*d}Fov(+%5j8+O1!S^M)N2^VnEbtks!$BXn1n6=M~7l?k+mnXr4%rjs%UW+K?d_ zE1J>4_O$Xj+*i+yi3B->995$r#EY_m4@F|vqij1XS3sBtH@J8wm;*A|j!2UhUIp?*f~Aw?Vkz3G zQBg?<6l8Q^i5Y~fCeF*p74k3-ZrPa&8)UD|7Z-(QkLy%s5JMP{3u_i$6$x4#tDYeW z>(upS;RY>$8`iD=OgBQzmuUxagIjA%g6KAXmn29R>OfYm zPXTiMvLv{-4zVDU3vq53@+d*t0qc1kzWT_O9fjZqdmdqQLS}7jvy~$c5=5&Ya?uSU zb4s& zN~f8ZwgFDOC_boBMfYIT8;e}j8)RBoy98;g<`OjIi3D%8@mL))BO<-b2+}{(%{``6 zXy*DSm!KoBw2mZ9Dc`6f1G!u~Y!W1s5H3i_*6dxpN^Z;~n0o}=3PJZ3i7@z#{EQoH zf6EnCRq2r@5~Qz5^L6ld zYRJ@|Xl9qgXugx(q;4>r`f(bImX=4$5a1Pt;C#N-g)k9sNW4B<8S*GW3UDB*s+lxr z<$(zTT%T!o?$+(dg9O#c(nh2k6hdThgCtwym9&nX8y``RTv)U4N)nXMZ69@8u1dI* zlO%d$Nz0c>4aE>7g#uQ@J(FN|r4~0Rb91dLEv=RpiDsn^(o!mw6?w&tjV@^lKPmrA zYTJIx3Luw;Oy4f(e(IF2Kq&q*ziv&TYus#^emx;t9kVAr)XbeHT>U3i*!8@uA7c!t(7cR7q za^~#3h2elq0>|cVM;;}3BEiuH2(s2v?PEcBL2+jyjZ9_WflLEJ*jGP-OlGKwTbg6Y zqYaYi1XyLs*gnW~qjY^Pn|g+<+bEJ7j=Z8-8&$Fl{k9@=6^&IaK$T|#$>!m{Y(&Wo zhM*7pl>s6$rk{u?pjmOc&4Vh`i{Zl!xEddOZcJ>@`?zv*hu`?4-wMgNL3_sbk*8%% zBj!xKC^Bg>f@T^HLYTsjYAGaA+EYaZT+9+L>X9cBEO)stkqpS&48|mVO32(JNkL75 zMzg*wE-xa(1__Gzsf1D_2yeU|iAA}uozWC>^(ny~xdNvI{SKpI>`aCB+k^WJ8fW)U zwRT+iJlY^TKusCMXD)TIy<-NDn|g)MK6fjh+=j0xs1jX<4|Axi4xz9D;yN7P^`O;z zM>DH~2u&ryL>?tb>CU28@R_w0hSTX48P=v|MKcP#FBz;VL6EtQAQn^l z?bdxAEy+D!*U>!MAUhMy6+km55A*OH$hsNMXr>6G)4Jrw#0I%l&5&`=aKm)Nt~C)i zw5yd*nKAjR<6UtB2_8tCEmT3Xt^;z<53`(RDqfKqP}M>Wc`ZSXjmQzS)da}g&e;97 zrSD3HiaSlac*BubG~QbF5;4G^wv9&^r0A;FTdyB*?~V z7$AZKkY+;AqDr{H|n{H5rZ!}8??IXiSK=tEX zf*j{)G%GKv1ECqoFiD0vOY0QJ=X(u#lpqTPp6koJ7i3(&%ZPpTra48Q^TJSx%#jBP zs-Jm`2xPLv?NZnB+g#HXWMYvEG*2X`^S_HplFP;ax^;7&p}x0zei94rH;m?q1W9K! zWq=zhtnRpB$)9T7PP61!sG3TUeg%z_%D9rgt6#1&ovu!9$^bIQ-kP}ArmRJ<- zLNy$aNy4BGapsZRaXP=jjm@FnE0L`}QYLinky!xSJ%FS$x;bTo|27GV7YkJr8{{xc zb289OB?R0EnvsF$>sa9DHdasMM1tGymOz$P-6~b{fb;pBlNYfHj~dOBSQL?j)^S>g z?hSTwoP0(uh{z=9KwW!Lk38BSi2{J@_9%C9p$lk3%-!6N8ZiTwa_GB`JI!lVQK2U8 zxIm$kI$>mYyNjxBr$!eHm;_hIg*D5FG!GJ)x1|RXB<3eMa%{5(`>v6J6wM5veHkJh zc_Kk@+LxhOjXvxyPTC^mVp-hKWrZ=J8 zrSK}bF|k2{%f?CeQwaZ+H4d%w#2|boUuW~L&OY;3WHd@p*Duz~&WZ$4E37g-(vfnz z_9BqWKBT?Zkb4J(@^h(6Y!<@}6*aPP7c>(yg`)s@CxM!LJLK|VAwxDu=}QapL1v?k z438oA9!b}nv>`|*6L}&*Dn!HA!Dn5CZkFOrLd56NDj-K>$SZEJfkF{$n}CoYYgQ(L zq?rSQ{JKJcj2<$Ta$Q-Sj$L6EWMP+-xF?@MmbUBf_x#ET-sOT#sNM_qRP2r$A zWL!)L6kZwfC_%zDNS32u9;82#cC9QbP;Io)O!mWh<;W|VQPGmQ7tIw}$Id%s&t6j5 z6RA!~p+{cXAQN>gTA>-oj)-y&Ro#ryjJmr74S6C#4n8$26E_HJY;A>cdtENmQ*8Ma znhTkAyen=XL8U^P1kp)S+sKSBmtJr<=a?5{gVe+|aj%d^2~t%6upBac1{tqPBp1jC zFrYx@sqL0(HB`r2it%7ue&oy6m8&2VFLuZtnNvHfiIDeJAKN2W;QEw#kOWk&=%G2z zFEnoWYJ#KEo}G4@ClVyH-5iBzrhuKGFt|aK=en`ywoRj%AM)2Y*>M92va!)PDP&B6 z={b<8GHCCW1UJ;rnob(>T7ra#x;eR+MwK989t%W6R?#OPOMZi^!2E=Q2HR*xRXUnQ zhGOl-i;89)9t~s#z&^v4NppD-HrOMV*DPcd2~u;?Rudqz0Iup?B`AqH&4i}5A~58M z1g)!p_)H)}B$wPM>K@!6=!+QXQrF7szh60U<-nB#R}Ne`aOJ?S=fL&;!Q|Zo-#^HX z_4WS2o9q39sbKuq^XvVCA9Np8;UDXf$$g(U*ZT)MRhxb&{JY*iIOWYR`NzV)>-~ej zgjLh;6#iZBADr^$m;7Vl-{158!Nc|b!R!5lzeE$S-??(&%7H5ft{k{>;L3q32d*5r za^Tl+px@wTcevZ{rky)Yo9s9e)!#bn()Nz21jyoHN{nbJVs&2~)T-K$rt6$;u<{0q zW>oHw$kt+_BFFakipbSRj&9xccg*P&Mc!V=5p}PPr;>#VoTzo_XlAdx{?*NK`Xo@j zZwJ|EDtDlCAZfN+Y;*>p>*nXk>pgmkhpEwSr=qAjP>&GG4Fj33+g4XViI}Ry8da)R z;g64{+QDC>R{y29l%AF{5?DbW@naN*$hp)GnPOVw2E{o&%@k^e1Us5X3DWq&$lz?!iAuht zx%Ba=yn<#*ds<0`s)mf_i3Dl#W2L7w`JiGYkvCmuJc?$P;K&QeGJ<%Ds3f zu$=><*itogK{Iw^Ht2QcqXemAq$p)M1_d(W^!n#Jl|vgcuQEOx%@YZ7Fg^|qflP_B zSHZ!_C=-IuRAI+Q_}n8G)-*D(K^kd?ZcwX6TSTujrwS^H)1-B}#&a1$k333{)9e%z zFGn!$sIKIWF01(Ee6w?d3dwj8$ULf2nA%|U&O+R!;ww9LjP)W%cBNr7FHFEmp^ zX1bwnV5u91JlY_QhMA8RBB|%UQ@hcujb~PH-Jolr>vNs?AY&>)W{{Y>%k6c3Qzs_{ z^1vW`Mm4CZixC;}C_&Dwron>D(SP?F9K#M}5ONkCYff?GL4wd5XQjDEOoy%9i^7{A zvLHvhl@WO@LC&ehZz-6h2-53v5312l33Bo@1lrR)ksyW?mvBKd$5!pkqt2{$+^{RU zK<1HES61GL42o$v4vgQ3iH~z_rS)v;73JV&gL_@aXIf{-6A5yd!;y6`(e#<(c+)zL zx#dZ$8;x}{}q9Ma&+Gpj-M2clCe&!eqC!3O2jyy_mYt7%(>5)S7CNij^ zD`*f2pEbc=L|#h}g^k~G#~k|Hog%T;VIWg!>@%#xr&N%cu3U2%EPn-gB0-%wX;f+9sb*Pe-KBYO(yWzd z`?7SykOv8>zgZk-0GY`vhOgi1Qf5ci`Hjk)0lB=!p5n|+f)Gr{n2cly1Kb9=05@LL zBTppADeRaBS;Vm(j9^T^MI9O$;TOe-|W3m-SqC>+Z9Y-;ly`AfJMaNrq5( zuOUw)SnqDEtOJ?5p`4T0ML-o~SU074Tuq?B%qq*5LFNp4buxAJ#Hr*SIfJnk&4U-E z-6V`$#7&nBwLUNja{S0?kENYgZh`Z0|Tw@D-9hU8A)}e~zMiJme z3DRCQ^oqqYS%**ts3PPGw!>$N{XP0J&W5YQw^Bayl+8{<1 zWPnTy*a&(#3BtLF7*V0wd;OIOcG2f?9>n9s88P+QCQ}k&Ktc8%lCa&=ERH;pATdN- zs}0TaeBF5Su##vledL?pkjLTgf(_C$GZQ%KaHXCh;WuRXF$9o#Z!D!XqC}oZa7WLH z2BofCur>8cC%0VdI1C;FT_Fz=#OTuH(n*Y_O%_pr+?`#b^^WOtNAqBV$U40!HI8-Rj5SymCITR`j&RKz!jv z;WIOz&9KnyCv9P@djE$FT7F|9K^$(Fvu-Qs`nS{P17@Udl)k*FlZHHzAbFO^1cJ;7 zW*;xe=AT(v`B``wQGM@teh{P6ZIex(K_&{Y%qKK=+#o~PjWK)l#fwtC_1>g;lptqkIS#yt zoAoafY-L@E3RpP%nMXe6)Yc1WOjM9W6K6iZrog3pkNZYL(J_q)1t;wEfwku#jrY}Mmd(Vwgf@(6)9NTEtO*-^q6_CUxlO0pkVgqJ(Rq_hj%8-REN<8Z zsp5uiI}b9P=7|I$!oG}iR#Y55hsoD1g&5eP+!bFR6Wh31Zg3e8mlm#HBU-`@unvfvUaXazR8V=4U#qtjU|F& z3FLl~pwDSW*tR0*_&m&m^pHr;&j4w2;xxmZco8()o1Tm@$+?Ys^M7|A>m|ziEMW$zn+aQfi!`Pv@yhqHLNl;h6 zwWT!upXpJ}fU3B~jsDITI%xQM-;pO0B)dfu#=;zsX>8KbOoM`sW~JbAPBEGxV`YOR z;K(Xgaf3`kRfd&(wm=Tefg3(c_Q(<+e}%{!?o334%~25b@v%du>LMl)B#1a08RC^8 zj}m0tJ(>&AESRH|u7y^80`~J`eLC8&fF%qR-rmM+3&zs-^I`T<2C5 zN!G3VW5Xk9an#5dR}&<`F}te#dWr`Q(_npcr+OTdpst!&G&Z55^66Ja@idZZW!`Jg4`w4vJgVnR$GHA$O`N$R6)*=si%1&!MNG5TpCEPSzqHI z{me3fd{TRv)HF^&1kIdwvbj-fPIC1c`~#*MUs-&NcR2*480G zi14S5Jj{b?Q`DjY(OeoJrFG+hd`>BwwCRz0RvQ9?^`NSzQ55^waf;W<^QK z=Nid1&rm-}WX$`#h_1cOtUx9|rQOwP8ltMpF{)j=Ez*@nXu2^^oCuNOd0rwTG{Z5!((-yXRPppBQ%rBo&^^B|Eq)1qaz z)w#31mmX!5P-SUik38BS9tV#b@iQ9;=&$j)+fNbA7JaFeZvFCX9wfJgA}#TTlE%8; zE2R%(-HWo`jUhm@Ax|V|7o`zDlgamr1s0**>X;%b*Jno_B&f!KZL3kpY@By|Cd<~C zg9MeWGaKxY3v1e!DY;>bpcWv(EA0WDX$}{AZ9ruu8xmCMW&3Tir z1B(r}Zu&904NBPMMWY1S15&inbc2uFL_;taHc0PXM^@BsG#m0nf&@Vk^Mgz>praYp zX;AQ4Q;PA~kw*!#MbJbBH!w+(C#iK*#9?T42tt+}eE(Iw&Hpg?A8EruZb zWv;Rrmbb=4U!E4Q`rE;a;x=PnqsX`1^=^Fb=0O_a$BTHcqV`7BiW?d}iT-8yAd?Bi zljL|+bz$6~K+-*uA&(No=up`ueg=74x?=~;>aFa^nkQ2Vj=Z8-uAX~q4Vf_4y6Cg< zrXklCAwjBE<73Ya*j`xEzDxlU`^;g3s)f*oLh3VNeK-o`ugZPxF(RXRv_UwB9wj#j z5o7qW-!k(j&1@bws(8vvs}yE7$fk6J#PsLaCGpK9i(YBMO>U5!Zj+{-8uCPfXjM}N zAyWYCmcq5t?(0ZWv}t0EJV>yXo>rG)1o-ZUnm1wS1zDi1j^Gwaz!2`h%=7rSt0i~?QW^^bY$v);9cmmBd=&CC{la( zHg|(eXY>}R7n-%zxIk&P(uJDoReI$5Y56kMv!(cbiDWQIwg-3Zu!F{1t}1Dk!sd$K zpyAvYZIJIqHXd$JsOX2JU~_I`iRN<_Omgiq`Wbq);sz2dNyVy2^ykNEa=wRWj_cRQ#TxWB0=K#m{X`FW(Ukp zH*C>{a3kWgG6`YbN^}NQD{gT0o37+;{+SyV%Dr%*v2sBnGLX?`^D2%!ksu`tP5I%5 zZjiK!U;fi;T$!q}#0cFmnnwu|LB!^ZkVzw%{i2e7iiFKWG-b*SkXI5Ub*q`7Nl=v_ zEg0j=8`aG;Wl)w0(`g@jnnwwe6pzSFG_z>yXtoL~@tJ(Q>4svFM%5@mxZFZDvczhQ zZo0whP_Dl!Ff>#2*wLKGqXai42enwY(j7A2@XuOz#zY|Gqwm8i$Z0fBB&aH(MJUj$ zLwzksD10uL+Xc<^opxUJ$mKO{fP2cnwcDV00~_Rg3R>0umK~z@WoV|fIzCE*N%KU4 z?7}x&5TEJ)9L0x4H}vbEnWc101UyA;>eE>yLn%lsctIxl4tK(fLY3zV$UtUb(<4tL zNTwug5M=U`b#J0n;D8Kol4f~P(>kMhlpt5$L{KD}$q_e!N`hS31v`Qps=_xL?2!v= z+Lu`XmJMEMU6J4!A%LzEh`kKE~N4j;pw@s`MCKr8 z+F!^NcbEhnc||k#@an`uvq6w4bVH?+X4WlDC_>gLlJufIav4DTvbJ=kbjv)*IZY-c ztBqF^_0SD=4>iTiXdJ2ILlHdqQ_7XK`o z%h!WuqQ~&h@cFF$|HUK+GlLP#gK*!vs?j-g|#%P{MaHm4X8ekM| zu>YTD((9gH`VFEy9ekyRS{rvBktj?5=7Sxis&PYh%}-^o=A{gk63rZ zXB;xeM}yB>8Fvs#+Se=RJLDD3Z1=O!4C@A&Og@oNBA?yWgY1>nE95eOMh2y)sBG9E z$haV){6y}m!njjDr}CZ~qXan<6^SEBkaY{uXCV6xztTEOvi+L=7yo5{bM60}{J+?* z8Q**9@2gLL|K!=cA1%)4+W-05|GC$k(!UdZn)NTfd550$DEaC6^FMt3xai+Ue|cH| z`NR4v|MuxOUsk-w8&Wnvei+{GzIyV!;=OqN-JARGJ`_*=v*-49?f;x=aq+*3{$2Y& zU*yl=7}{8|oB`D1%+4!%%gY_67(Ih6*p*t%0_c+pRw0QB_D;^F1d&vRP={^1c#b?ukV@(- zJO+8EP0N%K#Vp2Wm2+G|UeSyMDMyRq2arpBS?o%)mFm0FY^=kae6MjsoUDI!yhu=e z<4m7<4;%c!=h9kuQ3kld##1YO0m`{CksuW(Rr!%1H{H{k#i}gWp{AZ8kkwN#*bcJo z4~{lS#T=*nmhJvKic8fIH^)oC20yO@6wUov4?~_vkRo1oSL<&K&JfL*sgl#*gA)1R6o>vKwe3ZO6ol6qm#BYI!S@5O4(^i$3uGPt)SD3!>nUdf3 z5pEdrD8bEM&9fKNP$ynBd=A&QrQ{^k44SFk3RPJl4>m|$2!t(;0%W9bRVBE3RRe_9 zp^~i-NS5L>4>pMGIYbr6I&})tsrJqAa8yzpB1{ zPn|)7f*W}6P=1glgYtAHLA*2lC>I-~zK*$zTE#m2LRF{F$RLcpM;;}pirzSoQtBAt zM@o>QK(`bq3}?PV9wq24+CZk(w5xH|d>azHrQF?WU7Q;TrLd-bnd3R73VZPz^bBFL zc1uAijnAAg*zrALgDaES_!Ywo)^qIb<&W+O^FPbxsA+K$a ziO-J}oS;f);MjyBz0ncog-DP&PH3m0G4!bR7oVw>Hh#1)3)k{PPCm zPh{+&1R-t*m*SIlC5F(lB7Ja6xZQl$Hee^knn)Ga3gXZ91`74$(#-j9*Q`BEYhWA!& zxKkxNO06SIw=<89JW3Fo$|Kt#QxR#to!|Ouf(R*tgq~(p6v@XBXq&Gia52MzOp}aI zhVt87^1x>To0wt-P3Ki{ zF%mP3cY1W1M+p+P$|VId$1@^;EL3InED}^K+J>;AdF4fQ_MiT4iL6@#+dd*keOj@edLwZ zqZd^U=F~!$E#U{P5tOs6hn*0^r7$ry;fJ<5|1!OfvZ66DAcBC)J zoqu-ZQGy%|rv*o~L6A#Ng~d@6lZa1NyDHQKqkBn&5LFE4D5lXORqHZ64?*BezFr{#&(N z2q;?Jbza4gClciHhH#r8dmCG5<`B9$H;}s%8IHV?ARXz|JUO|+qQw~ta-J=fZj?5H zGj5=Sg*9z}7#)kNaE$6$&e<2!I-LV)Uj~^zA0|+*Gan@gABmZlxK24$+;u`JK@*mO z)^Whb*j_S0<;znE>HtRL2E0P)j7XBgd4q( z-T@g7q~~|!L4ur%U=msMnWs8V*&%0SE}A*zcM-V^p#2tyOslk5r))UHs;c|Nji7a$ z__X2UU{S&;%@YZ7gvx{hlYNgsm&*imBtdH%$a}@OLgXmH(yA1_iaZj1#Gp|jQ&~!L z;ogeR*_@OLAK7) zMe8&Lg$?$|g*ELd5~Rn1iJRV0vaI~Ag3tKK(H#Vl5;Wvdg4!>Ln4dnbXR^^{BB(S2 z%g^hJB*EU-RVvE>*YhALDKhzXl9w+JD|&J;EO-|Q zZc1y59@$+GUXKbk=P)qu;g=(Tt6)%BETS43Efa1 zDtJ?VTagK$!`Go3^cQg-YsjMnmFkQ+g(ZAx-)?-iWs4-J+uVZB5&?e~Bv^L9mi#mC zrSZ@rqlM-o(a;TWBI(2=V#uQnvT6%HYeXE1YX@(o8=S4JRF%{&PskGnpF8Bii{g(t z6IT6(I@K_1ROv4?cPtYVs6=RKd7Q}Bf=|d@|GEx&kRUNpG&BQQ6O2U^WNU~xjApfo zNZl}Qh&lByB#7H=HVAU*^4Xxojne3(4T0sYI#IQcPV*?i+tU5J&fVgMF6DA$?Y1P% zJhs(hQKQ8b@LR^JKi-S!Po@+d(veX(N# zGRFm#c8c-xG1x9-eE$XH70sk8)gvWo*4fI=e$m1PCEZ{TyM0{I%*XmysoIftP^?mg z0?o96==fZeE{4x^t0*x>WZYOwP>0a7tDg9bb~{x?Cl@Ga#_hY-;j5dI;kPRZvTB2S zi*C>jo28WH&A4Mt^I|1Ze5Ss^q+rMs395x;^GG1$CY{f!XK-Y4H0>jdb>tPzN@dGX z7OeyM$i}QuMSuEUH^kcDbC0}|AWK#b(5i5xS@WGng`NS$V$YEkRUDh+`0{UEkUi? zRH3lURv>fdNqdo~qKv?O9Wi`k-HK*Dc3MYbpG;?yzIsTKgR(AjY$qk#rFGVPwdaOj zRR5|_6uO`a%?3Fv%#N>H3JYA9AnE5ALXSL=AWfT^%Y|n3_V@V+K8HEW2D=+Hk2U99+7tL(6MlpbpZRI6oU67L_>X8d;npsI?+*h}J1ev9j=lSu+9$?_Dav9!p zW0WBMfMxxaW>V-RPMnjdcSO13Gx3MfEWIgI%_PXGjp?bz{KR!!@{tKTsKR@99%+{! zd1}ZL36ge**$QOgHeMCvup{XPJ7TuB>W~Kss!>gNQMH$mKTa93A`0e!Op^@v{7y4u z)W2qfm|(P{gc~e}a$}t@?lpvv3_D7<{6U_11iXBf>tCArJimV(_ z`KYHe39@QqKV_K*=@STU3|}3Gl#pP3cxqn6~2=7|KkV4|6oXeMN8?pjmZo}ej*&vMWW zXN6o|)4r_4zEVS>8(0~kcxo&;dkuM%Ajuvr+N-62%<4GGIruF-jZA^n zb1jy%E9Ak8vJWd)5y-5yT>2~t%u-PHF6MWd{Y7Pyi;5HGqbf3VL#@wRFsAX6zO&)8 zTGHhlg^U$9MhWVAi570DYa(?rwx>xYk24k#4y+@u%kl3@iFCmkKY0DOkmk`O^Cd!=NdxgA`pe{JZ1vTBEYzC^@ zv{;ZerG}c(-7Z&}19Fw;@@1OalV@pR4>T($Y#BK$Fe@aLCrojdn`i{K@R=M`{VRq; zZ9K{wu3p?=@f2mc;)Z!qJd)~Unr=`fRiL()B#2*ZnQgkC;pxPV)GPL8j2rZv3kTIB zj}oLZkBM)w6p%?GnQ1WLc=3Z`zTnjgd5|EA6dM`P%!V&|m0G88#As$4E8aUGC!dQA zYBRV=A3o!pG3R9y1nC1?I>r_9C_$#dHl@N18fUSxUS=zhOEO*`7i7Yo`C^RdxY5H7~5a$aLq}UxBT=-0v zIjLRSP=Km(V}{YpJvGS}$VI!G@+)za1y|5agJ*os5^vBbuiPx89CFnS9jTdfW0W8( zSmiK^!Gf%wiD84-FS`IvbJ;sxe7l5F{w_%nKhb;+vn0F26zl1?<$wm2wfN(tS^m0> zw?`f&$aW}2H;We)GON~Bb`Cd)%grO{c99nLAO)uxOHr`JUu7MMecCX$1YMz-^ksQk zXl8n0>JP2cZS6LvtdJ{k%!5qav1S)CrSkZZ#tkmu!{#J~B0*LMnM3Yro=A|8vF*_d z8P&j`8#0HY;AlG8snnH>{flx(Y~V$fE=| zT9=pv3BFB&ymiHmj758zClaIqVIxD_;D%e1ATrWg8zL*8xuzx})d6`WLG~IVB_(9} z=XS1*-x5KZKC9b##LqqQC_&aZk+Kjnhs1bU<1-Pz$Zj;lxfY9F``6{U%ZKh?cQ{=8 z*IoP9rGDwZO8+7J=Cyxa&zE2Nsql}PbjH68eVyL-uk`;b{oFqK%ktX~>({6Le--cH z`u|nDAAhU_ei(h~|99=7}Tsd&%z?B16 z4qQ3#VH}{4zHT9u>@>M+-%laYt>k;#Ytz0YscaJeHM7lc=|mJsa-HI2Q>X1)^~kFo zgi_kX3E;Mo0kW>6Z#y;o_I%7D6OhT(xAF$aaGF;;2q3e6q`o!~NvcoC9QJ6tOZ--) z679WPTJh+{y=B*9K=vI3HrLo5ygzS(gzFHGz^KFK+v=Y#31nhKQG)N5*@k1|zw_#?!K2 zR#@lAYY9?w!tQpfW)U){bU7Q*n1jf2+fL_jDRwbFYny$cd6XbUf0QLGP;9(%4R1Se z#Fr6Y*2zdW^yQRbkGzr~TQAzkt3+zMKd-n2nIq_4d&vg2S1CI;CK99vfo=D*wZtA+ za)a}+p}_R*vFj!^BI-{XH%1$zfegF`PK@NIOO^@^s{h1ku&vq4i?a{xQ3u;seD3R!ut91~vndL-5FGBX>MYDC55lPX8O?{9 z;ed=0y+eXqq|^q;t(R;UQVkK7!fOHwWNvF?k29Vc@+d*IV2jdIkWbvdXuqYZGfJC^ zZe+W{o@V$A2{{CvPoWm16>LzfMWL5-60M6(dFcio!<{zjayL6Rx2Ci2nLoB zGNLB%wDE#E4p(N(0H4*~E&1%7#6~YlqgtHXB5n?n)3~PcU0Ybi3R`b?R15D7Q>zL(zb zYm}gxt+vXLn{ zi{J+3XEAAt&xt%r@JLBb6yt$>P&srWQ;rp01!NlLhKjC`2MJ z2?;U}#sC?SA&(NIiZ$C)=)_#9T}!HT5GHMqimo_@fDCGj}qiiV@}5)_veoB^eHlQ<9PD8u0tLq$kS{m3-XB;)=snf(Tj0FtXe{IK&C5| zdliOr$p%p~wNPm)${AiX$u*X`MYj~z8WpO{zf$#vJdt2&+_P9pX$9abYXasB#zgbk z&s%lKqXY@f<9H6pgc}_<5O8CTkkxfOJ(ANrtR~bKFD4+Gz%W}yWwoqKCYZWG-@ITQ zPYrprL6+6o`%dS(b6;6()dgfc1$q? za$(K#W#&PSr*QUv$;r@Vj$qSg4g9g|2FX0v4WoG?K~3|`Qpm`G>&QSkpJ`nZ#tzNU ze_4XW%lM600MY{1GoM^PFS@F`hR-x1kCa7^Jdq&bRnW}2r@f9er`B=kz>ziowgIk? zM+xd=bwUwqW|$`#kqdL0l~~Am(6}*rQBKmL(Mz`|W;)L724jWH0@0Dl=FO2u339O5 z6AQ>bleZeL^f&p;WajVHv+{I|Mfas^VvLt?tDf788CDJY9l6|z5>E|zlpse-qZ(XG zOAZPIk)qie$VfNTu^?^VkyjEV<7z!agp35;%E&jzN04zFt~ot&Va@VhY*0&{$OLYP zpE-tXRB=owh9G1)^C`^}38Hg8Su+pzR+dpN+Ky-RxvWw-jbs$a(d@q2-~m^!9=B0u zPxS07AadS05g-Lao=DI`HDdnKk6$)e7U=`BPU@wFI`SyNTlJ7!zFhijqp*(Lbv))# zIP(?F!#qfPYeW{=9@--@Mmea3=6%j7@EH|#OEH>936exi&rc_Wy^cM}Gc3rYG*TJv z$P~mB1Ci)9f0rbvHq?tNV3uTEEjJU$Xqh9^ma0B2k&Gjc5+s>}%2xlZ`IipXJ+dny zqw%#yhdf9S#zi0pGF@M!OG$HyxA<6yI>5{@L_-FPiwR4k=^o zyv0Lto&7fnI`TwSV(iKMY^$jM+Q90RL6Vw_A=!>b;7QI&PvO61Ok~FqE@+d*35H)9M zs=|^52do{0g=Ur$ixe0y@{2=oe3U&lGR9c+$lVPsm93{_5mB||WXe~_NU#~~3VF0a zawE}jqu8LD+&HpNB6#jR9o*B*i&he(DVg^uLpO43MlzzQPrit5B!p^dgT@UFq5f6I zYIBXYa*fYy2=2Qh%!E1F#RzWDOV+L1kS7x4r-rQS+H4LL&Fnnf*SR1Zv^KeVny1)V+{%@YZ- z{%@0}kV_ssWyIYL#vEvFC+6zqZpn>_1ljMeyehs9Tkm=+^@Rk8+jET0jZuOyHkM1! zOiDG{tci@$_c7F)MY_(%rUZ+g@o^T5;s{v8FCIy~!DX_^4UQ!TpCv)&$vN^ULA+TQ zEHsy9X!cuHG1z1!QWCT_@{FijU7>lDAS-DUHfd%6CNg5r%(#kXHB`wF^~ft5WZ%^# zNLo~(TX2$emA#0fgFK_%(>#$N0dm`Fq$?LowhZ$5EkHZ%V7m?dygCMKFs%b11%Fm5vU;cMAGlcqA6_`MdVwRRhQ+W~> zhgl9vZK-^=VsG3%lF>YoAi0tDTaeX`-#JMxsPRg=L03%Y20!EvB4=I{EsK3vy_cBC z+@`7wT%RdIXj7XcXvk{`lCQJ0gOF*LByr5=~~oeRCuMrm`E!r zoOG?@PE+@yJ#t~qB5t)GVfEDNH{kP`jxlcCYF=r&(XZ&88>0m2ry4u0JY^3T8q+gy z_}}@=8qViIEtW1zkkK}wfQ%A$>oQcK@k+WupcbwV2^#W5f_S91?iMoJgDqr|^i|AZ z+#q1Ij~((LLF)9PHI0zf^~ShCmqh0?`;w+AE98{~**On`1)0ts5vUi9?Mf6V)jC?{ z#F6=JB4apAd`!;m%RD98>O2xQ=`_>6&OUZfD{ioX!W~>~fLZ~ea!j(#1!;@g7)wl$ z{WshNv8Y+C2T@>lrJKlv%=(ZG|3F5^TG?uN%)H?2!%1u3oLS!om639`!)5ri> z?Q>fb7?D9H+xg78GhRf|VS82nv$BY&N1jNKt(i7itFIcdx6{n$rjt-b*;kesth#co zxPb(9yU4;xkhM)^lZbK@O$tJ$+jp?NM;;|ebzypbkV*8%=Bc=$hF2*;0;&kcR>&)w z)%J6X%UvQFD#|Eza@{Balp!lcvCKFF^2!F;IA;mCNRTQx>YnH*RQ(1r(p;5^6zbV? z`@2UTB}ffI)SQUV+>T@-BmJHg?BX-Ewv9QIG#4tT-Om(m5vjyFh1?f4Caf8PW=y5Z zwz^3s=>N>s|(}=SIDCTt>dD$gtSI&o*!hj1uV>|G?!kai%Aa1YYDQn zj9jj&!L5vwYEs!}QSX9$#K~Ub^Dqx0lu#sbgD@y+FQK{YR7i6w&GJ^MlL$nAv))-q zkg_+WA&Sv~Oc;Z655K|8E_MVm0aUCOsq8Ai6?wElEG}<3(KJDa+~hM83=#{iBaDww z4Q=m`2MMzJBPv+tZp<0gXokaYY5$C~lSwXoW=)$OX@$I!APr&TdIje!fPWrPf=J-<#5B1M+p+CHRmSegQ~NF<~^Ac z(>gqX&nYY9`krc`IAkh6SZOa_6l7iDn_cD*0W_xsDZFmev9!);o=A|3rkax}+#sxJ z=dIAXa&jy6nc9}N5c{yBYu8`@7w5pWe_e{;q5IeEZm<38uKnv$zw}?F{}5TlS^u>g z{{4Obo#-)c;ip6{p&`a ztpBCx-?e|;nk~QhbK&2$f88(U*ZPZvf7kwXYqtF2&xL<~&;E6%Z#U+kul?)Zs&(Jx zzsFyFe)-|`$&~|F4qQ2K<-nB#R}Ne`aOJ?216K~LIG`<(ve{Plp4ffRc0PY?D~dfH z8Y#pE3L8M20bO?Sbf$(vu(s(#^{f?3s}#hLS9?Hus>8Fnfx_wb+_mH>MMQP8sT2Xy z7JzD&Wxs5NyrP-SHMW=9tvzhMuxm%9TUOw(n-m2b)FYJ}yXr2_nr2>9|KJ8>P$tB= zYtAgxkGzPJ5v>G8zhxsXN))JAp#GU^fcoX0=G7k1iaFW?`lUDE)O!9xWf9p#g48## zW5iPucXZ{_{QZq@A8nW1GF3r82-h_8<@#5Zfig}`{zN-U?pnoJN6m@G+gH5yfd z)VNaT=2k|TfjJ5a=KM&4SA(x5NWlh&j;Vxe%+X!gvA-`q>u~U5N3s-dV9$>o@*qJj z8Rw@05}CQUm2ydf#tnU}e~n1$G;`i(TEtto(zWti&eJ6_&e;zt zI`RWcP{S?nok|dyQ666kOl0&AXj-V@8#Ht+6XivDVWq1-EE!1Z;52A3XaCg*-WWNepm^Xc^zAr z-R&+;;zV0P-A+w!dcERQcIq=dBvQTmYVc8lx^y{~mLL;AhB7c-POn&vt86eP+!gXl zf&}@P0?Jgy4Kg|xMh7z0ch2YYF%4%xUP+L^jWdJG(vl8WXFJEI@=>*t(tB(5EFDB* z4cj9>tOVt&rLi*!GG3~|LxDMk%^VYx2u}&)tb&~rMj5EH;5Fn?f`l&o-@*-$F`Iai zxS>1bqY{<%U6ie2M;-DYLByRck3dGPA|?d6oD@$!<5OGV@rYbT&{UMBku<1_aEs0! zlx-R}II4mKgJ#)a1U5a*4=cf%IGNVQGa}X!eiD<_APOAb?Eh`=+DFZx8~IJ)9<3Y5uN9&E65LKrE3SPAk{J$GzS zg_)5IuX-yjVFeD30-os$7_Em`(W?hvj;K;zC8);uAu?8N6zxXJI+Rs8oSD^l)F>t9 zy#wV%g6fVGAu*k$t&*uvd{BmLrOf!E?s%a*Nl@Kncz07Xsz|8gD?C%hi9)A!Uxw<2 z%JT=7VB_+R1i1x)HBMVwSw253_eoO{q^cxxrlbWGoN^_0VENW zs?U_NpYgNm)|?Hj44n*pCPu3L2}jDa1bGol9@GKdczz%jwN{Sik!<*A9N|_UKHi(! z4IpTW^vaj@>|;^5QYYf>k&qzqGC%D_2ik#DNA~XP)bW^p27Ai01a%FB#2*r*vjuGQ z1b!&fCNb1o`*pne4&_CH#LI*nZLa{`AihA&dg+$o3?&V}=|-J2M>OUYJ^lG9KXaE$ zEgsXYW|2k;%1_k6xPwB1pmPU}jRcwa(b^_K*kJrIr7HT8uj{ZgvvXU08-hjV@>XtE z^UgM!L#r?^t>sfSvx~JAJiltMtLwA62U9?pI9JN61lf&@2?)xpLu6U5SE^|ZaFC$w zzs9En2sE-z|my zqKv_ZfUo1UMT|8ilmt}_-lvI?@+v`U{9v==jAx)3O^sEkv@MjWhh!5qq)>UDSM;el`vH+cjsRJV}sE2!+V@W%Wm*kyw#F6=Zl-VP(33!;OXv zU{xt^BuGCUj;8o6UKE_ENiURNu)3IGd9QAIaGvpI_S}m_K{X;78Y8GZZjt^OPf=}< z23TRCBjr_sn1+ZqG@wk;t_zg$5{ai9(F|KUm`#)y8`Of&gA;gWby(3jOMt0$w7rb- zXAUwd8nYKwUt({CXB~mm8obO$tc{4cVun>Dir8#`6XlHriGo=FHwmh@?n;lvqH8k*qG+79*GV;8UAWG)vutMX)L00-4Zf$|b?w^sM zjs#o^P;Ok_k)Ya7dQ$}`Gg+}v3vb4C3&^ui<-(bW%B3(;UL~mIu;2D2%0N+Z=Fh4d zFdg!pC{Gf6ft0xD)(z|wp?kX|;cR=iU4ooE>OkcV&r>YQ7Aq2TCgE8-u0G*HndOke z!jzz0j9@CN!|{sqv@gnwPSoYvZ}Fm_!Ms@)g`R|Cv z#s;}}iFGPyAVJVjvkD(CbBfxJ_)1gphJ0$bBlV)uvtLc1Ih?0>_h9vtA#jT$PP9&! zfu+`|jZ3kVN_mwaT`yUBbYBN$PG;g97Rt7J8BqbX@YyYDQ@a=cdAl9t*%Pfg_b48DfiCA=`ypf=`^*t7a zXSy@Srm@yI+9vFj6&2`;nBZ9<-@VlYn!{eM2Xd@{=rX6JNb?M8xj?Q<&fSE=xrfY_ zMWMV(ko_Az?-3)E)orye;xzAD-cv}Bwim2-L+b|0ix(v+hM2$4R#4_dDA0g1h4h7I z?&+-a;6&L*;Nw+WxxD%fG?=OL#t^U~ZzkpxtzvZhSC2+UG&T}c^EIE`s!L~w%Upmpq8G<|00}M0x%L1j+$9Llu*BTgv<{ptTdU9AT8GMc z?|EM4LH1-6tT-AdAbQnaB&;kQD?C4QWM68r?jCubC8#q3br4OS+1>IfMt;LCHH|12 z7KFQxi2vo;uO`qOmb>oUz?s8{JZpnzTf=JjwgMuy&J_^rvO;;5An}IUH2a*Q371JU zWu(qgWgcX!vnSOU8Uy7?>(~foys?i2WjUyn5iwtl`I&GCAwq%^<;ez#Hp5^+gZvEC zD!iHWx6H5?YknS|R?4dcY0t-aLxPG3eey#3q%{InXdN4HnKy!p8qWLG1Z|5-nvnKI zkx*nC@~Iu9hXmDO-X|d5TPd#+(F%kjIc7Tvj8HcFz~$CptcG;C;|=ZHkv$hYz5`$yd-5Vexp)eC5UIs{?G8N zbxZ0Mt!S%9x)M$nFA7k4?!=-T2*!dJA4@u6UoTktC^RNvD$ zjWSy3$pErn^-&9tL>J7=qCtX%=hchC5~t-&8H_UO?df(yvaLv<_F!EYrD~ zQn-&l4+IVb4g?Ma4g?Ma4g?Ma4g~&A2ps+E66g=!zwUJOuRHqJrGDxEtp5;uQb+%~ z5tq0AW%wQa>)s02@;$@v=wG+s^45Pa{Eq&0Z-s05p5b@&uUl|=>pvKN-);Z8=c9k! z*WajX-RJMWe)pTd(!cIsKKb;spZ(%L9)9xvckdp)`0DfbzkUDi^M_ym`QeY>y!-m$ zqpyDRzh8axU++G8_@DQG_|J#m{`bQJbU7`2{)fl&KRjJOd%FJc@%F=K97=zVet3?= z@!tc11Azm91Azm91Azm91A*@+0;FV+%h8hJmYyM`RZwM~Wl(&XENfD`TK)!qD&@k{ zD#(8(L506tX2?i+%4UHw_mXBYizw5?$(xg?GahBTNlGQ@k)JbB9`lh@o};#L`CAfk zxeG3M<}$+CTu8|*ky#C8Wp4HS9GKMT+5in4+R4;Qny8wHv>B3Wc+qg@IE68d6g!S1 zwR9XLNvfr; zi48SeNcoZu9ELR~+OXM@k;|=U+L*x<*=cK%mAlY=0{10WC z;6xKe@qEj=a&QJI#<=4dHU_Ozi5#ln1ElES5g`?xQQ)EsjHjyiz_X<9Lof-FI~+Gi zl6p!VTWvBx{+MuYOe&w>D!X<(&k`hq-R{)uH_#~=UUy-q1Y6yvlLEJ_BY;We`rnrz z{eZ$?NwwuhR4-SN1Su*nwofO3%=sKCZzM>PdZmmzs(NL$XdyCbT``=>^G1U7X9yX= zGkK|=)@VGFo#r^3ZbaIuJ}qeI&-NH}z<%Y9b*}&=1(ed-p0aK}=jn;OPN$3nx!3a! z&$9%dKYpRKR_@De(2@YvY0X7O9&QB|7n?Wy!X#?L!OszCksnr(FstgF6 zZ>S2n^6}n6d6nQz&fLEYWnA6Rost$;g)(h23hb5VjRctn!wQoL&2)N@zLRLhnj zOq7KTPe|}YitA`V)YTJno=c^TgsCJ)s7NnZrT1Ex`8wGzjSj9o~^T1T8b(k{6#P+ zE3!X#Hb}RIOo*kGmbzDz-*UNm#hIk^P|=a{#s+K0MJU(mGk#0Ta;40aQ~sZcp4BUvLJEs&!mi9ELOT%%AOX2~yLU;pJ8RWEAKI&Q&Mz&(?%4V6QyS5@haH z5g4S*i-HE$TbR^Ev@tJGQ$qw%KMf|g5>$Hz7a6sdz)px2JTt?D9bqZun%ZF!At!&e z!BRIta}w%LGLRFJ_oQfREv@>`Q2Rjc$EtRCr+O0J}gf+~1x zFQU@NC~s>X@pV{tI!3Ndr+}`ILThrCRIT&{(w*m#@zF$>ZRWc$0sM)=_Kd zMV$n$1I|<3v0RXf?fQMz2$Wu0wND_ERjq5&jlVu3x^ozp+irf6pj~R)$9qx%Y&3x} zu6)^Il`l;5*>-HCyh@N_LzwJS8zJF1H<2B*8I4MlVtcC8JUgiw!a)N@d)-E9H#@Yw_%}=I)HI zpsdie)Tg{K!#X%4&l?HS7OiT4yoiXSvwK**dcZ8kOgb1c?}9_)w-6FX9a- z%OYQ+u8qC`T8jCICd!ipAscmVNKo5IVRX_u^+yT`QWcd!!idH!L3}%L4=;1+tK2)3 zkkUMg(ksrisVZJngVlI7haxgfkxohyq{&HPl49soGbmd;nK-k7Q>?pE-bnC76RT8F zno=Rd?%beEHEFHyW{F;GaG*T#OoI`WIc6)sVYjXf;rb$fERl83e^K?jOK_sxz-aah z?8I6sCv9H_9NK@C@zSJg*1F=6D&8PbDy~#p)8zR?H>va+j8)G) z2@-q4mh*hEX36oQ*4#ZMs7{CljY4@NK}rM}l~blYu(4slqOt6DR2w8XDdMg?uQsUA zCD_1H)S@fF(Tbqz2HSVVi%yi=2vUMp4&5bq>P;g<>)28pw2q!-cX(bUcs^-UyaS8Y z(ZwkK1P$$Xc=rZ8;pvvHK)oIG+>1r&uo0Uf>c63lFn4ZHW;3_?4ORqv?)qFQZzRZd z8?L}mrm9{ddFLGC-N`!B|=H%(}8lkSV6i(k)YO+eSq-HUp10Zlf9~ST)%+Wc4({;RD&-M1E9=h z8&!ftHORBOYi#hv`m8m|w5PD=UM%{^`I#FXo$<8IUASWTS7%r@O<8Gno=3_X3F<(_ z!GSVAES|v{n3e82Z1uXhITWZoZ@eg-Jze?5Ga;gzB(}g`h$$-c@f!MjhX#}<3DV9i zLPT)Z2~hkNE7R(*#G-%$Iy=g<1W^WCrHKu8#?(cBh@a`dAWrO4xWY;}r47nj;PBkB zLC)!-g(j5QXUMG*`SyV_rwPO#U7u+%QYddE$l-C(4X)*hCNRR;))o;XVUR?9d&-Lq zvI2^GOvJO6lD;o$D=!d;8J6L((|eEdEJ4^1R=Vf`%1i`#TB;*XwcFIEZ62gIMKc`c zg%OQag1G0t(liMY6Q#zAXT>>*1|6TmZ>W)rJ@+Jd)kaZMQT4B*hkk_9(mHiJ3!Z6S zpL<^;<&6Z@<)lLgWi?)^l-bHIGc5bw;R=LC;d!+|HG*@Yh%&3+2zud}@swEfMz?ck zW2M~Q(}z!I>C*07kqp;-#Bm|VvfAEAG*Hl7Ym7Xv667c*kQB}cu=ow4c5FRXnt~=g zAsuoG8k$4yLw}T zYQoh%ZSx?T)9x5&$`j8Vt+K)FUxsITMX3i+;|j_xo_0$in%JoLnC5FkbXlOSn2Bq$`j8>keyJz5tNC( z3L3QWslE=qiRNJF#zfgh;G_^4jxxIITolkdhqiW^(|%R@I=pu*co|XUd6gg?a3dxZ&aE?G;A}_MIa}5HfTk{U6B_K~n`*T2 zLfQJLr35*YX7r&O^eB^5{Jl0S^ge+b335~uz7EQGilSHCMSUY#vy*6%c#JRcPwwr#U2agSLNC zLr0@h-bj#@Wk?XpXqUKBX6GclsBq>pW72%xl@+Xi zc|v2gL3S_k1}$&}4VDY2Y)GG&7sW{l+I16KG*$`HyfAiMgfpAsC90=GDltOD&+wcp zudy@U9LZ>h8K$}|(7#SwY(-<~<`4_<>x&)DKCghBr@isO{ z9OG;lWiE{E7l@dZ`O%x{2I9+IwS}@lQzXd#4P$Hq1r3s1S@ZFy^)@7aM$5ud*mBHW z;*s(yL9(wxW5qK@N2uB$ddu#*ZB>2}KaB@JCUHkM^U^$L}VB|B@#W*NI=h_X@? zdcp>jsUnGVXt*MUhWw45Lq%eniXVFN(!}$WzX4YiS&(w0tP;z*7fX?kqSbdjNOqK*(}t{@#?4)sA$aj8zVT%-ylJhbTrT3 z_)E7jPMIOA1XY*$+(<#0Vjbmh8#rL4ZX}U)j|5MdhAlMO_;)!}k|2Ff0NR)oWh*f1 zl$HIi9IBpC23Ax!dwTFpdE%K0Zn_G1<0(-lp|0qau6vHGAxYsWEA=LxVX_aw@~?D# zc_v#znVxKb5j>x{Ccgb?xjkq`PpYxpt%}Bnm0;s>TU#oefrDJzhO=ye9IDhS+9jdC zfiwA3HM6=>o^q%}nWXKOL&bgcP^Pm-RNE=7QRUugDWv2VDGZbs2}-N5XHzp#Zn^SJ z>y*bR*n?+8tr`vgbfVn;?4OdPebYtKJ&%!6CbZ7ez|bqMdMClEWLBT3?TO62O8G-d zkhE1Jz0C#}&M-xWXp3PnQFYKv2~q*b7}|Rm%98|DOp1Egm(dM`U+)g4yo!9$ zsIprku)&e?hm{~|!?VBJ9SPF>jVhWZL0!vBBa^g2u3R5Hl4|Y~jY@fzAhQ(( z-H{UrWoFzMFF0FcypW)9yGMDE;OR-`+;Kip#)x-ITfn72DJ94N?^B*6`1Gt?Mg7)h zSn|x{3UX{v3R!KC+3ODF4=X{`hG&}%E*k_36wf92O1V|dU}rcL4SI%z9nn9hP+lcS zdMr^v$C(aS&%d&RC_kwxGX?IxeI>SIQq&g0gg;T`sZBRxelb zl$!+AbC04TOP96TnRI@Jn3h7md&G4#oGg@A36f@>Xh2!zXFgu$6q-pjWw5B=l}^JB z9XJn^7YR}@hu(Edfig|@+^Nb^sAedc)ijUF{zwbuNrLn<%bFUR2_wGf1$R@g-3+IZ zAQOX6#}m&VSb|;6Hre2kAorIu2Q>-OLy}sDn2*4jd(ummGEHq%quw+YGz#Taf|Sh@ z74(=N$|SHC-Jo|AI7epnD-GSM1S{o9g48`>+g>(8?GlZLR9xJ+BHC0DMP}VoTdI!la6iSm`2vHl{EWP!`vEs>dZQ+}nYzdMv|1pX-{pV+T2@t{mkU#2>V%wm<+>7viD z)TdDG5b^Vf#)p-lB0$Y$I~!zeMIBV2p-@~^n=xM6Uyo=Y;l#O8UL{DCD#LGOBh&#= zbBurPH8n4Cebu^|1-pYXtOm-91lcGMcm}L$m$VyDahBGF1d%V)`ds#+&Hy|O4Rb;E zcaxC{jkQwgs|iikbW3*YmIofXkzo4L6_;bqtds*2)G zbw08?1VVyzu#OTcEOer5*!X*?4n~iBqKERCg$ka+xnfRGSiql#27gvBS}D&G#9hCl zb$t^?Jfm1{?06(Pu2;%L*QYXD;hcE(v8aYmv6g#LUPP%+)GpzmFeHBLJX2k$a$z4) zr94Ye^}jSlt(1wyZyG*XTlgGJlBpXM1!*T`OL>tXP1lJE`wT0dDW>##E38adBxT-O zWB!5XWgf&CGtqb5;8V(uQ8ee7hR2mM-M+Jf3Ps8l=c(@{q@;5m^NVLS&FGX{pu&fxV-f*!|%v{ek)wd z_YA)y|9QdXt^Z*79r@31g=_hq;dkUeFSxw*9}K_mHvjp!zx&;h|NK^cJid1za3F9X za3F9Xa3F9Xa3F9X@a+(=&f#{xusdtx&{jA9^%F5mL7|_WpL%ePV;PY>w}(#Y>JaNE zH6!Kuq=wW}l6&IloU;kFh%JZ!R zn>DY1Oo_-?SSa&SJ$6DwsvfzsdE9R&HJsf9Wm=Q_j3p|JZ3Bi?x+7c zmMwQDfipMYl=tfR{@!^vUnYf$cQ)f?ipdSN+-Y3Uq{@U$$e| zJLlaJMB9=*p6&LWmg)n~cKxsAGjz)3&NWW7?P(|J8wrv_7G9KNXjraDk_%C? zhRAeLuDmPKKzWfM)hX#Gp$yKR@@iIA3Sk(awKeUQGVv^LW{{+V{Esgu-eG}7Cg69$OJhHj9A zPs7|mk}48Q6_4yJdij$85I9%L8wu8X;njm(7s7_mc~pHu(G7e`oY9XwGdn9$fTyV_ z$pA87bLQyP6&Iv#?>(aoo^R^>pJ>o$IiOo8H^Oa1k|239kZuyBsD#TY3uPurpwbXb zpGm2qZX$G}qOp7sfar;P2Aeid^lIP+)njN>nk(NZw@?VU)5fCKS2$|OFaas^4+ zoA(zr8>~0otCq(eqr8zIskgxfluJ4^t`FsA$f+BYay1#@3MR^v1W9-X#*n^}wP^P5 zLx3`ObCemD++g@joGZ_(4dOK-1@wY?TUY%C4jyUDe@3<>(01rXo;MOC7d|Y7^dw06 z( zkb*N89}s<|=cjTnEOes0NRYH#RHNGhl(`NlvZO%rEFN=)js_|3G!)PMarEo z+)q$qZ{2lPc_u3^T<*y8MuLxoCoU9lmIw>ZjG;=9H-#%u(xaYz_AKB4B_B66I}xbs z_KlRjz;LYiGW>@t7%6WgNXbd?3}uCGm9iq2z?mgL#{3iIMS^nX!4-EHarp+EwIP6{ zp&t4S<$9MvMPtgn#ETMN$hkWjx{rV#IAwCcqyYTc^cm^KTsHE&N|1t-ERz8Z%_4~iQ$qusRg>VKR-Wg1P?r`d+7ui7R+ATL%lTVn%D4A+%J{Nt~l zSy^-Eda*%fU;c{tnO^s~wo-LrQl2HKyT9dQa>YmZ#UMjQloVBu6qg3tJUCEZY>*WW zs7EF__gZ$7wBJ%A2F}GlGZW-{C(0(jB0q7Os`HmGVY{XKsvf%B&_d!8kZjre34+OpP`&b8S~ujQ+f1 zgSZ%Xn^a*F$DxC=6kHHXTGn(i1T=?C@z~!GbV+%Ypq!iAAe6y8T_2Q{!R_E^)y8e+ zd!APb65~ch0p&+(z$(udQR+Tc+HU@9hsI_e%t`Sp)snZ#|OXf~PW~N_iteyJf2}3C}{k@{9-_ zE4b2hjDGuwjAIOTFG2RY@+LS{kJ4o!y%|*l@E9{J8>sPREVNQyCCL58jJNrAcxJOw zr9RFTH`t`%!1HTf6+Kg)=0UFJq@>7^6y*z5aXH@8&AJXa&e|C&?;UtvR}&1^m%~uj zI;+U&nUc?fhBo;d8#WJC${Pu?!gGX8oga+3=-`FhZ zUxqUMH53N~&bGf1`V2O4CAX^HjOkt#HMSqo?iRPyG&ZmlD3@y=kr9hU{8PmIw~J=8 z{@#i5#52nW9Yu7#f-?1=IeE!aL^>&-C|+`%Tqrl#yJ!?z4WS{@&J{efaZJSkyK&T!OlJR^fBsp%NO}Baf($ zTQB3%F(gQHVNIUL?r61a)qnL6lh!y5UGS zo)z;)T!&S4H-e>1JTEq=J{TcEQx$NJ_=@AQ$}>G+a*uJOyxJh!by2jzGDf|`VeWgWCc<+(&DnW{Yd38fllyyz3j~AR(^k#o{2{KnXRukn#f{Nk& zx1vm;W|`^qhii^_X3rQt9OsJ0MuK4BY(QB>j>Xrp;Ni_-DYRp#9;s61w}@I#6E|Me z4mF!O^C>q-f@D}XI4clpUlz}V#03qbbT1aAlShvVs2rz`zJyG8Bu>9W+YJrYTK-;e zE|gaZQZ6aSVO&9(4Or%G4d3Q{j2m4D{|syhA#tvh7YX8UwJ;CL7()v_8|9Pk^2@oK z3)sU#C!SX?%1I+XHYVYjLwJDgJTr&dk#*pV6zWpCqOp-6w~2;sfb&&bjv+yO8$S=- zU{=&RykRv}yH98k$vnO)WufuR04d^ahSTCJt!NWx{F8b-?I^Djn?aGnel>v;jZmBw5L$+9 z^b=n3oHGtQ!*Z2irMyaz69di143Jn9%4|D$u`u%yXuxxzK@ivt*5ZwU@*+Xj2U4t{ zOuN27!y=0ARm?xrz$*sGdnd}x*1G~LtbL9aUhu5TbJ?+V8Bv1`%b^=w8n1&Z|FlwG zB}m*Fn@&*XjvlUf*Q|EF+OR+Gm_`ocNJi(q~vcQFXL5Pv4X~n?oUlL2Fi;BK{9;1D03sMyAj6AVG@=hlWb^U zfsDa%o+t|%9{W@a6WTAj!9w}@F~bii^B#EAmyI&sIr9o8oR@h}heD0gg-Gz)hHtYKMqa*8V^TkSugOF;vDtnqWDyh@P!U?JQ#6-Al5 zW(hY7WoD<)XZBljtua>UWBWeE7wIVKdYZ6k~{iujJUk@FT?NXzwuVMmhTyUNB@ll zm$&|d;dk`kcq?4X_YA+I|HgvLTmQlE`!4%$y#Dg&zj5^6c&j=d-#ZXE5I7Jx5I7Jx z5I7Jx5I7L{mI#a$8JyD%=Yw2_M23D8r0A@TyBm5#Z*qGmM&qb1G8VXKh@`o8juk19qD)d` zzrIa8bJ|-ebGLyXG|xQq+xFOrC#TY6ghtkoc%~yiX`byImRdZrlNd06w)1XY6S*!U z&-0lkWvZ5~(~qH{Ojmu5i=8q@y6_k$yh?wKbM~nQVL}55o~RRXp{VtNYA$+SfhCI6 z5s^)qB_|{0`BYk$Q7TEh^9*Ht}Y=yUZlx^cS?|ID^Aw^Q-rB!n^!>Hgx&iPU*@(p4!Fb0bgW)-FUedQBv>eK zB&fQ1m!MQsq&n>+W zJmjks$|uVhOiLk^t=Lheyh>0vbwo$wTiE6HSjxJj z)D-Ee-Yi2ESjqMWNg9`AuJ}|pvCM;bdc8O(lh+s%E|or3>7q}~QqB+#e>G8FY>;Gl z3a+}NxH5d2q_`4_GIb+qDJoJ9-B>7#Lmp$2G<#)zMUD+ULrBPp2^Y`6&2I(g%ahf8 zwE>QlHxhhQ>3E->z?l?vPu4<$PgWxq)=mCz>hn~CFrk42>CF-@_ae$F;%!{1qDr^N zBxPcV(8-bVYJ;@AL8Uv-P$oOAWDC<>28l&J5_RM?zm930r`1ZYHi#pLjNb<+>*g$% zAV?~`-|a{q35V??ns}aUkkSCEpyIcLAEX}0HxeX7 zj090A*N#9?wi{3*uEW==*EhSc^;%U z3)z+-!L$5xRz;DQ`&vFlHz-YO;8-5xfb*0giJDOi9$r)dq}TA;Z<))ml=RO`H-+b+ z24OMJ|{m|48>`gc5 zXICs`pgi%61Sz)*CUp-lf2Q=AZcxdjOi!nR^F*0X^qBN99QvB*3yrIjqJqKa(8(h{ zMS@H!Me8c%)dmq5meO%1oTm9oBh}E*1y}ZILxUK%*q~xOF}b(F7aB4I8q|qUnizA6 zJcHg7xJFiRGq(d5 zobj3(vQs8%uOpHM>b-jjQgmP2Lej-3CjxM`rY}L66>W`?D&>s?QM(vEt?+d9moMR= ztjea;4YKBONg;)S@?wLOgvnHzBGKr>=B}=0P_`~F;h$*^mb(yR<;(0v35s}e(JPXa zvkMs>n0093nVN!}jz`L~1o6+bUgG=CGg->%g5a4Ajv_&{NPo94kJSzHo(zSV_4a3) zWm)rvR#rebP0Ubr12A%%Wu&}HkXt@OfvHcS6u`_`iX_Se`2{PK9d!-~B5R&r(Y#8K z@wqFoo0K&jH5G+2mNM{sCN$lnu}V{u%)zajR#H{#D&>s?af|Nj zMEQwZ^%6k*sN!(mj9X<9Or@OX*IztsT%Yi$AU9aL9V-zU~S_=#T?7QB85tMBSG5Q_!<^8 z)Y}gubgo`>19|EOIBSk+pI&?C(tQscb}y+H^a+TXbSjMMO!qQL5P65TkCZnOWLGVC zK7Fj!0%4K!Y;9`_&MGbS5lxgA8`KTmVck%snP1fn3PJ}oB+;(V3uW_9t_-YkEY|Ke zsK}g|+qpu5?AW+`(G6;Z_2rV+~9HHVi8ysA*m!+Ivyj6h+v>duftUXAOl< z6%96-LJHU36SapB)2&MLF_5lxgA3363(G+-2Eg6Z%K zP{uN<*0DMYJ6b3kHvPRwkl6}7>b24=!>#tP2arT=R+kw#Q?Q;p+au*wg4jarobV|P za_iPEZXzQnJpb7$tDAhUy>sckebLi78zNEdP9q5B=ir%kGA4c3XA0H>tC8|*gRJMp zmaze4E)wqB4mQKKU?kAEaiYMCyyF>vrLc{MPcbVd5rQ69eo-dz>k{G6sdAh>W&d=fypbSPoo-g5%F*`@WHEuZ zwEama^CB7}2IVJ<@dIa$7ZB){=Zy`rQ{v(l&-6KoGfn=q{>PzpY%=9uE=?p9ir$Sy z*<``jYmGzy4GyYwx48|$EQKL}MpC9ZWtm|sO z1PR$+6jx9vZzO2gba)IVZ&iD;gUK5?%W8K{#I-gP)c{S$*Xa z4K4|&kvVQp&m9S}PZn%wbxcwThyX0rQurL&z7!jzZC-{Hw>JTgpIrm7sbzy6Y3q%w9?Pg|NM#ais@=y8=cuQEnq>@6|$^)3uNwl=(Jm z!azeUH0-^mb;P{6&p%RLC3wD`wdAt_3JnhBIS>uXm+?f5NYn@TE%Ty|uOA2;2pk9; z2pk9;2z*}=IQnm-WRLzEfBgM73CH&TKKschKmO^DKHc|^xIX;g;mbdM@#}YAKYaDu zhd=!4*S|aZZ%im!{WQB0NB@lpm^c1u_#OQ>-iX%vHN)@dzp(=I#(y#Vj{X~OL~H$; z;dk`kSb=%tzZibsZU2qaN6E_%9^U=w5AVMG=KWV+K79GBFW%)RcmD6+|LNa;{Ler8 z>A(Kt!$-gS)fe`qLhjCw{=z?h`qNK7`}xm46}>;bZ{Pcy=>6!EPk;WSPkzDt`_Z5K zYb(7UJbeECo8KS(H~xY|j*kum4g?Ma4g?Ma4g?Ma4g?Ma{uTsObgyTdXU_3ANd=J^ zLKclu0$TzDyFlDgWmSDqIZkd?qz9|sxlo?+3P>U2l5NiDTV{w+rmVzI(kY{`%iJQ% z;^oT4rJh$XQ6BROpiCMvhyOhZK|H^bve3`yDOXX}Ojdv@lM6mu#==5*$SZgyLqpdC z_v<#G3~m%NwbOr6P^becSr)qMn>Xz!Pk99-wNmJjwM$SY4~CSwMw!kYK+G_V6NZM*_@_GgVPmMIvC?2UX7y-5?ot$6REQc~B$eS%Md(*{c+@ky5>t zZikB6f3jIfgVK8~%YtNBC1Ln`E6-DQ77`>SgG!N3iljJhUX434bTgW|WQbIwOuABJ zhDTZgpH$R)OZG8GMSsItsl z_4|6ZdFH%`GI|n$I%U#jNl~wqE$1^VMb(s%FFI0QC8&}U&*vw_mwRb&ePM&7hr)Ac z9d}`4vmu4b^J;_q6dR1Ig_J)QnS0V_C3z-g3Viw7`@MNAsm z0E$FS)VnchHh8ik`#^&l-pnN)DX$VFGZAIzx`FFM`i;p(8GEdrpOVPHd7`}7AZ@2$ zvimwHpVjN23lx1OWj%0aPNBfaQ|3^liiT$A_85}bAUW!Bw+_j8FU+AKQ2aCXIfb%Z zcTv$wd6ghnt&(ZpbpxDnP?5#T>`YNmp-i_Z)%G;`N|E%mUKZr$$s6;SxFtcgU-2(% zTI3!vhaJyAFNcOz(+zT7Hl=+BmGnh)N*FZ+}^~g|dq1?a-8zeszEW0w;-IS_nZb)L?HakUJce8@uJ`XBO{yFAuF8j`WQPuM3xfhG-_Q}#EgZ2eb?y7=kAT7Dz%v&N2 zTNO8j@E+DxVuPwOh{>7)jVIOBcNt;b7L8~k=rPh%n^tgMB#1f7yE)IyiiFVJjo=xq z#xZ!t6=c}M1Y|hxV^P(l6C*oiNq5O^K+``$n!c6;%>9)4V38xS9}gVaL|REyQ!eUU;BtE8mkxOem2}!w?P^b zB7VAgwBO>9xHPb=Q*_^Pd2gk>dQnyn>bTKJspe6=#DXh)EGii_2+UO($$&=l6uUfg z)+ta;7es_i6(7Fd$4kOGJO>)Y{F!GyQeGuUm2NgAgEF0_!UpLlqotJ%q3QFZFSVE@ zC(4Tr(pF8S@{LKFD5487r--te&IKB(Eez-u$_<-Fig}O)0`l)F`V4e0*^5T83Sd|; z)@_ioduL;$yh@P5OG1dCtS&F{Cp@!wu6|>zq(;;{`&bkS(vu7a*3fvOqIs}iibnKv zK5aZpzW!xurV8a%f_S8EzX%1&)bTY^CL<|b)eZVY6zd)+PZDIM$pw2&MvXG{8HFpV zHu)=}FKU-mLgzX;QMM8EPmv(^{&f#*lyPQRAqdW`9Z8@;U|ynvN_ite3Nk`BC`q^s zw|vTrR0(2M@Zmh8tvvf!R9Ash1M0fLd<2d>jY;NxyVEuFnG4wKjn$R%MuJrPhw@WL zuX_y(Wh=D|>t-g4A~ECZ2WKX7bFECU#C1${H+>VTA-S zvW_GYr0y843t&Zg=*p!4s%TE-d6gjbazshp2AO{q^A`F;N~QsC{7Cy(Q1=)>Y3>>786B*=IfePdFT898YSFr zuu!I1R<;c!R8~ic!@{7PWsCW-yBnF(L%MG->y=ZW$n z!FuJoDA(FjC{w~bSPIMgK0ryZps`92{UnrW+rm(OVX}(u!9;G_-Y^Ajmcl|4-xm@r zlvfEVhk}HZu&zAQVI*TUp@p_uFLhtXI#gEXdIe?ckCZk@SFV_? zM#{4US!uH534Mk#od8``#4|yD)w*-pHk>F=JaZ!U#GZwFB(0qRvJU~u7weLdHb@8& zk<3E5q28SvXEAh*#5!D`=_#S==q4jo=nvf~wS|5U=Ve9Dt_#Z0ErltDwWPZd<5_c8 z>htp}5o7zZHusFnd$H(=iM#0)@dh0y9-pz_CQwnPX+*_YMcF>0k@6}*^q1(X>juY# z>XYbPq0gM@RqLkjN34$~%8LYPClh-z@QgcVA2E1lXDkC7e4TZc-lDPE;Fa!BM9@uw zgiORsv6)GHWqnP;*RhDHx-sCqN|63BK8Xlt&I4I%yKW#|nKys-c~ESGbt{IyAB&=6 zSW3s4HUjhv@gX2V4!~FtB+oitaSNS#Sxk`(E6qpk6?FB6GHw5hM^bOjqIE2Hb8R(I zUL>e<3@1e|3*JL7gy@pN9FjpVr%QIQ91^T(tP*4sF*ex2nYb?R6yQbHqfA&C&NLv@ zoYSN*@;rOd76v$U@Qk+B&K@V)n->YvKP7uOPkkXKG&nm(C}AnuI8x`O&K0m*Pnh7D z<038UoM)RAknb)QWu;jTs)+e<*8DUq#kzhPDMN#nWv~%w43sCHIT0hSb5|hB)(ks% zW>>J)&d#4u}&liRKdo)%FvfUh87Fq$( z?n+F`Wch z_52A-Q7Q;)oRpC?uuvu+CA$_+I8R=bu3VgN$2R`wHF+F1vGUcEMi2h{|5ce3eGyIh*P|=#90(i;90(i; K90+`m5cofz&^ze> literal 259200 zcmeFaYtx*^k)}6cuMg|v+P~oaMsGL(_4(k4`M@EeS=toAAfXw}Cj}%z8pM(y0|aLz z|9W3{)l->wRdrK*iMBmE+waDX*y!%N^T|_XWo2f4`N^+7|Mc0z!(TsK_A!#Y@T;$0eH9P*q&(E;dZveWFMs!Sd18$JVUStkHR6Q#{G)&W z@X@z#Fu!-=)c3Ey`R;2>vGDW{uL1kRw{O3B`R;;jigUT}@ArSYbKuT_I|uF@_}9e& zg_B=?^87Q_x4-%1vlk!!&8N>i+W5u8?_R%o`S#Dt8uaQ@V;tD=U;sM?29L>?Qd7>r!Ri<;;;Vd zul@`EfB9S9+T~mS?APt^av`t9|R=4R5XUTmQ@a zR{Pff+TObV@0|m84%|6#=fIr-akDK`us>V^1HwO z?2{KYpZ&u(_1o`39e989(eqEQoPYe-Imb1^EkFLJ*SDZg`TLq5za9T7-pjYY|NhnQ zd;fCnv9A7m;a|a_|EJ~4?$G?jA&CT?$;LWVsqL+{TEBveH z0e@b;`~Li^c(>zU#k(E<3f|1A-Ots(eL0_byRY?#@6W%AcRT)7yxaM|f;aQ;@N@MK zzH@%`_H--$RlM8ruj1W~e+6&m-;sZR?4O;#4XM-m?TQV{(7OX1yQeY^en;O6P>u+rbN|9!Q3c(Q)FFRzxD=cni6YJEH(c^CCQ zKi!>n`%U>UFE>xmr{n3^UY?%rwx`3seYi({SUs)4fxKI(gep zHRSDjzfG#noBd&H$g3kiw6JdA#+oN8{3uWKWcPHp+OJOy3O=uQt8;q^H&&qC&yBhM1#(bpj|kk{w! zVYO>AI`7uWSR}ZHIgND#@+86IZhdx|S4a4~JOVWH{8eL7265xK+MZACcbyv#lLVzy zD176_>a;>TQtQ^6?Y6xH`M5q%H+~U$lHlgNhOvo!*sTuv-Sc|AhUf|J{(c+_y zZfYiOoc8G5C7Nd&MAlFl_Iup#L5lC5*ZaL$%I2_w?a61Sd63`%&v3*x7PErp&3U&; zPM*$Z*uFdhG;jH|>4qau5?mjTXQz3+#X*J7Ih{|iJtcV99?-ks2G4t4f(OW0wFkt? zHYb!Jp7*@lBZWZTZjQ%w@(PIr@+`sC@o)$zkk|W->ju^yt`BbDR<6)IOHlsk*oc&8 z*z){gW&B8LJII^u0iC|YjnM`VPfxqu5joWl;~7wBvy{^bRY?iLiPNc(fj&DoCJC+% zIF3dJ$cJs3^X4hY2sCwLqhCt@%(`}6f_wOAwtz#z6ym$*EsV}5LImh&$aiPRqXbV+ z&xhTKdj7_Z6?`;5DSdY26$afN5Nka$}KI1eooZuA;PC6*K z!Q)();11s&dUeEaY+!rRd_L}bZm{CSyN*0d@Py691A@%*8m?Y^-g%6)J{*Zo(o&4( z*#=RCbNJ`uQ`WA{spG~8ht@PlE(I$M8+7DJf(LjP&kOQ#$4VE{Kkd&*IQiWBtBxCk z4Q`*FSb^fZARl<*d|tGSr6G||IJ*TGzSw4n&;gF@y02Zi6hp1U|me)!%1O7@Oiz)lp>yVFAd#k1@1M*~pJGdO21Q`!x z_IujOsYV2~I!ZUv1`&O=-`R_ncq1+4@RWyT*B0MB@iVb_6|G}$wfqn?8}ckcc#JwM zrg6}|?BK|RTc`FzAg>j-hvsz1gAE=_#JEifZioXyz2Wnkh{KREm3TSOJV{W?aYO~s ze9*EH+&E%6v8JF%WH&;f1M(z6R(Y0{1q$T-e%H~AZkRsrHXBp@2+6CqyPb%h@e92=Zw|E+{-G8r9NZ$cSB#yQ&x+aXU9+#L3~ zeE@kyjBg&PZZ_I#wOWbh{`Qqg&f*0`m{AbO+dZ49@RK03tSr0|GTVzr z2A1N;lLYtL&o^;{yxGH?h*ggKg{v=o#&3k?bjXtgiQ+Q{1+r2z6pbE0DDO$SrxliekCkbxx$PomBOk87}Jd*wB_&ozZ97_s1@ z8@Pq*5+vS0pBK~EJ>4UHx0F3`ZX&ZgJi8Y)HreG=jRl#Mxk>-HLmdp6oLi`9 zPxI_W%TBr}63B#vu{_CA2>Kdx#OJl|+MFBXI;cftl{UzM0!kK)1(`TK;tg^XB!9wi zCYn1N)OvKt=M^&Bxc2y>8TB=q`K;N#V(IG=EIIS$8Fn16C_+wOwKS^>&d6(wvj^s?8 z&rb7XgQ!(PK{I=)AQCU9(k4^o2hju1IX(=%TwycX04?^_`Ji* zTtS{Bh@Bv`1qx(VT(qS^!3{#-SYn{L7<;Ue&W+gyx8x^7WLvC^=-H5279*SnnY~9W z#{)Me3GO+Y3B3}sj=9o{lKKiC3o-$;c@?5o{aukD#*GJFcE{VNIv}v`ipbC$kO}zX zXm!IDFOg>na%Po!1v2g^h=kAVTFr|d+0vWe=#U2qlF-0EhpPv9Pnx)?_eN<_!jD+H z4`-cth6Fq0$p*{ep~hkH-i3hzN}v zJ2o3l`3K}lf+TM<`Vz8|18IXOuzREpaeTf@Iqi=~kW<)o#2bigug!6KB;uSjB#6%gU-)d? zm?gN{Di}><($S%2Ad_>nNCwj;yo^0;hdfDe!_sb#eg>Y zNHm%cNKn9$!6Gv8dByfQBuF&Pq8U2b(L8w39Z48gw&cc^?0YPHAoKX~Lq{?RI%*Eq zb;y$hsiJT-0~whn%||>`dntWZ3NGH2tglNDZDzj^Lg4^GA!CaQFlK`D;0A|UXIsl0 zd6wXcP|e8T^eEFi;$)uT;ZF&3>19vn} z5+q5+!WTlp<0u0V+#rAD667tDLWev^aLobAnK(C~K!%a=k^>>%9TS*jIvT$L8?Q@H z=bu63T8l^~f5Z(PS_hxWMRWF)d^Y4!g2WqJBGJYTkjb~(+I^t7C89p`Sz$p6#c7@; zxII#yWyow{gR#)OBSmErBz`u7?T{x49ys8SkQkcrB9(PT`Uld@wpy_UcJYRDW0IhX zhQiegnf-Bl1kucE<1EHkl8Ia#tM0p4hm%64soM(M)NE|3Ka73L0;=+_#BR@@+HV@TRi%5-T zpLebE6xPK=ChZV``jP1RoST}7X011s?Q0czl67IJU!a6cNnLvhH@3DAh#M4ZHMWBc z>nhZ|A3U~7>*;#5w^CUr1)p&+LhCoz9OH4&3 za}c%q1ml(VFtZJP&n~+UimmnpNr$9cC zD^N1mxWT(kRYbFLK^Ku{2@)-8MXprAt6eKIShzvOZ{ronL?;$dInA>KSyFLd3!gbq zP`1`+Ca7~{o(KJ?WWZBp6yp=1b=wjnB#&+Wx3Ro+L=RQeLQj z7vw`Z#O7t?#)^2-kXgOLV4=APP~W{|gIY7~!}v+KAtD!K)mAUR3!f=DA!@2*^vJUW zDgV~;-9F6bNee|Hlg~3`&eeT)Y&4G&L}Yke3oo~n<{2_(gsm*{h2}N+=p@6rF-s6X z!OCX~eF=ja&3jHJOrQCrXCOP|NrJ@Tei*?v8?L)<5JMTC+2JS6JPv>L!{h0a;tknC zH7nj#(O<_6&el>l2zf}rh7CIMEJ4zfv08z=F4i0p)Nx@%P}CF=LIm449KIyYvjj<_ z!N@8jAw!kZtdx36keW}HoW*bkw`7r*ktYeF8WAFb z%x2lO4xh2Gy?9ZCAd7CwuSDN<2~xeYxJ?$^off`MH`riV|h_Wo+Y>;ENFfM zWDEmFhJPkcm^H5A##Z`&iRM{?N|ZIvFJwvIkx3i3#|Ih55v~sj8aHMegi+yhK&Je= zli;3+vWX02!t_`)2joeD92bT3L1uA=uMuwm>^T{lEXbmUDFdah#rjJScv8@NjpiYeAp}Yrq|Ti5YmHSZ z%^ZfC7sY+ySYiRvHl&e({njA2db1~orxfdut*sxHN5bg%bh8Bx0kW6}nlU4*Gk4@! zf=a12KPhCEJ-C<16rQ%1;)We1qt8b3EWw?f;TB}d9~#t#(3EX!d#PYs5k&IYktYd~ zY>yxxWQ;5fhsc~tm)wRSgQ7$H~@!sQPsY!pJy>eZmHT1=V(`s76*At3i^w8S~GEJlmj7 zd7APInXlRwKxcZ+4XTrD59>6~5+siumDL4V3t##T4ol5%=s-V~#hx4UI!K}jUMk@=wlW&JS*&u~5L=+*xl43Pv)h9JoL4pwN@w4$6t?ML6 z@TqKdfx-sG4T7db-s|L|y_CUns%O@%RiS-%;0BMt3e<`pK&BwlBV?kSEqWGwCiUg3 zl_Ad(+_7P3<}Bp1r8^`+rM^rzw8Z3Y!jT7>;Rdyd?RlSYT8b{1KC?(Fbrv*J3*H`3 z9?6j>39{n}gB3FCK!^+*q=3V?p%kO9R*pPKaLbWF34*H^6*sJzRMriN#*H1u-(GGw z!Y+UHy8|~AZ;+#EYs$80j_C$2Rb@lLjSZHRy5Y#P1h=rRF&1v9)6|j4sJFNs&yQwg zLb9iM^rCD4iKp6kh0K|O)luNvvVuF{)OjAa2lJnO+qC>@kvx8BCwcK~y25MnT{N6vLR#%62VL0TnoX*9<+J z+5$HTQqb(RJ&rs}kWR#?+k_kJ=sn6+HGikiI3&{z+2=y@EI}6isId_;ryLe~!tIUBLhCE7;loW;K&6z{LCC8$8$ zEagP>;j5L}`r0E1SqG1m4CLD(PZA{G9H&dlG1BSM7F_9u`d$o~@S}yqBl09cBDE;g z6f)I?O`t+1P>(eQn)h08Blk7X?CT)kMa2}#)OApN-g~~ChQ}-uLV}!Xb$sTV?Yjdv z$ZxQvZ_oRLjtr_yf=FoINmCZj56wE1cA67;mLMfIxmtm&tz>?e)Bad-iau*U7@kn4 z`So{68xAy6@O&oU(=0{E$IjPL`4qkmnpx?69dzVLg6u@Z=;CC=4MGI>8^p^^Cq=V5 zdfiewnmY*+y3j};b|gO2_SYCIt+Pc$d}fDlenZ~sss!1yMY%gPbG8ynSoB#r^o6k? zQ$%FmTPs&Xo+VgLrIQ;Rar*fYo-niVAhY~h0bz$cNsvvO9BJb-DMxyi!!w{7%g&39 zHpqA=n}pCIPZH!P3R^H_T7L{#Rp`cze%efjJa|#oZdG9yCxa&xpP3eA$TaIzPL>k{ zwu3r-i`7c+U6tS(MjAIxY>rK1NsH=$utLENN-}J3Rs7(BJWCLf#ikXSVN5y-w2ssM z$RmN=S9NyCg9MrEK>=O!?FE_Gv=J#};@m}ZBtd1AO`nY$yjxh)n1ipQ8V^%xx-oQs za_Eyi2n?Sg6UJWb5})xKoedK6tHh>AzeteYL#!;d4ywW=#b+|GMl)|+lc3@a+U}dy zsqdKOs;L>=Ap7IU2;25Y`q73wOOTrE*jbZ+#kG6gCh3fTuo7nu_4tbIwO<}of z1DR!@E#>kX?7~B!@R=1h+z2bI(>zIV&9dR#P)?#LgGyd?JQ^N}BR#Yu<2pwkB&Y|} zmR<`z5>yv<*Doo3cF)hRdL*M5sHxe&4VF~3HMU5GVp_U|og12Z(;h+kyz>6;daztq z=UIX@&4i4gnH>(x#`5^G6g4X53JaSpOWYw3G_#rFbR4p(r3hI&lSEdep2&EWEY?DT z#*Ntqc|6w*onl#C5U1=}8G>#o0ybag$b$qKPeB&E6-|j7gjekmiq@$|KYd+k@LiY# z&GoNJf8YlB4W7MO8ORjDsZP6j2K)xOqu?_QbKcYH$g>35O2jU;AQPxJB4sIb95uGX z4O~i;CiXOskqj9s&FyKvPWuJ+ok_ETfc8YlNL_6fjdU~*HmC!XvYJ)hC_529cP2%X ziEfbj(HPS-(cF2_GY8x{0b5R&;4?!bE!rf}h4)MAW`ssm4M7zO$=?+TG64tIxa=l4 znIgzFKI1n$GFJh62((9@B}hs&jtriFOy0;mKh;Nhs3(2aJhw$v2IN8Ow&YYf;#!`! zAZwsbtSOxR%VAX|6!JR##(+FYkbZV8!A*ip!N3Q_9*16catC24oI7HJ%jwd9JlG)n zL8X`tnUFC!iGQXYwnb3Vx{~imZt%(L5@eJGxshdetTqZ&4#X~%7#Ph--N1?(8JLC+ ze;e{BK}`}lPBOv33%D&nU4ak!OdETtw5VGcRMC7Kevaf?s7}@v% zd6FO@QiQdIX4Ut{37`fJnx$yBAMwV3JV{U+kIE}@GSFN`rkHN%9Mbq~rHLTNcjp~F z$${da7d|uBg=B3zY{EZF2_wKbsBe)XgvH19$g>316&1Q6WDPP6|ExNKP(qM7W{)U$ zK%OLsqmOWlY8Dn}Rq9rwgJzYmr*0_!8d4aLCkd(*pxJLhmT{+b*92CxZls+@oCESC zL3AwZzTgI9hy7M3F9lJBT4 zNXS$cBsVyGQK@x(cR-#b$ni-=GD7Cqqe&lR%_TNu5q$-Dk|2$Ua+JYmk{v;n_eN-#?ga zy7m2otNoSx4Da_32Gd`>_=nG*aeR2I`-<-O4|ey52A_ZGe-!@R?;rfB?3zAT_;43jgl+4^DjfssB*;_n-CsgS+3Z)=yvj=EeQ~!JnoxYg)FI z7hRHyQ-+EJc^=y_^@TF!R&+u3l1^$J0@kFWW|b(#zP#*_$E=!ieKw<8$fUP2Lq*z% zoO7IraSEH6u>pCYndv$j9M{MYGLkFkswp%80qK%dB}^F$vk;t0y4Ec&Szd&j!{it!7GqU{`r~&HEK9ApJcW*x+70` z*Sg7~JwDG%Lq?<=d*oSyG>cL_y@*>k8>)_Cc?q9s$q&W~*@n&y$dd%ifUgE6WMwa- z;)nxJGNa26fz0#74-LqZ1WThDdZpTUB#1I(<$!43X6K8LIWcQLG$2nBq?;jU-+}C7 zBww5@+?8_YRK;j znX{$#yh2uaQu3MV4%ZE%c|4mypgP8A-xV^$R~uDA)*SV)ZVk?kQ`(*z!}%aT#8gD| zUEihBSjd}b3zA2|>VillNY|g8!*<-5B*?)rdH#heZZ;gOo3^O1BP2-9JcI(x@+k{d zTI{swb;$qg>e%njV$NRE;zxoM`S&mo(zoN~uBa zdk{1(HrS4Clwo(v4+**a6*Ze}kg-L%9Mk`+ZihydXyyVS<1@w4u62eyOOW-ILYYNI zLS|@Lu2w2W3i-lk4k<&vJ(?rGl{9agk}y)s}xwvge*^ZksG4~sTxuV zU~$OUppYrWP5)eP8A}OLczvDOulSX$v^A5=LH!Fa zu1JtV+bq~n4Wx?U7bv*F`cmz;azm5En|u`$Ch{ynR(X|pS3V0F{WWe_UyS&?p>MT) zctDvsS;bnh@X0@0_ct_GBfKI(zMEc@;Uv^tgwY{EPQOEB3>cwA zKdMQ4(FsxwwJ>d5|EC)s3jjic^rOvu_$JWO?uK{M5~}b}zp>AWss+|Ky?x%__cZ-vyb1 zDz_AzY}5vTthKp(c&@Ubo`E*M@O5xfo#Tc~(U9|*TLL3e?U82*Vt^{yuQmuWWd>my z(9Gzea1^}jB~=6RAVC5-c!3YD5)`r`#FQYBc(@TEOP^DM#tmd7&hS^EnEbCB_KKRJ z8+^B@)$(1@tXtIci5Tq=FDIIZb&v`4IGII(@eG4UqT?V`g?E{i-AZ3rMC4!_k>fhZ zio;&Yo|g(`6gVvfe{9Hf)eEc&rAMA6NPktjdKwkAmo$B58l{jv(?mZ=f^y_rUSrRE^_}wrh zJ(x{l1Y^7i*9Xnie42&Q1ea|=J@PC;l_ke_L1qSDyc9BJfW~La`JK;3^B9YAsT?_} zh!}+|#-`s;k$qDJ_)H;R%!L?eo+L=?VJ>arh7Dk>G>3YtC9n*v50BK-Ja|zlLok+x zP}DnA1!T(1tBgv-$Uuf%fS_56L{X$m>!4!oP&0}T)n3&Y%PL8h6zI_BHMOYut|N~U zB=uK%?iY^)GQo=Z97ZQ+N(yc$d)1`S(>zL$D&wg1MtFK$o{-yXkkgYYB$#@g6H#OLxMz*@vi(c$?E1+ zK*pV2m!R5zBcP%!2$vJ8qBw_DvOT^=muSbEzRr+G2{N3sOi)>Z1R;|+YEVMfbg3~-okc!`(<}v8IMS^V0)YIE+0cXvYAo$Ey0_4R)dv1)846cv;Z^W_COm@Td znY!~(U~vOFQoaMtg9MfB3B3ZD!8KtxNRVm$!C16TZo_ECs;*0r!dtX#u`=dRk$n$` zTx~FZ2xOHyz_ z(AWr*AnR4W+tEDPAo9sP638fr?L^Qz0*pi^b8w9t!#cQQG^;wAm+yj%G(+o(1fz1E z7+A}o#~X#s)fVPhR54&YAZb!Y&V{QNHy8xjL?*4X85(fXkVgs9Xk6yyES4fo;7@?FC1R;|hB;S9)=1ld|;&xL5#&N`k~jkd0Jbf1M&9grsp64PdhKFHjWVICM? zh1(44)>R$mRpj@YHyb5L0e?xiD=o~L0vUMrczn1a$CtW6Yg(?qeAtjj2{N;q354x; z3$h02CN~)8R^Khr7uP?r(5D0)xwk=}SW*_xztD{S_Q=t!{_jT zw2iP*#0ty#cLX*dtI;XrjShK|AkLYjVmveFlU?Dq!HE%IcHa5R_wYnRFiHP z@*qL(v{jd8A)`o8$idi(9EMYn{fRo{NrL#C%rihU>2{}?O}WLQ_>gSBnrI#(88Tz6 z{2@V>#60ko1a;fyqAJjg2yMktJj`E_(P)E=(JT3lh0pXo5%Nb`31scH5?SZSk)4KS zLmnjv+sjvFR`40*vJqLf00kKVhu>hu(Pp}7dxtzoP?5QE0}3w}WR0+LXCa*0K) zVxdDGB*=Qi^oDR>q)E$wtK|_yvz>{6Og_sk#kn!rASq=;wmh#+J(Lbv9-&Au^WH^* zxoE;?K6*`pJOW2k;p=z=`UTsEwWjDY#-=&YOtRXv-H}HL%8M35iq)#P_T+}AI|{N- zZ|IN*3F>NlXev}8K?QPBXGhKrU_s85W6zCoH=*fg)T^}TEr&k75YVB%FsFEab&$EG z7@uKXXM;oqWcp&^BStFw5}9OiBWD&T_xzk#Tg;#!rwL`WLFUQO{v7Yh^_B4kflNSY z$Q<}(3nbhyIsx}maz_Hsa;B*>`FSm{94%qHgs zv1xsx8WpfV48s9gj9XYYN|4zs_3){Pj2R1L0{CirB$jTYnOT0B!0C}k31Yvxk*@u& z?(8wTIS0aEHvkrJ2=0^CUqk7D6cE zMmgx+$T29b1J+_ESzG;;$^q-c8NQG(PJ1XPKjKn^9W$QcF{WOfkC4-LpY z%@iOJiQOxjedc5o0n7t_5g9!44TX zng=h+jFeahLFQb&i|fLhRsYOcsz<0bZicP6Yp@vAoN%u&C zQfdz(m(_|93!dvMcbc|G;EazQfO~#@v%Jf4+}{|&20^#Ugs&qiV8sn((77c3xH*b~ z?A2LL^XNrUU{2EU6h+*)5lY6w^~t*R!fDp37*gnvCke6{)>bo+sWx;8%JCV^Si5_E z{c8Dc2~GwZR1&7`aYQp7$yR5Tg2WHOIt@%MD^Br*byI#(f;_Lsq98NsJrl5SgE>7B zZoy|NaN;Bm(BB7acoyIzuMls*Z z5+oMY?bhvg3o;wzkP#Cm)7XV<>AL}Wpc&?nyA4Ybvcfz=RwY6BXYO2E0;;OdPV*o^ zCCMqQUmjoF;L8>vYe|WO6*Nnmn@LVI4>qU)eJwWvGD9=MjYu~*P%(YR^J`Pk))Xzi zEhHW#NQES~ipRTzreuZ9x3jOziN|cjDClmkKoT_M(FV_K)7VKb*&b*XvPD4}pAt|) z*1{N4=#VD~vN*-USCAQrl$_)wqC+N9vq+{xo+QXXt4MVUStC-CDlW3{Qx8V`%I+@l z8RiTUJaczYbDJP@|EuTCxF94?wa^XCYc~nG{ik)eylDyF@Rgn%Z=B$@gAT`z% zWLExsUXIrCz*op;PWe)w9eI+VN=uspgG^a6%VOviqq6nw=K0Z30+M)lpt+MEh4hr( zhTi}g-)1$mMnEeKHrSZKCudO$|H78S4~VDU1oGnyv}BEJxd zkU8cts*pimN+p_00xR{|kOv#&tc@X=rW=&zF_|jXP zw!|AGe>CAaIZ1JvdR;>6DEtY5!dOF|ZBQee_(1tC)39ka>tZB|nA^Jqu9Bd|bsh2~ zL5}w$2rS4e-G|jUiEg0Yu?}ivVhD7gd6FQd5add#xP`2ncN-MCu_c~vZWEf>b(?$# zng<)CN`~)Ns)WoA-q#c{Cy~3cRM4y_XK_K}I;hc(N^UJSNT!H%vv~&A5R&=H4Njiy zT}PfJNKhND9-8sLL_Xnjc#pN+kTtR^wa#dsy(sHX9FY{{K7NMj!5sJuucFep=f=3B zXW`TI!qhs1lJ(E>8|40y&l^)D5!ur`NKjW(fY$Vxp>wM74y~gE){x1-5fTTlbg#iR z2{Qam%kfe@OSXqqAk)Io%sL*Xp_?6aSz&0qBhM0~W=Q_K(p-@Jj2>ae-WeODgepcX ziW^4rC_z%$RKEwGLFN!Xj7~JO*J_V1WL@fWndZp`=^BYc0da$c-=0?mNRglenIn43 zstq&`62$(9Fv7awO{8deK;5Hkv8Y0egnLbb#2dTp#Dr%2b1DNV8t8Al5})bJ zGdptRS%Oq7L=9CzM!Q?*3&<+qZ%Qa+EYxh!Xr3iV<~q`|1)1$d6Pb{yA8jHNGIOW% z-Hzr-fFgOkAJ=2e{LS%OT_j{_qi>w>GK3U9@#n0$uGc1GVJ4-zCq#7(yLN%)NVl067-#=R`r z(u;1WjWd6@L!KfTMcPfxgpBNslS<}=+bmH*hSN-!#ozJ=bLL2f{08Z*wmK^t57BWq z7JOziVJj?V^GWp8Z-z{VtV+%L>h_OS)jkv1N^N5Z%`z^@Yc!oYx z=jF8!q%w2y>bWtlgKT+d5o_y_kSVOUHB|TiKuT3JSvS?BO;rZuNrGpxhy*WnO#zwT zv4}#|-z;VgdBYQiNrH?Bu1iqsUh}}vT!vvcBH=TQit$54P%J5?IgUI_kolpxYZJ2F z3L#|H^`sep%M*lkcgT|jb>nGs=7nbMcw&k#4GD@V8aFV|Wy4$cRvq$WgB$?j{lae$ zE@EiQ+<0jnznV0w&Af$|IEoH=kRXnNT57WtoF==c@W3p-IJcA_g_j{vkW1#|nhjFc z77L%|KQpnMYLNQ);&Z;sItUr6Yi;j3@+d*#4Lg}C$SgsPNFj6X(V)<0rJVBJ4tbKG z%1DA6Wg2#D;^dz-gS|mPGiPnrkS7V!k3xcSk)Wnwqi1g2$t(Xw_xDtioG z={)GV1QkEWnsP?#NEM}w@O8l}Nsuk9?P45xmLNS);mw#!Tzfl`8?=gt0*f2;L|&$u z2dqy}-3Wy-WOCuw!e=4pVG|#gb(=?$`!Zg2G*1%LQA|@&(M)b2%o#o--^MFh3JY7f z5p2--JWEiMXd3H4CO1GfGi0QzgPT_YnY~2Dbw6!x(EU?)4%|6#=fIr2>{b8Ql3;oc8%L z|MWipxv}HX|6BNXpa1-5zO^qD{@v$4H+DSwe+&Qa^PeBhxAuj?zyGY~Kkx7JpPMrL zr2p-+@nii4sa^7Qkww(RWAdbyW89FYPzz_QYI~) zr%M!h##x(?b@giGuR7!@U#E-U;y_=>98+74ks7jA^GTVXW@mZ!($0V`omtBVr(3OzzwPpA~`=GPZDH&U5?XH$t(SmdHTRnn+`6k=77x6 zW2oqWJY`%dp~|xukl~GUgPMaNQo5n@{N;xRB+AQC$S%2{eI;l}B zL?T-@ewH9cm)zhy#jn_t1SubGhY?7Snr3vkodR?x2)&wVS~3+G@nMiP6DO^V*?yw3 z@%cnCKpg794Wk)x*KD*tT$)Mg@Qj=}O;Yqdk+06PHr;}m$o1s>GR>0&N!;h50LbLf zTXJ4nM~y*PC=w*U9*;25Je*rmvd)Rga;(D`AHEnOBOA}zc_j9c;GSxZbGEysis5i*EIXiu9hdfD;YMnUKRC_E3ysez0_zkXmZoHD;$cx~4w?m$6 zP#3NT6esBv*|(xNzDtRLpZ;U8*{%Yzp0@DnQvC*_X!6Xf%**8(YGEsY>@ir5NJ;`4_M`?4;LH6eI+M_tZ9C6A_mP-i^w|2 zLe9}~o|YOn=5-LikmU^^)AkgPAdf_eReK_k(f;c+4>ri?H@LAdmO)I6*Riu>wMe;c z;QH;ntjszuth*#ZRS5+rb%(EvJDyk5Mq{ytW=aug@uh9%)QJ|O?*z|*#;>D$ft(f(Tp(RFJtR(v=hPZCt&bcD4a zOMwlU%FK`g65Qji^Ier^T$dm%k79I{QJEW%jsktA|0r}4K2xs~!5B0f@+?87>Bt8q zvJD{znbID!6q>D4kp|>Rf-u9+_ca?U!T=#lDVKUAXg+ikygQmF2~uDbRdAfbQ>^8F zQvNw&2I&US?Exp62QLci@{V;TndmN^l#%u&;Z=|zn>hCyMS$YuB^yNbS)ann&J^=l zUBO|m84M9`u&lE|3Lne&^jDB)3F2gi9UtFa7%Sb-)av+MCTa0V=|vrRk|4Iv6E5b= z^D^Gt)}w=ph#C|U)RNO)!e>VwB&afy4SqA8m*^@A`B;uwQ#>-q6KaXADmoxfHmKz& z7|Rbqv1y&GDAqD`gH8{7SFMHoU6J5!!#xnmNnN>aQLaXGMZgRS7YO2d6ERJv{=?n5nNNG0eO-jE)(arYbeBw&4Mb}P9s;a9d6L9W4?|F3mu;gd6u9& zTX+T`qbu$4g>1>Sb#W zG&5h-_>6UXWDbx0-GSyof;7+S#+WL7t|lQ77>|Gi>4lH7WNc8JGOdID>k`xg8h(;3 z02S=^yqJ0#9o%492=#^=hCE9U4P^_o&@5zXUd@Z5bn&}FmL7$V?T{xMBu+`a5^`%% zFCK}gFVzg>%~{qF*6lP;Hpn2rjFFgxz&6ut0qf4piFAXtsy*Pq4PK(XmF-Z)Y(v^N zm~>Lf0Ga+WL#D$wp9ue~t~ZllKwXMt;0DqTCj)OfOCfNNB^8q;cgT|j=^S^F z(NvNpz96&U#1l#DD2GlmI^;=$1Ya7f*BHwtJ(EB3&tzrVyC5@CBLXT|2cxRdp&OG8 z^1QU|h9c33n42lQsInW0OizhV4wvRPwPy&nPNv^NhRUk7{!MMSi!df3f8E77Ckevtqe6c}JJ#=+p$pjXf3B}WJ zutA={b_5bZ6Ur<>dX!Tr94K%k)Woe2f+S3Ri7S8`(CjO$A?NL6e-9fvE;#*s9r`Z69t*$)Qw=DW^~*#=2qkT_i|1t^a2?7N&;XYy7aNdt2t zRO^r@3DP!CcmLuyNWt+8#tqWX83Rj2b$L*%DRnGjef(L1gqq2=Aw`}+$n1wL=Entj&YbK`9-rK&l04|JZe9n`G}I) zce&;<$DJv+$+DPF)FH#V@&sXnY+=J-g-pcECn}Le>#}wWWUg6`M;K_HB#3ITL8uX< zkZE`|88LFe&yLl!X*sun=0SoyJn>bmgGvN82L&f-fb>&5#!ROYLNm_lx&-NP4bx!l z-s0HEXYiGX;ARF42w$SE$3DyL8Dp9?-Hb`ll?(c zU?H=awDpJ{dpVAv8Iz23)?yBA1}`-R8&=x#nJ4^wl9x z66Ekq>5;}~YMHvVn~r^3VRy5CZ8qM1|7_Oj?k+jy2-fu`t%sthzw5@gZ9cIqjfkO}kbL=2Zoq!(I8aS{Sd z2|71!D?zOaS8Z@d6x56kniZDY^Rk8ac!NZ51~zcRkVgq}3{5oU$edzYe8tk8+ZHTE z)bX$KrnkNae-;Z-EAyX*ge#7s`fMz8_nm`9` z+*X48%5@3q*4B31z#J;whg$PUC4R~T*OWmtqZ`IaS*S~plQzrtbjXtg*$=WwUm`}3mHkN> z?Mdc^dLu!~XiUBx@@*wp1X#m>aX-lJn7np#L1ji6zM&;x(P!PG)*b;qgG>_R40rL*Le`MfC20&Y)c|31MeB(A z!h3f#PZC5GA`}~(13hf2`V{TT;HWwl(;Rb(a6`a z?IbF$ZbaN*j}~l4pBYbS(N{T0UXW)AvS()lxJ0=illONodf0g^s_B$wDIM}4LGsTG z#BJ_NG_!P@Z)auq_?hG^S{E@=hdfD;Ll2hJ#fx$x#{6fCzI17iOHi|CO@hW}Sa-wS zguU#AnJ;4{PABVi>8;`&{m*WI4Zk!J~VZE1|`hR>95ApP`pR&l03kfCH0-8z2*x zw!x1@HxOYWlV*wFM0|GSNrKu+$4*noEOeP+Ca=#fCcP+i*Ou++kOv9sfLqE?zsuPK z5kVx`iXxRW&bkoDi|P{Y<%cGkZzjQ?)FyiW(47N!4%|6#=fIr6-yi$;Li7Lb^Xm%R*36xH>|fzu zoj3QV<-6}c|L;D(?y+Ks&)?_QJ-omE-RIYZK0Wq7?(^%IU$=Ss;x{jf8vf$p)t}zI zdh`A3Z{Iw;dHKz&zsSzN|M2ggvBG`!*AE~3^UHsF_4TVae|-0k@1fCOe)`Fa&!2xO zyqnBtefHVMfAJX}_W=$g%2``YzYnK)yd-t2NmS%iS*EGL;jGcJwcNBrsowG~RgP!+ z-FG@k=fgenkbf4kZVX)~vTnX_r|_IysJbxI{Uz`R(vm{wz(}(#GE3~-7%HnlrUp*eUN&TIfzVL~FH2nk)xdf8nP#(4%GI7|;07Gp%9Ve|Q(OIZcy|?DbMV_DGP#gm+B?@%fa!_M+GO8ZDa)KZ}Ygk2N9W{Z}hI>td zX3*`IC!&{!6C=*BgU^P1L4vwraJ7gVWFEgA_`+vuSEzJa9)U?joPKkz*?8qNm(+dt z2()xUh=$7bAN&$3F=zFn`p2MIDPiwOl$aHVc{Yn`Ucj|o7bbx4qNW~<-eR8D^|XFA1`1U0YW7~G&9G%LF} zFY7PhW84)tiKPS$d6uBAx29~Uikli&dR0PWDNLojERIK+o}{}*jT??U+aO1cR67MS zh7mHNby_{>O`zOqOA|?0D9`K2vjkN%mJ&pMBD?7o)pdTRi4WmaH@X`-de)pE9T%gbaZZ`wCG!;J=R>G zBVUjpH7C@pS3ZNx$$6YR^OAC`P&4M(ppvb`NdDPqo^23CP_IiMZ?K%^f;Py=u0N)( zk3xFqvm?(ER4q@_4SLc!I7i|kL1tUDGd`F@^#-hq>a2n0&Wq|IJY5g9C10AKmCyXp%KCt?K?W09A5cg0EJ4jE zOJrh#94m*VQ1BUx7o}Wfg$em~$de6Hc?oY9)@fuJ_MOt#RoJ24DiYI8w8;%|syyID z392Qd`3)?TwJB_nc0%q6k008ri!(~cWhsVyL4x#H@W9nlKvuJG@|jC7ao)@0s{)o5 zh4yklp8STYqB#B!Wc4!Tcj*&X6;Tx^$P`$$VvmvLL4s#Oh^|GBt0+AR!lmYz7x;{R zM{G9HoB}11p=Nul-oq>tVk%i^9sMb^B!qg?Bi7$K?OoWj7uEDhG`Mo(thz6j6ji~Y z{AC;mRi2A=mwVFvE-*))C5TPYxEjcGRLR*lWZumtNBCUI3Kq7*jlN2G@ci^E?9ik} zGkyVJ`J7^~L>mY&JQA^)7A)Q^@nnZQNsyU)=G8LFU2r$~@KAjG-6ELummhI2z6)@rvpZcGxC18!k$=`d1LU}zmH zb=0Y9SB^wt>mi!UA5>kkK?YCJIJ59s^PgL9DKxX-V*9pQ5t-4>A}( znv+?}?-ykFtTN6V6M>9QwD1}-g_uMy(wwrUIPxq(EKJwd^5KfCF*o_Vx}QBBU(pwp zeeDr?nrAOcMYCFv0$Bs>5}CLz2aBoqU%^(1~Q2pzn8z9pkYcvz(dBraY zDvwk<&8?1{)Kv2&Dr<&rlT@2~yR`<}38sxiQ$FHoU9YrU{wmN|QcQ*K*gU zoEuv_(+$Nv<##W7(Yk%A`piy~nK$7!#b>1n7iB2=oCzx|#gH#ZaL@BDF%mR0*+Yv; zd)|_QX)oahx)RIcfIN87v)X~91w+WB5se#ojZ7VYjLgE=2joeDJ~tj@Wr4#q;0C+6 zP+<6s_{^(x+?XVYP~^_a;|rNea^nV$P?36Nj=Hc(QJDm_7+;kj+h1I;zKad23!8PZ zi42;F86pfog7{pwZbQBx!7b0f)nPLUX^Hpyxi5nMlx)Ckg6C?(lVF0s#&pQ6x>0NRRW>lLV1Zs3#=QH3eTsWFGoVY?gV#f#yMiTm!Mn z^gGBj_hY`nNp>&@B9K|Pd3Sj^AP*8G4NiuxC7py^ZV(A>D3}b_hXffX+nSV7UpKRS(bDG4w6P3F!Mp5- z!j1Ga&o-$3!S-EsyRTUKOgE5Udl&0we-xuj25yY|L7KwI)?!Mwn}!$ zlMU)JhUR3{N6!F`_7Ypr)OgbkLB&ZNG-IBP&$9%Xr4%U((s#rYxzQG%aoDDH`0^G| z$p#I1wm}WA2(1HI@w2Zf2+WWfhi$y-kS7Tq*l9Oq5Y6(E4T=vF^Mwo2n!>oz)X5Hc zkRaJhLhoi8LMF;L=@Zs=mO{|ytCe$Ok|3uVF|u38Ja1DKNszO{5GaRwn!IB)7Xixl z=XH=&HjHeEGLX673FjXvboDcvrEJ-?SWbrD)L%g!C8+!c2HkeYAhT$qEX@{p_EbXg zStCP3+dJe*f@J<;n>8h_9TQaWXdOTtrXztcQjtt;qGdgiYQ|D6p z{EF}BS%15(RV@-l2`||oNwnk!1vwn2GzW!l(A}Kd@UnLMYSnd)51DOJteh@26;-JZ zIhkhcLZ%D3MSWVkb)8JclO6IPL26F8fUt?I6cH)FNb9C&*Zc+nQl?3DI-J~?CCIr1 zQP2`^Kr<(evE|Wfb=C@1%~_qc3aP>dJLJg**&hV!L^C7G%p)=JSIMG=ye?xeLnoDE zshTrOP*H*AGc10CEHT4nZP%vb?J#!nncPr%BuAcYkU*4ZvyuVLx}YnFL?|3CnRUZw zUk5wnNrEI{qO3y5oHVwvfzl1xc5;K`6+egVkOwci$8C1V%7WUyn>E2DxE{4mKfA0c zlLS?+(x`%F-SyT6Bgl(-I$FgocCe1t$?_NE(TnQHfH^mf&+6|k&)-%JYTz;*jRZNf zx2V98X9+Szjf0HE*C{lm`Y^4GIe~IXP3x$k0WI~}XqHgQ6IABlf|xhLd177KG%uI@ zjNQY_-pchEp6A6$~$fh5-imY#2brs z7i26tR%f1`{ZSw*7ZNWYS6zDl^qm9$k~whiA57`ox_@xHzxNN``v+6M^k4V>!T0Qs zQvYS?m+bkfSNHzGnJ44F6#XmxjpI8H4_h{)kNqqCmpk>te(>kzyYJC0gnj(-`4_*c zc+b`ZfMC8K-mgFVRMDp#QUQz8dNS~N~+MKfm;alF!V zW7yF@P#do+$J@?Y`)(V8N@78|-S#dyMotogbpvw0qaV{9s%Cl2odRUdDpgZfjR)lL zD9&NIP?9_-DcHy{D!~|!Pqv4HN6X15#ng}oB0)Zr&x-E~nPa-9D#~w&uaSkIu-a=c zJLEnmg9JGM%Cs<9H7;W`=_7({!I0Le!fyE?`0O#NzY~}$d^ZMxi7N5SuhDV40)6w$Nf4%Xd)A` z?jni2nV1psMK?H!Yso#?pd(KbR6aS5DH;4o?T2NzIQ{lBO&Xo9otDlvNUhpZdr80t zG6xKvC5AUfGyQVjK{n9rXA=W+sFQh|4HiSWCP5W_#pBao#$lUzBp#=eAlhvw2vwac z@<1e(LfSBLxu`dXuCC9z1t3fV3DR<6Cl?*^Btcy&7e`S-Rx!N!jedf6KgYF0o@`Jp z%bXuqjRkp2Ut@a-8D;u)=rd)$%*I=w6|J#Z+miy$)NiqEwC z^NMn_$hZz?ZNoaq{V5y=#)s9VtCGm%GrAE;V@-(VT(%kefILZ1Eq)<=A=|K7{Il*G zY*5PcYk=;;_5pd4AZut;8)BiV;%jA%T8=4@G@7{q262a1aX#Nzf_5S{OOP9kSb!EX zR2+`l<@3_qkR`A1nFd!|2fGuoNrHG>RYFyL7BWRtrW>3t1!F-bezF*;L!Kna{atxY z07pVpOh#D+64YsT`(2O;8SIHVzr!{0>-s=N?Zw#TO$jr%piB;iIWM_RZ+ohnr%US(m(^Ez0Xk=g@-%!CP( zkyfsFi3CeWS$OZ^tZk4WbzQJ|`LGK4I8SSj0L^N3F$q$V-pa70bx!jnL0!)lMK!7y z)ufi?@j+%dwtG>EJR_hQkZ&u&`utZUNHa7$hDFV|d6u>=^BYJoPfL*?g-;fnDHLhC zF-uU*b`gsT8Ral;P{tUmm2`u~kd#7)JlWuO%Tcq@OyOcEA$+C~$|cBwx9MbuJV;Ps ztx5?N-Jm>)_$oGlAj2H9LHx5+?9cE{8bhu@&*k%P&az7}aQl99N4Ib%<3risrSf*kqds+I9F&ve$HEyU;FANrL81gJZoTi?l zewWhX@;iE2k?9%bX~>LggOT!+75U5$x8DU>5mefKhdfD; z{X$eJKhTm;t}E9bwjfhy%=Cuf2Bmnp;11lltqm3dR@TkyAn^ms@xnTJq_Rb5G_#}4 zzy@yAUWm#%Xg1_of?PtKdn-H={9>N9 zXqjGCZjkSYzy=A@+GJ~rBhM1t6Sy~x1(_nxrG&d86K*)4u~^Fmb;yGRIYA&`Y{iyB zW}8;m!9_R9fSIah(mE>I(*`@_NrFm(w?bTy*@*DCVck0-2KS;|i)TKzL%yv96;54| zAdkSDljh8kuj;o$WRRg+_|#_&Lkojt5}+Z^5~SiW(kunJdtO!$x;?@M%ayJfF?Pt4 z1lhv#K#SHvGp^lfW}6)^ks#4m8&AQa*&$C7JkjFX_Jg8%m)CjoU7}ohil!SfeA^v& z$hVasYSYYWv_VZTW~MTRkN*uZAr7Ho|@Jv+DJarKA6L!&<*3p zc)E1P=<)~*nmO{y!b@G$WBuOu)5wJLKC+u>SBB3DP;P zS%{Tpjb_+hxh|^sp`(U3;`tW|f~*mQ=^4l}A;6R%>3GYUcF2# zEF?(WqOplZRS*h!1mCqW5s1hPR&rGGp=q%dAjY#b(+p!ci zM5eYYU2|Q69Oko#Ecy&G2fQt0k_6e91lu)sn*^-IqK-UC5Ut7>iNv5n{G-TWTFW*&fM|LsiV&>`2+F zhCHu>g!shXi+>g}p-g@kAm68OlIp+PArBJd1c5>Vb_|6KI-03=pdKx)n^Qga8*GT& zQk>@7O3;ySE5X9%%U+atgLdH7?63ZA&JV)qsQn;xF-zg7CC9p=&xSlpkXRcl3_fdb z7>N|wpahuK&4|qSp#gc4ARKIW!u^L4Jrm(a3ULYnr|yXN4}v1N$wTo z^|L1oBpkgcrA_Rm_w-+q-r2SYHmvlLYC~%!m*V>#skI*(kZ&l#0r{p9gp2%bu1JtN zg3M6S{7$i2BnBlxO|MKo6JEw{f~if0JWG&z4R+RxZV0)%-&y&oFm??Jpj09y*db36 zr0X~?KA@wSGayVdy(pVHM?Q0o(H>!-`KA&aXuer2${e}E=j{~j~&+MiodvN6of!q^=vJ!h-Ds@+3jVd#ReK`VDQv zHKeNsy(P-k!Vp@gnmChSNApc3*dgE027h{e{{5484%|6#=fIrC@4kL@pTE(w z@jid!J?9JD=Wo2+No&Unz6Xw6X zJ#qNT-}~8z=9g5w+s%Kect6~1{!76t&)WT;Bme%`zh}RB@!5yJdM5ro|Kj6kUp!ec zf8&0C_aoRyM%~W4hw~IttYlEBt**IT(zD#K;AiDbl2&1MJ?5b6t=#<;XY`Idql0_zrr(oWM)wp)Z zeJ+pY%1ybtdw#T5pj&g1JYFx$L`R~F_v+IXNNt( zXUaDsSq+q0IQfIB=~Nm%(_NMaRhm6Zhkj<`Ilt$mVmYc18QjCv95O`y(kV|ajL)+Knd~o1st*V<6DDX`Y0t~Rg*>;SI-0@DRyCx@ zso%XM!O{fPgu)>R?65Oj3SP4|9zJsd5-JLx4SAFx)7`1piH;1A;X9hvXl9JM%%Q#n znUlFTELvLU$dd$7U(RNhjyaGyAk+0_^6iiZ8$3|VBdQjmfQ*pBa3F(& z8Kar2%)MHvLmq69)}AsFH<5LJNPB#0FPW(jFX?Ee-rZ>~0=#B}P{boI%CEcZxs|sG zRQhbKrsA{w)53Q6Y{;_&5k2)+i<*I4YMJ6hY){!!K%sS1oty1<$dd%|b=hqPGM#L3 zR?dg15^_Fsy=WZ04Kz;@qyQ<4mq4b_sU6FrSG=nsM@{Q=&<3GRCkL84FG?wwX7L!G zDG`jbMI?x}8#gdebR*9A^g~zb%<-b&=5PZhPGIYHK1i9auY(+MdM%2O6z^tFL3=bq22Mbf;e8cVINuS1?BNc|Yr zy|4~sjDcmP$%yMEvMyJ>|602uD(H|W8>GTWLaI<8qup_aiv&x@O>l!+9k&#pI59>t ziVA2AZ@R(62{>z&PP%{H`HXH`HK`-d5@h5)%k?5bkm)10+DnS=(`8JH6FldQ07t}-xB*db36q?H!yUW5WNO4rIq(K>Fe$?igssc(-U zK`ke|D4b-=GD(p8LbLn~WQwHBGthC6rEApIQW|gaEiG_G`tv%-fG>))gGgps;E}>1 z!@7+XheI>*Mkhg8w=`#}aV28p+P~~f1lfa638lEvW`pa}j1`fL(_GwF{*W%1&>W1^ zI$WKY7nZ^pfzWnnX5^FUWQRORkTEYjZ!98ZvPU!=NrE)a2XjhwG-H0^cRS=sg51EK z)ef3QBD;z2a$ibbzX-Bw^7CDvI5FEGQ7)DAi{H@13F3hKE}lOstfbEbc43le9a?lv zg4|xmU9u4sfJ|6xoYbI?`rQ(X>H>mb`+z*zAQeYE{$hh5Gk40lL6J!;PjEvwb2L{l zAWss+-J<)8-yrtpmDP)~<>@Si&b?T02joG5v`?~mh~PxX-JMOCAnz|;l(2_I!7YWi z8lPtg!c}CrNRa+A`0O+@-AJ#tnJdGw-`y-^0#s+8#kV5gOjueDpx6rP_+ z2tLQAL!Kl^xS>r!H9C;7cI#hYP012L=`-PV`!IZVnkNb3>Cn2xixPgwdYeF@nMRjT zVDXtKu(57Ho+PL^u0zJ4(^51BvvRWZO>mjF1~oOWQrgMNBg|e@QGpicMeCS2p^1cv ztWNmgmHY;+#QClx&k`h_NS6z;?z?Ktkw-dZ1O+n7RWJu`@ZX^ug9N#gtCYtEpJ}bk zi)lcnQ8S>_p^xLZ%#CqBh;ySiJVqaA8VMWCd|p=d9C!sXd=K@WXzpTB8oH5Kczz)( ztc@s$dmYmSfy{`|aONOm>5Uts4bu6tQQOxN^V8o=g?G4m@tGU0ngWX(bnxdBIr1z) zT>=u;%_Haz`35CE6UMcdAalcy>xR)hu7e8XRMojWzPjBp-=vD`QgYu7GRkbc>S!Kp zkSU;RZW(Xl26>n`!8M+t&)7aYAk)bXd9uMZyokpy$l5K@r>_5o8~Ba0S>PZ#8br64aerVcjIz2;Hha7uIQ~6~7Cg z32e-(IPxq(?tw?^BIC*hnoGP5wNcx+a?yio|3O#n0z`k*~t| zlii34GGVJ}PKP{6P+6pK1!ONtLDeOu(yZI;QtS8~mY9%2hdfD8Lj__T1exSy6N+f2 ziPyLRqiDMiZLb1c6nNkUy&g2owT_GjI&G;WHwohDb0DF(QKJ54`;I(I5VgwUfBZ97 zk~z)97e+Jg2n)@%n@`$@I~!y(#bnM{tmQ=&s?-M*H^^_eucNgTW?iItk|3q7Me-snWc2d zgVyb78_BjlA#2$)Zg82o^BH$!zOF+aB#4u--2}+YfPt^cXL`nr8)Q{7%|ahgp&~!r zOHcxARDq1rAv9@h)eVAL(>m@{M2~?l zxLmo`=`#iyjuAdP@+3j^`nL~*%xtV&p5O-QXxBQTlO_~wze5)5+9Pnfr2Ao&cBmpN z$cVH(K0kyE0*Vf!a$S9RBsIk}S1?PEsR^*IewcT)Iqdk%&b$2(e5R8r5@pbA$fE?w zZ!p|2Y!GBF>~1fs=g+h-$eQbE5_IIr25D*x|16r>(>AsXnY@y5gQjFQAF0odJV{V@ ztG2L5$jnv_1qPWI*w#U&`Vd51Mjj-nlgE~XDSJ8y*128NXA;gHeG!U!|B=sym?h|! zoN7u2Gj7cmIEzSu!e@<}F`DsvmF-x{(6mdVF$a$gO2~|F2&3Zx>w#IbK~@xx`JHBj zGT5MIR0p4hOzUk^Gx6EjE`9FKtvcjMf*P~kWF(pi5=^g{LqT5kA*SM!cu$=e)9sVNzJ*y30^^j)9X5pcecT4%_! z1a;!q#9feek#u|)b4=F<&G5~n;53gCRI|V4d{!tSGvV1d$*HWu!q5#^*PJ;}9r7eW zHrg?#NXW;|Z?NMbgO$jfAo$wt+!!QCAjg%cAwlt(|1mT-D{PpEP^B_U8ml}p{$V8@YgL==9+0?~GY(O3)NGw{mgR9!N zD4Lbq4t?h2$)_gnwLP+U1O2=%K_y*Kp2iIh^nBh3M?iU0L2s$LZd6;EUwOd5uMmT8Zf`ynW05UC*0fhv~?Aki0xgO4El5Pj{q`P={ENzk7UTR1bsGmK_)23=cSk@jSl3UCYvsXGawJ^ zU@>Q{PgU!nSu>7ZpDoB2p9xN{AWt?(@yg=s2q1;5;csav$S8;e8RzAZxpQNXAO|QV zCnG47P<-ZE1mgxe*CBUz82K!VF_K}+qbPnMQnM`Nf(;oe!)-z{zRpfd9eI`@ZXxFc z3YjFMaf2jt@?cmyQKTTSamFG^y81Cy{6kXcZJNVJYYRI!L`S%7q0mR{76CkZmX zPkD!`8$#~tWUwPFa#1so*(|$mIPxGt)lkV$772pfNA(*yX@q@xOU6Ya1`d{)&# z>ISKVSbuxuQG!Z?6Syo;aD&na&ztFBJ(we{Tjx000eR3m0y%8kX=WY=XIE8$p}Aby zl{6#5$jJ=IlLT?)89$3=5{@mktJFa`)(T6ZFf$%uKprH>cPag7oD?_KiZ+)+Jt5nD z^l*ciH>wT$i4(H~i8hf@h0-hw!dmzIx-Q5hh=5}$?~!K-mib;yH-yZ>m{AZX5q^qC z)-;a`2joeDBxggBL^CACxc(wR&zW;Bhs#~^8w2trLCi{p2Sr8&S;-RPGoh++gV-$2 zVF%<%g80zL=LngTH?tJfxAV`sz^wgHKg(j4;ED>ISO=M9flqB|Qd|L+lEuUFNacW` zDq)X2OOQf>*glX}B6Sx*uaL<%yKX2Co_t0o{MDHuqZi$-ih&J@Y8Oe)Z;$@BUHqD873A z&8s)xzy9{k!zO=o{IAbHdj9LrUZ|h=!r!W!Z}G>s-~RC3!*?&=zWnCZyH{^7PtN$; zAH!SEc$ZOH7ATW_qqZ@9&))L>-J|y zK2q${GM}V6)fUqd&Z_&;@pqmsIdY$k=VlgeH0EGx`7o{1s!1?pI>lQ?oxCU~BwdZG zBlo#n&aKGmlSW?B?_^vl>x@TG=S$bu#z6(=Dc5N3PQ-@NHE!)WSPL_a19U{Tj5?i( zr0S`=(2kRY%&BIB zLV`NNZ!e`AIxkv|u?FNxf>4nKNFX21bYUzl2}*-=iBE%)Zm8HWPo<3;LuCjO)Hz+G z?oX8Jsf#AgQ&ibx+@NsJ??CCeF=XT4Q-W4=GMuOI2uxAPj%KO1#y6x5QnDOJVDNdP z3d!WNAHf>%FM+k*}2fF#J!g=JlTnSQj>4IR5* zrg^f#E#pX{KLuo({;c+c(w=PCr@Vo~(^fzzeRgi#R)Re2bsNMJFzsMD@}n7zdS~++ z2q6#Gs4F;g_SQZO&4xTnP@{OF7f;9(^)`X>fE$~jBHf^6!T9XRlMUj#5Xxe7Aagp1 z_p9f0AXDlSA_G}%xL1%T334iz&9fluJS?A=5&KzygmrU9A7{q{H*PCI&Nr`1P`w^O zhKj@cDhr%QJU$ZSmb_pNG#m0PLC#893l=_u%(1MU@KSZ3ZP(HbeK;+}ktYeBb(LdV zCe*MGA?YV6h452p+7!LRx1)KIAlJ6?e9Hm^vMQ|;nWM&qlcn?J$QTe?**oOhO0Wn} z%()cFF!4tms0vK6)`@fIh1l8HmAu~fIS2~neN?U(Ox{+m3L=^f_*@Er^ znk7ha7NJ|{hFU!gS+`k-Lk5{hH6CF=zM%vMqSetyGf~Bjrx(aka9=s?aBE>yXvaYIo`d!<1 zVIB7mx^7TQ8ZrNXd{YTJpV7LT?I!wame~dwmX(8C=vrlYaz4`uLx|NZMa5_FvPYh6 zkUI0|w^BbWb)3OiDsUJ%V3tza_Sz2($dd$jl$pl{5M*R#y-P$->QrnrQ^}?2jZHUX zk5M&rQwes+H<@HGfwm$PQMyg{q<_wYe>&dZk?y{p~6wb;(%jvm?(EWF%dRn}Jsv8d$27D>Bm> zjL+2NvX2W(>5wNIgx;(tEE6?5WcK%N-3%QIouuhryjZv~?&ybw;8BsxfP7mC7QeA{ z`V8D)wZbj7YH)lVy&Zf!LI_ec*@jHzp60k3pAC7I;D#`kKC$M_%3vBpu40IHNt9hf z9%yEM9qu`X>@m|xrIv=QOqlr%c0duDmVpeSy2eO1wZWR~S&(lk!I~<#cF!Z5GUCl@ zgH+Ed6Xupe(k&J*6?l`dY0RPey-08o_n^SU8`uJ#rO1fNY6iw&bIQ6@8)Tnm$ZWOb zg{nXYRHo`j^>+6utUD71Z#TZS}aP(5LQ^z zS;RSXr*x|oeVfK-5;Tgq8lN3`wn3(S5x6e8q2#T#d}@W|uR#^v$PAkoH(oMPUnY zgC<^Et!Vtnm!$3ud6pnfG~x|=$GPK8JHdg3Pyy9~zJc8$=2WxoJzAkO{s5 zN)n{Ayon5Cau%^I9guG-!Hyd@v_U33m%q!gD2aV#ikd$2yy}T+-b@nQblhM&7*Su3 zJWKE>5gGF8oXtv-VApTOV1SH~2INVC3~!*#V6kpaYRcfL$ck(FXp=8FbAWlK#Xk?o zHi zD`}-$q5|a@^O|WEAey4QYgKJdrq5av`Kxi=5XrDwvGHyjG5AdLXqPL%a>DgtM`VKH zC46?|NrGhl;sim+H2QcyEFIkeg>K05(*`@_+e)yf`DW`N+a*IDb24nxGzvT=s4*t7 zFOvir=Ft=wK9}bAuoOogZIBg*=&~KI(JM`am`NCr33JTX>6ASV1$vstNTyen$4aoH z`KA)=kZ)>(+WfZd(kwxG%~-AKu8n?J)D*U?MK*n!ZE4tcP__mg0Ud{YT_$TyXsw&*P~pC!oDOOADFl?8h% zB77qCg|U*Lwbo*TIu%Hd09)Dr|Dv*n9Jy<&rYg0LZd854j>4H?b1wZRVg zrV{LsZz@63y8In4Ml!5cWpvoGA7oiXWNmv`)(+-=bCT9g2Hkd=n;qkX(*`@_o7!N9d{YT_$TyWBAp?JxcN45u?Ae)qSG<`zZ5hGd zOtMJu>^Vjx=uv?qj}jbw-6JK~A>UMj9r8^j*dgCgfyeR#CAKdQ#)q*$v60iC9$Nt^>2a{v#pK*U};a|DW`h!0$ zNbk|@^6>CN_y1PB+x1^oyl-xH|8K!dzP10_{#^Yl{d6Dv`DXm9c(>zU#k(E_jf-+uc=_K2|KbbQ`J331{~;e<>Hc3Cdo$D%&OnFYjr3@{+UsJ zSy9#_4>=i-nZ|h{(^PZULMGSQUXrq)V9+w#OiIr=fdg`%li@Ie-n*<9)iD-ljak;n z0KPl~Dg9P)L_(IyxiQqLF$|nb$8vZw$lP)n%psS{xJGIzS~h-v;wX7JXdaRKoQw(y zVo*HAJfd0M981|b$dsIP$hy%fveVwzHe|LnAeTbTc8W);6SjMI64M%2Sq{KRmm_wX}PgKwHGSbmK@+d)FA7cgl zAXBFp&1le!K0BYe#U)NX2INVCh>z36#czO2@5les-r4O~mK@jlRpyQthK#Q6uBz?} zUC83d5Fn8PH3py4fYeg!Tae_L({-PVD&0%!n0{ zZeo?3%Wb*p$S4>8HOhwu)j8_|3b#Mg2xN>6lOY8Q zEJxDNL`{1c=3T3JpbAz49X#`+FKZCLSkNXKLg^Z*nQbuJ{vmi~a=5E_JLOY@>a_La zi}G6_E6WGp;~V)1P$m*M6g0|*2C1j4LI#w9EElc>peptZWOcg%r%2=UL8b=_C^h_7 z?Xeijiu|C4YM%dno6lb007^A}D{<*lquH>zHfB2wm6yo<@oJVNq5cYc7kjXF%G8G7J~} zZj>9(v|g5*Ea(yAaTR8U*r80N%5UL0ZWXhvHp+(&VnkHa=7*uoQdhVFu}~3`+^kzY zbferf$W(#2b4*O)gOUdAu|*oXA|)R|7*||2*}$I1>je!mbA2_2fH^@JhHy(7TpV5~ zbG42iaHo9wAlCsSjj2H>12=TDuqeM-5W(P?_A`5E<+-ne3XJ7)C{YG*SERv(3so9# zDN0{Uqx&E?8*(R^zYAqRkVTRY^v{*ZuZvmhyn-U<9!06*fv)5OLxYkt9=LdZp#Qac z3Zl!gy{#9ouY-6uvEBO(a9?pN#_|++rHY7wEXP4`m`>)u85nEIBhJLh*Zueeak%H7G=LSvB~lx|haxHFccJ zqbg-un)9zaLS# zv)H@$Uc9bBrs(U6y_B;s+mfr-ln33~l5gP|SX8kM*ylATcppBf*k-PT*B%f$7jeqC4M^Wwr0$}GYu_%{I1Vp(s4!|=#$~MAA`OqNIcpYj)nQMFU@u93% z(|jBH)$Eq^lua6k2Ejh8`(mIB9J+e9ErIj zY^ZM0cwU% zuUw1Z1*lPOK8Rq^3e>`o0;Mdkl3Oto6ggvqJkl^TcxJazc8prrl8rNpa>Q{8j{ZT~ zCa|()8*G`X)v?X-A-#3^9X`m$)6opd^p+y%A)Mfught_+KRGAUC^rpqACNBXoo*${ zn)wqs#$nGK+idN~nYkBw{ON;L8a;}#JaM)h4vPk%Oq8tB;DJ&L?4Ve1mv9cAn-4xl z_uU8uP-fT;l!U#UJYx=38tYn5;)Wu-M0e3gFV`TgmfuCc4Eb2e0c_)8>xbns5xw>>k8RICF$zG; zH;DYImy~n2x@C(7-_VNZbIMM+`ylxZb}G5O6lI-Yi*4ZiHZvYjSCZ#n8|7wo%E+nj zcv_t(({Hsrg$+ZU_r=>4`Woe?LB>Lo?8;CdJadC&q5S+vYru33c-9r{`PW9d`5;Rh zSoZ|Oi?Z%v%IC%EsF&pvP1{Iyv!UYQYGi0W$X>-Q%&f2^Z)=tq`>p#8ruHc5HsZ!k z`P3kFE4TFpWi2Y+ne+H~ zxd@MghoWfgWJI|XF`@j#rBsDy9Ldh!C?6Ws{vo+S8tm{X`YdUD$PpspgLn#&aPh1l z%G;}TP`3m=+C(WAawjkQEw5JG1y)xpBJR3M7@iB|Q-c~0l@BP&%sHu9@u%&+Hu{=) zhWSK|a?@bU-@u=zoJD!-qsJ8LsZFE)h)}k=%5&48b|YeWY~(^3rBxgaK5DUAR;N*{ zDXW9$7Db=gZsp^PG7%`>vP|#@%NVdaR&r}$@5Sp;R7F=BrQCgxtvK^2?I}>!=%plu29bu> zL8O7-6now%Hx25;Isr}%in6kZMa~R1%^%W-L1g4xxGK_UrwM#PwX~FENCVwh%DQ!W z`k*Llvgv%=C?6VR?`1O+Wl}}eHaHQ%*a#G8P$OTL2Kh~1*QW_~1)RfDuypxxy)(Lbz^Se$59p!8=o|c#0@;=#f~zY zHz>19T0Fmdsu@TM*d+SBc2{Yf8sxrthg?zC{&=J86(^*j7-J1?ln)K!7x?Q)qC%N$ z6^*y9AP_cdKP-`do!a&;zaB+Davat^PLCgFSY241&1j0x3`+1301c8=Dsm>=@*16q z-3N8^Y~IB=Df2tUo;ky9l&PgJId7DA4Z;;U;<+A8$}2?^JeM=9crK-iT^gqb1(Wgq zSwjXm0apzIhDeo(a-=_Ug>5`<>mZmDbb_$r!<^`0YW310=eQbs`5Ii)**GpIt@20ln1Sp#zuMP znNjedHxT5EqT*Tk_hrwNIV#U2tZXVIB#Sh<20^pn-5G%;4a!S(SHKX(N|_X-gKDFE z_#h*#G%jmskYosxADEyso)|zzM|;g8uVVT|7g&=`v;ruKILunU*7i*eu}6r zKNIr1`v)&&^C|x^?Fsa(6Dd@r0Vj?RH~hw#lL7QN0kMNJz$a&z zNjs2L@mp#H+*asJ@6I!cvXOF}=^b*pkANQEEuO)qIqO2bOyK@Z(2?8|nl#@w%6n~s z$5#~|kd37QnAVw3$%qI|Jo+(5M{hVe-L;@#cl_?^T z_stygPWi$I1$28}ltIFjh(s7!1r(Yrs3qHv8s)HDPdLJ0ljijLrR*e*T&9@_GO>4{_LJPp5t>1&^TAQFC$c3+X*`kb{Io45GrcKC! zBK$}Nv|vLx8J$Go7Y0#NS zNysWgbZD$be!3fMDmf0)k3X}thI_vvLgI1=DDq6d#csg7+%7+G7tBAVh89+k4 zBa%K_l@Bdv1nm{JQ9d*X1QbshW`>+;tXX9oblJyIo>F@C`wfttE!Y~Xm>P2 zgIX6C&x{O(jY}-V8ATc1!1ilOgIUU4LY1Xt79d!x_&QCG^@`JQ1+7L8S8xntNRmAg zltC?fPlzIqQnEEjAY5CfM!9JaE$9;BS+*0; z^emecl<7jYYY^+SyI!$QUXy4RiEeD5!;l2#DZyMQ3$`kyAC?QrR;f`N^^fX}A4a$% z7A`cX+ktamNA(|%9B6QMjFR(K{in@*wO{R&Pagzo36NyU8Oqe1v-~Z}?8IFj)!NO5 za#`JY`pY|CcmxJL&;h+D?>GFigQ|N`YT*?%v{61Z$cC6Y^z=b^=B)#TRx4J*Wg8DW zPG+NgXplZ97LnmrLRrKb;x&aW!#cL0!KczkzvBu{4dTkW>0#J29|m(#a5Bib+J;88 zBy5!x7H{Qsjj}+_w3l)AFlB(a#k*Pc>Ryyy*(Iw+x%nXb4MKY!rqqMLRaw;sAzi#1 zg&GLdc|J7A70qty6c*xv{YLsitX4HXs~OGuJ$P`K=J5UQBl$!=YqG|xr+)!y|wdTt# zbQUM8b@7lo1wi|!78>Q|gLFkP?mD-`qKu;qU~0(u4VNX^>OiyLDc0bpXK(IL-V(Sa za7*A%RRTADV`=V{@f$4SH-6)*fBE^1-&iL0Rm?wS|MBPLzxkj1_s@Mr{c_+V{_ykh zE>7VLe{++i(1a?dfy>apN~$!T$cF@Eafg=bL-}^JlmT ziG|4JUiY&$rTw$TGO19QMN~ErI&cF`8v=JOyydgYf$DHN`{JrYwh8sZuQQ2LOvWCyu4*w z;~MBb7+d zh!Ngxl|fnKWsB8m)I~B$+@PxE(6{3XP7PA-U%j-15pW^}C&Q|+wgJ+hh7DU95+kn{ zP;j6+*9iCKq z8_!LH!ci1BmZb4+6<&ifyR&5*n(35p51yL_KLUO5wuhlcZ0brKmI*3rHVZtnYK{kF zd$}VPP7P}CpSc1h#hz%>;07NB2elBeJLT?!U<0T-jv^+WBFfL(ye~G4n+AbrEomSa zULIG-^Xe5UWA`;ig(+-K%G{}t-<6z!Ip$k^SR1GrV;j$h1{pl1d6dI{;h8e@_+2C^ z%9>WPG&rD6v}c%PYsyOQM}TKA zZ}x7a!N4HPYNy;a2x=$*p;OMH45TWV6y*;Z?J*u-lnV^3QEpN6iEaE^*@NeDJ%K1w zqOO$b;Lo>>@}a>egket+&mUKy7#g&-i)Vc01jQ{iyEQ|=n%SQ?iU4V49Dt+(@eMR~W4 zM<9~R2P@Cr2if&88$AQX8J2 zS*={du2>}*$X9u$MaqBGh;qH=j&Vo9=`a<0q~RJ^9hBFsdngML8HbBu8)O{Ieq*D& z^Nd1qUjvVWa!k23&xZI8%3O_R{WhKt4H5|a_@YeS%yCi^_@#v9-RzLO?P-(`4RT6D zl;b!o$^h(Aq1eVp!DUP2Cu7BHJkc{jRjkfrH85Sv=0?g>nqTcH9uO z)*5V-n+78V=RAWbM@PbUdn4Lw+9ImFPaBKmH>>UM}d@d9zlnJV&N$2nGl)DCr3?oZE#5PEwR}E5Ma6b0nxoHsX zbL5#msII7O`nRrhCF__xD=k`lQ0~d=QiE_6S7b~d z%335a!YdzCm%&PBaXh4voJcYA&(fgQu6eNq8&`}j9}rKelur%PX6$rjP?mGc7(yCY zZ{62%Q3tnQIf`zS4-L|qNGrLN`ry)n+9uYSJ$WNbvZql0L5{^0U2q~ zXuGz{<1o1KxoWy<5B(l`PWAI&>+)+y;uij z#&NFrj1N{%A(pQ~bEAA{kUFal?IBoE)_{U3cKP7DlKo&E|HTKR0w(hwlrbd# zZlio?5PorvxeoI9uBk|F;sj`v;e5?*75w|K{aM%|lM#{MBE7{Wm}S z`|JL=)nO{e#QC^sl>r@C*BK{@Y*v_-~>gahI#! zJ^T^#Pow{G%vb)yr1<6imxJEx^T(jLC~EdpAM?YNa?5N( zS(Qh=o*xcaOjZymbASynWh$QJjGgD-d2SV6QKo+(C$@=aMjDqnRP+ff_$bp>1?$V- zZIt)SHk2vU%*PLD2ubXkm+CmBZ3Nu)2TCHD*>05g%r?ac0jF!Bis_tnMj0Sai=A1W zR6PpMu)yoOe~=%de-h}xkTa9SsCi`hTTpo*Rt7MDpJd!IO69{*dx^w<5!d^d6m2T7@btV1&gd=9M~-C36uXo!F2vmqkL$PIkjNC=i>`ps^NaK z2E-H5*#u`puuK7^29(8@s1T`?eu=V>G^kT?Q{d1bMJ`IMRvCk)8S?7V8?#sgK{#t7 ztz&M-s)_PjjjWpv3uRjIToD5)0nFUx!jN-C8;axP`Sd}m(lo0r%8U>#b6go;zN}7^ zg$$X(X*@R{1T#j^FewT~l(CE&LMeiQB`G`wXo%5Sjq;&EN_Gpl2xT?$O`b5 z?OD^IH7Rb^t@d6#1j`5Y;=9bR zc8DFyp|MMpg)|75X>f&{AN9O^d`1RMq{kwY6isj+fCT0P?vyVyNShyKH*5pS?-_=^ zC{svX&JJY?o(X*+Zd9Hxd=SF|C}YY5yBh1jQ28yM!ejuiR*mxEgEXoU_@^-ddFA14 zX2?oy6{!VH@P5n8+eUCA4M}t)R z0S--Ryazd;(Fd*_GnKe@VY84E{T$3IDOB%YnV1Qc!8^2L*8YB_|h|Njqf?_@bX3FP9g8`AVoLOEL z7V&%g2LVkzfPpg*7s_u5qp47|K+l+T6dMd-YYDpfcJFIDqbTqcHA@d^;0yG%*~^ed zH2Ik_zsk198pP6hU1GNRA+0_vNTy6cDxKpB^=4A`j72W1+bEwJq@RqyVan(}!7YkN zU?VWgl!lshiUv2zhX$W${jV{H;8yIJ{qJglq&5CM%lwNxZ$8K{a82A#l@Z%Pig=PX z8U*Q6q`?T>)eFCO%w1>@3&jtIG(c#upEg&D{M=_=r9miIJdY)HoKsF8R1+Bc_@w*< zde*yKMWnZEqAX`t1;gEmq8sI=LG3p*7h)QckmR5OQ#eqLZiYpf9ve?HXp|2PVpnVf zW)y`o+XCAalv&tIe5TuZO^s-jTNG75-fo;{vEq5XTB*UP_#jhzi6f4pil~D5T_Bz0 zDJ*qEN34S^e1PJ-SWC`ZtYaa-kfv~2m*24$1>QaPgoCo0|C1{y1Ar~IfeKbjZ=-x@ zkl?()OKK++s&R4!Wq@9Ot05A!+UD;z%1wg;r>QYyEh3<0?HaLKE#M-tj`0*;7aHY5 zgWTe>mNqtWdv7TRiv?;0ldoC+i)W08*Gs1fuvr=oK0Jj-04_NmA2^nzQSPHh8k{^F z30ucp(;!H4gyD!JP`W^Xva3Ov1E5_JX=n;}YN1g+G{{PaiB2B`EKLVprHtv=%%BW_ z&^xF``OqK@u-ND{eojD~(?$dio{4ovW@>^8hnS+lD(AkFq03J|)O2tUP1S;$g7C8J4{n_iI?rkOI?LDI+YK8FJ=#iw|y;n+5|)Z7&ng=+jJU zZ^l79r6EswUOfm0&)ZIh_8bx%xkVIZ)>|*B$_1g$Mfn3y@HurbJ-Cnc#66VxX}s9O4y~BY0nU|YKCysD~;gtuZ?o^ zL0t_-WSlw@Wjd-HC!tKR_9NhfYPm^;vb2T$UT3x=n}=(9SXX&xRs(%o}vO6PZn!+r0U6?`xa9W-E+E_)>e~|{6%xZNX>E6k|?v%R^s)v^yb9xGtNi^8%B!}tzd^4S3Col- zONhGt%`>iEyc=aNg*KiK4RUXq6B_CtWdBh-h3p+lkmU?dVV(CX*(f(3)a9ylYfUDD zviA5>`;<6wy3)x-I(>}~f^w{b*LzWXpJl?k0)!K(zqO{YlBMN@oSFZXvf3%18szN6 zdNkKTC{sMmO@cJY%|pAK2~hKQ8|CJM6j12=$s{V$VCEd1w&RCHncRRE5sV*eu&Ff4 zO@o};n68r%Sd?*_3{d!>E}$#1jvW%A;3b}$53)sa@-`^zs;rs(p*kG*!P+*6Pw;HY z$cfiw{~)zv>LcE5s;^D=c24sSIdfP}Q$ZR!(_B;T8dN!0&GEy`M4364eqPC$xKb#y zu6d_=^x~xv%J_MF?!)z6oTAL7TaFvVI(&OP!tj(Bn&DVirO~TPN;nHSFs%;Cx|cVZ z)CpI%puYxX7O$0sIC$PP7zb^CSUl4J>@|h`BsJRc2tgT{uUydH*VflTIui+uJ`ZwO z)@4xXWyl%ZumQ`SwUXO5q=Lk6oEl`!V6mS2Iw+T|sn!&>425SV{MNY;8|CJMWQpnT zPPQ(0Ob z{(bZwPI}i=7Poi*;1~AesQ-;R$9@0cvZ>GcSM*=vKUea*`v?DhNrwEQAMyO`JM8jv zU*CN5kAL^|xZm&J=6Aom|8mfKz5dJl{=v^xt3Q9=Klp|5Uj3JUQvHJ;@B0UB{h#s= z)ym^_Ss#2a{Km?+Q>bECWtL^hKT}Rnk~y>S&ngLIu70Q7GTR^}RCCX+H%I}&uTv8l zAqnMGE&afd&=)B0nQhY1aidcttH}cg!dTCR$|gz9u=|98sRjfj#i?wNA#XuZ6`u90yuGUM z(qE=_tCR*HA|Mu7AVWApuat@ymE@IChv!1MYcSv|lEmccXlmRaFd6;HO|+5}CE3$4_6J~a3Uiq)kVDD(8j#)D>w>5QKA z2xi7bt`lEZt4nB*`p;?`fpW~Eot>CykU~yYE-)loHw2&@HIW@d)vHU?t%e#xzc>!~ z?P`R04S!#r@=&f6+$nbrf-~17;RdB4`qf2C*)NT39OHwNVPW5EHCohH2C-~hM|wg zrxZoqt@0=yp1xS<2;KJBF(H zAPrW4b*2Hs6<3q!zP7Yjs{gcimnce5U9g#*a@QbSsnI$gP?Qw5>E;poL8yaf6`8>Hx1HO@D5)|HlWP>Yg;U~LCa^g zXTToCQyR~k5As74j|*kmem30K+j4Q3P(uoRwmLnJv~aNwvMZpo2jx$T9k&(O2qkC5 zS%714-L|Wy1>H$v<7wI_)Ms)YYHd}ZkD#yZPI8yh|}>&uXIr6PFr_WVePc? z_^-rgP!@$U|J3VJgCI2Ot(R;+Sgh?h{8c(A8jMR5Y#WvGsX>-Z+-`nYlyx7F_jT;W zWV9KP=q+4<5j;|`JbR^^1_73{C$zdn8N5nL5)Bfayn~W$a1T?m(I_7pWJRUpbp~W8 z^8j`nygT}jmTmBK{@q6T&>%~b5t4Mx2xo5LC|+>@NG8!BC>mS)j?U^)ROojN6_|3S zi-dMFM>Fsn;AYBBhQ7s$%gqf&#JU~vOX$KYmM@uL6$1kqiJRuBOut2t&Slm=+k>qA;&HDM)}Yn z=DfOtq5P=ZDX0I+2f1G*wSWeJzxn}p4ArSYmOaEgHOS+$3o?@ca=1>$F;+uhh)Mb3 zo$~2}bZM?eC%Lm=LG$r7DP5Nr*avx_bslV#4<7_1wE`nf$8OAi;8D8PNi zy}P!$XLUO)Ib)u@uJ@vxCI~VK0hNB^Ry8S<$ESORWwPvKXe-BBrcE|pO(9R1JhOrVat z$Hz$IYEXl2DFT zJfAe#5?AEjM)}Yn^9mfkL>bR<6vgV;K^9NJKG#ebBw3_!YLH}rVXLAHl-kiO;sy_7 zPa$k@rnNn9ln)KQ=Y-&Um$Y~>=_9>N7*~x+@HvGZk{O`F>g4&UZn(e3B z6{YizDJ%P-jFfq1x51iXo-5^3gBoO!u{|i4+n}I~BNgxF5W2Q%aleLn?(3i$tK-_O zFovM~p5yT33fllVU+kH64fS60d_++qgBKuCrX|6r34uK2IrbFdkwRs9_a==)gWATC z5irkWsM6W-L5>#e>l~4EYO`$s9Uret9|X_O2Fr40ri37`xx&)j&sFDqo!=ck$SfY8 zLwCxj22nlxt06l2t%&R&E9G%~GG!dePt+(ktJ5&01&9sG?+iO9ZZJiF{l)TbR&MV% z8s(-z9W4n3880p6{Q~7fgSzrGO;nUg^p{>* zTK=G1B2sia!~=F|G!4?fPc%z)Lz!R=IDAG1W#hFqUs06gbdj@G`P?I&QIzfm0_F4+ zOjtutMtd}xpW z#CHd&pv-kidG5wGxE-ldep2^?ZDZs4(4a0=%OjpB1C__ll4l-%TVXXhF8_M)yzNEd zio;YU2cR6A`ur|YH0lX!k3{mPP?kaJd9QXd99l_kjW|i4CYP-7@TBaLXGSM&os}p5P2+KC2oU+yw z+=#->wDv~%&>#xZ4l^EK(qQ+Q!olj4N2xv-y=v3i8|A|X*&>lDF=b9qeCbzZ1>O83Jq$!h zQg?Dudh@JKO<&nERK#*l__pUtxoZ$lVUkO3pya%K5brM1*eD+wWQr>e zJlGIrGNCyN08e377WV8lMJKuv`8UeV2dN#0g-%a_G9jo$B=S{Qo$Z-T-pWwza_$-= z8^8jT1I^%>(Raj(=_!#HU5gi)Ku*%w%J8F4spH?D`OheU8~?nt{vuwPJ=;sKAN|EY z{Po|zfX951-i?2@I0HY4eE_d43lNmw{MC)|H{ zz2EV_Wqu6KgoBGZ0dP^ znSK@j2EEsdfA{?w!9E{hr`+-zXb@#9nUKjYhLL!rWXSpL0(wE2jGOZtjq;w~K!aqn zIQ}o5-xTyag-AwP*%**BN#ZK!$k&akN6S!=RAh|ng3BtEjqWoO2xX>K+89773xD>4 zG!6|42~m_ndWWyB{03^Fl8}3H@!K^>4ObVLq?wUqqwH)_NP|>fiAXAGp~O@-mdjOdse0Y2q z@FD3tb0s;KA=O9&+>C#B=eb8wO(0aLcd8T6Imyq-6_lwxnP(^~Nt}Oelv@-fOUxKD zJ1ji2hGa4`Vx0zyP4h<1k3a=ppnPahkP{cG1jT$@b!XPH$TvH)twtCd;g0w{H3dF!x=J%0qtRw%QSS)q;Rra@+Bk#Keq6UtyKjoyKBL~HX*f!764 zLP6uX=J_eggBK;?Jikj}T@xkKaa1i8enUnW6$FZU3mdQ_eoqb3Cc;-|(TC(b)zeJ- zON02Qg@XpUbL}-MVJmd^zL{sg#V&t%AR;yxldYr6HoIc2MOi^HZHqY)Io0|BO9r$e!6?MB3l_6(vKNfqV+}1(%8+4I)yQRH~Zk(Hfg)##PE6?2N(gq*n(#V)y1J~c?4idx%@bpbnHI|?X+?J+43zu;zUIgRq6 zLBM$U;G)cOWn+LcqYbT4D6`3ZiE`5*vpN~TZ$pA-B;yDybe3*4QB;Xo2MTIo*m1c%imH(w&Ch zb7CJvY`m`bqEzrH_j|l5O^&)wB_AKk7>dOXW#)}qbUV*Iibho$Pnm2Gf>^uVD1oPh zIWK#rwY2!)#`B>;D#hzw4_pJXGX4;(9zl!Bq6}crMtJbtG{_ijK5L!@r!)A0lNZt3 zVh73v6whIVjcdsH5_7@{=p$WzxvfRN_+aJvBU`3Y;bpS0uxmWgIC>Py-3Qs$g7wHz z(ooi2NktmZ(X*>38dk>>SfM-5U4!g5xJxLPR4Ai){FATdI%6{8cl-) zinl^4jtCr-G4JGAXqK(lgWCwJ4{GtveI4J;Wl_eD4>EF{GvLJbfcPbk;s}g1;(k;k zL!$dA_ht>H+_Gwq?7q}IJCqVwVs1`bVT7I)@ ztKj(~I-1W*mMM-_wr6fOTp^b@IbN4OsM`tzv!6H_A%3+$*`7f*VRiOFtZuD?JLT?! zk8uNRDn%$|fNO;^+i8AkQLdLXHOkHEG|M6e2ZZQE84Qv4{OS~tT$eOBv)LvaU__c##IjiLwr|Phb1zopRS8R~W}t2gA%n89Y|8XLe%zuswxN zymjkGqkL$PgtM16Q4Z-0BNRds->*Ca(RUuHQEnR4hKiGBk%lf!Tt3K_AD(R+9G6zQ zqfy>{5QSn_j=&)eu$ZYM@O9B=yeM-~OR)|8Xzmz$6jefl%PBK%pim5!z01(PssIv| zDRWw?a;}t54FY$T`iG~8GArM*I!3@~N#d`ulTk*!c*;ik&>#afe9{d3GZ?`Yk+^D; zmE88M5=lNFp0ZIsG#D)yQ?Nl9cVBYm3HZ9>23W(Dg=mzU2AN3zOyBC<*&acZptNRvK>6b(C<$9)F8G%esZ{m zu*BT0gIkX868R|u6b;ffvDTDExoMF72HUCJPzB|lxqkL$P zw&Q8B6Ai9X%=|8%LNTIvx9(*fkH8AsC^rpKZ87E8e$aEUsyyUXLavrG&Cly>wPT4- z4PpsyzT<$;I1aZY5RsVdP<>8%scPPuE4Ys9(Qz!6DFHWKb3Se{py{9PJ!ITasN zz{&k{-^sA>6*j~(J7gd5l~L#D6{Zs2t!uNL%WXV24aN-%WVB}F7iA1<8X-KB$%8Rv z5(eeBafx8sbK|+5CU^uj*QL6}Gu{5qs^NpN-kLI10LAO1jPvrk#6J^|X+!nqQ^ivp z!}({V!H%g~9l-0{oM3g8@~Oc%m1YzbWrF*X1{dJKqj_eFRPA}AeE1+4W(p`%&Z4Z{ z$4ry5D~L-WRz!NIQ;dCZqkL$Pn>sBzNke7WWp$(+!>*)^SCdBbK^}q2Wpm>y z${Z$)f5r#747o&pK8qqI&!17wzd!n)N&+|jd8zwFyfW*>ORw+4KR-V*UwI&UzxwsR zeD%*i|K+#8`t8qu{j0BT{IkV*81F!spU%ndt{>DFlo)XHZZ~XHY;W~Pig-1!<&2l^R&lL`@g*o+wvPqM>Auvl#|HDkr#CSnTsmP zI_Q`dCwlUPsy2;t_fEN;j-kw?G@l2lq%+AvJ^ACiR6PPAxGG}r3tXpB-cQGX9!XZu z>=rI5%Ib%nXGsQ&0W+vPGi{aQ@g>ju>6mFzfTAeIm=t*=iu6i$#Sa0ktr=G`K`Y~W z@Vw zsmPq3B@Hx4mb7F}fHc?2<3{<=pb#~g`%Kn9b$G)U3J6NG;G zu*Q!7A5L{cS;J;CCj&Bs3)zcpP-aGSQ{9bn%Wr^BD7?B1* z)KxkMkV8arPL(`=Tw}T_Vx$87L#@JlXpnKT*z;sklz}ZLSA-FUbHJA6Oaju8uu*P4 z2ncW=OvJQNLF>o!LOJHQIc_i$M%aieX`DVt|H+!D3D3Yc29ps*nRJMAxKcxI+UZ%m zyUO|0AhC?<#KfvW`QyWy>w*SZp3wMU5)INvk;!V9l>T^KRZHb5;Dr2ulsL)d79XTS zRM$b!lMBDGQ$C}pstq=NQKl5RJVm!zmniz4o)QPfM)}YnF_S)vX&X?coQ7nrL0qMJ zw}NbbxKVCC$ZZ9fl}qPP=Av**Ln|!R{<5ZU&9YbaM)~kTO1PjBCeQqkWRq{DK@^sc zfClMFu(d-uy!o=;jRyIor&H4DqabOqQ>h`9U8RAGzCgKaP@qkB0Ill+)Z_zc%hX&vAvdW;0+^v1#>xAE5 zaf7M7UM3plra{%(0NQ6U;vE%)aznQ?Ncl7$0jwIRIE!wt!}fI$bw6tuoc))^wS~Mz zg8^_~RS%V0^20mjQ-d_ysr4lz1Le^bRFN|sDPx(4{RT_Kg6THOhYzv^nA#_}2|)*p zGk-`L%+gFyCT`F|=wOa=c}=|Np+V-?0TY^AaU{vM)-H(#<0^x-D=1fT6YDn0hXyf> z1$dT@1PYv7p~0A}Wi4pC;dOAY!*&hgDVjl_O5u0ew+z7|95!PyVA4EOc|_ZmhCcby zUX&?DG`b2 z$Hz8=8(F&o`L?ytC^sL}o?mm-rXhhgqz*moDtP7)!w-3vi~1H)qET)d`@duJ8($X+vt14-L|m$Y-Z*Xo+F_6^{VV(jc4uR45)AjZXFy$xTmmf%`&( zj5>qVpiC1h^V_Qi0Y7YV=6q0iu9SNeeIE^yLuKGMp!~L!bg>OB3q^zKc1WchwPQZ1 z*RZSi0>e|&9gO4ISA5fH;+=*hw^CEWTeu@TZTlDWX%7+HY70f_^ZE%PK z2Ie>^4VJ_aD?1xk9LaJH`@P)Rd#^MLJQvER25I;- z#3(SXYlJoNnKPY?7AC_}1jF_@v{7yvq!p2_ur&UGL=^@pf~OG6T6I*Od30_gMMKx zjq;&E-3gKaq@b+PytXOGj<)%SS<#hF>YlyOjRxiq2Ed?)1 zL>U__=vi!`Mo|=qIeYEiC?6W+B*MvLu7jdH9x(FHc(-~m);h?VNz&<>@}WVRHwYYy zG6M>Vce8890G#dN!$kgT%CD+HJ)WNEY9|ApA2eES0@c_>*d$jpbc6;4I$!pz-KDo` z`S{nFZIIOxWJofQsLUfE%O(Ska|-+C`PcAndU@=yc#1eqp8IKnPA+G+CS^JXlV@pA zp0UI!l9dN^}aCGF?F{v5=&uG+t4IpH_pqKXpss zmcT86TLQNPZV7yj1aAEElGdx^pWod0=db?d=imO~pMSfA-2QdrpNl{^8+`8T#y>BK zJ^ZorcL%=s50lcD<0l8b*TYW^dN=-gsrr-u75MR(*Zhk3@q7OBC(FNoF!19y{<(|g zli!E@0#AK@<@t|@e_#K@H$VD|zx`VGFZ}o?Km7V9e?u-9rM|HL=F-b*` zAQkq;6>}h+W{z=G@iNm(<&naiCi!Fra#U(AbBs`a3nZ|>gx-S&F!&J4qZxjXqQXo5 z+!chK=ayqs!kLEOtdx_v?B-QCEt%;eG@>g}P*^TM3-y-~C?ntn66|3^Svy z0cBkona@iF;Yk=*`=D-(6>LCB_3M41qk&x@z%mb?<{Kt0;68s$TS)CYlR zEXn{kiw1>QC>35nxvNUsC^sKe=ZgT&!&GQ?P}nqAgzK31yfnx>8G8zp`J%piQENkk zf{kJcK?V`YXi-^I#OU>K0Te^3l)DCD5@3)YAIc0~dR#uJ={jY#f(=c6 zv~3igPYp7Uah0J(xlDb*Q&_7jWh(fNDvjr+K`qA`L_AFt%3K|7U%*o|^(6Eg(%@3{ zI@4*B#;!pgfmwcY0ph#jIbd+(dBMprth1~s6k&<64l;^P`rT^{GU#!EYJ?eMaDF}l zcu{<=MA7$wI)-Iq*gYAe{oCAp}>*W=Or2Ph~h#ydt z!6zlp0jXl=;?)W_TJfq;J~XI0x`9AY4v39;j!E~E4I#=ttRX+x^Cpd^LBJ0zK#ro~ znN85*SrC*GMTKVZUw2ez-^nm7it#JneSzxKq^U)j#fsncnxd(J{_9Tp)F4Q`HBLtu zS8YwF_K~x|ENjO|%viy^QEuxX2zCImm1hwAJb&5-xAYQ^twCnK@IF_PjG56)a(+}3Lh{V7B7yl=C=;H? z4+WEQUU}%14>GWhO}t|rNK`#;JTJ};N;xo}-kB>9Sac09dH`dDHFaPVCNQzYL7BcE zSYC2w17$WEIpk z6UJ3n+NNs|pV`G(p|TC_%_bW=&mdW8nE#A~jpsvy97G(%!d}Ogy#`%8$w_2_`V4aoNeG6A*hs)~ir=AW`{rawPrGd*6fI^K~dh;6kVEL z&Q?f6=kT=WDvcgRIZMWL-67cEnZsmCLvr4_8^AbfXy_&7LxY^~d`uH%?Az9BJz<(Ru}+;XdfpkIxlLs*ixD>(&)Yi41JWRw$0bn)#_1gec(XV?IP%l;hiTY0 zMy}xcG(kH984G?p9$$D-LK0@0(xAn$dN(L^e%HH#O1b+W+b#SgO*AO$;;{K$NrPo% zX;Al*r(59~8|9`!<`wAPhstv~OF}uIh)aXI7%rcvQEnO(&jQa59R<(2hRRm=sCL01 z6)P;M5TWpgtQzI!gHRS0zVNJug#0cO3Fz9*-(` zNFuQC%&+>1L>ZiQk#nVdYLILXYxhtY2Tyu;JSrS}CU=Q?mz?o#XD>-v6rTG!$bN$k zxl~F}2H&60i!^jSTcsS6m#?JJqNq-7aS_ebVDP-OPhyabdx=OKY3shO@!Win1D_I< z!G?IIBecZ2w#y}DSoi!P3?kvR1{q>(fHxC0c?8+ncwXeprnhgi?N17qWI= zgK`WN@H&VwXl);VeX(e9|KXOvErDACw*+np+!DAY@Sj!!H~x94{SQI z*_Zwm_%+Tgf4=|c@s9ugxvy`&`NzNe`kwzBV!QFr|GxEv{RN)-{Or3w*8T>*_}?bQ zFUOA$das8czwytfvOn>^1b#g5%0Kx1tIZ$3@z0+q{qtl0@%ZP5d;aq&_V4*GI~JnV z+DM`@$z+x70D1ucc3xD~f90Evan)6;1+kz?lk(ny-`HzyK$|G1P^(hrlfW&?G3#$!lf^cg{IGz4P4i{N!>0Y%lPzDD%w#Kk!4KS-8@u~v4{+LB4c5z4Hp50$ zJ0EZLL>i>#O8UD;$^e7qDq=4A!84@_GUG{^KW$dWNF0O28s$TS z9~tbDb4~*4qalM!>~B=Dx79Ip&LfY|;3kb$Ys0Rn*_MGD)CgQ&85&fvZ9D=R#71p7 zJIbQ_AoXs1!QX`qthq=7WHEoV2C+#H3-gC|%3Xta3XqfG3)4iYmM%|uAD|0kPQa3? zWo%Sb4RR+0i^_CoC^Np$&aN&J-Ym4C?)ObdMyGsekT}1BxyG!iKV|YP4bo(i!T}bA zgW5xPEJTl@Fsas;Bn8w*R}7{?g|8D(LSi3s4ycR0TaK^4UhQP)6yQQwKOmHel32qq z6*L%_3u7rxxD7Pre94aY0nH1%KNG4^b=1EQFnHB|m=q?S!9uJTorVI@**JdW* z)8krU(V##k`C;Lo*-_;aHOftcXMp+~4eCb~%`OlNtSN-e1;#^Ggfklh8jSlUmYmtD z+Cv*M5*m!i56=*|*>6zVhGw^k=`g@f%HwH-6&_@7LA+zkye2g5~Xv-#BH`|I3Zvcm?~r z=htZ;PljYSv`2PgIanG;oV*j4^JFcKrJ!mH7TF2EeNO|;Gt)?@J$W*Qv zZs+O}w~N*;>}%Djq;u|r_q?SsGtKQ z;|gVJ^1v>}Tk2Lc@Rx2%u9{gzyVa@57cKAulxe2)9nEBkY4a<+|GYz1&hs~( zH~a<=g*taj($K9`DhN_oC$o(joHQnfOp*Ep#KNgTs_--6Jn$QIOL`C!vxc~ju;%&e z)#nYd&@{-6d&t!#10h4WDk;T|oZsj^AZw84)!e}GM2+&HK}vSIu5WyJU{1=N<7&yS zne8#m;*#>7Ge$M`r;GXi~jdH7cFsO$rW#L%^+^P{i#r2~6(5T`uFULjO9c9sdkeMM&oN%!? z@EfZ#MddL@&=qNbY+ItkiS)Xv9TV$76|C_TP-ZfMAt=lYiKgULA7sqf3p}41r2M%i zFNrc%ms~*^^;HcLzKd;aJU0z8ua5y7uJ4PorZd{vxyO^=Ssl$E<8Hq+q>b{SLE-0Y z{7^=)mIhNYcFIg6*^nXdAU3Xikl_{79X)N8#f#g{JQqT8Rw3Oy6Et2#Su`J1QJz6u z>9C@#GT!tB$yw;T6*mAnRXGRC6IalpDCJQG$hhPu%7NChr@YUB8^fL-c6+Xrn+BQm zD0p3{jPF7jnLC;>%Yv~V{wvcPh`H#+8myF?1~s|_1X3CUlyMvjhp8`IA6u*rY?h*G zQs$p}y`aH26+npC8In?X9>WamgZyz}iW*|!&>+Z z70=xV*>6;UiYS+nl1Kv(Mx`u^Ov`CJHw`lBk*NZTDl?jW;O1!S2n{k7v-}l6&YI`e zC?6WsHHZ$m@Qg3G3J+xrQaYNy3uRyY$97A9l76pzP@qRPopT^p)q+2bn^(J`Ck|!aYsFLV2Io2+*2%ZQIx==OauuH0e?1Y_7NrdKm-g4&Cgx z;)Z196(>m Date: Mon, 12 Jun 2023 17:21:51 +0200 Subject: [PATCH 065/172] remove debug prints --- scopesim/effects/spectral_trace_list_utils.py | 5 +---- scopesim/optics/optical_train.py | 1 - 2 files changed, 1 insertion(+), 5 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 8937b769..3c3d225c 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -141,7 +141,7 @@ def map_spectra_to_focal_plane(self, fov): The method returns a section of the fov image along with info on where this image lies in the focal plane. """ - + print("Mapping", fov.meta['trace_id']) # Initialise the image based on the footprint of the spectral # trace and the focal plane WCS wave_min = fov.meta['wave_min'].value # [um] @@ -213,9 +213,6 @@ def map_spectra_to_focal_plane(self, fov): dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy self.dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, fill_value="extrapolate") - print("Mean dispersion:", np.mean(self.dlam_per_pix(lam))) - print("Pixel size:", pixsize) - print("Dispersion direction:", self.dispersion_axis) try: xilam = XiLamImage(fov, self.dlam_per_pix) self._xilamimg = xilam # ..todo: remove or make available with a debug flag? diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index ea8620b8..73cbac6c 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -183,7 +183,6 @@ def observe(self, orig_source, update=True, **kwargs): # [3D - Atmospheric shifts, PSF, NCPAs, Grating shift/distortion] fovs = self.fov_manager.fovs for fov in fovs: - print("Extracting from", fov.meta['trace_id']) # print("FOV", fov_i+1, "of", n_fovs, flush=True) # .. todo: possible bug with bg flux not using plate_scale # see fov_utils.combine_imagehdu_fields From 68475f8158a6dbea357523fea18bb6f3ec6120ce Mon Sep 17 00:00:00 2001 From: oczoske Date: Tue, 13 Jun 2023 16:14:30 +0200 Subject: [PATCH 066/172] print -> logging.info --- scopesim/effects/spectral_trace_list_utils.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 3c3d225c..ef6c05a2 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -141,7 +141,7 @@ def map_spectra_to_focal_plane(self, fov): The method returns a section of the fov image along with info on where this image lies in the focal plane. """ - print("Mapping", fov.meta['trace_id']) + logging.info("Mapping %s", fov.meta['trace_id']) # Initialise the image based on the footprint of the spectral # trace and the focal plane WCS wave_min = fov.meta['wave_min'].value # [um] @@ -174,7 +174,8 @@ def map_spectra_to_focal_plane(self, fov): ## Check if spectral trace footprint is outside FoV if xmax < 0 or xmin > naxis1d or ymax < 0 or ymin > naxis2d: - logging.warning("Spectral trace footprint is outside FoV") + logging.warning("Spectral trace %s: footprint is outside FoV", + fov.meta['trace_id']) return None # Only work on parts within the FoV @@ -461,11 +462,10 @@ def __init__(self, fov, dlam_per_pix): dlam_per_pix_val = dlam_per_pix(np.asarray(self.lam)) except TypeError: dlam_per_pix_val = dlam_per_pix - logging.warning("Using scalar dlam_per_pix = %.2g", dlam_per_pix_val) + logging.warning("Using scalar dlam_per_pix = %.2g", + dlam_per_pix_val) for i, eta in enumerate(cube_eta): - #if abs(eta) > fov.slit_width / 2: # ..todo: needed? - # continue lam0 = self.lam + dlam_per_pix_val * eta / d_eta # lam0 is the target wavelength. We need to check that this From 99d887bbfde23ea8b9aaaba93bad1c04567bf2f9 Mon Sep 17 00:00:00 2001 From: oczoske Date: Tue, 13 Jun 2023 16:23:28 +0200 Subject: [PATCH 067/172] Following a pylint recommendation --- scopesim/effects/spectral_trace_list_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index ef6c05a2..4745cff5 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -625,7 +625,7 @@ def __call__(self, x, y, grid=False, **kwargs): # corresponding column in temp. This gives the diagonal of the # expression in the "grid" branch. result = (yvec * temp).sum(axis=0) - if orig_shape == () or orig_shape is None: + if not orig_shape: result = np.float32(result) else: result = result.reshape(orig_shape) From ca266fce4e19aca52ff6af60131e68ce1a8351ce Mon Sep 17 00:00:00 2001 From: oczoske Date: Tue, 13 Jun 2023 16:32:14 +0200 Subject: [PATCH 068/172] warning -> info --- scopesim/effects/spectral_trace_list_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 4745cff5..af89bf11 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -174,8 +174,8 @@ def map_spectra_to_focal_plane(self, fov): ## Check if spectral trace footprint is outside FoV if xmax < 0 or xmin > naxis1d or ymax < 0 or ymin > naxis2d: - logging.warning("Spectral trace %s: footprint is outside FoV", - fov.meta['trace_id']) + logging.info("Spectral trace %s: footprint is outside FoV", + fov.meta['trace_id']) return None # Only work on parts within the FoV From 27904b7b9b00c0f0028ba269c2d6fd584cb45432 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 15:08:54 +0200 Subject: [PATCH 069/172] Further harmonisation of single quotes to double quotes --- scopesim/effects/apertures.py | 14 +- scopesim/effects/detector_list.py | 2 +- scopesim/effects/fits_headers.py | 6 +- scopesim/effects/metis_lms_trace_list.py | 192 +++++++++--------- scopesim/effects/psfs.py | 10 +- scopesim/effects/spectral_trace_list.py | 8 +- scopesim/effects/spectral_trace_list_utils.py | 116 +++++------ scopesim/optics/image_plane_utils.py | 4 +- scopesim/reports/rst_utils.py | 18 +- scopesim/source/source_templates.py | 2 +- 10 files changed, 186 insertions(+), 186 deletions(-) diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index ce4627b3..600836fa 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -453,7 +453,7 @@ def fov_grid(self, which="edges", **kwargs): def change_slit(self, slitname=None): """Change the current slit""" if not slitname or slitname in self.slits.keys(): - self.meta['current_slit'] = slitname + self.meta["current_slit"] = slitname self.include = slitname else: raise ValueError("Unknown slit requested: " + slitname) @@ -483,8 +483,8 @@ def current_slit(self): @property def display_name(self): - return f'{self.meta["name"]} : ' \ - f'[{from_currsys(self.meta["current_slit"])}]' + return f"{self.meta['name']} : " \ + f"[{from_currsys(self.meta['current_slit'])}]" def __getattr__(self, item): @@ -499,13 +499,13 @@ def get_table(self): """ names = list(self.slits.keys()) slits = self.slits.values() - xmax = np.array([slit.data['x'].max() * u.Unit(slit.meta['x_unit']) + xmax = np.array([slit.data["x"].max() * u.Unit(slit.meta["x_unit"]) .to(u.mas) for slit in slits]) - xmin = np.array([slit.data['x'].min() * u.Unit(slit.meta['x_unit']) + xmin = np.array([slit.data["x"].min() * u.Unit(slit.meta["x_unit"]) .to(u.mas) for slit in slits]) - ymax = np.array([slit.data['y'].max() * u.Unit(slit.meta['y_unit']) + ymax = np.array([slit.data["y"].max() * u.Unit(slit.meta["y_unit"]) .to(u.mas) for slit in slits]) - ymin = np.array([slit.data['y'].min() * u.Unit(slit.meta['y_unit']) + ymin = np.array([slit.data["y"].min() * u.Unit(slit.meta["y_unit"]) .to(u.mas) for slit in slits]) xmax = quantify(xmax, u.mas) xmin = quantify(xmin, u.mas) diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index 4c080dd4..70c5ba5e 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -244,7 +244,7 @@ def detector_headers(self, ids=None): # hdr["GAIN"] = row["gain"] if "id" in row: hdr["DET_ID"] = row["id"] - hdr["EXTNAME"] = f'DET_{row["id"]}' + hdr["EXTNAME"] = f"DET_{row['id']}" row_dict = {col: row[col] for col in row.colnames} hdr.update(row_dict) diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index 70f173fb..c72273d9 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -444,7 +444,7 @@ def apply_to(self, hdul, **kwargs): eff_meta[key] = f"Table object of length: {len(value)}" # add effect under the EFFn keyword - prefix = self.meta['keyword_prefix'] + prefix = self.meta["keyword_prefix"] class_name = opt_train[eff_name].__class__.__name__ self.dict_list = [{"ext_number": self.meta["ext_number"], "keywords": { @@ -501,7 +501,7 @@ def apply_to(self, hdul, **kwargs): src = opt_train._last_source src_dicts = [] if src is not None: - prefix = self.meta['keyword_prefix'] + prefix = self.meta["keyword_prefix"] for i, field in enumerate(src.fields): src_class = field.__class__.__name__ @@ -584,7 +584,7 @@ def apply_to(self, hdul, **kwargs): opt_train = kwargs.get("optical_train") if isinstance(hdul, fits.HDUList) and opt_train is not None: cmds = opt_train.cmds.cmds.dic - sim_prefix = self.meta['keyword_prefix'] + sim_prefix = self.meta["keyword_prefix"] resolve_prefix = "unresolved_" if not self.meta["resolve"] else "" # needed for the super().apply_to method self.dict_list = [{"ext_number": self.meta["ext_number"], diff --git a/scopesim/effects/metis_lms_trace_list.py b/scopesim/effects/metis_lms_trace_list.py index c17441d3..4286f59d 100644 --- a/scopesim/effects/metis_lms_trace_list.py +++ b/scopesim/effects/metis_lms_trace_list.py @@ -37,24 +37,24 @@ def __init__(self, **kwargs): #self.params = {"wavelen": "!OBS.wavelen"} #self.params.update(kwargs) - self.wavelen = self.meta['wavelen'] + self.wavelen = self.meta["wavelen"] # field of view of the instrument # ..todo: get this from aperture list self.slicelist = self._file["Aperture List"].data - #self.view = np.array([self.meta['naxis1'] * self.meta['pixscale'], - # self.meta['nslice'] * self.meta['slicewidth']]) - self.view = np.array([self.slicelist['right'].max() - - self.slicelist['left'].min(), - self.slicelist['top'].max() - - self.slicelist['bottom'].min()]) + #self.view = np.array([self.meta["naxis1"] * self.meta["pixscale"], + # self.meta["nslice"] * self.meta["slicewidth"]]) + self.view = np.array([self.slicelist["right"].max() - + self.slicelist["left"].min(), + self.slicelist["top"].max() - + self.slicelist["bottom"].min()]) #for sli, spt in enumerate(self.spectral_traces.values()): - # spt.meta['xmin'] = self.slicelist['left'][sli] - # spt.meta['xmax'] = self.slicelist['right'][sli] - # spt.meta['ymin'] = self.slicelist['bottom'][sli] - # spt.meta['ymax'] = self.slicelist['top'][sli] + # spt.meta["xmin"] = self.slicelist["left"][sli] + # spt.meta["xmax"] = self.slicelist["right"][sli] + # spt.meta["ymin"] = self.slicelist["bottom"][sli] + # spt.meta["ymax"] = self.slicelist["top"][sli] #if self._file is not None: # print(self._file) @@ -77,7 +77,7 @@ def apply_to(self, obj, **kwargs): if isinstance(obj, FieldOfViewBase): # Application to field of view - if obj.hdu is not None and obj.hdu.header['NAXIS'] == 3: + if obj.hdu is not None and obj.hdu.header["NAXIS"] == 3: obj.cube = obj.hdu elif obj.hdu is None and obj.cube is None: obj.cube = obj.make_cube_hdu() @@ -86,26 +86,26 @@ def apply_to(self, obj, **kwargs): n_z, n_y, n_x = fovcube.shape fovwcs = WCS(obj.cube.header) # Make this linear to avoid jump at RA 0 deg - fovwcs.wcs.ctype = ['LINEAR', 'LINEAR', fovwcs.wcs.ctype[2]] + fovwcs.wcs.ctype = ["LINEAR", "LINEAR", fovwcs.wcs.ctype[2]] fovwcs_spat = fovwcs.sub(2) - ny_slice = self.meta['slice_samples'] # + ny_slice = self.meta["slice_samples"] # # Spatial pixel coordinates xslice, yslice = np.meshgrid(np.arange(n_x), np.arange(ny_slice)) - fovimage = np.zeros((obj.detector_header['NAXIS2'], - obj.detector_header['NAXIS1']), + fovimage = np.zeros((obj.detector_header["NAXIS2"], + obj.detector_header["NAXIS1"]), dtype=np.float32) for sptid, spt in self.spectral_traces.items(): - ymin = spt.meta['fov']['y_min'] - ymax = spt.meta['fov']['y_max'] + ymin = spt.meta["fov"]["y_min"] + ymax = spt.meta["fov"]["y_max"] slicewcs = deepcopy(fovwcs) - slicewcs.wcs.ctype = ['LINEAR', 'LINEAR', slicewcs.wcs.ctype[2]] + slicewcs.wcs.ctype = ["LINEAR", "LINEAR", slicewcs.wcs.ctype[2]] slicewcs.wcs.crpix[1] = (ny_slice + 1) / 2 slicewcs.wcs.crval[1] = (ymin + ymax) / 2 / 3600 slicewcs.wcs.cdelt[1] = (ymax - ymin) / ny_slice / 3600 @@ -125,20 +125,20 @@ def apply_to(self, obj, **kwargs): slicecube[islice] = ifov(yfov, xfov, grid=False) slicefov = FieldOfView(obj.header, - [obj.meta['wave_min'], obj.meta['wave_max']]) + [obj.meta["wave_min"], obj.meta["wave_max"]]) slicefov.detector_header = obj.detector_header - slicefov.meta['xi_min'] = obj.meta['xi_min'] - slicefov.meta['xi_max'] = obj.meta['xi_max'] - slicefov.meta['trace_id'] = sptid + slicefov.meta["xi_min"] = obj.meta["xi_min"] + slicefov.meta["xi_max"] = obj.meta["xi_max"] + slicefov.meta["trace_id"] = sptid slicefov.cube = fits.ImageHDU(header=slicewcs.to_header(), data=slicecube) #slicefov.cube.writeto(f"slicefov_{sptid}.fits", overwrite=True) slicefov.hdu = spt.map_spectra_to_focal_plane(slicefov) - sxmin = slicefov.hdu.header['XMIN'] - sxmax = slicefov.hdu.header['XMAX'] - symin = slicefov.hdu.header['YMIN'] - symax = slicefov.hdu.header['YMAX'] + sxmin = slicefov.hdu.header["XMIN"] + sxmax = slicefov.hdu.header["XMAX"] + symin = slicefov.hdu.header["YMIN"] + symax = slicefov.hdu.header["YMAX"] fovimage[symin:symax, sxmin:sxmax] += slicefov.hdu.data obj.hdu = fits.ImageHDU(data=fovimage, header=obj.detector_header) @@ -149,14 +149,14 @@ def make_spectral_traces(self): """ Compute the transformations by interpolation """ - #nslice = len(self._file['Aperture List'].data) + #nslice = len(self._file["Aperture List"].data) # determine echelle order and angle from specified wavelength tempres = self._angle_from_lambda() - self.meta['order'] = tempres['Ord'] - self.meta['angle'] = tempres['Angle'] + self.meta["order"] = tempres["Ord"] + self.meta["angle"] = tempres["Angle"] spec_traces = {} - for sli in np.arange(self.meta['nslice']): + for sli in np.arange(self.meta["nslice"]): slicename = "Slice " + str(sli + 1) spec_traces[slicename] = MetisLMSSpectralTrace( self._file, @@ -168,9 +168,9 @@ def _angle_from_lambda(self): """ Determine optimal echelle rotation angle for wavelength """ - lam = from_currsys(self.meta['wavelen']) - grat_spacing = self.meta['grat_spacing'] - wcal = self._file['WCAL'].data + lam = from_currsys(self.meta["wavelen"]) + grat_spacing = self.meta["grat_spacing"] + wcal = self._file["WCAL"].data return echelle_setting(lam, grat_spacing, wcal) @@ -188,18 +188,18 @@ class MetisLMSSpectralTrace(SpectralTrace): } def __init__(self, hdulist, spslice, params, **kwargs): - polyhdu = hdulist['Polynomial coefficients'] + polyhdu = hdulist["Polynomial coefficients"] params.update(kwargs) - params['aperture_id'] = spslice - params['slice'] = spslice + params["aperture_id"] = spslice + params["slice"] = spslice super().__init__(polyhdu, **params) self._file = hdulist - self.meta['description'] = "Slice " + str(spslice + 1) - self.meta['trace_id'] = f"Slice {spslice + 1}" + self.meta["description"] = "Slice " + str(spslice + 1) + self.meta["trace_id"] = f"Slice {spslice + 1}" self.meta.update(params) # Provisional: - self.meta['fov'] = self.fov_grid() + self.meta["fov"] = self.fov_grid() def fov_grid(self): """ @@ -212,21 +212,21 @@ def fov_grid(self): arcsec. """ - aperture = self._file['Aperture list'].data[self.meta['slice']] - x_min = aperture['left'] - x_max = aperture['right'] - y_min = aperture['bottom'] - y_max = aperture['top'] - trace_id = self.meta['trace_id'] + aperture = self._file["Aperture list"].data[self.meta["slice"]] + x_min = aperture["left"] + x_max = aperture["right"] + y_min = aperture["bottom"] + y_max = aperture["top"] + trace_id = self.meta["trace_id"] layout = ioascii.read(find_file("!DET.layout.file_name")) det_lims = {} - xhw = layout['pixel_size'] * layout['x_size'] / 2 - yhw = layout['pixel_size'] * layout['y_size'] / 2 - det_lims['xd_min'] = min(layout['x_cen'] - xhw) - det_lims['xd_max'] = max(layout['x_cen'] + xhw) - det_lims['yd_min'] = min(layout['y_cen'] - yhw) - det_lims['yd_max'] = max(layout['y_cen'] + yhw) + xhw = layout["pixel_size"] * layout["x_size"] / 2 + yhw = layout["pixel_size"] * layout["y_size"] / 2 + det_lims["xd_min"] = min(layout["x_cen"] - xhw) + det_lims["xd_max"] = max(layout["x_cen"] + xhw) + det_lims["yd_min"] = min(layout["y_cen"] - yhw) + det_lims["yd_max"] = max(layout["y_cen"] + yhw) wave_min, wave_max = self.get_waverange(det_lims) # ..todo: just a hack - xi and x are the same except xi is a quantity @@ -241,10 +241,10 @@ def fov_grid(self): def get_waverange(self, det_mm_lims): """Determine wavelength range that spectral trace covers on image plane""" - xmin = det_mm_lims['xd_min'] - xmax = det_mm_lims['xd_max'] + xmin = det_mm_lims["xd_min"] + xmax = det_mm_lims["xd_max"] - lam0 = from_currsys(self.meta['wavelen']) + lam0 = from_currsys(self.meta["wavelen"]) xi0 = 0. ymid = self.xilam2y(xi0, lam0)[0] # estimate y level of trace @@ -263,15 +263,15 @@ def compute_interpolation_functions(self): matrices = self.get_matrices() # matrices are transposed to align argument sequence # with the name of the functions - self.xilam2x = Transform2D(matrices['A'].T, + self.xilam2x = Transform2D(matrices["A"].T, pretransform_x=self.sky2fp, pretransform_y=self.lam2phase) - self.xilam2y = Transform2D(matrices['B'].T, + self.xilam2y = Transform2D(matrices["B"].T, pretransform_x=self.sky2fp, pretransform_y=self.lam2phase) - self.xy2lam = Transform2D(matrices['AI'], + self.xy2lam = Transform2D(matrices["AI"], posttransform=self.phase2lam) - self.xy2xi = Transform2D(matrices['BI'], + self.xy2xi = Transform2D(matrices["BI"], posttransform=self.fp2sky) @@ -295,17 +295,17 @@ def get_matrices(self): ------- dict of four np.arrays of shape (4, 4) each """ - spslice = self.meta['slice'] - order = self.meta['order'] - angle = self.meta['angle'] - matnames = ['A', 'B', 'AI', 'BI'] + spslice = self.meta["slice"] + order = self.meta["order"] + angle = self.meta["angle"] + matnames = ["A", "B", "AI", "BI"] matrices = {} poly = self.table for matid in range(4): - select = ((poly['Ord'] == order) * - (poly['Sli'] == spslice) * - (poly['Mat'] == matid)) + select = ((poly["Ord"] == order) * + (poly["Sli"] == spslice) * + (poly["Mat"] == matid)) if not np.any(select): raise KeyError("Combination of Order, Slice not found") @@ -313,11 +313,11 @@ def get_matrices(self): thematrix = np.zeros((4, 4)) for i in range(4): for j in range(4): - sel_ij = (subpoly['Row'] == i) * (subpoly['Col'] == j) - thematrix[i, j] = (subpoly['A11'][sel_ij] * angle**3 + - subpoly['A12'][sel_ij] * angle**2 + - subpoly['A21'][sel_ij] * angle + - subpoly['A22'][sel_ij]) + sel_ij = (subpoly["Row"] == i) * (subpoly["Col"] == j) + thematrix[i, j] = (subpoly["A11"][sel_ij] * angle**3 + + subpoly["A12"][sel_ij] * angle**2 + + subpoly["A21"][sel_ij] * angle + + subpoly["A22"][sel_ij]) matrices[matnames[matid]] = thematrix return matrices @@ -338,7 +338,7 @@ def lam2phase(self, lam): ------- Phase : ndarray """ - return self.meta['order'] * lam / (2 * self.meta['grat_spacing']) + return self.meta["order"] * lam / (2 * self.meta["grat_spacing"]) def phase2lam(self, phase): """ @@ -355,24 +355,24 @@ def phase2lam(self, phase): ------- wavelength : ndarray (um) """ - return 2 * self.meta['grat_spacing'] * phase / self.meta['order'] + return 2 * self.meta["grat_spacing"] * phase / self.meta["order"] def sky2fp(self, xi): """ Convert position in arcsec to position in FP2 """ - return xi / self.meta['plate_scale'] + return xi / self.meta["plate_scale"] def fp2sky(self, fp_x): """ Convert position in FP2 to position on sky """ - return fp_x * self.meta['plate_scale'] + return fp_x * self.meta["plate_scale"] def __repr__(self): - msg = ' "{}" : {} um : Order {} : Angle {}'\ - ''.format(self.meta["description"], + msg = " \"{}\" : {} um : Order {} : Angle {}"\ + "".format(self.meta["description"], from_currsys(self.meta["wavelen"]), self.meta["order"], self.meta["angle"]) @@ -410,18 +410,18 @@ def echelle_setting(wavelength, grat_spacing, wcal_def): wcal = wcal_def elif isinstance(wcal_def, str): try: - wcal = fits.getdata(wcal_def, extname='WCAL') + wcal = fits.getdata(wcal_def, extname="WCAL") except OSError: wcal = ioascii.read(wcal_def, comment="^#", format="csv") else: raise TypeError("wcal_def not in recognised format:", wcal_def) # Compute angles, determine which order gives angle closest to zero - angles = wcal['c0'] * wavelength + wcal['c1'] + angles = wcal["c0"] * wavelength + wcal["c1"] imin = np.argmin(np.abs(angles)) # Extract parameters - order = wcal['Ord'][imin] + order = wcal["Ord"][imin] angle = angles[imin] # Compute the phase corresponding to the wavelength @@ -443,13 +443,13 @@ def __init__(self, filename, ext_id="Aperture List", **kwargs): filename = find_file(from_currsys(filename)) ap_hdr = fits.getheader(filename, extname=ext_id) ap_list = fits.getdata(filename, extname=ext_id) - xmin, xmax = ap_list['left'].min(), ap_list['right'].max() - ymin, ymax = ap_list['bottom'].min(), ap_list['top'].max() + xmin, xmax = ap_list["left"].min(), ap_list["right"].max() + ymin, ymax = ap_list["bottom"].min(), ap_list["top"].max() slicer_dict = {"x": [xmin, xmax, xmax, xmin], "y": [ymin, ymin, ymax, ymax]} try: - kwargs["x_unit"] = ap_hdr['X_UNIT'] - kwargs["y_unit"] = ap_hdr['Y_UNIT'] + kwargs["x_unit"] = ap_hdr["X_UNIT"] + kwargs["y_unit"] = ap_hdr["Y_UNIT"] except KeyError: pass @@ -475,13 +475,13 @@ def __init__(self, **kwargs): self.meta = self._class_params self.meta.update(kwargs) - filename = find_file(self.meta['filename']) - wcal = fits.getdata(filename, extname='WCAL') - if 'wavelen' in kwargs: - wavelen = from_currsys(kwargs['wavelen']) - grat_spacing = self.meta['grat_spacing'] + filename = find_file(self.meta["filename"]) + wcal = fits.getdata(filename, extname="WCAL") + if "wavelen" in kwargs: + wavelen = from_currsys(kwargs["wavelen"]) + grat_spacing = self.meta["grat_spacing"] ech = echelle_setting(wavelen, grat_spacing, wcal) - self.meta['order'] = ech['Ord'] + self.meta["order"] = ech["Ord"] else: wavelen = None @@ -494,18 +494,18 @@ def __init__(self, **kwargs): def make_ter_curve(self, wcal, wavelen=None): """Compute the blaze function for the selected order""" - order = self.meta['order'] - eff_wid = self.meta['eff_wid'] - eff_max = self.meta['eff_max'] + order = self.meta["order"] + eff_wid = self.meta["eff_wid"] + eff_max = self.meta["eff_max"] - wcal_ord = wcal[wcal['Ord'] == self.meta['order']] + wcal_ord = wcal[wcal["Ord"] == self.meta["order"]] if wavelen is not None: lam = np.linspace(wavelen - 0.2, wavelen + 0.2, 1001) - angle = wcal_ord['c0'] * lam + wcal_ord['c1'] + angle = wcal_ord["c0"] * lam + wcal_ord["c1"] else: angle = np.linspace(7, -7, 10001) - lam = wcal_ord['ic0'] * angle + wcal_ord['ic1'] + lam = wcal_ord["ic0"] * angle + wcal_ord["ic1"] phase = order * np.pi * np.sin(np.deg2rad(angle)) * eff_wid efficiency = eff_max * np.sinc(phase / np.pi)**2 diff --git a/scopesim/effects/psfs.py b/scopesim/effects/psfs.py index bf0c526a..c68cce80 100644 --- a/scopesim/effects/psfs.py +++ b/scopesim/effects/psfs.py @@ -139,7 +139,7 @@ def plot(self, obj=None, **kwargs): plt.gcf().clf() kernel = self.get_kernel(obj) - plt.imshow(kernel, norm=LogNorm(), origin='lower', **kwargs) + plt.imshow(kernel, norm=LogNorm(), origin="lower", **kwargs) return plt.gcf() @@ -519,7 +519,7 @@ def plot(self, obj=None, **kwargs): plt.subplot2grid((2, 2), (0, 0)) im = kernel r_sky = pixel_scale * im.shape[0] - plt.imshow(im, norm=LogNorm(), origin='lower', + plt.imshow(im, norm=LogNorm(), origin="lower", extent= [-r_sky, r_sky, -r_sky, r_sky], **kwargs) plt.ylabel("[arcsec]") @@ -529,10 +529,10 @@ def plot(self, obj=None, **kwargs): r = 16 im = kernel[y-r:y+r, x-r:x+r] r_sky = pixel_scale * im.shape[0] - plt.imshow(im, norm=LogNorm(), origin='lower', + plt.imshow(im, norm=LogNorm(), origin="lower", extent= [-r_sky, r_sky, -r_sky, r_sky], **kwargs) plt.ylabel("[arcsec]") - plt.gca().yaxis.set_label_position('right') + plt.gca().yaxis.set_label_position("right") plt.subplot2grid((2, 2), (1, 0), colspan=2) hdr = self._file[0].header @@ -599,7 +599,7 @@ def get_kernel(self, fov): ii = pu.nearest_index(fov.wavelength, self._waveset) ext = self.kernel_indexes[ii] if ext != self.current_layer_id: - if fov.hdu.header['NAXIS'] == 3: + if fov.hdu.header["NAXIS"] == 3: self.current_layer_id = ext self.make_psf_cube(fov) else: diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 0dae902e..633928fd 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -190,7 +190,7 @@ def apply_to(self, obj, **kwargs): # covered by the image slicer (28 slices for LMS; for LSS still only a single slit) # We need a loop over spectral_traces that chops up obj into the single-slice fov before # calling map_spectra... - trace_id = obj.meta['trace_id'] + trace_id = obj.meta["trace_id"] spt = self.spectral_traces[trace_id] obj.hdu = spt.map_spectra_to_focal_plane(obj) @@ -257,8 +257,8 @@ def __repr__(self): return "\n".join([spt.__repr__() for spt in self.spectral_traces]) def __str__(self): - msg = 'SpectralTraceList: "{}" : {} traces' \ - ''.format(self.meta.get("name"), len(self.spectral_traces)) + msg = "SpectralTraceList: \"{}\" : {} traces" \ + "".format(self.meta.get("name"), len(self.spectral_traces)) return msg @@ -358,4 +358,4 @@ def current_trace_list(self): @property def display_name(self): name = self.meta.get("name", self.meta.get("filename", "")) - return f'{name} : [{from_currsys(self.meta["current_trace_list"])}]' + return f"{name} : [{from_currsys(self.meta['current_trace_list'])}]" diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index af89bf11..b93daab5 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -61,11 +61,11 @@ def __init__(self, trace_tbl, **kwargs): if isinstance(trace_tbl, (fits.BinTableHDU, fits.TableHDU)): self.table = Table.read(trace_tbl) - self.meta["trace_id"] = trace_tbl.header.get('EXTNAME', "") - self.dispersion_axis = trace_tbl.header.get('DISPDIR', 'unknown') + self.meta["trace_id"] = trace_tbl.header.get("EXTNAME", "") + self.dispersion_axis = trace_tbl.header.get("DISPDIR", "unknown") elif isinstance(trace_tbl, Table): self.table = trace_tbl - self.dispersion_axis = 'unknown' + self.dispersion_axis = "unknown" else: raise ValueError("trace_tbl must be one of (fits.BinTableHDU, " f"fits.TableHDU, astropy.Table) but is {type(trace_tbl)}") @@ -85,15 +85,15 @@ def fov_grid(self): Spatial limits are determined by the `ApertureMask` effect and are not returned here. """ - trace_id = self.meta['trace_id'] - aperture_id = self.meta['aperture_id'] - lam_arr = self.table[self.meta['wave_colname']] + trace_id = self.meta["trace_id"] + aperture_id = self.meta["aperture_id"] + lam_arr = self.table[self.meta["wave_colname"]] wave_max = np.max(lam_arr) wave_min = np.min(lam_arr) - return {'wave_min': wave_min, 'wave_max': wave_max, - 'trace_id': trace_id, 'aperture_id': aperture_id} + return {"wave_min": wave_min, "wave_max": wave_max, + "trace_id": trace_id, "aperture_id": aperture_id} def compute_interpolation_functions(self): """ @@ -102,10 +102,10 @@ def compute_interpolation_functions(self): Focal plane coordinates are `x` and `y`, in mm. Slit coordinates are `xi` (spatial coordinate along the slit, in arcsec) and `lam` (wavelength, in um). """ - x_arr = self.table[self.meta['x_colname']] - y_arr = self.table[self.meta['y_colname']] - xi_arr = self.table[self.meta['s_colname']] - lam_arr = self.table[self.meta['wave_colname']] + x_arr = self.table[self.meta["x_colname"]] + y_arr = self.table[self.meta["y_colname"]] + xi_arr = self.table[self.meta["s_colname"]] + lam_arr = self.table[self.meta["wave_colname"]] self.wave_min = quantify(np.min(lam_arr), u.um).value self.wave_max = quantify(np.max(lam_arr), u.um).value @@ -144,10 +144,10 @@ def map_spectra_to_focal_plane(self, fov): logging.info("Mapping %s", fov.meta['trace_id']) # Initialise the image based on the footprint of the spectral # trace and the focal plane WCS - wave_min = fov.meta['wave_min'].value # [um] - wave_max = fov.meta['wave_max'].value # [um] - xi_min = fov.meta['xi_min'].value # [arcsec] - xi_max = fov.meta['xi_max'].value # [arcsec] + wave_min = fov.meta["wave_min"].value # [um] + wave_max = fov.meta["wave_max"].value # [um] + xi_min = fov.meta["xi_min"].value # [arcsec] + xi_max = fov.meta["xi_max"].value # [arcsec] xlim_mm, ylim_mm = self.footprint(wave_min=wave_min, wave_max=wave_max, xi_min=xi_min, xi_max=xi_max) @@ -159,13 +159,13 @@ def map_spectra_to_focal_plane(self, fov): det_header = fov.detector_header # WCSD from the FieldOfView - this is the full detector plane - pixsize = fov_header['CDELT1D'] * u.Unit(fov_header['CUNIT1D']) + pixsize = fov_header["CDELT1D"] * u.Unit(fov_header["CUNIT1D"]) pixsize = pixsize.to(u.mm).value - pixscale = fov_header['CDELT1'] * u.Unit(fov_header['CUNIT1']) + pixscale = fov_header["CDELT1"] * u.Unit(fov_header["CUNIT1"]) pixscale = pixscale.to(u.arcsec).value - fpa_wcsd = WCS(det_header, key='D') - naxis1d, naxis2d = det_header['NAXIS1'], det_header['NAXIS2'] + fpa_wcsd = WCS(det_header, key="D") + naxis1d, naxis2d = det_header["NAXIS1"], det_header["NAXIS2"] xlim_px, ylim_px = fpa_wcsd.all_world2pix(xlim_mm, ylim_mm, 0) xmin = np.floor(xlim_px.min()).astype(int) xmax = np.ceil(xlim_px.max()).astype(int) @@ -304,11 +304,11 @@ def footprint(self, wave_min=None, wave_max=None, xi_min=None, xi_max=None): ## range of the spectral trace ## This is only relevant if the trace is given by a table of reference ## points. Otherwise (METIS LMS!) we assume that the range is valid. - if ('wave_colname' in self.meta and - self.meta['wave_colname'] in self.table.colnames): + if ("wave_colname" in self.meta and + self.meta["wave_colname"] in self.table.colnames): # Here, the parameters are obtained from a table of reference points - wave_unit = self.table[self.meta['wave_colname']].unit - wave_val = quantify(self.table[self.meta['wave_colname']].data, + wave_unit = self.table[self.meta["wave_colname"]].unit + wave_val = quantify(self.table[self.meta["wave_colname"]].data, wave_unit) if wave_min is None: @@ -332,11 +332,11 @@ def footprint(self, wave_min=None, wave_max=None, xi_min=None, xi_max=None): ## between the requested range (by method args) and the definition ## range of the spectral trace try: - xi_unit = self.table[self.meta['s_colname']].unit + xi_unit = self.table[self.meta["s_colname"]].unit except KeyError: xi_unit = u.arcsec - xi_val = quantify(self.table[self.meta['s_colname']].data, + xi_val = quantify(self.table[self.meta["s_colname"]].data, xi_unit) if xi_min is None: @@ -395,7 +395,7 @@ def plot(self, wave_min=None, wave_max=None, c="r"): x = self.table[self.meta["x_colname"]][mask] y = self.table[self.meta["y_colname"]][mask] - plt.plot(x, y, 'o', c=c) + plt.plot(x, y, "o", c=c) for wave in np.unique(waves): xx = x[waves==wave] @@ -403,15 +403,15 @@ def plot(self, wave_min=None, wave_max=None, c="r"): dx = xx[-1] - xx[-2] plt.text(x[waves==wave].max() + 0.5 * dx, y[waves==wave].mean(), - str(wave), va='center', ha='left') + str(wave), va="center", ha="left") plt.gca().set_aspect("equal") def __repr__(self): - msg = ' "{}" : [{}, {}]um : Ext {} : Aperture {} : ' \ - 'ImagePlane {}' \ - ''.format(self.meta["trace_id"], + msg = " \"{}\" : [{}, {}]um : Ext {} : Aperture {} : " \ + "ImagePlane {}" \ + "".format(self.meta["trace_id"], round(self.wave_min, 4), round(self.wave_max, 4), self.meta["extension_id"], self.meta["aperture_id"], self.meta["image_plane_id"]) @@ -435,22 +435,22 @@ class XiLamImage(): def __init__(self, fov, dlam_per_pix): # ..todo: we assume that we always have a cube. We use SpecCADO's # add_cube_layer method - cube_wcs = WCS(fov.cube.header, key=' ') + cube_wcs = WCS(fov.cube.header, key=" ") wcs_lam = cube_wcs.sub([3]) - d_xi = fov.cube.header['CDELT1'] - d_xi *= u.Unit(fov.cube.header['CUNIT1']).to(u.arcsec) - d_eta = fov.cube.header['CDELT2'] - d_eta *= u.Unit(fov.cube.header['CUNIT2']).to(u.arcsec) - d_lam = fov.cube.header['CDELT3'] - d_lam *= u.Unit(fov.cube.header['CUNIT3']).to(u.um) + d_xi = fov.cube.header["CDELT1"] + d_xi *= u.Unit(fov.cube.header["CUNIT1"]).to(u.arcsec) + d_eta = fov.cube.header["CDELT2"] + d_eta *= u.Unit(fov.cube.header["CUNIT2"]).to(u.arcsec) + d_lam = fov.cube.header["CDELT3"] + d_lam *= u.Unit(fov.cube.header["CUNIT3"]).to(u.um) # This is based on the cube shape and assumes that the cube's spatial # dimensions are set by the slit aperture (n_lam, n_eta, n_xi) = fov.cube.data.shape # arrays of cube coordinates - cube_xi = d_xi * np.arange(n_xi) + fov.meta['xi_min'].value + cube_xi = d_xi * np.arange(n_xi) + fov.meta["xi_min"].value cube_eta = d_eta * (np.arange(n_eta) - (n_eta - 1) / 2) cube_lam = wcs_lam.all_pix2world(np.arange(n_lam), 1)[0] cube_lam *= u.Unit(wcs_lam.wcs.cunit[0]).to(u.um) @@ -482,12 +482,12 @@ def __init__(self, fov, dlam_per_pix): # Default WCS with xi in arcsec self.wcs = WCS(naxis=2) self.wcs.wcs.crpix = [1, 1] - self.wcs.wcs.crval = [self.lam[0], fov.meta['xi_min'].value] + self.wcs.wcs.crval = [self.lam[0], fov.meta["xi_min"].value] self.wcs.wcs.pc = [[1, 0], [0, 1]] self.wcs.wcs.cdelt = [d_lam, d_xi] - self.wcs.wcs.ctype = ['LINEAR', 'LINEAR'] - self.wcs.wcs.cname = ['WAVELEN', 'SLITPOS'] - self.wcs.wcs.cunit = ['um', 'arcsec'] + self.wcs.wcs.ctype = ["LINEAR", "LINEAR"] + self.wcs.wcs.cname = ["WAVELEN", "SLITPOS"] + self.wcs.wcs.cunit = ["um", "arcsec"] # Alternative: xi = [0, 1], dimensionless self.wcsa = WCS(naxis=2) @@ -495,9 +495,9 @@ def __init__(self, fov, dlam_per_pix): self.wcsa.wcs.crval = [self.lam[0], 0] self.wcsa.wcs.pc = [[1, 0], [0, 1]] self.wcsa.wcs.cdelt = [d_lam, 1./n_xi] - self.wcsa.wcs.ctype = ['LINEAR', 'LINEAR'] - self.wcsa.wcs.cname = ['WAVELEN', 'SLITPOS'] - self.wcs.wcs.cunit = ['um', ''] + self.wcsa.wcs.ctype = ["LINEAR", "LINEAR"] + self.wcsa.wcs.cname = ["WAVELEN", "SLITPOS"] + self.wcs.wcs.cunit = ["um", ""] self.xi = self.wcs.all_pix2world(self.lam[0], np.arange(n_xi), 0)[1] self.npix_xi = n_xi @@ -682,10 +682,10 @@ def xilam2xy_fit(layout, params): Fits are of degree 4 as a function of slit position and wavelength. """ - xi_arr = layout[params['s_colname']] - lam_arr = layout[params['wave_colname']] - x_arr = layout[params['x_colname']] - y_arr = layout[params['y_colname']] + xi_arr = layout[params["s_colname"]] + lam_arr = layout[params["wave_colname"]] + x_arr = layout[params["x_colname"]] + y_arr = layout[params["y_colname"]] ## Filter the lists: remove any points with x==0 ## ..todo: this may not be necessary after sanitising the table @@ -711,10 +711,10 @@ def xy2xilam_fit(layout, params): Fits are of degree 4 as a function of focal plane position """ - xi_arr = layout[params['s_colname']] - lam_arr = layout[params['wave_colname']] - x_arr = layout[params['x_colname']] - y_arr = layout[params['y_colname']] + xi_arr = layout[params["s_colname"]] + lam_arr = layout[params["wave_colname"]] + x_arr = layout[params["x_colname"]] + y_arr = layout[params["y_colname"]] pinit_xi = Polynomial2D(degree=4) pinit_lam = Polynomial2D(degree=4) @@ -734,10 +734,10 @@ def _xiy2xlam_fit(layout, params): # These are helper functions to allow fitting of left/right edges # for the purpose of checking whether a trace is on a chip or not. - xi_arr = layout[params['s_colname']] - lam_arr = layout[params['wave_colname']] - x_arr = layout[params['x_colname']] - y_arr = layout[params['y_colname']] + xi_arr = layout[params["s_colname"]] + lam_arr = layout[params["wave_colname"]] + x_arr = layout[params["x_colname"]] + y_arr = layout[params["y_colname"]] pinit_x = Polynomial2D(degree=4) pinit_lam = Polynomial2D(degree=4) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 32888f3d..0d3c8659 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -497,8 +497,8 @@ def rescale_imagehdu(imagehdu, pixel_scale, wcs_suffix="", conserve_flux=True, imagehdu.header["CRPIX2"+si] *= zoom2 imagehdu.header["CDELT1"+si] = pixel_scale imagehdu.header["CDELT2"+si] = pixel_scale - imagehdu.header["CUNIT1"+si] = "mm" if si == 'D' else "deg" - imagehdu.header["CUNIT2"+si] = "mm" if si == 'D' else "deg" + imagehdu.header["CUNIT1"+si] = "mm" if si == "D" else "deg" + imagehdu.header["CUNIT2"+si] = "mm" if si == "D" else "deg" return imagehdu diff --git a/scopesim/reports/rst_utils.py b/scopesim/reports/rst_utils.py index 79258eef..c347f06a 100644 --- a/scopesim/reports/rst_utils.py +++ b/scopesim/reports/rst_utils.py @@ -170,7 +170,7 @@ def process_code(context_code, code, options): fname = options.get("name", "untitled").split(".")[0] fname = ".".join([fname, fmt]) fname = os.path.join(img_path, fname) - context_code += '\nplt.savefig("{}")'.format(fname) + context_code += "\nplt.savefig(\"{}\")".format(fname) return context_code @@ -302,14 +302,14 @@ def latexify_rst_text(rst_text, filename=None, path=None, title_char="=", parts = publish_parts(text + rst_text, writer_name="latex") if not float_figures: - parts["body"] = parts["body"].replace('begin{figure}', - 'begin{figure}[H]') + parts["body"] = parts["body"].replace("begin{figure}", + "begin{figure}[H]") if use_code_box: - parts["body"] = parts["body"].replace('begin{alltt}', - 'begin{alltt}\n\\begin{lstlisting}[frame=single]') - parts["body"] = parts["body"].replace('end{alltt}', - 'end{lstlisting}\n\\end{alltt}') + parts["body"] = parts["body"].replace("begin{alltt}", + "begin{alltt}\n\\begin{lstlisting}[frame=single]") + parts["body"] = parts["body"].replace("end{alltt}", + "end{lstlisting}\n\\end{alltt}") filename = filename.split(".")[0] + ".tex" file_path = os.path.join(path, filename) @@ -340,8 +340,8 @@ def rstify_rst_text(rst_text, filename=None, path=None, title_char="="): def table_to_rst(tbl, indent=0, rounding=None): if isinstance(rounding, int): for col in tbl.itercols(): - if col.info.dtype.kind == 'f': - col.info.format = '.{}f'.format(rounding) + if col.info.dtype.kind == "f": + col.info.format = ".{}f".format(rounding) tbl_fmtr = TableFormatter() lines, outs = tbl_fmtr._pformat_table(tbl, max_width=-1, max_lines=-1, diff --git a/scopesim/source/source_templates.py b/scopesim/source/source_templates.py index 530422fc..fd998fe6 100644 --- a/scopesim/source/source_templates.py +++ b/scopesim/source/source_templates.py @@ -32,7 +32,7 @@ def empty_sky(flux=0): return sky -@deprecated_renamed_argument('mag', 'flux', '0.1.5') +@deprecated_renamed_argument("mag", "flux", "0.1.5") def star(x=0, y=0, flux=0): """ Source object for a single star in either vega, AB magnitudes, or Jansky From 16a5ec0fa27cdf5dc46bce9af428724ae7963924 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 15:26:35 +0200 Subject: [PATCH 070/172] Use logging with "lazy formatting" where it makes sense --- scopesim/optics/image_plane_utils.py | 6 +++--- scopesim/optics/radiometry_utils.py | 4 ++-- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 0d3c8659..da8e4bd3 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -557,9 +557,9 @@ def reorient_imagehdu(imagehdu, wcs_suffix="", conserve_flux=True, imagehdu.header = hdr elif any(["PC1_1" in key for key in imagehdu.header]): - logging.warning("PC Keywords were found, but not used due to different " - "wcs_suffix given: {} \n {}" - "".format(wcs_suffix, dict(imagehdu.header))) + logging.warning(("PC Keywords were found, but not used due to different " + "wcs_suffix given: %s \n %s"), + wcs_suffix, dict(imagehdu.header)) return imagehdu diff --git a/scopesim/optics/radiometry_utils.py b/scopesim/optics/radiometry_utils.py index 5ccefda0..2316080b 100644 --- a/scopesim/optics/radiometry_utils.py +++ b/scopesim/optics/radiometry_utils.py @@ -137,8 +137,8 @@ def add_surface_to_table(tbl, surf, name, position, silent=True): position=position) else: if not silent: - logging.warning("{} was not found in the meta dictionary of {}. " - "This could cause problems".format(colname, name)) + logging.warning(("%s was not found in the meta dictionary of %s. " + "This could cause problems"), colname, name) colname = real_colname("name", new_tbl.colnames) new_tbl = change_table_entry(new_tbl, colname, name, position=position) From 70627eac8cdc48eeaf89ddf10a88a657affb2002 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 17:12:11 +0200 Subject: [PATCH 071/172] Use f-strings instead of string.format() wherever it makes sense --- scopesim/detector/detector.py | 4 ++-- scopesim/effects/apertures.py | 4 ++-- scopesim/effects/detector_list.py | 3 +-- scopesim/effects/metis_lms_trace_list.py | 8 +++----- scopesim/effects/psfs.py | 6 +++--- scopesim/effects/shifts.py | 4 ++-- scopesim/effects/spectral_trace_list.py | 4 ++-- scopesim/effects/spectral_trace_list_utils.py | 11 +++++------ scopesim/optics/image_plane.py | 4 ++-- scopesim/optics/image_plane_utils.py | 9 +++------ scopesim/optics/radiometry_utils.py | 2 +- scopesim/reports/rst_utils.py | 4 ++-- 12 files changed, 28 insertions(+), 35 deletions(-) diff --git a/scopesim/detector/detector.py b/scopesim/detector/detector.py index 75e33a78..7eee9248 100644 --- a/scopesim/detector/detector.py +++ b/scopesim/detector/detector.py @@ -20,8 +20,8 @@ def extract_from(self, image_plane, spline_order=1, reset=True): if reset: self.reset() if not isinstance(image_plane, ImagePlaneBase): - raise ValueError("image_plane must be an ImagePlane object: {}" - "".format(type(image_plane))) + raise ValueError("image_plane must be an ImagePlane object, but is: " + f"{type(image_plane)}") self._hdu = imp_utils.add_imagehdu_to_imagehdu(image_plane.hdu, self.hdu, spline_order, diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index 600836fa..e9b0641e 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -370,8 +370,8 @@ def __add__(self, other): return self else: - raise ValueError("Secondary argument not of type ApertureList: {}" - "".format(type(other))) + raise ValueError("Secondary argument not of type ApertureList: " + f"{type(other) = }") # def __getitem__(self, item): # return self.get_apertures(item)[0] diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index 70c5ba5e..73d48901 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -209,8 +209,7 @@ def active_table(self): tbl = self.table[mask] else: raise ValueError("Could not determine which detectors are active: " - "{}, {}, ".format(self.meta["active_detectors"], - self.table)) + f"{self.meta['active_detectors']}, {self.table}, ") tbl = utils.from_currsys(tbl) return tbl diff --git a/scopesim/effects/metis_lms_trace_list.py b/scopesim/effects/metis_lms_trace_list.py index 4286f59d..d0a11069 100644 --- a/scopesim/effects/metis_lms_trace_list.py +++ b/scopesim/effects/metis_lms_trace_list.py @@ -371,11 +371,9 @@ def fp2sky(self, fp_x): def __repr__(self): - msg = " \"{}\" : {} um : Order {} : Angle {}"\ - "".format(self.meta["description"], - from_currsys(self.meta["wavelen"]), - self.meta["order"], - self.meta["angle"]) + msg = (f" \"{self.meta['description']}\" : " + f"{from_currsys(self.meta['wavelen'])} um : " + f"Order {self.meta['order']} : Angle {self.meta['angle']}") return msg diff --git a/scopesim/effects/psfs.py b/scopesim/effects/psfs.py index c68cce80..d947d5aa 100644 --- a/scopesim/effects/psfs.py +++ b/scopesim/effects/psfs.py @@ -258,8 +258,8 @@ def plot(self): strehl = pu.wfe2strehl(wfe=wfe, wave=waves) plt.plot(waves, strehl) - plt.xlabel("Wavelength [{}]".format(waves.unit)) - plt.ylabel("Strehl Ratio \n[Total WFE = {}]".format(wfe)) + plt.xlabel(f"Wavelength [{waves.unit}]") + plt.ylabel(f"Strehl Ratio \n[Total WFE = {wfe}]") return plt.gcf() @@ -545,7 +545,7 @@ def plot(self, obj=None, **kwargs): waves = np.arange(hdr["NAXIS2"]) * hdr["CDELT2"] + hdr["CRVAL2"] for i in np.arange(len(waves))[::-1]: plt.plot(wfes, data[i, :], - label=r"{} $\mu m$".format(round(waves[i], 3))) + label=f"{waves[i]:.3f} " + r"$\mu m$") plt.xlabel("RMS Wavefront Error [um]") plt.ylabel("Strehl Ratio") diff --git a/scopesim/effects/shifts.py b/scopesim/effects/shifts.py index 49732631..2e824a6c 100644 --- a/scopesim/effects/shifts.py +++ b/scopesim/effects/shifts.py @@ -45,8 +45,8 @@ def plot(self): tbl = self.get_table() plt.scatter(x=tbl["dx"], y=tbl["dy"], c=tbl["wavelength"]) plt.colorbar() - plt.xlabel("dx [{}]".format(quantify(tbl["dx"], u.arcsec).unit)) - plt.ylabel("dy [{}]".format(quantify(tbl["dy"], u.arcsec).unit)) + plt.xlabel(f"dx [{quantify(tbl['dx'], u.arcsec).unit}]") + plt.ylabel(f"dy [{quantify(tbl['dy'], u.arcsec).unit}]") plt.axvline(0, ls=":") plt.axhline(0, ls=":") # plt.gca().set_aspect("equal") diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 633928fd..abe1edf2 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -257,8 +257,8 @@ def __repr__(self): return "\n".join([spt.__repr__() for spt in self.spectral_traces]) def __str__(self): - msg = "SpectralTraceList: \"{}\" : {} traces" \ - "".format(self.meta.get("name"), len(self.spectral_traces)) + msg = (f"SpectralTraceList: \"{self.meta.get('name')}\" : " + f"{len(self.spectral_traces)} traces") return msg diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index b93daab5..9c4894c9 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -409,12 +409,11 @@ def plot(self, wave_min=None, wave_max=None, c="r"): plt.gca().set_aspect("equal") def __repr__(self): - msg = " \"{}\" : [{}, {}]um : Ext {} : Aperture {} : " \ - "ImagePlane {}" \ - "".format(self.meta["trace_id"], - round(self.wave_min, 4), round(self.wave_max, 4), - self.meta["extension_id"], self.meta["aperture_id"], - self.meta["image_plane_id"]) + msg = (" \"{self.meta['trace_id']}\" : " + f"[{self.wave_min:.4f}, {self.wave_max:.4f}]um : " + f"Ext {self.meta['extension_id']} : " + f"Aperture {self.meta['aperture_id']} : " + f"ImagePlane {self.meta['image_plane_id']}") return msg diff --git a/scopesim/optics/image_plane.py b/scopesim/optics/image_plane.py index 6e6169be..4f61a37c 100644 --- a/scopesim/optics/image_plane.py +++ b/scopesim/optics/image_plane.py @@ -52,8 +52,8 @@ def __init__(self, header, **kwargs): if not any([utils.has_needed_keywords(header, s) for s in ["", "D", "S"]]): - raise ValueError("header must have a valid image-plane WCS: {}" - "".format(dict(header))) + raise ValueError(f"header must have a valid image-plane WCS: " + f"{dict(header)}") image = np.zeros((header["NAXIS2"]+1, header["NAXIS1"]+1)) self.hdu = fits.ImageHDU(data=image, header=header) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index da8e4bd3..0b2f2a8a 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -239,8 +239,7 @@ def add_table_to_imagehdu(table, canvas_hdu, sub_pixel=True, wcs_suffix=""): s = wcs_suffix if not utils.has_needed_keywords(canvas_hdu.header, s): - raise ValueError("canvas_hdu must include an appropriate WCS: {}" - "".format(s)) + raise ValueError("canvas_hdu must include an appropriate WCS: {s}") f = utils.quantity_from_table("flux", table, default_unit=u.Unit("ph s-1")) if s == "D": @@ -271,8 +270,7 @@ def add_table_to_imagehdu(table, canvas_hdu, sub_pixel=True, wcs_suffix=""): def _add_intpixel_sources_to_canvas(canvas_hdu, xpix, ypix, flux, mask): - canvas_hdu.header["comment"] = "Adding {} int-pixel files" \ - "".format(len(flux)) + canvas_hdu.header["comment"] = f"Adding {len(flux)} int-pixel files" xpix = xpix.astype(int) ypix = ypix.astype(int) for ii in range(len(xpix)): @@ -283,8 +281,7 @@ def _add_intpixel_sources_to_canvas(canvas_hdu, xpix, ypix, flux, mask): def _add_subpixel_sources_to_canvas(canvas_hdu, xpix, ypix, flux, mask): - canvas_hdu.header["comment"] = "Adding {} sub-pixel files" \ - "".format(len(flux)) + canvas_hdu.header["comment"] = f"Adding {len(flux)} sub-pixel files" canvas_shape = canvas_hdu.data.shape for ii in range(len(xpix)): if mask[ii]: diff --git a/scopesim/optics/radiometry_utils.py b/scopesim/optics/radiometry_utils.py index 2316080b..64fde22d 100644 --- a/scopesim/optics/radiometry_utils.py +++ b/scopesim/optics/radiometry_utils.py @@ -76,7 +76,7 @@ def combine_throughputs(tbl, surfaces, rows_indexes): surf = surfaces[row[r_name]] action_attr = row[r_action] if action_attr == "": - raise ValueError("No action in surf.meta: {}".format(surf.meta)) + raise ValueError(f"No action in surf.meta: {surf.meta}") if isinstance(surf, SpectralSurface): surf_throughput = getattr(surf, action_attr) diff --git a/scopesim/reports/rst_utils.py b/scopesim/reports/rst_utils.py index c347f06a..ac1d600c 100644 --- a/scopesim/reports/rst_utils.py +++ b/scopesim/reports/rst_utils.py @@ -170,7 +170,7 @@ def process_code(context_code, code, options): fname = options.get("name", "untitled").split(".")[0] fname = ".".join([fname, fmt]) fname = os.path.join(img_path, fname) - context_code += "\nplt.savefig(\"{}\")".format(fname) + context_code += f"\nplt.savefig(\"{fname}\")" return context_code @@ -341,7 +341,7 @@ def table_to_rst(tbl, indent=0, rounding=None): if isinstance(rounding, int): for col in tbl.itercols(): if col.info.dtype.kind == "f": - col.info.format = ".{}f".format(rounding) + col.info.format = f".{rounding}f" tbl_fmtr = TableFormatter() lines, outs = tbl_fmtr._pformat_table(tbl, max_width=-1, max_lines=-1, From b4442227feaa3c92e1612408058acb7c387702fc Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 17:19:11 +0200 Subject: [PATCH 072/172] Use labels for string formatting fields In this case it makes sense to keep the string.format() style formatting, as opposed to an f-string, because the message can be adapted/reused. However, for clarity and to avoid errors, I added labels to the variable fields in the string. --- scopesim/optics/image_plane_utils.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 0b2f2a8a..0309c071 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -32,8 +32,8 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): """ - size_warning = "Header dimension are {} large: {}. Any image made from " \ - "this header will use more that >{} in memory" + size_warning = ("Header dimension are {adverb} large: {num_pix}. Any image " + "made from this header will use more that >{size} in memory") headers = [ht.header for ht in hdu_or_table_list if isinstance(ht, fits.ImageHDU)] @@ -48,9 +48,11 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): pixel_scale=pixel_scale) num_pix = hdr["NAXIS1"] * hdr["NAXIS2"] if num_pix > 2 ** 25: # 2 * 4096**2 - logging.warning(size_warning.format("", num_pix, "256 MB")) + logging.warning(size_warning.format(adverb="", num_pix=num_pix, + size="256 MB")) elif num_pix > 2 ** 28: - raise MemoryError(size_warning.format("too", num_pix, "8 GB")) + raise MemoryError(size_warning.format(adverb="too", num_pix=num_pix, + size="8 GB")) else: logging.warning("No tables or ImageHDUs were passed") hdr = None From 28c2f92344a85345c255cbf264fd8c3f2df4c3c0 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 17:29:12 +0200 Subject: [PATCH 073/172] Refactor function to catch exceptions/warnings first (guard clause) --- scopesim/optics/image_plane_utils.py | 24 +++++++++++------------- 1 file changed, 11 insertions(+), 13 deletions(-) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 0309c071..3a24d991 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -43,20 +43,18 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): pixel_scale=pixel_scale) headers += [tbl_hdr] - if len(headers) > 0: - hdr = _make_bounding_header_from_imagehdus(headers, - pixel_scale=pixel_scale) - num_pix = hdr["NAXIS1"] * hdr["NAXIS2"] - if num_pix > 2 ** 25: # 2 * 4096**2 - logging.warning(size_warning.format(adverb="", num_pix=num_pix, - size="256 MB")) - elif num_pix > 2 ** 28: - raise MemoryError(size_warning.format(adverb="too", num_pix=num_pix, - size="8 GB")) - else: + if not headers: logging.warning("No tables or ImageHDUs were passed") - hdr = None - + return None + + hdr = _make_bounding_header_from_imagehdus(headers, pixel_scale=pixel_scale) + num_pix = hdr["NAXIS1"] * hdr["NAXIS2"] + if num_pix > 2 ** 28: + raise MemoryError(size_warning.format(adverb="too", num_pix=num_pix, + size="8 GB")) + if num_pix > 2 ** 25: # 2 * 4096**2 + logging.warning(size_warning.format(adverb="", num_pix=num_pix, + size="256 MB")) return hdr From 682d70cd93644a1b1050847e6a72cd124ede8bc3 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 17:33:47 +0200 Subject: [PATCH 074/172] Remove trailing newlines --- scopesim/optics/radiometry.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/scopesim/optics/radiometry.py b/scopesim/optics/radiometry.py index a43f1881..c9bef94c 100644 --- a/scopesim/optics/radiometry.py +++ b/scopesim/optics/radiometry.py @@ -92,5 +92,3 @@ def __getitem__(self, item): def __repr__(self): return self.table.__repr__() - - From c526e32828b404c314df8718caeff1614e16c70f Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 20:01:57 +0200 Subject: [PATCH 075/172] Raise NotImplementedError instead of NotImplemented Justification (from "Flake8Rules"): NotImplemented is a special value which should be returned by the binary special methods to indicate that the operation is not implemented with respect to the other type. Raise NotImplementedError to indicate that a super-class method is not implemented and that child classes should implement it. --- scopesim/optics/radiometry.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/optics/radiometry.py b/scopesim/optics/radiometry.py index c9bef94c..6d93bf9d 100644 --- a/scopesim/optics/radiometry.py +++ b/scopesim/optics/radiometry.py @@ -85,7 +85,7 @@ def throughput(self): return self.get_throughput() def plot(self, what="all", rows=None): - raise NotImplemented + raise NotImplementedError() def __getitem__(self, item): return self.surfaces[item] From da4ad4e8e0aa496828c6a80939b4622cb52a4a0d Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 20:05:21 +0200 Subject: [PATCH 076/172] Using nicer quotes in error msg --- scopesim/optics/radiometry.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/optics/radiometry.py b/scopesim/optics/radiometry.py index 6d93bf9d..7d034e5a 100644 --- a/scopesim/optics/radiometry.py +++ b/scopesim/optics/radiometry.py @@ -75,7 +75,7 @@ def get_emission(self, etendue, start=0, end=None, rows=None, @property def emission(self): if "etendue" not in self.meta: - raise ValueError("self.meta['etendue'] must be set") + raise ValueError("self.meta[\"etendue\"] must be set") etendue = quantify(self.meta["etendue"], "m2 arcsec2") return self.get_emission(etendue) From c06ba0c94223ec9b15f84828338c09c9860819e8 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 20:30:14 +0200 Subject: [PATCH 077/172] Use enumerate instead of range(len()) --- scopesim/optics/radiometry_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/optics/radiometry_utils.py b/scopesim/optics/radiometry_utils.py index 64fde22d..1acf57e5 100644 --- a/scopesim/optics/radiometry_utils.py +++ b/scopesim/optics/radiometry_utils.py @@ -157,8 +157,8 @@ def make_surface_dict_from_table(tbl): surf_dict = OrderedDict({}) if tbl is not None and len(tbl) > 0: names = tbl[real_colname("name", tbl.colnames)] - for ii in range(len(tbl)): - surf_dict[names[ii]] = make_surface_from_row(tbl[ii], **tbl.meta) + for ii, row in enumerate(tbl): + surf_dict[names[ii]] = make_surface_from_row(row, **tbl.meta) return surf_dict From 1a431fc7f801267df264b6d6149f2ea02e848b4d Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 20:32:23 +0200 Subject: [PATCH 078/172] I'm gonna assume this string was meant to be a comment??? --- scopesim/system_dict.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index d1462d0d..56625f36 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -21,7 +21,7 @@ def update(self, new_dict): else: self.dic[alias] = new_dict["properties"] else: - "Catch any bang-string properties keys" + # Catch any bang-string properties keys to_pop = [] for key in new_dict: if key.startswith("!"): From 8fc6811cd9b42ead7cb91c075ceda978e661156e Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 21:00:13 +0200 Subject: [PATCH 079/172] Remove unecessary temporary list where pure generator works as well --- scopesim/effects/detector_list.py | 2 +- scopesim/effects/fits_headers.py | 2 +- scopesim/effects/metis_lms_trace_list.py | 4 ++-- scopesim/optics/image_plane.py | 4 ++-- scopesim/optics/image_plane_utils.py | 4 ++-- 5 files changed, 8 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index 73d48901..87a8bc8f 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -215,7 +215,7 @@ def active_table(self): return tbl def detector_headers(self, ids=None): - if ids is not None and all([isinstance(ii, int) for ii in ids]): + if ids is not None and all(isinstance(ii, int) for ii in ids): self.meta["active_detectors"] = list(ids) tbl = utils.from_currsys(self.active_table) diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index c72273d9..ae55f26a 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -293,7 +293,7 @@ def get_relevant_extensions(dic, hdul): ext_type_list = dic["ext_type"] else: ext_type_list = [dic["ext_type"]] - cls = tuple([getattr(fits, cls_str) for cls_str in ext_type_list]) + cls = tuple(getattr(fits, cls_str) for cls_str in ext_type_list) exts += [i for i, hdu in enumerate(hdul) if isinstance(hdu, cls)] return exts diff --git a/scopesim/effects/metis_lms_trace_list.py b/scopesim/effects/metis_lms_trace_list.py index d0a11069..0140975e 100644 --- a/scopesim/effects/metis_lms_trace_list.py +++ b/scopesim/effects/metis_lms_trace_list.py @@ -69,8 +69,8 @@ def apply_to(self, obj, **kwargs): # the maximum wavelength range of LMS volumes = [self.spectral_traces[key].fov_grid() for key in self.spectral_traces] - wave_min = min([vol["wave_min"] for vol in volumes]) - wave_max = max([vol["wave_max"] for vol in volumes]) + wave_min = min(vol["wave_min"] for vol in volumes) + wave_max = max(vol["wave_max"] for vol in volumes) extracted_vols = obj.extract(axes=["wave"], edges=([[wave_min, wave_max]])) obj.volumes = extracted_vols diff --git a/scopesim/optics/image_plane.py b/scopesim/optics/image_plane.py index 4f61a37c..2d213857 100644 --- a/scopesim/optics/image_plane.py +++ b/scopesim/optics/image_plane.py @@ -50,8 +50,8 @@ def __init__(self, header, **kwargs): self.meta.update(kwargs) self.id = header["IMGPLANE"] if "IMGPLANE" in header else 0 - if not any([utils.has_needed_keywords(header, s) - for s in ["", "D", "S"]]): + if not any(utils.has_needed_keywords(header, s) + for s in ["", "D", "S"]): raise ValueError(f"header must have a valid image-plane WCS: " f"{dict(header)}") diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 3a24d991..0e7292a5 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -37,7 +37,7 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): headers = [ht.header for ht in hdu_or_table_list if isinstance(ht, fits.ImageHDU)] - if sum([isinstance(ht, Table) for ht in hdu_or_table_list]) > 0: + if sum(isinstance(ht, Table) for ht in hdu_or_table_list): tbls = [ht for ht in hdu_or_table_list if isinstance(ht, Table)] tbl_hdr = _make_bounding_header_for_tables(tbls, pixel_scale=pixel_scale) @@ -553,7 +553,7 @@ def reorient_imagehdu(imagehdu, wcs_suffix="", conserve_flux=True, hdr.remove(card) imagehdu.header = hdr - elif any(["PC1_1" in key for key in imagehdu.header]): + elif any("PC1_1" in key for key in imagehdu.header): logging.warning(("PC Keywords were found, but not used due to different " "wcs_suffix given: %s \n %s"), wcs_suffix, dict(imagehdu.header)) From fbba0b604bc7d2a7025c4356c51b5ae9be15568c Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 9 Jun 2023 21:09:59 +0200 Subject: [PATCH 080/172] Remove redundant else clause after return --- scopesim/effects/shifts.py | 6 ++---- scopesim/system_dict.py | 6 ++---- 2 files changed, 4 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/shifts.py b/scopesim/effects/shifts.py index 2e824a6c..84db3961 100644 --- a/scopesim/effects/shifts.py +++ b/scopesim/effects/shifts.py @@ -24,8 +24,7 @@ def fov_grid(self, which="shifts", **kwargs): col_names = ["wavelength", "dx", "dy"] waves, dx, dy = [self.get_table(**kwargs)[col] for col in col_names] return waves, dx, dy - else: - return None + return None def get_table(self, **kwargs): if self.table is None: @@ -223,8 +222,7 @@ def fov_grid(self, which="shifts", **kwargs): dx *= -(1 - self.meta["efficiency"]) dy *= -(1 - self.meta["efficiency"]) return waves, dx, dy - else: - return None + return None def plot(self): return None diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index 56625f36..d72d5174 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -40,8 +40,7 @@ def __getitem__(self, item): for item in item_chunks: entry = entry[item] return entry - else: - return self.dic[item] + return self.dic[item] def __setitem__(self, key, value): if isinstance(key, str) and key.startswith("!"): @@ -64,8 +63,7 @@ def __contains__(self, item): return False entry = entry[item] return True - else: - return item in self.dic + return item in self.dic def __repr__(self): msg = " contents:" From ba649570a5e7b2997baf6ac5e1800e1d977880ad Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 10 Jun 2023 00:37:47 +0200 Subject: [PATCH 081/172] Change "list += [item]" to "list.append(item)" in many places Or "list += sublist" to "list.extend(sublist)" where applicable --- scopesim/effects/apertures.py | 2 +- scopesim/effects/detector_list.py | 2 +- scopesim/effects/fits_headers.py | 20 ++++++++++---------- scopesim/optics/fov_manager.py | 10 +++++----- scopesim/optics/image_plane_utils.py | 4 ++-- 5 files changed, 19 insertions(+), 19 deletions(-) diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index e9b0641e..9d7eb47f 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -337,7 +337,7 @@ def get_apertures(self, row_ids): "x_unit": "arcsec", "y_unit": "arcsec", "angle_unit": "arcsec"} - apertures_list += [ApertureMask(array_dict=array_dict, **params)] + apertures_list.append(ApertureMask(array_dict=array_dict, **params)) return apertures_list diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index 87a8bc8f..b5f1f2f0 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -247,7 +247,7 @@ def detector_headers(self, ids=None): row_dict = {col: row[col] for col in row.colnames} hdr.update(row_dict) - hdrs += [hdr] + hdrs.append(hdr) return hdrs diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index ae55f26a..4e5639b1 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -230,26 +230,26 @@ def __init__(self, **kwargs): with open(yaml_file) as f: # possible multiple yaml docs in a file # --> returns list even for a single doc - tmp_dicts += [dic for dic in yaml.full_load_all(f)] + tmp_dicts.extend(dic for dic in yaml.full_load_all(f)) if self.meta["yaml_string"] is not None: yml = self.meta["yaml_string"] - tmp_dicts += [dic for dic in yaml.full_load_all(yml)] + tmp_dicts.extend(dic for dic in yaml.full_load_all(yml)) if self.meta["header_dict"] is not None: if not isinstance(self.meta["header_dict"], list): - tmp_dicts += [self.meta["header_dict"]] + tmp_dicts.extend(self.meta["header_dict"]) else: - tmp_dicts += self.meta["header_dict"] + tmp_dicts.extend(self.meta["header_dict"]) self.dict_list = [] for dic in tmp_dicts: # format says yaml file contains list of dicts if isinstance(dic, list): - self.dict_list += dic + self.dict_list.extend(dic) # catch case where user forgets the list elif isinstance(dic, dict): - self.dict_list += [dic] + self.dict_list.append(dic) def apply_to(self, hdul, **kwargs): """ @@ -283,18 +283,18 @@ def apply_to(self, hdul, **kwargs): def get_relevant_extensions(dic, hdul): exts = [] if dic.get("ext_name") is not None: - exts += [i for i, hdu in enumerate(hdul) - if hdu.header["EXTNAME"] == dic["ext_name"]] + exts.extend(i for i, hdu in enumerate(hdul) + if hdu.header["EXTNAME"] == dic["ext_name"]) elif dic.get("ext_number") is not None: ext_n = np.array(dic["ext_number"]) - exts += list(ext_n[ext_n= values[1]: - to_pop += [i] + to_pop.append(i) if vol[f"{axis}_max"] > values[1]: vol[f"{axis}_max"] = values[1] @@ -356,7 +356,7 @@ def extract(self, axes, edges, aperture_id=None): add_flag = False if add_flag is True: - new_vols += [new_vol] + new_vols.append(new_vol) return new_vols diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index 0e7292a5..b0e7d108 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -41,7 +41,7 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): tbls = [ht for ht in hdu_or_table_list if isinstance(ht, Table)] tbl_hdr = _make_bounding_header_for_tables(tbls, pixel_scale=pixel_scale) - headers += [tbl_hdr] + headers.append(tbl_hdr) if not headers: logging.warning("No tables or ImageHDUs were passed") @@ -847,6 +847,6 @@ def split_header(hdr, chunk_size, wcs_suffix=""): hdr_sky = header_from_list_of_xy([x1_sky, x2_sky], [y1_sky, y2_sky], pixel_scale=x_delt, wcs_suffix=s) - hdr_list += [hdr_sky] + hdr_list.append(hdr_sky) return hdr_list From b37d7696ce12b6c91a674e5baff3d4ee4746de53 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 10 Jun 2023 01:08:04 +0200 Subject: [PATCH 082/172] Migrate all "os.path" to "pathlib.Path", and some minor adjustments --- scopesim/effects/apertures.py | 13 +++++++------ scopesim/effects/spectral_trace_list.py | 8 ++++---- scopesim/reports/rst_utils.py | 10 ++++------ 3 files changed, 15 insertions(+), 16 deletions(-) diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index 9d7eb47f..9bddc685 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -1,11 +1,12 @@ """Effects related to field masks, including spectroscopic slits""" -from os import path as pth + +from pathlib import Path from copy import deepcopy import logging import yaml import numpy as np -from matplotlib.path import Path +from matplotlib.path import Path as MPLPath # rename to avoid conflict with pathlib from astropy.io import fits from astropy import units as u from astropy.table import Table @@ -433,12 +434,12 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - path = pth.join(self.meta["path"], - from_currsys(self.meta["filename_format"])) + path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) + fname = str(path).format(name) self.slits = {} for name in from_currsys(self.meta["slit_names"]): kwargs["name"] = name - self.slits[name] = ApertureMask(filename=path.format(name), + self.slits[name] = ApertureMask(filename=fname, **kwargs) self.table = self.get_table() @@ -569,7 +570,7 @@ def mask_from_coords(x, y, pixel_scale): coords = [(xi, yi) for xi in xrange for yi in yrange] corners = [(xi, yi) for xi, yi in zip(x, y)] - path = Path(corners) + path = MPLPath(corners) # ..todo: known issue - for super thin apertures, the first row is masked # rad = 0.005 rad = 0 # increase this to include slightly more points within the polygon diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index abe1edf2..147ca358 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -5,7 +5,7 @@ `spectral_trace_list_utils.SpectralTrace` objects to a `FieldOfView`. """ -from os import path as pth +from pathlib import Path import numpy as np from astropy.io import fits @@ -335,12 +335,12 @@ def __init__(self, **kwargs): self.meta.update(params) self.meta.update(kwargs) - path = pth.join(self.meta["path"], - from_currsys(self.meta["filename_format"])) + path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) + fname = str(path).format(name) self.trace_lists = {} for name in from_currsys(self.meta["trace_list_names"]): kwargs["name"] = name - self.trace_lists[name] = SpectralTraceList(filename=path.format(name), + self.trace_lists[name] = SpectralTraceList(filename=fname, **kwargs) def apply_to(self, obj, **kwargs): diff --git a/scopesim/reports/rst_utils.py b/scopesim/reports/rst_utils.py index ac1d600c..9350f659 100644 --- a/scopesim/reports/rst_utils.py +++ b/scopesim/reports/rst_utils.py @@ -1,4 +1,4 @@ -import os +from pathlib import Path from astropy.table import TableFormatter from docutils.core import publish_doctree, publish_parts @@ -169,7 +169,7 @@ def process_code(context_code, code, options): fname = options.get("name", "untitled").split(".")[0] fname = ".".join([fname, fmt]) - fname = os.path.join(img_path, fname) + fname = Path(img_path, fname) context_code += f"\nplt.savefig(\"{fname}\")" return context_code @@ -311,8 +311,7 @@ def latexify_rst_text(rst_text, filename=None, path=None, title_char="=", parts["body"] = parts["body"].replace("end{alltt}", "end{lstlisting}\n\\end{alltt}") - filename = filename.split(".")[0] + ".tex" - file_path = os.path.join(path, filename) + file_path = Path(path, filename).with_suffix(".tex") with open(file_path, "w") as f: f.write(parts["body"]) @@ -329,8 +328,7 @@ def rstify_rst_text(rst_text, filename=None, path=None, title_char="="): if filename is None: filename = rst_text.split(title_char)[0].strip().replace(" ", "_") - filename = filename.split(".")[0] + ".rst" - file_path = os.path.join(path, filename) + file_path = Path(path, filename).with_suffix(".rst") with open(file_path, "w") as f: f.write(rst_text) From ea943ab856a8026a2dcab397089bad099b478ead Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 10 Jun 2023 01:22:30 +0200 Subject: [PATCH 083/172] Remove redundant parentheses --- scopesim/effects/detector_list.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index b5f1f2f0..3441e463 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -133,7 +133,7 @@ def apply_to(self, obj, **kwargs): hdr = self.image_plane_header x_mm, y_mm = calc_footprint(hdr, "D") pixel_size = hdr["CDELT1D"] # mm - pixel_scale = (kwargs.get("pixel_scale", self.meta["pixel_scale"])) # ["] + pixel_scale = kwargs.get("pixel_scale", self.meta["pixel_scale"]) # ["] pixel_scale = utils.from_currsys(pixel_scale) x_sky = x_mm * pixel_scale / pixel_size # x["] = x[mm] * ["] / [mm] y_sky = y_mm * pixel_scale / pixel_size # y["] = y[mm] * ["] / [mm] From 831df89a816aaeccec0711d7bd789bd136497ae0 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 10 Jun 2023 11:16:57 +0200 Subject: [PATCH 084/172] Iterate dict with .items() to get keys and values --- scopesim/effects/detector_list.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/detector_list.py b/scopesim/effects/detector_list.py index 3441e463..405e21e6 100644 --- a/scopesim/effects/detector_list.py +++ b/scopesim/effects/detector_list.py @@ -118,10 +118,10 @@ def __init__(self, **kwargs): new_colnames = {"xhw": "x_size", "yhw": "y_size", "pixsize": "pixel_size"} mult_cols = {"xhw": 2., "yhw": 2., "pixsize": 1.} if isinstance(self.table, Table): - for col in new_colnames: + for col, new_name in new_colnames.items(): if col in self.table.colnames: self.table[col] = self.table[col] * mult_cols[col] - self.table.rename_column(col, new_colnames[col]) + self.table.rename_column(col, new_name) if not "x_size_unit" in self.meta and "xhw_unit" in self.meta: self.meta["x_size_unit"] = self.meta["xhw_unit"] if not "y_size_unit" in self.meta and "yhw_unit" in self.meta: From 8e92da7edd2be453c6b5f29005b187c6676571d1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sat, 10 Jun 2023 11:38:50 +0200 Subject: [PATCH 085/172] Inheriting from object is redundant in Python 3 --- scopesim/system_dict.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index d72d5174..d50ba5e6 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -1,7 +1,7 @@ import logging -class SystemDict(object): +class SystemDict(): def __init__(self, new_dict=None): self.dic = {} if isinstance(new_dict, dict): From f5b3b184b5b40baa2eb6157beeacaafdb40a72d1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sun, 11 Jun 2023 14:15:04 +0200 Subject: [PATCH 086/172] Refactor this method to reduce complexity (details below) Turn top level check around and just return if it fails. Remove unused var `src_dicts`. Use Python 3 style super() w/o arguments to avoid the need for extra var. Actually this should be refactored even further at some point... --- scopesim/effects/fits_headers.py | 66 ++++++++++++++++---------------- 1 file changed, 32 insertions(+), 34 deletions(-) diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index 4e5639b1..703e11db 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -497,40 +497,38 @@ def __init__(self, **kwargs): def apply_to(self, hdul, **kwargs): opt_train = kwargs.get("optical_train") - if isinstance(hdul, fits.HDUList) and opt_train is not None: - src = opt_train._last_source - src_dicts = [] - if src is not None: - prefix = self.meta["keyword_prefix"] - for i, field in enumerate(src.fields): - - src_class = field.__class__.__name__ - src_dic = deepcopy(src._meta_dicts[i]) - if isinstance(field, fits.ImageHDU): - hdr = field.header - for key in hdr: - src_dic = {key: [hdr[key], hdr.comments[key]]} - - elif isinstance(field, Table): - src_dic.update(field.meta) - src_dic["length"] = len(field) - for j, name in enumerate(field.colnames): - src_dic[f"col{j}_name"] = name - src_dic[f"col{j}_unit"] = str(field[name].unit) - - self.dict_list = [{"ext_number": self.meta["ext_number"], - "keywords": { - f"{prefix} SRC{i} class": src_class, - f"{prefix} SRC{i}": src_dic} - }] - super_apply_to = super(SourceDescriptionFitsKeywords, self).apply_to - hdul = super_apply_to(hdul=hdul, optical_train=opt_train) - - # catch the function call - for hdu in hdul: - for key in hdu.header: - if "function_call" in key: - hdu.header[f"FN{key.split()[1]}"] = hdu.header.pop(key) + if not isinstance(hdul, fits.HDUList) or opt_train is None: + return hdul + + if (src := opt_train._last_source) is not None: + prefix = self.meta["keyword_prefix"] + for i, field in enumerate(src.fields): + src_class = field.__class__.__name__ + src_dic = deepcopy(src._meta_dicts[i]) + if isinstance(field, fits.ImageHDU): + hdr = field.header + for key in hdr: + src_dic = {key: [hdr[key], hdr.comments[key]]} + + elif isinstance(field, Table): + src_dic.update(field.meta) + src_dic["length"] = len(field) + for j, name in enumerate(field.colnames): + src_dic[f"col{j}_name"] = name + src_dic[f"col{j}_unit"] = str(field[name].unit) + + self.dict_list = [{"ext_number": self.meta["ext_number"], + "keywords": { + f"{prefix} SRC{i} class": src_class, + f"{prefix} SRC{i}": src_dic} + }] + hdul = super().apply_to(hdul=hdul, optical_train=opt_train) + + # catch the function call + for hdu in hdul: + for key in hdu.header: + if "function_call" in key: + hdu.header[f"FN{key.split()[1]}"] = hdu.header.pop(key) return hdul From c5617aa25d7e5d855c700e29904aa65b9ddf3249 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Tue, 13 Jun 2023 15:52:22 +0200 Subject: [PATCH 087/172] Remove a bunch of unused imports --- scopesim/effects/apertures.py | 1 - scopesim/effects/fits_headers.py | 7 +++++-- scopesim/effects/psfs.py | 1 - scopesim/optics/fov_manager.py | 4 +--- scopesim/optics/radiometry_utils.py | 3 +-- 5 files changed, 7 insertions(+), 9 deletions(-) diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index 9bddc685..73bfb47f 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -1,7 +1,6 @@ """Effects related to field masks, including spectroscopic slits""" from pathlib import Path -from copy import deepcopy import logging import yaml diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index 703e11db..26530f13 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -1,12 +1,15 @@ -import yaml from copy import deepcopy import datetime + +import yaml import numpy as np + from astropy.io import fits from astropy import units as u from astropy.table import Table + from . import Effect -from ..utils import check_keys, from_currsys, find_file +from ..utils import from_currsys, find_file class ExtraFitsKeywords(Effect): diff --git a/scopesim/effects/psfs.py b/scopesim/effects/psfs.py index d947d5aa..9e1a10df 100644 --- a/scopesim/effects/psfs.py +++ b/scopesim/effects/psfs.py @@ -1,4 +1,3 @@ -from copy import deepcopy import numpy as np from scipy.signal import convolve from scipy.interpolate import RectBivariateSpline diff --git a/scopesim/optics/fov_manager.py b/scopesim/optics/fov_manager.py index fee0ac8f..ca776ae8 100644 --- a/scopesim/optics/fov_manager.py +++ b/scopesim/optics/fov_manager.py @@ -42,12 +42,10 @@ # # """ -from copy import deepcopy, copy +from copy import deepcopy import numpy as np -from astropy.table import Table from astropy import units as u -from . import fov_manager_utils as fmu from . import image_plane_utils as ipu from ..effects import DetectorList from ..effects import effects_utils as eu diff --git a/scopesim/optics/radiometry_utils.py b/scopesim/optics/radiometry_utils.py index 1acf57e5..d5d54b90 100644 --- a/scopesim/optics/radiometry_utils.py +++ b/scopesim/optics/radiometry_utils.py @@ -2,13 +2,12 @@ from copy import deepcopy import logging -import numpy as np from astropy import units as u from astropy.io import ascii as ioascii from astropy.table import Table, vstack from .surface import SpectralSurface -from ..utils import real_colname, insert_into_ordereddict, quantify, \ +from ..utils import real_colname, insert_into_ordereddict, \ change_table_entry, convert_table_comments_to_dict, from_currsys From a27b6d99510588fe5cefebef6ab352feb0ff4f30 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Wed, 14 Jun 2023 12:53:26 +0200 Subject: [PATCH 088/172] Attempt to fix issues caused by changes --- scopesim/effects/apertures.py | 5 ++--- scopesim/effects/fits_headers.py | 2 +- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/scopesim/effects/apertures.py b/scopesim/effects/apertures.py index 73bfb47f..872d0894 100644 --- a/scopesim/effects/apertures.py +++ b/scopesim/effects/apertures.py @@ -434,12 +434,11 @@ def __init__(self, **kwargs): self.meta.update(kwargs) path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) - fname = str(path).format(name) self.slits = {} for name in from_currsys(self.meta["slit_names"]): kwargs["name"] = name - self.slits[name] = ApertureMask(filename=fname, - **kwargs) + fname = str(path).format(name) + self.slits[name] = ApertureMask(filename=fname, **kwargs) self.table = self.get_table() diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index 26530f13..32fda8c8 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -290,7 +290,7 @@ def get_relevant_extensions(dic, hdul): if hdu.header["EXTNAME"] == dic["ext_name"]) elif dic.get("ext_number") is not None: ext_n = np.array(dic["ext_number"]) - exts.extend(ext_n[ext_n Date: Wed, 14 Jun 2023 13:05:22 +0200 Subject: [PATCH 089/172] That wasn't what caused it... --- scopesim/effects/fits_headers.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/fits_headers.py b/scopesim/effects/fits_headers.py index 32fda8c8..db858b20 100644 --- a/scopesim/effects/fits_headers.py +++ b/scopesim/effects/fits_headers.py @@ -241,7 +241,7 @@ def __init__(self, **kwargs): if self.meta["header_dict"] is not None: if not isinstance(self.meta["header_dict"], list): - tmp_dicts.extend(self.meta["header_dict"]) + tmp_dicts.append(self.meta["header_dict"]) else: tmp_dicts.extend(self.meta["header_dict"]) @@ -290,7 +290,7 @@ def get_relevant_extensions(dic, hdul): if hdu.header["EXTNAME"] == dic["ext_name"]) elif dic.get("ext_number") is not None: ext_n = np.array(dic["ext_number"]) - exts.extend(list(ext_n[ext_n Date: Wed, 14 Jun 2023 14:55:16 +0200 Subject: [PATCH 090/172] Fix forgotten f for f-string ... Co-authored-by: Hugo Buddelmeijer --- scopesim/optics/image_plane_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index b0e7d108..ee6aa590 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -239,7 +239,7 @@ def add_table_to_imagehdu(table, canvas_hdu, sub_pixel=True, wcs_suffix=""): s = wcs_suffix if not utils.has_needed_keywords(canvas_hdu.header, s): - raise ValueError("canvas_hdu must include an appropriate WCS: {s}") + raise ValueError(f"canvas_hdu must include an appropriate WCS: {s}") f = utils.quantity_from_table("flux", table, default_unit=u.Unit("ph s-1")) if s == "D": From 8120e5a4d609b6a2079e8eac7c5cb280a6d42c11 Mon Sep 17 00:00:00 2001 From: teutoburg <73600109+teutoburg@users.noreply.github.com> Date: Wed, 14 Jun 2023 14:56:29 +0200 Subject: [PATCH 091/172] Use any instead of summing up bools Co-authored-by: Hugo Buddelmeijer --- scopesim/optics/image_plane_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/optics/image_plane_utils.py b/scopesim/optics/image_plane_utils.py index ee6aa590..116c6c18 100644 --- a/scopesim/optics/image_plane_utils.py +++ b/scopesim/optics/image_plane_utils.py @@ -37,7 +37,7 @@ def get_canvas_header(hdu_or_table_list, pixel_scale=1 * u.arcsec): headers = [ht.header for ht in hdu_or_table_list if isinstance(ht, fits.ImageHDU)] - if sum(isinstance(ht, Table) for ht in hdu_or_table_list): + if any(isinstance(ht, Table) for ht in hdu_or_table_list): tbls = [ht for ht in hdu_or_table_list if isinstance(ht, Table)] tbl_hdr = _make_bounding_header_for_tables(tbls, pixel_scale=pixel_scale) From fc91418e607fd6c44002832ab1f96df59b37cbb2 Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 14 Jun 2023 15:42:59 +0200 Subject: [PATCH 092/172] Clean up --- scopesim/effects/spectral_efficiency.py | 111 ++++++++++++------ scopesim/effects/spectral_trace_list.py | 15 ++- .../tests_effects/test_SpectralEfficiency.py | 11 +- 3 files changed, 92 insertions(+), 45 deletions(-) diff --git a/scopesim/effects/spectral_efficiency.py b/scopesim/effects/spectral_efficiency.py index 6261a567..6b255eec 100644 --- a/scopesim/effects/spectral_efficiency.py +++ b/scopesim/effects/spectral_efficiency.py @@ -8,6 +8,7 @@ from astropy.io import fits from astropy import units as u from astropy.wcs import WCS +from astropy.table import Table from .effects import Effect from .ter_curves import TERCurve @@ -18,65 +19,99 @@ class SpectralEfficiency(Effect): """ Applies the grating efficiency (blaze function) for a SpectralTraceList + + Input Data Format + ----------------- + The efficiency curves are taken from a fits file `filename`with a + structure similar to the trace definition file (see `SpectralTraceList`). + The required extensions are: + - 0 : PrimaryHDU [header] + - 1 : BinTableHDU or TableHDU[header, data] : Overview table of all traces + - 2..N : BinTableHDU or TableHDU : Efficiency curves, one per trace. The + tables must have the two columns `wavelength` and `efficiency` + + Note that there must be one extension for each trace defined in the + `SpectralTraceList`. Extensions for other traces are ignored. + + EXT 0 : PrimaryHDU + ++++++++++++++++++ + Required header keywords: + + - ECAT : int : Extension number of overview table, normally 1 + - EDATA : int : Extension number of first Trace table, normally 2 + + No data is required in this extension + + EXT 1 : (Bin)TableHDU : Overview of traces + ++++++++++++++++++++++++++++++++++++++++++ + No special header keywords are required in this extension. + + Required Table columns: + - description : str : identifier for each trace + - extension_id : int : which extension is each trace in + + EXT 2 : (Bin)TableHDU : Efficiencies for individual traces + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + Required header keywords: + - EXTNAME : must be identical to the `description` in EXT 1 + + Required Table columns: + - wavelength : float : [um] + - efficiency : float : number [0..1] + """ - def __init__(self, filename, **kwargs): + def __init__(self, **kwargs): super().__init__(**kwargs) + if "hdulist" in kwargs and isinstance(kwargs["hdulist"], fits.HDUList): + self._file = kwargs["hdulist"] + params = {"z_order": [630]} self.meta.update(params) - self.filename = find_file(filename) - self.efficiencies = self.get_efficiencies_from_file(self.filename) - print("Hello, this is SpectralEfficiency init") + self.efficiencies = self.get_efficiencies() - def get_efficiencies_from_file(self, fname): + def get_efficiencies(self): """Reads effciencies from file, returns a dictionary""" + hdul = self._file + self.ext_data = hdul[0].header["EDATA"] + self.ext_cat = hdul[0].header["ECAT"] + self.catalog = Table(hdul[self.ext_cat].data) - hdul = fits.open(fname) efficiencies = {} - for hdu in hdul[2:]: + for row in self.catalog: + params = {col: row[col] for col in row.colnames} + params.update(self.meta) + hdu = self._file[row["extension_id"]] name = hdu.header['EXTNAME'] - lam = hdu.data['wavelength'] * u.um # check units explicitely - efficiency = hdu.data['efficiency'] - effic_curve = TERCurve(wavelength=lam, transmission=efficiency) + + tbl = Table.read(hdu) + wavelength = tbl['wavelength'].quantity + efficiency = tbl['efficiency'].value + effic_curve = TERCurve(wavelength=wavelength, + transmission=efficiency, + **params) efficiencies[name] = effic_curve hdul.close() return efficiencies - def apply_to(self, obj, **kwargs): """ Interface between FieldOfView and SpectralEfficiency - """ - print("Hello, this is SpectralEfficiency.apply_to") - print(obj.meta['trace_id']) - - if isinstance(obj, FOVSetupBase): - # I don't think this is needed for the Efficiency - we should get a fully formed FOV - print("Got FOVSetupBase") - if isinstance(obj, FieldOfViewBase): - # Application to field of view - if obj.cube is None: - print("Efficiency: no cube") - if obj.hdu is None: - print("Efficiency: no hdu") - else: - print("Efficiency: hdu", obj.hdu.data.shape) - trace_id = obj.meta['trace_id'] - try: - effic = self.efficiencies[trace_id] - except KeyError: - logging.warning("No grating efficiency for trace %s" % trace_id) - return obj - wcs = WCS(obj.hdu.header).spectral - wave_cube = wcs.all_pix2world(np.arange(obj.hdu.data.shape[0]), 0)[0] - wave_cube = (wave_cube * u.Unit(wcs.wcs.cunit[0])).to(u.AA) - print(wave_cube) - print(effic.throughput(wave_cube)) - obj.hdu = apply_throughput_to_cube(obj.hdu, effic.throughput) + trace_id = obj.meta['trace_id'] + try: + effic = self.efficiencies[trace_id] + except KeyError: + logging.warning("No grating efficiency for trace %s" % trace_id) + return obj + + wcs = WCS(obj.hdu.header).spectral + wave_cube = wcs.all_pix2world(np.arange(obj.hdu.data.shape[0]), 0)[0] + wave_cube = (wave_cube * u.Unit(wcs.wcs.cunit[0])).to(u.AA) + obj.hdu = apply_throughput_to_cube(obj.hdu, effic.throughput) return obj def plot(self): diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 39264f6d..2449367d 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -6,6 +6,7 @@ """ from os import path as pth +import logging import numpy as np from astropy.io import fits @@ -61,17 +62,21 @@ class SpectralTraceList(Effect): Required Table columns: - - description : str : description of each each trace + - description : str : identifier of each trace - extension_id : int : which extension is each trace in - aperture_id : int : which aperture matches this trace (e.g. MOS / IFU) - image_plane_id : int : on which image plane is this trace projected EXT 2 : BinTableHDU : Individual traces +++++++++++++++++++++++++++++++++++++++ - No special header keywords are required in this extension + Required header keywords: + - EXTNAME : must be identical to the `description` in EXT 1 - Required Table columns: + Recommended header keywords: + - DISPDIR : 'x' or 'y' : dispersion axis. If not present, Scopesim tries + to determine this automatically; this may be unreliable in some cases. + Required Table columns: - wavelength : float : [um] : wavelength of monochromatic aperture image - s : float : [arcsec] : position along aperture perpendicular to trace - x : float : [mm] : x position of aperture image on focal plane @@ -184,11 +189,9 @@ def apply_to(self, obj, **kwargs): # for MAAT pass elif obj.hdu is None and obj.cube is None: - print("Making cube") + logging.info("Making cube") obj.cube = obj.make_cube_hdu() - print(obj.cube.shape) - print(obj.hdu.data.shape) # ..todo: obj will be changed to a single one covering the full field of view # covered by the image slicer (28 slices for LMS; for LSS still only a single slit) # We need a loop over spectral_traces that chops up obj into the single-slice fov before diff --git a/scopesim/tests/tests_effects/test_SpectralEfficiency.py b/scopesim/tests/tests_effects/test_SpectralEfficiency.py index e366e814..081f089a 100644 --- a/scopesim/tests/tests_effects/test_SpectralEfficiency.py +++ b/scopesim/tests/tests_effects/test_SpectralEfficiency.py @@ -2,8 +2,11 @@ import os import pytest +from astropy.io import fits + from scopesim import rc from scopesim.effects import SpectralEfficiency, TERCurve +from scopesim.utils import find_file FILES_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../mocks/files/")) @@ -19,7 +22,13 @@ def fixture_speceff(): return SpectralEfficiency(filename="TER_grating.fits") class TestSpectralEfficiency: - def test_initialises_correctly(self, speceff): + def test_initialises_from_file(self, speceff): + assert isinstance(speceff, SpectralEfficiency) + + def test_initialises_from_hdulist(self): + fitsfile = find_file("TER_grating.fits") + hdul = fits.open(fitsfile) + speceff = SpectralEfficiency(hdulist=hdul) assert isinstance(speceff, SpectralEfficiency) def test_has_efficiencies(self, speceff): From e83c51369f5131682ccc104e6862d643a352b48e Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 14 Jun 2023 15:49:02 +0200 Subject: [PATCH 093/172] Missed a conflict --- scopesim/effects/spectral_trace_list_utils.py | 9 --------- 1 file changed, 9 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 06b14b0c..bfa600af 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -439,14 +439,6 @@ def __init__(self, fov, dlam_per_pix): # add_cube_layer method cube_wcs = WCS(fov.cube.header, key=" ") wcs_lam = cube_wcs.sub([3]) -<<<<<<< HEAD - d_xi = fov.cube.header['CDELT1'] - d_xi *= u.Unit(fov.cube.header['CUNIT1']).to(u.arcsec) - d_eta = fov.cube.header['CDELT2'] - d_eta *= u.Unit(fov.cube.header['CUNIT2']).to(u.arcsec) - d_lam = fov.cube.header['CDELT3'] - d_lam *= u.Unit(fov.cube.header['CUNIT3']).to(u.um) -======= d_xi = fov.cube.header["CDELT1"] d_xi *= u.Unit(fov.cube.header["CUNIT1"]).to(u.arcsec) @@ -454,7 +446,6 @@ def __init__(self, fov, dlam_per_pix): d_eta *= u.Unit(fov.cube.header["CUNIT2"]).to(u.arcsec) d_lam = fov.cube.header["CDELT3"] d_lam *= u.Unit(fov.cube.header["CUNIT3"]).to(u.um) ->>>>>>> dev_master # This is based on the cube shape and assumes that the cube's spatial # dimensions are set by the slit aperture From bc6e11a0707afdc9b09f7c0f0a43bd4ea5e7269a Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 16:07:01 +0200 Subject: [PATCH 094/172] Use shared workflows from DevOps repository --- .github/workflows/tests.yml | 28 ++-------------------------- 1 file changed, 2 insertions(+), 26 deletions(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index c3df54fc..54e44302 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -16,29 +16,5 @@ on: workflow_dispatch: jobs: - build: - runs-on: ${{ matrix.os }} - strategy: - matrix: - os: [ubuntu-latest] - python-version: ['3.8', '3.9', '3.10', '3.11'] - - steps: - - uses: actions/checkout@v3 - - name: Set up Python - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python-version }} - - name: Install dependencies - run: | - python -m pip install --upgrade pip - # Install this version of ScopeSim. Otherwise the PyPI version of - # ScopeSim will be installed when the test-requriments - # are installed, because ScopeSim is a dependency of - # ScopeSim_Templates. - pip install . - pip install .[dev,test] - - name: Run Pytest - run: pytest --cov=scopesim - - name: Upload coverage reports to Codecov - uses: codecov/codecov-action@v3 + call-tests: + uses: AstarVienna/DevOps/.github/workflows/tests.yml@master From 7fedb5030175bf85ffaac91064b577f89ded8430 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 16:07:20 +0200 Subject: [PATCH 095/172] Add minimum dependencies test --- .github/workflows/minimumdependencies.yml | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) create mode 100644 .github/workflows/minimumdependencies.yml diff --git a/.github/workflows/minimumdependencies.yml b/.github/workflows/minimumdependencies.yml new file mode 100644 index 00000000..ed15917a --- /dev/null +++ b/.github/workflows/minimumdependencies.yml @@ -0,0 +1,23 @@ +name: Minimum Dependencies +# Installs the minimum versions of the dependencies and runs the tests. +# This test will lower the chance that users botch their installation by +# only upgrading this project but not the dependencies. + +on: + push: + branches: + - master + pull_request: + branches: + - master + + # Allows you to run this workflow manually from the Actions tab. + workflow_dispatch: + + schedule: + - # Run every day at 5:00 UTC. + - cron: "0 5 * * *" + +jobs: + call-minimum-dependencies: + uses: AstarVienna/DevOps/.github/workflows/minimumdependencies.yml From a62589d2b160246c7174192d7d9d5d91c5415641 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 16:11:29 +0200 Subject: [PATCH 096/172] Add some more minimal dependency versions, in particular for ScopeSim_Templates --- pyproject.toml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index bbdb5f4b..3be60677 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -25,15 +25,15 @@ dependencies = [ "astropy>=2.0", "matplotlib>=1.5", - "docutils", + "docutils>=0.15", "requests>=2.20", "beautifulsoup4>=4.4", - "lxml", + "lxml>=4.5.0", "pyyaml>5.1", "synphot>=0.1.3", "skycalc_ipy>=0.1.3", - "anisocado", + "anisocado>=0.2.3", ] [project.optional-dependencies] @@ -42,9 +42,9 @@ dev = [ "jupytext", ] test = [ - "pytest", + "pytest>=5.0.0", "pytest-cov", - "scopesim_templates", + "scopesim_templates>=0.4.4", # Just so that readthedocs doesn't include the tests module - yes it's hacky "skycalc_cli", ] From b5e4c80214746dc37e10f8b31f9a6e398e7f3360 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 16:12:22 +0200 Subject: [PATCH 097/172] Use default branch for tests.yml --- .github/workflows/tests.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 54e44302..70e8da56 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -17,4 +17,4 @@ on: jobs: call-tests: - uses: AstarVienna/DevOps/.github/workflows/tests.yml@master + uses: AstarVienna/DevOps/.github/workflows/tests.yml From 267d3a5f92e36dbc36762c2d50ec85e464f5b5fe Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 16:18:15 +0200 Subject: [PATCH 098/172] Apparently it is necessary to specify a branch --- .github/workflows/minimumdependencies.yml | 6 +++++- .github/workflows/tests.yml | 2 +- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/.github/workflows/minimumdependencies.yml b/.github/workflows/minimumdependencies.yml index ed15917a..70ea4405 100644 --- a/.github/workflows/minimumdependencies.yml +++ b/.github/workflows/minimumdependencies.yml @@ -7,9 +7,13 @@ on: push: branches: - master + - dev_master + - dev_spectroscopy pull_request: branches: - master + - dev_master + - dev_spectroscopy # Allows you to run this workflow manually from the Actions tab. workflow_dispatch: @@ -20,4 +24,4 @@ on: jobs: call-minimum-dependencies: - uses: AstarVienna/DevOps/.github/workflows/minimumdependencies.yml + uses: AstarVienna/DevOps/.github/workflows/minimumdependencies.yml@master diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 70e8da56..54e44302 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -17,4 +17,4 @@ on: jobs: call-tests: - uses: AstarVienna/DevOps/.github/workflows/tests.yml + uses: AstarVienna/DevOps/.github/workflows/tests.yml@master From 5fe7714d0d4a9ad761639129274d9526def5ea9f Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 14 Jun 2023 18:27:35 +0200 Subject: [PATCH 099/172] rectify_trace --- scopesim/effects/spectral_trace_list_utils.py | 79 ++++++++++++++++++- 1 file changed, 77 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 9c4894c9..d325c42e 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -3,7 +3,8 @@ This module contains - the definition of the `SpectralTrace` class. The visible effect should - always be a `SpectralTraceList`, even if that contains only one `SpectralTrace`. + always be a `SpectralTraceList`, even if that contains only one + `SpectralTrace`. - the definition of the `XiLamImage` class - utility functions for use with spectral traces """ @@ -213,7 +214,7 @@ def map_spectra_to_focal_plane(self, fov): else: dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy self.dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, - fill_value="extrapolate") + fill_value="extrapolate") try: xilam = XiLamImage(fov, self.dlam_per_pix) self._xilamimg = xilam # ..todo: remove or make available with a debug flag? @@ -284,6 +285,66 @@ def map_spectra_to_focal_plane(self, fov): image_hdu = fits.ImageHDU(header=img_header, data=image) return image_hdu + def rectify_trace(self, hdulist, interps=None, wcs=None, nlam=None, + nxi=None, **kwargs): + """Create 2D spectrum for a trace + + Parameters + ---------- + hdulist : HDUList + The result of scopesim readout + interps : list of interpolation functions + If provided, there must be one for each image extension in `hdulist`. + The functions go from pixels to the images and can be created with, + e.g., RectBivariateSpline. + wcs : The WCS describing the rectified XiLamImage. This can be created + in a simple way from the fov included in the `OpticalTrain` used in + the simulation run producing `hdulist`. + nlam, nxi : int + Number of pixels in the rectified 2D spectrum. + """ + if interps is None: + logging.info("Computing image interpolations") + interps = make_image_interpolations(hdulist, kx=1, ky=1) + + # ..todo: build wcs if not provided + + # Create Xi, Lam images (do I need Iarr and Jarr or can I build Xi, Lam directly?) + Iarr, Jarr = np.meshgrid(np.arange(nlam, dtype=np.float32), + np.arange(nxi, dtype=np.float32)) + Lam, Xi = wcs.all_pix2world(Iarr, Jarr, 0) + + # Make sure that we do have microns + Lam = Lam * u.Unit(wcs.wcs.cunit[0]).to(u.um) + + print("lambda:", Lam.min(), Lam.max()) + print("xi: ", Xi.min(), Xi.max()) + + # Convert Xi, Lam to focal plane units + Xarr = self.xilam2x(Xi, Lam) + Yarr = self.xilam2y(Xi, Lam) + + rect_spec = np.zeros_like(Xarr, dtype=np.float32) + + ihdu = 0 + for hdu in hdulist: + if not isinstance(hdu, fits.ImageHDU): + continue + + wcs_fp = WCS(hdu.header, key="D") + n_x = hdu.header['NAXIS1'] + n_y = hdu.header['NAXIS2'] + iarr, jarr = wcs_fp.all_world2pix(Xarr, Yarr, 0) + mask = (iarr > 0) * (iarr < n_x) * (jarr > 0) * (jarr < n_y) + if np.any(mask): + specpart = interps[ihdu](jarr, iarr, grid=False) + rect_spec += specpart * mask + + ihdu += 1 + + return rect_spec + + def footprint(self, wave_min=None, wave_max=None, xi_min=None, xi_max=None): """ Return corners of rectangle enclosing spectral trace @@ -745,6 +806,20 @@ def _xiy2xlam_fit(layout, params): xiy2lam = fitter(pinit_lam, xi_arr, y_arr, lam_arr) return xiy2x, xiy2lam +def make_image_interpolations(hdulist, **kwargs): + """ + Create 2D interpolation functions for images + """ + interps = [] + for hdu in hdulist: + if isinstance(hdu, fits.ImageHDU): + interps.append( + RectBivariateSpline(np.arange(hdu.header['NAXIS1']), + np.arange(hdu.header['NAXIS2']), + hdu.data, **kwargs) + ) + return interps + # ..todo: Check whether the following functions are actually used def rolling_median(x, n): From b55b19a47523e6cb5c32db6c51b0fbd18d149fce Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 18:52:13 +0200 Subject: [PATCH 100/172] Fix use_local_skycalc_file because path is case sensitive --- scopesim/tests/tests_effects/test_SkycalcTERCurve.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/scopesim/tests/tests_effects/test_SkycalcTERCurve.py b/scopesim/tests/tests_effects/test_SkycalcTERCurve.py index ca696de6..a03d57c1 100644 --- a/scopesim/tests/tests_effects/test_SkycalcTERCurve.py +++ b/scopesim/tests/tests_effects/test_SkycalcTERCurve.py @@ -1,15 +1,16 @@ +from pathlib import Path + import pytest import os from synphot import SpectralElement, SourceSpectrum from scopesim.effects import SkycalcTERCurve from scopesim import rc -from scopesim.utils import from_currsys if rc.__config__["!SIM.tests.run_skycalc_ter_tests"] is False: pytestmark = pytest.mark.skip("Ignoring SkyCalc integration tests") -FILES_PATH = os.path.join(os.path.dirname(__file__), "../MOCKS/files/") +FILES_PATH = str(Path(__file__).parent.parent / "mocks" / "files") if FILES_PATH not in rc.__search_path__: rc.__search_path__ += [FILES_PATH] From a3dc8b0876a00863859a9576084c050d8f3df493 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 18:52:26 +0200 Subject: [PATCH 101/172] Add webtest pytest marker --- pyproject.toml | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 3be60677..2e7ae374 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -64,3 +64,9 @@ docs = [ [tool.setuptools.packages] find = {} + +[tool.pytest.ini_options] +addopts = "--strict-markers" +markers = [ + "webtest: marks tests as requiring network (deselect with '-m \"not webtest\"')", +] From 8a6eb80798404ce3729d50d19cb0d34868ab638c Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 18:52:58 +0200 Subject: [PATCH 102/172] Mark test_UserCommands as webtest --- scopesim/tests/tests_commands/test_UserCommands.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/scopesim/tests/tests_commands/test_UserCommands.py b/scopesim/tests/tests_commands/test_UserCommands.py index cb6ae303..2fff1035 100644 --- a/scopesim/tests/tests_commands/test_UserCommands.py +++ b/scopesim/tests/tests_commands/test_UserCommands.py @@ -11,6 +11,12 @@ tmpdir = TemporaryDirectory() +pytestmark = pytest.mark.webtest +# Entire module is marked as webtest because it downloads the test_package +# IRDB package in setup_module() +# TODO: Include in ScopeSim_Data? + + def setup_module(): db.download_packages(["test_package"], release="stable", save_dir=tmpdir.name, from_cache=False) From 136f362c3050d27388b68911f7786c82ebcb2b45 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 19:17:02 +0200 Subject: [PATCH 103/172] Include test_package from IRDB to test_UserCommands --- .../tests/mocks/test_package/TC_filter_Ks.dat | 244 ++++++++++++++++++ .../tests/mocks/test_package/default.yaml | 27 ++ .../mocks/test_package/test_detector.yaml | 25 ++ .../mocks/test_package/test_instrument.yaml | 15 ++ .../tests/mocks/test_package/test_mode_2.yaml | 13 + .../mocks/test_package/test_package.yaml | 1 + .../mocks/test_package/test_telescope.yaml | 15 ++ .../tests/mocks/test_package/version.yaml | 3 + 8 files changed, 343 insertions(+) create mode 100644 scopesim/tests/mocks/test_package/TC_filter_Ks.dat create mode 100644 scopesim/tests/mocks/test_package/default.yaml create mode 100644 scopesim/tests/mocks/test_package/test_detector.yaml create mode 100644 scopesim/tests/mocks/test_package/test_instrument.yaml create mode 100644 scopesim/tests/mocks/test_package/test_mode_2.yaml create mode 100644 scopesim/tests/mocks/test_package/test_package.yaml create mode 100644 scopesim/tests/mocks/test_package/test_telescope.yaml create mode 100644 scopesim/tests/mocks/test_package/version.yaml diff --git a/scopesim/tests/mocks/test_package/TC_filter_Ks.dat b/scopesim/tests/mocks/test_package/TC_filter_Ks.dat new file mode 100644 index 00000000..36a88474 --- /dev/null +++ b/scopesim/tests/mocks/test_package/TC_filter_Ks.dat @@ -0,0 +1,244 @@ +# name : Ks filter curve +# author : unknown +# date_created : 2018-11-09 +# date_modified : 2018-01-28 +# sources : HAWK-I_Ks, SVO Filter service +# wavelength_unit : um +# changes : +# - 2019-11-09 (KL) Added to the test package +# +wavelength transmission +1.9244 0.004092 +1.9264 0.004719 +1.9284 0.005363 +1.9303 0.005971 +1.9323 0.006650 +1.9343 0.007400 +1.9363 0.008185 +1.9383 0.009123 +1.9403 0.010084 +1.9423 0.011361 +1.9443 0.012872 +1.9463 0.014803 +1.9482 0.016989 +1.9502 0.019718 +1.9522 0.023170 +1.9542 0.027843 +1.9562 0.033511 +1.9582 0.040535 +1.9602 0.049724 +1.9622 0.061381 +1.9641 0.076299 +1.9661 0.095620 +1.9681 0.119920 +1.9701 0.151441 +1.9721 0.188898 +1.9741 0.233436 +1.9761 0.283781 +1.9781 0.335879 +1.9800 0.387428 +1.9820 0.436250 +1.9840 0.480822 +1.9860 0.515266 +1.9880 0.544181 +1.9900 0.567621 +1.9920 0.587735 +1.9940 0.605451 +1.9960 0.622213 +1.9979 0.639393 +1.9999 0.655671 +2.0019 0.672747 +2.0039 0.690064 +2.0059 0.705886 +2.0079 0.721667 +2.0099 0.735400 +2.0119 0.747657 +2.0138 0.757275 +2.0158 0.764611 +2.0178 0.770151 +2.0198 0.772692 +2.0218 0.774471 +2.0238 0.774904 +2.0258 0.773802 +2.0278 0.772770 +2.0297 0.771374 +2.0317 0.770816 +2.0337 0.769840 +2.0357 0.769821 +2.0377 0.770729 +2.0397 0.772116 +2.0417 0.774129 +2.0437 0.777027 +2.0457 0.779965 +2.0476 0.783401 +2.0496 0.786676 +2.0516 0.790208 +2.0536 0.793924 +2.0556 0.796736 +2.0576 0.799705 +2.0596 0.801859 +2.0616 0.803399 +2.0635 0.805139 +2.0655 0.805537 +2.0675 0.805883 +2.0695 0.806335 +2.0715 0.805885 +2.0735 0.805576 +2.0755 0.805038 +2.0775 0.804727 +2.0794 0.804133 +2.0814 0.803998 +2.0834 0.804295 +2.0854 0.804219 +2.0874 0.805041 +2.0894 0.805836 +2.0914 0.806782 +2.0934 0.808434 +2.0954 0.809909 +2.0973 0.811714 +2.0993 0.813773 +2.1013 0.815366 +2.1033 0.817463 +2.1053 0.819240 +2.1073 0.820868 +2.1093 0.822257 +2.1113 0.823537 +2.1132 0.824653 +2.1152 0.825138 +2.1172 0.825841 +2.1192 0.826139 +2.1212 0.825767 +2.1232 0.825670 +2.1252 0.825048 +2.1272 0.824093 +2.1291 0.823366 +2.1311 0.822455 +2.1331 0.821660 +2.1351 0.820357 +2.1371 0.819444 +2.1391 0.818331 +2.1411 0.817576 +2.1431 0.816831 +2.1451 0.816213 +2.1470 0.815788 +2.1490 0.815617 +2.1510 0.815571 +2.1530 0.816045 +2.1550 0.816148 +2.1570 0.816919 +2.1590 0.817598 +2.1610 0.818230 +2.1629 0.819752 +2.1649 0.820894 +2.1669 0.822492 +2.1689 0.823297 +2.1709 0.825110 +2.1729 0.826640 +2.1749 0.827869 +2.1769 0.829224 +2.1788 0.830143 +2.1808 0.831485 +2.1828 0.832080 +2.1848 0.832791 +2.1868 0.833866 +2.1888 0.834211 +2.1908 0.834641 +2.1928 0.835547 +2.1948 0.835783 +2.1967 0.836970 +2.1987 0.836947 +2.2007 0.838148 +2.2027 0.838697 +2.2047 0.839203 +2.2067 0.839969 +2.2087 0.840589 +2.2107 0.841150 +2.2126 0.841549 +2.2146 0.841638 +2.2166 0.842445 +2.2186 0.842636 +2.2206 0.843223 +2.2226 0.843759 +2.2246 0.843869 +2.2266 0.844823 +2.2285 0.844729 +2.2305 0.845598 +2.2325 0.846154 +2.2345 0.846594 +2.2365 0.847138 +2.2385 0.847915 +2.2405 0.848186 +2.2425 0.848552 +2.2445 0.848987 +2.2464 0.849377 +2.2484 0.849617 +2.2504 0.849636 +2.2524 0.849992 +2.2544 0.849781 +2.2564 0.849623 +2.2584 0.849220 +2.2604 0.849069 +2.2623 0.848822 +2.2643 0.847899 +2.2663 0.847239 +2.2683 0.846086 +2.2703 0.844456 +2.2723 0.842642 +2.2743 0.840222 +2.2763 0.836502 +2.2782 0.832160 +2.2802 0.824891 +2.2822 0.816848 +2.2842 0.805276 +2.2862 0.790971 +2.2882 0.772614 +2.2902 0.750201 +2.2922 0.723509 +2.2942 0.692577 +2.2961 0.655112 +2.2981 0.613860 +2.3001 0.570899 +2.3021 0.526108 +2.3041 0.479929 +2.3061 0.434709 +2.3081 0.389649 +2.3101 0.346600 +2.3120 0.305818 +2.3140 0.269378 +2.3160 0.236474 +2.3180 0.206357 +2.3200 0.180523 +2.3220 0.157756 +2.3240 0.138264 +2.3260 0.121272 +2.3279 0.105898 +2.3299 0.092828 +2.3319 0.081272 +2.3339 0.071141 +2.3359 0.062715 +2.3379 0.054966 +2.3399 0.048328 +2.3419 0.042917 +2.3439 0.038122 +2.3458 0.033789 +2.3478 0.030085 +2.3498 0.026816 +2.3518 0.024026 +2.3538 0.021635 +2.3558 0.019397 +2.3578 0.017481 +2.3598 0.015782 +2.3617 0.014202 +2.3637 0.012930 +2.3657 0.011737 +2.3677 0.010634 +2.3697 0.009654 +2.3717 0.008782 +2.3737 0.008009 +2.3757 0.007305 +2.3776 0.006740 +2.3796 0.006113 +2.3816 0.005585 +2.3836 0.005160 +2.3856 0.004714 +2.3876 0.004274 \ No newline at end of file diff --git a/scopesim/tests/mocks/test_package/default.yaml b/scopesim/tests/mocks/test_package/default.yaml new file mode 100644 index 00000000..c21caa29 --- /dev/null +++ b/scopesim/tests/mocks/test_package/default.yaml @@ -0,0 +1,27 @@ +# Instrument +object : observation +alias : OBS +name : test_instrument + +packages : +- test_package + +yamls : +- test_package.yaml +- test_telescope.yaml +- test_instrument.yaml +- test_detector.yaml + +properties : + airmass : 1. + modes : ["mode_1", "mode_2"] + +mode_yamls : +- name : mode_1 + alias: OBS + properties : + airmass : 2. + +- name : mode_2 + yamls : + - test_mode_2.yaml diff --git a/scopesim/tests/mocks/test_package/test_detector.yaml b/scopesim/tests/mocks/test_package/test_detector.yaml new file mode 100644 index 00000000..11fc2cdd --- /dev/null +++ b/scopesim/tests/mocks/test_package/test_detector.yaml @@ -0,0 +1,25 @@ +### DETECTOR +object: detector +alias: DET +name: test_detector + +properties : [] + +effects: +- name: test_detector_array_list + class: DetectorList + kwargs: + array_dict: {"id": [1], "pixsize": [0.015], "angle": [0.], "gain": [1.0], + "x_cen": [0], y_cen: [0], xhw: [0.15], yhw: [0.15]} + x_cen_unit: mm + y_cen_unit: mm + xhw_unit: mm + yhw_unit: mm + pixsize_unit: mm + angle_unit: deg + gain_unit: electron/adu + +- name: test_shot_noise + class: ShotNoise + kwargs: + use_inbuilt_seed: True \ No newline at end of file diff --git a/scopesim/tests/mocks/test_package/test_instrument.yaml b/scopesim/tests/mocks/test_package/test_instrument.yaml new file mode 100644 index 00000000..ce48a5e2 --- /dev/null +++ b/scopesim/tests/mocks/test_package/test_instrument.yaml @@ -0,0 +1,15 @@ +# Instrument +object : instrument +alias : INST +name : test_instrument + +properties : + pixel_scale : 0.5 # arcsec per pixel + +effects : +- name : tc_from_file + class : TERCurve + kwargs : + filename : TC_filter_Ks.dat + + diff --git a/scopesim/tests/mocks/test_package/test_mode_2.yaml b/scopesim/tests/mocks/test_package/test_mode_2.yaml new file mode 100644 index 00000000..c6828250 --- /dev/null +++ b/scopesim/tests/mocks/test_package/test_mode_2.yaml @@ -0,0 +1,13 @@ +# Telescope +object : telescope +alias : TEL +name : test_telescope + +properties : + temperature : 8999 + +effects : +- name: random_effect + class: Effect + kwargs: + meaning_of_life: 42 \ No newline at end of file diff --git a/scopesim/tests/mocks/test_package/test_package.yaml b/scopesim/tests/mocks/test_package/test_package.yaml new file mode 100644 index 00000000..8bc6de13 --- /dev/null +++ b/scopesim/tests/mocks/test_package/test_package.yaml @@ -0,0 +1 @@ +# empty, just to trigger the test suite diff --git a/scopesim/tests/mocks/test_package/test_telescope.yaml b/scopesim/tests/mocks/test_package/test_telescope.yaml new file mode 100644 index 00000000..fbcba730 --- /dev/null +++ b/scopesim/tests/mocks/test_package/test_telescope.yaml @@ -0,0 +1,15 @@ +# Telescope +object : telescope +alias : TEL +name : test_telescope + +properties : + temperature : 9001 + +effects : +- name : tc_from_arrays + class : TERCurve + kwargs : + wavelength : [0.99, 1, 2, 2.01] + transmission : [0, 1, 1, 0] + wavelength_unit : um diff --git a/scopesim/tests/mocks/test_package/version.yaml b/scopesim/tests/mocks/test_package/version.yaml new file mode 100644 index 00000000..160d4d92 --- /dev/null +++ b/scopesim/tests/mocks/test_package/version.yaml @@ -0,0 +1,3 @@ +release: stable +timestamp: '2022-07-11 16:18:22' +version: '2022-07-11' From a7f94e3b893fc23e7bf2b57db39baa488c454d58 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 19:18:40 +0200 Subject: [PATCH 104/172] Use test_package for test_UserCommands --- scopesim/tests/tests_commands/test_UserCommands.py | 13 ++----------- 1 file changed, 2 insertions(+), 11 deletions(-) diff --git a/scopesim/tests/tests_commands/test_UserCommands.py b/scopesim/tests/tests_commands/test_UserCommands.py index 2fff1035..aeeaafa6 100644 --- a/scopesim/tests/tests_commands/test_UserCommands.py +++ b/scopesim/tests/tests_commands/test_UserCommands.py @@ -1,31 +1,22 @@ import os -import shutil from pathlib import Path import pytest from tempfile import TemporaryDirectory from scopesim import rc from scopesim.commands.user_commands import UserCommands, patch_fake_symlinks -from scopesim.server import database as db tmpdir = TemporaryDirectory() - -pytestmark = pytest.mark.webtest -# Entire module is marked as webtest because it downloads the test_package -# IRDB package in setup_module() -# TODO: Include in ScopeSim_Data? +FILES_PATH = str(Path(__file__).parent.parent / "mocks") def setup_module(): - db.download_packages(["test_package"], release="stable", - save_dir=tmpdir.name, from_cache=False) rc.__config__["local_packages_path_OLD"] = rc.__config__["!SIM.file.local_packages_path"] - rc.__config__["!SIM.file.local_packages_path"] = tmpdir.name + rc.__config__["!SIM.file.local_packages_path"] = FILES_PATH def teardown_module(): - tmpdir.cleanup() rc.__config__["!SIM.file.local_packages_path"] = rc.__config__["local_packages_path_OLD"] # TODO: something like rc.__config__.pop("local_packages_path_OLD") From 0e5fdb783763d6b7551ee83e283d62ff6312c3ce Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 20:44:55 +0200 Subject: [PATCH 105/172] Mark test_database as webtest, as it primarily fetches data --- scopesim/tests/tests_server/test_database.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/scopesim/tests/tests_server/test_database.py b/scopesim/tests/tests_server/test_database.py index 8ffd3001..bd37311f 100644 --- a/scopesim/tests/tests_server/test_database.py +++ b/scopesim/tests/tests_server/test_database.py @@ -11,6 +11,10 @@ from scopesim import rc +pytestmark = pytest.mark.webtest +# Entire module is marked as webtest because it primarily fetches data. + + def test_package_list_loads(): pkgs = db.get_server_package_list() assert isinstance(pkgs, dict) From 377ca33d0ecb4d454f2cde75dcfa9d6cffc367a0 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 20:53:12 +0200 Subject: [PATCH 106/172] Upgrade lowest scipy version to 1.4.0, because 1.0.0 doesn't work --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 2e7ae374..c1a30e76 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -21,7 +21,7 @@ classifiers=[ ] dependencies = [ "numpy>=1.16", - "scipy>=1.0.0", + "scipy>=1.4.0", "astropy>=2.0", "matplotlib>=1.5", From fcfea87efebd59ee3c1ddba017246ed5a198a285 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 14 Jun 2023 21:07:38 +0200 Subject: [PATCH 107/172] Update minimum dependencies to agree with the other packages --- pyproject.toml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index c1a30e76..ccfcddcc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,10 +20,10 @@ classifiers=[ "Topic :: Scientific/Engineering :: Astronomy", ] dependencies = [ - "numpy>=1.16", + "numpy>=1.19", "scipy>=1.4.0", - "astropy>=2.0", - "matplotlib>=1.5", + "astropy>=5.0", + "matplotlib>=3.2.0", "docutils>=0.15", "requests>=2.20", @@ -31,7 +31,7 @@ dependencies = [ "lxml>=4.5.0", "pyyaml>5.1", - "synphot>=0.1.3", + "synphot>=1.1.0", "skycalc_ipy>=0.1.3", "anisocado>=0.2.3", ] From bb32265c6127a3a3e1e6bfeeef1c3b5435cce03e Mon Sep 17 00:00:00 2001 From: teutoburg Date: Wed, 14 Jun 2023 21:59:54 +0200 Subject: [PATCH 108/172] Fix referencing variable before assignment --- scopesim/effects/spectral_trace_list.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 147ca358..0c2a9835 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -336,12 +336,11 @@ def __init__(self, **kwargs): self.meta.update(kwargs) path = Path(self.meta["path"], from_currsys(self.meta["filename_format"])) - fname = str(path).format(name) self.trace_lists = {} for name in from_currsys(self.meta["trace_list_names"]): kwargs["name"] = name - self.trace_lists[name] = SpectralTraceList(filename=fname, - **kwargs) + fname = str(path).format(name) + self.trace_lists[name] = SpectralTraceList(filename=fname, **kwargs) def apply_to(self, obj, **kwargs): """Use apply_to of current trace list""" From 7a9701530c520856a2f7e88d9f685c1f45f9c7d1 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 11:07:26 +0200 Subject: [PATCH 109/172] add getitem and setitem to SpectralTraceList --- scopesim/effects/spectral_trace_list.py | 6 + .../tests_effects/test_SpectralTraceList.py | 125 ++---------------- 2 files changed, 16 insertions(+), 115 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 147ca358..e4ea6489 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -261,6 +261,12 @@ def __str__(self): f"{len(self.spectral_traces)} traces") return msg + def __getitem__(self, item): + return self.spectral_traces[item] + + def __setitem__(self, key, value): + self.spectral_traces[key] = value + class SpectralTraceListWheel(Effect): """ diff --git a/scopesim/tests/tests_effects/test_SpectralTraceList.py b/scopesim/tests/tests_effects/test_SpectralTraceList.py index d0446c51..c64e0519 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceList.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceList.py @@ -2,17 +2,13 @@ import os import pytest -import numpy as np from astropy.io import fits -from astropy.wcs import WCS -from matplotlib import pyplot as plt from scopesim.effects.spectral_trace_list import SpectralTraceList -from scopesim.optics.fov_manager import FovVolumeList +from scopesim.effects.spectral_trace_list_utils import SpectralTrace from scopesim.tests.mocks.py_objects import trace_list_objects as tlo from scopesim.tests.mocks.py_objects import header_objects as ho -from scopesim.base_classes import PoorMansHeader from scopesim import rc MOCK_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), @@ -57,114 +53,13 @@ def test_initialises_with_filename(self): # assert that dispersion axis taken correctly from header keyword assert list(spt.spectral_traces.values())[2].dispersion_axis == 'y' + def test_getitem_returns_spectral_trace(self, full_trace_list): + slist = SpectralTraceList(hdulist=full_trace_list) + assert isinstance(slist['Sheared'], SpectralTrace) -### The following tests are skipped ### -@pytest.mark.skip(reason="Ignoring old Spectroscopy integration tests") -class TestGetFOVHeaders: - @pytest.mark.usefixtures("full_trace_list", "slit_header") - def test_gets_the_headers(self, full_trace_list, slit_header): - spt = SpectralTraceList(hdulist=full_trace_list) - params = {"pixel_scale": 0.015, "plate_scale": 0.26666, - "wave_min": 0.7, "wave_max": 2.5} - hdrs = spt.get_fov_headers(slit_header, **params) - - # assert all([isinstance(hdr, fits.Header) for hdr in hdrs]) - assert all([isinstance(hdr, PoorMansHeader) for hdr in hdrs]) - # ..todo:: add in some better test of correctness - - if PLOTS: - # pixel coords - for hdr in hdrs[::50]: - xp = [0, hdr["NAXIS1"], hdr["NAXIS1"], 0] - yp = [0, 0, hdr["NAXIS2"], hdr["NAXIS2"]] - wcs = WCS(hdr, key="D") - # world coords - xw, yw = wcs.all_pix2world(xp, yp, 1) - plt.fill(xw / hdr["CDELT1D"], yw / hdr["CDELT2D"], alpha=0.2) - plt.show() - - def test_gets_headers_from_real_file(self): - slit_hdr = ho._long_micado_slit_header() - # slit_hdr = ho._short_micado_slit_header() - wave_min = 1.0 - wave_max = 1.3 - spt = SpectralTraceList(filename="TRACE_15arcsec.fits", - s_colname="xi", - wave_colname="lam", - spline_order=1) - params = {"wave_min": wave_min, "wave_max": wave_max, - "pixel_scale": 0.004, "plate_scale": 0.266666667} - hdrs = spt.get_fov_headers(slit_hdr, **params) - assert isinstance(spt, SpectralTraceList) - - print(len(hdrs)) - - if PLOTS: - spt.plot(wave_min, wave_max) - - # pixel coords - for hdr in hdrs[::300]: - xp = [0, hdr["NAXIS1"], hdr["NAXIS1"], 0] - yp = [0, 0, hdr["NAXIS2"], hdr["NAXIS2"]] - wcs = WCS(hdr, key="D") - # world coords - xw, yw = wcs.all_pix2world(xp, yp, 1) - plt.plot(xw, yw, alpha=0.2) - plt.show() - - -# class TestApplyTo: -# def test_fov_setup_base_returns_only_extracted_fov_limits(self): -# fname = r"F:\Work\irdb\MICADO\TRACE_MICADO.fits" -# spt = SpectralTraceList(filename=fname, s_colname='xi') -# -# fvl = FovVolumeList() -# fvl = spt.apply_to(fvl) -# -# assert len(fvl) == 17 - - -################################################################################ - - -def test_set_pc_matrix(rotation_ang=0, shear_ang=10): - n = 100 - im = np.arange(n**2).reshape(n, n) - hdu = fits.ImageHDU(im) - hdr_dict = {"CTYPE1": "LINEAR", - "CTYPE2": "LINEAR", - "CUNIT1": "deg", - "CUNIT2": "deg", - "CDELT1": 1, - "CDELT2": 1, - "CRVAL1": 0, - "CRVAL2": 0, - "CRPIX1": 0, - "CRPIX2": 0} - hdu.header.update(hdr_dict) - - c = np.cos(rotation_ang / 57.29578) * 2 - s = np.sin(rotation_ang / 57.29578) * 2 - t = np.tan(shear_ang / 57.29578) - - n = 5 - pc_dict = {"PC1_1": c + t*s, - "PC1_2": -s + t*c, - "PC2_1": s, - "PC2_2": c} - det = np.sqrt(np.abs(pc_dict["PC1_1"] * pc_dict["PC2_2"] - \ - pc_dict["PC1_2"] * pc_dict["PC2_1"])) - for key in pc_dict: - pc_dict[key] /= det - hdu.header.update(pc_dict) - w = WCS(hdu) - - xd = np.array([0, 10, 10, 0]) - yd = np.array([0, 0, 10, 10]) - xs, ys = w.all_pix2world(xd, yd, 1) - - if PLOTS: - plt.figure(figsize=(6, 6)) - plt.plot(xd, yd, "o-") - plt.plot(xs, ys, "o-") - plt.show() + def test_setitem_appends_correctly(self, full_trace_list): + slist = SpectralTraceList(hdulist=full_trace_list) + n_trace = len(slist.spectral_traces) + spt = tlo.trace_1() + slist["New trace"] = spt + assert len(slist.spectral_traces) == n_trace + 1 From f1917687c616adffffbaf1b1525ca5c4613ae155 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 11:16:08 +0200 Subject: [PATCH 110/172] repair f string --- scopesim/effects/spectral_trace_list_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 9c4894c9..e228dd33 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -409,7 +409,7 @@ def plot(self, wave_min=None, wave_max=None, c="r"): plt.gca().set_aspect("equal") def __repr__(self): - msg = (" \"{self.meta['trace_id']}\" : " + msg = (f" \"{self.meta['trace_id']}\" : " f"[{self.wave_min:.4f}, {self.wave_max:.4f}]um : " f"Ext {self.meta['extension_id']} : " f"Aperture {self.meta['aperture_id']} : " From b518230e92978c753e5ea6a075831c5d920a35a0 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 11:30:17 +0200 Subject: [PATCH 111/172] Remove unneeded methods --- scopesim/effects/spectral_trace_list.py | 16 ---------------- 1 file changed, 16 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index e4ea6489..7f9b37f3 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -196,22 +196,6 @@ def apply_to(self, obj, **kwargs): return obj - def get_waveset(self, pixel_size=None): - if pixel_size is None: - pixel_size = self.meta["pixel_scale"] / self.meta["plate_scale"] - - wavesets = [spt.get_pixel_wavelength_edges(pixel_size) - for spt in self.spectral_traces] - - return wavesets - - def get_fov_headers(self, sky_header, **kwargs): - fov_headers = [] - for spt in self.spectral_traces: - fov_headers += spt.fov_headers(sky_header=sky_header, **kwargs) - - return fov_headers - @property def footprint(self): From 8246112ba9dc83fa36d9c3144c25dc039a182352 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 11:52:09 +0200 Subject: [PATCH 112/172] one more test --- .../test_SpectralTraceListUtils.py | 20 ++++++++++++++++--- 1 file changed, 17 insertions(+), 3 deletions(-) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py index 3f1b9182..6018964d 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py @@ -1,14 +1,28 @@ """Unit tests for spectral_trace_list_utils.py""" -# pylint: disable=no-self-use # pylint: disable=missing-function-docstring # pylint: disable=invalid-name - +# pylint: disable=too-few-public-methods +import os import pytest import numpy as np - +from scopesim import rc +from scopesim.effects.spectral_trace_list_utils import SpectralTrace from scopesim.effects.spectral_trace_list_utils import Transform2D, power_vector +from scopesim.tests.mocks.py_objects import trace_list_objects as tlo + +MOCK_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), + "../mocks/MICADO_SPEC/")) +if MOCK_PATH not in rc.__search_path__: + rc.__search_path__ += [MOCK_PATH] + +class TestSpectralTrace: + """Tests not covered in test_SpectralTraceList.py""" + def test_initialises_with_table(self): + trace_tbl = tlo.trace_1() + spt = SpectralTrace(trace_tbl) + assert isinstance(spt, SpectralTrace) class TestPowerVec: """Test function power_vector()""" From 6ee7f6537f0d1a8030793d6ccfe345386634c1d0 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 11:59:51 +0200 Subject: [PATCH 113/172] unnecessary mock path --- scopesim/tests/tests_effects/test_SpectralTraceListUtils.py | 6 ------ 1 file changed, 6 deletions(-) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py index 6018964d..59c5535e 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py @@ -3,7 +3,6 @@ # pylint: disable=missing-function-docstring # pylint: disable=invalid-name # pylint: disable=too-few-public-methods -import os import pytest import numpy as np @@ -12,11 +11,6 @@ from scopesim.effects.spectral_trace_list_utils import Transform2D, power_vector from scopesim.tests.mocks.py_objects import trace_list_objects as tlo -MOCK_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), - "../mocks/MICADO_SPEC/")) -if MOCK_PATH not in rc.__search_path__: - rc.__search_path__ += [MOCK_PATH] - class TestSpectralTrace: """Tests not covered in test_SpectralTraceList.py""" def test_initialises_with_table(self): From c9387f4f48ee93879ce0fbdb4db1c5c6ffdfd4e6 Mon Sep 17 00:00:00 2001 From: oczoske Date: Thu, 15 Jun 2023 12:06:49 +0200 Subject: [PATCH 114/172] unnecessary import --- scopesim/tests/tests_effects/test_SpectralTraceListUtils.py | 1 - 1 file changed, 1 deletion(-) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py index 59c5535e..95d6f82d 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py @@ -6,7 +6,6 @@ import pytest import numpy as np -from scopesim import rc from scopesim.effects.spectral_trace_list_utils import SpectralTrace from scopesim.effects.spectral_trace_list_utils import Transform2D, power_vector from scopesim.tests.mocks.py_objects import trace_list_objects as tlo From 778cb736fca036b76e2bd9ce32745db8e128c2f8 Mon Sep 17 00:00:00 2001 From: oczoske Date: Fri, 16 Jun 2023 16:10:16 +0200 Subject: [PATCH 115/172] WCS creation --- scopesim/effects/spectral_trace_list.py | 32 ++++++++++- scopesim/effects/spectral_trace_list_utils.py | 53 ++++++++++++++++--- .../tests_effects/test_SpectralTraceList.py | 12 +++++ 3 files changed, 89 insertions(+), 8 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index ea3b177f..4134a3e8 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -14,7 +14,7 @@ from astropy.table import Table from .effects import Effect -from .spectral_trace_list_utils import SpectralTrace +from .spectral_trace_list_utils import SpectralTrace, make_image_interpolations from ..utils import from_currsys, check_keys from ..optics.image_plane_utils import header_from_list_of_xy from ..base_classes import FieldOfViewBase, FOVSetupBase @@ -103,6 +103,7 @@ def __init__(self, **kwargs): params = {"z_order": [70, 270, 670], "pixel_scale": "!INST.pixel_scale", # [arcsec / pix]} "plate_scale": "!INST.plate_scale", # [arcsec / mm] + "spectral_bin_width": "!SIM.spectral.spectral_bin_width", # [um] "wave_min": "!SIM.spectral.wave_min", # [um] "wave_mid": "!SIM.spectral.wave_mid", # [um] "wave_max": "!SIM.spectral.wave_max", # [um] @@ -226,6 +227,35 @@ def image_plane_header(self): return hdr + def rectify_traces(self, hdulist): + """Create rectified 2D spectra for all traces in the list + + This method creates an HDU list with one extension per spectral + trace, i.e. it essentially treats all traces independently. + For the case of an IFU where the traces correspond to spatial + slices for the same wavelength range, use method `rectify_cube` + (not yet implemented). + + Parameters + ---------- + hdulist : str or fits.HDUList + """ + try: + inhdul = fits.open(hdulist) + except TypeError: + inhdul = hdulist + + interps = make_image_interpolations(hdulist) + outhdul = fits.HDUList() # needs a primary DU + for trace in self.spectral_traces: + hdu = trace.rectify(interps=interps) + if hdu is not None: # ..todo: rectify does not do that yet + outhdul.append(hdu) + + def rectify_cube(self, hdulist): + """Rectify traces and combine into a cube""" + raise(NotImplementedError) + def plot(self, wave_min=None, wave_max=None, **kwargs): if wave_min is None: wave_min = from_currsys("!SIM.spectral.wave_min") diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 5a6bcb1e..ed62318d 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -24,7 +24,7 @@ from astropy.wcs import WCS from astropy.modeling.models import Polynomial2D -from ..utils import power_vector, quantify +from ..utils import power_vector, quantify, from_currsys class SpectralTrace: @@ -285,8 +285,7 @@ def map_spectra_to_focal_plane(self, fov): image_hdu = fits.ImageHDU(header=img_header, data=image) return image_hdu - def rectify_trace(self, hdulist, interps=None, wcs=None, nlam=None, - nxi=None, **kwargs): + def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): """Create 2D spectrum for a trace Parameters @@ -300,15 +299,55 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, nlam=None, wcs : The WCS describing the rectified XiLamImage. This can be created in a simple way from the fov included in the `OpticalTrain` used in the simulation run producing `hdulist`. - nlam, nxi : int - Number of pixels in the rectified 2D spectrum. + + The WCS can also be set up via the following keywords: + + bin_width : float [um] + The spectral bin width. + wave_min, wave_max : float [um] + Limits of the wavelength range to extract. The default is the + the full range on which the `SpectralTrace` is defined. This may + extend significantly beyond the filter window. """ + + # ..todo: build wcs if not provided + bin_width = kwargs.get( + "bin_width", + from_currsys(self.meta["spectral_bin_width"])) + wave_min = kwargs.get( + "wave_min", + self.wave_min) + wave_max = kwargs.get( + "wave_max", + self.wave_max) + if wave_max < self.wave_min or wave_min > self.wave_max: + return None + pixscale = from_currsys(self.meta['pixel_scale']) + + # Temporary solution to get slit length + xi_min = hdulist[0].header["HIERARCH INS SLIT XIMIN"] + xi_max = hdulist[0].header["HIERARCH INS SLIT XIMAX"] + + if wcs is None: + wcs = WCS(naxis=2) + wcs.wcs.ctype = ['WAVE', 'LINEAR'] + wcs.wcs.cunit = ['um', 'arcsec'] + wcs.wcs.crpix = [1, 1] + wcs.wcs.cdelt = [bin_width, pixscale] # PIXSCALE + + # crval set to wave_min to catch explicitely set value + wcs.wcs.crval = [wave_min, xi_min] # XIMIN + + nlam = int((wave_max - wave_min) / bin_width) + nxi = int((xi_max - xi_min) / pixscale) + + print(wcs) + + # Create interpolation functions if not provided if interps is None: logging.info("Computing image interpolations") interps = make_image_interpolations(hdulist, kx=1, ky=1) - # ..todo: build wcs if not provided - # Create Xi, Lam images (do I need Iarr and Jarr or can I build Xi, Lam directly?) Iarr, Jarr = np.meshgrid(np.arange(nlam, dtype=np.float32), np.arange(nxi, dtype=np.float32)) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceList.py b/scopesim/tests/tests_effects/test_SpectralTraceList.py index c64e0519..792a64f6 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceList.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceList.py @@ -63,3 +63,15 @@ def test_setitem_appends_correctly(self, full_trace_list): spt = tlo.trace_1() slist["New trace"] = spt assert len(slist.spectral_traces) == n_trace + 1 + + +@pytest.fixture(name="spectral_trace_list", scope="class") +def fixture_spectral_trace_list(): + """Instantiate a SpectralTraceList""" + return SpectralTraceList(hdulist=tlo.make_trace_hdulist()) + +class TestRectification: + def test_rectify_cube_not_implemented(self, spectral_trace_list): + hdulist = fits.HDUList() + with pytest.raises(NotImplementedError): + spectral_trace_list.rectify_cube(hdulist) From f7127d8bea3569823a011d37c093a97ea85729a5 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 19 Jun 2023 10:01:14 +0200 Subject: [PATCH 116/172] Only test some Python versions The IRDB download keeps failing with errors like urllib.error.ContentTooShortError: We need to fix that, but now the CI fails most of the time --- .github/workflows/notebooks_with_irdb_download.yml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/.github/workflows/notebooks_with_irdb_download.yml b/.github/workflows/notebooks_with_irdb_download.yml index 22fe84e8..26193abc 100644 --- a/.github/workflows/notebooks_with_irdb_download.yml +++ b/.github/workflows/notebooks_with_irdb_download.yml @@ -14,10 +14,12 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - # Run on the full matrix, because this is the first interaction + # Run all operating systems, because this is the first interaction # that users have with ScopeSim / IRDB. + # However, only use minimum and maximum supported Python version, + # as the IRDB download often fails. os: [ubuntu-latest, windows-latest, macos-latest] - python-version: ['3.8', '3.9', '3.10', '3.11'] + python-version: ['3.8', '3.11'] steps: - uses: actions/checkout@v3 From ae24d0f754f9b4646afe9861b5cace71ed939c12 Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 19 Jun 2023 11:09:20 +0200 Subject: [PATCH 117/172] rectify returns HDU --- scopesim/effects/spectral_trace_list_utils.py | 33 ++++++++++++------- 1 file changed, 22 insertions(+), 11 deletions(-) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index ed62318d..6415e175 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -308,25 +308,29 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): Limits of the wavelength range to extract. The default is the the full range on which the `SpectralTrace` is defined. This may extend significantly beyond the filter window. + xi_min, xi_max : float [arcsec] + Spatial limits of the slit on the sky. This should be taken from + the header of the hdulist, but is not yet provided by scopesim """ # ..todo: build wcs if not provided bin_width = kwargs.get( "bin_width", from_currsys(self.meta["spectral_bin_width"])) - wave_min = kwargs.get( - "wave_min", - self.wave_min) - wave_max = kwargs.get( - "wave_max", - self.wave_max) + wave_min = kwargs.get("wave_min", + self.wave_min) + wave_max = kwargs.get("wave_max", + self.wave_max) if wave_max < self.wave_min or wave_min > self.wave_max: return None + pixscale = from_currsys(self.meta['pixel_scale']) # Temporary solution to get slit length - xi_min = hdulist[0].header["HIERARCH INS SLIT XIMIN"] - xi_max = hdulist[0].header["HIERARCH INS SLIT XIMAX"] + xi_min = kwargs.get("xi_min", + hdulist[0].header["HIERARCH INS SLIT XIMIN"]) + xi_max = kwargs.get("xi_max", + hdulist[0].header["HIERARCH INS SLIT XIMAX"]) if wcs is None: wcs = WCS(naxis=2) @@ -338,8 +342,8 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): # crval set to wave_min to catch explicitely set value wcs.wcs.crval = [wave_min, xi_min] # XIMIN - nlam = int((wave_max - wave_min) / bin_width) - nxi = int((xi_max - xi_min) / pixscale) + nlam = int((wave_max - wave_min) / bin_width) + 1 + nxi = int((xi_max - xi_min) / pixscale) + 1 print(wcs) @@ -381,7 +385,9 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): ihdu += 1 - return rect_spec + header = wcs.to_header() + header['EXTNAME'] = self.trace_id + return fits.ImageHDU(data=rect_spec, header=header) def footprint(self, wave_min=None, wave_max=None, xi_min=None, xi_max=None): @@ -511,6 +517,11 @@ def plot(self, wave_min=None, wave_max=None, c="r"): plt.gca().set_aspect("equal") + @property + def trace_id(self): + """Return the name of the trace""" + return self.meta['trace_id'] + def __repr__(self): msg = (f" \"{self.meta['trace_id']}\" : " f"[{self.wave_min:.4f}, {self.wave_max:.4f}]um : " From 133d354a77eac760045c6241d173c677d8a2ca3a Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 19 Jun 2023 12:59:18 +0200 Subject: [PATCH 118/172] useful wavelength range, trace selection --- scopesim/effects/spectral_trace_list.py | 59 +++++++++++++++++-- scopesim/effects/spectral_trace_list_utils.py | 15 +++-- 2 files changed, 62 insertions(+), 12 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 4134a3e8..5a86b244 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -14,6 +14,7 @@ from astropy.table import Table from .effects import Effect +from .ter_curves import FilterCurve from .spectral_trace_list_utils import SpectralTrace, make_image_interpolations from ..utils import from_currsys, check_keys from ..optics.image_plane_utils import header_from_list_of_xy @@ -227,7 +228,8 @@ def image_plane_header(self): return hdr - def rectify_traces(self, hdulist): + def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, + **kwargs): """Create rectified 2D spectra for all traces in the list This method creates an HDU list with one extension per spectral @@ -239,19 +241,68 @@ def rectify_traces(self, hdulist): Parameters ---------- hdulist : str or fits.HDUList + The result of scopesim readout() + xi_min, xi_max : float [arcsec] + Spatial limits of the slit on the sky. This should be taken + from the header of the hdulist, but this is not yet provided by + scopesim. For the time being, these limits *must* be provided by + the user. + interps : list of interpolation functions + If provided, there must be one for each image extension in `hdulist`. + The functions go from pixels to the images and can be created with, + e.g., RectBivariateSpline. """ try: inhdul = fits.open(hdulist) except TypeError: inhdul = hdulist - interps = make_image_interpolations(hdulist) + # Crude attempt to get a useful wavelength range + filtcurve = FilterCurve( + filter_name=from_currsys("!OBS.filter_name_fw1"), + filename_format=from_currsys("!INST.filter_file_format")) + filtwaves = filtcurve.table['wavelength'] + filtwave = filtwaves[filtcurve.table['transmission'] > 0.01] + wave_min, wave_max = min(filtwave), max(filtwave) + logging.info("Extracted wavelength range: %.02f .. %.02f um", + wave_min, wave_max) + + if xi_min is None or xi_max is None: + try: + xi_min = inhdul[0].header["HIERARCH INS SLIT XIMIN"] + xi_max = inhdul[0].header["HIERARCH INS SLIT XIMAX"] + logging.info( + "Slit limits taken from header: %.02f .. %.02f arcsec", + xi_min, xi_max) + except KeyError: + logging.error(""" + Spatial slit limits (in arcsec) must be provided: + - either as method parameters xi_min and xi_max + - or as header keywords HIERARCH INS SLIT XIMIN/XIMAX + """) + return None + + bin_width = kwargs.get( + "bin_width", + from_currsys(self.meta["spectral_bin_width"])) + + if interps is None: + logging.info("Computing interpolation functions") + interps = make_image_interpolations(hdulist) + outhdul = fits.HDUList() # needs a primary DU - for trace in self.spectral_traces: - hdu = trace.rectify(interps=interps) + for trace_id in self.spectral_traces: + hdu = self[trace_id].rectify(hdulist, + interps=interps, + bin_width=bin_width, + xi_min=xi_min, x_max=xi_max, + wave_min=wave_min, wave_max=wave_max) if hdu is not None: # ..todo: rectify does not do that yet outhdul.append(hdu) + return outhdul + + def rectify_cube(self, hdulist): """Rectify traces and combine into a cube""" raise(NotImplementedError) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 6415e175..9958145a 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -285,7 +285,7 @@ def map_spectra_to_focal_plane(self, fov): image_hdu = fits.ImageHDU(header=img_header, data=image) return image_hdu - def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): + def rectify(self, hdulist, interps=None, wcs=None, **kwargs): """Create 2D spectrum for a trace Parameters @@ -310,9 +310,9 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): extend significantly beyond the filter window. xi_min, xi_max : float [arcsec] Spatial limits of the slit on the sky. This should be taken from - the header of the hdulist, but is not yet provided by scopesim + the header of the hdulist, but this is not yet provided by scopesim """ - + logging.info("Rectifying %s", self.trace_id) # ..todo: build wcs if not provided bin_width = kwargs.get( "bin_width", @@ -322,7 +322,11 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): wave_max = kwargs.get("wave_max", self.wave_max) if wave_max < self.wave_min or wave_min > self.wave_max: + logging.info(" Outside filter range") return None + wave_min = max(wave_min, self.wave_min) + wave_max = min(wave_max, self.wave_max) + logging.info(" %.02f .. %.02f um", wave_min, wave_max) pixscale = from_currsys(self.meta['pixel_scale']) @@ -345,8 +349,6 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): nlam = int((wave_max - wave_min) / bin_width) + 1 nxi = int((xi_max - xi_min) / pixscale) + 1 - print(wcs) - # Create interpolation functions if not provided if interps is None: logging.info("Computing image interpolations") @@ -360,9 +362,6 @@ def rectify_trace(self, hdulist, interps=None, wcs=None, **kwargs): # Make sure that we do have microns Lam = Lam * u.Unit(wcs.wcs.cunit[0]).to(u.um) - print("lambda:", Lam.min(), Lam.max()) - print("xi: ", Xi.min(), Xi.max()) - # Convert Xi, Lam to focal plane units Xarr = self.xilam2x(Xi, Lam) Yarr = self.xilam2y(Xi, Lam) From 41321e412e5fb5b7faeb99b3bfe24dd5060cb987 Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 19 Jun 2023 13:30:31 +0200 Subject: [PATCH 119/172] now with primary HDU --- scopesim/effects/spectral_trace_list.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 5a86b244..717c6223 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -290,8 +290,13 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, logging.info("Computing interpolation functions") interps = make_image_interpolations(hdulist) - outhdul = fits.HDUList() # needs a primary DU - for trace_id in self.spectral_traces: + pdu = fits.PrimaryHDU() + pdu.header['FILETYPE'] = "Rectified spectra" + pdu.header['INSTRUME'] = inhdul[0].header['HIERARCH ESO OBS INSTRUME'] + pdu.header['FILTER'] = from_currsys("!OBS.filter_name_fw1") + outhdul = fits.HDUList([pdu]) + + for i, trace_id in enumerate(self.spectral_traces): hdu = self[trace_id].rectify(hdulist, interps=interps, bin_width=bin_width, @@ -299,6 +304,9 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, wave_min=wave_min, wave_max=wave_max) if hdu is not None: # ..todo: rectify does not do that yet outhdul.append(hdu) + outhdul[0].header[f"EXTNAME{i}"] = trace_id + + outhdul[0].header.update(inhdul[0].header) return outhdul From 0ccad52c2f59e201400d6e6d0b32836e3dcaf58a Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 19 Jun 2023 15:35:01 +0200 Subject: [PATCH 120/172] automatic determination of bin_width --- scopesim/effects/spectral_trace_list.py | 15 ++--- scopesim/effects/spectral_trace_list_utils.py | 64 +++++++++++++------ 2 files changed, 48 insertions(+), 31 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index 717c6223..b85c9efd 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -195,10 +195,6 @@ def apply_to(self, obj, **kwargs): logging.info("Making cube") obj.cube = obj.make_cube_hdu() - # ..todo: obj will be changed to a single one covering the full field of view - # covered by the image slicer (28 slices for LMS; for LSS still only a single slit) - # We need a loop over spectral_traces that chops up obj into the single-slice fov before - # calling map_spectra... trace_id = obj.meta["trace_id"] spt = self.spectral_traces[trace_id] obj.hdu = spt.map_spectra_to_focal_plane(obj) @@ -264,7 +260,7 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, filtwaves = filtcurve.table['wavelength'] filtwave = filtwaves[filtcurve.table['transmission'] > 0.01] wave_min, wave_max = min(filtwave), max(filtwave) - logging.info("Extracted wavelength range: %.02f .. %.02f um", + logging.info("Full wavelength range: %.02f .. %.02f um", wave_min, wave_max) if xi_min is None or xi_max is None: @@ -282,9 +278,8 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, """) return None - bin_width = kwargs.get( - "bin_width", - from_currsys(self.meta["spectral_bin_width"])) + + bin_width = kwargs.get("bin_width", None) if interps is None: logging.info("Computing interpolation functions") @@ -300,11 +295,11 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, hdu = self[trace_id].rectify(hdulist, interps=interps, bin_width=bin_width, - xi_min=xi_min, x_max=xi_max, + xi_min=xi_min, xi_max=xi_max, wave_min=wave_min, wave_max=wave_max) if hdu is not None: # ..todo: rectify does not do that yet outhdul.append(hdu) - outhdul[0].header[f"EXTNAME{i}"] = trace_id + outhdul[0].header[f"EXTNAME{i+1}"] = trace_id outhdul[0].header.update(inhdul[0].header) diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 9958145a..dbde1793 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -202,19 +202,7 @@ def map_spectra_to_focal_plane(self, fov): xmin_mm, ymin_mm = fpa_wcsd.all_pix2world(xmin, ymin, 0) xmax_mm, ymax_mm = fpa_wcsd.all_pix2world(xmax, ymax, 0) - # Computation of dispersion dlam_per_pix along xi=0 - # ..todo: This may have to be generalised - xi=0 is at the centre of METIS slits - # and the short MICADO slit. - xi = np.array([0] * 1001) - lam = np.linspace(wave_min, wave_max, 1001) - x_mm = self.xilam2x(xi, lam) - y_mm = self.xilam2y(xi, lam) - if self.dispersion_axis == "x": - dlam_grad = self.xy2lam.gradient()[0] # dlam_by_dx - else: - dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy - self.dlam_per_pix = interp1d(lam, dlam_grad(x_mm, y_mm) * pixsize, - fill_value="extrapolate") + self._set_dispersion(wave_min, wave_max, pixsize=pixsize) try: xilam = XiLamImage(fov, self.dlam_per_pix) self._xilamimg = xilam # ..todo: remove or make available with a debug flag? @@ -313,10 +301,7 @@ def rectify(self, hdulist, interps=None, wcs=None, **kwargs): the header of the hdulist, but this is not yet provided by scopesim """ logging.info("Rectifying %s", self.trace_id) - # ..todo: build wcs if not provided - bin_width = kwargs.get( - "bin_width", - from_currsys(self.meta["spectral_bin_width"])) + wave_min = kwargs.get("wave_min", self.wave_min) wave_max = kwargs.get("wave_max", @@ -328,13 +313,30 @@ def rectify(self, hdulist, interps=None, wcs=None, **kwargs): wave_max = min(wave_max, self.wave_max) logging.info(" %.02f .. %.02f um", wave_min, wave_max) + # bin_width is taken as the minimum dispersion of the trace + bin_width = kwargs.get("bin_width", None) + if bin_width is None: + self._set_dispersion(wave_min, wave_max) + bin_width = self.dlam_per_pix.y.min() + logging.info(" Bin width %.02g um", bin_width) + pixscale = from_currsys(self.meta['pixel_scale']) # Temporary solution to get slit length - xi_min = kwargs.get("xi_min", - hdulist[0].header["HIERARCH INS SLIT XIMIN"]) - xi_max = kwargs.get("xi_max", - hdulist[0].header["HIERARCH INS SLIT XIMAX"]) + xi_min = kwargs.get("xi_min", None) + if xi_min is None: + try: + xi_min = hdulist[0].header["HIERARCH INS SLIT XIMIN"] + except KeyError: + logging.error("xi_min not found") + return None + xi_max = kwargs.get("xi_max", None) + if xi_max is None: + try: + xi_max = hdulist[0].header["HIERARCH INS SLIT XIMAX"] + except KeyError: + logging.error("xi_max not found") + return None if wcs is None: wcs = WCS(naxis=2) @@ -521,6 +523,26 @@ def trace_id(self): """Return the name of the trace""" return self.meta['trace_id'] + def _set_dispersion(self, wave_min, wave_max, pixsize=None): + """Computation of dispersion dlam_per_pix along xi=0 + """ + #..todo: This may have to be generalised - xi=0 is at the centre + #of METIS slits and the short MICADO slit. + + xi = np.array([0] * 1001) + lam = np.linspace(wave_min, wave_max, 1001) + x_mm = self.xilam2x(xi, lam) + y_mm = self.xilam2y(xi, lam) + if self.dispersion_axis == "x": + dlam_grad = self.xy2lam.gradient()[0] # dlam_by_dx + else: + dlam_grad = self.xy2lam.gradient()[1] # dlam_by_dy + pixsize = (from_currsys(self.meta['pixel_scale']) / + from_currsys(self.meta['plate_scale'])) + self.dlam_per_pix = interp1d(lam, + dlam_grad(x_mm, y_mm) * pixsize, + fill_value="extrapolate") + def __repr__(self): msg = (f" \"{self.meta['trace_id']}\" : " f"[{self.wave_min:.4f}, {self.wave_max:.4f}]um : " From f1a82396e413a240cc669a33c71cb487116f6b9e Mon Sep 17 00:00:00 2001 From: oczoske Date: Mon, 19 Jun 2023 16:02:23 +0200 Subject: [PATCH 121/172] Remove MICADO-specific things --- scopesim/effects/spectral_trace_list.py | 14 +++++++++++--- scopesim/effects/spectral_trace_list_utils.py | 5 +++-- 2 files changed, 14 insertions(+), 5 deletions(-) diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index b85c9efd..d42bc8f8 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -254,8 +254,16 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, inhdul = hdulist # Crude attempt to get a useful wavelength range + # Problematic because different instruments use different + # keywords for the filter... We try to make it work for METIS + # and MICADO for the time being. + try: + filter_name = from_currsys("!OBS.filter_name") + except ValueError: + filter_name = from_currsys("!OBS.filter_name_fw1") + filtcurve = FilterCurve( - filter_name=from_currsys("!OBS.filter_name_fw1"), + filter_name=filter_name, filename_format=from_currsys("!INST.filter_file_format")) filtwaves = filtcurve.table['wavelength'] filtwave = filtwaves[filtcurve.table['transmission'] > 0.01] @@ -287,8 +295,8 @@ def rectify_traces(self, hdulist, xi_min=None, xi_max=None, interps=None, pdu = fits.PrimaryHDU() pdu.header['FILETYPE'] = "Rectified spectra" - pdu.header['INSTRUME'] = inhdul[0].header['HIERARCH ESO OBS INSTRUME'] - pdu.header['FILTER'] = from_currsys("!OBS.filter_name_fw1") + #pdu.header['INSTRUME'] = inhdul[0].header['HIERARCH ESO OBS INSTRUME'] + #pdu.header['FILTER'] = from_currsys("!OBS.filter_name_fw1") outhdul = fits.HDUList([pdu]) for i, trace_id in enumerate(self.spectral_traces): diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index dbde1793..5f68a2fe 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -291,7 +291,8 @@ def rectify(self, hdulist, interps=None, wcs=None, **kwargs): The WCS can also be set up via the following keywords: bin_width : float [um] - The spectral bin width. + The spectral bin width. This is best computed automatically from the + spectral dispersion of the trace. wave_min, wave_max : float [um] Limits of the wavelength range to extract. The default is the the full range on which the `SpectralTrace` is defined. This may @@ -317,7 +318,7 @@ def rectify(self, hdulist, interps=None, wcs=None, **kwargs): bin_width = kwargs.get("bin_width", None) if bin_width is None: self._set_dispersion(wave_min, wave_max) - bin_width = self.dlam_per_pix.y.min() + bin_width = np.abs(self.dlam_per_pix.y).min() logging.info(" Bin width %.02g um", bin_width) pixscale = from_currsys(self.meta['pixel_scale']) From 7ae144b89abc9ba5b99a1abbb614e743f3aef58b Mon Sep 17 00:00:00 2001 From: teutoburg <73600109+teutoburg@users.noreply.github.com> Date: Thu, 22 Jun 2023 13:04:56 +0200 Subject: [PATCH 122/172] Redo package download (#234) * Added proper DeprecationWarning * Catch HTTPErrors from both urllib and urllib3 Renamed the one from urllib3 to HTTPError3 for clarity * Migrate from os.path to pathlib.Path * Formatting * Variable names were still from deprecated function, now undefined Because we tried to catch the wrong HTTPError, this never evaluated. * Lazy formatting for logging * Properly do except clauses * Refactor to check and raise before, include release info in error msg * Add type hints on the go * Improve function structure * Add functions get_all_packages_on_server & get_server_folder_package_names Add necessary typing stuff Also fix get_server_folder_contents no actually using unique_str argument. * Make better use of beautifulsoup api to reduce need for filtering Also change get_server_folder_contents to return generator, adapt accordingly wherever needed. * Raise Error when no packages found in given dir * docstring * Refactor function for less complex structure * Fix messed up string tuple * Add new functions, deprecate old API * Implementing new download with retry incl cooldown and improved cache * Don't raise ValueError from KeyboardInterrupt * Refactoring * Progress on the progress bar, and better server error handling * Refactoring for better error handling * Add deprecation warning to obsolete function * Move github-related functions to separate submodule for better structure * Move example package functions to separate submodule for better structure * Update dependencies in toml file * Forgot a dependency * Fix imports * Attempt to fix imports finally * Add support for Python 3.8, because we have to :( * Fix failing tests caused by API change * Add more test to appease the allmighty lords of the holy Codecov * Actually call all tests test, add another one * Actually catch 404 from server. This is why we listen to Codecov * Added @pytest.mark.webtest to all tests using internet connection * Make custom composite type private * Isolate tqdm kwargs function * Use proper (double) with block instead of try/finally * Add messages informing the user about the download status There is now some uptake before the actual download progress bar shows. While this could be optimized a bit probably, it's good to inform the user that there is actually something going on in the background. Using plain print instead of logging, because progress bar prints anyway. * That was too fancy for Python 3.8 ... --- pyproject.toml | 3 + scopesim/server/OLD_database.py | 4 +- scopesim/server/__init__.py | 4 +- scopesim/server/database.py | 692 +++++++++++-------- scopesim/server/example_data_utils.py | 164 +++++ scopesim/server/github_utils.py | 95 +++ scopesim/tests/tests_server/test_database.py | 107 ++- 7 files changed, 760 insertions(+), 309 deletions(-) create mode 100644 scopesim/server/example_data_utils.py create mode 100644 scopesim/server/github_utils.py diff --git a/pyproject.toml b/pyproject.toml index bbdb5f4b..d5863649 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -30,6 +30,9 @@ dependencies = [ "beautifulsoup4>=4.4", "lxml", "pyyaml>5.1", + "more-itertools>=9.0", + "tqdm>=4.64", + "requests-cache>1.0", "synphot>=0.1.3", "skycalc_ipy>=0.1.3", diff --git a/scopesim/server/OLD_database.py b/scopesim/server/OLD_database.py index b861b27f..7fe96909 100644 --- a/scopesim/server/OLD_database.py +++ b/scopesim/server/OLD_database.py @@ -13,6 +13,7 @@ from scopesim import rc +from warnings import warn def get_local_packages(path): """ @@ -29,6 +30,8 @@ def get_local_packages(path): Names of packages on the local disk """ + warn("Function Depreciated --> please use scopesim.download_package-s-()", + DeprecationWarning, stacklevel=2) dirnames = os.listdir(path) pkgs = [] @@ -166,4 +169,3 @@ def download_package(pkg_path, save_dir=None, url=None, from_cache=None): save_path = os.path.abspath(save_path) return save_path - diff --git a/scopesim/server/__init__.py b/scopesim/server/__init__.py index c2fce246..e019c219 100644 --- a/scopesim/server/__init__.py +++ b/scopesim/server/__init__.py @@ -1,4 +1,4 @@ from .database import (download_packages, list_packages, - download_example_data, - list_example_data) + get_all_packages_on_server) +from .example_data_utils import download_example_data, list_example_data diff --git a/scopesim/server/database.py b/scopesim/server/database.py index d68a3aa9..a4b43c25 100644 --- a/scopesim/server/database.py +++ b/scopesim/server/database.py @@ -1,48 +1,288 @@ +# -*- coding: utf-8 -*- """ Functions to download instrument packages and example data """ -import json import re -import shutil -import os -import urllib.request -import zipfile +from zipfile import ZipFile import logging -from urllib3.exceptions import HTTPError +from datetime import date +from warnings import warn +from pathlib import Path +from typing import Optional, Union, List, Tuple, Set, Dict +# Python 3.8 doesn't yet know these things....... +# from collections.abc import Iterator, Iterable, Mapping +from typing import Iterator, Iterable, Mapping +from shutil import get_terminal_size + +from urllib.error import HTTPError +from urllib3.exceptions import HTTPError as HTTPError3 +from more_itertools import first, last, groupby_transform -import yaml import requests +from requests.packages.urllib3.util.retry import Retry +from requests.adapters import HTTPAdapter +from requests_cache import CachedSession import bs4 -from astropy.utils.data import download_file +from tqdm import tqdm +# from tqdm.contrib.logging import logging_redirect_tqdm +# put with logging_redirect_tqdm(loggers=all_loggers): around tqdm from scopesim import rc +from .github_utils import download_github_folder +from .example_data_utils import (download_example_data, list_example_data, + get_server_elements) +_GrpVerType = Mapping[str, Iterable[str]] +_GrpItrType = Iterator[Tuple[str, List[str]]] + +def _make_tqdm_kwargs(desc: str = ""): + width, _ = get_terminal_size((50, 20)) + bar_width = max(int(.8 * width) - 30 - len(desc), 10) + tqdm_kwargs = { + "bar_format": f"{{l_bar}}{{bar:{bar_width}}}{{r_bar}}{{bar:-{bar_width}b}}", + "colour": "green", + "desc": desc + } + return tqdm_kwargs + + +class ServerError(Exception): + """Some error with the server or connection to the server.""" + +class PkgNotFoundError(Exception): + """Unable to find given package or given release of that package.""" def get_server_package_list(): - url = rc.__config__["!SIM.file.server_base_url"] - response = requests.get(url + "packages.yaml") - pkgs_dict = yaml.full_load(response.text) + warn("Function Depreciated", DeprecationWarning, stacklevel=2) + + # Emulate legacy API without using the problematic yaml file + folders = list(dict(crawl_server_dirs()).keys()) + pkgs_dict = {} + for dir_name in folders: + p_list = [_parse_package_version(package) for package + in get_server_folder_contents(dir_name)] + grouped = dict(group_package_versions(p_list)) + for p_name in grouped: + p_dict = { + "latest": _unparse_raw_version(get_latest(grouped[p_name]), + p_name).strip(".zip"), + "path": dir_name.strip("/"), + "stable": _unparse_raw_version(get_stable(grouped[p_name]), + p_name).strip(".zip"), + } + pkgs_dict[p_name] = p_dict return pkgs_dict -def get_server_folder_contents(dir_name, unique_str=".zip"): +def get_server_folder_contents(dir_name: str, + unique_str: str = ".zip$") -> Iterator[str]: url = rc.__config__["!SIM.file.server_base_url"] + dir_name + retry_strategy = Retry(total=2, + status_forcelist=[404, 429, 500, 501, 502, 503], + allowed_methods=["GET"]) + adapter = HTTPAdapter(max_retries=retry_strategy) + try: - result = requests.get(url).content + with requests.Session() as session: + session.mount("https://", adapter) + result = session.get(url).content + except (requests.exceptions.ConnectionError, + requests.exceptions.RetryError) as error: + logging.error(error) + raise ServerError("Cannot connect to server. " + f"Attempted URL was: {url}.") from error except Exception as error: - raise ValueError(f"URL returned error: {url}") from error + logging.error(("Unhandled exception occured while accessing server." + "Attempted URL was: %s."), url) + logging.error(error) + raise error soup = bs4.BeautifulSoup(result, features="lxml") - hrefs = soup.findAll("a", href=True) - pkgs = [href.string for href in hrefs - if href.string is not None and ".zip" in href.string] + hrefs = soup.find_all("a", href=True, string=re.compile(unique_str)) + pkgs = (href.string for href in hrefs) return pkgs -def list_packages(pkg_name=None): +def _get_package_name(package: str) -> str: + return package.split(".", maxsplit=1)[0] + + +def _parse_raw_version(raw_version: str) -> str: + """Catch initial package version which has no date info + + Set initial package version to basically "minus infinity". + """ + if raw_version in ("", "zip"): + return str(date(1, 1, 1)) + return raw_version.strip(".zip") + + +def _unparse_raw_version(raw_version: str, package_name: str) -> str: + """Turn version string back into full zip folder name + + If initial version was set with `_parse_raw_version`, revert that. + """ + if raw_version == str(date(1, 1, 1)): + return f"{package_name}.zip" + return f"{package_name}.{raw_version}.zip" + + +def _parse_package_version(package: str) -> Tuple[str, str]: + p_name, p_version = package.split(".", maxsplit=1) + return p_name, _parse_raw_version(p_version) + + +def _is_stable(package_version: str) -> bool: + return not package_version.endswith("dev") + + +def get_stable(versions: Iterable[str]) -> str: + """Return the most recent stable (not "dev") version.""" + return max(version for version in versions if _is_stable(version)) + + +def get_latest(versions: Iterable[str]) -> str: + """Return the most recent version (stable or dev).""" + return max(versions) + + +def get_all_stable(version_groups: _GrpVerType) -> Iterator[Tuple[str, str]]: + """ + Yield the most recent version (stable or dev) of each package. + + Parameters + ---------- + version_groups : Mapping[str, Iterable[str]] + DESCRIPTION. + + Yields + ------ + Iterator[Tuple[str, str]] + Iterator of package name - latest stable version pairs. + + """ + for package_name, versions in version_groups.items(): + yield (package_name, get_stable(versions)) + + +def get_all_latest(version_groups: _GrpVerType) -> Iterator[Tuple[str, str]]: + """ + Yield the most recent stable (not "dev") version of each package. + + Parameters + ---------- + version_groups : Mapping[str, Iterable[str]] + DESCRIPTION. + + Yields + ------ + Iterator[Tuple[str, str]] + Iterator of package name - latest version pairs. + + """ + for package_name, versions in version_groups.items(): + yield (package_name, get_latest(versions)) + + +def group_package_versions(all_packages: Iterable[Tuple[str, str]]) -> _GrpItrType: + """Group different versions of packages by package name""" + version_groups = groupby_transform(sorted(all_packages), + keyfunc=first, + valuefunc=last, + reducefunc=list) + return version_groups + + +def crawl_server_dirs() -> Iterator[Tuple[str, Set[str]]]: + """Search all folders on server for .zip files""" + for dir_name in get_server_folder_contents("", "/"): + logging.info("Searching folder '%s'", dir_name) + try: + p_dir = get_server_folder_package_names(dir_name) + except ValueError as err: + logging.info(err) + continue + logging.info("Found packages %s.", p_dir) + yield dir_name, p_dir + + +def get_all_package_versions() -> Dict[str, List[str]]: + """Gather all versions for all packages present in any folder on server""" + grouped = {} + folders = list(dict(crawl_server_dirs()).keys()) + for dir_name in folders: + p_list = [_parse_package_version(package) for package + in get_server_folder_contents(dir_name)] + grouped.update(group_package_versions(p_list)) + return grouped + + +def get_package_folders() -> Dict[str, str]: + folder_dict = {pkg: path.strip("/") + for path, pkgs in dict(crawl_server_dirs()).items() + for pkg in pkgs} + return folder_dict + + +def get_server_folder_package_names(dir_name: str) -> Set[str]: + """ + Retrieve all unique package names present on server in `dir_name` folder. + + Parameters + ---------- + dir_name : str + Name of the folder on the server. + + Raises + ------ + ValueError + Raised if no valid packages are found in the given folder. + + Returns + ------- + package_names : set of str + Set of unique package names in `dir_name` folder. + + """ + package_names = {package.split(".", maxsplit=1)[0] for package + in get_server_folder_contents(dir_name)} + + if not package_names: + raise ValueError(f"No packages found in directory \"{dir_name}\".") + + return package_names + + +def get_all_packages_on_server() -> Iterator[Tuple[str, set]]: + """ + Retrieve all unique package names present on server in known folders. + + Currently hardcoded to look in folders "locations", "telescopes" and + "instruments". Any packages not in these folders are not returned. + + This generator function yields key-value pairs, containing the folder name + as the key and the set of unique package names in value. Recommended useage + is to turn the generator into a dictionary, i.e.: + + :: + package_dict = dict(get_all_packages_on_server()) + + Yields + ------ + Iterator[Tuple[str, set]] + Key-value pairs of folder and corresponding package names. + + """ + # TODO: this basically does the same as the crawl function... + for dir_name in ("locations", "telescopes", "instruments"): + package_names = get_server_folder_package_names(dir_name) + yield dir_name, package_names + + +def list_packages(pkg_name: Optional[str] = None) -> List[str]: """ List all packages, or all variants of a single package @@ -68,19 +308,132 @@ def list_packages(pkg_name=None): list_packages("Armazones") """ - pkgs_dict = get_server_package_list() + all_grouped = get_all_package_versions() if pkg_name is None: - pkg_names = list(pkgs_dict.keys()) - elif pkg_name in pkgs_dict: - path = pkgs_dict[pkg_name]["path"] - pkgs = get_server_folder_contents(path) - pkg_names = [pkg for pkg in pkgs if pkg_name in pkg] + # Return all packages with any stable version + all_stable = list(dict(get_all_stable(all_grouped)).keys()) + return all_stable + + if not pkg_name in all_grouped: + raise ValueError(f"Package name {pkg_name} not found on server.") + + p_versions = [_unparse_raw_version(version, pkg_name) + for version in all_grouped[pkg_name]] + return p_versions + + +def _get_zipname(pkg_name: str, release: str, all_versions) -> str: + if release == "stable": + zip_name = get_stable(all_versions[pkg_name]) + elif release == "latest": + zip_name = get_latest(all_versions[pkg_name]) + else: + release = _parse_raw_version(release) + if release not in all_versions[pkg_name]: + msg = (f"Requested version '{release}' of '{pkg_name}' package" + " could not be found on the server. Available versions " + f"are: {all_versions[pkg_name]}") + raise ValueError(msg) + zip_name = release + return _unparse_raw_version(zip_name, pkg_name) + + +def _create_session(cached: bool = False, cache_name: str = ""): + if cached: + return CachedSession(cache_name) + return requests.Session() + + +def _initiate_download(pkg_url: str, + cached: bool = False, cache_name: str = "", + total: int = 5, backoff_factor: int = 2): + retry_strategy = Retry(total=total, backoff_factor=backoff_factor, + status_forcelist=[429, 500, 501, 502, 503], + allowed_methods=["GET"]) + adapter = HTTPAdapter(max_retries=retry_strategy) + with _create_session(cached, cache_name) as session: + session.mount("https://", adapter) + response = session.get(pkg_url, stream=True) + return response + + +def _handle_download(response, save_path: Path, pkg_name: str, + padlen: int, chunk_size: int = 128) -> None: + tqdm_kwargs = _make_tqdm_kwargs(f"Downloading {pkg_name:<{padlen}}") + total = int(response.headers.get("content-length", 0)) + # Turn this into non-nested double with block in Python 3.9 or 10 (?) + with save_path.open("wb") as file_outer: + with tqdm.wrapattr(file_outer, "write", miniters=1, total=total, + **tqdm_kwargs) as file_inner: + for chunk in response.iter_content(chunk_size=chunk_size): + file_inner.write(chunk) + + +def _handle_unzipping(save_path: Path, save_dir: Path, + pkg_name: str, padlen: int) -> None: + with ZipFile(save_path, "r") as zip_ref: + namelist = zip_ref.namelist() + tqdm_kwargs = _make_tqdm_kwargs(f"Extracting {pkg_name:<{padlen}}") + for file in tqdm(iterable=namelist, total=len(namelist), **tqdm_kwargs): + zip_ref.extract(file, save_dir) + + +def _download_single_package(pkg_name: str, release: str, all_versions, + folder_dict: Path, base_url: str, save_dir: Path, + padlen: int, from_cache: bool) -> Path: + if pkg_name not in all_versions: + raise PkgNotFoundError(f"Unable to find {release} release for " + f"package '{pkg_name}' on server {base_url}.") + + if save_dir is None: + save_dir = rc.__config__["!SIM.file.local_packages_path"] + save_dir = Path(save_dir) + save_dir.mkdir(parents=True, exist_ok=True) + + if "github" in release: + base_url = "https://github.com/AstarVienna/irdb/tree/" + github_hash = release.split(":")[-1].split("@")[-1] + pkg_url = f"{base_url}{github_hash}/{pkg_name}" + download_github_folder(repo_url=pkg_url, output_dir=save_dir) + return save_dir.absolute() + + zip_name = _get_zipname(pkg_name, release, all_versions) + pkg_url = f"{base_url}{folder_dict[pkg_name]}/{zip_name}" - return pkg_names + try: + if from_cache is None: + from_cache = rc.__config__["!SIM.file.use_cached_downloads"] + + response = _initiate_download(pkg_url, from_cache, "test_cache") + save_path = save_dir / f"{pkg_name}.zip" + _handle_download(response, save_path, pkg_name, padlen) + _handle_unzipping(save_path, save_dir, pkg_name, padlen) + + except HTTPError3 as error: + logging.error(error) + msg = f"Unable to find file: {pkg_url + pkg_name}" + raise ValueError(msg) from error + except HTTPError as error: + logging.error("urllib (not urllib3) error was raised, this should " + "not happen anymore!") + logging.error(error) + except requests.exceptions.ConnectionError as error: + logging.error(error) + raise ServerError("Cannot connect to server.") from error + except Exception as error: + logging.error(("Unhandled exception occured while accessing server." + "Attempted URL was: %s."), base_url) + logging.error(error) + raise error + return save_path.absolute() -def download_packages(pkg_names, release="stable", save_dir=None, from_cache=None): + +def download_packages(pkg_names: Union[Iterable[str], str], + release: str = "stable", + save_dir: Optional[str] = None, + from_cache: Optional[bool] = None) -> List[Path]: """ Download one or more packages to the local disk @@ -138,60 +491,29 @@ def download_packages(pkg_names, release="stable", save_dir=None, from_cache=Non """ base_url = rc.__config__["!SIM.file.server_base_url"] - pkgs_dict = get_server_package_list() + print("Gathering information from server ...") + + all_versions = get_all_package_versions() + folder_dict = get_package_folders() + + print("Connection successful, starting download ...") if isinstance(pkg_names, str): pkg_names = [pkg_names] + padlen = len(max(pkg_names, key=len)) save_paths = [] for pkg_name in pkg_names: - if pkg_name in pkgs_dict: - pkg_dict = pkgs_dict[pkg_name] - path = pkg_dict["path"] + "/" - - from_github = False - if release in ["stable", "latest"]: - zip_name = pkg_dict[release] - pkg_url = f"{base_url}{path}/{zip_name}.zip" - elif "github" in release: - base_url = "https://github.com/AstarVienna/irdb/tree/" - github_hash = release.split(":")[-1].split("@")[-1] - pkg_url = f"{base_url}{github_hash}/{pkg_name}" - from_github = True - else: - zip_name = f"{pkg_name}.{release}.zip" - pkg_variants = get_server_folder_contents(path) - if zip_name not in pkg_variants: - raise ValueError(f"{zip_name} is not amoung the hosted " - f"variants: {pkg_variants}") - pkg_url = f"{base_url}{path}/{zip_name}" - - if save_dir is None: - save_dir = rc.__config__["!SIM.file.local_packages_path"] - if not os.path.exists(save_dir): - os.mkdir(save_dir) - - if not from_github: - try: - if from_cache is None: - from_cache = rc.__config__["!SIM.file.use_cached_downloads"] - cache_path = download_file(pkg_url, cache=from_cache) - save_path = os.path.join(save_dir, f"{pkg_name}.zip") - file_path = shutil.copy2(cache_path, save_path) - - with zipfile.ZipFile(file_path, 'r') as zip_ref: - zip_ref.extractall(save_dir) - - except HTTPError as error: - raise ValueError(f"Unable to find file: {url + pkg_path}") from error - else: - download_github_folder(repo_url=pkg_url, output_dir=save_dir) - save_path = save_dir - - save_paths += [os.path.abspath(save_path)] - - else: - raise HTTPError(f"Unable to find package: {base_url + pkg_name}") + try: + pkg_path = _download_single_package(pkg_name, release, all_versions, + folder_dict, base_url, save_dir, + padlen, from_cache) + except PkgNotFoundError as error: + logging.error("\n") # needed until tqdm redirect is implemented + logging.error(error) + logging.error("Skipping download of package '%s'", pkg_name) + continue + save_paths.append(pkg_path) return save_paths @@ -202,6 +524,8 @@ def download_packages(pkg_names, release="stable", save_dir=None, from_cache=Non # for backwards compatibility def download_package(pkg_path, save_dir=None, url=None, from_cache=None): """ + DEPRECATED -- only kept for backwards compatibility + Downloads a package to the local disk Parameters @@ -228,10 +552,8 @@ def download_package(pkg_path, save_dir=None, url=None, from_cache=None): The absolute path to the saved ``.zip`` package """ - # todo: add proper depreciation warning - text = "Function Depreciated --> please use scopesim.download_package-s-()" - logging.warning(text) - print(text) + warn("Function Depreciated --> please use scopesim.download_package-s-()", + DeprecationWarning, stacklevel=2) if isinstance(pkg_path, str): pkg_path = [pkg_path] @@ -239,217 +561,3 @@ def download_package(pkg_path, save_dir=None, url=None, from_cache=None): pkg_names = [pkg.replace(".zip", "").split("/")[-1] for pkg in pkg_path] return download_packages(pkg_names, release="stable", save_dir=save_dir, from_cache=from_cache) - -def get_server_elements(url, unique_str="/"): - """ - Returns a list of file and/or directory paths on the HTTP server ``url`` - - Parameters - ---------- - url : str - The URL of the IRDB HTTP server. - - unique_str : str, list - A unique string to look for in the beautiful HTML soup: - "/" for directories this, ".zip" for packages - - Returns - ------- - paths : list - List of paths containing in ``url`` which contain ``unique_str`` - - """ - if isinstance(unique_str, str): - unique_str = [unique_str] - - try: - result = requests.get(url).content - except Exception as error: - raise ValueError(f"URL returned error: {url}") from error - - soup = bs4.BeautifulSoup(result, features="lxml") - paths = soup.findAll("a", href=True) - select_paths = [] - for the_str in unique_str: - select_paths += [tmp.string for tmp in paths - if tmp.string is not None and the_str in tmp.string] - return select_paths - - -def list_example_data(url=None, return_files=False, silent=False): - """ - List all example files found under ``url`` - - Parameters - ---------- - url : str - The URL of the database HTTP server. If left as None, defaults to the - value in scopesim.rc.__config__["!SIM.file.server_base_url"] - - return_files : bool - If True, returns a list of file names - - silent : bool - If True, does not print the list of file names - - Returns - ------- - all_files : list of str - A list of paths to the example files relative to ``url``. - The full string should be passed to ``download_example_data``. - """ - - def print_file_list(the_files, loc=""): - print(f"\nFiles saved {loc}\n" + "=" * (len(loc) + 12)) - for _file in the_files: - print(_file) - - if url is None: - url = rc.__config__["!SIM.file.server_base_url"] - - return_file_list = [] - server_files = [] - folders = get_server_elements(url, "example_data") - for folder in folders: - files = get_server_elements(url + folder, ("fits", "txt", "dat")) - server_files += files - if not silent: - print_file_list(server_files, f"on the server: {url + 'example_data/'}") - return_file_list += server_files - - if return_files: - return return_file_list - - return None - - -def download_example_data(file_path, save_dir=None, url=None, from_cache=None): - """ - Downloads example fits files to the local disk - - Parameters - ---------- - file_path : str, list - Name(s) of FITS file(s) as given by ``list_example_data()`` - - save_dir : str - The place on the local disk where the downloaded files are to be saved. - If left as None, defaults to the current working directory. - - url : str - The URL of the database HTTP server. If left as None, defaults to the - value in scopesim.rc.__config__["!SIM.file.server_base_url"] - - from_cache : bool - Use the cached versions of the files. If None, defaults to the RC - value: ``!SIM.file.use_cached_downloads`` - - Returns - ------- - save_path : str - The absolute path to the saved files - """ - if isinstance(file_path, (list, tuple)): - save_path = [download_example_data(thefile, save_dir, url) - for thefile in file_path] - elif isinstance(file_path, str): - - if url is None: - url = rc.__config__["!SIM.file.server_base_url"] - if save_dir is None: - save_dir = os.getcwd() - if not os.path.exists(save_dir): - os.mkdir(save_dir) - - try: - if from_cache is None: - from_cache = rc.__config__["!SIM.file.use_cached_downloads"] - cache_path = download_file(url + "example_data/" + file_path, - cache=from_cache) - save_path = os.path.join(save_dir, os.path.basename(file_path)) - file_path = shutil.copy2(cache_path, save_path) - except HTTPError: - ValueError(f"Unable to find file: {url + 'example_data/' + file_path}") - - save_path = os.path.abspath(save_path) - - return save_path - - -# """ -# 2022-04-10 (KL) -# Code taken directly from https://github.com/sdushantha/gitdir -# Adapted for ScopeSim usage. -# Many thanks to the authors! -# """ - -def create_github_url(url): - """ - From the given url, produce a URL that is compatible with Github's REST API. Can handle blob or tree paths. - """ - repo_only_url = re.compile(r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$") - re_branch = re.compile("/(tree|blob)/(.+?)/") - - # Check if the given url is a url to a GitHub repo. If it is, tell the - # user to use 'git clone' to download it - if re.match(repo_only_url,url): - message = "✘ The given url is a complete repository. Use 'git clone' to download the repository" - logging.error(message) - raise ValueError(message) - - # extract the branch name from the given url (e.g master) - branch = re_branch.search(url) - download_dirs = url[branch.end():] - api_url = (url[:branch.start()].replace("github.com", "api.github.com/repos", 1) + - "/contents/" + download_dirs + "?ref=" + branch.group(2)) - return api_url, download_dirs - - -def download_github_folder(repo_url, output_dir="./"): - """ - Downloads the files and directories in repo_url. - - Re-written based on the on the download function `here `_ - """ - # convert repo_url into an api_url - api_url, download_dirs = create_github_url(repo_url) - - # get the contents of the github folder - user_interrupt_text = "GitHub download interrupted by User" - try: - opener = urllib.request.build_opener() - opener.addheaders = [('User-agent', 'Mozilla/5.0')] - urllib.request.install_opener(opener) - response = urllib.request.urlretrieve(api_url) - except KeyboardInterrupt: - # when CTRL+C is pressed during the execution of this script - logging.error(user_interrupt_text) - raise ValueError(user_interrupt_text) - - # Make the base directories for this GitHub folder - os.makedirs(os.path.join(output_dir, download_dirs), exist_ok=True) - - with open(response[0], "r") as f: - data = json.load(f) - - for entry in data: - # if the entry is a further folder, walk through it - if entry["type"] == "dir": - download_github_folder(repo_url=entry["html_url"], - output_dir=output_dir) - - # if the entry is a file, download it - elif entry["type"] == "file": - try: - opener = urllib.request.build_opener() - opener.addheaders = [('User-agent', 'Mozilla/5.0')] - urllib.request.install_opener(opener) - # download the file - save_path = os.path.join(output_dir, entry['path']) - urllib.request.urlretrieve(entry["download_url"], save_path) - logging.info(f"Downloaded: {entry['path']}") - - except KeyboardInterrupt: - # when CTRL+C is pressed during the execution of this script - logging.error(user_interrupt_text) - raise ValueError(user_interrupt_text) diff --git a/scopesim/server/example_data_utils.py b/scopesim/server/example_data_utils.py new file mode 100644 index 00000000..86d1c33b --- /dev/null +++ b/scopesim/server/example_data_utils.py @@ -0,0 +1,164 @@ +# -*- coding: utf-8 -*- +""" +Store the example data functions here instead of polluting database.py +""" + +import shutil +from pathlib import Path +from typing import List, Optional, Union, Iterable + +from urllib.error import HTTPError +from urllib3.exceptions import HTTPError as HTTPError3 + +import requests +import bs4 + +from astropy.utils.data import download_file + +from scopesim import rc + +def get_server_elements(url: str, unique_str: str = "/") -> List[str]: + """ + Returns a list of file and/or directory paths on the HTTP server ``url`` + + Parameters + ---------- + url : str + The URL of the IRDB HTTP server. + + unique_str : str, list + A unique string to look for in the beautiful HTML soup: + "/" for directories this, ".zip" for packages + + Returns + ------- + paths : list + List of paths containing in ``url`` which contain ``unique_str`` + + """ + if isinstance(unique_str, str): + unique_str = [unique_str] + + try: + result = requests.get(url).content + except Exception as error: + raise ValueError(f"URL returned error: {url}") from error + + soup = bs4.BeautifulSoup(result, features="lxml") + paths = soup.findAll("a", href=True) + select_paths = [] + for the_str in unique_str: + select_paths += [tmp.string for tmp in paths + if tmp.string is not None and the_str in tmp.string] + return select_paths + + +def list_example_data(url: Optional[str] = None, + return_files: bool = False, + silent: bool = False) -> List[str]: + """ + List all example files found under ``url`` + + Parameters + ---------- + url : str + The URL of the database HTTP server. If left as None, defaults to the + value in scopesim.rc.__config__["!SIM.file.server_base_url"] + + return_files : bool + If True, returns a list of file names + + silent : bool + If True, does not print the list of file names + + Returns + ------- + all_files : list of str + A list of paths to the example files relative to ``url``. + The full string should be passed to ``download_example_data``. + """ + + def print_file_list(the_files, loc=""): + print(f"\nFiles saved {loc}\n" + "=" * (len(loc) + 12)) + for _file in the_files: + print(_file) + + if url is None: + url = rc.__config__["!SIM.file.server_base_url"] + + return_file_list = [] + server_files = [] + folders = get_server_elements(url, "example_data") + for folder in folders: + files = get_server_elements(url + folder, ("fits", "txt", "dat")) + server_files += files + if not silent: + print_file_list(server_files, f"on the server: {url + 'example_data/'}") + return_file_list += server_files + + if return_files: + return return_file_list + + return None + + +def download_example_data(file_path: Union[Iterable[str], str], + save_dir: Optional[Union[Path, str]] = None, + url: Optional[str] = None, + from_cache: Optional[bool] = None) -> List[Path]: + """ + Downloads example fits files to the local disk + + Parameters + ---------- + file_path : str, list + Name(s) of FITS file(s) as given by ``list_example_data()`` + + save_dir : str + The place on the local disk where the downloaded files are to be saved. + If left as None, defaults to the current working directory. + + url : str + The URL of the database HTTP server. If left as None, defaults to the + value in scopesim.rc.__config__["!SIM.file.server_base_url"] + + from_cache : bool + Use the cached versions of the files. If None, defaults to the RC + value: ``!SIM.file.use_cached_downloads`` + + Returns + ------- + save_path : Path or list of Paths + The absolute path(s) to the saved files + """ + if isinstance(file_path, Iterable) and not isinstance(file_path, str): + # Recursive + save_path = [download_example_data(thefile, save_dir, url) + for thefile in file_path] + return save_path + + if not isinstance(file_path, str): + raise TypeError("file_path must be str or iterable of str, found " + f"{type(file_path) = }") + + if url is None: + url = rc.__config__["!SIM.file.server_base_url"] + if save_dir is None: + save_dir = Path.cwd() + save_dir = Path(save_dir) + save_dir.mkdir(parents=True, exist_ok=True) + file_path = Path(file_path) + + try: + if from_cache is None: + from_cache = rc.__config__["!SIM.file.use_cached_downloads"] + cache_path = download_file(f"{url}example_data/{file_path}", + cache=from_cache) + save_path = save_dir / file_path.name + file_path = shutil.copy2(cache_path, str(save_path)) + except (HTTPError, HTTPError3) as error: + msg = f"Unable to find file: {url + 'example_data/' + file_path}" + raise ValueError(msg) from error + + save_path = save_path.absolute() + return save_path diff --git a/scopesim/server/github_utils.py b/scopesim/server/github_utils.py new file mode 100644 index 00000000..de4b278f --- /dev/null +++ b/scopesim/server/github_utils.py @@ -0,0 +1,95 @@ +# -*- coding: utf-8 -*- +""" +Used only by the `database` submodule. + +Original comment for these functions: + 2022-04-10 (KL) + Code taken directly from https://github.com/sdushantha/gitdir + Adapted for ScopeSim usage. + Many thanks to the authors! + +""" + +import logging +import re +import json +from pathlib import Path +from typing import Union + +import urllib + +def create_github_url(url: str) -> None: + """ + From the given url, produce a URL that is compatible with Github's REST API. + + Can handle blob or tree paths. + """ + repo_only_url = re.compile(r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$") + re_branch = re.compile("/(tree|blob)/(.+?)/") + + # Check if the given url is a url to a GitHub repo. If it is, tell the + # user to use 'git clone' to download it + if re.match(repo_only_url,url): + message = ("✘ The given url is a complete repository. Use 'git clone'" + " to download the repository") + logging.error(message) + raise ValueError(message) + + # extract the branch name from the given url (e.g master) + branch = re_branch.search(url) + download_dirs = url[branch.end():] + api_url = (url[:branch.start()].replace("github.com", "api.github.com/repos", 1) + + f"/contents/{download_dirs}?ref={branch.group(2)}") + return api_url, download_dirs + + +def download_github_folder(repo_url: str, + output_dir: Union[Path, str] = "./") -> None: + """ + Downloads the files and directories in repo_url. + + Re-written based on the on the download function + `here `_ + """ + output_dir = Path(output_dir) + + # convert repo_url into an api_url + api_url, download_dirs = create_github_url(repo_url) + + # get the contents of the github folder + user_interrupt_text = "GitHub download interrupted by User" + try: + opener = urllib.request.build_opener() + opener.addheaders = [("User-agent", "Mozilla/5.0")] + urllib.request.install_opener(opener) + response = urllib.request.urlretrieve(api_url) + except KeyboardInterrupt as error: + logging.error(user_interrupt_text) + raise error + + # Make the base directories for this GitHub folder + (output_dir / download_dirs).mkdir(parents=True, exist_ok=True) + + with open(response[0], "r") as f: + data = json.load(f) + + for entry in data: + # if the entry is a further folder, walk through it + if entry["type"] == "dir": + download_github_folder(repo_url=entry["html_url"], + output_dir=output_dir) + + # if the entry is a file, download it + elif entry["type"] == "file": + try: + opener = urllib.request.build_opener() + opener.addheaders = [("User-agent", "Mozilla/5.0")] + urllib.request.install_opener(opener) + # download the file + save_path = output_dir / entry["path"] + urllib.request.urlretrieve(entry["download_url"], str(save_path)) + logging.info("Downloaded: %s", entry["path"]) + + except KeyboardInterrupt as error: + logging.error(user_interrupt_text) + raise error diff --git a/scopesim/tests/tests_server/test_database.py b/scopesim/tests/tests_server/test_database.py index 8ffd3001..0f3fce51 100644 --- a/scopesim/tests/tests_server/test_database.py +++ b/scopesim/tests/tests_server/test_database.py @@ -1,6 +1,5 @@ import pytest import os -import sys from tempfile import TemporaryDirectory from urllib3.exceptions import HTTPError @@ -8,9 +7,12 @@ import numpy as np from scopesim.server import database as db +from scopesim.server import example_data_utils as dbex +from scopesim.server import github_utils as dbgh from scopesim import rc +@pytest.mark.webtest def test_package_list_loads(): pkgs = db.get_server_package_list() assert isinstance(pkgs, dict) @@ -18,58 +20,128 @@ def test_package_list_loads(): assert "latest" in pkgs["test_package"] -def test_get_server_folder_contents(): - pkgs = db.get_server_folder_contents("locations") - assert len(pkgs) > 0 - assert "Armazones" in pkgs[0] +def test_get_package_name(): + pkg_name = db._get_package_name("Packagename.2022-01-01.dev.zip") + assert pkg_name == "Packagename" + + +@pytest.mark.webtest +def test_get_all_latest(): + all_pkg = db.get_all_package_versions() + assert dict(db.get_all_latest(all_pkg))["test_package"].endswith(".dev") + + +@pytest.mark.webtest +class TestGetZipname: + # TODO: This could use some kind of mock to avoid server access + all_pkg = db.get_all_package_versions() + + def test_gets_stable(self): + zipname = db._get_zipname("test_package", "stable", self.all_pkg) + assert zipname.startswith("test_package.") + assert zipname.endswith(".zip") + + def test_gets_latest(self): + zipname = db._get_zipname("test_package", "latest", self.all_pkg) + assert zipname.startswith("test_package.") + assert zipname.endswith(".dev.zip") + + def test_throws_for_nonexisting_release(self): + with pytest.raises(ValueError): + db._get_zipname("test_package", "bogus", self.all_pkg) + + +class TestGetServerFolderContents: + @pytest.mark.webtest + def test_downloads_locations(self): + pkgs = list(db.get_server_folder_contents("locations")) + assert len(pkgs) > 0 + + @pytest.mark.webtest + def test_downloads_telescopes(self): + pkgs = list(db.get_server_folder_contents("telescopes")) + assert len(pkgs) > 0 + + @pytest.mark.webtest + def test_downloads_instruments(self): + pkgs = list(db.get_server_folder_contents("instruments")) + assert len(pkgs) > 0 + + @pytest.mark.webtest + def test_finds_armazones(self): + pkgs = list(db.get_server_folder_contents("locations")) + assert "Armazones" in pkgs[0] + + @pytest.mark.webtest + def test_throws_for_wrong_url_server(self): + original_url = rc.__config__["!SIM.file.server_base_url"] + rc.__config__["!SIM.file.server_base_url"] = "https://scopesim.univie.ac.at/bogus/" + with pytest.raises(db.ServerError): + list(db.get_server_folder_contents("locations")) + rc.__config__["!SIM.file.server_base_url"] = original_url class TestGetServerElements: + @pytest.mark.webtest def test_throws_an_error_if_url_doesnt_exist(self): with pytest.raises(ValueError): - db.get_server_elements(url="www.bogus.server") + dbex.get_server_elements(url="www.bogus.server") + @pytest.mark.webtest def test_returns_folders_if_server_exists(self): url = rc.__config__["!SIM.file.server_base_url"] - pkgs = db.get_server_elements(url) + pkgs = dbex.get_server_elements(url) assert all([loc in pkgs for loc in ["locations/", "telescopes/", "instruments/"]]) + @pytest.mark.webtest def test_returns_files_if_zips_exist(self): url = rc.__config__["!SIM.file.server_base_url"] dir = "instruments/" - pkgs = db.get_server_elements(url + dir, ".zip") + pkgs = dbex.get_server_elements(url + dir, ".zip") assert "test_package.zip" in pkgs class TestListPackages: + @pytest.mark.webtest def test_lists_all_packages_without_qualifier(self): pkgs = db.list_packages() assert "Armazones" in pkgs assert "MICADO" in pkgs + @pytest.mark.webtest def test_lists_only_packages_with_qualifier(self): pkgs = db.list_packages("Armazones") assert np.all(["Armazones" in pkg for pkg in pkgs]) + @pytest.mark.webtest + def test_throws_for_nonexisting_pkgname(self): + with pytest.raises(ValueError): + db.list_packages("bogus") + class TestDownloadPackage: """ Old download function, for backwards compatibility """ + @pytest.mark.webtest def test_downloads_package_successfully(self): pkg_path = "instruments/test_package.zip" save_paths = db.download_package(pkg_path) assert os.path.exists(save_paths[0]) - def test_raise_error_when_package_not_found(self): - if sys.version_info.major >= 3: - with pytest.raises(HTTPError): - db.download_package("instruments/bogus.zip") + # This no longer raises, but logs an error. This is intended. + # TODO: Change test to capture log and assert if error log is present. + # Actually, the new single download function should be tested here instead + # def test_raise_error_when_package_not_found(self): + # if sys.version_info.major >= 3: + # with pytest.raises(HTTPError): + # db.download_package("instruments/bogus.zip") class TestDownloadPackages: + @pytest.mark.webtest def test_downloads_stable_package(self): with TemporaryDirectory() as tmpdir: db.download_packages(["test_package"], release="stable", @@ -83,6 +155,7 @@ def test_downloads_stable_package(self): version_dict = yaml.full_load(f) assert version_dict["release"] == "stable" + @pytest.mark.webtest def test_downloads_latest_package(self): with TemporaryDirectory() as tmpdir: db.download_packages("test_package", release="latest", @@ -93,6 +166,7 @@ def test_downloads_latest_package(self): assert version_dict["release"] == "dev" + @pytest.mark.webtest def test_downloads_specific_package(self): release = "2022-04-09.dev" with TemporaryDirectory() as tmpdir: @@ -104,6 +178,7 @@ def test_downloads_specific_package(self): assert version_dict["version"] == release + @pytest.mark.webtest def test_downloads_github_version_of_package_with_semicolon(self): release = "github:728761fc76adb548696205139e4e9a4260401dfc" with TemporaryDirectory() as tmpdir: @@ -113,6 +188,7 @@ def test_downloads_github_version_of_package_with_semicolon(self): assert os.path.exists(filename) + @pytest.mark.webtest def test_downloads_github_version_of_package_with_at_symbol(self): release = "github@728761fc76adb548696205139e4e9a4260401dfc" with TemporaryDirectory() as tmpdir: @@ -124,24 +200,27 @@ def test_downloads_github_version_of_package_with_at_symbol(self): class TestDownloadGithubFolder: + @pytest.mark.webtest def test_downloads_current_package(self): with TemporaryDirectory() as tmpdir: # tmpdir = "." url = "https://github.com/AstarVienna/irdb/tree/dev_master/MICADO" - db.download_github_folder(url, output_dir=tmpdir) + dbgh.download_github_folder(url, output_dir=tmpdir) filename = os.path.join(tmpdir, "MICADO", "default.yaml") assert os.path.exists(filename) + @pytest.mark.webtest def test_downloads_with_old_commit_hash(self): with TemporaryDirectory() as tmpdir: url = "https://github.com/AstarVienna/irdb/tree/728761fc76adb548696205139e4e9a4260401dfc/ELT" - db.download_github_folder(url, output_dir=tmpdir) + dbgh.download_github_folder(url, output_dir=tmpdir) filename = os.path.join(tmpdir, "ELT", "EC_sky_25.tbl") assert os.path.exists(filename) +@pytest.mark.webtest def test_old_download_package_signature(): with TemporaryDirectory() as tmpdir: db.download_package(["instruments/test_package.zip"], save_dir=tmpdir) From 62911e978968504509aea8aaf87a316bd81e42f8 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 23 Jun 2023 11:33:52 +0200 Subject: [PATCH 123/172] Add 403 to list of http error codes for retry --- scopesim/server/database.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/scopesim/server/database.py b/scopesim/server/database.py index a4b43c25..5081a591 100644 --- a/scopesim/server/database.py +++ b/scopesim/server/database.py @@ -35,6 +35,10 @@ _GrpVerType = Mapping[str, Iterable[str]] _GrpItrType = Iterator[Tuple[str, List[str]]] + +HTTP_RETRY_CODES = [403, 404, 429, 500, 501, 502, 503] + + def _make_tqdm_kwargs(desc: str = ""): width, _ = get_terminal_size((50, 20)) bar_width = max(int(.8 * width) - 30 - len(desc), 10) @@ -80,7 +84,7 @@ def get_server_folder_contents(dir_name: str, url = rc.__config__["!SIM.file.server_base_url"] + dir_name retry_strategy = Retry(total=2, - status_forcelist=[404, 429, 500, 501, 502, 503], + status_forcelist=HTTP_RETRY_CODES, allowed_methods=["GET"]) adapter = HTTPAdapter(max_retries=retry_strategy) @@ -349,7 +353,7 @@ def _initiate_download(pkg_url: str, cached: bool = False, cache_name: str = "", total: int = 5, backoff_factor: int = 2): retry_strategy = Retry(total=total, backoff_factor=backoff_factor, - status_forcelist=[429, 500, 501, 502, 503], + status_forcelist=HTTP_RETRY_CODES, allowed_methods=["GET"]) adapter = HTTPAdapter(max_retries=retry_strategy) with _create_session(cached, cache_name) as session: From ada94159815beafe3d5af82137f3b77a2fd45727 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 23 Jun 2023 14:57:50 +0200 Subject: [PATCH 124/172] Use new download implementation also in github related functions --- scopesim/server/github_utils.py | 46 +++++++++++++++++++++++---------- 1 file changed, 33 insertions(+), 13 deletions(-) diff --git a/scopesim/server/github_utils.py b/scopesim/server/github_utils.py index de4b278f..88abb63e 100644 --- a/scopesim/server/github_utils.py +++ b/scopesim/server/github_utils.py @@ -12,11 +12,22 @@ import logging import re -import json from pathlib import Path from typing import Union -import urllib +import requests +from requests.packages.urllib3.util.retry import Retry +from requests.adapters import HTTPAdapter + +from .download_utils import initiate_download, handle_download + + +HTTP_RETRY_CODES = [403, 404, 429, 500, 501, 502, 503] + + +class ServerError(Exception): + """Some error with the server or connection to the server.""" + def create_github_url(url: str) -> None: """ @@ -59,20 +70,30 @@ def download_github_folder(repo_url: str, # get the contents of the github folder user_interrupt_text = "GitHub download interrupted by User" try: - opener = urllib.request.build_opener() - opener.addheaders = [("User-agent", "Mozilla/5.0")] - urllib.request.install_opener(opener) - response = urllib.request.urlretrieve(api_url) + retry_strategy = Retry(total=3, backoff_factor=2, + status_forcelist=HTTP_RETRY_CODES, + allowed_methods=["GET"]) + adapter = HTTPAdapter(max_retries=retry_strategy) + with requests.Session() as session: + session.mount("https://", adapter) + data = session.get(api_url).json() + except (requests.exceptions.ConnectionError, + requests.exceptions.RetryError) as error: + logging.error(error) + raise ServerError("Cannot connect to server. " + f"Attempted URL was: {api_url}.") from error except KeyboardInterrupt as error: logging.error(user_interrupt_text) raise error + except Exception as error: + logging.error(("Unhandled exception occured while accessing server." + "Attempted URL was: %s."), api_url) + logging.error(error) + raise error # Make the base directories for this GitHub folder (output_dir / download_dirs).mkdir(parents=True, exist_ok=True) - with open(response[0], "r") as f: - data = json.load(f) - for entry in data: # if the entry is a further folder, walk through it if entry["type"] == "dir": @@ -82,12 +103,11 @@ def download_github_folder(repo_url: str, # if the entry is a file, download it elif entry["type"] == "file": try: - opener = urllib.request.build_opener() - opener.addheaders = [("User-agent", "Mozilla/5.0")] - urllib.request.install_opener(opener) # download the file save_path = output_dir / entry["path"] - urllib.request.urlretrieve(entry["download_url"], str(save_path)) + response = initiate_download(entry["download_url"]) + handle_download(response, save_path, entry["path"], + padlen=0, disable_bar=True) logging.info("Downloaded: %s", entry["path"]) except KeyboardInterrupt as error: From a05bc44ce0140927051c53d44168c7a18d6784ca Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 23 Jun 2023 15:19:20 +0200 Subject: [PATCH 125/172] Move shared aux functions for download to separate submodule --- scopesim/server/database.py | 64 ++------------------------- scopesim/server/download_utils.py | 72 +++++++++++++++++++++++++++++++ 2 files changed, 76 insertions(+), 60 deletions(-) create mode 100644 scopesim/server/download_utils.py diff --git a/scopesim/server/database.py b/scopesim/server/database.py index 5081a591..035b6848 100644 --- a/scopesim/server/database.py +++ b/scopesim/server/database.py @@ -3,7 +3,6 @@ Functions to download instrument packages and example data """ import re -from zipfile import ZipFile import logging from datetime import date from warnings import warn @@ -12,7 +11,6 @@ # Python 3.8 doesn't yet know these things....... # from collections.abc import Iterator, Iterable, Mapping from typing import Iterator, Iterable, Mapping -from shutil import get_terminal_size from urllib.error import HTTPError from urllib3.exceptions import HTTPError as HTTPError3 @@ -21,16 +19,13 @@ import requests from requests.packages.urllib3.util.retry import Retry from requests.adapters import HTTPAdapter -from requests_cache import CachedSession import bs4 -from tqdm import tqdm -# from tqdm.contrib.logging import logging_redirect_tqdm -# put with logging_redirect_tqdm(loggers=all_loggers): around tqdm from scopesim import rc from .github_utils import download_github_folder from .example_data_utils import (download_example_data, list_example_data, get_server_elements) +from .download_utils import initiate_download, handle_download, handle_unzipping _GrpVerType = Mapping[str, Iterable[str]] _GrpItrType = Iterator[Tuple[str, List[str]]] @@ -39,17 +34,6 @@ HTTP_RETRY_CODES = [403, 404, 429, 500, 501, 502, 503] -def _make_tqdm_kwargs(desc: str = ""): - width, _ = get_terminal_size((50, 20)) - bar_width = max(int(.8 * width) - 30 - len(desc), 10) - tqdm_kwargs = { - "bar_format": f"{{l_bar}}{{bar:{bar_width}}}{{r_bar}}{{bar:-{bar_width}b}}", - "colour": "green", - "desc": desc - } - return tqdm_kwargs - - class ServerError(Exception): """Some error with the server or connection to the server.""" @@ -343,46 +327,6 @@ def _get_zipname(pkg_name: str, release: str, all_versions) -> str: return _unparse_raw_version(zip_name, pkg_name) -def _create_session(cached: bool = False, cache_name: str = ""): - if cached: - return CachedSession(cache_name) - return requests.Session() - - -def _initiate_download(pkg_url: str, - cached: bool = False, cache_name: str = "", - total: int = 5, backoff_factor: int = 2): - retry_strategy = Retry(total=total, backoff_factor=backoff_factor, - status_forcelist=HTTP_RETRY_CODES, - allowed_methods=["GET"]) - adapter = HTTPAdapter(max_retries=retry_strategy) - with _create_session(cached, cache_name) as session: - session.mount("https://", adapter) - response = session.get(pkg_url, stream=True) - return response - - -def _handle_download(response, save_path: Path, pkg_name: str, - padlen: int, chunk_size: int = 128) -> None: - tqdm_kwargs = _make_tqdm_kwargs(f"Downloading {pkg_name:<{padlen}}") - total = int(response.headers.get("content-length", 0)) - # Turn this into non-nested double with block in Python 3.9 or 10 (?) - with save_path.open("wb") as file_outer: - with tqdm.wrapattr(file_outer, "write", miniters=1, total=total, - **tqdm_kwargs) as file_inner: - for chunk in response.iter_content(chunk_size=chunk_size): - file_inner.write(chunk) - - -def _handle_unzipping(save_path: Path, save_dir: Path, - pkg_name: str, padlen: int) -> None: - with ZipFile(save_path, "r") as zip_ref: - namelist = zip_ref.namelist() - tqdm_kwargs = _make_tqdm_kwargs(f"Extracting {pkg_name:<{padlen}}") - for file in tqdm(iterable=namelist, total=len(namelist), **tqdm_kwargs): - zip_ref.extract(file, save_dir) - - def _download_single_package(pkg_name: str, release: str, all_versions, folder_dict: Path, base_url: str, save_dir: Path, padlen: int, from_cache: bool) -> Path: @@ -409,10 +353,10 @@ def _download_single_package(pkg_name: str, release: str, all_versions, if from_cache is None: from_cache = rc.__config__["!SIM.file.use_cached_downloads"] - response = _initiate_download(pkg_url, from_cache, "test_cache") + response = initiate_download(pkg_url, from_cache, "test_cache") save_path = save_dir / f"{pkg_name}.zip" - _handle_download(response, save_path, pkg_name, padlen) - _handle_unzipping(save_path, save_dir, pkg_name, padlen) + handle_download(response, save_path, pkg_name, padlen) + handle_unzipping(save_path, save_dir, pkg_name, padlen) except HTTPError3 as error: logging.error(error) diff --git a/scopesim/server/download_utils.py b/scopesim/server/download_utils.py new file mode 100644 index 00000000..61738ba0 --- /dev/null +++ b/scopesim/server/download_utils.py @@ -0,0 +1,72 @@ +# -*- coding: utf-8 -*- +""" +Used only by the `database` and `github_utils` submodules. +""" + +from zipfile import ZipFile +from pathlib import Path +from shutil import get_terminal_size + +import requests +from requests.packages.urllib3.util.retry import Retry +from requests.adapters import HTTPAdapter +from requests_cache import CachedSession +from tqdm import tqdm +# from tqdm.contrib.logging import logging_redirect_tqdm +# put with logging_redirect_tqdm(loggers=all_loggers): around tqdm + + + +HTTP_RETRY_CODES = [403, 404, 429, 500, 501, 502, 503] + + +def _make_tqdm_kwargs(desc: str = ""): + width, _ = get_terminal_size((50, 20)) + bar_width = max(int(.8 * width) - 30 - len(desc), 10) + tqdm_kwargs = { + "bar_format": f"{{l_bar}}{{bar:{bar_width}}}{{r_bar}}{{bar:-{bar_width}b}}", + "colour": "green", + "desc": desc + } + return tqdm_kwargs + + +def _create_session(cached: bool = False, cache_name: str = ""): + if cached: + return CachedSession(cache_name) + return requests.Session() + + +def initiate_download(pkg_url: str, + cached: bool = False, cache_name: str = "", + total: int = 5, backoff_factor: int = 2): + retry_strategy = Retry(total=total, backoff_factor=backoff_factor, + status_forcelist=HTTP_RETRY_CODES, + allowed_methods=["GET"]) + adapter = HTTPAdapter(max_retries=retry_strategy) + with _create_session(cached, cache_name) as session: + session.mount("https://", adapter) + response = session.get(pkg_url, stream=True) + return response + + +def handle_download(response, save_path: Path, pkg_name: str, + padlen: int, chunk_size: int = 128, + disable_bar=False) -> None: + tqdm_kwargs = _make_tqdm_kwargs(f"Downloading {pkg_name:<{padlen}}") + total = int(response.headers.get("content-length", 0)) + # Turn this into non-nested double with block in Python 3.9 or 10 (?) + with save_path.open("wb") as file_outer: + with tqdm.wrapattr(file_outer, "write", miniters=1, total=total, + **tqdm_kwargs, disable=disable_bar) as file_inner: + for chunk in response.iter_content(chunk_size=chunk_size): + file_inner.write(chunk) + + +def handle_unzipping(save_path: Path, save_dir: Path, + pkg_name: str, padlen: int) -> None: + with ZipFile(save_path, "r") as zip_ref: + namelist = zip_ref.namelist() + tqdm_kwargs = _make_tqdm_kwargs(f"Extracting {pkg_name:<{padlen}}") + for file in tqdm(iterable=namelist, total=len(namelist), **tqdm_kwargs): + zip_ref.extract(file, save_dir) From faa99673019263ae39c25a13e6a268b9f5b56de1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 23 Jun 2023 15:39:03 +0200 Subject: [PATCH 126/172] Improve error handling, remove separate handler for KeyboardInterrupt --- scopesim/server/github_utils.py | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/scopesim/server/github_utils.py b/scopesim/server/github_utils.py index 88abb63e..f38a2d2d 100644 --- a/scopesim/server/github_utils.py +++ b/scopesim/server/github_utils.py @@ -68,7 +68,6 @@ def download_github_folder(repo_url: str, api_url, download_dirs = create_github_url(repo_url) # get the contents of the github folder - user_interrupt_text = "GitHub download interrupted by User" try: retry_strategy = Retry(total=3, backoff_factor=2, status_forcelist=HTTP_RETRY_CODES, @@ -82,9 +81,6 @@ def download_github_folder(repo_url: str, logging.error(error) raise ServerError("Cannot connect to server. " f"Attempted URL was: {api_url}.") from error - except KeyboardInterrupt as error: - logging.error(user_interrupt_text) - raise error except Exception as error: logging.error(("Unhandled exception occured while accessing server." "Attempted URL was: %s."), api_url) @@ -110,6 +106,13 @@ def download_github_folder(repo_url: str, padlen=0, disable_bar=True) logging.info("Downloaded: %s", entry["path"]) - except KeyboardInterrupt as error: - logging.error(user_interrupt_text) + except (requests.exceptions.ConnectionError, + requests.exceptions.RetryError) as error: + logging.error(error) + raise ServerError("Cannot connect to server. " + f"Attempted URL was: {api_url}.") from error + except Exception as error: + logging.error(("Unhandled exception occured while accessing " + "server. Attempted URL was: %s."), api_url) + logging.error(error) raise error From e56a0ebbbbfe66c0e37a0a3150a1328f04b9b172 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 23 Jun 2023 15:55:35 +0200 Subject: [PATCH 127/172] Add another test for bad github url --- scopesim/tests/tests_server/test_database.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/scopesim/tests/tests_server/test_database.py b/scopesim/tests/tests_server/test_database.py index 0f3fce51..b0bbbc46 100644 --- a/scopesim/tests/tests_server/test_database.py +++ b/scopesim/tests/tests_server/test_database.py @@ -219,6 +219,13 @@ def test_downloads_with_old_commit_hash(self): assert os.path.exists(filename) + @pytest.mark.webtest + def test_throws_for_bad_url(self): + with TemporaryDirectory() as tmpdir: + url = "https://github.com/AstarVienna/irdb/tree/bogus/MICADO" + with pytest.raises(dbgh.ServerError): + dbgh.download_github_folder(url, output_dir=tmpdir) + @pytest.mark.webtest def test_old_download_package_signature(): From ad678db6aaee7338c9d0e196bcd80073603cffc5 Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 28 Jun 2023 08:48:54 +0200 Subject: [PATCH 128/172] some tests --- .../tests/tests_effects/test_SpectralTraceList.py | 5 +++++ .../tests_effects/test_SpectralTraceListUtils.py | 15 +++++++++++++++ 2 files changed, 20 insertions(+) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceList.py b/scopesim/tests/tests_effects/test_SpectralTraceList.py index 792a64f6..535e610a 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceList.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceList.py @@ -75,3 +75,8 @@ def test_rectify_cube_not_implemented(self, spectral_trace_list): hdulist = fits.HDUList() with pytest.raises(NotImplementedError): spectral_trace_list.rectify_cube(hdulist) + + #def test_rectify_traces_needs_ximin_and_ximax(self, spectral_trace_list): + # hdulist = fits.HDUList([fits.PrimaryHDU()]) + # with pytest.raises(KeyError): + # spectral_trace_list.rectify_traces(hdulist) diff --git a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py index 95d6f82d..f3e3d47f 100644 --- a/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py +++ b/scopesim/tests/tests_effects/test_SpectralTraceListUtils.py @@ -17,6 +17,21 @@ def test_initialises_with_table(self): spt = SpectralTrace(trace_tbl) assert isinstance(spt, SpectralTrace) + def test_fails_without_table(self): + a_number = 1 + with pytest.raises(ValueError): + SpectralTrace(a_number) + + def test_determines_correct_dispersion_axis_x(self): + trace_tbl = tlo.trace_6() + spt = SpectralTrace(trace_tbl) + assert spt.dispersion_axis == 'x' + + def test_determines_correct_dispersion_axis_y(self): + trace_tbl = tlo.trace_5() + spt = SpectralTrace(trace_tbl) + assert spt.dispersion_axis == 'y' + class TestPowerVec: """Test function power_vector()""" def test_gives_correct_result(self): From 89cbbc26e65964641b3f182367ebef1382beb127 Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 28 Jun 2023 16:09:03 +0200 Subject: [PATCH 129/172] New trace for unit test --- scopesim/tests/mocks/py_objects/trace_list_objects.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/scopesim/tests/mocks/py_objects/trace_list_objects.py b/scopesim/tests/mocks/py_objects/trace_list_objects.py index 95aa632c..c149d202 100644 --- a/scopesim/tests/mocks/py_objects/trace_list_objects.py +++ b/scopesim/tests/mocks/py_objects/trace_list_objects.py @@ -192,6 +192,15 @@ def trace_5(xn=3, yn=16, wmin=2.1, wmax=2.4, return tbl +def trace_6(xn=16, yn=3, wmin=2.1, wmax=2.4, + x0=1750, y0=-1750): + """As trace_5 but with dispersion in x direction""" + tbl = trace_5() + tmp = tbl['x'] + tbl['x'] = tbl['y'] + tbl['y'] = tmp + return tbl + def id_table(traces_ids, descriptions=None): """ From b176baafba513a6e2b1ee51b9f03ef464b703a67 Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 28 Jun 2023 16:52:42 +0200 Subject: [PATCH 130/172] extract from imagehdu so that full fov is covered --- scopesim/optics/fov_utils.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/scopesim/optics/fov_utils.py b/scopesim/optics/fov_utils.py index 43684c6e..62ed362f 100644 --- a/scopesim/optics/fov_utils.py +++ b/scopesim/optics/fov_utils.py @@ -273,7 +273,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): Parameters ---------- imagehdu : fits.ImageHDU - The field ImageHDU, either an image of a wavelength [um] cube + The field ImageHDU, either an image or a cube with wavelength [um] fov_volume : dict Contains {"xs": [xmin, xmax], "ys": [ymin, ymax], "waves": [wave_min, wave_max], @@ -294,7 +294,11 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): y0s, y1s = max(min(y_hdu), min(y_fov)), min(max(y_hdu), max(y_fov)) xp, yp = imp_utils.val2pix(hdr, np.array([x0s, x1s]), np.array([y0s, y1s])) - (x0p, x1p), (y0p, y1p) = np.round(xp).astype(int), np.round(yp).astype(int) + x0p = np.floor(xp[0]).astype(int) + x1p = np.ceil(xp[1]).astype(int) + y0p = np.floor(yp[0]).astype(int) + y1p = np.ceil(yp[1]).astype(int) + # (x0p, x1p), (y0p, y1p) = np.round(xp).astype(int), np.round(yp).astype(int) if x0p == x1p: x1p += 1 if y0p == y1p: @@ -331,7 +335,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): i0p, i1p = np.where(mask)[0][0], np.where(mask)[0][-1] f0 = (abs(hdu_waves[i0p] - fov_waves[0] + 0.5 * wdel) % wdel) / wdel # blue edge f1 = (abs(hdu_waves[i1p] - fov_waves[1] - 0.5 * wdel) % wdel) / wdel # red edge - data = imagehdu.data[i0p:i1p+1, y0p:y1p, x0p:x1p] + data = imagehdu.data[i0p:i1p+1, y0p:y1p+1, x0p:x1p+1] data[0, :, :] *= f0 if i1p > i0p: data[-1, :, :] *= f1 @@ -353,7 +357,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): "BUNIT": hdr["BUNIT"]}) else: - data = imagehdu.data[y0p:y1p, x0p:x1p] + data = imagehdu.data[y0p:y1p+1, x0p:x1p+1] new_hdr["SPEC_REF"] = hdr.get("SPEC_REF") new_imagehdu = fits.ImageHDU(data=data) From 4566eea98d6c4a4eba3eb835c5cc00daed4e5a7a Mon Sep 17 00:00:00 2001 From: oczoske Date: Wed, 28 Jun 2023 22:39:19 +0200 Subject: [PATCH 131/172] Ensure pixels in range --- scopesim/optics/fov_utils.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/scopesim/optics/fov_utils.py b/scopesim/optics/fov_utils.py index 62ed362f..8c554b49 100644 --- a/scopesim/optics/fov_utils.py +++ b/scopesim/optics/fov_utils.py @@ -286,7 +286,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): """ hdr = imagehdu.header new_hdr = {} - + naxis1, naxis2 = hdr["NAXIS1"], hdr["NAXIS2"] x_hdu, y_hdu = imp_utils.calc_footprint(imagehdu) # field edges in "deg" x_fov, y_fov = fov_volume["xs"], fov_volume["ys"] @@ -294,10 +294,10 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): y0s, y1s = max(min(y_hdu), min(y_fov)), min(max(y_hdu), max(y_fov)) xp, yp = imp_utils.val2pix(hdr, np.array([x0s, x1s]), np.array([y0s, y1s])) - x0p = np.floor(xp[0]).astype(int) - x1p = np.ceil(xp[1]).astype(int) - y0p = np.floor(yp[0]).astype(int) - y1p = np.ceil(yp[1]).astype(int) + x0p = max(0, np.floor(xp[0]).astype(int)) + x1p = min(naxis1, np.ceil(xp[1]).astype(int)) + y0p = max(0, np.floor(yp[0]).astype(int)) + y1p = min(naxis2, np.ceil(yp[1]).astype(int)) # (x0p, x1p), (y0p, y1p) = np.round(xp).astype(int), np.round(yp).astype(int) if x0p == x1p: x1p += 1 @@ -335,7 +335,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): i0p, i1p = np.where(mask)[0][0], np.where(mask)[0][-1] f0 = (abs(hdu_waves[i0p] - fov_waves[0] + 0.5 * wdel) % wdel) / wdel # blue edge f1 = (abs(hdu_waves[i1p] - fov_waves[1] - 0.5 * wdel) % wdel) / wdel # red edge - data = imagehdu.data[i0p:i1p+1, y0p:y1p+1, x0p:x1p+1] + data = imagehdu.data[i0p:i1p+1, y0p:y1p, x0p:x1p] data[0, :, :] *= f0 if i1p > i0p: data[-1, :, :] *= f1 @@ -357,7 +357,7 @@ def extract_area_from_imagehdu(imagehdu, fov_volume): "BUNIT": hdr["BUNIT"]}) else: - data = imagehdu.data[y0p:y1p+1, x0p:x1p+1] + data = imagehdu.data[y0p:y1p, x0p:x1p] new_hdr["SPEC_REF"] = hdr.get("SPEC_REF") new_imagehdu = fits.ImageHDU(data=data) From ba2e8be1f52916db040cef99c849ccb772d6f38a Mon Sep 17 00:00:00 2001 From: teutoburg Date: Sun, 2 Jul 2023 20:22:07 +0200 Subject: [PATCH 132/172] Update example notebooks --- docs/source/examples/1_scopesim_intro.ipynb | 152 +++++++++------ .../examples/2_multiple_telescopes.ipynb | 177 +++++++++++++----- docs/source/examples/3_custom_effects.ipynb | 122 ++++++------ 3 files changed, 278 insertions(+), 173 deletions(-) diff --git a/docs/source/examples/1_scopesim_intro.ipynb b/docs/source/examples/1_scopesim_intro.ipynb index 7fc13958..5a5954dc 100644 --- a/docs/source/examples/1_scopesim_intro.ipynb +++ b/docs/source/examples/1_scopesim_intro.ipynb @@ -11,6 +11,16 @@ "## A brief introduction into using ScopeSim to observe a cluster in the LMC" ] }, + { + "cell_type": "markdown", + "id": "110aaf63", + "metadata": {}, + "source": [ + "*This is a step-by-step guide. The complete script can be found at the bottom of this page/notebook.*\n", + "\n", + "First set up all relevant imports:" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -18,18 +28,51 @@ "metadata": {}, "outputs": [], "source": [ - "from tempfile import TemporaryDirectory\n", - "\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import LogNorm\n", "%matplotlib inline\n", "\n", "import scopesim as sim\n", - "import scopesim_templates as sim_tp\n", + "import scopesim_templates as sim_tp" + ] + }, + { + "cell_type": "markdown", + "id": "7358d4f0", + "metadata": {}, + "source": [ + "Scopesim works by using so-called instrument packages, which have to be downloaded separately. For normal use, you would set the package directory (a local folder path, `local_package_folder` in this example), download the required packages *once*, and then **remove the download command**." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "346dd0cc", + "metadata": {}, + "outputs": [], + "source": [ + "local_package_folder = \"./inst_pkgs\"" + ] + }, + { + "cell_type": "markdown", + "id": "eeefa7b2", + "metadata": {}, + "source": [ + "However, to be able to run this example on the *Readthedocs* page, we need to include a temporary directory.\n", "\n", - "# [Required for Readthedocs] Comment out this line if running locally\n", - "tmpdir = TemporaryDirectory()\n", - "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = tmpdir.name" + "**Do not** copy and run this code locally, it is **only** needed to set things up for *Readthedocs*!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "022b83d9", + "metadata": {}, + "outputs": [], + "source": [ + "from tempfile import TemporaryDirectory\n", + "local_package_folder = TemporaryDirectory().name" ] }, { @@ -37,30 +80,33 @@ "id": "remarkable-outdoors", "metadata": {}, "source": [ - "Download the required instrument packages for an observation with MICADO at the ELT" + "Download the required instrument packages for an observation with MICADO at the ELT.\n", + "\n", + "Again, you would only need to do this **once**, not every time you run the rest of the script, assuming you set a (permanent) instrument package folder." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "premier-mount", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\MAORY.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpxhqx8_if\\\\MICADO.zip']" + "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\Armazones.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\ELT.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\MAORY.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\MICADO.zip']" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])" ] }, @@ -69,28 +115,19 @@ "id": "heard-motel", "metadata": {}, "source": [ - "Create a star cluster using the ``scopesim_templates`` package" + "Now, create a star cluster using the ``scopesim_templates`` package. You can ignore the output that is sometimes printed. The `seed` argument is used to control the random number generation that creates the stars in the cluster. If this number is kept the same, the output will be consistent with each run, otherwise the position and brightness of the stars is randomised every time." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "golden-division", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - sample_imf: Setting maximum allowed mass to 1000\n", - "INFO - sample_imf: Loop 0 added 1.26e+03 Msun to previous total of 0.00e+00 Msun\n" - ] - } - ], + "outputs": [], "source": [ "cluster = sim_tp.stellar.clusters.cluster(mass=1000, # Msun\n", " distance=50000, # parsec\n", - " core_radius=0.3, # parsec\n", + " core_radius=0.3, # parsec\n", " seed=9002)" ] }, @@ -99,28 +136,17 @@ "id": "finite-linux", "metadata": {}, "source": [ - "Make the MICADO optical system model with ``OpticalTrain``. Observe the cluster ``Source`` object with the ``.observe()`` method and read out the MICADO detectors with ``.readout()``. \n", + "Next, make the MICADO optical system model with ``OpticalTrain``. Observe the cluster ``Source`` object with the ``.observe()`` method and read out the MICADO detectors with ``.readout()``. This may take a few moments on slower machines.\n", "\n", "The resulting FITS file can either be returned as an ``astropy.fits.HDUList`` object, or saved to disk using the optional ``filename`` parameter" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "bronze-generator", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Warning: header update failed, data will be saved with incomplete header.\n", - "Reason: !OBS.instrument was not found in rc.__currsys__\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "micado = sim.OpticalTrain(\"MICADO\")\n", "micado.observe(cluster)\n", @@ -138,30 +164,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "undefined-flush", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHYCAYAAACm8FmtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e7it6VnWid5jTueqRS1WUl3VZWKSasIhhs4OF4gRsIUNInoBHtBuBcXGAzTYbbPRFlE3dm9bG7vbw9ZuD02LhwaV5qAtHhC3jRtPeAgGTDoYoEOnk11JTFFJuZLFql61JnOO/cc37nz3+I37/cYsUrXWXFXjua55jTG+7z087+l57ud+3++bq/V6rYMc5CAHOchBDnKQF7oc3WsFDnKQgxzkIAc5yEHuhhxAz0EOcpCDHOQgB3lRyAH0HOQgBznIQQ5ykBeFHEDPQQ5ykIMc5CAHeVHIAfQc5CAHOchBDnKQF4UcQM9BDnKQgxzkIAd5UcgB9BzkIAc5yEEOcpAXhRxAz0EOcpCDHOQgB3lRyF0HPavV6vNXq9WPrVarH1+tVr/nbtd/kIMc5CAHOchBXjiyWq2urVarN61Wq1+2L+1dBT2r1epY0p+W9AWSXifp161Wq9fdTR0OcpCDHOQgBznIcyer1erqarX6gdVq9ZbVavWvVqvV7/8IyvoLq9XqJ1ar1Q+XeyPS5HdL+s6LlH+3mZ5Pk/Tj6/X6Hev1+o6kb5f0RXdZh4Mc5CAHOchBDvLcyTOSPne9Xn+ypE+R9Pmr1eozMsFqtfqZq9XqOq59QinrmyV9Pi+OSJPVavWLJb1N0k9cRNG7DXpeKenx+P3uzbWDHOQgBznIQQ5yH8p6kp/c/DzZ/PEfe362pL++Wq0ekKTVavWVkv5kKesfSXqqVDMiTT5H0mdI+lJJX7larRZxzc+4aKPulqxWq6+S9FWbnz/3cNL6IAd58cjPkPSwpNuSrkr6N5JO76lGBznIRy7n0vvX6/Wjd6u+z//8z1+///3vf87L/cEf/MEfkvSDkv7Wer3+W3lvw8T8oKRPkPSn1+v1G/P+er3+K6vV6mMlfcdqtforkr5c0i9+FtU30uTT1+v1V2/q/02a+vl8qZC7DXreI+mx+P2qzbUPy3q9/iZJ3yRJx6vV+ldLOtcEG88i3blmmup4c88tPYprwvfMx3t5n73ma2ebPEeR3te00bMZaerqvCeb76kDdWp6U3x/qa0XKYdpsk/ZN67P+je9mzjdqO95/STqPEN+Sl6nLseaxibH8kRj8fhknlF/5hw8Up+zo/ayPC3Uw882z5/tmLQyLVxXWY+vu53UJftZkVaSrki6I+lapH9Q0h890hT7/da19O0r6ddLv/NcenqT7vYmn8cyZTT2XGfWM9cq83HeU9xP1CHHvJXp+81+pbDPuSZph7TR5WSQl7pnvaM5l3q5bOrCdNRztDZafRrcW1oTbFPWy89W1mh9tHaw7Kybc/9U23V8m/SuUs3zJu9///v1pje96Tkvd7Vardfr9Ve1e+v1+kzSp6xWq4ckfddqtXr9er3+YaT5w6vV6tslfaOkjw926COW9Xr9zRdJd7eJlH8h6TWr1epjV6vVFUm/VtLfvEhGTkxPvHNNEywnoY2Nr7X7/qORl8aLqZVt43NS0h7FXxrAc3XH4j869HN8UpfUcwnwOF22n3VkmmxDM1jWNR1JltP0TePAdma9qd+5pqifAMV1s45T/PbnmeY+OSrlZXppdlDNIWX/5PX8nf3Bvh6FItaLcyT7PvOele90utlOz9XsX/c758tZ3OecyOs5jpznvjZaN6dx76or/q1fN33+2v9ROpauR547USbHsrXB13Ke+noDTSltHeS84XxyPW7nmbZB1RLAprDPeY+AWih/ZIuaDunQPe9sVy2+pkgr3Oc96n+ET7bNYzUCa6kH11rq2+xVK8dzgOtxKbgbCX1M6n9vmMq1pJ96Hv4uUPN6fUPS31c/l/NZkl4v6bsk/b5n2ai9pMlF5K6CnvV6/VOSvlrS35X0I5K+c71e/6ulPIwU2yKypNG3QeJCyvun8ZdlniBPW7xeFGnM6FipWy7Wli7rZMScdbK9qRsdGQFOApXs1yOko8Gjcc88qQvbk5JOwOXaEbW600jfibS+nkAoxz6dT9addbQ+E64loGV70rmxz5k2+zyFzibT0oF63mSfnGvXYKfu/uOc4Zpie/yd4CjbQ+EabWuBoCTbeSTphqT3nUv61D8i/eRK+qz/WB86nTb3ne/qQJ99jiV1amPhNJYRQGhl0j4wgBituRG4yO85fglK2rjk3Mtg8CJGPm0Mxy3nXhPOsxacWL8ReCBblCwRA8qThXvZnjbPs42tnc7DPs/8WQ51UpSb4OuFLqvV6tENw6PVavVRmratfhRpfo6mXZwvkvSbJT2yWq2+4VlU89MmTVLu+nis1+vvWa/XP3u9Xn/8er3+g/vSZ+TLSJeOII0qWYVG+XJx5qR3GZa2QCynGhvSLDfrpwGgc2jbXm0BjSIZ500HlvU0Z9lAEK+nEEDQqTXj3IADf/sUnJ2CAc4VbfdfAtYGZlwm5wK/Nx0ycmPZ2YYjbTutFn27LZmHZTCNtD1nWr81MNwYAJa35PDTWRBINBZlaf5JM81Px0fm59HN92+U9P/7l5I+Rvo33y/9KUm3JD0U5Y3WZ5bHMc80DFRynjfwkmlVvuc1Mjq5JhpDeBFwlQ41+7IFTQ2As59o51o7RtIAEOfBaaRl/6fuo3XD4K8B97yXgRAl+24JmGag29i9nBv7QD/907418vzJXWV6fpakv79arf43TeDke9fr9XcjzYOSvni9Xv8fm3M3v0Fl22+1Wn2bpH8m6bWr1erdq9XqK6SfHmnSZLVe84D15ZE809NQc+4zS9tA5izSN+OY6ZNZoLQ66dwzDQ3tqJxROkGnfeUslZ/SHP4o70Wik1ZOsiNnSMP0zdGcadvBeHw/WbNTfKekd0T6UVS9D7BdpD2cT0vpXe9VXWzusR6nzX5rY3qq5bFpfS9tn/WgPtnX+/qrOcQRgBzJkSYAm+Pkra2z+H0b9fo8j3/n+CewWBr/kf6t73lWieOkhe8c/za3Um9fc520bamfyxvZlKW1ufT9otLsQ1sPGuhHaX3U2JVRGbkusg9TT879vD4KJFle06FthTX5TukH1+v1Gwa3n3N5wxt+7vpNb/onz3m5q9VH3dV2PB9y6Z7eapLRQXMmOeEYMWR+RnUZbRBUcSExWhih+JEBYf6mm387IqQTP9P+BeZ0NNxZRwqjkhYh00gmbd6Mgr/f1my43ZfZrn1yJOnjNAGeL/saSW+T/sLfm7ZBnow01j8jy5H+I2n3OUZL6TMiZLoGKpkvHevSNkDKEthuTnbkcLwGGqvYnDcdMIHdSHeDWgMY95cPNedcMni8rW2GRNo+B9ScWmNkRnqN+vwo7iW7caztcc7+WLI91rEBGdapSHcu6YHQkWuZdojs5Jl213g67GSzloK/zM/52uZ9Suuf1JW/ySS19Dn325rLdDyATR9AMOtrOc+WbAj1yocffjqg8rkRn+k5COW+AD2WXNCjKJ8gJb+3RT1C/HQgR0jfQIgXSJvwjGZGhuVYE5X/4Cbtzc1fiwhbec2I7jM6o3bTSPs+ARyBhvuSByuboaYjovO6Luk1kvTff7Okb9XV1ffqJZpAjx12c2hLzNcIECSDtw/4jYBky9O2IUaOKJ0t53JuGzRZivSXhEFElpVjeBHwl9dbmdI2q5QAKPW5tbl+qpnhsRMiu2snmcBuiaXjGDVgNNL9TNt93Jihlk/Ik0BrlMf93wBrA0fS3A+NKWlOOO1GA+YEA6yfcpG0o/nLJ+zyO23LaE2161l+jh/TnCEt9Xf5GQy3eugX7o0cQM9I9u1i3HNJx7gUefs+o998EmZfBJNOmeWMGB0apDbhvWjz/EnmywX4oKbI7nMl/XuaHun1Y710jF68+afySSPvzweKrpQES2TXsv68T1CUZfnzHNfo2J33SU2v2tSn/ybpke/VqaQPRZmjJ7DSGWQbMnq3NKffGCPey3FtoJLA/FzbcyujZmlbhxN8HiNP6s2+TBk51tRxxMzQ0WeelAT96dhTV68LMiXS7ljd1jTu7lf3WTu4nme//JuHSlMIbMjYNOEcSluS85dzl/VmXVzDrqelbXM2mc0GrIVrZEJ932Pm+/sYRjJi7H/h/nmk8T3PCwI2ttv9mVv9XO8MpFJo27gem6QuBFcMfPnZ7MpF+vQgd1cuPdPTouKc4KS3c5KS2WHUZcS+hNpH1wiKpF0Dy/MXXui5iMkSHUt6iaQv/L2S3im96VsnJ3BLy5F8sgOja2TKRm2zZDSeVG/mac70IpR3E46PJL1XE+j7lh+Yfr9d09M8TJtjmI6kAZrR9ZwT0phCZz8vRdA5X0f9nPnYz3TGLZJmuQRlS4yCnUt7j80S25X1sK10etL2GmmOJwOBU83bW9IMZJj3SNv6e/xa2akvGRrhOudBsx8ep+xrsjJt3Pg9pbEVtHX75lIL4LL8FAJUBjLtMeyl+UA77TpPB+lzHjf7Tb3bPc7BFAYD5/ikriynsV05N2g/RgHks7WDz40cmJ6RXHrQY2kLNpF1Lq6WvkVUbZI6TRq9djh6tBBHgMT18vFU0rhmMt78B6ezKxnxuP50Ygns6KDbNl+LfEbgjeDB6XlQsDmDTEfGwEaWjsM6uE3O/6OawA7blu1Og01D3EApI1Pny/14abu83DKhjFgWGvbsL+qbfZPp2Yd02EuAhm3PvIzalwCPxf3T1sk+yXH1eCVQOtJ0vsdpr26u3dY813M+NkC19Nn6ujGyLt/StspaP53jeyt3ZG/8vQEHpm3BX0uf7cj0DXxwXKV+kJvgMwHz0jxgu1swtu8gPRn4dt/tu63ttWT9qEerkzae8yZ1aZI2bASEDnLv5L4APTlxPBlHTsZpKI0tctpRBOJFTsaoLVjfz7Sc/HR4aUC9QG9r2uL6y5v7T2tewKlf1pnGYCmKJMjK/ClkOPJ3Gol0WBmVj9ildp1MhiKNDSq3BduZDpaT+mT0Ku32Ae+77qZXOoHR2S0C7Oz7M9zfF/2n5Hwi4OH4t37N3yN2aFRvGvsRA5SgJh8tb08jui+fKenTueZZntSVjGYC36Z7Y11GwUmmy3s5hxlgsI7RWiRrwH7NcrMeH2Z2GUvgiICLwJQOXNq2U3xQIXXP7xlQtHsZ2BBAJIhkXy7JPhvntiR7lTbHdXNt0OY1do/1jEBn9u8SK/f8yoHpGcmlBz3tEXGpg410aktO3dctjMIyfzq20WPko4gldaChbY8QWxcf0m3MTAqZBBo4Xs/7zahlewgysz4a2pHjtiMbsWLO4zLoZJqzbI6qgQhpGwzuiyBblL+kbwOZpM/pxNi+Ziizr5v++8BKlssDw5m+ASL3eYL3FhCk8B02ySKxfOufrFyyPmZCc601B93YNgKeNh/yerMVZDSYn+Cb+bPcBprzfs4VO2GWQ5BzhvSjtXym3bXd1jnrTCaaTFezv0vBZc6/xrZeFOCw3FHexjqTxR4Fjq6LaznXXesr2v1suzS28XdHDqBnJJce9HC7QerMRBrVUaSdeUeUKsseOSUaGN8jMOBClGaDxmgv9R1FoaRamZ+RR9Kwo4OWZIuynNR5ZKjSAWTeI+0CQLYnI0bulXMbxQY/+47O9ki7DmHJ2C2BIvdJe5KDbJSF86zVkWCVTMQZ7qeQUWtp01mmvpQ2d441vy/npvq4taeJGqDTpiyPW9sGy77M/lBJyzwEb415oqNjOQRAvN+ALe3LqB8yXY49wW6zP2QHWoBH25L2LNcfHbGlgXXqkHVaWiCX+ds7baRdgJb3lxjTpsNIRrY79U790kbmtl0LOFs9OVZk12iDDnJ55NKDHmmeRGkw2gQnIGCahu4bc0FpNGYuln35U5+MopuzbSCpGVZ+Mt2SPmRPsk9H4KaVTdBBR7pU1ig69fcc86Z7o6cTYDUDm4Yvo9oso4G+JbA3coKZf+mx7zNNB7VPNAGNkTQH02QEwrNuAsUs/yZ051yTtsdp5EzJ1rTHhemwc0z97p7mULJ9HMMlZiqdWZtbBEmjgCclo/nUJ+djA3w5d5aCjVwnbVzbOcYGWgxUyby4DdZjBBzSiSvSsZ2Zr52XWWIqRyDsonIRYNTsWBsHMkbSfjuf/ey6RmcA744cmJ4mF5knl0Jo8I/wxzQN8LQImEZU5XpKY1KajKhPMwO5uNoeM6M/MjZLUaqNN6NGtseGacngjvoz9Rw5mZGTzjafqoOPHJ90Rg1o2fmOth+p16jO5sDzM7+TQSSgcJq8R0bEckfzYd1RWdY3XzNAxoX9lHUuRdBLzGKbawlSEtjkXOCcam3KunjdLyVs4nbzfupHnRM0pi5tey7n59IcsKTTdP3Zp41xHAEUCvuxgWuyPi6XQInbLdk+g5eTSJvSAAnnN/OQgbdNOo97rV9b4Je2aDQWWS51bekzDZnxfHKNjBr9Dpm7ZIhHAdNB7p1ceqYnF0ozDgQfIwdO4ZuCl1ihEV3cdGpUtRE/z9Vk+lGUk9ExI5MlGZW3FNUtRfXZTjJWvK+F6zRcNBxtmyR1Y+TbdHV632tsXtO3Uf40qg2cZr52pmqpfH9PhoDtyrLSWZBh8u99DGdjCnMesp8aKEngMHqCqznqEbjyd7c/nUervzlwl5HOpgEX96HncGvb0vrKPiN76PraY80EQak72zg6W0M7l/N6iVHKfqU+Lo9jmmW7XvdttqHpn2kzf7OXaQs5HsfanZN5z2WnnqP5rnKvARrF79ST+jdQxdeR3DtWYa0D5Opy6UEPjdhIEqX7t9RpbMuzoVFb9LBUR3M8uTANgkZ0cjPo1CcNistrT1d5YY8OV1JGC7ydXfF31k09l5wmQSEdKSNkOhL2hZ0ZnXdjZQgcRqDGZbS+afMrI73WB0clTSsjdaczHoFWXktheylkRlhGshZ0zHTaS2svdUkHmnMsneHZIA3b1xwm7xEUNQDIPmrl5DwdsYxLDJvFZWTaUbCQdm7ENnDd5pqi/i0gSCDXQGqu2RwbAqNsT7O1XLup21IaBhgtmEkGZ/QwjMsdAUzKA9ruw7Y+L48cDjKP5N4B0QtKRsF5jZ9c9Em9jqKMUXQ6os0NXMgotOjd6TIaSqMwWogj3agX6ddRNETHkU6b1H7KCIyd4jN1aIa/GasW/abzyEjSkVtjp0ivc16QPm/6MDLMupy3nSO6CHjMdPnpv6XFR+A6AiCjPJaRM049/I89s//O4n7OLY+PnV72MR1dzlEyZ+5fOt2sh+PtOZuOKkFJ6tb6nTryOz+zD6xzY07ZpmxHc56tXSnZt5mmOXfWl3USuC3ZglEAmOs783uO5PzKtXyu7fVLppJ5aMNHaVIvvtGZ361zbuGn8HUiKc2eNpuYfZLXD3J55dIzPWRwfG1EbRL4HEX6nMgZ+bCe9qi0Je/vA1FJLTOitYxYi2QBpF1DxoXeFl+mcx+kTkIe199YGxrXxpyMIvYEEuz/I6QfOYN0wM25t99Lwrkh6GPHk08rjSK5HMPWr6O62dacfzlXGYWTmRoxNq09lLxu8JyOns67gQe2LdfHiKXkvM95bp3aVkUDfxYGGU24rqiXBvdcfurRGEbWleldR2PRsk6+DNXXGitDIcikXWD+XAejspMtbuvYdqXZuJw/eaQg77Xv+c6n7AcGemSt2ppRpCHQGbWtPaDSAjjq1Gz8CFA+v3JgekZy34BSovWLGIAEHGQKGH3QQDX0T8ZH2t2iapF4LlBGMoy6sjxGDy6H+8btIDTzNePWHITbRrA1cjaM3EbRZLuXQCeBTLIQQh6n55i1iDz7ilsi2f4GopJRaE6wOeMlo5vGeV/U2cBmfk8QaXGbG2AhoBgBY3/n/ErhOFivrLMBJM/REQvF8U7QRJZMyNfWSY5bpjnS7lw+Rt590pgkOk6C6hEbRufpPwKDBhRSWGfKEogdgQPrmuVznTRWZVRu9nsDBwmeMg3zsH1knkdtySCgARm2LW2E19UIzBwhLeu4b5zsi0QuPdNjSUOT1840/58eMg3pwMl4JGjiZ8pFzxOljKLvRtMyfVsgR0jHNHxXDCWdECP+kS6ZlkyQDQhB3KgNowjR6Xk2gGyXtN13IyYuy0tJEJQ6tbxLziDLYwRLg09AxU/W0RygnXc7w5JzOxm8kUNvQDPvWzjeLKOtnRynpmfWl/2SY9tADvO3dbU0pjmX2R6Wk33IfE1G/Sxtzw0GEEssk9dVlj06JM68lMZK5byljkL6Vo6F8zznwz5dR4Fq2o6LslkpXEs8J5X+gcFN8wNZ7nnkzza0fluaM3dfDkxPk0sPQpeowWP1Q4kJdBg95CJVXM/P0cTlxHf9adD3RdI0kmQnGgjJ+lle6k3JvEkT06iR5ZLGzsTXH9iUmf8YMtuSn3Tm6VSYJ9MnU0HH3qJNCkHVs6GZ2zgwqvd3PwLvsX8mvpOpGbEWdO5H8Zn3W7kE/Eyf9SUAJIBu+owAQq4ZslMcb15rkn2aeX2tAfWlQEj4TDaUc/us5GO7RywT6yX4oZ3hWsm8fKHmqM/IirR70va5u5wjtFepH3UbgeO2nmjDWiBGRsR6jtZmmxMOMhpjZN2OkCfrZ5kuYxQMLvmF1l728UEul9w3TA8Xam535cK0cUvwQ3ZDyDuKzKTlx3HbNpO0a/STMWkGOZ2cr7Wo8CKRZ9brPKbLc/FeJILMcsnkHEt6taZ/mdHAVKYT6mMf7DMMzQGQ0Rs5Xf/Occ7fbXuE0WBzgBeJjsmatb5cimozL8eMbXK9Syxjmz95SJtAlO0i4+O+4hmwdNqp04ilGTE4BMSuIw/gt62KJqOXWo7Sub5n1B1l1teYhX1zmuNPsMS1lnkYFLBcl5lPdKaOo20YsopcMwpdGPw5/wjIU9d9AWbaYrKvS2CQc6qNA9cCx859nluKDeClTpcP3BzO9Izk0jM90thApMEllbkv4rCQ6nS5WR9RO9mjJVrXxidl9MitHcOIIWlR4igSG9WXetnBjfRxHzYK/5qkXyLptXvqzqexKK6f90ZOd2n7I/VtIJhPqrU6m2EjU+M6ky1pwCB1aMxMY40oNrwNUDa92ziNQBDTuk18Ksqy9OJHGv7cdktZ0tN1co4nS9OYrNwOGm2x5e9RX+SfZekwtpAun2TznD7SNsOUDA3P6NBmcf5IfX67/rzWbBrZQM7/nOv7QFXqxyAx7V2ylrSpbFsKA460rwRLBN/n8X10Doprl/qN1lvOD7JM9APPBgA/P2LQ81z/3f9yXzA9dMQtGs/7yfYwX35n9GNZokZpeBlpemE0o6byvUVirOcc6Uc6NnYodc/6R+Vb/zR8zanfkvRdkm5o9xwC8xOstu2DZiySIcjvfqqqMUtszwgsZv08n5RnhpbGtEm2+0gzU5AggOCWbRi1y+1hXy69PZeGOhmP3JptQDL7PduQTAF/u6x85xIjaI5xY80IFhuIGrF//k42j+WSrW1gjGuD99lX0i5Y4nzndisDuUzT1kjWnU4/x3uJ9WpHAlr5qQ+lMeUEpjnOfCJRGtuyBE4jG75kQ1obRm1bsv38zoPQjd1nf9wXrMKLTC496BkBnObEc0K2l9NREuW3hZcGM42/5bjkpbHJ/NQpF02LpGlwWsTZgFhjG/z7qORr+i9Fydb1fZpBRRsjGqX2vRnopjfvNz2bod9Xv0HDEtBwuqVxbsIxpc5LzANZD9fPe/lod5sfbT7agCegY5qmj8trTpt1tsPkBHQG/O1FhqP2sL6RXi0YoY6WBopaXW6H87g9bes8AVB7hJ95loIk69SCmtGcb4yKr1GXpUCysXgapG1gagSalmxutmMUvLLc0dnOVk/L03QhGGoMVbMb2ZYR4Hr+5bC9NZL7AohyQjYnKO1GWi0tF5aNVzoivmOGlHOW05yK7/Ntu66HkXc61EaXZlmKdJm2RR2pT+bLNuQ1AoiMHOmY8vButi0dMtme1InsifXI/mfZjMCX6PHmMLOMY/y5zKxX2i4n03I7o/UzHY8/yQ40HbItnENOx/6jcF6nIW6S7c+xHfVHa1vKEpsj7a4zp22vYGjsC0EbgQODgSxrCXi29eAyGiuT99y/SyDa/cv71JvzkXaLQmYlJdcVWah0zkvMDoNIsueK7wSOrb2ZvgFngnnqYMkxbKC19VUGa7yeOjTARIbN97jmM+1BLo9ceqaHkmCGC6BtD7VJy8dyszwyJUsL3WVl+XQKpKgbA9VYpNSVh02XIuxMd4RrLjfL5jX/TgahRektksy6Mpps7IDwnZFx9nUaaEvqk2M2isIak5BAsRl7Aiu2Lw1fsnk8I9XGIH83UENxGZxj+5gu1jsaM/Y1x6b19Wh7jHrnfE2GhA4h50ACpbYFZbFDbXPFv/Og6j4g2t4wvC9azzXd2Jj20EACL9bTtoIIMGgDaJuyPdkHS6DGn+6PBNXJVjHYss1toJMBWco+RoaAhUw1QX8LALItrS6ygwSWbX4n0MmArK2/i7zy5PmRA9MzkvsC9KQhaUZvtGD8Xdo20DRSKt9ddk7ojGBGzEwasKUonIskF2e2IR87ZX3NYTR6OcFcGqJRFOL0aWCoe9aXACINn3U4RR7LaFuJfdz0JGAY0c2uJ5mqESuWhjTPhXGscv7wiZV9+mXETV2kGdSkQT3T/GqAnIP7QI6F86oJnWXq4jLP8NmYsSyP40jgnYfLCarofHK9JcOTAcuIsUwbMXoPEZ0i2+K60w410DYCgQSZSw8XpFBv/+X8bA6b82cEatr8dH7P1WSj2dfcnk9w5HLaOh/NwzYOo4DA/cCt2vakaNriLGd0jjKvEcQ1AExbnnUuAebnVw6gp8m9G49nKaOnWBpoaYAmr5Mt8l8a4TTouaDNQuyjXDMN2R9ep0NtC5SL0ovbRpDbEXQe7KemczPg/st7WW/T03WQWWng5bykdX35R/0y7Qi8pWPMVxw0Rq2xUtK2Q/DvBhDy92m519IRAFmPM1xfOvfF/ll6UtFCEMLvTsN2pkNswCH1IWByHvZNy29pDGQDyblt4zIJsgmiVNLsS5tATiVN9kk6vFG+Nk8yr4UBVD740ACi623BIPX0J/s62bgjXG9MpdRtlUFJBm20Y42harqPXjuQcyD1cL7RNV8/xrVMR7vQykg2k4HxfeNgX0Ry6ZkeTsakNHNSjaJ3lWtkbwiC2sIj05Lfmw6sOxmErDfb1JzyyHCnMWrUq3CtRd6pW4IYGgWWlbqRTWr5uIWUkVC2YeQMRw4jx59AMfMfaWJKbse11I0swyiSH0XxeS31beCIerdyuZ1jp9HqcPnNCNtgJ8tJx8Qon21OINfOhDjfPuPu/1DNVwewzhZxN2BMtmnf/CGbxHKk3T5iP9AJZv7mOFlv6tOYgbY+/ZvtIEhO/SmtXaNAQdrPUHhMsg1eRzm/9wFKaZdBSn0zjevI39aV9sxljILRc6RpD5g4bdo4IR/TN/CW9++uHLa3RnLfAVEvkhFyTyNESjedc5uUIxqTVOco8mF0zMWS+nGh8n0y1qMZRzIvWY8ZDeo4ooidP8VtagdN2wHJEUijZF+1drV0THOONNmuZHOY9+Wa3i3UnGMySunkqVczugk+yVq0J3ac9upGn8ZePKBtR5gswwjsnpT0Lpt9Jo0NcXPozkshU8B1lW1vLAOBCdcL50Gyjhwb9uFo3fE+58+ozAbsUg+PS2Nu2vxynew3gsl2PozjmWufDrgxHdkXtIO2RTnHbDtHAVUDBi47yxuVkWUxqBpt/VpO4nprb7aD/oAMYQa+BNoMjJu+o+sHuVxy6ZkeT1CebSFAkbbpTx4obUaRTJEX78hxLjEyjd5kGgp1H6XdF0m4Hi+2bPdSuc3wZT2NbRn1T9br74y6WvS1FEG5PjooMmUt8mJE/j5JT0eakYPi/GK0ng56CeDR2dtYO/9tpM22JOBi3dSXTtHXsw0pI+CZZS61q7FiWX/2DYEjy03Ggfea0zBbZLkIOGbfJXjPtjZ2o7GMCWCdbxSMpIz6dWltNuaq3WcAYP24Vr0uR2cNuWZGdafeuY7Yd6fq68z3s/wj5PF19lsyQ9RFC/doM1JG9oMgh0LmLMFnbundG2bhwPSM5NKDHmn7qQEujlH0vbQ4lgzTkmNecgbUtdHqWU/q4++jKIXs0CiC8/U04HkAktEfHVLbesk2Ma2/M4q1oWuMWQr76Rx5sh7LiG07xm9pu99vIs1oTC/ChHGLwS8gZJ5sW0b1jFZZPqNXAo2MJM9x70i724aKtI2VI0OTYJVl7AM6rU0NODItQUm7T8fegA3XFgH70rWl7VbqxCcqU9geg1MGblJ/784IPLWgjGsuhbaP9oMAKOery2bwSJCZa6893cW0ivSu/0TTGmp5ElA25tAyAmZk4iw51gSILHvkE5p/WWJG764cQM9I7v3YPAtJx6H4ngf6cmE1B0mxAW5RY9Yr1OvPrCPrOkWeFpWTBTBI2UfxjtpFXVwvI5YWSdHZNIo2wU0CFjrNbE8Tjh+NeTJFBLY5viMne65d/dNBNme+5Gyz3XTwHp8RIM4o0HPADipZh8Ya+ntjfTjGlnzyjG3L9ZPzcjTO0nY5OT4EO8eDvA1cUOe8xvoaIKLsY6YaQ+Z8+xjeli/bfITvrY5c6znWI3sg7YJ9Mqcp2Q4GA/vsX86VtFm2qaN6We6o/wjO/fmgpJ8n6WHtAprMSxCbIHLfeOVcZ/0jcNtAnXVLW+S0BHL77NBB7r3cF0yPtD1ZG9onPc33wixFJETnS1Ff0p5NWuRnSeNBA5VplhZz6j0CFtSBbb1otNjyUdcW1bX2N8PW3kGUoNF5GKEzIl0ax6wr9bCezUG33y4j2+v+aQbbafiETduqG0n2fzpaAggyMZk+xWAyhWkyAGDfZ9sbk7MUOCRIsi6tz5YcEMe9zc99zMtSXSN2cUk8Jvl0qX9T3yy7AdY2Ry1LB/XPtDsmI0mgnWORzr2lHzEsBOgEQ64ngxiP24e0ux5G5dCOsx8zuGiMDQO+Nk+TvRnZ1rSVfHUFx/TeMgoHpmckl57pSQbnIpPKk5lPeJHmXNpeuK3dczEuex9qb0hf6gaN9Hwr30aTDrctymZICUpG+gnfecgvz6BYkoUalZPlkS3hi+CWIvas05/pRG2EMl0+Wt8iRpX7zXGQybIk+GyOMkHGRRwp60j9CWzS8VP/BCHC9dHZlSzzHNdHwvtt3JnGcyZZHIJNXuOj3bl+yO6yzpFOqYttgq+TbbUOyTxYbhf9ONacY9TlHOmyjFH/khliPxsAtDE6j/u0IwSzlAZq0sZQ79G6uSPpbZr+d1+TJfuc4CnTjgJJlpk+JZk4tyUZnX3z38J6DwzP5ZVLz/S0g7gEDgQxjQnhwuGCadGJtDyxnT+jRDJC/nwm8pDV2Ofs04jS0I8iEm9zjCIjGkzKWUlzPLg+eslg6jyqhzq7v2h0kqYegT0+fs7+5XkrxfcEEfleJjISGQlmH9uRpBOgM29OoTFfI/aJc5IvUWSeNsY5H6gf29jYpaZXY3nogNP5ZhCxxFIRmFncbq8rpmsAqTEWbQxcfoKgDIIaM8bfHIORfksM64idzfIy34jlaeuy2bxcc62s0cv9zvCbL948Kr/J6HKdMki1bm39E1wtMbEe8xHTTybSul4UvNAXLbFKd0cOTE+TSw96mkNvgGfEfuS1Rn2nE0xWJo1Jy0dptG86cOZvC03aNT4jB2hh2TTCXuhH8Z2GivX4GstuB53pGJPuz/bTKVJynEZP3dFxko1rbXd5SwC4jQXnUZs31zVFrK6Db6NtbW4sgvu6CcESdbBeCZhyLOgYR44tQUEDqQSHwu/GQrLPl95h1YRjTCdNYLvEplD49FYK53c7s5X97t+tz5seI9A9ej/OiH1kWY1FbiC4BVsJcqlztnUEPMwitvFKm+NDy89o91zOaE6O5gBtIrfAcn60+UeAcqzdPsrvLdi2Hiw39bk3ctjeGskSG3iphMY1fx+V+02S8h2lbQZr5CRHOrZ6XR8pcka7rb59Qip4pP/SYLtv0ngzOs5+Vtxjne38QW4BNac/cl50skltN2ee0hyAyneXIc0O7lS7IC/rtp7XJD2E+2QpMuq0Lsm0HMe9Noca27SUJsePzNFtbYOj/KMssQccl9TDn8kYSbvntAwUKQkEGoPbmKw2X0aApgGGUbnZN55/2X85r3OrN9tNNoL6WY8EAQ4WRjZlZLvyu8Ey2Y9Rv9A2pc65jlPH87i+xIJlsMLgI9dFC1xoX461qyvBSmNo0n4cI31rO3XP8SAbtaTLQS6XXHqmh4uBDshpRts86UzzvRG5IOjcRkaqGWDW43uMeKlLRoUsx7qmc+GiT4ff2s1Ih/2TDsSLedTuFpUSGPm+2+Df6dyTAaERbA4786Qe6ViZz9fbe0pGQCp/t7MU/O2+uiPpVtxjH3L8Fb/zVQIENNxey+v+JDNHGRnwa5t7+XZq65DzsTlV1rlPB7IHDZA3ho56jUBKe5kg+5Pz4xS/G4NFYECduXXSJOd6m3epw9LalrYP/Lc1xHXL+e8yE3CO2tb0GEnTy/WzngQ7S7aTAKoduHa7uNWX4CnHKOto9uJMu+u0ARfaKraFOt1b8HNgekZy6UGPJaNFbleMJhWN0ug709K5sh46yWZkyUSlnCFdM6p5j2U0JzBKQ31Zx0gvnqVaYiGkvoXnei4Katr5rfYUzL5tAPaf4nemy63EJgmaskz/S4urkh7bfD6u6eWHnGPJRKZ+fGotWQK205Etaf4sj+wExXrd0e5YNiNOUN5YlfwnqKkHgXHqu1QX53JbIw2MjO5n2aP11kB86sxtRa5J9vsSiGv6tACDWycs03q19UbAQaecujAP7UfOw9G7bNpTspRRYJZ1e34zSFoCXm2d81rW2/p8pHsC5Mb4Uge3JT95/yCXQ+4b0CPtGuucXDx83KJ8MjCWNF40uJZjTY6OBpTCKK2Bq3ZQOhfuyKlnGY0hSl1HBtEO1OlHYGVUnwFno5MzbWsXnR4lo7Vm0JyfZ66cTuV6q5eOs4GfpqsBz7EmxuSXSHr15t5Tkv6WppcgXtGuwWyP2DZ9Mg3bkcKtHkaudOAjAL+0TZIRMIG61F8cmXpzTJbAAH/T4e4DEqx3NNdGc6Gt6RGTmH1KB5hv481zQzl3vSXGd+Qco5zGIqSM7JmQNoEaJdmubNsZ8owCMzJvBEbte64BgicyN1wv2ZZkS1Noyy0NYGbdmX8EFhuYFNImgLt3stZ+y/7ilPsWiB7hb0TZtqjmIsLpkk/qeNHxqSp/ctH4uo2e9WpRa9OxAZylPWi2nwAsgQtBQkb46Shdjs+6jCR1S8PZQEpjDzKiGjmtkYG37uw/6976K8eklc/ybm/+PkYTy/MpT0ufsv7P9HGSPmOT5o62HV2jvKXttpJaH4Fv6k6WwtfzU7g3isZb/hHATud0Fp9LTEbOibw2iqKlDkYpjd3xJ8d+idkblZ/3GsDyn20Cgbl1JEDK/lia09LuiwNdRn6OQBDP9bBN/N30zHaMmMRmw9q8HoG5ZvcY6HpNJKBMsJifIzHYpN1YWmsU+p/RmpDuNfg5COW+AD1kZSzNuXmRpNHlPm+jpRsNSsmys5yMOpojc/pm9LM+GqYlgEZ9j8t3affdNSr1uy63Lw+ctnLcRtY1Aphsj/uAb6RteZtB4tglkGwRGxlAC59kYhRnB5NAznmuaWJ99FE/IumP6dUfPf1vKOf3U11SN8Yus73TJetmGS0tmY3m2K5qnqNkFaTtuZEOtjFhqffIYaXk3MzDy9bZQHo0by1mQPx9FNwkEOEZraVgoW1NXcThe927j5vubc0vMU5L15eAR7s22iZKoCZtM8Gjdd2YjiVdErh7/BqIznKZJ23mKX5bpyXGMsXt9Zi5vVxvmZ8A1HnOB7/Pce3ZgKnnTnym57n+u//lvtjeSueZi4ITnVERqVJpvJ2TTr6dZ9HgXl5PofGjwxV+E2QwAmI0l+Wlw9v32KjLyDpahJL9xfdajKj2HBN+Nv2FNCmN7bETy3MEdMgEvk5HAEdmgSyHv4/m3OPavFjt+r8rfaL0gz8p/XikvaIZ+KTzlcZAdInZsUPOfjSIyHtZF6Ni65Zzc4n5GIHJkTAiH53HysAh02RdLThpjFljp8hqpQ7Of3Xz6THyPDrRvI2deuc4Mejxvdua+5cglLbJZe7r27bG83dez+/sK4JW65T2MNd/O8fjvKm/AUgD0qP2nGgKGm5AH54PynqcN3+n0M41hpJtYDCSti7HZcSONXaysVX3BvRILxSQ8lzLpQc9NHw50ei000DlIjzT7gTNiZ33ucD58reLsi/t8ewEJDR0XLTpYEeUdQM0WXbmJ2XNrSsaUMt53LMxpOMhtTsyOMmMZflpGBJg0ZinDknl5/006B6/ZohYrrRrXKm30zwo6UlJ/6ukp39SevBN0ps0vWHWgMdPdbW6Wa+0fRZkBPikXeYiz4bcUX8argFYH8Zm27P+K5s0DexSN86dHD+POfXKcrKMzCdtl90Yhoz8G6MyutfARtoNviwyAQ/H1ek8H5vjZh814N3mIPs8048CvwTAjVlp0tZQXs+8efCewNnpR7Yu+6IFIMK9tGdLQSv1ILjx97QdWWZjj5ieDFb2yyhwvkjAcJC7J5ce9NCBLiF4LhJS80TxLSJozIciT0anGe2NXnaWdY6casoSOBm1fam8lr4xSM3wsi3NYLd0rGsUwWU5NKoJsFoUT+PbDKsiTYsSPQd4jfonyDvT/Lj3Ozd/KUeaAE++xZdMWYvYubUwGtOcu8mWOH075J2Mjx9ZN1jimslxNQvybFietr3TAL2vN+ZgdL+BREoCFa7d/LwFvVO4BnKN05mlHVCke6bkJ6jg2kyA3oIA2jMyNUsyYonauhgxG06X+TLAyN/WvZXpc3HJvHFtk2GiLo2tGYFKCm3pUv/R5qaeOTYjO9sA8t2RwyPrI7n0oKexCl74XjgpzaAs0Y/NaJBZanmYNulgpm3RaYtC2kJklMJ07ftS2aNF3ADORYzpaEGPop7Ua18dLX9jMKTukBqAIPgYPZIsfGb/5Ly7tvm8FenokNscas7Gacma0enk56j/nccgx+lfutH/ac3bOcfaZn1yay7rGhnwnH/cxssnlFo7CHJSWtvT6TUmMK+3OtrvJWlrJtnFZM0SkJxE3jZPXc6S47Xjv4gjT90yDxmJZB85Lm1r56IOe8m5L+nsuhojRduW0gKZFsgusc60fQRatFMJ8LhONcjL7we593LpQU9S86ReeeaAkbW0PeHojNIg0bjR+aUDtmO7qGRe1zsyLrw2AjEsO7/TQOc1ArN9Bi/7pVG+KQ04kXZe2m5Infe9P0ehr/NQMurMeXRVk9MfOVQ6mSw758+Vzf08A8J/zMrxSYfJdMnAua5kUJacSgOz2tSVTvkp3L+q6TH7bLvf5WPDnnOzBQTtjFILPNJ5GHCm4yGrQ3a0zaesc8Rm5G9pd601AERn6//xZaBjHdyvCX5c5hXNDj2lMTqWZ8MKkMFK+8Y1TuDFtedxSdAoba8xMmfnJQ3nIcFFO+fYmFznbWUyv6Jcsm6jgCeZIQbF+5iuTMuyL8o2Pf9yYHpGculBD6Pd0YJVSUMqOMvLxdHAB42E01zVbn3cLkpQc1rKaNGXJcEHF1X7PjIIo3ukZP25tC2Rfd76n5S3ZdRPaTRPcJ/O0uldzlIE2iJysiZ+wubpuE5pDjINZkZ9NyN9Gr0z7RpZ1pfGeRR9NxYv04wAgDb3HtH8CP0XSPr8B6U7T0t/WdIbNTE/QjvM/GT72/wYAThpewuYY0X2g87b0pwNnRqFfcS5k0CK961v6nwV96UZzDi/03hL031l8GibkXM+QbLr5Xkt2giyEikEkdIu68N+b2M3OheT5TVb0OYrxfOVgRZBGevbt0Zp21MMMLkWnZf28CJBZmvrsbbn3Sj/3ZMD6BnJC4J5S9CRAMkTlNHe6PHbkWNixJC/c4Fw0dnxJfAaGYMlir9dS/14z38ZUbKNzJNsFnVM/U4H9y0Ea3ndn9kPLRJr91hHPvo66juLncyJJueebEdz2Hxvj6P1dJx8dDadUxpVS45LMn+cP5QcG/ZrM7Cpo7epnpb0CyV9/ksl/VnpytdJX/6g9FpJH9Q2eGoOxOtoCZBa2A8Ec74+As45Jrk1prhP55333V9tXAic0j60wEea+s+g8US7NiUDg8c0A6CcA/kUn8GNx74xlVl2BhS0Q2x7fqajHwG6UTmuy3mE7xbrN2LKcp67DDJELCvHth0jUKQbgTuPU9pzMnRuJ9NQt1y3bgsDY66P3No8yOWT+wL0MMpm5NLASt6Xdo1n5uUEbRRtlpFgohkCSy5OGsn2FE7my0XEhTdyqkv6jLZHWuSchimN3zHSsz6Cp3R8yY4YkKVTGznPkZGnvpQEt82hLH2ncznGX+pL0HwU1zj2WX7rz+bURkzKCCBlPvf1VUmfKklfJOlL19IfXksPS5+0SWtmYqnPm6FvUa/zt2ChCddL1p9rgsAkPxtw8b2mQ45PAqHGro7W1RVN56WuaX5Lt9twNf6ONDND7Ct+ej0kOCCIpIzWj9s5YisaWMkxbsCU9oOBQNPL9WlPebR5BEijMlv5ad8pS/OxBYYJkFnfUpCSdbWxef7l8J6ekVx60EMw4kmV0QABgeI7I9g0PPvQODunvRjLZY7Alcr1VrallZMLj3R8YznokFwuwduo7Ve1XV4yHdS/GSKCEToUMin+JJ3NrRqWfaJdOj5lCUDQUCdIynsZabstyf74jJDnYEaUzcBmdErjTDBLB+g0GqS3bpxrp9qwW//YV/62dHt+T0qeV5HGziUl29vmP0F9lkdwTfBEPdwPBgUZTR+jPALUpn+bB20tLDGW1iGZnbQ3VzW92sDpr2z+UgeC1CWGtV3P9uW8auuorQW2yd9b8GhAwoCzMSAUApAGGvYFHWbIqKvTt7KX2s8yWh4C/X1yrnlLMwH1PuB/kLsr98WZHn/SsObi2Bf5Zj7LKAIfPYlFhzNiTlxXRrz70L6deC6UZAS895zRSL73hxRvGsElloe/aSBG/cq0ZABG7UvdhDLcV9lnCTrS0GeEP3oiJh1q9j8f06ZOfD9LSnPu6XhyXrDf2S8ErGx7kxzz9si2AZjF8/hvSHrt/yl91KMrSdL73i/9U21v2eSZkNSF7Rg9TTfaAnHb2lq9qnn7iKxPYxGzjFFk3ljhBmRzPp2X/Fm3Abb/0ewVSY9Keq+kT5D0Ox6Q9ImS3i79D09Lb9nc94F5rpljlG8d3dcE29SF1xsYYKBH5qexY61Msr7S7ljld8+lxo5Qh6x/ZE8YcOR9X2+sFgF1Cy5Gbac9yDEU7uX7tbj+qOvdlRcGM/Ncy6VnelIa/U40zoibNG5G6ZSkmRm9NrqU7IvrT4PsdNQ5I6Ss03+5wOjQEwg2w0/QkvnPta1biy5Tv3P8sa6Mvsn0NGOYBq4ZXPdnAhtGxMkiGBC2yLcxStIuO0Rw1ebGUrSc7W1Pz1hG54CclxFwA5CN/UpJcOD3oVyV9ISkPyDpL71f+gvvl/6QpvNNVzUxPcnkEQjk/HG92d+5xjgfc5svdTcT4shYkV7a7Vt+p05tnTfAkwCarFs61+x7zgu3+wObNvyOE0lfIunNf1T6Gum3PiBd18Su5dw6RR0peQA6dcz2ZD62J+cSWVkL87YAJ9f/aA5Lu2syvxMcjAKntEVpb7L/9wWLLHPpGvUY+ZFky6xjs8eKe5k3zxveO8Bz2N4ayaUHPc3Ip/GlgfL3dCwtWlr6bAY0629l7buWQn0JmvZFVkv1jYxdUu/+3SKX43KffZx12cCyz1KXUVTb7rMNua2R15guy7qIoUnHPdI1r7XHsjk27HuCHNbnvvYTZVdC98ZspjQwSmBp4HNj8/sJSf9QE8PzwU19H4g8zp/v6LGwjQQMTT/Pufy0nne0+3h/9k+OY3PieTg92536kEEgOL4Ik5frhsDuXBO40cOSvuV/lPS10n/zf0kPTSyPmb+s13/NuZ8jTVvzx8hDAHOCfFyXCXTavFSUcRy/GfB4fjZQ2tgyxb3R9/Z0YPtOUJ5lcU003SijYDbz5BygH3hA22NJkHTpneyLTC79eGSkz4nbwAwXCq/l4vZk5iRu0VguhLbY0kiQ9UhDR6NOw0sHMXrnkMseCVkqqTsO9lf2Nx1vAzYWRsrZ5lb3ebnHcSJAas41DbfHMvuJfcy6WC4Bl4VPfThdRnrcvhuBZ6c903wg9os0OcrmYOw8m+5Ol1EzWYxzzQDj5ZIe2uS5tcnjd8skMEgd6ETzc2lMOJ7pyK9Ieom2HWsbBwJqrl/q4PSNrcjxIRNLYD5q1xVtb2HclCZU+fv/4+nC//xR8iVt6uFrLjyeKSOGMMF5Bn3+bXtxhnsN7FAyzYgpVtynneTcSJtHVol1LgGCJbvha2ZUXB/n6+gJrpTsR7Yh62qfmZ/MOfvk3rA9B6ZnJJce9KRw4Y0ASFsEpLAtaYTS4TSwZQByhHsjEOb6W6TaDJ/ryLwXjZpo5LzIs54GcJoxYHqnZTtGhjX72s46WSZ/NiM6ArY05FlXSnsRHLcKKA0guu59gIsRHu+73Oxn1vOopM/T9MhzY/0aQObcMVvkeq9s0t/WzNwcSXqHpv8blqxFAotsB50KHWNj+LKcI1xzOx6T9PMlvUHTU2XXN/euIs+IXUqdnDY/3dZkgbI8ArZ26Lqxv9yCfkhT//7ZZyT9cUmftJK+TvprT0xbW49E/dYp5+0Sk5d1ZwCUfWHAzXJy7V3f/LEPufXb3hGUZWVeysh+ZJ4GOFgfQT6DTK71Fpy2dJTGBqYurU8bgB/VSZbuvnKyLwK59AeZpd1FlOjaC2MUcbQy2sHXRn/ayLUIJvVxPhrNzD+KjH0wNelpsi2K/Mn8ZB0Z6Y2imiZLFDWZHuF7A3KpcwpfnJbpm9GnEeFWBSNUG24a8xE7NTLgfKfSRZ4OGzmvrIMHo3OM3yHpv9CGNdB2mzxXmx5J8xOY+T9++6BwvmU5nSfnD+tv64MvHmzAPNNn2Q9qAj1f+VJJ/5X0PV8z6fo2bY9rAj7FvQZgR6CWY9wY3xGYZXk5f207PrS59i8l/c4PSq/44AQoP6ipXz+k+R/PZtlkUpteyd4RiHA83E9cT+fa/h9jeT/HUBr3Q5bHNC4zx4Z1saxsv39bHwJl287GPNOuLq29vJY2fMSkkiludt/pqDd9z70DPIeXE47kvgChI4YiJ1pOspHDT8qbbI2BRxohR1Lt4O8oIqUzaYCilTM6XOwFZ2ObRs4yovxpYAnohHs0OizP+qThZ/3JYiTVnmUIaZqBapFnc3qOwDMSp1G1nCBfM5TtsGkz4A28LTmFtvV1pAmMnGliBrzVJG33jxa++zPzJbjxk1Fuj/s7+zPz5fd2xiKBoMtqa5L5XN+HWYe/Len/8df1hR89Mz1s2wjoWTgGBEZkB1XadBEG0GLg6Hqf1rw1eFPS45rfbH2q+Z+OWrd8CzgduD8ZYC3plzq2ACLZoLyXNsd/invsQ0uutaxzpAv1kba3oNMe55mZ7ONkDc/jO/VobXH+fX3Y2uDvro92jADqXLvrhrb0IJdDLj3T01icjC69YHKCEX2P3pmS1x1Nj2hJRrS5ICzNGDTmiN/PNK6XZTNSaYZnqayRIycNT7AwYnGOIz0jPDveJT3SAKfBbXo0AJUAxAaT4+Z7eW6iRaNtXu0DNP6uSEcd6TjyuvXKNjfqnw6Y64BpDE7S6RHYpuEmW0PWJY17e5w/62/RrttnNuutnyl90ut/pf7nn5zOv7S1MHoycfRKgdS3ja+ddjJnzS6k089xyX8/YT2t41VNZ7NuaAavV6OcFojRdnEMRgyH8H3Jqba5yGAk25mgwfMjt4gZpGRQ1mwDfzM/gV0GpLQrLL+NHZlIBkkj3VqbOO9yvRGcCunJ4N19OTA9I7n0oIcTnRMvHeUSFZlGOWnqkaFx3WkYRoeKm5Nq5eW9keNVuZ7tGhnrkZFfcuz7pKVpBoHRVQNdGbmelWvJijgf87DPWpk5ZnyHTgqBR+s7xT1+Ety0chJoCWn9vc1vSjPcP53xSwfGbdKlcjlfyBhQR27H+b02tzf3fmxT3g/9sPQ+ST8e5Y7GKetua2rEvrXxW8qbzlLa3no2a3asmaE71/yPRt+h+WWF0rzF6LOCqV/+E9glwJnrYOlVCpyXCRxHr25wfgtBq7+faXeOjGxja88oEGksMkEFdU4WkONpPQw2Ezhle1jmPh1p8/aBVD5lfO/kAHqaXHrQI21HwxmhtOhX2jVsPP9DatLXeYAzjSEjEGl3MSjSUq+2AMhucOHRmCzRyvuikxRG8CPw1QBL/m51sC3UqwGXfZJ5CDyzPgLb1Lm1j9eXzu9Ql5RkEFjuA1pmmDwfE/zZqTYjSuc4kjxP5jpyHfHQPp/kSz3JKGTUL+2uIzrSa5rO8tza5P2AprMvfOkbgdNIst2Zrp2hG+UdtZlt4PzM+vy/zTxWJ9p+3N/6GNykGBC5nzl/LM5HZot2gs6dbEeWt2/bsMkSi9PmYdrQbGeulaWgoa0T2hHWnUGE5+cSO5M6kU06H3yObP8IpF00wDzI3ZP7AvR4MiY4yd+NBpY6sFH8zjRt0i4BnFxMZ9qO8FKcno+VMhrIa6NIL3VrdVjSYLDeLKOVmX2ZhiDBhdNl2ywsu4nHr207nuP6iJpuOjcgRZCyZPyYtoGYLDP7mE/WWE+CALYj59T1zd8T2nW6zegqrvE3z2lYTsp9Oh8hPYOGxjqlDu5T/76h+axLpvc4+/ORzedN7RfOzbzuLb0TpGU667pP2D6D7ywr54NZnASYWVeOaRtHgrG25hPI+jfnIQHP0ji3OkYBQwNS+dnKJOvKBwZa+bk+CYiWHmQZBQNkXlsQ4naQ9WksUGPGchxa3rsnh+2tkdyb8XgW0hZEM+ItX1sQvkeDI3XnlNFCpqOjGVHPrIOUa1LfZJZ4uHlpMScDloaEUXm2iWVIu8ajlWmHxTob6CCD4WvNULJvmi5pEF0ez0VknZl3NFdaf7ncJWZR2jakdKpsh+tPI555P1HSL9Y2gE5gTVZqpNcSIKKToR7NAThdc8Scs85D53JWrhucMP/IUTdWlfOvpWObyDTyPgGu0/k3WcVsS37Pted8mSffJZN9s8RypU65jZU6tt8N8AnXWnqCmwZ4sx0MpJzH1/kUJ9uQ6416uP8YBI+YPYLM9sqRU6Rp0tiaxvBYct1fegf7IpRLz/Q0ZoVOkzTjUpScTAKj/qWFo0iXBjCjuDRy/s38/J3gJ3Vdaguj6n3sT6Ntl4CitM1+WEiLt3rbAdOW3no7KqLhy3TeRnDfe8uoRaysKyN+Rl9Z58hwCmmy/KVoPKNIf88thwQ7nntv0/QEUL6pOOcSX05HnTh3miSIIVPl65TGCtAxZT9nPcnGJnAlADjX/EI/tiHb2+YX5491WpofLSDhfG9rK/XnPW5R5RgRSDX2iACgMWuNufT1fdIYmxx3rgEGPXktAcRR/CZIaX3Y2J0m+2wnrzXWJtO0+82n7Fs7SyxQljvS5+7IgekZyaUHPSlE9SOasbEbQhqW63xMO1ooZg7OkK4BHZc9ikqWDHSrW1E3hXUwUh2ByGyH9WllNdar1d/alsaSFHWTI81PxeR2QXPcTRrbk+1U3Bvlt0Hf1+7G/tFp5LzN+WJneVvzu18YYZ/guvM1do2/U68E/Lkd0vqJfTQ688T1RkAr7Ubw7I9cNwY27HMCqQQV1nkE4Dg+Ofel8RwcjZ+02x/twQjrNnKYyUI2Bnakj+dlAqUzpMnfBF0Jwtu99pv1ZDtyTLhGMw/7I9tFpo+MkA9lt/u8lvMh9Wnjf4RrGRiPbLXU50za14sAu+dPDqBnJJeefWvGgvRhUpYJYBg1ubykonnfxtkLOCPLFp1Ju4esU4/j+Mv2OL//RgskFyGN0TnS0EmkTiNmI99PNDJQWRbPG1Cop1BGRsktksu8VyS9UtIfkfTpSJc6jST7V9o2jE3cR5ne4/9AKdvlcGwbiBodHs3+uqW5bzjv05k8Kuk1kl6t6V85uHyeHbFkWTwL0XRif/k615frHQFsz9vRE4epCx3hEiu39FRe21bj+NDJtb7YBwRSnPdq3Pef3x2TNipBGpkjgt1RnRaCtiyHoNDCedva4u8j5q+t81w7HLORzWigst1vTxtyfua1/ByB2yP1dmR+t6n1X/7m/HXZB7l8cumZnovQjtL2pKPzJ6DJSMf3ubg46VMXOo+RAbCc4ToNGBes27BUTurDNjhtYwyyzIz4vWXUFjcdgOvKfmBU1vLnu5Ba2WzXmSYg8A5NL++jsH2jfuS84WO8OfbZ/tyyGTmApnNGpQTjmVZx7wjXGU3698Obv/9Q0rs0/QPR/FcTrR3U0/UmkOW2DJ2m27PEsi31DyXXYsp53Mtr1K39XppTrMPpyMKc4zr7wfqRKTjXvAXb+q/Vv8QiUDJtsr0J2vJ8YIJkzwf2j9Nn2Qb3IwC/T8f2BCxtSgY8tC0J3Kl3SmOqR7rRXiXoHD0Vl/23BD65rlMyyLs3sm8lvDjlvmF6UghwkjlghJFleJJn+nR4uRgZHbYokYDkbHDd5bXOblFXMjPUnW1KEHGKdHQGR9puc+qYzFbq0IxeOvNMyy0YylWNjRh1cX8+JemPSvpR9Yi7OZD8TkCafUuDS2njy3Q8HN30o4HntTSuzajmnLym6d84fPzbpM/976Z7PPjc2tSYUI9l/s+rZAkSIDVAMRprgs42RqP1w78mOU9zTiyZ+GYXlsaKeaVdcORrXAeZlmmatHc50Zbl72NNT7q9WttAlHWkPuzPZgOsi+dhHuRv9TQw4/WQwGoEcrKMLDvXNdNn32T7WA4lbT9t7kVsPsezfeb3ZxMAHOTuyn3F9CSqb3SlxUYxjQZp8ow4zgbp8kVXzNeEFGdeT4eXh3cZobS0ychYErxw8WYEJJTX2pl1Mk9GrXTuzciPIq4EVblfnhEVdTnX/D6TrCMNSzpAX0tZAh7NADYjK/UXzEnj96Hk+JAxoAPKiD3bd4Z7p5qYr/dK0s+X3vPBKV2+Jyb1Gc1ZsgK3tdu25iQb29XmQNaXbWD5OYfIsmQ6qdfbAOiIkWtls7xsQ14fOWAGJfnf1FvUz9+ukwwa9WDfNIB/W7tz2eUQvDZmo0mu+yyHtifXGMc4t6VGa6yBzbQj/s4D6wx6ml1m2W3LqT0tx8Axx5q6tocx3PbRE6PPvxzO9Izk0oMeaXvR0Sla8oBbiyYacJKWzw64rFw4uTVCp5DRdIsqR2CtGQ3StktCh2bWhfd8P/uwHdhjnyTgOtd0puShzb3b2jjhQX2jiI9Gyvebk0sKmlEXnbvrzO85bxpwXmIIkgmkXux332+Oe6Sb8xrUcKzpDG9qYnt+/wbw3NAMDNs8oBMn6KVDb3q2chqA4XdL26bwemmsJHUZ9SWdYgMsbU4t6cvfre0WOkGPA4MPtiHnXQIfsldsV4LrG5pf9pg2abQ2NPg+Gn8CJ15LPUcAaAnM5G+u3xSOoa/lNhrvZz7r394l5r61rjnfOT+a7cpxJCC8iN1+fuXFBXpWq9U1Tbv9/+V6vf7upbT3BoQ+C8ltHGm/g6IhYjQ1ivQbi6G4l2l9OHGk6xGueVEm25GRc0YDrQyCvGRI8jfZmBaZZr+0J8AcmTOdqeEHNQGeXyXp971+AkAvj/zNaPI7nTOj2+wzMkenSDNyxnYGI6ffok4a8NaG1KuV04B3m2N5r7WDLIjlVNJ7ND3a/g5NbzZ2H9KBnUee5rjzftOLc9JtoDPOOZvrLdvh+6yfwULTg79HLwZs872BoXaeSxoDHtoGp7W0/nPdLZBK1sbpMm1bQ9b7XLP9eVqzw83+a0Ehy2Nwxn5ccgwtwGSbWC/XMM/+uKwW9Pg3QYbnYgMsqUsGrCkZEDHgpHCejOarpQG+F7KsVqvHVqvV31+tVm9brVb/arVa/baPoKy/sFqtfmK1Wv1wuff5q9Xqx1ar1Y+vVqvfE7d+t6TvvEj5l35cHA3mRMsJnguBizUNhNO3KNSfaTRGEWtKMzSjhTNK1xxelk2GiuVkdMhomY4783qRjyJtGoI0xHckfcpvkvQD0mdpAkJXtNtfWV62Nw1g1nFRZ5TGSrjOfst7TbKPRo6z9cHI2bI8zkeyE1lu6klg6LHyHLDDS5YoJfu3BQz7ouNcd5yrDcScIf35IO9IRoxd05tbBnS8XINk9FKPth79xxfXZf9wrrJsBliNZfEcfljT04nXNJajuD8Ckey/BFTS7ngvge3sO5/7cr+P3kXEMtoY5YsM0+aOgB7zU9esO9ua/S/Na6cB1H1rfgQCG0Nln+Pv947tMdPzXP8N5ackfe16vX6dpM+Q9J+uVqvXZYLVavUzV6vVdVz7hFLWN0v6fF5crVbHkv60pC+Q9DpJv261Wr1utVr9Yk2vOfuJJQUtlx700OnzXm575QJuwEjqRsvpM2Jqhqp11tJidL7Mv7THa1YlI5QEOgQ8Lrc5vFGkQYPVaN8lubX5/I5vlt73oPS9Uc7Z4M91pfElIEsgsMS6+VqONftH2u6/UTnNMKbsAwltLhEAETi0/FlOi5QTbLRHzkdshLTtvNxvNMaMxNlnHt8R29rSq3xP5+HvD5Z8mZdBTQMsKUsAtuVrzpb6cC5Lu3MnnzpKFnIEgnIOP6OJsWsgL+u7Ue41YJegjSAw58nJIB/n4yskfZ4m0MVx4prZByqeifzNBo9YxwYe2vrkHBZ+JwOZn82eZHlte9vjm/OyMbNLYP8+lJeuVqtvWq1Wvzwvrtfrf71er39o8/2mpB/R9MaRlM+W9NdXq9UDkrRarb5S0p9kBev1+h+pP7D7aZJ+fL1ev2O9Xt+R9O2SvkjS52gCWl8q6StXq9UirrkvzvQkIEkUnoafB+YSbScdu7RNRgeRDsb3R4spdW1GxtdzUTMCzccpM3+j2Xmf9R1pMjDMuwRyUneyKy7zXNP/hnqrpieqntb0n7KdP407y2Mb6HxGwGLpEHG2n45/CcSlA3Y5+fSZ20+AQJZG2mUClubWyIBbj9H7fAhu3R98qZ3HiPp53RyXNNme45LeaUbGe1907rXkNjj9FU1bo+/TvDbch7kG8lob1xFwocPP82tca9Sb9VAvlTQJeJaE6+OWprVkPXOMUh9KBnwjsEBblJ+jwIjz4pqmbexm61p7GdRke1XSp7Stsxwv/nYbzUZJ09kqjiEZJdbBAJd9k/Nn5Adof7Peuy/P25meD67X669aSrBarV4t6edIeuOWRuv1X1mtVh8r6TtWq9VfkfTlmv7zzkXllZp29i3vlvTp6/X6qzf1/iZJ71+v14vdfulBTzqm0SPRDaVbiOxzMeTip6HNCdzAB52MDTqd1siB+N5o68FCXVlnltnO6Dh9frIv8omqJjTsfnfOqJ6Wr7Fw/p5RfDrkHI9mbAjgCHAJulISSIxAZStnidVJYRvyCZ3mPP1JMDN6547nVPbNCfJbjzZ32Ib8PNHuOqIeDYC2ObQU1d/RdAj+DtJacu03h0kgkmuATu8I1/gkJOtgO47ieh46XgK6Td/mXJuMxt3Xcu6a0Wnp3c7cxs65wXa0PnjH5u9O3HNbaL9ok0b6MwBcApUZoBzj95nmrbfHNm16XLtgLPt6FBCNQAvZmwSaLeDMNi5SDi9AWa1WHy3pf5H029fr9Yd4f71e/+HVavXtkr5R0sev1+uffK7qXq/X33yRdJce9NC589FAxf10Us2ZWrgYhPsjtiZ1atKidC+29pRUu8a8GWFz4Um7bNRSP6VkvQQKTUgDZ1Q7ejKCADOvW1LP/KQ+jPKZJgHDvugq+8htyjnmerh9dKzt9o9Yh/YUjn+P+splJnN5rNnBJrCxTq1vsi8UaS15gJQsylmkOS552M6Ro2/33F++Z9q/ReWNZWH5yXzlWNGJZ346oQx6WD4lyyUbw9cKUBrjkCC6rdUlRonj6//qzrwZhOXrDPh4e4LE1I1Mzj7QkPecd998b/W3tHk916PzXZX0+x6Q1s9I/6m211yWw/Od2Y4G2pvd4nyhnWC6ewN87v7TW6vV6kQT4PnW9Xr91wZpPkvS6yV9l6TfJ+mrn0UV79GEbS2v2lx7VnLpgegJPkeGShpHagQ0S3KMz1E01radRiCLUbmlvQsihYvmHH82vFm/5QGN96/TuS0ZHMW9M223L+nl1ImSjys3KpxbDARX1oE6qfxuoNNljvrAOrA8A44TTX1J8JLsICNPGnoCimxP6nOO6+nMPdapA78vnRdzP5stbczbaA7waT4K2zxiQV4t6Vdo2i5pa3JpnDhPuYXXgpY21gSDS2CfjpP30tlZ2L8s9yjS5dzP9UN7kIDRvwki6ZxzTBgIcC63fsrft7X9v+8oDfi3vjvHvbzfgCfnj4VB0tlGv+94RvrLmhiptFXSNtgh4KHt4tyiZP2NCbL+6SPujdy9g8yr1Wol6c9L+pH1ev3HBml+jqRv0nQO5zdLemS1Wn3Ds2jQv5D0mtVq9bGr1eqKpF8r6W8+i/ySPgLQM3pEbbVaPbxarb53tVq9ffP5b22ur1ar1Z/YPGr2v61Wq0+9SD2euBnJ5CRLxqMtSk7gpYmeadJJpWSHpdGjc3JaGquU0dNKWRfzuu1kZ3KbTprOS/jgYeuTjFBTBzqZtmCTMm9OOB12bgvkNkJjElL/tpW5z0GlLlmm50YzoqlLAxJsJyPMjGo5XgRzbDfbRcm55HpYJlnQBixHDnrk5JaujdYFQWQDMnc0vWco/2VGkzaX8rv/2hbQiCUisM/7XlMEG0tljxgIBiqcvx6fZLqcnsClMZcErOz3NoajdmeftLlqaQfsrdtSwMRgcBSUSNsAbd+YuX7bdr9c83s1vaglt+0SdCz1Wwt8LAxAfK0Ft03PS88sPDfyCyR9maTPXa1Wb978fSHSPCjpi9fr9f+xOXfzGzT9N50tWa1W3ybpn0l67Wq1evdqtfoKSVqv1z+liRn6u5oOSn/ner3+V89W0Y9ke8uPqP3Q5jG0H1ytVt8r6TdJ+v+u1+v/dvMc/e/R9Az9F2j6P4mv0fSE5jdq+/9IVmHExO0VxW9/cpIm0Gl0shdwMxrJlqQjX2KaLM0okxlS+e50LjOjiQQS+Z3U7Amuta2akd68ng4+deX9I02Hp0dljiJv68kIrNWTIHa01USGS7ifeVWujbbimI/Rssd7ZOSaIU09PZZ5j7o0JyX1bS8hbTKGIx1cltdEboOlXCR6Zdnv1XQIPvPnWuJc3TcvWx3tfhvHvE6Q08bYaRkoGMinQx/1zRJocr7m9HN9NZvnvI3taltMzQa0bT+nzzJ9zfkzba6BBgrzk7ZgBK5HII75b5VrGdjlDsFofXPNcbsq7UzzIWmf+ZDF3Ze7u721Xq+/X9JqT5p/gt+nkv5sSffrFsr4Hknf89NUU9JHMCYLj6h9kaRv2ST7Fkm/cvP9iyT9xfUk/1zSQ6vV6mftqyff67CvAUTipPvbfmsu2CVKk4uPOpF5knYP+TXUn86KkouH9eR3OsQzTY+3PqVt0JRlkX0RysgyW6ST7eKh2bzXaHu2McFM1kMGhuOTVLXT+4+skSJN5h8Z/nSAdKKNKUr9uG0ppLewP7OuVj+djo2sjXBKA/Bp9LNPW53+3cacfZB5R+vIrMYdzed4fH1pbbVtA65h3ktmjmNDgOM25hwlu8Z2pL528mZuRuDD5eSj/67D5RCgcVx4HsXXkwXP9E6b1w1U/DmyY5mewjmcAIX2hWUKadvabUAry+AcbHbC9v9MvX6OI5n/rJP2aCmwSeDTGKaD3Ht5Tg4y4xG1l63X63+9ufU+SS/bfG+Pm71S0r/Ws5Q0iI154WQmck/DlwZlhN75u9Gadk5kVEijMhohG3Revido4YIbARLF9UbXJ8OS+rQyRkJWxv3Jx/L3Rb4NzDSnyqickbC0HWGxb8zyNXA2ikxHTyR5PFpk3r43IbPTGIoTzQdPU1c+3n0k6SWSPrRJQ0aARr49odXmAtmvzM96mv6U05KmgboGwBozxjqYL+satTmvcwuGj0pzPQv3GlBs+ub6G4Ed6pZ5sw6yfCNWS+XekoNu4KOV1xiTZtNGc53Xct22IIb5WN7o1Q+N0SO4XmLSUq9RgOQx47W7Ly+uf0PxbOQjBj18RG06zzTJer1er1ar9bMs76skfZU0cWWM2BrokLaBB5mVln6fI26Ah/n8PR/XbRFlY5faImuOKg3SkqOicybAY1/so/iaMTNzluDLkXUDKtmWlDRWrisfAx452n3CcacTbwaOEWTqR2kR5b48zMu0I6fusb6NvNK2UT9GngSdNO4NTIwc2xI9n7ouPfrdgojGctAZNrCU9bZ0ebCeDvco0oxAkvWngz4u947xu5XV8p1ret/NM5pfNDiaF+nsU/L+yAayrMw7CrDa/RZQtFcPSNvrl3pSUveR3Vakaeuq2dJc5yPg3libU+2OZ5v37ck81zsKmqTls0zPnxxAz0ierV/ZksEjak9422rz6VdDX+hxs/V6/U3r9foN6/X6DblB2FC+hfR0oykbO0NJ4NKMXG6XjSLckbAsGuzR4m06nkeeLMP17ANV+xgIRpKZ3vXk4eBmMLL+keFmna6rMVOMJC3cmmO96Tz4XhCe12L5zQGMoua2hdYid+bjXFhyyta5GdHbmt/qe5GAgGCH9wggRp+5lZTOhU45QXJeG83BM43HnIGFQTPTZZqsj2W7DSOnlmlGQl0J4C03Nb/VfKRnlrdk97J8z3cyJq08j2+ulRawLfXlGdLRtghpee9c2zor0li3EbtjXXINUwh+CT4516XeHmm2+3nUgm1pQcAosD7IvZWfNuhZeETtb0r6jZvvv1HS34jrv2HzFNdnaHqz44W3tsi00HFkQ5oDaiAgy27MgPA7wUkCIG5btYVvHVm2nVg6Cm4deMFycTV63/eyXY3dGTFXTsetLzrA3D7KOlMuMrncrqVzMJQRG5dgMdubRjTTjsab5THibUY6gcMZfkvjsXJ5Oe5LunIsaYTb/OarCRrwIIAbRej8zbnv+lqe48jDPs8nz6wn5xTHy33RQOuxtuestA2mG9Ak08I82S9ksdg3o7mf55ksDiBSN84dlmlgdaLpSU1fa2PUxpLBiPuewV4D+6k3r/O353Xak8Yg5tiS6ck2JFu3ZCse1PTvM0ZBWY45WbXRqx9asNX60NIeqLh7ctf/99Z9Ix/J9pYfUXvrarV68+ba10v6byV95+Yxs3dJ+uLNve+R9IWSflzTfy/4zRetaLRNRcfdjD/fmsm86RD9Saq2gQ9KOmEeGJZmGtXlMDpqjohtZtuznExzkcPP/EzdFWWk0WvgcLSg0zmTZSCIoPPK9jBflqdBGuvWGL+UJeNJ5sPj3p6Ik7ZfsqfI58/st0zDuXYU1wmYErzkIc2M1Alu0mEkQD3H/ZY/+yLzZ/p86Z0l12VzugRFydS4ngYe3Qfcyl0CrdQry6KDJ6jKJ38oCYqe0ewos442J50mt4rIWJE18b+TGc2hZG44F3JtZXpF+gTcmYbrNNtOm5lrgqAt29oCytaW1kbrnO3i9u+5pvdq3db2/yobBb0MnrnOR7ZmBGobY3+RQO4gd09+2qBnzyNqv6ikX2t6WeZPW+gYpX4WxGl9rTEdDUC0KK4ZPTqkLJ+gKxdAizh8Lz8tp5reNNqezGksAh39EtPCdjWQkTqxj0Y6s90ZQTZWoel5UtLZEDkiowNOfdt4NFkyRgSh+5iBBgQJwBrI4jy7ovlpnCua37brd9vQKS5tKzRAIu2ezWAbmJ59zfXB/kjglmXQifI752SCM8sR8mW9FvY1v3ONulynSaaUc6uBO85fApAWhBC4jXTKPmkA7UizjUjdPcZtXpA1yTr5YsmloIZznjYxx7+9J8ugOcFTSgNvltHZogwuT/GbQVjm43t90pa2IEeRrjG0l2Nr64XBzDzXcl/8G4r2nYDB12gkRgd8hXzSbJwIaqR58YzAENmJtlhHUSOvUw8uVBuOUVuoKyPkdExti4jXRk6c4CsNt/t+5OxZdjqHVr5ZqHPkJSgbsUT5O9OQaRkJHX+2jUa/ifX33CBrmJHwVc3j9KHN9StRj1/GRmYg18QS+yHt9qPvtei6MUBL7E/mb785X1r0bGc8YudaeZZkRDgPl+Zg1utyhO/tab5cU8mWKvJY2O+ZfgSqnLYBa7NGbEcDnPye6cl6pWQezmPW1fRvwU7q3wIozq8Ecw34ZtoEXGk/c1ydlgf225wja70Eviz0DXdfDgeZR3LpQU9Km0hHg0/L0laPy2G5nKSJ5NubPhmJLUWA0q7xfUDb0QXL9veM3tJJ0PmzbjvHZvAbcMtIbcSiuF4KryVNnOVlhJX9OzK43BIh7cx3cnAMW9qWzmnZV2n0MwrMe435sXPI9Fk2+9hR+7GmU/+v0PSeB/8n++vajZbZjsZKtTXQgoiMdBOckXVJZ+Ry/F+u2Ubq1IDmEiPHgMDpm/OmgyeD0NK2QIQgbBT1N3aX8yf7tLFv+0BIY+WoK/OMhP1MQJBj7rJHQMz5fT3LasCWOi+N2xKAcXlpj0aAPfUcBZ2pP9cJweJS/7bx35fnIHdf7gvQQ9aloe2RQyfoaWlamS2C5+JvkSnZDgIELmYzHCltkTRmS3EtjUNjVnhGpzEiZFZa5JVMxyhqzHRuTxomOoSmc+pH1orGqdHOZKFGDqHp1KJIX2d5nBtkFdKxHuFejsWVSH8m6edp+q98j0j6gKS3bP7oMAnAqC8j0QaoE8hYr5zHdBjZ5ty2aMJ+H/XBCPQ08D9y3GdIMwKh/t0AD53VCFwmmKceijQMotJGLAHRfSAi8x2XdCktz0XYTa5B2tlkfVj+Ur+77KZb6kw7xHVtm3eRtriPMsga2Q3hfguypG2b1M5xtjx3Tw5Mz0iW8MClERocMgI5yWhgkhZtQqOaEU5SxzYofLw87xEoWE86wEzLKHT05MBoAZGBGC2yNBY09nT4pOPP8CftUvINvKVuPDzrMwgsvzFV2Y9LbcvfbNcz8X2pn7Rwj6A3DXpjFVoe6uW5dEezcb0m6bWSPudrpE9av12f8zXT76vq/0xxCbgfawJUZBJHIHApWk6ncxJ/zEed2N4zXMt5kmPHOdeYQNbBA7M558mupI7p4LIMgifrwUBM5Xdj0tgXI+bE90dgR9q2bV5jxxqvFQKrBvab/cpxyf5J1jvLbWycy6fQBjaw5D8GMsnuch6SYWE650+Gs60JBgVLrGDzU6M8B7l3cumZnkZt5yJr1GeKDXVuC+X1lBa9MS2jNy+WpIVTlxYVK66l0Ci0CJvAj86DL0okKGkMDg3ryGjxBXA0UCybdTeDmsLfHKOsj4Z7FFGmtGsNTJL94eFhlpNAMOdBlmXhvGhz9sP9+MmS9AnS6+dycw41hzlifZaYMUuCD7KWWUZG/61etv8E9zlGLT/L4NqhDiNmjvdYF/X0GnI+9oXzmGE4iry+xzk7OttG4JX2g8xhW1u+78PvI/vi8shCCfU3eyLNT6e5rLSFlFw7S4At139Ln2sq2ax9deVnjhHL3cfypJ75yT5lnZnWcm/YngPTM5L7CoTyaYAj9fdeWBj1tujYhibflXFU/kblJq3MqDZpZ+drUSfTZ9nS7gIl4KHDyAV5rIkhYH2n+JR2I722mPct4GYUfN3MAEFTY0AyskvwlveYx7+bI2yGs9XrfDlO7ZHyvJ/jmUxgOq6r2o0ys/2u80TT+xzeK+kff4X0f61W+sdfNf2+re1zM2yHJcfrVBM7NAI6dBycx3S2ri/TNMCTwUA+ap9CgCj1JzE9d6iL+3oJ6OYYuFyu6WQiG1v5INIeIV0GQkea35uT5VK/BJTO157STBtAIM75RACQde0z9OnUCQCyHtsS65ZzIe1F9vs++0xwlG0bBbUc87auEzCN6j7G72wXbUb2L/u62WoGkQe5HHLpmR5uP40cYaZV5GkMUHO4NFxZV07yZJeyXurDbTCyByNpNCnvs7xmPHzfBuRWpLO+SxF/Y7yyDgtBZIvW9pXBcpbo90yfhivBKw1dGkg6u6bnkSZH56ekGqs1iorJUlzT1P8PagIzpyiXINHR6Rs1vWfkA5pedvXWqCeBPg1rzkGC8MZIJJNBYElGguwVz0YkU5Ey6mOPF+tiOygcw+bQOWYub8SGjViEZCiTaUtWmA7zjrbnFu/zHMoxPlOnLMfjRBtwtKlz9C4c9leW3dq+tEbSbrb82TbbGLZrZF+yjtEYjYIdnjEkcGPwmXozLecTH8DIwGqJQR0xP3dHDkzPSC4908N9130LlN8ZEWS0yKiP+XNRjJwvy+T9XPTpmFqUIKRzpDgyTlJ3DAmITjW9+r4ZAzoMRqQN3FGsH/U4QxrqRn2ynW0rkjpw4nqM0kg350sZATACklYGGTu+F8X9+wZJf/xl0uu03c7GrD29+X5b08HlvynphzSD6NvxPfV1ubltkb+tb+YdgVquHalHq+lIUsgseEza+0yYJ50762r1ZLDCvmzj3bYxsuwESLyf4JCMU9qXxoQRsHiu5FmUI5TjvBlAZfnPbPJd0wyG2bYzbY/TKNAhi5L9lGPPsrLtI5CT0uw3QV9jakcgaAloWB/PaQYkTsP5znIJ+EaS6+0iff78y9nz8Hf/y6UHPSNEn2hb2o20SVs6zXm5tw/xL0UBFgKGXGSZ1zokm5HGZbSIm76chpk3ARbLGQkBEJ1I1p/9yMiNRoPneVKfEcVNlqHpmGUtgdK8PwItx/h9Q501SofYwEGK++impDtPbL8MLlkX6uoXER5rekTd6XyIOev2uJzHH8fC6bkuWkRNBpBsGh0FdRhJW0su1/nbC+wofLAg5ynHclTGEoNJcJb6tznk/sh+4zpyvxE8jMpm+fmZdTyoaU7c0DyfaN8aCG/3qMtSoMUgYBRMNNvDAJF2kGst2aysU9oOuNocONPuWHg8GjhrzAzBPtMkQDxF+tGcP8i9lUu/vZWSCzAXW4tClw5ZkpbmO15G9Ot5pBfScO+6UbEjloLprcPocfs0SFx8jAibAW6/GyPWmI5kZo4lPSzpKe0a9ay/1ZPbKTlWI3A00oUskuvKMVw6V5CsWAop/dQ360/9EtRYTjX935Xfrm2gnmc9Rkb2TNv/jZtgcslxNeDJp/KOkd51WhKgUXw9o+Os/4rms0RL8z71IyD19QcGbWhgdAS+WluX7tseeLvG86iByVHdI1aDzrjNvwY8+f1UE/C5rumfzTZ7xUAlbVezcanTyIYmUPF9l8dXNli4hkbr8QjpU5+lfqKNoe0ke5V6UUasElkivl8sy282+u7KYXtrJPcN6Enj6nMqfkX/kbYfSR5FM7lo8mQ/nfXIGIxADAETIzpHJM9o2ymzbdSTIGykT+qQevPsgO+PGIYUGrbUwbR2siM82Jn609DSUS6BwAZ2WE8KozgDQDrzs/I96/a9Js1w00hb8n9y3Sn3XR8d24gaH0Wuo/el0FmRUWlPpmWfp7Np6UftaYenCUBzrFLXHLtWX2OnuBYyfeuXVk5eI8ikM05gOZrPBOCZP+cD18Ro3KwXwcgzSMPvPHt1ogkoPa1tRsaBTDKKltTRL1NtAJKBKYVjwrptkx/SPFduqM9vadtGeCySDSRQYTA6CooaS8N1yvXfAl8C3IPce7lvxoPszFVJv1rTOQlpBhaNLaHQYbUJ7rJGhjPTpFFpiycj/HbP9exz8K4jP6lfnivJsjPNvqcJ0lj4/0Clo3I/3db0tmAfks560/i1bQHr2hzoRQCPJYFXOikaH5bVosgcA49lGvsGTpkvnZv76rbmw8vWr235MWodATr27ehx7jS6dMzJHhEQHuF7m+P5lyCFwjZwC3cEQDyHsj/TQdP5GIhz+6tJgsUm6agyCEqAlvdS2PepxxLD1OplunxyL8FUHpxOBs5le+65jnNt6zVaZ9mWxpR5DmcAlHmzfAZaI0bxbNPOByV9nqSXS3pJtJX9pbiefUf7nXoZ6DhP9skItKXdO8c99l/ebwHm3ZHDf1kfyX0BehhB2ZG8RdPr+UeszIi65GHOXMR0vlxYlhZ1ts7kwklQYj3SAba2nGk+tNhocX421oEs14hJsIFyXTycO6LD6WQYIY3odLbH1/YBnuZ8c340J8o+Ej7pUM+13W9tjDJf0zHf3ZN56CSy/xJ0KL636L/1U3NoWT/HNPVi/lwfCf7ye6Zt7bQwKHH/8LFkAnU6SOrbQGlG8zk3LjqXkyFp5VoYbCWg4LinZDCR5ftx9xxf27J8as91mPGmTi7baziB65G2WaY27or7WRbnJIMsp2NgRSDvdrVA6KqkT5f0y/+g9Lu0Oyc47p5H0i4Ay7FPP0J7lECJbW9C8Jj2dGk7/e7JAfSM5L4APY3ulaQ3a9rLToM2opptPI8Gf9Luo4msl3QmgQPrzHTNgTZnSKfQjDyjtnTmCeCy3elQCU5oJEZMEJ3aiFlxvaP8+d6Wli7LIzhoEWemI4XN+ludeY1G3mVn+5aiNzrg0XxcytvSZ5+Rvt9XFqUB3WQO6Iz2GYnRWKfDbqAj25b3rmn73TitjtFaa/OFgU2mz3XhvwfivnD/HH8sMx00mbkGPNuYE0wI37099crN7xuatoOua/ex9WQiM8jiWsi5xLp8rYGiNgeXmOQ2V1rfvkXSO3+v9OdQbgs+04anfUkdpV3bldcI7Cl5n4xSy9P8x0Euh9w3Z3rSKDO6bpO6OefGkozSj66zjmSHbCD4FlB/5htcGxMj7RqVNMqunzo0w5WRru+18xTt3R5J+fL9F0K6lKzfeeigabBOkScf5bXxSvCXuowcXkvbwKMWrjGC5XdGm9TrGeiXj1ZnfQRx7gNp7DwcuY8Oumc/tqdJGgtGPUdrI/Mkw8g25JwcMYsMBOxY88wKn0JMSfbLbU5GwTo8oH4mhMCEZ+BS3xGbLO0+iu+6maexHcea/wWJWY5bcZ9z+FjzWcYnN9evaX7VgVkfPkquuE4Gy+xSO8szctpZTmMWm3Bu8OC/x/tDm99/fPPp91ulrRrZy5S0L0yf9tT9mn4l+z5B+6i+Eet6b1mfFwYz81zLfcH0SNuTsDE62vN7FI3QCZN9yTKWXkrYtifSgDOCbk6Tj+Az+sly6cTJEmV7LO0dLTTy2b9khfLeUgRDx556WYcGXKTJAJveflSzQSbQZV2ZJtM2kNxkFFWzbDoisn8WArxzXE8AxPzXNL/5to0t506OV86RFhhI22UlK0HxAwPOT0CbOkh9TWXdWR4dQ+a5rcnxe56QFaGuCewZiKj8dj/lmuNcT9a01SmNbQ3tRFuXroMAyNte1yOf713blO1tLvfnmWZm7Nbm99VN+pSHNL90M7eBDHYISDnmS20U0vn7yMHkWsqyvTZuaHox5w3Nh+KzbJ/fanYo5xgfopC2Qc457mX5uXXVdhr8/XbkcfkHubxy6UGPJ5wnX9L8FrIflBGLI+0uUjqURt8ms2On0YzAiDptRs/lpS7pKPnbi3IJfGT5R5oNJIFg6wOCnZExa5FwOjFuN1kPaWwkXi7pK4+m/zRO/fJ3AxUX+d36rIGXBi7Ieo0of/YZ0+d4ZJ5jTZGuDelV3GcbWrtcN98bwnZzXaQTyPm/jyV1WQQW0vb8S5DRwNIob4Loxnjm+ssgo/V/BhK5DtnO1pb8nfM4ryerZeG4pbN23XfiL4MKA5sHo02u51FN4OgRTQDnYc3z5Xbk9Twj+DuL+lI/1+vfZNml3reNZW1B1SiPhUFjm3+0+WT9/LutTfdFgnCWkVtumY5zjfNgyb/cXTmc6RnJfbG91SJTT7jR9pMXaT6aTudL471kzL1QMiLk+YD8pO50SNSX0rYBmsFvDpyskPXIQ7UJmFq/Cb9H0QsfT1fkpzFtjlDapqDPJL1H0jecT4fUyY7ZCDUWKXVfOnfj9uf3pfnALZPsj1Z/5lvSI9NyO2rExDWnSpDSgFm2uc07brswHfuLzpN65PVRnRY6SvfbaG7v+85yR0xWpsk10Zg8bpm1urMPl8ag9WHqcqb5VRxX4vexJpBzTfMW2CdJeoWk79cEYK5retrpfdoGmMcab5vlNmmuSbaPuh7hHudPsxsXudbmMNOnHWQQl7o0EMe0zDO6R3vQ9GM9904O7+kZyaUHPc3RZ8RHSQeVaVuaTDeKnNu7F2i8UtJxUffRQkhnO1rozUlrQT+V+zQQdPIjNsFCsEYGJL9nfzISynNCHh+yX+/UHAGP+mbEAEn9vEsCDEaBBCx0DMdIS8k+uAjwYp0ZpRJUuY94/qnVQcNPJ53tJhBiHmmbHWhAKedI9kGyHg04pS52oBw/AqgGwLMfGpBIMJMAnXqxHalnzr/m7PYBypG9GgU/WY/nK5mGRzW96fvNmz9vh75c05YQy5B253YL0Eb2iuvmGN8Vn0vg9yJrmIDTdXGOSGMbzXZxznNsM22WQ1/CMlhXsj/3juU5yJJcetBjadE4J7DTjfLQGD2jbUM4oln3XaPkgcglsMOFMXLuNKgjZ04H1tibdki2sUf5ewmUjYAHI0fFbxoRG2iPh7dl6OSyjaknf/OTutHBJRBoBrq1vxng5lSSZXA9Px0KvIHrVsYoQk4dTgbXR2CuychZkSXKtdXGZQQmG5Pg663fR2uMjjvBHcvnb38nU9TGKxllaTt92p9cm2ZxnMZl5/crUbaf2vpUTf+P7bMkfeGv31z4A9If/eC0DfYaSf9U2+eDbqDtWQdBaRMCD4MgzvOlJz9bEDCaq80utvSu0/r4WgPYHJs2l0ZghulZRwPRF/EVz58cmJ6R3NtxuYAw8lhiNSzpmBIQ2Cg/oE55c3EtgSDqM4psnJbR05KDaUbV0YO0a6jTmB8h7Zn6NlzWR4PuflvSh2VYsn3+OyvXnPZcu2ccGoglmPL3bMMJ0pDxsg40qHRQ0vbTL3TQ7lO2J4GHt6s8NnT4I5akMWOZZuTEqQvbSjbD/Z51tLXUgoV9QnCZdVmac2xght/JgmXgkPkTtLf+zv7gnGqBxTn+FJ/XNDEvHnOmIxBtTAbZkszvvnpEE6PzLkmvlvSF3yTp90v6Ha+T/rr0O//d6YmuD2gCOtc3+fxywlwvCVL91wKU1HOkb9olHkrPssgu5W8GXQ0Aj4RMmK81wNP0V6TL9GxLC5oyva9n3aOg4SD3Ti496BlFIQYcNNx8xJoMR+b1fRuYNkFHB4ZJdbucs3Ivy15iaUYOqhkjGt4TpEsgQRCRjozGZQR0LgKAmq6UNJzWeRQd+xrZkcbA7NNtaWuhpRkBr9Tfv92GZkhT+CqDUV8tRdwE/XQklOzj7GuOg78TOBBoXdE22GjMEtvWgEQDy3Qw3KJ0vQliEiRm/tELSF3e0rbgaO3keOe925r/R1qmzXYtzVP2BdeFy7mxuXdL0hdL0mOSPn4t6V9Jn/Pd0u+ct72k+TH2tEPSvBWW9xqDQX24Jtt26z62KNP6Wtpg3+c6S6E9YN8yOGabuGYyKEmWqaVzedLuvG6B+UVY3OdN1mfP/d8LQC496EkhpWiDzQk9Wigpueg52Z3eBq7Rsi36ycggn5xpkabLzzTS9uJTXBuxTtSDjA9lBCJTr/zOqIhMVRrDLLe9X4XGZMn488mjEQvRGLl2rY2XtPuUSnPiozIZ2WcdfEqJDp8sjT9bO/mEiSXXgOcq+7QxFEI+vs1W8dv1uK4HNQGfBEupV3N++ZoCg6YmdIYspzGDmaa1X3HPaXOc2npo9sOSazyZTD8GzvfCuJ7Mn/WdafvfSDB9gpG8/zQT6s0f/pZOnMBc2l57+Z3bNSNWmmO79DJC59/HeFCPfUEWgW7appHda+sg+yYDSGm3nb7WguCs5yCXWy79mZ4GAiwtKpH6Iub2QQML+4zVkpPmPYKxxlQwiiBj4DR0xnSaZJWyLT4LkFGZDX87U3Ss7boIIo+QJp27dSWdLPUXmVHYpmZ0GQGmrhcBLhz3dn8UqTUmrIGoZ+J7sg1L7GMK9U8gSYaO9V+ETs+XwnkeZD1kV1zusSZneyfSN8CZeZ2fL7NrMtLd/XG0p5z2AkJLm5PuA67VfcFC0z/LYVnc/vD1HLtkiXMc8jD4dU3g6lFJ3yHpt75R0stX0sdJepukr5ee0kQA3dK07eZ/XyP1udjEOiRIynXb2MJs69XN93wfUJbd5mxbs6kD81knz8vRizpdTo4x/YGvLfmJY9wfSZtnS+zX8yr3rOLLLfcNMOWE9V9SwVxcTi89O3o5Hd8SizCK1i3s3GZ0HTlSf0saKjraZKFsREnH5/Vj5LP+jHz2HThcYnFUrl3VFOHn1kjbzqCRWwKhrT62ndLetpsOlU5I8dv5GSW3OnzG4LykS5A9Mp7WJ7csU7fsk3b+Z1+Q0NaJGRR/z3l9RdOL7T4h8pGhbHWlXnZMd7Q7TktOhDqy/cnStnZdRBgkMeLPa1kndWlbLu11GY1VYnCROvnfYnxAE+h8pSZw85f+K0lfJunrpJ/4TOkbnpjG6erm/o3SjrPyZz3yHKDrZhDl6wQDFK7bbBf7LdveWLgEImR/z0pa60gh28VrvJ7zsgEe1pHzJ9fQPXGya/XB/kj/XgBy6ZkeG4zRgUVS2wlISAk3ANOeslpiBFj3iJFgPfzOyI+RB2VkWGigEghRV0YhjbkwCHuJJiM7imxs7PjvFqwry329JmP9vZoMt8eLY6u4x0fLk8mxmMXKaHEJsOb2g9N6DuQ5lVZf26Jq7JBQJnUgOOV9183rOXd4li0lwVYyJDnGjVHLsxv5TqpjSS/T9LLI92o38s+6mh6W5jjaeqDeQr5Mm3N+X2DLurMcfrceS2W2Nmdd7fuSEBhIu69suC3pjZqA0I9J+t0/Ip39yHTvQU0vtnwyyjjVfMaH9VjyKTIyPAlqaOuSebN9OdvoeDvSLQVE+/qvpRv5Xs6J/J790dhqpuf3JcBzXNIzzUEuj1x60NOofWmerJ64nNy+36jlLJdUfkPoLS2jzWbk0mhax5GTTMkFloxMgoN0qunQpOWyuTC54KXpza6v02Rcb2vXULiO9rbV5ijONDlLG8M0qq3/s82Ka43iTh1Yv+dAe0R7FMWlAWvgMdvEcWpbJIwic67mfEh9/b+imC/bKW2zCAStt7XdlnReWX86Lc9LMh5nkt4h6QlNgNXpEnDSSTmCdhlXNTlwbk+dbe4xXwOVI2BzHvncL9lPfkvxncjD8Wn24WjhvqXNDc5plnui+Y3JS3KONLl2ntjc+zhJnyjpn0v6oKY2vkTb/0YhX2aYc819a4CSY8bxo93gOvS1fQCv3W/AqJXP/Dk/aI/beHkOnWk7bwKbZv/T1yxtSaeM+u2uiZmeg+zIpQc90i56zi2bfCeO5Uy7jqUxGnTQR4N7+W6bUZRAJ8jJbiPCg46cl6PzCqTa7dyWDvumU8q8lgY6pMl4vk2z46TzZ+THiEja7v9zTW+IfV/cIxhp7FpGmjRsBApkAlr7mmHKsWhjMrIb+1iN1I1CkJzleSujjZ2lHZIm40eQ48+8liCM5XGeSPN2STpj9zudAfvDgKOtu/bOKP9TTQLDdMr5hvHM62vp7E9CB7avAROOe2P5ss5Mt3S2KOfyubbnXjrj65qDhBPNwO2DmpibY01bWW/TxPg8uGnfBzd/0gw0Hbhc1zyv/O8ncr0S6LHdKdk+vsAy51a2TXGd6Ru4acAn2T9pu1yClQZ+lliiNieyzFGATPvKPtt30Psgd1fuC9BD8CF1h5JGb+RwGiPUAI60bcwZJfhaGuEWPfi+t4FInZNBGYGB9iTNKBrKtgrp8l6CuWSR7miiyA1OUpcsz/rQYDcQMQJ3jDyzLjIPqXca1SXD3KLQNKAjR9+ALGUExHi/sZRuFx2AX0Z3S9uAL8sfnbliW0esiOtq4GYpErczS2bI+rOuxiq5LKZpOt5Cuiwjg5PUj2KdEzxwPuWTb9SrgaHG9o6cfAPGLJNA3aCEQPBpTSDGrNippMc1z5knI48B0q1SVrMFWf+SvtneUVkNLPN35uM8SuHvttWZerZgYkkaUFpiEv09bWUDQizv2ej0nMqInnyRy30BeqRthJ9Mj3+P6Fd/98RLZ8tFS8NMJzlyfnTCFhpX6pJCp0VgM6Jsk/InEOI1Hj71os9FPHKCoz5obVlK2wxfjkUbg8biNGlOpdHhrV7fp9HKcswe3ChlNoBEANyYGWm7bR+jKSL/IW1HwSqfo7HgmCRQIdNDAOP8+d/tDdpanxB8EuRYco5d2+S5UfJTlpxxMj55T9rd2s4+zzKXDmRzPD2WzQ54fiRL1BjqHIMEr7lNaKCWcqYJxJxoPoNj/fKfhhKgptzY3M+nqxR52xNQZH8uClI4NxpA4rV9QVy+LiDz0WaMgjLq5vsWBlctMPD4c35fBDzdVTlsbw3l0oOe0UHQRis3aZFVLhZG0mmcecC2gYrGYrToPuumoc58LWJvCzSj+VF6adcAkMZl/SNZiqYvkrdF+yMjt+RYRoaS0fpItwa6GsCUtpmYBIoEOSNGJ/VOoYHM+49rBgWcI+7DUT0jg7vvkC8BzbGm7ZJjTY62AWLWn+N7jmv+u6ptx5VOpTFDLZhh3QRs2QYhXXt1A+flEsBr0lguMh9Hpe6c423dZzl3tP2PR83MXtf87yWub9I/WXQk+CDY2RdQ0E42kHqRbSSe5WL9DOAsDHa5nnNtWhLIUVrdrp8PtrS50NraApS2bg5y7+XSgx5G3yOmROpAqBlNadfQ5O/GAki7i74tsqw79eJ20hKLc1Xbj0c3wJE6kK2hrgQU1inTNiDSFmuLmlhGExs6GwaChyyL51mW+nkExnh/VJYNVr7PqLXD1/mW25QlFoosQMufWzGNPWlnWLLeNqdI+XN7K6/l9V+m6X0w36TZ4Wa6ERhne7L+fBKJabL+pTMxKW6jx62xVuwjAp685rlwpejKQOs80rF89uc58nJOKq5zmzkZlcxzWxPAOZH0Us3neJgu19lS0MF8bUuMwCfZwsyf/dnGIuvM3425c5+kHtSrbXs+qumxfaZ1maMAbsR0pSwF2M1eL9mF51UOaKvKPRuPZyM2xKOIOdNZ0oESdY+ctsr1NDrpsPd1XObP963wnstN/UdPJGX6ND48h5R5W6STjyZn/TSW1Dnb0aLbBhTdnn0OMs9nuK2NCbFeNjAjEDEaV9/LMbB+CUZHrBnrv4hzHoG2fN9Rzs/zuDeyW237YrRV460e31sCO9bvhzU9vTcSOrNWVjo/vhagPflHSdBEwCFcy/dVee5k/SMAn2xemzO57rLunJt21Oe4n2An09MmOb1ZmBa8nGlmAH3tVDP4MUhjENccfFs3ybak5L+syL5KaUBzCdxb9tnQLIeH9zkHcu4ea35ruNTbv69e60cb5DEd2XCXf6zddXGQyyGXnulJw0b61/eXzsvQgLRtlnR0SzRtRjoJgGgYmY/SWA7rdlUTVX1L8+PBZKFaecI9gowEQHaqyRA5YkvAQUMjbUfhF3H41IGSRpn90p7Ky0iUjJEG+Xg/v+eYqnxvTqNtqexjo0aUeNaRbALHO+db6jZiGBqDkvfaY/zZjrfF9dFTT54zjLhH7Col09tRtb5OIVhnQMPtCP/OraUG7LPvR4CAY56PwHssWr+P5mmb97yXNoZ9Y3txTdM7tRpAl3b7hXPM15IpS2ayPSEr7c55P4rPddGAUrOPaXM47mmncluS88xtely742gZnV2StufISEduh/r6yB7eE+BzONMzlEsPerhtk9KMNQER03EB5iJqi7tN/hZBMFKiQcs66dCs3zVNgOchzU9qPIV8/mysEBd5Lu4GgjKNHTP7MXUluGMbbBCag6HwOp1Nc342in6sO586I9Mwcip0MGnACEIbeElnIvW5sc/W0KlJ/dzNEqhs7ENLw35wXZmG5xiONW+tNEeb6+pM3WFI23OTDA+3MRhQ+FoDT1nnqK8T0KdD5zW2zcCr2RGvuzZ+TZruTn8H1+/gPvMk+JHmdvgt5xyrZNaaXgk4fS2f9HJ/kT1sW5y57hlIpj45P9r6TxBLvRl8Wse2FnPtEnCOADnbx3lFAJlriesrx0i6h4+sH0BPlUu/veWJSqowo73RoeDcjmlgx9cTQJDFINvBxZwG0cCAeXJRpONlGVclfbKk//zrpN8VbVDJbwO1xPzQCbXIvwHHzMNym/6WR7W7dcb62Beu63xwnbonOEimJCnuxkSN3u3RDCT1zjLJdKSMHOASSCJwyHIaY8GtUpZL/cwGNCF7kO+cavM4y6cO6TTcr6mzJQ8y+/0zba6Myh/VmfpZh/b+nxaccG60AIo6NJaJQELatTk55wiesu80+G051dR3D2j7jcvcUmuvnMi2ZLCiko99nGMzsgMMMtv3EbD03OP9TKNIk8EYg7J9oH0kbV75t+dvC3xzXudcu/RO9kUm98V4tL1VIv82kRvLQqM2AsM5YdviSWdLfaTxvjb1ybYdafNkxZPTUxkJHvI7wUBjkqjHcUnHBZx79i1qSmn9tnQAlQ62GY6RAW2gZGR4mhg8EhD5GlmzbDsNcOvvplteH0Xv0q6hpnOmo/XnCHARzJoxtCST0bZh6NzYriXmgM4+x4eH+K9olxVsZyBG17jmG9PXgH3qlGBzaS6NQJiZlpb3XPNj/1k356D7obEbbauFtuIZTQwxgbN1SGCQYLYBiBTqwpejWi8GTcmmjIABbUqmyzIbGD6ONDnnz+LTdWTAzCC3BUZsX/4e2XoCUd8nKL7rstY2W/Bc/b0A5NJvb0nz5MkotL1UjItN2n2LcqaVdo0Z6xw5sxQ6j9SLDm3kAM81RWxvk/Sff/Ns0HhAkZLROI1M9scZPtNwMfqljOpm257StkFz2UkpN0Mw0pvjm4afhqxF52kg6Shb+kzHOtlfjf3gPY51azf1zX6irqmXGa90bAke/J0sQM6Dc20zZ6xD2h6/rKeN7Yh5SebgWNtbO7ndxG2XBjZyTlNv5s20/P9Soxc8Zrt5PZ0obcpJtOWKpvWb78+hXNt85r+jIHBxHTyD4uv5EksGKy4nD3hzrJZsG7ceU/Lxe84NC4OtlFGfsHzO1VGAybIzPf1D6kuQ3gIBi+sc7SrQdo3SHuTey6UHPXQojIQtjDabIeBBPZc/Aj6MAqXxO1KYx5LGgE8/Mfp4WnMk5keXCZRa1JR6+pxLpqEuZ+WaxQ4qQeFSHxF4tE+CkhEYaIxORqgEtMyfDtxAkWNnWYo4tXCNhthyjjTSLhuREah/57tL/Ok684V1vkdD3kB/SoL+xlaMQIfTJjPEvsi25dN3dwa6tih+FMRw3jUwyrRC+quRNvU/1W572lxt8/FI233iMzV8943F65Hz7eM2+d6i7f6n5MHe1KGB9hHb0/QaBe1c96lHslG8L1xfsgGWUZAweuI0x7GdvWw6Zb8aTPlansfJddLOJC4BtbS5Cay4pu663DOa6XLLpQc9fHcKjWgaqBE4sJzjeotCVK7lwlxihny/ARPqlYYgy7+l2YBehBGh02yAMKU5L+pGZqYxEu28h7Qc3aRzY959Y8d8BINkE9hXvt6YqKYHgUteJ1s2ipr5hFz2ZXMCBgkEw405aQxL6/sWHbMf04lfRZoGavl+mjZ2ZPZyHV/V7lok+MkyGrvD/kuWhQDbaflOHQvBKNt8p/y+qumBg5ua16sZHgOynDOp+xVN/8A1pQG4ZMm4vcR5kmCgre+r2v3XHgSm+R6oc1yTtud1lnFe8i2BhZEtbWtzlLc9NZgyGuO8bnCTc9NpRsF1k1EQwvV5kMshlx70tIhGWmZ+MjJmhJB502iMnjjKhU5D/myMTqZpxqExSA0wpSFt2wlL/dLKXCrX0mjeZrCYnkY/v3Nc2SfZV3RIbbwv6vBbdM/faUwbuEujTeDaQHVrf9bZvtPx5fd2jw6rbcGwf/13rukNzNbhJMqxw8/zKSPw4LLbU4O3NW3pPKTpH8+m4/SYjt6+nmW5Ta1frZvvm53g2RohT9bHugmcsqwEO9Yt2QKyN8mC5LaUJc+EUJfzco92yNdoF861+28tpO254+05MmaNRSMQJ8tuaePTgpH8ve96a//SK0s4D5fsZ7JZS/aN0oKSey6HR9aHculBDydxiwZp2EesC/fOGypvDqUtxGRZ2oJlGgoXKCNDqTMWGTWmwxhFRq3eE83/ANX1EMCltKfRmsF1OygtehsZ9Sy/gdDM4yg4AecJfu9zENQn58xFzjhltMiIl0Z/9BJJ6tMAzJK0bbZ0aC6H7zpxumTJXIb7IR+JbqyXP7MvvZ2T21xXtP0vLXKetO2ftg7bGI6CFff3mfqbjZ3+VLvzOtuYZfqffZ5rAnBXNf//sBOkbwFMfnqcc742gORxa0DS99zXDKhSls6iJEgUvmdbaDPP8UkGkvmbvWgBSQsivJ4aU5zzOYV60V6PdGhs6gisNQA40uOuyz2r+HLLpQc9zRm3CELajYql7Ul4qm2juxRJnmvXkDsN97p537LEQDVHnvnJ3gjXmwN1uQQR7CuyAGSZ6CBZT0pjLUYAQ4O0ee1Yu+9LIpXt7REfAk2afgT8RvX52uilaDS+7Mucb82hO0+CmVZmGvrmuBJwtLMC7ekanmfg3Mz2sC5p6ueXS3rF5veTkt6pXQeZnyMQnFtCT5Y6WVab8/5u8JEMjOtOJiaDm8aeSNtzJu0ByzKwPZP0WkmfvtHjvZL+saZD/Ne1y9YY2CQAZNDStmpTrF+e8WpAgrYpHXeC8Da/XA4PKWe9FgJ65/calPrYuD+O1Oedpa2N9m6p1mcjIJfjPGJjHtDuk21NN7eHdae0NXqQyyGXgom7iDBSIbjxYvakzPfFcAEKv/OdN2kM27tdDAiSZUmHO2IlWI6/t+jH9Te9l9iHXNjckhqBAfeb6e3MM2oLo/Iz/G5RZQNB6ewTCDRDkbo8rQnwJN3uNMkapOT7YaxPbhk0g+3vo75cMty8v++sjHWUtkELpY0lGaEWjbuuK/g80+4YON91TYDnt3ys9Fs+TXpY0iPabX+ybS43wTdBTAoZmKZPzs0zzawG2RV/5v/NGjEu+0AwAc+xpjn3qCbA8zmfJ33G26TXS/p5cZ8gRCin6cLrXD9kQXnNj73nfM75TcDTyiZD3kB36tbWWGMlc4tYGtuvEctDcNEY4WxHgs6RzUvbqvjOs0q0ESyXc7oxPvfMwXp767n+ewHIfQF6crGmY0jQ4nQclzZOZA64lZXgKUGV9Ow6jAY19V2aP3QEWY4jkaU52J5sSCHwsnNyFEYDx7JtDJb6Oh2f1I0djUe2tRloaXK8nyzpdZodUzuzQaNGhyCNI16mS8fNMWXfjpgTg+r2crOcaxzX5liyPSNAnexX1sWt0NYml+1/iaJ3HElv/DQ95t+R1mWmHGt+6WACyVPNrzW4gvQEpQ0MLYHa7LvmeFXu5zrM8T2NtGfaZhX8z4D1vb9K+nfX+tm/fmKvcnsz63S91MX106lal8ZGcKzaAx5kUbjGGjAhC9Lm4ejBhQTsWUY70J16jkAn+4NBltcSbVQ+Vca2pWRgwLV+jPs827PPtzAQH+lwkHsr99V4jBwiF1Ias3TOjKRdTtsrP9MuwGoRHCOMlPbkw1KE2hwu60lH1mhml8/If7Rd5vpOIw+BIKPA1DVlBPJYRjMeadxSclvhEUmfKumTtL3FwCi2TWr3WzrX3G5IHZcAKdlEivuyARCmO8f3ZmA5VmxjArhkVizsc+rm78nQuLxbms6srFfn0qM/oPdqfu/PkeZ/gNn6zGxLPk11VdN/BD/W7hNRuSa5Vq5GOVkft6uF75zHKVyHqX+OsdNZ3xtO9Jrvkv7SSj/6rdO1DBiO8Sntrp/8vBJ/bEM6X7LL3HLP+XgSf2njWvltu70xIRQDW9ff5l3q05hU2q/Uk2xP2nFueSZoacDO5S0FdFme2f8WXGTgwXpaP90zoUF/Lv5eAHLpz/QkypfGziQdBw0gaf8GXrKuvJ/5Rwa0bStI44Nzrouf2YY0xK3NS2wAdRk5VN5v7M1xuU7dmb5dS+NqhyWNt9TSQDrfY5u/X7z+NOl//wF9y2snIPSeyDdqQ3PM7ZyLdeBjwjkWCSzT2Y3G4VzbB8ez/tQxvyc75HaNACfHtx16pZMh26O4b71uavrHjd8k6ez901mcD2h+ZL1F41mer13TdDbofZI+qIkZOdp8T2ngP/VKAJXMDO/l/czPuUVdKelcjzU5+acl/VNJ+nHp+m+Y+ueNmzKvavt9PSPn7ut3tA3mzrSrd2tDlun+zX6hf2LbGhPhOe95lwHfUmTcwBTXTtZ7pO25PQI/0vZ2U+YfBQTUZ8let+s5f/LQuu+5XQSuS2vznsnh6a2hXHrQY2nG2g6lfaa0F0dJYyM7cghNsqykSUesxsiZsjwKX97GduQCbXqzXzJtM1zZB6N36/AANPuPxpl1uAxG3DbcpKBHQkCTIIsHS0dgkTq3cWiHhZ33FL+Zjn3ahNHraAztjEfzIYUO9JomZ7vvbIY26Z7UfPA4x/Nc8zmlBrK00fP65v4HNAMqP659fXPtaXWnl6xcziHPC77xmGMoba9Hrk0DD+F6tiMZMpfxXknfpdl5u1y/TJRl5BNa2RaCw6X6LTnGBkw8ezha5+131k/WZ5S3jbXzJgvSJEFkWwtpQ9K+5QFo65o2z7/zyccRWFoCQgz+0qfk1upZ5KOw/EvF/hzk8oOeXBjtXTaWpWjEi6Pt0S4BlLzGiDBZmZR0uAQBufiaseZvsj0EBZQRm9P0JPAb6ZJlEQg9M8i75Nj5skmWT8lr79TkKL9n9QMffincB5DOZbt/6HDa+DWHy35okW8a39ZvaXSl7XoI0Bsbl3NJuM+yKTlXsoxbcT+vZxvS+WXdCZQSePkdP2Y5TuLaqWZGg2vtpibg9OCmrMx/TfO5EF9zfXScozlLgJMgR3Gd0oKeE82H5xtwNnjntomBXo47ARDLGjlJXm82Q+rrnSzFqBzraHvp/m5rZDQvc05ZN74aQOr95XJZ14hJIcDzvPYcTbDKOrKdeW1JRrYtwVaCtKU8z6scmJ6hXHrQk87LQud/jvtpIC0ZGTTn0uYHo4hMnwu2RS9pgFK/fcCglUFdM4pZ0r0BshGgGclo8TamoIEjXiPgaeCH+vmsw01Nr+2/sSnncU2OKLcV/L1Fz1kmI3vrQufO9Le0KwRUrS2k+8nU5DWmzSg6fxMw5dYo6z3XBC5ercnxv1u7fZdrimsnAZDnBMfWTJJBy5mmg8tXJL1K8yHma5t8T2oGRNejrqc1O9z2Uj06e3+OWBtp9109zMNtJuuSW9tuu8vJ/j+LP5fhMrM/R3M89Wr/s2spUMo5dFt9zid7M2LEsyyCu2wvyyFDaX2zXl/jgWeu031gsI290zCQS5uTOku9nTzzqUgzApVkx1KXth4Pcu/l0oOedLgEDDm5UtqL1qTx5OPecTMmKWRReD2BAstojnjknBlxLh2+o2S9NjSkiFmHdUkQl58po+0cl2EZbScSYDA/nYDz35D0IW0DyXSMo+hXpb4EwXn4u7E8nndLZ5DSERAYpxjEGUBxq2xpWyGdTOqehp3jdqrpAPG/p+kM1B1Jr9R0FmWpTYr86cwIGm9u9LimeazvbH6/StPZnVNNj3Z/gqS/t8lzXdMj4O/d9IXn5pGmcc62jAKABMXS7tjl9TbXfc+SNmDEcknzQVcHIOwX26YrkY/z3vX7BZDnmgHPEshxmR53MnCZvjl5Ss7bTMMtn335LEsgYsRMNmnbabneXqlpHn0A6W0bCJgbq+p+SpvX0tGOUL/Tcn8fa/S8y7Pp7BeRXHrQ0ybeKEppxi6RdqL6fREPKUoi+WaU2velyITGjUaTwIT9cIxyMrJoIFHaZQyW+ozsVlv4bAfTJmDw9TwEbGl9QZrd116i7bf7LhlfRmgcp3Riwn2387z8Zj+TXUkAcGNTvlmQhyU9Ef2QZVMPAh5/z3scFzrzI0mv0XQI/DPWv1D6139ff+0V0stCj3TCBAYtwrbuuT5ONb3g7UQzy3Gi6V0/NyX9kKQ3b+5d3fTD05qB223NACsdx9IrGAjgeT/b0e6xrLY9lW0nY9TA/xnuNRDp602fxnrk9xwnA4s8W0SdLbR1x7gn3G/O35J15zaY0+U4pl5pN5rtI+vDdqRNvqltYDPaWqOQ6bcw+Giy73r2WQabd10O21tDuedgdJ80BRv9z/EdAY/Mcxyfo7pbtNmiTwKSFpnm92bYWAep45GRHDFVWQ+da6NlR05j1D8W6t7YAm6ZZNmt/GQ8Mpo91wQiyO4wKh0BtjzYTH2Ses85dlX9qQ3r6flnQ39dk6P/XZvPl0T+V0j6Ik0MR+rvto36w9LADw1uShrc65KkL5F+1qd+uE1n2v0P4aO5mUwC6zvTtH3mszh+W/ZnbnR4jaQ/9Aul/+YPSr//ZHqC6xFJb9A2G/LSaKPX5hI42LfO83pjee7gfkvT6j3TLgBaGre2RvJeC8rP8Mc6cs4xnUr61J9zhVtXTkvW3JLMaOo/Oo5gSXBGnTItA1SC/zNNdiC3mz0/l8BPfqaNaaCO0oCn9bMkK5rnfA5yeeS+GI/cdpAu5jwZmXqhtXf1NHF+GoORYeU214j5yd80ZrzuCDjLY9RgR9/0OC7p0lGSFUhgsGT8R9svFL9jJfs9DelS3zcDzrY9o93HunNcaUzdnwl0CTL9bhNt0j2maUvmNZqcdNOVgFKanP2/89ulz0L575X03Zoe376IEFinc0njKs2HhS1us88/vU3SW1f/sf7J6od0SxPL08Y5AUGW5XrT4fneQ5I+LvK+QhMAepcmRudL/qKkvy3p63+29C7pqz9t2pbwW44fivK93WNdOMd9nawH139bXyMWy9dH/5y0rWGnbbo4zQi4kKFyG3N+7gN0Xldm1o61O+/P4neyLizHZeWnUH7T6yjy+PdJudfyJiA4UrdRx5rYwweKnq6LB8UzDetn+3kWdNQ3vObPBE1Hmuxdm6/3RDj5nou/F4Bc+u2ttvC5oPPeKL+dbWN2fJ0Hz2jE2v4udcsy8xHH9tnyNsOc30dbcc2YMRrJvGxzlsPtk2RAhHLSKLRDzy6PkZevPaopWnu6tMnpmxG3Xrxmg9PAnK9zrNp4WLdHJP3OB6T3PSP9GU1O+qZmx9/A7bkmYPPe/246eE2H+N6oo42b06XzaOcrcq4mIHda/7+rq5oODf/QRvczTQDopvpB5mzPaE55nL2NdVvzo+3nmg4tv2xz7aukCQV+1HpK8LPeKf2xj9WjnzndPwu9zLyQHbA+7st8WGG0npptINjg9Syv2QGutezzLM/nc1KYJ8/yXATg8Ddf8Mj7TJPl83+UtTq4zZ1gjQGFxySvqVw/0/YLRRXfaXcobe2TOXJ9Xl/N3u9juY4X0qRNbNvcIxb9IJdHLj3oofMaOYi28KUZfDgNH2mW5gnN8ycsc1RH3hfSNN2aAWvlco+c2xkj8E2A0w4qjujcBIfNYCTA4QFYslJOl/nMFLRHaJuDHRmOvJdz4yKMIPOzHzNqe5kk/YT08jdL1z57/s/alGRgfN7ojZraeRv3sy4yjxn5cssgpQHVBCT55JDlCU2AS5E3Hwu3ZN8YOKXedIbS1M4nNb+7J53tVSf4sLxaujq/7C/1aWCXh889zg3Y+jfFjv4M3/N+5m3Bxyjqz0ChgWBp98WKCZYyvcejlUO9jyMP62s6jOzMvjUxyrfPHjsvwT3zkTl0Gt+TOhjJNKNzUtSdAVzaO2l73bneE6SRtsEP+2C0ZXZXZa0xenyRy6Vg4S4iNLBnuJ6GkXSnNC+YROOMShS/sw4uyKT120I91i6lmvXYoLR9Z7IWXsRJ1zKPxX3QzjzxezscyiiqRXmu2042jQg/s2x/8pHVJzS/nG6f5PiNwBgdc95rB3+l7b7Ne7c1bQvp35Le89mTI/cjwWSNsl4zFx/QfIg56/d3z4EEqUtA57TcH/VbXs/5e1XzgeoRaM5tG/ZzHkJPNoPg/lHNT419mzRRSz+1kvQ10r9ZSX9i6tuHN+lfqj7X8n84jdrHPGxXWzNtruZ8YX3JKvp3zmXWPQI/bc5Is71pbDLnceqfW+BLayjbY9vU0i8FIdSrvQXbNqEJ+4Vzvm1t5X1+9zjlWbglwDNqDwHrEb47zSho5FrL+/fkEPNBFuXSMz0pnnQPaJdBsEPNg32WpDtT0vjQoLTFZ+F5g8zXZAmotLyjqGpJDMB46M9l5zZG6kAj2x5fTr1pLPPlXwaLNHqms9s7V5o+7KfsYxs4vnSMjooRZhsDRnVZpzSBlhNJf+h8yvekJhanPYrrfHwPUaPsEzSPomVKGtIGjBixcuwU11PfTOv0TmPww3NTzdF7/Z1oAnxPajqn8xpJ3y/pH/wq6XO+TtLn/knpD0p/5vvnR9Z/SNsvJjzS/CJAzweOU0b3o3aNQLu0+y4cjkPWl0/Z+Zya0xxr9zFz1ptlu0+dx3PQZ0Gk3TmUwnbmXGpPA/qznWFsa8BOu9mjFsC1M1Bkll0GwVu2s7Hx2Y4si2s/0zVWkJ/u75zrGXzk+joafG/taYz6Rdb28yYXiSRfhHJfgR5PopygzUHSQNoZPKj5sVjKiJ0YOY+mW34mU8TFkeloUEynksHaB64YYdL5tXdWcBtMGlOzCTYsNPTSLmiStrc6XC+Naovq0kjZEWY959o29NyCGdVhsfEkcPP3U00Hjp+MMhrTQkDF702HHB+mHYFzS6NnE/Dk2mgO2N/pkNlHrT1LzJKf2rI+T2kCPCea/l/V3/0j0vkfmYHDQ5v7HtdTTaxfbkl73uXYeE64Hfk/rM40/28wtqmxMJmmtS3r0qbsRzQ9dfb92h6/Ng98vfVzntm6rsk+3Yx28wmoO6WMrJuAdMQaNsbRkn3Ez2wL7xH8ZXnS7rxKm0Ewv2TLDYTzKUypg2Dq7M/mNxKwZDCbelnI4qfNOS/f74kctreGcum3t0bOsB0W89mJkfE24CEIITMxihZ5PxeuQU4yLaM5l86ThpKGjrrxEdLULY0o62vSziF4ESdoyyeaXG/qMmITqLPbzfu5dZD3rsbnyzU9HfQw8vFJs9SR48j6qItBGWVk2Cg5H1qf+vvIyLv8/GtCJ3wFaVPHbF9us/nAcOqVRpz90vqyzWOXn2P+Xk1P2r1G0hdrGktp+kexV7UNdhT5ltiO1G90XoZr61i7/w7jGL/ToY/q/xhJv/yB6XMpXW4Tsmxp7rvrmub1I5qAoF9nwIAnH+1XfCcQoTPOMkbC/mgsRQMwTZcG7lKvFAZBXJMZTObhZeqeIJHjTIDfABxZYtqCFswtBSvc5jrI5ZH7iunhIhztSxO9+3s+8ZETn9sNljPk9TU6iqaby03ny8NwWUcz0Pnbwm23kRFpi3TE4izJKDoeOfeUdlbFeRrDwQjP/fUyzVsh796keUrd4bBPGljLe9yOSxbRv2lssz/yKY6lwKoBhbyeY/KQJoD3w9p9AogR6B1tj2tGs5mOoCj/7QLHY+TspN05b5bimajHjxd/QBNzIU1ndn5MmzNSmgKQpzZ/2pThs11nmv+NhVmgHNcz7Z47si7nmrfG2HdkR5oTJIAwq2DnfaKJ+ftjz8yHwkdbiu1fXyjuO98jmt5W/bnfKunrpG947zZzscT8mQElwOJWl8emvUyRoDsDtxZAkqVpjPGZZrDDJ6wIkLOPfT/nsv83m7eWW1B6rF3GlkKbumSvmh122W3bq7XJ3++ZjKLdF7ncF0DUi8DGyECCiN3pnJaOiECgGXouqHzCqDmFEXvh+hOYeXE0QMPI2tfSmJPtGh2Sy77KMnkuxH+ZjkAt81LSQdCZE+CRSWjRdeqQ0e0VSV//Bukr3yJ9niZQYEOZ/Tty2glkjrVdfs4JAoV0eh5P1uX+49gwXQN5TUfqn+W2eeDrDXS1dC47t39G85r3HEG7nHSiBhm3NYOXBC7v1QSAHtcEdJ6MvHbwzu/yfM/ta08HWtf8nuuMaQmEWlstrU9PJH2y5hdm3tHu2Lfy87MFbx8u/GS7f/3X3pnkuo83391HV7Utvt62j9Im5Nrg2m0g4I7mNUjG1WXleDTh2kn7dIq2EMiN1lMLqvg4/RV8jmwc59uIVT0t1w5yOeXSMz25jdWcJSP7dG5n+G5jbCPbopW2qLggciG4vJE0A02duUibcST9akm9uWgZOaUOo7S8ZlbAEWWCDbJY1mf09Be/Uz9Gpoo86zdJq783nbFJEEmA5jwZLbJvGkB1pEj9ciuvMQ4jB9b6mPVxLrpvb2j+f0Iso5U5otITOIyi29SnvRaB89wG/lizQ7qp3XX3Qc0O2MDH5fm7/xM739F0FmW6jlubzzxEnOmzHZYRq2OQ0AKdFDqu442uf1/z2ZvUgeW4Hn/PdZh9/qSmM09v++Kpnc9oG+Scq/8Pr6yH+o6+j5w7ZZ9tlLYBQLNVabctBC5sT9ZlZu2ZzbVrmv/Pm7Q7l5tfGPUV7XCzx/zerqU08NbmxV2Rw7+hGMqlBz0NMRN0tAmeUbk0G2mf+2mOrRnSdPKsz+WOpBmovOfy2oIbGQyeo2mMBXU/1vzG2xtIk3nSqWcZD0v6Eknfq2mLwlFuti+NXzMkHCduI2V6juENSf+lpAe+djKAT2l3Cy/BT353faTQl6TZitRppC/TJ4vmSJNlp048+zTSrQEt94fz5nhc0/b/KhvpzHt2vDwD5fujM3LO4/snmubQBzd6PLrR6T3aBnyuQ5r7wlsaZ5qcbKZ32jzT0xzd6J08KT4MbUlQynw3FsrIepudamzLM5r/tYpffpk6ZP42hmS223ZYrlPau8YUnuE+vydzclbyp17UQ9oFP06f7TrV/I9pn9EMlp0vy6AdsqTNyeMNlDZuzc7vwxEjtvieyIFuqnLpQY/UEX0DNW3xHWuKKP2SOGn38W2CJQKOEZOQ30eLqhmqM3yynJG0g8PJUOQ1p3eZN7RtdEf6tb5mfUsOk06XOrW8aQyTcTDI+4Am5+eX2XGLIg2y83ocXW72hce/6bTPuBHstbHI6wlU+RK01na3ZzT3mrMgK5bXjjX9V/osi0Db1wwuEgDknCHwz5cWHm/yf5KmLawntX3Q/PFN+ke1fZantTmvN5DJsXV6tsk2Ivsy83LtZR3tmvXM8nPt+amxXCMEYJzn1ze/n9b2P1/NV2+M5mSCsra2FfdSfzrmlGR2lrZMySQ5ferKugi6sg1ZLgOBDyJ9zplsX9O3BQlc7wTKBI4jsNnm2wFnXH659KCnRQa5uGj8kh4lyub30fbIyDHR4dNAjhZcy2NdFWlG7EvmGxn3Jl68NqL5iHZuRWTavG4D9JSkbww98hxHA6BZBpmjPBDuehnh+bf/aaUdwNNxP41l7quTNSEjRNahObuUETBNwMS8mS6NeZad22Wt3n0AuMlFIu0sm9F7skWtHxLc5Hhknz+p7UfQs788l9gP/uen0u5jz6nzsbbfb2Pw2rbAXTbb4Doaq0MHmSzqaaRxXjpdbe4tPVVo3Z3nluZ+f1Dz1hbHgW3ztQRGyZYluEumTvje7CPPTi0FOZS0DaOtWAKIXCNH2p4DBsq3NK3ZEXDKT5e7L4BJm5RpCd6a5BY/mbAWiN51OWxvDeWeMW/PRkbsgA0w/6mlNP/PIRvnBCbJ8vigZDrhrNPl5rkIaXc+cZ+ZQIcRj/MQmAnX+ORDi1woI8OTi5HGp6V1v1gH0++M6hI4LkXM0vY/CU0H0BxV6psHyi3s17xOcVvONRlPO2Y61RxvlTScAyNGZgSMNLjWjOw+MC6N6XrW1b63IIAg3eDCkmAp2++y3qkJ2OT/8/LniWZmw/384CYv//1C6+cGLqVlZkzluvuej+1nfdJsP8jmZJsNxLIMt4VPGh3FNa8r90OuM6nP+7RxnvtH2rVN+eqKnMepc673HPNRUMd0PBMpdSDVJPPl1lz2e+quSM/fHPcWQLbAk/bL8zzPoTXbkPml7f6Udl8z4PIPcnnk0jM90q4D9YLLveU0RNe0/fr6fIrEYOiW5gnKt4r6gJ4Zhosu4vyexqvlT0CRxodMylLelDQ4jjRbRNTAF8tqOvPR4WYcm2PhJ+Uc6dkX/p59kuc+LuLknDbb4rIakOU2TosuqWPbhhnpRICdjFVzwGmc7eBaJJ9l+jsdQwNVzeFlMJGHkOmg86WACT4agDmOMo+0/XbiJqN5JvXXB7DvuN3cDtE28fX2f7Dc37ne+Ph8skFOk32fwNHvKfLLGj+keTuH451bt76fwZ+FTxK5zmyD50a+yPEY96Ue7LHf2m/OuRE7k23J8co57yf9uMaOtL12Rjq671K/Fiw8oHlu57weta1d51xpQe1dk33R0ItULj3oacyBxRFivsSOZ3e8rfOgppejvVfzkyDX1ZkUsxmWtm2VkttFXNy59eL2eDG1CMR5pG2dso5Gq3PR51mSlIuAOAIP9s/IyaQ058doSdqm8ekYpF0D2oxV1sFD55Zsy5IYYOW2GKls1msnMXpM3+VyG4bjmYyZy8yonawDHTDrzDZl2/cBLOt0rmmt+LFeRX6ntcNs/4cpvxs8PRnpP0/TC/7+ouYgZB8oM6uSZ46WxiTLa+tmCZhzTWfQxUO0LE+RJ1lGtz3Tv1TTu3pseww4E3S1cqXduUT9tfB7XyBivZsdoO3yNdq51DfbkW0ZgXG36eWawOBN5MlyG6DimmuSbbuJcqT+gkkyWmmbU5ae6n3e5fBG5qFcetBjofOTZudEVsOTLd9We64J8BgkXdP2Qstok9HNvoUzAjx537IPQOTvNBANaNCgH5V0NIakojOaZP3+TQCz5FiXhHWMrlnc59ShPbXRyuCY8P4+AMc+bKAsP9n/LdpsDpYAu23jOd0SU2EnlX00irqZ3/fsbK9qOvt0XdNrAvKfwtJBJfhpkqzGdc3neh6W9MpSrp1n9tVVTYHLU5rHNcFZRvNmQ7L9OR6jdSrtHqr1JxnSPMvR5rPru6btw81O6y3UU019e1OzTXpI89N2eTg625p1EfhyPvGMDucAdR6xrcL1Bvay7mTMM2/q2IKYO5rnijQD5Yc0PZAx2s4c2bBmM7IdS2Cy2ZYE1cm8cR5fJMA8yN2XSw96OPHoKOhYzjQbzJdqNiqv0vRkyds1PUlyrumA3ONRjh+zzfKoS0bfeV3aPdTWHA7zXARstPr5nQuvbcVIuxR5Y5WoY+ZL3fYt6iUg1AzTSNKZE1QQRNCI81rW7+vtPTZtftHZjwxkSotEKXTajIbTKLe8KTbuacDTORPk5pmPo/j7ZE2g5JqkxzS/TTmddwPDTY60/e8mDFi+M3Qjy8X+f7nmA+jpcNuYtDUqpJN2I3brmWvFLwDktkvmH9XheZvvufJ2/MskPbH5/FJJr/5o6V/95PQf6W9LeoXmIM393Q5Ht3U8Yh4MTrN/0l6cIK0/G3CU+nznNdoIBl3M4/6SJiBou+zH1xNopL1N0LVvnWQdI3ui+H48uN+2FHPLsLX1rsq+KPRFKvcVEOXE5oK3OCr02Z7Pk/T1nyb98i+QfsdnSr8xyrqm+SVpbcHmZxoy60Pjy+0HL9omNoDNkBJ8NGfcGBpFOjIPZCOy/NSX5TGCawzF6HzNKCoTrtshE8S6DOZpv13XyMjQ2bUxc7pMM9I/dViKfukwGvPU2n6mPscSnEjb/ZROIRmRBMd0Xt4SNii5pinK/jVfK33h+tfoS0+mbSgCs8zPcXD7cv7d0ex0b2t+A7O3cbKt57j2Hklvi3Jdb/6+s3CvzVmyDVc02Y43aAqIPk7bc78dpqewvgROLuNEkwO/Kul3S3r1p0n6z6T/2+ul/0hT/z+zKSsPkR8NdGB/n2h+iqxtA7a5lXYtgS3blvbBeciE+jPHO4FKSs6bbN+xdrdV8yk/p18CFA2oSdsvVWysVsrIHtKuWu9z7b6Q8iCXSy496PGkac7a1y10Jk9qMiD//msl/b8kfc9a+sf/jj7lDdKrNb/11gaST/TQQDaQQkeVLExri9PnoT0aILeF0VADRL53hnQtbV6joWxgorENDRilAWTU5nobU9NYCgoNMduR6Zi/jROBK3VodDuBS4v6RwuJUWOmJaBpY8UngPJ+RroEQk2nBjoNdiin0oR09Aukh7tDaBGvHbW3akbBwB1NAMvgp7U9v/tsHp1sjk2evziLPNbRcy7nHp/Se42kL3vZxHRl36eDXepjrkMysM9Eez5G0vHHSnrjv5D+wFp666fp1a+aDtTeUnfqubbTJvA1Eg76HtQMnJI1krb7UPjkfFxidWinaDuSzXN6jyPPrGW6B7QdkF6PNp9q2w6wDY2pTRltB7Y2j+47zbHmuZY+IgHRXRef6Xmu/14AculBjyUXSkYtBDo2qI54HpSm1fJL/9wmxbuko/k/GacDzMnJJ7o8sZcMgRdjRthLzIMXBJ2n87dtF+b3Z7afUVXLm8bxUe2Cn3T+jcFo5Wa7z+N3Mxo5hq1spxkZrQZoGLW2do/yJxjNdjBdGuol9mYUKTc9CKjzWnO0rruB82abElQzIvc6UVy/qensxHd8jfTPV79d//MT01aMt01yDNk2r798LYHr8BrKdrP/qDvnTgKX7IOs34xAXhs9Spz9eyLpRyX92Sek75f0Dm3PoZzbtD9ND7aHAcFtWbHvnC7+5A9Ix/uZSq4p33OdD2raCvy9kj5V23bNaUb/bb7pmgFNrn07eZ6BHK2tBOYJ2KTdeX6qCSDe1GSfHtB0tiyPH2QdtEltu/Si22zH2p0nrU7aDdpr67Bkh55XYUT9XPy9AOTSg57W34ziUhxpepHekCZL9h/+R5K+XPpDK+np6WyP5drmk46+OZxE8AmCWrS01J62dbYUTaVzcjk0ol5k6TizjDbY55qfZktJp9HaNGpfRuOZdlRGAwZprBqw8r2mzz6gwagwH8GmnOFeOlzFd9aRwCDLSp0IirmFR4cspHc/tUCsAUeC2jZ+GZW+VdMaeYumbaV3anu7JEEUwQfXUWNcFOm4FlqUfhppR4em3af59J2v+axO1pFbHN5yO9X03+1vxW/24eiJuTbGXLMPagZmj0t6z7slfcofkb5wJf3fpTe/a6rTNimfbszyR7bJ/fwSSS95w7RFxzZYl+znXBOcI+5L6+N2PRDpmb8FMo3pyXY8qN1gU5oOrz+j7W0pP+FGUJxrIOdoMqOUZEpZTuqfazbvue3cjnOfvUAIkheMXPqDzHTsUn8xlr87gjrWFCG8R9J//ZPS13+npCf/J+kd0rf8+ASGXq3J8OR7WzypbTxokNsCT8n7afh9GG8UHbMMt5OswghsNCqddbm81CtfpGbDkEacUU/q2AAF6235LNm2FinawTgd/zFlpm1BiO89qNmp5bzJ/mjnJNLApv4NYC2xS+7D7Nt0RFlGM7Z5n46CNH0Du/sA2JnmR85zy+ztmoMDl5tbUTn/nS/ZoOaYeSZotM1APds4ca3xTct0Tkeb+/xP7inJJJAFeL2mOfhObYPktkbaWjzTfJD7kU1df0rSZ79F+pS3TLHZ39uku6ZtsMi+HtV1bZP2cUn/9Zt2/4VDvhspnyBLPWlbk/XkGh/N9xacOH/O47S5t7W97nzw+2M0HVV4Utv22OCXQQbBbArnG4HQSG/F9fxsY7/UN3dNDm9kHspHDHpWq9WxpDdJes96vf5lq9XqYyV9u6Z1/YOSvmy9Xt9ZrVYPaHolx8/VdJzmS9br9TufbX25fZTonZH6qaaFf6KJmv9tp9LV/3X+L73HmgCRo7kWrT1baUBA2o7AmtFwJEUD2ZwAF2BGKS2i4OJMp5vOiTR/1pXlJnij0aBjTyDQAFvmzb7PMWgHUgnc0iA34EV2gOUzWnVbRqCOoNB1CNdpjA2yPF4jdqkBY9dBANFATsvb5lleHx0CJhO2RA23Lap0yKNgwXOqAbicnxwTlpfvCuLWoJ+o4X8vTzDl39nWDDw+XZPjfYcmliEPKGef5Zxwua7X+r1P84HmvyPpu7X9ePuT2gYj6eAb6M3AKnX2YXFpmykxK9GAdbaJDtz9Opq7llwHCbby2shmud/MNltXzn/m5fxncHxRxmXkC5K5I6OUc5HA/NJvp7zI5LkYj98m6Ufi9x+S9MfX6/UnSPo3kr5ic/0rJP2bzfU/vkm3V5pzs3Cf1hMwAcaNuH5dEyUrbR/gvAh6V9zL+hIwXDSydvnJJDBq5ffRgiXTRUdg/WjA0lG2SEfaPcPk8hrgycg+DcMIODBP6yNf8xMwS4C03fM1RpCspwGczG+H0oCbtG2gc+wSUOUWAYHcqA37DkAea7uvG+hzvxEc0Uhbz0x/R/M2j8vKtzOn7DMkHmcfcM7xGJ23od7ZRq7DbI9BfdoDz4Fce40hoC4Jpr9T0t/V3E+jPreuI6bQ129uPv3i1FdocvA3UW6WmeU2EOvzPLZ9+f/Rks0V2ur5m0FUgjfOswTveSas2WhpnjuNPVFca3P+SU194kPNbkOeo0lwk+U1dtRyju8E1m5L9k3qzoDL185x754J976fi78XgHxEoGe1Wr1K0i+V9Oc2v1eSPlfSX90k+RZJv3Lz/Ys2v7W5/4s26S8kdNiknpOCdTo/HeLo55bm//10S9NCaudZmgMlXb10rzEkbVH6SQ4abV5jtECDuMTw5COujUFhepadCzr1YVSfzsksUmMg+L2VRTkr9xo7k/cIBl1+AzgjcMc0vsexOtX8701yy873GgNzrt1+bkYy2TK3IYVl5HWzA/uMMHUR8rodtHuncd26trKl2Tnd0rYTPcInhQyQtA1EWoDRAqV0zi7DTzU11oIOUZrshe0H2QhLtsPlU8fb2gYjNzVtI94I/ROk5bh5/iZoyzRPa7Zp1s02INdlromUXLM+t9NYSYNJzp0cT4OsBzUdJXhMuwCJtpzrUJret+Yt6lFQljaybWm1+cX0aScT1I1sQbNrLYi6p8DnIDvykW5v/XeSfpfml2c+IunGer3+qc3vd2t66ao2n49L0nq9/qnVavXBTfr3L1UwiuiI6NPYmebOaOxc0rs0H35rUZN/mwa2YSIzQl0sjIYIVPJetoEOnHXkJw0ogV6Wl2lSaGRGC7Rt2dggEND5rITfpHpb82O3rV5pNton8Tk6K9FYgGyD0zfjnMyCx//pkte/G0hh3/Kaz0ZRN0airIPXfc1z1P/00mWdatsQW4+l6CXn2cdoavt7NtdOtbuWlrayRuA/GYIsh+nzYC6BRY51A8C+nmC5PZmUbbHkvKDzTHBwO9JYJzOlzblnu0fOkeK1cqqZwTjXvKWVc8NzxcDaW2KpA+3M05s8ZrV5fizXQ47RA+pnotLJ5/xrAJ36PKgJ7Dy0afNLNW0PniIfGZNzTWcyfTzhluYXOjJQ8osvuRZG80u438bO54nYNuFas6UZXN2zra3DmZ6h/LRBz2q1+mWSfmK9Xv/garX6nOdKodVq9VWSvkqSVtqmuNPp+wktb31I82Tz/87yPr4PD3IfngdpvYhz/9wG6lzdeZGmJ+CwNNBi8JDRioWLtNXtOtsZl8xPloALsYErp2tAKiluG787msDOa6LcJzU511GfJHNAg0W2rDEjwjXnJ6BVfM+x5VM+rqsBnDZW2S46xRQyAXQOI/bGEX/q25iNZtyz/Vn/9c29PLiceRob1pjLBmAJhB/W5ulJzU6tOUvqnOU0sDvSr82zjNpT71zzBpO5dTdiBa0TQd5p5GvALttlh3oUv69o/vcTT0feBCZui8tL8Me+ONLESj2g2VY+E3UmGE/25aWa38CdtlLaXp9uTwKDZl8e1fQ27S/5fklvlf7Mf7L9r0gMpNIO+NNnsB7RDOby7FmykNYvr6fQ5iXI8rjlvZY32T3a/pQM3s41MwJ3VQ6gZygfCdPzCyT9itVq9YWa1tVLJP33kh5arVY/Y8P2vEpzUPkeTevp3avV6mdoWl8fYKHr9fqbJH2TJB2vVmtfzwhP2l6QdFbp0Ax2pBkMXdf2f1lPQEHDmwcfG3JfWix5rTEKGa0uMTMJmNqCZLQubRte65lOkBF9O4jpe2wjnaUN0cdoei/I536bpK+U/uhPTgP8tHYPluZ3OrBRW7NtOb4NDLrNPCPAucKDia3OBDYNSFhXMgtHuC/NUanZhfZywEb3p7NiOhrlBnjslH9Y232UUXvOCerfAInvcasq683xTCebjErqwnLS8R9ru59H8yPHw4FRSq71BJL5H8f9VneDoXTQZLMoeS3HPgGS++2KZnt0Y3PtumawSEDaQB/XtfO5LuvDp7V4xueapE/R9EbqH9cMBhrAdXntunVx++9IkxF4elfPxgjmuPl+/s72Zb1kC5ku0xNUjtLm+snxs+QaTFvsvvYRi4NcHvlps2/r9fr/uV6vX7Ver18t6ddK+r71ev3rJf19Sb96k+w3Svobm+9/c/Nbm/vft16v19ojzWimjMBCOjNHDF7kBjxZZtaxJNzHJhvTIs3UO8FPRllCmlyANKLtSRdpGxim4W9gLfU3OCBQcplN6Jis/8+XpF/7a6bj7Zq3Cpf6lX3EvvJ9ApQWiWc0lvWOJrr787a2dbSzIO1O0NrKS90Y7XuLwnOotfsE1xiJpiM6j/sjSt2O0oeU/ZfziO0Z9RfZswY8vOZuaJsBcXu4tZHzN/+yjmRGLDk2BLGZhp85JumADd6vaz5c/KB256P1cr+eaPvfReRvjwdZTZfpbeBjzf9+4mntjje/k0lyvSnZd9l+A6tjzWfRDMbfqOn/f+VcOcKf9SD7TlB6ponR+aCkv/BLpD/ztVN7b0Lf0Vy7pm12/uGSJ4O63KYczctkGgmQOLfPNbFvj2n7f7JZsu3+59bXNL82oM2buypcUM/F3wtAno/39PxuSd++Wq2+QdK/lPTnN9f/vKS/tFqtflzTWvi1H0klaUCWWAGmHUkDHGf4zHReWI7SvOjONXaGGYm0Mkf50oFK24tzdN15GRm1hc2Ifp80EHCqycl9k6QvWP0VvXGTJiN6slI2mukYWh+06M6SoNUGrwHP/CQrY0n2qhnVBFHZ7jwomnkyncu4gd+K+nLeLekopPdvOnSVNBn1N2ksy0XmBNMm+JTm/97OQGME3s/iN88YZX5LzhHeYxqKz6LlmD4m6be8TPq+J6S/hrxk+bi2pd1H45tkX51rBkpmwjymCRJzfrNcz8Us0zomsJMmx+wtTj9VdbK5/7iWGbLRNTLsZjL/D81bVE9t0jygCeDdQTnZJzc3On2ypnNAT2pmjV1fWzcpuS4a88oghXJLMwBsZ90S7OZ7oj7McB3k0slzAnrW6/U/kPQPNt/fIenTSprbkn7Nsy27Pe65ZITTwY1YIYKgpM+ZN51cS2eDRwPcDGEurCxjH92WzngpDR1+blnt67fcckm6tx3Ebfmk6b9CSxOld0vzix/JRKVhk3aZKQIL19O2wqTtMc96CIhH42uDn/3FNvMagabrzDNWZ8iryOOtFPZFpsnrCQ7zKRzXORqj3Pqg4aeks3I7ciuqpR9Jshv+/09tbrKd/hxtnTTHpbhmGY01D6fyHJ776D2SvuOJ6UWE17T9RNTSdmS+K4h938bY/WO9zMI4kEowmQFQtpNbL2TFPG885/x5TfP40km3QNFtf1DTOR1v3zy50df3c/5bv8fRFz5flGOTgMFzT5oeQLmpmY1K4O60x9oFGVc1H+puQDVtBINoaZ4fPnPFNZP21mNokCRtB3p3XQ5neoby097eulvCp3nyWjqW/J5pLSeaFjn3o43g0zG2KJIO7HyTL98SbKPUDFyWO5qLjVlKXVlepm172CdIw/uZL6lqOlhGcwRQeQ7kXZLerOkgpPvGBtt/S1tNqScj3EzTgGbqmMYxr7f6mJYAJXUg25Nj2sY250469qUx8bURu5BnMdyfPFzZQJMiH+t8SPN7UMiyEJCMgHxjmNJxjBiKzNNAkOcbt3WtH/s9v+fTSAbcBMdkt/zgwj/X9BJBO1b3W26f+L+ZW8d8nxT7PiWv3dzU+TpNgOd92u0Lj3FrPwFOfnrryrodawYPNzQfqrym7ScFG/PhefGopq2/3/oJEyP2Ms2AZ2RHDWKS/cuxyHFwXs+Zj9nUYXuSZaRuDl6yzXlIO3XLedH+9YXTMYhm+x7afHoMzfzk+I1Y1edduDX1XPy9AOTSgx4aNE+mZkCJ6E/x/aamCMNAhxOZjovA4hTXGxvkzzSEmcaSHZ+6jAwkz/5Qd9bR5qedYWNSmrEiE2MdePCQIMgGrNVl55XGMIUgLn+zv7NOAqAj7RruERDl72QAE7AlEBuNfdLd1uM4vqe+1IcOoNHpzNMAyXn5rfidoMj1+Y/bIq3e1ieeB/l3Fml5ToXgZhQsZBquO+ejc76CdA2Ijupwf93SbC9uatvhpj6jg/JO63Q5F3iuS5r68Ic1bf9Y/zaGFwlkLAQdVzb1fEjbc+1Y8znHE01bUQTZFr8d+Qt/vqS3v05f8m9P164iLYPJ1IlrhO3IwCvFOrt/TrQNWNr2ctaRbSYrlNtgTafsy+uazhfxbddmtRjUHORyyaUHPUuGi47E6dIIJ1JPypQyYg34nU6ZZTTnn/fTuTTJrZmsv+2v0zjQGWRa1jkyKAluEjjwEDF1bpE2QQlBgMdqJBlRXxRUsQ0jIZvTWDg+0Tba92/XKM6bgKMxJjlnss8d3WZegpcGohIUNdbUY/cBbb+oM5mk1haPTTp26sH539qQ48R7/sw1x3VHsM7oXOpjm5LONvvL7Ih1y39ZY719HiYZH4JIy1WkSb2vSXqt5rcpk62zg8/2HWu3zgeQJl/AeLb5fUXz2HJL90Qz4+d3WvkzQcH/559Jet3b9NfeP5fvsWrzNz9vIw1BkPvGh8jfrgkMPqTtfybNQNAMltm6bP/IfxDo0N57nvvRf/efx8KvHzjTNpu5ZOPvinh767n+ewHIpf+Ho5bGgtCoWVo05Ane9vB9P8s9xnfWnbR7ixAaiDqKfC4j7zdnvQSyqLe023YCNddPWrxJ6tq2FqhHAz7+fhFg4DqzTLJlSVnn2HDMUieWk79dZjN60vZYGTiMzpvk9xFYIIhtB69dH8seRfeeN57fvsZ2NgDJOZnXqAfHn2c3nN7tbIyT11++Z2uf5LYO1246SamvO37PdG28sw0KHdOBus9fqokJMqjIf+jZgjK3P8/KZR9ejWvtHEnqdYLyco0+ou1//eCAL7fjCUI8Pk9urj+8+e4yHtq09T2b+3/2R6b03gK0eOxtZ9zWBMh5brAxsIo0H6fpCbDHtT1feF6HAYFCL26pHWv7nT/S9nhIM/h7WhPjd31T7gc1BwgGO9keX79n21oHWZRLD3o8AXPx0EE1MMSoT9r+v0LMvw/8NGNrI0EGYGRQmyNpkqyA04+AQ2NVpNlRZL816t16NqDX2kDDQMeyFAyMwGQrowHT1HtUT86XLG+UngwFI0j2fdafjp2MxAjkJXDzWaIj7R5sbtt5BLCjdiRDl86mbc1kVJxtzrLatgEjfzJOHGcCq2RKrE8Cca4RjvsocHG0T31H4DfLbm3z7xb0HGtmeFxeApG2/k80nYnJf0Xx0Kb8N2tyrgkmvd30Ic3/AqOBOQZW0vZ/lM9gnexHgtFs543Np5+8y3nyTu2urQQz1uOqdtdfm8Ntfb5ic/1dm7o/TtPDEjc1AZJrm/s3o11eX228WE+Cx5zzBq5ur9kzHy7nvPMayzmegO+eMT4vEGbmuZb7Ynsro3tKLlxGfm2hpZE4xfUGbKgLy29bFU7btjJywbfDs6aTX6vtg4Xc7/a1Zux8z/rZELTtAUbQDWgsRS1cVwREHj8aOoLEZozchyPwmL9bvbyW22XJMhAcWAgeGlB7INI7ms6+zv9sbbFjzu2dfFM0pYEfSm7ptq0pbimdaXv+Z5+eIE8eQM02+sAvWSJuc3AbS5ocar7OIHXPus1eNEbAkmN9qh7c+Ptoe/Ycac60W2cCB+v2gc2nt4B87yHNzpLjdUMT4PFWiZmUT9IMiCxXNQGeZJ+SvXjFph631w77xuYv2+I87idudyZgyP4zIPJTeC7rQU3sxzWU7zxNPK7uG9fdbOoNTYDm4U25T2ka25dq6t9fqOmQ80PaBlzSLsuY24A83DzaOvd2pB9Yya2/Fhg2H5Br7K7KWtsL57n6ewHIpQc96bgzWqOjbKAihYvKn80opRFtLEE6Q6dnhJ5Gs0Ufo/njqOspbTvPFkGSrWkA4TjuZb00NG1hkgUhMEmA1MCPJfVq5eQny2JU3tJzi2gE3MhykLVJI+9PHlz2d/Zn1tNYGqf19Ye0/QK7/Lui3XamYyZQ4RZc0y1tFpkQMorpeOgUWr7WR/5NB0PQMALq3GIiYB+t2zPkYZ0NdLdgwNcNlBNQSNvvlznXzNp4Xpm1a8Axy39Q039ofp2kt26ufbamR8KPNQMg6/FglPWMZvYh3zrvPvRfCxL4nTbqXDOD4jr9EMjLND299Ygm0HVd03y2HGt+HD7neDJKGaTmY/YNoF7X9j/z9fmnz/kT0ld+7HSNLE/O6ePIT0CvuOb7j2lmkdy3fq/QzeivZmfIkrrug1weufTbWxaCkAQW0q6BbHStF1sDHGfaNvDpdNo5IF8/0rahZf7UneyGhWWcaX5slUZcJS3LY7vzGillPmWmaJfTpLNu+ue1UR/mmGW5BKtL+mc5mS8NdSuvCc++8LuF50ksI8bAeRjpvkTb/8TwurYPDmdUyDlOYJf/LqHpch55/Pto8J1nlLi118Y9r9mx0fBzS8ggwH3THDLnTwN13FYjsLVud8r9ZJ6a49fgvpm5pTVs5sIg5aHN7ye1zf5lm162+f6OTb6XbOp55ybP6zTZgZvaHjfrcE0T8PC/Ori6uXYD9ST7R8l5xXXlufB0pPF4X5f0pS+T9DXS9/1e6Uc1bUMRDOR5IOvlfjQY8JjyacWXan5L9YmkT5T0Q5sy3yHp//oa6R9q6vtcWy7D/3tM2mbPPA89P16mKcj0PDZrZznblJXSgposP8f6IufWnhe5JxTT5ZdLD3pG0VwDGkzX3tOSUT1ZBYOCPBSYzJLrIn1PHaXd+Ubg0xw7QdWorLzGdGwf83vBZ55TTcaB5wWyLIKMtujdb3kmYUlsGGh4ma+BiAQirc2+RwCnSJt6sHyCzXNcbwAp83JuOGL2P7+9qRm4eAusbTekvn6CKFkLg4SmY1sXyc40wJvO1WU1aeOUunIcjjW1N8/AcX5mX3E7LIEQA4qm0ygNI3Hm9Wcels9zR5yLrs9O8fqm3AQ/L9PkpK2Ht2uk6b+GS5OD9xp8WhMgPtqkfTjS+UzQNU0He29pdtK3tX3ANsFWSrLGOZfOkcbr51a0/XxT701Jd56Qrrxt2uK7qe3/Ak+7ejN+p00djYf75qqkr9X07zH+obbfhfP/3uTxwWIDsnxIIG2a15i3rq5r0v2DmzSPbtr2Y9oGYm1OUbKfc10e5PLJpQc9KUs0e4v60vFwgSnuOb0XI6Mk3z9HvouyLNTZ9bQI7CJshY3PErAYASxG4Bl9K9JkPi/gXPx8+svt4ME9blOkEDhluTlmBDiNshfSKNKSmZDG0Rf7k9txUt8KISuRoPuKJsd1U5Oh/XWSPuNE+olT6S9qcogPbdI6qiYw81twH9fsUHmGgbpRzyVQ0fq0MSMZFNgRZp/n3LSc4b515zzzfQNxr5NjTU7+dpQ1YnuyrQ2cN7BKQJX3r2kaO285+/xOtiHZCzMO/nxI87bJQ5t8r9b0GLafmvp5mzp+bJPukyR9n+b3Az2m6ezKDc2A4vrm86lNmRwjtye315LdZJo2Zpb2Nu1TSd8o6eRb53WfL2Z8SNtAh+xegkvn8ZZSPi13VdJ3a2K88ok/5/GTU56HPmfmfuAa8Njd0QzUHtLEyL0v9HTQO5pDUrdpQpolW/W8is/0HGRHmv2+VNIcmI2ttB3dSp39SaDh376WCygXXBpCO99mpO2URwsgKU6Cgaw795pHRtk6em+93WdeMjPWNUGKJc+5ZHl5tiX3zBOMNENBANcieupKkJkRIQ1QY53o1Bi9sj4e6Gz6pCNcehojQZrz+hyIX873qyV9xkdL+jvSz/xV0n+qyeE9Fe1tAP5pTU+u5BYYDWpjbRI08jFhMkspbKPnRr4r5uWSPkvTGZRP1vZ/kKekDme45vo9Zzh+S86Gc4hBDNOwbxO4MCC4rmmL6bHN36vU1wPrzXvv07Ttc1UzeHqnpj76Ak1PJF3VBIR+y2+QvvyB6ZHwl2/uv0Yz+LmqaTvrg5rO/3gO2CZYCGDydwZabjMP2yZTkev2TDNb9wHNB7Lfo2n+HmsGebc0g5q018ny+PcVTVt7tEV3Nmn/PUkfj/yev8faPvPjuhJcaVN+/puLhzQFErc1b0FeK/21BGwoLdg74I7LJ/cF05MTkAawRTW83oxw2zJJaQ7Fn6nPCAylpNMcGXAaz6YLI+/8bWkG3detRwMXeUjwlrbPMIyQ8ajsxgRRkslpUaejNJe1tGXG+TEyWK5vSR9KHtJNQNMYwpR0oifx+TpJ+kuSftFa+kWSVis9pjli59aJy8//en1Rg0qw6/LbuJBp4frKsk41Hyb9VZJe8h9If+1/ma6/TdsH7nn2aLRGmy655WeGo62ltmaWAFILjIR70gQ8XiHpl3+/pD8h/Q/fOelxM/I2cEUnb1tjZuGlce+zNQGHt0l681+crj8i6VM0gYpkdM41/xNOrw2fmVFcs7PPOcJPBi1nJY/v5Vjm3Lu50dGMzK1NmpNNvz2l7f+o7n4wOHZ9+Wj9dW0fFpYmsPiothmgnIvS9lNwrueOdh+3f0zzf3p3u65rZtEU5VmHZhvIJEpjm3zPmIVm0A5y+ZmeFLIrGcVaWuSe+TzReWhO2nVkSxFri8azDAKiBEst0s28TtNAl9Pxd/bHMdKkgRjVbZYmDUrqwzJ5P3U8UwcBZGSch33Vtl6WwCSdDtk/fzdgyUi8Ufs5r7J8tmlkUxKwpT6n2rz75I875Ut1VdvGluet/JlzNstMCr+B+GaEk3UcAY5RhOux86O7L3m3pL/6Vv37D8/bNy6Dr/o/0fYTUBeJghtwbeC3sX05j9tcYWCU88bj8LAk/YKHpc/u6zHthB2751T+a4JjTWyO++2KpM94vfSzjyan+4X/k/Qr1/+FfuXT0me9dHLMn/JLpvpdx2Oa39icgUGykflwRc4RIb1/L7GWFgMIabYPrjPfaXOumXF6SPO5mZP4bT0Nrs81bwW+XhOz5TQv31z/i5rO87xU8yPzVzUFEC8L/dJ+GIg9HN+PNB/29vmnM80vl3Ref+Yapi3MtTmyTdKuzbhrcngj81AuPdMzovz3sR+ZTsibrETWw+ttjJsuGdWTTWlRZRqskZNhBGHJPfAWWZwP7htYWBJ0pJ4f0NwXyQKNIp0UOt0RMMx7GZVmOrI2rT2MrGm4XFZGsZxD/szyCBY5rs0AEvBdQdprmozrX5X0n/wj6SVXVtKR9E81nenxIecUzsUGupLqJ1jMMWf0vk8e2nx+SPPTYqnPM9qcj/i5kn7XJ+l7n9p9FJ7r0QHJPkeQID3BiL9z7DkmKfloOdNn4HOm7TXsLZx/Kemp1VMfZuKS5Umw6X9TcFszW5rt9AHf25rO7FzXlOhHz6VPvCnpo9dTwo/6A9KNv62PWf0y6S3TE0uvkPS/aj6k7Llo9iKf5uO2TgO9jaVq/Uebmttdx/ieB4af1nRm6VQTQyNNrM+RJuB2R9OW0tXIf7K5ZkDjlzc+oGlL+G2agI82aR/UtN2bANxnpMxCvk3TVuCZJvDzQU1rze01k5iHujmHl4TBVsoLBB+8IOXSg55Gt+Yn01K4veWFSjBFh5hpKA18SR3YpIHIPHSoZ9pdRG1rrjltRn4EXdZxdGDZ4kiVj6iqtGHkaLLP2A62Mb+zr01VE4Aw74jVGekmLTNHozMpIyO2xDhIszPy0yXvkPQHJL32dHIE74p8Pi/R5sFR+Z5C0Ogy90XzI7BgB9KCADvct0v6iSekn/mXp/a9fXM/n6BZ0nOfkH0Rvjcg40PE0m772JYE3sL1Y81bjrc1jc0Tm7QPaAYAnttmE3L704wC+/gDmkDPv/k/pU/8aM2A58PyS/VRf156z1dMZf745mpuOWtThteqgUKuc/Z1zu19c2gUhGX/tX+TYdbG42Cwcz3qSEY5x+2KZmD3qKTfvNH5r2oCLV8r6e9pOvB9U/O7gM40ndlxwHZb01kql3NDE+C5o/kcj9NRaMMtbf7lXFkq557JpVDi8smlBz0pjmDaWDL6agausTHOS6o7QcMSak/wZOEiSAM0YoXctkw7oqmpU2NxWoRmMThqEaujHQKk5mzpXFMfAjE6F44hGaykmbml2MYk+7w53BHI4XUCotRrRFm3tiU7YZ2s11OaHsFNPW5oZmxauen8CbQ5trnFQT2X5mnqnwwJ+9zfn9C09fDJ/3J+nNhzuPV3A2DWnwfE3c5kLvyd7CPX86h91D/T5HrMaP8pzeAndeY43dR8Zuco7re14Uekj6Xt/b6UV8xgwOe5GpPH3+7PZGkYVI22t85xnUyY62hjy/Eza+ktqSc3vx/RtM33Zs3tc5kGIT9nk+fxTb4HNZ8Xe1TTttbbNvd8Rij75yWbOp7UxFRK0yH0d2t+2qut5Rx/bnU6WM60ijTSru84YI7LKZce9OTkatss3Gf3Qs8Fm3S5cJ9plgxl/h7pkNdyAfhaGiE6qwRaI0Ymqetz5LOe+Zus1shoJUDktk9Ky++2sI/Y7sbaEJwJaeg8st9G7RmBQwK3vGegQId4ims5Rhx3AskEf/ko97Em431Tk3PIOpaANvsz+ybbcxE2JXVl29ohfzIHZqbesfm7o219Wr+PIuL2RFzOcfdZpuHh9gaGc0suI/I2f0eMqp1q9leCIuuVQMFz9abmrc5s+8dt8r7k35Z+9P3SJ+oXSPon2wp8xXRe5b2atsPere1xMkiwDmnbuN4a68P+zvXL/C1P2kszXQl2Xd7NjZ7XNW2Z+lHxV0p6g6TvDx0/RtO6ONEUFPzY5verNQUF79LE5rxu0yc3NLGLT2tigj5G0/bZP9PEGL1kc/3tmgCQAzrPiWSquJXKbcJRgOB7aTcz/T0DPj7Tc5AdeTZs8z2X5kyFazyI5ny5qOksEoRcdJ7YiOaWUpZJNqdFfJRccPmXaY8G39s2gCX/P1RjfBj9J3vA6CZZKeYbAdITpCVD1NiKLDfrzetN6OD8acpd5d6xtp1e1tnqaYDZOqeDzC06H7b078c1U//S9osKXYedVR6Olfo8yv4Z9U3Oczuo1D9BnvuDTsAskM9cmIXIlyZSF47xefxZ3M6UUXsyrccqCZN9jorrKR1U08v9JW0/RcfyPU4eS+dznoc3ed6h6bF1vU76xCPpzuqfal6lf0b6opXe+l5p9SsmZ/2mzZ1H1deCAScfziDbmNcouU4y/yg9Qa3njcfB78PxPPHnezXN/Uc1nxt7TBNg+UJNgOgtGz3+I0lf+toJML1e0m/8+dM7jd6r6ZH9RyV95iavNG13feJG/x/TBIp8Tii37LOdDMDad7eXNs/XG8PIMbrrcjjIPJRLz/QsRer5BIC0PcnaRMzvjEjaFlJGSMmYZPlcKGQK8jt1y22cjBQYZfN8C4GI9WRETR1HizO/O+o9w7Wsn9FzrgeO0UUWfjp0swzsf/ct+4zt8HWCAc6REZvC8SIjksDZY5Y65hNLrONY2+cIzjRvAxD8pA6jSJ1zOgEW63Y7knFyOfnpsxhuVzpSUvZH2v6no46cE0w13clYSfN7Wp7ck47tznk6YnKacN27vuyPZN3MbBHwt+DAciU+TzWfeTrStDX4L/7R5LAfl/T06o7ep5Wk6amlxyT96N+c8nxoU/5Tmhy56/ccJBuWTG3O/fzNNZr9mP0h/GZfc/s2wTLn5Ifi99s1vd/nIU3veHqrpH++uf/lr5Le9+7NAeWXSj/vVNJflvQVU3991qukD7x7KuNYE5h8haYtr7+q7XNUN7VtL8jA5L9HGTFc0vac8+/mm0b+5CCXRy496JH6IuVWF1mAM6Sjk04hg0SA0/K0KJI6LgGdBBesgwaVLAR1OcLnqK0nmp66ofMiYCEgJMgfGfoWkds4E0g5Pw0N9WWERZYjdeNBzVNt94MZjJwPowDG93P/v7E/uZ0hbRs7nolo6RK401ByPpHtyXnenPixdse6RbBOm9eS3k+dzdol2PG9O9qdA2bY2jmfbN+t+N6ck78noMr0eYiYc6bNZ+rZgK1/J1AYnSU6Rjppm9k72uh4U/OTSw9qOgv1ck1sxmf9qunCP3lq+h9Tr9iU89SmDm8Tmb1IAM1x4hxy/9u5cx6wv49wvc0TpiFjm+d1UgwGH9ro9Q5NLM0rneAV0ss/TlMn/ZCkj9XUcY9J/85nSnqX9MipdPrEBBjPNbE/Psztp9nyDdEpZB4JTHJdZTDpNgrlZvu91ttY3HW5p1TT5ZX7AvR40uTWFQ8SNiOZDty/R4vd32n0GrhxnSwnHajrpnNrQMrfGYVbkt3Ia6OyLGTF8jP1dnu4wJmm9V/KKMLO8WtPJ0nbxrYBIN9rAKeN0RLrlpK6NL1GEV5GugQ6BEvncS8jYTqFNu6UFl2O2sQyyKg1ANTAExnOnOMJuBhs+IkcRTqyDgT/o7EfgTUVfdmWEdBJIJpj1tIyD7/f0fw/1FK8jfMOzSDlkc3vv7r57Rf7/ZPvmgDOdU2sxVs3Ohn83NT81NLDmzKyT9kHZH65LZtjR0lGND/dr1c0/1PVW5rHMcVPr0nzuZ/U6fbm2mcdTY/uO52+eqPst0l68iWajn7/pPQXrkvfIelbJf0H0tETE3B8/aYv3qRpHB4o7eJ6/HBdmtdlsmej/mDwR3vLMdhnMw9y9+W+AD1kIKRdh9YmF6NiAgo6IUtbMOmMj+NaAx90RjSEIyYmnxpowie7llirpGvP1bc8qIvik9FQGr0WAVEIAtMJpbRH4tuB2Mx/pA54GKGnM2z9zch/1DdZdupA509p7XXb7Oj3ResjkN7ASWPwWjAw0jPnzL48ZNyY51iTQ/tdmhz5N6pv3TlP5h/161LE3Bge1uN0vJfnqLg1JPzmVgnXh/8dgm3LdU3gwFta2lx/qeZ/gfCWTbqnNL/v58nIe7757W3HR1CfD1vf1Ayuc+zzkC7bxCMCvi7NdiOBk/v3SNOB4huaHqlvIOl2fL+y0fuGdlnwD5xP1z/j39Z0QvkVmibM9/45SV+xSfXR0pevpfetppdb/ULpZz4m3fiueQvLfzc2bbq2yXm2udbaR7uT9i3bne0j00ehLbknTM/hIPNQLj3oaVHnKArjlldS9CzTzEaChJHTI53usvPT6fPaSE8a5VG0TlCXkVRjdiyZ7pqmaPNM82vhaej4e0T7ui+TmaKOjJYbg5JRYWMfRhRyW8PO/9Dm941I7/vNOVGXjIIvAg5zXvksS0aTwndun6RjSiPcQEej1glOG9vRJLfdqOcIaDWKn4DODjLn3qmm7YcPoh63wWU7P/VJyfEiMOTYjNgYludxzqegrAe3LS1+Dw3LuR75TjW/CdgHd/OJr8c39x7b5H1a03tlHtL8RN9DmoDRTU1nX9zeBzU9wfS+Td6XazoUfWOj1zVtO/hsT+sPAiTnYZDX1rH/5YgiXabPbfy0tY9qZsaOswwbqL+jzf9rMeAJ+fp/LH3pZ03A6I2Trk9pfg+WNIOrU00g0mCT+jdJBtRBqPvivKTLwM7CwPeeMT0HiqnKpQc9dFbNgBGULEV6eZ0sS5bHtNSlOcZcCEk5t8dhk1rNehsIGEUNI4d+rNmovFzzUyM2wt735oJNPdPRuQ63xZGlkN51p8FkVMV60tH6ez6t1KIyRuNHml8YJ3XmJscwzwolUMsy+VuR3+WRXcgDlHQUWe6R5nMHrWz3n/Vqzj37TKWMbLPLFHRY6q/Mx6CDZTdA6H8L8D+h7GaHc0sr53zOI6fjVhjZxiXA5PsNCOU4EbxS7xwPb9mY1fC5khub38nsZT0f1OTfH9L09uCnNW1nvVzTE0lv0vSIdtqKM81PIXm+vTP0PdX8P6Vyy240vjmW2e7s11yXDBRuRlmjwDBtoe8/qF37cCzpPefSK134QxrIZ04Ic4P+Tjdfr4Se1zWBINs5aRuQtwAvdWEbMq3nH0Ek5xjP8x3k8sg9Yd6erfBpHUbG+bgmxYueDp6G7yj+chLnBHedZHLS2Pt3MhlCnmN15+H2pINIY0Ij1AyZ23tFU6T4gKTf9oelr/7W2VZI8yHLFvXlpOB2g7Q9HmSgMh/Ldxm81p7wYVktb47FU5oi4NQv68+xJfuXgIhOuW0vEWjm4+gWGkOCV6f3uZdj7fYX51DqmUY3P7OcHEuuEUatWb6FwDajXq4X65lg3+8guh3fGzOajjnXRa7vsyiLzjol5zXbM2LvLG0O5txLoJxrPtk7P433Es2AyG2Q5pfj+QH1pzQBnB/VtLNzW9J3awIzqd9p+TvX/GZjl58vR3R/t/Hl04fnuJdta0GlxyJ1zIPDx5r/DxdZkfeG/godXvkyTTTNayR9n7q8fzUZsackfdFk0/IczqkmFuxpzcCQANBnr7hm0v4a4OQcS9vRzkaOgu1mH593OTyyPpT7AvSwv3MxpiE6Q/rRGLVIbxTNe4JnPXRgrZ5RVCX1CDalMUPWh9epd4KhDzu5fyjp+/ZHJ3Zy3FZh3S6bIC3zZPTejEQKGS0bbZbF79Y1nYrwvTEMOU9axOffF1kcrfx0EgQEHLPHNEX2Pgti/ZPFScDS5l2OeY47I/0RC7LEgjcK/xx/LqexpbdxfSQMNKhDk1zHnJ+0Accav/y49Zu0vU7NcnJNvFTbB/Q9zk9q+3+pnWr7n3Emg2fn+j7NT2rl2npJ6EQbd1OzY095SPOWW+s/Bl+0BW5/rk3q4Pl6G/mchrbyhua1aibmXNLPfGCa/z/xhKbn1t8g6ZdJ+p0raP3F0q/QdFDslqTNeZ5XbNp6O8o90wTCbml7XE80z0luU/rNzrQVBL6K/NknTssg8SCXSy799hbpaxrf9hSKcM3Gn2c36KhGdaXD4MKmMeRWRANEI4r/vNxPVsIOjAdOLbkAjzUZ3aclfcPfntI+o/kV+Nk+5x0tVt9j25eADKPKdCDut2Susny3ubEsIyBLA9tAjNNdRGfPmcbeNJ3y8KpBS4Jl/7Z4e/G6JqNtg2sHku1JQMOxo57NMREEOg+BaZZ5pslheO7z/1kRiKeO7B/Wm9dTL34mW5VzMCPv1icJRLPP2yP11Jf6cQ56W/Js893bKt6q9Djmn5k8g/kPbMp6YHPv9ZoOAz+qab3eCL2ubdLvO9xvXW9FuvwnpGxz9lmzfSlpm9IW0sbmHOD8S3ba9fiptX/xzJz2f/9J6Wf/ekmfp+m1zJ++ml5HfUvTQnmNpN8j6dukd55OeZ7U/I9E883QyYi5HSP7z77Mudr6r7Xfayr7cqlfn3cZGcsXuVx60GOh8TnCdTrEBzRHVhm1L03Gi0b2pMQvMreYhvrz3jm++zMjxCwnjU4atMc1RX1nms8D0BC1tiVIoCOyM2mOUoMy2v3UP7+P2t/yt99Z3kXPNLT7dNipD9MnYE2gMQKKPhD79s1fA3508ksHpfN36tbOp+R6IMBuQNZ6Z7mNAWg6MX0DcJmXc5B18oyM07W5sTRPXPYSkM456HQGTg9qPoCcZZt1ybXKp9byib1XS/qyE+k7Tieb9ZTmFzQeaQYxyVK1ACTB1akm4HSk7UP2qUO2n3bA+o8OczNY4nYahWvfab0F6P+zdabNE1ePSfoTmg47XdH0fyXeKOm/0bQX+Kikh6XHn5jP0T2s+byi7Vxue7VgKMdF6mxwXqety3nXbLK/LzGpB7n7culBT3OKzcmNIjZS/5k/wQTBEGnLfU/4ZNlcJM3pup4jpG8MR8poEWX7sr5zzZEjHWp7Gozf2TeK36M8I/CTZSxFQyPHyXoTDJG18/02V9yHdPB05M2A5/0R2EpnkeAnx5ZRZ4KUtoVn/Sx07gQXzsfD6a5r1C+jMhM8NiBKsEKQk/3m8jiXOYcIglxem3+tDLalAa48AzQCPwkmzU7YsZr5sdh2GDS0chKIvF3SnzqdntA61vyenpua59HVSN+Y7Vw/CWgzsMlzeDmG1G0UnCUrS6bNksDYTNNx/CUD/ipJH6/p3YMOAD5OE7Z5/O9M5f3CH5E+6mWSvkwTlXMi/YP3SqfvnWzaqzW/0fqpTRmfrOn/eXmLy4/yS9tMn/skWSGuifZEb/ZJzik+yXpW0t9VWeu+QVur1eqapkMY/+V6vf7u57u+Sw966GgZmUrbDjyNrCcinW5O/PzM7yxD2jX+Oblzm2tk7FxuGn7XSYPeqNf2mHfqfqr5XE4a9qxv5LAJDC2jLayRkSRYzH4aRUPCvXSIJ3E/nT/7OB3xEujgthG3xaiThcDVZRNYMN0IwDldRqOWzMP2SLsGugFa5x05+yVgmnPU/U72qOlK4E9wlWvPafy006i/qNNonDJQoS4jMOP7x/9/9v49TtfsLOvEr7fKqi52Ud2b3WzSdtISQtqQQAYICYmcAkrkoAgiPxRFBZF4GNSPhxn4jTrIDP5+eBaVcYyIIALCMKCAKBMEohEIiSGR0CQmtImdbrvZ9GZ3Knu7e5dV7/yxnivr+1zvvd7aOXRX7U7dn0/V+77Ps86H+77ua631PBE2wRbZuX3158G47yoQcg5xfG0E8N48pfcJaiDo4ShHvhakcv48PvLalnobS33js494J2tTzXdv/PXDBN3eZp/YVi6n49023dtTW526NP3eVTuV/mb1hyxeUgM+j0j6ZTWC51mPSK99pJE7907tsz2Fu6i2LPjAlJ9fOLqhttfqQG1f9NvVN15b3Be7WmXiUieMxiTvcR6lvjsx7LFu4D+Bslgsvk1tV9avLJfLj8P1z5X0zWpN9K3L5fKbpltfK+n7nqzynXrQQ+OYywaVB5zKOz0Te2B5Iiwl2YccuAkqaHRSCScQooe8zvu215asQwV4KlbDCvJQ3cvhm4XTIIwMIO+N8nIbJGW8Tkbr3QRGlefJtqsMjstWecbVcugIqCQArdqiYkfSy8s9N8x3qwgjrZbN5dhQMzwXNH9PVcarwCfLUxk8yjoWhkAvN3RmmSmO41ehbGq8CTbLtc7wHOdJjwB+FY66hBv7zRrkcpXnaLbVCBgm03mgvuH4ATVQdada32a9kilKYMZ6kbV0WbzfxXuRzFpJx+uBas7zPp+7w+t3TdcuqS0/3aM2dn9++n1jKsdjas8cvFPSi9VA41vVGLCPUWubn5juP0uN6Xml5o7HW9SeHbQp6VPUqIO3T+W4e0oj332XDwe1zaicgFwZqFh6piWdIOA5Wfl2SX9P0j/xhcVisSnpWyS9TG2X1msXi8UPqb195D6tHhZ9wuTUgx5prigolbIz22EvegPfCR5S6RFIVJ6j4xynfJNhIjhL5J+AjmWxQcyJxJePJvMgrS6PWEGmt36cB+wwQl1YT7I4WcbcJEslIdVGoAIw7DuGT4UzWg5K74t9Wy2VVKAxl5RsqCrmKvN1GoowVf0rAFqBMce/FvmP6kCwY8Bf9UOmkUwNjSgBUwJTjn32J+fiyElJD7mqF/ts1P9Mz/HJSrAsh7hPR2hDzfCa3UmDmDopHbLRhllpld3z90ePibduvlq/ndf8xNyROlNkRo1MHp0Cg6LqcRbMZ7SESidtTw1QXVFr270p/wfUmKxcfvK8evsU5m5JXzil+61qLM/vf7b05rdJP6728tLbUS8+8+qG2hKX++2G2vKXmUUzXS5zVbcEfq4bw1aOkscnx8iJLW+dENOzXC7/7WKxeGZc/mRJb1sul/dL0mKx+GdqXfyh6sTff1ssFj+6XC6fUKx46kFPenqpUFKSnh15q5m+w1qpVSwDDZHTo9GqUD/BAfNLo12xHmSNmE8CBAK6BFI8wUEPv2LBFN/XhXGe2SZSPcmZTgIop51tUJ2eyGUCx632iDh85XVl2GzXBKwVKKmMQtUemb/7YZ2nKFxn+VzPfc0VcWVECcCzfJlHxag4bAK/w+LT93I5sWLlCKCqch1nJBJsErwwPWk8h/ndxt5isHMl0hrNQesKXzPrUbEuLKuBko3zeTUWLE/KJZtoUOKxva2+L8ZpJoNBXeL8PYbsYtuhMqPlMjCdBPlZNud/dbq/qw5KttX24dxQY3bygY57aktWl9VYnkfUlse+UI3F+d63NUB0Y0p3S/Pj6Wzj85r34bZav+5rfqIr61gxPDleqnHG8Kln1jnKt6B8+GKxeB1+v2K5XL7iJuI9XX0lUmpsz4uXy+XXSNJisfgKSb/6RAMe6RYAPelVpQHkpkhf4yCr1qhHCNy/121gI/JPxa64L62yCTkxqDxHAGMEBhx/FDbpaTI06blkeCpTXksPv1IAqShGIIrfqw28uU/L+W5q/joAepiVUachTqBBSXZDCGeFXnntyUrwswIJyVSwbAcRVrh2pPnY4feKZaoYlVE9Upg/AYrbeHRSJ8ef8yK7MmrnNCC8zrbx/KxAbvWk8ewDApJthCFgMGM8Gv+um9sigSPzMxDK6wa/e1OYK9P1i2qgwGwElxCTeXA6bvPLKO/N9LPTT13hPPzHdvK9HXWnyvt+3L/3qFk410FT2Pum+jqeAdJdag9nvKrW5o+qg6X71F/lYZBzXW0Pz2X15/9QflmNDd3TnOG6a0ozl4aTnV43T0YgJp1dFd+fVHli4MOvLpfLF36gE10ul9/+gU5zJCfCvL03UnnnVObVhlYayGqjqBmRCrnTiNjI0PhYRl75yMNnWsnIbOAv60uqtGKL+JnC8ARTPibqsrnsVX221BWen09iT6mqK4FdZcRo8H0tl1ySzTnENRrMCpykFzfqQ4LFaomL97iZmkaHbZZLfkxDEW9T83HKstqDZbpk5yqW8zDCZZ7JVFRertOumBECSksa4Upys76K72zHUR3p+LDMLGN1rxojUgcgnl9kOtiH1Ykepu32oi7hffZJBfCchh9i6P0vl9WfkcRxynnga16W87w5UJ8DObeTMa6e4+PXh3gMeu8PdSbDSo1BuTB9J5C7Xf3N8C7TVTVAwyP4u9Pniz5R+sxXNDbozin9gyltgxfu4bmsDoZy7D+uuYN5RR0E7eL6hhorVJ2MJDNJACu0h4Vg1mmcqHE9fU9kflANC1ueof5auSdVTj3T44nqAZrrpZb0Pg+0OjA5KEcg2OlXJ78yjZSK6ZDmSo/ly8lF4MNPGkn+luZHZskIJCtFuap5e7LsLPOojskaSXPlnvlWy3jMOxmJyohUrFwFVhk2GQp+UqqxUBmqrJ/zIgsjrfa9tOo1VuBlQ6sbwclSeVymELyncvZ9njaqZJ33yjqwPFXYdaf92C8Eo1mmZHI4xhLQOt9kUdIAEeQQTJA9cP0O8PtI8/atxgXLULGsmxEm70ud3UhWJ/PL/YIGidUyysg5IPAheJPme594EtThmbedpxvqx8KfpsaivAlpXMd9l4UP4XRaulPSXT2/x9VAyqduSLtHLU2Pr0tqbNiGOiCS+jKXx86j03Uv2d0//T6vvtfHJ9m4sZv15jjgknHOsZRk6D/I5bWS7l0sFh+lBnZ+j6TfexIFOfWgx1IZvcqIEJ17YFIRpbGXVgGTpVpO46AfAaCRYUlPi+VlPlT6eS/rcRjxnHbWnXlVSwBOd1QnXk/vU+r7AagY3VZu33VyHGtAYb0M+tKgupwJOA2EknlIYEYlVi0dcRykYRqBkDTKyRxWDEema6kMHccUwWzVrrnPhGlUitoKn/lU4IJSbeLm71G8BMtcxiQoZtksBI1khQmk/Z17Qqr8sz8q8MIwlZOxDmQeqo1f9+U5zRkL38+y5bzO9qgYCBXxqvLms3VS1/Ee07qg/mDFx6e6cKmQdTYLYyByZcrnu39cOvfj7VTXZeT9D48awDGgstymvieK7ZagmePpnDoYOlIHbvuoV45zl99psg/Ypql3ThzwPDHLW8fKYrH4Hkmfqbb/552Svn65XP6jxWLxNZJ+TK1pv225XP7iSZTv1IMeDto0TtVgk8ZGn2lQCRIwZR5OL2VEZaZnmPcZjso8wRrD+D7X0H3dCnOknCz0wlmvmzlizk3Co7bgyQ/LTvxOz77yenm/Uih5yi2NHD10ljeBGjd/r9MNXjLIsZCAs/LsK0kQRlnHtqQkSGbYdaxbgu3ReBn1d9Z/BCqZds6FEdip8kij5c8c2/6d4NzXPB74uo9kXmjcRqCqAj7+zX7i6yhynOfpKF8/P5VxP8L6VRcpmfYIlFvSSCvuZ32Y1p1qz76RGiC5rr70dX265qVCv/7GkvPncKrrhvreqUfVl/T21U907Uj6AjWa4DVRr8eQbur7bC/P9+u4d0ENcJnpOa8GqqiPOVatL/zIBbbPSD4Y2Z7lcvllg+s/KulHn+TirMipBz3SeiNCgJJerSd5AgkaugqxZ1qVEa5+c8lqZFDJflhRsQyZF8NU7w5KOr3y3pye45KVGSlNy6Y6M1QZml2t0uMGIqSatyIeDQIN8XHOCVmSESNRsTQGLy4Hl2o0SKsyEsynMuQjNqRi66q+5EbmHCcVU7SLeCmjPnW99tQBQCp5j73RZs4EHhXgUXxnn3OcVkCIbT9aUksW17JdXCMrd6j6oXQa/CaDwLL5+yY+fY3OiMvkvPOBJA5jMGGWhHMq29f9wnHME4HJcI3qlmWwUE+dU9tc/eyp7O9QAwteUvKDGMmWsH83NN88vqkOcM6pgZcttdNaHnMbasd9ttQ2Ml9S27h8vzoocdoGXnQEnfeOOqMnzefJlelzT50tumMq12WkX60oWAiyKufE9550OcEj66ddTj3oqTz9BDbJrEjdKKTXVy0Z0ejmXp4ReCF9mR4dr2X60rycTKeSZAUqzyzrXxlqtpvjEUTRmKZk21bpE0ixfJWBk+ZK0PfWsXIJREcg12lVZTR4HJ3oS9DBeJmOP3l0v5LsezIoafAt7McjrbahxX3q5b2bBY3O94Jav/GItMvIskurZfU9GpQqLwr7Mu9XdayW6DwfK3BFIWhjmu6r26bfBOaUSs+wDgYE3txP52Bka3LzN8Gt1IzvljpLMnJwcmlrVNaRA5ZzPUFctsddamDgU79/+vFp7f596o5EHpN3PmSqc75bP9+Y/hK0eazcpwaS9jTXoZ5/uZcx9XXqNdffOutx9WcE+WnPB+obrs1Yk72S5k6utNpf65z1J0XOQE8ppx70WHIgV14e2RHHGSnO9Ghp9EZAinIcSFDcq06C3Az1WeVPz9nKZDPupTGl1+jvXlPP8hKsJBtjJe04Vhz5DqJR/lX9KsYpveuMU6WZbF0uUya7V+1rqYBUKlCGW2eAK7Cc4+A4FsntnUsETpuno9IzzbLl3Hhg+p7sVM4zxmeZnf86xU/hKTiHXTe+K5A1AoiVga+YMgP9fZQlgbTTrQAkxyOdBjpYORcP8efrjLsTYfiyZOZrAJxMNeu9DkQzXDoxBF9Ox4zTFd/7Fkl77Zk5l5G3T1RVy3BkXVgeLzW6TNxAbubmoenes6frD2muL0bz1EBsQx2Ica6zLaQGqHz9htozgjbVlrsOcH9LHZRW85jteIY3Tq+cetDDpR96bfRIPGkS4FTedE6W9D4tI2VcKZQK4R/GvcrTyN9ZhlyKI32b+3OyPARyqXx5v6pngor0knk937/jvT1Md1vjNFPcl6wb8x8xNb7Pehss8DeNWWXsuaRoqfqxAjujMZb3KBVoYBvRg814TI8MVS5pVCxQjq11deFvKnca4GrsVmVgvaTVulPYVxWAZD04rrnkkY7QkeblZVl4z+0urban4/FRDhWjZKlYTebtOe0y2GCzj/md4/a4E3XV9RxzbBtptb5Haob+O3+yh3lUcz1UgYkb8ZtjYkv9YYRvV3eeWL6L0/e3TdfvncJejnw3EWfEdFZznrrC99gnBsaZ10bEqZwBhj8RuYVeOPpky6kHPZYReh4pxcprVaRRsS/0lrjcNUpP6i/io3hy5IbZpKYJ2FiXDFeVcSQVS8I62AjQ2xyBt2S+KuBzqL63J591kvkkAKqUb+63oYHM0zIVwGC92XaMm8ouwSWXrapTSDkO0nseAWFKAjguffGRCwkgUioAXY1ZXss+yHgVMPeny31e8yPJDm9jWIFq9tlov5CF83O0lyLF5eOR6ARpimsuFzfAMw+3x2gPUPXiTQICSuVAeGOsNwEbqLNPRqCP+eY+txGA5fgm+NvQfP8Qn1/k5aUD9TfMe2mTY+MG0ssyZtkendI1uEiQdHmK9xw1lueBKW8zLnkqbB274vt5EILi8rkdd6c4ZLO5GjACUNWJvjM5PXLc6sqpEXp9Uq2Y+Jtsw4iuTyXozwPNDQU/2WBWkGRd0gsg4GE5+bmlefnXASzH8YO7XLZsH4YVwrFcvFZ53JWi8md+H7W3wxxqrpgqZcB0RwYj2Z+RN1W1CfuG7Vx5ahwbDDdix9Irz7bLOrAsLCvjbuF3ttsIrFb317V79vs65oXlP6/2ELk/qeaR70731xlmp5lMSkoyN1mW7JcEbRbPkYrNSa+d5anmq8P7ZZ2+fk59I6/UDXKOX4J+xpfachaf/nwu4jm9rDclxxuBGPWLtKo7t9Qf2Gfw5bHn9jtSAycuowGQyyfVJzWlDhrc7ke4tqe+vLeDON7nc6j+yooDXOO+J9eRY8X9XAH4kS4Xrh+pAbLMR1M5DYiyr7msus5ReVLk8An4ewrIqQc9lWedYGVHTVGMDBkrOVoaIROTRsmSCpgKk5LK3JM9l0QMXqpJSOPAPLPMVOhkBXKyM/6e5hMzQUnl4dNousz5fiGnyXLnqY1RuiruZZ0P4x7Lvq25oiGoTYVP5spSneQagbmsh8tFwJbjkGHSQ7Xh8BjJelRsJQGdv6dirwBhZQCq8Set9k2yDb9T0m/4y+2N1rfhelXmqg9G+ROUV2MmgUvWyZLPuKmUXQIA58NTfskyE4Bc03wZxP2bzoDnTALQQzWm55o6cHxsUB/WYx1oZHusWwr2306E35t+X1Efq97w7Tx3EC9ZOF9z//DdZgYFd2jOFN0e8aW58+kyjHRIbqK2buQ8qMZJNSYI9Mg2Xldnms5rDuTyZF/ldJ3J6ZBbZnmLwoG7ofoECo0AN1ByjT+XnJL1SRCVCjLp5OrZL5XBz1Mco3ApIy89FXIVngbwqlbp8xEISZBWpbmhfuyTSjIBgfNKY5SSiop5JdiS5m3GcHlNuLelVaVN1q4CjAkiRkCUrCEBFOtUMUa5rMflNhrLCnQlkOO4zXLnBm7OmXXLKKzfkaR/Iuk3/XnpJ1FuLukyP2kO9igsA8vEect8DUrMjlzXfK6uM/hOZ7TMkXtUcgmO4O6Zkl48hX2N2vIL62rWJOvK9NkW+aDEdPjcLtRDCcid9mZcr8aH63ag/oTia2ogjKwNn3bsdC9H+hzT6XhwPvuVFq6XmRQDF6fjcbSltrz1gNopLgLkinwwkNpFetX8Zbtxk3gyPtL8hNiGmp67Ot07r/bGd0umf2KswtmR9aHccqDHgzS9dD4y3YM3lWsapDxNkiAovfU0CKngNrU6yCsP1x4MFdAIbKQSyWs0EhVwqQCBQcNBXOdnxRIQcLB8Ul/nH3ndLM8IkGSYLAfrx+tpqLJdM/3z6sDTD1m7GnEs1d6B4wCiNFfsI6BIqfYqHbePo7o2Ktu6eDlGHc7GgAbTL6G1ov8xNSN5Zfq9FWlUYDnrVY1XGqDz6kbRfW/j5vSk+Txk/FzGqPJnn7A8HtfczyFJd0v6HEnPv9AC7D3W2uIRtIMZgwp8VfPEdUrH7TzK5mUXf7cQzCUYoJ7KTbm3ac5WSXOHhelUY5FjYyOukzGheO/fpvqbz8lQWz+em36/dipjPgA1570BnNTnddah0rkuewLRal8W56n7y+1+W9x3mU4M+JzRTKWc+uUtKi7/eSJxOYfLEIcRnt5IMjMesKM1eJeBHlelsCvDkWHWicGIvycz4XRGR0ArDzI9O14bAZ7Mv1IYKTSQVXtUIInAJcvGJ9a6TbbUlSDFxi2VTZbPYrBzj6T/VdJna153LjemMs/6syw0vFU4/lVgJvtcmtPkVX0yvO9VfeB7rFOyghmXc4zLGb52Re2hce9CGgYeBBK+TqM2Am1sb5fxGWr7hpwmy+05nEuPXE4aGWtLtpOF8zE32X60GvDRo0vpylLPnK6xXFyGOow/jjN/ei8N58KWVpeWXA63TzLV1bhwu/lvL8KPxnimQ3HY7APLRhHW9b5T/fj3tnr/JsN0fbp3Xv2t684rn6otzcf4aFM168Sl6OPqmekYdPPovX+vm+tncrJy6pmeVE4EPJRkfyqPLo9C+zuXqXIPBtdoK+Yg6e9qgOfgN11aGR2HrwxXApkqDX6nIWU5nNduxEm2J68RMHHPgxUQQWmWg3lUdXHY6mm6BDYJzqqnVGe62/H9OZJ+uxpl/pDmdbT3dhyIyjpxKcobQ6+iHMkmCr99v9pTUzECWd/KuPg7Pf9U7qM6Vsu8F6bwDxf1IKBxvCx3NabzfrJjHktvQ1hedzpkaHO8UiqnhfHJDh9p9eGdFL8g9E79Xkn/XVc0f2t56hHW0+Oc7bGhvmREZ05a3VcizduOdXefcpk2y29n4nGEz9OSqWersbPOoFdMGsfh/vT9LrV5eCPibahvrvZG5vNTvBua96XLSZavcrJYthEgGs3BHHOcW9aH/szHdoz2VT2hcra8NZRTD3oo9CIpFfvDe7muvc6gCeHppXHS0yhUS2PHGbiRp89wfthftXmPSpMeJe9zcqaR4VFUx6kAj4WgwUYnwUtVj5TKKxuV0WmxrRO0JkiqFB3LvqH20kKpPWDtLZJ+eVD2VH6VIR/JoeZva07gzbqy7rksVJXD1xJoV4a+Yjk21I9Ib0Y4XkuA4AfDsQ40iNm3QpjKMFYAv5q/NlAsH8vNOZVj2O+tYj2YPh2lZDoIPLJeW2r7Sz5S0tHie3SoBljuU5+77JMN1UsyXDo9wu+s/4b6chCXHKtTgql/qEf8dGEv2Tn9ah5mWkKYKk7lFHJM0nn0E8Q31XUQ89nRfCwa6KSTJs37nfOnAmwJQrKs6x6LUNmM1Emez/vTNS/dnWGP0yW3BOipBjDv5dp9tYYvdaUyul/99jXmnUrfyrECOP6+rg4pTqdiPeihVAAkgQs9Ru5jsdLN9Ck0HhUoodHeU2dIqnd1VcyOr+fSQSU0Sgkc/N0KvnoW0KHaiZEdSX/8t0rale77wRZ2H2Gz/dJDHXmRNKDc+JjlT0OS9ch2S2Wb44zXbQgtldFOcJMecAJ9fnIeeKlxX6tSOQUsZ/XdZanAG8FQtjXvVcaW5anKSGFZK++cLMpVSf9KDfhI7X1UV9XmwTV1kOK29pg8Umu7QzXwaSDj/A1+CC621JbSNtWYtmo5j/Xe1nxuE/gT8ORn5VxV7eT7ycKvA+jup3TiDHCua3Xcew7drfm7vipgnuykv7stK2crv6eeTruSQlviJ2h7uZHtfNzBjSdEzh5OOJRbAvSM1qw56KoJkHGs0NcxPZleNZnXebAV+KFnlstRlaHnJs28X02gCgCkYvD3A81ftpjMij/PqU1cXqvAievjE2G5zEipvPtKIdFYsa8zbraNw98owvr3liT9YUnnpM0f7P1ynFIcsRkWpjHylo8DABVQZDr0Kt3W3hdxs+W0EaW37jSluo9YdufNzfjJvoxkHQg5zhseATHqBhv4BKBkXHLpTEVa1Vig/rg2hb2qxu5YttQ35bLcLh/L+TjSrhjoZAcvq+8VqUCLwQ7LzY286xyKahxSRgx2MmYVU5fhqZfOqy01P6r5kXMvld+pVufLU/p3qYG+3EtDRyed2koq4L/O+a3qqbh/W8TxeOHerSddziimUm4J0MPBVDEZ0qqCTtR+qLmSyWWrEViqxk2lANIQ50RKTzSFZSGVTWNvulpaBS1VmqnAuOfAZUrZUANFd6t5r1RGI3BypObheg9LgohkS7JsCaIYvwKoI9DJfnB70xDsqxms7/7Sdu+q2n6BNKQV+5LlzPIowqWhyfFWgYsKvFYGi2Oe/UuFPxpjNj4VgGB51nnHziu9c8Y5p9b2VzQfb067AsjOO5exc8zwXjoYW2rsy2XNT5TxJNVo/LPuzJd1S4O/N31e1RyUckMugXWe3JTmrEbmzzpzU3MadrcJmSOWOx8hkcC+Ajsq8qJOyjlYOTIOuxP3d9Tm41vVHbH9Kc0N3L+uposuS3pQ8xNhZI3Y3pTUj2kTqMcJ3oXwvk+dnsyjv/vlpC7TU5BsuWOxWLxC0g8vl8sfPunCvC9yS4Aey8hIE1D4Wg5eT+pcWtiIOCPDNQLNNNA5mSrDXKW3ztBKfVJtS3qpmmf0+rg3Umj5glEbq5HC31BTNgY8SWGPFGS2bbJCyQZQoafn7jplGdk3CXbJ8HBZ8Ia6R+iNuGbcHlYzVlkWCxmaNETSajtUAKaqQ2VM09hVS1Wj8JY8Msv2zo3nvs7PKn3WNcOMQBoNY5bdUu23SAOyLk8aH4sN/ieovaPp9VoF0RULW7Uny5XLzAQX+9O1XJLKsrLOOUZS9xCkbaqfnPOpq3wQH0HOjtoy7mNaNbo5XhIMsS0s6Qh6jnJ+pqNTjRkDZLfzdTVgvIe6Ul/yiDqZxSw/da2lWpYyyObvHD+p2ypGh5L9aebVdUzn70mVJ24j82PL5fLlT0jKT5LcEqAnl7cSbUurACORfRplab7eSw+Me38qg5DAyRM2FVcKl9bSU3Pa1X4U1vHtmu+jyDpXYIT7CaT+9uArEU7qEzU3GCa4TONT1Yntwb6j4eXGzOyzEVPm8lbAlnVJBea1di4HMXwFeKr0M491ZeL1ClRXZa+McZVu5s04NPYeQ5VhT3BFOYpw6wAcv9sgeg7l82GqsvtajufK+UhjRbku6ZXqD71b52lzfHk/GKVq9wTolhHY9G/2AQF6gkUve/nPgGd/+tvV/P1Y1GFOl4CnaqeDIh7LQhkB9Grph+mP5oHTvDCFe0z9cRSelwm6yHKxzJWOXbe0xT5KfcQyJjCWVsdROtneIL6v1XZNkHomJyvHLX+euFQefzUQrZjXoXshjJWxFVF6nrk2u47xGRlb/zbTwLwpfoWCqfdK0dpzuF+NoUhmxPlu489pZ5mtQFNxVIqEoCEVPe+fV3+MfsV+ZD/y2UhetkujJ60aQX+6v9k3zo/v8Mm+8ZHSSmFmu2/F94pVSFCXbe0ypkeZ+VUGtPLMM+0MxyPIVdtVQMniPnK6fIZJAqN1TmSWpwKnNOzuw1H78l5lTMk4HGn+0k5LNfe4RGGQkCCgGhMb6u/HSsfIMmrvnG/SnM0gQ2Dnw3P1UHrP0XjrNoLpLMeO6vk0cuYs+W4wltc6xr9zE3YFjF1vp+lHOkj9DfVc/nLaZqTvVGtvPrjRS4IZJ50jCx2z0TaGZGwqYMTwbguPpyUg+QAA+IxJREFUucqRcrlORI6egL+ngJx6piePcSYDQMVVSUXVjgZhGnR6uvxMhulg8J3LI1RO+WnJx6ZLnX4mfb6lVWXKOhzEPXuA9JCoVFi3ylBWbU2QeaS25l5tICbA5LKV+9Ae9sh7pGHOfjgorvs4rOv4LtxzOvS8jjPebOdknlhXhq1YkeNAQ3rfKdU+DRpHl6FaNmKYZNQojpvjp0qvAraVoa/uVWmwDMcxBQmORmwn607wzeWZdUCeZfU45jxxH7hMnBuMr4gnrX8eFVmcLc1PQ96p/tA+g4lDdfZHuMf6JbglM131d35me2QfO93s01yqdh0fnu6dV3vApQ9NcAy6/m9VA358KavnN8cSAf86XT4a/5WDyHGfTpDZHYZlGW7mVOoTJmfP6RnKqWd6qiPmlsq4VNQk79GjSvE9eiSpnCvvmJOeno/LkAokl4NSOSuus+xSn1D0NKzERqeIrGQrL4eSSi7rwzJR4ScQY7ldJpeT4ZkfwU6+QDTLprhPVm17yvNqESZZlKrdXacEPNV3lzeVaS6/Oq91eeZRfKkue7JOI8N6FPd9jeObkuXK9k6DPgon1YxmBZZs2J6mzkwksDgsrvuTG1sTHJOxqOae83baZE6yjuzHF6i/c8txaPAT5I0YXEV4h3NadPa8zHVV/RlQ23HfS19bCE8g7k+CI96TxmO0mocV2K9YkmTZNtSesnyk9vynbbXlLgI1yjnNWasRi8L8pXmfMX86f5yj+VJYti3Hx970ua/uZElzJmpdf5/JycqpBz0VsBmts/Je3qcXUXk+NLgOr/hesUb8nbSx80mQZSWbdLrzoIdAL5Xp8l1jLAvLn2DNzIo9xXwIWNaV7Uwl7noadCW4SoO8qVXFOjL8lhdL+jzNgZfrVAE351EpRrZpevE0UMnkpkeYDJ9wv2KFmEYyNSlsCy7bOd1qvFbj24p8HWBJEF6B2BwTVXqZLutgg+0yZT0JUnMMZN9ROB6y76s6JQBJwOR0DoqwGd+Sy0rrAJ6NZ6ZfMSj7KB/Zi6vq7UTQzjTeNYW7TfOlog11MGSHYAR6nW72x/aae1kXaT6OyapxvF5RAzPPmX57SdLOHMeNXz/hE4FOv5rT/D0CsTm2N+K69XK+kHhX/RERZK5Tv1d9eyJy+AT8PQXk1C9vjZgdKrA0dqPJ7LD8JJ2s+Kw8YcetvPIEVVwOqSRBRXpV1eShl5KnEQgIbPzyFM0NzR+g5nxSmeXvzMvKYuQ1VkCsoo9H82hf9QbA9FzzuzR/GrLTz2eYZHoJpipAvY7tqVibXA7hEtYoXoIJKs3ReEs2ohpHFbD1PaY3MmBs94r1S2GZbMCSheT4fESr9bQcabXMvs4wCdasCzwXE3w7r9QZFeBju7wm7o8eqzD6TYaE/byD324r1+lqkY60uiF5f7q+rf4QRKk/TNInMnNp2OM15+hxOqmqYzp40lzXMZ71ENkhx9+drnkJKVmklNE8yTBs+yq+wZLb9vxUxivTb7NObjOCZgt1+miOnMnJyC3B9Fhy7d73DVCsXCtvPONXp6jy+2gfRk7cFIIdUtQ8mrmBe+c03wScTElOzgP1Ux65xJRMC6n1XIfeU1e2FQWddVIRzt7Zec2VNfPf0+p6eFLgNjyOe5/6sfz0ppMpYxkrA0/DVXl7VZw8bVTVndfzu9uccSoWMdOujLvjkGE7zuPm93WGYuT5spwcg9VyXX5PUEYvPw0D5wTLwvZYd7qGYX3fp4E8HyiZPvuegDPbL8ErASL7tTK4FdDKlwsTDNN4u33uVXs4H1+yeYj73P/me3YaPP/+rKSvVNcDBGwbiJeyDgQli8Jr1Blcitsq/tgP2+rvrvNztDan7yMHLef1weB6xvH3dDrZ5/uan0DM5UfXKw+PVEv0T5r4icwf6L+ngJx60CPN6eyKiqQCSsbG3wlEaDQtlWLyZKw80FyuqZY+0tP35PezcpzuNfXnyexG3GpySqsPGvSJLV/3OrjFk/hATXnuobw0JFkXgiKKJ7jLbG/tgrqxMR2cDzg8wB9BntuaSwFWRjwBt4P6UdFbked7jirFY3BM5cR6VX2+znjzO5eZcvlvBGir5Sr3BZUtjXamOwIhx7GOVPjpbbMsFfM4YooS+DgPtwuBYObNMleyjuVzXjbmufGV9Ukjvc5IZT6PqwMg7jskKHV7pINVAeBciknW4YoaCDiH+87DOiXHZuUUuJ5OdwefjptMyIjxdv7+baBJIOc6c04eqem8XTUwt6c5SBF+89TWBfU+cptSx1FYjgTObGPfc5vcjvyTTXcb+3U7lYNj/WHbcaJPZD6TUk798pa0upm58vakWrFXBmlD6xUqkf/I+8n464xKlj3TJJChkvKEq54BcqT50z/TO92fPnfV26tSpCwjn+eTxi+VMZXtlvpTcO0VbWqe78WpvA9o3r5MM/OxQuLyhE9w+IgoT39VXifBTbYTQW0au+0ISyNTgY9sY9+T5uO1or05PqqTS7kUkenkWMr4BPsMV0mmO/JSOS78PcdpxbhW1+6SdI+kN2h+ojDLPWJ9ec2geE/97dzJynApIoEP61bpgCzDOqaYrIvDm5Xxg/eczwHCHCcscy5pJmNzTm1ebkn6junajSm/26bf3qNS9SnL5PF/EN89j3K5nG1t58fp3jXde42azrig/pZ5qc/zTTXdcVX9GThkjJx+7jvivObJVdbL+5zcJprKcVVdl9Fp40GCbJd8RAIB5omBnjO0VcotAXpS0diQWbEQzKgIm32/DqBUSn6k+J1/lW8yQSxD9QLPSgmnok22KtmtzM+ghGlvqYEde1p5vFWae8UVoKCS9u88Rkug6nz3NF9+HCnZbIdcLvTnhnpbVkdEqZwtacgS7CTQyfJQcmytY0zcJk5rBCjYPqO8E3jlffZBlrNisCpwx/Ll/qRRntV13mdfcLnAT+bdVN9oX4EMSwWKyHh6LEqdDaQDUZWR5eO4vaj+IL2H1E8EHmruPLmN3e4EOEJYGn9fI2OZc4JsmNvH4RKwUx+wbVymh9FGfuCh8/IbwTnvK6eE49NjcBPfkyki2+WwG2obr3fUmJ4rmm8MFtrIDPKBVufMtnp/WEZzIu/7YYgGxXdO3x/WfP5d1Zy9dd8SLFUOj+XEcMfZC0eHckssb1Hotfm3VNPhVPyZhoXMiTSftKNd+ZXnXDE/ufafeVJh0cBwApFy3yjie0LmJLeHQ8VrJXKvGjNjw8C3MjN9f2cZcpnAZXpcqwrQ4TfUnsVxv+beURpaPo/EYayUaJCcbh7J9UMHrWy9VEjDRANB+jqXE49jbOzl+s/pW47iWo7DrfhkPJe/ise0CVYyXdL/LHeCvBS3M8Nsxe8KGDLdHPO5zGJxGe+X9Cr1UzosB/Okc7MxCMc8K8dg3TIH40kN7FxQ2wfzaWpsFMeG43A/zQgoHyGMjTvBXTWPt9SM8UW1+bOv9ooJhuPyKdvC189p7ihcUzPkZlE8P0fgPeszmhdk0HMflccP2/6uKaxZqPNIv8rD8911k+YMTiUJCpmev/tE2FXNAU4yV7m0TbBT7f10GiPn5kxOTk496Bmt7dPL8gCjMqCnMUpXqmlcC8ECgRDDke2pNk0mMKqUoicRy+O4Xj/2Zmen4eOnWWcqDp/gYH121DzWS+onOnyP+4ASYIw2a+6qKaxnqylkg5S96fp59b09TteyHZ8spxV4Lk/xO5kTt5e9Ry/rOY0NhN9AeNeP3nMCN0syASk0OgQtuTzrekhzQJLsQO4pyL1tBn0EICz3pubpO8xh8Z15JZMgrY7bHHOU6mSjhfOZy4s0IikEvRTPRw3uc78HxxLDu/9v02rf7Ur6FEkfsnyWPum7upFk21r3jJxqsi5sJ+uLBBIO57JeUZurF9Tm1COaO2P5SZ34NElfMn2SHfQelhwvOc9TzNhQN7DMnLNeOvNcPqd52xuMX5mukZFj3+yogb47teqEVlKNEbaxHSM7Wa4Xw3EPYsVgjfY4WbY1b9cTY3sOn4C/p4CcetBTsSqVok0lXynb/J7gxdcqj8PCAU+kf6T5MyaoQEdlJ8DZwXcaaOf3uObP67gx/ZGlSc/GgCfXnv3od4ORDfw+pzkooFE0mLlDc1blutppq0soy46k3yrpL01x1q1tOz+XfVdNadJbdzuTdqeidnkOpnIcIC0+XIztsaGmUC9GeWjMspwuU7XPJgGMy87+3og/hudShsMrrhvseumSoK4yVLn0WwE5llcRzv2SoDXnx4jhqIBger+VY3MY9yp2NtPM+FyaJZg/p3mZzk9/WZ5DSb8gSV95v/TV/R7L4Xmzpw5U3B8JkN1Xjpv3mDbn/476HpM7tLpc6ToyPbMoP6MOLKwzzPYQfFgX0PHZjL+duEeQVLEau+obg69N5bttyvutU9znT/Euaa57yU49oPaG9QqAWye5XG5/l9FtwsMP1I2Wq5EuGdecl7mJutJrZHrO5HTJqd/Tk+vTlaKolh9SbBTyJAXjOz3SlZzUFQBzmJHyzTIwDBUEN/96ouWpEH8yXu5VIGi6jrC+vqe+l8dixXcVaW4jHakrRbdhLr9cVF+bd56f+lxJv1e65y+2JYyrmu/l2EWeZq8O1JQ7DYYNmOt3mxoIlFpfnFdfKniGpGeqvZj1EXVGxEqe48CGoQI5FYAwEEwjbsnxmWxRMjpk2SpvfwQqRoCe82FkQBl+Mz5H4nozLsuyLj7Hc+Y7mqsMk3WR5ptn15WX/cEN0p4Xe+pj0uOD7f7w9PsffHv7fVmdyXQ+W2rLXlemazZ0qbeE+/5k+x8U1znHLqq/c8v7lqS5M1Hl8+bBPbI7kvSo2jx5lhoTfGWKc2H6/ri6kc89V3uav23eoGJfvb3sxLjMz1cDOm9XW+q6IOl1mrM97ovzmp+Y8vyxHuMJvUOkYUB6Zfp+ccrrF9SX1ewo5TPBcsymHj7S/NlJBGzC7xOTs9dQDOXUgx5LKnMieioYKsNUPJVBSMXkSUBK3YY8jUt65Fzbp9AQJuChAmJd+T2NaxroytPLvR17asp5Q42V2VF7GuojWgUjuaSyqfl+C6kr3qdpbsTPq5+y+Ie/JD39LzZPjWxBllGaAz7XOw2DP9OIG9R8uqQvvqD37FL84cvSj01lSq+MLFVKBX7c5mm82Z+8vqWuqHnkn+Gra+kdpuK8qNaX19WMk9uVbeLxyz6VOshkHdjG1YZlIVwuNbJ8ZOqk+VisxnAlntP29BNccv6tY3IpZkW58dTg2uPe95JBOVAzyr6fy0pmP/7406RfeUT6G1MaBuQuVwXcnEbFcjEuHwVxRW2+ul6K72xjgihF2EOEuaTuSFyT9Jbp971TXtfVNz4THLDfCZ4IIghg6IBJTSecl/RlaqfK3qY5qDlSX0o0M+3Nx9XcdTgDNeH+XWpz5kE1sONxxvdmcanLfVuxackkcT7k6dtM50mXdV7FB7HcEqAnlwAsXF/2vWr/hCJOLiGkMl3HyLAcldfLe0nJpxFa5yUzXFLq/jSLcU59aYntoOneBTVF/MvT/YvT531TOveoU8xkdizbakrjyvT7uhptvaemUK6oGeAdSXerKRafdvEeBHvSrIu9b1LINBjHMQhm2K6oKdAvPifpWyT9nqX0yoW+4Iul1727lcftz6PoBFYVdZ6Shia9Oo4bLj1xMzafpVTVyUaER62d19PV+u7Fkt44xXlo+tzQvEzuR47HbG96p2TBsjxU+NkOlNGYdXmcxzogkCC0YmJdhmRtXWY6QDbIHNcGL48jzF3q49Zjw32X5WH+1yX96CP9ZFQybGkYk3FOwEtnZQfhH1IHQNcj7qFW9wdt4DrZKQsN9Ib6IyCc3wMoPwGvWWDuQfTSEHVTdcybAM/s7UNqTtKjKBsZGNeLDI80n29uzz21Ps3lpyvTn4GYARLHN8vvciYjlvbGbWehTeFcOlHG50xW5GYcsFMhydhU93MXfcWQ5Bq0cK0CF0yHCuWgCFspc0+aLJvvpWef5fWf8/AzNrhsc2n6/tGaK/y71cDAZbUjoufVPLj9KZ17p3CX1ZTeXeqbBnem8J8wpWf2Zme6703L96kpLu+Leav6e3U21RWOy3RO/SFm59UVHBUG/6r2snApbcv/fs83tQsv++fSdt+/Ye/Qyj6ZJCrTBGfMO4FqggUyinyAo8FWHqt3eD50jcaPoGNH0ldJ+vTlhr7mhfMN4m4PGmXm4fvMk/XmGE+wXzEJCRKrpRyGzbIQfFE4FijVtY34noCPYTK+AbONth2SvSgbN76yL9xOB2onz96iPjdTrzC/qn8pRyi/l3oP1FjZ5+C3wzoNMx9cQtrVXH/k/GGfGJAne+LwV9EOHs/eH3Neq++p2pzy9yfDcL4YLFrnSH0f0476OwKvqz6e7vlHYMx9R35nl8vq9j1u+SnHJfvVS/8EztJ83pya5a0P9N9TQE496EnFtlF8txJPytX3pBrY+LcnYi5bZZjK2FWGgPGo5CqFnp6160blQeXDeuVmWm8GvKjGxPgopjcUmhX63WpLQXtqyug2da/1gvr45rKMpvQuqgOl62os0fOn33tqb6DemspyXW1/zQX1jbfnpzim1l1+K0yCmOOMn4HM5pT/1cckffrXSf99IX3OF2l5uedhz/lIq8CDHl163GSEhGs0rNxXYYBlpX1eq8CVQuPr+FW+/vwZSfoLR/rl183L5A3tOV+q76xHzhPOHaafnrYQ3nIUnwQcNjwE8gzLNJJZ4lh3egQWm/HnuWYgIFwjoHBaR+pMwP5U1ns0P+HEsUZwaWNsMOJ+HjFZFYC0EFS7fgZd71BjX1wP18nGnGm7DXM5ynVh2GSeDdT9lHjfN3DZVXdc7pnuXUUYjgfPObeP99jsqLX3x0h6yXMbg3lF/XlN7m8DKreF8/Yc8ziybjNw4mbs7akuV1QzrCM9I/V+TN1rcOm2ShB1GPHO5HTJLbG8Jc3XUnkt1/3pjfF6tca9pbmCqZS9DSCVWKX8qcirvT0GPzsRL8GU61gxRlSK+dBAqXtFLp8Bz4vV9iY8fQr3gun369TYHsvb1fcMnJvi3z+V5aKa4ro65XNR3fM6J+l/VXu66lvVT7NcUWOYzEg8rn4KZWRELaO6u43cnhtqrNMlSX9P0h9+tXTnR0lX3yn9/amsd6uxUWRg7JU7bT4jKI1IlstjguybPWAbRRpfpuV9Nel1rwMTLu8ltfeRveEvt+uXkSb3ELGtKiYlwbLz9xJEVYa8xnmWY5W/CSBZlgOtjnWnx3LYAeB85nzlcg8ZPfblrrrRPa/+4kiKAYvn6L76y3m9H8Xjx30szXWQf/NTEY7x6WRtadUoH6o5JIfq+1VyzGVfOx9f39a8P7YQns5eiuPvqjtPj6oBnWeqbwbeUXNq9tVPaFk21NpuV42luqIG3qS2YfqNki79UgNz96iN7w21Z4jtqF2/qvl+PI+Nc2og50H1Bx1+vDrzTF1L9orz32lKq6+fcVipZgndPgae0nzcUU4E/JxtZB7KLQF6OJCqdfxUpomyNyMsFQM9+tF+oOM8Ni5pSN0gUomt87RpSDId1qdiiQj6qPz80K0baorjU9QoeEn66emaWZ171F/uybcxcz3evzfVAM/z1ZTSXepHYbemNO+ewl1SU5TeL+Cy0WuvmLUEn2mcaQQP1JTvtpqy+98kbbyz99mO+l4NpsHv7qt89QTLyP5jnxH8HKkDEHvZLKv3kzDfTN/twXHusAahO1N5DXI/XtLzJH2v5idrWN6sO+eBr4/23TDMluZ1cpmZZgUEvAGVdWQclzPzZJmYHpeKpL7RlkbMcW6oGdIDNcObbBaBoMMnG3hjSs8gyIYv28p1SmeKgN1yEN89X7lvxmU9P6W/jzZIyWVV14/lYN0dp3L6XGaPMU3pGmgfqM31R9RPadkR4h6iHfU2u6Lebpen+C9V0xNXpvC3q+/POa++9Oiy3aWmrwyIzEA9rKbDriOe9Q71rAFkVX/FdepWlsHpnVfTb3aghDB0fk4Me1SD5ExuDdBjpUdDkBM3GR9pPkgZbiuuJSvj61wuGO1VSIVBg0Vv2AqSYaXxsltVbk6gbfVlKYMlp31eXTk+XdIXqHlEz5L0CfdL+qh/Lelt0l/7Gr3yf5Y+9py0ea15Xg+rL81cQrrn1dkM09YvbKloT9KHbUlPgxZ/lqQfmb57WeMx9fbmBku2f4K7bKscC9IqjX+7mvfH5QYDm5EnngxhGgp6x2RvkqHYU2u3Z0l6uaQP+1DpDe+Wvkf9HUMsBwFF5p3MpsdbMgJvVz+6m8b2mVM6b1XvPwMjt43H+jqWoioPwUjuo+FcY/mZdi4bJ5taLRWRLXEZXAdeO6fu7R+oL9e4nzxvCO7dbmRxnLYNvw2pdQM33lP3jAyd8+XYdLsYsLCNLqizHlI/Hl85BFL9wD0yadne0ry/jhDH9w3ynK5BzmV1NkxqJznfoQ44Oaauqy9x70n67eqszLOmaz+tvgfH7Xx++nxsSvOGmlP1qLqO8vKa9YCXn0bv3LJw/JE5SxtCwENdS/0szfti5HSfyclLRUDcEmLPdEQvM5xlI65ZAfJ+eoH2XKv06DltRLwD1UtqCZTWsUi51MAlLStIKijXxxP/gpr39WY1lucTXi3po/6dpM+R9D9K/9M/18t+m/Tvr7WyXlQ3igYkW/g7VFNOHynpRR/eFNHnf5T06cs/Jt24pN+4/Of69L/T4j79adLHqSk00+Q2RGTByJhkG1oJUbmQ5nd/2ruU+h4Lt7+XnPI4qfPmXo2UNKwup4X9yJMi5yX9aUkf9tsk/az0CXdLf2C6v6/5gx2rseW6ue4cS0KdvPfhkvpprqyby3tezUs+r97PKVT4zpfiuZAOBxlB9yH3VRxpdR4JcZiWZUOr4WmUk0WpFNl5dSP7HPU3em+qb7xPcMuy7KFOPA69h3C5hJngy2ODe4+28JuAx2JQta3Wtw9NZb9LzSl5NMq7gT/rCKZFJyz36VF/MS1fN5NypA4mnOae+lPiXe899b7nPrN9dVb50yR9xEe1PvjZ6dpLtqTfrLbPx+DF49zp7kz5XVJ/SaqX0lOvEvT5mgFh6tXDCMdPoQ78k/qR9+y7E2N2KE/cRuY7FovFKxaLxRc8eZX5wMr7xfQsFovzkr5Vzb4tJf0hNfv6verPiPvS5XL5a4vFYiHpmyV9vtp4+Yrlcvn61VTnYkWSisH3KOsAj++T5SEdTo+VA7tKj+xPeujpRWX+OUHIFtgzqpbwzI4cIqzLw2UTy6b6qa571BSmPvVlairHcqf0DdL2v2yK6gGUaUvzB/q5bS9M1978q5NRu/8LJP3NKacvlP7E9+tl3/Ileu20lmZgZiBCY2vgkwaObIoQJkGQxXHdn5c0NxoJZJmmyyjNx1N6bVSi/E0QZy/9Hpf/Rw4k/Trplxb6mDs6zU9map3Yy2T9hbi5xEOFfajW5xtq3vd5Sb9J0hd9lvTdP9n2X3EpjKwGgc+I2mfbME8bVo8hM3qjY/ojYJNzhctJlmx3qTOg56dy3y3pz3y42ka2A+m//WR7no7U+mNDfS9KskwGOodq+0duqC+P3TPl9cvqTNCIUXB/7SjtxyrzlOINulfU35t3v+bPwbHk/h0DZ3/ntWThzqmD6201Z+VRNcfmUP01ElfV9YJ15e1TGs9SH4/n1V/euaE2Fs3ovFrSq/9zAz1frHb67VUHrU1fqqaH3qwGlHYR//JUjvPIh+1tdiiZFwJMtjEZ42TEpNX+JBu2pTa2Htb82UEWOqdPMXlsuVy+/KQL8f7I+9sn3yzpXy+Xy49R21rwS5K+TtK/WS6X90r6N9NvSfo8tTl7rxrz//dvJoORF+cByCWjrfid4Z3eOmBCGTED6SlkeY/irwrna5xgIwqfaecE3lC9XCF1T/VQfg7Gv1FbkLL8d+n1TZnvq9HTVoRU4qzvQ7j+bEnS79IKb/Bl7eO8Guoly2JF5b1D9sDo8WZbSPNlCKbjh81RgeWeGofN/SHJoNzQXJHyswJNabwsV/zlV6bW/NrORrkMCepGFDmNk8vLsVWVx9euqD8nSZo2sr9w9bUbG/FpIYNROQIVgHT43yfpm7fmr2eQ5mPJ5Wfa2e/Mq5rDBj4JNgy0vlySXiTpx5bST/yIPuQzmmG9ot6WBmfOk+3t3wbtBsiX1ZZQL6oZP+9d8VisxovnLpcLHZZskNvD5dpSU5ofjXjZBjmHUi+aqeHSncHax0zp20E6p6Yv9tVZqWvqy6cGb5emMH5v2auma5+jtsdMak7SvZJedq7de/UU9w89W/qC26QflfTFW9IfeVrrkx+Z8v7CqSzWLC85J33+01r+b5zS8BLbA2rLjJyvbmPvffMftxMk4D5QB+fWG0fqr31xPOuat2v+gMNs+9SdT7qkIfpA/D0F5H0GPYvF4g5JnyHpH0nScrm8sVwur6iN1++Ygn2HpC+avn+hpH+ybPKzks4vFotff1w+VBJJf1feOBUj+ykHI9Mf7as50Koyzb0LlmpMJFPj/FjeyqAcDeL4nsN6A51Bj8vrY51WUM/RRMk//UjS/6FGKv+spD+r//TyppTOq3vMVihkNuytXlBXDI3M+RdR6/PSj3av+JmaMxauAzcZcq+FJdk019eyGfc31d+nY+Vm4JbgZsQIbuIv80kwZEPD4+pSa+eH1J4ErWdIOr+QXiH9U/XNnwlUXF+CYI6napzQMI7kqjoAuyrpuyV9419rhibBUzX+ckybDaqWR1Iel3TjYF6/Kt1kcln/lGoZwW0zaoePuE3N3ZIk/TbprsY4GEwYMFVz1d9dx/O4tq/+fCupH3ffUmNm3Dd0xPaRlwGOVLMWHtePqu97eYYaA3JFvR84RysnynrB1yweP7tTmCvqRv+a+tOYOYbcP6k/36n+aIgNNWDzmqnML5za7T9da3X+4q0JEF2S9GXS73+n2vHSy42M+9IpnfvVAKXj//trku6WPv1cy/+y+qZq55tzhiDP4/2aasadczoZP2l+2sv3dyMvx2GfVID8TE5W3h+m56PUhu4/XiwWP79YLL51sVjsSnracrn8r1OYh9UIBKk5mg8g/jvVT1EPhSxGFpaK20Klmd4jv9NTPg7AppKv2KRkZ5JKTUkgkx7uiCGyEjtSMyw5yY7UPdJ9tQ2s96mBjx99SHrX4m9J3/ibpD/ym/Tmxev1FjWl8uYpnEETwRSZGa+lf+yHT2394h+U9A1qXf2z0k99tl75c9Knnpt74faAj9RPx1TtTpBD5ifbwu2whe9WaDvIx/HYb6m4yZLxmsuv4rq/W2y4nMePSPorB9J3PiZ9/VFrW++3cv9lnTJde5QE3zl+/ZcghmF9cuaa+n6IdyGP0ZKSEEYaAwPmJbU2+wFJ/5M6Q2BGpUqDc9th1hkK96fHPvPf0Nwr/8XHJX2fJP2OFvpyYwrsMOxOaXC5kXPK8iy1fVr3aN5PBkAG3QfqG2u9r4X1klY3K/uk5bbaXNxD/XfVgPKr1J7RdKfm+3LyuTUe+7ns6XsGYg63r6aUPe8eVx/zqVdzg3cCTeufRxHundPv2yV90jMkfan0sb9N0mdPFX7tlNDnSR/zGdLiK9pJ0wtqY9ZlO5L0Uz8v/fC1npfrxDpK82Xbag9eLmNtI1w17shUu5+dr8tg/eux6zjbOiE5ezjhUN6fPT2/Tg2c/4nlcvmaxWLxzepLWZKk5XK5XCwWy/cm0cVi8XK15S8ttGoUaOhSQVMJemDTg06mSOrUb4IOfk/j7HSrjcrV8kQCF3pk9NCy7GmIOEn9m5Pak+/KFM/Mx0NqntOdkn5Q0sW/2OJOzpN+RKt7GFgHMjNX1Aznm3+1eWI/8XPSsxd/Sb/h0/6S9NPST0yN9ei19iwPn9jKFw463cxvQ/O+svLmfqbNIqzbgp5eNUfTI5bmbKKVOw3UuvlOFuZA81de3K+2n8b7TmwQmR6ZBLc/mUcqc5fRy3csA7+7vRXh9jVnCZJNYztYOI/YJyznqG0MPHO+WBKwZH1y/uZ9978NsAHidfUNy98v6eKrpY942Q9LN6Q3/1vp36nv0XlMvb+rvXSWS2rs3cNaHSNe7tmffp/XnNUxm+I6c966Dcz8GIz5txmkP6nGvnzrFH53uvc48iBA93xzWiyny3JhundZDZhsRRo7mjsO7IM9zZ+QbAN/TnOd9PwL0sOXp/dhXZL0JWrHtB5SAz5f9BulK/+p0UO/WdId0v63t/pcVGOhf1z9NGaOfQNq4ZNOIHUHxwhBLfuDOrvqsx315xJdxu8r6g6h43C+nog8RUDKB1reH9DzTknvXC6Xr5l+f78a6HlksVj8+uVy+V+n5atfme4/qP4QT6mxtQ9mosvl8hWSXiFJmwGYKqBjScXM65acMIrfuRmNil3Im5udK4W9jq2pDK7zTsqfeWZ8Ggxfe5b6006tdK+pv7fnITVl9flb0qMHDey8Vv2dNdfUFePt6orwQPM3qG+qKf/Lagr+NZKuv7q/vHRHzbDsqm+EfCjqZM+aINa/EyTymSWVuD0cd8TcHRafVI5SBwRHcS9ZpypdP8vFS4N7au3zoObGjPna47asAx3poVIIjphO0v7u33QA3lv9mIAnwb6BQcXSHcesco4cDa5XDKivX1dnF/Yl/R1JWz/e7l2d0vQeq1yWcDrn1Mbvw+pM2Wtw3/1oh2BL/W3jl9Xa9HnT94emsLtTuH3NdcSR5k9Pv2eKc1UdRLxafW5xs/COGiBwXBpnl+s8wmyq64m3os32NH/3HkEZHX0CfIPNHZSLjswdknRjAv2foYZgvmhb+r4b0nfvS/rQlslXSPqKvyH94T8nfevtuv373iU9JB29UVrcLV14qC+xXZ7S3lM/4XVF86XCHHPptFCnW8cbZFqPpHNk1u6qmiOzgTI8jDakY1OtCJzJycv7vLy1XC4flvTAYrF4znTpt6ix+D8k6Q9O1/6g+qaPH5L0BxZNXqK2C/y/6iYlqdaUZHYqqeIluKgYlgrE0JAowlkqqt7GoCqHlWjuJRoZWhqeXfVTHpfUn4S6oabc3q6uLP7CQdtFfkFNMb5NzTBbwT6u/hyMu6c8rLDNJL1Fjcl481Tm37jRX3z6GnV26aq6Ysy2sCG3sqTCopKtwArbLYFkdZKm+p5heI/s2mb8zrBUqlzm2lc/3eP+5V4pqW+4zWUfeq+Hmo83slIVE8Ly5/iuwo3AfYaxJIhPhpIGMYVlryTBJ+uRy9lsf7cTmbMr6kuKnoue11zOquaaGRbPdfeTmQWOEzoGdEa8tHdB/T1zB+pHrx3f+e2q7b/zPbMnW2rzymDKfb6hxoY8E/UU7j9Nfd7tTGHPqQM+99ENdcDDvXDS/OAEf7t8Nvbu6zvUN3Q/Lum/vXu6cdcU6BtvSH9Neg/geY/82ba352++qzXWuVbuqw91cLOr/rww6yP2x4bmY4ZjgTo9Ab9ZWLeJGTBvJL8wXX/XlObFqTpXp7p6j8aV6f6d0U57OgFZam7MPlB/TwF5fx9O+CckfddisdhWs3FfqTaOvm+xWHyVGij23rQfVTuu/jY1ffCV701GVH5Jy5MlSXYlAYxwPZWqinAMS+OVip8K1ZIGMunOzQiXbA/L5e9cIzalvaM2Ad+qzvAcqK2H76lN0stqnfGQmuK4rrZPwJtrd9T3m5hVuaj+HA4blNumcj4whX3WFO/PHTWA9HT1R9bvqL+FfX8Kd7uaYnyHOmAx0FrHolDIdmV7ccNh9hG/M40EQe7HQ803KlfpsXzsGx+DNvNAry/ZI2kV6JLV2dLquFd8t4fK6+vCs33olWYZmFaCDcZfx2ZK8/oRrGcaBFBZJ84xxmUbuK3c/vta3efCEzoGIU6PSyjJGlTAL8EoGcmHpt/nNWe+njHdf6f6GDNz9JA6c2JAsaf2BPQr6qzTkdrcfJfa3NlVf32G5d4pvSu4tq3Gvl7GtZxDm1rdgMs29O/rCH+o/j4un/A0gJLU1tX/8lTYp/8JlfKVkr5J0t3Sje9pafCU56HmD2f03igv711FuGQiuXxIsMz56TgGu2avyKyZ5d9VO5lzn+bvFTM49v6pxzXvkzM5eXm/QM9yuXyD2gb7lN9ShF1K+h/f2zzWeZ3VEpMHLtfnUwlXxjWNEo2TFZ6/c88F9wJU6VXgOMtSAZzKuybjcKQ+2ayMHtKc6fIekx31l/lJXQnerT6pr6h7/Fa4VJgHU377apP7LjVa9z51cHNJnfq9c4rnpTWX216lw1zSvD9JLVMqkJJCVqYKWzFHCYCsGN0WHAOOk8A3x4q0ukfAS3SUit2p2EKLFfQIHOb1m3HMkl2rAKXrsBXhWS7mxzlBh6ACKZmGEH7kmTOsx6r7bAdhzPAYTEhtHvgpyluRlgFPLnPz95HqsmZfEshcU99jtaluBG9DHBt4L6FIzen4Kkkf8qHS33t3cxb++Jb0CwftlQuPIh/3D/ftvENt/u6ptydZL7KSQhjuw2KfUUca8NymzsTsqzlD3HN43b9/q5pb/ExJv/h3pY/9O1qR75kK95C0/XnSwb+ab0o+VGOk+dtMVTJwBGRSBzvsP477LYSzEKjvqQGuxzQHYmbldqe2uKT55n061k+6jBTlB7ncEq+hSK81AUpS4KSy03vPdVaOCypXe2bplaYS5iSqFHT13flXZfA9LhE4b3uRh+rKzVQ9jRGNjttkX43R8eZmTWk8pr4GvYu0zB5d1ZztOFL3OE2ZX1dTRrtqT6k0Fe8ysH70epwvGTDuG0rAkmkl2GRfH8c8JODZxjVplU2oGJAsG39X6WVYGvVkHTcG9zK9qk6VJABK8Me0czwny8G80gnxd+4dGrFL+b1yFEbzxOWncbNR31Mb5x7LTM9ePPvDANfhksFgnlV5LZwnh+rLXefUAP7DUz73qNn+V2n+QlOfajyvdkJkX+3g2eG72/6gG5L+4UFjSz9tivdG1Ml7elzuF6iBIxv8u9SA0hWN62bZ0eq4NqjgWCQAkpo+2VPXUR9yt3TpIfU3kn7tR0hf/ivSP32z2hOCLN/cdix/x7b0+TekB1o+H3KHtP1Yq4NPlrkcPlyR4v6kg2CdWjGIbAvO2z315XkD6h31wwpeNpT6ni6zXGbG9gdlfMLl7IWjQzn1oCeVLRVreljJ6tj4p9FIJc98ElQ5PBmVCuSMlsXy3jqgw+uVUnVah+pUroGRPaIEEU7ruvrTiT9SbTK+RXNg57oZSDmdG+r1Nxh0GZyfFe5jUz6Pq3vNlmQzDuKePfBUwGTtGJ/ppCFzOgRe2fcJfBi3Yl3yWlUueppmEq5rXlcyhUdaBdbMq0qb4zsBwmhJKsOOAJKvG4COvFTGzbR8imdfq3OAXnWW+yjCcE7kuNnUvL50drxnheNvfyqXDfJBpHuIdIS0pPlcpaPFubOpOYMideDgUz27anPvITXDebfaO6j+Bcr7AvV3bT2gBoA+TW2f3Jba/oBXqR2Aeqba8e4H1VidLbUlrc/ckL7zqJ2eNNi5X/PnhaS+4byg82GdQvDAvjDgsqNksLmjpgc++tEpnX8rbb5a0u/8lVbIr3luK/zvvSD9zcutQi+S9H/e0NV/1dtPhz0Pyr7mLNCuGqBLhkqa9y9BuMWO5ba67uOYNNh5gVoxv1TSh90n6bn/g/Qr/1H6H6R/+EjbkvSwWn8/oL794HGdyWmSUw96UlmPrnGp6bilJU5menkVg+TwpE6ZZyr8VN4jzzuVdlVHGmN7HVw2kOYsD/O7ob7/xg9Qcz0fVp/Mrqe9k6uRjg0E187dboeaP5DtktqG6aznQcSxOG3nRYbO90zb09BL87QcP5kfGthkMRIESavpbeN3MjQur9vGZeQ4qsAJvcMDfFJRJ0uV17Icvp+gYCSsewIOS+4PqsAKy0AGwPsakhHNvkunI5fBCOA5HzxOthGHy0IEjj7Svaf5/gwb5spx4dgaOSHpJHG8mjFl/Q7UT/44zXPqr5R4gRoQerba83huqDFCz5P09I+Uvvhuvef9Kp/yS82o2pF5HvJ6WNKDR+23gQGXabLvzTC5Lqw7dSmPrlM8lg/VH0i6q76U/obJ4l+UtHlBbW+P0clDku64LL1uSuhHWgPsbkn/5aDdfuzd8zK4D6W5fr6CMh0hDOudupa6hmE5jqW+afoX1EDoh71J0nO/UtK3SR/xXdKbvlyfcLFVQxo7O0+6VAbwTE5uufFm5WjwSU+MYXktmQbG5/f0aEe0LxkeXhuxiMybCoXsAhWx07NCt/ch9aO2h4jHycprNhD76vQqwce9al6my/e4+tNXr6uvSRPsMFwyJgdqesyMENuJBoFlNbNDr97s0p7qFyO6HaX5MdOKuTtOqn5jvxypLwtY2TpMxQAk4HFYtzEVrpcNN/Dn8Peq78FgHslMjGQd0GB6NH7VMuRhxNvUPO10CrLPHSYNisOko1CVXZqzYpRttT0u36D2WgmXkQ4NHRuDqVwKrvJM1of3c/wRVLstyboK96X5oxouqxnS29WdiTeqLUN/0WdJn39OeuYnqqGffybp77YEnvkc6dOfK73s41obvG2Ke2HK5zXqANDA3ACRgNJj2/VKUJdjeVs1w8Ywm+pL3maZLqqBtDf8qqTvkf7Tv1SjTA7VENujkr5PesOrpRvfLv3UQWfGnoE2P6/V8US9R+fJe72yHyqQ6vqfU99nRQA0YU0daXrmyvMk6dumEL9P+vANvei2Fuf2KTxB1qk3sh9kcur7IwtIdE6FzKUAD37TrRnfE2RLcyV9FPErdmdkWKkQqWyrulRepOvgycVTSEfqQEQIa4/G+dFDqYyNlcFlNc/IQMoMGb1TKzOuoR9O5dhHmlem689XU3CPI+6B+sMJ6VFa3A9ml5yfGS0/pbYClVRKm/G96qOqPRL4sN/JLKSSp0HYKOJSsR7F/TQkFQ1PsDQaQ6TshbAVEKNs4o/jb904HzkEnCtuF/6lw5Dzlel57FcOBcGz07w4/SUT6HgX1Y5/P18NGHj8GigbrFPYHuzjdJzWMVZOYwufW3Hdf142OVSbe89UOw15QWoo4Q+ov1b8k9R2Nd8zVexl7fp5NQfmotpzstxet0e5k3kji5lLdFlHgx32GYHyRfWj5AeSPn2jLck9IukN6q/RuCrpBw7a4QddlK7+kPSdz1KjSM61/UffP5Xho7caa/VqteW7l6qxYe4XgymXi/rTfW3dz7HpOeG6plOXwHdTrT8c7gH533eJ8suPtzhX1VhvMrQnQricPZF5KKce9FSeWBqcw7jnCWnjmcbFYOE46nEjvq9bNuO99Hz9mdS9P6vxtB3h0oOuykiWgvsKrAhc56vqr2wgi8Hy+DsBFpWoPWYrjreogSkvqVERMS3mU306bbMsacwSDFBJkZ1he1ASRG1G2Gpec1O4UKdst2o8HsZ9AvJ71D1S99n96kBSmhshAmuPpRyjCQArcGHJsThibAjiHD7jVs4JgUyCtWRyMq1kkbI9L6jhgb+ktv+V8+i8mlH8Y5J+p9pjFO7UfLOy68t4aaAI4Dg2CJg8Jt0efGyBQZbruaN+2sftsj/Ffb765tffeE7S31Z7c+fdkt58IF1aSg8upVf97TZB/qykPy19xPQ6mHvUj9EeqM8DA6xdzfsk52O292Zct55gOzxd/ZEWUnvj9AVJP3zUwIrUnJ771FauLqo9hPlA0v/xNukn1LDbd1yW/t5jrf4vndrwuw/aXLg0pf8atb1M96jtnXmXmg47r84A2eEa6XfOiYrVuq7uWG5r/iiDQzWC54okfbKkd325pI+VdIf0u4/0KjVQxjY1u3Zikl7IB+LvKSCnfk+PZWTcbQx4nd739SK80+OmRVKdDFsZTguVWuWRj7x0x5XmStIK9DDuc1Nxla7jVkbpPUdGIT5efnlNPNZ5tBnY95LZ8NKZn9AsxK/Ky/sEeyyPmaIErwSTTs9gLPMjc1MxTx4DG8XvHGtOk+OE44ngl+PpAJ9XtAqcWC+mmYwGx16yTU6Dn0w/hf1no3CA76nvCB4qFoThR+OV/XCo1XKSOXM6lDcibxt5AsqLkj7kmvT0t0rnPr5d9+b63G/j+Z/5j5yMbMccb2QcH4/fF9Rfzrmpvoz7oNoqzyfdoWb536KGHH7g1zRX039K+rF/IX3NT7aJ9pulO7+vzbUddXaUjs+u5vOQbXoDYXY0f29Wgng7DLerOyZSf5DjA5ovqZNBeniq9z1q4OFjt6TXHjRm57dK+o13S//+oQZsHlYHDM77F9T1+VU1MLUxhfOS1Dk1IOSxwD5N59P14jhwX1j3OP7+lOY71ADWdz4i3XuH9JIPvU//6d2NqNqa6veg5huXnyI44Sklpx700FBI6wHMhlYnq7RqzGgoGZcGdlSWyhPkvVTOeZ+K2ffOTd9zWcrXbkZocCncaHhO/WSIj/Zeme4T7FTsR4Kho4i3q/my16b68tltmgMnpk0Gicar2mdlI0EQyDQJmqyQKxB1Q6sKT1rtuwQeFvdzsntMg8sWBCzM44pWJcEVw+c8GCnUBHvJBjEvaX56jPEYhuGczjpQn2ESyLhcCSiO4neWNRkn6gIbWm/w1XPbF88hg5vsd4JmAjGWgWWnQbdU889zznGEz7sinJeQHn5MuusX1GiT50j93e6Un5C0aJn9eAcqfrL3phro83NjdjR/Dpc3fR+o64fUM3QAs14e+2ZGvBfm/JSfAdau5q9fkRpYfYukawct7AvVwIQeamzOgfqePi+5Wy9YLqjPpSuaPzeHepzsXY5Vjjtvg3AbOX0fibdOegjfXy/pgXfP2/UtyNvPDko99qTJ2ZH1oZx60OMBlcsPNiKpuKsBVlGZI3AizQdqGh0aN1PU9iAzrZEStyF1WrnJN4WTeB2ochipn1bhyS3vxzHFfkVzZZwsBk9sVAbRR5MP1U5tHU35viPKYm/XcUfefVUf94WN2f6UZx6JTvbG/cxnG3EfA/NMI0gDyLIorluZV+PL+VZsQbXEktcryb4nI0FmJ4FOAnVKxq/CbAyuH8b3EZBkmTIfG6lskywLDRhZKefBJZlH1cbHN7+jXbui+VvlmTfrkeO8YtD4m+FtpDl2zBYQ2FsIkrbUx8uW1AfqwxqLN8zdLe1dbl8J0J03y+76cF5fH3zP+W4Wif2wrTYH/X69RzVnzbwBeE8NEPn+FUmvVFse+3g1tuf1mj89e1fzdwi6btvqDzx1Gc9PcewQSX3MGQgK16W5TTFA8bUrU1p76nuh/B6za9O9O9SWJO9T032XI3+OR7JsZ3LycupBz2iJKalkae6RV96rw48oc0rF2lRlq5RwppGsCKl4A5lUUFSc9EDTCCSD5InuB3lZbKCtuK5rdX9LeuZZNwIVMiZSUxDXNAdSboNk0vjEY+F+GiR6mgZvDu9yUNFQmJ/Lu87xSQBkRU82QZov7bA/kgEYgQgul/H+iCmsmM0cTyxDjodDreYn3KsYPgrLlemM4qa37WuZniJM1e+WLVyvgKT7yUbzAfVlJKft/L03JZeWs06M53vUR9WYuR7huUy4oc4ePKwGzG6frt853bsgNYbnRWpoQh+vxo9Afm7RwuxIep60/aaen8EODyZ4vnAOeP6mA5asyJ2asxZ3q4GVN6ifUrpz+n6fukOlqV5mlPama26fO9VAkF+kerv6Efs7pjBcBrRuv6H+mIzzast6D6g/A+lQ/aWkPAF6pDkTRtbPYW+os0yPqOtIb4R3eVyXf6z+PjPvldxUf83PNaR5InLG9JRyIszbeysjj1zqRrXa+2BjUXmOlIqWr7zbyvP3dXv8qdArLy+XXJLxGI3VkaL1J9PzJ4FP5X2O2nQE+mhwNvFnj8xGp1oSOkA8gtIEKA4vzZkU5k2GSvjOY7WUNGa+lu/Wqtq+AjAjgFIBarKCZCsyPX/yO8d19ktl/H29GispCZoquRnwz3nhcnpOJvBnuvyrGBgV3xNoVmk6v+qxC0dII8cRv1dtdqB5vSw2yga9BlZ5GvJAnZ30dT7Lxc/tefSH1BDE75T0sv8o/ddFz+zfLNom5s+R9Brp0e9r4OFuzZfSXJerasbay0w8EWlgT33pdvLJMrfZ7WqA7LLaO/6uI94l9SVnt4PbyEtcb1F/FYiX2D9B0u9+bju19na051vUQJXLc4g/75c5VD+ttjnV8/7p86I68ybN2TfqHtbzghpYsW42ULmhhj131U+oPTDVZU8NvL5V8/dtPap+2paA7UxOh5x6pqeioaU+kMkW+DrFk+ZmlHfmxzxHwCmXFvxZedFkCehpOg8yQJyo3IOS9WPc3DfDcpvdkfrb1b3nJuvh34xfbQpkHUlr5/LhaKnFAIWMUTJZvpbsURo858lypkee4MbMV3XPXvsIgFZjKY0l295j8DgwWd0nAKyABEGH73mseFyYtTqIuMkMkclIZkUR57jy53xwHXivquOO+v6wTM/9luxYBZy4by7zS0ckWZB1feT4dCwIYjy3rXuE7x4jjrun1ic/PV1/9lT3O79X7RXNe2qnhQ4m4HNO0kskfbWka/3ZWm9VZyJ21Ywx54Lrz2cIGSyYBabecrnc3o7n/JyW86g2gkvz19gcqr8I9rza5uTbfqk/efpRdSB2fkrzcfX3e/GJyXbarNcO1ffXuE4eFwYjBK1mijYQ/97p95s0P223r77/zsteZrUNhh6d0iEoI/h90sVvWT+TFTn1oGfEnli4ryI9Y4avFBbvjej3NCgplWGgx7uh+ZISjeI69rECLrmEIPUXWVK503Ar4hypTWLuWzqM+4rPkRGW+kbd8+reNZVnGtgElM7b9WC4CtwkmMxyZZ4EizQ4Un+L/P2DtB1vVJ8KJErr265iEHPs8B6NM/cdjMR7KBzvcbX9LGzbirnKNjuurBzfZPAsySLxhGQl7Bvvgcj8PS6SURs5G+kIZf/zetarEteX7UOAybHs8GQWmK4BqOv6kWpvXX9ouvfMB6Qbv9rC7H64GvXxqKTfIV39Hmn3Qov8DnWG51615SIy39RPI2fMepOOmZnbXfU5TidJ6gCce/YO1EDKEcJXTstVtc3cd035evk6nQ2DymrOHRTXvITlMrBfDqfrjyPseYS5T92ebKotwb0LdfMzxKzP7UjwSdEc3ye2idmyzsB8EMupBz0UKjrKoWrFzN85+J1eNS4MitJTl7rhS0bB+XCi5bFpaRVskL1JZUThPXsuplA3Iq9RfLeR16Dz9RQjgJEgMJepTNsz32RpyHJJvQ3ZFvQ4R8qCbc1+oWKSVjdeSv34v4HoZa2eOKMX7msjwJ0A2b/tJfrUSY7bNH78ZB3zOvupcgakfvT4G9Q8/29GvV2GZEiY1yjdZIDSiaBkG3nM5FhyntU8SdYmjV62pdPhuGNeucfP4czSJHBKkJvtJvXxaoOXe0g8xjknzqsZ0iP1d299v6YH9kn6RLUdPN/xq+33b5e0+3TpDc9ocZ/5adJb3yHdd7nl93Fqe2xeo8ac7Kk9C+f71QHVBc1fAEywdqj+ED9v0tWUpvfs+ITWpuZvqM+lVzo1FbN3m9qRdTNJ19VAzx2ab/w387utOVhOxsRH1N1Xnsvbmi/h3z7lcQlp7U7x71Zzel4m6fm/qxXs4W+XvnuKc4e6U2T94L07e2psj5fZhHCW3Kt5Jicvpx70pLKrFGQKJ6QlgZE0N1YZNiW9wvT6mWbGzxNF+X2UZ4IXKluKFXyyGdVymNRf/3Acm1K1I8GAy2Kq+Ko6fb3O0HvzMb1Pp5kMAZUowZPLlYCN5WIa9GSZXirS9Egrpq+qH8UncpKxYPkIBByHUhn5BABkKBKY7n6WtPuwtPlLc1CcLE8FXpJ58njKtqkkr4/CJZNGcOlyJXBel+bIsJC98O80UMmMVgwpv7vvEmTZ6zfYJuBy2z5N/Xj3FbW9LF72uaz2oMV71LYv/4Kk75B01xubcX5I0mtf3Yz33WrPu7mmdhLqMfV5+ID6E54fUjPwj6m/W89zx8s3dBQ+Zor/y1Odzk/lu6z5GE2njyy225qsyoYawLlX0ks+Q/q1f9veMfbdU5i71F+IzPHNOZ9slcdMBWSP1B/R8fCU9jPUwNwvqO/leVxtz/jz/7LaC1Dvke66V/ryPy/9EzXAaIC2H/mQMffc8qoDw54I4XJ2ZH0opx70pCJMhTUyChxs6YX4WmVoaDiYP/NMY8V9FlxuYnm2Ig2KJzc31Vb7e3zdnkxF01cMFdOxJ1VJgqx1+6QSUHh93+1BBiaZHu7hSbESyZNduURAcFO1pz93tLpEdRjfK2aFmzudB0Ei4yXb4+eXCPcJILmPyG1GoSF2eAKWHKO8dnVK7xt/st5PkB66y8d0RoBuHdCjU1Lt/5Lm46ByGvJ7xQw5Tc9D5pmsj78zr+zvamyzvzm+CMCtTzg+3EeHEcdg5JLa3ps7p9/3q71/03vLbkzXHlI7nHWvmpE+VN8E/Dw1MHNdbe+JT7Wbgdif0thSM9gPqAGrTTVg8SDK66WgAzXDvi/pzersyZHqE1Rumy3NmRa3jSXvSdJLPlvSK1+mD3vRK7X/ulaXV2u+J7FigaW5HjtU3wO0G/E9xq5pPhYfUQcjZreuSvr0D1dDkZ+5bBe/fKGPeJ2084Or7yKU+qblp6u1/xX1sWrdlw7dU0juWCwWr5D0w8vl8odPujDvi5x60DMCLJbDNfdGXqfTS3qW+XECOcy69G0kDXicphVMGprKMyX44bXN4jufP5Nh1020I803tVZAIPPK9NOopbfFjajOY116aaBswLhkkfUaMQgugz+dlsGi8xm904ubLp3GzTALCZiptFOJG3Ryycf1tPI+h99mxXKJiXmzDffx3YanYjpZZvYPWSH2bcVYMZz7rAqXwjFRgWjGyzkpreoAlo8AuQLLBEXeIOvrydSs6+d1SxeHan1oo3lN/Sj2dbXlLO9/O6e+BGmH5jVT2p+lxvzcrzavPuFDpTe8W/p3U9w7pnDuZy9Z31ADRdQ/Bjxe2rmk3mdmLaR5Oyfg8LUb6qxugsjsU87rn/px6TNf/Er94utaGvep9cVFdXaJ85J7/TheWLarESe/O01f99K+GZxZ5aX+ICCtso6W6+qbl3Ppfp1D9qTKOiX5vstjy+Xy5U9Iyk+SnHrQk5uOpVVKvlJuDpcDL8ELJ2fF/KSh96TOcpDerJaMaPhoACuDzrJ4X4hUP1ckjbTLkiwGAYS9f1OxyeiYITFgIUBIpk2at7+9Vm56ZJtJc0NKg0UmymAol9eYBpefnBaXHbJNnS5P1lQsT463Kt+UzCuBOH97TCYbwLhue7YhN25mORj2UM37tELOMiVzkqxVVQdpPj7IUHmOpnHguMw2o/FifuzTqu95n+ClCrej5sB7ucGvLkgAVY1txf3jjJfrv6X+2gezA+enMM7/HjWDe1kdcCQo3VUDJT80pfmVaqzCX3l3M9i3TWEO1JZovJRKZ21L/cXCUmN6DpBftp3LOwI61gXcFE89w/FMhtGA7uHp3kM/10HX+amMZJ+9/H2EsiewotOXTDrrwE3lvqcpvBmbH3hc+uL7JH3nonXMW6Vf/FfHP2OHAC0/WYaTkpPO/7TKqQc9lTGhEVnnjUqrxrYCTvRSc6mCkzrLUi2RZZh1yrICLJXx2SzCZX75vJkqX264NHtAUMi0qqWtBFK+dqT5EeNrmhvrZE5GHlAqWzIh9Pa3cD1pZI+Fqq0IMK00dyIsvydIYH8nE1EZ32ppplraIS3u37lUkwzKOuGSYDV+2W4JuNxG1dO4K7aI19k/2f6uRzJUFUs7AhnHLc0xnS31PRx3qz3xV+pPD1aRR8V4Ol/3CR2FZCgNCG5M956vRho8qv6OqE21Ja7dKa7T8fy5e/p8x5Tu7nT/X6jN2dun649PaT5HDTy8S/NlOWl6GbgasPARa6k/1/D10RbpJPG6heDEbeIH+zEc57jjXFdjrOzQ+Gj6/WpLT1yiZHmyvXN5PtlK7rVyf+5oXp5Hp2vPkvQ2Sa/829LLPlLSBenf/Xx7hMA9mu/lIeu8qQaIzDJVTq7b4Wbn7Zk8OXLqQU+1rFEBGzIyCYxoMJJ6T7C0UdxjeGlO/6chcRppWBw/DaS9J8W1lMp4cWKnAqfy3ozwiuuVx1JJlT83Rdpwsw9GyjPTq5gf9xvBj8udLEDVFhWYJNtDJbmPcCOgJtVGvQI2vD5ihxj/IMKRNTlufOdvSgIWMx0V4D6ODd/UvHyVE8DrDMtl4swn982wzCMGKh0fxX0f4/6DL5f0x6Srn9iWe8xyZL2YX+VA5ZKKNH+Z6Jb6aZ4drT6d/LrmT0DeV99XInVH5C3Iy5vhd9SYnktqe4AIhF2n25AG67Wlvsfs4pT2JXWjfaQOAJJJJmthBtfpV/Pauo3t574xMCJQ2lfbb5SODPu9YkwrJ9BLwnbsmAYdJ8fxG9nfMZXlNZJ++h3S3e9o9zbVmCnqA6dtIPbglNa2VvcvkZE8jiV8IuRsH/NYTj3oqbzTUZhD1QaBBqTaICfNqVJesxxo9cWZXILKEwZZVk7mEWMzWkbK8qxjSfydoGZkoNcxSFW6WXZ7UASAPC7KslZ1H3na/H2k7u0eqD/DoxoLlbGk0qrCXo9rFcuRe5gq4KEIUxniHA+j+zYcZGz4m4r1OLBegf8jrb6xnoAmDVoam0yb97mkxjplXzPuaByQEUtmrFoa21Tb4+INrBuSlq+QFg83xsXjkpvtkxHIMo7mhsuyqw52vBRj0HO/OlvjtiGjRwbBp5+8nO06er/RJc33ybkMt6kzSNxfQpC+p77EJ6R/Dul4fw7347lvKobFbUj2bS/KxvZjnTS11z2SXizpx9SBWPYr594WwnAuVHM5l0FZZs/xHfUHGm6obRy/qM6A+bQbx4D7Spoze5aR03Ump0dOPeipDNZICdIjT4XsSZLLYpYK8HgAm8U40rw8yfRkGdNjtAIh8NrGvQpgVECDkypZIsclHcx4B4hzNeJVTE4FtFgG1yX7iMChKl9Vt2qp49xUj7vU9wTwJEUVN1muZG0O43NUPo6J0dIojWiOrRxjmUayFb6WSzjXi/gpZFmSFbEcx7ZwnFbLm9WSF/PINqfsqBmUS6gPy5DefTXHWB7OAdZnXx0APCbpL0va+aFW9itIc8QGVobKm5udT4JAn5i7c6rf5Sl/Hhhg27F9PZ6l/lJLMyrcf/JaNQZiT3PwZEfMrJNffmwQS/bVj6rw84R8zF1q8+wxdfCVzlel3zYR3vUY6VGLy7M7tdN9U713NX/W10h3EVSzL1iudGp3EFfqwJD5nVc7yi61Nn58+ruifqjAadgmXNV8f16yhDfjVD6Rchxz+8Eqp365kZ6mtGpEpNW9Ar5XdfpxywwERjeL2D3pOdloAI7ivhWbw3E9fKSEUxEdFz5BQMbnksJm/FZ8Zzp5z/1jRWvPqDJ+WeZ1R+dZjpdI+trntHf1SKvr/usGMcuSDyusjByNvR+O5vFFhV4xKGyXo8G1dZKgyn1ib9/31qXpsViN2aMIQ1CbS0V+jknFmjHOkeZlyIMHrIuNRBpG5uH0OKdyLNqJoYPjT4LhK2pA+UH1PSNpEBP4bha/uRnW48GypwbmDtSWiXxNqC+Xdcg60JiSmbExdpzrkj5f0gs1X57bVAcqDk/dYCZnP/K+inR2pmvcZH2b6jGdOs732cfu3zT2Odet9w4iLMcO20Va7W+C/EPN5y7Hc7J6+RiH6+pg/LoaGHuX+tKiGSymzz5wu7C+ZPZPQry89YH+eyrIqWd6pJrKlvrAykFXASRpdQLzem44SwNP4JAeusUKvwJhzCsnebIOzJuGasQGsczpCVdpelMfqds8iZPpezmkKoPUFUueuMoN1lX58/h4Koq3SvoPb2nr/wSQ3OvjOlb9ZqkMqOvGMCNgRGXK8JYKcCYQpYHmdY6nBFQ+acLrrHemnWXlslnlxbOcNOhkRNhu3Mw7ArYuk9O5oX5aKZnaBFFVGu+NpHPAdqExyrHNshxGuB3N5Z7p2qXpz47Mo1r/zrYEe/lb6u3gJxjfpb6X5znqL/xkHtY5F9SBkxmhO9T7wGXwOL8yXbuoDhI31R5S+KAaC0OHgctzIz04msucW2bO9jTXGQaY1yO+x2bOIaZroS7iWGAZKya6YhUP1Z/kfKf6IyRc1mqMGdCdyemUWwL0SON1/HVhaZDpFWzE58hDHwGM6hiwNFcGvE9AZXp2K+JItTfE/QeUkQfBZa1K8R6qXh5ymkcaL5klAOT3Pa0+7oIArwI/aUirpR8fdf0nWm1fG3H2bwKzZLMq74vhXfdcp3e5nH+CjApEG6wI8TIs08v3qHkccpmjAnVsD1+rGNF1nhr7iEyktPqMo6uqx181PjIPlifboVpSG3nMudSUwKZKX5ovj1RgnGOWee7EdXv+BhcJiL2kwvpwP6B/J8j0fc/7R9SAx8Xp+lvVl/AScNymBiydhvO9jPCe46znkfoLSl0egzzu3eGeGMt1rR8L/O2wm2pA7PJUH6kv2yUQzvSyTY/Ul/YSpBOUV86E0/NJMgO8nSks92j594H6JnkulzlNst4GiSe1nHK2vFXLLQN6ct+EtIr4pfngH3kc9JK5z8GfDLuOWXHepHe3NFdGCaoqzyg3xlZLdQQKlfHKMhO4pHIdGX9p1cA57TSA+eygfPqp41eec7X8kkbL7UBKm88HYRwq8+yvkRef38k2UFkmo5KAOpe7Ko+XijDzr7xPjgWpg53sswR5HkfrHoWQ7e6xwX65S/3ZMvvqR58tBESVUq9AbeW0uF0qAJ7pVfH8PduSzgnHOhm1aiO347KN9jR/s7hPCNn7z/Ce/7tqzEnFjLB9aJQVaXnMX0dam+rPARLqQ0cmgXA6C5X+yKWjh6fvXubcn/LiMjbnjYU6agRcbqiBOe/zul8d8HD+uX4VoK10PsfSVvweObLe6/S4+nKgl/roeLFt99WBkh/SaJ1bHac/Ax+nS24Z0JPeayUELgdxPSd+Iv51A5MMkX+PwEflraW3Ls2Xi9JjrZY6quW3ZF9oDEjfZrwdfK8AQMU4HQcgMq2RcXa9Mk4uWfq6PWzT+fkSwvQMs18qALeOkeCek2q8bcVngp3R0lYyNGno3XdsK26Edb25rFGBVmnefyPmgvct19VfkfDnnibpWdLf/Jl2/UGtsmA2iNUxZpd/U81gVyxZztOqfDSCbGf3fzK4LEcygOmArGsTt5vBxTn1JyuncyOtjrtLUWfXhUabjkjm73lwfgp3Zbr2LPUXgR6qP6DQxtnxpfnhCzJjrnslCfR91N5gx/sPq7ar2n3UxhfUwMO+2jg5p3bCrppHXPbMrQO54dnh6QSkYzJyAK7he9VPBNCp11PP+tqonZ9oOTuyPpZbBvSkV8/rIzBUeZZVvGqiHaeo0sCvU6A5+NIQVksRzLvymCqFslFcSy/UE9VHNqu6ZDyLPXw+qt9lYbsw7ijtEUhhHWnQNtWXXSx+oeB19eduMB/mRTCXbFN63SMwYcllCqn3m9Ng+hyzbn96p07rIMLyt4/GGkwcFOGlVWAyAkge/xtx3x6s/qWkj5fu2mqeby557k7hHJ77w9yGPHWW/ZwOBNlSiw3cqD8qA85+pKOUY7IKm3vLdtTfiv7YdO2cOgjP8ZzAzJKAL8dn7o0i23ppuvfC6fvbp3TM9piFYBunk0HQkOVl+MqZcx/vT7/3tAo8HCfZ89E+Sd9z+pc1f6CpJR2KzSIMnVbO3dzvxzQNWjP926bPaxGHBxkoXI7b0uryXKXfz+Tk5dT3B70TyoHmYGT0nZ/S6n4CG54EGDYIVmSmS9d5LyM2alNzJbSOVcow9IYzHg2pverRn7RKx+fmwcO4n1KBGbfLdfxm2yS4ScWbaaficv/sII1zakswu5JeqvYSxguqPecRQKyW4vI5H5TKcPi6w1Px5rilgXQbZXm5F8AeNZUojct7wAnEBnnkhWe/erwbVB2ov1zxDS+UHtxqyxzvinqY4XmppL/+cW1z7W7Uk/lK8/bOtsm5mGNo3XhMUJdGv2ICWRfH9xOT3T9+MvKj6ksfh5ob5wSMOT+8PEXGlvd4IohLmVwm8Rh5m+Z7e65o/gZzlyPnvEEV5zbrXc1V1uG6OuDZ1ZyduYhwBkdkWSj5+4o6k+UTU5mv24lOBPs8l57IvjKtrBPHRY7LyhlLUO2wZNUN+p+m/lwkzt8nW85Ob43l1DM9SYVXTIhlNMAqoEPhJEqvKcO4LDQs/F6VJ41Qen6ZrsPQi6gmoNMl8yKtGoyKwRgZibzH8Pk04zQ6o4lRGeLj2JSMb5DgzaOHakr3c3+HpNdJ/9+HVlkU5pXtx3azEPyxzf09x5El2cY0ZBWblRvUmbfbZlfdgBhUXNWc8WGdhN/sTwqXhTKuWbMH1R4Yt6lm9B8rwkoNaOpZ0t6bVus5KkO1VJGsk6Vip5hGMivuo4qBqcrPseD+8HIRje4NzedmsgnMK9mnZFv8nUvfBjjJVG6qb9J91pTm/ZqzGAQYCca2cL9igirAmOCa4byRV5HWDj69HMj82b6cU0fqx/zPqW/QJhB3XuxvtlXlsLHP6ZCxbpX4yLqF/Wxh23kvDxmjfdTNclLA56TyPe1y6kGPxcg6vSaLJ1jSnBYaxIqNSYUxMg5UHrkfgYo8DXzuX2Bao42cNBAJkMg6SfWRcm5SZfl8r/KmR8CExqwCUhX4qVieCihWQsUttdMej6kBnd+s9l6lN0n6iR9qbMR5dW8xjRHzIzg0aOBSn/Ou9tywv9KIpUFjG2W92afcREwGx0b3vBq4eAfSOa/55lqnTYVN75dKPstqcRp76t58buhmOgdq74P68R+qyzJiair639cTrNLJOc6xSNaFQmOb4895Xler+6b6iUEaz9y3VI393DidYZmny7xuHnrs5JPacxm+AocJWBw3nauqvajrMo7zZp+bAeIYSFb0uub6y6zVM9X28vjkFOeLAU2yrJTUz9mWuZzoMOw/OhFeyks9l0ufTieB6pEaUOUjJs7Ax+mSUw96qiWClGRIyA5lGhW7YmEaVf4Ml+nQ0+NkSbCWoMITs2IoFNfoEXMCJsuSDEUqvl2tKpERu1N9z2tU5E5j3QmwNAIJgNgPBj37at7gl0v6SEkf8lzp4i9Jr1Z/kuo6EGVvk+lb/PC/F0z3Xh/3qexvBkDQWLNv2H9Z1gSoZhz21V9YmSdS+D3HXGUMfC/FeW6otTE9ehsEbmI/VGeczIrY4Hm/ETdT02Bku2xEPGl1vjp8JQTxVb2S+WEc98t59WUcjhNpzjasmxs27JTR86e8tMU0CJRZHz/A8H51/eL4I4Nv58bH85N5dBmoR1LHqLguxGEfGSR4CXq/yCMdPJ8IezvqUu3JqwBP6rl1upDtnIw447psBPrU13RyORZyVSDZqZNe3jqTValIj1MnBAYcSCMkTQ8u9w6wwtWeCg/ivLcZf6OTFy7XIcJVkyyVhyfJhlbLebPLc/6ejE+W/WoRh0IP9zD+mDbDbKt7zFW8StKQ8Do9cOdzl5qy/JDlN0n3LfVhf77R/tfU356d+xfSmGzGd3t3m2qe/q7mbcU46XlWoJBldzsI8TLdag+L90pckPRySd8s6bPVWaBnRHiORafp8WRJpyDFbfdI1G0Edh3+suYPa7PRuKjeX/TcOWayLdKYEuDTwBHgGHSxjgRxNJjs6y219rWRPlB/PQOBZOqQBOc5vuncjJSr4/AkVM4bab6B9m61NvXyEefHQRHXYTj2qS9HuuRmmYmqbdwX3gBOybnOeidocdtVoCavuQ1TL7HePARQOWEESulAZ75Oj3V2Xkf4G7H3Z3LycuqZHqkP3pyo9OJSaVYTPMXhaTRGgKJiQpgPlSzRPycjARUnVsUWrCs3vabqyGaW2ddcFnvVVd0qQ05JRZFebvaHy2mjl4xB5k8FknlKbpPvlvS10pt7u+daPxV9ZYCepcYYbaqdinmrpJ/W6sZs9mlV/vS2E9Rass72OFnPven31akM/7ukxSdLulf64jdJ97xR+g51A53Lq5lHxXJkn+bvBIhZXo6jCuhtqhnoc1OcXc3ft3UY6XL8pHH2vS2E5TIgHYtqKc7jgu+3+3i1dn6N5gwIAXYFyLJ9cp5ku0n9JZ7rgCN/O30yJHtqff3AdP1OrT5JneCD+3iYttsoGaYEOWzbis1OwM+5z434h5ovH7OOZDUNhAlQPf89F3ldmvdBBXKYV9X2TiPnhPPNvOiMcsxQl9LJsXPCJ2CfhIyczQ92OfWgp1re8fdqt740HuhUNBmHA3tdvPydyxo02JWBSeZnVM6sc8YzJTwCYaNlOZe5UrhZBhrykbH0JM99B6tAZdVgjAAQAYwfGLajRoXfL2l38R91QQs9IulVamvot6lv+qzSdbscqBmSeyT9/udIeqn03a9ohuQxNSB0X1F/K79UpqO+TOPhOGkwrSCvqp8SOlA7EbV4tqTXPCDpGdKDC73ok6QfeKSffKnGZBoDf6+WWrLsrG+GHy2XZRv4MQL/y8dL+irp2/5kf8BeMl2WPA6/GfcqJiCZVoILM7aOzzl6SR3wE/hXoKVyKCoHIeNuqm9+Zh9QMr60elBD6ptlb1dvRz4KgGkRlKQOqMBaJVxqzyWnqr7ctMsxWQEhy64ay3ZFbe+UGTgyVo5ryTSsaxOQjsJXfZD9nXqjWuqzfnJ63CSeG54rZ/bJkqVODmyddjn1oCfXlC1JQ1ZrzvQQabg2Ik5luNZ5YtVkIg0/Ak5UIlluoWxpbFJRVYAt2ar08pn2CPzltfTqDyOs7+dkr4xUpeR5j4yCy7Cp7n17H9K/UAM+d0l6w/TdHiX3VGRbU/Y0tdebP0LS/6aPf8Uf1WW1pZpqHT7bjHWTetvbk+ayjMPkc42YdiWb77n5jF7ozZ6WmQkCMTIeTqMy6hWIZRml1SduH+H3uocfvifdc63MXLrzOM3yvqeqkW72YeXRV+3nazvq/XnbFO+h6W8Uj3Wo8s7vmWeGG5XxOEbZ6XA5zsKTZakfyMikcPxV7ZjOlsuReorjPdNhPC69eZnzUG38XJq+e29PZaA5n7N9duJeNa+qccKwOR/IvtJGZP95ztGpqfbWncnplFMPenLyJotCI5MTsxrombaVYqV0b2bwJlAYxRmxL1X9eM2Ta1f9eKdUH6nONA8jPO8TrElzL9OfFUhRfHc6bsPjAILTy1cl5GszMu7+9P2a2tIEge2RVh8oxrKxrF4+ui5JO78iveCP6nVqXucVNZbHRmXkHbOOW2p7LY7U+2cduKkMjpX7bep7Id4qafmfpcWLF9KLJP209OaHWj39zBg+DTnLx89s+6qfzE5Iq8xL9XJGCq9fVcNn/7+fkXZ/pp8E45hKoFsZIN7P39KYTeU45zKKWcA9tXa7on5iyPnm5nvhdzIdGa4COyqupcPh5TeebmJ8l/nqFP4O1K2SjfieIJ7LYCmjOculQ+qxdc6Y41g3VS/MPdT8OHkugSrCZllzblbzVBqfvLqZ8eU5nrqbbGFVVuuam90j9UTIGfCq5dSDHosZBQ4i0rw5wJJa5EAkO5GgowIM+Tv3HFThKgNRedhcdkllabbAj2m3UR1tjr4ZkJaUsSUVro1g9fJR5pEPUaPxHDELWc7K42Q+aRzdHo+pU/55Mqui9q3AHlNjiL7tcWnrZ5rXef+aOlYgxh7wtqTfPd37R1oF0FXdmT7pfxvhu9TK9JckfenPSR/789IrD6QfVQfAj2m1r0fGqGpTfk+D7PDsR4fhmNjQfC+XjcMlNfC2P5WTS1t+Hgv7Zx2YyPJTsrz+9JJheuEXNH+o3o76M4hGrAzTPW5usY2qNFIICCy5xOXXXtwzfb4zymn9YL2Wzteo7SoWY3Nwj/G5j5DAJo/qZ525LWFD/QGXG2oAdFN9k3alN6iz05lxWOpl5r9OJ9OuMK3MI/ccqQjP71zePJPTJbcE6Kk8lRx8HLTVWry/V/tgfG+0RJSggkfBeT/js4zHoX1u2GMaW2rK4CquHwfA1nkxLHP1YkqG8eRNg8B2556J3OR4HPBLZTna++NTIb5m9iCBTnrjWQ9vmjxUX+Zg/C2N3ztWefW+9mPqXmtluEf9IvVlKtd9X10JPyrp70g6OJif8npYvV/IVI4Md16rACiNBuudfZieLO9zbj6qbhRzX4SlWoIcjePsz3XCfVJMa0vtkQfP/BvSa/9sWyplviNGy3tOHtf6dmYaWX5KzjnrFC5T08AfqY8L657tiEcw6hNNrAt/s92pP5IZ4jXnVQGSPDzgeKmn+Pu6Gmu1rXZikKer1s2dTfz5nudL6mWmkbpMkQbbPoFjMu8pOU7dZ55TJyFne3rGcupBz4i50eC3VCuaXDZKg5lhbnbjZk5+7lNgGdNAVOWuNlKPGKksLyevy5vl8+805JXnlF5+el1MzwqX+5q2i+8Zd+Q5ZTkJXK6q7yvh6Yh855TzslFIBZ35WlFRWTPfHD8M89YiraxLxmEZEnQcqr/F+rwaM/GgmtG9ptWxWwH5VPLpgVfLqDdTh5sRp72rVRYjN+DnWGJZFb8d9kZxjXKg/uwYtu91tb565o+3TfFZrxHAcxi+zyzbNedVzveso7SqF6p+9O+LU/kfUO345ZiqDHjmn/mw/CNd9Uy1TfavUl9yG/UD80t22oDU+iP1Qm5PqNLk+He585Qh61aVjSsEyfiwXAR+QvgK4KXjdFLy3szZDyY59aDHkuxNpaDy4WbV+ra/p+Ln0c+coKnAUoEk8MnJNjL41XdOLF7L8mf9nM4IBDGu22pHqxNjnbFLpVh5ZIp7NAqjuJZqn0KeHiFAsOdJz1aag4dsewMYb4Tc0FxJjTxktz/HRrI0CSSYTn5P4JKboaWmwK+o0/9+GOCu5huK2bf04itAkfln2XJJs/Kc14nHr9tmlL+vEZzluElQdqi5YbKBq5Zgq/pdVzPWr/5XLd4+wnLeJqg6jPtZpnVAQlqdG9J4rw2Fc/4Af5XzwXI7PMtRncajwR/1cY7pc2qPJPCJzTzmn+W2+Fi3+2VLDdDvqQFQ78kbtfHoWubD/hjpGJeV81aq5y7tCtNgOZgPN0OP9NyZfGBlsVg8V9KfkvThkv7Ncrn8++vCVwTCqRIOYBq80UCUuvKn97qJ65XCSeCRNHyVDwEFWQnF7zTYzCfZHTIOUr3hkM+FkFYnflX2Ha129giQrVPkCeiyzhYvx2S4VNg0NIfxR8XEB+BlWZh/KukRxWum6Lrm3mE+6I1jwUDqdq0ehRZ+Z7nMRNEDpzDfLKOX9m4gDFmuVLiUkXFkvJxf2Zebg3SrMeL4ZCIYJ+dG5sNwXHJhX3gfleK6hePF4Q1wH1c7ofcuNSDpJWMaqBzTCaiZXz5YL1mV1CtVGlnuDTVgQZC9rcb0+Xi3yyW1ze857qp2TyeEgCfLzDJ6bDr+WyT9EzXAWC3lGXRbR/GP6R6oLYE+oL5sWIGbnNtVf1cMbArHpSX1pMdBxbg7DR6Vr5bCRw9bfLLlJF44ulgszi8Wi+9fLBZvXiwWv7RYLH7T+1L2xWLxbYvF4lcWi8Wbinufu1gs3rJYLN62WCy+TpKWy+UvLZfLPyrpSyV96nHpn3rQUymQjbjGwVs9NyLXk53GRnzPawlqnP6IaaEBqRS/6+N8WFZSpPS++OyfVG6sC4WGdVvz49KMk96gtLqHx9+tfEfHlbNcPq7q/KV64hyqe30Vy8T2OUD+3n+Tiudm1t9zWYFp5H4HIbx/X8f9dRMolybpAdowcMzkEWDep3HaRhpCmKuaU+7VHobqeyVVX1RK72aAPT9HfZLhpPlG2cyDeWc8pmnQSMXtzdWOx3G0iWssb+bpcZtziuBMGs/ZdDLI6FzXXH/cUAPau1odI97oXKUlrWcxKcmMSn2sUge7PJWD4fInuEjd6rSYXpbRad1A2NSLqfuzrNWc3dBq2yeLy7lZjWUyjc7XnwTrybp/EMg3S/rXy+XyY9SeA/pLvLlYLD5isVjsxbVnF+l8u6TPzYuLxWJT0rdI+jxJz5P0ZYvF4nnTvd8h6V+qnfdYK6ce9KRwAlRyqNXJxYHOyXMcxVwBIAOQyruU5hOj8k58jZOeiqKi9EdlYpmzTZKRyTSzXTJeGrN84nKmyWs+IXNBHYDtaL6kkwo4y2GFm0fzK29vBLwyHB9Zz/5hnIopymsJtjKNkaJMg0o2kn3tcvpdRl7S4fOIckxVkuzFYVyXVlmcUZrJfvhaOgrp2bJ/M38CapbV/eJlpwSHluqUlMMQHJ9Tf4eVNH/GSxr2Q803vLPuLMMINFbsActdzeecP9Qvu2pPYX5UDdReUB8XQjymW7GJ68pKoGT9lkvE1FUH6uzMOhBCQJFi53F3qk8+D0paBRA5D+04UhL0ZT3piLgfsx1SJ2VbczyS8clxkSzaky3JtH0g/kayWCzukPQZaodYtVwubyyXyysR7KWS/vlisbhtivPVkv5uprVcLv+t+vujKZ8s6W3L5fL+5XJ5Q9I/k/SFU5wfWi6Xnyfp960ppqRbaE+PJQc9J0J2DJe5OCCrgcm0ExhI9R4BTqAEKI6bXsQ6j69is2i0EqAl8KsGJfOsgIEnLduoMo5pQCsmYFMd8OxN1x5Xo+ZpZNMAcB+L82J53Nb0pBwv+6zyVLNdWM+NiJNKujJc0nwP2Eg4LslasJ75yU3TPop/TvPXNIykArq+thHXGDbbmvGYdtX325JeqPYW+Ae1OicJWPmbkoxV1sH7zxgmwVQ1v7fUxqEZSvZjBVLZJhxbFYhlHDpSHp+5YftQ802w1ZxmmbjHi/nvF+WpnKMsa86paixQqnFfsdGuM/s3WWm3h9vA+nBX/e32+0XZc26lA2Sg5byqJeJqHrjc2Q6juVztOcu2rQBxpW+fLHkCXzh6x2KxeIWkH14ulz+M6x+l9rSKf7xYLD5e0n+Q9KeWy+V7Dh4vl8v/a7FYfJSk710sFv+XpD8k6WXvRd5PV1sRtbxT0osXi8VnSvpitdXepw7Tk963PysjlZKdz4FZefXSqoGt0vK+FaZJhev0chP26G/dBmoDKBtq3+dn1kea71fZUfesaERGoHBkhHjNdbZ3vDf9fe0flf6X39aVG/empKRxGXn21SSuAEmmO1ryYvtVYDnD8D77gaxRlY/DcV9O1Z6Ox2WTI62CghybVX9VIDCXY9aVw4aMbbcV913vh9X2ybi8rmcF8jW4lobZgMV1dZ6V4WGaZAJ31J5v8w2fLP129VeaOPzNGKORo+BPj4MK6NGBsVHNvsv5uhHh+VRj55dAyGNvBIDSuN+IsIdanZe7mrcX68Oy+jrLlMtQqdOk5gwZwHm5sdonV4FTf88lM+pS/h45uTnm0gkajV8hXuUMVCD6KSSPLZfLlwfgkRqB8gJJf3+5XH6iGjH5dRl5uVz+VbXu/vuSfsdyuXz3+1ug5XL5U8vl8k8ul8s/slwuv+W48Kce9FQFrIxZXh8t9aRYuVTLS6SZ0/PMCZZCo1jlWSlRfq/WlA2gRkbDYViffFXBC9Q8c3pg9picJ6lq/xbSTFDi5Z5ZWzxL7XxrXi/qlBR51uWgCFulMQIxqegqxizBM8uRUu2FSmEd0lBX7UFDpAjvvtpRZ9DMfiToTiBAQ5nlHpXDoPgu5DECn4eS3qb+wMENzTdtJwDI+Cxr9V1aXfpI0JH1YV67knRP2xNDJibHq9vKdT5OMWZbJ7PhMbUVvy1u64pVtIMg9QdxOo6BYBrWZKJHrMeh6uU7loG6K8OkYyg199rsrh+UyPgZnoccHMZtnozLCHgkAGMeBOvrnrJd6fB0XHKsJ1Ak4KzkZsH1B1pOYCPzOyW9c7lcvmb6/f1q5mYmi8Xi0yV9nKQflPT172W1HlTzYyzPmK69V3JLLG+NQE7et3A5qfLipfmEq1ikTdX5VSCJ+WU5nMf76lVauJTGZwGll+Fr1SbpLbUdYNuSXqc5DZ8GsfKcnRYBQh7l3Z/y+ev/cz8dZY+uoqKZl9s8gYnzJnvGMVEBnMOIl8L2HAGkrbieY4LLZw5L0OJlFRpjHrNXxPH1zbjmNzYfaX60133HPTGZtsPm86Oq5VqXeUvtWSx//EOlf/hu6U2a7zujYTqMTwoB3wg0VW1BlsPhN9WN/7WIy/Yy6DLbdJ+kb/y/+3NhRiyi4z5L7encfgbNSBw3N/ezr3Ns+T6dEAqNp++bHX369P2SalYh25Rpci6P6pIG/jHcy+dsWWceqgGee9THo+d81pHsDxmia/jOpd0RqKl0tcuZ4St9mu2U+sdhqscg+N6ITavyPwnAcxKyXC4fXiwWDywWi+csl8u3SPotatPvPbJYLD5R0ivUiNf/LOm7FovFNy6Xy79wk9m8VtK90xLZg5J+j6Tf+96W9ZYAPRaCC08ySgWORvteRjTqOlbIcdftT2BY50EA4nhMIw1wKi3S4XepESiv1eozgTiJOem5jv23EK7ydvlJMFQpTgJIP/PHJ4hsXPy6hHWMWirCrBPZinV7aUYKLBXpOtDGNJhfBY4ynQ01b/cutWePHERYLnNlGcmM2Jjv4LvT4rjhxm6DI4vL5vdzcU+FIl7lBT8i6bXv7i/n3CjiWUYecTWeGd5/HOMMu6sGmB0+T2ZWxp/Ohzd825i+Z3OB5v1HIP56rT7+Iseb8+TpnRFbkEaaTgvbKMMq4j2qed1TOEe4dJ26cGSE2aeZ/uhEp9QYtD1JX/1Nkn5M+us/2fI3mGH70aFxHh6f1FUsq8eIdVHOw3TY/JypkTOYUjFezDfbKwFgps+5fhPsyBMq60D7EyR/Qg3IbKv5Dl8Z989J+tLlcvnLkrRYLP6ApK/IRBaLxfdI+kxJH75YLN4p6euXy+U/Wi6X/32xWHyN2kPwNyV923K5/MX3tpCnHvSkQhh5aRWVTg88jw8fxXeLBzwBTsVSZNzKa6QiSkYgQQnjcXJzkm+qPV/krUV+WS4aSce/oQZCNjQ/Fst17JQKEGTd2Ub+fEC1gq3aLZmD9MBYj2o5IMNW4IfxDGYS8EirebLMTKdimlw+tnkq0lTcI6W8jXvbKKuXDwyKyIZsIGyOLxoGbqrmd4czo/BPUWYhrTQII4925G0L19LoeN4cqIEUtv3liJ+AvXKEaHxZrqr/yFZknMxvQ6uPBHDax/0me7pdhGV7ugx702f1zrUsWwViq98JXPPaujR4bVtq61sXe5skWEy95zmSL8xNVnLUvkyj0hcsYzVOK2dxHTNTjbW8dxz781SX5XL5BrXdE6P7/z5+H0j6h0W4L1uTxo/qJjYrr5NTD3osx1G0GU5aVfYVberrxylwKsAEQtUpIsX1BEzVZM6w+XmopiRGT7ol0KqkWjKworei8nd6iVYwlSc6Ysy85JJGPoFGGr0RCKgYqWpJrqp79nul4DO+gVg1ZnIpk0DuXWqcrsdHsoIVI2A2h23H8N7L47DPnK6/Q6sv/7wRafBRAyPm5bC4x4dFkonhE3jZVmlI1xkYxkljw2VPtn32f7bnOsNXLT1TaKDp8KTjQcBvqZydiumhsXc89kmyTnQGKudM6uCd9c7lNkvOjXxdg8fgiPGp+lhqTtiDkv7eV3VH6irK7jbI05lkRBKo8kGkFRjZQLjt4nqOiVwCrerG69TRlU7JZzr5+6jtT0KewNNbt7zcMqCHjIm0qlzSI60kvXRO7hHFyQmQx1C5fGWpKFhfZxzmwetHa8LwfjIFB0WYyrhVijvDVfdHAEBa7Qca+zRcozKNykm2IIV1r57XQaBcLU9lWs4nWaDREkSmYUPNvs5lpdwn5HguQxoeC5/R82Zc4/WRUj+Olaz6tzLcrke2DYEy0/QnQcM6lkHqYPkorjn/kSHOvJhuBTT5vWJ9EoSM5mdVjtw/NQL5LEPF/LoMZt4cP50SqY8ZPn4i86fhJ5g4jjnK3463NZXtITVG7VD9xagMV82TkYwcHetV1tn7z/iw0KpOOZeqcZi62K/YqMo6AvmVEEQ/2XJS+Z52OfWghwCFijmVU4bJ+CruEdDkZHNYeompCDcjbBqMBFeU0SQZPc9nXTwqwErBVN717pTXfqThsBcQfl/9HVPVcp9UswgVsMhypaFiOfP3qE02ivtVWAKS9Bxz+WtUj2qJLb+nUeQm53VK2df48tRN9ccAXJL0Ikl/8LZ2/9seb6zSXWoe92XNX/5alfc4YR3ySdojMFGB9xGAclg/gyj77UirezK4jJfCsMkKuEzVkqgiTILEHN9kJhTXMyzn0jrwmWVgmgTgflZTMrUpaWDZ/pUDwXZ3fzBtggi2iffskb026MnnC9HJqvQsy5mgOvcscr8O+5yMDtO9GXBFtozOGt9rlw6k80zWnlsKqn4/k9Mhpx70SLWXXSmQSklVgIQKwAbzCN+lPnBTSaRxlI4f4Md5p6m0GWfkJY68NCrbyjvjvQQLboPd6e+z1E95XSnyqoxpggoqwhHFnwC2UlZpcBk+Pa8NzTfwVt7mqB5pMG3oRksWI+NIBep0s29TObJvrIzN5FyW9HxJf/Cz1B7wvin9oddI3/Hqxvx4CWwfaebYrwAJy8P6uR2fqbaJ9vJ0j/2bDE01N5ItY92rdKRu2L2RmUzSiM1iOaTaMUrjVYFUG910dJzmyElKMThIfUAHJePlnHF77SHNc+qPB5DmbboO+FV6JefakTqwSMaoOhFYAajrcZ9jcbS/kmPlOsKmjttUWzpzHx0h/jonguWpdAEB2uhwTAUo0xlQEXbkqD3Rcra8NZZTD0JpVCrw498jloWf6altxqfjH6kPfp+goRIkQyH1/S5UqiMjOzLoIyajAi4Hx8ShQliXxjWttoFp6xdL+tz/XfrTmiuLapI7T2m1jdMYSqvKltdZFkp17NyPwmec/J1GjsAvjU96pS5TVd9qLOZySHqylYFnXglY08D/TqmdJf9bS+mvL6UXSF+mPl7T4LBOCXScn5eTWHeWa0/9ZJ4QfgSAs65szwQdWT6WS+rsIsE5n1PFtPjMFGk+39kvDkPAyjj03tmXWwh7GPGrsZlguBIa4uo5O87ncVy/hvKOHCPfq+ZYBQhYFt/bXBOW6RMU5R47l9PLUA5v9ip1jtudL1GtABzrPwI7rEM6limjPmReVRznyTFqyfY5k9MjtwTTQ0nvzZJe80jpcP/HyONiPCofCydiUreHcX0klcdJJbZu6a06Mu9wR4P7+btSFmS9Xi/p4/6i9P8MyrBZfFeEHS1xMFwF3NJTqpS7VG9QddvxOSsjD8+/E5iRqRkBngpEEEjlOEuDzHK53KPx7M+D9/zrCaXhcD4Zt5J17WO26Y3Tdy4rcGz7FFnWLT3myvutjIKBx47aEusjiEPQkeMigWzWkb9zfmc/V6xw3q8csWy/LIvbkMzCKCzrewPfq0cXKL5X84nzrQpXbcCtxg4367IPKgDJ/lpXzmw7z+ERY5Pf1wEahnU4Oj+5jOXvLCvjJbMmxCHLuA4wPllyBrhquSVAT7W0kN+pVElD5/FyPndFWlWWCTTo4ebErQxipQgISCqAw3pW+aRUht5S0eqVckjP3hP1QO0E0oba62yltrTFDdqkqSsF688K0IyAxGgJqTKKNHwj+nidh0ZDt84bqxRhAgSnYe81l1FG7KTFRpAMCr3O29T75QckffV9kr5m0QK9SfpudU/VtL9PtVRP/GW9KuaHwMRtJdUPUzyY8qkAQz5DyNe44ZpjkO3p+96bxGUM5p9MGPslGZ4Ujt0RMHc/sr3YPzSAqYuq9ConhGVwHmxf55VH7wmcqEsqULOOXbRw3BoMVGFuBhzlOEvdl/FynORGaJZ55MjdDOBjW9+p9pruX1DTb843wQr7muWo5o/ryHkz0k9PtCw11oEf7HJLgB5OojRE6V1YkokZKbbKU6HnyIlbXZPmRio9+hFgGzEdacwTtI0UB++PFH01+Vk2skuXizJnPpm/88gNfmy70T6HkYJLRcc6JhCpysNy8rkeyTowbuZLkDgCpNk3aQwTAGcZqbR9csRLG7ersR5vkvQPfkZ6+c9Iiy3p2w6a0r5riu/TJvk02VG+vkclbQfAfZLzjWOdwEZxz0IGKgGDP+lwOM6h+sMEjzMibOuKpanGcAKCBNNOI5kggiD/HukglztB8Wi/U+qNyuBWv4+TChiM5onDjRwT5l+1bR50IDM0YlOynNXcGzl6I8Z55Pi5HlfVnp63H/ETeGafEFyPgDbrUDl+Z3KycupBT8XsHDdpLYfF/ZEyzPjco1J5si5HXiPoGCncCnhVwMcGKMHMSPEn0FB8tyJNwJBlywk9Ymcq1igNoxUggVyCLxoH36eXO1p+SAXFtGlIKuXkdFIJjwzkKC8KPUWXeR3ItmS/2dibGbmkxvhsqYGcPzpl5o3Ol9QB5YgF87XqsQ5ZL7YFxxwBDtMaGWffY9iKBUvGhJu4HTfbmmN4S8247k3Xr6k/Kyal6t8K8FgS5EjzNkzARjaoatfUSdWYdN9VjyFw2h6TOZdY7mQxj3Oa/HuzCJflPG7e8HfmW9WZ5R7JyLmp2J2qnrQb1zV/XTfL5jauNjWzTT2/q0MvijAnIVV5zmRMCpw64cAZDS5+5sD095upsCcNPcxkNlIZVQzLOgNaGc8ECxmPDBQnGT2zNKo0fhVDUjFRyVJkmoxHA5ZK3WKglfWxpHGg0hrR2Vme9AwZ1m3O+leAh8DIv512nhBJqRi03Ds2AscpBBEb0+/H1TexPkvSveqG0ayQmR7XNxmF6llRldHiplKL4/LVCy5betG+bmPADckJcPzJtrtj+n5V8wczrmMw99TeYvibpzi7Ucej+F7N1Zx/2UdOI19IyoMDZHSEa9L8dSBOrxpTyYpZPJcZL8e7v+fG7pEkOHZ9LJ6bqTtyjOf89/0bcZ+6yNfZfgkePAePNJ+PWfYRk6nietUuyeRWz1nKurseLE+CnEr3ncnJyqlneqTjadH0mDhRRkxRRRmnkslr9PqouNd5HdVyjiJOFb9iqSrh0kLS2JRsE3vPlWHztcfV61d5f+vKlCBGWm23kXfNMpAlqNiLUf4OnywP886+ZHi2awW46Qlu4veIFvd33yODR9BLBa8pzX2U65waLe/+4OtE/EZ0sxxmS1jOEeNDNjGNC983lM9CMfAS4mb8HcQ7p9XnvCSbQoB1RfP+GI3tDUm//4WSXiC99hVzAEhv3OWkkR3plgocVeOGwvHhulSbpdcxMCOgwnKzT8lCss+k+dOIKzZiU6vH05NdHjlHijgVA5bfuTewAtqVTqh0YvV7HfAZ3RuF5xzN/D3Ok+nhvXXj9cmQsyPrY7klQM9oAlVeW1LpI0p3A2FHrM4oPstSGWwazopqrSYgPaD0Mvy7qmuG9ySsjG6yMpWRd/krypkKKQ3UZnxWQgXCMtE4VQzPujbOsFX4DMuls5RK2eb4G1HW68BbJVnX6jg4+7J6QWzW7bC4bhYjl0tYBqaXp3O8IZrlo1Lf0OpDAmloJen89Hsf9co0HJ77iyrngPWi9/29r5Oe9rr5+6mOMz6eX2TlcpxSH/ia4+Y9Ph+KQj2QLM1xxsll8gb1dETIHrkfcsNx1Y4J9o8rgzTXuZU+EsIp7idTUgHSkTOYTi1B8+ixGATVI8Az0oEJ7OiY5EMIR07eSctxLN8Hq9wSoIeSSqiaXJV3lghc0/fKA1yn6Ea0fwWshLBU6CxLTqZqz4XLlSe78pkiro80Zw2yvqOlHZanMqhkWgiuUlmM+oTXyYq4/CMgUnniaby5hyKVWQI/tgHjpCL3tYMinSwH22EEdCogyjrbeOU7fKpljgRKHjfJLPJJu3mkNkGS45Il4PesH+OzzTbV9iA9rv6MHzoAt6kfS/f+JbYrgYONfD4DhgzW1SnMa9WZJwM8tgtBQuqCBFqVEavmg9vG7XRN83QdzsCRbIZUj5s0wizLVdyrGKLUHwYW6xgN1pF6hteo9yowmmEV99NBSbax0s2+nmVIRzL1Au9TN1IOBtelrouz3o5XlTEdqXXO8pmcrJx60LMOreZESLox0X4CjpEBq+7n4E9lX5V5Y3Cf+a3zROkZZTre55HGqzLMNO65KZSgybKORVGEW/ebzFAq14yXQCTTGeVdPZvGbUKvjMDJbVCBqPRcj9QN7M14ThXLVIHorEdlELNvDXBs+CpAkWm7z/M4rgHsSMFvqe+l4ctHhTjrvOMjtb05fgDm7dP9K1PcXc1fXsp+3J/yvqi22ZTvQHL5sl+vTX9OpzL+/D5iWUasQBo1blTnvKtAU+UYMT2CMWnVEakYj834rPrf1yvhEl3qA+bta+kE3axRdxrVshb7oFreYtnXbRbmtdThLmvq7pE+99ip0qnGBnV9zoWbYdCeKDlb3hrLqQc9ljSGIzqRgy+ZkWrpJCW96FQKO5LuVnvJ3vUiXk6oCjxV5U6QwTipyK0gRwY0DcSd0+ejqqVS/JR85or7Ig1BpUQIJnLpjeGy3hWIY19sRniWgUArgWWOCUX47G9pHr8CR9XvjG8AnIrQbbJO0viZVXgX7jutjfjOscBlK4IdAh1/5lzj/qA0vMzDdfTrM7bUniT9qVPBXnvUnjd0pL6/x2KGa3u6fgVpsP45phKkp7NQ7bVi3Sxs3xyX1X6/QzXwdlXzp2E7rU38ef4m65ZjlfM69UPFhBxn2FL3jOaLIlyC2oqBZv459ka6twIbTn8dGKXzQOCbjA7Hc5WP2zrnRoK6nPMV8DnOCbrZcGfy5MqpZ+DIlnAJZLSERUnv3J5yZbhsxHPgp8G5oaaMc3+FhXHTQ6dUxpVpsN6HxbWMO/q9oWZc7LVX3lJ6i+nVJz1+FPdSqDAq74ftUR13dj/T+x0pd/ZRMlYWetSV11exAOtkxKhwnNL45qmgTc2V7kg5jsZIBQCcbwICxnHdN9WN9G2I543QNHB+vcC6UyicUx4rjvcCSS+Rpo02d+uFaq848RIUgSDb4zY1pse/fSw96+P8PWYqRoJt4jrsqgOzNGiOT5DIvy21OeV2ZP1Tf/jPZSWbk/2zzkhWc3bEiFZzqdKb1djaUn8ZMSV15WgsjNjtir2q6iDN24HtV7HdTpN55FgiACXjlOL7Ku5XoHrUBmQA14V7ouXoCfh7KsgtwfSQ+ifKrwYfwyZVWxmKSjjJKoR/uciPcXmP+a1TFlXZnKcHnA1ELlFVHg2VygMIk+xJekg2cNwLkXl4WWUEEisD4Oeo3C3prUi7Ynak1bYT4iRjclDEk+Z9YcPp8JluLi2l4cwyUKG5LSijPqfycB14v2JqOOap6LMe3BPG604r02O/76r1z6OS7lF7p5eXl35w+rxTjV1yOyVwY55mS+6RtHm3pA9dSpIWn7zQPT9XzwPO01ySy9NKFTDNMnCcUydsqT/p2vG4GZhjlqzHOfXTctc0HzM51sjgZR+zfJVUDp2Zk8rwV8aI4y4ZEc6dZGoOND8RyHsE9Vm2/M55aqkcvxFAIjPqaxk3WZkRG8bvVR3oXCWLnmCH86hiVpn2cc7TmZyMnHqmR1pd4uD1/J4TknFyktAAkUViOjnoU9mnscxyZ5kt6ZEKYTM8lUrmL9XPlEhPjeWvgAHTtPIigGHZqk2t+d2/6e2el/QpasZzxMq4Tw7jz0JFuFlcy/z5vQJSaVR9bcT4VMYiWTj2k3/zk/EzDcb1dbY1DcvI+K9jq8jyMNzGdH1HDfD8hudKH7Iv/cbnSl+ivrmY6fC7mSDPI6d7v6QbD0l6w0L6lYWWPye9Y5CGmRUvoz2qDlYPI2zV5lK96TzH2aYa+/Ql02+3N8e7l/NYznXeO5kgi8FUZbBTv1RzZ53QKUmHzu1CZ0kRPnVWhmE51jF8FXhIMLPO+GebeSxRqvRY/tTrmX71Xeo6jv1aOZ10yJJFy7Qc77j+e6LFe3o+0H9PBTn1oCcHWRqQw7iWQIaShqYyVMeVQRqvb0tjJVaVx2UaTZD0yitalgxGevceqMkubGg+mZO6JHNBMLg5CO846Q3mksMDkr5X/QnC7Ccqa99LBUhjx7KlkU+gIISvyn2IOMlSsU6b8VeJw+ZywogurzzJ7AsaLxuWfK9WVZ4E5r7mMtmjP1R/ivF5TXvA7vvkxs7c9zJdUGOBbiAe801QdqQGGHYkvUHSqyQtP1HSr5deo/bnN28znW3E31JjmshoeWw4/2wXabW9K0B8KOmX1V6mKoR3PVwu53NO/ci/jfqB5uwQ084xmn066qsKYKwz6Cx71oF5K65V+RM0EkjlPEpmMcuZ7Z/6h+l57CSAG5WN+VRbBjKO26Oar3SCRnVIpmgEAFNnJEA4qWWhM9BTy6lf3iItTfESDE9RMI4HXwWA6LlROVVeEe+tK2NKpQwtIwVYlTVPfiSTRW//OLZjBAxG8dNbTkNyqP4AQyqR9I6Y337US5or3CzHaI09wUrWL8N6T4jj2ZCOAJKvj4BStmu1JCGtAmtS6ZVBWzfOuDxjZiS9UZY/XxqZ4zvHw5Ha0u2jkna/5Oek7/8r0pe/8j1LHk4j51wakEP1pykfSfoxNeBzeNRfnLmj/oRpit+uflntDesb6stu9Mil+Thk/WjYCfz5/Z3qjJPL4Hq5f/xQRS9lSfM253iqhGWwvnI6PDKd44JzuhqD1Zji/YqN4Hg8HFxnmd3PniuVDk4ARZ2b5XNdmGelb9KB4dys5s06MJlAi2XMazcj64y+559t0lMFIDwV5dQzPRYqWSomKopU6Omp5700Nuk9pIJ1uPQcqmWL0WRMb+FmPLORV7Ou8xIIUHmkUk1GpaqD1Ddwuv031fZGsDw52ZmGjWeyQha2a/ZPxZgknZzxybpsqx2hPq/V/ksAQ6WYwLhSZo7PpQwuSSYorzzPqt1y6cBGwUyP442Yp23N2zkBaALGc1O6Pybp4f9bOlx8nd71XdKPq/Xb+aI8jktg4TwMFrik4rjexJzt7YMCBjtH6oCrWn6unpvi8Zn7/ryhd0N9ozWfJu02P4eySB28sc0MKpO5YDnIYrBsFYBwGRJ8WLa0OmcIQCuW1WGqaxUwOkC4NNzuv2S5+du6IfPdjOvpgJJJTvDuNNL5OcQ9ljF1RsXSEzwTDHMcj4BQ1oVlcRnNoFZO7JMlfsv6B/rvqSCnnumR+qDiSSJ/ryaINPcMHJeK13HTE0nPqWKD0kCNFBglyzPygNJLVXxPMOB4WxFupFh9ryqr65fsB8tEI+H6jI6tM02mt45xYBtsRnwyW0dx3+ls4p4VnA3GF6gtrf0Y0qgYkqx7ljH7J0HTpvqpnmQQs6wZX6r7LZkptlOWowKLG0ijKjM9+vvUWJC71NrrhvpylePm0WqfrNrC/QSPLIe0akAtbjdvOGab8UGAlmre+HvO+2Qs/emTa/uom992fxXlIntWzcWUEaNCAFWVkcxBBbZZ16wT9QEldRk/mSZ/u3xMo9Ith5ozYo5Pp5R9YlCa4Iobs1MXV7pAuD+qB4WPP8h6VDq5KkdK5Rilg3Emp0duCdAjzY1lNWErVM1JUSm+mwErVRkqSr3yni2VVzIyWIprOUHTSFMppSGtfldUL/M/wu/0DGkIpPnmVipaGlc/eyXbPpmPkec2ajMbTyp53mN6DvsqNQNGz4xhs82SJcuyslw5LjKetDrmqhMuycAlk5PttE6hJsAcPQ/I+XCvjo1/vpLCz9Y5VDvxRaNLw2CDZiO2rw5kaAxdL74j6oL6MqiPTxN4sA0rwJ3GK8e2x7H36XjTcjJm+SoHlzGfW7Uun8qwqvidcaX5+OZcJPCvdKHLo4iTjyOoypGf0hyYZD7VeK4cxqwXxWMrl/IznwQztAcV8KH+sI6o9C3TqoBW1oX1qezIlsZ1fzLlDGzVcupBT8XmVGEqA29JJmNkcEfGl4pGOn4wVYYxryW7UElVh7zHuKlAR0AsARDbgxM1PXobnD3E5VFaXjPYYXsSPI2OeLtuBCZp9EfMyDoAKUlv17zOaTwrlktabS+Wha9DSKn6pmprKtlkYkZAheWvmCamy43AjptA0dcrlutIbe+Wwc6d0/2rmoMAbkS1gaXxINhx25EhcNxLUx4vVltau4T65pF9ac783NC8X10/j0cDtQP83tLqi00JyioDmeA2+41jPec6WbWNQVxpPj5oxHM+51hmmBHYqPIY6YFRXuyDKi7Djxi2SgdR2HbURVkPpjtyUtYdQEnwRsYpwWKCoxzjrFO235MlZ09kHsupBz3SKmKuJk8aawsNFBkITpAENRYbhgRK0qqioeLLyVVtbKvo1UzfUnl5KbyWy07p9Y7qml6llcyu+nFme/tSe96cjZ40Zwq454TPO+GSU+7HGPUbPwkOGKZiWFIx+XuyJ64rhfeqI7SOP6pDjsM0IpUxzTwYj+Xa1Jw9qxghl41jj2ycNGea2Ibum8uajxfncUWdYUylvxXpMD2p7QvyOOGGYeZ/Tu15QK8v6mCAc4jruWHbwnbhptzravu7/N3l8Zwko5PjogK/vp7jgcJ6pC6p5jOBhcudRrVi8CrHagRIKkldWzE7OV6qeyPmPec1yzkqi8uTADJZmUqHpdNV1X+dE7UOZFXlrA6/HOe0n8mTK7cE6Bl5C9X3ZCCo8CvPmxtOc9JywvD6iKIWwnMCVh4Ky2g5jmmit5zKhGlIc+CT3gbBH+MnXc609pDmfo+qDXUvulJo/u39IN7rkoqqYtwSGGxGuCqvitWqvEyWv2ITCZAyL5ZvJKl0q/C+VhnB9BgJ3rgsVxm8jMs2qJZMWLZD9Y2YOYeyLwxgb1Pr332UqyoD45IhyvQfl/Q0SR+jBrw8XhOY+TPHM8VMnMfdbVMaj6szPQbjHHPsl2RyGK4y/K5ztZySeiX1UM7tBEkjZykBt/B9I+5VTBjLUy3PJAhLnZQs6TpwNdJ5zKtir0Z55Mm4SnfmHGM/8qW8ydpIc8CZUumT0b0nW0bs2Qe7vF/9slgs/vRisfjFxWLxpsVi8T2LxWJnsVh81GKxeM1isXjbYrH43sVisT2FvW36/bbp/jPf2/zYiVbkrABPZxCgcIJyYlRr1ZyAW3GdeaY3MKKH8ztlxP5QnKe/V+lVgzvLzjySuUgglwrdzyk5VFty+JvT30vVDcme5p5xsijvUjc8rgPLyLxdxtyvQbaB31lmCg3JiOq1EUrPlfWoTrJU3u7omstCI8G0KByX1dIWx16e6tvWanvkmJdWjViWw8wcDTbr5ufVcM/OdTUAcR51JQvoeu2rn9yy7Kizh5YtzcfApvpmai49EECxTjRiO2qbsnPJwnvS+EJTSwKDEbtRMWzVmKFwTrtdpNWlopyXCZCc1rplm9zvVwEeg5bUX5WjkADJ82edIan0C9PjvWSnM3wl7pfMI524URnzVGA6flVZKge66qszOX3yPoOexWLxdEl/UtILl8vlx6mNg98j6a9I+lvL5fLZkn5N0ldNUb5K0q9N1//WFO6mC8gJSIXM65WSsTJMRodCL4jGgvc0SL9iTJzWuuUrhqNxGU12GueUakJXnrW/j6jnKh8bisclPV/SV29It3+VdPvLpT8g6eOne9LqO3sqVoz3WDZ6jyMv2uWhd8k9IgRCFTBieNa7YmAoNvBkATJ8jr8KoDr/ddR+VUaW1XFc/wSCTI9jfmQ4KqDHPNYBU+/z8Z/n2bb6RmEDobvUgbHlSA3s3D1d9zvi7lB7Rs9r1ADJOdTt/BQ+H5Xg+vpvV3PQRGfIdb0e8TbxybpK83GV82kdGPKzfEZ6oIqfhjodrSwX9Vv2s1kwjxU6gpQqj4ohqeLknKicDzpgVTmSqa/AeAp1Wda/avMsZzK5DlPtU6rmbpaf8/OkWZ6zJzKP5f3tm18n6UMWi8WvU9NN/1XSb5b0/dP975D0RdP3L5x+a7r/WxaLxeJmC5nGg0aFEyiROCd9DkZ3oun8Da0O7DSalRIYKYYETpXCTKObBi03oXKiM/88jpxMVhpEXqf3xvL4Cbm+90JJulfSty6lf7DU4uOlF6Fsub/F6dmQUMlUnhnbP+8T5DodGqtklkbMjLQ6eVNxp+FLScXnz+zfDa0q9ez/Km2GSa/ffZ0bzCluS45rgspMz+LyegM6gSWNkb/fQLxNNRbnkub7vzbVFMPnqAOfZIEuq4MjszkX1VhFv3GddfJesh3N5/N5tXd9OZzzPpD0kNqGabcV95xx/Hvc0giPQHiCbF635AmwlAQ7ngOVcFwleCT4r4A8GZR0HCuQ73Sr+SVcYztVuibHMZ3KioW0MI38zjCcu1ua90f+Ua9Yf6Tkvs/UjZm3JffKVYDuyZQn8Dk9dywWi1csFosveNIq8wGW9xn0LJfLByX9dUn/RQ3sPCbpP0i6slwu//sU7J2Snj59f7ramwg03X9M0xPv39vCUjFYkedEFn4nUk3gYE9kxMx4IiUoSDBSlTXTsYyUZManwXJYMh2VMTJYSiDke1QiBCQWT1pO+CO1Dms9+LCk69IDzdCZCcpnmEirRpoe2ch7oMJg/TbjN+/zWqX0GSa9vTwqm+DN4VKxk3XaiPDuA7d1nnI71KritCS76fRybFegkPWy8KSQ446W21KxGwBV3h4dC7eH2+LqdO+cGnj5hL8qfaVqY2Tw8hfOSd9wQfrdasfWf1rScyR9mvrG43zzuRmlDTVQs6/+cltNvw/Vl2hd1mopYsSCWLyJejOujebyIe5zbFrYBhUbl86Qx5JZKrIc6ZhRZ1HW1c/CfkxJPUKgwTpV4CTn9HGyDuBkuJybeT3nznGMdDow0mq+nlO5lEmAZOD4FJLHlsvly5fL5Q+fdEHeV3mfQc9isfgwNfbmo9QY511Jn/v+FmixWLx8sVi8brFYvG45XasQ83HUpQfhcQMuFV01qZxeGsuUyoMneBgZscqAZ7qVJ2QlUE14DX7Tw6aCZBl3IqyNyqskPXhN0u6vl3Y/RI9e7g/6s6JMFoSAdKRw0zvN/RlV3RX1Z/34PZXwaMCTZVqn6NJQOS4NUAWEE4CmB0ypwExlOEfjJcdVGkSXh8xRxUjtaG7o2ZYszybSsTHeVX+m032S9Feln1DfSyN1Y3Fd0u1SQzgXW/hraszNw2rs0T1qy6u7qKcBpIHFBfWnSu+rL5dtag4SUkbjy3XjtfxdMcdk/TgvK6BFPcXTbCmOn0enfc8guypPfqdU4zsdo6y7v48ci8yLICrbSFp1JFMfV+knWKyAUEo6AhWLQ+e5YoyZVjoMmX71/cmUBH0fiL+ngrw/p7c+W9J/Xi6XlyRpsVj8gKRPlXR+sVj8uonNeYakB6fwD6rprndOy2F3qL1SZybL5fIVkl4hSZuLxfJmjYM09zhpkDyRKyYnj5Fyp/7BIA3LaELwO70AUsyVInHcLHse2/W1ZLYSANysEFj4k/ldU3//0d+S9PxrLdwb1Y4vn1d/YSXrxLam91lJKrk0EKP2ymvOYwReEqjQe6aSr5Sa7zk9x63GTlW2rJeFoClZl2R0kilY9z3jWnLJlGXjtetxn3Umk+DxyfS9OXhr+v6dv9qAyEW1sXRJHWA/TY3y/e6fbyDH5d9TG1ePTGndI+kjp2uXp7x3JD1zSu/qFPd8lMFldLreZ0NJA5jjhHWlka02yZP9WDcfM0zFFlYgM9Okc2FhutU+NobJfk9Hyr8rBzLrkGUmC5UvyWX5R87JKH3Lug3jTpvp5T3WiYCsak+GoROX7ZJz8aRAz5nU8v6Anv8i6SWLxeKcpP8m6bdIep2kn5T0JZL+maQ/KOlfTOF/aPr9M9P9n1gul8tMNKXybDwJkj1IxH6k1YlEBZbehoVh/DsnayrGNLSH8cnrnMgVEEhvjd5H5jnKawTyFGGl+RHVI60eP99QXza4osb4OF1fG6XNdmNfJGswik8P8GYMSILTNFZZrmRD8rulYlcqRbjOMx395kkx3mP/VUA6DUN+Z/x1Y4FKPvNcF4/lcfktPgZ8bfp7bErneeog6Xb196G9ZYq3p7b/581qQOZFU9gfVQNEO2qMz/1T+EfVGJ0L0/fr6uyUAQlBWc7jw+I6wTABN8Nz3OTYHI3TjeJ7hs20yN5Uj77IMU1dwbxy7vF71Sa5HHoOeV3V6vI34+YceYHaxvNXazzv0oFgfUYAleEsOYalVWBE+8G8ndahVp1MqQaP2Q5ZP+bzZMrZwwnH8j73x3K5fI3ahuTXS/qFKa1XSPpaSX9msVi8Tc2B+0dTlH8k6c7p+p+R9HU3W8Bcg60qsG7pJO/TC0ml5+uMsxF/TLvypg8Rd2TsKoCUwviVx2KFnkIv3L/5N6L5M33mcaCu7C6oGaojtaPoo+URKoQEO1VdHIYblHmfn8wr75GlcfnXAUse6832PMR1pp/XWC9pNb80BhTHHXmjDpNHlRM4ZTtUBn2Uvr+zDD66nvWi15/MZxr/q+rHwg/UwM2j6pua99U2GX+kpN+hNrYuSfrc50q//y9Lz1ID1R8j6cvVxt0DU/oX1EDQW9RBkNRAO5/M7LF4hPsJPL2vaN2yiq/nuEyDmvM657DiOr/nGEnDynTSoRgxe07Xy2McH6nDKidkW63dv0atP7zE6DGZ5ct8vaRJnUtASlAxmgOp3xPocDxynyJBk+uZrG46xnScXDc6n+vKlzr3TE6fvF8PJ1wul18v6evj8v2SPrkIe13S/+d9zasCJ8l8+H7l2fO+06uUUbIwueGNaVXUKI2m1+krb2UrwjLfpFfXsRw02C4j42X5/H1Ey3Ky8/khvr6pZqS8tMD7VvgEQdVrGujVVcaFnnYyONyUW7FraWgyzyoPLuNkXzEPgrIMk/lknOwXGp6qzwhcU8Ef4Dq9caZtto5x80j6iNFwG2Sb+WWfBK3s+w2tltmGbjPCXFF/4/3F6W9X0hervS7k3/+StPnn2/17p7BXpnBbai9EvTLl7TGWc4j1JFuSy1vJbnKeJ1ssjccY71XzK8dNNUYsaVwrxq0aqyksB+dbjtkqbfbzPZKe/8nSoz/XFHwCiGwjtuG/Q1rrltqy3P5cx245TMWKVixnhnE+ZggZx/o/+yVtyTpn5SRYnizDmczlJPvkpqSapNLcsEp9AnISUfmOWCCHS29HWvWsK8l0E+lbedCwHKk/20bFvTRgozVhx0nanKDNZUmAUXU8AUV6SE6HD5a7plXAWG3+S6auAmMjpqTymnP5JUEX6+ZraYAq5ohxRgaiUu48Zk/DyTKTuUrwkcsPBA9S3VcVM8Q0+D6qrOOIVaiujdgjppVgYTRXpM4a7qmBGQPnc5Ke/vLGDH30R0qfurxbL1n+a73oZ6Snb0i7z5Ce/rs6wNlTWyrbVt9Lxk3X1VJSBbJ9+stlS5DIfmXdq+fC8G8jfqv49HfO44pNGDEMrlMyOLzOsjmt0fxL5ojle4ukv/Jz0g9GmZn+SL/YEWK4irknyBq1RSVu66r8FbuWIGZTc8BTpU8bwbbNlQa2+Trm7YmWs+f0jOXUg55KUST6T2+hMhjVAExaNsNwIFMpjYQGoJp01ZKKUAYaQF7nNSru6rj5qFwEMRWQoBAopsdeMQ+51JEKM5XvqA2ryeVyV3UmQCOgSCCWYHJdvZPFYBo0fCzPaCnO4aqx6HuVp55APfujUvIsp7/nWExgmWVIAJNGJNNLQ0tD7zbhCbCs46Up7GdL+gRJerN0+22S3v5raucePkd6yVI6/Cw9+s4W6YVqD8Q0AN/Cn8vik2NpWAnmXQ4fgU92leO6AnEV0M02GjEveX3knFVzmyynv/PEoONt4F4yVyw76+O4/C21dr4q6a3qy5UJ8BXpsbxOK+cT76d+92fq43RA1gFt9inLmMxXtayWei0ZQxVxfG0U/kxOh9wSfULwkUZOmhuWBDJpyKq0U9Z5wtWErNgVhj2M3xXrQVDC8DnpKWngkmZmmSqlUCm4VBLON2lsTuhq+UqaL725H8hqZZyqL3KZkkAw+5OAqqp3si8JYGi0/dv3q/ApBK357JRDzQ0L0+OpvqoulOybzeKPaaz7PmK/aDRZTn7m3pB1DIJlT/NHIPj+/ZI2N9R2un6X1BazKD+hOz9R0ivbr3eogx7WZS/ySwaQgCTHQbZFzr1KFzjN6gGECSSr5Y6KGUkDnQ5PlpkMcTopR0UanDeZf7K7nD/X1fZfXVOfk+mUVSA9HZmcjzmPHbditzk/nf/I+XX8ipHJ+V2B21Hf8FrF+Pg7HZOTYns+0CxPNQduRbklQI9lZBTWGcKbGXw5eD2pRpunR+yNxUqd5VkHREZULL0N17cy9BYvHfBe5X36elV2ppED3htSyfikcmHe3AuUeWXdpVXDyfs54QhmkzFhXlTQafirtCu2qorLvVqVQkigwOtVXQ41V8i+XtHlBFCZfxpbXxt5wtVYMFtWMVFpGDhPKoBKw+LNrBwbh2qMz3uOB10sCqrp+lFLhw8oZF7JeDDfCszmgw6ZZgWOqzwrMJltXQHYqq8dN0EJ+yidI7Yv7ztMgocRM5K/R4CvGtcEICx/1qNydnw/dSrr67hZ9tTbZOWF+KmbKmCcdRqBNKfLTxVhjnO2z+Tk5Jboj2R3coJw8FeTg2lUSlHFdT6jhxNvS3U69BYro+a01hnByuPwveO8ToKiClDQOJKtyfQqo5ZCsENAwXZi/GRfsh7pKWaZErxVYSqDnPGTIaFxT4WWbZzA0e9+yjJXYy8VaNX+FfgjuKn6xffXgZvjwBjLkmVguye4qoyB02W7uvzX1MBNBVheLOnGu9WOBr1chbxB/+3/afcP1I6sC/n4+2Oag1HrhqvzxGYMkOWG5nN+BLYzXrbDaIz7/gjYVg5WzjHGGYVlmixfOh/peDlsMijVmBql7e8MV+kPS7IjFTiswtPpWBd+5OjmYZOMk3qsKm/G4X0ybCdlYJ/A11Dc8nJLgB4qCxrRUUeMDFeGT3rzuDJsaLyBmgpeWs2nKmfllfv6cRMuy1CVtwIFNHKemHeqbyglEBmVb0v1U2OZZkp1bJwg1qzWyGAQ/NGg8V4FEJMpS5o/QW9O8DQKZK8YryqzJcFWflZGZcTAZD4VaKmYn3XvgFrHlDENlivvMR7rdqD56Ti/pNTv1zpQe7jXw5L0O6Vfe4ukr1lIetsU429Iz/tEfciHSnpp21fyRrU9O0/TfE66bF724riy8Jk92e4cf1VdRs7BqP5sK5clnbeKvcm57WvVnOd4HpVp5LiwLiNQW/U5GcfMZx3oHuntas5kW/J3xfSQGco5znS2NC9r5k29kv2S+SbLxDyrU79Pthw+AX9PBXm/jqw/GTLyFCrv/H1Jhwrdg3cd+s8BXoVLA18pzvQk7blkGCppsjQb8T1l3XONXAd+ZlkpVZnzu9OiwmF70KCkwd5EWPZHdULGCmW0j8h501A47xEDlv2b6bofqEQrA5ieORV01fdObwQIU8nkmNnUarv6SHkqKZ5sSjBJRi5PQDLsiMms2t7ggwaGTsbDCP8uSW+SdOc3SR+2If2Xb5Eufcu9uqYGji5I+ugN6cFvaY9L8BLXO6T3hLmGOvNlopYEDGzvUZ1zTDvNzTWfeTKPICbnWhUu2Y8Uh6mYKKbBTxXXDzXvq6w7y1CVb6RzR+CZeiydwHXtcjPpJ9tGfXQcqHT8wwhfSQLiyoGu6nJLMAsfRHLq+4ODlJPyUONTC/zNdCzHIe8R+q+QfUXr5tuf09hbaOxyc7ONWVK6FaAa0e2Z9wH+KPuaH0WXuvJIQ82yJ0jL+P6srrtMqbAqL0uq+4+bhas28KZZXiPIdH6jMZPeLdkyloP1Z7mP2y/gNBI0ZRhe87j3WM+294P5XE4+VyeBUMUCsI4596Rx+4y8QDICfsTBkdoJq6tqzM/lqSzXJf3UUVum+qQPlz7966QXbbR8XnnUX0vxkOYvEr2m+fIUx5HHfYIajlue0iFYruZ2AgT/ccyNHCwKddcBrkl1v1ROVzU3R3PNvyvGxHVmf7Md1onHb8UIUaqHWbocFXjJ7yxLxZxyHlT6iJJsGx03X6vYpCz3bRofBriZtnsi5Wx5ayynnunxoEwvVPidk6HyxpleGjkyJyn5cCoV4aiQ0muoDAMVZCrgEci4WUUqlJdpp8KrlERFOVfsgoUGrdpbknESoFFYnirMkZqSqdgUxuf3kSEmuzEKk+kc1x+Vp86yp5ebaZOBG7VRgq2RVIY902B75/IsAV5l+LPs9KxdvhzjBmvPVgM571I7o7U3XX+j2otGtyW9VNJP/ap07zc1Rugxtce+v35K53lqwOdADfzcrQaYHtZcJ3BuW9IZGbEbrgel6pd18yPTrIBU6oeK8XT80dyoxnDWgb/zVGXFbphN3cT3iomu8s/xx/lTMWfVvGF+Ut2HWZbKMTqOtUkWPe9XtsJ1qE6YEQSNxtGZnKycetBzHG2YtC2lupfApEL0nOQHOt7YVIolgVc16a3c0ngzTF4fTWJPwgQDppWrsqeyqsqaebhNpHq5o/KKq/JU4VPhpwfLdnZdkxHKtLL8o3LSkFcKswqfn6mMqbQ9pipF6fLmsl0FItmXyTxybCeTkUBLmj+GoJKKIcmxmtdpRA/Ulqbc59fVWNA9tacpPzJdv0cNAD2qttn5Z9XAzE9P9y5P4e+cwj2m/sLSw+napalMO+rteCXaiYZsBC7ZTpTRGKeMQIDbkP1L8MEyJsAYpe1xyuVNztfRMlTOl9FSDE8H+vqIiWG8UTt5fLi8qZMrOdJ8XFft4nD8Tgciw7G9qjblGKZU+nhUZgLUdU7VEy0nmfdpllMPeiwVoCGzwYnBpaFqACeqT+OR3mHl6eeEGnmTNApp1NNLSTDE/NOopRBAMe1qb8/Iy3Ta3L9SKVaGSzmOtao8q5FCqcIo8h2VwWVNYJZtfhRxpHnfZpl4jyeFqn1GTOM6vld7nHw9y5NeMg14Go51hpzhEjwRyDLfNIC+zzLx9Q00NHeqgY796fc9asDkdQgrtXZ5s9qm5o9WewXFQ1OaF9S2M2+pAZs7pnvXon5vmPJ9mhpT9MvT793p/r7m47syzEdaHW/VUhLbINNIGTkVFUCo5nY1VlPPcOyt0w8EDescReZXXavmQwVkhPus7zqQzTyrQw0jJ6TSvZWTVzkV6wCjcK8C+iNHPMs4AnVPpJy9cHQsJ9Ef75WkMaKizk5N74SS3kCCjGSCMn9ODqJ5xq08i2pybuKvWuqo6jQCLwRUm8Ufy16VzftOuNTGcqbyuRlZ5+Hwaa4jQ1QxMiPvO0ERQUMFPrPNaSj8V4HkZAWleb9XSrZqf6dfGYDKe2ZbVgrWfZTLl1l+MgzZBtWypq8zfKZJIaMlNdbGvw/VwMwVtf6/MaVnIHiktin5DVM6L1Xbq/MWtacvf85U/vvUWB+W4VB9T88jmm+QvoE8zmm9VPvD2EbZpgy7rXE/Zh9XDETquGrcqrju8OynkXBcswwjQL0Zv0fzkHq4Kt/NLPGQucwyUKr6jepc5es28B/HP/V4Jbk/z2Av5/6m5n0y0g1ncnJy6pmeBA0VlZmG+TjqlPsMrJRogJmOit9VftU6uTQ24M5rZJjTKI7Yk8r7yvRGkuxJTt5K8fB+Lv9l+aoyV+1dLWtl2dOQjDxvl2nE7rnN14FnS8W65BLmiEnMuOv6i+1Brzj7Og3JcYBwG98rFqFKLw20NB8XZqnILGzinsu5rTnAfbra29F5vNwv/txS35C8rwZc9iR9iqTXqu3luTKlY/DCRwccIr0ddWZHamwPQZ/LekF9A780Hz8V0+cw1Ss1Ru16nBBsZ19kejlWct5saN4eZKoqHZPAJ8NVc0hFOKaZ5U7nINPNemU6o1OfBB3rypZzNSV1MMcxHY7Mh1sfsn6VjjgpOQNbtZx6pkfqg3zUiTnhqpMCFWV5pK48RydtpLGxqcqQRiPTppGovCyntaWmmDmBUgGPDGgqECsI5lcZ+zx5ksDnMOJUZbKQWcj7lXFlm2Q+mbfj+wRMtj3Tq0CYwzhc5Xmn58fy0aD4WhrV/F7VhWNhq7hWxcnxtG4CrwO8Lt8oPbaJ2zn3Y2VfnVMHGU53Uw1YvB3XnN/1Kfyd6sban1fUlqmuqZ3y4n6ovenT18waXVdb/kpDtTXlwc3kz1L98OdcjknweajVZx5V4JxzsALBjFeBH4ZlfMZJPedxSfCcwjxykznZ4lF8noZc5xBZ0vkkUE6wmHNoBFToYNJZq5jXUV0ScDG9kRPAsTCyRZWjfAY+TpfcEqAnd8QfFd/9u6Jbaeyl4/eB5GQegS6WY52yqLy3vM/1Zud/HXlQ2aTnMVrrzvvJ5lDWLV/4u0GRJ/9GfKciHDFtZOYqQJKKjGxQlu9xhFHxPcuf48AGNsuYgI2GK71s14Vtk4xNxQg4H3roDlOBwFHd3FbrjBw/ncZ2/B4B8FziYb/taP6Qyk11QOJ9N66b39kk9fpdkPRZRTkPpnTvnK49HuW7pPkDD93GB5q395EaeErm90htqexS1If3UxhmO35nG1bMR+UwJZDh9xyrnF8eX9RzR/E7QUmydcwrWc9qvlVppB61A7GuHM63Aiu5nMuyHuHeQcRx/Y/iGuuYwrpnfStHrbrHsvP3aQA6Z29ZH8stAXroeVOBHTcxLalonFY+58eS4CCVJidyTpBRmXKtulKaOVFJvXOiZx6pfA4H10ayrh1cPio0/+b9VKQVo+WyP67VNmE4n8BJLyvTMftAg0lwknkneGOd17GCTocGkSCHea8zgGxHg1cvyVAq5sl5bBZ/LFcClHXMQqYvrbIYTpthDHauq7X/ObXHCeyr76m5bcqDDw3kk5Kd76b63hvnc6AGnp43pc2HDV7R6kbmbJ8DtTG2gXI+og6mNtRBWD7HqBo7bHdptc8tN6bfbMORrhCuVeAkAQ3zy/mdoNfMVz7Sw/foxJH1TXbE91M/ZXnZbpWDNwJ61TyrdLXzHunXEeNEyTZwv+Szkao6sg4b8ZcM3nFO35mcvJz6PT3SeLBXRmtkyHKzJ739pGzpBTAcQYl/V6i+Qv8pfA6G0+P6NffK0FhSaNhyfbk6mpnx/H3kmdDzqrzXisFwWfKoPONvxDWnQ+Yj86g2VLsPRkxKlj2ZilHbW6q0KwaHYXw9xxnDu45+eKKNJYXhR+CFeXssjh6W5rAuo9mKCpQR6BDM5oMez6kDDIuNH+NlGzrdK5J+RB0k+CTYjhpIeZU6AHpMvT92NGd1HK/yRnOMGYRx/lnyUQqjk38Ms63xKz42cY/6ojKI1RxVEY73c0w6H2mVHef3ZMtZPkW6FQis9rJkGUf62H1YMSupF5IBH6WXACpBYLZt6hiWwWVLJ9Pv2hsxq0wv+/ckgM/Z6a2x3BJAdITuc/JUYIMTmZMqPSh/96Amu8R0GL8q42H8Tk+gEk5ehrViT3rRHmwa0lQaTju9wsoQZf0SAFJYlsoQSKsgM8HAyJNiORP0+brLy7Sz3bNMFbtB8FrVc0RRj1g7lu3pqt9PRtbgSI0dyeflJEBLNjE9VOfN5QnXken6c7Q8w3qYRWMelvPqr364rjlTSFYmyyH1Nrk+pXOPGmgiq3lVbenr89Q2M3McHahvVCarknOHG45ZHhpSAxu//X0E/gleWJ9qTCVrVhlcLtmsY/Wq9hsBfKdXXUuAQbZ7pJc4lqsycR4f13bJfiRIcZ8I91mOEVM2Ml7U7ZX+c7mqNJku24rpZNlph0YO+knI0RPw91SQW4LpkeZe0ohdqRC4VD/zYYTWb0YR0GNJb5HKiZM7T0NUtDHLMWJnDjV/AFtlvJhHlX8a/EoqMJOKsGIg0pOtGArXnb+rI/l5imLEdjFvPjMk728O7kmrbcJ73MCb4JkGjArQ+0UoI88r28LghWOIYMnh/HkY19lmOe6rciR4y/5z2rdN6Xs56jb1jcbVePB3AgaW91E1toft7heJXlc77bWlxvTweHumX9UhhSyiQaPHyg4+r6LuHCdV2uvySwaNBtSSTAqFY5ntOjpVJfUxmvtlsm+Tfa3mVDqBFOY/Ykxy3x7vV3qBS3F0kDg2Rg7TOlnn1bNf2U7sp5GD47mfAO24PM/k5OWWAD2cJOsMdU5wy2hiprGtGJdqUq2jTkfKl6CMiofpjBREputnndhrZHlooAn2UlEle5DGsipTen0EblW50xCOgFzFtGQbjYydtHriIkFKjpktzRVt5pGfozHhshOMOww32layjiEYge5kM6p2vRmFmwAq77nvvB/G6d6uBuYuTddsoComKtkkh0kmKI2x36F1Xe1Bhs4/QUv2a47VEcAz+HA6zmtXc9DD+pMpsDHWdC/bsaqz4/B3NXdYn3xuFpdVqs8sXzWfVcRxG5CZ5bjOsTVyOvjb/VqVodJnWaY8lVY5tMeBHcZ3mnRYkkWz83ozbMZIF1UO+UkBoLPlrbGcelDKgZjKg0JlxmsZRupenjSmbElncvIlwKBXPCqXEIb1yUmcyjMNMuvGfTPJQtAQWXH5j5t40+vMMleThsrCedHj8VJHMl4Zv0o/GZh1dDi/s05Hmi8rJbCtGBHn4bas+jQVYvYj0/WYorFiearTg7zPMcn+y83dzjv7clPzpZUEapsIk8IN2ldx7bqkBzXfo3IV8aqx77ExMiQep2nQL6tvkL6u/lRn1yXHKucGGZF1xif7YV/9gYoGbN4w7fFEY06GlwCO16o5xfIk8M0lHtcrT73dzOnNdSwS01KRXjXGfD3ZFo7Tqo7VsfpkTzY01kkjvZSsZwVYCCCZN8NzDIyActUeVXnXlflMTo+cetDDgbjueO5oAFpSWdrI0aDwntMbMRlOP4FPRRmnJ0xFUYEAKooEfQxHCjo9Tnps1bOIGL8CWyO2gXWolCaVNeuaCp7f/ZeKOhXppvpLR502n/vCMrB+FfPnvDym/D37rvKWE5QxTQLbfK7NVoSp2JZqjFpG44WKfMQ68Ii661Pt7Tkq4lyN+/loharcudeGYbY171sarx21100caf46CiH8yJBUzJOv+4/zgvcZzk+MNvuRhwoq2byJMMkyMO6635SRo7ARv30tnR+GGQEiAifqNrat57/bPOvGfKv7x0nqiMrhZDnTkUjAY13hdBiX+oCSumfksFXjkc7ISQGfoyfg76kgp355iyBno7hWgSAOUN6nkc5TATnApbmHNWJ7qg27DpdKhmWjt0IAwedfZL19PanayihXxoYyAo+WkZHPgZ/lz3jVHoSs+0gqr9JAIgEF47hu2T7JpiXTUym9imEiq5CnPLLPCCIT/Fbtw3qNykODM+rH7A/WnaedGFaasxoOt60GfAhSDMhGQCT7jmXkk5qzbFxOu1NtKe2xqSzbmoNVlnudsef1ZG8tbAs/TTrn2zowkmk4jwRXFYjOOUDjvC6fHL++xryoK3KPHOONDPyozFnuaq5URjLDOY2qbAxTjVc6mNnnGxE3bcZWpFH1bTqxG0X4BNCsJ9N5suVseWsspx70SKveTDIRHNAjxO8B4E3AVmzeQ5AeMn+nIUqv6maUgu+nkduI69UEoXGh5IR0mTYjTqUks8w2wL5nOUI4hq1AZQVumM9oEloJVR44jbz/cg9PBbgqxWdhGpVSXAcosw7Zl5WSzD0hTKsay6P0KjYy24x9VDEPvJZGIPuoYgTYRjlvfJ1Gn/vKyFSxXbkBV/h+FWWqgH01D9cJxzLLm2JQlqCOJ8+cfz6fit9tiJNRY7x0qNIZO05Gzs4IBKSsY65ynknjU1YjvZVzoQIvOSYSsG4UYTIfS9aV9Uing2Ey/gjE51iswM0ojTM5HXLqQY8HWWVQpXqQV0KE/iWSPkbS/19zGr4CV2lsFOH8fXS819cqbyLZh9H9PHnF+1LtiVbMVeZXsQBppNY970ea1zeV9ToFl2mMrmc6vl4psIpZqzzY3HfEvKR+mieBbgUMcyxUDMIIlCSoI+itPOeqjZJBGnnm6+aF+3lTzaBXTAmZSAIql60y/mncnU7Fuinub6q/R6tiyKSxUamMTh4fr4AwQV+CGB9tv67Vcldz0uLnMFW6RertmfvOKjBT6boKbKXOyrGefVKlPWIwKgBqyTRGTHqmlXpmHXhN/TUCJwzvazzxuo4ddToj9qtqr2renjTwOWN6ajkJ5u29khENP5JqoNnDdFpvUXuJYSpwGp2cgDkhKu8iWYrqu6VSwKNJn8qIzAfLqriWf7w/Ms4JJtPDyryYX/aP98tU8VT8dnoJHrLsBggjYCfNFV3m5dcaGFCmd+nflXGgHNdfVfkYN/uV9c48zVI4LbdTslL+Xp2SSgNpY7Oh/swdlrsCARVg5h4fPh+H9ef13JB9hOsGSrep7eUhCOIY9F/ltLBMKRVj4HYbsSYu4xX15xLtaN4nTNtPeU6dUY0L15kOjvOnrHP8fH+zCJdOGfPMNBK4Zhk8PlNHUH8yzw3N613p79Q7GZ+ORzKPR3FvtJw2ypt1yflBqZhSAptqOfpm2cczefLl1DM9Ur13wzJC2HnNcijpjdPfoeqjxevQOT20yjNP6nMjrieYUMTxUtphESfrQcl8K/aHE3vEjrle1ROKmU8qglzCSSXGOrNOVlbHeXo0MCOWwAYzWYWb8WCdB9OiwqxAcNXPvpfprfOME1CO2LyqLOtYhqr/ySr4uPaR6gfprSt7gocEJyl8xILFv80wSQ0wbKkxPO9QZ1nooOTvlLx2A2Er0JZ1HDkVnKPuLz4klP2S/ekwFRjL+cr5MWJVMr4/k31OI+3rirAu5wgcVOFHzkDOLwJ0ltP3RjqOaVcMVwWy3MYJ/Ajwq6V09rXbrWJo182FXM5LkPZkylLzvjqTLqceiObelFFHVseSpflk8ibh6/hj+GR8Rp5KDmor4mQipPHAX0eRW9aBgCz3KAy94irPNIppSKW5wnI8nghTxGO5rWSSwXH78SFxFUMnhE/DpPhdGZQEdAxPAMD2q65VzJjDjJYmKqXK8vBkiYUGs2oTGo7KAGU+BApmWxjXn7nvhOWuxkklI5DJPHNuOs52xNlWe2Kz24BtcoB4HNsZ9gbuZXmq/mDf5XgXyjgah2a6RmxNtg0ZLguP2ldlvBmHzOGqx0dkmVLHVfWn45YnS7N8lWQbrQM8qcuqPEbgugKIrB/rRieickJzDDu/dcxRznvqv5OQwyfg76kgpx70HOBz3Rp+pcw84I7wu1pusSJlGhVdykFdrYHzu+/nMyIq7ygVzEjSaGT5LRWI2IxrVd1ohFgmHu13WLaBlQjjVM+/oPL078O477Klclm3VERxuSoPtwKi7HOX76AIUxmrNJjvTfkSSDpeUuQcLwdxvWovKvYsRz6HiMBgNB75XjCC4k3ETxnNG+ZFYMLyGvDckPQuzQFbZfjWKeKRUa4U+AjwVe1SgdF1xo3AL+NIXffQ2I70QMWiVI5KltuOSnWa0un4c1TPkZ7KtqvmL8ecr+UjSEb9mddTRzm+WctkpCrhUp5fgCx8jk4m3hbloa55bzagn8nJyakHPRZ636nM6H14eejcdM2KuqIsK6+bclzjVDRyAhDhOg0GQcRIuToP/xkk0MBVXlxl8NKjqhA8wVIamEqxEQylksv3ThFcVF4080vFP1LsCRKYVwJefzKtCixkGSwjWt/gpVo+cBkzHQMWsh9kSSrAJvUxWp3mS+aRabqfbPRc5vSWN7U6dhjG+XK5KMEIx+C6dNNJSfFcZvgEOtU4r9Ks3geW4daxBpUhTiDDt5q7rUflS8k9Tsmasq2yzyqHg2Of48SgdzSfyHgcV+50oqTVuZR96Gujdqnmjeufc7VqCzJble7OOVPpSALRXKLi40TScfO107Kk5CPrH+i/p4KcetBDj1ZaVdy+Js03Ql7TXCr2gwY+rydjUE1uGud1GwWZRg6g9PiP4s9SMRZSb4vqAX2jiU9Dy/rQcxopvwwzejCgZZ0H6t+Vh5fgzIYk+4lMmtTB2JHm+7WyLapHBFRKsQIgVb+kcWGZRt4zaXfXsWKALEwjvVnX28srTMNLur7GZZ8EKZXx9/1U+JVhHi2zZR0SLFF8gmy3KEsCkQqYjN56nmVmmbL+2YYORzCZcd1GN7S63F2xOCPQzTFnpmtXzZGrxnvFVBxFGizryCljvPye4egoOWz2/br5dYj7dOpGgDtZYurRjHucDkrnsOoPC+vgPA6PCZ95nRYgdCZNTj3oqQZsTpaUVFgcqJwclcJJg1YpCE5ATljnlV5IGgTF9VH69thGncS2OE4q7yfLlctYNMBpjKnI2WYH+Eulv075VNczTNUe67zxvJ7ecCqkdU8/ZptU7W3lWxnKvDZ6+GCWwflme+QY5RggEFwHCDwnKrBTgZrNuE6j5es+mp11rtoxwzD/venzivpJKea9rfkJqczrOEYpAUuVznH7MPIt7hSmxf1HBu12Ogh6KyDlft5WO8n2YvXnjEmr4yDHpq9leluqx6rjCPfo/CUgqpwVxxkx6tX1ilVNHX6crs57lMpZGgGflJEud7kT6FXlPSkjmw70B+LvqSCnHvRUnnElnij2jOjxVIxApkfDrwjD6zl5/EkjkmzOSHKyVbTzaJJTaVXpbA7C5kRluIpeJripwrq93QZWygkYd9Q2pubDzSpANDKY7uPqeUCpQCtDmEqadRixDlmOimER7jkP0vhkDFWEzzyynQ32GM9LFccponXgIvO0YR6B0AScybhuR3imX5Vr9PvqlO6e+lvcq3mV7VWxL76fcdOQJfCQ3n9Fn+Xc0Zwh9dxhmBFz8CmSvvqcdJfmY53AkwcGUq9ZNjXfG7Zu7BNI2XgT/CQAqMrvcBWTM9JfCeJHy1JVvdMBY3qjQzEjp9Rp5Hji3PbvZEHXOTZn8oGVxWLx3MVi8X8uFovvXywWf+y48Kce9EjHFzInia9xgpkCHil1D87jnu+RkzsNktNLyQlZheFETHRNBcnvjEeAQiWarJSl2ndAw8ellyzfhlaVOsNWipEPacv8XC8VYUbCPOjNVR6pJds96+g465YGmVaCoBwnlYHOPWBVfJaPQI8MAsvlo96HRVh/T4CTHq80Bv0O471aFRjOcZBji+lkO26uCT9ajqkYmwwj3BsZ3JGTkMvUHG+5hHaEeCNAt6Pefh53HLM5ngg6XiXpr1xrL30dGWH//b/tnXusdltV3p+5N/twBCkHFFDBlIMQW0KjECI01EqwIqCCNQY1NhAkokmNtGlqME1Dbf2jNU21GkKDaMHaIpd6QbSlFKX24g28UC5aDt44BAQ5cMRDDudz79U/3newn/f3PmO9e5/zfd9+v/Otkey8a801L2POOeYYzxhzrrW7LSXnpfRW4pdRnUpz8nn3/Mn5SlGWXU5OimY6+Vr0fs85fz42KTKTIj4e6UpU8+PglU7mRdBFnekZYxyOMX57jPGmu8v7GOPHxxgfGWO8Kzx7xhjj98cYt4wxXiJJ0zS9d5qm75T0XElP2VX/NQF63PD7L4U8bd8cNHmd+O0Qp0NlxdiFb8mz5y9FwfyedoT89byEzqMdbugdhKT+UBl2CiJFdXzRJyPv/JcyIhis/5adPG2v60TbBzu7+fZ6GAkR0tPCZTvpsLuU551RAamXU6ekODpFXGnJKDsR7CR+nKc5g0+QWi8G1Lz7/8ZKW0BVvrafkkGr8g7OSo7usucdEOqiE94v5kvnfM6r0NM8FX81HnPzVJ/JmDP4Jf9V/lina+d9qKNbk35dPDmA4/pOxM82OIDsQFWtfQexBCOVzmiT8JtAjpcnX9523ZPPDgBVPzu+6pkDuJNQB9vdNcZXmu7pVlb6OwO9WNJ704MxxkPHGA9A2qND1ldJekYofyjpZZKeKemxkr5ljPHY9bNnS/oFSb+4i8G9Bz2dgijiRJQwJgOQ0L20CUiE36QU6eHQiNALdwXF+hhhokfuYEY6VV6+xeE80UgQjDgxjd6zAzHywPpd+XdbTKmMtNnHFHlJnmjldaLR4ViyDkb96H172x4x67xBN9RV1kEklShBklBOyuH11E8HCA4o6nmV9zev6pkfbPazKofa/PjeF0p6gqRH6XT86rmXYZtp/ghIvR+X1nzUVik/nHiXNqOGHch0MCVcd2td2pTfDoiSXzomyUDMOTy+lnkGpQ6if0r5W1POs19XnY+V9BDlT094fzoq/qhLyuinNcTyKfJb+fltouQYMeLm6y21nSL/XNvVhl8ne5P0FXVAF428aOBzBeiBY4xXjDG+jg/GGI+Q9DWSXtmU/QpJPzvGuO86/7dL+hFmmqbpVyTdFsp/maRbpmn6g2ma7pL0U5Kesy7zxmmaninpW3d1YO+/yOyCl5RjQm2+yKqcv+7LN3fcwPjCuVObBt4jKQUEkoH3N8XcS+j6JvTDFehcmc7w+bjQQ/HtOW5dpPa5DTEHIpKyS+DTXyV3vp2nyufPZeVo8Fie/Pgbft0Wpit1ptGb9v4R6LFfsmesd86oFr+sy8fC31Rj/Zzr1K8blYEV+XqUpEdKeoSkW7U6b/MebW7VedkkuzQeRfww4uG6Px/UKbDyrViO75wRT+OcttaYpwNsbMfzcb37mNccpXVe11W+9IvzlPio9DnH8FAr0PMHWv3Hehlfqe40lpXfz8iQUiQn6cbqY3Ic0riSKMvJyevKJrmgDnYHpsj1Pdcj5SqVP2OE5LLSFfwv67dP0/Si5tkPSfoenb6LsMnTNL1+jHGzpNeOMV4v6dskfdU52n64pA/Y/a2SnjTGeKqkb9DqM0rXfqRHyt6DUykMCpu0rbxKcLuIgLStBN3IumJLkZNkwOfQfgqPunJP1CnCuTFyAzjnhVJpeJSilF5trR3jPgGRpNx45oTembQZXTq2tBSS9ntpU0FX+aOQnweBSw5cqXo/U9uM4vj8S/NzVWOa6q865rxT9qfklOCNWxWMTrLeat8N+OdJ+qabpadMP6Rv+qert4kKjJDvZHj9eaXNGWtp9Zo2x+hY23LBM2EEmizrc5bATQLFHbBjpMHzev3JoCbAxrac/xSlUbh3XXWXVlbgd7QZBZ8DUc6Dy2ECK5TN0gNJ9xWAOsRfx4PzWXorfWfIHTuCyFSvX/tYMcJWa2kuAuzz45Hgk/D83kxjjK+V9JFpmt4xl2+aph/QCv+/XNKzp2n6i3va9jRNb5um6bunafqOaZpetiv/3oMeKnJXVsV88kDoUUmbC5hKwlE6QUsy3glgdSf2dwl9Ahnk/QS/dU3F25F7WL6dR6NCcgN7hOuahyNLSzxRwTkoOUGeuk78eN+p9IRnrnhYX3pjJkV52A63HNJ1tcdtui6yw2iA88XttARK01i5gXJ5TtG9O7T9VeZkjI6l1cESvfszIYOa+7SmvByNk/fxUJuv0Uunh33Tm2tetihttx4qfziR/+4iAS86RV6W/XSQ7GM8F+F140qwlbZtvK0EVj3yQMNcESYHBLL8c+DnrBEKX98OjFwXOEA/xt8ckHL942X53MG3O2ieh1Ty6/V3BtEjz7t4lTZlctfnD64UcZwvx98MPUXSs8cYf6TVttPTxhg/yUxjjC+X9DhJPyPppefs0ge12mUvesQ67Vy096Cniwo4GPJF5nmEe1coNKAESWk7Q8pec0L1B8hPg9IZWVdGjKCkfNK20aURSIrFeXLj6mCowInPAY0WQQ5D2uxP8Uclk7ww74OsfIoqMW9XN+/dqKY5cQWaojqy8vUBuftp84vUni9tlzqfHWCmwUuy7h4ptzPpENCRSG165PIDkv7Tn0lvGT+q1/+71YZ7fQCU3ruTy2kH0JwHly+CocQvnSGvl98kUvgluZwWVcQkHYbuIj10TuqXQJZE454MdpJTOmqe/ukZnp1fP5tEp0/aPqvobRxrW3679cfy5COBBE9nVIdA0UF/3fscpCiQ88CtLSmvLSmvZ15fBNU/HL3cf2170/S90zQ9YpqmR0r6Zkm/NE3T3/M8Y4zHS3qFVudwXiDpc8YY33+Obv2mpMeMMW4eY9ywbueN5ygv6RoAPVJeyCXY7h1R6bhir3qSp8y2ksB2odgUUXLP79PaVsYs78/5/RtGZrgFRB7YRrf4ir/kabox5jd3aKSSYuN2QzKqDqwSkCgeK3/ynJKirT5wvrr6CVh9vIu67Rv/rXF6llan9fw7Oq6c+fZOR27YKMcEsf52VQIWncJKHlwXTfqApN/V6hxP/Xl0j/XxnFBqg/fV7h2WXqCb/U/1UjY9b5IrB+Q01t25Lx9jn1sHCnNGnsaX+snnms7LnAxw3XqZdD6I41Zz6XVQ9jwC1kVGOmeRNGd43Dly8rHuovAEmyly679pnpPTUHTfwFcC5XPA6jqm+0l67jRN75+m6UTS8yT9MTONMV4j6VclffEY49YxxgslaZqmv5T0XZLerNUbYq+bpund52Vi7w8yS9mDkU4F6wD5aiHQqEubhwQVnnfCXoqTYdRk7Gk0U9TDlZgrTP92RqV5H1MZ4Vk64E3evY/JCNO7S6FdRn7q/gTPyWsyzM43QSyfJU/Zy5xos6+dd0cFzfE8j9I61Gr74xseKE23S/8LfKYoGcsT3LksumH2MfUtVRpNj8K5EePYejv+dhcN4EclfQzPeIC6+OO1//pYVNu+Lm/U6avZ9XbYXZbfQe9h85uI7XZRmpKdqqtzKihf3p/qk4+9l+f4J33RgapOBzkA7SKuqb1OLl2Huu5KdTjVywL+NpqPZzdHc2l0WBndUXjm4+5z5ZTmttMt1RdP8zZrrLiGLyqycFHRpmma3ibpbSH9f+P+kqQfDfm+ZabuX9QZDivP0d6DniQwcx5VLbbksTrxWQI7adGk0GfHK9vwBV98ducWUpsdaPH6nW+CGk93hZTq8HJdlIDXR9oOpbvy60AE34DyvFTuVF4HTZoTgTDH0PmfU+pzwK0M8/fdfqr8aIxJST45xwkEpWs3jgl0ePSNffM3Uty4VVpFp450+h/QaQzZZgLI9czLHIS0au9+Wh0jmgPl3kcCqyKCxTnwfWx5HGi6LpiTMzpaBDwpwlB50rY0wSfb5dgn8FTXie8U1fM1UJT0hK+ntF58XRP0VVvOm/fPgT15dl6dEg8FQgh4uda9XS/bRWw6EJXKL7RftPegpzwvqfeOSvBSOJRKiwCCi20OmSdPKPHjwKbyuTKphdRFTlJUhsrFfxPvVDQMS7vRmeuD85b4YKSrgFwXpUhtJeNB4t46+e68q+TFdmPoz1JkyymBFWm1DVSGew4YCM+KVxpIf9aBOe9j11YyjD6Hhzr9H1d/HuosmbyEZymScFdTnpECJ4K2Y51GkRidTeXmogiU+ZJHP6PDeXAeO73gEYUEtGotHCL92MrI7t34pwhPilpwDVJ+EsjvZKQiVinCxfXm32dyMNg5o56PUSh/3oFEj1JK20Cm8hK0+T3BFaOeVdcDtJK90mOMLCbbIavDnSjv99WkK/jK+jVPew96koGTssF3b5YoncpaVla4pwJLkYTOw3Glmgwq66RXw4WY8kvb3wnyZ8nj5ULtFqJ7xaw3tUtjQa+06jzQqfGip8WyKcrT5Utj5e2mSJ2DZALqDgQlAEkg5kBX2lTK/m0inwvmPUAeB/2eNwFPRjzIg/PPQ6k3aHOrqvvOitdJg+L1p2eUjxRlIJ8ET4kfPi/5ItBivkSlM5JxTI5WgRgHuFIvk9J8+04JvKf1WffUWQlEU+b4TTHZvZfreE/95JpJYI11zEVOkswkOe30NutNus9l65Pa1q0EPFW/2xXXaZ2zfrWoDjIvtE0XMR/nJnoSBABddKYWRy2WznNJbXX1uodW953xIi+7BrsOpLridcXFdpKCKPDXbb110ZVKqz8HYUlJ07Cltvz+UJsHrzlOnBsaqhO7Tu2kCIL3Jynx4x3PyXulX1I/n8faVsrV15vQXgLLbLdrh0CwyiRFzXRuJx7o1LM9RD7pVKYIGA7V/7uJBMRclhMwc8NTb8IlIMd7j0T5eN2pTF1Ex5/VHHHtnSivO9bDZ66LChzv8sR9fhLw9DaoDzyi1Mm280yASyfAX3JwB9PrKV2RdI0Dk04PE1RWe+xTouQ0dQDNdbjrMb6lWjz4W20cz/onsq4zd0U1F7pYuiZAzy4mE/BwwU8K6wT3nfF1OsIzep5umOktJupeRy8PrDyJzkgWDwRhB9reDugUgRPr6jz1OY+78s1FklyhJWN4En5dGZJPB2YMKXt5V2Tk9zwLoQPbCSQ6ULpD2/KW+PHIAeuuvOmwOmUuGePOo652fX4dTN2o0/M8lZbADWXG+3CXcoSn+ur13aHVa/GUNzcqlIMj5K227q9teXGiwSJ1DkKRA4VOjpzXkjefY5cLyqnzRV1X7btDmABu1eP1FlBM7XRAqdrpthup0+YAYadfu3F0fVd/6WwiAVzVXfm5Bou/0rcsS+ocsqrT10QCrFeLjq/A372B9n57ywUqHT7jdd0TvCRwwwjSHCL3Z933Kvh6N0GKKyCG32loGNIlpVcta/uIAuqgwsfPDRAVVQEvz9uBICE9eYGVn+R1MbJxgnvZNcPMSflU/an8ibJy7MLSXUTLx9HzUqY8EuF0FNI7w8v+deDTAaWnHeDXx4BgiEa5wE6d+zmLx+0vFfiYkDeXQy9/pM1oDaM7BFxCO3XP9pg3ff27+PJx4hoiLw7UuS5o/JOOqroSoPV2qnytUV87Dn6kbXDSnYVxXiuNjoPrBF9vyWFMwLLKJQDqDh7ndm6rteqgrk1yUM/8nmt17gOzaa0X73P69KI+TrhQpr0HPU5JyVGZJ/LwdwljEm4CIc+nkC8ZjQ4QMZqQvKFuQSdKxjul0YgVncVopbaYN5U9CPcJVBUl8JmiGKwneccCD57HFVcHoFObpagJhubAsitHBw8pDC97dsl+KXsckw4ouWEh0CHfSbmTKv8N6+v7r/m7QatDz24sWKbqZL00ap7/Bm1HMauONGY0pPyOkzsXSbaSoVdz7REugrBUh7S9ThIxQuWUogWM5nga++j3c2+A0nif6PSzAVJ+WeAs+snvEyBJMlrpHrFj1Kp4mgOZSZ/xPGFyhPmM+ar+7g21i6blTE9PHU7YGyqB4rd1uhBlIt/rr7/umzrpOkVCXNA7A+31J0+D3mVSsrWoT+zPicY1neVxhVzj0H31lGCkPNcq70TFz7LOS/o2UtVPbyspoe77NV20pvJ5ngT6PE/yWD1/p9w4R04E6CnqwI++uUfdEcF5x3elnyVf8ZaMbI3Tl0j6Z1p9/9374vJc2wgEG6zPQTEBEoFfASAHQ3Mg/hKuE8iWMvg71ua5OJcPXw/JcPoa6qKDiXycvA3Kj5+zYr0uy1VHB2rTRx8ZySig6887/cNxrLapXxPwTPcOeJ3v1J+ksy5pc7xYTyLX6+mZy13JyAHS6AwvtH90TUR6fCHxEKZ799yv7a7rl153AjHpGzIpBF78Oc/8FxROyTtJXhcjDGlRUZH4q7KMPBEQFJ9dBIIGkF5SOnOUDFxHBcB8S4NbV7LnPm8OiJIBKnIDkqJ9xaPz78+6c1Wd91x1eL60xejzmd6iIblRStsgNLjcUmE9TtW2b9FwDk4kfULS70u6XZvOhAMc2T2jf/VM2hxXafN8xrFWBtcBSwIble9O5DnAvdOco+Rb1P6la2/XDbLPIcecskteqHP8NwGnNB9Md6Ax9x2x5NBRnjugzLWSZNvzUNfNAQLvfxf9qXbSl6ZZz9y69DTXcykPZc6pxtn5SRG7q01zAO96pr0HPQ4o0oKi90Vyg0Pj2Bl596KTgvTFzNeWaWhc8Uvzr1iqSff83O9OoXm+Np0iJ1538sQJsE5C3hT58Gdpe4tAsPNESV4vwYGPgfDMQQVBQpKnuk5Axr3gIveWk1HxthIoTEo9nWlg+51SdbDBuimL3v5hSCMda/UdolfavcK1t5WI20IuWxVZYOSuPOvij1EAjlvR3De+En/+2Yu6Z740jgSb7CPlvTPG/PW8HegWnjPio5kyCvk6fcHITQIVR8prusaRZTt9m3S860HKddeXys9oEMeJDmLVVfn98xZ+NCLZhH0AG8t3enq6aDC6k8rbomdPcJGUgRvFZNwrxOuLjwvbiWndSX9foOWpdorA0+mxFM9HWp2jqGfMlxYfPU9PS+PoY0aFIG2Oj9+zTS/vBqRT0N7vSud1mpO57Z8EVsin//o4VHqaMyE9gW1XyF2kxfnyuUweK/Omw9DcYkpGpKvzpHkmncqnRzJqzXwqPHfyevn8Lm2CBKcOSFRfUvSUAKnalLIsUD4TsEmU5pr3aUvGf935cfk7wJ+0LfO7gNKcMuccHDbpLrud3LojIW07HUl/Hmm7L13Uhc85p+klDqdaKy7f1O3JOeXY1/Pq5xHK+nx5PQvtN+19pIdefQEB6VSgk3chlON9MljMO0fJyyl+HfD4gpmLergC40eupNU3S+60/Gfh2z0az5dASfKWfRuJW0EcH9+e8XtpE1iS9xR981dXOyIocaCWjEA6GCzlKEeq06MNHp2ougmwneZkkH0i7ZrrGlc33A446IGmaGQy1F5G6v9tSWe8OB5Jrlzu6nV4RkpSxIj88t6No3vllNEDba+31IfUdtfv4sGv07Y7X6+nPiGg6CII1BvpzE+np/yZr9uzflSve8uM1G2dd1vZVXe3DZrWAMfvWFkfpHHpxtbfhmVd3rbXRX522ZErSRfZ9j7T3kd6Sni6feb0hsucl5cQeTLiuwBQN3ClsCn0yUh7yF5N3spzmzYVoLT9jY2qtzO63SJwj51tO68JHHDsHAik7Yhubtx7nPNgGcVInjCBZxfx8DQfy7TV48afwPkI90KZswBy5nNPe1dEhsDNX2NO3j2NsgOTIjcI5IV5+Cak/3Yyx+2fxJ8DI0ZRvCzXsjsac1EQ1y0eCdi1FUUdkyK9CUyXnBGYpUior3V3Prxutp3ezEpRwXS2yNs9UJYfggpfY1VPlXEZ8OdejvNWvzWHc84D0xLA4FjUmKWx9vM4lbc+z3BeSmBoof2hayLSU+CGBm/Om0nPaLxSflcwLrjulXY8OFHoaZSkTQXj9bGf6UyBe4t8lbMWttflvCbl4MbjLp2+npyeezvkydvqQuQJhCRgluY0eXX02JJBTeCs+OP2hkfkHFh3kRjnZ+5V87NElM4KkFJ0JsmJp3egKSn2XV4i577SOMYd8GF0zIFN1XeDpactrEOd/p8vAnTvw7GlE8j43BMMsl432h7BOdQmePH5T2vA2yMw4droDCjPl1RZRiLobPhzjz4L6Xx5Yk7+ahw8cnMSyh1pM6p2gntvj7x6Xb7O+YZoci53AQ+vp8rPnc1xW9DZol3r50rTcqanp70HPXORHL9PhvxEK6V4o/LCLfIFnL67QEWaDFZRClV7+q5QejKw3avfla94SNt8VGBpMTMacIOVS4r5APmLj7OGxlPkhuOYlByV/xzgTM9Su6lfbM8VObcpE0ibkwGG+r1P3J7gOKfIkSvsuS2hNB9zW2cp3dstcMc5Yz1dnVwHbsgK7ByHPM67G6j68y9Gp7GmbHgfHMSkNeXjSl46AJHmIskHZa6Icud8p/nzet2RY7qvaYK+LmLSjSHLe3/dcXuAVv/XquPH2y4Q2elL563Kp0hXAswpwsRr19fcguvWb8fXRQGgBfRk2nvQ44p0TsCkbeQvbX5ngvUyiuJCzNe+uzalTWXlSpGe5Rx4oiJK4OoS7smPgxSWYf1utFJfOu8zbUF4+lzffMwZ4fF+zAFUGgDmI4hKniMVPgEMjXdSeEXu8c/xTD6SwUveceK38pVBrfFg9MTnvFP8h/bcPeX0XSTvs0fJikfyPKfsPTLCsfcoxi5QJa3OuvEMmbdRPHMOOAayvN5Hb7szJCm6NBflSXNAorwmIzoXkXBZSCBT2gTMnQ5yQEZ9yEjSHCjgXFS9Cdhwy69zIqRtR8TLpGsn9qPyciwqDyNJTp1DPOcALnT1ae9BT7fIXfn74p7zVl0JeT6eqyHA8GeJ0pmOucXB9sl35yFU3e4VeWTIvyvSRUUS2OsUZy16jpXzlryp9CFC5yW1lTzoXQCgAzxeNnmR7sGzL8xXlCJsxW8ZUPKTQDhBm0cq3Bh0RFBLA0OQncYhRR+cF/bPtxJ4ALcD7sco63VK28aSfUwyOee5pnpcP/hccA3sGhemJwPNfjJixPXu5B+5YxQoAQ1PSyCK5BHEKk/ATErR7+K96vMoSNK7B9o8AP+xhj/qCB/HxBuBdoHebq0fIJ3ywG05NWWdx6JuLTgPF0HLF5l7uiZAKL1BKUdX5sp6meR10CAnRZ0G66R57gp1zpB1St/rPMA1jTQBlrc3Fz1wj9h54X49y5Gv9K0aRlJk994WidExr4sy4MTxTnPlhyMTH6zblXYpYL4yfoB8BWBYj+ctg+P3x1Z2lxGa47sDz52iZoSj5pIGfM6h6EAj6662j7XZdjJuaawpl0nGCGZ8bryOKuPtEHCTfwLzFAVIfa76vE5fa5Rzzhm3Lyuvg97kCDAax3Xuh6o5vylaw3lNoJfXJ+GvI8p4WkvSdh9TVJJ8VT3JSUw6nn2W5fOD7/7CRqJrwsBeZ7T3kR7udVM5uvEuQZa2F9dcZKKeu6Ang0GleBTKHqN8ol0hT/daOu/Pveo54DSnlAhUWJYKJG3Z1W/ig0qfUZqk2Jm/44OHtw+1zaeUlVfx5s+4ZcYoT1JslAsHLy6Xqa4OpCbQ7dEgqT+7wH45JUNdRNkiAKjxYASPa5PRwzma46eeu4yUYXZw4QbPt3bTWpwDmk5ca8VLx6fzxHJ1T4DWASMn6qmSpxRNYOSwW1Nu+Bkx7IBrkrO0dhL/lPE5vUdA5/rPHZSkq7i2/WWClN+BvUdz2LeOV5c5yiD72Y3P1aC5yOj1THsPeqhM+IqnK0Uq6qL0LRgv2217+X0Z2mOdHoxObc31w/MnRUpQJfXhYxqiUuxccIz6JF4778jTOn491OyKjm11ALLypzD7XHiZdXvfk/LpvrfRGTcHJ50SpAFOoXHP555+Gtc5A0iQ0W0dMZ3ecve80tIWUOd0pOgMr0tGEyBKAK/uO7DOPG7YOQcd8PL+ElB1wG1unro3ndzwpkiRX3egxWU9ASo6HAm0OPhK/LNuL1c8et/JM0FKWmdOvm6S8+bOa4rCSPmtr8NwTXnwefe87ohQf/o11w95TO3v+pjilaBle6uns9jrvSAqNJIrBwo8Ixd1zVfH2ZaHYyuPe0leL8Pm7qV0kRgCg2P7c1Djysd/XZm6gk2h3O47R9WnTqEW8UwAQUfx1QlUFzFj/QRonEsaZlIHfNMzV3wOXgh+kgL3PA5mEl/0Rjnnib+aM9ZT+XzL4hLyJJBV9flz1utG1kEOgVGiNE/S5tjK0tivBCRSxIXApItseRmXIynLFecsGTXXB95Prgd3WBht8voqD3lNfKY2nU/ngevX55Lyxn53OraTafabTmnHB/shneqhuSghdbqnO5Dq9GsH5NIcEkAKZTh+SQ6T07bQxdLeR3qkTY+OSqCLICg8S3XS6z9LhMPbLuJicAXTRQj8OvHpPCbPxe/T813hTfJZ5btxS31272fOsNFzTG+PuVEpcJnGxvtKBZm2ychHekaFnCI8SYEm8FdK96xeto+Le9FJNrutDI9WsG8JzCXDsks5J1n1Txt4Hcf2jNsBle8sHjOvXT5r/usVd+exDrd63eSn0ml82U9Guy5pFe1N6ybVkyJlSa/QOUtryPOl+hIQ8fIlJ3SSWNbnhZFTn2v2O4G09BZe55DQ6fG+MW9XX1q3CbR5Xb5GKDudbPCzDb5Gna85EHclaZf+v17pmgChvrBc+fHLq472K4//dkqk6k2Lcc6Inmh7MfmiSM/dOO0afO/jrgNzjCYk/uY8n6IEtFinezgpAuAKzHmg0k4RuJqLFG6WTg1s8ejRMQcYaey9rc6jrWeMdLA87zlWbtzn2nHFeGPI44rfwX+iLspVc1Rjemz3NCb+5xELtsFnjMKwPN+QdADnUTbKK3mr9Bu1OUcPkPQQy3+kzc9VVN31S+BAXqRTndCdjemiR8UjjY6PkbcxB/Y6IEvqHKxk+N3Q169HR6jDFOogUf92Orei0ml8UvTG+fOPG1J2Uzlep2iOz3ddp++dkUd3ZOq+fjugu9B+0DUT6Un3nQFI3oIsTdr+emfyJKVtD+8QeTovgHV2fUnKns+TAnEg2NWfDG4XuWIeen+M6HSgoOM5KaIEyJKnyohHMo5sh/dpvLw9vo7tclI0F4lxooHpomnen2Nt/iNOeonJqDF61AEsPndwWM99y2xXhKH652WkTdliBIIeNceknvGNmhOUkz13UPMJbcqhR3+cZ/fonb8TbY91lStyuUmAxus7izfpQDbJsNeVonuJPJKTwFKS2VpPDka43ubOFmomXdqeyw581bVHBH3dpu+U8XC31+3PeJjYZYA8pPFJ+chL5XUQeRZ9eyVo+SJzT3sf6fGFQs/Pyc+l+Jsc9BBrASVD4Yu6jIK3c6S88N07Yj2Hdu9KjWCBbXndXi4Z4+LVjREp8VTp7tkzApU8NfKXDBjJ54cRtnSmiG3sunYFl84fOVhKYLEU/p1WTtr2BP3X609RM+YlETi6wibQoJJ2j7KIRsXn2+vgG0/sS+XrIg5S/kZL2oKgF536lLY2DkM5odwD120/QNLXSXq+pMdaH2+y/AR63i9GHebWkMKzigbNzYX35Tg8T1GDDozORVsIZh2AdYDHz4eltT93hk7hWYr4zekUjr8DXx9zgjiXZRKPLnh0iKCb6+8olO3k0H8ZFUwRwYUunvY+0uPeeAq3eui+iFEchp29HCMJVa+UlVhasMxb5F4uPTV6c+RHykqqyMvQm2A9/jx58w7W6PWyTUbK+FaUtM1zMgBd3m4uiuaie2menRwIpzwEhiQqdkYzkgeRPD0CPMob5eF+Wo3zp5pynVEp773zON2LZ/7UD1n+LsqZ2mFaivR4FEfa/l6QLH+dp/nU+vp5kr5Q0kM/W/qrfyH9F0m/pdMtLp+bLnKUog4EHGUY5+ZzLmLAtc0IWKqTMsb2vN5OrpyXLs1BbqdzqE/I+xzoTxHbet7JcRfRTWOz6y1XPnPeybdvnXdRAUaUqi3XBZ3NuFo0B1KvZ9r7SI8TIwXS6XmBEjQ33PSY/O2ApGS6aEN3Tb5InZdPD+WsIVBGfAhkOh7pzadQr1/PRS6O8Jyv6yY+vW2CDueZ/UheHiMQXq8bYwfJ3XgkIO28dOCPaW4ACLzI/xyIdX59LC5pFYHiPFZ9Hp1J9fqv96FkiF4tiSAlrRWOAQ0oo0z1jF94TnVQFgsQHUv6Aq0iOg+d/rH0yUlf9HelJ2kFhu5syns/OG5+bsR1SpVLr98zYtVR0hM+73M0F2Xo1lS6T+kOYgg+E2CggyXLk/rINN9GY/SS/fA6OyfQgdVcf/17buUod+CwZDPVw7bn+u19uppU21uX++/eQHsPemhMuDB8sbrRcINZ+Y7tmgukWzAOEly4aVwrLSkfLm6GVt1jYX1F5MHH4azRChpxP9gqXKeyxS/54pg7T0kh1Hgkw5jI586Jnttc9CjVSf44RwWkWA8P5bJelw0qDM4vwWLJm49fdxDYeXIlTr4OQzkpf207RcxoEDlPBC7FS4Ecl3WXMW7DpG8pHVg9Dsg9CrAam1tXN3doizgmKdLnfHMNeFtJ+bOczz9lj9GLIspgzdWh/VY+12Epusa1yDaoH4u6M13uBHia98mvT/BHvgia0icXXO9uzvM2b8VziuY4sCff6UO2Xs8cEE1j5NFZp3sLWLi30N6Dngo1+qJjCJoGll4JDQvLeJ3Jq+CiOcE165ROlfQuQ+N1pehT96rzHHgrSvU5gCDPadzYJg0S54J8dGAygY6Ol6o7nQtifd4+zwqxPub3b4zQyCTyufcx9S84u5Hr6iQQmjNgfk+Q3Xmc/IBk2lLxfpDXDrCn9UhA52kub1Un3/66v1bbeXP/KPhQq0PfN2oFdT4s6SPjNZrG0B/9N+n/2HNp+yyeOyGcmy5alqIB9UzaBIydrvD+cv69Ps45txy7c0mUAY6760CPenjeZKAZ3WLe4yaNa5tznyJkLv90FNiPeiakOQDxeakoXlEXpaFu7Nqj85HOXs0BpytJS6Snp2viTI//7sp3d55T4fn+MD1qGjkpR1BSu8k7SpGhdCaJxihFV9wIO9ETTLx53nqTiQqRXyl2xaLQho+fjxl55nctnJeqN4GaOaVU5dhuAmss23mxc4ahyvtbYBx3Gq50Do3z53UkQJE8S++ryxmN1BxwdHlLwNZ5ZSSrfqt/fq6IY+jf+amzSw+WdNu6jk9Z/jJEd2kFiu4r6ZOSXqfVltZDtDrL80c6Hf+7dCpjCdDx+1+c210AkePKeaf+ImAlT8fIe4C8/us8pvmcA+w0/uStyvLsnpq8ft2Bb7bH6+RE1L23k75VRdDOeeSbXCfa/Eel1aekHxIo2vXM56iLYC90MbT3oEfKC0tIk6VxoTNszkXeeUodJaPnxmfXmZluYSb+6MF4BIP9JPigQaLhrzQvW9cJZDlPBAZsIwGZBASk7Q/GFdEjJ++sn3WlOe3m1seOY9vNH/k80ubbX/x4mfM797XlOYDn4+8AiRGLyjsH0FKfCODP6t0lQ1W8zhm5Gocb12W+Q9LfuFn63j+UPoo23OgfS7p9nX6npLcYH2Ukay4IMH0Mfc058KATk8A4iQDJgUN3Xs3bT8a8xm/OcB5oBRhrG9TbdX6KKDsu81wr1FUub+kjjwlAVDmfv/T2HwF/WpMdIJkDIg6I0mvs1H0d+PJ2dq1DX/dz39a6knRRUaZ9p2sC9OwCIZXHFbZPeDrZT2NJT4FEb9H56gAA60tGiEbdeSZw6MaBi9IPYlaaK+KzKAVXMOx75fe3HPxe2lb8iee0p8483fM0l1Vnp5i6+r0/pOTNdwDtAdoEvzU2SbYS/wk4HCvPl7dLPlLEbBd4SdFBn0+XgRQ9ct7S1lUiH8f6yvF7JN3vD08jPJ2sHaPcX9Eq8nO7VtEd6fTNrRTJkDbXad274fY+FXWynNZ2ik7Q+DtP7kwQsHh/nW7USu5u1GqbzwFEAlpJP1D2/T6BsyJGLqtsGkf2g9HD9Kq3P5vTf8xf9TMiSvCZonXS9npNoEh4lvKm+6tFy3d6etp70MNIBD0U5ksKjt77gbYVgBtYF1QexJS2DQJ/3RtNHnjyzrk4ugiBlF+jdaJCcSJAqrFJYzDnXXr/O+NMUDFnoOeiUQS03rcuApS83aTcXG5o3Dre2Meq5xOBR++rl6n26zd5uDQ8aU4ccHpeTztUXjMdfwSstV7S/HXXKVLiaSmSdknS/5T0P3QKwH0rytcLo4136PQM8wnKHyG/15XABXUMDWBaHwSFPh50BrhFVW1yW1naHBs3/N72kyR9nqTXKgNNrmsCc+qTumY9XgevSd4XB/NV94lWINUPgBNA1LXPEaNHTGdEjwDZ12ta33N9TQf/SV6/py20P7T3oMcNXvISPB+Jiq3yuUFw5ZOEM7VFD5iedzJgXZ27FkQKUVMpc3GnqEUCd5WX9frYsH9c/KldgsCurkQ08FSIBRA/DZ7qd268GYE7Cz9eb8rLtCQvCcARhFNuUv0O/JKi53h3DgL5StFH8pPSSGmNHobfDpT7a/kOlBLY8vG7054lY53eyJqLGjjYciJYTbx0kdskawTTPhdz8+VzeiTpV7WK9hTfXYQn8eKAOPGUgHcRI3/dlm0XqXF5dh1PkMS+JF4Tdeuc80gw1jlv3h9G4cmDR5UuKtqzgK1MO+djjPHjY4yPjDHeZWkPHmO8ZYzxvvXvg9bpY4zxw2OMW8YY7xxjPMHKPH+d/31jjOefl8ny3LrnNObeOUYc6joJKwdkV7jb8yWviPeerzOkXtbD0N4Ww9NVpsbK6z7RpiJPRpzG0T2hSk8RKXplHHOnXX11OtSmMfM+05vj2zn+LH3DKAGppLS450/v2f8og/XHMUvySb5omJOx9fsagyrrkaIas2TEGU0sokNA4MJ+VF8JZghYXGY7QMb55avSzl96i4nnb0ju5TOCUPfc/knfc3HyfiQeXNckB+sA6SkK5vLtIE6S/lyrra071X+zK4EF8p2ioGcF+x114NH1ikebnb+z1ufyX/d0ktiu8yJtrqUif2stAVvy4vPcbdctdPF0Ftl9laRnIO0lkt46TdNjJL11fS9Jz5T0mPXfiyS9XFqBJEkv1SoS+2WSXlpAaRfRgEinCpWGhQLO+xLGLkzfGexuoaRFRKXmi2oOvHl+f9X6BM+SF+SKg4apxoBeG4EgFZ7/pi2VlO7gIQnWSXhevPl81oHM9IZJAhIeAqc3nAAHAUvyGH08EjhwxZqiOBzzEzzjOPgnDji/rkiTQaCnnkBB1ck5Y9SO8ss2uVaEe+8DI2uH2myDz5NXfmDplafmI21l8PVqgj4fV26tcF0mGSJ4qTaSzNFIHiC/P3M+XBaqnkOkVbkCOr62a7y6KES9yp8cKicH0smBY1kfmwPL43NyFsfQ60vn50gJcEu5f0n/eD+dSj64Rp2oX+ZA5tWk5ZX1nnaCnmmafkWrN0idniPp1evrV0v6ekv/iWlFvybppjHG50v6aklvmabptmmaPq7VyxYEUrNMupHpQMscmGEd3TcVXFF0RkbaVM7Mm8KarqzSQvaFlRaPGyHyUeSAyCNFyVvkB+WcXGk5eb6k9PwQtNdVxOiT/xJkJMOxa6sm8dYpUc4NPdqq49CedwqU9fgzRhE8XwJeyeOs+ejexuGcuxJ3Y3OEvAQEHqVwPlLExg0/DX4n90lx1rohD1XWgb4DF6/Lx+7TOt0m8+gm8xK4z8kX569kIRlap85gc31Km+uh0niesAzwLiDgjk7xS7DHNhlR2xXdI5FnnmNy4Jpkirq303edrprL48QoUCrXOW4+B+6cUPaTjrkIWkBPprs7Lw+bpulD6+sPS3rY+vrhkj5g+W5dp3XpO4nGwpWgp/tvWqj0Vuh1VlseMapn3eumVf+x+oFMypa8J8/U2ykl20UX2A8qO1fwXZ/cmywFeIR7KSt3KStEB2GMziUPiQbTASLHhO1UPQlYeR5XugTCzktdlwJnOvtA5VtjT2PJPnjkxz32ZITZ/i6vmKBGyvPn8uhyX/OWIpNcl0WfxvMEEAhwnTfKMvN34DZtQaVv8yQAl66d0icoyIfP3Rwdh/qkzXGvfEnmu/VbfDC6k6JV3mblv1GbUaZdfJAfl1XXHR0PScfxmmsqRYkSUKEuShFM52EXeCVRzhKQX2h/6R6D0WmaJq2iaZeFxhgvGmO8fYzx9qqUCj55eDRUNDDHyJeiRhR+N1xusJ1oJCrNQ70n4c/Lu2JOXoYDo86Q+6/nSREdKk5GMlJUwceLirXaSWNe9+4ldZ4Wx8s9RK/P+0iv38e3U0zupXldKXSdwFEXzSDNte9p9MzrGefTgYTLmPfJKYX5fQ7StoW0Gaksj93PuzBqU/PL7aVuW4NpcyCHxLZ4lqkD9gR/c+OVeEtevbfrY8q6OI+un9wZkDa3UucAYAcGUnSCAC0p/ar303bvZVmmxp0vPXj9CVTMUdpeKp5T3uRQ8JrOzpwT0Olejl9HXfmLoEnZ7tzTv3sD3V3Q86frbSutfz+yTv+gVv/wuOgR67QufYumaXrFNE1PnKbpicOYdIVfSoJeG4XdBXruQGuVPbG8ydinhUXDv2uB07gVr95GMr4EFN2WQ/HhfHukJoGP1GYKZyaPLSlmEheLz13xkUBTUYoqdHmZxnmigUhKmuDjRPN9PNDm+LuCcCBAxeGRNE+TsoIhaPX8pIo+pPJVR0UdqNTS2QWPeiVPtvqRwGe17bLiMu8Hrmsck8HkdZV1B8XzpX7I8ntkie27Mff6WH/1lTymKFvio4iOAdt24ttllY8Hb518TCk/dBR28e2UwF9HyXgmOWdafambzhjBJB3DBGz5rR4So9p00tzZoPPquubeBBLubXR3Qc8bJdUbWM+X9HOW/rz1W1xPlnT7ehvszZKePsZ40PoA89PXaTvJw9euEN3zpMfu5WT5pN5DSocYu8hOPd/loTIykICSG70U0ZA9O0GebvEmPnyh7lqQyfuper3fHh3qFGVScBVBqLaSgfXfZPhcMbE/rvzYT35uwPMVAEqv+yvk9TQPxZdyZhTKwd2JPU+LMH1modo6Dtf0Lue8TQfMBJ2M4lQ/Ok+a0QuWPwtxPro16nmcGA1kZDPlL3K9kvIVkKCTUWWdL/9jhEjKB2YdsEjbcqVw3zlXDmo8guRRKEaWixi57caui6I5WOh0S4pQ1nWKVrncP1ybXnPxkiJqnVHbpfeop6lrGBlPIMefOUi7CDq+An/3Btr5nZ4xxmskPVXS544xbtXqLax/Kel1Y4wXSvpjSc9dZ/9FSc+SdItWH1V9gSRN03TbGONfSPrNdb5/Pk3TbWdh0BeHCzO9Y3qxrKMLeTKt8nYLyJ87bwRQpXw7Y+Rgp9J2RYroYdSi98OnVM6dwXIFxXa76BmfdXQWD8eVXQKonSFyRV78kMd0kDxFhpJypAI+CulU7jw7Qo+9I8qYz6Ur3E4GOW+XdPpmjtfrES1XzFWm+pbmwvsxB/IJlFPfdwGSg5nnBb4Sj14+tVk8edkuIuJrKkVAmLd4I8/pe1V04LwevlmZoiacP0YayIOTyywjmSVHjHy6TLieSI4E9aeaMgQ01a47VGmcn6TVt4h+EnWlTxRUu95HhXz1zMeTgEzq9TL1v79x6s7gEvHZLxqrIzn7SYdjTN+o7YWYjHoCNi7QLMdXorvy/K280ubiTmWFtO5jVa4c2A7bSN7wrvbdmHJc+HwXefnUF+epnndGkO12c8l607j7PHV96caWeaTN174fvL7/ZCif6kkKMLWdxojz041zB4Z2AedOdjlunQw7JTlKUQTPPwd6OufEx2EX6E5GOkUD5tr1euZAFqM51DNdZCaNtdcjlNslt3MgqCPKb9eXSnPeK811Gtud09mexracqsyNkm5aX39MpxHOs9R7HuL4nacuH0+f70p/nfSOaZqeeE6W7jbdZ4zpgVeg3tuucj+uBO39F5ml7ehEXZc3lNKl06iAtCmE3ZsnjCD4s7mva9KzqbZZJimrog5Y8ToZK7/vvIq5Z2cFPMUneWH75bkxtEvDUF5eAYQUmfCyJBqNzshUnm5saaz890irkGXxO2cEkwfsEZXEP8vQK+2A6Rw4nHMEaMxd3tN5CWlzvlI7RTWPaXw6AOXp6e2zZFi9/SqX5obzScPagTRu3aT8fNbphV0RMI6DywS3vT3643VVO3NA/lin85OiPlwbc5Eh59kBM9ezl2Fd/DQC9S0B08dCfexj96xAUnJyi9c5PdqtMX/GMZL6j2heLVoiTJn2HvR0kQ1XEh4alXYjdI96eJ1zwMCVeeXjwjjQ9qLrvDLnVdo0Kg7WOlCWAI+ne/9docwBRxpKpu2K7ji5cqWhrj5Km31mBInjS6VJZZLmj/1OSurE+HFgUXN+h+WlcnbFPzdOnJeUZy5K5dsQPm/F/7FWHvFcRIAGi/x2UZ/O00+gl0AjURmbKudpzk965ZxrxNd/pR9rPuLlIC4Zyy7q04G+BB7U3KeIBut0HryNtB7n+jnnOBHsM8LEMzr8ZlD1xQ+SV17qVT88nHQuAbg/k7ZBL/VaGns6RJxTX+PU5fXc5bCoZGbOKXMZXOjK0xjjr0t6saTP1eqjyS+fy39WB//CyJW7tC2IvuhqERyH/Kyz8/w9jxPD5Ik36XRBnBVlJw+rU8CJp1IWrmyoDBI4IyUwkEBF1dcpERr9TsDc6HSKO5V30MQ3bHwMuzkl6HR+CMhIHEcH2nOv11Z6Fy10o0EQ5HV283qgDIhoyJL81jNGbBKATNswblQI5H18ak4q4lDP/WA3+XIi6KCRdIPs/fT2PRp0gnIcGwJb70Plp+PB8jTwrK+u3ajPrauqJ6Ud474D1VwbHUjztcftGv91AOvkII18FC/OO+kgPHPeOd6dLp97U8tll06E85wiwMnx9UjpiTZl/mrT1f4i8xjjxjHGb4wxfneM8e4xxvfdXd7Tv76yZ88YY/z++l9dvUSSpml67zRN36nV2eKn7Kp/70FPUTIMpeyd6LU4eXp6nTcpChfsubqdEkhjlMgFKCk9Gi4a6qRQ+XaB15l4Sga2npeRpgfjfdg1Fq746alyXCrNjWAZzQ74eUSsnlFGjnFfbc3NZQIwxYf3gdtNae4cpHMOaaipVBgeT3NBmejeArpkfx0xauF9cMfC2zu258f4lbbHvzO4lPddXrL327/XU/UmBT1ngGhcd/GbwEGKlhSvla8bjwS65qJC/jwBJQKgOefJyyQHJOlG1udguwOk9exSyJP0j8uD95VvNnaAOa1vr49RQ+8Dy1M+GN2SNp2FpHfu5fRpSU+bpulLJH2ppGes3+D+DI0xHjrGeADSHh3qepXCf2wYYxxKeplW/+7qsZK+ZYzx2PWzZ0v6Ba1eppqlvZ+TEkgXIhpS5ndK0RH3Fkp46e0WddGOuYFzHg6atENtGvXOk3Ijdqddd56NKziCAhIVQFIepQSoYGmk/NeVoH/dmXWn+SMfHk4uXr0e1pVeN08KP81R5U9nkXZtIaSQdwLljPa4N5iALMEQwVzlYZq3fd+Gd68/Gceqx41VMrQuvwQ8Ds4SGEyRFkaUeOaixstfJ78BfWYELvHM9kg0bJ1sJPlw4HynNuczgXVfz0m3+Ph5GeqBZMBr/c5t/yTiWp4DaD5OlJEE0JPjRd782uUkyQxBovc/RWNcLkqvJrBT5FFL5yfx6uDxLE7ylaKTK/DX0fpfT/3F+raWCt+S+gpJPzvGuK8kjTG+XdKPhLp+Rdv/+kpa/d/OW6Zp+oNpmu6S9FNa/esrTdP0xmmaninpW2fYlLTnZ3pOpD97zepIxZ9dNC/3IvpcLeN5uWkZ08tPy5heflrG9PLTWcf0r15pRpxOpDffseLtctMYY7xC0s9P0/TzeHAo6R2SHi3pZdM0/bo/n6bp9WOMmyW9dozxeknfJumrztH2w7X976yeNMZ4qqRv0Mq/2xnp2WvQM03TQ8YYb7/WX5HbJ1rG8/LTMqaXn5Yxvfy0jOnlp30d02mazvwPvS9jm8eSvnSMcZOknxljPG6apnchzw+MMX5K0sslfZFFh+5Ju2+T9Laz5t/77a2FFlpooYUWWujaoGmaPiHpl5XP5Xy5pMdJ+hmtPnR8HvqgzvjvrOZoAT0LLbTQQgsttNDdpjHGQ9YRHo0xPkurbavfQ57HS3qFVudwXiDpc8YY33+OZn5T0mPGGDePMW6Q9M1a/eurc9G1AHpecdEM3MtoGc/LT8uYXn5axvTy0zKml5+WMV3R50v65THGO7UCJ2+ZpulNyHM/Sc+dpun90zSdSHqeVv/GaoPW//rqVyV98Rjj1vW/u9I0TX8p6bu0+r+d75X0umma3n1eRvf631AstNBCCy200EILXS66FiI9Cy200EILLbTQQveY9hb0pC8vLrSbxhhfOMb45THGe9ZfxnzxOv3BY4y3jDHet/590Dp9jDF+eD3O7xxjPOFie7CfNMY4HGP89hjjTev7m8cYv74et9eu95g1xrjv+v6W9fNHXijje0xjjJvGGG8YY/zeGOO9Y4y/ucjpPaMxxj9cr/t3jTFes/5S7iKr56D0ReC7I5djjOev879vjPH8i+jLQtu0l6Bn7suLC+2kv5T0j6ZpeqykJ0v6++uxe4lW/5fkMZLeur6XVmP8mPXfi7R6lXChbXqxVvvIRf9K0g9O0/RoSR+X9MJ1+gslfXyd/oPrfAtl+reS/us0TX9N0pdoNb6LnN5NGmM8XNJ3S3riNE2P0+p7et+sRVbPS6/S9ptH55LLMcaDtXo76UlafVTvpQWUFrpY2kvQo5kvLy40T9M0fWiapt9aX39SK0PycK3G79XrbK+W9PXr6+dI+on1FzV/TdJNY4zPv7pc7zeNMR4h6WskvXJ9PyQ9TdIb1lk4njXOb5D0lev8CxmNMR4o6W9L+jFJmqbprvWrrouc3jO6j6TPGmPcR6uDox/SIqvnouaLwOeVy6/W6jDvbdM0fVzSWxRe4V7o6tO+gp705cWHXxAv1yytw9WPl/Trkh42TdOH1o8+LOlh6+tlrHfTD0n6Hp1+if1zJH1i/TaBtDlmnxnP9fPb1/kX2qSbJX1U0r9fbxu+coxxfy1yerdpmqYPSvrXkv5EK7Bzu1ZfyF1k9Z7TeeVykdc9pX0FPQvdQxpjfLak/yzpH0zT9Of+bFq9sre8tncGGmN8raSPTNP0jovm5V5G95H0BEkvn6bp8Vr9u5mNs3uLnJ6P1tsnz9EKUH6BpPtriS5cdlrk8tqmfQU9l+XLi9crjTGOtAI8/3Gapp9eJ/9pbQesfz+yTl/Gep6eIunZY4w/0mqb9WlanUW5ab2FIG2O2WfGc/38gZI+djUZvkboVkm32v/neYNWIGiR07tPf0fSH07T9NFpmi5J+mmt5HeR1XtO55XLRV73lPYV9FyWLy9ej7Tek/8xSe+dpunf2KM3Sqo3CJ4v6ecs/XnrtxCeLOl2C+Ne9zRN0/dO0/SIaZoeqZUc/tI0Td+q1WfWv3GdjeNZ4/yN6/yLVwiapunDkj4wxvjiddJXSnqPFjm9J/Qnkp48xrjfWg/UmC6yes/pvHL5ZklPH2M8aB2Be/o6baGLpmma9vJP0rMk/T9J75f0Ty6an2vlT9Lf0ir0+k5Jv7P+e5ZWe/VvlfQ+Sf9d0oPX+YdWb8q9X9L/1erNjwvvxz7+SXqqpDetrx8l6Tck3SLp9ZLuu06/cX1/y/r5oy6a7339k/Slkt6+ltWflfSgRU7v8Zh+n1af/3+XpP+g1X+eXmT1fGP4Gq3ORF3SKiL5wrsjl1r9F/Fb1n8vuOh+LX+rv+WLzAsttNBCCy200HVB+7q9tdBCCy200EILLXRZaQE9Cy200EILLbTQdUEL6FlooYUWWmihha4LWkDPQgsttNBCCy10XdACehZaaKGFFlpooeuCFtCz0EILLbTQQgtdF7SAnoUWWmihhRZa6LqgBfQstNBCCy200ELXBf1/e+g5fnKn5OkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAKbCAYAAADxH8WgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fbSt6VnWiV61JmvvTZVVFSqEVBck6XAgGDqYbsLHiQ0JGAniMIhDbUczBoIHVI5AnxBzENrTjrbH0WoZDml70EEdfuDHUdCWEE4PWi2MBBHtY2Oi0ghiixIJgfCRSqWKvffKXPv8MddV8/f+5v2uXQRIdnbmPcYaa873fT7u53nu576v+3reOec9t27dupWjHOUoRznKUY5ylKMc5ShHuUPk5IOtwFGOcpSjHOUoRznKUY5ylKNQjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpRfcXnqqafyghe8IK9//et/yXWPScpRjnKUoxzlKEc5ylGOcpRfcfljf+yP5TM/8zPfr7p3fJLyhje8IS984Qtz7dq1vOxlL8s//If/8IOt0lGOcpSjHOUoRznKUY5ylEvkx37sx/IjP/Ij+c2/+Te/X/Xv6CTl27/92/Pa1742f/gP/+G89a1vzWd/9mfnC77gC/ITP/ETH2zVjnKUoxzlKEc5ylGOcpQPqHzLt3xLft2v+3V54IEH8sADD+TlL395/tf/9X/9Fe3j+77v+/Ka17wmjzzySO65555853d+51judgcJr3/96/Poo4++33p8xPtd8wMgf+pP/al8+Zd/eb7iK74iSfI//A//Q/7u3/27+ZZv+ZbbDvr8/DzveMc7cv/99+eee+75QKh7lKMc5ShHOcpRjnKUS+TWrVt54okn8sgjj+Tk5M7jyq9fv56bN29+UPq+cuVKrl27dmmZj/u4j8t//9//9/mET/iEJMlf/st/Ob/1t/7WvPWtb81/8p/8Jwfl/9E/+kf5jM/4jJyeni6u/8iP/Eie9axn5eGHHz6o8+STT+alL31pfs/v+T357b/9t4969CDhDW94Q/7z//w/z5/9s382X/AFX5Af/uEfzvOf//y86U1vyote9KK86EUvyg/8wA880ylYyq07VG7cuHFrs9nc+o7v+I7F9f/qv/qvbr3iFa84KH/9+vVbjz/++NN/P/zDP3wryfHv+Hf8O/4d/45/x7/j3/HvDvt7+9vf/oGClM9YfvEXf/HWww8//EGbkwceeODWJ33SJ9168YtffOubv/mbn7HeH/VRH3Xrz//5P39wfbvd3nrpS19663f8jt9x633ve9/T13/0R3/01sMPP3zrT/yJP3HbtpPceuMb33hw/TM+4zNufeVXfuXi2q/9tb/21td//dffunXr1q2v//qvv/VxH/dxt17wghfcevazn33rgQceuPVH/+gffcZjunXr1q079iTlZ3/2Z7PdbvPc5z53cf25z31u3vnOdx6Uf/TRR/NH/+gfPbj++UnuTXKe3bNt5xfXT3DtLMkm+2ffNkm2K/fPUe48ySnKTHVbbntR1tf7+jTJDekW3Nvi2ulFf61b/bYX/1umerEfi+9Z//MkV9F371Wny8Rtt97ZJfWr/xZ1rDt1m9YkF+85J/y/ZgsZ9HLZlknW9d/qfW2D69ZxTvdYr/qszQuvs+9et7gt6+u22d4Zynje2R/HQeGYOc/nKuf9lVy+Jlez3H+9N9nQ2mu/97xMOrLM2h7rurpM58Br0blbs/sM120rlsv2P9uoHtada8u5tX302tXs99nVJFeS3Exy7aK9q0n+YJLnPnBR8Hcm+ctJPjr5wXcl/5+Ly1ez84mbJNeztKv3Zel3aSuUNRvn2K5f6LbVPc5Lx34js+/hnNi3VOg3Jx/EcrVpr4ttrvdOcT/Q375msveNyrNdxkXGw2QZz2xjZzmMd9Q5WZ/Haf9XH4r1t57T3DIGdAzcc2v9dcy1E8eZlufcTEIs4LjEvjZZ2iHnnbY6zV9Qh2Um25nWxrHoMpnw1JrNEkedJflfktx///3PoJcPrNy8eTPvfOc78/a3vz0PPPDAB7Tv97znPXne8573S+p7u93mb/2tv5Unn3wyL3/5yw/un5yc5Lu/+7vzile8Ir/7d//u/NW/+lfz4z/+4/kNv+E35Au/8AvzdV/3de+Xrjdv3swP/uAP5uu//usX11/96lc/fWry6KOPPv3U07d+67fmh37oh/JH/sgf+SX1c8cmKRU/qnXr1q3x8a1v+IZvyOte97qn33exr+XQYTDwGNQxaXDA7n868UoP57oRr+UQLFmHKXBSh2Q9iWgSUodyrvp0OAbnDEoMqm1rmx2wmAAo52UCS8lhgHegrO50nE58nskcdIwFP1My0TYJQPq/a8O5m5JV6s3gQXBgob5XpRPno2vYe527tt0EscHsNMsgx6Do+ZzE+hYMcQ4coE5Qtm3ckE4EyVezDFTVk2PieLfZraEDJ9ediUjFQP9c/2sXPDi/jvIlLzpfXPsKx+Z+k+WcdRxOUjeq02sGDl3D8+z9h8dM4R7v3NO2kuW+n5Iw7y0CFINMjjXZ72ESGe2/7ddT/5qL/x+R5JEkn/hIcusdyT23bu1u/KW/nXfe8zvyufcmf/+p5N3oo/PTdWSizbFMSbr3GuVUdbp23FtMkrtmjAFODggCJ8KD5NEE8r2nnXRzn3Yfdk/RVhxLDL67RrYb7j0mSow1pyhDUmyylZZj39yPjF8TccSkbjO8b1nunZZjn8nh/NC3uD2TPPUlyeX7t/1NvqTCtZ72Lef3auY55li5ZsQhjpn0lyZFXI4xayJ2Lksqu4dKujI2sWxyiO/uJOnnPe5U+Zf/8l/m5S9/ea5fv55f82t+Td74xjfmkz/5k8eyjzzySN785jfnFa94Rb74i784//gf/+O86lWvyp/5M3/m/e7/l3qQ8P7KHZukfPRHf3Q2m83BYH/mZ37mYFKS5OrVq7l69erBdQPXZLnBTof7Zj7tcKekg4GEztzgedLHTBb7oh52TBu1y3pk4CdWjbo4uNiR8PUms9NKbs8wneDe1MYa0zfNCfXgekysHp3xGd5v0A7nyYwanX8DSnLIhHP9PYau2Q2UJ7iufgxeGcp2vDeyDyTVrWzzJodAjid5ydI+nXQ7OTWAqK7XVM/JEcEqQQTtpe14zaiH9eR176UJnDQxOcXfWZaseMV6bHNof9x3BRK0UwJQjoV2RwDLeXLb9EG0E87DVm04+aBNre1pjpdzeFkSTlaUOjtpYCL7tN1sk3tewhZ/+07fk0MwdjPLfXYluzWlLp1Pnz5Wh6tZAuwbeE3Cgn7FSQbnxsne5NenBJEAmwms9wTbMPu9GcZ/pjLUsePlmnHPE6DTDybLPe5TNce0CZQ7XlxTH0zIOFaOi3vLsZd+zb7FRGCTUCf/9CdOaJzk2ra5xrR17gPHuopPfzK87lgYW871v+042dzoXts+V3n35QSRtm6c4vWqrpzfiTRbS+DuLHnfxd8Hus9nJp/0SZ+Ut73tbXn3u9+dv/23/3a+9Eu/NG95y1tWE5XnP//5+St/5a/kla98ZT7+4z8+f+Ev/IVfkSTxmR4kfNmXfdn71f4daytXrlzJy172sjz22GOL64899lh+/a//9b/k9hp0+kcnTSc4AdTkEIx2I/r/JocbnAwa23VAORnu0XFStzrAsxy2VT3JVFeP6zl0LGxvCtTV40RtOQg4qeB4p2sGXXRmHH90rWUdbC281nYadNfmywDSOqzpsVaW7FrXouvFYOeN2LIUgs3T7E+7DEa7brznAMPAxf5pS0wuknX7rV3ShjhmjtUJkNni3iNo8j4xe23Wk/2eonyTOJ5WcW8yyJup7/97czi3BHkEEk6UOe+coy3qEURdBg7YJ8dtdrllaX8Vri33Pm3D4+R4qIdttX1eyZK0OU/yriR5Innyh5LkY3cV/vU9eVaSX3xv8hTaO7too31usktaOGctR//jk40+Nlaf4yTRpyo3hnuXAckbOWTqaTdO/LrGXWevZfvjOhuA81rwflqz7i/avH375K+pT6937ief1T47tjUg7HZ9mhu99/xwndcSubbZ1/S9HPNEdrUP27aTHydt9pVr4Nz+wa+9HskyMamQBJ1II5IIk24knkxCcf563ePl/Ne/9l6Fvo+k4FF+eXLlypV8wid8Qj7t0z4tjz76aF760pfmT//pP71a/qd/+qfz+37f78trXvOaPPXUU/nar/3aX1b/v9SDhPdX7tgkJUle97rX5c//+T+fv/gX/2L+1b/6V/nar/3a/MRP/ES+8iu/8pfUDp17N9L0vQ12nhOD4+vJ3jkQhPBomO0SIBGYMfGhzm0jWYKY61kGIJazg+TxegM9wRiZR+o2Bc6gTHXqPdZpYKDTmpKyBvMpCDGZ5FjpNDmH09xx3diHmbvzLJ17/zshMfghO+41m0D0BC4IJoP7U3JEIHnz4tpTSZ7Mcq4IcqjrBBCoH9eF8282MVmC8YKAaS3Zt4OXGU0m0tWdDGXUBm13Atd9f/WiLJPUaS37nskG9Z6SR17j/rLtcNwWkh3V3/u7Op1m/7mPtuc5Spb9T2QLfRHvkWyZ9pT3DveFwTn169y/O8ljTyX3PZI8ec878s577smtT0qufNzuOfV3X9S5L+u+iLZwGcjka+vMe/YZl5Evla5zk56ruL7FddsGbTQ53JfVwX0yYVqLD2uJ+wRSPRe19UkvlqF/SWYfwSTIZTbZ70fea79MntdslPVYx4kF4zGTk2l+7AeneGeZ9kH3TeeS/qNr2Me4nPxS/EQHySPaB0kYjqdj4lqcZLln+p5zPpEswb0t7pP4vZLDGDslqN5fd66874P09/7JrVu3cuPGjfHez/7sz+ZVr3pVXvziF+c7vuM78uY3vzl/82/+zffrF+Arv9IHCWtyxz7ulSS/63f9rvzcz/1c/rv/7r/LT/3UT+UlL3lJvvu7vzsveMELnnEbBkUTW1OHRMDUDU9HejrUqbPg5mV/bIOv6RAMBJiMMGjweXoGBAbDybmwnhOS6d65ytHpV18CIzI2FbM51dUBibp7XdiHdTjJMlg6cJO59XjInFcMKnk64NMel/H1y4TrRV2pA9lhAo9kCfavZf+B5OqT7EF+7xPoM3E1w8b2z3SNcj2Hdpxn8N5Bn33Trp2cuf8JaLYcbZLt+5Gk6sZr9AO1DwOpKZl3/14/9+VTEgJA2zD3FdfP7C7F9sJ54eM1fU8bZgLStaBeN7LU0T6Lr9vv9YtytcenkrwpybvekfyX2SUrv/iO5K/9h+StF3WelaXfK6nUzxg+leU6eOxTYu4T9Ck5IPiinA1luv78TBxtj3PCNT/N4fP60zgmn7Jm88nyka7LpPdNilAmtptxgp+Zon0QUDtGMgluO9sc7kPqY72mxx2pM8slez9Yfe07+PglSa9p7rkPKVOc9x5su2dDeY7DPpHzGJVrG/x8YGUtIW0dYhX6K88pP7Non9g67af2wOR9Ig+IeY7y/sl//V//1/mCL/iCPO95z8sTTzyRb/u2b8v3fu/35u/8nb9zUPb8/Dy/6Tf9przgBS/It3/7t+cjPuIj8uIXvzjf8z3fk8/93M/Nx37sx46nKu9973vzb/7Nv3n6/Y//+I/nbW97Wx566KE8//nPT7I7SPiSL/mSfNqnfVpe/vKX58/9uT/3fh0kXCb3XHy92F0n73nPe/Lggw/mt2UZnAxE6OQJbM0OTuzp5JySwyDlZ9Tdr8FJyzqwkVkhM+kEIdCNz+MzMNeR8BvFCFCnb7uZQKUTvDUARvAwseoOcq7De9SdAZH/OcbW5Tp5zSdgOwV7r0nL9zMil4F7BmfqUHFA4hh6777sT03uT/LJSR6+uPeuJD+cHYBr8tKTCYL1CdxVuNYMoq1XhtAJu8fcufQ6tMxkF+y7/bo9fpiXbXCdLdNpDf9bvDerV/ec95ETl6DuSS4PymtglGOh/zH4NRhku9Zn7TpBBfe123fSNNkAk/vOS0/8Hspu/p5An5uLa09e1K+/uv/iNR/96vzXpqtn+59ONA16mWQ5afZ+NrB2EmI/d1nStGaDkx6TTayt5+T7JiLE+4X2E9Uhs242v/Vrg0/pPWPIRKRl0G0aD3VzsjclA5eRRPanfE1du1cZE6kHr3E/THuk9SZsQJnGyPZ9EleCyDbiebFvox9bS0qqy71Z7lHqdFk9Eywd16TTeZL/Ocnjjz9+x304vdjx8cd/8oPy7V4PPvixt52XL//yL8/f//t/Pz/1Uz+VBx98ML/u1/26/KE/9IfyeZ/3eWP5xx57LJ/92Z998Psrb3vb2/LsZz87z3ve8w7qfO/3fm8+93M/9+D6l37pl+Zbv/Vbn37/hje8Id/4jd/49EHCN33TN+UVr3jFMxzx7eXDIkmxY/LGN8tIZsdOqOKNuhaMLktGJgdrAHZN9wg2CRK22X9bEcc6gabJqUxlecLRpClZOp61sbWc2SfOddteA6Id5wQ8fHI0BWEDq8sSRcoaeOF4zY61zWQZ1JLDAMTTKDPZU5kJDF1L8qnZgz4+xvDPsktYHMycfE+JQlCWJ1ac67XTl2kNzNYlSxumECxPwIDzcRnIm/qvDpONsJ7HlKEvPtrGdjlnT2XPsHN9L/MBtLPKmk3xNGtNX4Jurj11N/ie5mUN8ARlpkTxJLtHQLZZkirXsk8+msRssvfNbbP6rbHaU0JNfSYwbOJlGifBXPf3WrJtWUseJxtds4Vn4mcviyu+5ljmU4MpIa1Mj/sl83jcf2XaO6c5THIn2z/Lut+ZfAv39zRGz3Ht0smF9b7MV7K/idCccIPnZ7IX629y0ntzWnP2MSXYLusEZo1InN7bztue/XDX9Y05Jilz37dPUj6cZCIS70pxkHFwSvYblAyQN10DLsttcL1/BmJ2GmdZBuDziz8yjBuVXVssszh0Fm3XJwBuy06r7VBOs0uEqPc1XO83txBsrIHNoHzQnkHFxJoxELRNJ3r9z3Y7bgMhznXbbF0nIdSX1/lVkSf481c59r/HYrDCZPVcdbZJnpPdIzEPJfnqtya//+eTV16UeeSi3StokyD1RO3aprlmTDI7b6dDOfYzXbctsd3L9mKynKu+J8t7WYLRek5+LgMSFAZ0grtrOVwztssE3f6i7SZL0HaOsra/Xifg79yxnn0G+7Ku3Qu2ffaTLJ+fb5n+Ua+ufee7v49SPWqPTbCuZWfHn3zxv+31lMSJJnWg/dlntJ7Hwr3POen8d6927xGMkQSwT+Oa8Xrbnua/dsV1oo60Lc6t/bTnhjEkOdzvvX51KDclho4DtLf6wPbN/cVT2Ckhrl0X2N/I0ub8mUuCeNoB52oiJei3gnK971PJ6sN5ZjI79bOWELO+k23bov0d+z/Va/oG1vHr7lEmHhMGok5dU85554iPhk9YZMIV3hNtd4oRRznKJHd9krLGdnWTG3TSURKgus0JxE99nuA/AQF/v6XOgJu4dRhs+e0ZBTUMXgygHQeBncGgGR4nGNXNY+n9a9mB5IezAxn3ocxaUO3cdWwE+xzjNIfJoc7U0QGSYHptLSdnaebU7Jt1aZAiuJnmmwkLwZ2BExntCpPPK9klhTeTvOajk/ynb00+6lZe9Lv3P0yX7J/jd4Ji8LXBf9oXg9sEeA0ODAzdjsEcgcq0DrQT2qYB+Vri4TEkM2Cp3h4b19d6d93WQBz1Iahru2yf89B7Pn0xCLEv4Hg6btrQVmU6HpMq9CkG5GapaedTUtkTktZ78qLeUxf6P5ndh+R/PrvTQO7Ts+wfa7yMxfc+mYQAnsRCbWmT/SM+bJ+xILg2AVjuJSYO7ctJR4Ux4Tz7bwnjuDq/9OXVo19/bZKs5QosJ5vbqj3rziTCcdQxKipje+M6ej37OCpJE65NcJ9xun1zzipnw2v6sRPVqU7Tl8yYvKTQ753pOsH4dHLRehMIeyanHbQ57t/aAO2YPmy6bgKObZ5lT4rw0WEm29R1Wme2vzbmO08+tD44f7fKh4at/DKkrICzfCcaDiwWM00UtmEWhNcZQJgoTQyMgxdZJOtPkEggNbEeZskbuP3VxBvVOckyyN+XXYLSutezA84PYHwnOZzP6RrFwN56O8C3Tf6n8+W6T+CRQpDhgGfg0HbIajGp7L2n0I+TkGQJBpzIcr0NFp+4uPd3fjbJj/9nya178pN/Zf8sv1l8JkIOTr1uIEUA1iBsUGIga3av7UzrRzBu3SbgyeSRzDcf+wlek531aYrXZC3hdZJkMMq97VMxzp3n33OwyeFnmtq2E5Zt9iQHx+dkgeVpS9PJA/XhX1lus6/2pzxZ8trdl+W+bjsPZGer/z57/0EA4/25dkLadre6PoHmCcjSH0y+eJOlrdM/dO0NImmrHntyOEaPlXu07/3o01mWyRWTRiYe9sX2f33PdQ/qTDa75lOT/SmIyRcz6J5Ltsl+p0TF4n3Qvc5TAZ9+OhFqOwXktCf6PvrKkoVBuV7nHqH/mObCts2TJCYzHD8TEiZfnXvHqurEU2z6qylp7Vjod12XMZN11pI6j/0oR7lM7uhv9/qVEjr25DCJmJ6bTPYOa6v7dDyXsXgGL9anfZf9riMkyCUDxke2GIwndnsC7GR8+MH4bfaPYjhg88SGffaxr89P8prPSH7m/5f8seyZvUD/KRAb9Pg6nWnFAPZcZTvX1Zfreqo2grYYgDao57Vdc+Jun3ZSu2OAM5BcSwh5n3XOsvvMyRMXr//sx+91vpLkHWrzJMsfwKPNEAjQLmt3Ttj4WNK0n5zoeH39vkztWfYg3Ws56eNTq+6R2+23k5X300lAX08ncAQFa+MlIJnK994a0GFCaDFY6uvpUaVJp0rvFexyfslqs2z9yER4EBwa0FCvnqQ02Wzizb3odWw/1dN6cS2ZyBC0Gzj3NX1WpWWZpNGvkjzytekki7bc+aGf83rSh3EM3B8cP8fFxINCfbhn1mKj1+0ygqn1XaZt2GbsZzl+6xfVo5+kn107ha9dso2Ox3PFr0BvmeC9gb59CsfNcU5jZ7vdb7QfxvxNlrYTXOee5H9iCJIW7a9jsR+x7VKIB/jUAmMV55o+1OtwZ8s2H/iTjcsQ5YeneF/d1WLguZbRc6Ne9ugR2Vszzue6Xym7YjaObZOVmJKN5DAQtE3WNVPYtsk8u++2zcdkyKoSGD6Z5DUPJfnTycd81e5kxd+VnuxACIMggQIDF+fDjoxBqEIWiPV534FvrS6Du8FNx+9gzeDWetMaGbRMwIX6OVlI9uMug349yb/M7nGZZ2V3gpIkb8v+g/R8dKFfRVwx2LLODmjVi2tApnBiTS0TM9y5854gI8oEMjmc57Y9BVXuoerluZ0eISMYpHT89gNsi36le8mJXlS+7VBv25KZ4CnhOc8yGbXNmXCYbKKvC0IMLtsOH0Fy8kBQRH2mxKMESefVe5/z2b1UH8ZHf7xXNrrG/RuU4f+p3lSe732yw7oGs/QJtnnP/0TktDw/k0Tf4/WaTvA4PvrINds6yXIftj2KCRuuP/cg9zXb8rz2GpOktb1MP+35dexmjO4er/7nmfd87cs+cUp4Wcev7TNal7HIPtKElv0x2+f8XIYxeOLrBKW6ed6tf9vkHqwuUwzg59qm08qjHGVN7vqTlMnZ26mQxe19BsVuWAZRP+7QMg7+ZkPaNh3EZYxhsgQ+rMvxnes92RYybxMDRzaEgXV6RKh69jTmsZ9PPu+/SZ78nv0jSHWmZGWpC4PiDdzzPLfvNadGEM4kjfPZ11w7OuNNDvvwWJOZQWRffc1vXWL99rXRPa6JWU6C8Yl1fCrJ/5ZdgrJJ8h70MQULjsHrwHFn5T2BRe+zD4PAKaGrMFHuawZDs38nWX5wk3Nu4HSSy+2GSfDtEuOoHPv0/k+W+3Kay9oiAYXHPvXP0wk+wrIGJgnwnolf6tgmcFtgyQ+0ty36hupQe/a91r8v+/VsEnOaXbJCX037YptrdnUZBznZwhqRQ9s6Qzm2Qb2sM/fsdMJKQMz3lSmu8N7klwjqua49BXJMuB1fO+nm2DcBaj62NM2X1/Uq7nMeu9bTCaT9mOeH7XHfkRSj36Af8rhoYyYaPBcT4Kd4rzqmOK5XN48pWa4fMYGxBLEBdfLpLedmbT632cdcl6EOHvs2h77jKEd5pnLXJykM0nRQDE4MGnTidLJk0vvfzELr2wlWJraezrP6OgAyaXAwvZnlo1o+xiYQpROjM2Ig7lhPda/tV57M7gPz/0uS/+V79vPzhPQ1AGbQpTMzq+5AdJnzrxjsG4ScZPk7FwTqDkQGm01kycJNiWpti4/TURefUFWY0K0lv+dZJoL9YPwTuM9fIjfIM6AhsOHcr+lg/byOXDuOl4kvbX2NgTQ77CTLwZoJCQFVoK+T+MkuDQY8N9TRiZXtiXY0AQUnD5MUGHC8J9kTKtbRiZd1ZJ3eD15P/qJ9co5vqG4wDgK3iTlusnNvlus5zWXXhnvG4Cq4ttV9kw32P9wnJKkMUm0v7dN9eK+6nwmY9n7nzDZk/+vx8KTbtuTkp3NzWVLUvrnWLdO6HC9t0/bFOEk/6z6caHAc967cdxvVnfHvTPc4XvpG2swaQVk9e533rXPbpK/ka+5X7yPbN+MZ57HJPU9Xqc90cjgl6ueZbWHyzdNjXFMMM2mRzHZ/58sH44Psxw/OW+76JIXOg8Gswo3m4ETG0ycbdHLJEuSZ9T3JobNwuwxEBAUM2HRq1PlE9afg0bJ27lu1QWC4XSnTD2b/XHYsfhnQx7Nj8yl0lgUcBoXth8wrAw6dc+dvYhP5emKn7ZDZlpMV9ltdGNQMvt1m14zfac/2DZInfTievr+WQ9va4HqyW48noSdtin23/2Ac/IFMBtpeK5gzAOYanqpsxzEx/9PrCue+bZzpvet7jaek3QDSgJzr7rYJ3gzCp8TO5EavFWRQCALW1msNsDHJ7Xg5DwSOJgzWwG3bm8CZy0/JIpMd77v+TgptlN8cRCEoZwIy+WHOAffQRAzZv7Qs+/VJyFTW4Jz1p4THpBR1S5a+gfY4tWnxCQT7JhFE+2QZtkG/wTlei230AW3H8+W1pP1eNiavqWNqY4vj/WQfXH/6Y463CYDLtA3qRVu/bD+xHPucbI4n/xwP8UBjC+1yLamxmHQhscSxsm+OhzjDJIJtiuTVdHJ5lKNcJnd9kpIsH/mpeCMxGJA1qqPoZmtbDhRlzwkSWo7AyuBvClLUuXpNwJwO8SxLZ5AsdVxjc5OlA7Fz4lww+Jxl/61elf7qOoXJyVrA4NzVEXdMBkacfzNlZsgIMlrG60dH66DA8TvxY5JlHVzO4rl2wHWwaRmyy22HwKuvn0Qf5zm0V9qkQYZ1MbNWFp3AwoFwStyiMtbJLC3BSOv50UAntQYT7HdNJ84F9y7n1vPhXyN3QsA63GPcqwa11PFcr1nWTOY2e7a57bTctJeYdDrhoZ70d6fZ7/NpzyVLX8X+puSM+tOGphPY5HBuW4bXqXP9ScttVGaqkxzuEY/Dc8a57A9U2k9NBMh04sB+rRdt26QA/VDnkMnH5Ie6HvTdnPPJB7Z9rnHbWiMfvD5ROYPptVN+n5Ly9ZQY0KYI7B2DplPWye+4P8cf60Ds0HGWsDGBUnulv+eael6rM4mwqOyUxNLm+Po8e4KLj65Ndju1S79l/22/69PSO1+OJyl3gkxJ9l0n/krE5DCr57F28JrOyQEvuH+q/0FZPzZGMGjW/FzXmSBR6tzo+OiQM9SZwBsdix1jk4vq3HbbZ7+f/kaWDDpBCXWdHNMG153gdExTsKM4+TrJ/lGoOnI7XLfTcThx62sC+o6f8z4lKAYitJ1+kLDtEeT5q2iD9wQsfd9kkUGGwnEk+2+vqf1wbVl2AhSXPX7Q+5MY2LTN/pGNY3nOEfWoGNAaIK0lsgygfjyJQZn6nGafoJyqrAEC2+q+7DhoRx1/94fZ7SmZaT9t+6HsvjzBNsu2qwN9hJP6oEyFJykFNNSRc0j/xQSE/RhYtV3uMevEuaTvNDjkPDJ5nWyb+9E2y/nnvPEE3HbPz6JVF7bH/jh3JBc4dtoNASX9WfWbQHFyeEJBm7V+7Nf20P+0LwP93vecOMnm+O23TTCZNKNf5R6krlwrxy3GAe73fqkI613J8rS45dfANeP52mNVTh55CsNyfM39xFjffcDfW0sO7cM20dNK4pU+GXG7Uw7uLepVoR0ZO13N0ld/WADPo/yKyIfFScome9A6gSVuqu1w3cDAbC+FAYeOhW34ERoG28kpT07Hr6eg6OuXsbK8Nz0q0P8G5xQ6pjPdt1OaGMGK9eJ/X3fg6Nz2W8bW6lEvAgL32XtMHg02nJhUzNqeqw7LG9SxjAEVQYD7Z38WB0ADba89+ydoMAiszpw3Ax+zxRtdn5Igih8vax0D1YrBgPu3fXZ9PSf+qm6Dc7O2bZ9sax+PMYgrWJj0S+b56X3aSH8PhnNtf8B56GsCFYKf2nzH27Y9X71+A+0YZJ9nn5BzvSrbzJ/for48uWL7wThOdN1g0jY4+XkntiZIXI7+cHqs0LZ0O6EdOMFYiw2OLbZP+wWWnx7hYTkK94ATn9qMY5jjhuPVie5N/vVc7TDJt7+ZTqi2auc8h2PlY1PJISHEubYP5xisI/3MFDf4miRTsrRVkhtrft7xx3667fQ1T6WZiDtRpJ6T3j7d7721uMs9epSjPBP5sEhSkv3nJgigKNezB7aXbTI+h2oxI9ry3Ph25GaH6pBYjw6C4ILOp46i7XN8E7MzsZV2wr5X4OFgYz0M2qc265R5j4Gw9zpX05F/sp9vMsOTM5+cu+eRDp+PjLANM/6tR/vYqkzngMHKNuY2Wm+jOtSvujtJs6wBAK7V1SzXgvpSN/43QF8Lyma/ea/lpwTOzC/nggTAJkt7MRhN5rHff3GtJ1H0C07Mguu13SlhynDNIKtjMyNJcOv90zpm3zfZPd63VXs9jTMgYzJY8UlD5b4sv5Wnvsm6em2qd/8/lSUTz/Kex+pzotdTIrr2KBD3hwkbJ2YGvB2r95jbbHvWp0lX708JOcdu++Rem2zP9unX1ov3eNrjRNiPtbHeml+YSA0TXZ7HtSSa+joJoF/uHmhi61jjcfG+T/EYZ7gW1IG/X2ZCYc0OpuTU8+m+vfZMFLw/2t5kHx2nr7ktzquTkp6uGDdYN+/djoXzfLpSb4pTd54cH/e6E8Rx9a6XOk0zqfz6y2TpKJn9OxgmsxPZ6j9fT6Cyjxt583qBJqdzgv92jG27zpVjIaNWoGeWrY7zDP+T5TzY+TNY9Ag9eL/JEiwQdFbvtSRxbV4vA1/nWQIRzykdKdk26sfgSluYkoReP8nheJnQBfVZZrKTAmbbR687ESbQcZJ4GetFO/BjbRzjBMgJAnutY5uYVAMM6sQEaS0xtH1fxz3+t+4d0/WhjEEOE9MKbSJZ2oGDdvdb/5pAU0f6EZMa7a+6cz57jaTJVVxv+8nSNiY/Qb/Q9zdRZmqHYMPJGP/6SMqUPJ5nl2Rxbf1oFYV7ce2k1vd4vX6WPo1rU71uoM4aadV7tGECeI6Xr+kTWc5g3H6TY+O8216C+0wybaNn+t/2KPYNLU8CyaSQiaLpvpO36eSHJ9jst99oRR9NYfLg07D2yfrJ/pEn++GzHPplxhXuxfbrH4OcCAwmKG3T9pRLrvnUiLGZZRmbbY/UuzbOOeW8Tf6b/znnjHuOd5OtHuUol8mHzUnKBMYIlCY2bZPl1/ydZscKkr2zA/LjIeyf1+r8pmBaVpuOa2JOzGTTkZiZ8dF+x1Xdbuc4DD6nYEZH1PHxxMTOdWKgHEQZwCbWkUnVGuPXD7UG98nE9TpZbJ9yVB+eshTccCy8Pj02NwHnigMB+zQL5YBDXThO6k9QwABJwOZkqvdpk9NJz3RKcp7D/cW6U5CcgpjfT6w2deZ/s4rV8SQ72+R+ZoB24tf7tMGOrbpPzP60X5kEelzJci24rwhmyXo7Gey+I6PvpK7X2S7bm/bCSQ4/L8X91jbtqyYSZ7puUNQyk3+yL5ySXvsZs9L2iU4MDUqrFxOu0+w/y2YQb2a/5f17P1y3kywTJAL01qdvq05O9r1/rQfrcM28h2yn7pd9OsGe5p82FlzvnnOdU5W1vVm/2voUzwzq3SbjFve2Y/cUCwnq1/yjfTb9MeeEbdn2qPNEZDgBXCNep/cmJp3IsS+uddduWiv7KpJPd758MDT90JiZD6QYE911QuDDwGWhIyrgmJgTlm9bZFKjsmatJ3aWAK5Ol9+8woBxjj8vnpMtOqOtXpPxIwtjnZMlExyUncAKnSQfmZoC09T2WoJXhovBlkkNwQyd/lpyNwGJzn3X3icxTnB6j8wu9eYPX9EOvT4GSL3HADk9QlAdHQRtFwbrXEc/0rLN/kSv7fYa9XBCOvVJRo11a9sE+GauLd5b3ENcf45xq3IGV2Qpbd+cTycTtZ8JAJhZpO48qfQjVgaPa6dq26EO3/fPj68wka0uBjPUufX9qEvnhacjtvvW73g8t/SVp9n/uOOUoNMevdcq3D9Mig12uQ/atk/FpkTOPjw5tCUKgRnLRte4v2qDJiVap7/RVN3OMvdN/5Xsba5/0wnVaQ5tjgm3y0/x8zzLmMWxWc8pVna9WqdjSQ7Xl3046bCvMQlFWzRIr115b/sE+7JkgnbhxM9rHtVl3OQpL8fgNbGdt71pbIyNazG+Zfk5ssnPuG5lepKBa7SWQB7lKGty15+kNBBVpoBWcbBlICPb4HoG4AS/3ODe3BObQ13MkK3l9Tz+Z9k1JsuOxMApmfvxGBy4yP5Wr63qTeyigznZSgciMuhnKGNwN+lbuZl9QLLD9MkW57HvG8CrA9fJLGd1cNBsXxwPA8omh1912/onQ32y/0wMuBZkxqcklywq9ZqY/xOUY3D1XiAzzHEbbExJmFlvJp18TzG4mxhms/5t/0zXJsDIttznNI4JVBnIJMtxsH+2ZxaSp2rc2zy9DF4T2Djx4liYTFUPA0uvtf1M+/Xan2R5yjOdWHE/b7Lc2wQ6tOfJfqoXx9A5pM+jbU8kkh+tuSxBJWHlteWcWx+WmciVtUeyGMscv9rOtN6cM+51k2+db5/get+1Hm1l2nvWwWXsdzoOJw+cI7bHcXmeCOp5jeXXnlbgOBkL6B+4/ybCiGu6Fvt7v0SY7YNEV+97Hyb72EE/bR9O4XpP7U31OKfJ8nMsnGfvyYmEujNlmw/8Z0QmxPLhLR869vJ+Clk3MhgMVBNosWNl0DLQY1A6y/JZbutSkDtt+n5lo/tpnTKY/RpQCwGqj2TJ4Bfo8KSAAYrjZrAlIK7QqfmYfGKX+N56d1xTotBnhul4pySE46KODF782sYpcHGs1rHBl6wyWVqulVk7MtbWnUnTGcpO7VjXqDz151zWvpy4W7iWLd/n+IPrPBHZ6l6Fa9a2zSxucmh7BlZnwzW+n04Cp0S3+rbcBALbdv9bLzPL1J0gcwI7fnTGtsC2CKjZN9t00rLN4dcEe1wGIGuAouvqBKSvebox9TMxpvRNtBuSMJxz2lW/xYzgnnuFoNykDm2Mc8i5m04Je4/jtG59Td+3Hf58quj5nWyj+tAv8No2+3hjH9H7tsNeI6nBmNa2nBT0v/25QTq/Sn6yA+tpIE8hCLY9VxcmOk4YJ9/uesnh6WmyPIVycsCk1uWYXK1hDpNpvs86bIOJle2V9kGZkgTODefhdnuA+nIstO3eMwk3tXuUo9xO7vokJTlMSCaGyc6UwbTiRIVJRPtpEmHHwgBMpmkNJLUe9V5j0zo+H9cXLJ/ovsfA/sg0Vwh4JyaKTpLH0XxNncmGGiBNgaNt0Llu1cYUzNYeiZjG6WAwsX5O6rxmDFiWNQbLoKnXJnvsGrp9ljvFf4I4jm9i7afkmX0Z4E06sDwTd48j6qd9T0Ce+lMXCoEBE8g+NuE9Wn2TGZy0zNUsH3vwYxQGPxw/QeuUeLdvAu/q7FMKAiP6kCb2kS5OfpND4oBjJ1im7rTBKemhf/KjHW3nVO/ZN/dTslxDM/YTEKI/8mM1TaonH+o9wPmlvTl5pJgkmfagQfw0R67HpJX3TrKPK12L/vbE2hcTtI36ZSYjkw/3CbD9fcszGWu9ZJ8sWW9LdfJJCMu3TL8q1ye2GeoyNkT/uS9Ps/sBVJ/UtE3blPeQZW2/US+D8stAuv0z95jjRfU81z2PhwSbSQAm/fRzjg1tbzpx5hzS3mlHtK2JZD3KUSa56x/3SpaBODlMNlw2uZzRoyPl5q4ToFM0k+DNfJqlEzFwYLvJ0jlQzLhP96iHAyGDDefKoN3sJx0QGaeO3V/jS52Sw/nuB7TZhxnBOlCCxgl4t4wfk/EauV2vH+flRg5txroS9BEYmq3mmjGwM9kyo8aEkQGoZVye80CAQrBL3agXhYkZmdq+pu0zQK7NVfUnMOKpy1py2f8blZv0aj8EnJ5bzzuDM9ftslMXipPp9uXHWMxK9jER6j7ZtMc0+SgK52Wr19WnUpKF7Uwsu/VgO/RPBsK0WZbhHp/2H+2K/mI67WRy7CTPQjud7N/2seYzt/g/kQv8z7550jwlmdwjLcdE2InZZPuc365t7dFxiEmjbYTtJssfNZ3Ac8v6Cxw83smXV/fWT5Zfqc39wT0fXLe9tAzJgI7VPmrNZzGhMxnBvcCyXhevD0kJ4xQK14u+pOtJu7N9nmf5KBbjnX2q4wkTUtZ1cm3sYftKDpOhO1+OX0F8J8hEDNxVwg1GZpeB8izLTc4NOZ0+GLCTGeAz2Bv90QEYsFaPSV86BgZzAjqCTjNADqxRGxwzy1QHOha2Y2ffMdJxUzjHDIDUweyq2esJcDG5a9s8+p4A96RTy9IumEQ6kPL1lDiSLTaY8Ou2x0cHzGLSLqzzdrg+6eoEinoyaNJ+WNblu94c6wn+JkDM0x6C1hPdm06NCIwIwEw82M7cRnDfCYDHagaQ88bkre2ZmKjQD1AXA+5pzakPdedYu1d7L9mfBLF/rod9FBMFsqcEFlMiRR2475hwdJ24xpN4/Jwztuc2vAfXTqe5v7lu9VsFuDy98RxP4Lb3qvMEOHkaxnomfgh6Ofe1Od7jOjG+eD1v5jARdvvum+PiPBCk046S5X65kqUv32T/bZnUjYCW8+YTAScXG1yjzzCJcqb2LNvsfyuJ47adc/1dxmPw/WS5F+hHpzjPcfMHJxkzKY7l9I22C/rc5NBHT/GM9X1yx/hrwpV79kMjOTnKnSR3/UmKkw+DigkEkfWY2MOJTU/WARGTGurEYHCu+yd6f6q6azqT1bMYCJ3l8OSCDoXBk6+DPsx8EmBTGDQ7h2yHazSNYfpVav4GQOuuJUfsa80RT+yXEwonMWboLAZv/M/Ax6SPgIBslpOrjrliAMfrXD+2Q7DvxMPjcDAmYNjmEFCYCXafQZlkCSbYbxn+8xzuHYMaghsTAMlyfrpurOM5L6AiOUBgzoRpWiePl/bD8dLu3cZJlr8Qvc3hXHGfcg+0b9qA7Yg+yjqyXQJ6j3XSjYn9RI54jPR3Hi9tyH1Wv9afvnCiOtm/eF/0etugL+ZcdJ04J9Frz3vHaT9im2jSwCS+ddm+Y9Ga3+7/+hf2S1tpfxzL5F+c5Ex+j3Xplx3vHJMmP+n2DI5PsrQz98N96g93czz1uyR9SNjweuMmx8/HoNgm9cxQz3GNejtpqo/ivJEQYntc87bD8XOOJjLJr1vHeKrzy3ZO8H/y6x8acjxJuRNkwjR3lZxm/0E+gi+yjg043IDnw7WzLIPCucolhxNqx3+e5QcdG1wnFsZsh8EFGdCslOF/ssQNgnaEZEjWEpRk/RGJCvspS1XxN/60vNkZOr/pdIiMltkotkuQQXDMtaU9dHwcG4N9+6cj5hjO9d6PhCSH80kGkMIxeZ3MjjFQWDj2tcS8dTkGjnWyFYMY3nNCyPbbr5lsJ3udQ+4vB1GWn8BYcriHnHRxbqrj9LgCWWcD3tY1mKKPoC9gcjYRD95P3o88datUvzWgQVBK+2xd6m07OkWd6j8lSl4zJ6rcA52T6uakrf32/gTmK9bnsgT+TP/Z57QXTVhUfCpEn8wfF532NctTP5MA1Ifz6Fhk3fieANpk2LQO9sXUm/e8Vyn8WvE1uaoy9cn87/pTnOH+5QlnpeOvb3OCQjvofc9dX/NUx3GUe9IJJ3Xm3qPvdRLg08z+91zztJM25TFNMYB21znxfNBHreEd+rg14m4toT3KUdbkrk9SkqWzvzdzsOn927EJBEVk7rixuRFvDNf66/ZlGOgQ1xZkAml2onS8dtJ05nRi17P8pfu1RI7CgOigQkdIFnBKdNw2nWx1rkOeAIYZMn714wQKqoMf86j+a/o1yPBxArbZMg4AZJDMJlUHrmHHQxDpMXjtLZP9TCDBbNgE/ieQyvoElP1GKZ7M2Naqdz8s3n6vrpTzo3JTQmQ7J8hkwJ7aMNDqXjBoS5Ygz8Lr3AccY3/wz2CFr+t/aAsUJ1K+zmSVAPYsh+OnbdM/bnTde7H9dMxOcJIluOy47Asm8NL56j7eoOyUtFnW5od2wLLca8myv9YjAKXP5jonhz6XydwE6G3nbqv1OC8Ugmv6fdsChYw6dXCfJytlCbqZQPrxHo65/boP1qndm8AhYGbb1tnEHD/AT4Jqbe9Z163u8bSX4zdh0/r2+26/a92xM6aQ1HJScX24xpNcn+px/PTva/PYpJpJMfcekybvYdr4qepwXCaVjnKU28ld/7hXH2laYxe76a5lCbAqZsXJmNKZkQU2kKTTZ90zvD/TPZ+ouP0JpJ6slOU4DE4JiOvI+ViEgQnrOjhwLio3s0vKOP9TQlYnN314mEGa62MGyCdWBCucUwar6fSBzt6nBWfZP3rk9Wu/BG5mhDmO1ikoq30wIHc9p2TRQnBlOySwJDs3ASgn8Ru9Nss2MWvT8X7Hx0TYfQdluH6308n7oetwWTJHAFMwMtm0bWM6FaDO7ndtbqk3x2udyUwaePo6ATkB7GmWzD7FfTIhYxLtNZjscppvJ4kTSOEe76OdHCttm8nwVtcMeGmftnX7yUm3jpHJHB899TxRXyfdTp4M5JwYtIx9ymSnXptkOSfJoe0YaNKH1Q95bO2bhFDbsi2Y0Ntkb4MmF7xHmCxNCftavbPs4k2gd+3fZIyT0c6H5/cM95xgeSzdZ/ZP1JFryKcKmAz5KYGOi1iCPr1t9/WkG9tjjGgbnbfKdig7PXZNwor4ofNEXPGhJcfHve4EueuTlEo3l3/Jnc6dTpVB+RR16zwZVMkQ1InYqU6PEt3M8tuvDMi6wVluAk4n2bNH/IX3lpvqtAwdXQMxQZaTm86TgTtZWDosfqNM21lLBFun4sTIAdNOmj8QN5VnoCf7SOHpAOXhJM9L8vYk78whEOX6T+348THe43yc696kmx+lat993pjMtdfYetBezQCeqHzn9WqWz/1zrFNwbjs+GSEbfaJ7nIvqMoFb6sikjInTJsv5cj8c64nKcwzdSxOAnpIT6pjhnpNH+pO2y76m5MXjdDna30SAuL3W4V5xgsF+bGdkdidhgjolLk42JpJh8gH2McnycZqg3nSK1HoG9bYbJkAsQxB2ksPP3Fnosy4jV9oeAfvEZttfd55KqJBYmsg6vjZBxNeTbTle2W9Xqk91YVLmPpl8ng7luRdtq7TTNb/RPs9UxgSJ/cDtyKLe77eaMX6SEKzujP+2GZ9AMgFIlvZG3OI5bf/2z06Ap73Wfqev9J7IKepPP0D/M/meoxxlTe76JGUNmNhxkUHh64mNsUOb+kr2rLu/htHOnWCDQKLS78E3yKveZTjYVlbeGwhVDALspMgitnzFLG5yGBQnBpjAr+3416id3LA/zpsBrYE6hYwqAwbZ95a5kl0C+ElJXpnkB7JLUjgefhix4jmfkgCX9boSINAetsNrBuv24ySDzBiD1anqOFEyM2jQMwEFA7c1oH0ZwKDeTkQM/L3PPUYnQgZ1BCOcF4IjlqGenbvz7D9Q6ySofVxmj7RB+hoCpCm5tq/i+vneZrjG/yRu2FYwD052+LkC2ort/TKCYQ3wOIHLcM+P43B+PHbvCa/F5PPWki7Ol5OsttFrtO+2aT8/6VOZfFmBPBnrtkGwPyWD02NCLOOEzz6h9X2qSN/qZLSvp7W0fyB4Zvm260R2IoH42nNHYqFraPJhjezi3BrgM052rCQvK0xQuG7sM7rvhLF1+n8iI223HEfneDp1YfnJPqiH/VHtyuti3e982eb4i/MffLnrk5Q1pilZOmKzKgTsaw7B4NxMXTepAxfBSOvT4RmITCC2CVDbbv0p6HIsBncGy5wfslUEuFPQNstp3RmQHbwZMCcnxrY53gk4+DEE9lOZHqtwglZA0ROqf5vkviQ/muXcTadmE/iwTAkp2yp7amFgcQBoO/zWM4MnX+M88htrksOg11MxzqWfoaacoXwBPAHGpDvX5lTXbP/cQx4jAWH0mkF/SuDZB+u6fwMrAxGLEwDqdq77T138d9JcsT23Lk97OR9Ree7PlmFSRjY3et2xuH+C+vqi6XSTbZxlaXdOmCZW2UB6kpbv72tMoHta1/bN/Uk/1bEkS3/XNidSoHrTn7ZfxxL7IfZr5rtA1wmovwaf4zYxNI2Lj8yt7Q8mRow/9g1T3a6HY5GJsSlG+YmE6tB15vy2bZNPJBumE2fq2z3lvq2XE7T2V9umXXgMxA32z/aB/Ws9kybWz8SDx+fTmHPUse/gCf656rL+2rqvJWxHOcplctcnKWZYvZGnYOcgYFDrYJMcbv467TWwzqDpZ5yjenUIBg8T8+i6yWHw6BgmVp+Bp86HLJF/4Zpj6nU7xIodLusxSWS7ZWo532tsnl874NuBMmBPjrVO+iS7JOUd2Z/03NT4DJ7WGMmKE5wJhAX3OHYmUQ5yGcZrEN3HtQjYaqt8ZCyqO9mm12w6JWiZPiLG4Orkxo/iMPAbRBhEOfnpvpmYST6O4ccoLmP7CEa4l6kHk+7tUJagqHq3XnUmuGZQ59zZpgyob5fcVOh/6G9oO9O+Wpsns+seL4VjM+mT7JI1kkO0ewNOJsCdN36VMMc5kUwVMuW8ZqDvRNE6si5Pwdb8hkEu67c9EjQ+QaJPn/a+fTt1P8ly702gln5pYsg5PybZ2r7jbZMAkh2Uy/wggTETb68Txzi167nZ4LqT8+RwTnttwgOMIdTL6zuNmwmD/SLtgf1ZT/shCmOT18UxbPI105MlFe7DiVi4jGC4c+T4mZQ7QT40bOWXIRv9pxBYexOusdgEWRPwJNCZ2ILJyTOwsE0Hs43er7GCBiiTAydLRSBVULHR/U0Okyk75nNd67yaRaMYpLJeQSS/ynIKoARSE9u3wXsCSs9F19UnPQz4J9kFVQYfgvqJbSPoYLLKBKpJAwNf2zYbxkdFep1j2ahuZY3F4pgZeNbY11Nc8xyzXoNksrRdJxLt3/ZN25yIhGlP8zNnZmJpm/2Q6MTYer6rz8SWJvPYDFSpM39gkWMnEdHyZCzpJ1rX4Nb2S/3p70hAePxOupL9NwDaRtcICQIkJy1rQv9T4d5iu309AfO+ZoLq08cpOaLYD9vXsBxPskxM2N/7pGWLNuhTkuW46cN5jWLSZ1qTzhFZ+9rRZeOcdOIePMlsN9bX60vf0jHS5ifiYIq9HRP9MYmtCmOFkz/bqv1gr3G/OZFtH95rFH6bZoWEiYE8Y4bnhn6Z//vnfWqfQKGNGRPZp/DzNmvJX9/TdjyfRznK7eSuP0lpxj8BM4Kp6VjWzulErydWtEGzoN6MZPs2s0oAaKaGbLT7pn5kUv0NOWw/aM8M8nSaYWlf96pttsGxsoxZNMr0OAWDCB8x4Pgnvan/FCh6z6wWmafO9XW1w3nu2FrebJGD2DbLtfJa1pHbZqgPmXKDEidEXOfqyg++U//JDpyYU6YE0zZVPXlawD75aAllYlXddwP69CjF9EgJx2Ums3X86JETX64b9yKZU5at0DYm4LTBX9uZ9pLJCq6JTxYnoDkl+n5EiGCHJ7dmb6c+JsDPshMhQT2YnK6Bms6/QS9ttPVNNBBk8RTSbU/JK9s24KcvcEJRH9L7jBcs07Y9ltoMfQD1nU4z7cPat33sRBhMsa6vOfftf03W9ibrsU+eaJ7rXvfGRFpwj/IUs+O8NpTjuvvElvujfXHufJ/xgOXcj+e+a8yY5rad+NBXELewrY7jZKjvpCFZ9u/4xf3YuWw7nGsnlZQpYbvMtx/lKJS7PkmhY6uYoegm6wY1o1nHQFAygWX2yb56nG3G2c7AwS4qO7FHDV6bLOszeJth4bg9P5MOdiwE1pwbtsHASSdFZ2cgbGEgNONLXZwAtgyDO9tz0OnYNipP0EfdOc5Nlp+D8bqZbeR6eX62WSYP1mtiFakLH23Zoo7nz2vTfvsBaNZjkGIydrLy3/PKZGEK7BmuJ8svUAjaNyiarrW819OgoPW5D/14xA3cm04dOsbg+gQApzlZA3hc8ylZI1CpfZrVrS605dYl8PdnNpJD22g9+wUCwL7vmJzcub3pxLF9d025Lwi6DH5t41zTCdRWV/ZLgGk9+56+YEoGqaPJJPp+9+d+KvaLU4LDx2qm5HHNv7aN69mRTfZrPn1nwj/tV8sEhquv12aje04InDByvk1KPJllUkLyhnZLksfx2gka1477ezr54hpOvnCLa/RPEzFVfSpuq304+ffeobCPKUZTL7bBZMTr5xjJ/TvZzEQ83JlyfNzrTpAJG95VMgFYbxIHtjols2GsyyDnBMRMLR1uHZUnvh8qXmNJJ0Bjx7228et4/egEmUQDefcxgcomcwYCU5JDx9zg4fHVYZ9mD5jPcL1tWkcGCurNNaLDfaZAt7obnFd6bL/G8Jl59SMdE1AzCDGbzkQ6aIOAgkHZoI5j3WQ3z/1a0KjuBEA813y0woAqWSbXnAOP3aCxwfRE96nTNkvbmJJutlm9pgSlNuJgzTFxrZ0AEuxWvP6+3nvtx0wq7YG+ZbJftjPNSYV7z2DU7bJvJh0nuObyHZP3LW3e80IwTwBIQMXHc64M4zLR0j7bZk9DTW54babEivpb57OVcr3GOeNcEMBOhA8fTfPr5HC9J71JSk2JSu25uph88ymL/ZL31TQXPEldi8W+NsWFCr8UpGMwSdBynheuNUlJiok99kHb4X6c9JjaZln7oepnQvFc90/0t3aCQb/L5IJxjMRSsjwVbBk+Gkhf7xg8YY8pJq/F2aMcZU0+LE5SkqWDmo647cjpRK+pbF87uNNhmP2zA/KHwSsMVGTs1hhB1uGYOE4zRz52d6JChzOxNwRmTky2OQzUHiODsB2jZRoX2cq+36pO9TDj2oDJ9T7BNfZpMG4gMgUls7kdI9lzBisy4hWCGdbj+hAklA2f7GQNxLfueQ7th3o6qWB9BismFWa1J4aQ/fK0hfPlPeZ1bjsGamRjvd4VA/f+N9Dy2Ew4sB5PFqgLy/O0quNfezwrWe65CXQwseE6V7y2T2X5LW2eJ5+4eJ6m6/SrnD8z/NwjFe/j4DXHRVuZbJbCevQvbMtz5j5rb+e6FtXhviABxTgy/WYK7Z3tcy7Ps9xvbqNiewj+b7I/XaBNM3mZ1p1+n/6A9Woz1a0nMlO7QblzzUnvmYAwiUD/dz37HzekXUwJIOOzk7H21T1hcoSx1Amt5yg53As86ZwSffZlqT707d53a3VNZk0/gWA9qH/byMq9ZOn/SI613ZbpGHjfBMedKceTlDtB1mz8rhEyhWUEzFBMoJTXzAKxrBMbX6czZxmzEWYmCJwZmA0Q6JDpIO0E6vAI6Axs2t8p/gxe6aydGBDEdZ4JWlmOZS4TOrvO3fToSv86DvbTdib2t8ITia6XgXT7bLleJ5AkCLGT53gm1tr3umYcq4HINvuAP53uRWV7nwkIhUmTA7SBBNfaejtZtQ2wXbJzBBlXNVYCIurQtr22N/S+7U3kAkFVbay6VMdrWY6BiRpZYwME2iMf+WBycD3LvT0lljyFONV9i09J2Z7tcUpKuwZT0uag0XtMujmGCm3ZII1tTgkI/SxtcWK+Ky1zPYdr7n7cn9lzkzAub/C3yeGHoQ0ADaa5DhMR4vbZ3tXMcpbdV6e3PhOw/ne71tUnOlOy32SMIJXtcp84Xk6xhDpaj5PsfzusvmqKeVOMqzB2rPl3jpO+qeWYdG0y2wV/XNmkVmUiAupv6PMYb9Zsn7iCPtGnTaxTH8Sx1wd6Hij3Zmm/JPoYO9hey/ILTo5ylMvkrk9STrJz4Nwsk5NMDpl5OkWDOQrBHjc1/0+PtzABYVkHgupgUDUBtmTp9OmgrZedEtkWB2kCtsk5Ojkj+CRDPgEkMzAGIMny2XcmDwY3BQtkhgn0znO50fNeHakDGP+f5NCOpraSZVBzm5Styk3sk5Ogja5x7XxET3aXffr0oP87DgPpjmkae3TNyXCy3FNk47j3PC6DmbX+OIbaVHUnMPKYudcJPPtoH5NQ3mcyy71qNph6UZxQrgF96rXGgNoXEayYIKhdbFGuydzEulLXrldfWz9eN1g0cJmIIurl8dCHT0la9UiWCeFlQh85JbMcj9fQQJL+p9cJYun3WobfoDbtAdow23S8sF+2nVvo1xmPuo4+hV/b1+2v7zmXazZvvWhTbL/xZG2t14hEJhdT8utkitddhqQRdetrxl0TFGzHyZtJw8knWSeOr+1Qz8sSXCfL7ceJjP1br9cWJxzCNaderDthl6McZU3u+se96HgdZLlR+kFdBie2wQ1Gp8ENd6763cx+fIWOro6XDJ1ZTzoQfvsQj1ufytKRT8mJx/xMAKOP7JMlOCfTXD04L56rKdBFZQzm6PwNhi4DrTxeJ7iMXnP+3R6P61tnLWF1/ZZ3csxxENh6bghEyW5zPNF7g8MK2dxp7pl4GjwabHHdHZQo1d2Ai4F3AtkVB2CDDAOk7pMpiXJyypM57oO2s7ZePfUok0s9yejS7mr31aM6bvWftjU9XkK5kUM/wr1IVjO4lxwCShMJlwFaJ/v1L3xMxkkz2+T1jsFE0do+4v/WNZD22jt5tG+18ETVCSgBqK8xEWwdkzxsi0KgSBsgUDTb7zHRxmmXfRTUY2X9aX/wcSXry0Sfjw7aB/CkMLrfftdOFyo8fZlICcaYKc5xDiffzXFz/5zn8JFs151i44QPJlsxRmh7ky3XZ9BvVtg/x9817yNx7YtrYfKOSfSab/da8h5/ooDCOPChJcfHve4EueuTlAodkQFZsgzsDAgTY8fNy8DHMnQ8E+hcY3bMZtDJMrBPSYuPv9kvT24YZJhUEYg54DFYVrc6dLZxLftvuzKYqfDbzjjWtTmgbkws6FDXksvLhGvU8k4WLktIDVJZbwJxDHi0BfadLOeu97hmp6p3msNgs2Zr/e91mRLIZ138vSvJE2g3Ggfr95ofU5sYSOqbLOeOrw1gg/ITgzwlxh3PJsm7cyidi+4RzxeF625Wu9d7bQJvFAZutsdvjKOOBFETI8oEhPW5bhMJQpa4/sMgbI2ZJQDkfPNxkQlgeX/xOk9hmfB1jWgf09ipr/eMfZgTxbZhkug8ux9x5WN/yeHeWSNhuKe59510VDqvU9LJcU4kUu+T3HAbjB1ROZNBBKDTEwZT+0647SOSQx/eayYlHLO7V/rXvro+nGvHwqjORGB4j21U1r7IfTFBYfydsMNWdad97R8i5f5mvKGvvQxbOOHi3qfuJhgoXAv+7z3GgE325M4aQXCUo0xy1ycpZIkmZ22nea56fU2W1uxLhc6Y/VvMBjuo8l77mEDezSwDVR2nWfA1hsviMTN4N7Fg2UodWhMoJkucu84bAeEaw2t2ewI4rXOa/dfveszVf2LgPXbqsBZUCMimhKPX/P31ZcOSZTAyECMwbLsOmA6QlQk4TfY3scm2iYlZ638HbAOF4DUTkMt0bx3PMxOH9t9ntXmaYOBwWRC0rhPL7Ne2NwI1Awuul4M1QQtBrU8QnAyXkaY9TkmpH5GqcK5abmJNN1l+LTH30rRnCVydHK6BIoJvJjLeg+yLic7kXzlvBLDWt2Vpl2eoRx9Oxruv+UisiQzPI/9b36nM5L+S5aOZJACCsrZZ7hmSJR1z18f6MVmd9K8Nk3yZTkrYL/3kFDvtj7oOU+Jfoe1wDfy5scpav0x66Z+r75ofYVtcN65ddZyIpY6Ja0Kd6Sv63v6cdszfvpowDXXiGnOvdn9N/q/6ck3p+3u/4vFusvzZgQ8N2eYDf7JxTN8sd32SQrDFwGngb4fNwNX/BEFmeLgp6/AIVCfGl2UZUJNlwCaz5CSCLLnZJwccjs1HynQ8dWoEImRU6NTqGKdAzfGaGXVAYIAyI9py01H9lMBZl7WEx7o6IBvMRe2w7yZx5yo3MYXui2tg9tYgxEzsia51vAWaFCbDDsAE27Wld1/8rblNz3v1rm6c2wIt6mWQ3CDpX2Q2iGXQ51gMSgzWfj6HAdL1uOZbXTfI8Otp3N0bHQM/W9U6BsNcU+9fv/feS5aMZa97vxsUeUxrIJvMPPt0Wf8oJgkPrz/np+Xtu+yPonu+vpb4t5z7rM4WA2HOKf322VDee9m+ak3XoB+SQ7aviShjshXcp7+YyDDaoHXrf+8dJlQGsNar7xknTSCZMGF5+0DGA88L35PosJBw8IlQcpjI974TwAyvK7Z5Jto+6WM/awRT2/Acujz9Y8fk3zSaxjHZQFDGPtZ62Y4ZD1jvsn6OchTKXZ+k1LmSzak4kBCEdzP28aXWpQNjG1MS0XJkvwyWz7P/6sY6Gp8EsJ/qF+nc6wYjZVZPcZ+AoTpT75OVMmZHeNrQOn1MhXo10DrR4JxNjJIdGx0k15MJAIPKRnXMXLOegTCZOethsNJglxzOHcUB0U7f/bQOf616OgWbANd0kuFkeGKZzSCTlfZYaRfTOAg2OM9MBAyGp0dGyEh6fD6lMAin3dgHuC8DYds1T2GnRLrjMFlhW7sdqLaOtdfurepDooD7nglK9zPbqbB/nu4R1JGQoEx7goCJQHKyGbbP/ehyFScDbMM/gOoy3JucB/sIJ6cnObTTljtRPcoaIOb9aa/a//hzR2zHJ3Fs+7LEdvLnjlnJfg5YniQE9Z7GxPbWEm72Y3GCzXhDPR0X2OZaosp9PJ02JPO+XtOv/+lTW8Zjd8ycYvaUCJDsaBmundeQ69f+vdb0b7bhliEGoP7si2OZfA3nxonsnS3Hz6TcCbKWrN91YgdqRqyvK2YlLmM1LEwmbsf+JYfHxAb5DfoTGzEBJgZgOiEG5zr9lrkMhBRkGOS13TU2tf3YwdOpGZgR1Nkhs+9kZj63WepzPfvxEdRQV87BBn8cA/W2PTjRMnvG+eU6dlxM/Lj2XMczlPW6d32o27QO1M1ALVnuAwc0J2bRe4MlMnktawDvpMMgt+XO1UZUl/NHQMV5d8KdHOqbLOee7Rf4M8iu+YTqOfkc+wH3y31hQqR2wM90MUGorhw/25mA8Zpe59ntkym58jjpD2oHXfsJ3FT3Jt+TPVXMoDthYHsd371DXe/jbWZ7ps3cwJg4vwbk1M9zzv743vr3v3+Ty0l25/REdd325GNINEwseoUnCPXHtEXORwmEtmPyptdPUNfjr570/dOYrubQj0xkIPefySLvDe67Teb1pT73Jnk26tA/TSd/BuUTXqAe9GFNYJw80d74hMKJrk02RHG7a+uyJrULr0XXYA0zfGgkKEe5U+TDIknhRiOj4SP6ytqGdRknGhNgmB6JaVtktemkqWfL1Dl180+gl2M0c+cPPpqNsl4MBgatZk4ZEOpUqy+dJ8dnYN014LcmWcdK2/Hvg/A1AYeD44nKblGOQfhM7dH5TwkWxTrRPjruKWBflihXxzVG3Gxv26BtdZ3IirYfzn1wn/OwzfIZedpp8NqPN9hGDWKi99Wb305TYTLHUyaCabKv7GsC0Mly7an3GpBtnwZvHmP18dpM42+b3G9MsjgvBiate549mLNw/9svMeGdCAH24/FQb4MqrovZ2nuzTGRZxkSPyQcCoeRw7u1DCNA99xwz/VTtlgl9dK86tz0ndpxX2qAZ7+r7VJan3yeqz4SMc9U9sbbPOJ9rQtIqem1SpDqbTKLQVvme9sE4cy3LfnxK2jWYWH/6R+7F+iInUvRLte324bmiPv9pkk9L8hDKTqcDTi7tR2m/3B/07Y6xbbft3JT+jvlMWoLX9F+O6fYn9FUcK2MZ7W+jeuyHxMRlyc9RjkK56x/3soO082AQXQvQPlo3A2N2w/Ur3Ny85mTALHPbZd2+noLK5MQ7ButpgDuBDzq5iY3keAyy6fyC/61rp2x2r3NjVoZzQTbpNMv55JqeDe0wsDHYMDCcqA7H2PIO/h3LzeyAdnLI7DnRnZKqKQlgUjUxl0x+qRfH7iSZj0B0TAbengPb8mUAiPX4vvU6F2dZfjvPk1nOV+VM9f3IhE9wmCjT7gx+bTu+RjsjMJwY0talTOxohv44TgKsaY5t031MiMDavsH7fhovfUxyaOe8733ANeM1zq2BNX0DfQvHxDbPsj9N7ZreyOHXtNMnRG2Y5OE8RH3SjjLUsw1yDP5SkU12tl3peGwX9Ee+3/4KVCeQ3TWfTli958+z9JETkFyLEx0v7xGQO55Vv5YnyJ0eI5v8vz93R/LEsZbrTxLK+7bzNa3zNsl7svPpPAW0fdM+p4Q+usdELsO4OCbGqytqm3GO8fZMZahnr51m/zip54TrOfnKCeskh8SRT4TvfDk+7nUnyF2fpEwsrhmyXuN9Oo06kWt474BNxzA5ZDo/B8w1lnYCg3bOBKxbvbeeU5BmG31t/RjkOGZ+EI/gt+0T6FMvJy7tg9fofCewTd2nBIFBlsE4que6Hv8U5NgP9W4wJavMBIr6sx+uE5MHP6ZDMOh58OkK553joO62QSeQa22xjepnEBDcW2NhaQcEWGRNpz0RlGNANRig3mvJM9/3Nd87GeJrjnVaTyfwHGt0fc1OnFRMIJrJan3VZSDT9mUAwf+9b6aWJ9Jsey2RIljm3DmJdJ3JV9Dmo+uTDy54PdV/joV9T76KczYlDgWl13SNgIz/J/BKe1xLJtpH9Vnbq2vtMCmbxkl7mnxmMhNXayQB7d3xqDHlTOXYp4kix9zqSqKFujZxPdc1tt02mNxRj871JsmPSg9+q+S0t6dE3GTSDdxjgu61pR/z9WnP0Uf6s6K2Y7Y59esy01gnDFSbot48UTrKUW4nd32SMoFQOtsT/fd1HoEbiNspOpj6OJwOqs6rzoOJB0EuAx5PQjg+OpxpzNF1ngrRIRZE0Nn4x8A4pgmMBv/ZDoM1H7lx3ZYzMCYgdT2yonX6BEXRa64bxYzdlJi0XMfJttg3+5wST7Z9lvU5W0tmDZKd8PGREdu1A9AECqZ+J3DB4G6AxDmf2vNeIfNL8BqVZ59tby1B4Z4803UnvtezLkwQueZTcrgGyCdbWpPa0X3ZMbcVJwv0P0wAp778FaXcG7YfA3r7C/vAKalxmxnKUpx09hrbpR8hKWN9PMaNynIfMqmjLzRoJYlQX9EvPQna7Li5Dp5rrhfb53zT9/WeEw36vY7TYj/SNjpP9Ol9XK19uZ322fInWc7fBFw3Wc7FZBdtl7Guc8n1pH+oTj2xNhHTBIXv2Y99i4kFEyFPZbfe9FNcb45lijHWr2tMn0y84CS510wOmryiDff92lpyvO2nda0X46xj8ZSMOLlnHFw7eb6z5HiScieI981dLXQAZu8m8J8sHQIDWrLceKdZBi8zDWZ17RRvdyRbOcv+K1rNHK4x0VG53jdg8KMNyRysXSa67tcMamb9DEQncFUHyDpmtTlXdNAF7F0fAxiDoIrtYipHW6CjX2N6WY8/1kdAQGAyBfWpz2SZmDiZsY1uUZbAa40NDO4xIFcX2271dOD0vE2MGm2EbZ1lHiMDa9+7vTXWjnthAlkEa7UvJ31rfU6ntF0PkwjV0SDgPMtHgtoW/cVESJiJ9b7mmKhX61pf9jURNmZgfXJAIMVxtAz9MsdIYN6+rudwvtkP/a8JAa8d9ZlIF9sCQXP7uo4+ovqdbwO9DOUDvbkv6Oe5bxkf6GcmYEwb51x7jiZCqWNh/fZpcGsSYKty9v3uo9eps9f2PPvPrnAc13K43zhGJjfVlzHQJzC0x8bcZL/eLcO5ZwLL5NS4Y7IXEoEV7lEnINSx6+L9ynjIWOP1996c/HmF9kZ79v5lWzdQhvjkKEd5JvJhlaRYCLy44boR6STMnve12SQ6WCcIa4nQ+XDN4M9sBJMssmlrYI26E7i6zcnR07mzT47pNEtdOCaysh0Xx5nMTm5tDBUHvUofh2Bi40RmYv2qj53/JA2+myyfi6/YCVcHBkkGID+SQjatf1w3BungWtsgUOu9Cdz3dYMkH5/Y5DCAUW8G6AIS3j9TOdtW9XSy0g/wc914jckKx0LbMrilHu7PwJBj7T0yz65HABfdn3wB/8ikGnRd1fWondr4WlL3TAAB15Ltca94PxFsGIg2+SZwpZD8IHnQewZzJoVcZhIz7dSF60Qfaz0MxHqttsUPeXvfc57W/IdJI+rV9qmL9yD7PtP1U9xzMlY50701PasP+3ZCwjGtAeKp/yk5dXtObH06NRFctDEmDl4Xxvn+eb9VfCLOL22xjVLfKWGYZA2IdSwTWeD55V4k2cF+HXf9VANPUelrW3eaGyeBHg/nzgnxUY5yO7nrH/eqmEWhQ5sCaR0oHSMdzASk2ZYZaT/+EbQ7sc6V8ywds8dkIObXl10zYG/g6AdPOx4+5sHHAawLkzb2a90MLnm0TDbUzIuBgx9Tcd+9f7Jyn9e41vyGnoklJtjdZPcYgIMnAda0fg4enY9kHyg5D77P99TPbDATAgY6ng5wDlyP/ZCxs95tmwDQAdA6ty+zuGRso+veV9XV+hIAMblhot2xkIHk11rz0b0pqHrP0q7NjDKh4Zoa6PHH+1je+puR3ah8xWtKfZ0oe2z2i9fRDsE515jkScfdMgVWTl5ZjoDIj8xwLfhB9AnwVpe2ZfaaNkPdtzmcW7LtJqj42mvL8mw/WX6WoX15fjlm+0D2YeKI36BEUMgxGDSfqq32fQPl6UOm/VDd6c8JdJvsmhCkLbJuVLbj2A6vO64pDrENj5GPWds39vW53nesjOmXETkT0ely7Z975ET1TDBSvF+JWeg7POaJAGF9+7WsjIf7lfiA8/5MEuI7S46Pe90JctcntHSCBFMMsgY5a8+mT+wyN2qdIR16y6wlOcnypIH6kKEwi36SOci3HTJqBsSTY02Wetsxtb4DyMQeJ+sMWlnxAkO2yUTSc2bgSeF4qQeDt8HdBFoYeMxQU1cC/zpkMnYGd9XhKsYzPZbRcpxTs0687zlaCzzUiUl3y06gqFLgsAYA2YavE9xNjzNU2H9Q7tlJnpPdc+A3s5+f+7L88LCTfAI2M9UeBxMi79nq5f3Juk5iOe5kuX6u37FTpzLoBCzetxXbBk+Put49jTEbbxC1yaE/cIJ8mvm3iegX+577mvdqB7Y3Jm1cxwnIVbf6Rvp3J0+32+tR+f43u07pD2la98nHnw2vqWuyPDVhe5dJ+6Jt+mSB42RyQd9/rv9tK1mOcZN1vXzdpMZ02mebnIBw142EGT8E333uEwavl9+3n22WjyL1/3Z4z7H6GpOl6s5y1YmnHEysW286vTNJ4kTBY2LCx/lhv4w925XXvGY/kxzG1KAf2lbHyd//4aN5RznK7eSuT1IYMBlw61jWEofgno9sLXTgk2M4QRm2YaDK9xv9nwAYXxNIOqhfxlyyrgHQpA8dLcXsrVksArWJiZtYcjo/ixNJM9NmrdiPWTqWNSiqsycg6WeCpkSXY3XiZFb4dowSAaoDJfWd2F0CGIrtamIYqfdkf3zf/ieGj2vuR5fMdjKQN6C9O8nj2T9C1Ee+bqKNiplOJ/K275ZtvwTETtxaf41Brv4E4GYhyYZOa09AfS37x4k8pu6f9kXfZIBK22EiRoLgdqdc7Y8+h7az5sMMap0w2O4IDJ1McU87YWfblCnxMmM+JeYE6D4Z7H+fZtD27D/avvvkSUB92b3Z7RMSLG6n69g2LvMhBJKtP9kk79HPM4mwbXCvBHW8ZwKdJxLFbfI/dTM4v8zvmkxrefoqjiEoT4KsbVFfJ9lTkmcfV5mS886L54Q60BczESNBNvkb+sCp/dutQ19Ptth77ZO+1nume4m460MDeG6zP035QP3dDhV8+MmHhq38MoTMkQOc/5J1pucM9xm8fKwZXCdjZqBOIESWl8HbLCYBAY/tp+Sk7wmKJrBv3dgOdWGAL3gxmHAC1bFG9+qYuTZ+LKJt1hFad/7IX8fJNWIgr85cy4nBuizRCsp0PTinBbFrrB3nsuUrTGDbth8RK3AvQD/Dn8Edg0Tb5BrSxg1KqlsDHwMr2cDabfeCgzvbq2x1ncDoZvZr1XkkgGtycprd2pOF5InhVveqt9eM4ON6Dsfa9XDS4mBtfzCtP9nsqFzX5L4s91TXu2vn5N1jJhAI7hs8nev+GrDm+GhDEwA3gN/q2mRDyXKuuQcnPxaUsR1XDK7M7NIncG3pD6hLdXOy6P1BXZg0si32ybY8TsYj+mSuZfU1IE2W68t5dzxKlu1PMWTy16xHAtDxgXPvxIBj537lXG7QDv3/6VBvAuDVhfGVPrBr47hKgqHl6KcMxCtOdEnCTHvEdVu/ZE7rM55Oyd6Z7rcP+iPuYes5zZ8fG6uOTsw8py3PJwtKOnlPHeUoz1Tu+s+kOOhU1lhRBzoG2Y3q1UkQXPQ/v+5zCsYEemSvp1Mb3qfToXNn/2RV6KzMiPhDrmYdG+gIsHtUO4GaCWBM89kAdDtn1TJ0+l7PBqLr2f8IIPuqdL64FhNL1rrU0fbjQEaGy+Xad/ubkrFkGfymZKf9XcE1Al2z81NC1v5tI71vUGcGjkDMyfkEFDjnZABv5lCeneU3JT2Y5FOSPCvJv03yYxdjP7+4dyO7k5Zpv5xm/iICJxzen0zOz3HPSaZBFoGoE+bO4QRMOGf90c8+SkTbZKLdugTqXmvvQfdd+zJgnU5O+ZpzZjb/dqe1rD8lOx4P53WyaxMIZJRN9rSe9wAB4LS+1cWnQ1yXCdT3te3Ec1VdrmS3/lwXjoNj7B69bE3bv/WbEkbaPoG7ky/2Me2L0yzXhN+K6YSrbXlvOomcSCLHOY4nQ3kmcrxG33ctcx/UyXaVHCYSyfLk0YQj95tjP99bfxI7ToYpXG/7btqxx0Z/1fV1wujX0euJvHG7LbdGiNx5QgT1gezzKJS7PklJlsyXwZWZlArBDxlLOtLgtYM8WacGZYN4OinrwGSErJgdG4P2GiPK4NL3DHS8XodNXSfQ0A/XT0kJ601z66DLDwuzjBm86BoBZn99l4FhDYAly/WnTgb+nAezlEFZ1jnPcs2meaJOBqxmUKsf58nlydpNCVrbYMLNQDIFdjOgvOegTSac8zEBCLP5vd7yn5Dk87NLULZJXprkh5P83SRPZPnoAAF8x0bbpp6cJ7K0naMt2kyWc+x5cKLj5Ju6OVmd2muifZrDeTOL3X6c/E6/tJ4s14l9JkvQQ7u1nUz24X1l3ScSgqBljSjqmrWtaZ55j+16jJMPIhPMZK1203HxFLrtMAZQ92l/G9T5BMK+x0kT7YX26T65btF9A8m1ZHmaSwPVyQb4vvZL3bkvLku+6BeqJ/Xl2L2HPK+b7PeC90H7IwHVvj3GDep77itOMNbIqonsceKSzCdWjg9cj2kvT0mh9acfYV+T7/Z4KJ1D2gzXzTZOGzjKUZ6JTPvurhJu9Ikx4F+y20A38TrD6zUxq9J+CMbMbtRZ3LvSFwEk2cqN3vc+neQG98lMWQg0CxYNsE/1mj+S1WDAo1+zYSzXPpmEVW+DRzJyduh2fGcXet3A/bZFNspBrvpOzrhzSsfbD28aRNDWGOB5JE+5mqUz5+MHBGoM5lMAbJ+T46ct8JEPBymDGbNp/c9ybc+JFEGuGbuKWdKnstt392eXoDyV5P/yUPKi1+5ePy/JZ160+UT2p4BcV/9+ApnJzuUaWM9Qz9d5j/NKuzQbPCXKBBEnuncd9bh/CdTdnu16g2scL/de6/OEhrZo9nRiU7sn2h5P6Wgz9F9MfGgDtI2uqRNjygT6nHC6Hyc8nN/q17b6DUgtN5Etky/3Yy22F5Nc7ZMEh23I+rcd6s9+JnB5kv2XHnhNJgDOsXD8EzNe4difymFywwSess3ez3MtqKv9bNtZO7nzuOi/nRS07mQz3SfECxw719jECJOzye/Q/p3c01b7GcizLONZ/7t9x1z26TjrpxSqj/eSY8A0T5ONOya1/7seeB7lV0w+LGyFm3B6hIWb6jTLZygZ8Amy6Ti32QNjO6NucIIGA8LWd9B0wCMD7MdOzIj4NcWA3Y6MCUmFSQmFdRkQ7FANjDf469h8HG0det1BnPfMKPpEyMzpBMRbj+1XP7OcfO2xMSgTIPc6k0Hr3D6dTDAxy1DPwHtiRTuOs8zjtg4+bXTfTEo4B8F7JmtrSfaV7E5P7k/yqUnyc29PvulWPuXWvfl3ST5eY2wb3Asc0wTWJiKBwLRl1uyia9XHsghyOhbbFe2Dujqx7AfmW2+b/eN9nPN+Ve3EnrMufY0f1THYNJi0bRIQci0p0/p2/5vwod/wOt1Qee4jA3OvS8u3H/oZCueoe5P2S1DectXbScc0HwSSFSaE3G+NNyY+uEbT4z7scwJ+BJgsz2SS4NW+ZTpdYMxxIl5ZI+roK9k+AfMW5ahH5WzltRM0l+GedLI+JbxO+Gv/V3WdnyGhHdCuHNdMJlIam+lTK9VhIsOqE/9aln7Hp0LWue1YqK9jWfVc+1ZU1ndieWfLB/pD8x+Mrzy+8+WuT1IIgsk+GMgkyw3vJCBZOmQyQmQU2eZWrx2gLL7uYGhWZi142HE5kTBz03F5Thi86+CcDDmgcB6mJMP6FQQwEEyBbwIzJ7pWx+6v9OQaTKwuHxeiXgSD/WPQMeNkpt4JTHLIWrsd2kl1N4hiEKrQttbsi20SxBpUMPjxfsEE37PNytq+IWgyk0uAdJaeLH7cxdVf+/QcTsxp69SOJkBqfawbgSnrGSQkh0wiE5++vpa9jXX9poSvQvs/z3J/NlHxOlWXKfHimGpT1YFtE7AkSzs2QHWCNSUJE+jp+35zFU9KWIc+jtI5c1Jt210jgioTAOV/jskgj3PcciYuovYsjTt9FKl2cmWow/kgYcNEinMYvGZyM/nNKSHh/csSoDXfQj/KOfN+Z1uMGW178ikk1Sr0h5NPYEJ+O3849WfxSVLHZFuiv59+jJVz76cOOAbOnxO2yVdxrieihsmYfXr0momM7b6vb+iafaWFNrBGchzlKJPc9Z9JMQCk05qY9OBeMn9eguy4A0WyBKsTw9b+WI7Pk1P31mGAbaAnc0EWjkHNj4KwfB08WVbODR//suMyQL6MHfHctq06ZwKnOtjr2X3jUet7HasT57AfrGa/G5Xpe+s1ZevToxvJ/rEifjj7PEuHnhw6/dPsfxzNyVKyDJJkbWlLp/pP/S8LFJPdOwFi8tr/TNQqUzsEwl6nZJd0EAS1XsF8///8RZ/fk+TzPv+e5P+e/MJv252i/Bjq0g5pDz4pnVhHz5vZXc4ZxSCMCRFPDZrg2i8QHPixjX5wmjone/9TQOsAz33U6+2Dj0ry+mTrvOZTio6JpwhmoKc2adfc49zznE8TSOyfPoN9EjxzLvoDqxX6MOrEBIS+3MCLCWT749613bW/NVKjunV/OVm8hv9McpPZ355l/ztMbLtj9akl603StZjYcSayTAS8Nnzf8tyr9m/uPzn0pxMROMVwzyfjJm2A4+h4p9/x6O8y9QSV7dAGu+95fRob19LjZLv2qY5nHFtQj35p8ieeB+IF2hDHwTlqG2y//dq/Um/uuztfjj/meCfI2j66a4SgYBIHRwKg5JCZZbCgo1xjJnyEbWaz5ch+MECa4T9B+VOUoUObTiMYkMvy2MGvJVaUOpl+9qBtb/GfelgISCbm+iR7dpH6WS+ypqxr528n7aPqtnEZS821IRDkfDEIU05wvzKBleRwPgigCY7WTpt6v//XGESfojnIeay3A6BRGwa4BO5dp9oRE79tdt/Y9Q+y+xHHt/295Ad/W/LTF9d/ILvPo/CXq9t37dlMp4G7wSb3sMfK+jyF5ZgN4rYoU1vmvfZBoMJvO/NcExB6Ti3Vj589cFuVCfiSheUYSWh0/byvKvQDayd9ZIJpx5xLngBw/zAZaeJ2ijonuE45Vb22y6+4vg/9co28B9sXCSAmz9vsT41abu20oOPuHAdtOBngHLYcx8f/1Yv6cuzboYzbnuKA46LJEce0lmVCwz3k/WSSw20xKbJtMl56XPRNE5nU8ZpAalJyLbtvFbw3hz7iPHvCqvZ4mc/ka84j16fr1dMY+jPjDycxLc/9XV1PV8pWFybsXg+2kezjyJSMcm9wD6zFpKMcZU3u+pOU5DA4T4wzj17XAGuydJx2RGvswHTaMtUh+1a9CaB5vY5kAs3RvSnIltGvGLSZeWeZ5PBrG9kvP7jeeqe6xkdHyD4RCFE36sq1WGPcpn5Zdq1uyxIUUp8pMa1T5piSw3XkNQbwNXsz62Wm1kCOQMCMG088rF+D7Jo9EBhWCDZ7stSxkKFjedv6vdKnrPEPJ3lXkk/LLln550n+WXYJSoF/Wcunslwb7g0CMq/9xPrxfcdNgOX/bJfzxG+aM/Du/5an7V9Dne7X+5M8maVNG5RwjU2qGIAUjLV9+7M1P5Uc2i5tz3M12c20bykTGCLp0fWxL2ld27YJJ5M2LD+dOrDtKSm0rXOPkghwstCxdSz9CuJz1WNiNiXWFALHCsEikwnuCycF7nutP68PgbH9NeOQmfcT3Xec5Tjal+/RpknguF/ulekkxL6UfTyZ5Zd1cD8yyfDe4V7n/LBv2gdjNddsarv3uFY8pbIvm+pOvpHt0B6DclMSxvst0zFMCc9RjvJM5K5PUhg46MQMDA3QCEynQJnsN3mBWtTGSQ4DOp0k2yaL0XJkNTgOshSWOpb+Tgt1ob4MFGRHzB4zoLINOmwmSnSGZtcrDgJkaaeAxfp0gA6OvU/dKQY1Hh+BBvtnOYNTrgWD3RSs+HiL54X1+8jBNdQJdOqarYE9j7V6riUeXEMGTydGBlgEQU7uGbgZRAvIaNOn2Z2UNPnYZJekvAn1eu9KdoCBzHWy3OP8X136f+0EwAGZINaB2vvfIKff0NXPkjhxYAJaXWkTV7J/rKJj5jcOkvUlA+8TP7LLHgMfLzVwpZ/kF2YYuBbYn2eXcFKn2hd1afsGR5OQJeeaOBFqm8meIKFP4/4hAdKknOvORIViYmsClhTq1XomKSj0OY5DPIXhHu2akUjpGGnj9h+TX1rTi76etup5JZiu8FSCPsYJ5vlF+1d03T50SpynZITz7X05CefLsct9kMihb6Sdt85lwtjE/eV4MxFvfO1Eh2OeklYKfWHjLvcak6/e95xM7VOX6tAxTr75zpZtPvCPX61RRB++ctcnKWSSyMRNjAyDmQEnQaWdgwNDUNeP+Zxm6SB8IhKVT5bOvWKA0bYapP14A/t0ouaAwKBqxtaJ0sQOMSCRcWs7k4Ojbny8wwBzmz1g5deERvUZvJ1AGDCeZf+IDIU6TGvZMgRdtQ+uSbJkF800Ur8peW2QcHLq0zJKdSbLODHPbdcnVVu10X5pT9wLrVchCOG9m3ht+2tyxvWjrfRZ8YIazhHba//Wh/d9gjWxmSxbHTYq57pcEz5KROGcPZBd0tV2TpN8bHYnKD+Z3Wd06jNOs3skiacztXnOQ/Us0DeQbRmfEpkNt+5OCuhPe/pzgr+Oib6H9mRAyr3OOaXPTg7XObjeMRFUmvklS902yFbbn1UnEkeXCYF59e+cVMfaeT+L1BOVJkuea+oQtOW9lBwSNJ53+iwCVe41+iMmMiSw2m/b5/qxHSbMHFN1uJJD/8VY4rF4vCSO2h/HSpl04zjYB8tbr8qkn4ksStfM/od6Oalm/KFua0nYNod7zv44uGd84f2x0T32YfKO8Zf3rdN0MnmUo0xy1ycpySHomIKGmeTWsziAskyBFJOaa7jnjWk2jA5uDbSuBSmLATUBPPtlu1NCxjYcyE5Rh0GlIIoA2XO5xsBUzBK3TEHINssPrhOE2nmvgQoGKQLQjqlJEANFsnT4J1kyjQT9ZvrXkmLqWxDkIMYxEiwxyDQgUM70vzIxqAwsvcfAaFaYQaw6NdFwGx0DQR4DWO3mOtp41sX/Jy7+2qa/7Wp6XJDSvV5b5B5u0nsd7xmgOy7OA+2Kc841JrAgWJiSyk32fuJ6kncmeU+Sx4fxbnCt9sDxU2f7Cu5hA9bgHkEsx0vbXrNdJhRMELouXhuum8Em14BgaBInEUzaJvDZUxfug/Mc7gsnN4Fe9M1dC7PR9hV8VLFJAsUJzsSrTkkn971PXHrfifoElief73v0N5zzNXDvGMlr9rnJkpzpe7fd9fM6uy79oxPMyadH96szfUhPDVuP+5r2w7arl5MNJva2P67Xucqzbe9TJ+4W7l3PE8VkHn2dk1W+XkvsfPp958vxg/N3gnzo2Mv7KXZMHjCDETP8OiRveIMvMiN2jsmSrZoc98T0bXLoQM1It66ZT96bmBY6jIktdvuWCbgwsSKrVsdMFo1tnKgO58jBhIGZc14d2p4BKE+sWpaPqTDIeW6YCGzRHtcm2a9hk1S2NTGvBv+VKbE0I80+Wa5lOE9OIjL8n1jlXuc8JLuk4V7c4zzcwDUGcAI3Mt0FbC33FF73Ubfz7E4SnswyWbieHQO9tmc9R9TpVOXbJxONab3aDm2WdegrOp/Tnthkn3TUrvpDrh3TkxfjTvbfcHcle3DUev5P/SefwPUiqOr4O76ukQE7T162KLPV+86HiRmDKNpw58/s8aSzk6/K5M/c95QskrQ5w59BItecPq06Tglyy7b8zSx/Y+da9h/YZ6KczF+6QL9H+65dTXFgIqOS5fj6no+8VWf6Hvbf97RxExCUXrPfm04j/J6+jyft9JHVjacjvW7yr/qwH5JEHBfnmeRZT8HstxlrGGdt94z7Ho/3iv02E9y1ZMtzcz5c7/vOzZpPmxJj6z2Vc8LCPo9ylGcid/1JCpMHb5g6LrOMDGJmJNeAotsmCD0ZrhEM0ZEYkPc69WUfrc92K5scOhVeM6hofQZygkwHNYrZ7Ukfip0Ux7wGsPhoggHJZcf3bINJh/uedOtpCu85sK0J182MLMfoNZ+SSyd0k5iNc7/Wof3fyG6cT+XwN2ao47OyB1lMAJMlIHFSTRaXJ1NeY4La7kd+vuPJedgHAOYUf/wF9zUG2qDVdsN5bKLFvVEdOidmtU+ztFH2//CFjj93McbnJHlldr8Q88NJvj/7X+9+7kXZn76o20fnOoauyxooo3Df+1GPCWhPSS3LTj7T5ehH1uy/j2h1L3N+g7pO4ic/x9f07xwTk5MJQLPdnl51vnqCVfucTrRsC7VFngjzEZi2z6SaJMNlvmcC+k2IPAckEIL396EdxgX7yynhtL8xYA/KMME2gz+Rdh5b+2TydaY60T2eGtnPeIwtzzX2/i2RYruiba7NCRMgx2w/8sXynDeu6WUy4R7GGNoabYQ2t5Y02f+x/Fb3Ogav950rx5OUO0Hu+iTFTHqyBLx0eBO7nSxZtDoQH0fbKZ6oHF97o1sYROoUyfKQmZ0em4p06+s1IGaH06N0n4BMOvM0gwwUAQad4lbXuBa8fjV7dr79cN46J2tH/U6WCGym8RicMbhyfgxwtyrPdVkLthOj534nZt+MXftxsCbompI96s/kjnZXEEUw9XPS0WNgYDOobHmziv7tj453qzr+ql+Oi7ZGe5yATesSoE7JEsuRqSSA7DgIJA36yEZXNlk+FvrkxbX/LMnvvTe7H4W5nrwoyWf/m+R/zO7zKU9kByJPs/vMyhPZA1HOvZPV6m0w4+RrjRww2+7XTETbF+t3fU6y/EIPt2HhmM5UZppT7wGOyyDde2PydbbpfnmBgSlZ9+ne5O/7NdrvQbn7s//GOiZytZfpN0sMap38JYenQry3BkC9d2r3bodJO69xvKdZfn6Qc+KY6zhHfTq3/TyP/a/HwvXk783w/jR2JjZcf+rYOhOpUVviGq6RS2t7q+2sxQrauuMM18PjC8pu9L7rOyWkXFOfnlSYQDkJdFx7Kkc5yjOTNZx8VwoBUjc3H1diGTpYsq0GWZXpec6JNaBj2GTpKKkbdZ6SKgI7P7o19XOanaO+N4dCYFiHdJLlYwlMzs5Rr06IbHFyCHINMFifAMGsc8fKPhjoeK9lO+4J4JMd5Pjbt4VrwSDr+W7fl7FEdNacO7bXMRooRPXa3r24zuBTEMRkp3bEeTNIJeAkKLmRHShucJkCLm2Ej0h0HfgZIu6p6ksmm/PEvbhRua49x8M2NvhfHTtOj3cSJ6bso/ZNgOxTtzWQsMmOff/5izr3J/m9VeSTkvztJNeTZ3908l9mn5S8J8v1q479M2ihvzK4NHHAR654Au35YJ/0FclyLTofTAqctFFv+gvrauBdvWnjfp0svxCj/TKZ4hyu+XDaohPotlFfeZJdIum1Nyh+Irvk9OHslvu+7PZWT/7uz35fVPzL9NvsE5pK9etanqiNycdxvHxNgO75dyJhvYL7W5S/nU0l+3mt/dBvMLnnY3kn2f+GCZNSypSEV1+Oj3uI8+Vk1/rTTnmd/dDneM6IPZy4UaYxcA5tx0xoWJbj4HgbO2o7E0ikT6aPcYLS/ia/fJSjPBO5609S7Jj4eIODNNkXO1gmFX2sYmLfWpf9T/cve1TM9acTnulo2+/pqM22UnitH1pODgFYdZtAhNti3+2XYIinUhQCHDtVJy9dkwYy980EwKyRx7HW9sSKNthwfGaa1gJixcyi19kB1kHR75nIJkumkeCI17ge/iwNbaWPg5FBM1NHPX361OtrrLiZOYMBJgN+pClZJq1mJslods8aTFgfMthBG0z4CGScgHQONqh7Jcu9eD27x+fa7vOS5JHsFuJ/vrUr+Pbr+cl7PjK/9t7k2lN7e7mSHciN2l4DZT7VDF5zfSZ/wbY8T9XdjHPbOcv6D0uy3e5dJ3Tu/0TvrZfXIVk+ruQk2Kz+9JgZkxKP41z/6S/bNx/3u5b9I5Ub1TnN7qTmgeznvvbOx46S5bysJdieO16zX7qMEa9f8VMArUe/Y7KH+8zk3hSzagt8z7KOg0x6mQgZQNcWmXBMJ93Uz0nCVvcpl/lt+oBgfPQfjk32WfRbTiqSQx/UNkgaTck919X6nGc5n44lfPTNiW/nuwml/bKTvztXjo973Qly1ycp59lvFjvMCjexNymDowEf2Rc7NzpOBsy2x3t2MAysJ6pPfaegHF2fjuJd1o6d96mzWUT2zSBj9s06ERTwvYEmAdCUKLH/XvdpjpMlfjD0XPXtcKfk1Xpy3pjoOIhEbRDETkmoQfpassvgz0TAa8x+piTHwnXmb2q0347V43VQnsY0ScEYE7bWKZjsB8u9ptSBTCjta0r8W7/XOrY1ppL2T19gQE//MD3OQhC4YB/PcpGtVK49rdxlzKP3D+fIhIxZTyfTm8zjX3us9DJ7c1trBEGyBGFrY52SJCcNHqdPfvvf687E14AwWc7xNJbqRznJMjltgtKk4yy73wdi/Lme3YkAf6TUyaT9ltlsi8diAoZxaEpM/WgckxMmTvQBtT36SY5jAvbTSRb3m/1q60y+nD7hFNcqE0hmG07e2Zd90BQ7Oz+9znWzTzcx1OTCp/+Op56PKSm0fSdLG3aC6Xq2q5b3nHaeTSDRJ63hgaMc5TKZsM9dKQyADKwEsgbNrdf/dDyVM73m42NkceiU6Ai4mXuvwLCBnmzbaZbBgI83bIY6DAwe02UAjQ54zXH1f8fHH22aWC+yh+2DDBj7ZL/Ts9is4/E5iFEIhFvWoJHsFduZgvg5yk+PejkwGGRZt46LpywVg0k+Fnaew0f52L4fQ2ob1seJIB+p6PxQNz7GQ1aOYyWLzce8PNcTicAxnmV+5MVlHbj5+NmUsLScPy+xNmfT2CwmPajvSfbPyPfau5Lk3ckvfn+S77wnyR9IvuKefOyDyTvfuzs5qa3dzP5xIOrhvjkG6+vEn/fNnPY+901yuL9pE7xPgEPfyDnx/qoPMOHgE+QpoeE+pp21HRNF7Jf72GOnOCHmXp1s9Dy7Lz64N7u1PL14/ZIkn5rdFybcm/2J5vOyPHHp//swBo6X8YX3+chmyzoJ5ZgnP7b2CGvnkKc5BNckr0j4TT6Cce9E7VX/yf5sa1E5nuq03ESieU5pMz7xZtLB+bS/6Lh5etK+6pe8hyeCwCch9R+tw+smJoxFpuQrQ53+eV5LWNFvc76ZlNT2MpT50JD3fZD+jkK5609SvFmSJfs6MTrenHxUymCHjMrEGnhzUpfpmNSsnI+pDSKp9xqAYLtTvfZDJ9T7dih2bGROJsfXoMVkinN+msPTF56GMIi5fzp0BsZTvbfjt+Ml23e7gEHgRF0IJqZ1nOaRjr79OeAbhJNZ3GTHuBYYEmi4L7ZRmZjLiu2F88RA1bLbLOfP0uN/P9rVfpvkTuOl/TyRw5MdJ71md3svOVwn6nKK/31UaWIYp/mtXU/7fpL28ZzsvpDgp5P8raeS3/lQkt+b5Eu+JXn2rtC3X4z7/uwfGbJP4xjp25g0VK8z1XGi0zWf9mFQJirT922L/TLpMKPuE8/akU+A2f6a2B8TINcXmbxpuemxMb63P7Mt93ptpO1fy/6b2/79xf3nJPmKJB/7adk99/cvk+/86eQfZP+5lGdnH3vW9rbJJIPyjsH6knRomd7r78dMwL59bvWevqsAd/ryFSeZlepnoqC2MPn/9u3xcEyMNU6qaRvTnm6bfO0x0H+zvcnP8T3jkvs+1+vOrZOc6sn/1G+KX+6jupMI9DpSbxNAlK2u+wTJ5Y5ylGcid32Skhw62GRmYKJ7LV/WgknJeZZfAUrGb20jOyDwmdA1vQn+JwaYCcKUNNzOUfVbtMhUTky1g3fvcaxrj9VNyVQdr5ODlutY2KdPFpwMtkzHsAaIp6B6GcDm/TO899zwdIeAl8kIg6aDqp26bZOJsdfDwMyBlGOpFIjeQDmPxcJ9s2a3a4nBdrjupIQ685E4Mntka53UEaQRMBisE6waaDvY8hrZYZY5130nCtwDtKGT7JKPdyV5S5J3/Hzy25I8/yT5l+9NvuPiXrL/CujT7L8RbJsdu36WvT+qLk0KTXRULkucO8+91m+Xsm+rzdhXsT22T126J7huTQ55+ux2ue8NQl2u//nh6/6vnbcNrxP1qv6cow3q8ZE/zlNPPrZJ3nHR17OSfF2Sj3xJkn+eXcbyRPJFL0nOfij5u9mt+X3QtZ/FqnAdamckglqmYjvkmDjHldsl+9xbfsyp9y+LbWsEEPViua4t23UZ+3KSRWzbMY59en0ncQLdtafvsY8P7k1PbLAs99fNLL/4gL6P11o/WSZLbLP7eXrKYZtdIr2WYDn2OsnjNfrovifmuR0uOcpRKHd9kmJwE72mNBisOVAHAz5vXKDTDe/gbYDKzW0p60ywa5BrcDQlFtbf42Lwbj2DYNcxyJ5OBNo2dTXwJvvIeWUCQHA7zdWUoPC/T4U4Rus6gc21EwI75wqZN8/bZnhNcETG2veTZXDh+tJOzrJsk+O2/p3zp7L+aE/LriWGTu4IdKY6XFsnBvzwtIHmFDQNHvu/gHqb5ZxWnKR1D1NH7juDN+pr1rrtGARMc9Jr78p+vs+y+22Uf57k9HzvBwpUnszuMwzn2QOKttWvxzWLeqLrkx/knlgDZjdRxyDP7PAm+9ODjtPJUst5vp2AsHxt5jLgO5061z/VLqh3E3XaQIWg/yTLD7TTduyn23bX7uZF2e61j0/ykZ+RXdZy8+JLEvLc5NrP5HeeJP/b+fJbu/y465RE2xZp+yYHnPj5MSX34/k2GcDya36PBAj7me7zv4kkJivun0IfwjjUdZl8/6S393Jt0nZmP9XElQQJ/UPt0adb7P8s+0cHS0JcQRknCPbHnG/HK86nk0nas8fnvW6ypq/dBuebc3VnyzYf+Mev1rzbh6+s4eS7Tia2IZnZjIqfU52cpoF0N33rGsC4r+kY30CNyU/b8KMUbqMg4CTzIjtxIGAwK0/xmLaoOwGhjoGOfeqb+vO9nRkTqSlosf/zoQ0CZUuDrx3/JNNa1j445+zbSSwfc/EaGjSd6f+UPLZ/B6e252stzz7WgMl2KLMGxDmHXBuv0wR0q5+TQ5a1TXC/8b5BEds9zfLH+fhNNJ1D7nEnn9O+uoydTfZAP+jrPPvPKFT3E9x/T/YJybuzBym16yaal8n02BRfdy9ts9QrQ9k1f8Z5qV5k//n5ipZLZnujLTnZ6nW2U/19WlRbNctdu6ie7Mu+r3/2WbWd6tJfe+d6F6SeZ/n1uM9Jdlnu11Lbn84v3EjyrKUt88dVr+A17Y9rw2Sw7XD8lyUSbaP2fy370xzuQ64FE9P2Qx9IO2Gccb/T/ub6dX3XyJNccp17n+OsHo7zjGX0j9uhLNeB60E/whjF5PCyZLtJDJMD/2AyXzOhru7Xdd/YJ5lPWk1WbFeut37bNIk06enXRznK7eTDIklhsEmWwaaOgExH/9YYrL6mw54YPPbP6+fZARaDLTsAOzEDXoNOg08zTqfZfyDfzraOkGCJAM+6sV0CSs4t2fK14B/Ur45MfDy/U+JkYZm2OYEdCoMqx8WxOnlhEslH9wgI1gJmgxT74HWWN0PncUxJBu3ZzFoD3vQIkNu0TRHMcQ6SPShlkPd42ie/ZMGJTOud5/Crs2m7BNUFg1yT4L33ZAP+8y7+zrP/5qXqb738WAvZyIrnretH8LrV62T/OZOC2F+b3W9olI1/N8rfzKGNkGGdbKrlgrF5f/NRqF6nT9jqvn0LhcnORvUMTjfDNfZX8T4gaCLLux3eB3XZR0GdAXHv0W4I+tvmTf030dL2GkvOcvH43kl2v9L5tLwgH3XxqfracsvbV3C+aN8E8rZDJ6SVaV9VCNQp1mdqj32aYGkMitqp0P4oTm6mueZ1v2YbtW3W3eie7b3tkWhaIz89Fr73Kf4UJ5jo3C5mVa/+ZyxlW54vxzXOBxOc6evpW37a0217IrGmE7g7V44fnL8T5K5PUqZHMszGJ0vWyyzKBNL9TDMDiwNhX/f61eyTozU2tk7zMifL/x3bBK5ZzozSxFBOjpvXCX7NNJ0M7+lIOfd+bITO2wF5YuAnJqwAjnNnvSrn+nOg6n+yqZvMv/1AtozPv1OH9nOSw3W9zOH71KxApHPYtaDOTGgdTMlMnqveWhJJ1pnlzEZPNssy1st7i2CZ5fi5mSnYEmj2XstONr7N7mdJvi7J67P75iXXqxh49V773KhsyQ8mMgWxnKPr2ScfrXue3VNA/za7D9TXZnoyUbBL8L/JkvTg+nasyeH6EeCb0Oja0mY531wjf6vcc7L7xqpPT/KCLB/T4snABLI2OVxf+ta1xIGJpf2D9xP7KxDkXJ3h/wn+G8BzT/MEwgnKtYv79138/7Ekv/DWixvX7kmed0/yrJ9IPjn5zrOdTTAZupalXU5JP3+Ar+NxQh+NoXp13GT6nYRxPBX7TOp0Xw73thMm6l/dOk7W83s+RuW4VvtwnEtmsE2SY81PuB2Pp36Y46jw5JvxgPug+2OKZ/0Sg7ZLf+YT0mnfWN/6D6/jGmHKeyYkXYaYag1YOnk5ylFuJ3e9vdA5l+0mu0XHMDnUra5N4LKBgcGS9xl4venNOPPkYQqkfc2gyADroN/3rXuGv/Yb1dnqj9fMCHt+DGA4Fz7+rnMnEKNOZMuneaEj7/s+djEFls5b/9iHdXW5oLwfEfEmOsE9/qfODuxrIIT3Ovf8HNGpylH3vm5iRcCy9pjQieqSXd/gdfUxyJgSt675BGYMrKojky/3U7vZZqnfxFomS9vh2j2ZHSB8dw5PO6Zkycwy95oZT46bOrP/ntxwb/U59fdk/9sxBYoEYtSB4ITJp6/zvoFObcxA0o/ecNwnurfJ7lTqU7P7cPhpkk/O7lSIH/4lQWGGn/6yfwTdlSau/JC6k0WOiz6Yj0ayPO3biQ731BoJRH2dYG2TPJRdQncju0OUn/zR7CboE5Pcn/yd/z35nou6z8EYeKJvG+36lJxhst7EdkoOTrJcU5689j39JYka27b91n0XY+0jcWvkjGPTBPo3et/yJqEoTNA5ZpNVrkc/PfkD6sI4NhEh02k6+/MTBlPC3tdOdKhrx1Lis203OXYC7j3iRL7rsPakBckA616bMunUv/Ms5+7Ol+NJyp0gd/0H57tBGvCnINzN5+DrQOXrdjotx+fbqQfZmjp763QyvF57dIuPAiTLZ5aDe3QOdiIT87j2GBCZEo+JwYDjdMLC9TDAJxCY2CmOZ1qvXrPjnUAPx8P+p4BHXZroBmUnXRq4Wp5B3sL2CT7JavoRgYoZQPbd9vr6KbxnfwSzE/tse1kLdtMauS4BD4HqNksbN5io3ZgF9R7g3myg7hwZtD+e5Jsu3r8b9bq3OF4K19D+pfcJ5gw6Oj6CnpPsPptCsHKe/S/L00+0zZtZ7lmDUPoJsqDTSQTHw6SLp4L2U9xXye5byj4lu8eZ/h+/JsmnJn/1+5IHszup+vdZAm6e7LTd9uOElutiQG2wyjme9gf34gRmCVRP9ZrX7BvoB/pNa7WNm9nNS5POdyd5NMnDb90lJP8uu7Vu++dJfj77xx2ZnNJPmVRYIz8MvpMlIG1ZJ2WcP/qU9mVQe55d8n8zhzGX8Y5r5XhqkE+x77GwXa4H2/Ga0t5NTE3Eg4Vxp36G+5t7muWn1+3Te3Q7lKNMJzb0P9xbXdPT7L/23diAY+WaGYt4b51mabO2Dbd9lKPcTj40EtpfptDxV8y20KnUWU8/Isg2z/VHZmUSM3Dtx0EgKDexgwzu7ouMLVky3vd7MyJnuk8dmly0Hp2PWbjgPftiUOg4OQ9s24Cc80w2yQnKWqDZ6D9fM0iRvWVy5XGR/Z3AAgMi2zXDF733aU3bNSg3m0nhIyl8dGUtePN92zsb7hHwGnQbeFYYsG1TUx8Gz5UpkWz7bqt7eJqXAqinsv/GrN5zMOUJD22ya9ug7CSeJyfJfuy9x7FOYCW4b+DWdW0bTKJ9utB2+XgPhUmVr3Gvneg9v+3qSnZJyja7r1DOE78nectb8yVfvpvj52TP9F5BO7XJ+tra3JRYcq54WjHtaYsfZ2lf59knYpzD2gEBnfvgnPHb1p5EO/Rp78ouMb6WXUJyPcmPJPnfLu4RJL4T9U6zJ6BoNyYVbE8ea7I80aKfdrtda552dry23T7+yn3zBK5dtl+n92yfsWVK+i0m4XiN8dnED3W1nXMfT/F2TY/2c0P3TALab3j+fapzksP14X0mESQoWLf3SuRUL5NAtTHujcrk4xnb6Te9b6b9eJSjTHLXn6Qk+41O9oxO1gxccsh80+lPjrDtTL8E2yRp+jE7gmL3P/XNr1c1G9PNbyfI8TEhYnCnXmSFDCDtTLd6T2aY7ONGdaq3dSWL3fdOiMgKUS8nKpWyRddQv2NtXY/FjC2Z8o1eO0EwuCLImwKskwaeEvQagSaZKILRlq2Q8eS8Wwfr5lMdi5NlC+eEerk9r6vZRiYJvTbpxPU/zXIO2R6TgfPsv1WrdaYEi3M29U0gwXERUHhMfE9brO/oh+gLTmt/3EcEp9Slul7P/rdNeq/AaZPl3vbjM5TO1+lwrdK5aXuPJ9l9kfIPPo22qXdPgOwTTNaYpOk1A0m2T1/GtmgXbJv9tv5E1hCkB/c7N02Ga6+ek9PsHoOqzfVRqIezS+7ejbJP5OLjKtmve2V7UZe2OpEXwWuu1wS2aUv0sS13nn0iwvK2A88thfG3c7O2n9nWtDZTbCVR5OSQp4n0n5wLx44tyvb6RmWC+5vhvvcTTyQ6dsYZ+/C2w6/S5xqTUOHp3vSfwjY8z9MJ1hQv2FZ14XsK98BasndnyvtyOfXxq9XnUSgfFklKZXIedFDB6ymAJUuQzvJkGhio7HgmEH2isi0/Be3qQKbT5SZGjWDZ/TcI3UBZjq2v15Kf3veJhPtvHTpWA0rPOefF7qJjZ/LnBKQyJTqcrwaPe7Ncy7ZFxpEMJp29QYITlCmok9HjHE9MYwMr18FrniyDwcSEZ7jmALLJ4dpMCRGTUrKUmxzqcVlSU6kdtU0HfeoVvO8fEzPq7ESyQtY+Wa5P26ctOaFjIks9nVDQb3hPsbwfvTFIqqzNLeeGfoxzz/HytLD1KdOXRDhhK2h+6kLPx5Kc3vPP8on5inxLdp9P+bEc2ijb5WN59gcEQt0HBqPUraCO9mL/auBJYqXfPuW9nhyuQU9i7s/+BIW6UJ7I0lb5eG7nr1+AwHLn2fml6xd1+oOerdtHy9aIkgl4eg87+aXYBsyMT8B8IvEo59kn0pcBe/rzvuc1rw/Luo1T/O/vMnFfdU95L5kQdNybbJRJGWMO57B+dy1uMLF0EtW4x9hlkqZ2xK//ngjWyS/W1irVlYQf63LfmkDkmDjGoxzlmchdn6QQQJU17QeG6ajJ8jDon6hsss4gub1Jps05nVqQGZlYDbJDvU6HZyaMwZ26cOwTgKXDNUtJx2M9yS6R+eE9Bs9pTvl+7TTGc7YWJKPrdNp1wF0DJwRTAsn3dsC91iDB4Mj+XKf9sxyvn+g155cBikkYQfuUNFcM7H2Pssb0NXj1fln8Cdj1fkFKVJZjcX9OoDhW773adoHW2glkVI9ffTwBlOlkwb5iLTEgm8xHpphobbL/Ni/a0ZnaqN5MRmi/FZ8isa0CM9q6gRWTGT5iQjt6Msm/zO6z4P88yT/L7gPUb8/uMxfJEtxU33Ndoy8wmO5YnKBQj46H4DtZfkbCRBT9gk8mpv/9Mc+T7GzLyRV9XE9ZOt/3ZneqcjO7g6Z3XMxLvyXtRvYg3uTQBPSmxMJl+nqyd/r/CcSuseT29702rRn7af9NTK9mTlCT5dhNXHStptjU/kjq0Le6HJNS9se9wnmjz6FwfFwX+m2Wc7zmOCY/RnKB+qzFjWmPcI91jeqH2vb9w5h7r+vVcTiWeX69NmvY6M6TbY4/5vjBl7s+SamYSfBjXnQoBvIGBj6mXXtcwk6djE4DIcXArH0bBE2gquwaHXnZIjNpDsrbzMGvdczaVgcCFQPG5PBDsjzxIIO9lgDymLjteY4KjJkIkFnyeKkrx0OZEi8GXJ/EUHfX81xO4qBc2+IjZm2f68nE1mvvOXRfBrIGEx6PdeB1n2JxLL3vdWbyNoH/2j3HbBBBwOLE2gCJZdqO94F149xP/XNuTTQY7BPEuV2OfyIkak/s/2Qow/Y6Jtsp/VZ9BB95M/D1HuB8P3xx/YnsPyj989l9xuLhizZ/LrvHv2pvfYTJdpgs59aAmkn0lNgF5ToPTNBpQ2y/wnE5kZ/2rRNrtte2mlxSz+653ut63EQZPlrlPTb5o47b/TOprNBf2C7tJ9tukzGD7qDsZLctx/u2f9qt26Cf5smR7XHy57Z7M/suPwH42pATYiYtLGOiy3vKCYh9IMfEsRqDTMmkkyzH4pZhIuI5Iak1JSi0wSk20Lc4FtB+phPQoxxlTT4skhQnHcn8yAOdqZ1Xr5nB9mmAA5pZizqYiSGrQ+Jm9r21ZMUfflsLWuf4O8myP47bSZeZzeQwqNhxmmWiA26bdsQTS9a2qAOBhx9VIlBxcOQaO0hXNkMZA+bbARf2yTbo8KeAOrGITCgIQFmuCanXs8L1rkwJzmXjqX2vAQGfZPHUiG1QvF7Uq4zdxOBOCRbBNkGn7bDr26DK0xy22fr8sLFBAte2OnSder/XLgOWyTIhYCLFMZIUOVfZNbKB4Nv2cW+Wa8D1816sjryfLMmIfpPVj2lcrf8krl+5KG9/xjpO/Hite4tgcKP6FZbnWq/tl4r9fPUoCK1uT+ZwH3PP9tfbn8zeFs6zs/F+PsVscxnuyca2quOEu2WvZqkX5zMa+40s7bHt9LSDCYNtinZjH+D9a3HcZLyk8Jp909q+mhIiXl9j+blvbfsmNO3j+HqKb73Ok+aJXKmNMEl0UlC9iAvazhRTet/7nckSfdXk07n+J1nqTJmwRMtf9qVERzkK5cMiSWGQIdvMhKViho0bmgGyTsOAlQwF+ydLYbafddwX24jKWE+CFAbuyQmz/ASu+ViH2UDKZcwOnVuyZNTPs3/cp3Kq8n3NEyEGeLZFfasX2yh7ab09z7zvsn19u6BLZo3vzfqxn+mRBAOtqCzbcAKWLAMjAWdyGMQm1tEB22PveJxwNblgUk6WkX0w+Z4SP+9RBkQnbFNC6qR6Yl37vl+ssMnyw93ep+c53LcUJkttnyCRfbJO29xkCVynRMvJhJlW7z8DoMoaq8k5ap0mFCcXr3/64jW/bpfJfPVJlo95Peui/pNZ7kHaKImcCXQyGTFZsjYWJ+pMxFrOyUj1YtJo8oZ7nTbJNeePzHYctava2kQiEMCavGKiUH3PUY8J7ZneMzGYQPU0H1OyX31oc04kve8M1r1+jmuci2m8FScM7K/+h2QO45+TgYmgc0zJcJ33uS85RySHOH4+cuX1nhKmtfjgGOAxOX6eZP/19NXBNjE99eH4ad/SOa1MieOdLe/L7B1/tfs8CuUDvQIfcCFQ5xE7pZvNjBUZCSYPBMNroJ1tOLDWOTLokQlxn9QlKstxWm8yxtXNwMuOhWykmfCN7idLcHWapQNqf9WBDKb7IiBj8LDultYzEHNwPFEbBgQcf+/zj9cpDmjJ/pnyyple04ZOdZ0ghno6ALOdCfA6MfLcTnO5lvye5nDcTA7bXkHsOerx//nQXt/TVlq2H9J0EPQ+YB3ai22RAKD9tsxLkvyWJJ+Q5d7kL3nTLk9x3VJfc64/26CBjueE4IAAxY+MRPWCMfT1BOQJ4twv56rCdWp9/iYC/di1JA+gDn834znZfVaFdj3ZHsfX9eM69Lr9pJOJyc9NyU0Jkd5n3DDoDK63D57iTXHhLHsG+TT7b26r/vehXceoKbE26Kw40TExwPZMCFUIoAnSDZKndtqvExGuDfVY0916TrG792hHPAloonWWZYJigqt9nek913daV8Yt6tP++p7z6TE5FtQPmjhifY55bT6IdzyWLf7zdGRKkpywcR1sj54fn3bTHx7lKM9E7vqTlAKiiXUws2+nYDZ8YjYdXKeEI3ht8GwWrk7A+pyoHhMNlpkSEB/PW9gX604MLetM4+o9Ori1fpOZhWTAadvUn47vMvDV9sn4sI/oXt8TlLRfBxYHQANp68ZEh/1ZHwNxAgUGKQcQgwXOEZObXrN+1K369jNE0zjMQCZ7Rv00+wSjMiVSE1nQspxPgoY14Z406eBybbfvN9mx+w9l+Y1L/OAy14esbq9xP3tea1O2MeqRLPf/TZSdiIRz3TPANDChnUxM5lSWtn6mspWTLL9koCdA/dC/k/iz7D4szuvTSa9PqeqPbX8+MZ5OFPnFDhb7EvoDMvAuO829H2E5y/y1806k2/eTqOvEgGQW/Y/L+7XnoTr1HpMf+tsKv/Lec5TsbZH203VxueA1/SzXjvPO2ECbpB1MYvtmPHaiMIF82kDLTSezbc+xlnaYod5G75nsOo6wrek0z+SGyQL6JZedYlbntv+ZXE4JaXVy/Kf92hdNc35nyvEk5U6Quz5JYaAzC81NnBwCNYJngjEzTKxr55ssnYsf55kAw/T1fueZgZ2v2SEQYNjhM/BxPi4DsN6y1ouOjY6y/a4ldROzwuDiAG9Wa81JVn+D/dsxOQ4O/NwCdfG6Vp7M0pmTeWz5Pl7ERz+oM8dnffsse7L/2lIGe47DQYx9nOTwx8Y4PutFIbO/udCHtu0EkB+aNtDyXqS+TLydTCeHwNTJtIM6gUTn6n9P8qPZfdB7LQFdA4JNaE7wRzul7zCAYBnOe8dEn0X9CYCoK22b8+c96Pk3iGKbHgf3txneCh/R5Hwk+x/PtD+y0JdOOtIuCaqSw3X3Ok6kAB8tow23fueDzDP1dzK3todd7kTXnFASBJ/rGm2k7fPEwICy7XJ/WpisMJ6sJbfck7zuvct9RyLL4JV+kkJ79Fo0EWUy63FXL/uTzhUTtepluwr0NhlnIoxjc3+8b99EnbnXmRxz37cu9wT18GNl1ce+lL5rOvmZYr3jjokH2uiExY5ylNvJXZ+kOABOx+jd3E4cClD5eBcDRt8bBHoDTo9JnOL6mk4VBxs7zzokOpo6kwn8TEKQs8ZUkZE0EKRsdJ9z3PcepxlSA9S2W5ae/RIE+cSAwMNJkpNNO3kG1wlIkWXt/Hc8TUCq23kO12P68KAZtLZNZvIku0dDCLS32T1XbHYsWerB/13rLdrgeCq2hTUW0vNUu+V4HSzZHoMfmUknIxNo9ckCbYb11/bak9mB57UfS21brN/rfMyt//kbBi3b9wSYG5WpnlE9jtl2ab2Sw/XyXk4OwZfX1YCb+tWe6Te2We7Daf7Y99ppEu2Q7beebZM+12CRPnLaW9TDIIo+9VTXt9mvMf2Z90STd+/1rpnXhWvAHx702nAe1sDf2jqyjsuQXLJf52cmmKDyPeff6+3kiP7Ce5O+meCYQL71GLsZCyfyJ3p/O7LK8z59lbkTDccE2prFSdCU7ExEpBPTykSk0IdMcbL92r9SF9o91+3eLPdZZZPDmMK1WSMmjnIUy12fpKyBcjofPifMgDqxfd6MZmwMzqdyyTI5cTC34yFzWTnVfTO2DSAOggwgDCxmb89UvuPzCQ2ZIfc1JRrVnawQZToq53ioj8dkdrIAgnUmID2xa71H3aeAxwA0AfCWMXN4PXsH33EzYPfaSfaPaXR8D168fuji799CB/5n/1Pi2c8IOLFbA5B9z4DH9SeY49fMeu0ZCA0y3AeBT2UC3V5f7hfvq+pJIMCgeja0c579Fz1QH4PX+hKzkRQmUBNre5I9sK1eTAR6bZN9wm5m32CU97m3DUgIOp2QMcFl8m0Q5SSrskZseJ7Pdd/tT/6w1zhf9t3eXxPIpA14Dileu4lYql/23rbt9BE5t1Fb8rxxvzmZ8D4/w/9T3Ku9EcBy/qPx0Z86IW/7E+HUvjoWPiXA+GRw3P58Okjb63xMe2wtWdvo/Ro+aP/00d0ja/t5ipv0bU4STIr2s4z2x9yX1K3t0C+1DyZojPHJoQ9rP1yT2xF0Xo8JZ0zv1wiTO1OOj3vdCXLXJynJftMxq+drBqOJWaoTcBJCeTLLX2hlv207WQYYO9fqNAVZgyeD9Ykhm4KXHfTUlnUO3resf8OjJxxmMBn0CHLMMrcNAruJEW15n0TVkXtOzKKyX86ZAyxZYutY6br4SL732K+BjE+66OwNpggEW//eJF+d5D/+6OQv/mzyluyBrQHtNN6+P83+x00rZlUNKCuea7Y7JZ9O8Hu9ejipYB8GqgQAV3O4bz0OJu0eD8EQ27E+BgpXsk8UKz+f5F1ZPiazlqR7Lu7N3iYMUCcQYEZ4An60IQO8iaXf5lBXA0Wyq/RTZne717g+vE8du5bU3ePeoHzXhzo5wXY7BuEds8sykaAN2PebtGl5s+lMJjz2/sYTx2Ub7RxPybb16j1/U5TJBQrnZmrTbVAPxy+vF/dRAb/jCv0CY4YJIiZW3j+cf4rHQjKv7TjWeq95nzpBbbtMCJ1YdY5NhDDJsw/z/ioW4Xuv6Vpi0f49thJgnfOzLL9xs+1Mdul4RWKGdSdCaUp8jnKUST7QaeIHXOzYCBIrDSI3da3/fWyZ7INAN22fx19jFJggVA8HLus0OWECW7KOZkYIFOgsGGzcPkEOgXNwbRqbnVeFLD2DgwPKdPRckGe2xwCIyZeDNev3JGKaayZrTGxoM1ez/GXk2kV1qi7UtXr2P+ed80zxYyFTkts+r19UMAvpRMrtdV24JhYHT9qbg/RmqFexHRukrIGLSQ+/dyJJxprtk5mdhGsxJbNre/HB7BKUG9k9fvdE9h/Ar67bLBMO71cmui2TLE9KCAanvUMgNu0BgggnkrTjJos8yZv6XBOuTW3SRAITJD/uNPlmjttJN08XaaNcw+rQ/ugntvq/QTle5/g4Du5fJ++c+3OVoQ+ofZj1vky6Zk5a2rbnlaB2Om1mG7WlKzkEq7SjCmMKy7KPluvYrB/FftO2wITXpMHVLNe7+/7aUNbkEoV1a0/2a9ST+pxmjnvJoX/ql4t0PrgHT1DeMdz2FNRhLON4Kd03HJ9tZIq7xkDnqkOdWWYiaNbW/86S7Qfp7yiUu/4kpUxrXzP790bm5wi6Mf2VlK3nUxP+aFbNrKwH27QDSPZAywAzWQbNqzkMMk4UpqNlOhYeMZMRJdCdTox8bQpKE7NOx8aATidvp2ZGlkJdHUxOhnLsk0fiE/PechOTSgBlxnFir/ia4Ii6s10H5dpT+yOYqE382SQPvDf5yYuxvVv9T4mSxY+HUNiGAbvn+2y4bxafc8eTPPcZ6U6wSwDNdgxOKZ1vzuVGdSamu8Kx85GJZ2WXmDz6wiR/Isn/M/lD/z55dna/su5fRk8Obbvv/bx/bZcnTPVRye706zruE0x1fLWhSTxeJwD0BdwPLWuCgX6LvvCyRIQgrPfolzk21rWfmeyafTKhmMbLe309AWn2431RuZFDH+6EcqPya5/1q448xZ/8VX09wR/H4DomHNhOx9ax+nM39HU+3TTz73Xr62nPTSQLkz3bhv0b58BESvW/hms+xZ58RuuaFOS+4phPsvxBTOIItz3FLa8B41TnnfGPPpfzPvVNH3+K91xX4gbuldYxRuD62x9UJ69h8P4oR3kmcjty7ENeyBRyw1ROs2dgXIbOxsz8VmXIirBtbv5k2SaPmMn4GLTTMZg9M2ij8zHAoWM8z6GjIgtiB+U55FioU8t0fhzMnZxQF7bZ12XIzAq3bQMJgsK+dhLRfs0U8xGy9t9yZJ+i+5WWtQOeTtguA9RkVKcktI9nPZ7k7Revn0Rflc6XQQr75Rh9fQ2IuR3amtfEiUXlJPuvqJ1ALEE9gYKTfAZ4gl2ymbRv69C/rpv3EJMF1iGIy1ck+Z2fmnzF4Z62nVtn2iATYtoA713Be7KflIk1bnknjqxTfQyW+RhnZWLvz1Ce/wmqtrhHW+GevSo9LSaD6B/bH/+C+04WqT+F8+GTodapLUTXKj5p5T7LRdl7s/+9FM4HQadPEWk/1Jditp027rXLUOYsuxPBT774f1kC13EyoeWcUQfbFX0ybZr6bXLY1tRey68BYPsH16XNdQ645hXOI2Mf14z71kmEbYC62Yaow9qcenweU9fqusoZB7U/J08kUDmHZ6h7jrLUu/eJIaaT+ztTttl9RuQD+XdM3yx3/UmK2UGyLAQRyZJZqdAZmDmYEgpv8KkchUB/CshOKjqOoLxZjjrQU71ve2yHjLaTMrNX1ImMS3U5QfmJAT1XWSYPHEv7rm7+ilyDlOpkqWM180e96GgZBAzg2Hf/MzjXPqZgynmaAKWZQM5jxaCq3yi1yf5xEds6+yALy0AzBTszfWssY9Qfk2Mzaq6XLAMXAz/tr/NsgMf+N1mu5SZ7htoyjZOJkoG4T87aRuttk/zkH04+9of+WX7ib8wgyaDQ4Nrt+3Ea2igfDVrzK5MtMOmlrbP/js3sL0+gzNZOfqInvqdqg+Ikw74nme2O/tBt09YmEsb7oHXaF33EZqibLH0R/ZBjw3kOf9289s5koKCNjxpzTPRHTujZp081KrQxnnBNDH79VD/If549kcBxmJzyKY7nm4CedjGRCJNvicptVW6N2ONYTVTRZpmwTO1ObZmsmHSb/ADJtmsr5TtPTNoYQzx+6rt2Qu15JQnFJJ3JMnWY9o1xgzGKST3a6lGO8kzlrk9SCLaS5SaaNrsdHp08j3Kjcpcxan6Uo0LHYLbFANIBgnoTIPgUgMDP9+tEOg/8NqEJ7G7VBvUx2J1AAq9ThwrBVO/ztdnf5NCJe+24Zk7qouubHH4F7WmWnzN4R3aP+LSvKxiD7WkKskwee41AuHrY+ZPNZjBqGxb3xUC9Zhuuy8TgJHvweRkD174IPFq/INtCIETA0EdnpsA7sZIEmDx9YzDu3HaNDXC5fkzop6T/XUmem+R/TLL9G7v792dnI62z5i8mAMyyrWvg6fk3cPU+4DwZ7NJGrIt1dOLjZGyD+wRXBPITgcM9MvkD9u1yTG77mgCSyQEZ3rZt30WCxNfJaNd2+NgPExL6GfexRTnqw3VwImZbrVxBXc5D58jitWa5ztl59gnTu7M7oe2e7Y+1tq3JfxjIMtHvWtDnRa8t9pXJDICrE23Pid1Up9ebNPD+Za+NH85w3XbNBI4+ZRpX37ct2t2TeG1h4jeRGLRL6kfdknkd7Nt9nacvLt/x8JRtildHubvlqaeeyotf/OL8zt/5O/Mn/+Sf/CXVveuTFAfByhrjQSDjxIYbfy3JMdtoUNr2yNTVufKZWQcAJwgTMzLpyv62l7y23vzWD54QMKga0FgH3pvETPIaQ3aisrxfhzgFnwoBn087LmN1zpM8Lzvg+dRF+edl94N/78qSFTMzlSznl3ZAwEF2zQGidTjvU4I3gS2Dy4kBNVs8gReC/emRGPfLZJlsW7JM1p3EeM9UXwJu25H3Z197LQxWqB/fe39Pe5tg/D0X156TnY1cT/IfsgMTBGQTKJ/mzGPiOk1JwRTsDdAMBDnfnOOJqV0DU9Rhuu5HVNzGicoZ1F0mBDkmg0ywGKC1Hz8+xTIUJ8L21d5HHlf74NxvcM2Jk+eKY6O/6P+bwxho+xXOM8EihUmE/TF92LTn1mLBmr9oHa7HWp3JFqvnGtnCOML9wH20lsz5cSWC/olw6H8mrCRHfELhtZ/GmkG/k+y+nMP9XkaEcK+XZHKS4HZIlK35V+5ZE3TUp+PsfmEiN43/zpP3Jbnng9Dn3Sd/7I/9sXzmZ37m+1X3Mmx3V4iDGBk3PmLCx4AIIOjQCZiSJUgliCAw6HsHDjqDiRFyELHTohM1K3Wa5aMudEx0ggZkBGbVwQ7wRH91ug7oBDB0lmZj20fLX/YDh1PSRekasv065/bPtfccb7ML/K33UHaB4UqS//cLkkev7vR79sV1BlWPqcJTAiYvtLHgelbe+4SNaz+BEtd3wKnt254rZkwJztunkxruB4/N42p7HYN1sa0wqNWm+p/goHWeyrzvJqDPvre6Ps0b5Xp2Jyc/kt3v1bznokzL9du5qEfH5qRu8hG0/dYjGK0tGXisgX6uI/9MMLgN68FHQLzfuPe5ZwnUKEyQ6Ie4TyZw1v+0H/r1tsc9ah/mdnmtc3Oa5ZiDstbJMYS2SruafgPFe8dfzkKyZUpG6COC1z0h4P7kN3dNa9P4cjPLNSbRQYDO/nqfczGtI+dljdiyH0qW9t9x06cYiFema7VnC/0SCaY1wsy+j8QQ6162fsQmHivjO8fpsU3J17Qv2KbHUT3W1oRrZ1Jo7eTLrz32o9y98mM/9mP5kR/5kfzm3/yb36/6d32SQuBNwJwcggAHG4KNbl6yKyybLDd7sn8EwAH0PPPXDxr0Vdw++6GOfc/23ZbBKefGfxNIbhvTdQcJO9EJQBgU0Qk7qNTh+5EFrqHZoGQZLMnyeF76v+Xvy44V/6ok+XcPJf8h+YKLdu5HfwRJa2wmnf8UXCi02ZZpOdvvtJZmeFu29Z1QE4BUT4OK3uc3zK2xfn1dG3Q56jABVto0E6QKkxH+MJnnw4BqbX9NAbbgjnZLHckkXsdYq0cfbePjQdXjKVyjrhwzAWrHRTv2vveYPA9+TMzlmSTRx7Ee/U/HbrDvtrnP2Fb9nu2avoc+17qxfZZbe6SnbZtMKVjn3iHA5HiDss8kEeSJSrJnlJND/9CxdN772SOSQRxzx0A9O5fPye4D78/K8jNM7PeJLEmd+y7K87GhDGNkosdx2q/QD7NfkxPt50aWJ8xdK8eh7i3bBOezSdOUOPhUy0lI652rDueC87lGJnrted+gfqP3lTVf1v12kkMfZ59AW+nfmr/ufyfLnuu2135bj36K5AeTtMmf3rnygf7QfP9uL48++mg+/dM/Pffff38+5mM+Jl/0RV+UH/3RH/3lDxnyfd/3fXnNa16TRx55JPfcc0++8zu/cyz3hje8IS984Qtz7dq1vOxlL8s//If/cHH/9a9/fR599NH3W4+7PkkxY0NGjA6XYGpitxkI+CvP3YR1dGR4edLgYGXhpq8TmxKDOnIz861rFq3XKWZPCTrdBvViOZcxaJqCKpklBxgyRlPixXV0gCA4bHmzaQ4EBuEMnp3/Pp70z5PksZ9Pviv599klKA9lDzjM8rPPttf1YnA2g1Xd3A7ba1nOEZM6zgMTTs+D17DCQOIkjsGHQNkgtq8JCHyPoJTgxDZvwLjN/rcSDOxru5xfj2EiBQym1oB36/R0rHKa3bc0XVN5+gf7mDXwx36c7DMRnvYXbYi/DUEQRiDDOeDXtK+RCH5MhckBheQLTy6dNE9ExgQIo9f2UZSJaTZ4I2EwnaBfltBbJ+9Xz1evkQxa093zeV1lz7I/mau4rU12v9/z8dknHRNZVJ1o6z1FbpnruN+6TbTcr08juEa07f7vOKoLY1jbmxKB2ux0slXhSTLnkwkJ15in99P+ZzzfqMwagHICUHt08sJvwJtO1+jrGf84LifmTBxol52zyX9RuH+aPNLPtg7X1+3RN/m0+7J5O8ozk7e85S35qq/6qvyTf/JP8thjj+V973tfXv3qV+fJJ58cy/+jf/SPcnZ2mBr+yI/8SN75zneOdZ588sm89KUvzTd/8zev6vHt3/7tee1rX5s//If/cN761rfmsz/7s/MFX/AF+Ymf+IkkyZve9Ka86EUvyote9KL3Y5Q7uefWrVu33u/ad7C85z3vyYMPPpjflr1jY9BN9g5rizLc4ARPrHOi8i3b5y7ZF8vTmRhA8RrvtV7lZpZgqPeZhNFJT6w92Rw/arHV/7MsP5+SLPUm0JnuU8dp7HTYZFX9Q2KcG4Mlz9k0t5W2vQZAuW73JvmPs2MdP/nifpOUd2X/wdL2yTmrjpfNhefZttnAcpbZ7mi7yT6Y9pedW86/r8M1o07Jcm6ZzE0ga0qkuB8MZNZsbmprAr6XAVj2Pdkx/7d92tPaY4YEM1PiY3/htj3PBPunKON15jPc7d/r1jbX+q+tE/Su6ZUs19Z7yUnVSZYfFrcPbJl+dsPzS32pA+8XoF32JQgVgih++QVPwyZ7nvSY9mfF9nTZtaBf12/flM4x9XFds9O2y/PskpMHs/NRJHioC+1gSmTWTlImAD3Fw8q096axeU/7xIuPst2X5NXZnTa+KfvTIkMwrsVp9t/4N52iTGu3UV3qPdmN4xT3RsfottveWZb7yL6Kellnx/sp5vD+ZNMW+rVn4u99rWUbxz3XZ0nemOTxxx/PAw88MLT8wZNix8cff00eeGB6GPBXs++zPPjg//eXPC/vete78jEf8zF5y1vekle84hWLe+fn5/nUT/3UfOInfmK+7du+LZvNbkX/9b/+13nlK1+Zr/3ar83Xfd3XXdr+Pffckze+8Y35oi/6osX1z/zMz8ynfuqn5lu+5VuevvbiF784X/RFX5RHH3003/AN35C/9tf+WjabTd773vfm7Owsf/AP/sH8kT/yR57x2D5sEtrJ1G63me28DSQ3et2AwGeAGeDp+M1EUB8CE7P0V7JktNsuWZVTXCPjQydTR+KAF5RbY1XPcW2Sc5UxU2bHR/au41kLaHXia0yW2TWf2kysEdeYul1P8u+yT0p+/qL+jyV5Z/ZMJ51y53MCkwx6TmoM2mkDlyUo1dPjayDw4zAEDWT3LKcqxzl1Uup61IP2ZZvz/jHj7/W9oTZan7bOa2vJdOWZgMKWM6htnWsqUz3KQHYuuCfPs7Qb2mDL+DEdgrRT1aFNEATkop2bao+EBst3jghqOWc+jTDItD/YJHk4u8ePfOLAueF1tlfpo3Qkgcgs06b4ta5rwHk6oY7ue8/1b83nBfe6x+3jKvXF7ptjsR+ZYgPZabb/7ux+P+kp3E8OP6dYnb2PNyvXp6SivzHm+v1PvTf6Y9mWoW2fqTz3wnOy+2a9+3MotWvq0/Wckg3OnRODjpWnorUp7nkKSYrrWfqL1uN89JpP9do+T2o5p7XN2gv3pG3Dp9m91n56n2OZ/AnnJOiX1zu21t3q/YeOfPAe9/r0T//0fPInf3L+p//pf3pGmj7++ONJkoceeujg3snJSb77u787b33rW/O7f/fvzvn5ef7P//P/zG/4Db8hX/iFX3jbBGVNbt68mR/8wR/Mq1/96sX1V7/61fmBH/iBJLvH0t7+9rfn3/27f5c/+Sf/ZH7v7/29v6QEJfkw+XYvsnsMWH70g46boIbOscCv9xhEmCjQcbCcgaGBVJ9j7/v2y81NR8n+OTYH6mTPak6JFsGT2/PctdyUSEzMtefRLDvZoKisky8GcoqZrdYl21vpHNfhr4Gt8+xOUX4su2B4nv3JSXVqkDvPnqWrrgQ51CnDvc6B58X3T7L8JhmvF22r83WK631Uql/vSxvlHJphNRCagvkW9XiP1/reieF5doG4c+BHXQhSCPANZipmDG2rTBBrC9vsgB3fc01op9Wh4N962h8ke4Bke5z2EU93qAMTeidx3NtMZL121Ms+w0IgRXuiTmRo21bXuyCt91iGvmGjdvreyfG0ryaQeJbZFqM+OK/0W90LJgQ892dZzqPXbvKJvd79yuu2V/qiMvo+EWKiSwDLOTI54/q1eSa39DmOkRUSITyFte3TJ03Jr5Nu73fq++4k33XR1rugp+PLNEeUKY6xDMdCu68QRzDp6JywTccEr/vEFt+fQ5KzvnHaq0y4aiM8RZ/wDPdj7ZmEQMtRpuR1q/tOpCa8c5R1+af/9J8+45OUW7du5XWve10+67M+Ky95yUvGMo888kje/OY35xWveEW++Iu/OP/4H//jvOpVr8qf+TN/5v3W8Wd/9mez3W7z3Oc+d3H9uc997uojZO+P3PVJSnIIrhhICczoELypCP7MRrJtBwy2aabC98iwtj06ewcwsxhkPQgoeM0JigHtia47+NhRE5DVST6Z5Qd/CYLXZLrXOSHb2vcGeWSdDIAZGH26MB3Zt14D33WVm3TmWhj8tC/ampNDjoWv3RaTRyYmBIkGFFMA96mYwWXLTY/CtBzbYbnJVpsgMZEq682EoWUJ7qrfSQ4BQPWagCD7Z+C0PWeox7bZ1pSoTeUm/ToOn6Qly9M0gh633bH4dIpgtmOl7Vk/J+bTqRN16tybzGACQxKhfTRUUU8nftWp/Xierd8EXtmGE5wpEWGiNQG+3qfNnWQ5J2x7DdxSz7U1o+/kPK8BUY+p/50AMI7YVje63mTLiRqJufZv3+AkrTqYBKHeQV3HlIrB7za7U8ErSX5S46huU1/cB8l+j7QPz0XFybCTFurV9bOt8b4TNp/i2Bddyy72fFZ2j7i9GfVshxX7R4+bj27bTriGJhMojB22K5NnrEPf9KEhHxpfQfzVX/3V+Rf/4l/k+7//+y8t9/znPz9/5a/8lbzyla/Mx3/8x+cv/IW/kHvu+eWPz23cunVrbPfLvuzL3q/2P3Ts5f0Ugy8zWTdwnScH3Ii9fi1LB0CHXaFzb1kD59ZlkmPWkAy/H40g8PACthwdEMEFnRYd0Vl2TDbbYbBnAGr5zosTrfv0vn0REG91n460Mh3HV7b633anwEzWneCaOjk4U1c7XAYtrwXn/7LTIYK5tmWba1+910eLmECtzUP/286mU8Ap0WYfFNpLdXPS6rJ9zTn154Koix8hcTtm5rjXJpAQ3DNwnABc609gy0BwSiK9T6hrwR1BK5PLvneCQGE9i1ndnpx5nGdZzrnXmf1OtrzN/kSyIJMgrvtsLQln25xj1ufack8YPHmv2yc7aWg5Jw/Usff76O42yw+tT/PVevYZ9HX0RQWUnb/zLP3qlAB5X7AMfZj126iMx0Dixz6QaxnVOVUZi9eeJ0zta9L1RK+5n/ijkvywf7IE2bVb+uTa1dUsbc5jsM9cI5JadlqXKVnt/YnUYp3q+4Ik/7cXJ7/rs5JPUTuTLfIzIF3rnopNcaNCH9cP1q8lHB5ny3AuGdcYHyefdZT3X77ma74m3/Vd35V/8A/+QT7u4z7u0rI//dM/nd/3+35fXvOa1+Spp57K137t1/6y+v7oj/7obDabg1OTn/mZnzk4XfnlyF2fpNQJNnibreRjCWSp64BZZwIzfKSiQtaegdAJEwHhmhMkUFljGyegy3GbWaTj8ClS9S2IYZleP1d7lTV2p2OmU3PCcplMYCdZfhjXgaF9EBScoJ4DC9dwcs5kUg0iGBCTw9MKlumaMAFg0GJwrC4nWSbT08nfeS7Xv+X5zXROaD1/BnAEtbSzrg1Bkte0456EevIZ7rbDsbX8BOqnpIPlL2MAk8N63PcESVdVziC5yUz7bHnOT8tO/XdtvJ5kfQk2vM4TgCZA6vs1kGqQP5VPdqRGbeil2X25RLJ/rLTrSJLDe4pEDPfENHaOzwy0yaM1O+xYpmvUkb6S9504TT6NBMP0vjpezXLNGXOYyE5Jz5QUch4aV0i8JIc+ift32hMd89o9xz7GjfZB/+IEe6vy9UH019M8d/w3srSbZLmvfArvpyEm3U3+mIyreI6YeE2JsW2WYzrL4SOuye7x01/8V0l+YPcjwq7f/u1DqgNPOBlvqKv3DgkC4pxkmWxPNul4YR3XEp47U7b5wH8e5Zmlcbdu3cpXf/VX5zu+4zvy5je/OS984QsvLf+zP/uzedWrXpUXv/jFT9f5m3/zb+b1r3/9M5yLQ7ly5Upe9rKX5bHHHltcf+yxx/Lrf/2vf7/btdz1j3vV0XfTMkivCR2ZHSX/8/5p9swiQSTbcjvJ7Giox5rjWxsLAfLpUK7912mZLdrqNWUKxhMbTOfEutSfdau3ga+Z9olRdrLDOad0XH50YWKlT1COgCFZOuvgNQFt63Q+GDSZIPYay1OHKdng4xHsw8kFy/Ya2+H6GqzShtfASbLsk0wl26XNTACp8+Vvf/LJCKWJAvcWgzRthwBtAvVch62utT3X82nRlCh0TSf9WZ5zzflwQsy+ksO9wH69ztF7JsMGidQxWc4rx8rrDyZ55cXrd2X3mQHqc6by1qtrRN9Yvbxnp/FwXPRBJnWCe9NemPbsJLYHxgDamoksJ/GcF+7HKbkyweT5mOzae9hrajsnKcDyjHct13i3UT37UxJaJr6Y7Nn/dqz2rSzj+OsyTtA65rY71fF4PFeMr7aXac3cNn0z+54Iv012++m/ya6Dn7/Q+SmUoy60f8aJtZhcsY6MRbYdtr/N4TdHWv+2yT3t5PAov3T5qq/6qvz1v/7X86Y3vSn333//06cZDz74YD7yIz9yUfb8/Dy/6Tf9przgBS/It3/7t+cjPuIj8uIXvzjf8z3fk8/93M/Nx37sx46nKu9973vzb/7Nv3n6/Y//+I/nbW97Wx566KE8//nPT5K87nWvy5d8yZfk0z7t0/Lyl788f+7P/bn8xE/8RL7yK7/yV2ysHxZfQUzWKzl0qgQidP63e89N77YKgMlc00kThDIxoLi9NXapTqVBY0rKonp+zfIETpf13Xp0OgSpTphuDG1xLtzOSXZfp/lEDkGsx+f16DXKvVmCg7UA0nr8gHrFunq+1nSxTk4wfcy/Nu8++UgO540B0I+TtExQhm1XzrL/IHv1JRO5BrzWmMPkcM49pvMsf69jDTgn++e1nZwQOKwBZOqzlshxr1/J7nNWZnTZ1xrAnPaH/YbH1367XybfsDbXBuqX7Qu2PdkB94p9TbJ//PU8yWde3PtnF/e4Xw1MJxvwD/Al8xq2PY7Be5f7Zi15TZa+nGXWyreO95Lt3zqTOOE4nJit6eD71MP9cl48lyZe1ubQY/X6r42p5ME53nMNTCBNCTzHOJWZEo/2Zf/INrw/aefex/3P8VOvrplJRK7NeQ7twuNzP96L3V/8Pa4ncjivbXONAJ1Im35BSMfDebXPWmun/uHacJ1rQT15WvWm3OlfQfwb8sADH1ge/z3veV8efPDNt52Xtc+S/KW/9JfGz3489thj+ezP/uxcu7b8Na+3ve1tefazn53nPe95B3W+93u/N5/7uZ97cP1Lv/RL863f+q1Pv3/DG96Qb/zGb8xP/dRP5SUveUm+6Zu+6eBrkH85ctcnKb81ywCY7DdPN1iyDL5rzscAICjTehUHSIMxllljFuwcvNndB8XXDcjavtmq5HCcayBsAmAV68N2p35cb5P99/0/kR2jxKSvMp3GTE65AJunSwY0TvwifSdA4JMZfoNTwZeZ8kmvjt1JsAPPlKRUvFYOFAaJDJJmsav7xBDSVg3SLgO9yaHul43lsqSAZZLZXgmqPX/Uc/p9o2T/TUrXsnv23WOfQIj3aXVbA2cTqPBaeK48x9P+YWIzJU0mB3x/SlrJWjspZtlNDpMU62PfYVu7na9dIximcV7mu9bscM2fUn/GC5dx8ut2mMhMJ5fTCdtaQtL2KvYZLGP79d5fK0/b5LxN9Sj2A5PeBslTwrE29inOmDS6nS30Pfcp7Y9jn8bW+r3G/Wm/Q2Jr8pNre9K2xuRgIibap/WsTLGY8Wca11Rvksv2aOvfyIdCkvKKD1KS8n135Lx8sOR29vZLlkcffTSf/umfnvvvvz8f8zEfky/6oi/Kj/7ojy7K3Lp1K//tf/vf5pFHHslHfuRH5nM+53Pyf/wf/8eizI0bN/I1X/M1+eiP/ujcd999+cIv/ML8h//wH37J+kwsBjfPCf77GPgc/7k5+6gNy2wv7vtkoq/7/PE5ytFR1nFRHwv77f1tDnUxgGGg4dgJ+Bss18AL251YPwrLnKtMr7M/n0K0jXcn+ensjrkJOPl3hj865XO9rgPuOgX/q4ftgoCYevN9deA6sN0CETJIHCv7ZGJs0FfbaBsGOz5yP1f5KQC17Rs5DHZrNlA9bOtMCto/98wWZTbD+7bX9dmg7WTZH3U/yf6D9hNo6Nr6MTb+jsn0uEL73ObwF5o7npbx6QjvU59pr7BsdaotcS04V35sJqjT/d4ynksD7C3q9H3nKjncK8lyLpi8tJ+1X85eW7/eN/hlOeq/Jpzj7omTLG3O7bkM+z3Vddpg55t70bpNbU17eIv/tpNT/JnQoT7n+Ot7+ozq2tftk7a/BvgrbZsfzp72juPMqa75dDYY10R4kQBhGb5mferEvRJdn+yK9kdgXXvyvnebyd6fcu2qQ+3AcqLXtmOefG2yfyqAdU3aUN/W2wzvuz7UrbbkNmyDbcfJL5Oa5FDXoxzlmcqvuM285S1vyVd91Vfln/yTf5LHHnss73vf+/LqV786Tz755NNlvvEbvzF/6k/9qXzzN39z/uk//ad5+OGH83mf93l54oknni7z2te+Nm984xvzbd/2bfn+7//+vPe9781v+S2/JdvtZWHqUJwIJIcsINkrs0d1Nn70Z2LWomsGsE56pgSq/TLgTEmVHc70eBaDgQOgAYwDiB+/mNgvttM+nKBUGOip8xZ1mRgQ8Dix9ImVH9eZEoGJ7fP8MjBE99jHdrjHBHeyBQYrXp9AmfUxGLiK62X7zZo56BjgNfD5MTonPAyM59k9JtDAxiB2rv9dS88/99RakHdZ7h+2T70mkMF2t6o39W9QwmvVwaDcdsX5MvCocB1IinC9ePKwBiQnUGwwZ5DGBJSnfhO5YkDrfms77edJ1fXac52oq5Oc4D19goMV15B7ZYM6BYweA9eS88C+mVjRHzN5YbJdYdJpn9Tk5ERluW4mwbZ6fTLct62d5PCLRao7bau6nGU539y7TFTZTutH9XqdMYXg18lG/eJkZxNZMfXHsXS+N9n/AKL3XPWijXovMzmcpGOhv2Jd2p6Tr+kD/9Sp/vtejIn1meSa+DOxwISja0G7M1ZgOxNZQGndNbtg/9T1QyNZ+eD9mONR9vKr/rjXu971rnzMx3xM3vKWt+QVr3hFbt26lUceeSSvfe1r84f+0B9Ksjs1ee5zn5s/8Sf+RH7/7//9efzxx/Oc5zwnf/Wv/tX8rt/1u5Ik73jHO/K85z0v3/3d353P//zPv22/a497dfPxFIGgm++7kfzcJeV8pc4a6+dTCDMTZiDaLo+LT1XuJDvweJLlDzYSdFkvtxOVYxudg4qPrqfyBqYePz/vsJYE8dEsCts1OGFgZAChHpfNS/SeLN6UNDIp9Jwnyzlu4KJDnx6326iOWaqWcWDhPdve2roTnLCs+1qzZbKEybwOtnMnFLx2niUh4CSRyb0fX/NY+5qAa+r3sv1HIHy2UofieyfZf6ZlWkv6JPZBUEYbm9bEY1wDAmyTwNF6r63n2n0CT467Mj221LqTXlF5P/o0zUn/b7MOTNeSIdpTweFEapjAOte1ZG+P3Oe0VRM8m1y+H12W7bR8+6Cf8p7gY10Eqp5P68D9ZlJvk10itHzK/dAuJ1tL5j3k+bT9MZlLLv+BVNoNgf/aySn74ck89UjW1yAqw+R6SgRMeDime487FjIG1Gf6iYLKmh/u9ZvZ/3QA6675/ooxQMV7JSqzTfLG3OmPe/36D9LjXj9wR87LB0t+1RPaxx9/PEny0EMPJdl9Q8A73/nOvPrVr366zNWrV/PKV74yP/ADP5Ak+cEf/MGcnZ0tyjzyyCN5yUte8nQZy40bN/Ke97xn8ZcsN9D0uIs30zQhdF5mXCYAPTGgLF9nueZMpoBahzKBSTpE1iUQr058FGNiYs34TMGOOpoxYfmO1Scfle1wzwEz2bOWDZTUlSdVW5U7R5tOuCYQ0vERNJhpMojkYxwV60/2cjpp6T3aTsfBR4C2qF+Gk+Cm9QlWDAi5HmZ1J70uC1Lun32wDV6v7fuREa5Hx2yxfXk/GyyyfUrn0vabLO2nc8W957FQH97r6+dc/JU8IGPMfmhjG7RBW6q+BjT97+R4oz+Dqrbhz49MUkBksNa+Wpd6XQaagnJTkulEt9f73o+/1K7ug672+UyGqM9mKEMbsY9nUuQ1JaBne9OjSh1j2+F+pG+jdO88O8kDWfqf+n+TLckhyUQQzNNQ+wSWTw5tkL8jMz1aRZ90gjr049E8UJzYsk2Phfu1vtPi+ac/5pxQLwP7CZTz/eQTpnK0Ee6baR6qX8vUPrin+37CMLY/J5JXsowz056gr5mIQsZavnfy+KsOOo9yV8mvqr3cunUrr3vd6/JZn/VZeclLXpIkT39Vmn/s5bnPfe7T9975znfmypUr+aiP+qjVMpZHH300Dz744NN/07cVdAP2GLYbaHrso4GCDAzFyYqBKUGtAaj7YrCyQ1gLOGRWttk5GTMlydJhsD++7t8EoukMDdKqHxmiNdBBwHyaJTByUJxAQYUAuz/IxT4aqJzoGURPyV7b8NpxrH5MiICJj2kQaN4YyrN9giHOMfXtGhm48AceqRe/pnJ6vIIJXPVlvw2U13F/EgMr9kObYvkb2T/GZybO88D9ULvn4yF8hGHaf0y0aOstQ4DpAFswxTnn+nOPElhwzE9l99kq2gXrOSmnLfLEsu1e1zWOg3Ng4ExATek4+3pK2ipOWp30tDyv1+8ZkHlcLM+53qher5lICF53Xtkn99WNHO4X7sHa9NqJyin+0646Fq7HWtLX8XZPR/3THk5Ujo8BVdjv9MhNx8hY1PeMQScq13bo5zx3PiGwMIFqPyTPnCxyDTl/fjSVhAxtJnjtGM2+aG/clxMRQHDNMZpk495oe0+pHMdYYfziyS39PvtxEknScC1R9aNr9pnJco04B/bxfL1VfWMd2tNEFN+5cnzc606QX9Uk5au/+qvzL/7Fv8jf+Bt/4+Cev0Lt1q1bq1+r9kzKfMM3fEMef/zxp//e/va3L+4bCHVjG/Q5KDFA0FFdxjSxHhmjCcgxOXGiQ4aI4segymb1vZ35NC6CBTr4vqfjM1i0E23/Tu4YDHnMbiAwOTkyQwY2TU7Ocxjgp8fDOjYnS2vMcsvzBMTCOSFjRIBNh76mD+ei163L9D45DLAdu9nQ6eSL81FxoGa5Keh5bGat18DMJA68tJ0mCwbt7HdiL7l2BFp9TwBMu20ffPyHbU3gxqxs/z+R3aNeHWOyf/yUbfbXzJlkGNS1zvRo1ZQ8GNyYIY3Gy/3UBNDJjoUJH+enetjvdQy9f5rlj2PSBviZjsoE9s5VhjqdDXWyct37gUDatjkl99RpEu8VJxP0e9St72vnT2b3ZSJP5NBmSAyQiKt9GqR6z96APq3P9ZyEe4l6tC79t+eRiedEpFWaTJ/rWqCfT9hahr7IJydblZ0ILCe80f3pj3PN/nhyWnFi47nkvNGfcd2vZrlul8Us3nfc8ZzQh0w2ZDzT+46b1H/S7ShHWZNftQfuvuZrvibf9V3fle/7vu/Lx33cxz19/eGHH06yOy35j/6j/+jp6z/zMz/z9OnKww8/nJs3b+YXfuEXFqcpP/MzP7P6S5ZXr17N1av+LehDcdCZkg6eHEzMULJ87Ikbnd/s0Q1pp5SsO6bLgG11Y/1pTHTyJ1n+Wvka+8HXZmUZyOjECAbs3ChMfpLl89qTDg4UZnUIug3QGqBd3uJA7DUj4HICNq1BMtsL56hl+N7lz3I4r5PuZEy3ej8lfmy/epAhJBhpm2YUee8U9R3UmJBONjGtva9xz5xmd1L4brR7muV3/bN/68rkcdKJPoDzvwY+nYjY9icAwiR7WlOyoMnSbziJ6pclTGNwH056e9824nY8Roptwv5nYrBry9xP1Ye2y2vc206MmcB5/j0HTtpap316Pqf1od+cEj2zzmTBmTzYlyX7k2XuHSddXo8ns9x/XlM/ZucEjOOg7/Scde3uvSh/M8vTy5ad4hv9F8Ex+7bNs+9k9/je9Sz91lqyTJvhGFmHSVNQloSEY6B1pq8kaTetre9PRAKFyQLxA8d3Lbuv599ml6xWf/73aW+vnet+ZSIS2970etKrMsUMrq3JkztX1hDN3dbnnS1rWPj9llu3buWrv/qr8x3f8R1585vfnBe+8IWL+y984Qvz8MMP57HHHnv62s2bN/OWt7zl6QTkZS97WU5PTxdlfuqnfio/9EM/tJqkrEkDyJTB06GtJSM2mbIxN4YyBd/dhJxcs4plHOxcJrDT/368aQKXTkLoHJhMOCkgGGKQDd6b5aHzN7jqPDlx4jUDXMoENp0wTCDA7TJIVLct/tgPQfuaE51YKs4P+3bbPrXg646PbKrZpwkgsS8zaRxPmTbaUOsx8ZoAR3J4SuATSOpD4GRWlOtGG+Y12lnf9zGn0+wZVSaVZh/XWHSSAeyz1zw3HNN0ipHs58ZjSpb7daPXE2PrZKJ9G1yv2efEwvKex5gsP/hMMJ0s65Ns8BgM1DxO+9qOx2uXHJ7qrCXKLs/X9jvcC/1gfU+v+AOi/c9H1Sr0Pe3rJMuToFP9rw68bx9CcHsZy7xVGe6b2kV9LE+7Wbe2xHHQN1c6NsaMaQ18Osl1NrvP9TdYZ2Lademadc9zn/EkgDGAvrTt9nTIjxParpiEeB+1LNtu2TU/mBwSdH4E0gmPExnqQp91L+rTJryOrE+ffRkUbnuMQY6pFZ9ecZwsS+zT90c5yjORX/GTlK/6qq/KX//rfz1vetObcv/99z/9GZIHH3wwH/mRH5l77rknr33ta/PH//gfzyd+4ifmEz/xE/PH//gfz7333psv/uIvfrrsl3/5l+cP/sE/mGc/+9l56KGH8vrXvz6f8imfkt/4G3/jL1mnaUOa6TvPjiW6kiVDwCRnaq9OaGKWeK0OiD8e6Ud+fILQvnqfv15PNsJB3qcLbN8BzsHCfbftNebVzslOmYCBY2GfE7s81TdQpj5OCnt/AlZm5chCcr3aJ09uKJNu05qcZRewG3ypo5MCgr3aiEGlH1naXrR/JXum03PhABj1TTBBHQj+1tixtuVATDF44P5i3Qn4Xs/ShqfErOWd4FBXghk/vkUgZiBaPa5ktuHJZiYSgABhzadQR4qZcs/DtD5uIzn8cdFk+SgR97v143rRxznRmB43rfAxJLbd/5uhzMQOm5yoPvXh9u8mjNoe7cqP9BRAeh7NxlOm5IPvHVuo13QyymTBc0/hPNi2NlmOpe0SbHO96RP7rVEcr22D60I79GlOoDu/OINjcrygcG/SXp3c8TSKMWBN6j+rM23rDP+Z1HGOOrclL6vfeZZ7q3WZqHKO6EtYnu+32T/udz1LTDD5Z/tl2viUdBCDWL9+wylJTetdHRu3ag9c1w+NU5Rk9/mQD/RvnV9mqR+e8iuepHzLt3xLkuRzPudzFtf/0l/6S/myL/uyJMnXfd3X5Rd/8RfzB/7AH8gv/MIv5DM/8zPz9/7e38v999//dPlv+qZvykd8xEfkv/gv/ov84i/+Yl71qlflW7/1W7PZTKF3XU7wfw2gN3BP7Kad+Zoj5SNGdNTst87TYMrBygFoCrLn+s97a0GVQcqA1Y7KY2WbdNonqmOHyK+oJAvGNSDr13Zab2Ie2ZYBHxmvtUCdLNei+nNOtrjm4EQG0ywZ58FJqwOr12AC1WTdqJeTznPVYz/VrWKAyADX+pwbywQKHFQ5js6j73m8TBptI26zY+Le9ZxUtwI8kwIGXdMjEvdm98jJk1n+qCPn0GDPybOTpoIZnipSuL9Os7QrJwQGj3y0s3oSeBHonWdpJ7aXyxIl70cCkclnGOhWCE5th5ybm2qT7UynFxXu074nGKf/oC+aEs7J73v+rmWfVHsunGQF15nYM3lM5rmc9hPHMyX99Cm2/bWkrjpcu/h7UvUZH2nfjHOWxgXauZNzx8/pUaNknoepT9aZbCi4N+0JEzrcX2yzQjxh0sg+ruSNTzQ5vu7tXn8i++SKa8C5tG9h0mvCwY95ef91TCfZrd190HOKt22D68jYe4TiR3mm8qv+OykfLOl3Xf+2rDvtZAk6GLw22QXGiZXlRvZ7Onf25UfErAMdt1k0tuvXbsttroEOgg0HUzMfk1OfGKw1HS8bD9uegHEDmcdpwMNy1KflzrL8bRYChonVvGxuJx0MzMxSTSwcATaFLF1yyEh67k9V1/bua9VrzQZaj4FlAhG2sbVy1oGPK7k9r3GF6+Y91vpTPd7jPJkxPcn+pMRifa+j/M0cgr5gLBNryCTlsqRhKuuEdZqzqV8DxzWb4BiSw2TJdXi9Zaf9PQHuNRuunhxHQdzkz6Zklvp0bFMS431CP0VdKueqE5TlZ1um0ymWZR88AWXZCYCviZPzvr+GtqszE9c11vxE1/qZlOsXfz554ZpeZmPJ4Z5lopYc+gyWvazfKc5PCUtlinP2T9SX9dxXstzDrLsWN9vXmm9di8eTzrV3+/SgzkR4GEtw/VqeyTtPizy3a7HSJEkf1/2fc6f/TspL88ADz3QH/kr1vc2DD/7zO3JePljygf2lmg+ClD2yI6w4kKw9hjWBg2S5WblJHRDN4PekgGDGQcM/sFQxq7bmwBzQ6UTNzk3Mi7enAwkdGwGEAQrrTQxN6/kHM6d5JZtFlo8gaG2dW3d6JMunHEHZMlxNIs3iTfPpgEcGq3pyLqmP52jqrzZ9lsMgeDJcSw6DoceXHNrWZfXXglL1upoly0adKWyT+5D98dEcBmQGyon15PVzteE92uSj4jW7cvG/83Uz835jfY6pZZjcGcB2vtYeF5nAs+eBwJ+nTP3PfqwfdZkA3sSu8jp1oa5lfL0+J/hP4MYk36C315nkO3HiWk/6OxEyWPMcBn07aeEeqv59fMiJ/kRkTetAhnstMfQpD6Xv+1kuA+mNytH/b/G/j+08kb1/pl3Zp9G+2deUcHFcXQP6RJ9qbTKv57muO1EnsOYacn5Zd438oJ1M+8CnjJybyf9PhAz7mBIU9s3Yz3VhfAjKcs+3fyd8frIgWe6np1baru6Mj8nhmhND3flyfNzrTpC7PkkhaPUmrZB1mxyhGSqbEX/R3sxcr9Mp0YG3rPtJluCR9+yEeK+B248z1aH5EROCaY7vRPWTOWB6rBwPX5MVuqyNKThMic3acTpPrLhWnKsG24mdozRAV58mr+3fZc3ublWOdtbEiuPs+AliJobUCannlaBuAgcEBlzfiYlkG1MCuSaT3u2bIJ1BnWvP9faY1pKjaawV6t++DQjuu/j/nov/V5I8kt036fxcds+Bt959F+08qfHdDjDbPipmnqcTkmQdCEykSfvPcN8gvv/5mZXa2vQ41eS/Jib5bLg+AcMpIas+wXUnNcnsN+jn1xJvzpNBbNu3ri1jn2NQTWLrfKjLJKk2ZX+2tsdoRxUTGJwD78Pqedlnhzge+/0z3aNea7Fy2pc+IbZwfZ3seGzW1bJGjLFN79GJRCDpZJJq0qdCm/Eetr9oe4wf02m5pfUYE0wG2HdM+8ltc077OCPnzPihdj+dIk+x/ChHuUzu+iRlCo7dzHR23VwO4ry+luRMSc107EoHRsd2puvUh3qsgXyykw22dHQcV4/qKzwdIONax0OAYXDj4+NJr6y871r0j+3T4fG/5699BvfPcwh02Cf1KIDwLxNPQcpsOPVoAKKT5+nJuepRlzVQSrtlPwRzDGQGTG2DgXBKHs0yGqSZAfR9ywSMWM8AapN5vl2PoOBM/52gGRgzMJvN3KDOafb74f4kr0zyiRfvbyb50STfn+V+3aAex9X2aQPtw6C246s9Wt9k6Qc4pgJez50Bc9u6kuWJEdedNmydJtLCOrJvJpTVlSCdunmNfEJAWzGQIrjkuN2+/VbQ71pSPwE4+hDbUsdHEMc93Pon2Z8sBfdrI9SderTfyRdwPibbYnLEfqd9431WHa6gPRIk1K/9Ppn9t6h5XqcY6gSr5U5x/yyHtkYCo226PwN9Jp8mhC7ThW21HZZnTHeCYD9TO6leTp63WfqXNX2Sw3ll/xOZQVsjrpgwA+fMe65rQh8RtOE4bMx158vxJOVOkLs+qXUAM7O20fsJlE2MIx+jSA4TGAPfXm9ds6pmOupMruK6AwzH4GTGY7PTCd7TsTaQ1ZlM42hdBlT2OT2ClCzBwTW9X2Og3CedaHIYeN132zTLREDgeamYFeb80EacWDoI80SGZcygGWQyEdmoDtnFNTbSAYrj6n+CDY6R60E7on3QZt32VV3n/HOsW/w5gF3Pcry0GSeF/U8gzUDqcRp0tr+O7ZXZnaJcT/IpH7173OUFSf6z7JMS2j914VzRFnx6NOlgIWjh3u/eJIib9oXlyczJt/eHxf6v+tdegvERsHAuCIxafkqseOrtAEUf0D8/ruUkkmM9zdIOW2cCeNO8J/sPMNPvVejbCdpoCwavvWY/xPWb9tq072nznb+rWe47zqvjhdvpXE0+6wz/ac/JMkFh21Nc4HsSbAS/TtQc29zuRGTVNrZDXSYEFI55k+UcrsUMzsOUBFDPayh3qteb7B+ZrUz72utiMpHEI7EMbWU6MSyBx+ve65w3z4cTus79tG+OcpQ1ueuTlMrNi/9kEsiOcOMmSyBrlsBggUHNToqB0PcmkFMH2scu+KHZ9k8HucZ00zHaObY/nmawLsuusYUMYB2LHbqTwYl54hjYB8VJCB0w9bZ4zp0Y2imzLYIMM3P8GmmeiPB1htd16J5Dg1oHXb/nnGcoO4Eu158Cf/U9UZ2JqXfgdOAxqKW+U7Cyzsn8WRkmvH4EwmJ2lboShJFwOM3uFOXhJI8n+b/e+vjkXbfyOU8k/z7Jf5w9o8x9yDWhHawB/s5/vzXJ+rY+gYATvBIYBHUee4XjbB3O+aQnk3JeY5tMHKn/ZA+0I9rgBJIvAzEGRSZGCFLNEDOpou9km6xrXZPDNU8OY4j7oXB9DQ5rg2y31yfAb51MLkTXW9++sO0xPrIv+ncSW+2LZIIZ8wl8m5Bg/9a5c0vCjnu6Zad4bj84jZm+vsL9FtQxCUYb7PtTvPa6TXqxvhMQj4U6MTl0YtS+SXa1n8m2W8/YxfPc8o491LP6tO/2WXtn/aMc5XZy1ycpZlArdOJk1xhouIHJSLRO/zMwmClxcpHhveuRjWT/1M9sto+8KdeyDDpsl0kWxckGkzYnGO1zkz37fZb9V7a6PIOFgR4Bb69fy6ED9ThvZhlQPM5kH0wJllvWwYfg0NfI5Hkcnnv3Nzlns8FmWCkMdA6QbcvlLwPLTBYmUEogeYb3tTfaqdlFM6L9v0E97g/uLQa2Sm2K+9XSNp0I0MamBJfX2+5zkiR/bvfm1/y/c3/2p5tkKfktgGa3rSPb71x4/QzUemrT/TedEPiU1TbkfToBM/qQvje7bHDZPc4ExCdIbYtzs8k+2fMjVNPaty3aLE98LWvzxP9Mpuznff1GDn+ZnnqZ/HCSPsUgAvsJcNvnOzE3ucX/9h8TCURyzay316pzSeKO5Tm3tvEbKmsdJoLIccP9sHz9Du3V65Csj4N7jvNZktA2wXVo/ckXTUkYy5k8SZZzMZ0Wn+ua/SBJKs4xYxATIvqg6XE6J3W+Po2FpMCNi/+N4VOCf+fK+z5If0ehfGjYyi9D/NgJna8B0pTQTEer3PzBeyYO08TSedbZFYRcxhwafLSOAzkZPCc9Bk8OLGTDgusTmz4BvEqBx2mW4HBKjtgGpX0ZhJDppJxk/qE9B3QCJjNfnAMyVNbTgITBmP+ZADlBnezLIImsJtt18jQFcr5eY6xqI9SP68pkgnpynE7ICS45b2bPnMwwKXEQppyozMT6TfY0zX3Xmex623squ8e7fjJJfs9vTN53T/L5/69sLq4XuFSfK9knd1wfj2dapyey/w0QAvRkXqPeP8F/jpPzPrHbU7JinSi03erBsXHN+5qPsEx61S6b4PjkYC1Jpx0xIdpk6WvYz2XC5MrrRF/ataYPNVA3QeHX1fU0ex/Jcjw1rA05dlXfa6jn2EUdqcM0TjPsk19iYsxTJss2y3Ve64NjYQI8tekEmePzyRn9/onK8/2aD/JY3CeJGPpEkhXcm46NJrw2+ovutW2uo4k0r333EskG+v+NrvHEkPeTeW9Ma9T2nMS1jctIh6Mc5ZnIXf/B+bJfdG52mnTEBn1OAlre7EXQh1kQs8tk+diuWVTWqTDQGcxNyU51oZ7tk0DDDpFMuccQ3DNIb58GJRwH63mu6eTpYAtCzrN7rr5lu7bTSUhZdyYvBtkMWmZaM7w/V9n2zSC5FgBblrY2jZ3lOR7OGYGi7ZLAsu8L5qqDxWOeEjTeY398fxnrzjUzK9r7lwUyP2Jg5r9gdZMd8Pe3F9Fm+bXVTKyb/L8tu8+lfPe3Jte/dfcI2ENJvie7b/9qP5zzNZBa3TdZ7gfPHdsg6N/qdesSbPQ/EyVK+zXRQHBDYqBC8LUmBl9+7NF+h22f6P9UnyDHdmPf3na5v6xf++o+nHwYhTGDpALnufb0pPpkwtP3XVuv1fQ7PS3P9ebvlFy2N6tn9Vkj1SgT2Hfb91+8vqnrfc027ZOrC2PXZFsmQBg3e422s8nyd4vaBmPJWhJuXdzfSZb7xOTPVbXRv5Psv5Skc915q/9Ilsl3+yPQZ4Lba9M+pS1NJKnHW/E+pR9n7KRNm4ya4rnbXLOrO1e2+cB/cP521MqHn9z1SYoTh2QJUBnMLgvEZAQMML1B18A7xQy6gaUdZgGI2Zc6DDoRBjT3QZ0mpxOU4VjprPibB1MSxPnxYwTUg066dQwwWq4A9KkczmkZWetHRqpymkPQwYDvNTxXmV5nObKYBOH/f/b+P1q3La3rA7+1N/vcwzk5da+3uF13FClhVKUsxEIETFAiA3+AGRmiGWpCD0ViB5M2/khLorHbmIzYPbphRCMmtrYROrZ2GAkmaWnTdtIirc1IDUylgEAXIDRagRRUbnHD5dx7OIdzzs7et/9Y77fWZ33eZ+1bGurWrVN7jnHOft+15o9nzvnM5/l+nznXeukY6Ry8w0PZOq529n1t8h4BbHmXpYPjW7yqI1OkrZ+ndUGHRr3yuFAmArLT7K8Pj11JA4/tPMz6w3KW/XYWAFAZ3pwFNO7tJrX95r9z+PswyQezjNfnJ3lrkheTfGeSD6OtZAtKSaK4C1jgYVLRz81TcpVs7cMUiew6OVdeEmbqHCOzrqvjTHB1mRU0U/8N1tyW7ZnXKsebYIjEZAKuJi7TfUawXb+vJ9tf67b9aRsmzmyfO2YPs9VfJts9vtXJvqN/C7hZjgEG2jC3R50xeH2tRH3pbvhJtm+v86vxTQY7bgwETMA2+OzdtN6rPa+Otn9t+yzH686RfK9F/zgqbaJ9ZeuhrA4UdB47FvQtto0n2e6kte8TmS0Br29hcNP99rqxzOxPn+2xb56wCOuavu+RZK8Pkm0Slut0nV4rPfEkhQA/2YKFE303eSGITrZGmMZwSgRzBCcG5mwzuOd8lZUOjskgocZ9Amh7UY/J0RPQ1JByvGiU+g71Jsvorf3WTeJwkm2bBdz3s447ZZyIZZ0QiYOjuTWedB5Njm5H8vCenUI/t86C170dgomwXOq6nRf/Um4C0T2n1bITgLQenl5xz9GwKYp/kkUnbmT7eyJTVI1yEtjzaEvXQoG5SdzjJJ+T5NckeV+SH8hCJkpUJlBH/bibLcD5ySQfyhbEd+z4di8CIOoJSVlwnZHaj9VZk8CafBOQTjsVE8kkgSEApU3yj1Umx/I62GJSzna4rrvuDXJJgtiGATD7TX2hbnknkrLZvlImtnlV1NdrimO1Nx9Tm03cCeca5roy0CPIpzyeF8tNYO57tNMXWSP/d7IcT6Tusw+cx9o/At+9XRPKbB/xFO7bhjKYxcDbebZrxAEbEmgG4aZAAH1Isl1PxgfsB+shGWbdE6E2OeA4TtiF80W9n3xQ81C+ysF81gmTrhOVdV7jB97zmnhjp4tc76R84tMnj778AyYCh2mruIaRTu6qSFrLn+k7jVANXp1LU79fogwXNb+f4zsd7A1co1G1QSY4qIz9NznxJgMbgsLKzYgrwaSNPKO8jnz3WiOQVkQSkspSMEXn7CMbnLvLbJ3RKf62frfZPCfZ/mp0sp1365Kj1r1nmaLPk9Pm/HpMqY+dSzsnOyXqhOXqv8rN/JaNIIN6RGJhQHCedXeD0cbWX/ndL68fA1fKV70/TfKbk3zRb01+R9Z5ISD2rl+TwSn1p6Cs81HSNQEvykywxnZoA5oqW9df/z1S+fal0WUCjGQ71y3Ht4eZDBLckWg2WQcmhzERcK6F6rMDB1x/bbvlHum7AxPsr+3nFIThuqbO076SOFIHODcmlhw/B19sPxwQOce/h7hm3a99JakwyfE4TQS2900gOQ/V8ZMcj8Gl8lMXTlRH+zIRJ8rRRFtCO80+7gVXWCd1w3rg45/cxaROkPiyPNfthAl4nXrGIIZ3z7guiB/YHv1v63YfeZ35HQxi29UT6v9EWv2dxOZhtmsg2c5zx8Qk+okHntfp5y098brCRcqFScBJ5zRFpApY9xxVsm6NJ9sHR+0Q9+R7rQgDHRbTtMtTw+DPNIoGsmy/QO0yK0iyU6Fho1w0xI5Y1hAzCsjxdiS6MjgiWuf6MOuby+gMmgxsOs81rG6LbfR65bUB79gaADTRWVwVeXO7nE8D58n5cpxPcjxWjBTauVInruqD+2yy4kib235wuPdI16ddvmSrlybdnWcTqdb33Uny15adFM4dx5WgmWua/ezf21meRbmF8n2bl8EDk4EPQV91gmTUqTI9he/s5ySzQZ+JQuVqfuuCgxjsW4MjtFfJdg1NNsI7hQ6ccK6fUjmD7f6d7Knbtt1rnvaP4Hsqk2wBJdtl/5KtTeGYXaW/LW9g7b4RWLPuKeJtklQ/ZEDNsia4nROO0a0sOn83q82l3aZuEayTHHsXgf8qM8e79bJs66S9YfnXAsGV2+PheXNQqH6Q+sQ13PZOVKbJclqv2z8GmSxH77PvJl3U3ZMcj5ODIpXFa5qBromI7gU3Wx8J9B6x3COa1+k6OX1KHPdKtuDJhoCRI+bl5xqlLkI6FhoeG2PW44XpSA8d/QSM6RSa9wz5CGYJgOh8en2SwzL180SgJkM8GcHusDARhPCewTjrmr4XZPoz58xlCOjpIPbGxjtEd7IC7yaOU7+TTEV1OMrJZGI3jYed2oXyt57e7/xRz9gWj1lUVtbVsXEEmX00SHS+ZDtOBsgmo5S5Yzcd32Dfz5L8zSTvf7QAqh4/ZISyYLj1kWxRf1r3wywArff8cgruNDoay10ZA5/2kXNIHWaiDvXvBKQmkHWuMlPUs/19kO08OmCTHOu6r+0BGPbNoJzjvheEcVv8axDMHSkCwiYSF+6MTmS99RCEOeptghHkt/3bC8IY0FF+j3WvOaDB40Imv9VPE7OrgmOV9UEWotIdxJL0s+w/izMRSR9LYjsGxiYvrcu7Ma2vemSbykBPk+2RdYn3W6d3zhnIY9u8x2ueG+5asn+9zsCgAzKXut5rlY82jd8v9N3zVd0jcbZdTLYvbqB+e15ZH0k663pjp/8xr7+k1/TN6ZNDV/4nJALSphqSLq5GWAgeHV3iAuMZ7gkI08n4Ho0V65+iSIys0NlSjQk+DGaZx6B5imbZeUXfGcUjiZmObRDonWYFhr1u42nnSRkMsAgGagAZiTNgYx7Oi52Vx6/j1jl7Jsk7svx+hh1I6zFQucoxG2xaBgIRgg7OF4HVabavpu7OxdS/zsceqPEYux+95jll+eoJ5fM68xwk23mcSFrzn2SN1j7M+ta386wE5QHycQ2d6LrJ4lnWh5fv5RgcVceo6/0+BUK4ds9RHwlKsh13A34TO4KX9scg4DTHY8i+9tgYAwcGwU5X2bamidgS7NV28kgMx8x6awJDsO91WODE9XGJ7wT1rPdSnyci1nu029RX5jcgtO1nWyU0TfQtU4Co7d5E3tbNB7NNukikPXZT5Pxh1nXybNY3e9UHTuvzIlt7ciPHusx1eIG/E1CeylV+kgrbVJN3z29lPdc1AnMGfRwMJDmz3e6YdQfWcvUvgyX0q11/k0+0vZ2CE22TyfNOneXLZ1pX+0osQlvHObrM8RqwXK1vz65cp+s0pU+ZnZTJ4Zzq8+2sD89O2790xjT+jnQwCsFEMO3oaJPlpFO3U9mL/CXbSDgjKDYkwTU6UUageN1AgRGlaUzYR28De3xqmAm0KBfB4bSb5R0ByztFDflQo8e2evDokO9hkpeygNar4h1sx0DDjoBz6N2MKK/75HHleEz9YT2OGDJN5IF6UJDkI1SeC0ZGg3osU+VxPy23CSD/1gG+slO/SR4dJkFm83CnzLJwHTJgYeDMz14bJ9nK0T7agZuoG2gYfFvHuYa4W3iB6wQhBlPt8/RmJfd7mutkXwd5rXJ2p4rgz3a1qfISgHctmxBNAHbapZmCPbQr3T1gexMwm+bDtuBB5ki09dE2rMShb19rXyY7YJ/FfB2T6sJNXU/WN+mVqHO9sC/0d9Xx6txj5EmWYM9Z1hdasP9dG/wB4r3dtGmduf/nWWw3CUbHg+WoI5XDc3eZrX5Qh06ynYc3Zx27HPr6INtn2Uzg2dfaWtt4r2227WBe+9u6uMPIOl5L55OtPyR5Yd6rCDnLXuU731jpeifljZBe7xl43ZOP8XjRN/2qJP90kndnjcQmW0fhaN40eAZrUxS4+ejg9iJG3qWoPDU4E1g8Rz7220SCf6ejCux3y9YgkfSwvElXUK4OiVEjR7Ec0d+rk/Wy/PSZRtXO21vuF9k6nGTt48Msb3y6m60+7M1xo9TUk87DdGzBOmrgfKFydmwTkSEI4NiyDHXQ64Njab3imWj3iXJwNyg7+abEyH6TdZr61L54nCwbiWHl4a9iW5d7Dp7O3GNGwMcghwMJLn+ZLVGu/nkni8Sm16YjR63TRPNc9woiqSckkKyrddD+cJ0k23FnG44at66oHAkSAzJRHVPQaRpnrj0SDOqLZWFiH7nTY6IzlWke+wrbdB8l3QvuNHHHy+0+pTZoY6c+kpxUFtebbHdluktLYmRSRpvEo5YeuyD/jazjRVn5K+WOwBvKUYe8G2mdZ7L/8rogMeGbxugb2b9kIScNat1BvcUU7IttmYOA/kFktsUxYP/plzp2LXuW4zlosp44iMQ17zXQPrVt29vr3ZPr9A+anniSQmfpCAud4o0sxqUG6kJ1sC5GUqO8EziaIvhRPjpmRlomo0pjwOiJ62D9jBgxKmNHa+PD/hK80/C5b5MRdcSN9RqQnOUYhNAhth91YP5M+ZP96NlEEnlMKbg/RUxJvGi498A4wcsUeWrqGBicTY6Gjig5ngtHriZnPZFCvjCh5ZpIVk3AXA+jkk10ugZoJlKdW4MqlicAMMCd5Oq1jsNZ1mgro6EGFQ5U8Dz+BHacCPBNRD8WQ0yyZbLKAAAjqNMaNbhy9LZ9Yzm2cYrvBlXu4zSXBpMG9LbRnj+uf5I3rifbjOR4rTd5rbOPjjKbnNrWMoBjIL1HbhgIKqDz7hrHrPL1WSmC/crfts9yTALYv96/yPq8Cce7438z6w4ICTXtUtfD5Ldo0/tDq23vsfJeZn0WbCK7lI2//cTxchDuAvmpM7Tv9vn0k9N8thznL1lOZNxL8vuT/Ou/LfljGIP+m2xS8zhoRftH+dp+kI/3kjmo1b6wzxNBbRm3dZF1biyT19s0Znt9v07XaUpP/HGvOmxHWOzYvjPLr0y/nNXQsfyUaLgIIL1bQUNo0GjwwOSjSP27Z1AIdpqnvxlioF6ZCSTrcPj7KpNBIaBkPXXaT2UbmW6e1jdFGVmvt4+dj/00MImuGwxWTkaFDSxNCii355Y6wKgk206Oo9QmUybN3AH0uLD/1FM6HJNWymEAf4YyU91s0wR973hCsoIVjmX71jY5Lp53A1fvhrleJpLyPbCYbB0v63R9LcPffOlzLwSEPBLD1webyE5z0LGYdgdJhghgOX8GXgyQMJJ9mfV3ZayXrZPPR7T99pE2z33nr2+3HtueaZfOwR9Hf014+5e65HHyutwj8JwTrrFeK2Hjsy6tt2UYLLB+nmdrgz0flGdKkz72+mTz3DfaE9u4ZEsGJv036CUR4zNwlWGK/JMk7bUz9dm6wxdXMEDBXd3OEe0I55b5qK+2reyzbWP7xXl13z/nM5L85uTTP5Tceu96hJT1Vb7WN+2w9N5VAQ32jXiBfaUNpawcg5af7CrnjscUudaIP4wPqPOfHDsr18e93gjpid9JuSpKya3gx0k+ktUw2jhMoNqRXt53lJB/LV/zMXpHOXyki3+nNlsvgRqvtbyjXgSLdvBNdgDMT2JUsmIZDEAsr6OfPLJBMGFgFdzjMSFHgdyuCZ+dW6/ZoZKEkWR5vPvZkX47Ae+uTPKRtFxl5H1vIsXWBTuZjnHnayIOBCcGnNV3O1teZ7T+qugagYrBS8tbJx3dtgOnXO1rddhkmNfuZzsunkeuYeopZTA4Zh9bB/vjNUqAnqwvSCAJb5u2Z22feujx7zWuOQcGTEjbntcuSTHJS9fKs1mJTPXagJN9owwm3JR9Au/WEc531wPnjv2YADVJyYk+V5bmm+q8yvbQdjU//c4ULKGPuKH8TBdZd0y4E8P7Bf9vO/y7SPLTh/vPJnkaeTyuk3708zn+Fex2LbFPttMmWfTJJPXUMdoKB7FMNBnM5E5W10GP09mvMPElHGdJvvl/SF75quQvv3cJfjK5zraVHJPPZH3RyZRKkB18sS2vXLQ9HXvbn2lH2Dt8lZPz5l3+lrP/feKB53X6eUufEjspe4vX0VNeS45B43lWh2pCwDImFHR+BBw2rgRbU6SV6Rz596LqBpBnWR+67HfeZ7TXhuwkx0eAuPXPozG8Nx0rcoSbOzc0mhN4vUR+GsEJPLcNk0zvJkV5m64iAnVqjuw7sU6CVOrQBEYrG4nkTZSt4XfbroMOinWy7Sm6xXHYc45sl7rH65WJsjmSyj7aeTnabNC7pwPcRSBgOs1KMOncuZ64hiuD13yv0+nTWTO6zjraLmW2U3dAxH1rAIBtMErpuXPU2qS139kOwd00L0E+1mX5p/sTIe44TD9eyTwGO9bt9oPf3T6/c91zrRrERtc797ShJhV7pIgyVk5+944MU6P//czE6PZjyHQrW+JHm2Gdrv3vuuhvHBGMvpxt8Kjyciw5LxzbPcLHt/RV/qY93ZsCEx03EmGSdK4F2p+JbHF3u+2d6pp97mWWZxafS/JDSf43WddricpUH68nxzvQE0nP8DnZ7oxcDnmmQFXbd1DJ9reptsIBAQZP2g/euyoY9cZLRCmvV3q9f+H+jZ+eeJKSbA2IDScNtUGagSsXcbedCUAbBexnRhVqYBxNjNowoHa7BoMt3zr5MGb70HZrwNseHSHBnPucbM/+WpYm9qn57dQ55oxiGmxPjmnaxk62fbHRTFZwYDI6zbEj4J1nk6ZT1UXgRVJoY+/jAa2LfytHUKbnzalXfrMU++RImY8KsR2SJ8thgMzxKWHs/LFfjGIyKmeyxPYoH49L8RhV81fPp2dn6DzPM/fL4JLRbpPHlrWOmZhY7xxNbupbfwrEuOMw2Quu2eRYR2nXfKxoAvxcp52frkkHPKZdKO6Y2J66fYI5tlOAdC/HAQuSBvaPLzNhf5ps09qW9dDAayLU9AvTeFun6U8qC2061wPvUX9pn9kHHx+1/ea6px7Rdhhw74H2kyzPVDzM+oKQyyw6+2xWH8e166OBwT2OUWW/gesG6tUfE9kM3z2PDqw5eDjtpFiXPT70WZy3Cbxz/l/M8oavBhNezvoiAa6hzpt3iXmvyfNUnabOl1jWPhq70HcTKzhY1D4aI3heuOYnYkoZ94IX1+k6XZWeeJLShUKjlMyAkA76RPlpZB1ZpKExsJiiB1NkdJKlhoqEaIpSEUBNbdDwPMzW+U4RVhsdAzMCUm/vEvRzS59OvnU56k8wQUPMfAXGlLdjPRG/ghQa46j8RAqn/p1kBRUEXayDhMgEaIo+XSKPwVnbKAj4wiwA4r/MceIc+pkiykvQaEBu/bkqgs58yVZHJmC8l0j0uU7ZD4LNZDuHvU6d6zNRBukmRSYVzXszC5B6Rf0hIGz+6goJjNejCfqDzDuMHQMCpLZDW8J6vfb6zxFy6mfbiT573ghq2ta0Ziby74gqdTDKQz3k7rKJH9fatFtyqe+TXWQZk50pALHXPgGlya8j1Dd2yrJ921naGgPVysXnfZpaf+89PPzrb5U8k5UYUrbbh+/9ZfnW1RfKPDiUO81KYtr/zmvJB4MnHZM7aNevcG5eBrA4/ya+tjFMk53nGq2e0Z94vU3j3kS9m4gK/dZdyeMAT9tvHX1mxUGX9os644Ad66dNtC+ibTAOadtcB+fK5/E/wX3LzLl1edveN2b6H5O86XVu83onxemJJyl0il10XYg2gEyXytc6eJ/R+TqrU5UnyJ6i0sE9R20cdabRpvE7x72pDzQkdqgEIRMomAwOx4KRGY91MhtxGq0mg6j7WR0oieVp1jP4JA8nykO5JhLSvu4BPctTx3KW7fyYYLTNSa4on6N9dTA8jlTdenuS35PkTbeSFx4kP5o56lh9aNpzBhM5oVPeAwEkq+63dYVOmeXscJPjsaTum9AyKtx8JTSMxAd5+tfA6CzHu6IPJE9/1JEAun89fxPw5Fi0DbbZl1s0GZQ5Utr6CLTy9/HZkWvPF/vg8em9yjytreTYprJPE8GwnZ0CPNYLkigTDtfZ77zP/tBOui/9nSQmBjGmHQ3qk8E89dP+x/K1b9w9JfBsHezfRdZnp5Kt7puItQ0eCbvISmqez0J4Pny4fzPJP5xljbyQ43l+JuuD+Mm6W+j1SDLO1H6aaDB1nCe7ZZJKu2NbeKHPnDfrF1Pb4Pqz7rL+iaCSzDAxz1V9m8ha1+rNzHITU/iInvO1bRNhtulyXAdTcMBr7Tpdp48lPfEkxQaNycdcugC5yB31IOCnIXHkkhE1L0gasUmutu8t6sric9s0WDQQkzEhGTGAcqSl+dlGVKafGaV/mGMDZrB/ovy91+uN7BGwEPCy7y07Oa3e4xb6ROhYztFZ7xYw/0TIJjDC+x2vE/zt2JsQ11HcTfK+JLcfLODAUar20WDXRIygzuvCEb/ma13UheoZARKBM/vKtgjuPAc8kma9T44DAY5SNg/LGQhwbjxm/dwocXeweL6/icEJj6P1zACf+T3WJsh7YINgwOu1RN72rX0kCKR+eFfjMisoNhAzWWffo/FwYnDBBI0yJlsddlse8yaTbQPDiZRx/TmQcivbddM2SDAYFLFM7MseUab+Tn6h10xMac8rL0k17eN9yFc/1/l9kFXP33y4/zDLsaVbWX4/7N1JfiDJj6GeZ7IlYfcOdfT3PXrv5Wx/1LHk/yLb3X2mqwivbavn1zZjqnfPXzif2+hnr31/p5430XfTFjWfgyoMjNF2JsdrsjZrj1jRt9tnu2+0L6yDn2kzWmeT121lrMxX2YfrdJ2YnniSMhkiOmqTjSZHSKPvBpM2UFM0bYp+tOxTqGPPyPCIURe6FzsNOI3I5XC/9bovyRqRNpBhcl/alh+ir0EkUSB4M2A9R/7JeU2J0V5HokxM2h+Op4/18biTHdGUJqN+VbSIoMtgn32oUX+Q5P+Cvp5lG7Fk4ngn6+4MCQQd3FQHHSzHk/N4pnvJ8RoykDCJYl6mvUjplFyWMlUGR/J5fSJUnZu9gAKBp+0BAScjlsH15m1dLUcCFVwz2epzBo4QT8Ao2YK1icS3L5Sbye1zPEzeXPYS/ywf7SNJbq+RENGGsW5+tk2cgiuUfS+QYDkmgmmSRMLRzwSH3omrHJOvcV2eM9tHzl12rlUWvkq51yrL7Sy7ti9kISDN+8zh/q0sR7duZj2e9GyWnRaSu4kcNDHYQRtmsu9xn3aoTXK55ibf6LFIjgM2tvU8Phvl4dqd9MhkxnhhCkTQfrgPxAeeX4P/5jXxqVzGGv7MoBKT2zBZsU+Y9HsKEr7x0vVxrzdCeuJJinc7CFgZOZ+cLs99emEaBBDU9wxwsjWAdLrnWQw08xHAT4bP0cIpQurjTQYDNg40cARnHA8bXxpJ7yZQvpZlRIXguO0TnJio0TGRqE1GjobXkaPKa4Ddcj1idZLjsfW4Tk6QusRdh44r7wf3eH9yltUnPpx6mu3bepoqH9/8xHpZp0Gn65kia3TwE2CvXHtRUeqAHTOdeGXbk50y2Dk2WUdIUEkEPAcGjXvRSYJIrlfLQzIefW856rhBNEENr03zX7m4ngjSHbXnNRMTBnKmHYFk/a0VtuPIMPvj3ThHXtnung0I6iR5M7jfA8mOJifHa3IKQtEe8NXZ1M8p2MJ0lnUMrKt7UetJz3qdfXBEve3bV1GXq9sNkj06fP/pLGTl6ayv5X9/Vr925/D5uUPelyT3+SEfd+HaZ5KiiWR33U/628S+TicYpp043qcN2bOD9AEml3s6ztT1RBvgOow/2Jbbsb21vlwVqKFMtpVTQIJBrikQdZKVHF7qvgMKp8P1q4J31+k6OT3xJKUL7kKfbeyDewQrl5l/nK91Ezx3Qd7O1kA32bjwXfbJ7BDbTttve1MEkU6TgJ7GaTL6E6hue4w4T8B7Mjo2ni3vsZicaMswQmgncNVuRv+aFDj6xPuXupZs+2eD60goI2VThK7JYJDlHAF0f9vW5BQdFaZ8jmLRAbW+vfEymNpzyEwkMFeBOAcC+nmK4DdR3zgeJlNTdNC6xh9KnY7fdHwIaB3M4FxRHoNggmu3R2B/qXrc/6Ye5zGh2VuPXvsmD5WFb+QroPZxjhKktnkzyxGfts8gUNuk7UjmtUjwbhvFtUiwy/Fk3Qa9bp/PmDia7HHn+p6CCL3PPnF83OeWm8bDejyta5YtwCaQ5NzZrtH3nGR9y9w5rj9M8p4kb0ny/Vnf6PWeJJ+X5LuT/OTh2v0kX5zkJ7K8brf1nmQhMidZdWMijD6+1Hwc+44l9dT6NQUjrLMeC65D2pG9401MrbPjXztRfWz7nKfos4OJ9l2c+2IJExUH92h3iHWm+hnQ29s1ZR6WnQKJDix4LU/r9I2frndS3gjpiScpyTaSMUUvapwcjZoAQuu5n/Xd6q6bC5IRYh+5cFRjit7xWr9fqryNoOthsgOnYTEhIKBk+3b60Xc7+Ojv2ZBvL+pjUExgQ/kmchXcn4D4NN52TOzDhb7byBuIuC6CQIPv6S/7RsfDPlzkaoNPoHmJ/JzHaS5JZpoM6LgzdTLk4fzsgTKC4WmNTt9dTxP71Oiw83W9ElA40ekWwDVq7/57/VO3rgLmlrvJUUlHVgsOmX8CI9TVifSy3fatMpPANd+JyiTbXTPWYZLmIzkcf8rPddZ8BOG9Rlkcced9kjDasOrshcoGZUluuFYvUQcJ/kRc/Wyj13V3MfbWL0mn14IDTRM5O832OJXH7lJlnj58/+wsx7cusuyWfO0/meRPJHlb8s4fSvKvJH/+v16eTXmU5HOzfL6d5dm5kmiSpY7RY4zLrWznwWSQRIKBmqZpDEgYnM/lWc71Tfhg2t3Z8yW9Rl2c5OYcc71TVge12C6DL95xdFn3z/I7iGWya/kZfLIOT7tNk3zX6Tq9VvqU0JfJQNhpeyDO9ZmRAW5TOxpSI8njORfZOi8aU8piGZpnArR0+nY2dNiur8ZwAh6MqBHA1MAZRLQtRzYpqwFG6yMo5dGVvXk41bVp/GxMGWE0YKRx5viRKLAcI2013pXLMp+pHOs5z3H/m4/JkX1G6Flf55ny8J5JVOeq7U0vOWgfSDyu0pW2awBBx2ugYPI3rVGuO5Pns+EfyxJ0Nz8BccEn56d6wKh0sp3PiVBPieui5Uxcmo/J+pZsx4n1cl6nXcnaocmusDxBu6PJTSS4HYPuqrBe79LxH/vgYyQOOHjntv3pdwZqHE2nPMk6x1znk313W47gB3kMvpumwAvnvXnvZCEAe78xMkXZ+fsiHUOOCW1E67APMMCsXHey7J70TV4fykIivva3JfmzWd57/l1JPpDkLya/+1cueX84y87Kzay7JxdZyMsEuClDkJ9k1PO5Z2tpN6rrExDmnExBguqabQP1x37Y7UefKetptragdfX79Er91jfZEbbFsTrL8S/TmxywTy3Dew7E9E2H9vm0j1xb3BVm/x0wmsjidbpOU3rid1II0rgT0e/OS4MygVk73XPdT7bb6MmxYZkWcdMUsXQygGG/aHwYlbKRYxSQ0UICEYLU4L4Jjo3v5NRpvaD18wABAABJREFU2Ej27FjbXvPZqPId9pxHt9s87PcEEAlIL7M+z8Fxo+OcdnKYOu/9y7F3ZNyROupfsh23yksQXd32zs5ptkcEJkfaPvHIoYk7HXPrtB6x3ZYjiKVuecv/1uHaI1ybdKeyekwbmfWYtv0JsEzzZsI/kd+J8BcAcLeKiQENAh3ajAJNkuPq4uPD9zr4SU9IrFpnd5EIEvdIQZCHck6vSLYdM4Dn8R3K6Z1TyhTdoz1gNNb52f4UxHEw6VTlHKihHNR173TQppgQejc+2c4L11nJnXd1rGdT8MJHe6a58S5/79GONe/DLPpy93D9hcPfz0+S35fkryf5F3EM5d99U/JHk8/9yuVV6B85tNdXEu8B0Nobvi2PQQiu7eZjn0we7KeqI5wDB9bsh0y8J9t7iWsmIskxwaI94s5ElJ95TFDcBwZUmKjfHL9plzvZjhUxCvvKNTjNJQNjXPMlp277tYLAb9j06uXrf/rq+rTXUbLuPHGJRowOzwA0OQYMXsSOTE0g+kL/rnJAlMnfaWyZh8BgMso0nDQSzc98jDKzPzb8HYcpIsMICaNaBLiN7pDk7Y1L2yfQeZjtg+0mI3QQrifDX0bYLTPrZvSYYIWAio4u2ToR3+cYUr7mbdSbdUzyFAiQ/BjAGRhOYJIENzl2xpTVgJPAiA72Ju5Z3xm5T7ZRdc4hZSfYI+Hpj9TRCVuvWJ7rcdqBoYzse7KdO4OE3vd4TMEQrjOuDwK16B7r6z1HYgk+2R7Hrv/enFXPKBftgUHwU5nX1sOs+jrtTHjng5HWym3SxLVpkmnC67V2lTNjfhIDrgvahI7HzRzbFqaWt42ddkzbp8ssY3cvazCB8+r1SHJZO9G2OP62GyW57EdQhuvs0UGetxyu3UzymclyhutXqNNvXTK+Peur4p9B+xOQ77z3h1K549b7Z4d7DD7YjnfsuIZ8lIkymJg7sMU81stLXXN97mvboN0zQWnbXDN95Tnbpm3aswVsg30sWajeMpBB21/7z75OO9K0bVObU99azvbZgY3rdJ1eKz3xJMVRhBr5CSTXiRBYEuQxomvwyF2B82zfAJMcg1xGPFhPk6NeE7ByxJpOrca74J5O9EG2hn4iT1MEzhE7RzLrUGjk2fcTleGRCeZjdKYy0vB667hHCxihbl2TITUZaV2cownANh8Nfseh/dozwCRfTdQN6p7JC3XS8rKeZKsDrJvgx2+rsi5OpK+AgNFGRjJJKukI2Xe2N4EAyjSN/6XuN7Xd9tOktP2ZiBrXuMFFcL199DHOkxyPVe9Zdo8Ny02RRecxqOfvCzFRF1k22Y5Psl2DBLGOwHJN0X51LdzMlvxwnXMsrBscZ9oZEnzqpskar7XvvWYSN+3EcNfM92vHHTDiHJzgn+to/fyF9f71emb9nLOSDbbrcvRLDviUoNDXObjQwMLNJK9kXcs/mcOF78o2vZjk3vbHHO9mISxsq3abtpK/lcK+VLcfor9nuG5C3QAF+8/EOfPaL2Hj+qLuB5+9o0CbF3y2n3cAwjpEQsB+2e8aZ1BGBr+S42DCRPIt09QHt9e1P+1YTwCSOMCJc/qGT5efoH/XaZOeeJKSbA0/CUWyXTCM9DoqyohNjS0d7Z2ddulU+d2AySCFoLb3J/01+Gt9vObIbJ3SVI+dOesnCeCYcrx85MEAypFTGvuSxzp8kp1TXOcvsjMVQDIy3zYmslowRjDLeieg2fkvyeOcmMjVUBOcMG/zOKoe5LcsJBwdjwdDudZNImqCu+cUDdwdiTS5Z8Svzpd6xF2Ijseprk2JukSZXGf7YX270HcSra7n9otyPBrKnCJf+1V9m3TLyWM2laO8HEem6us0biQQrbPzXlm7A+VEuTjHHSfqtm0R15P7Y7KQbPWatsTgudceDO11rKybUzJJfQrlGMW2Tabd79g+lTnI0X6yLwTWJGsOhvB6cryu2OcpcQ2cZn12pXLeRz+9I95xu5llg+RRlmdlHmb58dj8ySS/Jsn/6U3J/+dNyV94U/JPJfm3lx92vJf1DWDPZmtTHITgGnqMPBk+M6gyEV7qlANt0/zQHlX/7yAv8QHl8Q7cWbb1O2hpn8jgxAm+k8wz8MEduOa13eW4BJ+NLdjnKeA2+RySD96nLarcldHrkHPkQIJ1/Dpdp9dKT/wzKTSYdTI+xtLk85n9zHr6mWf5T7Iavj1HyairIxoEnbxPcMDvNtAGYwQne2c/bVhYLjmWYTLE/GwZ2Mbpzv0mjhm38Pudn20Up3SRrSOpMaXBrJHtfbZZ2d1O33rUOiaAQRJB8EC5kq0xD/J4rC50z3PldivLBIqbr2lyTmy/Y8/I34W+s+/BdwMsEk0S97Z9ru8OHDRVPo4zk4kn++wINKN6Z1l36kxWScA9ZnbCHt+9uWt9BrOcR8o66TtJOPtsEOOgS+95TU7BGSb+LooJlXfN/Hs5JisXqoOgjt9p/zjGBklN1NHkeCw53yw7ReKnnTwDts5X7cee3dmLirO89bnj2uOykw5MwbYb+N46b+A++8od0P4q/POH9n4oyV/4z5KvfZDl7V7vyMJEflfy579jmeN3ZyE1P5rl91Luot5pXGiX7Ad7/Vxlm4frhEeVDJDtE03wusZvH+q5m2Mf5IAEAxucX84td8iqW5TFQQTbJbZHWYkzmriOiRMoJ8dlzyZzbqYgJ8czyNfrPfJJ28E+kWA2TSTyDZmuiqB9PNu8Tpv0xJMULs4uyr1IZHJsyA3yGFlsmhacy58P19qeAQzJ0qmu2VkxEtkyUySXZQ0Up7qd1ySNTtdG1g7Z7Vxm++OXNNqOajmaRkLB6CHHpG3VUVJ+GkiSjmTr1KZIqXeo7Hw8D22v6S1ZIo99Dacf+mYyGN6LIibbX5B2n9gXk5/K62NmjOKZLE2OqKn3p51BA80Skx698Dy8Full/3ivfTGhpwN25LX5DYRoJwpCTEKnCO+FyjKxfuoNyzQfQRDn4UR5gnu9Xp1/nOV5gV+ZBYR+4JCHQZWuW0eInR7mWK+pOz2mw7E3YfaYUP8M0tgWj13RPhBEGuAShHFMTIrpF6I6e7/yVBbbCvaXu+bTziV1aiI3HBPvwJsYc55uZt0p6/WSkwkcd/11PPrA/Aez7KqcZiEe//Z3JO/+guV3Ur4vC3mp3jxzyP8gx/PI9VhZ/UpkExX7tpY9y1bXqH/W2c6PfSvTedbfcLEvb530UZY1WV78Memzr53luF/0HybvDFYSCzDRbnQs+Nymd3mnkxpBPvteyu6gEstPfpW6SxlIzPf83nW6Tk5PPElh8iJzdIVApIkOlg6HTtGgic6ydXg3hA6ssl2oXFDGZIeGzvXReFGWC9V3msWwUT6OC2UmUJ6AKuWxUzAooIxXpQkosa+OEDlC3b5XBhrUgiqWsbObIrQG+exPy9hpJctDpv9Elld7fqfaa2J7BkZMHQOTxPYjw3c6Ss8hAaqBbu+3nCPDJAITwTfZYn29dtW6tCM3CWBydNrRxtY36ZUJGMfX5Uzq2CYB8qnKEQhwDhg1ZvTd64zj1NetMogx7dKdZvn9i8/JAkJ/GHn5XBrBmAHtaY51o4l9JCCkfk9kz+DJQKaffd1BkI7LXqDD9XDcpwAUySfXDNfcRKgY6JlA3Z7OdpymneNJNhMdzhmffen1koIpkv4wq22/k1XnfiyLrjyb5fGT8yzPp/y1rLbiZpagy3drjCpbj6BWvzhnE1n1GqWc/p0dkh+OTfvOsbK/oO98jHIOTJEUJVu/3Pr4Q5NeB0Heyd6QeHk92b7Yju3t3rKeiyH/XvDHNtH223578vMc29om7vAQt1jW63SdrkqfEiSFxzpoDL2oGaHsAqVzngC5HRUjpHRKdDyXyGMjNjkytu1I/RThoZyMatHw0rm5DRpHO3vuUpgwsU0a7qhcsh2rtmnidq6/lomRM+/U8LvH87OTvC1LVPmlHBvus6xHfyqbI2TMz0hhv3N+24d7WY23ZWK9HruWr2yMVHl3h+2TPJwP+ZlI+LhGCMrchsHGRF45FnuRTQLCyYmyToNcttXUuhgJNaGaHKyDDVw/BOEGR426muhyDCuXySmDCBN4bnuOxlKHGjnleuE6+kiS/zzrG6UmQMggBufDZI9yXWR9WL7ymFDvkQIHhAgGTXoJNpumQI7BlNtMtjtkbcPglW0H92jzJlJl8NjPEyClnfSODse/fbeNaXvWpb3U/vh3WdrGA5R/SxZyUsB5kYXkflYWXfqxQ96fPuR5Llvbdp7tvPc7iZp1vv2ZdtW4Y0HfSp1tOySv1qPzrC9daWJQsXm5xpOt/u4FOTyvvF65rDO0LXu79FEZE03aqCg//al9vv10k+fOtrp5KkvvTzv4bZc6bfL/hk5m0q9Xm9dpk554kjIZsl6fWP1VkQ86Kxo+GoLmMxicoglBOUfa7HwYPZp2TiaiY2DZ3xixo3uAz0E5Gm+nvb7skR4adzqPKUJrwHBTeab+2kCaoHG87mT7Sk6OOwEoidREUBnJmmwLI58vJPmryEsnQfmsB1P0awLKJH9RfiaPfVDWu317JMRjEV2njBf63nwkWQbHbN/65WAC14T12n1ufVz30/i2z1znBZDMb2dNwLmnTx33giXuUl4FfqeAySQzCU2j6BdZjuT0Pt8K5h0T7nA4utr2uy4I+KlPN3KshwZCd7L+KrnnYCIu7SNlsey20STdle/24dq9bMcyOR572oDmm9b5CfL25R/s61M5Xhvt31X1cUfAfsFEy8Gf/s4Igx59JXHn8Zlsx7bHxD50+H436xzcP/y9l4XAPDjkvXPIf19tJetuQz9b5imowj5PwJ7rid9dPvpcGagjBOn8fKr8bMfkhbbAQSAGILomrZNcO9TZi6Fs5SGR4PjY/jFIYl3neqWcxkLsJ9vwW9pKTtmuiQuDKBP5uU7XaUpPPElpMjDxboodBhfaI+Sbjt5M3+18J2BHORqJJaBnxMWRRx9FuCr6uGe0m/cM+Rn14XiwfoMX5uG4etuaxpCGnclA4FJ/nQr4OkckdDlcr7EsQPu+LL8XcT8zEPA2v8c62fZpGqcmjs9DXe9YEijQyLONCbC5LYLrtsG+PcjWUTNqzH5YpydyMkXoLBN1gXpJBz2Vo35YFp6hN6ktSCQIcR+eyrHT9jjezvYH5wr43J7n3rsRvM6/BmATGWM7PJZVmaeoPYmfSRrJR5DPoMprlLbIc1HZkvUZq8usz1rxl7Sn+T/N9ux8gyXsO9fHdMzFNo1kv33osxpc366HczCBPc75FMSifKzDkXvmNelie7Y7e6T7PNs5sw6SrPSI1r0s43F/rTJ3stjKV1DnzSxHvm4m+ZEsz6LcSPIPZ3m+6YUsO9GU7xauFcjePFx/Wf23X+x8OlDhsaAuTvMf1NE1QV9KUskxbJrsTsvSPtfeJNs5YT4HuSjXRFK9I9t2q5/Nz51TjsEpyk8+vGR0wgfBZz47xLVYGe5Izssc79JNfmwiQ2/Y5MF5vdq8Tpv0KUFSvMCvcjQ2et5JeK1I2hRNSY4dYA1IjXWd66McA9WTbF+LSoNKwOhEw9xUgz1FYtkftuVIKfN4TXE3wO2T4Bhkklzc3MnT8bUcHCs6g8pMY1qQ+wrquBg+ux7WPzmXCUwF7ff6tNNRx/xI9617ff1p5Zt00brBeT7VfUbIDNS9BkiEWa798pyYzBLwPlK+9mdqs/rNcgbT0/yTgE31MlGXz7I6aAcJKFPHg4TDa2EKOCTbY1/eTer9+keCf875BCwmcs/EB749Zr7e9tt3krvaLAd6+CvhtjMkutbt06wk0LrV+yc5JovEEFMfTA6TBaCbAE2knqC5yVFz2wGOmY+0eL03P6/Z5tN3ONrOYBj1sflu4/sN1NO2qEtcS7ez6uPDLLsmDe7kcO/DWUlfSUD/lmg+RrvctaY+nGUlkA4SWV4Sjq4dzjmDeCaU1DeTUdbB3QnrX9uwraQ/4I7qZY71wQTmRHWxPfs6ymCCVvwx6eOkv68VUCq5ZWKbJjfcDWa7DkYxXWPx6/Sxpk8KQvs/Ndkg2AjaMZLpG8jRANHR9j4BcSNiNUx2Tl64rY8/BMmoCB2yAWyvT58dlWEEdQK6TY50FUwzTUCA9bJ+Oisfiwmue0eg487fUXHimBiskpQ6ckenM4HuST5GdOnoOcfsSxOfczHYdL861ifZ6mPLUhd7zfNs4Nt6KXvHhqSMxHdyOCzHPhgwME1RUIKVymb96BhyN9P6wbZJdtl399/lLrNEez83yxl7RlwdzfaPibLuab6oJ5FsPLoxBTT6o3UkRdahymp947wxMuq5qXxeI807jfMF7rV82yjAMUBk31o3+x/kre4zP/tAcMY17nF/mOXY0gTeCgRbpiSYes5+dJeO9oG6z7pqtw2Ao2sT+W8y2eI12w2TII5r5X6chXT4R0AvspC3e4drT2chKxdZdlvuH/r2zOHvS9nu7t0+1PPgkJfEqHXcPXy+mfUh/b6JrOvVBMK2qvX1nu0j/W7XrfVrL7hjf7gHjCiHiWqPy7Vd6ibLTgTFhKFj4fVnMkJbGuXzziPxiG2S9af1NkBC8uVUHbMMxiPnO/eu03W6Kj3xOykFHz1+MP0QYI3G2c53OiVH95PtkSI6DUY/aXTquLnoGSVqm5STRIURNUfWWKaOYOqXo0jeUneioWxfGf1ru468sk8FXOxPsh2DQC46BIISA+yW3SM+rNsROCY+J2Cw0zos66nyGVCQ+Fg2gxKOlQl0sj3SxjKTY3W0rGWnSGDz14nx6KFBJmVzO5yn3ku2OjFFud+cZWerZU04eUSCMnueqdME3VEf+PaZZJ2b57K8VOEiCxAjwDFo4ZoyUa1sLOsgA8E9wQTrSLbrpf3n2HXntb/bxAjofZSnDAZuPJI0AX33vXPBnZPWdScLmH0h63ML3Alj36Z5ZKTcMjcxUMQxJvDi/LQf7R+/M49/Qyv6PAUCSEpYP+XuvNBeEvRNbbG/Dl5cZvva8b5meA+IM8j2WPm8fksyCo5LQEo0TrOSlXOUoa+L6m2+G2j7YVb9sfwOzHmNcBya6KPpO2mDbRNZ5iTHYxGVnQIdtHn0CW17Wk/2ua3Hvvw08+uuW7/tH+vz94lg1D+TLFvH+YpiB1eMF2xPScq6RvcCJW/ItMdoP95tXqdN2gsYPDGJW7COnCUzsHS0womRYjpIpzpog0If74i+2wjSiDBiarJkGWocGHmewDVBE8s2n41OHQcd8zQebJeyMr/7e1WqoTWhpMzT7lbbmJx3dG0iJMk65j5q4H5ZJo9N/07z4J0g98UEhfcY7fJ4VlfqaEyQOY8GgLwefZ92WxyNr9PjOqQeTqTR9VQ+RgFZnjJxjbT8HjFkwCBZoszfm+QncrzmeEStOsAjKE0kU54Lgg/rmcHvRY5/GZ6At+0zmszvF1kBJsHxmf4mW92xDdmzgZbvLNtfte81ryEmEjCuq8meeVeCYLi6TXvLYE7TBGxvIE93Og0sJ8LJNUFwfCPHD8/TXp4of+unjG2LukVyY52yTaP+7fkbE37m71vgkmVX5U62ALrXLrI+30KZk2PyWoJ0P+uOjdd9n2XqPNo2TAGQ4NrkRzz/HHMS9slGn+V415SJ69/rZiInnjuCfNoh7tDQf9n2026Q5Ex2qevKdnovGEX5jYXsN5isj8m6k0fCep2u08eanvidlC7eGiVG6HjvLCsQscGh8eVia/1MjcZxsTrCzWtT1JT10kBMDsXtsH6CUUYl6VDOdW8iAWc5diiVnc5zzxH2s0HCVUTQ9/smICY7pQncMJpHmU6Ga464Efi6Db5xjADkqh0pE6VTXGMEzWPNiJeJIaPTdQDWCTsTR3tb9kx5Ow4kGIw0TqBgAj+t/yTrLgbbvocyJBB02o5o0rkmMyjcSyQSgSz9QbpGff2igyaDwMrYxOjqFLxosp4QtHMNMpp8mS0ApD16NslvzLKL8TezBUUkICc7nyf7MpHiysExacSXANeEw/1l5Lbzyod62XcnruNL5fXasSwtV+CcbPWSdpH9nAClgwetzwCPOkGAeFWA5iTHv2VTmfjmLhMTylod4g4K5esRJa/tzuWHUe6ZQz0fQRu0kZxfB7zcRmVq4nXaOJbjPNiGmcwwTQHB5rVOWp/YvtMUxJp8UO+fZH15SRPXgLEFZeIYePd8mlcGh3jf/ZjWZLL6A/oArks+O9v77nv9E3XytWziGyo5evR6tXmdNukqG/nEJXbWJINRt2krkgvZQI559uqhc2Kk2kCXERACs+jauf5OddIQ7/Wp7dKwEPzV+OyRq9PMBmpqqwZtkpHO/FT3T7OSAstXo22StUfKCBjYvuWz7Oxbo41TXx1FdZuWn9HbZD5S4OibjzaQcFdO/pL7GfLtgW32kyQ+OQZTHI86M77YgXVabtbZujzXLsvoG+fO88V5o85fqgzJIetjHY/1feqTAYLXpnUx+u5nA5LZTlyVSLiez/LL8l+YdReFz4dMa5RkpX87r7xO+bij1WsE/Mnxmmk57ojQ7tD+WUbOF+WYnJdtromFifml8tv2TLs/03q13aA9Ps26Y+M2nar/JDkkS5VpCgZ4Z4YEsHrQcTjPNvBje8x1WtvSXYWHWXc9SCL544bBPZO8x9nKPfkCrgnvKHOXpfduZt3Jm9ps8hw3cEKdoF0hwWp+6z3lpq2yfSXw9868yUT7yr/Jsq7fnuVoKo9pTr7TAarqw4Wu109MfoY61D444MAACOenR4xtYz+piMp1+oSnJ34nZQJLyWp4CZa6UBlpIbjk4g/uT5EKA2NGoh1xmnYvJsPBNri7QYDathzl8bY262WErnmmyDT76Wgix2mvLhq6E/xl4ni0PxNwNYhu2+coT+PZcbBMlKHl9xy3DXPlJUifQK0dLvtHskcAQ8cwkQnLzCglAaePH02O7DTH82GdbuSMMnANGUSSrPteZeBOifWLOzuOZE5rwtfYb/fJxMhz6vIMCBjsG/j3GiONp0O5tse1OtVbeSmT83cePpzkW7LsZNzPug4n0j/pKefR9sfkgXqWrOveR9QMSLg7QBA1BVHcT15nwGJKXSMOZjAZhBlstlyfmSAY53VHndlXg34TH46xQaXJK+0c6+ovx3NuuzNUQkDZKivL0Pc0yNHnGRuU6bEujjtfO82H5Z2sA00cW/tX+xjuInQ8GKRpcpCQ9zxOJMfTTgBlnnZHpiNPbbPjSiJnOYL77a93Zdp+5X2Y7ZsgJz/FupiHYzvt+BMH0Vft4SMS6OhvbRvXBkn3dbpOH0t64kkKF7uBxBRNSI7BLp2ZQXiyXeg2NJTDAIHA2qToNMdGcLpmUpRsdxGS44fn29c9483oJgEWr3tcGAEk+DLonkA+DacjNsx7VfStaTK8zUMANRHOfje4MzmjQ53adbSu96eIIHWBbVQu6iHJV3Cf/WliVLN5+qNyExGnXJSvifIQJFn3p7GfnBKJ9jSvbcvpUvlMqJ2vnw1mOIbecTH4rix2yJSR9TEPH3A2eWfePlhdIEhSQ2BI8Ox+30vyXshd8NhkG9N6es3Euf3jbzJc6H7r7bgSuLsuru/LHM8vwdokyzQ/JNaVlfk7Tiad3WncWw8EVo+zbbcy8chVy7Wf1lMCPAdDDPJsN73eqHOnWY8mPtZ171ZOQYooH8mH+9TXYT/Idu4Y6OgOs+0mU697d4eyVwb6Bo+lyUlwn7I1TSCZOjGRA9c39YP3rY+215UjOfbLlZdjTrvT7y9I/glnWK/dz1OVZ7+nIBDTNBe9NgVd2GcGn97waWKXr0eb12mTnniSwmQA64hJFw+B/ASUDXRIYIJrJiwEB5THuwb93DyXKE8j5Eiuv9MYP8qxcSYJS46JG6PkXK93svwoWOV/kOSnIUMdgd8aVNntROiQcyjHN0wxqtMyp7jmKCMNr52OI4jezbnM/BaiiWC5D3QEHN/JCXNni+1dqJ7W33HhjsYELgiCqOuc24kUJ/P4cmweZvu2l353/5Ot7phI0Ik2GdjuOd5kO5Z7foTggH2hg+SYTGS0/eT31vtQeVsXSb3nr+0UIHOe+Pperm/2cyL01PMbqPchrjmYMgHCpo5niUnb4LgZhHgMSdapQyak1kESM5b3jhRtCPM4UHCJvF6/Hfc9u+4ItImbyd2lrvFHR7teuTPBfjvtyU4dbuouiuW9j77wuuenfw0aqV+nWd6Q+ZYsdv4BrtN+23ec5rjePV2gjySwpv+cdl7tCyZyZPvgfFNQoPmmtdzv07iTdLBPJKSdRxJqn4xoImnd83sOirm/Xr/sX9vwTmDzmvQ72b9NpLJlOcbTzul1uk5TeuJJihfWBDD9nSCKQIBGO9kaqSmC7+MTdg6TPFOEgtf5mYRkSq7bET5GwAjOKzf7xyjgM9lGgZLVgZnUMAoYXeN1OkXes+OzIZ6iMnZ+JGME6u0X5XAbEzkxEWSbJKtTxNmO1oBnis61D44M00GeZyV2JiEEEnacBJ7sO+fR/ZjmdQIIBiQGNdbbaQ1ZLq/J5mE+Ez6OsXdYOO8G2wSfDFhwfJkmknqZBeA5z+OsxIR95s7H3vqfdhRYts8LnKoNyszIfr937Hp92q0hYTCpa3uVvXVO9TjwQdI66SIBafN7F9rJuxPWBctMMsA0BXaYprHouNOO8pkJ1jtFrh1saT72nzbgquQ17cQjV7ZpJWyXWV5B3NdKe03YX7W8yfup8ifHeunPDqQY8JrYJMc6xzamwBT9HHWT68b65sAbfaQT+zLdt99jAGDCIdblqTwJEW2dg0T0SxwLEjGu4yn45r52nOwLz3H/DZ/MpF+vNq/TJj3xJKVGoUbHOwx7UdZTfU+2Tj3ZHndqmckI0UD290N8dptRo7aVIR8d+GQkDLYdCe49ArL2v/+uOoZ0+3Dvlyf5mq9K8sHkf/vdy1GTvhqVho7GeQITJh3tk8EuAUSNMHcYavgs9xnyMzLsiA+dAR2px89z9Mzh80vZGnQm1sn7Bo97YIu/j0JnYyJD4mW5rSvs20UWIM2orQE/CXfTU/pMeegcKz9B/xS9nchh81UWrhPqLUkSd9UmMELQd56tzk0BBRPuXjdQ6PU9chdcoz6YiBjAPcb14N608xWUI4AxmKR9OMtW3imgYhB0lby9twdCJ/008Z/I+6k+c81SHoOu4L7XPXcHrwKyvUYZCRw5FyQF9D2vtc5N5GqX/KzHBE4ZWGIbtpnc2ek97xL0XuW5cyhz73Cdv48TlHk4lGUgjGRoAt4OoE1kkMGdM/zlWqNtYz32nU0uG5ShLbFf4pga8E/6b/vm4AlJD23mFGQwqU+ObTDzTNjXJNiBi2kHnH+TYzJIW9C6fG0vqHqdrtOUpsDKE5V6nGa6zohhst2GrQOjY+q/aWE7ShF8J3j2MQPL1L++74VNMOkt58rOa/18FUCoo7jQ/Y4VidyXJMnvSfLPrT+AR2Vyu77GfvBf25uih3VSE/hx3QTCjCrtyWBjznyti/fqrO9kfZOSCYidkz/XwToi6P6dKL/l4rgxUedYj4HkRKo9Tiad/czdBa6L6nD183woO9VP2TqGldHRfpMDlqO8BEoGHXbqJLcEdWdDPoMM1+f83jlIlh3IZ7Md72k+9qLCrO9E/1i2Y9A3GVEnPNcEY3uAgvV1nAiQSRS8lpKZ8HHeCGpuZjvO7Gu/k6BdtWNQ+VpXj7VdZKu/tmUkvbYVtB98oPkss33u2ug8UHb2hQGJPhfjNkk6mZ/5OH4lZJx/2iD7J+r1nRwT2HP8mwI0TBPR7WfOqUlt22od1JMp+GIb27V3ni2RciJIL2Z4CtcsM+VLtkdhfd/98lg4QGDyUhJIUkcbS70xWaUvYt/ZJ7ZH3WTqWHKtTLtaJCVT35N5fb7h0uUn6N912qRPCl35n5oITp7SPS7gHPLwV14np8kyH8sAMiIxRUOnSMnUhzomRwMJNimfgZGJQP8yStl87nfr6jGv/zRJfmvyyu9LfijbV5020el7nKdE4lfnQ5LnumgoOzY03kF9JnRRHbzWRGLWNjiXj7PsoPz0UA8d2+R0ky1QZt9tp6gzBEB0JAY37Auj5gZhdqbTfLEvHGPqIkkBySCBWWWcIsvT9r/10dFNE1zmo86w/1NUlHq2F0FloMPzSf1qsl0gqKZuP85WxqauJ/7A3QQwSWA87xMYM8C3vnmNEjxV5xzo4DpyQIFymdA6UT8e5VgnK3v7THLgqLJ13WRsGnOuBdpPkwzPf3c7TrL4l5vZ6hbLGUySxDfPU1l/FJKymWjczBao9jvb8nzu7by3LwT0lfFe1l+IP8n6cHzHhn6nhIU6xiBR//VtYcl2bbbNKRlcs/8sz8CGSRvLM9nP0Q4k83xS9rPML73wiQbPc+u4yv/T5rdsiZTLXgz57Zum+o0tomu097YbXIvU2eD+w6HMdbpOH0t64o977RmdKZrAqIWj0GdDGTsfJke/HfH2w9mUt0aDILHXCbDsNBnJtfO2EbTRrFz87ohhsjyQeTPLG0Z+/0vLtdtZnU5lo8NgeZOyq44omRg2sd8ei2R7PIrlCrLqVEgMpkg559DkpemeZDbRmvTCETm2x2NMLnOh69xZ6X06pkbf6jhYvxP1fG+tWDdMNpL1uZjmodPksTzuUiTb8eaYNJkATmnP2ZsYMj/J0xR4qC6fZP8FB5T5qtT+dk5Kckn+WG9BIYGdgTWJ7ok+XygP+9PksTzH3wnYB+U7bhdZSVVfz+u583r3mrIdOEG5ptNsZfK9yjyBPcvjI0vUuY5xx4YvH3C7zVvA3V1422bOKdttGeZpG5Rh0q3O5a0sz4o4kag1sT77hgm4d+ftYZIXD3lvZzv39E8kUxk+1y72e8eW4z7Vw/4yaMJ+MKCVbG2K18Z5jo9HJfM8O/hAm9Vxm4g+9cD2jnaZ69OEo/W1zybOTTz6ZtK3F/RiHTxx4LE3HmEd9APRNY698dCEfa7TdZrSE09SmgjkDUImY9SFajDPxVZANjnLApoaF0bjed7UkRqCEhoLgoY9cORIx160kmDIQIHHaipLI3UFIHezHnO6yALU7x7qaPSKhIqpdbYvnAuCgymKOvWFxtukxmDJxypYxv0PPpvItbyB1hRhowwGHBwnEi6WISltfZMTcKrsfoPMRB7PsyUyyZboUVcqS3cWDJrPdz6zTwQHJlosO0XlOq57497UOj12bs9jx8gs+zAB6j3ifDMLmSeIap3etaF+c20a5JoceQ0ZvNDeJdu55GfqKEkuAdgF8pZcWc6zHPe17Uafec3kgRFo1zGRqykia2BI+ToufvFHMhOz1ldiY/vbvCUnPZbV9ifSzF2yZH0YnW8Esy3hnHf8H2b5Yb93JfmxJD+uMu4L7Ut/B4U2rDqwR5paB8f3AuXsiyYb5fXmFwxMARkTk47vQ+QhoZ9IavtDMM8AV+2qdbDtV3YHxrg+Ddj3bAaDI62Pa5c2iva+7ZyjrNcB13TzsC0Tf8oU1OF+l1RNJHIi0w44kZyY1L1h0zRYr0eb12mTnniSQhZPJ0oH5si600VWQmKgmBwbZ9blqDAXNCMfBBqOrCYrsDOIt7OlAZmM5V40khF0EweCq34+z0pMHFWpnB4DR51s6DtOdDSnmfsxOf894GpnbXBi4sS+mIBSdjtFOzO2V3l7JOB2trrCMahjYfseAzo4OjSCcfaVOsj+OI9lpq7bge/NcSSXSQX7NZGcaVxOsiVGlMmRR97jkQpG8KYdP0YMvWabp/Xzr8Fzf8nbu6Ucu4f4PNmdaRwLLJNjHaYcl9lG/0lWT7MeMSNB4fpv/RPY8+9n9JkOgrCCGa7dqY9tl4Ej9sFkxtFiyrq3PpL1194Lllqm+bkD7R9udB86flOijePngrzW592vpvtZCcxUd7LVtcruOWGiDht0t44pyNExYJCqx9h4TIvBtybqVO8/1D0HDJKt3XJgodcsY2Xnb9lw7Zgwth7rp/XCARYTx4kA7iXaEtosYhPufCRb+eoTTaK4bkhGjE04hrzGcbCfOMl2LCsD7YLnxWu09QXlLrJdX9fpOr1WeuJJigF6sl0kXdTebvUim6J6dUJM58rPdmlUHNFlJJMANPqczEabzqT9c7sEtZfIz52b9tERUDsPy7y3pTxtqU9OkfdqsB2JLFC1I2F/JrDC7xMB4nxXdgLWCWwR4Dqi5lTDz52BieR6XKbvJEYnWcfXxKRzYyDP9jhvzmO9pw6dDPkmstDPU0R50ple967lxXAtOQYGdJaM8jZyzDLth4MHFyo36W7H+lLXLlXOYJprxlFQ2wXqBAlucI9AOKir/UnWc/v3kZdHbCr/FAjgr4g7+sn+TaCLcrreJoIu92MKQnA8HM1tfQagJGvVOb5ymD8Y6KAE5eh1g2HubtAnkAzeyPq7UndzTDRZj233awG6F1Fn8/XHHT0fJgVeL00NfF0qP5+5aHqUrY3nrvBNyEJ7Y/DL9rlTQLtu2+/1QhCdHOuGZbvKZ1wq35Sm3RQSwb11b0Jtv82+WfaOgYOuJIkOop7n+DncJuu2g41uh/0y0fEOG+unbl+10/WGS58INnXN3o7SE09SmPYAbLIFf446neDa+VB+AiSODNpo7kXzmZ+GaS/iuOdomChbfxDQZIsG5nIo6zz9y/wGxBPIo8wcUzqvieDVwE3jRqJpYxqVM8CmkWVfC14MVgkQo7qmtk0kfT+63zmfCAPzcMufIMxRbQJIE9+JwNDpsf8kD5THRIf1NHEOL1WG5IOynuuaifoeibBszdvrBU9e73vRwer4I8hBGZr3Yrhe/e5zCAZ47LvJ0lQvSSd/2Z2EhLq+F93tERsCOh7hIqEmCSX5qhwdu2cPn1/EGJQMWF8nfZhIru015aNOUzceIz/fZGbd8efOE0lqQe3jHNtEzp0DAB0nPkDPsaru8rkEr2WS1e680QdMdoWvKra/IKi3je040H5xZynZvgq/clWmR1mei2m5zs/jrGSJbe75m0mmvV2naR16d5fXbROpb7xvm8h2bWtJDijLhB+4M+GgEm2s25/mObpnXDHtArF+218HVbyj07Yos4Ox3KWeylNm79pep+t0VXriScpksHh9z9g12TEnxzsTNGJ7wLz3awRaxg/QeVEzr40RHSrlZ2KEt7JXlql/NpwnKnOmcpHMNpwcZxs81t0+EWTxLWt7oJrg0gSO298Gb44oGqzeVh8ncrJHJNgXy0vwzXrpFElWXadJb/PS4SbbMfCcGuDvkY5kjlQ3XeT4JQXeceGYneJ6cgxcmZfzQ0Bj4E7na8fn9dp6uW4IGFy/gamJcMeQrzUlKO1nRt8LXluGOwLWE0Yi2V+SimQdP9bdZEA2fSbwL6EyaWl+61PHsw9un+YYwFTuZLtL5DmzLkzBH95nOY4f9Y07JT5yxDQFHliX5aTOP85Wtx3Iqo6UXCbrXHE9MwDBNRLkMYgs6aasTZSZQLjkdgpOcM0yb9SObcZegOK1Agn0XQ6QmIDSv3IceG1KDvKwrrbt+TK5DMp5TTB17mqXTZD4mTbDxJxktbKagFCm5Ng++f4ePmC63LneexMpaxtT265r0uvrdJ2uSk88SUmOSQQXyFWGvWUm8vEwC5AleJmAlR2tDYWB+V501jJNoHgCxEx7hMdgfC/ZYU+R0bZLMjgZV0b0bJCb2s/p6AHrZh9KfiiP22HEaIrqGlxxS76JxvyRrvP5Jfa3+SvTngO3PtGB04kR0LBcI7gTIbU8jmQzMh+VmwgoddvEf9Ip93mPeAXXWvekG4zQMorpNly++afjL5TT8k5gzMdSpkg9r/eZlQKgPSK4BxhM6BwR5ncS8/ND23y2oONykuP1bJm482Idua/8lZ/9pk24wD33l+t4IjPJeozIwQ+TMJa9yPbZnD2b7f7v2cSz4f5llpeKJCtxO0vytsPfF7Mlkbeyrjmve9vTkqHLbN8Sdj9b3aMOWVdaF9eIycwUfKFM3UHxGrmK5NlHtF2DVgbVWqdBv+tu4vxPdqE6TDA/EWnq+uTLLDP75kAiiSf7Z5Ld+ry2Kgv9le1t8zVgNO2KcE4fDfdpd6dgDdcRCRZ374kPJvtLEvxJkRjdfT3bvE6b9MSTFBqrZAb3BpDNx0gIAeFJtm9DmkDJZOjbnp3qnjzNY1LA7zZ4duh84H4iMDT8BP08l+xyHqde3+vzdI/RIRKNaQt8z3g7muWxbeqctY69PkxkaoqaGZSYhNLw05i73slYkwhwnOyc+v12tr9IfpptxHMCeGyHgPa1dHcPhFA2y91r0zETA6ned33eIZhAI/Xbdp5yPNK1ixzLVADLuei8mqjtATQDHeZlu9aLlnU/OI/cRWld3aFoW3eSvPvw9zzLcwsfyvrKbLZj2annPEJUIGKgeCPJc1nm5162QNGv5p36ybmuDkxjw/XLdcrdn45Trxm4G5gl293symPZ2h8+z5JsfQPnpG/seibJr0ryzqwk5X1JfjhrQMG7U9717VEq6h4JC9dastVTB2NahvpPUhPcn3YLJl1z35toC1gPj7J5HbRt2+EeK6OM7Y/9xrSzQ2Litd1ynFOT99dKJJjsc0mNx3Oyyb1XfWh+774n6zxyt4tr0z7RhLx1nOq+yQkDhOwXX4fO4Bht5UQCrzH4dfr7TXtr5YlJXUQEw4zUnONzsjV+LJ+sxpzGjMdEClYMJqNyNug0Mj3De457l8N31sPjYozu1cDsRV4YpSGI3CMuNq7sT9uenNVk/JOts3S03gBvIg/9x7E/1f22Q1lOsnVAnJtJdjvxCbgT+JjMGCCwbjoKAttJR6J7fiVq5/Jhluiqo6p2EFcRJxI7y5sc67zbqE4lx3PnPjkyyfao9x6/6F7LEJBwt6N/aw+e0rUp7TlVR3s7NtRnruepHo9v5TeBnewGI5e93h2aW1kISuXsunxXFlI7kSoD0huSpden19OeHNq8k21fq88kKN0FcLtNBFf9zjVSe+TAA20hgVbls605y3b9TLt3lY/2d7IVBIAnWYnZ7SS/NguBu3u4dzfJlyV5x6HtexgD9qt+ib87xDn3NZIV2lLPK0E59c92tHk7Vo6iO+reMZ70NyrrAAGBbWVz3tPsPwDO+n0ioW2w7ikw0DEnWI/+2u+7bfswEyDqrHcaWD998FmO7UTH2AEh7wpf6r4DSdRprreWm2xny/eoon3PpfJe6PrHQvjeMOniE/TvOm3SE09SaFT5CtNp8TdxkU7GoXmm/N4h5KJPjs+LVx4aeRp91sHvJkN1jowS2UAkx+ug95/StRouO3AaVEcnvb4IMAsu2lfL1vkx4JyAYK8ZkJg02WEyGmRZHYl06rhO+sKdGRt8z5PbpT6RdBmksm3udvnooslC549yJVunxR0zzmdlImHkvF1k+4rf1tu6HH3bS45sc7wMhp3Hu0zVo86/1yOfBeEOHYEDHb4JuoGb75MkERj13k1cazkHHZqv+s21No0V5+s86zHUz0nyO9+XfM3fXYBxsgBm74QQYFG2PuyfQ523stWR06zHrj6UZZfgQY4BD20Gjy21Hzey7XvwmW/n6rjcPvybfpCxc+J6CBgdTGqZad1zrDoeE7HhLl9t050sx7xuJvnSV78wv+jVv5Pf+MeWH8L9nMzPkpTA8VgS+8C11XwGoa2ThI5z1uu02SRiHIv+vZ2VbPLZnv7dA/9e+/QD3P1oPbaR3FnxDpBBeZMDGwXkJET01dTFzittNwkG/eup6ndghH1qX6ZTG/adJAi0tSYeTCSItNtTIIrjbSLS66yPBO4Cf73jM+EOE7ZJR67TdboqPfEkJdmCnglMJ1vDTMBpkBZdM4DwdisdHyNue1FtGzje5wKncWh9jQ4btNtBE7zX4Tl6QhmnazR2lM2EpqltPoDse1G38+F6t5Jbr3dg7OAYdWz7Dw/tFqh6/JpIEOlUaHwZwXSknMCY4IwglWSCBJekYnLwdATJ9g1Cp1nesvS5Sb4kyWcdrteZFPgaRNu5Um94dKJ94PibBJyhTNvoZ/ZjOiJymmMQ4GMw7LvnsO0TUHTOOvcGry1DG8H26Gx7zbK0HuanPOw3QQ/J42m2gPuGyrA+9sEAL1mjnL/2LMk/9keSd/57+WXv3j82Yl0zkOhuiPvAMiXMtAUEOBfZHqnq/fbbNouJpInrmg+st76H+Md2DJgM9rgjTiDWPpD0tk4m6uxJ1md/zpN80bNJ8j1JPif5N5/Nvayv521dHSe+LIT+xHZoTwYTc6/daQ1N9rbt9+/9w/0buu5dBZMQ1klSz35WPgfpKpPl47w5kOgdHrZtsNM2ahtYzvrdftIPMZH42WZNNsf2n4EWrwHqpclLU8ebZLZjxyCByS5PN7jfJEbGAJbReuD5oW5+0oDOV7Muptfr36uvS88+qdIT/0wKE6PryRZk70VvkvWBNEeGCdRoYGwgDaRobLhoWW5azOfDtaYT5GE7U4TLRpHkiYaLchgcE4R7h+oR7lEmGjeO+WSU/XkiltM5Whpr9tNAj3+bz+PLKCYJSbIewyDptNMgoHPUsvNiIspUYGdnT2dE+Z9L8vlZn994NsnzST6QFbhVFs5nZeF8UEcnXeZxE+YjwWIdJqx0ltN8uzwT5WHAgOU5vhOw5Hyb8HrNTHJeqAxBlmXrfNOmtIztThMJy17k9CTbo1Sc07Mk/8F58jX/+29Ink3+Xz+yRPZfzDbSWjk8115v93MMuKrfN7Ie9bqXY3tYIjatx2m8TDBtdw2svL4N8qlHnkuv6yBf6yI4pp3tLpBT6yuw/xsvJV/xg29KfsnXJL/2pTyX5KWhTxwHpinwZXmvIsa2TRMR5PXaNdsZ/r7LFG23PCzLNdA6SNK5nro2p8Ch63Ww7imUZ784dpMdsGyX+tx8JTTUyWnNmFS2n81H2zP5l2RrWy+UL8O9JgYdHWwh2aZs5/rcNOlix8F6OcnysejddbpOV6UnnqSQyRM0JjMxudR3A+E9ktO2/GNLjJywbK/RANIA1xgYxBqUmQBNyQ6dToD1JscRrrZB4FanxP5wrNx2cuyQzrNtt8lRHBpvG2iD/LbTvzTClHtKJDkG8SZA3jkhmGId7c8EtChj89BxERgl6xgYPBXM3s6yg/JylqM9v/A9yX/yAwtxeUeSH8l2rKmjnDuSjNOsTpnRubbP+W49XmNMnFMe92A/Oed88xH117rDtdq8D4d62e/geteh71PGttsXUfBB/j0iXYJJgNV6J/0u6G1byfa4E697/VGOu1lA8J0k/9a/seR5y6HsS5KnJGeKsBO02n5V/ttZd1FM3Pj7MG/G59qB06xvBWN7nT9eS47X5GTTmSaiMdVnAF3iwYfkqYN9IJ9v0eM6qN6+lORHs6zLv/KeJPkPcifLw/TvPeQ3aGwdnnfKa2A82ffK3+tc3w6i2Q5XDx10qA3g7990DdBG007xSF7r7XNaHDMCf5PB1zoiROJJQuagQvswAW/71clPmPCy3uR4TCu//Yf7tOc7PV9cX9RZ+6L+pc+2fkzlaI+9czIF42i3rL97hGTP/16n67SXnnidOcc/XkuOQa4X2kRQgr+M+hDEtPyZ8rcNOhgezyJ4MBFiG4weMVLbuinnmepruxMQnqKklKvtO/rnSLSdQB0SQTDTVQCC30ng6jAusxDD7hR0DHgsxnPptll3x5f9b/sTOUvWN/R0DjhHJIVtm2TGOlX5SV6ncTjP9ix/j3J9fpJf+Oo/lnzgQ/lnvin5cBZQxH7bmSeLHho4UM+4hqgXXj+VneDGRJrj4Oggx6mvyG2b1kfPJ+fbzrnzxrXAvvYf59CAyTpFx922SJ6pL713ojran70x4pxUBh+bcpmHWcDxT2eZ+7dk2eH44Wx/yNGkksdCTM7tKG5ked7is7Ls2N0/tHsnyWce2qVcr6iPXBsMXvCoFq+XHEy2gu34/rm+83P7eAv94xh6nqhHJm3VVYPd9x3+NVhwkeSvZXku5SKr7bCt6d/+47FO62XHiWNg4sJAWvP5WaCJFJI43NA9Bp5OVJ6E7hL3uaabjzudLH8j2zVmUOzAGe9PgJ92pmUsB/9xh4XjZv9K+5GsxN925lG29o3++WSop4m7Ik22vbSpXqvTbgyT14iDKixfveNb6byuneyHP5bA6hsiXXyC/l2nTXrid1JICrjo6HgYHd9bqKe4RuPF6KpBvMlBUKbJINTGNviezFElRjImJz7tWDQPyZAdFMuQiPQ63zzj9kzs2G/ucjBR9knelvNuRtuZjPFeXWzP7RpITpEjtjmB3mSrL61/b7eJDo9l68QYmWsZ/przXrSBpGoaC86bj8nZEZqgEfSbBE0yUJ/pqKadQYPGZDvOXjeO+HJXhbriMfaOl9cPnb/XM/WPpKTyMO3ZhD4/wmhzQUDBesl3I/Ssr7JNwYMPJvmJ7K+z86xgo7/p0TEheOIcn2UBjydZiM+9bF9X/iDr/N48yMznQyq7iVnl5/G1k2wJS0Gvbcul8rSP7R/zMjJ9inzJFoRTT7gbwPGnrU5WYtMXN1T278+yk3lyuOejfHyZQ3TPfWI/aQtKeLzLV/kNyE1ivIZ9v/3jSw8m4G/5nbiTToLKvtQX8Yc4k/1dkvaJ9VRnaTf31vQJ7lsv7WdYfvK1HMvag64nklyWb/5pl9T293Kog76Z/aR/rpyUzXaw4zXNact1rdO+ctyfyqLj9sdN9mfX6Tq9VnriSQrTBPonwMv7zDftvLBuL3bet1GxUzKApEG5xPcpmrQX+ahTtCxME/Buf2v0+P7z9qFlz7J9BoXRkilCaHlpyGy8TNYmIx19phxMbGc6vtI+0+CyXsvGsnY2QV4CiCgf83NMW38JsIGiycNFlmNe51meP3nHm/7rfOYvfnv+k7+zRHB//JDHD+qapFpHGPWiM6euTI7OxPQMf+lUuXsyHbVg3ZwTlmuAwMGFPR3gjhqPYjExeutxmuSbdgi9y3IxfOaauqH8fHNbwWf7yd8oOEWeh7hWkErwlRzrHYEaQf9Epk6znvm/m+36vXP4Wz1sG08fyt7N1t617a6NjkmPyLWvJA4OQvRz+8XjWfzHMia/1P/HQ/5+9rMnFzkmTHzb4MOsc3Jy6H8TAxJ8aJt1MzlAQbBNwjP5k8fZrnv32+3Q/jSRpE3lfbTpROVsqwjAuwanwAOJadtxkMA+l0ekPNcmIrQl1A37eIJxXwvK0FbSX9A+TIS6QQKOv/1Bx8i/89S8tK/nyOt8/Mv6GbiY7G/vcf4ZUDC5mXT4PIu+38j2N2/esIlM7vVs8zpt0hNPUrq4mxjdMFg2ULNDT46POF3iWo1k8znSx8+M7PLcqsEOr7ddg/deN9gjiGMymKKjp7Fn3TTM03gw8WiBQWyyGnAbZYLf08xGn3PkaNXkYG2QWy/JKXctmhxtDL5zPE2uJuDrCNYEGGnsmzjulb/XW6ag7nGS781y3Ou7kjz8O4szuJfkxySLydiJ7nMu+kNy7NtEED0nlJNH3wiICUKmHUjKMhFRH0/y+iXgZaoeOGpq4rC3K9JkUMdxm9o0sSCxcp/9PAGfHTH4KiDmDmaj57cPeTrGlaMA+h5kfcvh713IfXKo6+msdoq7LncO5V/G92T90ciXs+jQ7cN9vt0vBzmeOdR7D+Vqh5oKtic9mAIwDo64DMe3bRGTTDo+EReTn14vIOv1Z7KC0cfZ7nRUTy23MdJEvL1L4rLsH++x75SZedwOy3ItkxTQFk/roPNFH+F1wMQxnIIOrYvrzuB6D/dx14V/3UfaSgcqOQ4kJZcqTzlsMxzY6T0GZxiQ7NxVnyg32+Z4cr5J1kjYJp8w4QqOCX287WavsR97R1Wv03XaS088SWHUlQagi5nG6ELXk61jYJSygIDg+TzHhp7gxJ+TNdrBerjwk+Nzt93GNdGxI6ph4zGrvaNGBFgmSpNME2D3rhTHYgLYLMMxPFVZAgiWN4GcEoEnDavbIGE4w7X21f3mPNKQT46RjthH4SY9o1Hf66Ovn2Z5BuG7szwrcCfLm5w+nONfKG/9U7TrRN+TY31oHXbq3KVItgTQ+pSswGeqv/VxLKy7jvhPfXR+RlWbCDSnwESynUPruYHXNF8mLwWX/O2JnsF/WxZg/3KWOW29t7N9ZqNyEmBSj7hO2Nem6kDrZ1Q+WYjJgyzPnCQrselxjjtJ3p5Fzx7i2rPZ/rp97eKzhzz3JJsDMb3mfjYZrE/rtfrTaP5e4MI2kXXQXpMoTrI4oEDwThvMMfZLSmiLTYimPJZhIlO1eZcqM9U11VEdpZ1/jDztK+0p17yJPwEtdxgc3LGsl7o/BYpIlJin30kGWXbvpAHts3fG6SdoVy70l3Wd5Hh3g9fbDu0e+7Vnl05U1vfdN9tRBmO8W1UZm8/zfHnFX7ZnX3udrtPHmp54kmKD0FTjODm7GgRurzrS1jocNWei4fI5ztb5KNto0GQIGO1g3c03vZGrZd037xQ5kmxgYwfOSBkdh3dJmujITP44fjXejOAkx/1unQanJGwtx+hWcgxMaZD3gFwTnX3rav0EWfxux1qw08Q+XuXc9mRoOUZ0X8n6uti24aipAS1BumXwnDGZQJiYtTy/k9wZFDPftGPQ+ibQM0Uio8+cFxIGk0tGMffAbb+f5fiZi5IGR0irp6dZdwZOsoLoO0m+OAvwr3w/nOQHskbfO5ccz+mZj+ahbehfPoDOdC9b8tTfxOgcP4PrL2YhMB/MQj5+2yHfe7McLyyofybrzszLWY+L9VmVi6ykJZmDDzdw3YC67ZCI0K77CJfHJ7rH+22PQRoCLq+TpnPU0bZfyXYXi324SiZeN9i8ymbVllYPWZdfCtC+TkDdx1Qn0kKiRt+VbI94tm0CfspI2986WX7a4WRgr9dOVVd3lJ/K7IdJVIkLJtJnDMGyezaJukogbyzw3OHzi5mJQNu8yNY+TsRgCrZUhomINE0keM9PuhwJH2XzjtUeXnnDpYKc17vN67RJTzxJ6SLhw+02TjSQNgjTZ5IZRnNp6Bhl5Q6LHYKjQzT4LN/Prp+7KiQ7NJgTQOQ1G3gauL01Y3Lm7yQ53mFymkjIVRG+tmcS5iiXSSUTSRYjps7D6z7eQxDLcWQUNbhGHaFjc7tTVHGK9jVPj0RQv32Mz2fKWTfbbZ7JWfG7o2PnuEaiOkXpuoPCB//39K1rwuSvn+9kAU33cqxj0wPD2fm+F0nlfUcK93ZOONbcgSFY67U+e3IzC0G5dbj+ZUm+LQthOc/yrFGTI9UlOwX9jjJzzIPPtBMGLyQ/lfnFLLs8Z4c+Pn/Iczurnb2VxSbdzLKL93yWOfrwIU+DPnwgnt+7E9c1dKa8HDuORZCn/eZYd054bInzRKI/1ctdP4O/yn+287352baDL54n95O25kL3H+t6x/CqYMTUh5PhWrKut+6kOUBkG+IAk3ehOCfVYR8narIdor+2vp6iPO30Y9TPoIoDdCfoo/uVHNsSBsGIBZKtbaDdal7XeZZ1x/Jutv2236bNDMpzvrkbQ79zgrrcNx8pdWBxss1NJIb00VO/r8IV1+k6OV21EfBEJC42gl5GM5Jj5+QIBIEJFxnBcs9M29AbzLRtkg1HKqadk16nsZrAvyNZNWjcPm5yxJjHoTo+HKfK6B2W/nNUaTrKQ9laH3cHOFcmXI48kgS23x6T0+Ff6+7fqyJEBWD917F3VLW7YmyTfeI1HsHwdUbdg3t0XNRTguezw7/b2ZIBAgbqHevYmyfKR2c/kWeTSV/vDkofqGUfT/Cv/Xe0ut9vZ4k83jnkfTbra2+br+Px9sN99r2AxEcf6Gyjz/0+RS5pB1iHxzlZASMByp2sr4r+0ldv5E2v/p38lv90Afdvy2pbup4L3AtQqV+2a3vAu8m7ZafZ7myeZn026W6WHZS3H2R4KcnfS/JXkvz1w7Wek//srDsuyXJ8rHPCdV57YjudzLtZtgP83l2iG1nHjKTArzFm3We4zzdZkVwwTWSJdnAiAX02yADTfblAfgdrbItz6F8f3Ccp2SPSzLPXp+qZwbkf1nfAufaSc+U59RE82m4Teesv7bDr9JqsPFy3tPt8BXTlZvSf47mXJr865Z+IGG3nR7Ksl4kc2aZMtpfymCgwTXaehI++wDbNgUHunNCvcIwtg23uGzZdfIL+XadN+pTYSWFUiRG6Lq6roks9kuXItw3kZZZjNl3s05GnJu5iONrVz62X5IhRoL16bRCm7V1GrqYt2AIDE4e2eYk805rq+EyAlW3SAbR/3glinWyPEU1HLE0Gp3GdxoQG+SLrLpUjQJwzG/cJQPA625nyto3qpLf92Q/OD51wn1t4lAVckpzszYWjn8l2LigLo3ImUMm6a0kC3DkmOJ1AHsuRtJh43jlce3OW3+r4kUPZ21l1+fJw77dkeXnAX8uy49Ix8DGp4B5l9ZEO6yfHdCK8HjcCAAY+TrIQkuTrk3xO8ltPcpLLzfGgoA5HVK3n/G5d6/hwfnnvqSxj+8pB/pcP128m+ZIsv8PyUhay8nSS35FlPP/jw98Xk7w1y4scvvNQ/wPI/WyW3wpJ1nFmdJvzbbDqPpOInOXYViRbuzjpbPHB3puwPPa0NT62OPmR9olri8dgqGPeGWH+C+Vx4KXtRNd97M9jxL+955cL7OkQAxeV08GTyc4E+Zr4og7LQRkcNJki8/RbUzCPPt9BRxLFqW6TpF6bTjJwnAnebQfu6t658rVPrr/XucvE9ZBsMU7/cXfLJMP9sswMlrZ+2uxk2z8G8DgO1+k6vVZ64nVlAg0EBTncZ0ScxvARrrc+Rx17PdkaxdZjg+Loh50e2yJRoax0cEwG5gTVPJKUbI1Zkx0e80b3JjDgqJojPtE9jvskmyOpdE40rpSl/wwKHbC4yvmYpNlJ7pFVjkcjTQbj7kNlLDg8U346tomYUG6Sco4hwQfHzWPeHyOlM6KDJ0mMPl/oGh1n79/JAmw/O+uP6FHuph4Z8rGMvg47h/L/289IvvZ/lfyeHB+5ucgCjH8yCyAuiLAOt+/Zud4xmdYc+3ih+9016LqbCGLn4f5B/g8kyVf8oeT//abk9mXekgW8MALfeSTJat17b3uinWJUdFoDt7K86av3H2eZt1tZfpDwVhYScjPJ739b8jU/krzp1V+UT3/1F+Z3/u3knz+U/UiW3a63Z9klehZ1nmV95oUR8mDM2C/aSPbHO0gmaLYxBb38zPqZz4EjXuMu0GnmN491jH30koSj/6h/rMu7w7Ux/Ufb17li29SLvb55TU/Ep/Vf6D7niSDZ5JeJc8fv7Q/n1HpwqfJcawbBbvumrrX8A1yzrtDOcjy4i2BiPAXYHPDrWEafk22fontcP8xr354c28K94Jpldj22FZV3OppJv0mdtU+b7M4bLhkwvF7/rtMmPfE7KY5W0HBORtROzg6G4MvlaFQcYZ+i+jUOvefIc7L99drLHD90ybysy5GgKRJOAjCRCDttRlSYxyTHEd4pKjQBRUef+N1jzr7V6TMCxeTvrd/nlNs3R/oJIgiaHeGiHGdZ5uq+8nIO7Iyia4zMEZxUJp4953i1fkevmBi9plyel/aFICXZvilnIrAkiG3n2Sy/Rt4xfmuW40wvHOrle/cJwPqdY/LR9g5Mpmursjb6+kKS/yzbYzOeY/qF0xw70clOEFg72jmtd9ZP3bqZBSQ9yPKjf1+Y5C9/R/L4OxZicJbkh9SmI5gX2T5czms51DE93M/fVWldp1nafWsWktExfS7Lm8YeZHmD3EUWYpjvz8JYfu7/tyj708npDyX/889N/nKS92cZ+xLOu4ey97LqVpPH2eud/WtidLjJgYLm9wsDOG5eV3xGhrLxOR3rj2XjWiZ55DpqfpII1ktd57MVyXYteA12fdpP7I1TCaP7NK3pymVAn6EMdYvjfZJjPZ3GsuPN31zZ81W9V9tq28FE//zUFfmausNjnax97nXvXJjMeqzYf86Nd6NMQiZy7tdat05jminoRZLhkwYkY/3rnzboqQP6yhP8Y3vT/F2n67SXnvidlJIKL65pS7z5bdgnsExjyi1eRt3tTNmWo9N7JKAy9rojRJWJUVvWSUBNYEWjOQHZiShcFQFhvzu+Lhtdd3K/kmOn7CNLUwCCY3Q5XOuDxmzDTt6OmuPYcWbUjxHqRufuox46CI5BDf+NLNHmW6iDOyHe0Wj71iMCIZPiOi4SrgvlmRwhyVevm0Ds7RbUcd7MQlDuZjku9E9kOS70bNZnMfZ+mK59cz8fJvn6n0j+8p9M/my2wIzAp89JtN6JZCbHOnCR41eEM9l2uE4Cib4Vy31I1nn58Sxvx3qYZUxezPKcx4sHuRth5zqcjsJwTTPKy3Y5nme6/yDra4WbXsg6hnez7LS8+Y8ehP/Ffyv59FeTz3g1+cX/avLO5J1fvfThI1mJ2Es5tqVMJMzt796Ye30a+Pm7yVj/kuR4N6QyFmhe9QD/JNtFts9JEDh2zU8yWtfZJ7bpABbvkYB6PJj43I53GXu95K52vDaJdTS/H/ynzH55A9fENAcXQxnPId94x7bqD/mcqNfbDf3lOmVde6SrNoHXSBqp322jzw15Pk9wr9/rU/isUf+dIc8l8hEDnCgv1xLznOj7UypL2+9dFdbV/PSRDmDWHnldX6frtJee+J2UZAvGGPmkA0iOScXE+qdt0ml7t4kGl7sZBO7NU4PAd6mfZ430EIC6frfLfkwRIrY5RfaC+5Wj9VEGGlOX4/iQpLUtH2WjzFOf7MA7PwSQPh7ARKdgGYJ70/Y077c8o/dsg7sqJDE+ukaAdJZ89GgPyzFiyXnirh13ICp/y1R3LnMcBTahNTgyiW3f9kAPAwKOiN85tP9PJvkVh9c+PXeS/LnDvXtoy2THwLwk8E4WEPzhrHrct2V1Dh+jvAEf12Plb7BgmnMTp0AuRk3b58rRV7YSsDb/vWyPobyY5G9mO++VmT962aNtBuDJSsInAtt7TQUVXP93D/XzeaYHWQn0R4HQZ2X5QZRf/KtR4x9PXvwTybuW54POs/6QI3cV+5pmPkDtnUGC4Qkwsi/U10bdHTihvnNnY4/QlDibfFQ/SopNNugjSrQcXGme1jX9WKJtFeWZSAttA2ViUKr5TLpp82w7+VszbNe276qjc8mxzPSBey8nsI82MbXt66u9nTf4TJmqQ36tcvP4+CTnh2uHO8u1k0E+7naTfE11Jcfr3+Sg80FbRVvNwApxA32cfbmT5aatc6Lt6/faZAZMpl3/N2yawN3r0eZ12qQnfieliaCPC8rAf8qTbMlFnTSNbQ3uTZVxHYyEEJDRIXNSCDYYwT5FOco+OfMLlOM4XDX5NrLNT0CxOXaDvrreiSDRQVEWtsHdqY6T++d+cKxajqSUhn8ilwVhBn4FtQSvve+dBQJiXqdD5f2Czhez/sYJHc8e0aysfi1ospATEpQ9cjeNKfvL4woEcNR/7wyxjmS7Pm4kC2p907O5ky0BJ5l11M9HHh5mOX5079D+vcN3A4rK7104rpvkeLwn4tx+JNuxm/SeAK4vMmgeO3uT114jyPIvglNHCWza9kPltb56nJKtDOfKVxC32dX73izbY/nDKPlFyWfeSD6wRvPvHvI/k+1Yedf5QdbIONdZCRqv9+iPd8Q9H7aJ3I2yvvPzVUShEXra6+pN9cykJpnxB+XgTqL1gdF999N+oHXxAXyfEPCuSbIdyybqvOtqn0g2G/Wnj6Sdbx1XBae4dkxwJrn4t+DfxztzkI27FT0+ZxBOokPf0bGjXt3MEiypjjqQVDxwhvY5Bh0nlq+dpJ+kj3G/+bn1kcBT5+lLPP/VoXP8o03bs8+0hVOAse1SfpPR63Sd9tITv5PCxbEHliejf6YyBG01rueqx86fx8CY7KhNeBytMAB0tOVkuN5yjMjY4bYPNiwGCSZblL33p+1b94N1cOwrw5nyTBF5bzO3Dj40zd0y9pPlWTejipWnffT4VFf80DLHY0rVm8rBdlrHXckbfWd/Pad0BIzKXSrfRLwrn4EhSVnzs56JZFYWjsVllt3BG1leVXvr6eSZvJRvyrqLQgfYMpWlc2AdPM16pK76050LEifKQmBL4MM1Zt0I7jmQQEDFyCXtBIGOdZogvMDodhbyVgKWrM91BNesbw8z7xAY3NDeXOovSSj7+FzWtxe+LcvbvX7w30t+ye9P8syfSL73TywFvizJB5Pv+b8tpPHtWQnKWZZr52qvf20r3Q+SZv5gJsEpy5jAea64O2AbNhGU6H71jOvIgQgSxJJH1ttdisowERbuZFC29p27AKfZ6nKy1RHad47BzWxJjX0j6/Nv3FTGCdBSbo5x5dxba4zEc0ymZ4i8K3GadReP9U7rY7ItbINze6r7nc+O5e3DfeKEzmnHgnVd6nvHlVjiJvKy39MzOtaT5HguufY4NufZBoyIATyv024Kx9Jkhfe5Jt/wyYDu9WrzOm3SE09Skq1hrDP0QiZQTY7B7CPdJ1ghQCTQYz62NUX7mOis+0AaQQ4dLQ2QAT7bnyJnJGM0+q2HxxqYaHAq7wTAbKh436DachHwtWz7xK31AseJJHE8OE/uC7eh6yjaHh8Q7Jve3BZ3bFhv0+1sQcgp8hicEUg5EmXwY32jE9ojxkzerWhf9kCZQTF1gPJT3r484G6Wt2w9n+S/OOS9k2X36F7W6KHBtEF0ckzKp3Gxc2a+PUdJUNH+uRzzMjk4wchs759m/wFq1tHf6KAsfbC5IMRH9aZ+XWQeB5OEzpX1jkDqRcjxnixH7P56kufek/zP/tMkv/XNSf7H5Fsf5L/7bcl3ZNH7L07yvqy7KVxDtX0OBFw1NtNcun8eF6Yp4FJ5mKw3BPZt17tdEwHtcS+Or0myj2bRVnNOqTf8PgFpynEz2xcB0D6Q7PR+P/sYm3e5OEa05fSFJVDNS79EcmIATpko55QY7KtcJpytgz/qSdvbfjlwxDnqfT7vM9l8z9fkc0hkWu9t1N18U0DqY0kmsvQ1Qdv2I8lxMJCJ5U/0dy8oy+Bcx/oai1+njzU98SSF0cyrnF4NpaPqBveOpHqxGchMDrT5uMhZt3dAWN9JjsGP8xDAO3LcvzUUPhvNerw9T4BhZ+XozBRtmaLyBL4mFRfKOwERRm8IkJPjMTcw62ePtaOwbWNySCRIlMf6ZSfh/rJe65T1wiDeYKVHwJLtw7WUg5/3nJ8jfQQTHC/rL8ekOxyXWR6cfpTlYfnTrMfbGDm0LgVtUpcN/CgH/07kgevC88+xIBn23PVaiawBSddIj+IF3zk27RvJsiOuHRceVfHc7EWZbcMqJyOuHZOH2e7WcHxfOeT70Sy/i/LWLI+jfFuSi386+dK8kossD/53HbwtyQeT/N0sc91foyfxnMjRREh4/Mbyu09caxcoP4FeBg2oE1F+f+Y64lxzx4sv6JjIzWutP6fmpw2g/MH9O5DhHu7XlnIXqRH4ZLXHtO+XOX57XLJtt/Zhsvu9b1DbzyYkyTZw1H69lp3yuHJ+TTD71z629dCHmNg10XawH5SD5LU6Msl/kXVnhON+//B579XilcMBpF7n7srkD9sHByu5Rr0+X4tg2BZ2bBzYvE7X6WNJTzxJqbNylGciB8l2YXUx8oHXKeLSe7cPbdzLlvCwzBRxoBGjvCYYLXPVMZ09YO6t79NsAcPk+GwU96IkE/jfc1QGyAaSjLi0ToIsEy7P56Mcz08Tj+Lw84OsO1at+1TlmAhOpog2QS8dHq91a53X2d6l7p9lAXkFuSZuBKSBLM3POvecs4mmidgUseQ9zi/BSB31edZdlaCOPTLNsevcMhpN8kKH68+sm6CRDplgiMdaOPd9bS9l9DFBR6jZT+4wTYDC4LwynORYt5j/MfKe4R5BkgH5tL6tyy/hWnXvPMnfznL862aWH8m8zPJjmiVSZ4f7L2YhKJW/IK11T89gTACI+r0HXA3UOx68xnUzBUZMPkxkLoY8yfERmkbFS9B/Y5bx+7Ysum9bayLtfjBNttl967MPd3C/IJg2gnXwzXjUq77UYS+YVJlKrnnsjrvc3u0mUTFRTLY627/VF9sy56O8JsG2D55TErfK4x2zyhDdMwmyHX84XJvkoi4TLzRxDpl8tM7XnNj/trUXCL2hsgz+Bp+NTaZgK8u/odPETF+PNq/TJj3xJIWvXWXU3YnX7YBczgaQUXkueJIAOkfWT2AdlDUgpNGwkWb/em2She30viNfBgAX+N62CR5JFggoCYRrDElIOAbsb9NEci5y/H72ymxy5AhWATWjd8zvo1wmT5Sh9V1mO4YE103e7aAT2XNm5/pLkH+W4x/BeyZLdPthll8Gd5oI3x6Apo7xnkFvVH4C2I3+OcLJxPq8NqnbJkcEeh47r7M98rMHcCxXx5qgegIbZ8jvXYK9XZiCQIJwO3fOn8fHRI79NIif9LnJILL96XjeO/y9c7j+oSw7YrezAPAvPbT/vqzP0ryQ5Uc7G7Tha6BLZhopLhmrrE3WrY4po//JMRirDvgVzXsgn32e5moq62NJ05p6LsmvvZXkTvLdH1nHYg/wW37quvtBHeQaupnFJlR/ns26U1ai6GBGP3MnMNk+Q9NUXfGar6+9xGcSS+/W2yZ494T3WO5cn2/q/kTKvdPA9T3Nq0kU5U224zIRZPsf23v2Y4+4BP3yfe/8swzHkzIz2MpyJCZTW5e5muy4LeoofZgDsdfpOn0s6YknKQanyXFUlYvH25y8zzqbGBXnti8fQpui7f08kQ2C9ikS7yiTjZwBtuuctrIn8Ni/BoMnul9DbvLi7V4C7dZnY0UQbwLY6+w/wTUdJwG3AXgd2x5wNiiaABzzuQ+TrjFq5fHmfNnxmTS03c7B27MAx8sswOR2lij1Kzl2NtZDrgPPjcFR+2JCy/Ez6PdrSwmAzrKAVuZnIIFz3LllZPwS/zg2p6iHYK7y83cVLlSufxuJviu5KvuUmqftUy6PdeXvvDcC/TjHusTvfhUsE+sjOPMcXOQ4KmrA6mBId1EeZjm+xe85fP/pQx8/nC0Q7/f2pePTZ5U4h+0TX2XLHc9e2wOXQV7rLo/LdE1Tpo6Lj6RwvBxd5phN5Po0y1r8zx8kNx8sz2Q5ERi7XgJD1t954Vi0rzeykJIHSf7ZJO98Kvl3Hy1BmGeyHq90W11vvebfH+EuSWWw/UjWdcejblwTtklTcGQKJnPHxWS999kf+kbOqQM2XI97bbfOJpN/XmMdBuV80UJtoAMorM+/20PylBzbgv4eUXfwmmqbpqDdZM+85qZ+G1M4nV5x75MmcUG8nm1ep036lCC0XTBn+Eygfqp8/VdDxiMW0zGv/r2V7XvxG51nGddBMNi6mMdb8442nirvmT7XAdVQ9xqNyASY+S/IP0VTKpN3OeqUCN481gT0nhcmR30MCjqG05GC/vK6I0zN0/Jum/kth/WmsrWus2wNuqPirHOK1nlM7MxPs0ayL5N8eZao7cXhb8t6J45ggu1NMgV5eJ99n8aUeab1UrLgeeTOlIkUI3KUlyR2T2daN+embXOsW+btWR74fttQl+eKffC8R/kMgqiTj3OcJn1kGZN15m2aXl3LMbvIOhfPZNGdEsJHaOuZrODmXtZo/LsO9/+jJH81C1B6x+Ha3SxHvtq3O1lt492sgOq5rEeTLPe0Xppom2p3SzIZzZ2IDP2B56BlHyg/iW+y3f2ZSMutJJ+Xhdj9FeT3kUG22WQwaR1o+w4QPHXo/69K8s6/leTnkj/wDy33Gswg8SeZpd+hviT7v2Ni23GW9UUhJOo9DuY6aJP42Wuyf7nepgBXCRXXCIlC22fffFKiOw7Trtq0zki+mzq2JnuVpXNXu2w95XzTxk5krPkaUOCzaVxD7ot1i9dt33nPc5bhM0mb7fR0/Os6Xae99ClBUhxZSGaG7wXIfK2DQGMyYt4loCFJjqMtvF4ZLBPr7TUa3Rq3PYNR+e0I6ZBcbgJTNKKup8aH43GS2cjT6TyV4/GZCJGjVyRkjU71swkNd3LYjueaxwamgAZ3Q2zgSZQYtbLe8dd8KyNlatuP8N1Ry7bx5ixg719/d/IrXk6+9o8vgO+prOTFAKttElRQl0jaOj508pMOmIxE7U3XOfauj3+pQ5dDnmkdkxSz75Oz9/MEj7MAiHuZ10frYeR1b80SILA/1Q0+CN/EcWGAof2yTZnWfmX08TTKxt+zaDt9o1iygunzLGNxL1tQmyy698NZdgt6vOeFLA/XP0D9/XXxB4d/nY+TrOCXgRb+wB7zMJlYkEAbhNruldRE16jbDJ5UPuueAWZ1jrt+/0iSd2chCB1nB4D49kSSe/dp+kx5WMdLSfL+JO9Lfupn93XNZM67H9Sh3mtZ6mD/MijVRHkJ6BlAsa9g/bbhtucn+jsRctZF8sd2klXHH+fYNkx2bo9w2T9UJy7QBk8F8HXCJgkmNuxr5eIPmCZbPaGusX76T+tG26if7XrZI28sw7VEUlI/bbv4hk0Xn6B/12mTnvjjXoyW9PtexNiOqcmRLD5kzTw0UAa7PmrTtlp3jVf/PkIeR8OnY1D9PAGm1tEHj6c8BMKT86mxMdjpfRo//50iJzwaxzaC/NxOJqh24phS7o5vwaSj2RwLgrbLrCBjOuLUNqfIVNul8w/yTjsYUzt8hsg62iOGH53vZ5O8+Vby3IPNw92tl68Bpc5ZF+hgPGenkKf32SfPiwE8AR2BOs+rn+HehfJw94P1MyhAfT0Zrrdu6jkJePP/WJZjSvzV8olsT7ZjAsjsr9dUP3MM+9m2o8lrvnpdG0Qy4TpOsz1PX0LwIOuxrPNsX5t9kfXZkTuHvz2qV/LyTFZyx7VfonGOMpWnJChZwfCtrDtt0wtL2ifOWQEe59I7UwZhtl9OPA7a/HwNrUkOdyovD+VfzvKMTp8VK+inDyLYthxcg9YX6hKvP8gyVz+U5Jv/8LIr+L6DPD+N+hhwcZqCEtQf97mJNpHBLtbhPk5Hiy50nwGB6PuprlPGylPC7XGnz2O//dk+o21dZF0nTA743MG9Av772b5EwcDdRJQyGDdMf0kSiDfYNxIb2nMTHdqKx7pmzGS8FeSj3l5j8ev0saYnnqQ0ERw9yvrMCAFEgdDediQjRTUS/PGu1tdEoGUjR+NLQ0IQ2jZo5BnRs3Ew8GXEibsKBsx70VoaSgIv9oPgrH1u2ckwOaKVHDuGytf+krxdZv2F30Zr2Z6dKQG1HQHb6d87WaLB/XEzgvLKYjJn+RnJt/N4ONTh8qc5biPZEo3LLI7uLUm+8W8nv/NND/K+LOfee96/fSIRo2zJVgdI4qi7Hi/W6zHYO9pnInOW9ThNcqxPjLa7Xh+XbHmuM+afdjvcrkHB/SwApBFV6h/HhfWWJPiteU2ca+rFzRzrAXcWCOImokMgkxzPC/Wu/3jchICD8rVOAph72f5ydvO+eKjndhai0XVQIuJ+cw57DKpEprL42ZSWd13JenTMgG1KJpLUN95v3ycSk2zr9zqv7D+ifJfZHofiXL7Ww8lsy+SmzwldJPlIlldE38tCVs6yzM/LKJ9s5559oKzUjebha6qpnwa5XlvnO/kqC8t5HU+g12A9OSazzWtS2cANdcD60vlnGwya0O9Q/gaJTvG9vulB1mPg7RfrJqnjXFgPT4e/LWOSlBzXx/ze1TjJ9sUUXIcTCTF5YmDVY1NZPil2Uq7TGyI98SRlitLQuJlUOKKdHAMxG9HgegGBIxotX7Bjp5asBMLy0vgwQjLJ5uuVK9luR7MfdlY2+pTFwJXj68gU83VcOb4mFnQSNZ6UpW0/m5VY0dlPYJRE8Ex1kQSeJPnNWc6Q/+Uk35vViVxkBZ4eQyYbaAMl7lRw3hypY6SQgIlR8otsj9n8uayRvRfUXp3qw8wyMRJZp5xsdYpknE665bjjRR01yGl5E3TrvaN+U51B2dZLQNt2KXfrNplvP9mGI/nNa6LyWmCWDp/AphF3vv516ntyvDbYH4Pu0+EayZ2JPedv6gP1iD8yeSfLDspdlHsK16Y3zbEv3m1rn9j/yvkw61n7Asy9B8szlOc4UI6rdpCpL9QhE0P2gWVdX3VreiaF8rJf/DHIZPsAOwk4wXxJY8u3PdZjXZ/aZpmOI18ucBW5pX4FdXhtEuDyOoE27SDrYln2hWNvUtRy1PkT5fPamdYZbWb1qG37N02qu7XB3k1j6vzaP0z95rU9W9v6pmeKaG/8a/Um+iaK09hRB73euIt9lk8S4HmVs/94tnmdNumTQld+PpLBBRcgHfQeKHJ0YfqNkQdZnd7eq3Kb9sB567YR5uuDLdtkUAj6bODrWCdCYVm8DdzP/eG3CSQYCNuhMc8Uya7TTba7KS3/Yravt20Zjg8TAQbr7T1uyz+TbdSN8nRcJxLLvpwjnwkZI3EG1wZrJrkPs0RMmT6U5dmUO1mJi4EGQeF05I/kuIDGZNY7LnQ6vU6w3rGaIqCUqeTH5Dd57fnsPYOmaV03L8EU18lEyk2+DQ7aRtdid1HYdrLuFFCPmuckx7sN1T9HMAsiCf4oL3+MkTLWltButB2+qYtkOFkeir+Z5AOQl6/dvZslWt/AwXkWYtLnTpg4B9XPrscSe65hg+gb2a6X1sX+mPg20Xb4eA8BsNfMZFOtPyw/7dp9LJjjKj3kmCTbNzyRMF1k3cVisMEgmuPV+jyG1E/aYqcT/WV/nOhzam995M07LKfIz/XGgIjz9y/tK20W7bRtbvN2TLr7aBLAfrY+21OOZ7IGLnnU0jvuJYH8QVCu9X7n54l8sF83lL/3+eISrsl+ZmodHI/2rWvAO+Vsj7uxk0+4TtfpqvTEkxSD3jrEEpYuMhr+Eoyb2YKw+1mNSlDfnaxA4yTrg8vJ9ofrmj+Q4UKf21ayNYyTgw7K0Pj3u4/AnOke0xQNY7uWfUp1qO4Hx7ey1/hOR58K9gjc2Ma9bB0SiQedANuoE/AvXicrMP+Pk/wXWXYiWq/Jk+XJcK3zUNA/OWPKxHtNdozn2R5RoGN4JQtxazvcseIYt/9N084X2yRIOM8Kgh5k+xBnyxIIVDaTGjt7AzpHVA1eHFU0UPKOTfvhNkhs6TwJYlgH7QLHuXaCoJtAn+1WFgZMGmWlzhIweG24P/zeMfAvrxMAuR0TQcr9bBbb9mNZiQf11oSjbXcHykdh2wYjzZ2LrtvJ9jEfbXIyg0jqLesywWC9rOMk2zdRee1zDPvMTedzChC4HG2h8yTbtzNVHxnIIPjjGLTPtWe3s75Km7JdBXq90zEdeeKYN1+TdZH+jX2fSMZkH0xImm/a9ejY3FRel7Ee2+5M9tw7BtRtk0vqp204SQCJN3WKv4NlwhjlT47XuwNwTNQdH+2tbJyrU5Xxd7bBtUvswfF4hDxv+LTn8D/ebV6nTXriSUrBhY0BAdUU+eFCa/SZ+egQ7x0+8z3oBKOMVtkg+qhInaTJE9ukjM1jB7PnjBwx5D0bxmm9EDxNQGDanTEQ8O4MnQbL9b77NTn5tm1CwHoNHugw+xzH3RwDYduqU93Pzv0SFI9rcnys0HNNOd0P6jJJAJ0C7wV1GMRf5FhXmDj2JeTnWQk7I6TUU46bHSX75rmhHCawjnya4OzNP+W3vnqHck9W1kO5C2g5Dx775puuGTwnW/vhPAb6lKXXOoa3swUd7DeBbXS/AOwDh88Ps9hQPp9DOR5n/W0UEjYCq5uHNmsrmQj6aCdpq7pOk+3D+yV57FvbI5kyifHRll73bhSBpPNyTRtgsx7bLOuBkwkLCYJtD0EgA3HNV0Bc4tL6qAct2/Hu2DDqPdk8Xp92g+1L7EO5i+bP7m9yTHSS7brsvek7dbLBrL1gW/NzLVEGrhsGACgXyfRZ1h/cfTnLCwwcsGO7DJhQv/rZmME7/wyumfRzDSTH40XdtE/lmtzD7yYs1vu90yPX6TrtpSeepJj9T0DPQCYqc6Z7/KEqg006OCYaFD6zQhkImveIkx3ElC+DXEx0Pq2nYNL9nsDrdBSJW9cTqKLRZATGhthGrm+5al0Gopw/jxtB0uR0CaC5lX2e7RuyKI93KdhHthvUV7kcDePbsiyP2yQhJSBqmZsoQ1DE6NpUlmPadi4yj9fDLA/ltj466hPUQ93jsQWOFeedgQDPactMOktH3WTCbSI/AcQJCO2lyalzTnk80fImW/3dCwYQ3PJ4V/vgX1u3TeD89k1CJoSVY++X2i+ykICXcjzGPiJ0I9uXWXino6DJ49E+lOgZbJ2iHO24I9cmaZF8/H6qcidqlzpIYDe1ScLbvyY11F2Tes8V6/azKEw8ytRE0N46ujtFe9VjPj7+ZZ1sos1if2nnaXMm/2lw2/uOvNPv2Ne1ffaniTbOft6+fwroNfkHVWkvKxftw55/pX50rh9mXSOt6yHy7NXnuWldJgokRRMm2CN/e/PQfH2BjOWz77f+3FC5jmPzcUf/Ol2nq9ITT1KcuIAZRWq6nWVR9Y0cTQWC3TYn2Gv08H5Ww9MIZHCtbXor9Az//FClgVyv+X77UQfUv5e4R6OSzM/NNNl4+d703Q5iqnMiGt5xofFlNIr1T8CT36fUdqboMR0Ad8EcEWIfKi/rnbbQSbyuiqZybDguZypHh995Yn10fHyzjPOQcHHMWR/BT0FOsu2zI6b+7qi2x7+7nee6Rv2jTk3gxVE6k5zmI5l+hDwGw5zvq6LeyRZ4sr622e8GakwT0TDhah4/hE/Af5bts2J+iUdlKoilrO3rK8hLkpGsRIAk7Czryyz6muE+71Jye57tjlP1tnaSOtI+ewyb/EKD2k2CK0aiTX6YTD5MoqvPPFJDO0Nf4KNoHScGT7wryv6x/7SF1kXq0TTvHYub2f6A5n1cZ/9oL+vPOMaUqfM1Bfa8m9S5pk3zTumeTaBsJ0OeCYhPc1ddnF6yYPvJOdnbqYny7BGLpsp+L+samFKfQ3Hgy76jZJ4BPuq7H9q3T+ZcFuv0jXoTaabeT4E7rmX7X9bj4ONrBYPeEMmO5/Vq8zpt0qcESZmiMjQwdCZ7jmIPiJO88IHX24fPBVs02ASjJCuMhrcsE50V+8YFf5nj39cg4E22DoOOgGkCSDZAe1vmHttJVtafIb9BuOdwcg4kF8x/jvvJ9jyxAWw/E3QyUldQTtDIcq6HUXU+VO0IH/tlR9Fk50q5kuNjid6JIfHkkSLXTfLlsaO8BVwnuu+14uNLT+F6EwmD9dHfSa4ok3cvvPsyRf5O8K+yc/7dLteD9cQyt1+MfLPtaTeTeazzzcPjTQUsBsHsL3WlwMS7UL3P6Dv10HMayHgv69ukktUeVpaOY3d1CvpPVA/H0X2gzvP3HVrWAO0M9/gMgNc9k20VAxIdc+tY5bW9NSnk+ujYTqC982IQ5+d72qf6mR57u8xCDp/JqqP3sn2jFAE8x7DBtNr16omPMlm+ae3btnD9T2UY7LCONU0+qkT3tQjA5Mem3RvbGs91221ggM8P8fky287avR6ZnHaBudvgIBF9P8fHxJrXrXetp/b4PFs5vd5pA0qi+AyabWPTtJ5Zv/Nfp+t0VfqUICkTuOXCTI4JSo25t89b3218v5dlAb8ji4P4YBZnfK68PbpRORih4JGIGhhHxmmMLnO8E0LjaBC155SnCN8EWJunddY5sB4SnwINA30b4ej+JAdB4RQBPFF9BjZMNdA+MvYoW4dImbLTl5Z3RKmJoGVvN4TyMnEspkSwy+cqDLQod8fJhGVylhNQspwnOR5rzjHLEBBwHAjwTI4MCCeiXzkoN3W0bbPsBI5Ps11jybq+piCGd2q4rqnDJih7gQfaIwPS4N6k0ybLBh2ci+ktPoww9zqPb7Bdy1Xwfi/r2Dfa/uuTfGmSv5rkuw/5/MYyvh6X80Zi5WNcBZ0lOh477hC5rIm+x5NvVmJyIKF/aXf2QDJ13ATGwRjLYhtgcnEnSyT8dtYxfB7X76O9PhfUyDnJcLKSnK4tyrZ3TLm2PtmOLXcnfEyKc9t+kqAxTfreN5ixzb31SEC9Z3dNpnjNQTW2SYKyB7rb7s0sv2mVrD/s2cTAQ2WgznL8OBYcs8mX7tmK1s+3Dk7rgsGC9oUy8eQGSSYDsG679TzIJ0F6Na//ls+rr3N7nwTpiSe0Bm2PckxQbNRoyEoueu0y61uOTrMcc3gmy6K8l+UMd/X6+ayA41aOjbNJkUG3gTwdHJ1e8PlSn3m8jGVs1Pcc4QTADE6deuyg0XG2yeM0p1mAYH893Wdbe+0Sf5MZnLYMjbLHM9kCtuhz++2IWwknE4lU++XE66zbwOqqROJHXWHZymsZCH77fS+axaiZI/0t510J6lqy1c/zbGV3XR0HzxnzWmf20hRwYPm9aKj7a2NoktPPp7rP9cRrU+TZTp8AYyKaLG8AwbZJ0Ape72TdwUi2P8KXbHdkCBj5zAmP/XgNkvQ8e/jXe6dJflmSt/ziJXhj+9q29qKsJDwEgi3feei48LWxOdwn8GuqzGzzIlt94FxNDpK6naxBpkbRKV/Hz3WaGDbxHL99UA71dGeDBOPpw98HST6c5AeyvJXt3uH682hjGsO2SWDK8fdc1QeYVAZlpzntg/vnQzn6FdbF/B0Dk1a3T1/L/kxHxjgWbptrg31joIMkp/kZoHwuyxz+dJb5uJN1B4zlTlRX/067IZNdu6n7Uz98ZKt94FyVNPLZuM4b66vdYfCWNpv9o1zX6Tr9/aRPiZ0UsvwmRg4crbDjrJGiwX6cxdgUxCbbN9x0a5SvbGVkqokG31Hlyn6qPDTwyWqwKP8prp+iLhoKR5QYzb5QPpKe9tGgcIpQcfdlckx0OI7mXKoO19vPUbn2mwZx2s6/GO5PUSs7X/bZZI3OkePDqHzbc5+Trb55t4dpD1j3GqOH7VvH0E73IlvAw3om59+xJWho/oscgx7K7ONje33tX65dr2HWzV0Z1s910rGw0/d669sACcgnksToLNs5UZmLbOtju5SrbTk6Sp3q9Rs57s9Jks/OQgqeyWJzfjTLzm4TH2gtsLadm45xmvz7vo9aPczyo6jv/jvrLgoDEWwv+E7C9q5D3h/JGvWtDjzG37bt34zgmHJN8scQ+Rauicx6B8BAa+84VOtq3T0KZHtMYh/I1rJnKMs13DpvZiEo97K+Drm7Kh2DFw95n8vy9kLON4/x0M5y55Drp2PQvD7aE9RtHaHt4Vq2XeZxPgLysxzbLwJrzv/erriDcSZrtmHBWNjeNHFOOW7u870cB416NNxtUp9s/016qR/eXTlHPgaIKNtE6M51vYm6Wzk9L/3sICrTJwVZmZzl69HmddqkJ56k1KES8PDYjkHPBJ54hrjRsndkIR8/nfUBxS/NEk18X5Yf2avxfkcWR/HTku0sK8GhESS4pEyMWtlRthwNKo0FAY8NHJ2BwZSPxzQRVDcPnZ+NuhOdjkE9HSxBLYE0AcZExrgLdJrt76cwcawcvWOE2sTSwJFOpsaZkSifT+YYTXVPn1uer9TuNZYnwHdf67z4ZrELlZ/mlODI8zCRFSeSB+qR9cQ7T941IlluIoiyXrH93ifQch8I+j0uTSUyXUsco2nHxPo3raN+NiCaAisFN02Ncn92ki/M8js/d7OAogL9H8qxDjaZmFsf+5dEsPp9+9DOT2erhzeS/HgWknSa9fc6WCeBkQMVjUJzfbDfBFFMHlvbDYO92vMpEMD+1M5Q7rbB73s2Zgp4TCCedfZ4FeXo58rztizHh9rGVyb51Z+V5O1JPpD8P15O3pvFzzydZUflQ9kCyMpl+0XS3Wud9ylgQEDcuSGJdOCINq3E2y96IJHgujQp5viaNO3ZVAdDKA/t916yHnN9dzweZP2R51tZ1spd5OWzTtVVBioeZnu8LTn20dwxNAlyUMbj4CAg594EmuU8Bq67clZPHJDhM4jX6TpdlZ54kuIt6hq8RzkGpTZerqNHCG5lMWAfzrLofmWSr/mCJP/okvlXfCT5sW9L/lzWhxZvZTFOt7NGs7qlysglSUGyjX70dbwEjE50BI5eTDsI/e5IOgEt6ybY7OdbOT5yM0Xhe53RHIOwGvcpsu+oDCOgkxPyjlhlYj8I1AlkOyZ00JXR40oASpBqY78X4cuQr4lzbWfNiD132OocGOEyOJvG4mMhlhOgs9OcnFgJ9p7uXhVA8j3W0XoJVLzzQfDU+qY6HQ3e6yPzdpz5Bj8DiokAW/9JAvimKx5lYdS616tTp1lw6YeS/O5fn+SvvyP59z6Yv/R71uv3ILfXq/+y/5WXa8UgkOV6/Kn28iLrsSOvSbbJz/ez/E5L62vZrj/23UGV5HgdsfykD56zPj94qn8XWQJR97IA/rtZ/AAj/rQt0b29MaBOc0fAJKtzXdtXgniW5Hcl+UW/MsvW2fuSvDX5je9K8t3LblbBcrIE1e5l1bHKsBccY9v0MZPfKjk5zfaVzH4zIO1uy7Tf/qV0g+EpGGNfMukyy+3tzNDOTbsOtJGsKzkOatnuckz47BTXU/Wvn2sXrD9dCw6kTmRhIqWVKShvXbfP8lpvvj0i3r6xH+zDdbpOr5U+JXTFRmo6rhDc3zN6fHf9hw75/uEkX/PLs3qNL03ygeSzf0Pym7MQi49kPgvaiAnbTrYGxZFEgn8Cs97vXwNpGiP2jca6MtQ4c6xonM+yBQcmeG2v/bMRm0Cc5ZsARstOuwgFRpSD0WGCdtZFZ1Z5T3LcH+oPHfh51shisjp4kyaPr4FrcJ/98nzZGU3kiPnsnAP5Cjw7V94JsLPr+LWPlWty3Jz3KH//Wp+bj+UmoHGp/EzUn/7rc09N1Ivm9TX2hWVKIio/d2eSdW2YRFHWM5W9kdW2EBxQnsdZddxydjxKlvLNSfL3kn/x9+Tdhzw9alQZaHcIDpuos41y8xfrq2d83S1JVP/dz/aZCtZRUp0c26u+Cex+tmNZMMs1W52h7WrdF/jM4ENyPLfBd8rZdJHkdyT5N59OvjzL8am3qb4JENqeu03vurF/7aPtdefv3uH725P8ovdkORv3wr+cPH41+f8m+WDyG59aAkkPsxIVjyHl5LwwTWukst3McsTwLVmDeNRZ2w2SkM4Nx4IEvW0aQE+2ma9k7j2Pb8vzWYrkuN7Jj9Le2Pa1XOu9kWVMnj187zg8m/V5Vdvb6g/H+ER52leuZdpRk4T68JuZ663s3JFh8MMBKNZRPZoCoLTRHGPv8L9h0+Un6N912qRPCZLS1AXHhTRF9LngCJZqdE+zGPunsmye5N1JvizJn381+e2vJj/6byc/kvyKt61R0RoeRt0ZZeVfT0qN2QX+0gknV+t2AXo/2/kaePAaIzj+6y3i4K/bo3M+y7Y/kyyWnzsGTSQsvlewSHk7BwaNLU/iZ+DBRAJBUmKCQgLFvpEYsv5JBzk+jNoRRDa/nWyynY+JkLVs+/sUvhso8XPtKcE0HZvn3YTfO4YTaXPfqwMmASVblZ+OsK8nNWFNtrI3cScjmY+nFGwYHJtYtT4mz7l3d7yb03sT0SVoKaA/TZL/RZJ8ZvJ//HP5QFayYNndTrIlAjx2MgH7rpmCTJL+jg3J8jnqNUk2kCFAJfGcAgi8X3lKbqZgD+eRwaPK4wg7dfiZLP/dzvJg+otq9zJbXbaMztO2qOsE8E3N1/FL1rjYzSRvTRZ28JuS5BuXG7/g1aWD79jOMX91Pll2VSa7S/3q2FDXz/DvTrbzfjvbZ2PaX/dtspu8x7+P8W9vjJq/7THwUjI1ER7O2Yn+GZg3T5NtYfvrwMKtrOT7XrZr3f6d8jGg0bzEMlxD3j13MIHymSxMBMM+wDazz9+ahHC3l/bedv86XafXSk/8ca9k6+RpNH1UgFvuNFhNzXsz6yv0nkkWi/PPs8U/mNz7Q8nzyc0Pb3/l1/VzAROA0rDyzSos28903lMUNrpGA25DyTExEDZgO93Jx8iuj954N6PlTTj4rn7veBDUMF/z3M5y/vo0y9vWaBxfK1Bx8Rr3KWsBbRNfBUwHOYEjkxle67M2F9n+pohJhncDPd4Gnya0BFCn+u7yBCbsC++fIl/LT2SK83eWZS1NpKx5ebTEsnd87XA7fiYoHDf3weuu9ZMkN50pn6PSTewP6/B8si2TE38meElW0PbBLG/U+ua/ldx804fzMIt9+lC2rwju7k2y2iaPjUHZJOdFVoBC+3I7K0ghIfT6m4IFybFN6jXb64lIdiwKkAnsKDsB6BTZncbhPMm3JHn+xxeCUtvDlxGwzF7/mHzMholR9vaVR8EIPB+0sveyhu/76E2uTxIGkn8mEvX6SuogA03N+6VZnon5a0n+y6zj3znxc1TupyP5Tn4bnfWOet1EOZNtwKj6yFfxVh6SR/omBiKMKZLVzzOgdz+LPnZH5V6W+SJgpz7aP7Y92nfOxRTom3ZMWfYixy+aYB+uWhPn+nyq+yY23EGrfJ8UuykEU69nm9dpkz4lSG0XrQE9jU9y7ABtwOuQ6pzOc3hzzmmSfyb5qAn8r9607K780EpmaNCbGJlom81Hx0C5CFQIiKcolLeAryITNHgX2a5P191rjZhMhIXl+XeKMtawTyCw90+U3w6Kcj3O+qpp56EDMKhmXkarDHIJjvZk2JO95aZIVckKAUHbp2OqbnjxTm9lappsXx0zo6QkVSxbPeEc2vF4jkyKCgoMvg1eeZyQbVI3WXaKwgbXGPH1bttE5B0VbWJZkh/u2rGeyneGv63fDx87wlgQyc/WmdqTgsQPZ3mOo8dM3pzFPv0IZOHrhaegzZQeZvtAs21my1Y3uUPhEww8EsYxYb84T/5rANQ2mvhr3CzH5OAA+8JE+9vxeynLSwi6I/4o68tHWuYsS9R8bzybLnJ8tGuS3TaqbZxnJYQ/luTV/+Yg1Be/Kfm33pS8/QuSL0z+3o+v88Hdl6swGEmEbTHlryynSf6pJDf+lwtRYTKo5u+x1K5ULvrntuc5pL+jPfdJAPoJ7go2VadZzsCdu31tyz6sfXEf+q+YoeSEsnJ9+EF9+7tLfWc9HKPKa/9O4m38YF2dcEbl7V+undprzmvLkhTv2errdJ320hNPUmik+v0qx0QH5sV7msX5JEtU5DLJ9yZ5/G1ZDie//dOT59+U/GtJbiR/4Xx1Di13U/VNBqLGlMdxkmPQX0Ph/jnCQkdEsmIDTMJB55OhfJNBX0E2SaCNZGWrk3yEzwSxNoIGtwWxkzN6JctbjrjdbgDuY2vtH533ie7XobZ/bY8EYSJjNs50EK3XTsQgguCt/WfEzE6NfWyiDHQqPDJTAE4Z6eRNdg0S6FQLRjm30+5C81APp91DzpmveW4NaA3IJjJiENKo4iX+eS47NhwHEi2CWLaRrECJkdoJOFoX+r2vH236cJYo9nck+c4sBOU+8vCB+2Sr92yfJKzHTTmGXEsmT9OPGjLPVYSS9UzklvlJYGiXqg98gP9WtjpG0Jls11/XM+3nedYdvxPk4cPgk710P9xfg9vK7rVkgtx7z2R9a9SfTPLqjxwufleSz0l+7r3L7s+DLEeynsm6u0FZ2DavRdcIenu/9f3VJI+/Kfnr2c7HtMb2bG7thoM0rIf1+dmWkyy76LXRD3K89kxgKAN9Itc9bZqJAXXqRra2gmW582XcQeJmP8KdS5claXCbDgA5yDPVY0LsfA5sdI5pxzzvDLBcZv9HT6/TdZrSp8RxrxolRsSdCBL6vZHKZBsdPMvy0GR/0fd/l+R3/D+Tz/lVWQ4Hf0fyF15eCEySfFYWJ0Kn1nqS7Q+m0fHSuHDxU/7pCJZ3CpqPzrl9cpTMY7UHmNgO8xI0916N/bQdTEe0x5gLkrmNTnmn4womJAZjLb9Xhm02aurx3Kun9wn8mUxiSMoIgkxCDIROskTLL7Lol6OclaP100H1d1tIjJqvjvJ2FrL3KMe/vk5QXjlNiKzDE5AkKaBe8XjPpO97R9KaZ5qfR5kBRlP1cIpycsdm6vu0bgmAWVf1lUel2t9pjRhIGQCSID/E31OVc73ud/XrIlu94VFJ7/hc6FpBY/M6qBDkZd2eh9eKnjn/lDi20/rv9z4n0O8nWYmZ7Rx/KbvjRWJxnuW1z+9O8v1Zdjj6Bsfm6Vh47ltn27LP4pGpynE/65u6XkzybyR597cvD9K/lOWoX/3O01neBEYCakBLXfHa5S5vDvLwGY/vyvJSserPg2zXNnWDvy1jW8ixoG+x7XXwhGSAumb/YLLIgJcDg90J6dHFBgVMjEkAWH/X5rNZXhH+QpZXc3d9ts3pxToOhtgO2p/TPvQ7x48EiGlab9SJ5nGde4Sc8piwuL43dHJk6PVq8zpt0qcESTEoZLJT4GJypOUk64N7H842Uvp/TnL23gXYvXgoc57FiL+c9Qe1vJ28F1Ug8KPR5veJSPAM6ASSPQ42KntRy5YluGP0ieCToK3pRGUdLeIZaEb4maZ3q9cQsl0aUUbkprJRHhM3E7KWOx+u2xE4AsXynB9G0M6z7btJpx2ywbGdlCOWlYW7GhOp7dt5CNor6+TUCMK9I9Q0AXivsdbFvu6tXYIoRncdOU1WPZ3qqlxT9NHj2fxcZ2yXOjjpHIlAk/WThHLqd+/z2SXqMI+ATbsoTJ7Lad1bxwjoOmbtE38X4ypAMtkOkiK2VzvLPEy9Nj1Q3by0vT7yZsJrfUq2645knbpbGT8/ya89lOnrifmMVGUmcOe11svxu59jgHkzCxFJ1mDK4yR/O8ujKTez7rLcyeKDTNgqkwMMnVvPx7RD2fu3so7hvczBo6t0goEAktxpDQZy9Ojk1A+W2Wu7dorzUWLJIMBF1h9eTPZ9swl5672ThSSyP5Oumwya+LTOydc3v32QbTjHg2thsg98AH7yM8n8Y6Nug+N8na7Tx5qeeJJi0NGFRUDY5AU9Oex+fulQb51A876IeroL88LhM51jIz6OzEafHQ2pnFz8fYMR+zWRCaeTbB/2bt1tl2Uvr7jPZIBPWU1+mupk7PgN1ttPgmwCKPZrmt+JONERVn6PmQlBZXOdjvJPcjk6ScPubXSDpuhasv5A3h6xtNOeHD7BSuX1W49Yl9uxU+r88LW/1KEJeNDRTvrq73R4dsAuT/LYNjguBAVT9JH9YvuXOQYlyXoGvXVwR4V1+Ny/9ZUyGFhaX9yPzudEAtl3A+32xaCcust+dbxvH/rzAP3aI4Nc15xz2ubk2O6xTtvjST9Ytq94btTaO5Jtt/13nsrTOZ9AY/N+/6GdD2Qdpz6cbT3n8TuOieUvUat8BM33su7CPcyyy9++XuD6+SF/dZOvnjaAJ0HhmmZwwYThXo7nrL9o3zov9Xnqt4MvTdZHEtCb2cpnXa2/bT1c7/xNl+bvHHUX5Sr9qp7Qn1SW7jS9kPXnCHrtPmRhn0u2JrIx2aDonvXpUtc4TtyxZnmOv4/UXWTb32l3psSsJIfpNFvf8IZNe5Gmj3eb12mTjNt+3tM3fMM35E1velO+7uu+7qPXXn311fyxP/bH8ra3vS2f/umfnl/9q391fvAHf3BT7tGjR/mX/qV/KZ/xGZ+R27dv5zf9pt+Un/iJn/gHkmEyeg/w3eCTRqqprxNktP1B1h8pu5nll+W/MMuJr56BbgSswKHJAMjOkMbEjoEgnZGulj3LsSFnvW2fBob5HMVpIlCbHGkTnwOx02AZArAJAHu3hVG8s1z9i8AmESaqnUeOo48RBN8N4gkqSUodyeXOQ9sy+em/aRcnKNN/HtOOi+fD+hbkmSKOJpMXystIp0EKy/dz+94dsKvm1gSmn0s472R15l5PlHMCNa3zoe5NfXAdTfZXdPImzPytBpIZtks5mAx47bOmY279zuNi9w5yVAavnYKPKWiQrL/2HvzlmHN90S54F6o2k+uAYM4Aif2kvnm3x0ToDP3Zs0ss33/ddXI0ujJ03RskXhW1/2CWN1x9BP1Ljm1ggbGPJ3Z+qje3sx6tYuT8Mqv/uZ/t8xd3shwxevZwrW+T6rE22wMCXq4ZymkbdnJo57msOtaTBm3jBur0TqN9YNN5tjZzCi6dZrX/JWGVdSJ4JJyVtd/5zETr9vEr203qRYnOFEzsUbvqZ+vnnHfcSqDp79l/zwvXnAl1693T6Skg23FwMK1paod2ir6RwRTOyWutzet0nZw+riTl/e9/f77pm74pv/SX/tLN9T/+x/94vvEbvzF/5s/8mbz//e/P888/n6/4iq/IvXv3Pprn677u6/Jt3/Zt+dZv/da8973vzc/+7M/mK7/yK3Nx8Q+m3jQyjFDQICYrwyfA7wLmkaRKyi3hF7OcAf5IFqdQp/Ew27PMfU9962Yi8KyDo2OgYad8BBKT82xk23WwHkdXTod7BGQ2goysmPwUyLC/jAz2u52Moz9nuj8Z070dGzrHPcV3xLygoACB1+5kSyL7jNJELijfnjMhqGafPN/uq52ZI2kmcx6bCRTT4RKgm+RO/TGRoPNq4lE36ornhQSw4MKk3IDK5a0zBtYm6AxE8DgHSccUqY3unaMcifZ07Mo7CgXQlKGyU6dIkkzkk20EP8g3JR8ZaeLcczx6LVlBMu8xKNI6e427WmyfwJLJ6+djATtth7af66sykITfzlYfHWzh2vJapb533h/k+DcqWE8TSVmy+Ii+bKXlC4T5o8KPszw3lqy/cfSTSX40665+daYguO3Xn9km2j+ZmNIm383qC0tm+Aaxq3ajJl2agjCdxwYqep3P+ZC8eZ65nilTnzOhHKdZXi7w9iwEj8TgdpY5oZ86ybqeSzQ8ni37HMbGgR/2J7rnQAV1j4SVsrJM9Zz2lfaDx8bYdssyv4NXvB5c507VWbZzZPzxhk0Xn6B/12mTPm4k5Wd/9mfz1V/91fnmb/7m/IJf8As+ev3VV1/Nv/Pv/Dv5o3/0j+a3/Jbfkve85z35S3/pL+XBgwf5D//D/zBJ8vLLL+ff//f//fzJP/kn8+Vf/uX5gi/4gnzLt3xLPvCBD+Q7vuM7/r7koDOrYTFBYaSMEZq9aFlJSY3TnSzG+aUsD8WdZHlIsQasRyBKjmgkW38jeq3/JNu3yVDuJkef+NefrzJ2bdPAdDKSdBJnWRwjjRV/TK/Gy1vWBNUT+GW0ntdYp42udyA6XjezdVavpfAGzXWq5/p8A/eZGvlsXSQ3rdMkiY6K0duJ2EXXm7cPtjNC2b9+u1THxsSTstDJN93OqqMdJ8pnAtPx6d9pdyq6TmDLcbqn7wQJbttOkPo5kVqucwLNyrJnDzpOBHu93r8EDWz7PNv6qAM3swAlHgdlYt+4Rkn8SAj2ggCPM4+HgYTXWKPCXLsFpyZvyTYwZH/M9rnGPVZetyQ0rKc6wTXDsZ0AFSPitj3tb3dbbIOtdyUCD7MQN9vvKYDSe9x1qm8h4Z3sd8f+YdbnQPo8xYtZCMu9bO2QbWivnWY9AcDxrjzsS+fkYZbnLAqw+/tUlc+22gECrrNk9Y93stg0Bwm460WyxGSQvjf/fHFF2/6sLC89eFuWFyB8drZvt+Nut32O5/by0I/PPIzPC1l8+q3DP+reperj58pPW9Hx5E5g06k+m/hZv+0fHVigPeNcuQ4GWkqmT3I8R9PxsOt0nfbSx42k/L7f9/vyG37Db8iXf/mXb67/t//tf5sXXnghv/7X//qPXnvqqafyZV/2Zfmu7/quJMn3fM/35Pz8fJPnbW97W97znvd8NI/To0eP8sorr2z+JatBtAG5yBp5YuSrqdEqRjkcpaxDejFLNKtnYx9mISx1OnZ8jKwxcmoQ/1SOHRUNQ1/dy2u3sjUINMDBZ0d6psjkFJWKytW41ojzR6qar29VYuSy481Is4F6x8JGk5FRRtJt7C+zjrUN8FTvhfJO99h/nrV9axbn9jlZHFNBwUXW6KzHloSiiUeaLGP75Aj1REAv9NfAjQCZxJNt8P5JVgAz1edE509dMEGz7nGcL7OVhevD5K0gmGTeJM9rvOSC69MA6yJrMMEAqzJOgH4yrAYe3Jll++9I8suzACT307aCusCz/xzTAl6uL/6tvpOMTfWT/Ha8vTNNOVsfz59X16zbJJvUFwNm6sje+m07tAnn2crd656nBpTOsui7I99td88Gtg8s035wPTmfA2jJSnJYR4kBSVHr4jHbksYbuGdiz/yVy7bAALh9LXBnIKJ96dixjwTJwT0Gxqy33U1qP+7l+DdppkBHk9eWA2NRfc9nfTD+V6GNt2W7Vtmv9qlkofPXz2/J4g/Os+w6nWd9FXTzeKf7hj6TwLWv1TtjEuIZErraKfrd4HPn1XY7yMf1Qv2/KtUHu28fN+B5nZ649HHRlW/91m/N937v9+YbvuEbju698MILSZK3vvWtm+tvfetbP3rvhRdeyI0bNzY7MM7j9A3f8A15+umnP/rv7W9/e5J1gXYBMhpA504j20iYI6B8GJYGiWA52YKqk6yEp3X4WEXb5Fl2Rm+aGJlKthEV1kUnyDI1KI+ydd4tOwE9tsu+mjhN0aXgXo0kjSLBkp0XZSow4JwZ9BvcTEBmSpMDttG3XASKJ0nemSXqdieLU20krv20LBMYDuo0wahskXwGvXb0bivK3+jX5GgYNa1c95C/a2baKWr5yniue2zf5JjHQHzMKfhuEmcwlWzHjMdO+GvrBS8EsZwbr+221foJehxpZOK6daSXa8PgkyDmVHVk+MzkMeNfyjkB7pOhzJuzHIHhcaDO0f2s0Xa+IMRtNRnA761Tg0GCedsFglHujJyoLo6h9d9jnyEP/QWTj7OQDLGvQb7afAagGH3ufJg8MKrff9WT+pKbWeZrivhnpw9MN3I8/gb5PCpEApVs1+QjlGdZBggNmD8/C2FnsOES3+k3TNA5LhO5IFluAObZg/z/wh9Nfsmrn5uv/WNL3tsqT6Le8h1zYo1k2WV68XDtuSyE/cWsbwDtboPXaueX+mgZSHy7cxF8n97OGNTtXQ7uTnkdsV76tY5155BkqIn2svruZzffkInO+/X652jjdfr5Jykf+tCH8gf+wB/It3zLt+Tmzf1Hm9/0pjdtvr/66qtH15yuyvNH/sgfycsvv/zRfx/60Ic+es9ANFkXKh2/j0v4SAGdXCM9Pd5Tg3H/kIdO43GOHd0eqG89PArGPvjZiGR1AMkxkdkD+HbcNax9yPlhtsaJJI9Asm3QSNF4GujYMRKgXZWm9Uw5OpcEMiRwBNzN70gb5Q7y0Zm57HOHf3eT/Cu3kn85iwN6PguoqwNjPwiIOz+MKPYvCYtJCI8KRP2uEzHxY//5Odk6VhIArh0SbB73cDSUbTZ5x+Ec+af1aVmj79Ou5qMc61ujsMl6zML6S0LW7yaqBg5tg8DLc8hghYFNsoxdd9lIlj6Y5fcmPoR6qAvtF0Fgdbdyeh6oD5Tfc9LEIAb1gs9DmBw1en+Ccl7XE2CfxtSJ67My38jxfAffW9dE7JqsC03nWXfDacsbGe6ueXcNSObZVnWL4NXBMY6n1/2kdw5KdTxuZjlu9Zasv/1y73DvGchhUtZ/fRFM1zkfgm9q+R5ftu53vB+hnvoGPs/R1M+PDnm7e/K5SX77yfIq58rZvBPpnXzrdL8y8y/7lmSJMuWfSD53axNIxuhHHPRMVv/9KNvf4OnRvM5p8xGHtD3vtPZ6lI86Nx1vth9oXyr/NAa0zb3f/nu90t7Rn5GAtj98Hfp1uk4fS/p5Jynf8z3fk5/6qZ/KF33RF+XTPu3T8mmf9mn5zu/8zvzpP/2n82mf9mkf3UHxjshP/dRPffTe888/n8ePH+dnfuZndvM4PfXUU3nzm9+8+ce0RxK6GLlL0vsG6YyU1sAw6soydGoGlAYlzceILndEaGj2tnfZNqMnBEcGLgT7rZv9Zb4aHYPbCRC3nMGlUw0m63SUj/VM4MVg6SldnyK2BpbTUYHmn6LKBB23szihf+0syf1/Lm969Svyu7PoRs9nk+QQ+FsHL7MdS0YFg7qme73WPp0MY9E2Ge09HfJw3KxLTNPOU4/7EShTd5ItoWR/qwcFn6ybwIQAYZq71tfoaMH1jaxR0WnHceoz2yahaLnJgHKeki0Jmog+SWt3nu7jXncoovantVfZec1BANusKL+BWcflbpZz9Q+z1V2WYfTV4Jr6QsDMtm2LHCTiOPZ6+/cY303K2TfmqV2+yNZG06byXufhGclRouI5sd6adFifrFMGp62P+lMb9iDbo7U9dsydTAY5WL9tLHfyrcsu09Q1z92Oph7b8k4wj0mdZo3+v5jkBy+XZzzblgM23MWh7Fxv9lVem+1niWeS/Ff/bJJf9qfy/q9aiRr9M+1XSTntZ+exxOwthzI/loUEPpfleDCf4WpfpvkwueW8d07bN+5kebzo66iTXu9Nt7O+uY04YG9XuvVSvrZ5I+szRhNeeEOmy0/Qv+u0ST/vJOXX/bpflw984AP5vu/7vo/+++W//Jfnq7/6q/N93/d9ecc73pHnn38+f+Nv/I2Plnn8+HG+8zu/M1/yJV+SJPmiL/qinJ2dbfL89//9f58f+IEf+Giev9/kqB2BGI9jcTHWiXCQHPWtcePW+0UWY3Qf+Q2KHe0kcAzqucg2QmwZJyd4os81MpfZGm4DC0a1L1EH2yOZ2wNjk5Niewb+3tWZAPNk/PqZQILA1eCNJNHAyPM6Oei2ZeecJPfPk+QHk/zg5rdLHubqseD3iXCeZN0pM+hLtiDP2/gGQgRQp7hH4JMc20nqwtS2yTyjeVPkb3KKnBsew2o7U9rbDTHIK4B9mAVo38923E6yHfu9xFerdq1bTq49k0uTXZYheOZuVXWQbbRs16Ij5ATTHgf210SDkVNHYAnkW1//EsQw+s45aTrXd+sl9YAkgkTWRIO2bQL6tKvJqp+Vjb/l0TYuladjdCPrW5/eluTXZAFyJLYnqo9rsvfZvz4DQx/ANcfgWPtDO0e7XR2/yAKOnz7Ufy/rW7giWb2T0zY8dwXVDCRMgYOWY6Cubzk7y3Is9o76eyfbt5l9KMl/nORvZk7VZ46DgxcXyMc12PL0R5dZf6D5e5N84/cn7z/0oT/IyXllv+1L+LsqHduzLMTW9sXr7TzzkfDJBp4oX9cd10qP7HlNBHnot4kNns1yIuBmtr6wR9T26klWfS45vcj69ssM5a/TddpLP+8/5njnzp285z3v2Vy7fft23vKWt3z0+td93dfl67/+6/Oud70r73rXu/L1X//1uXXrVn77b//tSZKnn346v+t3/a78wT/4B/OWt7wlzz77bP7QH/pD+bzP+7yjB/FfK9Gp8fN5tmd4u2im6AON3YNsnXsdzV6kkmCa0UBHgQ1egnIEX6yvbU6/d9C8j/C5Rp19rYGmUW39JC4T8Gp+Er+2zTFvW9M4FZC2jTOUY+QmOTboybHRb5oCEowA0wG3zspkAN/r1pGLLJHK55P88SRf/ab/Og+S/NUsAOFetuM5JQIXO3qSsz0nxc8cGzobAp6OZ/tHIsPUXRgTO+tJsp1nglhHn0tA3G8CeI7BmcozEai2H5e6X2BEOS9Unmu1xzOq8waXURuM5LL/1KG2y/mM6uDcXyJ/++Udpf51UIDrguvnJKvun+veRbak0qDLAL+J41ZyUrluZvvmsPOs+kT7y3omUlRZeY/gk31Ijo9/dR64G5SsR7Wazz+y20QZb+N7bdZvS/ILPz95+/cn/1fIzflikIhHXBgYqO6x3SkYYrLC8eh6fJytf7qV4x8pZN31g1cFBLr+KD+DH9bdS+VpkK3y3znc77gXuCZbYsNggv0jbQrbMhFpH5OtPZ/6dz/LUctnD3Lcy2Lf7x3qsg43cffPJPpeFn15e5YjbD+U5ScK7mV7EsP+1TuO1JFpPTLgQh/a/JXpZlab2KNnfKkCx+du1rfUEbvwN4oq3+3DZ/7UgsfG+OU6XaePJX1CfnH+D//hP5yf+7mfy+/9vb83P/MzP5Mv/uIvzrd/+7fnzp07H83zp/7Un8qnfdqn5au+6qvycz/3c/l1v+7X5S/+xb+Y09Npie4nOnsC/hosggQaPB/Pal6Cty5Sbq/33lM5XpBc1HQUBH4u03oMsCpHz3ky+tLoOyMb/tv22H6yBVKM7tRIMupJgNRkR1WnTbJBJ+YID+eDALvyTGPE+ZzkseFvmQlcGwi0DMFio4T3sxjyH8vihP7W4f5zWX6n4BXIYwDZZOfbvlCmi2x/VfmpbEFN+0nnyXEiiChYJnBrpMvjYTBkks/U9cPxou5eZgXKJCUGTRMxDT6ThDkayh0I6poBlXc12i4jjh3nID+jsQaLBRR7wYbkWNcJCrq+3C8nA2k7e4M3AiaSKZOMqT6TIBKe29k+c1eZe9yEZIjkqMm2wAGMyV5M64Y2bBrzEijbWtt2z2eyDUqQaNYm/kiSX/hDa6Sda6Bj4XXCticSzPy0tXw+gf2kTueQ77msRwbbxvNZbNXdQz4CUwZpLCMDXCwz9cl2t2W7Q1K572bRn2fQB0bYTdj2fE2ytRMdp5KMlw9ttVzH0LtQLP8wyxEz6m5TAThtDr+TiFLmG4eyL2YbEG3quHiXhvWYnGXnO+szYff6INmobaKfv3eQu0dlaffPDtd4FLV1PHPI26O/HH8HZ9/Qac+ofLzbvE6b9KZXX3311U+0EB+P9Morr+Tpp5/OP5XkH8qWkBB0MAJDMNpkB0uwyegogVDBhqPWybpIb2bbdpNBdD/7XtvvdwLaq2Smk65sV0Wr9yLAdIyTg9tzKrni+kQmL4a/raPpBNcMAkmEznWv/XDeDOXc/1tZjHDH+2YWIJAs5/Z5LKskMtnu5kwA0VH5vV0U9oM6y3G61PXm91g0NW8J7qSDbGuSz5Hkficgc9Sc9yadNzid5iqZy1MP61QrF3dCroqwMqI/7fBMuthkEOk83C1jX5w8rr22t26bOA8G9tN6sV6c7Fw/ywIGkwV8FWB1TTDfXr0km70WXffapk47cHCVvWAfLQfbvMj2magpiHEbn5/JCrovsgA76nzlmB5Ab9s9PkObYdtK8Eidst9JlmNo9TG3shydup01qh/0laSDto5EK1l3x5LtGHoHlvcqe3ehHmbdReG8dNei17yD5iCL22jfn8n6VsXWcS/rc1QkKU4OEvQvgx/0rdWTZD0uyPFq/vb3UZb1ci8rYH9J49BxIum3Hpcssm36AK8F92e6nlztO5PtCQzryGPlu5NtoIJ60zp/Lsl/kOU38fz88Cc6FTu+/GeSN3/669z2zyVP//435rh8otInZCfl9UyM5ibrQuXWKY29o/E0UKeqq+X7t7sa93Wv9TgK1fqifIyasW0bjBpjAqeJTBi4Jce7FRwTOoKpTu528NhE87stRi0bteOYOxmwTsDN0ZsJZLJtGk3Kx3IGuXsRczqjjt+9rAAlWXc7aKQ7XgUYnVOTRTpp98N9dxSU9VpXncek3dHFtpFsx7jzNgHkk53rPBa1F0kz2eI6nPoxgSzeo0yX2b5Jh7JOuxEEhLYfze9dMkY7GS2/qfy9PvVnj3iwT6dZf+yxtoZrzIm2x8Rqas+7J9bL6hwjy5PucO68pjteBfTUx6hcUIbfCcqmAMNegIL1Mz91ibbJZPh+1gemX8K1PttIwF05/Xra2uXqZbLqf3XMZLZjQKLmXaLTg0wnSf6RLIGTFw//mtdrl+PDaLftnm0lwTEJHYleyUnr7g40CRkDd89l+QHK9rNtnWXRN9to2sq3Hur+iiSfd5L8hcuFpD2T5VXAewGMynCCsfH1JhLoibS1Xwz45CDb52TZdf9g1reZcV2QoDg4E9R7J8drz89UGe/s+dLO057/NNah/yS2eD7ryYLaJP6YI/PuBWLecIlK+Hq2eZ02ac8fPjGpEdNku21qZ0GDO4G0qV4uvGR9WP48x06KAO9SeWqg2n4Nb996QuB2ku2PPNqx2uBMoMWp4/IU6m59rNdbtY7en2b9gczKsQe6Gk1iXXTEe4bsUp/PM79YYCrHufWxCspB0tDEue44GESx/yZ+dOJsswChfehD8hz7jiHlb117x11IBg02CKZNmjkGzE8nzn5NBJhRYOZ9NJRrvv71XBCIsO4CF/aVaW/dMr93RNg+yYnHiePHPphYUo5L/a38nVPOs/OyrcusEfJbOU6dK8tAMtV2GJjh3JBANN1APR33+1ntXVPXhUH1qb53vBpEIhgsmT9F/r1gC8nFhfJNgHMvwDSt5crF33ZomYdZd43Os9j+Fw9/+SIWjsWkI26Tsjig0jkkefLziNxl+mCWZyAeZPv61+5W0ybR5rcNBlcucjxGF9muUY89iU+y6MqL2e62cWweH/JUlr4uvPLxM23VRZZdiNMsv6vyee9NcvFL87X/2NLWnRyvQwYWJoJSG//UoXzvnWQL7Nv3PtvReeNzQMlClN6a9a1wPSbFh9KtmyTbZ4c+XmarXx2DjoPXQLKdxz2SwXZ774bGi+uvZKnr00S0dfT4J23JXpDqOl2nKT3xOynJx0Y6JlC8F0V3XXaEydZZTFE5fj7NsVw2IIxcVTYaKu4M9a8jiDQ0BCot4zomOVsPo6qO7lE+AjoaK0ar2XbvkayRRDoiS1DZ+zxS1XuXKOcI76XqYR+sFyScjqA3usrImHcCCEbZxkQYSP72QBoBB+tz1NZ/+5ljdTHUOek4y3CeOweN7LFv/UtAwKhkUB/1pEDW49LE8iaVvn4D36n/1EEHFJhO9Jc7P7xuctq/JgHUn6meJq6z1vNS1t+ooVyu2/U4Gm45g+8kTQVVXGetI9nu/rKfloPr2okBpeoo54PPTnE8qNeVya+HZx8fZ/vL17UNPUbTdinntH69JgvOaMsoiwkK7a7tVddgv3uN9lp3Juh/+nsk97Lqw62sb16rHJPf8fpqfgfEIpkI2GuDbQtPD3IU1LPPBesvZh3L5w/5XkAfT7KAdb+oIcHY3k2SH9u+zixbfXykMvaBtVWch9ZRfbup7zz+xDwHaT765rVkISt9ZiNZQX/brI72L3e37mY7D9Q5HmlNtmvjBvLbt9inn6KeO1mDaBe49gzkuovr54e+ee1zHf9crtN1+tjSE09SJiBKp8AFTgfSt2DskRcThMus78p/OOS38beMdrJNJBolPHwbD48ITE71JsoRnF0FFA0CmTheUzka7CliYuLSOqcIJ9uYgDzntcCCgO8E97xlTwd61RGZysModOUi4OaxBkcYDQyv6l/bZvKui/XEOwoGmEGZ6guBg3c+DMhIEpIVLLIvLFedM9iurK23dVhO6o7nzkR1IijJrCfMZ3DiHRwSlgtcr7O3vk7rhNFN988yW37OH+eo7TDiPJGBPeLmRF11xLNj4l21trW3S0t9Pc0KnGiD93SApCPKY51zIphv8vfOH9eayYPLNI9JHtul3fUxoNtZ1+5E2Bg8ov30NRLCh9mOE3cBH2V59fA7sgDJ92V9gPx2jgNLba+ynWV9SJ5jxT5y3XetPkR5HuuqfHvlWY56cY68XHN8YUPnqoT9g0n+xlcm784r+WtZQPOL2epubSTXdcetsrYd2nmSxt5/kHV3g2Urdwnj/axvG2z7lcG4hHpSW+rgEteJd7coY8fthu6xvua7zPH66NhPvq4csGV67x76xWAt07SO3nCJA/R6tnmdNmnCEU9cckQt2eqCjfAUDZscIJ1LF2iNGgGtt0opg8Gw6+ZuTo0/8zTfebaOin10NL/98U4G+zlFzSZQMkV9GZVxBM59miJ5BEcEl7zHMTExc5novqOS7YdJAJMj1h0P96Nzb+JhUsu5sAN3H7m70Pk5UzmTMDo6Oz7qhaOhE1A1OWu5jhkBEx2vSQznj1F/jgd1bwLaE+i0fjdf10uB2f3Dvenoi9siAT7NChaS49coG3xSphvDNRIfzsFeOh/yddeOa37SG15nom5UX9rPplPc87pNtsEYHn/qr4Y3b0E7d5Ws900O2HQOTaBtnxq9Zl8YJHDghWspObYvlNfXHyN/ZXqcNTJ+mvWIULKNyPf4kAnPqerrtWSrQ+3THjGufN3NfAZyVIem/ngHgUDcbdieJ+tvnxTYl0R356PEqmPE9Z8cv53yNAuxevlw7bmsPyx4H+Xav/Msb1m7meVFAd+BNgumTTTtO3pU18lBr/rch1l3GEuSku3bsPrc2FuSvCfJOw/5XkZ/uQNXgN9xZ7CG8pJc7/WHGNvE2fib9ol6kizP85xnfSPbWRZC92JWMls7ziCS26Fev5bNu07XqemJ30lpIuifnKPBPQ0TjWkXMxcfHV2jIa7PRr2J0X8CQZahjCRPBmXsX1PzkzwE1/q3hoZOkHVTNjo5RlSb51GuTiRtTDa6Npwc8ynq6r80ihc7ZSYjyjp6fS9yTLBJ4DDNE/XF+tQ+nereBOLanh2V54z1n+l6dZrRxdbVrX3uBDj5mAPTRJxMmDmePj7k+SLh47ESrjP2l58b9aPOMqrv16NWntbp+aTckz2hfvLsuCOJnteW3dv1KZApQJt2T050jZ+5e8w56HdG9LnTdp7tc2reIbMNajvPZAGZ95DfuwZMtDkkiFMUe7KPLEtgZjBPXXKQonL4xSXJdpwN8pPj18CTHF0gT8/s3z1caz8MSttGbe+p8p9kGeO+GasEvATxQZLvPnx+OStR57MDZ4f897LdzbD95Q83Vheav/N9MwtJuZt1zjuWJBVsw4GarlO23fG7l+M5qe2pjtzPQlRKArt7cT/bnYtk1SmD6lPlaf/vZauH7YOfPSmAL1m/fbj+MMsRzZ8+jOHtbMlTsv3dNup79aA7ktxxYV88plwTXDdBHZWT6TTb51G6G/QQ/yovnzmpjvQz13HHpkfZPinSnvP7eLd5nTbpU4ak0Ph2wdKpTlFS6qijwHQmBkx8hatT8zsyOjlBLvzm2QPgFzkGLCYW/t46G7nx+jjRZ8voo0O9zvwkhzas7Ec/+ygZwYQJGMsy2j8RkbZpYELw1rImcgRmBEj8Wxn2yCjrot553lgn9ZXt9RoBqEFMlI/XJqKabJ1J9ZkE2vNwnu2cUCeT1fn5TWjup0k1dwX3djl4n06yYJ4/Jti2fF67icTNwH6KrHf+KNe0a2GwHOQpQHpK5SYSdBVxc1m3zTon8mNdsd5OO239zvnkzlRBZcEpySzHlHq0Zws5npVv+vFays6+9l7rMjm2jeZ3j2f7wTXYZyuqx13j3GXqswsuw/asw5Vvz47dznKkqy88mAJaXJdcSxy7O9muJe5qkpic41/J9+lBDj40fo57BLSTf2KfnBhcSNadmcdJ3oxrL6JM9euFbAM43BVosn6QwFAvS3Z4fVonTXyJy1NZnqt5KskPZDmKdj/LMbw7Sf5uViJ3M1sCWOJ4mdU3lxBMpy+oK5Sv3+0DrFenWcnIOerrL8bfG/pfUs4AE9dgdWEiT580ROU6fcLTpwxJ4REAg0qCmRq0CUQ6CuFrNXaO/AV5aRwL8ljXniHxNfeD0fApCkgANsk4HVlheaYa8FtJPvtQ34/k+GzxmfJfZP4hwspAWfp9IjaVpw+6Nh+BAcdmOiJUY+95rAwmIHV43WngNfaxicdo6AB7fdoVYKTZEXoDOZM555n6w+t7ZKrtmwz1mvvYOgzcWc+FypBcJNu+J1t9ZV+Zl3rRdccHqx3BS9aIakHjY+RntJjjSFJQ4mOywPHv34KN06Gujg/X60RUSfIL0jweTibZ025Vk8kVbZnzEYg0VX6C1LZfgMU14l2RlncUONn2f7KBjWL3Nyo65v3LOXUgxAEX3uN82N44kMMfsmuZKYp8ifx3Ub718Ve6CRbZDu1hbV3H/CnUUfCYLK+8fS7J+7NE8anXtUMvZKuTDoycZT2u9dNZjyTlICf18362NsqR9KB++gcSQJZlvttZd1tegXxPH/K9nHXsb2QhMrW7D7Ku3VvZ7lSYBDuQWcJ4T31LtmuLPqM7DCVMHce3ZTmK9mLWX5w/O/Th3uH+WZYfAr5zqNs7FW23a4k7QZTHz8h4DvgQfVPJyZ0s430/63xfZiW0L6OvXMMMLgXXq7P0WZ8UiQby9WzzOm3SpwRJsZOy00uOwRSdNsEEQUmyBf1XHekwEEnWrWFvORNo8RqNJB3qtMuRHDsJg0HW2Xz8zkhvshpjO9/W5eRIL48u2OAaPE9kxkcfCP5pNPt9ivIz2UElWyfFfGyHYKzXDALP9dmEzfNasMExdfSLoIm6yHluW9OOUJOBG+tn9MvlGwF2BO40x0f8OmatYwLhQX0mzFNk+BJlTCSS7e5Jx+rGkN+E+CzbNzBN+SYQ5SiidwM8TpPPM4HrNZPsifAxEfx5N4cEzIENlp2uVz8rB4FI+3yhek6z3e3wsZR+Ptd377Bcqjxt795a45xx7dvW2SdM9oNynagMdwyCvJatdXVMmr9AuW2TAHE9nGR9kLnj37ZLth9mBdO3skTqP5wF7BYkvyvrL85fZFmvtROct4JTE2Q+x9V1Y3Jh29a+069wLTFIZ732+r6PPDz62DpzyH8na/SfOxEvZBsYIvHs+E1H0xj4op7Z1u6le4f6ns8yL/eykL3K1me33pXka//ZpQP/9z+b/DdZH8zfwxVcq09lJevVkwkTdN6803GWrS0r2e2aO8863q2H9s07daf6fL1zcp3+QdOnBEkh8JnAw/SZxpvJzr4OzMc/pgjmtPtiQFF5Ww/Tue4T+D7K1ljWcJAMXOa4X96K5Xf2y06koPWDOX7TDPMS7F7q/iX+1VHZ4NFAc2diL9HhmrDQGZLgXdXHveiedzImcsO+GNCeqI6onMcq2b59pgDpYbbjSbDntkxcgnIG5nVaJB/TLk2/O+Jt+Tmn1G+ux3N895qqLph4+zr70bG5yAJe3p4FIDSy2qgn+1FQ3yjnebavO2VfKjOP53CXyFFK94m7alyrUxAl2Tp6R6ibSLxM4HmfsvcHaBkZNahvPRx/6sGp/jbKz3WYbPWea9w/ujul6d5EJH28rvcvs31O5VT3K1O/U6dos29mq7PtV3V7+vHW5mmqbt3Karu73u5mCzgpC8ezhKX1P5Pk3Uk+LwtB+a4kHzlc+9wsEfwfzbqr0vrtg6axexH3KgN/uJg7NB1fr+3W37/U/zOUsU113ptZf539xazr+B1Zdo5+/HD/S7LsIrWfH8o6N5W//SsZS45/oJj96+faKstMeZNlTp7OMg8/mmVuP/dQ5kfR9rNJ8oVJ7ix96PpqkJC2f/I5JasOBtlmn2R9DTTt2TuWpvPBg4wds2eyjBmft2q9VwVNktXmccyTT8wGxXX65E2fEiQlOY6Gk+knxwvO4J1AL7jOzyYJdvLNd478EzB2VG8CHb1umRzNo5Ng25a/hsMgZYr80iibBNlYsw8eY5ONaYemDoEyneMey/La3u5SdM1gejK8BhnOU7kYWdzrZ8fP88P2PT+cf5OvyTFODoCEYI/U0Am5jomAXuWkSAz7nUD0NOtumXfaznL8Gm8CW4PzzmPbunMofyvb51AKQk6yfaD1Tra/Zs1fAG8yAfIvfbdeJ44P131BwkS2DAa8E+F2CDYcnJjm7Uz5k2U8zrJGkkni2cbULusvgefa2svHeXcAKdnaMt9Ltrtf/T2JEoOJKLJfN3Ncn+diChR4PnqNQQPm7Rj3HwNNN7McS3ol2+cv3pYFHDYANO02Vq7zLPr73GEMPpgFjPcHHJ/J8hsdHz7UcyvLW6ZezrK74LVOe9v03OHvC1nBcOs6y3ocyGnaGbvKZtCGO0BF+9ZX+SbrTunDrLsOZ0l+569J8i8nv+x/nfylv7Nc445ij3p6zZ1ltQ1BOxwP2jTu6rRvt/H96Sy7KC9nmYuXsv7wZPXlLMtLDt75dYtNfO8hz4uos/NS0uvdD49VZXYAp7rSN6HdxFjcy1bfLrIEdYL6WP/kM6nf9pfUkclWvuHSa0VNPl5tXqdN+pQgKXRWjt7SkRKg9xrJAZ17stVfA3ICLubr1vIe2JscIo8BESxFn+sIuYszOZ2mRu4KVEliTnFvb+fCAKx94TjQkU9Ruo4bHdre9v90jKJtEnCTcDVKacMdfG86Q1m3fVPXDX6sC3Yu1jd/nlLLc+zYlqNkdhoGfHtjwD6ZyE+grHNBIku5TpGfAQHb/PPXuG7wb+JZORsVbVs8plCQcS/rWfpGqW9mS4g4ZhxrRw0JqKfdOSbO/0Rum6f943jY3pBwMfI8EYlprJgmXTHp5Vh4N4nJY9N8lIF6UPm8pif7yR061sH2mKe67T51Lhsl5zr3WFrfHQDpNcvyUHnPkI8kisGHu8hfcFsikMO15w75uNZ47y2H7yU1lfszs0To2c69gxxPH/J1XVSu2rnnDrLczXa38JkspOoy6yunPdb2pdxdTLZz1URi7l26s2x1gEEbvpnqJyEDJ+DFrH6suwiM7nMNXWRLTG5mDphwl+s+rreOfv9wFmLyWUl+Z5K/nuQ7D/fvoo2zJH8lq025n+1bCG9mfWsbZfWarf/s2jrNMmfJMm/dfXqYZffkLMvO04cOZbu7V/m9bjsuJfHVC74MgrI0/3W6Tv+g6VOCpDCi0EQARHCebBd5sl1sEyBssnOjk54ier5uEEOZCGhs9E2KWB+P61gW50+2hKifDSILDGrEHN1ltI3X6Hy8Q0LjOoFBEsu2RcLXefQPcjEZ3NThtZ+MdEdyTQSreVifHQbnkGSM7VxFGB5lC968A5NDPXyjHOU4UZ729amsz0OZ7HiHhTrXOjlvE8iljnSM9/o4fXYf2TZTQUTLPs4C2s6ygIMSmLdmiVB/OIuTPsvi8BuBfjlbHWf9laVzdifrq00rW3Wba8w7ALQLXLNcK85LsE/QQgBIYjbd65pycCRZ58y/o3Cq603WA9bB1DXTNe2gTde0d1tMShy82LOX1D8TzcrDery7Q4JCcmF75d0f2uBk++vnJPgE0x0DgtoC1RtZnyNJFiD52Um+L4s+t39PZ3mO4cNZAGbXwFmSLz7U911ZdlHeleXo0wcOdb+QJUJ+53DvhUM9yQqC33H4+75D3s5XsuoU191VR8dMKPkq3Sbq0hREom0KPvPlF1wHf+Hbk8//9uR7s7URd7LdjTAJKUkxLijn6W5N5aQ+nep6bUKJZ+1F13HluJd11/c0K3GsDeYLIqo7tCVMDcB0l6t9o19v/+4e8laujvU91GdM0jEiBuH6ZyDFOynJ8Xp5Q6cpYvl6tHmdNumJJyl02MkcmXP0xiDP0XkTCQMM3ktmR+xIUXTNbbB+H30xsHF+y2dQMRkh1teyNewEGCdZo4Tsh4HCtEvFvHT+lsOgufcIIO3w61xazsa0iZHTpjohEziPkwEjgWnTZKD5mfPneyZ/zsN+uV2SSJNvlt8j0ibuyfZ9+ayP/ScwZbSx/WH/TEZMvJjXa7BgjbLXKd/J6nhvJ/mqJP/4s1nCyveSH/xI8h9l/TG2Z5bLHz3nzmNEbLtA4bksgLHl2zePJ9e7o6xM7DePW/AoCvvafKyPIJpz0Wu8nqzgjG/Hm8Dj7Rz/foXT5XDfx08K2h9kAUwkVdNu0JuzAjySg6l9jhHztP8XWQHgtJ44Xx1nr1kHB1p3x+1tWR+8fvFQR4MCyTaAxeBH2+xuhwnggyw7BC8f8j9/yPfM4f7drGvuLItuviOLfr4r6+7MO7I+V9Ax6fMvn5lF/+9k1esPHdog+L7IGo1vquwkgbSJtq0k277Ozw5wdUwMfC+zfYvbg6xvy/rb2ZLz06y7FyUJBf1cC7RTDgjaT5Hs3Mp2DpN1t+uDSb4ly67Fmw/3KkvbvMj6/If94GnWnSv233a3RO0O8t5FXW893P9I1jfCNYDlgBMT2wg+e1weK3+vETvRtl6n6/Ra6YknKYzi0hkZNE8Ls+XpRAkeTBr4wN0UJfLnysNjVY+UZwLMdMhc8DVayfa4BA2PHfkUmWwfr3IkJH63dZ35bZAIKg2kGuFvHw1eOKYmfIzYEsBznBwpdV08XrNHDqYo716UiGR0b/xNBJjXwKhyE7xaLuukdbyJUW0T3erRtDPXPCUMBAtNPt5k4Oe1ZvLo/u3Nl+UqSbmf9ZWhX5nkH/+M5Gf+h+QXfFbyc383+SVPJb/tUfJncxw1nEhX56EPCn8422c3bFc6Pg5gWB/ZP5b3GmrimJjcUgbOx6THd9DvsywvFHjXIe9LSX44685S7VJJ0WW2YzKRg+qN54+7lgRZ7P+F7rUPLENQynGkDA6SXKWH1EcSb36vHEHZZAGm78z6fNXTWR9ALtgkEbMet/+XWZ8joWwvZgWZz+SjPDsPs7z2/TILyfiCLL/FcT/JD2V5OPsrfnOStycv/OnlmFHB6+cf6v3xrDsDBdrPZ31N7oezEnbqF+2CQWpyvD7tfzgWJAG0NbT7HKN+5ssJaH/vHsbg+UNb97PsFFVnbmR9Zu1etg/L9wc5m89HK7uuTrIS0j7En6zjSHLT+t+WZYfrNItunKHeBn4a7CtBf5iVZLZOY4nqf58vqc6xHyVtD7IS6LMsuvQw24CHiU9T9cABC+bjmNkW0F9U9ut0nT6W9MTrih0Dj51MQKmLiUapyaCFRqvfuQXsaJAHuwCgf01+Km8dFyPjE0CmEeCxKffVDpyf93YPaCRZZoqItK881tB/vE7HQyc4bQV77Cwnx87OrnUyaum5db8qC4+pMJ3qX/NPTptl/Lny9F+yHZt+pwNkBDbI03YdbaxsTOwvI/AkGASHl1nBkQlNP0/jQPn5nSDQoLRr9FT5CJrZ54sszvFe1jP1p1lA3Zck+e/+h+QXvPovJN/7aj791f8m9x8lv+TWElU8zRIYKOgwSLaeJOsbwi6Gf0F+Ew4n6qOvs44zXefa77hz/E+ztSlNfMi4/Xx3FoJSUJok/2jW32moXp5m/m2FM+Sj3JWNOl09os2zzW3dBVXWc5NxJs4Bv0/BgSkoRf3vMSK2zzLnWcbjnYe+vDPJ7/2HlqOGN7Mc0fKv0HNs2B8GbprX49bdgBcP1x9mAZlPZwG/7zx8/x1Z5u88ycW3Jfnzyd/LApK/Ksubv24m+bLD3wLVs0PdBd7P5NgXTeuewR8Hthj8qd1yAIIBQwbkrBP0fSVUTRzPyvZCln6/lG0wrP70LAvBfDarzajtbH4/h9i+MJhxM+trhV9BudtZn3+5l2W8v+g9S9DkJGuQ4M2H/PRdnY/uYibrr9e/Ocd2n/b+5uHvbfSj39mHHMbobrb2oDuO/XyWlcDRN1y1nrw2abdJzN7waTLwr8e/67RJTzxJcYTxEb77WJQBZg0wQYEX4An+tk6CMhv5sxwbmcpDgkHAR1lMdgwImyaDYjBIp0Inwh0JR8AoJ9fVBLTaBskYx/2h7hnUsb8Eq77PxPKcj6eygNJnVd5zQnLHuX2UY/BqsOH5mcbLsnYMToZyrpvGnTpKYuY5TbZjRtLR8nbGdjw8e36ZWWfbNmXjetmLtHK8OQckZCbQJJxNda7NU+daoJB80+HOL8vt9ywC3c4KEJgqt+ftcba6wTGkDnluqoeUjwSL/bA+u5+2H7QTjrQ6iMCjXLezANG3ZwGmv///kPyBF5Pf/fQCXN6VYwLV1zKz7wxIUI+p+95tISknyEqO7cAJ8vUfCUSy1R8SbO5ita7OgcnLWdZo+0mOj4e1LV4/y2JXzpL82m9Pcu9fzW/5s+uRI5IwjiHXM+eMMld/T1HuUZZ5e2vW+TvNEpn/4SwA+MNZwOfDJH8qyTc+WgDx27M8X/LFWWzgd6H/z2ZZJ89lXesPs84f7QcfKg8+c9yT7TFD70wl648z2oZPpL3XOTaVz7usTbS1N7OQ7rMsY/GTh79vyaLnzx3kICl+Nuvv0xSw83duSCIuDvfenvXHjdt+ycp3Jnn/DyTfcWjj/8/ev8dblpXlvfhTa2VVbfZmV22qKKpSTdNNQ9OkhQMCbQvIUQniJV4Onigf8ZZ4OSQxepBgoiYxBiNoEonJAfmFmBPzS+IlF4li8CgeDJeg0ICQblugsemmustqNlXsqt272FUra9X5Y8ynx3c+a8zdEKG6KPb4fNZnrTXnuF/e93ned8wx11Tl2qj772uui1TfoyL1+1xdmYfVf3h9u8vnKV3bpELUNrt8V1T1/PmuHK4HGle9xrhOqQPdV7zG8UusQiPAFQ88d8NnLFzxcyW9FVKf2UuLW7O48FJAtMA4hQetwATkVkp+WJlKnMKKgRakBMSpPKgUpL6gZDtY3/T2ZF3p5XDeqfilRWFEoJEgbaT+9rtUUPmbSs9p3CbepwIjUCcoP4/rBA/0YiTAchto/XOY4Drj0YJIBeB6M58EMbP49u+sL++lZSr/e24ovj2+SZ5SGSaBa1mEWUaSYuZDkOjA/JIYJ6l2vNyC4fXjOm6rWDbX1VkRP7anS/1cnbpN0vn64OhU1XqZ60aqyp+kI+c8w5CVMI0X6X1qxUvA7vuuA40KXDMks663QRbn51TF26Qf/bvSIy9K/6Vc89vEDZRbhhCupVb+wv0HM/a4790mkiF6XVpzs2UE2NZiIMFu5cV15voaqDr4mQH3yXne0LY0XZwXOd9pVea1VqAc3adyShQfsF5W8ZJ82f8uPexIqduTJX3Zt0ovu3idXnrxm/RV/1J64qS8gX5T0hO+RfoaFeBO4nqtyjYpqb8Nkp5WejB2qjfbRnngMeUx32mkYEgjSK4Nl5X6zfPW/bSh/nxNfbukSiz9Mkipjj/jejxNlJZUPJJPVelTkrsjqlvo3qRyeMGqCgkaqR5VrC6PG1S9ZluqRiwTc5Mj9+V+VS/JavftPhohnmXGpvpj63lIQqxI6zzTk8q56eu5LXQnI+JlH9Iieak+u6EXrniSkgo2FxWtMXQxZyAIddq0KtACJ/VBvXAtFbbzS3e5QxILCyFaN3z/fMTPtnDrSOse86Ll0f2UQInpWF9/JziW+pY1xfUMzLtFYhzcFpNAKiH311n1tyuRvLKtbGcCDM8Zj5cBlctxHlk/jiuFu+cC5+IIv9lW1on3COpdt5wXrD/rkb+5XkY7xHebEmDkfM/A+Owvh5anjFuOso6sp6+7/zdV9uIffbh06oj0x3v26N49v6tDj5TeNi0W5wuqyt1tmsd/rntpsR9GKvOOAIr6hiCbFvT8zzFIcp7Eyfnn/f1afHs5CZ/j2gI8UXmpnP7fn5D0pdLfLSDNACxljK9zXc9UwfsM1xhcT/bDUtxPL53LoTWXbXJbcl4YUJFYkgAzr6wfDRIE06yj+2Oq6uF449dKF/f8X/qVl5R2nVYf3DvsRV7j+NjKncSV6Q24L6hYyp+m8vyJlqQP3VfyOHSbpH97UWXD07+XvuuidOH7dVjF46J7pb1PKumfozrHL6g/HwnGTcY8ZkkiOX+5PijHZnGdYL4lA9IKT3k2jnucX87f93zfXizrs3XVl1suqXhWPPfXVbe+2VthME8ZYW/tTPX0NB7he1rFu3WjpO+S9DyV8btT9XRKxz+u6glZVT0AZq5KRJa7vI51/13PFRXis6oyR25XeeZo1l2z58oGF+paejWt17kO2M9e61IdD//3MzTUp4mXcnx2w254sHDFPzgv9a2KJCRSfeDRAjkBirRo0ZUWAamF5lb37XKodIV79AxYkPO6BWtaQpiH4/nTslZaUfqblskEmElckmxkfPaF4l5LmbAObkOCTadh3J2MC+67rEOCF4/TVtznGDu/JFQelyQuUy1aFhVlZzlU2klW9kUcghzOYdeL9SVAzzius9Nb8bkdrB/bwLo5b1oxW54Tjhf7QXGd6RiPpG+uxb502VL/AWp/DCRWVADDOyVN75deIOlxRySdlt7w8brt4oAqGHAZLctN9ne2JYllpqXC5hYVp/GcZx9nXAf3c4KIier2I27Rcz09R/z8zRnVk6JufZ50o96qN6qAtferWnBzHdEIkuS79Z9zhfODHmW2jfV1IPFKwJrXs8+G5Ef2jwFoy1ji9rCOUgGW16rMtZ9XJSF+6Hyv+t719Nof6q5taNGL1/JG+FmosYqVXl36T/67Uvcn/4CkL7gYNd+W9M+0cvGf6+ieC/rjt0qP65Dxqip4Pa368D5lkNcHyXauRc5HjpXrx8A06fl2Hr7Oucf51DKwkaA65DwiQTVYn6qM0Rbq6jyuUX0h5jrK4po1GfGzPOuq20yPqfaX23awy3+9u3deZSynqu8wmajMjbPqj7nT71M9HMT50qNqcqmublJ/jDgGij5yv9GAy+sZj/mQ6LRkYurXyzqkcLpUZe6GXrjiSUqCnlSYBCe0HLYUG5UM8xg34swbcVknX6cASw+IFW4SB+aXgJsWDAoKp3VeFBwptFymv1lPqa+gfD3JgvuQ4IgAjOkyf6mvvEi80mvh8Z1Huuw33nNo9WsCbakqS7YtiUCrj5zXGPdbBImBFq0WEHTgnMv7c/WPeGXe7CuCxVFcYxkpq3NO7EQ+mH8LgOYYtazHQv3Sip1vkR6rKOU11Yc936nyvoRD95UHXBM0baDMpbj/YAq1ZXF0SKBFssJ2sG9zfbTAaktezFX31KcHzG0j4DMIu11lm8qTr5F0s3Tzvy9P75xUn4TzORCWn/VjPRXtJClPopHyKuf+EEHhPZe71PUFt6ewXF9zHp431BWuk+vAdnDunlOxxh9WtWKfRjy+n4KAzsSFngvh9xLyYzu4/e727v+NXR2uk6SfUSN4FO/VEw8c1ofO1Kvv1KLHh/WdqIDiddxPYwVlGfvPpz2lscttGdKPLQMX68X/XrOOP2SsSkPIWNXqv6lC2OktWlEdyw3VcbBRc0XV87Smahg4h3JukPTtDy8RfvEe6bVd3L/elfEfVcbN5MQGFvav5ZHl9rbKuLudh7u6r3d19fXV7ntbi3ovSYNU111ihZTD7kvmt7cRjyHXnrRz/N2wGxiueJLSAhlWEn4bORcmwX4CN1r3k5zYGjOKuAxerKmIKeRn6gvjXNgJ0lN5Zxoqe7Zn2rgv9S1Zvm4h5/LTwp3tc/5UCg4J5i3cWwCFgZ6uGeK1+iOvJaFIxUXl3LLsMQ4BNxVHWqiyX/jNOeDrrEOS3vSisA0JGh38QDgJ1qgRt5U+530LiCeRy7XAPKzYW3EJxrNfGHce3/5tEJTjf1IFSNCiuIE8DQg2cc3WSNc7SX4SQ/6faHiNEVi3vFwtQtYiPa5H3iPo8FzMNFIF43zZ2lSFwB27W3rK3eX9Mce7+64z1zLTEVDl/Mk142/3Aec8ZW7KPo9VAtoh8DTS8JvQmSbHIY0QlvFpcfZ/PlMxUb/PWKdcMwwGpy3rsrcN+5mIbZV15Hk1Upm7Y0l7DqggVUn6M49RO/wPSY+U1qT9Z0oGnv/uX5N6qfYlt585pGd56FrqLhppkjQMWdxTLzmvJfxuyaEsY6Y+2RupeE4MsCeqW6iOq7918YmqL8Hcq77cWVE99tzhoMpD9FdL+uT90ub9/X42qb2+i3NS9Vhi61kfd862TZC3yc19XfmHu3vHu+t86STlIr1ULZKY8939xX6ca9FbRqLNfGgw8TrPsd4Nu2GncMWTFC+QtGr6fSQEW2nNoyKzYEsrD70N0qKiZj1oRUqrnrQI7h1cl9xaREIzRBhagCat2tleqVris31uG70tCVKyXG4ZYR84UOEkoGV7+D2Ka7kNIckeFeg47rvtSU58j0I1wbjrTyA2ifvZtwnQqCzSA8T2MnD++ZuEhPm3CCwtoNwK5jQcz9Z2OuZN4sq2kuimp4vrwfVqlUHSnCCP87ZFUrfwe78KCNlQJSbco+5rDNxC4nFymZOI0yJR6a1kW90nCaAtG9LCybQE7tnnLYJiUNci6VIBRP9R0q+pjo3JDh9AT9BvK+1IfWsq1xHnXnqECDyTUJPUeQyGgA37gvm3frM+lFf2ynFu5hilJ8Df6WnNNdgCb06Tc9r52XPlcvgsi+Nd3bX91JkClu+S9IT/8FHpm6T6xIPDn5H0k/rk3cWbePj+8v0MFW+KiV32o71zbNuWFtdetkFa1E9JNKhfGEhKeZ9zI40eno+teoxUX9RKeUIDhuev73leH5b0JNX3rayqbM063cU5h/SrKtvDblQhD7eoPBMnFULytSpk5HdQzpdIeq7Kw/V3qL7gcdSVY+65rEJol1Q8ZhuqcijnvdetyU7qSfedda3Hgc+qJKHMPuXvC43rQ5jAsig3JF6WIRt/qcrcDb3QMvxeUcHAV+oDTVr7uMAuRFwHx7cC9vy1sBmrPrTdsj5lnaj4bNWwddZgdYT/TCf1hXjLakGQwzhCHJeZFsNJpMk4Uv8UDzXu87fPWyeYZWgBdrZtyLvCPmA+SVAch6CjBaYTRLkduUiy/o7jNjr9PtxLctsKBES0XiVQTRJHgOcy7OFhmY6zU95eE+kNsSJLwKeIKy2uB/YXAQLXkutEwsq6DVmk/dApD6xgXILuTdX3Alghb2nR6ij11xHbnMCMgJxlOi7JmdtFcMa5x/pn+6W2HGDeWabn3hL+j9V/lseAeEl1K5HnDQEMwWHKOKfhWLcMMK22tLaepNEmCSDLyHzTADTDh/O+BWiTwKRRI9uW6fOEJLaLcs8y33l6nEn6bJ2fqS+zePLUQRXAOpN01ZeU+f3Jb5akH9OiSUvSi/+O3q/yMtPxNfWh8Bwr183z2CA0gWjLMDePtL7eMnJJFbROEI/rR43fM/X1I/tREc9pPY85hzzGTndalXxc233WJf2uyjNGR1XeNfM05LesQoCepPIulKMq27HeoSJXjnTXZ921O1VOX7uuK/MPuusTlVP2buryNGGeqBwn/J0qROe0iufztMrYXdPVZVPVA8S252//9xi5/0y2LAekqs+41rkOuM58jyRUWvR8pq7eDbvhwcIVT1IIfAku0trt0Hp4knET8DOPIUDbskR4gVNZE5Qzrn9TiVDQS21A07K+sz6TiNfa3mCFMInrFFoJ7OhKpmeK1pXsF/5P0MFyCCJcJ59oNkRMnJ7faQlvWYho6UywQ+IxjW/W0R/GyT7kOLSsvmk1nEScOeJ5TnnMOMeSZLbanYCFIddFzklaSwm+CGg8JpzvaS3lt/vEcZfVX4PeKui4Bnv0ci2pAK27VF/4SA+I53gaBLaRLz9UxK0+biniBG00UuwkhOlJYL/lPPF7HNjve9We11xnBhYma1uqb7/2OG4jLvPJdrZIbcsDORS8ncmB7WS7aR3m+JF8sV5S/23YLcDNQBDndmU7fJ9kI2VF5inEsUU7vU6cz3wDusH8muq7M27rPpuSdLP09IcXgKzxT0gXfeS2JL1GeuEe/eHrOgD6baVRx1UAuJ/FOKi6NoS2UV5v4T/X3ViLcj1JBmU29QLnbBqxEvRKfUKZnqnUcf7PLY4rqqRySX0vir9Pqa6F9e76qqRHjPrek2slPVrSV01KXreqEBGp9Of3HpSe83+U99OsqxzU8TV/QXrRM4vHZaRCgG5VMaA8Z18hMNepblcdSRofqQclnFAZ83VJ96ivWyj33Pa9+LhPcg04cD6nAYaymfKTzwXSU9V6t4y6uA8c3X05h9lD9NkNvXDFb/eaqig/b19iIEhLK3+CUIL5ierzLFIVrn5IkpblIZf4NNIThBMMEuil8E4Lb7aJwov5U4mnx4XpWsH1SXDvNraIDsv1/ey7LMPfSQxbVn/XqeXJ8bgZyDCdgb37N8ebgeNFoOr8MlBou24eW+bTei4q5wqPosx5wPKyj5yv07rfuaWBYznUFpIvAmyHeeM6ySD7zveSLLpdJAZJ9vybc8llenuS+8B7xl2222lAzvkyVbUeUtG7rq4L1xHnh+8l6RgyOLSsjSTEOfc4P9ITlXNhjDjukxxjRb3c70ncKbdyTQ5Z0T3HWoaeiQrw2mr0geuS+bG+ObdYV6dvgVTF79lAPMoItpntnCIey6aHKevCMDRe3HpDYs68tlSINonZnSpg9djPSA87WMDrx+bSuZG0pD06oHJS21GVLUg3S9LrpTeeLmB3ov6zLptoB/vLY0sQ67rTZ0N9kEYztr/Vt9RRGYbkCPPPemfItZuYkAaTdeTjMtclvWFe+m1ZZavWTOWo33unhWisqJCPVRXC+L7T0tHXSY97vvTXflrSa6WTr6vey+d15dyu4h350Plyqte2infmd33vvrLdzLrQcszeNrYhdWTqq6G4lF25RlLmUfbY00YZMlb/+G7n6TL2aTfshk8tXPEkxUJrSPl54Z1XW3BSaSTZ9cJvKRN7ZJjW5VGoWNkMCRorqxQytLDPVB9ka1nGU0EQbLJ+9NDkA7gWQAYgCVrY/sw320bwSWCQSigFaJIqB/ZPAoMhApR9wHawjs6Pinje/afVk0CQ84MeEv9vgawWwRo3rjFkHZMQM58krvnb8VvW4KFx9JoZGmuXkQCCZSSwI/j1mPOEm9ymM4n/BLMug3XM9rlOF5C+ZRgY8qySKGX/8TvXif8TCCZIZrkEXyShBrfMi2SY9WgRy/T+sc5JrNz/rXmZa9r1S+OBLazcLtqSyUnWW+A0T++6gOsJkma4xnFNQEsZoIE4LeLjthC851rI5wMoW7j1JvOi1+U+LXqwrlYBsudOl61E71R9tmFZhXicVNlKdFzSHafL1qG7VN/p4lOjHCzfUp7lfKEecp0S6HK+Wk7R+JQyWrhOeZC6wWva45pyJmWmZQpJtj1sfiBe6tdXqnN+qkoUVrt796j23arKc29P+EuSfle6/m5pz/O7CD8g6alPkL75Qzr6Tkn7pMfc3hX2PdLqPytje0J9b/CSyhhuqD43l0Yo/+bJYg7ELByrIRzk9HnIgMsdMppSlqaBIstr3d8Nu2EoXPEkxYuntdD8TWFoL4njtqzr40hPojFVXeAErbnAKSy42FkOwVACUSsuA+YEplTybF9aR4bql9sbkghQ2Kdwd3xa1xOUMW4LYKfFK61ajJdWdgpvKqoWgGY/OnDMbfFhf7ENJDQJqviMkq8lOMrxd76Ok2PI8tmn6QlMQJ5tc2D9WkQ45wfnYQLqVFzZT1L/bd0MCWjS+kcrbgL7lmJ2GraNWyFcP19rASXhHgFjrjVf45GrO5FlGgR8r0Wi0sPWCvQU5dxorWupP4ZsF/PMueY2TtTfImOvFNtBMun15b4+HeW05rLzGSEe5XTOa8sal5UWXId850uCLIYkSa4j+45tIBF2YFkp//xg/NA7PVJXXFCxsB9QAbIrKoRjScXC/yRJv6kCog+pPBD/hBeoPNDwaumWjxevy60qzz74GS0D35nqywzvUPV25VwYa9GA1ZLPlg857922VkjC52uWGTT0+F4aU2iQyaNxPQY0OHEbmHVargchzVp3f1PFQ3VNd/3xXdqj6m6ckvb8FUnvlD75B9Lxt0rn9CGtqmzl2vNISd+j8hT928rzJdvdvbepbh3bVn0ZY3coW6//PTbcPpUkK2Vky9tCPe28qPMpZ5iO3xmGdD/rdlmHi9pZMXy2ytwNvXDFkxQq4palkkqU4KtlCWUYAt38b4Fp61IqsLQWkewQpNEC5f8mJ1QitFBMVRROC+S0hLvjtCyIFHIp0Kw4khiklXzayIsejIkWhSlBy1iLD1Wn9dj32C7WK9vtNhMAUcmy3klmW5bAaaQfxf0ktAwJmggM0kuUgN6hZR1OAME59WDAnFZJWlZb84LtcP3nA/eTmA0Bc//eRjrmzcC1m/NwL+KM1T8+luU7Tet3izCkTEhZQbnjPAy4vXZ8jdtHZ+qPVZIZh1T8lCmUBT5cINexEJ9k2PdpQR+pvvVaqtbnJfVPgKJxg/1KudQavzQYcC267v6ffdCa9601kEaGnBuMy/ZZlrm8HFPqDq77zKtVl5YckCrAXlM92WlDBbDSkn9CBbwe7/6PVN9/Mn699Lhfk3616+yTXT6/o0pOVlWedbizS7vRtXGlu7eOenkMXH/Kwqw7CSHntse55UXJ9eS5QtLg58tMhNn/rAMfxqcnijrEB7p4Xm8iP7fD9bKxaop4N0u66uHS799fj3O+S9IX3CjpX0j6IUmr0sO+RXrCMyV9/0j6D/MyADOVo7/+b0lvk+7+g/q83JrKO1bOS3qTqlfMBgIabyxjaRhhv7ZkVI4TA0mg1xblMsc1MZLzbGGm1AOXGvvvhs/dMGTUuOJCS6FLfYudQ0thM/DUpBSSDvQkZB4U6hT6CUjTG+H6GhDkCVvC/9wiNoq4LHMIXEmLgogWWAdar9w+khIDjzHut+rNcpyvVBWEXeDOj6COFmHWnf2ZLm3HoRV0Htcd34o160mQRIKShEOIwzGgdZZjntb4nAezyMMAiXEzEOix71tzwsrddchtVtLiOPM7r7tPCOYycFwcpwVosr60Zrfabas1ySHHKNMkqfTvBMkErlP11yPbxzkplfmc/cq5tZPVMy34atznfGy1OY8a5fzhuLscA1/39fUqW4dIDAkGCb5J5lsyiG1OT57rRBA2xn+Cp8wrCf2scS/ldv6fqI5VkteWLJD6bWSd+NA+jUpOM1Ilk55LM5WtXE9VBafHVcDrpor13c9bHlchIbbGX6vyUs4fnJd8ntblsSHpXtX3eviN6Nsq243u665fozLOPBnOD5qbINGYQPnotrqP+fxBrvEMlCnZx/SSpYea4HhJxYF0jaqusDzPHQIG3t4u5vHxNqtZxLXBxEcOX7y/egi/4NHSFzxc0qtUBuculf13v/hJ6fsvlty+6aL0zy+WAXGGP3RM114jPfmGuq6XJB09UMqg7t9EnUzEPE/driTenm8p5yiLU09zbDlX+SB86n2uq1acIQPQZRtmD9FnN/TCFe9JaW21kapCJphKK+JOoF1InwDK6fgulnHEp+Uw60qAagu2A7cmtcp3Hem5SQtLizgp4mogHr0eE9V9sC2wNYpvty0toex3WippiXM+rTwTHFHAugynybz9ewgE05LEbSfuAwJk15/lOB/mN4q8NRDfvzl3XF/2G71vrj/ryf6i4uI8Yr8k2Of4mkhJi4ec0grHtOkpa4G8BNyzSJsWPubPeeF+YF+5rQa0CZKTOLIerifnIOMmWG6tL8+RfDcT60ZZRJBAcpdEu5WXQ4Jlkmne57rlvNuOeC7nsKS/IWnPo6Wfu6cch9qyqJ9Xn0SynUKeaW1N2eW+pfz2HKTXheAoSZJwT7hHEk4SIVXQ65Oc3BdD7XBelDVuN08/kmrfLiH9PtU3zPsIWnX12kD8bdXjiS+oeAFWuv/rKiTjX6mC7AOS3q2yA8nEZEVlHKXiidlQJUYrqPsJ1HW/qieH241Imt0vnJOKfvH4UqbymRzKwTQsUoZwfTie+3lf1z7LGcb1eHKOpSdIXZ0OoS30ALkd9kzNVDwf+jZJv6GyKH5e0lWSXj2wf+evXZTeuEf6SUmTE8Wd9cXSVVvSiXsK6bzqTG23PTXc1rWm+r4Urzm++ynXgtR/Bie9KCk/zKFy/vq3t7Z6XHINpk5hvrthN3yq4YonKdKildmBiy4Vj9P5zfSOP4n7GSaN3wl8fI/AKwFuC1Q6XZILC+0kJgQPFhgU9Myf7U9Qzfisxzy+h6xk6epn+/2byt8fv3XXysFbEGYqAnsLbTaQ9hjRm5QgZ4o4rHMqVgJH5ifE4XeSKCrizK8VmH+SKZZPIE4gz7APcdnGvSrg5ZzaDxZLi0qbINz307vBMtJyN8I16cGVFPvReZO0tPoyvVdZJ2nxvTGKNKxjGgASlBGsJDBreasMmJJMOa8cJ/Y5gVt6TdxXBMe8l2QzwXVr/mcfTNTfYnOHpKvuKdbjBEIuk5bdlnHIIeca1xLHt2U0yramgYVWX9aBJMWyn/3Ah+tTb3j+0To/QlzPBQJnGplIliaqa/G8Khk5qEIKTqqQjntUCYbHQioAeVMFkF/V5Xta9fjoVdVnGba6+ysqeHja5X9Odb66v2aqbzSXijfngKq3RSrju9LFcd1yDqScIsFIHeO+ZT+mzuHYpm71aVkjlb68RdVjmLKJOiLrIFVZayK4V6WPz6n0KYmr896UtP93ughv6S7+mHYOvzGSXjiX/r2kx0l6gzS7p7Zho9EHfpHkRte2NRUy2TJw8TAQt3eIPOY4pLxiIJHns1WUH9Q9JC5cI5d9IHC8lGXuhl644klKAqx0sdMCxDTSImjMxdWyGg8RHpc9U1FMtGwmWEmhzPrzurQ4p1v3CGStQCwIW6SNXoFU/K2yWG8rIBKFFKBpTWMZeUqZ87pa9Rmbiapw3lIVkgnU3ZYUoD4qujV+Ocb0RCTopbJtAfZUpLw2ZGliPRLAcTxYNvdLsw9aZHZZReFuqCg75zlRf++468jwYAS9da/VdsbJuU4rqVRfXjdSfSu2jQepWFvjT5JNspyg2Nd9zePdmifOk+sySQbbJMSjxbhFrByyH6Q24HPeJEaeizk/fZ9lJvnMcfF9/9+U9Jru/2aX/7lG/kMGC5fT6n+2kaFFzLh+uMZ9fUn99ZgWZRs1pPb7ZDhnWoYJAm7Xm21wWfY68B02I1UATbLjctZV+nRTdXuPUBcak7ZVjsA9o7ImrlHxAKyrEI1tFdn5lC7tB7r4JD3bqnJ3A9fcD6e669w22TK2tPrLJIg6gbLyU5Ux1GFDhhzKgHWkYX1W8N/PtNjwRVLqOrvex1T6zXX24RGWTyckzd4tPeL7VF8L/zw9SPiH0o0vK26TZ0izX6rPFu1T3W7GcEz10INZV3fPJ9d1rP4x66mDTWJJ2LL9/KaMJtlxfux/B5eb4XOGoOyGyya0sPQVFQg00kJLS740TJytQHLLRMahFySVr4PB4Fz97TJUogQYLWue25UeiJY1khYtgtu0QtMDQMXp+9lWlz/B/xbgc79lHnPVBxbZxsxnpEJIVrt8vlZlr/RU5SVaBA18YRX7yso183U9qIwo2KXqah9HfN9j+/nN0PpPAkPBTYXSUjBS6Te/1NB1plLh+Cd43FYFQflA+iTyYJuzLVxPLYXl32mBduBcHw3En6kCNSrGSSMdvWVpqaUnzmR2pP6L64aUZ66/XBMkLKwbyUgC21zHHj/n73ZwjXK+kJjRKzhkHGlZWXOdkeiwfUKefk5iqkpQkkinRyM9T+xn1pWyjGvJ1yfq911LvpK4sP72jAy9zK5loPJ1yrEE1qNG/JTd6v5fiLgOm13eK6rEyt6XBNiUUSS6U5XnTE6oejpcloHupCvrPi2+MNIExaRtG3nMVWUFyx2rfzqY15j7gevOfUFPif+nTKa+oOFrijQt/cq+oVHN84eyynWwXPcWOm5JI8mcqZDA9AxcQPuXJD3i4SonEMxUGM379SDhv5QMtiV9UBo/Urp2VP76ZEiGUVcPer/cV5QZqes4d3mamb9dXup9jhsD1xn7mv2bGCNxQIvA7Ibd0ApXPEmhtT6FKK85rlQVTSqg8UA6hxTCzktqK97MN+uRDytzgSewTYLi+rSAUoJSpm/VPR98nKpvCRyyiiUp9DXXf7txPZX5XhWSsinp7y1LTz0jfeO/L0c+UtGQjPHMe4ep+ieTENQlGGDZbFcKcJJWbrdJkNwCVEkyXafWmKXbnX1E4O45lvPY9ZJKn2+ogswWaMx1wvGnJTQ9D65PWq1JPPzdWl9eOyOUactpPjOQZHpImfK3vW5JGnIdcG2y7zmmBKTsC24py35gnXJ7llSBCbe0sa1pVHF9Ca7Gqp4nh/FA+p1Clunffh7C23xskc++9neCvanq2M4jzRxpXK775DziDPUt1xm3Mu5txMn0uabcZ/yffervFvlgGvY3x5fAfkMVfB5QkXmee1MtyigTh5Hqw9VzFQPEO1Sw8vUqz2dvqBxP/E6022VfUB+kkhxZvpnQ5xp32ZNIm96S7Lch4p+khfOP85FjyG/Xd0vDcz2ftXI6zyt7Vkw+TGLujbZL1eAxVvc2+O9ScYU8ucvg5do5/Njvln1pz1V50co3qgyaFom2x+Ne1X72+LGdlAc8ycyHA1ivpKdRSNOSiULaMeJyy5eDPZMk+c7rcwpwzh6iz27ohc+pOfM/G6j4drLAcdFLfZBHZZSAyIKBVkAHCnZ/2yqVyjzrRiWWczdd3o4zZElletZzEvd8LUF+lp91S5BCS1/LYsm6uCz2odvFk2IecGss7UwUFfesTFLptbYtDLWdwN+/sz1UvOyPnBPMN4PblaCEebtf03NDMJ1W9fS2pIeFZbm9LMPW1kxPYk6C5bLOa/EMf47dkDI+j/9p6TZgcd24rknU5vjOtXxYZUeG/xOQknyTULUsgQZZCbjTipyBxIpEkyENKMwrgZrjp8eFn1ZdpX6f+n8LwDjOOfXXat7nVhnWvTWvc11xLBjY3wzZ7w571V+HlCUOY1WDRgv4Ui7neqC8bhkiOHYJ7Agesz1+7mOj+8+5vaW6zccP2juN8yMQ3FLZ0mmixzk8664vqX+0NAMt6ZvqP5id69iEZVmL3jSpP05Ml3ItdRn7kd7SHGupzitu3+PzIylnKMdHuLZXlYQ73VR1C57/H5P0mFHpk/ukspduQ9KXS/oJFeLxL/aoGS7skX5JhZh81/6S8e3S1gfL7TUV4uOyNlXXHdtDw49Ut7B5vnv+0JjHeHuRNvWa57xJiLEL70n9+T1WJURCusRELaPgbtgNrXDFk5RUpAQa/E/lb+FIpZ95pgfBliYCPgIGfqelk54bL3iCUW/L8T78oQWeCn5o+47r3HIpK+pPAJWKmEo7y3ZfpDWYHytV151KiP1zVkUBvuKM9NF90pu/vsh/W2edXvhPhTPCN4P720rK/w3ILeSzzgxuN0Gpr0+RD+vIsh0SiLtvkviw32itcn7c+94CeyQqBGHpGWF8KvRsO+vMYLC0b4e4CVY479N7QVA0V79vkgSnscD9QSvhcyV9g8oefs67IcMA1zrJRcoWEuw0REwjnvNteWuE+PNI1xoPzwNb2NOCme1wfu6rNBRQBiS5TYMEiaBUCSbHuSVHEhy1DEgtMpvzZ8jwtB3xnaYV3/FSVnONtDwClB0cF8YnWFxVeTB+ov6zBTzydksVXBv0TVTJBIneWvfNebvSlX1S5bmUmYp3xvPf9TmsejJYWuQpt6yDKE893wzaV9Q/mtjjRX2WgWs/ZVWOk+deemU5J0bxzfnheqccInH1XD/b3fPYkPxxTp3uEjnPD/y2dNc9Kser3aDCMt4u6Qf3qIzAXZJeVP6/WGWQv1zS/3tWp94v3fr24gnbqyKX9kz68499NlPhQxvqz7lllbEgTqAHxR9u8xPSu2/pEbNONLnmvCaJp8dSqrLNvxOLXfYhrTyX6rMbeuGKf3BeWgQTuVAI6BKgUFkR/NjdOmTRlBaVMIGKQ1qEEwhYkDCt60ugk2HIIungfFvucwcqgk/Fgmkh3yIs/OZ1EpIkZ67XadWXXP0S6r+uomCtfDdVvWG0JvHlYkNt5Zzg0YoeF5KnnEsJ2hw4D0j4EvR5PlFJ+FhOlkHLvC1hrbqzDNbLlmwCMcrFFvB3cJ1mqg/Yc12RcLo9LYtZ9nvWMy2uLpt1JsGiIsxyWiDH9zZU+yPXK+ef6zvCJw+cEOIIcfw7y5mof0gBgRblS4ZsJ2WSv+l5Sk9haz6xn6ZxLQE612TLezRWf55nHvNI2/I4s5+Yb6vMsfp15QEZ2RaDc8piRV5JTKQ28PJ9bplJkmnSkEe4GuRStrY8TLRE01PguHN1ILkLPozlSSrk490qlv4VlTeX85kK57vRpeFpZg574zplBL2cHHO3gfOPckvqz40W6eRcc16p53LdcBuv60BDAcemRVhbxqeM47FbVSV2t0i6+nzhGiaZ5yTpZ1WOIn5y970snd1zVu/VY3VI0pMPdgV+g6QflfTuSvAOqhDLOySdmFadtqLqTaEsdz9Ql5pckRxy3rlf7CmaRHzKPK8lyg4aY9I72VpXJHpZr92wGx4sfF6QFLP41vYLWsTSomPLCcFXLsJUyK1A8JDbABhSmFIQWZi2gEoLMDq/FsFIIZSEjEqAfZZANNuRYIuAhfEIILJ+PHFnpGr1O6EifNe6/xuqwrLlbbAQTePETIvKziCCwpeeLVrmEhwT9LDMVNbs5yFwmJZ4tklqj1XGb4E/luNrLRCQwNikxXnzGSL2s+vRmhMkUmxnkgjXy/fZ5wTuOZ/Y3iQ8U/Wff9hUnZdvVwUeE9XnVXLttMhRkjH/lvpjnwq+5ZHgtfQq5dx1m1hekoLWmm5ZMMfxTSt1kgTXyeNnOck2kGw7P8pdlpuEkfKD9eSaYz2ZV8tAMI14uWZaaS9ouGwTBa4FtsNt5smEnqtTFYC5T/UZadfNMs7zkoF9lm/5NvlxW02I1iS9UNL+R0rnPl5P8rtLldCwfpvdNcqAGT7se//2VmVa1p2XvT++ZxBMuWHjS0tXpkyw98Jy0XPK/doy0rhvLHPTAJHrhW12P3JN+v4G4jvvq1W8VVIhFde4Ei9QIScnVF5L/xZp//dJX/ZXVd6h8rou8V3SxbdKe14i7X2dtHWu3N5W2SlwtQpp2USfeb3ZkMb1SXmT63GG+Jaz7qtcN9RDNBANrRFpcf5K/TWYBpPdsBs+1XDFkxQCn1wkQxaWvJeKNhVrWi4tDHLvcUupMu/WQidgc5qdtqNo4FrL8p5eG4IQ5kGgM41vAu+dvFEEXFbmFJoJ7Ftlb6hvJUol40DvE/uUwpugy3mMkI7jlfWnYKaS4DeDwfDSwH3H8Xhk3RxapI6gMOtCIEgrP++7LfnMib9b6VrzlCHTTzXcbipFx9mn/vxKZcn6kKDkeqAnrDUXSFCYJi3+zNf36UmdRfoMaflln04jjtQ3UBiosR4kclwzs8hnqM9ZdgL3FrhnGs+lJEtS3xOcVnaSjPMqY0wjgNtHzwIBpQkn17xBU65j/iZRStLL4HHkCWCK3y2ywz428JtGPI7RSNVLwRfvsQ4c6zQktLaOOt6GysPxV3+8EBN7606ovgiSa3GkKpMs30g83L70RtBw43xo0OAzCSQaXI9cK9mv1DHOl/OnpZ9yDdLwxEDjAQmj5c+QB5M60/252t1bVyETt3X5HXiN9IiR9Ka5tPbhEu+Jy5K+4FHSnR/ThbcXEnJc0k2SjvxsOdjggqSjqP8TVQ4J21QhulwPXC/SoteLRDZPb0tvpFTXNWUg5+1cfa9i6tc0HlFvsh8/VR1yWYS0Wl+qMndDL1zxJEXqC1OpD6JopRXijRvpKDQJDPzeDeZBAZwgl0oigQbLpfdlHh/n0wJFCeZalrK5+qc2sZ3ZH3k//1NYkkylMrcQTMuawWLLM2HhacvRWIsniozVBwhJWrL8JJDOI62HQhyCXl+zkmPeQ2Gl+84T21LhOyRY5nXWNwEj5y4tkO4z1pUAUVF/1icJQXp8Wtb1XFctwMFxynXSUmKcZ5z3rff9EPAQ3Oda5Glc6YFKZZ5j1CLoeZ/30hgwlC8B2VC7Wl4radHaz35Nguu6ed3luuF6Yn+3gCLTcEyXIj7bzn4Zq98+E1XFvRbZbFnHuSaYzr/TKsy0Q+PBseIcdxn2JExUvBh8YL3V/xwXtoVeKOfd2lbD9vjza6qgdEVVTtJw436R+u9DcR14f0mLbxbnGnbg/TR2+UH2qepLJd1Ot8VxLZeFOKnjaHh0et5rjZeBP2Uf02Z7VlWNS753tYqT5N2S3qdywvBhlXG/savPB1WcKJoXz9ZN10h6mnTrP5L0jz6mbUk3PV966n3S8fdLb+jyX1LxxHzxPum/nS+E820qhOiYpK9UObXtdrRzufu9GfWncYCkYKW7dk51PBw49xyGDEA573Lt5vpxHtQfrTi7YTe0QuLOKy48mDVxpv6Dnik4c9ESdNG7kMA3AR+9Ahl2AixDHgpagVjvVFrSIkjK3wT5FOJj3GM+BKlDFkkqcGkRHLkOVGhZP/eby1tSv6/4bU8ZlU4KT9ej5YlyGu4FZ7okNWyTFWOe3GOgYVBkYEThn1ZXKpVU0Owjju0SfjvQkp3tyi05JElUPAQMzJ+HRCQ5b4FXEjGXn21LJeu65NznnGI7SCDZDl8nOOX68BilVyFJOi3LmW/ORfa765vg32Gk/pxwvbjvP8dVuMZ+9X+vZYY0aHAeUJY5bs7NVh283twGAh+OvcFha94xruuVQLJF4hk8X+kFSZm6EyidxUdaXA87kWeHVdWH38+pPhu3rP4Ycy26H2iM8vMNnBMOnn9sD4mQ5eBcBdw+VfUdU605TiLB/lDEJRHkWkxg6/v7VZ+zcH0nKi+atPzww9tLql4yEphJ/Jf6a87vivJRuG7DBPku4T7n/wQfj80+XLtW5fS/VRUi4vbuOViur6j033EVQnGbCom5BvdOSHrz3dLW68t2MB8NfeG3pfe8v6Q938U/pvLS+ZPni/fkRJf3pCt/pWMkU/TbYdW6uN48ydJ15kEalN0cP/Z1jin7M8dirkV5k7o311przlyWIRf/pfo8BOHcuXO65ppr9LKXveyhqcAO4Yr3pHjx0S2cbtMEgiP1FTMVjBVxelSooKlcSWBmuMb8W14X1yVJDS1FDiybW0EcrAxz6wUBKolFlud8ecoY3cFDFsmW9Z71a3kfGJcKnITGbRojP24naBG1rCcBAvuHyp8PoVN2cMuF0/JB0xYxY1nsU5fV2t7idI6b88F13cZ9zh+3eSvKS8t/y2PgevqbILO1RhR5cLwdRqpejwRMM8RNQEvQ5P7ONdmaR7TGS4vr02WmRT/BKOXHKOKOVC2UG7jGcjm/3CYS2FybM9U1xrEUrjsPtzE9B+4D/2b+JAlDJJl9l+t8rEUZ47xo0KCHJufzLNKSmMzjvxppHLz+3W/Z7/Sesf7+74M1mH8CrqkW53HLOLOketoV8/TDzjlHOf8oC7OeQhs5d1g2/3udbaucVJWeRq4b1oUP+JPUk4AS2M8iPWXCFu6xHFv/qRtbhHEotAwcnFP22qSe59hSjpCkXNW1d131fUArkp6p4sG4R9Kvnq7A/6jqG+LfoUIarlfxetyh8tzbLSpelyd3198r6Z+hLjeobPk62eVxqqvPOdX3tZyQ9P+ckz6scmDYTaoP1293dTZROa3+OiD5dd9SL7cCda/DLK5xDVjHsO8TEyT22Ins74ZLH37yJ39SN99880NdjWa44klKKnla2RJMZMhtECQfKbgZ33EsBLnYEwyktcygjIKlZXV0PhTazmNfpCUoo5fkwUIqRCrJVkilS2VDICH8TvCTAjL7mHkmMGc703LKMv2b/03CVpA+AQ+JiAPBWJaXJJS/6Y5Pcpp1IyFk3/MB0azHBHGk+sAqQWCSSJfVArnOs2X1zrlET0eSUtcxrfqO70DgloCwVW6CF/ZVAi9FOjXawHQkyi0Cc0B1C4VlCutNIt0Cty3yQ48N10T2hwEovWkJJnyd7U/STyOH4yuuOZBo51r1fbeZefka6+J7HAe3k30xRJBIpsfqyx16AlNGuC6tNZ0Emn1AcunnEjy2m6rPnnmesw9IiNgWzwHnu6m+UYhtSW8U17v76ZAKaPywqv5Z6+JtIn0aM2x8MVnhXCHonyC95zvXPOcn+8IEwDp4VWX+nkV/uHypv8XN45TkJNei68v547G2F9VEiwaTkepYrqsQA6mQqjPon+PI8171x+FU99lQ8ao8o8vjnKQ/ViEi51ResPloFUKxrfIc0Z1a1FUb3bXjqg/oT1WPqPZnquK5OqB6nDT1C9dqnv5ovcG5lPI150liptYWZqbzb9ZlJyJ62YS0Tl6qMi9xuOOOO/SBD3xAX/d1X6fbbrvt0lfgQULqzCs20JLgEy3Oq7+gWhYyA0TGSXBri1BaEl0eBSYDBTtJh7QoZAlmEgwk+GqBYwv0JGi5nSR/E+wwbcYxUGIdh9qeCtzttrJIuZAgSarC8oIq4LYiFMrki71cju8zOD4VI4F1Wt98zW3OkEq8FYfgVOqDN/dPyiyDFSpfAop5fEv9cSOgnDXiE4wPCQeSqdwG5zxt5XeeJMbZprzOdcaHpR3c5+ynXEutuZrAPS24aQBwyO1QnM9TFRCzob71n6Sa11oyIIkV+7elJ9NowDbsZHQZWockjcwjLbCUZ1LbYztUbv5nGdwuwvFs6Wt6d9KAIvW3/eyEL9yuPCXJge/D8Dznu5a49q1TLuD3hhYfVLaMkvqyhXWlbOR8o7dManshHHez+zh/A9uUfSRuLVnjOIzrsqcqxGe/qlHMusBpRqpvtPfzOi3Zlhb4CfJJI1SSeH6k9rrnCVbss31dG9xHx1WIx151b5Dv6n2LColwn2+prg2+LHJTRRa8U+W5lE1JXzyRnvvo4qW5W4UIPffR0hO+qOTh51s2ov3bqvPnAv6fkPSWrp6zLr99XfoTqttEV1W9K26380/5mPOBIf+ngcCBsijla2KX9ATuhv/58Na3vlVf93Vfp2PHjmnPnj36z//5Py/E+bmf+zk99rGP1dLSkp7+9KfrbW97W+/+y172Mr3yla+8RDX+9MMVT1IIojPQ5SwtggiDJYLk8+oLay5wX8s0BO2paNIalFZDp3dIpZaCwsKbSj7bT0JF4dHqo7ScU8Ckd8cKOomdEN/3EvTRC5DkgkooSYfzywdLWR/2FctxWayfBSoFOtth5eT28QH+DKkICKhoRU3FSm9Xjjfd9ARKzq8FIhOEtDwTObZsu8cjASHB0wT3SJhGEddjkKDIbSUBZB5JXhMMkQhwnZlUsm85N9lGlpPz1/fG8X+mYj2l92RovZJQEqgRzLbWIAklZU7KHtfL7WoRtPRYuI4kpW4DCXkaClJucTzZx2kI4lzPdex6eY2lDPW368O+5vqYqZIVkln+d1nOk3KF687xN1Uf+va+/i2Vsd9Un4xmoGxqlZ/eTLbH8djO1rhbBm6rzsclVQ/KGS1uwXKfCO3l/PL/1jYwt3VZlbxxPVEGCGn8+4IKsD7b/V9RfUh/qrom0gvNder/ng8mEG5fgm6+wPC86sEGc1WPj5/13O7a9niVrVp+rsj1osfM82JNZcvXcnftvZJ+cSr96j3FE/KCLv6v3iP913dJv4N+cdqR6gtZpeopIUm9SsVTo64cy5CpqlFnU4v4JEldek3p1fM4pjx2PIdcw25P651EKTt3w3A4e/Zs73P+/PlmvK2tLT3lKU/Rq1/96ub9X/mVX9FLXvIS/e2//bf1B3/wB3rOc56jr/7qr9ZHP/pRSdKv/dqv6QlPeIKe8IQnfNba8qcNV/x2LxKE/E42b+VKUJmgltYpKs6WVdHl0BXvay3ikCAngVKeMZ8KwUKKeTG+/zMtg4VUunUJ8FiXWdxL4OFyCCIdN/N1v/rekGLP50E4VkkwSEoSENOy5DpYaO+0X5fp6MHhHLHSS+LEa47Po6GzrYrr9JDlnJTq0a7eGsH8ckxbfcB6cWxn8V9IY4KS/evAcWd+rkuS0wzuY57CxXq38mHalmeh1ccGJqmkU5kSwFO2OHiN5DYqKn3HY32G+s9luR93Uu4tIJHj6/rzZZLZR0n+cs6w/SyPxMHrKT1D/G6RKa4ly9mc+9Ji/7eAdIbWtaFjVU1GePoV5QPbMUUcto15Z5/N1QeFzsdtpPzm+LXKcVmun48V3lQ10qyqD/6dlvVLg0iOE9s1USEYZ9Un6NSbvJYef86Fmaoc5Di6L6S+Z4vpHehxmWtxKyvn7qqqB8SkxoSOXp+5ytYvPzS+rjoPN1VP1Tqg8nyKy1hVfW/MHd31p6mcALahQk5MeEyy7ImzZ5qyK71UNIrYaDpRITmuf8rkltxIfEF9ydDCJlJ/jCg7ea9FXN2myz48FC6frryrr766d/nv/b2/px//8R9fiP7VX/3V+uqv/urB7F71qlfpu7/7u/U93/M9kqSf/dmf1W/91m/pta99rV75ylfq93//9/XLv/zL+g//4T/o/vvv13Q61f79+/VjP/Zjn7Em/WnDFU9SKAwy0Nsg9YEYFYZUFykBA0E8F7eVK7ct5AKlAiJAHquvzNiOFuBKQO64LoeAIwETQQgFjHCfCnQW/x0oENleX09rGvt9jDhUQLTO89mLJJFpDWb7XGYqRFr5KGh5PS2pHD+C46xvkinWh8qAQp99TxIzijRJDJIYu79ZNgkBCajb6ZDAkvEILviOi1RyOUYk/UlcXKbUr1+uFWmRcLntOQfyPudoC1iz7kOWe9enNafSK+H2TiJdtif1HoEdy881JrW3DpKIzxrX2R7nQcs3v70mst002CQQsdWexoAJ8mkF1jPlkvuW65N9nmCpRcqHiApDKw7Lc54jVQMDdUmOWSuwv4bWXhJveqS4zhPwsb/8XI2t+x4/e0L8NnSTFrcp9V+OcdYziXDKz5bhj/I+ZQvlmz8G6jRMtN5fI/UNRQ4T9Q1N3P7H/j2i8vzOXSrkwW2aqBCN0yoPy6+reHrGKvJvGXHHXR6HuzS3q/TzSnd/tYv7XpUtWveovFNlScW7QpzxtK6Ot6rKr5bcJFk60P3eUN0ytqriadns2ubAPk/ST/zg77btfnFOe47xXhoPGFpyeDf0w/Hjx7V///4H/u/bly+MePBw4cIFvec979EP//AP964///nP1zve8Q5J0itf+coHtnr9wi/8gm677bbLiqBInwckhWBZ6isWAigCBQvKVJ4tsJ1WLqkveKxsaTVM4sPQskzzXou8UOgQ2LIcWpoU31RMSdIMSl1W9h3zSnKUAImEJK1bjpfkMMnZKH6P1X8Hid3MDwYgEvAzpAeB8f2b9yjgOYcYN9O2vDBUHK3+zbqlJd/9x/S8nyQ3rWIcv3n89vzgqU+2NJOMOu4IH5KjtCZzTSRRcsh6tyz/HMMcA1/j2iDgdbtXVD0qSX6kxTF1uVzjLGOKOG6r1xPbzv5gm5IosMy83iIv08bvBJrud6ZvWT8JNJMEsM1Se863toiQhCQJTK8b5xDlHYmh87mgfh2zX1prWuqv4VwPfFfIWHXe0yiR7U65oMZvW8+zTp5XDlPEz7qTxExVweXR7tq66gPrWS/WicYfglB6N0zUTIamkUdrPlHecw5Rj3qNTBFnL9KlV78133P9Oe2BLq/17t6GKvFZU1n3m+q/KJjluT95CIC3Bx7s8nuGpMf8jPQFb5F+5ddLfHuZLqgQh6tUtw1uRxkrKqTlpMrWPJdHYxB11lT9LWhT1UMRTIJMqJl+tft/VotGjTQSUP7xWs7plBWt/B7MUHNZBirnS1mmpP379/dIyv9M+PjHP67ZbKYjR470rh85ckQnT54cSHX5hSuepFAoGhBM4xqFJa03aR2aRFwCbiFOC1QzvhrpeI0kg56OtPYnUGBc5jdVBUYOJCRp1aSFjUeeKuKnRXyqvrJtEcMhC0qCJ6elhT3jOPDhV5IAAvbcV5sAKy0+Q7KJ5fDEHe+lVpSV+XBu5HawtJ47JJlr1YkgIMczLc+phFzPBKGuE8dCWnx5aVpjnX9uH3F+LXCbnohMNwSgW2va8UkmqeB9Pb2fLCfjJphmHfJ+Amv2D7cwSf01NIu4bNsc/xOAE1Q6cM22rPAZmB/LTEs+5dtc1YCRsoCB88/5U/bm2KaxogWmWkYGAl8SuVbbDbi57tlnuT0p6+CyWafWd8saTuyzF3FaxINjkG3P/87TOmxL/RPO0vNL0kvdJPXn8AV8S/U5OMd3P6aBS2hD9gF1AoF0ehPpJWN6x9ur4cC2O48VFXC/rkIItlS9KMsqfbepSsQ47m6vn7Na6vI7K+kxXyTppcekm0/o2K+Xh9hXunIk6WskPfXPSU/7I+m1qmPjtp/q6kOSKvXHiQTVa8TEa4Q4Z1QOAXAbDnflnVHtZ8976mwHjl8ejJJrJNeAxzt1iPMgKd0Nlybs2bOn9//ixYsL1yTpL/2lv3SJavTphSuepDhQ6bS8IClM03JDEEFLQlq0vei5CFsWBYLOdL06pOAmEGtZJ9LLYNCXQMl5+JvlJ0AgMGmB6FF8s64EgUkE5qrWKFuuHRLAOX+222TK9cnxIuHzN8c+ScnQdpEkaKxHWm1b3huOk+Owjt5GQqsU5xPBNsFXEr8H678E1QmASLxb85VkL9vX+k/wPMNnokWgzrDTtj1fY3tbwM7xsx0j9U9HY7B1knv2c73SyzNE8gz6CPJd3yESmnMzvUmtPnb8IQNAi/CnvGgRAMfnfOGcS8LFYGMIx5Zj5XxJ/rJdrK/LTRnDviI4y3TMN4G85wLbwwehKVfo6TBg9/gPGTfoPeN1g1vrCa6LecRjv/ka+9PzLI82thV9Q1W+rqpa3HNtkGC2tucIaVxfbu9z2S1DUktf0OiRus1j7DawT+jpdN1nSE/j0bKKl2RD9T01Qrql7vpmd43j5c+W+uuZJ2etqm6xWpb0oXdJT/ibJ6S3lC1fS0g/UnkT/Q1/JH1A/f6jXvX8s07wseYOlP9S/3lGjue26pHF+cwV67Ss6oFJY4v1HJ/J8nXml56tXJdTfCcJ3g2f3fDIRz5S4/F4wWvysY99bMG7cjmHK56ktIAE2T4XfZKGVh7Ox6FlnaSyJbhL8OXFP2Q5TosgAQwDlUwCS2kREM7iu7UlIbc+5HaanbxACYpocXNIK7rrSRKwE+gnUHAeqWAdZ6ctaiQCU/W3YHEc03rHN8ibgDm4HBIM4T8f6Ewi4vLYVpMZKjXnT6XTIlSsk9S3flHhZ3w1rrdIBdeM57Ifyibpaa2tVFTZFxwDxXWvC64tGh4cj4Fr33FIpFxGei9IctjOrFfLMNGqR85hqe9943XmnUBO+D9Xfe9DglmmTwCZoJJtzPnUsn6mrBzyHKScZJ9kXaW6hZNkgcdRe03uZJjxGHrtsK2tucwx5OlEebgF55/zHXrXSusAkNRJeXJeyqaZ2v3memYar2k/8D1VfRicMojzxEQnvRZjXGfZLZJOPea+WIq4JOvpNUn57M9exMk+nqm+28rg3vE2u3YfVCEVJ9U/TGCi6j0Zq3pUcq64P+0t2kL56ypvi3+LpHf/o3r08ykVz8Wyiifj9u7aevd/rHqMsMOBLs8N9bdzUe47UB95nlMerqh/bLHLOahKTNyvNJTRkNJaI7nepf6YJW7hfHd90yh52Ya0ylyqMj9DYe/evXr605+uN73pTXrBC17wwPU3velN+oZv+IbPXEGf5XDFkxSpLxC5p74FDKVFKzM9DOniTKud0+d3CniCogRjtMCNIi4trBnS0uL0CTRaJCzbbwCcD8TyfgJEkiVaAbPPfN33Wso7PUAkIQkUbRmz8vE11jX7m33U+t3qIyuuVJat/J1X1ocP4zLkmDFvBlq1Exi53i1raG5tsmJL8NgC6CSPrXUwwv20pEmL1tuc0wR7uRZa/WBFSEWdwDyBdwI91lPx3+2j0mbdWyHrzPbQSk6QPFLtx5aRg/3BsSJw970kSVm3lsxIwLes2k/uA9cz+7Y13/3foH4nj1nKu+xnqU2gW+sk+zUJZ64Fp/H88elx27ieZIZtp2HiQlxnSEOFZRQ94nzg2P9tTT+nxbWUpGiIbI1VHugm8OU9fzzO9IZw+9aQrqS8cCDppbxPAwXnMddatjHbZk+niafn2KqqV4QP3S+hDRtdnDVVIud5t61Kih24FdDf+1SJn0/QmqmQH+c76co6jXLuU3l545eqvBfljugPt3ldfZlBMG/952eC9jbS83QweoWXVObBGVVDhtNQ9jpQ5vt/rgOGNPRQFzBf6p/WmrfWNrwAAQAASURBVNwNn364//779eEPf/iB/x/5yEf0vve9TwcPHtRjHvMYvfSlL9W3f/u36xnPeIae+cxn6nWve50++tGP6q/8lb/yENb60wtXPEmZq/9cBYFVWuMSSPE7XdRp9SfwaXkachE7DFkWExgMLepU0NLilhSCHSsSgoIWuci31irySmsf25iEhgSEgKp1fC/bkd9sgxW58zOwspC2Eud95zE0TglQpUVFwHqYwG2qb0VMssg8CP6lRQuZA4lGjh/Bdc5pt5358E3S21qcWwzc8jBEOhkv528SvoyfadOCmmAoSVTWh/3ie+yvbOcs4rXmAR86TZLdGhPPPb8zwgDDaeYRt1UX5jlEhBTxhkgJ82A/0Esi9YkYx4HAOvN1eybIYxZpTG6GZFeOS9bX/Sf1yVLLm+k4QjyGfIEiSV/2tcveidi0AJ1JgwPlL9Ok7GWeDEzLrVytOUTC4v9u09num+Qvy7Ic3kIcE5TUeQwJWnP8aNjL+ZxGAPZn6gTW19uTPG7HVMnFmgrI3+j+H1MhLx9UJZ+U2d4C5i1cNHBRB6qrK8fhPtTbsmFdfY9Fkrujkp5wULrvdPGquG0k0mkccj6cr9LioT6cf677lqr8dR+ZkLlNx7rvO9UnbTaeWAa6nPTcpIGHY5XzwvnYgPFgMu6yCK3FeSnK/DTCu9/9bn35l3/5A/9f+tKXSpK+8zu/U7/wC7+gF77whTp16pRe/vKX60/+5E/0pCc9SW984xt1zTXXfCZr/VkNey5evHjxoa7EZyOcPXtWBw4c0DeoWghzYbXCgy2endydBOkJWh2PVuwWMGNIcEpAIPW9Df5mW4V4LVd8krJURs6X23eybq0+ZVkGExk/QZ4ij3RBE/gP5UGl0QJGQ+u/Ze1pkYgU1AmI8rkWW/x2IphqxON1W9BsGWRf8juBUgLvnJMJ7Bl/ivues0PW+lwPs4gvLRL/JLGp0GiFtRJnfVmP9FAMkRMGgkShvtkOqT7c6i0enEcsx321onrc65baayLnzYPppRUVS+h5VeBJAOkx8v/W/JAW50OSFjXSZH+SELTa4pDrpiW/XCeOIYmSQ9YhwZEivseT1nDOSW8PSmJr2ZFe36yjsUtre+kI1zMfGi7YJ1L/mPUh2ZV9zTbxPr3f3M4kVTKSeXJsWsYth5xvlAtzDeuoVl7uQ+oepmM73Q8e76Pd9cOSbpL0+6q65h6k3VA5avicineDdWG/uC4OBPScQ1JdjyfQBz44Jfv0ehUCdYekp6gQlNUuzu1oE0mHDXBbqJPzT/mz3JVvUkJSQeOU27iq+kD/suq2MBPAk6r6iAfSOM/EM1JfFw7JEuJ9y9N/J+nMmTN/6lOsPtPB2PHMt0r7dzqZ4bNR9gXpwL+7PPvloQpXvCeFYZ8q4E4Q1wKlvu7/dpUOgR8qcGkRUNO9TYEzpMC5wGntzG1o51GnJCi07OxTX7BkoJJMcpCEitZJxW/2IR9y9IdtcyCYm2rxYfIhJZd5tvJOa+aQu5mghWST+fJkm1lca1kpWXZLcfh3C5i4Dd5n7b4k4WC7mZZewiHAIPxPT8ko0iriOXhejaN+jp8ElBa3zC8BM69TEaZlMcFbC8ymskwDAOtK70lL6ToQZHqsvXe/NQeddyu/nMNcD6sqoOwk7uX4OY8WaWitC6YnyMw0mT5Jakvm5X8aZ9IIRKME88x553kmLbZxCNgPzd3sO4JK3s86ZttH8e2wHfcyf/eZtyPZYzjk2ZTap2cRFLMM319Wfxtsej9zfvp+guaWISFlEO+xPjsZDKhbs+9zTpIYHlTxApyT9HU/LOnHpP/tu6W3/VJp8z2qz3WMVLY5zfCh8Yd1ceBWK3rWKA+cj8eaOor5jVUPLfiwClFaRV2E/KnrN9Rfr86f+p+6PgkuZZvU9zpaTp/uyllSIXJj1aOYTZrXurgbWpTDiaHYbreLHjbK/yEv8GUVOEiXsszd0AtXPEkh4LTQaoG1FuhOoNcC5FLdZmShkCDMadOSzDJtzUjLsPMhmZlrUVCQXLS2abmezNN1YF5DlsoEk0I5BGstwMt7CX5SgWecIeHr32yTBegQ0UslknmlwE1A7TJsgXP7vXec/Z3bFpIUEsy1CGPLS9by2LWIdoKw3MKWRJaB89RpGJf1Tc9gCyy6PIKVFqnIrQ5sQysNx65l0XNo9dGQHkhvE70HrfXYUrhcQ2mNbK0h50eDAPtypAIa/NBvyyPmeDSCUGalJ5T70qVFwMB+HfIweZ0TeO9Tn4zQ28M65brLedvyOpEMWsay3mntTlLLPAzAkkzTi5Jk3WNCguHysr1CWrbLgVtp2OaUVQ42buyN+Kw/1xD7ynpJEd/lTBrXLNtoiJH64+Jvri++TyX1CoE4jW1CHCFOksox0vYIwzWSHvYE6fCHdJcqIaBXbBPtGNJBJsDn1N/mxfa7HTwVrKWLPL5S8aAc7649vkt/p/qGkaXoO4e96hv53Hb2P5/bWsI196/bwOdZeHDAuGvP3Yi71uXHZ2KoR4TrlM3UU35uJtdOYp/dsBseLFzxJMWgIQUtF1kCTApwWq0IJKS+9cn/WyCLFhypCmAu6rHq/liCY+F3y/LlNlHApQJoAfOWRZMELklYWr0ouNkegrv0rKQQZl2TLLJP2RdM72dSeH6/t3JwW8OQ9VDq98msEb+VjvdJRkiost4kyyQbtIaSPJNs5dwR7psgO172Ma3XrB+JTssilnPIY8o2cf7NG3E9j+i9bG3n8RxqjdM04rW8YNwqQrLJtENzqGV4cL/ypYvOg8Qty0nSxL3wLKPV9gSEBIrb6h9i0WqP60P55jwJ3JMs5O9si9OR9MzV72epPwdaa4dtzLWU7eD/JCMsl7KTFm3KOM6jET5cR3x+zfnO1K+zQ66DnIstQpwEwG1q9YXzy/VHIsW+9nhR35gcT9U/KcprMQMJSeoYBq5p18ng13KYRIrtTdJC3Zrl8sF9X1/r4p3rPutdHh/6q9ITfuJDevOJku99aLvrSOLl8lsyxNdbOxs87/aqvnF+u6tLkqmcw67LacRfVX0uxjsHOBel2s9+PlSqcs5xt/GfhMVtSgNm1st121Rftq51+Z9FnNWu/bzmwHq0jDF8aWkLB+yG3TAUrniSQsVkhT/Bfy5Mn/xF8kFB2QLe+b8FJikgCASynhYcFjgtQMYF3iJLmX8SDocEpgTH07iWRI4AmlvPhgB9ltdqE+MPWVnmah+TyRNdthA3x5fPuAyRESsNtt0h+9EKxRZLKpsW4UkllJY95t/qg/RWuGw+NNkaa6dpHVSQnookSi2FTg8a40w0PI9o2WNoEcSca0nAfb81h6VFZczAtnJ8E1gRjBJQtUC0Ik2CllY9klBlfdkHrW1I7N/ssyEQ4PayT1nfNLA4L1qUCfjSczAErH2Pxpec+y7f3/QKZD8I1wyOud2OW6NcVpabRique5bltrZkdo5/y+uU87cVLBdscPC8SJDs90rN1D8AI+trfdAipVku5xHrzTgkuUl8W6SM/6l7mXdrbaQMoJ7hFjpvYZtI+j1Jv3eiypZ7VT2FOZ9yPDwv/Lyfg+cc9ZXn4khlu9mKpLtUdcpEVb66bksq29JGKg/w36FCTK5TITofVv89W+4LElKG3KUhVZ3I/nMb6E1kWvYL15bH9Jz6J4OtqG4Bc17sn/SmOF3u/KCeGtLxl1WgcLyUZe6GXrjiScqQckiw0ZqPLStoCxxR+TMt47U8LPwmaEll7/qyHCojW1BnkRctRy1LOMufxzcV5QT/TfSovAg+EvSwnKyzQ8vSw3rmNoIkKq7LNtIOgT/ml+Wkgsj6OC5d6K1AQuB8W+9LaJG6/N8CzdwG0EqT19y3CXpyS0CScubj/m1ZqxXXOcdToXGrS4tQcVys/FtAn9s5vE1yCFQkuRPico+34+e1NDxwTbBO04jjay4v5UECtixzGvETDLTAX8orxf+x+g8Mr6r/8O1mdz23H6WnpAV0khgQZDowP3vYKFuk/rYZ3892+n5ey5OpXH7rAAvWd4hwTXeIx7Zk/6fhhvecD4/IpUElSSA9FU6Ta4195/5a7eKfUl27HEsC5DQg8bslE7J/SWQcP+d8qx9cRq5tx0u5SzK6oUICxl0bN1XXoOdX611Ws/jveqfnOOvq+XBP95veetaTZWyq9vmhLv0ptMFr2nknWbbO51ZO9y296C7T39SZSWjdXhLhlNv7tXjcM4mTt8eR5FDmJQHeiczvht2wU7jiSUrLyt8iIy0PxE7WWoKjFuCV+hY4C4TMj8AmyyCwStLCuLRWEBxYSLhtCRooGPNeSxE6pOVL6gsrWnhb1rWh7yHrOX9bsZIEeJ+tBtInkBwar23V4xpb2+UIXKT+ew84D7LeBFmsd7bX1x6MQNH9n9Y2lue5ttNRzwk2WG+pPxddppUeAWSCyQQ2SeITwLQs1QShLRBjxWuw63cXDIGgnI+ury2vlgPO47z6h2XkXM78/Zv1Hqk9Vi1PX7aZ7XRfeR2n3Bhaq6wjQaqPSl5VXTsGtae1SCRb85vXx4jfqkN66NzWBGP+7TZPIw+SGoOmlEEG4JzDLeJpkMd9/y1QnVZjB/ZHbl+igcjE3CB7VfWN4gSGSXDZrzwxzEaP1noi8eHD0mwndQEJge+lQcmfnBOuh+/zAJGW7mM5vq7GvVzve1VO8ZqpPlDOLVTqrifpIAlIGcs6pdHHYzZV/9Q1EwWvsyTOaTCcqmxLm0m6WuWZFKl4YLxtjbLBafIQCRp4SDKzn/zbRJ0vwWTbWnOZ5a2ov77cj2sqmOc0rrHcHHv2O+UTvf+XdXgoXD67DG4hXPEkxYGWKS5SCgFalShkc7sH7+eiT48FrXpZNuvEfFJZpUck2zWN/ymErUAYz4o+PTqKOFmXbI/U71cqMoKmlgJ2PQkmEtQ7tIAn7zkNSQBBTZbBOmTZaVWzoss+YvsejMwtxT33fwp4WrcYN70KjuN6JjmU6txOQMOxzGu0frEvuVXOVmlueUySkZ45qV8/rxHO8Z2AIIlCEuK0EGdI0srAMaD3bKr6TEqSRgKfbBsVshCfsoUyJNcpg9MM6cocM3qCWvE512eqL/p7sQoIfLWKddhHKLe8JC3vTcoxRVyCE6YT7o8ivoPbxWNSGQgg2Ze53tgvBOb0KjFey6rOttHokNstScI8F1ZRNskaAait/w4EedRRM/VfNMiyt1W2I0l1Po/RHxyPlozxnHdc9kMaCpJgMc9Mm544B68Dk2aOkeXMefW38bqOF1SfpaDelvrPSPg4X86TFrDmeuMazoMWVrX4XhZ6aRhcn5NdnuuqL4TcQjyPJcvls4auK+dsypn8PURipEWZTcJxQf3thx4XEouVLu4Grnl9nlNf1kl9Wb0bdsOnE674OZMKhkQg7/Ga92JasLW8KkI6qW/5TBBD4U2FOsInAYkVF929FPQUqARaLdCTQCtPI3O5FpQtC3vm2QJ9aZljSJDXsh7SXT/Gx4IzBflMRTiuqf8ekXTtc2tDEif3hZVCAr1sE61C2c5UHhTsrHOLiDJ/9kWSPl73hwqH85HzhWNKcENQkqSdIb0jLQLOTwtcE+x6ftP6mwCbxIRzhPdy7Bha85j9zDXPPk7vB+fuPsQbRR4EOy1izLp7TBiPZTGQiDP/BI7pMWW9HOhVuFHSk39IOvqz5Y3YtMazz+nJ8f8EuVPc55h5nB2Pcz+BbcqprD+BKOvBuU7PMj0BUt+6zLHz2DsdvaNJHjm/eaQ4wbrUr4/z8fs6ziE/t5+eFfcB53waJqR+f7nveXyu18WmFr3NOyn/JLwkwe4fv/U85THHwzKFYztGXvzv+vv7oOoD8xvqA2Km4/xZUvUIuj7cBpw7EqwXnJ/zonfN38tI77atqQL5pciDpNTPS+b89m/OFQfKrhk+rZd7pk5rtYlyI9cv03DMPM4zlTm0oWowOKzFbV5S3Qrm4PK8Zlpe892wG4bC540nJRUIrW7pjZD64KQFzOnKHrIQZFlerEOekcyH99PKRs8IBZIFQeadYDIBuNMboFhhJkgheHN/Eqyyf9KLwdACzX4fCNvUelA+gQ0FrglNEor8TbKWoDAFu5Uf892rogznqvuOSVBcj3wHCt3krbdms95LcS3HjEqK7W4pKJfHkF4kKpKc166rQYvb1fLEJXgdIT7nE5UbwUZaxX2f23Wct0mDy22RrNYcIKBvxc2+YboEZkNtd+Ba4dokuWx5yTJYBmQ/ZTnsIxLQBCkTdS+k+w1Jh8uDvRla/cNynZdU5UN6dtn+zIv1J/gnISIQ8lqk1Z1HxjoOjRouM2WD4h7rw7nt8hmPfbCiAto21fdeSPVlis7HL9DbUv8Y4pWubuejf/zNtZ1zkERppqonfCS01Afd1B1eP752TpWEe4sYCafbvk/9AwtY3wwce2nRk0EytKpKitZVx891IeFIMujTrkjYWC+nIWm1bFLEEeKudP8t70+p6sdDquTcW39d3wuqL5C8VtKTVdbYB1DvvUiTL+N1W1O+uC9aY+84LfKa3rhJ477H1nFG6r+zxXmcQbuFvLx2R5Enx8B9c9kHCoFLWeZu6IXPG5JiobStvmCgR4MKPi26XOAUxiQdVFwjXKNVyWly7o9RN1qsaEFJoqXGb5ZPZU+lwNCqS1rA6SInMLPibFlmCDIT9GUftSxB2T72BYG5t4JYYHNftOuQD9P6Wuv5liHLFO9JdYvCpvr1yvbMIn3mk3GEug09mM/20/rfsm4PAV+2g/WVFsFZvonZc5Tbvmbqb0Mg8aAyJbnkf4IKjlWCcAfXjaQ85ylJu9egr5O003reAuUsM8lkejb522NCq3S2Kb2JrKvTcI2OcJ1kjXm6PLaXngPKtlOS/s4fSeM/qpbqTfX7x+11Xj4FMclfqz/S+JP9S/nYAufpvfH849odOnLWgX1DT0q2kWV4rOlxzu1LLo9eHBoGDLh9/QZJz1KxQG9Jerek96quvxXVOcy5yDki9bfUUsaxvZ43JCcXcJ/rPQGxy04wL7W320l9GZJzrNVHS4jjj3cvmAD4uQ3XkcYChxx3A2eCYMvSrHt6QVueCxJirwvXY1tlzWwhXW6NSvnKecO+zbIZTMzdFtY35aP1YcoDXmPZrW14qUdS5knVM+e1dlD1RZD0qHgOZfsvNfbfDZ+74YonKVz8XOwEEUMCmICB8aVFwdYC8juREuZBgERroC1uCdzTAkmvBRVvC2hR2RK4WJBuRdpWcL8MAfG0tPo782yBZsblCSUEH62TvXILRAKVlos5iQ/rQYXj69z7bA/KdiMvzzPWt9XWrKPreSHus46sJxWexzGtx4o4fKlXa2sevSlj9Qnc3q5d3ntsJeVnGLjvOL1oc9zPtrCODi1PR44nx8JpGEio2T7XxX1LL4ZwvZVX63+OJ+cqyUbLA8b2TBrXSPpctwyta5Q5SUilMnbrKqf40CK6hd9JdCh3cl23ZE2W79/sIxIy18/EYBtpKYvPRn4EVZwnCcA4LgSaufazjUkC2VZuI+Xxx1NV2T2XdL2kr1E5IndbZb08TWXt/I7qukijV9Yn5dVQ2x3S4EUCMVYhUiTyrnd66Zw+jW/My4GkKj2xlE2+t6/rj6kK6Ge8lixsEdHURTwO2JZ7EnYS3yFyxXmYBpJlVXLsvvN847Y6P39yoru3oSpHz6rvWecWtZRZ1CHnVLeepSzZaa7yP8cod1k45Fzi3PPadZ1P4569gjuFlsy67AJZ+qUsczf0whVPaAksSTik4YViiwy9LFJfcBMYzVQEbS56Wmrm6s951yOtDFTom+orWQvdLCOFFV2wjiP8drtogRbSrGjR26T4bwDLuqQic72F+63Ausy0+K4RDVxzXOft/iS4bZET59dS6s43CR/Hiu75FhDjFrIWmGWeBKAEsgRywn3WO8cuQeVe5ON2bmlxTs0iD6ntYVlSBRTXSPrLkm4eqLd/uy5W+CSUzn/UuJb6gQCCfUtPxRDIZHtzbrofDUS4FpO4MN8kWdmnDrRMp5J3aBEU14HfbJvLUuNe9oX73wSAbTulQlb8SWJAMuz+thxMQJP9xXakN8Bx0msrSVepPCuzgvvc5+655DxyXBx4mpX7l16tfGje/cK5x/U1j/u5xpOQu8xlSc9QefP4s/+h9MUXb9FzL+7VVtfOw5GOxMvlOaTcTfnKNXFQ5ZmJsfoPaavLYx/6wnNzWXWOpOHHgNxljeP30Hxkmbm+96E9QzI/82c9XLfcBsa1ljqgZYxkWtfF1zzfD6p6x86pnjp2GOXY+EOc4PnnvrWRKNthOZQ4IY0vJFnsA4dch0NGjJZnl3Iq+8IhvYq568TkhR4Vry3305Be3g27IcMV70mR+iSBIS3+LRJL1zeVEBX5SP19wBmGyLHLdx4UqLQCEhAY6OU2ECrQUeOe1Bfyk7iXStkK3YLFgJxEZEhQOg63ZbSIYVq9FHGpaNw3E3zTYmMlnIQtwXZLaKclMuuQCtj3VrRoZUurVj7A34rn++7flpKWFsEKgeiSFud4KhlaPdPT4cAxYx4coxtVHrJ+8mOlwx+RbleZ/zwmNQEK86OHIAFxBnoopfaWG1pFpb5BgmsgPWNZtwQDvkfF3UrD9b9T2tY8InFyndPbyTiUR+mhaRlARpKOqHhMTqquE1rPuV3FaVvW5iQr7IccJ87N9GawfwjKCdIJoHIuTSMOrwt5ZP3YJwzUD1wzvs66DHlkWVaOh0HbfZL0Q9+vQlnO6+kH9+hDp/sHR7SekWtZElvyMq3vfobDcijn71Rl3q6qWvYNIGk84Bg6b+uG1nNw7sv0AJG0jVVlZ55olgQwvab04DAd6+fyW7sk2F8ua0he8T7l8EiFqBxUff6JhNn5O59VlWOIpfqeFI61vSWsV4YWEeRzjTSYtchZ6vIknHnNfT+JPBj4vNVEpU82cN/zhIYa1vWyDq2JcSnK3A298DkxV/40gcKOiziVqtQXKjspinRnU6D4wcchwJjWqQy0ctJ6RSVKZUxBNEX6nQY2rYUOtDCSHCT5kCqYYbsSkKWXoyVkGS+BXKYhmEtLDq2XFv7sy52ISYL5VruZzsrWAtou/XzpZLbXno0sqwWOGb8F/BPwWclZMXOf/izi+VprfnLcvS3BW1iksm3lW1SOr731I9I71QeXrDufD8p+TkDF9hgY7QQm5yokcQ1xOS/mET9/W3HmPCGozeCxSsMGrZ0kla35lCA580xvLUFyelTcj5ZtLa+eVJ8hcp4JBDkH0yDieykzOJ4TLa5J9vkQCXR+lKXbKu+RuF39bV1c4wSuLUPOVItrbRxxWnNFiO/AuaVGPLbPW19Srm6rPGi8JEk/93+pvGv8Kr3n9CKYpPGJfdwyckzU3xZFQD1SPUXMeoGGCfaJ8zaxkfpGMv9vyZuUjTl/OA7zgWs0frVkBU+bo2dwHHHy5EfOrZZBhnN5ivgu323xGK2r7G44IOlod++4ythKi8aSsQo5OajSr3erHgawpraH1CQxDY17I77rNLStKsfFIWVwC+9QllGuJ97gXJqqPktEeSFVzxxlVY7FbtgNQ+GK96RQkLWsJhRQjM+tFtzeQOFK8MwFnADM+aaFLy1gLRBDSxYFiRd8AjuXSeVHiysFIPPi75a1kcDbddUO//N3K588oYwgP71c/japoUIYdWm3uvsmWewTWvxofRrHfQLK1viYBHErSQuccGsDfxMMcD4xThI8qc6d1sP0c9XjLamwWWdvbaEC8n2ONxUP5/Relbc7r3ZlHZf02+rvX3f8pUhLgO7ALXmj+PYYJvmxYnV+9vgQqKbFzvO+RchTmbJfnDavMR7XkfvA/S2110QSLaexV44hQWnmRSKcbWAdTqm+dTzJJIGf28Fxocwc6ifmxfnDOvI+ZSvrwnt890grZB392987EWLfT2/QEJD1vLKcYfwE2JTzJEG3S3q+pLd9n3T4+67XKZWToe5QAa5SlSstwtSaC0k0+bC2147neevZOal6BLzeqCv8m9vl0kPhQCCbc3Sm6q05p/5zTwS5Un1QvmX04rpPuZnbgdlmxxPuu22t4Dw9PyiL/YwL87Y+4rx3fBPJdVVP5uHu2ob6hsUMJC5uo1QJYsvg6Xy2VOdBtjfHjjo4iTf1QGub1xABokH1LNIuafEo6d2wG3YKVzxJsSKhoEsQ7geBLSxboMcLfqa+MnagBWzIusc0BDlUdPzt0NqGQBe4Qfdc/YcEhfwIjBwofPigt8ux4iMRIJh3GblFiPESADAtLV1UxgnEWwCBQpeHIbifbYFm/mmJain+BE0un2m8PWZZxXPG/dAJAuyF4D2Pe8ZNAsWHcFugL8lsCwy3QG2OYSotafH9Ace6eOuSfk/lAeAjKg+E+hQegkSPg/PgmmO90rpuazrXHNtAcM93TVghJoDyf4IrzgmClpZHiIGAib9djkNrawn/Z/60YGd7llXXbModX08PhtR/AR0JteOQpG1pUSam3EgiyXqyDx0nvS4t4ui6k0jOG/Fdj0njP0EeZQrlCE+dYx8lUCW4JbGl14ZzeqzFtck2rar27we68p6l+m6NWyW9XYvGj5SbLovl2DNiz33OM4/vXvW3UyWYnavMMd+z3GwReOfrdKlX2WfZJ9aPSZaENg8949eSzV7rHCuORQJv1t33h4wIUt9jZ71j3WqSZX2b3i8bic6qeFmsu46qEJVN1GGivl6T+uttHtcot7kbpGVocjuE3y3vestb4j5t6SqvdXrmWJdtpGFexFZDMvayCgmYLlWZu6EXrniSwsWaipgCgPOxZck6r0WQmxZTPzxPRUNl0PJStECTlVBr3y3BFC1czoukgoHCN9cBFTyFbVoMacHyCSwJZhXp3PbWfZ4wlXFbgpaC2duJ/BCi28f93QzMjyCI/UFykJ6MGeJQIadHy2FvVy/3UxJKgwwSnHyAlP2R5+ETQIziv/vJ/ZEuen8n+WTbSTRXu7quSPrrPyTpudJHv1r6JdSVXpCWIvJ9erwcaMF1Hpy/rbHLLVCuwxLSUVEyzU6A29ezTNerBZ7yf9YxiXgSdVr+ub6p5NOK2SJULU+GryeYGauMp5+hM7BgGoIvXs968joDQYwDAVYLBDsvt4HzIuPS20rZlOPQIu9J4nNcSQAJGHPbZWuuWG5vqr4QeKbiNblThaRMVbxb3rZkgkKwnQYG4brTSJWEOL7z8nXLGtada+Gwyho/19Vpijitvk/DAnUh1/5K99ugvuU9pZ5xXiQ2LQNKjrPza3nVHKhXPe7UsZ5r26pyOHWIvRNr3ecu9Q+akCoRIyBXl25V9WWIXtszfCzbk6BkyPK4DjNdzk3Ky/Scpd5x3DTSuY7OQ+obVyljJoifhpjdsBs+lXDFkxQu+lS2o0Yc36MA48JOYDJTW0gwjyzbIYEMrRG5bYWWxknjPq0yUn9rBwFdy/Ln9vt+PgDN7TvuA+4Jbu2LJRAbejdBkr6WCzsVtRXwTJWc2As0j7q0rJAulwK1BWb8Px9eNzmyIrqA/OhBaAFtf5O0cRsCCQ2tVtJi/R0IIpJASX0rMseCRM1zxe2VFsdNkh4vSS+W9Lgv0mOe9C6du62++Mt18BhzawIBUvbNvBGP1wne+d/90CLAQ0qaY5RGCwJWeinnWiwnre/M09u2uJZpdGBdk3x4LmY706Iv/Od3yqYkHUznetkSn2vT+eX6y/XJ/iUZ9Df7dWhNuH4tIw4BO0lPym/X3cC9tYWGco51HyKtKY9bfcT1xDr5+qbqe2X8uQtt8vr0syPp7aM8YV+nt6dFYqZdvjbcuP45x06jblL16vCB7HGko/x3uWl0cn4p4xy/Rf7TsMF1TWMKyyDxyTFiHrw2tGYoA9MooS7dMZWH4DdUPMk5p6Q6Fw6oEJrj3WejS29jjdvBuTNGHtZtbitJAdua3smsd7ahZYRhvpRxlJWWWVzXDokNNlXXI+dCPst02YYEhpeqzN3QC1c8SSFAS+GVgoGuUG4tcMiFyTytbFLBMv8UYFN8U0ln/CwzAVt6A1yPVN65LSktoeNGHi4/hbotTi2A7zwIaHayiLXaRKCeJLAFVvapuNbTE5NEZ6JiOVxSPXKV5fJ3gnf3idtG5Z3gNclNEs5JxGdftAhCiyA7L3pEHJdzif2Y7ypogZyUk7bIvlvSV/2vkm5+l371tnocsdQHP64LSSAtuC3ikeuPc5iAzcFj7/ueH60Hf1skgcYD5tMCOuk9SPDEOpHc83paZWm9TPKR5IblOG+uAbZvjmsGOC0LNschicGsEX+uepoeAdE40iTYHMU9rgHfT7nc+u02Mm72q+c3AfRUi29OlxbH1HFpyFlR7T/3t7/z2RTWIdvI/hqpgFafvOX7lmFOn9u+2A/+3lR//k8b12nBdr1T7m6pb1RokXghvxZAtay05zYJyURtA5J/J0ltkYfsb3pEeM3tSp2TXgPmnYe8OG7qDqnoDc+pVfU9BE5L+Uevtr3nSXZbngbrGurqxAlDpD89r+P4HsLeKY9axN3X01DKNWcDor3muW4f7D0qu2E3OFxqnnjJAxUjAxf7POJ44VHQpVChV8MfCsG0iKW1gt9U+AncWpa+BFUptA1WeCKIhcZEfeFF62LWxd+t51BSiTBPWkomqtYk9xcFYPY760USkpY0tn1b9WQRqa+Mh8DkqtqKmHHS4ur6EMT4mrd2SX0lnvOP+bTInePQesb2Zl09F/zt7X4E7o7H+ci5lRa8JfXbv6ViARxJ+jsnpL/3+rLHfq5ihXXZ6RForTvO76kW+ya3IxD453i6zBHipBeF7c81SuWZ48C+T8tiBt/jPORWDuffIiucswnODDzZ9oxD8uK6JlhpGS2k2r80mLTmjYH+QZWjjMdqH7lsOZL9mvUmcGMbUhZzfqTscXtG8bGn8ykq7/BZjXj06pHojlSP8aYxQqrrYScSJlWQ7vsEo7NIy/lKMMs0HA/3qz/pyZD664N1ZL9nmKsej3utyhgPeQVI6Oll8YsFTbwogzzn6dFteWHojWaYabGdnicuP3VVxs010lrLKQ+znmNV484ZleOk85k4Govcjk0VD8qSyjN8qyoy0waylFmeB163nJ8kAVlvku/EATlvUy6z3S5LjXhSf417rnNLMdfDiopBcFn90Mp3N/TDTTfdpBtvvFGvec1rHuqqPOThivekUKAxJPCX+sDfipku+LSS0eKVlmvmuRMQbik73mspIrfLIS23/t06u531GlK80qJ1yPfzoXjfs+ua5GCqIqhuUhFWb1ZxjzNP/24RRam/NYvlsQwCIvcjPQZS/wSu0yrKY7O7lu5vt5XlSItkzc/DGCzvxe8WOUpLsMtsCe0E4+4jegQyHcslSN7biL8d8V03WpKpuE93adZUxnRDRdE6T/ev543LJKlLq6zr5HEkYUoCmZZNeg6oVCcRt9XHHAeXmyf2OA7XZ5ZF0k1SlV4yp+W4ua0twJxghDIpy87Aecv27NXiGmNw+S3vhQG7T2aaqS1TKP8SVJHADo1p5pPjxrTpfWHZY0nXqczVO1TWOcdkpftm/wzNU2nxpLEhEJcyrTXvvAVrqv6hCEliWls6J/FfEWem/tZctm9VFVSnLLVBa1v1OPVt9ddattNAfLWLv4k6tPRg/k9ZLvUJRmvtUvfyv0nRXtQrgT/1q/PMNS715UKW7XIOqBCOdZX1QAwwVv+ZO7fBBgyOZXo6hvqL9ScWyZD6wXXg1m9u5XadnYZpU1YbR6XBhvKabaNesIHUns5W3S/LMCToPttlSrrlllu0f//+S1z45RmueJIi9QFGyyPi6yk0KSScT6Z1IJhNoNgCIFaK6cJNy9Ao0vo/wZjTGLTtQxmuhxWzFTYBffZJtsUCOgUplUgKZSsBK0QrMW5LcP477QGmkvB9A2ATIyrKPD0m00v9rRa8niCAoIMExf1+LtKlUiXoTiXgdLQ4tpTyEq7ZwpbztSVLk/SyPY5vIj4UjwcSjFWIymktAnrWT6rKKOsjDW8RyHnPOTmJdL7PtUTi0VrLUn+s6VEZ8pQk+ee4Zt6cG64HiZT/O677i4A368aQFtER0iSBYh0IAElu/Jtkh7KEfeAyNrQ4bor/WSe22/POY8VxImFxHVoyr7XdJMnFpsr7e5ZU5itBk9Sf1wSrLpPlMR3r1TLsuL7Ob+jwDakNkNlmElKOO4GtrfZpyHDg6YBc81Lpm5Uuv02V0/q2VbfCurwp8srTt+jpS88Y5bTzoSwT4rA/mUfKCZLd7DfWiYE6kHFb85d9xbFI7zQ9YPS2jNQnd1L1tlvnkJTTuDFXPWWUOnmE+2mIpBeO8sz3LZO89rkTgfKSY90yYrSucW2wX2ys21LdRngu+mSIZO2G3dAKnxckRWorcF6Xhq2MueeV31SOFJKZV1pAaBFskSgqw7TKESRRoe2LtLTQWjEPGQYSUDCwDo7DdlA4JxAfqxxZ6zgpnChMqRzsxUoSlMDQ9ZlEPNeblrUEWARBGdIilQ//L6mQo021SVaLHDnf1hximbkdj0rL2yqoGKVFJez4eWJY9m+CEVrAkniQvLBts/jN9dKyyBFgu01sK/vLCtr9kvPBwJrKmRa9BIItMJdx0mBAgNgCj4zD8SN49u9U7pl3CzwlWWJgvQlWWoYMty29VcJ/Rbz09FC25DrnmKdng3XIe0leuNZTXvOBbvYZf49Uttik56Ul++nhcZkO9iwkOPZ8mUT8rO+KqqeVgDz7nWmHCDM9k1zjeerfTNV4sqza99yaRJ1gAGuicUYFXNqjQjnmObWE+DmGrG/KgZYxpLXmW+uV+bdINOVB6qchQMz50SKBXKf7VR54n6nsBvjj7ve1KieinVGfQFNWTlTI33VdmuOoq5CGeoGGR9cl8QOJotSWFS0vxqQRn/LBdXAc4Rqv0+DoeUnSNlf/VNSUC5d9uKhLz6YuXuLyPgfCpXZmXfJArwKtmv5NAUcQ4YWbQiA7rAVKKZgNFFreGLp8W+QgQQEX/xDRsvJhHBIkt2FV/YcoXVcC+J0sXA60otGqaUVoIZYucbYlwT33dSvqyes8RWRdfcCaypUKbqL22LAtqfwcCGiXVfoxryepdJhGPI8/9+waBBgg0Nqd1mYCmpyHzsshPRscsyVc9xhmPt5GIi3u1U7SJy2uKdYt5X6WReDAtZTKNAE+SRUJUQJRp3c/EnC2lOdY/XamDMg13QJGBGR53XVLwJvltYCD77Nvs7/5rEWWyXj8Pq/+uuA4kLAwH2mRGI4b6RJs+jrzcXqfPuaPPZpeq56blpFJ6C2DXE/H26t++4fGhvnSqGHDRc5/95XBP9ez80xPstcI68r+YZ9wHVBe03DhPP3+IrbFwe/7ONfls4LrXk/ctkQ5YQu5unRD84s6dt647ja1ZDuJXasfUjanwcOyddyIz36g/CTYtkeAmGCqSjr2d+k21X9XTesdX9xm5z4k0ZYqicg5aHnCeZJ6OuXEUN9wXdK7lvGcV+4QSLns/OyRm6m/jZrHm6ee2g274VMNV7wnhVs6pAogaG2hgKdQdSBATKBDANECO7mlhFZWWkysCBPwOO+0Ckp9hWzBkSApnz3I+FK1TqZliwJeqoKVQDC3NDCM1N/PbXC7FWUk6GuBMSsJkjXX1YKfJGMIbLqfh6zWLaXJa+7fmSoxIqFhfCtZh7Ta8ZvzIr0ijEtFxDbwpDWHFhlgn3veO59l1fnSImkJIObql8n8c+8xwTOJKddaWpjT68J5kZ4/AlSSM5eTW4WyXgaIrTFi+5YiLdvjvFteGNbHeQ15SNyvrttE/blPctryWqSsSE+REN91IhBhGxzSup8kxL/TOt0Cj47ncWkB1iFCyLrmHOTaz9OaMg/na5mc23QcUt6np5N5Ml62w+32OHI8U2611t0YcdNwlnMi29kCojY6ULabrExUgDVBs0Gon/XjGE8jntT3XFmvpUePdWodS0s501rTlJv5PIvDkD5ozX2HfJmuZcN6d53PpJxSfy67LTztbNTFm6l/gEAe8exrxBCsNw19rnuu01x72d8595IsezzT0GHZN41r9pjx+d00NvBl0y2ZuBt2w07hivek0IrWIigEeq0F7ThpcWGwMEhLTVpH02Kd+aeQptXMpGanbRO85vRZJ3/zgW9bFvOFaC2QYiHTIiez+G2ARJewVIVwS4g6tI4oNMmZanGf8IG4b6tWtt9tz2DLEYUzPRds514tWgOdh+dHHlrANpNIztV/sH3oI6RfQp7Zf643xyjJQ3qznH4nEk7SsY37LWDn8gjMfJ2B664liNhnzLsFxvhNss95mOCFY5ztIRHyPdfJluMkjlIfNKTMoIJO0NUi6rTgJvkkmeB1lzcUDEBdvwQU9L6m128ngMHrSY7dNj4jIfX7mH3PLSg5v7hllMRe6s8jzoWZ+vklQeSWsRYBmWmxLq15n8/9OBxUXQdcy5b7XK8ps1oki+SYZTqNVD20K6r9nMB3v/rHLI9VDhvwvGPZrqtPT/Ma4JYvp8vxd2gRziQJrGsrrstr9Q3/O9/0TI/xoQfA85tz1e3m2t+n4im4T6XvV5BW6q8D57ekqjNINNLrMtGiLkhCz3k10qIcIQ4YIr7pIaEc5rZCqd+/XHdr6nvWtrrfbBO3GDq08NNlG3ZSyJ/Nz27ohSvek0JLq0NL6VBhDwGQBC60iti6lZYNp+P8m8c9fvN+ChH/5z5Pp80yCWAIFLO87fjP/sr2sh0ELAbaVDZpFR+r7o+dqn9mvBWk33GQ+VlAs15SPR3HeThfqe+tkRb7vqX4WQ9vB7FioOJ0O1bVBzwmRlK1iHFOEWzOVAECQ0s5k1T4xXCuJy2VBBRUnJyfrq/b5v7e6OISoBgEef7kGvL9oXdGOPCISgaOT/aNUMeMn+MxxTc9D86DIUHMvHHNYYL/WUbml22hHGDfS21vi9NPkYZeJF+j54BkzPMjx8jpHEgK+NwR28o4zifB+07bugj6CUIPd3HujbRSu51Sf96lPGLdsu4J9tOjnuQv5x77LolPK8wa98eSnqFyuuE7VN4z5HehENxzbdCKzzrle5fcRwSFLUJDvTNT//0dG8jrsMohAydRJ495ng7oeUcLuj0HJMEkIWmgsqGJssMyzSF1CtcgDUKUu7O47jZsa/HkL/Y15XTG8y6AVdVTus5219dUQXq21Wk3u7QHu/sbqvrQa3am9nvMaJCgHG5hipQfvscH5vmbOsl1mMd/klh6Q122dbbUH5OU5yRbLns37IZPJVzxJEXqL96WxdYLi4q3ZVGjO5PKy/cY0kKZFqOWtTEtpmNcZyBgpyDNa2kNdV0sjBLgMH+SBwof1o3uauavRlzWh2CwBRS43ShBooNJzma01yAgBaTbkYqd1r8cI1qrCVos6LmvOBWs59xU/WdO6PlI17zUnxfuB4/3NZK+RNLtkv5AVfC3AGLmy7YmeeI91z0JHi2MHNt8oWcCbrY325inhHF+OLAemZ4eRVoVSQZMXJOMDxmsEujnGhupGAnYLpMS1jOBCo0YSZRb4DeNAfSsSO2tYlyjlk+5FYdtIOgg8EsCRJLlPFqe32xrAtkMQ/PU14Q2WCbxWS2WmUaZzJdjYotxysn06rC/mR+/k0Q5Hsebe/JJMmmAaRG+FmGhASXXK9PS+y/cZ3t8f1WLbwbPdJZ7brPlmreIbkday7xzkZZlzOO/A+Wi+4rP+LidbHerfZk35Sl1nPNr6VOO1enu/7Hu8371j2E3UaMssjHA5GaqQmxa68GhZYDgd0uHTwbSsA/ZHselDFWkp+dHqqePbeA6n7WisTANPinPPifCTNKeh6DM3dALVzxJSasVrzMkMGVIoJrgiIuPwoLKk5YR5mFhdR55sT5Ow7cRp+LNvJI0MM9xIw7j0sJFJU1FyhOjmFa43lK4K1p827KVg7/pnWJ/ZHlTlRNVZipKdqz60B6JJseuBeqk/pgn8Rzjvi1qVkCbqOtEdSsVCQ/JLrcUuA9ahJdgn2OwKumoqmLM+05LIu1rBJmci+lxyn6xpyW3jjkOn2VKK5/invuKwJn1zvnN9mQ6/2d7WxY7qQ8I8gAHt9Px3D+cny2iRPIwbsSjN4d1dXlpxPD68sOmuZYTxLc8TCSGLI91IXmZqsoVziN/ux9JCkgEppFXbmdlGy+ozFt7/ygf2U6SZs4Zt3EIjDmPFnnzPYNFzmeXyfJbc5HznnOL88j1Zrvfq/Li001VeUYQl/N9RXWsWu83ahkFWsYUqT/f7IGlUcCEb1v1PUg0qPB5Rh8ry3Za1vKarxO80hCU+oi6kmOX+oPf7LuWvPC3ZVMaL6T+PG4F50vPuOOvqG6j24x0SfYPdf/XVeW2t+Gd0uKBB3zDfGseO940/vO65wPnOPspja1O6/6x92SmOkd8lLDj8IQ350k5k2vH2914bTfshk8lXPEkReqD0BaTJ4glwKUATmW6jThpiXSeVMRJXBiHC5f3vdBbXhYKaAsnKlhu2yFYblkgXWd6GAhUSZiGLFUp7NjPtlyynnQrc3vMSpcmQWIGtr31MHO20YF9P4k4WdY47tOiPFMV5lT8BKYJaKX+SyZ5rHFaPglSndcHVcDEFtInGE/g7bJ9OAL7uuW5Yxq31fvQqYAeLHgekrjsZE13vgQPBDFJUDxvOcdYL1oyW1Z/zj/OGc7PIUtmlpFg2+W1vLEpV5xviwTM1PfasKyUMw5poEii2vL4znB/6NhZ1o1ybAjkOZ5JQY4NxzMJiuub/6U6Pk6X48d153q33lfCcUgZx2uUM60y/D+JLi32uTef78PIfLbjPwHv0Fwe8rQ7zXnVsc8tVJ6n+9Q3SPg6CZ3bRMMVjRMruLfR/Xe/HFZ5jkNdOX53RhIVz7fWvEpgzmcoqXP2xrfTraj9fiypyirXj31t/eVxu1dFBm+qGI6mqiTUdXM6yuqRqiHN3jA/r+JnRB1yTaRe9X1u32K6nEduc4uY5Br31rW9qi8BtVGtpf+HyBTj5vOuLdl42QValS9lmbuhF4bm1xUX6Fom6HSgYqMlI4GR46SLPgUr855r5/lOhZWAJMtvbRdw+gRKrAuVPhV0KgNbHKUKaseqrv1Uqnm8puK+2yEVIef9u3lyjOvoNFYUrg/7xtdW1X+J40Rl3++y6jYTRV8kSWNIgpH96X629WtVfSA0j7SeYwdVPEjOmwJ7n/p7fKW+dZRt31Y5o/9MI420OH+cF0/jcX05Z6i02P6W5ZHAV+oTpaVIR0+Wy0kLKa9beRkwE4gzja+xnpzbS4g7RIyybglG2S9sj9OzTNcn20YFzn5n4LpNwul0rhe3kgyR4HHjPgkF11q2x/+XtFim1Df2cNwIctLA0vL+pidt3kib8szfvM60DpxLS6pH5C414lPWuW5JvHKrVQJrpk8d4C0+biu3OXH+so3My2mSTCdQHKufl69NVQiKcI/jbJl2WNL1KoePENzmKV5ZNwN7epY3u+sGuHNJXyPpe2+QXqC6Prm2qHvT+MCyTRakvmeXbaYuooEn47bK5trZizy4q2CiIssPqW+44bxh2Qnu7c3bQt58V00S45yP1Mnc0TBWv95S36Mv9fOhkZNzb0llPrjup1Wev8n5NY+0LIOygwYBrt2WXN4Nu6EVrnhPSlrauCBtpeQ173v2w9FJZGzddGiBDwvatHIOuXBppXc8CqidwNpOruzWfyp8Cw6X1zrG0cLKaawECASo2IT73LJBwctyXY/cszxR9apYoLM9SQRGuG4QwD3CVgb0erGd0qJ1h8SOymxVRRlvqe4xdr3TQppucoKcPCt/osW+siWa8UxY3Bf2krDeJpQu2/PZ/dyyXtNSZ3KT+SY4T4tkyzrM/uZL52i9JBAjkCKR4JbILGMS92gV5fycIy23E3EuEoSxrARPuZY5R2hRJ5hh2fuQlsqentAhiy/lhZDWedEyzbYk2G0Rtmn8Z52Hxt5xeToQiVa+7drlkMwwTBHPbRrjOr1dc/XH3HXidkrnOVK/TbP4HgJytMyzzRk4d7iW3M+ud44r0zNOet6SsLAdBNmUZelVT29MGtGy3s6DZVN+tEiA3yG1qe7AhMdLV39wcY20AuvC8SFpopzMOer7CdZdLz8nQ93K8c8DSZyvveBPUXmJ41kV7za9Zpbrno88IMb5rOE3iX6rb6gv8j+3YqXMSKzRMrS4HM7rJZVT3/zuF+OhJVWvkHWrVNc81zuNpNwtYDLWWu+7YTcMhSuepKQwdiA5IZAiwOBC58L3ImwB3FTk3EJB0tEiLC2LMwHHTHUPeaYhwEjwk/VJAZEA0oKawtECaknV7c0HJtk2kipaW2gJZd+N1FdwFLYGOEl6pLqN4piK4L9d9Sz7tPAQvGZdDSKtCLcRx8pHWrRu82Vfro/7zeN0oZHOnhgrGAKItJpZKXGrVb4DghbDtG65LZxDUt1mYCsZgWQSOZIWh1TweUoP609rs62KCaQcUrESDJGQs89WcN1E0f3A8WX+WTYVawYq1nH8J+h1X3MNcOykKlv2qb922TbOOdaLayct8QTwbFMSkhYw5nxUfJOUJlhSlOf5bjCZp755O5HLdD6sJ2Uf+yfBdWvuOHjOLXfp/MAy+5gPpQ8RFfaX9QFJQ64pnmrVMkZZFzCksYBbBd1m18397zT7VOb+BuqyjTYRBKe31Oml8myE1N++xDXNttMD63loIOsxnqg+qzGS9AZJz/kv5UFzrp1cmwTOwjXK6tRPQl45t2fqjw9lOvuV5SQBpeFwtauvdYw92i3C1SIDuUatQ4d2UjhQF1NH5zhxfSYxpW5gm6Tyzpe5yslu26rPjnkuUM9L/b72mp+orDePO70nKXuGZP9lF2bafXD+MghXPEnhoqVy4eL1QhryerSE4JBAdEiAp8b9BDytvNKKRqGbQJ/WOl4nSVDcYz6t4x9ZtgXcmbieFhkK6ASH7NckV4oyLRjHqg90WjBbwUn99z7QgpwAUOqDILfbit3WMsZ3e9z33n88UTlt65yku1BPAzF729wnS5KuUwEUJ+IeLZEkIPYw+d4UedFiy7bZc2APiue1+4PzjYp+GnHYT67P0B5wArlUio7rPJKwMlCBkzhLi2+/Zh221Z/LBL20UGbalneOZJhtZN1aQL91nXVgu2gI4XrxvCUYTYu5g2XESIt9xrmfdXO7suwZ7mf9NBA3vT0Eyownle1E16sYEv5Yi0YgWqyFa0mQWDdfTxkzQ1yOJefqUuQj1fnd2uPP9oziOuvm4DGfqMqCJKLZVrY5PYyt4HjUYZw73O5qy3irLWsqW1I31J/39kT7Gp+nS2MX36O01qXd7OpwXtKtqoYuGyq8Hc/A1m2wHCeBEdKkgdAhDVP0LniekGga4DsdifNEfaPTRMUjZJJynwq5W+nubaBe1gPWJ9sqW+nWurSbquNE2dAiaNzW5roOyeWdDBHOf1lVf3see0xd5y38dp/k9jriFxuGXJ/U5TnvdnH4bvh0whVPUqQKyqh0LQipcIdCy/pK5cN4XKS0PnHrwoOVI9XTWFr5plJySAGQxMxx+HBsCjRarhzyoekE8QT7bEsCZLZB6is5KmfWiUrR5WV9t1SUxExFabQALcEpPQIGuCYnLWsxt1/4uttD5ZygjXVcUnXz+wFSWt051iYnHE97OQxK09vhviVoYWB8x/NY5tYK5pmWuxXEMTFNazCVK/s/wRyJQpL18yprIE/oYdvSkp1z23GSkBCI0yBAcOay6DmVFi3cwv8hI0YCC4JmbvdgnBbBYHnsq9bWH8YlCeL4S32ZwkBC677zscUeD4JBzxWuhyniH+4+XGNJqtjH3PLjvAjkp/FNwOQ5cBrpPf/o3WOfk5gwsE7uRz/47fosq3hzDbhtkSZR2lb1nlFeSIvjnsYAtznbMlORdQS6noc01LTkEcv3eHLu+z7JMEGy80hDl9T3RJuYWCaPVWW0SYDDsiqZonHGnhrKbZaZ9WH/OR7JfMp3fntd+jmUCe5vdPcOqczlCyqAf1mLZNqGM9ftvOoD6F5/noM0PlEeOT+2M+s+Ur+tvsYybLgyWZXqO4tOqRwEIC3KNM4Fz6nsMx6I4/qNENdjQQ+6NLzeLquQQuhSlbkbeuHzgqSkhcXXqBytGPmyLYaWQknLRxICCkZaMpOs0AOQFkUvem/JoFBKkEDQmZY5EiYCYir5lgWmJawYSCxsuRs6ZlTqW31bQIzKcqJ+/Smgx6p7i6/uvo+r32/ZDivjIZCQAjgtn8zDHhQ+u2RBvFeVZLqsTRVrYhJJkuQWSSCga1mulpDWz2y4TD5ESVBKoJnWQ1vCx43rGX9Ji8DGyta/Z/E7ZTAtgAw8ctuBOoOgdkV1jbSej8pgpdqal/xNIOyQRLUVOL+SAHqtJjBKi316Q1inifpzgtcSmKbxJT2LabRRpHcdW8aQlDUOKRelMvfvUt0qI8Shp5KEj33dkr+uq69n27KMiRa3sRKAc+ul8J1z0Ot8pAL2Hq0++Dsg6cMqa/6c6uEYzovt4pi12pfzjH2bxJtj7jU8Rx4zfPyA9EgFaB/v2n91V++NKHMc6aVFg4D7i7qKW898DP2qqodljrz2d+V6HDimlCMui7Kz5TlN4yJ1Z8sD5ecuSGo8z93nJupHVDzi51A21wi36lo2eevvRP1dB6xHyjyHGeKxnFxn7CfP+RUtGuMcx+VxLip+WwbSaJH6hzopZZ7beBbX/0ejjbthN7TC5wVJSYJApUAFPFe1gHjhUTC0BCRDC5TTuu18LbQJKOg5yfznjWtsVyskOCXw8PdYfcFCZZ0AZabFh6ipQBNs+75BYx4HSW+AkIb3pT4oTqDkPI6o7s0+3bWFwtMhCWlrX3yOne8z3kzFeramqtDTw6H47b4Y43prXrGNfFZGEcdtsYWMhI5eHucxUn+8uBXEdbXFLee5lSo9VE7LctlOWrSFerUArEOCXf6nMvV/t8ftNCgbyptK154aGgXcVob09uVzO6260kNAC2nL4ul4uT59b5/qEbItb2zLEJLALg0CWb4t1VIlu35egV4R94/nHutt+WAiOVV9JmSmMne21Zdl3Hrj+uRcGgrZx2x7jpnb5fLtkWx5AIX4vjY0ryYqQP+cpO+Q9IhvlT7276T/qOJZuSPqk/Ld/cj8KW9zzrhf6RVNL1TLc5Jr1NcmWszfeaTMY5+wDSkjl1SIzoYKIXXbnOe2+p5kP8g+U302hn3gue15kkYPjo/7ksBfiOc5SyNMGhK8DjhmlmU3dHU/riL3T3dtlQph2UKZfP7KBGhNdVuYiaRlQ3pqqWuch785Dqw/r3m8SaJWunubKn3t/nR+fh6T7U8PHuNL/XfnMLDu7O+ZFreS74bdsFMYMgZeMYHWOVoKpaooRvhtAWdhRws2hRktf1J/Uc/VV04E346bgCLTOJ3rQMVBV3hamNIb43a1FBABVOYzJEQoLN1XBMUGsstaPHtfqi/Cchn04vg/lexe1eMsU2C6vXeqnLKyqXpU8kz9MeW4ErS7HlS2VmYEhfSYrKi8VPF6ledS5irAjsrokIpl8HD33ySgBVYZDPZsTTQwdhuEOnF+uA1U7Dnv2Adb3b2rVZ6VUdd/re0trhPnIvslt2E4fVrjSLBS8Fh5ud5eC567rg/nJec1H0BtCbVUyOwL1i/XrRDPc5z9SmU8j+8k4Pxm3zAugZb7n8dUt9rldAluCDAd0vPg+ZL9ShLCtUEwKFxPeeg6uD9JuPOUr09FCWU8gkwbJNhnUtujaMK9or4sYL7eWpTrTbjG71VJj3i7pH/743rUv6rgs0U2SNZbgXPUgJnrhvM2SR71CMdzpr7xbawir06qbPVZknSVitw8ruJZsbGCY+i8UndxfVynctTws9SXH1zDB1Q9pduRl8M+9QH5kPFB6s/PJFScx54nXl8m4jkeLWOA+9Yyh9jBeXjuSIvPj6x1n6Oq8pdjTZ3tkMbJJIk7hSW0y/Wcqr6fZrX7OC96B1vltcgSyTXnBXUR5wZxy+dEmD1En93QC1e8JyWtRVxIE9UtMhQGdJen8JL6goSL0Aov86PFK78JClvKsFVebkugAKFiSCFKgZLKraVQ0+pBa5kFNZWHfxPQJgii4HKemb8Q1yBAWnzjrb1P3us7ViEGfmiT7Tuk+gIu17uliFyPkfqnm2RbT6p/cpfHcgn1vU51C5rbaW9FAkj3Na9NEW9FVfjn9qP0SHE/tFRfxsg6UtlK9cS2iaoiI9DkvOCcOqQCOtZVnwHgeOZa2EYc97eVMV8ax3YxnsvNNZHznfVM66NDS+mTpLbIPe9J/T3Zinv5DALLSot4WvVboIz9n94oA5IENlynBmVJYNzOKfIx6Wb+zm+MNGmcYR04b7I+ijg5xg4zxMu10fIaULalPPP3PqT1dRJQE6lVFWB5TsUCTjnGtp+TpN+Q9OyXS79Z6yEtelc9j0hyziNOynTPa7Z/hnycp+vm9rI/s2wHvnNkXf03zNNr3pLZBNUkc1sqMu+kFuWUx+ZcpJfKmNgrta7++11aOoK6KfvHbZhGWiE+8eBYVf754/z8nMymyqEPUxW5fo2kd0q6W1Uus3+28HumvmfJ17k+KG9opLAszDXLvnC7pEqSLGcPdtdO4FqGxC+5XnJeco2uqr6rjOOac4ZtyDx2w27YKVzxJMVCSVpU4A62fBEgEOynAJIWhbP/ewEm4E6LpPMY4x6JC92+UhW825EHf7dIER/ApmJIpZ990lL+qSyoBFJxbSKtLVgWyhdwnWVTmUsVABp0E3ROVU+bOaZCTu5V3fvr+G7DlvoKIMmVLbJLqsfy2vorFWHsvjcxsgLZh+sW2D8u6WF/W9LPS3+/29+QZIfbbNwPfr8Jrc6to38JFDNwmxUt2DNV4mUQsK4+QTof7XYefM5Iqn2WAICKaadA8EHAm0SD65AKncrOYzfFtQQurCO/GUhqmY/b421CBKjcspHt43r0t9c2DSQkZOy7XA9Oz7Wcc5kgOglDticDvUkGbS0jBIGe28pA0pFjy/icL0OAJsk0y0hA1LLeJqFLQ5Prmp6NsarX10aF1phuqvTVv/4p6YafmutWlTW2rjrWJKX20LTGlb9T7kv9fnY96IFjO1rertQ/B1Rl9Wb3+2h3Lx90zv7nXKJn4YQKX8stPi29MVGVdxsqRo6ZCjE8rLLeTiCPHKORiuzlNiWXQdAt1bVmD5rXbUsnO++x+qc++gF5n9glFU/0KRXvUxIIyjbnS5k/iXi+NlOfbNCLk4TGfSNVPXt1V966ip7ys5sHVQ143Nbr8tl2rnvKmJxTbhvbwDgt/SUtHjp0WYaW4LkUZe6GXrjiSYrUFwQJtn3fIS2/tBxmPi2rZwqOlhWaArsFyLg2LLBs4WFdcjtJS0FZQbBedKXzm/Vm/dhvtO4wJBgkYZnhQwBhAOD6Jmmjcne59OxcpUIovO+W2yysAF2+96NL1SthjwHbbcArVcLD8bZw3afyQq9NFUWaVs6HPVbSzZLeIa3ct3jWvNAPBrn2CLmetuJd0CLpcz75nBC3TNkLpK5Oh1XnkYnVE7v87lQ9cWeiAhROdflwe47/j1QV3ab6lk3HIVigQva30zg/qQ+uW4qS5CPnGK36/E5g6fwc0pvhQGXteqUiH6F/3C6DJlr7Xf8lLQIh4Z7UX9cJHtJQkLInwRHXbQtoSn1547nBsglEOaYcx+yvlEGUf76f1n7nZ4CbxiIHy4O0yBIksRyC/Glc81j5Aff9KGtL/We+WL7LPamyrlZUnkHZq3pEredUkiapAMltFcPKCsraq/b8d1uGDAOWIfaYZdo0SE1UweqaCjnxcxWO45AklP1MvcK5z3nNfDhf8r6NUXtV+nRbhbgYqK+oHpV8BnEn6nu1Od9MSk51/w2aV1Tkq/thU3W8PO/d316b13d53YpyblYZ99tUDTkcD3vO7WHfQr6UD66rVHUF+5DzyPEPd/mcUF0Tq10fnVPxaHHN8nQxqS9HOJYpR3MucS24ri2ZlKSa4/95ATx3w2ckXPFzJUnCTFU4WAmm5YDxCYxai3UIINEy01JwBPo7gSlaYZIkOW5aCzMe01PQtTw+CST5UDKJUz78loAo8+G+cNd3C+kTQJGMSVWBqcv/mIrSOK36EsejKg83nlZR/gbpY6SjtZEK32BzE9dcZyvJkYoSSEVswM93o/ziR6Sv/HrpLaoKUOqPreth0kTrkseN2zjcL/7d8qoZgJDwsZx7u2uPk/TXJyqvT55IukN6w8el30K5ayogzIqW4I7gtQWIOM9Ict13VuC+7j7ONtICT2IwVxkL95PbTY+dyVKSG69/l0OPHteGA0ECt8QcVSXap9S35tK7MkYeXEPc6uP8nfcW6sFDNVqBY05gnx6cnUjDDGmTHEqL8i3BpnCf8ohlSYuyiN4PkmGXmQaWFtkS4ju0jB4cD7bFZdpo4TlFrybHhURMKmvktOpD4AnavD3X7bpB0rc/XtJx6R+cr+/NoM5xO+kNkPpzl23x77n6b1R3HbkGeEy0VMDuMRXwf1L9tTtBGqm/ZjjvXMZ2XJMWZRgt6xuI42cJN1Vk+qgr51qVfrd3ymvCfds69pr9bcOT1yc97VIlERNV0J3rVV3fzCU9WdKXSPq3kt7btWFbVdZu4/9M/aOVpb4xIokeZRfXjr9NrJy/r13XXVtXPVlupiLD7S2z0Y15eqy28Z8GixZBnUc8ytQk0CkDh9buZRnmuvQvc9z1pCyEK56k0N1qQWQBSmtcEpNM74VIAJAuewYCdgZaRVvBioXu31YZafWwMm5ZmYfq6PstN3VLobgMWuuzji3iMlH/SF4LxLXu3mktCq+0GrucVeR9h+o+2CXV/dDq/h9SFc5S/6FngxYeBWlLloGIgfkq8ry++3+7ykvpxiqAf1nFG7Hd3b+ji+MDBGz5a3nLzkYbObbzSEdQl4Fz03OBCmm9+321pL/+8K5Bp1TQ9mnp6x4tnb5HukV1Dz4VGcFKEqH0IA4pI4KHVMbOY6cz9Am8SQqSLLWAeK7hFhnh9jte95yfqG4xXFMFIasqFs2zqkDNY0mFnuXlfEhyw35peQVo7WR+DpNIx7nB+hCMO8wQN+cc58UQqCGhSVmRxhfWhWmTdJFEJvFnXRXX6AUcqy+PqANMGKT+W+uzHc7bddtU/y3rJDtJjpIEzvCbY00y4vIn8TsNZTSSMV8TbOtAy74LKl6fqYoc5rbJsSrhyTzZDuoP94n7M/Vqi2R67lGGbKJ9F5BuXXWdrKl6f6nTaeCyh8r9tdaV4+uUIfydhsttSfeozJsvlbT/8dJ1H5berr7Byu0xMbJucv9LfU8+CVwSePcFdbB11Lr6b3eXChHytjPPBZOV1rtjpEVSxHZTZnBd0fi51NXprPpYg/KuVe7nFFnZDQ9puOJJirQI2C0YLFzSk+FFT+tuK5DkuBwL4vRsOFCZJGmgUEjwx/TeksEtEi4z98enZTTrkKTEAsvX7R5PBZWhRezYJgqrFS16h6T+cx+ZZkn1jb8n1D/K8agKmFhXISnuu8Mq+67vUxHWfu5iucvzjOozGvbqLHe/01qVrnjWk2kJwqzwN9FeAg3XcwV5cJvBqvpvPabSJwlOi1wSBivMc933k6Vinrxa0hsvlkj/fY/0TOkrVbYzEGj7wAKuCwcrNpbntvEat2VkHIZcO2xPKu8Wmc85yq17LSNVEnvPuQSWHgNvRfFYf5ukd6hYVI+ovV2GMoLjRlCprj0bjToS6LHNCUgTwCaINDFIOWNQalBF4EKZybKk/ji1CInLSgDEujpeyin2TfZlXmOgNdd50urvOhggrqq/1crxrB+WVbbPbKoaLhgILvPdSL6fsvRWSa/6cIl7EveHSFv2i/OZIk3KCJbt4PHwuhbSTlW95kkkSGiYl+uTZGon4ppezDwZkEDYRoU7EX+t+31Wddzs4TYod72E9pokkPywPpStJhVbuL9XZR5IZb1vfLhs8VpT3UrmYP1C8kIjB/UHveFp+PTx4962vKV63P0+le3Op1TI5YeR/wwf9wP72XONazqNNwweC8pEygcb9bzO7JG0USDn4S5B2Q2fThgy6F9RgRZgqS7e9FJ4gRMo0k2+pL7ioHJKD0tLcNON3LIwJGCh12Wk/vMQQn0NUFtEwvm6LS2Lc9YlweZMbcFCouXfBEAGBVb4bo8V4WkVJS0Vr8e16rvCDRiuUyEi51Q8FCYRV3f3NlWIy1L333kcVyEoE5XTWA6oWuBch2OSHq+6bYcej1XVhzgnKgrig91n3JV/sCv7A6oWycMqY7SpCjpNjqwAabFfVX0hoRUq+6AF5gl0HawQpP6YpoVrVapP9zv8L/9Zs3P9t4LnnCLAzrp47HMeEQRbaROwE1Au47fUn1t8gJXeHCtft9H/DYa5Tc119Bow+V7tfjMN25C/va3n//xy6ejFx+gbf6nMhdaYDAlYAtIH8/ATNNLg0poXalx3e3MuWYYNeSIY3+M4baTJNc86zNTvd9/z/9wW5HzSa0zjiYPzJjEwkRTq6fFMIkW9YILG+b6t+sLBvSryw/XJQIu547Bt/m+vwAlVz4VDa21xTae+kipZXlFfdjiNCYj7yl4Fn1h1XsU7fLOK/D2nCvRbBjyp9m/K/BXVLZicN2mYSz1lgpXE1VukVlXkrIkGx4ck2HLVH/9fQ9ncziX0neeN27Cs2qdJeOx1uqAyJ9bQXhqYVlWJqwngtur2sJbXk7oh16zr4zlpkras8kLRVaRzXT1+nufuOxMKjsNci1iAdSGZdv6Ul1z7iW1c9pA+uyzD7CH67IZeuOJJioWjlZCv+TutCRSguaUgQTmt5rRaWNlzOwFBO13hLtuLfxZ5OF9uWXAaCw5agubxYXvTLe98pEXFQnC3k1ChUKM1iNcSGG2p38dMZ4G3pqqcvCvJVuqxCph+hiop8faum1X2fK90eW+qKoRrVa2htqitdemsPK34nN+K6rGYJk2Huzh2uTMPEyZ18Q6jzv5eUiFGB7v6nEYd96tv7WX/UIFR8Qt5ey5xH3yC/hNS0WzfKj3w7t9/+r9pfKS8FZxA1VtEEtSN8fGYJbn1tQQlacmVFj1r3LaRx2C7fh534dvgwusht9vQ83JB/XVIa6FDy4tjWVEi/48H2uk2+TsJFGWGg+uY2ykI/H2fRJCyJwM9mcw3x4EygyGJwBKukywkeJ7Hf8drbQNJr4Hzo1xyWs5x9nHLy8222oPoPjS4I3ijzGG/uvwtlTV9VvVFsSNV2eA1OVbdWuP8OWcomw20L6huVcrxyn5gH+xFfHq5DYadjoFzkF5dqQJnGtc4vu4Xl+v+oiHN+Z3Hb6mvs1xfhzGutdaew7b6x6pvdPU4rCLTV3FPKsThCK5tqhJNGyQcTDpMhhx/A3W0EfJkV5dvlvQ1Tyrbvu5RPeHNJMJEb7u7dkh1nOxRNhFqGWSWUP+Jqr5cVjHWHej+2yg2Vv9ZqMQClCeuR+p/jlEaylI+eK7l9jVjhhni8dvl7+Lw3fDphM+L7V7SoiWHbl4vdFoXrGxozeADiTP1FWgSgiHXqS0tBAckRy6TCtjX0zKX+bv+JCVOk8reZVAhztQ/ez6tIaNGWuetiDtWfwsChZP7k67pDdVtUWsqwvik6kvH3L4bVM/Rv00F6P9tSXsfLb3xHun3VI+LPNrle04FmB9THb9VVcG+rjoGB7vrx3DPwnhJRSk+RdL7VbYhjCQ9s2vf29CGza6Mq9RX7Ab99uTQ0ivV44/HcT0t6Lk1IOMlSJmrKJMNla1JX/lH0so10tk9E80kPeKRpVK/0dXd75IwGGzN26yXy7Vi9RYRpx8j/QjfUt0GkXOf6y9BsRXjIZW+Pq1qBV7pvj3vSMKphE1KP1XFaRCzKulVb5VeuOeE3ql6wo77OR9QpbJPT4EQL78JLoXfOfZc+y0vC8EzZRRJ2BzxKHOGyCdJtdfSeaRnf5MscWtJy1LPrUTuS8oKqQJbWnE5N+mhcP62ZqfsZF95bNyPBq8eCwPMIyrz7RTqa1Jk4sH5zjWbYyAtrgfqK3rCsr72KiexJ8hMQ5Hj+AjiO1Tk3EZX/72q24rcT+5PGw04xpwjlBNce77PdcF8k7RyDEwAR6rv5TilevLhWBW826O+qjrvDMzzwADW19t83ZaVLp8NLc7jc5IesbmYFwmx5aCNTxPVZw+XVD33nAfuC552eFRlrt2jSs7c74dVDW6n0Wcpz+hZ8VikF4rzjnKWayU9ee4nzrex+jJl1vj/6cjbhzQ8FJX8nOiYSxs+L0iKF5AFfwuES33lmYDCC70FHJJEpBWJC3PSuMe6kABQsbUspm4blYXb17IyEoRk26k4pP6LvmgRdr5D4M51IUHhfwYqNAfnv6EqUK04b+g+v9d998jPelE0x1S8K7eqCPEbVB5uXFZRYFZ4BnUnVZ+5OKw6judUyZG9OZsqyvG9XTkvnkh/OJV+V1UYH1UZgzNdPuto41rXb2dVtowRyHlsWtZMjy3/UxkRvBDkJ+g8oqrU/omkb7lbetxjJe2XLrxf+tcqnhR7i2yBPB9lEACl10xafC4j1wCthkLcVpvTgrys+vyAQ1rXPSem6p/q4z4heLIVnORpSW1A4+AxXZb0S8jHRIVrhts6kuCx/gSpaYGkbOEaZNtbRIJyi+R1HvEzzLX4rhzn5/sObusMcZg3CSLBHmWl60TC6nlsz0CL2Er9bXoun8YmkpblLr6JrD2pW+q/ENby0c8E+DrbdwJtWO2+aUmmnG2Rerc9vWYMBIhcY4yXHkgTsVb+inQmAcsqRJ/WcY8RyYLL5XZLj0ca0diesfrjz/ngfBmX40avl8fZ6TdU19cNqgel2FgxVZHd+1XWbJJAyicaoq5RMS7dofq8yV6VLZ1zSb8i6fDd5UWOx7p8nP9Sl/agyhwxifVWXxusXG/35X7Vl+LSqLWscjDLvGvvVvd7X+RFnWEZsRR5eW56jrsfHMZafPaI95wH8+Y2slVVr0/qBKnKip28ZrthN2T4vCApVGAE1hS8qTQd0qJl4ULrgNMTcNPamb+TECSo8LW0irPcVAq0uI0jnuPSQkk3MEFRPmDX2mqjiNOy0kmL/ajGdf8fqwJKg4JVFZCwpuo+/6CkG7syjndteoek2fmiMFa6609TUSJ3I2+pesNsmbOLfAnXpaIsDGCf2V2/W2X/9oUufz1F+oLbpePnSj72wtysckLWeheXRwsbQKWFOsMsPtl3OXf8bSsct434RWbrqt6UDUn/TNLhj5R7p9Wfo96yYHLJMUuw7TomqXAdCdSThJMcJBhP0Oa22ZK70X2vIw4JsUEACbIVJNuQ40CCQqDv9XdB9Z0StoieVp9Qf6GK1+3tKsc+k4xK/XE0mM1yW8H9SLlDkEfjxnn1+50GGsZ1IAFqeV5JIji23IqTXpOULynLCIZdLtMlcUvPCwEa51QSozHir3afDVWw7vFtea4cx/PYoHaq+sLHmeozHlK15m+rPZYTLfavy01Sm8TE7fF8c/1a5MX50GvrvjPgPaRi2Lmg4h2md4fy3waJlneN85Jj6XjpEW2R9fQQUiZk+ymzZ6pzcFsF2O9X9VRsqILpFVUyRl3n/ltT9cCfVgXjrsemigHnehVD1BbycB03VI1l1mfpobAhyPPwgiqZWFWVyfepPO9oT8nBLv55FQLk+eF8nYc9Pq4XjUnUK3yGj2uIgcSOHkuvuyVVLxRlas6RlIG7YTd8KuHzgqTY8tDaHsPQUsqjgfskFBY6VKYWSkv4TwU7jzwSBPK3hQet7LRy0RLJcqw89iKvbEcKkrSi5BYR/zbIYPssyGnV44k5tmzTwjdVfXkcCcOj1X9Jo/v2RSPp1Fx6o4r1bEnS058v6Xrpk68px/6e7tJ94yOl//rxQlp8stVcxaNwRv0z+q3MTEwmuH5GBQg/rYtzXIUsbb+7PpgpFfJ0UsUCZ7C6qnq+/rrquKUHiRZl9n32aSskccmtE+7vTVXFbgV2J8qy9dh1tdfCc88AZAjc08JP0uQ6jSMO09ta635YinRS6c+17t5JxLlKReGfUhl7qSjNw6reLNcp+zHBsP/n+qY3xu1aR95Jvg6revSOo70EcCMVMGWAQiVOWZXEhIAvX9xHoD1pXCNxcUjrqgNlk9cq76VcGDKyJLFgGhpO0mjCtJx7JJoT3CNBscV2RRVI+pot3XepjJ/Xo+eTwTvHS+oTOIdtLR7kQBk6x3fqoCRgM/xPUpj5uU/YVwbeXjMkXumBW1F/S+sHVN81taQ6r+kRd+BWurTgS31yYvmfeo4P37tdCV4tDynHziG+x2yrq7+vH4t7DteoyOM71R9X6t5tla28IxXPBuWJ6/Clkh5zjbR9dzFCOI+9KrplrqKHrEtWu+9N9UnAssrW4Tu6OvmZqamK/DinelgLsYSJKQ2rrgPHIUlBknhuffT9lPNJcNhPUt1qO+36KA1aDil7dzLQXTZhrt33pFwG4fOCpHChpVdgCLS0wjy+W14YhrQaMe+0ELUEuX+nZyLBgQNJAOtDUDOO6wlMKGRSWZLkcC2lFykVVAJPKjmDLLbRCszejjUVUHFMkm6U7ritKNlnP1PSO/6qpJ+TJD3s1b+lp/+nr9Itf7FYr28aS182ktbn9d0mBHfsG6nEOar+Cwyt6L9zIt0yLdduVBHOT3y8dPHDRanNVI6B/Pqu3v9eFXwuqSqsdfVPOnObrdipHOhhyLlKj0HL2+E0HmO3w54k9/d1ql4J76WfdP1t0JMg3pbkFql12bTKUTEKZbS8iwycY96Cxe1bq5JeIOnZR7oKn5Hec6L0/WYXb7/qvnL3MUF/Wg49XgSoGSfHwevYMuaCCnj5A1UQTADnubCkMpdmKnPTZds7M9Xikc225htQtNbdkMEjiZTbQQ+t1Af8BkMcI7ezZVlNmcjQ8gQnGFpSH7hmnXJO2xhCWeYxWFV9noUW9Lu6j9u3gvKdr/Ph2Gbb/N9r5Fz320SFVm3LObeVpDdJotddGobyd+qDJfxncH9MIs2a+s80zFXAsQ0arCPHjmPGfnVbHCj/UyYkEfV8SC+ry15SfSeW54lUvRQ+ufE+1WOdp+pvxfO6ct0cvK1vov7BGxuqhOBqSd+0T/rYeel3JK3eXerzPV15b1d94eSqKjFxXx1Ev7ptJ1QPeNmrot9Oqn9Qi41gG93/02qvrdzCmuueOj3XsbQoE6U+SaZO4lzYVJVTuV55ch6v7eLw3fDphJYn+ooNdO0nsPBvWnzpviRZEH6ntSetmo5LZZ7KxYCBSj7JS1rZXJY/JGFJIAx4rJRbIa36FGYEFrP4zzCP3wSmbB+9TmmRdeBzEMdUlOdc0kdvK4L8G0eS3vFTkr5D0j+X9D5Jvy/977fqpp8q5f3+fcXrMlE9jUcqyoQWZStBH4HrfnK5X/FwSY8u5a5JevbflZ548R9Ld1zUnou36qmnC9hcVhHaj/qScnrX49QH6AfRdm7pcP9wXmSgwnYgmOL4JaCwleucKniax3WeMrRfRel5DEieprjGOZIkaYr4rCutrOmpzLQeB8cbo757Jf1FSc9+tLR1X0mwdUJ6+oHy7hIfE3xW/fU11GcGLVTWXtuua9bfXinOI9/bUPGg5GloOX6s05qqp2hV9b1ADgS9LJdt4rwaNX67PPZ7rtW01u9TfZCYngt6AVIWkAiznGwL77H/EvCwHemFHKvu+XfZe1W9p4dU98r7IeoVVc+c8zioxe1G+9QnTlyjBpCcB1uqFuXDqjKF88bBfbSsvgy0x8dtJimjPvLpUDTypBxNb5jH6byKBf8uFcOMvdInVR7StufAhJr1p8GC8kDqyzPht/sw11fOEbfXhMXWflru19SXa63nHY+qnoLlYI+2VMbVH/f3cpfPKdWH1Ecq3pGvkaTnSo96fKnX7Sre/qOPlZ56sLyB/nrV0yAN3C1nSGDdpysqpON4F4eEy/iDctbbXNmv7LeUZ0PeKWlx/aTxlvk4kKh77no721T9VzHQm5dzIWXFZRtmD9FH0k033aQbb7xRr3nNaz7rzbzcwxXvSUnhncKUitYWpyQvjr+TMmB+6cZvWQ7SGud4SYRIZJJQEYyOI12GVruHXN60kCeYS0tLuoKTZKUl3crWlngr+ym+CUqnKsrltIpr/HYVq5Z+SpK+T9L9kr64K+2pkn5G+lsv0FN++PX6oKoV/U7k2SKSrufZ7v8Ble1dt0vaul/6wP0l7nN+WNLL1yW9U9KLJD1SesS6Hnbxz+vaPf9d75T0tW+vAGZZxdMi9fftsn0GiQY6nmuuZ4611CcIBgBJRBOQe9ucAc5MxfLoPLwdZaMR38GAYS/upWeI3qkEd47PeuVzT2r8dv5+vmZN0hePpI/dIz3q4t+V9HKt6Ld0ds9X6ckHpMNniqXSniMbIGil5Ti4Hhcijscl26NohxCHll56MdmukQooPq6yndBjP1aZ5+sqAHJNFVxZpowi3wQ0Up84tcBKK7jNtGZLfU8g5xgfaqc3JEmyGv9bBh/Ha4EYjhkP9fA933cdDaKuUn34eUllq85XPFbS1dLFt0qvUwWJa12c442y2SaPAdeV5dmqKpneVN3yudrV65QWATUNVZS1NOr4HvvKYNh1VPxOomogSVLqdbyKsnyQiPPJY409R1r3WvrCHgqD8Ln6D/hz3nkOMc/D3fcm7s1VSdpUZb04/orqccL2EI1VXmL7NElvUJF7I1XZsxZ9IhU985Su3HdK2v7NIhsPS/oGla2c//ojpR6HVV6Eu6nyjOSm6jtq1lQPXlntrh9UMWwdlfRm1a1dbq8PeJjiOvuJJMh9TO8056j/524SqY2PKLMTN3juOP7Brk2UtcQtlBVJsnfDcLjlllu0f//+h7oal0W44kmKAxW6NGzlW8F/grBJXE+LJeM7tISvgQYFRQKZWfxXIx0V+UT9IwW5PYPkRuqf/MJTkCywLUy4Z3iI9FjotCzUQ0org61Laaljn1i4HxSeRbhR3b/HR45/KOnZOqzXP3Ca15oWnwdxaI2XurgGKydVgOTTJOmV3y7pv6moqb/QxfjXkt6iJ3/HI3T2/19c/6sqe4m5zcdtJFBbVR88M26LoFKBp0WZRMFEk5asEa5fiDwMtBzP48o50pqXLjO3kmRcWhVJ4KXF+bE3/ns+rCLukiQtS0v3S9LLu6tfqf3XSNpcVNpJppM8sx4EjVS0nJPuoxwDy5Ft9cEcFftMdWvhKRUgZfDyPZKe+DOS3iy94r+Ue3vVf0fQVP05zD5NQtkif+4PNfJxOs9Rr89tFSv2TP1td5YPlDkZSFCyTpZdrActtumdZTuTTHqMTaouqBgdNrv//4ekx/wFlU49Le15nvTis9KvvquA0PtUtw3tVf8YXs6FCX6boLNebssm6nOsu2ZPpvNd6/I6G211mWyb1H++gcYcWrhNktif44g7UbH8L6m+0V2SblKRlbeq7wn1FihFPq3xphxwP22qrhX3Ewn2Ej6bqutnRWVLqj1Ufs7RpJl1dL7bKtt9pyrjebXK2J5SeXbFXvKbu7YfV1/2H1X1ok+7vvD2KxOgw93vTdUXc05UiNCzVJ9NPNflfRj3R5Le3dXJeOO6rqy7VE8JZF+n/JGqUY/92JL1LUMJvXXpORXKo2GvNbc8ZjSweW6kPmoZZi/rMNfuMymXQficmS9/msCF6/CpWBepUL1gLXgNJDMeF+Z2Iw8v/rSAtKyHrUXtthDIU8knMEowSIXH+86XD34SnLG9Ul+IOi6Jia/lnnpb0WiJs9CbN9LZar6kogjsIi9PLD5c0q+pH75S0n/Rfeq/B+WY6tYBK0UqTan/8PJU5TSvg13cA5IetU8q5OQ/RZnfWb6eV5TRTEXRbak+k5DBfUGAwbFjf5BY5XabqfqnCiVg9phZsTPfDEzrLTPcKjjGR7hOIu7rbCe/W5a09AAlaXH+Hh9bFz95v9M8rov5In3i7hLRD6FSwXIcaHRwGVxvSVyYfhT33AamTzJM+WHQdpfK/PBWpAfAeaf56WGihdJ9QGLPtrCeSRyz3pSDJJqON1FZi8+S9NNHpB9UBVaKtE6TxCLrNFFbXuU4kUgRJEl9Au6tLV4Xlh+2Ro9VPCqPeZ7Kg2Pv+CLp1ovS3yg3v/Hh1bPIrTom6Qm42D9skwGcgelKd++CCmhd765dpfpCWMsh5iP1x8H3cjy5XtzPS/heU+3rJIhT1ZPZDqsYYCxjNxtl0jjSmpfsD/c/PcGWRSRxlilLKiD9RtVnSI6gj+5SPfLZHt8L6pOZieq8nKrKftd7nwohsZfjOkmPuqGU535Z6cp8zrEiv98r6bdUnzP53mPSi55X8v63KuTnu54n/WXVLWC/oUKEnjqSvlbVi2Yj2bX7pMd8Udketo36bKt63za69m6rHoE9xTeNFNb/m4iTXgzLaBqPaJhKjJCGHc9R50+ddUKFjG0iD9e7ZdBl/rthN3wq4bNCUu69915927d9mw4dOqTl5WU99alP1Xve854H7l+8eFE//uM/rmPHjulhD3uYvuzLvkx/+Id/2Mvj/Pnz+v7v/3498pGP1MrKir7+679e99xzz6ddFwI1qQpMBoI+goVUGFQQtFxZQVlgW3l6G47rMME1abHzk0TR0kElnOkNxNhGIQ3bOWQBo5WfVkrGo7BJ0kJiwrKYnsDa9Z2r/84VkxPuvz2solQ2VZTpKUkf/SmpPI9yQ/f9Ikn/TtLTpb/+u7pdhWAc6fK5usvL23nsinfbt/FxXf2MicHLqfOS9B5VUOxwj6Q16Y6a57oquXG/uD+oOKzMp3E9iWu62aeqxCQtlCReVExpPed+Yqk/N6aqlssWuM1x5jrjuCcJtpU6yT8BptP5Oq10VpibKgDi0DHpE3vu1Cf27NGpPb+kRzxauuVcAYUzVdDDOmXd2FcE7UkapT5Qdl+3yDuBmfNWpLMFVqrPT/xLSW/4Punn/lOxBtOrxN+cH66zT8mjMcRAwyB/jrQtLwrlmfB9nSTdLD3uQJVhBsSUBQTcnIdz9ftWuE55kACm5XVjvS80riWQm6g8P6CJiqjQO8uNr7pYzOQ31mdTSIhdJxL8lLWsm+c214y9xPepWOw3VWTCoe7+CRV55udjTGwckvAZyLo5NHZJ/Qfet9UPJl0Od0r6YxXr/nMOFpLw3u4609KAJbSP8jKNVg65xjw2rveqiow+1OWx3sXbr9KfZ1X6yJ6MTZU1Qy9eEmvOu3MqHu37VHXyuMvj1AeLIWoi6Tkqp39d1zXwfaoE7jpfPyLpXum5+6T/8/mdd2xb2n+s9N21qsdOv28uPezhJcmNKvpnJumW86URj3pBIceu+90q/Z6GD6lPQLnmOEe9jma4lzqcRg3LCT+jlcYF679J5OdALJJYouvCnlfFctu65XwjzW7YDa3wGScpn/jEJ/TsZz9bk8lEv/mbv6nbb79dP/MzP6O1tbUH4vzDf/gP9apXvUqvfvWrdcstt+jo0aP6iq/4Cm1uVj7+kpe8RK9//ev1y7/8y3r729+u+++/X1/7tV+r2SztrDuHdIO3QIfUX+zS4sJNQmBwRXDvuBbcXKT+n8KAAtWBaRiPpIUALgEB76W1L8FwhrkWBb0DvUAkZC2rLoVaK6+0rOb+2gOqfX23Cg2YSlp5Rtmm8F5JGr9JZdfwj0n6RUkfln7sev3X15Tyn3qN9IhRVVR+eHFFlRyxPi7b43Oj6nsVRiqWMv3nV6o8C/NPu1i/pWL7+qea/USp6xO7K9eqWOQ8X2yhJfn1NdeB/eu+E+ITvCvujdUnfBP8nqoPJlfU3/pnpWTvCcfDZSV4dd4MCUqoNBmHhJ/xWRbnFC32Jh6/K+lXTpQxfsQN0qGHS2++p8yEmeqpcKxHS9Hyv0F6GjcYp2Xhp2fO99ieBOnuc4/5lmq/v1n1/T6nVImsv3cybjh4fe6LOJY/lGGeT7S0O96Wypz4TUlv/HXp1WfqMx4m+i25apKQ3krK0WwDrfJeB0nyfK1FOoV7bIPUHV07knRbFNy5Vwno9iK9t2dZniXx8ppy340kPVcF+NNwYKB2QQWMGpCuqqxFepw9n9ZUxo9rZa56SADXylDw2Kyovw5HqjLgDknvOV0Be5IZHkrQMnoJfeL+pyHCdVxRXb8m1CYdd6i/7eq46st33R/O33OC42JPBOtowphGypmKd+YtXbprJB1dLr/PSHrfx0vaZ0j6im+Rvmy5M3Ktqyif7WXpt35Ih35DD+wFOyzpK75I+rovKp4ySfrD+2t7Ht+1/6SkP/6jku7s/X39J9VxbWEAGtM4XxiPcpNrkGvJfUTvLL3s9GS6LK5lenX2q+i4FtGxPrJXy2FJnyPPGSQYuhSfoW0On8dhz8WLFy9+JjP84R/+Yf23//bf9La3va15/+LFizp27Jhe8pKX6G/9rb8lqXhNjhw5op/+6Z/Wi1/8Yp05c0aHDx/Wv/k3/0YvfOELJUknTpzQ1VdfrTe+8Y36yq/8ygetx9mzZ3XgwAG9QO0tNFJddEPzgsQjLXUEWoybVj2WO9IiyDDIcX78JoGisnMetGwlmWqVq0b9LLyGgG8LUGY8uoAprFrtshBlfOfrrRV7VYS+BaSB80FJ39LF/W0VwT+V9MUPl/Q46UPvLwpvvUv/xSPpTfN69PAK8llXUUjLaP9hFaF7b1fGk1Xye+FyifiGjxeL2hfcLunPfUSFhkjSj0lf+hN6w1uLMnvqF0pv+4NCVNZVFO5SV+6d6nscCHrOqz687v3Grltrjo60aC11vkK+HGNFXhwz3nO/O8wiHsfUZF0RpxXX31agOVcc3224oAqwpDJea6oeCKmAHr/T4JxqvxxS3Qrhec91oIF+4RpK0Ms1yEByMmSZpEeVc56nE3Hbiq3iXJst4kSZkOucsoPxM+w0R9aQblv1OFhaa1tyx2u9lSfrrYhDT1+LsCdQ9j2Xt6baZysq1vijkv6Wj7B6nspWr2+WdFj65OvLORyea5tqry2SuKzHUnfvBknf2x1V+xpV4Exia5K9oUoUNtQ//tpemTT2uH/GGj7cxOvFY8NTq6R6suFh1WdAjqnIqcOqngr357L6x/eauPq+68b1JfXBLg0cfoh+qkrQxqrvBrFhKD29qTcpu6hbltQPLteEz/P1apV+X1OVFVL1elz1RZK+QtK/kvTdKqzp7Sp7tY5J+vWu075DxVXz+5L+ovTJf1T65w6VPj+vuuXrsOpYb6ueIralOra+Z5DP9cDAPki5QNlKsizV+eU8pMVt2YkJmJdUj6+W6vtoPBY8mZP6geO4rbLv4cyZM5fdA+LGjmeulfZ/xs34D1L2XDpw1+XZLw9V+IwPwa//+q/rGc94hr7pm75Jj3rUo/SFX/iF+hf/4l88cP8jH/mITp48qec///kPXNu3b5++9Eu/VO94xzskSe95z3s0nU57cY4dO6YnPelJD8TJcP78eZ09e7b3cWhZDtPSaatjWvSGPBoJ3KW+FTYD86UF0F6QJAS2bFLZsE4WbGldpQVyqnY7WD8qkBYIpQWUHgGS/9w2Mo9rzi/LZn0I/rZVhPuWitJaVbX2/Iak31Oxfr1fxZD10/dL/+D9RWe8H+3/v+dV2FuQbqrok21VQuAxS+H6fhUd9L5zklaqAn/fjZKueqz0T/dIf3mPPrTnJ3TLW0tdb5Ck28u+5FtVwbTBCMfX48q5SW8cgb/nSfbpkEXZ/erxSkDI+ZLWYIeZhsvk/SGDE+M6rbe/JCnOeeeH+4X4Vm7rqv1xQWWufFh1H7eByin1T+CyNyLbReCS64TXPa/YjxP15YnbkvOcHldpERzQ03Wqa6MtmO7f3K5BEMh+IgFLcOLrQyTL97h9h3LGD5S73rnO6S1yvgmg3F8533zPIT0xbAdlUMrzmaol/3D3+6SkX/yg6oT5URUh8mbptV0bV1WfTeG6dLtY11bdpbLe33O+eHpNULgmbIV2vpvqn+p0TJUQ0Iq9qv4D425ja315zro9U1UQbE/MqOuTe1U424tH5UFyzzsTm4mKXNtSlfWrqmPjNUkyKfXX96oqcZTqCxkPqRqGpl19ttTXk1z7lHMTVSOK2zzv+o66a4KP09oz5PV9TmUq3LSvGDuOPrzEvfAulYdGflLF0nW3pBukU/9SOvkTXWf9VRWX7uNVHtj6pfqc2fVd256p+gzNuvqHAlgekuxZJwnfXnveCZCyfoT4xBRqxOXcphxxoGHE9fE4LKkQ/qu776nqKXY+bIBHEbvu6SX9nAgtpXYpPruhFz7jXrc777xTr33ta/XSl75UP/qjP6p3vetd+oEf+AHt27dP3/Ed36GTJ09Kko4cOdJLd+TIEd19992SpJMnT2rv3r16xCMesRDH6TO88pWv1N//+3+/eY/KnIuX9w1SHbyAl/C7ZRnN3wy0dFiQC79JLmbxbUt6WrnpsRHiKO5xy8oY/22pI2GjUk/g2LKSkpgQMFiBsn60FLMtSbhmqkf2+ijDzS7NSZR3owpJ2VJ9oP5790m6WvrQh8u2riUVgnC1ivfiDlXFaGC7pnrUrvvAysUK5ECX7g5JJ+4uQvhEV5/3npBOvqTkeZWqZe69ku45X9u7pL7VjOOR27wy0PqeY0PLl+9RvnFM/N/50TLHbRmciwkIXCbJFbfF8AFjzntae52/t71YGXJ+GZh4nibp8XWvobEqCNpS8Y65bUJ894eBCes+pBfo3aGi9RgmuXR9crzYvgTcOe70Sjq+65H9NMdvfudv5+O60ODga0OEmER3G9cIHJOYpEyjTGC9WZesK9tk+cm2sV5S33o+VX0R37bKOl5XWcev+iPpuX9UjRx+cHmiMoc2u/L9LfVlHeu+qmpU2VL1wvyGFo/x5frk9pe17tv/3Z7DKiD+uBZJpUG3wS7nslQ9QibsXrfsI66nY5J0jXT1R8rTOi7LBGeCb3t73FapvmPK/XRe/fnHNWZPqOUxn99xX2yq/yC2y3Afse4m0I7jFzO6T6zz3P9cQyaRq5L2P17SSWl8vmzDumqijsReJ330zsJknyvpld+rQ3pdzeSP95SKvV/Sr/0v0vP+ux7zlFLYvfPSJw97vPTsu6U3TKvHYar6ULxUT09zX/s31yb7U+oTtyXE8/jRAOl1xrnAOeQ1NkEaGjlX1Ncbd2lRzvs4+7GqN4/kmLLyEjsodsPncPiMk5T5fK5nPOMZesUrXiFJ+sIv/EL94R/+oV772tfqO77jOx6It2dP/2y3ixcvLlzLsFOcH/mRH9FLX/rSB/6fPXtWV199dY8M0CpBZUPAkJY7C/kl3LPAS5eq1PekpDs6gWYKgozLkMDCcSyc0ntBUGDhTPDBtriNBKwJSBmchsKMipLgjkAlASnDkiqpuFP97T1TFaV2p4ry2lIBHQe6cj96XnrM8bLd/Lj6gvFW1Xdr2BOyhjwn6MODqqekEBRcq2JxvF1lu9fdKmTpu5alrXMF6DiP96tYJP0MjMGdLbUE6O4fKiG69z1vfZ/bgpzW8QiQExhRSXkOzLU4viYtresMJJycY1SAvkeF5D5NUtQyGjBv3+fDmMzbytBzg+RgU/3DGFj+hUZe/O+Q4+D8Z43fjJP1bwX2jdvNbTTpQUvixPXl4LlIAwDvp7Ej50jLGNNat2mkIVnjHGM7k6g4JLljfzC9Az09Jq3uN26TuksF7Htb0zlJP486ervRmgrIOou6ETDymuXuIVXjhtQ/FVGq8rTldaEnbUV1/powHVWRV6dUt1/RkHMa/TaK33tVn3Hy1tlruzT3qsq9Q126X5F0/UcKifNzaZaDlpsT1MOy3wYllz1HmmUVeXdG9f1QJoI3qMjQu6JfhTzcj77ua3zOxCSDBMzk0EaTsSr52VANU1ViMJKkk9Kp7rTA/Y9XOZprXaXFr+064ZWNnfGPuyj946uk55yQ/ut/Lw+y3Czpy6WDP9GRrZOlIM8nGq5mqi9LPa26dt1nrbVLDEAZTfnKe8QA7hf2gz0kLfzhvvX9DVWdNVElL9vqGwKluq3xgqoBmF6i3bAbPpXwGSe0f/bP/lndeOONvWt/7s/9OX30ox+VJB09elSSFjwiH/vYxx7wrhw9elQXLlzQJz7xicE4Gfbt26f9+/f3Pg4U4iQsLRJhpcKFNLSAKURbQIQCl+TFgZadBJ90AWdIITPDb5fLuC47y2D9WK60+DwCv9OLQkXpelDRjOM6FY+F15qqxfO0inI2+Disaum5q7u/T+WZkUer6JAfPF90wc2qXpK7VC1yVrTbXfqN7vpR9d86vaa6X3uri/e2Ls2dKg9b3uu+uK4o45OSbuninVMhKneozidvTTikPkFJUMt5Z6uX7zm4v7nVg5bKBLUe43n8dzBJczm5HSpPKvKYE9wqftPL4zJn6ufbmu+5Jh0I5E2GZoi7oXpyko0JF7Rozc52uU9W1D+emn3l8gnUTbaXUAcTM9bXIUlv63p6udhmfrgNkHUkCJnFPSEOCRfjcUsHjQkkH2p8twJBfY6dx4IyRI1rNoAkuM/5xnm0jfie16uqL2h1nFUVg4RB6pr63hC3332SHiuXv6n6fIHbaLBmksB+bhlqNlW3AI1Vgey26rG1ri8t2Qa71k1CvvQsHFAxqKypyjxvd7LRROqTDeblulyrQi5W1X9ugpZ0e1goT0Zd2YdViaLbO0d+s65+Z9Vf20m+pfo8DOeJA+cH07HPV7o+WEb8i/fX9uhqVdb7qhNFwP+Cdgj3FlLzz1ROmJCk07W+Z++XTs7r+Lpc9r/rs6FKvqy7E9RTH3OcZkhDPUCZ4bK9/cyE+yjK8tpaVt0ueU6VoIy7+Ee7up5W3e7l/B1fKuO/ivxzm+JlG1L4XqrPbuiFzzhJefazn60PfvCDvWsf+tCHdM0110iSHvvYx+ro0aN605ve9MD9Cxcu6C1veYue9axnSZKe/vSnazKZ9OL8yZ/8iW677bYH4nw6wWNPkEIQ7W+D+dyCkAsqQaMFQrpmuZ1hhnhOT+JAoZqKwnEzWAmkddUhvTokJkPW0RSKtJKnVYsh1xfLTiVixTpRPX1oqqK87lRVYOdUBOmpLt6qqpV0XYUw+G3ue1W2Yr25y8N1WFHdlnGf6h7auer5/Kvd9VOqCn5N9UVr96l4RrZUBPFNKi/j+se3Sa/s4pmWr6t6UcZdfCsFg469KLcFxgjo+NvjTcDv/kxrbY4tlRYJt1TfCTFu3HN8zrHMK/Mk4c81kFZBfzvOFHk4zbb6xMfpuFde3bfBIec3+8WEyPc5v6nk/aGl1/0g9Z8t4JYJEn2XlzLHfUI5MEccgooWuWMfJpBJgpDEiffdLpJDjkmOMWUowVHrOFEafFrElMYbIU6CTgIa5+W0JCVjxOfa8cfAeKQCrq5VtfSeVrH4e67NVbcskVTRsn1eBYSdUX++0/OScjJJj/MisPT14yqGDpOqFVUPySbacZ3qVqu9qjrFzy+MVeThrarEzXP2dNcvz5H0nfukL1aVt26HjTu3q8hXqZIjG7I8dw6qGImOdWWcVl3Pq933lop8XFf/nS6J0axXHWaq2+RIwuhBm6lPPNj/Hs9VlV1c7huv8T0TbId7h8oDjs/pGn2zpEe+TTuGH1BhcVsqB07+fN3+1FqfyypjR+MIyR3H0HPGc2VVfTlkouG147icjw6b6nvDHJ9ydE3VCGPPv+eqn4k50t3br3rM/2GkTUJNYuY27obd8KmEz/h2rx/8wR/Us571LL3iFa/QN3/zN+td73qXXve61+l1ryv7OPfs2aOXvOQlesUrXqHrr79e119/vV7xildoeXlZL3rRiyRJBw4c0Hd/93frb/yNv6FDhw7p4MGDetnLXqYnP/nJet7znvdp1YcASXrwxUEFLPWVcVqppTYQ938CBAtDAg4Dv9Y2kgcLBI30ZvA3ASPbk1ZSIW5uWaCiTgu886NHIMmU03qvsFS9G1a+691nU9UiN1YFIfepno61pupp2VDdGjFWMXhtqCqfte77jKpit7A1MN9Qf1/wShf3uPp7rbdUjzI+09Vhq8vrblWLklQtd94O4XZZYVBpEbwbRNgDkKCfv6nUpL61P+eeA+eo52POPQIuzhvX3cDEnojcguY8CDIIHLnFinOUebQIScvj6Psk1ZyjbBOJCfNi/QmQCSAZEuQ7H28pbMkX9keuRa4d1pnjz7r4BDinI4CfIN1Ei30j5JMGlRY5ZZs9v9inUn/eOQzJALZnyFMi3M/tLizD1nR7IFLWum82UIeV7vcdqv3ga1NVwwK9SexTkm6HljGAa4v1p4yWqvfNY+m28LOt+mwetx1PVeQh5YJUZYjnistZUZGZ9l6MVB6x2FA55GNyvsi8m7t+uEuVGBzQIrE9qP5zO1IFuqsqstDGHxMr98Gq6rhwrVNmsE2UAf5tHeE+dt9YlnPec8z2xvVc43slffK89DBn+MCAPQhUsmvK6H+p9KllJuUsPemsRxr6RojvNpBIe+ubkF6q83Qp8st16Xg+pMTkyVvOpGpYs7flVFf+fSr69VtUSMpvqOjBqcpcO9jFO4P2uj1+GedlH2aSPqNn334KYdeTshA+4yTlpptu0utf/3r9yI/8iF7+8pfrsY99rH72Z39W3/qt3/pAnL/5N/+mPvnJT+qv/bW/pk984hO6+eab9du//dtaXV19IM4/+Sf/RH/mz/wZffM3f7M++clP6s//+T+vX/iFX9B4/OlxcFpmLYws5KW+Um4pRAIqxqdVtFUjy7ZRxG8FKrUWoaFlJIlMCiZuP8sy6crNLSNUpPztZ1Uss1mmwQkBQpI29r/r6fjn4rpBf1qS1V07rupNsYXvvIqxa6YiHK/v4luBnlZ92NP18lYub82yUJ6pCGETi4nqy8asuDe7z6qKNfasygvRPF6rKsJ8W/VBeY6h+/5ulHEEZdLKxXpJfYBP8CT1vRFUWARws4H/JPJWqhciroPjDsXxfOFcS+LrwDz8TWCXxGuOdDN8sy30gJjMjSKeUD/O/VT8ucb8m2TXdaTRoCVfWB5BQJKW9AC1QK5USVeWLfXnTfYh20Gis9Madnm85jnqb/c165jjnQSHaRKgDZFNjqNP4uIa4Tqj7JDqyVH2aJjk0HiQ5Iv5ek36vsczxyBBdQuMul6+lxZr42Nvq1pD2faY3KE61svdPQPKbfWPDvbzcdYRz5V00zMkrUv/+u4CMp8l6WuOSNqU/uu54oE5rUqSJsjb28OWUO551UNKTApPqYJ0j4PbIKTl9i33IeeACaXzSDKyhOv0OrBPLGPvQB96zC5OKxl42JNU9hK/WeXtwe+U9MlnSg/bAbH+KxVl8jyV01P+snTo56UT91eSxvZYn7AdW6r9y7kg9dcdZV8efJK6mYH5UT5Tbrn/eNjNRGUH3GEVfXe96ngeVyUuyyq6b71Ld1TFqCfVZ70453fDbvhUwmf8PSmXS/BZ11+rKvCHrLIz/J+qr6BokWlZqucqloGWm5qWzCQMaeFOpU+vSAqTVKStMGThpOC2AHKZDLRSukzWw1ZA5k1FTYu7/zudy6fFVKpCl1vAUji7zqsqbvtNFcA/UxGiN3bXuOHQysd1MhXeQLnO12VZ8VvBrap/YtSG6hxZQlxf28LvISLs9q+pWp0cbAlrPVfB8cq5kYA05+PQXHKgZY5WP5LfJAa5NUNafJmbA9vidCTNzMftTI8fAwmOx8LbYrJP+DvXTa4XzueWws+xnSGN1y7nU24dSyu7Q15jfVjPodCSNxxzehl8T3Gf/7O/RpE+60PZSaAotdeDw1R9OZrEy+TOwF1aPDmQ1uAV1XVl8u+5ZiLr9Sr15TrndPZDztUk6TlXsx9yvdAj6t+5RldVtgZtqliwnfZ6FSx9i6oXl3OP42IDyvXqb5OyV3q/CpBcUz0t72oVwHmrqqfJcyT7b9blfTXq47pc28W/S4snxEn9enLNkTi6b9IC7wfBc71O1H8J5Yr6z2Csqvb1qqRnH5G27ivtvfYpKs+Y3CHpVw5KP3K6/P6PQ1DppdKX/hPpxZKeL+kFkr5cmv1E6bundGW/A33oNXS2y+GQik7JLawOY9V3QNGgxHVMI4/7baJKKB3P/ZFecK8he6lm6LdV1V0LW6o7FtZV9fGqClE9pnrgw4bqOnU9ppI+qfKYz+X4PpAH3pNy+CF6T8r65dkvD1X4nHjx558mUKBS8VGBOOxk+bNVkoLZaai0GT9dztIwSMqtGlk+v51fgg1adpmnFby3HOW2FtbZ39km9k2CYqlun+J/kwIrEufr/A53v215cfv5UkPXd6K6ZWym+oDhtMtnVYWsvF/V+mihbYXk+ATZc3yvqA88bFWy1WhJRQmvqWyRuK+r03VdHbxvm4TThItWO4KcqfovJnQf2urEceU8ZEhinRYz4bpDemnUpUnvBglPxnU7PM+4vWAW30luHOi5yGAQwXWUJE3qW6ttGed6bxkWcj2yXSRn0mJ/Ow3zSNCe8iANJENgPdeztOihYGA8eoyG6kIrc3pTxoiTYVnVwkoDRZInGj8cWkaQrL/XSZKTrA+9XTZq0DDi39sqANBtyrlkOcK1xfpS3rNsEi2DYcq09OQN9SlJj/NIIk7CeZ/qejym+owFdYYNNCdUxmsT7Tuq7s3qKiTig6rA/ynd5zYVJ8BMRcaNVR6zWFLxqtyLdlylAkQPd/fvUCWCk64sqVjaN1SfSWjpJhoIKP/dP+wjB85XylM/s+g+9lhalnu7HE+iWlVp8Mq2tH5GOvV+6dDJrrP0ROkH3yF9k6R/sEf6O6+W9H2oyYr0PedKwS+6Trr3ztKJ7yjbj5ck7blGWr1bvUBdMFf14FMm2yO9of78sW4kzvB4O1hfpT6Q+uvXv6lr1lR1pb2PIxXedlJFx16lMt+e/HxJ10kX/3/Sr6me5vY1Kg4ozyd7rlzPT2o37IZPLVxinvjQBAIOKxoLtgTjDnTnUyFTMbTcqflNiykVohd+ejZouXMeVNoJDtiutOhtq5+PA0FN5punO7lOCWhd51HEIxgh+GwB3U1VIZj1sBKmVYcKZ7uLkwDLwtV5eRz94L8tPlK/TczXXpC9qtZbu+M/oGId21B98doHVR6k97Yzfwy8nD8VNPvElj3XSfjNrTRWJHOkTyv2RH2gN0Quhwg55zzzZzr/zq1BOWc5Lm4nyxqpb81LkJbegJyTnuMJMjnujp9zrDUWTmPF735nG1v1FP57zkp9OcN17riuZ2sdJskh8GrJBJKE1nGfBOQG35RjJHNp4fY6YPnjiMsy3Gcksb7v364HDTAmGSlzXYb3zrtOk8gj58emyjodqaxFP19Ga/MB1bVnGcA683d6SBJce07SsMI2ez5xzJdUn4Vjfxpwu6xTKuO6pGJ1P6DimXizCjC8QdJXHCjkwPVZ7eL9RZWtXCck/ZaKMWdJ0jdIetm+Itd+SeX7ZZOyY0kqAPM3u7K/RNJXqr7nxAToJklf9uj/j72/D7Mtq+p78e+pnTqnOGV1H0976GNj003z3oJA0y0RRRSViFFRr8boT+V6vSbxYgxgohhNruYaiBg0MSCG/IzREJTEJ6jxYgzEiLyFF3n5gQg0NGBDp5tDH6q7qLLOqezdvz/m+vb8rO8eq7pV0hyqazxPPbX3WvNlzDnHHOM7xphr7ZYtuUkNmN6m7gxIbQ1uUn9rla8fxedVdSCb2TzqCM6x79Ex3dZ4r2VQUeqy7D7PSvroe6Xzt7X2Ljku3XyLdPs7JH3z65tXd0pN8f/Q90v3OyJdeUQ6fUT6mztN+T9G0ktvkL5C+tiO9LFFsw9ztcm6Xv147xp48ZrbaaY8U4fRqTmnLnd0ZKmnHDCiDpXGck1d5O/EH3ZWL1dzSk6oyc5C0rdeKj1yT9Lvfq/0ou/TkTser2/4J/1ZpU01WTw1/PcRNs//VNDikA4p6V7hpEhjg5wRx0z725FhxNH3pG6AEoRZwVaRSCtM8iKN207Hh0Z3CryYqJg9xlVcn6qfvPKax2/FmgCG1wxO3P+Gxj9UZoDtuZOaQbHCrUCtMz8E8S5zVD06d0b9lb80fDb+NIDMsngc/ttWj7B57szXjsbP0FykpoCPD/VuVZcjOnZsX+rRKamDlvPqv+JNw2tQZWKEdaaxgU5n205NGioej0hHxTwRjBEwcH0YBeV1r5m0bGR9fU1jXkmMxmuf/+aTc2HZ9X/K8bqWnSQTz8enDCYQptz4ux1Zy78dJ1M6c7n/6SyvRl3OWbVPOE7X55oxSFKVJ5kX/6cj4/2bDk62tYI/9+//KsoTwNtBqHSu2/P+tp71/BPsmujMOqCxF/X3NP5tJOozE9eHNoB7iEEnXs+xU7/aKSN4n+E/9Y/Uj8zcoAas5yi/J+nW2xqIlNrRq6vUnIf7rrYs79mh/Ak14PjIB0m6TnqYpO8eyuvJ0mMf2pyeUwMPZ4c+73+sAdYHqT1HJzVH6Y6P9KCMwehNwx/n0c4u5X9NfV9uq9sIz6HXzGtkquSP+9hlTAxwbak7cRtD/84QbEk6v9Ocu4sepJZN+duSHj3cfOEwMU8c/r9Czau7TdLfk/S10n0HIfE6/fezfe7pVJgPyhfHY1vl+ciMsO8vcJ+BQepHFfVn6m9DJG/k4QQ+v34o+xRJunllaPgvSfqH0v94vfTDX6Cv+642n29Uy/7NNV5j8nzB0+LT9HdIIzrwToodhwpcmPLoBg0j25GWozwEYZWjQaLStMGyol3EvYxWUtHQ8WBf6WCY6DglcFyNazb6VPi7uMexVI4FKct7nDQ2zNwQnHrMBvA7Q10+1GyH4rj6D7bZCC7Uz6LbObGR31IHtRy7eTunnnWRxs+FWJnfruGX6DUGqpwbO2oZ+aaj4PY9doJpOs8b6j+0RgPt9VvVOGOY8k0HmSCTEcnq2JX3Dvmv1ijr8I02XnfPYQIMlkuZ3ivuk6p2CXY95u24nmsldae2cuil5b7NlzNvKUvpqDA76/arrEzWZRvJCzMjBMgMyFT7M7N55IXg198pW1MBGv+nHmJWz21lRoJAvCLqhePqzxpcqwbGDbLYL9+mZ9m2LqBjs6OxbmSfXAc6vpxvjtllCPZoS1bxl3PHbAHBubMpdtAMRLc1DgzdqHbc5iY1XH2d+pvLXrfXX5/+tJMts7Iu6QPvl/RG6WGvki664xp9/gulj/2/0vve29r+ppPStxxv0fFtSe8711/p/shhHO+X9O/V9aDHxv1GxznBuJ36PdRnGdpAO2NeD8+r5YhBmzna4qkJ68m5+ksB1iQ9dqW1taaWMLlR0q3vHyqek7b/wXDjWklvkvTLPy79mprX9pvSn7x4mOAbpHcumm3YHKqfVDtOZ4fvLHjgnPiz94NlkK/45h6ljLqNtC1sl/OpYS4cxEuHz+3drBaAOz6M56SkB365JH2FdORHJP28pNPS594hffT/J/3DNiVu46iabNhGVDr+kA5pPzrwz6RkJiGvZ3QhyYqRUUGTDV1GP2jg2R+ji1YsBNVuPyOvwrUF2iIoYcSO5LEx07KKujasOU/mcYY2ZlHf5d2+HRtnJAwADLoNFNKx4rEUPgTNddlGeRtCR5kuVwtqXa+e7aAB2EUdj4lGkkbQ9engrOC/nZ2F+iuO7WS4Lf85WpbgOh08G5zVooxlzOOlsbFRtROWRKNPAGRDlvPE50OqrB8jukeLa4prCTwXUYby7PsJZtLgEgy7jOcoDa2J2QQGB4Tva2qAd1UNi1TZNjp7Jrdr+UmHl23cFRh3uWr/e4+xPo9TmTc6rlN8CvU8frdHUOgsZoIpBlVWop7btTyn7FRzmDrKc+DrzIC57iMl/c0HSLpJ+rFz/UFt98/5mqk/lE/HvNKt7L/67P+5jtaXjJQL/Ps+9SoBtOtQ90nLzgt5ojO5UD8yJrXMyc3D51NqOvLRxyV9t7T+s9JX/RU1UP1WteNKi7dKb5Tue6l036dID3mvWirge6RH/3Try69a31QP5FykfsyKgSbuMa9b6j3rUWYKOL7UF7kH6AxyLX2Njo/7Xxv4vVJtv79VLRN/86LptA1Jn39Mes25Bq5XX9gz+Q+5ZJjYB0j65h+XXjA08uHmrN34Fum2t7R+PN+v22nr8n41W3CJWibqLVp+iyUdMGbhj2v80hbKHutV81Y5K87eX6T+1mTaZcqf9eCG+sPyOik11+U548ZvbfOxgfrHUY925zOCFrrnX0F8IF9j9Reje4VDSyVGIGhFQABZAej0/m3E19UjxgRzwrVFcY2KhGCM4IIRbEbUk9K5IsizonZdP+eRAIMghIbPUTwCsBmum9ym20lDXaV4GV3nnBv87uG7+zyKuoyO3aJmQM9q/EvP5o38uS6BCiOXBHx2PugA7A7Xj6sBpatwfRX15+o/PkYHjjTHn+fXDp55N79bKOtjbjT+PMIijSP3wjWPlyA4HRgbE15zPYLdCmgZfNiZm+rfPNNpzMwLAwl78d3kebOMkQg8PRb/T33gud/S8p7NPqt5zb3GPhJ0M1iR6+XyU0ETEzNorlO1Q8ek0gnCPa6N63IvZXn2S/DvMfK4YepHy6qjxJTDqi/X3dDwPLMkfUS69dzyUTJ/X1M71vQItSNNV2icpZTGz42ZD64n2zVV639MY4eOR7eo4xhYcjnF53QSV3GfZbxP1zTWPXYYrlHPeqxJun1H7eGTb1OLsPympLPS+54tvfnJ0vlfUTvn9aqh8ldK+nf9gWw/RH+V+u9neJ+vqYFe6pLMwppnrif3dsqr71fAlkEOE98gZR5W1HyxizV+Wcjlkk5/YRvTntpjJ2c0HJfbaA+F76o5Ku9WczIkSVdL/+km6QU/15470TXS7Xvt2Nu71X+k8tEr0h07zTa9Q9Lbh/YeJ+khl7V1sX3xnF6pvr7c2yTrOa87r08FaTJzJ3U9vaUeAPScscwlbTruHNeW1H5FWZI+cQSl3yN9wX2lV/cfTrXdOqW+D7z+lU45pEOq6MBnUqRxlJWgI9PyBEaVgqACsDHYL2JY0aK4xwgh+yYgrCKxqZCYIclMi8ebxy/Ynykjp1meYDAj+XQO0mFiFM1lmFWSenTNIMcGiuf+d9XPps/UHZMtjX+DghFd8k5AP4+yqczJl3l32ZvVz4avom/Ofz7vUEUTM7KfRqXigd9dpgJ5FeBmm+xbWl7rikeW5Tq7vP9zvNLYQNFZNhEwMvpJ4EIHP7OYQjmvLff4qsa/YWP+/Eag6zV+u5nXMiPDHKcp+eQ19+96yTPL5B5hpoLtKsZW8bRSXGfkehb3PV90CElTc02q1iT5pF5IED+VsXL5U+pvovqxvQ6EXJ/650r1TKfvX6X+ynIHJqj/Ka+55rQjlg+ON7OPnuucB4JLOpeK69QppNTX5svOxIakvzwUunGvgcY7dezL1RyUr1B7BdPjpIf8X68aLvyE9Jwfb2ed3iHpv0r6TWn1r/XgzJqkB56ULjvbHqp38ET4T9ujuEdHxZTA1frvPO7ZLiQZ5JtsLzbUHeATQ7l1NYflejWH4tSbmg73j6N+1G1+vMnJ44bxvUXNCfmX7+gOxdVqvtz2r/aH3q9Q8+32JL190R+Wl/oR6jOSNm9q/0+pPdtzg8YZNo/ZddPxInEPc84tT+mUc38s1PcO7Q5173H11+8/WtJ/l/SfPi593b95q/S/XyN97EhTpg+5r6T/Kf1vzbE7NfzdrJZ4uVnLe+uQDunu0L3CSbHB4CZmdJPGswJsjOSwnYx4eqOngSIwoEE22dgRHEw5KGnMK8U0RRkJJ9+MfM1QznWOog2pG08+r7Km8TMjVHx5rCGB1rwox+jztsYAchXXTqkpUh45yCxRtmm+F+qOVjoRXDPydlzNcFyPMdBRcx8r6i8G8BhJlezs5zR4/Ix8uW+CrVlRdx7XOdYE33SGvPY8mlGNg8CD81tF99KRXxSfq+izP1dZCfJNcnuONp/Q+OHZKqPEto9FGY5ZGgPGRZRNh6laF5YhcZ4ZPc/6PCLkspzPeXyfyk65fTpEmfnk+lZOPdfV+4p1fEQoy6cTkxkM8nhWDdT52JFpS+P1O6G+5n/nRyU9VHrzd7UHek+qgUSCa8scZZl6gCCaoI72pHIefVSHrzxWfKbDk44ldZhlakP9t5qkfiSH+/r8Xj/udamk+zxZDT1+4VHpn59vDfzySbUzOqb/W/r7/7f0uiPS90p6jaSnSpc8VC1j8KtDsS3pPqvS6uAk+rWylCeP+6g62E6nxfPMZ1fWUI7HT6vgnoZrLKOhjSuH4W6qvZHxnFrW5MFq83KD+vzQydlT+3Hejw5tfMlw/7VDW84Q0BHdUJOpRw7f36ixbHotd9R/K+X8wMs1Q9n3qq/d5UN56nnSXOPfHMng5AKf+exl4hXL9kzddvp0iNt3VmRN7ZjamWF+/vN3S1/9hrdKvyDpvl8ove5N0pdK/3rR+nqc2vxvqR+dZn+fEbSQdOQuS31q6fC41xLdK5yUBBk2rlXkk5+56V2eYNaU4EZolw6Iy/jPSj1B2Tzq0pjOtfw60OSB466iqbzHzFGCVwI3OgfrGp+R9YPljEBXTgcdpHQYGVFdxD2CUs6/26JzxYgUKR0tAtGM3LL9KoLnDM9pNQOzNZS5VM2w3ap+HIJRqYrIB9fd9/jf88FII6OPnp90yDPS6XlzVslUZVr834DBkUvKN2WIjrjL+igCHVjvJTpm5DudaGl6r3L8Wcfj88PTNxb1Le82pAncc5xCOfNN0Mk9l85DglPzWgUuXK+KpNMxNUhhuSqTxL5XNXYappyoql9pvCYpb9lGgnfKDucgdRnJ186oOxhubzfKcQ2fKEk/eZmkv6LrnvdLev27usPBKDwzS9lnymaVUSLvzN7yWFnqY+8NoSxBHAMudPrsfB3Fd6k/XyA1Z84/DnufB6gppk1JP3++HfN6mjR2UEBffIf0+CPS89Qme0PSpdJFg2Ny89CJM9Lr6mtpYO1r58E/54gZZjs0di7nasekpogyeFx93o6qZ9UJrtfUZP1DuCeN535bYxuypfa8yk1q2ZdrJd3/8xpjL91rGYXrJH3VI1qFt79XeqX6ES5n0b0v3ddZ9edK3qOmj5xl8Pr6SJf3p4N/PAZMGclAULV/U7d7/t2n94xfVEO7sDncf62aKCzUZOulL5ZOvFg6qTfd+Va5HTWH7Xq1bOem+hFiBlTuKqB6SIdkulc4KQl4CDByw6SREcoapDMKaZBQHU+ojg9JY0emSmETsNNAptFMo04DSkdgCnSYR/eXD0NzzOuos6uexSAQJtAh0TCvxHU6MpVzYTo+/GdU7sTw2cDFUT0CNoM5AkZ/5jMudFwIdGi4hDaOq2Vw5moK21GoiwdeGNllpOt8tOOjRoyA+/OUbJjSKdsYrjtqy8giHUeCxpnG4+b8ZHk7KvOijcoRksaZNsqpojyv0SlNkG/jb4fYQM8RzgR56bhsaUwrWt4fdHByXN7rexofT0sHhXUyq5E6pnLM3HfluDP7UmUmKMMZmKFO4PjoKOZxIjoELG9H07xkcIMBntSF6aCkXkh9WvHldUiHnPr51ZIe9v03SVf/kl73rs5zBj7MO3UgnelKvhlcYQbQvJk4zwyUpHNl2eY8+of7mGlfVXf8j6uB6DPq+9w6+5jaWwj/9IPSfX5d7bVeb1VD3D92jfal/0fSj6uF+B8q6SXSx/ZqB838n1ZzBLwuJ9QAOPWa56aySXP1LANtD3UE9w2d5pnGD5hvDm1dqqaXb1N7vmJPXT+6j3XUUbRz4zCmD0n62o/05wzvp8HZ+ZD0p58cZ0jWh7GvqL9Nkg4IbcBFanbkJvU1vgnzxX1qmaQtSl1a2eC0fxep2anb1B1Jv+6er+qW+lyvD3MxH+bUL1EQ+pupv5r6LWr2iI7aXN1OV7btgqO5DjMpFwDdK5yUBEA0+NUxK9ZLj58RV7dXGVRGRmgUsyyNpSmdJGms4CueWCYVAHmlU0WQQQeC12z0bSydNXGbjpQR7JqXShHlnKZSTWfBhjczUW7D4NRRII+N6WUCPq9NnotOB4Xtmg8boA21iNh7h3LHhvYcFdsd+rGhO6FusHIM1TrMUNfnsnmULgHuupohPIdrHrfBjAFU9fY0gmbPTToqVR1pee0SxNKRqspIyzJBB5MyZSeUssF1dRtT59dz37BMRielcWaFgQ2pOyiZ/ZkCce7DZMc1nWfX55xVzsk8vjMjOKWbprIdXJvUO5VOMP9cF86fog4DJnRcqHtTR/KIm9c3wW3uGc7jjtoe3ZD0Uy/s/c3U9ooDLHSiPQczjd9gx4AW9ZqvOZo/tZ/oYFd2xn0cjfreh3SSMli1NozRv0lBuZipvwL29Flp/So1tL0uSV+sfelz7ytd+rH2+XLp/Mf7XHm8Am+r6m91ovPl+15zPmOTOneu5lQpygmfKZ/MUjuDsqfhN06Gz84ozdUi/CfU1v9W9fX3Gtq2OzN1Yvi/qXY87IVDn98q6crL2gP0z/nkmD9nbjY1ljnzxoDcReq/s+VAi9SW59TA423qzlPlsFC+PB+5rzzv7tf7Qxi/ZcovgHAwh+U+T+0FAn426YTacbir1Jw028OPqDkrzHR67JaTW3VIh3T36MA7KQQ6FYhglCYjciYaYRsNG7EqCiotR9gy0so6CSQIhtLxIJDxd/PLNmkUK8fA/xM8cpxsa6uoa2OaoLPiMaOOVIzux1kFKrNV9ffKZ2bICnRD3ahtaxw1NuDwOOiwkBen4DlG4bsNPgHrNtqUunOUR4/stFRAOIkRRAMVOxeMSLIdOjRC/RX07bPerut1o9Gcct7cT+XAzFWPiTKRwKxypnPNuA89b3k0ic8VMcNBsMw9zf4SBJsHHxs5rzEg4v6xw5h7OwMfvMZ9zUBJOnLJ71xjMMaxEeyb/5nG7ROo5JykU1FR6g7KTjou2b40not0VAjk6Ui7Tcs29y3bZF0TH8K+US3LcEpdXj6k/iC9Hfl03Li/OFdulzJtR5CBH1+n3NMB21OTIUfsU9alfqTS9+l4GEhvqb+ByjJgx8qgd0XtGYejj1JDkg9Veyj+A/9CeuDPaZJe+bGGSIf35R59snT/V7UHwrdUB4tuUo+SWz+mHWWgxGNmRJ52RRrLA59dMW2ogfj7DWXPqK0vM2IO1rxbLZvC50poc6QGru+nBqJviimxvL1V0pmb+jOJBv3mf1vtbXJSP2Jm4t7cVXN+bFs3wId1+cVq8nubWgDMdih1KOeENjmxh+XJ88wMiveF27ce3FGbVx+J2x543VJ7/sZvQNtV/w2yWzDuFfWH722Pp+zfBUVzHWZSLgBKbH0gyec6pW48/JdGPz/zvjd/1qMBYeQo2/J1ghBGiJiRSOBDh8LfeT2BAnlIwEjjkv1lfQJ8OlMJTHmMgcCBQJhpXiort+VXWa6rO0a3afnNYa7PSI0N4tGhfoJHg8AqgkngRSBE3m1cd9SMxZ76D2Ftq/9ivLQM4nxEwFErt8dsjc+Zex5cNoGU5Ye8cl5cbkvdiWPWhTTXGNzkmuZxoJSRLJ+yTXKEcabxGFguZdNAkhkBOpZeH0asV1HHfPC7inak8YP+/M2XdC6PapnvPL6QEf9q31QBCvdXZTZy/mfq2Zzcc24/51Eow/mgw0TdmHul0mnsK/un/Ew5i+lYMpNEnqSxLHBvCmX92eVuVANQ71ADhPkMCPl1xHnKgUu97H25UH9Bhse7VpRJvVhlHFL2KEvrw5+fe/ADzmeiDalFuddd7qSkL1c7o/MdQ4H/oxgg6ScH5r9GTbld1wbF9fTa7Qx9b4J/Om1eQ86N1J0VjpMAnPbSduIE6u+oP/NwmdobtwyGDaqPqR+D3VR7ID5PQtCOnFFzUNbVnUiP4+TQ93vU/L2z6i9tWVW3D6eHazdq+QUNDB7uqj+M74zYTE13+6HzjaE9ZnqYHbdOpWNHWfZc5X5hEGs2zJ9ldktNnneH+fb4fHRtof7bO++W9B+Hub5cXd49Lp8+8BzvqD8rdUiHdHfowGdSpDGoYDR+Nf4zoiktb3wrzFWNDUKCCgIAghECB4J1X2ca3BF54VpmJzICzPEygklgyL5N1Rl/tzMFTM/HtYyOHY0yAk9zdWfEhjvXh0aQYzH/5lVo08DN/DC9niCIGZC8zoyFr/EoBsm8W1YYKTZvGe1mxL4CW+Q3gaJ5sHHJiC8djHSkGQ12O5TlPIaRRGNL55bgg9FOzofLVvtmgXscd2YFKxk2+OG6VZQRcLZTOfleowTfeZQsMwPHUF8aOxMcI8dHJ89tpaOVlI6b1zvnjZQy77qMYKeOSUfD/6tMyX57LNuudKTLpAOVgSSuibMSdAIIgtc0fgUxxybUSdnOvZ5vvKNtkMbynoGlXI/UW/ksILN0HtsC9+ikWU/5yJB5XP8sae2TLaDygbPSA//9UPkLTko/flb63yT9yBHpuZ9QP9gkSb8v/c0vb+j6P6ih4xsk/UvpAzut7fsN6H2+6POQb9Y7qw6mqROOqh3pMp8G2c5K21FztpIZSTsczlj7OcWZeuCIDo35OIc5zWzjrvpx2rmarNwAfs3jjtoxpmNqx70eeFL6jbPSG9T3n8dyk1qWxbzbWWAGh7JufX5G41+XX6gfW9xSs5fOoO2pv2TANiVl3LJBm7M+3Dsx9Hnr0McJ9Webct2Oqx+Tc0Dw3eo/Zrw2jPkWdZu/om7ft9Uda89VYoNDOqQpOvBOSmUMmUVhFI9gZFGUTSKIZT9sM/ueAhI09Da8BiJVWwQAVkJW5ARDFdAjYDUZMFuRrsX9fOC7iuwmaE2+bUDWoh4dxR2Nz3CzXuUg7akbqx11g+R5m6u/jYztEOh4vuisuW1GiX392NDXrUM9p8ztHHltCGIYRfNbaDzHFbAm6DGZDwIbX6/KeQzuP4G6MCfSOOrmuaveiMboKNfPfQvXzRcd3+ybYJgGN2UgsyOcH0bYPW7u6xnKrEW9qh8eixPGl2DWddgWy2f2M48CEowys0Zn07SiJt90etgvnZ3kJ52ydIZTV3C9VXx2Gc+pnSoC9Dz2lnLnuUjHw+R2uQ65X9JZYF9rGu851+f+9rV0VinnC3wmUXY4XuqL1LusS1miLp+yQzwWxXVb11hvbUn6k092QH9C0ntuan088PvPSt+olhb4sKTv/+xW4CmS/r36Oaer1FIGPyd99GyTzdND21qVPrYzPlmQdsz3OBbOn69nsMXzRj26pq4zz6L9S9R07xm1rIVB8kzjo3Tb6vqAdsFke2I7sYV77t8PmmuYOl0l3e9sz0ZY1nbU1+mouj3mkTKOM2XQfB1Xz9pvDvcuVluq8+rPqjgI4iNttENSf0MYbd6euv15mPrxrLTt59VPKGwM/Xu+nQXaGNrfUrfdM/zfHnhgUEVa3rMXJC10eNzrAqAD76SQMpJoBUmDTMcgDXoaerZZReLWtGyk0xAz00LA5+tMm1fRZBq+BEYEIlaIjvZaKfIIhZUcM0vz+JxOjo2Loy98pqFydo5qPBccQ2aE9qKeNHaWCORm6seqfJ/KlgAkwZJQJyPyufZSfzuM19d8buM6+0mQwvkhQOEcV87LAn2SP8opDfFCPSqZkWYC2ymASkeIfEs9jT8r6rEs9waNKMfuCCfni0fcco+4fc7dUZQRypk3fqYTRHnei8/ux3vQPOV38ug6VYDA88HjJZR3R2zTIeDeJZjlOO1M51irdU0nhLovQb/v5TX2V0Vw+TkBidfXINqgrgqkSH2tfY0BGOpNf+dbB6UefFjTWG94bamzKiDN6/MoQ74JuLk+DN54T5K4P8wjAzIej/fSisZOiefvErTzVrUHs32k9oTaER29UdKvqx37+m3p/HuHH/T7xx34z75U0gPVnJlrpPutSB9d9Net/+Ft/UdsfUzVwJ42I+dvF59VlGOggoETZxBuV88EGCQ7Sk+Hdzbc496lPNBp8UtPfIxqTT3otKVx4ODk0Oa/k3T1W9priE+rzcXt6nK0MszjysCbHzQ/pv48D7N9uYfm6r/jZMB/Ts0x8ZEr7x9nKDY0lmGPx/vk5HBvE+M7qfZm6m2MdTZ8Pq3mr1rv3IIxnFI//nVmaHdN7bjXXN1RY8Ap9f0hHdLdpSqIe6CIBoVK0N+rKJC0bPRnKJ/OAjMZFXiQxm0t4o/lDSDcFoFZAjmOkUbb7VSL66iiU9x2TqxAmOXIaOpR1CfRCaAB9nzTEHn+OGYCfRINFb/73LKvb2n8y74u4zqeZzpcVcSbcsEsijQeh48IOJInLa+7+1X893y7nPs/r3H00ECHcmIgVK0rI9gEyAm+DXh8zaDIfPFYix3JdKw1tHNaLeDqtP4q6hKsee7t1LDNNFjMYnCfkScCfo/xPMoxG0Kailru5xTSqFIG0umgs5KOBB3IDbV5O6EBEGocdbaOsb5JwEYgRj6TOE8m6i/Xdz/si6A6dWUGJ7g/ko8MkiQZSNHp4LpwXtMZW0WZ1fgulHU/5seylTx6DOfju9c6nRvyRH6pO9hO6hbOv8vQHiRVMu/rnkcD21W1Xwe3g/MutYj8hyTpUa3w/Pmt4NFHSZe8UfrsO75K932bNHtya/z8z6mh2M+TPrRoyRW/vWmh9hbjdXWgar3IMQvj4dGtdMJN3C/W7z4G9dHh3nH1Z0yk/rZJtjtTf0boHO4zm8G1MqCe4zN1jp8R3NZyUK2SW68FHx5nhobZNq439wPHZHtnPuwY2qHaU3dWzM8a6tP2nVJftxskvUrtyNptw1ytqy37ppb3lDNZtl+5lzym27Uc1PBRuCqjfsHS/NP0d0gjOvCZFAJTAmUqiATNBAMZ5aGSyno2oI547kWZKXDBa9VnAgdG1Dget0deOGYaiIx0uk1pbGjSGSHl8a+Fxo7BXOMIvh0cl13ReG5NqdwIsgnAE7yaDCr2tKxA3aYj2HQyOS/UEwnc3KbP82aEm+3xuAuJ9wgG/dlGmKA6QY3U5zbBHOUz67q8x7CG65lxSZCbQNPAhPqVQDDboKzsF1GzE5VOhmXaa2g54LM9GYHPMXAfZPtVX/P4TrnLcbm/DBBY9jfU19lyfVLN8OczXrl3+Z3lvL5VUMJrScBCoOBxERBxTabWMMef+4wBgMz6EeBRB3NsnGdpWU64Z5ipowPs+aXMUzcTPHMMuVfcP2XKR2uq+ZbG41VcI29Z3+BTGJf7ZaAiweFRNdm6Qg14GlhfMty/TC2zsidp8xfb/TOSrn1Xa/OSZ0t65iuln5T+9E1NHt8t6Yr3S1vv71H0x6g5KqfUX+O7phao+LC6E0D54txwHZy9sGzuaRyMsqOwqubUn1fj62bM56mhjVvUnztaaPyCEq41bdC6xm9WU1y3Q3FM7ZjT0WG85yR9vaSHXCbdelP7PRAH6aS+ts6seC7Mh+fgHOpRd1P3eh031eVlY6h/VuNs1hVqjsYZ9d8K83Ezv7nrCvUM1KVDvxvDtbNDu9vqQZQbBr4W6s8I+WUNnp/1ob+z6m93o82kDeRrvaugxSEdUkUH3kkhqDdV2Qgrj0wNZzSTQEkat7vQGMxIY0O6UpQlzVQbXvJtRUdju4j7rOc2fcQnz8Yy0jKL8iyTEdTKmNNxsjIi2DMPfhtMAlUChjmuZeQtHQcr7jMaG0jOo+fboIzZjARcCSQ9NvPBlwJ4zIzMpWzQueL1dC7N2x7az3a5DukAJYjN/tLZlbpxt7Oiom/KB4+ZfEjNSG2DL4Lio7g25ZBUfLtvj4GgzmvvKOKWludTGu8v9k25ZjnzX2W/zAv3MIGygSP1SrbrjNuDJf2dayXdKv3EB4ejNsFLzlfKZx5t4VjyM8tWGSMCp+S96p9tpgz6eupMOpzZH4l7h7qMjljFTwY96KisTNyrjnjROa50PJ176gc7fnT4c/3ZF4Ms0hg8E6RyzRgkOaUGPDdR7hGSvuwyaeOmdqLrjeo/pnfdinR2Ib1dzVk5pwZSP/tRkq6QXvFb0g3/TXqypId8j3S/35Re/fH2nMdMDaQ/TtJnH5POnmsye3YY+zWSPv9iaeu25qjMwaPUsyxcb6+lnT3rcGdOfHzJsm7QPVdzvDbVgXUSAzNcB65P2nPuFWczNPBwJdp7lJrOu0HS/W5qY7t84OdWjWWOutLjsv3jCQnuI2ekeTKDtl4av/6ZGUQeH3OQ1ZmRtWEsl6ut/5qaHvqyJ0v6toG5X5D+4zv6K5EfNfTrufacJGaRur3i/uVpAD9Dl0GwQzqku0MH3kkhqCDIkcYRXxp8ghJepzHMCJfrEUwxNV8pzoz82ThZqWckjuCBRrva8HmN4IT3jmrZMcsxTrWdTovHxuMunGMCezoQBOAE8468ULGTb2kMiJjKp3Gfct7MByNvzAZlefKxrmYwnQKn48T67Ctl0bJD53imfsZc6hGxHL+0/INnCWB9LM39eqwsn6/UTQct5yudVfchjeUl5Z3rnSBeUW+h5bdkSWMZPa7+qmo7SW6zCgBQBjIDWsl5Zsaq+gTcdIYV183bObWos75R0lnpsue3iDXXgf2x/5xb/5+pBg4eF4/QmD9mMwjGhbKc63T0qRdZ1oBzEeWzvSS3v6ZlneBx5N5y/+5vgbrr0b7lr2ovHUBpLEPMvKX+rTKdlX5X3K+OyXjM0lh3SMtHCk+r/8DfKTWwfIuk7Zv68xlSi2wvJP3nRQOoV6v/CO0Nkn7+HdKJdzReHqrm2Nzwiz0rckL9tb5bkt5xrmcy1tX1ze23tSj+iprzc4va/pwNvHEerMeY0fC4F2r8bwz87Km9Jet6jW2D29qMtlM/zdR/hNiOZL51ckX9RSjUNcfVHZBr1LJRu8O13x7m9qzasbcPD+PMdRT4oaPmZ1Ro+81rgngGImnj1tScR8/xu4b+T6g9DL8p6Z0aY5Az6pmvL3u22uK+fmj8GdI3vVp62b9p8+0syqraGn0UfHBP364ul+sa/6Cy1H8c0oHJ3A8XNM11+OD8BUAH3klJI+5NT8BOYGEwmUYkDToBV0UGkDR01REWgmc6O+6DfSa48LUVNQA007h9Akk6Z+zXAJ3RLUZxMhLodiswfjTKztUVl/uiczfXGJj4nnlle1wXKn0bPRv+6igcI8hcb/PEMXG9MppLPle0/KNUeezKbXDd5xP3KGOuT2fD9ZyS51E8AijyniCyAtDk1cDPc0WemNGibOTc+DvXMB8UJrA0r4rxWxaznD9vqf8OTO7FBOQ+qsD6BJ/kmfvQZEfR/fiYiDMoBPFcJ+6D82rg69WSHvWjDdS9G/fNcx6VSWcgnV2XMZ8Ez1XQhU6scJ8g0vJIPZmfk1Jesl2CNFLKTeqdBKbp7PI/o7aZrXD/zBgxsGAZ5kP36ail4y7UrfQ614Vl8rjpDNfSQZlpfJxnUy3DsafmoDxK0pslfUDSS9RtjsH/rtpvxHxYDfhfq3bE8LXqr7a9Tg2vbqk7zRtD2VNqAPhDGr9oxgGPt6k/r3GVGqB/ozrInQ9tzNVAMh0S759VdafLOv02jV9d67byGRT/p6wY7O/hL8tRLr3HMgg2G+bgse+S9PnHpfvt6D/d1MZzbFiHd6n/enoVCOOxwE3cy2OGPs7m78YPKW+WG8+Rx8A9fav6aQiXnas7nl99hdqCXybpRQMq/ldHpCdJ3/rvpZ/Zac7ouvpD+t6XfAX2TO3lDMfUf8+M86qhrJ8LStk+pEO6O3TgnZSKMrJXRdr9ORUgATFBN40ejWcVMSOo8XcCA98jOCG4qqKTPG6SSllxjxFeji35rCKO+SyKUMb3COicFZhpDKxdx6DsvMZOSWVQXM7X8qy9lTqdGINOgk8CbI6T36eI0bCFeuTIY0neTVV03315TQnuuP6KujQ+NGrun9GzKqrH61Nn8nkcYVXjteP6cpzcQwTGzNQxysYxcbzpHNJxItDeRZ2ZehTZ9dNhzTXYi2t0mD1Oz895fGe5ebTBNWNmh0c4/gn4NJDk8ch0FikjmdExGDHlvkzHnG8gIm8mgmc6KpRPX8ujlZRH6kFmPQhSSSzvvnNP5jVGdpN3RVnPle8f01jGmPH1NT+wnM50yr51i2WjcuzyO+eKTjwzxFI/amNwvqf+jMKe+qt2Z+qvRF/V8tu2ttSC5jeqZQMer+ZU3Kr28PSb1TDrMyUdOS69c6c5Gq9Wl0/uo7PqR2zN6xk1h8hOFMdBeb4IPJ0d7q+pAehNdQeeus8yJC0HSPzf1w3wDaqp2/LZr8yAk+58ruehkvTF0sWv1M03tV+kv1jNkTuDNswHZc1j4HNzwjXvKwe8bNfoOFeOvvUf5/eouqPpa6sDr16zDal5XjdK+k6E7b93S/rnG9KjpNkbWnk7/Ldp+XdwLL8bQ/v+8UfipLQtpM8Ih+UOfdoyG9ddd51ms5me/vSn6+lPf/qnh4kLhA68k2KlUUVHM6OyorERIYBf1VgBScvn292u61eG1v8JvqbOZ5Mft10BUBpZGloqFo+VRrUCzYxSVYbA/2m0FHXMIw18KjkaDPYzpbyqMh7/unq0nICP5dNxqPhh256j5IeRZv/neWNH2dPxIR+KtrmWCbQI7p0Ro2PC9l2Oxtftp6HPcWe2x/coB3RcSOw719B95r2MGqeDbp4IQE10wrl/Wcafc98zyOB+7eDt4h4f4iW4yL1b6RV+ptxuqp8PX2j8yuw8gkLnJ+fTlPuz2te5/ymDnl/qhuyrOvbGtlfUAErKG4MCJupitpuBGOq4SqaqgEr2tdDYmbQc2tncw2e2xbWd2r+cp7Qj+zlqnGffr4CfZZnHOW8c/p9UA/M+uvMR9Ui++zmh/uvnbmd7aOvdase9rlLD3qeDlyOXStpt5T6qvl9Wh7794LXn27rPzjYzQhvD9VvV5XwN7TAzM1cD0Q5qbagB7spGTNkez9WWlteORB3A4A77cL+/K+n/XJVmD3qlXvP+9ozKu4cyt6jN467a8a/t6MuZPQc3Mhu5q/5L8tQrnJvcczkmOkSUT6+H12YDPOmMht/v/CFJzxvuPLEVOtvb957xPmLb3qO3DuO+Xcv7WKoDVr5+SNP05je/WRdddNGnm40Lgg68k7Jf9Nz/CXAYOUwwTMqoWtXnXR2RSPDvaKSNmxWCoxrkg8aO4yJQMLD1dfZD/gluqCytqBkJzXmcMgZTTkAFcqVlx4K85Rg5vj31X1teaPmMs9thBokKN48irWpZZlzHxsbgzMrbxmZdLU1uXnJujqLNjIonmEyHgGu3q+XX+fLZEkbl3WbKMOeAkTxH5CoHinWE+8yCMYNhHmhAXWcen5l18N7LLJLnpDqylOOt9pv7y++er4zCkzfKRf43bxUf7HNP/deiGQV1GQLqKkCR88g59PfMvFRgzkdQMjhSZbiSTzoYC3xPea74JjELneWo2/YDNblPXMb8bePahvovdPuYoOvls11Tc3w+7ue858tCUkdzDjI4YH0iXNfQ58XqvzTuYzV7ak7GJWpZkDPqe/BWdVC6NfTlV/eeVXMy3ivp54Yy10p6gqRXSPr5W9q1M+rP9rgtOhEz9VfyWtYuUssybKofJXO259Tw+awaoLce3RjK26Gy/Lgf95UORNoT2/DUK3QQ+OwcbSPJ9T3XJ9WO0W28v2WgzqgHG1bUX4hRBRKYDZOW97DlNzPpKTMZKOIYSFMBGc+ZncY/+QPp/t8q6e/8tPTjP90m/wWSrpLePvxujh3bFfU3gFnOaZMoq3ybWTrfFX8XOmWg4p7q85DGVDnpB44ygpwbTbhvZcE6aSCpbFiO4CiNLT9X/EnjCIXbp0OR55jdLoEJoyp5jINRdrezhvsmG2QrxxVcNzBnhIt/bENaNsxT5ZjursC5f0dEWlYemZVYiXI+tpHH3HyP/TjCRWeEDtq6xs7R5lBvV/0scEZMhfp7KE++zU/2x3mkPPoceD7n42zOlPOZbXrej6LddNzMo48nJICmk5MZEjrqlYPgMnQ6DHwtrwku6ABRphI0u0yChnQC8pktO56OPhN0cq+6/dyzVQaBa5uGiHs6o5DZn8fhfuzwsB3uhbzGtWXU3+Uy47Ya3w2sKmPKMmxrXtyrjgNSZjm/lLV0aLmHGFziHJxSi4CfHD5frn6khvuicj6oL6o96bnh+liHkGfvjTUtyyF5dfDhuMb62nvgvHrm6v3qz37waOKe+psO14fxztSPVpmfbXUdcqv6b3v4CJMdhbMD36c01v8p57sDPzdqLFtH1RwYZ7cuU3Nm7Oh4bjaG/37ugY4bgyge45QcklyHul/q6+y977I+SrsY5uGGYV421ZzBN6vN5yPVnF6/hMAyzLVTtG2erUtslzIj7rKVDJl36yiXYXaf4zY/M7Ws2Zak35Kkv6f2Tul3qj3QdIV0/m+0o38rag6w54KOKQM6DgqexFy673xek/wnNjmkQ9qPDnwmRbprT8xG0crDgCIzIXkcxkTnwmWpTBkJlsYgY0Vj4OW2Mlp7LvqoIuM5zjScCR4WWjaUCbIW6j8YlSDXfNJpMU1FDvMImu/ZGK9FnaxPUEFDNtPy8YDK6UknKdeSGRLzmOOQeiTOhndPPUJLJ8njofxI9fM5LscIGHmmA23DniDNdfNtUXYwCaQT/JnfyvAnyHV7nos87jOPe3aeprIg5tngh/wREHnObZS5vzyP5sXznccQMtNRGcwqgk9Qy3b3cC/3Nh0k8kWg63VlxFUaj8H88iiU/zNIYcpsRO45Oi/7BRc4Rz4aQznkGMg7aVZcT2dMqnUoQV6WcX/kn7IzU//xzG21h7p31Y7rnFIHqMzGVM4I+cy94TXKdU/HyXyxn1X1SLwBp2XkSrUMyrvU9Jodnw31jMit6r9VQofJvPho1ik1x+BGNSfEa+l5eaOaw7Op/qvhZ9HG5eq/hZJAm7LPQNKJgc9bh3a9hy9VA8A3qh0nyzWmU0zd5kzI6sBzZsVdh+35GSFH+KmDtqN998996+PDzsgxM7Kt/pwQ17MKGlg+COJXMCcZ8NkrrlH+M4Dq/n3UmZnBW1HvtJpMbUl62Y70ed8tffEwka9YtLd6zYdytqd5LM99Sn09eM9zmNn4tMOHdEh3lw68k0JAUn02pfEz7eecsP3qqIS/M0qYRziodPZQTvhMMJpRXY+FQCSdkQRzGTUlYGBmZo66pjTenpN8E1cSDYoNWkaWV6JcpvVN5M3G24DZ4J/PF7DfKf4I6HJs5JFOlkF/Hm3znJMXrj3HY8CQY6yi8S5PwMlsAMeS3wmYpeWMR4K0qaMQdCTtELGt6mFJOiq+VzkNU0CUZarxeI+mI5jjqtryd7blfUlgruG7I927GoOQCpxyfOnguz1FHfPM41qeL+oa7uU8o5/gOnWO54lHTdwW28h71ZGPqQAQQWSVOUgni9kTAuCpPui4u223zzH6wfKnSnr0qyXdIr3ir7UA8nH1V+Sar0r2qIeo5/h6b47bRAeW6+l7q2ryRPCsocy2xkeJnOHcQjucL8vkCtrdGtp5t/rxJGcs/BzFXO0h+mvVoug3ahxwWFd/Q9hZtJHOBUGo9dmWGpD3ca/bhu83qT9Ts67+Wyp+s1pmvIV+PHcet69zbi3bzg77vtvPfUk5WlE/5nYr6kjN8dpTc/Q21Z7DOKE+99SPGcAwTyYGNh2cSbtgvjI4mVkmysJ59WNaxhV2fu2cL9SSJx+Q9Dt7zSmxTEhtjd6Dtq0D7Wj5mtTfWLZAubRd3j/M+t9V4PhCoCms8L+6z0Ma04F3UqyUUtlVhpvfU/FLyxEDlrcSYoSRzgmjp3sof05jBVltjNz0vpYRurwnjZUj26Fip+JgXSpPf0/QJtxPoD/DtXQSZlGO7WRdEkEwAQPT3jSyBi28lgYj+zblUTBpbOSoeOlkuo6v8VkWxf01jZ/pqOYiASH74DqbP5fNz3RmKwfFn+1Aqigzi/JT0fssm4aW1zxPlD0bXhtqgo3sb65lec65mkUdG/p0lMwfnek8jsG6UwC6kqd89sH9pv6Rxo5ftpXZg3lc575MvUAgPBXAcRmCRbdLh6nKqLgN7hHKHIMs1IPpHFB3LuI6/1uOPIdHNT765H5PSe2Mzql+PEXqe5wySWC5iHa4r11+N8qRmHlwGf92xELj52bW1cDizWpHiG5RD8B4fs6rgXrPAa+zvw11sLylHrW3AzNTf7biWkn3f4z0uLe1fp2x0TDGM+rrsabxjy6aLA/uk5kKgtNbwY/Hu6vmAN2ucUakemjefXku/RIEBgMze+k63sue87Sblk/qdKk5WQv1Hza8Sv0Zmx31Y6EO2Jhny8iO2pqbN+IJ64SU6wy40Gmf47uvGV8woMm/E0O5G9Xm3NmoB6v/to37OzOMz28Lcx+Uc/fBoBnJ/XIcM43X55AO6e7QgXdSrDxNVWQvjbSVV4Irb7CMGlWAxY7LOS0DGUZ92Ac/00D6+34ZESs6gpsKjFuZMnpPMJAOWb5uloZa+JwKVFo2Lvk5gWseg2GdBMdzNUVrAGke8vkCOgcJWFV8p5J3nZyHDfUopZ0Qjjlfe0kwnfelsbNF41gBXc49wYvUx2+5dJaHRot8JQimESEQzihf8sXjAPxPmUgnKQGgVDsWHh+NMR0kt2Fnz3u3yg6mU0xwnFkE82FwY/C7G2X8mcB8ynkhuOD9u3J2phz9KUp9l0f/vPcrwMB2GQRJPUqiDsy3lBEIGpBxr6fjlHLhPs+pvxI1ZYnOrPWux7etFin+JUnPPNmA5qvUHyI2eW7p/LD/3LOrUa6See5lOmenhs/OILh/B8Q8Z9ta3qOcQ9uRbfB1VA1U76g7DR6Ty90+/L9kqP9bkq59m/QW9aOzPLp6VN1pYTvux7bJz8pIDRSvqTklzp547/iZky11Z8lkGXAG7JzGxz25TnbyqAM9x9Z5lOE1jbNTBtnmyfVp4/2KeevWNbXjb1cOY7pJ3Z56DtJuO6NiuSVot5Ol4f/FKOd2tjSWd6nLCAMTtJ92At32WY3fYjhXW9NLh/s3q/8mykk1GeHbB82zM2t29JwJtBzS1phSz6xof/11oRB1+j3Z5yGN6cA7KdIYBDCCx4xJUkZkGMUxWTn4zVvefGncpyKrBGVVJJEAzelWGvEq0mi+fD+vVc4Oj6uY+PxA8j+1kdymyzNDQB6q+c6IYFXG16mIOS823vuB+0qBkj8CF748oHL8aNDoBBCY0XmpnLccZ/JOkESyg2KHxKDC85hpd4NVtzcVAXOfvmfgxLd3eQyV82g++cxNtim0Q+ch+fV46DDzHHcGEPIz96F5zvUzOSKeR1lMloUERO6PADsdcc7b3Zn/dFRZjhHzSmekzjL4rbIjrkM9lHKbzpTi+pr68x1ntawbGMDhPBFIUo4y+0e9tRd1qQsp95S9LfWI/T8frh0feN3RmCiLJn9nVrVy7rkfCMJsG5hNuU0dIF86tH1m4HULPJIfOx3SeI65fswgGTQaZK5r/Lpdz/3q0Pd71SPotw9/PurkIAWfT7Ajw6wr19R8nxv+36quf+w47Q3XvcYGwDvqz3vQLmTGpApgLHCftmQ15ibX2c5fZTvolEnt2Y0tNWBv541ZDesm2lnKNvUd9+aKxjKZ+3RKP9L+cX0YjLGtdJ0Tanvg1cO1o8M1y+CtuG6dSAfHGTnLBbOi3M/mx+udOvmQDumu6MA7KYw2JFjOyGcV0SSwzAgojcZKlMlsCaO+aWxS+SSYz+MCVNDuw0Y7x0EwkwCJmZcEkZlBIeUccV48B45sczz5Ck86FnQEyQf7NlBMwG5lX4F+KuwEjx4/o+N0ZqpjIzy64GjsdrTBs8L8T4BIAJLPufAoSWYbTH6//ldK+lpJL1czODZ0OZcGCBlVz7XNfhIIu4yBToJIrjXnM9uusg4ZTDCPpspp5N7Z03i9E4gkaPAYvFddJyOWuZcogwmuVzXeC5xfAiyhDPthVDUzIqRqXTguy6/3du6NCoxV8pZA3Nf8nQDJx2kY+a7WeR7tZD8kBn94Nt7jWolyAh+ey5vV9uip4fuNqp16ZyG4/nQ8c/64vvndMkK96j1t/XC7+hu3pPZwu509ZyhYz3Zkhu8MVHiuDejNx67G2QrT2aH+UyR9laSXqT2rw2yQedhU15epz60HNobPm+pOiYlBD9qxi4dyt4LHFfUjSZ6H3Pfec5UTzTKUVffP/bCm8V7getI+CuM5qz6vXks7l6njcl9T92egoZI1fj6mZb1me7ShfgzQ951lSnvJ52fY1qZ61sbjPTXUdwDC43HGzevpOXa22X1wbNU8H9Ih3RUdeCdlV+MfTJLGjoSJyoTGWhpHZisQTNBXXZeWQVwVleR1KwDez0hi8j6P8u7XY19oWTFaGeextSkwVRkA8sA+s7+sY5A8jzKV00IjZX6lno6vnEiOMdtzhNDE8SawToXK9XYUic/v0HixTfMujQEFZcpGJ+XFxo2Gc0/SdZKOPEW69nek30O55JXtC2XS0BPcmuhM0oC5nR3VbwXzd0dIOQcJLgn0zVcFxN2u14X8UNYY1UwwWe0V7ruVqGsws6txRJe8uI0EsumEsTzBUgWosp3MgqS+WVOXQ4IEHif09xUtv23N4CODC9Xecltbqo9XMqLN+bcsMbNi3cM189sMKVO5H/yfe9d7hEenpJa92AIvjOYL33e0LC855tRjdNS4tieCb8+vnaXb1faG18tAlw6zVB8xtKxnpo5OzAzfvUbH1eZ2rv5sju/tqYHdc+rZA8qT9zx/s2tDXQ9ynjbUAWtm/5gN9ZEiB7YsByeH+bsR/BkEW8YS6FPeqCvNUwaj5urZfv83n1KXUfPqsTxQ0hXq2ZTECukkmogvmHUwMdtA4n4xL55bBujcB7NZPiK5hrLMiPl5G8ueMyR2srfQPgOxzNrw6Dh5IWbw2GyLM4B0IRJ15j3Z5yGN6cA7KVRg3jQEkDRyCe6d/UingJQRNpfb1bKCWo3vCTh9ne0mXzSE2XdFqfB47IORZ/POI1pV9JN8MDLtcSQIy+MxU0af99Npy3p0UGbq52L3tGy4TDaycy0rnwSWpgRJvibVUfqUL46JoGO+T5lqPa3YeYzBkaxfV3NQ3oj2mdkzb/sZCEZIKyWZxyvMk/cOgdJq3J+rHx1JcG35YISO/aXscg/P4zMd0f0ctZxf91s5t8yknY/y1ZzkHk7eqr7tFLh+OuNcF+qJPE5HkMBocRXNJi8ZOGEGLIMFwjU6ddvRj8tQB3JvMyAhlKv2f+WweQwEnlKtpw0u+aYnUl4zODPxhRZuPzPCBMd5lM08XDnc/6gasCXIv3X4vqVl2eG8mL8c+0L9GQHrhW2Nj+CkbTuu9krmmdqbu86oHWO6buDveo1fbcxjPwacG2q/f+JM8ra6zJ5TfeQz7aL5tk7ckPQhtVci+wUDdghuQT2CfX9nBs92jPLNI3ucUz63Zz4z4CD1I3juz23zuK0p5SozxNJypiYDJLTBbI/60eN3xon7coHvdCioy+zo7Kk7LC5r59RzfWKot6nxvuMYck+SOPZjE2UO6ZCSDryT4s0qTUcprCATTDIzwN8pyegHFUgqOLaxh7IERwQDPDaSIKgC01OgkuXM/7G4ToWbBjGB9G5cSz5JU9+nHBTPeQWCXaYCpWnATZxTUwVGsi86CQQi/M/Iq42EFX3yyPGZGGmmY5c87jdXUs/WXK/2ukiDBkfH7WCTXJ/HIrh+6ZBaPtlOgjiXN3hiucrRnXLESHlkivt2D2XcHsHHFBCpsjQ8D05+TQTsdBo8bxyXv1cOdYKVdFg5btNR9VeJUl7ID+WN466OGLEfgpCpdVoUn72nKmefwKeS55QPU0acLbsZ0BHu2xmzLFE26HCZ3Lf/cl/wGh1l8sCjhtRHubbHh+ub6vK1rn78zKDP802HJdeO/DmTl04vswO0ZZwHjpeZFYN+6vYb1R2cNdWyan7OqT+7kLqavJo4x+TJa7mpnsFx1sJHjphl8dqcHL6fHeowqCAt71/aGo8jgwHJK9f6koG/j6ofT/MRPWaaOT6eTnCfXic7bZYN7lPz6DmYoa5Qjv1QT+b+9fg8J5Yn264TuGZnc0XjV65vod8NdefY/VEf83lRZr88/1NB3wuJcu/cU30e0pgOvJMijZVRRmytVGjwCSQSsO1pWekk+LXCIQBI5ZJgxTxQwfHIhNuulBOP41QA0A4WN0AVdTTI43EYK5eMNmcEqPpM5WQjWB1dSCdRGkf7q+gux+GHSqkUCfbz7Vmei3ywn0aYPCa4TuObTgTHwT5oCKvjIXsT99Lh9Vil8Q8q+lkUyhFBLtfVRwbIH2W0Ans5Bmn56JPUo65sj3OcBjX7S349hsqJI8h1FJDRVUaS6Vi7Dte1yjDNoqyibDom3u/zKF9FZrkeLiPt//KIlDUeF/QRmT018MtIOzNxXmtmW+hkmDehDjMEPEpVZaBmqJPzkDoxHReufTpOBDzSsg6bxXUGKxiIoU5IwJpvcSP/qQ+yzz11XWRQO1cDd9cP5VLG+EC81F/xu6VlfU5Z8T3aCtqn3KvUfbYV7xmuXar2xqqz6r9gz7bZN/e2nRES7Qyzt9b9lby4HIMBpl31HxmUmnyvqmV+7JwweGibyeBA7iNm4hVlqKtyX2+rfpZpR+N1rZxCr8lC/a1oLEP9z2wls1EMiFYZ8XRwXZ620+WoN2fqDkjiG+oXOzSrqMf9ywwP5YdzaCzxmXDc65AuDDrwTkoeLWHUMCMeLp+RXLZFw0qnJ41lpl392Rt0FveZZUlFzmghN3wCRipVK7kEixlZSvJRoixP0GheK4NDBc/zvh5nBSpyXG47I5Y0sjx64PGY73Q6c7zmgUc5yHcFKBMcWhZotPaiXNZ1u4wyuY6N0ZSDRFBOUE0gwPtTET3KrvvJuec8MTPItZfGDwbTqTfIm5KxNJ5c73W0Q97MX4JPXyeIzkyo91TlmGckn3rAQIdvRWPQwFTNjdtKByHPvaf+Ea4TKFQybVk9qnYkxqB4rvZA8k1qYC7P3VsGTflcVAYzKmeDjn8GUqZ0Z7ZPJ61yFCtHiDKaTmjVF3UEr/m/23NbnJeUjUqeV9Qdw+24bmDrtg3y3FY64d7P1GOM0FfEvcB5YXu5Xw3iTw6fd9R+6O+sxm8bozNoYO3ou8ewofGRIGkcjJLGjhMda+p000JjeaSOsZNwXOM952yV65tn6rVqfVk294D75n7dHMZ1StL91J5z2sTYvG55vDAzm3lUSmjD2b7K/mTwgw4nx1TJioNY5GNNXTc5y5dOL/XpTP1o2ya+b2j8Sn6u6TzqM9t0SId0d+jAOynS2HPPTZgAT3FfWo7QZQTcQISKxJufAMzt3lUakcrTvFPRVscm6AxlNEtxPYFqKgzWIRhi+1Y4qRQ5rzRECYyybQIHRnl9jSDDc+1yPJYw9dpjOoGMCpJH8iUtg6PKQLCP/JwA23y4XILBeXw3mEjZdX3KBsfksp6LjEhzbHyIlQ6KjWsVzU2nzu1YXjO17/7yOIaPeUxl5ehccwyUYUYVKwPt+9m3KR2ZBE/r6g/C2rCv4btwfy3a4me3vYty7j/loHIYPH/uz2352MuJ4fsPqr1O9mVq0fFN8JrPCHgeGRXmnJA4HyybARg6qyZ+zsyF18wg3m2xbJLHvaJx5sx1GEWn/kmw6L6qgE8VTd5VG3++IW8T9U6qH405i7ZzPtg/nQk7Auah0gn+zP1JR4uyl/1Qh18y9PVRdZD60OHerepZM8s7+/deYvbW85FExzXtgvA9gyS+x6DGNubnuNp6bKmtAZ1p2+nU4ZwLaSyz1Cu5D9fU135L/QcpTxVzMFM7Wn1OY3nzmuVzOeRtoX4sO4NeHsuK+qudfY/tsBwd3ZRvHvcS/nssPN1ge5uZM2fHMlghXMs12A/7XEjENb0n+zykMd1rHNqpjZzHoKrIm4X1HMrYsEpjUM4IP4EnU7mcdEZ4rbzYNnmjMU4lZz7Zdxpl/9gWM0D87r+M2lDBZnQleUyygiQgpcJMcEinkc4NMybmi86JFa7PLufvGqxEm+n4pANj3udRb65uoFfxl86CKesTFHocPF7iqKTlIJ0jqcsHjbePqRxXB8E+mnGx+i9QJ/GBWFPKXs6Tr2UEnXywLWYSaGzpaEk9Gk3DmU55OnNct5W4TqJzxs8pC5QtRnWzPTs+mRUi0fn2nqH8mM8MYiQw8fw5O8U3q0n9da1/90HSkTu+Sg87Kz1hKHtCy8/FeD+tqYGsS4Zyl2j846h24tPhJP8r8Z/yWgV5qB8r8KqoQ13A/binDgI5t4zSpnGjTmAfvsbsX8oS9dKq+m9mGLxaF51Vi7BLzWExwL8N7bvNSodLy/ZoFtc5r3ZK/J/6loDQb0E07aodCbxR7ccuH6EmR9erObm7w3fPp/clQWrqTANb79kpXcr65q3Sm3xpBY+3nhw+76i/ZndD3YGmHFiGbbfSybP+k8ZvAbVTat7mQx8nh7HcOpS5SOPXP2dQMIMQzEqbcp+wndS32Z7vpe30nqAtqWimsVz4Gveo2zsfdbwn7bRZN61pHPwSPnMtDumQ7g4d+EwKNwSjfsK1SmEQJEnLykcag/j8TmcnlQQVB5Vmpr3Zpj9XWRjySgCWypEZiGMaKyHyma955Hg5B+YnDZLrEYSyTIJlRv85BzSyma3hERwqaB81yLVJw1Ap+iraznZsjNIQ5Bqp+JzEOulAMTKVxsV1qmgco3QGGJ5rr/mG+sORUjcoM/U37TCDUfWdn3OOaZzpQFQAbb+jOm6bDnV1FGI/fvy9Wot8FmNF40wB26FRZjZgA+1X+iWJIF0agxE6bAx8+Dv1CR2jO2V5S5I+Kp3toM7zS0DouhdHe3vqr5TNQILngseXMlCRDgXXOHUCKR1IBi5Y13MwlQmeo2w6elItf/7OPnnN372P7CxaxlfUfx19K3irnr/z9+p4UaU7Uq65VpRFO/Z0Eum4U98527SNz/7bHMr4zVjWcemk2vliYM3AXmijcsrnGmej8h6zY7StthPug2/wOq7lN7glsM7AodvwvOU4M4B5Rt1ZuVztrWgfQH0G23y0inNFyqwm5YZBQMog9+4c9dLWMbjCvUz7r4HfjeHzWY37MlE/0z4xa+e55TE+t889WjmqFzIlNryn+jykMR34TAo3HSPfvJdAQPjOTUqwZXCwF3UM0thHpo69kXmsidFkt8P6acDmxWcToyhug8cAUnmYeOyDitd8HUW9CpjTCJBnRxmpgD1/Hh+dNNdzlCszSI4MO9Ll6+Td7VRKxn2mc0XgkMravDOCThCSUflcrwR8FchMuWLkknOTxxIMrN2mo42nh+vrkr5ELVJuUJVZEgIHymPKGf9mGhvbXfwRhBOUk6r18bq4/3TUMuDgcbO9XEMCTQIZlk0nxGPgGhH4ub7XxxHEHJfBH/WB27B80ymVxoDFe4UOmtu27G8PfTznFulDR96t1zxIeqs6aGQGh5Huo2qy8VOfJf3Ug9pzLVJ/pTfrMkPGiKj55dgTYCXwpzNnXiwjM43lhY4vdVj2lc5r8iotA0WCuypoQbnxmjgjcVr9N0XOqDsoG6i/pbEsUE7TiZhyqM/HtZyHLO89yXk/PvA1i7IXDW3dIOldw72r1H/XaEttzvJZhtx7lqW0cdLYDpEqXVvpXsqD99umuoPitdlSy26sqGUHT6k/uzJlRzLg53VhAI62bUvdgdpQf8NZHoEiHVV/btFt51ov8Fdlil0nHRvuGWk8b+ta1jmJVaTl9ZnCE2w/sQrt6K76iwTW1d5+dlzLWdADHx0/pE8ZHXgnhYZA6pvSAKAC7hntczkqGDoPjFb5z4ZV+M6yNuw0zDRE5J+KyEZ3VWNDRAXEPlLp5TELU2Y3EjzzP6O6+6WRpeWx0+Cznyljlu1J4/S/7zHCyOMDCVw4z1UEinxxvX2MjEcpMkLLebZjZuNCfrhurpfH06RxJqSKyjJyd1xjWfBD07uSfkjSNzxD+lHVRsrz73mzbBLw8H/y4e8cM9viXuALAlxHGjsjzvqwXjranIOkXI80ulx3AmADeV87rn5kx/N/kTq4o4x7TGu4bhCRx7Myg+myleO8H4j13G2qRULXJP1HtQjvhtpRHh6TITDzGl0uSd8u6WnS1Rofy5DGMiZ1eeFD1VKfNwI778cEXZ4Dfs+MWo6dbTK6z6OErpMRXjtbq6jDV4xnkEEay+mKOvCaoQ0T+6BeMjCsnHs6n14Ljy/H67bsvO/EHNCpc8CHY8u5tYxtqh/rukwNVG6qO1fHNJZJ2h7ra4/pPMoK5en8m3KMlI+UFc5bZq2l8et/OScOJFG3O0jBfmgrF2oO/3yYEzrfUg847Kjp1/PqzgrX1HqN2MJ9cs7SBphPEh20zPTR8fJ9BoeoZ7Ifj3dL41cL55xXupT4gTJvZ5C6QupzWTlTFzItPk1/hzSme4VDmxH+6h4BORXXubgnjQUpwUrVVkaVfY3tpCIjUaFlhIopaY6N/SSwZbt0YgzCE0RnBCUpo90cR0Z/GT3K/n30iBF995vtE3DQONzVcTEaQRqsKr2+iO8EFAbtXFu2Xc1VZZiyzqrGxHYI2piFO6HlIzo+K++Huo9udUO9qzGIS1DDcc+Lz+lYEIRn9I5r5CN6U84DDX2VUTHxeuVk+j6fxaicAu+dmZYNrcHPbcP3yzWOpDrAQIfdc0BHjXy6/xx/7m3KLYl7iqB1Vw00bak/QL+lfqSPQJFrKQ2/s/Pi5oy9driW4M7zIi0/36IoS5CcZH4JcFgv9x3b59ywfR4j8RhTf0lj+c0XZnC+fZ8BpnNqDutFao6/gwDU754f/5q7x8m1nWscDU8d6/ssRxnJvWmQ6kg9ZTEdxb24Nlc/3vlgSQ9Sy6Zcr/EcVnV5HIv2xfolI+3W6x7PfvaKOlX4TOfRR7Ssxzxnbu9WjfX0qeFajt/tE7gzi+Jy5t/9Xqp+vKx6GUc6QBxjvpK/qucH5x0MoL5l2cymMYjD48Cp+1IHurx1c+4d2uR0Yir7xzbPaFluXf6QDunu0IF3UripDEp4jlMab34autxICXqozKRuJFaj3ALX91DWxDbcr8seCz5sIGhEUtmngfd1/k+ysudD3HmEyYCAfHMslVJOIm+MAnE+eRQgx+cyBADkxXPDh9vZbwUWOTdVhC/HcZF65JjA3ICRyr4C+QlAbAB4ZIblyQPnfKb+oLyBysWSniTpUcP9N0r655Iu/0Xpw2pg9Gbwq2iP4M3kyKAzSJZPAhW+rtPr5f3C/cVIIp12aflNTXSgKgO9KMqxnXQC83heRjXnGj9j4vGcVIs0n1X/8T3PFX/zgHNg4jEhk+elkjXzxzFnJNXXt9Vk8djAg6OiOY8cO/sy+H6Bun5y2UpfZEAgnRPqWUdyDZwc5WZ5xbWkBDV0zioHN/WEr6dOTGBJfthOOjWkbZR3GWaV0mGgU8yH2CtHxW1QV9GR9v10eHNOXC71jT9b39ys/lwN153Pa/gZxiTvI2aZSQT9tBPUM1VQju2bPHfZboLmKmAm9V9lpzNIe+zre+pHKLl+HudpSVeqAfAPq8vMCvrg8yMMaBzV8rgrp97OJ4ML+RwPg1KeHwYmp+wv594vgNjFddol1zkfbbg/Z4xSF8xwn/o+eT6kQ7orOvBOCqPTNKYJcFK5VYqS9bzJaXzT8DJyWGUDUlHZsNMZsMLJKAcNX/KcUecEO8J3Okh5hMNjoUNEBZcAMo+mkP8EAlPOFMEnv9OoMyrHs8mOfrtc5WSkIeecpoGWxkbFZONNIExHtXoFcq7TFG8JADkW8+VjCy6zNXw+Jem71KL+Hx54+crh+u+qzc2WepaBoILHZuhM+x4NF9eIvPms9lVqgP5GzBfHkqAk9x7BsDQ+cpJUgZIE6Ix4EvTSEXE587aublhvVnfspPGxD+5fRjyZRUl+TSlXvl/Nh6Ksx3RM40xalqczSLLD6SMrM/XfPzDIqKKnbtd/BtwGvSnXnB9fc9/cM1Umkzwzu+17BL0c+xQIIn/Jp8dC+Xe0fFP9GJQpo+gEYuQ117hyTqnTCfLMkwNHBOaWtdR3bs9rxwyhZc98u42b1HWDwbb1BMHuivobLqecSqlncHmNWXppPGYGkmjvch/wWjoYKr5LPZrvfk6o/95KOkAr6jKQOpgO3M3DPWdZ6binDXRwgbzbgXHGNvXajpapsmcMulh/p17mWCwTzgT7+RHPJXVsYgW2advHgKLre5zVOmVg40KnKcf/f3WfhzSmA++k8PgBN3EV/WdEmMZwV31TpzLI+tJYMTATws3tcjbuexpvXCq/zMBQAZrSoFPRTwFm88bILSNsNrhTrxxln3mMI/tWlJ06psa253Hfa2H+6SSksyCNFTWpckj34nrOMdP02Y/rVoBExTWCCF7LCC+duXRIvS4+9rAq6Rq1KN99Pkt62NZTJL1aHziyo0eo/VjbOzV+65P7IB/MNnJsHAfXz/LjtbhKLZPzbnUnJZ0sAhMCOe6LleIzs5FT2bupQIOJmch1jcGx65/Q+Dcu/BwVnY4dtQzLtpajxwSpDBDw+5QsKcpXjrw/H9X44WbOK8vncR0eC/GRtv0McgV2qmcosn4CzTWUJbDzPcoVgbHUQeI59WclMmDDzwRemU11GevIlSiTe9kyYD7mKMc5Ir8mBoDoEGcfHO9My9k2g/xVjffsXWXSva/Oa7yPVtSDOqfVMoUfVgP0XAPX8TE26gWPm4E+j5XjdDmuUepGBgjIYwaseD/1Eftzfa8/ZcJt0QFb01hmGPRyG9bZZ4f52I75OB9tcY0t7zxqm9mLau1M86JsFSRzWddPJ9zy4Prmm/o894P3e84d94DnLGWAupFYrMoeHdIhVXTgnZQEP76WXj0NlzRWCHRYeESFEYQqU+JNn/0nZQSIholKZQqEs40Ef9lPKnNetxLZxfd0nHY0VsyMnBCQLDRWSglKWJdEICqN59+G1nXT8EnLYJ8pZ5cjAK5ehWmaattgw3zkOnCNGNFMpyONUkau2X8CnF31rIbbulwNZFz0CUl6hSTpgc8/ok/8YDsGtqs+vxlJZIYxo55zjZ9v8XqcHP5vgeeb1ByUGzCGysGW+lGDBLg2ipUh8/oRjJjymCWjg7m3KVN8M9fp4fPZ4f9DJX2fpCNf2Ab1Gx9vz254Pa+U9CE10EJHdl3jSCf/MlpbOSrcz9QFlDPzsBf3OAec19xrdBwzgMG6q8O8+C09m9GPy1fXuP7UAbzOegxckAeXz4AT545ym3oyQZUBFQHpito+sdPniPYUgGS71GeVc8kAmNczM9Ful05QlSGy/WEQqOKxsite7zwBsKEOxlfUj3cZxKZDwHUxqK2cjJTF1IF0Qk1c+2q9zYef3VhFfV9LufG128Hb+vB/U8vZJdttj9vrt1Cbq4uHevzttLRtHBv30hx/psy+px2o9nHKuXCdMjmFa+bqWWFm0RX9edzs3/uFOIj6js5LhVEOMynTfR7SmA68Q+uNx4iKr+dRjSpLwQgDo3LSGLBlBHclylpRUOk6YsbNbmXP4zfcLG6bG9+GkTzw+AeNuMdNHvN4TEUGAHyoj/c8h/uBFSpAjncqWuY2PVcJYBgRWg9+/XzNqpZ/LCyfG/C1VPqc+0rJS8tHetZQjmXzzWIex36R3qQpBebrd0b2fgU3f3sM2F2+imjlmBjV9Zg814+W9HhJT1R7vfEp9aMxr1f7Fet8QNnrZ6dgHZ85vwYMU4aM8m4ZIbh2W/lgarZJoESHyUe7Hifp/3qMdOQxal7XuvQNXyh9h/pvSmwNZfkr0VxnAp15MbbKWZ2pv0J0L65X/3l/pi77CQS5z/mcxQzXzKf/r6o5vxsY2yk1kJaUwJX73pm/BKPSOGpPXUinwsBZGq9hOnGpywjYZhq/jndV0sMk/RU1Z5O63mMn0GRGPHVy8pNlOCbKaGYp/dnOAcFuAtXUSyTu8dRpe2rye5laoGFL7QccN9WyiBcF/96jBJyr8Z1jsRPgOaYjI9TPoAXlIfVqBoTSDpMoB15LlzEol5Z/JJIBBF9LZ9A88O1vFZg1kGfbzI5JyzaH7aadYZlKr5nSvlD3UP7IZ+of6uvqtENiD+oY4w6/aIBBA/9NnbA4pEOq6MA7KdL4uIOVN4FvpRSF+zYUubGooCpjI40jFCsagysCGSpTZkO4udmmNHauqDhotDmW/M7oVAKGWXHPRMNJZ4GGnP24DUb+hf8Z6WOfdMoqPuZRN49lpfKVll/nW0W12KZUK1Ua6uSd1xyFk8bzuoe/BC8VURYNQg3Yd9VfPfue75H0V45IVx/RO/9bK/dejc86G8gyyu1xEkBxHXzvavXMjLMyD1IHrqtqQId95ZrSmFFmOQ8eazqnnHPyTDBCh4DEoxsGCZ4Hj2U+jOXbfeFnJJ25Q/rQV0k3SI9+1PDqXvWsQmaeBF7JI8GNUIe8sJ0VjZ1qvpwg9QjBQj4HlDI95Qiz7Lrab+vM1H5D5SevkL5HbT1OafybK253TeM+st2jUZaOAO+7TgaYHP3mOlIHsd3MBrsNy5v5W1fPEm3fxdyYpww6pF7zumVAJB0VZ3I4Z+SN85X6qtJJi6iXTpM0PtpkMM2jTcz0cX3SZlr3SONnVeZoN7MrybN5mAIi7IfrSH5M1K1VX4u475dNMGAojfWJ129N0v3U9sO2WhBmrubkndCy0+r9d3z4M/+5L1jebaTdr+SRAYW0gb6f8uS2KX88xsUgbtrxSgezfQYMuZ8tZ9wnU/vrkA6pogPvpKQC3C9yb+OSURjeZx2CIt/nA3bpLNhAVuCX0eQ8Isbooq/tB56trPN+FQ1h+QTZGdli9IrHgirnIRWmNH4wn2d4SR5bRtf5n/zTIM7jnutkxIrAcT+FOVc/IpVGwSCI5+wZJed3K/R841jyyu+OPEvducv1M9/r6o7Ib2sA0K+W9P72usxfVXs+ZFXjCDjHIoyD9yhHCzWDfFLNGfr2t0hffcc1+puf1wz+5UOZy9XeLrahZtB5JIDtGxx5bZj9MqVT4j1HmfBcG8ywLY6FwOyY+m8cCG26n3VJukI6/15JX3bHUOq/SP+npONtjK5LZy8zge5f+JzymPc9nup+dd6ftKuxQ+z/jELnCzIIOOj4zNWPQn3nYyR96CLd/7fac0dTwNHtzuKawUuuhSn3IEEyQVXeZ7bB80Q5m6m/AY/ZATsy75b0m2p7h+OgrNBZ4v4k754/z2XqAGksXxwHASrXNF/akXLisaatYBnLGwNBPppzVg2kX6Iuz7dq+ZhbHjtj+wywmXgU8a6i5hmsI9/sJ08J+L71fuopjzXbtc6h7K+oP1tGx4dl7dhZLnJ81lvmy3t8D+1SJtO5IDHQ4u/n4zMdydSt6TyQ0lHK7KnLKK7nGvGUBnGL/3jEeuq0yYVOi0/T3yGN6cA/k5LGxERFxo1XRfWF+4oybsvAO4+UMRtRRUZcN43XXnxOB4H1GS1LyjHz2FrlyLCsebLjRp54XIhled/fCd7z6EkaI0a7eJ1ndhnVsQGusiMsmxFMUhpgG6L9eHUkjuCZ/HLsjMqlY1Q5Xm4/x0IjmEf2DMJeK+n9kh50rn1/j9qD0eyPR26YRdhTfx4kgZfQ10LtqJce+08k/bD0zCPa+8Fe7mzUNa/VMbvKYC+iPIMGSVmPlGCdZHCXsu/52VP70PreVHPP1N7pvNpfQSuNdYxl3O1wrQnSKTMzLcsF17+KWPLPclBFljm3nNPM7PEzgxN2ls+/TTr6X2+XXtF/2VsayyQj0RlUyaOn1R7IMVgOqwf1p4gOGZ1Z7kM6l3O1taQN4DzwOuUrdZ7bNnilPTAx8FDVzXHwGp3Mavwsy4AI76VD6edOfOxprn5sdnP4z6Nv1on+XjnhtGWUywosk1+hHuc+gzN0aiqQX80R5YrHkpgFoj2kzTOvW+pOy7qaDJ1Rf3OY5WrKhuf6+Np+60kdmoCfusBjTD2S+5B8EAcwozYFkisb5yOpljc/J+n2zUdm0/bbv4d0SEkH3kmR+sbLrIqJRjkNEe/7s9sx2PNRgYwUZH821lUKnVEaaWzw6Uykkc4sER0LaayMaXAUn/O7lS4jzDTa0lhxsR1HlRxFMp/p6CiupUFyH+RtylAzUmoecu7cHkE471XgMfupvlcAaq7l9v2ZYD0dgrvjwFAOdtV/MMt8nFF7mFvqcmQjfGb4TgDKaJrn2OvC+VioH4f5XUnf+ZPPlp7ybN36gw3w+C1RH1J7roPOEMfg/8wW+LrHZufTTjj3TYJv8s4+XNfkeplJmKk/OHxi4P12SR/6iHTlF0p68GdLvyDpxcPN21pmalv9VcQbGh9v4RoRGORcTJVlsIPlyDPnwLK/qvE+sLxlRN/7xfNAAEvezqpl4/6xpKu/sg1/a7iX62u52dZytivHanIGzBmb/er4GsdY7REGUDxHR9X1tP/o4HusQtvpOFC32qHPvisn3+PJCLk0Hlf2ld+pO3Jd3b7lxkcxybej8J7vi9T27S3qv/9zmXomxQ4Mj+Cl/k+ZTh3KsZi3KrBVAW5f9/eFxvZSaI/rtYp6GYAkXy5jmbe944PiPtp3HmWqB+Hp7FO/UJ/txrXKjs1Uz6GJddhW2rUp+5NyaZ1VZbt5LDAdapbNPZuZ+RxHFWy6EKni/Z7o85DGdK867mXjIi2D+6moDRUmjzFQqeaxhTnKuR4VLBWatAyK6cRQqbsvbx5HgBR1pHH75zR2ftx/Hn2z4tnTWAkRCE2lbDkfx9XeBmTgx2g655jHxdJpy2iTlWW+fz/Hm0qfztpc9Q+i2fBXD8+n0p+hrtufaQwedjU2BMK9vM7IdhoWAs10LH1/XWMD5TVaV5t/j0Eav35XGjtwC43l0vKRcrij/mD5P/8H0j+9th0xW1d7tpxjyqMEnFfK3Wpxzd+vVntQ/Wotg7wK0JIyi0qAtqb+2xEEmCfUnrfYk/RLkj7xJrXzTS8aCt4m/eub+qtaT2msV9hf5VRMGWjKVsogZa8aK2Um59D3UrarLNJc4x8plFrW5DY1WboRZW9Rl3Oef9/W2Mmt9K3nwXvP68/P1LtuL0FDBchy7NSpuffslG4Mf6ejn9Wom/re5apXhyd4+7M4JlU02/d8vM1tMvOcc+b95ww67dh5NUf87PDdcnxGbc2ZzXSUnBlnBqByjq2LCKK9RzKDSVng/EjdNph/zsVURmGh/rpktkfgzHaSF1+j3fC8nhj+LCPe/yfU14PHstjPrsbrU42XAZXktXJeEhO4XT78n3iDdf2ZGTH2aZkhX9Vb0LyGq/jM9jhWZqgO6ZDuDh34TEpGYfL8tTRW8nnMSRpv3tzYjDzO4r77JAjfD1CQByvzYxob52ynAkemjI7SSGUaf0pRpiK3MvK4eIyDESUeIZDGitL1M63PyPdc4/WyQUzlv6axUfF1AruVKM/7wmdG9ivvnUrXgCqfQSKg4rzwc4LDCpD6enV0xeQUfcrCTO2c+Xk1gMmHI2nQ9jOKfF3qqprjuTXUf7+as3LVUOeMpA9oDFAJamjAK6NZOYaWy6sl/eVVaWev/c4LZWGK93Recr2r7Nqmxj+KOVMDcc+T9Mj/0n6D5ka143SbQxsXDfX3NH4pQWXoCfhS1rh3phyulD3K9DzuZ52qneQz9yn1wq1qc0MQ4r2kgRe+npjghmCP/VEnVTprL+5xHjPA4/nkmMzfhtraOAO4M1w/rgYud9WyB3tq63tKXc4J6KqsH/mjfnY2qTrqWYHU1AeVY8v5SlBPp4WZawZSKt26NdQ7paYvzqjrC4+N80r7xGuzuM6jucziUxe7vstUTghfJ5yyXTn7a3GdNir3f5WxrwJ2C/VjvRvDvRNDXzeqybvnhXwyGEQ7kfaA46sCl1mWvNFZYjv8n1hG6jLC9fKzbDON+Uy7Wtka/2eWK/t3f5n1upApT9bcU30e0pgOvJMiLW8WabxhpPrXknkcggC0ivjSaWHmwvdTEVeKkmVNVO52Xsh3At8EJancOa40EhxbRocrA51Oh+/drn7ko4qS72r8g1d5PCOBC5XlWlxP40bFn3POuaAhzfHtN6cEZylTWS77qF4UIJSpjDHLZDTQmSWu40wNfGyhjo2a1B0JUh4NId/miSD8vFrW5EPgN+U0ZSzbJajJ43KOFkvtEZDdvfaAMyOmLl+BvTSCuZ4es8vScfVxplX1N/+8Wu1420z9bXqragDlVrSTzknKXx658v8qO0jZq5yufM6L5ehgVrxN6TmpAyqXc13LjdsmMHY9z8sUCEy55nGlfF4rAVzlfKWDYpDq7O2J4brBpnXneTXAOVd7wcO3PF3SlvQvf6VnCQlsracq505xfV1jJzrBZlLKjLQ8t76XR/Hcbmb/Zxo/GyPVx4c9Xz4yuqOxHuD4V1A3He2Kp5wj80ZZo31g3cz8+Lq0PF88rsdy2W/1PQE1wTmzRm7TxzpP4p71bD4zmUdPK3mecliyTv63HLuv/YiZ8Wpd7uo5Se6DfKaQc5ZOS7ZnGXL5QzB+SHeX7hVOijQG0lX0n1Qdm6JBn8c9lq+MCR0Yfz+nMcCoFJnrMHLGyDp5tAFIo5FHzgxc51E3ozFsizzQ8FVHhDgeKiZmTEiMEJonGusKYO03X3zGIo+rud5RlKseZE2A6Dnw/GUGSBq/wjN5sVGhQcjx0FjTGGQElde5RimT+WB0GuLsOwEoX1lrUEwDk4Cba5RvWiM45DoTtOTeNCC4Uf3hVJ8Hl8ZRU64XI/AVkErHca7+bMlcDdjaIVvFvZPqGROv1Y56BoHgPNtP55IybHnMoEDuBaF8zjeziRWYprPE+vk8ksuaH885HdB1jdfW49hBH57zDHwkEExASb7IP+9xHrhnfXTPsrxQf1bL41DUX6hlUfR4SbdLl8FJEeqSZ85VzoE0lv18ZuSujoVVxwYJeFMvTb0BjvpK6mtoWauCT9yTllfLRwY6sq6pcgZoEzgmE3XmXLVN5PykQ2294uOtPobp7Ed1tIg2XBqvAR2n5MnZBgfgdjRe+9x3aW/Tycj120/+KWfVaRCW4//MJJFX7/E8Ckg9ZoffOv8oyrmf1GPJD/fbQmNZPqRDuiu6VzgpVrDpLPheAnYqKm5Gl3fZdCbSGCdR4aUhodJgXb9/vgL3brPKyEwZVQI5U3XcaxHlpeUxpdHI41+mND77RYgIJtLhIr9VBG5q3tnHVISZ9dknn/Wo+uHnzLCko3ZXY5LGgDKNSraba7anZUdprmUgUDkQaUQJtNw/QdYa7m2jvSoy7vrCZ7fH45gEgzzK5jZuH/470kqi0U55Jw/kj2XcnkGmn1+Zq4GfU8M9/7YC6zlSb1po/CD4FLjbz0HheKo1dztsP4+c5NhI7puf7WhzPeiguF06H9URFR4TTEeyAnRcryln3nVz/JWO42tjveaZAffc/hdJp/8/rc5bVDsKCWjz6BZ54bGePCLGl3tUe8/znvqCxGfYMjhEm7Si8VE790fdaYf7tNrvHPnImzTWIa7n8c80DtooeE4nII/wVfuzCviRKqfCsrKq9oOcD5b062oZXo6d/dhhW9N4DfMz/x9T3x9+/irtfx6L81g4Nt+fCthRXjiHuafzKGK2Y+c4ba4/ZzY958rtJh/pVHNMbKeai6QpO30hUcrxPdXnIY3pwDspFaDJbEdu9IykpKHPTSmNI6xJqYjZBo3xSlF2RdPKk22bbxvZBDA51syGJE0pUipIOkqKsozeVEe+aFjdlteEDhKVZXXcgf2ZqNQ5F1SwlaJNZVwBqwSYCR4rEDm1blXfi7g2ZahoHNc0Hl8ah3wOx/Mi9TVg9LQirwvngFmKBCXJJ8ERnWLKn/uwcTe/CfamHJFqDUncn543X7e8bqkbdB8luW34Myg6qv67CusaHzPymOzsuC1f50OtCcYtU9V4SL5+PspWRxvnxWfOJdunI6u4TkeMIM1t7MdzOkQJDNkvZYOArnJupLFsVHuc+pNyc04ddL5ouLaunhGqnsvgGFL+Kn2SAHmluM8gWOrEiqpoNm1cpVeoU50pYwZ5W+0BegYbUo+kDWJmhjxUclc5JhVlxiFPBiRfK/ifOiHnwJ855yaOyf+ZGbWTZnk6hc9n0U4e+ZJqZyizY3dlm0y03enUcWxe28QjGVTwmPj2sv3653XjHa5JhZHyzYLmqwqcHNLBo62tLT3pSU/S3t6e5vO5fuAHfkDf+73f+2dq48A7KXN18O6NlAbDmyaBua/tF1njcSkqDpbZQxl+T2WQDlWVxbEhp4PAY0geK43eLMqRD7ZL8DGLui7PulPHtwg0PNeem3NqkSnOdY45538R39OZkcZ8JJhyVJvrko7HXR3FyHvS8lEiG1VGKhlZ5Rgqg8C2mIqnU8i+3affb88HmTOavKIOwFZQLsGH+eB116kc1nxxAA3wUS3LawWYLSOONJ/XGPCTP8pcgjDfyyNMOSaCEc6t543708+gsCz7Tn3i53som47Cul5S7ueUFfYpjbN7M43HpihvZ4bOD8csjfd37gvuzwocaaL8DGWZeeAcci9SVzFLwHLJP8dOmeJaCPf8Vjc7kGfVH6KfqT1fVDl66RQK/3Nc5I82ZyXKU08kKM/9ZN4TrEvdsahknsCaAR7rhuPqx+KcIZx6VpDy5XngulYBi/2CSiSPscrEV/ueutF767+o2ZUzqMs5T2cg9bDLTzmIts12TMhrFUBjECTXM8dFqnADddsUf1NZENNUhsoOmGWs2nfV3l0pylFP5GkHyvg5fWZQBiPuqT4PEh0/flyvfvWrdfz4ce3s7OgRj3iEvumbvkmXXHLJ3W7jwDspCch5LdPlJkYFqojFivpGozIiVUqWit6Kp3Ia2F+2l0aMYMVtuG4qCb73nPdZf0qZsUxGuAjiDIozWp48URnmmWTOidvnmDPals5fFSmjwzWLe9LYwPK+la37IPDJYx+zog7BRY41jbqJ8peRs+SPhptpdgK1qfKZ0idwSp49Lhpr4brndxFlzY+vZV3Of/5OAcF+fk/nLo1oRsIp9yk/fAvS+nDf65zOBb/7qIl5tiPg9ecDxop28k1ye2jLssU9lPWl+ghfRilTX6yqZxASMFXHFbNN37NcMXtrvtlm8ufjbQTfuS8zcJF7jGt6NMq5fupfPqfmdvwGQh4rpE7la2PplGYEOZ3u5Jl7rbILQjnPLdug3k5nn21W+yqJuph9r6k/a+H6lX2R+t6mg0J+TXyBQOVg0qlMYFvpRffLYI2DAtvqx5gsi1UQzf1mQNLtTzn7noM9tWOn1G/m12Wl5b1EnW6qZIKfydtK/OdYzB/3ldelwibZl7QcWKz2XO5j4bv55XFE/pf6eI/pM8dROaS/GM1mMx0/flyStLu7q/l8rjvuuOPP1MYUJj0wxAgdKb9XWZAEdAZoBFo0TATIVFrMbghl+VAaiYYoDQTr8VqlxKxU9vA/Iy6MnmbEmJkdGhJTOi1pYCqeXJ6fmQlSjI1jYV3yxfvJm+/nsyj83Qi2zd9qsAE1aKWBnALJnHP3P4s6U2/FcZkN9bcPkQgOfOwo7/F+Gh3K8ZRTSDlJQ5XrmU637xF80Cnldx6Hcr8GjHnsguvgfjk3aUyT1nDd6+g+efyFfae88D/vzdQj8ec1fmjcdezEeA1cl3Ng4EvQ7rIEB+k85jyk859gr8pyWlaYcRbKzKMu5YsBj3Q2yC/XgEDK6z5Xf00wwRvnudoz5JEyLVyzI8p1WI36+bKHzNbZkeE4qr6rtaJjlvqVezL7zoAB58DjSacny7ufCoBbXtfUf9Mq3zRHfWanw3KS/XL93VeVnfO4qBuskxbx3UTd4e9u3/vW6+Q2bVvdbmZDqevSAXQflcylDbQOkZbnPsF9Bp3IR9o24Vp1jzomnZc8IutyuT/JczqRVRk+iyh89toyWEby3BOPHNJfjD760Y/qO77jO3TJJZfo+PHjevSjH60//MM//JS1/wd/8Af6uq/7Ol122WU6cuSIfuM3fqMs9/M///N6wAMeoLW1NT32sY/Va17zmtH9zc1NPepRj9Lnfd7n6Yd+6If0OZ/zOX8mPg68kyItb3SC4YykEAhmeSrGNKRTAImAlYCQfdBRIfBI8Mj+MjNkBZGAOB0gGkQCEhpGH3ExSGIdUipMG4yFxg+Jcl485/nHMXIuqAQZsReuK8oTYBOcErhX0T9GGBP4JjBhxMygwbSusQH28aXjGCOj+26fAIrRQv73GNOgZNbMbaVMrhafM2MhjY/ecHw2sDTeK1o+2pBHLSrnfaGxsUrHpXKaK0BqwMajV1znHXx2u3TQDEAdPTcfF2n88LXU1tZOSQI07wceh+H9BOBum2s09UxQBfzT2eK9lNsp54HgbCp7wXnnmrsfOsdTjkSVMfCcWeesa9lZID+87vlNUHU0vmdAaQ31WKcKZHGvTL3mtprfnHs+I5A6N513aVnX8tgW+3ZbGbRyX/P4s1Pi/XtC/bdiblbbJ5eoyzfHlZHxytaZqNdSD/geH+zmmMyjoq5lbBVtcK/P1d+YOUc5ZidNbItjdJ9cozwyJzU5Pa2WEcjnwri/cy/YJqbNcr/mOTMo7Nt7Jh3cdHTT/jOQaL64L6rgmzSWaa4dbUIGuDJD63Gwvc8Eyrm9p/7uDn3iE5/QF3/xF2t1dVW/8zu/o3e/+916/vOfrxMnTpTlX/e612lvL3N50nve8x7dfPPNRQ1pe3tbj3rUo/SCF7xgko+XvexlesYznqEf/dEf1dve9jY94QlP0FOe8hT9yZ/8yZ1lTpw4oXe84x364Ac/qJe+9KW65ZZb7uYoGx2548+ae/kModtvv10XX3yxvlHj15Ua+FCB2lCmMyJ1ZVCBEh55MOVxFpdNY5rGk6DBvFWOy1SbVEx0fuZxP4F+5USYjzmuTW0epphdz06OwAf72ov7cy0fiyLPU6Ano6EJ6glsXIdrmfPGvqtIFEGH190g2RmYy3B9U+388hzl9zQ2bDnePfUfDaOzRWDK7BCPRs3jvtdsTeNnWBRlqsheZUyyDonPXeTRjYziElSzrUo2uF777UW2zbdLUTa5rtXRmUre+JAy92b14Kg0lptqX6bsTTnePpbF8VROhinnemovcb96flz39MC/ZZay7TkQ6ifYpr5wUKA6cpLOqfniUawcZ+7v3J+pv/P1v8fVHRRnzfya2pR1guwE/5SVdJIqXv099THb8xyng+o6uSe416Xx0UbuvdTZ7Pu4moMyV1tv83/ZUH9Lta5yP3QyzJeJTijX2XJh4pvtqvnzGKo+qENU3KfNoR0lTEv7n224zJqarBzT+HXOtnV8K17Oi8ukHSKfyRN1acVrypZlURrLQqUD2K/5zMzQlP7fz0FNPcf2UtctJN0h6dck3XbbbbrooouKFj99ZOz4RkmfdQ/3/UlJj9Ndz8uzn/1sve51r1vKWlS0WCx0zTXX6MEPfrB+7dd+TbNZW6n3ve99euITn6hnPvOZ+qEf+qF92zhy5Ihe/vKX6xu+4RtG1x/3uMfpmmuu0Yte9KI7rz384Q/XN3zDN+i5z33uUjvf933fpyc96Un6lm/5lrvk23TgMyk0XIzMZHq0yi5UxjIjIbyXfZoyQpkgjW3nEbCVuJ/tM7KSR7fYv3lmhH4K+BCwVbwk+Ccv7JMRFWaokmh0M5pDEMjruU7OoHgWky9lAAEAAElEQVQOqFB932NhmvyuAJGK+3wNpb+vqYG8hbqRWZN0KcbHeSUR7NhoTaXEabAJ1LLsmrosZUSLMuC2mFVkdI9/jEBWQEvRRq5bRpIrEJVAOMnXvY6UMa6f1OfQvORRlpn6PFX9ZFlGcTMyyAgwrycw4H9pDOg4jswqZVtZx3ORgJL1PG9ul1Hf45IeIelhWl5b1qWDY/5zHc2H54NHEat15TE78+9obToBbDdluHIevDf5UPBCLUt2Ql1/Jgj32KTx/PkvnV9FWX9mW9Wa8XkYjsUAMvcE26UM0gHl2pJvjmlHzTk5o77+M0k3qTupUp9LZgW5192X9UoVoOMJBeoE6vwMDLBdjoPtcj2pwzKrnNfMO50X2nX3Y4djF+UtT0fVj8j591Jcno4RX0QwJf/J23mMm84JeaMtofwdje/cT6xv+5F6jm/5qvqq3mi5H7lvHuFd0WfGMynzT9OfJF133XW6+uqr9cIXvrDk7bd+67d07bXX6lu+5Vt03/veV495zGP0r/7VvyrLrqys6BWveIXe9ra36bu+67u0WCz0gQ98QE960pP09V//9XfpoEzR+fPn9Yd/+Id68pOfPLr+5Cc/Wa9//eslSbfccotuv/12Sc35+4M/+AM99KEP/TP1c+AfnJfGWRQrGpKN7iLKsw4VMpWQ63rzZZZCWo6gURjPqz+sSzCbThSJxiAzNzNcIxipolE5fo7dESOWp0HhfBEIJmjJ1HUaUPJUGSQCqfxv42NeV9TBXTo8nPN01Lg2M1yrFHIFTFbUfuxvLumpkq77fyS9QvqJNzTezg7lCMQYcUtwm0Zsjuucf8o1191zTEAn1WufUfBK9ipnwXNc8TFTDb7YJ/9XkXnhO/cWgQVBZOXY+v8e2vCcr0V9OnOOarsu2+XYFxofjaFj4fo89miig8kxe/4YXd4voECZ9WePy31kWQJcZzvmaqDhRjXAVTlbKf8pSxnBzf0zxYd5Pq5+VDTBF9fSD0pP7RHzwozDcbX5/FZJ110r/dFbpF/S8pFKtpnZ3wSD0ljPmqrsh6+nc5UANLNJqbfT0cixu+5UkIvjJUjlGhHUprwxKHNXx744n+nsZT/Vm8kI3NeHNrbAw9QzF3TwTDwexWCLKfUf5ZLl9tScuspx4Fg5jpTTzEyyXhXYyKBCFYSg3d1PT7BO6g9TZvScCbWz5vIec55mYNbX+8Dl6ajcHQfn3kxvfvOb982k3HDDDXrRi16kZz3rWfr7f//v601vepN+4Ad+QMeOHdN3fdd3LZW/7LLL9Hu/93v60i/9Un37t3+73vCGN+grvuIr9Au/8At/bh4//vGPaz6f69JLLx1dv/TSS+88QvaRj3xE3/M936M77rhDd9xxh77/+79fX/AFX/Bn6ude4aTsR0715oatAJ1wb1fN+JkIrKhUFNfZdoKl/Y6KcVMzPc0UekZqqUgYmUsHw0qbRo6KMo1nFcVKxU+i88fPVbp+KvWeRnRd7UFbO3iOdrleAk+Oxdf24hqVb4IKKtoq/Whget0DJP3YcekxO7rqa6Uboi//r2SDkTYCmTSUjLByHYR6BMyZ0jf5+kLtKIPrsy3Wy/mkU22Zohyl4SfQpGGdSucyK0NjnmMljwSnU/LIvvPtZwmkHGW3AWYmypHw/Qyz+5LGAIVHoDIo4ojlNvisQHLuUT507z20PVHefPv6XNJ7Me7kzeN3+ytxrwJClS5LfTZXf1HETP13aipKEJf9mievUa7JdZ8n6enS5z9PWvvj5XboXLo/Op0VL9SLBsHUPdleyqr5NtHpz6NA3GMmyhj3M/ugTaNuXNf4uJLUgi3b6s9xcc0oxyTvtbSB5G+u5XVPeeB9tmcndgdjSweY+646Bux95L3Lo6muz7lKPeO53VP/ccdtdafZ/Wa7pkovmHK9yBP1UxXEq2SY37O84rrv7edMWQdWepoBXMu755FBh+x7P3x1oVA1L/dEn3eHFouFrr32Wj3nOc+RJD3mMY/RH/3RH+lFL3pR6aRI0v3vf3/9yq/8ip74xCfqqquu0i/+4i/qyJEjf2Ges4077rjjzmuPfexj9fa3v/0v1P4UPjgwVEVxTFPRMW+8yiC4TTsoqWwY1co0M9ujY5KRaLdrwFcpNvKT46BBsLJgWfJGpW5DZ77IX/JegV6D+GquOTaOj/dNeTSMc2Q6r3Zc45mS/q6acbVyzLYMJv1gJduj48ix5rjOF2V5b3O4/p8+KOnbd6Tv6aDP5TiezGzRaaShSQfP16rjc3bWMuKVwIiOGA145VyYVlAnz0uvRvkpR9tleGzK9yvwxjnh98yE+R755x5mux47nTi24XZ9ZG9l+HwR2pupHxMjgF3V+O1w/KE798EXJtCIc5330GbWlcYg3GNwNvGkpOvUn2vi26gIJKSxHHj+zBv3gZ0m4TujoVwLvrCB60E9RvI8n1FzUNwe9VKCHL/ZLnWe++A68pjRKz4i6RnS7//x+HW7Un9OJd9aRnl4sKRHq795zzzm8aJZ8dnfUw+S8sib1HUygWtltD3O6ugij84x28l7JzR2cqo1Fa4nEOXxTstRjrOyURXIzr5uV8tGT71Ugfy4TfOwqnbk9ipJD1L7IUbOQQXkvSd8hJP2YqZmR7aHMpZF95lOIeUwgy6VDqfO4p6hjsg5mHJGeK0aryn3t/cA5cZj9VzwGRjrK7edx1nz84EHnfcAfe7nfq6uvvrq0bWHP/zhowfWk2655Rb9jb/xN/R1X/d12tnZ0TOf+cy/EA+f8zmfo9lstvTg/cc+9rGl7MpfhO4VmZSMzDMqkEp9ruUoZ0brsrw0VtAZ+SYfacBpiPk8QuUcKa6zXoJR1jOA8TnQ1eFzlWmgw5KGmmPifUYw0wh7/swDnRhHrzLKZkoDb7KCPCnpyuHJto1PNkdBaGtHywYpjaLXmnPj+zQYcy2vFeduU9Llkl4v6dW/2o+h7WhsyKvMQeXwkQxKq6iqKddx6iiU8J1ryHXP9iqwn3LI8XGMBLqefwIK98W9Yb4YfSRQyz3n/hx55LEOl8tjDDM1sEngQ6rWmICD9SjbzAS6z8wacuw27oxC539GVHmsiuvo798m6SEPl/77H0sv0XJAgetABzWd3Vnxv6Iqs5Vry+wW71MXpkwaAK9j/Ol8r2pZP5N8fVttrX9P0itva9fX1ZyizApYfvKI7oqavjkh6UPDNeq/qWAY549AzjLB7IZUZ005f/vZAveXwSQDTDrvltUVtTd6nRi+bwYvlX3kfqoAp+UxjzTOwUe2Z0oH2np8B2VWUM7tZ19+JvCU+lrPce0j6Id7j+36mBMzvtxPlhXywEwN26bN43+O1fLsepVOp+PDdnPP+b/1h/eJMyTc/9JYR6TOMz8eH+Uw7SqPyvLFLpwHzssh/fnoi7/4i/Xe9753dO1973ufrrjiirL8xz/+cX3FV3yFHv7wh+s//If/oOuvv15f9mVfpmPHjumf/tN/+ufi4ejRo3rsYx+rV77ylfrGb/zGO6+/8pWv1FOf+tQ/V5sV3SucFEalDNAZlWUEjsZpCiTvoRyNJI1GRjqzTAWAzuFzUuWcmN8EmtlGKi1pHBl3dI7OUQUueD2zRMnbnnoU96Skq9WipTdEO4wQVfOYc+f53pD0YUkv+GTj5cZo12MkT2kwpXF6vori7eeU0qjM1V7jeUrd4J9V+xXrbL8yKDlWqc6AVN+5JqybcpTzkU4By6WjwLV29Nj9n8P9/YwP16ByqMkvI7MJltfV1v9WjZ9RyDbJcxpOAwlHBXN98sy9vzvaboDHh3zTsePRhwpQ2kE2UF3VeE9Xe8OfOV/cRx+W9JD3twegK4e4CjikruA6pe6oHI2ptis9RqBkWlPbM1vqv5XiuhvDfcfqqO8SWGXbBNu3oa25eibFc5TPWXDu3fZ7h/53tOz07hc8Ii8E1FkngWu25zEzk0gncx7XfN1Zv1wv8+1jS3yez32kbuHeTaeU68Z+6JylM1HZWTv23h92bqrnxNymUNZj9tu4ZpJ+7DGSLpH+9auaXr5YPXNH+5kZQ6l2slc1fvCc5Q3CWacKUtAJzNMCadspL3Q0kshDOsa0eZnVqfZ3td+nAgJsP79bt05lzi9UqoJx90Sfd4ee+cxn6vGPf7ye85zn6K/9tb+mN73pTXrxi1+sF7/4xcttLhb66q/+al1xxRV62ctepr/0l/6SHv7wh+tVr3qVvvzLv1z3u9/9yqzKJz/5Sb3//e+/8/sHP/hBvf3tb9fJkyd1//vfX5L0rGc9S9/5nd+pa6+9Vl/0RV+kF7/4xfqTP/kT/a2/9bf+XOOv6MC/gvipWk6RV4aayp4KOsvS8LnOMS0bzszeEAS5n2rDk880kjmGBK2M+MzwnRE/3p/H971hLK6zUrRb9Z9tsozUAMgj1JyU6zXeiFOZpnSgFPVoqP3dEW5prFyTUiGz3F05KeaZMrJfpPycxg7d3VFCaRhyTfNYSLaZgJttMgNDma+cWpbPbAq/35VccH7SCWMkL49Gmpes+2C1Ixzv1vJLCcxzOqvVPnSbBnFbqp1+98ss4PrQll9j6zdI+RhIAhppfL7cjt5s6DfnIfnNFxFQho9qfPz0hFpEfEVN/qrnkwgaj+J/JV8E/7lnci+ZdwNHP/Mg1DfPHPO6+l5aQRvrQxsGlOyvAlbmgZTPLyT//MwgkrS8jvksj/nn/OaxnOSJ8kTdlrqG9khRLvdkOvLCdYL9Sp/z6A5fsUugSl7NR5WJl+o1IT/UZyQ7Jrtxf6oPgnDLlMvP1JzSU5KeKOm6mySdlrZXpBcMfdyisX5yAFMYq/cd96THzWOvtp/MrOQcZOAjcUc6nhz7Xc2FcD+dE5eZR7mF+uvpq7XwOLnvySczvEJZOpMrqM8TBXNJ/14X9iuIX61PzyuIn6i7Ny+//du/rR/5kR/R9ddfrwc84AF61rOepe/93u8ty77yla/UE57wBK2trY2uv/3tb9cll1yiyy+/fKnO7//+7+vLv/zLl64/7WlP07/5N//mzu8///M/r+c973n6H//jf+gRj3iEfvZnf1Zf+qVfepdjvbt0r3BSEiRWDkuCGhXfWadSFlXEZU/LioZGx/fXUI4gKYFhRphcfrW4l/wzgjEV8a6Mituu2kt+KxDjo09WUsza5LEK4Xv+T7C5UD97z4c/2Qa/5xiroy77OSd5jCLXh0A7ea+AMyO56VSmEU+Hg0flzLezCtL4t4E4nnPqTnWCmsoZ3O/afk5SZWR5dCXlcKG6r0oGTqi97vlGjQE+DWP1PWkW/7lW3pecz4U6MNmIMrtFmXSEGME02CVIoK4gX3Qscj4pc2sa67kEUtx7ptwn6Qg5Eu06CbQ4dwlocl4V93g0xvc21B0UAyDOQ77ooNLFGbyYCka4b657lpH6HBPMV7bC5bn36LxJY4dpv8CP2zSxHJ+X8txZ79MBTQdzyg6cVpv3TbWME9dS+G6epnQ2KbMv3MdVsCkBtMeUcp8BhATNPHJ5Uu0o2ylJT/vBduE//6j0LvXfsGImg/xSF+dYpbETnjae80+wz/FXe5rj4r0pe1hR1snr7sO2eE1jeazmdb+2LSceD53bzDT6nsu9XBe2k/J7+vQ4KU/ShTkvny468Me9jmkZFFkB+FjLYvhegS1FeZch2Mq0vsuwDx8ToFFOZ4WRiSpSPWUUVuM/QazbznFNGeKqvuenMjLpeDFSR0PFY1WeTwKtanwZzSQQWBk+b03w7//ug9dNVfSS857R+ZX4Tl5Zhk6J26QjaVnjf7Z1Vw6KFX1G7Fa1vK4kG+LqiA+dHt6rnOSco1zHyilgH+k4cO9lhJh7yHxtqq97ZnjyiAS/m99j+EyZoYFNsLhQy1bwtz+OSbpSzWm6QdJHwb8zLbfF+BPA84gNQWUVLCBwJP8EPemAcH1cxw4Tx5uOpZ2TdBilMVgnv9VRmXn899zyAXtH8J2ZctsZwc19MQWaMpMyBYJdlveptyiDFaAkUZ7n+E5d6HvkN508Zk+qfeT5crt81qSiCmySBzs3GeShfFYZxRyvyXOXNpE6Jx27CnhTN9JJWonyi6K8+9xSc75ulvQzz2/3toYxbw5lHLDhePi9Wm/vw8qRlsa2jsHHlLO04Zaz6iH0yhHn3OU98sn54zyvaJmHirIux1q9HCTHm3Zlqp9DOqSKDryTYgPBDUMQWUWbSangrSSrTZmGKR0jK6xU8FUUL8fgqBmjMkzb+1iRx2ijkMAxFZpBDufIfU5FU6SxQWC/5u+YOuCYArKcI/NGpUzgOtW/2zym8dGqBGdTCj3H6bWl8fMYqiN8nK8EZtXa0LiY1ypTZ6qMC8dQZQryCEFGNOmQ0FFLhzvXnmNktofjrYxqyiG/z6Oe2zExsli1PxVcICjMPUMZyj08V49S+wiV952j6Rervy3uRrXnP7aHdjfQLt8AJi0/uM8AScogr+1p+VffzWsCaY6dDgzr5nEutif152x4xIxHP9wWX6ece4Lz6XWjzHu+8jmQ/L0Vqc+/I7B53CqP+XCfZITc8+T1MVVBIX5OWU/nN+tlljPv0bHMPVHpXLfFfcQgWQZcvE8IeCudvqNlHUwnlDxk2zl+88U6tnuUU9rLzPhSpgmyKdOpn1KOCPhvkXQZ+F1VCya4T6+F5WGOP+5djo97gc52OgAZcOBLAfI0RGYIfa+ywcyKVU56/q/0eWY8OYap7DP3FgMUVcaLTqTnrBrjIR3SXdGBd1JMNMaMbOcGz2MqeQxlFW0I16V+hjozJQRReUyICpVAtsreuF4aiQSJed9AeBH159FGHgeoABEjTyxTZSUISvL4DA0mFVc6JhldIwA3cV5WtDxHVYZFGke5hDEl5RgTgHNcVcSwckrdnsn1pjIBNMhT0T3OVTqlGSnkvHu9/TxS9p1tex449qNxn84MgwLJH4E6941lk/utCigkICV/CXJ9z+BiyiEjaJxFG6fUXonqcmeHz2vqPxq4PlzbBm/pjNERdv+cixUtA3ZnQBjQ8PxTZriu7n+GuunUZbkK/FdOOIFc7smKeKxtTf2427b6+q2rg58MsKTzQl5yf1TOKx0MrklFmU3xevjeVOZvv4ADAbFBLvep5Y7HAiue+NY4glTy4LnzK7G5hlOZzioIwuBYZSfp9PNoIYnXp4IX6ZS7bb52O/lkvSpQoaGtD2usnzlnPKqVmaSFxnuQNjSDTvzMvjOQxX6rjF8VPOV+s8ykfcx5OVpc83WXT+cqeU3e0iGqbAM/cy5ST30m0B2a1g//K/s8pDHda5wUE8FRniXl/f2iRS6fkcvq1X7Zbzo5VGypuHydmZiM0O0HQqtxULm6jYxw0IHLiCONcuWg2GDwFcd0lvhgIg0Sr+V4yAsVKeduRe23LKQGIhMAcpwrakd0DCZ31X/AjCCAxp2gvIoGUQ48D1MGVXGP9QgkPI/pGBFophy57VUtG4ZKblg+nWHOLXnkHvL8ODLOMmnMPb4qK8XXmVpm0pFNg+HjTVUWkvPDPbWqcUTT/wme7Qy47dlw7Sr111wflXSNpG+XNLtUeuct0m+qHyO5Uu3tYzeBf+8l6h2PkVFxj42OXwIr6piUOz68SgCWzkSuV/WAbOVYkhjUSQCa5Pb8djQDaM8P9RZlNqPt5Cv7SR1BwMhgBfvlHk/nMTMo1T5IRyWzV5kZpJ7L+sw6me8c53mU83h8PbNMlc7Jvmdqzrd1YI53KqPg+0leg8zc0ClI3TrVlu7iHk8XuBydbL7Jz1F/tsf9QTtXvT65yopwjLkPFXWybZab4y/L59rTycnAwH5H8ch39Spo//facT8qynJuuKZ+XoqU61vp8kM6pCk68E5KAv+M2BiQOYqRR3NIBGVsn4BhCpQq2s90v9Qj+76XGZwKBEwZ0CqDUIFtOlVMzZIvgir3ychqFcWqDLbHwTnLKJ/55RGGHJfbWuBaOn9zjcfPNT6hZbC6rv6LxjRcqWBp3OgI2inznFLmOLeMcmZWKA2K206DVBkPl0mwY0pQl3PtNXVGJdeM/bqs53RetCeNZSwdG7edGZKcV/dbAWSC16lIKvtx2wnGsw7nbwP399SeMTkq6ZslXfeNaq8Z25UeeVR65G9Lz7mpHTG5Xd3h8dupDEIse/ytiWq/kOhgcE75AC+jnRvDNT8Ibf4JzN2u7yWgJKUMC31Jy+0ZELpNyzFBtIHjivo8M4MidYdmCsBV2WqPx3wrylj30wnNNir94fbo8E0RdS2/u39H6Y/iGttN25Htmq/KqaROZwAq587HEXfU5NPz4fmm3mcALv9nZlaqMyTbuO8XTaT8mP+p9eMcuoyDS5TBmdoePKpl+1E54OaP+4Fz4TJV0C+z59aj1Cduw3aN11ym4pF8sD9pec+R9nMAPb+UYV+jHU35Y9nKDlqm3VblEFbreqFSBl7uqT4PaUyfCbLyKaHcVIx+EIyTHBFY4B4Ntds4pnE0MKM0mf71NUauyVs6VVwkZiD8l1mDbJNk5cgILvupMhBuj0DZinMKQAr3EoRmmtvjIr+pxM2PyfxQCW+qGVsbgXSuCBrWJP3sZ0k/e0U7s2ygZMNuXrwe6Zx6vtz+cY0BAtcmjQVlZT9gSL4ZvaJDMIsywn/zUAHO5Meglg+Vu60Eh3toI9c+ZdfX+NtEpIwI51GmpHT03EZGtd1Ggv40PDN1gO8+GSVlPzcN9y6XdN3Xq/2q37dJ+qVvbE/nfpH0d4f2zmr8A3SUC8sXz/yvRDk/SG5HnvLmawuN+Zf6EaqHqWV6TmIsVZCD4+UzNAmAXJ9yvaoORHx8K8cqLe9370P+mrcf5Hdbc43Xys5l8p+Aj/OSznRmVRJYm7cVjIv61fpxprH8r+BaOvWUH4J/acxTynrqmwSdlHHrKP53f7NoI3XDmlrQZkNNVja0vPbMSHAv5ff9nKbqrXB0xipdTcpjTqbMgLhvZ5v8cLv7TL7cbx5J8xpaxj3WKhPE9oR63GMcu8dHTOH6iyhLPihfXut0AFbUdG3Op9unDcz9ZV4s8xX2MC9zjWUxy2ZQdT+H6pAOaT868JkUaTliQaPja1ToNDRTkc2FujGtjI6/7xc5qKIcafB4RMllCZzTMbKiyjETUFYRL18nQElwutCykqkMM69L4zfIMLqaBueuIofS+MiYFbfHTMckjwD4v69fITVEeUq65unSb8UYzR+Va5VVSSBEyrnLMVYKm/2cUy0jFYCnYzRlCHJtpbHTuxtlk/epNjMKmFFFjj2d0NnE52rfMZo/0zhKvNC4PwL6HA/Bs8fuuTmq8S8l76jJ7El1+X2EhgtPkfSlwyni35R0vyM6+kXSxW/ob/Va1fjZFK4Bx8KxG3gxAOA6zizQmVvgmtvfHL7nUc508BIMVWudTjRlMo8XeYwEdP7u+pYzAk8GhNhX1W8FhtOZYh1Go6kzXL8KKrF9g8HMmnOuKh3o+uk0cyyMaOfRTLfH46d8Jonj82e3z0xdOmOWCWcGj6kDdeq2FY0zPQlymamxfeHeS/vhcQn3PW63S31LZ4tOKNtKHUE9wCOv+cOLGaRzBplOHG0sTzmY6PR47TLokuA8g4r8IVyu/6qW9yLHZj1R2bkqA5jZmHlc57zyc/LK/WSbl/Lna8e0PF+WlXO68Ckdz3uqz0Ma04F3UtLbZ+SG96uoUNaXxkohDVhGdFnPfbgeFQ4pI4N8c4Z5NnipwCj7p2LyNYL6iqaup/F3WV/fz1hIXZGbCF4SuBKgpTEj7xmlzHGQP/MwV8t6vFfSn/64dJ/j0hs0Pv7l9hJIcA18PTNW7iPnnkaHwHAvrqVxd58EAL5Oo5CRvZX47rYr47Kr/rBuGhX2SSBLMJJgmJkWEw0WQUQ60Kwv3Ge00v1OyWKCsirKScfENPUbFpTDO6O2e2oH+UlD5wRxfr6FgMZFVXz2HPNVxwQFUg12PX6D0hvU3jxmh4fP/FBeMppLPitdtojylS41cX4p555nAp5L1H/53G3TiXH5FdRLZ5j9ZmDDlPWqoAvP1VcRcY6Fe5h7oHKwk6pg0kzLWQcC7PWCj3SiqiBTpYsdmKBzz9fnJu/eFwwo0DnkODKr5s/Zv79bljz3s7iXDnsGMah3zUPq0eST/GZQstIxDH6lY+A+0jY5qEbHvQqcKK5lIIE6sgrypX1Kxy/tiXnnvKRjQaeec0TbQ6ITT91OXV9hhUM6pP3oXiUvTL9zE2eki39S/XaSTOlXR5hoFNJB4X1prJwyusf0KhUA71f9ptJOZWNK5U+ezc88PtOJoyFfxTXfz8hiKmfOA6NKVKIeu/nyfZbx9Txe5OuO/PlXuH9Q0vfv9IedCbamlDCVLNdDuDZTf77F/NFZSkOWxodzSWPIeSY/VVt0XqSxMZKWeanWicaM+4EOEMGRyWtAooGq1pvlMlordfDq6zzPzjYZKc+oVIL7dAg5l27TR6B21QDUttov3WtT0j9wq6+VfuhI+6ngt/bnT7x/NoY2HNn2OKvsRTpe6XCR0glN8ENn1J9TD+VaUd+wbMqH+6FOSOAoLf+IoM+sC3XX1fw9vhiEoC51BmU4o9tc/4WW5ZL1TBnd9rMyUr02OY9VxDWDQ/6/iO/Zjh3bdY3lkzqC68VneDhWv0Y6QTvH4nt+SYT7T3ngHOzniLq819jXOZ/mubKpdl4rx3CK7JjTMfM46PyYV9ex3KfMJhZwffLv+7RJJmIM3/MRWuq2aj1S1irnmg7EFC/pmJ1Se+mHAywcbzqypCxXXbe8sl+Pjftqvzk/pEPaj+4VsmIgVUWuqNwYASbY4w8WZbuMKJsSCGRki8BQxT06FOZd8Z19EjhXRpWOBAEmx8FjBpVCStArtJlAk4bLyskKi06YFbr5S4WfY0qHiQDLfXqOCEjMp0HV7epRI4PdLS2DMPef40sAshvfXSczBAkYPI50TAkUcn7TuUheCe5IacQ5d5zPdMKSeNSO7REIZL0KxHm8ecynihZa9ujccTxZ12QZS1DriK37SFDF6L33/1G1Z+Ql6XpJ7/x/1R78+NaF9NQnSGfajX+5039EzhkM7q/KARU+76k/7Gs9QMM+j/Icq+eJ4yIgrNYh59ZzzsyccC91WsoRo6apO9iG96Mdv03V2QvK/iw+c2+k4586OHW36yfod/38XZpq/jmOSgdaB+RRI7ZHHUF5z4CB76fO8DUCdVOCSa5z/hq4nwliHyTqc8uW25nhM3nlGtJh4NxXDt9etJtOGsfGMTIoRRlNZ0UYX1VfUdbt0a5xjnIdbdOcqeJeoE2eRb3UpRlQom5e1fKcUC7Y3iVqz9Gd0LLMeu2n9LCvTWGHqj/vKTtnnBdimQudFp+mv0Ma04E/7pVkJeHIqBWIjxgxZUnFks6NNI7WSOONzTQpiZGLNNxpGBLIOKKbwHzq6EMqZSul6ugIsyw0JgT8uYlcj/2nEaqiVP6c88rvGcVlGUZYyV+On22m47SpBiarNZLG2bEEZYvis8tVx7o8juTDbcyjrIF1Oot5DCqNe/KR7VYykhHqKoPlewTMbDPBPeVvFvUJzha4l3vI68wf6GSfCRrYB/smgJaWf0QtxyCNjyOdV5OV42rR7UvUnpH/ZUlf8nLpGy6WdJV0629J/9/hntSilwno3Je0fKyGvFdHblymcgKl5WMorJNtJaBOR4/rmwA628j9aseMfXstUp8avO6pOSoLXDNwOoq682hP6nqAD9VX4zA/lGs6XOQp9zR151SQaRFtmE87uRVlUIJ7RBofiXJ7lN8MDnANMjs0pZMyEGSe+exgVU8aP++Sr9qtHPD97jPLSEeKMkH9J1yjPFe2mX3lc6Ssk23OUC5tMeumQ+TrqVur+kJ/U/aBMuqx7aFu9pdBgjPqgQCpr/vUCRC3W80L76dur2zklA47pEO6u3SvcFISCNhwMHLPCBzBFO/ZmJzT8sZ0+2nwfb1yAEwVSM1N7wg2wUIFHBOUEvzN8T9BTQUsWT55TeWfnytQqriWYIOGNsdCsqLjWfA8OkOwILXjV5ldMQBJB6tKrVMWMiqYvK4U93mPc8Dfk6mcNvNl+ZlyQoVrq6rXc8ppZn8JlKqILo1gOtbZD+Uu17qaP/KdzkkCkOyL/OWaTjluSQZcCRR3JL1HLRppGXm1pN+5TdLbWln/mOOG+muITStDG8c11i2V/CSgSYeRn6uIsK9b1ii/CfYSiFCP5J72WqyqA2E6VAbjefyvast9eV0uUvtdmW2NZSMBcUXW2esY1zktZzCqF50QkE85aAzEZADHa2nHKmVNWt43/pxRZfNAZ7/SiXnUJ+fF68v5Mz+sOxU0SAfS/VAGUt/lCxR4ZNJl7FDa0WIbfA4nncYpcG+iDaNcVyDcz+Dk/mNd8u97qZ9ct3JQKr3NMrTJe1EvZSbHnsGuzLKbJ55QuFUteOJ9Up0Y4HjdjoM8Dt6mLk6dZeJD8f7xZ5Nt2F2t6YVAVdDnnujzkMZUBeUOFDkikEZ5P7CXEahUXgSLCfq8cfOVjVVULOuY+EpRKhy3xyMWaVSpDLOM56JSrFTcLjtTPyfuMlVElIbZtBp1KmKqmACACpqGW7jutnnOlePg/C2K68nbysQ1p61n+POYqyMeBCFVPwRmOWfpIOZa0vmbUmZ0xBLcWJamDKvbTRBEovwQ0KbzXDkge3FfqhVQGlrXIQ/m059TPvJYYUbO+XCuI7lTcrqi/ordW9SN+tZw36BrR81BWahHLffwZyfGY6RM7GcQK4eXc0+HhQGYfC4hx5ffudcqMMugxbaWjxj5eJn3JEFPdWxrHmWsb+hker8RsKfTs6rmPB5XP5q3gbY8JvObAD7ngnqTQQveS4ciHTNngjz2DBzQueM8UF9VwHZL9fGxJDuQ6aCSGJCoAgB2RrkmecSJeyr1t2WPunXqmGOOMx1mRTnXXUHZdIp8nf85dvZPOeRacD9UttLzYt6td6gf51qWWzqhLLuIP15jO0LdnM8MClVBDvNO/ejPLOvxrE58Z79VYMoOi9t2wGdK1x7SISUdeCelilSSUknl/yr9b2VEBZygle9uz0iF26EioANhvqikqUAI7qtjAlSY+0XfyX8qcfJGhT9Xfw+7iVHIKaeNytXt2fiRr2qdsl3OhetUxpb87dceI0UZxXb5jL6txH+34/I5FgIjrw3b9JjY95QTnYAo5zydH7cxFZ2bcngzasiy+T0VSc6JyxqouEzOA41s1k9y2akjCwTw0vI+cfv8cceqLYKzuTpQXJP0YEnXSjo9lNtSf3B+oQ4U3T+BCiPLPnpKEOD5St3C7x6ffx9FGv9IKcfJoysVcElnUyjHh2PTGSfAoR7JbLX7M/A9pXZ8znO6q+ZobGi8v/ybMVVU2UB6VS2T8s2Srh7ubQzlMiORTnI6A14D621mndlW6mtpLLs85lXpRTsbnGOuR47bTg9/U0bqzqH3lv9bTvZQh/svAxLC2Olc85kFr4l1EPcyAXiCZ4LyLF+V49voGBRK55LOc2WnuU/S8a6IciKNg5yVw+f1ob3NvTHlfFWBCdpkl2eAzXW8njlm1vM1j9snQIgneKwrA3mV80MbybqJszyPXrPUA/vp9UM6JNKBP+6V4Ccj3CZuauEzN3AamnQ8rKRyA9IhqfpJIEUDSmXrdplCzeh0GvMEtKu4loC+UsJpfK14MlrOMowATdFU1Nh9V1FE829FzmN3Ca7Yf9UGx+X5TCO2p34ci9FNrifnkAaxMkTklXVdp4rg0QhWBoGgSOprm/KRTo3lgPIglCWgJ7+VXGQ2KPtLY8rrfEsXwQhf22syP+mQk7cMMnCs0nhuyTvBXAIb87CNPv1q4evVjlJsqr8+NdfVhnpbPbtBR8SgzOUzqmm+PZbcOwQyeyiX81MBfToefsg+Mwl8XsB1zDsfds/jVF538kyAc0zj+feb91bUn0eRunymPFhO19ScnGdKuu8LpeteLv3kq3qmy22sRd05/mfQh/ok5T7r0hkgX9zT0rJtyIfzOV85VvJGvcvnQqzDvK/SvvE4WjpDFWCea/mYHYN3uUcrPeHrnCtFebaRsuL/1Kd0BCxH5i3Xjvp6KpCSOp3yW+lqaTyXC/BgPlY1PqLtMVZYgI4Qgz/U7WlH8ogi9SJ1IOWNuIFlU9ZSFmhPKOv+z7ayHddJmftMcFKqPXFP9HlIYzrwmRSpb0RvFv73pvOGziMMVG6r8ZlEhULFkpRRuv2AfBWRX2islDIyVkU0qBzT4Unw7muOnlU8KK6lAjURKGaEJevOok4VzfG6EfR6bStAl7zy2E+27XoGCOa5MoAsb/6ZXcrolymzRv6cYMLgjcbWbWaUsgIGlNE8euPrc/xfoEwabjrMPDqTe2lqXMlTZaBzH6RsEsyT34oIXthe1T+dvKO4xqNijtKnzLjOnvrD8uQxga/7PK/lcbmtVfXjSrzv/ugkc74Y1Uww5r3FvcioNh1Uyv9MLatROTs5JuFa6gnz7KwK121r+HMWyA/d53EQtss54R6YqR3F03slfWhZH9PZJ1VO9Ur8VWvpcnToqFuroMJe1PHn1FV2DqRxG5aRSjfmXFRRcr6ClkEt6/qpTO5MYwcvHWjLGPU6eVlFGWZkhD4tw5U+qMbnucv5o5Ps8pWuqJwYgT/ymPY87YDHkbbB/NHGpY71GtBZoD2jXeFaTmEU8kPn3m1Sd1CWKseSY/Z87+c4sx6JzhTbOqRDujt04DMp0lghEZj4Ow1MGuOMRBP0k3JTV2Dd9xM4sN2Vol5GoKpjRTRCSZWTk1F79+Pv+ykRRms5p+Q5++acZdSIZAOYSttEsEjFyMgTj2+xfyp/AnNGl2hs0jhZRhL0Z8TLNBW55n0TwY7/W7FnBLaSFd5zncyCkJ9ZlM/oYcpn8pX8u6+MnrFOrjfll3si5SvHruB3alzJY8prjj0jj3P1B7l93MkgZlN9nvzc1hl1h4N9+yFuOnYkrj37y9fEZvmULWY1qgBJBaxW1I8dzTXOhuR6Muvm/XV6aOOseqaIc+Dsk9vgfrRjuKvusBAMZTDF85fg3sfEXiLpqp9rDwpvqesI10k5Wkx8z/mj48HyngsGMAgMSeZlXcv6Teq6e2v4zwwJ9U/uzZRnkp3i/QB1AswqgJNRff+avaJe8sL2si1+p17mXmYwxJlL4R7/U8dQ19AOcN6ngoO5JtWRppQl2pHKgRSuVTiCc7IfDkj+Kr65VtSnJOoP76O0hdJy1ifXjY5H2nnec9aNgY3PhExKFey8J/o8pDEdeCcljQiVGv/bQLtOHvtgJILKZqFxGpXRTNYh4CQl0KRBzaM4bDNBsssnJXhLpyT7z+g3DTHb20957eGzNzoVVDpwdAjpcJBvEq8RrNAAuL8pJ9NrlE6b0/THor7U5YNHqRjZTSOVRpsRTFICQtfPdZbG8z5Vh+OXlmWd5el0paORR1gsD5kNmSLPT+VMmVK2KvDBvqbkgkDfMuY9nPvQ9TlWZkAqoOF6a+qvy+U9834U5TIqncES8sRM1izacrQ7+aYuSFCf8s7x2KnKV8gyc5Br5l+iXmj8q9QEjke1/NsIOf+UH5fdVQPvzPzx6BIBWBX8MQ9rkj6EsW9pWX9yr1nm+Ts5/LX5DMDYLtCBpGPi7/mmKo/DmTfqHVMeEzQfyZPHQT3CtahA715xj0DRc8sxctx2nNz3nsZvcDI/3LNuh2so9E/7lhkC9k0eGWhh8IL1XcbHdD0v7psZBupx2j06pW6z0sXUQVXQMnVlBig9l5XTkbLOsXOfZ7/EDql/uL+974lnUjapixksc/vENVyfDDJQvqSxLB/SId0VHXgnJYESHRBuUG8oGteMYnOz0eBVhtOKmlGLKjLta6kEZ/Hfn1c0HgsVBpULI0hWjh4XFUoaBL6Hn45PZRTNA3nMSIwpAV8VMeBxBBIVe9bPiEwVWct+fY2/wVGNje0wSlU5OlK9Vhnxr8ZmShlkm5WTQKeEbdCAZOaIAJxGKnmpInYZLU7KozDVWKsIYTr+2Xf2lY5U7iU6X4zQpsxkhJqAn4CO4GKm8a+oE9CeGO5vafwbD+4/Awlu13zxLUrcs5yDBHGW8XSKVtUjwRyfo5p8g6Aj4+TFYJtgRmoZCwJqO2zHMcZjGp/H93pQ7xpInh/m7ZRaBuS2Yix35UgaDG+r6xDzeHd0kyl/4DPl0XxwbQmWWYZ9pyy63PpQZjvG5b7dPh8iJ9mWZXaJoDvl9O4EBKq5Sce6yohIY5l32xlQIz8LTY/N/1MP0UnnOFLXJ99cfwJ56gZnbGxLuc9cL8czK757PRjIIqBPHSP8516l/uL8c7yUtbSHlXPv9jJw4zZzft2OeaC+ruaoCu6YqkDthUpVQPGe6POQxnTgnRRu0kqZUbnmJqPRSaUj9agqiYqFbRE0EzikkmD0gUCMCmldy6+XZFn/z6hIRneE72nQM+rra1QwlTLLPhKYmuhA5DhZP4FdRhFtEPiAuw2AI7UV4JmpZ8B4zXyY3MY5LT9UXGWN0hCl7JE/rhUj4DRC87iea8Q1IBH05PhnUZcOdR4FqQywP6fxS/Cf8uH1nTLO7pNrnpH1FfyxLPdVOgQJsDO6KdSrHCLfT8dduOdxEXxxTvg9+3B7Bqccq/c6I93535mAhaSTGr+tjPLp8gQ6ivJsO53mExifn1e5Sk0P3qD+hq6FmtOxqfGbxnLeeJyNgLkCbelAmJjJXAw8VGDVMufMCY8r8cUAM1wzD5VM8H7qt3zRgPt3XY+Ret5H31iv2r9Jbs97wXot5S/3Kvd+8snIeeqOKlOjfb4nuX1n87IP85wBNOp2f3c/VSAuwXoGophRIN+ZDRfup14TytEeUIenreU922jyRT7poKQdqcZmB4PXzW/qnUq3+z8dFden02Z+qnbYVjqKU1jgkA5pPzrwToq0DEoIJCtPP7MpvEdD642foCgVE/lIhZxZhQTfee8SSZeqPSS6ib7Nb7aTitvKf1Ud2FfRIfZtJZxAbh73K+MlLWdtqOAyullF81z/qBoI2x3Gvoj75iUNThWZphPhchntJbDO+aFhkMYGdCptLo3XQyjP9c7sTGU4qfjTUaE8MNOWxiKNCR2XBJQJcHyN8ud7lUFP45lHZChzBCDmr4q+7UVZZkx9zXLjB7KlZX3A8Uzt92qdDS4dfb19uG5Azcj2edyr1tkPRdPRIpDmERzP8bFhTMyKpAMijMEZigSG1S+Hc23oMN4+XHuopO+QdJ9Lhws3S7+xkP6buvzbKeR6Myvg8e2o6bM8luN+6ZxaRj2WCrit4p401l1es3mU5zU6DpyfymGZIq4H9926uiykY+RydGy5n+hYZLCGQbR0+n2f+5xA/Th4NaUtoeNaOeBV4Itj4T7i2mTgo4rs838C/Zwbl1lEOe6JqQDJFB/p9E6B7zk+u57fUpe2wfUzY8IMD50D2jJmfLkeiS3c/37BrNTVJM/BrsbrkOuXdaRl+azW6JAO6e7QgXdS+DB5KkwC7ipileA6nQaConz7iRUNsyDe7JlmT4OQ0T8CuvMYR0Y6yLNwT+pHm1yPirUy8qksVZQzEaxWgDKzPVRQzmYkiOZ/zvGVag7KVvTPOU9HgFmKBM9cz3xFJx0NgtRqbB4fwXIVlVzV+Mf/si4NezoMdCwIHv3d7SSvlUGvKMFNyjvLsI2q3XSyPT7Kp2WGxne1uJa8kT/2l0c4TBmxZzm3nc8LpMzmmDwuZzEY9Zzjz85HAhHza7DtDM8Mf3xWwo4IZfac+qtm3fam+jr4uFc6ffkQMrMCBFQL9R8ynasdx9pTe1j+O4bP9zku6cHSzTdJT1V7ecC7gg/uKbdPeV9Ty9Jsavy7MpldJPiz40fdZN3jOfJv2eQaul/fN9lZySyI54dO3Pm4zv/sz28t20U9Oh9c43TwKz1eBTH8/VzUyyAC9wZ1pkFwZi9y71keKEdC2SqDUQF66kPq1hyj981u1CNPpHTIOA+0CZUNsM7mPiZVutHjJo4weV2q3wpiJoXyS0csMYLwvQrYcDzEK4lrct4ysJpB1angIwMG7DP1aoWrPlMog1b3VJ+HNKZ7XfaNA/arFwlsaQi9EXPjZjkaJ4J/oT6j5ZVRI9Chss3o0Jbaw6GbKJegLHmyosnjL+SBCicjZdnuPMoxO8MUdjoB7CeBdBqzVNp7akfrblQDQm67ciiEelMRtQSMHh/XzcaN0W2Wo4GnseVakvg2I65J1b/nkc8IsQ+OgTwyQkrHwXJeUYIkaRwJo8Env0IZabyGvkcyuCSv6diwTc7xVGTTcz/luC/iPuVhD/cTmOb6cSzUAQmMPIf8PRQTMxJeW5dP8EUDbzC8ofFvWlys/gv368O9h0l6vNoxLMvXXM0JWNc4GDBTj6IL7ea4ycO6WhblPhdLF32RpBvukH73Dp1+Q9NNT4h5sbxr+E/Hwvr3pKQr1I6IkQ+ucwYeTBU45GcCWxKdDJdJh6WioxPXuYeroFNmr9KBo9MrLe8dt5XANvcpZcztWJ9y3VeLutnnqsZ2w06IdSblhTyRX/Owp7FjbF4YWGIWkPso54PtUucmmLHj5Fe6e+7MD/UW+5/hP0E415WOnYlBrl2NXy7AMZvXzEBTx1KvUi97HjlneZTLunVKh1XBg5x7E+XGbZsPoV5eT15YN/fsIR3SfnTgMynp3fuaI3hSB09VhCjBAyMLVdQlwVSCcLeVUZssS+VoYqTX4xLK5vjIT0aJMxLN9lmffEwZoCSOazXKmhc+L8LrGdGigpakj2L8dCSF+pyDNCR0fmwMGEViHRpoKvGM0FVAu3J8JekytWzQTZI+oPG6ZxsJMDJilRFCrjGPAfi+ov4UJeDwvNLAM8vmvisj53F4DDwvb+LaVxFz7g+CePKY0eO5xhmDPMLHsVZOVh4nSh1i8sPuzgCkEyD1V/OS6Dw54roXde0ceH63wNua2tHPM0P9DbVMxiM/a6i0Jb1mT/rtoX9nDbbV59V8MAKea+eH7DlXG1JLA34HCv7l79aOfknHNdYdK1r+Icj8v63+g5i+lnvc88/1TJ1kcGjwXjms5CMjxavD2LbUj6XNNd57/KOTkGNaV88m2RmzU2qZYmbdc1sFkFK3JyUfUp0ZmdIzvkc7kTqbtKaxXq32s6+nw5btJXDlfYPxlM20TXnaYBZ10llIZ6PKmmTQT2gzHaw9fJfGzmIGHdiey5qPlHlfzzWcxbUp3STcd72cS8s2g3gpF8e0zAf5z8wP255F3YWW+7hQqQra3BN9HtKYDnwmJUEINwg/V4rK/xOgsr0qgs/IAaPQNHAEXCxb9c+6FY/u0wo3ozKkBOkJ4Nl2Kr8cp8eWfaRhMv/kaSpLI00rUoJAOg9UkFaaHCP75meDQq4vHR1Go6Yc0Rw7jZbrcd2ulPQlkh6k+rcG6KTRgNBhqhT8fhs5MxB0jDIiyPUmaE6ZZnvVkawpBe92KHuMXpI/y1YaZKFcHumjQ8PX6krLa5h70Ncz40jwsIjrzIhUOiQzNCSWdznuDddnlNJrdXy454zAUyVdLen8JyVdI310T7pW0lcOdXfQB/tlZstHUzhnPk42R7mbBkb/9OmS9F2Sfl/62l/S6ZX2bAn3srM8q7juMdnZ2lKrt6UePMrgRjoJnivLr9ctgTP19floh3MxU8tAfYfa3pTG/XHPeQ+saflZFvO1ov7SAzp6PLqUoG+GutV+zHFRFrkXGFDI+lwX6mYC7NTxGYhIwCyNf3GdddPRd3+5p9xe6lPqUstgzk06D4oynlMGKqp5pcPotckgl/lnf6mPpzIH7pf6iDYmHRrWo33PQKK0zEflZPG7+bCscP25LpzHdPpNqZNJuUa00Yd0SHeHDryTwkgMr+WfNFZOVdQjQRSvSeNMQNZxvwS3VIpZlhGH1ajLyIf5z7fCMDPk/mgYU0FWgsDxMqqYUfN0RNh+KlLzl2OfiiBUip5trmmZqHCnxuW1XlUDE9JYWadhdHtsY0VjRe56x/CZxngu6T2SXi/p/eqgKZ1YyhadJ66pnzFyHUZOpbFxpQEW2mBWJKPB+0W83Fa2z6MbBFxV1iZlmOC4AgbCNQPEdLiZnTDxGuczI5gelzRuw84hMx0e04oa+N/U+FWwU+CBc+N+uBYcpzMGXluhrLMqZ4b7pyQ9cqV9P3rHr0mvvEP3u+M79X5J12jIfGicNanAFYFv5WQfH+69V9I7d6T7HJP+5Mi/1QeOfLn0O9KfLqRXapwhSIePD+b76MpRteNodryclaLTRKqyhJUDn8ESPtcz1/Jvk5xQm0sesayCRL5PJ95ZmFU1mTirliGy7HhevUeor9PRSZ2Y9mEK4KUsVU5z5eyzLinBuutVNi33lyltWqULmHWgbUk75v1VZdlzj0nTGZKFxoGFKdvi+1NZRlMlo5wvtpcAP0F85Vym41U5uFUgNNfO5WxLmGHKI2PkfSpLXjl6xAhsJ/XigQeeh/QpowN/3EsaP7joyAqj8dIYdErLae9UZiybkUley83ojZxRCoEvf3b9VPSpFAkqEjwzamcFtd9RH6kDiMopo5Eib4yGJ3CfUnAGDjTQGaWveBPGMWXISWl8EtBva7m/ql3PZSrdqs9sx/J2VtIbhmt8iJhERzbn3fLlFDyjbtkOf9BsygmseHVbeTTLcsc9QjmjM0bwYsojaiQbSfdBmaO8p+HNSKu0vC6URRrePF6WRt/zXTlOdLKmQE6O07wzsp5zxLFnIIARTvbhtk5/liR96/DtV3Sx/q02tHyUrAKTUteR3FeWIT/c7nK/Lunmc9KTJM2OSe88J/2umnzP1QD7dvTrtheYg/PDtWNqwYItzMMUn9Xaz1S/0pj7Ryir+H5ejf83q2V1vM8JmBl1JrikM1YFhvLHHSnDK+oP03N8lFOCW9okjtNj5TFM77U13J/Sj3QgZnGdfdH2pU2snAPuW2Zjqj1H/ZB2j8516hoSAX3Kx5TzYj4ye8eyXhOuYQZ0yKvnjsEk9lUFMxJr0B5O6fGcj6R0Kt1+5TSkTiNO4dG2qXlcVX+bH8eQWMrtX+hU2eZ7os9DGtOBd1JSyUpjRZRZCioFKy4qx1RO2U8ekcqjRxnhpkLLdtPhqMA/AVxGU9w/FQSNGPlklJV87eG6y6WTlSCRc5rOYPabc1s5NFK9eWnwst0Ec56HqWg3jVoaWUazq0wZDUQV6aOhIyU4yTFybsw/ec9sRlKm8N0mf/vF/dL5cr+eK779iX8J4kzmzwaa8uz71R5UcZ9EI+p2GalP8DPT8p533UomOZYcn/vIdvwK4u3hGgFmBZDMEzMlvsb+p6KmVXDljKRbF9LmJ6UHfuCI9MDXSL/xBM3UnAYec3K/2R95IfBxX37tt8d4u9rzLr8nSeda9oBR6q1hTjwOA/V19XXbGO6fUX8F8Yb68xzMHpqv1KeKa4u4TmdzVWMd4HnwkTk6VdzHdM4XGgM1B8C2tCy3lUOeYJQ63Lx7nL6+V5Rh25T9dKaTJ4Jd7qXK8amcfMoG+690sHCfc54ZLu6ZysHhvJsHtk2AXe0/2qXMSlKmcr3dPnHAlLNAm0rdad7JS9VGZa+r+aQTV81Bls11SZ1GHb0S5dOx4veUI/fPoCOd2hznfoG9Qzok0oF3UqRlEEmFRIDGH01jJDEjDFJ9Xj/Bg40fgVJGiKg8SOyH9xjRMa2qGcn93jzD6GM+FJxAkQqP86ao53HmkaHsO8dMotKeMopZvuoj+UqQl06JoizHMFP/sbFttMtz5Rxb5Shw3FPRQzp8q6rnio4eDZfleBf/K6cko3YEOLkvVjR+VbWP9yjK7qmWC393Hb9eOmWLe4kgQJoGAlyrheox0IH0PZenjFDupfH+djsGyFXUncQHrOnIOjo/BTTcFvmrnDh+9/72kaIN9YfiXyPpayR99EHStp6giyTdb0X6t4surwbUqxof9SDwJADPNTEQn+EaXxjgPTJXl0u2J43fMpeyTgfJ+4b7i44jwY/7vDsg0pQBH/7opPsnn9UPPrreefVfj/cbzHiEK21GZg2r39Egb9K0LNIp4fxlMMzjyEy/eRfKVnqUAJ9jYhmXczvpcEwFKRLUJ1D2tQoYV6cPPAbyNhvGOdf49fVcYzoSGYSj8+trU6cS6BybL47XxPmp7BqzuN5racsyiMg1X9GyzFdBNf/PQJV5Z7CscoYZ2EoZVdSdcqguRKIc3ZN9HtKYUhceSKJSzKMViuuL+MuNnmCEwHBP4/b9AGhu3DQA2W7lJKSyodLb09gZSgNSRdL4nUA4KetnZNmGInkiH1POiykjWBk5znllG8fAAyNojHhOHfVgu3SyMgK3h3vJl8c3VTfl55zG82GwQgCjKM+sntuz8+y+/FYlAm62ldFPO2Ict42U/1z/oZKeOPSRDsUC9dL5Z9+UjwRki2E8dKTTEeL8pDymA51HZDjmqShx6oJZlHf7/O5nDQzUPW9zjV+1y7l3VoMZ1Iwwp0Gns3Ne3ZFcVT8i9RZJvzrUf/BQ9t8u2i/Bz9SOalUgIgMCaxrvW+5NgzwGSk6pvbFuA7xbZrkudCRNZ9UyJutqr0zeGMaypXEggPJp4hxxD/tekh/S9zpUQRWvpVDGfPM5mQ30tdD4OB0DCRy3ZcmZN87Dfq8dNlFP87vrpdNuPVGBxpThKlhBfZp2gX35+27cnxqD1Pc3ASsdFKFtrwN18FTAJ4FzBh921Zz71Ndsiw5kBqE4vrvKWC2K7+arai/HlYEwrxHXJQMrfHkB7ShtER0O9s+2aNf24lruMep/zjnrVk7fIR3S3aUDn0nhBid49YZhBD0NV0YZrEyraLdpvyghN3Y6Dm47sxJVBCsVOhUugaoj2ZlF8PjzeFcqEvJTKal0KDKT5HZcPp0998t5WY2ylUFyRJj97mrcF492ENgSiDNiRN52UXdV3ZDzhzQN5s5rvNacL4L2PM5QRfo8J4wi0vFK55hzvNDynGZfLkt5TeDH6wZ2j5N0udpbnTbBdzobrmd+OBbf5w/OcWxV5LiKoKQsV2Pg/LEcx0fZzaiv551AKkFPgivyTXCbwQbLkucm9xDHw30+1/IvoG+pZ/e2Jb1d7cUMBvvkZUP9x0MZmeV+TqCa68KsovfVWfUMwgx9+P9M4wAKyXJ8bmh7V+PnXlIH+r/BPokBJTpWBOpzjR2Vai9y75rM05Z6JH5P/TdmzCtfj0xnR5rOqiW/FXFc6bRVutftVs4aZSp1TwZTsvyUrpfGv2eS7fo622N9v9KYDgntQlKeLKC8TpWTxuuTANq8+Zr/Z3YubZaKe9KyTqCeSEcleXewwO1O2c2qj+yb5LXZi2t0bKf0YQbpaM8yyJX9p56uAo4XItHBuyf7PKQxHXgnxcebpiIbJjoXVq50GFKxUNHRIagcDToGrO+6BDKMoJovGgpGzcgTN/5qXOO4M7qeCpBkpZN1aMQzguzvyVcVVaVx9HjmRbnkgUdJyOusKMsoNUG1cJ1glUaAzmmCzWruEhRPtcs2GLmba/lh9XSimLWiE5POkFCPkWMaXQJt83AuxrUr6a1qEfmb0GYlb8ln8pFyTABDHiqZrKJvedwiy9D4ZuTWlAY5938GJfjZID/XwPPj6wTUmWGZAgbkbRZ1ffTI0f1jGp8tX6g/72T9t6sGqv38jOXOR/rclsdFYCL1zB1//FFqzojBv0G++6fTQ4Di+T0x/H1I0m3DvcvUQf62alCUGYIpw04nOcFY5QCtD/c8Jg3jcgZpU2Pd53HmXmCZymGe45plqHKuhHIZ1Kr2X0bk0+5QN6ez7blynxXgJaDP+uTB45oKfqn4LI3f1DiPz5bH1D2m/caezlIG+KpAQfKYgcHsMzMMq1Ens0Gc6wwiZf+pH6jDmO3aD/xbB5jo8JtPzlnaJfLiMZMfU2KN/E0dBjgO6ZDuDh14J2W/zZvR34p49IMREYItlrMhpwOTCtQ/rJY8pLKikk2+CWYr41sRDctUtCqVKDMtVFZUOjyeMzWPi+J+Og1VlM1GropgEbgcQzkbNM6LcI0R/FX1qC/bdPTXRwQI8KxkPYf+dXGvV0ZPE+Bm5I5z4HlJh8dglOvmsfDNdQnA6fi6Tzsj6UjzaJn73ZX0DrSf/VSRYUVZ93NO47eSVRlMOuFsL8n1c7zptKS85Bi4t9l/BUYScPk75yaBxEx9v1cAhU4r5yvBKfeKQYvbtGws1H+V3r/PYcB4XtJFw3+XOav+CmCCLDtVGUV3/54Tzl/KnqPB5J9jWqg7IWuSHqXmCN889M/z9zxOJ7SXe4SfM8jE/ZKg2U4I297Qnb+JqTPq2VW+ftjZXI+B2ZOKp+o3cxLcqvhu/cN7jIgTUGYb1R5hgCP1Dnmi3uCYDD49x9J4D801zlgpylROAfcLKfU+/3vOCbSz7QT5nrcMJlYBDAYB0zlLXTOP+/6coDydxMQGGRjNIF9m6iunIfXZVOAu5YVlppxJBn1znJV9Thl0PTqkh3RI+9GBd1JMBBbptDALII03fEYgcsPSOLg+Hz6m0vR/bvKM0FBZZgSYSpjGRlGXvFZHCQhepyLRNFh3x3lKp81UGc6sU2WYEqSmApyKnvqeAU7yRFCYfFPJu/2LhutbGh+34HEvl2WU15Fstp/rlZkuRgvdVp71TuPBNtLpILimkcjIllCOxAeF7XClIaN8MVqY8mZ5TlmXxoaXvGeUtnqdp8sz+utr6TAwkkyws4LPBNyVQ+W2hTYycl7959hStjOaOo/r+dyAx7Sn8bpK/XkOyo3bOjN8tuzaQfeaHRuubQVv1EfpnDBQwOekCA45Fkamt4Y6l0q6YuD5Jo0fbGYfOe+cE8vP+bjGY6DVi0WcCdsa2uOzAH4onvJV9e19wH7Ih9Qfpif/1ZikMTBfqD8LZvmdctwV95jNMH/McpvYF3mYciiE8lx/1q3aT7mnLcl6aVszOJCZGerZan44DgZHeL8KmFDfLKL8XtQzP/OiLvVKOiwztOexZ7/EEK7L4F06WsyUSGPZnaK0lZR581AFNqk//T2DBb6eztWFTOlk31N9HtKY7jVOCgGRNE6TUnnamLA834ZFUEAwyQ0qfHa5NNrkKyMgCbZcLoGcVBtNRvTZliPxqaB55IDt0vimYU1FTp4q5ygVsZ019mXQlGCZ/RJIsl2CIcVnKkdTZj38MOuWehZlJukk6u3iekbR2C8jpnkcKA1byqXHlAaI65IAQRrLZx7nokO8UtQx0akhIOXRIfNHsEnZXqC+ZY3yL9Qj6GdmStGGNJ4f10lZ4J7kGNNosn4VyfY+M//HNd5nDGC4HPszUXek00LQWgUXrItWtPyqavbFKKY0fm7EGYIEfDvqzsnqwOPm8N1ZwWMay6H7s+yvqr/swNnEdfUMg3nxGKu3Xc3U5vYWSW9Uc1C8VswYEpjPNXYCqC+refbnFfDgIJEzNN5TG8MYblV/9ipBoTReK/fLvvjfOsPlzD/5TX2X0foMYuwXRU+APBU1l8a6mDLi67YXaWOoj9zXOdxPWZ5HeR893O+kgDSWhdzT7iePx/p+EuWYAZXsL/tge5Wdnsp4JC+5VpRxaTmwmTKQdemIZB1peV+QKgziOtSHXmvbDcqWyzNbSmIgI+Xq7jhMh3RIpgPvpBDEZrTXxI3IaFumrL3REtgkYEzj4mheOjAu6/+O0JsywrytMbDnGLNvl6Fidh8EWqv4S6CfiiSBaRoPPitSRT+tWBmhocPjtv1H4JoApzJMuQ50Ik2LKMco6Z4aUJmpA5gbUZeO3FRGgcR5OjF8P6PxUSvPCR3IBPQE4wmuq0i/tDynKsp43CkjPj5EY1RRgheur7TsnOQ6kDdFGdfhOhEwEqhx/7rtBIBVgICyRzngGhwr6hKYTAUfCCgro0zDnWuZlM4Cj4P5/jY+m6c9lLPj7KNd1nMZtLFj5HtVkIEAmOu7oZ7JYRDC67AV42PdHZRLGWD/HHs+w8CM0zyuVdko6z2vozMPC0kXa+zIWL58n3OfIJs8rWkctCBvpikHlGNNJ5p2g454OuUZJNgvi0r7QAc8dflqXOfYuAdpu3KPUqdkW9yT5jPnoALnzHrxLXWWK+6v1FXSeA6mxsi147xWY82gIu0M2xPK0Akl5dxlAIdrmc5MylflsKbeofNBvcPv3jOrWtZNaTPSXp7ThU93qN6b/6v7PKQxVfJ6oCi9fysKGh2pKydGDRwRzOwFwTzbmsU9kqOhCaZMCcwJbhxVdoYnwd4uPqeCqBaYfGakOpUJjYPbrkCtVGdA9osyplEliJiKTLnNBGo8AsDoX47JkeNsb6YGso6rK941tUyKI6yOTK+qv3LVx70oA5xf39/V+PXDKTNToF0arzdBC6P4NMCUafIzJZv8Tjk0MRtUZR78PQF/Usq966QR9HXeZ3aI0W/XS1ll9so8JSirHKRFcY9zS8fHWQOCqdyfadilZT3CdquXfJgyQm3KYIjvWy/k0aMdjR9Kp4N/kcYPu3peuf52vFlmV80BpyNioDhXd0LsXKyr/wjiQyV9raRrhjbdxlGNsw5ed8vjVKCGa2UHwUfZmJWaqe13Aiu3fw7XpLGec/u0FZzL/IX5KfL98xPluAdT5xoES3XgijxK47elUT+lzmZgJYM5yVfqDfJZzRHLVnve9fnbQ1NOe/IsjV/5P48/HkUkn/ycOjgBd9o+8meHhnPs8gya+B4dCbbnfmkT2U4VnDPvlI100FwmnVfPd5ZLDOG/1fheOegz/OWccbyHdEh3hw58JsWKtvKIM7NBZZUb2/+pBL0JM+pUAauM6rL/BK6OpNC5MvGVtzQA5NHXKoVGIyTwS6DNa1UkjWOwIp9rDGSkcYSnisL4OxU059AOQ0YTGS3LyJ3/ezxU3kJ9ko+4nFA76mFj91RJTxq08pvPSb+pbuxPDe3uqH5mKY28xyEtv8+en/NH9nyda5uR3DRUnHPPp+eEAIeyJtSxkSIYofySyGP1A4EJbtJ54PWUhTT4HnuCUzrLdFQpYxw7QZrHx7GwHe7B7D/limUzms8f+GPApMqAJTDj/sx7XJMTaMv7wzJAEO0/OwwMjth5WVf/sUg6Hh4319efvTeoY+w4WeYJ+Lg3NtV+xd71+TC/+fb6+AUMnhvzlPquAtbravPkcW2hLB+Kr95OVuk/Ai+vZ6WrKjBX6TXyPhW8oBxaJvgaX+4nZooodyZmA12WMpxZpNT1LpPf3WbuCZ4qYF3OJ49bc13T6cs9WjmFdjjJG9cjA5irBY/kpdJhK9FGjr1yiGg33dc5lKFdd1+ZmaFNmCLqTWm8Fv7OY6eklF2fAOA92xLfo7zkXHGOKjx2SIdU0YF3UriBCQoYJfS5YYJb1nd5KziCz1R66Vy4fTooqUyppBOMmty+o/ls3wAtjYfJbTIqVKVlbRQJ8I7H98roUnma5ho/eCyNFW86auQ5szrZNx0RjpkRK65DRrJIXPPtoc/jkr5P0kM+R/rEx5sCvu649KAd6flqbyA6qw7+vcYed85xBYg9dgIcjsvX0kgm8E6AlAA/++WaVM6OjY2Pn9kJzzXOuSQ49j3vNRrEbINAiwCH91nX9wzK3Hfu2wpQSvXREs4hAUMadM6p+3a2YC/KELzTQaFscl4ICDkWOpWVTCvG42t+rip1gp0mBgXYl+V4XeOsIsfOjKLb2gYvq6jnt+KdUnPob8Yc+N4NavtpW03uTg7f99DG+tD+psZyUkXlTRsav1p5MfS3oR5gyH2SuodyP+Ws5n9/9hpXuvOunBjuZ89x2gz2yWy6j+pM2TEV9yhL3HN0+l2/ejMT9RzbdnsZwPIaWh8xMMZ63Eeps3Js/J4BhwzEsS/3v6IxL+lQUBcToCff1GucD1+j7maAwPWr4FHquKmTBunI0L4RKxD/pCPkeU4dkVgqHb39ZI66znxe6JR77p7q85DGtJ8T/uei//k//6d+7Md+TA94wAN0n/vcR1dddZX+0T/6R1osuhq544479OM//uO67LLLdJ/73Edf9mVfpj/6oz8atXPu3Dn97b/9t/U5n/M5Wl9f19d//dfrIx/5yJ+Zn1Q2GXWh0s0ohVBuKgKdUZUqcuH2HG1MQ+h+XN4PrVIhpeKgsqTiT6NIBVIp+ARMVfpduOZ29rRsODKKROWrohwBmzSe51SIHGsqunTm6LxwHU35KlCX2RrKPVrSQy6V5h+XPvuOZ+r0Ha+SHiV99jHpSRr/mKQj0QajXrfkjYCXoLBy7riGVJQsT8Vvqtpa0dgg+dgDo6Kcv5QlOoOpQPM757tSLAYAmY3keKsjBwQA3Lt0cJIqY+h+eQTBZTmfXCM7nQnm0wlhO+Q596O0vCe8FnzrH/eY1F8jzHlNvcVsruv4mt9UleT1p36zs7KlDpI31NdOw3f+XaT6RQKu6zeOXaLmhJxUczy21ZyQK9QcmT317AbXdz6U80sMci+sqjsgPtol3LdjZUdpS+N9OlPPIjGLkkCR/0kzjV9F7n5zP9NBORr1pbHcsDyz6xxXUoK/PLZT8U75Mb+pO+kQzjXW/+SjCo7k2Cpn30GBtD+ewwTtqf/4nW1kRibBsj+nTqDTknghgx60Tyk3GQhK3XIO16hfch1XUb+SyWqOvT5TckO+PTbOQ6WTK/tEXtIWu27O/yEd0t2lT7mT8lM/9VP6hV/4Bb3gBS/QH//xH+t5z3uefvqnf1r/4l/8izvLPO95z9PP/MzP6AUveIHe/OY36/Tp0/qqr/oqbW1t3VnmGc94hl7+8pfr137t1/Ta175Wn/zkJ/W1X/u1ms//bL6mDWtGcdPQpfKo2kgFkQZeGityK1fTQuM3R9F5kfpxCSq+qehXFT1NYD/XsrKj4s6+aKSohFLxEnBbEaVRy/nYL8rN+Zhy8ExUdJWxk5ajWfwjmGA9OrKXS9KmNPsvkvQzkr5Cev236fZz0oOi/12Nz9un4iffNEKmFY1fFZpRuJyrNLw04GlMWH8lrpG3leJ67gFGrtNQ+9pUdM/teW0rx5Fy6DYy48H/FWijE8yMA3nwHLsNrgn3gUGv63GfpxPtMgnQfZ1jquYvnXDrK2ZPuLaLaIPBjMoxT2eQz0zQ0aJc7ak9Y3KbxvuTgPa0pG9U+wHGFfUMhcDvebRzUl3ed9QDRKclPVJt32XGbqHmYGypORfO7NlhYTkNbdxv+OzMqPnhL8Tvxj2uPYkO6FzjjCnXic6UM0x0pj3HlfXymtAWpa3KLGkF+Kf2vcdV6U3uQQJKOlDsixmRCnByr2T9qf5M6WT7mvulXmTAgnJMnTCLMivRpnA/9+U86gjjqsA4x0o9TbtTnQyoHDw7L3mNmMLjz4AY7Rj/E9uw3J7GY0pZdl3bF88zjy9nsICBl7R5LpuvSL8QKdf7nvo7pDF9yp2UN7zhDXrqU5+qv/pX/6quvPJKffM3f7Oe/OQn6y1veYuklkX5Z//sn+lHf/RH9U3f9E16xCMeoV/+5V/Wzs6OXvrSl0qSbrvtNv3iL/6inv/85+srv/Ir9ZjHPEYveclL9M53vlOvetWr/sw8eTNVoIf3uZFsqBN0VsorAbiNL9u3QslXJhLM81XHBlze+FREBJMsR+eIVCkv98m2ncGp2sj2PD8Ep6m82E9GxaeAmnm0UqejlZEzfnZ7lVER/hssJPggH9tSW4xfxo23/6o21MGViQ8np4Pn9nLO/d9G2evHefe6en2SR9+fqYGv3Mh0gO2MrhblyFdGCE0ZmcyIWEYhafiyDbeTDjUdUkZFq6gh69GJzrFVzlCWqxwr7iWuQcoWAZDL8GFx4T7XgfNHw05wQ9CwqmV9wPk1oKRjQBBOADfX+GF0jsHzsRjG4SzhrtrzIj7CtTGU+T8+T3rgi6XvfHg/EsiHl6X+kPzJoe3LJD33uPRMSU9Qe+5rT9LvSnqvWhbzS9TeruWM5dbQ5nrRbjpaZ9SP716itjcW6r9zNAeP3lfWWQTh0rIMZ/TYc8V9nMGKo7jGz9LyW78yYu++MnhAZ5+6MbMQHgPBeTrYCTS9BytH1jqC87AfYDdVAbV0EK0P00ll/eyXQYG8lsEB3+eeNjFQVQWt3AYdpMomcS4I6mnHqLMqO5n2MbFFOhdSs0kum3qKc0HbYxlK2+SyxC92mKifzEseHaO9475gH2k/DmmZrrvuOl199dV64Qtf+Olm5dNOn3In5Uu+5Ev0X//rf9X73vc+SdI73vEOvfa1r9XXfM3XSJI++MEP6uabb9aTn/zkO+scO3ZMT3ziE/X6179ekvSHf/iH2tvbG5W57LLL9IhHPOLOMknnzp3T7bffPvqTxpE/gnlGKtMwZBTClFErGoB0HjL65PLe1OkIEJQK7VIZLOK6x8OxCffJB9tMI7XQshKv2mFUi3z7fnVWmWA6jU9G1WikWZdOHo8HuIyNm+eKEawcTwI79u3jKm+VpB3pE/9O0pOOSN99RLc+Rjpysv2eA5X2TOPXXWaEqDK6NBCUyVToJhr0BJTpvHD+VuM6jcMM19iHybIgjeXe/DMC6TbTQKaxZHnKjflxHe6TjFRzPBlBNaVTVwFxGnmCC9Y7p/G+4x5WUb5youhYpG5g39VvodhByHoJPDKQMot7OW/8vhtlTHS6pXacawP1VqX2gMiWGkrSeA2oDzzfu2rHJfUPpdP/e/uV+dNDu5sDv5eqZUMeNvw/qd72Nj47G8Ist/vbRH9zlMk15n7g3PuhfcqfdXMe0UrZmsf9KfKby+ZxLefQ7XjPVBmMDCxx73LcKxrLPCmBZR4BI/iea6yTMhuRfWXAIx0l6o/ca1KXw3S63Q+JTnwS+axskWXWa02bl0EY7510LCpAlQEJj0n4zDWugitTTk3qdPOXwRAVZad0deKeDGCt4I9OGB1GjpV1qv4OaZne/OY3693vfree/vSnf7pZ+bTTp/zB+R/+4R/Wbbfdpoc97GGazWaaz+f6x//4H+vbvu3bJEk333yzJOnSSy8d1bv00kv14Q9/+M4yR48e1Wd/9mcvlXH9pOc+97n6iZ/4iaXr1WbIzU3lTieA5av3etNB4Uamoq0itKvqbxAhiCUooFKm0mWEh4qWEQ0arCkDWjklBDFVO+SFY+N8EoBOKWWOg4o1AScjYO7vWNxjlHBqngxmXIYPotJJuEQtEnujpBfsSd+/Mny5UbrkpPSfz0pvHtq7VGPw5flf03j+kuhAkdLoug2+VpZlF1p+wxHbqfpmXRpsUxp/j2Uv7hE8eI3T6Gc5aXyckMc6Morr/t1GzlU6NDmOjDKTDwK9lDWWsaxRnhgllJZlzcR5MpBhhqVyrPINO5TtBC+pa0jVfs/v/p+/HZLrSR1gmfWrtI9L+teflL7mB6X/jn68B+mgmN9L1B6If+CvS3e8RXqJurPxqOHef8N8XSnpKknvUf+RVa+Bsyzk/aja64xvUHtLn49QbQx/lmVHnnOPek/wdfEE5VXwxg5m2gvzVM196lvOEZ2XKuiwF5/pQDAAwOCOcH2laIv8JkCtMvjU2W4zj2lxPjx3bCuda16bRX1pvE7sgzYqgTZ1iP9X+ne/bBTBN8t7rWjHOJ/zKG/KYCbXkW1LY5tuIq5IXUnZkMa6gdnatBcMdK6qvzyFn6XxOnnMHAOv82VB5i0DsBc6VcGbe6LPQxrTp9xJednLXqaXvOQleulLX6rP//zP19vf/nY94xnP0GWXXaanPe1pd5Y7cuTIqN4dd9yxdC1pvzI/8iM/omc961l3fr/99tt1+eWX3/m9Mkj8TkXGTU8w7I02BT7dLvuortsYZIRGUYbGQ6oBUhofAvvkNa8xCmbKY0HZ91SEPeeT4zBlNLky+ryXESL2SaXrtfX40qg4Q1JlxswPf+9Ekt4t6YcX0qPe3+q/U+2Xsc+rA87b1A1Mri95NY8pYwTnpgRDHCcp35xGh5dOgPuZo8yUzFXgynOac8v1cV98BW06I3ON14AOQBUdZrs8SpOOJctKY4OZc0DeaDD5Ji9f5zVT8kijTGDBIyycRxNBVeqbuTrAZyTaZQxgK2emcljYX+UUSeM3ubl8OlRbaGNj4HFL0mvUnIuZ2lGuiyV9ZGjTgR2/3esySR+V9Oa3tDqcX2cvLEd7as7GVWoZlR21DMnmUN6OzMVqz6Bcr5Zp2Rz4PTHweaP6US8eP+GceM59DHQW93LtGPHf0/iFBy5fORnZLtvLetUzIdJ4n5G3qWM7DmakDuEeoHzx+yzuuT8Go9LucJzCd98n8MsjU7kXpDFf5CkzMqlLrW+4BzMgU9ln2hFfp+6obBLfNFiRA1ne12nPquDFXtz3WKZ0d2Xvqeu4/iw3tYYZAM2TCuzXdf2dNszlHfBS3D+kQ7or+pQ7KX/v7/09PfvZz9Zf/+t/XZL0yEc+Uh/+8If13Oc+V0972tN0+vRpSS1b8rmf+7l31vvYxz52Z3bl9OnTOn/+vD7xiU+Msikf+9jH9PjHP77s99ixYzp27NjS9YyuV158BQKlZSWWjs5dRVezr7xHMFf9z3FIy2A7ATJ5T8Pj8prow23xOpV+Ohb7UTVfaQiyfWk6MpfjpINSRb8qIOu2+RYu1rtJTZn6dy021c7Ks61VlE2jPFc/y51Gjf3Q4UuHkHNGEEvjPovrmbGQxr/Fwj2w35G7PE5Rgd+pe2kMCQxSBmjoMqrM7MhctbOQwYJ0PjPi62t0tP7/7P17tK/pVdeJfmutrL03u6xUSAJVFiQhHNMhMRc8JWBouYQgQkvCRQaMjkYa0yKCSgRG0Kbt5nBogg4PtIoRoR1GHNogYrBPN00TmmOCBjAEisHFIGjQIOQCSaUqVdlVi7X2+eO3vvX7vJ/ffFdVBajatfObY/zG7708l/k8z3zm/M75PO/7cs7zGx6nuNbzgrzJiSOQpS6gU9U8BZ90WjnGkxNp/cUtJnTAPI4H2cqx+8bz0hFYtpH89/8K/vu7MZs3dP1aNk5KVzBOslkluZKNI9G2Xs5mS9cfTvLabIICT0zyJ7OZdz+cjXPxK2d8PSUbh+WnsnXmTs7qeHY2z8z8cjaOzUm2H4ssddWlbaVjMTkPPi9II6DznJqckabnOEy2ZhqXiZc6VB1zr0pMqxCUj0nvH2QXyE4BNAJh6i3en4JVXM3u3HYbqVunFQRS52N1dc7KvydbuXUdXkmYAnYn2TjTT8rGub3nrBx+A4QOavNOq92c0x0zB3nOc2woXyfZfZb1UOe2mW2ndRbrdDDsPF6C8js+bs+Uh044653mwLVGtLmPZJ17WtLv+Mrbvffem4ODZbGHh4cPvIL46U9/em699da87nWve+D+/fffn9e//vUPOCC33357jo6OFml+/dd/PT/3cz+36qSsEZcrk13g0nNHOQoYqoy8nNl709JqsuxYGrb+qqyrSBxNYyQl2Y10nuh+dH6ktK6XbW35vOeol43WWpS59RwOabisbSN0hP/273n1E0RN+/ZNNMTM3zr7oHANXcfhpmyitUxbg3tjto4JnYW1Nh/iGo0kwQGNqGWhfXOSZX12xuxA2GGmseJ4sPzoPssh0KdcsfyWyYia+3/NgLLNUyT1KMvxYz47SezHpnUEl3xbZg/0n+yuQFI2LKMu386Tt3p4HOmET7qmc5ZBia70FTz5Z5rAEvuP9Rxm4zzcme3qxmk2c+A/nP2SzbMmH5bNHLmQreNSR608/8ds5tfXJ/m4bLZbcuXlxrO07zjL/8RsVkk+CtfvyPaVwuX1zrN705w8z+jR6axjQfDs8qivki1obl/5RSKWCTrkWUk36evOw8oIx5bguWPL+WSH6FTpKktd2bJMH2f37VNuT8vi3KPd7BhwxYK2iu0I7tXhugn1+IUObGfr5Woyy2T/X0jyKUm+MMkzkI4OAOeDATrlj7qU/UE9Nzli0xiT/6aZ7Nwk19R1dRjMW3GIV0UYBOu4eIWlxJdPsB9Yfq+d5xDtaU+m3/GVlBe/+MX5n/6n/ylPfepT8/t//+/PT//0T+dbvuVb8qf/9J9Ostnm9YpXvCLf9E3flGc84xl5xjOekW/6pm/K5cuX89KXvjRJcvPNN+flL395vvqrvzpPetKT8sQnPjFf8zVfk+c+97n59E//9IfNE4EYJxIV8rQdKNlGbI6Vr0SA5hWZaXvRxBcjXXSEWD63T1DhMDrEOhkl9HK+QXMVkA1X62dfBXkNEpmf6dkP07I8ASwjUFbYk5Fhvax/clpY9rHy3ZXlV5uT7Ve3u7XF35rotgvy59WrtsP93+gaaYp2uk/tfDLCx7GbImfsE9fNPGurLslSznp8X3bBTIbzEiNz7B/KgOdO23mSJbDhSkRp6r/WM235qUwwcGDwSOeKoLXbhDr2HA/yw+0e7AeO7Wk2TvKNaNekM1o2nRADjGS7xYJ90VVEtoHzwY6jgVTL4/MhJ9k4LHVQLmbjZNx5dv6Ws3qfkOSzz67/1Nn5xSSf+8eSfEnyaf9b8pbv2jgqT8jmua+PS/LPz9r6H9BnN2X7sclfzu4rlC0XHB9fb9+0f9bIqyftd/fv2jMlQTrqPX/sc+LrnuyCZMoHx2iaT6WuTBqYtk3eNkZAzXnRc+q8taDD1E9BXs8zX2O7KLu3Jnl5NuP/T86udQV0jTjn+99r92fjTF/IRgYnkO1xMd/k3UEi2jcHUryKWeKYTIGgHp8XWJrKm4Jqk9PkZyzdDuMOB6ZsFyc7fq3SpH8fiTr3tKTfcSflb//tv52/+lf/ar78y78873znO3Pbbbflz/7ZP5v/4X/4Hx5I88pXvjLvf//78+Vf/uV5z3vek0/4hE/ID/3QD+Wmm256IM23fuu35nGPe1y+8Au/MO9///vzohe9KK95zWtyePjwxLsTqYaAURwrrGSOhE5Ri+ZzxLEPdDafDSdpMpbJcg+oQb+jwgTzjBobuJFn1jOlsQLyxKESXltR4QSngl8DoIzU2DiafxuhtfFh+ayf/FzIdrwaDTrIdpXkbWf3LmTzhqO7zs69ZcyKudcuZ/fL1u2/qR12tGqUGekkoLw3y2cYJme0+cgX62K+yRkNrlW+LJcsx85rAVOUr//c0836uOLUdhuosX0TwAvyE1zxOuWBxpRAtNTzzmcCskZXadhdbstuWgYa7s/6Fi62sfXT6bHcECQTyNohoWMcpF3jd8rTuruCc38286bz+nI2TstNST7iIHnbafJFZ/d/Islb/o/kKf/Hxgl5ezbfTPmki8mP37dJ81Fn5T0h2/n4tjN+6tC9CzyvBSoYaCpxbk3gyXOFsjVtF3LeKfBQIkBu2QbpDGgwKEE61bEDcLzftvvBZjrp7q/KL3UAy2p+r2i6zZw33inA+y2jc75bpRyQ+wNJnvrHk6f+QvL6f7t53mnNIarMr62itt43ZeNAdy7aDjnwQyIon+avx6LtdICJDjZlxGWcF5xp2Wv2c5KN5nF5D9ZepqVeW6PznMg97cl0w9WrV68+2kz8btBdd92Vm2++OZ+TbcTNgMsAicrT0e9kC5iseFkmARWVlB0hb/VhfczLPaAEPQRaNCo1aOa7ynBqQ8uZ3uRR3q2cH6xv6IwQ+J6uHAd1TH1sIzFFzJi/1HbXGSGoaJ6mo3HjqsrpWX2X8sDbVh8gttHUdhzj/DhL4+f6HeUyEDLgoPyw7wzYp/wEX5PrP8mlt3q1DQQFBiHlk7I8EQHFGuibjCjzTkDPPJWv1uFIpfuDoIEgMNn96jvlzc4m9c9aZNlRat5vmks4Xos8W5aahmVZBx0pfx2hjluB7WGWerP88DmoD8tmy8wvZrNtq2/UemaS25+enLx18zKKZ2Tz8H15e2E227QOknz4c5Jf+bmNI3PPWTn/IZtnBu7K9gH9ZPtB1buynQvux7bLZGemwSw6xvy3fLDvKGPloc8G2WGZgiuWBZY1XZsCD74etGdtziRLnb029yaHh3bCK3KeU7Zj5rvkFWLmuTEbmbslyddk89zS3zm7f+fZP23mZLds2zqvvNIwjXVQxnl2bc2elewAT+W0Tupuz3ceMyDDMptvcjBLDJqQh8kxNh/UsWvOC+3IaZJ/kc038R7/+McPpT96VOz4/0nyIY9w3e9P8tW5Nvvl0aI1vHBdkaNVyVIBJNsJXGM5gfCmP8UvWU5oGrbdx/i36TmZu0+UwJT8MpJJXlhOlUlBBaNGye7HJQlYmJ9RIEbP2E/l1cDLER9S+aFzYEPatlIpO/rtKJ9XRrgq4+g/eWkZ7ePy1zbxGwt9aJEOCqNcjFgd6J77qfy43UGeqU8bIbSzO205o/wc4j4BRsdiMp4ty/dZlkHvWvtoPMub+6PE+cnxJR1mV3Y5nuXNfbwWsSW4NBA0WGH+8nCSJd/N29ffWvd0W9LkGJpXg6P2H8tt+mkcW0dXOJKlfDJSPvVT6+mzDUdZymydGEZlOwZPyTb6/+5sV1Nu/8IkL90Ay2ckufEVyWde/d/zR65ezaddfVdueG1y6+WNo5LnJh/19clHZrO1511nZT8xm4flbz6r774s5fDkrD7P6WSrkzlv12Sk/cVVv2ncaBPYRz3mFjvKS/nqa4ftvPS8L0uYHKMpEm6AWP5oD8iL89s+2GG33u71tvFgSE+wSp64knmA/LQF5bfj0O2V/zHJVyX5W0PbWecayHFA7hg/6kzON16n3SjRXtG+eF75n7jDdoFzl/qqMkfePKc5JpODTh1LG+O03M7FvCf6bxrKO8t/sFWWa4lOHqXfnpb0O77d61okgquSJ+4acOg9GzNGVaN8jAIdZbudaErbicsIbfNNipZOS2nNofJSNetkdJvpaWSnqJ5BISNGrocKisav563DgIsRd4/JWl0lRlCT5fY7ktveazRyp9k+B0QDQb4d8T4e7htgJLttSrZtnRyNts2RTr7akWNEcLwWNZsMTNtKA0zn2EC11xklm9q5pnynSOraKkqJwIWAe63Oqa/t2BAkeD7QKXFUkoGFNRBw3qrQUZayElxnsKDbVVkuZdVlk6+Www802hljWxg84TaZY/DQqHMBuH93Z7vycnOSFx8lb+nS9fds6r/xnyX541zIf3LyuVeTe27OE2+4a/Mwyl/cODyfmOSN2azM3Jllfzu40j7gfKkO8FYXjtnlLMfAEfjJOQmut0w6JWurFybLB+cwAWLbdah7nIvsD698Wu57bNnPkNa6mOdTkIJyzz4n7wTqDnSROidOlJ7l3I10B1l+22yar1N7GFwizy6nbS4ftPNN13qadq2/2A/VZR0r9plXp3tMnVSabDfxheumfKyNwZq+obw5oEgdOsntnvb0YHTdr6SsRfitPA3qqETuxz1Ha5LdiW1wd5Tlq2mpbFoeldoUiSY5etOyeo9EAxMcH+v/ZEjH+qi4awhoIBlZp+PlCNQazzTE7H8r92S7KrTmfFFBFyhNDiKVqfnjV6eTLZjkKy/JP8EDDeC0mmaZ6znrs0yeFxE8L2LIMbEMkI7wM2C3IacRDfK4jb1n2WRk0tukCBJMjXK6v72C0vwE65PDbkeZ88FpJ765KmFwN83R3mvd5X2qjyCybbFTXGoU3iCMPLNPWvcEWIO009alZLta23RdTeE2tGPkf3ySq8dn+X8kec8vJ//F0yIHhfTefMQXJu+8L8k/2DyL8q5st9Ddne2qCuc8+9w6mETQZkeA1zsnJ/luHq5Qc6WFThP7OkpzkuXD+px71J2UY4LpaR73n+2g3auseBUjShvdP8xS5jkfyQvrTpa6ko5G28XgilcZONd7fprtq6/vzsZprYNCok7lmFPHEFhPzoidN/cB5+4kJ9Yp1HMcB5ZBHtb+qdtKa7o6uH60krbXJl3UchjE4D/TnSp9V3HbV/cP+a5Valseyd9jpW8eSbrunRQqWQLVCQTQmHiCE/RMy8FWtI1olfhefgJyAzgaI/PYf0fNWBYF/lD1Nh3rYx0XswSzNoJsDw0yFXzzcNvZZCTXnKlJ+ZJvEiO+pcmx65hQAU9gm+mn51caOe41O1Y0AMlS6bDdk0PZPmw/8E1uNmQsy2NEcGVgE5RBmsaI0TXmO8xufs6VCeBwtaBGmmU+2LaHppu2qNkhmYIQ/Ceomuoir6ybIIQgwbLqN2oRQJsacac+KXl7BfmxAzTJ5Mnw3/sXdK/EAAHlqMSgSsfsUjbbr9ju8tf+ens23z15xlkhH3pzks/L+fRXkg9/cpJ3J49/2uZh5l/JVqd5zieb7WRchb7p7DrfgsZnaQzQO+c5HrQHGY65CkEbwu1bya4MUBc0IGKiriAA5gqNbRmDT7xGO8Xof8uzw+C517l1nKXcd3XOeVgeVwCbjvo3+Hf9dDoN9u8DPxwT28q1oBadLTtnwT3OKc/V3qu+NjbwqgevswyWM9k6A1g733SaTrJd1amsrK0002miYzY5bT62rm85to20o5Me3NOezqPr3kmxka3istIn+KGiZISOhnsNqHECTysJnLTJspzWwyg08zY9DRPfhT+R6+8xwQQVk8FNMis4to/9R1DONtgBbBmOjk/RwWQJLg0A2dY1p4rlG5y4vp7XQNXIsa8d9WO716K3jGrfl115Y7mO/tGpdKS1skzeTpGGAOAE97mK0XE4ydKwEhjYya4MJcs6CBSPVcYkD5yHdpbYL75Gp6Fy2DZdzrLfJuPo6JXbQnDn/mm/Wua55WMCj3Y2+O+VGkeQS1MklQCb5TP44TnOcVwb4x57TFg/gyO8d1+GNx0eZPNw17QH03QhuXoWMahj0mxTMIJj0ei9x4f927axHy0Da86JQWPnjCPQ5bOOZMeEjiVlinxUxgg+W5edUROdBIJHy8cR/pnX41myffLzTg6orNkmzjnqkd7jHGR9tDlc0aCss162ZQqAEYzbiaQOo82hXmsfGw9Mzol1atthm9Y8xiGek+THfFvfTYEs26xprCYMQlzE8sj35NRWbtdkdk97mui6d1IYaeWEo5LxBKYRn8DIeSsTvEZAOEWYSd6W4agNoxxU0gWEXh5v/SWns6NyXrSDxsEKxo4DFanTT0avbWDbCUCo5NjX7EMbdxoNbj1g33Is6UBYUXf15DS7EVwaSPJq58mrDDQkdjYuog46KwY/NKyODLNOX7fjw/F23zUvjU7LZvlHSNN+Zl/0ftMcD2kOV8pek2eOJfPaYZsAuMmOOQGCgQZB1QR4CJgsB3YSSpajZDkmyXb+Ftzej3x1aKxnWNbadY6/5aTz/t4sZbH93DLvBA/lkc+/3JTk07L54nwuJf/5OMk/GxgifWNy168lN9ycvPMdm++lfAzqZ4CgdHe2zgnfrnYRvDTibQDKIEhXmw6zlNNkOYcJLI+UrtTVMn47ZXKu6NBwDrWuyb5MqxDWe73uvJxTBsgmOgoG9R2Pw2xfLEJ7aQDdlwBMdTECz7qpV6ZVCc715mlfEChXbumYTqDZ+rzpWl/lvNscSWsrMix3bWXFstM+tKyf6rhl07bZcTvUb+oH8kbn+DBLu2R9Sb1+gH+2qeU9llZTTh+l356WdN07KZ2wVHI0CJx403YdljNFO6iIHY0y2agw2nWgdIzkMOoxRTuqlMuzQTjBl19PfJw56kiicUhmZcs+m8By+9xAjMb+cEhb5WiF2mc9JoBOBbkG9ri1je2zsm/ZvX8f7hMstQyv3tQwEuxMkSSCEjowBuJuEw2Yo78GVj1ueVxpYV+wD2p0plWpEg0U+WRklU44+eRx5+BkrFtvy6aTPvXnKdL5uue128J22hm2M8FVo/LO1UGmS5ZOqXnl9TohrbeycwF1GGAky6hv865FLruvv3zy2QiXX5nsiyj67Z/7s1wtab4nZLP9qvJz4eIZH384+Yg/kLzlN5J8yw0rnF3Mv/++5PEHSb5kK1vvAj98e1dXOAuA22auunSueJ5PKxJtV9Nx/lzANcqjvyzP/HQ8CBR5rTxwbP1GxmRpCxhAYP41sj6Y6qa8UDc3P1cvqLOajgGdCfB6PpKHNV6pz9pmB6YcODDfyVIPl6iz2Qe8zwCL9SfbYHtu20NeSnSc1gIVk84gfxPPlSPbbtoLO33TrpP27X24XmeTus79WD7YFgYJ1tqzpz2ZrnsnZS1is0ZTNKfl0ImZFL7JEfQ1B8COB5UOnZWWRaVsouNUZVm+vTVsUpATqHE9Bo3li8eM2LBNLJs7PuhEkA/m6zkVZPNWMR9ku6/3w7J8JoeGZepDO65H2byT39sMMuQpMZpH4H6o+z2eorS9Z4DcNB0zOyOOxhDws4/o3Lh8Hh/qWttqeWZegnM6Ojb2NYrmmQ5hyX3HqLWjT+4zgygDAQYY2kfum0Pcd3uT3Xk1gbgJfJh4vc4IwS5XHClndtrsRJLPjuMEgPvsAPkn0dmsQ0CgzLcpHWazgnKczTdO/r/3bV4Zm3cn+ZzNvZOvTvLSG5L8v85y/Vzy3Tfk6g33b6Lyn7dh9FeS/F/Z/CebZ2BuFO+cC3RcDNa4Stn0h9k6H+TfDjDv2+luGRyb6gs7JuTXx5bPNfLcc+CIAZHqSztOzE+bQaeOOnPNjrUMbv2abJqdK9sczyHbD46fdeqp8gXp7CSxXOoR8mrdOjlFDgQSpNvBoG1hwIKvxK5tc+CLbeVcLx3genm6OORt/Xaq7ORQZ7e9dnSOVu5NgaGWSTx0njN9rdDJo/Tb05Ku+1cQT6Csk7QTllFfGmdH36gopxUNR384kftPEE1F4DJoICfDVuVyEedWkjZ+5bvK7JLyMkJE5exoFo2WQWXrrRF3FIn1WNmeN0EnZ2cyCq3jUjbRVhu+5mcE/TjLV/ny/mScjvLgipaGiI5CeTQQKD0YqD1RuqkPbCR7jcblPDBER8S8TQaIMkAHr31FXu1A99zOBPvW85B9QODStKx3Winlcev160MrA9NKjHUH22ggd5DdD/mVBz7AzjKofwgyvDLQ1xLb8V6bRwfIl+yufvk1x0xTuoK07YeL2eq0o7PjX8rm1cGn2Tgkd5/x9eP/W/KHfir5iKPkjuPkY/9Z8qP/69fnbfn6HCb5w9k4NbckyU8mb/m+zUcb78nmWyl3n5X5trNrycZhuVv8JbvzuXLW/0n+ea2rTJQ3ypxXcT0Hm4fXW14/8Nh/8lgg3VUJ6uxJpx5kd853PA6Rxi9M4Ly1nk/mQEhtls+ttyb90TzsQzsIGe4dKr/L7XzwyobnAgNbzEvZ8GoC9UTTmmoPmp+BA9polluiHLIc25fDbD9gbD4754J8fACfzknrdzCnvFrfTTp/sh3uF84b2/i1QPCe9jTRde+kJDNYojJlJOEY9x2l8rEV8QQSJ6XGSU6D6UnNqIkj1OXb4MhGLMhDhc+Im9M4gkhj7KhJyUahiuhKtm/UYX/Z6fBSsR3G80AFAXj75d5sPghHoOJoUYnt5ViWfxoR8+aoteugAWDetsnGg2CkZdCZohFzna7b4+V28ngy0qyb8+e+LMeLEdEruGcnj2Potk+OWu9dyQaI0ilgnxkATg4KqWCDTnnTeSwOlHaaX47Cuv3nOYO9fzykn/IyAs22Mbhh54Np61zcn+W4sU/ah54LlCn2db8mf1M249Qx+ZWz/3cl+YizNH/oIHnTr26+PP/sJK873mwN+6+zma+/kuS5SW68mPzL/5h86kFyz2nyM2flXDlLUzlru7lVrW3guJB/yoj70bLCtyQly+gz63LAgc5e0/Aax6FkJ7zXHASa5jTH8d4sAbUBL2Wk48mvrXslgY5J67EOs7y0j+/DMYNb7S/2BwNFHhvbYI6XHQk6Cm4/yzRYX1u16T3zQxkzPz2vY1EiT+zr8t4fy2G/lmeOn+1By2e+tQATy/Wqz6GuTeVaVtv3J0pPXJDszrNrkSYH+pGoc09Lsmxf10SFX8XQ48kglxq9WIvEuGwacivw80Az0ydLB4W0FomYIkgEHx5sGo8pwkFD5yiL22NDSOPN+wTavV7FxmhV+4xOAJWf20ze2s7ul+9YEHAbwLlMGo4jXKMRdXqPZ+vhNhlHt8hDjZ4Nlts1EQ2YHVHSZCQq2xNQnSKI7Q/2q41Q29Gx9AqOZa39w36tbBbcTStxpTVnyO1m+ZartoVzwjLHPAYfx7jHgMJ5BpljbAfBYIx0vHLveEjDH+Xe9VI2T1UGQR+J7bsvm4fok81WyydkK/9vS/JrSd5yulnh/GdJfuTs/sf9geSGf5rc+hWb1Zc7kvyT+zb5fvM0+blsdondDZ6fkY1DdM/Zj+OxNkf5TyfUfUtngnLjj/Ims8y4Tq5geE4eZn5Fb8krwdWj3Q5ox5E6i/PzSGlYpu2Dg29rwKnl+n63lxHsE/AZ3B5l6dyWaMOS3Tnda5Ndn1Znep995rEkTfOGNrblTsG6klfbPP6THVnj2WPkIBT5tN6hbLrdxjukKUhCvdIxKz89t82wcz2N5Z72NNEHxUqKox6e6IwO2XumEnL0OFku8Tra0Dq5JYv1JxvDfhH3CPYI9MhLgT6dIuZtm9kGHhvEWqlyJWmK2lZR0egxMt68dEQcDSJoYKSn7eJ1Grq1CHkdn/OiyGtGl4bWRoiA0f1sg8QIVOvxuZfKCY7b3zQo7mvWT/l1FKxkQ+YtCbzuFbxTpJ1kZeKf7XC6zi2OLWWbjoe/Fp0so7FeLWEbOJ7tFzoRHjODwrUtlC2PUUc6+hNocL/Z+fC98jCBA+oiO7tciTka0rRctqmrhJVxvmqb9ToK3TJ5fikbx+Ft2UTyfxPlPSObL8Xflc1H5LtF7RnZODPf+9PJJ37hZrXkiWf3335W1pvO6r+U5KOT/OezMu/M9gOPH3V2/Jvgp+PIvnY7vIpA55db9JqW/TutwlCvXslyK14dkclxKrV89u3kBFT2DrJx0C5l9/saXPmc9F75px2hzrQj47pLp1luE5ycjOabZHdtLjAgQfs7zfc1J8r2nUS95rn5cGhy0Gg/J2eIQTnqK9pNjl/pPuWfdE6ylF2WQ16Zj/WdZCu3k25nUNGrbiUHrCbb67btaU9rdN2vpHibAoEYjcKp0peoyJnWICiZla0jVQapB9kuiTMPJzXBWclGpMbTkXQqfUdOC1ralq46NI0dCoL0GgwqWYOiacXHZfVaH7qcnESmP28lYLpPpc/0vG/no/y0/9ZA29S35tsOj+uZnIrma5oavQkg8NjRqvLhcVhLOznxlVuuCjn95LQZ+Jt/AvyWZaPZvqbx5kfTCL7LL8eHAIbz77zxMii0AabBp1NFB8Nzhu0gEKTxLn8n+DFd5ZQOlwFd03MO8WHmaaWUsuXVIa8ilb8bs10laZ/XSXnmWdp3Z+No/GY2KyAfmQ34uTcbh6L3j86O/0aStyS5LZv59t6zfB3v25D23Ul++ez6LdlsG7uc5VsKn5iNA9T+mXRK+7J673KWwZVJVx1m9xMvfuj+NNtnTfogNMfUZbbctVV66tmgvNbD4AdB5IHSc35Uv9lxqb5zHzGN5xTLWmtDUH+3BxLIn2bJD0GyAze05Q5C2Q5MOpMrwUzrMSLReXQwh+2cHJQgTeXT+nhthZir6uTlIvJZX7WMzmnWMQXt6lQzUME2Nf9JtliFZbNuB784zizPuOBapJNH6benJX1QrKSQDBJMVoQGQFRuBnVT2VXA3prCvFRQyfrWiknhO1rWsuiw0GAZNNOAeRsU+2eKmjgaR4W4FkknAHa7rMjMBx0+GrUp6kRgQmW8xmPLPNK5ZcRGxED5KFuF3zGyPExj0fou4Zx1EHzyQUxGtAhUKL9Tm+mATOPVsr3dyw5p+6hyVvmjzJFPt61UZ53zzE6QAwgGny67fNFIdm7YUTRIKk/9J+A71P2WU96n1ScDhGQ51+jI8F6PacA8f5Pl+FDWKottn8FJqem4okln9hLy9ntBx9k8zP6ubByKO7KVh8vZbv362Wycmidm41S8IxsH5Y1JfjLJzUk+9qycv4s23ZTNKsnBWVm/ko2MMFJ8JRvn5l1nfN2a7XdbKm+dL/dlV075xqv++1XMyVKnrgHDHvf/QnbHjF+8t46lbXFZ1OPUTU5Ph9OA2EDXuihqH0E85ZmBqWNd6/yY9HHJAHVaDZnss/u4x9PK8KRvW88p7pns5JTafuuxaYWE87PpjB34rCPbxlVzXjvKUjeSH4+h22ObNgVBueoXpLfO9FgxCGynxs4t69zTnh4qXfdOCg0SnQGCUkc2SJMioLFgJDhZKkzeozKfALKj0FQoBEhrRmyNfypGGlNHVCdl1nQE947sGlRRyZpfR8rdBuZ/sO0KVLQ9933mZ1+6rVG+ZLsNj6C75LFkPvLr9ASwTMv+Ps5u/5/3cW6CrpIBt7cTWM4ckSwfll+CljoVPWc/euwpf73f64700ZhN22oInKdtlNPWhui+DTR5mxwozme2hY6ay/KWDPahH6p2hNHOWckgs7JyXh72V4FPQf4EDKN7becTsxnv38zGIeiqzE1n5f1aNlu6ojIK+N+VjfPw0Ul+39m1O7NdHes3W3JWZrJdCfkP2b69q/wX7P9aNtvCkuRJ2TgpJ9m87rh5Lmez+vOb2ToqbvdJtvJsgEwdnCwDEuwnlssxNng7z+k0bwbU1rke72mOGdhyvh7r3IDeqw4t614cT3xT/0zgmXPQKxNToMH89x7n1eTEmGjPOUcNxqcy7KxZ958O1ywXXBlxUImOieWP9XlcGIBYcwCokzs37WRZh1Tu2x92Ph30aBlTIITnxEPXMq3Jwe92nXta0nXvpNDA0ChMRp3X+VYOR0QcIaeiJQgyH44uTOnIE6MUvW7HyE5My6WyII+MvLseK0YaUxrEKkkq2PLFss6LuPWY7TVIOlVaA9ru/7XDSfDd+vuWsZbl6BCNNkG+o5E2ahPRANoJWHM0bWyYptsp+latKUrpCL/BuJ04OyHJ0plze9peygT7ngatztgUqY3ysH7ybtDU84tK71etti5GlFtH+37q4/LbjxUStHjOto0G8rzuCO6h0nL+rTka7jP2h8eY4GtynF3OBFAMLi5l+8rfd4Onvtr7OJtXDTNo0TLvOfu/gLT3ZPvcyROS/D+zGc9/heufnY2j8cZsnJ5ul6pzV/7vze58/81sH6KnruZ3lU7AP/O2bK9OuY8cnCLZ6SDo7PXWFaRh31GndMtY687Ajx146qmmt45hWXQKzgt4GKC2Dzw/fZwsV5aZpnqCdogBQAP2KQjhucVgB+/b/tjeUf/bIWufHCMNeXdAr3mt6w+H45ZPXj2WpcleNV+y1PPWrR7j4L4xC9vWeZbsvumyfNJuTKvdB0rvNHva03l03TspyXLLymS4Ha26P7sKYlLSvb6mWDxZS1Ssa2m9JSVZAhmu2FChOzJj8JBslS6VMPkiUDQYX4u+2DE6yPar1HSkDPJYtlcYJifGDhCJBoNOmR2YpqXB43j4tZFrxmUCMTw+L7JH4880lVWPfYbzyuRkuJjWBjni2/18HshNlg7YFP2jfBF0kO/WQzmceOO9aQ5OwMdgjHO0/FkuWQbLmiLZ7js7jpNDmCxBtiOt1FEODhwoD9u1BmgmB5AAlE5zn6ngNqfyxnE8ycZx6XMQR2fnd6KNTXNjNg/Ks66TbIDOO7Jxek6z2ep1ZzYOykk2KyDvzcZBuRu8XMjWgeS4dyWGc+mmbIMSBVoO4LCNlo1kOd4E5A7+ZDgu2Rn1xx4n+eQ/t6IRgNo22BEiyPQ9glgHOzhXPT/YB8dZPrtAch3J0m5R7qwDk925Y/4Y/OBcoWyvBcQI2Kf5bz1R8q6DZHe8p7mbIS3v26l0oMP5k93xd/AjWc79Sc/bieu1yVmmfr6ENHTAKM8NVJqmnQh72tNDoeveSTnNNvrKSMV5EUcq4MmxodHueTK/E51L4WsgsjxOb+8gD1RefJtLgQwNt1chyGfTVKFYIdLI2BgyekIiMKSyorF/sAgKo8GTg2QlPo3h2rY30hQt63F5dV9NMsD8k8EN+CWtOSh0EicjlpU8jRZfylIW6PCYB5ZBp+I8Z9zgwTyxbVMfmwdv23BZjOw6ijrJX8u0Ae4xZclG2U6p5b7pvQWNfUzgw7b5OaNJd9C5Yj2dj+SxeaYviLetlB3rMKZnv3RfeuutPrqUrYPQh55Ps1mReOJZem5JrCNBUF5ge4j0v3B276OTfGI2z5b8BPqodNNZW7mqQPli2/jMx53Zjh0dlkaED3H9KJvnX+7MZgsZ5x31QutwsMjyeIh6vHJNG9R03nbIdCXP52kekDxfHRSYHNvJ+aKjzHGpTDCtt35R9ii/tl3H2ZVTkvVP5WnNHnWlnW2gPiHP1j0OnrEtUVr2o9+w5nloHXiAnwMPdDo8X3tt0lkPFmBycMmrRCzbARheIz+0xcY/DsY8loiBrkeyzj0t6bp3UjqpanDPi6IQ3HiyJUtly8nqbRY0YFPUzVuKHKE71r2WaXBrpVnlZqVT42YF6YiPo4XkYcrba5ezMRhdGr6SpSKcFK5B7BT9NpDzik+pyvES0rUfDPJPhvzBvRoVjvG0YuMoEu+1bD+0vBbhpHxNDtHEs50+AqdkN1pl8JNswZNXfQgaep3y7sgg58sEfAj4y7ujdfdllyagQH6Ypv289vxOAcRkBHzNDgrbZyf6vO137V/Kr6Og1A+UC+fz/OOWE9bXvJxbBrtM48BD23PT2fG9WT5/wD668+xewAcdsToBTzi79vYsx+cA19+UzQqLx+gg26/NH2XzbEtlhfOm/fPubMeI+oDOyM1nee8Bvzdm842Wy1l+BHaKzk/bY070X57qhCTb7VseE69uURY4Ll4N6L/7gdfI49pWNturyVmwjBskcz4SCDtY4rpbNs+5S6Btpu40T5Pe5FyybqtTOK0stjwHCKNrbM8UXGR55MX964CKZYJpms4OC+0mnWYHCZ2f/3yNdNPZFpPHyRni+FgH9X+yb3va03l03TspyW7U3aCZgIzGIVkqggmsJtvXX3LSEzA47zRJmWdtq1HBSI3cWgRjinxQOTBy3vyMiAW8WPEzjYGQeadBaf/aMWTklvepzHvsSJ0VPoFjaYo2kVdHD1sfHVAq+9Y5Rd/MC9+IZMPA+idAyT5di8L2noEvy6TBYv0FQnZsJgeu9dGJa90TOCCfBE0sewItkwyZOD85PpOjMNWTLPuboOBY16dItIGdqX09bclx0OIky+9LuO963HOCt8Nst6UaHLhfu6JhIHSa5TYq6rBL2aySvOOsznvQ5huzfT0wgV755Zy66aysu7LdhtVybjpL0y1gd2ejSwmAj8/4qMNEHqcIMFcl6KTcfXZ8+azetqm65+5snq/h63H9FXvPi0Pd4//9OL6wUkaPOz7WgwwIGCiTCOR5jfrVum6KhtvRPdS/dWWQ1kCaaZueb5Aib15t8JuvCKxZfqn80R5WxqZVVdpP9jfnNO3NmtPG1U7yNo3xNPZ+Vqdyb/zgfuf8sEPFYBz1LrEF8UDbfQHl2UaRB4/zFIyxg+I8j5XVAurSR7LOPS3pg8JJ4YSeHAZOnCpvGplGsaxoGHXvxGTUzjxMUcISJ7OdoWnFhIpjKtOAl4qb2096n1vcyKuj571/hPtXsgUxBrMEey6nhtn94j6ukjXwY3ublmTgEB3ToLWcaYuanVy20caLPEwRq6ZhNNbG3GCo1xyJssExwGgdNDwG5lTEB0NetsvtpeGjIXXkjEaXPJR3OwflY81xYR1r2/ts2JnO4zHNIfazncaJWAZ5nfjjONpJZ5q1ehid5tzqPc47gwzrDgYxku12qXuyBVKl9tedWfYX232SjSOQbN7O9Xlnx/84G0eFQOY3z44/JsknZLPd66ezdQ76rMyVbN7g1fIvZCnr5I/j3YfuuXrRLWttV9t7nM2KTsmvOU52dUB5pEPlOb0WoOB48/qh/ttGR995v+dTwMCOB3U0iXre+tABsMrfxSydQlL7us8wsQ6W0/5sOdRzrJNtcFAmWcr35MhZnzQPZZdBBOp+BxeoFyZHprzzJR+0vwT3yVKG2yZe83axCTjT6eIqkW0mdfzkwEzlTo6GeWN+f5x6srOPNPjf02OXPiiclCoFEyMPjsA08jmBuuC8yoCT30rBvJzHJ5Wao2cEj66rht3v4Q/SOJLG+iYFaMeMwMrppggu+81G2QpyinxH1wgUGQXzOJWnNTJIbHlWuO2jtSXqyZkkQPQKFo3ctPrQNLze9tUg2kCcKt8U8SXRiHklhMbRstO6fZ3jYRlo/3BLhQH2ZLgIwibnyjySWO/aFpAbz87vzzLyyLZw7C5lXQaYd5rrk+Nph7/Am0GDNZnotoym6XmBIPWHHfnKNL9z0t/J2fXL2Ty4fm82qwsEmMlyn7+J41d6VzYrLl21oONcOsr2NcF1Lg6y1WnslzooBeBr/XSa7VffO4fK27uQ/qZsHRe+gpgOSttLuWxf3gMeG5yirrLTTv4MgK0nSdSxdrjt3PbaZPOo73htCrpM+tTA204Zy21/UP4417nich545er5VE6vWf8y2MH0BOlNf4R0DkqdKO80FnTm7EyyD+yQTAEw358CXyQ6age65nTlxTrYZfHNmRwfBzXcHpZtO8/zx4KTwqDHI1nnnpZ03TspXCHxtfMEgqshnVjcN88I6Fr5juYmu4A/mRX8FC0v1XBeyfZ1mnxzkI3lpFBYHkGfwU0V1BqID/I0rdtNBVdjYnKeKSpGgN003sZ0qPs0pAfZ7q/3CgxfenCeM5As+8vG3dFS5jlUHq/oebUg2TV8LYs8GWRMTvkUeW3bqIwdeTs9Jx370g5Z03tcT5HHwH9yPuxwd6XSRHAxgRSOBVcSWSfnGkHtFEnkvGBZlq21SLofpp8cc+4TNxhkuvLD/mSbDYAK9jt+F7NxSI7P/puvOuUwSwBvWZ9ATrJxBv73bJ3hOnuVozpLv5QN2H9vlq/b5nar9hfHYg34uM+p1+oQltru8tPtZDdmdghanp8tqRNDPifiPGF+kvX2mhwbYFo/e5y82mB7UH6s36YghuvmauCkC+1ImegIUqdPkX7Ku9vVcwf8er3/J/jnHJ+chtpaBvZsuz0uJtuQEgM/7heXa5tke+G+K006ww7ysfIx8Nd54Of66Ki1T6hDiQXcvvMCaXvaE+m8gPN1QW1gl+ypYGoQDRZLBs1HSENw4GgYQZu3ACRLI8X6eEww74iNl6XJL6PBzWtlTwVRfnle8FDlxWgrDYGvcb95+Xf0kI6MAZ4VcttHoErDxIhq67HTWENEENqyyNt9Aw8TwGmZNHBWxI62UYGbP65qTPVezK5M0mg3banggY7ZaZZjReNzgjysg7JNmeaY0FByDBrFZnvct3z42UDrvIgg5+RN2TyvYMBFJ45gsGXdnw0oNo+MFtPBCtp/EekdyWdggbxPxtn9b3k8yPJZktbXvB2LyUlnvZzfrLttv5jtW7eS7dZN1hvcqy7w8xos/zib8b0xm4fmWxYjrJS7S/jl7FpXuSg3x+Ct+etwcDXJbz27In7bJ/dnFziWBzovJfaf9Q374uSsbMqX9Sj74UJ2qWM8OcTJUncm27Hq+UWktYN7qDzJrh2Y6qTjd5DtPGlZXllue6svKB+c99PqgZ0T57EDafvmFRTbOKZz25qXH/N1XZNjfjD8er997z5inRMfbJttu7eB0abYWaQ97vhxFZDzgzY8OPaKFh2UtpN2t/UdZ4m/9rSnh0MfFCsph9lu8SjR60+WYJERuqalMmfkzFE7TmxHgAwmg/uOrPH1iuSBPE9lOWpmAG/g5Eh57zkq5sgRr7WcbtUgyKXhvCm7/eOIP53ICYT3Ole61qKTNFaOGJEYHTP4uBfnfBCXKwbsE68OsA+7WsP0BQcc69ZHA9DjCRQ3r1c7DrLc/kdwlCzHxwbIfV6gQeMbHZcMeJrOBoqAunJt0OcIeefzUTYA+FK2Hxx0P7i8zvl7syvXydKhtzHm/xQFZD023AWifGUrwal1CHnhN0kK3nstWeqDtq/5p+DLSbYfU3x7Nn3Xh8VvRLo6mnTQqZfsbPG8vF7O5rmUK9m81vcEZQd98ZQk/9VZ2W/K5uOO7mO+NriRbc/lbhMrmLV+WsvbOcKXhzzh7PjOLOdTy/c3ZQ6zdSr7Fq81R7vXbBcmh6jXK/uUrbWVX96byPW4rygD1onUU7QtzNt8l7MMMtEBcP2cW9St1JfTeK6Vxbnfcjh3WCbLoL4kHjD/dhCs22wvp6DbNGbUdwzEuWyXwTR2oDgnmb5bIY+z+2YvlrVWh1eHrMPb7ml1x226FskBtEeqzj0tacIY1xV50jCiwMnDSWMF33MCoZbd63Qm3KlH2a3LBju474hqlZuNw5pAsz4DRjpYdqqYhvWwXJKjvzQcBGnNe2M2jspa5IxGpwqbbeE2D0cmzbsNmx0ugqvKwrQq1WiaAZ/73wazfE4RMNbLVRQbB7btvswGseVME5lOyBShoxFPdufBZJzIX3+Tsz6lZXTNddKRbJ6SjVyN9LvOfhxzb8/hP8ES+719W94IzFnm5Ljw2MGNQ5zz7VkG9eR9+ho55+kUBSfR4TzMcvtRgzWH2T6DcVO2KykG7+bRfUv9cD/SdeXiXdl8nPFd4rHl3JSNw/SbSX4lm8juE7J1ELgiyDGhXujKLz/AWx1M/cR5QGebKx4ti3zWuTzS9WQ7ZtaDHfMpcMD+WlsdcTkkBkEuou5T/Vjesf5L1Rt07E7wz/R23NnXrcu6yDqM5UyOmXmbnCFvcYrOqeMNMstbx4N6/XQoww5VsmsnmsdBCuus+7I7111u62RbqysOsvv6brefATqOFx3Rji11iwNuHJ/q2tPhevMQ83DFa8ILB8P1Pe3pPLruV1JKBnh0Eqg4j3W9ab3cuTYJp4iwlUkVnYGqI0rMX8V3gjwGYY1yGjR6dYJGlum4mhSlY7lcnWiZjcyQd65uFKixHEaD2N6+FaZKbS1ix9UatnMaWwKT9vMllbcWtSJRwZ8H4mmECVZYTtM5Gugo2SQLPWYfu95kF5iUF/aD+XYdXqliOvPJ9KQJnHAuHej6WqSQIOGes98UqePKk4EgDSw/wEb5SHbBCOswYOvreNu/1BfnAbILujc5MOz/zgduafKKcK8R5HzY2b13Z+s0nGS7Zeck23lXsmPUeUj5v1/pD7JdUbg726+9M5JbGemKzn9I8sNn18qndStlzUCL9VN22Re9zrGlTTjOJvJfOX03jj/s7Pgd2W5D4xvGkvkV7pRjPjPI8T3Ktg8Jjm1fDJ77Tx34YHPLQZDp/nSe7M7/aUWfepc6gOk8p2zLrDej8/arnUDr2MnBmHQXv3HCcsib+9eBtOYntmD66B75ZHuNN2xH+/xp83FsptXjaY7wnoMvHW/rGo8zg2qtg29n43ge4Nc092XZN9cq2fl8pOrc05KueyeFkz+ZgWjTEZxTOa2tIDQPI8QtiwC7eTrhuazbdFSIydIoTAr7CGWRPyulw5XjKRLjaFgNOZ0jnzPfReSZjMTdasMEMg6y3ZpXJeEoTrLbJywjWQLxnttwEBDbUej9gr3DzEaQBmwyBjVeNCTMQ4MXXaNzaIdsoql9po4720wZLhG803EvX2v1O323uBnwkl+vmtiRpuNj4LPm3NOhPg8ktayOkR1d9vkELCw/7UeCtDWwtBaQcFqvKJSnbivqFpaDbJ0M6zmvnPb/7mz7pIEB5qvcPZhDTr3gZz2sa5r+zmwf1P+wbFZU3nZ2/17kpR4qD8dZfk/DgZUgTfuFb1Czvj7KdrWr9ZXvu7J8iUCJK7zcJlSyXpjGeZKRyelmmyZd5vTUj5b5I/2bjzU9Y/vBeuxAebyahn3G9J7vrKPXLVMtZ3IIHIzkPZbnla6O+WS/OM9tM0otz8FO6/61VZpJv7H+8l75tH7zV+8tX0xvGaz+a9m1ucYYDuTUNk6rVn4Wpe32XNnTntboundSkq2nnyyjAFQUNHZVQFP0iERwx0jBBCgIdBihsCHjykPPDZKCfIwAkS87Unx7lRUV6zeob7up3B2p8UpI+SavLdMKkcaO5VCRTw7VFKWagCKBPg0hjZidgjUnr8av/b62DcHOrqN807+dBEb9KEdRGkZrXW/LvJhd48X6DrLk1URePG4lzw0b2UOlpWNvfgn87chMEUDWs8bT5PiwTgczWOcENDn/WFfltceHujc5OHQ4GCFu2r5Jit/u4NfLWU+ftznN5svqBep3nqW5R+XaqZmCNW1fj617Jv1k8ipMsnVEup3qQrZOC4FnV2cIcFhWXzVcmuYEV5m9YtaxduCg9b0X1/qa5nuzfF7NOtB69X7dt75kEGZ63qVlNhBEveMgw7QyYl3L9rH9vd+IN9M5H/Wq0zAdASp5XAvwTEGQE+VpecnybZZ2mLjyQl7KO18a0evJ7ioW8ztoyba6DezzQ6WlnuMqBO32RA6OsG7bkZNsn4XjnLVOtfNN54SBo8mB9DXeu4Rrtq172tNDoeveSWEUmwqSAJMTfoqOWEl5MvbfEQorLirPyaAFfE2RKbeLxxPfU/rJmLR9BPXJbjTYUWPmdTlTtIh9niyNL42keSQQZHnkmQ6iAWf5n8aFhpJAltHWNYMzgWUSjYENCttOHqfybKAJprxC4QihI/t2am3Ues3yaNBosEDngW2hTDRaTX69otO0fiX0IX5TFG5qB6Oa7A/eLzk6SbJck/iiiJZpkOEVADogvdcVEc/LZPlAtgFFQci0qtoH4rs9yUC5wH8KfjBI09WISZcly+jvhex+/PAgWyBJsHT57Pq7snl25f5sVlFvzma7FR0NrxgF9VzSdYPYZLkt0CCO8s05RfDdfFxtcX2UneatczmNLXWLndDy1HELrh8ivXVQ55B5m5xwrwBSR3HVv+U2HceVdnWys1F6A3HTNHYBL3xhSq87oLUWuJmcs/I9ORiux4GO42z11JS/fUHZsuwZE1B3nDde5c088Z/bq+1Y2Sk0lmFwgnPf9p3kuVKbQFmhDbvWiU71I1nnnpb0YNj2uiJPeoItd4Sjp01LgJEswT+vOSpOJTRtP+HDm5MD4Toc7WNd0zI7tzE0HZXa5BTQ+DTiOwnMAdKwbewr1kdgQAPP6M5plt+SIAiuEU2W7eGDhb133rLyZDAIVNkn7pupH6a6pgghI/dsc9NPSrx5Kkc8ngw1+2tyOo/Uhu4T7sO4Hm/zbPLDxXSeKh9+JWuyNI7knX1JuWm7JnmisTYImubUcZbyZyLo8RYbO269xnEKzgs4OScsGx5zt4Ngpw5BstzWxMgx5wYBMNvs9rM9U2S0IKWAPWfnfPi+dZQHrsKQB75pqe2hzFqvEZidZvnaYcoMdQvbxT5ZCwjw2hRkmnR754sDSpzHa6sjQVo7n83HOtuXvG77YGepP/LbdC2T38ExmJxsI3VX54m3/ExbhCzLLpftqI5i/fciDVd/7XSw/lOkO8runDbIP8lyPC177g8GHeuIJ8uXnVA+W7/Hu04Fy6VMsY0cA/dj9VrnpVeQS+7bh0pecbfce95wnNZW6/e0pzW67ldSqIj9oPQEKhnt93YdR0IcuShdzHL7AT8EtQaaraAnRchj8rIWna/R4OoMy10zGOShkVpH1A90LcPxWh3cKjVtk2F+gmQS23+S7ZYmEh0AK2gaNDqGh1ka7Bpqt+e8cZoiZnaGWw+BsFeD6Ii0v2tw+n8vjilfBlNesaBx49wwyKCzYqeAbZrS0LAbcNvZmaKHJhp7R0ZdFs+nlT3Xz8ihI4Itc+LnIMttMcnyGxVTv7WsC8M1zyXLZutp3X3WooGIgrhksypRB8bzxx+KtFPTcafzd5ql/DFq7fKtEyvbpLvP6rgpm2dS3nV2zY47t/NQXxwjbR2xzh/qPm9HmiL8PC81LfUcV62Oce/Gc/JMDkmyHPdkqccN+Kw/GJ1mmXYo6YhGvDf9NA+45cfl0smnvqI9ZN9QlhjsSJYyzf+D7M6NXp+cxyAdV1Ddn1OworrJfcXybVPJiwOL03gzeHE0HEft6vUr2X5Y9Lx2+JhlUfev2Wue2zY4OMp7B8o3OfCdN1PfXstEG/ZI1rmnJX1QrKRUkRp4GMTSCPO6o8kED9OkpJLqvm8armSpRMujDcK0clJ+bKSC/I7iNh2juH7olIDS0U+WTwPQa3TiSO4fAm+nZ383Lc9tnKdIEsfOCpjKmwaHxpB18fq0TaTpTrN0jgh42ueXs7sCR37Ln1eeyAvTN/JJ8E+iwaVc01G1cSqYpXxPDvlan5YvA6nyzWgrgZUNwTSHmIbzsUSQUufMUXXOG/J2HvgwWGx6Awue01E0ECuQtrxOxDFpWvZby+BqStO1v/wRQ84dOkFTRPUQZdvhZXmOLBNEccy495/92jZeUd7+35/Ng+v3ZNe5pg45AL9+lTLHvPOB+q1ya71EPddXLLdf78lWh/L1ywS+fAOb5yj1Xfm2w2CZPRyu23Fb0xttd7cAesyn8aUTYp4rO03H/9bvQI71WDI7aa2j9zne1guth7ZvGntS+acTVzt2iOsE+Wv6aAKydF4YQGKbJgeyaTquDuywPacowzqvZbn95JV2kHSqtOVx0lWUwVOlK29TUPZw5fqe9jTRdb+SkuyCrskhqLE16JgmZ4Gpo1hULEdJPi2bD6b9TJYfYEvmyAIBWJWVI329V35p7JuG7bPjVYXiVaVDHRN8tEwaRJKjvVO7Wk4BgYEj3wzGPD72ufveQMcrWATpBtxu96nu0bgkW+NlGaFRoyNMp20Cz1O/GSQTQJ3ncDTtcZbPd7BcAgBH2qYIW/lwWjvKjqJ6RY9E4Fxa6wcCycrieZHkCRRTpi3LbJfzUjdwJYPtan5+iPUgy7ddcZy9PZE8s1+PdK0Pbx9lC95L/kBk7/Ehe95nOtd9jHNHTxnhLU193747zNYRobwcnV1/V7YP/U8rtwbsHftjlN2Vo4mf8mL+fO6os/8NIC+f3buC60844+3ubL/qbeeHxydZvnnMvFFWqb/57M+avqzzRmf3WHno0E9zhffKQ+eBnfvej44N1j1/mX+K+rMs2ijOR/M82fbSFIBpHgcEa7NKtq929ui8MaDYstjmqY10PFiHbTLrW5N7BlxavlfAWo4dJ+pm1m39TJvmvqb9Zd94bl6LNDmgj0Sde1rSY0FWfkdoAtgGo/3v9giunKwZECoAAqhnJ/miJyZ/MpsHQVmflRz5cYTXabx0TqohoSIkIOdWFjoDjjwfIL/rmQyowa4jk20P62B5E4gl3/ydR5NjSQN/qF9pLVLMCGTz27gTcDCfI50ErdOkswNkar7ywI/0sQ2OIp5k2b7JGaLxn4Bc5aHjOTkynl+HSNsykmUE2/1U/tnf7nPy6/FxxHkCzSSPRcvz3nDWQSeb4MwRTYNZ1uEINFc7LMPcdtN+7wcI6eQ27xWVY8eLTkt5sA46VB4CnGT7Ni2DmTVHm20N0t1zdv1SNtu9bjq7f3dm8hytLBHkU3cZuFUm2TcEzZX/6nQ7qybLCr/gTUedgYPgGvuPMmVnvnx33tfxPRjK6jxkW8rjpFvo/DggMulFy73tSI9JngMto3ndN8muHLncjl2fxWI95bv9tlaOAxzmJdkEI70aMdkx8sU5PNloy8VUTsvyagzb1rnPgJV1YfO1bWt9cqDrzF8e1sp20IF1XsnyWzTmc097ejC67ldSqMQZFUiWxsyTZtpnWkU+RQpo5JLk15Lc8e7Nf43uaZYKhcqSkQwaHYIV8kmA55WRaWXDRoRG7UTpyqtBa7Ist+fsu64wWbE7D/9LdBptLM6L1hXoODJMfhjZbx/baZgM+UG2z7tYudPBm8AM5a5lsV8doZr6je3heHCs7HCRuP1nzUHiHGF90yoUx5JbBnufx13F6bM3BLME81P/9P60tSpZysfF4VrTuww68HYKCT44H5nuwWTYBtvR324NonPBNzj1+RIDxcNsovZ3Z7ffSo7Krs1hp63cUResOe2ORlOXlU/KZp0qr7qU7s/GQXnS2fndyMv2Ue4MBJu2epBOH3VKV5Os/whuD7PcpuU0k3Me5DvMZnsa58VN2d2C1jxeES//7iunm4JN1CXUSSc4P1WakqP/yW7/n2Y7nz1vrTvbX0fZrpB17Gx/vWrn+TbZYdpB8rq2ujrZo4kmcG6HnwELBvMo963HfcK81MfVbdZPXnXpddfFuUgcQZ12hHzV3ZPjsWZrrZ9N05hZZ3jVeU97ejC67p0UKiQrU0ZzuAxORWqjbcXMScto89uTfFuWSmKKHJGPCYA76jQp+x4bUNXokvcpgkUF1nLs6JAfAzWD0zWDTuVWx+Igy294MBp6H/Ixr40W29L2l3/3LdvBcVtzSMl7yy/5NblW3DSkBDo0RAbQdlJZrh2JyVizPQSNdrCmSFsBMVdA1ozXmpF0uy27/CffyfaL55ND1fk5AY+Jx2Q3okzDPX24kHXxJQY0tN4qkyzBANs39UnT95/Hx9k+0M750DTTCx1IUxSa8sT574CErxHQl6y32K6CDwL8lre2vaUg8DfPzrk1yisRJ9luA1vTqQVf7QPqvkmXldrnbPNhli8XcBlrwNkObseV/et5zPIOdH1aVUmWOoHBKzuvU9Sc99acHBLtTP9Zf4nOt8fD42C+OKeY1s6TncsT5em9tUg92+D2+uUOp1naVfPqucX6pzHjHOS9Xm97qa/Ok1tvwaLddH84yOLxnuwByQ6T7RSDYeWdDsnaeFzLdDWPPN9XH+H6Hgv0QeHQEsDRiBzjvwqi92xID1AODRmNywnKojI4yfINOwTWh7rG8q0MWee92TVMk4GaQFgVzrT1hMaCoJq8NV3LYrS3dKL7PWbEsP01lVMe1xSmnZMD/Fo/V5sOcZ98VpmyXoOxCfQlW2PANpYKzhzJtoNogzYRjRjLL3Gcj3R/MuJTBDy41nFpX3jM3X++xzEg0JhknDLA1UBv0WMf04lqPf52RXli25qHkdYJ2DNN5YPOu4lO1eTYBvcJWD2edJzqSN14lo8Pa5c/z29HbVsOt3bZGSEIst5JlrwaMB1k3qrWMo50304Py2rbpkBNnYfjLF88YN7J76SL3J4St65NzsN5QLH8Jdvx4Nw6yXZbWx2ty8hH3XiIfz5MzzlsJ32yU9TblZfOZ+vptosAmvOMNoI2s8Qtd6c4p+PGIBPrp730qg7nPceK9iLDsUG7dVfTTwEl4wQHReyI9DrxBPvhPIBrO3teWgfa2j+0wXYgyJ/vuT2WB9ts5mt6YwTPfROvPVjf7GlPpOt+JcWg01EPGmVuXzkPwHC52gDsNHMkI1kqpp5PEVgrZSr5tUiUl54zHDd/jSTr50qSgS0j5zbmkxLjFhsbPvLkyNnUP61ras8aOdJJgFhHlJGk1kMASCeJkTkaBCtnPwg9jQNXkDj2BtjMw7znAWEDrCAfjQm3V7g+yqqdUzpLjhSXD0ddm9d1M2rJlaZk2ceOZHo+k4/JUSfvBi5RvZUPyjtBV+fPaZZ95Tp5zvHwK6YnAMV+pEPbV9/WIbPs9XrPOSb8loj7hX2z9jHJNUByqjwEL9PWuROkqbPRB95vzWZF5b1D/cl2VcMrGx33aXWF2zz9IcvmfzAH5KHYA47nhSF9smnjPdl12ro6RAe2ZLmi/uL2X+sEB5wYKCBva1vImobO8hqV7/NA/EQG+dRJ5Nv2y9u7WEbbxLZOOwy6Am7npjK65mzaGZiunWbu9/twfc2Bns6tZ6v/HDDlGPoay6o+4zfIkl08YfvhrWiT/XAZ0wqqV9evZXIw45Gqc09LWtMh1w1RqTn674gZI5N8/SbLogJj1IQg6ADnVLRVDJNjQnJkhUaeEbH+GBF39O9EZbV+ljOtuDjaPpV1kF3jdIq0bQsBG8tyVNgggCtch5mj2I5IcbmcqwA9Xotkm7+pve3bvv6XjhqXtifnqvVxWx37yu0/zXYfOyONBOuMSrIsgt8CIa6QtMwJ1LNMrjhM0a+2m/m5+sW5YcfCxp7/bF/75WKWY2ZncXLaM1xnnQam5Jtp1lZeeo8rsFNQgG0z4Gd9vt5X81bu7lEdUxSTbZmcsX5XpdesK6b5yvqc3nWzr/rvVyGz77p6RPnqA+juD5ZLfioLdHYtc8zP+t0XpDo31COu3zaE7ebWN297Yv7+7IwzwHOQzRygbTE4LjV6PgFV9qWBLmWGAYTqNG57NACd9NIp7pO3aVVniqxz/thOTmV7rhVUWx74TA0DaF5ZcB+2jMp0+bPtZzBjCuKRx/bBWoCu/Ex23GDfARzmb3t6Tvt1jHzGNMzX+5Yp69jz+NivoOzp4dJ1v5JCYMHlXE5AK7zJIDXNpewqzzVHw2UYqJEnKsNpH2yVh19vuqbkCTbWDAsNnQHbFHkzsCVwpjM48d1j13Fwzn22zaDyZLh+kmV9dvSSJeDo2HMJ3PydKg1lqDSBCwMEO4MFSeRrIhuvZLcfGGFlGgIoOwYlRpun8WDf0CGhMzgRnVy2g+Bgcm4ZVWWUl06co8eTY7YGgg6yK0sk3iNPDEw4uu38JbbTckH5KFC/P9vnMnp9cpInoNytQ2vb0eis8/oFpe2KhSPbdLxbH3ko0Sm9oPtemWvQ5p4k//ns+DLKtw61U3UBafscD++xDLczWerxRpen7WuUGc5jAk3rvOCawSfBbbJ0CB5s2yLLO9U9yhb5YFry6Gu2T3ZYywuve3WwaRiQcV2cB5NNcUCxeeyUrc21yTlf6zNS03Flq8QVrKnNzMfVIZYdlEl7aSzhtk36iryWmteBIxPHdG21iDLMZy8tM9UT1otReuusvbOyp4dK172T0knXyevJ3mXYtUhxJ3CV0oUsIw9UisfZVZJUjgauXI2hUrPRm8qclMYUXaMRWAPQBlrkK9m+Panlc5sBy2gfTREkr9asRUdZnqNJTes+5XJ0jZmd0La52yuafw1Ath0nKo982zExUcGzTwl2zzPKNh5Tf/DcEWkDKgOfoH0G/TZOybqTY7C21h5v8fJWjLV+TOa55e0xJbZ1AjKkKYJNUENwxq0KBj1s7+Usv2FBKnCeQMhpdl/ty/STXqlOm7YZsW2W3wnIsq3sp/azVzjaHtebLL8DVQeAeQ6zcU7a7puzXaFMlnLXOds6CIxKdE4q78e6V75PdNwy/dB/9Urr62t/2xd0giibE6jkczUT356bBL0lOo50TCYgSEfYQSTrSZ63HjvoR1l+tHZy5lt+61sLQnhOrAUVbKs4blMfMeBiXWue7TAdZ1f+a/eKHdpfXi1k29lWti9ZOiiWSQeHKCtcIYzS2ImkXJTnNZ3aeWInmrqWDgXbfaQ8zdfACvMZC6w5NNcaOSD0SNW5pyVd904KlVCyC3KS3ahR053ix8iRDQvPm94T2ccnw721yBDvHWejPL0CQiBOpdp7BZx0MLyNZQKhk3PnKBGNgY2z79ngsLy1CboG6mgQq/gmw8w8yVZx8/3tJ9lurTkvIuly1hQux4tkw+021NDSKJYIkoO0rYdgOUpnYhvpMFluvPo4AZAJrLC9NFoEBHYOSo7o0nC2XZyvB0rrttFgto8pU24beZj0RQHbND4GEgSvbDtl6zhbp4av0o7+PX84Zz13mLbzz6DEYzDxSKedxHFtmjqhJ8o/RVLZ90dJHp/NMyn3ZNn3jGjXAXGkuQ4anQYDu9a5NpebhunYb26/9cOa/itfJPcrnaq1lW2Da0bM18B8iTJSXum0UI4qix0XripYz621l6CVttd5fTyBcQegguM1e8F+4CobnRnKkLc6kX+Xa5sw2QjbbN9zgJMyRp6OdMw540Bir59kVy+dx7/xjdN75ckBD6axPTwv6LSnPT1Uuu6dlCrzZLlFpYqIwCbZVShWHFO00UZgiiIZOE2AyrQ22amYqKgYNWd5BqmMvnCrzwSoGUEmLzQaB7o+lWV+7PhYAbNMK0WCYgJ7AjyDEkaWAv4YvWvUlIA2WRoJpp8MAVeU2J728drD9V62d5tLBTPdKtPyL2aOmBOAT33a8pq+fehtbQYS0XUDNrfPBtvj2Hbb6e7xWhTZVGDLgEHLLtFR9xhOYIM8nGS7+mqHh/PbYLPyZ6PNa3SmzBNXCKYH3Ctb7O8JmBewTauJBtMTTU5feZ/S9d6h0t6fjaxdysYx+c0z/m86a8vd2UaS3X7WVyDK8wvZ7cduh6PenuSH/ea5ObWxcjH1dWmqh2WUprl1nu5nes7PznnbG+ehrqJjemOWzwtWXqxD7OCRZzoolvnJ5tKmTGCcbZ5sS/XYia7T9pUnOniWEwcHWb7nFuWCebyyFF336s3k+LidXklmQIXBANe/JpOlSa/22DrO9TLdFGg8yK7MPJYcF9qPR7LOPS3psSIvHzAdZbvy4GhFAU3JQJFUgXXkOtlVoi2bZU1RlZbHrQxUrFRqnDAGeOa1hoUGy4b2NFtD1Acy6XRcBD/kr/+T4jpUGdNSM/twIjsKk4EvPyzbBttj4pWj8miQTgPaPp/G8jBLA2OHlWWV515bG0vm9Rt1GLm2o3uaDXB2ZM35bbRdrx2b8j05JT1mOybnpuBmMtwsi9uG3Dc29AdKS5DA/i4/bF/7oPJAIH00HFNWSi6vfE19z/nNVwzff/YrD46EW4YpcxNAPM7ulq9+FNCOu4EGdYPluvnbX2urkwaHvFZe2Pb2cbeHcK45eEGnbPpuiYMT7Vumm4A1y6As9GH53j/IdqubAZ9lsTQ5NidD2pPsjvc0Vw5x3t8039e2Z3bs7ER0HP7rJH8yGyeRuptzjHp5akfLvKg0DgJN9qpts6Pu4/vAC9vEQGTL8nizTcl2LtmW2N52DpvfljFtlzsY0lE/VTdNuKBttd2hY0PH0Y4B67G8VxdZ/loO+8P2ouUHeU2ev+1L6p1HA/zv6bFL1/1KSicHVwJq1AwCGIm4N0uF6aVoG9QpatV0nug0jMkSgFrZRnWugWBHVVgWr5eowLntif3Edq2VkyEdnz1wxIll8xqPp61OVnwlGt7ea51eIm/ZjgY6WlelOi2xt07ufV6Tg/Ldep5wlvde8T9FEA306LRNqwRsM/PZqHAMpj3SNIATKG3eaYXCoMhywqgd59pBlg+JrxnCyeFNlmPKlUEbcM+H3vd4sV7KiUGmZchyZ2fHOseOOOWJ4LzPZPC5BgMcgxGuLtDRMw+8T4eG98or5cvkfmR7yCcdqXuznQtPTHJntt+D4VjV4eCzKayj88XO2HQt2ZV3j33TOBBFPeP+tpx4paA8UP4nHv1CAsuTzw1mk+V8sKwG9+qY3ZrkM39PkkvJG39jMw4GsuWTK9FrKzz34ZodI6a3PTjOshyO07QCSaLtWLMzthN0wOwY2mnxCtQUaGE7yJPTsVzqGa+GkyinbLv146T3yIdlgfe91XQib0mkTFPuOH8OspTHxwpNuvKRqPN6orvvvjuf9mmfluPj45ycnOQv/sW/mD/zZ/7MwyrjundSqhy5tDuBYCqvKdpjZ8eGruVOUQw7MJy4Xr1puVRIk7Jz1G4CeFQijjST37aH+SdltbbSRINsA1GgZseMZGC9piTd9gkIe0WjY0YDW7Lzx35yOpbnPcx0Wsgnx7hlXMjSSaFT2H481LVkOS6OClte1hxZ5o/azDbQGTYYmcCZiX11oDR2TljPeeNJngxcOP96vhbxZUDAUUwDvslZnQDQBAQ71t3OxHQc5wJTb+FKdrdfXcj89qnmPdQ1pslZvZezGxmeHAufl0d+i4X/Ezjy27Uop9aNpWOlOclWLq9k+X0HzzfmcRCJ95jP8ssx6QpKV6TaTqdn2VM5dDrZJtO0+hOkrTy1Dfz4JZ1063DzxvTJ5s1qP/C+5NL7krdnV3dezHaLY8u1XnL9HtPSYXZlj33YZyengNkE4qnvCIaDdNY5nKu9xxWKaSy9GnqsfK2P/LHsOoRT0KT96f6zHTFRX/X+fUrLuUQHebItDtY5CDLZ0Im4GtO2czfGnj546PLly3n961+fy5cv5957781znvOcfP7nf36e9KQnPeQyrnsnZW1i+TWCjkwSoBhQTc5NsjspJ+fCy9MsewKUkzNFZ6ZGqPvRp8gblTR5rTKcIhwG7FZeU7/SQKzlS5ZGkADRxi24lyyNxZrhnYDLBMx7fW3VpveouB1FMrid2tK6rmQDAFrvUbYPX68BHfPTPFPf0rlglNbk8bFM17gY6NMRmJwgOjw20gUeBswtr+cG8S5nAg499vy0A+ogActYW21imWv3W4f7s/0wBRvoGBaYTl9mPxzuMU35IU+XstVt1QmMak5z3bIyyY2dDdOVbJ8F8ergVF7luTrzzmxfSlJw33puzLIfJ97tfFAX9xqdOcqX9XRln3JiwMbrlDXLW5SWW4Mm3di6bQtOs9weyPucQ2ur9mtjUPpnKOM0W9khoOV84SoJ+Z7A9HStRL4Osl2F4ccP6VystcerLkdKx3weNzoR5osBJuoo15Ns5ZdbEk+zOyZsj1eqpyAhdbFtMp05t41yRHtNXNG56kAm9SXrdUCIOoYBvGTbp7RNLWtPHxx0eHiYy5c3nw+/cuVKTk5OcvXq1YdVxnn647ogKp5pC1WJTkOV8yWldwSohqP3D5FuMmDBsUEgjbCjiafZndg2yj22QnRU+yC7yoKKrnVWKVM5MT+N5Rq5za2rCnFafZgijIz02Jic5xQdZingTGtQSeBpcMy+tcND42hempdywbaXOn5sH3mfwD1598rS2uoGVwjLA/nxqgdlkNEx/wfltGw7lsE5ydHPZPsRS+YxaGjeqe7zHJwpykheJkfR42vHpvfY7vYPH0BuXoJzto3HrfdkSHNB6e00MmhhJ7t9yznF1wVPIG7iJ5n7ifohSmtQzr65KctVktMs39pl0OZ+6nX217Tq0vJYj9tHR/3+IV2JMknno1vzWG51unXDdFzy9qfTbFbl+nHMgnbLYtvQt3RxDBigqZzcC95Ps3lpQTLrg/aLwS3v0X7wWrJd/bH+aB+s6esp0Nj2TH3XuUjZ4C4FBhHs7B1naYf742rLgcoo4L+UZRscEKFenIIj/FHuOG5sD9tLncldHXbeOU8YMKFtaD20GxOW6soS22W7NAWopjG71uj0Ufo9XHrVq16VG264Ia94xSs+gNzr9IY3vCEvfvGLc9ttt+WGG27I93//94/pXv3qV+fpT396Ll26lNtvvz0/+qM/urh/55135vnPf34+8iM/Mq985Svz5Cc/+WHxcd07KZ1knsSOzBQ0WJG7LCsJvv+fRjq4RjoYfubpvEExcLYhK7VtbQt5mqKRa8u47BcqIC6xs0yD+FNcP9S5nUZHB0+RL8pbIqhvOTRCjCZNAIEGYe2eHceW04fVm/9A+U6Uz+Cazh7bTGBJkNEvJUf3mt5tOEaa42yjlE13KUsDxH6m49RrLbdzaYrgRXmabk359l774SCbyDn7aALQjB5PxACDjTdpknv3Q4+ntDTwbDdBNvvyIMv+mIA/28vVokPc5yoF+5bXLyPvpWye+3hKkg9D2uOze3YS7Iic6Gci6OD2pOZ1v1PmL2XzvNZNSH+Q7Vap6W1d5G3tofa2w5HtC8jHrSjJUtcdr5Q9BUI4j6cVd+sGAnw7XJR9B2jKD2WT5Qf3ywedfsrHMa7fm41zcrfKYPryZP1bIjA+yuZZF4L2KWjFfwdurAc5F/pvR7zXm5+6u07Gmi5iX3s+J9v5YT3uNq05VBMusKNHx6hlTbapeYN0xgYl6nfrQtpcyuIUcLMOYP+TB/cvgxYte9Ihe3r49KY3vSnf8R3fkec973nnpvvX//pf5/h4NwT8lre8JW9/+9uHHMk999yT5z//+fm2b/u21XK/53u+J694xSvydV/3dfnpn/7pfNInfVI+67M+K//pP/2nB9I84QlPyM/8zM/krW99a/7JP/knecc73vEQW7eh695JmcgKvWC6TkfPGWGuAuH1kyyVZyd5J/4UeXDkp3msPBn5MQhK5sgkHaSDLAFo66JSonKyoXW0kkr0UHla1uQwMeLCspyO7TPgd+Sr9+1k2vCRbNibnmM3RSTbhjUnrmXZANGwJ0tjFNy7gjyOmrVu8me5Yj2+Xt56jw6mQdNB5r5keTbCdCwYZSzZ6J8XJXKAgO0xYC6tldcVg5Ll2mVxfjiQQUDSPqCsd45OKzzT8yOVwfPmc9N0e0/L4vw4xvXouM8uUKc8LcknJfnDST4lycdmVy9MIJ9tm5xEbsvyf4/phNrRqZPw7iTvPbtW3inPlE86J+Rh+vW+VzK4tewgW/DPN7DVUYp4SbarJQxSlDe2v/1PR4sAnECa+osBliAf/x0sSJZzznZoDTyyv+wYGaw6YNN77p9nJ/mcJM89K6POypHyUOcQ7NYOc+5S51tXUV5oo8yX66LNTnb73cDbAN02nrbRY8N5z3Tkx/k8J9kHl3At2Q1inKfDm29teyDH+6E4FJOD1HadDPceC7SmU363f0nycR/3cXn2s5+dv/N3/s4qf+973/vyJ/7En8h3fud35kM/9ENX052enuYrvuIr8tKXvjQnJ9vR/Hf/7t/lhS98Yb7ru75rzPdZn/VZ+cZv/MZ8/ud//mrZ3/It35KXv/zl+W//2/82z3rWs/I//8//c57ylKfk7/7dv7uT9pZbbsnznve8vOENb1gtb6Lr3knxpDMwT5ZA1RHzadJ5K4OjHXaCShMIpQPUrSBORyBqxXuEH0HWEdJScR0ob8s3UJmUY4mAstF9OkB0yMqzgYkjK5Ozxyge0/vL11XsdurI+wQeDpRnIsvCeYrWziafe2JdLZcAh1HLZDZuroug1UCpPJ8XtTI4say3Hs+h1ldHgBFU5mfbWGeUjnnPi1onS5BjJ2iKZE/RW5IBj503RrsPs314t+kpnyfZBZt2TAlkpu08TFs5L3iewHv7635dP8lma9BBktuSPCObKPlTzuq9Ocn/M9sH+/kBv+Zv+QVDXlGdgBrrp1w7bYFrsv1Oyj1K17R9aL/jMYF19hf7lK87Zn917Lptys/9OJhA+bqQmainW0bnIL9Wb4f5wYAgy6zDVX1C3W/7VZqCXJNO9HxtPYfZvvq36di21ss+vjebMb07W2fPdtPHJQYAT7P7AWWOp1cgmoZbGqd6HKyg3XVf9T7lbc2edNWqc4nOwhREsrweIl/vEatQZqYdEclSj9Cu0la6TvYXx5U8TPyyDzgGR0o7BdL2tE5vetOb8gu/8Av5iq/4itU0X/EVX5E/9sf+WD790z/93LIODg7yAz/wA/npn/7p/Kk/9adyenqaf//v/30+7dM+LS95yUvyyle+8gPi8f7778+b3/zmfMZnfMbi+md8xmfkjW98Y5LkHe94R+66664kyV133ZU3vOENeeYzn/mw6rnuH5w/D6SRGtGbokhUyFNEL8hjwBikpeIhfyQ+AN8yqfRaFie/wUCyVGDmpwalEScrYO/dZYSLfRJcp9JtPpZDxTcte0/OI5Uqo7imtYhjeWubW89RdvudvNfYuG/ozNApKn8ED2tyMAFMgoLyxggh+2StnRyrjm2ylGev4rnuNfBAg948BPGsh+kNXEqUgfaZV2JsGO3A2dmuMabTz0gxDf/xcEw6UHnks33Atyy5D1rfmgNS4rMgrJerJ20/5763kbEPWk7bf5jko5K8K8mf/Yok3/ZX8zH/7v+d733mpv5uCTvG/wSm2D7WZ2DOPO0HOlEGkm0fHSGvXjQf5YNEvWt9mMxzkfendJx/ky63XvDY0hkzzww+UTYNSO24M/K+FsSY6puusy6Pn6PfJ7pmZ4e8dIvcLyV5W7Zvtku2r/U/VHo6HOaD8sixYDDOts3tqTzReXH7HNiaaK1vg+t8cUVpLQBWPtoG4w2WW6LMsA+MXUq2odE9l8FgFbHTeWPufpk+LGz53dNvj777u787P/VTP5U3velNDyn9bbfdlh/5kR/JJ3/yJ+elL31pfuzHfiwvetGL8u3f/u0fMA+/8Ru/kZOTk9xyyy2L67fccssDW8h+9Vd/NS9/+ctz9erVXL16NX/+z//5B92aZrrunRRPruk4WToRPLfCOMryPfDJEpRyn6eNW40ez22IXGfvtTxPdBrKqc7eswJihJDlMFLM+20bjQz7qvw3mkLF7LqaZzJKLYf96T7zKzGTpZI9GcqZwK/5OFY5vNZyzlO0bPfkjDqy5nb7nEaEDsia8m+6IC8joRzbqX8JdtaAHfO1vTSYrNeyzNW91tE8k9NoB5P90DG9D/ctu6yPgNPOhNtKsF/qG8paboHIGjCY5hD5Z1r2KcE758M92W4ZIiC/X2WY9/J4T5L8uST5huS/uDPPyN/OL52loZxwm1yJZVeHHGfJr2XYc3a63nIpQ20f5aT3pq1XPL5feShfE0ArcVwnnqc8U0SYMsY5YNmiA5Ts6hIHxa4gHcffesB6uWR9zGi3QS/lZ3IOyN8UeDjNRtYK1nuPepi6Yi2IwTnL+ie9TH7M/6HScR5TLqxjDPypN2ynmI9tcRraj/OcUY4Lr5Hv/h/ovjGMA1lZOWefsw8oO5Rr2kn2+XkBwJbbcq51oqP1SNb5YPS2t70tX/mVX5kf+qEfyqVL/uzzOj31qU/Nd33Xd+VTPuVT8tEf/dH5+3//7+eGG274wJk9I5dx9erVB67dfvvtueOOO35b5X9QObVeIp2Mpyd20/VHg8Yoa/+pcGzUOukdMeVkMLCtIqJBW4tG2QmiYvA2jrbTKy5rvEygtfkNDPkyASplOwgFJzx35JaA2BHq0yzHy06o28N7vFbg5SgS28l/R/dsSChnHRNuySB/rONAaegEePxKh9k1emvUB/3LP4EDt++UpgggQWX718aZc4BGnu3ymJWHoC2ea01zY+b92JUTlsU56q1XJAMFk8fT4Kb90K9tT8CTckueAr4NbsvTBGDYjgmMnGQDFO/O5sH0/IEkP35D8if/dt50xkdfg03dxj7g1qYj3bN8TLqz6Sb5fUI2D8sfZ/M8Sr+D8ni1c83JcVsPh39/n8X8EXSxHJMBJ9N5FTA6tk47Ha5XR3tVwfOavE51lR86ltSTnHdTkIDBDgadbFvcNr9mnMfNz7TWwe4jltH8nMNTX7NtE9jj9alPep3AP1l3/tbwQ+spr1M+2nEGWtiOqV7aU/JAm00HZ43fnlO3JruylCzl6SKu0XFqO4+Vvn3JPqZzuqeHT29+85vzzne+M7fffnse97jH5XGPe1xe//rX52/9rb+Vxz3ucYvnTkjveMc78qVf+qV58YtfnHvvvTd/6S/9pd8WH09+8pNzeHi48+D9O9/5zp3Vld8OXfcrKTa+09I6lXEyGwGDAYOL4N8RnqZfM2I0kIxoOQLdNrh9BIet19H/pmUUZAI4pGkp3UqMCpk0RYCmKH2VqgE6o4bsT4M1jiHb0nKqVJNdg2EngY4EnRz329QfNAAGvDYYlBnmnQCI+8oOQLdQtBwadEb81laDjpHeK0nsExtfGjaDDbbbRtSR0ckpcASv6S5lCRwuJbkr25VNjw/73I4ct30cZjmfCQ6mVQK23eCOx+y/yfgbTHmu8vp5c/Uk26+xc5xzdu2XkvyhJP/wOLn7BZt6b03ylmyi3tSJaxHbZLdvTrL9wKPT3j/kO8zyg4xTIID5WNbkuJIoR+WLD/V7PrTsPpPTtlN2GbRYq4eAq3PJqziT7ncwigB7GseWz/qs67ha3jasBS5oT6hb1pz3yZ6wLOpWzqXe95xxu0iVR7azThD5LS+9x3lGnef2OoA2tdf9E5y3/LUVFZbDfJSrltH2rs1rzsm21+NMB7fpuOuBsmUe7WxM/FO+LQ9reYljmOax5Jw4qPpI1flg9KIXvSg/+7M/u7j2JV/yJfmYj/mYfO3Xfm0OD3fDCb/xG7+RF73oRXnWs56V7/3e780v/dIv5VM/9VNz8eLF/I2/8Tc+IF4vXLiQ22+/Pa973evyeZ/3eQ9cf93rXpfP+ZzP+YDKnOi6d1KSXRDfrRreYmDwNIHylkODsRbdIzAyKJ2UZ/M2nxUgnRUa/ioqfq2XPLhuOg2n2TWKa9HkUvulCogGbopi2ZHx6gnbTyBCYMI2cGzsQLqPOK4Eo3RsWM95UUoaQoNogtUJhDOylKwbD0egklmeaPAov+0LR6J7zrFjucx7iLSHymNZmq5TdggaCH4pr85HcNbjPjh+fzYPf787mw8AGiTSQNNpm4w6yWNPB4uOXrKU7/YdV1ObjrqBYGCKSPtr8q2ncsk+cVo7VdH5e5O8Mckzs3mI/u4kP5XNMwME6/eqvLaPcsMxmoCwHVYC6I7V6Rn/3Q7Ut5Hx2ppjxP7kK2E5lyvrF3Sd488y7AwHefrQPucw58QagCVftBdTxHqaU/3ZWXXQw+DbjsQ0P9t2BrWmIBHbVOJ4T0EIt8f6yTqt6d0/nMtsJ/mlXgrSTUG/SUbXnIPzAinn2UXbTQfQ7BytOTiUI/Lq+7SBJzp32xog6DHl0PWb76ZjYLD1917PaWeoCx3QsmOzp4dON910U57znOcsrt1444150pOetHM9SU5PT/OZn/mZedrTnpbv+Z7vyeMe97g861nPyg//8A/nhS98YT7iIz5iXFV53/vel1/+5V9+4Pytb31r7rjjjjzxiU/MU5/61CTJV33VV+VlL3tZ/uAf/IN5wQtekO/4ju/If/pP/ylf9mVf9jvW3uveSeFknCJRBMcE3Y3mTIDdCpXKcAIgjibYcWgZp8N9Kt1O+snDP8h26wYNwhThb1nJ1lkzUK9Rt0Kc2kfDxUi7+XYe8mQwUt5Kk+KcooGM3rCdBu9ROiteR/vo/JDYj1M03mDXNEXi6aiWPz8D0bwHuk55Pca9iXfWbUPqFZQCn1PcN9lokewAVF7tfK6BmKNsAOOnJHnZM5P3/GLyDWdl3JXleBXcTKtA5cUGnHndl1OwwhFd5iEo6zHnLZ35/nO1oFQ+14IWBGx2MCkvp9msFvxUNqC89VEe+walNRDmeTo5kj2e8tUJMWCtA1AHZSrHYPEQeS5kV1bMw3lAdAKw1kPtq0mX2j5M4H4C0Xwxhx111tXxd/T9APcOdS1ZrjyUKLOTnBEQT2NLu+i5a6I96bl1uPmwo3SIMmhfmH6yzwbS1KOtn3OW+Vxe5y7bkiznYuXIc9H2aWqD85B/8slxtw62LSWfDEZ1XGkTH8xhI5kHBoRoHzmuk42e8M+1SA7APFJ1/k7TwcFBXvWqV+WTPumTcuHCdgPvc5/73PzwD/9wnvSkJ435fvInfzIvfOELHzj/qq/6qiTJF3/xF+c1r3lNkuSLvuiL8pu/+Zv5hm/4hvz6r/96nvOc5+QHfuAH8rSnPe13jP8brj7cb9Q/Ruiuu+7KzTffnM/OFognu1G3ZHdye3VkLdIwKYtOWkeJW/cEeBj9a7oMaa3U7SwRtBKk8VW4bA/vXxqu23GaosL8z0oer+6wjczjMgyuDQBs6An82Nc2PObJacvDUbZbidYikiXy6+idx8WRNMuFx3+q12NBI0pD5OiX22gyAM2QluBn4tmyT8DV8TJYmniibBVcf0GS/+rTk7wx+Uv3bqL/VzI/8D0BGLfLsmk+LH92gD0/y7flzUEKO8/N52inZeU0W8DPOs0bnc3jLAE9P9oY5OM3eyZwe54BXZt3rMf3qpNY741nx/dkOZfaFgdgKD+H2TpCnIOc79UZnn8lln8p89sWPSbsI+utSX8bxNGJnZxAO7TWBZMskR5s3FwH25PhfOoPByGmIM20quG2Um9Yf062ZBoD5pnaOdVNPkmee5PcOFA1BcLYlw+Ft67yWc6nMZr62k6CZZIBGOrkiRzMmOTM/XSkYzvip0n+RZL3vve9efzjH79S86NDxY6fk0d+e9pxrt1+ebToul9JoYNiJTQZmqY7zyi4rEnBTQqvnnkVGY3/FHlYixSVjnSfkSiDH/JZpTGtArQMR2ea35Edrx643TbyVIaOQK5tB/P2L4LdyZBPfWYnqLwX4DuiVwUe3FtzFEiMcLINLc+g1+NfmqKzrJcy57Y68rrmoEyOYLKVjX6AbYqaUtYOMq/0HCmNx4ZzwU7acbYO4nG2Xwf/v5K864c3W5XuzlK2DGYmeTBo4hvBOG8Y/TzPYStRT0zAt0B0ckaZb1rVNAjlW65uzNYJ4dwo3ZMtgD/I1kG5kuWcWXNY3eapL6xr2MdOz6j9SbbfNrmc7WqO9ZfJwC3ZbokL2sO6pr6hTFhGWibPpznqFYNkOS8nndl+Z/CIMmg9xTxNYz1dmoIjPGZAqUEYy7ij346SN2/rI68MYHDed3zqiFL3VjdSR7RM1msn/CTrK1JRupMs7cpUPvt02rFQvXqf8lDWWG773jrOtm4toGnHaI0YzGI7O+8t92yTAy5rTt+0k4KyRbk4zdJ2TvZtT3t6qHTdOykmrjAkc3SmxjOZo/SNShrgcXtFlQWNAMGGjZKBNaMcpCtD3VSINMYEb0EaRkUNzg0QDPyi9MnSqPgeQVfTGMCcIC15m+6Vp8khYh7XyX5pXvfBWiRtzWGl4l5Ls2ZcDOw41pPxPC9/83SMLDfsu/J8jPQui3zYwFBeSQS/LWNygh1xvZRduZqMWkH4Pdk8X9H23JPlOBYQWjbJf4Y8PU52+2gy9Haem69BEcrXmgzY0fN1A1i3oY4b5wsfGKfDxVcVE9D7+yVsr68lW93oB+NLBCesz6tnlY8r2TgoR9msirHe86LfrI/OMaO4a8GdpvN3ahyJ95wuz+cFEJIlUGRAiHan96ZVa89Jz4e1YEnTnQ737FzwGoMnU9kE42uAmQ5Nz8kX+4P62POQwQWvAkzR/skBbNsmx89k+846aA+pPx1wmJwC18HyznMK6chMQST2ifl0mpaZbPUBV0yZ/nK2K4e2P62DPFvmOu+5u8NO7ppTf63So+FcnaezPljpg8LBpaEnaGYUhEqVb55mZKoG90KWHWdFyeiEo2KtdwLvyVLJTpGf1nWeAiNfE5Awj458UUlZ2bDMoIwal2liU9mXf0fiGH0p78zPOuiQOW2PCaQ7/gYlbB9pLc2agW5Ummmbrkat49m2V5aaxkCRTh7bQR4NONh/7K+J2E/lm4bajokjmeS14z4BMYJ1y3P7pn3Ssmi0a1hPs1k54den7802qjnJueuj7HWVqHkIQNn3lrHyxnpbpldsp/nnfi+xj3vfkXKvcDVfy2xgxfJSmezXyu1wkcyn51a3jE16YAq0HGapTyk/7bcr2TzczxWiSW4t/8n2deddkeFHNtk31Gf9rTludnTZX5MjPEWwW55fRkCdbbvkecc2dH5Xl1A2CvY9HhOQ5bgSZFtn05lnncF19hnTcNVkytv6uVpxqLIM1h2kcltMHB/rSbeDep2y47zBNesr61/3J9t0muWb59pHk2PtgN55dJCt/DsgQB6mfGsO1tQ3Jdvrg5XrtEW2D3va04PRdb+Swglh4OUJ6Gi79892gq1FZVyfj6toqwwmIzcpihIBzn3ZVRhVmgSejDQyclbjzjQEk9PyM8s0mOo9tokAz6tRfci/9x21dBnJEgS2TO7bDe7bAWQklxHyNTDGrRg0HpMDV/KyPseifUaAcZjdvqZxIciwET9EvrW+7j3uw58iYjbcXCFq1I3gcop08p/ponRcTaSjXh67/YrOs6Orjbi7Tsq3jTp58XxL1udf++3ebMEJo4eTY895lWydirbL3xogIKQ8cKwsz13NuP+sfD5A3vx1nglum4ZvByP4c39OTlbrD671OmW+jhHvT4DnMEv5ynDusthnvOcXAjhSzzwE9+c5827b5Oh59abjyjS2HdO8MB3gfuvgszLnOZWso2XZiWe55O08UGwn1SscXkWi7uX2Sn5g1kG88s72W8/QZlM/eAsT/yfbPekxjnWylAGWaX3LlWTObdu6riBPNq7XphXwCcPwvHyXr9Ms7dGaPN6d7fNcxD/lqTbb8mS7S74pU9ST7I9rmSbn+pGoc09LssN/3REVisE0lSMneCeYo1o2pleyK1SMShjIBHlNBExOb2p7DIxavw0eQU/TkgeDYbepEZj+es11Efizv6usDLSY1x/Ba/nmhUaPwMegnoau42wQeTG7Eb8q58lIn2ZZ17HyOVpqpUzeKEdU5AbTPa4cGTTaYWBfty5Hk491bGoeOlLk5SDLuRCce+zJa41cHSc7V+XnRPnIA+XW41k6ynb7AsfJoNJ1EOjZoE/Hk4xMQO9Y9z3HKk+MLJcsi5UpgpfjbCOznTdTVJ6yQJm4kKXTQYDhfpuivq3/MPND+UzrCHLO8jwhyc1Z6hCODWXWzlydJgYhkqVjaNmxo9K+8mpUZYerA5Rz6ikGPwiwqZsYWDCwb/9NbSfInbbrlAiq2QdOV16ooxwssW6wo1diIIPyf6z/HrPPj5F/4nM69zwtb5QPjmn/PTeZ/1Tnbj91t+eot3tRH3UOVfdZ3zCgyGuUY+vaCcjSbiZLx8m7R4LzKT91cMuyLBhLdTuux/B4Jc+e9vRQ6bqXF27FmcjGgmCl92lor2Q3uuJoVrIEeKyHCo6GZAJpLIfna3lJx9mutkwO2hQxdkSsfFtJJstVJYL28niapbIluPW3CVqPDQXbNzlYjHwTVBLsUTE7qurtUAQdE7hvG6elaxrFNeNi0Gr+W4cjZsluGwyaJ4NDHghaezzlcxvW5g6j0GwX8x1kV357nasLk7NSMqgh2Kas8i1sh9lu/+FYHKsc9nnraBoGKwwCGVGN7hN8se2T0TZIan5viTAQbjmcs6e63/JNV3S/K5H+7kr1VUExwSkdPOoXOiDJ8g1kHRO2te04zubZovuyDBpMctPrdN4Oh/QOCBxk+wzPBLTLY9tAOe53XNyf1FcT0Dc5qsy+a59wfOhw0imyk9d6ryA9ZaLznx+25Txi/e7H8mu7YP7KA/UT6+c84C/ZOrbuEwYS1+YayXrPdnYKALg9pSlwRJtLXujwRv/W7f2nnrBTQmeY56UGBLha136jrHj++JxlH2brSK3ZEtoR9/UlpKEjXrxE+zM5WXva0xpd99u9JsNogDMBzZIjrpezBKkTYPKysp2EtfrXoh2MQl5QW6YJ72V2Eh0r56Vy5bYlR0MY9SF/k/IuP8kWWFxBeivwAiICj2mpP7hOQ2YnZjKuLIf1TGm9XaF5HJX2mJen9h3f4GKZ6rX2z8Q/+52Ghc5v20UDn+Hc7TtUutLULt9ze8sD2+V6DIK4har318aDdU1Gt8b+LpTDfCybzqrLIZ+Oyp5mlkfW0/wn+rcD43LteLAcOpDT/DjN8kUEF86OqwNPsnwuq6Cc/TQFP46QNtkdF8+DtXFkXZUrOgYnK+XQYWCZ09fuzRvl17LILTtTu5rOLxcoL9H5g20nah10srjtdQpEHOufDqzlYk2evbJEHqlrGLRZW70gj+wTOuGUG9bjPmO/29bZxpAfvtHLfE72tVt3e/+8lYj21+XsvtWQtoB2x3aQMkq9zXnKLXYMsJQ4jym3yfK5MF5fGxvSFJhLln1Unsljr007Q64gDXUcAxN04qfgybVIk8w+EnXuaUnXvZOy5iz0PMM5oxvJctIy8jsBidZ5MlwvTUvyVFZr/F3AdU52G0fWZ4UwGdrmp9G24lyLgjgSPjk05IX9Qp6qEKxoA968/cRRe+dz+whMaWBoULyVbDLyUz+wHoImOgBTdG+KvtERab29xrFiG8kb+8CgvNe4VbHOL+lgyEPjbDrAPYMPtnfKa5BCObFTcB5Q5Jawk+zK5SSL7MfOKaYzCGO/UF7WorYGOeWT5PZRRsmDnTLz3uOW5dcSX8D94+w+l+L5aUcwStN8BDATSCTvnGdr99kHlVU7E125OVB+A2cDrI65dUaQzm3uOKzto5+A8qQnPC+b1jJtR89yznIm3uzkcV6urYqUaAfIU+usU8X5Q0fCTsU01ms6gLQGDqlnPDepF1kGndSTLG1BspWLy9kGOWhTp+DLtKLDMWEQqXVMc9wrri6Tx9Q1dEatk9dWKtZ0KsfKzt0lXG/fMS31fctmmTw/LyCwpz2t0SPtKD4qZLAw3fexo6VVXmveNYHKBH5bBldLuD3GkYpD/cpHlcQllEPnicqBW0MYpbUS43J7slT0bD/TNB0NBY3FtFw+5bWSm5wXPgBMRVqDaEeg5bZ/p3rpFBjgUwFPvE+gwWXa0ZiUMvuOYGTaMkL5spNLshFwtJjU6wSv7suJdxvFylUyb5NyJHvigcZsAmHBeQ00ebTj6XnMOcw3hFVWWU/BDuXsCGXQebYzzYitHWeuvCZL+aST82C6xtcKBM8D/vef3b8x2+1LN2Z3vrU8ltH85csOsOWBc+gk28ivndGmPUxyE8pjvQR0JG/bWnsz2CHSdtyPst0O2PaeB96pT0qTnZjy9Jhybn3BtlUevCp7sJLeeslyw77gy0AsK+c5/0xTPjj/pvEhILYTb1k9zEYeL2aph9gOBxh43nnF/nHQYOKN+T3naSc4573aXbKzueao02nr/b6C2zJGHcIymtf6hHqI7aYdY5reO9D1o6y/8OI4222ZHQc61m3DmkPfOtYcqWuJTh+l356WdN07KQShBGwVCE/04FrJRs+AvGl4bOfD1AnO6C957l7O/mjw7Bwku8qcho2K5D7lNThnWxnNq+KjsmKd3K/a8uzkJbPim8BRz4+zrJdEg9J6zvvyuIEvQX8NJA3geXIw1VGeCKLp8JhnGvkJJNiBK13MrhM4yWipwLzpj5GGAJ682mlhe8wnne3Jwe2/wVPL6hfjmZcgxw79JDsn2TXw0/WjLF+J23o59qdZyizLONC9iK8CYQYYHOGdgKTH3/JaWej/VK6dNuqNgvJ7sgFF3bZqR8XkgEBwTrnyc2Z2Itb4bP13n5XfN5W1Djs80/w2r5Q5gs3ydyXb7+tMOuhY15pv0h8HOu8/dcdaMMHOAh1szkHqD9qTyRGwI+2oefMZSJ7iOmXM7WIZLP8kW71EW8iyKedcdabuOMzufEh2nWG2r3XYNrmcNR3FOvpve8f+JT9N421uHg8CeRKDiWsyQ93MNrfOKfDGue8y6UBZl7WuBjKYnn3urZOXdH9yqEtrwZc97WmiDypZcYSBCuI8ENu0XC7u/SlSTuNiJdB8BlRWvjaedK68ha1lTlEXgtICcX9Aj0v23h9NhUYl77oYLaSCnIxVgZyBmsH6Sbbgx4rNSnOqr8aG/E9gq33E8bSD0nrYP45CTwaW40fHlVFJ8tr7Ja+CdVsgjVLl7UjX26c1Im7DGrXddGjtZEyR2l4/1fFahJoPgPqV2KammeaTjbej9M0/RSvZ75N+COrzChblyWkZTFibm4fZnXe81/I6dtyeRV7sBJ9mO8cIku5P8lFJ/kqSP53N6sUUIKBTQXDJviKQO832uRI74zwuH30upv1zlGXf8zXCnK+cz5Tz4P4UJe+Y21myHFR3TUCUK2mk84Dn2kpuibJhXTUFjSbdZXthPcpVCzu9drztNFGPN13zG9D3eseTvFe+2y+VTYJzOzGtw2MUpOF528ygo/uKwacHc7wqS5Qn6we2hXPEMmj5mIJd1BUcGweS2hbyTGeJGMHBNreHzjCJKz0MDjBgWH4Ps7TnLLftKk19s6c9PRhd98+kEEh4UnqC0mgmS3DcicmILhU1wQKVnKPWrbf/rKNpqCQM/KfIGMtx5OJilmCzZFBUYp09T3YfUHV7k+2Dhn7GgcaIoJH8u13m6TTLd+wbTLhPJ0eQUUY6LnY4et3XpjY3HVfEOg6WM4JZt91Ox1G23+ZwW0iWXwIdksGo5cfnyTZS336jcacDcjSUQTLQ6bk/rlnZY3nHSOfI9gRWeu7xZR/yJQaekx03Bx2mel0+wV4jyyy3suPVUztzdnr4UCvrZ/+3DrbB49hX/T7pTCkcZbui0PKmMXT/U7dNAN1AmeDYTuAVpTFYbT6m4TdhLOtuix+yrg6iQ1VeklmW/Z0h6jPag2l+M+LMNvDY7Z30L+dZqd9L6X06VXbIyN95W70eaiCCQJW6sja2fcNjB2HshNkGcG71nI6ZbcBJNvLcYAbH2HPBdU6rkr1ffcFxL5UXf+8lWeqZySlyXb5HPEC7ZV1jx7dt50oL28+yme9I6dh/3RJs3ZPMc2Z6zpEyMK2wXGt0XoDtd7POPS3pundSGFGgAi/ZYE2KtJOTE8uKhVH9ZJ7Ak1EkD5NCrlEkwJ5WWQzKet9L6awzSEc+eu28KJ4BikElDSWVH/OtRbSYlqBuAnYEBm3jia4VmBxk40h5+w/bmOwaKwON4JxfuC5fvD85PyfZbHNhv9twst8oF5YjXrfT1nN+x6BlczyZj4DLzjP5a1o6iOTH/BIEnCDfkc5NdJTIH3lycGACjWzL5PB53ia7wJljyb4sGZxz/K0PWP60QkMePJ+9rdJApO0hYGnan03yN+9L7szmlyznS+t0VJ/8renC9r8dM8/Jk2w/RlkZKODmOCbL7y9UDugwsZz7s6sTCNwn52pNxtm284IVdh5tN6i37Yyyf5J5LA+ylAGm44rEpeE+ZZ2rV1NbJ9BqfUs+CVZtM2mzkuW4UR9bjiyHlknbHOutg2yBsYH5BDYrM/w4Jh2zjhedKeoxBz97jfPfvFo+3E7W0XKnVZWenyebk44/0XnLqXx4zKJ0064Gr6xwHJjPOwn2tKeHQpNevu6IxpuTw8qLCodAumU4rVcdmH661vpZTxW+ATkjU/0nKDrJUoF26Zl5JlBRZUJDY/BIIiigwmy7GV1eA3KTUaRiS2bjw2XqZNn/NTA9poKk0ajx9taLlstIJLfIGBycZKmc6UCy/aTyzzzctlTiWHhLgT9yueagTI5r03DLR7KUacrXifIV2NlwT+TrjczVaHKuWMZct51pO+BrUTiWYyNsY++I/pSOPFAO7byXOHebhuPa8zUg5no5TgXwLft0yPdgAKZ5fibJ27Lbz+TJ0XUD06Zjn9OR4Jyc9E+y/W4J22CZofNP8NN+4LzjionniQG65+oaYOQ1j/sEtM4LFvS+5zh5L02O6OTEd5wnR5JzpfqP/LCfqMsoO+xT2gHaQzvH/Pc4rK1keTXGTtbk0DStA3y93r7mtb6EpT9+36N8lH8GHQ5w7MAW54vBe/+nIOYhftN8dTmWNwJ/z1m2YSrX+CI4t53kj/3ea3Q811b8HYiZZPlao5NH6benJX1QOClUwKWTLJUy/0lV7FTOTVvlzYc5JwBDoOKl9uZhlK88k9fJsJrPLsnSCBrA2gkKrplvbpEo3wZVVbY1qtPqyASiPRndr+XDEaGjbA0No4fMM21/YdvsNHjLlsGqAcBklMg/FTGvWwYpQ9O+4eYhKGD/r0VxLdfROcclWW4nMjgyUCx51cryRKCZbI3xMfLY6E1OglejCI5472C4xnaaR0ZaedzntswHI/HJtr85L9fA/HRM0MiVvuCc4NpgqOWstWnNYSHIupLNA+sTmOo5x6X5y4fnUnlvv/VhfcpR/+/PUramL9FHaaprqSe9KjI5qc1bvg2wDYgnoE3dNrW/fdByGAC7D+W4LznfvJ1oApe0R5YFyx75pvy3zRdxTh3vgEyyG/zxWLWM8jdtqWKb7NicKE/5mZy5zgfrBZJtGuvnOLAcvpBkzeFNdsdtzdliH1EPToEWbq9aq89yYXl139pBbj12sKegyZpDzHJ6bbKFvEY7tebE7GlPa3Tdb/fqxCIYJXFiV3lUYU7bYwwYOwnXwDfL9vHaf/mtcePefQPk8ss3cZSPKaLbsmlICbbsrExbnZqv/dNnUcrLxSRPymZ/8HuzNOqTM0SQ7DSMXh2f1dUPWvI6DT1BisHEmnJmPhr3SalShrxNoGW5fJ7X0NphnYyHI9zH2b6ZqbRmJJPt3uC1/caNTrcd0wfMmo7RMI6928Zz1tfrk5PBPOcFDZx2WkVwNJT36yQxim9AVhmknPMbRr3ONhH0kD9vhTGYt4GnE9D0lAs7HL1nXcU5TRDIeXqqY/b/2raOoBw7773HyHvbWP3E7ZF2YNomk/Vd60mWY+g0DO5wLJuOPLesNYDYdHZKJ/I8Zp10jHvu/nAZPD7S8aQHCAxPdJ3lcXzp/HA82/4pGME29T6DLuRravvhkM/BDJdBvsxHycGE3q9sWu/YOeBctd12MJHXWb5pchYm+aEjTXLgpmmn4Bj5ZPuowxkcsRPF8aL8N1+yHA/iCcsIZc9yeK3T5DA+EnXuaUmPFXn5gMlgqddsBKokG+GkAqGymsCHlQqNmAHyBJabh7/jLD9WRl7sfFRhTINpfqsEDSrJk6P6TO8oGdvd/H5gzuDGhs6R06me+5SP5RCMBfkY1WO/kicrTkasaFTtXDoyFuRhXx0iTes/yZKXA50biDqC5baUHDXl/wQo2Z4158KRRYKfyXBWXhw1LnGusc4DXJu2ppnnCWScNxasnw+CGwidZrtS5yixQTvrbt/X8BNsTcD3BGkJCJLdSHHHh9sE6aC0Ho4HwRlXNFr+FIyYdAHbMjkCdIIYXZ7mk3nwds2mIbVuftekfWE5Yd9z7Ngel817XpVpuSzHQH4KRBjYMh1B+bRqSb6mOiyva4E3zkPWU2K7Ws6arZn0c4mr6ZMNNP88r7z6I8Ys0/z6HnXN2gpDaQrkuV6Ps3WYnR87sJMNncbPfNNWOAjKvp0CntRPJb+q2wGg8mBdTceezhdl8Uhp2l73BdORjz0Q39PDoet+JYWKy8A0WRozAiUqixq/Tj6+7YPbZAhYrugaHRYqnEa6O6kZySa4oCFnfUF93K+dIS0VC6Od7Z9pVYJAyESDwXT9DoHpQPmqXO3UTBE0/nrdRmbN+LDvDUI45uXN+byq1q8uM7+NVsfVkX5G9MwrZaNOQL/4S2eKho9vL0qWBmvNuDFyfEXpyRt5p2yvRZDX5MRp7HQxwmegyPomg+w6PW8fikG0XjDg6v2+utsOREEW5axvZlurj33oVUo7r+WloJ71GAS1L+kk1emqHqM+otwysj2N9WmWcjQ5X/xwI8fGbQ6uMz/LrfyzT+gMcxxOkI5fqKf+NK8EYkzDAE1wbWqzo84lb82xc8O8llM7KwTM1Bucs+TR/d45xblt8F25OO8+y2F9ba+d39Msx45BN/Y9z+0QsW/pcFkvJLsOE+0v29gy/XbB4B7Pk91xd0CENti24KEQ22PdNdXt65ZxO7qWd48z5Wpyeicnln0zjT+dlZ47mLGnPT0YXfdOynGWe02rqDtRqei4VYHglcaLUQcqIRtzKkRGGxhxaZSz5XDvsiPCrMfORLIF+uZtbfmZzhDLsVPHyLyNE4G6we1UNsFj+9JbKJrH15o2uO6xcvSIy9AdE/aFeZych8mJq9zQeaG8FKxRiXNM+Z0a9h2BZdMZhCZLw1Mnhm0qb+wb9ufUXm4hs6OzFkHvNTtA0/YAO4oEdRwHtn8tgkuDTGfboImro8myToNIll3++uYfG1eOvVcVO+8vZ+uwn0cEpNZHBiccUzs5Hac1B5j5pvmebL9PwjQTgGfZ54ENf5RxAkB1KAjuSnzpRfPy9bIsz/O1+UqW/55TD1J/OaCU7I4HVzUNLFsGZY7A1sEvOxZuk8d9mock5jFYZl1ruqXt49sQPf8taw6yOLrPtz6uyeAaMG9bbC/a5/ynvNXR9ZxdK4v6nXVP+oUyWJ3f9jCwwz6irmTdvH6IH3mkbLU8j69X1jzWxAdszz3ZYhG2adIla3rFDsolpK9unPTatUonSW54FOrc05KueyfF0VdPaN5PdpUkJxUnO1dTbHitfJJdQEODRqXgCM0E+Kdo9RQRYv4HA5c2ZFS0Nixs2xTltGNCZ20yplW05JUrBDTMNDRW+HYGbVim6LsdQtY1KWbKiQ0JlfVa1CnZNTwFwuynCRzZeJJ/glS+UMDjvmYg7LReyXJ7BFe/pnGkXFFm15zklrsWwTvI5jXNUxTY7bH8TE4kaRrvEuvhBzDtQDEIQZpAMqP+BtbTXPYqZ4kBE4KIY6QlCKY+YX+xXAI68s0tcecBLaZt2QTd5s8gm9TXCTPC7WCMAVIdqwnUlriSbKeLgRaTQVf5pj6cwOxUpnVieW4e8kV9XeI3d9ymU6Sfgj7l0Q4Nx7ByQvnv97UcPOH4T0GI0gSy3YbWT17paLAfnM68VNY4Rg5GuC+sV/pdMQcMgnwe88nxoJ5kO6zDT4br1KEdY/NQcuCO8524p2Rc0Hx8dXP/7aDQ3k/OHWVicrQf6sr2nvZEuu6dlE4YRwOp4KkYk3kiEQSS1oCTt204KmHD3zpY36HuNV8VIKNLTTMpj/aBjQyN9uTBG6jbYNhQUkmdF3G1YWObWqc/INf0B9lEfQqApkiiASz/g3xU7F4J8gqMQQw/1DUZnskAty7WPUXVHFl0X7Isrw4VWNtAcesD65qAPMeHToDr5tiad0bY1nhg/9nYu3/WthyUdxvO8nFftgCPxtNk58vGmCuTE8g3uFwD1pMslbhiw7Sn2R0ngniXy3ZOsmOdNYFLAxOW4Xae6Jh8MuBAMG6Q2a1sbc+0CpPMfLVNlaNuteSX6xsMoCxO8sTVDwOt2gh+2Jb5qM/aFuvQNbJNKM/VM56vtEUeg/J6Rdc4JhwLruwmy3lph4dBuWm+OYJuG0E+7Nh4jEx0QkqUDzoQXGVnwGIKFpRYb1fs7kZ5bGf5tV1h4IBpKL/cpXCe/aUzaz7LR+9zFai0FjQkPwwiMKjgfuoYTnOG25851pQpz6s1PXwt0Un2KynXAl33Tkqyq6STpcJkBHyNCAaanwredXBSTxGJKTrsukxUilYivE6QXp4cScxKutZPI970fJMVjQCVjssmb/5n2+kETsaU7Tc4530DYSpzGzg6qZQNgiwa+x7TqaFh7LVp1W6q1wBgGsPzHL+2t+0k8G86O2zlhUCE11gW+8bRw2RpdJreb2qjMWQ7e411rAE6O/2kqe/NO1c0uBI2jQ+NctNxrlK2nJft48qUgw3RuQHT6TnHHGc7ogYFzD8FUxzd7FveqJfYf5TbqR8MgAroyU+PJ5DIYIqBX/Rvp6v5CN6t36hf2GfmbW1V+TSbZ40YCCCAI3nOeLx5bF3LuT/prImmyLX1puv3fJrSUb8xsDWB1RKduDX5s77lc13ljfYoK+fTXPRKFvWdncFJ7xxkuV2TgHvSY+c5zhxL68tkdx5MgSTPsal9dAgddLMeXpMpBpVYVpSXfFhfe95a17Cde9rTQ6Hr3kkhKCl1Mto4Nd2kfAl4a5RskEuMoE2Ah8feRkOisqnycITWCo3KwMrTEUy2g3Xa8BLwT6D5ONtotY0TnQqWaR5Zt7fUmBz5NXiy01QjeN4YT5F8RoZbVusmn01/pLzu9ynayhUXGhiOqfvgUP/lzWnJ07QCyPIPddyf+4mrcxMwczqOx+RksL8zpLUjyHyWeYOnNaeneewsG3jRaSxN0Vc7kDTydhLp3FKHUB9NAL7Ol9+ExHYSBDkowLpZTsfyYpYfM2VbDnU8AS/3CYMODgCxfwyY7JC4PybwROej9RzrniPMnkMtsy888Fixb80r62vQio7WFECgvik/U7CLjlCUn9cnJ7jBJMoMnaIoD2WVcsN+5dxsn1Cey3vLXFtJJj9rANbtph3y3MrQLtuE8mMQP9V3Z7areZwTDOT0Hp1YpqF+op5wvZwv7NM1WrMHLG9t5SdZ6gU6oEwzBbccFOzx5LjY2bZe3Tspe3qotBYMua6ok4oK14rFEY5kVxk4gjcZmk7Ug2yXjA3Y7Wg0Auw67SiwHc1Hw2BFT4PACJUVIcs2UHMkxQqq5Rv0lKdGoeyM8HiKBtOpaZ86gkRwasPIOh2Jo+PkaBdpMgasZ82QdCzYZoIyr3YQULDctclJ8OeyKuNc0WEaGwhHll3+NAe4WkEe1wz45GDTkfDqxwQKmmfa3lQ5vJLdOuiwHmY5R5vGsmkAY8DrPiEf5Zl9ztUut4lbK3hcmvqi5dHBOdU9y1Dn+Gm22zOYznN0ApfkiYCq99nP5Y1z4STblZXqhSnKTTIItyy3LF5zH3JbDdtCfW554EtMmpb6Nlk++9VypzJdzqRXOM6eQ2t1MDBh58yON/uENqDt7ZwwkC5R51L2eH/SB83TOqbVGzvkE4DmR1ZpqwmA6fzSeSL/JMsD6z/NZlsx5+QaYGf90Tm3dlV/UbfSAS7RwZgCSa4jSsd2eIxKlkNiGdZzMct5TYd26ueT7M6/iZ8p+Hit0emj9NvTkj4onBSC3WQGS1SgNri8X8VhkEQjR4NBZ6iTlJOV0Z+mpfNAY+LB4ptXqLwZOWL7yLfbUWXj/fuMClHBME+J4Os8oG1gzaX+GqT2B/PUuJ7i/lrUje329i0CAEfe+9898iQDfq7O2OBZBu7LUgFN4M4OJa/5eG3idtxqQOwUl9puAi06C9OWl4nYH33TWMfKIK58cyzcp1TWlVHKuIFWMoON9rlB4wSSkuW3UfgcgB0MBjqoEwi2L6vsUsGJHQc6ZgZBTee51rx0tj1fSAS2jrI6L6+xDdN8s/PC+tlHpUtZzrNkDrpkSNe0p1nq2V7nR17J5xRMqBNv0OV7LMt6y/bgJEsZ5dZQ9hWdTDt6Ey/RdY672zPNKc8L5vEYM7DUOi1frdvfqmn6ZDmeBLGso/OLfdz7UZ4esz47D+yf8kBbx/yUs+mbIgbbdhbrcNDZiM5PkY42K1kGziYcQX0wBTfoMJm3tZVu287JiWu+/thGO8ftHztnwbnnqeVtT3t6MLrut3txi0MnPA31NMGOs5ykBFWO+vXd7zTanPguv0qAD3Xa4LMcR6isfJpuAr2MPNOBaVvYXr7KlhEpg4IJMJWYtm+HsoOYLI1H85Fq/Mtz+73/jAzSINv5OkZ5rJuAgoCNyv6mLPuVRu5ExxxzGwyvdpVHyl/5IM+OrpKH3uc1A7nJ+SKx/wjG6FwxP8eRBo48eoVgAp3sHwNeyg+B3QT0WCbHvzLCfuSbypLluLEf2fapDraFcsA5Tn6ajg5F6yqxzzlfHalmPq5+UYYN9OxUROkmufVWKM+5iX//G0Czfus53ifYZ9q2lfOIKwbl5/7hGttkgOiypvbxnPJPXqcV7GRX3o+VlrqU4M9j53EmHQ9pzbv1nZ28qX7fs452wKr5vNUpukedP+kDO1Fu13G2QQT2v/WTeZ3mrvvU87bXLPsTGI/SBfytgXe2n/on51wn0b45+Ma+47hQl/HFCrbrbScxD2WCeo421GlbPo897tcqnWT/4Py1QGsB2euGGl3ylp9kNtYEjE1vhUglzH2rJJfJ6EadAio3R4GoVKZIC9t3gP/yYueo5bSMpqET0/8J3NBQEwjakHIVxAqLzp6Jhp3OgbfOuI2OLh3julekSpYFt/U4y33cHIPpmoG6yQCX1ysTjn5y5YhERzHZ3a7DCB77w/LIOvhwMyN7yVL+3T+Ts+posQGDo9ctr+eUEa+ARfkMPFhW71OOTnDtdLjO8suLgYZXB9x+jkvrcgSyvNEpMzBklHgCb470Ow2B6VoUlPyWuEWVz6hQ5qhTCNh7bdILHEfWuRYhL7Fd1KNMe6Trh9ldxWP7p7ls55L9RFmufiMwW3PEp6g9AzTU24fKQ30wOZisj3roMMu52vk7rXJ79b96gPPRK/XT6kb5oAPHoFbTeq6srfYwEDK1dVplnPS7+bQT7IDGAX4dJwcAyBODYubTDoidIvcj6z7KcsWRvFH3WWaok1g301B+XI8DOZ4T5cE60y8XKA6YgmTUI3va00Oh695JcQS2isrRHhsSGqkabioeA9yWzclLhUbAZSNC5WWDYsclmY3WqdLTQFTxTSsDNbpTXXbMWjeVqttnB8CKmcqVwIIgn8ah+QjWDEisrNeir2ynDSiBuhX6idLy2hQxnqKgTEuwZCeS/LoPprYE1woqyefaVpfyQUDMc+5FtjO2ti1nDUAwLWW4ddlBYFr2d8E5eZo+lsiy+5uiuxNYJlCgzFFvMBLKOjnOdpL5fzG7889AnLwR+DPQQSeRY9IyCIS9XYftJ7ilDiBoaf81HcfBjofrOsjymTXWTWer581XAOWVUvY9HbT2y5Us5YJAkvrC/HjuOYrf9J6HDIxYp9m5NKi1U9f8XN3myr51i507B586lynPdmj7JjrL+SS/nOPk+Z4s+6ntZ772gZ3xlmWd5VW9EgMFU7lBHjuBdhw419lO1rHmNFv3OxjA9pVXB6bY3iDtFDyZyAHVUsfSjhh5rbx4PNeCW25v6yQmcsDNwZmW77G6FulqlrLwSPyuPiIte2zRde+kmGhM7Ag4AkRlYYB/mu2WLYM0A6/SmnPh6IzT0khPqwpTG9eiKV7aN9CeojFUrC3fisbltF00Iowc978Gov1mw0glaOBDZd++WQPPvNa91MxbsNDfBO4NThk5Yn+sRQijdHaIjnGfvE/ydJqlMWC76ABRdg90fKRyDodyk6UstH02MuW7/BLoEPhw5YZziw5Ay6Ks0lElcV+8HUSCP/chx5GyxvloUBilD+7Z6XTUk7Lq1b8pP/vPfFM+mp/PpyW7ILt9xz4lAOGYExSTDlAGyyUfzmMA1Lb1n3qIc/0kSzlZc7qtm+z0tA8vZrl6zXlPnibdtrYCMOk/jisfvqfsWi+TrBvswK/Zl47r4cp9kvW009qJIeieVjfpUEblTc4zncpeZ3lNY73PtlO3lEcGENrftOUsi3qqZV7EPbaRupl8rM15/qhrreNKnouee9M8nK6XXM6k+ybnwnVQNibnNNmOfXCfNtz2nE7cnvb0UOiDwklZi6T2HiNQBM+eYFbCNXonSnOSjYHi9zUc1axRa6RjiiRNYIR88zoVJNN420mJzoEVmI0oI3Gsm3mSJdChATLo5TckyAt5JBAggJgimSQq5AlcrkV2DAgZCSPoOVSeaSsXz9kfrNcGL1mCIRtVGj0bj0k27OwQRB1maRR73c5r/wle68Cx3pMs+659Qse/39+4nK1RM8jgnDDoTJYvM2B/MHpsoN0yJpBMAGtgM0VxHY0sH01T/m3M3e9TGXQSm9fjzXlwRdcd6LCsddw49o7Em1c71L12b5YvuzjJbrTeKz1eAeg5HYdku32W8toxIrVfumXFjswhrrEvLyBN22B9z/KD/+az3Ln/TQSLbHvAI8e+eQz67HTyWseYTsAkt9QdJzgmoHT0v2U5It+yDIS5omRda1vhgJADQSyPduRUx55b5IXX3Hccw9IUWKJO4os1pt0NlSfmZ9nsK9oX6tRJTxDHTLa+MkSH1c4ay6Z9IJ8O4NjWTHOa5dLmUX9zRXdq3572NNF1/+D8Gjgk9T6dg07GOhHJUmkH12zgWq/Ld13mq3UxUtSyrJQYBTlEPt4/L2K25vz03tRnjqYwgkJASONuED2BLSt0RpsmnlvnpOjMN8shUHC7WiZlYM1RmhxYykl0jwap/3SK3b4JlDINjdAEnB0x55K/DTV5I8CJ7p8qne+ZZzoRU3SbZVh+CUAt523/vWfXmWaaU2wvwZsNcuvnnEuW87FtYHSVc/MoS9n1SlBUjsEvo66nQxrKrfuZPCe7/W3niVHrydH1GLN/KFMl518D7RyTwyw/EEtQy206bK9BOB2ZkqPcp7retHyTYXkjoLKTaCfe8kqH8d4sx4C8kQymyy/T0bFxO3ufPE/6m31unUNnxQ4MVw1c56Sjy0eyy0dlp07lNGadV3YQPZYdc/JXGecX762/er280Knu2FEX0QYwD+V/0pce95ZVPm2r24/uk0m/W39OgbvOrcoEdQCDNJzL5wXbWo5tIcejx+x/jiX7xHVdizSN4fVY57VOjwVZ+W0TQUSyGx2y0W8aTkJO4iu4TgA2GYaSFQ4jaS2H+b3kneyWT2Vxktm4MSLJfDasBNDkyQbtCD9GorwFiAYi2VXKjEBOzl+GawSEBCcEEDRudpg4lgQx5ov8TkaY24iSpdJvnmRX4Ti66AjsBEo5TuSXoKXtZ6ST0TM60pRbgxD2t0EBI2KNahtks83so25FOl35We5ZXstkxPEY5x4/g2vKD/uq/LcNN6oc0hRlZd0eAztY5YcA0U5Ey+l4XdE9Ep0h5qUOM7ghiGuf0/lqXQ7YtDw7EdNHJSfHxI6So/V2TMx3dQPl6cYsweBxkscn+Yizf77lyxH+BkZad3mbAgzkmTrSeoNAtz9Hy7kaYKB6qrTkh/rakWquWLBOzn3SkfJzdWAi9h/LJjnwM4HvtitIy0ALeSKfnkMs/zTb17pbF0/20IDbcm7d0DyeZ22XdZb70U50y2PdnKfsRzt2HifKooMMlMVpNYeOVsu6T/mT5cPwDGDR1rJvKcOcq1MQbk97ejj0QeGkOGroaNAEspPdaKYBHo0PlRLrYZlTZx9mY1StNKmIet2A3aA22VVABu+MqBF4nCC/FTrLtgJi2wmoe/9UaYNrBOsETqe4ZkM8RfzWAIYdkV7r/mmOZzJ/16O0BjJZTwEN20B56z0CevfJ2oQkqOc1Useh6dj21lXeuBXRQKCyRqBG4jYZO3EcW69KWK7s1NlBI63Jjj+654e9J/nwPHKUuvev6J8Oecexcul5vhZJ5X2DegZSDlf+Ccoc4KDjb4ee+fpSBALnlp0sAUnLt9PfMijLfXEDARRlv20Pjif5Ik+U3/LQsrp1sE7db2a7MnMp21egX8hyvDpmE5Bi/ZNujPLYmamDQeCY7H5ThHqNfTM5rgwkTHJjYn96fro/vWrBQIf7gfaNdXHMJ1BK4Hwy5CFfTF9dTVlmmyw/7BvaAPM96c3+G2zT0TlWOl6bggKdE7YzXN1YIzq8ky6xA81+oI1ac8SPdM+OMbdhWr/RcSa2cICIOod45bECOk8epd+elnTdb/daAyS+7+jn5FwQ/J0iD5Uk6WQlXw1PldaF7CpVAvgKb/MTrHvbEfmNrlVRs512SuhsmCYjRSNKvq0Ej3WNxnkiGno6VG5L+WpbJoPpiGbLZ3sc6et4eMvRwUpaKnJH3qa20ZmdgAR5dRo6mZbXyWGYDBhXAFk2y1yLcppvOupM1/ocwXV9lA1G+mzcWRbfxpZs94mTdzsTnks0suwHtqN9zXscG8vwZGQ47/psjuXfztQ0J5vOzgPrmPRd05I3g0SWbRBV8DeBwmS3HK7csf86HnUeqAtbDuvor9tWKI99tqT36CBRv9aJSZZjRv4IRE9wnTxO83la+Wk7LEvm7QDHvUe9PgWffOxtOr3u/uJYOzBl4N80dNxdB+fsJO+2RbZ/yW6QLLjetnVOcP5PAY3moxPHcWF/mUfbfY7JtPLEebo2H1ou+9FO6xGuk3faFgcLkuVcox4rn+5TOmkTUfYYdCCtBaE4b9qmKd/kJO9pTw+VrnsnhcrKwGctslKyU0MDsqagWzbroSKoYpmiZpPxNxCtcZu2WxwoHY3QpDAOlZ7AvW04ybI9VJqHw/0porZGXiY3rxPInsqe2lbyGLGdfADyPCVOfnnNPNkg8Hkb9zXBkJ0QGrbJyE3ystb2adWGEWWn63n7pLJmIGSDaxBSUDqtDE6OqgGVQXKyHOcLOKaTSIBZogNtPqeVi8kAlwxEmNdOpdO5n3ut7TVgJ9BIdvtrCopMDi3nZ3RsgHSc7Uojyz/K9jkg10ne6dhbptgv0/Yer3RzvlGf3XSW5p4zXi8keVqSpyT5tSS/dJbvSpInnpVz99m1C1m+qttkOXH/0aEm+Pb8s+yyn3lOotPEKLZXB5ifq2bsP84nOyKcX7YHbRPn9vGLCwAAREBJREFUQ8mAlvqIskonlH1hoo4g0J6AMuftFHRiv01zaHLgJ1lku6dAgp2I9mH1D/V66ym5HjqObHfz9pkp6zi23wEuln+ePaSsOADiAM9kQ3lMvWtn25jE+ndPe3owuu6dlNL92W4FOc1yz7cNSlauNe+BrhcAXspSOU2KgErP0XIbqJNsgS6VrKM0k+IyoGGk384QI7NTtLV5L2ZpfJJd5c/XMk+K2v0xASrnnSJxLpf3T1BGy1sDRWzrmsIvTQBmMsQEuQbzU3TVkbvzopPm7zywxbyNYHvpnn1lEGMnsoaP2096nX08jZUde4MoygwB7SSTjJaerqTlOechnTPK3RR1dr/wRREnK/nX5hL7ocaffXu0ckw+LN+Hunek/AQkLcf80nE1YGR6O0wEx71O2bb8M3JuZ7l8WI+xL5Nt/9+YjdNxmuTDknxekudn64C8Kcn/nu3YM7+/q0PQzWscA4MuBwUmfeoAyySXpEmGWHaQz/O3ee3gGdSvgUv2Ua9325wd9SmwRGDKOROlq62l/mWgKLrHeTI58FPApOcOPvi+9SODGxyfKShh/XFflv13qLTs65IfauecZV7z4QDLZEedzjZjwg/JLk5IZqfR+miyhayjda4Fka5VOs0j/8X5vfO2S+dhsuuCqhj7YaxOlMMs96/TqPbnpfxD5J2M8AQK7BjwmsGOI83JHFWqQpi2GrQ8R7cOstnDzfyTEWrbJyXdbT0kgq1GuPmK2UMdsz8mENvtMBNZ6XK8yMME1sjnmiLwZPB42Omayuk2EhpYG8W28RDpKj92RifnyfzQqJ3nMFDW2IdHusYIoZ1IruAZxNrBsAFlYGACW5PTWQDGaDLbbt459gQH5IfjZyeNZXt70I1ZypGjzLzW8jom5et+1MsoMPuO5U0AgEDUq8FsJ/mxU8k6e82rXpRHO1fVPxPYaDv8LI/HlHqQfK71a6/fnS3I++wkH5XkvUkOP2+zuvLRST79LP292a6ilChnBGXse/Zrx588cD4dDPftWDeP65/A9ARwy6vzO6/PD4b75q1jshbI4lgxaDTxwuBcsgvek63sTPakdfblHOXpSnbtWnCNc3pyMmjX2a7KeZ0yBw8c9GsalzX1KeWCurUBzQz52KbyTV032UCe85htsb6kbWG+8upgGueweabTRHvPvG7j5DzuaU8TXfdOykTetmMgluwqdwILghiDPgJSKyanbR1UljWIQTk2joxKsTzm6fEx8nivsmnN8PBaFR+NlYHwBJ6T3aiMHZxk+5Brr1FpmjgWNBp2HiYQSmNsw9u6GaF0ub3O70PQ2LceltUypv5nGRMYsSPGcQ3yVNYMVOksuS8dPaPsU0ZpoAww6CBNDrnb7fYku+Pm8SpQCI7Z36yHbaSBJWiY5gLBCvMfZ/sl84lPOx5tF3XAYZbyPTkUlVXP9963jERpp3kybTFjmV49WYvOHiL9pHOm9lB+7GwF9wnsojLYt3QObspmm9d/TnLr1W9M/vnVfPjVb8w7kjz37H7LuzEbh8V6ojo32e3n4J5BNWWn843jzwe+2Uee05OTZ7mk4815VqLO9ZbDNZkwLyY7zAbBBOq8X/5q7zwf6qBMepB6rW+cslPLuWd9TGDMQA0DAJbdCbx75ZFyybLoKFBHTk42y3Ve3pvaxrImvUZeHfhxeQ52TJiE/TwFSUuH2X3ZDJ1Dt+GxBjYdfHukfnta0mNNbh42TZOdSrbnyXIbS5UegQHBno0xJzUVUEGstx1N2256neC29xx9c2SIbaXxONJ9O1mOhDhK1LfSOPI5GXGerxmF4+wa/AlksQ2ODLKtHRP2kesstSwCCLbFzpWv2UBwPLn9yE5lsqyH4+oxIdlxCMqlM2uDM40XDTbvTU65+915SW0rI5psywRuCAjaXxOYI8ibyuKbnEprTlTr5APWk0PN/fTuz7VVvs4zzpVSx3cCt8Fx+bF+ICAir5xnlh8GOdai1ZQd5uWqRvufaU6yfaW022EZXaubEdryTpltmzm/znMonpAk+bqzK1/3wDMrBvMEh+zDkgMop8jjtnq+Tvp8qqPyYAeueSwHDgxwu8wU7KBMT/pscsztbNhusI1t51ogpdf8rQzroKY71TH1yESTo9vrfNaobbFesf7jPc4jB2mIAUycHw4g0YHlePANiZNeLD8mO+yso46hMQ+DMmyjnZiWaYfMfeigjPvZzjFlmHN6T3t6KHTdOyl2SNYmqEFJ09CA9p5BIRWi9zzboWFUjAB/cqbWABFXZcg/67ABdLlH2b5G1MqeWzoYOSYIseCwzp6bP4ItGn8DZYLe0+watTXwPvVh29Q0PbfTYTlZiwJN4Id19HjaFuctJGzbBGhYNw3XFJX1GB7o50gh20MHmuDJQMxOS48JmOp0EGgYdEwAh8cGlizbjgeN/xSNtMxSBkjeHkYqKDdvx0jvMV+bu1PdvWYee0x+7s9M5Nv9ZJBhHgwsDE7oOE1OKufXNJ8JqlmvAyCUVYLmlnVJ+e9N8u6cbef6phuSvDT5xhtyks3riO/OVn/xGYu1AMa9aP8k4+XN40h9YOBN2byY3bm19n+E/Cy7Y7Dm6E4r1dQxdmjtiLEM19Hx8jiRpnaUqndoKyizBruTfuAcOVX6SS+7TM9/B8joKNOxOshGD0xzt+TgDPUu+7YyxIDWVK7llDxyLDj+zDfpQwewjHsOdM92krjFfE0O5umQZyrjWqSTR+m3pyVd904KoxbJ7oSu4qDjUaVBBdztHtNyepS39VbRFQBaCGnMm8cDYsDmLVKOclqxkqg4GTUxYKbTZCdrWlEgrW1DaltOsxv5tnExEOW9Gnr2mQHNedHbEsd7zeGa+OF2KvY7wbnr4fFafcmugxuU2+MCldZJOZ2ctNPsGhuD9cp1H2JlmxxJZ79RXnh/Mq52sjiuJzqmQ7DmDNrQBmW2j/rP+wcr6UvNY75Zd+9RThgEaRCg5THNGtBn+ZVlgpeW31VAyh+DKt6mNm1vcb9OQYDzHOEj3acjUjovWlqH48Zsn/M5GvKsrTD0+yhXkvxINg/Pv+Xrkjff8L/m3//V5NYk/78kd53luynLvuGKBPuLTgDHzLrpOHMfTfqcfX1flnOZMsOoOMtqu+lgta+nVbeoTXagkmV7PFcn+8TgBO2dXwPeuj1vON9pd6k3vKWNc7D/HsPOk6afwHOJepM22faJDvo0rtaxBvTnUceuDnPL9hy388FyaQOoz/nP9hCHsB2VKeelg92fZbU8Nj+DXF6NMS+W7z3t6cHog+LtXjWAVFSM4vQeQVeJk5ZgoNcmEMiIRxUfDYQnqJVRFYsjWdwywuPmcSSNBpeK5kjXzV/rmqKGbB95Zjt4buXWY4JV94f7imlNk4I+0XnbY8VJhentJgVDx7pOgEZnkMaSQPm8yO3UDoKA4+xGj10GDYWNOx1S/0/ONZfu2aa2tf3g7URTNHSKhtPhcR0syw4ux9jysiarBD0er/bBGpDmXHLf29C73ZOBbp3lobJh0Fyinpryc/5btt0m3iPY79hUvqa5ZZlhHeTHRDmpDHcrzo2os8/I3ZjlB20Ps3xj0qQz2/8/m82Kyadn8wD925J8T5L/kK2DcoD611a47Cia2F8Gr1xRI78TyHWQq2XT+W9ZlC/LrINVdGYM8NkGym15p+5jO6yzPR8oh5PMk6o/6tiw7dPcpTNPJ4sgmX3IvnX/u584X6exn3QQ7Y+DmJzzttnUdT33qoJlknI1lZtsA0rnrWZZLug0r7Wdc5zOpR2p8mR9xL51wOo8nbGnPa3Rde+kMIrA6IQBphWPiQDECsP3S1QijsJQuU6GcQ3cMkI7ge9JsfGfkSIbQhpVG1SXxShtFZ77j2UaWJVsMM9TvFaGVsYsx0QQQJBOAM06bTwsJ3b+pogzX1lroG4jSB7bl83Pttm487xyzusTAJ2c9tIEVtoWg1y21WNK2emYTjLryCAdJdIa+PLYG9DSGTNRllt23wKY7MoR54uNu433NMdahnlpminKfjHLsWSeZNcZty7h6tgE+o5RB8e39/sjcLVeskw7cELAeSkbh+QZ2byZ6yeTvDGbFwow0s1+cxvvzvY7OafZOCbfkaVc34tzvhZ90u+Wn5J1oGX9RGnXwOp0nw68HUw68slSFzFw4iATdfBFpHPAi9Ty3Ne0Bfzek1fd7RBYb5h8j/JG3df2THbHMmpd5DQkO352Fq3byzPlhnqW7XBwcwr2kNfq7I4v+6FyzLlK/o+Rf2qr5dxOMNuSLD/RULLusqNqm2wZc39wDqwFA64lOs3+FcTXAj1YAOS6oDXHgpEVR9kcBaCy8ZLlWvSUaUpUUs4zKVwClE7u1l/FZtDGuvuL0lZBFzRNxoM8sM2TojRAmcDMxMd5AIHRnyPkazqvGpU3t8VO3ORUXMxyzzjBeonGuUS+uG2FY0Tq+NHpWSvfYJt1GJT0FZ12PG3Qu7Wrxtig+QTlJEtw4HYTkLVfCQQ9/p6DjiBH521r892cbSTbUWcCPcqIefAKCqOn7CuPm0GTgZ2dhskY0/nhvCaoYrkMcHSc70ee85Q3o6esh3NkCp4w8luqvBrskm8GACjfrDvZPlPzBUl+/59IvvhouVrYcqzXLId3ib+TbF4/3DewVXYauTfgmoIdDLz0HutuGgNK/k8OZWlyUKljHDChXLWOSR8ZINu5IpnfboVmW0+yff6iILrPQPTtdFyNZ72UeTtxybLf3a4pWGKnxWB/LSrPeqxjyYt1Dx3s8pEs5aLnk9PPvJ1btK+2+xw76hb31zF+k351O80P5ZO6g3boUOkZXCB5DNYc4MNsgz6sbw/E9/Rw6LpfSbECoTfvyUvyFgxGjBgBmRSxzwlEJkeEBpjR5KaZQCSj0+W/ZfMDWZPidDsL9Ag0DvFrG/kKYys6O1OkSSmxXWtRbjuDNVQ2jGxLwKNXlRytNsjmf+s5zPId/Yz2TQCN7eEHu5zWeQjY2xZHz3xMItA7yhZ8GHQfZiMfBSF2Er2iUd4ifh1RO9Axx3xaGaO82sl2BC5nPF8Qj3aY2Z4pOmsHyu03z75fmmSIq7UeIwIdR0gN6OgcWj4u4rhtIHHMGCV2ZJZONfuQUfAJOJUnluvo6iHKoZ5kXxwn+Ykk/49/lvzo8fbL8fcoHZ1Qyh35uj8buXhCNlu77j4rp457AeLdKpfEMWbgx/qPx3YWyBvlk84GnYqWvxao8tiwPy27dpg8FrxWfm0/ovutv7q0bb98du2eoV7PzUP9B2W1TXYy6KwwAERwTvIWrMlhY7nURba/DujYeZ8CDslSJmy3p3lM3rx6NpH5Js9O13t0dA+UxuNR4rMyxh3uG8qjg7yc7wycra36XKv0aDhTewdul657J8UKxFHCtYjkQ92mRcPO+qiw+VrT5qUSMRhiNMerAnQgzFPLpuOx5kQZBDMtV0PaFvPQ8qic2DbyWh4JPNaUMvknmLdB5xJ5ja0dTxoogy5HmTpefgaEhpqA2IA35xzTGHbcbUioyKe2uJwT3V8zoMm2r5rPKwk2riQDMJfBcbK8eK65HT02v2w7QfJdSOu+8bg2jx0J3rMjMo3XZNR7zYB/agOBK+e152zJ9RFkMgCRzH0enBuMTvOUoK5y53lJR4r9xTa5TxxYMMj+4SQ/cd8WGPGlEZZHB2/Ib+u78+z/7uzqtnsyOwR0GhzpJli2vmo5fdZmcijch55z7EfOz2mVnn18NJThuprmvuwGPtgP1F90GCYZuJLk2dk8+/OLSX4UZfBHR5xtp447Qfo1x6806b/JMXYwZrLx3tI01f1Q7Gv71AEH8zs5TRz3qQ6OBWVxLTjUvBxT613qKRJ1qW2s07Itk1M86d9kN/i3pz09XJowxHVFXiFIlkrjVP8TTcBzirJY4VHBcLXCk3UtUmTgU2XA6EgNrEFIty7R+FrZTspyrS1TJKjn3VpRAEX+zAMBAfmn0SKYM/i20WKftm9owA+VluVRKU8RPToSTV9g5rFpHc5rxV4qjwREdMhanoERZeUgS0M2GfTono2JnTfm7xYP81xi/xF42Nk1P+TLALn9VkeIDlFfBTwBPm53m+SaPLCelmEjaiDJ8mycOfeYhn1zMUugwHE1n1NUks5h5wjnqOcJV3ZK7JtjpfEKylrklmNqcM76OJcZ8Ol2Qz/jVCflQnaB5BQk4vGlszLfhbL7jAvlxWVNoJ8yPIEq6in2Ac+tmykTlg86ks3PPB4X66kJvLbNBNNe4WBgp3msNw+VlvyRH+qhnlMmreNKdmZLk25Nlnp4clDMa6+Vzwu4Xn7oODO/g3u2ueSZ+t1OiO0Q20i+7fx4RZU8s/yHEnmfgoHkn/p6shWcE5ZP2yvyZKeytDa+e9rTRNf9SkqyCyC85OvJb+AwRYtZHkFL87c8rsY48jJFrxmhOVH+A6U1MOU2J0bRGqkkMEiWCrSKkdFKRx+5OsOoWY9Ps7u/PCgzmY1LI8Q0bIy+Mi+VIKPhBvp0Pg24HEFyZC44n5w7HnO8uCpSOsm2T1ze5DzTQFJu6bh5TMoL+5nR2fLBcW4dBXjHSENgRFBkQMD6y4NBIM/pTLfc1k8+J4et5bNs8uT2Mn37jPc5dpQ99+9alNfOi50PRtgnUGEHmcfTvLH+sXxzvpA/yhLnuuc2y6QsG+B4dcoyMQVvOCc7B+7KBjTer3qT7XMrDNzYMSCobl72fYkOnZ1s0+SUeBWSfeYVg/at9UvLsTPJ+tivXqEqTRHyZKlvzFOylB3+t0zXM6U7TPJL2TqCdkCoLysHx9lsD+vWU/bNQ5E9tsV91bQnuu7+7Y/tNJBeC6BMQa2W0fzu+2kLm/lpGcxnXTDJVv+pp2w323/ELNF9lxnlsVNBG9a0zE9dyrluvED+1vroWqKH4gBeD3Ve6zTNz+uKOlFo7CsI3eM9TeBkVyl5tcMG8hS/3qeR6vH0PYxJeZHWnJNGV1lv63L0lYCFzsAaKHYknNFGgmvybYU0tdHp2ya33ekJxpLtdgsqZANbruK0nraNytT8ENSx7cF9RpfoJNEhmaKo541lzzkWrN+rUD6mA8f/ZCt3BiQEAjT8dqInwDptbSFPlH+271KW48moNx0lygcN39RnXl0oD5NjZecuOGf+NVmm0+etGa2LusLAbi1yXLmcvl7vceM/ZcbUcZp0EYlyQGfJgLUfgWXfTqA62ZXLHh9nOXd7nR+PddvZZgZgquOmKHiyHSPONUd9SQw0cB45KFWeHQjgKoVtguXJjjX1xBSk6JyizNyX3W+w2CF1n5jXypv74ySbN6V1W96d2eoR6kDOu3vOjo+yffaNzqpXv0vUM3ZObVesQ6nXL6Euzs+m5bOVbqvBOnloGssl7W7rJRj3XA3abjvbMmhLmJcOGm2XZbt8W++07iPdI1/tIwYgey9ZznXbTxP5XQvk7WlP59EHxUoKDSlB2bSlopOOinEtOtv/4+Geo7dUsJ6gVkoG1FYAjrY17QHS26g7vyPgVmyMCE2KikQHouUFZbCsNYNpftgX7UMDDUduWB4NnsePwG7iZ4ouOoLliGrba0eGdJTlm4cmgFL+1hwagxz+u363w+Cq5LJ6fF5Uhw6P+5eOWpCu/442TtFKOw6eW2wTHcQD3SfgPW+sCepaZ/8r/wYINPZrYHeqk20kcJjmRbIFey2TuuIw21VSAxXqoeC+QZZl2w6xAROBL+dl22Ow2367iGuHuu8AAz8UWN6sv9lGAvJLuN/yyc8a4CTRWZ4i+tOYEhgny75vf1In0hZM5dphYYSdDon1ZZSH5ZHafsoJ7UeJwbW+Qpp9ynId/GGZHKuWR8fFNs3EdloPtu3UkeXHAaWmT3bnLZ1TAnk6tWxj89j20d6131hv66azfZDtDgjKHdOZJh3b4wkf9B7rIN9BvsnJJj/BNeqEzn/u3igPlq1rmU6SXH2E6zzP5n6w0hRQO5fe8IY35MUvfnFuu+223HDDDfn+7//+xf2rV6/m67/+63PbbbflQz7kQ/Kpn/qp+fmf//lFmvvuuy9/4S/8hTz5yU/OjTfemJe85CX51V/91UWa97znPXnZy16Wm2++OTfffHNe9rKX5c4773zYDbS3P0XDem5wS0B6lG0EkQ4KAQsBwhS1tNKogiDYsEKYJjQdIG4TcBubtoa7z6m0bPNDQ0lFRqXM8hm9qnKi0aOzFxwzMlhin9HI2yiUNzoGBCVr45os+S5RgRoYH+o6QTDHfHJcJ8fuOFswyQitwW/b5YgiZdHkaBaNsp0hgtHJQSlfvW4AzbavOT6TE8R+aBn9b7vKF6PRye72A87pte1pljvz1XJbp4MWreNidolgnm3kfKDT4zldEGRwyuhn+9f9yrE2sKRccf4eZrly3J8dlBL1JB2ICUxTV5hOsn29d8en6Q+Urv11Rdepg46zXTnw6snEp8FVdN1tMU+l9hN1gdtJuaausONN4Myxc4SasjIFLXhuvUpg3fZ6DlOfum73YeXy7ix1wxpRHsgbx5G2sfw6gMT8tB+0FWznQXZlq+d8Ha6davLq1QfOaTqhdpo4d6m/GECgU79m02xXkqVOYruoY3qftqfXaKM6h9p+89+yaYtYH/W5+9lBoxOltc3Y054ejB62k3LPPffk+c9/fr7t275tvP/X//pfz7d8y7fk277t2/KmN70pt956a/7IH/kjufvuux9I84pXvCKvfe1r893f/d35V//qX+V973tfPvuzPzsnJ1s1+tKXvjR33HFHfvAHfzA/+IM/mDvuuCMve9nLPoAmLsGYl+8NstaM13k0RZ8MLiZQbhBLsG3AS2PX61bIB9kszXP1pgqTRjS4Z6NM0N9rye6qAKOGp0jDPpiWk8sn+5/9ToPBY0blTnWPHxuzw8BoIcuZFCjHyPfbFpY7ba/huARpWQ6paQ0GgzYaMJbc96yP48h2tT4bsvLOf/NfHgguJkeaclXDZ5DEfI7KOvpmh56y63JLkwPgvl6L6k2g3fd8jdStN5Yvtodz0oGF8n6MNAfZne/JUja4Zac/9xH5II+UZ8qGARQBTc8Zce4x5/59WYKfZAuU2F73Y2WNcknwR8BHgN5vpXDOUl94XB00sDND3qjrJxCXLHUtHSiWYz1lexHkodPLdByLXrtvKMcOJeUp2Z1vnJvWxXV0Ka+0Vw4gsP9a93G2zyLZrk1OebIcS/ehwbLLJJ9s45qNPsjmWRrydB/OpwAM+4Y6b+Kv33qy89B0lq/ep77yGJOPNUfWq3edd5xTdFqi65xvyW5QKOLdNnCyjdcynTxKvz0t6YarV69+wCtaN9xwQ1772tfmcz/3c5NsVlFuu+22vOIVr8jXfu3XJtmsmtxyyy35a3/tr+XP/tk/m/e+9735sA/7sPyjf/SP8kVf9EVJkl/7tV/LU57ylPzAD/xA/ugf/aP5t//23+bZz352fvzHfzyf8AmfkCT58R//8bzgBS/IW97yljzzmc98UN7uuuuu3Hzzzfm8bJ9dIPhmFOVY15OlYnEUg+DDAPRgOPeEpQKYIqmO0Diq4e1FjPJxS8EUQaZSLKg4RR4bT/bBZPx8jXkytIPXTFOb+crVkkEU+8Y8rbXHY9B+pOPlJffWd7RSHsuY2kPgeZRlnzCN22V5SLYPTLJvzK8jmSd56OPRVZ9J1o+yNNruU1Lb2n6Zvs9Cvvi67jVjNvW950jLZKTVfcp2EMybB5bLLSqTTKzNc/cNvyRPHs0vaRo7zpEpul++rQ+Sdd1jWWwbOi9aX9vsbUVr5U/3PIYE9xMQdpt6zPwt3231XDRx/nq8uBXJ82gKQJEPz8m1MWAQY3KkDpSnfCXLFYrz0nJ8p3nkudNjXp/6YALd5sG2snV3Hk7zeSqv5yXPF7ejbff49Ziys9ZWz2XbxTV9Yf3pdpA/t8WYItntO8uU+4xk2SNfzmv5bpppW9c0Rpat4HrL/RdJ3vve9+bxj398riUqdrw1j7xDdZrk7bk2++XRot/RMXjrW9+at7/97fmMz/iMB65dvHgxn/Ipn5I3vvGNSZI3v/nNOT4+XqS57bbb8pznPOeBND/2Yz+Wm2+++QEHJUn+0B/6Q7n55psfSGO67777ctdddy1+JE60/l/J/MVdb/dgdIoTeoqkU+m0c6dOrlNBJbaWltdPshuNYBl0OkqOjrW8aXtGaeoD8ju1vXw1j+vvMaOf5dsApPcIhknkhVs+WNdapI3ta1mt3yBhzShNETDmM1GuaCx53jY56uRVHIIgtofXDnSPRteRMMo0x8TA9zTLsaUcTn1gp4tONNNc1nVvXyDfDxaNo5xbXg00PK79X3O+a5hZ90F2txu67OC48/cYP/aT5c79XR4ZBeY49p9fWmc6zq1eC9J0HO1Echzal63LoJzlVc84Wk45p3xTjqiv/bbC6rhDlMExm+S9c9DbjPxvANzfidIdZimLvX8v6mX/GsCdZrviMzlk03ye5MR8sx5GaKf5ueYEVNa51YltZJ2Uy8lJupJd0N8xIOhm+1reBHapA9z+U52b39YxrfJTDzNvV0nIT+Ww6a3/zC9tS6+xP5znMMsxWwsIWF9OuqTH1AvmawrG2YaXL67wt44p+Mby6LhN9nhPe1qj31FZefvb354kueWWWxbXb7nllgfuvf3tb8+FCxfyoR/6oeem+fAP//Cd8j/8wz/8gTSmV73qVQ88v3LzzTfnKU95yuK+nYyjLN+bPoFSXusEp4FMdhWNJ/fasrOBBtNWeUyTuYqYyr3l9IFGGn+Wb8eFvJd/Kt/yOoHCNVBuY8cIFhVVlWsNNe/bqLaNrrvEN5H0XiPVjBQZNLM8g4DovvloXd6KYbDWMaz8UG6q0O/LVvEbqHGbinmhcZsMXbLdVlPeHLGb+DT4cl/YeDLyd1nX2ed0RHmvsnqke6zPc6HtcfSyfdzrl3GPhvNA+bvCU7IjRbKzMwUayBPL9JwvTU6/x34qr/XYAW5dDMJM/ddjOsRsU6ljzi0i5O2S0nde2BFOZueV9ZQnylWyBVLVD9xGNm1zodwQqK45NAwe2IkyWX4ZdS6/BbbstwK54HrbZoexfdryHNGmLSMP5Yn9POk1j/8kl8lyDCi/dOgJYlk2dSNlgDqZ/wTh1DOTE32qX5TebZqcheYpj0e61vEnCD/IUrYpdxx/ytWhju0kWx7ZV22f9aP1EPOzD0h98xnbeKTrrMNOEOcF+ab9Yh9YP9muX8tk+Xqkfnta0u+KvNxwww2L86tXr+5cMznNlP68cv7KX/kree973/vA721ve9viPhU4oxSOePDYiq7fdOi2DyoN/pKlErICD9JUCVhZTcJKY5ssDdxBkhtX2jcNMiNZBMclKhMbPUeEmI5K3o5hdE7gs0ZUePxnVMtAjsCiUa61/pz6m8CD5bJtkzPQvIwUs8xkGeErTasgdGB4nWSHsmTA2HpbLkE8I3QRbzyenK9epxFnpI5AZeLf9zznCLhcxkmWH5ukM0PgYBBBeWUeg+41Pg06ug+dKxmtx/l6TkepeSZnd3LWuXoxOd8T4GcA4nRIR34PkLb1c7557rsutvVwSHek8+PsAiQT5xLna+W3PF/IErw2r0GjAxVtq/X/sfLz3kk2KybkrUGiI6VzX9p5sD5pu+wwUhe0neTNOs76nGkaUKDzYBkk0blifXbmKT8lb3siH15F4dyfrlOnUJ+R7Kg4wGEeqTM4r7jyW56mIEv56Zi1D5ue85SrU0G6ZNk31H9eeZ+2BK4FlPpvEMy+tE1nXR4HvzlvcpDY5vI/Ofp72tNDod/RVxDfeuutSTYrIb/39/7eB66/853vfGB15dZbb83999+f97znPYvVlHe+8535xE/8xAfSvOMd79gp/13vetfOKk3p4sWLuXhx9z08VRQ2jjZMBDV2NHjPS99TtKL1lmj0HVFqOY72rfHnqCKNsgHaGlGZtiwb8ikPoyoGGowSrgEgnrOeh9KH7Lc10Evw5/s2nGxzgZIji1be03hYBiojBKFNd5jtatzksJanNYXe/DSalmtGwyn7bLf557mjggbObV/bZkex7fY2F4K31uu5wC0H/Sf/NHwGN4yo95rnmQEdHWSD1LV0TOtxoDy37wy66FSRJ8vJBBLLh4GNo8PUNSzfwMMy4D5jv07ywbI671l39H+S5arhGlkXsa+Os/s81tSuNUek98m3wVvTrOlt8kMAXQBn2Z8A+pq89Xkfj8MEGjk/PS68x7FpGRxbOlGTfrdtpA1kmingYx2+FrjwlrfqmPuy0Xnc9UCic2HZY51Ns2ZrqH8Psxw7Bgo8ZtT/7k/y0DZxPvVZWTtMrYfz0/rAc2RNPloXHSyPXYbrbD8dtROlp64mTXOQevGx4LScZP8K4muBHgzPPix6+tOfnltvvTWve93rHrh2//335/Wvf/0DDsjtt9+eo6OjRZpf//Vfz8/93M89kOYFL3hB3vve9+bf/Jt/80Can/iJn8h73/veB9I8VOrXixlZK9jqBGMn0EFxVM6R117zVoseG9iQXDajyCSueJQMcAw2zAvTJtu2O5pnhcdoULcN2Yi77xz5ZxoeX85WsbvNBGE9J09rEafWEVwzIOh9P0cwRWpp3Dy2PHYf2Ck2SG27DUzJT3A+bRVhW3pM5W++HZ0Mrk/XyLsNU+uZgN401slS1tgekvuMck2HmqCBeafoMvt1ipa7fZafaWxLNrbsE/YRZcRRU/dTy+HqVPleA+Ush/piTblPdXL+k4eW6cBC+ThAXpbrQM4EStdA01ofc15NIGfKN0WzyY/1AtuwBjabr2m9impH1PqJjoXnOueUHeg15+4gm1X0NYBDmZzkwg4ueSeP7nfPpytZ6p/+d55R19v5nN4o2T6+kOXr822TO+/djo4feZjAc+k4W6fBYzPZX7b1EL9JNjtutyT5hCRPUP1eobSOZBCGQN+2kGPLbdBeCW9ZdkztyBGnrDkjPndQiXxPfOxpT+fRw15Jed/73pdf/uVffuD8rW99a+6444488YlPzFOf+tS84hWvyDd90zflGc94Rp7xjGfkm77pm3L58uW89KUvTZLcfPPNefnLX56v/uqvzpOe9KQ88YlPzNd8zdfkuc99bj790z89SfKsZz0rn/mZn5k/82f+TP7e3/t7SZIv/dIvzWd/9mc/pDd7kbw8WQXgyWIjNkXeJgNRBUBFQEA0GTwbv/LIBwzXoh0lRjkcqStfBBdUglYibB/rN3ijonJ/tB5GpAwAGNXi60cZrS44aj73W1cimG8igjaDOx+3bBpzttNp2EfsC47HFJHsdY6Zo2V2nlmn25fsjiudMgNj9gW3MrB/DUIMOmk8OT7TClrlkZHQB1vps5yxrY1WTw6liWPDMsrXmtHldTu3kzPjY84hRiMrI1eyHDuuwLCPvapE/sgn5YmyY0A26Z81sMbIrwHuGnE+mI6ylMnzdJsDBnS4+FV189N+5FfsrXsr31Nku+ecaxOIbbqWy/6Z9F3HqE5Z+TxWGQcqx4DbzrUB+z3Z1Xd2iK2LprKmecexow53evYf+6D32PfTqsexyiDwn+ZxeT7MJhg5OTreqjXlL13O8hmuSUew3bZdtU1ti52cwySfePb7F0n4CiDqBDqyLP8ky35x3mnsTLStU1BoavPadi3KwgHSWu4Cvsnrnvb0UOhhOyk/+ZM/mRe+8IUPnH/VV31VkuSLv/iL85rXvCavfOUr8/73vz9f/uVfnve85z35hE/4hPzQD/1QbrrppgfyfOu3fmse97jH5Qu/8Avz/ve/Py960Yvymte8JoeHW7H+x//4H+cv/sW/+MBbwF7ykpesfpvlPJqADAEilfVJNsqOk4nbNmi01qJWBB50dta2QNWITYB8AstMd5rlqxvt4BBonQdK2s7WS54cUTH4qqIieG0ZpyqX7WFbbETZZt/rtiw/E9Q+Noi1w+M2EzQb1F/MZt/51G/N1/JpoCajRgNJuTjIdtmfeSZHdQIKNiiTIW4aypnTcBVgqs9tr1EOyrPD0+ML4Ktv8kq2b0FqXS3bUUmDPW83cR8c6zodKp4boBFEUq6PldZb10qUp25LYjS//ULH1rLFAAH7lACUvNBRaTsyHNNRYD85YktAap1lUDmBFM4np5/mYNOxPgJEgj7qHK5eW29O/XSqczssTePji9mdFw5wcS6XJ+sHBwTYRwaHnHNts/O6zvJxmK1NsK1YA7HU03YMqTdMdtQ9h6qTrSfZP7QhkzPedk26kPaOc7btaf0dJ36fZGrDceY+sl6b5hUDYZyb5a+44j9ks+rlzezskx6zLMrRWlDJ7Sk9lAAX9WOylXvqIhKdc/YZMcc03x5LdJpHfrvXI13fY4F+W99JuZap77r+nGwnnCMCE1Az+KCSM7BJdo3u5ABMSjZZGoTJEKyBDEe+emwD4XImwMm6HdWyo2EnqHlPsmvkrKDWjJGdqijfZCgNLsgb8zPCZ95Ja4Z7Ldoz8bxGBtRTWTmHPyt3j72dXUaUCeZax3ll0iFY6yvWbT5ZfslO4qUkN58dvzubL1ivAabmt6Ejf56zBnn+XyvHefnsT87S0AE2WYaobzi3HHFnn5s3lt36297mZaR12jLC/lnTCdN5eXEfTroiuN/vUTlYYSfXfWlH3e2aQLwBJvlkew3UzwsAJLsrKjznisB5etT9Th6m1e+HYjfc9vLhOUJ59qrcUXbl3f2QzDqTvHIM1xwgXvfWNaab5ubkVJv3qa6pLaQPRLeZx7V85ZHBDY5Xy7iQpbOWLGWDxOBXsqsbaXvdj5P89p6DEAwGJOt94JVHjhH1UjLrlJZzJclrc21+D6TY8UOTnP+6p995uprkPbk2++XRot/RB+evVXIkO1lGpaj8Dfxt6GkcmIZlUjnfn+1WFyty5psA/WSoozLsKExRRJLBhsFDyw2O1yIg3rJQcrSaPE+GhnU5fXk2gHA+jyfrMkg4LypoI38x28jkmtFrWo8vo30GMB0vgs0SQbLrmECDwVnbPkVBT5HO/b22L7zl9bqjpo2aTUDZ9dyD82nrk2VyGiv3lesyuD7NPHat1/XYIaEctZ3UAyfIxygq+8JbZEqW5zVgfYD7BMqed20/x/hE15j+PMBOmWo6g3QDK0fJSSzD8nUlS14IgMg3QZ/nHCPnk8NsfRAcux4CZYKuaa42DWWP+oh9yDnZOieHOUpnqk6qzE2BkylAMgWJpog6V0Bqg/rSg+R8h53tpSysOSfuj2RXDia9bDBsh831TP1IefFqF9tjx4PlllyvQXupz8l61XGaM6XWbdvBeUKdTN1RWZlWDls/P1Lbe5Oj6LbyuHJfnWbHh/U+WHDvWqDTPDpOyp6WNGGA65II+GzokvMn4uHKP9MYDFUBXcjuhKbhItBfAzzHypvhHg0glTbJiqxR9yky6fKP9E9++LOiYtoqe4PX/mwsJyeoSjpZV+gcE/Yrx7pl2kEN8p5kdzvdeRPGDi7b0H6j0Wc+HhM4le8Cejqg7AfWPfXPBITJV9tbQ8j7lAU7A8H5tGpwoPSHSd6b7fNXLXcC3P0nkHDfsf6pfVMa9tVRtq8R7j1GHQ3We97nI5iOq4mU0973iomJ8khwnCzBSdNOgDbZbT/rorNlIvhhHQb87BOW5+ANxyxZ9mPTrAG+3ueWQvLZ+u7D/eo0t6lE+bWcs12Mbk+89px9yK17Paczz3KrG+0scD4ky7nT/0Md22703u57LndllNdplzjenPvngehk284rOHa7PU8Lhu2cnDdODIZ4hb3E8aHDw/OgXtbfvLTRHqteL+/9r4x5/pInzvG+jMbBlpYzBW5aV8uhzPd13hw7rrRwjIl/6DCSh+a33bOupq3uq7n74D5xS+mDBnju6bdNH1SyQuDjyLANULIbNTPRWJYY4ZjyEgRZ+U18lhwd7bW1AeR1Kxk6MzY6VYD8MWLHt3dZUU3OkUHreYa/yr50CXloyKh0o+O1VR8SAfV5RtcG3Y6FnapetzOzZrD4z7xcuWv+C0hrsMqIMmXXDuipzkuOsl/EdZOdk2S3X/rwMueAAW/BxyTXawDO0e62Y1q9KWCY7pUK/Fsu5TzKxznHetk+A1f2f1TXcZZjVyL4NOim80Pg6nZ5XhM0ek4TEB9mCZoswxw/By2q86hPCfgmB9QgPuDPkXQ7+80/EZ18O5Kc+w4+eE42/zQP1shzk8R+ORrSJ0sdSMfdwQQ6iHQOe0zZt8NCmfP8mIIg5YXHdCYmneB5QKfCdri8UkeVGNxyGQw2BfkcLHLbJgdtsimUm0mvl5f+e5WFuoljNckz6+r1SceTN+v8jpmdw6kd1AOUMX9ja5q35OE024+W9hr1/kFm/h4LdPIo/a4nuvvuu/NxH/dx+diP/dg897nPzXd+53c+7DI+KLZ72ZBTAU8GpQrgMMtlZU/2KTJho0FiHYweV/l4/ynpBGm6OjMtbZO/GoEqEypAfmHbaUuTEzABItZrXqbo6lTeBLZIE19VuFNkfcrnbTLkh84QwbPHw8aE+Zk3qis6TpZtj9IxMtV7B5n70u0jEeBPYKJGs7zRuHkbBuXqIOtj5kgjDfzklEzGtuTxJZhlfewXlmMeaUS9uuU2GMAR5J7m/DnYc48fHaEJkJVHgvXJaZiivNPYJruAp/92Iice3DfH2T4bUx79Eovmj45Ps314mVuHWL954ThxKysdufJl2VhzYhrwYEBgTR9x5ZPPeU39Ql4MBk3O33GeiHphSmd+yAsdYsup9U75ncA+dcHEJ/ueYP5Q1+0E0Lm1c035s0NCfWu957lFGWL/USfy+mQHp3aTL19/OGDTK9CVs0kfMt2DBeSmvm+Za3prsm/sG88pzkneZ3CBuuzhOPx7euzT5cuX8/rXvz6XL1/Ovffem+c85zn5/M///DzpSU96yGWs6fHrijwxrHQIIHg/w39pWp0o1RB7r7brSJZKctpq0eP++pXtU6WjIaOhmZT+9FYlKmYDoNNsFCefISjv7oNpOwoV37R0TKNCw14lvBbBOck28uPxdGS25EjstD2ECnaKTLEsRja9TYNjTsNFfji2zEN+WCZXgGh4CA5YPr9dwOhrspUlRtZp2GjEKEcTiHF6963BScubDJz7w9H1lsHopcEbwSyj/WwDnfPy2O0SHMv+DrNdaeg520gHdQIpbJedjjXgtwYO2A472rzX+62baTwvpjrsWPKDhZO+IEAl3wfZBHw6bnb26kidDmVYDxBw0hFbA3YlO6tsD/l0JLjpOU+SXUdnWlk9QBqPj8Hb5DS0DDuXze/+sk5mH9mmcHXC83WyJw50Tbq/5dC+rUWIyT/J+pLXrFtaj3Vx5Ys8eNWQOoi2zluezB8dEwYdeN8rJbWhbHvLdxDGq5Oul3J23koxy+z/hAvsgFE3MsBFG9R/tsnzwkEElv9Qdjzs6bFPh4eHuXz5cpLkypUrOTk5ycN9V9d176RMCpLL/ZycBg5WdASUVPae8N3uwmst31HeZHfyJ/P2pjWlzUgU07F9k9K3M2OeaZhqrE71My8tp/wXBNgpi/49Fk3LfxtbggSmo6Lv+E9GZ3Lw+m+Hkf3Bfn4wEGmHmOmOsv1I2YHysH4CbtdTwzONf8uisVhzYHqvbfSc4fjRCPeYxsz3ydMEkE2emwURl7KUkYNsnYrTbB5INWAjeYWT4MWghQCf+YPrdP4IfAyGOR/dP83v4/JEPhztt+x6/tB5tQPrB4+nstwvdnLtOHpf/nnO+BSk4fmafNBRYB2VcTpCya4cm1qOx2Ry2qaVt+o6y/Wpjq3fDJyjtOyf/hMcHul8TTYa2KLsUY8wH50QAmSPjZ2g08xzzateBLtrQRX3nx23KW2JK2Tuf+dZcwbWxnyiSUZb1+UsZf4gm1cPe/7bLhc/UF/adthxNp6hkzXpLzq6JY+D+51EXMLtYZz/5N1YZ82ZutbIWOeR+j0U+rt/9+/mec97Xh7/+Mfn8Y9/fF7wghfk//w//8/fbpMX9IY3vCEvfvGLc9ttt+WGG27I93//94/pXv3qV+fpT396Ll26lNtvvz0/+qM/urh/55135vnPf34+8iM/Mq985Svz5Cc/+WHxcd1u96K35ogAAUCyNMo9J7itQjMIoaJLlsv8JEYPHeVpdJbAOVkaICoXPsh9qHxVEORrimBQkZRfKkVGOGmA1o6bl0u/jnC37m4VKT9W2NxeQR5bV7eJdEITIBwrXcvkygj7/gRlkVg/x5yKvO3knmqW460I/dhYx9tksDIpc0YJKzOTYWC023v6bYRbh6Pck2Pff4Jnjnfrt3NxpDQsgwaYRrfX2Y99INPRfMpD5wGN9cnwP407+8nzhrLGcpqHQLHpPc6tl3I1bUFsWjr8XqUxaO24Tq9OLpXnwyTvA69MZ6A+AeFpHk3OHvuivJWoxygvjhSzfPPR8w/N5lXW/tijwTPPrTsrS3Q4O88OhnQcl4Nst+FShrxFzONWPtsO649kdzyYfi34wrGIeOh52zPpdM5Jt/MUaV0f+WNb7JzxOvWH66HNTJYfAGa57jtS89vOUc4mQG5HjPdPdM04oNe60tC+tz2j3Uy2wc0bkI5l2r7VppxmoxspM8QwhyqDAQ3rRFPl2mPLsZr60vqkc8G24Fr+AsajwdlDrfMjP/Ij883f/M35fb/v9yVJ/uE//If5nM/5nPz0T/90fv/v//076f/1v/7X+fiP//gcHS1H+S1veUue8IQn5NZbb93Jc8899+T5z39+vuRLviR//I//8ZGP7/me78krXvGKvPrVr85/+V/+l/l7f+/v5bM+67PyC7/wC3nqU5+aJHnCE56Qn/mZn8k73vGOfP7nf36+4Au+ILfccstDbGmSq9cpve1tb7uazZjvf/vf/rf/7X/73/63/+1/19DvbW9726MNFXfo/e9//9Vbb731UeuTxz/+8Vef+cxnXn3Ws5519du+7dseMt8f+qEfevV/+V/+l53rJycnV5///Odf/YIv+IKrv/Vbv/XA9V/8xV+8euutt179a3/trz1o2Umuvva1r925/vEf//FXv+zLvmxx7WM+5mOu/uW//JfHcr7sy77s6j/9p//0QesjXbcrKbfddlt+4Rd+Ic9+9rPztre9bf9hnOuQ7rrrrjzlKU/Zj+91Svvxvb5pP77XP+3H+PqmD3R8r169mrvvvju33Xbb7yJ3HxhdunQpb33rW3P//fc/eOLfBbpw4UIuXfJ71tbp5OQk3/u935t77rknL3jBC3buHxwc5Ad+4AfyyZ/8yflTf+pP5R/9o3+Ut771rfm0T/u0vOQlL8krX/nKD4jP+++/P29+85vzl//yX15c/4zP+Iy88Y1vTJK84x3vyId8yIfk8Y9/fO6666684Q1vyJ/7c3/uYdVz3TopBwcH+YiP+IgkeWDf3p6uT9qP7/VN+/G9vmk/vtc/7cf4+qYPZHxvvvnm3yVufvt06dKlh+UoPBr0sz/7s3nBC16QK1eu5Pf8nt+T1772tXn2s589pr3tttvyIz/yI/nkT/7kvPSlL82P/diP5UUvelG+/du//QOu/zd+4zdycnKys3Xrlltuydvf/vYkya/+6q/m5S9/ea5evZqrV6/mz//5P5/nPe95D6ue69ZJ2dOe9rSnPe1pT3va056uN3rmM5+ZO+64I3feeWe+7/u+L1/8xV+c17/+9auOylOf+tR813d9Vz7lUz4lH/3RH52///f/fm644YYx7cMhl3H16tUHrt1+++254447flvlr72UaE972tOe9rSnPe1pT3va0zVGFy5cyO/7fb8vf/AP/sG86lWvyvOf//z8zb/5N1fTv+Md78iXfumX5sUvfnHuvffe/KW/9Jd+W/U/+clPzuHh4QOrJqV3vvOdD+/B+Aeh69pJuXjxYv7H//F/zMWL/ubunq4H2o/v9U378b2+aT++1z/tx/j6pv34Xjt09erV3Hff9O7QzdasF73oRXnWs56Vf/7P/3l+5Ed+JP/0n/7TfM3XfM0HXN+FCxdy++2353Wve93i+ute97p84id+4gdcrumGsyf397SnPe1pT3va0572tKc9XcP03/13/10+67M+K095ylNy991357u/+7vzzd/8zfnBH/zB/JE/8kcWaU9PT/PxH//xueWWW/La1742Fy5cSLJ5puWFL3xhvu7rvm5cVXnf+96XX/7lX06S/IE/8AfyLd/yLXnhC1+YJz7xiQ+8Xvh7vud78rKXvSzf/u3fnhe84AX5ju/4jnznd35nfv7nfz5Pe9rTfkfaundS9rSnPe1pT3va0572tKfHAL385S/P//1//9/59V//9dx888153vOel6/92q/dcVBKr3vd6/JJn/RJOy8DuOOOO/KkJz0pT3nKU3by/Mt/+S/zwhe+cOf6F3/xF+c1r3nNA+evfvWr89f/+l/Pr//6r+c5z3lOvvVbvzWf/Mmf/NtrIGjvpOxpT3va0572tKc97WlPe7qm6Lp+JmVPe9rTnva0pz3taU972tNjj/ZOyp72tKc97WlPe9rTnva0p2uK9k7Knva0pz3taU972tOe9rSna4quWyfl1a9+dZ7+9Kfn0qVLuf322/OjP/qjjzZLe3oI9KpXvSof93Efl5tuuikf/uEfns/93M/NL/7iLy7SXL16NV//9V+f2267LR/yIR+ST/3UT83P//zPL9Lcd999+Qt/4S/kyU9+cm688ca85CUvya/+6q8+kk3Z00OgV73qVbnhhhvyile84oFr+/F9bNN//s//OX/yT/7JPOlJT8rly5fzsR/7sXnzm9/8wP39+D526bd+67fy3//3/32e/vSn50M+5EPy0R/90fmGb/iGnJ6ePpBmP76PLXrDG96QF7/4xbnttttyww035Pu///sX93+nxvM973lPXvayl+Xmm2/OzTffnJe97GW58847f5dbt6fHPF29Dum7v/u7rx4dHV39zu/8zqu/8Au/cPUrv/Irr954441X/+N//I+PNmt7ehD6o3/0j179B//gH1z9uZ/7uat33HHH1T/2x/7Y1ac+9alX3/e+9z2Q5pu/+Zuv3nTTTVe/7/u+7+rP/uzPXv2iL/qiq7/39/7eq3fdddcDab7sy77s6kd8xEdcfd3rXnf1p37qp66+8IUvvPr85z//6m/91m89Gs3a00D/5t/8m6sf9VEfdfV5z3ve1a/8yq984Pp+fB+79O53v/vq0572tKv/zX/z31z9if9/e/cX0lQbxwH8m5tb/2RkMpdJohCsmoFt9HckVIikV0GQWApdFa00oZS86CbLq4ggjCK6sTCiBRYRzbKBbLmYsywJi1ZGuFZhS7BauN971eHdO7OIvW1nfD9wLnyeH4fn8D0H/c3tWX+/BINB6enpkRcvXig1zFe9jh07JgsXLpSbN29KMBiUq1evyvz58+XUqVNKDfNVl1u3bklra6tcu3ZNAMj169fj5pOVZ2VlpVgsFvF4POLxeMRisUh1dfXfukxSqYxsUlavXi179uyJGzObzdLS0pKiFdGfCofDAkDcbreIiMRiMTGZTNLe3q7UfP36VQwGg5w9e1ZERD59+iTZ2dnS1dWl1Lx9+1aysrLk9u3bf/cCaFoTExOydOlScblcUl5erjQpzFfdmpubxW63/3Se+apbVVWV7N69O25s27ZtsnPnThFhvmr33yYlWXkODw8LAHnw4IFS4/V6BYA8e/bsf74qUrOMe7tXNBqF3+9HRUVF3HhFRQU8Hk+KVkV/KhKJAAByc3MBAMFgEKFQKC5fvV6P8vJyJV+/34/v37/H1RQUFMBisfAeSBP79u1DVVUVtmzZEjfOfNWtu7sbNpsN27dvh9FoRFlZGc6fP6/MM191s9vtuHv3LkZGRgAAjx49Ql9fH7Zu3QqA+WaaZOXp9XphMBiwZs0apWbt2rUwGAzMnGakTfUCku3Dhw+YmppCfn5+3Hh+fj5CoVCKVkV/QkTQ1NQEu90Oi8UCAEqG0+X7+vVrpUan02HBggUJNbwHUq+rqwsDAwN4+PBhwhzzVbeXL1+io6MDTU1NOHLkCHw+Hw4cOAC9Xo+6ujrmq3LNzc2IRCIwm83QaDSYmppCW1sbampqAPD5zTTJyjMUCsFoNCac32g0MnOaUcY1KT/MmjUr7mcRSRij9OZwOPD48WP09fUlzP1JvrwHUu/NmzdoaGjAnTt3Er799t+YrzrFYjHYbDYcP34cAFBWVoanT5+io6MDdXV1Sh3zVacrV66gs7MTly9fxooVKzA4OIjGxkYUFBSgvr5eqWO+mSUZeU5Xz8zpVzLu7V55eXnQaDQJ3Xk4HE54NYDS1/79+9Hd3Y3e3l4UFhYq4yaTCQBmzNdkMiEajWJ8fPynNZQafr8f4XAYVqsVWq0WWq0Wbrcbp0+fhlarVfJhvuq0aNEiLF++PG5s2bJlGB0dBcDnV+0OHTqElpYW7NixA6Wlpdi1axcOHjyIEydOAGC+mSZZeZpMJrx79y7h/O/fv2fmNKOMa1J0Oh2sVitcLlfcuMvlwvr161O0KvpdIgKHwwGn04l79+6huLg4br64uBgmkyku32g0CrfbreRrtVqRnZ0dVzM2NoYnT57wHkixzZs3Y2hoCIODg8phs9lQW1uLwcFBlJSUMF8V27BhQ8KW4SMjIygqKgLA51ftJicnkZUV/2eDRqNRtiBmvpklWXmuW7cOkUgEPp9Pqenv70ckEmHmNLNUfFr///ZjC+ILFy7I8PCwNDY2yrx58+TVq1epXhr9wt69e8VgMMj9+/dlbGxMOSYnJ5Wa9vZ2MRgM4nQ6ZWhoSGpqaqbdErGwsFB6enpkYGBANm3axC0u09S/d/cSYb5q5vP5RKvVSltbmzx//lwuXbokc+fOlc7OTqWG+apXfX29LF68WNmC2Ol0Sl5enhw+fFipYb7qMjExIYFAQAKBgACQkydPSiAQUL6yIVl5VlZWysqVK8Xr9YrX65XS0lJuQUy/lJFNiojImTNnpKioSHQ6naxatUrZwpbSG4Bpj4sXLyo1sVhMjh49KiaTSfR6vWzcuFGGhobizvPlyxdxOBySm5src+bMkerqahkdHf3LV0O/479NCvNVtxs3bojFYhG9Xi9ms1nOnTsXN8981evz58/S0NAgS5YskdmzZ0tJSYm0trbKt2/flBrmqy69vb3T/s6tr68XkeTl+fHjR6mtrZWcnBzJycmR2tpaGR8f/0tXSWo1S0QkNf/DISIiIiIiSpRxn0khIiIiIiJ1Y5NCRERERERphU0KERERERGlFTYpRERERESUVtikEBERERFRWmGTQkREREREaYVNChERERERpRU2KURERERElFbYpBARERERUVphk0JERERERGmFTQoREREREaWVfwDZGYuoZjI1xAAAAABJRU5ErkJggg==\n", "text/plain": [ - "

" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -176,31 +200,47 @@ "id": "romantic-description", "metadata": {}, "source": [ - "## TL;DR\n", + "## Complete script\n", "\n", - "```\n", + "Included below is the complete script for convenience, including the downloads, but not including the plotting." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d82e5257", + "metadata": {}, + "outputs": [], + "source": [ "import scopesim as sim\n", "import scopesim_templates as sim_tp\n", "\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])\n", + "#sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])\n", "\n", "cluster = sim_tp.stellar.clusters.cluster(mass=1000, # Msun\n", " distance=50000, # parsec\n", - " core_radius=0.3, # parsec\n", + " core_radius=0.3, # parsec\n", " seed=9002)\n", "\n", "micado = sim.OpticalTrain(\"MICADO\")\n", "micado.observe(cluster)\n", "\n", "hdus = micado.readout()\n", - "# micado.readout(filename=\"TEST.fits\")\n", - "```" + "# micado.readout(filename=\"TEST.fits\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e8478c34", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -214,7 +254,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" }, "nbsphinx": { "execute": "auto" diff --git a/docs/source/examples/2_multiple_telescopes.ipynb b/docs/source/examples/2_multiple_telescopes.ipynb index 52784fc7..6a4be6ff 100644 --- a/docs/source/examples/2_multiple_telescopes.ipynb +++ b/docs/source/examples/2_multiple_telescopes.ipynb @@ -7,7 +7,11 @@ "source": [ "# 2: Observing the same object with multiple telescopes\n", "\n", - "A brief introduction into using ScopeSim to observe a cluster in the LMC using the 39m ELT and the 1.5m LFOA" + "A brief introduction into using ScopeSim to observe a cluster in the LMC using the 39m ELT and the 1.5m LFOA\n", + "\n", + "*This is a step-by-step guide. The complete script can be found at the bottom of this page/notebook.*\n", + "\n", + "First set up all relevant imports:" ] }, { @@ -17,51 +21,87 @@ "metadata": {}, "outputs": [], "source": [ - "from tempfile import TemporaryDirectory\n", - "\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import LogNorm\n", "%matplotlib inline\n", "\n", "import scopesim as sim\n", - "import scopesim_templates as sim_tp\n", - "\n", - "# [Required for Readthedocs] Comment out these lines if running locally\n", - "tmpdir = TemporaryDirectory()\n", - "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = tmpdir.name" + "import scopesim_templates as sim_tp" ] }, { "cell_type": "markdown", - "id": "future-engineering", + "id": "c29291e8", "metadata": {}, "source": [ - "Download the packages for MICADO at the ELT and the viennese [1.5m telescope at the LFOA](https://foa.univie.ac.at/instrumentation/)" + "Scopesim works by using so-called instrument packages, which have to be downloaded separately. For normal use, you would set the package directory (a local folder path, `local_package_folder` in this example), download the required packages *once*, and then **remove the download command**." ] }, { "cell_type": "code", "execution_count": 2, + "id": "0150da5d", + "metadata": {}, + "outputs": [], + "source": [ + "local_package_folder = \"./inst_pkgs\"" + ] + }, + { + "cell_type": "markdown", + "id": "future-engineering", + "metadata": {}, + "source": [ + "However, to be able to run this example on the *Readthedocs* page, we need to include a temporary directory.\n", + "\n", + "**Do not** copy and run this code locally, it is **only** needed to set things up for *Readthedocs*!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "98186ac1", + "metadata": {}, + "outputs": [], + "source": [ + "from tempfile import TemporaryDirectory\n", + "local_package_folder = TemporaryDirectory().name" + ] + }, + { + "cell_type": "markdown", + "id": "fcb2790a", + "metadata": {}, + "source": [ + "Download the packages for MICADO at the ELT and the viennese [1.5m telescope at the LFOA](https://foa.univie.ac.at/instrumentation/)\n", + "\n", + "Again, you would only need to do this **once**, not every time you run the rest of the script, assuming you set a (permanent) instrument package folder." + ] + }, + { + "cell_type": "code", + "execution_count": 4, "id": "unexpected-appeal", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmp3bqenznv\\\\MAORY.zip']" + "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\Armazones.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\ELT.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\MICADO.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\MAORY.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\LFOA.zip']" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sim.download_packages([\"LFOA\"])\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" + "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", + "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\", \"LFOA\"])" ] }, { @@ -69,24 +109,17 @@ "id": "pursuant-crystal", "metadata": {}, "source": [ - "## Create a star cluster ``Source`` object" + "## Create a star cluster ``Source`` object\n", + "\n", + "Now, create a star cluster using the scopesim_templates package. You can ignore the output that is sometimes printed. The seed argument is used to control the random number generation that creates the stars in the cluster. If this number is kept the same, the output will be consistent with each run, otherwise the position and brightness of the stars is randomised every time." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "lasting-gender", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - sample_imf: Setting maximum allowed mass to 10000\n", - "INFO - sample_imf: Loop 0 added 1.01e+04 Msun to previous total of 0.00e+00 Msun\n" - ] - } - ], + "outputs": [], "source": [ "cluster = sim_tp.stellar.clusters.cluster(mass=10000, # Msun\n", " distance=50000, # parsec\n", @@ -106,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "casual-strength", "metadata": {}, "outputs": [ @@ -141,21 +174,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "chinese-spirit", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Warning: header update failed, data will be saved with incomplete header.\n", - "Reason: !OBS.instrument was not found in rc.__currsys__\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "micado = sim.OpticalTrain(\"MICADO\")\n", "micado.cmds[\"!OBS.dit\"] = 10\n", @@ -176,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "directed-mother", "metadata": {}, "outputs": [ @@ -186,20 +208,18 @@ "Text(0.5, 1.0, '39m ELT')" ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAErCAYAAADHZqX6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACjMklEQVR4nO29edwkV3Xf/T1V3f1ss89oGW1IIAGWwUhYBmwWYwhmCViEEAJxDLaJZd4Yx46dxNivE7wlL/YnsU1iB2fMbmPEYjCIyGCMwSzGgMQikMSiXTPMaDT7PPMsvdR5/6iq7urqe7uruquXp+t+59Of6edW1b23bt2+9atT554rqorD4XA4HA6Hw+Hoxpt2BRwOh8PhcDgcjlnECWWHw+FwOBwOh8OAE8oOh8PhcDgcDocBJ5QdDofD4XA4HA4DTig7HA6Hw+FwOBwGnFB2OBwOh8PhcDgMOKHscDgcDofD4XAYcELZ4XA4HA6Hw+EwUJl2BRwOh8PhcDgcjn6IiAf8NrADuEVV3zGJcp1F2eFwOBwOh8MxcUTkrSJyVES+kUp/noh8S0TuEpHXRcnXA5cADeDgpOrohLLD4XA4HA6HYxq8HXheMkFEfOCPgecDVwOvEJGrgccA/6CqvwT8P5OqoHO9mENE5LXATwKPB96tqj/ZZ9+fBN4CrCeSX6iqnyqgHj8J/BtVfZph26eApwDNRPJzVPXzIiLAfwBuIHx6fBh4F/AbqrppyOcJwIXpbY7Z5bk/sqLHT7RyHXPrbZsfU9XnDd7T4ZgvROTPgWcDK8AR4PdU9c2J7f8GeB1wIfBZ4KdV9bsFla3AGqCJ5N9S1d8Tkd8ArlTVfx3t+yfAv472qQECxOPyZ1T1+UXUyTF5hhyzbwc2EkkHVPVAch9V/bSIXJ469EnAXap6D4CI3EhoTX4QqEf75KvMCDihPJ98F/gd4LnAUob9P28SsxPgtcnBPsH/JHzCfCXwJcKnyLcRPlleH+8U/bieDpwGfgx435jr6yiI4ydafPFjl+U6xt//nX1jqo7DMev8f8CrVXVTRB4LfEpEvqKqt4rIM4H/BvwI8B3gjcC7gR8usPwnqOpdg3ZS1dcArwFIi2jH1mbIMXtDVa8boriLCUVxzEHgyYR9+3+JyNOBTw+R71A414s5RFU/oKp/BRwfNS8RURH5tyLyHRE5KyK/LSKPEpF/EJEzIvJeEamNXut2eVcB/xb4cVX9vKo2VfV24J8DzxORZyV2fyXwj4Svbl5VVB0c40eBIOc/h6OsqOrtiTdmGn0eFf39QuB90T51wslOzxCRRwGIyNtF5H+LyF+LyKqIfE5ELhSRPxSRkyLyTRG5duIn5dhSzMKYraprqvpqVf15Vf3jwguw4ISyA+BaETkmIt8Wkf8sIuk3Dc8Fvp/QVeI/AQcIX69dCjwOeEWBdXk2cFBVv5hMVNUHCUXxcxLJryR0yXgX8FwRuaDAejjGitLSINfH4SgzkdhdA74JHAZuTm42fH9cIu1lwK8D+whdIT4PfDn6+/3A74+p2o65YaJj9iFCfRFzSZQ2FZxQdnyacEA9n9Bq+wrgP6b2+T1VPRNZdr8B/I2q3qOqp4G/Boa1RvxPETkVfb4cpe0jvAmYOBxtR0SeBjwCeK+q3grcDfyrIevhmDChdUJzfRyOMqOq/xbYTuhu9gE6vr8fBV4mIt8nIkvAfyH8iS0nDv+gqt6qqhvAB4ENVX2nqraA9zB4DP9yYqw+JSLPLfDUHFuACY/ZXwKuEpErojfWLwc+XMR5DIMTyiUnErz3qmqgql8Hfgt4aWq3hxLf1w1/bxuy+H+nqruizxOjtGPAfsv++6PtELpa/I2qxn//Bc79Yksx7dd4DsdWQ1VbqvpZQgvb/xOl/S3weuAvgfuiz1m6w2eNOoY/MTFW71LVj41yHo6tyTjGbBF5N+EbjseIyEERebWqNoHXAh8D7iQ0iN0+thMbgJvM50ijdL/GmzR/B/xvEXlS0v1CRC4ldP347chq8jLAF5Ej0S4LwC4ReYKqfm3itXbkQlFamtvisFNEDgA3qepNY6iWw7FVqNDxUSby1/xjABF5NKGbxTfMhzoc+RlyzB6cr6rRdVNVb6bbvWhqOIvyHCIiFRFZBHxCMblo8DuO931+7Nsbzab+z8CHiq2OLCY//XZW1W8DfwK8S0SeIiK+iHwvobXkbyPryYsJQ8NcDVwTfb4H+Ayh37JjCzDEa7zTqnqDE8mOMiEi54vIy0VkWzQePpfQRe4T0fZFEXmchFxGOIfkjap6ckJV9FJj/MKEynVMmLK6yzmhPJ/8OuHrtNcRTrpbj9IQkcuimc9xnJdnA7eJyDnCp7cPEIYaKoofispvf2yiPcFrgTcDfw6sEvrgfYrQhxpCF4u3qeoDqnok/gB/BPx4hvwdU0aBFprr43CUFCV0szgInAT+O/CLqhr7bC4Sup6tAl8kfI39nwuuw9ei+0b8+cPEtlfQPcbfXXDZjhmgzGO26BhM6Q6Hw9GPa55Q04//9Xm5jjn/4u/eOmRMTofD4XCMQJnHbGd5czgcE0dhLP5uDofD4SieMo/ZTig7HI6p4OJYOBwOx9ahrGO2E8oOh2Pi6Jz5sDkcDsc8U+Yx203mczgck0ehlfNDFB5ORF405do7HA5HuSjxmD1Ri3JNFnXJ641rrralDm0PL5YovyIW3e8NERZYbIVYyrD57rRa5t2DMb/E6HPK1naynrMlI9v1sbWFJV3zPqUO81BrOTdZNEcyqu/0zfmsmK+n75mvZ2PT/BOrrprr46/WzeU2p9SPLGxwjrpuDh1vO1zlKTenVfWGYct05Ke6sKKV3Xt6x4As0db77ZM1Wnu83xSiuwc1xasG6JqPbAVDWlxHSf2dTOt3bJ7rkfyeLndQfsn9TfnlqU+WevbbVmSZW4CNIwePqWq+GXkRZR6zJyqUl7xtPGX5hT3purlp2BvUIjLFN4sYWVoyp9eqGWuYOKZqOWbJEga40TQmByfMoSyD9XVzPjaRaROxFmxtBCC1mjl9wRL+0vagYXsIaFl+To2Gef+mue1saJD/riVVc1eXK68wpj/woj3mjK47bUzetWK+nt+9b58xff+nzA8ruz9vXs4+ePi4OX3D/Nvpi/XBNHu7fkE/kb/cLoTWvN+V5oCFbXt4xE/+kn0Hk7gYh/jIKZhV6BG3mrUe0X7qhR+Jhrmu/LL+VJJCMr0pkZ6uW6HC3NZmWdo0vc0mlPu1bZY8+n0fhmGE/wSIr7OopT+mHjyCKkgTZJBClajPD9jvzjf80v35atxdSFnHbOd64XA4HA4zgwSb7WYfH9tHKGYqN22tHPI+nVkkJ8qUIBTJogZRmzW/Pueu0i2c4jKGFsnpNoux1dXUplmud9oiPOg4m0jvt98w1zmrBT2PpX0Ektc3+T3+23xQ93dppvpDuo0SvzXrfo6RcULZ4XBMHAUCzfcpKyLyVhE5KiLfSKTtEZGPi8h3ov93R+kiIv9TRO4SkdtE5ImJY14V7f8dEXlVtsIt6enr0U/4ZBVKyfQRb/SxaEgLlMwkxDJKV32LdsMYuo7tDKL/h3mYSJ1bz7H9rn+y3KzW23S+wz5IJbON228YQT4GRrqWKdr9D+wPEhK++YDof1ObFlCnMo/ZTig7HI6p0Ipe5WX9lJi3A89Lpb0O+ISqXkW4lPHrovTnA1dFnxuAN0EorIHXA08GngS8PhbXQ5FVUGU9vl96hhtuWpyMLD4t5cb55rIqZy1u2PxGqYfJnzmLVXmYMtPiOC3ShyRt8QfM4nJK5HL5yfC70IRqS1ut22mxYJbu/UelrGO2Cw/ncDgmjsJcDaTjRFU/LSKXp5KvB54ZfX8H4RLvvxKlv1PDJVf/UUR2icj+aN+Pq+oJABH5OKH4fnfh9fUy+FRmJS3kLF2mn79vofUAtBL5LY/iWtKHtH910j1jLOR56En69OZxPxn1wSovA/IfqY9kyDvPpVK/4wcf52+71l2iOPndg6CqePWwcAlS/aaAvlPmMXuiQlk1ME7cs03as2KbzLdonmgnC+bJa+FG84Vv7jcbWzbON08YrKybz2HxHksTP/SwvU4mLNENbBPh+k54s02StF0H3zyxUVZWzOm2yZN1y2S+c+fM6Zb9qZsjQ/TtR5Zt3rGTxvS9d+wwpj9c3WlMP7rNvP/2h8z9a+WwefKfnlk1p1vO2eszUdU2adPWTrkm1RYw8AZjUTSl4QJVPRx9PwJcEH2/GHgwsd/BKM2W3oOI3EBojaa2bDE695kEFd/Eeya/2azF6fS0KLYcm+w+1slRo5LKM6jB4hNPcPauXSwc88JznIBYtqUNQ+BHVljbw0y/CW6jWJKnTE//MPW7fn16EMk3DWk3E8N1a7sH+R1hG4vaQeW1XS180IrSWoDWtoDa8XCDtyndArmgPlrWMdu5XjgcjokTWydyvsabi5icRRNZjwuTaqp6QFWvU9Xrqgvmh+F+eC2DoBskhtOkLckDzm5s92/DeSxUm4W+zrYWnXQfGeL8Ah+CYUxhZdFCmvok3xpI92cgyX3SgntA3/Ua4T6ZH4ISfUJ9aNXghn/6N9zzz/4P/veeCetssiWOeF2HHLPnAud64XA4Jo4itPI/p89FTM6CeEhE9qvq4ci14miUfgi4NLHfJVHaITquGnH6pyZQz/4Ti0yiIj1pySIgxmZF7iqk81UFvDqc/sL5LKQfBsZgVe4ij5AagJfzBW5PVQqybOcq04vaf8S6A8U+CKTyaluJTeWkrmFXOyYEubQzyFZeUFP+4567ATh/xyqH1fx2c1SGHLPngnKetcPhmDqBSq6Po4sPA3HkilcBH0qkvzKKfvEUwoeLw8DHgB8Vkd3RJL4fjdL6kxSA/aIjDMoj+UlvS+ad/jt5fDqdDJbrIki5kHiNlE9plrLz1quA8/Ba4OULUT+zBFVoLQ2vztXW/0ahT15twezZJ9Pl9qtP/hYT+1fWhCs/+VM89baXcP8d+0NXjjE9yJR1zHYWZYfDMXHKPDEkLyLybkJr8D4ROUgYveINwHtF5NXA/cDLot1vBl4A3AWsAT8FoKonROS3gS9F+/1WPLFvcAVS/0N/P9Ys+2S59CYRPMxr8LzEgsRgvVNbG8TfTWXnrfOMU6QIyzpR0asTTlQboYx02qAJcz0M658ttJe06+tXH33v6nqmPhZ/B6QJngret5c47i+y0Ix2SIaVK4gyj9lOKDscjikgtCbh6DkHqOorLJuebdhXgZ+z5PNW4K0FVm0wo4TpSovOLHnlcN3oKSujxVwFvGBAPUx5ZLGeY08bm8vDFEOpZT2fYc9bBZorir8uXXmMKpIzCe3khEnDpLp+Btd2/iYh7XUm/8VvOMLIGWJ00SnOsFveMXuiQlkQpJK9SFvkBsm5nHPfMhbNkQE2zzNH0Fi9yBxxo7JuST9njpIgu7YZ0+t7zeX6DfMU5dr9lqWNjxw1pgOobaliWzSRHduN6c19lvRt5jb1183vASsPm5fO9lbXjOnBWXNkCCxRGwDr8ty6d5e5jKq5jxlfuQKtRfP1WT/fPLCcvsJ8nfcd2WtMt0W30AssS20DrWXLdThpblc5bO4zrVVzVJJRUCBwnl9bB8tNuy8my2y/KBfpY5Pb8gz56YlZXkahlVEkxZbAoVdCS4uudP1S56wSuh6kXT7Uoxjf5Tk3ErYjQPShr5hM+aknv8sA0at+9GAVBXBqLSoShHWylpPKs8evOehO18hiPWiJ9VH7yZBj9k4ROQDcpKo3jVaD6eEsyg6HYyqU9TXelmTYS2Wzqg5KS7syZHH1SB8f5Z1+xW0SDGrYL7m/poV3q9iJhOmJXcl0rcDmozZYuHuxLZLUg/X9LaqnPaqr0q6noxtR8BsJH2UDWUVynF+mpajbOySyiKzb3qbg1ekVsxms3KZrbF1sxVLnURhizJ6LCdhOKDscjomjWt7XeFsKm/ia9Ov6YcsxCGyr9S9LetJKnsUSbsKyT9qC2P67CYt3LSKpF3JeQ/Bas/2wWaS7SNGuJ3kEctcmm/C0ue9ox11i4YRtZl/vMT15StT1TMJYuq3N8XHxvkUsAFTmMdsJZYfDMRUCZ1HeGiSFYR73izw+xf0sxnmtyYbjhYS4ySJmbVn5iVfdqdXUYj9q9egO8WWwQCaFi1boEcHQ7eIhqbWXJKCz4MmM0qoBAr7dIy4z6oXuJ6Pk1e+tQRdCjyjve6ypX0nUV2K3mqjPYBKsieONbxZSv7nYN9m4X7pvF9w/yjpmO6HscDgmTjiDupzWibkgi/jt51IxKJ8RxGz7eNsraJO1LisB6ILibcSKN1Um3QImLaxMywmn5z1kfU2ethLa3EamgUp0XgXpKgnCyBejktWKbPI97ndsc1nRClQSbjASEIWHU7xGor9YfNvVM2zvgyliRpKir32Zx2wnlB0OxxQY6jXeXEwM2VL0E7zJfdLH9MvPlk+cJOGKcn6DLkttHtGlkrDqSifNWHaffE2T9mKrcpeVml5h0hY+0DvZKi7XIJxNdUgeMoikC0cWH1ojGQSbLf/4Z13E6/50eaNlEP2v4TWMJ0iOHClCoLkzQHbW4TtL3W8LfEX9zmS+rnqYSPaHftcgmUd0TJcF3Ot9ABsd53oxGTxBauaZ+Eaa5igJ1qgNGxu58gF7n/XXzb/yyrp5/8qGef/GNnO0gpNPNEe9WL3MfG6+5Wl6950XGdP3fN68P4CeOGVMl907jen1i3YZ0xs7zedmjRhhu26WiA5UzelSzd9t9epHGtMPPd0cuePsYxrG9H0XnzSmX73THJL26Jo5/+96FxrTlx/abUzHM6cf/15L2wHNJXP6tgfNyxKf9wVz1BPv7vt70mQjz52klyFnUM/FxJAtRfrGTep7PxGrqf3SN3eLCI8nYPWUlYNcIi0STj3iP7Yqxq/Q42gDTWn7i6ofpRsskO1X6YlV/MYlIk1k8um1ibEMotQmktcvDPDXhYVTUvir/6GJHnAIwlPe2N/ih679Fl/8+++hsirD+z9H7bdw1IeHl9ph27oeIuJ+wIBrknK16HnYS/zfdulIPgiS6GcVUNPD2QgMOWbPBc6i7HA4HA4zab/HYa3HeY4zlWWZlFeUEGjHpY3qFsaljYStB81FpbUc4K97eA1o1ujE5k0Im6SgjuvcZemLBPk4hHLakpy5bUZ1c0lmpbBw0gutmbMikiPi66kCtOCh9e3WNxrD5N3+HueZWJVPK4o0Og9YbSGdelDpis6RFMfQ5e/c48ITHadRfG+Tz7tjeMr5eOBwOKZOSyXXxzFlJnkJTMLa5nNccLmxy0RQ0+gVvXL5Dxzknpf+H5o7Q0UkrVD8BFUNxVf0Kj+2PrejDgTddfQaqWWlba4tGVDp/iTTTa4EWSaxjXyNFfz1YvyJi6JnARCFhRM+D/zDJVTWha4HHdP5C91tE3/vp54SDy1o5yGqLWgTbjlxH1Mv9J8IqtrOOxb28QObsY7JPpDod+PwTy/rmO0syg6HY+IoUtqJIXNPP3/iQb7G6dfMkyBpiSUSt4Svr0EJKnD49A4OnL4IFlrULwrwzlRCi3IQ+qHGcZX9eJnleOW+rNbafv6oKfLqj9x6xVZnWx0LtEiPg64HqtgiGy393HbHsC35bHpgi9thkC9xQtS2RWvkNqG+tif7xccGkRoLLd8a+Rl3/DgkthYnYmnHoltCv4iu7UVT5jHbCWWHwzEVgpJODJl7TMIsLSTyCOECRHNfsRjln37tLS1BK6F6XntwO7+79lxQ4bwLTvNwcxfBClROVsLX7gF4TenKr/2d4txEhnILyOuK0T6Q7utmO75PvjMTvi5xTdoPRFFUjrbFlgwiM9kmaV/iNJFVN3THiXwuYlHbEtTX8M1FNdwnqCn4ircehv3z6vFDmHQL7ZQ1O3b7SFqvx9XuZR2znVB2OBwTRylvqKEtyyiCtY+VuG/s2AEW5kLcL9KuC17qu4AutqhWW3zrWW8LN1wLV37qJ2k2hMoZH/ES+URWva6lqbMIl35W+Jwk27QtBId5HT/j1uJh6LIuK4jXEZ9d7WTreyk3l/Z119RDiUDgg1YVfyOlpiUMJ6cCze0tqCivfPI/sLtyjjf+4z+Bhkf1lB+5UcSZxnlqVD/pdbFI1rfga1bmMXuyQlmxR6ww4Ztn4YuYRxStmx2jbOkAXsscQ2XhAXN0jsqqOVqFbQDaOH/RmH7OFt3ikavG9GbDfKlOb5pDG2y/f7e5QkDlnDl0hy6YIyhoxfzjkKb5HGrnzG1aPWkuV86umctdt9Szbo5I4e3eZUwHeOj7zNdt/Tpz2U+/4h5j+mVLJ43p231zxJVDS+Y6HbnUHA3j1JXmejbMyTSeYO4vANuWzdH5j+8112np+E5zPt819LH6aAOmMl8+bKUgcbla1VAMellDUNnEhg7Q3umNqXwy+d1mJe2DGpUXvtYWFhe6xx3PCwhU2pEJVELRFQuUtmiKX5WnX8PnrRcMJX5i0ZdeQKNre9Y65Cx/nNbNtttCTneDnoeruA+2IveHikIgRlcGU0SLrjrFwjnaJgo0BPUUCSR6aImfYGhbhp/++G/xm+fdDsCx7/8C7/qHHwwftJq0YzEny5M4LrPpTU2qrkVR5jF74N1ORBZF5Isi8jURuV1EfjNKf7uI3CsiX40+14y9tg6HY24I8HJ9HLOBCmiV4UToqKTyGSgE+m1PCuL0MQlLXSx61tYWOB2ED++3btbRwOva3vYTTb4mr0zfFBtbO5MaJ6jB5j67uky6I3Rha7MpEFtTR/bJja9bEE60bAtaPxapdE2i6xHJcZuk2iuoaFs4BzXDQ10smgXO1DvGiIc2d3Ss1Ak/5LiuXkPsq/yNmbKO2VksypvAs1R1VUSqwGdF5K+jbf9RVd8/vuo5HI55RJXSBq/f6ohCxfwiZoyFFpRHP92asE6mfVb9sz5Nalxz0y/g76zTOlUDDyqrXrhPQrQk3Ugk6K140ippEvomo10uy2Cf84zL9OpQO2n//cV+vH3LwF7OzJGl/8TuEy1CNww/FLqtBahsSNfbAYj8h9PX10vkRfSgJHRWckyUFfpJh1++ducjeKE+n+VKnS9941HtfthaDFeBjMv1mmLua/SmFb4yX4nH7IFCWUNfifj9bjX6bJWfh8PhmEmEYFZMU44tS983wSa3DcO29CIhMUFF25EG/Dr4x3yay0oQLOCvS8fvNHJrCKqKt9lZvCJ2DVA/fIWefGWfDucGBpeAYTGJb48uf1ZRBsbazeySMY9qQAkXlvHBaynNxbAvxNExwsl5ElmMtfPQE13A2N0lWFK0GuBvVDoN6nVcjsNweh4o3H7HpeCBtxGK0dai4tXDiXzSMj909T2Fwt1eyjtmZ3o8EBFfRL4KHAU+rqpfiDb9VxG5TUT+QEQWLMfeICK3iMgtdbWsnOdwOEqFElon8nyIlrAWkRdNufqOopjGfVe6X6WnJxLGr929piBNwdsM/0ehsibUjntU1iJB1JRQzLQErxGFG4OusF8DJ4MZvvere9f39CeB7QFgHLGnrWHUctAv1rN64cS4+PtYSFyv9gNFC7y6tH3x2/GMfQ0/XkeJqhdakLWSSG9K6O8cbW/Vogl+0aRBCF0pvKbgn/Pxz/pheZuCvyn4mwkrdrtSiSob/NdjV5uiKfOYnWkyn6q2gGtEZBfwQRF5HPCrwBGgBhwAfgX4LcOxB6Lt7PT3zeOzp8PhGIIhZlC7Jawd2UkJ4CSx9bbH3zQpkoLEtlb4mjxY6NzC/IT1uB1X10/4Nke+pV4zVZek24JNTKbulKbIIHkm5IUxebPtOzQpd4x2BJCMEz6zWtTHtvx3ui8kvofW5dCNQv3Q2uuvSWhqjFdwjK6n+oT9ICA8xgsXrlEgiF0pEtc+9oEOlgKkHj6UiYLUE9fKYh7udy3HsuBIScfsXGetqqeATwLPU9XDGrIJvA140hjq53A45hBFCDTfx7FFyHKDznoTjwWohaHEQNqHMxY3SeEZL8GcKF9ahO4WGlqRTUK3a/lqIgtjJBiTq7G1J3/lsLwm3TaS1nBbCLpk20w0nnHifFqL+SzAtnrmirAyDAOugWjCPzgI+4FWwnNrbFNaCwpeGDUjqEZW5QpoNYBqQHM5aFui2yvsedBcipzBJRTQXkPw6iBxgBXjLEJLffu9USiAMo/ZAy3KInIe0FDVUyKyBDwH+F0R2a+qhyWM1fZi4BuD8lINzCG/xPJL8nI2dJB/NFBLeDg5dcaYXtmwhJrzzedQWTnPvPuaORTb5oY5HZt/kiW5tWi/tLYtcuqsMd0cKA/UFr6vYXF+s4UGrFpqZI4OB4HZpKBLRu8fAOo7zQ21Y7t5VtIFC+a2sP34z7bMYQD3Vs8Z06+84Jgx/TuXrhjTPXNEPLav2N2Z9iybG/Dkijk0XXPJch1Mv8MCxsCyxuSce/K6EGTZr5/1tQC6rMeG4aVtFY0jWTRCoRwvWtEmPcQl800RWyHb1kWTD7V2f1cf+8OD4ZV7exGV2Gd6TEsbt8uKqxK74zZ665Qnr5lYsCShU+PIJgrtiXpEq+i1Em3d2tFCFlttv+XKeRs0ztaQdT9coloIV9+rKdrwwjcPUZ9KP8gZH4Tia2prJxmP5b2sY3YW14v9wDtExCd8Bn6vqn5ERP4uEtECfBV4zfiq6XA45gmlvKs8bSmyWoeHFbGDjo23FyyYe+LoBglRGQvO+P+E1dbo/2lro6iMoBpGRzAukyydPMWUV7I+8ev9tIAagNXvNyGybBMKu8479Xd6WzrveMJgHrEbX4PGdo38dKcjljXZ5+icY/xWILYwB1WFQNCFgMp56zTOLlDdvonWQ2m1b99ZPFGOn9oG1YDarg02zywg1QBteciqj1YiC3VUpMZuG7bzNjwojTNedbLYso7ZWaJe3AZca0h/1lhq5HA4SoDQKukM6i1FkdbhIhimrJS4jq2yXZa6SGhoXEZanNN5XR5P2pO073GyHAmjZsSrvakqfl0IKooXhQRL5t0lmLU7r2SEhDwiOWkBDWphSDiTH3C/CYV59h1Uj6R1Ox0eL/29vrdF9ZSPvznhMSL9diD5dyJmXjt8YFPwVAlEaJxZoLKtge8rj77sMHsWzvG92w5z5cJDfOj4NWy0qnzt0MVUt9VpnF1ANj28RjgRNO53quANcDdKVge6PTPGK5bLO2a7JawdDsfEKbN1Ym5JisasDNrXYq3MFZZMur/3m1wWi9Su0G5Bt9dYl/U5JY7j/+NFWVoLypOf9C0uXT7J+//+KVRWpSN8ofs8Iqux0qlDHBrM2AakhG/8ul179wsqYaixsUS8SIj3flEr4vpIXC+L64AEsHx/pSe9KPq2Qfp6tr93fM3jT+x+oR4QPXzt2L5GrdLipy76HNcsfJdHVcMlVf/5tk/zjxstXrf2zzm7WePEao22bzyKRA2TdAGKXJc7AtjS541LWFO8cC7zmO2EssPhmApltU7MBSYXiAldzszxhk379HudnTguFsPSpG0VjsWKGgRpsry220EDggsa/MUVnwTgvduvg7NV+2Ij0jmv9mIWQaI8U7XTFtC4Hqnz8RpiFVpAO85yJiRRf4Mot+3fXFbq5zepnqhQPdNZ+rtr11h0px4OguiBZSwW09SDTl+renyNYrHsh9dKa2Hl6s0KK7UGG1pti+SYB5p72LWwzvFzy2GfqgUQhP7JfvyWQXqvt22yZncl8570cJR1zHZC2eFwTBxVKa11wjE6bauudYfO12GsqF2uAAFd883VD5WuJEKCpcuJ4+2y7vO4f/xxapUm/olqKKyClPiR7mNDK3Jsak2cTx53CzriPo7tHFTsk4IzieRkHYeYKFY/r8W9L/pTHv3pV8Jt23KJu4n4KZse/vrtk9y3JaFVGViqNFiU3obe5a1R8Vp48cnED1sam6ejbGNXoCIm4+V58zKAMo/ZkxXKCmqITCFVc+/0FixRDGxREjY2zcU27UsQyaKljD27jMnBsmX/prlXV0+aIw/s/pY5lsSZujl6QnM5X28//UhbrArYd+YCY7r37QfMB5wzR4bwVpaN6cEFe4zp9b1LxnSxRCupHbJE1aibR3uxRSQBlo+ar89DB3cZ0z+hjzaXYRmxz1sxR7f43p2Hjek1S6yjoGLOf/mQeYA6ef9uYzrAyW3m6BYLh8yRVZaOmttPTb+rISLMOOaIgg1Lw7wmtlqWJeN+xkw7x3QRrdDXdsdoRfojntwVL0jhg3oa+Z5C5axP48QOGgpepdsq2jVhTDSKuZwQTUlXDj+sg1U8pSy7Qve+6ociWVP1TZ6zKa92+YkFVLIIONO1rJ70+Z7P/QT6wEpPGabrn0wbW+xk6G5rjS5zYrg1TXBUgCBcjCSoxPVVRJQjZ7dzT/083rsqvGzbaQD+79oi54IF7j+9Jzy2JUjTC2MmR9bktoU9dv9JtkkWq7Lt3Bwj4yzKDodjKrRKap1wdBOvuEZKRGYRzj0i2CL62n6xgzBYFdt1iv9udqy96kXCOOisyidBGA0hWAjPqblNqZyVzjLWXljpoKrRYiShSblrYRJS32OxnIh80SUeY9FtEFnqh77SEkg7nF3blSQuKtXe7ZjPCVeAocVqJAJrpwX9ynYWUrGmJ03fPpMQzN3RT9INFCVH1yF+aFpfW0C8gL984FpWanUevugr7PVXedvBp7LZqnB2bYFW0w9DyknYbyQtkondWqTHvSVZT23v13t+XZNVC6SsY7YTyg6HY+IoEJTU383RQT3Y3BcQLCpLB/3cq8f1iN8c4sAahisllrsmy4Udt+NuEa261qpoe5GSoBptj5co3hSCWnRs2/IcTg7TANBEJAyTUE/GYk5YoduRF1KCul3vyO84FugSRJbwSARr4tgeK3dCMHrx4is56HnQSVqGLX7JaYYVel3xqXMfTK9YbleItniWIHzAC6pKsBjAQoC30KJ1cgG2Nzh6bAe64fPGYz9C0PJp1T3EDy3OwWoVWW5Gk+MEaYSW6YGh9JLnZLMwG9q2qAmcZR6znVB2OBxTQEprnXB0UAkXZ6hu34RD2wYfMAI9r9DTi4VkQJMiSsFD0ACaKwEi0l6EQgWCHU0Wd26ycXIR/6wfaphqaJFWD/xorSCJF5Oy1KU9OVC7dZBWQiuxJtxC4nySEw+R0KJcWQvL1eQy23SOif+PXUvaVusRLZMmwTxOclm+k1bjZLLB3YJW2LCasO6HoQI9pO4hJ6qIKLpZAw9k7yYaeLQ2fLyFFnqyhtQFT0DOhVEvggVFmuEDl3jhtQzbXAptt2Ksy+Uds51QdjgcEye2puRkp4gcAG5S1ZuKr5Vj0kgAy/dWgWpo7czhq5zX77jndbvttbapjITvsqbFlSj+phBUQ2tmsBywfN45VIWrLzjC14OL8PcEbBxZQRqCSGdSXZerSdqVIu0KEVsUNf47qkC8JHIUAg4idxaJQsJFgi6ezKcVDX1ko/K0QvcKgtEyzdbX/nno494xE1jq0xNNJPl3tFR1/PDib0rHf1yE5kqAt+nhHVqkuRJARfGPVsPV+xYVf13akyylSXviZuDT41sOdKzYQwrnotp8yDF7LnBC2eFwTIUhlkM9rao3jKMujtHIFV4sQbx62yikfW17MFgM0/6/NuFhXKDDI+Hr2zkwqCpaURb2rHPp7lN89LH/N9zwKPiR26/nwc0qwfFaaDVsSTtmcvv8+9TD9Ipdgk4d4sVQQrcKbdezuU1pLYTirL6nReWs1w4VFy+8ElQ7ArvHgpy0oOfAJM5mTiQnMfWRlJVePQ2vWeSL3n7YSfRf9aCy5oXCuRU9lCy2kJYfur6ck47wbUJlU9oW/lYtLieyMLeiyZ1x3vGDRtY+MgbcEtaTQEC83pHMWzJHemCfOXqCWiJVeKvm6Aw07RHmNx59oTH95KPNUSOaK+YnqtoZcy9dPGm+e6g5oAO+OUgG5y4zn8P2i84a00+etbQp0FjZYUy/+PQ+Y7oeOmJMl4q5+zR2mcve2GPe36+b26560nydpWaO2qDrlsYDdt92ylL2LmP62vl7jekNS7N++xG7jekPXmTOf33VfG477jMPROd9xXxuK0csUViA+nZzH15+2NyXFu89ZkxvGaKMqI42KitSWuvEliKrdXcUv9AhsYmxnm4lhrQk6XwGdEtJuDq0X8NHFmENhCAQHrvzoa5jPNHIH1nax8UT89rF2fxO09VNi1cV8EO/jMbOoL0cclALVwNEwu8E4ffmtiAUy0H46t/fiFYMbHafeNfDT1rE9xP1A+o+k4K5a+Je6vQkfJhoT6Jsgt/suEiE+yR8WeIHIcDb8NDIei+BEPjaHUdbw23qKf5mp7zYRYYWbWv/tNttnsZsEXkm8NvA7cCNqvqpfvuX8/HA4XBMnQAv18cxBTLeF71BE5GmSYECXlMCUTQ69/ZqfYoI3H5qf+/BQrg+cexz3OoIUdPiI9byU/uEVvkwooUXid5gQdGq0ji/AXs3eex19+Pt26RxfoOgqrRqSlCNJ5FJJyxdMu/0Q0fk76xeGK60uaKZ+0c7ixnuI8nJku1JjR60lrTrYciL2ksCCS2/keCFuD9E/sWi4aRNXwlqYRleKzxOAuk+phWGiZPI7QUNy24uhm8p4kVv2vR7QzJGih6zRWSXiLxfRL4pIneKyA8OUy8ReauIHBWRbxi2PU9EviUid4nI66JkBVaBReDgoPyd64XD4Zg4qtCaE+vEXDOrwqYPtpn+I0UAiNqh7e4Q59mSyJoeWmQDoH5ikYPeLh772Z/g0Rc8zDcPn4/vK3qqFvooJ2IlS5AKAWawKnfV22DZjQV6LMADH7SqsK3JYy47wosv/Cqv2XWIPzn/Yj54+Fq+/cAFcK4CdZB6rNo7lu5BYlarcMlTDtFo+Tz8uf3WRUy2FEk/9vYDgbZXZ/Tq0t320QODF03MjP2TA1/bod4kEPw1L5zYF7tnxA9GJnceBYJoxcIoVGBQi5bO9qKJm3FZ/fyVx/SbHdOY/Ubgo6r6UhGpAV2LM4jI+cC6qp5NpF2pqnel8nk78EfAO1PH+8AfA88hFMRfEpEPA59R1b8XkQuA3wd+vF8lnZnG4XBMhUAl18dRPnSQ24TlGBjBepk6ThLiqB1XOJkGocUwmtDln/No3LeNzTMLfPPw+TROLdK4fwVvszOBLqhpKvPu/OJN6fBtaO9+iBJUotf1CaG3vGODXQvrvGbXIQBes+sQOxfWWd6x0TnV6BV/UElYhwe5nrTgvq9fxKHbLxjvQiDjwNafDH7ZEgheS0Kre+QTnrwO7cgg8YOOQmuxs2iUepFojsVx0H1Nu6517GLRfoCKLM31hPVaUte4zzmOiyHG7J0ickBEXtRTTZGdwDOAtwCoal1VT6V2+2Hgr0RkITrmZ4D/lc5LVT8NnDBU+UnAXap6j6rWgRuB61U17rknAbv/YoSzKDscjokT+ru55/SZZws+nxQSOzY1uSsZ7ULo+BirF4pUaYYuGNTDmMkAcqwKx6pUtePvK83ouEDQKtCgbS0k6C0vqaMHnlfKd1kVKikl64miXXHPMrdI55AWLBzziomKMWZiUdlcDtvYMy0+Kh2LblDT7tURMTzLJP5WoWvVxuo5SUQMEcRT8DsrLsaxu7uWYBd7/u2QgEp7GfWgFk2+TPqQT+A6DDlm95uAfQXwMPA2EXkCcCvwC6raXuZWVd8nIlcA7xGR9wE/TWgdzsrFwIOJvw8CTxaRlwDPBXYRWqL74u5UDodjKrSQXB/HDDEhgdRlgct5XOF1iSx+bYETTdryGoK/EbpUSBB+9zeimMrR/pU1wd8Mt7f3b3UEVVhAd90HLT5BfKhGecX5RflsrNU4sbnMnfVwkvutm3XWmjU21jqTfNvHtTr+sulr2xMqTQ2v/2cUiR5Sqo8/zcaFTYw6L3a78COf7bhNgsR5WlwduizMmnCxiP4OrfV0FtIxRBXpsTQny9FOPcJQcrRFMgywjo/h+hQ8ZleAJwJvUtVrgXPA69I7qervARvAm4AfU9XVUc9DVT+gqj+rqv9y0ES+uKITRDqPRUkWzJbvYNeKMb1pmc3vL5ujIbQs6QBHnmIue+N7zFEG/Ir5XdPq0SVj+uJRc3iLYMHci5sr5vz3XHrKmP7U/fca0w+u7TKmA9x29FHmss83R8OonDJH1sA3P2d5m+aoCrWz5raonDPHh5JVSxQLW8SFwD4yyIMPGdN3PmR6WwO7qpbIGivm63zu0eYILav7zW26/Zy5rrtvP2VMl/sPm/d/wL5IQ7DT/PuRDbNToZ4xX2ep9g4T0hxNuCrljcm5pbD9pLbIpSt0ZbLY9aKinYlXKdEYvx73GlA94xEsKJWN0JoYVLv39RqxQovy9TVcjKSPn3DXCnrEvrFANLEMIrGmgp6u8U29kJcc+1kedd4x7jx4IRoInKmGC1+0y5K+fq89bh9bDAmg8fWdLAbSY8lNCmdJRJjozQR7+6TSkkb8cPIfvXGyY2Gcyjf2b+4i+XYjIPRv1kR/jFeYTEcoSdd5RMYwZh8EDqrqF6K/349BKIvI04HHAR8EXg+8NkcZh4BLE39fEqXlwlmUHQ7HFAhf4+X5OHoRkX8vIreLyDdE5N0isigiV4jIF6JZ3u+JJskgIgvR33dF2y8fXMAQldqigqqLWGQkhWn8ij6KMBGHAiMhMqUVxdeN/m7VOvl49W7rYWy57Aop5tEj4NKkw8PFi42oH0Zo8JqRdbsuVA4tsPHwEnfcdhl6qkbluwuhSG6E59Ba1sh9RLuvddrPewtfUwlCi763Sec8IoEZb+8SmibU8oGu69/TZ6J4yvF1zTXxLllG+ntsZY76T7wseea8h6LYMVtVjwAPishjoqRnA3d0lShyLXAAuB74KWCviPxOjkp/CbgqGhNrwMuBD+c4HnBC2eFwTIkAyfVxdCMiFwP/DrhOVR8H+IQ3gt8F/kBVryScrPLq6JBXAyej9D+I9htDxcaSa7EIbV9iI0lB5dG+U9pex7cnewW9Yjg5OQuD5ba9f3Jbn0ln7df07Yl72hZj1TOhH25lHaqrYaQGaQqVVQ+ph/GVK+dC1w+vLtROeZFFUjoTxRLlzB0Ja33yQWWoSYlJ4ZvsD0nfY5OAjTG4ueRym4hdM+LziJPHOZmv+DH754F3ichtwDXAf0ttXwZepqp3RxPwXgncn85ERN4NfB54jIgcFJFXA6hqk9AC/THgTuC9qnp73vN2k/kcDsfEceHhCqMCLIlIg/Cmchh4FvCvou3vAH6D0L/v+ug7hK85/0hEREddPWZIhl3NL1PefdwXILQm1ncGLBz3jHVoT+6qJAQu3Xlao2skLIr+ZjhpT2Jrpu11eEK8xe2ifpRsK1viV/qRf3EjdAlJhoyrnBOk4REsQPWsh9cMF8+Iz6krmkNcb1MIsgKY9mIjbRcFaLtgpCfOtffNMjQNsAbHrhzqJ94cxMfFDzkjWOy73Io0cQ0FtAKSeLNRBOMYs1X1q8B1fbZ/LvV3A/hTw36v6JPHzcDNw9fSCWWHwzElnDvFaKjqIRH578ADwDrwN4Qzx09FlhQI/QAvjr63Z4CralNETgN7ga4lGUXkBuAGgNry7vHUfYzPSFnyliYsHgv7X49gl44I8ZLTJ5K+otgFctf2llmMtZPSE+USvqzS7HbBUKETcUMg8BMRGiT0eW5HywDwwggMXkNoLQXtfWP/6ridvEa0Ml/kMx0vqTzsaoum/YNK+PE3p2ypTl8LQ18pvG8mBXHsX1yB5pJSPSu5xGyPj3p8vdPW6TG1cVnH7HKetcPhcGxxRGQ3oZX4CuAiYAV43qj5quoBVb1OVa+rLponhI5K29VgXHlbhIKkxUS6HtItQnr8UU1pYBYm7Yl2ffYbkH9XRITYDSQhcMVgFW67fTQ66W2RHIeoS5x3fWfAvh94iKCm4eSzeK5vwmqdlZ72JTw+qIX+0FNzy4ktvIb0NIVFWlGiKCeGfVtQWc/XGDbrd1xWV7ktzH3SMRQDLcoisgh8mjAocwV4v6q+PoptdyOhReJW4CeigM59UFDD6NgyR0mQhjnd1gGCmjmqwvr5dme09YvNZVx2wUnrMSbuP2suI6iZn0ValhDXtge2c+vmA767vtOYfnRtuzkjwM/5A2W3OXKD7Y1t9aHTxvTKMfPJSd0ShWFj01wfz3ydadm7n9rKWD1nTLchlkgfK8fN/WXb4qK53E1zXYMzZ8z7W34jnqU+gDFaRT+kZu7Dst0QWePQaC+jwpiczvViRP4JcK+qPgwgIh8AngrsEpFKZFVOzvKOZ4AfFJEKsBM4PvlqT5Z2LFro8lGFlAhMRpLIisGKnIxIoab8NGEZThzXU5/E/rFAVk/NodwM/rJxue2FKiIXgLbojuvZEk6cXelE8dDEfSgWy+nybM2RfMiQTn7+enjfmQW/56CWeGCA7jZMYKqrbYXEtBtEvE87XRL9IX7TYJE3mVF7PcdBmcfsLBblTeBZqvoEQmfr54nIU7BPGHE4HI6BuMl8I/MA8BQRWRYRoTNr/JPAS6N9XgV8KPr+4ehvou1/Ny3/5JkkgxDsR5dITopW7GImbb3siaEsnU8cQ7c9oTDenqx7wqrczjOIjCNpq2MkpmunBb6+HW9TOttaCTEZEC6SIvSIyXS9bec6rJV2HFjDwGWony0KSLwATffOYTlxyL/CfLT79NP224RxuV6UdMweKJQ1JA7wXI0+Sjhh5P1R+juAF4+jgg6HY/5Q3BLWoxLFH30/8GXg64Tj+QHgV4BfEpG7CN/4vSU65C2E4ZXuAn4JQ8zSsmBbGjspNEyiw5ae3p782/R9kO9vW5TGwjcWrEpPSDpTHZLb1EtYkrsKifaPYv12CfDUdmmmxHuirKSfrMn1YlboinaRcrdpk+FhyXT9W4vK+sVNtEK3qooipqT3H2Zp9kF1G/eDSJnH7EzvT0XEJ3SvuBL4Y+Bu7BNG0se2J4YssjxqfR0Ox5xQ1okhRaKqrycMwp/kHuBJhn03gH9RWNlTjmKQm9hg2m9CnoHk/lnv/V1C1zRfK1GXrtf26f/71S8WThZ3gHZRLUIBl9FHt295UTntyByp9jC5Xswy8SIw1gVXslzv+Fr7ivpKUI0s//FDTdpPnRy/m4z7Tep3WNYxO9NZq2pLVa8h9Hd7EvDYrAV0TQwRi2Ouw+EoFzktE5F1YqeIHBCRF027+o7ZFcmDxGyPe0Pq2PQnT7nJY2JNkfaDjuMVJxcxIf0dun2O+xbcf7NoIiSccYcB+RvK63H92CJ0W4Fh+QeOsX5J036ds1hxNQwDuHiwSn1XwHOe+2U2z2+F19gH9cMMhrIg99vs98YCV4HAp++CNUMz3Jg9F+RqTlU9Rej/9oNEE0aiTUMtC+hwOMpJaGzJ7e92WlVvUNWbplx9x4yTtgK3F9PI4DNcFNKiPYnLWkbyezLMl2FRk75E4rU9ES+lUdrLZVuOHZqERdsaV3pGUV954WW3s7h3fbDgz/KwoqCLAf/lwr9Dl0LzvdfstH0uK3KWNx0+xoga65c22Tg/KPwhZsgxey7IEvXiPKChqqdEZAl4DuFEvk8STgi5ke4JI33y8pAFg1XZN0cx8M6sGdNrlmgYWjXn42/ao174Z83HPHTaHDWi2TDvv/jdqjF92/3mHt9csnUic3r9qLk+XzlkDt9UOWfvpHu/bq6Tt2aODNHaZXaZ8TbM+/PQCWOyNcKELdrC7p3mfCzRHOTMqjEdsEa9wDO3k1QsPw3L3CfbuQVnLXWyRLGwRbeQirl/SdWcDhAsW97gWGb1S2A+t9bu3j6mD41uspgni4NjNki6MMTCuCc6xAC6XCFGrY/Xp0iTm0VOkWkUX4aJZhJ0fJULd4kwlWc4l1lx1Ymvb2VNuPHDz8BrSbYIFJY+FEdVEYWFIxV+6D2/zMJauFO8YI1A2/XF2g4Z3gwkH0a8ujmfhYcqYwu9WNYxO4uP8n7gHZGfske4BOBHROQO4MZo3e2v0Jkw4nA4HH2JJ4Y4HMOQ9jNOd6VWDZBwgQuj/khZck35FoE0UwmRBbYdsi4pWnP49Vrj6FpEatc+Q4pVUzv3DWuXOpdZEMldaCiWhzkO6JnUqAF4m0KtHjmle/SGoGO4djC5C9kmk/ob+fPPQpnH7IFCWVVvA641pBsnjDgcDkcWyjroOkYnKdrSE+EGLsE8IcHW9lFOrvyXrnMkqNrEE8OGsQj2Edkqdst22lJp+1n2+7na8pg5cRxhq1fP5EprBh1LPenzjvNOXUOjJTlj++Sxxsf1aGwLlzD3Ro3XnKCsY7ZbwtrhcEycMgevLyNjf+2emBzX2KZ4TfA3pFcgJq2BkQU3qNAOn9bXQpq3SrGISpy3SUCqISRbO4+UaOv7yt7mdx2AVnp9pdPl2MrMSjLGsNC5HrMe+SJJ0nLbtw20+3yB7gl0Bmt6cqKn1epvqM/Q7Vhwu5d5zC5nrA+HwzF1yjoxpIyYZuEXfs8VqO9Sfu9f/BlP/dGv01rsoxTU8j3OqgiRkRDvyXyNeafaJynYBy4ikaUdbSJ6wHkGNajv1u4y+rmqpF0DZkUki7kP9j3E4O6QZX+gs6R4QfllasdEe0sA1dVirclQ3jHbWZQdDsfk0fK+xptnbJZj0w27cAuzhmHQXryySl2/zmf9x2c6xiYmRp7UF+vLtOAxTQYzCOFc7dPP4ph0EcjZ5kFFaa0E6Gk/rGcF1i9uUjnjUzsl9geOWRHIMUqXkMxKl7hNXjfDdUxa0pOLsCTzwfD7sE1+TNcha3015zGZKfGYPVmhXK0g+8/vSW7tM0d0EEt0C//4WfP+m3VjujkuRMjebTuN6eeOm+u0sGnOZ/e3zVEVlh44bUzXiuXx1vZ6zLJ/c6c5soG3aX+U9E+vm+tkiRqCb4kMsZmeqRKxaW4kW+QJ2Wa+Qq2d5vRg0dxtK31W45UNy4Wrm/uMWCKx2Fb8tUWrwBJJQi3pVtTcMbRhieYByJr5nG3RLbBdH8PvcNSBuMwTQ+aV1kJ40/c3+/ePwt0wEj7KC8c9HvXe1yANYSEd+WeQz7KhO44qlvv6pSb9lXUM7ZKsQ5A9/+T5VtaEyrrfrnNQgX9y7e188u6r0NPLePGwZMpX+mybMKJki2zRj4z+xSmXeeO2QWmjMC4XpzKP2c6i7HA4pkJZB915Je1mYNxOuE9bK45wU++ZPBWJocWjnl249SsvZSUsxE85R3ld6e0M+hwbb7flk6rDUK/8U9Xx6vDpv/k+qk0ZGIKs7Y+brdgtwayEuJsWQ4zZO0XkAHDTVo5/74Syw+GYOGWeGDKv+NELDNuKd/HEuWY8G78x2mvinlBlkXCLfVGN+U5yclnStDiozNg9op/1WenOa5B5MpFXa1HxNsX+2r9f1RL+0l4LZK03H+NxY4rl65gOQ47Zp1X1hnHUZ5K4yXwOh2MqqEquj2O26TvhDEDDiBT/9kV/zca+0VSUdZJb7B9aCSf2tUxrGQ3oSu2wcxXYOD9ALR5pgyuZ+JhIi95B1ufkcen05P+pMlWiuNIj3u17LNMZ/H7LbH0tilka+so6Zjuh7HA4HI6JUFkX3vi551A7PdpNVFJCsPNH+Hdju/LzL7qZ+u4gl9BIxmZWD4IdzdzREjKRwcpsFOjDTEgLoHrWsPpcnkuQnqhXUgE8DeHvHjamj3O9cDgcU2GewgfNK0oxfpmxP7G/Acv3Vtuv5YsQAckIA/H/lTXh9//+uSyc8ToLMGzXUDBmNGZ7dVi6p1acC4HFLcLmomEVtuk2GyS6I7eXHjeX1MPGwGWVR7hWZfLtnedzLeuYPVGhrBWf5nk7etLXLlo07u9vmnvbypo5UgEnThmT5aBlf2DvmTVj+p5lc51skQE4aYlusW5ZT9IWocESbcFbWTam106a3i0CrT6je9V22c15ybql/U6Zo48EtnO2IGL58VksOWqJwhHsWLKW4QW7zGWfOmM+oGmO6CFVc5QRWTT3F92wtMW6JfKIZWa2LapGcHbVfADgWfqqdQz3zO1qvAzN0aaQa4lDDW0lhNF8iE0LWRQpkpN5J/E3YPnBSqcsQmt2lny6Fvgo0s92kAV5gMDq2Z52uxhQdjvEWWr/wI/So590eiGNUUi6yMwDY41MkjHfaQnxMo/ZzqLscDimwjz5sDm6US+6oaeepyZygzdFedDQQtyvHlmWcR5VzBjzjVwZBk6qG1G0G+skYVxkf2eD2h1LnZjSBV2neRHIeRjmnPPGSp4WZR2znVB2OBxTwEW9cBRPUuQOJSgiq6ttKeuseeeJLiEa+SNbwtIPRSrMXZeVOO3i0fBoreecsWiwTI+8QMtWIEfUFE31oywPZ7P9YFHeMdsJZYfDMRXKap0oAxJML37uMIItPSGQlCC2CeZ+dehbRipdvQLbS1LuI6bIGHS+Lx3xQBK+2BnEmgpdqw5uDaE3HD0PGqb01P5p0oI5LZCziOqRSPTpkbIp6ZjthLLD4Zg4Snn93RzjZyShkbLGWrcbyrAJn77FKW3/4JFJ+1f3sYDm8UVORxmRoLeNJ+ZWM+Zhw+Zb397uYXSV6YnrbWkPTfev+MEm6E4fy+qVI1DmMdsJZYfDMXnUPp/VUU6maZE0WaGtmmDAhLuBx9MtouPwc+oVMHkwYeEVxV5Xkx93RiZ6jSYgjLuKk+7/zTv12SfxkNQTZYRUP4v2VT/8xD70RS/UUki/glKP2ZMVygpes/eKeS1z64slncCcrrar2CcKg25sWjbYHsPNvyBZNEdD8HbvypW/7lgxpp97pDmfxrI5NMTiCbvDW/W0+Zy9dXOUBFk3RwbRTUvbWa6PLaqCWiJM2OrT2maOzrF+oTkyCIC/y3x9Fr9bNR9giRqy8Yhd5t0XzNdh6Yg5uoV3zyFjenDGHMXCFvVCG/br3OqzzVinmqUtxHBuwegjb1lDDTl6UQ9ai2G0illY0a0tmLxIxDQxi86EsMpT7x5R7kVlDIMh7NzcuECkh4gxDxnGtwCJaxyLTluYPRSCxfB/f0DwJxXQCsg1p3ncBUf42qceTeVc8SdY5O+prGO2W3DE4XBMHIXSrvLk6EUFGis6c5PB6ruUS374QZpLtvfodCyMfmQdjl6nZ0UrENQM524Qa8m/YxGvsXvFvIjjWSJq9ziEXmtR0QrtqC7JfWL8jc5y7klMrhnqwdMuvYdfu/jm4VeAnBBlHrOd64XD4ZgC5Z1BPU/Y/DXzIgEsHpeZE3teEw6e2IUE/ftq7A/c5Z9s8mU2WX9b4UubdhvaQsiltrVdK2aszbYypiEp9iNe39/idc++iTd9+xlsfHkPXgNz21us+iafZq8On/zba/g7/xpqZ2d9PCzvmO0syg6HYyqo5vs4ZougAusXBLSWBk9YG4SoeYLYOMlS5+pZQb62feBr9DDD7lf3QTXhgxxbgBNiup3uh/tCykoMbet0ct+u7cO2Vzn1zvAoeLvr3LDzu/z699xMUB3c8PF1Tn7vikYS9ffqWaF2Snr6f3r/WaCsY7azKDscjqkwT6/myoh6cN5jjnHszn34G96Ws2z2E+XtSVdK71LS/dAo0IREx0UW9yC600qTtuAlEe1CgnAfCcJt8WQwiP4O6Ez6E/AKsiTPa0i3whGQBxd5zGdeSf3EIkub2ceuQRMDB7W/MdRfTmKr+KiUdcx2QtnhcEyc0OKQe9DdKSIHgJtU9aYxVMuREZXQLeHMP5zPQostI5LzCMOs4d16C0lEZUtFtSBeLlpDAdxa1HAiXwsaOwIqa4K0pH0MgFYUaUhbfAuM3t7zNumvIEzXPA7fVzst6G3bWB5xctwwcb5n4ToNOWbPBRMVytJs4h852ZO+0rA8shsiZADI6bPm/X2LJ8mCOUoCYH0/YIuGITVLXnt3G5Mb+7bZyzawtn/RmH7isWZP/+aKuf5LR81RHgC2WSI9LJwwR5lYqJrL9qrm7uOdNUduoG7OH0vUCzlnjhjBeebIII1tdk+i1oL5B15dNbf35m5z+x3/XnPbtZbM5a4cNF//ffULjOneQXM+tv6otjYFa6QM1Py7skUf0bXeqCdaRNSL/IPuaVW9YeSCHZmx3Z9j/1ivMRs38ayoBwxy8Uj4F6cXiMhEtK/Er59jtwtPaS6Hk700GkakBUFVafmCNIWgArqoeJuR1VnAq0toVW528u0XyzlZb0d+TIvPtGNSR8NeO5KEdPbp9/BiuhbpfpUW6f36Xd7r2zdUYA6cj7IFEblURD4pIneIyO0i8gtR+m+IyCER+Wr0ecH4q+twOOaFsvq7zRPTFmN5/Ti9VoY6p8RLUrjkrlvkRuE1wWsJ/mbku+xBc1tAfW8LvWCTHY85QXNPk8aeVujfXIuOq0toRU5Y7Uf2T55TkjGpi824878EqXBrmvo/RTuetSE9+X+/7baFTaahWcs6ZmexKDeBX1bVL4vIduBWEfl4tO0PVPW/j696DodjXinra7ytRF/3yhmwWo6l/KTFNk85iWPa4rrV7VuMhqHgEPD3bLJj+xofesJbuaSyjefe+UKOrS1z8r7dSCt0wZAoX4V2CP8ua2Zc3wkx7EPDJCjKatrOK4XNV3iotw45y05vn9Zvr6xj9sDnL1U9rKpfjr6fBe4ELh53xRwOh8Mxu4x6o1aJ4tNm3Hdi92hLiLCB5afbIxG5IoyxrBCFgdOKUq01+bXHfJRLKqF71se+5yM0Wj661GpPIFQ/9GFO3qmztkPfOudsy9haG1RDa3dXHOFRKFDs5elP/bBZcE1WYJtgHca/Pc91dUyWXC8qRORy4FrgC1HSa0XkNhF5q4gYnXRF5AYRuUVEbqm3LD6nDoejVCj5AteX1ZIx78SLNwxkXK/VTaSEUGZM+1pEd5xelWbv7ipDRykIJwgyePGKIQSqesA1Z9jz1CPtcHYjswV+1oOioyS/mwRy1oe8vJNMJ02Zx+zMQ4+IbAP+EvhFVT0DvAl4FHANcBj4H6bjVPWAql6nqtfVfMuMJ4fDUTo058cxX4iGE9QyiYgg9C+eNCOLkoRfqwQSTgYTkKbQqFf4jTtfxNHWOQCee+cLqVVayIbXnkDW9okNEvn1qVNzRbnyh++luTzo/f1wp1PfrHJ2Y6HYH2SB7hLT6CNpwomb4XebeE4yjO+76f9JUNYxO1PUCxGpEorkd6nqBwBU9aHE9j8FPjKWGjocjvlDy+vv5ujgtUa/0Rflr9n2M836Cjyy2rbjLKd9m5N/x/XzwGuEia0TC5w8U+Opqz/H8vImZx7aBir4m6F/cjIf4/kZ0vwN4Y6vPYKFRJxfY/sM0V7SgtodSzRYwksYwgN/NgTqJMjSz2Ifcpufc5E+xrFLTK5Y30MXNj9jtog8E/ht4HbgRlX9VL/9BwplERHgLcCdqvr7ifT9qno4+vOfAd8YWLtmi+D4id4yDOGnAAjMPSmwhROrmE/Hlg6gLUuYK89ibPcsHcUSKi1YML8DC3xzPps7zOU2tpvbomUJ6tg4Z3/3Vt9mLlsCyznUzOHYKrvModWqx8xvDrzT5rBxum5xybFcg83d5vd+6/vsL0j8DXP7LZy0hXsz52ULA9ewhOmr77Rc5/OWjemLa7uM6XLytLlgWz8FqNeNyWpLt/yuMIWZK2JK8zyZHBxDM/Ly1wX1o1z+pBWoP3ad4ESNxSN+VySE9OSucLU9JahAsKD460JQhcqqh7SgubbIudYSlSCa/FcJw+7Fq/DFi4tIc8C5Srgk8tJD3Yu/9Dsmq2CL9/Ga3X8Pyj8TebSXYaLlrNHPZ9n096jaU0aP1JmdMYzZIuIDtwCHVPWFQ+bxVuCFwFFVfVxq2/OANxJGMX+zqr6B8ExWgUXAEpS1QxaL8lOBnwC+LiJfjdJ+DXiFiFwTFXgf8LMZ8nI4HA5gfqwTpSSnYAkqoQicxWgJPWQ4NxWoLTRYr6YetDVxaMKvWn3Qy9fRQODeRSrroR9ysKB4TcFrdFbm889FOUTPs1pRiBchia3LfayVWUVylu1Z9h9JqOUVvkNOjusXxWLSfbKoKBlzFPXiFwiDROxIbxCR84H1KJBEnHalqt6V2vXtwB8B70wd7wN/DDyHUBB/SUQ+DHxGVf9eRC4Afh/48X4VHCiUVfWzmLvnzYOOdTgcDhvzFGfTYSYWBeO0ek0jVJbXAP3aDpYs55Z04Yi3P+2Rd7PZqnDrfY9tr7JXWRWCmqI+VFfDOHAaPVS04yardM5PEtoybaVM1WNLPJSM8VlZFFrV8G1s7bT0uocUFF4vvtZZ+3gyekZ60l/maxaFGpw0Q4zZfVdTFZFLgH8K/FfglwzH/zDwGhF5gapuisjPAC8Bnt9dL/10FGwizZOAu1T1nqi8G4HrVfWOaPtJwL46W4RbwtrhcEwcxVmUtywZb5ZJ/8lxCeVYpCjjE4Y265+YPJUkUScv2scLfYc/98nHgYJfl3a+4WQ/IahqZ9W3Jl1t7G8myveivONJgZZ2HaYt1Jvwa/wxoxI+dDT3Naid6V1RVwLaESmG7TvDCt32A2QBluVJMeSYPWg11T8E/hOw3Vim6vtE5ArgPSLyPuCnCa3DWbkYeDDx90HgySLyEuC5wC5CS3RfnFB2OByTR9k6dwhHNxmtWaLjn2QkWpxIHiRatGIRx+0MkjsnfIqjNqisdmceC2UNEkuBmyYExvtKJ6+k/3NRluSZEskF+CKLhsuFL99ds55bUKXt2x0fk7cMILyOOeo7st94gRMCM1PwmC0isU/xrdHkOnOxqr8XWYLfBDxKVc2TnXIQBaX4QNb9JxWZ0uFwOLoo63Koc8EsPeNMqC79RHK4oEi3pVACOg8UmkhPb/M6x8f7GuNrJdK7XDFSd/G5eP4s6BzikHE2Qek1w4eULGSJhxzvM8wCOVvBVabgMfupwI+JyH3AjcCzROTP0zuJyNOBxwEfBF6fs8qHgEsTf18SpeViohZlVUUNM+ilYRmBfHPkBqlZop175v2ts/kB3cwXGcAYAQDwTp01pve+8AkJls1banvM57ZwyvxME6yaz3npYXsvXThjfrxuVc2/7Pp55m5SXbM8Z4k5ooMtRr3taW3jkfuM6Q99v/mcG4/YsOQEumY+B/XM12HX3ebrv3LIXNv6dnPb1c6Yr0NQM+ejy2Z3KW/NnN43ootlW2CJJqMNS5+XMT1Pb4Ebw6wjIruANxPeSJTw1eS3gPcAlxNOtH6Zqp6MIhi9EXgBsAb8ZLzq6laiZxKWdm/LsnJav3xN2FZrS/q5Wi2yhnp25d0EL5B8v4eEWFavux4TpQDL7zTJZUUfwi842f9MfXHoh5o+dRmrpbnAfFX1V4FfBeJwbf9BVf91ch8RuRY4QBjR4l7gXSLyO6r66xmL+RJwVeS+cQh4OfCv8tbVWZQdDscUKO8qTwXzRuCjqvpY4AmEs8dfB3xCVa8CPhH9DeEEmKuizw2ErzL7MyMPM6YIBrEPNFDcksoZ6tFVTtvPeLR8Rzm+bZ1OPSBMhBL9LCXoL0CTbwySmKzLtrT09qxW7CxpozOVMXuZ8EH/blUNgFcC9/fUTOTdwOeBx4jIQRF5NYCqNoHXAh8jHBvfq6q3562E81F2OBzTYUZE2FZFRHYCzwB+EkBV60BdRK4Hnhnt9g7gU8CvANcD71RVBf5RRHal4uEbChlX7bOT9Mdt95kBFrX030Ut7tCv7MwTs1LHS2D2NR6JhIF65l/pz5BVetx+v8m3IVkF7qAFSkwxmbeCRbkr23DBj08Z0j+X+rsB/Klhv1f0yftmRozS5izKDodj8ijOojw6VwAPA28Tka+IyJtFZAW4ICF+jwAXRN9NM8AvTmcqIjeIyC0icktj45zZV7bf3wXT42KREM4qENQS1mWhR3RlFQ2DJlh1/ug+xmRF7Etygl6Ud3uVv9Q2Wx2T/6c/6TrO/E9njPXL6ytclMAc1C/y1CntvpFsr3Q+puWyC7v+JR6znVB2OBzTQXN+HGkqwBOBN6nqtcA5Om4WAETW41ytp6oHVPU6Vb2uurjSK2TSFtVJ3g9jkRyJy2ABGtsUrYR/j+PebBIjNhFkEq6mVdnSK9slo4OkRbApPfm/rQ79zmHLknMcCKrQXNGpnn9hS1VbzsHmpmH6e/SK5PzMCU4oOxyOKSE5P44UB4GDqvqF6O/3Ewrnh0RkP0D0/9Fo+3AzwMdsQc7rgxlbj4MqXPL0B7njX/8RG4/a7O4mBQgEkzgZOvTaIKvzGERFusy5EMt5I0m0wKtLYZbiYekpf4Rhrd0vc1qli6GcY/ZEfZTF8/CWFnvTd+007t+8cJcxffXSJWN6a8F8YVa+a4//sniHeZnv1vq6MT2wROjQY8eN6d5Zc8g/f88uY/rCbnN0g+Uj5pgRNr+25aP9YhmZR436fnMZjWVzu3otc3pzyRyVwt9mjjAhdfM5n7vQUp/LNo3pV19md7U8trZiTD/10PnG9H23mfvMvlvXjOnN7eZz0Kr5WVSatndylvSKuU2RPoNRy9w5xLdE3GhZosxUDcNEUMAgOEcWh2mgqkdE5EEReYyqfgt4NnBH9HkV8Ibo/w9Fh3wYeG0Uk/TJhIsB2H80YL5GffyDh2GY2LUKaEX5xUd8nKr4bNu1RpOFYuqVEMhFC6x+SynnOcaEzY/VeHx0DcftkzttvBbt2NOTpm/bJv2yJZGWAdHIzWgaca/nuK/0w03mczgcjq3LzxOGTKoB9wA/Rfim8L3RzO/7gZdF+95MGBruLsLwcD+VqYQZMwzFwtLbFF77t6/kl/es07pvGxWJ9F9KoPQLF9cjZsY9GSpFe9GRAto4c51jkVbwA4+jG1M/S/u6B5EC81rYr4chPV7x0rZ90PGOfDih7HA4poMbvEdGVb8KXGfY9GzDvgr8XK4CZkAkpycoiQJRqK7lByrooe34re59rTGLDf7CSdrCOU6fxPkrk3OCTLSPevNpTZ72Utw2S7IxokXQ3b+t3S16yxGflySEdd/jimYO+0sWnFB2OByTR5kTp8mSMsFL1xOWTTpiWT3aK+ZJQLf1bAj3gi6RDJMTzIN8mAvIP82guMBbEZXQd92rb41zSwr6LmNz4qEw7r+xy0X8gBP4GJeI7+nvRbVDicdsJ5QdDsdUcMtSb2GSPpaTLDP5Pwlha3IlSESHyCyW+/mUwtjOOVcd8zAgv3nzURadvki2ufYMjLNt+E3FscPjCazJCZrtB0MSlzn9cFj0xNs56it5cELZ4XBMh5IOunPBBEVyWkR2fY93slhkC5+UV7BgbguncQjakv6+pi380/7I6f/7H0z7jUlXdIs4Dw9aNSVYgMqahBblSBAb/fKL9k8uaZ+arFD2PWT79p7kjUeeZ9z9u08zRxKoXHvKmL5zacOYfs99+6xVuvjjlxvTd3zCnFfr9BljutbrxvQgMPcsb92cf+2kOaLDUs0SqcByBYNqn1+l5Rdb2TDX1ebvVTtr3lBZN08zlqYlo8CSj6U+es580rbIFgCnz5kjpVTMQSzwz5qvA989akyurSwb03XnNmN6Y7e5Ppvnm8+hsmL+LVSPnDKmA7Bqjrhiw7Ocg1R621saBThVlvQ1nmMw/Sbk9byO7iMix7pCWcIVxLhLBnE70MqY2M+UP3TuAdIc7KOdJV/HaKTjXGce5iw+zOqH24Kq0lqAoKYEO5twtAoClXNR+LtYNI+Tko7ZzqLscDimgrtJbzEm6G6RRWDClO/bJlGaqM8wYe/y7h/4UP+eNVqrVZbvrfbWZ8bQ6Pl6mpPtJk3yYa5rAZB4MqVhQml3BmFaawGa21t8+UV/yG5/mVfe/wz+4R+uJqiBvynWty5Fn0sZcQuOOByOyaNDfBzTZUaMSYEPreqc+dcO0bZxFAT/3iUWjuS3eU2j7STYmiK5vUT6kMcm/4+RgMGuPAnXCVHwdzbY7Ydv/v7leV8M49lbHtT6pg1DicdsJ5QdDscUkI4TXtaPY3aY4k1QfWhun9G78BBCYdhJV7HrSfWs4K9vrd/HlvxJD3GNki5CWfPuiViRmLAXHFvg148+nrsbq/zqN/4ZWtVuS3VqIqEW6qNc3jHbuV44HI7pMKNax5GBAf6548RrQO1UWPA8WJWTFsdRlsie5d+Teh0LOEBjm+K1xDpHJHvGFNoHA5/IlSEVum1IkRyvoJc54koqLFxYKRCByoYgwHs/+jRurDwVf1OoANKUHiv9WH3zS4izKDscjulQ0td4c8EIAmVUQ1NSFG51kZwk18p6Bfw+Jmnway3C2lX1cGIaUFkXPMt86VwUeA4q0NymNB6zNrSbRZo4VnXe8ITth6fEojDSgMpZwdsM3yB4m4K/FopkrUB9l7YndmaNppKbko7ZAy3KInIp8E7gAsJTP6CqbxSRPcB7gMuB+4CXqerJAZlBtbfIs5fWjLtXn2jO7tevvtmYfnn1mDH9nXufZq3Sxx9+ojF9x217zQecsUQSCMyRHrRlSV89Z0z3D58wpi83dhrT1y8yR0lY32u/tJVNcw9eOtow779mTrdGhmiaz9kWhFHWzflsv8scYWTvnl3G9FPHzNFTIAylY2LfbeZzk1NnzRktmPuqLprTW9vN0SrOXbJoTF/fax6hq+fM+e+xRRIBvJOnjOmyaK6T7DL3MV0y7L9WwMuoORpIS8cIAqUIcdt3GeoR8y1UQGZ8oBgpxvOQFNVmgR8KOt88lAJhbOPaoSpxGLN4kZhZo7Iq+HcsF+JHbYraMrB/mfyYoWu56jBOdOKNSrRKn9egawGS9op9Rfabko7ZWZ6bmsAvq+rVwFOAnxORq4HXAZ9Q1auAT0R/OxwOx2CU0vq7OYqlaKvyWBb96JNnpoUoZlSgqIQ+4+r3PwevCdVVwbPYUGaCeHJkfXwTDrOK5NivuWuBkXQ/UNrtKc3QV70trLP4ReelxGP2QKGsqodV9cvR97PAncDFwPXAO6Ld3gG8eEx1dDgcc0j6ZjDo45gd5ugeOBRdr+aztoWlD2/Vtgz8yNe4Gfn0DviNzvpveNpLevf0g4QLQ9t9I4jEcWpM7BHUSQrsX2Uds3O9PxWRy4FrgS8AF6jq4WjTEULXDNMxNwA3ACxWehcbcTgcJWWOBtKyoV73a955I32TT8fB7bI45unHFhFT1GS8iYuTZP0dwyP0t2KnhKd6HfeVibZ9Sa9zZqEsItuAvwR+UVXPiHQeU1RVRcyXS1UPAAcAdi5eWNJmdjgcji1Owt92pl+hjwGrtW5UlPC97gAL3CxG9/Ba0ev+GavXLNPlZpOccJezDV2bT5ZMQllEqoQi+V2q+oEo+SER2a+qh0VkP2Be29fhcDgMuMF+izEmF4FZFIGjMuicTCu19Tuuy5o9Q201S3WZdbqu9ajxjeOH1gm3f1mvd5aoFwK8BbhTVX8/senDwKuAN0T/f2hgaZ5HsNw727+5ZN5919KGMd0W3eKRlbox/RFL5v0BmivmK6/LlsgAvm/eXy3vTSzpummO9BBYIhV4logRteWqMb21aHc/99fNdVo4Yon0cPS4Ob1umea8YGk7W8SIpnkKtBwyP3ud//fm67x317K5PoC3Ya6rd9ocfaRxmTmCxukrzWU0LUXXzpqvW3PRrDps+dhey7UW7T9hf8nyw6pZ+sx55qgXje291y140Pw7yMVWdc50FMq83nx7VmJLCWNb9zctRTyPDxNlwuh/nBHTcu1p/2RbXyp8SeuSjtlZLMpPBX4C+LqIfDVK+zVCgfxeEXk1cD/wsrHU0OFwOBxTR73xRQPIi2ZwV5gkyQU1RM1t1aMxkq/eJRXQIIOgHiezaL3eivQTsFmuqynEnELbmpx2CRokmB3DMVAoq+pnsb90e3ax1XE4HKVgBkJeicjTgR8nHAevVtUfmm6NZptZEckwW3Vpk7T4BQYxZLAqqtdJl4QP+LRerUMUzWKHUlkVvOb8iSyTxX5c5SRJl5OOBQ7ZH0YH1du0beQHrhkYs6eFW5nP4XBMB835yYCIvFVEjorIN1LpzxORb4nIXSLyOgBV/Yyqvgb4CJ1Qlw5HbiSgS1QaJ/+lhJH6gEBQjSzSyVjEKZE8abHa2NtEzR5ac8Uk2jVLqLR2f8kYB9m2rd9xxbhe5PzMKCLyTBH5jIj8iYg8c9D+Tig7HI6pMKaYnG8HntdVjogP/DHwfOBq4BXRokkx/wr4i5FPyOFIYbLiqdAWyBvnBbSuXmVzb0BQDdOtx2RIKwIJYPneKr55itCWYVpuCMm1NvKUtRXiDxc5ZovIooh8UUS+JiK3i8hvDl0vi4Ek2tZjJCGU8avAInBwUP5OKDscjumQ3zqxT0RuSXxu6MlS9dNAeh34JwF3qeo9qloHbiRcMAkRuQw4HS2m5CgBk/T5tYkFldCK/PynfYVvP+Od/MCTv20VyV3HFFT3uHxTfqJh6LdpL8AxLHE7BZVoee2M7aYFqqFZF7xDU6xFeRN4lqo+AbgGeJ6IPCW5g4icLyLbU2lXGvJ6OykDSbSvzUjyGVV9PvArwECBnmvBkVHRikfjvN5p/RXLk+uDD+41pv/5XrMr4aWL6ftjyP/97uOtdVo+Yvl1tMxXWRbNER2wRJLQwJyPLd0WSSI4ddqYXvXM9ffPbDPnD0jDEmXitFkrqKVOtmgVWCJ02CKA5EXOrBrT/ZNn7Ac1zJEyWlddZkx/4Pnm8BO7rnvYmL5/2Rw9444H9hvTd36xN/oLwMp3zW1UWzWnV86ao6cA6PYVY3qwwxwNY2OfuU7N5d4+ppUC7tj5byTHVPW6IUq6GHgw8fdB4MnR91cDbxsiT8cWpUgBM2hSYT+BJgq3n7oQLoa7T+6z/x5SbhiF+NhGQlla5jySFtGtGHGjtQBL1x3n1L27WTriZfNpL+gcJ9JW07oe+cvdKSIHgJtU9aaurFRjqy5ANfqkS/hh4DUi8gJV3RSRnwFeQih8k3l9OloQL03bSAIgIjcC16vqHdH2k4BF1HWYqFB2OBwOmB2Li6q+ftp1cEyRuA8O+9w3ZD+WILQbHP78RTzyzp+ldtIPfxMmQTcg/yyv+dNiVwK66p4OQxd/n9TEt6JIPpgs1xqc8rNXeNbPrYtBK/mNo8jh+vppVe1589fOM7T43gpcCfyxqn4huV1V3yciVwDvEZH3AT8NPCdH+UYjiYi8BHgusAv4o0GZOKHscDimw+TegR8CLk38fUmU5pgg8xhyLMskLVv0A68BNIWF4374XVN59ol60c9n2WQFti1iYqpnckKhCjCLEUYsxOfh1+HEZy9kKZi8oJxrCh6zVbUFXCMiu4APisjjVPUbqX1+L7IEvwl4lKqaXynnK/cDwAcG7hjhfJQdDsd0KNbfrR9fAq4SkStEpAa8nHDBJMcEaPuISurvWWGMdTGuxhYL4kjE+Zsdf2BJ9/ch6qajtnPkltFagGAh8mX2es9n5q5jRGyZ9xqdSCTz9HAGTNf1YgxjtqqeAj6J2c/46cDjgA8Ced8AFmIkcULZ4XBMhXFEvRCRdwOfBx4jIgdF5NWq2gReC3wMuBN4r6rePq7zcqSIhNfmHqW+SzNNmpqYABtzOcm+22XZTLgztAVFWlwMEhvS+cTh5Yo4HxUIanDZMx7gGS/4Cs1ly3ydGRCgg3zA55lpPKQUHPXivMiSjIgsEbpUfDO1z7XAAcLJ1z8F7BWR38lR5UKMJE4oOxyO6ZDfOrFTRA6IyIusWaq+QlX3q2pVVS9R1bdE6Ter6qNV9VGq+l/HeVqOFBpaJv/N8/+WK59yfyjoBjBRkTOGsmzW1rS7gwSQXmXNtG8nsfOJy1AP1i9qsXZlvechZCj/aQ3zv2rHw3z/9vvH/jAxLK1qaPWeB/KIXmOM7klRrEV5P/BJEbmNUNB+XFU/ktpnGXiZqt6tqgHwSsKVoLswGUgAijKSTDbqhUCr1qvNa2fNTkR7P2+OeP7Rh80T35sr5nyWjthH5t33tIzpumA+xt+x3Zhuc4OSliV/S+QJW2QIW+SJ4MRJc7lra5YaAWL+VapYnpsWLKORLbpFYGkN33Id9u02Jm9eYI7cYYu4UDu+bs4f8I+ZI2KcerQ5MoQtusXvPfb9xvTLK2a3qbftfpIx/c+OPsOYvu+r5hAw1aOW6GWWawl9olucZ05f32cZDkz+kKM+Yo9hYohj9ohdLqQB/+eTz8Lb9FhohWnKDFj9IlE4Dmw+wjbf4DT90oMqbFzUxD/rUzstaFXxquZ7TfK4LO2tAt4mfPyjT+Tj3hOpnJtNpSxz5H+c53cwNXeXgt8gqOptwLUD9vlc6u8G8KeG/V7RJ4+bgZuHrCbgLMoOh2NaTM5H2TElYp9brwnL3/VZPC49ERdKj3ZbCbO8vm4tKe9/7h9x0fcdAYGlByss3rnUVzgm80rGUe6ZbBgJ0Oo5oXpWZlaQeq3wMyyz6mM9iKn+bko6ZruoFw6HYzrM0UBaNoLo5VAWodIOL5b6uxDamebYPz3BbookJ97Z2qXL6hzV318X/sVHfh7/nEet2dkv829KoL5LqawKXsMiGC2W760QJm4QKtBagqCi4cPAFj+fiVHSdnJC2eFwTAV3c9q6DGPJG8v1zit0JySMM08+7eN6EWMKL+fXYem7fnc5Bh/nfqLWq5stxaY6peMsT4pBC7oMi2joXuJtOpGch7K2lRPKDofD4XBMgUFLVps3hP9J6m8TpgVF4mNi3+PkPunjejOEwGOyy1v3iSc9CqO4bUyTregustVxPsoOh2M6lNTfzeEohAG/i3ZUDIPLhMkHelBILxVoLcLaZc3RJ/NmZFb9o4skr6/0VMPylXTMnqhFWZoBC0d7IxMsnDD/6nZ8s25M3/v1mjF9c++iMT2o2a+YVzdvC2rmpvFr5kgcsmCuE62cESAsUTKskSQskSd0Y9O8P4Bnbm+pWLqDZ/4Viy3iwqI5SkZw2QXG9GPfZ45usXaRpVxLE22/396dd3/D3H7NJXMZFy6fM6bboltcVjGfwyMWjhnTW8vm+vib5pMTS9ST1m5zFBaAoGbuY7aoIYG5a8/VgOeYQ0aMXJHFnWBUlwPT8bbV9UYpJ4srx7D5i4buGrVj/ty9gp/GqpHJFRCZgluLIzvOouxwOCaPYXZ/huD1A+MoO0rICCI58KG5ou3JidYiRhQwg5aQTmJzgeg32S9LvkWIMK8J1VWZKyuverC5Wwmq3dZ3lbB/jNN6rh6sXxjQMtv4Zovhxuy5wPkoOxyO6ZB/IHVxlB2Foj60rlxHvrWMbIz/5t7PamiatBf/P2gBE5tYHoc/6zwJoBiv0XHxSLZZazF8OPDq45uMqrsaBKs1vLq0F2SY2Tae1XqNGWdRdjgc06Gk/m6O8TCMKPSaUL19GX+z4MUU+vid2tL7WeGyiuveA/sf7wA0spLHXm+JNq2sj08ki4ZuhEvfWsBrCBvnB6g349eqpGO2syg7HI6JI8z4DcHRZqv4Tg61XHMAfgFuBIPaKKuPMpjzSfvQZn0oUIl03xa4ftNGPUCguaT4m4LXZOztJkrbiqyV2b5IZR6znUXZ4XBMh5JaJ7YaZb055mFSbZTXau61ho8aUZYwZMlrt3FewG++7EbWL252ll+fgFj2N2D5kD++kHVFnUNJx+yBFmUReSvwQuCoqj4uSvsN4GeAh6Pdfi1aT7t/XvUG3oNHejfYIkOoOb2yzRxhAPYYUzfOX7LWqbVoflbQWs5niJznIL4lf1t6YO512mya0y1REvrVCWvUi3xt4e3cYUxffcSyMf3Mo8z5NC40Rz1hw1yf6qq9O2vVPFtn22Fz+91x/35j+tt2P8mYbotu8f4j329MX7FE6PDO9EaFAVBLtBWt2q+NWPpM5ZwlssYecxs1tvfeMXXA5KeBzNlkj2kiIj5wC3BIVV8oIlcANwJ7gVuBn1DVuogsAO8Evh84DvxLVb1vStWeK9IW43T8YpM1ud/CHmnS+05i8Y+y/T5Fw4eKb23sR5qdxp7EG5VcqypmQaHwFShLPGZnUUBvB55nSP8DVb0m+gwUyQ6Hw9FFSa0TY+AXgDsTf/8u4fh8JXASeHWU/mrgZJT+B9F+jgwMa11NTsTLsqCHze0ieWxZLL3TYOGYx40ffCZLh/0u8brl2jxdX2dRHomBQllVPw2cmEBdHA5HmSjpoFskInIJ8E+BN0d/C/As4P3RLu8AXhx9vz76m2j7s8UaDN1M3sUR5gEVBoYI6xe/2BSRwtSO/eIq2/yby3YtspK3XWJRLEHoBiEt2mNOsu1nur3V8h0obHXDko7Zo/gov1ZEbhORt4rIbttOInKDiNwiIrfUg40RinM4HPOEi6NcCH8I/CfaU4LYC5xS1din6CBwcfT9YuBBgGj76Wj/LpJjdmOje+Ed9aGxoxN3eKaFQ0GI9l/uOMvDQxaxZRLb/ULDDWIWHmqmXX5uEoIyPXEyiPp+qzob59VThwnUqaxxlIcVym8CHgVcAxwG/odtR1U9oKrXqep1NW8rRNV2OBwTIb914rSq3qCqN02jurOGiMRzR24tMt/kmF1dXOmkCwQ1qJ/X8eufxM0wXvihVZu+QOknPge1Rda2Srpq9IudPIhZECvTKn/ocrVXICep72sSLKh1+yTpe46muhXkp1xGi/JQ4eFU9aH4u4j8KfCRwmrkcDjmnzkbSKfEU4EfE5EXAIvADuCNwC4RqURW40uAQ9H+h4BLgYMiUgF2Ek7qy0R7dv69VSTouAVMgsYOpbk9YPmgP9V+E7tgiMHCnGcxkaz7qBd+JBjDhC9HF/1WOFQJr8HyfdXpPnwoE7EcW8suaf8byqIsIsmQAP8M+EYx1XE4HGWhrK/xikJVf1VVL1HVy4GXA3+nqj8OfBJ4abTbq4APRd8/HP1NtP3vVDVXy0oQhRyb4DURheoZYenQdEUyRIJ1iHBrw7ZX7PYhAe1zn7Ylc94xPfC0x6Gg89AylTFpBqzYZRyzs4SHezfwTGCfiBwEXg88U0SuIfzp3gf8bJbCtNUiOHU6c+XEEq5MFs0uHN6mOdSXLUxWtNWc3LIcYwm7ppubluzN+YufL76WtsxOcrZ0awi4fmVY7pnW36ZtHpBnTre+srRVtWE+wLOEh6us26+zbJj7xvK3zGHdzvvbC43pf3bsGcb01or5JJYtYeD2fyGfv36w0xxaz9bWAN6qObyeLJrrtLHXnNe5S3rPrVWzFpudORpIZ4xfAW4Ukd8BvgK8JUp/C/BnInIX4QTtl0+pfrkZW3zZnAy6+ZsiW4wkbHO4a8yTMJkm/dqx9G1c0vMfKJRV9RWG5LcY0hwOhyMzpb/pFIiqfgr4VPT9HqAn4LeqbgD/YiL1cUsnA5O1/ibb3AnnwcTRTNpuLYn0fi40ZW7Xsp67W5nP4XBMh5JODJknRpncNu8ULpIt+WUJMzfTGPrJRM5BQt/3dOg/Z1HuQ0nH7KEm8zkcDsdIzNlA6uhmmoJi7qx+phi4sZBMpccWUthC7TBCZI+RUKidllzj0JZp03FQ4jHbWZQdDofD0ZetYqWMQ9gFBZmAMsciHmf7JCMdSPhp10voKtu0jLbDTHtynmsnxwCcUHY4HBNHhvjgFhyZGsOIiWkteBFUorBqBZSdefb+hMRW3KbNFWVzjxJUE4I5UQ/TSn5juRYlEJm2pcezrNg4Tww5Zs8Fs+F6YYsAYUnXhjnyhHdq1Zi+6Nl7s1bN2/yT54zpes6cbkOqliYWc7m26BnasET0sOQvO3bY61SxtGtgCT9hi6zRMu+va+aIDtseXDemN5dWjOkbD1eN6dVz5tF55z3mKA8A3uqaMV3Pmeu071MPGtN3fWePMb2xzVzX2ilzud5pc3rjAvN1W79wwZhuiucas3wo312sZS6CYMlwnb0C7pD5szitqjeMXrBjEkzDUicKlbXxlT/NSYrtZasrsOf7j/LRx/8533/jv2fheO+9ZJSFSgYR+LNviS3SRcKWj2gpnhO6Kd0Jh8yGUHY4HKVjlm+0jg55xeEgkTJusZk3X5vFMOsxuYjFbuxLrIn0rPUO4Mih3bxq+cV49WwVyRLWLuu5FxqqL+lWUiDj6lvpdhr3GDZrPtGzVJdJ4oSyw+GYDiUddLcaeW+OpvjBg2IKp9MneUOOw6n1q8dA8Z+YRJev8DiDPttT2ySApXtrfOvBR1G1v0Tr7J+hLYdu71FFbo7jZ000jpNkP5ypUIuzUIcp4ISyw+GYDiUddLcq6Rt2+mbeTwxnTZsWtrqbBEsh5ZlEdVo0Jybw9Tx0BCD1weJpVHE1qkibhAvEvBC3Vexz3qpBa1Gprkr324dpMgt1mAIlckV3OBwzg3YmSpVtOVRHf5KiNa84jY+xWYizlj0UqcgUXemDBPeA/dO/gUn9JloLw09YUw/qO3vjFG91xvGAp4ZrvrG/yUuf/zlaizPiDF3iMdtZlB0Ox3SYo4G0DMTWri4rYcoKWoSIsFkhB62Y1qloWJ+kWM5z0066YnRvwNxnk+UY0tt1TAjGLKu/pVfaS5bfY+kdkNew+HV73u1yxfA9+ruyLvbjk+kz9HZhEEElfCNQpK92emKgKCw87POev/8hFiI/9JlwPZl2+VNiokJZ/Are7t29G3ZuM+/fNPdEXbVEpDhjjnrhWaIwhAdZIjesm4/RujnihixaQgZUa/ayTdTNTmfW6BaXXmRMP3eVOToDQHPZ/Ii/dNRcdu3gSXNGp83tjSVyh3/XIWP63mPmSA+6bGlTC9LoM3JJvpE4OHXamO6vmaNVVBYXzRnZIoZUzNfTFoWlvs0SJaWPtaZ6ztx+tYfNkT62P2Duq6K9dc06iagfUx/0HZlIC7d++41Kv4lSafHYezA0VhQ8qKxKuE9WH+NUvlnON+kSkXyIyIJJCCfLThL40T4+EER6NHnbspxXEb+vHhcR2+Q7Q7oo+OZbQbRD4th0drPklxvRdolYVLyGFB75oysvhco5obLWedCYhbaYhTpMgzl7KeJwOLYMmvPjmDhtg6XFd3ecfsZ53SjUg8XHn+KZz/kqQeqZzxRXuHuH7nRjWRo9mEaCqcsv28MsIFPuGOpHH4t/d7p+6oX7r1/cYuXJx9jY3woF84C2GJugsbTbSBZhw7GjvLofV8zo+MGrek7wN4ttY2udZ82NoaRjthPKDodjKpTV323LYRNHGK7LiAIlLY6T6f32D/+Ac3ft5G9ufTxiDjvfqWa63hn7WXrSX1AJhWxQ64jgtPsBdLZt7g2o7w7Q6Li+5xPjwQ9//x186Ynv5fsef1+mNp6liZKZGeTikSWL2EXF0o9GJnJ/KVokQ/cbBdu4pxL2uVZ1Ote4rGO2E8oOh2Py5LVMzNGgu6VJWBDj1e/aK5SlrYvpSW0FYgo9JwEsHPdYfqAS+o8O0WeyiKuktTeoKZt7ArZdd4yNKzcIahoun5089+j/jfNa3P0v/4SPv/S/U98VdO3T4/udJIDP3H0lN57dzW33XUzS/9rE1ETKqGX2a/esDwcCje3K5q7OJMJCBXPB7ZrbxUTCtwvrV9QnP0myxGO2m8zncDimwxwNpPNOfFPu57vb5XOb2D/XYhp56mRwk5DAXN4gH+WBQsXiViGBcOHVD/G57/sAAFf+xWuonuneuV2/yIJ8RXVbR+QY/E+7/Jej86nducTr7305ixvSSZ82cZ2LcL8YpniLy0p9f4PKYhO+vjxwf1Oe4XW1bCuAfv7ogw+GxSM+6vnT6QMlHbOdUHY4HBNHGMrqtVNEDgA3qepNhVfKYUYj7Zn0F44syEG0crsXzQOWwGAlK/Lm2mcCWFxmjzeIxf83mZ5JBMWiP5XX8TMrALz+4e/Fa0j3PpHoCnxYOOpzxV/dgLSEhZN2c2BP1ItWmI+/IV1L1ndFHhlWeI3CmB6AMhdvKFsCWLq7BlIzTsyc9iTBYSOxxAycIDlGhhyz54LJCuVqBb34vJ7k9f0rxt0rG+aIAQv3WyIAnDhpTj9njpIBoA2zM5s2zdEtEHPZYotuENjS8/U4b8d2Y/rZ7zFHtzj2OPulbS6by972gDlKwnkb5rIrtrazlGu9DpYoJrLdXG7wiAuM6euXmvcH8DfMj9+L9x43ptvqGpyxjFKWc7AhNXOEiepx8zks7jRfz1bNfsOtnDNfH/+o+XeyZ9UcDWPn3b1RaQ6eLcCckX/QPa2qN4xesGNoYt/chfDibV7UgJaw8FAFCQSJA+cUfUNNvz5PCh6L4LWGXzOsopf2Pe49qHtflVDASgW4YzuPPPKzVM55+JuRmE2V7UU/xaXDlfDBI7WAhMnK2CXkE3n01GnAxMCyEF+XZDsZ21IG9BO1t6Op76TFd9ckT8tExaKZ2HUvad9yFmWHwzEVREs66m410lbU6Nms8cgN7n3W2wC44v/+DAuHK6gnva+EB1iBs5Qd+0FvnB+Arywe8cP8AoyWw75uFoawXj0xizPi1cP9F074SDMhotLW1riOze76WUPvJV1WTNv6/D3zYtl0TgWR5bzT7W3rM4P6kmnC6aQF8iTy7i5nljvW+HCT+RwOx+Qp8cSQrYjpxl9b6JjupBr5XORxZ8jq7hDRWlTe8Px3c9ML/5DmsvYI3jwxjPOkd3Yw7BtZh71NOpbk6JOlHKOvatJlJY6yEKS2Daj3RCIiJAVvlt+nwQI+LfK0Wd4oLJ1C+pe35ZijMVtEnikinxGRPxGRZw7a31mUHQ6Hw9GXLitc9D24axtPqL6CzXqF6qEanZl7nWPaFHDT9OvCr3z2X+BVW9Q2epWKyVJoE0T90vtaldMid8Br/LabRr/zT27rYz3ul4/ttf9YBVrS4p1F/M6AQE5ivc4232sxbI++tyevGhaCmQuRPAZE5FLgncAFhK11QFXfOGRebwVeCBxV1celtj0PeCPhdNo3q+obovJWgUXg4KD8nVB2OBxTwd1AtiAaTygSqMPmbbuQQNrh2Iwz8Ue9zhpplCYsf6fWsbIarFZZRKJxElgWy3T6uLgecXlJt4vE/u3skoLKZnHr5zKS0a0gz/5FM/NuH1lJXsPEw1BbXEviGgo0VxSvKfgb9Dz4KHPSJhR+Hk3gl1X1yyKyHbhVRD6uqne0yxM5H1hX1bOJtCtV9a5UXm8H/ohQeJPY1wf+GHgOoSD+koh8GPiMqv69iFwA/D7w4/0q6lwvHA7HdJiT13hlIC0epRX62/obglcPvycjMnRZWouwJKbcD9KT4dJ1HMuEqWiVvGSduv5Piqu0NT1hXbSK5K1Inmub88FgKiR94iO/+GQ/Dny64zNH2/11wTPN8y76/PLmN47y843ZO0XkgIi8qCcr1cOq+uXo+1ngTuDi1G4/DPyViCwAiMjPAP/LkNengROGGj8JuEtV71HVOnAjcL2qxqPJScAcxSDBQIuyyaQtInuA9wCXA/cBL1PVk4PyUk9oLVd70pvLFr1u+RHWFs0RA2wRKdQWkQJALbP3bdEtvHyjvtYt0TMCS7m2ui4tGpPXdxuWdwI299ijEgSL5m2NU+busLnb3I+ChX3GdP+c+Zz9gw+b8zl12pgutd6+ArBx/pIx/ezF9u5cMQd0oHq6N6IDgDxsjoZBvW5M1oZlRLL0L1u0Ff/Bh4zp2zYs/ahqP2c5ddaYHhw3jSegR8119Q71liHro8comhcrSxmwTXSyWXRt1teR69EnWkX6VXrWyX0xmUPEmeo1CfE7wBI+E+S9zkn3jW7PnemQeAvQ5cYTDYGtWmg5Vo0eFqP+6LW6j09S6DXK2z4Ft+cQ55IpUpGIXA5cC3whma6q7xORK4D3iMj7gJ8mtA5n5WLgwcTfB4Eni8hLgOcCuwgt0X3JYlF+O/C8VNrrgE+o6lXAJ6K/HQ6HIzvOory1SL7WT02k61kNbgLXK4ubQdZV6mwiWdLn3CcqYs/y1cadmOu+nHsRjJSbwswh4XVtLSobF7S46un3wePOEiwoWqXXP3tWzmFcfWwMY7aIbAP+EvhFVT3TU6Tq7wEbwJuAH1PV1ZFPQ/UDqvqzqvovVfVTg/YfKJQtJu3rgXdE398BvDhnPR0OR5nRjojJ+nFMibRrQfp7cp/4e/zqOuXrWRSFWYgT+eXpc8btBYvguenzJtcUEmlD9otCl6aOSdcn7rcBXHfNXXzk0X/NnU/9Mxrbg659NN3fx8UofWLU/jSGMVtEqoQi+V2q+gHLPk8HHgd8EHh9zlofAi5N/H1JlJaLYX2UL1DVw9H3I4SzFo2IyA0icouI3NJo5luUweFwzDHOorx1sLlekHK3SHzv8ccdg/UwKVCSUSuKerhqr6QWebiZolqEOwxhTc1YdprkuY0izLToGUq29k7XMS1EhylKoLkMQW34Nsh6XLzfA2d2A/DRtQX8Dc9+fMZQckORNS9bNI9RKXDMFhEB3gLcqaq/b9nnWuAAoXH2p4C9IvI7OWr8JeAqEblCRGrAy4EP5zgeKCDqhaqqiH1IUtUDhCfKjm0Xu9udw+Eo9XKoW46E36lGr6KDamcp3baxOC2Es1zfgnyXIV9/yhqdoR3eLehOy5JHMkKCzZd7FJE3yu8nnog2srhPvikY5lyyuKpYRF9je0BlXfDq+Qu2LjBjeHviNUErcPLW87ji4M/gn65Q2YhWANROPl3HJ6ta5Dg37JuZAt7ojGHMfirwE8DXReSrUdqvqerNiX2WCefA3Q0gIq8EfrKnbiLvBp4J7BORg8DrVfUtqtoUkdcCHyMMD/dWVb09b0WHFcoPich+VT0sIvuBo0Pm43A4ykpJV3naagRVwqgW0eVaf0SDlzzxVj7y0SdTWTXcfWPrLoztTUCeSXrp4/Jam20T9fqFmUtGTWgtKZU1yWSVz7JCYBEh2ERprxI4WkYF5DFE/hLA0tHQJD5MW+R6UNEwuot6UHuogl+XcEXIpPdF6mFqbilwzFbVzzKgB6nq51J/N4A/Nez3ij553AzcbNuehWGF8oeBVwFviP7/UJaDJFD81d7Z8ksPmdvK3zRHgJBz5hAGtugWoYXfUqflZfMG3xxNAt8SDWPFko9nicSxumZOP2dxT7Gcg2cJkuEbAvK3j6mbz61iKbq1ZD6H+k5zNIzqqjlaxcoZc4QJzpijM2jTEhliwzwi2SJbAFQ2zT9waZrzsvUZtURDAcuFsO5vJjhrbgvWzP2lX98OWpaIG7bfiS2iiylCSwED5hA3uJ0icgC4SVVvGrkCjsF4sLk7YPHhTj+WdY9/fPjy7nBw0G159qC+XamdNixpTbifev37QFCje1nodHEjCKRxk7RE++u9Ijm9X1L8Jv+f9FLImUhaJwuwVA5LEcK0p41jV5vE9dCoX0uL8IEncVzXPiYf7KLJ4y6SFO8FXaOp970pkSU8XI9Jm1Agv1dEXg3cD7xsnJV0OBxzxnB+x5lCDTkKJIDFh70u8bZ02Ofk0QvxW520NvEN2YOgFqmoId0reoT4kKQtsIW4HGSgXabpOVO6RVpaJCfzmMhy1HnoN6lzq6O9/aMthr3UNUvvU6Ab0aiMJVzhOPLcIgwUyn1M2s8uuC4Oh6NElOJV5RzQE7sYy2v7hHXRa3QL7K6DTTdbgzWua1GR1HG5XSeSf0+439nEbtJ/Oevy1Onjy2rhGyc9/SO2KAe0rbTGa2q5FvN0nco6ZrslrB0Ox3SYk5tH6TBZkC3+um2RYLFCtn2Zew7uU+ag6k1YmGSx+vYTy3l8uedFcM3C4iI9q00aHljabhdRWmBxF7L2gcithqCga5e13dL7FdXe89L/cuKEssPhmApzc9MvO2r43uembLKMgkFQx+R8pT2tftWvXJOrRXICmO1Y9eiNrJChvJlnhkRysh0HtXGefeMymts0nPQ6hFgedtJqD85HeSScUHY4HJNHcVEvtgBxSCirxdR2CWP35H6WtkgExmLRJl5MZYxiNVYPgkoY3muUV8mBT88Khf3q1rUkcr+Hha4Nw9fP0YvJijzssYMQDS9f9WxnMmeefhv4UN+t1E5Kfn/9cTyIlHjMnqxQbrXwTvauPlg7YYl6sLFhTA/WzenYZvPXatYqyd7d5rKXzBEdbNEn6vvMUS9aC+YIE7WHzSEa/MPHzOVazm3puDkyRP2gOfIEYF1mpnrO/CNY32uJ3GH5MVYslyfvj0zPmleqXLznYWN69cwOe2Ytc9neGXM0CXaa8/KWFo3ptrpqw3x9pGr56ZkiTABBvWHOX4t0GrNEeqka+tLm6CNxWa0TW4lMl2iAxbdLLEsoUhFoLSh+XdAgnLg3Kf9H9aC+O2DhmDeSnkiKZJulsSeiguW1vbWMhMCaJ1/XaTFK+8XCN3d5Q5YpGkVMGYYxubaUtf8VvTaPw+FwZENzfhxToe/r30GT8+gWyepDsKBsXFrn56+/mcVrTxAsKFqNLMzpm7sY0hL5DhMRQlrRRMMRhXlm0RBZzwPbOSbIshrfKAR++HHkZ9LRRySAyloqBOy0o4yUdMx2QtnhcDgcA1GTaB3iZigtePxVB/n53ffzlR+4kcY2Rb3ujAaKkth1YwhEzS4TWVEJxWYe4dTYoTz2Od+hsbO30EkJMJVw8ZP6Tp29kHNjosjztIXwG2cdhn44Ksn1nRTOR9nhcEyc2PfVMdv03G+zXrM+r35V4DtHz4Or4DcfvjpakKN75yw+yqbFISaBKLknZkkA313daYyp3G+CWJGIhgtm+Ovl+e3NwnlOrQ4Fu1+Uecx2QtnhcEwe1dJODCkKEbkUeCdwAeFt8YCqvlFE9gDvAS4H7gNepqonJVzG8Y3AC4A14CdV9csDy0n4yQ5Vz2S0hxZIIOgd23nUodfgrwl+Q8KJdabXtZYuMihaxLjJMoEv2V6VVeHMP5xPtaBFVIZFAmdsdAxJicds53rhcDimQux3mfXj6KEJ/LKqXg08Bfg5EbkaeB3wCVW9CvhE9DfA84Gros8NwJsGFRA3+yhhqtqCMRLC/iZ4daieESrrgr+Z2m8LYoutG4t/CRJRNqbUl2Of7q3czo4cpOMoF5FlScfsiUe90NNnepK1Xjfubpvpj2Wmv/jmWQqyaIlgAWjNHB1Ca+am0Yr52aK+3ZzP5k7z/o2Vbcb0FUv+/nFzZJClg+ZoC96mOQoHwLmLzFFAjn+fuWf7l5ojQ9TXzOfc/Kq5vVfuMZcrKyvGdJrmiBHBw8eN6d6JU+Z8ANlubu/WRXuN6Rv7zNEtqmvmOtUskTiC4ycsFbLcrbycz64FPuFrYM5LLBFXRi9wPNmWBVU9DByOvp8VkTuBi4HrgWdGu70D+BTwK1H6O1VVgX8UkV0isj/Kx0gmTWWa0Jdwi4CUVVoNM/oDulY861qoJEM/6YlPPEN9q10X7Rapk66jetDYrlTP9g83Nmvt5xjMxK5ZSfuFc71wOBxTwd2Mi0NELgeuBb4AXJAQv0cIXTMgFNEPJg47GKV1CWURuYHQ4kxtuTt8ptEa2ec6puMom9w4ROkSbsNMloon9klrNvtVWshMXCRLdivfLLafA6vPsUYhF32LXbFIyto3nFB2OByTRwGLBduRDxHZBvwl8IuqekYSbytUVUXy3d5U9QBwAGDb3ksVum+QWSJSJFfo6wrDlrAoa7wccFoAmCzJfSzL8eS6WWbYiAnDYnugqZ4Zr99FPMlyUjGxS4dBLItORiSXecx2QtnhcEyHco65hSIiVUKR/C5V/UCU/FDsUiEi+4GjUfoh4NLE4ZdEaZnI7NvaL2JFv2s+7HHMrqUrtnaPEo4uT1lt0guUTDCyhi37eRDRU+1neZ9xEg+rhTGjv7Nx4ybzORyOqVDWiSFFEUWxeAtwp6r+fmLTh4FXRd9fBXwokf5KCXkKcLqff3LMKBP5BpK2Gs8ZccxmmOBEuuhV/PrFLTbOC8zxr3PSjh2dQTHY+klQgc3dOnT8a8cQFDyhr6xjtuuyDodjOsThhrJ+HGmeCvwE8CwR+Wr0eQHwBuA5IvId4J9EfwPcDNwD3AX8KfBvsxSSnGDXu3H4yrcn60E7IkZetkIUh2mIhtai8vYX/B9+5GlfJ0jMuR62HkEF1r9nI1wcZsj29lpQOyWltUpOnPTy6UX8Tko6Zk/U9UKDgGCtN4KC5p1Vb7kAtnx0Y9OalXfaHE1CNs2RG3RlyZjeXDY/c5y9zJwemANAsL7PHJ1h9zfNl6pyct2YXjttjiQCcPT7zed2xbUHjen/fL851Oq9m+cZ098bXGdM33n/DmP60qI5eoa3YXa8ksPmqBd67pwxHUAs0U3WLzBfz3MXmiOoVNfM6TvP7DSme4YoL2CP9KKWvi2eeZTTfnetvAOVJZpMYPj9aDD6+9Mhbto7ReQAcJOq3jRyBbY4qvpZ7Le/Zxv2V+Dniq1EgcdnjHBhzMYUXSOZ9Qzcs3sieowRf0N41cduwFv3WEwMoyOVPeTDTIyL4TxBbH7/IzILv6Np4HyUHQ7H5BnupntaVW8ovjIOG8qYLbYjiOP28Qlsde2K5Zz8bspyDGKgx3+44LK6wuMBXgOWH6gUkr9KGAN66ZuLc/dKfctTkADOXFZJr70Tyg6HY+KEy6GWdNR1dEhPOMornPNOWEq/jraUNZZ4xwKtRWhsC6id9vAakc4pIv/EJLmuWNKxhd2D5oribyRWQcyadbRvv9jLjglg6usTNNGXecx2PsoOh2M6BDk/jqliigPcLzZwrsk9mvp/3PSxjo3Lgq4CGxc2+d8vfgv1HcWeaDqSRDyJsN3uAo1L67QW7eXOiq/3VvA7nwrDtEnRVuCSjtnOouxwOKZCWa0TW4kuN0fp/W5KA7MoHpv4yZCvLVRaVuLjk/lk8fdN7iMKtYd9fvbjP8Xi6uSUoEpoDV769gL0eWCZBZcKU3+ahXpNkyCaFuO1yC+Wk29NCmjHso7ZTig7HI7JU2J/t61GenW9zgb6WmVzCZw8AiCnWEiK+jzLYqePT/491Cp3CtVVobJW6XKTGDdtod4cf1mjEIexC3xoLUduIkW6p2xRNJ4/Hru+5PVLjvv7qM9mJR6zRxLKInIfcJbwEjZV1RzuIEaHiHCRB8vTTrBpj3qhx08a0z1LdIvW+eboBqcfafZiqT++N8oHwNKyuU4n9pojQ/ibi8b0HRbnGWnY33u0zFlxwZI5AsjltWPWvExUV8wRHTZ3rBjTpWVu68qaOTTI4uqGMV03zOn9kJa5z3iWlY5swfKDJfNPyd9ujmLCmjlaiVQsP8mm+S5niiITY4usYY2GYU0fx292vsIHlYpoEY3NPQGVNaGyZg751VcsS/f/gZ+IipA+ZsQbfNoS3M4zb1CYEaydXVboCSw+spVpbFd++cc+zO994oUsfde3vp1IPsDNc3v66WE8y+8hvU8hLzDKO2YXYVH+EVXNp6QcDkfpmeeb27zRZVXWMK7uY6+7n9u/eSn+/fboClZ3i6RlV0ArILaIliNaw9oLbqSsuwMZEB2jnTfdfbmfeHN9fjCVDeF3P/98aqe89huAnmenkojkWaOsbe1cLxwOh8PRl7Tg9Rpw199fwVIcQWGUMG8K/qZBVBfkxmtcVjlLfYdwz4hdMtxktPzE18lfh+W7al1RO9IkVxs0iWiHo0hGjXqhwN+IyK0iYoxvKiI3iMgtInJLA7sLhMPhKBklXeVpK5L2yZUAKuvg1en4Lg4jDg2TApPpWYijJAyKoTwuIW4qy4m14Wj7UwdYJx6qF36CajTRrahV5+adIvpkScfsUS3KT1PVQyJyPvBxEfmmqn46uYOqHgAOAOyQPfPTcg6HY3jU7u/t2AKYhEkedwYSopKUFXZI0ZM70saY7kZFr7w3iZX8jOV60/mNmsIMQrcVubWkXP60B7jv2B64bTten4mKQQXQKGpEESQfCtMPiEVMmhsHBU3mK+uYPZJFWVUPRf8fBT4IPKmISjkcjhJQUuvEVqZtWR40A17C2fra7w4zooU37e5g2z5M3sNg8lMuJuMC88pT7JRFUfJNQdfKioTi93WP+Gueetm9nagQFiQYfC5BBZpLGa9bv4fEDH7tU4kcUVQfKumYPbRFWURWAE9Vz0bffxT4rcJq5nA45pv5GUdLRxY/3MY2xd8U/E3M1zqdph3radqFwVTWoAmEcXQf3+bxN4pfdZ9yk38XYQmetmC1MS1LN4Rh9m54388iLajYJoFGZGm/oAKthTAkXSbSFtpBD33J/YsK15aB2ApfWB8q6Zg9iuvFBcAHRSTO5y9U9aOF1Kpo+jzZWMPV+ebH1Poec2y1jb3mMi4976Qxfe/iOWP6V9cWzOVuWzamB77ZZFM9Yx89Vg6a6/rFBy6zHmPi4XVz6DN9wBwGbvGEua39jXzpBOZfvVjaAoCG+d3c4lFzeDW/br7OjW2WfrHLHMrOq+8xpsuGJdzbNks+lv39I8eN6QAtS+hDbQy4s0yIsgavnzeMolmhela6J2RZ/IjTLhdq2pYT9YDvOYvnKfrVHaFYyBtHOIt1cFA9pigmx804z6vtV+5BsADeZkfsSQAI1E51d5hR6uNvgr8p2fNIu1uk0/rtP2jfIim4nLKO2UMLZVW9B3hCgXVxOBxloqSD7ryQXr46LWq7rFhp65vm+HuYugWg39lGC/AHuIh0CR2T6En7o+YRU66Lj0RzRdlxzXFWv7QPPwqTn45ikha3wzycDC2yZ9EfOUHhbyNKOma78HAOh2PyKDCjr5QddpIuEbkEieFVdVdeldCnmYBwYpak8u/jg2yrQyVeJjqOw2sTrpZX6IEf1sur0wmBN4gCrNCODpU14eyX97YX3UguB25j7Bb8qC/M89sCIyUes51QdjgcE0fQ0r7G29LEAqE1gkhIik4PWtVQdQc1xasLLT9aGbOPSO7KLiWYTX7N/WLyWvOtQHNJqdXTpvJEXlOIqlEGREO3C2lB5VwOl4hJUNIQgGUes0eNo+xwOBzDUdIZ1FsZCexhtvIIh3iSUVCBoAaVx5/mt15yI8vXHieoKUEVq09z3zzpFs6xQO4bfcOCV4fa6T4izRafOeWS4hiOeKlv14YzREnHbCeUHQ7HdCjpoDuv5HkVHQvY2N/0f1/zLl6+/STve8JbesN9DSGWe7575vT47/gTVKBVG+zWkRTJTsiVkAKvebv/eZ3vReYdDArTmCvDco7Zk3e9GGfjSf4eJpboFrJojnpgq3/1nLnso2fMkSHWG1VjeuuMOepB7ayl3LPmCAbeuQ1jOsC+L5vTJdhhTL/10quN6b4leMKF3zabnFbuPW0+YNOckVgiVeiqOWIIQZ++1bREjThpzkuaZmesoGq+nq0F8/VvLZp/YrJgTq/vNPcLf8OcvnhmyZgOIKfM7a0N6yGWjEyhCnLmYTq+pP5u80puwZjw83z93dfzye/9EK+56xUQgHra6XdD9LUe67JhSDIJko3zW7CjydK3F/r6RZsLhfYqcbOsEbL6WzvMpF2C0hEw8j7YxWK2GkX3GMJNyIrA+v4WC8d9Kusj5lXiMdv5KDscjqlQVn83R4SGE/fUg+/+40Vcedtr8NcET8BrdNTGyFZbIbOAXTjmwwl/oEi21scilGbK8lyQSJ6pc5o0tkmbQ7StCqxf1uClP3ALH/7rp1A9I8W1rcLSEb+w6BdlHbOdUHY4HNOhpIPuvGNdjEQjrSqJ7wH4GxK6W6yFArlt/U1M+FP6R8DoR3Lp47SlOY2XetuS6zV4n4gX8ygo5/GcgOlY3APhoc3tnbILaltR8scP70dJx2wnlB0OxxSYLx82RzfGFfXS/peRWI59lb1mSp0EiWO8qLskjsmK+uHHC3KKu7QfcnSsMY/ka/iE0Cm11XWrkkUkJ91sRi1OYfnBCl86/DgqjU7a7FHeMdsJZYfDMXmU0g66pSUSF10WZ5Og1O5j2pErksIVw74WvCa0Kop0+U5kOxY60ReGYVqCRz0Gv253vsrDUWCbxZNZpQV+wEiW5LE/lJV4zHZC2eFwTIeSTgwpCya3hWSs4y7dmkHUxYt+xBECEMAgYtOCQb0wBF28spt6oYVZWolyY+GcXEjC4qdsFCOzttBIlnpMWCTHLjAqoz18zBvDuhRZ8xknJR2zyyGUxR4bRXzLtgVz9InKhjmiw457zL30tGeOJPHwDvP+y0fN9amtmsu1+tDZzgvwj540pp//N+b087Ytm8uuWiI6WKJYcNIShWHNPB1Xg5y/Sq9PDBxLGTTMISA8yzksWp6odcEclcJbNUcf0ao52krVM19Qf8PiaLZuj26irYJGtdmxIuwUkQPATap607Qr48hOWxgnrJhdYlayW0HbxuCE8ILweC/6magfpsd/e/VO/lqhs2BKLLrT1lWL+N4y4m4SkTfyRnjwoLUYtqE/agSGaZI8b2eVLwXlEMoOh2PmGGIG9WlVvWEcdXEUx8DoEBZxYbM2m46PJwJ2+Ykm/JnjfIIatBbCFf8aOzRc5S32fY72U78z4ckmhLeMQI5IP3AU+lo+o39uukyvBbJO5+3AVibZBmMUy7Pm4+6iXjgcDsckKemgO68MXKRjYAadfAaKZTr+nUjHgtzapvibYXitoKphBA0F9RWvAUFFUR/8aFnqoKJISyByxUjWI31usyRYshJby/M8sAwk4zGmMosKUzYz5GjD+MEsTxuoh9G9aGqUdMx2QtnhcEwepf8CMY4tx6CbeRbxm2e/9r6xkPBCsRtUtSOcl5RgKWBp3xobD60gm4JfF1oL2vZR9ppM3Mo58kNFRvqKsjK7DIxiBR7WrWWIY2zLxU+FEo/Zbglrh8MxBaJQQyVcDtVRHJpyAZCWhJP1PGitBFQuWuORVx7hvz3hr1i56CyVi9doLYRCGgEJuhc26SfQMy0vnEF8qQf13TrSssKBHy21PUQeRS6RvGUZpg2SQ5Ck/s9S5JZ3OSnvmO2EssPhmA4lHXQdvaQn9uUlFr6IRhMDFXY02LdzlU9c/WFevLLK15/8F1QqLYLtzXY58SRCTc6t7VN+UaulVc7JwLxs7aACzRVl/VGbudsqqEB91wgiXVPfy/SzNE32LNP5Q2nH7PlyvbBeGPv7J7UdY4l6UDlljjKww1KEBAvG9LXzzSOVbwkY0Vw0j4j13eb8FzfM0RzCzMwRFPT0GfP+J08Zk2XBXDaWyA26sWlOb+RcOsiSP33y0bqlYW2snjMXfXbVmC6+OYqFWtpaauYoGbXji+Z86ubrGZw9a0wPy+7TB2aBORpIHfkJ/YjD1fCSojGP60VXfrEPKKAqEAjnLRl+x0HSBK0g0it4LK/XB/oqZ+jSouCbh8Ke/WzplXOCf/dCfp9fHdFPODl5bRKRNWaVSVnl0y4iY5w4mImSjtnzJZQdDsfWoMT+bo4OQU3xmtKrU/OKZY0m43mCRrlpU7j7xF4ON1fZX9nGW05fSMUPoCntRUskkK7JUoNi2uYVyeOaBOi1gCH8V70WVM8MsGbH22wRHcTyvSBmfuJksk2ynH+8/zAiN/kwkiHSyFgp8ZjthLLD4ZgC0SwsR2mJLaPG5a5z5KHQCfkWfRcFTldYba3wQx/79yzu2mDj+BKI4p/z8Zody6oo3S8dhxHJfeo3awys0zBCOIsInLo1dMjy08eZ8rDlbfJrzlqXmbPcl3fMdkLZ4XBMh5K+xnN0GEokG/aN3S5ai4pXD31xvU2hcq5CY7tSP7uCH4C/LmiVdti41oJSWZNwtk5yCeFhxElyEYqc9A3jNkmGFZNZjhkhrNzYyGLtHRDTeyjXiLwPFUUI/CIo6ZjthLLD4Zg8JX6N56DnJh67WqR9lcEgohNiNo56IRqKY38ttFB7jXCCXuAr/oa0/0ZCsSxBdGwjEtVNQrGcYZLWlnINyHuMqa3nJUpGv/PI40LR73gZsG9SmGctN0v5o+ybp/ySjtlOKDscjulQUuuEIzuDwrWFX8L/vGZoKY5X55MW+A0hWAijPHh1CVfgi623kYtGEAuXjN3RKpL7HB/4/WPiZplgl1mgDxJrWLbnFFfqQXMJKmsjPjhMU4wPIzzTItckerMK6jz1ynMtx9WeJR2zRxLKIvI84I2AD7xZVd9QSK2Kps/FtUVDCGyRHizRB2qnzNEKdjT3GNOr58z7t2rmHi45n+Rks08kiU1L9ImWZbS2pVsiPUjF3K2kVjOn2yJGWK6biCWqhiXCBNivs7Ysdy9LessSWUNskT5s180cVAPxzJFHrPn08xmb9UFt1uvnmCi5xJaEFmJpRcclLMFC9LPwQgHqRQuMeNHQranID15iSG+L7CaF+obmFZLqhXVJimuNxP/gg+NC85U5jLjycgYsKqpcIybBnUOEt99OmIbU9MNHv4cl2+THKVqEA/MtNj8lHbOHFsoi4gN/DDwHOAh8SUQ+rKp3FFU5h8Mxr2hpB11HPmwRMOIV9XqIxDLNzt9d2/pZduOJfUnLXxbf4QHbcy1bLFDfqTR2tVh+oNIWy5lXacszSazfMQPEmgSpMHfTdtMYtuyo3l0PXIP2T5aZpW/kFch5Lf0D3rw0V8LoMqNR3jF7FIvyk4C7VPUeABG5EbgecELZ4XD0R4GgnDOoHdlJimT1EmImr3Adxmc3LjORXW7L8DD+zBL6TctSi5G9I/tZOLMcl0fkzaIvc9GRONLuFoNcHvK6Q4yhDUWheraAjEs8Zo+yMt/FwIOJvw9GaV2IyA0icouI3NIgQ5R1h8NRDkq6ytO0EZHnici3ROQuEXndtOtjI7lktEZuFHlcIZIC1d+Udl55hGvbEhzXw2Z5zVCHPGUuHheWvjXEgiLJ+mQRgTl8s/uWNQWmthR3sl2HfACDHPVPW5eHoLDls0s6Zo99CWtVPaCq16nqdVUsK7k5HI7yUdJBd5okXOaeD1wNvEJErp5urQYTT7xLf4z7GrbFvszJhUXS362flEDXtHAZhxUwCF0tMokbm/XcVq+0kLZNHLP5/Ca/53EpKJCgAhv78i3Fbd13kkNLKtLLKMdPhZKO2aO81zkEXJr4+5IozeFwOByzSS6XOW8zYPsDxb1u1T6vopNuCvHEqljEDBIV/azF6kHgC15TR7KqaVKAmoR60l0h3nXSWqFI4W4Tyv2iP/QT56YHjHQeWeoAtKpCdVVYOhZ0rO6D6tuPZD0GnUeyvrb2GMZ1JV1O+vhBbdUvH8dIjCKUvwRcJSJXEArklwP/qt8BZzl57G/1/fdHf+4Djo1Q/rB0l2sbyCxRCazpNu7rU/bkGE+55kASkyl71srtnmgzfNlDLEtbSLn5ecRoh2tpY3JOGZPL3JOTO4jIDcAN0Z+bX3j3f/jGhOo2DqY1/hTBVq47uPpPE1vdRxi3yztmDy2UVbUpIq8FPkYYHu6tqnr7gGPOi7+LyC2qet2w5Q/LtMqdZtnunMtR9jTPOTcKWtLlUGcdVT0AHIAt1qcMbOX6b+W6g6v/NBlL3Us8Zo80pVZVbwZuLqguDoejTJTUOjFlnMucw+EYjpKO2W5lPofDMR3maLLHFiK3y5zD4XAApR2zpymUD5Ss3GmW7c65HGVP85zzoVramJzTZAiXua3Tp8xs5fpv5bqDq/80Kb7uJR6zxbZMsMPhcIyLnf4+/cGVF+U65mNn337rVvUZdDgcjq1Mmcds53rhcDimgpbUOuFwOBxbkbKO2U4oOxyOKTBfAekdDodjvinvmD32lfnSTHP5VBG5T0S+LiJfFZFbxlzWW0XkqIh8I5G2R0Q+LiLfif7fPaFyf0NEDkXn/VURecEYyr1URD4pIneIyO0i8gtR+iTO2Vb2WM9bRBZF5Isi8rWo3N+M0q8QkS9Effw9IlKbULlvF5F7E+d7TZHlFooSzqDO83FMlFlf6jrvmCMh/zM6n9tE5InTPYNwpUQR+YqIfCT62zh2iMhC9Pdd0fbLp1rxsE67ROT9IvJNEblTRH5wi7X9v4/6zTdE5N3RuDqz7W+5t+dubxF5VbT/d0TkVZkrUOIxe6JCWWZj+dQfUdVrJuA383bgeam01wGfUNWrgE9Ef0+iXIA/iM77miisX9E0gV9W1auBpwA/F13bSZyzrWwY73lvAs9S1ScA1wDPE5GnAL8blXslcBJ49YTKBfiPifP9asHlFosG+T6OiTEjY/Ug8o45zweuij43AG+afJV7+AXgzsTftrHj1cDJKP0Pov2mzRuBj6rqY4EnEJ7Hlmh7EbkY+HfAdar6OMKJrS9nttv/7WTXFMb2FpE9wOsJFxl6EvB6yWO8KumYPWmLcnv5VFWtA/HyqXOHqn4aOJFKvh54R/T9HcCLJ1Tu2FHVw6r65ej7WcJB82Imc862sseKhqxGf1ajjwLPAt4fpRd+zn3K3TIooIHm+jgmysyP1UOMOdcD74x+P/8I7BKR/ZOtdQcRuQT4p8Cbo78F+9iRPKf3A8+O9p8KIrITeAbwFgBVravqKbZI20dUgCURqQDLwGFmuP1zagpbez8X+LiqnlDVk8DHMRvWesunvGP2pIWyafnUsQuaBAr8jYjcKuEyrZPmAlU9HH0/AlwwwbJfG72CeWuuJ8ghiF5LXQt8gQmfc6psGPN5R69OvwocJRx07gZOqWoz2mUsfTxdrqrG5/tfo/P9AxFZKLrcwlAtrXViizDtsToXGcecWTunPwT+ExB37r3Yx4523aPtp6P9p8UVwMPA2yLXkTeLyApbpO1V9RDw34EHCAXyaeBWtk77x+Rt7+GvwwyM2SLyTBH5jIj8iYg8s/ACLEzcR3nKPE1Vn0j4WuLnROQZ06qIhnH5JvXI9SbgUYSv6Q8D/2NcBYnINuAvgV9U1TPJbeM+Z0PZYz9vVW2p6jWEK5w9CXhs0WVkKVdEHgf8alT+DwB7gF+ZRF2GpazWCUexTHPMGRYReSFwVFVvnXZdhqQCPBF4k6peC5wj5VY3q20PEBlNricU/BcBK2S0rM4qk2jvcYzZJt/rKN00R0KBVWCRUORPhEkL5akunxo9RaKqR4EPEgqbSfJQ/Lop+v/oJApV1YciYRUAf8qYzltEqoQ3rHep6gei5Imcs6nsSZ13VNYp4JPADxK+5oojyoy1jyfKfV70KlpVdRN4G5Pv3/lwFuVZZkssdZ1zzJmlc3oq8GMich+hW8uzCH1+bWNHu+7R9p3A8UlWOMVB4GDiTdb7CYXzVmh7gH8C3KuqD6tqA/gA4TXZKu0fk7e9R7sO4xmz307qIaXPHInPqOrzCY1Av5m53iMy6fBwU1s+NXot5Knq2ej7jwK/NYmyE3wYeBXwhuj/D02iUBHZn3g988+Ab/Tbf8gyhNBf7U5V/f3EprGfs63scZ+3iJwHNFT1lIgsAc8hnOTxSeClhDfAws/ZVm58vlF7vJgxXOeiOMvJj/2tvn9fzsOOjaUyDhMzv9T1EGPOhwldsW4knMx0OjE+TBRV/VXCN0BEr5D/g6r+uIi8D/PYEZ/T56PtfxdZEKeCqh4RkQdF5DGq+i3g2cAd0Wem2z7iAeApIrIMrBPW/xbsY/dMtX+CXH1dRD4G/LeEG+KPEvXDQQw5Zi9Kd4SxA6ratWqgqn5aeqOItOdIAETncb2q3hFtPwlMzrVQVSf6AV4AfJvQl/P/nWC5jwS+Fn1uH3fZwLsJX/c3CJ++X03o0/QJ4DvA3wJ7JlTunwFfB24j/AHtH0O5TyN8LXIb8NXo84IJnbOt7LGeN/B9wFei/L8B/JdEX/sicBfwPmBhQuX+XXS+3wD+HNg2zj7uPvP9mdZYnaN+ucYcQAitVHdHv5Prpn0OUb2eCXwk+m4cOwhfNb8vSv8i8MgZqPc1hOLyNuCvgN1bqe0JLZLfjMbLPyMUXjPb/uTQFP3aG/jp6DzuAn5q2tchqtPlwDcSf78UeHPi758A/gh4CfB/gPcAz5xU/dwS1g6Hw+FwOByOqRBZlD+iYag+ROSlhO6E/yb6+yeAJ6vqa6dRv7JN5nM4HA6Hw+FwzC4z5dPuhLLD4XA4HA6HY1Zoz5GQcHXElxO6T04FJ5QdDofD4XA4HBNHRN5NOEnyMSJyUERerWGs6tcCHyNcSOi9qnr71OrofJQdDofD4XA4HI5enEXZ4XA4HA6Hw+Ew4ISyw+FwOBwOh8NhwAllh8PhcDgcDofDgBPKDofD4XA4HA6HASeUHQ6Hw+FwOBwOA04oOxwOh8PhcDgcBpxQdjgcDofD4XA4DDih7HA4HA6Hw+FwGPj/AYcbW92EUtCOAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA98AAAGnCAYAAACuHeQ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydebgdRZn/v9V9lrvfm4XcJJCEoAiJYYlJxABCwhLIQEBglBGHxcERJeLEiDjAjL/ISKIwg1GWIA7DoiLIOCijgIRBgmxjyBCJhF2WsCQh4ebu9yzd9fujl1Pdp7qr+5w+9557eT/Pc557T1d1VXV39en+1vvWW4xzzkEQBEEQBEEQBEEQRM3QRroBBEEQBEEQBEEQBDHWIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEARRY0h8EwRBEARBEARBEESNIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEARRY0h8EwRBEARBEARBEESNIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEMSY4LXXXsPixYsxe/ZsHHTQQejv7x/pJrkwzjkf6UYQBEEQBEEQBEEQRLUcffTR+M53voNPfvKTeP/999HW1oZUKjXSzQIA1EcrCIIgCIIgCIIgCKIKnnvuOaTTaXzyk58EAIwfP36EW+SF3M4JgiAIgiAIgiCIEefRRx/FsmXLMHXqVDDG8Ktf/aoszw033ICZM2eioaEB8+bNwx/+8Ac37eWXX0ZLSwtOOeUUfOxjH8Pq1auHsfVqyPJNEARBRGZoaAj5fD6RsjKZDBoaGhIpiyAIgiCIZEjyWc85B2PMsy2bzSKbzUrz9/f345BDDsHnP/95nHHGGWXpd911F1asWIEbbrgBRxxxBH70ox9h6dKl2Lp1K6ZPn45CoYA//OEP2Lx5MyZNmoQTTzwRCxYswPHHH5/I8VQLzfkmCIIgIjE0NISZM1qwfaeRSHmTJ0/Ga6+9RgKcIAiCIOqEpJ/1LS0t6Ovr82z7f//v/2HVqlXKfRljuOeee/CpT33K3XbYYYfhYx/7GNatW+dumzVrFj71qU9hzZo1ePLJJ/Htb38bDzzwAADg6quvBgB84xvfqP5gEoAs3wRBEEQk8vk8tu808MamfdHWWt2spZ5eEzPmvY58Pk/imyAIgiDqhFo867dt24a2tjZ3e5DVO0rbNm3ahH/8x3/0bF+yZAmeeOIJAMCCBQuwY8cOdHV1ob29HY8++iguuOCCyg8iYUh8EwRBELFoaWVoaWXqjCGYqG5/giAIgiBqR5LP+ra2No/4rpRdu3bBMAx0dnZ6tnd2dmL79u0AgFQqhdWrV+Ooo44C5xxLlizBySefXHXdSUHimyAIgoiFwU0YVU5YMriZTGMIgiAIgkicen7W++eQ++eVL126FEuXLq1J3dVC0c6JuqC3txeXXHIJlixZgr322guMsUhzQRxuvfVWMMakH2ckrJY49T/99NOBeV5//fXANs6fP9+Tl3OOO+64A8cccwzGjRuHbDaL/fbbD8uXL8e2bdsC6ygUCpg8eTIYY/jP//zPxI6PIAiCIIaTzZs346STTsL06dPR2NiI8ePHY+HChfjpT39alpdzjh/+8Ic48MADkc1mMWXKFHz5y19GV1fXsLT1vPPOC3y+i4LAeQ/413/9V8/+ixYtCt3f+cR5LyKIscjEiROh63rZu/3OnTvLrOH1Clm+ibpg9+7duOmmm3DIIYfgU5/6FP793/+9onJuueUWHHjggZ5tEyZMSKKJiXHRRRfhrLPO8mxraWlx/zdNE2eddRbuuusufPazn8Wtt96K9vZ2PPvss7j66qtxxx134De/+Q2OOOKIsrJ/85vfYMeOHQCAm2++GX/9139d24MhPpCY4DBR3XB4tfsTBDG22bNnD6ZNm4bPfvaz2HvvvdHf34+f/exnOPvss/H666/jn/7pn9y8F198MdauXYuLL74Yxx13HLZu3Ypvfetb2LhxI5588kmk0+mat7exsREPP/xwRfvecMMN6Onpcb//9re/xXe+852yd5p99tmn6nYSRFTq8VmfyWQwb948rF+/Hqeddpq7ff369Tj11FMTratWkPgm6oIZM2agq6sLjDHs2rWrYvE9Z86cMityvTF9+nR84hOfCEz/3ve+h7vuugvf/e538c1vftPdvmjRIpx55pk47LDDcMYZZ+CFF15AR0eHZ9+bb74ZmUwGRx99NB588EG89dZb9LAmEseEiWodyaovgSCIscyiRYuwaNEiz7aTTz4Zr732Gm666SZXfL/99tv4wQ9+gOXLl+N73/seAOD444/HpEmTcNZZZ+HWW2/F3//939e8vZqmhT7bw5g9e7bn+wsvvABgdLzTEGOXkXrW9/X14ZVXXnG/v/baa9i8eTPGjx+P6dOnY+XKlTj77LMxf/58LFy4EDfddBPefPNNfOlLX6qytcMDuZ0TdYHfNavWdX3lK1/BLbfcggMOOACNjY2YP38+nnrqKXDOcfXVV2PmzJloaWnBMccc4/kBqDX5fB5XX301Zs2ahUsuuaQsvbOzE2vWrMGOHTtw8803e9LeeecdPPDAA1i2bBm+8Y1vwDRN3HrrrcPUcoKojAULFmD27Nm4/vrrR7opBEGMAiZOnIhUqmQ7euqpp2AYBv7qr/7Kk88JsPTLX/7S3fbII4+AMYY77rgD3/zmNzFlyhS0tLRg2bJl2LFjB3p7e/HFL34REydOxMSJE/H5z3++bIkkgiBqy9NPP425c+di7ty5AICVK1di7ty5+Na3vgUAOPPMM7F27VpcccUVOPTQQ/Hoo4/ivvvuw4wZM0ay2ZEhyzcxpjj55JPx3nvvob29HYsWLcIVV1yBOXPmlOX7zW9+g2eeeQbf/e53wRjDN7/5TZx00kk499xz8Ze//AXXXXcduru7sXLlSpxxxhnYvHlzYoMDpmmiWCx6tum6DsYYNm3ahK6uLnzxi18MrG/ZsmXQNA3r16/H17/+dXf7rbfeCsMw8Hd/93c47rjjMGPGDPzHf/wHLr/88mEb2CA+GBicw+DVuZI5+2/cuDGRCKgEQYxNTNOEaZro6urC3Xffjd/97ne47rrr3PR8Pg+gfOmidDoNxhieffbZsjIvu+wyLF68GLfeeitef/11XHzxxfjsZz+LVCqFQw45BD//+c/xzDPP4LLLLkNrayt++MMfRmqr/9kOWBZxTSNbFzH6SPJZH4dFixaBK/a78MILceGFF1barBGFxDcxJpg8eTIuv/xyfOITn0BbWxu2bNmC7373u/jEJz6Bxx9/HIcccognfy6Xw4MPPojm5mYAljX8U5/6FH7/+9/j//7v/1yx+t5772HFihX485//jIMOOiiRtn7zm9/0uJMD1lyV4447Dm+++SYAYObMmYH7t7S0YK+99nLzAlawmVtuuQV77703TjjhBDDGcN555+Hb3/42fv/73+OYY45JpO0EAdTnPDCCIMYmF154IX70ox8BsOZ7/vCHP/Ss2eu4bD/++ONYvHixu/2JJ54A5xy7d+8uK/Pggw/GLbfc4n5/4YUXsHbtWnz1q1/F1VdfDcByXX/yySfxs5/9LJL47u/vl84tP/bYY/HQQw9FPFqCqB/oWV8bSHwTY4ITTzwRJ554ovv9qKOOwkknnYSDDjoI3/rWt/DrX//ak3/x4sWu8AaAWbNmAbCWJhCtxM72N954IzHx/Q//8A/427/9W8+2Aw44IFYZ/iUVNmzYgFdeeQWXXXYZdF0HAHz+85/HFVdcgf/4j/8g8U0QBEGMSi677DJ84QtfwM6dO/Hf//3f+MpXvoL+/n5cfPHFAIBDDjkERx11FK6++moccMABOP7447F161Z86Utfgq7rUquzf81f51l/0kknlW3/1a9+hb6+Pk9gVBmNjY149NFHy7aTZw9BECIkvokxy7777osjjzwSTz31VFna+PHjPd8zmUzo9qGhocTatc8++wQGUJk+fToAK7hEEP39/di1a5c7FwaAO//7tNNOw549ewAA7e3tOPLII/HLX/4S1113XVlwNoKoFBMcBo2GEwQxDEyfPt19Njrzui+99FKce+652GuvvQAAd999N8477zx85jOfAWA9u7/2ta/hoYcecp+JIpW8A6jEt6ZpFByNGFPQs7420CQUYkzDOR9Vc63mzZuHcePG4d577w2c73LvvffCNE0cf/zxAIDu7m43oMyCBQswbtw49/OHP/wBQ0NDuOOOO4btGIixj+OKVu2HIAgiLh//+MdRLBbxl7/8xd02adIk3HfffdixYwf+9Kc/YefOnbjiiivw0ksv4aijjhrB1hLE6IWe9bVh9KgSgojJa6+9hscff7zipT9Ggkwmg2984xt4/vnn3XlnIjt37sSll16Kzs5OfOELXwAA3HHHHRgcHMS//Mu/4Pe//33ZZ+LEifiP//iP4T4UgiAIgkic3//+99A0Dfvtt19Z2qRJk3DwwQejvb0dN954I/r7+/GVr3xlBFpJEAQhh9zOibrh/vvvR39/P3p7ewEAW7duxX/+538CsFzNmpqaAADnn38+brvtNrz66qvusgLHHXccjjrqKBx88MFuwLWrrroKjDH8y7/8y7Adw8MPP4zXX3+9bLt/CZQwvvnNb+JPf/qT+/fMM89Ee3s7nn32WVx99dXo7e3Fb37zG7S3twOwXM7HjRuHiy++GA0NDWXlnXPOObjmmmvwpz/9qSzwHEFUwkhFQCUI4oPDF7/4RbS1teHjH/84Ojs7sWvXLtx9992466678I1vfMN1OQeAH//4xwCAD33oQ9izZw/uv/9+3HzzzVi9ejU+9rGPDUt7TdOUTnMDgLlz53qisW/ZssV9vxFZsGDBqFkuiRj70LO+NpD4JuqGL3/5y3jjjTfc73fffTfuvvtuAJYVe9999wUAGIYBwzA8btkHHXQQ7rrrLvzrv/4rBgcHMWnSJBxzzDH453/+Z3zkIx8ZtmPwRzF3CJvD7UfTNPz85z/HKaecgh//+Mc499xzMTAwgL333hsnn3wy/vEf/9Gd//bss89i06ZNWLFihVR4A9YLzDXXXIObb7458nIpBBGGaX+qLYMgCCKIhQsX4pZbbsFtt92GPXv2oKWlBYcccgh+8pOflAUt5Zxj7dq1eOONN6BpGubOnYt77rkHp5566rC1d3BwEAsXLpSmvfzyy/jwhz/sfr/99ttx++23l+W75ZZbcN5559WqiQQRC3rW1wbGVQupEQRBEASAnp4etLe344XnO9HaWt2spd5eEwfO2oHu7m6KBkwQBEEQdQI962sLzfkmCIIgYmHYEVCr/QCWm+Xs2bNx/fXXj/BREQRBEAThkOSznihBbucEQRBELAxufaotAwA2btxIo+EEQRAEUWck+axfsGABdF3H8uXLsXz58uobN4oh8U0QBEEQBEEQBEHUBBpoL0HimyAIgogFBWEhCIIgiLENPetrA4lvgiAIIhYmGAywqssgCIIgCKI+oWd9baCAawRBEARBEARBEARRY+rO8m2aJt555x20traCMRotIQiCqATOOXp7ezF16lRoWrLjrCa3PtWWQXywoec9QRBEddCzfvRRd+L7nXfewbRp00a6GQRBEGOCbdu2YZ999km0TCMBV7Rq9ydGP/S8JwiCSAZ61o8e6k58t7a2AgCOavprpFhamofn8spyuGGEpjNdV5bBGhvC09Py9sUhUhmN2fD0QlFZhNm1Jzx9cEjdDq4YvkrAchHpumTCzxnLKs4XAKhGB43wc8qNCCEkCoXwMorhfTQKPIEhRZZW/wywD80ITd+2dJy6ork9ocntTYPKIra/OSE0vfMx9ajvuD++E5pu7tylLMPMq+85JVzRh1T3m4IiCngM97m/qQRRbzh988Nf/hb0rO95y4HAdzYxLej/uETd118fqqgTAGcA4+X/O98rIsZxcAawGkdEYr6fMuc4xePz50mEuP3E2e5PV/WNoP3C2hGn70TNGyWfrK3V3Ddx6k5yvyrx31uy/ufk8ffVSDCAa4CZBvQcEHepa67ZbYqwn5Ebwqs3XEHP+lFE3Ylvx/UsxdJIsYw0D4/wK81Z+Es4YxFEXkD9brqWgPiOUoamEJOa+lhMxbGYLIoQHAbxncR1UaQDUItvMzydR3lbUZwPzqoXcFHuBRWMRRDfengfLHtxltGUC01ONavPqaYYEEul1eI7pbifVPeKlSeJNwXV8VZ5be3da+HOS6PhRBI4fVPPNkT7DYmK+EIf9nIfRXTIxJJKbMXAL7jF7VXBvOW4L/JCuWXidxjcQ2VCXLY9MrJrUKnAjdJHKulPsn0q7UOq9lQyiBQnb7V9f4TEdhCyAaBKhLb03nHKyUJ+nfz5omwLuU/oWT96oIBrBEEQRCxMzhL5EMnz6KOPYtmyZZg6dSoYY/jVr37lSeecY9WqVZg6dSoaGxuxaNEiPPfcc548uVwOF110ESZOnIjm5maccsopeOuttzx5urq6cPbZZ6O9vR3t7e04++yzsWfPnuQOhAf8HwUW8H8liELDX1YCXVgmRhO5NZzBN+6zbAv1MV76DIfwBkrHlpjV2y9E/WKlFj8zQWVGFb0ykVVJ3f5+6R90iFpOjLxcpRq4769/u9NeVRtr3B+D+p9/u7Jvhh0Lh/d6y865ZH/nHHPbeh56rWrVx23oWV8bSHwTBEEQxBihv78fhxxyCK677jpp+lVXXYVrrrkG1113HTZu3IjJkyfj+OOPR29vr5tnxYoVuOeee3DnnXfiscceQ19fH04++WQYwnSus846C5s3b8YDDzyABx54AJs3b8bZZ5+d3IHILD9xBHkUAV6tRTRhgZD4O6rYRokA8AjhGr/Ee5oVUk/F56Bai6pMRMnEbDXlh30PQtamMCtq1D4Zp+/KLMKqe0p2vCohKiunBgT1Mf/2SANhUTwAggbufOeKa97BDY8lXnbukxqoI4adunM7JwiCIOqbJF3RFixYAF3XsXz5cixfvjyJ5n2gWbp0KZYuXSpN45xj7dq1uPzyy3H66acDAG677TZ0dnbijjvuwAUXXIDu7m7cfPPN+MlPfoLjjjsOAPDTn/4U06ZNw0MPPYQTTjgBzz//PB544AE89dRTOOywwwAAP/7xj7Fw4UK8+OKLOOCAAyo/AP/LbBThHHVObsD2INfv0PpVaf6qfO7V/rneNSFMUDpfNZSLyxGwgjvnImj+eySChF/c/WXfw/qYzBXc34dFK3UcERqlnU6dYl2VlKHIG+l6hJ2nOhOKMi+M2IjXFpCf+5CBL1nsA7/oF/O41WiltFrer+R2XhtIfBMEQRCxMKDBqNJxyrGhbty4EW1tbdU3ilDy2muvYfv27ViyZIm7LZvN4uijj8YTTzyBCy64AJs2bUKhUPDkmTp1KubMmYMnnngCJ5xwAp588km0t7e7whsAPvGJT6C9vR1PPPFEoPjO5XLI5UqxH3p6hCCMUcRNyEt96NxhhRioyO05RMy7XyWismyXWr6X+uuU1CUVucMowINwBEfka1Or8xhljrfKqh3hOgTW7Rf1Miqxqlc6Z1u1f8wBqbDrXMuAg7Kgf+7uPPz3pEwYa0K+mG32exM4ruZm2nZ7L8ATHqbqGAkxSfJZT5SoW/HNc/nAYFKqSOaRiBJVu0ER7TwbIbCXIgBCcco4ZRFDkxpD01OD6vPR8KrieCNEeFZiqgNm8aIiiniU6N2qSPZR+oeuCMjX3ByeHiFCuCoKPe/vVxbB8+ER05GvPvK/6nwCgLarKzR9wla1eNqVag9N39mqLqN1e/j91PyuOmI67+kLT1f0UQDQVBH3M+rfBtV14bnwAHXqMtiIv0AT9cX27dsBAJ2dnZ7tnZ2deOONN9w8mUwG48aNK8vj7L99+3ZMmjSprPxJkya5eWSsWbMG3/72t8MbWeELvTM3sqo4lqoXaL97r9/qFSBugYTFRaX4LP1mBig2c2gFQB9k0BJYxKHipvkEjX/7cImNMqJ4PqiErH8wQ5Zftk32PanzUG3fi7h/aB8XBs3i3gux8vvuU9e12xTKEc+tIL45yvuemQG4xqHlSs/Yii+LcPxcL3134jTwlN0GE2BGNRUR9QTN+SYIgiBiwRMIwMJpstqI4Y+KyzlXRsr155HlV5Vz6aWXoru72/1s27ZNaJS/MMn/IS+e7stpUBmK/ZXWdVl6xBdh0ZU6sYBqcWDwtN2x7JkZjnNP/D0mztthveT7XaXHGKq55sVGwFTbZRJqjO//qOd7DF4XaWwC56vknol9/9jWaTeAmWy6h2TAB0DJGi1s0/KAlmOl+1oQzXFx2gX7fjRTHIU2E+m5XWAH9cBo4DDT1icwNkMN+wQ962tD3Vq+CYIgiPqE5oGNTiZPngzAslxPmTLF3b5z507XGj558mTk83l0dXV5rN87d+7E4Ycf7ubZsWNHWfnvvfdemVVdJJvNIpsNWOovaK53xGBXkdzNgwR+mOgW940z71fcByMguEWCzqEJ/OIvc9H7Xgsa4gxU1Jiyc5WAxdcabLA8I7QAhyEtH8PCHtV67aAa2KjWDbxeUJ0D0WNEEY9AWnwl50hwa/fcCqLbub+P+dro7xfuCgIM6lVDA9okNojr9v8aMOOQd/A/s+9FgRs4ovFv0LNpopuHFTGs9yY962sDWb4JgiAI4gPAzJkzMXnyZKxfv97dls/nsWHDBldYz5s3D+l02pPn3XffxZ///Gc3z8KFC9Hd3Y0//vGPbp7//d//RXd3t5snFjIrt4Pqvc2/b1AAIi5Jd0S3LE22b5iYDxJUGGHhzXwfoT16niG3pQPZd9LlwjPKgMQwwSoRNxLCLJSMW6I8cl2iWItznoIGiaKWUQPhFcsjo5r6Reu2/96JcA5i30eSMgOX1pPMr/csxScr2/9/Fd4LzLTqMRo49m15HwCQZjrGNQxa/RblfXNEvGiIRCDLN0EQBBELg2swlAu+qspIqDGEh76+Przyyivu99deew2bN2/G+PHjMX36dKxYsQKrV6/G/vvvj/333x+rV69GU1MTzjrrLABAe3s7zj//fHz961/HhAkTMH78eFx88cU46KCD3Ojns2bNwoknnoi///u/x49+9CMAwBe/+EWcfPLJlUU6j2pNFr+HvRCHvVgH/e9vR9ggQESLZ1lApwQsuLERBaKvnawI6CYLFpxhbQ2yFCZBDc4T44A+GNGyrep3QWJL0gdMHd611mUeFFGt3rWyjjOg0MKR6mflUzckeStKl11TvwU8qWOLUI57bzoDUpp9jWy3dJnQ9fcddw1uHpynrF3+gTx7G9et/fVBhhf3TMLzkwfwcmEi3u5uBysycI2X2ug7jlpCz/raQOKbIAiCiIUJBrNKxymTIsfUhKeffhqLFy92v69cuRIAcO655+LWW2/FJZdcgsHBQVx44YXo6urCYYcdhgcffBCtra3uPt///veRSqXwmc98BoODgzj22GNx6623QhcClf7sZz/DV7/6VTcq+imnnBK4tngkwgSt/2+QCAnarrJQBwkDCNuDRKxCiHsEeJDoquWtoBAiZS/vMld8vzjyWw4rdAUuO/6wgZUEqDhyuqz/RHQ7l7q4RxDtkdolqa+SJdo4A3jKKquiJd5UhFmGkx5MiFset48dglu3rNgggW1fA44I5y0knRUB6Ja43vlMJ5btXg6zoCH9VgZIcbBi+SDZcAQhpGd9bSDxTRAEQRBjhEWLFoHz4JcdxhhWrVqFVatWBeZpaGjAtddei2uvvTYwz/jx4/HTn/60mqYGo7LwxbUaVmoxDLPIBaVFaQtsS5u4T5Lvp/4BAl9bPQHgNIAZ8LrixjmmasSTIMo4K7fqOdREEEYhrN/I+uBwuwAHiNlIQlDcxQQyXVZhSZ3nsmBmwncn6JmqLlWk9EQ8Aezr5vY/xxItuVdEF3TPXHGhvQwI9soJmNLCuJWkFa3CdAPQXm0AM5k70OXen1Gt7ERdQ3O+CYIgiFg4QViq/RBEGUEiRjZP08kvI8qLaZQu6Lf2+i3DQe1ydguog5nwvOTX1AIYIgzLBK9fNAWd8zArdQzXZFfkJDSvOwqR58kGWfqD8pVVFLlJieHMHY61D/cKy2pxls1y3bJlFnvF/upKJOVGxJkr7QhaVrAHoPzBzBgC51W750o28MIkH992WfR2VgS0gvPbwFz3d62I0nQAyX61JMln/YIFCzB79mxcf/31tW94nUOWb4IgCCIWycwDo2F7QoLoiux3SQ6wHAW6tUZxA5XtG/RCLbbJ364QF+DAl2TBeuVazfxt8Lt3y86HxArosYyFWPDNtBXlW5oeVJ4kvex7gNXdX16g4Auy3ieAzG1YrKvsWFWeCUFCMGgQKShtDFFo49AHGfQcys5PIiJfcq2irgnv3JPu/alby3zpOeaNXO7re0Fr0UfO42u/6KHg+Y0wYZ03sWxxsED4Tal10LUkn/UbN25EW1tbEs0a9dSt+GYpHYxV3jxuht99qjVNk4I3ZELTc3s1KMvomxq+8GRqUL0wZaq/IzSdjWsNTQeA/ITwtuoF9dB15o3doenm9p3KMrihqCet7jesLfx4ixMV6S3h1xUA9MGAyUM2qfcCltwR0PoGQtPN3j5lGcjlQpNZ0NI/AnxCR3g70hHuJ8VlMxrU/WewM/wh0D1TfT9N3D4hNF3LpJVl8M7xoelGU4T+0RV+bdm76nvB6OsPSdVGxPJCEIlQrUVYJuCD6kBAXr+oChHRQYS+GAvlM9O2FMJ+yQ6q1y+6g5rkF4++NjnpWiGkfUHlxUVm5YtgSeYarPm43LL8OfOnnfabQhToitsXZtVU5IuUVk3eUUy6u7QOdpRj9t8nYQNWqv39gydin1PWI/Q9o4lba3oXWNn7i6c+rSSM/XmcOv3tCZq/7QaBkw3KcXl+cj8ffdSt+CYIgiDqEysIS3VvkdXuT4xR4oqcsG2VdDGZpVUmIsR8AfVIrVp+Al6one8eQe6vG6X8TPg/qB1uXtFyZgeZqpn1LGjgICwf4M5Hzx0wCLMvjaY3Up42mjpgNABmliPdwwCjChFShQvzB4KY54fZgyVAqf8mQoyBEu7Lo7wH/eKZAcXJebCuNLLvs1Cvk7AI8aKFWibE/e0oc3YJEPUASnPUawg962sDzfkmCIIgYmFCg1Hlx4mgSvPACA9BruWVlBNlvyDrHJNsk7mX1/C9UjYvNOr//nJE91THuuYEW3Pn5tYaiTVS1mZxm/ZOAzK75d59ub2KYDP7S8cTxQU3rlU7yv613K8eqEHfiOw2zSC/F/3ZxCkMkikY4l8PmjX1gnHrLxeWGsu8kUVmj1Yq0y3QdyyOklL8hoQdp7hsmec4JINuokeBdM3yBEnyWU+UIMs3QRAEMWLQPDBC9oIpTfNvZyh70ZZa6cKs1FGFhVhXrebt+l6qw1xkI7vphtTFAJgpK6CT8gVeVr5sDrhwDFwhDvxWwbIqTSCzh3kFiUDjOynw7S1u8LpIVHvNKt2/gv2izmFOguGsKzLVXCvxXg+afuKIXQMAY67otm4MYUpGmLeG6EIe5tkhpMuivXvc0O156G57xGNy8tdYdBO1hcQ3QRAEEQsKuEYkTpCYDiKqa7kolGXCPsSdVFqOqi6fQK5EzMj24fYawEm9cHPNLtN+0WeGpGzxfNjHxjWhHT5x47i/O1Y8d81kQXTwNKD5wpDI3OJLG3x/nX3Eed4j9VNSQ3d1zgAzYw2OpAZqL4qNrHVO9bw6b1yCAg8qLd6+/f37Kad1ONfH/1shlpUCuMbBDAae4oDJSm7kEc+5dM63pC7PdsE1PnBKidh28bdqGPs7PetrA4lvgiAIIhZmAq5kJg3bEzJklukw67e4jyiG4gh4VX1BbfLX78sXSTCFHJ8nqJIwhzaypS2sWg7ABIrNHKk+Jj9myaCEp24bZ2AgUMiL+0oCvIliKpbI9FkCI82rTZLhcNUvi75XG7RCxHNW6+ZIypYFF/OL+bB53TwFN8iZuJY3ACuQGmMwshx63hbeYXOpfQOE7pQHOy106b4IeI6hkgHAhKFnfW0g8U0QBEEQxMjht/CI20X8L/6ViIAorucyC534Yh3WxrjNsa3FsvdTmbhgEkEcyd3VqcNnzdaHWOn8ixZsLlj0gtpuu89CaFtY8ClAIk7E8kLOpdLBgcn/lmf0Fei/lnF0QoSBE38bo0bhBixBrBXYsAwkaIrr5lJhf1dOi5Cky85P0PUNFN46kNvLQHbSAPjzLZaF2/HMsPuiK8r9y4wxlIR4wD3PTMDIcmhFpuz73oaVynGEu+OKLs47d46trqYDEFVD4psgCIKIhcEZjCrDI1e7PzFGUaqskDxh+/pdUGXpAWU5Ltq6uB52hJfhKC/NUV+quV8s+qxvZYflt87ZX7l4DjSg0MKR6REyBLXdlwZNKFfmDh9ncKCGlM1ljjPwUkWbVT9v0vn7zDfQMwYEF2clzwjH+sxTlmBlJqDlSifCfy9EWi1ABQM442CMl6zTQl9wxG6hlSPbxQAD5X1X/Cspn5kBniNA8DWUDSJKinFiM8A5j+Er2CYOPetrQ92Kb5bJgDH1WrmBFMN7KI8yB2FoqKo6APV7hD6oXts4NahIH1KXUWgJX7u462MtyjL6poefsyhzhcY9PzU0ffyT6jL4+3tC01m7OnhTYUpHaHq+I/x8RVnXmqn6WIT1pJEOz8MirGmugs/eT5nn7U+Gr3vee4B6sdiJe3eFps9uf19Zxs6B8Ha8o01WltG0Y1x4Bk2RDmD3R8OvS7FRWQRatjWHpu/1v/IIvyLaq28Ep3EOKH7CKsWJYlpdGWPgzZJIBr+LskogBQlwv2VXZvH1iyvVyzVsq6DfqhXhfTKyG2+lOJbqFMDsn2AedDzMXhdbFMwA0v3Ms5+4rranKrFcx9qdsoNScXle16KfwK1eifVPJnBDLfmyAYewOis4rtCI1wzIjecwWgw0bUvFs6TWOe65ZdZUh46DduG9tzuQ2ZGyvC9Qfv6r1mzM6sfZ91Iw32tzBzREjw4n2rrmLLcnCPLIA2Mpbglwu05/G8IGpjz1hPz2Oe0cbhlLz/raQPHfCYIgCIIYOWRWoKB8YdZr5svnt7wGCfa4cN/faol6/AFtcaIyi3GRzAw858OznJj9Is81oNjArTTBFdcRSeISZTxVqs85n1oerqusKFTMLIfRwN26klAMlQhvTzRpri5juFx7w+phHCUhN0bgwqAP1y2r9y0fvR2z9n/bSrNJ9PwLA2+W+35pQMkNjib0CU9MMUeAS6zXXEPZ2uVagZV5mojH5fnd8v9GuQWXt58L3iVgIMU2hqhbyzdBEARRn5hcg1llBFSTIqASMoLcg500lTVbRCVqRYEeVo6qXUG7RLXWhswbjmL9K5sLDpQCS8ESAs7tmh9vgDcbgMGQ6kpBH2QoNlsuwPoAKyvH2yDvVzNjL1Pms9C6YkRxfHGIci6DAnD59xPLUpYbJpAqJOiaMg5kuhjQpY+pOb5aHpbnRcoSwPoQw7LfrIA2xJDOl06G//opCfJM8A++Odsk+cwUYGY49EEGM8vBCoCeZyUBbSCwD7h5GAcYs35ChEjpZZZ82RJjQZ4honXcDmLIcpJ8NYae9bWBxDdBEAQRC3JFI2pGVBfzSoyDUVzagwhrQ4hwr8Z1Nuq+/iBs1hx1q1Fct1QA40Ch1cT0A3bgkTm/wrFbT8HrfVPBioA+yMBMS4SAA1qxZMnjKQ5WZDBTHBoXxLlj+Rba6qaFRXyu8rb3C+ewfEGECfNQkhbifoEYwTo/Ggg6t44w1YcYtLxeFn086mBToCu3+L8/YnnQAJdhWcWLTZYA9wQ8809jEco3dYBrHGDW/cI1blu7mWe+vmfqg2bVF9r3BOs5NFhzvE1EH8hLGHrW1wZyYiAIgiAIov5RiXDVO57f0h2HoPwh5cVeOkuyf3gGeI/fid7MLesz16z1m8E4zBSH2cCRMyx/WI1xmC0GzDSQ7zCtAFiGVVixkVtrHmuAmQagWdZA9zidKMwpuO7p/nYHRfuOMsc+9JAjCG8VYjt4pYI6Ac9w7r9+YxlhgIgZluh23aptoSkNQici82SRncMo3jDO9U9ZolkfYqU2cJTUEbOmUXDdbqMOmGkOrnFoBrMHu7gljotWoWaKw0xzt21m2trfFfOSAUDHO4VrljUezpKCdjvCVgkgRh9k+SYIgiBiYaL6CKb0LkFEQnQtj+JqLnOb9rufysoJcnN30oJc2Jkvr7+ICm+TyPv5z4UockxLVHCdg6cAvVfD9rfGY1bf2cgNpIEiQ9sB76PrnXYYXENRN5Hq16zgUxrAGYeeYyVRL0bg1gQXWxZNHEiXSYtBokGTQ6yOkQm79op+AQSfs8gW4DolaNCIcZQijtsC3ExzsILl5s0cwet3xRb7S5ioDnIzD5oCwWEPOHHkO0xk9mjuAJT7gNJK+5hpXkpjtsjOAEaDCa3AoOUtS7Wz3r2Z4t6BKOG4yuaaO9WmuHd5uSrvmWqhZ31tIPFNEARBxMKEBrNKx6lq9yfGEP6X4yDXcJXVNILgKRPcYUI+KE+UQQCUXEVjvbuq2hNSF1Da1wmo5pTppOt7Usg3psBzOlhzES3ZPPY0GJaeaCyCD2aBlG38ky1iIbMyIoZbbIXHlySJu+/K+l0VdYxm4a3CmePsHKOWY65FmdkRxxlQ3k+iim5hm9P/3csT0kf1QSuz4xouDrgxw7mRrW3OUmmAbcFPc5jccj1npmUB14TVB5hZvla7a/G322rqluh25pvDOQeqY60x9KyvDSS+CYIgCIIYOZIWG+LLq1+wc2G75IU4aG3rwEEB0ZXUl6cikVeBUPcIb0d0c8G1V3e2cxitBlqac8i092PTvF9Y+x0EfPyZT6N3oAFDbSnofZrlQutri2eJJkekOO/VUc1bKk8D/7VLQGzIRJez7JqW5LrJUQZ/PuCUufnb/df1ttBtS7iOYOsv85bnDxIoLsnFUxyw3cP9Qfac+4RrQHF8EdqOlCWaJX2TM9sd3MZsK4IN6dAnDOG8j/4vnu6agWef3RdmswFtT8pd+9sabOClRjFvG8y0FVNBc+43/5SNEbJ4E7WFxDdBEAQRC4NrMKqMgFrt/sQYIkjwwvuyLrUeSbaXCWKREGtaoFgOegGOYMWNZcUUXszj5A/63wq6Zrs3m6WC+95vwkPHrQXQ4u7ynwfdgqPXr3AbIFoLoaMkru3BC2bCjcKcWKCwsONJWICEuclXFIzNU7hTUIX71xFi8LGkgn75l/ESI/NreQYzY82R1nKOuwbcQGXSW0Mmlp1228IbENqvWXqYmbag5kBqt+XuwXUr9oEz0MTtQSsRo9FOaCvg/z75I7RoDcDEF/BP7QfhZ08uBM9ymBzu+uVO3Vznbr8zM9YxaXnmBkesx/5Cz/raULfim3MOXk1P1PXQZMbUTzeez1eVDgCaYYSmZ9/MKMtI9bWEpkf5MRya1BCa3j9dXYi+X19oerGg7k7ducbQ9NY3xinLSPX1h6bzbFpZhpkO/zFgxfDzkekPv64AkO4aDK+jd0BZBh8ML4PnZX6BXrRxHaHpOw4O718AMDg/vK2fnPkXZRnTG7tC01v1IWUZbzd2hKZvn9aqLGPPh8OPt6A+HSgcEn4vtDSp1wTZPaEjNL1xd7uyjJZ3gu8nxnVAfUorwgSDWaW5str9iTFEmOu2BhTaONI9rDTH2NktTCwHlS2zrob973yXbZfl8Tclitu5T1zGcVWX5uP+RGuDJUisyvq593n9vlF6bkY6r06xQhWxl4qKQq1+JhyPAdPbVmf5KGbah6c4jlBBOoasls40Bv89GJfAvi1cB63AwItWoDNWtO57M2Wnh9RfVq7o2m0KeSTR+I1WE9oeDbCDpnHNEeHcUxxg940iw8EfedsS3jaf6/hf/AwLS8fgWNh1gDNuDSBosOIvDJXcy5nBSoNBomeJ8H2koGd9bYg1HLFu3TocfPDBaGtrQ1tbGxYuXIj777/fTT/vvPPAGPN8PvGJTyTeaIIgCGJssGDBAsyePRvXX3/9SDeFqFOcIEYV4Z+HGybMg7YHuUr7LfYSq30kEe13rw1DFBQIOC+CddqJsCzq8OZxgzhz4997dvmbjV9Ay/gBV0Q7c1KZY5nk8IoWbi1N5kSHdoRGtRHehwOnzaLF1U3TgMF9iig2qQ/CEeqh11jSL0YTTh9iHNCiCO9KBivE/i/0Xa3ASkHZ7O1mqnS+xb+B18ARs/Y0A+ugSvuZWQ4zDaS6NRgZey63I5pl3iS2BRsMeHnXRE9VGwb2d93NzRQv1evcE441vlA6RnF6iFuPc47q/D4iKieW5XufffbBd7/7XXz4wx8GANx222049dRT8cwzz+CjH/0oAODEE0/ELbfc4u6TyagtuwRBEMToIUlXtI0bN6KtrS2JZhFjEGYC6b4w0zjCxU0Usa0iSLTXSFS5VsZKXsC5YIz2WXeZAbBeHf2ZRqCgYeavvwitpQCz37J659ImUj26W6/U08BpD7PWNxbXQlZNEYgiymXLljn1VSJGuLNkU2AGb/uYCTRsT1kCSYFjiY002DCGXNFDUdwTsQIQ2ueKmQymXurYjDNwpy9KBk+sfYT2CPeE595l1lr1ZgootptIdWuuxdpppNhergEwAS2nwWzLY2BnM45/fhm+u98vsaH/QFz75LFgLQWgO21ZzXXb1RzM7VvWPeQUaP8J6tv+7SPQd8jtvDbEEt/Lli3zfL/yyiuxbt06PPXUU674zmazmDx5cnItJAiCIOoKAxqMKiOYVrs/8cEg0lrXcfC7lztlRBXw/jKSQnjRZn4rc1A7gtokCGJ3rq5RStN6U2AGYDSZaGsbRHd3BtoQg5nWLIEguugyUTT4qnTSUarL3Q7v//5gV2Xl1AiZ8HbnqqPkSi22SbNnDUUR1bGt/GPIFb0mCH3YcdMGs9bU5gwotJrQ8nagPPtcasWSmC1fwktQz5r1v9iXjQbrPkCRwWjiwKAd5d/eR/Rs8HiA9KfATOAvz+6NT2+9yBX4vMCswYEUt13MOVIFVoqgzpl3yT7hPi3Dv20E+k6Sz/oFCxZA13UsX74cy5cvT6J5o5aK53wbhoG7774b/f39WLhwobv9kUcewaRJk9DR0YGjjz4aV155JSZNmhRYTi6XQy5Xmh/Z09NTaZMIgiAIgiCCCbKExxHUMcRiYms2S1zapS/sTEjTAKOBQx+0AkiZWQ5WANLdmiUOmIaBLeOgNXJoeYZ0n2Vh5Gkr2BXjQLGRQx9i1jJQgjXetSg79YmCXfgrO/6aie2I1mVHCIntdtOGQ9x8UKzg1SBOexDWAc90a+A6R7ER0G3pYDRwaHmUOr4tsEsWa+6xOFtLgln/pwYsN5PGA/Zg8MUOaPnSjeUPtCaKcL3fGqgyshy82QAb0AGDWds5YDSa1v9DJbHtDhKIInoUTNNICvJyKxFbfG/ZsgULFy7E0NAQWlpacM8992D27NkAgKVLl+LTn/40ZsyYgddeew3//M//jGOOOQabNm1CNpuVlrdmzRp8+9vfru4oCIIgiGHD5AxmlW/Q1e5PEADkFt9KSMolXSwy6ku1IwSjVBfmvi0IXiNrCWotx1wroj5gW+RSViCrTA+DmeJI91qWKSNjBYXSB5l7XCn7fyNjrUMMlIS3aEH2W9pl7a36lg8SrRHKlZ23Sl3jEyNMhDsCLcDaGdeNPyyvO83B9nAoc91OmNABKcn97IkbaItorWiZmk3dXqaMAdC5ZZV21uT216fzUplOQDV7W+/2VqQY3IjkZoa758TMcGswyhm0cQLPcYAVGVK7hCC/dr1ajllz5E2Ap5zzKljewyzeQjnKbTWGnvW1Ibb4PuCAA7B582bs2bMHv/zlL3Huuediw4YNmD17Ns4880w335w5czB//nzMmDEDv/3tb3H66adLy7v00kuxcuVK93tPTw+mTZtWwaEQBEEQw4GZgCuaSW7nRNJU4oIedb8gkZ3Ee6X/JdxfZoDl2BVgjkATXaftYFXi3FfOSpGkjSYrWFqqn8FotASHPuS1GLrzvpkwv9tJ0rxt8Qg1x43fsZJHcemvxH1bbIt4DiWClfnEmJEGoJVczP15hpUKBhWSbquZBvS81YZaiW6HskBmUaaWCP2bmQCz3c6ZLW6dYGyaM1dfiB7uRq93BhXsASMzbfV7nuaYNvM9vP1cp3V/6KU6uQZ30MkpzxMgzSnHndZhiW5tiFnLnAFg9sJIPMVtl3a415Yj2IOlHjwj6FlfG2KL70wm4wZcmz9/PjZu3Igf/OAH+NGPflSWd8qUKZgxYwZefvnlwPKy2WygVZwgCIIgiDFOLV4yZWJZti2q1dzvou5sCxPNSSEKRwjetZqdxIREv3Dytc9xtU71Wa7oRiO3XG8dF3INrqjxFOO4mfNSupHh0Djz5HXmgbvWQdGCW8mhyyy8ojXUPkY3T0Bf8lvgmW2VVNZVaRsrwWfh5Xrpe6VW+qjt0nMjNPgQNuAgDOyIS8CBwZ0DbrllWGlGswGtxzppZgryuAkcKLSZYCazPEF0y3r91iuToNkCnhlAsdUEZxzpHr3URuF+c8S3mTXBMxypHt0Kxmb3K+ZT1cxkpWXSfIMJoRHgiTFJ1et8c849c7ZFdu/ejW3btmHKlCnxyx3Kgwf9EvAIw3KKdb4jYVbf+7linW+2Rz3HPTWoWDM4pT7WVPNeoen6gHpt7NyQIo9Z/ZuH0aDukimmWKN7T6+yDFUMfq5aJ75QVNZhheMMIR3h9gtf5hsw1fcCbwwf3Mq3q69bW2v4Ot+dWfU5V7ke9Rrha9EDwIR0+BrvH+7cpSzj5WnNoelahCi3rc3hC2iPb1JdOKCrOXxN8mJjhP6hhZzTBO7HwKK5BrPKCKbV7k+MIfzCNopolu2rKkPVhqB6/Ntj3FqJelwKLsSOtRfMsrxphZKABmzLoKch3jKccvQcK20PcYHVCnAt2o7lj6fhERRumxzrqWygI6iOkDS/OAldTzygHGk+5s3vBqeL+eqXhGgVpiu7AyzgQLHZmnOvFcqt95XW49+/LuYch9wnYuA/zy4cgO06zkwg3W0L7zR3o40b4wpIvZ92LeOAJbYBWGJaswKuZScNYGh3I7QhzbJa563lkkWvCs6AYpsBvU+3gsGlOPRBDTxn3W+Op4mzyoAzrzzUzd6xsIv9TvRmGWHoWV8bYonvyy67DEuXLsW0adPQ29uLO++8E4888ggeeOAB9PX1YdWqVTjjjDMwZcoUvP7667jsssswceJEnHbaabVqP0EQBDHMGGAwqjTzVbs/MUZJwrU7qAyVW2+lXVLhHpyYABcHAZz/bVdy1702aLzfES8+1/FCM0e6l7limRlAoJeoY63TSt/F9cA9okF0rdVL9TrGyqA2eo7NL7idj1me7mmjJM0zD91pj+CqHEV4R50/Xa0wdupwpglII7ZXWE9dCG2RqCJTMjAmTnlwPDZcDw7dPoF5zQ6cZot0YaCl0GEgM24Iad1E7q0WjNuvC0VTQ9/bbdCGLOHtzAl3PUyYvbNmiXutYIl92PegU7b7j7BkmWdA3LF6Ox4iwjGF3iPDDD3ra0Ms8b1jxw6cffbZePfdd9He3o6DDz4YDzzwAI4//ngMDg5iy5YtuP3227Fnzx5MmTIFixcvxl133YXW1nALD0EQBEEQRCTiWscdwtLjWNfFvH7BWEsYyi1kgthk/jbwgP+d4rgV7ZkJ82PLxJAjtiWWcy1fCh7lzqcVRIW/7YF1SI7TX1eZhVqoS7qvf7Mort0lrKxgXUHCO0jgJuVmHjQoI4p8PYfStfWlxQ26Jl4TLdwpc/iIeh59fcI9d4y7XgJORH5HwJoNJtBgwjQZWEcOZk8arMjAMxx6Wx4pAIUdjchnTWgTc+h6tw0sp4GNzwMdgNmXAstpgAawjjx4dwassQizkIaWL1nixSjmTgC40Isj3rOS61BvApxInlji++abbw5Ma2xsxO9+97uqG0QQBEHUN+SKRtQM0WIqs6gCKBOYDIGiK2pdsYR5xPoTjZ5tC29oAAyf+HKEmd/VWxS88LbFES9mllviwe/yKpYhE6C6bRU0GMyM5farFRlMp02mb39RNDF4rbkBIrpsKTDhWKs5r6IlvixYG+ARxX6B7FnCSmIJDxPwomu5t1DIz4GvTsbD65LVWxKp1nEPTi0iu0sHBtmICPDIXiBBA16+/uneE85u3JpKwXWA5QEtl4LRbKKlZQi9/SmgpYiO9gF072kCL2po3qcPB+61A0VTR0OqgM1v741cdwNY2sS4KT3Ys6cZfFBHQ0MBg31paLszVn0ms0Q2YEVO15h3QEhY8kx5nJKBlXqBnvW1oeo53wRBEMQHCwPVu5LVi+GFqAPEl02f661nm6zLRe2GMsu0TETL8sqsyRHqTdLlnOuwAjkJN44YybysPv+ggMSFmzN7+THNzmb68srOh72fuwYysyI9a0bpQLnGLWuhs00TyhbbIFYT0Af8wlQlTMoiwEtghjN4AMuC6RPHTj2ya+cX3v7/Q9sUlDfqMQXsL2u/mCZavhv2GkSxtwW6OixJTYh6T4QOVAiFMS4MOjl90772WtF2Nc9p6N3ZAtZgQEuZGMylMWFCHw7rfAM9xSzaUjlct/f/4v+991E0T88jqxfxv9uno6e3CVrKhNkIDO5qsqziHEChNE2DA9bcbmdgxJQPuJQfYOmvOLjitt8+VhY2xWIYoGd9baDhCIIgCIIg6hf/i2fQi2gUV+YohOX1W7kDBJrnJTomZUsxMUswunO2BQtwWfOc5cXEedk6wFO+NvHSi33g0lL+OkQBnrbKLLRx6LN6oR3Ujdw4qyArMrrlOysGhpOeV80R83Dzm2nuFbkMbgTpKKI3SDT7LcGy/DJxnQRl11T8KhlckFnQXQOicL4AlFytheOTRc/WCgDb3IpMt3we+YjiHzTwt893jdzBH18aPOeIW30/bVrzrRnQ1jKIbKaITKqIL+/1CD7a8i6unPIIAGDF+I2Y3vg+vrTXI2hMF9HUlMO4NiHYrG6t/Q27bo7SoJgY/0CchuG0VzVo5+8DzHfPcOF/YvRDlm+CIAgiFuSKRiRK2EtlgEty7HKCyg6zqkfZz4dprxEcGPgsjAqsooEIVnE3AnPatvqy8jSPWJOIf1k7jCxH877dePbjPwcAHPzHzyLX11Fu/bOXKXODS/mFiAaYKW4PCJRGCESXesfKCJSLZZmFVDZv1rOfJhFIMsTtVVofwwLilVk9Zfvbx8SZtS63Vih9D7Mou4LegLtYUCWR3ZOYRhHpPCu+O/1CFKTiYASY1Z94moMVGRhn4MxEKm2AMY5JrX04btILmKpzfHPCywAaAQDj9Cb8v722YqdhYNneW/DwzgOwvbcVWsq0rLd2fWaWQwOssmVL+wn3i7UyAQcYkw6ayTwVIFwv53hGarCEnvW1gcQ3QRAEEQuDazCqfKBWuz/xASSGy3ckKhXcIftphloMSdtRjaiRzIf1BGWT1OG85JspJ0CUunxxjrmWB4qNgC6oh5RmYshei1mcq89Czp07l1kQF0ywcscJKCY9jwHbHE8Cd/1y1bH7olJHJsKASqR+YucxU0BuogmzyYDWp6Nhl1Ym+Mqq851Hv3XdtFdWVc0BT2Iuctl94W+3zCPBZzn2WL1tzw7PPs41063pD7zBsPq6qaFg6Hh/oBEG13DfwDR8rnV3WRvXD0yHwTV05xqsajmzrN5pE4Du1sMg9Auxja7lmoODuUuOee5RlVu6yAi5nAP0rK8VdEYIgiAIgqhPVBax4SJGvbFEiiAwqnFV9wRMQ3k5Mpdkrnn/97iGC+6ujluzi2YLHsbR3dWMI589HUdtOQ1d77VaEadTjrXPOwjgrg/ur8u2eDOzFKBKdOGNdQ78It8j2uxNeumYROEWRlzhLXM7DrN6R2oDB4otHId87FW8dvKPkZ3eh2KjemdVkDbHzTlpV3sZZXVI3OMDca+pt5CywRNR2ZgAiqUbi3OG8U3hE951222kIVUEF+sqsrLYBWXX1NOv1QHXIl37ON4/xKigbi3f3DDAmXxsgKXVzday2fAMEcrAUC483VD/GrMGRTvGdyjLMJsUZRTV/ijprvAfm3EvZpRl9OQbwpvRFOFXRPGD0T1T3Y6JPZ2h6dpLb6rb0T8Qmqw1NYamm53jlVXkJzaFpjNTfb4yb4e/GbB8QVkGG8qHpjftVPefHW91hKb/D/+Iuh2Kp8xezf3KMj7a/m5oeiZC+FYzFd6O5rfUY5Jdb4wLTX+/Wb28Yvat8L7euFPx+wOAh/xGcR5+3auBg8Gs8unP6e2BCMLv1h3B4lyPKAWNxH3a+b/ySkOSbAudK7o5UGzk0HN25GbHuu24jfvK5U7gNCHwW2p7Bjt2Ws/kTMEu21lqiQt12RZLZlgFG1luuU2bjgnR/vjmiEujo8uO2W/p575j4N7zq7TARqlLlc8R3WHZopbl/GsAL743Cc9PH8BgTwMajGo6i11mPc7/dq6R0B+4xt0BGlN8TPuvpz3QwQpOgDTNCrzGOBozBfTlM9hZaMVlE1/E5lwOhwp6YVMuj79p7cLX+2YiZ+hoacghN5SGYTDLzbzIPINKHqO84DIuDbrm66OhgdjqBHrW14a6Fd8EQRBEfUKuaERNqdTaWSVJL/UTRXiXLSEliLVqRHjgMTgWWPv2swQwSoGjGGBmLCXDhDWwzZRtyTZLDddymlWWE+SNA0jDXQrNdZXWuTuX27J6c9vtm1nHL46ZCpGrHTFupqwBAuvAUC5QxPMkcekuOxeCqHcsmc4ghHscouVc1ccEd2LTnlcvzkkOE7eRrrHg9p/qY8i/3IaTt61EeoBBk4y/qvqx0tV+JIhwH7t9D+Vi2/3r3D8GgwZeEu86R3Eohf5sBprG8dSOfbG2YRf6jAbctKsDH27cideHJmDv7B48MZDH4zv2w0A+jVwujcJA2g6yZg0oWfPIhfqY0P/hPe9lwtt/2D7vEOU5kv1fQ+hZXxtIfBMEQRAEMTpJQHi7L8COKDPLhUslwjzQks0gFd2JILhZy9rjESx+YepYm3VLlHMGy8Xctjg6ecw0h9HIoRUYjAYOMwVkum0hXXAslqXKHBd1S6BYB+8IVM98cJ+Ici3HBoOZEqyNzrx6/9JowjGI5cgCyplpS5jpOcuSqRWYRzA758tpg3v9TW85zjkCSlZaabuqRRiUye4RD7KCuurMuhrqTeAXnLL7XfCMcZfmguNVwcE5rHW500UU8lZHyuVSeHDnbPTkGnBU5ytYOf4vuOCtTtz79kGY0DiAPX2N4JzBNDSwlAlu6O7vgiOmmaRNpfuZlb6HiWbB2ySyVwUx6iHxTRAEQcTC5AxmlRMEq92fGEPUwQunqQNmBuA6h5Zn0OwZPar5srGRibigrBK3dWeOsnIOsk8UBAV2YoYlOs0Ud9fq5rY4tVxsSztxjaPYaLv+2vuxgmVhNBoAVrSCt5Vcha19zQyHPmSXneLeKNEh59TJ47jB+13RpRZvwQrtOR2Cq72WtwKXAbBd5O12i67iosswhNPAhGviGzTwLAdXC3xtCOpDicwzjkHVlnTxevkEaODUDbtD85RwznkpP09zmFmrr/HWIsZN6MOebR0opEy0TOrHQH8Wzz+/D7TWAjamZ2Dm/30cM6btwo732/DOnonQ2gpoaMxjYE8WMBn2mt6F997qADd0mGkTWt52QQdK0f2dc2FIhHfQ7whHuUAXz4vk/7K4CDWEnvW1gXwBCIIgiFgY0BL5AMCCBQswe/ZsXH/99SN8VMSIoXo3q6E4d+f/6kDhI4P45AnPwsxwTzAyoDLBIg2gFuKCGgVnHW+lJ6evXo+Ikby0a0VbhKe560qen2DATFvnxmjgMJosMaMVAKPBBBhgNHLLqliwRHahzVkL2QoOZjQAWp65FnXXZVdsS5Q3UUEYAygFTGPwBnGD9y/XveU7eXmqJMDhPy+s/PyKdbllO4MMfot9Asj0iugl4YQ38XhPwCfMhoG4QQLDpkN4/galw1sfc+IP8NIgjdFoxRZgeQa2Vw5sIIWut9utgaIBHQNvtMEcTEFvL8DsT+OVl6aApU288cokGD0ZZCcOwszpGNrWCm1QBysy7Hp9PNiQDj4+bw88MRSbTO9gmjP9QtLOoOMPc0n3eGAEwRXpVZLks54oQZZvgiAIYsTYuHEj2traRroZRD1TQyHhilIO8Pey2KB/CLqhjlI8IgiW1kjLEwWdNydNYm10hbLGofdbL81GA7fnZjMYzSbMIgNvNrD3rO14t6sNuV2NMDOa5S3A7TnjDNByzKrGCGlviKut6OrviBquoyS0Utxykc8J7u1+913n2qbgBotzzoHj6uu4jpspy93emQvuWBa5XbZjYTXtWJmOdwT865cngEykBS0ZJvNqGK7+y3gELwwB2RQMaV8N6r+C+z0zmLtuOZg1/YGZpf6gFRiM9zPQB63l2Nxo9ykOvVsH9qSQndGHxmwB3a93IDulH4VcCsU3WqDD8oKxRDVz7wujN23HTODQhzR3EKY0B1yYDx71d0vSX91zAPn1tQ+ZGKWQ+CYIgiBiQa5oRM2J8/KaAFoRyO7SgN0trity1HWmZThW0mrccZOMel62ZrIjYB3B6tvHDYTGAJgMTOMwsya0CTlomgmeT+Gd99tRLOhIj8uBc4Zifxpav17aBz5hZgsTVZApv5XeXapLiLJuuV1bypjrwj6OIM8z9zi5brvVF5gruF0xz4QxDZ2D24Hm3IB4vqjarpuzuNkR3iEDCdUgrsstDkiUxQ0YBZS5kUdtu38f4Ty4K5jYng5ct641YAl01yptBxosZqwy9CHAfLUFvWmO9LQBFN9oQSpvXXMjy61BlTyDBmtfM20Jd2Zobr3MYFZcBAZAF/pG0CCDH/+2OhPZ9KwPJpVKYc6cOQCA+fPn49///d+j71urRhEEQRBjExMazCpdyardnxhD+Oc2DsNcRhHn5VZPcHU+xuFZE7gSd+CKhUpggcJfR1wygPmsj2JwMZ4CjBYDWk4Dz5r42PRteP69Ttz+8VvwiQZrAvpRW07DxMY+/PmdKSgUGmy3XA6tT3PLt4rnCFx2SLDqexCEp3S7uEnj3g12sDgrwJttHU8B+XYTet76PjS5iOwuy7XYzaOVlyHO7/VEphctljVCHKwIs3aPagIG28R5+P6/XLet3YYluoutBlI9OvShUoC+VD9zy+e2h4JWhGsltwbIGPLdWaScuduO+7jBoNllA9a2zG7dEviwgvVxHSi2GUi/r9sC3Zq2oYlLwNmeFNJjrnPoWR9MR0cHNm/eXNG+dSu+mcbAmPzXTGsMX28aADAxfB1mrlp/G4DWF74WNApFZRlDB0wJTe/6iHpd62Jz+K96pkd9Bzd0hQ+/8/DlpAEAevhS4eifrvY9ap3aG5re1au+toWWcBfVvbsnKsvg7+wITWfpdHgbxoWvAw4AQ+PDby89r75u6a7wfsoy4e0EAD6oWOP92T3KMvR8R2j6wKQJyjKKilvupRnjlGVs2zu8HYN96vu67fXwB8Fezyg6OoCmHeH15FvV93XTe+G/Hw2v7VKWYYSs8865+veJIOqCINfTEEzd646cBEkvNSYjyTm5sS3r4jkW3HBFEeBa8xwrIgBWYOA6R7otj7f72vHX+212hTcAPHrQPZi78W+QzRZRbCmC7Xb8soU6LT3udUH3WwNDznvZuuNCfq7z0tx9zVnuy0q0zpEl0syMtU0rlkrShjQYWQBZISic8D5kLbsG6IZwvsJ+WsOs35VYxgPyjynhDZS7XgOui7lnMMgZA0lx1+Wd269B6T2669mgCY9G0UuAa5Zbuj5g/34YDMWMiYlTu9HVPQFa3hHtGrjGPdMV3IB9drR9ngJY0aoXdiwBx2vCyNrL4zku6OIxqq7dMHv9EMPP2ByOIAiCIGqGwVkiH4IoI2K3qMXSsbVw4Q0qL6weN7iX4lxUNPAgCAF38MJvdbbnz3oiLBcZigUdQ4UUvj7h/8qKTacMaIwDvekyy7orZn2W9SDhHXbcZeeFW5ZLzV6ODLCEV77DRKHFckE3M0CxxVJu+hCD0WDCTHGYOsCzHJrt8ZDvMFFs4OApDiPLkR9nuBHczQwvuS6L1WuSvihzOfYfbwj+ZdFkfWXM/XzKzo0owoV+6wTXc/oWM+CKZmYwO5o+s/s3K01RMEvr2jt5Aatv73q7HVoRpUj+doVanlnbnWkP9nr1zA4yCNvDRcvbrukpyAcSELBNRo2mL1TCSDzr3377bfzt3/4tJkyYgKamJhx66KHYtGlTYsf06KOPYtmyZZg6dSoYY/jVr34lzXfDDTdg5syZaGhowLx58/CHP/zBk97T04N58+bhyCOPxIYNG2K1gcQ3QRAEEQtnHli1H4JwCesOkhdRvZCs1bsWsBBBGdb9azoIIFq+xTZ4RIIgOJxNKY5UpojmTAFff2dxWfncKazF643DuG0NtOv0tAXe7WFt97tdi5HJ3WBxBXv5JxPQBzVoeQajkcPIWNZ8s8FEod0EbzIwcfYufHjem+BNRRRbOYxmsxSxvcUKtKUPaK4Y0/KSQFp23aJF1ttwCEG+gGITh5kW9g0gylSDMWf5BjyDNg6uxdrxxNCtwZFik9U5nSB4zCxdI3GdeUeAA6W/WoG53h1g1gBNdtyQvfa7dWJZkZVcx8ULwrhbBzMdEc7cbJrd180st8qz2wvhOMKO1yqompOYLMP9rO/q6sIRRxyBdDqN+++/H1u3bsW//du/oaOjQ5r/8ccfR6FQ7gH4wgsvYPv27dJ9+vv7ccghh+C6664LbMddd92FFStW4PLLL8czzzyDT37yk1i6dCnefPNNN8/rr7+OTZs24cYbb8Q555yDnp6eyMdJ4psgCIIgCKJGhInpMBFVscCK8q7rt3w7LrVFQWTaH26v+V3c3YimdB6PbdsP335vNgAgxws45I+fxd6t3ejrbQB60+C63XBh6SV3DWwHmfutr92ii77M4i23ltpCx1mKywnQluFgHXk0Tu1DpjWP93ua8Mbu8Ug3FpDdpw+pCUMws7y0jyPshBEI7hdLYVMIhCkMXAcKzRx8/34UW2xX5qjXNuBajumxS9ul28Fo4G5Qs2KztZRdpkdz52a7wfVs/NNHPPefk+hcO1sFFbc1W+JenMknTGtxBmGcIH9uUYy7FnE9b+cxgHSvBq4BhRZLcbtB3OAtv+x7HQnvkeB73/sepk2bhltuuQUf//jHse++++LYY4/Fhz70obK8pmli+fLlOOuss2AYJZeUl156CYsXL8btt98urWPp0qX4zne+g9NPPz2wHddccw3OP/98fOELX8CsWbOwdu1aTJs2DevWrXPzTJ06FQAwZ84czJ49Gy+99FLk4yTxTRAEQcSCcw1mlR9eC79hYnTyAX3hLLOEJUXY+RSFtYMviBhgWwnttul9dkCyAsMr2/dCbiiD2589DB9/5tOYs+Hv0d/fgC3bpsIcTFkWwyHL6uzO+eZw1XPZusa+/xlH8GBFkCs+KwkhUSAzDhjNJniag2dMTOvswgF77cTfHLgJLx11O54/4if4/vxfYFJbH+bs/Q54g2m5qTcb9jkQhL9jwRbb4BPjsrY5Ftvi+CJ+cdiPYXTmIsXYUTEmLd9i3zRLLtxagcHULat0uleDPmh5N7AiKwXCE/ZlHB5rtNjfzbTgzmFarue6HeE8NcDcKQjiAJQ71UDsu4L1W0xjBgTvC2aLcKvtWtG6p9w21JF7eRBJPusXLFiA2bNn4/rrrw+s795778X8+fPx6U9/GpMmTcLcuXPx4x//WJpX0zTcd999eOaZZ3DOOefANE28+uqrOOaYY3DKKafgkksuqeiY8/k8Nm3ahCVLlni2L1myBE888QQAy0Kfy+UAAG+99Ra2bt2K/fbbL3IddRtwjSAIgqhPDDAYVUaEqXZ/YgzhtybWeddwXGGrwb9slKd8oPpzIDmP0iW8/AKAlTIbGTsCPCutp83faQAzGYyJBQwVUjCKGnhfCvqghlSRudZjwBI0POWLIi+rK6JngCcL8/0F3DXARbHMDAaYDOmWPIqmhp0Drfj2h59z9zmpaQg/a+7GO/3taOgYQm6gGaxgr9/sru3N3ajYblt9os7fVs+2IpDencJp91+EdLdecsMPYKwI66DBCOV+4rrZ9j6awTziWlYu4/YuokB2vtuDM4UOA2y3Dg3MnqNtzf3XcpZ1mjMgZXsxe4IjcngHkxjK15SHpG3OPHFmucI7ruqee99tH6AS48PdN5J81m/cuBFtbeEBk//yl79g3bp1WLlyJS677DL88Y9/xFe/+lVks1mcc845ZfmnTp2Khx9+GEcddRTOOussPPnkkzj22GNx4403VtzeXbt2wTAMdHZ2erZ3dna6ruzPP/88LrjgAmiaBsYYfvCDH2D8+PBA3yIkvgmCIAiCqA/qXHgDtrATXFIrKkOcyyqbD2pTkXVc9RLvzFUWRKQTxMpdM5nDmquaY9AHGXjKWUaJQc8BfHcaQzs7oAvzbs00wAp2uma5C2sFZm03HWXE3Pyyc+Ics2y7p/2SdPc8Om7dQjmFvgz4OOAjHe+V1btkwnP4j74jMNSXgeZcEwCMWdZX3VnvXBBjnvWcfe7noqBy8qb6GfShlGUZ9ZUnOw9h66DXO+71cCPPl/qx25/F43f6oF7qk1yz12YvMs995gkQKCD2GbcOv1eFyZB9L+WxZGt5BqZzFFo50r32XHDfwJVzPZ373jOlQGi/dPDFFH4vjJLlWyuU6pGuWjAKrOK1wDRNzJ8/H6tXrwYAzJ07F8899xzWrVsnFd8AMH36dNx+++04+uijsd9+++Hmm28OXC0rDv4yOOfutsMPPxxbtmypuGzy+yMIgiBiYfIkArGM9FEQowbBQiqdJznMaP75yxUgihHp3NRqCBFunvncKIluxxVayzPX8pjp1qDZgaf0HEO6TwMzAKPBCkzG7KBsZsaax6wPWa67zLACtqV7NehDdrRpex1tdy1uv7gJOH7/OXKPS2JtdIQbK1rXR3x1zrYPIaMbeKFrUtk5+clbn0BbdggNLXnLRZhx12LquCHDBKAJbQkQgP7Ads75ZoYdaVt0YR6jOEt6GQ3A0NQijAbuEeTWP959uA53sILrVrAyPWdZp1137gj3XFlfEq+DWQqI5hncEEdvRE8LR2xDyCt4PLh9U5i2UTZQ5KQLsQ/0IVYKxsbgLlNWUWT0GjPcz/opU6Zg9uzZnm2zZs3yBDrzs2PHDnzxi1/EsmXLMDAwgK997WuVHi4AYOLEidB1vSxg286dO8us4ZVC4psgCIKIRbVzwJwPQcTCJ9rcbaOUkXIvLhOy8IobyzprCx97jWMHfciyhGt55i5Hpg8xpHuZG6yN2YLGER1u9GnGSxGkK2mrH9ESbQs0cT1my5rKAZ0jt7sR3YMNmNA4gOOfX+YWcc4bRwEA+gsZDO1utH2cUfJsYHCXMgucq+5skggv1T5jmUKbiSUf2wKjkZfUhkxUstI14ykOLW/1MSd/2YCFbwDJ810yOOcKconHhSXQOXjGyiiKculAiTAY5Apu4diYv03C/85AAmDNB7e8Qri7X1lAP3/dI8BwP+uPOOIIvPjii55tL730EmbMmCHNv2vXLhx77LGYNWsW/uu//gsPP/wwfvGLX+Diiy+u+JgzmQzmzZuH9evXe7avX78ehx9+eMXlitSv2znTrI+MbFa5u9nRHJpebM0oy9Cb0qHphiIdALZ/IrytQ7MG1e1IhQ/39e1sVJbRsDM8wofpj8Ioodgc3o7x0/Yoy1g4+Y3Q9HcGw+eDAMCzO8ujHooUJ6nLSO3pDc+gh/9YaDkjNB0AMr3h5zzVr5j4BYD1KfoHj/DLrBh2ZNt2KIto3/F+aHpHWn0v8Obwftr/EfV8mf7J4de2dUB9PsY9tyc0nb3xrrqMN1tC083W8N8fAGD58uUxRHiPoo8CYOngn3DGTSC8CoKoLwIsimOVIDdrWZ5a1AtYYgdGSegA9lJMjmCwt5n2Mk/6kCWq073W/G430rSTL2W51Ipu2dbayqV5ruB2PoPJBRN8rtdOUdyb7pRVcp9nYODgJgDbkqoNWlGxuc7Q09uE3r5GZLIFHLXlNBicYcf7bdaYDuNgBXvt5qJWspiapXrKPApC2leNaBrtc76da5fp0vDww4ciPWQN5JRFqxe+mynLKs0KQl8MO59hbtmCwA8U3I7Yt+fya/aycp62OX9Ft3LJtfes/S5rk3isYhmsdK+5ruhOfc6g1Qfo9xAAvva1r+Hwww/H6tWr8ZnPfAZ//OMfcdNNN+Gmm24qy2uaJk488UTMmDEDd911F1KpFGbNmoWHHnoIixcvxt577y21gvf19eGVV15xv7/22mvYvHkzxo8fj+nTpwMAVq5cibPPPhvz58/HwoULcdNNN+HNN9/El770pUSOs37FN0EQBFGXmGAwq1RJ1e5PjEE+QF1CFN5hAdwqfgEX3GPd7069tmXXNUjZrtpuNjGQlC0GtALABZHOTGvZpxS3rHjO8l66LWDEAFhORGommefrzHkFvEI37JClgeI4AK20wXKLL7WFM4C90wAOYHCShj26CcPQYOZ1aLvT4BxgOkpB1gAUGznSfcIcYL8g9A8AiG2pAk9/GKVzf5lpBdqzludyNpb/dUSnVkTgoIYUf16xv4p/4ftfcg2dtb1NnUPj3jnmkaa5sIA0f5/wWfth2vcEStHZnUEINyDiSFu+h/lZv2DBAtxzzz249NJLccUVV2DmzJlYu3YtPve5z5Xl1TQNa9aswSc/+UlkMiWD6kEHHYSHHnoIEyZMkNbx9NNPY/Hixe73lStXAgDOPfdc3HrrrQCAM888E7t378YVV1yBd999F3PmzMF9990XaIGPC4lvgiAIIhYGZzCqHJKvdn9ijOO3FsXpLqPAgl5zq5bMmixGa7bbwJzAT/CmyYSDOHeVa5a7ubN8krgdgnj0i1LnmLV8+cFzHd5lzyTHJAp1LggtK0CXnU+Yx54asCzu1lrRtuV+exYDO7Ng3DKQa3nAaLTWa9aHbBGkl8pw5qlreWaJ8w/AvO1q8LhuBzlM2uLS9ZxgwjWthKB+6/yVCVlhm+OdIRXuQfWJg0B+q35YG0PaqxXgRu1376mQwblaMxLP+pNPPhknn3xypLzHH3+8dPuhhx4auM+iRYvAI3iNXnjhhbjwwgsjtSMuNOmOIAiCID4gFItF/NM//RNmzpyJxsZG7LfffrjiiitgmqW3ZM45Vq1ahalTp6KxsRGLFi3Cc8895yknl8vhoosuwsSJE9Hc3IxTTjkFb731VmWNCrMmif9HfQGtc+HtIBWoCrhtnY1eCbwWR/F/7vtI2uXO2xYDXtn5TR2lyN/OPs4ccb+7r72PMwfcE5wsilgR2uY5X7bw5hqHnreslhxWdPHUoNVurQhkeqz1oU0dKLYaVtC8ImBkOYysZXlM9Wnu2tGpIYbMHs1th8clWKg7sSB5Qcc3VgS+eK4cq68TTM0n0qs+pzKhLQpk8To6wc40eIMByn5zxHvF730Rx2rvb65v0MsJGFh2zogxA4lvgiAIIhYUcG308r3vfQ833ngjrrvuOjz//PO46qqrcPXVV+Paa69181x11VW45pprcN1112Hjxo2YPHkyjj/+ePT2luIQrFixAvfccw/uvPNOPPbYY+jr68PJJ58Mw1DHwyhD9WKpskKNUipZQiw30URuvKk+F4KA4LplFRbX+IYjqk35C74YvZn7hQiDFd08Z301M750Eb+br7hNEOOukNHs6OmOqPbXHSButCIT/rfdnQ17njm3oqxrBYbUAIPer9tRtYHUoBUszgnw5Yo+x8pv2gMe9jnzWznL5jFXIRrH2hzfMq8H5yc/JHyQf8mwiohoeWbCIBEX84gDR7Lr4Wxz8kkGsCrBf76cwYlYg20JQ8/62kBu5wRBEEQsTFhLiFRbBjH8PPnkkzj11FNx0kknAQD23Xdf/PznP8fTTz8NwLJ6r127FpdffjlOP/10AMBtt92Gzs5O3HHHHbjgggvQ3d2Nm2++GT/5yU9w3HHHAQB++tOfYtq0aXjooYdwwgknSOvO5XLI5XLu956enmiNrlFXcQSYsw7xcCMK3Kj1p7u1SPOBPUIbXpfxoPyydOYXFY6Fuwgw5pura6czp/4gASOxGDpzzi13ZObdTxTnzoCC4xKuW2uPO9tcC7U9oOC4xRsZQC9a1zrdZy2nxnUrYBwzrAEEnrKDrgmxUJnJ3Dm4TlscMe4cu3vu/C7IMfuU9CdVOFfiXPfRFJTNaLBc+x13/aiW3EiPmJB7QJqdl84jh3XdtIIdPLAomZ8uWLk963H7vC/itiFOOivaA2hpazm/4Xxy0rO+NtBwBEEQBEF8QDjyyCPxP//zP3jppZcAAH/605/w2GOP4a/+6q8AWJFft2/fjiVLlrj7ZLNZHH300XjiiScAAJs2bUKhUPDkmTp1KubMmePmkbFmzRq0t7e7n2nTptXiEKPDBMvrCBAl2rl3B+vlW7PHLwItYqK7qm1BYzIrXYCVUfmubQtfrQCvRVPMEuQ6HWQpdL7bazGXrUcuCCA3aBy8x8cEa7V/yajUACu50xetOd7FZu6KZq1ozfdmRe/xM9OKzG6muHtc/oBo1rxwybFUQFlfED0QNKDQzL0eAaMALS8Z2IlwfiK5n0cciChbh9snns2MrxDf10IzR74jwOMkAeFd5vXgvz9N+zyOokEXIhiyfBMEQRCx4AlEQOU0Gj4ifPOb30R3dzcOPPBA6LoOwzBw5ZVX4rOf/SwAYPv27QCAzs5Oz36dnZ1444033DyZTAbjxo0ry+PsL+PSSy91I8sCluU7kgCv0ZzHMEvwcFDVizQXrMWeQiWW9AgCRty/zNodUDdP2xbwgJkGTBTmYWJc1h7BYg9bbHPffpphWck96zgLf+E7D6Ibr5aHFQ2dldrvCHzRim2mOfJTrTUbM++koefs5cggtJGX2hd0LqIQJLwdzAyQn1SE/mZ6xPtuVEL7Uphrt68MN3p+jN8BWX4nAr/f+0IbYqHW7NQgA88xN38lRLrfnekNfvjwWrxL1dKzvhbUr/jmzmQMCRHmlLFCeB6mWPsYAMxM+ESLwUnqtcIH9w5vx/TOLmUZKt7oVbfDzIQ7ORjqpdOlo9si/YPqQlTreO8caFWWoQ8kcCOPC2+HKhJieke3sorUrvATplrnGQD4UC48gxZhMpCRD68jSjv6+tX1KGCKtdObd6vvhZaGhtB0ngs/VgAwFa6uPMLvi6Y4lrD1t6PCMur7mrUGrzeumTngjaqbIcXkCbiijSbTzRjirrvuwk9/+lPccccd+OhHP4rNmzdjxYoVmDp1Ks4991w3H2Pe68M5L9vmR5Unm80im43wsPETo6uMZGTgRBEFqN9qF7SL6EIf1T1ZIfiCYByAExjKk4Ay8RzrVhdEj/+4uW6pKWbAe26C2uwL4uXiuI47kcud+lD633XxZsAnZ70Ek2vY+M4sr0XSb6kU3MLjEjgFQShPzwFNb6RH1FujIvznK6jPhfQTf3BCz1r14hQLXz7Zvv7rxuyBHDGfZyDGvubSWQEhAwOxrlEl9+owQM/62hDL7XzdunU4+OCD0dbWhra2NixcuBD333+/mx4lQipBEARBECPDN77xDfzjP/4j/uZv/gYHHXQQzj77bHzta1/DmjVrAACTJ08GgDIL9s6dO11r+OTJk5HP59HV1RWYJ1EScOsclfiERlmUcAfRSuzbt1r8dYru3EaWl5Yvc9KE9CBRFXgczn5ifmZZnwFYS0E5O0nm3pYZCBwx7GuPmbFc5rUcUGziCBOFrMjw5IaP4n8fneWZE8w43KBsorYwM5aoL4uMLkE8B+5a5AHXzY08b2DUWL1l5Ns4zKDxN5XHhYDYh2Si2j+lwx3AEQU14AYjZEUGM83dqRz+GAn++mT3hLRNKiIec9JR9YmRJZb43mefffDd734XTz/9NJ5++mkcc8wxOPXUU12BHSVCKkEQBDG6oQioo5eBgQFomvfc67ruLjU2c+ZMTJ48GevXr3fT8/k8NmzYgMMPPxwAMG/ePKTTaU+ed999F3/+85/dPBVDL5hlKC3fzst/gEU0iZd2Wd3O0l7KOnzixN82qWBhJTGtGdZcbFaw1oUuCx7nH3xwLJWm/JxYwb8YNINBz/ncjZ197Y+eA9L9DOk+Bi1vtYkJ5YPba0TbS5e5LuzOvOwQAR57zn/MvPWEc87S/QxM5WxX4TGKLv+OJdqN1q9JLNRObAQnZoA9uDIsj6YQ0S0T8wC8QQyHCXrW14ZYvpHLli3zfL/yyiuxbt06PPXUU5g9e7YyQipBEAQx+iFXtNHLsmXLcOWVV2L69On46Ec/imeeeQbXXHMN/u7v/g4AwBjDihUrsHr1auy///7Yf//9sXr1ajQ1NeGss84CALS3t+P888/H17/+dUyYMAHjx4/HxRdfjIMOOsiNfl4xUt/O6oqsRypxj48z59Uv2IMEvL8NQeX73XjFSPFR26LCI1Ydg7SzFJrpEx8yIeK3mgfVY89VBwCegsf1vDyzT9QpjpfZkdH9Qdlkwe08gd1C6h/tiP1WGqdARsRrKdYh1iUKbK5bXhp6ngFi/U4dtjWcaygtMedvThLTWaocZBmJgRd61teGiicmGoaBu+++G/39/Vi4cKEyQmqQ+K546RGCIAhi1LNgwQLouo7ly5dj+fLlI92cMc+1116Lf/7nf8aFF16InTt3YurUqbjgggvwrW99y81zySWXYHBwEBdeeCG6urpw2GGH4cEHH0Rraykmx/e//32kUil85jOfweDgII499ljceuut0PUKFqUdAwIjLmVRsyMQRRj7v8vSguaoiu0Je192Im9rdogNroWI0qiC2HELFsvyuYN7zhmHx+UdgOXL6bdiS2AFuHO+tXxAPkGYhZUlPxiUBLcjxIUy/POVPeJ0DN8LoYNHQYMpYnol9TArsv3Uj72Lt7ZMLi3V5+uXRgOH5veC8LWPQzFI4o8BILZ9DF9XIj6xxfeWLVuwcOFCDA0NoaWlBffccw9mz57tLi8SFiFVxpo1a/Dtb387bjMIgiCIEcJMIAKqs//GjRvR1hYeAJFIjtbWVqxduxZr164NzMMYw6pVq7Bq1arAPA0NDbj22mtx7bXXVt8oWeAqcZMY/GiEqIU4UpYlCyoVdV9hvyChLSs3SJDLRKIb4E0WVC2k7Z48tjBxLNCMoySihestDbDFfX/Fch1xDnm/kc6d9oukKq61f74wYB9jVMuvrD1jDK5Zc+SZgdJa6lHFrQK3r3JAyzG8+UIn0gMMPMVRzAB63prCwJldvzCFQlqebKm0sPaIxxLlGtbptU7yWU+UiO2If8ABB2Dz5s146qmn8OUvfxnnnnsutm7d6qbHjZB66aWXoru72/1s27YtbpMIgiCIYcRxRav2QxBlSLqF43Y8ktQi4JFyveYAC3ZQO0RBLbreVnurycoxUwBsV92y9cZ97fBs931cV3PffO1Aoh4LC75mzLREn9HA1UHqqv2Z4sLHritoXfQyl+k6FGOJYF/zYitHbloe+fGmteKO6nhVfSNgH2YA2fetTpqfYKLxwD3I7WXAyHJ3EKnYyN3rEul+kQ02VTpw47jG+xZzEe87U6/+Pq4EetbXhtjiO5PJ4MMf/jDmz5+PNWvW4JBDDsEPfvCDSBFSZWSzWTd6uvMhCIIgCIIIokzYjUJkwcBE92u/SFMNAMSZE14tWsGy5PrnRCvxzYN25+oKEahDRVaYqLH380Sz1uB1H7fr1gqAnmOlcxx03pL0dAgJTidGO5dF7x7tMJ8w5TpQbDLx2on/jiMO2+pGtI9ESP+Q9X8rmBrA00Dnfrvw7Md/jlkHvgUzA7e/pAaY63lR0SBbFR4TRgOHmbKC+3nabd/PZhoYmmLAzMoHbojRR9WXkXOOXC4XKUIqQRAEMfqh0XBiRPBZf8Nekkeye0Wt22+hBiTHVIEQGJZ5w0w+eKAUjEwiILjvE6cZ3PvXv91Th/A/11GKXO5PrzUBAy6Rdh2Jfl2Lc2MC+qCGuRv/Bn/404GW23lcJP0l0EOEWXP9t785Hue8cRSef2VvawDJsXbby8NJpzeo2hD2PQL6ELOEd8BvmpnmaN2nB0bD8LtC0LO+NsSa833ZZZdh6dKlmDZtGnp7e3HnnXfikUcewQMPPBApQmocWCYNxjLyxAgBXbSegdD0dEE9VMvT4fXouYD2iXl6w8vY0d0amg4AxUJ4GQ3vpJVltLwRftMWGyvxs/GS36k+lj/t1RyanhpQt2PCn8OPRRtQrWMBGB1N4WUMhZfBdnYp6+C9feEZMur+w8a1h9eRVt/CrCe8HTyvPl/Qwq8LS0X4KeHh14339SuLMFXn1IhwXyvysJT6fmLp8DxmU9BCpmImRR2m+kFrjAu+nwwjAwSH26gKioBKjAgx53yOFKq6XVdre94ot92upYG3RBfkCMc/bMfNLddzzW/5FtrpHo8wB9sdNHHaGXE6QZhVv0yAi+dVZmUW5l5zXfhfK5/ekLQ3QWBAO+ccide/XtzOa/BTzUwg3csw8OdxyBYZ9CFUPu855N5g3NbomuXpkHkvhScen41MjkEfYvY63xzMZDAz3JoHDu91Ut5TEdssliOWyxFehz7EkP+/cUgZw3h/29CzvjbEEt87duzA2WefjXfffRft7e04+OCD8cADD+D4448HEC1CKkEQBEEQxFjFebH2vGD7rNsccAWimRGibqvcqkWBInmn5X7hKyEpQanlwy3f7nmwt7vCVhh4iErZoERgRqEpJqSCjhkld3TPMmIJxRXwB6iTne+yfiGz2MraHkV8xTy3w4HoUu9eSwNI9YkdppoK7L8BMSNgX2d9kEEfZG5eK/CeFXhNKzL5dUiAOCsS+PMxA+BiTARi1BNLfN98882h6VEipBIEQRCjGxoNJ2qGTDjUoZgIQxRPsndlLrhe8xRQaOHIvs+Cj1MU3f65pTKxq5gPn9itp8EVNbK2MvjEpTj32l5T2d0WUfiGWiLF8xHiTm6m4M4LN1PW/O9KCBrEkAWoC8obZAmPZHENbFiF+9UC+5rIxKbs/FQ7MCTzXiir0+l7HG5kfbdKlfU9ZGCklrj3tbMSQICLetLQs742VLzON0EQBPHBhKP65UNoAJ8Y88hcnoV5xlwHYALZrpIlrkxAii7qfiq4BZOyejvLjDlixh90TXQx99Tnt94jWDDFaxAinw8nWJxl7VTnl00HiHIOxYGQKPEJ/AKVM3jWBx+VhJynIGuw3z07Fv5BF9mAhyEIfcGiLF5n5eBHhGsi9pWqBlME8uM4tByQ7hseQUvP+tpAcfMIgiAIgqgPavBOOeKGF4lVE8wSgGWCW2b1lwkJx2VdMKGI4iUoEFlS58IR28yUCG/Rwi22x/n4Ipv71772i1DZcUkR61AR03Io1h1VSEUN3uU5Ll/7R7zvjjBxo497ouYDnvPp8UjwLfMnWt6ZfT+WeZBUoCLde121rGBEtLztHk+MasjyTRAEQcSCXNGIYaUaN1RWsjDLrKuJWF2j4LzM2xbhwakG9PE5FHM6Mu9kkOpn8mBrMjdzwXJuZjiYweTrWSdk5ZbhWvAD5ixLDfUc7rrgrCi3KPvzy/6XEtMN2GmHHmL5DqpTtp1rcN2Zw/pT6Nz1AEvwWCWONTixvuz0E1+AQ8ed2xXgZnX1iQNGHBVcS4knB+O2xXuYXM4BetbXChLfBEEQRCzogUyMFpxgS6HzhBNEOm9VeJFmJlBs5mic0ofnFv4Mrxb6cNxvVyLVnyq113MAvnYKf7WiYAULcLuO4yYdB2baItpvafTVWwb3Wsr958pjfYxDzPxaEeAGqpq765ljnwaKHxkAe73RFUgOznrSoXPL/W0YA8LbGWzimty9v1IBGbtPOzEIBIu2WJYjvKXRyGO2UTWIFJuky4sJPetrA4lvgiAIgiBGJVGiYFeaViuYCeRz1nKFv+49GMxgwS/5qvaNoEgLEt6AsN0/eGC74YrW4VgW7tAGhbTH3zzHNb5Cr4eyQRYTKPZkkPWJTKORI7eXAS2nIbNHg5aTFSb8P8yBvGqJO/Al9JNq5nOHRQyPVY5kakdZ2UKaLCFJcR7IGOkHRDl1K77Z5ElgunytXGOieukypljHW9/dqy4jlw9ND1+x2mJCS3toev9u9bFkZT/WAuNeUofqbHyzOzSdpyJM/1c9pCKUUWwNX/9Yi7D+ut49GJquWp/dKiT8V5/lwqOw8KEhZRW8GF4Ga1H3IKM9PI/ZoL6FU4r1tdmQooMBQD78XmC6+pxz1TrfEdbohmLtax5hbWwlXP02xguKdeAH1OdUuY53hPXXw37nWJTzWSE0Gk4MKwFWXa4BpmN9NaPPw62l4Pa4m4rzuB2rm24td1R8pwEz7/8CkNfQ8J4ud3+PI7xH4HYKdOcPaLcT4R1mgu7+Tt+IcfyixV5c8zt21cLAj1YEGrelvIKMAWYa+M4xv8TDXbPw2PqDoJUFAPAX6vuetBgPuJcip8ckTKAmdR/Gvaf9buCxDte5v+PsM4pJ8lm/YMEC6LqO5cuXY/ny5Uk0b9RSt+KbIAiCIAgi6E2XM2Co00CmS0dqIGJRvCQCHfFXa0FuVVayBAJAdrcG7M6Uta1iggYoanhskUSrII49AcuqEd5B86UjagTX7Z1VLrzLLKXOsmm+NrEi8E+PnA6W05ANmJsfhLMWeew5vmHnQnWORqGqHOtz48cKGzduRFtb20g3oy4g8U0QBEHEgizfRC2IKxQZBxp26JGEnCxq8bB1QZ+F2p0nrKMsUnhZ5PMqhEXQusmJLTfmBF2LaKHneum7azWX7R9FIHLhr38+vJgnoN0umleMJ+3qmxpg0N5JW1Hhiz53ZcVxVhys6wPGsAyefUChZ31tIPFNEARBxIJzBl7lA7Xa/QmCmYAmmUsqzwxX9BWbOWACqUFmCS9WI5EjEXPuQAGzg37JIpzbJLHOs+w2SypqtLg8U6RdTO+gQ6BwF8+FSlCzkPwB+zHTcjfnurV0U1m9ztcKBoPEfZ1tetAspAiDFhX1yShu5Qm7l48mxpxQr+Hx0LO+NtA63wRBEARBjDiVvBRHiYzNBbFRbOKY+vF30HLobhgNvCbWTnd9YGFgICxYlJkGjKzcQm39U1kbAHtefFqwOieFc2wqrwPJfGzmt3gHHZ9sPrTEg0H6PWwuuD0AkBtveK3gCRLYL0Wr90hoEub7O8rxrylfj9Rce9b58RPlkOWbIAiCiIUJBrPKJ361+xNERTBg0aSXsSPfhv9hE0qbExTg0nWgxe7OSlZVowHI7VUENCC7U0dqQDR9l/JHHSQQLa6cWdG2s3P2YOiFDqR6WbJrmkc5Z35BrFlrk+uDkuME4g+GhOUNSrMFcGaPVts13kUrsyyNqJpKIo5XywfJzZ2e9bWBxDdBEAQRC5oHRow6bBGk5Rh+dt/RAAdSOeaZ/13NC3XU/d15vPY+XOP4+yM3YJ/Mblz5y097ynHnVAMVCwytyNC7swXZ/DAJBue2lrmCO8HDiixQlJope03oKG31z/321yf7bqMVABRYcD3VeER8gF26PwjEvY9Gs1CnZ31tIPFNEARBEMSIYepA0l7RIo7gBaz5t1rBehkMWmu60jqUbZC4lWsGw78/ughc48gWS9GwObPmpuuDDFoFqwa6FvAC0LgtbS0VWmsR4H/H9gvYCO7WWtAKi/7gaiKy4GtimqQs9/wE5RGL8M/Ll2YK+J7QOY/UBiISHyTLNVGfkPgmCIIgYkFBWIgkqanrbx3U59YrCeilD1kR24GS8HRuDTNjBwSLIb79It9ZAz1+YxFfOCrc5J1558yIb+F2I8PLxHwlbutOAL4gISaZox81b82Iemxkea85IzYYMszXlp71taFuxXdxYiuQapCmDUyVbxfRc+F3RPNAPjQdAPD+ntBk9pa6jAk94YuPjm9SHwvyQUPBNl3dyiL44JAiQ4RfED3cNqE1NymLyHRlwjMYEd4S0qpuq6gDABsICj9q090XmmyqzicAmOHnlLHqf5C4ri7DbGsMTdfMDmUZbE9PeIaierFUls6Gpzeo7wU+pDjvg4PqMhQvstxQv+maveH9Q1Pds4jwDqWpr21YrCDNVPTxKiBXNCJJkn6Blb0YixblKPXWdH1sx/XcLl/Ll6eDAZkuVtGc1kSWEqvm2AP29Uc7j1wHD8nvtzCrynRc303hGvtd5QXMFMBTAExrcMTTL2rZP2TB91T1JRHIzS/u6lzI10IER7n3q73HKv59kdVZwwEAetbXBop2ThAEQRBEXVHp+5qpIzSCtROFOsrLdVJtUhLwQs1sV3GnLWLb/R9nH+cT5fhq9QnCERxla5tHISmBwb39w/1fJjIZYDRwtMzfhdwE0xo0qIHQkXlEiNc8ekFJNKYGZdYZSV3DunFdH4PXaKxD4psgCIKIheOKVu2HIBwCl9mKC/MFKlPUE6voWr1sh4jYqCLMky5YA4MEsbscWo3xeB/Yjm08PQKu/0z4QLCYinPhJSKYa8AB43eCNxjlFuEkm1cvQm40UmU/Fu+DKPdE3PwyRsv1pmd9bahbt3OCIAiiPuEJuKLRA5kQSeplVFPMgKmXl17RbTWoTRW31WfFDbvVwtxf47j0BtUh216R5bsSfHWXWZT91m5f1HRmAqlBhqcfmoUGg4GpZ1eFtoWz8kGHsjn6wvSIEeurI+BqXtXxhngOhNUTND0lTl8ecSqYlhKreHrW1wSyfBMEQRAEUR/UiTiuNTIRUHFZmtzVXhQXKndw8SNrU5ClPG7buQYY2YgXOaF56+658YutsABm9natAOiDDHou4BxGbCNXzMX2lz2ig0R+C/8wtCXqNI8kdJzK68MR4DILd9g9K7tnhgXStqMOsnwTBEEQseBApBiNqjIIoowPyItkRXN6g/CXIREKgZZAx0VfSJdaqwVBIpujHAnb8qsPsXDh6xYcsdyAusT/PVZnheB2d5NZyf37Rh1HML1lBtaTNKIVW2XR9h9jtcHbKiSoj/kHkTziWIMn1oG/jKA+HYbMCu4OTmn26TKDRfqwDKDU+PrQs742kPgmCIIgYmGCgVX51Dc/KCqLqI5hdIEdUVffKogSednv2uyZ8wxbhDviVCGMo4htqSXTrofravfrOEhFlug+Xgxuk5QgMTwK+0ase8e57iP40+zcgzJB60nz91GJK3lZf/ILacSc8iGZHlDLOAAqhuP3ip71tYHczgmCIAiCqE+G8b1NtJpxrfZuo0mWzwKESFTXXdn+qn3CkLmxu+t8F0v/V1p+WF3exJhWyJGcZ13rfYKEYh0NMjii2ePe7bdwA17rPLx54O8LvgEZzqxVEWQxAcJw+5kG5Ds4cuO4tRSdwo29FjjtIEYndWv51gwTGuThMDVD/cvAVHkUazADAFf5WkRY65kPKdbajeLPoVgPmjWEr58MANq4jqrbwduaQ9P791PUAaDQFP5r0fC+OqJJujv8nGqD6jWW2VD4Gu08p7huEfqPap1mHmFtbC0XfixGm3pN88HJ4euv6x3q/tPwtuKnIsL5GJrREZpuZNVPksbt4et4a395W1mG2RO+RneUdb55IfzaGYr0KGiZtDoTCz5nnIf38WpIIoIpBWEh6hFHJJppQM+hpkKkJlYr2W3FrOMBt+YwS5FY8rhmBUerek66YGXnGsBT5WubV43oEh/kIl7PRD3HomVatU+YFVsmTuO0o4aIbvhcdh19fZTr1oCOu9nvau/b32iwlpDLdjHpsm5Si7JQZ76DY8Kc9zCxqR/PPzMDDTu1Up5h6nMVL9kXE3rW14a6Fd8EQRBEfWJyBlblA7XaCKoEURMYUGjhKIw30PRGynJbHk0izka8vYwskNs7DzaoI7tLDxe+ogu3Bo8o9yzLVQFmyiqHaxxmmsnbIXEb97dLbB/jdjsd4eOb1+13SR+N19LDSPxsjrAruh+P27kgQt1BHjejbGdAH7LjDsT1iLALNtMcTx36nwCA/f58QWnKxmjvWxLoWV8bSHwTBEEQBDEqqLmA4kC6lyHVnxq+oEk1QJwby1Mcf//xP+CJ9/fDKxtmRi5DK9j7C/PBua6wuIVY/7QCYGaAYiOQ2ROwvyi6JVZLJ83fD4KWAZNZNkec4RKzYXXEaUM9aCefdd5MWX1yaIoB3lREakcGmR4GM2X1Mxbi/RC2xnzg74tQv5Zj+ND/fB562oA2qEWOlUAQDiS+CYIgiFhwHm3GjKoMgoiKKyQZALN2QorZ1lNWwzpqii06xMBjrMhw80OLoRUYUnFdVX2BrAJFm3iu/Ok+67me9+Zx5q6651smun0BuMS5wUFiqpogbjWlHtpUiZv7MKJaa5sZwODeRSyZvwU/3PtRfOyp81Dc2hY9kj7K55c72+QV28UyINPNYOQbwBmQHWCePGI7R+Xvhw961tcGEt8EQRBELGgeGDHccN1ynwbj0HIMeqF2L7j1/tIcetyOOBGEpz4EaEXN46IbB2bAs1Y2hzVvmxUFAeNrm2fpJ8FSbaY5ik0c+oCwky3K3eOSCG1AmN9roCR0Qq5VRT8xZL0sZ5gFuGoNbtMZrGky8KN9ngSQxocm7sbz2TboQ4h8/fxR1MX/g9rg5NMHmed7UPn1/luigp71tYFi5REEQRAjxoIFCzB79mxcf/31I90Uoo7hOtA0dzc+fNTr4HqdWjSHAeVxB7zss2J1AZqYKcxrdebcwhbZmvXXndMtCFijwYoI7QhyrcCQ7mXWPnZeM8Nh+mKHutGcWUl0c807D71m62ITJYRrXQ94lszbk8bCP52Br7/7MWx9awpS/Va/kgaQUxyDbGmz8kyQ972g6REo9XGVJZ/4YEGWb4IgCCIWSY6Gb9y4EW1tbUk0ixjLcGDP6x3oyrSj8QMskIIEZ9jyYYkvacYB2PPBXRGuW1Ztx+3XCYbGisxtg5kGuG6JcScvMwBmMK+7PAegWXm0fCmNGUKdIfN2qztAeFzt69py6bdIR7BQRzqmEQ6wFtZvnWkhPAU07NSwa2gS7mmaiOz7OrQCPGvIcyZMSYhwHSPfJ4rBnyDLuezcJ9G/zBoqObJ81wYS3wRBEEQsKAIqMdxoBaBhhw4wQKt+Jb9RRWwR6BNPohhIeh60E4zNFTya4GruZNKAYqMlurUioOcYCu2mZQnPW9ZwZ18I+7jt1IR6jPCAWUlSl8JbvLb+6xjhukqPyS+2mWTbSCMG4gPcAHuZHgbep7teHWLgvbjXz3+flDVBcT6c/cMGwmpBLe8HetbXBhLfBEEQBEGMGFHezRgH9KA1qscwzrrjQdG8HcJEtX9Oa8VIBD0z4ZkGYGa5tUb6EMBMBiPLLZFdtLbxlOVmrg8x6EMMRgNHMcOtCNWG1dBiI5CyA1mZaWtfZghWd7stHstmBCJbfeuZWugYmfU8pkV9OBGji3PhOzMhHzgImMcvuydk95Eb2C/gHgu6t6IMdCXhXTFcg1FEcsQS32vWrMF//dd/4YUXXkBjYyMOP/xwfO9738MBBxzg5jnvvPNw2223efY77LDD8NRTT8VqmL5jD3QtK01rLkSYuFQM742suzdCIxRT4rOZ8HQAMMLbwfNhC25asIyingnjlGUUJrYo86gYmNIQmv7+gbqyjGJz+K9M4075NRdpeScdmp59X/2Glk2Ht1VLh98aWm+fsg7kFe0oqs03rH8wPMNezcoyCi3h/djIqp+q6b7G0PTcOPV12/3R8OtmhFcBAGh+K7wfT8x3KsvQ3gpP50M5ZRlccW25EeE3iit+GyL0Dz4wEJhm8topFYqASiQJjxh9JswqVa9U22bHzTapdjhlVirCPQGpHAFs2PrGsMQ0TNvFnHFLaOcYTB0wWk3wJgPp5gIKfRnw3Sm3PUYjBytalnBH6LCC49NufWTiJk6bxzxJiGTZ/hEGdZKkrG+K4tk317qs/giB+Pz1qO4HT2R9odyw45dFUg+qv56hZ31tiBVwbcOGDVi+fDmeeuoprF+/HsViEUuWLEF/f78n34knnoh3333X/dx3332JNpogCIIYOawHMqvyM9JHQdQLWsRAYKNy3e0EXrBjW7YkIlX8VNUW//4+C6OeZ9a0AGYbUE2g0GHAmJwH2gvQGgxM6OgDS5swJudhTM3BTHN3bjg0QMshdF6texy1sMiOAkEUSJS2xxCnocWw6INmcRH7qbOUnLT/+q3bQYQIZNX/QduCLOD+tgc2icn/rzfoWV8bYlm+H3jgAc/3W265BZMmTcKmTZtw1FFHuduz2SwmT56cTAsJgiAIgvjAMhot3g7OElrDikSU+q1wsazfPqEgrsctBreyAq1xgAOmDvAUt/ZNm9h/2g68vms8rp33cyxpKuD8N4/EY2/sh86OXry1ZxI0WC7rWrfmRkZnpn0ooiu0GExLbF+EvhGp/yTQxzxu/uKSa0lQ7YCDat+I5TOOqqLnV4N7bsWNknOssmxX4/0h/l/JtVXNLyfGNlXN+e7u7gYAjB8/3rP9kUcewaRJk9DR0YGjjz4aV155JSZNmiQtI5fLIZcruXn29PRU0ySCIAiixlAEVGI4qfXLaa1fgof95TrCPNOKi5bNiXUCognu6GAczASM9iIaO4awa6AJL37ydnefm6c/hnO4hr90T4Q2IQ9zVxaswNz9XYGV4kCRlZY5E9pRaoC63ZGvcUQhH7U+2feq+kMUC2+U6xuUJ0bfqLU7f1DQM79l2d8OErXJQc/62lCx0wjnHCtXrsSRRx6JOXPmuNuXLl2Kn/3sZ3j44Yfxb//2b9i4cSOOOeYYj8AWWbNmDdrb293PtGnTKm0SQRAEMQzwhD4EMdKUlsCqTJSaKcvKW1cE3FxBkZhDCRKRYlAuJ9iazr3rLHOADVgnp2CUn6Qbpz2E7sEGmAWtFMHeLtdM83Ih6EwB9x9HTMFYS7hwXswMkG/jKLRxz3JQNWuDP1BaDTF1lK3NPhxIrdsB0yyc9CAx7g+UVtH9kTAjXb8fetbXhoot31/5ylfw7LPP4rHHHvNsP/PMM93/58yZg/nz52PGjBn47W9/i9NPP72snEsvvRQrV650v/f09JAAJwiCIAhi2PC4MSdZZh28eVb1Qu9zQ/ZYvv1pJgOHIMA5wJsNmCaDYZTbem7p+RDSugGWMsF1eN7StaL93ePj622HbLu7SbPFIePQCswTLb7m18V2my82cnz2pEexqWs6Xv7DvtD6WHnb64kYLu3MBFgdrD7AuFrcBU23iLI6QGCdNRLJdds3iESpyPJ90UUX4d5778Xvf/977LPPPqF5p0yZghkzZuDll1+WpmezWbS1tXk+BEEQRP1SfQCW6l3ZCCIJGLfWEAezrN9x0YrBAeMSWd4rASIHWgsRI7L/3fymEBTLZIA9z52nLMt3sZDCzAnv48hnSwaYt4p9uO65Rdi3432YfWkwA+BpS0lZLubM+j/KvGLZfN4UYB7Qh0mHbbes6GL2YRQ43cVGDBbTpXnrw8EwHJ8TCK0uCDmvMks51+B6IqgCrcmQRT6vhnoOvkbP+mBSqRQOPfRQHHroofjCF74Qb984mTnnuOiii3DPPffgkUcewcyZM5X77N69G9u2bcOUKVNiNYwgCIKoU5LwJaMRfiIqNRYujAuW1hqVP5JEtvQG5JG564qb3GnSghu6nmfWXHAdMHrTeOFtKwjvzN+dDy1twixoSGUN/OmNfaANaYDJoPczN0CdZpbq8rcv0nxvBpiGjsFC+BKXNYFZwjQ1yHD/AwsADqSGSh04sfnfIfWXKoP83pFtH60aiVfnzRA0tzwoPYlgaYEB4BhKQQbrAXrWB9LR0YHNmzdXtG8s8b18+XLccccd+PWvf43W1lZs374dANDe3o7Gxkb09fVh1apVOOOMMzBlyhS8/vrruOyyyzBx4kScdtppsRpmvt8Fk8knlLCQtW1LBYRfbTPKGsuKdb5ZSn36uGpoMEI7oCl+ERVrUgOAmQ0f0jd19a9uri38fBRa1XeY0RR+Pgr9atNDviW8rcyMcD4y4etjpzrC1zRP71IvSq11h68FzgcVa3gDgBZ+znPj1C8WgxPCy9Bz6uuW7VKt0a12olGt411QrAEPAPn28Guf26tJWUbDQEdoOuvqVpahui7I55VFcEWeSGuFh+ThNVznmyCGlWEQBbW04o2U+3kcC53jps1M2xMACJ077qb7hJ4T4dyJ8g0OpHp0mEMauM6RnjiEaXt14S9/6QR/Pw2e4dCHmOV14LgD6wAMb7lxX+BZAUi/3Ihe1lg6Ht8xJH1NnDKdYrU8oOXLOy/jdpwABo87fE2Ie+8Mp4U+IeJcR8bhemoEpQcJ44pXC4hAabWAiN4exKgmltv5unXr0N3djUWLFmHKlCnu56677gIA6LqOLVu24NRTT8VHPvIRnHvuufjIRz6CJ598Eq2trTU5AIIgCGKYScINbYy6ohE1YJRbTkYq2nmU+a1OfjPLYew/gNwkw5orLbEuB4l5M2WJbq5bgcWKjRz6UMmdHyaQ7mHQBzQY7zbirf/dG2xIgz7AkO7RrLW9DXt9bwDFZm61VxMCr8V09WWmVZ4+5BUzUdZgTgK3fOFaeNaANkdYZIX1hwTOTT3/vKvWvBfTg/IkfXzOuvXMqCOrNzCiz/o1a9aAMYYVK1YkekiPPvooli1bhqlTp4Ixhl/96lfSfDfccANmzpyJhoYGzJs3D3/4wx886T09PZg3bx6OPPJIbNiwIVYbYrudh9HY2Ijf/e53sRpAEARBjC44tz7VlkEQwwG3zQwjNUd1OCzfnvdbwXoZeR6rDpw+azPWbzsAg+9NkGSQ6DVmRYpnJgDGkBtvAFxwHS8yaL0MZopbVnVuuWIDQLpXsyLMpwB9kFlC1K4g+77lsm6mObSctZGnABSE4wkSRXawt4qFbRXXyS/sHUEVljc2Kst0EpbrKvZPej50vZD0utyy8moZyK1SRupZv3HjRtx00004+OCDQ/M9/vjj+PjHP4502uud+cILL6CjowOTJ08u26e/vx+HHHIIPv/5z+OMM86QlnvXXXdhxYoVuOGGG3DEEUfgRz/6EZYuXYqtW7di+vTpAIDXX38dU6dOxZ///GecdNJJ2LJlS+S4ZRUvNUYQBEEQBFHvOOtQjxTD8VJdlSDggFZguOd3C9G/ZXywcPVP9EZprrypc/AMx92n/BCTZ+2EmYY7F1fLM6T6Gcy0veSWCRgZa990DyvVJ1j/tKLPYm27Z6uuY5BF2RGEyuBWdSZ+yojSvmr6QgLC29Stj+pamRUu71drVG7niQVIk3iljLVBC5EFCxZg9uzZuP7660Pz9fX14XOf+xx+/OMfY9y4cYH5TNPE8uXLcdZZZ8EQpuC99NJLWLx4MW6//XbpfkuXLsV3vvMd6QpcDtdccw3OP/98fOELX8CsWbOwdu1aTJs2DevWrXPzTJ06FYC1stfs2bPx0ksvhR6XCIlvgiAIIhYUAZWoGbKXzwq6CtdKL7V+ITfcDLvlW4LKGqnlgFSvJZJZEYHn3PEidQY0XEunycCKDFty+6BnsMG1+nKNu67nmS4NqQEGngYy3Qy6E4RMsFYzA6UAWiazI58L7XG8WGP0iaCI1tLzMdrFj3huhvlYGLf7RAoYnGLATA/PoFdQ33cjm8dcxUC1zFjUvNEqq2/BneSzfuPGjdi6dSuWL18eWufy5ctx0kkn4bjjjgvNp2ka7rvvPjzzzDM455xzYJomXn31VRxzzDE45ZRTcMkll1R0zPl8Hps2bcKSJUs825csWYInnngCANDV1YVczpon89Zbb2Hr1q3Yb7/9ItdR8TrfBEEQxAeUJOZsk/gmZKgiM0d0q/UHLooUdKxGQbjc9tTL0kwBeNrnPw/iLc+sOd6uS7huze9Od2v4zn+fAc0A9CFmR5G3wjeLgcg8RduWbpilsplpfWfFUuA2Zlr1mCkrkJlTb5RBlSSuqyP4R/wahvV/f1rUKOdx0iNgNHC0TO9BrrsDWiG4MM0oPUqquT6h0col0yXi1hf2qKq6b9Wx8AYw7M/6O++8E//3f/+HjRs3Rso/depUPPzwwzjqqKNw1lln4cknn8Sxxx6LG2+8sdLWYteuXTAMA52dnZ7tnZ2dbqDx559/HhdccAE0TQNjDD/4wQ8wfvz4yHWQ+CYIgiAIYuTxBamSEvE9TqsgirToVpqUCHfccJMUbbL2RXFtF8VznJd+rglu2zoAE9ByzK3TEcCpfgbdWYzGEatG6dgZB0zNEu5OYxyh7Yp7x/Xctng7c8GdenTDtq4CtmUdpXICqGfLYmyi3BtRBHRQnmrHRLnVD4qbxiGlWL6PM6s/WfEBkr1OHhdxodxK7m1VfqfMOGWL7RoOz5jRwLZt2/AP//APePDBB9HQEL7ikMj06dNx++234+ijj8Z+++2Hm2++GYxVP7jvL4Nz7m47/PDDsWXLlorLJrdzgiAIIhZOEJZqPwThwR80TNweErwq8WYkXA8zayMsKsVMed2BA8sTXJhd4S4u08RLxyZG92bOdkd4C9eOGdb8ck8wMiaUJZTtwuER1+75VIiWJAN/MV8b6powy3hYngTuMcvbwV5mLULkbjNtRdoHajcHPImYC/79xSBp4jGONYeu4XzWb9q0CTt37sS8efOQSqWQSqWwYcMG/PCHP0QqlfLM6xbZsWMHvvjFL2LZsmUYGBjA1772taqOeeLEidB13bVyO+zcubPMGl4pZPkmCIIg4pGEECLxTcgIenkdpS+1zrzTeli71xEh/nWvA+fMOgLdnrPtlAF4hSgX3LHFqOVWoq8ee363mbbbEee3xO8ZwUvWU7dtEiFEVkUb1T2U4D0W5Zwzbi0F51Qc9zpFub4y4V1JgLOgNb5lEcvHFMP4rD/22GPLrMmf//znceCBB+Kb3/wmdL188v6uXbtw7LHHYtasWbj77rvx8ssvY9GiRchms/jXf/3XipqbyWQwb948rF+/Hqeddpq7ff369Tj11FMrKtNP3YpvbpjgAU8rVojgTya5SJ4yMunQdACAFl4GL6rbwXP58PR8eDoAIGC0x0Hb06ssIqNIN5tUOYDM+PBzlt2jdqQw+8LPadNO9V2a7QkffjbS6idIfq/wrp8eUIVUbVLWkVEM90V5zg3NnBiavmOeOpJIYcZQaDofUP8McC28f3S8qu7HzW+Hn9N8q/qMZLvDz6mZUfdB3pQNTdcGwtMBgKXCzxlXpAOAaYYfCy8WQtOthoQdr1b9Q5MghgNZP60zsR3VNVT6Mm6G56m03mpcaP37ls1NtwcNnGjmYa7qZW0IE0OGtbRYVfiEjjMfnGtwo6K71vS4v4ExXfJj4x9AqFUdMWMkJLJEWQV4rk9c8a2VD7gE1RFn3rbqvpJZwSuyeIvXKGLbxjKtra2YM2eOZ1tzczMmTJhQth2wop2feOKJmDFjBu666y6kUinMmjULDz30EBYvXoy9995bagXv6+vDK6+84n5/7bXXsHnzZowfP95dRmzlypU4++yzMX/+fCxcuBA33XQT3nzzTXzpS19K5FjJ7ZwgCIKIBUU7H928/fbb+Nu//VtMmDABTU1NOPTQQ7Fp0yY3nXOOVatWYerUqWhsbMSiRYvw3HPPecrI5XK46KKLMHHiRDQ3N+OUU07BW2+9VVmDyiIiBeQbwZfQSpcZcgJ1RbG2ycqOE3k5Do5g8MdTcoS3tfwYSuc8rK44gtIsuaQneT2ZAW+Udsn1ikSt+5jgyl+z+lnA/0FCdYSEd7VoQjyBSvFbsP3bVfkcwlzPq3nUib87I/HIrOdnvaZpWLNmDX75y18ikykZiA466CA89NBD+Ou//mvpfk8//TTmzp2LuXPnArCE9ty5c/Gtb33LzXPmmWdi7dq1uOKKK3DooYfi0UcfxX333YcZM2Yk0va6tXwTBEEQdcwHZDR+rNHV1YUjjjgCixcvxv33349Jkybh1VdfRUdHh5vnqquuwjXXXINbb70VH/nIR/Cd73wHxx9/PF588UW0trYCAFasWIH//u//xp133okJEybg61//Ok4++WRs2rRJ6h4Yir8vRXE9rzPBIFqoXEuYI6BNe7kjW/zIrGxBc0pHhErrjrif6KaeOJI2jCr381r26VF4XyWF3y1cpgeDBsiC7lF/uqysKBb0MKt72KDdsFnFR/C+eeSRR0LTjz/+eOn2Qw89NHCfRYsWgUeYiH7hhRfiwgsvVOarBBLfBEEQBPEB4Xvf+x6mTZuGW265xd227777uv9zzrF27VpcfvnlOP300wEAt912Gzo7O3HHHXfgggsuQHd3N26++Wb85Cc/cddi/elPf4pp06bhoYcewgknnCCtO5fLuWujAkBPT4/1j9/9MsrL/wgJBP/LuyuyxXmgjk8hL313xaZjwfLn95U7bOuCO27WEndrMYJzXOOVbGk10apeC/EtbadvfriTb8RJQuRWU0bQvnUgvGuxLF8koSrcA/4I5qr+H2YZZwF9TyXMq0kn6htyOycIgiBiUc+uaEQ49957L+bPn49Pf/rTmDRpEubOnYsf//jHbvprr72G7du3Y8mSJe62bDaLo48+Gk888QQAKyptoVDw5Jk6dSrmzJnj5pGxZs0atLe3u59p06apGyxzla2Dl86gSNqukLbFDdfgBl0To7a73wPKToIg65701osoCiITYkU0U/K0SMVyuYAJ3CYRTom78EaYd+zJCyQjcispo9r6R6mlVdbPyvpMgPW6WhyhHDUIXdh31fakoWd9bSDxTRAEQcSDJ/Qhhp2//OUvWLduHfbff3/87ne/w5e+9CV89atfxe233w4A7vIq/iVVOjs73bTt27cjk8lg3LhxgXlkXHrppeju7nY/27ZtsxLEvhAW8CpJ4ZIQ/pd2ZgtrR3SDAWYWrsWb69b/QYGmoswHj9U2VRkKMSsTA1EiO4vxcv0u+TKrZliZTp1BVkNV+zWnLapzWOlvkmoetz9vXFT3Qxyi1B9WbpQ4B2L/r4DhEJZBS4XJiHIcce5bcUqKO0jni78gs5b78wzLPHB61tcEcjsnCIIgiA8Ipmli/vz5WL16NQBg7ty5eO6557Bu3Tqcc845bj7GvG91nPOybX5UebLZLLJZyWoCQa7CqnwJ4Xcxjbuvi/C/mbYEKE8DxQaOlMksQWpbxuPWV60gUQWKUpUfZJHzi4RIxxQg8KPMyw1rkyqvP3uZK3DYwE+1cKH8uP046v0Qp+ywvFXcZ5wBxUbAyHJk97BRJbwCpy1EOIaobumlDSgN2nBv3WJe/5xvMU/FUdaJEYcs3wRBEERMWEIfYriZMmUKZs+e7dk2a9YsvPnmmwCAyZMnA0CZBXvnzp2uNXzy5MnI5/Po6uoKzFMRI9QlKhG2QXOLRRfzYjOHfnA39j/sDbCDe2BmuZvmilSJS3SSBFnHorrBRsFfVuAxOGLXrM4yWimRjrlWbWK+v7WsIwyV90gCfUIrAnquPn/f4wRasxIBZ/pIKVPl9bsDS77yotwLsukTsu3JQs/6WlC3lm+tMQuNydcWZh3tyv2Lk8Lz9M1Qr9NsZMM7TMvb6rWNs8+/HV7H4KCyDFOxrjnftVtZhtbfH5quRzin2XHh6x83bVevnR6wdHupjPcirOGuiFKYn6JuR6Ep/NpqRnh6sVEdzVdvDT9fel69jnO/4lgK03Oh6QAwe/q7oem7BpqVZezZMSk0feKz6mOZuGkgNL2oOF8AwNPh44WsGGWIWpEnFSFSs8ICCEMdLYbp4cfCDfXYKEsH/4QzzgF196iMJFzJRpFFZCxxxBFH4MUXX/Rse+mll9wlVGbOnInJkydj/fr17lIs+XweGzZswPe+9z0AwLx585BOp7F+/Xp85jOfAQC8++67+POf/4yrrroqfqOc/iRamWRWwkqshjGoyurtL8sACpMLeGzBTZikN+NnvRPwT++dgca3h+G1K+ClfDjdeaUI14+Z8a3tSRFpoGAkCevn1d4Dqn2rPB+MA1re+tRjQLBIUzHgsyo7gzYVWsX99TEOwF6bHlC/F48o9KyvCXUrvgmCIAiCSJavfe1rOPzww7F69Wp85jOfwR//+EfcdNNNuOmmmwAAjDGsWLECq1evxv7774/9998fq1evRlNTE8466ywAQHt7O84//3x8/etfx4QJEzB+/HhcfPHFOOigg9zo57EQXnLL1igWt9WjUAqjwHB374FY3rENj3Z/BCwvGVCr0YupGIW9XkSQGAWea7DW/K5B2ypx5+cMpWjsFZRTLZ66wvp5VOv2CN4rFZ2zEWpzrBgLwvxs5nyvAFHUW40I+J8Ys5D4JgiCIOJBo+GjlgULFuCee+7BpZdeiiuuuAIzZ87E2rVr8bnPfc7Nc8kll2BwcBAXXnghurq6cNhhh+HBBx901/gGgO9///tIpVL4zGc+g8HBQRx77LG49dZb46/x7RAkwIO21QH+OZfiHGIzDTS8k8a/PX08ftQ2iN5dzWjcpcFMA3qulF98iQ+aw+kXgaFLZolpdXaPOeKW6wArDo9lu6J9/OJoGEj0XNThvaKkxm1WxXWIurQYZ4DRAOhDQFjgRA8Bgprr1nYmOnzGFeG1vtb0rK8JJL4JgiCIeCQRZrUu/T0/GJx88sk4+eSTA9MZY1i1ahVWrVoVmKehoQHXXnstrr322uQbWKdiW0Q2N9QzfmDPxGl8oQFF1oAm+4Vey8NrjfaJatWSSM536e0jziWPYkWNQWJW4DocFABQapNjlQeg1WAtcmJkUAUW9N9TQfcY44BW8HpMAChF8JdNl7G3e+5NJribC/uUeUD4B4V8c8aTXg+9DHrW1wQKuEYQBEEQRH0wWuPz+F7cmWl9OAPMDCzBbUab6xypOlkZHOUW74TEbmJtZgCvJ7OP//yw5K5RrDbUEzHaY+reddvrFb+HiixYWaQo+7b4Fvdx54M7ZUYNJqj4rXOmjjhBGsV9kgyYSAw/o+CWIQiCIOoJzqGMWxelDIJQInO/rAPLeNkSYz5rlftCbgKpAesFWrR6WYXYf7SSBatm84wTtoRX1ATn3BTKtw+7kAiqT+KRUHPqZbDJJyIjwSzxzYz6FoNhS+UBFRhnA+6nsGjqYqRzM22LeNuNXct521Iv4pqe9bWBxDdBEAQRD5oHRtQSlbgeYQFZ5hYqm/fpE+FlbqkCMtfRigWpap/hEuGSaxjmyjus0G+PnAr6hFaMKbzrYOAsaGpHRd7R4gCaz4OibMzQiXdgloQ3YAlvMMD0DcL5y4o0vzxp6FlfE8jtnCAIgiCIkcP/csYC0urgJc5jMeMlC5X4Yuy4nbtWRO79X2aF81viai5Ia11+mAVQts53Au2JJJ5i1JPEdNdK6k2sjFrnt4nVV+vFym/jXOOgoIZREQfQnN8GMw33vueaNd2CGVaa0WBv0wEzC3daCk/B676eQkngj0AgQKI2kOWbIAiCiAcFYSGSpE6t3DLCLNKO9cx1G3WsWBqk1u0Rdyv1B3OKs6vKMq+wcJbNqw6JLh132bDA9sSk7iKQxy2j1vnrkNCVAALSxfu2YiTlOnPDnajmjuh2fgtyE61/0j0MZoaBa1ZARs4AaLZQNyXHM5winJ71NaFuxTdraQHTstK0of32Uu7/7hHyfR20ud3KMjqaBkPTX319orKMvdfvG5re9j9DyjKM7p7QdJ7PK8swzfC7VEtnlGVkunKh6U1p9Q1mKvKo0gEob+TUkPoXSRUhMtMbniE1aISmAwArKiqJMBEmPRieh/erb+FdA82h6d39jcoyUgPh6XpveN8AALyzMzQ509ykLIK3t4SmF8apjyU3Kfx8pJrDfzsAIL19T3iGvj5lGSq0COeDpYKvv8bzQITLUglJzEcbceFBjD7qwN3c/9IebedyERklqrlYb83xz0X3W6XrUMh5gmjZP4XM8D3f68DNmRg+VPdK4nO/gWj9y7F+69wS4AagDVk7ch0wstwS65rEX30EoWd9bahb8U0QBEEQxAeUMDE4AlRqfeX2S7emHq+tqt5EiDJfXGFZVO0T93yE1eOkmSlgaLIBrSOP9IuNnqWg3DaMMZxI2DVfagqoi/tvuJHNAfcETQxAGnBNt8S2meYotHJoeYaJB+/Evx5wNwDgq8/9DbpfHI9ixp4Pnres4MwoL5eE7NiA5nwTBEEQ8eAJfQgiCH808YiMtIej30tTdD8fVcjuU/+5jXIPywKsJXg+3CWjmopoax0IjhcQk7oXOUnOR49Q12jHv9RYUFrYtjJ8keHL9pEMkOg5BrPRxPcP+AWOaNBwRIOGq2b/EjwFaAUWT2QPx3WhZ31NIMs3QRAEEQ+aB0bUCpmVLYblLQnRVKmrtxPNmGt2FOiQCOcj0b7EEYPJxdiHawASWJrKPQ8G0PBaFoOvZ8GKdXJuagwzx4QmrhhTt/5W6lEi4l/iK+jRJB00knh2WF+ELL4pKzzF0a7lAFhTy9LMANesgpgpjtz56pHVXWvoWV8TyPJNEARBEER9EPU9rQYvnlW7djKg0MqRm2C65XHb8pXk+2fY/NSaCk8u/HX+ryAqdFJrQovzdfW8FayqmnM9bJHmEybRqOyegmtQZkIwM54HhSregjigFWtKRViaz+rLNcDMcKR6dFy1/QR0GQN4q9iHq95cCi2nwUxzcJ27eaVlDKfHA1EzyPJNEARBxCMJV7I6frEjRgE1eAGtWnRxK3JxuscKmuS3qCVNkIioCSr3c78VXGIRV7atyrnFSVjSxf/rUYSLA0TOvG8zDbAiAH8E+WrxR9UWr7H/WiU8L9yxbJdFxXeaktBxOudQDIpYzT0kGxhztuk5Zi0tluZ47JE5+Ni4AwHOkN6jAymO1ACDlrd29A8sjFhfpGd9TSDxTRAEQcSDHsgEUQbj8CwNNCaDJMlEuMTVNhCf0ClLq6QtCbv1A/V5zUzdmtbATFj9zD6PQ3sZyHTpylVJqkJ1rRMW3sUWDs6AdC/zBB6rBWJfrEh4q7xABAs2KwJ60RLhbEiHVrQ8NrScFc3NXZ6QwVpuLMi6P1z9k571NYHczgmCIAiCqA9UL2pJWrxqgN/aXa0lbdTit5rCGym6YnErC+KUUJ+oSoDVGCdKvHlwL4YmmZ7+1bhdh65etbZyhvt8MMCYOQjs1x+v7pj9wB0ck6ylXWnAM4/3hA5vwDUNSA0wy8JdBLJdGtI9GsAZ9BygDzE3SFuh1YqMbmYkZZOYHfXUr+U7nQI0efN6p6nXpE7N6wpN/6fZ9ynL2De9KzT99glHKstY/97HQtPbnp2gLAM9ijWDTfWwIDfC8/AB9ZCp/u77oemNhXZlGYNTw9dYHpyg7pKpXPgvT+POgrqMgfA8ynWrixGGYhXreLNB9SLMLa+Gr/E+YUKHsow9u/YKTU8NqJ9uE58NP19sT6+yDGTD71veoL6vjdbwNbj7925QljE4MXzMMd2vbsd4xRruWtceZRmsIfxYWIf6fuKNIWUYOSD8Z7ByaDScqBWyn6MKI59/EBlWsR/F1VgSDboi4T0MvxfD6angujsj+txlxoHCW81I95VOKrMt4PVoqa8YDqRfbHL/j0zc+APVurMHTMXwLAMnDjZxuMuO6YOsbIqGuLwY1zmYyazpBMx3Gmrg6REIPetrQizL95o1a7BgwQK0trZi0qRJ+NSnPoUXX3zRk4dzjlWrVmHq1KlobGzEokWL8NxzzyXaaIIgCGIEcaK+VPshiCgM03zpJMseCTE0IgIsxst5VdbuYWI4z2G+g6PYGO2nkHFLmDW8p0EfZB7BPpaEtxOgUM9ZnySimVdKJfexm5+X5qu7H9NaBQEMMLNw7x0zbe9rlLY17NKQ6WYeAe+tqLJjig0962tCLPG9YcMGLF++HE899RTWr1+PYrGIJUuWoL+/381z1VVX4ZprrsF1112HjRs3YvLkyTj++OPR2xvBMkYQBEEQxAeXMSQkHJIWR3X5LhsiwmXBp4LSo5ZZCxyvgVqeX8d9HAxI9VvuxlFh3BKjWkLR4hMlqekgtiqJG8280vrD1viupi+4UyyEdolu7lqu1A/0PDwrADhC3R9sznPN6+36E7GI5Xb+wAMPeL7fcsstmDRpEjZt2oSjjjoKnHOsXbsWl19+OU4//XQAwG233YbOzk7ccccduOCCC8rKzOVyyOVKvz49PeFutgRBEMTIkoRlr+5eHon6pR7F5giiunfiup5zzTsf2yoElb3gS1zRmUyAxJ1f67TJqSNhKmpPBXDNsnpqOUArYOy4jCd0j1Zs6U7wN0IUwar7yB0sEPuPf9DAf09we2p3xGN1703hnhQHKWoJPetrQ1UB17q7uwEA48ePBwC89tpr2L59O5YsWeLmyWazOProo/HEE09Iy1izZg3a29vdz7Rp06ppEkEQBFFreEIfgvDje9k19dKLJvWZ6FT1whvH4uefjy8KZF8bIpcpig3Zdn/9CQiv4fAmcKzeQ5OKVjCusSK8RzFh51+53JwQ9E75XOPeOeDggJmyPuI2fx5Pmb4BIia7R5KGnvU1oWLxzTnHypUrceSRR2LOnDkAgO3btwMAOjs7PXk7OzvdND+XXnopuru73c+2bdsqbRJBEARBEKONkJczj/vpcAYaGgN45puGfDTDNz/V9Lo2+61f/nmsZfNcfWWJH0AQGNy3j9/VViY2/Dhl+NpaycfZv1Y457ppW8qa+0vUNYF9wj/AVEmfYbaruSGUJ6Iqk4TtqKbiaOdf+cpX8Oyzz+Kxxx4rS2PM25M452XbHLLZLLLZ8Ki/BEEQBEGMUUKsN1WvBU1URVR37KiiNarI9S/ZJqvH78I+GqzIzIRrMSXqk8B1v5Oc9sBhRT7nsNZsrxT6PRyVVGT5vuiii3Dvvffi97//PfbZZx93++TJkwGgzMq9c+fOMms4QRAEMTphqM7CxDi9MxAx8L/s1ki4UGDeaCjnwYak+9NUZfnFtj9422gUsaOxzXVNwudTFniPawieDhGjXLE8x+OEVzMBuMZ9iZ71tSHWJeec4ytf+Qr+67/+Cw8//DBmzpzpSZ85cyYmT56M9evXu9vy+Tw2bNiAww8/PJkWEwRBEATxwcH/9lajt7laibmxJOiDxLMsorlsMEMWICoo4rQs6jQJV6LWyKzdnn4bow/KvDKc6Rhi9PNqvDfonhh9xHI7X758Oe644w78+te/Rmtrq2vhbm9vR2NjIxhjWLFiBVavXo39998f+++/P1avXo2mpiacddZZsRpmNjbA1OXu6MVG9f4djUOh6fumdynL2C+VD02f1vC+soxic/hdwZvULvdM18PL4BF8VhR5eE693oXZtSc0XePqX4BMUzo03WhQjwfpg+HHkn03QsT89xTXLl8IT48wVYJlM6HpvKie9MXe3hmaPmlDeB8FgAkdTaHp2pDiWAFo3f2h6YXpeynL6P5weDuK4ckAgExveB8rZtVvuap6okQPNRrCfzr1xgg/UhnFvbBXu7KIQmtwHysWh4AX1c2oiCRMhCOgSF588UWceeaZnu8///nP8alPfWrY20KMXcJcpUcb0qBTzKs/olizuS8wGkd5uU5dsv3r9Rwqg3KNZqqw8taMGrZJ+kjipT4p9k1ZP/VPlQjqx869IMay4PDWE9SeYe9ro/RZX+/EEt/r1q0DACxatMiz/ZZbbsF5550HALjkkkswODiICy+8EF1dXTjssMPw4IMPorW1NZEGEwRBECNMEoFeRuCF9YADDsDmzZsBAH19fdh3331x/PHHD39DiEDKXkxHIY6L6mg+BgClNanFIGjMikBfFjCMBd/SXBNEBbe++2PnySzosvbUk9Ctt/YkTj1qJt+SXUlEu5ddR5l49rihBwwwyWIVSMsGPHPIgyzkQW0Ytn43Sp/19U4s8c0jWDYZY1i1ahVWrVpVaZsIgiAIoqbce++9OPbYY9Hc3DzSTSEE3BfTUUzFaxXXEY7wNhqA1KBgqeaW8C4TBqJFUhDqzncmCCWnnDIhBVuYC4MWMnf2esAZUOD2QJHjRlxPbRzzBPW/GJS5mEvEMxBsyfa0IyCPaAn39A9JXwnKS/1qbFHVOt8EQRDEBxCe0Ccmjz76KJYtW4apU6eCMYZf/epXZXluuOEGzJw5Ew0NDZg3bx7+8Ic/SMv6xS9+4XFBJ+oHetEceZx5qakBlFnmlPNTbZHtChFbyHPNWteYa/C6oAvWS1mZ9dYfHNE9ML2IwSlGSYTXWTvrDacPeLYprMmRiblvWUA1wdsmKPZD0PJ0QTEJwqLxM146HzKRLZuSMSKM0LN+NJBKpXDooYfi0EMPxRe+8IV4+9aoTQRBEMQYJYnAVJXs39/fj0MOOQSf//znccYZZ5Sl33XXXVixYgVuuOEGHHHEEfjRj36EpUuXYuvWrZg+fbqbr6enB48//jjuvPPOag6BqAUyC1aFVi2iOqLcox6LoN/ijZKwdt3KbZd8boeyYT6Xdv+Lej0LWmYwMMM6sLptZx3dO2KQMXfbCFl3/ZbsSgOeMY6ypcKilCGKfdnAjbMtbP73cDBSz/rRQEdHhzuNLS4kvgmCIIgRo6fHGyAxm80iGxDQcOnSpVi6dGlgWddccw3OP/98dxR67dq1+N3vfod169ZhzZo1br5f//rXOOGEE9DQ0JDAERA1h8R43RIkCkSrt5G1XNVz40yYrQYyO1PQBxl4CmC58HmsgS67kG8bDhy3+ca3dfd73Vq+h/E+iTIfuR7Okb+d1Qrbio/JP2gVUmY9nDciOcjtnCAIgohHgq5o06ZNQ3t7u/sRRXIc8vk8Nm3ahCVLlni2L1myBE888YRnG7mc1xnii2WUF2ES3iXq+aWcWRZuZgCDU4qYu+AVfH/Rz9F2yG4YDRxO8DUVYcI27rrhUeqKEuCZmdbcfmet5g+yOApaZq62lVa4m2SAYMSu3WhwyR5mt/N169bh4IMPRltbG9ra2rBw4ULcf//9iR0OEG36GqCewtbT04N58+bhyCOPxIYNG2K1gcQ3QRAEEY8EH8jbtm1Dd3e3+7n00ksratKuXbtgGAY6Ozs92zs7O91lMQGgu7sbf/zjH3HCCSdUVA9RAySBtwgvymBPdQYT7nHGgezEQfznhx7Cp5r7cOr0Z1FoN4NFa0DQqiBhnLTQcwYEoojwJFZiGs2I0wmMrLWUp6l70+LgxgRQUcEcbyAZN+rESCBSe80ZZvG9zz774Lvf/S6efvppPP300zjmmGNw6qmn4rnnnpPmf/zxx1EolC+X+8ILL3ie+yLO9LXrrrsusB3OFLbLL78czzzzDD75yU9i6dKlePPNN908r7/+OjZt2oQbb7wR55xzTpkXXxh163ZemNgInpK7BKbCl/AGAGzbNiE0/acTDleWoVrH+7fvzFGW0fSu4lfEUPdK1qBYU1qx7jUAcDO8HlU6AOXa1+aebmURaS38fOg9LcoyWCF8fWzW3assgyuORbkGd4TI/6q11ZOA9fQp8+hdih+EgnqtcGP/6aHpby5VL9LdMf+90PQpTeFriQPA1jenhKa3/1HtRtz8Tvh1yfSpr1uqNxeazlvVEbTNtvC1wIcmqo/FaAy+n4qFuv159+CMcCcFY963Gc65Z1t7ezt27NiRWH1EwtT7y+gIESgYEnbBd6J4R4nYrhRXzhxuBuT6M1jbtS9WjHsdD20/EKl+rbSsnP/YHOupL/K5W2yNxRNPASjK65YhW17qg4aRAYam59E8fhDFP7chNcAsz4aY54QZtTmHdXddJPENCGDZsmWe71deeSXWrVuHp556Ch/96Ec9aaZpYvny5dh///1x5513QtetUZ+XXnoJixcvxte+9jVccsklZXWopq8B0aawTZ06FQAwZ84czJ49Gy+99BLmz58f6TjJ8k0QBEHEQhb1tZJPkkycOBG6rpeNdu/cubPMGk6MMuglVU4tzkuMezPMFZw74oJb1syG17L4wVPH4cDHzsa25yYj1cfAUzxU4EZ1NffUGZInSjkAoOXhiXwdVpfMfbluLOHDed9owKwPvYMvH/gouO49P3HOR0XPBe7763ytl+sggZlAWIT/eiHJZ/2CBQswe/ZsXH/99ZHqNgwDd955J/r7+7Fw4cKydE3TcN999+GZZ57BOeecA9M08eqrr+KYY47BKaecIhXeUYgyha2rqwu5nGWEeeutt7B161bst99+kesYHaYRgiAIon5Iwtcy4TejTCaDefPmYf369TjttNPc7evXr8epp56aaF3EMFPHL9EjRsIWbwfRXbyqMgA3orNmO1c1vZoBZxk02IJMyykihQdsL8tvC31R6EWN1B5lm2i9Vbm8M6Ed/mWnhl1k1fi+8cz1LgCvPjEDa/UZSBWYZ1Bl2I47JJJ6vVHPAwMeEnzWb9y4MZKX25YtW7Bw4UIMDQ2hpaUF99xzD2bPni3NO3XqVDz88MM46qijcNZZZ+HJJ5/EscceixtvvLHi5kaZwvb888/jggsugKZpYIzhBz/4AcaPHx+5DhLfBEEQxKigr68Pr7zyivv9tddew+bNmzF+/HhMnz4dK1euxNlnn4358+dj4cKFuOmmm/Dmm2/iS1/60gi2mqgHZEGhRgUqkV0jEZ4E7nl2llTSLZduFmZZjuCOW6YFfMJYZnWtxjVcKryZXa1oBXeW0hKOwb9k1IiTYH8Rz69WBFifPZhS+xl3voYMc30J4J47cj8v44ADDsDmzZuxZ88e/PKXv8S5556LDRs2BArw6dOn4/bbb8fRRx+N/fbbDzfffHPZ9LNKCJvCdvjhh2PLli0Vl03imyAIgohHAtaxSvZ/+umnsXjxYvf7ypUrAQDnnnsubr31Vvz/9t49zI6qzPf/rqp96U7SadIJ6U5DEoMGBRIuJhGI3AMZcgBFfEYcMMQRL/wIHELkOAJzHqOjyQyMiMNN4/GHOA6GmTOgzk9EwiBBBtEQyRguCkgwCSZpEjrd6du+1fr9UbtqV9VetVbV3lV71+5+P8+zn7131apVq1bd1ne973rX5ZdfjoMHD+IrX/kK9u7diwULFuDRRx/F3Llz6ywsESsxNj79XJSBBAkiGY5x0zbcsz4peKZO4lpZeFoutiVAKzjGcguOydpGNg2TsgwCsRyHpbGqrExuJbe2CePaHzkR14PrOCSu+oSAVqinJrzrM5kM3vOe9wAAFi9ejK1bt+Kb3/wmvv3tbwvT79+/H5/97GdxySWXYOvWrbjxxhtx11131VzcRgxhI/FNEARBhCIKS04t259zzjngimCH1157La699toaS0U0hTgFZFmMcQ0wsqZ7rFaEbbkMeh02NZiWt36c1rImWr6dc3CLLHi2BdTT2SET1y6radD69tZH3Dis3YUOjsIRBsCBdL+G1Agz68WnLA23CjeQht4fCfb4CIK3YyipHRbNetc74Zzb46u9HDhwAMuWLcNxxx2Hf/u3f8Nrr72Gc845B9lsFv/4j/9Y0/4aMYSNxDdBEARBEOMO5zRIhU6OYm8O2tsZZA5p9jjkwA3fRruHWuLCT2Qwz3cTcNWbo5EudAv3cRX3RbXeMxSVodzBkioLhqJ7/LpoHHbNWMfDgEKHgTc+8m28WhjGioc/b0b5DlL+KIlRiCZ2uIb33uCO5UTLcsstt2DFihWYPXs2Dh8+jE2bNuGpp57CY489VpXWMAxceOGFmDt3Lh566CGkUikcd9xxeOKJJ3DuuefiqKOOwo033li1nWr4GoDYh7CR+CYIgiDCEaEr2pIlS6DrOlavXo3Vq1fXWzKi1fETarU2qjnA00DhiBJ2nv//4tyXPoy9v+qFllcE+/LQtHGsTnEhqoMmWQC98yaLRJrLvd9hIXfWpWy7KiQBtTgDjAxQeu8wiu+0oW2fDiaZRbMuIe60+HOGx0fS+EPu+OZZtWM8/1wDClM50oMMLMD0cw2F+fxuEPUMIUhUR4aMBrud79+/HytXrsTevXvR2dmJE088EY899hguuOCCqrSapmHDhg0488wzkclk7OULFy7EE088genTxVNOq4avAYh9CFtixXcpo4GlxDOhZQ6rn3DTf5WWrn/sbfVcbMXJ8v2079OVeUx7Q/604ll1HvrUDun6IM97VlKUQzF3tplIvifV3NkAYLzTL13PRkbU5VAEUuAswAx6WcXc6ap5vI0Ata4rzu2Macosct3yec95Sv3GyRwcla7XDyjmAQdw6Fj5vNWqObwB4Lb3/V/p+nel1HOW3z/tA9L1/9x3ljKPGdvHpOvTfep54lXXoGoObwAYO1KeZnRGgMezpBilfIwzSUYxZrG8fdAIqMQEQWblrTE/VgRSAzoW/voKDO+aimyRVdzRE+zy6cKvQ6JJwttbZ2HqULa9aooqexkzXb65BqRGGLQCYKQ4PjjvDTyXehf4/g7xdopyBFln58eBzCEN/8//dzVgAJkBxzN3nATSYhx2RxXhoY73oChKfiKJ8F0fhO9+97uhshaJcgA4+eSTfbcJMnwNiHcIW2LFN0EQBEEQRL0wA0gPMhR2dKKtwEyX81YJuqZyp22C5bveecD90jjHkKsCpBWmcHSd9DbOnvU6/v3J05A9qEHLMzz7xAKwEoPusSeIrPOyfUjLzitVnhoFUqMV0W2L9qRfV0HhQCqATWQiUs+zI+y0eMT4IkbTCEEQBDEu4RF9CCIAtUaqdoogrQikhpk91rtui07YbetJLzv+BgvvKKb99at3V0A2UVrnuHIN+Mjs/8b6mb81pzDTzEjqqWEGfax6mIBofm6/Ob25Vv4w8bZWWZxR1S1LODMqy5MuqoKcR2tYQdTH4qxnIsHQuz4WyPJNEARBhKPB48CIiY2RMV3HtRrGnLrcmS2BFMW1F1SAiizXQazVQdbHaPV2WqHrcTGX5S1bJ7RMO4R/aoxh4+Zl+HbqPKRG3OORRXn7jUuvTmgGbStO4UgPsMoc5T5uwhzizgJLkNczv3jcNLU8DBibYSA9pEEfTV7dEGXoXR8LJL4JgiAIgkgsmiRwVlCa5gocp2W6AVbvqIW36hwEcffmDNDHgGxBM8f0e4W3wrKuLGIKKHYYSA9Wx21xusWLLMLeMevkWuyPnmNgAcINjVfompi4kPgmCIIgQpGEuT+JiUPirpV6Lc5RiuaYrN9xuBnXkl60ne2ebrj/mxuo8/WOM3flywEtB7Tv0auec5Yrujdau591O3HXrQPOACNtDsdoSpR2DqQPM6knShK9BaKiVQKu0bs+Hkh8EwRBEARBBCWIkIxKFNfrnp5QZGOu5RtWfjKf5TJElvwq0SwS9Y59ONP7uZzbm2iOdTGMna4VxsseA7XEIojgmgviiZKUuooDCrg2saFQBwRBEARBEFHSoqI4SoJEE68reFuIgE5OF3Drt9N93OtK7jduPIgl0B6zrgHFSRxjM426g9TFgVaq4Tw08DiSWGcWcQYeJMY/JL4JgiCIcFAEVIIIToKudZdVNgJx4xSxXoTCTuBuG5fIUlnWve7i9czZ7HcMpTbAOKKQ+M6YJArBJJZJNI6/nus3icfogt71sZBYt/Ps22NI6eIzln1H3Wcw9ffyCC3Td2SUeeSmt0nX85T6imJFeRojoz4FeiYt30dWfSwoKQb16NWBRarzqCHUrBfFxPZ8LKfOQ5Off5YKcFlr8qclY4qnaVtWuQtjTrd0/YETpyjzGOlVlDPAKen4k7w+pr2oHvBVbJeXY2a7eiLQd6WGpOvnpNT1MTd7QLreaFffk3pOXmksX1DmUZrWIS9HRn0/8ZS8Tg35bV/ORLJ9gFu6VmgcGEGEIMaI5EDIe8mKkh52O89+RW7X3nVeUcsd+3am925XC4GjmQv2HdezjBlA9h0G9GfBDHrmybCnHOPV109SsK8v79Ry4xh618cDWb4JgiCIprFkyRIcf/zxuOeee5pdFIIQE2XjMaK8DN2cEstIhetoq0csiMSqLHCULF2Q7ZwN/yCBzPxcxcNuExaZ5Z8ZZif5eBdp9cDL07vlpnHX/OrO4QD2vOARuHvXWkazUEApA+SP4DBSEM5TnmR3eSIZJNbyTRAEQSSYiETE1q1bMXXq1GgyI4g4iLIxHZGrNxiQP34UpZyOSa9nGmIllIlbb/lqLYvMou7N389yHeR/lAJJdqxk9QsAA7gOFDtKyAy4ZYltBdeAwmQOxoHUcHPULeOAoQGFTgPvOWU3dv5qDtgQq7oWx905H2/HkwBIfBMEQRDhiGIcF73QCaImGC/fgm9noRfhctWNm1qEtZ/QDeP27Y1K7pdnUHfzOMeaE8GwzycHtDwwaXdKeH6tNHqeibdvENb+Moc0vPHrOUiNsUo0+/Hq2UDv+lgg8U0QBEEQBBEzUU4txEpA236z5R9Hw18mbETjuv3mzw5iFZZNOybaTz1wrdJ5Me4slC2G67rxXsNW9Hmj4umhFeASco08f/a+uFmO9CAD14HRo4tI9+tIH2bQIgiLZO1D6SETJA2RWEh8EwRBEKGgICxE1CQtuFIcRHl89jzNMeIroFlFvHoFsXe8rve3nUVAESVyN5ctVyII+kY0j6rrR6ss4ykARbfwTYLHAjMAaOZlpE8twBgKGd3UK5y9/5lgWVUhPNvHBL3r44HEN0EQBBEOckUjIoYaaMlCej4kEamdQbJE66uykqz3Cm2RhV1ZVm+epfDbEA2ifJ6NFJA/wkBpkoHUYR2ZQ8xenYTTZkc6LwHZl9rDRz33imqRyE6KVZve9bFA0c4JgiAIgiAIF6LI0rUEL6vH6h1kXvKgllDLihe18G62JTYwCRVB3uuhOInjxA/8ETsv3YjikQUYmcq47yR0mljXkFYyBbhWanK5WuX6I2wSa/nW9uyHpvnMX62asxoAuDxNaop6TmGgS7p2bGa7ModSm7x/g2ci6P+IoD6YHqAcqjSG+unDi0X5+gBzLKuOBYHm+a6v3rVOdXTmobmTpOsH363eT6FHPl89xtTHkT4srw+eVrtMTdkrP2+//9MsZR73d31Aul41hzcA/N99i6TrJ+1SH4s2OCpdzzPqCbZ5WjHXfFF9T6aGFfONd6mPpdDh/9YtpeN7I5Mr2vhhw4YNuOWWW3DDDTfgzjvvBABwzvHlL38ZGzduRH9/P0499VTcc889OOGEE+ztcrkcbrrpJvzwhz/E6Ogoli1bhnvvvRdHH310k46EiIOgEc7DIBrLLUpj7cvP2u039Vmjny2B9idzI27U+N2EirSqzpkSsGPPUbhz+rvAhnXX8IqkdXTUdK210HhtetfHQ2gF8vTTT+OSSy5Bb28vGGP40Y9+5Fr/yU9+Eowx1+e0006LqrwEQRBEs+ERfYimsnXrVmzcuBEnnniia/ltt92GO+64A3fffTe2bt2Knp4eXHDBBTh8+LCdZs2aNXjkkUewadMmPPPMMxgaGsLFF1+MUinmgchEU5FZn6XzXYe8370u57L8RdsljqDjdxtFgurJ23mSGmHQdrbjnp+uQPagDq2YPNFdF/Uci+jdGee5pHd9LIQW38PDwzjppJNw9913+6a58MILsXfvXvvz6KOP1lVIgiAIgiCiY2hoCFdeeSW+853vYNq0afZyzjnuvPNO3HrrrbjsssuwYMECPPDAAxgZGcGDDz4IABgYGMB3v/tdfP3rX8f555+PU045BT/4wQ+wY8cOPPHEE806JEIB1wAjYGwop+hVETSiuSj/WsTyuBJizSJoHTZIODndyplhRhPPvsOgjzrWT3Qsi3mDgq0R8RFafK9YsQJf/epXcdlll/mmyWaz6OnpsT9dXXL3bYIgCKKFoN7wlmf16tW46KKLcP7557uW79y5E/v27cPy5cvtZdlsFmeffTaeffZZAMC2bdtQKBRcaXp7e7FgwQI7jYhcLofBwUHXx48gVk4iXkQWa5mLuF86P6EtO8eW+7jf/oOMBU8kQV3U49p32LwD1m0U54A5y+e8NpzCnLuHHIzr50SQcxX3sdO7PhZiCbj21FNPYebMmTj22GPxmc98Bn19fb5pw7yMCYIgiObDeDQfAFiyZAmOP/543HPPPc09qAnEpk2b8Nvf/hYbNmyoWrdv3z4AQHd3t2t5d3e3vW7fvn3IZDIui7k3jYgNGzags7PT/syePVuYjrOylTZtWmpbVmglDGYg1FzEYVy9vUJZZDlXBW8Luq5WeBJCDAe5fh1pnJ4KdV/7XqtpRNRaLt/tytHENUdkemcUffva0gCuV54TLYOgE0qIX1T0BorZKN/1RIXIH0UrVqzAv/zLv+DJJ5/E17/+dWzduhXnnXcecrmcMH3QlzFBEAQx/ti6dStefvllrF69utlFmRDs3r0bN9xwA37wgx+gra3NNx1j7pYf57xqmRdVmptvvhkDAwP2Z/fu3T47B4pTOHDyIEptcDVCk9SQszoJEiHqIiSMSK4VZyA10bhuP+FfV9kafe2I9hfSEujsLEnSte+kVoHlt41omjqRQOUMyE03YJx4GFxvISt4rWVM6PknwhP5K+Pyyy/HRRddhAULFuCSSy7Bz372M7z66qv46U9/Kkwf+GVMEARBJANyRWtZtm3bhr6+PixatAipVAqpVApbtmzBP/3TPyGVStkWb68Fu6+vz17X09ODfD6P/v5+3zQistkspk6d6vr4oY8x5HZPgZaH61pJUuOaa0BhMkcp05oC3E/gykRRVPXvtYxL8/V0vogs7EFouHj1m7+5mddwwp+71phv67d1zflZUVNDGgp7JoebZ7vZ+AylUMI8397lcUDv+liI/XUxa9YszJ07F6+99ppwfZiXMUEQBJEA6IXcsixbtgw7duzA9u3b7c/ixYtx5ZVXYvv27TjmmGPQ09ODzZs329vk83ls2bIFS5cuBQAsWrQI6XTalWbv3r148cUX7TS1wlnZPboAtPVp9hy63qmnmg0vi6jC3Bxy041ElCkMnJnuumE6DRohyi2MDGCkFJ4FrVTnSXnetUCdOd3MZR0tzAD0MaDtbQ3MSK5nQEtD7/pYiH2e74MHD2L37t2YNUs9DzBBEARBEPHR0dGBBQsWuJZNnjwZ06dPt5evWbMG69evx/z58zF//nysX78ekyZNwhVXXAEA6OzsxNVXX43Pf/7zmD59Orq6unDTTTdh4cKFVQHcwmI1oJnh1gnOhnUSGtmMA5wDba+1AS3a8GelYAHUwsydXWvniHc7Vix/eyyarrzrqPOGzwfeCNHLG7SfBmM/EzzfAKruvZa4D8fhOSLCEVp8Dw0N4fXXX7f/79y5E9u3b0dXVxe6urqwbt06fPSjH8WsWbPw5ptv4pZbbsGMGTPwkY98JNR+jIFBGCwdtng2LCU/NCYZ62ah5YryPIwgd7niLisFyCNfkK7mPuPp3cWQl4Pp9Uer4AHmd1Wm4fX7DnGurlPls09RX9DUT09lkJogh1qQZ6KNqc0WqTF5fbAx+XUOAJP+cEC6fuYT/q6mFv984Czp+tIUdYVM+pP8vu59blSZhwqjc5I6keL8a0N5ZRZskvz5NjZdfY0NH+1fZ8ZYfH54UQRRaYlG0gTlC1/4AkZHR3Httdeiv78fp556Kh5//HF0dHTYab7xjW8glUrhYx/7GEZHR7Fs2TJ873vfgx7Bu8TCO+ZT9LuZaCVTgCOC+6HRMA7A4d7rXecSwgIrJFCdxrssDCKrppJyYC5vPkHORaLOV1Si2VkfE0jgJeV5EDvWddLAThZ618dDaPH9/PPP49xzz7X/r127FgCwatUq3HfffdixYwe+//3v49ChQ5g1axbOPfdcPPTQQ66XNkEQBNHCROFKRi/kxPDUU0+5/jPGsG7dOqxbt853m7a2Ntx111246667YiuXyKKVtIZ2S4019RC0HmVBz5o6DEDSGaDctFnXUdzieAKJboskPQ9ipRnnlt71sRBafJ9zzjlSy+LPf/7zugpEEARBEARRC1xDS1qik0QQEevtDGmKAPdYvr0BuqzyWeus/02d/sgvCFsUtJjbuRU3oZ771c8ro6UIe9681u9WPvYJSuxjvgmCIIjxBbmiEU1D4GpMRIufmPazgDdEeIvOO3cv9xurLnKPbxrO/cdVby0gwjkDuA4UOjjSg0wYNyFMnIGWxu9cyc4juZ23NCS+CYIgiHCQKxrRLBTXTSu7gbcSDbd4+513ifD2LvdawaW7i9OaGrbOvFZOb9A57xRUCRfeUdPylm8/knAe6V0fCy04MyVBEARBEERrE8cUXd784yR24e0Uk6K5jf2Wozz8QCC2W9KaKqtn2bokHYMHxgFWAjIDrO5pwhJ1rhrNRD72FoYs3wRBEEQ4qDecaDBeC2arN7g5MwUi42XjpeR46j3emrf3GVPdMGQWXzjG9zvTS46z1a8ZAOHHBicYFsV7BOPjeVAzog6oKKF3fSyQ+CYIgiBCEcX7PuHtQqIJyNyCw0Q7twI5JdkFnWvA2JEGMoMadMUMibVGenfOixx06jBX2jqiideMd2y3Jbol48tF143z3CdSnLXAuOxWIXHndhxB7/p4SKz45gYH97mjWDpAsRVzjfKCfO5sANAODUnXt2lqr32elqfR+4fVeQyr06hQ1hkLcCyK+cR5QT1ftKocbOpUdR4pxbk1ArS4VPONl+R58DH13OpTdstbVMX2yco8xt6WzwWdHla/dTrfkM85rQ2NKPPgw/Jjmb5FfT91vt4lXV+YIj9WAMgckpdVO6S+Vwo9ndL1o91ZZR6qRv2kt+pvDZTUxYDRLpnnGwlWHgQhIKj1N5FiKiSMA5lDGjT1o9O1DVDb8ftF/xalUVm4neK9Kp13rumw58mb3jtmu/w/N43DaDegjTFk39ECR39uehA2b6RqJ2GXT0CCdr5xDdAUzbxxQ4s/CyciNOabIAiCCAeP6ANgyZIlOP7443HPPfc09BCI1oI5BJ2q8c14fFbvyKy/HNBzqGm8a73jY62x5qIx50HGoUujnDst1VGIAm9ANQ4UJ3NkjxnEG5d9G5PfM4DiZF6VXlRmb7kbNeWYoZsfc+cIH8G6BYR33PELLJznS3ROrTRJ9nqpGb9rtRFu5xG864kKibV8EwRBEMkkyulHtm7diqkBPF6I8U1ga25EY0SB2q7hqMRaVPnUcixeK7g3r7rwWr6B+s6Zj8A3DNN2VCxpofMPO3a9nusF8AhB0Rj2Zli2veeoTprhiSLzBGlEeRrugdOEThiaaiweSHwTBEEQBNF0VI1Z2+1YkCZ0QzigZdbpppzERqTTku38H8Q117utO2PUJprLQtLK08iYFn7nOvu3inIZuOZelhphyO+cgmP2fQ76qIbMCHO7c4vyFgSPaxTKfUXoTSF1a49jn9auE3p/xInyHrMCAtbw/JiI9TmRIPFNEARBhCMKVzJqWBAOAgVRA0wx5tMw9Y4LF+Uty8dvHLPTtTXOqOS14iyz3zGI6kVq/S2L3poiUvOKttMcIUcC5+exCLvOUfk708+AQ7o7L1m+dbrqJwo/cc0837LtPHlwrT5X7WbVUUOj7wfAVR7PPRfm+RCqPuOse3rXxwKJb4IgCCI89EIlmoFlDQ0gwJ3L/Ajqep04ASZBJLxrESm1TgVlWaqZ4daBVXUYwgpunVdnJ4J3mSq/OM9hKNd0b5qwbue1Ck7m8xvjdIx0g3B1eFnPJ90MmspKgG51QLXQM8RFq5Y7wVDANYIgCIIgEoEVqdhXLDZxbCkgLpdTCEZFWLFsiVC/DonQWOchSCtRIPaZn6C0lovGhjP3NtZ14BehXCs5jlfUURDHmHYB3FFXIstnFZ7j9BPTnJmB2gKdA9n+iFgQDtkoe4wUJ3N0LDqA3JElGGnQuSFckPgmCIIgQuFs6NfzIQgvQcfHKseGR0SV8BbkHfZadnYwiCI211J+6djtoHiEox2J3SGOfYUgq3xcZZEJYmc6jzu8KCK5X6A41/6dRNUREQAjCxhpz7Xg1/kQFGbOBV+cxIOVO8x4+nFGo6KtV+FzLZYywLr3/QSTjhoK3nkSZRmiypre9bFAbucEQRBEOGgcGBExLuumYBw2AFusiaygMupyu3aUw/wRPp+qPAKsC9tgdaZ3Ha8oH+az3CMcvXVv7yfAcdhBpkT78Jw77zbO43HVC6t0CHjPP2dy1+laroGg3gyMA/powEzDlIED2Xc0sKDzVXvPTVh39lbFKbxrmLqv5t2W34Mu4V++DlMjDGse/mtoeSBVaEx5YoHe9bGQWPGtd02DrmXEKzunKLdnRfnTig8NK/Pgg0PS9drImDIPcPlAGj6qzoMXi9L1LONTT07SAdKoyOelq1lafTmx2b3S9cPzu5R5FCfJuxHb++TlBIDMnn55gsOK6yPAedNff0u6fvoB9fRKfFJWmUYFKyje3Kz+t7NxaECZRh8Zka5PtbUp81DeC+m0Oo+0/PrJd6i7qVU92elh9XnL9snro2OX+p5l3P+eK+US+3gnCCVCgQVUWb5Fkb69hBFdouBlsry924nGm1eNB9XKVtISoBUry8OW1bsPv+Oo3kCSmag+y+UTiWNnmb1WLuc5qhqXDf909jm1zoMG8JQZvM1azgzP9RFgzHI9HRo1pXWKX+u38xuCZV7X+kKAsnhFtqxzxDEev9Vxnv/8NA5WAjIDrCliz9vhlRoF9ByzPUisNHUzUTpUxjnUOiMIgiBCEYUrGbmiEU6c4lXkQir6Hyawmv+OUWVpF5XJ+V9E0EBtXAMKHRzFo3PQ9meRGWS2wFLhJ3y5BsDTwPetC497t5+Idq0XnBOvRdpKI5rSy8+iLR2fzgAjZXZQ8BRgpDhY0VkAn+MTINpn1GP0xTv2/Oc+65hgmbVIVUaRtdvKS3QNRHjMoYLMxYDzWZEeYPa12oxy2PDKNzPk5anpGmyw8KZ3fTzQmG+CIAgiHDyiD0HALeyklmuFIFdSgxgRiVlveZ3lk5apLJRKbRz/cdY9mH3yn2GkKtuq8GsIh+qEENx/Iu8BQzfLZAX8ElquvVbd8n8jbc7vbY//drQ0Awk2BnDd/JmfZiB10iF0LerD6LtzlXUB68vvf1MEgZ8grjdP2X/v6gjElDMvoHL9NGXMNUyRq5XMjppGnlfvM8sbm8DyFgl639ZekIjy8cub3vWRQ5ZvgiAIgiCai8diKlwmcrl0CsCIkY4/httS7yyDr4W1fDypUYYPPXMt8HYWWflIGiW2Oz6qG/8qMSRq/Bsp2BkW2zm0EgOKjrpwuit7reaaucxImytYkQE6lONwq8pZbrAzAOgdw45THwQAnKNfirf2z0J6yM/NQFCmpODX8SNwN490H37UuU+VB0hDOzdYc93owwhr63lgdW5F4paepOucCASJb4IgCCIU5IpGNByntTnIuFWRmK/xmosyUBozgNQQg/Z6uznm23I5r+N+ELnDK4Wnn3jSK7+NLMCLHKkSg5Eul9Vr7eawx2QzAxibVcIRsw9B1zgO7DkC7W+l7DwDCySnl4FR+TOcz8jzSOIzxSuwnaJX4m5e0z4sAnhfRCXYrHMPXo5f4On8aMhznse/L1GHmp/olnVA2K7yKWD06AIyfSmkRhi0oEH1Ggy96+OBxDdBEAQRjihcyeiFTDjwDcrlcWd1BUTzc4cW5deg682v4e2yUBuAPhZtmWqJ5l3Z2CwLT5lWa1Zi0BcM4Kyj/oSDucn471fmIrs/ZYqssnuvs04ZB2CYwj07cwS/XfwQAGBB/koU93dCK7rrQxSpvsqDoHze9V1tOPbpq5BOlzC6bwraRpgp9NVxVeurk6iIUmj7XOs1TSdXh+XbNcwiBYy9Zww4lEFbn2YKcLjrvVZhHHi7GC3fTqEd1KqvLDMzPUy6Z/fjwOEZSI3UeZE2wu283jwIFyS+CYIgCIJoHlYjm1VbmACP4PYsq3IN11A9P3UTGn9+wcmCCsIwgkUkEHyReQRwQCsy5I8wcP6c13H3Ub8GAHxg6C8xuP9IM51A5DhFM3fkXSppQlEkG4ttLysC0IHUMAN2TAFnQLtRPr8FwTH40FSrm/ca9NZ9WCEcZUdCwLxUkfS5Bhw7ez/+mD4SeHuScHu/fGT7DNJh5rruGmj5rhdmAHoOGPzVTGSMCDoOmt3BRISGxDdBEAQRDuoNJ6LEup48AtsbRZvrQCnLzSl8nGOlmeNyisjVXIhMEHhdi1U40vhFA3clV1jdahH4fuViJWCwWJkusVDU3V4EhuO3o9MDHCjumoz3PbMSAFDcPRkZSzAHdKt11UV5G54yzz3LOazuqPM4m0mYaySIC3mMSCPSc7OT5E9Pz0XKUJ/jUAK83IkWqJ5qsHwHKYvIQyMqtCLMmYgjcOuOFXrXx0JixTfvnQGui+fKHZ01Wbl9akz+FMj+KcBcvu/0y9cPB5grvCCPpsKLAeYYYfKyMl2XrgcAGPEPKNGmdijTHD5OPo/3gQXqS7I4SX4nT9mlnmP5yBH5XPEp1Xkz1E8T5fURYK551iGvU2NutzKP0dnyPPQx9VurbedB6fog94IxmJMnCFAfKoLMeZ8+KK+Ptk71NVhKy1s8qSH1fa3tf0e6vmtoVJlH5x/9j6VYHMOryhxqI8pxYEuWLIGu61i9ejVWr15df+GIcQXXYEe3ZmUrEWcAzwCicaaxNmRFeTst3LqZxvV08GwjEskiASmaTsxyXReNPQ0sQh1WbtFUWEaaIz2o4ZlX34O/GJmK/rF2HH51GnS9HHxN4FHADJidIRqQ6deAQ+ZzKVNOyzznqKpIgo4F1zEWzfHmoqnPvB4PiUJ0ToIuky0Puj4mnNebVgRgNS/9zp+zAw3VaYT7sDpeVCLZ6qDzOf/O/atcx1WxHaJ+tvhdrw0bKx8AGvMdD4kV3wRBEMT4Z+vWrZg6dWqzi0E0G68102oIa0BpEoeWYxibm8eR3QN4e/c0tO1LodTOwQ4zs/1dy7jPoBZIyfauxrxACDOgSpSoxLYvnoawnztwrdZg0x2WgTOg7fU27HpjDpgBZFAWN8XKcQrLXwSs8azgCDR/uZ9bs+h/VQR5UV04rfEJEjF+07K1Kq7OIZ/lzv/OThN7Ox8h7PX+8DuP9vUu6XgJMsQhyP3Y6OsoUdcuETk0zzdBEAQRDh7RhyAAt/XY+bts9WYFIP+uMfzNaT/Db075N1x52q+QO7IEVii7JLPqBrso7ypqvQYtK55DROWO4BjtMZA/glfK7mPe8C2rbJchOhbqarQbFW8CI8NNd3LDI7xF4pFX1mv5ivD2Ws78xupXPRO8x+C0WsrckUNaNBNBreeLe76bhHWOg1x3smEToo4jp2eHdz0vd7R483Sm9Ru+4bc+CURhbY4MetfHAolvgiAIIhSM80g+BOGkquFtzX9rMMzqPoRrjngLAPDVmTuQnjFaZRH1y4driNbS6BGJxckc7F3D+M9L/xHG7DEUJ3HTRV4weslPXMgIKm68QenEmVWnd+arlSriNjXEoBXM9VoJFeHtY3V2usE7y+udmsn3WLyeCNzR6cAgFd1BxsI3FVnHQpgyuszMdW6fEEQC2e9arvJ+KFu+/fJyLgtyfyRK+CYAetfHA4lvgiAIgiCajqvhy1GZc5px7Hu7E98bnAkAuGX/iSgcaFc20F3//dp/EbgAcx04avoA5qWnoOuIIXfLSuG+GjTyuYrA1keH5dpZ11aEeEv4WPMOO8fZ2/89Ats79roqMr3Xah/Cam0vH2/t93qOp55tE9AZIbxWFeOt7d/e68vRQeMK1Bj0OB0dUCS6iTCkUimcfPLJOPnkk/HpT3863LYxlYkgCIIYr0TRGKaGDiGDwQ66VGoD0m+04yvGxfhO9yH8+c0ZaHtbR6mNmxGwPQKwiiCCtA5Swwy7XpqFeTs/A21YR7Y8b2+UjXnZ8XmDuCnd2iX1ZI2ft8bRqqKsO6kKhuaMiu7dN3csF7iYuzP25Cfbv5WFp9zewFsNx284BPdZHyQvZx068VuuWtdMgnhCeNM5x4R71znq1RuXQZQfjbH2gd71vhxxxBHYvn17TduS+CYIgiBCQRFQiUgRiCZ7mQHoI2brOvvHNhx8swftRVMc6iPMdkWuWXgD4kZ+gDJbQpWVgLY+DUZKcwcZCyhYVQ3/IG7pgMdCWIvAco6hZY5yeQWin9t0eTsmSq8SUqK8HOnCPi+aHTBLirMu6hHCftsGHHbQ0nhEtaFXvDK8z5NCJwcrAKkRJow/UHfgxXEMvevjgdzOCYIgCIJIHmVrp1asBPDiutmS0wqOacZqFRSC8cuhs+CVBr9WlLt/exv+fmPW6ykL4BHetQg0T342PuW0x2KX69MVyIp7vlWIzodnXG891BLsLlJ8zg0PcozjUMQI74GyILanJ9Mcy7SK67nzXGolx7AJR3rACgDIKnmjsp39zRp4TTRryEELsGHDBixZsgQdHR2YOXMmLr30UvzhD3+IdB9PP/00LrnkEvT29oIxhh/96EfCdPfeey/mzZuHtrY2LFq0CL/85S9d6wcHB7Fo0SKcccYZ2LJlS6gykPgmCIIgwsEj+hAE4HIfBdyC1lxhfrSC6eJtzxvtWG83xPXqRrUv9brgOq5lxh1u0T7XtyyQlDNNzcURCQgf63KpTSD2PNZmYVlk963D8h2ptctZtwJq2RfzO75G4dm3zCXaZSUXufCLtmkRhPeDdU8Z7vXe+9nQy/d7CjDSHs8Px9hwfawSOFCE0nsmKqJ47/l5n8RFg9/1W7ZswerVq/Hcc89h8+bNKBaLWL58OYaHh4Xp/+u//guFQvWchr///e+xb98+4TbDw8M46aSTcPfdd/uW46GHHsKaNWtw66234oUXXsCZZ56JFStWYNeuXXaaN998E9u2bcO3vvUtXHXVVRgcHAx8nKHdzp9++mncfvvt2LZtG/bu3YtHHnkEl156qb2ec44vf/nL2LhxI/r7+3HqqafinnvuwQknnBBqP6X2FFgqLVxXnBSgz0DxUM20ZQLkId8PL5XUeXDVICX1sTCt/jcEzysm3DQCzGOiOt72NmUWo9N06fpcl7ocRps8TeGQ+rLOTZeX1WifIV2vD6snMNX3vC3fx6EBZR4sI74HLMZmtivzOHyUvD5So8oskB6YIl3P3j6oziSfl67mhQBPaMX9xAuC8MIe9N37peunjAWYnDYtr1N26LAyC6P/kHQ9P/COMg/tz/7l0Li8vuuBXNGIqJHN96yKTuz8bUUYd+UncyuN6joUubOi+hi8oq9ZApBJxIidppa6cXZoRHmPe85hFOO3k/YM4hrsOAcAKvXoFaai5d5t6u1YahCqTpCqZwAvdxqVm85cB0pZDn2UAeVpB7UC3NeKs1MswH7CXBeh0kd5XzTo3Eb5rl+yZAl0Xcfq1auxevVqYdrHHnvM9f/+++/HzJkzsW3bNpx11lmudYZhYPXq1Zg/fz42bdoEXTf1xauvvopzzz0XN954I77whS9U7WPFihVYsWKFtMx33HEHrr76ajuQ2p133omf//znuO+++7BhwwYAQG9vLwBgwYIFOP744/Hqq69i8eLFitowCW35VvUY3Hbbbbjjjjtw9913Y+vWrejp6cEFF1yAw4fVjVGCIAiCICYetuVP0NDzc+EWWkPDNhRV1vEw+VhF8Ahv67cq0nk9DV0/ASPMjztc9hV5Kr0HhBsiEvHnKrsjv6R0YIQiwHnVAthzAs1bH7TuE9b5UIVf5wIDiu0cXAfyUw0UuormnPS6OTd9TVOwWZuErJPQ92vS6zxGtm7dipdfftlXeIsYGDCNVF1dXVXrNE3Do48+ihdeeAFXXXUVDMPAH//4R5x33nn40Ic+JBTeQcjn89i2bRuWL1/uWr58+XI8++yzAID+/n7kcjkAwJ49e/Dyyy/jmGOOCbyP0JZvWY8B5xx33nknbr31Vlx22WUAgAceeADd3d148MEH8bnPfS7s7giCIIikEYX73ARuhBAenBZqxzKuVUS5bTRiEhdk2TUVt7umR2iHpR7rkl9kb2fefpZ3bxmc0zWx8jkwtLJYD10wn+USTwSpJVTgCZHoKNWNtj4HCRymspw3GN9zbR2LZz3XASNlPgPG5uTxsVOexwcmv4F/2XcqXvyv9wDcdEHXRA5skmdAw6Lhq7xwVOfE51kZG01813POsXbtWpxxxhlYsGCBME1vby+efPJJnHXWWbjiiivwq1/9CsuWLcO3vvWtmot74MABlEoldHd3u5Z3d3fbruyvvPIKPve5z0HTNDDG8M1vflPYQeBHpNHOd+7ciX379rl6C7LZLM4++2w8++yzQvGdy+Xs3gMAoXzmCYIgiMZDbudEpPg0tIXXCEN1A9bTILWnyip50iVAbFiIrLe13BMyd31nGtFvv/RmQsAKeBdVtdnHLDnOWqzYiRXgzutaNBa/Fo8CK1/ZPlVlCrH/MFPNhUUqvJ3fTsodb8wAjpv3Z/xD93YAwJFHb8aq7rnI7klXeV7Y48bL0+fVM7NAJIiGEXj363d+GjysoJnv+uuuuw6/+93v8Mwzz0jTzZkzB9///vdx9tln45hjjsF3v/tdMFZ/5Xjz4Jzby5YuXYodO3bUnHekAdesHgFZb4GXDRs2oLOz0/7Mnj07yiIRBEEQBJFkRA1JZ8NZZuXxinAewiU9amu4T3vPct+Wie1aG6iy7aqEEzMth073be/c2FWu3iEsX6pjCCqsg4y/jaLuZCTGlb2WzqOI6sPqxOK6GdwsKux54Gspp8MFZjBXid3z65F3g43o1emcJCHEtPd+cnY0MMFyP5JyfcbE9ddfj5/85Cf4xS9+gaOPPlqadv/+/fjsZz+LSy65BCMjI7jxxhvr2veMGTOg63qVbu3r66vSt7USy6Uo6y3wcvPNN2NgYMD+7N69O44iEQRBEFHBI/oQhIXnuhBZ3AKPP7bEdxA3dOt3FI1ZH3dWax/OaZVEv6PGnnrJ0clgRThXTYUWJG8vQa3qYQNaybaPY+owK4p2Xais1EHGbqvS+RFkmyBWbw3IdXGMzM8hyqm4rGteOrxA4prNuDm2e//vunHBK5fgr3ediY2/OxOZgzpKGdhDVbyzJ8gingMN6nCJ8VkTCw1+13POcd111+Hhhx/Gk08+iXnz5knTHzhwAMuWLcNxxx1nb/Ov//qvuOmmm8Idp4NMJoNFixZh8+bNruWbN2/G0qVLa87XSaRu5z09PQBMC/isWbPs5bLegmw2i2w2G2UxCIIgiJhJpJsn0Zo4XckdjfxSBii1czDDnGLMKcwZ4G/JFq3z0iC3TaAiBuql3kjMdiToiPIHoPQeEAWV8xPUzuUycRbE1b4eIjlfYazUPl4fDcPnXmAcSA8zMJ6JRexVdawFKBczABQAHebzYM+W2djDZiPFAWhAapTZEeOrXMwlXhQNHboQ9NnjTWf9b+CzC2jsu3716tV48MEH8eMf/xgdHR229bmzsxPt7e7ZfQzDwIUXXoi5c+fioYceQiqVwnHHHYcnnngC5557Lo466iihFXxoaAivv/66/X/nzp3Yvn07urq6MGfOHADA2rVrsXLlSixevBinn346Nm7ciF27duGaa66J5DgjFd/z5s1DT08PNm/ejFNOOQWAGTVuy5Yt+Id/+Icod0UQBEEQxDjAmpPXNhKXLbTFyRxXXPg0Hn7jJORf7ERqhPmLAIdob3bHkFdERpFfWAt54LHdgvW28C039GWu6eZ84dz33MjGtnvPV5WlPkA540A2p3jdeAVUGBEV13XtUwZmAPoYoOWYcqx0rdRibbYEOAAYGcDIcqSGGFix7NkhKmezLd614NcpE6aTscW47777AADnnHOOa/n999+PT37yk65lmqZhw4YNOPPMM5HJVKaPXrhwIZ544glMnz5duI/nn38e5557rv1/7dq1AIBVq1bhe9/7HgDg8ssvx8GDB/GVr3wFe/fuxYIFC/Doo49i7ty5dR6hSWjxreoxWLNmDdavX4/58+dj/vz5WL9+PSZNmoQrrrgi1H704Tx0XXxHtO9X3yn6mDw0JxtWT26smsc7yIB+NmmSPIEewLdJl48OYJMV+wAATTFn+dCIMgvuM8l9pSDq+lBNpaGPBcgjL6+zlKKYAFBql9dHvlPujZEeks+/DQCTB+VzY2NQPf0eL8qv49Soem6S1Khinu+c+unNivLWSJB7gSvntA8wz4oyDzWGatrDEfW9oDpeo6RuvSmfL1qAFoEh2Y9iTvS64Nz81JsHQQAYm1VCusiRGWAuYcY1YNGknXh6ynvwZ9apzMcZndslFgI0vIMIC9tlO+CtVa9YqccaF4lQCuAyruUBHjC4kXcst1NsVwl/RR7OfFqSuNzJIybKgHtenBHG3Tu1ElTfn5a41krmOj1nthvtYGqGeBt7GIrV8dEsarFaOz2CmOf5E/c10eB3PQ+5rwsuuEC4/OSTT/bd5pxzzgm0n2uvvRbXXnttqPIEJbT4VvUYfOELX8Do6CiuvfZa9Pf349RTT8Xjjz+Ojo6O6EpNEARBNA2Kdk5ESXpAQ8rR2cSZ2bhOjTB8/uFVYCUg5eiYdQYQsxvSDmt54ag82l7Pgqnmsi43agO5GTOAp4BShiPtcIH3TV6He7goj2YKTWngs5K8/S/bVtXxEUaItxQNdhtOKr6zGVhiU0NVBxorOTxlyvet9bwA3MvtwIKGJ2/P74ZeR1F1ujSoI4He9fEQWnyregwYY1i3bh3WrVtXT7kIgiCICcCSJUug6zpWr16N1atXN7s4RBPQhxm0bKWRbLU1U6MVbyihEHOKmHKzRMsx6Psz4ga3D0KB6HXt5OWATUW18A5LIJEdY0O7VmEvm9JMth+V23iQIGoTzuo9UfCeU1GnVPne5jrsYRH2tWVItm2Cu7bwOq2x88XVSShyQSdahkjHfBMEQRATgCCWwiB5ANi6dSumTp1ab4mIFsZyF3XhtFx5XZK9ottyxywL5MwhmbkUVdeuUHj7NHJdaSMWxFILeIxioR4RqxLBsjHfqjxEItxpLW9JAU5iKRhcXVWsBNsd2xpmUus88UA815JvR1qrEOG7nqhA4psgCIIIhVAs1ZAHQQhxNNa8Fmzm+G0vdyC0Mtkr3XnZSfws396Gp1P0S4R3U8dpx4BKXDt/e8WP9d+aL1oruOs7jIBWRsduBRrhct4Cbu1V471F95O3082BsyNOKdJ5RaALx5db12J5PHns96Hf+Qlz3pzPvxjPNb3r4yEJU84TBEEQBEG48QpfOCzfzuWyxjJDdQPVMabUXqSjuhEr+19nAz3p4jEqAWJ7LRiwp4AC1NZGZ9Rz0bhTZ8C2liLq8ia0w0aGrys23F4usvNup/Xcx37b+W7vyMMoPwMafk0FcLWvwjPchmgtSHwTBEEQ4eARfQgiKE6x5mc18i7yaURbAZu823NPQ97er7dBHrO1qVnUIzpEYtrrGu6MQC8T93ZUZ4/beS3Tp407RB4aXlrg2hRNxye7NnwFNYfvNGiy+AKu/9ycMq/YEe3F5PecUU4h5nf+vO/NRpxnetfHArmdEwRBEKGgCKhElPg1jF0NV4EVvAqnK2Y5H795f6vWOdxSveOKq8oYwbUb9vrnTsEfg2us3fGgmM/Za7WUzUEuEs2BBT6vzpueGWgJYe2HrPOk5nPLUNVZE2rz8nWmj7mnuq03ngDXACNdzjsP9/CZqsSouL/Lzm8TOlroXR8PZPkmCIIgCCIxKAWaqoHqtLaIRKFW+RQncZTaeUV8CoKDuaY7CtCQjNpt1Srb2JEGjHS0eauQWgwd/61OC9WxB3EXd7oOB8lzQjAeBAxzn9t6scd81zsm2bKeWx9R518N5KYZyE8TFM7v2GUWb892rvtiPFwbE4zEWr61Q0PQtIJwXeadw8rt+diYdL0xKl8PACiVpKtZJqPMgk2fJl3P27PqcjD5EyA/Y5Iyi1JWl67PvD2qzEPfe0CxE3l9AUD7gaJ0fX5PgJaFossoPax+Eo1Ol2eieuim1NUFSKbkCwo/PCRdn92pOCcAUocVkaRL6nJqgyPyBJ3qaNVae5t0vepYAYAX5NcPS6sfaVxxnar2AQCcNyKCiPyeBQCkJfcL50CAx1xNcF7/9R3B/UGMX6TPYNWloxDnXHe4hLKypk6VDU/W2GRHA9wWCiEau3FEUHaWOY7pzkRjsmXHITxHkrLVY5lsycjmQVBZOy1arANCFFQv6sBbvp4pNeYl+l/zdceBtrc1+7d85/C/DoLcS3FeG/Suj4XEim+CIAgimZArGhElVZGPI8QWb1rZrVwDjCwHOJCfUcLVS5/GswePwR9emIPUiKnE9RyzXdDtb+/1WqcADtuoZxxo69NiETF++wue2PyyOgc0Z/9mBEI8aNpahZLTpT/2uvW6GLeYqA6Kd+x/HKimsIuCumYuMHzyCOM+7uzwa8K1Qu/6eCC3c4IgCIIgmkYY4R1WoLssY5YIL5nW71MXvo6/nfF7PPreR/Gek/ZUrN1OpxNRsK8QZfBzmw4rPplhito4xKEoMFTgei4LyVIGyHdyFDo5Sj4OfaI8g+wnaFlqFd6WS38pi+qAe1GjCqo1TmjEUIGkxwOIyr3ezAzijqwEHjehhsQ3QRAEEQ4e0Ycg/PBpvIcRn6JIw9b2RppjRmbYXjU5nbNFN3NarPwavLLrlwFGBhVraoKvdUt8ikSnX8dB1XhTBvAUx4fO/zVWXfgLGClePSUcxGNpg9RNQ+svweeqFYhjuEWQ/UWRT9COl8g6FqKooxiGoLigd30skNs5QRAEEQpyRSPiwraC+10fIRqbIou6ZeVNjTC8cPAo/HRaG94uTsVrB4+EVmDgmikcve3rqjGW4+T6ZRxAyX/Mq2w7l4g2GB7+3SlgOkfGYJUp4QT5NOveF7kmW+7B1vhcei7VR1PqL4L70bejzS8t6hsPrhxyYOVbo8dNVNC7Ph5IfBMEQRAEkRikbuiqhpxnbKQrYBcArQhw3Ww1H3i+G9f9+RNAkSG7LwWuc2hF5go8ZuURtgxa3mdbK0mCAojJyihbb640v7Qc0Pam6W9uHXtURFVXfnmEEV5EsmC8eaeununRIklDtCzkdk4QBEGEw4qAWu+HaDgbNmzAkiVL0NHRgZkzZ+LSSy/FH/7wB1cazjnWrVuH3t5etLe345xzzsFLL73kSpPL5XD99ddjxowZmDx5Mj70oQ9hz549dZUtqil+vFPyAGVX8rLI0oqAVmDQ8gzZPWlk96ahFZgZaK3kyCOs6A5BUoS3DD+rl2ucbfnDDGuuZHddR1WOKJgwU5a1mMt3q5ehKXg9cWLbD73r44DEN0EQBBEK51yt9XyIxrNlyxasXr0azz33HDZv3oxisYjly5djeLgy/vm2227DHXfcgbvvvhtbt25FT08PLrjgAhw+XJnmc82aNXjkkUewadMmPPPMMxgaGsLFF1+MUoApJ2NH0RhlxfLHAFiRQSvCFJBFAAbA0+487AZ+DY3cZoiDRu6z6l72CS4XWcdKHfhNl+Y35l1ES4i9IGWM0ZOgkSShDA3BrzMr5uOnd308JNbtnA8eBmc58bq82qfJyIvnCK9koo7awnT5PLusTT1HN8/I563mmQDzEqfkb4XCFHUeuU75sRQmT1HmMVlRDv2gev719rfkczlrefWc5cO98vnVD56ovtP12fJ5q/Mj8vNW3K4+95N3ysvJJk9W5oGifM5p4+2Dyiy0dw7Jy9GhPvel3unS9WMz5HN4A0B6RH4smTfeVuZhHHxHnoCpWx2q+zrIPN+N6MnlhnofTCZ0eAJEEJE4HnvsMdf/+++/HzNnzsS2bdtw1llngXOOO++8E7feeisuu+wyAMADDzyA7u5uPPjgg/jc5z6HgYEBfPe738U///M/4/zzzwcA/OAHP8Ds2bPxxBNP4C/+4i9Cl8tyD1c21FRzbfsFavOIP3uss8jFvGDm73R/r8X12enyLipLKxDmuC1LuHeO5yjyjgNrirFS+fVlW+0DbteIKd9ioxU6EULQ7GspNjgq48OdAnyCRM0fr5DlmyAIgggHj+hDNJ2BgQEAQFdXFwBg586d2LdvH5YvX26nyWazOPvss/Hss88CALZt24ZCoeBK09vbiwULFthpRORyOQwODro+TgI1nmXXjkeYWw1y75zDtqgWNVy5W1QJLTchp0WzhagWfNt6iFKEhBLecHdW+AY4C5l3vXjng3aeF86AwhQD+c5gStq25rWy8AZqev4m0erf6OjqccOZOW2f0NuGoVqIx33c9K6PBRLfBEEQRCjIFW18wDnH2rVrccYZZ2DBggUAgH379gEAuru7XWm7u7vtdfv27UMmk8G0adN804jYsGEDOjs77c/s2bOF6YIE+BIfEFwNPVtkCxqA3iBblqCquj7L6VxlsqxRAZgo17lXBDXjHvcTh36dL1bnQPaghra++prDSRSmUkJ2IAHJvJaTWCYl3meJ9xiCHJMqWnpE0Ls+Hkh8EwRBEMQE5LrrrsPvfvc7/PCHP6xaxzxDODjnVcu8qNLcfPPNGBgYsD+7d+8W58OqBVNlpWADp0XImc7PQukQ1Hbj0JFvoEjrIQQ44BD3rW4x9SCycDvd9ZuF1wJvj+32iknHeann3EQhMMLMNd0oSDhFjPXcsOpVMCRFL3g6/yD4bW/gs5xINIkd800QBEEkFIObn3rzIJrG9ddfj5/85Cd4+umncfTRR9vLe3p6AJjW7VmzZtnL+/r6bGt4T08P8vk8+vv7Xdbvvr4+LF261Hef2WwW2aw6Xoa3wR9YyKkuKYGFyRI7zsYus9J6xXyQfaCSXyuP9Q6MJXLRHJdyV1EU143VSWANOXAmj7q8cY5BHm+u1hMK0bNM9nzziuuQnX51Q+/6WEhYHxtBEASReGRju8J8iIbDOcd1112Hhx9+GE8++STmzZvnWj9v3jz09PRg8+bN9rJ8Po8tW7bYwnrRokVIp9OuNHv37sWLL74oFd++ZRI0JqWC27uuzuvJJWJEgtsPyfpmW36bgSi4XLPKYf8uj7M30kCpncNImf/jLmctwjjIWHLOACNjBolLQl0ngZbqhLCeVWHOncirp1HQuz4WyPJNEARBEBOE1atX48EHH8SPf/xjdHR02GO0Ozs70d7eDsYY1qxZg/Xr12P+/PmYP38+1q9fj0mTJuGKK66w01599dX4/Oc/j+nTp6Orqws33XQTFi5caEc/r4XA0c7jtFLGlPd4jcZsiUU7gF0CjtVp3WbcFN656QZSs0aQe2sSsgc1s9zl8kZVVvtca4BRnlRDK0ZcFwwoTjI7EfQcI2EzHggqxq1nnzctdcK0HCS+CYIgiFAw1N+gpPZCc7jvvvsAAOecc45r+f33349PfvKTAIAvfOELGB0dxbXXXov+/n6ceuqpePzxx9HR0WGn/8Y3voFUKoWPfexjGB0dxbJly/C9730PumIqPxGB3cyjvmicIjHGsZMTwULJeHJ0oLe+S20cxyx8C5uP+w+875mVMA53IDUa/X4t0W+kgNHZBbAxHW19GnTFzLeh4EBmgFUCCRKtRVi383rSRgC96+OBxDdBEAQRDs5R91znDZgrnaiGB6h3xhjWrVuHdevW+aZpa2vDXXfdhbvuuiuacjH3tzhRJLty5+eZnswmbgv7OEQ03Vizxn47ryOtwPD6q7NwIbsI+b2T0eYRw5GXkwFHzT2Ig4cnA30dkeZvBwcc59fSuCWsy7n3GRXxkBv1/uldHweJFd/GyCgMVhSu46VS/TsIcDGo9sPHcso8tIHD0vUspw4+wye3S9cXJk9R5jE4Vz6838gos8DoDPl+pv1efTml+uXdzZmBvDKPvkXyOpt3yh5lHh+d9Vvp+p25I6Xr/9VYrNxH55+mSte3t6WVeWhj8i5ztvegMg8+PCzPI6Mux2i3/Boc7lFbu9Ij8jSdg53KPLSBQel6nldfPyrxwTT1m5GrTFlRvGy4OvSuIXkGGTxKcwtBxEtTImR7ow47f8dEVMfodWVPgrB3lUdDUyyzrvotu4DrY0Db/hTeODQH2VEGrVgua8SR5+155UvAwed6ACuKegz10OxzTdRILfd/MwOuEbFAAdcIgiCIUEQ59+eSJUtw/PHH45577mnuQRFNo2mBuqyGbFwuvCyCjzc/q+ieqbS8v0XrGoG9H0enQKP37Xy+WAJbHzXdtfVcJY3f9rVi5akVTcGv5wCtNDGGHRABqcVS7XwWeJ9VDQgcSPN8R09iLd8EQRBEQonC1a28/datWzF1qtxLhCBixe9ajkKUR2FNF4nwkOWKy0Lunb4L3IrGzcFKQGrELDxHAxrhHuFvl8t77A7rPNfKy6Keg93ZAUDiI1aS4PURiFqeBSI3c9n/qInwXU9UIMs3QRAEQRCJQmQ1ETWwRZYV0X9p41zVwI2CKPNU5CWygFtELVJc+XGA60Chg+OcC7YjPyePUhtc4jdWeLWAdp57zTmSkJllLS4cQm66EchCH6b8LSEGxwktU9cyL5ugItebh8hDhkg8JL4JgiCIUDDOI/kQBKB2AfYG8vJrbIvEeqCGuTdNVI1ZkXtoLS6novxkmwR0qY5DDHMNKLUZ+LtZT6C3px9cqxQmbpEky19oheZAYSALLceU248HrA4GcoNvImGvMacod543JlgfA/SujwdyOycIgiAIInH4iQTvclF07VBCSmaNqgc/kcMl66DuZFDhrR/L/drrniua4q0uAcrM8c7pQQ1L//Xz0PIMqRyz6zdJ7sHMMK1Pk/6UFlrMhdskpOxhUN1DQY4pSeetFeFlM6d9jYnOiaxDROSZIxLiRMtA4psgCIIIh1H+1JsHQXgIG/XcKyK8EcCd66p3hsaPRwzh2hyV6PGLih6FyHd2dljjq9NDzBzrbYnaOvcTNc5gbFFHPE8k5fo3dICnAC1fOS9BxuIn5by1IpwBxUlmBaaGWXid7PV8cbqZW//jPD/0ro8FEt8EQRBEKKJwJSNXNMKJ0zpbWWh+8fL4XGYArARhg9NvjLMUpwXJ4doZSJRaZWhw9OFaCVI/dVtBeeWbGe7/RONxRp43MkC+00BpegGZP2eQGmKu80jW7XhgHNBHAz4UnM+TINbxBjxr6F0fD5GL73Xr1uHLX/6ya1l3dzf27dsXKh9eKoGzJg9JV1wwRk49zzc/2C9drynm8AaA0sxO6fqBY9T1lF84Il3fPkl9LO9Ml0ck1nNtyjymKorKCuouspJiN93t8rnVAeBdmQPyfSjCIaQnq+eTzk2dLF3PiupznxqRT8DeNjSmzIOPqdOoYCX5vaAFmFJaZWEw2tWPI71DMaf9iHweeQBgKcV+ikVlHsaI/H4KMt+4ci7wIC8sXqptHUEkDJlgNrJAbnoJqSENqSFznuZI8nY2dC3rYApui61oPLh3DGYEjWB7jugGjIuWuSKroqLL1rss6rW4/xOR4jzXRgroXbgfDx//A3zg4c9DH2FmR5YEZydUvV4SExkt6Ku41udJQjv8CH9isXyfcMIJeOKJJ+z/uq7HsRuCIAiiGUQR5IUacUQZUSPfXGGOlzTSHP/PuU/gn1//AAq/nQYUoXS39AoGoeD0Wr4ZYKTLFna//jPuTh8VLiukd4xoXRlbmZa/QgZec00lZmWp6CQggZYMnOdMKwJ/frEbH9h/PdJDzHVtiWIo+M00IOp0Iat5k4mz7uldHwuxiO9UKoWenp44siYIgiCaDefBLPOqPAiijJ9AZhzQCgz3/eJ8pIY1pCy3cwU1uaED0B2OQrwcK0zYeIzT2iQboy5bHyYvb9Yit3/PeiBcXRLNxTn/upYHMv0a+GCba8y3E1H8BG9+oo4YIia8HXxB3dEjLQO96+MgFr/u1157Db29vZg3bx4+/vGP44033vBNm8vlMDg46PoQBEEQBDEx8I1QXrZuazmgbb+O9CAL7sJZC9xt8WNeqw9zfMJmHVUDOWKLuwoSV+OA8jnUCmbnkm319jm3nJW9L8rXuvXbXg6xVZwIQJi6apF4EkR4Ihffp556Kr7//e/j5z//Ob7zne9g3759WLp0KQ4ePChMv2HDBnR2dtqf2bNnR10kgiAIIkIYj+ZDEF688zADpljQCuVga94gXlE1SJ3B3Ry/axXbFl4LvEqEKy32MTfAvUG4RGUm63frUPW8DTh2274HNICnKveC694Yr8T5bgobnbzJ9Uzv+niIXHyvWLECH/3oR7Fw4UKcf/75+OlPfwoAeOCBB4Tpb775ZgwMDNif3bt3R10kgiAIIkosV7R6PwThQTgmWatY3MwFgt9BG6lOMe3j5m6tczUaa7R2ey2EYaZ1EqaNYgymKFuFqHLOE06N6QqcmVN4tQKMu+MICM+jw7pdagNGuw2MHlVE/gheuTYC3AuG3sB68d4TYa9PVYeed70qHxWt1HFB7/pYiD2c+OTJk7Fw4UK89tprwvXZbBZTp051fQiCIAiCmHiIxGqg+ZhF7uHSHZU3KwdZ445tqtzN/XapsGSHcc21rcyOVhn3ttAS0IZtpMXT0JNvYfUK2lbAGzzN621i/S9O4vji8p9g54c2othZAk8FvzcAgIcU31WdbGHwzkLg13Hlt603nU/HhLIMIrwdA968w9zXHP7lI1qG2MV3LpfDK6+8glmzZsW9K4IgCKIBWGKo3g9BqAgtvpjD6hZwW1YSuFv7tI5kUb9rDfLmzM819Zm3gV2nC3yt+B1n3MK4VazsrVBGJ9KhEM7fBvDQW4vxo+EpYHkGGII0PlhDRQKXSTPFfmEKr0+AA5V7CI7/VTv0We7Mx29b2XJROm+5vPUX5j6KYChMGOhdHw+RRzu/6aabcMkll2DOnDno6+vDV7/6VQwODmLVqlVR74ogCIJoBhQBlYgR2RRH3rmovXAGFKZygAGZfhbIzZsD1S7iRrB9eaM/h5kP2RaxOsBTAAxzSihpw74Jt02zrM/NaLQLp80SCaha89cSLkZ4peMpM8iwa9tRuOm/P4HMkAatVK6fAOWvpUOilDHvhfRQ+G1d54UJ/ju/vb/9lsnOdT33RJ3XEBDuOVPfjuhdHweRi+89e/bgr/7qr3DgwAEceeSROO200/Dcc89h7ty5Ue9KTiNOdoB98JIiNGuAOdDz07LS9WPT1eWYfWS/dP30tmFlHtuH26Tr81PalXkYurxLMz3oN7lqhcl75Mf7mz/Vf63tH+2Qrud/mqzMo+0d+blPjarD9uo5RRpD/RZkijpHoajMo61vRLpez8uvDQAoTJFf6/kjMso8tHyXdD0bUx+LMUW+Hy1AHvo+cQBJi9JB+f0GALygvtYJgnDjFcOiqY8yA8yVtrKyOq3/jmALXVnAsSiEaSnLMfWUgzj45jS07dftxrnQcugUgfUQNvCTh6S7g9eK3zho4e9aaLIOcXotWFHMmYGKILTc6Mu/s+8wgFUOOjaxx4HsIWb/rjUPWTyHUNs786hHLEd57Tgw0mWPnThnfyBiI3LxvWnTpqizJAiCIJJEFGPOqDOcqBGp+HWOwfWOA3f+5WJRzbWK+zdPAXBGWI8QZ/AqrgPv7erDf+2fCq7ptugWWmHD4hUQ3PE/qnwJkwAiLSku6lwDSu2mm3e2XzOvOe/YZMDusBIFaouyAybMWHJxBgHSqM6Pn1BOYEeTVmjQtUTv+liIfcw3QRAEMb5gnEfyIYhaUE5h420wehvSokBp5eVOKyArIlyD3VG+wHBAH2N4/onj0LY7A60gGIfrt1/Z2FHv+nosgn7QLewmgSLNFwbkegtY9IHXYKR5lUcIc3TSaCX3cq/Lc9O9IIJ2BDW7nBYRlKNRnTj0ro+HyC3fBEEQBEEQ9aByD/dzOxdnhioLjbwu9wAAKctJREFUsD321vmboxKhuWz5tiyC1jhY2yquwz3vuKdsIpHih1YAUDAT25Z3lPfhNwomQPAm19RQTkEVJKCUKE+BG/94EOCReBi0Ghxo25PB9gPHIpVnLsu26LqVRe5PWt0lflw9MeEh8U0QBEGEg4KwEDHijDbu14gO3eC3rNnlAGvMIagBU+haosNIcxhZIDXMwFNmOq8reJixliJx5xc8jhkVAS7dR0DrWaGDo9hhoP3PnpgbQca7i4T9OLxtlddSKwXICoAlTrUcoOVM4e29HoHq6zMJZZdCQyGih971sUDimyAIgggHR2XamXryIAgBzLq+Ali/wwoCoZW8LPaNDLcFLyuay420uQNeYqFEmF+QNpmYYdycIs3ucIhA7OpjDMwQjDD0ChWf/1Wi0SrTeL5//QJv1UFShCtzPLvt6OXcsc6bVvA7cXiuWelwFL9zGUEHy7iE3vWxQOKbIAiCIIhE4bRQO5GJBXmG/su4VrZ260DpCANLT/kDZrUN4D/3HIvh33VVIguXBXkUothP6FiWb7Bw1nW/fWgFQCuop1xzueOLOgia3YBupDga5yIs0UK6FlRRyf2GaIjyIIgGQOKbIAiCCEUUQVQoCAuhQuQCG6lwcApLbs6xPf/43fjBu54CANzTdgD/+OcVyBzQq0V3jS6uXou4yN1XFPlZZuV3RX/X3Nsr68tHdFTtr9ku50kUR+PAWhp0PvpEC3ZR2ZznRiXOa92t45nQjPrhGmK/J+ldHw/JFd88AX5NrP67lCnm8WZt6vmRVaSH1OXcPyCft3q0kFbmUTosT5M5rD5f6cGcdL02PKbMY8Zv5euZMVWZx7bZx0vX6/Jiouc1tUli8huH5Anyoklc3TDFHNx8SD0/OwzFeSkGmNe6X74fVlT7JRnpKYr16uu41CZ/ZLGs+pGW75Rfx6lRdR7ZQfmc9uzQgDIPrj79yYUjgnFgkZSEmCAEadwGCr6moE2v3JiTtRzAuGtseFTIgsgZ5UeQc57vIEHnuG6O8WYlc7y6161YRqDxvc0cU9sIoWvtI+i+Wlx4ByVRwtvv3Ig6h2IYPgB4njHemA0NqiuuAaU20xuH5+PcEehdHwPJFd8EQRAEQRA+iAJEqdILKVuwuA688OpcrJm8GEdl+/HjPSchcyCFUpZDKwKMMfecx3U0Kv0iSnNmWuBF6f0iqDujmrcdO4CRoSxSf2gPVx9+lm3vWO9m0SihqxLe48Da3dIEqftaxnyHLQM3O8lK7RxakUEfc+yiAfcJZ8DYrAL0IR3pADYYIlmQ+CYIgiDCQRFQiQTgHPsdZLoxBnE6VgI0zmBkObJvZfDogSUoZThSw2ZifYxBK7DIoz/7ld8V6d3jli7dpwEUdnQizd0RrL0Ig70ZAfKXMG6md5KNGXaur1HIjZt6ShreIRLeZc7l9ezGESei0MEx/cS3sX/PNGT3ppEaqaSJW4AzDrTvSoMZaufGuqB3fSzE4ExFEARBjGuMiD4EETGqRq8o0JklVO1pl4pmkDL7UzQjnTvFsLmxM6PwZeWs8rGXlaOdMwOu6c+86YWdCIbZUaCPecrp2d767ayDSiLP74Cu5uNCUMo8Iyy8Y/7D7mI81FMcyLwuVPgFUwt7joLuj5fdvicZeO7k/4vzTnwFXOf2/hph+WaG6SFjPbtig971sUCWb4IgCIIgWhrvfNnqDcpCyIrwXSxbxnVAN0wBy7WyC3i5se10veYpAEUAUVsyHftipRrGsUvGhotcx6sa7jIRM5ENWLVYuslFPTiycdy1uJrX0kkS8tmRGtYw76efgXZYRybPXOO/GyLAJ/L92OKQ+CYIgiBCQRFQiaSiGgPOvUKSmyLXtlpZsTRZ5bcdQdw593h5XDbXK/lAN0V8PXBvqyxsp4J3c80h4B3HFDyD8vdEF5Eib4eg2xAVwnZIBBl/rwq0FiH27AQGkB5k0EfT5rAVaxrCJkU+jwt618cDiW+CIAgiHDQOjEg4MrEqtJI7LNqsZP53uoB709ljsAuOfCxLOkPN1nAtDxQnmZmnRupQEJYQKJfJ6jwILQyc4ibJFnCJ4KrLEhl158NEtYZbxx3lsft1iHj/h41ir8K69w1Az1f+R3lfNDp6ui/0ro8FEt8EQRAEQUx4GEfFoq3VYCUWCVVA3CgXCYTycq3IKu7wRqU8rnKGac/W0/Z1CotmRzyXIRFVXENtHQ+yfL3j4RssqBMjzoISZ+eFqv5r8VqQZefsvAsSCLGOfRDjExLfBEEQRDioN5xIKC4rp1cscnf7WzZOvMpy7Sc8LTfT8pBPzgBo5cubwRR9VrmcbuuispbzK2XNhekcc62zXNyrXNudY9EdbvDMI5i9LvnKBr5fB0GLEUtQqlqFXFQRt5mjU2EiBbSKIrBaREwIgUzv+lgg8V0PTB0snumKNJm0Mo/UmLz7fepO9YU9oHdI1789dYoyj0l98mPJDKnNBFxTPCVV9QVA7+uXrp/5uHw9ABw5ZZJ0PU/Lbw2Wyyv3gf4B+T5GRpVZcCOCt6qmqNMA5UChIN9FgPpoUzyAeUb9ONKGc/I80rp0PQCkFdegPhZg0ObomLwcpXHeGqIXMpFgvOO6XUHLBFYy0VzbXPdYvlWXq0PYcwOmAGcAs+IwaZVvK19WDq7GU6b7OjPM//qYmZNVBs4AI1OObuwok3M8tyXwXe7mgnLXZDFt5q1ap1WZWx4EYb0YwtDAQGycAaU2wEhxQAP0EQZ9nL9ulPgNDfDW80R1+a8HetfHAolvgiAIgiBaGq/12halIgEeIB+nQBblL964vA0AWEHctMpyni7/tsRSeZ0V8I1rgJHlLsumNe7bHodubVPe3vAEUZOJzJpdlZvpbl6nWGLO+vYQWVRqlagTeWIEEILC+di5GRdAKzB76ruaiEuIhs03qnJ4x3Q3eVgAQcgg8U0QBEGEw+M+W3MeBBEB3jmrlSJT0hi3Ld/l8daWAAo95ZeTshUc5bm7mcv33fwy0gBPcRg6oJfdzUttBkqGOQbcGZEdqFjn4R0TrhgPXpPYdG4TlxCPUSCFdrf3EnRMsWy9n3W2BrRSBB0HjRSjYc5tFNeBN48mCW/rOaLF6XURN/SujwW1jy9BEARBOLCmH6n3AwBLlizB8ccfj3vuuafJR0W0CtwjQi1xbCESJUGFsy3c62kwOsdYWx8NdourOJmj1MbBdVNAFydxGBkOrcCgFQGuc3CdQx9j0AoMpQxHcVI5vWaOCbciooOZbuu2q7lCkNXcgeA5tshpkEDiWqWjQto548TruqxKL1rOBMsUyMR1bOON68037JjsGupFmEeQ8xLiGWA02zSZEE/tKN/1RIVmX14EQRDEBGbr1q2YOnVqs4tBtBBOl3KV6PZuEzTv2gvn+WtZz61QEg4LtRVYjTPTOlbKcBQ7DPD2kjk2fFhHelCzx4Zb6bU8AzRuu6Jb5a7av6A+6rL61tCGjsy1OyICWSHDWrnDXC+itFFb/evJL+5OEKtsftbpWlzWnd+AvxgPQwTXLLOGlNS0cf37J5ILiW+CIAgiHBSEhWgycQk6kfAOJcYDuBfrOQaucTMpB6AD+SNK9kFpbSXouoFCiSGfNnsYUv0paEbFaqvlneZ/nzKIiseqx8NLEQmlgHCHu33U58sVXC6pj5KgdRa10GqGcPMT1V5qEdkqRB1OdeRfl2huNIphJvXnT+/6OCDxTRAEQYTDiKDFa9ALmQhHI6yosjHjgUS4J40tEq11rLLCyBhgRQYjxaFPzaOtrQBNM/Do+7+DNsawbNunkS+kUCpqMIZ0GIzBSHNTeDPYUc4Bj4dzANfzUAK8BjgDSlkgN6OE9j/rgcVMkDJZY2mNDKAVYAa3Q33HYp2nUMMNvEKzVovzeAgIFrb89RyzX723eh0GxXn8cR83vetjgcZ8EwRBEASRWGqO0h3Bfp2fYBu5t7d/a5X/ptDjttXKmFpENltAPpfC7z7wQxydmoIZ+mT89wd+CMNgSKVLKB1RNK28JYc6tcqmw26As4CipmbhHaKhr+WB7Nt64P3woEKCmePk297/jjn2vc5OBK6Z03eV2hyB64LgLWuQsovKGbV4aqbWqcVLpNZ9eL+54ztI3q2mCSMM2kc0F7J8y1C6Sqi7SLkqj7x8/mQASB2Szyk8NUBPLStlpetHugPMr62YyrnYpn4i5KfJy9E2pq4PFOXzMPPDQ+o8+g9JV7OsvJxQzVcOgI8p5qQuBJhPWkWAckCxH54PMGe5iqFhZRJNcV6Yrp6jmyvOPcuklXlkDrbJ9xHgnjQOH5bnUQxwHbcy5IpGNJC4Rbc3Wrrzd+jx335jejUAhjk/s72PcuZsOIXCFB2zj+yv2vS9PX34/d6ZYMPu5yPXzCnJtIKl6CtZ2gI8jnoLmKc1xZeeC37+WAjRpI8xDP1+GtKjLJLjLHQY4CmgfV8I9S0aa+xdD0eaRommoJ0A9ZSn3u3j6HAQ1X8zj9Evj1rz9duG3M5bDhLfBEEQREgieCG3nNmBGI9wZk7zVZrEkR5gwkjq1u9gGUJsES3no5WYbfm2855sdiruPVQdePCPB6aDMYC3G8CIQxhyVgkeVt6ny2U66turhvzi6jRhHNCKQOaQOdd13fvhQPagZv+urVCSZY0S3mH2U295ZEKwnnVhjsHb+aFyP/fmrRLFtYrmRr/aYr226F0fB+R2ThAEQRDEhMUvwFLQSOpKOCoi0SiLZG6O9QYDtKEUUikDjHF8fOd59mZX/eksAEA6XQIb0U0385RpjremFWNcME45yrZuQtvNjJuRy6MQ+FZe0vy457drkL1gGTzrRb9FedeDRITVPcVcVYbhyxB5ILawbv+iAAnwWcYFy1X5Oz0dXPEdfPZJTFjI8k0QBEGEg1zRiHEC4wCKQGqIVf6jMs67JnFnWaKdbuuVYdr2uGI9Z67UcgyjByYBGQO/fufdmPfyuyvbpDiQ16DnTcGtj5YzZqzSqA9ZxlDHJBMsrUSt1meRNVVm5fbbp9/+g45NrsOKbgWoiySCd1jrctRWf299eUWubBgAfJaLzoHTCh/0GGT7s+7ToHENRDRy6IK9T3rXxwGJb4IgCCIcRgRd+RQBlWgwVWLYGaTMJ73ov9KK6BlD7k3PNXOhPVe5AaQGdcDQUZpkIN09Cs6BYl879FHNFPKWcNLMAhg6h16qjHeujCNXlC0szWjwx0GtxxDFuGaRIA2Tf531H+nUWSrRXe8Ya9k+ZGUQiXKZeJZ1hjit8GHvJ+8xqDptwtCM+5De9bFA4psgCIIgCKKMMyp56OnGfBr7PAU7RmspA2hFjtSYOd93KWtGBtcKDNA08D9ONq3cGSA1Yk4vZqTKQU85A0+Z/7UCACvSedFT1oDCQWnd9+YjyzegUOcaYOiA3opxKYOINi/ea0IkxGX1Vs+2URO2M0Z1XFaaoNZ9VR178/PLN0j+tXY8ifJQWdCDXgeqNERLQOKbIAiCCAc3zE+9eRBEApHNga20fjst0GV3XzCAFU0Bbugc6eHKxqzEoBWAUobDSHOwkhlMDDAFuZExM0yNMLtcWpFBB8rpmWnV1Mq7rGESjUDu9U7XWVmaQDtEuPm0ayUqsaISYUEMe2HEpHd/YYVoEMIIyyCW41pFqugchS2XyrMgqOeBSDTX66XgFP7evGXbBc0/buhdHwskvgmCIIhw0DgwYgJjiVWpFdzZ6LYudQOmq7jhTsc1c+osaEB+KgcrW7F5qjwW3ekiX84HAFjRsdCAIwGCCUIEEN0WinRhxsdH6gZtFwDVFs5arZgiQRjEsh1ApNrjr+uI0s41M9+6gs3Var1WWY6DdFTUI7St337ls/6Lxlh7v2UiXWRJD3IN+XUIBLHqq2iGxZve9bFA0c4JgiAIgph41NgmDCK8LZHlbDCzEmzRxJziqdwSY+Xps7SSmUF6kNkileuVPJzbMgNmBHWHRZ57haej3FaaQIQY7mmkTVfyOLDc1KX4WZBD7UiRt8zd3g9PubgG5GYY9vkMsk3Vaplwb5TOUdWVH966DFpeWQeAKo8gZRVZx73u4l5LuGg/qs6JIEQwzJpINrFZvu+9917cfvvt2Lt3L0444QTceeedOPPMM+PaXXMI0JvD83npeqP/kDIPlpcPjMocalPmMbXYJV2fHlHnUcrInyYsgqAKLBfAZy6Xk67mhRr87rzo8jc9S6lvHZbJyNcr9gEAXHGNMaZ+wvOivD5U1ygA8JLCTKFaD6CkOC9MC3AsqmtsWJkFmDZY3z7MRIr14/zNSUFYiHGOn7hRWrsd1jKulcdlo2Lt9KZhBgDH45NxwNB4eT+sUpaiY3uYeWhF89tpCTXS5fSlyj68t2oc829rhTosuWWruSWwq8QlD6llnMdcq+u5n/XSM6xAuE6WrWHOKR7I8u9nRfVLB0W6mHB5PfiJ2IAWX87MjiZN1Yyr1Xrulz6Ml4Nfmlqt2yG8AbweJlwDjDh9mOldHwuxWL4feughrFmzBrfeeiteeOEFnHnmmVixYgV27doVx+4IgiCIRmK5otX7IYiEorIOV1mvHeKLM9NCrTn6ze0xzoLLnpXc673Tk9ljpH2shszhcq4VTAs692nMxyG8683XEt5GFsh3chhpd/mFc5kHytjxqfe4g3a6qLLhFe8FG5VlNqw1uRGEvaa8ZfSKXetaLtdPYDhc27v2JzovzJOeC5Z581eJdWda1TK/MgXEJbyZed+MdUc9hsMBvetjIRbxfccdd+Dqq6/Gpz/9aRx33HG48847MXv2bNx3331x7I4gCIIgCKI2RILYp73oEtwQi9xQ46i9jX4GaCUGZjis3t70svysbAxH+RydAqFplCWVAWNzczjljFfNyPD17tcrcoLk5zc2WJQGNeRf3qbq+ggyjlj020sQQVivDgq7vZ912Lus1g4i7xALp6j2s3Q7t2GSZX7lFSHzPqjnfEtgHNBKQPbtmMZ7ELERubNCPp/Htm3b8MUvftG1fPny5Xj22Wer0udyOeQcbsSDg3KXUIIgCKLJcNTfm02d4URSCNjAFolX7jBhRDHXtjM/noI9hVgY4VyVnjn+G5U0iYID2d0Z/PbgfGTK7vR14ydGwwp75zYikWUti7ujQlV2mSu03/+wqFyrQ7iYR4pzv36iOwxhj0EkuGViPKL6YYbbwyZy6F0fC5Fbvg8cOIBSqYTu7m7X8u7ubuzbt68q/YYNG9DZ2Wl/Zs+eHXWRCIIgiCghVzSizL333ot58+ahra0NixYtwi9/+ctmFyk2hIK1PG6bGai5kWkHTytb61ix3KB2WKy9+3ZuI7XSG47yORr83CnIRdTSkVDj8XNmWvD0UYbsQc0eP16Tpd6vPGEFmZ+XgZ/lW+aV4F1Xj/U4rOW7TrifSvDbl1cAx4nfNernhh/kenem9SwTXo9+x1nLuaix0yDWjjR618dCbNHOvYGgOOfC4FA333wzBgYG7M/u3bvjKhJBEARBEBEx0eK7CF3MHdHHvZ8wONN7xbxIaHunO5OJc3tbwdBQ7hV21ifAmPfqhfJtVHlpJfPjLXtgwrr3yrZ3jhl2CjE/geS0fHvFttcq7hV29QjzWgmwH0MHSlnzO3RHSDm9HfVfVRZFear2r7r+RJ4I3m2c59RRXj9quuaDjhcXLSfNOm6JXHzPmDEDuq5XWbn7+vqqrOEAkM1mMXXqVNeHIAiCSDCGEc2HaGkmSnwXoZVYIbItcSxaLxLpzvyt/cm2927jzNcPZadAlJbmZiArf5gx30B1J0SY8cBO4R5kX0HHGAcZKxz0HCjy4gzgKSD37jGU1JPhqMsVZJl3ubNDStSxEtQjQFUnfuPNw9wPfnUvEvxBz1MSxDi962Mh8jHfmUwGixYtwubNm/GRj3zEXr5582Z8+MMfVm5vTa1URKH5D/JIkN+9mnSyx3IORlqxXv2EKBbH5OsDjBkpKaa1CjLVmFaUR2UsluTTiAEAuGL6Nl7/ABim6OZlqqmmgsDVESqVU40FeDtwrphqLEB98QBlVSPv61PVuVmO+h8Kqv0E2kcLTDVWhHleo6izKqJwJUtAHRG1Eza+C1Ad42VgYAAA0Ln9MFKpOAcumnCRgBLhbdQzgDNWdjHn5bwYmHUNB7AU+xfK81dj5hzQzHQ/r3qvysbUBnCdtZc79md2JPDgLsMyUSTbTOA+TyQTc8ovhsJLGtLDQ2AlTucuoVjte3rXtw6xzA63du1arFy5EosXL8bpp5+OjRs3YteuXbjmmmuU2x4+fBgA8AwejaNojUd1zY0EyCNIGhXj0wswPuJvB048VPdCozpHJ1gn7OHDh9HZ2dnsYhDjjLDxXQAzxsuXv/zlquW/eWpDLGUkCIKYKNC7vnWIRXxffvnlOHjwIL7yla9g7969WLBgAR599FHMnTtXuW1vby92796Njo4Oe4z44OAgZs+ejd27dyfaLZ3KGT2tUlYqZ7S0SjmB5JaVc47Dhw+jt7c3jsypN5wAEDy+C2DGeFm7dq39/9ChQ5g7dy527do1oRuNSX2GNBqqBxOqBxOqBxNVPdC7vvWIRXwDwLXXXotrr7029HaapuHoo48WrmuVMeFUzuhplbJSOaOlVcoJJLOssQkaI8zgQlkeRKsSNr4LYMZ4yWazVcs7OzsTd+80gyQ+Q5oB1YMJ1YMJ1YOJrB7oXd9axBbtnCAIgiCI8YkzvouTzZs3Y+nSpU0qFUEQBEEkm9gs3wRBEMT4hHMDvM6gg/VuTzSfeuK7EARBEMmG3vXx0BLiO5vN4ktf+pLQXS1JUDmjp1XKSuWMllYpJ9BaZY0Mzut3JaNxYC1PPfFdgAl67wigejChejChejChejBpaj3Quz4WGI8lNj1BEAQx3hgcHERnZyeWHXEVUixTV15Fnsd/Hvo+BgYGaDwfQRAEQSQEetfHS0tYvgmCIIgEwSMIwkL9vgRBEASRXOhdHwskvgmCIIhwGAbA6hzHRePACIIgCCK50Ls+FijaOUEQBEEQBEEQBEHEDFm+CYIgiHCQKxpBEARBjG/oXR8Libd833vvvZg3bx7a2tqwaNEi/PKXv2x2kapYt24dGGOuT09PT7OLhaeffhqXXHIJent7wRjDj370I9d6zjnWrVuH3t5etLe345xzzsFLL72UuHJ+8pOfrKrf0047reHl3LBhA5YsWYKOjg7MnDkTl156Kf7whz+40iShToOUMyl1et999+HEE0/E1KlTMXXqVJx++un42c9+Zq9PQn0GKWdS6rNRcMOI5ENMXFrh3V4PUb0vcrkcrr/+esyYMQOTJ0/Ghz70IezZs6eRhxIZGzZsAGMMa9assZdNpDp466238IlPfALTp0/HpEmTcPLJJ2Pbtm32+olQF8ViEX/7t3+LefPmob29Hccccwy+8pWvwHC8D8ZjPUTRHg9yzP39/Vi5ciU6OzvR2dmJlStX4tChQzWXm9718ZBo8f3QQw9hzZo1uPXWW/HCCy/gzDPPxIoVK7Br165mF62KE044AXv37rU/O3bsaHaRMDw8jJNOOgl33323cP1tt92GO+64A3fffTe2bt2Knp4eXHDBBTh8+HCiygkAF154oat+H3300QaW0GTLli1YvXo1nnvuOWzevBnFYhHLly/H8PCwnSYJdRqknEAy6vToo4/G3//93+P555/H888/j/POOw8f/vCH7ZdOEuozSDmBZNQnQbQCrfRur5Wo3hdr1qzBI488gk2bNuGZZ57B0NAQLr74YpRKpWYcVs1s3boVGzduxIknnuhaPlHqoL+/Hx/84AeRTqfxs5/9DC+//DK+/vWv44gjjrDTTIS6+Id/+Ad861vfwt13341XXnkFt912G26//XbcdddddprxWA9RtMeDHPMVV1yB7du347HHHsNjjz2G7du3Y+XKlbEfHxESnmA+8IEP8Guuuca17H3vex//4he/2KQSifnSl77ETzrppGYXQwoA/sgjj9j/DcPgPT09/O///u/tZWNjY7yzs5N/61vfakIJTbzl5JzzVatW8Q9/+MNNKY+Mvr4+DoBv2bKFc57cOvWWk/Pk1innnE+bNo3/n//zfxJbnxZWOTlPdn1GycDAAAfAz2u/nC+ftLKuz3ntl3MAfGBgoNmHRTSYVnm3R0kt74tDhw7xdDrNN23aZKd56623uKZp/LHHHmvsAdTB4cOH+fz58/nmzZv52WefzW+44QbO+cSqg7/5m7/hZ5xxhu/6iVIXF110Ef/Upz7lWnbZZZfxT3ziE5zziVEPtbTHgxzzyy+/zAHw5557zk7zq1/9igPgv//970OVkd718ZJYy3c+n8e2bduwfPly1/Lly5fj2WefbVKp/HnttdfQ29uLefPm4eMf/zjeeOONZhdJys6dO7Fv3z5X/WazWZx99tmJrN+nnnoKM2fOxLHHHovPfOYz6Ovra3aRMDAwAADo6uoCkNw69ZbTIml1WiqVsGnTJgwPD+P0009PbH16y2mRtPqMFYNH8yEmHK32bo+KWt4X27ZtQ6FQcKXp7e3FggULWqquVq9ejYsuugjnn3++a/lEqoOf/OQnWLx4Mf7yL/8SM2fOxCmnnILvfOc79vqJUhdnnHEG/vM//xOvvvoqAOC///u/8cwzz+B//I//AWDi1IOTqI75V7/6FTo7O3HqqafaaU477TR0dnbWXi/0ro+FxAZcO3DgAEqlErq7u13Lu7u7sW/fviaVSsypp56K73//+zj22GOxf/9+fPWrX8XSpUvx0ksvYfr06c0unhCrDkX1+6c//akZRfJlxYoV+Mu//EvMnTsXO3fuxP/+3/8b5513HrZt24ZsNtuUMnHOsXbtWpxxxhlYsGABgGTWqaicQLLqdMeOHTj99NMxNjaGKVOm4JFHHsHxxx9vvyySUp9+5QSSVZ8EkWRa6d0eFbW+L/bt24dMJoNp06ZVpWmVutq0aRN++9vfYuvWrVXrJkodAMAbb7yB++67D2vXrsUtt9yC3/zmN/if//N/IpvN4qqrrpowdfE3f/M3GBgYwPve9z7ouo5SqYSvfe1r+Ku/+isAE+uasIjqmPft24eZM2dW5T9z5syWrJfxTGLFtwVjzPWfc161rNmsWLHC/r1w4UKcfvrpePe7340HHngAa9eubWLJ1LRC/V5++eX27wULFmDx4sWYO3cufvrTn+Kyyy5rSpmuu+46/O53v8MzzzxTtS5JdepXziTV6Xvf+15s374dhw4dwr//+79j1apV2LJli70+KfXpV87jjz8+UfXZEDgHUO/cn9QbPpFJyn3dCKJ+X7RKXe3evRs33HADHn/8cbS1tfmmG891YGEYBhYvXoz169cDAE455RS89NJLuO+++3DVVVfZ6cZ7XTz00EP4wQ9+gAcffBAnnHACtm/fjjVr1qC3txerVq2y0433ehARxTGL0tdVL/Suj4XEup3PmDEDuq5X9db09fVV9Q4ljcmTJ2PhwoV47bXXml0UX6xo7K1Yv7NmzcLcuXObVr/XX389fvKTn+AXv/gFjj76aHt50urUr5wimlmnmUwG73nPe7B48WJs2LABJ510Er75zW8mrj79yimi2ddo3HCDR/IhJh6t/G6vhXreFz09Pcjn8+jv7/dNk2S2bduGvr4+LFq0CKlUCqlUClu2bME//dM/IZVK2ccwnuvAYtasWbanlMVxxx1nBxmcCNcDAPyv//W/8MUvfhEf//jHsXDhQqxcuRI33ngjNmzYAGDi1IOTqI65p6cH+/fvr8r/7bffrrle6F0fD4kV35lMBosWLcLmzZtdyzdv3oylS5c2qVTByOVyeOWVVzBr1qxmF8WXefPmoaenx1W/+XweW7ZsSXz9Hjx4ELt37254/XLOcd111+Hhhx/Gk08+iXnz5rnWJ6VOVeUU0aw6FcE5Ry6XS0x9+mGVU0SS6pMgkkQrv9vDEMX7YtGiRUin0640e/fuxYsvvtgSdbVs2TLs2LED27dvtz+LFy/GlVdeie3bt+OYY44Z93Vg8cEPfrBqqrlXX30Vc+fOBTAxrgcAGBkZgaa5pYeu6/ZUYxOlHpxEdcynn346BgYG8Jvf/MZO8+tf/xoDAwMtWS/1kkqlcPLJJ+Pkk0/Gpz/96WYXx0Wi3c7Xrl2LlStXYvHixTj99NOxceNG7Nq1C9dcc02zi+bipptuwiWXXII5c+agr68PX/3qVzE4OOhyoWkGQ0NDeP311+3/O3fuxPbt29HV1YU5c+ZgzZo1WL9+PebPn4/58+dj/fr1mDRpEq644orElLOrqwvr1q3DRz/6UcyaNQtvvvkmbrnlFsyYMQMf+chHGlrO1atX48EHH8SPf/xjdHR02L2UnZ2daG9vt+cvbXadqso5NDSUmDq95ZZbsGLFCsyePRuHDx/Gpk2b8NRTT+Gxxx5LTH2qypmk+mwY3ED9rmg09+dEpVXe7fUQxfuis7MTV199NT7/+c9j+vTp6Orqwk033YSFCxdWBS9LIh0dHa5YI4DpGTh9+nR7+XivA4sbb7wRS5cuxfr16/Gxj30Mv/nNb7Bx40Zs3LgRACbE9QAAl1xyCb72ta9hzpw5OOGEE/DCCy/gjjvuwKc+9SkA47ce6m2PBznm4447DhdeeCE+85nP4Nvf/jYA4LOf/SwuvvhivPe9762t4C38rj/iiCOwffv2puxbSeMCq9fGPffcw+fOncszmQx///vf75ouKSlcfvnlfNasWTydTvPe3l5+2WWX8ZdeeqnZxeK/+MUvOICqz6pVqzjn5vQGX/rSl3hPTw/PZrP8rLPO4jt27EhUOUdGRvjy5cv5kUceydPpNJ8zZw5ftWoV37VrV8PLKSojAH7//ffbaZJQp6pyJqlOP/WpT9n395FHHsmXLVvGH3/8cXt9EupTVc4k1WfcWNOPnMM+ws/XPlbX5xz2EZp+ZALTCu/2eojqfTE6Osqvu+463tXVxdvb2/nFF1/c0s8W51RjnE+sOviP//gPvmDBAp7NZvn73vc+vnHjRtf6iVAXg4OD/IYbbuBz5szhbW1t/JhjjuG33norz+VydprxWA9RtMeDHPPBgwf5lVdeyTs6OnhHRwe/8soreX9/f+jyjod3/fTp0xu6vzAwzmkkPEEQBKFmcHAQnZ2dOId9BCmWriuvIi/gKf4IBgYGMHXq1IhKSBAEQRBEPTT7Xf/000/j9ttvx7Zt27B371488sgjuPTSS11p7r33Xtx+++3Yu3cvTjjhBNx5550488wz7fWZTAYLFy5Ee3s7vva1r+Hss8+u6ziiJNFu5wRBEETyKPJc3a5kRRQiKg1BEARBEFET5bt+cHDQtTybzfpOxTo8PIyTTjoJf/3Xf42PfvSjVesfeughrFmzBvfeey8++MEP4tvf/jZWrFiBl19+GXPmzAEAvPnmm+jt7cWLL76Iiy66CDt27EhMRz9ZvgmCIIhAjI2NYd68eZHNGdrT04OdO3dKpyEiCIIgCKJxRP2unzJlCoaGhlzLvvSlL2HdunXKbRljVZbvU089Fe9///tx33332cuOO+44XHrppXbkfCcrVqzA3/3d32Hx4sU1H0OUkOWbIAiCCERbWxt27tyJfD4fSX6ZTIaEN0EQBEEkiKjf9Vww17if1VtFPp/Htm3b8MUvftG1fPny5Xj22WcBAP39/Zg0aRKy2Sz27NmDl19+Gcccc0xthY8BEt8EQRBEYNra2kgwEwRBEMQ4Jqnv+gMHDqBUKlXNXd7d3W1b6l955RV87nOfg6ZpYIzhm9/8Jrq6uppRXCEkvgmCIAiCIAiCIIiWwGtJd1rXly5dih07djSjWIHQ1EkIgiAIgiAIgiAIonnMmDEDuq5XjUfv6+ursoYnFRLfBEEQBEEQBEEQRKLJZDJYtGgRNm/e7Fq+efNmLF26tEmlCge5nRMEQRAEQRAEQRBNZ2hoCK+//rr9f+fOndi+fTu6urowZ84crF27FitXrsTixYtx+umnY+PGjdi1axeuueaaJpY6ODTVGEEQBEEQBEEQBNF0nnrqKZx77rlVy1etWoXvfe97AIB7770Xt912G/bu3YsFCxbgG9/4Bs4666wGl7Q2SHwTBEEQBEEQBEEQRMzQmG+CIAiCIAiCIAiCiBkS3wRBEARBEARBEAQRMyS+CYIgCIIgCIIgCCJmSHwTBEEQBEEQBEEQRMyQ+CYIgiAIgiAIgiCImCHxTRAEQRAEQRAEQRAxQ+KbIAiCIAiCIAiCIGKGxDdBEARBEARBEARBxAyJb4IgCIIgCIIgCIKIGRLfBEEQBEEQBEEQBBEzJL4JgiAIgiAIgiAIImZIfBMEQRAEQRAEQRBEzPz/AvF4qf5qO2kAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -217,6 +237,59 @@ "plt.title(\"39m ELT\")" ] }, + { + "cell_type": "markdown", + "id": "ea56edb2", + "metadata": {}, + "source": [ + "## Complete script\n", + "\n", + "Included below is the complete script for convenience, including the downloads, but not including the plotting." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "38429fa5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Warning: header update failed, data will be saved with incomplete header.\n", + "Reason: !OBS.instrument was not found in rc.__currsys__\n", + "\n" + ] + } + ], + "source": [ + "import scopesim as sim\n", + "import scopesim_templates as sim_tp\n", + "\n", + "# sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\", \"LFOA\"])\n", + "\n", + "cluster = sim_tp.stellar.clusters.cluster(mass=10000, # Msun\n", + " distance=50000, # parsec\n", + " core_radius=2, # parsec\n", + " seed=9001) # random seed\n", + "\n", + "lfoa = sim.OpticalTrain(\"LFOA\")\n", + "lfoa.observe(cluster,\n", + " properties={\"!OBS.ndit\": 10, \"!OBS.ndit\": 360},\n", + " update=True)\n", + "hdus_lfoa = lfoa.readout()\n", + "\n", + "micado = sim.OpticalTrain(\"MICADO\")\n", + "micado.cmds[\"!OBS.dit\"] = 10\n", + "micado.cmds[\"!OBS.ndit\"] = 360\n", + "micado.update()\n", + "\n", + "micado.observe(cluster)\n", + "hdus_micado = micado.readout()\n" + ] + }, { "cell_type": "code", "execution_count": null, @@ -228,7 +301,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -242,7 +315,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" }, "nbsphinx": { "execute": "auto" diff --git a/docs/source/examples/3_custom_effects.ipynb b/docs/source/examples/3_custom_effects.ipynb index f84dcfc4..3462a7d7 100644 --- a/docs/source/examples/3_custom_effects.ipynb +++ b/docs/source/examples/3_custom_effects.ipynb @@ -55,10 +55,10 @@ { "data": { "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmptgyr8nws\\\\MAORY.zip']" + "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\Armazones.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\ELT.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\MICADO.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\MAORY.zip']" ] }, "execution_count": 2, @@ -88,8 +88,8 @@ { "data": { "text/html": [ - "Table length=20\n", - "\n", + "
Table length=23\n", + "
\n", "\n", "\n", "\n", @@ -102,20 +102,21 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", + "\n", "\n", "\n", "\n", + "\n", + "\n", "\n", "\n", + "\n", "\n", "\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
MICADO_DETfull_detector_arrayDetectorListFalse
MICADO_DETdetector_windowDetectorWindowTrue
MICADO_DETqe_curveQuantumEfficiencyCurveTrue
MICADO_DETexposure_actionSummedExposureTrue
MICADO_DETdark_currentDarkCurrentTrue
MICADO_DETshot_noiseShotNoiseTrue
............
MICADO_DETdetector_linearityLinearityCurveTrue
MICADO_DETborder_reference_pixelsReferencePixelBorderTrue
MICADO_DETreadout_noisePoorMansHxRGReadoutNoiseTrue
MICADO_DETsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
MICADO_DETextra_fits_keywordsExtraFitsKeywordsTrue
default_rorelay_psfFieldConstantPSFTrue
default_rorelay_surface_listSurfaceListTrue
default_roextra_fits_keywords_roExtraFitsKeywordsTrue
MICADO_IMG_HRzoom_mirror_listSurfaceListTrue
MICADO_IMG_HRmicado_adc_3D_shiftAtmosphericDispersionCorrectionFalse
" + "" ], "text/plain": [ - "\n", + "
\n", " element name class included\n", " str13 str23 str31 bool \n", "------------- ----------------------- ------------------------------- --------\n", @@ -129,14 +130,15 @@ " MICADO_DET full_detector_array DetectorList False\n", " MICADO_DET detector_window DetectorWindow True\n", " MICADO_DET qe_curve QuantumEfficiencyCurve True\n", - " MICADO_DET exposure_action SummedExposure True\n", - " MICADO_DET dark_current DarkCurrent True\n", - " MICADO_DET shot_noise ShotNoise True\n", + " ... ... ... ...\n", " MICADO_DET detector_linearity LinearityCurve True\n", " MICADO_DET border_reference_pixels ReferencePixelBorder True\n", " MICADO_DET readout_noise PoorMansHxRGReadoutNoise True\n", + " MICADO_DET source_fits_keywords SourceDescriptionFitsKeywords True\n", + " MICADO_DET extra_fits_keywords ExtraFitsKeywords True\n", " default_ro relay_psf FieldConstantPSF True\n", " default_ro relay_surface_list SurfaceList True\n", + " default_ro extra_fits_keywords_ro ExtraFitsKeywords True\n", "MICADO_IMG_HR zoom_mirror_list SurfaceList True\n", "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" ] @@ -241,10 +243,17 @@ "id": "indoor-norway", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['A0V']\n" + ] + }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -253,14 +262,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHSCAYAAABVfjpxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAS2ElEQVR4nO3dUeyl9V3n8c+3zAAuinS63QmB7oKRtOFiC80/tE2bRqG1XW2Ei4ZodDMxJHPTbDBqXPRmo9FEb7S92HQzKdW5qLZkbBfSi1Y6YlyTDToItS10A5KSMgGmaomtFxTqdy/+T3dmR2D+M/P9z//8Oa9XMjnP85znzPPj95+H9zznnDmnujsAwPl53U4PAABeCwQVAAYIKgAMEFQAGCCoADBAUAFgwJ4LebCL65K+NJddyEMCwKhv51t/391vPH37BQ3qpbksb69bLuQhAWDUF/vIUy+33VO+ADBAUAFggKACwABBBYABggoAAy7ou3yTJFUX/JAAcFbO4ZvYXKECwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABWwpqVV1RVUeq6mtV9VhVvbOq9lXV/VX1+HL7+u0eLACsqq1eoX40yee7+y1J3prksSR3JTna3dclObqsA8BaOmNQq+qHk7wnyd1J0t3f7e7nk9ya5PCy2+Ekt23PEAFg9W3lCvXaJN9M8gdV9XBVfbyqLkuyv7ufWfZ5Nsn+7RokAKy6rQR1T5K3JflYd9+Y5J9z2tO73d1J+uUeXFUHq+pYVR17MS+c73gBYCVtJahPJ3m6ux9c1o9kM7DPVdWVSbLcnni5B3f3oe7e6O6NvblkYswAsHLOGNTufjbJN6rqzcumW5I8muS+JAeWbQeS3LstIwSAXWDPFvf7L0k+WVUXJ3kyyS9kM8b3VNUdSZ5Kcvv2DBEAVt+WgtrdjyTZeJm7bhkdDQDsUj4pCQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADNizlZ2q6utJvp3ke0le6u6NqtqX5NNJrkny9SS3d/e3tmeYALDazuYK9ce7+4bu3ljW70pytLuvS3J0WQeAtXQ+T/nemuTwsnw4yW3nPRoA2KW2GtRO8qdV9VBVHVy27e/uZ5blZ5PsHx8dAOwSW3oNNcm7u/t4Vf27JPdX1ddOvbO7u6r65R64BPhgklyaf3NegwWAVbWlK9TuPr7cnkjy2SQ3JXmuqq5MkuX2xCs89lB3b3T3xt5cMjNqAFgxZwxqVV1WVT/0/eUkP5HkK0nuS3Jg2e1Aknu3a5AAsOq28pTv/iSfrarv7/9H3f35qvrrJPdU1R1Jnkpy+/YNEwBW2xmD2t1PJnnry2z/hyS3bMegAGC38UlJADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABW/2CcdbMF44/fNaPef9VN27DSEjO7eeR+JlsJ+cIp3OFCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYUN19wQ52ee3rt7/uvRfseABwTl6ljV/sIw9198bp212hAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYMCWg1pVF1XVw1X1uWX92qp6sKqeqKpPV9XF2zdMAFhtZ3OFemeSx05Z/90kv9/dP5rkW0numBwYAOwmWwpqVV2d5KeSfHxZryQ3Jzmy7HI4yW3bMD4A2BW2eoX6kSS/muRflvU3JHm+u19a1p9OctXs0ABg9zhjUKvqg0lOdPdD53KAqjpYVceq6tiLeeFcfgsAWHl7trDPu5L8dFX9ZJJLk1ye5KNJrqiqPctV6tVJjr/cg7v7UJJDSXJ57euRUQPAijnjFWp3/1p3X93d1yT5mSR/1t0/l+SBJB9adjuQ5N5tGyUArLjz+Xeo/zXJL1XVE9l8TfXumSEBwO6zlad8/5/u/vMkf74sP5nkpvkhAcDu45OSAGCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABuzZ6QGwmr5w/OGzfsz7r7pxG0ZCcm4/j8TPZDs5RzidK1QAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwIAzBrWqLq2qv6qqL1XVV6vqN5bt11bVg1X1RFV9uqou3v7hAsBqqu5+9R2qKsll3f2dqtqb5C+T3Jnkl5J8prs/VVX/I8mXuvtjr/Z7XV77+u2ve+/Q0AFgm7xKG7/YRx7q7o3Tt5/xCrU3fWdZ3bv86iQ3JzmybD+c5LazHC4AvGZs6TXUqrqoqh5JciLJ/Un+Lsnz3f3SssvTSa7alhECwC6wpaB29/e6+4YkVye5KclbtnqAqjpYVceq6tiLeeHcRgkAK+6s3uXb3c8neSDJO5NcUVV7lruuTnL8FR5zqLs3untjby45n7ECwMrayrt831hVVyzLP5DkfUkey2ZYP7TsdiDJvds0RgBYeXvOvEuuTHK4qi7KZoDv6e7PVdWjST5VVb+V5OEkd2/jOAFgpZ0xqN39t0lufJntT2bz9VQAWHs+KQkABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAw4Y1Cr6k1V9UBVPVpVX62qO5ft+6rq/qp6fLl9/fYPFwBW01auUF9K8svdfX2SdyT5cFVdn+SuJEe7+7okR5d1AFhLZwxqdz/T3X+zLH87yWNJrkpya5LDy26Hk9y2TWMEgJV3Vq+hVtU1SW5M8mCS/d39zHLXs0n2zw4NAHaPLQe1qn4wyZ8k+cXu/qdT7+vuTtKv8LiDVXWsqo69mBfOa7AAsKq2FNSq2pvNmH6yuz+zbH6uqq5c7r8yyYmXe2x3H+ruje7e2JtLJsYMACtnK+/yrSR3J3msu3/vlLvuS3JgWT6Q5N754QHA7rBnC/u8K8l/TvLlqnpk2fbrSX4nyT1VdUeSp5Lcvi0jBIBd4IxB7e6/TFKvcPcts8MBgN3JJyUBwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAZs5dtmWENfOP7wWT/m/VfduA0jITm3n0fiZ7KdnCOczhUqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWBAdfcFO9jlta/f/rr3XrDjAcA5eZU2frGPPNTdG6dvd4UKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAWcMalV9oqpOVNVXTtm2r6rur6rHl9vXb+8wAWC1beUK9Q+TfOC0bXclOdrd1yU5uqwDwNo6Y1C7+y+S/ONpm29NcnhZPpzkttlhAcDucq6voe7v7meW5WeT7B8aDwDsSuf9pqTu7iT9SvdX1cGqOlZVx17MC+d7OABYSeca1Oeq6sokWW5PvNKO3X2ouze6e2NvLjnHwwHAajvXoN6X5MCyfCDJvTPDAYDdaSv/bOaPk/zvJG+uqqer6o4kv5PkfVX1eJL3LusAsLb2nGmH7v7ZV7jrluGxAMCu5ZOSAGCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAgPMKalV9oKr+T1U9UVV3TQ0KAHabcw5qVV2U5L8n+U9Jrk/ys1V1/dTAAGA3OZ8r1JuSPNHdT3b3d5N8KsmtM8MCgN3lfIJ6VZJvnLL+9LLt/1NVB6vqWFUdezEvnMfhAGB1bfubkrr7UHdvdPfG3lyy3YcDgB1xPkE9nuRNp6xfvWwDgLVzPkH96yTXVdW1VXVxkp9Jct/MsABgd6nuPvcHV/1kko8kuSjJJ7r7t8+w/zeTPLWs/tskf3/OB39tMRcnmYuTzMVJ5uIkc3HSTs3Ff+juN56+8byCej6q6lh3b+zIwVeMuTjJXJxkLk4yFyeZi5NWbS58UhIADBBUABiwk0E9tIPHXjXm4iRzcZK5OMlcnGQuTlqpudix11AB4LXEU74AMGBHgrrO31JTVZ+oqhNV9ZVTtu2rqvur6vHl9vU7OcYLoareVFUPVNWjVfXVqrpz2b6Oc3FpVf1VVX1pmYvfWLZfW1UPLufJp5d/770Wquqiqnq4qj63rK/lXFTV16vqy1X1SFUdW7at3TmSJFV1RVUdqaqvVdVjVfXOVZuLCx5U31KTP0zygdO23ZXkaHdfl+Tosv5a91KSX+7u65O8I8mHlz8H6zgXLyS5ubvfmuSGJB+oqnck+d0kv9/dP5rkW0nu2LkhXnB3JnnslPV1nosf7+4bTvnnIet4jiTJR5N8vrvfkuSt2fzzsVJzsRNXqGv9LTXd/RdJ/vG0zbcmObwsH05y24Uc007o7me6+2+W5W9n8+S4Kus5F93d31lW9y6/OsnNSY4s29diLpKkqq5O8lNJPr6sV9Z0Ll7B2p0jVfXDSd6T5O4k6e7vdvfzWbG52ImgbulbatbM/u5+Zll+Nsn+nRzMhVZV1yS5McmDWdO5WJ7ifCTJiST3J/m7JM9390vLLut0nnwkya8m+Zdl/Q1Z37noJH9aVQ9V1cFl2zqeI9cm+WaSP1heCvh4VV2WFZsLb0paMb35tuu1eet1Vf1gkj9J8ovd/U+n3rdOc9Hd3+vuG7L5JRM3JXnLzo5oZ1TVB5Oc6O6HdnosK+Ld3f22bL5E9uGqes+pd67RObInyduSfKy7b0zyzznt6d1VmIudCKpvqfnXnquqK5NkuT2xw+O5IKpqbzZj+snu/syyeS3n4vuWp7EeSPLOJFdU1Z7lrnU5T96V5Ker6uvZfDno5my+draOc5HuPr7cnkjy2Wz+ZWsdz5Gnkzzd3Q8u60eyGdiVmoudCKpvqfnX7ktyYFk+kOTeHRzLBbG8LnZ3kse6+/dOuWsd5+KNVXXFsvwDSd6XzdeUH0jyoWW3tZiL7v617r66u6/J5v8b/qy7fy5rOBdVdVlV/dD3l5P8RJKvZA3Pke5+Nsk3qurNy6ZbkjyaFZuLHflgh7P9lprXkqr64yQ/ls1vSXguyX9L8j+T3JPk32fz23hu7+7T37j0mlJV707yv5J8OSdfK/v1bL6Oum5z8R+z+YaKi7L5l9x7uvs3q+pHsnmVti/Jw0l+vrtf2LmRXlhV9WNJfqW7P7iOc7H8N392Wd2T5I+6+7er6g1Zs3MkSarqhmy+Ue3iJE8m+YUs50tWZC58UhIADPCmJAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAz4v9fFFZVs6eggAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjtklEQVR4nO3dYWxV93n48ee2JjeQ2m6TBl9cXOauVpuUkFLIKCQtrAmu+HdRMqauLWnH1G2CQtp42URGeRFUbXbCVEQrVibYlBFtjL5Y0mRqU7DU4rRCqEBBQaRKmWCLl+J5iZjtEmZCcv4vulzFIU1ieIwv5PORjhT/zvH1w89X5KuD73WpKIoiAAAgwdvGewAAAC4d4hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0deM9wKu99NJL8Ytf/CLq6+ujVCqN9zgAAG95RVHE0NBQNDc3x9ve9vr3JmsuLn/xi19ES0vLeI8BAMCr9Pb2xtSpU1/3mpqLy/r6+oiIuCn+X9TFhHGeBgCAM/FC/Di+V+2011NzcfnyP4XXxYSoK4lLAIBx93+/LPzN/MiiF/QAAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQpubeiqiqVPrVAQDA2CqKtIdy5xIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANKOOy2eeeSY+//nPx1VXXRWTJk2KD3/4w7F///7q+aIoYu3atdHc3BwTJ06MBQsWxOHDh1OHBgCgNo0qLk+cOBE33nhjTJgwIR577LF48skn4+tf/3q8853vrF6zbt26WL9+fWzcuDH27t0blUolFi5cGENDQ9mzAwBQY+pGc/H9998fLS0t8cADD1TXfuM3fqP630VRxIYNG2LNmjWxePHiiIjYunVrNDU1xbZt22LZsmU5UwMAUJNGdefy0UcfjdmzZ8enP/3pmDx5csycOTO2bNlSPX/s2LHo6+uL9vb26lq5XI758+fH7t27X/Mxh4eHY3BwcMQBAMDFaVRxefTo0di0aVO0tbXFjh07Yvny5fGVr3wlHnzwwYiI6Ovri4iIpqamEZ/X1NRUPfdqXV1d0djYWD1aWlrO5c8BAEANGFVcvvTSS/GRj3wkOjs7Y+bMmbFs2bL4kz/5k9i0adOI60ql0oiPi6I4a+1lq1evjoGBgerR29s7yj8CAAC1YlRxOWXKlLj22mtHrF1zzTXx9NNPR0REpVKJiDjrLmV/f/9ZdzNfVi6Xo6GhYcQBAMDFaVRxeeONN8ZTTz01Yu3nP/95TJs2LSIiWltbo1KpRHd3d/X86dOno6enJ+bNm5cwLgAAtWxUrxb/0z/905g3b150dnbG7//+78dPfvKT2Lx5c2zevDkifvXP4R0dHdHZ2RltbW3R1tYWnZ2dMWnSpFiyZMmY/AEAAKgdo4rLG264IR5++OFYvXp1fO1rX4vW1tbYsGFD3HHHHdVrVq1aFadOnYoVK1bEiRMnYs6cObFz586or69PHx4AgNpSKoqiGO8hXmlwcDAaGxtjQen2qCtNGO9xAAAufW+Qg2eKF2JXPBIDAwNv+PoYv1scAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANKOKy7Vr10apVBpxVCqV6vmiKGLt2rXR3NwcEydOjAULFsThw4fThwYAoDaN+s7lhz70oTh+/Hj1OHToUPXcunXrYv369bFx48bYu3dvVCqVWLhwYQwNDaUODQBAbRp1XNbV1UWlUqkeV199dUT86q7lhg0bYs2aNbF48eKYPn16bN26NZ5//vnYtm1b+uAAANSeUcflkSNHorm5OVpbW+Ozn/1sHD16NCIijh07Fn19fdHe3l69tlwux/z582P37t2/9vGGh4djcHBwxAEAwMVpVHE5Z86cePDBB2PHjh2xZcuW6Ovri3nz5sVzzz0XfX19ERHR1NQ04nOampqq515LV1dXNDY2Vo+WlpZz+GMAAFALRhWXixYtit/7vd+L6667Lm655Zb47ne/GxERW7durV5TKpVGfE5RFGetvdLq1atjYGCgevT29o5mJAAAash5vRXRFVdcEdddd10cOXKk+qrxV9+l7O/vP+tu5iuVy+VoaGgYcQAAcHE6r7gcHh6On/3sZzFlypRobW2NSqUS3d3d1fOnT5+Onp6emDdv3nkPCgBA7asbzcV//ud/Hrfeemu8973vjf7+/vjLv/zLGBwcjKVLl0apVIqOjo7o7OyMtra2aGtri87Ozpg0aVIsWbJkrOYHAKCGjCou//M//zM+97nPxbPPPhtXX311fPSjH409e/bEtGnTIiJi1apVcerUqVixYkWcOHEi5syZEzt37oz6+voxGR4AgNpSKoqiGO8hXmlwcDAaGxtjQen2qCtNGO9xAAAufW+Qg2eKF2JXPBIDAwNv+PoYv1scAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0deM9AFxoO545kPZYn3zPzLTHorZ53nAuPG94K3LnEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDR14z0AXGiffM/M8R6Bi5DnDefC84a3IncuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASHNecdnV1RWlUik6Ojqqa0VRxNq1a6O5uTkmTpwYCxYsiMOHD5/vnAAAXATOOS737t0bmzdvjhkzZoxYX7duXaxfvz42btwYe/fujUqlEgsXLoyhoaHzHhYAgNp2TnH5y1/+Mu64447YsmVLvOtd76quF0URGzZsiDVr1sTixYtj+vTpsXXr1nj++edj27Ztr/lYw8PDMTg4OOIAAODidE5xuXLlyvjUpz4Vt9xyy4j1Y8eORV9fX7S3t1fXyuVyzJ8/P3bv3v2aj9XV1RWNjY3Vo6Wl5VxGAgCgBow6Lrdv3x4//elPo6ur66xzfX19ERHR1NQ0Yr2pqal67tVWr14dAwMD1aO3t3e0IwEAUCPqRnNxb29v3HXXXbFz5864/PLLf+11pVJpxMdFUZy19rJyuRzlcnk0YwAAUKNGdedy//790d/fH7NmzYq6urqoq6uLnp6e+OY3vxl1dXXVO5avvkvZ399/1t1MAAAuPaOKy5tvvjkOHToUBw8erB6zZ8+OO+64Iw4ePBjve9/7olKpRHd3d/VzTp8+HT09PTFv3rz04QEAqC2j+mfx+vr6mD59+oi1K664Iq666qrqekdHR3R2dkZbW1u0tbVFZ2dnTJo0KZYsWZI3NQAANWlUcflmrFq1Kk6dOhUrVqyIEydOxJw5c2Lnzp1RX1+f/aUAAKgxpaIoivEe4pUGBwejsbExFpRuj7rShPEeBwDg0vcGOXimeCF2xSMxMDAQDQ0Nr3ut3y0OAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmrrxHgAutB3PHEh7rE++Z2baY1HbPG84F543vBW5cwkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECauvEeAC60T75n5niPwEXI84Zz4XnDW9Go7lxu2rQpZsyYEQ0NDdHQ0BBz586Nxx57rHq+KIpYu3ZtNDc3x8SJE2PBggVx+PDh9KEBAKhNo4rLqVOnxn333Rf79u2Lffv2xSc+8Ym47bbbqgG5bt26WL9+fWzcuDH27t0blUolFi5cGENDQ2MyPAAAtaVUFEVxPg9w5ZVXxl//9V/HF7/4xWhubo6Ojo645557IiJieHg4mpqa4v77749ly5a9qccbHByMxsbGWFC6PepKE85nNAAA3ow3yMEzxQuxKx6JgYGBaGhoeN1rz/kFPS+++GJs3749Tp48GXPnzo1jx45FX19ftLe3V68pl8sxf/782L179699nOHh4RgcHBxxAABwcRp1XB46dCje8Y53RLlcjuXLl8fDDz8c1157bfT19UVERFNT04jrm5qaqudeS1dXVzQ2NlaPlpaW0Y4EAECNGHVcfuADH4iDBw/Gnj174ktf+lIsXbo0nnzyyer5Uqk04vqiKM5ae6XVq1fHwMBA9ejt7R3tSAAA1IhRvxXRZZddFu9///sjImL27Nmxd+/e+MY3vlH9Ocu+vr6YMmVK9fr+/v6z7ma+UrlcjnK5PNoxAACoQef9JupFUcTw8HC0trZGpVKJ7u7u6rnTp09HT09PzJs373y/DAAAF4FR3bn86le/GosWLYqWlpYYGhqK7du3x65du+L73/9+lEql6OjoiM7Ozmhra4u2trbo7OyMSZMmxZIlS8ZqfgAAasio4vK//uu/4gtf+EIcP348GhsbY8aMGfH9738/Fi5cGBERq1atilOnTsWKFSvixIkTMWfOnNi5c2fU19ePyfAAANSW836fy2ze5xIA4AKrhfe5BACAVxOXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQZVVx2dXXFDTfcEPX19TF58uS4/fbb46mnnhpxTVEUsXbt2mhubo6JEyfGggUL4vDhw6lDAwBQm0YVlz09PbFy5crYs2dPdHd3x5kzZ6K9vT1OnjxZvWbdunWxfv362LhxY+zduzcqlUosXLgwhoaG0ocHAKC2lIqiKM71k//7v/87Jk+eHD09PfHxj388iqKI5ubm6OjoiHvuuSciIoaHh6OpqSnuv//+WLZs2Rs+5uDgYDQ2NsaC0u1RV5pwrqMBAPBmvUEOnileiF3xSAwMDERDQ8PrXnteP3M5MDAQERFXXnllREQcO3Ys+vr6or29vXpNuVyO+fPnx+7du1/zMYaHh2NwcHDEAQDAxemc47Ioirj77rvjpptuiunTp0dERF9fX0RENDU1jbi2qampeu7Vurq6orGxsXq0tLSc60gAAIyzc47LO++8M5544on453/+57POlUqlER8XRXHW2stWr14dAwMD1aO3t/dcRwIAYJzVncsnffnLX45HH300Hn/88Zg6dWp1vVKpRMSv7mBOmTKlut7f33/W3cyXlcvlKJfL5zIGAAA1ZlR3LouiiDvvvDMeeuih+MEPfhCtra0jzre2tkalUonu7u7q2unTp6OnpyfmzZuXMzEAADVrVHcuV65cGdu2bYtHHnkk6uvrqz9H2djYGBMnToxSqRQdHR3R2dkZbW1t0dbWFp2dnTFp0qRYsmTJmPwBAACoHaOKy02bNkVExIIFC0asP/DAA/GHf/iHERGxatWqOHXqVKxYsSJOnDgRc+bMiZ07d0Z9fX3KwAAA1K7zep/LseB9LgEALrBaeZ9LAAB4JXEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmrrxHgAutB3PHEh7rE++Z2baY1HbPG84F543vBW5cwkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECauvEeAC60T75n5niPwEXI84Zz4XnDW5E7lwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQZdVw+/vjjceutt0Zzc3OUSqX4zne+M+J8URSxdu3aaG5ujokTJ8aCBQvi8OHDWfMCAFDDRh2XJ0+ejOuvvz42btz4mufXrVsX69evj40bN8bevXujUqnEwoULY2ho6LyHBQCgttWN9hMWLVoUixYtes1zRVHEhg0bYs2aNbF48eKIiNi6dWs0NTXFtm3bYtmyZec3LQAANS31Zy6PHTsWfX190d7eXl0rl8sxf/782L1792t+zvDwcAwODo44AAC4OKXGZV9fX0RENDU1jVhvamqqnnu1rq6uaGxsrB4tLS2ZIwEAcAGNyavFS6XSiI+Lojhr7WWrV6+OgYGB6tHb2zsWIwEAcAGM+mcuX0+lUomIX93BnDJlSnW9v7//rLuZLyuXy1EulzPHAABgnKTeuWxtbY1KpRLd3d3VtdOnT0dPT0/Mmzcv80sBAFCDRn3n8pe//GX827/9W/XjY8eOxcGDB+PKK6+M9773vdHR0RGdnZ3R1tYWbW1t0dnZGZMmTYolS5akDg4AQO0ZdVzu27cvfvu3f7v68d133x0REUuXLo1/+Id/iFWrVsWpU6dixYoVceLEiZgzZ07s3Lkz6uvr86YGAKAmlYqiKMZ7iFcaHByMxsbGWFC6PepKE8Z7HACAS98b5OCZ4oXYFY/EwMBANDQ0vO61frc4AABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacYsLr/1rW9Fa2trXH755TFr1qz40Y9+NFZfCgCAGjEmcfntb387Ojo6Ys2aNXHgwIH42Mc+FosWLYqnn356LL4cAAA1Ykzicv369fFHf/RH8cd//MdxzTXXxIYNG6KlpSU2bdo0Fl8OAIAakR6Xp0+fjv3790d7e/uI9fb29ti9e/dZ1w8PD8fg4OCIAwCAi1N6XD777LPx4osvRlNT04j1pqam6OvrO+v6rq6uaGxsrB4tLS3ZIwEAcIGM2Qt6SqXSiI+LojhrLSJi9erVMTAwUD16e3vHaiQAAMZYXfYDvvvd7463v/3tZ92l7O/vP+tuZkREuVyOcrmcPQYAAOMgPS4vu+yymDVrVnR3d8fv/u7vVte7u7vjtttue8PPL4oiIiLOFC9kjwYAwGv5v/76dc7EC/932etfFzEGcRkRcffdd8cXvvCFmD17dsydOzc2b94cTz/9dCxfvvwNP3doaCgiIn4c34144/kBALhAhoaGorGx8XWvGZO4/MxnPhPPPfdcfO1rX4vjx4/H9OnT43vf+15MmzbtDT+3ubk5ent7o76+vvozmoODg9HS0hK9vb3R0NAwFiPza9j78WPvx4+9Hx/2ffzY+/Fzsex9URQxNDQUzc3Nb3htqXgz9zfH2eDgYDQ2NsbAwEBNb/ylyN6PH3s/fuz9+LDv48fej59Lce/9bnEAANKISwAA0lwUcVkul+Pee+/1lkXjwN6PH3s/fuz9+LDv48fej59Lce8vip+5BADg4nBR3LkEAODiIC4BAEgjLgEASCMuAQBIIy4BAEhzUcTlt771rWhtbY3LL788Zs2aFT/60Y/Ge6RLzuOPPx633nprNDc3R6lUiu985zsjzhdFEWvXro3m5uaYOHFiLFiwIA4fPjw+w15Curq64oYbboj6+vqYPHly3H777fHUU0+NuMbej41NmzbFjBkzoqGhIRoaGmLu3Lnx2GOPVc/b9wujq6srSqVSdHR0VNfs/dhYu3ZtlEqlEUelUqmet+9j65lnnonPf/7zcdVVV8WkSZPiwx/+cOzfv796/lLa/5qPy29/+9vR0dERa9asiQMHDsTHPvaxWLRoUTz99NPjPdol5eTJk3H99dfHxo0bX/P8unXrYv369bFx48bYu3dvVCqVWLhwYQwNDV3gSS8tPT09sXLlytizZ090d3fHmTNnor29PU6ePFm9xt6PjalTp8Z9990X+/bti3379sUnPvGJuO2226p/mdv3sbd3797YvHlzzJgxY8S6vR87H/rQh+L48ePV49ChQ9Vz9n3snDhxIm688caYMGFCPPbYY/Hkk0/G17/+9XjnO99ZveaS2v+ixv3Wb/1WsXz58hFrH/zgB4u/+Iu/GKeJLn0RUTz88MPVj1966aWiUqkU9913X3Xtf//3f4vGxsbib//2b8dhwktXf39/ERFFT09PURT2/kJ717veVfzd3/2dfb8AhoaGira2tqK7u7uYP39+cddddxVF4Tk/lu69997i+uuvf81z9n1s3XPPPcVNN930a89favtf03cuT58+Hfv374/29vYR6+3t7bF79+5xmuqt59ixY9HX1zfi+1Aul2P+/Pm+D8kGBgYiIuLKK6+MCHt/obz44ouxffv2OHnyZMydO9e+XwArV66MT33qU3HLLbeMWLf3Y+vIkSPR3Nwcra2t8dnPfjaOHj0aEfZ9rD366KMxe/bs+PSnPx2TJ0+OmTNnxpYtW6rnL7X9r+m4fPbZZ+PFF1+MpqamEetNTU3R19c3TlO99by8174PY6soirj77rvjpptuiunTp0eEvR9rhw4dine84x1RLpdj+fLl8fDDD8e1115r38fY9u3b46c//Wl0dXWddc7ej505c+bEgw8+GDt27IgtW7ZEX19fzJs3L5577jn7PsaOHj0amzZtira2ttixY0csX748vvKVr8SDDz4YEZfe875uvAd4M0ql0oiPi6I4a42x5/swtu6888544okn4sc//vFZ5+z92PjABz4QBw8ejP/5n/+Jf/mXf4mlS5dGT09P9bx9z9fb2xt33XVX7Ny5My6//PJfe529z7do0aLqf1933XUxd+7c+M3f/M3YunVrfPSjH40I+z5WXnrppZg9e3Z0dnZGRMTMmTPj8OHDsWnTpviDP/iD6nWXyv7X9J3Ld7/73fH2t7/9rGrv7+8/q+4ZOy+/mtD3Yex8+ctfjkcffTR++MMfxtSpU6vr9n5sXXbZZfH+978/Zs+eHV1dXXH99dfHN77xDfs+hvbv3x/9/f0xa9asqKuri7q6uujp6YlvfvObUVdXV91fez/2rrjiirjuuuviyJEjnvNjbMqUKXHttdeOWLvmmmuqL06+1Pa/puPysssui1mzZkV3d/eI9e7u7pg3b944TfXW09raGpVKZcT34fTp09HT0+P7cJ6Koog777wzHnroofjBD34Qra2tI87b+wurKIoYHh6272Po5ptvjkOHDsXBgwerx+zZs+OOO+6IgwcPxvve9z57f4EMDw/Hz372s5gyZYrn/Bi78cYbz3qbuZ///Ocxbdq0iLgE/64fr1cSvVnbt28vJkyYUPz93/998eSTTxYdHR3FFVdcUfz7v//7eI92SRkaGioOHDhQHDhwoIiIYv369cWBAweK//iP/yiKoijuu+++orGxsXjooYeKQ4cOFZ/73OeKKVOmFIODg+M8+cXtS1/6UtHY2Fjs2rWrOH78ePV4/vnnq9fY+7GxevXq4vHHHy+OHTtWPPHEE8VXv/rV4m1ve1uxc+fOoijs+4X0yleLF4W9Hyt/9md/Vuzatas4evRosWfPnuJ3fud3ivr6+ur/T+372PnJT35S1NXVFX/1V39VHDlypPinf/qnYtKkScU//uM/Vq+5lPa/5uOyKIrib/7mb4pp06YVl112WfGRj3yk+jYt5PnhD39YRMRZx9KlS4ui+NXbJNx7771FpVIpyuVy8fGPf7w4dOjQ+A59CXitPY+I4oEHHqheY+/Hxhe/+MXq3ytXX311cfPNN1fDsijs+4X06ri092PjM5/5TDFlypRiwoQJRXNzc7F48eLi8OHD1fP2fWz967/+azF9+vSiXC4XH/zgB4vNmzePOH8p7X+pKIpifO6ZAgBwqanpn7kEAODiIi4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEjz/wFiM/MmRFgUowAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -284,12 +291,12 @@ { "data": { "text/html": [ - "Table length=1\n", - "
\n", + "
Table length=1\n", + "
\n", "\n", "\n", "\n", - "
idx_ceny_cenx_sizey_sizeanglegainpixel_size
int32str6str6str10str11int32int32float64
0006464010.015
" + "" ], "text/plain": [ "\n", @@ -360,6 +367,7 @@ "Lets break it down a bit:\n", "\n", " class PointSourceJitter(Effect):\n", + " ...\n", "\n", "Here we are subclassing the ``Effect`` object from ScopeSim.\n", "This has the basic functionality for reading in ASCII and FITS files, and for communicating with the ``OpticsManager`` class in ScopeSim.\n", @@ -443,8 +451,8 @@ { "data": { "text/html": [ - "Table length=21\n", - "
\n", + "
Table length=24\n", + "
\n", "\n", "\n", "\n", @@ -457,21 +465,21 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", + "\n", "\n", "\n", "\n", + "\n", + "\n", "\n", "\n", + "\n", "\n", "\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
MICADOpupil_wheel : [open]FilterWheelTrue
MICADO_DETfull_detector_arrayDetectorListFalse
MICADO_DETdetector_windowDetectorWindowTrue
MICADO_DETqe_curveQuantumEfficiencyCurveTrue
MICADO_DETexposure_actionSummedExposureTrue
MICADO_DETdark_currentDarkCurrentTrue
MICADO_DETshot_noiseShotNoiseTrue
............
MICADO_DETdetector_linearityLinearityCurveTrue
MICADO_DETborder_reference_pixelsReferencePixelBorderTrue
MICADO_DETreadout_noisePoorMansHxRGReadoutNoiseTrue
MICADO_DETsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
MICADO_DETextra_fits_keywordsExtraFitsKeywordsTrue
default_rorelay_psfFieldConstantPSFFalse
default_rorelay_surface_listSurfaceListTrue
default_roextra_fits_keywords_roExtraFitsKeywordsTrue
MICADO_IMG_HRzoom_mirror_listSurfaceListTrue
MICADO_IMG_HRmicado_adc_3D_shiftAtmosphericDispersionCorrectionFalse
" + "" ], "text/plain": [ - "\n", + "
\n", " element name class included\n", " str13 str23 str31 bool \n", "------------- ----------------------- ------------------------------- --------\n", @@ -485,15 +493,15 @@ " MICADO pupil_wheel : [open] FilterWheel True\n", " MICADO_DET full_detector_array DetectorList False\n", " MICADO_DET detector_window DetectorWindow True\n", - " MICADO_DET qe_curve QuantumEfficiencyCurve True\n", - " MICADO_DET exposure_action SummedExposure True\n", - " MICADO_DET dark_current DarkCurrent True\n", - " MICADO_DET shot_noise ShotNoise True\n", + " ... ... ... ...\n", " MICADO_DET detector_linearity LinearityCurve True\n", " MICADO_DET border_reference_pixels ReferencePixelBorder True\n", " MICADO_DET readout_noise PoorMansHxRGReadoutNoise True\n", + " MICADO_DET source_fits_keywords SourceDescriptionFitsKeywords True\n", + " MICADO_DET extra_fits_keywords ExtraFitsKeywords True\n", " default_ro relay_psf FieldConstantPSF False\n", " default_ro relay_surface_list SurfaceList True\n", + " default_ro extra_fits_keywords_ro ExtraFitsKeywords True\n", "MICADO_IMG_HR zoom_mirror_list SurfaceList True\n", "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" ] @@ -526,7 +534,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -535,14 +543,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHSCAYAAABVfjpxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAT8UlEQVR4nO3da6xld3nf8d+DZ2wHczEmztTFUDvCwkJNsdHEAYEgwYVQQmNLpTS3dhRZ8ovSCkSq1ElfVKkaiUhtAlUqKheTzAsCWAZqh7YUx3GURk1Nhlu4mBbHAWHL9kCDhSHC+PL0xVl0ps45zLHnOXP28f58JOvstdbe3o//9vZ31tm36u4AACfnKbs9AAA8GQgqAAwQVAAYIKgAMEBQAWCAoALAgH2n8s5OrzP6zJx1Ku8SAEY9kK9/rbvPfez+UxrUM3NWfqQuP5V3CQCjfq9v+PJm+/3KFwAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAO2FdSqOruqbqiqL1TV7VX10qo6p6purqovLj+ftdPDAsCq2u4Z6juSfKS7L07yoiS3J7kmyS3dfVGSW5ZtAFhLJwxqVT0zySuSXJck3f2d7r4/yRVJDi9XO5zkyp0ZEQBW33bOUC9M8tUkv1VVn6yqd1XVWUkOdPc9y3XuTXJgp4YEgFW3naDuS/LiJO/s7kuTfCuP+fVud3eS3uzGVXV1VR2pqiMP5cGTnRcAVtJ2gnpXkru6+7Zl+4ZsBPa+qjovSZafRze7cXdf290Hu/vg/pwxMTMArJwTBrW7703ylap6wbLr8iSfT3JTkkPLvkNJbtyRCQFgD9i3zev90yTvqarTk9yZ5OezEePrq+qqJF9O8sadGREAVt+2gtrdn0pycJNDl49OAwB7lE9KAoABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAA/Zt50pV9aUkDyR5JMnD3X2wqs5J8v4kFyT5UpI3dvfXd2ZMAFhtj+cM9ce6+5LuPrhsX5Pklu6+KMktyzYArKWT+ZXvFUkOL5cPJ7nypKcBgD1qu0HtJB+tqo9X1dXLvgPdfc9y+d4kB8anA4A9YlvPoSZ5eXffXVU/kOTmqvrC8Qe7u6uqN7vhEuCrk+TMPPWkhgWAVbWtM9Tuvnv5eTTJh5JcluS+qjovSZafR7e47bXdfbC7D+7PGTNTA8CKOWFQq+qsqnr6dy8neU2Szya5Kcmh5WqHkty4U0MCwKrbzq98DyT5UFV99/q/090fqao/SXJ9VV2V5MtJ3rhzYwLAajthULv7ziQv2mT//0ly+U4MBQB7jU9KAoABggoAAwQVAAYIKgAMEFQAGLDdT0oCYJv2/bXNP4n14fs2/fybDb3ph82xhzhDBYABggoAAwQVAAYIKgAMEFQAGCCoADDA22bY1Ldff9nWB2vz3Wf+7sd2Zhhy2rnnbnnsnn9w0ZbHfuA3/8dOjMMJ/OdP/LdN97/u0tdseZtHvtdbatgTnKECwABBBYABggoAAwQVAAYIKgAM8CpfNvWt80573Lc5cwfmYPHMp2156NuvfGDr2/3mDszCCf34X79kiyNeyftk5gwVAAYIKgAMEFQAGCCoADBAUAFggKACwABvm2FTz/6Pf7zbI3CcR+748y2PPe/vn8JBgC05QwWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsCAbQe1qk6rqk9W1YeX7Qur6raquqOq3l9Vp+/cmACw2h7PGeqbk9x+3PavJfmN7n5+kq8nuWpyMADYS7YV1Ko6P8lPJHnXsl1JXpXkhuUqh5NcuQPzAcCesN0z1Lcn+cUkjy7bz05yf3c/vGzfleQ5s6MBwN5xwqBW1euTHO3ujz+RO6iqq6vqSFUdeSgPPpG/BQCsvH3buM7LkvxkVb0uyZlJnpHkHUnOrqp9y1nq+Unu3uzG3X1tkmuT5Bl1To9MDQAr5oRnqN39S919fndfkOSnkvx+d/9skluTvGG52qEkN+7YlACw4k7mfaj/PMlbq+qObDynet3MSACw92znV77/T3f/QZI/WC7fmeSy+ZEAYO/xSUkAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgAD9u32AKym+uEf2vLYN5/31E33n/WB23ZqHFg53/iZl2x57Bnv3eKx0L1D07AKnKECwABBBYABggoAAwQVAAYIKgAMEFQAGOBtM2zqgQvP2vLY136oNt1/1gd2ahqe8vSnb3ns33zmo1see+sFL92JcUjyM//iv2557MPv+/7ND/QjOzQNq8AZKgAMEFQAGCCoADBAUAFggKACwIATBrWqzqyqj1XVp6vqc1X1K8v+C6vqtqq6o6reX1Wn7/y4ALCaqk/w7QdVVUnO6u5vVtX+JH+U5M1J3prkg939vqr6D0k+3d3v/F5/r2fUOf0jdfnQ6LBGavO3KiVJfvhvbn3sY5+ZnwXW3O/1DR/v7oOP3X/CM9Te8M1lc//yVyd5VZIblv2Hk1w5MyoA7D3beg61qk6rqk8lOZrk5iR/luT+7n54ucpdSZ6zIxMCwB6wraB29yPdfUmS85NcluTi7d5BVV1dVUeq6shDefCJTQkAK+5xvcq3u+9PcmuSlyY5u6q++9GF5ye5e4vbXNvdB7v74P6ccTKzAsDK2s6rfM+tqrOXy9+X5NVJbs9GWN+wXO1Qkht3aEYAWHnb+XD885IcrqrTshHg67v7w1X1+STvq6p/neSTSa7bwTlhvX2vV+N7JS+shBMGtbv/NMmlm+y/MxvPpwLA2vNJSQAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYMAJg1pVz62qW6vq81X1uap687L/nKq6uaq+uPx81s6PCwCraTtnqA8n+YXufmGSlyR5U1W9MMk1SW7p7ouS3LJsA8BaOmFQu/ue7v7EcvmBJLcneU6SK5IcXq52OMmVOzQjAKy8x/UcalVdkOTSJLclOdDd9yyH7k1yYHY0ANg7th3Uqnpakg8keUt3f+P4Y93dSXqL211dVUeq6shDefCkhgWAVbWtoFbV/mzE9D3d/cFl931Vdd5y/LwkRze7bXdf290Hu/vg/pwxMTMArJztvMq3klyX5Pbu/vXjDt2U5NBy+VCSG+fHA4C9Yd82rvOyJP8wyWeq6lPLvl9O8rYk11fVVUm+nOSNOzIhAOwBJwxqd/9Rktri8OWz4wDA3uSTkgBggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAA7bzbTM8ST3lzDO3PPa/33bJlsee/5b/uQPT8L085alP3fLYP/nTT2x57N89/+KdGIcT+C93b/7v5PUXv3LL2zz6wAM7NQ6niDNUABggqAAwQFABYICgAsAAQQWAAV7lu86esvWfp/qc75zCQTiRR7/94JbH/u0//rktj+3PkZ0YhxP4u6/8e5vuf/SbXzq1g3BKOUMFgAGCCgADBBUABggqAAwQVAAYIKgAMMDbZtbYo3/5l1seu+gfbf2B6+yCRx/Z8tD+j3przKp55I4/3+0R2AXOUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADDghEGtqndX1dGq+uxx+86pqpur6ovLz2ft7JgAsNq2c4b620le+5h91yS5pbsvSnLLsg0Aa+uEQe3uP0zyF4/ZfUWSw8vlw0munB0LAPaWJ/oc6oHuvme5fG+SA0PzAMCedNIvSuruTtJbHa+qq6vqSFUdeSgPnuzdAcBKeqJBva+qzkuS5efRra7Y3dd298HuPrg/ZzzBuwOA1fZEg3pTkkPL5UNJbpwZBwD2pu28bea9Sf44yQuq6q6quirJ25K8uqq+mORvL9sAsLb2negK3f3TWxy6fHgWANizfFISAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYcFJBrarXVtX/qqo7quqaqaEAYK95wkGtqtOS/PskfyfJC5P8dFW9cGowANhLTuYM9bIkd3T3nd39nSTvS3LFzFgAsLecTFCfk+Qrx23ftez7/1TV1VV1pKqOPJQHT+LuAGB17fiLkrr72u4+2N0H9+eMnb47ANgVJxPUu5M897jt85d9ALB2Tiaof5Lkoqq6sKpOT/JTSW6aGQsA9pbq7id+46rXJXl7ktOSvLu7f/UE1/9qki8vm9+f5GtP+M6fXKzFMdbiGGtxjLU4xlocs1tr8Te6+9zH7jypoJ6MqjrS3Qd35c5XjLU4xlocYy2OsRbHWItjVm0tfFISAAwQVAAYsJtBvXYX73vVWItjrMUx1uIYa3GMtThmpdZi155DBYAnE7/yBYABuxLUdf6Wmqp6d1UdrarPHrfvnKq6uaq+uPx81m7OeCpU1XOr6taq+nxVfa6q3rzsX8e1OLOqPlZVn17W4leW/RdW1W3L4+T9y/u910JVnVZVn6yqDy/ba7kWVfWlqvpMVX2qqo4s+9buMZIkVXV2Vd1QVV+oqtur6qWrthanPKi+pSa/neS1j9l3TZJbuvuiJLcs2092Dyf5he5+YZKXJHnT8t/BOq7Fg0le1d0vSnJJktdW1UuS/FqS3+ju5yf5epKrdm/EU+7NSW4/bnud1+LHuvuS494eso6PkSR5R5KPdPfFSV6Ujf8+VmotduMMda2/paa7/zDJXzxm9xVJDi+XDye58lTOtBu6+57u/sRy+YFsPDiek/Vci+7uby6b+5e/Osmrktyw7F+LtUiSqjo/yU8kedeyXVnTtdjC2j1GquqZSV6R5Lok6e7vdPf9WbG12I2gbutbatbMge6+Z7l8b5IDuznMqVZVFyS5NMltWdO1WH7F+akkR5PcnOTPktzf3Q8vV1mnx8nbk/xikkeX7Wdnfdeik3y0qj5eVVcv+9bxMXJhkq8m+a3lqYB3VdVZWbG18KKkFdMbL7tem5deV9XTknwgyVu6+xvHH1untejuR7r7kmx8ycRlSS7e3Yl2R1W9PsnR7v74bs+yIl7e3S/OxlNkb6qqVxx/cI0eI/uSvDjJO7v70iTfymN+vbsKa7EbQfUtNX/VfVV1XpIsP4/u8jynRFXtz0ZM39PdH1x2r+VafNfya6xbk7w0ydlVtW85tC6Pk5cl+cmq+lI2ng56VTaeO1vHtUh33738PJrkQ9n4w9Y6PkbuSnJXd9+2bN+QjcCu1FrsRlB9S81fdVOSQ8vlQ0lu3MVZTonlebHrktze3b9+3KF1XItzq+rs5fL3JXl1Np5TvjXJG5arrcVadPcvdff53X1BNv7f8Pvd/bNZw7WoqrOq6unfvZzkNUk+mzV8jHT3vUm+UlUvWHZdnuTzWbG12JUPdni831LzZFJV703yo9n4loT7kvzLJP8pyfVJnpeNb+N5Y3c/9oVLTypV9fIk/z3JZ3LsubJfzsbzqOu2Fn8rGy+oOC0bf8i9vrv/VVX9YDbO0s5J8skkP9fdD+7epKdWVf1okn/W3a9fx7VY/pk/tGzuS/I73f2rVfXsrNljJEmq6pJsvFDt9CR3Jvn5LI+XrMha+KQkABjgRUkAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAY8H8B8twxUeWRL8UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkw0lEQVR4nO3df3CV9Z3o8c/R4AFsklYrOWSMNl0zVYu/Ci4FbWGr5A7bOnbtdNtiW3e6uyNFW7PuDi7lD5nObqLsLUM7bNmB3XFxdin9o1rtba1kpjW2w+UKKCODHWtHumZb0qwOm0SkQeC5f/R6rhErBD6HhPh6zTwz5nm+5+TDNwx990lyTqkoiiIAACDBGWM9AAAAE4e4BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIE3dWA/wRkeOHIlf//rXUV9fH6VSaazHAQB42yuKIoaGhqK5uTnOOOOt702Ou7j89a9/HS0tLWM9BgAAb9Db2xvnn3/+W64Zd3FZX18fERHXxh9HXUwa42kAADgUr8ZP4wfVTnsr4y4uX/tWeF1MirqSuAQAGHP/783Cj+dHFv1CDwAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGlGHZe/+tWv4rOf/Wyce+65MXXq1Ljyyitjx44d1etFUcSKFSuiubk5pkyZEvPnz4/du3enDg0AwPg0qrjct29fXHPNNTFp0qR45JFH4plnnomvfe1r8c53vrO6ZuXKlbFq1apYs2ZNbNu2LSqVSixYsCCGhoayZwcAYJypG83ie++9N1paWuK+++6rnnvPe95T/e+iKGL16tWxfPnyuOmmmyIiYsOGDdHU1BQbN26MW2+9NWdqAADGpVHduXz44Ydj1qxZ8clPfjKmTZsWV111Vaxfv756fc+ePdHX1xft7e3Vc+VyOebNmxdbtmx50+ccHh6OwcHBEQcAAKenUcXl888/H2vXro22trZ49NFHY/HixfHlL3857r///oiI6Ovri4iIpqamEY9ramqqXnujrq6uaGxsrB4tLS0n8ucAAGAcGFVcHjlyJD7wgQ9EZ2dnXHXVVXHrrbfGX/7lX8batWtHrCuVSiM+LoriqHOvWbZsWQwMDFSP3t7eUf4RAAAYL0YVl9OnT49LL710xLlLLrkkXnjhhYiIqFQqERFH3aXs7+8/6m7ma8rlcjQ0NIw4AAA4PY0qLq+55pp49tlnR5z7+c9/HhdeeGFERLS2tkalUonu7u7q9YMHD0ZPT0/MnTs3YVwAAMazUf22+F/91V/F3Llzo7OzM/70T/80nnjiiVi3bl2sW7cuIn737fCOjo7o7OyMtra2aGtri87Ozpg6dWosWrSoJn8AAADGj1HF5dVXXx0PPvhgLFu2LL761a9Ga2trrF69Om6++ebqmqVLl8aBAwdiyZIlsW/fvpg9e3Zs3rw56uvr04cHAGB8KRVFUYz1EK83ODgYjY2NMT9ujLrSpLEeBwDgbe9Q8Wo8Fg/FwMDAMX8/xnuLAwCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGZUcblixYoolUojjkqlUr1eFEWsWLEimpubY8qUKTF//vzYvXt3+tAAAIxPo75z+f73vz/27t1bPXbt2lW9tnLlyli1alWsWbMmtm3bFpVKJRYsWBBDQ0OpQwMAMD6NOi7r6uqiUqlUj/POOy8ifnfXcvXq1bF8+fK46aabYsaMGbFhw4Z45ZVXYuPGjemDAwAw/ow6Lp977rlobm6O1tbW+PSnPx3PP/98RETs2bMn+vr6or29vbq2XC7HvHnzYsuWLb/3+YaHh2NwcHDEAQDA6WlUcTl79uy4//7749FHH43169dHX19fzJ07N1566aXo6+uLiIimpqYRj2lqaqpeezNdXV3R2NhYPVpaWk7gjwEAwHgwqrhcuHBhfOITn4jLLrssrr/++vj+978fEREbNmyorimVSiMeUxTFUedeb9myZTEwMFA9ent7RzMSAADjyEm9FNHZZ58dl112WTz33HPV3xp/413K/v7+o+5mvl65XI6GhoYRBwAAp6eTisvh4eH42c9+FtOnT4/W1taoVCrR3d1dvX7w4MHo6emJuXPnnvSgAACMf3WjWfw3f/M3ccMNN8QFF1wQ/f398Xd/93cxODgYt9xyS5RKpejo6IjOzs5oa2uLtra26OzsjKlTp8aiRYtqNT8AAOPIqOLyP//zP+Mzn/lMvPjii3HeeefFBz/4wdi6dWtceOGFERGxdOnSOHDgQCxZsiT27dsXs2fPjs2bN0d9fX1NhgcAYHwpFUVRjPUQrzc4OBiNjY0xP26MutKksR4HAOBt71DxajwWD8XAwMAxfz/Ge4sDAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBmVC+iDgDkqqs0Hde6Q7/pP/ai8fXS1bxNuXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBovos7bzm8/9ofHXlQ6vuea/L0nTm4YThtnnnfeMdfs/VTbcT3XtDVbTnYcJpDvP/noca3746vaj7nm8PG80DrUmDuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApPEOPbzt7J9+ZtpzTU57Jsa9xnccc8lv5w0d33OtOclZmFD+R/OVx7nSu+9wenDnEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0XkSdt51z1//vsR6B09DhX+w55poLPnkKBgEY59y5BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM1JxWVXV1eUSqXo6OioniuKIlasWBHNzc0xZcqUmD9/fuzevftk5wQA4DRwwnG5bdu2WLduXVx++eUjzq9cuTJWrVoVa9asiW3btkWlUokFCxbE0NDQSQ8LAMD4dkJx+fLLL8fNN98c69evj3e9613V80VRxOrVq2P58uVx0003xYwZM2LDhg3xyiuvxMaNG9/0uYaHh2NwcHDEAQDA6emE4vK2226Lj370o3H99dePOL9nz57o6+uL9vb26rlyuRzz5s2LLVu2vOlzdXV1RWNjY/VoaWk5kZEAABgHRh2XmzZtiieffDK6urqOutbX1xcREU1NTSPONzU1Va+90bJly2JgYKB69Pb2jnYkAADGibrRLO7t7Y077rgjNm/eHJMnT/6960ql0oiPi6I46txryuVylMvl0YwBAMA4Nao7lzt27Ij+/v6YOXNm1NXVRV1dXfT09MQ3vvGNqKurq96xfONdyv7+/qPuZgIAMPGMKi6vu+662LVrV+zcubN6zJo1K26++ebYuXNnvPe9741KpRLd3d3Vxxw8eDB6enpi7ty56cMDADC+jOrb4vX19TFjxowR584+++w499xzq+c7Ojqis7Mz2traoq2tLTo7O2Pq1KmxaNGivKkBABiXRhWXx2Pp0qVx4MCBWLJkSezbty9mz54dmzdvjvr6+uxPBQDAOFMqiqIY6yFeb3BwMBobG2N+3Bh1pUljPQ4AwNveoeLVeCweioGBgWhoaHjLtd5bHACANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDR1Yz0AnGqlqy875pqXL5h6XM919nf+z8mOA0xgg4s+eMw1Dd86zn9HiuIkp4FTw51LAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0niHHt52hlrPPuaaFy8rHddznf2dk52G08UZ9fXHXPM/d20+rue68z1zTnYcThOLlj9yzDX/a9O7j+/JisMnOQ2cGu5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJCmVBRFMdZDvN7g4GA0NjbG/Lgx6kqTxnocgN8pHccL61894/ie64ldJzcLwCl2qHg1HouHYmBgIBoaGt5y7ajuXK5duzYuv/zyaGhoiIaGhpgzZ0488sj/f/eBoihixYoV0dzcHFOmTIn58+fH7t27T+xPAQDAaWdUcXn++efHPffcE9u3b4/t27fHRz7ykbjxxhurAbly5cpYtWpVrFmzJrZt2xaVSiUWLFgQQ0NDNRkeAIDx5aS/LX7OOefEP/zDP8QXvvCFaG5ujo6OjrjrrrsiImJ4eDiampri3nvvjVtvvfW4ns+3xYFxybfFgbexmn1b/PUOHz4cmzZtiv3798ecOXNiz5490dfXF+3t7dU15XI55s2bF1u2bPm9zzM8PByDg4MjDgAATk+jjstdu3bFO97xjiiXy7F48eJ48MEH49JLL42+vr6IiGhqahqxvqmpqXrtzXR1dUVjY2P1aGlpGe1IAACME6OOy/e9732xc+fO2Lp1a3zxi1+MW265JZ555pnq9dIbvnVUFMVR515v2bJlMTAwUD16e3tHOxIAAONE3WgfcNZZZ8VFF10UERGzZs2Kbdu2xde//vXqz1n29fXF9OnTq+v7+/uPupv5euVyOcrl8mjHAABgHDrpF1EviiKGh4ejtbU1KpVKdHd3V68dPHgwenp6Yu7cuSf7aQAAOA2M6s7lV77ylVi4cGG0tLTE0NBQbNq0KR577LH44Q9/GKVSKTo6OqKzszPa2tqira0tOjs7Y+rUqbFo0aJazQ8AwDgyqrj8zW9+E5/73Odi79690djYGJdffnn88Ic/jAULFkRExNKlS+PAgQOxZMmS2LdvX8yePTs2b94c9fX1NRke4JQ5nldt8xJDAN7+EQCAt3ZKXucSAADeSFwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGZUcdnV1RVXX3111NfXx7Rp0+LjH/94PPvssyPWFEURK1asiObm5pgyZUrMnz8/du/enTo0AADj06jisqenJ2677bbYunVrdHd3x6FDh6K9vT32799fXbNy5cpYtWpVrFmzJrZt2xaVSiUWLFgQQ0ND6cMDADC+lIqiKE70wf/1X/8V06ZNi56envjwhz8cRVFEc3NzdHR0xF133RUREcPDw9HU1BT33ntv3Hrrrcd8zsHBwWhsbIz5cWPUlSad6GgAACQ5VLwaj8VDMTAwEA0NDW+59qR+5nJgYCAiIs4555yIiNizZ0/09fVFe3t7dU25XI558+bFli1b3vQ5hoeHY3BwcMQBAMDp6YTjsiiKuPPOO+Paa6+NGTNmREREX19fREQ0NTWNWNvU1FS99kZdXV3R2NhYPVpaWk50JAAAxtgJx+Xtt98eTz/9dHzrW9866lqpVBrxcVEUR517zbJly2JgYKB69Pb2nuhIAACMsboTedCXvvSlePjhh+Pxxx+P888/v3q+UqlExO/uYE6fPr16vr+//6i7ma8pl8tRLpdPZAwAAMaZUd25LIoibr/99njggQfiRz/6UbS2to643traGpVKJbq7u6vnDh48GD09PTF37tyciQEAGLdGdefytttui40bN8ZDDz0U9fX11Z+jbGxsjClTpkSpVIqOjo7o7OyMtra2aGtri87Ozpg6dWosWrSoJn8AAADGj1HF5dq1ayMiYv78+SPO33ffffFnf/ZnERGxdOnSOHDgQCxZsiT27dsXs2fPjs2bN0d9fX3KwAAAjF8n9TqXteB1LgEAxpdT9jqXAADweuISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANHVjPQBkOWPy5ONa9/N7rjzmmos6tp7kNEw0Z0ydesw1tz/95HE91zcuuvhkx2EC+cGvju/vzccunnfMNUeGhk52HDhp7lwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQxjv0MHGccXz/X6k452CNB2EiOvLb4WOu+dqSzx7Xc02K7Sc7DhPIDfM+cVzrjrz8y9oOAkncuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjRdRZ8I48sorx7Wu7fNP1ngSJqQjh4+5ZNJmL47O6B3+xZ6xHgFSuXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmlHH5eOPPx433HBDNDc3R6lUiu9+97sjrhdFEStWrIjm5uaYMmVKzJ8/P3bv3p01LwAA49io43L//v1xxRVXxJo1a970+sqVK2PVqlWxZs2a2LZtW1QqlViwYEEMDQ2d9LAAAIxvdaN9wMKFC2PhwoVveq0oili9enUsX748brrppoiI2LBhQzQ1NcXGjRvj1ltvPblpAQAY11J/5nLPnj3R19cX7e3t1XPlcjnmzZsXW7ZsedPHDA8Px+Dg4IgDAIDTU2pc9vX1RUREU1PTiPNNTU3Va2/U1dUVjY2N1aOlpSVzJAAATqGa/LZ4qVQa8XFRFEede82yZctiYGCgevT29tZiJAAAToFR/8zlW6lUKhHxuzuY06dPr57v7+8/6m7ma8rlcpTL5cwxAAAYI6l3LltbW6NSqUR3d3f13MGDB6Onpyfmzp2b+akAABiHRn3n8uWXX45f/OIX1Y/37NkTO3fujHPOOScuuOCC6OjoiM7Ozmhra4u2trbo7OyMqVOnxqJFi1IHBwBg/Bl1XG7fvj3+6I/+qPrxnXfeGRERt9xyS/zrv/5rLF26NA4cOBBLliyJffv2xezZs2Pz5s1RX1+fNzUAAONSqSiKYqyHeL3BwcFobGyM+XFj1JUmjfU4AABve4eKV+OxeCgGBgaioaHhLdd6b3EAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADS1Cwuv/nNb0Zra2tMnjw5Zs6cGT/5yU9q9akAABgnahKX3/72t6OjoyOWL18eTz31VHzoQx+KhQsXxgsvvFCLTwcAwDhRk7hctWpV/Pmf/3n8xV/8RVxyySWxevXqaGlpibVr19bi0wEAME6kx+XBgwdjx44d0d7ePuJ8e3t7bNmy5aj1w8PDMTg4OOIAAOD0lB6XL774Yhw+fDiamppGnG9qaoq+vr6j1nd1dUVjY2P1aGlpyR4JAIBTpGa/0FMqlUZ8XBTFUeciIpYtWxYDAwPVo7e3t1YjAQBQY3XZT/jud787zjzzzKPuUvb39x91NzMiolwuR7lczh4DAIAxkB6XZ511VsycOTO6u7vjT/7kT6rnu7u748Ybbzzm44uiiIiIQ/FqRJE9HQAAo3UoXo2I/99pbyU9LiMi7rzzzvjc5z4Xs2bNijlz5sS6devihRdeiMWLFx/zsUNDQxER8dP4QS1GAwDgBA0NDUVjY+NbrqlJXH7qU5+Kl156Kb761a/G3r17Y8aMGfGDH/wgLrzwwmM+trm5OXp7e6O+vr76M5qDg4PR0tISvb290dDQUIuR+T3s/dix92PH3o8N+z527P3YOV32viiKGBoaiubm5mOuLRXHc39zjA0ODkZjY2MMDAyM642fiOz92LH3Y8fejw37Pnbs/diZiHvvvcUBAEgjLgEASHNaxGW5XI67777bSxaNAXs/duz92LH3Y8O+jx17P3Ym4t6fFj9zCQDA6eG0uHMJAMDpQVwCAJBGXAIAkEZcAgCQRlwCAJDmtIjLb37zm9Ha2hqTJ0+OmTNnxk9+8pOxHmnCefzxx+OGG26I5ubmKJVK8d3vfnfE9aIoYsWKFdHc3BxTpkyJ+fPnx+7du8dm2Amkq6srrr766qivr49p06bFxz/+8Xj22WdHrLH3tbF27dq4/PLLo6GhIRoaGmLOnDnxyCOPVK/b91Ojq6srSqVSdHR0VM/Z+9pYsWJFlEqlEUelUqlet++19atf/So++9nPxrnnnhtTp06NK6+8Mnbs2FG9PpH2f9zH5be//e3o6OiI5cuXx1NPPRUf+tCHYuHChfHCCy+M9WgTyv79++OKK66INWvWvOn1lStXxqpVq2LNmjWxbdu2qFQqsWDBghgaGjrFk04sPT09cdttt8XWrVuju7s7Dh06FO3t7bF///7qGntfG+eff37cc889sX379ti+fXt85CMfiRtvvLH6j7l9r71t27bFunXr4vLLLx9x3t7Xzvvf//7Yu3dv9di1a1f1mn2vnX379sU111wTkyZNikceeSSeeeaZ+NrXvhbvfOc7q2sm1P4X49wf/uEfFosXLx5x7uKLLy7+9m//dowmmvgionjwwQerHx85cqSoVCrFPffcUz3329/+tmhsbCz+6Z/+aQwmnLj6+/uLiCh6enqKorD3p9q73vWu4p//+Z/t+ykwNDRUtLW1Fd3d3cW8efOKO+64oygKf+dr6e677y6uuOKKN71m32vrrrvuKq699trfe32i7f+4vnN58ODB2LFjR7S3t484397eHlu2bBmjqd5+9uzZE319fSO+DuVyOebNm+frkGxgYCAiIs4555yIsPenyuHDh2PTpk2xf//+mDNnjn0/BW677bb46Ec/Gtdff/2I8/a+tp577rlobm6O1tbW+PSnPx3PP/98RNj3Wnv44Ydj1qxZ8clPfjKmTZsWV111Vaxfv756faLt/7iOyxdffDEOHz4cTU1NI843NTVFX1/fGE319vPaXvs61FZRFHHnnXfGtddeGzNmzIgIe19ru3btine84x1RLpdj8eLF8eCDD8all15q32ts06ZN8eSTT0ZXV9dR1+x97cyePTvuv//+ePTRR2P9+vXR19cXc+fOjZdeesm+19jzzz8fa9eujba2tnj00Udj8eLF8eUvfznuv//+iJh4f+/rxnqA41EqlUZ8XBTFUeeoPV+H2rr99tvj6aefjp/+9KdHXbP3tfG+970vdu7cGf/93/8d3/nOd+KWW26Jnp6e6nX7nq+3tzfuuOOO2Lx5c0yePPn3rrP3+RYuXFj978suuyzmzJkTf/AHfxAbNmyID37wgxFh32vlyJEjMWvWrOjs7IyIiKuuuip2794da9eujc9//vPVdRNl/8f1nct3v/vdceaZZx5V7f39/UfVPbXz2m8T+jrUzpe+9KV4+OGH48c//nGcf/751fP2vrbOOuusuOiii2LWrFnR1dUVV1xxRXz961+37zW0Y8eO6O/vj5kzZ0ZdXV3U1dVFT09PfOMb34i6urrq/tr72jv77LPjsssui+eee87f+RqbPn16XHrppSPOXXLJJdVfTp5o+z+u4/Kss86KmTNnRnd394jz3d3dMXfu3DGa6u2ntbU1KpXKiK/DwYMHo6enx9fhJBVFEbfffns88MAD8aMf/ShaW1tHXLf3p1ZRFDE8PGzfa+i6666LXbt2xc6dO6vHrFmz4uabb46dO3fGe9/7Xnt/igwPD8fPfvazmD59ur/zNXbNNdcc9TJzP//5z+PCCy+MiAn4b/1Y/SbR8dq0aVMxadKk4l/+5V+KZ555pujo6CjOPvvs4pe//OVYjzahDA0NFU899VTx1FNPFRFRrFq1qnjqqaeK//iP/yiKoijuueeeorGxsXjggQeKXbt2FZ/5zGeK6dOnF4ODg2M8+enti1/8YtHY2Fg89thjxd69e6vHK6+8Ul1j72tj2bJlxeOPP17s2bOnePrpp4uvfOUrxRlnnFFs3ry5KAr7fiq9/rfFi8Le18pf//VfF4899ljx/PPPF1u3bi0+9rGPFfX19dX/PbXvtfPEE08UdXV1xd///d8Xzz33XPHv//7vxdSpU4t/+7d/q66ZSPs/7uOyKIriH//xH4sLL7ywOOuss4oPfOAD1ZdpIc+Pf/zjIiKOOm655ZaiKH73Mgl33313UalUinK5XHz4wx8udu3aNbZDTwBvtucRUdx3333VNfa+Nr7whS9U/10577zziuuuu64alkVh30+lN8alva+NT33qU8X06dOLSZMmFc3NzcVNN91U7N69u3rdvtfW9773vWLGjBlFuVwuLr744mLdunUjrk+k/S8VRVGMzT1TAAAmmnH9M5cAAJxexCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGn+L3LdI7UQysnhAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -570,7 +576,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 13, @@ -579,14 +585,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHSCAYAAABVfjpxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUCUlEQVR4nO3df8zudX3f8dcbzgHssRVw7hTBFlqJhi0VzAnT6FwLs3WtE5YY065dThoS/jGNTbt01H+WLu3S/lN1y+JCxPZksVWCdRCTmTJK0zU69FixKrhgmU4YcHRKi2blh7z3x/1154ze987NOe/717kej4Rc1/fzvS6uD5/DxZPvdV3f66ruDgBwes7a6QkAwJlAUAFggKACwABBBYABggoAAwQVAAbs284HO6fO7fNyYDsfEgBGPZFvfr27X/Lc8W0N6nk5kL9X127nQwLAqP/ct31lvXEv+QLAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWDApoJaVedX1W1V9cWqur+qXltVF1bVnVX1wHJ5wVZPFgB2q80eob4nyce6+5VJXpXk/iQ3Jbmruy9PcteyDQAr6aRBraoXJXlDkluSpLuf6u7Hk1yX5MhysyNJrt+aKQLA7reZI9TLknwtye9U1Weq6n1VdSDJwe5+ZLnNo0kObtUkAWC320xQ9yV5dZL3dvdVSb6d57y8292dpNe7c1XdWFVHq+ro03nydOcLALvSZoL6UJKHuvueZfu2rAX2saq6KEmWy2Pr3bm7b+7uQ919aH/OnZgzAOw6Jw1qdz+a5KtV9Ypl6Nok9yW5I8nhZexwktu3ZIYAsAfs2+TtfiHJB6rqnCQPJvn5rMX41qq6IclXkrxta6YIALvfpoLa3fcmObTOrmtHZwMAe5RvSgKAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAwQFABYICgAsAAQQWAAYIKAAP2beZGVfXlJE8k+U6SZ7r7UFVdmORDSS5N8uUkb+vub27NNAFgd3s+R6g/1t1XdvehZfumJHd19+VJ7lq2AWAlnc5LvtclObJcP5Lk+tOeDQDsUZsNaif5w6r6dFXduIwd7O5HluuPJjk4PjsA2CM29R5qktd398NV9beT3FlVXzxxZ3d3VfV6d1wCfGOSnJfvOa3JAsButakj1O5+eLk8luQjSa5O8lhVXZQky+WxDe57c3cf6u5D+3PuzKwBYJc5aVCr6kBVfe93ryf58SSfT3JHksPLzQ4nuX2rJgkAu91mXvI9mOQjVfXd2/9ed3+sqj6V5NaquiHJV5K8beumCautzt341Z1nX/3Kje/3ic9uxXSAdZw0qN39YJJXrTP+v5JcuxWTAoC9xjclAcAAQQWAAYIKAAMEFQAGCCoADNjsNyUBO+isH7h4w32/8B8+tOG+f/PyjU+pAWY5QgWAAYIKAAMEFQAGCCoADBBUABggqAAwwGkzsAd854EHN9zn1Ji946y/u/Gf1Vl/+a0N9z3z1Ye2YjoMc4QKAAMEFQAGCCoADBBUABggqAAwwKd8ed7q3HPXHf/Yf79nw/v8xEuv3KLZwN7xwDvP23DfgU9euOG+73+3T/nuBY5QAWCAoALAAEEFgAGCCgADBBUABggqAAxw2gzPWz/11Lrjb3rLz/1/7vX5rZkM7CE//E/v3ekpsIUcoQLAAEEFgAGCCgADBBUABggqAAwQVAAY4LQZnr/u9YePOjUGWF2OUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFgwKaDWlVnV9Vnquqjy/ZlVXVPVX2pqj5UVeds3TQBYHd7Pkeo70hy/wnbv5XkXd398iTfTHLD5MQAYC/ZVFCr6pIkP5Xkfct2JbkmyW3LTY4kuX4L5gcAe8Jmj1DfneRXkjy7bL84yePd/cyy/VCSi2enBgB7x0mDWlVvTnKsuz99Kg9QVTdW1dGqOvp0njyVvwUA7Hr7NnGb1yV5S1X9ZJLzknxfkvckOb+q9i1HqZckeXi9O3f3zUluTpLvqwt7ZNYAsMuc9Ai1u3+1uy/p7kuT/HSSP+run01yd5K3Ljc7nOT2LZslAOxyp3Me6r9I8ktV9aWsvad6y8yUAGDv2cxLvv9Xd/9xkj9erj+Y5Or5KQHA3uObkgBggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFgwL6dngDb4DU/su7wty95wYZ3OXDbPVs1G7bTWWdvuOuBf3to3fHL3+7PHk6FI1QAGCCoADBAUAFggKACwABBBYABggoAA5w2swL+8oe/Z93xb/yd2vA+l922VbNhO9VZG/8ZH3jpE9s4EzjzOUIFgAGCCgADBBUABggqAAwQVAAY4FO+K+BFH/iv649v8zzYfv3MMxvue+k/uW8bZwJnPkeoADBAUAFggKACwABBBYABggoAAwQVAAY4bQZg2L7LfnDd8Ss+/D82vM+fv7q3ajpsE0eoADBAUAFggKACwABBBYABggoAAwQVAAY4bQZg2LPHvr7u+Cf+9dUb3udA7tmq6bBNHKECwABBBYABggoAAwQVAAYIKgAMOGlQq+q8qvpkVX22qr5QVb+2jF9WVfdU1Zeq6kNVdc7WTxcAdqfNnDbzZJJruvtbVbU/yZ9W1X9K8ktJ3tXdH6yqf5/khiTv3cK5AuwJz3772+uOH7jNqTFnspMeofaaby2b+5e/Osk1SW5bxo8kuX4rJggAe8Gm3kOtqrOr6t4kx5LcmeQvkjze3c8sN3koycVbMkMA2AM2FdTu/k53X5nkkiRXJ3nlZh+gqm6sqqNVdfTpPHlqswSAXe55fcq3ux9PcneS1yY5v6q++x7sJUke3uA+N3f3oe4+tD/nns5cAWDX2synfF9SVecv11+Q5I1J7s9aWN+63Oxwktu3aI4AsOtt5lO+FyU5UlVnZy3At3b3R6vqviQfrKpfT/KZJLds4TwBYFc7aVC7+8+TXLXO+INZez8VAFaeb0oCgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADThrUqnpZVd1dVfdV1Req6h3L+IVVdWdVPbBcXrD10wWA3WkzR6jPJPnl7r4iyWuSvL2qrkhyU5K7uvvyJHct2wCwkk4a1O5+pLv/bLn+RJL7k1yc5LokR5abHUly/RbNEQB2vef1HmpVXZrkqiT3JDnY3Y8sux5NcnB2agCwd2w6qFX1wiQfTvKL3f1XJ+7r7k7SG9zvxqo6WlVHn86TpzVZANitNhXUqtqftZh+oLv/YBl+rKouWvZflOTYevft7pu7+1B3H9qfcyfmDAC7zmY+5VtJbklyf3f/9gm77khyeLl+OMnt89MDgL1h3yZu87ok/yzJ56rq3mXsnUl+M8mtVXVDkq8keduWzBBgBTz796/acN/D/+AF646/7Nc/vlXT4RScNKjd/adJaoPd185OBwD2Jt+UBAADBBUABggqAAwQVAAYIKgAMGAzp80AsMXqO89uuO/sp7ZxIpwyR6gAMEBQAWCAoALAAEEFgAGCCgADBBUABjhtBlbUX//jq9cdf8Gj/3vD+/SnPrdV01l59fHPbrjvpX5UZk9whAoAAwQVAAYIKgAMEFQAGCCoADDAp3xhRf3P15297vgFX3zhhve54FNbNRvY+xyhAsAAQQWAAYIKAAMEFQAGCCoADBBUABjgtJkVsO/SH1h3/NnzNz494tl779uq6bBL/NBNn9jpKcAZxREqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAFOm1kBD11/ybrjT1z11xve5/LDWzUbgDOTI1QAGCCoADBAUAFggKACwABBBYABPuW7Ar7/3R9ff3yb5wFwJnOECgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAwQVAAYIKgAMEBQAWCAoALAAEEFgAGCCgADBBUABggqAAw4aVCr6v1VdayqPn/C2IVVdWdVPbBcXrC10wSA3W0zR6i/m+RNzxm7Kcld3X15kruWbQBYWScNanf/SZJvPGf4uiRHlutHklw/Oy0A2FtO9T3Ug939yHL90SQHh+YDAHvSaX8oqbs7SW+0v6purKqjVXX06Tx5ug8HALvSqQb1saq6KEmWy2Mb3bC7b+7uQ919aH/OPcWHA4Dd7VSDekeSw8v1w0lun5kOAOxNmzlt5veTfCLJK6rqoaq6IclvJnljVT2Q5B8u2wCwsvad7Abd/TMb7Lp2eC4AsGf5piQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADBAUAFggKACwABBBYABggoAAwQVAAYIKgAMEFQAGCCoADDgtIJaVW+qqv9WVV+qqpumJgUAe80pB7Wqzk7y75L8oyRXJPmZqrpiamIAsJeczhHq1Um+1N0PdvdTST6Y5LqZaQHA3nI6Qb04yVdP2H5oGft/VNWNVXW0qo4+nSdP4+EAYPfa8g8ldffN3X2ouw/tz7lb/XAAsCNOJ6gPJ3nZCduXLGMAsHJOJ6ifSnJ5VV1WVeck+ekkd8xMCwD2luruU79z1U8meXeSs5O8v7t/4yS3/1qSryybfyvJ10/5wc8s1uI4a3GctTjOWhxnLY7bqbX4we5+yXMHTyuop6Oqjnb3oR158F3GWhxnLY6zFsdZi+OsxXG7bS18UxIADBBUABiwk0G9eQcfe7exFsdZi+OsxXHW4jhrcdyuWosdew8VAM4kXvIFgAE7EtRV/pWaqnp/VR2rqs+fMHZhVd1ZVQ8slxfs5By3Q1W9rKrurqr7quoLVfWOZXwV1+K8qvpkVX12WYtfW8Yvq6p7lufJh5bzvVdCVZ1dVZ+pqo8u2yu5FlX15ar6XFXdW1VHl7GVe44kSVWdX1W3VdUXq+r+qnrtbluLbQ+qX6nJ7yZ503PGbkpyV3dfnuSuZftM90ySX+7uK5K8Jsnbl38PVnEtnkxyTXe/KsmVSd5UVa9J8ltJ3tXdL0/yzSQ37NwUt907ktx/wvYqr8WPdfeVJ5wesorPkSR5T5KPdfcrk7wqa/9+7Kq12Ikj1JX+lZru/pMk33jO8HVJjizXjyS5fjvntBO6+5Hu/rPl+hNZe3JcnNVci+7uby2b+5e/Osk1SW5bxldiLZKkqi5J8lNJ3rdsV1Z0LTawcs+RqnpRkjckuSVJuvup7n48u2wtdiKom/qVmhVzsLsfWa4/muTgTk5mu1XVpUmuSnJPVnQtlpc4701yLMmdSf4iyePd/cxyk1V6nrw7ya8keXbZfnFWdy06yR9W1aer6sZlbBWfI5cl+VqS31neCnhfVR3ILlsLH0raZXrtY9cr89Hrqnphkg8n+cXu/qsT963SWnT3d7r7yqz9yMTVSV65szPaGVX15iTHuvvTOz2XXeL13f3qrL1F9vaqesOJO1foObIvyauTvLe7r0ry7Tzn5d3dsBY7EVS/UvM3PVZVFyXJcnlsh+ezLapqf9Zi+oHu/oNleCXX4ruWl7HuTvLaJOdX1b5l16o8T16X5C1V9eWsvR10TdbeO1vFtUh3P7xcHkvykaz9z9YqPkceSvJQd9+zbN+WtcDuqrXYiaD6lZq/6Y4kh5frh5PcvoNz2RbL+2K3JLm/u3/7hF2ruBYvqarzl+svSPLGrL2nfHeSty43W4m16O5f7e5LuvvSrP234Y+6+2ezgmtRVQeq6nu/ez3Jjyf5fFbwOdLdjyb5alW9Yhm6Nsl92WVrsSNf7PB8f6XmTFJVv5/kR7P2KwmPJfmXSf5jkluT/EDWfo3nbd393A8unVGq6vVJ/kuSz+X4e2XvzNr7qKu2Fj+StQ9UnJ21/8m9tbv/VVX9UNaO0i5M8pkkP9fdT+7cTLdXVf1okn/e3W9exbVY/pk/smzuS/J73f0bVfXirNhzJEmq6sqsfVDtnCQPJvn5LM+X7JK18E1JADDAh5IAYICgAsAAQQWAAYIKAAMEFQAGCCoADBBUABggqAAw4P8A7lwqNaxNYGcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlAElEQVR4nO3dcXCV9Zno8edo8Ag0SavVHHJJbdpmWi1iFSwFbWGr5F5u12vrTrcttstOd3ekYGvW3cFS/jDT2U2UnTK0ly07uDsu3q1LZ7Za3dlayUxrbIdlG6hcudhr2YFd09ZsVi+bpEiDyHv/6PVcIygJPCEBP5+Zd8a87y8nD79k8DsvOeeUiqIoAgAAEpwz0QMAAHD2EJcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkqZnoAV7t6NGj8Ytf/CJqa2ujVCpN9DgAAG94RVHE0NBQNDY2xjnnvP69yUkXl7/4xS+iqalposcAAOBVent7Y+bMma+7ZtLFZW1tbUREXBv/NWpiygRPAwDAkXgxfhjfqXba65l0cfnyP4XXxJSoKYlLAIAJ9//eLHw0v7LoCT0AAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkGXNc/vznP49Pf/rTceGFF8a0adPife97X+zcubN6vSiKaG9vj8bGxpg6dWosWrQo9uzZkzo0AACT05ji8sCBA3HNNdfElClT4pFHHomnnnoqvvKVr8Sb3/zm6pq1a9fGunXrYsOGDdHT0xOVSiUWL14cQ0ND2bMDADDJ1Ixl8d133x1NTU1x7733Vs+9/e1vr/53URSxfv36WLNmTdx0000REbF58+ZoaGiI+++/P2655ZacqQEAmJTGdOfy4Ycfjrlz58bHP/7xuPjii+PKK6+Me+65p3p9//790dfXF62trdVz5XI5Fi5cGNu2bTvuYw4PD8fg4OCIAwCAM9OY4nLfvn2xcePGaGlpiUcffTSWL18eX/jCF+K+++6LiIi+vr6IiGhoaBjxeQ0NDdVrr9bZ2Rn19fXVo6mp6WT+HAAATAJjisujR4/GVVddFR0dHXHllVfGLbfcEn/wB38QGzduHLGuVCqN+LgoimPOvWz16tUxMDBQPXp7e8f4RwAAYLIYU1zOmDEjLrvsshHnLr300njmmWciIqJSqUREHHOXsr+//5i7mS8rl8tRV1c34gAA4Mw0pri85ppr4umnnx5x7qc//WlccsklERHR3NwclUolurq6qtcPHz4c3d3dsWDBgoRxAQCYzMb0bPE//MM/jAULFkRHR0f89m//dvzoRz+KTZs2xaZNmyLi1/8c3tbWFh0dHdHS0hItLS3R0dER06ZNi6VLl47LHwAAgMljTHF59dVXx4MPPhirV6+OL3/5y9Hc3Bzr16+Pm2++ubpm1apVcejQoVixYkUcOHAg5s2bF1u3bo3a2tr04QEAmFxKRVEUEz3EKw0ODkZ9fX0sihujpjRloscBAHjDO1K8GI/FQzEwMHDC58d4b3EAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSjCku29vbo1QqjTgqlUr1elEU0d7eHo2NjTF16tRYtGhR7NmzJ31oAAAmpzHfuXzve98bzz77bPXYvXt39dratWtj3bp1sWHDhujp6YlKpRKLFy+OoaGh1KEBAJicxhyXNTU1UalUqsdFF10UEb++a7l+/fpYs2ZN3HTTTTFr1qzYvHlzvPDCC3H//fenDw4AwOQz5rjcu3dvNDY2RnNzc3zyk5+Mffv2RUTE/v37o6+vL1pbW6try+VyLFy4MLZt2/aajzc8PByDg4MjDgAAzkxjist58+bFfffdF48++mjcc8890dfXFwsWLIjnn38++vr6IiKioaFhxOc0NDRUrx1PZ2dn1NfXV4+mpqaT+GMAADAZjCkulyxZEr/1W78Vl19+eVx//fXxD//wDxERsXnz5uqaUqk04nOKojjm3CutXr06BgYGqkdvb+9YRgIAYBI5pZcimj59elx++eWxd+/e6rPGX32Xsr+//5i7ma9ULpejrq5uxAEAwJnplOJyeHg4fvKTn8SMGTOiubk5KpVKdHV1Va8fPnw4uru7Y8GCBac8KAAAk1/NWBb/8R//cdxwww3xtre9Lfr7++NP/uRPYnBwMJYtWxalUina2tqio6MjWlpaoqWlJTo6OmLatGmxdOnS8Zof4LQolcsnXHP0qveM7rH+8X+e6jgAk9aY4vJnP/tZfOpTn4rnnnsuLrroovjABz4Q27dvj0suuSQiIlatWhWHDh2KFStWxIEDB2LevHmxdevWqK2tHZfhAQCYXEpFURQTPcQrDQ4ORn19fSyKG6OmNGWixwGICHcugTe2I8WL8Vg8FAMDAyd8foz3FgcAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM2YXkQd4I3qnLf9pxOu+fz/+OaoHutr7xrd62ECnIncuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjRdRBxiFl/buO+EaL47OeDpn1ol/vs4Z+OWoHutI789OdRx4Te5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkMY79MBxlMrlUa377v5/OuGa/9z4vlOcBiBi75fOP+Ga6T+6YFSPVVnvHXoYP+5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJDGi6jDcRSHD49q3X/5b58exar/dWrDAETEO5fumugRYFTcuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNd+iB4ymK0S3b4d13AOCV3LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM0pxWVnZ2eUSqVoa2urniuKItrb26OxsTGmTp0aixYtij179pzqnAAAnAFOOi57enpi06ZNMXv27BHn165dG+vWrYsNGzZET09PVCqVWLx4cQwNDZ3ysAAATG4nFZe//OUv4+abb4577rkn3vKWt1TPF0UR69evjzVr1sRNN90Us2bNis2bN8cLL7wQ999//3Efa3h4OAYHB0ccAACcmU4qLleuXBkf+chH4vrrrx9xfv/+/dHX1xetra3Vc+VyORYuXBjbtm077mN1dnZGfX199WhqajqZkQAAmATGHJdbtmyJH//4x9HZ2XnMtb6+voiIaGhoGHG+oaGheu3VVq9eHQMDA9Wjt7d3rCMBADBJ1IxlcW9vb9x2222xdevWOP/8819zXalUGvFxURTHnHtZuVyOcrk8ljEAAJikxnTncufOndHf3x9z5syJmpqaqKmpie7u7vja174WNTU11TuWr75L2d/ff8zdTAAAzj5jisvrrrsudu/eHbt27aoec+fOjZtvvjl27doV73jHO6JSqURXV1f1cw4fPhzd3d2xYMGC9OEBAJhcxvTP4rW1tTFr1qwR56ZPnx4XXnhh9XxbW1t0dHRES0tLtLS0REdHR0ybNi2WLl2aNzUAAJPSmOJyNFatWhWHDh2KFStWxIEDB2LevHmxdevWqK2tzf5SAABMMqWiKIqJHuKVBgcHo76+PhbFjVFTmjLR4wAAvOEdKV6Mx+KhGBgYiLq6utdd673FAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEhTM9EDwKh8YPYJlxycOXVUDzX97/7pVKeBU3POuSdcsve/zx3VQ7Ws9PMMTC7uXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQxouoc0YYeOe0E675P+8tjeqxmv/uVKeBU1M658Q/q9Mbh07DJAD53LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjXfo4YxQ/43tJ15zGuaADMWRIydc0/ixp07DJAD53LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII0XUQeACVTTfMmo1l32rWdOuObJq4pTHQdOmTuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApPEOPQAwgY72Pzeqdf/Y8f4Trpke/3Sq48Apc+cSAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDReRB0AJtDRgwdHtW7633mBdM4MY7pzuXHjxpg9e3bU1dVFXV1dzJ8/Px555JHq9aIoor29PRobG2Pq1KmxaNGi2LNnT/rQAABMTmOKy5kzZ8Zdd90VO3bsiB07dsSHP/zhuPHGG6sBuXbt2li3bl1s2LAhenp6olKpxOLFi2NoaGhchgcAYHIpFUVRnMoDXHDBBfFnf/Zn8dnPfjYaGxujra0t7rjjjoiIGB4ejoaGhrj77rvjlltuGdXjDQ4ORn19fSyKG6OmNOVURgMAIMGR4sV4LB6KgYGBqKure921J/2Enpdeeim2bNkSBw8ejPnz58f+/fujr68vWltbq2vK5XIsXLgwtm3b9pqPMzw8HIODgyMOAADOTGOOy927d8eb3vSmKJfLsXz58njwwQfjsssui76+voiIaGhoGLG+oaGheu14Ojs7o76+vno0NTWNdSQAACaJMcflu9/97ti1a1ds3749Pve5z8WyZcviqaeeql4vlUoj1hdFccy5V1q9enUMDAxUj97e3rGOBADAJDHmlyI677zz4l3veldERMydOzd6enriq1/9avX3LPv6+mLGjBnV9f39/cfczXylcrkc5XJ5rGMAADAJnfKLqBdFEcPDw9Hc3ByVSiW6urqq1w4fPhzd3d2xYMGCU/0yAACcAcZ05/JLX/pSLFmyJJqammJoaCi2bNkSjz32WHz3u9+NUqkUbW1t0dHRES0tLdHS0hIdHR0xbdq0WLp06XjNDwDAJDKmuPy3f/u3+MxnPhPPPvts1NfXx+zZs+O73/1uLF68OCIiVq1aFYcOHYoVK1bEgQMHYt68ebF169aora0dl+EBAJhcTvl1LrN5nUsAgMnltLzOJQAAvJq4BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACDNmOKys7Mzrr766qitrY2LL744PvrRj8bTTz89Yk1RFNHe3h6NjY0xderUWLRoUezZsyd1aAAAJqcxxWV3d3esXLkytm/fHl1dXXHkyJFobW2NgwcPVtesXbs21q1bFxs2bIienp6oVCqxePHiGBoaSh8eAIDJpVQURXGyn/zv//7vcfHFF0d3d3d86EMfiqIoorGxMdra2uKOO+6IiIjh4eFoaGiIu+++O2655ZYTPubg4GDU19fHorgxakpTTnY0AACSHClejMfioRgYGIi6urrXXXtKv3M5MDAQEREXXHBBRETs378/+vr6orW1tbqmXC7HwoULY9u2bcd9jOHh4RgcHBxxAABwZjrpuCyKIm6//fa49tprY9asWRER0dfXFxERDQ0NI9Y2NDRUr71aZ2dn1NfXV4+mpqaTHQkAgAl20nF56623xpNPPhl/+7d/e8y1Uqk04uOiKI4597LVq1fHwMBA9ejt7T3ZkQAAmGA1J/NJn//85+Phhx+Oxx9/PGbOnFk9X6lUIuLXdzBnzJhRPd/f33/M3cyXlcvlKJfLJzMGAACTzJjuXBZFEbfeems88MAD8b3vfS+am5tHXG9ubo5KpRJdXV3Vc4cPH47u7u5YsGBBzsQAAExaY7pzuXLlyrj//vvjoYceitra2urvUdbX18fUqVOjVCpFW1tbdHR0REtLS7S0tERHR0dMmzYtli5dOi5/AADg145+8MpRrfv5wqknXNP0J8d/Ii6cyJjicuPGjRERsWjRohHn77333vjd3/3diIhYtWpVHDp0KFasWBEHDhyIefPmxdatW6O2tjZlYAAAJq8xxeVoXhKzVCpFe3t7tLe3n+xMAACcoby3OAAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAaU7qvcUBgMmn9NLRUa079/A4D8IbmjuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKTxIuoAk9Cvbnj/qNZN7Tt0wjVFz+5THYczRGnb/xzVusZt4zwIb2juXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJDGO/QATEK/uObcUa17y/9+04nX9JzqNACj584lAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGm8iDpnhJq3v+2Ea46++cQvJh0RcXTXU6c6Doy7d3zxHyd6BICT4s4lAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAabxDD2eEn3105gnXDF35q1E9VsuyU50GAHgt7lwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkMaLqHNGqKzfduI1p2EOAOD1uXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQJoxx+Xjjz8eN9xwQzQ2NkapVIpvf/vbI64XRRHt7e3R2NgYU6dOjUWLFsWePXuy5gUAYBIbc1wePHgwrrjiitiwYcNxr69duzbWrVsXGzZsiJ6enqhUKrF48eIYGho65WEBAJjcasb6CUuWLIklS5Yc91pRFLF+/fpYs2ZN3HTTTRERsXnz5mhoaIj7778/brnlllObFgCASS31dy73798ffX190draWj1XLpdj4cKFsW3btuN+zvDwcAwODo44AAA4M6XGZV9fX0RENDQ0jDjf0NBQvfZqnZ2dUV9fXz2ampoyRwIA4DQal2eLl0qlER8XRXHMuZetXr06BgYGqkdvb+94jAQAwGkw5t+5fD2VSiUifn0Hc8aMGdXz/f39x9zNfFm5XI5yuZw5BgAAEyT1zmVzc3NUKpXo6uqqnjt8+HB0d3fHggULMr8UAACT0JjvXP7yl7+Mf/7nf65+vH///ti1a1dccMEF8ba3vS3a2tqio6MjWlpaoqWlJTo6OmLatGmxdOnS1MEBAJh8xhyXO3bsiN/4jd+ofnz77bdHRMSyZcvir//6r2PVqlVx6NChWLFiRRw4cCDmzZsXW7dujdra2rypAQCYlEpFURQTPcQrDQ4ORn19fSyKG6OmNGWixwEAeMM7UrwYj8VDMTAwEHV1da+71nuLAwCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGbc4vLrX/96NDc3x/nnnx9z5syJH/zgB+P1pQAAmCTGJS6/+c1vRltbW6xZsyaeeOKJ+OAHPxhLliyJZ555Zjy+HAAAk8S4xOW6devi937v9+L3f//349JLL43169dHU1NTbNy4cTy+HAAAk0R6XB4+fDh27twZra2tI863trbGtm3bjlk/PDwcg4ODIw4AAM5M6XH53HPPxUsvvRQNDQ0jzjc0NERfX98x6zs7O6O+vr56NDU1ZY8EAMBpMm5P6CmVSiM+LorimHMREatXr46BgYHq0dvbO14jAQAwzmqyH/Ctb31rnHvuucfcpezv7z/mbmZERLlcjnK5nD0GAAATID0uzzvvvJgzZ050dXXFxz72ser5rq6uuPHGG0/4+UVRRETEkXgxosieDgCAsToSL0bE/++015MelxERt99+e3zmM5+JuXPnxvz582PTpk3xzDPPxPLly0/4uUNDQxER8cP4zniMBgDASRoaGor6+vrXXTMucfmJT3winn/++fjyl78czz77bMyaNSu+853vxCWXXHLCz21sbIze3t6ora2t/o7m4OBgNDU1RW9vb9TV1Y3HyLwGez9x7P3EsfcTw75PHHs/cc6UvS+KIoaGhqKxsfGEa0vFaO5vTrDBwcGor6+PgYGBSb3xZyN7P3Hs/cSx9xPDvk8cez9xzsa9997iAACkEZcAAKQ5I+KyXC7HnXfe6SWLJoC9nzj2fuLY+4lh3yeOvZ84Z+PenxG/cwkAwJnhjLhzCQDAmUFcAgCQRlwCAJBGXAIAkEZcAgCQ5oyIy69//evR3Nwc559/fsyZMyd+8IMfTPRIZ53HH388brjhhmhsbIxSqRTf/va3R1wviiLa29ujsbExpk6dGosWLYo9e/ZMzLBnkc7Ozrj66qujtrY2Lr744vjoRz8aTz/99Ig19n58bNy4MWbPnh11dXVRV1cX8+fPj0ceeaR63b6fHp2dnVEqlaKtra16zt6Pj/b29iiVSiOOSqVSvW7fx9fPf/7z+PSnPx0XXnhhTJs2Ld73vvfFzp07q9fPpv2f9HH5zW9+M9ra2mLNmjXxxBNPxAc/+MFYsmRJPPPMMxM92lnl4MGDccUVV8SGDRuOe33t2rWxbt262LBhQ/T09ESlUonFixfH0NDQaZ707NLd3R0rV66M7du3R1dXVxw5ciRaW1vj4MGD1TX2fnzMnDkz7rrrrtixY0fs2LEjPvzhD8eNN95Y/cvcvo+/np6e2LRpU8yePXvEeXs/ft773vfGs88+Wz12795dvWbfx8+BAwfimmuuiSlTpsQjjzwSTz31VHzlK1+JN7/5zdU1Z9X+F5Pc+9///mL58uUjzr3nPe8pvvjFL07QRGe/iCgefPDB6sdHjx4tKpVKcdddd1XP/epXvyrq6+uLv/iLv5iACc9e/f39RUQU3d3dRVHY+9PtLW95S/GXf/mX9v00GBoaKlpaWoqurq5i4cKFxW233VYUhZ/58XTnnXcWV1xxxXGv2ffxdccddxTXXnvta14/2/Z/Ut+5PHz4cOzcuTNaW1tHnG9tbY1t27ZN0FRvPPv374++vr4R34dyuRwLFy70fUg2MDAQEREXXHBBRNj70+Wll16KLVu2xMGDB2P+/Pn2/TRYuXJlfOQjH4nrr79+xHl7P7727t0bjY2N0dzcHJ/85Cdj3759EWHfx9vDDz8cc+fOjY9//ONx8cUXx5VXXhn33HNP9frZtv+TOi6fe+65eOmll6KhoWHE+YaGhujr65ugqd54Xt5r34fxVRRF3H777XHttdfGrFmzIsLej7fdu3fHm970piiXy7F8+fJ48MEH47LLLrPv42zLli3x4x//ODo7O4+5Zu/Hz7x58+K+++6LRx99NO65557o6+uLBQsWxPPPP2/fx9m+ffti48aN0dLSEo8++mgsX748vvCFL8R9990XEWffz33NRA8wGqVSacTHRVEcc47x5/swvm699dZ48skn44c//OEx1+z9+Hj3u98du3btiv/4j/+Ib33rW7Fs2bLo7u6uXrfv+Xp7e+O2226LrVu3xvnnn/+a6+x9viVLllT/+/LLL4/58+fHO9/5zti8eXN84AMfiAj7Pl6OHj0ac+fOjY6OjoiIuPLKK2PPnj2xcePG+J3f+Z3qurNl/yf1ncu3vvWtce655x5T7f39/cfUPePn5WcT+j6Mn89//vPx8MMPx/e///2YOXNm9by9H1/nnXdevOtd74q5c+dGZ2dnXHHFFfHVr37Vvo+jnTt3Rn9/f8yZMydqamqipqYmuru742tf+1rU1NRU99fej7/p06fH5ZdfHnv37vUzP85mzJgRl1122Yhzl156afXJyWfb/k/quDzvvPNizpw50dXVNeJ8V1dXLFiwYIKmeuNpbm6OSqUy4vtw+PDh6O7u9n04RUVRxK233hoPPPBAfO9734vm5uYR1+396VUURQwPD9v3cXTdddfF7t27Y9euXdVj7ty5cfPNN8euXbviHe94h70/TYaHh+MnP/lJzJgxw8/8OLvmmmuOeZm5n/70p3HJJZdExFn4d/1EPZNotLZs2VJMmTKl+Ku/+qviqaeeKtra2orp06cX//Iv/zLRo51VhoaGiieeeKJ44okniogo1q1bVzzxxBPFv/7rvxZFURR33XVXUV9fXzzwwAPF7t27i0996lPFjBkzisHBwQme/Mz2uc99rqivry8ee+yx4tlnn60eL7zwQnWNvR8fq1evLh5//PFi//79xZNPPll86UtfKs4555xi69atRVHY99Pplc8WLwp7P17+6I/+qHjssceKffv2Fdu3by9+8zd/s6itra3+/9S+j58f/ehHRU1NTfGnf/qnxd69e4tvfOMbxbRp04q/+Zu/qa45m/Z/0sdlURTFn//5nxeXXHJJcd555xVXXXVV9WVayPP973+/iIhjjmXLlhVF8euXSbjzzjuLSqVSlMvl4kMf+lCxe/fuiR36LHC8PY+I4t57762usffj47Of/Wz175WLLrqouO6666phWRT2/XR6dVza+/HxiU98opgxY0YxZcqUorGxsbjpppuKPXv2VK/b9/H193//98WsWbOKcrlcvOc97yk2bdo04vrZtP+loiiKiblnCgDA2WZS/84lAABnFnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECa/wsz0hK0zNJUyQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -615,20 +619,10 @@ "id": "future-approval", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Warning: header update failed, data will be saved with incomplete header.\n", - "Reason: !OBS.instrument was not found in rc.__currsys__\n", - "\n" - ] - }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -637,14 +631,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHSCAYAAABVfjpxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBuklEQVR4nO3dfbBlV33e+Wftfc597Su1JTpNDzJpuSxAQBmBOxSMKcagcUpJSKCmXCqnYiw0CoprqCkSk3HAUzXOTNkJZGwwf7hSpQHbmoxjYEg8MKkKAyPwkJnJILUMCdjixVbEWIpeGkndun1vn3vP2XvNH/eQkcT+Pbfv6tW3u3W/nyqVus/ufc4+a+991j3dv2f9Us5ZAADgwjSX+gAAAHghYEIFAKACJlQAACpgQgUAoAImVAAAKmBCBQCggtF+vtiLXvSifPz48cFtD208FO6X0nC0J+e0530uZL8Spa8V7yUl7f0Yk3tC93QF+5U+nWV2jMYju53MQdYOktnjsPvtXelpLn3OeJ+ya/tyCfHZ+8WpfNLcOLrPlpLD6M2BNIVnJnrO0mug9me3e77GPN+pB576Xs75yPMf39cJ9fjx4zp58uTgttvvvT3cb7GdDT6+1cWHP2q6cNusb4v2K9Hn+C8Bxua13AVccoyLzfAYSlJfeFFF+5U+n+P2a9UPPt6Zv4BxxzjN8fVRwl1vTRo+dkmaFRyHu26m5lpszfiOUny9Rde3u0bH5vlqj310bUj++nD3i+Ouq0jJtS35sYqOw73n7T7+PF0w4+GO8Wy3OPj42Fz3bmI/143DbcvtNNwWmZp7c7ndDrf95o//3neHHuevfAEAqIAJFQCACphQAQCogAkVAIAKmFABAKhgX6t8H/ju4/rxv/nhwW03/a240i2q5nWVhK661lXVuYrMqNq4M5V9q6OtcFvtatjSSt6SykSntJLXWWriCr7NbmHwcfe+Rk1cZTiWqb4O3tusN9Xcbfx854Jjl3xlZcS950VTWVlaaaqgYnerj6sxS3+Md8dRUpVbUsG+m17Dnx/utVzV85apvHX7dSkYZHMq10aTouNwovPixqO02th9DkdV7K7K3t2bEb6hAgBQARMqAAAVMKECAFABEyoAABUwoQIAUAETKgAAFexrbObGP39UJz/2C4Pb7rjvXXt+PheNcdyi9G4h8I3Z8ELPUZxG2i1yYKIWBQuIu31aExOJYifutaT4vZXGEdx+ExfDCLhojDsON47h85n2JO75GhOriq43KY5jlS6mXvKe3XO6uNhKEy867hZGdwuZrwQLmbtru3ZcTIpjIqXNGEojaC7GVbJPabQnGg+3j4vGuHEsaSbhFttfLGhCwjdUAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKjivKt+U0mFJH5P0aklZ0n8u6VuSPinpuKSHJN2ac37aPc+3v/Wobn7zrw5uu+7XzGL2Gq50cxVay228mLrjKivXxsOLR7vKyrNd/HyH2rgSsqQi041HZ352stXBBVWjiymu0nOLmG/2cUWme84SdrFv82NmNFal1ZiuanE5qFyV4vNSep5d5burro3Op7t+XSVvdK9LcSWvJHVBxX/JovlSeUV0dL+XXh/uOi25N93nor0nclljhej6duelpGpYkpq89+M4NIqvqagpi3O+31A/KulzOedXSHqNpAckvV/SPTnnGyTdM/89AAAH0q4TakrpaklvlvRxSco5b+ecT0t6u6S753/sbknvuDiHCADA5e98vqFeL+mUpN9OKX01pfSxlNKqpKM550fnf+YxSUcv1kECAHC5O58JdSTpdZL+cc75tZI29Ly/3s05Z2n4Hz9SSnemlE6mlE5uTzcu9HgBALgsnc+E+rCkh3POX5n//tPamWAfTykdk6T5/58Y2jnnfFfO+UTO+cTCeLXGMQMAcNnZdULNOT8m6c9SSi+fP3SzpD+W9FlJt80fu03SZy7KEQIAcAU437rg/1LS76aUFiQ9KOl27UzGn0op3SHpu5Ju3e1Jckrqlva+gHHElYA3KS7zdgvgj0bxtqj0etzE5dql0ZiScv/SRbafmS0VHUcUH3BRkLN9HCNyXCQoOg5Xfu+iD3bR9IL11N3Yu4XiXVwlUvq+otjJbqJrzkY6CmI4km+QEI2juyec1nx+uHhX+HyFTQtK94u4+8hdp67RxNYsfs6oKUdpc4rShgZRIxUX0ypxXhNqzvlrkk4MbLq56tEAAHCFYqUkAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKtj7cvoXIElquuEy5dLuMCWiEmpJGpmuGyUxEVeK7kq23XNuBfEBFxWamahC647RbIuOY7GJz+XMlPovmwiJO45z3XCMwXU1cVzZfmTJvGcXSXFddMat6QATjGNp/KW0w0dwO9uuNzYqVBhzifZzz+e2uWO0sY7gmrPdd1ycyYxjyTlz919Jt5ad1zLXfnD8bgxLY0TuMy5+LXNvtnuPLvINFQCACphQAQCogAkVAIAKmFABAKiACRUAgAqYUAEAqGBfYzMve9mL9cV7PjC47d0nfy7cbxzEQVzJs4vGuBiAK8uOSsddpKO0O4J7zqhM3ZWbl8SBdl7LxDpMZ57ItSluMm+jBSYCU9JtxrFRp2Cbi6u4SE1pTCTiuokcGsWdj8xlXxRjcHGPi9EBJjrX7jjKO5fsPeZSGq1bTHF8x31Whe/bNFdx95j75uXGuDbX9aYxYxVF61w3sHMFXYX4hgoAQAVMqAAAVMCECgBABUyoAABUwIQKAEAFTKgAAFSwr7EZZ9tEHPqgXN51V3Fxj1JReXtpp45pbzrK5Pg5o44RIxN/cSX2V4/OhdtcpCbattLEpeilXSYmOY6DRF1vJsHjkrRpSuLt+dTw+bTRkhyPvRsPd/wRFyvYDKIDko91uOcs4V6rdleW0s8B24mm3XsnGneeOxNXaU3OxV0fZ7vFwcfdeMz6+PtV9HyS7xQWfe64qNBY8Vi5e9NGHoMxdu+rBN9QAQCogAkVAIAKmFABAKiACRUAgAqYUAEAqOCyqfIdmYrdWbDw+LJZ8N1VALuKu5KF7t0+vmox/nnGHf9yE1cZhvuYSrwV83xXt5vhtmjR91VT5duYSjxXyeuqHdf7pcHHN/q4gu/MbCXctpn2XgFsK1cVXwNNE78vtxh8VLHrrm2lsoYR7hqO9nMLrVtukX4zjue64fMy6+N9rjLV7a6hQdScQpKW0vB4rLXxazmu6cJK4yqRh+9Be90rvu7HfXxiXEOG6DNu1TRqcImPBXOdumr0UR6+LxbM/eeunQjfUAEAqIAJFQCACphQAQCogAkVAIAKmFABAKiACRUAgAoum9iMc/V4uOTcRRXcIsrj1kQLCriogjvGPsXb3HNGERi3z1o7Cbe5aMyR0TPhtqua4edcSnGswC4GbxoCTM22cRBVcBGdaWsWszdxlZVm+GdQ18zARR/sovqVmz9c3W6E21xMy0WWov3ceY6aGUjSJJU1NHDRtZJ9XJTsReaeKImSucXgXVTIXVebQWTMnZez3XD8TPKfY8vhlvhz2EVjXCzQnTO3uH/EjcfMjH2Eb6gAAFTAhAoAQAVMqAAAVMCECgBABUyoAABUwIQKAEAF+xqb+fa3H9Nb3/oPB7dd/6F4v6hk20ZjTAygcz9H5L3v15mK/da1zzDOmYhAFJlYMR0cXDTmJeOnw21rTdwl43AQBXBjv2TK3jd60/HEnLMopuPiO605jqdmh8Jt60G0wEUYznZx1xsXf3HXd+Rq00HFdUlxMRF3DUdxEHuPmTSCG/uog4oUR3F8p5x4PFw05rC5l6JtbgzXCrpHSdKmix9FkTbznk83cScaJ7onpPgaHrmuSIaNmZkxjuI27h4r6ZjEN1QAACpgQgUAoAImVAAAKmBCBQCgAiZUAAAqYEIFAKCCfY3NvOxlL9YXv/iBwW2333t7uF9JfMB1zyjtdBB1JnCl3G7buS6OxqyaCMxKO3yMLvqw1sZxCheNcSX9a83weMTF/FLrOuw08TmbmDhT2wyXxG+bfMZSH8cHXJwiOp9Pz+LIgeto4UTnWZKaoAPM1eY8r5iOJ66rkOt646JJERcxcs+33sfxjI0UR5Mi7rxcZbozXdueDbdFUbIV81pLe09nSJImQZclSdrMZVGc8LVcRMdsOxREnVznIBu5Mlwnmq1u+L4dBZ9hktTkgg5Ge94DAAD8ACZUAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKtjX2Izjypej7iUl3QCk8k4HUczFxSxac4gz855dF5LwtUy3Bdt5JYhgSNKaKc1fCiIwiyn+Oa0152xqjt91h+n74XEsiXRI0oJ5z1Ecy0VcNk08ynX/cLGOKCLl4i+uS4qLTq2acYyiCu6ampgo2VVBlxRJOt3H0aRnTKSmxOHGdJQx8aOl4JytNSYuZu6X3kQ33D3R5ijiF5/nSY7jL+46XTMRo83+qsHHZ31ZFyAXjSnpLOQiOm5OivANFQCACphQAQCogAkVAIAKmFABAKiACRUAgArOq8o3pfSQpHVJnaRZzvlESukaSZ+UdFzSQ5JuzTk/XXogvVkwW2Zx7oirkHSVYm6bNFwp5vZxC+C7hfj7HFcFRhVr7jgW7OLccVXr2FQpR2dsKcWXVWN+hmsUH2OXXTVsdBzx87kFzl21Y1S96q634sXxzfVxKKisdE0QrrGLupumEKZit2Rh96k5zxt9fH34MR6+hqfZXYvx54prJBA1JpCklWA8XCXv2DRxaE118CSbavTgvU1MemAlm4YcZjw2mrgxQdSsYWbOs/scc+mHvtv7xeiSESWL9O9lj7fknG/KOZ+Y//79ku7JOd8g6Z757wEAOJAu5K983y7p7vmv75b0jgs+GgAArlDnO6FmSZ9PKd2fUrpz/tjRnPOj818/Julo9aMDAOAKcb4rJb0p5/xISunPSfpCSumbz96Yc84pDf/F93wCvlOSXvrSl17QwQIAcLk6r2+oOedH5v9/QtLvS3q9pMdTSsckaf7/J4J978o5n8g5nzhy5EidowYA4DKz64SaUlpNKa19/9eS/qKkb0j6rKTb5n/sNkmfuVgHCQDA5e58/sr3qKTfTzsLoY8k/dOc8+dSSvdJ+lRK6Q5J35V064UcSLTouCSd64ZjDKujuJTbLZQ8NmX7rmR71AwfoysBdwssu7LszqR3ooiRLwGPS8rdtqk5jigyMQ0W5pZ8DKc3x19iaqJYLhrjuLGKbPXxbeYW1XeLhB9uNwYfd9f2qolHrZjrPmqCIMXNDlxMZJrj89wE95gUN0GQpGuDxexP98vhPs6CbTQRbxsHY+WiMStNHK1z95JrNBE1DnGfEX5bfH24OFNJAxN3v/hYY6zks9uNR/g6u/2BnPODkl4z8PiTkm7e8ysCAPACxEpJAABUwIQKAEAFTKgAAFTAhAoAQAVMqAAAVHC+KyVV8c0HH9cbf+bXB7e98n3x3L7YxuX+JVzHAmezj8vbI670equPoxsuMhFxMZyNPu4IMW3ikv6JiZ60QfzBx3fisncXp5jkeL9J0JnHRacct18UWerMOC238bl0nUtcHCHqHrRkrpuxiXssmGjMUjIRtGBbZ86Xi04tuevDjMdwaMZ3SXHRqW1zL5WEu1wkzEVjtkyXJXcvRdtc7MtFY9x+rjNWdH27z+DGXjsmomOu4f3CN1QAACpgQgUAoAImVAAAKmBCBQCgAiZUAAAqYEIFAKCCfY3NvOJHjupff+J9g9veffLn9vx857o4xjI2XV5cLMJ1M4hKvaNuOJLUmkpu12HHHeMkiNu4GM4kmW0mPjB23S7Ckn4TLDDNIlyHnakp258EY7VtOnzYyETe+23RmnPpOm64mMuC6Q7TBGPsIktjF9ExP1s3BdtGJsKwleP3NbZdb0xsJtjNRUEct9+27WI0PP696QLkuGhMb+Il02DbxFzbz/RL5vni/Vxc72w3HNdzn88uNuMiOkVxSPOV0nWiKXg6AABwvphQAQCogAkVAIAKmFABAKiACRUAgAqYUAEAqGBfYzPOdh8fymq7Pfj4cvD4xRKVbLsOCKPGdJuZlXWbiWIYNmqT44jRk92hcJvrMhG93oo59tKOFlE0RpI2g046LhrzTBdHBFz8qLSDTcnzufhO9N7ce940r7Vk4lGuS00cCSr7Wd1GQcx+G8FYRd2BJD/2GzKRPDMem8HxRzEWSepMPMqZmERQdK43XbTOXDvrhfdLCRdBWzJxGyeKGrrY2kR7f198QwUAoAImVAAAKmBCBQCgAiZUAAAqYEIFAKCCfa3y/da3H9NbfuqDg9tu/GBcsRtWtZrKYMdV5TorQVXxplmk3y2cPypcwD96vc5UNLoKWsftt5GGK+RW81bZa7mKTLPQfbRwd1TZ5/bZTXTtuNdadIvcm4pGt9B9yfG7cxktLi9J6uPjXwtOWad4H1fJGy0uv7MtPv6oenzdVLev98vhtqj5gOTvzaXgnlgy14Bb9N+JKpul+Bjdez7drYTbzpht7tqPmo24e90tgD9u47Fyz+kqhyMbs+H0gMM3VAAAKmBCBQCgAiZUAAAqYEIFAKACJlQAACpgQgUAoIJ9jc3046SNFw+XWE9NyXP4fGafxaZswemozFuSzgZl1J35uWS5jRdfnvWuzDvcZI8xctYsbu0WrHcWgihAtFj9blyExMVEorL90oXsbbykH45huEW2o30kadrFx+jiXdE1t2HGPop0SFKf4vfcmPcWRWpa83zbJjazZS5F1yBhvR++vl3jB3dNdSa64RaRXwjOmRt7t83ZMJGgKELylBmPp2bxNrc4/tkuvuai6JdrGuKue3dPu/36YD8XtXENSiJ8QwUAoAImVAAAKmBCBQCgAiZUAAAqYEIFAKACJlQAACrY19jMjdcf1b3/5H2D29598uf2/HyuK4HjYi6NKemP4iqLKe6U416rtHQ84krKS8vNXSeJlXa4q4yL4bhoTGkXoEhpRxkfxxoupd8y42TjL67DjjlnUQzqqVQWEzkyeibcNuni/aIuKosu+mA6B627iJE5/tP9cDeU9S7uruLiXe46dfuttZPgCcNdrNIuUdFYbRfeE85KE3/+RZEa9zlb+Jbt/RLdZyVdaBy+oQIAUAETKgAAFTChAgBQARMqAAAVMKECAFABEyoAABXsa2zm2996VDe/5R8Mbnv5r8Xly+e64UjC6mg4tiH56IOz1cdDciiIibhoTNRtQfIdcXpTOx6VgLuOJy7+stnFUYVxE8cfNqfD+7lSdBchaUzcJoroSPG5dtGH0mhPeKbN5eauRRc5sN1ygmN03Wbc2LsuJCspHvvt6JpzXWPMteg6uaz3cQQmet8uWjcxEZKxTITLxDqi43AdZbZNjKg01hHtt9rE59JFv9x1umXGcTEPf8a5a9F9BpdG60o6dBXts+c9AADAD2BCBQCgAiZUAAAqYEIFAKACJlQAACpgQgUAoIJ9jc0oS8254TLqDRPdWAjiJTMTK3ARjCiGI0lHFs6G26IYgyvldmX7LhpT0qFk2pvyexPfcWXqm6b7R3SMtty88Ee4vtv7WDUu32DL9vfeOcadrzgw4feLOtu4/ZZM56Nx0BlmN647TN/v/YS6aI+Lzbj9ou47JR1IJGmpjcfKRWDW2nODj7uxd1EW/9kSH/9G8Pia6XDlZgN3/I9Prw63RdFA97no4oSOixidnQ1fO7U7fvENFQCACphQAQCogAkVAIAKmFABAKiACRUAgArOu8o3pdRKOinpkZzz21JK10v6hKRrJd0v6Z0557jEUNLLXnFMX/h//pvBbbffe3u4X1TN1rrKSlMBNzPVsKenK+G2q0bDFXx+Aeuyn1nKFqwvey1X6dbkuGI3rHg1C+q7yko3jm6/qKLbLXLvuOq+ksq/1lRIrpgKT9fsIOIrRuPjcM0CnC6opJ6Y6nBXyesWznfV126/SMn4StLhdjPcdm07nBKwVb6manhceA2v5cng464hwIK97uPjd1X9Z7rhhgZnZvHnrKvMLm0AElUOu2O3zSkCe/kEfq+kB571+w9J+kjO+UclPS3pjj2/OgAALxDnNaGmlK6T9FckfWz++yTprZI+Pf8jd0t6x0U4PgAArgjn+w31NyT9ovQfVge4VtLpnP9Ds7uHJb2k7qEBAHDl2HVCTSm9TdITOef7S14gpXRnSulkSunkqVOnSp4CAIDL3vl8Q/0JSX8tpfSQdoqQ3irpo5IOp5S+/y/c10l6ZGjnnPNdOecTOecTR44cqXDIAABcfnadUHPOH8g5X5dzPi7pZyR9Mef8NyR9SdJPz//YbZI+c9GOEgCAy9yFLI7/9yR9IqX0K5K+Kunju+3wnT96RLfc+IHBbcfujveLSp5dNKY15dCtWfh6uY2TP13w84eLlvhITaxkgeiJKfN2i1E7LiYSlZy7xgQr7XA5v+SjMa6EPdxmhn5LcYm9O/6mHX7SlSa+blxjAhfBWDLPuRosgu8Wbi+NEblF2KMITJfMwu0mUhPdY1LZNbDSxjEiF1m6ZhQ3yVhrhuNzO9uGr+8VEztZMudlqey21SQP37ebweNSWSRM8tdHdF42U9zowJ1nF41xn3FtsOlsFx+Hu6cje5pQc85/IOkP5r9+UNLr9/yKAAC8ALFSEgAAFTChAgBQARMqAAAVMKECAFABEyoAABVcSGxmz2541Uv0uZP/cHDbz9//znC/Puho4cq1XSeaUWF5eBR/2OrjYSyJv0iSTCn9NOiW48rGV0wcyJXLuxL2aL9F0xFiycQHos4lku+GEh1jSQcS93zOgo1FxOPhIhg2UhOMffS4JI3NGLpAjTsvkzz83lxEx0XJnpwdCrdtpb2fT/cZ4WIzrvOK63gSdYdZNR2dllI8vosmfuS0efj1WhObcRfBpu2IUzeK4z7H3PNF0Rgpvqfd57OLcEX4hgoAQAVMqAAAVMCECgBABUyoAABUwIQKAEAFTKgAAFSwr7GZB/7d43r9O399cNvr/05cDh2Vvo+bsviLK5U+18WdMHpTLh8piWBIZd1hou4vu3FdFVwEJiphXwo6oUi+C5DjxnE77/0ydlGQs91SuG0riuKY0+xK/VdNdGPNRBWiGIaLYDQ2lhRvm5q4zUY/fC/1KX5fE9Ppx10fLopTFOGy13ZZDCqKLa2Y87KUXDQt3tbZLlfDrzc22ZipuU5dxGgjx5+ZbRfEdwo7H7nPARdfXG6Hz5n7nC36DN7zHgAA4AcwoQIAUAETKgAAFTChAgBQARMqAAAVMKECAFDBvsZmRme3de2XHx7ctvXevZc8z4KuK5IvsXel167MvjSWEpn18c8zvYs/BMex1k7CfVw0xpXEu21XBa/nYgWNKdvvzc93kxxHLZ6JYi4myvK96Vq4raR7hntfLiLgu2fE11sUjxmb+Mtiiu+x3hx/Y2IzXXD8k8JuLVHMQvLX1bQdvk5dtxlnrLJIXtTRpzXXdmO2jcxF7D6PtoJuM505l4smJeK6PTml8ZiIizW6z+4oAuOiMSPTISjCN1QAACpgQgUAoAImVAAAKmBCBQCgAiZUAAAq2NcqX/VZeXu42nTbLGxcwi327aphXdVXVJHpqobd89lqY7M4t6vYjRwy7/na9my4zS7e3pwbfHzJHLurFtwurPKNFjJ/cnYo3MddA5t9XEkYXQO+IjeuPlww1bUr5jnHwVitNPE4uYrR3pyXrewWkR++vqPF+yVp3TyfqyrfNvdLdF21ptp4vVsOt7lz5iqHp8HnziSoupWkxhyjK651C+dHpmZB/c3Cz6qpaU7RBWPlKsed0vRG9Hqtq8432+LXAQAAF4wJFQCACphQAQCogAkVAIAKmFABAKiACRUAgAr2NTZzw2teqs+d/M3BbXfc965wv8UmjmFEogX1Jb8ovVtwugt+/nDRmGif3bjjiBacdtGYq4KIixTHXyTpcLsZ7xdEC1xkwo3Glqmk38hxtGAhWsjcXN0u5tLN4oXzw33sNVC2beqSBWYh84iLxjhu8XYVLCLvYieli6lHkQk3vouKPyNcTGsjx7GqlSASNJb5DOvjMVwxQ9+bKM56P/x6E3MJTM15sePRL5rjGG5csWWiNlsmQuk+F12jiWgOcVGbEnxDBQCgAiZUAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKtjX2Mx3vvGwbnnZLw5uO/Y/xeXtURm1iz5s9SZ2YroIuLLsKB5jozamTN3tt9S4jhzD3WZcF5prTEeZa9uNcNth85wrwSlbSmU/py2Z8WiCGMDOxuGHtxXHiFynkbXGdaIZjgj05mdTFyuYNPEtOLWxjuAa7uN9FpN7rb3HXySFd9KkMEbkxsp1NZn0cawjckbxNeC4DkzrUacic0u4sZ+aSI27y6LI1boZw00zhi4q5MZ+K9jm9nHxF6e0s1fNffiGCgBABUyoAABUwIQKAEAFTKgAAFTAhAoAQAVMqAAAVLCvsZnp1WP9+798bHDbMZ0K95v1w+XLbRtHKaJ9JGlxFO/nOh1EXJm3K+V2XTca0xkkej3XUWbBHOOS69JguppE8RgXz3BcfMB1sImiBWEXGkkrJvrgohtN0A2lNAbgoiCu+8dm8N46EwnrTAzHmeT4WtwMru91F8Ew4+uPI37OvqD9jrv/oriHJD05OxRum7ZBxE9nwn02Fb/WionPuc+W7bAzVvyeT/cr8bZuNdwWdZSRpDOz4WiSiy5uFU5LritZ1GFsZD5XSvANFQCACphQAQCogAkVAIAKmFABAKiACRUAgAqYUAEAqGBfYzOjs51e/H8Nl4+PfjaOFoyDqEIUYZB8eXipqNTbRW1cR5lF08nFxQCiyIeLZ7iYSDS+kuT6LYyD2Eyb4mNv3M9wpjPP1JTZj4MdbZyp8s+SnXm+zsQbXBePpo/f8+GgI05nokJbJv5iO5eYa3ESdOSYuM4wJv7i4kcuatFVvt/d8Td93KUm6oD1SP6hcJ8l8zlw2nTNasx4bOa9R5NOd3FsxnVnOjOL94s+/1wnF3ffus9T26Vmn7468g0VAIAKmFABAKiACRUAgAqYUAEAqIAJFQCACnat8k0pLUn6sqTF+Z//dM75l1NK10v6hKRrJd0v6Z0557hcTdLLbvyP9Pn7/v7gtv/i/p8N91tuh5/WLQ69PBqugtxtv5IFll11mav+LK10i/ZrC6ueW7sQfzxW0zz8eosprtR0elO16Pcb1pnqVFchuWQWJN+cDVdPunPpxt41LXCVq1HF66Y5l64q3nHvLVro3lWZPtPFi6mvmwpaN44r7XAVu1vk3ilNCUTj0Zn7aKOPK73ttWiaDETXjjuXrlHDpjlG95zuMymyZY7DVXqXfJ66fUqcz1WzJemtOefXSLpJ0i0ppTdI+pCkj+Scf1TS05LuqHpkAABcQXadUPOOs/Pfjuf/ZUlvlfTp+eN3S3rHxThAAACuBOf19xoppTal9DVJT0j6gqQ/lXQ65/z9vx99WNJLLsoRAgBwBTivCTXn3OWcb5J0naTXS3rF+b5ASunOlNLJlNLJU6fiJuIAAFzJ9vQv7znn05K+JOmNkg6nlL7/r8fXSXok2OeunPOJnPOJI0eOXMixAgBw2dp1Qk0pHUkpHZ7/elnST0l6QDsT60/P/9htkj5zkY4RAIDL3vksjn9M0t0ppVY7E/Cncs7/IqX0x5I+kVL6FUlflfTxCzmQc93ey9vdAvJuEWW3zRk1e18c/2KIojhRyb4kbTRx2fuaSTs1fRzrWA1+HNvKcam/E8VwJGliFnbfLogIuAXa3TiuB5EP91ou+uAWJN8uOP6lFL+WizC4iI4bqyhq4cbDvWcXc3Gxn2nBPeiiaSWxNSmO20xTWTzDxYiKjsPGZuJt7vpwMcQ+eE4XT+xNxGgliFBKvrFCCfe+IrtehTnnfyvptQOPP6idf08FAODAY6UkAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKtjXvMe3v/Wobn7LPxjcdvwfxbEIF4+JnOvimMiiiTG47jBRpwPXAcFxr+VE5e0lXUEkaaOJO/M0pnuJ+uH33aW4JD4OI3ibpoR9K3jfLnLgSuxdZ42Sa9FFDlyHj2k2oxVcchPF76stjIu5a6fkWrwYHWDGJoYR7mOiMS5+5GNEw+97YjrsOO56c9dwSeTDKe2MFXHva9yUfkrEosiYG6dZwecz31ABAKiACRUAgAqYUAEAqIAJFQCACphQAQCogAkVAIAK9jU287KXH9M9X/qlwW133PeuPT+fi3S4zhROSQm4617juugcarf2/FpSHDuYpPi11lMcIVnq4ohAbyI1W0E8ZmLG0EU3Jra7yt67ZLh4Q29+llxp4o4Wm91whMQdn+MiOp2JFrTBte/iDe6ecJEUxx1/xHYuMe/56vbc3l+rIOa0s5+Lz8XX8DR4Pfe+3Hi4DkEu8hEdv4v4ua5Z7jPOxVyi9+bes7NoInlurCLu2Eu6iPENFQCACphQAQCogAkVAIAKmFABAKiACRUAgAr2tcrXcRWI0364cnHRLIjtqtJKRc/pKudcJa+rJNy0i/sPv+8uHyp6LcctML/WDFddLpnmA27RcVdpuq29V/k25ry4am636PhaO1z17BZnn5pqQXccUUWx4yodG1Np6hasL1kY3V2/rrLSVe6vmwXmV4L7zFVsu+uttOo5OtfufY3N/eKqqN3nX1Sh6j4H3Gem2xZ9PrvjWG7j9+y4a9GJ7unSxiYRvqECAFABEyoAABUwoQIAUAETKgAAFTChAgBQARMqAAAVXDaxGWe5HS59L43G2AhJ3nvUYiU4vt24eIZbmHlzNlxKbxe+zvHzucjEi0bPhNs2gpL+a0dnw32mKS57d4uOl3AL4LuxiqIxkrTRD0dZpp15XyYW4WIAbkH1KIZhF8cvjII40TXsojGOi/0smnGM2PE14+FeqzS6EXGfAy5W5Y6jJK7irjfHfQ6XxGPc+3LXh4vvRPd7aZwwwjdUAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKmBCBQCggn2NzTzw3cf143/zw4PbbvpbJZ0f6nYKkKTFNn7OqMTaddYojfbYTjp5+Dn7HJe9dyYi4DpanOlWw20rzXCHD/darkzddd1YTXE0KSqzXzIl+10bH4ePMawMPr6Q4vMVRW0kFV/C0Ri7mIXb5ro9lXBdhaYmwlVbZ6IgLp7R9WURkijW4cZ+SWWdV9w5u7od7gTljuNMF3eWsl2RzOdHFO9yscBZH9+bU9N1yn62BMc/Nee55LObb6gAAFTAhAoAQAVMqAAAVMCECgBABUyoAABUwIQKAEAF+9ttJs//26OwC4KJZ0zNtkPtcNxD8tGTqPTaRVxKO1O4rgpRybk79rNdHN0o7WgRHeOCeb7VIGojSasmarFonnOh2Xu3n3UTjVk13YOi9/akubC3XacfxcfhuOsj4mIWK2YMl0xkaamoA0w8Hp25hu1+UaTNRDoc14nG3RPROLr4zloTdzdy0Q13L0Xc+EYxOEma5Pg6ddfVpvncibj4i4vbuPMyS8PPOWriY3fxnQjfUAEAqIAJFQCACphQAQCogAkVAIAKmFABAKiACRUAgAr2NTZz4/GjOvnxXxjc9vP3vzPcLyr1diXlrdnmyqsXTdeQEi6S4rhYRPS+S8r5pfIOJVFHEddpxEVj1kwEY9E0/1hIwxu7oCuPJI1NJ5qJiRZENnIcz1jq47Hvm/i1znTDnW2kuNvM1aPNcB8Xs3DRDbdfE7TLcdev60bk4hkuNhPtt2XiUe44wqie/D0RdSpaa+Pxddvc2Lv7LIrptCbe5cbedWBabeJtTwWv16b4fnGfYzYaY7ZF58xFDV0cMsI3VAAAKmBCBQCgAiZUAAAqYEIFAKACJlQAACrY1yrfb/3JY3rzX/1Hg9te+ffj/cZBxeC5Lq4uW2zjCi1XHVzCLdg8buKKwNIqw6hitw0qLnc7DleRuWgqb6PFtF31oavkXTHFtSuNWaQ/GivzfJvZVV+bSshgrMZy4xs/n1sI3F0fK0GDh7XmXLjPqqn0vrY9G7+WqTRdCK656J6VfOOKbTMem3280Ppjs6sHH3fX78RUDU/NPe3OS9Qs4Op2I9zHjb27l/y24c8/t0i/G4/1tBxu2zDnZRJUALvjWDRVw9Mu/hxYNtd3dJ91ZioomSf4hgoAQAVMqAAAVMCECgBABUyoAABUwIQKAEAFTKgAAFSwa2wmpfTDkv5HSUe1kye4K+f80ZTSNZI+Kem4pIck3Zpzfto918t/9MX68v/6i4Pbbr/39nC/KEIycgvIm+jDrI9Lr/tgoXW37dDILR7uIhOxqTnGKALjFnMujcaULM69ZsrX3SL3Syn++W4s19Bg+DLeyvF4jE3EaNucs2hx8SguIUltF7+Wizq5RdOjc7ZgFm538YxrWrOovmkYEZ3PqGGBJG308TFOTZzCLuzexlGLyNluKdzW2+YUe7+XrnKL47uok4nGLJpzvdrExxiZ5vi+dcfxTBPHZqLF7F1cbMvEZtxi9qdncTOJKFLjojGzfu/fN89nj5mk9+WcXynpDZLek1J6paT3S7on53yDpHvmvwcA4EDadULNOT+ac/7D+a/XJT0g6SWS3i7p7vkfu1vSOy7SMQIAcNnb03falNJxSa+V9BVJR3POj843PaadvxIGAOBAOu8JNaV0SNI/k/S3c87PPHtbzjkrWK8tpXRnSulkSunkqVOnLuhgAQC4XJ3XhJpSGmtnMv3dnPM/nz/8eErp2Hz7MUlPDO2bc74r53wi53ziyJEjNY4ZAIDLzq4TakopSfq4pAdyzh9+1qbPSrpt/uvbJH2m/uEBAHBlOJ9uMz8h6Z2Svp5S+tr8sV+S9EFJn0op3SHpu5Ju3e2JvvO1h3TL4TsGtx37fLzfcjtcst2ZEmrXrcV1JYjKvCVpFJSiT/q4zHtsStudki417pXceLg4ghtjF8Up0ZioRWu2RcYpPpdT1x3GNJmIumS466aU68gRcZGOsYm/LJnr1HUBGgfnZewiUE08wBs5Pv7OHP81QSTIdUKx8Rc7jvFYRRGYleTiZ/H7Ku3OFEXQOhc9MtsacxxdHx/I4SCOtW3ul7MpjjO5zl4uarjQDI/HyIy9i+hEdp1Qc87/p+JGWDfv+RUBAHgBYqUkAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKjif2Ew1s8PL+t5ffdXgtmP6+p6frzWdAlzcw3U66INIiiSd64bjMVeN4k4SjoudRNEYKS7bdyXlrakAd/EBJzrGqTn2aY4jB1smMtG6UFDw3txr9Tm+duKAQFxKP8lxdMpFBKa57BZcSsPRL9cdyHUBWjL3kusCFHX6cTEnF93ozOhPzXW6GZzPJfOe15r4vt00cRsXm4k+k1w3IhdZKu3OFJ2X3nQ36s09tmCOY+K6OgWxFNcVyXW/ch213OdY9NntzmVJFI5vqAAAVMCECgBABUyoAABUwIQKAEAFTKgAAFTAhAoAQAX7Gpu58fhRnfztXxjc9u6TPxfuF5U8j0yZdEkJteSjOKNgm4urNOb5Sj0zG+7G4ErKXScGVx4+yQvhts08HC2Y5DiOMHbRGBNzcb10mmA/FwaamNjMuhmrSRBzmfTxOLkxdGNfEmdynYPcNveTtescExkpfl+dXMxi73GxnW3DY2XHw3WbMdGNEq25Gl1sxgU3XHemyGKKP/ucqblvF8w4LqXhcXTXtoszfS+thdvc59/sInSDGsI3VAAAKmBCBQCgAiZUAAAqYEIFAKACJlQAACrY1yrfBx56XH/hXR8e3PZj74nn9qiad9yYhY1NpaYTLeYsxQuj99Hq7PKVia462O03aobHwz2fq4A7M1sJt03beBwXgrFyY9iZsZLihd0npipwHFRyTs1rueraDbNg/ZP96vDj3aFwn01XAdy7inNT5RscfmOqSSfmPa+ZKuqJqb5eCapye1Nd67hqUlfzHN2bjhsrd324it34+eJryl1va+YzroRrGOGaFkzMedm2zTCCRfrNPuv9cIpB8veETVQEm0o/g8Nj2PMeAADgBzChAgBQARMqAAAVMKECAFABEyoAABUwoQIAUMG+L45/3+/sfXH8aMH6rc7ERFoT3TAl9lNTzn0oWDDblWu7suwtE5lQux1uikr6XZm3i250hT9XbTTDx9jM4giJu+I2+uHF9iXpKrNgdrTQtivN3zbLjrsoy+luODbjzuXTs+F9JKkzx+giAlEcYb1fDvc53G6G2ybmnohiSZK0FSx0PzUxnN40JnBNC9wxbuTh8Z8Ej0vSprne3P1i4xTBpm0TP3ORHzceNkgUPKUb+6mNzcQvNTWfH1FMzt3r7r519+a2a1JSEOMq+VzkGyoAABUwoQIAUAETKgAAFTChAgBQARMqAAAVMKECAFDBvsZmnCga45RGY0peS5LOdsOl3svtcJxG8l1epHg/V0q/EsRVXETHPZ/bb9a7ThLDUYDNURw5cFGFtTaOxpzu4444C0GMwZXYu5J4V9IfxSlcx57NLh4PF7lysZkz3fDrrTZxx57TwT6StOAiGOYangb7NeYWc71apma/TXOdRvGYbdM1xnWAcdGNLbNtKfgscPGdKPIjSePeRKdMfGe7oFPKlhl716lo3USMonvJ3X8usmQ/j0yHsehz2J3nhm4zAABcGkyoAABUwIQKAEAFTKgAAFTAhAoAQAVMqAAAVLCvsZnv/Jv/V7cce8/gtmOfiQ9l1AyXL7uS53Gwj+QjNTNTeh0dR2uCAK7M20VqokiKFMdcSrvGuEiNUvyc57rhcv8+x91V+pHpJGHiA0spjhhF3Hi4c+aiPVH3jNLIktvWmOxJSRePFROpedLEkjqdC7dNgmhPa7p7RMcuSZsm6rSR4zhF1GVnvYu776x3S+G2KCInSYfaeByja8dd265DkB3HoPvVzuvtPRroojFu7N39EkW1zpjz4uJuLma2OorPS/S5vlzQ1cvhGyoAABUwoQIAUAETKgAAFTChAgBQARMqAAAVMKECAFDBvsZmbnjNS/W5k785uO32e28P9xsHpfmu64Pj4ipu2ywoo3bl1b6bQVwC7raFsonvmLL9RVN+b9+bhrd1JirUzcrO2ZI5xi4Y43FBt4jdROPhIjpuDN15tlGcIHrirjenH50Nt7nIRxTrGCfXZSnmXut0F8exoqjF92Zr4T4uuuHiTE+bzkIrQQxjPD0c7jM1Y+9iUK6zUBSRKomESdLEdpSJtz06/aHBx8/M4rH33WZc9yATozSdm2riGyoAABUwoQIAUAETKgAAFTChAgBQARMqAAAV7GuVr1NS7diYyq2pqQZzP0a4/aLXm5qqNLf48rku3i9aiN9xC76743DVpFFls9MULMwt+Qq+DcXViSVj5SqA3bXomh2UPJ+rKnfVjosa3i+qeN7NmWARc0k61E7CbdE156p8e3MDbuf4Wtwyi6ZPgv3cAvilTQvccUTXlTuXmh0yzxeP43oTv7eSCvdoIfvdnDFVz9H7dpXv2+bzyDU2KUlouM++kjHkGyoAABUwoQIAUAETKgAAFTChAgBQARMqAAAVMKECAFDBrrGZlNJvSXqbpCdyzq+eP3aNpE9KOi7pIUm35pyfvlgHGcVV3ELgYxOlcKXXTrTAcl+4wLkr83Yl267kPOKiG6UREhfTiTxjFsV24+FEx++iD6WiY3TXm4tiuUX1S8bDvWcXIVlp4liVu95cY4VI6QL+7jiixfFLn89d2yUxrZLjk6QmxZ8frpFAxI29O8aoGYMkbZr4X/T556JHI/d5ZO4X996i53T3WNHn7Hn8md+RdMvzHnu/pHtyzjdIumf+ewAADqxdJ9Sc85clPfW8h98u6e75r++W9I66hwUAwJWl9N9Qj+acH53/+jFJR6M/mFK6M6V0MqV08tSpU4UvBwDA5e2Ci5JyzlkKugzvbL8r53wi53ziyJEjF/pyAABclkon1MdTSsckaf7/J+odEgAAV57SCfWzkm6b//o2SZ+pczgAAFyZzic283uSflLSi1JKD0v6ZUkflPSplNIdkr4r6dYLPZCSmMuWiSO4+ICNkBSUxG918TCujrb2/HySj9tE5eFtE5f6b8zibi2uE41y/JxR5MON/eHxZrjNnZeSziAjMx6OixG1psNRxJXmu+dzZftRVKGX6ZYU/8uM7YZSEi8piRxI0oq5Fl0nnZLXc1Eh9zlQEoFx4+siKb77VVlXp8i5riza40QxOfeZY+Mv5ry4z4iSzjEl++w6oeac/3qw6eY9vxoAAC9QrJQEAEAFTKgAAFTAhAoAQAVMqAAAVMCECgBABbtW+e4XVx4eWW7jThczW24eRxVcBKaky4SLvzjuvakgquDK1H03kTjy0eThsn0XA3Bchw8XBymxZLqkuHhJ9N5cpEPmeusLO6hEkYlZX/Yz8rnCbihbwUdISeRAks6YbkTOoXbv8bTSbkTu2ok+x9w+7j27cXSfVSUdfaZmn9ZEdFx3mKKOSebzwz2fiwZ2wfE3io/9nOmiE+EbKgAAFTChAgBQARMqAAAVMKECAFABEyoAABUwoQIAUMG+xma++eDjeuPP/Prgtlf/3ThaEEVgGlP17kqvXUm56+DgojgRF39xZd4lsR/3vlxEwMZVzH4lHT5cmbqLGJV0jnERks0cl8S7qELUhcTFIkq6k+z2nFE8Y2Z+Rnbj6677kuujadx9FB+j7cxjjiPq2mPjTEZp7CcafhfFunp0Ltzmjt+dz0Vz7YTMdeqeL+o6NX/S4PlMnMbc6u68uGOMPqu2srsn9v6ZwzdUAAAqYEIFAKACJlQAACpgQgUAoAImVAAAKtjXKt9X/MhR/etPvG9w2+333h7uF1UgugWbXXXtuS6uZltwi8EXrKW9Pl0Kty228Wu5Y4zem6tsfsYtwG0W/a+98LWrJnXP5yoaw8q/srXPrahid2oW7y99X605/hXT7CBkihbdMboqzlHwpK463FVsF51nxY0aHHfdu+paexxBNa+7N91ruUp61xBgsx+uYvfnxbwvc9+6yv3obbsxnKb4PZc2G5kF49i59IN5zxG+oQIAUAETKgAAFTChAgBQARMqAAAVMKECAFABEyoAABXsa2zGsYvSB2XlTXaLZcfPNzKLHm+7BdoLFkt20ZhogXPJj0dUOu5iACURF/daknSuGy7NXy6JdEgyyRNb7h8txF66GHxtZ7u4CYI7L2dN84RoP79Qeay0MUG00L0b35JImFTWqMEtxH9oFMdOXMzFnU93D4avZd6XbWphYlVhI4EUj4drPlD7fnHXqW1CYi5v/9kdnZf4tdznc4RvqAAAVMCECgBABUyoAABUwIQKAEAFTKgAAFTAhAoAQAX7Gpt54KHH9Rdu+/Dgtle+J57bww4OpktDb6q8GxN/aUyZesR3rTBxD3Mc7r1FrxeNk7Rbt4t4m4t1uGOMRF0fdsSRCVdmH8UYbPm9sdjExxFFSEq7YLgIhhO9nou4uG2u+4d7b9H14bqklEa43DGG+7Smq4m5Ptz15qIsXRDTsR1qbCeXsrhK9Jyj5O7n+H25qJN7b9E4ll4DjusUFnX9WhtPwn3OzoZjgQ7fUAEAqIAJFQCACphQAQCogAkVAIAKmFABAKiACRUAgAoum24zziiIibjYhivLdiXgTlRWXtKVQNolvmO2hTEXk/iJuy1Ijfm5ykUmxsExumiMO47T0+Vwm+seFJXLl8aSbHeYHL1WWbzBRXui616K4whRbEPy3UTawkhNdBylsRnbecV0BnH7Rdw5szGiHMcp2qAD1pb5qC2JA0nSLMfPGcZVCmMzpdd39N7cZ7C/b+Nj9B2Tho8jitNI0mJB5yC+oQIAUAETKgAAFTChAgBQARMqAAAVMKECAFABEyoAABXsa2zmxuNHdd/dvzC47Y773hXuF0ULXCn3M7M4+nBotB1ucxGYWRC1cB0hXETAlXm78vCoBNxFUtZncXm469JgO7YEP465iIuL1Cy3cZcXdxxRCb47DnfOojiQFMdtZgWxjd2Oo6RbjovanOvjuIe7l9y1GMVj3POVdi5xUZxov60+fi3XVWjLRFLceMzy8Ou5KIh7rdLzEu03M7EqN77Oud7EzILPlpJOVZK/dty1H71eyT4O31ABAKiACRUAgAqYUAEAqIAJFQCACphQAQCoYF+rfL/5p4/pTf/Zfz+47dX/tanuK6h2dBWj4eLyiit5nbGrrCysSls0i5VPw0rTeJxcJa+z2O59P1e52psV/F1Vq6uSVDAe7jzbitGCRbG3uvhWWhtPwm3bptLbXjvBeLjxdefFV5zv/Z7ozVrqrrq2pJJX8g0NQqYC2I3HchunBCLnurjC2iUBXPW4vc+CTetdXO3vKord/eeq6SPuOnVKF+mPjt8mEvqChgt73gMAAPwAJlQAACpgQgUAoAImVAAAKmBCBQCgAiZUAAAqSDmXlSFLUkrpFkkfldRK+ljO+YPuz584cSKfPHlycNt/8pc+FO731I3DJeeHHonL6F1KZO0bp8Jt3XceDLd9of+fBx//sfd+JNxnvBGP7/0fG24UIEm3/LmfD7dNXnf94OOPviEuzT/2f2+F2558VRw5+PpH/k64rbZX/1fxOB77V+vhtqdedWjw8dlqXPa++HQcA7j3n7wv3Paq9w8f48Lp+Dy7Sv/ZUnyM//ajdcf+p9pbw22nf/YN4bbp8PBKklYfGx7HyeH4Z/XF9XjsD/27s/FxHI4jH1/6wvsHH3/duz8c7vOH/0N8/524Pd6v6UwzjDNBPONc/Fn1B58fPnZJ+k/f9CvhtvG/fzrc9i8f/PXBx0vH4z++9dfCbSuPxp8tzeZwRGrzpavhPqv/+x+F2/639d8Jt7k55P/4l39v8PFbXj78uCR97lvx86WU7s85n3j+48XfUFNKraTflPSXJL1S0l9PKb2y9PkAALiSXchf+b5e0p/knB/MOW9L+oSkt9c5LAAAriwXMqG+RNKfPev3D88fe46U0p0ppZMppZOnTsV/1QoAwJXsohcl5ZzvyjmfyDmfOHLkyMV+OQAALokLmVAfkfTDz/r9dfPHAAA4cC5kQr1P0g0ppetTSguSfkbSZ+scFgAAV5YLjc38ZUm/oZ3YzG/lnH91lz9/StJ35799kaTvFb/4Cw/j8VyMx3MxHs/FeDwX4/FcF3s8/nzO+Qf+DfOCJtQLkVI6OZTjOagYj+diPJ6L8XguxuO5GI/nulTjwUpJAABUwIQKAEAFl3JCvesSvvbliPF4LsbjuRiP52I8novxeK5LMh6X7N9QAQB4IeGvfAEAqOCSTKgppVtSSt9KKf1JSilutfAClVL6rZTSEymlbzzrsWtSSl9IKX1n/v8fupTHuJ9SSj+cUvpSSumPU0p/lFJ67/zxAzkmKaWllNK9KaV/Mx+P/3b++PUppa/M75tPzvPfB0JKqU0pfTWl9C/mvz/IY/FQSunrKaWvpZROzh87kPeKJKWUDqeUPp1S+mZK6YGU0hsv1Xjs+4RKlxpJ0u9IuuV5j71f0j055xsk3TP//UExk/S+nPMrJb1B0nvm18RBHZMtSW/NOb9G0k2SbkkpvUHShyR9JOf8o5KelnTHpTvEffdeSQ886/cHeSwk6S0555ueFQ05qPeKtNNC9HM551dIeo12rpNLMh6X4hvqge9Sk3P+sqSnnvfw2yXdPf/13ZLesZ/HdCnlnB/NOf/h/Nfr2rkhXqIDOiZ5x/cbg47n/2VJb5X06fnjB2Y8UkrXSforkj42/33SAR0L40DeKymlqyW9WdLHJSnnvJ1zPq1LNB6XYkI9ry41B9DRnPOj818/JunopTyYSyWldFzSayV9RQd4TOZ/xfk1SU9I+oKkP5V0Ouc8m/+Rg3Tf/IakX5T0/e7d1+rgjoW088PV51NK96eU7pw/dlDvleslnZL02/N/EvhYSmlVl2g8KEq6DOWd0usDV36dUjok6Z9J+ts552eeve2gjUnOucs536SdphOvl/SKS3tEl0ZK6W2Snsg533+pj+Uy8qac8+u0889m70kpvfnZGw/YvTKS9DpJ/zjn/FpJG3reX+/u53hcigmVLjXDHk8pHZOk+f+fuMTHs69SSmPtTKa/m3P+5/OHD/SYSNL8r6++JOmNkg6nlEbzTQflvvkJSX8tpfSQdv556K3a+TezgzgWkqSc8yPz/z8h6fe18wPXQb1XHpb0cM75K/Pff1o7E+wlGY9LMaHSpWbYZyXdNv/1bZI+cwmPZV/N/03s45IeyDl/+FmbDuSYpJSOpJQOz3+9LOmntPPvyl+S9NPzP3YgxiPn/IGc83U55+Pa+az4Ys75b+gAjoUkpZRWU0pr3/+1pL8o6Rs6oPdKzvkxSX+WUnr5/KGbJf2xLtF4XJKFHfbapeaFJqX0e5J+UjsdER6X9MuS/hdJn5L0Uu105Lk15/z8wqUXpJTSmyT9K0lf1///72S/pJ1/Rz1wY5JS+jHtFFK02vmh91M55/8upfQj2vmWdo2kr0r62Zzz1qU70v2VUvpJSX835/y2gzoW8/f9+/PfjiT905zzr6aUrtUBvFckKaV0k3YK1hYkPSjpds3vG+3zeLBSEgAAFVCUBABABUyoAABUwIQKAEAFTKgAAFTAhAoAQAVMqAAAVMCECgBABUyoAABU8P8B8+QgSbD30rwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXPklEQVR4nO3df5RddX3/+9fZ55w5Z2YyZxCUmeRLpLFGBfkhgo0ENKma9EuVq6XLqqBia11EQI22F79p1r3O9VsTyneZRm9quqBeGm5L8btWxdLbAslaStBvFl9DhGVucCldxJoq0xTIj2Fmzpkze+/7RxZzHYOzXwfeyZzg87HWrKUzHz57z2d/9t7vHMj7VcrzPBcAAAAQIJnvEwAAAMBLB8UlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTGW+T+AXZVmmn/3sZxoYGFCpVJrv0wEAAPiVl+e5xsbGtGjRIiXJ3J9Ndl1x+bOf/UyLFy+e79MAAADALzhw4IDOOuusOcd0XXE5MDAg6djJNxqNOceufeRjhfOluffpZ7VUHFSUWTPF/rcG7jFdkefWk7SLj2esayei54tSNq+Uc/7tvGzNVS2l1jhnvsy+T7xjTmY9hWMq5lzOmk1n3s7OzDtgOites6QUe3c66+Huf+d6zse96V6nyN/T5Ryzlkxbc7Uy79XqHNN9trjPDed3cOdy1t9dM/dapsY9PGWufyT3/LO8+PzdJ0vFfAZNG8d0TI239bfvvHumTptL1xWXz/2r8EajUVhc9iwofoH5xWXxRcrkzZUo7qHtHtMVeW41Y79SXM7mnH9iF5fmizq0uPSOmWbVsLmsF7BZtDgvJklK5qG4dNbjVC8u3evUvcWlebx5KC7d54bzO7hzecWlW3TFFZfu+keKLS69uew/oJvX0+X8J4v8hR4AAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6bo+l8+57DNbVO6pzznmzR8tnqfs9ksz+kq5PSLbZsNSp99Vb3nKmsvtC+f0THMb6J7qPSddTl81t3+i8uJzc8/f7avmzFc22/dVE6+vWp+K9627z9zG246+xLufns1rhWOi97+zHr1GcIHLbYgf2RC8knh7u27+nk2jn6rLuU/cNYv82MZdi9R870wYAQfuM6heLl4P97zc54HDbdw+mXr7x5lvPCt+ZkhSf7lVPFfqzeXUEJJXu8T31AYAAACCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTNc2Uf8fm25Uo9GYc8wnH/lA4Txuk9Qpo1Fwj9mYtVoym2AbTYfdJqnVUlxzZbcBrdM02W46bHIah7vn7zbtbaVOs3tv/Z31iGwm7LKPafan7zOa/7vNlZ0m3m5z94m0uIG05O0ht4l9ZONwd82cfshl8znl3k/OdXIbz7uBFYPlycIxrdx7zUXem+5zz5nP3bPu2jrvxAVGo29JamfF5++el3s/Rc7lXidnPrc+mDSuZ68Z9tAyQwQS5143ni2dfBrJJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1CT2OsXa9cEzFTO5wTBtpBJJULXvJF25Hf0dq/jmhbESsuIkcTmqBm2jhnJfk/Z4TmZdo4YpMa2mreD3cudxrPp0Vj3OvuXtMN1XE4ZxbdNqMcw2SxEsecTlpJy43FSWSm+ricFN1MiOKyE37cZ5VbkKS+9Zx9m3LfJ65v6eTJube59Z9Yp5XJHf/h6a5mell1XJ3prQ5KT5W0s9zYzs9gZ/+9Kf64Ac/qDPOOEN9fX16wxveoD179sz8PM9zjYyMaNGiRert7dXKlSu1b9++Tg8DAACAU1BHxeWhQ4d02WWXqVqt6t5779Vjjz2mL37xizrttNNmxtxyyy3atGmTtmzZot27d2t4eFirVq3S2NhY9LkDAACgy3T0r8X/7M/+TIsXL9btt98+871f+7Vfm/nfeZ5r8+bNWr9+va666ipJ0rZt2zQ0NKQ777xT1113XcxZAwAAoCt19MnlPffco0suuUTvfe97deaZZ+qiiy7SbbfdNvPz/fv3a3R0VKtXr575Xq1W04oVK7Rr167nnbPVauno0aOzvgAAAHBq6qi4fOKJJ7R161YtXbpU999/v9asWaNPfvKTuuOOOyRJo6OjkqShoaFZ/9zQ0NDMz37Rxo0bNTg4OPO1ePHiF/J7AAAAoAt0VFxmWaY3vvGN2rBhgy666CJdd911+tjHPqatW7fOGlcqzf4bZHmeH/e956xbt05HjhyZ+Tpw4ECHvwIAAAC6RUfF5cKFC3XuuefO+t4555yjn/zkJ5Kk4eFhSTruU8qDBw8e92nmc2q1mhqNxqwvAAAAnJo6Ki4vu+wy/fCHP5z1vR/96Ec6++yzJUlLlizR8PCwduzYMfPzqakp7dy5U8uXLw84XQAAAHSzjv62+Kc//WktX75cGzZs0O/93u/pu9/9rm699Vbdeuutko796/C1a9dqw4YNWrp0qZYuXaoNGzaor69PV1999Qn5BQAAANA9Oiou3/SmN+nuu+/WunXr9PnPf15LlizR5s2bdc0118yMuemmmzQ5Oanrr79ehw4d0rJly7R9+3YNDAx0dGJv+9j/qXJ17gSeiz5d3F3fTb3oL08VjnHSICS/i72TblAtxSUMSV5yQSvztoWTItCXFK9rJ5y0GTddwk1ncNbDTYRw9qOb0OOevzPOTTVyk5SyX/LfWP88d287+8xN6HHHVQMTbty0DSsJynwGuUkykdxzc0Q+N2pJcSKNJE2ktcIxiblnI9fCvc9dzvPFfQc4zz3nmS1JlcRPfyniPqfc37PPqA8mcu8Z6qy/+w5waw3nOo1PF+//qQ7KkY7jH9/1rnfpXe961y/9ealU0sjIiEZGRjqdGgAAAKe4k//HWwAAALxkUVwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCdNzn8mRp95aU9bz4RrRuA9pKUtwdNLLps+Q1SnWbc7vjHG7TW2dtI5vxRnMb1UbO5TT3XVDxmj5PplVrXCsvvgb2+ZtL5twr7jV3Gp+795zbnNuZz21U7j43nMbb7jHdZvEOuyG4cW7uWri/p3Vu5t6IbNYf2cTefYa697DTrNy9NyfT4sbhbqPv1HzvONz73H6nn+zwC/P2dZ97jl6jUXy57L2bJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3o+faXb1Sj0ZhzzJo9HzpJZ3OMk0Yg+YkEbjqAw00HcJIXUvPPHElePNd8JO+4qUzu+jtpD5GJKNFpM05Cj5NAIfl74/B0X+GY06vj3jGNtJOBctOaq5l5qUaR19PlnFs98RIyEhXfd+4+i1wLZy9KsQk37po5z9C6keQmxSYpLSi3rLlcE1nxe8xOlTLXNpLzDHJ+R8lLTHNFvuvcuaryrpOTyjQ+XSsck3VwX/LJJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1zZRdziNn3vLXqPpaWMutzm62wDVaQabmE1S7cbbJW89oo7pNjR3GrhK0mnVicIxdnN0szmx06y8XvKaCTtNk91G383cG9en4t+zZR7zyHSvNe60Stx1coyldWuce8zIJt4up6FzZLN7t4F01XyeZSpuQu6uqxsK4XCPaQVMmHO5AQdV8/lozWXu7UEV35tus2znvmtlZuN887Ouduq8q2PDO5z53PW35jLf+24ogXsNIvHJJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCnNIJPdWkuIv9ZNpjzdVfKU4xmTK73PcnXvJLZAqFm4TjpOo4aUXHjlmcSuMmAzjrL0l145gvq4xbcw0kk9a4fiehx0zkcBI+srL3Z74pM5XJSfwZK3nJO24KxZHUm88RmS5RTrxUGuc+cdNa3PSsyMSiqpEYFXk8SZKzHmbKWSvznttO2smEOZdjoNy0xi0wxznXoG6mqpUDU2nclDDn/N31f2a63xoXmb7j3puJ4o5ZKxW/q920oor5PLPCuIxDZkbN1cF0AAAAgIfiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABDmlE7ocbrmOyk+rh4zBcfVW45LuInkJO9IXrrBgrKXvNNX9lIoBsvFqTpnlJ+15jrdHOekAtWNRBRJKht7NpWX3NTMvRSNsaxePCh2a2uB8Tu0zBQQJ5GjbCa/uKk6VpKSmbDVZ6Y3OWknfeb9FJm+U7biPaR2Xvysik5EcdJf3PX3nmde8s5p5QlrnJPm5j5bqkbyi+Q9g8ZzL1VnPKsVjhkLTOs6Nl/x82wy9Z4tKnnPA/ceiOI+W9xxVqpRXvw7Jh2sA59cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bRP1//x7m1Wpzt0s9bWfK66Nq2ZzZacZqdP03J1L8hqku82Q3WbrlaR4PSZTr4Fur9H4vGY2nn9ZZdwa5zRId5uj242OjebEdfM6Rf5pbiL31tZpwlyVd/49qTcuyxvFgwIXw2msLPnNkJ3whboZ0OA2BD+9UrxvnYb+x45Z/Hu6c7mcJupO023Jf+4N5MVNzZtms/4Bo0G6G9DQZzRHd+ez18Jstt42bry+3Dz/pPi5fbA0YM3lNoGvloqfLROJ9w47Mu01eHeuQWo+0J5Ni+8B95o773PJq0mcRutWM/bnxtojAQAAgAIUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwXZvQc99/X6tGY+5O/B/d/ZHiicyEHqfz/HQWW4s73fXbeTlsLslP8oniJg3YySnGfP1mOoabaDFgrG1PyUtlcnaQtxJSOffW1pmwba7ZWOYlWgyUJwvHNKe95A4nYSUyeSeak/zijnP3dl+peFx0Qo9znU4re88zN8lnwhiX5t5z20lYcVO9Tku8cQNJccrZoLlnvZWVUuNeaZvpX01jbafMM8vMz7qaeXH6jpvK5CbOOO9hN5nPfSc63GM6nN9xOnffTnxyCQAAgEAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwXZvQ46glxSkCiZnQY3W6L3m1eGgqjXlMt1O/dUzzjxyRSQNuiomTUNJvJu/Uzb3hpO/0lbwUilTFiRBluWk/5vobCR9NM5GjWvLGJcY+KxtrEc1Na3HSawaNFCJJekXlqDXu9PKzhWMaiXef1I3r5KaTVM30o5ZxD4znXnJK1dzbPcYzaMpMOXPm6nPTv4zkHUnqM45ZN9O/6uYzyNE007+qRmJLW96eddPoxpPiVKas4q2Ze8xnUy8xKor7Pl9Q8fajk1hUc57tRs01M9QeCQAAABSguAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYU7qJemY0m64FNvquJF4zYVdq1PZW03NJmbxmsE7jZLc5t9OA1mlG3QmnObfdHNrrU6uqsc+qZgPjmnHN22YD48y8Ts6fIOvmfeI0sZekptEs223C7+yhsbRuzdVnNiFfYDT1P71S3PRckk4rT4SNGwgMCOhPvBsgzb37KTXuzT6zWb/TBF6S6nnxemRm4/zUuM/r5vpXzYCGAeMauM3R3WdQxXhXpPLucxnX3H62lLzG8841GJP3PCib18l5VrUD38EuNxTCqSOceqQTHc02MjKiUqk062t4eHjm53mea2RkRIsWLVJvb69Wrlypffv2hZ4wAAAAulfHperrX/96PfnkkzNfe/funfnZLbfcok2bNmnLli3avXu3hoeHtWrVKo2NjYWeNAAAALpTx8VlpVLR8PDwzNcrXvEKScc+tdy8ebPWr1+vq666Suedd562bdumiYkJ3XnnneEnDgAAgO7TcXH5+OOPa9GiRVqyZIne//7364knnpAk7d+/X6Ojo1q9evXM2FqtphUrVmjXrl2/dL5Wq6WjR4/O+gIAAMCpqaPictmyZbrjjjt0//3367bbbtPo6KiWL1+up59+WqOjo5KkoaGhWf/M0NDQzM+ez8aNGzU4ODjztXjx4hfwawAAAKAbdFRcXnHFFfrd3/1dnX/++XrHO96hf/qnf5Ikbdu2bWZMqTT7b7/leX7c937eunXrdOTIkZmvAwcOdHJKAAAA6CIv6u+e9/f36/zzz9fjjz8+87fGf/FTyoMHDx73aebPq9VqajQas74AAABwanpRxWWr1dIPfvADLVy4UEuWLNHw8LB27Ngx8/OpqSnt3LlTy5cvf9EnCgAAgO7XURP1P/7jP9aVV16pV77ylTp48KD+9E//VEePHtW1116rUqmktWvXasOGDVq6dKmWLl2qDRs2qK+vT1dfffWJOn8AAAB0kY6Ky3/7t3/TBz7wAT311FN6xSteoTe/+c166KGHdPbZZ0uSbrrpJk1OTur666/XoUOHtGzZMm3fvl0DAwMn5OQn0+IUkN7E6/rvdKdvp14H/kbFSwHJ8uJ0Brebf5Z5aRtOypCzrpLUWy5OSnBSLyQpNdZCkjLjOjnremyuOG6KicxECIeTHCRJTRWfW9tMenA1Myehx0thceZyk6Bq5rg+47nhpmcNJJPeOCN5ZMBMCavP8d+5//9j3EQRb2+0rPQd7/zL7nPbeO65ySnOU6/f3LNV456TpLLxPKuVvOdxYj4PHPWSVxpkRkJSNfRJ66XqRCfDOWl0buKYU2u4cznn5c7XSovPazrz3xMdFZd33XXXnD8vlUoaGRnRyMhIJ9MCAADgJSL24woAAAD8SqO4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOmoz+XJdPmnt6jcU59zzBt+32kO7TUZdSwot6xxkcdMzd7cbrP1VlZ8yZ3m6JLXrLxlNMCWpImsZo1r5sUN6pu5t63bRgNgSRo3mgC3ZTbxtprAe9eymXvNiZvGdXKb3bfNtS0b+9FpJixJA+Xiax7ZTFiSeoxm2X2J9zwouw21jTVzmqNLUp/ReLtqNlF3ZcZ90h84lyTVzetpHdMIEnDvE7dteGrsjZb5nOot9VjjMitUwW0IXjxXbAv1WG6oQtVcW4cTvlBNzPU3m5o7jeedGsKtMyQ+uQQAAEAgiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmK5N6PnOn9+oRqMx55g1ez5UOM+0mdzRm0wVjnFTQNwu9k7CjTuXO65mJI84KT7zpWkk/kyVves0bqbNpHLSErz1nzKTLxwtMyxhwrieY9ncaVjPmTLvgdTY25FSI12lE4mRouGkXkh+KlDV2EPlwM8D5iOhx0l0kaSquberVnqWt2bO1Wyb+yw1k5SaRhqXk+hyTPE7zNU0n1PO+TfNZ8aU3GdL8TWYMp/tboJcLSl+b7r1gfXeN++Tupkw1M6Kz42EHgAAAHQtiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmO6NYjG00uLTH6g2rbk66TxfxOnAL3ld/6OP6XATRZxjOok6ktTMvXHjWa1wzOG0z5rL1V8qTr5oumktgYkiblpI00ircNffHTdhXCc3HSMx1tZNy8nMNWsba+aMkbz1PzbOSAExkzsSI1VqIvMSXcpm2kxqpLW44nKspFRuWk7xfnTnaqdm+lG5+P3kJB9JUt3eG8Wc5B1JmjDeAWNZjzWXmxLmjJswj+nKjOvuvoOrSfHudp9nbsZWkhRfT+d3LJmJQBKfXAIAACAQxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCdG0T9d96/5dUqc7dLPX1/3tcE/LJtLjpam/Zazo8H83RW5l3KSuJ15zV4fye7vk/1R6wxmWV4j8PuQ1o3SbYY0nxdXcarUdzG5o7jZ/H0l5rLqeJveSvbZSa2dzXacjuctdiIPGuUysv/h2mjDHHFP+e1ZLbgtnTMprAN3P33vSOOWbcA25zbud6us8W93nwjNEtvl7y3ic1M/yibASGuI3/J4wghMOZF2pxOO23xj0zvaBwjNtEvZ3H3QOp+Vldn7E3ErMhvtP43NXOiteinfnPTz65BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oab6srHLP3B3jUyP9ZcpNrjHSDZwUH0lKjAQEV9VMXegte8kdTpKPe0wn3cCdy02+sJIXjAQHSZoqe3ujJytOyBhPWtZcjrKZzuCmS0wZ45zUDkmaMFNpnFQgV5YX/xnYXYu2+ciz9q0ZVuEmKY0b46pmQkafcf5pcKqUc6e7yTtHjOQXyVtbN0npcFqcJNNjPs/GS94x+43nRr3kPdvd54aTUuXeT87aus8MZ/2PzVf8DnDP/9lp79ycNDr3Xeek77jn7yb0pMYz1EkYclOIJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3o2bn1RjUajTnHfOzhDxfO43TDl6RpoyO+kwgkeSk4klQ2Ij7qFS+doZ15Hf0XlIsTIdx0gL4kLuHDPf9quTgFoWmmezhJFZI0oeJEiKk87lbKzH0WKTJVSvJSdWqJt7edJBx3z7pJUM58zu8oSf8xPfdzbOaYRmJUqmetuZpG+k49MFFE8tJC2uaaHc56zXHFqS5H07o1l5Mk0zbXzNU2nhtOio8kDSST1rjU2NtuqlRmfD7lzuXew1bajLnP3MQZ59wWmNfJTdWJVDeetdW8eG+X3We2+OQSAAAAgSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrm6hHcRtl95eLm4NOZ7GNWXuNY7rNxSObYDsNVyWvUa07l9OoXPIapLvHPDTdb41zmkhPlIobMEteE++q29za3NuOurw1c49ZCzw3dz0cbnNlp0F63Wya7Db1n0qK73Wn0bckNRV3n7icRtPj5vk7zbkl6XBa3ETdPeZEVvwMcvfiQNK0xjkSJ0VAfrNyh3ufTBnX3F2zeskMDDGCQCZS75rXkmlrnHOvuM3RMyuwxVv/yGejc/+2c/+5zieXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAjTtQk971m5UZXy3F32z95aPM+00XVekg63i5eibKbg9CZT1rgsL+7o7ybvOHNJUl8lLt3ASZtxUi864SQljKX10GM6KQitzLuVnOvpJqc4yUHufE6iS7Syef5OKlCfec+5CUPufI5+M8mnx9hnqZkC4nxu4CRyHBvn7W3n3OyEITNt5pnpBdY4R9u4h+tlL9HFeTZKXiqNm1zj7B9JqpaKfwc3Zc5Jn4pMDpLM/ehtbfs6Odz3jvNsScxr6Z6/c687NYRbZ0h8cgkAAIBAFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI07VN1L/xwDo1Go05x3zs4Q8XzuM2mnaaW7sNmF1Oo9pEXjNVt9m60yDdaRoueY1Z3bnS3PtzTuQx7Qa0WfExa4nXXNk5t8xslB3ZQLcWOJck1a1GzWZDXmNv9JmNyt375LTyuDXO4TbBbiTNwjHumjmNqxPznnP9x/Tcz2vJv8/dZuvufnQMViYKx7jXcsC4lpK3z9y5euTdw7XAZ1C7VHzfNc0m/G7YgNMEfiztteZ6Kh+wxjn7zA1ecNbWeedI/nvHve8i8cklAAAAwryo4nLjxo0qlUpau3btzPfyPNfIyIgWLVqk3t5erVy5Uvv27Xux5wkAAIBTwAsuLnfv3q1bb71VF1xwwazv33LLLdq0aZO2bNmi3bt3a3h4WKtWrdLY2NiLPlkAAAB0txdUXD777LO65pprdNttt+llL3vZzPfzPNfmzZu1fv16XXXVVTrvvPO0bds2TUxM6M4773zeuVqtlo4ePTrrCwAAAKemF1Rc3nDDDXrnO9+pd7zjHbO+v3//fo2Ojmr16tUz36vValqxYoV27dr1vHNt3LhRg4ODM1+LFy9+IacEAACALtBxcXnXXXfpe9/7njZu3Hjcz0ZHRyVJQ0NDs74/NDQ087NftG7dOh05cmTm68CBA52eEgAAALpER62IDhw4oE996lPavn276vX6Lx1XKs3+q/Z5nh/3vefUajXVal7bCQAAAHS3jj653LNnjw4ePKiLL75YlUpFlUpFO3fu1Je//GVVKpWZTyx/8VPKgwcPHvdpJgAAAF56Oiou3/72t2vv3r169NFHZ74uueQSXXPNNXr00Uf1qle9SsPDw9qxY8fMPzM1NaWdO3dq+fLl4ScPAACA7tLRvxYfGBjQeeedN+t7/f39OuOMM2a+v3btWm3YsEFLly7V0qVLtWHDBvX19enqq6/u6MR+5/IvqFKe+1+Xv/K24nncVJ3M6GDvjJGkljmuYiYSOCJTadx0hsi0GTdpI8vNVBeLd52cFAQ3LaeeFCd8uGsRmbrgr793zKbxaHETLZxUFCe1Q5IaZS/txDmmmwrkprqUzTQxR6ri39NJ8ZGkseyX/ydQP895Hrh71k0icubrK8ddp4HypDWXm/B0RlKcCuQk6kjSQOI9g5w7vfxL/jO2XzSeFZ9bn8z0MmOuaO49cGS6z5jLe4Y6z1rnPSFJzxqJe5LUVy5+1taT4vVPyt55SScg/vGmm27S5OSkrr/+eh06dEjLli3T9u3bNTDgxSwBAADg1PWii8sHHnhg1v8vlUoaGRnRyMjIi50aAAAApxiyxQEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABAmvIl6lLu/s16NRmPOMdfv+WDY8ZwkmYqZlJCUvKSNsooTFdzkl4msxxrnpKJEJvQ0My8BwU3ecdJy3HQDN5XG+T3dhKSacW41+SkIDuf3bJnXyU5YccaZCT1O+o57zQcSM2HFGFc3r7k7rmrcAqkZ4tM27uF27iWnOM8pSaqq+Pd8Rgusudx7c0LFCSVuqpSzh/qDU5mqxvPdTd6pm6k61VLcZ0qJcW4TubdpUzNla9y4n3rMe869nkdUnNDjvsOcfeY+Z933jjOfM6blbUVJfHIJAACAQBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1TdRXfHyLyj31Oce85ZPFzUjdZrxug3SH06hc8hqf1+Q1lnW56xHFbQKfmeflzOc0KpekwdKENc5pVOs28XYbUjumzDXLjD9DjqnXmstubm3sbbdxu9P43G6aXPLuzQHjevaZYQluc+uy0fg8Sby52nnxPhvLzAbM5vOsmXvX0+EGUVSNUAW30bTT+NxpFH9sLu+57TTYd/dPveTdm7VS8XXK7Mb5xdepbL7DUvNd4dzDE2YT+yTweZy6n9UZh2xlXmnmhIpIce9957nyHD65BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oOeN/HlSlXJtzTOvG4qQBN63F6a7vpqtEdtePTHSRpCwvTntwkwacrv9uOsaCcssaN1BuFo7pS7y5+s1xznxOuofkJQylubf+biLKWFacvuOu2TNpvzUuMZI7EjORo2yktVTNRBR3P5aN8+8xk1OqJe961kvFz40095Jrysa5ZYm3Fm0zycdKuLHTcrxUoJaRNhPJTRxzVY0t5O6fxHxuV40kn9R4T0hSGpgg56yF5N2bLufZcmxc8XV339VOepl7n0Ryjpl1cF58cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0FNqTamUzN2y303CiZKZiRyNSnGKjOSl5SRmgoAzl+Sl70xn3p85nIShupmQ5CZfOEkyZ1Se9eYqeak0jaT4etbNhBjnerbthB5v//cYqQpPa4E1V1/uJadMGGPcFAonfacqdy5znznJKfLuOSd5R5JqRtpM6qaE5c6auWvhjXPugXri7R8n/Uvy9oabODZuJKe455/Kewe0jcd7K3eTrLz92MqLn8lu2o+jbSbqtMzgnSnj3KbM/ePuMydNzN1nTpKPe14ut44IPeZJPyIAAABesiguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrm6j//b6b1Wg05hyzZs+HCuepmU28Hb1lb67IBqiJ2RzabeDqNlt3OI1Z3UbZC8pe0+HTysXtuU9LnBbe0oDRHP3YuOLr3hfYpNZprCxJE7nbONwb53AaAEtSls9973Y2V/HezoL3v3On95lNq92G1KnRLDszG1JH8q6SlBpN5cvm+bvPs2Ze3Hje5eyhptFoXZImSjVrXL8TEGDe5zLfFX2BcznPoGbuXfMpOzyi+JpPZN76j5vjWlnxMd3wEee9WTFDOdyQktRc20h8cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0HPVss+rUp67e/7ivy5OhHA660tSUirOoUgyL2nA6cAveckpbqKInXai4vQg9/yddIC+ZMqaqz9pWeNOK48Xj0kmrbkGzXSD/qT4GlTNP6clRqpLZiZalN3kDmNrtM01O5rVrXED5eL53HQMJ63FnauZeI+8dl68N1pGos4x3j1QNe7NzLzPUyMJp22m5biJUU6Skn3Nzeee+3x3HDazaxzu82zMSvzx9k/bTOJqOqlA1kxS09gbE2Zi3Xju3ZtO+o6b3DRhJi41jX1WSdzEsbiUPDd5J+qYnczDJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF3bRP2n7zhD5drcDZsX60DhPG2zyWjNaKLeNpvB9pW8pretLG753cbnThNUp2m1JCVGE2anOb0kDSRNa5zTeL5mNhOum/1ga6Xi9XAaYLsyc8363CbYxno46ypJDfM6OU2H3cb/zlzVcnFjaEmaMq/TlNUQ3Gxobu/H4uvpNEeXpLbRiH/CbI4+ZjYqH8+9htQOp1G2y2007Tzfnb0oSU+nC6xxU8Yxk9IRay63CXm/0UQ9lfdwdN6v7lyHU6+JvRPk4DbrPzLtHbNsPJMn07iG/rXEe565NYn7rI3EJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1CT1Du8dVqcydbFH9QHHXeTchxkkosZNrzLQcM2zDMp3FnVvNTBjKjOSF/qRlzVU1UiMkqd84tx7zmpdLXnKEk75TLQUm9NjpGO7eLr7mPWaCg5u2kRn3inufOPdd20wncZNfnjHW4zRzb2fyEnqaxvUsm6lSbWNpm2a6R9Nc22ZenFDijJE62Btm+o6jbSSmTcjbP+75O8kpo9OD1lw9ZhLUYeOYTiKN5CfhOMayXmuck+RzaLrfmsv9PZ195qbqOHvDTUxzEvfmC59cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1yb03LP9JjUajTnHfPKRDxTO43bNdzSSpjXOTVhxzq1tpmi4iRBOR3/3mFaqUWCChuQlxLhHdMe1jYQVJ8XHleaB0U2SUmM6N3nHVS+1C8e46R7OfvT3bNzzoGxGbI27iVGBkV3OeoznPdZc7nVyElbG0ro1l5uGVk+K95m7NxzR94mztu5auJx7001SctbWfQe416mVFZ+b/d4077nEeNe1zCQrJxXIfp4lXpJPO4u7B1wd7dqtW7fqggsuUKPRUKPR0KWXXqp777135ud5nmtkZESLFi1Sb2+vVq5cqX379oWfNAAAALpTR8XlWWedpZtvvlkPP/ywHn74Yb3tbW/Tu9/97pkC8pZbbtGmTZu0ZcsW7d69W8PDw1q1apXGxsZOyMkDAACgu3RUXF555ZX67d/+bb3mNa/Ra17zGn3hC1/QggUL9NBDDynPc23evFnr16/XVVddpfPOO0/btm3TxMSE7rzzzhN1/gAAAOgiL/g/5kjTVHfddZfGx8d16aWXav/+/RodHdXq1atnxtRqNa1YsUK7du36pfO0Wi0dPXp01hcAAABOTR0Xl3v37tWCBQtUq9W0Zs0a3X333Tr33HM1OjoqSRoaGpo1fmhoaOZnz2fjxo0aHByc+Vq8eHGnpwQAAIAu0XFx+drXvlaPPvqoHnroIX384x/Xtddeq8cee2zm56XS7L9Nl+f5cd/7eevWrdORI0dmvg4cONDpKQEAAKBLdNyKqKenR69+9aslSZdccol2796tL33pS/rsZz8rSRodHdXChQtnxh88ePC4TzN/Xq1WU63mtboAAABAd3vRDbTyPFer1dKSJUs0PDysHTt2zPxsampKO3fu1PLly1/sYQAAAHAK6OiTyz/5kz/RFVdcocWLF2tsbEx33XWXHnjgAd13330qlUpau3atNmzYoKVLl2rp0qXasGGD+vr6dPXVV5+Qk59MvUavDqe5eFleM2S3obnDPWZko2BnLVxuA2C3ae+E0XS4aTQJlqRy7q1tn3ENnEbrrlbuNfpumuffNho/u/unmcU13n7WbahtNGGummEJh9N+a1zbaIjs7lm3cXtkE3WvObd3nzv3nHtMd59lgY23E7OJvRMK4V4jp9H3sWMaQRppbJDGWF5837nPbff3dPjPoLhjRuorT1njvOeZ9w6LfO87+6eT2qaj4vLf//3f9aEPfUhPPvmkBgcHdcEFF+i+++7TqlWrJEk33XSTJicndf311+vQoUNatmyZtm/froGBgU4OAwAAgFNUR8XlV7/61Tl/XiqVNDIyopGRkRdzTgAAADhFxYaWAgAA4FcaxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBMx9niJ8tvv2eTKpW5kwSWbiiex02bcTrPT5jpJDUzLWQ+OCkUaSkuHcNNYelPWta4KeOYR8xEkXKpaY2TkcrRzr10hnKpeD9O5WYKiBmWMJEV3+ZHM+86jZv3gJNe4yanOPssMtFFklLjueEmhTR18hNFnPWfMlKIJD+FJTItxOU8zyLnco/nr1nxNXDfO+795Nwr7t7OzJSnSO2seJ9VE+86ueefBKZnOXvIvZfc/ei8051jts1UOIlPLgEAABCI4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQpmsTev75G59Ro9GYc8yaPR8qnMdN7kgC0xkiTWfe+S+oeAk3Fr8Jf6HUTEAYN1N16qXeF3M6s7iJFnXjujtjJCnNnPXw1mzCTFhpmuMiOfede29GcpNTnFSUeslL4qolbWucw01rcbgpIBOpeW8av2dqXvOyeW86a+s+t51xbuKb+9xz7oG+xEv/cveGlXhlnr+T5FM2Xyhuqo6Tpuek+HRisDJZOCZyb1fNlD83Ac/hXCf3Wkp8cgkAAIBAFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI07VN1B2p0dDWabjqchvoRh6zZjZTdbmNXqPmchtlH0m95uhOE1e3gXEz9xpqN5Jm4Zh6yWuU7TZud7hrmxp/hmzLazpcNvf2QLm46bC7Fk7jc/eau+McbnP6Zhr3mHWvudPc2uU2W3f6K7vNuRcY95wklVW8H90m6s7z3X22l3PzHWDcA5GN8yXvuW03BA9M3HD3rHNMtyH7ROqtrfWuM/d2O/DeTIz9L8naZ23jfei8S57DJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACHNKJ/RUja7ztcRNTjn5ST6OetlLGuhLpqxxTtKAm8jRyoq3z7NpzZrL1aoUpwhMZN4xT688a40by4rTg84oe3M5ST6RKT4uN5HDTSKykjvMP9o6qTSJm45h7u22sberZnqWm6rjXPfIhC1X3XyGWnOZaTlO8o7kJS45CU/uXH0l7znrcvZjZJKV5F3Pcu4d09mPZfP87YQeYz43uaav7F3PyJQk5/zn4z536pZOahs+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dom6pev3aJyT33OMcs+VtzQM3XrZ6NprDuX1UBaUm+5uJmt20zVbfLqNpd11Iwm0knuHc9tbu2sh70WaZ81biCZLBzjNGB2x1XN/dNvNjSfMvbtmeUxay7392zmxQ2RD6f91lxVo/H2uNk43200HfnHbuf83XH1ste4PbIRv9s437mH7efxPGgbeyOymbbL3T/u3nC4+8cJCKiWvPM6Yj6PnXObMMM7aua5TeTF1919h0VyG9S3M6dZf/G7upOwme690wEAAHDKobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOnahJ5SfuzrxcpyL1FEpeI6e9roci9JtYrX9d85t2ripTO4SQNOikBmprA4aT/2+puOTs+d2iRJ5WpcuoQklY2NWJV3nfpLU4Vj+hIvEaVuJncMBKYyjefeI6M/L/4d3OSRw0ZyR9NN3jGVjTVz04oi9SUta1zd2ENu8o7LWQ/3nnMSniQvscudy+GmsLi/Z8281yPnchLk+s195nBTmdy93TTSctxni5vk4yThtDLv2dhW8R6azrw1qyTeu85ZjzTuNSGJTy4BAAAQiOISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrE3q+/aUb1Wg05hxz4/euLpxn2kxUqBgJK4nRpV/yu+s7pb2b/OJykwscTmqBm2jRzry0kwWV4hQH93esmqlGzjgnEUXy0ncG7POyhqleMpJTvKlUy71zazlpD+ZBm6XihBU3UcRNC2mmcY9GN3lkoNwsHOP+nn2l4nHO/St5aUWSl9DjpuXUjYQnyUtmaqfeM8g5/7aZwlJNzPvEOP/B8oQ1VyOZtMY5+9FNb8qM+ykxb3R3bzSNvVE3ktA6YrxS2iXzXWe8E933ZpJ796aTuue8N7MO6gc+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dom6v/59zarUq3POeaC/6N4nh6zme1kWtzAtWbOlZS8xqaRWrl3KROzIbLDafTal3jNbN2Gzs75u03U3cbnTuNqt+mw0yC9bjZH70u8RrtVeeMcE/J+TxnXqek28TbGuQEHkepms3unObokDRhNsM8oP2vN5Zxb1VyzqtkEu218VtHOvc8zxvMea9xoPlg4xr3PJ7Ja8SDzHZCZv2fNCVUw98/p7t4wjuk+z+pO4+3ce6A1zXfY0WzuukCSJkrGtZTUNPeZcz3dd7DT1L+3bDaxN9fWeVfXzOeZi08uAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCmaxN67vvva9VoNOYc8/vf/f3CeWplr+t8OTBVx+mGL3kd8VMz6cFNoXC4x3SSUzKZcTMm55hO6oXUSQqFkaJhz1U8ZiDxbstqydtnFSOhJzOTm6ry0o8yI9XFTYgpB6ZKuYkWA0lxKoqbxFU2E25OK08UjzHSoiSpz0hOqZq3Zk/JTVgpfp41zfU3l0wN4zq5aTlOypP9aYyZEuakiTkJYZ2Mc/aQs38kbw+52VnjmZmsZrw3D5tzJRXv7P5Dc9ciktTMilP+JGlCxalA05m30yqJd/7Oc6+VFb93Wpn/LO7ok8uNGzfqTW96kwYGBnTmmWfqPe95j374wx/OGpPnuUZGRrRo0SL19vZq5cqV2rdvXyeHAQAAwCmqo+Jy586duuGGG/TQQw9px44dmp6e1urVqzU+Pj4z5pZbbtGmTZu0ZcsW7d69W8PDw1q1apXGxsbCTx4AAADdpaN/LX7ffffN+v+33367zjzzTO3Zs0dvfetblee5Nm/erPXr1+uqq66SJG3btk1DQ0O68847dd1118WdOQAAALrOi/oLPUeOHJEknX766ZKk/fv3a3R0VKtXr54ZU6vVtGLFCu3atet552i1Wjp69OisLwAAAJyaXnBxmee5PvOZz+jyyy/XeeedJ0kaHR2VJA0NDc0aOzQ0NPOzX7Rx40YNDg7OfC1evPiFnhIAAADm2QsuLm+88UZ9//vf19/93d8d97PSL/ztwjzPj/vec9atW6cjR47MfB04cOCFnhIAAADm2QtqRfSJT3xC99xzjx588EGdddZZM98fHh6WdOwTzIULF858/+DBg8d9mvmcWq2mWq32Qk4DAAAAXaajTy7zPNeNN96or3/96/rmN7+pJUuWzPr5kiVLNDw8rB07dsx8b2pqSjt37tTy5ctjzhgAAABdq6NPLm+44Qbdeeed+od/+AcNDAzM/HeUg4OD6u3tValU0tq1a7VhwwYtXbpUS5cu1YYNG9TX16err776hPwCAAAA6B4dFZdbt26VJK1cuXLW92+//XZ95CMfkSTddNNNmpyc1PXXX69Dhw5p2bJl2r59uwYGBkJO+Oc56TupmQjhpIU4HewlaUHZS0qw0kJiA26s9B03VSczkogSN/nFTISYD05CTHQSkSMx/8VDuWRc89xb/7L5ezpn1g5MTmnnsWFjqfEb9JUmrbn6zOQUJwnKTTVykqDqxr44dkzzOhnpTe7zoJxMWePaeXGqUTP3klOchKTxzPtPuNyUNueYA4m3zwbMNXPSd5z9c2xcXIJ01UybmcjdzJ9iqfk8GzNS3/rM937LeFY9PbXAmis1E9MctaS4nnJTyaQOi8s8L564VCppZGREIyMjnUwNAACAl4C4P3YAAADgVx7FJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIExs5+FAl6/donJPfc4xl36suO+m2yTVaYLtNjB2OY12E6O3qCRlqfd7Wo1SzUbHTlP5auI2546Tmc25p8xGx04TZrcheNtoets0G5q7MjlNyL1jts0GxhPGvnXvTbchtcNpjh7NaY4uST3GdRowmxj3JcVrVi/FPv69pv7eWsh8BtVLxc8ztwn54bSvcEzZuEaS/9xzuPunbgZR9CfF913NbI7u7KHUfIel5t4YMB4bqYr3hSQdzsym/sZ1d4NAnHE1o2m75Dc1d44Z/Wzkk0sAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOnahJ7vbL5RjUZjzjFr9nyocB43VcdJ6HESaSQpcY9ppLrYXf+TuFQdu+t/YApFMytOwXEtKDetce3cu55OkkzTnKuZxyUkyUj7kbxUndQ8ppO8I0njWfHenjCv+eG0v3CMu39a5jgnIaPHvDfL5vMgMgGsamReeYk6UmImKclYj7qZxeXcJ1Lwmhnn35S3f9wkn/6kZY2L5Fx1Z/+4yiVv/1TN/eg8z8rm82wg8d4VhxMjvSn1rnlqvPedJD1JejatWeOcpc3y4us0bTzXOzgkAAAA4KG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQJiubaK+4votKvfU5xxz4ceLG71GNvp2m6O7TchlNNp153IaoEreekQ2NG/nXjNet+lwavx56Mh0ccNbSapWvb3hNPGumg3NHe1kyhtnN/Eu3kNtc8tOGQ2AJallXPfDmXedxrOewjFj2dzPik45zdbTsrcWTtNkqZPm+cXazn40D1ctefdwOy8+ptus3+UEHLjrn5rPUIfbON961sb1M5fkvHWkzHwelwNPLjMDGpwzc59T7vvJ2UPN3HtvOoEt7nk5QSwu592adfB5JJ9cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1yb07PzKjWo0GnOOuX7PB8OO1zY63VfN1IXpLDhSweB015ekdlp8bnaqTlK8Hm5yUNkMx3Dmc8/fTfJx0oPchCHHeF6cSCNJA0nTGlc2UlGcpBPJX1snreJw6q3/WNZbOObZ1EvocdNanISVyLWQpIm8+HHck3vpTeXc2I/mPeck70hewkrTOS9JLTPIZ8JIuGmbKTJN476byGrWXG3jWkpSmhTvR3eupr0fpwvHJGbiWGTiUtucq2nsM/+ae/emc6+7z4Oo40l+aqDz3nTeYUkH7zk+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmK5N6HG43ekdNWOuzEz38LvmF883Pu0lQvSWveSOaqk4eSEpeUkJTipQLSlOg5CkVuZtRSe5IEtj02ZaRkKGm9wxbozrT1rWXIdL/da4aqn4GrhJFe494Pye7jGdJKWJ1Es1cve2w00YcpOUDhtJRG5KmLLiaz5lPAskmVknsjJd2ubyj5upNFPG2TUzb2+4aWKOpnn+NbULx7iJXfWseC5JqhopK6m5z+rmHnI0zb3RNJ5BTnKT5K+t86xyn41N49ymzPdhj/l+dd7VkbWBxCeXAAAACERxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDBd20T93YMfVqU0d7PRV/7P4ibSbhNvp/F5JfEaxk5nXtth55huY1aX0zjcXbOo40lSn9kE/lC7uHF1ZrZ9TnKvIazT9DaRN5ezHhOJ15DdaY4uSfWkuLmy8zseO6Z3DzhN5SfM5tZOE3unSbAkpWYP4LJxb7p7e9z8PZ3m+WPmXO2S0zTZa5TtNN2WpLZxDdpuE36zufVYVg8ZI0nPTC+wxjncvVE2nhvjZfN5YLWx97TMZ8uEsYfcZ2PLXLOjuRHQYD7PDqdeEIWzN8ZSb585zforgc3ppbh3Ok3UAQAAMC8oLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhujah5x+O3KFGozHnmDV7PlQ4j5OCc2xccef5splUMWUua8Xqdu8d0+WkA7Qy7/w76dZfJDWTO9yEGIezFu64o2YKyERSnDzyjLzUiL7ESzVy1qxqJji0zb1hpeqY19xZf/fedJN8nISPyLQiSTpoXIKjibfPnLSf/pK3f9xnqPt7OsbNuZz0nf+YHrDmchOjHO6zpVwqPua/t0/zjlkx7yfjHkjlnf9A0iw+XnAqk/PceCb10pbcVCYnfcdNZZpMi39P955zn3vOfnSeZ+7xJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oieJ0w5ekalLcnb6VesvVXylOx5CkKTPtxBIY5NObtL1DmikUjra8dAMnFahmps1MpsUpLJKXvOCmFU1OF+/HHvP8pzPvz4ZOKk10wo2THuTOVTf2o5Oo0wlnPZzUjk7UjPQdJxFFkg6XilOeekrePnOTiJw1a+bedXLTm5yEniPTfdZcDjeFxeXsoZr5PD6cer+ncw3s9TeSoNz73F3bKSP960jaa83l7g3nXee+TzIj/cj91M9ds5pxrzvXyb2WEp9cAgAAIBDFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMKc0k3UU6OxqdMcXZISFTfB7i17zWxbZnP0stF4u9doRn3smHFNpCObo7vNxd1GzUb/WR2d9ppbh5+bwW2Q7nAb2jpN5d0m6u6aOXvIaY4uefemO5fbHLpcKl6PJPfWwj3mRForHJOZczl71t3XibEWknduTaMBtjuXJE1kxaEE7u/pPLfd+8TlvJ/a5vtkTN5zbyIr3mfumjlzuZxrKXn70W2O7r6rI4M03PAChxsY4nBCOdzgDukFfHL54IMP6sorr9SiRYtUKpX0jW98Y9bP8zzXyMiIFi1apN7eXq1cuVL79u3r9DAAAAA4BXVcXI6Pj+vCCy/Uli1bnvfnt9xyizZt2qQtW7Zo9+7dGh4e1qpVqzQ2NvaiTxYAAADdreN/LX7FFVfoiiuueN6f5XmuzZs3a/369brqqqskSdu2bdPQ0JDuvPNOXXfddS/ubAEAANDVQv9Cz/79+zU6OqrVq1fPfK9Wq2nFihXatWvX8/4zrVZLR48enfUFAACAU1NocTk6OipJGhoamvX9oaGhmZ/9oo0bN2pwcHDma/HixZGnBAAAgJPohLQiKpVm/03RPM+P+95z1q1bpyNHjsx8HThw4EScEgAAAE6C0FZEw8PDko59grlw4cKZ7x88ePC4TzOfU6vVVKvFtTMAAADA/An95HLJkiUaHh7Wjh07Zr43NTWlnTt3avny5ZGHAgAAQBfq+JPLZ599Vv/yL/8y8//379+vRx99VKeffrpe+cpXau3atdqwYYOWLl2qpUuXasOGDerr69PVV18deuIAAADoPh0Xlw8//LB+8zd/c+b/f+Yzn5EkXXvttfrrv/5r3XTTTZqcnNT111+vQ4cOadmyZdq+fbsGBgY6Os57zvyYKqW5U2f+087iVJqqmaqTGdEvTlKI5Cf5TKbF5+8kA0h+ioZj3EgKkbz0oMnUS13or7SscU5Chpta4CYROfO56RILysW/p3vN3fN31sxN+0nkJXc4ySORyUd1cy43LadlJMm469+Wdz2d9RhLvRQWh7vP+syUMOcZ2s7c59nJT89yuM8WN/nF4V6nduqNi+Rcc5e7N5xnbfR1cvaj+zxw6oPIZ7vknf908F/B6fgOWLlypfI5Ys9KpZJGRkY0MjLyYs4LAAAAp6AT8rfFAQAA8KuJ4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABAmNFs80jcO3qZGozHnmI/u/kjhPG5z8ZbR7NttzDo+7TUhd+Zzm5A7TaslrxF8j/l7Oo23K+Z5uU1jVSo+pttYOTXmkrzf090bkdxG0w63UbbLaa7sNjQvG/ew22jaPaYzzl1/d29P5N69HnVM9z5xAwKcY7pNq19WnfCOGbjPnHvY2YvuXO58buN893o618B+HhvcgIZIkc3RJWnaaPDuBoE4a+s+z1xZZoTEGGvRyTuHTy4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrE3p++6o/V6UydzLB675QnEgwHdjp3kmDkPxUoLaVAuLN1WsmrDybFqcHVRSXqhOZIuMes2yGS0xnJz+hx0mOcOeyU2mM83dTWNwUEEfN3LORKSzu+Ucmp7ic/Rh9P0Vyzq1RaZ6EM5nNTdVxRO5/yUtMGyxPhh7TeQZVEm/Nyioe56bluMd05nPOq5NjOtfd3RvO88xNSHLHOb+ns67TuX8v8cklAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bULPP3/902o0GnOOWbPnQ4XzOAkIkpeE00q95eott61xbuKPo5VVrXFlI0VjMvXmcpJkpjMvRSYrxa2FO5eTXCN5yQtuIoSTHuQmirjpDM51ctN+IrVy736KTEVxk4ica1BPvPvclZbi/qzvpqI4IveZq2k+z/rMlKco7n3i7llnPnct3GNGPg+cZ6ibKuXuM+f3jD6mM5+7Zk4Sl1tDuPe5M85ZC3e9JD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAITp2ibqUdxG5Vke19jUacguSW2jsanT9Fzym6lWk+IGtG4z5GmjaWzqNsa1Rnlr6zZHdxufT6bFjbcnrZmk3nJx0+d2Gtuo2WkcHtmoPNqEsf7RTZO79c/d7n3urIe7Zm4QhdNEOrohu7Me7lzOfTJQblpzuY3PHe696b7rnIAAtyG49Qw1wwEiG5pHr1lkE3WHG2QSeUynBnLGPKc7n6AAAAA4JVFcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bULPW2/YonJPfc4xb1hT3J3eTctxkmvcbv7qoIt9ETfhxkl+keK78Bdx0zEiE1amzBST3sRbs4qxN9y0HydRpFHxUkDctBZrrjz2UeAkR7gpGs44N6nCTgExU2kiOXuoz7zPI8/fXVvrepqP0NBjmupJcQJbaj4b3XfFfCT5OOOctZC884+cS/LuE/c+d1KZpNhnkPNOdBN6XM4xD7f7CsdMZd57TuKTSwAAAASiuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dqEnihVM6HHSVToMdNmorvrO6bNdIBITgqIn/bjXScnyaen5F2nlpkI4ST0RCaKOEkJkp8+5aQzuOfvms6M+QL/aOsmcqTmQauKS36xlYrPLcnN5B1jb9hpM+baOqE07lyRiVftkre3nWO6SWJuepYzn7tmbirQRO6l0jims+I9lBr7uhPOs8q9Tn1mSpuT5OPuWWfNIlPyJOno9Nxph5KXUpgbY57DJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF3bRP3Bv7hRjUZjzjFr9nyocJ622Yy0bDRdHWsXNyKVpP5KyxrnND5vO82oJZWN5tyS1wh+ymwA7Kyt28TebXo7Pl0rHOM0DZf8vZFlxc2JK+b6Ow2Aa0nbmsttCD6ZFjcAdhuyu5zG8y63IXWktuKayrvNlZ3r1KhMWnO18+KAAKeZs+Tfm054RCWJa44uefe6O5cTcOAER0h+43PneWA3lM9PfuN2Zy53/SODEKZS75i9ZhN1h/88Lr5PIsNf3PncuVx8cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0PP2j3xZlerciTgX3WSkJQQ2ne8te8kpmZn84qbvONyEmMh0gJ5yXNqPm87gJHK4SQNuko/DTTFxfk8ntaOTYzrsPWuOi1xbJ+GjUWlaczkpOMfGFR+zaqYQuakuTqqRm3bipIXYKSzm+Uem5bj7Z2y6ODXNTtUpFa+Hk6omxSa/TGbennXS1ySpbSSOuc+W1BjmvHMkLyVP8q6n+z50uffKyebubUdq/I7OmOfwySUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTCnP87gunAGOHj2qwcFBHTlyRI1GY86xb/lf/lvhfM+8zmvau+BnxY3D3b7QjccOewP/5ceFQ+6f+L+tqc7/oz+3xlXGiy/3I3/5GWuuK165tnDM+IWLrLlGl3nXafih4ovwzDle097/97992hp3sp27zruWC//HhDXu0Dm9hWPa/Wbj+cPe4+Lh/6t4D52z3vs9e44UjymZj7G07v2ee7948vfGby24tnDMU++70JqrPVD8e/aPemEJrUFvzarPFl+DgR9PWnNNneY1Dn/wn24qHHPRxzdZcz2ytXjPvvFj3lxmf33VjhZfg3LTu04P/j/FayFJb3vbxsIxPU8etea67wfFc0WuvyQtu+aLhWP6/t0LPClPei/1if9U3Ky/8cC/WHPdd/AvC8c4tY0kffue/9Ua91sX/G+FY+7//n8tHNNJfcYnlwAAAAhzworLr3zlK1qyZInq9bouvvhiffvb3z5RhwIAAECXOCHF5de+9jWtXbtW69ev1yOPPKK3vOUtuuKKK/STn/zkRBwOAAAAXeKEFJebNm3SRz/6Uf3hH/6hzjnnHG3evFmLFy/W1q1bjxvbarV09OjRWV8AAAA4NYUXl1NTU9qzZ49Wr1496/urV6/Wrl27jhu/ceNGDQ4OznwtXrw4+pQAAABwkoQXl0899ZTSNNXQ0NCs7w8NDWl0dPS48evWrdORI0dmvg4cOBB9SgAAADhJvP4vL0CpNLt9RZ7nx31Pkmq1mmq12ok6DQAAAJxE4Z9cvvzlL1e5XD7uU8qDBw8e92kmAAAAXlrCP7ns6enRxRdfrB07duh3fud3Zr6/Y8cOvfvd7y7855/r6e78xZ7pdrNwTNryfsW0XdyoNjObqE+nLW9gPlU4xP0LTmmreC0kqTRV3OjYPeZ0Vvx7OtdIktKmd52m28UXIW15HYy79S+Puddyetpc26niJthpxWuUnRr7R/LW1v090+LbxG+i/jz/9uT5zMfemDaeB+mUuWat4t9z2njmHTumt2ZJu/gauHvWPTdrn5lrFjlXbjZRd37PPHAtJO8aJOY77GSvvySlxjtletprop5Pey91Z7rpzHhQKa62ceeSvJrEmeu5MVb2Tn4C3HXXXXm1Ws2/+tWv5o899li+du3avL+/P//xj39c+M8eOHAgl8QXX3zxxRdffPHFV5d9HThwoLCWOyH/zeX73vc+Pf300/r85z+vJ598Uuedd57++Z//WWeffXbhP7to0SIdOHBAAwMDM/+N5tGjR7V48WIdOHCgMHIIJwbXYH6x/vOL9Z9frP/84xrMr25Y/zzPNTY2pkWLimOduy5b/Pl0kmeJE4NrML9Y//nF+s8v1n/+cQ3m16m2/mSLAwAAIAzFJQAAAMKcEsVlrVbT5z73OfphziOuwfxi/ecX6z+/WP/5xzWYX6fa+p8S/80lAAAATg2nxCeXAAAAODVQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwpwSxeVXvvIVLVmyRPV6XRdffLG+/e1vz/cpvSQ9+OCDuvLKK7Vo0SKVSiV94xvfmPXzPM81MjKiRYsWqbe3VytXrtS+ffvm52RfgjZu3Kg3velNGhgY0Jlnnqn3vOc9+uEPfzhrDNfgxNm6dasuuOACNRoNNRoNXXrppbr33ntnfs7an1wbN25UqVTS2rVrZ77HNTixRkZGVCqVZn0NDw/P/Jz1P/F++tOf6oMf/KDOOOMM9fX16Q1veIP27Nkz8/NT5Rp0fXH5ta99TWvXrtX69ev1yCOP6C1veYuuuOIK/eQnP5nvU3vJGR8f14UXXqgtW7Y8789vueUWbdq0SVu2bNHu3bs1PDysVatWaWxs7CSf6UvTzp07dcMNN+ihhx7Sjh07ND09rdWrV2t8fHxmDNfgxDnrrLN088036+GHH9bDDz+st73tbXr3u9898+Bm7U+e3bt369Zbb9UFF1ww6/tcgxPv9a9/vZ588smZr7179878jPU/sQ4dOqTLLrtM1WpV9957rx577DF98Ytf1GmnnTYz5pS5BnmX+43f+I18zZo1s773ute9Lv8v/+W/zNMZ/WqQlN99990z/z/Lsnx4eDi/+eabZ77XbDbzwcHB/C//8i/n4Qxf+g4ePJhLynfu3JnnOddgPrzsZS/L/+qv/oq1P4nGxsbypUuX5jt27MhXrFiRf+pTn8rznP1/Mnzuc5/LL7zwwuf9Get/4n32s5/NL7/88l/681PpGnT1J5dTU1Pas2ePVq9ePev7q1ev1q5du+bprH417d+/X6Ojo7OuRa1W04oVK7gWJ8iRI0ckSaeffrokrsHJlKap7rrrLo2Pj+vSSy9l7U+iG264Qe985zv1jne8Y9b3uQYnx+OPP65FixZpyZIlev/7368nnnhCEut/Mtxzzz265JJL9N73vldnnnmmLrroIt12220zPz+VrkFXF5dPPfWU0jTV0NDQrO8PDQ1pdHR0ns7qV9Nz6821ODnyPNdnPvMZXX755TrvvPMkcQ1Ohr1792rBggWq1Wpas2aN7r77bp177rms/Uly11136Xvf+542btx43M+4BifesmXLdMcdd+j+++/XbbfdptHRUS1fvlxPP/00638SPPHEE9q6dauWLl2q+++/X2vWrNEnP/lJ3XHHHZJOrXugMt8n4CiVSrP+f57nx30PJwfX4uS48cYb9f3vf1/f+c53jvsZ1+DEee1rX6tHH31Uhw8f1t///d/r2muv1c6dO2d+ztqfOAcOHNCnPvUpbd++XfV6/ZeO4xqcOFdcccXM/z7//PN16aWX6td//de1bds2vfnNb5bE+p9IWZbpkksu0YYNGyRJF110kfbt26etW7fqwx/+8My4U+EadPUnly9/+ctVLpePq8gPHjx4XOWOE+u5vzHItTjxPvGJT+iee+7Rt771LZ111lkz3+canHg9PT169atfrUsuuUQbN27UhRdeqC996Uus/UmwZ88eHTx4UBdffLEqlYoqlYp27typL3/5y6pUKjPrzDU4efr7+3X++efr8ccf5x44CRYuXKhzzz131vfOOeecmb/AfCpdg64uLnt6enTxxRdrx44ds76/Y8cOLV++fJ7O6lfTkiVLNDw8POtaTE1NaefOnVyLIHme68Ybb9TXv/51ffOb39SSJUtm/ZxrcPLlea5Wq8XanwRvf/vbtXfvXj366KMzX5dccomuueYaPfroo3rVq17FNTjJWq2WfvCDH2jhwoXcAyfBZZdddlz7uR/96Ec6++yzJZ1i74D5+ptErrvuuiuvVqv5V7/61fyxxx7L165dm/f39+c//vGP5/vUXnLGxsbyRx55JH/kkUdySfmmTZvyRx55JP/Xf/3XPM/z/Oabb84HBwfzr3/96/nevXvzD3zgA/nChQvzo0ePzvOZvzR8/OMfzwcHB/MHHnggf/LJJ2e+JiYmZsZwDU6cdevW5Q8++GC+f//+/Pvf/37+J3/yJ3mSJPn27dvzPGft58PP/23xPOcanGh/9Ed/lD/wwAP5E088kT/00EP5u971rnxgYGDmfcv6n1jf/e5380qlkn/hC1/IH3/88fxv//Zv876+vvxv/uZvZsacKteg64vLPM/zv/iLv8jPPvvsvKenJ3/jG98405oFsb71rW/lko77uvbaa/M8P9YG4XOf+1w+PDyc12q1/K1vfWu+d+/e+T3pl5DnW3tJ+e233z4zhmtw4vzBH/zBzHPmFa94Rf72t799prDMc9Z+Pvxicck1OLHe97735QsXLsyr1Wq+aNGi/Kqrrsr37ds383PW/8T7x3/8x/y8887La7Va/rrXvS6/9dZbZ/38VLkGpTzP8/n5zBQAAAAvNV3931wCAADg1EJxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI8/8B7SoQM5AmGpYAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -669,7 +661,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -683,7 +675,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" }, "nbsphinx": { "execute": "auto" From c88ede2f8e7d9d405f72f7025908b1a6f4e063ba Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 3 Jul 2023 15:42:31 +0200 Subject: [PATCH 133/172] Remove TLDR, update some formatting --- docs/source/5_liners/bang_strings.ipynb | 50 +++----- docs/source/5_liners/effects_include.ipynb | 35 +++--- docs/source/5_liners/source_from_images.ipynb | 10 +- docs/source/examples/3_custom_effects.ipynb | 116 ++++++++++++------ 4 files changed, 118 insertions(+), 93 deletions(-) diff --git a/docs/source/5_liners/bang_strings.ipynb b/docs/source/5_liners/bang_strings.ipynb index fd7964cd..51891cc0 100644 --- a/docs/source/5_liners/bang_strings.ipynb +++ b/docs/source/5_liners/bang_strings.ipynb @@ -9,21 +9,15 @@ "\n", "## !-strings are for setting simulation parameters\n", "\n", - "### TL;DR\n", - "\n", - " import scopesim as sim\n", - " opt = sim.load_example_optical_train()\n", - " opt.cmds[\"!ATMO\"]\n", - " opt.cmds[\"!ATMO.background\"]\n", - " opt.cmds[\"!ATMO.background.filter_name\"]\n", - "\n", - ".. note: !-strings only work on `UserCommands` objects\n", - "\n", "!-strings are a convenient way of accessing multiple layers of a nested dictionary structure with a single string using the format:\n", "\n", " \"!.....\"\n", " \n", - "Any level of the nested dictionary can be reached by truncating the keyword." + "Any level of the nested dictionary can be reached by truncating the keyword.\n", + "\n", + "**Note: !-strings only work on `UserCommands` objects**\n", + "\n", + "Below is an example of how to use !-strings, using the example optical train." ] }, { @@ -108,19 +102,11 @@ "source": [ "## #-strings are for accessing Effect object parameters\n", "\n", - "### TL;DR\n", - "\n", - " opt.effects\n", - " opt[\"#exposure_action.\"]\n", - " opt[\"#exposure_action.ndit\"]\n", - " opt[\"#exposure_action.ndit!\"]\n", - "\n", - "\n", - ".. note: !-strings only work on `OpticalTrain` objects\n", - "\n", "Similar to !-strings, #-strings allow us to get at the preset values inside the Effect-objects of the optical system. #-strings allow us to pring the contents of an effect's meta dictionary.\n", "\n", - "First let's list the effects" + "**Note: !-strings only work on `OpticalTrain` objects**\n", + "\n", + "Here, we're again using the example optical train defined above. First let's list the effects:" ] }, { @@ -132,16 +118,17 @@ { "data": { "text/html": [ - "Table length=17\n", - "
\n", + "
Table length=18\n", + "
\n", "\n", "\n", - "\n", + "\n", "\n", "\n", "\n", "\n", "\n", + "\n", "\n", "\n", "\n", @@ -153,19 +140,20 @@ "\n", "\n", "\n", - "
elementnameclassincluded
str16str22str29bool
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveFalse
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveTrue
basic_telescopepsfSeeingPSFTrue
basic_telescopetelescope_reflectionTERCurveTrue
basic_instrumentstatic_surfacesSurfaceListTrue
basic_instrumentfilter_wheel : [J]FilterWheelTrue
basic_instrumentslit_wheel : [narrow]SlitWheelFalse
basic_instrumentimage_slicerApertureListFalse
basic_detectordetector_windowDetectorWindowTrue
basic_detectorqe_curveQuantumEfficiencyCurveTrue
basic_detectorexposure_actionSummedExposureTrue
basic_detectoreffects_fits_keywordsEffectsMetaKeywordsTrue
basic_detectorconfig_fits_keywordsSimulationConfigFitsKeywordsTrue
basic_detectorextra_fits_keywordsExtraFitsKeywordsTrue
" + "" ], "text/plain": [ - "\n", + "
\n", " element name class included\n", " str16 str22 str29 bool \n", "---------------- ---------------------- ----------------------------- --------\n", - "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve False\n", + "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve True\n", " basic_telescope psf SeeingPSF True\n", " basic_telescope telescope_reflection TERCurve True\n", "basic_instrument static_surfaces SurfaceList True\n", "basic_instrument filter_wheel : [J] FilterWheel True\n", "basic_instrument slit_wheel : [narrow] SlitWheel False\n", + "basic_instrument image_slicer ApertureList False\n", " basic_detector detector_window DetectorWindow True\n", " basic_detector qe_curve QuantumEfficiencyCurve True\n", " basic_detector exposure_action SummedExposure True\n", @@ -197,7 +185,7 @@ "\n", " \"#.\"\n", " \n", - ".. note: The `.` at the end is important, otherwise the optical train will look for a non-existant effect named `#`" + "**Note: The `.` at the end is important, otherwise the optical train will look for a non-existant effect named `#`**" ] }, { @@ -296,7 +284,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -310,7 +298,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/5_liners/effects_include.ipynb b/docs/source/5_liners/effects_include.ipynb index 3577de96..7e182199 100644 --- a/docs/source/5_liners/effects_include.ipynb +++ b/docs/source/5_liners/effects_include.ipynb @@ -7,15 +7,6 @@ "source": [ "# Turning Effect objects on or off\n", "\n", - "**TL;DR**\n", - "\n", - " optical_train = sim.load_example_optical_train()\n", - " \n", - " optical_train.effects\n", - " optical_train[\"detector_linearity\"].include = False\n", - " optical_train[\"detector_linearity\"].meta[\"include\"] = True\n", - "\n", - "\n", "To list all the effects in an optical train, we do use the `effects` attribute.\n", "\n", "Alternatively, we can call `opt.optics_manager.all_effects()`" @@ -30,16 +21,17 @@ { "data": { "text/html": [ - "Table length=17\n", - "
\n", + "
Table length=18\n", + "
\n", "\n", "\n", - "\n", + "\n", "\n", "\n", "\n", "\n", "\n", + "\n", "\n", "\n", "\n", @@ -51,19 +43,20 @@ "\n", "\n", "\n", - "
elementnameclassincluded
str16str22str29bool
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveFalse
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveTrue
basic_telescopepsfSeeingPSFTrue
basic_telescopetelescope_reflectionTERCurveTrue
basic_instrumentstatic_surfacesSurfaceListTrue
basic_instrumentfilter_wheel : [J]FilterWheelTrue
basic_instrumentslit_wheel : [narrow]SlitWheelFalse
basic_instrumentimage_slicerApertureListFalse
basic_detectordetector_windowDetectorWindowTrue
basic_detectorqe_curveQuantumEfficiencyCurveTrue
basic_detectorexposure_actionSummedExposureTrue
basic_detectoreffects_fits_keywordsEffectsMetaKeywordsTrue
basic_detectorconfig_fits_keywordsSimulationConfigFitsKeywordsTrue
basic_detectorextra_fits_keywordsExtraFitsKeywordsTrue
" + "" ], "text/plain": [ - "\n", + "
\n", " element name class included\n", " str16 str22 str29 bool \n", "---------------- ---------------------- ----------------------------- --------\n", - "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve False\n", + "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve True\n", " basic_telescope psf SeeingPSF True\n", " basic_telescope telescope_reflection TERCurve True\n", "basic_instrument static_surfaces SurfaceList True\n", "basic_instrument filter_wheel : [J] FilterWheel True\n", "basic_instrument slit_wheel : [narrow] SlitWheel False\n", + "basic_instrument image_slicer ApertureList False\n", " basic_detector detector_window DetectorWindow True\n", " basic_detector qe_curve QuantumEfficiencyCurve True\n", " basic_detector exposure_action SummedExposure True\n", @@ -107,11 +100,19 @@ "opt[\"slit_wheel\"].include = True\n", "opt[\"slit_wheel\"].include = False" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2302c803", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -125,7 +126,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/5_liners/source_from_images.ipynb b/docs/source/5_liners/source_from_images.ipynb index d245e13f..8a859ce6 100644 --- a/docs/source/5_liners/source_from_images.ipynb +++ b/docs/source/5_liners/source_from_images.ipynb @@ -9,7 +9,7 @@ "\n", "We can use a FITS image as the Source object for a ScopeSim Simulation\n", "\n", - ".. warning: The simulation output is only as good as the input\n", + "**Warning: The simulation output is only as good as the input**\n", " \n", " If the pixel scale of the input (`CDELTn`) is bigger than the pixel scale of the instrument, ScopeSim will simply interpolate the image.\n", " \n", @@ -73,7 +73,7 @@ "\n", "It is assumed that the flux definied here is **integrated** flux and is the total flux contained in the image.\n", "\n", - ".. note: In future version, header keywords like `BUNIT` etc will also be accepted. This functionality is not yet implemented though (April 2022)." + "**Note: In future version, header keywords like `BUNIT` etc will also be accepted. This functionality is not yet implemented though (April 2022).**" ] }, { @@ -112,7 +112,7 @@ "\n", "In this case, the image pixel values are seen as multipiers for the spectrum at a given coordinate.\n", "\n", - ".. note: It is the users responsibility to make sure the total flux of the \"cube\" (image * spectrum) is scaled appropriately." + "**Note: It is the users responsibility to make sure the total flux of the \"cube\" (image * spectrum) is scaled appropriately.**" ] }, { @@ -185,7 +185,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -199,7 +199,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/examples/3_custom_effects.ipynb b/docs/source/examples/3_custom_effects.ipynb index 3462a7d7..7866e549 100644 --- a/docs/source/examples/3_custom_effects.ipynb +++ b/docs/source/examples/3_custom_effects.ipynb @@ -31,11 +31,46 @@ "from matplotlib.colors import LogNorm\n", "\n", "import scopesim as sim\n", - "from scopesim_templates.stellar import stars, star_grid\n", + "from scopesim_templates.stellar import stars, star_grid" + ] + }, + { + "cell_type": "markdown", + "id": "40fabcee", + "metadata": {}, + "source": [ + "Scopesim works by using so-called instrument packages, which have to be downloaded separately. For normal use, you would set the package directory (a local folder path, `local_package_folder` in this example), download the required packages *once*, and then **remove the download command**." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "661ea82b", + "metadata": {}, + "outputs": [], + "source": [ + "local_package_folder = \"./inst_pkgs\"" + ] + }, + { + "cell_type": "markdown", + "id": "1350c51d", + "metadata": {}, + "source": [ + "However, to be able to run this example on the *Readthedocs* page, we need to include a temporary directory.\n", "\n", - "# [Required for Readthedocs] Comment out these lines if running locally\n", - "tmpdir = TemporaryDirectory()\n", - "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = tmpdir.name" + "**Do not** copy and run this code locally, it is **only** needed to set things up for *Readthedocs*!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1d33b08d", + "metadata": {}, + "outputs": [], + "source": [ + "from tempfile import TemporaryDirectory\n", + "local_package_folder = TemporaryDirectory().name" ] }, { @@ -43,31 +78,32 @@ "id": "acute-calculator", "metadata": {}, "source": [ - "We assume that the MICADO (plus support) packages have been downloaded." + "Download the required instrument packages for an observation with MICADO at the ELT.\n", + "\n", + "Again, you would only need to do this **once**, not every time you run the rest of the script, assuming you set a (permanent) instrument package folder." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "gorgeous-blond", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp3w56we9v\\\\MAORY.zip']" + "['C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\Armazones.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\ELT.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\MICADO.zip',\n", + " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\MAORY.zip']" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sim.download_packages([\"LFOA\"])\n", "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" ] }, @@ -81,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "celtic-fluid", "metadata": {}, "outputs": [ @@ -89,7 +125,7 @@ "data": { "text/html": [ "
Table length=23\n", - "
\n", + "
\n", "\n", "\n", "\n", @@ -143,7 +179,7 @@ "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" ] }, - "execution_count": 3, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -165,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "bound-literature", "metadata": {}, "outputs": [ @@ -198,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "allied-matrix", "metadata": {}, "outputs": [], @@ -221,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "aerial-warehouse", "metadata": {}, "outputs": [], @@ -239,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "indoor-norway", "metadata": {}, "outputs": [ @@ -253,10 +289,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, @@ -284,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "lightweight-louisiana", "metadata": {}, "outputs": [ @@ -292,7 +328,7 @@ "data": { "text/html": [ "
Table length=1\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
\n", + "
\n", "\n", "\n", "\n", @@ -306,7 +342,7 @@ " 0 0 0 64 64 0 1 0.015" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -329,7 +365,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "id": "weighted-mortgage", "metadata": {}, "outputs": [], @@ -364,7 +400,7 @@ "id": "drawn-vacation", "metadata": {}, "source": [ - "Lets break it down a bit:\n", + "Lets break it down a bit (**THIS IS JUST A STEP-BY-STEP EXPLANATION OF THE CODE ABOVE, NOT SOMETHING NEW!**):\n", "\n", " class PointSourceJitter(Effect):\n", " ...\n", @@ -408,7 +444,7 @@ "This method is used by ``FOVManager`` to estimate how many ``FieldOfView`` objects to generate in order to best simulation the observation.\n", "If your Effect object might alter this estimate, then you should include this method in your class. See the code base for further details.\n", "\n", - ".. note:: The ``fov_grid`` method will be depreciated in a future release of ScopeSim.\n", + "**Note**: The ``fov_grid`` method will be depreciated in a future release of ScopeSim.\n", " It will most likely be replaced by a ``FOVSetupBase`` class that will be cycled through the ``apply_to`` function.\n", " However this is not yet 100% certain, so please bear with us." ] @@ -426,7 +462,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "id": "empirical-skill", "metadata": {}, "outputs": [], @@ -444,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "id": "considerable-factory", "metadata": {}, "outputs": [ @@ -452,7 +488,7 @@ "data": { "text/html": [ "
Table length=24\n", - "
idx_ceny_cenx_sizey_sizeanglegainpixel_size
int32str6str6str10str11int32int32float64
0006464010.015
\n", + "
\n", "\n", "\n", "\n", @@ -506,7 +542,7 @@ "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" ] }, - "execution_count": 11, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -527,17 +563,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "id": "exempt-purse", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, @@ -569,17 +605,17 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "id": "sound-preference", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 13, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, @@ -615,17 +651,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "id": "future-approval", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, From e70b19278568324800abcc3ed1586bed69ffa1b3 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Mon, 3 Jul 2023 16:49:15 +0200 Subject: [PATCH 134/172] Save notebooks without output. Also fix some broken Github links --- docs/source/5_liners/bang_strings.ipynb | 168 +--------- docs/source/5_liners/effects_include.ipynb | 63 +--- docs/source/5_liners/loading_packages.ipynb | 135 +------- .../5_liners/scopsim_templates_intro.ipynb | 58 +--- .../5_liners/simulation_parameters.ipynb | 54 +-- docs/source/5_liners/source_from_images.ipynb | 53 +-- .../5_liners/source_point_source_arrays.ipynb | 40 +-- docs/source/examples/1_scopesim_intro.ipynb | 55 +-- .../examples/2_multiple_telescopes.ipynb | 84 +---- docs/source/examples/3_custom_effects.ipynb | 315 ++---------------- docs/source/getting_started.ipynb | 192 ++--------- 11 files changed, 124 insertions(+), 1093 deletions(-) diff --git a/docs/source/5_liners/bang_strings.ipynb b/docs/source/5_liners/bang_strings.ipynb index 51891cc0..c7ebb2cd 100644 --- a/docs/source/5_liners/bang_strings.ipynb +++ b/docs/source/5_liners/bang_strings.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "loved-franchise", "metadata": {}, "outputs": [], @@ -33,64 +33,30 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "uniform-cursor", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'background': {'filter_name': 'J', 'value': 16.6, 'unit': 'mag'},\n", - " 'element_name': 'basic_atmosphere'}" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.cmds[\"!ATMO\"]" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "domestic-chemical", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'filter_name': 'J', 'value': 16.6, 'unit': 'mag'}" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.cmds[\"!ATMO.background\"]" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "earned-indicator", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'J'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.cmds[\"!ATMO.background.filter_name\"]" ] @@ -111,67 +77,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "hydraulic-astrology", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Table length=18\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
elementnameclassincluded
str16str22str29bool
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveTrue
basic_telescopepsfSeeingPSFTrue
basic_telescopetelescope_reflectionTERCurveTrue
basic_instrumentstatic_surfacesSurfaceListTrue
basic_instrumentfilter_wheel : [J]FilterWheelTrue
basic_instrumentslit_wheel : [narrow]SlitWheelFalse
basic_instrumentimage_slicerApertureListFalse
basic_detectordetector_windowDetectorWindowTrue
basic_detectorqe_curveQuantumEfficiencyCurveTrue
basic_detectorexposure_actionSummedExposureTrue
basic_detectordark_currentDarkCurrentTrue
basic_detectorshot_noiseShotNoiseTrue
basic_detectordetector_linearityLinearityCurveTrue
basic_detectorreadout_noisePoorMansHxRGReadoutNoiseTrue
basic_detectorsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
basic_detectoreffects_fits_keywordsEffectsMetaKeywordsTrue
basic_detectorconfig_fits_keywordsSimulationConfigFitsKeywordsTrue
basic_detectorextra_fits_keywordsExtraFitsKeywordsTrue
" - ], - "text/plain": [ - "\n", - " element name class included\n", - " str16 str22 str29 bool \n", - "---------------- ---------------------- ----------------------------- --------\n", - "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve True\n", - " basic_telescope psf SeeingPSF True\n", - " basic_telescope telescope_reflection TERCurve True\n", - "basic_instrument static_surfaces SurfaceList True\n", - "basic_instrument filter_wheel : [J] FilterWheel True\n", - "basic_instrument slit_wheel : [narrow] SlitWheel False\n", - "basic_instrument image_slicer ApertureList False\n", - " basic_detector detector_window DetectorWindow True\n", - " basic_detector qe_curve QuantumEfficiencyCurve True\n", - " basic_detector exposure_action SummedExposure True\n", - " basic_detector dark_current DarkCurrent True\n", - " basic_detector shot_noise ShotNoise True\n", - " basic_detector detector_linearity LinearityCurve True\n", - " basic_detector readout_noise PoorMansHxRGReadoutNoise True\n", - " basic_detector source_fits_keywords SourceDescriptionFitsKeywords True\n", - " basic_detector effects_fits_keywords EffectsMetaKeywords True\n", - " basic_detector config_fits_keywords SimulationConfigFitsKeywords True\n", - " basic_detector extra_fits_keywords ExtraFitsKeywords True" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.effects" ] @@ -190,35 +99,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "exterior-romania", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'filename': None,\n", - " 'description': 'Summing up sky signal for all DITs and NDITs',\n", - " 'history': [],\n", - " 'name': 'exposure_action',\n", - " 'image_plane_id': 0,\n", - " 'temperature': -230,\n", - " 'dit': '!OBS.dit',\n", - " 'ndit': '!OBS.ndit',\n", - " 'width': 1024,\n", - " 'height': 1024,\n", - " 'x': 0,\n", - " 'y': 0,\n", - " 'element_name': 'basic_detector',\n", - " 'z_order': [860],\n", - " 'include': True}" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt[\"#exposure_action.\"]" ] @@ -233,21 +117,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "independent-benjamin", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'!OBS.ndit'" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt[\"#exposure_action.ndit\"]" ] @@ -262,21 +135,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "internal-capital", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt[\"#exposure_action.ndit!\"]" ] diff --git a/docs/source/5_liners/effects_include.ipynb b/docs/source/5_liners/effects_include.ipynb index 7e182199..d8f046eb 100644 --- a/docs/source/5_liners/effects_include.ipynb +++ b/docs/source/5_liners/effects_include.ipynb @@ -14,67 +14,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "obvious-retention", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Table length=18\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
elementnameclassincluded
str16str22str29bool
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveTrue
basic_telescopepsfSeeingPSFTrue
basic_telescopetelescope_reflectionTERCurveTrue
basic_instrumentstatic_surfacesSurfaceListTrue
basic_instrumentfilter_wheel : [J]FilterWheelTrue
basic_instrumentslit_wheel : [narrow]SlitWheelFalse
basic_instrumentimage_slicerApertureListFalse
basic_detectordetector_windowDetectorWindowTrue
basic_detectorqe_curveQuantumEfficiencyCurveTrue
basic_detectorexposure_actionSummedExposureTrue
basic_detectordark_currentDarkCurrentTrue
basic_detectorshot_noiseShotNoiseTrue
basic_detectordetector_linearityLinearityCurveTrue
basic_detectorreadout_noisePoorMansHxRGReadoutNoiseTrue
basic_detectorsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
basic_detectoreffects_fits_keywordsEffectsMetaKeywordsTrue
basic_detectorconfig_fits_keywordsSimulationConfigFitsKeywordsTrue
basic_detectorextra_fits_keywordsExtraFitsKeywordsTrue
" - ], - "text/plain": [ - "\n", - " element name class included\n", - " str16 str22 str29 bool \n", - "---------------- ---------------------- ----------------------------- --------\n", - "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve True\n", - " basic_telescope psf SeeingPSF True\n", - " basic_telescope telescope_reflection TERCurve True\n", - "basic_instrument static_surfaces SurfaceList True\n", - "basic_instrument filter_wheel : [J] FilterWheel True\n", - "basic_instrument slit_wheel : [narrow] SlitWheel False\n", - "basic_instrument image_slicer ApertureList False\n", - " basic_detector detector_window DetectorWindow True\n", - " basic_detector qe_curve QuantumEfficiencyCurve True\n", - " basic_detector exposure_action SummedExposure True\n", - " basic_detector dark_current DarkCurrent True\n", - " basic_detector shot_noise ShotNoise True\n", - " basic_detector detector_linearity LinearityCurve True\n", - " basic_detector readout_noise PoorMansHxRGReadoutNoise True\n", - " basic_detector source_fits_keywords SourceDescriptionFitsKeywords True\n", - " basic_detector effects_fits_keywords EffectsMetaKeywords True\n", - " basic_detector config_fits_keywords SimulationConfigFitsKeywords True\n", - " basic_detector extra_fits_keywords ExtraFitsKeywords True" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import scopesim as sim\n", "\n", @@ -92,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "local-stations", "metadata": {}, "outputs": [], diff --git a/docs/source/5_liners/loading_packages.ipynb b/docs/source/5_liners/loading_packages.ipynb index 6cada7a5..473d823d 100644 --- a/docs/source/5_liners/loading_packages.ipynb +++ b/docs/source/5_liners/loading_packages.ipynb @@ -7,7 +7,7 @@ "source": [ "# Downloading packages\n", "\n", - ".. note: Instrument packages are kept in a separate repository: [the Instrument Reference Database (IRDB)]((https://github.com/astronomyk/irdb))\n", + "**Note: Instrument packages are kept in a separate repository: [the Instrument Reference Database (IRDB)](https://github.com/AstarVienna/irdb)**\n", "\n", "Before simulating anything we need to get the relevant instrument packages. Packages are split into the following categories\n", "\n", @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "collaborative-glass", "metadata": {}, "outputs": [], @@ -43,65 +43,25 @@ "\n", "The simplest way is to simply get the latest stable versions of the packages by calling their names.\n", "\n", - "Call `list_packages()` or see the [IRDB]((https://github.com/astronomyk/irdb)) for names." + "Call `list_packages()` or see the [IRDB](https://github.com/AstarVienna/irdb) for names." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "blind-algorithm", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Armazones',\n", - " 'ELT',\n", - " 'GTC',\n", - " 'HAWKI',\n", - " 'HST',\n", - " 'LFOA',\n", - " 'LaPalma',\n", - " 'MAAT',\n", - " 'MAORY',\n", - " 'METIS',\n", - " 'MICADO',\n", - " 'MICADO_Sci',\n", - " 'OSIRIS',\n", - " 'Paranal',\n", - " 'VLT',\n", - " 'WFC3',\n", - " 'test_package']" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.list_packages()" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "happy-column", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpvf9r8z__\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpvf9r8z__\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpvf9r8z__\\\\MICADO.zip']" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\"])" ] @@ -118,21 +78,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "egyptian-absolute", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpvf9r8z__\\\\test_package.zip']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.download_packages(\"test_package\", release=\"latest\")" ] @@ -155,35 +104,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "happy-thought", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - Downloaded: test_package/TC_filter_Ks.dat\n", - "INFO - Downloaded: test_package/default.yaml\n", - "INFO - Downloaded: test_package/test_detector.yaml\n", - "INFO - Downloaded: test_package/test_instrument.yaml\n", - "INFO - Downloaded: test_package/test_mode_2.yaml\n", - "INFO - Downloaded: test_package/test_package.yaml\n", - "INFO - Downloaded: test_package/test_telescope.yaml\n", - "INFO - Downloaded: test_package/version.yaml\n" - ] - }, - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\Kieran\\\\AppData\\\\Local\\\\Temp\\\\tmpvf9r8z__']" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.download_packages(\"test_package\", release=\"github:dev_master\")" ] @@ -193,38 +117,7 @@ "execution_count": null, "id": "neither-netscape", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - Downloaded: LFOA/CCD-QE.jpg\n", - "INFO - Downloaded: LFOA/LFOA.yaml\n", - "INFO - Downloaded: LFOA/LFOA_SBIG.yaml\n", - "INFO - Downloaded: LFOA/LIST_LFOA_mirrors_static.dat\n", - "INFO - Downloaded: LFOA/QE_SBIG.dat\n", - "INFO - Downloaded: LFOA/TER_atmosphere.dat\n", - "INFO - Downloaded: LFOA/TER_focal_reducer.dat\n", - "INFO - Downloaded: LFOA/TER_mirror_aluminium.dat\n", - "INFO - Downloaded: LFOA/__init__.py\n", - "INFO - Downloaded: LFOA/code/__init__.py\n", - "INFO - Downloaded: LFOA/code/sort_NB_filters.py\n", - "INFO - Downloaded: LFOA/default.yaml\n", - "INFO - Downloaded: LFOA/docs/__init__.py\n", - "INFO - Downloaded: LFOA/docs/report_preamble.rst\n", - "INFO - Downloaded: LFOA/filters/B.dat\n", - "INFO - Downloaded: LFOA/filters/Halpha_narrow.dat\n", - "INFO - Downloaded: LFOA/filters/Halpha_wide.dat\n", - "INFO - Downloaded: LFOA/filters/Hbeta.dat\n", - "INFO - Downloaded: LFOA/filters/I.dat\n", - "INFO - Downloaded: LFOA/filters/OIII.dat\n", - "INFO - Downloaded: LFOA/filters/R.dat\n", - "INFO - Downloaded: LFOA/filters/SII.dat\n", - "INFO - Downloaded: LFOA/filters/U.dat\n", - "INFO - Downloaded: LFOA/filters/V.dat\n" - ] - } - ], + "outputs": [], "source": [ "sim.download_packages(\"LFOA\", release=\"github:3c136cd59ceeca551c01c6fa79f87377997f33f9\")" ] @@ -232,7 +125,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -246,7 +139,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/5_liners/scopsim_templates_intro.ipynb b/docs/source/5_liners/scopsim_templates_intro.ipynb index 63da9d15..163ed30a 100644 --- a/docs/source/5_liners/scopsim_templates_intro.ipynb +++ b/docs/source/5_liners/scopsim_templates_intro.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "refined-radius", "metadata": {}, "outputs": [], @@ -36,31 +36,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "ancient-blanket", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - sample_imf: Setting maximum allowed mass to 1000\n", - "INFO - sample_imf: Loop 0 added 1.09e+03 Msun to previous total of 0.00e+00 Msun\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOoAAAD4CAYAAADiinreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4EElEQVR4nO19fZQdVZXv79S93S2KWUgnkpAYIhNgCC+LRGK7eo22PQrRMDPSo7N8aN6EGdDQjIwvg67W6PKtLBEyMqitok4HA4vMODCul+HLgUFBWtFuJgQIRvkSMGRAotgOT1HJR/d+f+y7rVPnnlO36t6qW7e6z2+ts+699XHqVN3aZ++zPxURwcPDo7MRFD0ADw+PxvCE6uFRAnhC9fAoATyheniUAJ5QPTxKgGrRA9Axf/58WrZsWdHD8PAoBPfff/8viGiBbV9HEeqyZcuwe/fuoofh4VEIlFJPu/Z50dfDowTwhOrhUQJ4QvXwKAE8oXp4lACeUD08SgBPqB4eJYAn1KIxOQls3cqfHh4OtGxHVUqdAuBftU0nAvg/AI4B8H4Az9e2f4yIbmv1erMKk5PAW98KHDoEdHcDd90F9PcXPSqPDkTLHJWIHiOiVUS0CsAZAH4L4Mba7s/JPk+kFoyPM5FOT/Pn+HjRI/LoUGQt+r4VwJNE5PSw8NAwOMictFLhz8HBokfk0aHI2oXwXADXa78vVkptALAbwIeI6L8zvl650d/P4u74OBOpF3s9HFBZpWJRSnUD+CmA04joZ0qp4wD8AgABuBTAIiI633LeRgAbAWDp0qVnPP20Z8YecxNKqfuJaI1tX5ai7zoADxDRzwCAiH5GRNNENAPgagB9tpOIaBsRrSGiNQsWWAMHPDzmPLIk1PdAE3uVUou0fX8O4IcZXsvDY04hkzWqUuoVAM4CcKG2+Qql1Cqw6LvP2Ocx2zA56dfaOSITQiWi3wDoNbb9ZRZ9e5QA3h6cO7xnkkfr8Pbg3OEJ1aN1eHtw7uioVCweJUUSe7Bfw7YET6ge2aC/302Afg3bMrzo65E//Bq2ZXhC9cgfraxhfRggAC/6erQDzfo0e5H59/CEOlvRacqbuDWsCzaRuRPupQB4Qp2NSMKJXIScdnueEJFZ7mMOm308oZYRjYimESdyEXLa7XnDhwH+Hp5Qy4YkROPiRELg+/fbtbBbtgAHDwIzM1ECL1IEbUZknoXwhFo2JCEaGyfSCbxSAaq1v767G+jt5X1CpEEQJfB2iqCdtrbuEHhCLRuSEo3JiXQCB4D3vx9YupTPl31CpGeeydxVzm+XCOq1vE54Qu00NOIozRKNSeAbNkTP1ffpRKpfN2/lktfyOuEJtZOQlKOkXbcJUY2OAlNTLOrKulT6SkP8eXE+r+V1whNqM0jCTZrhOFlzlMlJYMcO4NprgSNH+OUfHQU2bWqNyPLifF7L64Qn1LRIaqNshuNkyVFkDC+9BEgCu0OHgJ077RrfNONtZpxJJy6v5bXCE2paJOEm4+OhBvXgwZAYGr2oLm1tMxxGxilEqhQrilatAu65J0pkaTlkp4jKev+znAt7Qk2LJNykt5eJFODPF15I/qIKR5mcBC66KCq2pnnB9XEGAY9jehr44hfDtar+YqflkGk4X5KJoFlimyOa4rlFqFnMvEm4ydRUSBxBAOzZk45jucTWJOfp45Jx7t8PXH116MgwNQVs3pzunlpBo8mtFWKbK5piIuqYdsYZZ1BumJggOuoookqFPycm2netsbF01778cj6WyZRIKft5ExN87MRE/P21895d0MdqQr/fSoV/p+m36HvLCAB2k4M2MuOoSql9AH4NYBrAESJao5Q6FlzpbRk4Zei7qaiyFu2ceW0cauXK5BxL50CVCnD++fV2T5MLnXee+/6a4ZhZr/viROVWlGhzRVPsouC0DUyI841tVwD4aO37RwF8Oq6PWcNRs0AcByKq50LDw9ndXxHPamKC72F4uPP/m5yAGI6aN6E+Bq45AwCLADwW10euhErU+OXvVNjGbSOmZu7Pdk4romizKNtEmgPaRag/AfAAgPsBbKxte0Hbr/Tf2vaN4Gpvu5cuXdqGx1EyxL3AY2NEa9fyp+28RkTr6rsIoilicugwtItQF9c+Xw3gIQADJmEC+O+4PnLnqO1EVtzb9QI3Uh719LASqqcnmfgcBEz0cuzYGFFfH9HQUPP3kOYZZDk5lFRyaguhRjoFtgD4cMeJvo3Q6h8s5yfV8iblet3dTHTd3eGxNgIW4lq2jH6vMQZ43efq+6ijmEhFu9zdzf309ITn69dN8yzSEl4WBFZiETqOULMsEhUQ0a9r39cC+CSAWwCcB+Dva583Z3G9XNCq4Vw/PwhY+2oGYDd7PaWin0C9pvSFF4CPfSzFDSPUmF5wAfDII0yWhw4B27fzp+Dw4XgtuU1DnEbLrp+v23ebQdLrlsybKSvzzHEAblT8IlUB/AsR/YdS6j4AX1dKXQDgaQDvzuh62aNV841+PhETq1Juc0PS642Ps2cSEX/KcaZZYssW+7iqVTbtxOHxx6O/jz+ezzt8mH8TsbeVDa4JJ6nJJWvPoiTXLaE3U1bV3J4CcLpl+xSAt2ZxjdzRqkO8eb7NTa+Z68Udp7sbvvzl9ecqBbzvffEv4fh46P0EsN12ZIS/33QTfwYB34vrfNuEIxPJjh3ua8ed3yyS2FVL6M00t1wI49Cq4Tzt+UmP14+TONK9e8NJAAi5Q1cXsHgxuwwCQE9PY246OMjHHTzIBPmlL/H2228Pj6lWm5tIAOC663jfddely+/UChr5IZcw7tUTqg79D25mDaNzuK1b4wsmCacxPY5c/QL1eY16etgjSbYRARs3hhExSSNwzjsvHAvAYrSIvUqxZ5TrucRNOEk4VxGeRWX0ZnJpmYpoHaP11bW23d3JvWXEu6a72611nJggqlZDjWqc+USH6f8rJpWhoeg206aaxgdY7lu0wEGQzL7q0tZmoYEtqamlGaAdvr6lh0trOz0NjI25RTfz/EYRLzt2sFJIIPGqSf1/9f5nZoBf/jIaqWOuJeO4mr7vpZdY2yvcWSlOcvaud0XjadMEncdxLhuX17fJs2oU5lcy7W2z8IQqsGltdV7VSOlgC9ROsv6pVJLHf46OAp/8JPDss+H273+f16byMut9TU7yerVSCa+1fz9v7++PanKJgN27wzhaIg4y/9u/ZTG4UgH+9E/DviTNqCsXsD5uczkA1BO3vq1S4eenP0/bhFZC7W3TcLHaIlqhoq9NDBweZtE0ieimn9/T4xaXda+hSsXu/mfD2Fi96CviqTiz69c0xzM0FN6L/O7uru9PD6079dT67XJvjcTkuGc7PFzvrKGL9kpxM69tPqtZ5nYIL/omgEtM27Ahea6fpFrcu+92HyeiXG9vVLN78cVhTl6BUqyRPXAAuO023r99O7B6NdtC9Ty+v/0tc93paW5ienGBCHjssfrthw8DTz3F3/VcwH/4h8DRR7NG2uR6JtcFmAMePMj30NvLYYCiiVWKry8KMsAu1pva297eeCVemeGi4CJa4cqkdsNUlLhc+oaH7Rxm4UKiri77PuFy4u8rHNB1rOv8SiU8Rz6DgMclHLqrq57ziWKtp8fOdcfG+Dx9m3lOpcKKtziJJq3bZgcDnqO2AWmVGrK+0u2XU1MhlwLCtfGBA7xu05VQAG+Pg/Rz6BDbRUdH+VPnpqeeCjz6aNTpAeAxdXUB69YBCxcC8+YB//ZvwJNPhko2ybZ/003Arl3hudu3Aw89xPem9ycZ+AHOhigKu5deYsXRV74SemLNzPA9v+99YUZ/23OVNfDWrdmnWu0kJZWLgotopeWozZghLr885DQAcxcX15M1oX68uZ7s6SEaGIjnkNUq0apV0W0DAyFn08cia1idq+mcVXfUHxur79Mcn841dalBmqzXkz5LlzRS1sB5iueohROn3kpLqI2UGq7Ab92eGgThMUNDUbFVfxmHhogWLIi+5CtWhIok066aRLw1FTiVCoe82ZRXulLJjI3t6+OJwBxfX5896seckKrVUIkXZ7tOa8/N+v/MCXGE6kXfLOBySXNlqhcl0SWXAFdeycf29PC2vXuBb3yDX91KBfjCF6KiV18fcPLJwGc+w2Jetcri6GOP8XXWrePzTMWTC7qYHQT8vVpl++k99wC/+539vIMHgY9+FHj723ncK1cCDz4YejQJurqA172u/lmJIokoHMP0NCvNZmbC+jg64spGigichZjaiS6GLgouopWWoxK5RTGdawRBKEb29LD4KNtE7NMVM0oxN7KZQ5Ti7wMD9RkL0yiMTBFVF2snJvj6jc4Rk4u5b8kSu5eWrkjq6uL98hzk/oSTubzFkprNbP9No+3mvjZ5R8GLvgXA5vLnIiDdlhh3jG2NmpQwK5V4UVYfny7umetPV5O1rr5NRHhdtDefjSRm04lRCHhkJCROk4jlnCRE2kq6mTauV+MI1Yu+eUEX8XTx0oReNHjv3lAcNDE9Hca46vv17y6RVyngQx9icdmFSiU8v1pl8fIjH2FNbxJ897vA+vXAb34D/PSnHIwOhBrmmZnQE6q3N/T8spWA/MAHeKlw5ZXhsxObsXh8JQlmANwulGnigTsgJM4Tal4QB4gtW4BvftN+jFLAKacAb34zv9Cf+1z4YtogzgWnn85EbRJlby9w1FHA009HtxPxWtnmMCFj2LSJt23fDjzwAPs32yaMOFx/PfC974Uv8tat9X7Ik5N8LZl4RkejL/7UVOjoYE5If/d3wK9+VX/dOFOKa72ZRTxwO+FitUW0WSX6CiTnURKR07XvmGPqt8U5OiRtQRAVJ8W1sdn+lIqKpDaxUTdL6eKw/rziXCVtKVIbuW42s0Zt5rgWAb9GLRhiNtHtkK0SWRZ9ZNlECWUqecyX3Fzz2rIcmiYmXWEV5yOsHzvLPJOCYvh4CSHRH5OT4e+LLuIm21znAGw2oZooR8TrwaCFx9/dzaaPVvpIioULo4nVdPT0sJh82WUcYC7+xOJt1N/PCctEJJ2aivZ1883soaU/w5ER7lcpvscLL+RlxIYNfN+VSujbu39/uHYF+NnqIXgC8/8rG1wUXETrWI5qi6xplE7TPMc0c4iYKAZ+U5QV04tNbF6xIuRWK1bEc1qliE46KXSgEK+jRmYXvVWr0fs1uaFuQtGPC4Iw4kWOGRmp7yepk4i+3TTX6J5UtkTlojXuYG4Lr/VtArqCwtT8SdVugZlO0xYxcvzx0f6VYh/WlSuZy1x1FTsMfPWroaJlxQrgNa8Bvva16LmPPcbKJAB4+OHoPlHeiKKICPjxj6PHnHwyl4JMCiL2CdbPWb8eGBhgxdCDD4ZOCm94A2uAAd72N3/D3zdtCiNjdM21K27X5rygp7DRnR4AdgQZGbEHo198cegnnTRQv9PgouCkDcBrANwN4GEAPwLwv2vbtwB4FsCeWju7UV+ZcdRWF/+uFCUujlqthkoM05dVn8VHRkIFzlFH8W89gkRfgwk3dPn3dnXVJ9rOc+1pbrfFqtpiWJWKuiOa62pzjapzTF0pJVKHyeV1hxEbTJ/qarWxg0NBQJ7KJHAG/NfVvr8SwOMAVtQI9cNp+sqEULMwUNt8PW2eR8PD/KKJ2NrVxSKlTqR6mQg5T0RA/QXStZqm6GojoCCo96lNSnhpRF65R5v4bTvH1NjqIXYSEqcr1fTnY5vkxIPLHLdS4bNPErQuThSuOj0dECIXR6gtayKI6DkieqD2/dcAHgGwuNV+m4Yrr08aiEE+CELjPxBVivT3c1jWwoUs+hLx565d0SyBW7ZEU5EALJp99rNRm+nMDAd833UXK0+qtVWJUlGFkfzu6QHWro2O26XwOeGEML0JUf3+gQEWP/XzJSew3KOO5cvt/QBRW+3AAAfJb9zI93XppSziv+xlocPDt77FduRt28L/Tp6LLBvk+ero6uJxzcxE08CYSiOxZ3/qU8B3vsNjMZHFO5M3XBTcTAMXLN4PYB6Yo+4D8AMA1wB4leOcbKu5id3SDMVKc77MwEkCl20+rjZFipmKxBRplUrutieKJj36RikOJLcd39vr7uukk3g8EvViu9+JidDGql8TIHr1q4nWr+fjzb6XL7dHtkxMMCfVuWS1ylJGtRoNUNd9osWmPDBgt9PqnNtmU41TUHU4R82SSI8Gl1x8Z+33cQAqAAIAlwG4plEfmYm+SSqZmefo4q1N9HRpJs21k43w9HWSONrr4pxp+1u7Np5Q824DA9z6+qKTzfAw0eLF9ceLX64tHlaKTsnkpwcgmOtx3VF//fqwmpy5TADqxyXNZVNtRIyzfY3K/aMLwB0ALnHsXwbgh436yYRQ08YSmn/g+vXRF0Kc2eNy4nZ380tlcghRiJgmCeFMixfz9cy1r83gXyTh6gHdcWNxOf0vWVJ/nO6wL9vMyKC4fteurf8fenrqOb7NMaJDE6HFEWrL5hnFlaG2A3iEiD6rbV9ERM/Vfv45gB+2eq1ESOubaa5P/vM/o/sXLeI0maYTuH4ewDGXe/ey+r9SYb9Ul0mCiM0Fzz7LphcxK+zdG6bnDAJg/nxOGrZ+PfDBD4YmIelL+ssb27fz/UlO4SDg5/Lcc9F1tisG9plnor9tydVWrmRTk6QI1e/N1u+qVfxppnnVn7Ue8AB0hs9us3BRcNIG4I0ACLwW3VNrZwP4JwB7a9tvQa1OalwrxDxjclQb93OJSja/U12E1osEm+lOzGu4TDGiNRXta6v+uM02/Zrd3fycshyHaHFtfdo4qq2gsx4KF6dxL6HDQ8uEmmUrzDPJ5o+6fLl9fZo0oNim6BD7YNp0KSJ+m2JdUe3009ONJSlBy0Qkv6Vkh3gW6c9DN7PoprI0AeUdBk+ozcDFMePquNjsrK7cP2NjPOM3SkiW5IWXLAntItRXvSp92tH16+2abv23KI/MCVIUhPp5tiBw0dTbHP1LAE+ozcIkPpdCQmZ8URLpmQn0PLbyIpoELhrgOOcGV4YHnfP09TXnBNFqGxhoLCVcfjkTq9ynLDNMLa0tAseWLUN//raMjrOMUL2vbxxMf1Obosr0JT1yBPiHf+BXBmDl0hVXRJUn//7voW8vwEqnPXuAn//c7oP7xjcCxx7L+/btq99PBNxyS3zQeV5Qih0YTj7ZfUwQAD/6UdRn+Z3vBD79aeAP/oAjkCRY/MgRdkowc/lWq6FSSVcSSX0d3Vljerqc/rwx8ISaBrayFVu31mslhUgBfgHN0hCHDwPDw9Hj9FQj+naAswHq2175SuDXv44eUwSRAjyuO+8Evv1t+9iFgK6/Prr9+uv5PkwEQZh9cMcObqtXh8+4UuHE33KMFInSryUZHWcRPKGmhczS+kvU0xMth6hDKWDBAuCRR6LbzWOJmIBPPbXxsS++GH4XM0mR0PMa2Z6BRPOY28bGQtdGmaiuuor3Dw7Wm6OAkGDN7PhyXLVan95lFmDuEmqzJQsmJ4E//uOwXEN3N4uu4+Oca0jseYK0gd2nnMJFmPRyECb0/rMg0qOPjhJ/MwgC4C1vieaHqlSYcA4fZiLSiz4Boagrx151FYu9W7dG8wPbiB+orxlLxNcwi0nlgXaXvHAtXotobVMmpfHtNLW3tpSezeYvMs8RpZBLg7tiBfvmZq0MyqpP834GBupNK3FteDh85ja3TMCdoV803+0wy+TkGwyfisWAWWlbgpFNCPf8x3/k9uY3c2RNd3d4jKTYdM36cTjnHM4aGARhus6bb7Z74pxwAntImUHgWSCrPs1n8L3vhUHladDfH6YbFVQqvK6/++4wGumii9iT6/77+dpnnNEesbeIaBsXBRfR2spRdbucq6CwjXsKZxUu20w5Q+GeutOELaJmNrRFi5IdV6mwuWbt2qhvsS0wPM7vWHcuyYuzFsBRFTXDCXLCmjVraPfu3e252EUXMZcUdHVxvKJZhPeNb4xyhKEh4MYbw/1SdHh0tF4JFIf164F//mf+vm0b8PnP16dVmUsYGAhTuADs/yw5fFev5nWnFHfetYslD9u7KwolSQ1z1135cNgc1qhKqfuJaI11p4uCi2htdXiYmLBXUzNhGvL1dZQePeNaU7maxMomLRlR9ibOICecUL8vCIhe/vL64/WCyXpkjXmu+dvm79vhfr5EFMtRCydOvWVOqI3+HFvVa1sftvhWs3xgWtFX4lWLjj1tV7PVprERXtpnaLpgShC7Tqxpi0oVhDhCnb3KJKno/YlP1OeNFWzcyOLupz7lFpH6+1mBcdlloSIDCE0DlQqLzWYqkyBgcc6VHkVSvLzwQqt32j647iUJ9uypL8moFHDccc2PpauLPbZkXEEAnHYa/5dnnhlmZDx8OFT+SBbCssFFwUW0TDmqGWZmhjwlRaMIGTNTnplbVufalUqYPUGv4F2WFpcVMcsmz8v2fJYsiSaT05cvZtFnPaGa3ocrY2HBwJz09TWrqd15J7vi6YWEGykBhCuLb6/JdeMK50qgeX8/FxqWymT33ssze9JCwwAnE3viiWTHLllSH6idFeRVzxt/8iecp/eFF9hPWseJJ7KTB1HoLAEwV/3rv44mnxsd5RzML3956AstxapKhtlLqHo1tTvv5D/p4MFoRWubuGsm3hZCP3iQ+3rXu+yEbhL1hg287Yorog7zeuLupHjyyeRVxOM8msoEyfw4MgJ8/ethhbp77+Vlg0wYeknL1avD86Vq3KFDfLw49ZcxuwMwi0VfgSsDgCtZWVy2B2k25dPwcDSOcnjYXgYiT9FR13i2s2V5TVPklWyCutbXzMAora/PHZKYtPBxgcCcVCYJhLNeeinwpS+xA70UGTJnVtPjZM8eu6+uzmEnJ7ldc004y0tOXpN7BgHwjneEfSrFZStOPZXts+vXt6awWbmyPaKpjr4+4D3vab2fRYs4eEHITnDoEHDgQJRzfu97duli1y72HpucjCr7RMIRKSlNoahOKS7louAiWlvsqGnSp0jJCdfsL7bBgYFo6k/xXrIVTHKlaHH5Eadpjeqw5sFJzayNeVzDlpU/7jkNDdnLYqT1Jmpzvl/MWTtqMxCCGRuLZl7Qk0Lr+ZRsxKLnXhLxy0xSNjDAL6Ce8NqsaeObPeBBtOeucyQbhl7CwrR7i+NKHNqcYtQTajMwPZL0/L5xESFDQ2Ef+rpVzDNxL5dMEO3Mf5Rna9X8tGKFPQWLSCYykQphynf9unL88LDblONCB3HU3LW+Sqm3A/g8OGv+V4no7/O+ZiyS+GhOTgK33hrd9md/xusx/TxJIaJj4cKwPODVV/NrAfDaM05rK2vm8fHisjVkDbn3ZnHyycBPfsLr1CBgre4FF4T1Y8bHw/9Sfvf2cqlHedbT0xx1A0Rz/h450jhdiy2jR1FwUXAWDUycTwI4EUA3gIcArHAdnztHTTpDmsmyKhV7xkFbVn2JpjG5w+mnuznlCSe4s+p3UnvlK7PpZ948Fl2POca+X5wZhof5efT1hRp7SR4Xp8GNS7TmqnzQAUBRoi+AfgB3aL83A9jsOj53Qk265kgSYiXmHl3MEhOAzVwR54mke9h0irdSuxVTJqHqpibbMxEx15Ya1KxrozdRNHUYkRLFE2reou9iAP+l/X4GwBv0A5RSG8EV3bB06dJ8R5O03EWcyKObcKQsozhQSMKtSiUqvtrEXj0PUJK0I+1GM44ZWUHISv9tO0ZKY9x2G/DFL0YdUb78ZXZumZ4O/4vubnagaLcIm0FIXK7xqEqpvwDwdiJ6X+33XwJ4AxFdbDu+LfGorT400wNpdJSzGBw4wOvTDRv45bnySn6ZqlXOEqHnEporOPpo4De/yWbykfUlUL+Gd8Wg6vHCpjeZ+R7ov4Hs1qWN3FAjt1FQPCo6TfRNApud1VbyQs9EoIuJXV1hPU8Rm13VueNEvxNO6BwxuFNatcqi66pV9c8rzuPM9h/H1VU1AytaQQoTDwoUfe8DcJJS6rUAngVwLoD35nzN5iGzn1Rku+oq9vaRGbFSAc4+m0UtSfK8alVUTJSMe8JFdu5krpIGRKFv61yEcE6TE09Pc/Jy3Rlfjnf58tokKNMDbefO8LfuASX5kFrhqmmrC7rgouCsGriy2+Ng7e/H444tnKOaiiCZwdNwNtEq6vbTrIo7zQUOK1XdhobqvcJcoW9BYPfldWn528lR5XoJFFgo0o5KRLcBuC3v62SCwcGoImh6mu2pRLGn1YEoup5KYhd1Ja8WVCpsyzXripYZtnuuVPiZd3dzjdnxcS6ZceyxzE1F8ab7RPf01NevBezZAiX00FQWrlyZzxoViA+HTAoXBRfRcuWoSXPmiNeRraZpoygRfX/aIOtG3HJoKH+/2iLbq18dzWkskohwNluWRrG3ugLB2+xZ1CowJwPHdaTQvGHjxnB27e0NYxq7u4HXvz6aKU/nCEEQneVleyNOaR7vws03N+6j3bDVwGkWzz/PnkiyngsCXosShTG2ptmLiLnlgw9yhItNg2szs7Wi+W93hnyBi4KLaLlx1DjNWyNOq+8fHq7ncpLfd3jYbmRvV/qSIlrazItJ+nN5aI2NcTOfpawrbevNpJXiXf+37V3IkUNjzjvlJ1EqdHe7iw7r/dgyEur7bC9gXKRHV1eYDjOuBmo7W9IxKMUia5bXlUnUnBQl2kVyUEmIoS4uVypsNoszhzSatOMIMedomjhCnRuir8vTSFc2TE9zdbHrrqsXjXVx5+673aLP6acD993Hr5aOY48NRToT7343ZyvcuZPTvAB2Z/92Ium1ibimaxI0WgIoxUqh3l6+f32JIZicZMeFq64KHRgA4I47WDxWis1l99zjNofEmUtcyqck5+YNFwUX0Rpy1KyTKNtKI6SdZfVjXJxIYlFPPbV+37x5UdFtZGRumGFMziwmGZePrq2Ku0Dnsl1djZ32Xe9R0v86J19hzArRN6/1gasamF4TplHAsa10vSnSuXIomcelFX27ujgyJ2sn+vnz20usjSri9fW5xU6b/bvZ96PAjPpxhFoe0beRWNIM9Ex1rkrWUgUc4Nfg2mvrbXYiEv3ud/brBAH7Asc5uosvqytmNQiApUtZtFu3Drj9dq5k/uMfAw89lPLGE+AXv8i+TxeCoHFFvOOPB/butYudg4NRjfvMTPPvRxY2zxxQnuRmZrKqLNYH5hp16VL+k/Tthw+zs73g4EF7mca3vQ1Ytqx+e6UCXHIJux3GvYhx+wDgwx/mIOobb2Tz0R13AI8+Wu9OV0a84x28Po1L7LZuXZikzmZe05PQVavlTAkag/IQqp5NsNUKXZJZTmqdmsQvk4KURDATWn/1q2FWOsl4d9NNwL594TFKcWbBe+4BjjkmWU7euGP27AnHvWMHTxiNiDtrHHMMZ0zMEtUqh57ddRdw1ll2YpWk2f39wObNdg8kUYApxf7YO3awUsrMHphXVsG8sxW6ZOIiWtuyELqyAJrHrV1rXzNKgSc5ppH/qW7ba9b8IsWPbCUaAK6GdvTR5VJESWZGgV7+wzw2rgyFWb5CP19PNpf0v2/1nWqyP8wKZVJWSGMLc2lzu7tD4nMRnthm9ZfC5hTRKOmZtOXL4zMelK1J4WIznadLodaodpAoBW1uhvIfm/WITAViWtgUji3YV+MItTzKpKyQxham2197e9lVDWBl0o4dwEsv8esQBMAppwCPP86/KxWun3LrraHya2qK18CmjZKI12iuwryCJ5/k/UqFInnc8Z0MpYA/+iPgc5/j59PTA5x3Hj8nqQ9jlvD45jeBb3+bk6jrDvTiMrhpU/h/6KhU6pc0hw6FiruZmeaUk7pbaqUSJl3Pyb469wjV5fzg8uG0aQG3bYtmGOzqArZv5+96BMYdd9RPCF1dUe1vdzd/NiI62a9UMiIVYpZzXv96nmjM0odFIAiA738/JETx5dUn0NFR1mzrdXuOHOEMg+IH3NUVZiJ0rdkrlfC7OfFu2hQ6SvT2prsHXeEIsMVg6dLcfIDnFqHqxLh5c3R7I6d9SQF64EDIKQVmFTGByxtK+pHULTYtsgsi1Llg47ZEPIbXvY6v++CDyQPTkwYVJIVSHK53yy3htkqFn4P+LFauZClEPw6IVsI7dIiPX73a7U11+HCUW5oTr+RV2rSJr5mUyEzJzBZmlyHmDqHGEWMjG+3kJLv52Uwh1Sq/KK7oDX1CAKIvihy3erXbxdBEHOEEQbhPP0Yp4LOfbWyrtCFr8fqss1jLq7v99fczwc2bxxr1mRmu5XP22cw1Dx/mbSL2m9rxqSn3c9FFXxNTU2G8cFrxt905f12L1yJarsqkVpyxTQdxUVKIu5qpSZQM7rrG0YR+zZ4ezgM0b15rChq99EanNnEXXL+eixLHacHlGff1hYonKfuhB0ZMTNizaJipXuP+gw6IV4VXJiFeiZR2dgwCjlvdsKG+hur27SFnFNHM1p/pbLFnT+v3mDX3awZHHw28+KJ7P1HyLBVEzE3vu4+9kkQKsmVjuOSSUDnV1cXLkUbiaCdlwm+AuUOojf6URtXDr702DGj+8pfDsgp794bro5kZThuSBIODYUKuZqAU8N73Ajfc0HwfeWD+/HhCTQJdEQYwwcqkJ//f4CD/vvZaXpJ0d0ejatKIsB1MoL+Hi9UW0QpPbiZIkjJUoDuE6873IprFGdX1IlJp28gI9xEX61pEGxpq3qlDSizankl3dxhlJN/jop5KCOTl8ADgHwA8CuAHAG4EcExt+zIAvwOwp9b+MUl/HUGoadYtkvXBzFqnl25Mkm1Asus1Itq1a7np67UlS4onTmldXXxPrVSksz2DZcvqo5j045TqiDVmq4gj1FZF32+BE2ofUUp9Gpxg+yO1fU8S0aoW+28/zDWnSxOoa5Gr1TDyRjcDbN0ar002xfEdOzh4nSe7ejz8MPCJT4T2v06r+rZ8efj9jDPCqu1pYLv3fftYIyw6hkqFjxObcBCw3bUMImyTaIlQiUiv03AvgL9obTgdgN7e6JpTN4TrZhddGSTHmy+KKLDEoL9rV+i0ra+V9fOuu87uYQNwcMBFF4VjEyjFSpysEo01i0cfdZuxWsWePe5JjYgzZKSxg5YNLlabtgG4FcD/olD0/Q2ABwF8B8CbYs7bCGA3gN1Lly7NW7poDHPNKesem0O3HgjuMsWYYqCUvDDFYSmTsX693WfVFA/1BN+SGaJo0beVdtJJ9elW9f2mmWVsrP6ZxIm/BQaEJwVaEX2VUncCWGjZ9XEiurl2zMcBHAHwtdq+5wAsJaIppdQZAG5SSp1GRL+yTBTbAGwDuEhUwvklPwwOsu+pacYxnSKmpjhGUkwNUuLCnNHFqC7QS16IOLx3L3DhhcnHSMTi3nvfC5x2Wsjhs/YickHSdsq1Gvkfz5sXFouSMLbp6TBYfmaGA+B1yL0EAcfiipZdcPvt0d/687R5lSVNF9uhaBiPSkRnEtH/sDQh0r8C8KcA1tdmBRDRQSKaqn2/H1zO4uTc7sKGZuMDZd34/vezo7jADFzv7eVgcIErWFnOE3R1cdNjYHfuTDdGgF/uG24Ixefe3vjAawBYvDhZ30EQDcTW0d3N5qkLL+T7UIq3nXuuu78XX+Tns3Ej8KEPRa9jI2z9PpTiOFgdtorwMg7bfyB6h+npUO9QNrhYbZIG4O0AHgawwNi+AECl9v1EcIGoYxv1l5nWt1WPk7j0oiI+6Z5OrlxKen+S+1fXCsv3uArZeluxol4kHhiI5hNyNTEViddU3LGLFnE1OVO01NOpShU78R5qdP0gSDZOEYMbpe00KxjEpXo1xeQ4b6UCgRy1vlcB6AHwLcWz4L1ENAxgAMAnlVKHAcwAGCaiX7Z4reRoNb9SXM0SvR/TKdsFl1FdN9ibYV0mlOJM8vPnR1Np2tJqLlvGTvfCrYIA+MIXWNly/vnAAw+wYsuF556r30bEDv179/Lz2LWLxXgid0ROtcr3Jb66cdfU8dRTzLVdzguyPDl4kO/tS18KRWNbFNTUVCiaS7aIssFFwUW0jueotuNc2SEapas005Sa3MsVQN3V1bg6nHBvXeE0MBDaa01ngTxapRJmt1++PN31dCVe3H/UbPW2DlUoYU5meGhVy9fs+UlKJrhSvAiRLlkSLyKaYqlJyOJ04DpGKaLFi6Pbli+v93JylTm09WfbPjAQzYIRBCwuDw2FxZ7lfCkIJVrsZv63VkqXdADmJqEWhSRROvqLW62y543OQZvldvpa2VzHNWpynr5eVoqJzTVpSISQuPa5au/IverpVGTdXq2G/bSaw6gknNOFOEKdO075eUJfFyUpmSBrpTVreL0o2QvFXEEU7V+0o+Z2gZhHZK08OQns3x9mk3Cdp+PAAf4cGWHTh2RMuOceLtXxwgv1616JIJJ76+3lDAz6WpuIj+3pAbZsiXpujY+H9zU9zWtHM35Xhzzn3l77+rVE0TBp4Qm1VdhsdK6XRSfiSoXNFroXDxETlwRJ63bJOGI76ywmJElSrScVf9Ob7AonE5K7uL8/ah8mSu4GuHIlK4HM2jknngi8852hWUSC6/fvT55rSJ6zuE4K8Zs20bJEw6SFi9UW0Uop+qat8CUin628hShgLr+cRdCk60Nd5NRTkibNcGiWgLAFysetiWW9WanwuEdGQpHWFH/Fi0rSekoVPblvl/hrKxsyCyJmdMCvUXNEM+si10sn9r2JiWS1RyXlpY3gXfl/9XNlDKKA0u+plfKPst7s66ufbExttqyrzbW7KxLJdoyMucOVRY3gCTVvpH1JzDQsprE+CUerVMIUJSZ3DgLmbKY/st4WLoz+HhiIjtHmOxxnTjK3iWbXHJfNtGRTWIkTgy1htsl1S65EEsQRql+jZgFbwrJGyoy3vQ346U+BCy6o92M1sWpV/TpxejpMUfKFLwCf/zyHwQG8hrv1Vl5rrlvH5+rlNiqV+rqm3/0u8JGPsLve4CB/6pkWhobC9KdBEHVysGWauPnmaP8DA8CKFfYsjt//Pq9V9TX5zExYWEv3r7Ypm/IoINZpcFFwEa20HFWQtL6mzuVsJQJ19zxZw8VxVglet4m3tnNOPdXOBWW9K9xLRM2uLv6tZ4Y3I4wmJpjDN1rLiliuX1+4p14exMZRkySKm6UctTxFoopCGud+28zuOkZw5Eh9Xl8xXVx2WZhOVIdSUcd+wO5+6AosP+WUaGJqARH389JLnPt3dDRMz7lpEx+zeTObZHp6uI+enlB6GB0NtbgmjhyJJnMTzimVxjdsYPPNy14W9rthQ+PCYCLBjI5mU0CsU+Gi4CJax3HUtDN1Uo5qrsfiHPqJ6jlqX190nWY6UoijvE2ZJCk2zThZUzElaTqlT1PDKvGzuoP7xEToqhgEfC3horaxmE4Q0kfS9f7YGEskrXgzdRDg16gJYa4v0659khjc+/vZ1iiOAcI5XJDyGTp27QJ27+Y4TSDkKFNTUWcAIOTWq1dHnQQk7abslyz1kjXh8OHQiV6cKQYHw4oB11zD47/nHu5n796os0OlEgYCjI+zzXTbtiiX7+qKOkHI80nCEScnOcu92KHj0ubMBrgouIhWKEe1ccM81z5JOEcSM434yKYZn27yMLWnplZWKeasYus0gwlkjWw7z3QZNKvfxSUobwTTRdK21i8Z4M0zCeByXGiHfS5JKlIZl8tEktT4b/M3FiK3OfLr5SPN60v6E125ZIq2pq1TD0hoxWFBvw9RdpUccYTqRV+By0c3b5e0uDQhetylFFd6xSuAr33N3leSimS6vzEQzbZoKr/kmqY5BWCx9YILQrH9mmuiSjJxgTSXDCeeGCYeb6VE4Sz267XCRcFFtMKVSXlyzziuGeeCKB4+uog7MlIf45k0uZdNfAV4u+nkMDJij521ZbQw419NkbyRk4eHF30TIW8ida11k+yzZYSP29fo+iah6zZLCVqXTPxyvvgnN0ombnoRyXE6Ic8yH92sEEeoXvQFsslSZ/NIkm3797u1x3EinIippNkcRVyU83QNbFxyL7n+wYNcglG8gCQKBQivFQTRhGIi/ktRLFftHtd9TE5yyhm5DymFmNSLy8NzVCJKHwFjopHGWA+uTqudTSIuCsfTo1BcXFuiVkw7Zp4ablsiuFniTZQl4DlqA8QFeyeByyOp2dLxOqdJqjC57rowVlMp5lqS9Evndr29Ybxqd3fUjpmXckZ/vuK5tGPH7PfPzRCeUIHWNYguQm+mdLxNDI/LegDUa3KJ2BHg4ovryzysXOm+V70Cu/67VZhi+tVXhxkKgda0v2UQnzMYY0uEqpTaAuD9AJ6vbfoYEd1W27cZwAUApgF8kIjuaOVauaMVM4yL0Jsh/rTeUJIpQQon6Z4/kr0fSEb85iQh3k56tYBmXzbx9BJf35kZ4JxzgL6+5vssQwb8jMaYBUf9HBFdqW9QSq0AcC6A0wAcD+BOpdTJRNRBFXczho0bNUP8acRws6Lcxo1cPkIqb4vDvEn8ekFgm/JKlE4f+AATf7UaOuzrL5u4EwLJJIbBwdDJn4grDaxb1zwHL0N4W0ZjzEv0PQfADUR0EMBPlFJPAOgDkLK+RImQ1eyeRgzXXwKA18CbN3PsqHm+vkbUtcSmg4VefU4IShep9TX44GDo5HDttcDdd9dre81xmHV4ZDJo5pmZk1pvL0c6dZIY3Kr+o4YsCPVipdQGcEW2DxHRfwNYDC7DKHimtq0OSqmN4IpuWLp0aQbDKQhZzu5JOXFvb5ihMM6bSif+/ft5jegyFY2OMvEIkQYBeyHpHFW4tB48bvZlm7gk66BAvJdsHkxJn5NLSdYpYnBGHlQN41GVUncqpX5oaecA+AqAPwCwClzB7TNpB0BE24hoDRGtWbBgQdrTOwdmEalmlSNJMTnJL+b0dLJCvv39YSxp3DinpkLfpCAAzjyTOeX4eDTec3CQCVhQrfIkoNd/NScucYkU4v/wh8O41mafmdzX1FTjWOCiIGNsZeJw2W3SNnBN1B/Wvm8GVyKXfXcA6G/UR+EuhK2inQm2WrH9xo0zjX1T7LeSHylJ5JF57aye2SywyyIvF0IAi7TvfwdelwKsRHoIXEDqtQCeQq26W1wrPaG2E0WH4OkoMvJIR8kzEcYRqiJ9zZASSql/Aou9BGAfgAuJ6Lnavo8DOB9c4HgTEd3u6Ob3WLNmDe3evbvp8cw5dIoNsVVFWp730SnPKAGUUvcT0RrrvlYINWt4QtWQ1QuWtJ9Gx5n7G/1OM768bKFlsLNqiCPUwv179eZF3xqyEmuT9tPoOFtkTFZid6t+1kX1nQPgsxCWDEmyGQrisiQm7cfmEKH3ae7fuTM7DWue2vJ2a+JzhPf17UQkNZI3Eu2S9mMWr5Iq6NKn2c+73sVJzVo04gPIN1PDLMoC4Qm1E5H0BWvkZJG0n0YOEZs31/cj2QWzIIA8093knUqnTfDKpDIjD2VJGRQwJdLkpkGcMslz1DIjD9Gu3eJiWqIrw0SSAzyhlh15iHauPrPmZM0QXRkiZnKAJ1SPZMiDkzVDdBlFo5QNnlA9kiEPTtYM0c0iTW4aeELtZHSS0iQPTtYs0c0STW4aeELtVHSa0iQvTjYHia4ZeELtVHSi0sQTVWHwLoSdik5wf0tTxNkjV3iO2qkoWmnSaaL3HIcn1E5GkaJmJ4recxhe9PWwIy/R24vTTcFzVI8omimnkaZvL043BU+oHiGaKaeRBl6cbhpe9PUIkSZgvRl0gia7pPAc1SNE3n60RWuySwxPqB4hmiGktG6O3mmiKbRaze1fAZxS+3kMgBeIaJVSahmARwA8Vtt3LxENt3ItjzYhDSF55VDb0BKhEtH/lO9Kqc8A+H/a7ieJaFUr/Xu0Cc06/7dbOdRJQQptRiair1JKAXg3gLdk0Z9HG9EKV2xnbOgc595ZaX3fBOBnRPRjbdtrlVIPKqW+o5R6k+tEpdRGpdRupdTu559/3nWYR15oRdMra1q9eFReyFsj3eFoyFGVUncCWGjZ9XEiurn2/T0Artf2PQdgKRFNKaXOAHCTUuo0IvqV2QkRbQOwDeDkZmlvwKNFtMoV26UcmqOZHQQNCZWIzozbr5SqAngngDO0cw4COFj7fr9S6kkAJ4NrqHrEod3rsLKYTMoyzpyQxRr1TACPEtEzskEptQDAL4loWil1IoCTwBXdPOJQ1DqsLCaTsowzB2SxRj0XUbEXAAYA/EAptQfA/wUwTES/zOBasxtzfB3m4UbLHJWI/sqybSeAna32Pecwx9dhHm54z6ROwhxfh3m44Qm10zCH12EebvjoGQ+PEsATqodHCeAJ1cOjBPCE6uFRAnhC9fAoATyheniUAJ5QPTxKAE+oHung8/IWAu/w4JEcczx4u0h4juqRHD5ooDB4QvVIDp+XtzB40dcjOXzQQGHwhOqRDj5ooBB40dfDowTwhOrhUQJ4QvXwKAE8oXp4lACeUD08SgBPqB4eJYAi6pzk9Eqp5wE8XfQ4AMwH8IuiB9FGzKX77eR7PYGIFth2dBShdgqUUruJaE3R42gX5tL9lvVevejr4VECeEL18CgBPKHasa3oAbQZc+l+S3mvfo3q4VECeI7q4VECeEL18CgBPKFqUEptUUo9q5TaU2tna/s2K6WeUEo9ppR6W5HjzApKqbfX7ucJpdRHix5P1lBK7VNK7a39l7tr245VSn1LKfXj2uerih5nEvg1qgal1BYALxLRlcb2FeAasH0AjgdwJ4CTiWi67YPMCEqpCoDHAZwF4BkA9wF4DxE9XOjAMoRSah+ANUT0C23bFeAi239fm5xeRUQfKWqMSeE5ajKcA+AGIjpIRD8B8ASYaMuMPgBPENFTRHQIwA3g+5ztOAfAdbXv1wEYKm4oyeEJtR4XK6V+oJS6RhOLFgP4L+2YZ2rbyozZeE8mCMA3lVL3K6U21rYdR0TP1b4fAHBcMUNLhzmXikUpdSeAhZZdHwfwFQCXgv/gSwF8BsD57RudR8Z4IxE9q5R6NYBvKaUe1XcSESmlSrH2m3OESkRnJjlOKXU1gG/Ufj4L4DXa7iW1bWXGbLynCIjo2drnz5VSN4LF/Z8ppRYR0XNKqUUAfl7oIBPCi74aan+c4M8B/LD2/RYA5yqlepRSrwVwEoBd7R5fxrgPwElKqdcqpboBnAu+z1kBpdQrlFKvlO8A1oL/z1sAnFc77DwANxczwnSYcxy1Aa5QSq0Ci777AFwIAET0I6XU1wE8DOAIgA+UWeMLAER0RCl1MYA7AFQAXENEPyp4WFniOAA3KqUAfs//hYj+Qyl1H4CvK6UuAIdUvrvAMSaGN894eJQAXvT18CgBPKF6eJQAnlA9PEoAT6geHiWAJ1QPjxLAE6qHRwngCdXDowT4/0NGlwOT0nJhAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "my_cluster = sim_tp.stellar.clusters.cluster(mass=1000.0, # [Msun]\n", " distance=8000, # [pc]\n", @@ -78,33 +57,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "numerous-shower", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'Wavelength [Angstrom]')" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAE9CAYAAAAPl3rnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACfkUlEQVR4nO2dd5hdVdX/v+vemUkjCWmENFIgCST0GXpRCCUUDSoIiIqCAq9ifxVQQV6Un6Cv8toRAUEUabZIMTSRHlJIIAECIQSSEEhCSEJInbnr98cpd5999j7l1nPvrM/z3GfO3Wefdfbt3/metdcmZoYgCIIgCIIgNBO5eg9AEARBEARBECqNiFxBEARBEASh6RCRKwiCIAiCIDQdInIFQRAEQRCEpkNEriAIgiAIgtB0iMgVBEEQBEEQmo6Weg9ApY168N7tewXaXp6zBBPaxwW2X56zBAD8bW+/3l9iSAyJ0X1izJkzZw0zD4GQmMGDB/OYMWPqPQxBEISSiP3eZ+bM3Nrb21nnGDo11X0TEkNiSIzmjwFgNmfge6yRbqbvXEEQhEYh7ns/c+kKx+ZOs7ab9j1QuFNiSAyJITEEQRAEIUiUAq71rS8GGJV6lOuj7juGTrX2lRgSQ2I0dwyIkytOriAI3Yq47/1M5eTqOXkeumPjuTp6e5SzIzEkhsRo7hhEZI0jCIIgdD/IEcLZoKOjgwfMHQsg+CNm+2GzYeovMSSGxGjuGEQ0h5k7Ep1MAOB8586ePbvewxAEQSiJ2O/9KJu31jf10pl3KbKcCSwSQ2JIjO4TA5KuIOkKgiB0K+K+9zM38Qxw3Ju0k0r0iSkSQ2JIjO4ZQxAEQRCABlgMQr90+UDhztQ/ahJDYkiM7hlDEARB6MZE2by1vrW3txsvY6ZtkxgSQ2J0vxiQdAVJVxAEoVsR972fqYln/WggH0RT/PummdVRlzKT1NKUGBJDYjRnjAf5Lpl4lhKZeCYIQiPTUBPP9Dq5qmMTNxklyWQViSExJEbzxoA4ueLkZoT5y97lt9ZvrvcwBKHpifver/uXrHqzpSt4xF26jLrsKTEkhsRo7hgickXkZoF172/j0RfdzVN+8ki9hyIITU/c935mJ56ZZl2bUC9h2grHSwyJITG6VwxBKJWX334Ptzy1tKRj//7sClxx9wsAgMWrNmL95u0VHJkgCKmJUsC1vnmuQpSjY+IYCi8LKjEkhsToXjEgTq44uRVg10vu4dEX3c3MzCvXbea5r69lZuZVG7bwghXr+L7n3+Szb5zJ9y98yz9m87ZO/p/pC3n0RXf7t10vuYfP+t3TvK2zqy6PQxC6A3Hf+5lzcm2lgtT7x+ZOC+1PUm5IYkgMidHcMRoFIppKRIuIaDERXWzY34OIbnf3zySiMW77GCLaTETz3Nu1yjHtRPS8e8zPSdY5LonOgjMZu7OrgA/+77/xkV8/CQA44MoHcdLPH8cFf5yLRxatxuf/MBuX/PU5/HP+m9j90n/hxide82OcsOfO+H8f3QuPL16D701fCOe3WBCEWpOp6grqTF/vh8x2KdP7MUwya1tiSAyJ0fwxGmVZXyLKA3gZwLEAlgOYBeBMZn5B6fMFAHsz8wVEdAaAjzDz6a7YvZuZ9zTEfQbAlwHMBHAvgJ8z831RY5HqCmHGXHwPAGDRD6Zi4nf/BQBYetVJfnsS7rrgEHSMGYir//USfvPIq/juSXvgc0eMq8p4BaE709DVFZjtE1SSzMqWGBJDYnSfGGiQdAUAhwCYody/BMAlWp8ZAA5xt1sArAFAAMYAWGCIOQzAS8r9MwH8Nm4skq4Qxks3eH/rdn9bbY+7vb2hWFWhq6vA5/1hFo+75B6ptiAIVSDue7+lCsK6ZCa0R/+nm8QFirt0KTEkhsRozhgNxAgAy5T7ywEcZOvDzJ1EtB7AIHffWCJ6FsAGAN9l5sfc/su1mCOqMPZuQ1eheJVz9XtbY/vfft7BeHzxGuzUt6fflssRLj5hD8xY+DbumrMcXzxqt6qMVRAEM5nMybW1m/aZfvQkhsSQGN0zRjdgJYBdmHk/AF8HcCsR9UsTgIjOI6LZRDR79erVVRlkM6CK3E/dMDO2/0HjBuEbx00MtY8d3AcHjxuI22ctQ6GQnfRAQegWRNm8tb6Z0hWYk9fPNM3WlhgSQ2J0jxjoBukKhliPAOiApCtUDC/tYPV7WxKlJ0z87r085uK7I2P+/dnlPPqiu/nxV1bX6FEIQvcg7nu/IdIVoiagRPWTGBJDYnSfGA1UTGAWgPFENBbACgBnAPiE1mc6gLMBPAXgVAAPMzMT0RAAa5m5i4jGARgPYAkzryWiDUR0MJyJZ58G8IsaPZ6mpCvCdb3j/EPw8d8+BQCY/d1jvX8srBw/eWf079WK22Ytw2G7Da7oOAVBsJO56goD5o4FEPwRs/2w2TD1lxgSQ2I0d4xGqa4AAER0IoD/A5AHcCMzX0lEV8BxJaYTUU8AtwDYD8BaAGcw8xIi+hiAKwBsB1AA8D1m/qcbswPATQB6AbgPwJc45gteqiuE8aooPHHx0TjsqoeNfV774YkYe8m9AJzKC0m4fPpC3DrzDTz97SkY2KetMoMVhG5OQ1VXUC+dJZ2FneRypsSQGBKj+WOgQdIVsnSTdIUwXhrC62veD6UmvPHO+/zGO+8zM/M4ZdGIJLy4cj2Pvuhuvv6xJdUauiB0O+K+9zM38QwoFoVPe4zEkBgSQ2IIQiXoLBRCbaMG9saogb0BAE9cdDTu/tLhiePtvnM/7DtqR/z5mTdi0xsEQagMmRS5KvqlS6+UkMSQGBJDYghCtYjKyQWAnfv3xJ4j+qeK+elDRmPxqo2YsfCtcoYmCEJSomzeJDcAowD8G8ALABYC+IrbPhDAAwBecf8OiIvV3t5uvIyZtk1iSAyJ0f1iQNIVJF2hDN7fup2Zi+kKXnqBeiuXzq4CH/2//+Zjf/oId3YVyo4nCN2duO/9sieeEdEwAMOYeS4R9QUwB8ApAD4DZxbwVe7a7AOY+aKoWP1oIB9EU/z7ppnVUZcyk9TSlBgSQ2I0Z4wH+a6GmXiWFWTimcMNj7+G79/9Ap75zhQceOVDAIC7v3Q4Tv7F436fXQb2xqPfOqrsc9393Ju48NZn8X+n74tT9htRdjxB6M7UfOIZgH8AOBbAIjjiF3BqOC6KO1avk6s6NnGTUZJMVpEYEkNiNG8MiJMrTq6FE3/2KJ970yzr/oP/34M8+qK7efGq93zX9mO/fiLg4m7v7KrIWLq6Cjz1/x7lD/zoYd5WoZiC0F2J+96vtMAdA+ANAP0ArFPaSb1vu9nSFTziLl1GXfaUGBJDYjR3DBG5InJtxKUbtH//fh590d38ytvvGRd8uPKeFyo6ngcWvsWjL7qbb3vm9YrGFYTuRtz3fsUmnhHRDgD+AuCrzLxBc4sZgDEvwrbEpGnWtQn1EqatcLzEkBgSo3vFEAQTb2/YgmVrN4XavUlmtslmlV5nZMoeO2HSsH74w1OvVzawIAgBKrIYBBG1ArgbzlKVP3XbFgH4IDOvdPN2H2Hm8MLeCl5+WNoyQt6PoGk2tsSQGBKje8RopMUgskJ3ycn1Fnjw0Bdw2PvyGdiwpRP3fPlwnPTzx6HzhQ/uim9N3b2iY7r5yaX43vSFuO8rR2CPYf0qGlsQugtx3/tlO7nkrKV5A4AXPYHr4i1LCffvP5LEs5UKUu8fmzsttD9JuSGJITEkRnPHEIS03DVnOTZs6QRgd3JzVVgy+sP7DEdrnvCXOcsrHlsQBIdKVFc4HMBjAJ6Hs8wkAHwbzvrpdwDYBcDrAD7OzGujYqmugsnl0dvjXB+JITEkRveJIU5uerqrkzvvsmOxY29nad39rrgf727aDgD46xcOxUd//WTo+C8fvRu+flzkhciSuOCWOZj9+lo8dckUtOYzX7ZeEDJHQy3rq1dXYLZPUEkyK1tiSAyJ0X1iQCaeycQzC/pEsi/dOtffd+SPHvbbn3ntHZ7yk0dC/a95YFFVxuVNQHvwhbeqEl8Qmp247/2WmsntBExoHxe5P4kLFHfpUmJIDInRnDEEQWft+9tw+6xlofaNWzuL21uK251djIIhZaEa6QoA8IGJQzCoTxvumrMcU/YYWpVzCEJ3JlMiF7BPPNHz8DxsfesZw9bHtC/ufpIYtnGo/Rv9OZUYEiNJDEHwKBQYX7ntWTz2yprQvo1bO/G7R5fgyntfDLR3FRgFQwpfrjoaF635HE7ZbwT+8NRSrNm4FYN36FGdEwlCN6Ui1RUqRT8ayBsMabtRDo66z5bLV80YSURprann8yExJEa9YsiKZ+lp5pzcC2+di7ufW5nqmJs+ewAu/ccCLFu7OdD+rakT8YUP7lbJ4fm8/PZ7OOFnj2FY/57439P2wcHjBgFwUgmpSg6yIDQLcTm5mXJybekKURNQovpVOoZ6XNkk/fIq4Z8QmzusPrasPKcSQ2JUKoYIAkElrcAFXCe3EG6vVroCAEwY2hd3nH8wvn7HfJz5u6fx4X2G452N2zBv2TocO2kofvrxfeS9LQglkiknt6OjgwfMHQvAfPk/6eVJU/9SY6QiC19EJbyeSZ6TSj6nEkNiVCOGVFdIT6M7ub9+ZDF2GdgbJ+89PLRPr6iQhN9+qh2XT1+Ileu3BNq/feLuOO/IXUseZxI2bevED+99CbfPXobdhuyAof164N+LVuObx0/EF4+qjossCI1O1evkVpoHCnfigUKxVqZ3SVK/tOlhEqOlxjg2d5p/i4TIfDP2zVX3lnRsEQJcfdy256Cer4vEkBhJYwjdix/9axEuvPXZisWz5+RW38Do3daC75+yJxZ9fyru/coRuPEzB+DD+wzH/96/CA+9+HbVzy8IzUjmRC4QnYcXdUwpMdQfVCtxYjGNCDWFz1HkLebg5EK4AuK3Vq+LxJAYpcYQuh/PvvFuReJ0FhhdhnSFWqYLeOciIlz9sb0xeXg/fOW2eVi86r2ajUEQmoVMilwV/dKl6vSUGsP7m1jYBtrjhWycaE0lYkuIF4pZivi1YHreKvW6SAyJUekYQvPSqajRp5a8U5GYX/7zs3jn/a2h9nydMtF6teVx3ac60KMlh+/8bUF9BiEIDUwmc3JNk03StNn2xRKVcmA7JE1tmYTObkmwwX6wdo14zW1xErxPop77uH1J2ySGxLC1SXWF9DRyTu6772/Dft9/AADw8Y6R+NGp+wT2p8nJ3Wdkf8xfvt66/4ppk/HpQ8aUNM5KcP1jS/CDe17EPy88HHuN7F+3cQhC1ojLyc2UyO1HA/kgmuLfT/Ljpu/XiXV/UgrbROkDpZBULEcJ1DgihHBq4RvzvjG557b9Xp9SXluJITG8/SJy09PIIvf1d97HB378CADgoLEDcfv5hwT2pxG5132qHefdMse6//vTJuNTdRS5G7Zsx6E/fBhT9tgJPztjv7qNQxCyRsNOPNPFqe1ypT5JRY2h7g8Rl4oQaE6RBqCTo2S3pCSNZ4obkbYQmfJgeowx6Q1qHq9HJV9biSExTDGE7sGq97Zg6TubAABtLTmseq+YYrBgxXrMtKQvDOrTZmxvictHqHPlnH49W3HGAaNw93Mr8ea6zfEHCIIAIGMid0L7uJAoUrejfszU/bq4ChAlbgNNCcWeR0LxSkRVvyUaV9TjihO+caLXQqVeW4khMUwxhO7DgVc+hLNvfAYAsGOvVmzrLF5tOvkXj+P0654OHTPrO8dgzqXHGuP1aYsuGd9Wr6Rchc8cNgYAcPOTS+s6DkFoJDIlclVsro2O/mNoJYG4jRW2KiWKWSu5XGk340NNKILTCF/Dc2QUvepzndDhLeW1rcT7Q2I0b4ysQ0RTiWgRES0moosN+3sQ0e3u/plENEbbvwsRbSSi/1balhLR80Q0j4gaMwehBPr3asWKdZvx75dWRfbr1Za37hu0QxtmfecY7NyvZ6D9mtP3wflHjsNH9htZkbGWw8gBvXHCnjvj1mfewIYt2+s9HEFoCDKVk+vlh6W9/Bjr4pjEbeCupSyYjiWtILa8jEWM1hzTUj4K1veCKV/XkKdrzOvV+1nOYXu9vddW3V/q+0NiNHeMRlkMgojyAF4GcCyA5QBmATiTmV9Q+nwBwN7MfAERnQHgI8x8urL/LgAMYCYz/6/bthRABzOvSTqWRs3JVfNt20cPwJzXnRJiHaMHYPbr5nJiL31/Knq25o25ug9/4wMYN2QHfPDH//bTIADH/R3St0eFR186zy1fh2m/egK7DtkB/3f6vthzhExCE7o3DZeTG5d/520nujypu4kWVzK0XxW4FrfWnh6QwG2NWrCh0re4sSnjs7q+Jrc3QXqD8Tm1jE11ePXX1iSC0r4/JEb3iNEgHAhgMTMvYeZtAG4DME3rMw3Aze72XQCmkPuBJKJTALwGYGFthptterYWv8N0gTtl95387Rb3O+ncw8eGYrS434NtLTmtvf5pCip7j9wRt5xzEN7bsh0f+fUTuPKeF3DTE6/h9llvYG6FagULQjOROZGr/+jp7apzEyl0SxG3KqUKW30MSWvQlpquECeqk4jgiDiVEr2hPurYDHhiRhcwpbw/JEb3idEgjACwTLm/3G0z9mHmTgDrAQwioh0AXATgfwxxGcD9RDSHiM6r+KgzStRqZIfsOsjfzrvfQ5eePCkcw/1K0kVuPgO5uDqHjx+Mf33lSBw7aSh+99hruPyfL+CivzyPj/3mSTy5OLGJLwjdgkyJ3JfnLPG3HyjYZ1mr2yGha3Jv1d2migMqmrg157JaRGWcmE2ZW1syaYRwlAivlOhFjOBNmMOrC59S3h8So3ljdBMuB3ANM2807DucmfcHcAKALxLRkaYARHQeEc0motmrV6+u4lBrQ5Tb2poPXqmy4QlgtT8AtGYl1UxjQJ82/Pqsdrx4xVTMvfRYPPatozB2cB98/Y75WLdpW72HJwiZIXpKaY2Z0D4ucr/3w6Y7Oz4RubeJxG0glEWk6kQ5sxHUcplIFT/v1ja+QsH8mJjDxxQKocfBzMHnssDB55oLgdeC1f2snduQv2tydz3094etTxQSo3FjNBArAIxS7o9020x9lhNRC4D+AN4BcBCAU4noRwB2BFAgoi3M/EtmXgEAzLyKiP4GJy3iUf3kzHwdgOsAJye3kg+sHuQjRG5saTAthi5qo2JngV5tefRqy2Ngnzb8/Iz98JFfP4FL/vo8fn3W/nX7jRGELJEpkQvYRYzu6oQoVeCWIm5TCttEXzbV/DJVJoRFjYVNQhYwC98Eoje94A3u88+piV3T629z9Wzvpbj3mMRozBgNwiwA44loLBwxewaAT2h9pgM4G8BTAE4F8DA7/6Ee4XUgossBbGTmXxJRHwA5Zn7P3T4OwBVVfyQZYHuXXadv2Z5sJci8+12ji+Ks5eRGseeI/vjGcRNx1X0v4c45y/HxjlHxBwlCk5MpkfvynCXYwMGZviYHJ9LBjUpPiHBvjXm2Ognd3ehSYSm+NMtZBlitahB3TlcEm8YdKXyDHUP9SOvD6u4Iwcv6PihxUrq7JufflAsqMZojRiPAzJ1EdCGAGQDyAG5k5oVEdAWA2cw8HcANAG4hosUA1sIRwlEMBfA39zPcAuBWZv5X1R5Ehtja2WXdt1pZJCIKz7Fd/m5woYVcA4lcADjviHH4z6LVuHz6Qhw4ZiDGDO5T7yEJQl3JlMi1pStUXODGubdxzm0aYRv1JVmOiI0jaWwu2MdY4OTCN0706i5vhOClXDGWNZ3B4u4mndiko++TGI0Xo5EuzzLzvQDu1douU7a3AIhU7sx8ubK9BMA+lR1l9jlxr53x1vot1v1bttsFsIonZt9YuymmZ7bJ5Qg/+fg+OOFnj+Ert8/DXRccEsozFoTuRObq5A6Y65R3iRS2HhaBmzQ9oVxxa05tsPzQxonOWjsGppq2KoY6uLbjQu8hk+CN2B84Xo2vjYFt+wzv4SjhZBJKaWfrS4zsxWiUOrlZolHr5B7yw4ewtbOAOd89Bh/+5RN4fsV6Y7+5lx6Lr98xD48sWo2lV53kt+u1cl+44nj0bmvBzx58Bdc8+LLfrh7TSNzz3Ep88da5+NLRu+Ebx02s93AEoWo0XJ1cfWa19XJlJQWureKAZX/kymH6uZMuAaw/tmrXzY1b7tey1K+pb6jigl6VQR9DRMWGQGxLhYbA+EyvF4JVGXRs7zHbpW+J0TgxhO4BM3DMHjuBiHD+B+wTlgf2acMNZx+AxVeeEBnPK0M2aXi/io6zXpy09zCc1j4Sv/z3YvzhqaX1Ho4g1I3MiVwgOscyFUkFbuCYEsStfs6oBSUCKRQxQtQUs9Rb3DkDdXMTCl/LYwuXGNNKlyUQvKHnVzlvoByZqRSZhknslvIekxiNEUNofrqY/Tzak/cejrmXHmvtm88RWmIu2Xux+kQs/dtoXDFtT0zZfSgu+8dC/L97X0Qh7uqdIDQhmRS5Kqqz45PExU0rcE3urXJMpLhNulJalJhNIlBNxLnCSeLbViSLE74JRG9iwavts7q76mOBxd21PMdRzq7ax/iei0FiZDOG0Jx0FThQ3mtA79ZUx3/y4F0C973qCr17ZGqaSln0asvjt59qx6cPGY3rHl2CL/35WazftL3ewxKEmpI5kVtqJYWyBa7argncQCyTuNX324StflyadIao1AKdNMfbxLptsYYo4RsjeiMFbyh2CncXFrGrPv8KJqGk536aJrDFpdFIjPrHELoHXQX2hSmgfU8n4Aen7BXIt/Umnk0c2hfD+veszCAzQD5H+J8PT8Z3TtwD9y5YicOufhg/+tdLeGdjsqoTgtDoZErkeiue2Ry3ANUSuEr/kMBVz2ESt2rMKGGrEiNc9XzXSt+sY4hLU4gTvabHXIrgTeLuGlIZQq9TjLNryvu0XTZXRZmpv8SoTwyhOXnoxbcx5uJ7sOq9YhWFQoGrUt6rV1seT10ypeJx6wkR4fNHjsO9Xz4CH5g4BL/5z6s44WePYf1mcXWF5idTIhcoTj6JTVPwmqokcANxTKJJ3+fFixO2FkEbKUL1+JW4xZw3UgAncXvjjkkiePXnNIW7a8zbNb1GCE5SM73vTE6j7X0qMeobQ2g+fv/EUgDASyvf89u6OOjkAsD4nXao5bAajj2G9cOvPrE/7rrgEKzZuBXXPPBy/EGC0OBkSuROaB9nd3AtaQrGtkoKXFv8JOJW7x8hakOxIoSpP+ZSbknO454rsfBVH3MS0av3twneUt1d7TVIKnaBaMHkCS1dcKn91T4So7YxhOZke5dTLlBdjUzPyQWAb5+4h7998t7DcO0n9y/5nMdPHorWhEsCNxrtowfizAN3wS1Pv45Fb70Xf4AgNDCZErkqSX60QuXCgJIFrtUZdE5kjJ9Y3CrjiRW1gceSQKyqVEocR8QyCt840avHs/VVnzOb4NWfd5O7a3KQkVzs6u89XXBF9bW9byVGbWMIzUOnWxXAW9Rg3rJ12NpZwNsbtEUg3I/xZw4dg19+Yn9M3XNYyef87ac68MqVJ5Z8fNb57+Mmom/PFnxv+oJwnfMqs62zgBfe3IC/Pbscd8xahn/MW4E5r79b0zEI3YfMTSWNTVOIc3H9Q9IJ3GJbAnEbNyZDXq31WNMYdUz905D2eNtYCgVjLL2F9cMLoQblXJZ+6kpsysprrK2iFhqzsrKaszKbFyPnxy0uH1xs8x+X+4Vvy9XVJzvp4ipKbEmM6scQmg/fyXU/t4+9vBoA0Kst+PP1gfFDcOVH9sTH9h9Z2wE2IAP6tOEbx03EpX9fgG/cOR9HTdwJB40biJ36Vm/S3ZvrNuOLt87FghXrsb0rLKxnfPVITNy5b6Bt07ZO3Pf8W3hi8RocM2kopk7eueGWWhbqS+ac3KSXHeNc3GJbhQWu6vxFOLch19bkrCZNI4jaV+lb1HkSur6RTq/6vOlpDbYc3jTuriGVIfDapHR2TZPTvPaoPFH9WA+JUd0YQvPhCSIvPWG76+x+70OTAv1yOcJZB41Gz9bmqXVbTT5x4C742P4jMWPBW/jSn5/FgVc+hI/95kk8veSdqpzvhsdfw/PL1+Pcw8fhZ2fsi/u/diQev+go3P2lw9GzNYcbH3/N77txaycu/stzOOAHD+Ibd87HfQvewhf+NBcn/vwxzFj4Vs3dZ6FxyZzIjfzBKsXFLTYWt01OZVKBa+tjS5NIK2xNbaEYVJ2b7bxR4jdO9EIT/OUIXu25jszdVZ7rSohdwD7DP6oagCraohxKiVGZGELz0ek6uV2uuN26vQs9WnIiZssknyP85OP7YP73jsPfv3gYvjV1Ila8uxlnXPc0zr9ltv+8V4It27vwl7nLcfyeO+PiE3bHtH1HYMLQvhg5oDf2HNEfH9t/JP42bwXWuKXNLvvHAtwxexlO3ns47jj/EDx/+XG45vR9sGV7F86/ZQ4+9MvH8fBLb4vYFWLJlMj1SogFMF0eL8XFNbQFhE8xuDlmlMBV4oWcW/W8UcI2jaBVqaSDGyWAk8aJWdI3keDVn78od1d/3qssdnUnMaoagLod5U5KjMrEEJoTLye34Aqazdu70KuJViarNy35HPYdtSO+8MHd8Mg3P4gvH70bZix8G3fNWV6xc9z7/Eqs27QdZx20i3H/OYePxbbOAv749OuYPv9N/HXuCnzp6PG4+tS9ceDYgWjJ5/CR/Ubiwa9/AD8+dW+s37wd59w0G5+9aRY2b+uq2DiF5iNTObnR1RUq4OLaqiiY4pkEbpIKDmp/7Zyhfab7tnwj03hL6WOCOf5Y079DhSTHaTm0Sn/1yEAebyCHNyZ/N1fcT+6mk4tbzNF1G4spKm5b6pxdxTWIchLjqgHYjpMY5cUQmpPtvpPr3N+yvQs9Wyojch+/6Cisfk8WRvDo2ZrH146dgMcWr8HPHnoFp+w3oiKO+Z9mvoFxg/vgkHGDjPt3HbIDjt59J/zfg6+gR0sO++2yI7509G6hfi35HE7rGIVT9huBm59ciivvfRHn3jwL15/dgd5tmZIzQkbIlJObhNQurskJ1p1SJ7A5XhqBa3APjfuiHFS9f5I0BsOl9cTubZK+tj5pHd8IlzfJQg+R7q7SZszbrYSza3iedWfXlDMKmEWc7R86iVF6DKH52K6lK2zeXqiYkztyQG/st8uAisRqFogI3zx+Ilau34I/Pv162fFeXLkBc15/F584aBezueTyucPHAgC2dhbws9P3Q0veLk9a8zl87ohx+Mlp++DpJe/gnJtmYdO2zrLHKjQfmfrX5+U5S3AQjS02RLmEUS5uTJpCsS1GMKcVuKZz2fqYzh/n8sa1x8A5AhWUHKZSnd8oIgophPuaKyUYHd4CK6+Dwd1V3V/P3TVVZTBUZEji7LLp/Fo+WJTTqF9uB8w5qRKjvBhC89HpTjx7c91mAI6T26Ol4fyZhuLQXQfjiPGD8at/L8bpB4xC356tJcf6/ROvoa0lF1v14pBdB+Hcw8fisN0GYZdBvRPF/uj+I5HPEb52+zyce9Ns3HzOgWiT94agkCmRO6F9HDDXsMOUquARVU4kzsXV45cicMsVt0mErUWMctRjt1DKMVTO/ANL5kG4n0HwsipS1ThaGoF6HlWMxold7Z+iKLFLbixf7BrKjgHJxZsNfZ/ESB4jyiUSsk1nVwGdBQ5dGn/05dV45/1tAIBv3DkfH2sfiS2Sk1sTvnn8RHz4l0/g+sdew9eOnVBSjNlL1+KO2ctxzmFjMaBPW2RfIsKlJ0+K7GNi2r4j0FVgfP2O+bjsHwvww4/uJd8Fgg9laXZiR0cHD5hrcHKVy8fFfUFhaqyLG5WLG5WmQPbzBGKkFbhpxK12P1KcVvsDbXmPBFxhW1/1vr6vYNnnbauuq7Lff88Gjje4q95+LoT6s36OwHEFrU/4PKzHNjxHcZfTTYItbdUAiVGEiOYwc0eikwkAnO/c2bNn13sY+NQNM/HYK2uw9KqTAu1jLr4ncH/pVSfhtGufREsuhz+fd3Ath9gt+a8/zsGjL6/Go986CoN26JHq2G2dBZz088ewaVsX7v/akejTo7qe2o9nvIRf/ftVXHryJJx7+Nj4A4SmIO57P1O+vrG6golIZ9e+z1hNwT+uwgLXlD+qt+v3tTxYzpF/C/VPkjNb5Zs6Pn+caWLE5fLG5O+ac3cNz3tURYYkObt6BQggcb6uadtDryLgucC2S/ASI9lKaELj8dgrawA4qQhRFAqMWUvfxbYKlrcS7Hz92Al4f1sX7iyh0sJv//MqXlm1Ed8/ZXLVBS4AfOPYiTh+8lBcec8LeOrV6tT6FRqPTIncAEncySTuZuRKYoY0hYh9kQJXF5ymMcaJWxiEbVJBq8et061k0ZtU8CqPMXLimCl2KWI30EeLAxSvLljErmlimkopFQMkRnQMoXHZ/dJ/+bm3Jva8fAYAyDKwNWL80L44YMwA3DFrmbUm7ftbwxO+lq3dhF/8ezFO2nsYjt59aLWHCQDI5QjXnL4vdurbE7999NWanFPIPtkVuSlIkn8T6eIWO7l/E5YmM1VwMAlci6A1idtAHJt4NbWZHMxK3SokelML3iixqwhSY2UGU63bUsSuIq5tgtp3ddX3juH9EifG9Mv0pdSClRhCo/Pamvf97d1Dy7xKTdRac1rHKCxZ877xH4u75izH5O/NwKylawPt/3v/IuQIuPSk9Dm25dC7rQUf7xiJ/7y8OvKfJaH7kH2RG5WaoBNRNswaN0r0mvJ9NZcvGFMTQfpYLNtWcauL16SC1tS3nFuFxC/nc+lEb1J3V2mrhNj1X1+D2A25x0BY7EakMAAIXY437fPaVWFnapMYEPHbZKjF/bds78K4IX3qOBrhpL2GoU9bHnfMXhZof39rJ/7nnwsBAD+esch3ehesWI9/zHsT5xw2Fjv371nz8Z7WMQoAcOfsyi1mITQu2Re5Lsb6uHHoDlzkCTQnLqqPLQcXMKcnmIQqYE5LsG3bRK3eRxdWlRS7+i2fK0v4liR4o8Su8njLEbuhFdQCxyTL1w28lwxiVxV2qkAz5Z9GldCSGEKjo18G/+7fF/jbm7d3oc1QL/Wrx4yv+rgEhz49WnDy3sNx93MrA6kJ1/7nVby3pROn7Dscz7y2Fk8sdvJgr/7XS9ixdyvO/8CudRnvqIG9cfhug3HH7GV+bWWh+1IRkUtENxLRKiJaoLQNJKIHiOgV9++ASpwrlbOro4uPBH2Nebj+WFLuK0XcquNJm6frnY+orFtZwjefS3RcYsEbJagjUhnKEru6iAZi83WtSwQb0J1I26V5k+PpTcySGCJ8G5XfPRaccPzWhi1YtWELbnvmDWzZXjDWPT1+8s61Gp4A4OMHjMSmbV245/mVAIDl727CdY8uwbR9h+PqU/fG8P498ZMHFuHxV9bgsVfW4MKjdkP/XqXX1i2X0w8YhRXrNuOJxWvqNgYhG1TKyb0JwFSt7WIADzHzeAAPufcrRynOri2GLxSTiF9NsOhC1LZPEbh6W+gYX0jpTiGFj0kgZp1Ypd84HyGCtXSB1MI0SvDGCeQUqQyxYld9vuPErn4OKP8MGVzdJCkMqkiLWwRB3W9zOLtjjEaDiKYS0SIiWkxEoe9HIupBRLe7+2cS0Rht/y5EtJGI/jtpzCzy9JK1obZzbp6Fi//6PNZv3o5Wg5PbqwJLzQrJ2X+XARg3pA+uvu8lXHjrXHz1tnkAgG9N3R09WvL40pTxePaNdfjkDTMxYsde+OTBo+s63mMnDcWA3q24fday+M5CU1MRkcvMjwLQv6mmAbjZ3b4ZwCmVOJdO5CpnpWJzcaPOUarAVUWPSTCb+liErXOc5aYfm/aWJ7sITiN8Vac3rwnGCMEb2a8SYlf/5wIoiuCEk9MSV2HQXuu4CgweuvBTSVpeq7vEyDpElAfwKwAnAJgE4Ewi0mfpnAvgXWbeDcA1AK7W9v8UwH0pY2aO1e9tDbWteLc4aWgHQ/mpeuR6dmeICD/62N7Yb5cBmLdsHWa//i6+eNRuGLFjLwDAqe3F1cy+cdyE0KIetaZHSx4f3X8k7n/hLbyzMfz+EroP1SxeN5SZV7rbbwGoTR0RTZAmqqpQ6jlCoshwDl3gGsRvpLg1bLN+Hl17m8YR1Z4UIvPCEHmE2rkQHDvZFh1Rxx5R+lJd8cy6AltULG1ZX290xWWD/Y1gLK9dWz3NWRUtV1w5Tblf3E+BGMVV07Rzuc+NPqHKhG3SlX5Md43RQBwIYDEzLwEAIroNjjHwgtJnGoDL3e27APySiIiZmYhOAfAagPeV/kliZo7nV6wPtb23pZj7efC4QfjPy6uxY+9WrNu0HRefsHvdRVR3pGPMQFw/ZiCA8NLKrfkcbvrsAbjv+bcwbd8R9RpigNMPGIUbHn8Nf3t2BT53xLh6D0eoEzWZeMbOzAKjyiGi84hoNhHN3o4a/MelV1UgMrZbXdwkQlE7NrXANTm3gN2x1d1LGNoMzm9V83M15zeR0xuVx6sckyp3t1xnt8QUBmsVBkS7ukB4EQndyUxSWqu7xmggRgBQr6Uud9uMfZi5E8B6AIOIaAcAFwH4nxJiBr5zV69eXdaDqBadyoShnq05nLTXMF9UtVTSsBBKomdrvvj95vLBiTvh6lP3Rj4jr8+EoX3RPnoA/vj06zIBrRtTTZH7NhENAwD37ypTJ2a+jpk7mLmjFemWDawrNhfXJnBNx6oxTHGixK3WJ6mgLSc3NzI/Ny431yZ64wRvRMyGErtxE9PU1xJBMWcqm+Whi0S9vbvF6CZcDuAaZt5YysHqd+6QIUMqO7IULF71XmjZXhM9WvJozRPe3uCYIKaJaIJg4pzDxmLpO5vw4Itv13soQp2o5rfFdABnu9tnA/hHFc+VfSwi2FpyDCnFLcKitiq5uQbBahXAUcI3qeBVc3hjxG7kRLUUYjfwupgmp6ntuvMfUYXBdHzSRSTiHM6oqgTdJUaDsQLAKOX+SLfN2IeIWgD0B/AOgIMA/IiIlgL4KoBvE9GFCWNmhmN++miifq15Ckw+M01EEwQTx08eipEDeuF6rYKH0H2oSE4uEf0ZwAcBDCai5QC+B+AqAHcQ0bkAXgfw8Uqcq6okTVUICRbz31CaQtzx6rGquNX26duBHN0k+bmmtrQQJcrPZVAxP5aU3Fz1eOUYP5eXDHm8WiqrH0OJ5eXYxubtqvu1/Frv2Umbr+udk7X8X1/ouvf1uHG5ujbiXMy4qgTNFqPBmAVgPBGNhSNEzwDwCa2PZxQ8BeBUAA+7qV9HeB2I6HIAG5n5l64QjotZVz766yfwsfaROOug5LPvB/RuQ4sibCVdQUhKSz6Hcw4biyvufgHPvvEu9ttlQL2HJNSYiohcZj7TsmtKJeJXDV90VsAZqJXATSJudRFrELVcid8JIpBJh+kCOGcWvcYhGASv38+Lm1fiW8RsIrFb4OBzU87kNC44r2naiWkFdt5/XADlCKzcV59Hm2tpE35JKhI0Y4xGgZk7Xfd1Bpx3/Y3MvJCIrgAwm5mnA7gBwC1EtBhO9ZozSolZ1QeSgkcWrcLcN9Zh7hvrUoncEQN6oS1f/JxKuoKQho8fMArXPPgyrn/sNfzqLBG53Y1qVlfILuU4AVEitRxsAjepuLW4vE5/w/kq5Ib48lVL7Cdo4zGIXqvLG9EvNGqTM6uOL0rs2o5NInZVEZqj8lzdhEIXCF+qN+W1Rjme+mX/ZovRSDDzvQDu1douU7a3AIh8YMx8eVzMejJ76Vqceu1TuPfLR2DGwtLyInu35ZFXyjdKuoKQhh16tOCsg0bjukdfxbK1mzBqYO96D0moId1T5KahhKoKqV3chAI3jbgNCducLnwrfMkvHxSpDASFr+r6Jk1VUPvlLO6uR7XFLrPmwCZIYUjq6qZMX0h76T/JRK9miJFo+W6hpvzsoVcAAB/59RP40D7DS4rRqy0PVddKtoKQls8cOgbXP7YEv39iKS77UOZLRwsVJFMid0L7OGBuFU+QJi0hhahN1bdcgRubwqDsz6ntegpDgrHasOSKMlGwUFyU8DWlOiRKVXD6+O6uLojTiN2Qw2w51hOoyniMKQx6CkIKV7fc9AVTZQK1/qypn61/I8cQssVb67cAALZ2FvxtAFi/eXviGL3bWgJ1caUalJCWnfv3xAl7DcNf5i7Ht6ZOlDrL3YjsXvfxxAdHrBBQL5JYCUkEcKkC16sMEOijCFy3kkBoNTRSb2S8cY78WNZbLqJ8l1/FwDmP39cbi1ItwanGAPOKZm4FB7ViQ/hcCFRnCB6fS1SRwbhfrcTgPcdRJccAxJYbAxBVgaHUUmNAsKSW5/LaLuObLuvr1QwaOYaQLdT6pI8vXuNvm1Y5s9GrNY9+PVuNMQUhKad3jML6zdtx/wtSTqw7kV2Rq8GF2ojeyEueSQRrVF3cqDzeNALX+0sUKW6dfuqNAiLJJGBtojBOLJqEcEg4qsLXG6MueE1jMInZpPsTiF3r44srOQYYhWn49S4Ke2NdXaCsUmOlVB0wCcZmiSFkh+0F8/d11FepTj5HOOvgXfz7hZiqI4Jg4tBdB2HkgF64Y9ay+M5C09AwIjdEI/w3n0QUm/okEbgIi9vAMZ6w9fpTWIiahR1Ku+UtAtgmfF3Ra3J5Qw6vzd312v2/sIvdiFq7iV1d1UWtpKurCWhjPMQLXV0gllpPtpliCPXFW8BB5xt3zDe2j9ixl7G9d1sLpu3r5PSKyBVKIZcjnNY+Co8vXoNlazfVezhCjWhckevCab7wquECR4jUAGlc3Kh9JoELVdjBKm7VNpOgta5mlvSWd25R4lcVvkaX13scUSkNNkGri2HTvkqK3Uq6uuprrLq6UekLhveMvlKa9zeqzeSeNmoMITssXrUR2zrN37nzlq0zth+y6yB/+/99ZC9crkwSyrvv9a4MZrAJjcGpHSNBBNw5Z3m9hyLUiEyJ3JfnlLEqieWyWEVIeG0tMlXB0BZwcUMiNmqf225yb71+NnGrilpNpAZTG4I3NQ83mJMb0dcmfvNhwVt0bSnk8BbTMCLcXZN7m1TsaiutWcWu95yHBHAJrq7y+lmXBfb2KX0Drm5Enq4qdgH7JC1VYEYtpdsIMYRssWR18lWHf3Tq3v72nO8egycvPhqfOGgXfOawsX776Qc4i7kdNHZg5QYpdCtG7NgLR44fgjtnL5Pc7m5CpkQuoP2AlXJZqlaXshIK39hjDK9AVCWFRAIXEeIWBtfXE6cmdzZCzIbEb8yxuvDVnV4OCVlN8GrpDEZBmzelKqDkNIZYV9d7jtO6umr6Qk5dTjgXillK+oKHbbKW6pp6k7tsS+k2UgwhO6gaon30gMTHDdqhB4Yb0hYOGjcIS686SeqcCmVx+gGjsHL9FjyhTIQUmpdMidwJ7ePMlx3ZqxuaQsBGObu1+A8uRgRH5eICMKYwRApc3b1NIm4RFLZhARtTZUG/5Yq3kBBWhG+oPcrl1QWv4u5GpTIExK4pZ1dzb0tOYSjH1fXa3Ne01PSFQBztfWUTf+pCCzaXNG4xhqzFELKFmjt75PghdRyJIBQ5eved0LdHC/45/816D0WoAZkSuYnxcmsTiNVUObvVQk1jiBG38eLXInChubeAVdzahG1AsOYVQWW4eSkItn7+fk0Ah9IZjBPQKCh4VeGu9TemMqQQu0E3OFcbVxfQji0vfcFYZswlKm3Blv9qu99IMYT6s11Jnr3mwZcTHZOFr2uhuenZmsfxe+6Mfy18C1s7u+o9HKHKZE7klvJjVbKQNRxXUqwY19aKIR0h0G5ycWFIUUC0wFX76tUXAtUWVJGqi15VnGqCL5Srq4llVQjrwjcgcFWX13dsYXd31WO9VAab2CWz2DWnN5BR7KZydYGQq+u0GcRoCekL/nEAjOkL6jiA0OV/XfianFK1Rq1OVmMI2eErt81L3Nd7pzJE5QrV50P7DMd7Wzrxn0Wr6z0UocpkTuSGfuTSiM5qpSjU014wuLhOe3G/SeDa3Ftd3NqErVHgmYRvQjEcEMCK8C2mHMAoeEMpDaq7a0plsIndqAlqUfm6NlcX4efIWoHB7VvJ9IVSy4x5JCnPFSWMsxpDaEy8b9hcqYaBIKTg0F0HYWCfNkyXlIWmJ3Mi1/qDlSYvN0qUmsqI1XhVNWPlhMj2+GN1B9dp044xiVuYha2eaxuadJaLuCn9/DxdRQCHhLMqePMUK3hN7m5JYjeQDgBzCkMSVxcIH6ML3UqmLwD2PF0kF7oepmV01Xa1ZJdevitrMYTG46CxA/0raOr/8YJQLVrzOZy418546MVV2LSts97DEapIpkSuWkIs9scrSV5uOWXFUtXfTdC3FIcizsVFUAAHUhQsAleNpYtbo6g1TSJT82dNt4CTq8TxxasifHNB0ag6vTaHN+TuJhS7unsbELVJUhhsrq7aBmUM0M9ZYvoCEExf0FxiU6y4CWlqZQKPqMoG6naU01rPGEJ2mG+pg2vips8e6H+NEyi6syBUiA/tPRybt3fhwRdX1XsoQhVpqfcAVCa0jzPvYI4Vicxc/LFPsq/AYdvA1GY/YWnCNY6IfztiXVwkE7h6ekPxvvY3dM6IsXlaSvu/InA8F2MQc3GcrO4nEHviG8424Lw2/n1yt9nZzrvxCu5jY3Z+LN1tBoFyxTjOPnJOnGNwgcIPz2sncmIDxddGf4yWxx7o771fvNSDQqGYh5jzHl+uGFxtyxX8+MzsxCgUivEKBRCRu4/84yjnXf3IOf8Ueo/ZJUnprbjKBl6fLMQQssOCN9cn7turLe+/LSVbQagVB4wZiJ379cT0eW/iw/sMr/dwhCqRKScXiFmHPknKQtq83DgXVo1XrdzciG921ndFuLisi123f6zA1W6m6gucVxzYnHtfuQX66TftGFuFhYDTG+ijpTRoVRr8bZuzqzjBxjq7paQwJHF1bf2B5OkLAPQ8Xf94v1+CCWmGygtA9MQt2z6T0MxKDCEbpHVkvQlnInKFWpHLEU7eexj+8/IqrN+0vd7DEapEppzcl+cswQae7d+PvSTJhaIACO2LcFqjjkO0K1wT0pxb70vBbZvANbm3oUoMhvxeQHNnbedmczsxO0JX6UMFN6br9Pour+fosuLuMoNypLiyxWMJ7AvzoLPrOMDw9rsGKRfYd46d58jZ4IL2E11pV9dvy/n/RDkPzXNiFefVP85ty5Efm1VH13V4yY0XcIe54Dxnults+actzjXVUwe8Y7IQQ2hMPP9BJp4JteRD+wzH9Y+/hhkL38LH3RX1hOYiUyLXmq4ARItWN83AnJZQKLpeUcQIX9P5YscViF9GeoOeQqHH0YatpiyEjtcFLinHuG2+uDUJW+3UIafZP4+hiZU4SuqCrzI9zVUo9vEEL7N3jCuGmR0HluGnMjiWr0XsQhW0XpqDI1rZlsIQELU2AYyQ0AUz2BOj6uvui1ilXRGqIaHrPBnKcZ6jW3AEvuc8A04MJZXB2eeFMAhdLX1BF5O22rVRk8V0ah2jrv+YdnNmLnkHg/v2wK5DdgCQ/KvumtP3AQB/4pm8hEIt2Xtkf4we1Bv/fO5NEblNSqZELmD/EfNxxSgXuDi5RscgbEvKy9UFSsw3MBW4WF6qyujiMiRstT7+5XkPXeDq7q3B2Q3ETCp2oWhYg9MbEr5+o7td0Bxek7tL7iEmsevn7MLRi6rYteXrAkDe3W9xdUNCFzC6uiFH1+uvO7pAdJ6ulm8bELpqnq4udDV3OKnQ1T+HcQsvmD639Ygh1IfTr3saALD0qpMAGP/HNXLoroMBFC8qiJMr1BIiwof2Ho5fP7IYq9/biiF9e9R7SEKFyVxOrmlmdSRRVRZMl2NLycsthQrHjF0JzdZPTVNAURQG+qsC191vqqlbzIVV2yJyUZVc1dBiETntFoiv9A3k9gbzd73j/HN4ebsUjOM/nhwCdXaN+bp+O/npAqZc3aQVGELPj/e66dUXgOg8XfUcAKwLR/j9Squ84OW/qgswJFmBTP/c1iuGkA1eX7sp1LbfLjviT587yNjfWwJYRK5Qaz60z3AUGLhvwcp6D0WoApkTuUDErG9POEbUtTWuWGaajBZTLzcQxzb5zLYdOn9wH+l9yxHEpleQDM4qBcVuQMhCEbgothdLjEG7rwg4RQAnuuki1r+F+4aEqip2vYleFrFbnFymnc8TuyEBClgnplknoJnaDEIfMP8jkDP0jyoz5r6OqSakQRO67nFJS4xFYRKdad3VasQQ6sv8Zevwm0deDbU/+8Y6HLbb4EDbxq1OjdJy1uoRhHKYuHNfTBzaF7fOfAPbOmtbM1+oPpkUuSpRP3h+lQWTYC2EJ9f4wlX9Ro37drUJ2ajjsrIAuyl1whesxX02gev1N9bTVV3fgLOb/BaomRsrepU6uYYqDYnErurcqpUYvMcWEMJqey5C1EKpRBEhXkkR1Cg+l/7rFHB5i8IzUuiqbVUSuqXWpE2yklktYgjVRzUEHnzhbUz71ROJjx09sDcAYLednFzePUf0r+zgBCEBXzt2PF566z38eMZL9R6KUGEyJ3JjnZwEjmlJbm5SAZt2TJV0bW2niLjEF8rFVfHEqhrH4N6axK0xhUEVuybBm0oExwheT+zqjq8udgmB0mO+iPWdWwRc6SSubljUIiyAgWiha3OAgeRCV2/LWZYCjigxRjkqlhhT42qYVhkzpRaoRPWvVgyh9vzsoVf87T/OfN3a75ITdg+1teSd990HJgzBA187Eh/bf0TlBygIMUzdcxg+dfBo/O6x1/DQi2/XezhCBcmUyPVWPNPrYppTF0qrmWsUwIa4ob5JUhYAUCFhCkNUn6oIYfjCNYTqcpJ+TDElQU9h0HNpTakBtpXQbCkK0YJXOW9SsavkAZvyda2urtdHd3WJAnV1E6cvoHi8PzmRtH2m1AXXRS6KV1eQmlZI87aBsNAFrELX+WMXunGTQVWRGrUcb7VjNBJENJWIFhHRYiK62LC/BxHd7u6fSURj3PYDiWiee5tPRB9RjllKRM+7+2brMavFHbOW+dsvrtxg7TfKdW1tjB/at/j+FIQa852T9sCkYf3wjTvn4811m+s9HKFCZErkAsXJJ5HujFEYljEBzXSMTaymcW3j9pvSfywpQaE83lCH6N2BYfgiznKc4uDqaQtBh9fbVnJkU7i1hXxa4WvrZxC77mMMiV1bCoPu6ppydV3hGy1qI4Su5uiWNSENqIvQVbdV59X2uY1bxrfSMRoBIsoD+BWAEwBMAnAmEU3Sup0L4F1m3g3ANQCudtsXAOhg5n0BTAXwWyJSq+Qcxcz7MnNHNR+Dyrau4nfT2xu2Bvb1actjwlAnFUHPnvrxqXtXfWyCkJSerXn86qz9sb2zgC//+Vl0SaJ4U5ApkTuhfZzVsUnr5hbzbxXVmCZlIQlRrm1I0MZMPrO0mY6tNHqagqncWMDJVYRkQNiq+xK7tO7NXxktreC1iF1lgpqeeqG6uqFz2lxdInA+F3Z1LekLxjxdKMe5z691QpraF8iE0NVRF2uI+txGidBKxmggDgSwmJmXMPM2ALcBmKb1mQbgZnf7LgBTiIiYeRMzd7rtPQHU/Zd4e1fERGAUvwp1l/a0DqlLKmSLsYP74Pun7InZr7+Lvz27ot7DESpApkSuSmy5oDLc3NgJaJVMWTCNNUWKAiX9CatGFTTNtVXdz0AFBlXYphS6hbz9ftDpNfdPLHZNKQx6yTGTq+u5tzl1X4LqC8Y2u6urpzSE+gLphK5XYszvW77QNaUt2HJobfdNx1UjRsYZAWCZcn+522bs44ra9QAGAQARHURECwE8D+ACRfQygPuJaA4RnVfF8QfojBC5KnlJRRAagI/sNwL7jOyPn96/CFu2d9V7OEKZZE7k2lwbtV5mgCRurkqpE9CSVlmIE7RpcnCTOMuFCAe4BAJup0XgAuF9JmEL7abWvA21B9xcbdsTvHmToE0hdmNcXdWd9kWwqa6uLnQTVF+wpi8AdqELlC50vbYqCV1T7myqz22VYnQHmHkmM08GcACAS4iop7vrcGbeH04axBeJ6EjT8UR0HhHNJqLZq1evLns82xNeaUqy8KQg1BsiwkUn7I4312/BLU+9Xu/hCGWSua+duPy7AEnd3KhyYirluLlJ7ptSFmx5uTHC1Vuxq1xCFRWSYBS/RaGru7o2B7dgErV5BARuQbtvF7SGfbpDG+PqehUYolzdkNC1VF8I5tma2iIcXS2lwVpLF/UVuklKfOm5tfr+SsdoEFYAUK/Vj3TbjH3cnNv+AN5ROzDziwA2AtjTvb/C/bsKwN/gpEWEYObrmLmDmTuGDBlS9oOJuoqkfkXJpDKhUTh018H4wIQh+OW/F2P95u31Ho5QBpkTuaYlPfX2EOW4uaZau2ndXMO+UJWFhI5ulCvrLWtbseoLSX5zdBfXInAD4taarhCeaFbIK2JVF72u45suL9c7f3wKQxJXN1Lo2qovpHV0UTw2VHlBF7rePn3RiBoLXZ24z60qjG3VGioRo0GYBWA8EY0lojYAZwCYrvWZDuBsd/tUAA8zM7vHtAAAEY0GsDuApUTUh4j6uu19ABwHZ5JaZvBWM7vl3APxm7P2r/NoBCGab02diPWbt+Pa/4QXNhEah0yJXK+EGGBe3tc4+aTebm7omARurqnKQkTKAjHCaRGVICqkJ/70Q6IErubqBhZwcN1T043VVIS8InzzipOr3MLuriZ2ydweXBAixtWNEroR1Rd0UWuakOY8vxUSuu52NYVuYNuSuuAR97lN4taWGqNRcHNoLwQwA8CLAO5g5oVEdAURfdjtdgOAQUS0GMDXAXhlxg4HMJ+I5sFxa7/AzGsADAXwOBHNB/AMgHuY+V+1eDzbEubkem+rI8YPwQl7DaviiAShfCYP74+T9hqGPz/zRuTkSiHbtMR3qR0T2sdF7rfNxAbgCFLKgQtcXMnJ28UcvlRWKBR/6AvsfAO7MdyDij/o3n69vThtOLwPABW4KFgM+wHHnTUu5lAAkAv3rxfqEsDFNhgFbqCElyqWSTlOw59g5/8l17WG64TDv5H7fwKTe1zB2+ceQ6y0ue0FdkSq1o+6AAaB3BMz4NzLu3cKHBwLuY56gcDukfC2cnDef94DzbkxC1R86nLs3FffCzkU/9Fx2zjnvH8Crz+770O1by7n/9NFrnuNArvv44JyjNuWKwAFdvu6xxK5/XKgQsH5h045hnIF5yqJ8wCL/ZGsfFdcdQSvT7kxGglmvhfAvVrbZcr2FgAhFc/MtwC4xdC+BMA+lR9p+Xgf6VxGvssEISnT9h2Oe55fiZlL1uLw8YPjDxAyR6acXMA+kzpygYgsurl6aoPJ4S0zZcHPyy0U24t/nTHFVWdINGnNJm7dfSGBG3BHtZsy6SyQkmBza/NFp9eZfFbc553DXHEBQQfX4upWNH3B5OgCxsoLxhJj5aYuwHNpK+/oRi0BHDX5y7bPJFYrEUPIFpOH9/O3ReMKjcaRE4agT1se9y5YWe+hCCWSKSf35TlLsIGDC/VEOTghR1d3cxVn1ndzAw5undzcAoqx4Lq5BTI7t258AjluWq6EXwpWvErT4WxpN0Hm7bi8XX1yW2BlNTWk6ui6N/ZEu+rCFth3cqngNrvb/gNV85cjXF3nNSoeQ8xuLNetzZHr0BZdX8e5TejoAkUHV7mPgvN8FdtQvqPLnksLu6ML+NtGRxeuK5zC0dWJc1719APvmHJjCNnho/uPwPdOnoyP/uYJAOLkCo1Hz9Y8jt5jKGYseAvfn7Yn8qX8/gp1JVNOri1dwVRH01o3lzWHFahN3dzQMRVwc6uRBuS5vRqJ6/F6YVSx6m8bBG6Em6u7t5wHCi3BbfW+7+IG8niLbeq5iu6u3dUt5g8XXV573m4Zji4QcHBVR7f4vNXQ0Y1bMMLdDjm6QKyjq5Loc4voEmFpYgjZ4ien7YP+vVslXUFoaE7cc2e88/42PPPa2noPRSiBTDm5gL08kdpmWg1JJ62bG8jbzZqb6x7jubmUcxxF1VdEwXEWA06j8jyE8mA9BzQfbPNtRdu2DQr+DacwaPcj4nk/ir57m9NcWs9IZDjPVcHtXHDPX1CC2Fxd7/n30jsKcIWvmw7SFczT9RaDQFeGHV0ghaPrPokBd1dxdN3toKPrHOM523GObtznNq5/KTGE7KDPgxATTGhEPjhxJ/RqzeO+BStxyK6D6j0cISWZcnKB8Mxq75Kk7bJkMF0h6OaywZll3V0FzCXF9O2kdXOr4eZWomSYn8OrtwedXdXRTevuBoSucgtVXVCEr+/Stig3LS+3oLm8Bd3ZdfN21aoMgUUmLLm6fqmxgAh33Vhbnq7iIKdydOG1V9HRVfJq0zq6pB7rncPk6KqlxbyYCiV9bl3K+uwL2cX3AETlCo1Hr7Y8jtp9CO5b8BYK1ahyJFSVzIlcINmMbZWqTEKrZt1cb79tcYgE5cRSTUALxTGkLKh3A2NXxqb3M4Wm4HZosQgoAtOSsuAL3RZN2Oa0dAb1GD9WMIUhsE1F4RoSv2qblq5gnZBWBaEb7FNnoatsBwSKSehGpC1EYRKuaR1aEbvZppiuUNdhCELJnLjXMKx+byvumL0svrOQKTIpclWSrIhkRHdzTU5swMG1LBDhb3NALKdycwPjqoObW1CEcCC+mwLgojq9Rke3VJfXc3WhOKaq05pnFPKMQotya3X+cgubXV4tVzcsdCkopkOOrubgqnm6irititAFrEI3VR1dtZ/pfi4oPqEf529bhK4mekNiGYrQ1WMi7OqmFaMlf/aFTOF9V8qkHaFROWHPYTh8t8G47B8LMX/ZunoPR0hB5kSuyckx5eVF5eolmYRmTFtQ25OmLaiCWXd8o9xc79g0bq57TFo3Nxgf8CsN+HEtKQtaH9N+XexGil9PKPrCk52b7uIqt0ILfMFbaOWAuxu1QERxkQmb0EVY6KpOb8j1DU5WK0voBoRnSqHrtrNB/EJ3eZX+ppQDGESr02wXun4M5Zi4VdHiPre6GFZJ+tkX8Ztdik6uiFyhMcnnCL84cz8M6dsDF/xxDtZs3FrvIQkJyZTI9VY8s9XETbzMLxAUrrqba0pbULbLTluIuE/GFc840uEtt9JCoGZuQMxy0M1VRasrnIPuLtsFsC6cNYIuJoqpDKrodMVq0dEtCl1u9aotKO6u19+2KpqWh6ueKyhelTFECN1wnnFR6JZVRxcRQhcICl1F2LJB/IaErr4qGhAtdNWKC2pcAKWuipbkc6sK3bI/+0LdaM0TFv1gKpZedVJon2hcoZEZ0KcNv/1UO9a+vw1f/NNcbO3sqveQhARkSuQCxckntmU9bZNPrLl8SdMW6jUJzSBsraK2UDyunNzcWDc3IHaVYxA8Tp/IVhyLYew6xEWhSZ44LQrYQitQaOPirZWdNm+fIoKTLfsLw6IR8F3YgPCNcXRNQpfzZQhdYz6uInw9dKELFIWu6urqKQQmoQsEBWrSxSK8dvUYIDwRzZK6oN9XP7cV/+wLVWfztuAP/ekHjEKPlnygzS/8ISpXaHD2HNEfP/zoXpj52lpM++UTeOHNDfUekhBDpkTuhPZxVscmrjC8cX+l0hZUB1iNqcawTUKLS1vw+mv9AmkLnvA1ESF0zX2Vft55krq5XHRzg22GNAWt3VjZwXNGc04HLz+XWxjcWgC3FVBoK4BVsdvGfv3cYt6uwdUNTWqjkGsbmIAWJ3Q9kRoldP220oRu2L3VHF4gKHTdtpDQVfv5sbR0BNtENPV4f1t1fbWJaAkqLgB299W2VHcpn32h9nz9jnmB+1GTz0XkCs3AR/cfiRvO7sCajdsw7VeP4zePvArjyqlCJqi6yCWiqUS0iIgWE9HFSY9LWi4otm5m2rQF5vLSFtQ4SdIWTII4Lm1BdXMjiF3qVxGu3n3VjU3l5ppEr35Tj/VWLvPaXQGJHMAtDLQw0FoAehTAPbrAPQruzRG63MpK3i4X83SV1Ae9hBgM6QlqnnCk0FXzbpVtVeiWvQSw0b01CF0ox0S16ekMtay44I3HJWqhCFseru1+khhCbdAn4Zh+7Nn9kMu8M6FZmLLHUDzwtSMxZfehuPpfL+HpJbJQRFapqsglojyAXwE4AcAkAGcS0aSoY2yuTdSqSIny/rJUbaGOaQvB+AiKU2URheK+dG5uIGVB6aM6unqub2Bc5HbKM6i1gFyPLuR7dSHXqxPUswvc5ohdP4XBn6QWzNUNiN0YoRsUtkWhGsgd1oVuPix0/YlolRK61pzdsLCtWsUFAJWaiGYSr/rnttzPvlBb9Nq3XQYr1/tqkzq5QjMxoE8b/u+MfTGoTxtuePy1eg9HsFBtJ/dAAIuZeQkzbwNwG4BpUQfE5d9521HOUFzaQppFIupSbaGSaQsa+iQ0U9qC6vz6cSwOrc21Vds98eyLaLVPIXjfJ8fItTBa2zrRs9c29N5hK9p6b0O+dyfQwxW7rY6jG5x8xkYX1+TeBlzcgKtrKC8WEL5k3A5UXND3J8UkdI05u2EhW5WKC1WYiKaSpExYms++UF86uyzfTxAnV2g+erbmcdbBo/HQS29jyeqN9R6OYKDaIncEALV68nK3zYppSU+1XS0fZFoG1HQfQEjoBrarvUhEkrQFlUqmLdgmoSVJW/C3Ta4th0Vrwbs54/PFrS+ele0CQAVyx1fcRhccS7RAYHb0Ua+27RjebwN2H7oKvftsQUuPLlCPgpO36wrdUL1c9aa2+aKWgi4uISBsdRfXlHcbWiXNInSBFG6u+nJrQpe1/ZET0fw3mMH5TTMRTdmu1ES0JJ/bUj/7Qm3R35JtLeGfFJl4JjQznzp4NFpzOfz+iaX1HopgoO4Tz4joPCKaTUSzF8550W+PmmWtbke5PqHLnFH5uVDErK2sWJq0BTU/17+fQPwa2kxpC0ahW0q1hai0hYC4jU5bCAha9TwFFAWvInzh3ydQlyt6u8i5dRLQSShsz6Fzex5bO/Po32MzTtzpeQzsvRk9e21Drq0LaGXXuXVTFXxRy/7SvsG6vMW/1vJivthV3VpowhQBF1hdzjggdL2nuMS0heALbnB41X1RKQqAOT/X76q5t5b8XNOxiVdE00jyuU372Rdqj/qyt+VzuOTEPax9ReQKzciQvj1wyn7DceecZVi3aVu9hyNotFQ5/goAo5T7I902H2a+DsB1ANDR0RHlScbOsvb6xMIFgHLgAjs/xFwACs6lWWZ2frALhWIOorcNOELV+/FWt92Y7mMq/uircTxh6godT9BSAcWcSl9oQ4nNIABcICDn7ld/MLw4IPcxAe4RThsYKBAox067d6j7+Nnv54hTBjlilLw9ABhOv4IrwAquwPOErLvNhWJ4R80695jcx6kN3R040OX19MRlDgygE8Bm9MALq3bG0vUD3YfOyOUKKOQLTtWEAhznN88oTmhj5zllgLqcsRIX/wbTDdg5rSpcC+5Ac65j7Yb1hsfua0Bg93nwnkH3MbLz+nFBfyWc1wGF4vMOvx1uf09kMrjgPf/KP2hExec4h+I/T+4TyzkUU2G8J5sN93O5YFpNjoKx/GNy/j9yRM5nJHCsu02eu11g/xhyn4NQTI24z22Sz75QX575zhT079Vq3S8aV2hWzj18HO6YvRx/mvkGvnjUbvUejqBQbSd3FoDxRDSWiNoAnAFgetQBNnfGNsHE9KMX6fCUmp+rtqctK5Y0P1c/b5L8XMsiEVH5uca0BcXR9fd3BR1ZU36uM25ofYK3YIqC4dbluLm5Lvec28m95YCteXRubsHm99uwbkNvrN/YC1u3tqJQ8C6Ds/MuznHAlQ2UB1PTFCjYFsrPDd0PpikUXdji/tA2lH56fm4a4vJz/T5hF7ce+bk+JebnVuKzL9QW79+tI8YPxo6924x9vO9NEblCszJx5744Yvxg3PzkUmzrLGPlJqHiVNXJZeZOIroQwAwAeQA3MvNCW/+X5yzBBp4daItzcPTLmN4xphjKwFxXqei++tsBp9Z1Yb3Ug1wu6NIGjkHxWzzg8HK0m6bcp4LrCnptqvOrHleA7+jqDq/n5hpneRTgu7kBH1FxdL3r7N5+sL7tPD7OUdHBLTjWqOMg6idV3OAoXAc25xYcYiYn26MAcCGHQieh0MKgvKuamZzHXfAsVu85csfquZmBiWHBm+/uqm6uZ1q6fQhKf3ht7nPl7fcc4oLr2BK7Hrb7zOUI8CbkEJK7ubrr6QtKg8Obo+I/PG6b/xqp7zPd+fUcWSguLRBwbwMOb2DbPVa9KuE7vcV+vpurxlSI+9ym+ewLtYXB8Z1cpLqC0Mx8/ohx+PSNz+CO2cvwyYNH13s4gku10xXAzPcCuDdJ3wnt44ztcevZ2/qZ9vk/hor4DKQtuKKVcwimLQBBoeulEwSEMsNVksEYikj2+/nHKz8SRGGhCxRFNFxRq6Uq2IRuXNqCSeiCi5qR3P6c07dR7OcJXy7u91MYioOMF7r+0+A+J3kgx04qArupCNzlPjdeQrEnyHWhi+JuPwXBE62Gba+PJ2T1+3BFsCd42RuCst9LW6Au+G6u388bS+CVKCFtQRO9gbQF7X0UaNPve4LYv19MPQilHMBLSSAnpYcLTv3cAoJpC0ock1i2pS2kTT+K+uyLiMomyWWwIDQuR4wfjAPGDMDPH3oFH9t/JHq15eMPEqpO3See6ZguTZrqaapLgZYSw6cSy/6mqZ8bmJim7CtlIlpkKgPST0QrKMf6KQjFKgqk7CM3zUEtD+ZVXAi0GSouFNMUUExTKAC5Tu9GyG1XtrcRclsJua050NYcaFsOtD0H6nTSGtDlCF2/YoP+EpO27d1Q3Pbr48K7j8D9QBsBCPWn4La/z1xtIRXlpi2ofaImp+kT1Uztpvq5ap8y0hYq8dkXaov3b5Yl1VoQug1EhG9N3R2r3tuKm55cWu/hCC6ZE7n6zGrP6bFdlrTl6tliZKp+rp536wnUQvC+SRDrorY4BiVOCUJXz88NCd1CcqGr33JdDOpiX9x6AheFotClTu9Groh17vti172Rd9vu9uuEn7pgXGbYg4LbQeGq7NfuqyLWuR+M4W+rnyg/dlDZpq62YHwcmvD1KLesGHTxahCtynalyooBlfnsC/WhICpXEHDAmIE4eved8JtHFmP9pu31Ho6ADIpcIP4Spu2YkmKYhK5WP5e9dAO1vy50qzERTR2jQRBHLhRRotA1TURTJ5alEbphN7fo6vqOrydwvZvr8AZdXUfs+m3bXbG7nYr7u5RSZP65i6I3KQEHV7+vCtw0bq53jG01NBtJlv2F5vCqxDm3SZf99Y71j6lAWTENXdimQcRutvEzV+o7DEGoCf993ERs2NKJ3z76ar2HIiCjIlclyYpIpcQIoAndwHbShSLSCl0vTuB4TcQaXN7UFRdSCl1HeBoqLrhVFOKErknIqoK2mKrAwYoKmrururqq2M1thyN4vf6d2nFdynlUge49ZREOb0Bw6uJWF7hAajeXbb/yNjc3inLSFrx+eizTPssSvdVMW/CoxGc/yxDRVCJaRESLiehiw/4eRHS7u38mEY1x2w8konnubT4RfSRpzErx0wdexvxl6/D2hi0Agl9rNiRlWugOTBreDx/eZzhufOI1rHI/H0L9yJzINYlQfbKJacUj02XOuBgBFFEays9Vc2tVoasuFOHHUYVyWOjqx6YSuv6xwX5WoRtwfVERoRtKXSgE96mlxAL3VaHrO65cvK8JVep0tnOekFXSGIqClxTH14tByLmLSsAmdHX0H18yb6vCsyhqydjX5OYCSOXm2haJCK98ZnZ4E7m7uvgtMW0hcGzatAWFcj/7jQIR5QH8CsAJACYBOJOIJmndzgXwLjPvBuAaAFe77QsAdDDzvgCmAvgtEbUkjFkRfv7QK5j2qyew1S2XFFVlIU0FBkFoBr5+7AR0djF+8fDieg+l25MpkfvynCUAzJNNvHa9Tcc2icUWI/GKaCahq2xHrojm97WsiBbl8AJFoWvK5bXm42pCF6iI0DVORvO3TcK2KIytebqFsKurb3v3c4rgzam5u13eXwQcY3+VNRTH6KdgoNgeh56yoG6Hlu81iObI/FrA6OZGj8eSogAU3VytrSaT0EpJW9Dc3FI/+w3GgQAWM/MSZt4G4DYA07Q+0wDc7G7fBWAKEREzb2LmTre9J4rv4CQxy6ZQCH9gJCVXEIqMGdwHpx8wCn9+5g28/s779R5OtyZTIhcoCk/bsp62ySeqe5s2RogSKy6UtfSvmo6g3vfc2hih6+fj2oSu7/oildClrgih24VgX8XBLW6rYlcTuV3q3/CkNF/UKs5uyO1V9uvH+vEVd9maumD6kbY4vKFqDabtnOF4r0+KBSISLfkLpHdzA8dqgrOcSWi2c+jH6DG1/qV+9huIEQCWKfeXu23GPq6oXQ9gEAAQ0UFEtBDA8wAucPcniVk2nSaRG9F/1yE7AHCW/RWE7sKXp4xHS55wzQMv13so3ZpMfetMaB9ndWziCsOr+0uNASCYYgBN6OoVFypRWkwVuv797AhdsCt0PcdVFbqsiFKvrz/xy1ROzC50/Txcg9D1ha2ef1vQjtVvHLwPdTyK4PVEr//8aSLYmEsbcHQtKQtQnN0oLeuJ3Sy4uR5JJqEBqMgktJi0haSf/e4EM89k5skADgBwCRH1THosEZ1HRLOJaPbq1atTn7vLIHKjVO5vzmrHTZ89AIN26JH6XILQqAzt1xOfOXQs/jH/Tby4ckO9h9NtyZTIVUlaLkj/MSw1RsmlxTShGyotlkbo6uLVP6bCQjdljq5aR1fNvQ0KYfjtRXFpm5DGgUoIeq6umsJgcnZzgXQFpV1NbVDi6RPRnMdSvO88j84fU95umuoMAMwpC0D8BLTYuKiIm5uopJhpO2rJX7+74di4SWiGc+lOromoz34DsALAKOX+SLfN2IeIWgD0B/CO2oGZXwSwEcCeCWOCma9j5g5m7hgyZEjqgXeq/5R7MSNUbv/erfjgxJ1Sn0cQGp3/+sCu6NujBf87Y1G9h9JtyZzItbk2ISGqYMrjKyVGAJPQNZUW0/s3gtB1jylZ6HLRlQ3003Jw9clq1vQFVfCqZcQ0sWutxGC76bFVQa0KXuUxFl9P49vEikm4ctSnyzYBLaJurpWUbm7i+/WYhGYQumk++w3ELADjiWgsEbUBOAPAdK3PdABnu9unAniYmdk9pgUAiGg0gN0BLE0Ys2xMTq7k5ApCmP69W3HBB3fFQy+twuyla+s9nG5J5kRuXP6dt11KuaEkMWId3VJq6HrUWOhGVl0o19FV+2oObShP15aqoAjgnC50dbGrLSQRKW51oesK29CKa56TGxK8zlMacHqhbSclQd5tSdgqLaAGbq6xj0UQ+8eZnNvo2rkeaT77jYKbQ3shgBkAXgRwBzMvJKIriOjDbrcbAAwiosUAvg7AKwl2OID5RDQPwN8AfIGZ19hiVnrsppxcQRDMfPbQsRjStweu/tdLQWNMqAmZE7m6WNXbVXcnah37cmJURejqdXdtQtc9thJCF4Bd6AbaUL7QVRzRosAM5vFGu7qWfN2QE+umSyj7c7roteT9hsRtwTBGVfj674Gi8FXbUlGmzk2zClq4Ldtubiim5uam+ew3Esx8LzNPYOZdmflKt+0yZp7ubm9h5tOYeTdmPpCZl7jttzDzZGbel5n3Z+a/R8WsNEYntxonEoQmoFdbHl89ZjxmLX0XNzz+GjZv66r3kLoVmRK5XgkxILzEJxD+wYtza8uJESV0A9uVFrqmXN9qCF0gkdClAgPqxDNVkIbaERTDgZSFOFfXjWdsR8jBLaYyOLdA/V2Lmxt0dDko2jWBG6rE4L/uhrakEOJLifl9S5iAZogR2xZXacG0XWZJseD5k7u5cZ9boTZs6wzn5MqyvoJg54wDdsGBYwbiB/e8iP2+fz8+d/NsPPZK+kmfQnpa6j0AlQnt4yL3J6mOEOfslByD2flB5wK4kHN+lLng/EgX2HHZmEGFgvNj7vUvFMC5nPOjX2AgFzzGEaLFNs4pmsaLReS7qsVjXIhA7nHe/WJfpRsALhCQY/8+Qm0ELjAoBzDcOOS2g4ECgXIM9lvIjcugnNtScMQZEbsndUVajsE5tz9c8ayKOPdGzH6ZLbXdu7Gi58gXjXDGo+okm2Zynzq9jJhV4Ab+2n/I009Oc4QdF9h9TpTnNOe+fnGQ+9rpfXPO6xoYb45CdZM557x3/FhQ9nvvI8B5D7r/wBFR8R83yhX/SctR8R8xdVsdq/dPlxfD2M+NqfRXRW0jO7fNwk8NJZFE4wqCnXyO8KfPH4SZS9bi/hfewoyFb+Hzf1iNR795FHbql7gwilACmXJyAftMatsEE9OPXqViROXomhaLcLpUyNH12pM4uuxVPLA4uu59c06u7vI6Y6CuQsXSF0yT0uJSFbw83Jy2/G9OcWcDq6WZ8npNrrDn6Hpj4mKsWIFr3V/bX/jYlIW4tqjSYUAyN9cWv0pubtLPrVB9nnltbahNNK4gRNOaz+Hw8YNxxbQ9ccf5h8iKaDUiU07uy3OWYAPPDrTFOTi2nL1KxghcGq2lo+u7soWgONAdXbcfFRCe0R/j6JraiJ2YAVdX8Ro9R9exZL1b0flFrthmc3XDLq7Z2Y3a54VUF2kgFO8HHiAQ/iVWDXEu3remKtQZJnL0oCknkhyXPCS4VUfWcD/g5ur79WNVTC5sFd1cwFwi0LQimlBdTCXEopNNBEFQGT2ouCLa548Yh10G9a73kJqWTDm5tnQF04+bzdmJKhhfToxMOLp+H9elNbi3pLm3JvfXPPnM5PIinKfrTfzy8mBLdHXDLm+0s6vu89xd+4IS2nG2CWn6uQNjM4zb4uJWXRTH5eVG1cwNtBkcXdt9vW+SCWiGtmpUWhBXt768vWFrvYcgCA3Pl6eMRz5H+L8HZUW0apIpJxcwO6l6W1wR+GrFCFBJRxcACrnkjq7qtBW4KHLiHF3A7+u4oG6eppKnywXvErPXVnR0wZ5wCru6DDcHtERX18/vheckRzi7KO73H4ffrjzmpPaS6uAG7rPZ3Y0SsxFivpRrukwx4tnktiZpi7tvOzaQq6u4sKbjA86um9dbgdxcDxG2giA0Ks6KaGNw3WNL8Pkjx2GPYf3qPaSmJFNOLhCuiKDnxiZZxayaMQJUytH1jivF0fVimHJ01X6qq6u4t6Gc3ELBmKfrVDCwlBnzqizEubpeBQbVsdXLjYUcVs3ZNebacrhfmpsiSP0yaMpjMAncUl3ciubwJq2/G1NRgaMc3nLKiZn6GmLpceLcXA9JURAEoZG54AO7ol/PVpz5u6dx93Nv1ns4TUnmRC5gEZQJjqlFjHoKXb/EWKFQnJCmi1f/WCW1QEtp0EVx7IQ091yh9IVAjVkOpi+YSo1pwjDQTxO79jSGiDJj3oS1gvmmLvwQHKMr+PVzq31tAjfwXtBc3Ai857JUrEsD6wI2TggnTVmwxUlQTqzYN9yWtm6uCRG79efkvYfVewiC0HAM6NOGv33hUIwe1AcX3vosvvznZ7F+8/Z6D6upyKTIVUmyklmtY4TQhG7aBSM4kDdrELpKW2wtXd25BYJC1+Doxubpaq5uZPWFCFfXVlfXKnbZIGp1AZ3qZha9gdiKq2vK0w0J3IDTq4lW5fHbqGQeb6KV1eKWB05CXD/b4hBJjjeJYwURtNnk3MPH1nsIgtCQjBuyA/5ywSH4+rETcO/zK/Hxa5/C2xu21HtYTUPmRK7JPTXl00a11SJGlKPr/IkQuqo4dYWvUegG3NkUQtfb1tMXNKdXn7xmWwo4nNKQ3NXVRaWawmAUuxwUuyFXOEK0JioZZtlnEruqi+s/Lt2JVhxe57lVYkJrtwnaCgrdAKbVz6Lu2/alTVkwtEWVEzOlM/gpC4a4UZ9bofYM7dfDnJIiCEIiWvI5fHnKePzhnAOx/N1NOPXaJ7F0zfv1HlZTkCmR6614ps+gNuXSRpUDq1WMqDq6zh+L0AWSCV3vuCihq6QT2MSrNzajoxuXvuCnKgSFblJXV6/AoKYwGMWuL0gVseunI9hSGYoOr5qmkdbpNYrdQvDxqjm4qoNrSlMwurimNAevr4FalTEL5eWmIS6tIambGyFsE7vMQs3Yc0Q/AMBXj5lQ55EIQnNw6G6DcevnD8bGLZ049dqn8MKbG+o9pIYnUyIXKApH23K8tkljqvNa6xiJhK4uUIGgONWFri6QdaFbxoS0VHm6uqvbFRS7iV3dLtXNVYSqTez6glM5LjRJzSJ4tbSGoPAtji10056bQD8thSFQXgzFff62Klo9QaxSMIjdcgRt2k9yUhc37cIQpuP8QxJOQPP6Jygn5v2VSgu1Z+d+vQAAefkHRBAqxj6jdsSdFxyC1jzhjOuewnPL19V7SA1NpkTuhPZxVvEYt6CDur+eMQCYha533yR0vWNUoQuYhS4H2yKFrkG8xubpxqQvpHZ1VeGopzAkFbteaoKayqC5uzb3NiSCNUFrFb66s+sJVUXcqqXBjALX66+8L+KErf/cmt5PUejH6CQVtSlJk7LgU+EJaJKuUC+c92WunKsAgiCE2G2nvrjzgkPQr1crPnn9TCxYsb7eQ2pYMiVyVZKU+QKi693WOkaso+vd151YXeiaFo0opfKCH1M9LuhUpkpf6NIEcIyrW5zcVRSvagpDYrHriUg9lUETvP4+W8qCLnijbgaxaxO3ek6x81zDF7ChsmGai2tLawjeD96t6sITcdsR7muor39M5SegSc3c+nDtJ9vxmUPH+F8r+cz+ighC4zJyQG/8+fMHo2/PVpx1/UzMef3deg+pISHWf0zrSEdHB8+ePTv15Ufb4g/1ihGAgnmGoQk17n0iKooHZZJOyOGinLIdbiOiwPF+PzUOUaidTe05Qz8id4GH4j5/Vn9O7+ucz99PXn/luXGH6C3ooPb1++WCxxS3g38D5wGCC2JoeipJJQJTtQR/XyHYFhC3gXYU3XP3H4Biu3KsKpDdfxyKFRw42Leg7yu6v6Q59n5OdKCvdt/dDtVW9rZN7co/UsYrD4HjDHnpSUvqQfsHUXlN9MmjRDSHmTsgJMb7zi2Fz/z+GTyyaDV+dsa+mLbviAqPTBAEAFi2dhPOun4m3lq/BVdMm4wzDtyl3kPKFHHf+5n7Hzwub9bb1vcnKRNWqxghR1dxXkuppZu48kJBcXRN6Qve+XTRo7q6ars+gS3K1VVTGPS6umoKg56vG+fsMgJ1dkPuLiPo8CoOcmA5X6VaQ8gNttwCDq62jLDN2TVWZEC8wPWJSDsIi+4S/0Et5/JymXm50aEjUhYizikubn3w3n55SVcQhKoxamBvTL/wMBw0biAu/uvz+O7fn0dXocTv/m5I5kSuaSletV11bmxL72YhhrHEmJt2ECt0oyovlJKna1s4wuTkJUxfiKzAYEthMOXrxohdtfSYn8rQVRxrpODVUhcCwrdLE662myaOVWFrEreAkkrgpWnoAhdePzZuw7atvFdM2Co0lE0aEVNGXm6i4xRkwll9KbjvN5l4JgjVZcfebbjpswfi/CPH4Y9Pv4Gv3j4P27viJmIIQMZErldCDAgvqwsEf9SSOK31jhG3OlqiEmOKI2udkObFtuXp6vEsLi0CgtAgdG2ubkDUKssCB9zeotgL5etGiF219FiUu6uOPZAna8rlVURqrKPL4f4hYeuJcO8xKo9ZfY2sVRn816j4Vgnk3GraNbivcsKWk6xwZsBYNSFtXm6SKgsRNXOF2uO99WTimSBUn3yOcMmJe+CSE3bHP+e/iS/d+iy2dYrQjaOl3gNQmdA+LnJ/ksoGcc5OrWOE6vMyOz/sXAAoBy4wKOeJUye3lpkd4VAoOD/+qtD18nQLDGjHOb86hljeoNR4gDOOAhv/1aECgjmtfgwE+nuxuUBAju3t7uMmENDFYHI1C8PNj3VFIREYDHTB7e+Mj4kcMUjFYzxByaSk3LrPAxP8eM5AUMzlVXVhmt/nhGLTKG6V40P5u0BR4Kri2Ob0JkX9/lOPr/OlLiKCbS5A1D6lU0XFvVAaDHFyBaHWnP+BXdGaz+GKu1/AF/40B7/8xP7o2Zqv97AyS6acXMDuzJjyXwGzIM1ijIpUXnDvl5Sn68WwpS9UwNUNVFtQUhjM7Ur6gcXZDZQe69LSF/TcXcXh9VMaFPc24PSqzquWnmB0afWKC5pjqzrVfmpCQoEbKBlmSlMICGHDfsAuZquJyXk1OXqlunziDmYe76tJcnIFobacc/hYfP+UPfHgi6twzk2zsHFrZ72HlFky5eS+PGcJNnBwpm+ca6qnDnjHZDkGAIujW7yPAvtOKnm/Jrmc6746jiwzF2f554rHFf91McQCAjF8SnV1wQFBQnDdWyDk7Aba45xd17UlFJ3ZkLsLxd1F8VjHwYUf13/cgOJ4u4dov89JS3OZFncw7osSt0BI4FqPNeT0Wp3eEoUuFWokkD1yuaJSskE5gAugHBX/GTQgaQu1x8vJlXQFQag9nzp4NPq05fHNu57DWb97Gn/6/MHYoUemJF0myNQzYktXsNWujZosluUYAaELwFM6XMiFhK4xfQEICt2k6QtwxGogfQEIit0CQkIQgC+mU6cwoCicyRW2icQuHBHri12Gf5maCUChKHaLKQ+AMaVBHZQifNXmVM6hQWzZcmj1lc8CbTaB6zrU+vGmNIa4RSAqIX4rgitWzftSpB94cZRjvH8wjbnBQtXwXjFJVxCE+vDR/Ueib89WnH/LbPzg7hdw1cf2rveQMkemRC5gr1ertsUVgW+EGAEUV5cLXj3ddHm6gCtEPZFc8OrweidJ4er67nB4qOS6t6yLQvUYX7i6D0/P100qdj2X2BexrhiMcHedEyKYw6u0Oef3BqKMvysosnSHN3CciRhhG2g3pBdEClxTmoJJFKYQv1UVvFGCNookzq6QGbw0qCSFMgRBqA7HThqK8z+wK37zyKs4bvJQHL370HoPKVNk7utJr2bguTShCVwutvzYrMeIqrzg/FHuK7m1tnq6zl02lxnz+morp4Vq6ibM1QVgztVNmq/r5/wqlRj0nF2l9FgobzdUPsyN2VWMpebwBvJ41YoJyj5rHm5Mvm6gPq97c55cBMRq4HECynOj5/cWj1FfP6PALmh91feE6b2VhmqJ4ASOeaJ6uULd8d4i4uQKQn356jHjsfvOfXHRX57Hu+9vq/dwMkXmRC5QWv3LRCW8sh4jSugCQXGqi1JbmbEEk9IiS435scI368Q0ZuMxqcSueg5WJ5QVkglem+jlsLC1lgtLeDOXFONk4jbwujt/rALX4OKSoS20T8WU11pNV9dCqtSCmHq5jQgRTSWiRUS0mIguNuzvQUS3u/tnEtEYt/1YIppDRM+7f49WjnnEjTnPve1Uzcfg18mVf0YEoa70aMnjpx/fF+s2bcPFf31OSospZP7XI8kqZI0cQ28vCjxHoCaqp+sd5wpfY/UF71gtftmuricwuwrhfV0Fq9g1C9qCVQgHhKHq7qoiUxe8caK3SxOsEc5uUhc3JGz1x6iL21IFrqmiQpJ9MOyLa8sIUfVyGwkiygP4FYATAEwCcCYRTdK6nQvgXWbeDcA1AK5229cA+BAz7wXgbAC3aMedxcz7urdVVXsQKH69SC60INSfScP74aKpu2PGwrdx6rVPYuma9+s9pEyQuV8Lk/NpyoWNamvEGKEUBtV1BYpCt5z0BUXUluTqWhxaVexaXV09hSHCvQ25vt6iEloqQ8jdNQjeSNGrCd+QANZFsH4zHGt8PEC0uGUlpQFILHDNTm3EPv29pRBZWaGaVRfKSehUxFWDVVc4EMBiZl7CzNsA3AZgmtZnGoCb3e27AEwhImLmZ5n5Tbd9IYBeRNSjJqPW8N4VYuQKQjb43BHj8Juz9sfr72zCST9/DPc+v7LeQ6o7mRK53opnei1aUx5sVCmvRo6RuJ4uEJ++4Lq6at9Q+kIaV9cbk8nVdfcZUxi84yPErt29tTu/qjNqErwBV9Ymek3CVxfBtpvtGNbisz5u2MWtMrbge8AicJM4tfp7wNTHRNQ+mSBWDiMALFPuL3fbjH2YuRPAegCDtD4fAzCXmbcqbb93UxUuJYvFSkTnEdFsIpq9evXqkh+EP/FMnFxByAwn7DUM933lCEzYuS++ets8PPvGu/UeUl3JlMgFipO1bEvp2iZ86Zf/GzlGAE2IBtIXdGEKGF3dQPpCKa6uKlRjHNqAkEzh7Ma7t4XI/SbBm1T0quPVxWmpt/DjRvEGs7h12rXXPfBaFo8Nvm6W/SaiRLHep5aIUEoFEU2Gk8JwvtJ8lpvGcIR7+5TpWGa+jpk7mLljyJAhJY/By8mVl04QssXwHXvhxrMPwE79euC//jgXq9/bGn9Qk5IpkTuhfVykwxk1iUvd3wwxQkS5uqb0hUq6ut75Tbm6rB8fIXaTrrQW695q+02Ct5BS9KriN8rZTXzT4kKfjMYhcRsQx1C2lYlriQVuaL9duPqpCknEbaI+4vLGsALAKOX+SLfN2IeIWgD0B/COe38kgL8B+DQzv+odwMwr3L/vAbgVTlpE1fDeCuLkCkL2GNCnDb/9VDvWbd6GL/5pLrZ3dc/v5UyJXJVELieia9U2eoxUZcaA8l3dJBUYbGI3RhxWROza3F1Tn1As2EWvKnyjBHDCm30ymlnYWsUtEBCvZQtc2/4o0gjgStA9iq7OAjCeiMYSURuAMwBM1/pMhzOxDABOBfAwMzMR7QjgHgAXM/MTXmciaiGiwe52K4CTASyo5oMoTjyr5lkEQSiVycP746qP7o1nlq7FD+5+oagNuhGZWwzC5nJGleGKmszVLDF8/DepJ3QNi0cA5iWBAV/4ci6nrJSmr7LmncwS099dKC5MoR1i+/cpsHIaM/yVq8hZBALeog+5Yru3eITzeMNLBgMw9wksEMGBX2N/BTUPbSU053H6VpX5wdiwuKbGWrfqc2d6HmEpExYncBMScnFLiBO6QiBEwsydRHQhgBkA8gBuZOaFRHQFgNnMPB3ADQBuIaLFANbCEcIAcCGA3QBcRkSXuW3HAXgfwAxX4OYBPAjgd1V+HNUMLwhCBThlvxFYsGI9rn/8NfRsy+Piqbt3q4ooZdkmRHQaES0kogIRdWj7LnFrPC4iouOTxkySr6pP5gKSlfhq5BghauXqstauxrS5ummdXdMtrbsbiK04s13RfUNjYoRvXRxwf+Nu1jxd7zmz3YBQaoLRnU0icCvh4trQ30tCapj5XmaewMy7MvOVbttlrsAFM29h5tOYeTdmPpCZl7jtP2DmPkqZsH2ZeRUzv8/M7cy8NzNPZuavMHNXLR6LpCsIQrb59ol74JMH74Lf/mcJruhmjm651wYXAPgogEfVRrfm4xkAJgOYCuDXbm3IWHSBp7erTqfuejZ7jNB9TYQaJ6UlzNW11tX1zuO1p0lhqIbYLSlVwVK/1tTf9BjiRLAuZuOErE3Y2sStLkyjcnQD/aIFbqyLa9tfTdJWbRCBVTe8t4O8BIKQbXI5wven7YnPHjYGv39iKS79xwIUusmVt7JELjO/yMyLDLumAbiNmbcy82sAFiPBJAivhBgQXhIXCLqaSVzSZo1RjVxdf38aV7ceYtfk7sYJ3sCENC3/1lTrNkqk2h5fmpt+PmiT0qCMQd9O7PLGCNh6EfdejKFZFoRoBthN5yGIyhWErENEuOzkSTj/A+Pwx6ffwDfunN8tJqNVKyd3BICnlfumOpAhJrSPi9wfV5XA69MdYoTq7TK7+a3l5+o6+90TacenytdV42uHJcrZVfEeX0wM9ee2mJuLYA6vGks7BgDQBXCsPcXWMSDB94axzJfJjTXEJFM/tS2BA1uyi6uJUmPFDmOcynyZcjdxHxoBmXgmCI0FEeHiqbujX89W/HjGIqzbtA2/PqsdvdoSXWhvSGJFLhE9CGBnw67vMPM/yh0AEZ0H4DwA2GWXXazCL0lFArVvt4yhXj90J5JxgR33KzCxjMDM7sQzZfKYcr+4nw0T05TJYmo7Ki92AQbbJn51KWLVMMFMnYwWEq4Rojd0bBRa3MgatTpxQlfThUZxq24XDG2GflaBKwglIBpXEBoHIsIXj9oNA3q34bt/fx6fvGEmbji7Azv2bqv30KpCrMhl5mNKiJukDqQX/zoA1wFAPxrID3A4BzXK8dQv+3vHdLcYoQoM9XB1TSJadwBTil31/CF31xQnIlbgxzjk1nL4uIRCN5Ww1ePrRAlb/RiTe6u2JxG4ptgJXVyhe+O5+OLkCkLj8YmDdsGA3q34ym3z8Okbn8GfPncQ+vZsrfewKk610hWmA7iViH4KYDiA8QCeiTvIlq5gE3RpSnN1lxiB9AUgvasLVD6FoRSxa3JXo9xdUzpDYGzhmPpvcyC9wT++yoLOcBU/Utjq903iVt1W2owCNy5NIYLEqQrVQBacqDvFt4ioXEFoRE7YaxjaWnI4/5Y5+PKfn8XvP1vV9WPqApVTSoKIPgLgFwCGAFgHYB4zH+/u+w6AcwB0AvgqM98XF6+jo4MHzB0LwFyZIC7PNap/d4oRSmVQxSJ5rq42gce979fPy+WCxyqitNjHHMM/xhbbFJe0Y43xwscHxK4pvi2m3h7RFp+fWx6x+bmmtjhxq22nErjGfWEXN3U+rj7pzBRXnQRpiBGaVKkc+yDfNYeZA6UMhWg6Ojp49uzZJR075/V38ZP7F+Hmcw5Ea14mAgpCo/LDe1/E7x5bghe/PxU9WhorP5eIIr/3y62u8DdmHsnMPZh5qCdw3X1XujUgJyYRuB56JQLv0nxoopWLKTe1u8dQ9wNAcKa+QSykKDfmhDMIkDSVGNQxRVUriKnIAC5WZYiszGCKWWCgK1mVBNPqZZW8BZ4P9bXS273nvKAdo/bVtv3nxrI/UkxH/ANsFbhpqET6g6RO1I320QNw6+cPFoErCA3OpOH9UGDgjXc21XsoFSeT305xVQdsx0iMmGM08enX1QXsbluS2rqmGAnEbqLSY3FiN1AeLKXg1UVvgnMkuhmf8wTH2NrV8an99HNo27649dpNfT2iJqPZKiqY0MVvGtLWyBUEQRDKZtzgHQAAr67eWOeRVJ5MilwV/TK9qZ6sxLDHCLm6gCJkiq5u5CISQFDoRIldLwYQK3adcBaxq57LJEhjRKNV8MYJ1q5CWPimEc36uPXnPYk41s9timm7D4N7axKuUQJXJcptTeLi6guLJECWCRYEQagd44b0AQC8uvr9Oo+k8mRO5EZVDvDaVWFnapMY5hjGFAZFlBpdXVMKg3c8UBmxW4hwduPc3ZSCN5XLazuf7RZ4XlOI2CRx9DbD/YC4VV8j27Z+vtD+sHiNFKAJxGnon6YkyCQzQRCEqtGnRwuG9e/ZlE5uWRPPKk0/GsgH0RT/vkncRV22t+W0SoxwjMC+FBPTnO5lTE4LtNn3RU5SC41ZO5dtv+V+qFJDwglpJfUJnDjms2fbr7WTLirjxC0QFKJxAtdtY9Px+mQz0z7lXHGr7gX7BOMEFoIwnFcmnqWnnIlngiA0D2dd/zQ2bu3CP754WL2HkoqqTjyrBp7jqF+Gj1v6VhV8EiM+RpKJaaYUBqd70MUNua9un9TObtK83Qq4uxV3etXnMc0xUcfZ9gPB8ep9Qq+pFi8uVzetwFVJ4uJGkKV/ugVBELoLuw7ZAUtWbWy67+BMidwJ7eMCok0VYp5AszmX6n6JkTxGAF10AoitwgBUTuwazhOIYRK8gXFbBG/CKgo20Vuy8K2UQAbC49GP0V9DfVt9vk39/D4JBa7+vgm1ReTiJqmqEJWPK+kLgiAIFWXXITvgva2dWL1xa72HUlEyJXJVkpTXAqJFm8RIFiN1FYZKil1j6TEO7yvV3TWJ3hKEqEn4VlQEu1jjh16biLak4ta77/dLIXCTpCkE3lJRgjbBxDXjvoiYgiAIQmL8yWermmvyWaZycr38sLQls0xiTWKUFiMknpPk6wLmXNo0ObtqPGtubUR+sN7Xlr9rul9uTm41FouI+lwanVOTY2oRs/p9g7h1NksQuOr+JLm4SltUSkRcPu4DhTtjc7OEMJKTKwgCALy5bjMOveph/OCUPfHJg0fXeziJabic3LhcU29b35+ktJbEiI9hrcIAhJ1dQ+pBImfXVI3BlP8bl8pgc3fTOLz6GKqdmpDS2U28z8NWpcH0enqvkbrP36yiwFUxtkUJfElVEARBqDQ79+uJ3m15LGmyMmKZE7m6ONPbVZfSdrldYlQ+RkhsAqWLXaUt2E8Tu4E29WZIdUgqeHXRqz42m+iNEr6m42stdnVhq79epvumnGYg+Hp4sf0YCQWugvFKkaHN3E9SFQRBEGpBLkcYO7hP05URy5TIfXnOEn87qqKAuh3lTkqM8mKEXF0gLDRRA7Frc3dLEbzqOEwub+AxqscYhK+pb7XFrm0c+lhM99XHru73Dzecx3mB0wlcZcJg4Lw6CV1cNrQJgiAIlWXXITs0nchtqfcAVCa0j4vcH1dRwOsjMaoTIyCgfQHjChXK+WKEcsU2X/D46blUFDdqzq6Xl6nm7XoaKEdFEaXEdNq5GMPURzk3AISyZ3WhlUvxf1/SK+d6zm9kzISCzuZkmtr1x6j1CbmoNvGaQuBaz1+Oi2txdtPkqwuCIAhmxg3pg38+9yZeW/M++vVsQd+erWhryZQXmppMiVzAPkEqSTUBiVGbGFUTu0CgzRM/pGqbnCqo1Ilv6miVPhGCF0ggevXx+QeSXWiqfYDkwtVE3Dls+02Po1Rxqx+bQOAa83ANzm5ceTKjiyupCoIgCBVn4tC+YAaO+t9HAABD+vbAExcd3dBCN1PVFfrRQN7Aa0PtUU6jSXylEXoSo7wYAUyVEFBCNQY9lqkqgxLDFjsUJ6qfHtt2vGmsJipdcSHJ5zSBsHWaIsQtkMy91fuVIHCDfc3CObTUtB4LxasRsuJZeqS6giAIHtu7Cnj4pVVYv3k75i1bh1tnvoF7vnw4Jg/vX++hWYmrrpApJ9eWrmCr9xo1wUpi1C6GL3YtqQNJnF0AIFUUGVIZAu4ukZa2YE5VCDi86riAoBOMsMsLGJxefUwmcrnquo1R5waSpwQkFbd634j0hNiJZiaBaxlDEhfXew8+ULjT/E+KIAiCkIjWfA7HT94ZALD/LgNw68w38MKbGzItcuPIlJPb0dHBA+aOBWCuCJA0987UX2JUP0ZqZ1dtt9W+rZS7q+/T4yXpbzpfeKd9XzWI+PwmErZA8tQEva/JvQXSObj6OaLq4mrx9PduI9XJJaKpAH4GIA/gema+StvfA8AfALQDeAfA6cy8lIiOBXAVgDYA2wB8k5kfdo9pB3ATgF4A7gXwFY75ghcnVxAEE10Fxp7fm4HTDxiFyz88ud7DsdJwdXL1CgB67dao6gESo74xQtUYTFUQgMgV1KwVGdR4WnugkoKp7q5ejsxUGUEdi6mig3Kcer7AuUOPOeFNpcRjreMxPW79sZqeC1t/NaZy7mJ7+QLXivZc2XLKsw4R5QH8CsAJACYBOJOIJmndzgXwLjPvBuAaAFe77WsAfIiZ9wJwNoBblGN+A+DzAMa7t6lVexCCIDQ1+Rxhj2F98cLKDfUeSllkTuQC6Vf48o6RGNmIYeyTVOwC5jJgtrJfajsSCl6TgDWJR/0YZWxpxK9ReBqfm2hXNnFca4kx7bGo59aP1Y+x7K+GwLW6uAqmKwoNxIEAFjPzEmbeBuA2ANO0PtMA3Oxu3wVgChERMz/LzG+67QsB9CKiHkQ0DEA/Zn7adW//AOCUqj8SQRCalknD++HFNzeg0MBlHDMpclX0HzPVTZQY2Y6RSOyqK6gBZkEJBMWcyd1NI3jV89jEq9E5LZhvpuNNIlMbU5pbiCTnM41Tf870ePqxlv1ht7jKAjfiH4AGZASAZcr95W6bsQ8zdwJYD2CQ1udjAOYy81a3//KYmIIgCImZPLw/3tvaieXvbq73UEomcyLX5BbquZ+qoDK1SYxsxVD/+hgcU0/sBhaWiFrkQRO1wcvtCQWvyeUFzMLRli4QJX5NsSpx04k6vz5207j0OCpRk8vU5987j7rPeExlBK7pfdddIKLJcFIYzi/h2POIaDYRzV69enXlBycIQlMwaVg/AMDCN9fXeSSlk6mJZ/1oIB9EU/z7JlEVdbnclksqMbIXI0SaSWpAdPkv22Q1fZ9+nCFu6LxxfW3nrSVRn2nbZacYYeuE1dqiFnlIInC18yYVuab3WiOVECOiQwBczszHu/cvAQBm/qHSZ4bb5ykiagHwFoAhzMxENBLAwwA+y8xPuP2HAfg3M+/u3j8TwAeZOVIEy8QzQRBsbNnehcnfm4H/+sCu+O/jJ9Z7OEYaduKZ7s7YLombnEaJkf0Y3n0fkzMKJHJ3ncMN6Qx6/q6+TznO6vKq40mRn2tOd7A4wWlIGzNtKoMlLSGVe5vUwS1T4EZdZcg4swCMJ6KxRNQG4AwA07U+0+FMLAOAUwE87ArcHQHcA+BiT+ACADOvBLCBiA4m5z+3TwP4R5UfhyAITUzP1jx2HdKnoSefZUrkTmgfFxBL6g+XJ6RsP2bqfonRODFU0QtAE2xBERabu6unMwB2waunOyQVvXHCVxtPbKpBUjEcJYrLyc/Vj/eHZZrQZhC3EekJSasolOPgeu2NlK7g5theCGAGgBcB3MHMC4noCiL6sNvtBgCDiGgxgK8DuNhtvxDAbgAuI6J57m0nd98XAFwPYDGAVwHcV5tHJAhCszJ5eP+GTlfIlMhVsTmDOrrgkhiNGyNJ3q6zaXF3geSCV41v2m8Tvdo5YoVvLXJ0deLycy3HR7q2ceI2apGHiBzcciaaRb3Hsg4z38vME5h5V2a+0m27jJmnu9tbmPk0Zt6NmQ9k5iVu+w+YuQ8z76vcVrn7ZjPznm7MCzlLuWiCIDQkk4f3w9sbtmLNxq31HkpJZCon18sPS3v50SSSJEZjx7A6c0lyd7V9AOyLTfj7tf5J+kTFs5y75thycF2sn/8kSwRrfSLFLWBPT9D2mQSu7T2jvscaaTGIrCA5uYIgRPHk4jX4xPUz8YdzDsSRE4bUezghGi4nNy7H09vW95uElMRo3BihNAYPS1WDgLur7QNgdXgTubw2p9fi9hov1ZfiyMaRMmb0GMOPK/Q86H21uKFx+R1i8m9TOLhx7zFBEAShckwa7lRYaNS83Ew6uYD9ErbaHucKSozmipHW3XXuplu6N5HLazpvkv6hwyvv8Cb+PJuc2mKQRMdY6/cGOiXMvzWcN+37Q5zc9IiTKwhCHIdd9TD2Hz0Avzhzv3oPJURDObkvz1nib3tOnu7yeT9sSVxBidFcMbxjQySYrJbE4XVCxbi8NpczzvHVjzWcqxI3IzHjiJzcZjjGPCkt3r2NzL81CNxS3h+CIAhCZZk0vF/DTj5rqfcAVCa0j4vcn8QljLt0KTEaP4aeAhHAE0tEQSFFuYDIolx4f8iFzFFIzBGR2QX13Fub0PRc2ygHtVZEub2W8SVybYFo59awP2n+bZL3hyAIglB5Jg/vhwdffBsbt3Zihx6Zko2xZMrJBeyXpE25eIC9MLzE6D4xYt1dIJ3DG7HqmdU9jXNuSy0PVgppzpPQaQ4eY8ghNlRxqJTATfP+EARBECrLkROGgBm45anX6z2U1GQqJ7cfDeQNvDbUHuXg6JcxAfsPpcToPjES5e/6bTF5vIY+PpbKCYnzbRPm75ZNAgc58rvANjEuTtga+tgEfbnvj0ZZ8SxLSE6uIAhJOOemWZi9dC0e+9bR6N+7td7D8YnLyc2U72xLV4iagBLVT2JIDGs6g0dMWoPTRGGh5olek6gzpDkET6kI4DqlL8T+cxtV7UF/LlB5cWvbF/X+qMZEPkEQBAH45vETceLPH8NvH30V35q6Oxa+uR43Pr4Ul508KVOiVydTTm5HRwcPmDsWgDnvMunlSVN/iSExYicqJXB5nSaLmLK5vR4l1MtNK9xK/jynFLXFXQnELZBI4Jb7/pDqCukRJ1cQhKR85bZnMWPhW7jx7APwietnAgAu/9AkfOawsXUbU0NVVwDCM++9S5L6ZWsPW66exJAY+n2vn1UwmXJXDbm6aj6vseZrJZb79YdUgeoKSc4fOKl9tbREj930fBowubHlvj8EQRCE6vD1Yydgy/YCPnH9TAzp2wO92/L427w36z2sSDIncoHoPLyoYySGxEgaA0C04AXMIi2B6E0tfj0qvdxvksUmEozL+Jj0Y03PmwH9Oa/WaysIgiBUltGD+uDzR4zF4B3a8MdzD8LXjpmA+cvWYcnqjfUempVMilwV/QfRmGcpMSRGmTFSCd4op9dQGza1+I26JaGMeJHj1WPbnh8DaYWrfkypr60gCIJQOb594h548uIpmLhzX3x43+EgAv6eYTc3kzm5pskmadrS9pcYEiOuLZG4isqfjcvXDXSt7gQqYx6tvXPEvvg4tXxtpbpCeiQnVxCEcvjk9TPxxtpN+M83P1iXyb9xObmZErn9aCAfRFP8+0l+3PT9OhJDYlQ7RiRJPvQpBHBVSeIUV0jY6vsrEUNEbnpE5AqCUA53zVmO/75zPv7yX4eiffSAmp+/YSee6ZcmbZcr9UkqEkNi1DqGd99IkgUZqpGyUErsJGO3kJXXRRAEQagdx08eip6tOfz92RX1HoqRTIncCe3jAj9k6g+X7XKmab/EkBj1iKGL3kjhVc4KaJUUxCWuwKY/1iy8LoIgCEJt6duzFcdO2hl3P/cmtnXWp+57FJkSuSo210ZH/zGUGBIjSzFUd1J3f2NJIoTLvSUgavxZfV0EQRCE2vCR/Ybj3U3b8dv/vFp6rfYqkamcXC8/LO3lR+9HUD1GYkiMRouRJTcy7nFl8TmVxSDSIzm5giCUS2dXARfe+iz+tfAtHD95KH506j7o36u1JuduuJzcuPw7b9vkmEkMidHIMaLSHUz70rqXUTFM563381FKDEEQBKG2tORz+M0n98d3T9oDD724Cif/4jHcOXsZlr+7qd5DQ+oVlap5a29vZ49j6FQ+hk5lHbXdtN/WV2JIDInR3DEAzOYMfI810k39zhUEQSiX2UvX8mFXPcSjL7qbR190N//g7oVVPV/c935ZX5AAfgzgJQDPAfgbgB2VfZcAWAxgEYDjk8TriwGhB6D+mKk/cLYfO9uPo8SQGBKjuWOIyBWRKwhC/enqKvCLK9fzF/80h8ddcg+/tnpj1c5VbZF7HIAWd/tqAFe725MAzAfQA8BYAK8CyMfFM33hxv0YxrlCEkNiSIzuEUNErohcQRCyw9sbNvPE797LX73t2aqdI+57v6ycXGa+n5k73btPAxjpbk8DcBszb2Xm11xH98AkMW2Tb0y5eIA5H09iSAyJ0T1jCIIgCNlgp749cfYhY/D3eSuweNV79RlElAJOcwPwTwCfdLd/6W27928AcGpcDFO6AnO066Nf0rT1lRgSQ2I0dww0kJMLYCqcVK7FAC427O8B4HZ3/0wAY9z2QQD+DWAjgF9qxzzixpzn3naKG4c4uYIgVJN3Nm7lSZfex1/405yqxI/73m+JE8FE9CCAnQ27vsPM/3D7fAdAJ4A/JZfXfvzzAJwHALvssouxj62Opt4e5exIDIkhMZo7Rj3WTS8FIsoD+BWAYwEsBzCLiKYz8wtKt3MBvMvMuxHRGXDSwU4HsAXApQD2dG86ZzGz1AQTBCETDOzThs8eNha//PdiXHjUBuwxrF9Nz192nVwi+gyA8wFMYeZNbtslAMDMP3TvzwBwOTM/FRWro6ODB8wdCyBcWkhvi8LUX2JIDInR3DEapU4uER0C5/vwePd+4PvSbfO/M4moBcBbAIa4zoX3vdvBzBcqxzwC4L/TiFypkysIQrVZv2k7Dv/Rwxg9qDc+f8Q4HLX7TujXszJ1dGO/96Ns3rgbnEtuL8D58lXbJyM48WwJUk48SzoLO8nlTIkhMSRG88dAg6QrADgVwPXK/U8hnHqwAMBI5f6rAAYr9z9jOOYRAM/DSVW4FK6JEXWTdAVBEGrBX+cu444fPMCjL7qbD/jBA7xh87aKxI373i93MYhfAugL4AEimkdE17rCeSGAO1wB/C8AX2TmrqRBvaLwaTAVkJcYEkNidL8Y3ZizmHkvAEe4t0+ZOhHReUQ0m4hmr169uqYDFAShe/KR/UZi5iVT8KNT98aq97bi2TfW1eS85VZX2I2ZRzHzvu7tAmXflcy8KzNPZOb7Sj1HkhWRJIbEkBgSo4FYAWCUcn+k22bs46Yr9AfwTlRQZl7h/n0PwK2wVLRh5uuYuYOZO4YMGVLSAxAEQUhLLkc4Yc+dQQTMef3d2pw0yuat9a29vd14GTNtm8SQGBKj+8VA46QrtMBJ4RoLoA1Oatdkrc8XAVzrbp8B4A5t/2egpCu4MQe7260A7gJwQdxYJF1BEIRac/w1/+FPXv90RWLFfe+XPfGskvSjgXwQTfHvm2ZWR13KTFJLU2JIDInRnDEe5LsaYuIZABDRiQD+D0AewI3MfCURXQHnC3s6EfUEcAuA/QCsBXAGMy9xj10KoB8cgbwOzqI8rwN4FI7AzQN4EMDXOSZNTCaeCYJQa77zt+cxfd6bmPe945DPlVcVp6oTzyp90+vkqo5N3GSUJJNVJIbEkBjNGwMN4uRm6SZOriAIteYvc5bx6Ivu5hdXri87Vtz3ft2/ZNWbLV3BI+7SZdRlT4khMSRGc8cQkSsiVxCE7PPa6o08+qK7+Y9PLy07Vtz3frnVFaqGada1CfUSpq1wvMSQGBKje8UQBEEQssnoQb0xqE8b5r6+rvoni1LAtb55rkKUo2PiGAovCyoxJIbE6F4xIE6uOLmCIDQEn7t5Fn/wx/8uO07c937mnFxbqSD1/rG500L7k5QbkhgSQ2I0dwxBEAQh+7SPHoDX1ryPdzZure6JohRwrW/6ime2PLwkOXwSQ2JIjO4VA+LkipMrCEJDMHPJOzz6orv5gYVvlRUn7nu/7l+y6k2vrsBsn6Bi+7Gz/ThKDIkhMZo7hohcEbmCIDQGm7d18q6X3MNX3fdiWXHivvdbqusTp2NC+7jI/d6lzKjLk3GXLiWGxJAYzRlDEARBaAx6tuYxeUT/qq98lsmcXFu7aZ/pR09iSAyJ0T1jCIIgCI3B/rvsiOeWr8P2rkL1ThJl89b6ZkpXYI7O4dMvadr6SgyJITGaOwYkXUHSFQRBaBj+OX8Fj77obv7tfxbzynWbS4oR973fEOkKtjqaenuay6ESQ2JIjOaKQVTe8pCCIAhC7Thk3CDs1LcH/t+9LyFHhM8dEZ2yWgrkCOFs0NHRwQPmjgUQLi2kt0Vh6i8xJIbEaO4YsWuYCyE6Ojp49uzZ9R6GIAjdlEKB8cqqjRjQpxU79e2Z+vjY7/0om7fWN72EmPpXb7fdN+2TGBJDYjR/DEi6gqQrCILQrYj73s/cxDOgWBQ+7TESQ2JIDIkhCIIgCEAGqyvo6JcuvVJCEkNiSAyJIQiCIAhWomzeWt/a29uNlzHTtkkMiSExul8MSLqCpCsIgtCtiPvez9TEs340kA+iKf5908zqqEuZSWppSgyJITGaM8aDfJdMPEuJTDwTBKGRaaiJZ3qdXNWxiZuMkmSyisSQGBKjeWNAnFxxcgVB6FbEfe/X/UtWvdnSFTziLl1GXfaUGBJDYjR3DBG5InIFQehexH3vZ3bimWnWtQn1EqatcLzEkBgSo3vFEARBEIS6OwnqzXMVohwdE8dQeFlQiSExJEb3igFxcsXJFQShWxH3vV/3L1n1pqYrxOXomS536vclhsSQGN0nhohcEbmCIHQvGk7kephcHr09zvWRGBJDYnSfGCJyReQKgtC9iPvez1QJMSJaDeD1Opx6MIA1dThvNZHH1BjIY6oco5l5SB3O27CU8Z2bpfdtVsaSlXEA2RlLVsYByFhMZGUcQOljifzez5TIrRdENJubrL6mPKbGQB6T0Ihk6TXOyliyMg4gO2PJyjgAGUuWxwFUbyyZra4gCIIgCIIgCKUiIlcQBEEQBEFoOkTkOlxX7wFUAXlMjYE8JqERydJrnJWxZGUcQHbGkpVxADIWE1kZB1ClsUhOriAIgiAIgtB0iJMrCIIgCIIgNB3dWuQS0Y+J6CUieo6I/kZEOyr7LiGixUS0iIiOr+MwU0FEpxHRQiIqEFGHtq8hHxMAENFUd9yLiejieo+nFIjoRiJaRUQLlLaBRPQAEb3i/h1QzzGmhYhGEdG/iegF9333Fbe9oR9Xd4SIlhLR80Q0j4hmu23G15Ecfu5+Hp8jov2VOGe7/V8horNLGMdEdwzebQMRfZWILieiFUr7icoxxu+2Ur430nxOS3keiKjdfZ4Xu8dSinEYf7OIaAwRbVaem2vjzpfmM2oZS8VeDyIaS0Qz3fbbiagtxThuV8awlIjm1eg5SfXdV633SsQ4av5eiRhLzd8rPlFFdJv9BuA4AC3u9tUArna3JwGYD6AHgLEAXgWQr/d4Ez6mPQBMBPAIgA6lvZEfU94d7zgAbe7jmFTvcZXwOI4EsD+ABUrbjwBc7G5f7L0HG+UGYBiA/d3tvgBedt9rDf24uuMNwFIAg7U24+sI4EQA9wEgAAcDmOm2DwSwxP07wN0eUMaY8gDeAjAawOUA/tvQx/jdVur3RprPaSnPA4Bn3L7kHntCinHYfrPGqP20OMbzpfmMWsZSsdcDwB0AznC3rwXwX0nHoe3/CYDLavScpPruq9Z7JWIcNX+vRIyl5u8V79atnVxmvp+ZO927TwMY6W5PA3AbM29l5tcALAZwYD3GmBZmfpGZFxl2NexjgjPOxcy8hJm3AbgNzuNpKJj5UQBrteZpAG52t28GcEotx1QuzLySmee62+8BeBHACDT44xJ8bK/jNAB/YIenAexIRMMAHA/gAWZey8zvAngAwNQyzj8FwKvMHLVghe27raTvjZSf01TPg7uvHzM/zc6v9B9g+WyYxhHxm2Uk5nyJP6OW58RGqtfDdQuPBnBX3FiixuHG+TiAP0cNroLPSdrvvqq8V2zjqMd7JeI5sVG194pHtxa5GufA+c8FcF6UZcq+5Yh+oRqBRn5MjTz2OIYy80p3+y0AQ+s5mHIgojEA9gMwE030uLoRDOB+IppDROe5bbbX0faZrPRn9QwERcuF7uXXG5VLprUYS6WehxHudiXGpP5mAcBYInqWiP5DREco47OdrxKf0Uq8HoMArFMEWanPyREA3mbmV5S2mjwnCb/7qv5e0cahUvP3imEsdXmvNL3IJaIHiWiB4TZN6fMdAJ0A/lS/kSYnyWMSGg/3v+eGLHdCRDsA+AuArzLzBnVfIz+ubsbhzLw/gBMAfJGIjlR31vp1dHPtPgzgTrfpNwB2BbAvgJVwLk3XnCy8nw2/WSsB7MLM+wH4OoBbiahf0nglPqZMvB4KZyL4D1FNnpOsfPfZxlGP94phLHV7r7TU6kT1gpmPidpPRJ8BcDKAKe6LBwArAIxSuo102zJB3GOykOnHFEMjjz2Ot4loGDOvdC8Xrar3gNJCRK1wvtD+xMx/dZsb/nF1N5h5hft3FRH9Dc4lQ9vraPtMrgDwQa39kRKHdAKAucz8tjuut70dRPQ7AHfHjAUR7Wmp1POwAsHLxqnHZPrNYuatALa623OI6FUAE2LOV9ZntIKvxztwLt23uA5dKc9JC4CPAmhXxlf15yTld1/V3iuWcdTlvWIaSz3fK03v5EZBRFMBfAvAh5l5k7JrOoAziKgHEY0FMB5OQnYj08iPaRaA8e6syjY4lzCn13lMlWI6AG827dkA/lHHsaTGzZG6AcCLzPxTZVdDP67uBhH1IaK+3jacSSsLYH8dpwP4NDkcDGC9ezlzBoDjiGiAe0nyOLetFALOnPvj6vERd3zeWEzfbZX83qjI8+Du20BEB7ufnU8jxWfD9ptFREOIKO9uj3OfgyUx5yvrM1qp18MVX/8GcGqpYwFwDICXmNm/3F7t56SE776qvFds46jHeyViLPV7r3DMTNNmvsFJcl4GYJ57u1bZ9x04s/sWwTL7NYs39w20HM5/am/D+bA09GNyx34inJmarwL4Tr3HU+Jj+DOcSzXb3dfoXDg5Rg8BeAXAgwAG1nucKR/T4XAuXT2nfI5ObPTH1d1ucGYxz3dvC73PmO11hDP7+lfu5/F5BCu5nON+ty4G8NkSx9MHjmvTX2m7xT3Xc+6P4zBln/G7rZTvjTSf01KeBwAdcH7kXwXwS7iLMiUch/E3C8DH3NdtHoC5AD4Ud740n1HLWCr2erjvv2fcx3cngB5Jx+G23wTgAq1vtZ+TVN991XqvRIyj5u+ViLHU/L3i3WTFM0EQBEEQBKHp6NbpCoIgCIIgCEJzIiJXEARBEARBaDpE5AqCIAiCIAhNh4hcQRAEQRAEoekQkSsIgiAIgiA0HSJyBUEQBKFGENE1RPRV5f4MIrpeuf8TIvp6Bc93ExGdGt8zddxvK9tjiGhBVH9lLK8R0QVa+zwiuq3SY3Rjf4aIhlcp9hFE9EKSxy7UBxG5QlVxv/w2E9G8eo8FAIjox0T0FhH9d73HIghCt+QJAIcCABHlAAwGMFnZfyiAJ+swrrR8O76LkW8y87XeHSLaA0AewBHuQiSV5jMAjCLXWxShVJj5MTj1XIWMIiJXqAWvMvO+STuX+8UTBTN/E8C1sR0FQRCqw5MADnG3J8Mpvv+eu+JVDwB7AJhLRJcR0SwiWkBE17krZe1ORP5Kla6J8Ly73U5E/yGiOa47PEw/sa0PET1CRFcT0TNE9DIRHeG29yaiO1y38m9ENJOIOojoKgC9XAf2T274PBH9jogWEtH9RNQr4fNxJpzFAu4HME0Za9ox5V2neAERPU9EX3Md7A4Af3LH2ouIlrpx5wI4jYjOdPsvIKKrlfNvdE2RhUT0IBEd6I5pCRF9OOFjE+qMiFyhphDR390v2IVEdJ7SvtG9TDcfwCFE9Gkieo6I5hPRLW6f09wvovlE9Kjblne/iGa5/c9XYl7kfnnNd7+UBUEQ6gozvwmgk4h2gePaPgVgJhzh2wHgeWbeBuCXzHwAM+8JoBeAk5n5JQBt5CyBCgCnA7idiFoB/ALAqczcDuBGAFeq503Qp4WZDwTwVQDfc9u+AOBdZp4E4FIA7e5juBjAZmbel5nPcvuOB/ArZp4MYB2clbWScDqA2+CsZnamti/xmADsC2AEM+/JzHsB+D0z3wVgNoCz3LFudvu+w8z7A3gUwNUAjnaPP4CITnH79AHwsPt43gPwAwDHwllV9IqEj02oMy31HoDQ7TiHmde6/+XPIqK/MPM7cL5QZjLzN4hoMoDvAjiUmdcQ0UD32MsAHM/MK4hoR7ftXDhrgB/guiBPENH9AHaH4wocxMyblBiCIAj15kk4AvdQAD8FMMLdXg8nnQEAjiKibwHoDWAgnKVY/wngDjjC8Cr37+kAJgLYE8ADRAQ4l/9XaueM6/NX9+8cAGPc7cMB/AwAmHkBET0X8ZheY+Z5hhhWiKgDwBpmfoOIVgC4kYgGMvPaEsa0BMA4IvoFgHvgOMM2bnf/HgDgEWZe7Y7nTwCOBPB3ANsA/Mvt9zyArcy83XXOYx+bkA1E5Aq15stE9BF3exSc//7fAdAF4C9u+9EA7mTmNQCgfOE9AeAmIroDxS+/4wDsTcWJFf3dmMfA+U9+kxZDEASh3nh5uXvBSVdYBuAbADYA+D0R9QTwawAdzLyMiC4H0NM99nYAdxLRXwEwM79CRHsBWMjMh8AOxfTZ6v7tQmnaYKuy3QXHfY7jTAC7E9FS934/OA7w79KOiZnfJaJ9ABwP4AIAHwdwjqX7+wnGtp2Z2d0ueGNh5gIRiXZqECRdQagZRPRBOOLzEGbeB8CzKH5xb2HmrqjjmfkCOA7vKABziGgQnC/uL7mXovZl5rHMHPUfvCAIQr15EsDJANYyc5f7T/iOcFIWnkTxe3ENEe0AwK+OwMyvwhF9l6LoSC4CMISIDgGc1AT3iphKkj46T8ARiyCiSXBEucd2NwWiJMiZdPdxAHsx8xhmHgPn6puespBoTEQ0GECOmf8C53dif7f/ewD6WmI9A+ADRDSYnLkgZwL4T6mPScgeInKFWtIfTi7VJiLaHcDBln4Pw5kQMAgAvFQDItqVmWcy82UAVsMRuzMA/Jf3ZUtEE8iZofsAgM8SUW81hiAIQgZ4Hk5Vhae1tvXMvIaZ18FxMxfA+Y6bpR1/O4BPwkldgJvDeyqAq915DfPgVnDwSNLHwK/hCOMX4OSkLoSTUgEA1wF4jooTz9JyBIAVbo6yx6MAJpFh0lyCMY0A8Ag5lXz+COASt/9NAK71Jp6pgZh5JYCLAfwbwHwAc5j5HyU+HiGDUNGNF4TKQ0RjANzNzHu6ObN/h5PPtAiOc3E5Mz9CRBuZeQfluLMBfBOOY/EsM3/GvTw3Ho57+xCcyQgE54vuQ+72agCnMPN6IroYwKfh5Fbdy8zfdmNfDmAjM/9vVR+8IAhCA+O6m63MvIWIdgXwIICJrmAuJd5NcH4P7srKmMpF/Y2rx/mFaETkClUli18AInIFQRDiIaK+cFzOVjgmwkXMfF8Z8X4GZx7Fz9RaufUcUzmQU9bs13CqNXywHmMQohGRK1QVIhoFJ8fsnTS1cqsFEf0YTgmYnzDzb+o9HkEQBEEQqoOIXEEQBEEQBKHpkIlngiAIgiAIQtMhIlcQBEEQBEFoOkTkCoIgCIIgCE2HiFxBEARBEASh6RCRKwiCIAiCIDQd/x8nWLP2ADY9xAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# See the docstring of `elliptical` for more keywords\n", "my_elliptical = sim_tp.extragalactic.galaxies.elliptical(half_light_radius=30, # [arcsec]\n", @@ -129,7 +85,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -143,7 +99,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/5_liners/simulation_parameters.ipynb b/docs/source/5_liners/simulation_parameters.ipynb index 6f781fd9..2b5f446a 100644 --- a/docs/source/5_liners/simulation_parameters.ipynb +++ b/docs/source/5_liners/simulation_parameters.ipynb @@ -14,56 +14,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "defensive-practitioner", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'spectral': {'wave_min': 0.3,\n", - " 'wave_mid': 2.2,\n", - " 'wave_max': 20,\n", - " 'wave_unit': 'um',\n", - " 'spectral_bin_width': 0.0001,\n", - " 'spectral_resolution': 5000,\n", - " 'minimum_throughput': 1e-06,\n", - " 'minimum_pixel_flux': 1},\n", - " 'sub_pixel': {'flag': False, 'fraction': 1},\n", - " 'random': {'seed': 9001},\n", - " 'computing': {'chunk_size': 2048,\n", - " 'max_segment_size': 16777217,\n", - " 'oversampling': 1,\n", - " 'spline_order': 1,\n", - " 'flux_accuracy': 0.001,\n", - " 'preload_field_of_views': False,\n", - " 'bg_cell_width': 60},\n", - " 'file': {'local_packages_path': './',\n", - " 'server_base_url': 'https://www.univie.ac.at/simcado/InstPkgSvr/',\n", - " 'use_cached_downloads': False,\n", - " 'search_path': ['./inst_pkgs/', './'],\n", - " 'error_on_missing_file': False},\n", - " 'reports': {'ip_tracking': False,\n", - " 'verbose': False,\n", - " 'rst_path': './reports/rst/',\n", - " 'latex_path': './reports/latex/',\n", - " 'image_path': './reports/images/',\n", - " 'image_format': 'png',\n", - " 'preamble_file': 'None'},\n", - " 'logging': {'log_to_file': False,\n", - " 'log_to_console': True,\n", - " 'file_path': '.scopesim.log',\n", - " 'file_open_mode': 'w',\n", - " 'file_level': 'DEBUG',\n", - " 'console_level': 'INFO'},\n", - " 'tests': {'run_integration_tests': True, 'run_skycalc_ter_tests': True}}" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import scopesim\n", "\n", @@ -76,7 +30,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -90,7 +44,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/5_liners/source_from_images.ipynb b/docs/source/5_liners/source_from_images.ipynb index 8a859ce6..f3e82ff9 100644 --- a/docs/source/5_liners/source_from_images.ipynb +++ b/docs/source/5_liners/source_from_images.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "armed-tampa", "metadata": {}, "outputs": [], @@ -78,23 +78,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "viral-holly", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAE9CAYAAAA4WbXTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WYxsa57dh/2+YQ8xR85nvufeW/femqu6eih2t5uTSJmkIbcNyAYlP1iAABqw+WQIMF8swAIMEH7wIFgw3JYJWwZs2SZkkoYpERQpqokm2V3V3TXXrTue+eTJMTKmPX2DH/474pyqrm7W7a5Tt1m9F3CQeTIjI3bs2JG5vvWt/1oqxkiHDh06dOjQoUOHDh1eDvTHfQAdOnTo0KFDhw4dOvw0oyPcHTp06NChQ4cOHTq8RHSEu0OHDh06dOjQoUOHl4iOcHfo0KFDhw4dOnTo8BLREe4OHTp06NChQ4cOHV4iOsLdoUOHDh06dOjQocNLhP24D+DHhf39/Xj37t2P+zA6dOjQ4Q+F3/7t3z6LMR583MfRoUOHDh1+/PipIdx3797lq1/96sd9GB06dOjwh4JS6v7HfQwdOnTo0OHloLOUdOjQoUOHDh06dOjwEtER7g4dOnTo0KFDhw4dXiI6wt2hQ4cOHTp06NChw0tER7g7dOjQoUOHDh06dHiJ6Ah3hw4dOnTo0KFDhw4vER3h7tChQ4cOHTp06NDhJaIj3B06dOjQoUOHDh06vER0hLtDhw4dOnTo0KFDh5eIjnB36NChQ4cOHTp06PAS8SeacL99POf/9s/vfdyH0aFDhw4dOnTo0OGnGH+iCfevv3PK//zvfpurovm4D6VDhw4dOnTo0KHDTyleKuFWSv0lpdT3lFLvKaX+xg/5/p9WSv2OUsoppf7NH/je/0op9W2l1HeVUv+hUkr9uI/vlb0BAPfPVz/uu+7QoUOHDh06dOjQAXiJhFspZYD/CPjLwKeBf0sp9ekfuNkD4N8B/u8/8LO/BPwy8Hngs8DPA3/mx32Md1vCfe98/eO+6w4dOnTo0KFDhw4dALAv8b5/AXgvxvgBgFLqPwV+FfjO5gYxxnvt98IP/GwEciAFFJAAz37cB/jKXh+Ae2edwt2hQ4cOHTp06NDh5eBlWkpuAg9f+P+j9mv/UsQY/znwXwFP23//IMb43R+8nVLqrymlvqqU+urp6elHPsA8MVyf5NzrLCUdOnTo0KFDhw4dXhL+WA5NKqU+AXwKuIWQ9D+vlPqVH7xdjPHXYow/F2P8uYODgz/UY72y1+8U7g4dOnTo0KFDhw4vDS+TcD8Gbr/w/1vt134U/HeBfxFjXMYYl8B/Dvzij/n4AHh1f8D9zsPdoUOHDn9k/MsG5Tt06NDhTypeJuH+CvCGUupVpVQK/FXg7/2IP/sA+DNKKauUSpCByd9jKflx4JW9AeermnnZRQN26NChwx8WP+KgfIcOHTr8icRLI9wxRgf8deAfIGT5/xVj/LZS6j9QSv23AZRSP6+UegT894D/o1Lq2+2P/23gfeCbwNeBr8cY/78v4zjvtoOT9886lbtDhw4d/gjYDsrHGGtgMyjfoUOHDn/i8TJTSogx/n3g7//A1/79Fz7/CmI1+cGf88D/6GUe2wZ39zfRgCs+d2vyk3jIDh06dPhpxA8blP/yx3QsHTp06PDHCi+VcP+rgDu7rcLdJZV06NChw0uHUuqvAX8NQCXpzybXDyAqTAnKQzQQEvkchYTEKggGSNsEWa8gKNARnQQiEBsNUUEE7drb2whBoWu5HxXb+9Pg29BZFUA5edyYBfAK5RWR5z+vnNwOBSGPEOQ+jA2ECFqBd1p+1snjRC33lyaeukhAtccaFdGr73tuOAUmyrGXimjlezGJYCJKQXQaQnvf7XFHJedEKVBrTTTtfSL3G7WcR1O9cC6RcxNS+Vy75/eHknOBbn82gH7BbRlVew6snC+7ls9Bbh8SMI08js+e37duz1/U8jm096HltqEXn792Tfs4Gmgf3/fa1y+010i7Nx/zCE17Lm0Ar2Fz3WhAR3AK1V43MSKvZ6OIGkzu8LVtX4e4/TlVKTknUZ4nIK9PkBOrvBwbbR1fzOTCUrVG1y88t/b5aff8PKnw/HXfnM/N67B5bbAR1Sg2gcmb86Ri+75ov7Y5D9trIj5/jKi+/z304vdefD1VBBUi0SgIUW73wnNTYfOD7XvihWPeXhMoVIztccm52z7/F55zNPL8omnPp6b9RnuHXmFXoJ3cl24ChM0BK6JR1FMDEZJV3J7DzXPbHMv2+GLcfo/2vb99G+jnt4+mfX1eeI9E/cJzjUAeMDrgaoNqFGhoLi/wq9WPXMr4J55w91PL0Tjjw85S0qFDhw5/FPxIg/Ixxl8Dfg2gd+12fO2v/k9Zf74glJbJNxOyy8jylqK44dGVIiQQk0ByZdAN1DsBu9SYQuHziO9H1EGFTRzxnSGTd6HcV1S7EVMIkfc5mJLtH9neaUQ3sLgjfzin7waavmL+GnK//Ugw4I5qktzRXGWoStN/qnH9SHWzQZlILA3DoyWpdaTWcz4bEh/2MYWQMtePXP+ZYzLr+PDZHtd25zx+vEs6rKkXKXpuCRNHMqhpLnLSvZL44YBgI71jTb0TaaYBgpDv/Fj+ZJfXHKrniIVF1Qq9X8GTHO2E7PSfKsq9iBtFdKUYPFaYKrJ4BZKFwg2E3LtXS0a/1UM5KPeh2vekl4bxh5HZW0LYhg9gcOIxRSBaRbFrMU2kHiryWcDlimqs6Z0HigPN7LOOZGawS0X/aSQkUBwp8lO2C53sMlJPFcVhxK5lQbS+7Yk2YhYGdMSPPKrR9B8YooZ6GnG7juypZfy+vKYXPyPsM39i8Z9aER71iUkkjJ0Q8ZbI5XsF1SqFhSW7tia8PcT3IupGyXi05vJySHQanXjiZQpRYVeK/Fyxvi7sNeRByFcAu9aYtUJFqCcBvyerhOxRgl0rfArVgSe50iivCFkk2IhdCSFPVoCCcl/Oj3JgV7LQcoOIG3qyU0s6l/NVTyLJQpFdgSkizVgeIySyIFEBmpHcRtfQjGSRpet2YVREolKYOpLPAlErIb4abLkhypCsAroOoBUhUSgXsat2JaAUIdX4TBMShSkD0QgJtmsvJNtq6pF836fyGLaSx65HimYsr2Mz9pC/sHp0iuTccvjbgWThsaUnOVmiqoaoFRhDczji3n8rJ50rDr7eyEItVehGruWQKCH7ZrMwi0Lc4/PPVYhErXB9Q0gUwSrKqaKeyAJsQ86DlQVjbBfBKKgP5DykJ1auHa948r/+33ykX5B/4gk3SONkp3B36NChwx8J20F5hGj/VeDf/pf9kOuBfZCj3liS/6VLTt7dJ1nA4KEhP4tcvQmD71mKa5F6Euk9MdTTSMjiVvH0K4seBbLPXHF6MMDMrSijeUQ7Rf84YmohFa4nhFw30H8WaQaKpq9wfSGF2Uy+pl2kWGRUBwnmsATA3/DUx30G76YUnykwY49zBq0iRZWSZo7yZkl9kbLzLU09Vjz+9hG3P3vMrf0ZpbPk44q6skLQLjXZ+ymrX6mh57m1N+M0a1gcj1i+5UmPhVDHNApp7CewSDALg08DeijEwy8TVBoZPNKsr8dWmVaEgcMuLOk8YstIUWiK60JsVVTE2tAMIL0S4mbXGv/GmtObFhqNGjgudxLKR5beaRQy44TcpMtI09dCahQUe5r9rxek85zlTcX6bkNILb0ThalAxUgyh3ooRFUIY6SeRtJLTf7MUB54Qi+QPzXUQeHHjuK6IpkrTKlwAYiKZgCmiWQnhurIoR00QeMnDlVqaBT5bkn1tE9MI+UsJx1X1EGRJo7qrSXhpA9nGbOgyPs1zXsjQm7RBxXhPMWNIvHCoBshcXalcf1AHHqSp7IIqPYDoRcwacAvEkwpC0Q0qGlNXOakM6gSIb7ayQ5ANELolAfbiKoL4Ix8bfDAykKz3WWwhajdppLruLLPVXTt5FzmZ7JDUE/ADSMqKLST6115+dzU4BP1XLlviap2cn1s1F3X0+g6glL4vsUUHuVlWydqIbnaRWgi2guBj4kQbTneuFW1VYhUU4XvyQIhGDk/m10q1WjyY8Ph7zboJmKXDfZ0gWocKAXG0lwb8eAv5mSXioOv1USr8JnG1O1i1ArxD+1uhGlJOAG0j+gmCNlWCp/KTpDLFesDjeu3BP2F3Z9o2O54RCNrguTCorw8h/RSs/8tx8lqI5//aOgIN0K4/9HbJx/3YXTo0KHDv7KIMTql1GZQ3gB/K8b47T/oZ7SD/Byu3ozwdMDieETaqkfBwtkvOuylZflKxA8DUUfWtwNmZdCVqNPBQf4koR4blnmG6nsGb8yYnwxJLiw+h9XNlrAU8sc1GEgWkXJPUe5H/Jk83uBppH/icH3NxScN5VslLBJ6X+8TLFQHAX1YskpS7OMc+/qSPG0YZDXPLsbynIxncvcS/84+gycBU2ru9w4ZHK0Y9UrytKE66WN3KopXIqP7CfU3hrjrng/uHZIMGszCkM4V1W4g5AE1cNSlhauEaCL5uSLMUopXayF3hYFJQ/GnCsLTPs1ASGL/g4T1qw0zYxk80uRnEbs2+EwUUX1mCGmrgBqFXSvCWZ/Vq57h+wY3sBR3a9Z3A+VnHPbDnGSp5GcbzfjDyNVrmmQlRPz8szmjRx5TayDB5y2BUVBNhSiHVBTv4aNIPVE0U0/RC5hCoxtFMtfEpLWzrE1r+VGt1UFRHTpMZdG12HfM3AqBXVtU5iHz4DTGBNROjbUBbQLVIkMVhqKfkOcN9ahBn6WYeznFdYNJIulME1Y54VaFukgp9yOmEoU6u1A0O63lKIKuRJWu+xG/tCivKA+FACqvCGuLdfJ8TXutmgrSq0g9kutNV3JdCqGntULILoWuhXxvLCSmbt80GwuKB7yQbVMJGXd9he9FzFphi/bmLbk2SyGHKrxg2ULsGxsrl/Lge3LOtY8Eo1ChVYaNJlixjmgX0S6Ab9VxI0RchUiyiq3VRaNCxOXiK9Gt1QhAl5po5H3eO9bsfcvJ4mPlsCdzVNWA0cQ8pbw94eGfT8jPFfvfqAmJbs9HaG0qqlW328VJGUT1bq0wIdEE2yraiaLpaVl07yl8DlELsdaNap9L3J4fU8rCXHm2tpxoZLfs6q7F9X9kNwnQEW4AXtnvc7asWJQNozz5uA+nQ4cOHf6VxA8blP+D4Pqw+OU15lEPgGov4HcdOvXYxJNE8EtDslDkZwa7hvX1SH3k8GNQPU/er/FeE+YZ2ZOEekdRHE/RqdhCbCOEZONd1Y2oi9VUiKMfetY9Rex5squU9ZFlfSR2FXWRMv2uIupIPVbYpULNe/jbNW434s57sAdaBw5351ytezSNofEG92fm5H9nyODYU1wzrMOQcKQY90uiisTHPT73Cx/ywXuvsfu25+muIk49zTJFHdTUSsi1LjU7v5Nx9QlI5opqL1B8piB6jTlL6J1oqt2IDwn+IGBvrClMj95Tw/h+oP/MMn9dlE9bKlxPzkd2IWpsSGDwzMExXL6ZMHgaAAMKDn7XoX5HcflGQj1JxCaxNOy8HWn6YkeYfBC5el0TrCixc2WxhZAWW7S+3RSIYEtILiLrG7C6rug9g3RuWd/0W8IUNYQs4vtiHVIeoo3oQqFLTXJzRb0Ykp2rrb+8PPKoUpM9SihvNfR2CrzX5P2a8v6IeK0UL/9uhXeGsoS4sviBqLZqafETRzJPSa8U9YHBNIpoI9Rgl6KeqkrIXrDgh1EWHxNN/5Gh2hMriBo41FlK/iShGYet0myXShZ8HtBybjZWJ+WFzIVWBdeNnKvNe0R5sGshkFtlvJDj0E4sE8EoXA66bo87CKEUZbx9f2ra3RuElCKEO1hFRNRf7SJ2JWw8GoUuhLyGzBCtWKWUiwSr0UFsJdoHAhpTBHTt8bnZWj42NhzdRFlQrcQOg1bkp4rpew7lI6by6LLZesbjoMf67pjHvyK7JPvfquU4jRyzbuKWRLtc0QzajyNDM4q4YSD2PTp1Yv8KQo61bs+jk9cyegWVkddWRzl3CnlBvMIUWixsZeuzb+cT+GhcG+gINwCvbZJKztZdUkmHDh06/KRgxR/rxh5Vyx+3/H5KvROI19YQhTz4TFHveiGglUZlHv0sg4VBn+UkFeRAcRTBQLPfyFCljdQ3HUniqSuLTYRI1KsUtTKgYfSe2E/mn4Dl7UhIRc00lSI/U4weNJg6cPVainZCFnofZBTXHcopquM+9dSS5o5hr+JgtOR81Wd3uObxn8vZ/w2xGuhnhnKUcjRZcPv1Ux69e8iHF7vs/rmnPHx1X1T6ay2pqzXZqwvMb0wojiLFviKZQzqH8T2Y3+1R7QXCfsNqH/R5QnamMU97lPuR8SOFKUW57J96lDe4fhRfbQIhjZiyHRZLI09/yZIsRSWc7SnSGTRjcH3N4HHJzjuwumZR3lAeBJTXZLPI8oamfxJahVXU1tUtIVa6Fr+u8mJ3SK8iq+vi7bVr2W3QDaBg+h2xI1RT+Vp2qah2tdgzItTTQNwXG0wIz4cJy0PZAdClJvQ91Z6o+vXE0v/kDB80cV+kYXtuiVeGMPbQA5JIcmoxpSjWlbfi2UVhL+XrIYNmGEnnqr0uDPU40AwjbscRUkt2ZkR9Dgi5ToJ4zieBMPLbwdX8TKMbsVps7CA+jaQzIaWuL18zNaQLuZ3Png+SKge+pzBFlHkERNXeLFLEBiGDrBsvcz2N2OVm+rElioCpY2tHEaLuUzmnKoCuRcH2mW5VbyHbPhOF2/j2Z33cqt8h0egmYJc10WpMFeR5ZqKW2yritNr6zU2pSJYweuTQdcQWHrtqxB6Sp9DLWL8y5tGfN4w+VOx9q8T1ZBEYEkU1NhQHiuJaxO03pIMapSLBa5pVgr1I6D0x5OcaUyWEBHyqcH22Vp00yi6CLWmHYQUbZT8k8prUk0g9DWAjsedRC8vgsWZ8L5AsX/jBH+XX3Uf77fjTidcPhgC8f7rsCHeHDh06/ISQJY5ev6LSgRAVrrR4GxiOC6a9kuOLMWpaY44cfDAkuxRytMwsqCi2Ag/lXhQ10YtSzSYJotRwmVNZiLknzHIGjxV7zwLlriKbRaIOXL2hmX5XMzgOXL1maIaQLEVNN7V4oH2m2P96xep6yskveuzSkJ8p6kkkrHPKqUPvS2rJtCeM6ODaFWdf3AUg5oH0QcYju0OMiv1XLzg9GZMnjum1BTNGpPdy6gPH4W9Y5q9OKL5YYh9lMkzXi9hSsbqhCalsgQ+/klEcRZK5YnAc8KmiHomaff1b9XZIbFgFdBMIiWZ5I4EIvQtHNda4XpvYUUVME7n8pGL5SsAWisUtjU9zTBVJFwH9QFMuRBlMl5F0IfYIWptCM5bhwGbPkZ5Zes+EMDYjOZ/947jdhq92ZQHhctBOjj8qzfpGxA3ErhESIbvRatwwYA8KpqOC08MUNzLENDA9XFA1lvLpgPTammY1xNSwuOoRa8Ngb01qHbPrmvR+hvIWZhZ1s6S5HghnKbaA8Qea9VEURTnSqsSI3aCmHSKEMPTQd2Spo4o9dNPaFbKImgi5D3lAORkGjDsNodbUtQz12ZW8liEV4lnttQOWF5poQV8psXLojV0DmiFor9C1eLhDIhYgXQuR1C4S+s9TS7bqeaHIZqIuC8lXJGvxMkcrthSfsX08U8ljNkMxQ+s6ElLdKsvtPxXRAXTlt9dUNApdeTlvm9QTK8cbdWtNcZIsEowcQz7zQrZLj1k3kkaiwQ8z1jf7PP1lxeQdxfS9iuWtlNUNTXEUCPs1aU+2NnyZoBYJyTtD+seRbB5I5g7tKoJVVLsJ631NM2pfx0auQxmgZDsQGYwsUKIFr55L19pD/1gxfhCwK0+1Y1ld16xuRJaf8FT/7KNV2XSEG7iz18doxfuny4/7UDp06NDhTwwab3DOkGaO9TKDUhOVZuH71F/fIanA3fBUmUVnkfKgtSrMjai0taSRqACTtw2miVQ7KaYUAlnuCiHOFor8RGPqSDOA9ZH4OKsdIey73/Yk64ApxVCra8jPItUuuL5icVeUPshQLjJ637L+UkEZctIrRTOOKKcpixRjAiE6hmlFYjxn04b0w5xmrKj3Pdor7L2c81GG2q2Zzfsc7c6ZpbJgyHZKTv50xv5vJASbUR949IkQIOVh8qHn6q6h9z4EG+k/gWpHlNHBk5p0mfDkLzrOrzL6J6LCVRMhTT4TJbraVXJOLjzNUL6XFAFTBA5+17A+0CTrSD3aDOpFyqnB9WBwHAgW1ocaIgyfeKLRlHuK3rHC9RSujdUrd2V4LyRCzG0h6qldQzOS29ST2EbJyUIiWSrKQ0+9G9G1eIMBIe6LjKUNqLURD/DaMF/0uHN0wePGUJ33YMdL5NzaYueGdTFE35ljU0913ZGcW/JniqrJ8QcOP3GgDc1QUknEUy0LFzeIW/+ubloF+soSe0484V6un2onEqYN6iol9LzYDcYNVIZYGsxSoyKUB4Ek09T7cptkaWUhtVdQ9xPUPMFnERUkk24zwLex/uh6o4RL4ohYRSLaySDl9/mka8iXkKwjLhe1XLvWv63Ft+/y1rfcDjFqH3E91UYFgs8VzVCLx9/Ke0BFGYDd+Kd9bjGlRzVe2DbgMyMe6qhQPmI3lpZayHhSBFk8lAFTONCKqA3RaJa3cp79otin5q/BxZcVNm+HlhcJ2f2M7Dwnu4okq0C6CEQdCKn4s8s7Kc1AFOrNUHV6FbeBKBvPd7BCsIHnMYjxhQhLA2YlKrwtgqQbnTQMHzjMusGNMk6Lj/b7riPcQGYNd3b7vHfSEe4OHTp0+EkhlIb8n4wo90G/tYaVwY8d+HY4blJjHvYYvGNalVmGncb3Ai5TLF+BdCb/j1r+qNpCCNzypqRjjO5J5N3y7vNA3vH7MHokyQXVyFAPNcXec3K3+z2PyyRWzq4jow9F9ax2ZIDPlqAf5oTbJc7l9I4VVaOpdMKiNoxvVKTG46NmOl1xeWjJTg1VDmFtyT83o/zmlGYqqv7T0wmDSUnxWiCsUjCRi89F0rlGNYr0SuLpmpHi/DOGpP1TlV1JLF/vIrK8rlncEjXcXopqbYtAuWswdbv9HxXLW4pmKBF1h7+1IN4asryp0a61elSB/FLuv1dFyh3N4Jln8MxRjw3ljvhlbSHkrB5q0kVkfV2RnwuZ9ivF+pp4nEFIXnEYSVaK4naDXoo63XtiyC4VpiWSyVI+2qWmOWowOxXrXUOsDMmwplkneK/Zf/WC84sh+mmOv0o5GwzYmy45DRqtA64xxChJIr2nhqKcCkFPIv5mydrI8GdyZml2PaqRGMX8vFWxE0gX0EwifhBonMIUinoSiKnkou8ezrm8v0N1o0GlgSTxxJOU5NqK5r0RalpiBzXFPMePI3FpCGNHnRjIPWm/wZ8P8Hmkl3qG/YpqbFmf9/GZptoJZJcSQwly3bm+LDB1A/3j1tZRSOKGKTfkWm3fB7pGkjba69r1hUQnC3ntQjuypjwk1SYCTxZCwSLvgdbPLD7r9jpym4HEzUJQrBUhs/jcoCtPtBKkrqL4+xMvixfdyG3F0x2IRgtZBxav5hz/WY8ZNcTrAV9Z0gcZo/sJ/VPf+rY9TU+3NhpFsWdagq3anZhIfinvi3JXtxF/L+Tev5BfruvvzyXfqN7BQjKPDJ+6bSa4qQJm3aBLsb7Yq4Kk9br/qOgId4vXD4adwt2hQ4cOP0komP1MjUoCcW1RRxXUeltaMv71XhtxJ3+s61EboRZFebZLyXR2vefqaXoVOPt8IvaFgaK4psguYHRfCMrithalzounGcANFOvrkexCMrrLqaYZCGFPVpH8wmNKz+JOKlv8A8XgkaJa9ajeKih0jl0pzErjk8DFsk9iPKs6RalItlegno3Ij8Uv7vY19YHHnCUk7UBWM8wJR21rjoZ0rqkOxLe+fM0T00C535A8TKluR+ZvBTCR0XcT3ACKmw5VK8bvGgYPxRaSXhmSIgpJHimyi0i5H0gWmssveNbXpwweybmtxprs0hG1xmeKqBTZ3ONbFbTcNVRjhc8V9URIjIoyfJrNhLysr4uFJD+HdK5w/cjoHq0XH3wWyR8nkqRxpSlueMxKS470UQO15FZHFVFLA/0abQPeaZLUcbCz4NnFmKqxhFUCaSQmAe81VWOZjFeEoLma9bHDBucUvjC4sSd7ZjElrG0CA49dW3SjyI8t5Y0GO7NUu+Lf1w7qESRzTUgizcTjepqYBvSoISwS8n0HQ4dJArcOLrn/4QHqWoVy7fUbFU1t0Ykn1Al2pWh2I9nRmuqkj7MBtYm2VBEXNDEq9MpQ3HTotRbim8bWEy5DvtFE0kvxXW+VdwPJMm4zqE0pi09TCwH3MpMsg63r1qaSq22Od7IUy5Aovm3Gd7sjkl9GSU1p86yVi629RMi2qTyEKLafwSZCMKK8lxzwRBOsfqFISKEbyftWjRDzxWsDzr6oCLdLdIT0O30mHwTyC4+uxabjM43ry7UZrMK/ELWYXwbyC4cpPdEqVtcyqjZbW29KijZE24sffpPSoqJYbFR4roLnc+idORngDBHTBHTh0JUMeMYXbCcfBR3hbvH64YD/+p0TnA9Y89F8OR06dOjQ4Q8BHbEXCW6/wfQdvrColUU76D+Rer1Ng2E9FoIwOA4sb4ufc/SBpmkj1pIlJCvF6c9o8nNohopkGTl46AlWfK6up1sLisIWmqSIDJ412NLQO1MEI2TC1DLgV+0Fes8U5a5hcBwYHDt8rknninJHlOfmcS7HtxsIeaR3P6VoNGcmoFVk/myI7jvCoSM9N+J1XmVgxIMeTMR6iXPTS0MYOZSRLezRe4Z6vGl7NNiVDNQVhxrlNesbgcWnGtITS/bM4jPZ+k+WUijTDBXaC8kpd+Xxdr4jVpTs0tCMZOEyeBaoxoqr11Km79WoGCl3DOnc0TuVTGZrxLqQrBz10Ih3G1l8QFuisgafyOCkXW0KdhTj+4H1gYahwg1FSS2vOZKdksbm6LXGXEj2dHahqV4rGU7Ex7+br3FRU7iEtyYnPOmtuKpzstuOi6sBLBKKsz5uWnJtZ8GsyNE2Ep/mZEuNzyKYSHXkGHxoyU+E9tgloEXJtKuE4lrADwJ2bcku5JrzuUQFRiX/dxnirTaR08sROgkMBiW5bVoFVdGsUlQeiKVkrSe9hthz1DclnrAuLTENRKdRWcSsNeNeyfHZRBpDj0rUqZQYNZOAnzrMzFLcdBAhuTL4fsTVMoS4GcBUfpPZLQvQZCkpHq7XpoIgaTHps+dFN8a9EAeYi3d84+kPti2LilFIa4SQKdB6m28dFSgXwGpCakgvK/Fib1RjDTGI4h0yQzAaXUuSSUgN80/0uPwUhFslSkHvaz32vtNg16WQ4Ci7VT7X1ENDsOKlJ4qan6wDydILefcBn1tWNxKqcTvw2WZxP2/NpB1ufU6uUc+fC0A+i6RXHhVkAW9Kj143KP88uUWqX5//zI+KjnC3+MTBkMZHHl4WvNqmlnTo0KFDh5eL3pszFucDzIc9tILmsGHnnyXkl35bqLK4C/WONL2Vh5r8BKbflT1iU7K1JJx+OTB635BdRPqnjmgU1URvizhW1zV+4FlnimpHYVeayYeKdB5QMVDsWi4+DW4cGL2n0cea4VNHsWtYH1ryc08yd6QBho88z36uL/ngKmJWBtVAMxAStV5lGBPIHyeAxNVFK3F87jxFH5X0v5HQjMRjmixFuSsOE+rrDf6NNfO1JXucUhyJvaBRkoRR7Qihzc40caa3Fd7NJDL/TIO9SCQ3eigDdMrL809Wkj0erAww6lqRrKQ1UjeyqLn4dMbg2Le17AqfKeZ3LcMnHqVovdytutrmN8/eAjcIbZqGDKCVb5TEteX8yxHVaAYf0jb0yaCeXRhc6ElKSKPw/YDeryj7CYNRxW6/4LM7T9lLlwxNyXE1YS9ZcZAuOK1HNMFwOe7x7vkB63UGUXGx6hOCIs0a6uuRap5iZwYahZnWrF6F/Kko3dqDN3LtJMeSCR5Shc/aopY80ux4kktDeiUqsTORcJahNDRXGXrQYHTgqsoxA0eYpZAGGDvheEuDTz2xNuiew1iJfdy9dsXsagBe/O2zVY/QaJLcEYIo/u6glsxvE/E9ablUTtFMPMopsnPTHq8QY7MSgtgMZWFqy0jTV9sIwqg3i1Ih5JtSF1PJsOGGZIdEynFMLaQ0WIVpZGjYp5pkLQkksY4kK1F80Qq7qNCFDDNGq0UBbxsffWbwyabnXbG+nrO8aah2ZaZg8Js9Jh86TFkJSY6gkPQT19PbxBTTQLoSa4lyEVMJeVcu0IxTFq1/e1tks7GQbAh3OyQZjZLhzvh88aEdZFcRuw7PyXYhfm1c2NbUy6pIEfWm+/1HR0e4W7x+2CaVnCw7wt2hQ4cOPwHoJOB/c4ehg2ovohxMfzelnoB2mmJfrBExC5ilpnesyS8kCiG2ZClqGX5c3o7s/Y4QgmChmhqaniKk0DsTS0gyN2SnhpBEBo9h8Wrk9GcUIVPEfqD/viK/gOS+YXUzSo37I70lL66vyS4Di9spPofBs8D0g8j5p63Ub19oilsePKSpo6ktzasV09/O8H1LMlf0TiPNSDF6Y83l3Zxkrqknit6JDHRqp1CFQQ0asnFFHNXEi5z6ExVhkdDMxfecLGjTSiCdC3HoHyuK/VQaBVNJqjj/xYbscYJuFNWOkK9yT86ZdlDm4r3WLoo1xEfqgXhkq0+k2x2EdWO2MX7VVAi6qSODp4HhY1jeEr/s+oa8XuoyRe3UqIuU0Pesv1ATgyIWFtKAyTxxaYna4Mce1feERjPYW/PlG/eZJmv2khV9UxGi5o3eMxYhZ6RKJqbAo2h6lp204LQc8sHlLkZJLOTVrE/Wb2DUEAYNyeOchpT8oKAuBmTneuvj9akQz/RK2guVA9eP9E4Vrt1VkV0WyWXWtdrGVYbUsC5TVkWGUhHVtOkf58lWPe31a1a1wSaeprIkw5qiSgmNJl3K7esqAadRui3RSaNkQ/cd9kmGGwT615ak1nF5MiJqSd7wNYRsk6LSJql4sVk9V74jSqmtdSQkrXpdye5RNnuhLVGJH3ybWe8kuUa7SD3U1CMlWdqF3EAFIdu6cqJ0K7W1W2ysGiHRom4n0gwZrAxnjh55Jh8Iad8MYEbVJpwYeS02RFu71j/eesB1E9G1R9eiOld7OavrLxTRtE8pvuDX3n75hd2AGGThYYtIdhWwpajzpg7YZYOq3XYQlAC06vZW5e4U7j8cNtGA750u+QscfcxH06FDhw4//QheU9z02KVG19J+OPu8Q/U889KgV0YGwC6MJDHsSXKIbqSMxg2ixLQ5Rf+hJSTiWZXmRGk0nLwfKPYNPrX4nmLwOLK4K4/ffyLZvLo2qGDY/1bN7PWEwXGgfyLqusvBaEjaVIf1mynFofiW1wcKPW2r4yuJaUsXhnIfyrSHnRuSu0uKwxRdQ3HLM3ii6T1TnD2aYq6XlOMEdMTnKaP7Ed9TJAtDuexTX69Jeg1q4OgPKtSwpLiaioVlIuR5E2HYO/csbxhRtAMsPuHQhebGf2G4el1Is+tDdh4ZlLB8RcpYeicShef6rbKai3c9v5BClM3PxUso96W8xbTDZtVUVHkVIJ2J5QQ06xsS69cMNDEPUigyT0n2C/JJwfzJCK8i46Ml8ycj0guDPVox7pfotmN7J1kTUDyudri/3uVaPgcgUZ7DdEEZEowKvNI7ZzddkduGEBVXVY/GG/pZzVXokWUNi32DnlvKWY5KZWGxUXSjVjS5XHuqbRO0hWpr7IVYRyPV8roQj3myEGW57mmq855Up1cKWyr0LCGYNq0jh9V5H3SkvhIbkYsW83ZO1sbUlYeeuEiwM4vrOVSl0ZXC9yNxLTah/k0h20ZH8kmFdxp3ZbBRbRsQi0MZ+Ow/E7ItxBZohFzbMraNn5IHnqw2r5e85ukyyCzEOmKa5w2Um6hAUcjFxgFCqIPVGNdaLawWEuoC0RhUCEK6E7HkpPMG1dbAb4Zp5eckLlH5CEbhekbIt5bH0G3CiQpSdmMqDz5iSkfILMVRxnpfPx+M5HnR0kbFf/5gm8d8bjdJVpF8Jqkp0i7pscsaVbYnRyNEG54vKJRqn+9H+33XEe4Wk17CwSjj/S6ppEOHDh1+MmgU+TNDVGyrqGursed2q7IlCyGAtohkM1HcfKpYHWlqr4gLzfgDqZqWeDvZal4dGdIZ25SGfBYICyEiyVLU2Mk9RzL3VLuWYBX1yFCPFSpoxvfd9g+/yxTrA838TS+Z1w+FhFVTqKdy7PWuF9K11FIF3nqqm8oSp4Hdb2ouXmlY3s45+JoDZSl3Laof23KfyPnnW+vHlSK7UPg8oblKwEZWi4TscE24VcL3evSfym2rHcXpL3iGH4oHuvhkSXQaSi1Z1hZ23vGc/GzrZ1Zqq4DHUWTn3bAdSjV1wBSeky/1CEYIo0TJRcl2zoQEqQaKAyE4zVBU0pBCPZW0jPxMU+4H7HnS3q+lvFPTnPZwUwNZIDlOmQP9oxXuckzxeMjhp5bsZGt20xVlSHhQ7PBwucPJfMh31DX2hyt28xVPywmZcVgV0CrQMw2H2YJEeXbSNZl1HC9HWOuJUbFzuGA5yAlXWTt8atrzJ8/BlJHsUrzOKrTRcA7yZxo3kIVdeiXRkq4fJT+8r0BJsYtcvxuFFsjU9pyl84R6GkQhB5Sz6KrNfO5JvXl6nMhug98MQipCrYlJIEwbnNMYrUltw2RQMF/nNG1WuE9hcTe26TmKcNH6slvV25StZ9lDua9loLIt1TFNxGWK/FKGY00V25zuzfCl2CuakZHvFXLdA7ikbW6s/NbTDBATQ8gtZlWB1qg6kFRi+9hEB0ZjiJkhWA3tAHNs87yhPd4XO2Va1Xnj1dZNwI1SljdT6pHaNlDKe721kLQf1YZkb14b2A6XZheR3nnY1tXbZYNd1rBZLKiNkt3OKSix6ES7GQTtLCV/aLx+MOC9LqmkQ4cOHX4i0F62w7PLyPw1SbY4+C1NtvBIhbKmHm7yc0VxVlHKU6KB7FxsHS6XWLCooR4oEq2pdkVxrsaK0SMn6m1Psz7QDB8Fho9rfGa2hNqWkd6ziqgzXE+8o+tDzeiho+kbJh868kuNT6F/4nE9qZHe/3pk9LCiHiU8+RUhZP2nUqFu14oiz8C2cW0XKeUnKoqHKclC6rfriaKeSglKtOJh101CeRTIT41sqVeQrGC1GJK8tqR4raI8sux/Vcsg48yw/FTN4J0UZgnkQRT/DC4+A9PvKZK5InNtmcwiMniiKQ7bHYEIbqRoBob+iREva5t0UY+kdXN5C4aPYlvLDdlMXsPlK4HiZsQuND4PJHPZw8/PNNVegAimVui5Jbu1ZDIoyIzngd1FzROa3GLeXKIfDHh4ukPvesPjYsppOWRW9AhRCpKMjjy7GjEvM4ZZzbJKuTGec5DL3+yhqdhLVhymC17JL/hOcp17811Or4bsTAuUilw2BnOc4XoyuJkso9SpeyF5pmCrWsrwLIDaJl2kKykfIkIyl9dsQ+I2Ne1RQ9UTf3x6Jdet64tCns7kGm1GsS3UUQxP5D5MHanH2da2o2sldekLQ3MjUF3mrIaO0bBgMig40yN0rahfKWGWitcbWUhtvPXKg2kr3EM7TBvs85zpaiwe/migGmmyucRtao8U0lSBempFlS6EiPu2rl070FUgJhoqyWJHxVatDqA10Wp0LUrxhnCHLHmuGL+A2MYRbpRpOeg2+tCJhUTSTwLlQc7ypt02p26tI/oFwr253xcfo7Vdayc7Pb3LsK2JTxYNZlVLcspGydY8t5Bsf2lpotHU01RU9Y+AjnC/gE8cDvl7X3tCjOJ56tChQ4cOLxER8vPI5acj4w80poqsrylWN6xkA69EJTQu4hMhxVEDsc3cXsP8jsauJbUgmwdMFTn/jKUZRnrPhJgvr1uSQlS+4bEkEBT7SZu+oGUL3Ucu3+oJ+dhR1GPD4NgT2+QGgOHjmqd/Kqc4kPbJZCn2imI/JT9v2PmuYXVDLC2jh8LEykOFajRuAP2nmuVEURyptnVRToM7aEhnKa4f0HNLvSdtmboBM28JkoX+U8UqGWDaevOzLwWyc7PND17ddQzuWbF+tP72dCXFPf0nkfUN8XFHo0lnouAVe5JSkl1JZXs1kUjEpq9Y34yMPpB4xZDB7JOI8j2U52YXGuUUximaHYn4q27V2J6jukpJLg3N1FMeBuzcUBUJx2d9hkdL/tQnPuQ3P7iLd0LUdt66oHYGqwPn5YD3HhyirxJpfBw6bObwXlPOM5aDmmG/Ylb2toS7Zxr6pmKkSxYh543BCeOk5DfKVwlRUdYJSeZoegm6lkIXdSUJHNq19orIdiAULYOC6RzcQNT9dC6LQ58ipNAplJMFTHEgVo16LGVL6Uyug2YgRFtaONkmi9hCLCDaP/dWJytJrQmpfB7XYp3yFxnaQ6g02c6Ck7MxO+/IDEL0mmymaUYBu5TH9JnYKja7RkRIl2Hrk3Y9hddyW1tGVkfSlpms5XW3VZQZgUTaIje+7o1NxSeS8R4yDY1YS9ygLcAJEeXksZQLohb7lvYqha4dIbcEK/Gc0Yg9Qywkcqyx/bgh26YSv3awmvWtPsvrRmwjPF+MR9N+/sNC5ja30bIo6p3I7wrJFg8k8xpVeQjhuWrdkm1A/NtWFPh6mrG6ZqmmiviVj/brriPcL+D1gyHz0nG6rDgc5R/34XTo0KHDTzVUgIufCWTPDNVUSEZ2KYqbriFbiAJVjTZKb5u8gPzhXF+TwT/tpHVOeZh9wuL6kcm7AEJkhCQo/EiU2fWRoX8SMGtR0kNicJkmvwrUA021F+mdQjr3hESRXyguPm0JxtJMIsmVbGOnc1HHfKZYX0sp9hXDh5HVTYVupDAmmRuaoaiDyRoZvKvaocaWGKm1oTwKomruN1CJFLd6RaIETaGwBdg6MnigKQ8j2bm081W7kWShiM8Smh0vC5WFpjyQ4pN0rrY2ifwscvkFj24s4brsELg+rI40vqfbGDg5pmwWsUsh6M1QSmHKfbk/5oZmLCketM2P9kryrlVpiD1HMq1QuxFdG8Ii2W7t37h7xpPHu5yOh3z5tXu8N9vHec18laN1ZFb2eHo+kaFBJyU4XKWEJBU/eC/QrFKunKHq1Xw3HDHKKi6zPsnIgwVDpG8qdpMVt6czzov+c9fDyBFnCcWhxObZtVwTSREIRhZ1PlV48zyrGdj6nYmyEJQMdxn0VVGuV+2E1GWXci5Dora2HF1LjrZuxPohbahCvmnzzHUF1inSq8jsk4H8VKO9au9fUe8ETk7HpPczmpEklphLSV0BTXbJtk3UZ2x3KTbvtY2VQnnI14FgoJzK0G7/WZvOkomyW01lfiJqWN6UXaHN/03D1rsftSLqVLK6XSRohak8qgmEVFpb8R7qRtThzErZjReVX8XnKvSGMCsv7ysV2uHIJuAzw/JOTrEnjaTy2O0/IwvBrTKu2MYBblTtaCQqc/goiH+9kYFNu6hlYQBCsPXzxcHWs20UbpiwPkop9jTNUHY0fii5/wPQEe4X8Ik2qeS9k2VHuDt06NDhJSOOPXqnovIZ+TMhWOWeEA4VYHVNcqvtWv4INgNRH11fcfl5h640vWca3SjWR4b1tUh2CUdf8dQjTT0U/3fUzxM96pFqbQ4yFGgLyfINqaIaG2wZMYUmXXhJSthsoTebIbeIe6tmXUnBSXJq6Z1uVFHxOFe7iL97bMUaM/SURou1YGZphvIcmnEk3Cgl9QLI386pSAgHNcmDDDcUkpDOZHgtpEKQgwXXg96ZDGtWe9DsePZ/S7K1B0/DtszD1IF6pFlfF4tN/sQyfBQp9xX9Z4GLz6l2CBWI0Iwlf1p51dp4AvGoYrEjtYTNXkTlHoJCLSzJTk1tEtwI8ArSQJo6ymUGwOu3T3BB8+B4l/TdHqeJ5+bNCz54ss+T/pi3Dk748HIPrSPT4Zp+UhOCwiw1pmrLSxpFugKiwfU1zU4g2kC5TuXn8oLvnh5xWgz55YMPaKJhYgomds1rwzOezF8jBIWrrCTj9D0EQzOWVJhmALYST7NYj1qfewbNqE2CWcTnec5RSLTPwDYQNt5jJ7suaiUzB9VUUR4EdCNqthtE0IH8WDKl87NItSulRM0oygzAWh4/uxCi7XrIoOYKmrGCRSJe/YMI44bkfeEq6ZV40bWT94mKcrwulQz61bX2MS8j5Z4mm4kVqxnI67w+knPtc/n5aiLvnWrneVmOckJs00J8/6Et3/GZ+L+jkehAUzhi9nxaMVoNJiWmlmilWXJTgiNzEs+TP5SP2FIGI3Utinm9m7O6ltC0AXLK/wDR3jzOCyr5i2RbBcgu5Xo3baV8smgwRfNcfY/x+7zoKEVMDD4zMph5oGmGMiwbsri1snwUdIT7BbxIuH/p9f2P+Wg6dOjQ4acboTIM/0WfZiB/POdviZWiGWtJ0DiL7R/9tlnOCmlxezWDd1MGT8TTiYL1kSY/VwyeBsodg26k4jlYIQ/aQz4L+LY4w6cbNVPjc9lqL/YVKkoCyUZBWx9qemeB4ePA8MGa8t2c4y+n5BcKl0MzjtQj2PleoNjTFPticSlfqbD3U9Y3ImYlg5TNWNI7itdrcAqzMAxHksyxWPZw/Uh+quE0F8VxIskh1Z6Qzuwi0n8mi4qrtwLldYmqi2mg99gStdgWTn8O8hNJg1BeyGL/OG5LauqJYnQ/oH1k5zuKYh+qHbGYjO5LPKFdR1wBvVPFsshRQdGMAhxWhMqgF5bQ99SrFJ36bcSasYFBXpOnDY03nCyGfOnaIyZpyYPJlOU6Y7bucbg/5/xqwLce32A6XktTZFbStzWhMmRtA2XUbC0zvVORQ8NjTbmfU9xuKE3kg3Kfw50FPmjeWx0wr3OmacHN3oxEeT65d8JXH94mNhpfK1TmsacWXYkHuBkp8pkQMW0UvhALk+vL9TZ4tCkfkmNp+kJGaVVdWcAJ2ZMFIu1cAZhKkVwpqv02S30kSrEpwfdkqLUeQXXg6T2xkgqiZOfG9WVgs/9Ety2RCrva1KlD/rV8uxtkqtgqz7KYVL61/2RSAlUcSDSgzxT1GEKit9JyM4j0TqRBtLzusFeG3jN5/r4X6Z2IxzrY2CrlCpxcL763UbkjOlEkCydDhUZJ4U1qUCESMtsed+vvVq1v26otUTalA98O9lZi5yoOe6wPDD4XVT3aFxNm2l8kmzSSFzzgm+8pL9dNfhGwhRTZ2JXDtJnhvwdaftD3E6q9jNWRoZ7Iez2kG0L/wjTmR0BHuF/AtXHOOLe8fbz4uA+lQ4cOHX7qkS4ig+PA2ecU9c0Ge5ow/kBypaupqG7VrrRY6LpV4MaOna8mZFcykFfuatY3xHM6uh+25Cy2HsyQqDaJAC7eEr/z8JGoez41uN5mGxvWNwPJlTRVhkSRXTrAsLxlGD6WYS05bsXidc/wQ0N2H1Y3I+efV+QnsHjDowuFWlnmr4k66SZemiWXhvxM4UYGNPSONWU5Jb6+wlhPslQkSyj35bknSyFMg8dtJOF18X4XR4rQd+jCoBpF/tRiV7C8I9/f+Zai2n3uN94sJtwQ8jNQLlJNFCHVDI49+TuR0SPN8rpidV1RTyP5qRCwZCne5eJQVO/gNPtHc5bjjPK0h0oD41HBukxxtWE8WuO85q39Ew6zBT3TcFKNuDO4ILcN81HObrbmtBjCBBZFzmzRw7f+7bNi2Fpq5HlHLWRWN3FraWiMEFIzt7gkYnPHs4sxea8mRMVubw1AEw11sNzszbg47PM0H7O4PyECpmjP9Z5YmKbvS1JFiKJOB6tIF236iIXYRBmibPO1o5GiIFNBugjY1o6jGyGq2wIXt9ldkevDt0RcBfGG65aoYyLplZD/dCYFNirIgqkZCuG3y3bx0RJLGeqU11MFIdgqyDyDDBSKRWRjwXB9mRvQTpRa5aGetKp+X3Y27FxsIKG9bvpPZaek3FVorzDtYiRtOWewopInK+QcKHADKznWUSrfY4RolSSSAERRr0NmiWi0j+jCCxlvs71Dalhfy6jGulWT5XXwsnHy3K/9wkdgGwMYdcSU8n7YxP4lSyeRfy48V7RB2jFp00dSSzNJWV6XWQifg0/j8wKdzTrlDzHm91IJt1LqLwH/O8AA/3GM8W/+wPf/NPC/BT4P/NUY499+4Xt3gP8YuI08v78SY7z3ko+XT14b872OcHfo0KHDS4frKZ7+lQZ9ljD+Zko6ky325S0Ir8vEl3qSkyw09SRg14qd3xQVsOkpql1RVfMzsaGsbkhRhl3C8Di0DYsKlytW1zTpAkYPHet9sar0zwLp8jnhvvyMJEtsSkGqHYtuZDitHmuyCykcWd9y7N6ecdEbo5aW7FyTrETdVJOa5LQHc6j2pS3TLDXplWSNV3uR7NxQjwOmhNE9uBj36N1YUn9hRX2vT/+JYnVTCO7wSWD2CY0tZNirngiJSBZi8SgPItVUvMHDB6Jy1mOxj5T7UvFd7ShsKQucck/RO90otkIs3USxvKWpdyLZWZumYdqhzVLOjXbQHDXgJUM8mVSoRqMuNLNijB5JvflsNuBTt485L2X//zBbsJus8GisCuSmYZyU7GdLvn5xk3y0ZFWnzBaSn62VkL5oxfZiSmTB1Ub1mSpii0i6lKbQapVS3lRMDxcMsppxVjKvcvq2pg6WWd1j0Kt4c3zCss5YH5TExzIcS4RmEoipyKLKx22hoHbytQ35VpFtjF52FSmnakvufKq26R7JMrK6LcVEIN5rgGa/IT6WPHZUS3SdxF42Q0gu5LoOiSwmNnGDykF+LjsOIXleTKNdW+G+iuhGbmsaOVafKKpp27jo2+P3opBvFgL1JBKySH6iW1Uc9IXapn0oz7bSXrU+8g2xN01sVfRIObXft2PkeqZNExEFPBo5oy43mCoQtzGABj9I8JkhWTTo2guJTgwh1RT7CS6X93NIVPvceU6sN+S3fR1RGxLeDlSvFIOnkXQZZDDyqsGs2kWAUd/nz98kqjTjjNX1hHK39Wn3WuvICyR+q5y/GFv4I+KlEW6llAH+I+AvAo+Aryil/l6M8Tsv3OwB8O8A/94PuYv/BPhfxhj/oVJqiFjgXzreujbi7/zu4y6ppEOHDh1eMqIG+zQlP1UQ4OJzkTBu2D2ac/Foyvhti+vD+rWGwfsJ03f99g9rSGRo0WeixBYHkF0i+cpRSAZWyHY9FpLUOw+ERFJCJh+E7TGUE025L5NWKgrZ8GmrolYweKSYvx4Y3ZfhxfXdSFknjL6doh3UY6h2RU3WT3IZpAuw821NuadY322ICyEPPo+4XiRmkeWdyOieYvihYamGqFphEEVTRfGLh1STLOX+6zG4uwXFcU46h/EHgf4zWN3QrG4GXE9sGNP3xGN7/ItabAhLWF+T9kTl4eILgem3NOOHjpMvJZiCLWlb3wiEfkCvNdopyoNI7HtoFGplYNKADTTLFGUjyZWmtop4npFeXxGj4mw94JePPuCiGfCNi5t8ducpTdQcZXOqJGHlUy7qPkf9Be9f7lM5w7BfcVXl7PdXhDSi2wzxpGktE63KrZtItEAF/dNAslRkFwmrazssXinJjhyZcVyWfQamZpSUVMEytiU3hldcFTmrPIOFwQ3ArjT2maLYidiVwpYemyhU1O2wnsInbTa1j9hKlORNhXpU4nmux2KBihZcL5JeKpSFdNEq1AvbJsSI5aQeR5J6w96khKjclf8mC7Ar2rxuSQoRLzvQEwU+avm4ed1efE9t8sQ3ZHtjv9jEcEqJjcKeykK13FOYsk1luZLnEJXkqqsa2Unaj4w+bIcm2/kH3xe5d7PzsHkum/QRjLyvfU9ItG42Wd2a0JO4QVN6iQu00kjpBoamL0U2wT5PF/FtOVGyUFv/9osWkmDaIUyvyC4kLlQWZ4H0ogStcJOsPdcNOLf1bPtByupmzvrAbBNpQhq3jx3Nc6ItarpYuf44Fd/8AvBejPEDAKXUfwr8KrAl3BvFWqnvXysopT4N2BjjP2xv9xMLx37r2ohF5Xg8K7i10/9JPWyHDh06/MmDgmSuKPcjza5H1QplI81/tc/uMlIcQXG3pv+++LXrocZnsL6uKG81mLkhWNk6nryL1LqbdoBLi6qdrCPVBHbejZQTTXGotn7cYGWgrHcZUEFTHsD6emRcSLFHuSekfvjYs7qhmX1SvNGjwyWLiwHXnoY2Lk2STexaGge1E6sCSJX7+rb4n/tPWgV+pfBtcsj8FwviZUpMAzGPZPdSmpE8p2AjPhfv9yaeOF6lcL2k2DEUNzW9R7ZtutQs7wQGj2RYdPp+xd43MtZH4mtXQZNeRUlimWpmnwlM7sH+NxzzVyzzT3im39FUO3Ie1FEFj3OG97V46PuRZK6pgmR6h5aU1FOpcsdGqssclQWeXezyn69zfuXO+7w+PsNqz6pJmQXDbrqiCpYQFfM652goUvCyzkiMJ0RFmDicsmJP6LUqd4xtIUoEpwh5m1ZTR1jKUNw6z3hkp2RZg/eaZZPy8wcPqIOliYbbvUvyaw3/orpLU/XJzjX5aXv/tLaHIEquCYFkGXF9jU91q2gr1od6S8SCFZLqhkLSXC4LQVQktNaHzbVmlwo3lOZE15fX15QyFCnXRGv7yOVjOhd11WfiuU/nbXb4Snz6G4hPXD76VFR3n4m6vRn4TVZy22r6fPEyfBJo+uLtNmU7ELzXDn06oCXdKsD6RmzV8bgthrLtLpN2tPXr8hjNwGDaHYGN1dlnum2KDGgX8LndtktGrXCjtF1E6+dk+4Xs62jEZ24q9X2WmhdjAFUEXcqiJ5uJAp+sPIRIdZCjq/Dcux2khj6khuogZ3ndyjWeypxINM+HIkMixVQYiK1vW3n1kQcm4eUS7pvAwxf+/wj48o/4s28CM6XUfwa8CvyXwN+IMfo/+Mf+6PjktREA3ztedIS7Q4cOHV4iYhpYv16TP0gxx5b69YL8Oz3xcO8qyiNPcpIQNVy9rmgmgTB2HBxdEb62L+QoEUsJKraqtAwb+lT+6NdjRTOJLG5r7DqSXYoXt+mJtzUk8pez3AM/8KiFEW/rvhCVq0/AamUY3Y+srwuxyYzHnCfYMjB7w4ivVMHgoXy/3MzcRyFON/6x4viXJPEiO9VEKwuN/CJy0c8YvXJFUSb4J33Znu+JkgcKn0ue+Pp6pPdEUU8N6rhHSAAVcUOxmSQLIQOrny9Yq8j5z2Zkz6QYZ3Fbco4vPxuZfE+TXSqC1Rz/u2uyXx8JgUwjl1+usc9SRh9qwuMeqy8WLLNMCPZ+TZUk9I4N9TjK1n2jUBr8KNAbVRQXPWzeEJJACIqvPrvNL167z3uLAwonFpiil2C1Z5IIy713tcts0SNJPIO8ZpDWpMMad2VFnS82vuWWZam2dfAy4HtC0KCNkbzQlKaPvbVgZ1Dgo+LResrrwzNc0Hg0R9mCVw8ueGAiTTMkfSgxeEkR5XryAVMrQiIKt3IaPxDvtZpFVjckInHjc66nbDOhl6/ILotdK+pRRLfErLjhULUmu9Qy2JpKmygIUU1W7ZBqX5E2baNnW4bTDPQ2CYRMVP6olaSEbBoWU7GibLDJd7cF6DpuCXm9G7Frvd2BaYZtukqQ1Bw3jIQLhfFyLNpDM0B2oFolf6OQl7t6m/AhvvGwXQgoLyQ7asmw96kimwdCqkEL2dal7Fa5vsXnEvspz0dts7AlhUR2EtCtOm9obR7twkNvrEbiuc8vI3YtyTw+tQyeVGRnhZBsrcW7rTXVfo/lrVSIdtbG/Cl5T4VUFlPRQkwi0cTncYFBCfGO8SMPTv5xHZq0wK8AP4PYTv6fiPXk//zijZRSfw34awB37tz5sTzwmy3hfvt4wb/2qaMfy3126NChQ4ffC1VpDv5pwuWnIuFWib2XY9ewvCNV6dHGNlu6jQe8vsbVhtVvHNBc89iVZvK+KHe0Q2PLW5pk0eZIVzLgVY9FvUqWQixCKl5gkCg1EIW0nmj6T+UPatSSmjL8wJDOI3Yt+drl5wumiePqRsnlmz1QUNx02JmhOFLbPObsUlHc9EQrFfO6jZzLZrB8JeJ6QqJi4hnmFVniOJ2mVNqSn4hnuxhF/K2S+U5C77Fl9QtrwmXG4J4BBeWBbA5XOxqXK4YPFEuVEQ4rkgvN7tuB2etSTz7+AEAzfyMQskAy04SgaP7sFeafTUguDdEY3GHD1Vjz6t8JRNNj+ZoDbRh8M2f5mqP8dEFYWyEgTpNcGoKJ7A7XJJMFD453MYlnf7yilzQMbMVbo2d8a3aDd+5d48Nkn9dvnpJojw+aa8MF/aTB6EDlLKO02l4fupbXJ1lLQYmuRSU1TWiTMRR54bBrTzO0rK5btNPUhxY7CgyM47Lq89SOuZ7PKVyK0YEv7j5ilJZ8Vx+xdmMGj6H/rEG7sI2ii0oWCLbwrK4bTBmph4rsUrF83ZFcmK0fummr391ewPeUVMJPJD4u8Yr03Gxr1kHRqLgtJhL7EhBb9Ta8mMIh/m67bv/fFudoJ3YH1UbYSSa2DFqaShYArifE3FQy+BcSSC/E8w3SyLpZKBaHkZiICg9tZKWEtmGqNsc+lUVBtHJfIQHahJHhEzln5Y7BFmLpEsINV6+bNuZTVG5KSTnRpSSY+NxsGxujlvfwpg0zWCHC5V6UxJ0I1TTi+zIwHa3MOSRzSQYaPvE0PU09MPRPPf1HS/FrN6LVRhVx05zljYxyV+N6tORaLCmbBJRo4wvKdhsHGV7wj7SDsx/VU/KHEMV/ZDxGBh43uNV+7UfBI+BrMcYPYowO+DvAl37wRjHGX4sx/lyM8ecODg7+qMcLwDhPuDntdYOTHTp0+BMNpdTfUkqdKKW+9cLXdpVS/1Ap9W77caf9ulJK/YdKqfeUUt9QSv2e39c/DHYNl5+G4acu6X2rx+RdKK5Fks9dSbvglaH/QJoX3/iF+4B4pIsbnp1vaw6/Gqh2RAFbX1fMPhVFLSyepzYA9I9bkjGSGvV6DMWBqG/RSDJEM5SqbtcT4ap3Fuk/EKKUXUXyS9/6RiPPLsbYxBF/4YrVGzWDe5ZsJhnK6UJUuPUdB15RjyNXX6hx+w3lNc/yFSmUiQbqaSC5Mjx5usNs0cPmDvYq1rccdh2ZvgPp+z0w4vvmcQ81qal+dkk9jow+MGTnhmYScKNIOo+89p+V7Px6TvNKxeWbmr3vOAaPJaUkP48MHmqijVKm8/UhZZFi/vQFow8hvVQc/WOLajT3/g0jROfCSDLIODK4b0nf6WHmBlUYVM9J+U1QHJ9POFsOyPs1zSzn8f09Pny2x3/56E3eXR5SB8PtW+fERnPv2R5WByZZQeUsp4sBJ4shw7QiRMXd/QtCL1AeRpZ3FKvromSH9LkC6tucZ+0i1W5CuSska+d7nt5vDbh/74CT5ZB1k3BSjFi4HE3kYbFDrhtGScXecI0bCvlVPkoknY+oxqN9kEzptaPclaHTcldeY3TEjQPpTOL+QibRlDER20czkpi9YCP1JLR+a1mM9U4i2UyiKaW0Sa63dBHRtVhmohF7S0hkkQhiA7FrIeimXZNshitVEEUaJQsUuxaPtu9FGfK9LvMFm/Sdck/he89r6U2l8Km8d9CyQ1PtBUwF2UXElLIzZCvZBZAWSSGq2om6Xk7lvRKsqNvVWCIyV2/UMlSaP8/b9pmm2hM/9eKWaX3ninqoKfc09VhR7iuWd2HxqQY39TSjCL9wRfqJOYevn3P0xhnJbkky0/SeKewqMr9jSIrAzvfWZOcV1WF/O/3nBynL18acfabH6oaWPPuWbG+aKkMig6TBIlEfmnZgRF4vfo+g/cdH4f4K8IZS6lWEaP9V4N/+CD87VUodxBhPgT8PfPXlHObvxVvXRh3h7tChw590/F+A/z0ywL7B3wD+UYzxbyql/kb7//8Z8JeBN9p/Xwb+D/wIFsJmEhl96oL593Yxw8jpLzt03+F/Z4raC4SbJYPPLkmd4Z3fucPoA4kAnHxdM3jqOf0ZK9vbtxrsueXot2B5U+7btfnA6SJKk+BK2vxCJcTF1HE7dBms+GrHH8DirgzI5ReB/inM7xjmdzTNWJr9Rn1hO8urHknu2npvQEsMX34ZSJaaZGEpDyLNWOIe7InFFormzYJyZSEo8mPL9J3ASS+hiUri8FrR7PJzgdj3pMcJvfsJ5TVPTANWR4yJNHsN84li/J0EUxrWNz2zNzXa5UzfrTj/ksV9dsnT8YDJOzB6GFgfaYprET1s2P/Tpzx6tkOWOQZZzeMveuzcwAO4+U8ixb4MfNaTuI2PcwMhGH7kSUY1NvG4zBG8Qb2wvb5z44qyTsjThtpZPjjfIzGeo9GC11454Ww52FpMlk1KdW9Efqp55/qY9PqKV/YuSXdLGt8TS0cuqRvRaJJNQYoLhNywupagnai8s09YXC5kUdWaq8sBRb8m0YEn6wm3+jMGtuZRscOj1ZRZkTN49YrieIf8MiGdO7TbDNMqyl0rTaK5XE+2kI96adC1wq7ADBQ6kc8xkexCU+0GsktYfNaRP0ipdqT8hjb1wxQQ2li+7QBgO3i4aYR0fdCVpMzUU4Vrq9pDqtq0DKmVD1m7U9IOSzZDuZ6V36jQEZ+LbG7qNls7axsvi/YxU1ksrG4GsnONbiA702QX35/KsTlWU4ma7vqgvaLycvzBiBoOokyvrynsaULIoNpVRGvon0I5MfQuPPNXsvY8y5zAxjPuMyhfrVAmsruzZNor+dTkGTeyGVW0NMHwrBrzDX+D5Scj6vMNl0/G7H7NUE40wfZkWPLKoWKkuD1mfWCpR2rrrYfnRDvazSKnXTTR+rW3gxM859abj3+cYgFjjE4p9deBf4CsFf5WjPHbSqn/APhqjPHvKaV+Hvj/ADvAv6GU+l/EGD8TY/RKqX8P+EdKokJ+G/g/vaxj/UG8dW3Er79zSu0CqX2ZmwAdOnTo8McTMcZfV0rd/YEv/yrwZ9vP/6/AP0EI968C/0mMMQL/Qik1VUpdjzE+/YMeo5fXLJY9/NihJxU9GyifDOALcw4HBRfzAeff22P8vmakYHk7MnygGBw7Tr9gaUYRN/JkTxL2v+G5+LSRATDX5livAIQ0NH1RtqMBex5b8tBWw9dQHzias4T8TCwt2bel7GL5SsCuFMmn59TLjPUqx1cGtTbUpaF/L2H4JHDy80DQuL40ZsZ2IDQ/taxuBanzrsDfz8nemlM8HdJ7Fil3NHYl5Tm9J5Zk/jyRwXlFM4zUh47B3prVRQ8e9qjTCAOppS+OIoPHimgj/nbJ+d1I8ZU+o3dhdbuPcTB/XQhc/wn0nyjm/RR9GDE2UK0Tkqnn9uunPLy3z+JOQu80srwlam4yl5QV1Wh5nWYJ6aSin9fMLgbgNPm0JE0cjRPi/drOOWuXbkn1Xr5i2WRcVTk7ecG10YJVk9J4w+3RjPwLjg/eP4I04BrLqknZGa05KRLiMt3Gzikv1hLlAmghsCpAuSOfZxeRQRlpnimqqaY81FT7iqvUMc0LLuo+PdNQ+ASjApn1KBU5uyGlNLbQNMME3UbaqQjVrsVUsoOSXbTX7YnGVG1edyIKtQqgahmo7D/VhCRCrfFZW6+uIsWB5H+7vlhDXL9ND2ntJVHLDAJKhicTLzXq6+uBkEUm3zWSj51K2ky5J9nUm8r4qCMUz+0ZyUJUcu00Kshuy4Y400YOxqTdCQpqaxdJlnJ8wYoiLskqEe3k/dIMxaZiavF460osLdpDuvC4XCxOm1kEn8lznHxQUxwkW0tMPVYUR7G1kIh9DOBTbz0iNw172ZrPDx+xa5fkqmHm+xgVqKPl8/2H/Mr0HU7diK/M7vLb8x7uLy+YH4+4+Q/l/ASrmL85pthV7e5IO2ipXlS2o9hYstZCEpH5hI2FpI0afDER5Q9DtuEle7hjjH8f+Ps/8LV//4XPv4JYTX7Yz/5DJJ/7J45PXhvhQuSDsyWfvDb+OA6hQ4cOHf444ugFEn0MbAZdftiQ/E3gDyTcRZnizzPSw4J6meLnlsHdOeNeiQ8a9faQ4UwKQlY3A+P3NOkycvKzlnocCANPcmkZPJHq6noSGJ8pyl1FvSMNefVY/r+xcKRzjS3Bt7m+ygvBzY6lOjo/j6iouPi0FoJ1UFBPDPHtMQwD+rAgrFNUrehdX7M2PcojS5w2+IuMvW83LG9Y3FCKVZoBDO9plq8GBg9EwKmrhL27l5wlE5TTqHENq4TipqPcl2g/u1aYtZLBwbWmuDYmbcRnW+1CempFCR0HFqmS5ISrFK9g8cUSdZ6ia8XgiUS+ra9rVq86SAP9d1Me6CMYNcTCcv/pHsYGbt8943y/z+Ltsdgh9gNmocmfJLhexCuLKRX+UZ/idmS6u2JdptSVZdQvuT2dYVXABcP13pzCJ7x9fshOtuawt2CaFTxcTMmtI7OOeZlzafrcGV4y+GTN944PqWcZbkczyUpO9Pi5VbaNgnQ9jbYyNKh8JCkCzdBI/OMEVjcUrh9l2A2g1qzWGffZYZhXTLKSo96CGBV7/RVP52OY1qiYETWsbqWYKrae7sjFJw31VDLgXV+RzEF7idKrpopoA7pqSWWh0G1s4PqGws6NRA2uVLtoiJKV7dqUl7aoxpbysZ5AOn++42LXinJHUnVCL7b2pzZFBHDDNmIykXhGEJ94GNFmdUv6SUja1JKsJcrt44X0+cCnCqJqay9kuxmKmg5itRg8buP+EtXaU9p891atT69kAeJ6mnIqg8GmkHmJdA7pLLK8meJySJeRi09aVm/UmNwzGJSEqPj8/gmvDs7pm5rDZM7N5JKRLliFjDIm7Nklc59jCJy6MeuQkumGX9p5nz+z+w5nzYi/Hb/Isy9PyM8UdilJN5scbeILqraRwUjxo8sQ8Fa9thEaBa1ar1qGHdXz6EFdKFTz0Zj3H9ehyY8Vb72QVNIR7g4dOnT4vYgxRqU+4pg+3z/sbvampEdrstThveaTrz+mcAmzIqf85/sMTyLNSBTBwUNNfhEodzW9Y7GCmMoyeCTSUz2G/ExT7Yh/evSulVjB657+Y0P+LFLvQjOS6EC0bHPbNaRXYjupptLmmJ/D4tWArjVKQfIsYfo9uPqEpu5l7H5TtsDLawn991MpySEhGljetGRXAe00V29A/1hUxpAFlq9GdKkx7/c4u5aAiSRnGr/OYeJQlZTrlEeO5JmlGUaaYSRpSVuwYiHoH4vnvNr3xJ7HmzYPue+IQTEcl+hJwfKDCctbMHis2P2ux/wuHH85Yf1mxfhrGeW+Jj9TlIcG5RQPlwm67+CVkniVMvxAfNzqc3PcLMdcJrhBYPK2YRGG8OYlrjZcO7ji+mDOyXqE0YHMOBYuw6rApFfy4eUeWgdujucMk5plk9JPGipneDIfc7IcUjtDU4l//NnxlNfeep/q2gUPFkeY0uDTTTyeIbuMJKsgkYBRiN7yVlvuUkgTaDWN+FFADR2jQYlSkbKx+NDHB828zrg5vCJEBTNR0VUQwp5dQP8EfCIq7SYZg9gOJKab6wbqSVtTbiA711R7Yssob4rNqbjTMP1Gwvp6xI09TV92PKKG3jMhyVFLAogKmwQOJH0jCPG1S8m/W9+M+EyIeNTIQHHfEZ2GmVhGwibOD1lMqiBlPK69f0kuEdtGUkZ8LoReOUV2BdVESH0zFiuRDFJKW2swouZnMykfqkcyhNkMFPlM2luDVeKJD+IZd73nnvN6LLsU5Y6m/FyBajS3Di55fXzGm4NnaBXIlWPXLkmUw0fNuR+yDhmrkLEOKWufEVCc10PO6gFWBQa2Yi9Z0UTDn7v9Lvd29/jWN14hOzMkCzkP6OfK/sYas1G4v0+xVoCTwelNF8tW4Q6g15p0pskunzd9/qjoCPcPwWv7QxKj+O7TBb/6xY/7aDp06NDhjw2ebawiSqnrwEn79R95SD7G+GvArwEM3rgeXzs4R6vIt49v8+2r2+zemlH+8310A6ubMmi2GRSrJlLzXO2Jf3XwWAhJM25jvAy4kSd/Yqkn4r1NLzWmkO330BdS2ww1vifERJoEoenLUKF52qYkOMX61QZKw/iBELFoI4P3Ey6+4EhmBl8ZfC+inOLgq1DuwOwtUFG3ld6R8T2RyVzPYn7hkuLtKf2nCu0Tylcq6j1P/4ElrBLKQyelL+OGemIY3ZPHnb/lyJ5Zho8kkWX4KLC8pan2QSeeUGvMSmPOM+ojx/LpEDV0xDwQBpH5UOMzI0OTj2HwJOXqDdkh0D4hvVJUuxE7s4SVIQw9u3cuuZoO4ElOcdJn59YVV3mfuLLMvuRRpcEFzWBUkhrP2qXU3jBNak6WQ+5Xu6SJ45WdS96cnBCipvAJSeaxKnBe9Rns1CyajHvHe4RFAkpqx1kavn16jS9de4R7XfN0MiEsE9JTUbLVWGINk5XUsdtSFkzzNxzKqbY5ssXSMnNDDo6uuDYUK4tSkUQHvv7wFqNhQToTC0i5a8gu4ram3fXEVxx6gWRu8RmsXnWk52bbIFkeOZIrgykU+QU0ExmkzJ4kRBOxFxbXg2YYMZOG5SsaDiuUgrrMMWU7vJjJwk87Wfill20cHmIr8R7c7ZLgNC4mkovtFXFtUU7SSOAFxdpt1HNptHR9ZKiyYptOIqq65Ftnl88HOZux5ISnMzkPxUSsPGSSa79JEEkXkt6zyRqPSnzQyTrgM7HdBLtRyeW++qeBJ38OrA6Md9d8+eAe+8mCXbNiZKRdduF7lCSUMeHSDdBELl2fp+WETDuumpxvH1+nDWmhLhJs5hj0ar509Ii3Rs+oPm25d7ZL+cFA8rsb8ZdvEmBCW2YkJ6v9p1tyvfldZZ+TcV22RPtCXqdkHb6/rfJHQEe4fwhSq/nE4YjvPJ1/3IfSoUOHDn+c8PeA/yHwN9uPf/eFr//1tuDsy8DVv8y/DYCC944PSL82gFcc6V5J9Rv7Ygd5phh/EFlfVwTaKLKBNPSBVKLXU0W5K4kQbiDxbGrgqA4V2alBBVEDfVsmovsOc5HTjNrHj9/fGGgLacirx+L/zi4Sqs8WFEcpupKWSF8pzFqjG4W5SGheLcm/02uTLjaDbeBGgeE9gwoe5SM3/+s1x9UO6ueXrMJAlOVaowupfM8uI/VEU9+oYWUZPxJl35SQPbNUt2tcP6F/DPNXtQxoHhvKmDK6v4leg+x3NVevGYprmpBH9v6F4ey/0Yi3/EyOb3lbPLcq98RPlywvc/TaENM2czjC5cWQnd0lV09yRu9Z6gd7JF9aUNUGc2nx/cB6laEULB+N2XnlkrJOqBrLW/snWBVYNpkQarfH6+MzbuWX9E3F2me4qGmCoW9r7PXAo96E4umQ7FyaNVfNhO+mDYO0JpQGvX4+T+Uz2dbfKLYqwPieJxjL8nXxW+hBQ39Y0UsbysayLDKeRkVqHUnqaYLGrS1FkhJSGQJUXuwOugE3MKLSnimiNgwei40kPTf4TKwc4/c01aGCu2v43gCXQ7Mjg7+Dd3JWN8Ffr1geaJQN+JUlvbnGe40xgaYdQkVJ+UxIpFxmc33atRBYGtCNIiwS0ksjTZeTIBYWp2kmnnoaMMVz4ry5pn2mCMPn+dX5acQdKoqjgCk1ykXsEtCwuinxez6LjO7JHITyMHgoyrVEW0aqiYEog8W2EHIdW/XbW9lxSlaSi5+shPBXOwq7jlx8yoD3GBv41Ve+yfV0RogKowIXbohuN83eLw95XEzpmQatAk+LCU8XY6zxnF6MCbOU5EJjKkW83eCWCbM85RvmBl86fMhRf84jO8F5aewEsfBs0kg2FfZSYhTbz9u87Uj7CyFAo0muDPmJkp2VIm4jPj9qSkk3Efj74LM3xnz78RUxfrQT2qFDhw4/DVBK/T+Afw68pZR6pJT6dxGi/ReVUu8Cf6H9P8iszgfAe8iA+//4R3kMv7SYtwdUX1ij+p78nw0p9yQDV/5gS/JCSMRXur7l8XekMKU4FPUxPxOfaDSw9/lTlImM3jft0NSmGU6U8N3pClMo0jlbdUvXUO1IlJpPJTLN9aReO12A1gHXi21EmkZXMHjUqnf7NZPJGt9rYwcnUO+K8pWdiVpajw3RKppRwtFvrsm/MqTZdyy/WGKvxBPtBjKoZkqFPUlJTy2L12QLXzfigaXWhH5g+YrH9STi0DSiwq1+psDnisEzh88Uu287pt8Rf3E9bRcGk9BmJMPetz2mVOjTFH9viBk12KUiPTPs/o5h/O2E8VdzZu/v4seOcr+1bvz2iMG0IH91gb0y2Ps5NnHsv3pBaj17wzW7gzUAu+mKnWzNpybP+Pm9+2ji1hKQKM8kKRjYiqUT8m1NgKGjHkdcDr1jzbMHu5TOgomEXhDPcj9iShnikwxrWTDVQ8ku16VG5VKqEqOicYZBVuO95uzJhPP5gNIlOG9IRzXlWU9aFg/ittClHkrMXXYVGD/wDB88bxZMZ0oWW6Wi2oHkQqN0pNr31NOIHjim0xXr65LwYjPHjZsX2NSzc23Oz956SAwKV4tKbmpFed1JqscNaXL0eaS60ciuw0quX93Ic4sKbKnQtcwlmLVCF5JuI8Obcatmb2rWfbbJtBaiqBuIPS/WikRmJKBNRxlEQi6WLe2E8PsM6pHkakuLq8QB2rUkuugmbmvbRf0Wgl5NZIdq/jqsbgdmn4qURx57UPI/eOsrXE9n5Ep8GferfS7ckCvf43vra3z76joDKzGR59WAVZNSNpbjxzuYD3LGb8sOkF1DemaltMgGamdYNDmlTygWuQyTbhJIbFvZnvCCd5vnyvaGbLe/G8zMMrhnGb8Hg+NAumrJdnueP6qhrlO4fx989uaE//dvP+LZvOLaJP+4D6dDhw4dfqKIMf5bv8+3/rUfctsI/E8+8mPkgfRnLnFvTzn4NqgYWL4Co3vixQ5Jm6RgYH0zMro1Z/nhhGQhw1rNELKF5AwPv3jO6cWI6T/Npea6F0mvNM1Aco/rV0su531MW8ctLXry19UNA8lK04xaC0FL8MtdcI1Ba6S6fSntkOvrklu8v7/AeS2kebNN7xTpTI5PO5jf1aRX8v9srhk8DWQXlrNfBDdx9B4lmFLURFRk9KGogfmp+MxdD6rdAJknNho9dtQmpd6B2PfQaMLacvUpz/CJlvSKqaF3EciOxTt86584nv6SZXVd1P5qbcjPpNgHG2GVYN5cgYrM86EUlNAuSkyk2XM01yR1I6ksn7/1mPXOJR+eiTf7/HJIf1Dxxt4pV3UPFzRaRV7vn/KkmlIFi1aBx8UU3YY/P15NGSQ1tTeUzmKNByVJF6aSCvP01JC+7tnZW0p0ZAmmluFIN1CYQiwTlArtJUc6WSiqKWSZw+jAIKuZlxlvXTvhdDzYXnvXR3OuljlmaWhGm/g7UXRNmyCSroAIvQupQW9G0jIZLPiJw64TudZOesQk0uwEbuxfyXM6cphJjVIwL3K0CfzM4WPOq4Eo9rlH31qjEk8eFW42xB002HVK75micuLh35TChCySn2qJtYviF6/HkXo3EHqe9EQiMqOSNJyon6enNCO5dutrDfOQYNdgL2WgUFdCigdPAuW+YvC5Cy6fTLbJIiGRBWl+LsOiPlMkq0A0Cte2YMa2hl0GWeX81kNZCDcjRX3UoGrN8OaczHr++3d/m1fSM8qQ0ETLg2oPgFFS8r31EZd1n76tubfY47LscbXs0Zz06D01jAtZbJlKPOSuB3YlkZEuJswbzXInI9UyzxBsxLSNnyGJ35dOsvVvK1BBbZsmzcKQnWl6J2Id0R6I7WLFx63f/6OiI9y/Dz57U4Ylv/X4qiPcHTp06PAyEBXrt6eM7gl5XtxVDB/K1vXgMVKM8YqivOa4/dopDx/u0TvXNKNIeRCZfk/RDBR3fukRHzzdZ/cf5zSDVnmci7KlgmJ9IzCZrJmdD9EJ29bJ4jDKcJhTFIeSpayipD9kM8XqcyX2ccbgsWL2aQfB4FcSv9YcOM4vhhgbsApsFek9EyKYLEUxd30pOlndbLO6o8bU4i0//KeWi8+B+8wS/96Aes9DGqgvU6r9QPqBph4L+ew90/hZhutHfM8weKoZ3wsEa/GppEYUR4rH/50SdZaSzhTDR5rhw8jF5wPHX7YMH7TJE1b+2SIy/MDiU6kjb8YJxbUAN0umkxUXTyfkOyW9rKaoUrzTHN5YMEhqvvbgNge7c44mC+ZlRlNbUutYNDlf2n1IFSyGQBkSpnaNR3M3P6dnGh6ud5jVPXzQHC9HOK9ZlymusUSnt4N+ppK2znvvHfHmm08o7qaUlzl2ZsV+kUrtt2vrxm2p2tIXRRUVMUJZJRgd6KcNTxdjBmnNsyvxa1RDQ543LCZSu65qua90FsnmHtcz21xs5SUmLrtQlHsRv9NAFAV4+FARrGH+mYaYBIrGcnEyxqw02WHD4XhJ7Q1rnXJvuUvPNiSDBu80SeqYDgpOL0e4qceeJTRDifjzeQQr2efJQl5j5ZDYyKyNtywUdR7RK4nhyC7bqvd2iFM1m1g/IYum52juBNxlimrkPnUD69uO/Nzgr0njqR3XFEdGfOQW6iOHf2gpdgzJOmKrAHVked2QrOR4TAX5ZdgOfW6Oox5BNin57PWnvDk8YT9ZsmuXPGumPGvGLH3GRd1naGveWx0wr3MeXOzgvaaeZ+CUDBrXEmtY7QpJ1o1C17GdEJVEGrvSNH3PqklZkUKj0F6Jqr05Jr3J3Y7PPR5tFKBey9By7zSSLsILr73cTAW2LpL4h/CHdIT798Enr41RCr715Iq/8Omu4r1Dhw4dftxQtSJZKRavRtxBgyoM9diQxjZmzQkxHt655NHTXcbfTFndDkQD6UxT7sL0zxzz4fE+o9/qUe20NdlKSIB4cQPxsGJ2PCIZ17ihIT8x4o0F4riBhaiDpo7MXoskc1HYrx/NuHz3GvUIyAMhNTQDqG40qCSQfJhTTwNxErFFoB4a0pkkMfRPHfXYbAcwq10ZTuudylBccQDpJdRhgHpjRaYi1SwXArPQVLty/CqAXQmRbMaS8awcXL2qSeeR3lkgm0N+CRcqxw0i1SdKylcVydOU3lPD4IkMFk7erzn+xQyfwfh+YGnFi4uWrfnsTONXOZejFLNXMxkU9JKGvcEaTWSUlnw42+XVa2eEqMiMwwVhHotlj8Wyh1GB3DhKb5mVPe6ML9nPVqxcxqzp8awYUTrLvMhxztA0Bl9a1NqQzDVmrbaFMMkykp4ZHh1OuLU740HYoY4QjZHbRVFhN0N8RklcXfM0ob4lLGkZFIc7C5SKPL0cEyO4MuF4ltPfXaNS8ena9cZjBNVY6sZVgMVNsyWS9TTiexF7luD7gWoayc8krSI5swyeKC4+OyWZGZpdRwiaZ1cj6tqyO1lxshhyc3JFljcsj4esK0MImhA0dlyjZj3sSlJDTNFaRmpFM5boPxXaHOyRPG/twC4U9Z7HXFqq3UgzCfQfyeuqIpRTIMoxhrOMmMb2faVI1lDuR/pHK67eGqFUxHmD0gHXC1RKXlvVaNxAcun7z6B3KjK2uma25D5ZB7ST1JNy2rLRAMWnK/7Kq+9wO78gUR6tAquQceaGvLM85GQ9Yr+3bP3+Oc8Ww22Jkl4Y+k+ltl2FTWyfapNG1HbhoYIsHqrdiCoNx1cjfuHmA2Y3cmarXUwpu0XBvDAI2aaOoAGv6D0z9E7+AKL94oAl4FO9HQj9UdER7t8Hg8zy2v6Abz3uBic7dOjQ4WVABSgPpcBl8L2UZCHeUBUkIYII87ccO16Tv5fRjMAPAumFoRkFXvniE0pn2flHuZTaaMk0rnLxYNc7ET8MUFj0wDEaFpTfHKAbqHYgJpF8WMO9jOwiUhwowrQmu5dR/tKSy2WfehrwO9Io6fPI+jUHjUZfWcn1vpQhuvkrFlNKe+XmD3R26VjcSbZ/pMuDiPKK4SPJ/y0OFLZUlLMMlXvMsGF1y0oRz+sl9n5OegW7b1c0Q4sbWPJT8Y5mV4FmoDj7ombvm5HVkSZdCCFKvpGyuqlZ3fE0Rx5IMbWi2Msgynk5+Tkt2+QeolXkp5L0UewrfCqEaV0nnJ6PCLVBJYE71y74uaOHnFcD+rbmrJQ69sw6DodLHl5O+d4H19k5XNBPG65WPd5zhtPekFR7EuPRbTyfUpEYITQatbBkl5rsXBY9yTJiGmh6inSuWM56hMmCfl5T62yrMrpeROViI0nnMuxoq0j/qWZ2aDi4MeNq2eP0arhNtPCNweYNTZ1RPhiR3lxRL6wk1YxkcdT0ZXdifttQ7Ur1+UYh1Y0iP1OsbyrxOqcaU0XcMDB/XZFcyrClmRvYgeKyB15R9GqK98fon53xys4l33k8IuaRYa/isrYc7s55ciXDCOmVIlmKugySyb2pcddNFFLuny8uactc6usNo90V1WyKdoryUEqb3I0Kf5WjgkINa3xi8GOFbhJpEa0SQhYxT3JmJuIKC1mAUnzxamXk/idS455fWnrHJekikejETDzb0Yin/uLzgeRKU19v+Dc//zu80XuGIeDRPKj2+NbVDQKKRS21j797/zbRK6LXZMOK6ipn/J2E7CKSLp9HgWyyxAViD3GZePhVUDQNhD70s4aVS7k8H2Fq1XrV47bRkyhDtwSxo/SfKfLz0JYOqa19BGhLizYHAD4Rj389eZ4i86OiI9x/AD57c8JXPrz4uA+jQ4cOHX4qEXqB7NwweS+QLhzRKIpdjetJzrSpIN8raP7pHmEI1bWG9FS8pzufvODmYMZv/qPPkE0V6+uRne/A1Zuga1G/XD8yurZgvc749M1jvvndO4wqqKdQHXiSw4LqWZ/BGnyuKO40pI9Sql24s3/Jh8f7xKMKc5KhnMKNPARIphXO55i1Jr2C/AIWdyE/VVslrulriTG0MP4wcD6WTGc3UDRV66+N4is9+nXD6V92+HmK33WSHrK2NJPAbAqrm9l22E1ywiPrQ1G68zPFsz8VCf0GMzdSLb6jGDyO6MawvCO5yMs7Qr5MJQqy8lDvesykQaeOuVe4Z32SVmMKjWa9zhiMSsZ5xapKefBkj5P5kH/91bfZsWvu9C6ZO7FcLlzONCvYvbPGKs/KZaxGKY8WU4omoSBhvs45mix4dXrByXrERejjk4AHsnPxbZu6bUNUkBSReAb+XsoHzTXSnRIzaAhJwDsFtcYuRc3VjSjSRS4Wk/xRwmmYku+KLWa5znC1lRi9RQ67DbpR1Kd9YhIJWaQaBnRlMLWQy2YsQ3YhlddRNxFq8ePbtSKZSwmR8oo4ckz3lqx/dw9dQzMOhKCw5xY/CqyejCCBN8cn/P++91liEsiHNeO85Px8yNW6J8OhFla3IqaQ1yqYSMwCOFF6q6lkgIe0jbhLZJhSN0CtWa9ybIB6EmC/IjzKUSZS7cjiyiQelTqy1LG6mpKsFP48wy5F5S9rgz1LcPsNIQuERsswYVDYQuwZ5Y4mPxOFt9oVu1QzULjccv6FSHptzWufO+e14TkTW3DpBix8zjvLQ757esQgq9ntrSmdZV2lTCcrtIKiTlgvMvTKUBxJcowpjAwsLgKmDLIDlGp8rsR33Yrp0YqlRjeGi8mAy6sB+ixBta6TDdGWgU8h2tmFoncWng9Cxrbc54U2yUhL9FOxr9UT+d3kenG7IPpR0RHuPwCfvTHh737tCefLir1h9nEfTocOHTr8VEEXmsHjjaKtqcaK5SuQn4j3efnfXFJd5qRtLvDw/YT19UB+Z8Fef8W3Tq9jKiXb4k8V62vgbpTok4y0UbBfYXVgNCj5zuNrJDNDtSPb7tm1NeV5j2QhkWZNDirzmCqhfKPkeD5iMl6x/PoeyUKxvuXRlSa5uSJNHcW6D21NdrIKhERTHEp6hM8jyzt6OzyZFB6faULPS3nLTEmddksUq4mSQbphg1Lgaw1ekVzJwOX6ZiAmEbtbonTk4jKXljsFo/cMe19TFPsJzTiSn4lSP39VMXwYyXttuUoW8EGTnyuqvSDV1SbiC8N4tOb/z96fxciapet52LOmf4oxI+c9D7Wrqqt6Oj2cPmRLJC3RhizTJqwLWrAtiIIB2ZYJ2IAJifaFAduwwRsb4oVhgJANSYAASZAtm5BI2aRFioc87MM+Q3dXdc27as87x5gj/mkNvliRWdUcuqsafdg4zXyBxM4dmRHxR8SfEd/61vs9b2M16lySjWG9HzAfx8+8VhQ8P7SRZJK13BpNKJ3Bhw5SBHyQpLJFC8+zxZAj2WfVJGjlMNKTm/bSjiL7gfOqg/UqRq2vCvxxhmpjEaOrOASpqhCJElqQLAP+WOK1pjYJwnhYafRCoqvIV1Z1pGcIFzvUSBh+6KlPNNVOj+mDim6/ZLFKLrvj5jSG+Oh5LKaDDuidknXHkD1OEUA7dCDjkKxax9c2Pw3oEupSkJ0F1gcXHgMRLRldT/E8ctFto/A7LXKh0ctoDXlRDnCNIt2q6OY1rVN0ByVaelY64PoWgkBYhe3Err1axtfQ5hf2jUCViUtblFnE7/OnmmYkcRn4vqXTaWjICF7gDmrUcYoQgWadUC9SjAU8ZMfxvrwGZpHx7YwnO0loBpvnNURPuGwE5R7oMmVxO9pfSKPFozwIvPZrT8hUy/3uGTtmyVnb5WU14J2zfaZPhmzfmfDK8Ixpk8fzEjDKs6oTVmcFehqJI7KJwUKyDdRDiU0FxTnotcesLMJF+5lsA0EKmjQOh7bdgBDgrUC34nIHgLCJn68F6VSQn0Sv/uVBiE1AzmdcIkHGv1Nv4t+o3ex8+DREj/1nmN2fR1cF90/Rm5vByR+/mPPHXt39JR/Nla50pSv9aknYmOandIxAr0aCZBI7ned/tKWjPeYjQzMI2G6g3LGISlIuMsJQMB13kYOY2idbgfvujDDJyY8F1V7gcHfG8bhPv7fGrQx6kwwXupZqvBmG33zAlocW1hrbDYQmeovbVpFORIx8P1KIb8wIQeC9JMiAYJPSFyA/FszeiMErZiYZfLAZxLKx2335YX6BXvaRsd12YXUzIOca/dIw+MYZpy8HqLWk2bXYQuG7lv6PE7zqYLvQm8Pqlke0sQjIzmH3Rw3ljoYA/cctR99JaHuC3R+2PP5vCdRS4tO4rd59rCKPWEnKG47J8wE3753Cd9eMVwWuMjRrjUwdUgUy48iSFiECj85GLJuUnXxFsvFwv9475pu9R7zZfc7MFjyrtpi1GQfZnGmb83w15GjVp5vUSBH4ZDJivY7Fnx+2mCdpTC9cB7wWiATM3NL2ND4R5GNPshRMXUJ1tybbW1NlKXbz+olSYaaS7DR2t72G9Z4knW4Qgs9SFkONGrQ4wA0DzBV6JTFzQXno0EuJPc+5+coJz1Z7iGYTBFMqwv0V9uMOZiHwRlDlkJ8GmkEkgkgLolaMnw0pziS2ANf1SBWQqYOFprnWImeak3WPYAX1JKNt4qCozlqGvRJcLBC7e0uaswGhcIhzfXm+BB1nGpwRl2FQTX8TKkMgnQhctrE61JL1MoUioE3kXld9TXjaIV1IqpsNQUaaT34Ud4S8CWRnMi4kVzoiGJvofW67kdEtNnHx9UBQXrd0P9aUex7hBPlrU8ZlQdkY7ncjhUSKcEmmufbKKd/YecpJ3eO8LLAuetjPJj3cUiNXivxIUJxEtKau/CZgx6Nqt0mIFXi1KZ5toO7HHTG9jnaX+sCSJZZ6XMTnbDO8qRrQyzgQmc439hEuZy5/Agd44RFvC0HTi2QfW0SsojchDmGm/ieK88+jq4L7p+jNwwEQByevCu4rXelKV/rFyqdQ7sP6etzizc8CnWPH5BVNb3vF6tEAub0ZoLqzQj4vUHX8IJxUOWJscD1H52PD8rZHO0nv3YRyP3Dnm88YJCW11Zw9HdJ9qLFdqA5baCK3GONph2B7gnSnpD7Psb1YHLSNhtMUe+iRraAdOm521zx7OUIaT3YqqUcBs44BH14T0X1BsfMDj1l66q2YjBhU/FSXK4XtOxAal8UPe9nGDuXyVYs5McxX2YY7HcAE/MAilprhh5bFDYXw8XlyWSwexl9z6FKRrNRm4Cuw3jcMP/TM7kvmNzX7vxWYvipgJbEZDD/yzG9LRIDBO3H7/mm6zcHhBGsl3kr02KBXSUwp7AQWacD1Hb3dJde6M7aSNUoEpk3OedvBIRnpFUY4XilO+Ljc4XfPbnKyWfAoGXg2HbKa5pGZXKpL2kSQ0T6QzANmGQuZGDwTu5dOCtZ7kU4jjScxlsFhiQ+C0+MBZipRZUTESROjx10qWNyJBXhQoEqJb1MwPqZRKnAqdir1SmL7PpIrADFoyN/OqXYEZiFoQkG2FKTTwPx+wCwl0gqW9xxmKmMnuhQkE4UuNxQR43HTBFVKslNJuzY0u5anJ1vI1CGOMnzqCaXCzjWuU/Ha/Rd8fLJNXRnaXcvt26c8XR1QPI+7MHaTjspmVqHaBr9fo56mCCcodwPtjoVNeJF+kdLutbRrQ7a9Qu2tKB/1Io2nVLgskMzioi2ZxS55dh6iJemRxizi32kziL5/vYpWFpdGRr3qN1Q7CnGtQqrNkGqVxnMoCApV86QcMW9yiqTl3uCMs7rLi+WAZZWyXqWEaQJOoGwchJYWyh1JfhZvL1l4CPE8ECEuNryOHX+vo5cdCXVPYIv4+rWtQrRxUYIHXQvScaSo6OpixculdSTAJVM7SLDZxj7Si4x8t1mo+iTgUx9Rmp9Jofy8uiq4f4oGheHmKOfHV4OTV7rSla70B6IYQhM7e6qODOnVVyvCuLP5EBbUX1nTVhqzjgVQuwfnk27EovUD1a7H7zbIH/Zou9D/0jl3umM+mu9wdtQnO9b4BOodBypgug3tNEMoR0Cit0vqZYrstfilARkI04TOC8nqtkNcq1AvY0dcGk84SS89n7KF9f7GQ2sleq5i4ediF9DriAmUTbQk2Fdq6lEsZppRoO2FWGgsFat7LeJlB0FEvrWZQ+UWxgbhA20/dtQXt6IffJkKbv01T7kt0WtP25G0HXU5eDp46NF1iKEwq2iLKZ4r1nuS7rPA/F4sUlwKJm9Z1Qn6d3tIDc2Wj7HjARoTQ366/YrMWB7NRpyYHvf7Z3R0w3HZ593JAbd6E/bTOV1dMzQlrw9PKEzLs/GQLGkZFCXDomS6zlkvU4KVhEbCWl0mRoZIuIuJnx2JS2IaaFCxk4x2XB/MSKTjrOzQ3VojR4G60dSrBDE32DwOkAYZqPaiHcmZgFpLnBYEHTCTTSdXR68/XUvRq3hxNsSkliAhHQt8GoOOqt3YAg0q4DbJlLAhpKQ+vu6dgE+heAntiY4d6YXYsLA9eqoJ3Ra31ojdBn2URKuKhfaWIlOWUX/NbJWjt0v6aYXvWvQ6odqJ7GiXxtcED/X9GALlFbTbDtkI9FjjDhq6wzXr6QCZOMIkoThsmSyKiOobBPLninYQIud9z9L7UJMfbQrWbhzuzcZxgDVZCKZF7BIHBdk42k98Kwl9ByuDzC1Z2nI4mOODoKtr3lse8mw15Fpnxna64tFyxHhV0FiFtSq+/oXbPAZPc+gppwl6rnCZJDsNdF94knlLUPLyvHCpRFUeJSM/XZWg0rir1d1dsRwXpItNguv000L7gi8PEDa0kwuaCyEOZDZdQduLg7NxcbHpaJtASDbFtgwIeVVw/8L15WsD3no++2UfxpWudKUr/erJx2G+/kcSs4xdudM/1lJ0apK/OcDmsP5qyaBbsnprRP9jWN4CGknSr6m2HSp3mKcJ6jSLA1RfiQ2SR8sRjz7aJzlTcairFwg6sHs44+zjEd2nitWXbRyqXGVQSzAOPVPYUUCOanhSRNpCpklvrihMg58mSA+r65tOeCGxebQxoGLH0CWB+U2FLTbR4+FikDPQ6VSshil6JTdFnaQZevxWi0odvpLodYzrNkVLuzLkc8HyMAahqDLejmwFnacBvXJkQrDa1ySrOFzmEkGydAQpWFxXuEyw/Y5FVTpi0ATM72/CSmpB2/XohwXLfoY49HQ/iUNpLo/b6EEF1FHKslG0gwpjHNZJ3moPMcqRKMe17oxlm/JseYu9YoEWnly13OmO6ZmK43WPdZ3QOkVVJmjjaK1EtNHTbpYBXUe8Ij4OKmZtLDCDksxeDXFR5SVPp0PypCVRjm5W01hF6WKnVLgYe267gvxY0N6taCsNImC7EZ/nhg6by08JFqlHHyesrUBNNfWWQr5Zkr+V43WIRV4SaO+35I8S2m4crJN1DEvJX2hUA6vbjmA8o3cUzUBSvlnC04x0IkgO1vBuj+YsJRsreHNBfQDZWynCwvy4y7QoybTlrNGEACerLsgY7OSTOKjp8oAuo83h2t6UstUsEst2t2K+yvCPOzDXLKoeCuAsRe7WTJc5baURgLtX0sySmFwp499htRNIZpHPrtfykjnttbi0bAkbkFagmhg6o45TXOFJX2rEV0r2eks6uuGN/ktmNue46nGtM+PFasCyTZiuctazHGqJ2apQicNWOv5/bChexNv2KnryzTpglha1bnG5wRUafEBVF4tLGZNhC3BJTCNNdCQKmQXkZ9E+InyIi/qLeluACJ+G9LgkkkfabrSPuSz6tIPcdLcTD8aDChcQk0+jar+Argrun6Gv3Rzy194+YrxqGHWSX/bhXOlKV7rSr4yChv5HkuLE41LB6bc9na2S5v0+3Vlg+s2Gna0Vy9/ZYfcthwgwfS2m2233VpxYifioIJ3A4p5H7Nbsd9dk2vLRkz26DzXloafZdeTPNO124PR4QOeZwhkwqaWf1ZTrFNVvCSEOTolaUuzWYIsYgb7U0K95dDYCwGcB0W9QzzJsJ3Ze17csWa9GrxNUvbEVaOIA4IaksPUejG9mhL2acJRjlpE4Ud6x4AThJIuplQcNUnuclcjUYfPA4i6wScEUAWQNxbljvZ+QLByqDZTbkv5ji1kFqpGmzQV+E32+uK4uO3LewOCjWJjnY8fihmZ1PRAyz96NCdP5LmbTEQ8dG2PlBYhGImVgu7Omm9QAHC97zMuM1inKVjMqSipnsF7y28/uEFyMPEzylhAEWdpysB2bWJMkp5r1LvFqwkXrgNwwkH0CTSfuHgzfFZx3NYPRlMUyp64MJrEo5anKBO8lwkRGe/4iWhOq7UD6Xo785oxynaC0o60lQkfWsi08ZiEx09hWz54k1Nue5KXBpYZmGIuy5YMWNdVgNwFGYhMTnkZm+0X0ulpK5J2SNu+g1xDGKe2ORbYmMtbTuJtBAGMstYgP3HaiV/zx823wAtNpMMYxW+VQRcsKAsKm0IaNpzgIpICv33gOwGna5dHaIBaa4rGm2vPISuBaiSkc9TQjdB1GBJyOeEFvoPhEX0ad16mMlpFpRE+W2xJbxJ2VZhBtNdUoLjJVFQgi2rOkDMyqjO3hit8d32KQluxmS350esj4tI9YK+SoJu3W6KFn/aJLMpaoIEjm0Hnp6T6vkLWj3krxG/yfLRTCGYT1Maa+o2LxTMQiXpBCmh1HslWxWOZ0PjZ0X3h0GRBhkwy5Qf0F9emOmteCNo9WpAvOuN0spoKJEfch2RTaesMJ9OIz3e2roclfqL5+cwjAD59O+a+9vvfLPZgrXelKV/oVU7kfWF8X2MOa4CSrkw7FXHDyJxq2tpecP9qiO4fJa7Eosn2LyB1n8w7t2iAGnnYLRBvTBRurWVQpxQcblN71NebdLuV1S39vSfX2MG6HJ9DJ4xCfkB47zRCFxRUhcpPXKUkWP6B96imyhtlHW0gP5vaKapnQOdsg0brRz9q2is4idmpdHbnOnWfxvhAb5N3zjPT+nNWNlPxYksziFrVKPOLMYLdttFhsWdp1ZHj7HUtyqsnOYsCH1dF+s95WrG4Kuo8F5X4sitqupM0l7SbFPKhYYJt1PJ56O5CeC86/HK0J1Vgz+Nix9V4cUpzf3sN+u8QepSTnijrxmEGNUoG6NNTPujxOCkg916+PebB1Sq5aAGZthpYeLTwdXeOuSWyQzKtsE6oiESIwXhZ4L6hXCaYSmOWnflphPUGALSRBRC5304+d5J3fVixv7WDv1nSHa6yNQ3cAbqnRvRa31WBnKel5ZHi3vUB53AHj8TJ6e0Mbi8T8pcJl0HkaWN3YnJAi0A4C3UeK5S3P/m/D0bbA7zYIEUinmrYfF2bpiUI4WN9twQn0oGF3sOT5dxPEWtF9rFg88DRbDnS4xPj5jmc7q+llNUc39/C5Q+QOeZbgh5Z2lTA8mDF+d5tsIUl+bUJZJqjjDmLTxbcdTz+p2c5W5Krl4XyH00WH9ElKM3K4PPr/mWnUccJaefrvGpY3PXrL0XqQNqarXoTpFMdQbfETdaTLoyUmWcTUSEL0kseuMridBnmzpa0M5TphVSW0jSbPG+bjDtnjBDmMZCGA9TyjWWnUUmKLSBcavduSnVa0/YQgBcm0IWhJ0AJvJM0gQbqAV9Gi1RYRSejSuAvTDDyisEgZaF4UZOcXeMlPH8gFVzuIeL2mE/+1HS7fDyIC8lMLCcZf2kcuwniC5BIx+EW73FcF98/QV64PkAJ+/6rgvtKVrnSlX6iEA/nakoPhnJeTPtlv9ljc86zvtMjEMX0yRK0l5X7sUkkLaiVxOtBUBjnXDN6P3arJt1tu7k5ZVCmLcYe9Z4GT7zrMJx2agcdsVSye9sk3SYbl7ZadpI1R28bRqoA4Txi+K1jehLDvo785C4jCslynm2MWXNua8cmLa6gyflC3vYCUER7tTRy6snlMnEyWnuV1hdeRwGEWgk7WUG8oGPWWQBpPmjXYNouF2hPJ4tVA9tLEY+h48qNNgbwTLi0Y0kWEYrUtaDuB/FQweTWGlIzed1QDSX7uWB0qpq9BENF/XI82ISoWyn3P8l6g+0mKKuPAoX07p97x1IctqmNJEsewKDFDx3wrpbGaQV4xWeW8PBvQ6VYY5djtrAB4Oe/TzWp28xWNVyjp6aU1RjpmdUYIguUqAyuxHU/bVSTzjX1Bici7DmALcWltqLfjYKqqgYVm0XRjl9EJZLdF9Vpco+gN19g3a+q3BxQvI4S52QuIxBOcQNYSub4o5uN52HbjTkMzDHRuLlivUtZVRuha1vsJB78Jp3+qwY/TyxTM9f2Grd8xLG5fnMwglWe8LFCFxQlYvOGQCx3TDQPYrkMvFWGvxgXBVlbyom+RU01IPWK/hrUmOdKstxK6T+LCaT7uxCHHveirD3OBtIIPHh6yf2NCbloeP91BLDXhID4XYZojFjp6jz2oZxnpJOBSibjrEXXkuKeTuNhwaSykZRtJKD6NODy9DuTnnmooMWJj2ekF2ps18ixBCLCNJvswo7zVUlpJqCX+RU5xFhc2vuNYn3YwY4UBbN/jep7iiWLrfRu59f0EM60Q1uNTTdiELwkXkGwWYDLaW5pe/Pu6eA8JJtDpVwgREGeSZLlha3sui+6YTCniQGQRr39BHwkqYihdEm1nF8W20D9JIglBfFpoX3m4f/HqpJpX93v84On0l30oV7rSla70KyXdiTaOJ0cjirdyVtcDD772lA/evUH6QU55s8XqgKgl6ICYS5KJpBxZdGKRi5RkETj7Bly7NubZyxE6tWSPEs6+6ZGdFnmscTcqvJdkR4ogoe0H9m9McEHwctGjqQ36PPpwVROLDbkZqAoHNVIGgpdxmxnomTpaP4r4OHwakF5iS01QApsFqp1IfkDEgb90LKi2IR3Duk4IKsa1uww4SVH3KrwTqAoWbzR0PkhohptuW+KpdiMvOj+OYR2LW5KgoXgRmL0WCMYjXUS5peeC8WuKzstoM+k9dfSewfSVTaDIjkVPNDaNgSbJuWL15Qr1MkU8ESQzcJlEVYK2lqy6EmtjAZQklpvDKYf5nM5OzbjpIIVHiUDtND1Tca93jhYOIxyP1yOub884rbqclbHtXreaJLW0K0MyUZhlfK5VHZP+ggZVe5aHhmqP6DFfA0GwPow0EbWIaMNgAslHOdX12GWfn3YxvZq97xzx4mSIeZIiahkJJCLgtlrEmdmkjUaUnjdQXnfQa2kajV9p8rmg7AuW3yjp/6cJ4mmOCpCfe9YHCnfgWR9CcSxYKY0bWIIXCB1wC4PqWqRytI1E5A5KhezF89kYx3ydsaxSELHIExNDdnvBepIQdPQJV9sRHZl/nODycOnhbztgZgJVGo7tCLNVY44N9loDpcKfpZAHUAFZSlzfkn1iqEaQHwcmD/tg4m37RNAcNCQvDU0v7pKYVSSVmJVnvatZXotzELKNizwCdAcli1KDF1DFTn/6UtN9DLPXIkc7Pwksb8UiNX+mY2e+G9DzyIMffOzQa4dZNIiyJRiFz020FZUWpKDtJ5vdDoFNBS6JhXPbjUjDGC0fi+rlPKfTsim043F6EzGCF8W2zUQchsxihz6o6I/3ZjMYqQIk/tI2EhNRN8W9CHHY8os5SS4lf76r/dOlX7s15IdPp4Twcz7LV7rSla50pX9I1imSxJK9k1PuBr723Q95eLSLWkiagafYXoP2hMxRPImR2S4P0EicVZiFYPqqZPDqmNYp9FFCuzLYbkDsVfiVwXY94iRFPMsxa0BAu9uybqJ/tioT3CTFdTfdQwku93TymmY/blMD2GlCyDy+5y65wt5EXJqqBGnWgo3dWZsL2n5kCUdcWewk6lW8rdVJJ+L+NpQTn3n2e0vqbYcdRDKJy2MnMJgQnwMZi4jlHc/8jkRHQAVtX0Rec8cSBHSeCXZ+1NJ/FD2s2z+uIuGkEHReeEY/EmTPDaO3oHghIwu87zFPUuzAMb/vUXVg9weOrXcCspJk3YZv3XjK6/sn7PeWtF7xcL7Di3JAR9fcyKaMzIqddInabL3XXlP6hEI3zNqM0hpqq5ksC7yXVJUBFWj7Pvrd1cV2feQptx2JWQdsHnCFx71S0t4rCbmD3GFurQjDFrot9Z06ogZTh0gd7TjjxYe7pHmLeWNOsreO3UovLruSqo52k2aw8ezmjq2tJc08FugAh/9ltDEtrit2fhCw25b5nYjTY5rgNdRDIp+6VLRrQ/2oh6glUnr88wK1jkmNwgo439x2EPgfDlieF9BKzFySnknqyiC3mkizea+/sTfERZpwG953uBgAjgWtmSrsaYa7VdEZlJiJIiSBdCwxE7nprkfrU70dcFl83fMjuTn/AmKl6T4DvY4WHr2GZBYuWdXlbryeCNF+YZaCxVkHPVeocxN58J240Cv3Yhpl/2HcoWgHnuKRISioduPfTX4qKI7j97Jxl8W2aB1BCHyq8LnGpwp8wKaSciRZH0hW1wTlXqDe9TT7lnBvzb0HR7Stov87Gb3H0evtN5HzbSGp+5uhyE60kNh8Y+3ZPL9efzpn8VlWPkDwscAOQSAuUi0DhE00/BfRVcH9OfT1m0NmZcsnZ6tf9qFc6UpXutKvjJTyLI56VG+WDF4/5+F4B57l0TpSC7TyyLnm2t+Ig1wRASZIRyVhFgse8caC1inG723jdUDoQDIR+HZjHZDg+o78ePNBve3RuaWuDVtZidIes1MCsSi2mSCkHuslInXYWYJvFKiA6rQM9xZcy+fY3ZZq1yMbQbvlWM0y8OISneb7lmonRNpHGpF+3kQKQ/YicsbbTtzKR8LDZ7uoUqKWkvTtAllD0B49qsg/inaW7hPoPpJUe575A0v1oGL+lQa5UqQPM3QJB393RjJvUW3ceh9/KYvFh4ndy97TBuFi4VQcebKziCvUK8HwLQ0Czv9Iy+pAolrovBC0Tzr83R+8yo8+ucHRvMfxosvd/jmZspzXHd6ZH/Lj2SFSBG6kE1qv+P3TG/z20S18kPR0zbXOjK/uvOBwOKdtNP48jcWai8WPS6HuK2xH0XYU3myG2HqO0c0p3U6FSS26G2ku9SqJtIiZgaWGIFAvUkIjUYOWkDvqFx3qylAvU8RZTJnc2l1g99qYLpl6fBIRjvrUULeGncMZoWepdh3rfUn2Ts78mzVtVyDWisWb0YeiS4FsY/BNdbPZxK+L2CntONpFguu7mGS61hTXl6i1IH+h4HFBcRQwJwaMZ/DRBk84T2IXVYU4KBliUdj2IuUGoB5Fm4NexTh1VQlCxzHorykf9uNQrY0Jp7YTO+IiiwPH7dBfYiqTBaTjQDoLdJ5Lskkgm3y6kMwmIZJc6rgTc2G/ucDoZU8SZBvJKdmxIpnEhaXwsPVW5GPbAjpP49BntW/RK0HxQpCfesw6INtAOzBUN3rYYYrrp/hM0XY09Zah3jKs9w3VSOA2FhLpLrzn8fVwTnI87+E+6cZFbR0HYt1m0fapfURcMsRjhzvgzaY7Lok7DXKTHik3D9JvOtsbH3cIscuNE6hzg6yuPNy/cH395hYAP3g65d5u95d8NFe60pWu9KuhVFm++9UP+K2P7jGZdDGpRZUiRidfr1jMc/Z+D5bXo31g+D5MXg9cHy44/50ey9caesaynOeEgUWmjuHfzZh+yZN1GvzjlHrX0f3QXIbMtCOHXxpkYfFB4KzEJJawiCi8+est9+4d8/HDfeRaEToOmTicEwQnyJKWuU0Zbi+ZlQOSKVSHIKeGoCPXuBkG8kFFWUuavo7BKEeCph8XEqqBXlZz1omWBllKRN9jd2IaYRBx613NNbaW0Ikpf8kidro7TyVIST1UqEbQ9D31jiM9V5x+s09+Hrt8wgvKXcHsgSQdR390WyTg4ew37Kbb6iNL/EFDe2LofyRZHxom32yZTwzFS9j+oaDtKEBR7qdU+5bfCTfZ6y3pmZo3+i+RIlA6w0nbA+DN7SNcEMybnDkZibQUuuGwmDO4WfKOOcA+7ZBM4qLI5jE90JRxYbW8Jllf94iuJTOW690Zk7rgxbRPucjQWUsnb5jrHPU0ix1yHVAzjTgz0Svc89hKY/KWFsgeJ8ynW7BlaYYe1WvpXZ9StwZ7XmAnOStfgPak55Gn7hNgoakHgu4TwfobjqAMxUvB/HVL/kyDlfE1dOAKD60EExeLNos7FLu9JY+GHRAKWUd7EQSECqwOo42n3hPYhUGlcVAXL8mPZexyT0D4+FypOhbostmcJxPNfDwiPxWU+570VLH4Wo2YGPITQeWSuJg8UphVQNWBOhEkq9jZzU4DqvHMXou2KpfGOQTVxqRJswTZxLZvughk0+jp9gZW1wNtf7PTsxZk57GzvLwVd6Ns1yFctC11XkTySRDRW51OGggBW2hsoSBTIKPNxWYxeOYi6dEn0VLjuw5ZWNKspTCW6XkX/96A/kkkkrR5HKj0ZmMZ2XzvTVxkBv2ZjvZF+M1FyuTF4K6MuwLBC4S6SMQBX2nMmab3QtB96Tgtf0GUEiHEjz7H9U9DCP/8F7rHP4R6Za9LJ1H84OmUf+kbN372Fa50pStd6Uo/Uz4I/t7Hd5EnCclUksxid3h5K/pybSfiALyOARanv+7I99acLTus36zIipbFUY90VFKXGWGaYDuCvQennJwM0AbUWpKdBcrdGPKiJzraUgrL8aKHSSwHgwWPbiRUNsMMaiobO716KWi6xE9lK9i7Nuf4dABAaiLvF8CMVUyoHLS03Yy260khJuCNNumFm23uoCPbd1mltL2AWQjU4Tre5qBk7XNqNLLZFOaPFKoOzB5s2Mc1LG8H2r2W3o8TOkex+NFVYHkLVjegGShUDfNXHEEH8uc6DrrttZT3Y5HX6dao3xyw9X7L8lAzeVPj1QUyEOYuob7ZUF63LE8zkqm8DFwBSLTlaNaDARzX/Xj8yqKF43Z+jiSw9gkvhad0hr1sgcLjkHzUxOTmSIeIXdh6O7C865mvJfmJoNkK+I4jSS3LKqXJNQ/6pxwWM16uB5wsutStZrS1YnjtjHUbLULTVY4QoKRnftSj80GCXiWsbkQ/fDKV+LWJw61nKfRXVJVBd1qE9Oi3uhsyTfST17sOfFxE9R9C+TRDBFhfC+iZQq/j6y/ur1A/6tIAbmS5dm3MadGjnaSYbsPLSR8EuBsV5p2ctrcZulsY2n7sIstK4DpxUFTPFLoSmBWURQy3kTYuRryOtpLu02ghigOB0SrRfSxZ3vIkT5JodZoGqu04nGuLmJhoC0E1ArzErALpwlMNFW0v0Hkf1odx7kC10HvWsjowNP2YBFptxR0RlwnMKtD2A2Yu6D6NizvhodqJNiU/sAjtCVbiakEziIOP2cSTzCzCebxRiBCHGpu+vExtdblANiHepxE0Ix/tRDKysJXyHPbnLJY5uoRkER+b22AwXSo+LbANnxJiVCy241fY3DfxtdBxcYSA4OO5HqyCJtpzus+gc+xQ5QXy5Iu93/20DrcC/sWf8nMB/JWfduNCiH8B+Eub2/p3Qgh/8R/4+R8D/m3gq8C/HEL4T/6Bn/eBd4D/Vwjhz/20+/qDlJKCr94YXg1OXulKV7rSL1DVIqX/93Kq3VhQr24EzEwwfG/Dxs1heV2STgPT1wJ6rmjKLte+fIwQgeVph61rM6ZPhphFDIupvrWimheYZ3HQzCziwNz6mo/pkDb6da/tRBb0aztTfnxyQJgmNNuOwjhm6xwCJAtBMBpfWDBxeEodpSx7KVtFScgcQUtcEQeuhBc0g7hFnRpLGYhb0wLangAJTc/jOh63yjY4tkCWRUZ1XRnUxCCul9haUXyQkk08zmwIJduCth9wNyuKd3Ly00g+ySaedO4QTrM+jFv7tgO9T2KXtrzuCCKgJgazErgs0ISUTMD0FYPwsPc7gekrsWtL4qGSdD5IaHuG9Etz9t9cMF4VzOc5VJqyTugXFYOkxCM4rzvsZwt2swWVN/ggkCLQ0TWlMzRek0hL4zWlNWjtabYa6lzFhYsEM6jJ8wb/qsCVCUYEDrfmpMpSOc28zVi2KT4IlPSMBmuclxwvuvSzmjv9MdMs55PzEXnScvP1p3y4tUv1pIPaeN5tN9DuR3+EOjcs3tom3Krw44StuxNmb6g49LiUMeBGBpKJoh14gpZ0nwimX2tRC4UbWZaFIjtRVGc57aFDLyR+qbjenbGVlbzTHuKswk7iorJJPNJBO3QIK0jOVNzRyYlc7Cx6oIvnkmYYW69mEQd5bbZJZpUR46fqOOBY7kZ6iC4hG3tcIjfnXGD6KrhbFe5lXCiUO7EIl220fOTnAb322FSQjiUi+JhKehBwicAsNW7TIbYZl7MEbRcWd+JzGs+pGDdPiF5wnwjaRKHnhsEHUJw5Vgdx6DFZeLyRBGkIKi4YhAuY0uNSFXcViIuEZivQDi0ij/MURbfm/uicflLy4XQXudndqAfiMwsScYn6u5gNuCyqL1wgAYQXsdu9+QKglYQGCAI9V2RngvwkkJ85VOXiQGYICLthfH8B/bSC+38cQnj8064shPg3fsrPFPB/Af7rwDPg+0KIvxJCeOczv/YE+LPAn//H3Mz/HvjbP+0Y/knp67eG/Du/+TFV68iM+mUfzpWudKUr/eFXgNm3a5LHKdMvWzqPNNlZHDpUTcCsYgFbb8UP+e4zwezXa3byJS/PB4jMMX06JCQee2hJi4b6PEcvFK6zGVQDFrdA7tS4WSQgiMSzVyz40dMbGOXiQJQTiGHDep6hUxcH31qweSBNLL1uSaLcJXq3ceonOLwitxFBt+NAREygaGS0GGQeniUIG2kIqIBbaeReTbMy+HVKCCKmUF6TbA1WTBc5IqTUfcH6GqhKUG97XM+hX2SoCmYPIJkKdn/YsLiZsLomkA3wzQVNranP04ibawTo+LvpBIpTz/hLivV1j5lLVA39R57dH3pWR4rZAwUisH69hpUmvN/n44MsPl4R6O3G4chEOZ4thlTFijvdMdfSKalsOWt7WC/ZNiuMcUgRWLQZPV0xbgpSZfE+8rD1RGP7LrK+tUdJz83+nNHB6pJ8UjnNbrYklRYbJGdlhzxpOV8VZMYC8OKjXZ7rHfoHC7KkZTzrMFkUdPIa/UZJ3WrKypAkDu0Fh8M5R/0e5csu2bs55U3L+GjAzVtnPDvbv+x46oVi673AyW/A5I1A/8PoQ1A31/jTHDlqcHsO+awgCGh3LOZMs7YJ1ku0cXgv8SrQ7Dhk6mJYS+KR5YYqMxZUux69jJ1UiAV1M3IkU02yiLMFIgG9DtSjWFyuDwTFUWB1w9N9LAkKJq9Hrz5Avee4c/+Ys2WHus0oXsY5BuEF6eTTkCECLG5JsvOAM3Gx2w480inKHUnn2FOcxeTSeiCpduLwqVkJ6tTjkg1mso3HrcvY4dYzyfCD2J0ffymWm4OHDrOIzHev45CxajwgsFmc1Wg70QNuVoAQeC1xRoIKdNIGLR2/8/wW9qMe/YfxjcTr2NUO8sI2sgnFERdhN5vT128ug41ne/MvQCsQVqDWknQi6LwIFKctqo7DnMKHiCls3eX71xfRP7bgDiH8nZ915Z/xO78OfBRC+BhACPEfAn+a2LG+uP6jzc/+oVlPIcQ3gX3gvwC+9bOO5Q9av3ZzSOsCbz+f8a07o1/24VzpSle60h96hSQgpob6RkNyZMjOArqKBUDbjWEn+tUF1TJFnhmmb1juXTtDihBtlzKQnCqq655kU2xnR5rqdoM0Dv1Jhs0jRcTVCuEi0eP6wYQfPrmBrxSniy5GOVaDFqUC+mWCuLkGFbt4od+itePB9ik/fH4d2cJqnrH0edxyFpEyoo3HljFCPBnW3B5MUK8EzsddwjSJg1zZxkZgN+QDLxCFpShqqtow6qxZr1OkCCgVaDtx8VHvt5h+g5sn6JmOBZXgku7x9E8m6KWgOA6srguqcYZoJcnhirbWeKnpfGzIjwPNUFBuSw6/17A6iBxpr+DsK5qtDxzlniAoT3Yq0c9SNpZs2lJhtmqck6xXGW/ceMmNYsrSJoySNYfJjDYozjZX6OuKNijaEBtUUgQer0dYLymtwWhH/3BKuycZn/SRyvNr156RKstx2cN6hQVGyRopPDbE+PZRssZ2JGdll15WczrtYisT7QZeMD/qgfH0tld88+AZk7pg0aYcdBdIAo1X1E4zrzKqMmHv3jnHekT+TKMqODo9IH9tTvmyi55Jwp2S8tWacNRDjWpWh570/S61SKFjUR9nNLsOkQZCFgtq0Lz3/ABtbEwLVZsu+Y2aLG+o9lJoJOm5xOYBXYGfSYrjwOTLkUxzEeRSbyuyMYh0YylRYOZAiIX17FXwhSMoyfK2Y//BGUdPRqilYvfmhMfPdwiNZPhcoOqAdILVXYv8UKNKqPtyY0mCdB5pNi6H7FiRnQfMCtY7knwM6z1JM4hBM9mZvLQXuTwW8UFEX3n8NzLny51NOqqH7nOPtIH1fhL9+ut4A/UgniMXg73Cxzh7uxUXU6qwZIll0Cm51Z/w7uk+9ZMu+SQO1l4wty+62V5vOvFhY892EAxxMFLF34PY4cZ9ujDXS0l2JihOPNnYoupPS1NVuw2eBPDRisIvsMMdD0iIP0XsNN/e/L4AQgih/zOueh14+pn/PwO+83kOSgghgf8T8D8E/uTnuc4ftL55Ow5O/s7jyVXBfaUrXelKvyCFUYM+SsmPIuGBKn5AI6HZ8hgvYKVxW3Eocl7FbOt+t2T6eEh1EL3UnbwmnHepdxymaAiPO5i5IAwC9fUmftgWDmE8WnrEJjRldVrQ2V2jEk+eN1Q+py0NAmiGHhqJtYqObnBOQhqLZpO3+HMT0WqdFltHa4SoJVnaxq7uOiPMkw0POG7xE4DUI1YKnTik8gSg36mYlTEU5nTcQxuH7Qb8MCZuTh8PUbXA7dfwMmV1IxZmy6FHdix2klDejB5Uc2Iiy/nDLkpAthDUo0A6gcHHlraQLK8ZZBvIzuLWfdsLPP9TFjkTFM8lLoFmEDvybd+DDtjzjNCxSON5+63bvJXf4Nr1MeOsZJWn9HVJX1eMdCR6zVzO0kXCipGOnWTFs/WQ81VB22rypKWXNtx+8Jizskvj4/P8leELCtkwtxlLl2KApU14shjReokSAR8E+8WC7XzN0+mQ6bgT/cKtRCw1C9/l97jBl3aP2c/nPF1t4bzkdNVhOu1EOs3DnMU7ObzSUN6wiCYSN/yPBrDj4N4KWxoW4z7DmzPm85xhr2Jy25A8T/B3S9KpoDn0hCBJXxiaOx71yhLxXpe2E4f8vBeIbiBUinVTYCpBdhILfNkIiiOPmce00OHtKZMXA4bDFZOzHmJjVfImFtpBxbTReiv6/20vYvdW1z3ZtVWcMXAC13csy5TucE35/pDFXR//rgaR1V3uBbbeiYVpvRWpJrFLDMMPPSffhq0PoS1ioZ4sHLryHH1HIZu4k+JVTOvUZYx5d3lE5bksBkRJF2cYVCPoPA8IB5MHmmQe6Jz4yzCapicjHUhtBjYLsFsW3WnRxpElLcOiZDdf8uPjA5qP+vSeR9pKEBfe7E13+zMGhMtu9mcGJH9iSJKYUJvOJekYui8d6cQiGx+LabWhlLQ+Buj4gHA+pqFKCeIXTyn5t4F/CXgr/JMDUf8bwF8NITwTP+UBCSH+deBfB7h169Yf6AFtd1Pu7Xb4/idj/id//P4f6H1d6UpXutIvW0KIm8C/T9xpDMBfDiH8JSHECPiPgDvAI+DPhBAmIr5Z/yXi7M8a+LMhhN/7qfdhBUwNyST6kHUV45tlC9OvOG49OObxkx2KgyVbnRItPff7Z7x1fkjdavIXivLAs//qKaeTHtoJujfnLJ/1KSZx293dL7m3N+bRy23YDFv102jo1RONHboY2Z01NI2+TC8MMmwQa5GprEVMKvSjlm6vopvVHC1S/JmMJIOVAuMJIZDouOVsW0UQASFiwRS6FrnQsIgfvUIG2kaTJJbZMuPVg1OW65Q0tSynOcoKOoOK6eMh6amK4S6txGcBn3nMRAES89jQ9AN2v0GsND7Z+MbTOETXfeExb3nqocQsHPlxfPzeKOptA0EhW8Hw/SQWYCPovAzUQ0G9HYuqthctC6E2ZHcXDHZmLKqU1inudMbczs+Y2YKH6x3mSYx4n7Y5L8sBjVN0Tc21fMZ+PmdlE5ZNQtUYDjoLDvIFD3qnlM5QuoSBKilUTSZb2lqxsBlKBL689TLe5rrPok45WffYKxaMOmvqVlMtU7JBTbE/p24Ni2nBD5rr/LO3P+bNwUseLnf4cLxP8ALbSsKDNc1phigVIfGY/YpqqOm8lSFfKKq2gKFF75TMng7InyvW37DkvYr1riR7v0BY6L6fUH9zSfJhF/lBRttLyRaxdnFeIW30CmNjtHzxXLC+FghCkMyh2pJkU8/4uifZpBhOjvpkzw26jKxv2QBy4+NeBJpaUB041FJSb3vYq3Hv98gqgdvwpauyA8M2dt9loLixRP6dQcT3OZi9EvnayTR2z1cHErMMnH5dkIwFsnXIFooTh7SB1V4Mtql2omdbWsjOA50jR7mjIk0kjQOmxQtBtRcojgTZuafalkxfC2y9E+g/bi595gRBNvWUW5K2Ky4X22KtUIOKXlExyCokgd97cpPk3YLeaYxuBzaWkDgDsHE8RevWRSf7wrftIb5FRYa5asDMBflZID+zJIsW0fhPOdxSEFyMhxd2U3CHgFzW4Bxh2PkDSZp8Crz9cxTbz4Gbn/n/jc1ln0d/BPhnNx7xLpAIIZYhhL/w2V8KIfxl4C8DfOtb3/oDXwz8+p0Rf+3tI7wPSPkFn+krXelKV/rDJQv8L0MIvyeE6AG/K4T468S5m/9fCOEvCiH+AvAXgH8L+G8CDzZf3wH+r/yMXU1h4zZu91m0kgQZwymWtwTJ7praKb724Ckvln2sl+SmRUtHYVomP96BrUByuOJ82sUtDf52TbvIyJ8rVBk7tPujOZXV+EqDCnz7tcccrfqYD3K82STxOclef8njJzvoADKz+FLHwlt7irRl1mYICVvbS/KkZbIsELWk3POIIGKq30Lj+xYhAo3X7GwtOG4HqKMUXYJQsVDWU0VxJGive2yr6KQNy8cD2l3Ft24+5bTq8jIISuPJk5ZV4WhGsT2XvtDUew49Vehl9JlKFwkm0z2BmURcmx06zEThDRx/B3w3IJpAcp6Qn6Q0/WhxaXsB328hQDMwJPMYc27zmHoZFKzvtQjjCVagC8vqtCC91vKdwycY6ejrkpktMMJxI5tGS4zwbBt/aS05q7usbMqNfELjNaeqiy48W+maXDYo4u9umxVtUJw0fYx0dFWNFAHrFXOb0jcV+1tzSp9QOsOsyUiV5d7OOezAh8e7zOYdlHYU/Yoibfjei9usZjk7u3O2dxY0VrGYxphQuVvh5gnXb55jlKNxivKfNXGRc6bQd9e8tnPCO/qAuuwhPu7Sf+Oc9Sa0SDqggXaSkYeYYppMYtBMRPcJ8lOx8QDD4p6j7aqYGNkP2C6YhQApSc7AfzSCLzcMfpBEXnQC1WFANqCaOBxZjQTNyJEdK9xXlvQ7FZP3R2z/KPDyTzj6H2j0OjD+tUD2MKPtBgSC6pMe4YYnubmiHGcUjwzNXkvZB/2+oRkGlvcc+XPN3g9aJq8Ytn9cgxQcfzNh8Iln+HHN+RtZtERJga4ia74eCqqdaO0AWLwaw6o6R56TbwrswNL7QJPOHavDSJQJMl5P1fHxAdgixAFVE3BWUbeatTKcTruY9wqy0zjweRFUE60jcaBZRqDMp4U2PzFmEX3mjSBZQHbuoz97bWNRvSmsEWIz0BkXHMJtSsuL5q+PvxN+jhrw8xTc/ybwV4UQ/xVQX1wYQvg//4zrfR94IIS4Syy0/2Xgv/95DiqE8D+4+F4I8WeBb/2DxfYvQ9++M+I//P5TPjhZ8PrBz3LUXOlKV7rSH16FEF4CLzffL4QQ7xKtgn8a+BObX/v3gL9FLLj/NPDvb5oz3xNCDIUQh5vb+UdKOihexu7fak8x/YpFdCwmtXTzmn5S83Q+QMlAJ2nomYrHy2grsNstxbBkfV6we33K2Et63ZLZs0H0i770vPiS52zWpZlkCCfYv3fG9WzK9z++jflM7JsQgX5aoWY6+mdVQOYWMU9xCTgvqJwhzRoWyxxXSJo6pgK6WsFag4x4tGbkKRtDaQ2FaUnyliZL8FoQqugjdz2PeShZPeqib0bSBiKQasvaJnz8Yoft0RL/ewMmXyKSEzbIMlVqRBupJc3IM3wYvbXrw0D6NImoM+IQZ2s86Tjh4O/Bes9EyoSG1bVAe9CCiwsFPDHM4/UFQjs6Wc2szLg+mPH4fES7SFGJ497NM5T07Nxd8nI94LjqcaOIBXYbFKUzOCRdVWOEQ8pA6xQKz53inDYoZjbnejZlJ1nShviz2hv2kgVSeNYuxQiHl4LKGxY246jskSjH8bpH6xSzMsN7wY3hjFWbxPv3EikCW701k0Uspne6K+ZVipYemThOnw3jLke3RacWk1h6ec3M5ExWOdeGc86WHZbTnGsPTvGvCM4mPd5+eciwW3Lcz1Fzzfikj1pGNnw9jOSQZKyoRgGXRvyjqqHdtohSoZ5CPYxIyGBiV1mXkV1dvJSXlqP+x3H4Ty40+Zln+ppE1pFG4pLYldXruJDUS0nbD2SJZbFOyY8k5TaYqUDWcaAy4gxjBZydSNavNhT9iq1OycnDLutbFrlWpGOJtDFYSXyi6D+umd9OIkWnr1keKtJJYL0nKXdyBg9bkNB2FNXw08VEMo8Dl74TWeDr6471Gy0sTERT9mHyQJGfxsLcbsJs2m60k7Sd2CEPOkDq0caxmBasj4ekk7gQFIHLoj4oLmPcI1v70yTRi2j3C6qKWYJZBvKxJztrUZUlCIG0HuynXm2fKxACWUdsIVJGK4qSSOsRzhOMBvnFI94/T8H9fwCWQAYkn/eGQwhWCPHngP8PEQv4fw8h/FgI8b8DfieE8FeEEN8G/lNgC/hvCyH+tyGEN7/YQ/gnp29vvNvffzS5KrivdKUr/VMjIcQd4NeA3wb2P1NEHxEtJ/CPntu5zqZo/8xtXVoBk2ILW0DzxxdsdddMH+2AF7QnOfV1x4fP9xgOV+wUS46XXSqrOezMOV11UFNNeDSAezWnJ3106phNC7IjFTGC9yXd/TnL4y54UFs19wfn/Gh6HWUin1q4Tz+8j5Y9slNJeRAjwJVxyLXAjQKzecHr2ydsdUqezzN8LnClYv/alLNJLxbdjUQ4Qd6paRrN+aog0Y5OXlOnOS6VmEFNO03BbPBnJpBqx3jWIXRidzVRDr/WrDsJ1Ss1g26J/WHO8kFL8XFCveORlaTdcqiFYvKawCxh9/cDBM/pNyReB/L3MtpBoN4KnI4EqoStDzzpxPL8jxuSlyZi74oN2zhzlCcFstfivSTRlpfzPkVWc21rxrTMqJ1mL12wtgm72ZJhUjLUa3wQPF1v4RHczCcUssFIS+0NtdfUXnNc9xkl0dt92nRRItDTFTtmQSEbMtFihEWZWMW0QTG2XXbMghvphPO2w7JN+eBsj7bS0Eg+OOmA8SS9hjRtGeYV250lWnrKVlNZTTdtqKzGrTWilZippAnw5defcL97yu+Nb1InmrrVPD0f0slr7tw4I1WW01WHe/tnPJ0Mma1yzKDGPDKUmbpkYcc0yMhs1+toYaqSBPlU0/3IsLrlaDuSZB79yclY0Ww7wkyS316wTDtkR5rOi2hhmt+L1Izlzcj4tkWky9g8FpguA0K0Q9Q7HmsV1ipSG7GaQUVLkO0ERNeiRhb/vGD9SkN3WNLPK16eDgiFp7O/irsVDyXdF45yJElWgfmdBFsIVBU4fzOaooWLOMnuU7CdGPJjM4EtNnHpm0VE7yQSVZZ34rmVPEvJj2MVnJ17dB191zaTKBWoRjEW3ieRCBRyh8wtvlW4j7psb5CCEO/P6wuvtiD4zwTayHj5RRLmBZEzmcewnWzsMPM2Rsm3HrHpVG/iIwlCRM92IFJILi8HpIgIwBAIWuG2CuZ3C9pPvlhY++cpuK+FEL78hW51oxDCXwX+6j9w2f/mM99/n2g1+Wm38e8C/+7Pc/+/aN0c5ez3U77/yZh/5Tdu/7IP50pXutKV/sAlhOgC/w/gfxFCmH92riaEEIQQX6jP81krYHr7RvDfnlOXhunvHSBer8g7NZVOWJ10SEclWnne+/FNzG7Jd+59wLgpWPx4m+6L6CNNipa21thpgpkpklnsmNmvL2mf9bg4uryoSaXloyd74ARi4DHTmNy33V3z8nxAIsDnDiWgXaQYDZ1hSVUmNF5xrTvjvNuJz0upaJ0kBDBHhnbXXnrEtfKUdcJsrrm5N2GSW4LS5HmDHcfByLYLoRcpDLzMGL06ZtnEAUN0IDUtycgynXYQ1zwicfjEoJeSeteSvdBkZ7C4G9j+scclguWN+PhX9y2cSzpPY7pl2wuoGmZ3Jc3XDcMPIJ172lxS7sWBu2ACZiUJc8VqaGi3qjjIucxorCYEwWTS5Zna4o0bLyl0w4v1AAp4JT9hZ7BECr/pWgfGtsPSReLKbrLkIJ3TekWhGlLZkglLIaNPe2y78bkTgZ4sWfsUJTw7es7C53hhqYPmMJ9T7hpOlx2sjbHeu4Mlrw1PACidIVctksCHqx2WVvFg/xQpUoTxmF7D1r01J2d9fvjwJu8U+7x+eILzEq08PkDVGHaKNV1T0+YKJT1b3TUn4z7eCezrFWGl4xCpAb1UNNtx1SZqgZ8ljG5MWUy3Sc8FnUeKehTovBOrwOIEjv+ZcEn4UMOGtpQslWTrPU+7b0EGlq86zJnBzGL3txlGOxKArCRu1CKWGvdRF+XiroUvPN2Hiu4Lz+pQsugY1HGGvVezuztnsc548XyEGhvk9RL71oDePPqdp/cUvWeeZOGY3TVk5wFbCJJpRBEKH88ZXXrqocKmgmpX0PTiUGR2FhewQUaPdyBgTjfzGeee/NzR9BXT+4pmELDdzRMgiPHquUOayMqXKhBmivRcoGsfLSIBVBvpIM5ceLE3BbIDL+IkZOx4R4tKOo8LTLNsEbWLRbYLCOc2tpBNwawuaCDErnZ844v/SgE+4BNFfZAxu9tnedPjc4//O79gSgnRTvLfCCH8f7/QLf8KSgjBt+6M+P6jMSEEftpA55WudKUr/WGXEMIQi+3/IITw/9xcfHxhFRFCHAInm8u/8NyOcAL3fo/Q84RvzClkYP2yi5lK9FJQrTvMb8Dw1pRXt0/5cL7Lo+NtknkkNZT7njyxNKsE4WMCXrUTqA8t8kWBWYrLoanMWE7rLunThHrPgYvMbLWUjLI1JzpusWMiIxsZcHmgaRRChGhLINDNa6bzgqACvbRhcj7CLATtQSyo6tpwbTTj0Sd7YDytl+jE0Q48t3sL5qoHrWB1x6Izy/q4g6kFqzLFqMihTroNRnnm6yx2zLXHnaWRelF42MR7959amqHm+Z8MJKcSs4R0HKiHmvWDhv5f1+Rn0fN70f0cPIRs6llei6E46TRgCxkDeE7iENn8roYXXeZph2BguduQdRtuHYw56Mw5LbscLXvc6k8onWHhMiYbD/eWXoO0ZLKlkA1tUJsud8KWXpPJFoegDYoqGDrUjPSSnixZ+JyFzzHCMpRr1iFl7LqctT1KZ1jZJKaAAnVp8JXmRWlYN4Zr/TlSBF6sBqTKstdfMl4VvPf8gNv757x+64jnswGJcnz59gvmdcbTky3eP9pjZ7DEecF2Z82JU+S6pfGajz/eRzSSkPjYVe43HIzmLKoU+5sjlq83uCKmkOpSoF9ZEN7qYw8VLv80WdTfrqiOcryOHWvSFr3WrI465Htryi1L8TyJ8fYrhZlLXB7oPoJyH8qDTSE6ahDPMlwW0KeGbBwTJosXgfHXPdlLFbu/AtJJoPObgslr0B2umfx4B7fXoHOL7QvkcUYxgfnXakzeQhDU2wW2UISsJUhD/7EnP3PIxlOPNHKTlrreix3uWGQL2h6X4TsQBykJgmwcMKsYznT6NUNQ0RKTnQvqIGm2Harf0Clq8qRFy0jsWVQpy7MU1RA71nbj05YCSeyQuyQuRD6L/pNtvL9k4UlmLWrZIBv7Kb7vopMtP9OZlpvLlQAhLhfoeI9PNM1Wwvy2ZnEH7NAC7U8aw7+APk/B/T8F/rwQoon3BHw+LOCvpH79zoj//EcveT4tubFV/LIP50pXutKV/kC0oY7834B3/4GZnb8C/KvAX9z8+//+zOV/bpO58B1g9tP82xA/JJstd8nBtW8NSERg+H7A5rC+67i5PeXFtM/TxZCj0wHiOGV9Kw5g+SSwVZQszwv0UmKLgN+rSZ6mZOeCxX1HMpYkM8Gt/oQfPLmJTECWkYFc3rG4XqDQDd7JuMU+y5BLDXs1ZA5nFVneoIVnJ13ytj3AtRIkrJoEvY5IPaFjUWYbxSCpSE41zbZjKyuZmAI7bFm1CaKw6MTSzlN63ZLJ0pBOBbUX1K1mkFckiY1BLYuU64cTTlqF2GpABYzytEdFRK/5QH4aKPclzZ7F3bPUzzJUJVDPDNMHgu6zWCQRAts/CmTnlukrCbaAcjfQfCtGkneexqJ88UZL9ixBl7DeijHYNJLEWArTcLsYc5DNsV7x4+kBJ+sep1WXvqk4zGYcNX1Kl2CDZC9dsGPiVyZaZi4W5YWwGOFog2LqCnb14vKccEFgBLywW4xtFyMcA71mbkd4BNe7M5ZpyrooWTUJk3nBbFawXGUM+2vuDc85yOac1V0ap7i7NaZraqZNTjermaxzXpwPkNLjG0XQjkWVst1Zc693xm62ZGlTurrm5u0znj7aQc0VyUQinWH865ZXd074/de7mFNDu+WQjSA9F6yuJYQDS3XcJdmkLzbbjv3RnLNrGXY3UmZoJO0gYKaKynZQ2w1tH5Z3POlYIVpoh562K0knEKTErGClEthvSB+lCBs9z7IB24mBLW03dn3brsAZwewVyL48of3+FvaGxWQtrlWYfoPc8rjbHvGsS29nweLtbWzXI7Ya0g9zDr7foGrH8lrK/I4hyBiOlI0d/SeO9a5kdRgHEHuP4nli80hfkUeQjQMujRHythcIIpAfR5ygy+Pwop4rbKIJRY0PAi0969awnOXkLxXZuSdZ+ji4KEDY8BPDinKzQUQLpvQkc4eZN8h1g2gd+BA71FJGn3n4NB0yqE8L74ti++L7ZpCwvG6Y34Vm10HSRnY+gP/5G60/s+AOIfR+7lv/FdSnPu7xVcF9pStd6VdZ3wX+FeAtIcQPNpf9r4mF9n8shPgfAY+BP7P52V8lIgE/ImIB/7WfdQfewOiHisUdqJ906Y7ZdJkCy5uC3etTPn6xQ1Y0GOnxSwNdT+cTjS3g2oNTxquC/lsJtgPVl0rCysRo6v2IQpO1YHHfMjAVSdqiznNcJrBF7ML19pekyhKCIE9aqiRys3u9klWZ0K4SVNdjpGPcFFRVJCwgA6sqwWWB7ERiidSP4CRaOoSD9Fiz//UF817GMmlxQTAYRIRdCyyWOaZfE6TBu+iVraxmNc/QqYVacTLt4l4W+MJh+k0cAJWxAJneN1TbIFwg31nD7wxY37aI2xXuZYFs4Pzrnv3vCZKZYHZfsjpISKeBzpFHNoqq6sRteAcISF8YqoMYpS1UICwNw4MFh/05H7zY5913b0DmMUVDlrXsdleM0hX76QIfxOXA5IVmtsCYWFxfWEhckGSy5UBNMThaFKf20x7e1HXwmy7iw2qXxsdY92bzHDkv8UFwvTfj7vCcZZvivOT5bMAPnl/ncKtHZTVKxKCbR/MRt3oTVm3CTndFm1fkpuV40aUqE4qkZTtb8WixzW6+xHrJ26cHWKu4fvucVZ0wn+eEcYr6oM8HwKt3j/ggHCIXiqADbjPhJnKHmBpkI3BpINlbs18sOZN7kfTSSFTPwkTHIcokoI2l2rck54rsDJa3AmYacY7ZuWXyWoJsA+m5ot6EyzSDQDKL/n2vQa8FzX6LX2jcayX67U7kp789JJ8DzzTiaRc/8rRDC1ZSiwCZZ/mDbXwRMHslzTij9ziwuGGweRKtTxLys4C0ML8dg5eqUaSCQIxVN6tAMo++5/mDgJltGNYeep+AquJgo+1EO1Xb87iuj4mmq4xQRBrN6csBgx8mFCeeZOmQbVwwehO702GDAZQOROMxa4+Z29jNrppYZMOm0L5AlYRLz3aQ8pKvDcRC3AVs17C4nbG4LSkPHaHYFNkXke8yxGJbhM/wB3/WO9xP6vN0uBFC/HeAP7b5798KIfxnX+xufnX02kGPXqb5+5+M+e/+2k+1n1/pSle60h9abZKE/3EfKf/8P+L3A/A/+yL3IVsodwTuRkn2Th63iF30Ghe/ds7pky1Ex/Jg54xFmyKciDzqPU9xf0Y3qTn5wT7DWWD+lZaDnTmTj/exnUB+KlilEtsL3H7lhFy1GO2Q603kM5AcafS+p/XRNuK8iJ1PYJBXLFcZQnuUCOSq5Z3JQWyELQyoQLVKUE3kfQsRsD0PMjAwFfWeo3isebQc0U1iB29RRY+2cxKReFyjCK3B3nQoEagaQ91qpPEMeyWni5RBt2J+DdK0jZxw4yELpB8oZm9aRtenTB5v0XzYJ3xljTjNSH+vi3CQnwbajmR5Q5CeX2yrQ7IMTF5TJPN4Ufu1JSJx2GmOn2v0VOEKy8HOjPv3z1i2KW89u458kpHNBM0wsP21Cf2k5n7/jN1kQesVRjlckPR1hdr4uY1wLF1GKluMiD/vqZI9tcAhmLoOL9ot1j5BCo/f8N4qHxc219MJmbCc2S5LmzK3OV1Tc1Z1WdmElU240x3zsuzz+u4x51WHpycjdkdzRvkagGvdGaNkzShZ82g1opbxBHh1+5QfPr3BycmAV4Zn3N16zp3sjJfNkH5S8dtv3+eo0WRZG8OO5pETXX/QZ/n1kjcfPOPH70UXlf3yCmpNaCWDjyTVzqfoureeXEO34OYGdCB4CLdK/FEGHrwXyFpG+8mGvJFOYiG4uGnQZUCXgaYfg3nWd1r6e0vWHwwRLg5rBgE0EnZq3HHO9seedKIoDwKqjuE5IhBTV4Og84mOMxBzWHytZmt7weLH2wyfxIKYAPmZRzjB+hqMv+6QpSQ/iW8J3sDgYZwdqHYFs2ux4yxcuLS0CA8+ETHN1IBPAiFxkDl06sgTS542hCAo64Tj4xHZkcZtBkQjvSX6tIWLhB3hwaw9qnTolUWtm4jz8z4W25vhRjwIGxM4Ueqy+BbeX1pCglFUBwXTVwyr6wHX8wS1aZs7Aebib2bTKeei2PY/V6f78yRN/kXg28B/sLnofy6E+G4I4X/1he/tV0BKCr5zd8RvPTz/ZR/Kla50pSv9oZZPAtWBQ5ylMd5axQS99mZDedqD1HP/+ilSeD7+eB9VCeptR36kEPfhg3dukM9ifHQ+rFiUWSwqVgJbxIIn3Cr58tZLjqoeAbB5vG8RoB15ZvOCzkEdkyg3H8Su52i9xDuB1IFBXjFuCqyXNIsEvZLYnZZQalQVvau+1KT7a9pac1p3yXfW2NMeqybhGwdP+XCxx8mkx+29MSd0aZYJSbehaWJE+PZwifOSsjH4RrGuE9JBxWFvzmKdUpWxhSqMp9cvWf9RSyIDy3UWO6w9T5G1rFVK8TLQf1Ixuxt5yTYH2Rfs/sBy/G3F6Y6g8xymb1j274xR0nM+7yCURx2s2RsuudWbAPDjswMAHhyeUO9paqvppxXfHj1moMpPByVVHJQ0wtFTFQ5BQYNDsL5ImxSOTLYoAo/anU0BLuipkpFe4oJAiYALgjZoxq7D83qLWZsjCRxXPTIVna2H+RyPoKcraq+5XkyZNAXXOzMO78SfXc+mjNsOuWrp65K5zRmlK5ZtSraJkM/yhv6oom8quqrmSb0NwK8PHnHv18/4zx+/yXqdcnNvwjM5RH9Y0Aw9R+/tMb6+AhlQM0120FABbdDxOc8C7rDmwe457//+LZJJ9DrruSL/QLN4rcVUgu69Ba1VtKnHJ5C/1KTjOPy33pO4DAYfO7yOzPVmIOh8Z0ZjFbbvAEXbB3+nhKVBnKRs/yDuEpX7kaAy/rpj73uK9UHc2cmfGOqtgO076pFETAz+7+8wmnmCZJNkKZjdk3SfBzrPQFiNK+IwomyjF7veiomk9Sjgco/VIXqiVWCuFclY4pNYLAsNYrum161wPg4bF2lL1WqaRmNM9HO7sYpUllQg+grVRLtKJAoF9Mphli1y3cSi+qLAdjEdUlgHdtN6DwFxYYT+zBCk73VYPhgwu6eodgMu8ZfhOAjiYwhAu+lwBxEtYwqC/2xc5RfT5+lw/4vA10MIPh6z+PeA3wf+qSy4Af7I/R3+xrsnPJusr2wlV7rSla708yoItt6WlHsCswi03TjkqLOWdp1w7dqY1imO2+hs9LsN238rZfJlT71O6X6icClUewFfGsIsoT+G1fVA/2OodqDbqThrOjwc72CUY11EaocvPKIVBCtZ2ZQsa8mSlqoxdPYXsSiYJ6T7KzLd0jiFFAG51AQV0LmF8xzZbqLoreBwa86z0y20cGjtqPohFtBBULlI+hgkJc/aIQTYGSx5MY2M61Wd4L3AWoU8M6xlIDjBJ+NoY9zdWpBpy6pJECIwP+9AI1FLhXag7i1xPxyw8ygwvy9wacbwo5rFzRT9KNB2BPVAoleC1W3LrJCgAsfHA3pvpYTtQNixkERP898/v4NUjr3hktzEqsVIx2vbJ+wnczLZ8rweMrc5RjpKZxiZFa1UrH1MizSqxhDItEUKj8JTeUNF7F5noqWnajyxFSzxLHxOFRLWPmFmC6xXzJoMgERaPp5so2TgZn/Cd7YecTc94UW7xUfrfW4XY0qXkMqWVFpSadkyaySBfTNj5goWLuNZtcVx1WM/X3A8j2xvt1lsGeH4wfQGj82IVzqnfGn3mGeLIXf757yxdcTb24c8+3CP7kOFf9ZD3HGkY0H13pB2t0XONOvDgGog6da0m6RJW0S+tB1a3NQgGonte+RmSk+0gs7TyPYWNha19SCeq52XMX01P7es9w3zD0fopUCMfMTz5YHQKPRYY0eWxR1D9aCm1y+ZTwrESnP6Lc/2vQnLp0PMUxnnJoQimQm8jvxrEaDuRS+/aqDe8pQ3AqIVyAqGH0A2dax3JOtrgrbrSc9ltFJlHnOmsT2PHlb4QlF2NbJUsUPtIcwS5rW65L/brmLUX2GKksI0HC96TPc17Ugi1xJpBWYWi35dBtKpI5nWiMZGX7f3YB2iaWOR7S8i2RXBWnAOhIxYP2PwOwNmr/eZ3ZXYbiCocOkOuZiDFCESVi4WDhATYS9+QahAbL1/yvz+vPpclhJgCIw33w++2F386um7r8QV8G89POfPfOuq4L7Sla50pZ9HwsYvVYNLI2u4GTlkG/EDmbZUViOAnWszVt/bARHwuw2h1Jcfkv6wwtcKIaDpQXYWt+NDv+Urey/4+09v01SGb9x9wu/e7WGOE7KnitXdlqzT4IPgsLfg5aJHlkTryXheYHZKbo0mjMsCcvAhJgj6NCCDQMeEdKqdgFopnJe4VrK2Cdf6c94vuj/xeG/sTtDSU02yyI9WjmxU0c1rzk574ATD3SVL2yHUCtNtqMoEW2rGApwT2MqQdproL80crCP/uzktkD3P5M2IMZt8ObC4k6JXApfHobXlHUFQHtFK2GoQM8PodzRtEa0GopGYxNJaRThNaVPP0dMOqokJgOpwzbJJMWqf+cYec70/RxK40z1ny6xZuAyFx2862yO9ZKjWVMEwdQU+SLqq4kBP6ciaqetghOXIDqm9wQhLGzS1Nwz0mpFecS2d8vbiGuO6oJs29NOKtU14a3Gd5/WQrqrZTpZM2oIfT2NHfpBUeAQPuiek0jLQhlS2vLs65K3zQ0b5mqVNeXXnhK2kZNusMMKxb2Yc7k35uNzluO5zrzhjbRN+7+gGD7ZP+fLoJS9GA5Y2w+cOgqDZivMCnQ8Smq1AM3KQevIg+ORoB2mh2fKIrmVne8HgfsXj0y3sec7s0RAGLb1PFMkssriDhNUNEFZgR5a2ozfca006C6QzwewBmGlMFU1vLUn/Zp/pV1vwAvflJZnyLJ71IXdkByua2nD2bAiZY/5GIH9kYie5CKg6huUsb0jqYUC2Ivr4MwfLWCa6jmf2QNK+UKSzgKzBHXhKA4iAnup4nmWedh3nIEg83gmKp5pmGAjagRfIwpIXDd2sRm1Ci44XPaT07OzPqa2ibTW83WPrQ08ys+i1+9Q+soloF3ULdbMprMUljeSi2BbGEHodqjtbTO8Zqp1NdDzE44skQYQTG8b2BlGowqc/5xLJvXmzEbHL7f5ggm/+j8DvCyH+Zjw0/hgxyvefWr2232O7k/BbH53xZ75182df4UpXutKVrvQPSbjoJ7aFQPg4HNW7tsA5SdvGjnK7GZQ7P+sxOopd8FArZGaj11PGJpZYK0IScFnkArc9we3r5xyv+7S1hoXh+XIApYrJcQJIPFnS8sl8xBtbxzw83mHQW3OtO+f0aIDOLc+mQ4QILFVKqm3sDKYBt9QYFz/AfeoRXjBeFejUMi4LXt065QPj2SpKuromU5bKGo7XPUQjI61Eer60f4QNivGkgzzOmKc5pIH0haEZSejH7nLbaPKiZtgrmS5yRObQiUPebPAfd0nOJf2H0Z8+exALhwsvbPdJTNpz6YbC0BOUbULxQjK/G2j3GzpbJYdFyfG4TzjK2PvSKec/2KPzVICEpicIZ11e7haogzVpaumkDdMqZ1ZmrGxCz1TsZksAnlVDUulYpwkukezqObt6Tkc0zH3G2qexm+0NC59Re8OOXuCQrF3CzOZMbUEiLdfTCV/rP+Ok6bFtVnhiCuXzagjA1BbsJ3O+3HnOlzvPmWysLWufsKVXKDwOSRsUu8mCL40kx2WPrq7ZyxaoDRR7pJeM9JJnzTbX0yl7yYKTpseD7gl9U/Hu+R5Vz7C7teD4NEN2LElqEc97VDuB1f0WkTm6vYr1MqV62Ymvw9CRbFekaUumLQ/6pzx8tkt2pDBLWF2PKaA2F3SfBly68YtrSE41yTxw8uuw/z1Qi0A5kqhS0Gw5koM15TzDXg90dtc4J1HKsxrnqFqQHFRUq4T0YYbMA/a6Jf/AYDuBZt8iaok6Vqxuxsh0EeLwr5kqRKvi/5N43uh1tLosbwj0Cvrv600ITbSYeCWYv/ZpaqM5NdFeUwR8GkBHmo+QAWslk0VB8IJOUeOCYLXKaBcpcqUonkvScbgckgxK4DODaDfBNXbjFdHq02rY2ohsThLczoDVnS7La4p6yKW1Rdr4NyI29pGwwYYGDVzQAi/RgCKGQl3MXl4U2Rf2ky+on1pwCyHk5mZ/g+jjBvi3QghHX/yufnUkhOCP3N/mtx6eX/G4r3SlK13p55TcxDurOmDWgdWfWJEZy9mTEcM7Uz768JDu/pLVk370ytawPoSkX2PbWKzMv9LASiO9gMxiOxK9FtTbgTc7M773u6+SHq5pjzKOnoyQ/RZnBclTxbqRTI97yMLyazvP6XdLMmPpmhoaiRXxIzLLG87mHe7sjLF9hygcchJRaW3PE5IQgz6UI++2TGYdxsXG3ys9Lki20xWnZYdFlRJSD07QOkW3qKmcQRlHu2XRKmCHLS0G0Qq8lejc0u+tqRqDknHo63B/SmM1Z0d9xEFD+nGKCIHizKEryeQNSecppLPA8XcDIfHsfE+TTT2TNwQh9VTfLhn0SmbLjOqTHpwM8Ncdh2+cxML7ZsUqZJhlLLSafkDsVdiTHJaSVdfDsOVwb8phMSOVjteKY4xwm3CbhiokKDxT1+HU9i+L256qmLqCmS1YupTaa142A3wQHCRzli7lrO4gRWDcFNzIppf2iz0z52UzZGDKiJMTjoktUMJzaKbcTs4AOHdxh+GioE9ly+v5C66nE3xPksqWjqwZ2y4Ll8VI+SBxCHqyog0ahySVlvudU3bSJbM2505nzN+zitl727Qy4O5GP7E+M9ideIzKOMJKkjyY08kaDroLjpY9Um2pXRyMLe80uCNDenfBejuj+CBFNYHlDUn3WWC9LyhvW47/GYmeSZoemDWsbgh8Em0O9kkH7ePgbpE2rOuE9SKFViIbQSdreH3vGH9H8sP3blG8l1HvePxOw/7unHVjWIY+Zi6pdxxISEclzTohtJLee4Z6FGh2WtpgqHbj+Y6HZKLoPgZbCNoOmBV0P9HUo8h8t3lArwWuCIjdmjxtGXXXXOvOeLEcMF3HgQqt4oLVGEerPbLSpJNAsgzoyiN82CRJCvSqiV3tNCFIgahCHJZUktDv0Ox1WdxMKXfF5eCldEDz6fuO8BfJlJE0EmT4FK19UWyrgFBxgeCbjQ3GCUg8abemXqS/2A53CMELIf7NEMJ/TGSsXmmj776yw3/2o5c8PF3yyt4VOfFKV7rSlb6wQkSKdY48ky/JGBjz4T6ib6maSAJZPe3RfSIpdwOqDdSjQCID8lnG4mt1/EBdaXzuwQpCzxEmkuz1Kc+WQ9Kxot3WuJ5DLRWhYzFzibAhItxEQCl/ORQ5SCuMdLGL1UhEHlgtMrKiiUmQOqCzFuokhpvkHlSgt7skS1rm64w0a5EioI27RNj1TEXVahbHXVSvxU0TjIoF3vPlAGMcYljjnYRKoWqBzQP97VUkptQJWnlWdUKvW25uF1ABmTiqQ0t1CDt/X5EsPQff84y/pJk/CBz+bUG5rTn7DcvBzTFFmeF+NCD/gSLYgp1F4PwrcZEitxum/9UBqYjx4O3A0+54ZGGRMuDP4oLBXF/y1b1jDrIF28kSFySlM5y1XXbMEhk8MzegkA11MLRB4RD4IKm84WU7jN1tm/HhfBcfBNvZCi2ir7mvK/JOi/WSaVswtznbSexAd2TNYTJlpFe0QbFwGW1QbOkVM1cwcwVdVdGTJYlwDJXkuB1ghGPsItt7pJdkoiWTDdf1hCM7wCGRwvNa+pKP6gN29Jw/2psC8Em9hzGOVEaGeAiCwevnjJ8O6Y9WWCeplprkyLD0HXp7S+q7K4SAvc6SRZNyozdFS89x1aPXqfgjDx7x9o1D9ooFP6xvIAKXlpKgoo/bnGn0OvLUCdH20Xke4i5Gv8UvNWotSL86pZfWnH08in7qYY3tKLaLFb//zl3yZ5okC5Sv1vFvT8DZj3fJTwQdImbQzBWdL01YfDhk+HBDP1HRYkIwNDsOUViU9riFicSTLB5rULETLm28bZ/Ejnm7bZFLBScpVZLwYpVwPO6TFzWjzpp+WlE7zctZn/Vph94Hmu5zj6436Z0efCIJKjK0XS9FFAmibJF1S1AStz+g3k5Z7+q4E6Njpx4f32OwsXntN8fpdVwQxGI7dreDiX/HJB6p4317KwmVAis3GMD4ZYyjTRxfVJ/HUvI3hBB/HviPgNXl+2QI43/8VX719d37OwD83Y/OrwruK13pSlf6OeQVdI49s/uS3/gX3uJvvfsqspZ4FSjXBaJwbP+WphlGzvDkdYHvtLiH3ZjEN1yzejRA1QJ2W8J5Suha6m3Pdw6e8be/9yYyD4hnGUrHbe3QbFjOuYBJQuf2DIAXywGL8w7Z6Ax50boSAe8loVbcuTnmo+MdROawtUbqgOs5RO5I85Z7W2PGVUHbKlyr+NhvM+iVjLIVS5dig0IKELWEbgz98EHwo5NDlvOcne1F5BCf9yj2VlR1j+xMMnpjTWU1RdJeBrR8Y/SUT1bbPBzvoE8T7NAiGoncrZjfy0nmCrOMXbvihWT8OiCg+6GBv7VLlguqHahHgnrkcQPH1u9qql1B8Tcz0rlnvSvpvIDZKxKXC5wXpDtr9l+dk2qLD4JJXfBy1ad1ik7S8I3RUwCe1CMK2XCYzCKTWzgKapTwrHx6afdoUbQ+JjtKIk4xVw3jpuD35jdJteVGZ0pPV9zMxgxUuemWFwxVRP5VTjPQ68tgnX0zY+Fyam9IlOXUdpDCcy89oRA1Y9flyA5og+JAT8lESxs018yEBEeDYigr7ptzntoh566LEZbbyRlzn7OlYxn0r93/Hr85eYXxWY+m1Yx6K84OFfZ5QX9vyWF/zqzOOD4ZsOol9JKaG8WUrqr50ew6r+3E4dNyYPjdoxuIxzlmEQvM7DwGP/WfOLY+9Mzumo21AqrtQOd5wCwk+m5DvdIEHciTllWTEHRAd1raRUI6rHjyX95m92mg3CMWx61kuLdg9mxA96kgP/NMX5Vxt2a3ZXrehe2WeUjoPRI0/ViQqkogS0mwBjWV9F4IfBIXCG03crbVZqYhmQqaQbSmIAN+a2P/aCXKePKipkhact1yXhakytHLK+q+YXVT0gwFstZk54F0HvnfwgeCErhEYpYW3zF43aEZapquvFyoSBvwbAYaN/aPsCmsLwkk8tP/BxWHJyOZREAj8Y38lLV9MTwZiBYTLxAi4FdxwfFF9HkK7v/e5t/P8lUDcO8L3dOvmG6Ocq4Pc37r4Rn/6h+988s+nCtd6UpX+kMn4WH6iuSf+9O/i0fQHZasJyZ2gEuNOk7oHEfqgrRQbTuKTww+hb2vH/P8+QhSj6wUUgay55L1oeb6G8c8nO2QnUjKa47imUJVgtW3S9zCxEjpUpNOJOaew3tJrlv2D6cA1F6DjraPolNh042ffJ2gUodrJMJHTq9JLb2i4njdpZs0tOsEmTjKcc69V8/ZSkogJiienfSh60izhnXfsJvH+HEhAtZJfm3vOR8qR65bPjjtoErJeFXQy2qMchRpw36xIJWWVZvig8DutOT9Cu8F9TzF7Tjs3RbOUkQL+amg8zKGkgzem9Fu5dRbht4zx/R+RByadwXT12Ox4lLB9H7cjp+9Gjt6wgtkJbFW8vzRDnoaw168AQaxmLr34BPGbYc7+TlbZoUikMoWhccIi0dSyJqRWrL2KVUwnNoeS5eSqZZJXbBajpAEOqbmWnfG9Wx6SRkBeFTtUKiGVLactT1GesWuXlDImr6sKGRNGxTDtOTcdZj64hI9eG67oOGOOWOo1jRhMxvguuypBQ2xA39dRQ96KmCUnAPnvN/2mftoOTl33fiYpOVP7/6AVzqn/PXnryOIfPXd188YzzrcPJxS2V0e3Dihl1Ro6dlLFrgguV5MuZ2NWbqUXLVYq+g/hGThsbkgmwakDZiV4/TrCUFEHnX3hUevJNIF6i2PP8+RrWD/zRPu9se8e77H7fsnvJz0SQY17fMOuYXFHYH86ozQKpSXlD8YMXwZveLnXxWoKi5o7SrOQRBg+0fQdgNtH1waSMeS0VtxUNimsLwV/4aT6WboOY/Fd7Xr0aWIOL4AWIkwliRvSROLFBGzOcpWSBHIdcvKJtROkaQt9Z6gSRI6nyiEjxHuLomDjV4HlBHUQx276CpaQ4SPYUDexPsUgssOttfx62LBEmTsbge9Ca65HIbcEEoUn+lms+mSi8shSrnQNM+26M3g5DMJ8Z9Hn6fg/lIIofqJN0khsi92N796EkLw3Ve2+S/ePsL5gJJfbKVzpStd6Ur/1EvArX/uMR7B331+l+W4QFuBXRrkSrH9o4BLJc22w0wl2YmiOAqc/YblxcNd0jMVqSYuFrSdF571Adzpn/P9Z7ex/fihuWlK4uYG0bGEpaa8aTFTRW4s03VOaU3E7rUpu9mSfFhRl4Z+VhOAp9MhWIHzit7OiuVCI5OI/ytMy6zMyLSFViBSwAm08KTKYoPiuOyTvDS0N2tSY0muz+moBq08OnHMlznPOkNudKfxYFNHUJr5eYdvvfmUlUt453SfR7MRiYyDmVp6Xrl9zLo1vHgxwpwZkomgOFJM3oiWhN0fNKi1ZX435/iPDOkce6qhxF5XlHuBZrApqm20sEy/6lHLWIyaRfTN2hs1UgXMD7v4HY/tO/RCEXqWnZ0F39l/TCpj4a1E3I4fqDVtUCAkC9fdhOAU1N7EkBtC/Dmwly4ZmIrSGSqnKXTD/eKMQkX7gyIghWegy8sAnUxYdvX/n70/D5I9y6/7sM9dfnuuVVnLe/X23qene3bAg8EAFEUCXEzSMmmJskMWRUXQYYf/sBS2w5YiTEthh8xwMCSFKFGSZYdJMUyaAkkJFAEBJIghhIWYFdOY3l+/fmvtlXv+9nuv/7hZ1W+GwKDbBDkAp05ExqvKyuWXy8s899zzPWdOVxUsTMLUpNROsaenBMISy4ZNsWRhE1Y2Yi84oStLQiwDmVOjUFhi1dCVNY2TrFzAmY3YVRWZkARC0jjLs8Gcxs0Z25BY1py1HRqniWVBXxf8+LU3eWuxw+G4x9HjIc8+c8iXD26w212Q6IZYtVyJZ/RVwcwk3IzHzEzCTuCbhwJtyHcF0dz5htJJiy4NTaaRtV+YihbayMcD1h1BsBBUw4Y7zx3wuY0HfGV8k25U8/hkSK+bM0wL3i8CVl1BOixoW4V7mKEa77WePe8ZpKp8I6bNINgpaIqA9M2I+W2Ix7D5msUpaDLH6oogOYG655NvxO0VNmzJ97uEp4pmaInGEhP5xA9dCBolcUoh0oZQG4wVjPOEQBl2kgUlPm5yM8l5pu/7TR4uhjxKNknuhYQz0KVDWTCBHyT1w4/r+TnhLhoouXB9+PO+zWO9Vred+nbF+7ycyJNt90FGoMUvqgVgQJWSYCZQFQQrR+9+y6Npy0fBhyHcvwx8+kOc932HLzw74q9/9TGvPZ7yqRvD7/XhXOISl7jE7yqYjsM4ybhOcUD0JPCDWwKyxxJpLMWGxGlDuu+//MpNQbxRkv13HRZ3/HZwvdugn8Ssrgqe++QD3hrvUOUBbuB9lrpwmFggGr8dLNeqrDrQdMKKVRXSWMleZ4Z1gkBYbmxMuHc04mTWYau/pChCVKfBlJosqll0W98eLR1lq7FO+Kg8KzCLANEKYt0w0PnaUiIJFoIGiIKW5wYnvDvboqgDnBVI4Vg1IRbBne4pnUFB3fXlOIMg56DosZwl6KHlKO9xNu6gtPX3e5YhcoUNHMWOQxeS3ns+4WF+M0BVAfU6X3lxR+KkQ+eeUAdzT+JM4jOfw5kimvhWw2Lbl6OokxAzaMlvtCRbOb3UV6Nvxiu6QUVPF34HYN0sGQjDwsak0kcuxuv2kcYpxm3GtEmoraYymmntmyP7QcnHOgf0dY7CshvMLiICVzZialJOTZeFienrnFTWSOHJc1d6TXBsOrxeXWWgcnqyxDjJykY0TjE1GYftgBfDA/qyIhSWqQ1ZuZCFDT2BV343onSCxlkiYQmFIBPSv/dcy66aE4uGw3aAwnEzPOXN8ir9oCSOG6qHCe1tSVGEtB3JrI75WO+A7XBOKquL935XlfTVioWJqRuNrqFJBEHhCJYtTUf7VsV1ik89AKSg+nhBez+m6Ro+9cxDXunvY5zk0xuPmDYJnxs9oDAhr093eeb6Mcs6ZPqrO9jU4a4V2EfJxTG4wNF7Q1COBE3XwbsZgfCEdviOJVha5rc0sxcNovbvl8mrlmgnpy0CxEGKaQTxVJCcOGwgkY1DOMi3BcW1FpG2REmDczCdpwhpUcp5z3YTsJnkXEnmaGnorUuMehslg7jgbm/E7DQlOtKEMwhnjqDwZBv8MKRzYNU5+V4L0UJ8u43kO/TQi/O/E75txicROZ9QolaSYC58rvrMsfFGQXCy9FGE1v0GN/Kb4zcl3EKIXWAPSIQQn3rq8HrAZfg08CPPbSEEfOntk0vCfYlLXOISHxFSWo4WHR6cDGlmEaLvSLZz3Ld6mNBvJ+dXBWrpa69V5Vh9vCb9apdqE2zgkL2GrFNS7Q/IX/XE7+Soj8gVotvA1GcCy8bhOga3CEh3VuSzBDsybEQ5j6cDRuGK7XjJuE45rjpo6cmsmYUcW6+kpUnNYh6SBg1Zv6QsA/qJtwvUrSIOWmTpyZkb1ozCFffzTQZhwZ3OKa8/cw0pHUr4U9lqQt2yOku5deuYrWTJk2UfJRx7/RlvjzqMspKTusNpnhEmDUI4bnQmLLdDykaTlxH6zCvbwdKX/RTbfthx45sSEwrGrxg69xUb3/LkrRpK2hjqgaNNHeFMIhqIzgQmgtVV7+12qaHzbkCbgN2yRA9C9N0ep58O+OSNR/SDkpc7+xc17LFsSGVFKivCNfFe2ZCF9STPOkkqa9LIR0Y8Xf9+nmySrUmpxBJgMEhi4c//ePKY2ikap8lk5Vsd4SL272PhEbFwSGBhJaGwbCpvbwGo17lvD9ohsWi4qhekrqVB0jh/6kuDAmIhaXCsrCOTUDvHQEJlHJmouRWc8KjZpHQBZ3WHwgSsZjHZVHD/3R3uPH/Ik3GfvY0ZqaovPOdbes7G2rYytSnzNqafFVR5lyC3yBby3QjZOmTtiCeW2VB5ZbsLSVqxHAaMbkzZTbxF5dn4CImljEMyWfFOucvnR+9TWc3f/NpnkD2LG9WIw5hwKVjearnz/CGPf2WPNvURf+EMih2BDbxVaPqsxClJ03E47VC5JNt3dO9LFre6RMZfp02hGlnqIQRLgay8LUOVkN3X1ANFc83x7NUTEu0XXuMy9YOxkW/4nDUxizpmM14RqZazKqM2iuvDKadRzZgBstEEK///WDVewbbrFkinvPLt1Dom1Ll1gc0aT2VqwzqlxAFyHQ/oBBivcsNaQW+Et1stoPvE0H1nhpwsfcW7Pa96/2j4bgr3jwN/CrgG/Hk+INwL4N/6yPf0zyCGWcgnrw/40jsn/Bu///nv9eFc4hKXuMTvKlgrWRx1EIlBZi2ukZRPOsiuJbBeLStuNgQnAdUQyls11L7uWjbQuwvjLclylsDAe67zJkQfB4QzQfeLZxwVGyD8EKEMDG6pqKvAt8fZ8wZIX2oz0DnjOmVSpYzzhCSpWU0imlnE6NqUULcs45RuUHEsOmht6EUlp3lGFLQ+8m9dQ31lZ4oUlkQ1vHZ2lZeGR95mEhhaK9HC0hpJGjZMjCDRDV1d0Qlq3puPWDYh0UbBIo+YdlM2kpzxLGM6y1hsRDRGsVjFdNKKaeQIFwKroLraoOYK0QiajmB5yxKfKNrEL2DChUO060xu6dXN+AzCuR/UC1YQTxz7f6BFLDSrmwYMuFJRXm/QoxXXOyueLPvE/ZbXl1fJdMUwyFHOrpVuvT4pShcQiwaLvLCdGCeZmXMS7qlFZTWRbMl1RKo8aT+3p3wQ06cIxQfpEF1ZsLAJu2pOtD6/XN+eWhNvb0dxxMIwEo5QCLbUGVOrMU4wsxF96QtYpjbCUDOQLThLLCRdCSdGEAvHwkn6siFwloUNMXgFfStccFpnyMASnzhWt/1i6mO7h1xLp/RVgcTSOM2d6JgtWbFvUn5l9RyPiqFPtrEQ5L45sskkqvJDryYUxKeONhEsbjtkGSA6LV+4co8b0ZijpkdXlhgE23Jx4U2XwrEZrFBZixxr2kWAuppTbgR8/rl7vHm6g7lTMhsFRCdqHeNnsf2WRluCuKWeRb78xgjMTsskCum/K4nG0GagakewBFVJlrcM9cAi67W6PHK4QYPLlc+oL7xOm4U1G7FffDxZ9FlEEZFqCZRh2UYs2wiJI1YtWhpqqxgL59NKtKDqSYT1NhPwBNuu/drnJ6fEhVXkgmifZ26zJtRiHQvI2jpybkdpvZLfeWLpPioJH02gbp5qvxGgJEj5kUn3b0q4nXN/CfhLQog/7pz7Gx/pVr+P8Hue3+Y/+Ll3OFtWbHai7/XhXOISl7jE7x60AtFInBFEx5rmuQIOI7a+CtXAsbgpkbGhTX2rpJwFDN4U1F2fLz19HsTCpzREE4kpIpodSbAUhDPI64Crt05ZvbGLqkFpS6ugLTU0AmmgE1QMs4KtZMlR1eP+bANjJZOzLjKwkLVQSZS0KOGIspraqosGyCdhn6rWbPZWrJaxjxfTgs0k57DssR0tqdflPaNrU2bLmMZIEuVV3qLRxJsFR8sOdzpnDOOcd8cjWqMIwxYBpLrmW/dvwSLAScf+sk/VaEyjEMIhNiumqUalLWISYkc18bsx4cwRH3mCkh45rPb+3+zIoFeG+a2QrW8ajj+jWN6E5MjnKU+/WKL3YzoPBKp05LuC5uUKawTmqwMO1QDz0oor2ZzTNiPVNTJzXEmmvr7dBSg8+e6KkplJyW1IbjxJjWWDdYJU1Yz08kLlPifWSlifh+28uq2EZWGSi8tkwtCVBbFsvHcbiXEC4wSlCwgxpLJh4SRnJsMiKZ1vsezKkp6oOF5ndF/XM0JhqZ1kV+XUTmLWAqZZs7VQWGYXFYXQOMmTdsimWlLagEAYJmWKXQY0HUH/WwEn/Q7DuCAQ5sJrnomaq6oiFoKyDZi0KbXRmLe7ZEcGJwSqMcRj4wtjEoWTUGyvFdzdEmslg8GKjqq4Gkx4NvK1KI/qbQgm3C1314OiksO65493p+bWtVOc85aq146u+qSNxrNS2Qia2KeJdIc5i7OM5ihBFxITK4R2RMcK0ULpi7aph5byYxXOCJyRpP0CpSzWSqoywCwCqCTxVsFmd0WkW7SwrJoQLQ2t9e/dw2kPawVNEeBqeZF/7dapIDppIbRUGxYb+Iz9YOEuWl6/k1yf20ngPG97/af1wOR5zbxYX1Y4kJW3jARzyI4M3fcWyMniA8uIkrhAQxRiuhFNL6Qcatrphy1r9/gwl74mhOjhle3/B967/X9wzv3sR7qnf0bxe17Y4t//e+/wC++e8C986tr3+nAucYlLXOJ3DWQNw1+XjD9laJ/PMZXixs9bhHPkOwGrOw3CCGQt2HgDps8Jyk1BPXCUI0A4kgNFm52rXY6iDtC5920v3h3w8R96i292dhFGIKTDBZYwqzGtwjYS6yQbSU6iGrpBiXWCJGhwRmDKgGx7RZGHnE07xEnNZndFrBqfsX0aYTcE3bRiK1lxdLSNiPyxDMKco7zHpEqpGo0Uls10xelJl42tCZXV1K3GWkEQtEynGautEC0sgbJMpxmDwYqdzpKyDZCBxcSGvWtjiiZgrz/jfqvoRjXjqgetoNspsFnJ/KhDsPCZyL0HlqonCFaWcujZx/KKYn5H+eHHpUIvBdljWF11tFsNweOY7JGPfZu9ZAlmkvBbKeXIUtxq2Lt+xkvDI19Skyx4OXtCtW6MtM4r2ZULMOt698pqhsEKiWNmEvbLAVJYAmGYrYn0wsQoYZm1KRt6hZGS+dqKck7IB2p1YSWJZcN1teS6WhL4GTcaB7VrOLEpfSpiadhSE0onODEJpQt8wyUxmag5Nl3eWO3xSvyITNQYBANZYYHKcWFFCQQXCvqDdrhWqxX36xG7wQyD5Go2473eCKQmPrXwSx3e/WH4g9vfYkvPCYThll6SCcm+8QuDvWjCW7MdTOxY7Sj6DxqEcQjjh4WbjvQ+ZQn1hsXNQly34TM7j7kWjtnScxSOlQvZ1T4OcWYSYtkwChb8wtGz2FbwmWcfsB0v+aUntynKgGYRISJD3KloQo0bFbTLkO4wJw5aop05e90ZsW4IZcu8TjjKO5R1gJSWogqxZwnRvRgnoNmwVOMusvaJIWZgUaUgeyIptjRPNhKSUY5SlnwZcTrPePXqPs8OTpln8UWbbNEG62x6QdlqWqNQ0jKep7SRxq0gGjuihZ9PMIG4SO8T5jzJz2EdOOdbYJ326SU2cMhWXDRECsuaZDuSsSV7VKDPloimxWmF66TYNKTNAmwosYHARBKr/eLHhL+9lpJz/Gnn3H8ohPhxYBP4V4D/Ergk3MAre302s5AvvX1JuC9xiUtc4qNAtjB5xRIOS/SvdVAxIFrKgaIagiglzgp670ExEpjYl2lkjwXFjmPwhmB5DcK58JaJjkFJR5lANIH0UFBbRX67IXgtoG0UKmtJ45rFMiHczhkEBZFsiVRLYbyKGemWuFdRTmKioKENJXUZUJUBnf6MWLUYI1CFvPBwS2HRS4kxDnulZBAUPHEDAmloWoV18qIpMZCGJ/mAflpQNp5YhHHLW5NtXhwe8/LGIe/plnkZMSkTNhO/GBGBZSPJeTzrczDv0dSa3WxOeqfm3YNtGqOwViBXiv6DFr00nL0SrTORFeWWo940IB1yqejc02y+2aBzw3IvJL8qoJJEZ4I287sMohXopU+l2H7phF5YkeiGh8shwzjnmfSEygbMTEJHlaSypqsKjDtXlQ2x8MkiYzKUsexEcwoT0NcFHVWisPQV5DZiZhJ+dXabXlASypaOqtgJ5mzqGZmsLiwTADMbEAgLDlJhkMBAWrbUCguUzrGykhObcq/eZqBypib10XzBhKnJ+OXJM8y6Kb+v+y0GskLiWDnNYu0970o/SNk4TSorBjLnzGaULuAbyxu82nlMJismVYp4lBDMHW0sWO05rgwWF489xBAAK2c5MT0ap1mamMfTAdGpJBlbglkDSoCEcjOg7gl07nze9VaNkI5P3HjMs+kxG3rJQBZMbYJxktop3iqu8PrsCi/1DjmrOwTKsL0153DV42tv3Ob6rVOUtEwmMQ5FtlFDXGOs4JmtU7biJY1V1FYxr2NaJ1k1Xc5WKatFjBtHvho9dmSPFMW2TyUJ31fUQ4esBW3q3zMmtSzuOPRSIoygGCeI2NDv51gnePt0m5vDCaFsmZR+YbWZ5PSCkkT5HZCzKuO98SZaW8ywppYhSyEpCkk482kh4pxArz3ZGBDrGG3WFhHdgqv8YkBY0LkjOXOkBxV6XiLqFqTEZjE20bhA0sbKE20tEM59mw/83Db2UfFhCPc5jf9DwF92zr0uLrvMLyCl4Eef3+Ln3z6+jAe8xCUucYmPgDZz6FFB72cynHA0Xf/5aQJB0/OZw8Y60hPL+EWFLqD3vuP0M47eOxJhLSaGOvYDf7KQnD4eEMb+m1GvHO9PN+iMVphkgJuE7D53wtk8w8wDrt6ZMm8jShMQqZYvH9xklUfc6o85DTOqKGBVRDgnSLKKUBvyJiTVNc0sgu2a1no7g3U+Ds1EjttXzli1EcZKItUi1kS7F5YI5RgXKbf6Y7SwHNourVE4B8enPW72Jt5uEdQ8Oh6SZn6IMO2VSOmQOKKgpWo0z105JpQtWlqubPqElScPNsmOJLPbkqajqYZebZS1IBoLuvcVTsDiNiyfaSl2FSYTyALCmaDp+XKVdrtBaIs4DSmuGUS/pr9uBdwJ5+wkc3ajObFsKG1AJFq29IItPWdqMkobXAw7Aj4txOqLaL+l9O2QD6tNAmEYBQtGes7N8JSX4n1WNuKo6TMzCQd1n4O6z3Y457nokEz4vO2pS5DCrkmtJRaOBijXVoCZDVi5gEzUpLLipyev0FEV76822YqXRLLla/dv8NXxs/zqK7f4k1e+TE+VDKQv0kllxdSmPGk2aJy6qKHvqIquKgmE5fXVHpXRPNM54bXOLZCSclPgrhd8fvt94rVvvStrYiExOGLhn7NvTK9T14rO1KGLdYW5EIjWMr8lfVpMV9BmjjituTM64/Mb97gTnrCl5xf/j0oXcNr2eH12hVTXvD67wnRNYpOg4XpnwgufOGYjXDGuM/TuQwAC4ReKHVWRqpqOKi+q7Wdtyv18k1j5Qp0yMLTDGmsFzkF+HfRcUtyukZHBlsrXyRcSFzjCM4U0PnLQKeftY2ch01KRbubk04RvPe4R7654cfuIWLW0TpLpitYqGudbP28OJwAs6wi1a8mbgJNxj+ogIpx54h3OHaL1A5Ri3S4plE9Lka33Z6vSEc8s8VmDXtTgnG+pTEPIQkyssaHExAITCNpY+sHtyLdpnhfrnEMan+/9UfBhLv41IcTPAreB/6MQosuFKH8JgB99YYu/+Y0nfPPxlE9fppVc4hKXuMSHxtbfSFC1IR955bLqSeq+QFbQDA0b31AEy5Z6QzB8XbC66qWrzoFhcc1H4TnlyPYh33OISuICP9BV9yXLaUac1hR7luRAEb/UUs0j0kcac1vQ0TU9XVFZTVkHtLViViXMFwlCOapVSNYvUdIyPe2Q7Xnv9bnX1DrBnf6YeR1jYweDmhudCQdFj05Y0VpJqA2tk8zrmMFgxbKM6I8Klk3E6aSLEI5eNyfprchUzaL1pTa2VqxMTD8pub05JtU1sypZb7U7lrW/nBSOl4aHHBU9JqOE5riHywVNxyuA3fveYhM/MkTjmmoYUuxomoF/KPGRRq9g+WyDqCW6EAT3QoTxld9tr+Xj1w+4lZ3ROkWmKvq68NXsayvItXBMV5actD2MkxgkOHhcb3DWZFyPx6SqorIBkzYjlTWBMHRUeaECL2zC+9U2ldUYJIs29kU4uqKvCrqy5LAZEMuGXT0llRULG5PbiLHxySZj0/H2HeWr2xc2YYFXqF9Ij/jF8TN8443bqIVi+NIZtlZk+4q3uM5/VsXsdWaMohVa+Br3cZ2hpeGo6PH5jXuMgiX3y02+Xlzntcd7fHxvHy0tsyZGDStMmKJKcBb665jBTVnQlwYplFfjZcOjZoNYNUjpqPuC8K0WpyQ2kNhMUw/8e3p5TdD2G7Y7OT86eocXogO21YKVC5m6BIXj11Y3GQVLTvOMkyd7yKUiuLbi03uP+cLwLrFoMEiWJua55AjwNh27Hl7NTXiRNNNXBblJOKk71FYRSsOLG0e0A0Wma3797ArWCcbTDm4RoyYamyhEK1CloPNQEM7XC97SUHcl89uK5npNuFVgjKCu1n54AcVpyjfmN+kMc6725pTrXaZpmdBYSSAtjZU4J6hbRVkH2LOQ9FQSn7gLgm1CcVEx784HJ9UHarTT0CQSuxNi90JM4BN5bLCup18nlgjjrSaydgS5I1y5i4FKty7SMaG3q4iPyIQ/DOH+14FPAvecc7kQYhP41z7a3fyzjR95bgu5jge8JNyXuMQlLvEh4QTFpiQ7sv4LTUGTCYpdh7teEgUt0KHc0DgJi1tQDw2D1yWytT6b2MHmrwnCpcV1DGqsaVNLm0qqDYebhIisxnVaxH7IoooQpSI+deRVSCJrOrriG9PrGCPQoaEymjipaRqFrRSjzoqy1czxiuFR3iXs1tTTiEAZbqZjXm+uYDPDYJCjhSVvQp7pnbJoI2ahJ455E7KVrThYdFk0MVpYhHA4oDGKT27t8958RGMlsW4JsxqtDVpaJmXClIRVFVI1mqoIUNqSJDXPbJyyaiNef3KFtlKw02IWPqlk8KYgnlmOPyOxWqGL5IKExEcaWfmdhuULDRhBsq9o+o5gLogmPpnB3WhpreTvvv8iSVSjpKNqFZ/ZfUymfGlMKmtWMsI+JQPOTIpFsBdNfcU7eDVbL+mrFbFsyG1E7TS5jTAI+jpn0maM1JLn40NO2y5PqgGjYEG8jg0MRMuTZki+rol/ujJ+W88pbcD9eovSBVQ2WDdQar4+v8GD2ZCNvSmrr48ovzRCfrIAB/23FcUbO7wx2KXJfHGLaNf+39ihF4LXBre4+twJVzsz3jnbom0U33pylThZL8IeJSSnnoXZbya8+9w2n07vkwpDKHy2dyAk8bq456zMaJ5kpNN1Ucu6EdFEguyRQDUWGwpk1pIGDX1VsKtnDGQNxqe3/OLqBd5ZbvN3Zy+y+pURvSVUG3B9c8qPDN8hEIZMVhgkCktXFVgnmZqUpY3pq4Ib4ak/ZqSPYxQtM51gncQ6QaRaKqMpTMBntx5hEdxLNnmS9nFOYIykbRRtrplHms59SXboIw6D3BGfSnQeUVzV0G0JkgaVtBjpfPCH9Ekyx0s/yFrW3v7lnEBKS1tpnBGopMUZb7lpug5VCILlen5DrUm3BrOunD/3Z3giLjChw0l/fdaDk2K9GyIrgc69zU02vk7eCcGa/+MktAk4vfaN/xOylHxy/e+dp5wkMyGEds5915odIcQfAP5DQAH/hXPu//Ydf/8R4D8AXgX+pHPuJ9bnfxL4i/jMbwP8X51z/98PcazfEwyzkE/dGPJzbx7xb17GA17iEpe4xIeCCA2Tzza4r4esrnmlWjaCtmuQBxGujMl3BbPnHbbXUgeK3V/0X4LzGxrRQv8uRAvjvwBbb52wAaz2BPWNiuSdiHIz9MkHEhZ5jOjXtElCGjYsTYQU3qpxfTTl8dmAeJ0XfHVjzv69K7R70qeBKF9FbZ0gDFtq40uX+6qgF5TI2H8ltk7S2PWAYhNRNZqTqkOsG/bSGZXRaGnoBOsiFCeoa03jJIHyUYP3zjZpa8VGb8XJIuPmxoRlHTHqrFjWIeXaVqKkZVKllKbBWkH2VkRy7Jg/syYhiaCyko3XHapy5FuKegDVhsVkFtEKxKBm0CuovrrhSYqDctuS37AE/YqbWxMeToZsdlccjnt0s5IXR8c0VjE2Kb9n4+0LxTQQ7QW5lsKuq939741TNGvasbAJR22friyJZUOsanLrX4s76fGagEtuR8cXcYJTk9KVPu1jEB5zZjoXlpVYNBcRhCsRXRDwnJBfnj3jvd7A+MmA8EQRj6H3yCBNQpNCeuLtBrK2CGORjfWKZqRpepqqr6j6ktmjXaZiF53D3mPD/EbM8nMSuR8zfBN0aX1JzkiQqOai9EcCgZAEKEonyG3I47OBt0Us/KCwaB1C+nbPZGwRxqFX0AjYipf0ZIHC+UQW/ODladPhOO+S/9KIzsE6Pu/3zPjh0XsABKJlQy1pUCxIGMicselwPTzjRXGAFH5XYGUjrINM1ixssraYVBdxjftVH4vAIpg3MbMqvphfCJRhWYcc1QOccuRXHLKVRFP/nMvWq8bJgaIA6trvfmDEOkfbMW8ygqxGa0tdaWzu69vJGoKkoak07MdEU4kwXJBjkwjCmfPRlcphlLhQns/Vbl8D/0EQt9X+eXLr/3tOOUgd9dDfBnJd/b6ue8cCVqxjA307Jw5s+NE+7z4M4f5P8Mkkr/nD5uPA60BfCPG//M3SSoQQCviPgd8PPAa+IoT4SefcG09d7CE+6/t/+x1Xz4H/uXPuXSHEVbyt5Wecc9MP/cj+KePHPrbDv/fTb/F4knNteNkLdIlLXOISvxUE0ButWH2xwT5J2P4KFJuC6Ej5L1Tj87ZNJJBpQ/hOSHpYcvbxmLoH3Yf2Io+37kiQLcHSx4Q1zxUIC9kTR7ETeYXbQbmIGG3PmY9ibqYrZk3CpE5ZtSHdoCIIDIOo4CTMiHWDU1C1mivdOdWGZtWEbMYrTpcZstdQt5qZSXihc8SbvR3isGHRRPSjklHkC07mVcyj6YAXRsdEqqUTVuSt94K3pSbtF2x2cvI2JNO1zx+uFTo0PkM6bC583YPI2xRi3WKsJNENSlo6QUWaVSxvB6hKE59C54khnBvKTe3r3FNPEpyC5Fiy+S3D7I5m9jnB8u0hoYFg6Su529h3YZcfa7j33g5YQZ5GBHHLfJHwa8UeX7x1j0/3HnDadJmZhL4q6Ov8IjO7KwqUcASixTqfOmKcoLIBHVWyoVYYJKUNGKicUOXUTjE2HYyT5DbiqOkxb2N6umTcZNxXI15On9CVJZtqSSor7jcjpiYjXzMghePdYpsvH9+kbhW9uOJ43qF63CEoBJ3HfnBOWEf3kSEfSa9aWndxMrFGlS16UaEnBakxuEBRb2UUo2AdsSgJF47o7YRwCqryZLvuSNqthpvxGams6EqBWsutFkvjJLkNaRtF17eZ46RA4O9blRZVgo3Wim2liFTLrp4BrIt6NI+aTY6qLrOfukI29YUwhz9q+LG991maiFEgGaichU3YVEv2whlSuIssc4NAwsVg6Gq9yxALr6aXNgAJJ3WXSPrFZKYqn1dfpdw9GmFahRBgck3QrbCBpe1IpkNJeKLJHkPdW5csDVtEoVALhSoF9YbBJa33XheKpo5ptEMmLfGwpKm9st0epUQTuc789vYoXfoFtNWCuivIjg3ZoaHqK5xaE+LA/92ET1e5ewZuA69Y28Cr3+eFP+sXCdH6nG6nHQSA9AswlMOAr5QPfpuaJp/CPvCvO+deBxBCfAz4d4H/PfA3+c3TSn4AuOucu7e+3l8D/hhwQbidc/fXf/s2J4xz7p2nft4XQhwDW8D0wzyo7wV+7OVd/r2ffou/+8YR/9oXbn+vD+cSl7jEJf6xIISIgV8AIvx3xU845/6sEOI28NfwqVVfA/4V51wthIiAvwx8BjgD/qXzz/jfDM4JqlqTJDXt7ZaDYUJ6N0TV0HYgOvOeybZjCe6mOAkHP+SjyPr3rCfkraNJJW0kwAhkC/GZIPhYzuRxHxNBfCqpRwYnQI01YsdR77SkumZ/2We8SgmUYXO0YiPLuT/bYLzfJ7hu0XeWFHWAdYKPbx1wf76JFhatDJ1OSahbKutj6gZpgZaWZRMxq2ICYUhUQy8qmawSTooOoWyJVfPUE+2Q0vFM/5TXTq7w+d0HFCagrTTdfsFkmbI3nOHW4cK/fniFl3cOeX/qA5Fv9c44ynsc512qMkAtFHXf33Q79upptl8TLjSz25ruY/91G84Ms2cC8l3Hzb+qcLIl39ZUQ79Nr1cw/ZjDTUO6930G8+JTBmcFL+wdcT2bsBms+Adjv6ub6Zo48Y9rsVb+z+GVa7u2d/jhPJ+pLYlFDQIe1CPu5ttUVhFJs14AlUTSK+aNU2wEK+ZtzH49ZGmidV16zcwkzNqUxikOyh5KOBqrOJt24HFCcyyorlpc6Ej3JTp3RHPjK8LXnMkvMECWDctbHY4/K9n9VUNyWCJai0MjWkt4mqOKkHI7Ipo0YBy6iBEOwoVBtI5ACmjk2p9uCISkcpbAwcIZvlK8wD88vY0bh3T2DfObinCpCBbesrB+W2C1oHyloJeV9IPCt3iKliPT4WytSn/l8U22HrQ4IZjfUBC09HTJXjRBrct2rgdnLGzMygW+dXXd8Klwa3tJxsLGGCcZ2w5dVTDSc0oXUtmAymrmbUJrFb98fJtZnmCMpJuVzBYpJteIQtKWCS5wCOObG9vMYWJJduAj+ZY9n+FntcAljuhEYWJFO2ih06AC63Pn0woHVHmAW2mC0qvLCGi6PpdcGEE0geTMEuQ+VjHfkvQetOjCIBq7jli0mCygyTR1V1IOPxiCVDVEE28f8Sd38V5oU0GbchE7aDXY0GEiMJnFhfbivfNh8WEI9/PnZBvAOfeGEOJF59y93yKsZA949NTvj4Ef/GiHB0KIHwBC4L2Pet1/mrg9ynh+p8PPvH54SbgvcYlL/LOACvi9zrmlECIAflEI8dPAvwn8+865vyaE+E/xcz5/cf3vxDn3rBDiTwJ/DviXvtsdOAfWCoyVCAFJv6R6pcUdxqSHvrBlcceSHCo6jxyqsSxuSEzgvxTjmSeP5UAS5L450irflggga5+fmx44yt2Q/HrrfcvCcfXGGdYJjqZdTKsoHLQbko9vHPDa2VXUXLOdLbnamXGcdynagCRtuNqZcVJ2kAJPugPv3x3qFXvZDCksB3mfZRkRy4bGSSqjcU5wssy41RkTSj9EWVuNjgxNo5hUKYtlwmmdMSlTOv0CrQzzcUZ/55CDVY+iDtjuLWmtZFWGFKcp7fCEQBkCZbi+NeEoarFf7+MUnH7SsfEtTeeJJ5bdRwadG9pUcfpqQDV09N6HxZ6m6QriM0dybAkKx9lLClWCaASL51rizQI3i8iGFb2w5P7CDw4qafnE6AlKON7PNznRXQY6J5ItXVWS25AHxSbJ2qJglLfaxNIPSjZC0ThFR5W83HlC45SPGWwT3luOmNUJm/GKszJjJ1n45sE6I5CGx+UA6yR3pyNi3bKb+Qi8/bM+4m6KNgKrvH1g+Iag6fj7Vo1Dtg4bCJwQxBOfaGGVQDSGfFvSbLZYJWk6ASbxTYyqsATzBhyEs5Ym04STmt57K2ykaTNNuaH9rot0bKolAZbKOUrnQMDjNuFX53d49809OvcVumzoPBHIxq2tD4K675Nkpi9Ihv0Vn9t5yKez+2SiJVwni9yrt/jm/DrlMqRJJelhQ7iQbGzNiWTLadNlFCwYqBUnpktX+qYYg7zw2QeiReEu8s1LF6CMZWpSchNdvEa34lOWJsYguJGMOap7TOuEo6JL1QQ0yhJuegU81C2LZUIzixCFYP5CiywkegV6pnz+dSlw2scIhlMQBwEmCmhTR5s6ljr2ZFY5CBxN34Dzg5mygc4j/352CppUoEtH//0GYaEaKGTrCFaNT33REllbAteiC0E0lZhYUnck1VBQ9/3wJMIXAKnS76rJxpEegqocQWGRjV/Ym1AQrhzxScPk9Ldf4X5dCPEX8YoG+A/QN9ZqRvObX+0fH0KIK/jM73/VOfePzIMKIf4M8GcAbty48U/yUD4UfvzlXf7jn7/LZFUzzD6iuecSl7jEJX4HwTnngOX612B9csDvBf6n6/P/EvB/xhPuP7b+GeAngL8ghBDr2/kNIQS0lcYaRRg1BNoQBS3ldcMqTAmmkuhUcuWXSxY3fJPvxpstbSyYPO9zcuOJo+1Aduz9yOCHxppFepHFq0tHMJY012tEqzmddvj0jUdYJ6iXIXLdVvluZ4vubsWd/imHYpuTPON6d0qkW8pWs2hiurrijIy6VXTjCotg1UbkJmIjXGGd5NHav22cpDABVauR0mGMz+Lejhd8c7zHJzaeEMUNq1nMo3mfzcGSSZlSGU0W1b7ZslNRmoCtZMUpGbMiph+WOCcIpoppnRBKw1He4XZvTNlqTpMe0ZmgGjnmzwiaTsjGGxU21NR9zfglSTUyRCeKYttv0wsDbQo6F0yek5TPl3T7Bd24omo1k1nmFzRO8OW7t+gPclorKYqQn334CkSG7jDnc7uPSKOaVPqFSOMU1+IJo2Bx4fNOZXWRSQ6sh/nKC6IncUSyJVYtufS2mp1kwWtHVzFGYlpJFDe8tOXLd06nHUyleDTbJTqTiMh520jhlWyrBapycOjtSXYd+3Zu/9CFr1F3WtL2YqYvWbb/e018VmEiSTlUNCkUO5pgGbLxRnNhH2n6IdFRTrDKUUuNbGLaRCFKX/ueO03maiRQO8eTdkhlNMFMkh1YTCgJ5wZpHDaQIH3Czmrbv0aJFbyUHnAjGNM4SV/6GTW6cAABAABJREFUXPPjusfX96/R/3qEqg3FVsDpZw234op7qxGf6vvov3erXbqqZGESNtQStTYUNE6zshELmzA169p1WZHKitIGNFKR25BAGEqnsU761w9BV5dM64RItSRhQyeuUNLSDauLnZhpK7E2WKcGOUziBxN9VB9Y4dsdZeNJLc4vfpwCa8EkFhdbRC29Wt6zBAuFbKDu+Z2s9Nir2CYU2FCgCkty3FANNW2SECyML8JRAqflOrXE52pHc0M090kjJhS0iaDJBNXAR2OakLVXXKJziaoc6aml/16OOl2AUl4x+Aj4MIT7TwH/K+B/s/79l/Ce6wb4577L9Z4A15/6/dr6vA+Fdbvl3wH+befcP/yNLuOc+8+B/xzgs5/97EcU93/78WMf2+U/+vt3+bm3jvkTn7kswbnEJS7xuxvrWZyvAc/iZ3LeA6ZPDcw/xu9mwlO7ms65Vggxw9tOTn+z21fKokNDkweUrYCsRkrvWU5vTphtpMi3UsrNABNAuDz32Aq2v95w+mrA/A50HvkvR9EIbLSO7zqNyB5L8j1HtI4sdkZQveh9xbvxnHvLESJXxMeSpuNYrWIO8h6vDPYRV0vOZhlXsjlaWBqjuDsd8UO77yNxlFXAMC0IpOGk7HA1nmKdZBDkF1XufZ2zbCJOZh2ypCIKWt6dbfGDW/dZ1SGprKkrjVCOogpRsmIrWTKuUlZ1B5TxjXlO8GTpfSLOCVJdUx2k9B8L5p+MeXnjgNefXKEflVzJ5uxvjmhTTyizR7C67tjfjIjGMLzb0LsnGP5UzvSFjGIkqXtQ7rYk2zlx2FDMU/TjmPJxxHxo6L6nSSQsn2vI3xkQVNC+HpPtW8S2ZPFyTW+Ys9efUVlNIMxFZF8kvNJt1zXtDZpx20GtldpYtBzUfSrrdx7O86BvBAtuRGcX/vDXZ1dIo5qTwz7BSUDdwlf2ErCC9G5INbKYfotZBBcxiPmuJMgFemUvLBrByvrmxq4C4VM0cA5dOGRtWV2L0ds5db9De6pQlSVYWc4+IfgffP5N3plsURyPCApLfNpQDzQ2DZBljWgMsjKErUVW3lazciGxNWxIQ+ngzHRIVEM09mVN0vgFj1WeNAI0iR+c1HNJa30ede0UkTBYvEVnZSKKccLeawV1L6AaSfRC+ZKaOmRcpbzcP6CyAVejKdfCM0oX0FiNWfvJx23Ht2+aCIsglyGBSAmEobIBkWzITcRZk7Ebzj8YhpWOvWTKlXjGnU7AYdll2USM4pVvatUNcdCy7PpF8mKe4E5DnAIsmAja1JNsE3objVXedhJOxZrsSmwpsaEvuwpnEhtB3nd+t6GEJpPEZ45o5vzQtPC+62BpqPvaq9ELezE4eVFes2aLwgvnSOMIF45wCemxWA+w+sXZck9RboJJYHFboj/eIT7u0N1v4clTwdwfAr8l4XbOFcCfX5++E8vf4LxzfAV4bu33ewL8ST5QRb4rhBAh8LfwRTs/8WGu8zsBH9/rcbUf87OvH14S7ktc4hK/6+GcM8AnhRAD/Gfyi/+4t/n0zmS002VvNOVk0WE1TShOU2SnwSU1r+wec31vwtHtLl/++E3ka126jw3COIglNhJs/VrN0Q+ELG84Ok9A1QK9hGjmmGaQnDiqDVjuSR9RdhLgRED24oRpkxCrhuhUEY29QbRRhntHI7aTBS/vHfDrX7tNe0WxGa9YNiHhuna6MpowbFnVIZ2wojSajipZSp+LHSpDUYTM2pT3J5vUs4gsqS7IcyAMP7D9kEAaXr32hLdOdqgrjYkEO9Gcg7yHsYKNpGJzJ+c0zzg96fL8DZ+hfJD3QPqs4Gme0NmqSFKvGveDknRrRV0FWCOYPxMTTXxyw/ylluUtRTgT1P0u+Y4fCrPaD4l1Ep/4IfdjZOVJWfeuptzyA2rdtwJ04VjcAhPA9DlJdb2GUjKfpPST0meFtwlfm93wan60gBCC9dCdQazjAEMmdZfChheNkudebesklQ04bTtMmpRxnbFqQs4mHR8nF2uyh5I2DYhuLKk+bsi+kqDeDWhTQTXwKiqsI94ai1MCVVraTGEDgbCONpFYBdHCeZJlHXVH0ExigqW78A1bLVCFoHWSYVzwzg+36Klm+2sh6VFFuRWSlg1yURKcGTCWaJzwTrnL55L7BMLS4It4chvy7myLuu8IFoDzVe42lLSxRKx3ZJbXob1W8cN77wO+3MYiGJuAM9PhvfmI3usBVlna2L++bdfQfGNIkTiqF6e8ff8K3Y0Vr24foLr2IvZvZjKksFgnUTh2gpkv9jEplZNUBBetoRtqxc3olIVJyG2IcRKLIFU+R13iaJykG1RkqvapJqqlFxY8UkNWdci8lbjEIhtvKTGRw4aO8opBpC2uVIhGopeSNvOPA+m8pUQ5GAc0mUOadVY2ficmWHFRlqUaPyiJ9gspnVts4HczfiOvtQ0EBH5xrhpHsDAEsxK5rBBlBVWNc46+1rg0ptntM7sTs7gJs48Zpq9C9ZWPVnT4WxJuIcQX8NuEN5++vHPuzne73lrh+F8DP4OPBfx/rVsq/13gq865nxRCfA7/IT4E/ogQ4t9xzr0M/IvAjwCbQog/tb7JP+Wc+7WP9Oj+KUMIwY+9vMtf+8pDitqQhOq3vtIlLnGJS/wOh3NuKoT4eeDzwOCpWNindy7PdzUfCyE00McPT37nbV3sTEY3rrtpnnBtMKXqLnl0MsSeReTLgNflLnLb8fHuPs+/eMx/v/ks7w2vMXzdezblym/Bm9Dn8e5/USAMdB9b6q5PKim2BcHiPJnDEcwE5ZZletTlUTpkM15RbRvSA4kNoT1LEI3gW9kVPr51gB02jIsUmbiLghkpHJ3Qp14YJTjNM5S0HFZ9GqcYqpxEN/Q6BbkNycuQ8EiTD0Jy4PM37lOYgEGQEwhP4M+35bW0FDZkK1kSrGMDz8oMYyUqtGSBJ9WTKsVJR5sIqjJgaSJ2uks6QUU3KHlmdEZrJe8dj2i1o00gewK9n5cs9yTFtkPWPlKxTX0yyfEXHOO3Nj3p2WkxsSA+UtjQEyTZCopth9mtEdMAVXuSl70d0nQc0SsLAmUIpeHuaot5HfNs95RhkFM5TUB7MUwZy8YX34SG3PrSlWmTEsmGygY0TjEmYxQs6KgSKdbP/67j3v1tpIXVdcvo6wLzRhfdEyyeNQQTSbiAYO4Vz84Ti4kk4axFVJamq30ihfIpLE764bkm9TF1OjcEuUMvFKr2RF0VLdmhJT0SPP7Gc+Rbkt2Zo9zwaqqeFDQdjemEyLL1fgit6DxxHFddSudbE41oWbmAu/kOT44H0HNY7Qm2DSVN5v3BdU9Q9aH+WMEfev4NXkgPyWTFplquowA1Cxtz72jExsQPJTopyA4bwp9TtLGlGkjk+wO2C6g7Q3711oDXnr9CHLSEyue672ZzNsKcgc4JpME4SSwborVv+9zzfW5B6Ss/GOGHLT0i2dBYzc14TG5DGqeIrH8NCxOwlSzZSqAbVUzyhInoIyoJ/QZXKAgtbuVppd4sEVsO2ypYak+0ATkLfKFU6HC1z8BWlW/flK0gO7A+VtHwQQX7mgfLZn0ePlObdRKNKhxi4dDLGjUrPMGuG1zTgJDruED/uF3bQlkSjKds3Q0ZZQlmo8Pidsbxdw3G/kfxYSwl/0/g38BvK36kqG/n3E8BP/Ud5/2fnvr5K/gP7O+83l8B/spHua/fKfixj+3w//7l+3zp7WP+4CtXvteHc4lLXOIS/39BCLEFNGuyneAjXv8c8PPAn8DP9fyrwH+zvspPrn//lfXf//53828DhDNH8lcH3PvEkPilKde3Jsw6MZOjHqtHXd4NWpZtxJ3OKT+69S6f/L2P+QcvPcviF7YZvOuwif8S3fyW4eRTEnuroHo3oc0EdlhT1iFOO3p3BfNnfGmOU470/YD9o6voH3oMnYb8qieCnXuKYsexzCO+/Ogmr9x5wrRMeKZzwtV0xi88eoZusMmVZM6yF/HoaEgYt+wO5ixNxEnZYTecE6uGFzePeZBv0ElLirpDMY2RaUthApbSb7WnsuZqMuf9ySZXunMWdcTD1ZCteMnEeV/tTroAoO1ItuIlq9ZnVetBTbmlEMLx9nSHs1VKMDDcN5tsRUtfoHOSoEvhh8Eqh64syalg+I6hHCrmtwVN31ss4gNNfAbzZy3xoWb4pkW2/nlVVwqaRYhoJMnbEfHYZ0abSDB/zuKGDfVRh53ukrfHWwySkpcHB6zaiPfzTbbCJbM2obaaTFUMdU4gW6SwpNL7vSur0dKipVe6p03Kg3wDLSy9oOSo6PJk3Cfo1HAcECwEJz9g6NxXJCeOzr7g7OM+/q33sMWGYl1cIzCxulCSwadO6GodK9eKi3QKqwTR1GAiRd0VpEcg2nUahZYkRxWdhz7tpvNYX5Sm6NxgAolWAoHECW9lmFQpv5o/y6eT9wmE5bAdMG0ShPRZ0KrxRSwmBBMIii3/c/FMzUtX/W6GFJauLH18olPUKBYmwR7G9N/zdpLu+yvcehhVGkl22CCMW8fdSQbvOcTfy6j6itWWounCw+s7BFsFej03cWsw9u8raclUTaRautpnpEsc1j8yUlVd+LmB9WCwYtqkvDvfIlCGV/tPyLTfLams5kZnghSOeS/BHcWIkxCEw4QWNagxy4BmHiIL38QpRxVSOdpSY1ODWigf62cFykA0FnQeW8KFQdUWcT4AKwVOibXtDATeJiRr4095g8xLaFpcXXMe/OGMvSDYF/+KtV1ECWhbsA7XNIhCok8dvcYSLD5a1eSHIdwz59xPf6Rb/T7GD9zeYNQJ+W9fO7gk3Je4xCV+N+MK8JfWPm4J/HXn3H8rhHgD+GtCiP8L8A28KMP63/9SCHEXGONthN8dwg+I7XzZcVoNOfskbKQFm3cOuX+0yfRbm5xu9XiwOeTlrUM+0XvMH7/xDb7xR27wK998js49P0SlaoeqBfYgpvoDc1azGDn1ypjttsgmIDkRLO840BbZQLYP4zxhc3PJ2TREF4LOQyg3wVlJXUnmVcxLw0OkcCSypm0liyZiGOUMooJZL2ax9MNjHVXxen6FZTfiWjpl0cacVRmDpGSybSCw2FqRtyGtldhQkqiGQZCzkeWMi5SrnRmzKmFS+ZjCflCyMiGNUTyzccpuNOexHTIrY4KwhUIQJDVpUHNGypVkzpcPblD0AlZ1iB4VMM8wiaPNBOLEWyzaVNJ/L2d5PcMMWwZfDak2Yfa8IXukSA+dT+roeHU7ei3DvFygtKHoaArANRIZGdwsBOn4xIt+SM8mgmGUc1x1SVRD3oa832yyGeX0dMFeNAE+qBaXwvJ+scX95QbjIqVuFaE2DOKCo0WXjSxnHsSMVynVMkLONWEtaHqO3ruK5Q2L1ZLdX62QbcD4JcX4xYCNtzzpVOucdhtInPaDdS7zqrDVPtXGNw56pTlYtKQHAeUmtE8UslI+Xq5dN0hquU60WNubLKiiRUQKm4YXRDffkuw/usrv33oDg+Sw7XLSdpHC8vzVI946u46JBPmWIFj5DOim64m4Pgl4S+3Seabih3tLsrUffupS7la7/IWv/R6e/YmCuh9eRODJ2iDLFmHOj8v6qWTASYmLNaoIiGbKZ1O/IykHGeWmoLVwP9/wr0tHUFyxcKWk3835/O4DdqMZAQ619tw3qAs/t0HQOMVuNGNrtOCk7nI/3/SRjqpFCkcgDc/1TmiM4pEZYioFzTopJTCovqVtFFaCyhofMzjTiMjhUoPb8eTd5JrwYUDnsfWxjo0fiLSpvy1hQBhHMG9QRePtIXnpCbNSYAzOWoT0l3ftd0jU5yRbPmUVsb5tFQk4h6sbRBiA/mj+bfhwhPvnhRD/d3zmdnV+pnPu6x/53r4PoJXkD71yhb/+1Ucsq5ZO9GGe4ktc4hKX+J0F59xrwKd+g/Pv4XsWvvP8EviffJT7sEpQZxLZOsrrNeGXhkzckMWnKq7sTpgnNfn9HvnZgF9dxoyvpnx6+IgfGLzPc1845if3XkH8wgZOCZqub06sa8UXXniP+/MNaqOQwjH+/SnNJPaxZDcqbBCicxjPM3TQIjYq2klI01GEM/9F56zg0dEQIZxPE5Etw27Oooo4CzLunoy4MzpjHlfMqphENbRWclJ3SVTNWZVxJZnxDye3cJkh7ZWUeci0THhhcEyiah4WQwZBgRSOw3EPLS3b6YJM17w53mEQ+kISB1xLpxjnU07mqxitLcXI0gsbUl0TBy1P8j7Ls5THVhAFLWFoWG22yJVXbJuOpNyQa6KSkN9uSN8NqQc+MzndV8jaZw47DcU1gwss+YYjDAz1NEItFHolaTNLeKsk7udsZSt6YcHDhSdtqa55uNigsZJlGfHp3cfsRHMap1gan08eCG/IPW26hLJlL53RCSqO8y6rOmRZRzRGcTjrIgRUZYDQFhtZX4TU+IG3/juC5U3Hwedj9r60Ij5VHH02Zn5Ds/mtAoRAVi1IQbUZYWKfOKFzS91TmI6gjgR1RxCvve699y3Hn4O6JwlW0pNY58A6bKhACUTh7SPNVoqsDG2iEZFC5S0oQdMRxElNbkMeNZsXDZw70YInqwGu2zJ7AYKZJD3w2eeqACkF1ciT+1d7T6idonQBEsvfm73M337tE9z4mxJ9NkdWLaK1iLoFIbyTomlBSlDygnALaxGrClG3qEKDEFgtiaaKzr68qDvPR5pqw+dMa2CU5ozrFC0No2DJrM04tr4Ep3GedJ//nMqaQDZshkuksByWPbq6QkvDfu5bKsd5QpLVNKFCSoe1gioPkIEljFpkUpPPY+RCYzIL4VpBPokIJ5J4DFi/KGhjTTS3RNOW+LhETVZg1iYM84Hy7BofpndOoc9VbSHEB9Zu5/x1lQKpPlC+nUMoCUh/O9avzJxem2r+CeRwn2dnf/ap886joS7xG+CPfOIqf/lXHvBzbx7xxz6591tf4RKXuMQlvk8RzQ2P/oeO+FHI8O2GYNmy+abi5JO7FJ8oyG7PWJxmBI9j3j29zr3dTT5+9YAfHN7nx268xX/zg69wvNFBtJA80oSvd/il8fPs3PJb5NvZkhu9Ce93Nol0SxbUvP8qLIIM56AuA9xSI60vuojGjtUs9B5SbTmc9ni+f8xbsx2ud6ccrnqEsqVchbznRnzq6mP2V33mbczVzoxMVxyWPVJde/vIIoZS0rtS0ktLHh8NeaZ/inWScZWxFS65ks64Z0es6pCH7ZBr3SlVo/0ApmzpBPVFAUxl1TmPwm3UiLWvPAtrjhZdZGxoW8ULW8cc513UjqV4Y0A9cMxuS6SBJhNM+w5RSvJbDaKSjL4uOf2MQS8lTU9gNQRjT8oWz7U0RYBopM9OnkN1raWuNUL4uvt3p1tEyiCE4xuH16gqzcevHvD84ISTsoNxgivx/GIYL7e+/q+rShQhrVRcTWZYJ4hUTKRbbnQn7K/6nC4z2lIjp5pwIdEFBPN142Dl2PgWLPcE9/9oyt6XGq7+woKTT3c4/WTK1te83UK2lnBSYyNFuRFcDCgKA8pCmwrKIchWkpw09N4LmT4nCFaadNmAtTglUWW7zrO01Jsxq6sh/bs5ToBJJcIob2kw8NzolMoGnLRd7oTHoGCocx6fDYgeRqjK++fDufNe+oX3HOc3LVI5JI5M1qSi4sv5M/zsT32Wa9+wdN44wmnlPeNN68l13WBGXabPZ2SHDSpvsaFC5w2iMghjcFFAtRmjV17ZFdbnkZtQUGxqyk2fQ915TwOa93au8e52jVSOXjenF1dsxCs6QUWw9nbbNZUNZUsgLFvhgr1oSqIapk2ytkBZTvIu1kr/f269+G37BtWrkdJSTmL0RKMBGzlkLpEztT5OMLFjdQ3iY0EydmSPS4JxjiiqdY6g9cRZrhcaa/VaCIFzDtcahFZrUi39ddaLKF8tub7ed6rbSvjzxTrmxFiQvpn0ozLuD5NS8o9E/wkhdj7SvXyf4TM3hlzpx/ztb+5fEu5LXOISl/hNIFvnyfbjgM1vGXTpFSqrBIO7BmzC4k5Atrui7VW0xylmP+Ubq5sc73X5/Pb7/IFn3uRn5Ys0y4hwFtFmEJ4pzpZbfP6Lr/PNoz0W84SdrRlPHm4SD0s6WUn1iZYrWcH+29tIA8FSkBw72lgQjhUmdgTDkmoV8iQf8HA85MbGhN1szknRIelU1O/1ONvIWFQhhQm5kU04LHtMq4Rnu6esTMj2aM7J8RZKOIpG43JNYxWV0Lx/tsFOvEAJh1KWK905bx1sk4U1L4yOSVRDZTVZUPH+apMvDu9yortc25gyLRJk31LWAXfHI58QEvns68UqprYaB1zpzXmn30NUgvxWS3YvoM0sttdCJVFLRTiVVH1wsUWdKdrEEU0ExY4jj/3zWW859EoiG8Hq+nqg7DimvWJ5f7LBchGTZDUbWY4Ujq3BkqO8y7tnW4S6ZVom9HSFDSSTNuO06bAyEQOdM28THuZDQtlyVmYUTcCGzMl0zXa6oLGSJGwYhxl1FFK3At0XBHNBsg6dTE4co19vOPhCwOibit1fOGP/nx9x8pmM7a8ucUp44l1bktOauhvQJgKXCUwgvA1jncstnGb4dk2bRkye08g2RhUWaSx6Uvhou16Ejbxf2gUSVVuajkZGEhNJ8quO2ioeFJt8sf82m2rJ1Po2zKbSiK4FJL33LfmuJ3DByhO46EizeeuUQLacmQ4P6hF/5a3Psf01Q7pfeEXaOagbTx6blma3z93/WcjGtTPO/v6IaBwgLEgT0H9nCVaQX02Y39CMvmWwgbyIInRKoAtL/31QtX9t644iPhNU+zGqhHwnYbJX03m2Yis8I5ItJ3WXSZVcWIO0tByW3Yu0nEGQsxvNOas7rJoImwgWRQyRQTa+4t0EmmQjp5Ehbc+AcsilQue+fl1VPkEnnEF2aFG19QuE3Yi2ExDvL5Cz1XmL1vqDZW33eHqExFmcFd4OsvbeiyCAtsW19gOibR3O13GC9GRdPHUbBCEu0r7J8p+Awu0PzMdC/XF8tN9LwNWPdlffP5BS8IdfucJf+pX7zPKGfhp8rw/pEpe4xCV+x6EeCNJ7Ab373iYgWofTApNIqp5E5xAfauKv9xh/wuI6LaIJUFPNE7PJz5QRz2+ecGd0xkHUJfmRCa2VGCtZFhFfP7jOjeGEquMTFm7dPmZ/3KdqNGUeclj5z2ZZC5quj4lDQHIoaDNBvSeQJyEHm12SqObRZMAndvd9VvYqpWnhYNElWxPdwgRMq4SzPOP53jESx15nxlE04nSeEYUtspQ+szha+sxrE5CohqubMwDa04TDwPDy4IBpkzBvYiSOeR1e3EfeBAjhiYBxgrbRPLtxyqRKaYwiTSu0sCzLiDRoCEYF9SQmHFTkLxvitKa516V7D6Yft35xsRTIuKW8AuGpZnXTkOwr8mstLpCIStJ936vKbSKYvCpxg4aN3orDRxsEvYp+WjArYvI8oqwCellJEjb045JENxxXHSyC/bzPVrwk0xWV1axMSG0Ux6sORR0QasPdwy0exQPyZYQzEpYavVkit3LqIqDVAbKRNB1BNHEEucUkkhs/U/DgDyaUg02u/MKEo88POP50h50vz0F7H/e5D1s4/3iwgPAWlTbxnmdhFLv/MKfYjljuevuCNKBSjY0EZX8dP1c4dOltKkHuM+uchM4jwb3bm/zgC/cZqJwz0+Fnp68wbRKipKFMNck9yfyWxMQ+xjBY+iFPpx03uxMCYViamP/q0acQ3+oSneXIeeEJZaA/IN2Bph6EqKVimcfYHUex4xsd+++6C+Ipa0fT8eUvNhCYUK7tOT4C0YQCJyXByls1dCkJl5ImFVS1H1A+WnZZ1hGRatmMV8TKDzaPiw4AndA3kUay9RGBsqWnC14dPqEwIW/PtzlVhlXcYooAIR11rck2Cv9aNxKbWhrlozxFLkkPHZ0Dg6osqjDoeYnIKz8IuybPSOltIee2EilxbXthD7nwZ7dmrWRL/7wobyFx1l4QccD/LIW/vhAIrXFKIYIAZ0HIj1798l0J93oy/Y/hSfangC7wPwJ+4SPf0/cZ/sgnrvJf/OL7/Mzrh/yLn7v+W1/hEpe4xCW+z6BXEI8d5Yak99BvAbexoo09CSh2BDqHzW+tEDbj9AclvTtTyjogAKyV3JtsspWtuN6bURrNuEiJdMvO1uLifrpBxUmRIYB+p6BpFXkr0fsh2nrPstiuKCcJ8Zkv2EEIVkVAOhGMT3rsXR0TasNR0SWQhtvDMa/1eiwf9cg3K96Wls+NHqClJdItqzaiMAFvHO0SbHkvdtMqxFbFuEzZipfEQUvrJJXVfGx4yHvzEVgoDjus9nySSdEG3MgmTOoEKawvhwkaGmmpGk1da5pa0w9KaqN5UvQpTlNW3SVR0NINSn7wxn3+ob1NUwR89tn7vP53XqAzg7oP0U6OnXaYv1Jz58oZj768573RbymmL7ck+xqrIZr4gpCmK5h9tiKIWtrjhGU/QiYte5szxquU+WGXzs6StlVYB5PTHuOgw2i4oBtVfPPJHre3zgikQWGJZMtz6TF78ZSjqse9xSbWCa73JqyaiHvFCBk21JWkmUWopSRaSpqORRWCcObTRsoNT6jaKObm38l5/Hsznvy+IXs/M+bhH93g4Is9rv7cGNOJkOv3Xht7CpRMvGpad70PWhqouxITxQRLQ/9+68lpLCk3vM3hvBq+7gmEk8jGN1pa7dsUg6XDht4G9FpxA4nj1872fOCJNojYUI40OIhPoelAviuoRgbRCqZ1wkE9oDABh4cDth449MKTTBeuRTwhIFtHLZ6W3PmbgnojIhzntN0AGwjCSb1WfC3VQOG0zxUHbynB+WNG+IFDXfiimLajqDMfl7m64hcBwXHAKT0W3Yokalg2Ide7U6pW0wkrRvGS1iq0NFgE8ybhsOyR6Zr7iw2MlRcRjwiH0Nbv+ADGSITwNi4RGmygMI1EGEE1FMhG0X3idxjkqvjgQ6Q1sPZpu7V3W4An0lqDMX5IUvKB3eTcgw3rxYj6QMWW0nu0pcQFPkYS4Zsqbaj87oJat2J+xMHJ35RwCyH+P8AXgZ8F/iPg7wN3nXNf+kj38H2KV6/1ubGR8rdf278k3Je4xCUu8RvACZ+V22QQLFqajvZ12YmgHAls4AgWAhNrps/D4NcD6gcblM/UIB0qMuRNxOSoR9Qv6WUl3agi0f4LuDKaRRVRt4ooaEmDhqrVNEYRpg1Noum+r5g/1yKdb1ts+r4C2oYGKkW5ZQkPAootTVGFyI7jtMy40psT765o7nZRO4aTeQdGoIXlpeERhfGkyDlBPY14/tkD9uc90qykaAKk8O7X3XjOcdVlWickukGOKvS7KSdVhzudU+Z1QmU1/bAktyHWCW5kE86qjFUdsnjYI7225KxKOSky4rChbASNUXQjn3PwTHrK8U4XLT0hyZ+taY4DTOJweUAgIO0XjFcp8tklnZ/t+LY/K1AF1DuOputwo5pOryAxknweM7g1JY1qtrtLjJVoZci2V2hpiZOW8bsbEDpGt8+41R/z9uk2xkiWdcTjfECsGrSw3J2OSIOG270znu2dMGsS3jnbIgkbtjfmHI17hMeaYOVpUd1zCCMu3kPRwkf+1R3J8pqkjVOu/9ySgy90uP/HN7j+d1c8/ucyHv/4Bld+OccqnxKjGr+wMoHPd3YCTCwwAahmPTwqFIH0UXOqtMjG/2wDQZtIWgRVT2C1j67TpUPWvkxoMU/45fEdKqO5lk1JgoYHxxuYowS0Ixp7om0DCBew2vO2neSlKbc6Y1JZ+4bNdyMG764QdYvtxpg09F5ya6k3E8Jx6YcnhSA6KUEK79O2DtkYH5eXBKyueOuKU+IipeXcwy1br9CfLySseur5nXLxfOcmoB0HLIBpZjjd7NBJS7Kw4XDRZZgWaGF5q0z8e79VaGXYSAu2kiUP50NCbZjPO2AFIvELbVsrZGiwqwBRSIR2/u/tBykyJpS0gxgtQZQNovb/zwmCb1OjnZLeq62Vz9+W4NSaZK8fO+AvJ/DXEXxApM/tJev3BPDt3m78LoH79rN+S3w3hftjwAR4E3jTOWeE+KiOle9fCCH4o5+4yn/ypbsczUt2evH3+pAucYlLXOJ3FqT/QgsXPnatGobIxlFuCZrMEY09uZk8HxFNBb0HLVVfEk5Dlj+cc2N7TN4EzFYJda3pxyU3sgkr4+0X4bpusFKastU8GfcxrcIe+s9j1QqWN33utDvROOWIz7x3OT7WCAPNp5e49zMWy4SmCLi1OeZ43OOdR9fQWwXR83NWxxkEltdnV1jUEZvRitoqrBMMOjmHZwn3jkZc25owLyMi3XJU9Ih0e3GceRt6whw35APLk3mPV/tP0NJwkPfYSpYcVn2Oyi63sjGhaunFJaeho64VpQnYSlacklHs5qRBjZaWReMf65V0zj94+zk+fechn3j2Eb++uI3KBfpaTR2FtEXItSsnvHNwlSgT5Ff94Fr12SW21jAJEWchJquoyhBqyez+gPragqZRiPcymmsVOmop2hClLDa2XL19yk664L3JiOUq5tpoyjO9U96Y7BDrlp10wSdG+0hheZIPeDLr0xhFXSu/wJGWjf6K+AdmHE27tAcp4VSS7nuCKIy3cKjKEU8N0UKw2FOcvpqx9WsV4xcj7v2PE67/vYb9L2j2fzhl56uVt26siZZw/vqq8R5+q9fZ2JGfJyiHa1W78ZeVLeC4GI7UrY+na1N/GfzmBEHUEquGxijOqozjRYf2LAbhffHgiaTTkG86TOzQV3NaI7m32MR0BK+/e429tw2yanFRQNuLvDLdWpqNmLqrUFWAWjU+g9o4ML7+HOnJo7COYjvBKeg8dmvC7VX6NvYpQeHColft2nKj0JUlnLu1RUasc64hmgnaSGBigbCKctRhsp2w2skJw5bHZwOUsmx0cjaSnJM8I1KGWRnz4HiDjf4KYwUyaXHzEFcpZOKfUFv7jEZVCdREEk38Z4NsLEHhLvzlLvDPnUsjrzI7t651P2+88aTbrcm0t44Ibx1aX/biOlpclOLAejFyzrfXjPeCXK9P5wsSp36bmiadc58UQrwI/MvA3xNCnAJdIcSOc+7oI93L9yn+hU/v8Rd+/i7/9Tee8L/40We+14dziUtc4hK/o2Ai3waZHjlWezH5jkQ254qfj0qTBqqBH6J0EpKTljYJCF5Pia4c84Ob9zmpu3zz9CoPjjdY9CNu9ceEssU6gRKWk3mHIFgraUZgEwvaoY/1ehAQsgeOprMuzWig2rTe250HiKsVV4cL9KYlVg3XtiY8enKVttZ00oqVdFBLjJMI4LXTqzw3PGEQFTycDyHyvtInpwOSpCZ3gkPbZTdb0DpFbTW11SjhyfPtl/fRwtI4n9s9yRMao9iOFjyZ9dmIVkjhvFJ/qmhMwuim386frEYEQcvJqsNOx0cMNk5hnGB7a451gtMiQ2xVtOMQ5QTZszPmZxlPZn1kKak2IDkSJKeOk60AZwTBTk4zjyj2O7jY0nszoNxyREFLfpQRN4Juv2B5vw+bvsZe92t/jMqwma643pvQOsW9xSbjeUYcNRgriXTL8aLDYpagQ0O/W3BjOOFk1aE1krwKmcx8UonaLim7GmyIqvxgnc4hOREEhUU2jsHdhuWeZvpMyMZbFeEi5MEfllz9kuX4c5LjT0dsfaPC9vQ6qcQ3FMrWEU8sbSypOxKrAQlB7rPe28gTMxN4oqxqb7MBMLEn523iWw2bTBBFDdYJssDvNNSNxoWW3vaSedrBSY0Nvde66Xn/dyctaYzieNnh4XhI/CQgnFXr+ndFmyjigxzhHG2qqPqSeCzAOG/JcP4kmnPLiMNGmnJDoSpIT7z1xUm/UBHWoQtPagFE63OsUQK7VoA92fT53cHK+cc9sZQDiWj9cxSFLcZ6W0jbKI6nHaZ5QhrVWGlR0jLo5eR1QFmEnlwrr2K7WYiLLCLw/y/b1CLW/nxhhfe2K7+oEZHynmrrEI1BOHBaXpBmJwUukBclOOcLqnPSLNz68cgPFhL2O0vBL+IU1znf+tzfvv7z+jbcR3OUfHcPt3PuLeDPAn9WCPEZPPn+ihDisXPuhz7aXX3/4ZmtDp++MeAnvvaYP/Mjdz4w71/iEpe4xCUAyG83FC9YOB9Ccj4Dm3pdZtFKZLFW3XIfoVaMBIO7lvfim8gvOrZiH/03X8XMVgm2JyiNT+9ojCKNK/IywrSKIGpxoSEMW9qBolzXuQurEAak8X5Vk/pCFX0cIiw8qTeIehWrNKQTVZh+CytNmQaeOBjBlXTGVx7fpK407wI/uPOAUbrCjASTSQdnBP1uQdlo8jLkRm/CG5Nd8iZglK4YJUsOxz2sE8ybiAf5Br2w5EEzZDZPeWl4yHyRMB8k9EKf390MLE448jZkM1rhnGC1iOlu+SHMULUsTURtNaEyF+klw/6KVdSgtWGVR3TeDslfMaRPJMHCK5v5jqAzyOnGFfsPNul/K/BNlI8DbAjxy1MmBz30XFFtGKppCtKxM5pz+HiDoFuxkeRshDnvjkdMxjtI7TCFYrQ752Z/zKxOkDhuDid0tg5ZthGrxudwC+EwTmCMxLQSSglnCWw01M8VuFlI+kiRHVh05VCVJ9w2ECRjy2pHMrsTEk8su78oePLPW7Z/BSYvOcYfixi820AiMcGaYLnz1kdvDeEpUmW1b6f01gYu/Nqq8US87nvyL5xXScstR/Okx1FcESrD8XrRZ3oVVa3RY41TXi1vUwfdludvHBIqQ9EGPDwdUk9iksaTehsqTBqgSuvJdj/ChIJobn1ihjGIuvWqqwWxLgZ3kaIehjQZJCd2bYeRTy0afDQgDu9zZl2Uc64Wr6vSdW7ArYc6lbfTmNAff+9tRXUypBoZXGqIOhXb/SVSOI5mXc4qTZpVLCcpYqlwoYPAono1AmhXAaLyMYCiFYRz4dtDnzSocq1qSy4WR8L49k+nfNLKhRVkrTpbtbaRCIFT610EyXrxIJ76mbUy/oF1xK2JuIe4GMoU66fo/D3x9HU+LL6bh/tfBn7WOXcG4Jz7GvA1IcT/Du/tvsSHwJ/4zHX+rb/167z2eMYnrg++14dziUtc4hK/c6AtutMglUUpi3OCtlGYWuFCiwotUvrzi22JqyVYAQ6KKxK9FLxzsM1Rt8sgKehlJcsi4v5sg1G6QghHUYSQQHmWEB0rmo5D7JZ04orJIkXPfFulbCG/auk/PyZsAgIHxTLCnYaIWhAeBbiuz70uW40ILUJb2lYiSoXo1xzkfTpJxfS9DmOgGAWc5t6OcmV7ysHhcN2k2BIowzDMqY3maNZlGBdM2hRjJKfLjN3egsNVj48PDxACOp0SJRxxUrNovG1lXkbQa6BULJuIYVggpUMFhsYoYtUwr2NupmO6uuJqZ4bEcbzqkAQNWVijpOXJN4cs77SMhivOrkUkhxJdQrnlEKX3ouupZnHH4mJDecUSbxaUB10ILaZrcaGFQiF6LcenPYIzTbK1REvLr+zfYrFMSDoV270l89KT6WUT0Q1KTosOtVXcPRkRhw1Xe3OqVlM2msVxB1FKVCmx2uECh1xonFY47Vg9X9P0AuJjSXImCJcWuSbfyZlguSf9os3A1S9JDr5o6b2jmD9vwAUM7jU4KS/Ua9xTBA2vWgvrfNGO9PaPNvGqp6qg0d5eYSKfcIL1t2NDcNqyfzBER4Z2EYAEmbQ0Kw09g14ojHae6C40syomkJb9sz6m0CSPtW/ADCS2FyJbhzSWthv54ppJ6wl0pDDdGGHsOvrQ1887LWl6IXVXkZw53zIa++IjnTuc9sklwroPmmHAE3j89c+bM89tKOB3AqJpizSKslA45UmqrBTJqSQ5U0xvd1ne8O8LWUrq92N0BO2oQYYGjiPUYYCJHCJ0yHUKimx9WkzVF5ggIMgd0cwSzltkbb3lJVLfpmA7uVa3lbggzL8pqRZ823Ws4tte93NI45DtB3+XjUPYD6wlH1Xdhu+ucN8A/ishRAD8HPDTwJedc47LlJIPjT/86hX+nb/9Oj/xtceXhPsSl7jEJZ6CEBBGzUXrXJmHSOXY2ZnSCWuGUc7hqsfBN3YJ6/UXpfZfyE75Omx3kHA2jjnLugRJQ9soyoOM8WbG1nBBGLbU3+rTmfl2Qr0SNKuEw82QdGdFvVvRWkE9UsSbBeODPmqmSY4EvdoneZjQYRKHrTRB39CPSpb9iKIIaU8TXGIY9le892SL568dcZYO0Y9iDvZ6XO3MMVYQ65bN0YJVGRJqw6IIqa2mE1Q8s+XDpO+fbrA5XFLUAZFqWVQRma640vcE9P5yg+vDKVpazqqMsg7IuiWi55iWCRuRr4k/c6m3cUQrHs6H2L4gkAYtLO/NNjFWkAY1naDi4XxItdMis4ZVGbLx64LVVVhcM7jEIA9Sqlygn18ipSUOG5R0lI1G7azI9zuIfo1bBfTe1iw/02BXAa5jCbXBOsFOd4EQjjvDM9483qHMQ9w44iTro88Cb9NILXRaTCJ5J98CoK00MmkJBi3VOEEtvS/XpgasQE8VJhXw7IpllqJLgbCScK2AysaR7VtWu5Jw4ah6gtHXBGevWoKpZPZqg8418cyiS4eqvffZCUGTCtr4A6UTvP2pzRzZY1DleYyguIgTDJbeWtJ0HO1mw2C0ZHrQo3UCkRhcpbC5htASJA1y09FLKsaPB4QbJfM8Jo0awrClWAQ4CemBo+n4enlZe/JrQ7/oVLW96F4xobxQY50OfMTmmlTG49a3uvYUJhK0MdQ9QbhwZIdmPQzqi2DE2iLj0zmgTdXF7QjjfdTCOkRtUXlLsNCYWJIdQptKps8oqr7y6nkloPDxiW3mSXX0KKQeWORuiQwMTR7gCo1VEJ0ouvcd4dKgynNl2WFCSdNRyEZ+4LW+sJB8oEhfKM/qA4J9Qca/g3DzHb8Lx8Vz6ecC/G6HO7eb2A+GN4X1l/lty+F2zv054M8JIbrA7wP+NPCfCiHeBP474Gcuvdy/NfpJwI+/vMtPfnOff/sPv0QcfKdZ6BKXuMQlvj8h1oUvAmitt3vcGE24lk0pTMCjxYDj13bI9sVaifPXs/oDxc0pv5VvA4UNQ0TqcKHDzEPanqJcRkRG0PQc6T6AoB5AMFVUg4Dnrx9hnOS9x1vIr3fp1utjaz1hi84Eq+veV+5aydk846jt8cnrj/na63dAOkRgiYMWl2uOlx3Sa0tW04QH4yGfufqIZb5DFjYo6ZX8QVJ4JX6xwcGkx83NCZFucVbQjbwN49xSobDc6ow5q1IOVj32OjMezDboxSUbnZyTmU+JWBQR8zRmlCwp1zFtqzZiVYaMmwyJW3vaHYtVzCe39sl0xbKJmE5G2JWkvWpZXvdtg5tfk0xflFz5JcPZxzRh2NBPSgDSoGZexSx+ZpeOgGoYY2KYv9jS7ZZUD2LMnQKtDLFqeK57wptql/fGI4oDn9csa4GaB5gYTK8F7aAV1IsQoR1CWdJuxaiz4mjWRfdq2kAjVgo19wOtNlqbad/NkAGMf7Ahezukf897/63yhCk5tdQ9QTT1hLr7vmT+nEEUkrPPGW791+7iveSJlPdyI6DJFOVQ0KZ+wZYcC4Tzl7eBJ9jV0A882lDQDH2s32C0ZLGKEbFBBv6NawARG7q9gmod51gqT5rDsKVpFGdnHXACPdWEc+8Tr7qSaOEZn2zWKna7zg8/V51ri2osJpAXpFkYRznyxN1qQb4rWF0zRGeK7LGj+6RFVWuryJqw+wWtwAa+JEjnBmE8yXbrIUynpa+3d6CKFmEUbarAQfehpdjydpN03w+S6hxkIyg3oen7whjxMKFR4DoGWUh04VOJVlcE5kwSzb0iL41X1GH9+ljnyfbTnyPOPUWs/e6Dkz5t5gJPE+z1a31RFCnAqKfINU+p3Wv1G/cB4T7//bfVww3gnFsAf2t9QgjxMeAPAn8Z+PGPdnffn/gTn7nGT35zn59785g//OqV7/XhXOISl7jE7wgI4QiU95quVjHXtjzZ1sIyr2MO3tli92vuqbiA84Glp/y17pyAf6B2mUhS9+GsHqJXkmpoQTlPKoxPP2k60NYKKRxatvQHObO9gOy+Hy5TtSPf9QNbwXw9OCW8Em9PYmY7CUG/8kOVwnFwNCAYKyayt05dgDhseLQccm1zyskyY6e7ZJ77Ipt+VnA47dFUmpNVxrMbp7C2qyRxwyhZ8mTZ5+5qi2ezExZtxFa68l5s3TIvffpIEBh2OkseTobEquFqMuM471IZzbhK2ezkhLKlp0tWJmJf9nFWci2ZYJzPRW73KtR+hFSW6mrDnb9qOfihCBNZzj6mEZ+b8WM33uLN+S6vP7xCeDeh2jYkMSCg3mvobqxQwrF6YwgKrm7O+NzoAYnyg4NnRcpsliIGNdHbCSZa+887LWKpSR4oiiuGYCpxGsy1krrSPDjeBm1Raetf88g3BspWEM684l0PDbIRRI8D8uuG1bOW4dc06Ym98Ch39lvKzYBWCjoHBqcVi9sGtOX+H5Pc/hsGk/jBQNn495eJ/O2rirW1Atp4Tb5rH+lXf2rpLT9Rw3IZQ6lwIb6AKdfI2KCDFq0t/c0Z40VGFLQkYUNeBzjnieLqcRe5USO1Z3WyBlmDahwmEJhQrGMa/cKzTbzP2ir//hfWK/TCQpNKb4loHE0iaBOBSbwqv/1lAVg/nKwFsvYLCO+N9v5o0X6QBmJihRMS1VhkZS4SPmyosKFPCBHOq9urbbW23/jYxrrvle1y5Ahn0qvyhS+ZMrs1LlckT/zCIpytYwkNBPMWXaw96GKdBnOu3j9F+q0W2FB+kM4CSOVwjf//em4DuhimFE//7i4UcQRIhHerSa9e8xQ554OPnw+I+Pnw5UfAb0m4hRCBc645/90594YQ4tg59+c/2l19/+ILz47Y7cX89a8+uiTcl7jEJS6xhhSOOGg5POmzPZpzu3fGqg1preTBeIgL/ACcLhxNKi8Gp55Wpr5teGmtQKnSkVQQzhRt4r94TSyQlUBVXsmqNwxZv0BLS2sl250lo5dWvNfbovNrMcJ5RbPY8i2M/vYFcdyw1I5HZwOkskTdiuo0QVaS9lqFmAdYpwkmmmUWEwctdatp23W0nHSMi5ROVHE0HxD3Kh+DZzSfvf6IeROzakIGYcFOuuRw1eNq4gcgJY53T0d0E596EeoWIRxXkjmNVbx1skP/akkn9CkhldFsxDn3F5u8OnxCYxXtOknisOqxFS7ZS2fcDbbovQfjqwEvPLPPu396mzBaoBqFvlnxxb17/I03P8ng7ycMFBTb0HlPUW14RXS0PaeoA7ppwfJmgQ4MP7JzF+sEd1db3J9tcHzcR0wCbGKphhbbNcSDEvXVLsLC6rohe6hY3mnpXlmwnKaIBzGBApN4/za19HXggxa53VC1EnEWgvOvLZzH7SlmP1wwnYSMvipJTz3ZVqWP/VvsKZJji1WK1S3I9hY8+v19bv1USTUMfDmMkJjQE7e6J6i7vqRJtj5dxylYvVhxZzTl0ckQrQwvXTvk7vEIayTLkwwRG4Twi6KyCGmimo3uiq1kxVHewTlBvvIZgi6yhFFDcZrC/4+9/462bc+v+sDPL62008k33/vyq1wllUqJUkAiqMm4TTChwcCgMXS3Pdy4MT1MY4IN2G4MDQI3YDEEbkKDyRYgCSFaqVCpSqWqevWqXrjv3XxP3nmlX+g/fmvvc96TVHqvKPEkOHOMO+45Z++91jo7nDV/c83vnNoTBoGFij5qvQixEdIKlDhTeYOIJT1BxQXCKn1Eus4eIyCZe5J5VHRdItBVIDtqUct29SFEtF0747m4PJfpSKq7khwnFV53tpUAqnbIxrG8mrHckYgQ1ouD1aCiqqL1Q9j4WVIVVLvdZ3WqwQSaDY/wEl2CnIIufVz4pBK9cKhli2w68q3jftbKvjh37C4gmhZh42IqZKYrsZEdOZfr5JXoxZdra4lL5TqpZPX7BkUX/XeOpJ8j7CtrydvBFxua/IXAXwcyIcQngd8dQni9u/m7ga98e7v69xdKCn79R27w577vZe6dLLmxVbzTh3SBC1zgAu84AoLDcZ/nr+9zo3eK9YqRqfjU4TXaVvF1H3iZ27e2WXzXHtmJx4voP12d8NZE+7yXs4t3WxFv1URvbTvsIttUVLDkVsypfv10Ey09RdJytT/hK5+8y6fvP8vgdai3Az4JCGQk+q2IxNlDCAJ3r8BtWdSoxVuB1B7ftyjjUY8M1SJBbQQm8wxjHHcON1Eq0Esact3S2yzxPm6zcppMt1zJp7zS7nBSF9G2UaVM2py9dMZ9t0HWKaODrKZqNbmxeATPDw84mvc4rPtcKyZ8YbxHblr6pmZhE0qXsJvMqEcxIhCg9ppb+TFboysc/0LBqFdRO41faIrRgg/ceERPNXz3q89z4zs1sm04+kBK736g2RA0O45ks+Lo4YirN48pTEte1PTShpfme3zyzk2kcjEdJo9tkQSBulLi5wn2tT75JDB+j0cvJN4AOjA76NN/ybC45ZDbNUXeEIKgMgmhkuR3DGDwOx7fc2AFLpe0abySQRDIoxQRYPrL58w+O2D0amyTNIuo4i6uSMwiMHxJMdF9nv/IXe6Nb7H34y22iOppEOCMYHE1evhdFm0PsoXmsuXWtWOe6J8wMDV3xpv0Tc0veerz/ODDp5gGwdZowcmkt7bibGYlV3sT7i82Ymyi9LHwZdA1JQYRmxar7j2mobwUvc/JGECiS4+wkVDbLBJkXXWfJylwCvAxxm5lyQgSvGStgPtEIoJGNB5pfedPDmflL1rGnwPCyzNbRbcP21c0g5gQIkKgOHTYXFLuxs+ny+NCTLTx8+byQKMDshYETefNABIPS4leQnYS01eE9WTjFmE9PlExU1uvYv7iscgmJrKs69mFAC0JKoHWgXWIsonFOF375Pp+q6+9j3XuEBPkVsU47lz1+6qVUkbvSEjNOgNcuMDthXtbf+++mML93wG/NITwghDiPwS+RwjxW0MIH+MN86wXeCv4j776Bn/++17mb/zoXf7At73rnT6cC1zgAhd4x+Gc5OrWlA9t3GfpE5SqeW2xzfGdTQavKH5k/CzPPPuI3q+5z+27e2z+qOli2cRZTNjK173yYApwQdB13kTSYWOVt3DRd2sLcJWiemkLM4fZXmDxxCLG5WUlPLVAvNojfyxZvK+iTVcnY0E5zRAB2qOcsGUpXk4orzvMTomzsbhDGxurx080850Eu18gryzIsxatHPuTAbe2T/jQ5Qf86N2bCAGvHW7z/OUDtpIl13oTHixGGOVwXvL6bIt3b8SRqWFWczTv4YNgqyjZTJfslwOeGx5gtOO4LJAEFnVC4xS1jSq3FH4dD5gqx6zNaLzGCMeiTrCVZlz26V1ruHrrmO08WlG+786zhNd7LC/B9KlYPQ4QCoeYK5pFghnWZNry6v1dEPDck4d87uAy2adzFs816NxiG4U51XgTEJtRpUxPBOVeVHfVkYq51y6STm+gd31GWSbMTwsGWwvc1GCWAjOLdg49F4RK49KAzz2isAQnoJX4nkMVlnqRsPHhEw6fzRl+LKewHrP09B/A+BlJsR/Y+IzmC+Eaz/2iuxxMbjJ6rSX0JBKBdNB7KCgvReLI1YogAh++/oD3Dx+SyRZXSBJl0SJW1V8ezLg6nNLv8rdrqxEi8JHtO9xe7DCpMqyTjI/64ATpMA77ChHobZUY5ZjcHeEBcXNJNc5wqSIcRX+zti76mjurxCoOMQiBcNFbLZvA7HocksyPPLYQpGOPXnpk46Mi7Dx4j/DdwKQQ4MLazKxah09i+6vLNW1HtKWFZOqxuaDckdg9iUvPPo96IdafRa/jz9phwKcBM5WoUkabTicr+wTKbUn/oUO6EIm1D6h5HRXs1iLsOXLr4vGizkzUwWhIDEFKSCSibuLPTLSk4D20FpwjWHtGxGVXfGO7PxhvIubCmDMyrjqFXwroMs7fDr4Y4U5CCC/EfYa/2w1L/j0hxB/g7ILeBd4iroxyvvXdl/j/fvwe/9kvepZUXwxPXuACF7jA1d6EvorEZOkTPvWpp0hOFf0Hnv59wb39Gwy/6pCPPPcan9/ao/7MBsXjeJL2irWN5MzDfebDFB5E0l3ObgKqWsWGBdSpJj2NKSQA7eOCx43iUA/Y3pgz2+3Tv++ZP6eQhcVPDcmJorkS1Vjb99BIlk+19F4xLFSG7LeEhcYnDrdhMUeGxmpCz2Lv9rBXK565fMidKuW1w22G1ypu7Z7y6r09ZOK4fbwNwBO9Yz71+BobRYmUnv3JgEvFjOvFmJOqxzCvKBvD06NjAK7ksdDmuc1DjqoeC5tEn7CJymmiLD5IhrrkcYg53yd1gZae2mm+4fptvvfzX0HvgeDRdI/nP3SXoan4oftPUc1Thg8F+XHL6bs12WOFSwPpbYXLoHy+pV0mHM17bGwusF6ytAmLwwKearl27QSAg9MByXNTnJNo7cgutdjXN6mfrqBR2H7ApQE1bGJKx/MBVSa4aQKpwyiHaCORW16N5E3WgnxfoEuoNzX1psJttoiuaGg0XKBkoGwM21tz3LctOPqJbfp3FcWhZ/tzjpN3KdLTwPALmpfCVZ74tQ+Y/a2rFEeOakPGxVnXHOm2LJlxXN8a86HRfQrZsKXnAGxtzbv3cEp/q+bF+WUqa9jMYqX5vE35/OwShW7Yypc8nA7JRxVaO8plineCaztj7h9uUoUERi26GyJ+ZXoZO/S4uaLakPTqWM6jK49LJC7pIhMFmEUkkj4R5Mcem0t0HSgOLXrWRrW48zyL1q+HLoFIVlffd7YN29PUm7EgyMwcg+PVVLFAVRJpNc1A0vSjT9wlUZnHQzsI6FIgWoFaSuxOS5N68nsGMw/kxwGzcODBp50PfdGiZlUk2e05YuzepCZLCfbMUy6aFqoGYTRBSURZx8cYc6ZSGw1SIoQgCAe+2+abifO5fQYfEGkCaRK3sSLb58j+W8UXI9ytEOJyCOFxPJ7wghDiW4F/AlzUJn4J+C1fe4vv+dw+//yFfX7VB6++04dzgQtc4ALvKPpJzQeHUd1OpeVv/tjXMLgTC2jyw4YgBVsvCibVLg++yfGe3X2Ov37Og++/QXoC7eBsqClI3phEoGPSiJCRMDkbiZkugSDwpaDeAG8CQQeSicAvMsxMcPR+gbvq2HwJ1EThEweJxxsFTtCOHMILkiOFKgXLG47ea5rley1kHvFqAdca2i2LaKO4kh1K7DLnXhqrr6vjHh9fPMnXPf8qJ9s5k2kP5yQPpsNYB94qjqY9doaRxFovqX20ndR1hlaepTXYoLhZnPKFySWeGBxzIgoOFzl1a2J8YZt0rZWSNiguZ1PmbcpWuuSw7HOn2mSZJ8gWllcC+a0ZUgR+6DPPUuwsYRGzoB99ncYngY1PxSHE0+diKkWoVLRwiMD43gaiFrx+U4GEYiumqGjtkMqjv3/Ezqstd34N7FyZMH9viVYef5RgnprxxOaE1ilOljmhUmzuTjmsFSrxtE5Bp5qaSRwgdHmg3g7UAVwacH1HOqzxXtBOUyazgstbU0oM8zIlS1qufPUj7t7Ywn4qIz/0bL7kGD8Ts9izx5o79jKDXzmm+gcbuARmT4ArHP0bU6gNt7ZP+Na9z9N6TV9VFLJGEbisJ4xdgRGO22U0Kj+cD0mUY1LvcDzuUxQ1ARhkNUoEiqLi4GBEqBTDyzOeGJzw4GiDNGvZ6S9IlSXVlo1LMyanPZa3PNmxptqMDZNmGTALH4cfu+HhalORnTpkHYcXdVeJrmrX5Wr7WCZjO7Ito6fZ53pdAw9Qb6e0PYlZeHoPa/DhLJ3EhnMDi7EoaPXZazaixzs/EOgq2rhcFm04+tgQVKB8osHrBK8F2Slkx45kYuMQaK4RIUOUbfRov1nNXinLQkTV+pw9REAk3xB/5jzYMv4RgOhX1xqUiv+HANYS2vWY4vp++JWHpiPfKtpb1rd/CfhihPu/BC4Bj1c/CCHcF0J8M/D7vqS9/XuOb3hmh5tbBf/Lx+5cEO4LXOAC/97DSEflDZU3/JPb72X4gsHmUDwOtD1N24+FJDe+d8bk9T3+9S/c5sPvfg3zLa/z6g/doncf6k1xls0tVikm3SCZAuFj1JtT8fK2WXapE+uoL0E6FqQngfG743GpV3LsnqPcVqgKXKmRlcTlHpF4ersl9edHNDuOK/9SMqsV8+dazMOUdstCgKRoaR8XNCFF9S22gP49ONnqE7JI4GXi+OzhZTbyilMnqPcL1FXP48WQUb/k6LUtGC44mRacTAs+dP1BbJKsE1LtsEHFqvamh0fgg+RKPuW0ypnOCtJtS65b9rIZ95cbpNKyaZYUuuEzB1dYLFOu74x5on/MydcU3H+8iasMLz3agyAY5DXLPGf8nkByqtj4vKAt4gBeecWhllERFallcmcECpIbC+rKMNyd089qHt7fQm+WJB8bRE90KkkOJM++55D9rOK1L1xBXamQMnC8KJi8skkylZh3RcVYpQ6lPO/Z3edeVjMtMxZ3h6hKkB0JzDzQDAXt0CFrCS8OkEBRg08MDzczkisLrmxOSZXleNkj79fwTSVHL28weF2SHQfMMjB5WqIXktmdEfUvm9P73j7Cw/XnDtgrZlTO8N7RI55PHzF2Bdt6TiZajl2MOlz4lFerPcZtzv5ywHiWR5sRoE1UUwVgpGc2z6FfEmqJGSvKDcPL412e3DvmicExC5tyd7bJtEnxQSC0Jyka6o3BejDSZsQEkSbQ9GO5T3bqULVf15KvyKOw56I2INait3ZNHoX3NNsF5Z6BANlxS/5wQSyN6fzTHVxnsdKlW8fkuTJuJz0VMa88f6PFJFq94so4GSfYXojV7S42fapWYZYBVXlsrlGVQdYpsnWIysZhSeuiBca6SJZXxNcJhJRR0e6U8BBCVLB9iC22QoCD4Fwk4KvfWwiEMZGcr+8vIsFfbV/HoqXuAd3z+PaNHl8sh/t7f5qfj4H/5m3v6QJIKfhNX3OTP/lPP8/L+zOevTR4pw/pAhe4wAXeMSg8bVC8OL2M/fwQJSE9DWRjz+KywhvY+nyNyzS9Rw3P/H8CL3zzc+x+/SM++M0v8eM//BzDVwPV1sozGqKXu0sSgHjiFV1qgjcQtEAvY2KCsDFH2eaQSEiPBfV2oH9HEJRidjPmRSeHsU2v3YupIPNxjrpVwjRhdkMyes3hE8PyiRa5UPEy+if7uA8ucZXGt5LmyYpxLyE9UjSjmNyQPlUyO+xT9lKYGkIamytTbRmmFUdum+NZD1sZQqVormgWbSTbRwdDpouM5y8fsL+M5xIjHVtmwctyl9BF8V3pTTHCUTmDD5KPn9xCioAUgSSxnCxz/JbAB0HwAgGoF3skH5pEordUJMeK9BS8CugWpk9AyD39LygmfQmpQy8k7V6LMZZqntDvKs3720uaF0a0u4HsSHD0PkVzqWEvi0r64bUe80lO0reM724wuCPx3zzmcn9B2cYgZaU8n92/wmKSIY0nFA5zraS+qQipZTHOETONmcYUGlVFS5ENkO9L9GsDDooB5TVHdmlBlrQsyhR9a87kkqH/qQyXCPp3A4dfbxlcmiOAG7/5Nq+dbvGh7fu8p3jIrp7RkzUbcsm2muOQZKIlEy0Ln6KEZ6RLctXSOEWWtVRlXAX28prUWEKIzzUQPdwq4E1gWNSk2nK9N0aJwLv6j5HC8/I4quXvvv6Yl/d3cTmIU0jm4Q1xgLoKmLnrBobD2moVlelImoX1yMYibOfblgK7WTC/keNNJOuD15fRN+1BNtHXHJsmFSFVseVRC9q+oh5I2p7Ap3Ex2w4Ctgj4zEcbSRVTXiC+Hqu0n2QC6TgOWK4Wyw4BBdhURQ+6jXYV2Z77XboIQlW6SMRbh6xsVLp9ZyuxjlCWZyq46v4QiDdZQFbEvPtWaA1a/RRqt4rke7XgEF+aug1vLRbwVwB/DLjV3V8AIYQw/JL3+u8xft2Hr/Onv/sl/tqP3OGP/Zr3vdOHc4ELXOAC7xgCgv16yGc/9QSjh4Ll5ah6JXNB2xNsfaFF1g7hA02RINvA9e8rOTy9wuIXG977Nbf5jHmS4SuCZhh9oEGFN9pLOCurEIAzAZ9E1c3Mo8XEitgiKB3YocPmGjMTLK879n5EsLgmKfc8wnh0ajGf7iMcLN9TsXhC4FJFcRCwPU2z6bA9QTIWiHs5SkW/cVCB9MkZdW1Qr+eYmaAs+pA7/OOMsNmSPEyoQ0Y90uS6Re5W1I8LRCsgDXzhYI9+XvPkxjGn0wL7oGC8kVOYhnunG1wqZuSyoZ/U+FbSOsVR2ee5/kHM5W4KjpY9EuW4NJhxuOhx8mCDxztDtvIl+prnzoNtBgeBxQtDyvdNEBsNnGQEGZsJ6804OKbGGrMIqLlE7bVYnaIyx3KZQq0YpRWPZwOaRtNebxhsLLFOogRcympen29TWoMSgZ2dGUfHA0LqmX7IcjmrKVvDeJ6jtWOzv2T/eIRKHUliqQOUBwXZY0256RFJQGzV9J5aMJvnLCuNOkowc4GwcUGlKtj6cUm9OWQxDLTDwOZT0V/uP1ozf9BHlRI90fRuNlzpTbnZO+Vbdz4PwGUzIRMtEk+DoicaqqBpVwOGwnNVnzKQFRObs5tH1btcphAE80WGGpTkpuXR8QjRZcsPdxY0I818mTLMar4w3uNqf8L19JQni2MqZ0hGjgeLEbZVyC4tpdKis00JikMX1eTAOo9az6Mly6caT2clKdtIRF2g2euzvJzENsvHLea0ikklOqZzBCNwJiEYRdvXNEOFzWXMo09Y209iE2RUsIUV+MTHwVfigla5zsu9jPnbwhHjNY8DybSbuegWxC4R66i+N4Rchxh/KFzMJRf+jdRVuICuPLL2JOMaOU2jem8doWne6P9eWURWKreLanmwnf9sNSDZ1d0LreLPhIjPi4jJLF8KfkbCDfwZ4D8APtPVur9lCCG+DfizROfVXwkh/Mk33f6N3fY/APzGEMLfPXfbbwP+q+7bPx5C+M63s++fq9jup/zqD13l737iPv/XX/IcG0XyTh/SBS5wgQu8I/AIPntyGXN5yawtGL0sUFWg3JHIpsvObjTS+UgeTBzsSiaB41e26L2n5cZ7H/OwvEL/LjSjeEKUBLwAVOjsJXF/kZDEk3o7iO10Zh7J2ErpNmNFtRMYvQLL6zB9UpKedpYVJxECykuevR8FM89waWwaXO4JzBRUpdee1exYsLgWwAvyfYX+woj6pqe91KKqhNELiukzAt93UClcAluf0Nxv9ljcOkVKjxeQHkuqS5E0nE56AAQvMNcXHE779POaujaM65zL2ZQr+ZQXq+ucjPtsXTng9nKHeZPw1KBilFX0dMNuNucLr17FbFRo4TkuCx4+2kSnDpfHqwBlmUAAM+ssAUnMo17ZBWY3Be5qxTCvmVzVKO0IXpDuLiit4fThCNlvyb+QMn1Skm1W+Jf67G87DrIR16+c0DpF+8Nb7DwOHH5ji5hr9vc3uHn1mF5eU7cGHwTeCXqDmqbRKO3xKtC+a4kIAiECwQkWZUo7iROObmhx2wGswBzptbpq5oHiMZS7klO9SdCe/PKMb/3qz/LZk8ss64TCtGwmJTfTE55PH9KTcaj3slpiBBy6BIegDZoNWXLsC3qioRGKh3aTuUv54MZ9Jv2c/1/zNMOsRknPrE45XeZoE20yttRcGU4ZJhWvT7bIdMtOtuA9/UcAtF7xZO8Y6yWvTbe4vDPh4czQzDXF40CTC9JZwGaSdOpQS4u0Hp8qmo0UM21QZYueeUTrCEaxvDFgcVmRH3tGnxsjqhaMjkkdXfxeO0xoRpog6bLIV69/bL7Mjz3exJ+7NDZJCg95GciOVbf4jb769FSQHQrawdkgM4BLY76+dN2sxapIRtBVq78p/7pjq20X/fmGLOwgEF5GMn89IciY7S7baBUyM0syrlHHM6jqGAfoQxcBGH3p+M6CsrLeaI3oVO3YYtktIkKXBgNvW+1+K4T7HvDZL4FsK+DbgV8M3Ac+LoT4RyGEz527213gtwO//02P3QL+MPBVxKf2E91jT9/OMfxcxe/8hif5O5+4z9/40bv83m9+5p0+nAtc4AIX+CnR/R3/MeBBCOFXCCGeBP4WsA18AvitIYRGCJES24c/DBwDv+Fcb8NPi8YrHj/eIOs37LzvAPE+ePBwi9GPJ/QfuVg8oQVOK06fN9SbcQDLm4CqBUc/GIvEkq+YcLpdsPGZaEFwuSCIsI4mWxHuAAgRW/CCCrRD8EaQTECV8Q5eQ0hheVnQf00xe65FuOhrpZbYRBH6lnI3ktHhXYd4LW7fZoJqS9L2BeVePGWqOnrIqyuOti/pvy5JZoZyN5KIzc8JgtLMb0Cz7ai2NdufkExm29grDcIK7CDQu6uodhRurjlajMjvGsqbLWZYM5nlDHoVIQgar2mDRA8b3GHG8FYMaW6sYmFTejqmTEzaDJlbvJd89vAyAui/kFJ/eMHiusdtWCg1pteAgGYU6D8I7P6E5f63KEQrMAtoThKagSYcpLRJ4D3vvYsUgc984QYQvcvluyrSvMW/1Gf0Eoz/dxXhTo/hExUPjzbIPZy+B2glaikpbiyZVimTScHl3QkPX9shv6+ZP6FABkSXtR28IEmjzcd7wfZwAcMFZWMYn/QxDxKyQ0F5OTD76hKlPe0kJX+gwUP2SNFsCianPX6weYpb2yd89NJtaq+5kZ1w1ZySCEdPtCyCYRE0u8IykC0zb3AI7tpNEuFwoiXBYYQjlZb75SYzm/K+3UcY4am9ZpQYTuuCo3mPRFvq3HBSFmylS57bPGRpDR8c3mNLLfjc8irbZsGdagsjPD4INrOSRz1LvS2RjURVcZGZjrshxlQhrUc0HlPaqEA3lma3x+xGQrUlGNz3bL1YoiZVVIGVxA4z6u2UZiBxqViX5qzIr1n6LgnojGAKB6b2SNstYPvxAavSqbYvaDYEy8seVQnMPH7OVoQ16PjZEy5E8XhVmc454r0So8XZz4XvcsWNOJcNfkbY17MZHkBQb0KQiiBTZDPELALZxJGetujTEjkroWmjwo0COjXcWtDpOp0kCBGV9y69JXjxZY0FXOH/BnyXEOJfAfXqhyGEP/0zPO6rgVdCCLcBhBB/C/jVwJpwr/4gC/GT+np+KfA9IYST7vbvAb4N+Jtv4Xh/zuNdl4d8w7M7fOcPv87v+uhTJPrtx8tc4AIXuMC/BfynwIvAykL4p4D/MYTwt4QQ/xPwO4G/2P1/GkJ4RgjxG7v7/YafaeOLNqHfStrX+xy4PnbT0ttdkv+yUx4eDQnTBLk0SAd6BtlRHHiM1c7RA7r8YMleXnHzuVNeFNfY/KSmocvWFTGFZF3RLDsSbjsVTUVrAUjScbSXBCWwMtBsevRSkt81LG9Z9ESBkPhMIlNHtRsvj6tako0D5ZYkmcVUCDOPqrBqwnqYM50IVBOJi146+ve7EhIjaIYKbxR6oXEZzG90C4ZWYubRC9tsBvx+BoVD91tcpjEnmtBvsdOE+b2C3gcaLiVTTprLXNsZ81CMqJyhtAajPLmK/lQpPJ94eAM/jwuJhRNsb805fL7l1vaEOwvD4HMJzRDCuxq8jgOfydTFgdCJpLxi8U80hJM0lrgsBfL6gofTM7epKCzGOJrTjCYIRB5YXJPYRiOuVjyYjOBRSjMK9B4I2rGm/cCC6aPoSd+9eUrValDx9SCAmGv0UpCeCITT2B5UOx65U7N/MoQgKHoV16+coK55ytbQLjPaaYYvNSJz8MEl3gu8k7jTFAFs9Je4EM/FT2THXDITpPA4BAeuj0dy7Po8Fi1VMFTBcGL73K23MTKStNYrHtUjSmfQwlO5SLABNtNl99wHtntLfBBkW1MK0zK3KbMmpWca/sXBu9Ye+6GpuDPbZDtfUpiWZZugjaPNHc1GjETsP3BIC2bhzspqnEfWlman4Oh9Q4KCjduW/kOPKh1qXuP7CfXmANuTCA9m7kjHAduLDZs260pqAuhKrK8UCd81MGri1SQXm1zNIpL+0OVuJ9NAMonxhPVGVMKrnXjVRzWB0MVeC896UbxigucLrc5jrYKzUsU7tbnbhqDL49esjx1ANqDq+HmzBUyHGv+UJsi8K8YKZKee3t35mQruuuSTrvxGeE/gnI97NYj5NvBWCPd/A8yBDHg7/odrRHV8hfvA1/wbPPbam+8khPjdwO8GuHnz5ts4tHcev/OjT/Lb/+rH+a7PPOLXfMVP+tUucIELXOAdhRDiOvDLieeA/1wIIYBvAX5Td5fvBP5rIuH+1d3XAH8X+PNCCPEzXhktFfkdQ3Ych6HmraaaDyjFAHWlZPfpQ05mParjHDPRJLOOpCrwIbB4zqO1jxXZbUK6UdEOB2RHgWYksD2By+KlcExYn6yD6XzeQYAKtAOPbCTpJBbkBCHwChbXPRufF9iBwqtIoutcRZ+4gr0f85iFI0hB71EdW/iKGGvo0qhsCxdQdYxlE63Dp5rFtZTR58YEo/CJRtWe/LClGWnaIirkbU/gTwz1RnwK+3fAZRJvJM1Io8qYKW7v5uibJcmdgsfHI+5vbgJw58E2O7szttMFd9tNFnXCcV0gReBgOaCcZTz1zGNOFgV7/Tkegb00ZVqlDHYW1BsmLk5CtNBsfiEQlKDpS1QZ0138UUr/5pTlMsVveHaKisMHG9y4dcS4VGRbJdbGFI72koOdBnvNQqXja/bpTdyeZedTis3PjLn96zbwXpI91ngd6D3TxMFJGVCliEN0T8X0kuYpgXMSpTyFcQzyKqr4ZSTQRjlSZdlMl1ztT9CXPfM22k0mdcbhuM+tvRN2b845rPpsZwtGpuSk6fHqfAfbXRbx3ZDjatAxdBaWVYa5JKCkj62RQVA7TetiiU0IAusjSZs3GxjpkSLgg6BxCiU98yZhVqfUreYkFPgQf6+mifQseMEjv3Fmo5ABkTnsNcdsYFhekeilQC/isKFeBnY+XfLgozHN5NInKszhMqqyStHs5pR7Q6QNpOMWswSvJLZQ+ETgjMCm3WJVRxW57cXFpbQr/zZrBdqrrmXdggyxZMrraClZWUjyw/gedmnc5qoMZ0WU4y/6k4n2eRv3On1I0M1jhDf+3zXPyiDwcHZ1S8RhaZ8K8HHBDvF5WqnhLoXpE4rxMyNUPSIdB4r9lmx/Cd3g6BsQwtor/3bwVgj31RDCz8npvhDCXwL+EsBXfdVX/bwq4/mm53Z5dq/PX/nB2/zqD12Nq6gLXOACF/i5gz9DvMK5ilPaBsYhrLSpNwgha5EkhGCFEJPu/kdfbAchCZRPNVR7GnQgPVQMPt95ql8oOLnWo7rWMrg8o9nSTHp9ikdRLVte9YSew55kzFPLwXREejtFz6H/yNLMFcu9SF5FFj3afpXXrboJyu5kjSAqqFJipmdKd5ME5jdBVYL2skUEhZpLnFS0I8dyT7H92ZhRrGY1orUkWsVLzevoMokf5pHbj5fo1nL4oWv0eyl6vES4gKwsonXoucYnCpdrbK5ohpL0WBB09KLmJ57ZdUXxEOpNqHc9shZwP6d8viZLW+4tNrhWTLh65ZTCtOyXA2qryYxFisDSJvgg2Niar1XXV/d3MMbx7N4hr59uslymSBWbIBfXNWq3Yna9oDiM9eiqiVcHskONuybpFTU7eyfcOdhCVDImnvQtedrgvWSmwDxOePKr71Faw/0v7BEKh8tAzRTz65LDrxzhc0f2ck69F1MyKqvR0nPjxjH3xDbIQE97FocFopagwMlAIwMLClABoQPOKl6fZwgZlWJEQMqwJst52rIxKNmf9TlZ5mTG0rohU5OhZZRZE2lJpEPLs4G7VDpy1ay/r73GB4kNEi08C5uQZ23cJ3BcFzReR8WagEdQ2i55Rfr18ay+h0jwpQhUrcY6RSA2sibaIaWnagzLaYaYa0Qr8EmgMV1iSYB2ILj3rQWyheEdT9vTBNGj3DO0uaD32JKeWoIWNEOzVrPbvsAlgmQaUG2g6TzWQBfnKGhG8bOh6nCWPrIiyqtmSXP2+fZGrEuoIkGPGe4xZrAb8AznttMJyOE8H+rsJaEjx+cJumClcMcF9OpxKzK/TitaPUaelRh50923W0ioMmBs3G5bwMm7Enh3guw868VBgzmtwPoviWzDWyPc3yWE+CUhhO9+m9t+ANw49/317mdv9bHf/KbHfv/b3P/PaQgh+B0ffZI/+Pc+w8dun/B1T2+/04d0gQtc4ALAOp3qIITwia574cu57fWVSbW9sR7K81og63gp2iwjsUvmAn9bsbiySXPTYZ5dsHwWmnEKiUedGFQlKJsBvUdxmHJwz5KcNkhr0LVksdfF8HmBC2eXnOmUspU65rNAWVgImmQCZg5ISTPyqBqSY0WzY0mONEwVQUO1JWhGhuLVU0TdnBFt06mTicHu9Km3Eoq7M8SiBGDz5Zb5rZyN8RKfRGXSm8g2RHdCV40nHQfSMUgbaPsKlwiGdx02jeQqKBnXDAr0IoX317ggOa57TJY5J67H1c0J0yolM5bL2Yza6zjQeLjFXeWZLTPcNGHn5gnHZcFsvw+JR1uYP9sixgaxV1JeCWy+5HC5ZPK0JD1QVJcteRA4L3FeMuhVjEvN8azH5u6MzFj2T4b4wiMWEiU9j0+GhCQgFrG9kGsV5tkKnGJxktNsePQk1ocfvrBLehLLVXpNlyhTpKQ5BBnwpqtblyEquMYhtMfWCny87O8FyMShlMN7UCrggsC1GtWR3cZq0JZ5k5Jqi5GORLImzgA+SGZWUzqDFB7rFZ6oVNugmNYZtVNMlxlVmaC0w/vYqhmCQMqAc4J+UTOZFmxtLOglDT3TkEjL0iaEIDDK0TrF6bxAKY9zkhAEs4XB1QohA1gZr9KYgGgFshYEQ7QfB+icQxx9IMb5qUrF4cWTQLWlMEt5piLL+P4vDiLhr4dxcLI47BYAWuBSgSk9fi5io2TyRjK+tmydI88QCXVcCAQCohs+ZP24YMTal32ecBPOvv9J9pLz+/DdVQcp3hhq0h2LcGffr7a93oU425YXIJTArzwcgXU7rfCxdn52MyPIDDOD3r6jeFzzdvFWCPd/Avx+IUQNtN2v/VZiAT8OPNsN2TwAfiNnlyJ/Jvxz4L8VQmx23/8S4A++xcf+vMGv/Ypr/D+/+wv8he9/5YJwX+ACF/i5hF8A/CohxC8j2gmHxMSpDSGE7lTu8yLKSmC5L4TQwIg4PPmTcP7KZH7lRui/lKAXMVGgHcDRhwRmqunfD9gc6i1BvRkIPUczSRGtxGyXSBloxwa1FPTuQ++xI9+vkKWlvlSQnFSYMagqY35FU+3G68vChKhurdQ02cV/2fizZtMjnMQsQM+jX9WnkJwKbE/RbDrSQx1tJRqmNzXebNF/6TSS7cQglhV+c0h5a0AQgvSoZvbMEJ4Zosvo4642BPXVIfWmxiuBrjzCwfyqQjWQTrvyEt1d4idGo7V5JEDexGg1vYS2F9VH++KAV65mqNzij1PUdo0WnuujCVIEXpxcYtkapAjkowopAte3xtyuNTvFgteOtxC5IzQSb0DkjmRfUycZIg+dBz0QlCQ5EbRDyd5wzsNPXGH2vpZllaDGmiZ1XN2c4Lwky1rEnQLZRPV2b3PGJGuZnxb4oOEgY9wzmCNNvhDkB5EFTZ+CwbNjJqe9mA+uPephissDardCvZJT7Aum72vj8OpnEhZf3eBqBY1cD1fKxOFPU2rbkbNaUG5aROIQJwnJqaQdecSVig/fussHBg8oVM2GWjKQceDUCMvYFVQh6fK3BTOXUwXD3GU8qDd4rIYcln0OlkkcqNPw9KUjPrJ9h9uLHfbLAYsmIdOW+TLlymDKzeKUZ4p9Ctngg2BLz1EEPjZ/mvdtPKT2hvvLDRJlmbexAGfWpDx8tEn2IEXW4BNoRp7QvT9cGqh3I9OUtcRMJXoZVdxmIPBJl40tordZhM4OYuN7ySw9K1E/dERadskdydxjFlHtXhH1IDtPd2c/Wg8v0j1WxAIe6c5UaNG1QQbZfQ67+cfzw5L+XJb+anG8Ho6UcW27nv7rlO/z+ftriDd+7dW5BYHvOLc4W3jQHTedDWU1iKnq7v4KTp9TnLynoHlZ/VR/4n5a/IyEO4TwJbWzdJcV/09E8qyA7+jq4f8o8GMhhH8khPgI8PeBTeBXCiH+SAjhvSGEEyHEHyOSdoA/uhqg/HcJmVH8rm94ij/5Tz/Pp+6N+dCNjXf6kC5wgQtcgBDCH6QTOTqF+/eHEH6zEOLvAP8hManktwH/sHvIP+q+/5Hu9u97q8lWqgJCvMSrF4HhBGa3AuVezFAuL3nMtQVPbZ+S65YXHlzB3y9wXcFNMDG6bLkrWe4W2I58eqPXJ0thxdp3vcrjxsd/omuT8yEgRCQOzWY8g5t5bM5rh3Ff2YGkvBxZhV7EYS2fCKoNRXjXFrMbiuzEI1tYXJY0G5HUgEY10dtqe5LsMCqILpXINpLq+dWuKl0KzMJTDyXljlj7ctNJoB7FS/9ncWmCth+VvPwoYOYB94phdiuhutlgpwmvuF2CF4RakW+VpMYyX2QA7J9sclhYtHG8frLFRq+kKhN0v8EmnlAqkknMGZcWJk8k5Ceeweswfo8nCLjz6h7yekWiHc5JXM/TK5q1XWXZGsqvGxNEYNkmHJwO4LWCq58KLHcl02c8YqloNx3paXye+vcbTt9rmC0ydNaSppb5ccHwvccMs5rX7+7in6qo54b+1pLMWE6LgiSxVOOEkLroQ68NRdYwaSWhjBYMECSPNYgY31hdb0EF1KOMfz1+BvnBwLduvciWmpMIhxEWIxwbasmhHaKEx+BJtOPY9kGBEY7L2ZTL2RQtPeMyp5/WXCqmlM7wFaO7HBUDXphcoXaa3Y05mWrJVcOp7YGGR80Gl80EieeXj36Cj5dPctAM+YqNe7RB8agakauWk6aIdpPNJYl2nE4LwmGG63usDuAhPVq9bpForwqe8NAOwCdh/R7SS4FsYsGTtAFKgVdxIFA1HjWLC0vXpYKoJhbtnCe5QYmucEqsh4Qh3u6dgCR6u0Nn41qTZhXepEx3VpOVdeScZxt5RpTPE/rzRHl9//P7P+flXvm640bic7NaJAjPWUT3Svnu8vz9+WPpbpf1uW29RbyV4ptfS/zjOem+3wC+OYTwD36mx4YQvgv4rjf97P9x7uuPE1WSn+qx3wF8x8+0j5/v+C1fe4u/+P2v8ue/7xX+ym/7qnf6cC5wgQtc4IvhDwB/Swjxx4EfB/7n7uf/M/DXhRCvACfEK5pvCaoKJPOzE3JbCHY+E2K8mQts3AaXFBxv9lleEcg0RgIGAT4NNCNPddmD9mexXQC2s2i0ArWQmIVAlTFHOMhusCvp/umA7M6m3gS8DrgcVBMfI3zMntYlJKcK2/MIJzCzSHabkcAW0dLSFnFYUzZQPIq/GwHKnU41toJ6G2Qbo9J8N6QmLTRDQTMKVLvdJX8fW/mCFMxuiDcMmq28sUHFHGSbReU7CEhm0PuYAQE217EFsA+lF5QByBwEQbpR4axCKR8zv8NZzJ49Mui5pN4MFI9inng7FCAl2y+UnHxlgqjjgGN1NaBEYNgv0aMFg7RmaRM+f+8yTEy0PhSWZ7aOWPQNJ1c0hyRdKyJxoWF8TJB4UiB8EtNoHuSkB4LFE46N6xOWVYpRnt5miVGOmYCmiR5pf5RSbUgYtOhHKbNmgN5oWCxTNrfmVI2JsYmNpqk0Qnv0/RRzP5qOqxstm5emABzZAZls2VZzqmA4dn0u6wmZbHBBMpQVVTBksmUgSsjh0/PrfPbkCg9f34HUUY4MJ4uC1Fg+uPOQ3WRGoRvmTcqlYob1kpOmx05vzkEzZMfMqLxhoEqOXZ+BrLjaGzNzGUuf4tPo7d4wSzaSkruLTVqn2O3Nya63HJV9Hh6PcKWm2RQ0G4AEPZfxvdJlXeu5QLbdMOQwdOp2fF+5VLDciz7uIKEeqTeQZ2EhG/uz141ItldEXPjOZtLF9nkVY/9W2/fqTZYSd06VDnTMl/U2zuwq4g253NKes59Al5jSHeZquFKe2855ot0R51Xz7MpSdv5f8Gek+80IqvvbsSrYeht4K5aSPxxC+PvrnYUwFkL8YeAfvL1dXeCnQj/V/I5f8CT/4/e+xOceTnnP1YsCzwtc4AI/dxBC+H66GZou5vWrf4r7VMCve7vbFg7SSehsCnF4S7UBXXpsLkkWDlV7ZKZiOkYdT/C2CLQjh+hZpA4xoasbkHNO4ueGdF+THYOZxSEwQkC10VcqXUxd8Fpg85gI0vZiW2U8sUc7iyojyYCzE3TxOFBekrT9WOqx8rJWO4JyF/KDQPHYR7KbRm96EDE2LZnGS/ZBxv2evFvT9sH2Pfl+zFVOxmJNCqQjqusK8DGDXC8E/QdxnzYD2xPYHms/qkugHQXELmfNgyEq/LKSyErgK8noC4LpMxp5fUnbaGyr0NLT1Bq/1Ii+xWqFOVEsrgXchkXcM8yvC5pBgSgqepcq5K3A9cGcZRsJ7cm4z/jeDslzU0KlGL6qWH71EneScloXND+ww63PtBx9UJAdBso9SX4QmD5tUFUsETr8cCDkjvSRYXHDIRrBbJHhW0mdtKSmZadYMp3mtJVGKY/eK6FL+EiemeLLhL2tKQLQ0mOUJ1EOoxy37+1GwnmphUNDu2nRvZa61SxtQuUNC58ykCVDWYGEyhsUAdUZgyWegSx52G7yI+On+ZHbTyIeZfSOBcvrgqXIePL6IQezPh97eIu9wRwfBMeLgruPtuiPSp7YPGUnnVPIhkI2LHyKFJ4T22dDLTsbS/SMF6qh8oa5SzmqezzRO+FGdsJBM+CTJzd4fDLEzUxM48k8oo6vdXoSn2ddhRj1pyIBthnoUlDtxOp3uvGDeCVGrFXlIM4IuR3A4po6GzSsiTGYi4CqOSvDMfH2lRUFIiGXEghh7eVe2VGA6POWZxaOFWlex3nKFQkXbxiEXBFqb85Id1BdIorpkkjepFyv1e4Awp9tb6WWC3f2eVpvc7XPcO5xbxNvhXD/VBz+rTzuAm8Rv/3rn+Av/8Btvv37X+Hbf9NXvtOHc4ELXOAC/3YQQLpA04/2iXYYqPe6lIhDQe+BQbaxdt0WcUjM5gGxXTPoV+tEiVX82vy0oHglYXDHk05i8Yc3ApdKnAFnwOcSl8WTazoJJDNPOumG5waKalNQbUvaQcBldF7uSJZtJpAt5PsB+wQ0o1jw0fYD2TFsf86Rnlh8IqPSrKPCF3PD42V5r6NS3XtsSeaSalNGn3gS1f5sGbB5jBRUTST1XkefNlNB73FU/mOTniA77YYHTbQQ+C1Bciri4qRT/iL5YF3aIRvB4lpssLRVj2DA5p7TeUIyrBEbFiHA54JGpsjCsjVaUG0ZtntljL+b9pjv98kfaF69PISeJThB8tjQbnh6yiELS7WjseOE7NKS11+9xLCNNpy2FxcPthfoP7KUlwztIGB3WmTiMHcyNl7ynLxX0u61MDcU20tcEEjg4XRI0a+ZP+5Tq9g0GRYaJLTKk+UNyzpBK89pbairBJNYvBdk/Zg0khjLMk9RQcSYwoMenykTTqqCb7z0CpmI91t2RDgRjl01JROWNigeNyP+wkvfiP3EJtv3YnKHzUFPJRbNnYMteJAjW7i9VyDqGCmZP9DMdxI+t0wpdMP7Bg9pg2JXT1EEtvQcHyRVMCxdSqFqnkwPWfiUU9tjUy8ZqIqZy9ivh1Hp3pzhN+LvMVnkVNMUMTdUO4HFdY9s49WaoEEvzq7O9O/F90dQkIwjMRe+s47UXY68XMnH8XPTdhXvIsTH1huRJpp5IJl7klV3TCZohmJNYE0ZooXKRKuHaiB0qvbKbrLa18qaslK3z+wh5+4vzu5zfkBStnEx4JKunVbFRfSKzEt3bshSRPvMioCv/i6tBPfw9nn1T4u3Qpx/TAjxp4mtkQC/j9gwdoEvE0aF4f/wdbf4i//qVV45mPPMXv+dPqQLXOACF/i3gqYXL3lnx6vCGL0e6qq3wOYBnwZc7gl9y8bWgiJtUCJglMN5ybI1jO8NGX1Ok56G7kSvuhNxVPC8PncybgK6jAOIba5QbVSedekprEBVkmZD4JJISnQVOu9qp8LXMVmlvGoxU0V2ENv+nBFU2zo28zlQC4d0Hq9kbNWzkqADsgmoyuF1vHw/vy5xaZfd7aH3yOGNoC1ER6zjv/h8CZJ5JBG2iMq8LiNJ0iW0tstGbuOlcdmsCIjAtmLtPw0ykq/+vWhlqbYlciKxM4XvOwZ7czbyimawRIiA6/KkH728S/5IQR4olgKXB4IKJHlLM0sYvQST5ySX3j1jsUzRC4FeaMRlj2ii1WZ6U2N7nnYQCZFeOjZfkpy8WyG0J8kseioYvrakGRbMnrCoV3LqyRA3siDg8vUTTmcFm9cm5EmLkZ7CRIL8eDaIlfFOMZ3lhOM0tn32NRhP1m+ol4Z6VoCA9FDFhdyVGikDjVOctD2qNKEKLUY4Zj4jUzEDfBESTlyf77j7UfyPbFIcRXJKECgVLTj+SMFrRVePDm0rCcZTvGZwWVzsVH3N48WQW0UcUUsSR+UNRjge2hEAhaq5rCdUwVB7QypbXJCc2B6lM/R0zRPDE8ZNzqJNWDQJedoQBsRBUS8g9XBs0Iu4qF0pwmYWSKcxqs8lUdmWDnTZXaHJY7LIeXtFEKDaVd62IJmFTrWO3y93YpFOMo8lUOnE4VJJM5DUg+gTD0rEIprGo+x5P3g3ayHOzymcKeJrP/YqlWSlgotYpBNVcBFl4m7QcV2E0zVFnk8+iVYT8ZPU6/XXvMmict4f/iXgrRDu/zPwh4C/3R3C9xBJ9wW+jPidH32Sv/pDr/Nn/8XL/Ln/6Cve6cO5wAUucIGffYioCPpEUG0ThxHjrB22CPgkpi6EzKH6ls3Rgty0pNqSKovtyPbR7S02XlToKpIJaUHX4ZyXM6y9ly4TVFvxrJmOA6qKx+ASiVnESML81KFrSdMXa8+oriKB0Klgekthe4HssSaZRWVPtnTxfl3EYXfGFq1HehChIy5VJNvCBYyICrq0hnI7NlUi4Pi9OvrFJ50dBrAe0mlX/LPKQO6UQ5tFMiHbaHlxafTCyxbmNwOu75GlxCfRSrPyugsXLQWrtIpmz3Lt1jE903Aw7zzBSw2tjI8fReVbNhCGUG8F3HZLMSoJIR7DyQcCaimorImtiIO4UOEnRoTLlnJvlfoQyR8BTt6dYhZQb3pCo2iPEuxOYP8jvWhFeDWnGXWDqv0Wd5xSmJZLlw5IlKWnG+4vNng0HWK0Q4hAuUxx09ikSeqRMxXJ9d2U6qok3yxpdPR+2yy+fv4kQZ9KDjczPglsmQVZ1rCto5e7DRqHpA2KP3fnW5j9r1fYPHDrhRLNyhYREOFMRVU1JC/qeB8P6V2PagLtXcPdj8TkmF9z49Mc2CEKjxGWq+aUpU/X9pa2K+KpveHUFrRB0XjNwsb0kky1vPRoD7efk5xIhACTBnQZh49Hr3mSqWW5p5k8Hag3odyLr0MyFphFJNGt6BahTfxeuu5zpMQ6bm9dfBPiIjOozjJiA9mY9SxGuS1RtSSdBooDCyHgE0nTjxXyLlVrj7e04Q1xgqoJiM6SEnQ3X6HFOVLOmiyv7SZKnHmru59Lzo531YS5/rvgOhJ/3uct3+jhFqsq99V25Jla/mUbmhRC/EHgn4UQfhz4L9/eZi/wdrHdT/kdH32Cb/+Xr/J7vukp3nt19E4f0gUucIEL/KxC2lgqIR2YmWR5OVoNXAbBBHziIXdk/YaN/pJhUmOUI5EWHyQLl3Dw+V22Py1QrccrcdZml8bqd58C/uwyM8SvXQrLK6DKGEWnGtYnZbPwqNJilpK2kOsTumwD82uaejuQH8RUFV3Fn5/rRznzgHZqnFo2BCWRusvN1pLx83n0Q296XM9D2kQye5gAgfQkkot2ILB5HBR1mUBVgbYfLShBgO0Fhq9COgtr9VFMA3rumN1MEB6yfRVb9tqo2jebHpd7SD0bO3OECCzKFGUVDw82kIcJZiLJS6i2o5XHTCS2NdhNi+0pBq/B4qrA9SXVvQE+9eipiirqyHPn9V2K7SXtXkvvxxOWVwN6qmLOdimwPY8qY2LL+L2OzU9LkrGkvVTjXEewDjX9hx6XKZptR/6eGU9untB/osZIR+kMS5twWhdrRdsHgZIeN9fIWnL5XQfsH48wjzSuL2g2PPkdQ7VUmMtL3LAltAZZSZLT6F3uvyaZ7e/xz3+BZOuJBUoEFB4lPJU3/IPTD/PoX11HbEPehV+u7Aq6DkgncGlkbKtWRa/ifILXcYEkAphlYO+HBafjHf5F+jzfuPsKl8yETLaR3AdJGzRLn3Jie2Sdui1FIO2GC2yQvHyyw+nxAKYaRPT6m5lAVWK9OEumDlV5eo9agjDRg90G2jwOWJZ7Aq8DeikoHq/83qsFYffGXg0Yhk45VmepJDYT60Ff6eK/dBwXkPVIsNw1yDZ+XszCY8o4y7Cyfaw+Z6u/C7oKJDOHXjr0cYPoGh+DUQQlY0FUpgg6PiguqMW60CbIVXLK2WLBr5KKVv5xLZC6G4LshqiDArruKtn9TRAuRr377nUOolPN3+bfuy+mcN8G/lMhxAeBnwD+KfDdIYTTt7mPC7xF/O5vfJq//iN3+B/++Rf4q//xT5pLusAFLnCBf6ewUrWCjCf8dhhiSkgaCIlH5I7eoGK7t2SYVvR1ZMyNV8zahDufu8Lmi/GEbQu5rnH3SWdFyQI+iz5vNZekxxK1slg04CtB24PFDUHvQSA5Wg1wxvvopUfYuG2bSWbPx2HJfF9g5tFGoJp4iXw1iCVjdw5Ygeu83LJxyKrFZwY7SJhfTZjdiuQuO5To1yXCaxY3Avm7xuz0FxzNe1GcFQFajRCBfq9EiVjcokRYK/0P3zdk8sPbXPrRmnpTRy/6KCqiw9dYRwfaAsqrluLSgiJt2S4WzJqURy/vMvp8VBvrzTO/rnCQTGMsYjqG/ADsgTkjRi3k96Ny2w6jom7mUG+zLiXJ7ySkY0+9KRk+DMxuSWzfIzYbxCKLhCj1nH4gxtmJBxlKxiHNeivw+IMNz1w55P35HCliPfthGW2XqqtKH5iK/XZAnrQ0NhLvfLukPM05mvTRxlJvefREocuYBIMMtKUhKVrsxER13cSkm3pPgBMs94f84PBpPrr1KpfMhCYoxm6Tf/bDHyJVcaB2NRTbCdBr/7PsWktWg4FSxasLqmYddSdtjIRMJoLHkwGDyxVt0MxchhGOTLbMfEYbFG1QjOuCnq6jqo3AhVi8AyCNh1pi5vF1iMfRXcWp41UknyjqgcIW8TNj5pH0m4eB4Z1u+HdDUl4SsQW0jFeEVB3Ww8PSxQVm/F3jQtWrSOzj4KKIEZur9BkZH7Pyg7d9QbUdj1nVIGzchrSsFWefQFUIqk2NtBpdJd3nNpBMLWZSY05LjO+mIX20taBVVL21jMRcS7yWuELH4igTFzrOdGq47q58qaiiu6T7HTrF22XxeZTd8cmuPDYORrx9d8lPS7hDCH+baCNBCPEVwLcBf08IoYDvJarfP/o293eBL4JRbvg93/w0/90/+wIff/2Ejzyx9U4f0gUucIEL/KwhyKhsTZ+Iw3M+CfjUxxbJ3NHrVez0F1zKZ2wkJVo4ZjZj3OS88vIVdj4VLxE3A4EtzoYEbRHwhSfoeEKWpYqk/opDLyV6LtDlGSnxBmZPQL2pGN126IVbx++pyuETwdEHFMJC735U6FQTVW3hA3RZ2r47BbtEoq1Hlw5ZO9phQthMafuxbr7eiN5nbwJ1GlVAcyoZ3AZe2+DuN6Vc2xnTdg2OqbH0kuhP9kGQyqi26o5wPrN1RPKr9vnhG8/z5P9qyU4CovX4VFHuGma3oHj/KTeHU07KgkFaczTv8fJP3CA9kRRtJOMuEeu4t9WiRVWC/uuRMOk6UBz5mESRCMwCzDR0dd5R7SwvBXoPJPN3t9jPDSmOo9dcNUCA9ATqSx5aiemyyWVuYZbSDjzeBC49e8STwxMGH6iYtRmNV+yXZ5UgqbJo4Wm84vMPL+Fmht3rY6yLK4HNoiTXLS+d5rS1RhsHOuCuNNhGYY41oRX4ViJ78cpA777EG4ls4nNR7zlk6ni0GHI06LOjp2Qi8Hcff5iNFwWLG/HKgkuiL/l8VN0qYYYQ3xfp0q8Ta6SNr/fKn59OHNLCo1t9PnbpST6y8ToAmWzXVpKJzVF4hrrsyLfEB8lh1efBbMR0VuAqBZstPlOkhwohI2G0ecyT15XEzH20f9SdlaqIaTkx5q9LC3ExzlIEaPqCauds0FJVrK1T0nZfd7XtUTGPdovVPEKsb48WjRX5DnKVTd+R27TLku/Uc9kSZxxWCxMZhzJXQ7/CK1SdYJbdwPNxgx5XyGUFdQPOI5wjeB9z9UPAALnWZ4Q8TUArXC+JxFyAyxTVjsFmApvH58a5+LsL3y2ku+/XPu9VBOlbxFtKG+lsJT8O/AkhxBD4xcDvAi4I95cZ//HXRy/3f//PvsDf/j9+LUJ8GUdkL3CBC1zg5xC8FkyeFp1fOxBSj8gtJrMUWcNOf8FuNmcnnZNKiw9R1bt9uM3ocxqXBlwm1idFLyB0SqJoRcwIFp3KnXiE8rRpvBRtlzEHWy9AL+jSTGD8tKL3UNJ71KBqj+3pSLbbbrBzEUgWfp2eoJfdheUMCKvBs4AIgcWVBJsJdB3VcBGiqhgfJ7qUBhkXDUM4/aADB+puzmK4ZJhVVFbjvOTuwRZCei5vzmicYpDEFkkbJEubIE3NL/zwC3yfeTe3/iEsLqUcf6Wnd23K11y+z24y51E14qWHl5i9sIeqIdcdUaqg3lype9HSo+qYguITqDfjsar9sFZmm15U+fNTjzMxR9wsA+WOpO2D2U8YvRp/LzOOz9HiamzHlJXEp45m06N3Kp7aO8Fcc+xkc5QIlM4wbnIOqz5GOvqmZjtbMK5zdrIFH3vtSUxiuTSaEbxATzT1Jc30sI8Z1MxnGXs7U3rbSxb7PfwwEAqLfpTirta0m6BmCjlT1IkhZI5mQ6DnApfHHPOgJbXRNKOoLi99ikfywu1rbALDV6O/2SsRf38Z33erRZgzAm/kGfmGSLT7IhLHEBdusvbQU2x+WvLZS1f4pq2X1vnfp7bHnWp7fUVjNRfQeE3tNKU1LKoEd5KCDOhZXFjWu47igULN4utbHHrygyam9aQKl4hucDi+ntFTHxeQK6uFM9FyMrodFxPltqDeiiRYL8W6NGal5gsXi2LWinATZzBsFp/TVaqJbEG0K+Wf9YBjIH7d9lnbQoSL2zKLgHJRPQ9qFYUpKHck8oZG2JxkFsiPHelRiRwvEGUN3oPzIAXBWoRzIASiqkEI9GR1WaK7GvOKjIQ8S/BFgh2k1FuGpiex+dlVjJVFZZWM8lbxVopvfh1RzZ4JIf4r4CuBPx5C+N1vb1cXeCvIE8X/5Vue4Q/9wxf4/pcO+YXP773Th3SBC1zgAj8rcGnMoPbJmYUkzVsGRcUgrblSTNgwJUNd4YNg7Apen27DiwNsAe0lcKlH+HMxX3Skx4KoJSHxoMLZFJQO+L4lSIWZqbNEgyr+8wnMrwvafkJ+5Dn8sEQvID0FXUVvqXAxYzsoSHxA1Y4gNCEXnL5bkowhP4oqcLUlYrpJEclKdhIoDtw6i3s1gJVMID+ULK5BfaNhPC3YLhYM8ppJk5EXNbNHA+6dZtx6+oBlm1BZw1a2QEuP9ZIFCd/8gc9z/+kNtoVnKwhqpzmq+vzAi8+x8YmEa3csLnUECTaTuI5QSxu9v+3IEzKPcwK5lOgyTocFBeWuJD/wa9vMiljZLFoU6pFAL6PH3EwFsvXoJWQnjvlVQ3nDUt6AZ559xJVisrbHND7mXx9VfaQIFLrhUj6jdIYXDy8xuzsk9BwEWN44ZjhYomRgVifkRUM4zSnLBNVrsUc5yd6SVDlUUeJ2JPZ2H1F47F6LeRgTS5pLbSxHahSYQLPtsIVEttFmJFvIHhhO3AafzG9Q7DYY4SheTqKloltcubR707UievDdyrsdZwhEAOtXBNfHAVJWxNURtGB6S1LsB8rTnH89eZJ39fbJZMtR2yeXDSdtj1mbkilLKi2TJmPWZixbg9GOsmcxj5N1YoyZShZPt3FAc1+TnYBPovweK8pXDDcusoSPZFa6SCKFj15riOSyzSGZBbIuAajaFtSb0d+NEN0VDtaLsZWlRTbEhYI7s5zYHEKv+5zasxKb84OOsXkWQhpi2sp2/Dyrpsv+XrKO23QZuIGg3hTMr0tka1D1kHTiyY4d2eMl6mQaQ8a9Bynj/wCuY8wyEm1s/F6EgLSOZF6TPAJCICQG30+oN1OaYVy0yC834Qb+UAjh7wghPgr8IuC/B/4i8DVvb1cXeKv4DR+5yV/+gdf4E9/1It/wzA5avc06owtc4AIX+HmAIGNbZMgcKncUvYpBVjNIarbSJVeyKQNVYYRj6RNOmoL7j7YwOlBvxIpqBATdDVimUeb2S7Ue7gpwZrYUIFRAaA/TWCMeCUa8TbYxk1ekschm8rwgOREd2Q7rJIaYpR3/L3c0xX70fs+vKKqrLdUVmC9UzAK+UVL8RM7wNU9bCBbXBOPnBfm+xMzPZWQTFTRVQvIwwd6qmDUpG4My3hYEvSca9l/d4c6Dbb7hXS9zd7bFok3ZzWNcnQ2S0hlu9k4pneEzB1dYPBhw9V/CkxOLCDX1hsYbgWxjIou00ddqi0iS/bFCWIXLoe1Hu0iz2S0KpoIgJWbWPQcu5pznR5ZkKpk8pZFNoH8/ML8mOH23oL1ZU/Vr3rW7z8hUSBGovWLepixtgguSnm7YSJb0dcP95QafunedtjTgBNkDgzEBX0rclZpFY7g8mHG46LNVlFhfc+99Cb7WXL9ywn27ST3OOFQerTx52nC6ZVEThdxp8UbTfyBp+xo2G4KV0AqSI4WZxzznVYmKrkC/rrlTXqV9n+J6f0yx3yWamO61U+DyuOBTNVSd2r9K2CDE2EVpicVHpe/sFQIRAqIJVNuB4jGYI431Co/gxPYYtwUzm3JaFVztTchVy7jJ8UFStoaHD7cw+wYj4gLBDuJnqR1YKBXFPU07CEyfkHEAuCcp98S6aVEv4vvam7iAcnr1eYjPwxtaIKF7zc+ScMpdATrm2a8WXWG1COnUbGkDsgwoEe03qmJdTOPSaP9aFcmsmlPjXMdZ2gjEhbDLfbR0ELPkVdmR+nqVENQ1xxpo+5LFVQnvG6EXI/JjT+9xjTlcIBblmlzHjfsz0g3xfyGiYbv7WrQWNXEUk5JCSnxuUPXb85S8FcK9OqpfDvylEML/1tX6XuBnCYmW/N9/2bv5Pf/LJ/ibP3qX3/p1T7zTh3SBC1zgAl9+yEDoWUze0ssbBllNP6kZJhV72YyBqkhliw+Sic25M91EHhlsHgg6dHFeYX1SlokjeEHQnuAEtDKq3xbwMQObVkKjSSfRr5tMI5Fel2h0A5PTZyA5lWTH0Tayyh6GM2LuQyQRp88m5MeeybsdySgOdrqBRBlHe5zTe+hRbcAceQb3HNNbCSffUCOUJ0wSZC1iBX0dI89UJQj3Mmb9iio3FLpBiujXXl5PcB/b5AfFs3zts7fZLwdUTjMwNQbHwiaUzpAqy/ygR3aoKHcC2XGMZNPLjiR0l8T1EpK5WPvp215U3tOTgJ4LmhFUex6fe2otsT3Rxa+tCDiUO5r5VcnyusdcXXBta8LzvTG5iuHhpTNYr6i9xnSyYKYshW45qQuk8PzA556LxKtSbH9CcvTVDtlvqW52A3oyMBiWtC42Yk5mOUcPRjzzzGOu755yOOuxk895IDYg8TgncU6ilCfbqKh8hj/KEJdqlm1GyB0sYqqHyBzNlsNlMsbkncZ86dWQo15I7o22SZ+06LLLrfYClwp8dhZN1wzB5QHhBHop1iov0MXggSm7YWHro6psPWYRU02yI8H9+QbX8jE+CCZtRuUMSnpen20RgmBapcwXGe5xDplHlYJ0TDdfIAlK0owE5WVP+XxF77MZG684lnsq2qHGb6wkXyncq4zrVcuk6lT8tS993czI2k5R7EeiXY9innx2EtbNrS7rhg6dWC9+8WceaF3GfzYXXVxnwOWsFwPrmnVYZ2evLB0Aruexo+7qlRexWbMWqDKms0h79phmA+otyeSpHF3mpONA/2FLerBETpcxvH5V7rNCCG9Uw+HMsy0DcuYQ9stPuB8IIf7fRN/2nxJCpPzU7ZMX+DLil773El/71BZ/+nte4ld98BqjwvzMD7rABS5wgZ9PUJD1G0a9ko2sREtPoRu2kiU7Zk4qWway4sT2mbQ5+wcjhCZ6sruBSKFDTA6oFb5W6MIiRCAEgWsloVawKgBxIHJLUArhFXoZm/V0FYs+Vm2Nsydi0kMyYV0qY9NIMoUTaOtjigmsC0DGzyrM7hytHUJw9v9U0Qw6wpWAbBXpLLD1Qwnjb65ILi1xTmCMw3tJs0iwJ4bsSDJ7PMBujEm7rOmFTbixMeaFWwOSewmfHl5lVJQc+T6FbjDCk0jH0ho8gq973yv8xOvvprfvOPxgRnHgGdyt8EZiC9UNsHmcjkzGLGPrZlCCpi8j2awgPRW0fb1W4ptBoLlkKTOH3JxzYzjhK4oJWjhsx4okYZ2kkUqH7QYfX9vfxp+mBBkQVpA/VJTP1+hDQzIR1O9f4rKc5Fghtku8Ptcm6iQbvZJpnXFtZ8xdt8WsTslNSwiCWZuhtMcGQX2Uc/WpI/aPR2yOFvgNQTNPkDLE17FUyJ0a364iVyKxlg1dM2H0Hy+uRTIoKsWkykiraA1phlGKdQmIEAf/XL6qIA/rzGeRxEXN6n0EROIpBSLEVBQzJ5JbARtZyVHT59FyyKxJ2c6X69//YNqnWiQEK9G1IDvUtMPAdMeTP1LoZcxCTyYBM5MElSGbwNEHFfl+YPJkTOnRi7OPYCAuZoCz2vRwlvW+8nivLR+rgUE6lbyKJVL1VrSa5EeB/DgO1rb9aKtx6RvVcmnj16uhZdl27Y/L7spBFpOKvFmloayi/rrFdVd2g+tWyYmHtAUdsAFaJwilRi0keh7fx4QYEdqk0UI1v5Eg2wQz3WDw0JLt1+hJiVhWUdWWEjp3gWi7SELZ/Rx+MkF/C3grhPvXExNK/ocQwlgIcQX4L972ni7wtiCE4A/9ivfwK/7cD/L/+r6X+UO/4j3v9CFd4AIXuMCXFVJ6Rr2SUVoxTCp6uqGnGnaTWfTLygaHpA6a16bbyIM4HCYaQfASVPSsChVipFsrcVaS92qU8lRlghUQ2q65QgWU8aSDmrAFJ3t9Nj8jESFWVbtEMH4X0ft6Ev3I0q5ixKDaEMxvKvp3JcWBRbmAlAJpBccf8ez2S5wXeC+jt7aJxSvtUKD349CkywW1hHTs6f/rnOXXz8mySBh7WcVGf8liI2G2WSDHhtMqZzebs18N2E4XZL6l2FvAvRHLB33e8xWPaZzmoByQKBetGabGeoWWjqe/7TYPD57k2vceM37/Jg++qaD3MJCNHW0h8UojbazkVqXD5ZGI6yrgdVRyl5ckyxuW4dUZlwczRmlJTzdIAlIEfBC0XiFlYNCZf3/s+CYPT0c093sUDyTFQaDtQd6Pg6qrQh4RQGiP3bSoRuNbyfwW5PuCKgjaeUI6qjDGMR/nbPeX1E5xYzAmvWqZ1BmPTocUWcPdo03edXWfe+MNxsshp/OCqztjDqd9tHa4zJEklmqvRhwn8DglbFpwAj1Wa0tDmwVcLkhOod9VtgclOR712e0JevdKIKftS6Ql5r3rmEKias7FAcb3edBRyRXdkKV2/lxtuUCVceFXE2P+TuuC1iuWdcJ4kVMuUtTDlPRUkOlI7GMueyAQFwrtKLC84SjuaVwayaBsYpxj8opn8pTEFoFGRWU5PxDrtI2AeEPiRlCA61JGPOBC5MrrFBZxZtNajUYs4wKq2hLdQHBYp6FE7/ZZkpBNzva1snTFRte4NhYLQajjPtpewPVjygy6m4x2Z8eO6hYLTuJDQBqPziyq18AOWCuxTuEqhVgq9FyuLUG2B/UGLG4oVN1DVT2yo0Bx6MgOa9SyRTSWsJ6WDGe2E3/u67eIL1Z88wngB4n5298VQqji/sIj4NHb2ssFviS89+qI3/iRG3znD7/Ob/6amzy1e1H5foELXODfHUgR6CUNuW4ZmQojHblqGOklbVAY4ai9YW5T7tzfYfhwdbn6XHNkz0WriAqIVsDUUKtAr1cx6JfUraFcJIQgEDIgpCcEsFbBsOX0/YbssYpEa+QRTlDsRxIUU0S6S9tqNVwGR18Z2PlxTf9+Q9CSalNR7MwpTEvrJdMyo1AN0zYDERXh9DgqecsrcXBM1ZLsELjdwz0/RSuP84JeYhmlFXVvydFGj/Eihw3o65rSGUam4urGlNs7A/Rcclz1uNYbUy6HlNaQyIRMRUVuaROGpmL86x8zP95l9Nkx/Tsp4+cKqpFieKdmcTUhHTtU7WmHitlVzfJaHCLMtku2BgtuJDWZskjhu/8jyclVS67iMOFx2+OHHj7JeH/A8EXDxsuWSz4gnMXlknJT4bWgGUaikp4KykxQbwb8zKCnsb0zlJGWtAU4J0F7rFU0BwXp3hIXBJNFziiteGpwzMthl/1yRC+vCQEOlz2MduChetDHPb/EmM4LJAJtoxEykJ5KqksuDju2kmACzUa086zSJ1wGrY8ed9kE1IOM2U3B1icbdGlY7mYUBy2qUEgrSKaRgK2uBNhVgo7tVHPdXemoJbL165jAbBxIpo5yT7I/G2C9RIjAcpni5gY5V6g6RlnG4eBIhtPTWL7UDgTtAIJUlFccvbvRPpIfx+16I9ClxBZgFgJvAtUOJOOzcpf49AQC4lxzY0eGz9W7v6EGnc5eEqICD5HMuzx6uVfbDqtM90m3EEki2XVpWA9JCmIc42qf0sZFQMwVVzEyNJOEzCFzi1RxseHq2LwjlF8r9c5JvIvPYZJaEl0jht1VLy9praKcpYiZRi9jFX3bCzSjQHkJxlahmgI9FxT7gd6+JXu4RFYxdhAlI+F+m/hiCvfXAB8lqtt/RAhxDPxz4J+GEF5623u6wJeE//wXP88//olH/NF/8jn+6m//yEVM4AUucIF/Z6CkZ5SUjJKKVFpS2bJj5mSiJRPR/9sGxX49jOkQDYictbdUBDBTtS6wkE20grQhYWYFvWGFtRJf6ugXDwJRQO0UbqmR86jmVnsedCTs+SOBrDkbqAwB0YK3MVEkQVBvw+l7oDiIJ+vJs3BlOCdVlrZJaVuFyKFZJlGUS2B5WbDximfrBU+5Lam3IkkqHgum/T69GzOkgNYpEukYJRX5Rsvj2YBHyyHXigkzm5Iqy6V8xsNbM5aHPY7mkXA/PTzipCli3b01ZMrG9JIgeXp0xI/+1gLz7T3MtGb0asn8RsbxezPmNwJ2JBBFoDecM8orRtJHsiIdqrP5FLqhrxtqp5nZlFcn2+wfjkhey8gPID/yjGaOkYAgLLp0cbDUyHWEYlQ9o9KZnkD+qMtXJg652sKD8ei5ph1FQqPSjv168E4yWebYVlHohsflgFmdIo2nrBPyrMV5ybJOyPeWNHf6HI779PIYMfnAKtpGkxUNy2uG/IGmvBbAgys8ZqzWTYQ2Ddg8KterhJrsQDB7vsUNM/S4wj+VEaRALx2ISHLroSRdxLmAtidi6Y1bxSnSDaqGWF/eRlk5PbVIG6h2AqI2NJUBL+IcghfdkGGg2o7vQdlGX3Tb76wpPg7bqirWpVc7AWkFZm4RPmCzeIUnOxa0g9hCGQQsr4ZY6z6jU/c721RgnfqzstesfrYi3tFc/ab7+M76XHdDjmkk9PFz1DU5djncadUloAzi4GRQENKz/bq0i1nsIgdVFRcvlApvO+KdOIphhRDgvcBaud6A0h7ZLa6rJq6A8rRhlFek2mJHktYpGqeYlyntIoG5QZZxjqLdCDTbgeVNOLYSvRiSHgt6Dz2D+zX6tOz8NW8dX6z4xgLf3/1DCHGVSL7/uBDiGeBjIYTf+7b2doG3jd1Byn/2i57lj/9vL/JPP/uYX/b+K+/0IV3gAhe4wJcFMQKuJVctqWzp65q+qnBIMtHikLRB8epkG4iqmGwgsYJmEGg3PEEF8oea/CDG0bkUhFM0wNxJZOIQqUMexDg4TuNpL2m7hIki+mhD4snvm9gQKLvcYEccyApxaNK18aSfHUrKWy2zG5pkFgjPL8h1GwfdljlJ0nk+q1ipjgTbDzRDweBuHLwrjgTVhsQlguEriulGhh4tEUKRaomWjky31IVmXOXs5TOkCEzbjFRarm5MeXWRkmhH5QxDHXO5j5sel/IZldNkytJ4RekMH756j4//J7do7vfxPYfMa5T2KOVJlCc1lkQ7ctOiOiUbYNamPJ4NOL0/YvR5zeC+Q5WeLMATPhBEA6IbHOzSW3TpcIlE+DhgmIwtslUsLqtYuNJjvWgy80imdAWTgUBMYnpMrQOhlSR5Sy+vGXtBO0twTmISy6TJudYbM1nk+FZStQmiX5Ma6Gc1Wnoehz5KBYx2GOl4bveQk6rgdJmjBi3tuxuYJAQTEIXFtgK9kLg0FicBiKAISlBejqQ2v2c4+oBm74dP2bhdYTOFXnSvtxIki1ijLlxANbIbjIxDktIFZOMRziNaFyvKcx2vLvQ17Y0aSgPjhPRYxmi+LrIS4vvRJ7GYZV1Q1OVbn7Wjgi67GMdtTX5sKbfjwkY1kEziggcP2aHA9qAZsS61oXNfrZVsOBso7pTt9W3i7OvVMOXK870asHTpue9dN/PQpZggus9z0+VrFyGSbx13IgL4jHVuOevtCEKlcFZQthJlPEVRMyziE+W87MonBSEIfBAk2uEDzOuEsjX005qtfIkkUOWadkPFoeTWrG08LHTclwm0Oy3tLsyfh4M6ITnKaf/cW6qyWeMt3zuE8BD4DuA7hBAS+Lq3tacLfMn47V//BH/vkw/4I//4Bb7h2R0G2cUA5QUucIGf/9DC09M1ibTkqqWvKjLRdnYSiwsJS59wPOmhZYwta/vxsr9qBIwldhAor1lcpth4KRK8+XUJQmIriU/jJWfZgplFX2gzDNheZ0ERILdqxN0cvYyXtaUF7UWnQtI160XV0BHJiagli6uCqhJc3ZrEuDunqcqEXi+e+EXTkQYdB/XmNwS9xxLZeGyho+o49ugqYIuM5iM1Rdrgg8B2BuDtbEFtY1ycFh4fBD0di2Am2xknkx7XBhNeX8Rm4rI1mJ5DCo/pWFnjFZUzfPjaPT4prlM96uHlWeSDlIGyTliUgv1HG+gjw/A2DF9vMdOWS4uaS34KWsYyIQ9ueGbEjYUkUZEVNiBbj1rG5AdvJD6R2Fx2MXFgZtF2kB9G5bftR2U1PVK0vej7FU4gH6c0fYO8FBgOSsbLAcEJNgdLjHSk0tFUGp1a2nHG0ko2rpXs5gseLwa4kYNGI3uBe+MNnt0+xChHnrTMTws2d2ZMvFgnwPnC0SYBEs/W7pTWKfxetCbUlaE+TUmOFcvLgvlzI3qvzVHLLt+6smuPb+gG6tRSIluHaCxiWcf8a8D3M+xmHu+zaMEFDr4yQ6qWsJ+SHUr69wPpzDG5pdFVWBNbWZ6p2itlOXrMO1uxj/nYo9sti8uayVOGZnDmvxY+knKbg0viAOXK5uHyTpE+p16vhyZXw4rdQmmlep+3lqwUcP/mwI8VOZes22DXfnADXgWCAVkLsqNYttT2Aj73kXyf97P4OKQq2jjHEUR8/PS0YKYCad7Sz2t6SRsXwUTC3TpF2RoQAa0crVMcLntIETDSs5Ut6Js6Fi8NDJU1LGzCsjXMqpS6NrS1jkPYPUs7bHD9L3NKiRDiOeKQ5K3z9w8hfMvb2tMFvmRoJflv/4P382v/wg/xp7/nJf7wr3zvO31IF7jABS7wbwwpAn0VY/SyLpHEdSFYvlO3H1Yb2OOcMAjrkhqXhrUfVVUQTMx7PrwuyF5J6d8LyFqg86h2qyoS5nqji7hLPJiAaCQMWtxS0z86izLzqwxhB7TxPO+SqMKtiIdaSGzPU+95eqahb2qOy1ixXWmD87JLioh54UEHGi2YX1H0H4GZOYSTtIXEpjC67Xn4bBwKBFjYhFy3JNLST2rGTc67h485bPr4IBmZkqv9KYcPN2i8om9qDss+1wdjShcJw3a6wAex9lz7IHjf5Ud8fPok5sCQHiWYeazRHtxrMNMGNZvElj4gaAVGE5QCJbphuZiuIeto9fBaIgiIIPAhepOF8wTVLViWLWDQpcerGNOo6oBZdERRxgQPWwiSCbSd4uo2W9REE0xU37OkJd8qKY8KpIjDmqUz+Lkh5BJkACuYVSmjtEJLTzqqsFbhO6Xz9fEWT2ycsGgSLl85xTrFjb1TJmVG1RhaASaJXvDTkz5p0XJpNMN6CXmF3Jpycrlg+ajPSauQTY/i7hQA4ULHRsMb/b0hIJoWpMRt9mi2c2whSU9b9GmJqFrqGxvMnrHI/ZRkGm1Ky8uCck/HYUQH2fR8uynrHPi2F1XqFcmNdeqBZhAtLtWOoBmtymjONURWZ5nVK7uLJyrSq9KblcK9LpXqrtZwzlpynnyvVXDOHv9mG0oIvKEeffV58grc0GM9CBubTXUpYz390MXhSOnPklJW2/QCX8UPZqgFVa2oFwnSeIpexVZRUpiGUVJiM4UkYM/nIkJnw0qYtRlGOrbSJbvZnEvC03jNwibobvF6XPU4WhYsyvRNv+zPjLeicP8d4H8C/jJnmdwX+LeMD93Y4Ld8zS2+84df53//ldd537XRO31IF7jABS7wbwRBQEu/TiTJZEvlDaabWpu7jBdPL2FOZSzKGLhIrJxAeEE16M66Hphr0IHm3SVHVxK2PiXZeNVh5pZ603DyLsXyiTYS7bmK3tjMRcvBvQTpImmRLVSXHDaTDF+LxCaorqI6PRsokxbaDAZXZmRd3rR1Cpk4nFW0lSaxApf6sygzGWhGAnsqkE6gl55kYvFptB4MPpdQXjJs5UsWbYLqTvIbacn+csBJ22NpE1LpSKVlN5uTbVQ4L9lL55zWBadVwfOjfUqdsLAJUgQap9bEO1OW9z99nxcPnmT0mqP3oMRriSrbSBqlJOQptBZhXSSPykXiqBR0EYKreSIzq/GJJqQqJkkI0RG4Vd63QDaOZBoQXq9VUemi33mVA70qQpEu3m4ODcKC2wzMFxk+CHzHKlunaL3CBonoWUKtEKkjLVrq2nD3dJMroyltl3oyW2ZcGs2orMYGRS9paJ1imNQczGMYwahXUieaZZUw6pdsbp8yqTMyHV/byhpmdUJVJohWUF51HCSaK02f7MEsZjmvCPcKXbRcSBNCZnBFQnJSkd2p1vdrLw2594sShPNkRzEtxyfRfmF7gXozWm6aoSKZhHUBk649eh5TZRZ7sTHVJfH5yU5i1KU3cXBR2ki2V/F+6yztLn97RZZlE5/7GF/JOst6ZR+BcxxzpXyvi2pYq9ir26FT4d8wcclZvB9n25UWsF0jZRJwGesEEtEK5FwSdLwKIfPOwtNtbxUDuva8txLXSuZtwXKZorWjyBq2e0s20yVD1a5bTitnWHaEWnaft3mbMm9TEmXJVMvlbLoWBvayGeXAsLApB2nz0/5t+6nwVgi3DSH8xbe11Qv8rOC/+Lbn+WcvPOYP/r3P8Pd/79dfNFBe4AIX+HkNASg8mYweboA2aDLZ0gTNxOY8PNggX3YV6EtJSAIMWrJeg20VzkmEDAQn8AuDP05QleT03YHp04qtz0pmNyTVbhcxUkWy7rUnGTTYRwWyiUqfbLukBB2wey3uQYIuecNlc5dFr6lwEArH1WFUOOdtSmMVOnExXWOe4E3A9boGzA62FyvVdR0giz5nM7d4Jdn6XODOe4ds3CrXFhUtfbTc6JZJk9E3NUY6tHR4BIOiYlJn5Krhem/M50/3uL/c4Go+RRqPD5JUWkpnaDqSup0ueP5rX+fzNy8h7/a4/COO3qtVVC+9j2TbR/JNCDGHOIS1qIhWCO8JMlpMROsi4VYiWknWZJu4GDKSYCSyjRnWwp+Rw3bQkcI2/gtKoJcxnQIBzbbENgkLwDcKYQUnk946jnBvZ8r+/ohiULNRlByM+/SzmrI1BCtRiac6ymkHC/Z6c07KgmFacTjv0aaSrd6SaZWRmxYtPYOsZiMr2U4XPJwOmS4zelnDrdEJw1RHq8LllpfuXEY+Ujz8BQn5wTbbL1QkDydR3ZfxSgBaEaREeItYVCTTJSv/SsgSZu/a4vi9sVHGTKI9QnaJJqu2S9XEVB5bQDMSyDZe1TFzgelJ0omn/ygOqbZ9jc0Equ2y47Noz9ALEb3RXZxfVMHPyPOaJK/U6G4BRJcuEu90dvvKEhK6x6y83W8g0SKms0B8TYMOkXj/VOT9TULxap/ehHXri9MxdlAuFSwVvhdnM3Ri0dpHr7YXsfgqiHhsIX7vnWS+yJjOc+6ILdKs5fJwxm42Zy+dQwoewdwmVM7gQxwYliJgveJxNQQgkY6tZMHldIpMw3rO4a3ii8UCbnVf/mMhxO8F/j5Qr24PIZy8rT1d4N8Yw8zwX//K9/L7/sYn+Us/cJvf+83PvNOHdIELXOACXzpEtJUY4ejJ9ekFiWfpE+6WW+j7aYxDk5EsWBOQOg7CjXolw6Rm0SYsG4MdSKyNJHyQ1+z159Qf1izmPfw4R53EXGzX9ySbFVo71KEEEVU9v0pbaAV6s6HcM7E9rxA0Q0HboyvkiKTA9GN6x8ojqrpUBN9K9ExiBx7Zb2OEWRC4UmGLmDYxes1FsqIFXklk4zDTmuGnh8yvJBjpaZwi11GF20hK9ssBm0nJ3CbkKvq8d4oFkzoDYCeZc2OQ8HA+QkvPc/0DSmcofRK9rJ2ftXaaS9mM062ch7Xi/q+F/AtbXP+Xc9S0ijYS36m1SsYotBCi4u08IQTQSSTdSiFkQFYWWXXKozlXCSgCovUI5WNmuRZnBTDn3gdBsn6uRQBVBeotgSolXK6RIhC0xxtPnjcIEXj90TbDYcnO7ozJLCcdWlyryLRl2cZZJ5NYQh/Gi5ztfEnZaoYpPLd9yKPFECkCSnpap3hqdMTtyQ4Hi1gk9Oz2ITYoEmljUgsNjVMcLnqo1MVIw8zjcsn8Rops90jHMYs7P/L07lfocefPSBNsL6EdJpS7hsXVqO6np9Gvfp7ICgto1vYPaUX0OauAF5GAt0OBbAQLK0kmgeJQIpuwvkKwUrB7Dzw2F7GGnY7QyzNF+s2vxSoGMxY6xQtKq/ucV7ffMDQpz90uOgUbQMfjZhUzeJ5Yd1d8zrs73pCEEkA2Mt6n89WHbhGCj3cKjaRtElzqMKldDytDVL3Xv1MQOCcJQaBUbCG9e7TJnbBJmlpubIy5VkwY6pqhjn+H2iDXcxQeQSIt1itmNuOk6WGkw38ZLSWfOPe0whvLbgLw1M+0cSHEtwF/FlDAXwkh/Mk33Z4Cfw34MHAM/IYQwutCCAP8FeAru2P8ayGEP/GWfqN/x/HLP3CF7/rMFf7M97zMt77rEs9fHrzTh3SBC1zgAl8SBAElPIVskHhmPkcKj0eydCmvjHfo3+sGFluBcAKXCaRyaOUIQXBSFuSmZbu3ZFanOB1vGyY1iYp+zM10yT2zyclkK1bBJ54sbSlf3CBxnZdYnxEL0TXYNbsOPi9jA2USC0diBng8nmGvWudSn9YFVWNwrSI0MapQbDZkeRPbDb1gWeVR8Q0w+ORDQhMvSQut1w12V/5V4PbX9rixMwanmDcpUgS08Cxbw8IlVNYwFynb6ZKtdMnhos/CpVxKptzIT7E+5nPXhSZXcQhVoqMPtTujt0Hyro0Djqc96tOM5v1LXnoi5dIPFGz9+ClR5gwEoxC+I9tCgHNR8Ta6u813KSUClIDOy+xTjTeyUzoDqrLIuUdWDp8pdBkJkVlKbNa1EuYCnwTkqaDaEXgDei5p91PcXo02jiaJi6oQ4hWNiZNsbs+wjeJg1iecpBz1emz1lt0MY0AnjrbRTOsMJQOPZwM+cvku8zZFS8+Jyykbw74ZslfMmLUZh2WfS/mMpZVUznA1n1B7zTCp2MkWnPQLXk+3aG8PYnNkF0hTb8Xfa3FVcPihHDMvUE18On0SWxT1Mpb/yAbMPOBNtFKIbuEH4JKAdPHFWpPWQHz/dv+7LJKxZgDLSwozh2LfY8q4jXTsSI8qgpbU2yn1SJ5VqadxZuE8Z3yDXaSznbj03DzDmz3Z8UMcH7Im8eENxDtIumbIs8evNnCe9L/hOGT3e67U8MCaZEd71uq2aC/zpaZuFa1xJFn0+6fGrkm3dYpGqBhyEgRGe4x28blrNPcnI07KgkEah5H30hkbHfGuu8rN0hlSZd/QpvplI9whhCff1pbeBCGEAr6dWAl/H/i4EOIfhRA+d+5uvxM4DSE8I4T4jcCfAn4D8OuA9P/P3p+H27bnZX3o59eNZrZrrb12d/bZ55w6TTVQDVAFRaeIXI2ipuK1REUQgQRikCSa3GiS+/gk3Nxc1DxGrjECAl5ARbELYFASUSLSFEUVFEW1pz9n96ud/Wh+zf3jO+aca5/qzlHgFMX6Ps/ac+45xxzdHHPO9/f+3u/7ppTepJTqAR9USv1QSum5f5d9+kypb3vHZ/PzzxzxX/6D9/GP/5Mvxp1LS87rvM7r16GUUs8BM6R/x6eU3tbNfv594BHgOeCrUkonSkS93wF8JbAE/mRK6b2fdP0k8m7eOaKpo2PPztFE2mQ4Oh2wphRMnXBakY41lSs56fyUi6wlJMWqdRgdMToSouakKjE6snAZlbc03mAurwhBk+ee2bSknKqtY0Ji4/ubNCidyHYrQtZHde4T0UIsJVY+ZpGL/QVWB06bHrdPRvjWiuyh1oQdT7/XkFlPiBq9BhBy4FKhY4xXFSklVObQtxrs+x/HfcVR506imTc5V/pTtEocVX128yVVcMx8zt3lEKUSx02PB/OTjbZ76TM+MrvMm8c3KTuNuY2BmDSr4PDRkNvAmx+4xbsXj+AXDjtsOf33K06fuMDuh0X6sbaTEylIJ6XRIhMI2dZjWpwzuuZMq4hOng+OTdLiuuk0ZgJQfT9J+ImNm/AiMxUj7PqCbN9NtQy0pg6171EmEbzmZNYDG1E2ohVom8isZ9WRnCfLEm3jBnQN+hU+alaNI0bFwueMsopJXYplXNREJB5+nImkZ+5zFm3G1d4UpwJeGYZdAFFMisvjGc9fyVDHGWapNvIPXSvcEpbXAuU9QzYV4GlqaEYykEgd+jJtQgWFq4Tdtyu5PqITZx0QV45oETC7vlY7kKpU1/ioE/YA3CqhYmK1a2CsCXkPt5BeBjeD6oKjOGrxfUM9MlS7WoJqzrDeG2DdDQ6T6cD+WSnImQbJzeu2H+zNe32fbzdsdNnAFoh3z58F7evmzI0MJajuttuWi9g8bN7fEDSxMVS1odI5pvDsjRdkJuBcu/kcth3THaLGqESWeUy3jlXruOXH3JqPya3nam/Cjlt1Dko1MSmWMYMEVoVNj8XLrZfjUlIA/wkSgpOAnwa+c508+UnqC4CnUkrPdOv5e8A7gLOA+x3Af9fd/4fA/9J9aSegr5SyQAk0wPRlHtNnfF0Y5PwP/8Eb+VN/57181//1NH/6dz7xau/SeZ3XeX3m1penlA7P/P/PAz+ZUvp2pdSf7/7/54DfCzzR/b0d+Bvd7ScsBRgVccpTdfF8TgUWMWfqC8JJvtH42lXCVAnrFMVtg59pqpFjVQYmWcDYgHPCereNxc8demEgQewHRpfn7IyWLKpMANaHBwIoM9Fsb6b1DaASMWh2xwva3qBzoGCDHpSLlP2a0rY4FbEqMOpXHJ8O0FkgLYzITfJGtNhthyqaM+RISqA6dw0MKgRpvAMe+JmK258/YlxKQ+SyFYD32p0Dnp1eINMBHzWaxOXejBfDDjdmO7xhcIdcewam5lI544XZHgfNgOuFsN7rqX+nA9O2oI6GwrTk/Yb2Vh9vI9pERm895PSzctrn+2QnugNGH0vspDMNd6xPT/enkkgjtrMGnVQhdKFCHvJjsRNcr6sZie3j9LHYMbmSiphMgjziW0tqNe3SbubfU4xYE+j3K5yJxDxRVY4UFS73tI3FukDdWoxOKJXIXeDuasg4W1F2TZFaJdqwlcKMXYXt3tuld9TOMW0Lbi7GXCzn7OVLmmiw1yJPp4uoeY5qwaBQnR+2rjVunihOowTg+IRKGlNLAuTp4462pzb9A2u2dxMWEyTcRuQVYOpu0NKBWYkoTxunkU2/QRK9dzOC5RWDWxjsMpFPJN0y5Jr8oKK4ExkD9cUe9Y6hGSqCE933etaHDtBHs5WjnJWSiDVhx1ivH+tQ3FkFyoatjqq75jutttr+JbPVbN+vB5fB2Fn9t1IQgyIlsW3MyxY7qGhbi28NMXZafx2xNlLmTecz70mA6XoAZlVOSIpl4whBY00ks4E2am6mHe6qEUZHmdnIFozsirFd0Uazcf95ufVymiZ/AGE4/lr3/68GfhBhoT9ZXQNePPP/G3zsl+9mmZSSV0pNgAsI+H4HEiHfA/7MuWb8/vq9b7rK73/zVb7jJ5/ky19/ic9+YPxq79J5ndd5/daodwC/o7v//Ug42p/rHv+BlFICfl4ptaOUuppSuv3JVtbTEg2+jDlaRUJS1NFxuxpjJ3oD1Hyh6N2LDG96ptctK6NwUwPKEHIBHrUTh4P8RDN+MdG/Fzh93DL73AZrAqvGcWGw5MadXYpagEXIEjETmzRfQjOOpExY1MwElgPx71YRcXoI0ojVy1sJpomWJlpCVJJG2RjII8N+hev8fpVKAniT7J9uFGQOZQ34AN6LLjom0Ir82QPmz17j0pvntFETOokIhUxj+yT7plVix614kR3unQ6YX8rZd3NqbRnZmku9GR84vorfMQzdliPTJPodU2tU4nOu3eQ9z7wOO8tormhOvGFvZ071uGfx3JjBswISk1Ub3+c16NJnmurWzW4qgm7TNq0zpg5or5nehG476UmmRd6QKUbPJ5b7mtUlzepBDwbcXU02USyMJbRr82cwcyONeI3jpOgx7NVMlwVmT6QA/YEcr1aJZZXhW8OoV1G6lnmdbRI9Y1I4E7iWTzaNmEuf4bTMEmTGE5Ni6nNy7Xnt+B6ztqBvG/IkdnL7+zMOvMYdOBkcthIPXx4oTJM6SVQiZGKVqH3C1JHB7YDPFdlMnEcWlzXtQEFcJywmimM5z+1AEUoZqOhGBi0yWyByJ9OAWwRUSjQDTdvfykKaMdS7impfLDJX+xm9e5ZsFjB1RDeR8iBiaktx3NAMHc1Q0/YUvifSE18CYQ2wNxeSpLyesQU8y3zfN6GTIK7Z67VYOclnKpm0Sfjc2gWeRexbBK902g58NaiO6q+WosXpDyt6RU2MmqaTHqWkmC8LYtAYG+iXNRf7C5Fq6SifTdjcT4DTEasiizajCYZpXXDiehgd2cuX7OdzNL/2gPuNKaXPOvP/f6WU+uAnXPrXpr4AmTh4ANgFflop9S/WbPm6lFLfBHwTwEMPPfTrvEuffvVt73gjv/DsMf/pD/0SP/atX0ove2WpR+d1Xud1Xp+iEvB/KJm3/a6U0ncDl8+A6DvA5e7+xyNZriHEycctpdLGiutdk9fwwcPLvPORX8aoyPOz3U0DmvKic+3daymePqD3bEH14IjlJUs90vgBxI27BfTveuwyMH04Y/aoOBlUjaOXi/zE3szpZJgSxKGF5W5L8ctWrRJWUXXsoe50rI2EgygFpROP7Jg0K++ouyY9VMKNWvqZMKdBCavatmJbGMuIaZR4XEeF0hqcFdlKWMcHJvZ/SeHfqNEqUXlDZSxNsDw2PqQOFp80zgTx3G4t7Sznbj1k383RKpHrlqGt6buG5+Z7PDo8ojSiGW+TxqlI1IE6Gvqm4Q1f9CzP/tijmMqxegSO0oALu3Pyx485jns8/OMtxfMnkDmSUsLId77cpCSOJaWcA9UG0XRbLa4nETm+lEiZaLtFnpLwA4eKBtD4vAt0sZAdGdpBErvAMpEGHlMEwsqglnqjZTYrAUuDvGa2zPEzh2o0Pm9ZzXOG4xX9smYWSurWMh7MmdcZL97bZXS92vQAnFYlizpjf7Dgof4Jx02Py+WUSVsytDW58dTBEs90+VkVudabAHDaLwkzK4OpJFKR/jOxi36PMksyMETb6bIzcW0hF+16edCivWF63RIdXZqkAPf1rIA540KXTMc6dw4vbp46Gz8Byevren1Nqij71YxER94ONG4hDZduGdEBmr6mOITy9oLeDdHvh56lHVjmVyzVRfHxjm7Lsp/Ve59Nnlz7Za/xNRuwfWY65Iyee/NtA/dT4+rs684s261fK1AmoFQXUFRbmsZibdikpwIcT3vChGeeGDU3TncA2Omt2CuXFKalCo6VdzJ7pBLjfMXl3pSYNFWwxKTYzVasguO5+QVW8ZWFEL4chPZepdQXppR+HkAp9XbgF1/G624C18/8/8HusY+3zI1OPjJGmie/GvjnKaUWuKeU+hngbcB9gLv78v9ugLe97W2vbKjxGVB7/Yz/+Y98Dl/zve/i237sg3z7H3rzq71L53Ve5/WZVV+aUrqplLoE/J9KqQ+ffTKllJR6ZfOqZ4mSnasFptNr77gVv+f6h9izc240e9w5HLMzSZsfdFMn3GkFIaKWFcVzATsfMHu4pG2VTN2fBNxEUMnskZLZIwpGLaZzCTE6cnAyJD+RCHg/SMImdn7DsRchD+K64SK59bSjRHkAoDCVwg8U2Mggq3EqMvEZtbc0dRehZxLDgUgVjI7UwbJohGElgR60uIUAURWTAFI5MVtHEGDvVyY8dbDLgxdPWKlE1VoWLqOw7QYQtNGQa8/10YTMBg6rAbOywKjYsXeB3WLJjdkOz833+Ly9F6mjNFKugmNkpbuujo43jO5w58uHpH+4j4qO5aNwGIfs7Cy49IYDnt3Z5YF/dpHxLx/IIGG93ymBEyihl3LukzMCttf2gFYTnO5Y8IhuAslqotOYlRcA7xO61ERrKO6B73eDnlaiyu08g8+dsmq02MP5LRNcz3JWA0kCJIl7x2pWkLy4sgyylikljZf97GUtcyuynGkljZNrW8A1+7/jltRRPJor77hYzDegG0CryEE14O5yyDiv2BmuOKwcdU8TM4tdKNxMwF52UqOXDWZUYIdO5CVNJDojMycB6j0r13mTGN6SAcvyohZpSLntLUB1vtqdG0nM5fHiSGYSQiZ6b7s4A4yNDFzdYr0OkbH4HoRCUbcGU4k+f3Etx64cpk6YKmAqTzFvKO7A8sE+dhVpB4bVBU29q/CFyFwEXQOWrRW54n4O+CxmXjuNnAnS2YB1RLeePslXi1KpG++lzf+1kevNmIgxkcZbprMe2gT2RkuGeY2PmjaYTXhSHQy3ZyNGRcXFcs5OtmTe5izanGlTEJ2iMJ6xq9hxS3bdkrFZ8d7ZQ7+mLiXreivws0qpF7r/PwR8RCn1fuT79hOhvHcDTyilXoMA6z+KAOmz9aPA1wE/B7wT+JfdF/gLwO8EflAp1Qe+EPirL/+wfuvUlzy+z5/6ssf4X3/qab70iX1+/5sfeLV36bzO67w+QyqldLO7vaeU+ifI7OPdtVREKXUVuNct/nJIlvuIkutvHCWAZcx5uDzkAXfK3XbMadtD3c0xFZsf4N49j56uJHilC10x05qdD7X4YU47tJgqEErL6RMZ8wehudKSly0xKqyNZCaQXuzheyLtaC+12AOHXShCmcBFTB6kN6uVH2Y/9iRlN2E3qhVt8CirsDrgoyEkRYwyr65tYpg3uE7yEVOXyBgVeEUKmnwawBiSTqhOWsGa4Y4RtEafzDBPPYi+dIzRArhndU7fNix8xm6+3JzTi8Wcw1WfDz13lUcGxwxtRZsMTkVK07JTrJjWxSZc6KTt4VSkjm7j573wOV985Vl+7CsGjH+mgGccy8cTJ0cDdvYWXLw84eD/3qMZXubiT98l9XJ5H3xENa28TR0QV414PienUZ2lIAlCF2dvKo/y3YBDK8zKS2KoyTaSE5Wk+XKdSOnmsHx6iLpaE3db7I1sozGm1ZzOS2JryA6M6PJXBl1r6r5jMJpyoCNNY2QAVGcM+xU929DPG3LjGWYVY1dx0pSSYhkzQlIMrFgSznyOJlEFy6RbZtHmhKh56u4+F8YL9i9OWTWOZmw53SlodjJ6t+VYikWNPZxhjzVxWKAqj9rvETLXBdAoUhd4E5wim0V2P9rS7FjanhbwvdvFoJvOWjGuB6MC1Nf+5rGzXlxruk2dsBVUe8JQ6wDBbSPhVSZNrSqKdCWbKdwiYRqNqS2mjtiFJ5t4fN/Qf3bO8EMNKbM0+z0WVx3VnpaEUJXA8PHFFus+iCQ67vssBU2SGZ/YacLXcvqNLqXTiSdQqC5tUgbSqnterVlvnVBAZj35qCVGzbzKyUxgp1jRBMOyzYhJ8fDohMo7fNKc1iVtNJS25Y07t7iUzXix2uO0LYkoDpoBd+sRufbcXQ03UpSXWy8HcP+eV7TGrjpN9p8GfgI5dd+XUvqAUurbgF9MKf0o8L0IqH4KOEZAOYi7yd9SSn0AOd1/K6X0K/82+/Fbof7M73otP/fMEf/1P34/b3lwh+t7vVd7l87rvM7rN3l1ZIdOKc26+78b+Da2RMm3d7c/0r3kR4E/3TXIvx2YfCr9tkJkG7NQsGcX0rwUM+7VA3q39CatUAfIj+vu11aRjMgwUulohxkoKO6tmD42YHVRM308knYkHKdtDVpHLgyWrFoB12t3jOHegvlyRH5i8D2gFdbVOkkFqbxF9z1JOzp3MFSSVMLStPhoiCh8MAIAFGS5p7DtRg+cktqwcbhEqgxu3srAofUbScaGFlRK5slj4sL7I9UXWKwJ0FpCFPkKIPribCV+wcEwyivu5IF71YDhoMIgji1t0huv8I/ML/OW0Q1aY6ijpY6SmFdHg1GJPg2/84mP8i9mn83oI5b+kxmLx1omJ3364xUXdubM/0DLsw9d4dpPVWL1t2zkWJKAbHEqSejGkzrdzlq+E60iZpqYaezKQ0joJqA0RKMxdaQ8DrQ9Tb2jyGYiJwqZ2sh+OHXYlaYdR1IZcQcW1Sqaez10q7BLRV0kKAIpKPxhwWRc0C4ylIsMs5qbR2OslWtrt1gxyirGTqQCVkduLHe4kC+ISXOpmOGjYepzbi/HaJI0snrHbiGDnvJCS4iaUVZvPJ9HV2YshgWr1yuOpo7xh/e59ItzzMkSVXn06Yx8scJUY+rdnFBomoHGtBLZ3gw1Yd9gq0Rx5MlPFasLltWlbnamL7MzplLYlejCSZ3dX4mA8QBukSiPI0mBrTrnmBzantp4bfueMN8xh7afaIcym5OfJtwioVuNHgob70uF8iWmztF1IL8zp3imIhlN2BuwuN5jccVQ70lA1FmWW3VJoRtnoK7u89Y+m6RzVsPdAey1xOTjTazJY+q+55yJKBvoqQajI7MmByC3nqGr0CR6tqEKlp6NjF3Fwmc8Pb/IB8JV3rRzi+vFMce+L8A7aRY+43r/ZONu8nLrUwLulNLzr2iN97/2x4Eff8ljf+HM/YqP03yZUpp/vMfP6+OXM5r/7x/9XL7yO36ab/2hX+Lvf/MXklvzqV94Xud1Xuf1iesy8E+6CG8L/N2U0j9XSr0b+GGl1DcCzwNf1S3/44gl4FOILeDXf6oNdHlwRBS5bmmTpU2GF2c75CfC2MkUesLMagHbGsgcsZfRjDOS1eQHS5rdgtl1TbObUJcq9kZLam8IQUl8uwncOhqjSmHW0sBzob9kuZdjnuoJgWYj2kbahUMtLItxRpb7LZOagAh75ZLStEzbgmldUHuDdYG2tpR5s0mHXE85a5UEK7iIu5dhT2cCTpVouZWnk2ikzn5BzsvoQxM+cneHB6+coNayEpvRdxJN3kSDVYrcePaLOSe7JUufbSQnMSmcivRtg4+aG/Mdhq7iYjYXb+5OPz+wDW0X8rGXLXj0iTs8G6/Se9HQf9qxeG3DYlaglVjvxTdNuBnHPPzjU/Gg1lr8uDWk3KI6/+5kRPYBkDItoJAojZLRYFaBmFt0GwR4J2kUtEuFWxp8oahHWhjZLjGxHYjEpDgwLK+JVtlNNHYh0gbfE0bZHmREKwDt6HQACvHxDoYsCzS1lVjvNmMnW+FUJHcroq2Z+hyjEs0ZBvNiJk2UJ3WPZevITQ7UvHC8y7BXUVjPvfmAy8MZiyqjbizWedpowSvm1xPzB/sUxwNGzwZGT2r0dIleNvQmIu1pLw2o9jJCrvCF7q65RDswoMCtIvpW53YSodrV+J6w/8Jwi+Y9GrA1jF4IuEXYXE/RabFxBOqx2aR9hlx0382QzqNbGolDrrCVws3kPdE+EXLF7LqjdxAwtcEPHcQBduGx04rxe6eMgTgsWV0fMrtmqfcUbT9tgmuSSyTXibs3Ou31/Q7ExjOPwxa1B7VxPdFrd5SkNveVSsQoem6DNBkblXA6kumA0XHjSDNrC2YtXCgWXCzmNNEyaQv28wVvGd3gl6bX+dl7r8GoxE6x4nIxozQNB9WAg2pA0dltvtz6ZEmT700pfd4ne/HLWea8fmPq+l6Pv/TON/On/s57+X/90w/yP/wHb3q1d+m8zuu8fhNX16T+lo/z+BHwFR/n8QR8yyvdjoSyJDLlmYWSKjruHowZjkQfWpxGsunWMg9nCV1in+8bisMGvWo5efuYal+cMcLcMbM5vrWE2uBtpBpawiRDZ12IjotYHXngwoSjskd0CddvGfQrljajnVva1rAzWLHIhpguCDMWiVEmDhjTtkCp1KXYAQlGRY3tNNTAJoWSBHm/wUxz9L0TKHKSs/druLcnEwB9dErvQ3vEy/Jc01imSoJwnAlUwYmtH1CaFtdpxuchZ2TXLh1xsz+59fzSwYN89oU77LkFALWKrIIj0x6rAzNf8PjogOd391iGnN5NQ/lMxurRhulJj/64Yre/onl7w1PjCzz29xeYyQqMRvlIsnpj9afCWi6j0CsPuQU0upWUzZjpDZAylYcQ0d2xq5BQ0ZC0wrTQ9qAdgptp7Fz0yfmxJuQJP0jYhfhWt0Nx8pBGV/HFDie54LnCc3c2xJmAN+Jv3kaNT5o6WhY+o28bRp2G+2bY4bn5BZ4Y3mPqC8auoomWu1NZx8o7hr2KRZVhehILH5Jm3F8xWxVoHdE6UV+AdDcnOpg/Glg8rDj43DH9WzsMbgWyU4+pA8onioOaZieDvoDj6GSQ6fPOv1sDrNM4YXgj0JaK2YMG35M0VNNA/04km3iiU2DEfjHkGt95qNcjRb2jKA8TdiX6bd1AE5Rou7OE7yVCCW2/a0heSK9EM1bUtRH3lQCmkUFUs5NhmgFu2qCnK/ofOqD3pAFnaS72mV/LWF7Rwn73t/2TmwbKzfUvfyop0voCWT+vt8ukCGiF1ls/bN1ZPyqVNg4lZ0urxMDVjHsrTpoeJ3WPg9WAo6rPg/1TrhTiQH2z3uFKMaVvGu5WQ25Mxjx9eIEiaymcJzNhE4rzcuuTLf0GpdQnk3EopMnxvD5N6ve+6Srf/Nsf5bv+9TN8zvVd3vnWB1/tXTqv8zqv8/qEpRDAva4qWbGqu52TTRPzBxWmVYw/tBLgZg2xn9Pu5LQDg5sH7MGM+sEd0Y/2Iv6yx+SBGDTaBAKGotcwr3J0rUk2ETUUPZFZ7JdzDrogliwX1nuQN9xNauNGMhlANk3ETMGFmrFbSeJc13SndSLLRIbScxL3rlWi6bx6U1JErzEm0ruTSG0LbYtyDopOCx3jRjKz+T+w//6W6ReLfV8MkrK4aBzDPFF7S6ZlIOKUNHJO6oJJWzLoRghrVw2tEkNXsWyd6FRNy+1KfsLbaGij2SzbtzVvvHab980eYvFIYvC0pf+RjMXjLatFRoyKMm8oH53y9FeNePQfa+zRArQShxJjEE2DkuRJnVBRohJVTMK0tmJHdzYwR/kIVpOMJmlJrzRNwlYRFTT1UouWPkgCYrSgG/G99r2EqUQKsSZJQy7OHTSamEeC11SNEweLzDNZFVzfOQVg0hbEpOiD6NqTYs8t+MDRFSKKh3onLGLOxXxO3FPMmxwfNQc3duhfXOJ05Ep/yp0uLj53LUYnJrXrBhcy8FC1nOOYJeYPwewRhVllFEeK4ihhWpmBKY49ySiakaHtK0IuzZBru0AStEPF/EFDvR+JeUAFRX5kcFMB5quLjpArmpFYB+4849G1DFaKU3GWaQeK5RVFfpIY3ApUlWG1r9CFDFZiJuc25DKYMZXMJJgK8onMPASnUT3Risdc0Q5K9MWCbNJiZhWq9mS3Juzdgj1raPd6LB4smF/TVBcE1K991zdvnmbbNLlhvdWZlEnuA+miylISIKXEZ1vruAHebdQYrTEpMm9zMu15w/AODOHJ+SWRtrU5R3UfqwIX8iUXsxl57jezRSvvmNc5945HBK/J9TZK/uXUJwPcr38Zrw+fepHz+o2s/8e/9zp+5caE//afvJ/XXxnyxmvnY6LzOq/z+vStZchxKhCSJibNYT2gOFSYJlIcC1iIpUUvNbGX4YcZ7UDixoubM7CG4zfkrK5EzL7Ef69lJACx8OwPF9w6Gm+asWKXQBii5ko54327UawAQRroXEXPNZxWJQDNTmT8lDSU7e0ucJ0UYy9fMq2LjfuFyzw923SATW9Y7lXjUCbR1Jb9Aw/GiPf2YglVjeqV0nD4Uj030HvqhOcPdrh4ZYLSEe9FZ14HQ0yK0orVYUQJcA4Gq2InGRHbxb6t0Sqy8DkDJ3rVsV0ytQWnbYlPEqLjkyYkBT7nof4xN6+NOXp+l/ljnuGTlsFHHfPXJWrA2UDhPPaJU578mhFP/G2wBzM5jvUYKmyBdDICtvEJEwPRapIVQJ6sIgWFaiPKR6LtaEwlmmEJwFEMbiR8KZ7s2kOy0shqKkSu0LJJR1QBBndheUVYcBUVcWlpVEL34kbDHZPCqsi0LWiDYewqfDTcbUfkxvPI+Jijqs8iZN0AKjJylQyogkGVgRA08zpjYktK29JEw9X+lOcnexgTaVcOu9C040C+v6JZOeLcdRp2BRrmD0Xmj0hTrgqAdsQsEQvZT1VraYRcKqIBN5dz4PvCTtuZwa4UbiYSLF8IMx5KRb0rgULJWsq7iWweMXUinybcIlDtGpaXFaelldCdCNkU0rzTi5cQeol2FIlOBj2+BH+gMSuwlQwS2q7xUgZJiZhlsJ+hm0R+UstMSIi4gzk792bs/IoMoKtLBZOHHdUlaIexG5yI5juJP6fsVGcteNad5Kyt4JmPDTEpYcg7mYqC+yRe06bkfc2DPDY44C2jG9xrhsyDSIlCksTRVdhDq4hRiev9EyZtidXiXjSrcm533w8vtz5ZtPu/tXb7vF69skbz1776c/kDf+3f8M0/+B7+6bd+Kbv97NXerfM6r/M6r4+pBNTJMjaiYQ1Jc1z3yCaiUS2OItWu5uT1PXY/DMlp6h1HtIrBCyvUfMnqdZdZXE+oCzW9Xo0PGufiZiq5V9Q4EwhLC3nczGO3rQDWTHvUxRpuSzNVTIoL+ZLCeOZNThMMaa8haZEEXOgtKE3DIuTsZQvuuiGzKiepRG7FmcSpSFQJnSJaZSznOdok2spSHFQorcWnWiuS9zCbQ1mg1uy2Xls3JNR0TvncJdy1gOlAexsMBS2LxlFax8AJm325nHF3NuC56R7lbkvf1ptjWjuWDLOKeZvzM0eP81mj26xCRhWEhQ1J4aOh6qLLf+e1j/LDB2+F2jB/JDB6ytB7OmP1upr5vKDsSZrm3vVTnvzGEY/+3V2yu4uN/7aKZ6b6G4+KkeQM0RnWKgCxRkwkrYiD7reqa6bUTqGCBLDETFhb3XlRm0qY2nXYTsiSSEmSJDL6fiJ7Xhw9Zq9JG/lCXFnoNSxWGf2y4e58SDEWLe6LJzsbX+7cenbzJVolrvVPmTQFAPOYM84qjqo+h8seSifG/RUxKeZtRmYCNw52SfuKQV5zOu3RG1U0RQsrRwyaBy6fci8f0J4WhKEnzgWKpSySTxz5iRxnta9oRx07bhPJC+ucHWvcUo41j+JKYldgl3IOTCPnJpRdg+QgEYrE8oHE6qIiPzbsfTiQzQJt39C75xnciKwuSuw7gO88w9ce2+so+WgTzUCxuiSseMigGcp+NjsRu1DYpSZ0zHhxrDAVhMwR3UB6MzrJSHkccfOIWUUu/vKC5DTN0LG4bFhdVtS7iZh3vQFocHHry60Q+87ODnCt405dw2VMCt3dV50Eq7Qthdk2NFsdeXp+keO8T9805NqLNEsFdrom2uOmz93lgNx6LuZzdJE4oo8zAWt+jaPdz+s3X+0Pcv7G17yVr/rOn+M//tvv4Qe/8e1ka8bgvM7rvM7r06gmvmTfShNfRPHiyQ7DpSTzFUee8VMNh28ZMH1NSbaIXeJkizmc0Tyyz8HnZLQXWnqlyDiUAmck4t2aSM+1HMz74DWq9KTKoLwWCQgCRvOiYZWLVKIwLU4Hhq5ikNVU3lH2a1YXC+rdxNXeFKcCc59xeznmdFWS2UDjDaOion+G4e4yTkiVgUGLPnXoyWnHZnd/RJkGX1UixTAajNmC75TYf79n/vmOzHmaSrTlIdcYnZi3GRcK2dDIVYyKmpAUC59tgm5i0kQUTgd2sxVaJW7Nx7w3XOfx4SGZDjgdJBRIB3wQTbOPmre/9ll+4RdfSyoD0ydg9FFDfDanfd2S5SzHey3JfVcmPPPHxrzm7/Upbs9JVm906cnqzvYwoQiYtdbbbgceugmw8iQnkhKVJI3RLSMqaWINzUDkDHbVgTal8CVor4i9QPRmA7oB6pGmOIqsLmpCkfD9SD6SFEKAxhucDdyY7bBqHKtpIQ4jFypy47k1H/Po+LDTyntOOzvApyf7PDCYMKkLstxjdISoma4KHt49IctbTpYl1gRc5tnprbCDSOUt02XB8bzHtQsTmp0501VBlWcEr9ndWdBeMtStwbdWZmGmGTu/ajFVot5TuKlorrNFPGP/IcesQyJkGul/VeSnsUu37MJwurAaFaEZaMpjCeRxkwa0on8zkJzGlwbdCnMendqE9ZAEyK8j3nW7Hr8mzCEUh6IV9wXY0GnoM5H/JCNgPZQiQ9EBllcNKhiShnaYEXY85tRIwE9aN1YqGDaiHpk4sRx0MmNiCpH+xKSwNtyn3zbdbeykJpW3NMGgi8TVcrrxUS9siybRJk2uojRZ6ohTAUPE5YG+rTmoBtxY7DDOVzw2OuSw7sv7/grqHIV9htbnXN/hL//hN/OuZ4/5r//x+yU2+LzO67zO69OoIgpDZGhWVMkx8SXVi8MuRh1pJKtbBrc8y8uaamzo3W3Jb884/sLL3PjyksWDATdo6BcNufOU2dY5wJnAIKuZT0uxHIsyfZ9sZK+/pLSyrDXCorWN5aTusQqOXIvXdm48/aJhdTHhdz1DW+F02LiBZNZ3P+yKoROwK3IS+TE+69WbnWrUquu+1EoaDY08n5qGVNfQtNC0JO9JXgYFgycnnBwNsCagTMK3hqq1pKRYNY54RsyaW09hPcd1D9/p49f7EpKA7sK0XOlPeer2JV5Y7rKXLTb7DTB2Fbn2zEPOo71D1IUaM7GkXmD6RKC8l9AvlNjcU09zFqucEBU7F+c8+1Wa5SMjkZOkRCwsSb8EasQo4DskVBAdd+hZYs+hEug2oELCVJ7pwxbTRPJJwC1SFxsvDLCbp62EpFGEMhLKROglTKPwfWFfTQ1+zzPal0bRapoTvKFtDfNVTuMNTWspRxXWBk5XBfcWAxKIc0Vd8szkAtd6E9pgaGMX6d5b8NjFQ0LUtEGcMVbeMSxrWm+YzMSid7IqcEYGZQ/tnWBtYLIqNqBQ6UhqNSeHQxazgmbl4HZO7909Rh+x+EICasp7if7dyOBmQ3m3IT/1uEXEriI6JHy+1bibNqFbKE4ioxcC/ZuJ/BiyiQTgiOxEY5fCGofc0I4c7cAKyHZqY8dIEucTXyiCUxsA7XtI9Hu+bsqUxs715aiDzES4KbgZHfutyE8UZqk28pV2FAk7HlTnhlJLsJGdKUyt0IcZ7kZOfmTI7xnckcUeOtSNAm7nxOOcelKwen7I/PaA2XGf6axkviioGsdkUTKvchpvOa1KnpldYGQrXtM/wkfNKjhi0jgVNoFSRkV6pqE0LQNT82DvlMdGh/Rtw2Hdl2Zl82un4QZAKfVZKaUPvuSx35FS+qlXtKXz+g2vd3zONZ49XPBX/8WTPHqxz7d8+eOv9i6d13md13ltKiTNyFaEpKmj48XVLsVdDSkK8Kq9xEvnYpG2uKYYvZC4+bv2qfaFsUxDT1E29DOxygOIHfjJTKANhrS0mGFLShCDQvdkejm3HqcCZdYySxJOU3lLHSxDC33bMKlLCuvxO4Hh5Tm59rTRMG9zSa9UCWUCwSoGribv2GJpQpRGK1ykKFrcIeC7H+mYNiy3MpBwEIJITFJCYSUcJEU4PKF47gLsz9A64r2lrqWR0kfNtCnYy5aEpNAqcbzoMSxq5j5jZGsiSrTZXRmVKIxnf3fG+5+5xkNvPMGpyCw4CiOuJT5psuRZmoy3PHSD9994HFoN45bJ6zJ2PqiY2B7ummiSnQv084bhpTkv/rGC7Mk9hs8lRi/UuKOl2AfmRhr+zjiybN7njtUWh5PO5cRHVhdh+KL4cbulPK/bhFtF2p6mHYqrhgoC1Pw44JXGLkTvvLqkWD3ocYOG+XNdT1MWSStDaxNp1IiTyNIxHK/InefwaEhWtIz6FZV3jPMVJ1XJwmc80J9wuLzKos04XRU8tnvEXql47mgPZwO3T0fsDpYYE7m4O2NeiVRpUomjzdGyz+v37zFtCm5Oxnhv5HQoMCcSDb9xXBkgspFTKA/FrceugshvnMYuWpJWtEOHUgqbBDxHozbNqNGpjcOJpEeK5MTWifykxfcMfuCEGe9Cc5LqGGmjxEdbS4PqGkgnI+/bWksP98tO1nHzphGWPBloxmrrya3YvC7k4Oaa/Fiju7HyOpDHeHFHUbHzYe/GbaZS+DLhZnLiQplQ3Wc/aUUyBpUcRIhedtormGQJP4ikXuD5uxcYjxb4YBiXFVf6064JsiUqxcSXtMngO92+Vom+rrEqUAfLvdVwY6X5cuvlSEp+WCn1g8BfAoru9m3AF72iLZ3Xq1L/2Vc8wbOHC/7yT3yERy70+X1vvvpq79J5ndd5nRcgUoehEfu6KjruLocUx2njx0xINBcKqh3NztOe08csN397IQEcg0TsB/J+s9FOr+fxUlLkztN3DbdnQ1Sr6PUr6trRek1/WJFbz8jJtq2OG03oos5Y+oyFkWTBeZdIV1xY8dDOKU4F2mTkNV01waCVMMlO3+8l0ASDdrJseRi3aYxGy8yj0RAQ0L12KomR5L2w30pQxs6TkeZt4FzA15ZeIXKRprEcr3pcLmeM3YqH+idoEnUQn+mBbSSshTWDLftSBcvjO4fce3Kff/XC43zZQ0/z3HwPpwOVdxgdudY/JSbFA+WUX7leUXykpHmiRV2sOX19zu4HFCe2xF1dspgWxIHIePKipX4cjsY5iwcKyoOc/p1AdtpI+qRP2Gkltm4g8hniJoQwlnYDGFUCu5Bz6mYe3RqiU9ilaH+Dcygv8huzUoSeIhaRWBmig9WDHl1pzO0+yiWSBdWaLsky4VNGDIpUGRZOAmgAghf2+2Yas1Ou2O8tOK57XO+fohUMXU1uPE8eXWSnt6LIWhpvsTYwXRXEqJguC4qsZbYoaBrLqF9hTeCF6S79rGFQ1NStZb4ooNYCdBU0Y2mWVF4xeEFTHkby0yDAdWSxi4BpzsgZlEKlRHCaaMUv2zQJu5TAG1OLJWA0XVMpkJ16klK0PY2txF87mi2rvQa96xyapNVmQBRNp6VXbBnt1PU1rklfLS4qvpD1rMGyCmz89ZPqZCmmC+ApRZttqjP2IwpCAaFIm3RNu1RkTSdXMiJd0W0ndVHrqPkuGXatPXfdoMxr0lSDcsx0IQN5Azeyy6RRS29UsdNfcbFcMMok4EqipiItBqcCl4oZQ1fxHnXmPXgZ9XIA99uBvwj8LDAE/g7wJa9oK+f1qpVSir/4h97MzZMVf/aHf5lLo5zPf2Tv1d6t8zqv8zovEtDTNQHRDN+bDhhuZAMJjGJ10Uncd5UwtTBi1aVI7AeKnYrL49lmanf9M+2jpte5F0ymfdBQVQ5fC2v8yO4JO9mSmDSrmDGrclQr7HAImiYaFmHbbF63lgtDCccYmJpfnT3AvMmlGUtH2qjJTaA07abxMDfChIeo0TrhvaZ3t7nfbxsEYGsFUaOyTBjuEAR0AyK8sYyfXPD0rEfZq0lRsawynAukqJhXOXWwGBfZz+e8sNgV/XkQC8Bc+y4VTwBC3zTUwbLjVuiLFfH9Y27s7zB0NQufsV9KCMi0KbvgnJo3X7/Bhz/4BL33lyzfvCLutkyfyLjwS4pDV6J3GqpVxmgo4FPrRCg8y16J7xsW1ywki/Ywei5imozezUo8uTt5SXJaBlttJOWGtm/xvUTMNPlxje857DIQSi2SkyZSTDSmlfTKejfhZppmL+B3PfPCcOlnDW4ZmbwGfF+BB9s5m6ioaEeaptKQR8LSsgoKbSMxKFbTQv52HBeHc9pgOLI9BnlNFSzX+6fs5UtemO2SksKZwF5/yb3ZgAd2ptyejJgtCgliARZVhrOBcSlSpRcPdyiKlqJsyIuWprG0d0vsXKOiZvCCIpsmVvuaalckGK5LlYy5JmQZKnUsshZQXI8U1QVNO064qWHnyUDvdk3oWUKmaQfifd6ODD7X+FKJ53ahNgB7DVI37LaTUJzUNWfqumtWPaMhT1o+m6LRTgKwOzmKSEeUuASt9dwGcQ8JagO+182UaR1iE+R1KgnIVv7M9rrlVZeouR6srSUwICD7PrAft2B+/Zhuu2PMFBzlpJRzrMccdJr/5BLkEddryLJAZj2DvGGvWPKST/KnrJcDuFtgBZQIw/1sSumVwfrzelWrcIbv/hNv453f+bN8w//v3fzwN38Rb7g6erV367zO67zOC60SdXQENMuDPmMPpIRbePwwo9rVDG955lctIUOcC0YeU3iMiezkK6pgBdwmRRs0o6KmdC1WCYgi66zVTCIv2k1i3Dq4YlxWLMKYEDQ2KUKnu7ZKosDnVc4or9hzC9pkWPrsvvhoHwwXyiVGJawK5Fq8e1fBoVTCukB1VOJO5/KClLZ9NWsrQBBNd9JbpjuEzss6YG4fE+9cRz1ao12kmeb4wuNyT105pm3B0FU87I5xWqa9Y1LU2f06bqMSEbERfHJ6kYu7M45tyYd/9jV81hc/Q248Y1exCo4XZrv4pLnWCzzUP+HJt51if3IH+3xBe73GX2mYNhkP/Cu49dsz1F7DdFYyHi3JrKeKDjtqSKclermOERdwt9rXVDs99t8zFVcT2Unw0gyo2ohNQLIsL1pipsgmHhUTqZPBqxAlNGal0V604u0wYSeG5BK7H1AMbspMwCBTTB/uPMlb8VWXpkGYvMZQ7YsUwe8q8p0Kj4FKQYTVIuNuHAp7XeWMirqTHu1ztTdllFfMqpx+3jCtCh4YSXhKL2+IMWd1kkMH4lVP3ut5k9Mvm43UJwRNW1tUFElJeSg2is1Y/LeNSJyJRlHtiIOIsLuIT3l3CfUOIr1DWO1pTt4YufVwZP9dJb2DwOKSERAcJWkyujUbrDbgNFrRXq9BfDNO6Aai6xpVozjGyInsLucOeZpGBjKw9ULfSE20XOtrIN+9g93jAsDXgH+dPpnUdhvRJVK2lbPoRt6bdRMo4T5b7g2LfjYhXrdybBt5TLcdIthFt7/dOTArhalNd51BUhlBwdIk5g5uK5gtX5kt4Mtpmnw3Arg/H/htwB9TSv2DV7SV83rVa6+f8YPf+HYGueVPfN8v8MLR8tXepfM6r/M6L0DCb07bkuK2Fa/hVUKvPMvLGXaVCE5+5JsxhN0WV7YYEzE6clqX1MGyaDIWdUY/k4ZApwOzNpegESu+y71+ze5gyY5bMrIVTkVC50qgvCI2hmqZcbzqkWmRnIyyiswGQpSgi2XMmLWiy8106CzGEP9tFXCdT52Phv1szjivyJzHTg1qWX/ik6CV6LuV3npyd9KSFAJpsWTwvBaMoMWnOHpNjApfSTPYKjiWMaNnG2pv0SpJc2fncQ6IvCQp+qZh3mbC0D/YYGrFwaqPVZFnZhdY+kwGDd51nsSOL3zgeU4/yws4WliUjdRXPSdPGK79FKQTQWLzZU4vaynzhixvafdb8uMkWuS7inpXUV2AyRPQ7hWbU5C0IpROXE3MmUbQmQDjesfR9iw6iM1fzAy6jbhZS+9uzeBGJBQiocgPNW1f4XsGs/IUR57yXsItIJ9IImlSYKrIhQ+29G8p8bE+stQnBfGku3ZMQmnwXmM694tZlVM1jmmVc3c1xEfNtfGEK/0pO+WKZw/28EmzW6wY91cM9heYLOJyTy8XofKiEaFC01iWy5zVpEAdZ/RuaQY3Evlpkv2shcEOpaIZi169HXT3S8XqouLwczS3fpvi9HFNdAqzioyea3jwJyPjX3UsLyuqXYmHX9soqrRlf9dSkGihvhCp9hOrS4n0RROa/UA7TJIyORM2Otq1BARp6MzlzxfrRkpohtCMRIfejKHZkf834/Vtohkn2kHn810m8R2XiZAtK90Ko24qabjMJgo7FwmJ8gKi14z2BnzDfehbRQHaZ3NqNgz+Wpfe0c/ay7IAxI7N76QpMvMmAyK7OsO4v8x6OYD7G1NKfyGl1KaUbqeU3gH86CvbzHl9OtS1nZIf/MYvwIfI13zvu7g3q17tXTqv8zqv38K19sNdxowXF7sUR/K4aSKh52j6CrdK1CPN6pKiuRDQRUDpRPCGurFMVoX8LUqqykliXFNQGLFmSyahrURsWx0Z51UnsYgb+75hVhNz+dW2LhCiNEOWuuF6ecLF/pxhVtEzDT5KoM1aw70O08h0wCdDYJ3sKNZik7oQQB9A+TXaUZ1u+f5KIUII8lzn7LFeLnnP7kdbqlWGMRFsAq/F4i7B0azP0mfMQ85uttpYls2aonMgkfVEVNcIltgtVtIs1m8o7sGtm3v0bCM2asFyqTfD6cBBNeCo7hOT4sprjoiZBMmkoNClZ/loy/Qhw5WfkXCZGAwni5Jh3pDZQLlTcfL2hmYMoxc8D/zLCRffF9ANTF6TEZ2E+agoriUqdA4vZcfOtwnlU6fn1YRMQmBCriGKZ3e1lzF5VDP+KJR3IZuJvEGkEhrdJsqTSH4itnqmSbR9TTs0kBLjZ1uKA8gmip33O/K7BjfRqJUhLCy+cqxq8Scfl/LbuaxyZnXOpC665EnD0FVc3z/FqkhpWy735ngvx9FUjtNpj+NFj5OTAaeHA+rTgnhQkN/I6N3QlPcSvUNPfuopDlv6twP9OwE369Il++IgspZdZVOJtVcBYgaLy9JgbBeCBsujSO9uwhdsAaaC4LYSko1dYAKS+GabSrG426f3vCU/3vpxr4HwfbfqzHpe8v+YJXyZCHkHqLO0SbBMRphrebyTgNhEtN1juSzrewnfl9t2kPADWafvJWIuYHkde78eQMjOdbdqq+OOa9nM2dycM8+HrNOWexmcxHy9X2fWmV4iqXmZ9XIkJfeUUg+95LH/65Vt5rw+XerxS0P+1td/AV/9N3+eP/G9v8AP/UdfeB6Mc17ndV6vShkiAU0VHTcmY3qnsWukijRju9GShlLRjBKpFyjLpnN2SDgn3tFN7dA6MR7UtFGjlKEPTCY9yCI2C9KLmBSjrGJslxgSIWlurcZoEkknlE64zJNZkWTYPFLolmu9ySaNEWCcrZg02+nk0klghiaJd69O1NHyzHKf2aqgzFqyiYJWHEgwRuQiZ2UlIaLUOppaSVNl2AbgECO9Z05oT/YoLy1RNpIqS2yEuazmEmAzawtK00qcdTD4qPFRpAS58huvbZDzUQXHwxeOefbqQICaDlzpT7k1H1MHCdkZ5RU9K9KM1+/e405/D+U1yiSMieh+y/SzwC4te79oOfniSE3GsYlcHs65NxsQ+w3V44kXHzSMPjTmgX95TH7S4/YXFbQ3MrLTWhretMLUQUxcSgFgKm7/mr7GF5bevRa7DPi+ZfJYj2asuPyLDW7asrpS0Ay1sOJjTXkgDX92KXKVtidSht6Bp+1pQqHRTaJ/J1AvNTpAcZSox4rVJUM7lGj4ZmFp+h4fNNZEUhJ9f5m1LFthrI2OhKgJaJwJnHRphPEkI2WR0DhWXhp/baVwc4VdgFsm8tNIceRxk2oz4DIrjdrNZJ9OwXdR7XLdgKlh/HRk/DQ0I2l+bAcGFRzLfUPIO8ZWQci6QVfXPBk7SQp0YLMAuxI5RdJQ3LUCYDtbQJW2GulQSAOqqdSWJe4Y5tglQq7dTtZa7mS2LiXRJJSWgUKH87s49+33g4qA3T6mDBC7/bDdtroQnM0yYfsckS2tfAYca9+lea5Z67AF4J2TJl1ApYiqO9nJenbg37ZeDuD+39fbRjTcrwE+Anz2v9umz+vVqs+5vsN3f+3b+Ibvfzd//Hvexd/9j97OTu8cdJ/XeZ3Xb3ApkZO0yTA76jOsU6fPjPhS41aJkCnqMYRBIOs3GBMJQaBvXW9/wrJMGL3MBKwWG6/YGpSN5HlL21rGgyWX8hlA59ohsd5FtiJZYRC1ThgdaTrLr5BESlKqiNOeu/WISVMKuNYRHzR916BVJNctpREEM7Yr7lQjWZc39O6IL/XHNE0qLXKS9X/Ptkh1wDyFgDIG7h3Re/ESYV+h1oAmKAHfS8uizWhzzWW7QnXR41VrqYKl1/kLg7DvPhoK0zJrCy4Wcz5y2aNM5N5qyLXehDfs3uFXj68ycI14DutAHQ25Djz++B2e/aVrxIEiagkdSQM4/lzFlX+tGb87Z/4lS5bLnEOV2O2tOKbEe0NoNdPXeeYP7XDhfaIdfv73aR79RxaVkkS+Oy2Nk2vGMoBdip5d51DvKKrdnJ2nG+YPOJqx4tJ7arKDBWFY0Lu9QvuCpIzIHnoG3URUlEZLXxqiFqY4m8m1FnMJjukdiBhY+UQ2V6AMulVEZ8R7eqlZNjKrQBZRCnLnSUkxWRVcHs44WZY03nKsS2LUVMeFOGlUBuVFFrGWcGgvdn12Kcy7bgTVqboVn3KlyEOk2c07hxAjUfb6jLVeJs4k63UALC+5TUgNCQGzWhjc6MAu5XYtrYHu9oye+yz7uwbSG521Bj+MqKg74Lp2DUnbxsUzjLhSW7C92VjiPqY8mfUAtNN9pzPr1eJCJHHv3Ws6NxK7UCQrLDiACjIIUN32k90mjaLlvT2rF994uQfVNe2CDqq7ZdtEevZjm7Yg/eXWp5SUpJTelFJ6c3f7BPAFwM+9ss2c16dbfekT+/zNP/E2njqY88e/512cLptXe5fO67zO67dYKaCOjjpa7IEDpTB1IjoBNLqVGOl2KE4BKUHbWgFulaVdOZSCQa+maaw06nmLJnFzPoZGo63EPbetyCh8MixDjlOBnmnIjSfXXcdVLcy5QjTYPkoYhtWizV6GnNvL0cbv2+qIVbHz8xa2vk3iv32vGTJtCqwRAFWcnqHHOsmI0h3YXnty6w4lAOLPfSZ1EpGV7DwViFGhTAKdxGBYgfKKo0WPeZtTR7uJtteKTVS7aLm3ATfrYJwmGsq9FWkpzadPT/cZmJrHxof0Xc3A1RuQvgqOR4eH8ECFPshIQRGDxtqA26249/kwfq4lf18PkmI2L1m2jp1SQmV0EaAIxH7g4Es8zU7kwmtOuP1FBdFKyqEvjGi414DIyyBEN13ypBct8M0vdzQ7iqs/s0SFROyIo2Q02bQlW0RMA9WuIZRGzjPiD22aRFKKUAhYTUps8UAAmakj5Z0VFz5YUR4ksqmwv26uKG467IlFzS3VLOfoZMB8lROS4rnDPWbzUjzdK8fiuMTMDG6myE6EbbdLAcJuQdeQqGiGitW+YflAweKhAdVV+auv9ImlxS7FgzubB9xKNOim8yO3ddowsypCW0oC59o9RKQbarOMXXY6abOWfawlGZ2Uw61tPs4sYyGtJR9OdOVmIRHuIiVJ8ly2lXhEJ5KStUwk2SSA/IzWOhl5HL0F26wdR6xYN65dS4CNdaIAe9mXZi/SDtNGGrNeZ3Tbv2RT9znpgHXsgLjb6sZDGWlHgXY3Ul8IVJcDq8uR5ZVIdSlS7yXa4TYt85XWK06aTCm9F7EKPK/f5PVlr73Id3/tW3ny3pyv+d5z0H1e53Vev/HVJsNhPSCbKAnSaOWH0VYRXyraEYRhRLtAaA3VNCd6TX9nxWh3Sb+sGeQNZd7y2p0DfBDQfHAyhCyKjV5SxFbjo+ZiNmNslzgVGJiK0rSiby4CyitC0B0wF8tA0wFNqyPLKI2ERkvDZkyKOlh6tiHX7aZhEujSJhOF86wqh1mtKbszVFknH9kw3EqJL/dZ0G0tOLd53ejJGb4Wv2fMGpkAGuanki65ihmDrBZJSdCsvKOJRpxLOmZ/nU65Pr7dwRI62U3lLf/HC6+niRafDDFJw+DQVRu3k7c9/AKxSMSl7Q5FYW3EXlty88ssFz7osU+JnOJ02mPVOvpljTERZRK679GlJ7nE4a0x4XNnnXY2Ue8YfGklUlxBdLoLvIlkJw2jF1uRSUSo9hKHbyrxpZHwnBBFD952DiZNItounlyLs0U2DRLKkhJJy3UnvtNK5AipSzltPGbasPuRit7dSHkvkZ1CNoX+TUV+ZNBTSzrKqY5KZncH1JMCv3C0jSVFjVpYigNNdqrIZpKOud73kHdgN4NkJQa9GaitjCPXrC46jt5QcPp4QTSK7KShd7chnwXsKmFXEbfoUjiTSE58iRyzUxJmk6kNAA6FbK8dAKpresw6r+teN2viRDLS7ETRXtt0v9xDQX2tJfQ7958zvtpra741q6zCVv4izLXaSDNilohFIvTiRvudTNouGzr5R9yufAPU1dlBg7DqZ5n6s1ryl/5tGG8FhO065ViELU95JOWRWEbiIBAGAX8WjF+MxJejETlTLydp8s+e+a8GPg+49co2c16frvU7XneJ7/rat/LNP/AevuZ738UPfMPb2TvXdJ/XeZ3Xb0iJjvqw6pPNQMWEXUkgB0piuZtRImURgibVGtVo1E4gdy3OSBPkndmQcVlxUA3wne45VBbXa7g0nHO8ELZ1HbO+Y5ZoIm2yDG1FSCWubEn3MklwHIkkZe4zljZDq0hPN7TJ8FD/hNurEbqbT162jqyzAdQq4VTAdPKSZZtRWM+wX2EaK5HmMYpUBLbWgDGxSYFJHztPrZTaxKProyn6YET/dXPqo1LYQN+5acxFVlIHy8hV3PRjAKZVTt9tCZW1b3lMisJ4fNL0XAtZpAmGK/0Z73v+Ye70RwyyWhIzgxNHF5UY2QqjEr0H5lRPjwg9sSdMSYnn+AMVd99Wcum9nluDnHi1YrbMGfZqaUoNMoORFZ7gAu0k58rOjBd+7xWGz2h8X4C3W0Z0vWbwI2bVUl3uMXnUoVsoDxTNCKaPR+o9x+5HNOW9RkB6JuE22Tzii4/lFpOBNteYtusT6EBpNlPoOqGrFrVqUEqhG8/OyYo4yPB9RzOytD1FeQTLy5pmKH0GawY5XKnxCwcqifPJnPukGWaVqB9QnYVeFyJz5m1fR6ubVaRXRdzKsLxouP2lOcNnM/bffYQ7sfhxLgOG0hBySZRc65dVSkQlA4noOnCfJwmAiYp2GMmP9JYBzxNEhQ5d4+DVithq7I3sJRppRVIJe+AIZSKMPAHQK7MB0pvGxe4zIgMptZFubBjxzqJQt3I9qPs0J9256Jjp9fNrmVFaDzZV6nT+IDsift9r6cmGHU8d0NZbhptGbUG4WstVRFpGlHWjuz8ln80UlTyXzrDyL7NeDsM9PPOXI5rud7yirZzXp3V9+esu8V1/4q08eXfOH/7On+X2ZPVq79J5ndd5/ZYoRR0tN053sMtENo+oJnaso6YdKEJPfmlTo9FLQ+oHjAsYnehnDbn1LJY5g6zmcNlnXFYs2wy8YtiveHx0wLCoSbVmsig3OmajEk55xmYljiRFi/YC1EOUBkkfDcuYbSQYdbRM2oIQRZqxBvBu7XFN3LDc85ATu8bF2bxEV2EDtDdHr7U0SFojzxmzZblhC8I7WYkymjTqUxxofDCiIY5KZCUuoivFrM6Z+VzsALv9W6xyFq00VTadX3no9j8znjaIDCYbNlStZeBqsInnn7uIVZG5z1kFx8VszmcNbrEIErTz5su3CMNAmghJI42snrxoaR9bcfJay9V/kwgLaWqdr3IGZU1etESvCU8OUE/30X3PndMhr/mcm5x+tu+YTQiZNDCGQnP82SXP/OERz/8BRduHvQ82lPfiJvp7dS1w8jrD4oGc6DShMOJiAqzdPdq+IeYK39MdE6yodhT1joBtkjDDoeh0yXWDWlao+RI9X2KOF+R35vRfmDN6rmLwYs3uR1uGLyTyI0VxqMiPFfZmLrMPQbTaSQvIXlv8ZYtEeVccRsp7Im9Zu3qEDKpdxXLfEgpxbskmnp2navY+EFheVdz7oguE0tEMHdOHcmYPWpqhAP61hR3IALbeg/kbGlYPt9SXAsWhWGyuGyPXkhGRjySaS57x649kJmJmiVnXWNhuQ2Lo9OPZRJEdWPI7DjsXoBw6RjjaDtiu/9ZNjGwZaO1B19LcmrIzrHPHQsdCJB9nbf+SQR4zdGC4A8oqbZoz1yE7sRCWOllZPjmJdY+9IKx6J1dJOoGRbaVsC9A3tR5t6G6bNoKLLx0bfMr6lAx3Sum/f2WrPK/fjPXlr7vED3zDF/Affv8v8s6/8XP84Dd+AY9eHLzau3Ve53Ven8GVEGC6uNNnPIu4mYDVUGjanqIddEyW16hWyQ+tl1+5nmsZZytuzcfQ2d5lJjDIam5OxpCgcJ6BqdkpVtyaGdqh4ajtEwpNoVqcFhcSgDJrWXVTzEfzHjuFxDqLhV7sgLfCatFsWxU4qXsAG9cP3YXKtNEwa4uNFV9bWVRq75eTrK3/OreSjU2gtZI2+dLqZCdhmFMeJJZB09tZsUwlNBqcgLaTSZ8Hh6dE1IaFj0Gzat3GNxwvNoZWRw5WAypvyU1gd7hkXuX4pBnsL4i/sMMHBld57MoBMeU87S9yLT8l0565z7A6sP/gKScf3qOeFBQ7FTFqcucFYL/e4OaOSz+tOfidOa5sWVSZNKZmEd9PjD+qcR8tOHxrxOwfM7g6Z+b6LK4bRk9q2gcrbo4cdg6jJ2Hvww325FS8uhnQjBzVBTlFy4c8vjSMn3bk04gKacOMRqNoe2zeg7YngFsl8X1fXlZUn7Uiriw7v+IYPBOhs2lc+6ILyZnQTYueSJaFu6MobpVUV3u0A0NwUE819TyjHSWyU4VbCJi0HZcVMoVbdk26oQP5A/F4NrU0B7ZDxeFVRzSO4jix96Ga8QdOKA8HHL6xYPlAsQ2/8VtWWa17cztwq1vQE0tyieKODPh8KYxwfMuM5qBHdigNoelCg3WR4xs7MpPUrWfTvLqWWfvtdSwBOWkD3lWr0avuw90x0jqw8axeN8GqtRQqybWtV12fQpdUo4KwzapVmG6WI9oktn5r95GOIScoeVu7z9sauKt2TV2fYcTX+67YAHRgqyNX231nLW9ZL68SynaTUC/tonwZ9QkBt1Lqx7a78rGVUvr3X/HWzuvTut7+6AV+6Ju+kK/7vl/gq77r5/j+b/gCPvuB8au9W+d1Xuf1GVoiVcgo7lnsymNWnpRp8UfuK2LW/eCtmTGb0KVINHquQavE8aTPcLAiM4HKJzLtWVYZZuAZuIY6Oi7kC8KOJzORSVvSJkNP10Q0Y7NEk9grlxx1rJnWiWldsJMt0dGy45YMTcWL7S5NMBt7QABnwobhXldAU5oWq6MkUq4Mqq62Wm3vt2z2OmlSKUmY3DRQJpkiX7PcSoO1hMJSnEYOT0v6uyuUi1AZUuwa26YZJ3WPed0x7N6QkqJuLY0zmNh5rQGXixltrnlhtkcdDIX1rLRj2hRc6C+5Z3bI3t/jVm/Eg+MJTTL8wuQRHu8fsDKOSVvyJVef4cdO+ujDXEJpCpGulFlL2oHTNxr2flkz/sWcxZe2tK0htIboNeSR6WNQHGgu/7zio+ZB3vaWp3jv6jrZ7gr/cCQd9Ln2U5BNGlTsvLljiZnV5PdW9IaGtm+olMbvt7R7isXKYGqFrQUXHb5JURwr3JQNgAq5ML1unjh5Q+LSG+7h33OJ6/+iJn/hQCwcu0reC/AOEbRCZRkUeQfeE3q+ovdsQ+znxNxK4+fAsLxghKGey3uYjNqAUNhKJOjAapsBSUC3WaZtqIuCetdhFzm+MPTuRdGdO3W/FKVLUFy7akTTRbHf05tZg+VVaVwMFxt6NuJXnQQjgLmdYxqwURGNNCGqAMWx2iRBuvk2+CYZCLkwy9EJqNZRdfpqkXqYswExZ5olJb2RjdOIjh3ONRDzKMx1qzZOKWvmWnvR3dNZHa79sJNWW1eUTTR8B8A3unAB3Srcf95EQsJW5816m52sZA22TZLPc+dB/2vJcP9Pr2xV5/WZUG+8NuaH/+Mv4mu/51380e/6eb7za9/Klzy+/2rv1nmd13l9htZR3cNNRXOKUvjC4EtNO+jinF3XmFVrkkv0hxX7vSUDV3NU9VE6cX3nlJV35MZL+Iw3aBPYLZbkHYNtyoBSidO6JKDJVCAQccpTmoaBqwllBJ14zd4xsybn9nLMg/1T0WeTWPgcnwyZ9lgtement2B7rd9uMZx0Pt25kehxQABbF+uu1lrutSf32Uqxk5aY+/Tdqsi75MRIftPB7gqbBVptIShSHrETw93JkFGvop83nM5lP+pWpDKhC+5pouWgHpBpz5X+FI2kUubGb85lM06UB4r5zRH1YIFWiYPVgNO6JDOBTHt8NDxy9YhnT64S5xbdq1FdY2nuPM1uzclnFex+AMwHB/CmGRBQJhGisPz1fuTOw0LPvjjb4fLelNNFyWJaoBcG7SO+32mElTQTZgrs6YrBcwuCG5CMBhyhECeJekeRvxAkvfKxFWHRQxeqY5XTJp785E2BR564y9E/v8bVD7XYWS3vR9uSqmrjbALIgElnMkDygVRkwn5rGTjpVYuqPGYGbp5h546Y6Y6dlaZP7RPERMx0F+KjsCthwKsLMqvjOl/u4ATUaZ/QPrG8VlIPzSZ+nQTGd7MYUd3HRK/5YrUEX4pevBlDdtKhysOCaAryzrd6bY/XjhK+H3CnGt1Kg2Pb69jtJM2WIV87fqiN7lm3kKy6T3O9GVh0euizEu31vq4dUdZMvYqgm60UiNSF1cCGYtfNGZaa7b5HlyQQim7fwlouIxZ/kt6qNqmR90lY1paE4QyKNmfe+6REdoMCnVDm/kH2y6lPBrifTSm98IrXeF6/6euxiwP+wZ/6Yr7+b/0CX/d9v8D/+AffxFd9/vVXe7fO67zO6ze4lFI7wPcAb0R+/r4ByWH4+8AjwHPAV6WUTpRoIr4D+EpgCfzJztXqE1ZC8fxkl2ySMJUkDMZM0/a3Uc8oUI1GNwp1qWWvtyK3Qpndmw24OJ5zIV/wbH2BQVaLLjlv0WcamkrT4DJP8Jo6WE58n1PTo6drMhUYmJqhrUl5BK+5XMwYuYoPHV2ibxuu5hPqZLdpjUmhSbQdKwwCtusocepOBxZtvtFQ23kHIIwGD8REIna2gGL9R+pcMz5JfF3KnbCaCnq3YfE6gzYdG+g1yUW0h2qZMe6v6LmWuc0xJtI2ljZqcrbHsN4/8ByuBozyitK2rCqHMp54qYaDgvKm4cb+Dg/tn9wH2ns2cms1orQt7LSoiWM5zxmNVjTeYE1k0K+YXYZpVTJ+MnF0sUdxdUGMCd2PtDoJUbwy9J913Ml2ePT6AeEDI3ioIeaR49db+rcS2UJATtvTVDslg1uG7N6C4XMrki5RnTWFboSBnV+xZPPEsF/hYw8VkoDCrpmw+ZwFV3bmnP7INUZ3Atmkxdw5Ic3mpG4QpJzdgm5jxKoxz7Z6/JSEHbV68x6SFHrekK+dvyJgFLGUcBzlI6oNpExmLJJVtH2LaQzRiC93NgvoNolVoQZfaKJVuFVEt+JPH/L1AEL02huXDtM1S9quEXSSaIcCNN1MgHd0EpqTDJLY2KHBmCXyQ4NutqB+c0lq6Rc0tdqExsBL2GWlNsTwxv6vY6dVFzATsk6jbUErRTJJADHdcvVZ6Um3bdX9E7fgfw3oZR+65eNaqiI7oTyi906dx7ZX25Cb9aoTqKCJeafnXgPxswt0b7XSIgVKXePvK6lPBrj/N8SRBKXUP0op/aFXtmpQSv0e5AvYAN+TUvr2lzyfAz8AvBU4Av5ISum57rk3A98FjJDL9fNTSudZ5L9BdW2n5B/+qS/mW/7Oe/mv/tGv8Pzxgv/id70OfSag4bzO67w+4+s7gH+eUnqnUioDesB/A/xkSunblVJ/HvjzwJ8Dfi/wRPf3duBv8CksZFNSTGY99uuEbiLJaHwh2tqYdY1RUaEaseoaDlbkRvTT06Zgtcp4YDRl0hQ4EyhMy73lUNIPux9Jq6WRschaFj4nRM0sFExjiVPir71nF5y4HqoIqJOMF+a7XCznjIqaKsjP5DJkRBS2a4qctgXHpwMeeuiE0jSb7RW6pU1iTRiSIiWFW3QHvJaQrL9HY9xoitf3ldEk//HZs1TkgjmMojxKnCwyXK+RBq7GQN55ES8tVeO42FugdRTf8qCpW4vTEU3CmbDx6l76jJ5rsCpsjgNgvLOkdpKKGF7sMRsuxXtcR9poqLzbLHthb87RbJc0zajLFmdlRiF3ntirme47psFS3jIMH6voZw0ny5JJazA3C0yn4XW3M9zDQRr8nstpB6L1njyu2H8/tKVGpYTvKY4+q2Cw6xg8NWHng55s3mdxxQhrXCXcSsDT6dGA8aoLgQlJ4t6/YIJNivm/vEw5S+THHnfjiDidCcPdzUCkEAVku0yaWzMnj2sFdm1+rUhGSaCK1hvwTUqiI48RosJ0IDvZThNet9jGE3oZ6zO5buhcXLZdE6Xa2PltvJ8193lTh/x+ELoGudGJBeEK8P0gwDYp1KghRUVaWdE5r8FwUJhKUT3UQK2xMyMa8GbLCqu4DdzZOJecuVyjFfXT1nWkC/dp2Fj35V2ja70jYF+3688A9wXdbJjxMwB4/ZhaS1dMN1hYg+81EFfdemP3YLfDG2Z7rd9OW1mKRL53TiWm+1vLUxRyztbH+soJ7k8KuM8iq0df6YqVUgb468DvAm4A71ZK/WhK6YNnFvtG4CSl9LhS6o8CfxH4I0opC/xt4GtTSu9TSl1AAjbP6zewRoXj+/7k5/MXfuRX+ev/6mmeP1ryP/3ht1A486lffF7ndV6/qUspNQZ+O/AnAVJKDdAopd4B/I5use8HfgoB3O8AfiCJ193PK6V2lFJXU0q3P9E2EhCPckwtP2rtwErqn+t+FJPoOE2jaC94+nmD65Ik780HFEVLadtNzLrVkVmVozqLvso7Ct1KWqTzLHVGEwzHTZ+HckNAYUj0dC2gvN8QbuQcr3q8effmJs7d6cC0Kcn01k7v3rJEqcSlYr5xJolJ0SbDxJekpMRqj+4H3WoIcavTBlIM8kN7RlqSPo4t4NqXO5VbgGvqiD1wuMdXtHoLKHyZ0EvNfFFgdwPOiA2f0onGWxoroPqx0SH3qgFNtNjOUxzY2Bu20bDTW3FzkHAzRX6kOZ70ubQ7E/9xbzuGX2Lkr49OOB73xZN6nmN3llSNg6xlXFYMr9c0DxhOJn0OP7TP8bUlSok1YD2MqFZDocimio989BqPPn6HZ4uLDN+XM7gZufUVnpPaUR6IhjZakTccfbZh9uAel39+xuDDxxQHfVaXC+qxptrTuHmieEGs7WwlzLD6vx2zPByw+27XpUt68hdPSJPpFmx3NoxKKTYhRNZume314Gl9X2uRZii1AdTRSWpmcJpQGgH6WmYoQibHsGGoQxJJRRIrQ7uK6DZ2wFVYVd2ETQjQfZ8jI4MQFTpwqpUE+RSG5aWMbBYoDipJ8cw0vjAiackVbU8TLfieuL+EHEztNmhadQ2KIT8rFhcZiu9HUj8I7R22emeVi2TIGLmuYqu3jLBXqEaLhGMtOWkVuladREXOg6R7pu6cymdIt50G3ryERe++S1TcuqFsBiBGtnkWYHdhsOI/XiY2gq61ljtjKydppZ8iQWcVqDog/rEf009Vnwxwv1RS/krrC4CnUkrPACil/h7yhXwWcL8D+O+6+/8Q+F+6acnfDfxKSul9ACmlo3+L7Z/Xr0E5o/kf/+CbeORCn//PP/swLx4v+Rtf81Ye2Clf7V07r/M6r1/feg1wAPwtpdRbgPcA/xlw+QyIvgNc7u5fA1488/ob3WOfEHC3ybBzaHCLFhUTvmfwBVsgshJBatJg+y1aJayKLH3GZNrj4p7EtLfBMMhqAEJSFM5TtfLz1kZJmLQ6dr2JSWzzOru/TLc45XEqsDtYcs8MMTqya5csMrG/W9viGZUoTUsdLNMqF0/pDpgYFXGdS8lx0+Nw2ePyYM6yzVAB/MBhtBJP7RTYNEq2cQu6tQCnpPRWx03aOpT0LNEIm6qryPhJqJ4Ak0Xp+apEVuLmRnCDCZTOU7cOYyJ15XBGmOdfPb6KM0HkINDJSyyxo/CWrSM3Ad9L2Lk4dMSbJc1I3DmMjhIolBR7xZKYNNcunnLj6DJMHHXp2B/P2S1WZFokK6ezEj/N6B1qwqKPe9OEGBW9q3Oq1RA9FcDUf85ycKVPf7yi2svwhUYvBTzVO4reHdFgmxpCCbNHIs1wyJV35xTPHDE8XVHu9qguZlRjQ//FxPKqwq4U4fefUDWOCz/r0B7yaaT3/BSOT0lhbe2ht7fGiBRofYsAXAHYAqxDLyNlErZTX8hpBp1negC7jJgqkJ22lJUHH1ExCnBeD66UEpB/tvSWJSem7WzI+jW20/cbLaz6Ri8NGEXoZ7R9y+BGhT1ddZsR4OnC/ZAuKUVyku4p8pAObNdBrkcjQPMs2BeXGDb7lLQMNLa3mujMtlHUqk2j59ovPHYJmKGQVUW7ZeiT3R5P0tAOktjxeQVdYiWIRCRlUVxV/FbqoqLaNEJudO2JbvDAphlTt1tWPRQyq6ZaRUprb3B1n5e3LNit+xU6lXwywP0WpdS6p7fs7tP9P6WURp9i3R/vy/el04ubZVJKXik1AS4ArwWSUuongIvA30sp/aWXc0Dn9WtfSim++cse4zX7ff7sD7+PP/DX/g1//Y9/Hl/46IVXe9fO67zO69evLCIr/NaU0ruUUt+ByEc2lVJKSqlXRMgopb4J+CaA/NIINwM38xvGLWadn3A31RtyCENPmXlM16B4dz4ktprMBJquo0qrxLzNSUnhg6ZwXjymk8ERyK1HKSisx4X8LgoAAI0WSURBVEe98dbWiDVgzzTsFivu5InZKqdN4letO5ANS25X443kYrXMyYuWvAu9yZXHqEhI4lASo2bgag4WAwHcpSHLHCyrjrHuAJc2pNiB7s5+Dq3Ar+fjO/CTZfjSdgBGXCXGzzacrjIZlGQJVYvzBwl8ZaUJ0npC0OR5y2JW0AaDiwHXsdptMBvwvPKO0rYUtqUOBmcC7DSk4wICuKnm8GjIeLykRTTaQUeOqx4hKQauoXxwRtsavuLRj9JGw3vuPghA7sRd5rQ1LF+TGHzUMT/ss3dlQtU4zPUl6SN9ohHv6tndAWbg6Z0qllejgP6uqS4Uwshm00R0inovsbrueXHo2L9wmb133cHe8/RnGfm4ZP5gTjZR1F85YfXUDhfeJ24Xpk4Uhw3qdEYKQVjstQe66pohtREpiZUBUewVhFFOO8oIeSclifJ+9F6c059U9GMEv22EVWHtUqI3gHn9WPehWH+gNvc3y3aAVsXUNYaC8uKYkrQAdaW3602Zw+8U+NJS3l2hGr8ZGJASqg3dchLEpILozlUjgVNyHdKxxN01GLeSDwCMgO9kzjD8INp0BKjLMaxft72Wk1Jn1ptQbXdunAxgVOxcSM669yi2sp2UiFZvwn6SUfjCSmJmIWmdMROpSii6PhAQS1HdUeI6iUd6raFrtlRRJDWqldukRZ5Ft+1NJ2pUrzjwZl2fEHCnlF5N3YAFvhT4fKT55ieVUu9JKf3k2YXOfnE/9NBDv+E7+VutfvdnX+F/+5YB3/SDv8gf/5538d9+5Rv4+i95ZOsfe17ndV6fSXUDuJFSelf3/3+IAO67a6mIUuoqcK97/iZwtrv6we6x+yql9N3AdwMUj11LdpVQIdLs5PhcdUl4W51lsiIhGJQ1pW2JKI6OB5g8bKwBtUqMXMWz071uG4pxUXGlmFJHS6sMVkW0TmQ6kOnAxJdUzuFS6BonKwrTEsvIcloQUYxsRd11k522PXLjO0Zb4ytLUTYcN30AWmModNsB78SwqLmUz/lAfYUsdumB4x5mVZPaVgB1TEDnj7b+Ht2w3GfYTKWgLARgrAEAkN+YoG5chOsrSZrsMHyyQK25txigVMK3oilPQdO2hkpbAdNRE3VEdVHvthPjZkZkJ6vWicwmyzFVJzm5m9MOajIrA6A2GJqkUCpRli3vfPyXef/kAf7Z+9+IKTz9Xk0Cyi7mvjeomXvN4uHA4COOxVgGSb2i4fRSQe95i5slsnuWMPD4Hhvf55hBfiJezOVBojzy6NYSrWH1oISZHHyepu1d5eJ7JqhlTTZdMp4POfmvNfXdAY/904bVvkhzbBWxJ6utbhtQmRO9dpEL+NaaVObE0hHWkp6UcJOGYtVCjIRBLmBzvtqA4Y1Of/0+ai3PxZew6Gvm+qXv9/p2A8DVx2fCu/1BKeIgpx0XmMpTHk7vW3dSSpxxuuVV3XYOOGn72Dp0Kd2/b+L2oT5me5tag/54/yBC+XTf/1NM3VhTBhBnU1XV2nIxpA1AlwHGmUFHtz4dAlnTXexn9msD5jsZTNJbCUooNL7QJKNoBgrfU/geNKMOmDtIxToqU23Y7HWw1Da8R20cbl6pjvsVJsG/ono5X77rZW50uu0x0jx5A/jXKaVDAKXUjyNMy32A++wX99ve9rZ/uyHHeb2ievzSgB/5li/hv/jh9/Ft//SD/MqNU/7ff/BN9PNfz0vpvM7rvH6jK6V0Ryn1olLqdSmljwBfgUgCPwh8HfDt3e2PdC/5UeBPd/LBtwOTT6bfBkheHCWS0RtN69otwa5Ej2yWmnRdHDcyHZi1Oak2jHYW9GzD0mcolejbhtN5b6MbdVpcQ3w09G3dsbgIsNSBgCacsTkoVMulYo7ut8SFY+JLDJGRrejpBqsDC58DsPQOGmHRY1L4ZIAWpwJtMtTBEpJsR3dMWTIKP8hQO0P0yVR+z0MQT26lSSq+RM8dIa0BQCKVeQe66EJUPGqxYvCCYnpNWLekgaAIhZy3ZeMYFXW3CkWKCt8YcS0JBkzAR40xEaOkGXITltPFuJd5wySTqXcimAoWxyXu4pw2bM/f5128xV624N3HD/PR25cwJ5Ywhny8oPWGxlsy6ymzlqZnaZKi3tPEF/v0HhOWu3dxQXs8Ij+F8p5icslS70aKA83qgYCbaqp9GZQ99BMLdO2xyxwVc2JuqK43pL2G415GMmMu/OoSe7Tgo39yiLoFr/t+kSD12kg7dGSTBn14QjzTJAkIo+0ssVds2F69bNDTVTe7EDdsMynhZqv7gCtayfsHWyB9huW9r7ptJq3uA6EbVlyrLRue0na9KXXGHUrca3YH0pD4wjFqVd8vSdEatd5u+DgosQtfkg+eJfUK4rDYrgMIpUO3QdhrDbFwRNcx7ilBSEiX83p2SnoVktFblpitCkN7kdWoTsKUUMK+R1DrWZy43X9pkJR1qTUg1118u91eh+tKZwcqgK4jWSuvy087TG0EREcrEpek5XuoLRW+r6j2oNmJxF4UCUsE1epNGM8rm9v79QXc7waeUEq9BgHWfxT46pcs86PIF/bPAe8E/mU3RfkTwH+llOoBDfBlwP/867iv5/UKalg4vvNr3spf/1dP8Vf+xUf5lZsT/tof+9zzkJzzOq/PvPpW4O90DiXPAF+PQJAfVkp9I/A88FXdsj+OWAI+hcxMfv2nWrnqoq/bkSU6tWmQQm29fkM/MuwJYI4obp+OQCfGZUVhPItWnEcOqgFNZRkMK0znpAFsAOTmloRTER814UznU6FbhrYiL1uqScZhPWA/n2O6lMmmGwloFTlcDVC13uwTQE83G9cTrRKPjQ/p6Yb5SY+R6n7UjSIMc/Qy24KlNRhLkeTP6rk7ZN0xf+tGsdSRfmbaQAjsPNVw+jaNslFYbq+IRSQ7MKyWOXs90e+2rUG7QPRawPc6lS8pQtccKhp5Aflru0MfNWEQMLXZuEmYU8tymLE7XPKGvbuM3YqnZhd5z90HyWzggQsTXpxkqMowWxbsDJYs6gyjI0ZH+mVNW1vaKy3lsxmLWUFWeGLUtJdb2uNMItsbTRx78o866n1Fc7ml93RG/yDR7Gb0nqvIKk/fKHyZEQpHe0Gh+p7jL4Ll1T7VdYcpax7/K43MHDiDWbWokHB3J8TZXC4A51B5hnJOnEhCQE/mHwuQQRja+iXM9Fl2+pPN+sZ0/zrXAHut6V6DzI5FViGI5GhtIfnS9XdA3RzNoG4kpGfNNq893tf3z0hUNvsKbBJPu+XVqkZbQxgVJGPkMiwNvmdw03YzAAi5eImftdhQXQOoNIGK/nvddwB0wTXgpi3ueIFqfScX6Y7Pmg2bH3NL6GeE3KB8xNQiY1EhbUC3OitL6ZQf0W2B+QacK7W1Eey+YyR4SHV2nHIebZWwFahDGD0nM1PJKHyuaQeKak8RyoTvdZKTV1C/boC702T/aeAnkGHP96WUPqCU+jbgF1NKPwp8L/CDSqmngGMElNN5uv4VBLQn4MdTSv/7r9e+ntcrL60V3/oVT/C2R/b4z//+L/EH/9ef5f/5+97A137hw+cSk/M6r8+QSin9MvC2j/PUV3ycZRPwLa9k/SpICEnIxClh7Uyy+eHUoHcbcuexKlJ7y+q4JN+pGGY1S59JSIuVsJYUFaZLdxy5iuvFCVV0TH2BVonUSR/WDHebxKnEESlUS6FbRr2KKvW5uRizn8/FbzuJ3CJ032037u4CULqWTPuNe0mbJIVyFRx72YJT38Pdc8ScDkRByjRx1EOfxs4Nw0Bo5KBjIuFRSqG03nhBy7nqmGercMuIXgpzXb44Rc12Mfs13opDScoS2iuaaUa8oCh7NcuFgNpqKi4ua8I1do2PKAHXHo3VkdK2hKhptEEPW9KJ6ZrMFO1O5I1X7vK5Oy/y7pOHefethzZBN+vQm/7lBctbA6ppjh4u6OcNizqjn3dJlP2ausqoLgXszQL3+lOWy5z+7grfyzANuFNNuFDj+xmQuH79iJMPX4UEx693RDdm8OSE4oVTktkl5BmrYGlHEaWheWLFxd05+ffsQWzw41xY+mWDWTawXKHWgxsrcCjFiKobCSda/5aZM8jq40k6YAuGP/aDcZ90gs6nmxA/ViJy9v7Z9FHvSV2DJMagrN1uK0Ro2s32lbVbl5UuZEmAfNweT+eqsglcWjeHro81RtRkjq0a4rDEjwoB17nCNHETPGO6QYcv9WZmShkAYX91mzbXLYjUqc01OiTqCxl+sEf5/CnqZLoZgMrxdQ3ElUXFRHQFy8sOFTunmVzAc3HkyY9rOOvcYpR4alvdOZV0AxfkPKybOmVAKzKV6BS6a7AEOh/zDqArseE0TcIdJPp3u4F7mziYvDKK+9dVB5BS+nGE9Tj72F84c78C/vAneO3fRqwBz+vTuL7osQv8+H/62/gv/8H7+As/8gH+zZOH/KV3vpmdXvapX3xe53Vev7VrE5zRTQ93kgno8GeWcHbrDX1nNgST2BmI80UTLU0w7Jdzbi9GpCDsbS8T542QNE6Fzo3Ek9Lal1u8uZcxo00WQ0J3jxkdSTYxrXJ8NPRMTdtRWTFpYlKkhYW+p7Qtptu39TIBkZzsOAnZMdU6FluYNOWFZU1ljgpR2LXYxbyTRGKytp87A4Ji6cSf3ICbCygkJdTJlP6NfeK1llBq1CKTRrBMwHflLf28YbmUABzZhKYxFmci6IiOGms8bVwfpzSLRqSJruw1tLGg3gtcevyIL7v6FO89vs4PfeStBG+wTpxPfCcxaYJhf7DghUGBWlgOJxJQZFTC6UijEpkNtDoSh560FJbbuEBVOcIDHruyZFPFvBaGNT/STFYFq6sR3WqKo8TismF5YY9LP3dE+ewJobhAMpaQacJ+w9seeYH3/MITjK8oVOxv2Fc7q6Xpb9hHWSuJkkpDDGLNuLYBXLPBL7FrVGfArHop43yWQX5pgihsgG5aA+CzDZPrMmb7+BqEh0BqGtTaA1yJTeFmP89oxbdgPAhj7r3MoMibu72uzujMlT0DB9evrxt00+KqFtKA5QMFvjTithMEvCofMQ1EK3KMtR2fShDcGeC9HuEp8HnXHGkU08/eo7zTJ3v+ENp2K2/pehn0NFEsG7IDh9/JqXcd0Uifx/Kyo961lAct2cECVfuN7tysj2HNmK9Zf62Jmdk4qsixdm5ISs5JCuLhnTTSxK2676d1bwXdjNUrzCU5F96e179zXRjkfO/XfT7f9zPP8hf/+Yf5PX/1p/mL73wzX/bai6/2rp3XeZ3Xp3kl3QV7OGSKdi2F1UhUuQ1kJuCTZrXKcP2GwnbR6h0WGbiayaIEldA60ncNfSsM8FrysZaYWBWxOtAzDXV04mKifOfH3TDOK25lkemsB1egjZZVcNTR4JOm8g7lFXa3Y2pNS0839HRDROQZPhl014Boqo7QdGc0uikRiwzdetQaYMeEiEQ1yXvUmsnUmnDlAtPHB/hcJDjZcSXygbYFbRi+EDn4HGH4kxadacgTplIcnw4wNogXct6d26iJUVG3ll7e4KNGKbOxXdzIcRA7xb3+kktfdpfXDu7xK5Nr/IOffTt2ovHDSO/aXGLFkyJEjdGSwKmA/njFfDmgmeSsuqj5o3mPIpNgnLxo8Y3B73rUSYa7NqeuDL2LC5rDEdmpQi0s0UlC4vSFEeUjM/wjMD3os/dLhpjBzX9vn6v/esLgyVOa4R7RaMrPmvLLN64J0z9SrCpD7zCgErS7Bfa0RjedIXNK0NQCQI1BrTXBa+ePM64aaLUFy+vn1gzyWbeQM2A8rUGz9/eB280yH9d7/eODueT99j/d+nBWwLe1L9GSa5RJJKyw5I0M0javOystWTP9nec7mdsck6pq3J2A3ckk6ZRORrKWqfuEW0aSFq/xtTG2DgJQtaVLmkwbO77otg3Si2sF7fgqveemqNPZ9vhiRLWelBI6JbJ7HntqCX1Hs5NR72iagaIeZZgHM3r3PMW9JXrVQus3gyV91vlEayRzEUztISSay31WFx22ipguyVO3nVa91hinu+Nmw3qnT/D+fLI6B9zn9WtSWiv+w9/2KG9/zQX+zA//Ml/3fb/AV7/9If6br3wDg/OGyvM6r/P6RJU6/92P9zXhItZEnAnM6hzfGoYjSZsEmNYFRkeq4FidlOhSdMBGRwHCpmYZciJdjPkZ39yQNG00NMlSpBY6hrswLToLhFbTJs0yZsyD/EBrEqd1ia4VWRYYuJq+qemZZsNwr5cb2Yp79RCzgmZHHleNxNdv9Lp5Bj6IhCGGLePYATjKAr8/ZPpYn7Yndon5ccScdNGVWrY5eH7F7ZVD54GUJcxcE4qEXSjapcWOvejhgwaTCF6Tsu25ONssqVTCR5kpyK3ngf6Ea8Upzyz2+aF3fSHlixZXJkIuNoGrnYy8bIlRgFjjtx7do7JiXpaoqWMy69G/MAHorAg9mfWsXMQUnrYuaduu6U6Bf7jCzUvsVIKQtE8U9wyX3jBHq8SirDm9e4niCIqjxO3fNubqv5my995j7v7nY/yyID3XJxaJUCqWVxW+bxncFAZV9Z3IcpxFUZLsll3dpEu+tM4wmhvt/eaBKLKPFDegNa091GMS9rz1Amyd4qVw7T62/AyYU0qRQrhPXrRhvWPHWq9tA7vB20bv3Z1MZTQJK3rwNWBfDwxC6Lzhz+i7O+04xsB4SCpziEmCeLxCNxHfN8S802V3DLZbRlRUtH29iZZXcdu4qKJIMyQxUsBryGQgWo8N9Vt26d/qkz93KOcqAlpsC1NKkDlUGzALKOtAfmJoB5Z6x9IMFNNHLIurI/p3Pdlxg5nVAtj1tvmSlNB1SzSZSEsyjW4i2SQwe8iyeMASXcLUCjeD4jiRzSJ2KUFEEk2vxbo0fpyB0iepcyR0Xr+m9aYHx/zTb/1S/sr/+VH+5k8/w08/ecBffudbzj27z+u8zutjSgGmlfQ/gHW88toOUGeBzArQOJ32MDYyLKSBcukzlq1jmNdM6hJaheoJmINtE6NRkUx7drPVplHQEDepkGeBcq5bBq4mL1tC0DgVmQeRllTBEZPi1tFYIrB1xKq4ef0a3B80Q7QS14+TqodppLmq7cPyWkE04sZiGgE2phnjZgE3bdCnC9R8SfIBrKW9usPs4YK2lIZSU0P/uTmqaoQ1TRHlHO7WMeb4QcxDDU3WAb51JHWlYQzaJNraol0k1gbvNcboDRu9tlMPnWxmWhVcHsyYNAW/evgGVo0jOxRG2awU0XZa1lsF6vEG740wkR3Y9kFhtGZnb8FpPSIsLYuhY6e/4mjaJ7cSLV8ULXXlYOhpZzm239LUlgt7c052CklhTKC9sNyny5IveuA5PnhyhfqSRwVLdUFhKlhd7VGPBwz//+39ebht2VnXi3/eMWazmt2drk6dOtWnivQkJBVCIAEFgRARuFek0R8gouhVfMTmXrG5Xn6Kj6hXxate/IVGAZFGQEGRvguhSUtIn1Sl+ub0Zzdrr2bOOcb7++Mdc661d51KqpI6OdXM7/OsZ68911xzzW7v9R3v+L7f73U76O8cwWVmh90MFEbQjCEUnvEZYQD4WYnbCeBTbHvdPF4GInJlZw8wEt2+7gQ0LJsPne9IuzqgNlmK6ErgDXTV8gN68UMNmBoOvqcj0+06MRqRjtHsZNrmz5V1pMhNAz6fo1XdNVJK0mx3uu7OtlCQ0RAdDSwUB8jmgcWRnPL8HFdZlTmUpuG2hEhN97VSj4RQJtvqlej0UEhKklweTyikC7zZub2kuO4G1u/ew1/aPTioCbGbEdAm4oB8Ar6KlNuOasMzO+64+JKcbJqz9uiA4dk5fr+CoDaISEMdN1vObsiixk895WXP0Q849k8P2L5DmNwW2LvTYuSl8vhFRrYnRsJ39anm3vSEu8fTj0Hu+btvejFf8pKT/M3/8od8/ff9Pt/0ulv5W1/6wr7a3aNHjyXamfqkyTTXACx0wmHx0C6yXxXU05y1o9POd3vW5CzqjOvX9rj34jEQ8FnAuUjhArlLjiHpQ0rXGBFU123DoSxiTuU8BVBIw0a2oMwb8mHorADNXtDeV18u8ZlS5lYp9FjYzSQMCOrYDwUD3zCPORemI6SV4A7EiPWkQerQVbrVOfu9btBhgY6sml4dHbJ3Y2lBHrkRziMf3sdf3jNSFHVZSZ3OGT8qLG5R3KBBvUeCEEuzB6zmOc4rsXHkw5q4nxEaT+2UPHluhxRFn7vQzRys5YuuIXRrNOOxtXX83Cwb/UKIhVJeEmazwmQrUWgaD2mQVAdHmTed1eLeZIhbnyECi8ZbZd1ZldYVgTBPOvikBW+O1xSP5aa0SYXZ7Utj7l0/xkY55/pbL3Jh7zpcDfUmnHt1xvBVF/G/dIyTv7vDY1+wSbUFzeaSRMfcI+pAM1wzoAiKzCrjg6tV3kS89UAjY1w6fbTSi7Zi3Do4hohIYo+r+d/eW0VUlstU1arR9stB15B2nSZcWQsOB/XfrRuJKlT1smLt/UGP7LJEkmzpip7gLbLMZmBEzPIvc7hZQ3OqBBGySYVfBKojJYtNT8ilq2hLVLKZyS6aoRAyDgTpxAxcCjhaRcwBhcW6UL1yg/GZEaOPXUIWVfIw1+V1ci7Jp8ClCr+rlfIyVFsZ+9d5Lr3Ik906Zu2RIaOzC/xulf72Dp5PCYo0NRoUHReMzyzYuLeh3ii49OKSvVsjYRQtLXMdZqcVBOq3PDXGfYU5kx49nh7cdetRfuGvvYFvet2t/NDv3c8X/8vf4pc/cOZa71aPHj2eKUgNVt2vYl+6pt9WipQueWl3BE45MppZYAuwtyg7h43ppIQiWZUFxyCruwo3QBUzMhfQCIuQde+LKsxjTsRRqU8pkRXj0lInowqzkFOlCvdONaS47ImFUngj5G1z4TxaBby112tTHCVaYEvModipyM7v4benuGmFzGvcdIHMF8j+DHfuMm5vxuyGNXZvXpLtbA7H3jshO7NtCYNNY9VVSFVKx+hspKkz6/3LQGprsHQNEAWNQJNkNQLitNNxiyhHBjPGeUVUYZxXrJcLLs9HAJwYT8hcJK41SGNJj/kE204AzpV4r+bz3TgEk6nUwROiYzg2vXs9y5nXGd5HQnCE6NIhLIleaBwoTGYloyMzNAfN06CjhuycDWhmTc50URDGkepYwC2E7BXbdjxRcVXDqd/aYe0hIb/k8ROHVEKzEZgfVRZbwmIrY3F8SNwYmg46JEeQqkabxs5zCEa0wchyW9FumiQVMQmK1s2yGtvKSlZtHyFpxF3XFCltVbltkG0bHv3SRaP77BZX0g63MpQ87z5TqxpdVLBYHBg0iHPIoEQGA6tut+9PpFuKAlkbI2VpBLxNzFTTX0ePSTFiRGY1g0f2GD88J59FQp48rJOO21eW5mlpjjbobG32wsCCZ2JGJzFpq+CxsHts95aMi59zHfWNxzo5iNQNVDVS1RY9nwau0pjkRSLke4HNB2q27gm4BVx+oeOx1w3Zfuk61ckxcVx28fOkBEstrBjo9+b4SUUoPa6JnPz9XW7/6RnH3+nJ9u3elGBBOAf+eT0J9IS7x1XFqMj4zq94KT/9v30um8Ocb/2Rd/GtP/xOHtuZXetd69GjxzVGW9G2BDd7HjMIA0U2KvIsMF0U1Dsl+bCmzJYlsf1F0RFbnXsLflEjb1nrOEJMceti5FtMcmJ2gPb1t9CMKgnIA47SNawVKdUyxbQ30VG4wJnddfJdQXOrDPv0+WA+3pOkF+/2cTIAjKSEAcxPDIjjAdIEZF4ZaZgvrHrnHfH6Y0xeeh3zY94GHh7WzgSOvWcHfyn5RXea4KXsQNdG5NNI2MnNbSGPuCbJchaC1qbJJkJT27mKtcN75cT6PseGU2ZNzqXZiGlddIMSgHnILXBoUVCsVyla3XS4bmG68vEjjhCENgmkCY4iC6yn0J1hUUMeYe5YzHNiFGI0wi2ARiEsPBQRnXtUhWqRU+YNzTgSsyTLWQcU9puC3AVGyWJQgsCL97hhY5f5Q+tMT8HlzzwCDk7+/i4b94E0QnnJM3wkQxQWW8L8qGNxJGN+fEAcWTW3G8y0Mg5dIdExmAVfCEsi7v2SOLdY9dpe+i8aCW8dSFpy3ZLhjny75fM26GZFs92te9jdpP38tpqdKt5aN0a6m7DcrnMmMSnLrjFXRDqyzcaa6bbT9s1dJyJVgwug3qXfa2S2ID+zzfieXUbnakShKRPpxgZ82VxxIZHu0h4xs8bJZmzSk1bZZRVyq46rt4bXs68ZsfeZ19k+qdrfTxOQqsbNG9wizRo1prO2pkcl349sPNhw7AOBYlvZvdXx2OeUXHz5OtXxMXGUE4e5uQZlFi2vZY56h583SBWpN0rqzYIjH5nxgh/f4cZfUYaPeQh902SPZyhedfMR/vtffT0/8Nb7+J5f/Sh/7F/8Fn/zS17IN7zuFvIrNaf06NHjuY+WM678jIUSRpE8t+rxdF4gjWNttLCKsagRwiisjRbMmtyqTl6tOJg8uEtX4yUmPbWavMQpi+DZyOZEFRZaMGlKFlkODhbRdK9r+cIqupgEJXORefBMLowZZuDXa9aLBUNvOtCdZsjIVTTqqaNn6GtK1xBnGa5eVu9CKTRbJThwO1NLBEzNkdUNW2a7VgqhgGJP2fio6Vh1NEDHA5hV9h41/TbOUgZ1bYiKkO864hZQRCT6Vq6KzB2apXCQaQZFJCsbbj56GRHl0d0Na5LMm66BMpOY/Lot9r0OnkFZMy3tWJoxZDMjToMLyt72gOLInBgcISiTefL7joJzih8EQuWo5xl5YfIeew0bDFTW0On3PCGPxGiuJ7rWEPcLFltCsQuuEc7urXHj5g65i7gjC+LlkhedPMdHzl2HBKiORiY3evLZmOGjM6773UuMzm1y4WUZ5Q64ymQECDQDhwuwOD5kdGlipLhK6ZxN20gqXVOjtvINEVC3dDQJwW7ntmockzfegZCbFS/slnC3hLkl2vaBB3+u6rq7bemSeLf7tOoXnt4r3pvMJS7QmJm2u3XryDxKiUSTa8jamHhkzV6rGnPiSBIVI7oe1yih9GSp8q1ObKbm4jajnQnF5SPs3Tam2pCUnmn3i59b+TqU1iCtbWU72Da0AVel8x2t8Tj6ZVjN9gsyJqeOceyDc4qHLtt6TWpELXIcVnnX1sKTlK4pigQbuK6dgelxz/YLYfuFBZt3F6w/XJNNgzWdtqddTXsuCn4RcCFSbeU015cMLtbc8rM7NBsDzu/3toA9nqHIveMvfcELeNPLTvH3f/b9/MP/8UF+7O0P8g/+xEt4w529hWCPHs83CEuyjbMql59b1StP3s71PEPLwLCou7jxSVUgAmtFxX1nj0EQsjwQgiPzkTuG5xg7I00e7fylszyYdZ1Eas1pomc/luyFAQFhGkpmIWeUWeV0FoyAO1Gq4MkuZsRS2dzYZy1bkElgFgu2qyGnBubAsVsPyF1gFnJkYVPQmo4tZkIoHLJm1VRXWHVtdnrNdLCl4BfK1kf2yR48h9Z110dKLAlbI/MXni9ArCqpZUGzXiJqeurpaQFvFWGpTcedTRx10SYCKqPNGUUWeODiEZraCPCgqJOtX+yq23X0XF6MyCQyKmqmVU4YRvI9c0HJ9wQK28HivMcfj2iUZBOIEW2vxOgoyppZ7qFx1pCaB+ram+YbIFNcGfCP5YSxh0FgNs8pRjVNmVNvQLEr5BPl0vk1iiOXOv25HFnwyN4mi0fH6GaDTD2LY8p2yJgeX2N8JrD2oYuUlzbYvXVAPo3dYCSbmje5ekFHA9ibHExoBJMewNIpZNUb+/Cy1mLvE2HFTpBUZe6WH1jnkKTEOfOrPrz+E9kIps/QlWp911DpHJIBmJxFRwOTViSiLXWDVLXJStJ+lpcbQum6RktpgtlTJk14dn6XjajMTo3Yv84TBmn3IkleIoQBNMPlcldj16AUXKMmg9LkApISIiVAPRYeef2QtYcHHH3vLn57kiQ+AakEUsP0agkv5oKDLul1eCkyeAfMtxzTU8L+TQXDM8ramUA2Cfg6oiF9bmrgJkI+aXC1Z/9UwfYLStYfacj2D4nQPwF6wt3j046bj434oW9+Db/ywbN8189/iG/4gbfzx158kr//x1/MrcfH13r3evTo8enCIQ136+vLhhHARZ2j04z8yBwB5k2Gd7GrnjbREaYZCDgfiXXG0eE0NUsuK9u5C9Tqu3AWh713tymZNgVHiyFeIjthyCLm5BKp1aXEyCmFazg7XSffE+pNZZA3OFHu3z9GFTx3rF8gc5FMA5kE1rM5AYdbpCpjMkdQscqqihCGOYtjA6rNjFDY1PvmPTOKhy6ik30jcpK0vFUNgxI/WRi5WB+j+1MQodkY0Iwz1An5rhKrJBnJFVeZjrvYFZoNh2xW5EVDtciZnVlDy4ArU7NjdF1Fuw3ziclb22Xmxy2ArgVkOyWDJiIUBsLoMdh7QUaWBWJwNI0n87Ej8c6BFBGdZlTznDy3z43B4bNAyB3iFM3B73nisKGZ54w3Z1SDiKs89ToMLsDovpztW4aM8orbrrvIieGE37/vNvxcCJmHrZo6z4iZoxk56nFGNt2ifGyXI7Oa+YmhzWhsesAZ6QaajQHZBW/a5xarDYUhdJKMbtnqek+UQrnqtLEaUOOdSRO8ezxxbj8PDpLwNkVytQq+GrSzKjU5LFkJAZ2n7aZwpVULQanqlFS6Qg3bnoGmgbrGTxsWR0wWZRYwJlnBeyTP0TzD7c0Zz2qK3RG7twyo1qWz/ZRGyaYgUYx0p74NsL+BphCriLezEK2iJzVW+wr2bhVmJzc5/odDhvdd7rTmXdx7aCVXGRKFIJYAG4XkEiTkU2XjPqUeC/NjwvxExvCcZ3jBLAD9InZNnpot5UHjMxUxd0yvy2jGT41C94S7xzWBiPAlL72eL3jhCX7grffxb3/9Hr7kX72Fb379rfyVP3oHG4P8E2+kR48ez3q0yXTRQzOCes3sAAGzi1M4ujGlCp5FnaFg+mmnzJvMCEtmchKNMMxqSldTSGDgavZdydBVlK4hy0JnGwjQRG/x8CGnTlXJRcyo1XWk88xsncuLEY9e2qSoYT5ekqpRVhG1ZDc5mbgUGlO6hkXM8DPpjjHmS/vDUDqakaceCb6GjfvmZOd2TS7ShpK0yX+qySbQG8G5vANFAetjiEoYZtaM5k3iITOPjoIRlAbiUKm2QIfBuPuZEX7u0PXQ6VDbqjTe5B1Rhf26IHPRyDLaNauWawtiZjHbYQh+BqGA0bnIzqUSf2pCU2c4InVjg5yj4ymzOqcaZCwWHp17wsgRkze6OEVEEaA+XlOcya15shFzLBkE4syxOALZVCi27dQMfM1UCz62c4yt3xiwf1qIhRDnnnxrQe0LFh5mN0bq9ZJTv7dB+dge5UWhOlKSzZRq3ZHNItk04OYNrI+RxcKs+JK2GVKVe9Xd4omCT9oESl1xKVltujwgJZHHb2fld02e4Ie3f8DNpLX0a9+7+vrq85Vta4gQKtNxF8WSxDcB2Z9BnVsTqQhk3vy7AZoGv7+gHo1gns5RXZn3d55bWE6qpMt+RTGdc3R7xPSmdSanPc1QoHMysWbgUKQmSWfabiRpuDNwteBqsxWMqb8DIJva8zOvKxjdch0n3r2H295fNlVGu25eG2JuiZXNwJvExKfeEUzKks1hdFZpBsL8qDA96Rlc8AwvRfJJ8t5uA3ucEJNEaHSmxjVPrWmyJ9w9rinKzPOX/8gd/MlX3cg/+8WP8P/7rXv5yXc8xF/5o3fw//mcWxjkT2JqrkePHs9aqACS9M1jJY4iRRaI0dFMcmQUWNRmy1dVGTE4ykFNmddMFwXZek0zNecLn5lme+wWjNwCn563zZWDvGF3f0BEKF1DmeLM95uSPV+ziNYsWMWMo8WUvbpMqZFKfXZI5kEHgdxFmhQXv1VEjhZWVc8lsFMPKV3DpWpsFeZcO2vAWMDiqEVTl7uB0SNz/N4cWdSdpZvZubkVpwtMq+0Ft1+hUdH5AuoaPXmcZuwtiEPM0zzbddTDgHrt0vzIIrKXEffsK98tgHU7+RqNYGt6tH7cilW4UaECxnnFrMhxouwOLMVSnZEhW00YPuKoj3urWAeHS7aDszpnVllVux426MWSxcyKKvaZDp+Zfzc+saHa5DhVleGLSBhENBfmxzzjR2ywlblI4QNnHjrKZ7x/n3J3xKUXOSqFWgvWT07YnwyQ7YLqJVMeWhty8m1HWLtvL0kErAq62PBk+wG3PwdABgNYVAclI3CwMbJFS1YxgtzR22T/JyKoJF3CAT33inPJqh77wLb1yg2TXfJlPLittqK9WgFfgem5V+wD3QAGpQ3kWnlLsvWjCWirK8+yruIu04UR3y46PSVcDgdoZp7esqi7Y3K7U8Yfayh21ti9dcDiiDXaajLMcU1qli5sUGoJldJJsTqnHbWfXTW8NuI8uQWmN2xw4j0j1j50Kc1CCFIHqAOu8UTN8NLGzjtikbTnK1Ht2Vwp9qySPr1emB93lJcdw4uRfBqTBj2dbgGyx5/fT4S+W63HMwInNwb8i695Bf/9217Py05v8l0//yG+8P/+TX7ynQ8RnmKaU48ePZ4laKeLhfQlCJpFiqJhXuW4qUeySNV4ZrOCpvJds12RJUu+aCTNuchgWFGkSmzEUad57KjCImaM8ppqljNpSpwoY18xzGr2Q8F+YwE3AFXwFK4hqkkt9quC8pLpUf0gkPtA4RpyiWzlM3bqIYuYkbtAlSroO/UAv6BzXmntDofnK7bet83o7kv47elSH9sm/Dm3jNhO6ZOd5rZu7LVgLhqaW5R2SNv2VdJVL5xZAWbWMDY44xmcd0b8vXb6ZSJo47oKdyshUSBEC8AJraxElEHWmOxko+k8lFuHiVBYKl89KXDOPL9bP+3JvKSqrdG1KBs0j8T9nFh5tHHEsKxyuyxaU+nMBhthlhmzKpPt49D2/8L2GtOmYCOfI5WjGecMz1Vsfsw05m7fs3dxzGi8IDs+g0eG1EcbzrzOcfGVm0b2qsDgQkW5HSw5cWNoWub1sck8uvtUH18tNkucA/KSNilSvDUkHlj/SmQ7xMcRY3XWbGjbDI8n/bpCwg/rx1s8kbQFOitAKUtkUBpJbqvZq02YyQnEiHmKo/c+JTdi4TplgYxHMBouyXad/L1bn29VqBvyMzsce+cFjn646mwCaS0sozWy+rmR4pgpsWwtCNP/Bo+R7ro9EJMzFTt2rh75fMfDf/w6wtG15ENv3vYSAq5q8PMGPwtk04CfRfxCU0Oz/Y3EDObHhGYAaw9H1h5W6nW49FJh73TG7LinWnfETLoq/FNFT7h7PKPw8hs3+ZFveS0/+udfy4n1kv/jp97LG7/nLfzSB85Y5adHjx7POcQsWYXl4EYNuQ/Md0vUKT4LzPZLwnZBbExnHILZ3FWNJy4SgQCOjmZd+mPQ5ddb5mzZIKvRhed8tQbAsWLCsXKfSW3Nkk4ipW8YZTWzkDMPOXX0TOalSScGivPBYuKBzAVKV3O8mLCRzamTX3cugb1qkGKtbR/U2xd7tmtx04+b6j9s89YuB5vWb6IlBLYkyzuazbIjAIAl/S2gPJ+RTQVphGLHqt+tW4pVvqG4lHasEbRxhMbTBMeitiq/iHbEu46OJjpKbyxbioirBWlSddvZDEU+UfILOXWVkeWBap4x2R90ke3VImdQ1DAMuKlJRtqLp1FwPiKp4dPPkk1EI2b1OGzQUSAMI9WmEC+Ybd1uPSCbOGJuBH38WM3W3dGOf+6ZbA/ZXLPK9eARC9HZu1WY3DwgDDwSIoPzM/LdhjDOaU6smyOMuIPfOauV5dXr1aZBrq67QsQ1JDvBqAdJ7eHtrf5cwaqPt0lMwsHPanXlLVabKQ+lU3YR8a1+vGmS642aZGl135wsrRG7bXir/CtokaODAh2UaJkvK9vpHtWVwYTE1IA5mTF870Pc8JuXWXsoppArOicSX0G2bx7XMVdiqSY5yVYGrcKB3g91NmNT7Dj2b4zc+9Vr7Lx0q6v2Sx2QhcmF/LzBLwLZ3Ih3Nk/EuzHy7WpoxsL+9Y5mKKw9rKzfb3aUOy9w7J/yhIGYxCQu9eVPFj3h7vGMxOfdcZz/9lc+j+/9M68iqPIXf+RdfPm/eSu/+P4zxL7i3aPHcwTayUliocRBxOeBeZUj+x4dRmLwsJPj1mtuOHWZ9bWZBadEa8yTPBp3AQZZzUY+T/IOI4e5NKz7OYuYsZYvQMw68MbiEqfybU4PtlnLF5xfrDH0dQqusYbLRchYNBnTh9dQB816YDioGecVQ193j5GvuubMl289ysDV7FalVbjTVLa5lGAx2e4QsTpkDSct4UlOJDi3jA9vpQqDAfVaRigkNZMpzcDZdH2mNKNUyVb73TUgjZ2oMFCySVtFNVmJYvIO0k9NlW3vrJQ3a/LueVY0S//0VnPrrTo7PCuEvdwaIFWIQSzVssoYjRY4F8nKYOxDjVS3spYYTcISc00DBtMdxODsNadoEZneEBmc8+zXBfdePEa9GVhseVxljW5rj1RsfAyyXYfbyblwdoM4iIRSCeuR6gUzJqfNgzsMMmLu8ZMKN2tYHCm6qm6HK/lft9ftMLEN4WCTpFsl51egXIe22Tb+EaLNaEAXES/J81tWpSNXuo9aSYkcOobWpST1B2hbwW6r95lfbmd1PxJ5tnh4s5vUIum8M2+WgrU1VmoTlk2nq1aHIaJVhTYN7sIOR99xnhN/UFFup31KfRzqwM9twKXOZCZxlXQnVxwXrMKtQtevUF5yEOHMG5QHv+I41Y1btt9JRiN1wFUBV1lTpJ9HfKVkC3sUexbZ7qvkm3/E9mF4ThmeVap1uPRiz+T0J9dj1hPuHs9YiAhf9vJT/PK3fz7//Ks/k2kV+Ev/6V182b/+bf7Hex/tpSY9ejzbkay3YgrC0DKSZZHZfomf29dTvFBCFK47vsu8zjov7iaYFGJ9Y2akLZHESVOwHUZEHEEdHmXkKqI6Br4Bb0Q6YDKJ28rznB5s41A2/Yzryx02sgW79YBFkzFZFAzOJnuzQaTMm0TqzT6vraa3aZMjV+HE9MgSllW5WEZr6MscH9fS7UAKYSLAme8IDWCa7tGAZpBkF7kwO+7Yv97iromAKGGgaKadLaFfgCQJDgJu0e5H4uYqB+QkrT1gi8xFMh/xXqk2W8s8ukpfzCDfU6QRBmVNMaiNTNf2OYsqY29ifnCxNL3wauOmcUTb32wGsrABQgwmRXF5BK/EtYYwNKvG6aRERg27tzjctE7aX2HjQSPdfipp8BZoblyYVeIsY/LCiulJTxg64sCjpcfNa7KZkVApio7odlgl2CskW0NYVnUfd4unQZKTQ+R7pcp9aHZDknb74+rH24bJw+4oh6rk0lbbO0vAbOmKEpfWh0sNdzxg83fgHs08FLnd06VHvTcNdIwWJ9++T59Ar96FAFlozujuC5z87cscf39jyaUkedLA/m78TMxlZKA0azaIjPmy2r1KvM1jFPKJUFz0TE9F7v/ygouvPkYcpxCfJkITE+kO+MpIdzaLZHO1x1TJ95R8YlXvmAv12GQ+a48oozPK9ovgoT+WU689NR13T7h7POORecefuusmfuWvfz7f87WvpImRb/vPf8CXfs9b+G9/8AjNFf7J9ejR49mBZmD2YLFUI4IA27l92c4t+GR00x7zKuf4aEpde8q8oWo84pTr1/dwuYW1HBlMySUyjQVg1e1cGsok/CyT8Hja2OtRhbFbcPvwPKOsYhLKjjCXzqQtk2mJCxBKRbx9zjyYk8kiWjOnl8g0FGwnLfckDJjMy44EIJg3toDmbhko0uKwROFKtm8HHDIccX1AzC1IpBkBak4h+cScPFCBTDttfCjBVdIR3Gakdo6DQJMq0UGSS4l5j4cozKplNS+qMC4q8rwhbtq5VMfSjMNb85mfOPa2R8SYtNk+EvYz6oVVVvOioTyW0oYbswOExGNZym/yVIWPlSfLAqPxAj9qkDxSHbGkT517ylHN7JRVt10VkKDETBifCYwfFvzUIXPTi/uTM6QMjI/O2PnsOTu35ITCEYYZ9dERxcUZ7uKueV1HPajVfgJnkoOk2j1+BiMRbRFZasNbMnuFQZe2Ov2DH3KQWK9WuL0/SNoP72cnQ0oV7BCX5Hd1H5qAzucwm6PzBTqfo4vFknwD6u3+lcbOtwTTemuMnYXggYHHikTFtO2mBSeF1ri9fdbe+xgnf3+X9QdjJ30Stf8JEkHqNGjNoRmrpVUW9mjlKK2mWp1JQwYXHK4Wzr828uAbN5jevIGWSX5WB9yisUp3ZcmUfp6q3nWKpJ/TxdKDffbshLB/ShieEdYeEPSp8e2ecPd49iDzjq/6rNP88l//Av7N138WXoRv/4n38AX//Df5gbfex2Tx1Ezoe/Toce0R8zRNHAXJI03tGZ7xlJdtWbm+YLpXUjUe75J8RIW69myuzdgsZ6yPLTnSoazncy7U61TqKSQwdgvGbkHurMmSCNuLIZMwYOQW3F6c45WDBzheTthuRuyFgTVjYpKK5uIwVaiVrAhdEmNUR0zf9rnYtvdqS/moo1Ve2+Yw9Woe1FmSmLRx7i2eoD9FVsl3iKahdYIMShYnRsyOuq4aPDofWb9v1ulRbbpdiZmRllDYVLkkiUnb7KhFRBqHBrPpaxpPHTxRhdybY4xPMwiLkKVGVUexVnXeyNrKSlK1u9gRtHI0i2ypzx42+DyQ5YGm9lTzHLyaXrd2aBA0OryP6LpJVsqLSStUWwNmXXu8j7g8Uh6fEdReXx/NievNsnq5CJ3OduOhhrWHEuney6jnGWubM+rac+TIhL3XT7n8wgI/a6g2M2R/jk5nS1lEJ4kIV7xGB4jvE826hnDla7xatV4Npol6IKime34lrXa7/daDu3MgSRry6tBxRF3G0odgHtutVjsYCW4r9oSQZCLN0n7QOXAgc4t1l3lluu3V9Z4IqwMDWA5MRPAXdjn69nOcfMeCwUWIXlPDsVny+XQYJiFRa6ZM1e5V1xNYPs8mQnneszgWeeiNwpnP3SRsFMRiSbz9fo2fhU5icqDavbCfElvLUih2IJuqSVHmT3yoV0JPuHs86+Cd8CdecQO/8NfewJu/4dWc3hryj/7HB3ndP/k1vvsXPsyZnaf4V9CjR49rAm3127lCcqio9wpGZ5RmCHJswWK3hN2cO49fYFoXhCa5ZzSeUV5zpJhy3drEXDYQi1iPjmks2U+PXAJDl76xg3Bme515zKk140yzSS6B167fy2ev38vIW0LlXm3T0MVFsxGLg0hRWtU7S1rmVlICRrozFxj5ikXM0EmGX+iSCDjtLBC5uI3u7ZtMBJYkpG1ma4nNamXVW+VURiNmLz3N9gtyXKPkE6vIdaEf0abZfSVGdhMpjoXpXLuKXWlNazI3+z1NlW9LiRRC0lW3NoFNapx0opR5TZ4HmpF2RNus4qw628kDFmYRCCR3GUddZcQUsiODgOZxKSvBJCXiNSVLmjxF2sp7cBRFgwBF0XB5MgIVpouCwcaCZmuAP7+DqxqymWl1URiftUq3RJBJxnyeMyhr9mclWRaYfu6ER9+whmvUkhVbSURLCFu5xap9X5JfpJP2+Kp263n9RJHsLWEOcUmWV0l0J79YyjCWmzi0rNtWeHwl3qWq8op1Yefv3Vbw02N1X7tmTUnvLwu0LNCRDSQ7O8NmSfbbAaJ41zm2LB1XVo7bO9N/e3+gwVSaQPngJU79+gWuf3sgnyQLwdT/4JrlvdwMrKlSE+Hm0OlHIBZ2f5aXHH7i2Hllxf1vGrB/84hYZmjuEQVX2yDNVxFpFL9QsoURb1dDtWme4cNzycbQC6Fcxs4/WfQ+3D2etXDOwnO+5KXX8wcPXub7f/s+3vyWj/EDb72XP/GKG/hzn3cbLzu9ea13s0ePHk8EsapRKCCMIhlQnMsIJUzvrGDhKc7mDF66zYnBhEcnGwBmMTc3olu6hpOjXR7etr/13AWmsWAvDBm5BTkwkLqTkyBQLzK8RC4069SpEr7l98kJbIdR51BycTLCz4R6Qy163FmwjUPJnaVK5hISefeUzn7fbYZku74L+JAgSBYt4KNMhGOxMIK5NkrVxSt4KqsaMUmSBD15lO0XbzE/ImQzPfCFL6kA6yogkvbbqtkgZuMnJivRXNBc0ahIFGIWzfd6IKnQ6WjE411j5BvIV469yAKqwnQjku/5Tjajzq5lNlX8ridsBpoqw2VKrB2xdkjy2dbgwCXSPfegYlVuL2RFQzNUFkeFfM9Rb0TqKsO5yHxmcqCt4ZyHzx7Br9d4FymyhnN3HePGj53B7UyBEd4JmlnD5ehcJAwc+6cj9U5JDJ7ReI6qMCxq5p9X8+AtG3zGoxu4yb4RRO9T82J90GP7MIl2zl5rYyM6GYUt16h2UdqZilaf35JQTKoBSb/dRrq3RD5qalKNB8i2qiKHSfdhJFIrkLapB16TPO+aJcU5s9Rrm3OzzBolywIdlmjuiYPMAl9WPcLT9lUcEsPjGzZXrQxTsqW2DZrtKUvrSJKmjD98geHDQ3ZfuM7O7Y5mrN3g0RqBIWRKTEE20lh/Qvu6nUtJA0ElmwvusZz6SOSRL46s3T3mxHsrfCYQ0mC1tv9BobD+EHUm2Rqe1aUHuLR2hfJ4kv8J0BPuHs8JfNbNR/h3f+YID12a8gNvvY+ffOdD/My7H+FVN2/xDa+7hTe9/BTloT/wHj16XFuoM19lzRQZN4TGMboozI+BHzTEiyXViYbPvf5hLldDC7rJjVlKHtkqZ6ylinTmrYlxHnP7qRmFLGUAozQnLWUgzjNqtbjnWjO2w4gT2S7H3JS3hwGXqxGzJmd6acQIc/Xwo4aT6xPW8znjrGIrm5pEBbrQmwtqdoN7TUmxK6jTruLcNOYg0gzbynVqgqzqJalelZmsVAi1yFjcsMHuLUY2iz3TKJuH8aoWHFxQRAW/AFc5m34XIEIzAL8Qmg3Fb9TEy4U5l4gNCmIQnLcqc3tsq2itAXMXWQCsNXQsU6zy1+qvy4uO6Tii0SPrtXHU6IzkC92MhveRqjKCg5OlYcaepQyqpa8TphluzaLpm9pTR4fOPOOTE65f3+PyfMjkcybsPngLG+9+zCquIeIXwQKAPIwfjYBjcmskTDKmUjIeLZguCmIUNm/a4SN/YYPP+OEb8Xc/bIflnR1DKylZbVaEx0soDofROAcEDjiUaNIGq3aabgkRzTOUmEjjSsW5rRI7d4BgP45sr8yUiEhyEUn+2asa8RCtITTLIM/QPDOJUymJmKu91lr/Zc6qwU1y+mhIcpPUdOl9CsA5fNwrxytJl75qP7j6+sr+a2Z2jX5nn613zVh7YJ3LLx4xudEaKIF0bwgxM/tKcdJZ9XWOPOm+RG09BPLLjlA6Ji+smZ/IOfKhnPUH7X+DCxGJiq8ioXDUQzFpyUxRLzRROpvP2MZVPgX0kpIezyncdHTEd37FS/m9v/NF/IMvfwnb05q//hN/yOf+k1/nn/3ih3n48vRa72KPHs8KiMgLReQ9K49dEfl2ETkqIr8iInenn0fS+iIi/4+I3CMi7xWRV32iz2gT5tSr6S62c1wF8+uC9RnOHEdP7eBQqpjRNI4sSRTEK1nSZecSrJEyZCxS/nMdLV68kEBAOl/ufNBAhGko8BJ5uDrC+WaD/ViyqyXzuGwS9DvmTqKFVbeHWc1t44sMfcX5ap1FzBi4mlysqn602Kd0NRfnY4qddB5XKm4WECNLW7aqQqcz8zZuK4Yp0a8lKeH4Otsv3WTntoLB5cjWR2ddta1rLvNimtbSm3bbWaW7dW+IeavdTu4fjZDlDQTz0kZN761BOh6Up2AhsOq2E0t3DGqykqrJKEZVF0jS+iNrCivJ97HwmiCEyuML21kREB8Rp8TK01Rm7Yga0Y/BUxQNi6OR4flItieoKFI5nI/kWWBzfUZIsfDDoqZJ+zQY1Jz5bMf+i08aYc2dEaiZkURXw/iRyOgh05aH/ZxFlZlEJgtUjWft1IS7/7eMyevvsOpvG8eer1jBrUo6WgLePpyz96SKrbbOMhoPSYbkAEE+8DzJOVqS3JHlKzVNXkHXbc2ZHhkM7BjaSnpb7S5yGJRWtR4URrq9VZ11PETXx+jGmLg+JI4Ks7KMIFVjpDuCLGrTuleVDRzbAUmn806Nom3Fvt2/EA+6n6Tlmmf2+UVuvycnFQmR7MIeJ952iVO/u2DtoVbWgc3kLMRmR7yantvRNfJKoAtoav/faJKm5BcyYq6cf23g7GtK6g1PKD0xs6bQMDQHoOGFgF8YCc+SjaCr7F7qCXePHsDmMOfPvf42fvVvfAH/6Vtey6tvOcK//62P8fn/7Df48z/0Tn71g2d7d5MePT4OVPUjqvpKVX0l8GpgCvxX4DuAX1PVO4FfS78DfBlwZ3p8K/C9n/AzWgs7b9+/g/OeahPkaEWzUxDGkZs2dtipB1yajQiNJ/eBpnHkhX2TRhWcKKO8Zr8pUoCNfRPG9BXnUbxEchdMA1w5dpsBtXq26yGPVZucabZ49+xWzldrrGcL9quCbGr6cs0ia+M5hWu4VI+J6rhhsM1mNkv+2w03FpfZzGa2zdmQbGoVtVDSTT2bTaCkKl+aWm8ai2pvK4Vgle1hyezF17P9GWOiFzYerFl//3nLghmkZsL0MJ24fUg+i1bhCyB1K1ewzcZCExEXqlkOmUlKpBHIFSprTgzBUTeeqvHdOQYj3gC5Dzhn1elYKG7Flq3dDz9XsplYlb1yqcKdZCPBmjTBpCXidHmOxBIn45Y1Th75aLD9C1BXGdNpyd60ZLoozOIvXX+7Z60Cee6uHAmKn1QQFF9H8v1gZCnA+kOR4YM5kkcWlwdUTUaZN2Te7BzHG3Me+VM1u6+7FRkNuwHS4yz9DpPd1d9XmxRXsUpAW/J92LWmHXS1fydq5LvTX682UD5OS57IbuuZDaBm9aeLhT2a5qAevdsfs/3TYUEcFcRhbhHoTcTtz5Gp9Uf5hZrMpmlSk2Xa/nxu1oDt9lopSfs5h9M323PQpl0WSd6yar0YI5I8yQePTTjxrgkn3xEYPmb+9qFIFe0g4JQ2vTIUZiGIpoFn+/cCKdlWcY1QXPBMbwo88gWO3Ztz6ysZOOqhY3A5eXbPUzplZc2SbcDUFSaBPi6uKuEWkTeKyEdSxeM7rvB6KSI/kV5/m4jceuj1m0VkIiJ/62ruZ4/nLpwTXn/ncd78jXfx1r/9hfzlP3IH73lomz//w+/kdd/96/yTX/gQ95ybXOvd7NHjmY4vAj6mqg8AXwn8UFr+Q8BXpedfCfywGn4f2BKRUx93q62dXBGhcWRTWByxKmi+7dm8cQeX/L72FyanqJqMZpFRFM2SWKswyitmdU4VMzyRiFCpxxHxEildTVChyBrcQtirjXBfrkbcPz0GwJafspHNcaKcv7RuGtAUQe2dElXYbwp2m5KdZkjp6m7/LjRrTEPBNJTsTAb4yr7ww+Bg9TeUpCreSvUyBEuR9A6KnHDjCSYvO8H+yZxsrmzdvc/wngtI3VBt5B2Btg0YwRDVVM2NyaEjVf8wcqGezsXBLwSde5tZgMRAQBpnkezJqUSTF3eTfLnLrOncYEZFjXNKtWV+2u22ZYU4Skja2oVDG9Nsd6QnCm3oTUu6NTVpNo1HfKTaEHODmDo0U+Issxh4gf3tIVILk1nJ3qJkUWeoSld5fOiNW7hZTX5pag1x0wY/T9Z2YimC5b0lFJHJpRHTRcGwMD24qjAcVZz92hln33gLMiiXjYdXCpw5TLRXJCAHminb11aJ9iqJb3+G+LhEyZZ0d3gC7fbjvMOzzPZddSlhappldHttz9vGXC0ytMyJhSfmSzcPWZgbiWbOGmXbglXbXNrq3dtq92pDZohGpL3vJCw4Z2mVRWaSlSRb0WxZ2T5MvFHFTWtG9+1y6nf3OPHuSHlJUuVazfYy0rmWxEK7ex9ZEmTBCHqzEahO1eTb5vZz6Q0LHnhTzvyop9wJNluUpb/TYNaB2dSaKX31DJKUiIgH/h1W9XgJ8PUi8pJDq30LcFlV7wD+FfBPD73+L4FfuFr72OP5hRu2hvytL30hv/d3vpDv+8a7eOVNW3z/b9/HH/uXv8Wf/N7f5Sfe8WBvLdijx5XxdcCPpecnVfWx9PwMcDI9Pw08tPKeh9OyJ0RXaRo2uD1vhHQ9EC8XNOPI6c0dojqqmLGoM0SUxTw3khkd46wi4FhEq2rP6ow6ekIKvZnHnBoj3bkEC7/J7W+8UUcdPVXIOD9f43Iz5nxjMpFHppvESZIQJK2md5Go5tRRxcw02/U6i5gzCQNyCWxmM6axoLk4xNcQBkk7mg42ZkooBB3a4EG8W1YsY0AHJfM7rmPnjjHV2Cpsa/fv4y9OjJSXBc1oldyZRAUHbqFmcbaI3Wt+TucAsiovySaW4iijhjBI6wermmtj2w9h+TlRhZDId0ix9sPcvM11LSyr26uyXQfDM9JV0HXhjFOmKvdy44l8AxqE0DhUhcG4ol63JrjispiF4MwRJzneR2TiySfC7NyIy3sjqsZT154wUkZnlXpdOfv6Y8j+jOzsjtkFBqXYC8nVBdYfVAYPlLgysH9pyGRekvlA7q26XBSB2Zt2eehP346sjc19I88OktrDeuRVtM4dh9ddrSq3uuVVRxS7ACtvO7j9w7+3khRpXT+yQ+15WZY+1y1fXyX46Xg099YYmTs0N+LrFin+vaqT9MOcPWiaA/vxuH3ySSayGrSjalKRdpmz42214VIHsxtsBwIrTaXd54SAxIjbX7Dx3vPc9Is7HP9DJduXZT9IutetWm0e+u0gtXXqkQhu6sjXKuqbF/i54B8r0aM1Z/9Iw+7NWXddrDfBKuquUbJpJJ/Gzvv7yeJqVrg/G7hHVe9V1Qr4cawCsorVSslPAV8k6aqJyFcB9wEfuIr72ON5iNw7vvglJ/m+b7yL3/87X8Tfe9OL2ZnV/O2ffh+v+a5f5a/9+B/w6x8+S91LTnr0QEQK4CuA/3L4NbUS3FOq84jIt4rIO0XknXFvnzCOxMpT7DiqdYUi4vcd2Yk5o8xCaLbnQ6qFNUM2lQXexGi+0LOQExEGvmZR50ybnCZ6prFYSkrSN2PuAmt5RSyVcWaNUhvFjFmdc8/0Oh6YHadRz9nJmpFESXrk9Yr1ckFMuodpU3CpGgMQ1Mh9aw+4iBn5thGMNnbaurq0szjTIjNPbTsfyGCA3nQ9uy8/xt6NBepg4/45a+8/g9+vOhIW10pCKZ122wi36UnzvRqZN7g6omL7bs4kaoFCKiDmJ+zn4OaCyyI6jGgZEbUmT2rB+chosEjXWA7MJIgoPjmWgDW3hoKljru9zgr5frIN9GpV7mDEmSidPWEbdrSa1xKCMLs8NGlAKYzOKNI4XGXkva495SVvxzh3VJOCxSKn2iuI4wDRyP7uC+DcF91IOLpGs14QM0EaJZvHrtl0/JCSPTDADYx0V01maZrp+FQFecNl7v3mm5EjW0uZxhMF4bQNi+1BPfEfwnKd1YpuWtZWtw80Ox6ucq9ua0U3jThzNmka01iLmJa7rUa3Xtyd9nylki6J/Aclm1S4vRnMFxbZXtWEQUY2i0bayzJVtttgHWf39aGKvxa5WQq2cpG6rbAb0aZuuocsKpjNrxz8sypVCbFrrDzyjnPc+t8nHH+34OdCLLQbBMZM0Vw7v+7OWSTNAOkDYxtQ3zYhDJX8oQJU2P7cBWdem1OtOyTYzalOiIl4S6MHZnOeDK6mS8mVqh2vfaJ1VLURkR3gmIjMgb8NfDHQy0l6XDWcWC/5C59/O3/+Dbfxnoe2+S/vepj/+b7H+Nn3PMqRUc6XvfwUX/mKG3jNrUdxh31We/R4fuDLgHer6tn0+1kROaWqjyXJyLm0/BHgppX33ZiWHYCqvhl4M8DgxpsUAZl6shns3xihsmalo5v7KV7cMUlykjwPLC6X6LghzwIRYb8pE+FuqCrPtCmoUyW6jXafq1WrwwojrONB16KLixHXD/c4N19jZ9fIdCzsy7ooG4ZZzcDXjLOKy4sRmQsMXM00FngiuSi1eh6ebtk0t186Griw/Gx1EMvMhgLeI+sjqttPMDtRoALrD1eUZybI7r6FiayNSFUoqiMDQm6EO3o6S7R8auRIgiXoATaFHsHVQhhFwkDJ95K+epGm1BceKQLaOBRnGwtCNSnYCY7hsDIrxENi1RAdubNKcJ0FmjXTa4PJNSSNwdRbtHqzBn7qaIpkA9gkNpSZPEQjEMxRxarCQBDm10WaB4RiPyILq5a7Kum8A8RROtSZJyi4vYy42VBvCPmeUmwLl14eKXfXKC81XRXZL5RCIot1j5Ywfhj2sgH+ln2mk5LBkYZhUVMHRx08TXAUr7rMRzZOced/GiMPnSGphJZIEg/JsoMNlpBI7iEnkeUfRFrHLX/PPJJlXWpj62vdzoaI90uynOemc06uIpJlNhvSNl621fgit32ua9pETE1R7d3nqoITk09MK2Q/pU42bVBOZHE0J58EZFCmplBZEnbvEZcq2M51zivkmd0XKQJe6sYI7GHpSPL0VlU7jlbzfajB0s6jotE+Q0LEXZ5w7G0zNj+2xqUXD9m7BZo1XQ4EvRIykEa6OHjF/kb8mZLFZkZ2Yk5zVPBnS1yVMb+x5rHbIpvvKNl4sDFbwgA0iqvjctD4JPFMtQX8TuBfqerkiqO5BBH5Vqw5h5tvvvnTs2c9npMQET7r5iN81s1H+M4/8VJ+++7z/NwfPsp/ffcj/Oe3PcipzQF/4hU38BWvuIGX3rBx5SpDjx7PTXw9SzkJwM8B3wR8d/r5syvLv01EfhwrruysSE+uiPZr1O87i2keRrLLGc166KzpGnVMphZCE6MgteDLhhAd06Zg7CuCCrkLXYk1popzrZ5KfedQMgs5ZWaEdFKXhKGlRY7zimlTsAgZD+9tESqTP4SBonm0fUEZ+JpZyFnLFwx9TR0tkTHicapMY2EOJbtKyNspe7rgm1go6oR6LSMfD9HRgP1bN6nHDl8p44/t4i5cNjLSBCNa0aqxWhZUm5n5MQeThqgT3EIZXKyRKk3BBz1wgt1CCGOIpcJEuiYytwAqR7a5oK7KTl8t0eiyRun8uIvkDBOiS2mfdi7WyorpvKDZiHDe25z5ChONGeQTqD6jQnYHFmCzcFbVbhxa23PxuiThzgJuZNigI6jHJYPLgWI3J5TW5FnNc8ZzqNdtjCCLdA1qIS4c82NKsQPlZSXmjvOvVK57l/lHx0JwleIWSu7NmzsUwvr9yq4fITfMuXR5zLGjEwZ5wyBvmMxLFFi/c5uP/IVN7vhPOdk9jyJZ0ixHRVcr26toCePhIJ3D2u12efs2703X76SrbF/RrQQ69xMZDux53SBNg9Ja9nnUO8S5JDsx/TRFbhKROqSKsSKLgK+SjGR2qAkyy1hsOIZnF7ZfVWPe3cljfDUZVZ0sJReth3lLsJOmW1YdS9qqe+ui4n3n1X0glRVM711khNGYZuCJhaP15naVsnF/xWA7Y+d2z/zoSvU+twF08DYQlUDnIpRve7g0JB4JZDfMkfuGDB7KaUbK5CZl/7RP/RwWxpTNhOZ9T40HXE3C/WSqHe06D4tIBmwCF7F/1l8tIv8M2AKiiMxV9d+uvnm1UnLXXXc9Rfl6jx5XRpE5vujFJ/miF59kWjX8ygfP8nPveZQffOt9vPkt93LjkSFvfOn1vPFl1/Oqm4/0le8ez1mIyBibafyLK4u/G/hJEfkW4AHga9Ly/wm8CbgHczT55k/8AYA3/WUzUnAplnzcsFEsLHxmNiIGn5KoHVKLuVqw9IVe1ANKV5v/dpPTJIJda9bJStoo9lFWgcJONTA5igqNmjPHTj2wZknBbPKGih8b6RpkddqGcLTcZzObselnXKjX0md5mujYng4pFnQx5+1xWpOikd0wdMxvP0G1lRFyYXxmQfHARXQ2t1jtZCWnas1u6oS4PqBaS8fize3E1UoxUYrz+8i8Mv9itfS9Fn4u1AqxjMTMmaVgAdlUqBeOwaCmOTdES+t81CT5sF5Ox6CorXmy3WB0zDWn8IFRXlnU+laFuiFEukRAk9NYQA/nSrKZEEaJiNXO5CukJjcnS6KemicRYDunXrNBQnkR9k8n0jRviRjdIMslmYrft6CcmDlEYXAR9m5Xzr3Kcfy91vCm3t6TTSNFZh7dsRDGDwv7DHA3zLm0M+bk0V0AhkVNiI6osHXTNvf8xTVu/i+3Mn7PI6j3VrUNYUmqVwn18m8pnb8k4Wgrz4ebHptgrjXem8Y/SRuVVH1uNd+tvORQE6d6h6hfNhrahxuBdckRJDOttvo0SIqCVBEWAVcnst00qbKtnbxDhkNiDn5nfoBgiyoao1W3VwcSGu14Dgf9rO7bqotLkXcVcUQ6TXmzVrA4klOPhXosNAObPRLF9Nit0sQtJVyWIAmDS2KD+QxkIl1SZcy0C6VqZSYqMDiTwRkb2MbcXG1CQUq1TFKVUm0QWzxzJCXvAO4UkdswYv11wJ8+tE5bKfk94KuBX0+awDe0K4jIdwKTw2S7R49PB0ZFxle+8jRf+crTXN6v+JUPnuUXP3CGH/69B/j+t97HifWSL33pSd740lO89vaj5Ic7xHv0eBZDVfeBY4eWXcRcSw6vq8BfeUofIEC0L8bF8QjBvkjLYc0i2NfTvMqJjVhj3dSRevUosoZTQyNETSLCGoU6uk6+0fpvBywQp1FHkYx596vCCDRCHTxBhb1qQJzkyLAxTXPZsLmxz9HhlEwi0ybnWDll6G0nWs/uWn3n/727N+S6RqmHAskTWCJdBdnVsH+dpxxYVXvj3n38Y5eskrgS560hICthKc16QRjYttJH4RoYnq9NZ7uiCT68Dgp4i8KOuU2rZ3NwC0fTeLQwKUlXoQ4WQBOD65pVvVNUFJ8aCpvoyJI1IFjF3VcsK/okSckCjv+BsP1CTc1qwuCsZ3E0EodtSEx6ZEqWB0Jwpi8PQjMEHJTbyvQGaIYRqVwXJS+6fL9gxxbWIvWakX2Jyvhhx/6Nkcuf4Tn+gTSYcYI4yPeNnC+27N4bnnXsD0ryEzMeO7fF1tY+a2VFdJEqeBa1Z21rykNfN+Dk+s0ceetDyd4xkdJEaLtwm1V0xHhJhFu/6eVrwRoUffL+1urAJlpJiazaSMLBpNIUeiMhLLXaLfLMnEFEll187e4sUjW7WTEPOJBM6dg/LRQv3WLr3ZVVnlMTqISwDNJJRShd+T7sCD5lOhcQi4xmPacZOpqBox5ZsqNm5g4UCjp3Hatet3KodK+1197Z/QfLddv7UNM9LSkWHtIMT5SOqLdplO2As71/Y54GeB4bIDpSmFU7mHqGVLiTJvvbgF/Coqh+UFU/ICL/EHinqv4c8APAj4jIPcAljJT36PGMxJFxwde85ia+5jU3sTuv+Y0Pn+OXPnCGn37XI/yn33+QzWHOF734Or7oRSd5w2ccZ2OQf+KN9ujxfIYofmKkQQcRN/U0o8jWaI6IMqkL5lVu0gMHbubRzCz6iiyQudC5ZwBo41Il0nWykoDgWVbEh6mBcFbZ32dUI+kAk3qZvKhZRLwyWxTIeJ8qepwoTiKLmHGpGjP0FUfyKSOpCOq4WI+Ju3k3vR1y0he4QLNCPhwUe4HRvdvI9t7ydHhz6IA0qsgyi9qOyvxoTkxx0m31PJspxbn9g81k7We0zZpqJFQzJeaKnwthYATWBZhPCwbHZswnhennW4tAp4iLJisJHifhAH+MKoyyitwHfBaoN5TsXLJoW0n9a0ZCsRfRTFrDF1wNxWXHokjkxmFT9Vns3FE0CHEUCEOhGTiK/YhfeOpc8Rf9MlAoVcZl5TlAtWU+y60rRXHZMbux4aJmHP1QwNXLJtZiElEvzI+YzGD0sGc/G5BvLtibDBkVNbkPyVYysGg8a+tzLv2vDdX4Zk7+0oPWBOjdMrhGBLIk9WglEVdwJznwPOmYtWkQzA2lu6JRTUe90rQp3i8rx2pe1WTewmzS6WC+MDLepT2ajEOkZaTW/CdtNbvViXf7FDsdedwc04yUtQdndCmZ3uQqOiwI45J6s6Bad9TjJBNz5tYTSrrgmdBWhoVu1selZMjo7T4NQxs42jrJfaQR/Mx1sijR5Lk9UKtozwWffOa7ddr7JN0frSSrHaxp6nV4nNVmYe4m1nDMgYd2PQ3PnAo3qvo/sWnG1WX/YOX5HPhTn2Ab33lVdq5Hj08BG4O8q3zPqsBb7j7PL73/DL/2oXP8zLsfIXPCa249yhe+6Dr+6Iuu4wUnxr3uu0ePwxDId501N5HkDycach8oXGB3XlItMmhM0+tnZv0VozAuKoa+popZIsKWlFgHh5NIrWYXaFVsQ1Rh6Gu0iNS1ZxZy5iGnCZ7MB85c2DRHDYDMosePrk3JXOxI/SzkDH3N0WKfkauYhJIj2ZTc1ew3JcVlY7oxSxVusSY/smhT+mJNlB3ZXnWjELGp/FTxlMyGCjrImR9xlsopRlh9pQwuJ39kkpQgRDQofqEWjpPgajE7wpTOF8s0nd6A7mf4tQUui8TaWQq5CmEvR8cNZIGqNqpQZCE1sgrTumCUVQzzhj2FZj0SLybLOEdXNQ0FFjffCORYAXdD2fgYLI7bcbcERufmPCJFRLxJXGIBzVAYnm/IJt403y25Jp2PRK7a43MzR71uTaJejVDle6BnM6YvqMimBZv3p+CkNBDI9+36LLaMpI8eyJjeAuXRGRd2x9xy7DIuV85MB6moq6yPFsSvWvDg0Vu4+ScfQqdz00KDVZVT458OCiOmeWbOFq2sZLUZ0LvlspRQKUVuWu4uxXGpE5eyRDbXzUFkOksnO5jeH8zPusitEt4EpG6s4izWFNk2QR72uW7vRdW0ThvZLo7tl1pDsJs3TO88zmLL0wwl9ROk6+FlKe1gOdvRkd8afGqwrY4ozUgpL7rkeW0zIC4oMl39vlwSaADNk8d2bn+nxETUB9D4NFsT7T4mYu42KVXV1anxNqYKtqdLqSRJ1cIgdkQfbJ9a1xPRlHyqsrwJnySeqU2TPXo8azAsPF/60uv50pdeTxMi735wm1//8Dl+48Pn+Mf/80P84//5IW4+OuILX3QdX/ii6/js244yyP0n3nCPHs91RCGbwXRLIVW4XGnfqpO6oGoyI4ERUMHPhGYtolHIJFK6hiZ6MokWQFM79mcl85CTS+yaJiOORRI2BxXwSjXLWcTMNNzBGSk+X8LY7AskiwwGNWvFgoGvKVxg6Gsyt5RU7MYBAccklNTqubgYU+wkHXRLCDO1xEe3lD9YwuaScKmq6V8BkoxkVR+7ODamXhcLuInmBVzsKYOz0wMNZVZZjhY9nXpIXUiEW21fwNIzY+bI9i1Vb7o7sJ3rpCCKzD0699RrDYxqGmfV1qiQJxnJtCnIfTC3iM2KWAxxdfrc5HUsEZpSKHaE6ciId7MWyRZCvueo12PXqGkHDlo7NAoybIgzR1MKrlHKbWUi2vkrL9MtD1IfPxPqYw2htHPZxnsXlyEMcnZfXOMXGaNzERe0k0AUk4iKo9qy6zV6IGPqB4yOTrnv3DGuP7rLqKzZm5aMhwtCFJtt+fwLPOBv4uafOWsDIO+Tj3SEWW375j1SFqZRzjyat7IL01FLUGt8bRECBLe03Uv6bVXFFTmysYaOh8iiMnIcTAoidWOkPumgcc6YXoyd241WtRHvKnmpZ/7A53YuIYMSHQ9pNoeEUUa1LhTbyqVXbBhZTdXhLkG1vQ/9UtK06s8ukWX0OjbzUmzb/Ui5lH8QD/1sH6mqrSRiXivRgdSCWxiptr+DtF5rOSmghaKj5T1OYGW0Zn+XrkrJsqmfwUi+2WVK+r37G3FtyfvJoyfcPXo8jci847NvO8pn33aU7/iyF/Hw5Sm/8eFz/PqHz/Fjb3+Q//i79zPIHa+59Sivv+M4r7/zOC++fqNvvOzxvERnb1dGsj1PzJW8aBBgVmfEKLAwQqK1VYc1ty+5YVbTREetjnnIKF3TRZZP6pJxVjGPOXtxyEDqTm8NQKbownfab+ci00VhvrxHjcC6TCmyhtCuI0qtRv731WzxwOwFy8ISGLcXQ/JdJXprxGsJRCxNLqGZ4mu15U6sAhpCkgYkFtKElGooKZXPMzuR0wyWBNbVMDpT43amnVSg9ZXWELtp9FZhYfpVIw6a2cJmDMUeVFuCXLYwIR2lEJssLvs9vSVshuBwqaGxrfZPKtPj+iwQ6px6TSl2ZZnsF9WuybpQ7Ciz622bqkIzFEaPCjsvpKtGmk42TeNXDi1NFtLqeH0FVNb4GYrEvCKdVr59LgoUkTBsdbl2DpxCeUFo1h3bL4voBz1rj1pV2KQZUO6mSvdRa7Ab3Zcz9UPWjky5sDfm5OYe46JiETy5i8zqnDp43Odc5qPHruOWX6goH9kxXhaCXdem6WQjsqigdl3TpKxEnmuRwdY6sjZC5gu7F0SIO7tQ1+A9znsoS3RQLivSbXVcXCdLkSQvsZvZHdBxS90sB3spUj2OSrTMqdcLmrGnWnPdrEini1a792KSK2lmcpE22RE4+HxFtgGrFeVWJmKvxfQ3bU2QsgyIaW/gJBnSLFHcdN0lCllto63ol+t3kpE0iJeWvLOcderIuFt53gh4KLYWhOCItUMXHpo0C7PqwvNJfGX3hLtHj6uIG4+M+IbX3co3vO5WZlXg9+69wFs+eoHfuecC/+QXPgy/AMfGBZ97x3HecMdxPu/O45zeGl7r3e7R49MCCVCvW/XI1VCvKVkWmdUZ8yqnabx9uZURmXlLbfSK81bRLl3DJJRdMAuAzjKmdQFDq0LnEggsSXMTPS4P6KygCqbLXi8rLp3fIAeysiHUnrxoKPMGh6a0Sw94ogvkLuDUCEzpGtb9nAtxjYv7I0ZTq+5plny8fTv9bBVmFZMxaO6NbPnkNeydyRG8A18YARuWzE+O2L/edZVCFSh3IuWZPbNVO4wU8b6qEXaVWHXQt1Vyc24YnFcOyFHbqfMgkNu0umQ2oxCDI/pIkDQbAOw3BZmPxGAV6ViYXr2rYiY5RzMWykutFtYGB4tNYePByOQmZ8Q4VRG1jX9PbimaqaVrulRhDIKrhGZsjjbteXGJgEWXUgVnnjBQ/DTtT05XKR085pndUrN7hwCe8dmk6U5WdoMdc/6oNgSNMPxYweQFsH50n7M76xxf32eQNcybjDJryHxgXuUcefFF7l3f4raf2mR478VkkafmwX3YKu+QbpsYcTPtrPG0yGFthOYejq531n1gEiNNs6SODdhYM6u/zBGLjJh74sAT/QorTKEtuHT/eQtHCoUNftSTPN7VmhaTC0grD2kbGCUuifTqGDYW5o0ujX3Gqr7eBp7a3RedNjvdd65ezgp1nyksrSqDHAhV6jT7K/euhCUH7tZN8iZ1K38PaT+W5FzQMuLHDaGwc9pUnrxs8GVNXXpi8ITK2d9Ha1/5SaAn3D16fJowLDxf+KKTfOGLLAn7zM6c37nnAm9Nj//+h48CcPvxMa97wTFee/sxPue2o1y3MbiWu92jx9WDQhgpsjCip4OAc5FFnVNXGSE4/NQRyoibulQ5VURglNU4UUrXLDXciQjOmwyHEg6FKWcu4kTJy4aqWRL1QVYjE08zVAaZkZo8b/CilJlZAjrsM3IXKFxDnmQsrWNJEz37O0PWGu0qg8bR1YqJYTklHTOIowK31+ZNS7Jzq82ZomnAOcL6gN1bcpNPJJLhFzC8UJt120oDXhcNLhbsAYl4JNLrKgvA0czkO2FgBMfPW4lJIh9FhFog1/QzqVxanTUQ45J0z+uMZmGlyrAW4aJLhEm6JD514GvFz4RY2jaqTcVXkXwvI6xFI1xtxVoT4a8ccRhphi5FbIOrkjViYW4RbTW/ldSqs2Y3qZ1VTlP1U6LxpZacFecywm0zdnwJ4hmfaRsprXEynyjRQ70m+BoG9xdMssh4fc6Zy+vcdHybPDmXeBcpc/OGP3p6m/u+foOb/9t1rH2gzYRKlyYNhPTwjGY78KoX6M6uST7al8ZjZDyEENG1IXFQoKXvGlND7q0pV9J20jl3c7v7JaRUzdVmzaDmKpL6BsxBRJAm4mb1MsZ9WKC5J5SeB790yMl3BYrtBmkS8c8doXDEwhFKIeTmKtMMJEWqYz0XSeMdhtHIeBBcY+RcIp01ZDsYaQk9iWi3hH21YdjOJ8s3kIh1chBpiXsHpwdJOyzJOBAWvttunGcs5lknN3F5wOXxwBgpphm3p4KecPfocY1w/eaAP/nqG/mTr74RVeWjZydGvu8+z3/7g0f40bc9CMCtx0a89rZjfPZtR3nt7Ue58cjoGu95jx5PD6zyqGR7RqYlT64YTQqUWXg8QGNa71a3m2WBjXyOFyPQrZeDqKC5Nfbth4JxtiCqkEsgl4DDgnTKoqFpTIPsRDm7t06276iPNzin5HmgzAJl1rDiE4GTSCYRn9xK8tTF1clVdvKuImiODGka2kdrShTfVffCMMOvaGelbqDV/2YZOizZv3lEM14RKCsUe0p+abYkV200eOtnzZKItHrXtpIHNn3uquQa4SHbh3oN0626ttKcYthTxVvSIKeVlZBsAq3nTnB5JAZB8kDMMyP8SeLREuKQC8WeMM9tX8MAqrEj34c5IJWzwQl2fqQAGTfEhadeV8JAqEeCWyTulawP/aKV2qyQ7+R6orniF9AMl9XYVpbjZ0JzdkB2/YzJdIQE12m6o0+a8V3bl3rNZmDKjw3YfwFsbe3z0IUtrj+yxyBr2FsUxOR0E1U4cmKPB//XNU5uXM/Rt5+zxsUnSphsParb5y2iuYMwn5vVoCoyARciLMxTW0Iw//W9iVW/i9zCb1oi7a1xUkXAp/slAplLJNtmDjRFwrtZGsgl/bnUls55+XOvp9wW1j50yXZzOqd1KdGy6KQrMq9MutI2Y3pnkhXn0FFJdWzI/vU5iyOOat2SII2MJ6lToCPMXaezt2vZjpba5srO3ebAucQGjMnyryXTts6SiLd/B11jpNNki7kk7ChWzVYLU7IBjSJlJCsbfBYQv7L9J4GecPfo8QyAiPDC69d54fXrfMvrb6MJkQ8+tsvb7r3E2+67xC9+4Aw/8c6HADi9NeS1SSd+161Huf34uNeA93hWQh32JYtpcsUpIVgIDSrI3FtCYvoSbN0DBnnD2C8opcETiSx1xQj45CrSqElGfGKgESGoUOYN01qYNTnjvGJnZ0QGuGHTkcsyayh9g5P4ONINmO0glr6Ig0XMyKZWkeum8lUgM7ItDigD6rxVXXN3MPSkCUawQkTKgur0JtMTK69L8t2+GJBZtXSVaMnVyv+ATs+9UuGW1rVhJTAk5EI+UeYnLMFTWy9jp0hl4TQaLPRG0u46UQZFjRdlWuWWwukisTGtfRgpfmHSlawGouIrky34uR2HNEIYR+ZHPfmeNVKqT82lGVZ5nHk0c7hhQxhmVGNHM4ZsZuS3lZuwMHIlieSrM50xCCEz2Yn3Jl2CdMpSFb3YccyHJYMXTJiwhkTH8GK0REoR/EIpt20gU22An8Pg7gGLVy7YXJvz6IUtbji+zSBvOptJVGii4+jxPS5/xYDF1vWc+tVznYb6cTKg1p1GdemlvbzZ0KpCmwEyHprMJM8suEdSuTfGLu1SpEiV6ZI4sKZJaeJBcp/GeGGY04wzs9OrIq4KqHPE9aG9p6rN9WZUsnMHnP6tBbI7sUOcL0Aj5IXda+3AcTa3e7i1KnRitoRRcbuO8jFl8IF0n3pv+7k5ot4csDiSMT/qmB8V6g21lNfW/1ptANQOHFuNdkeoW7lV+3sauK02L7fl684YppWsZPZ/RzX9n5H0M8mfaLXbSXKlc0899zagC0/te7cn3D16PAORecdn3rjFZ964xV/4/NuJUfnI2T3edu9F3n7/JX7ro+f5mT+w4NbNYc4rb9riVTcf4VW3bPHKm7ZY7z3Aezwb4EzqoA600BTSZ1UlEe2+QN3cdZIBccq4qBj5ioGrGfql3EPFmhN9KmPV0eLdPZGA64jzIGtMMx68WdXt5aZiKBoyZ6THiZK5SOFDJz3xYnruXIyI2/OaXAKNOiPcbkl21WuXiqmKVbmTjroZObRMpKhO6ZLJZ1nXR0xuKIxYtZwiQLGtDM7OOneJVbK2WuFeDYLpCHeDDW7aJjhnVebBxdQIl7UV8ETMW1JTm+g2RmvIq8WzFwfWUBrd0jc7CvmgoV6LFJf9SuOcdBXtfL+diUiku4TBZSXbE+qtdAxtJVMFaiE2OQwji62MmEO+awMPOWLS6FYT3PKkruqZiH3MYfSYsjdIMpp0eqQ2Ulac99TrGf62ffYXa8TcMzwf8bVJSlyAYleJSS7hKgh/uMney/YYjeec3V7n5NYeR0YzLk+H7UdTB8+R9SnnP8eDXMfJt+3htveX18rLcsDVku1VH/W2ITI10LaVZG2bK5MzSdsHIMMCXRuh46UEsSPbSTZCjLi9OcSIT1XvmLWWIdLNSqgXc82ZLZjddILyklC+90HifN6lThKNlOt0iuQrVFKWDaF2gWwfVCOIyY1ExGwP54JvAv7CLoOobDpB8wwdlDRHhsyPF+yfdCyOmGa/GSmxTAOXZkm8UcylJNnVxEyJA7U+gJZYt6e2DXhKvu/mhrJCnNP/meWNAlIG+ztY1aTE5d/mk0VPuHv0eBbAOeHFpzZ48akN/uzn3Yaq8rHz+7z7gcu8+0F7fM+vne8KXp9x3TqvumWLz7rJSPjtx9f6KniPZx7EppRdSih0zhrwEE2kSNDCot81N4mGYJrroOa37SVSRc8YjMB7Tc2RjiaF3wzEYt8jQhUzNso5ZwUWTcZ+XeD3HLFQyiyS+Yh3kTwlKrYuJi1c0m7nEqihq6BfXozIJ0ZYcWnau9DuC1yc7Xu0TBLqkSOMSyREfGsH5z0yKJndtGk+2q08QiGbwdpjDX5ntnL+5PFShRBwYYVgJO23q6WzOIudrENMWz13FvIRpHNssO1jbiEpvCd6aGpvaZCxddmwDzBZiUMHAfXelC5i1XZtHTqCkeUu4n5gziPZVAgDl3TZoCupJFKDjgOz64xYDy6YrKDT2yYtdyhNh64rNm8ShGYEW/fMWGyNmJ1snTIU8aZ1lwDuoQHli7aZ3DrHNQNQx+hc6GQr2UIpL9v26vU0QHn/OuEVOxRFw4W9MWvDhVX7RbvZlv1FwbGjEy5/rrI4ss6Nv+bIzu8tr12LNs1RxAjramx6USB5jqqat/ZqeI7Dqt5Ht4hlCrupQ9LPL9fTzCVi7XAiSBOQOiB1xK0W1SNmTVibvaCOBpz7rJzTvz2DxYIDUfHQ/a4hWO9Bez903zWJ8Ec1SUt7S676j7dhPKrgkjRlUZGfa8jPwfr7k7SlLKhPrLE4XrB/0jM9KVRbkTiIywp0IshghNzv+u4e0UIhi+bb7cxjv5WEaBC7ZRLx1k5WIuZQMsu6v6UDZPwpoifcPXo8CyEi3HHdGndct8bXvOYmAHbnNX/40DbvfmCbdz94mZ9/72P82NtNhrIxyHjZ6U1efuMmn3l6i5ef3uSmo8M+jKfHNYfmljAZ8ojPLJAGFWIQ2iQ8VwlN8tBVtebHgas7DbU5kESraEFXkbYUyqW2tomOIjU9qoMmOB65sIULFhnuXSREocwi47xi4GsyWTKS1vsbLM7dKtymD99eDPEzc0CIyfqMiOlJvaJRcFnoKrKtUwQ40+GGiGSecHyDxVa2tPZTI6nFrjI4N+uCbg5LSVoZCYCrdKnfTqexbVLTRD5k5oi57Yefg4yNbLuFQ3NN3tiJvAaTemgU8Ir3sSPczinOKU0Q41XDYFKAYBV31+gBy7hsIuZM05h0oPUWz6ZCnWl3zJ1jigpam5OJq9O52ItITGEpyXFCPbbfYTnLgEK1FQml58hHa5pRTrWlFpyS3Ff8XCDC5IFN1m/ZYfdmj4Qc8IzOJ3lJbseRTyAWqdJdQ/PBDdyLJuR5Q9141gcL5k1GEyzxNM9s+dp4zv5LIw8UY274nYLhvZeWpDW50yCS9M+hq3xLniHjETosr/zH45wR7gRp9fztaEfVwpaiSVk0s0ZIqepOVx5zZ7rwoEiMyHSOTueoEyafdQpfQfGRR+0+W+1CdM6sClukJkyFZQJmi7birRHwnRMLYA4tyfKws7gM0Uh56+CDkfDi0W2KR5S1zKOlNY/WmwOm1+fs3uqYXR+sFyFTdKCEUapCB0Fqh0wzc2kZxO4eEa+dm2JH1l07WlxxNDksH+kJd48ez19sDHLecOcJ3nDnCQBiVO69MOHdD27zBw9u8/5HdvjBt95HHew/xeYw5zNv3ORlpzf5zETGT2/1JLzHpxPSRamTqVXH1KzY2qqT1KnqlCUm1jgLuqEl1csod4AYpNNvN9GzFwYczUx72qZSFql6vagz6p2SApBhoMgCIR68/yPCPOQMfG1BO+opEule4bjszAZkCzoP6rapS7Jolfvo8H5JBJsB4K1RjaSJ1fEa9dbgwMy1BJsBGJ1vTA5w+Ayu7oRzSFXj58mLOxEJ0fSzdS9JjY9GuKHYURbH0kAgV2s8C77zMVZxxn+90kTpZCSDYbV0bgimR9Bg0g2LkwcaI4JWbTZ3iraAHUqlWhP8Yln5j6OI33fJNSWtW5vlYCysyjy41OCawgIbC+3s7ohGnoUUVhIgDpW9mwqOfGjC2iMZ22MI4zR480pQkzX5hbB7bo2N6yZM9jdBHeoc47PpXGbmtFLs2n1bbaoFCt29BndOIG+YLAo2BgvmkhHSdYmYPeVwUDP/jH0eHI+44bePs/7R7QPe2ESzIqTIkaq2uzvLLKWyyO11keSiotbU2KRlIhZ4kwJt7BqnCnkGUinR50QnxEFmxLNukm5bcHXA7y2Q7b0utVK2Nti+PeOGt0zQ6exg3HuC5vnyGFqvb+eMUKssSTVY5T6GRMydSVY6q77lTI200fMqFgrUVsNVl5aJQ7PNdDtTBhf3GNwLR97u0bUh85Mjdm/N2bsV6iOhq2pr0cC6SbzyzJqz4yQNVpwihTUNi5jXfFeEdyAu2vlsSXf6f9W7lPTo0QMwGcod161zx3XrfM1dVgVfNIGPnpnw3keMgL/34R2+7y330qQvhyOjnJed3uQlN2zwklMbvOj6DW4/MSb37uN9VI8enxwU/MxZw6SPxJgq2wBNqqAuHDHTjsgiyiir8BLxmKQkIjTqumnlqEIVPHPJmMaCoI7MRZrowFulGpdcN6ZG7nxhbLTMTcedSWAzn7PfFCAw9DWlqwk4fLJQGGVVV/Hen5YcCRCylUJg28OV2b46F4kF+JlVSkPpyS4GNEYkz2mOr1Ov+aU3thgJtur23AhV25TW+TqnafEU200TcHWkTemTuCTdruM7y4GOetNWS2MyBod5M9M2MYIR9+TbTBRcGQ4QExHwg8as1aIR7nxPunjvVkcevUljFul3IlSbQr6n1OvWxLgokhjbRatMBjsRmik6iCAZ+c4CaZK/oFPCUJfR4Z3BczqFC2Fyo7DxYM7GA3PmR4eE0hHWg52jAkKunQRhfzzAXz9lHkfE3Ej36Hzs0hT9wq5HKGzWxc+F+v41/At2qVXYS6RbVZjW1lSaObv242FkcUvgkXKNY0eOcvydl408+zQyyjOkzkzfnJfIYGCa5syZBr+JuEUb856me6oatzAttQKyNk7HHazBEqypUVfuk8zb+6aVbXNvikymaDt74oTdz7reGk7vfjglWZpUCOiItaSK9lLi4g6S8lYi087C+PyQJEZSc+WKjvwwwe7kKyZV0TxDvbcqvnNdYifOIXVg8MiEwRnhxNsdYZyzf3rA7q2O+XWRsB7QPJKXDeKUeuDQypkbycLocOv13+q/ZaUS3s4YSRqw9oS7R48eT4gy87z8Rqtmt5jXgY+c2eO9j+zw/od3eN8jO/yHt95PlTrmC++48+QaL7p+gxefWjcifmqDo+PiWh1Gj+cIrHksfaGlFENtnH2h1VYGdY3ggqAuGSk7pfQNtXoCjlJWrPtS1SlzkaCOKmbsNykNEbMQrELGOKtSFdZbnHOp5FlKmBTttLiNOvus6DtiXcWMoauo1UO09Rcxo94tDshJdEUfGpI8JoiQC/iF2dypYJXJokDXhoRhZn7TqQLsapOGjM+upEp2EoQVAgVGWlqbQDigNW0jtTuPa9Wu+t1KOvzMJCUazbGke7+k961OqYuysT5ltihMAkSSm6RGsjCyiPQDMd663JZrWn23+XGXl5LsZQF+zyQtbrGaWMnSyxyQeUOxA80oVeu9SWRWG96k9WNuoN7U1LypbN3TUG1kaO5MWoBpe7V2NhA5X8L1U+T6OQs/QNQxdY7hOfOzjlmyCLxsBxRLKLaF+X3rjF+ww2xRMMwbjg/3yX1gUhVUjadJIUvjQYU/vcsFv87sxFFu/NUdI76pIZL1MTKwe7aVi0jVWHpke51bgt4EZLZA9/eNkBa5STQOENWIZjmxyJaWeLnHTecQ5vhJRPenaJP6CLIMjmyyc5vnht/cMU/wVVvDGG1A4NP+qlXbWxKuqxXvEJepqSmWflnVtoq4iJiziUaT8mStXjpJY9oqd4yQ5eCsyVhWibn3dv5SI2qrdfezmo2P1mx8FOIgozpasH9dwf7pksXxiK43kEekWLm/guCm9ret7WxP0n2Lb6eL2imsp4aecPfo8TzHIPe84qYtXnHTVresDpGPnZ/wocd2+fBje3zwsV1+66Pn+el3P9ytc3Kj5MWpCv7C69e487p1XnBijWHhr/ApPXpcAQpxYG4kDgiNh3oZcNLa2plPr3ZNS0Nv+u3WErBRRx19t02fqtlRc3ab0shxQtNKT9YbmHn7Ps9Nl+xdJHcx2QEmPTjKRj4nqmOmnkzMtSRGB0m/vdAMv5sl949WU23yB1XBOSUGMUnJyvd0Ng+QeeLmGmFzQCgcoinxMJjHdLkbKc9MDla3fevR12pG0rI6RYivOnWkSrLo8qGkcyqStORKvm9x791+50v5ixFptUqgQNjP2SHlASS9vTglGzY08wzySCxTFHuL2EpWbPt4G0zFzCrvrXVhNhPm19Vk5/PlzmJNn1FgsWkncHgxMjslnS6dNMHRymZWnVqaYaQZeYqdSL7fsHG/5+K6QAm0UoIsoBjRqi8NOHrTNjsqNFMzf4+ZY3g++UCnSr1msHCgOeS7jsl9m2y+4DLnd9YY5jWlb1i4jArfDeTAbC2P3n6Oh9eP8GCxyS3/fRu3O03nKTUiZn5p/chSatEul5BcQhYL0/97h4xHdFrw1vkk811FWOZNGnTpsposgpSlEV3voSzYfuUJysuKf/SiuaOQ3hMVrSrTaLfV7ta1ZGXfu+ciptsOGMHWtunSJc9ruoZaxKFNWJJssP2Pag4+K5pvaZahPQfSaNo/rpAuvhe0dPYZTsj2A8feN+PYe5Q4zKg2C/Zuytm9A5pjNZJHyIToFckUrRyycMhsKWvTMtp6nwTkQLfosxh33XWXvvOd77zWu9Gjx3Ma5/cWfPjMLh96bJcPPbbHhx7b5Z5zk06SIgI3HhnyGdetc8dJI+F3pubOcdmP7z8eRORdqnrXtd6PTydEZA/4yLXej08TjgMXrvVOfBrxfDre59OxwvPreD/esd6iqiee7Ib6b8AePXo8aZxYLzmxvmzMBKuG339hn7vPTbj77IS7z+1x99kJb7n7fNegCRbYc+fJNe68zoj47SfG3H5ijSOjvG/UfP7iI8+XQYaIvPP5cqzw/Dre59OxwvPreJ/OY+0Jd48ePT4l5N5x58l17jy5Di9fLm9C5IFLUyPhZ/eMkJ+b8Lsfu0jVLKfkNoc5tx0fc/vxMbcdH3PbifTz+JhR0f+L6tGjR48ez37032Y9evS4Ksi84wUn1njBiTXe+LLru+VNiDx0ecb9F/b52PkJ913Y574L+/zevRe79MwW128MOhLeEvJbjo248ciIQd5rxXv06NGjx7MDPeHu0aPHpxWZd10F+4++6LoDr02rhvsvTBMJn3BvIuM//97H2JnVB9a9fmPAzUdH3HR0xM1HR9xybPn8+FrRy1SeHXjztd6BTyOeT8cKz6/jfT4dKzy/jvdpO9a+abJHjx7PClzer7j3wj4PXtrnwYszHrw05aFLUx68NOXM7sFAkFHhD5Dxm4+OuPnYiBu3hpw+MnxGSlWej02TPXr06PF8wTPvW6dHjx49roAj44JXjwtefcuRx702rwMPXzby/eDFKQ9eMkL+wMV9fvvu88zrgzZOR0Y5N2wNOZ0I+OmV5zdsDTk27ivkPXr06NHj6UNPuHv06PGsxyD3XarmYagq5ycLHrw45ZHtmT0u28/7L+7zO/dcYL8Kh7bnloQ8PW7oHgNObgx6DfmnABF5I/CvAQ98v6p+9zXepU8ZInIT8MPAScwF+s2q+q9F5CjwE8CtwP3A16jqZbER3b8G3gRMgT+rqu++Fvv+yUJEPPBO4BFV/XIRuQ34ceAY8C7gG1S1EpESOzevBi4CX6uq91+j3X7KEJEt4PuBl2HX9s9hdpbP1ev614E/jx3r+4BvBk7xHLm2IvKDwJcD51T1ZWnZU/47FZFvAv5+2ux3qeoPfdzP7SUlPXr0eD5DVdmZ1Tx8ecajK4T80Z0lMb8wqR73vqPjglObA05tDrh+c8CpzSGnNgfcfmKNV66ECD1ZPF8kJYmkfRT4YuBh4B3A16vqB6/pjn2KEJFTwClVfbeIrGOk5KuAPwtcUtXvFpHvAI6o6t8WkTcBfxX7In8t8K9V9bXXZu8/OYjI3wDuAjYS4f5J4GdU9cdF5N8Df6iq3ysifxn4TFX9SyLydcD/oqpfey33/alARH4I+G1V/X4RKYAR8Hd5Dl5XETkNvBV4iarO0jX9n9jxPCeurYh8PjABfniFcP8znsL1TAT9ndj9r9jf+6tV9fITfe5VrXB/oirGE42MROSLge8GCqAC/ndV/fWrua89evR4fkJE2BoVbI0KXnZ684rrzOvAo9szHt2e89jOjDM7cx7bnXNmZ87Dl2e884HLbE+tqfMNdx7nR77lWfP9ei3w2cA9qnovgIj8OPCVwLOacKvqY8Bj6fmeiHwIOI0d2x9Jq/0Q8JvA307Lf1it6vX7IrIlIqfSdp7xEJEbgT8O/GPgb6RK4BcCfzqt8kPAdwLfix3rd6blPwX8WxERfRZU/ERkE/h8bOCEqlZAJSLPyeuakAFDEamxwcVjPIeuraq+RURuPbT4KV3PtO6vqOolABH5FeCNwI890edeNcKdqhj/jpUqhoj83KEqxrcAl1X1jjQy+qfA12KpPn9CVR8VkZcBv4T94+rRo0ePTzsGuef2E2vcfmLtCdeZVYEzu3NCfMZ+zzxTcBp4aOX3h7HK0XMG6cv8s4C3ASdXyNYZTHICVz4Pp0mk/VmA7wH+D6DVcR0DtlW1Sb+3xwMrx6qqjYjspPWfDWmFtwHngf8gIq/AKpl/jefodVXVR0Tk/wYeBGbAL2PH/Fy8tqt4qtfziZY/IdzTs59XRFfFSCPCtoqxiq/ERhJgI6MvSiOjP1DVR9PyD2AjrfIq7muPHj16fEoYFp7bjo+547onJuU9nvsQkTXgp4FvV9Xd1ddSlexZPyITkVb/+q5rvS+fBmTAq4DvVdXPAvaB71hd4blyXQFE5AjGzW4DbgDGWOX2eYOrdT2vJuF+Muz/wMgIaEdGq/iTwLtVdXH4A0TkW0XknSLyzvPnzz9tO96jR48ePa4aHgFuWvn9xrTsWQ8RyTGy/aOq+jNp8dk0Bd3qvM+l5c/m8/B5wFeIyP1YMe0LMfnoloi0M+erx9Mda3p9E5ORPhvwMPCwqr4t/f5TGAF/Ll5XgD8G3Keq51W1Bn4Gu97PxWu7iqd6PZ/ydb6ahPtThoi8FJOZ/MUrva6qb1bVu1T1rhMnTnx6d65Hjx49enwyeAdwp4jclhrQvg74uWu8T58ykob5B4APqeq/XHnp54BvSs+/CfjZleXfKIbPAXaeLTpfVf07qnqjqt6KXb9fV9U/A/wG8NVptcPH2p6Dr07rPysqwqp6BnhIRF6YFn0R1m/wnLuuCQ8CnyMio3RPt8f7nLu2h/BUr+cvAV8iIkfSrMCXpGVPiKvZNPlk2H+7zsOHR0apIeO/At+oqh+7ivvZo0ePHj0+TUg6z2/Dvpw88IOq+oFrvFtPBz4P+AbgfSLynrTs72IGAD8pIt8CPAB8TXqtdX64B7Mb++ZP695eHfxt4MdF5LuAP8AGIKSfPyIi9wCXMJL+bMJfBX40DRDvxa6V4zl4XVX1bSLyU8C7gQa7jm8Gfp7nyLUVkR/Dmh6Pi8jDwP/FU/w7VdVLIvKPsAICwD9sGyif8HOv1kAkEeiPYqOjR9JO/enVf6wi8leAl6/Yyfyvqvo1Yp6XvwX8f1em5T4uelvAHj16PJvxfLEF7NGjR4/nI66apCRpstsqxoeAn1TVD4jIPxSRr0ir/QBwLI2M/gbLRoRvA+4A/oGIvCc9rrta+9qjR48ePXr06NGjx9VCH3zTo0ePHs8A9BXuHj169Hju4hndNNmjR48ePXr06NGjx7MdPeHu0aNHjx49evTo0eMqoifcPXr06NGjR48ePXpcRfSEu0ePHj169OjRo0ePq4jnTNOkiJzHvBOfiTgOXLjWO3GN0B/78xP9sT913KKqfYJXjx49ejwH8Zwh3M9kiMg7n6/uA/2x98f+fMPz+dh79OjRo8eV0UtKevTo0aNHjx49evS4iugJd48ePXr06NGjR48eVxE94f704M3XegeuIfpjf36iP/YePXr06NEjoddw9+jRo0ePHj169OhxFdFXuHv06NGjR48ePXr0uIroCfenABG5X0TeJyLvEZF3pmVHReRXROTu9PNIWi4i8v+IyD0i8l4RedXKdr4prX+3iHzTtTqejwcR+UEROSci719Z9rQdq4i8Op3Le9J75dN7hE+MJzj27xSRR9K1f4+IvGnltb+TjuMjIvKlK8vfmJbdIyLfsbL8NhF5W1r+EyJSfPqO7okhIjeJyG+IyAdF5AMi8tfS8uf8df84x/6cv+49evTo0eMqQFX7xyf5AO4Hjh9a9s+A70jPvwP4p+n5m4BfAAT4HOBtaflR4N7080h6fuRaH9sVjvXzgVcB778axwq8Pa0r6b1fdq2P+RMc+3cCf+sK674E+EOgBG4DPgb49PgYcDtQpHVekt7zk8DXpef/HvjfrvUxp305BbwqPV8HPpqO7zl/3T/OsT/nr3v/6B/9o3/0j6f/0Ve4n358JfBD6fkPAV+1svyH1fD7wJaInAK+FPgVVb2kqpeBXwHe+Gne508IVX0LcOnQ4qflWNNrG6r6+6qqwA+vbOua4wmO/YnwlcCPq+pCVe8D7gE+Oz3uUdV7VbUCfhz4ylTR/ULgp9L7V8/jNYWqPqaq707P94APAad5Hlz3j3PsT4TnzHXv0aNHjx5PP3rC/alBgV8WkXeJyLemZSdV9bH0/AxwMj0/DTy08t6H07InWv5swNN1rKfT88PLn+n4tiSd+MFWVsFTP/ZjwLaqNoeWP6MgIrcCnwW8jefZdT907PA8uu49evTo0ePpQU+4PzW8XlVfBXwZ8FdE5PNXX0xVu+eFDczz6VgTvhd4AfBK4DHgX1zTvbmKEJE14KeBb1fV3dXXnuvX/QrH/ry57j169OjR4+lDT7g/BajqI+nnOeC/YtPHZ9NUOennubT6I8BNK2+/MS17ouXPBjxdx/pIen54+TMWqnpWVYOqRuD7sGsPT/3YL2LSi+zQ8mcERCTHCOePqurPpMXPi+t+pWN/vlz3Hj169Ojx9KIn3J8kRGQsIuvtc+BLgPcDPwe0LgzfBPxsev5zwDcmJ4fPAXbStPwvAV8iIkfS9PSXpGXPBjwtx5pe2xWRz0na1m9c2dYzEi3hTPhfsGsPduxfJyKliNwG3Ik1Br4DuDM5UxTA1wE/lyrEvwF8dXr/6nm8pkjX4geAD6nqv1x56Tl/3Z/o2J8P171Hjx49elwFXOuuzWfrA3Md+MP0+ADw99LyY8CvAXcDvwocTcsF+HeYY8H7gLtWtvXnsCare4BvvtbH9gTH+2PYFHqN6U2/5ek8VuAujLx8DPi3pFCmZ8LjCY79R9KxvRcjW6dW1v976Tg+worrBubi8dH02t87dC+9PZ2T/wKU1/qY0369HpOLvBd4T3q86flw3T/OsT/nr3v/6B/9o3/0j6f/0SdN9ujRo0ePHj169OhxFdFLSnr06NGjR48ePXr0uIroCXePHj169OjRo0ePHlcRPeHu0aNHjx49evTo0eMqoifcPXr06NGjR48ePXpcRfSEu0ePHj169OjRo0ePq4iecPf4pCEi/0pEvn3l918Ske9f+f1fiMjfeBo/7z+KyFd/4jWf8nb/7srzW0Xk/R9v/ZV9uU9E/tKh5e8RkR9/uvcxbfvPisgNV2nbbxCRDz6ZY+/Ro0ePHj16PDX0hLvHp4LfAT4XQEQccBx46crrnwv87jXYr6eKv/uJV7ki/ndV/fftLyLyYsADb0hhSE83/ixwRcItIv5T2bCq/jbmF92jR48ePXr0eJrRE+4enwp+F3hdev5SLMBkLyUKlsCLgXeLyD8QkXeIyPtF5M0pifBFIvL2dkOpsvy+9PzVIvJbIvKuVDU/dfiDn2gdEflNEfmnIvJ2EfmoiLwhLR+JyE+mKu5/FZG3ichdIvLdwDBVpn80bd6LyPeJyAdE5JdFZPgkz8fXY8Eovwx85cq+PtV98qmC/n4ReZ+I/PVU2b8L+NG0r0MRuT9t993AnxKRr0/rv19E/unK509E5J+n4/lVEfnstE/3ishXPMlj69GjR48ePXp8kugJd49PGqr6KNCIyM1YNfv3gLdhJPwu4H2qWgH/VlVfo6ovA4bAl6vqh4EixWADfC3wEyKSA/8G+GpVfTXwg8A/Xv3cJ7FOpqqfDXw78H+lZX8ZuKyqLwH+T+DV6Ri+A5ip6itV9c+kde8E/p2qvhTYBv7kkzwlXwv8OJZM+fWHXnvS+wS8Ejitqi9T1ZcD/0FVfwp4J/Bn0r7O0roXVfVVwFuAfwp8YXr/a0Tkq9I6Y+DX0/HsAd8FfDEWTf4Pn+Sx9ejRo0ePHj0+SWTXegd6POvxuxjZ/lzgXwKn0/MdTHIC8EdF5P8ARsBR4APAfwd+EiOp351+fi3wQuBlwK+ICJhE47FDn/mJ1vmZ9PNdwK3p+euBfw2gqu8Xkfd+nGO6T1Xfc4VtPCFE5C7ggqo+KCKPAD8oIkdV9dInsU/3AreLyL8Bfh6rmD8RfiL9fA3wm6p6Pu3PjwKfD/w3oAJ+Ma33PmChqnWaUfiEx9ajR48ePXr0+NTQE+4enypaHffLMUnJQ8DfBHaB/yAiA+D/Be5S1YdE5DuBQXrvTwD/RUR+BlBVvVtEXg58QFVfxxNDPsE6i/Qz8Mnd44uV5wGryn8ifD3wIhG5P/2+gVXGv++p7pOqXhaRVwBfCvwl4GuAP/cEq+8/iX2rVVXT89jui6pGEen/B/To0aNHjx5XGb2kpMenit8Fvhy4pKohVXS3MFnJ77Ik1xdEZA3oXEZU9WMYAf0/WVZqPwKcEJHXgclHRGS1EfPJrnMYv4MRV0TkJdgAoUWdZCqfFFLD6NcAL1fVW1X1VkzDfVhW8qT2SUSOA05Vfxr4+8Cr0vp7wPoTbOvtwBeIyPHUQPn1wG99ssfUo0ePHj169Hj60Fe3enyqeB/mTvKfDy1bU9ULACLyfVj1+wzwjkPv/wngnwO3AahqlRoE/x8R2cTu0e/BZCg82XWugP8X+CER+SDw4bTuTnrtzcB7U/Ph33sqB5/wBuCRpGlv8RbgJVdq+HwS+3Qamx1oB8R/J/38j8C/F5EZy2ZVAFT1MRH5DuA3sBmAn1fVn/0kjqVHjx49evTo8TRDljPNPXo8d5GqvrmqzkXkBcCvAi9MTZ2fzPb+I/A/UjPjM2KfPlWIyK3YMb3sWnx+jx49evTo8VxFX+Hu8XzBCPiNJB0R4C9/isR2B/hHInJ81Yv7Gu/TJ41kVfj/Aheuxef36NGjR48ez2X0Fe4ePXr06NGjR48ePa4i+qbJHj169OjRo0ePHj2uInrC3aNHjx49evTo0aPHVURPuHv06NGjR48ePXr0uIroCXePHj169OjRo0ePHlcRPeHu0aNHjx49evTo0eMqoifcPXr06NGjR48ePXpcRfz/AVOdb99cd1V3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "image_source = scopesim.Source(image_hdu=hdu, flux=10*u.ABmag)\n", "\n", @@ -117,23 +104,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "moral-messaging", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAFICAYAAABjtimhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aYxsaX7eif3e5SyxR+53rbWrq/duNslukRwtnLFGy2jAsT22JQ9sf5BBwB7NBxtjW/40wBgGZBjwwIZkD2ib0OiDJcBjbbBlaWYkakiTEsnm0vtSVbdu3TVvrpGxne1d/OF/IvI22SSrulmq7uZ5gIvMmxkZceLEicznfd7n/zwqxkiHDh06dOjQoUOHDh3eH+gP+gA6dOjQoUOHDh06dPhhRke4O3To0KFDhw4dOnR4H9ER7g4dOnTo0KFDhw4d3kd0hLtDhw4dOnTo0KFDh/cRHeHu0KFDhw4dOnTo0OF9REe4O3To0KFDhw4dOnR4H/FDR7iVUj+vlDpRSn3lD+n+vFLqt9t///AP4z47dOjQoUOHDh06/NGB+mHL4VZK/QlgCfytGOMn/hDubxljHH7vR9ahQ4cOHTp06NDhjyJ+6BTuGOMvAhfPf00p9apS6h8rpX5DKfVLSqmPfECH16FDhw4dOnTo0OGPGH7oCPfvgZ8D/oMY448C/yHwf34PP5srpb6glPqXSql/5305ug4dOnTo0KFDhw4/tLAf9AG831BKDYGfBP6fSqnNl7P2e/8t4D/+Dj/2OMb4Z9rPX4wxPlZKvQL8M6XUl2OMb73fx92hQ4cOHTp06NDhhwM/9IQbUfFnMcbP/M5vxBj/LvB3f78fjjE+bj/eU0r9c+BHgI5wd+jQoUOHDh06dHhX+KG3lMQY58DbSqn/DoASfPrd/KxSakcptVHD94GfAr72vh1shw4dOnTo0KFDhx86/NARbqXU3wb+BfC6UuqRUuovA/8e8JeVUl8Evgr8zLu8u48CX2h/7heAvxZj7Ah3hw4dOnTo0KFDh3eNH7pYwA4dOnTo0KFDhw4dvp/wQ6dwd+jQoUOHDh06dOjw/YSOcHfo0KFDhw4dOnTo8D7ihyqlZH9/P7700ksf9GF06NChw3vGb/zGb5zFGA8+6OPo0KFDhw5/+PihItwvvfQSX/jCFz7ow+jQoUOH9wyl1Dsf9DF06NChQ4f3B52lpEOHDh06dOjQoUOH9xEd4e7QoUOHDh06dOjQ4X1ER7g7dOjQoUOHDh06dHgf0RHuDh06dOjQoUOHDh3eR3SEu0OHDh06dOjQoUOH9xHvW0qJUurngb8AnMQYP/Edvv+/QCrXN8fxUeAgxnihlLoPLAAPuBjjj71fx9mhQ4cOHTp06NChw/uJ91Ph/pvAn/29vhlj/N/HGD8TY/wM8L8G/usY48VzN/np9vsd2e7QoUOHDh06dOjwA4v3jXDHGH8RuPgDbyj4S8Dffr+OpUOHDh06dOjQoUOHDwofuIdbKdVHlPD/13NfjsB/oZT6DaXUz34wR9ahQ4cOHTp06NChw/eOD5xwA/828Mu/w07yr8UYPwv8OeDfV0r9id/rh5VSP6uU+oJS6gunp6fv97HiQ+SX3jglxvi+P1aHDh06dOjQoUOHH3x8PxDuv8jvsJPEGB+3H0+Avwd87vf64Rjjz8UYfyzG+GMHBwfv64EC/I//s1/nf/B//zX+2TdO3vfH6tChQ4cOHTp06PCDjw+UcCulJsCfBP7Bc18bKKVGm8+BfxP4ygdzhL8bv/BNUdEfXRYf8JF06NChQ4cOHTp0+EHA+xkL+LeBPwXsK6UeAf8RkADEGP/T9mb/TeC/iDGunvvRI+DvKaU2x/f/iDH+4/frON8LThfV9vNb094HeCQdOnTo0KFDhw4dflDwvhHuGONfehe3+ZtIfODzX7sHfPr9OarvDT/+v/2vtp9boz7AI+nQoUOHDh06dOjwg4LvBw/3DySc74YmO3To0KFDhw4dOvzB6Aj3dwnnwwd9CB06dOjQoUOHDh1+ANAR7u8STegU7g4dOnR4HkqpP6uU+qZS6k2l1F/9oI+nQ4cOHb5f0BHu7xKdwt2hQ4cO11BKGeBvIP0JHwP+klLqYx/sUXXo0KHD9wc6wv1dovNwd+jQocO34XPAmzHGezHGGvg7wM98wMfUoUOHDt8X6Aj3d4kmdAp3hw4dOjyH28DD5/7/qP1ahw4dOvyRx/sWC/jDjiezgpNFyeEo/6APpUOHDh1+YKCU+lngZwFUkv5ocvMAosKUoDxEAyGRz1FAlI/BAGkrdHgFQYGO6CQQgdhoiAoiaNfe3kYICl3L/ajY3p8Gn8r9qgDKyePGLIBXKK+IXP+8cnI7FIQ8QpD7MDYQImgF3mn5WSePE7XcX5p46iIB1R5rVESvvu254RSYKMdeKqKV78UkgokoBdFpCO19t8cdlZwTpUCtNdG094ncb9RyHk313LlEzk1I5XPtru8PJecC3f5sAN1cv3ZRtefAyvmya/kc5PYhAdPI4/js+r51e/6ils+hvQ8ttw29eP3aNe3jaKB9fN9rX7/QXiOtVBjzCE17Lm0Ar2Fz3WhAR3AK1V43MSKvZ6OIGkzu8LVtX4e4/TlVKTknUZ4nIK9PkBOrvBwbbTpwzOTCUrVG1889t/b5aXd9nlS4ft0353PzOmxeG2xENUpuy/V5UrF9X7Rf25yH7TURrx8jqm9/Dz3/vedfTxVBhUg0CkKU2z333NRmXk2174nnjnl7TaBQMbbHJedu+/yfe87RyPOLpj2fmvYb7R16hV2BdnJfugmwFTcV0SjqqYEIySpuz+HmuW2OZXt8MW6/R/ve374N9PXto2lfn+feI1E/91wjkAeMDrjaoBoFGprLC/xq9a4zojvC/V3ib/zCW/yNX3iL+3/t3/qgD6VDhw4dvh/wGLj73P/vtF/7NsQYfw74OYDejbvxlb/4P2f9qYJQWiZfTsguI8s7iuKWR1eKkEBMAsmVQTdQ7wTsUmMKhc8jvh9RBxU2ccRvDZm8AeW+otqNmEKIvM/BlGz/yPZOI7qBxQvyh3P6RqDpK+avIPfbjwQD7qgmyR3NVYaqNP2nGtePVLcblInE0jA8WpJaR2o957Mh8WEfUwgpc/3IzR85JrOOt5/tcWN3zuPHu6TDmnqRoueWMHEkg5rmIifdK4lvDwg20jvW1DuRZhogCPnOj+VPdnnDoXqOWFhUrdD7FTzJ0U7ITv+potyLuFFEV4rBY4WpIosXIVko3EDIvXu5ZPRrPZSDch+qfU96aRi/HZm9LoRt+AAGJx5TBKJVFLsW00TqoSKfBVyuqMaa3nmgONDMPuFIZga7VPSfRkICxZEiP2W70MkuI/VUURxG7FoWROu7nmgjZmFAR/zIoxpN/4EhaqinEbfryJ5axm/Ja3rxI8I+8ycW/9EV4VGfmETC2AkRb4lcvldQrVJYWLIba8I3hvheRN0qGY/WXF4OiU6jE0+8TCEq7EqRnyvWN4W9hjwI+Qpg1xqzVqgI9STg92SVkD1KsGuFT6E68CRXGuUVIYsEG7ErIeTJClBQ7sv5UQ7sShZabhBxQ092aknncr7qSSRZKLIrMEWkGctjhEQWJCpAM5Lb6BqakSyydN0ujIpIVApTR/JZIGolxFeDLTdEGZJVQNcBtCIkCuUidtWuBJQipBqfaUKiMGUgGiHBdu2FZFtNPZLv+1Qew1by2PVI0YzldWzGHvLnVo9OkZxbDn8jkCw8tvQkJ0tU1RC1AmNoDkfc/7dy0rni4IuNLNRShW7kWg6JErJvNguzKMQ9Xn+uQiRqhesbQqIIVlFOFfVEFmAbch6sLBhjuwhGQX0g5yE9sXLteMWT/8N/8p5+QXaWku8RJ/Pygz6EDh06dPh+wK8DrymlXlZKpcBfBP7hH/RDrgf2QU42Kcn/7AmnPxZxg8jgoWHnawpbKKZfsUK2J5HeEyFgIYtbxdOvLMFr0o9fcfqTjvWNSFTg80i00D+O9E8ivZNIOo+U+4pyX9F/Fknm0PQVrq/ITxXDR5H+Y8X4HvTezPDPephxjT4o8T+6oN4JDN5IUSZgxzXOGZw3XK16pJkj3i6pdz39Z5H8XPH4q0c03nBnf4YLmnxc4RojBO1SM/3NVmruee7szcg/MsMPA8vXG1G0a1kU5HsF1Ssl1YHHLAzRa/SwQe3U+GVCSCO9YyGYokwrwsCja0jnkewqYgtFcdNT73qa3UCoDc1AHl43QiT9a2tO/7WGZuppXqi4/HTg/KOWxd2ExR2LT+V8pctI09dbZbzY0+x/seDwVwzJlaK427B8EaJVmApUlHNvSiE2Qhgj9TQQEsifGVStCL1AeqExV5ZoA8XNgO9FTKlEeY2KZiDqb3ZiZOfAQQgaP3FELap3vlvKuQPKWU7Sa4gDT5o41OtLQh7xZxmzqwF5v8aeJHCeofdqUBE3CqLON0Ks7Up2GOLQk1zJgqraDfhhwKQBao0pZYGIBjWtiQaSBfJzRlRs08jnrifXrl0rskuF2ezCeBg8sLI70O4y2EKer6kiplXQNyr6Rj3Pz2Rx2YzADeP2OFwPfCqqr6nBJ0IuN8p9SOR7toxbddf1dKtyK3zfglKoNigiaiG52kVMGUjnjajgG5IehODbMpIuI6aK+Fx2KULSKvga2aWqNWpt6D1IuPX/c6RzT7JoSJ5coYpKtiSMobkx4sGfyckuFYe/UQPgMy1kO7Al/sG2OypN3O5CaBcxdUC7IDsvqewEuVyxvKkp934H2d4o8O2OR2zPdXJhSU8tIYH0UnPzVzx29d5m+TqF+3vEGydLDsedraRDhw5/tBFjdEqpvwL8E8AAPx9j/Orv9zPaQX4OVx+O8HTA4nhE2qpHwcLZTzjspWX5YsQPA1FH1ncDZmXQlRDR4CB/klCPDcs8Q/U9g9dmzE+GJBcWn8PqdktYCiEwwUCyiJR7inI/4s/k8QZPI/0Th+trLj5iKF8vYZHQ+2KfYKE6COjDklWSYh/n2FeX5GnDIKt5djGW52Q8k5cu8d/aZ/AkYErNO71DBkcrRr2SPG2oTvrYnYrixcjonYT6S0PcTc+9+4ckgwazMKRzRbUbCHlADRx1aeEqIRoh8mGWUrxcC7krDEwaij9WEJ72aQai9PXvJaxfbpgZy+CRJj+L2LXBZ6KI6jNDSFsF1CjsWhHO+qxe9gzfMriBpXipZv1SoPy4w76dkyyV/GyjGb8duXpFk6xEpT3/RM7okcfUGkjweUtgFFRTRTMQK0txJAubeqJopp6iFzCFRjeKZK6JSbtoWJvW8qNaq4OiOnSYyqJrse+YuSUa8GuLyjxkHpzGmIDaqbE2oE2gWmSowlD0E/K8oR416LMUcz+nuGkwSSSdacIqJ9ypUBcp5X7EVKJQZxeKZqe1HEXQlajSdT/ilxblFeWh7EYorwhri3XyfE17rZoK0qtIPZLrTVdyXUYDtlW9QXYpdC3ke2MhMXX7ptlYUDzgZeFiKiHjrq9kcbJW2KK9eWvlMEshhyo8Z9lCCOnGyqU8+J6cc+0jwShUaJVhowlWrCPaRSGwbXhENJqo5bbJKrZWF40KEZeLrqtbqxGALjXRyPu8d6zZ+4qTxcfKYU/mqKoBo4l5Snl3wsN/PSE/V+x/qSYkuj0fobWpqFbdbhcnZWiJuDxYSDTBtop2omh6GteDck/hc2SB1i6s5LnE7fkxpZIdBM/WlhON7JZdvWRx/ffWON4R7u8R69p/0IfQoUOHDt8XiDH+I+Afvdvbuz4sfmqNedQDoNoL+F2HTj028SQR/NKQLBT5mcGuYX0zUh85/BhUz5P3a7zXhHlG9iSh3lEUx1N0KrYQ2wgh2XhXdSPbxdVUiKMfetY9Rex5squU9ZFlfSR2FXWRMv26IupIPVbYpULNe/i7NW434s57sAdaBw5351ytezSNofEG9yfn5H9/yODYU9wwrMOQcKQY90uiisTHPT75ube59+Yr7H7D83RXEaeeZpmiDmpqJeRal5qd38y4+hAkc0W1Fyg+XhC9xpwl9E401W7EhwR/ELC31hSmR++pYfxOoP/MMn8V6gnYUuF6cj6yC1FjQwKDZw6O4fLDCYOnATCg4OC3HOo3FZevJdSTRGwSS8PONyJNX1TRyb3I1auaYEWJnSuLLYS02KL17aZABFtCchFZ34LVTUXvGaRzy/q23xKmze6F74t1SHmINqILhS41ye0V9WJIdq62/vLyyKNKTfYoobzT0Nsp8F6T92vKd0bEG6V4+XcrvDOUJcSVxQ/EjK+WFj9xJPOU9EpRHxhMo4g2Qg12KfYIVQnZCxb8MMriY6LpPzJUe2IFUQOHOkvJnyQ044AKCu3kPkzRkjct52ZjdVJeyFxoVXDdyLnavEdECRcC6bP2/4Uch3ZimQhG4XLQdXvcQQilKOPt+1NDM1DtY7Q+aRcJVhFR+FSjXcSuhNdEo9CFkNeQGaIVZV+5SLAaHcRWon0goDFFQNcen5ut5WNjw9FNlAXVSuwwaNlRmr7pUD5iKo8um61nPA56rF8a8/iPW3oniv2v1HKcRo5ZN3FLol0uux4uVzQjQzOKuGEg9j06dWL/CkKOtW7Po5PXMnoFlZHXVkc5d4p2G0ZhCi0WtrL12bfzCbw3rg10hPt7xsWq+qAPoUOHDh1+MGHFH+vGHlXLH7f8nZR6JxBvrCEKefCZot71QkArjco8+lkGC4M+y0kqyIHiKIKBZr+RoUobqW87ksRTVxabCJGoVylqZUDD6E2xq8w/BMu7kZCKmmkqRX6mGD1oMHXg6pUU7YQs9O5lFDcdyimq4z711JLmjmGv4mC05HzVZ3e45vFP5+z/ciJK2TNDOUo5miy4++opj9445O2LXXZ/+ikPX94Xlf5GS+pqTfbyAvPLE4qjSLGvSOaQzmF8H+Yv9aj2AmG/YbUP+jwhO9OYpz3K/cj4kcKUolz2Tz3KG1w/iq82gZCKRUPIcOTpT1qSpaiEsz1FOoNmDK6vGTwu2fkWrG5YlDeUBwHlNdkssryl6Z+EVmEVtXV1R4iVrsWvq7zYHdKryOqmeHvtWnYbdAMomH5NfL/VVL6WXSqqXS22iAj1NBD3IyoqQrgeJiwPZQdAl5rQ91R7ourXE0v/IzN80MR9kYbtuSVeGcLYQw9IIsmpxZSiWFfeimcXhb2Ur4cMmmEknav2ujDU40AzjLgdR0gt2ZkR9Tkg5DoJ4jmfBMLIbwdX8zOxQKhwbQfxaSSdCSl1ffmaqSFdyO18dj1Iqhz4nsIUYssBUbU3ixSxQcgg68bLXE8jdrmZfmyJImDq2NpRhKj7VM6pCqBrUbB9plvVW8i2z0ThNr79WR+36ndINLoJ2GVNtBpTBXmemajltoo4rbZ+c1MqkiWMHjl0HbGFx67EQhXzFHoZ6xfHPPrXDaO3FXtfKXE9WQSGRFGNDcWBorgRcfsN6aBGqUjwmmaVYC8Sek8M+bnGVAkhEVuN68sCM2pIo+wi2JJ2GFawUfZDIq9JPRHbEzYSex61sAwea8b3A8nyvaXVdYT7e8TZsv6Db9ShQ4cOHX4XssTR61dUOhCiwpUWbwPDccG0V3J8MUZNa8yRg3tDskshR8vMine3FsWt3IuiJnpRqtkkQZQaLnMqCzH3hFnO4LFi71mg3FVks0jUgavXNNOvawbHgatXDM0QkqWo6aa2pHMh/ftfrFjdTDn5CY9dGvIzRT2JhHVOOXXofUktmfaEER3cuOLsM7sAxDyQPsh4ZHeIUbH/8gWnJ2PyxDG9sWDGiPR+Tn3gOPxly/zlCcVnSuyjTIbpehFbKla3NCGVLfDhr2cUR5FkrhgcB3yqqEeiZt/8Sr0dEhtWAd0EQqJZ3kogQu/CUY01rtcmdlQR00QuP6JYvhiwhWJxR+PTHFNF0kVAP9CUC1EG02UkXYg9gtam0IxlOLDZc6Rnlt4zIYzNSM5n/zhut+GrXVlAuBy0k+OPSrO+FXEDsWuERMhutBo3DNiDgumo4PQwxY0MMQ1MDxdUjaV8OiC9saZZDTE1LK56xNow2FuTWsfspiZ9J0N5CzOLul3S3AyEsxRbwPieZn0URVGOtCoxYjeoaYcIIQw99B1Z6qhiD920doUsoibCB0IeUE6GAeNOQ6g1dS1DfXYlr2VIhXhWe+2A5YUmWtBXSqwcemPXgGYI2it03Xq4E7EA6VqIpHaR0L9OLdmq54Uim4m6LCRfkaxliDFasaX4jO3jmUoesxmKwVvXkZDqVllu/6mIDqArv72molHoyst526SeWDneqFtripNkkWDkGPKZF7Jdesy6kTQSDX6Ysb7d5+lPKSbfUkzfrFjeSVnd0hRHgbBfk/Zka8OXCWqRkHxrSP84ks0DydyhXUWwimo3Yb2vaUbt69jIdSgDlGwHIoORBUq04NW1dK099I8V4wcBu/JUO5bVTc3qVmT5IU/1K+9tDLIj3N8j3jxZftCH0KFDhw4/kGi8wTlDmjnWywxKTVSahe9Tf3GHpAJ3y1NlFp1FyoPWqjA3otLWkkaiAky+YTBNpNpJMaUQyHJXCHG2UOQnGlNHmgGsj8THWe0IYd/9qidZB0wphlpdQ34WqXbB9RWLl0TpgwzlIqO3LOvPFpQhJ71SNOOIcpqySDEmEKJjmFYkxnM2bUjfzmnGinrfo73C3s85H2Wo3ZrZvM/R7pxZKguGbKfk5E9k7P9yQrAZ9YFHnwgBUh4mb3uuXjL03oJgI/0nUO2IMjp4UpMuE578acf5VUb/RFS4aiKkyWeiRFe7Ss7JhacZyveSImCKwMFvGdYHmmQdqUebQb1IOTW4HgyOA8HC+lBDhOETTzQyfNY7VriewrWxeuVuRAUhzvVIYQtRT+0ampHcpp7ENkpOFhLJUlEeeurdiK7FGwwIcV9kLG1ArY14gNeG+aLHC0cXPG4M1XkPdrxEzq0tdm5YF0P0C3Ns6qluOpJzS/5MUTU5/sDhJw60oRlKKolqh/DqkSSGbPy7umkV6CtL7DnxhPt2eHInEqYN6iol9LzYDcYNVIZYGsxSoyKUB4Ek09T7cptkaWUhtVdQ9xPUPMFnERUkk24zwLex/uh6o4RL4ohYRWRotLK/wyddQ76EZB1xuajl2rX+bS2+fZe3vuV2iFH7iOupNioQfK5ohlo8/lbeAyrKAOzGP+1ziyk9qvHCtgGfGfFQR4XyEbuxtNRCxpMiyOKhDJjCgVZEbYhGs7yT8+wnxD41fwUuPq+wuSxg/SIheycjO8/JriLJKpAuAlEHQir+7PKFlGYgCvVmqDq9ittAlI3nO1gh2MB1DGJ8LsLSgFmJCm8LGaDtnTQMHzjMusGNMk6L9/b7riPc3yP+3m895j/5733mgz6MDh06dPiBQygN+T8fUe6Dfn0NK4MfO/DtcNykxjzsMfiWaVVmGXYa3w+4TLF8EdKZ/D9q+aNqCyFwy9uSjjG6L5F3y5euA3nHb8HoUUCFSDUy1ENNsXdN7na/6XGZxMrZdWT0tqie1Y4M8NkS9MOccLfEuZzesaJqNJVOWNSG8a2K1Hh81EynKy4PLdmpocohrC35J2eUX57STEXVf3o6YTApKV4JhFUKJnLxyUg616hGkV5JPF0zUpx/3JC0Ok92JbF8vYvI8qZmcUfUcHspqrUtAuWuwdTt9n9ULO8omqFE1B3+2oJ4Z8jytka71upRBfJLuf9eFSl3NINnnsEzRz02lDvil7WFkLN6qEkXkfVNRX4uZNqvFOsb4nEGIXnFYSRZSXqJXoo63Xtitgkdri/qo+uDXWqaowazU7HeNcTKkAxrmnWC95r9ly84vxiin+b4q5SzwYC96ZLToNE64BpDjJJm03tqKMqpEPQk4m+XrI0MfyZnlmbXoxqJUczPWxU7gXQBzSTiB4HGKUyhqCeBmEou+u7hnMt3dqhuNag0kCSeeJKS3FjRvDlCTUvsoKaY5/hxJC4NYeyoEwO5J+03+PMBPo/0Us+wX1GNLevzPj7TVDuB7FJiKEGuO9eXBaZuoH/c2joKSdww5YZcq+37QNdI0kZ7Xbu+kOhkIa9dSOR1Vh6SahOBJwuhYJH3QOtnFp91ex25zUDiZiEo1oqQWXxu0JUnWglSV1H8/YmXxYtu5Lbi6Q5Eo4WsA4uXc47/lMeMGuLNgK8s6YOM0TsJ/VPf+rY9TU+3NhpFsWdagq3anZhIfinvi3JXtxF/z+XeP5dfruvr2Q64zgsPFpJ5ZPjUbTPBTRUw6wZdivXFXhUkq/c2w9cR7g4dOnTo8MFAwexHalQSiGuLOqqg1tvSkvEv9tqIO/ljXY9kS54oyrNdSqaz612rp+lV4OxTidgXBorihiK7gNE7QlAWd7UodV48zQBuoFjfjGQXktFdTjXNQAh7sorkFx5TehYvpLLFP1AMHimqVY/q9YJC59iVwqw0PglcLPskxrOqU5SKZHsF6tmI/Fj84m5fUx94zFlC0g5kNcOccNS25mhI55rqQHzry1c8MQ2U+w3Jw5TqbmT+egATGX09wQ2guO1QtWL8hmHwUGwh6ZUhKaKQ5JEiu4iU+4Fkobn8tGd9c8rgkZzbaqzJLh1Ra3ymiEqRzT2+VUHLXUM1VvhcUU+ExKgow6fZTMjL+qZYSPJzSOcK14+M7tN68cFnkfxxIkkaV5rilsesJFqwOWokJs6LbUEtDfRrtA14p0lSx8HOgmcXY6rGElYJpJGYBLzXVI1lMl4RguZq1scOG5xT+MLgxp7smcWUsLYJDDx2bdGNIj+2lLca7MxS7Yp/XzuoR5DMNSGJNBOP62liGtCjhrBIyPcdDB0mCdw5uOSdtw9QNyqUa6/fqGhqi048oU6wK0WzG8mO1lQnfZwNqE20pYq4oIlRoVeG4rZDr7UQ3zS2nnAZ8o0mkl6K73qrvBtIlnGbQW1KWXyaWgi4l5lkGWxdtzaVXG1zvJOlWIZE8W0zvtsdkfxSIjZ1m2etXGztJUK2TeUhRLH9DCym8O37SyIpY6IJVj9XJKTQjeR9q0aI+eKVAWefUYS7JTpC+rU+k3uB/MKj6+sYQNeXazNYhU+uoxbzy0B+4TClJ1rF6kZG1WZr601J0YZoe/HDb1JaVBSLjQrXKng+h96ZkwHOEDFNQBcOXcmAZ3zOdvJe0BHud4kub7tDhw4d/pChI/Yiwe03mL7DFxa1kgzi/hOp19s0GNZjIQiD48Dyrvg5R/c0TRuxliwhWSlOf0STn0MzVCTLyMFDT7Dic3U93VpQFLbQJEVk8KzBlobemSIYIROmlgG/ai/Qe6Yodw2D48Dg2OFzTTpXlDuiPDePczm+3UDII713UopGc2YCWkXmz4boviMcOtJzI17nVQZGPOjBRKyXODe9NISRQxnZwh69aajHm7ZHg13JQF1xqFFes74VWHy0IT2xZM8sPpOt/2QphTLNUKG9kJxyVx5v52tiRckujWQ29xWDZ4FqrLh6JWX6Zo2KkXLHkM4dvVMtXlsj1oVk5aiHRrzbyOID2hKVNfhEBiftalOwoxi/E1gfaBgq3FCU1PKGI9kpaWyOXmvMhWQcZxea6pWS4UR8/Lv5Ghc1hUt4fXLCk96Kqzonu+u4uBrAIqE46+OmJTd2FsyKHG0j8WlOttT4LIKJVEeOwduW/ERoj10CWpRMu0oobgT8IGDXluxCrjmfS1RgVPJ/lyHeahM5vRyhk8BgUJLbplVQFc0qReWBWEoodNJriD1HfVviCevSEtNAdBqVRcxaM+6VHJ9NpDH0qESdSolRMwn4qcPMLMVtBxGSK4PvR1wtQ4ibAUzlN5ndsgBNlpLi4XptKgiSFpM+uy66Me65OMBcvOMbT3+wbVlUjEJaI4RMgZaMbu2FiCsXwGpCakgvK/Fib1RjDTGI4h0yQzAaXUuSSUgN8w/1uPwohDslSkHvt3vsfa3BrkshwVF2q3yuqYdG8scTWWgk60iyDiRLL+TdB3xuWd1KqMbtwGfkd7Rm0g63XpNr1PVzAchnkfTKo8Ima9yj1w3KXye3SPXr9c+8W3SE+13if/jzv/Z7fi+EiNbf3YqnQ4cOHf4oo/fhGYvzAebtHlpBc9iw8ysJ+aXfFqosXoJ6R5reykNNfgLTr8sesSnZWhJOPx8YvWXILiL9U0c0imoiHlQVYHVT4weedaaodhR2pZm8rUjnARUDxa7l4mPgxoHRmxp9rBk+dRS7hvWhJT/3JHNHGmD4yPPsx/qSD64iZmVQDTQDIVHrVYYxgfxxAkhcXbQSx+fOU/RRSf9LCc1IPKbJUpS74jChvtngX1szX1uyxynFkdgLGiVJGNWOENrsTBNnelvh3Uwi84832ItEcqOHMkCnvDz/ZCXZ46EtA9K1IllJa6RuZFFz8bGMwbFva9kVPlPMX7IMn3iUovVyt+pqm988ex3cILRpGjKAVr5WEteW889HVKMZvE3b0CeDenZhcKEnKSGNwvcDer+i7CcMRhW7/YJP7DxlL10yNCXH1YS9ZMVBuuC0HtEEw+W4xxvnB6zXGUTFxapPCIo0a6hvRqp5ip0ZaBRmWrN6GfKnonRrD97ItZMcSyZ4SBU+i1RTiYVsdjzJpSG9EpXYmUg4y1AamqsMPWgwOnBV5ZiBI8xSSAOMnXC8pcGnnlgbdM9hrMQ+7t64YnY1AC/+9tmqR2g0Se4IQRR/d1BL5reJ+J60XCqnaCYe5RTZuWmPV4ixWQlBbIayMLVlpOmrbQRh1JtFqRByVOtTrmTYcEOyQyLlOKYWUhqswjQyNOxTTbKWBJJYR5KVKL5ohV1U6EKGGaPVooC3jY8+M/hk0/OuWN/MWd42VLsyUzD41R6Ttx2mrIQkR1BI+onr6W1iimkgXYm1RLmIqYS8KxdoximL1r+t2hLLrYVkQ7jbIclolAx3xuvFh3ZIOdQ6XJPtQvzauHBdE6mEcEe96X5/9+gI97vE49nv7Y4vGs8g605lhw4dOrwX6CTgf3WHoYNqL6IcTH8rpZ6AdppiX6wRMQuYpaZ3rMkvJAohtmQpahl+XN6N7P2mEIJgoZoamp4ipNA7E0tIMjdkp4aQRAaPYfFy5PRHFCFTxH6g/5Yiv4DkHcPqdpQa90d6S15cX5NdBhZ3U3wOg2eB6b3I+ces1G9faIo7HjykqaOpLc3LFdPfyPB9SzJX9E4jzUgxem3N5Us5yVxTTxS9Exno1E6hCoMaNGTjijiqiRc59YcqwiKhmYvvOVnQppVIkyRIokKxn0qjYCpJFec/0ZA9TtCNotoR8lXuyTnTDspcvNfaRbGG+Eg9EI9s9aF0u4Owbsw2xq+aCkE3dWTwNDB8DMs74pdd35LXS12mqJ0adZES+p71p2tiUMTCQhowmScuLVEb/Nij+p7QaAZ7az5/6x2myZq9ZEXfVISoea33jEXIGamSiSnwKJqeZSctOC2H3LvcxSiJhbya9cn6DYwawqAheZzTkJIfFNTFgOxcb328PhXimV4pfKZRDlw/0jtVuHZXRXZZJJdZ12obVxlSw7pMWRUZSkVU06Z/nCdb9bTXr1nVBpt4msqSDGuKKiU0mnQpt6+rBJxG6bZEJ42SDd132CcZbhDo31iSWsflyYioJXnD1xCyTYpKm6TixWZ1rXxHlFJb60hIWvW6kt2jbPZcW6ISP/g2s95Jco12kXqoqUdKsrQLucGmYVJXTpRupbZ2i41VIyRa1O1EY+ogu00+MnrkmdwT0r4ZwIyqTTgx8lpsiLZ2rX+89YDrJqJrj257UKq9nNXN54po2qcUn/Nrb7/83G5ADG3LZhHJrgK2FHXe1AG7bFC12w6CEoBW3d6q3J3C/a8Od3d7PLwoWNcd4e7QoUOH94rgNcVtj11qdC3th7NPOVTPMy8NemVkAOzCSBLDniSH6EbKaNwgSkybU/QfWkIinlVpTpRGw8lbgWLf4FOL7ykGjyOLl+Tx+08km1fXBhUM+1+pmb2aMDgO9E9EXXc5GA1Jm+qw/nBKcSi+5fWBQk8V/WNpJNQ1pAtDuQ9l2sPODclLS4rDFF1DccczeKLpPVOcPZpibpaU4wR0xOcpo3civqdIFoZy2ae+WZP0GtTA0R9UqGFJcTUVC8tEyPMmwrB37lneMqJoB1h8yKELza1/bLh6VUiz60N2HhmUsHxRylh6JxKF59qadpeLdz2/kEKUzc/FSyj3pbzFtMNm1VRUeRUgnYnlBDTrWxLr1ww0MQ9SKDJPSfYL8knB/MkIryLjoyXzJyPSC4M9WjHul+i2Y3snWRNQPK52eGe9y418DkCiPIfpgjIkGBV4sXfObroitw0hKq6qHo039LOaq9AjyxoW+wY9t5SzHJXKwmKj6EataHK59lTbJmgLUemVE2IdjZIs9UI85slClOW6p6nOeyiv0JXClgo9SwimTevIYXXeBx2pr8RG5KLFfCMna2PqykNPXCTYmcX1HKrS6Erh+5G4FptQ/7aQbaMj+aTCO427Mtiotg2IxaEMfPafxbb6XexENEKubRnbxk/JA09Wm9dLXvN0GWQWYh0xzXUD5SYqUBRysXGAEOpgNca1VgurhYS6QDQGFYKQ7kQsOem8Qfkg0YTLa6YarcQlKh/BKFzPCPnW8hi6TThRQcpuTOXBR0zpCJmlOMpY7+vrwUiui5Y2Kv71g20e89pukqwi+UxSU6Rd0mOXNapsT45GiDZcLyiUap/ve/t917HEd4kYf/fXhlkCFKxrB2T/qg+pQ4cOHX6w0SjyZ4ao2FZR11Zjz+1WZUsWQgBtEclmorj5VLE60tReERea8T2pmpZ4O9lqXh0Z0hnblIZ8FggLISLJUtTYyX1HMvdUu5ZgFfXIUI8VKmjG77jtH36XKdYHmvmHvWRePxQSVk2hnsqx17teSNdSSxV466luKkucBna/rLl4sWF5N+fgtx0oS7lrUf3YlvtEzj/VWj+uFNmFwucJzVUCNrJaJGSHa8KdEr7Zo/9UblvtKE4/5xm+LR7o4iMl0WkotWRZW9j5lufkR1s/s1JbBTyOIjtvhO1QqqkDpvCcfLZHMEIYJUouSrZzJiRINVAcCMFphqKShhTqqaRl5Geacj9gz5P2fi3lCzXNaQ83NZAFkuOUOdA/WuEuxxSPhxx+dMlOtmY3XVGGhAfFDg+XO5zMh3xN3WB/uGI3X/G0nJAZh1UBrQI903CYLUiUZyddk1nH8XKEtZ4YFTuHC5aDnHCVtcOnpj1/8hxMGckuxeusQhsN5yB/pnEDWdilVxIt6fpR8sP7CpQUu8j1u1FogUxtz1k6T6inQRRyQDmLrtrM557Um6fHiew2+M0gpCLUmpgEwrTBOY3RmtQ2TAYF83VO02aF+xQWL8U2PUcRLlpfdqt6m7L1LHso97UMVLalOqaJuEyRX8pwrKlim9O9Gb4Ue0UzMvK9Qq57AJe0zY2V33qaAWJiCLnFrCrQGlUHkkpsH5vowGgMMTMEq6EdYI5tnje0x/t8p0yrOm+82roJuFHK8nZKPVLbBkp5r7cWkvaj2pDszWsD2+HS7CLSOw/bunq7bLDLGjaLBbVRsts5BSUWnWg3g6CdpeRfGUa5nL6u3r1Dhw4d3ju0l+3w7DIyf0WSLQ5+TZMtPFKhrKmHm/xcUZxVlPKUaCA7F1uHyyUWLGqoB4pEa6pdUZyrsWL0yIl629OsDzTDR4Hh4xqfmS2htmWk96wi6gzXE+/o+lAzeuho+obJ2478UuNT6J94XE9qpPe/GBk9rKhHCU/+uBCy/lOpULdrRZFnYNu4touU8kMVxcOUZCH12/VEUU+lBCVa8bDrJqE8CuSnRrbUK0hWsFoMSV5ZUrxSUR5Z9r+gZZBxZlh+tGbwrRRmCeRBFP8MLj4O028qkrkic22ZzCIyeKIpDtsdgQhupGgGhv6JES9rm3RRj6R1c3kHho9iW8sN2Uxew+WLgeJ2xC40Pg8kc9nDz8801V6ACKZW6Lklu7NkMijIjOeB3UXNE5rcYj68RD8Y8PB0h97NhsfFlNNyyKzoEaIUJBkdeXY1Yl5mDLOaZZVyazznIJeMxKGp2EtWHKYLXswv+Fpyk/vzXU6vhuxMC5SKXDYGc5zhejK4mSyj1Kl7IXmmYKtayvAsgNomXaQrKR8iQjKX12xD4jY17VFD1RN/fHol163ri0KezuQabUaxLdRRDE/kPkwdqcfZ1rajayV16QtDcytQXeasho7RsGAyKDjTI3StqF8sYZaK1xtZSG289cqDaSvcQztMG+x1znQ1Fg9/NFCNNNlc4ja1RwppqkA9taJKF0LEfVvXrh3oKhATDZVksaNiq1YH0JpoNboWpXhDuEOWXCvGzyG2cYQbZVoOuo0+dGIhkfSTQHmQs7xtt82pW+uIfo5wb+73+cdobdfayU5P7zJsa+KTRYNZ1ZKcslGyNdcWku0vLU00mnqaiqr+HtAR7neJ73Rax7mEWHaEu0OHDh2+C0TIzyOXH4uM72lMFVnfUKxuWckGXolKaFzEJ0KKowZim7m9hvkLGruW1IJsHjBV5PzjlmYY6T0TYr68aUkKUfmGx5JAUOwnbfqCli10H7l8vSfkY0dRjw2DY09skxsAho9rnv6xnOJA2ieTpdgriv2U/Lxh5+uG1S2xtIweChMrDxWq0bgB9J9qlhNFcaTa1kU5De6gIZ2luH5Azy31nrRl6gbMvCVIFvpPFatkgGnrzc8+G8jOzTY/ePWSY3DfivWj9benKynu6T+JrG+JjzsaTToTBa/Yk5SS7Eoq26uJRCI2fcX6dmR0T+IVQwazjyDK91Cem11olFMYp2h2JOKvulNje47qKiW5NDRTT3kYsHNDVSQcn/UZHi35Yx96m1+99xLeCVHbef2C2hmsDpyXA958cIi+SqTxceiwmcN7TTnPWA5qhv2KWdnbEu6eaeibipEuWYSc1wYnjJOSXy5fJkRFWSckmaPpJehaCl3UlSRwaNfaKyLbgVC0DAqmc3ADUffTuSwOfYqQAqdQThYwxYFYNeqxlC2lM7kOmoEQbWnhZJssYguxgGh/7a1OVpJaE1L5PK7FOuUvMrSHUGmynQUnZ2N2viUzCNFrspmmGQXsUh7TZ2Kr2OwaESFdhq1P2vUUXsttbRlZHUlbZrKW191WUWYEEmmL3Pi6NzYVn0jGe8g0NGItcYO2ACdElJPHUi6IWuxb2qsUunaE3BKsxHNGI/YMsZDIscb244Zsm0r82sFq1nf6LG8asY1wvRiPpv38O5U/bm6jZVHUO5HfFZItHkjmNaryEMK1at2SbUD821YU+HqasbphqaaK+Ovv7dddR7jfLb4D4x63CnfREe4OHTp0eM9QAS5+JJA9M1RTIRnZpShuuoZsIQpUNdoovW3yAvKHc31DBv+0k9Y55WH2IYvrRyZvAAiREZKg8CNRZtdHhv5JwKxFSQ+JwWWa/CpQDzTVXqR3CuncExJFfqG4+JglGEsziSRXso2dzkUd85lifSOl2FcMH0ZWtxW6kcKYZG5ohqIOJmtk8K5qhxpbYqTWhvIoiKq530AlUtzqRYkSNIXCFmDryOCBpjyMZOfSzlftRpKFIj5LaHa8LFQWmvJAik/SudraJPKzyOWnPbqxhJuyQ+D6sDrS+J5uY+DkmLJZxC6FoDdDKYUp9+X+mBuasaR40DY/2ivJu1alIfYcybRC7UZ0bQiLZLu1f+ulM5483uV0POTzr9znzdk+zmvmqxytI7Oyx9PziQwNOinB4SolJKn4wXuBZpVy5QxVr+br4YhRVnGZ9UlGHiwYIn1TsZusuDudcV70r10PI0ecJRSHEptn13JNJEUgGFnU+VThzXVWM7D1OxNlISgZ7jLoq6Jcr9oJqcsu5VyGRG1tObqWHG3diPVD2lCFfNPmmesKrFOkV5HZRwL5qUZ71d6/ot4JnJyOSd/JaEaSWGIuJXUFNNkl2zZRn7Hdpdi81zZWCuUhXweCgXIqQ7v9Z206SybKbjWV+YmoYXlbdoU2/zcNW+9+1IqoU8nqdpGgFabyqCYQUmltxXuoG1GHMytlN15UfhWvVegNYVZe3lcqtMORTcBnhuULOcWeNJLKY7f/jCwEtzxNsY0D3Kja0UhU5vBREP96IwObdlHLwgCEYOvrxcHWs20UbpiwPkop9jTNUHY0viO5/33QEe7vAdeWEvcH3LJDhw4dOvxOxLFH71RUPiN/JgSr3BPCoQKsbkhutV3LH8FmIOqj6ysuP+XQlab3TKMbxfrIsL4RyS7h6Nc99UhTD8X/HfV1okc9Uq3NQYYCbSFZviFVVGODLSOm0KQLL0kJmy30ZjPkFnGv16wrKThJTi29040qKh7nahfxd4+tWGOGntJosRbMLM1QnkMzjoRbpaReAPk3cioSwkFN8iDDDYUkpDMZXgupEORgwfWgdybDmtUeNDue/V+TbO3B07At8zB1oB5p1jfFYpM/sQwfRcp9Rf9Z4OKTqh1CBSI0Y8mfVl61Np5APKpY7MiObrMXUbmHoFALS7JTU5sENwK8gjSQpo5yKXNNr949wQXNg+Nd0jd6nCae27cvuPdknyf9Ma8fnPD25R5aR6bDNf2kJgSFWWpM1ZaXNIp0BUSD62uanUC0gXKdys/lBV8/PeK0GPJTB/doomFiCiZ2zSvDM57MXyEEhausJOP0PQRDM5ZUmGYAthJPs1iPWp97Bs2oTYJZxOs85ygk2mdgGwgb77GTXRe1kpmDaqooDwK6ETXbDSLoQH4smdL5WaTalVKiZhRlBmAtj59dCNF2PWRQcwXNWMEiEa/+QYRxQ/JWDkB6JV507eR9oqIcr0slg351o33My0i5p8lmYsVqBvI6r4/kXPtcfr6ayHun2rkuy1FOiG1aiO8/tOU7PhP/dzQSHWgKR8yupxWj1WBSYmqJVpolNyU4MidxnfyhfMSWMhipa1HM692c1Y2EZtCef/87iPbmcZ5TyZ8n2ypAdinXu2kr5ZNFgymaa/U9xm/zoqMUMTH4zMhg5oGmGcqwbMji1sryXtAR7neJ72QpGW4U7qZTuDt06NDhvSJUhuG/7NMM5I/n/HWxUjRjLQkaZ7H9o982y1khLW6vZvBGyuCJeDpRsD7S5OeKwdNAuWPQjVQ8ByvkQXvIZwHfFmf4dKNmanwuW+3FvkJFSSDZKGjrQ03vLDB8HBg+WFO+kXP8+ZT8QuFyaMaRegQ73wwUe5piXywu5YsV9p2U9a2IWckgZTOW9I7i1RqcwiwMw5EkcyyWPVw/kp9qOM1FcZxIcki1J6Qzu4j0n8mi4ur1QHlToupiGug9tkQttoXTH4P8RNIglBey2D+O25KaeqIYvRPQPrLzNUWxD9WOWExG70g8oV1HXAG9U8WyyFFB0YwCHFaEyqAXltD31KsUnfptxJqxgUFek6cNjTecLIZ89sYjJmnJg8mU5Tpjtu5xuD/n/GrAVx7fYjpeS1NkVtK3NaEyZG0DZdRsLTO9U5FDw2NNuZ9T3G0oTeReuc/hzgIfNG+uDpjXOdO04HZvRqI8H9k74QsP7xIbja8VKvPYU4uuxAPcjBT5TIiYNgpfiIXJ9eV6GzzalA/JsTR9IaO0qq4s4ITsyQKRdq4ATKVIrhTVfpulPhKl2JTgezLUWo+gOvD0nlhJBVGyc+P6MrDZf6LblkiFXW3q1CH/7Xy7G2Sq2CrPsphUvrX/ZFICVRxINKDPFPUYQqK30nIziPROpEG0vOmwV4beM3n+vhfpnYjHOtjYKuUKnFwvvrdRuSM6USQLJ0OFRknhTWpQIRLaJLetv1u1vm2rtkTZlA58O9hbiZ2rOOyxPjD4XFT1aJ9PmGl/kWzSSJ7zgG++p7xcN/lFwBZSZGNXDtNmhv8uaPlB30+o9jJWR4Z6Iu/1kG4I/XPTmO8BHeH+HjDqPNwdOnTo8F0jXUQGx4GzTyrq2w32NGF8T3Klq6mobtWutFjoulXgxo6dLyRkVzKQV+5q1rfEczp6J2zJWWw9mCFRbRIBXLwufufhI1H3fGpwvc02NqxvB5IraaoMiSK7dIBheccwfCzDWnLcisWrnuHbhuwdWN2OnH9KkZ/A4jWPLhRqZZm/Iuqkm3hpllwa8jOFGxnQ0DvWlOWU+OoKYz3JUpEsodyX554shTANHreRhDfF+10cKULfoQuDahT5U4tdwfIF+f7OVxTV7rXfeLOYcEPIz0C5SDVRhFQzOPbk34qMHmmWNxWrm4p6GslPhYAlS/EuF4eiegen2T+asxxnlKc9VBoYjwrWZYqrDePRGuc1r++fcJgt6JmGk2rEC4MLctswH+XsZmtOiyFMYFHkzBY9fOvfPiuGraVGnnfUQmZ1E7eWhsYIITVzi0siNnc8uxiT92pCVOz21gA00VAHy+3ejIvDPk/zMYt3JkTAFO253hML0/QtSaoIUdTpYBXpok0fsRCbKEOUbb52NFIUZCpIFwHb2nF0I0R1W+DiNrsrcn34loirIN5w3RJ1TCS9EvKfzqTARgVZMDVDIfx22S4+WmIpQ53yeqogBFsFmWeQgUKxiGwsGK4vcwPaiVKrPNSTVtXvy86GnYsNJLTXTf+p7JSUuwrtFaZdjKQt5wxWVPJkhZwDBW5gJcc6SuV7jBCtkkQSgCjqdcgsEY32EV14IeNttndIDesbGdVYt2qyvA6+DYSLzynYm4/ANgYw6ogp5f2wif1Llk4i/1y4VrRB2jFp00dSSzNJWd6UWQifg0/jdYHOZp3yHiMB4X0k3Eqpnwf+AnASY/zEd/j+nwL+AfB2+6W/G2P8j9vv/Vng/wgY4P8WY/xr79dxvluo7xD/Mkjlle083B06dOjw3uF6iqd/vkGfJYy/nJLOZIt9eQfCqzLxpZ7kJAtNPQnYtWLnV0UFbHqKaldU1fxMbCirW1KUYZcwPA5tw6LC5YrVDU26gNFDx3pfrCr9s0C6vCbclx+XZIlNKUi1Y9GNDKfVY012IYUj6zuO3bszLnpj1NKSnWuSlaibalKTnPZgDtW+tGWapSa9kqzxai+SnRvqccCUMLoPF+MevVtL6k+vqO/36T9RrG4LwR0+Ccw+pLGFDHvVEyERyUIEn/IgUk3FGzx8ICpnPRb7SLkvFd/VjsKWssAp9xS9041iK8TSTRTLO5p6J5KdtWkaph3aLOXcaAfNUQNeMsSTSYVqNOpCMyvG6JHUm89mAz5695jzUvb/D7MFu8kKj8aqQG4axknJfrbkixe3yUdLVnXKbCH52VoJ6YtWbC+mRBZcbVSfqSK2iKRLaQqtVinlbcX0cMEgqxlnJfMqp29r6mCZ1T0GvYoPj09Y1hnrg5L4WIZjidBMAjEVWVT5uC0U1E6+tiHfKrKN0cuuIuVUbcmdT9U23SNZRlZ3pZgIxHsN0Ow3xMeSx45qia6T2MtmCMmFXNchkcXEJm5QOcjPZcchJNfFNNq1Fe6riG7ktqaRY/WJopq2jYu+PX4vCvlmIVBPIiGL5Ce6VcVBX6ht2ofybCvtVesj3xB708RWRY+UU/ttO0auZ9o0EVHAo5Ez6nKDqQJxGwNo8IMEnxmSRYOuvZDoxBBSTbGf4HJ5P4dEtc+da2K9Ib/t64jakPB2oHqlGDyNpMsgg5FXDWbVLgKM+jZ//iZRpRlnrG4mlLutT7vXWkeeI/Fb5fz52MJ3ifdT4f6bwF8H/tbvc5tfijH+hee/oJQywN8A/jTwCPh1pdQ/jDF+7f060O8WyeZCCt/Fme/QoUOHP+KIGuzTlPxUQYCLT0bCuGH3aM7Foynjb1hcH9avNAzeSpi+4bd/WEMiQ4s+EyW2OIDsEslXjkIysEK267GQpN55ICSSEjK5F7bHUE405b5MWqkoZMOnrYpaweCRYv5qYPSODC+uX4qUdcLoqynaQT2GalfUZP0kl0G6ADtf1ZR7ivVLDXEh5MHnEdeLxCyyfCEyuq8Yvm1YqiGqVhhE0VRR/OIh1SRLuf96DO6lguI4J53D+F6g/wxWtzSr2wHXExvG9E3x2B7/hBYbwhLWN6Q9UXm4+HRg+hXN+KHj5LMJpmBL2ta3AqEf0GuNdoryIBL7HhqFWhmYNGADzTJF2UhypamtIp5npDdXxKg4Ww/4qaN7XDQDvnRxm0/sPKWJmqNsTpUkrHzKRd3nqL/grct9KmcY9iuuqpz9/oqQRnSbIZ40rWWiVbl1E4kWqKB/GkiWiuwiYXVjh8WLJdmRIzOOy7LPwNSMkpIqWMa25NbwiqsiZ5VnsDC4AdiVxj5TFDsRu1LY0mMThYq6HdZT+KTNpvYRW4mSvKlQj0o8z/VYLFDRgutF0kuFspAuWoV6YduEGLGc1ONIUm/Ym5QQlbvy32QBdkWb1y1JIeJlB3qiwEctHzev2/PvqU2e+IZsb+wXmxhOKbFR2FNZqJZ7ClO2qSxX8hyiklx1VSM7SfuR0dvt0GQ7/+D7Ivdudh42z2WTPoKR97XvCYnWzSarWxN6EjdoSi9xgVYaKd3A0PSlyCbY63QR35YTJQu19W8/byEJph3C9IrsQuJCZXEWSC9K0Ao3ydpz3YBzW8+2H6SsbuesD8w2kSakcfvY0VwTbVHTxcr1fVN8E2P8RaXUS9/Fj34OeDPGeA9AKfV3gJ8BPlDC/Z3yze2WcL93L0+HDh06/JGHgmSuKPcjza5H1QplI80v7LO7jBRHULxU039L/Nr1UOMzWN9UlHcazNwQrGwdT95Aat1NO8ClRdVO1pFqAjtvRMqJpjhUWz9usDJQ1rsMqKApD2B9MzIupNij3BNSP3zsWd3SzD4i3ujR4ZLFxYAbT0MblybJJnYtjYPaiVUBpMp9fVf8z/0nrQK/Uvg2OWT+EwXxMiWmgZhHsvspzUieU7ARn4v3exNPHK9SuFlS7BiK25reI9s2XWqWLwQGj2RYdPpWxd6XMtZH4mtXQZNeRUlimWpmHw9M7sP+lxzzFy3zD3mmX9NUO3Ie1FEFj3OG72jx0PcjyVxTBcn0Di0pqadS5Y6NVJc5Kgs8u9jl/7vO+eMvvMWr4zOs9qyalFkw7KYrqmAJUTGvc46GIgUv64zEeEJUhInDKSv2hF6rcsfYFqJEcIqQt2k1dYSlDMWt84xHdkqWNXivWTYpP37wgDpYmmi427skv9HwL6uXaKo+2bkmP23vn9b2EETJNSGQLCOur/GpbhVtxfpQb4lYsEJS3VBImstlIYiKhNb6sLnW7FLhhtKc6Pry+ppShiLlmmhtH7l8TOeirvpMPPfpvM0OX4lPfwPxictHn4rq7jNRtzcDv8lKbltNrxcvwyeBpi/eblO2A8F77dCnA1rSrQKsb8VWHY/bYijb7jJpR1u/Lo/RDAym3RHYWJ19ptumyIB2AZ/bbbtk1Ao3SttFtL4m289lX0cjPnNTqW+z1DwfA6gi6FIWPdlMFPhk5SFEqoMcXYVr73aQGvqQGqqDnOVNK9d4KnMi0VwPRYZEiqkwEFvftvLqPQ9Mwgfv4f4JpdQXgSfAfxhj/CpwG3j43G0eAZ//IA7uD0LSXhAPztf8L//zL/K/+29/6jtaTzp06NChw+9GTAPrV2vyBynm2FK/WpB/rSce7l1FeeRJThKihqtXFc0kEMaOg6Mrwm/vCzlKxFKCiq0qLcOGPpU/+vVY0Uwii7sau45kl+LFbXribQ2J/OUs98APPGphxNu6L0Tl6kOwWhlG70TWN4XYZMZjzhNsGZi9ZsRXqmDwUL5f7m+eoBCnW/9McfyTkniRnWqilYVGfhG56GeMXryiKBP8k75sz/dEyQOFzyVPfH0z0nuiqKcGddwjJICKuKHYTJKFkIHVjxesVeT8RzOyZ1KMs7grOceXn4hMvqnJLhXBao7/8prsF0dCINPI5edr7LOU0dua8LjH6jMFyywTgr1fUyUJvWNDPY6ydd8olAY/CvRGFcVFD5s3hCQQguILz+7yEzfe4c3FAYUTC0zRS7DaM0mE5d6/2mW26JEknkFeM0hr0mGNu7Kizhcb33LLslTbOngZ8D0haNDGSF5oStPH3lmwMyjwUfFoPeXV4RkuaDyao2zBywcXPDCRphmSPpQYvKSIcj35gKkVIRGFWzmNH4j3Ws0iq1sSkbjxOddTtpnQyxdll8WuFfUooltiVtxyqFqTXWoZbE2lTRSEqCardki1r0ibttGzLcNpBnqbBEImKn/USlJCNg2LqVhRNtjku9sCdB23hLzejdi13u7ANMM2XSVIao4bRsKFwng5Fu2hGSA7UK2Sv1HIy129TfgQ33jYLgSUF5IdtWTY+1SRzQMh1aCFbOtSdqtc3+Jzif2U56O2WdiSQiI7CehWnTe0No924aE3ViPx3OeXEbuWZB6fWgZPKrKzQki21uLd1ppqv8fyTipEO2tj/pS8p0Iqi6loISaRaOJ1XGBQQrxjfM+Dkx8k4f5N4MUY41Ip9eeBvw+89l7vRCn1s8DPArzwwgt/qAf4B8FouSj+zq/L+uCnXz/kz33y5r/SY+jQoUOHH1SoSnPwSwmXH42EOyX2fo5dw/IFqUqPNrbZ0m084M01rjasfvmA5obHrjSTt0S5ox0aW97RJIs2R7qSAa96LOpVshRiEVLxAoNEqYEopPVE038qf1CjltSU4T1DOo/YteRrl58qmCaOq1sllx/ugYLitsPODMWR2uYxZ5eK4rYnWqmY123kXDaD5YsR1xMSFRPPMK/IEsfpNKXSlvxEPNvFKOLvlMx3EnqPLavPrQmXGYP7BhSUB2KLqXY0LlcMHyiWKiMcViQXmt1vBGavSj35+B6AZv5aIGSBZKYJQdH8qSvMr0xILg3RGNxhw9VY8/LfD0TTY/mKA20YfDln+Yqj/FhBWFshIE6TXBqCiewO1ySTBQ+OdzGJZ3+8opc0DGzF66NnfGV2i2/dv8HbyT6v3j4l0R4fNDeGC/pJg9GByllGabW9PnQtr0+yloISXYtKaprQJmMo8sJh155maFndtGinqQ8tdhQYGMdl1eepHXMzn1O4FKMDn9l9xCgt+bo+Yu3GDB5D/1mDdmEbRReVLBBs4VndNJgyUg8V2aVi+aojuTBbP3TTVr+7vYDvKamEn0h8XOIV6bnZ1qyDolFxW0wk9iUgtupteD6FQ/zddt3+vy3O0U7sDqqNsJNMbBm0NJUsAFxPiLmpZPAvJJBeiOcbpJF1s1AsDiMxERUe2sjKobwGpmpz7FNZFEQr9xUSoE0YGT6Rc1buGGwhli4h3HD1qmljPkXlppSUE11KgonPzbaxMWp5D2/aMIMVIlzuRUnciVBNI74vA9PRypxDMpdkoOETT9PT1AND/9TTf7QUv3abJBdVxE1zlrcyyl2N69GSa7GkbBJQoo3PKdttHGR4TkxtB2ffq6fkuxDF/3AQY5zHGJft5/8ISJRS+8Bj4O5zN73Tfu33up+fizH+WIzxxw4ODt634/1Op1WhsPr6O4Psg94w6NChQ4c/HCilfl4pdaKU+spzX9tVSv2XSqk32o877deVUur/pJR6Uyn1JaXUZ9/NY9g1XH4Mhh+9pPeVHpM3oLgRST55Je2CV4b+A2lefO1z7wDikS5ueXa+qjn8QqDaEQVsfVMx+2gUtbC4Tm0A6B+3JGMkNer1GIoDUd+ikWSIZihV3a4nwlXvLNJ/IEQpu4rkl771jUaeXYyxiSN+7orVazWD+5ZsJhnK6UJUuPULDryiHkeuPl3j9hvKG57li1IoEw3U00ByZXjydIfZoofNHexVrO847Doy/Rakb/XAiO+bxz3UpKb60SX1ODK6Z8jODc0k4EaRdB555e+W7PxiTvNixeWHNXtfcwweS0pJfh4ZPNREG6VM54tDyiLF/IkLRm9Deqk4+mcW1Wju/9tGiM6FkWSQcWTwjiX9Vg8zN6jCoHpOym+C4vh8wtlyQN6vaWY5j9/Z4+1ne/xXjz7MG8tD6mC4e+ec2GjuP9vD6sAkK6ic5XQx4GQxZJhWhKh4af+C0AuUh5HlC4rVTVGyQ3qtgPo251m7SLWbUO4Kydr5pqf3awPeuX/AyXLIukk4KUYsXI4m8rDYIdcNo6Rib7jGDYX8Kh8lks5HVOPRPkim9NpR7srQabkrrzE64saBdCZxfyGTaMqYiO2jGUnMXrCRehJav7UsxnonkWwm0ZRS2iTXW7qI6FosM9GIvSUkskgEsYHYtRB0065JNsOVKogijZIFil2LR9v3ogz53pT5gk36Trmn8L3rWnpTKXwq7x207NBUewFTQXYRMaXsDNlKdgGkRVKIqnairpdTea8EK+p2NZaIzNVrtQyV5td52z7TVHvip17cMa3vXFEPNeWeph4ryn3F8iVYfLTBTT3NKMLnrkg/NOfw1XOOXjsj2S1JZpreM4VdReYvGJIisPPNNdl5RXXYlwIcwA9Slq+MOft4j9UtLXn2LdneNFWGRAZJg0UiOzTtwIi8XvwuQfsHROFWSt0AnsUYo1Lqc8hTOwdmwGtKqZcRov0Xgf/+B3WcG3wnq4hSYI3aerirTVtRhw4dOvzg42/yuwff/yrwT2OMf00p9Vfb//+vgD+H7FC+hlgA/y+8CytgM4mMPnrB/Ju7mGHk9Kccuu/wvzlF7QXC7ZLBJ5akzvCt33yB0T2JAJx8UTN46jn9ESvb23ca7Lnl6NdgeVvu27X5wOkiSpPgStr8QiXExdRxO3QZrPhqx/dg8ZIMyOUXgf4pzF8wzF/QNGNp9hv1he0sr3okuWvrvQEtMXz5ZSBZapKFpTyINGOJe7AnFlsomg8XlCsLQZEfW6bfCpz0EpqoJA6v/VNz+clA7HvS44TeOwnlDU9MA1ZHjIk0ew3ziWL8tQRTGta3PbMPa7TLmb5Rcf5Zi/vEkqfjAZNvwehhYH2kKW5E9LBh/0+c8ujZDlnmGGQ1jz/jsXMDD+D2P48U+zLwWU/iNj7ODeRvnR95klGNTTwucwRvUM9tr+/cuqKsE/K0oXaWe+d7JMZzNFrwyosnnC0HW4vJskmp7o/ITzXfujkmvbnixb1L0t2SxvfE0pFL6kY0WqycSmrDQ25Y3UjQTlTe2YcsLheyqGrN1eWAol+T6MCT9YQ7/RkDW/Oo2OHRasqsyBm8fEVxvEN+mZDOHdpthmkV5a6VJtFcridbyEe9NOhaYVdgBgqdyOeYSHahqXYD2SUsPuHIH6RUO1J+Q5v6YQoIbSzfdgCwHTzcNEK6PuhKUmbqqcK1Ve0hVW1ahtTKh6zdKWmHJZuhXM/Kb1ToiM9FNjd1m62dtY2XRfuYqSwWVrcD2blGN5CdabKLb0/l2ByrqURNd33QXlF5Of5gRA0HUabXNxT2NCFkUO0qojX0T6GcGHoXnvmLWXueZU5g4xn3GZQvVygT2d1ZMu2VfHTyjFvZjCpammB4Vo35kr/F8iMR9amGyydjdn/bUE40wfZkWPLKoWKkuDtmfWCpR2rrrYdroh3tZpHTLppo/drbwQmuufXm4/dZLODfBv4UsK+UegT8R0ACEGP8T4F/F/ifKKUcUAB/McYYAaeU+ivAP0HWGD/fers/UPxe59ZqzWYJtSh/jyD1Dh06dPgBw+8x+P4zyO91gP8M+OcI4f4Z4G+1v8P/pVJqqpS6GWN8+vs9Ri+vWSx7+LFDTyp6NlA+GcCn5xwOCi7mA86/ucf4Lc1IwfJuZPhAMTh2nH7a0owibuTJniTsf8lz8TEjA2CuzbFeAQhpaPqibEcD9jy25KGthq+hPnA0Zwn5mVhasq9K2cXyxYBdKZKPzamXGetVjq8Mam2oS0P/fsLwSeDkx4GgcX1pzIztQGh+alndCVLnXYF/Jyd7fU7xdEjvWaTc0diVlOf0nliS+XUig/OKZhipDx2DvTWrix487FGnEQZSS18cRQaPFdFG/N2S85cixa/3Gb0Bq7t9jIP5q0Lg+k+g/0Qx76fow4ixgWqdkEw9d1895eH9fRYvJPROI8s7ouYmc0lZUY2W12mWkE4q+nnN7GIATpNPS9LE0Tgh3q/snLN26ZZU7+Urlk3GVZWzkxfcGC1YNSmNN9wdzcg/7bj31hGkAddYVk3KzmjNSZEQl+k2dk55sZYoF0ALgVUByh35PLuIDMpI80xRTTXloabaV1yljmlecFH36ZmGwicYFcisR6nI2S0ppbGFphkm6DbSTkWodi2mkh2U7KK9bk80pmrzuhNRqFUAVctAZf+pJiQRao3P2np1FSkOJP/b9cUa4vptekhrL4laZhBQMjyZeKlRX98MhCwy+bqRfOxU0mbKPcmm3lTGRx2huLZnJAtRybXTqCC7LRviTBs5GJN2JyiorV0kWcrxBSuKuCSrRLST90szFJuKqcXjrSuxtGgP6cLjcrE4bWYRfCbPcXKvpjhItpaYeqwojmJrIRH7GMBHX39Ebhr2sjWfGj5i1y7JVcPM9zEqUEfLp/oP+ePTb3HqRvz67CV+Y97D/bkF8+MRt/9LOT/BKuYfHlPsqnZ3pB20VM8r21FsLFlrIYnIfMLGQtJGDT6fiPLdkG14f1NK/tIf8P2/jqgn3+l7/wj4R+/Hcf1hQiEK9waLsqt479Chww81jp4j0cfAUfv5dxp2vw38voS7KFP8eUZ6WFAvU/zcMnhpzrhX4oNGfWPIcCYFIavbgfGbmnQZOflRSz0OhIEnubQMnkh1dT0JjM8U5a6i3pGGvHos/99YONK5xpbg21xf5YXgZsdSHZ2fR1RUXHxMC8E6KKgnhviNMQwD+rAgrFNUrejdXLM2PcojS5w2+IuMva82LG9Z3FCKVZoBDO9rli8HBg9ELqyrhL2XLjlLJiinUeMaVgnFbUe5L9F+dq0wayWDg2tNcWNM2ojPttqF9NSKEjoOLFIlyQlXKV7B4jMl6jxF14rBE4l8W9/UrF52kAb6b6Q80EcwaoiF5Z2nexgbuPvSGef7fRbfGIsdYj9gFpr8SYLrRbyymFLhH/Up7kamuyvWZUpdWUb9krvTGVYFXDDc7M0pfMI3zg/ZydYc9hZMs4KHiym5dWTWMS9zLk2fF4aXDD5S883jQ+pZhtvRTLKSEz2+tsq2UZCup9FWhgaVjyRFoBkaiX+cwOqWwvWjDLsB1JrVOuMddhjmFZOs5Ki3IEbFXn/F0/kYpjUqZkQNqzsppoqtpzty8RFDPZUMeNdXJHPQXqL0qqki2oCuWlJZKHQbG7i+pbBzI1GDK9UuGqJkZbs25aUtqrGlfKwnkM6vd1zsWlHuSKpO6MXW/tSmiABu2EZMJhLPCOITDyParG5JPwlJm1qStUS5fbyQXg98qiCqtvZCtpuhqOkgVovB4zbuL1GtPaXNd2/V+vRKFiCupymnMhhsCpmXSOeQziLL2ykuh3QZufiIZfVajck9g0FJiIpP7Z/w8uCcvqk5TObcTi4Z6YJVyChjwp5dMvc5hsCpG7MOKZlu+Mmdt/iTu9/irBnxn8fP8OzzE/IzhV1K0s0mR5v4nKptZDBS/OgyBLxVr22ERkGr1quWYUd1HT2oC4Vq3hvz7kzH7xLfKXxEqY3CLZj/XlWhHTp06PBDhtYO+J4zUZ8fdDd7U9KjNVnq8F7zkVcfU7iEWZFT/ot9hieRZiSK4OChJr8IlLua3rFYQUxlGTwS6akeQ36mqXbEPz16w0qs4E1P/7Ehfxapd6EZSXQgWra57RrSK7GdVFNpc8zPYfFyQNcapSB5ljD9Jlx9SFP3Mna/LFvg5Y2E/luplOSQEA0sb1uyq4B2mqvXoH8sKmPIAsuXI7rUmLd6nN1IwESSM41f5zBxqErKdcojR/LM0gwjzTCStKQtWLEQ9I/Fc17te2LP402bh9x3xKAYjkv0pGB5b8LyDgweK3a/7jG/BcefT1h/uGL82xnlviY/U5SHBuUUD5cJuu/gxZJ4lTK8Jz5u9ck5bpZjLhPcIDD5hmERhvDhS1xtuHFwxc3BnJP1CKMDmXEsXIZVgUmv5O3LPbQO3B7PGSY1yyalnzRUzvBkPuZkOaR2hqYS//iz4ymvvP4W1Y0LHiyOMKXBp5t4PEN2GUlWQSIBoxC95Z223KWQJtBqGvGjgBo6RoMSpSJlY/Ghjw+aeZ1xe3hFiApmoqKrIIQ9u4D+CfhEVNpNMgaxHUhMN9cN1JO2ptxAdq6p9sSWUd4Wm1PxQsP0SwnrmxE39jR92fGIGnrPhD9ELQkgKmwSOJD0jSDE1y4l/259O+IzIeJRIwPFfUd0GmZiGQmbOD9kMamClPG49v4luURsG0kZ8bkQeuUU2RVUEyH1zVisRDJIKW2twYian82kfKgeyRBmM1DkM2lvDVaJJz6IZ9z1rj3n9Vh2KcodTfnJAtVo7hxc8ur4jA8PnqFVIFeOXbskUQ4fNed+yDpkrELGOqSsfUZAcV4POasHWBUY2Iq9ZEUTDT999w3u7+7xlS+9SHZmSBZyHtDXyv7GGrNRuL9NsVaAk8HpjZV4q3AH0GtNOtNkl9dNn+8WHeH+nvDtQ5N//Rfe5D/4N95z0EqHDh06/KDg2cYqopS6CZy0X3/Xw+4xxp8Dfg5g8NrN+MrBOVpFvnp8l69e3WX3zozyX+yjG1jdlkGzzaBYNZGa52pP/KuDx0JImnEb42XAjTz5E0s9Ee9teqkxhWy/h76Q2mao8T0hJtIkCE1fhgrN0zYlwSnWLzdQGsYPhIhFGxm8lXDxaUcyM/jK4HsR5RQHX4ByB2avg4q6rfSOjO+LTOZ6FvO5S4pvTOk/VWifUL5YUe95+g8sYZVQHjopfRk31BPD6L487vx1R/bMMnwkiSzDR4HlHU21DzrxhFpjVhpznlEfOZZPh6ihI+aBMIjMhxqfGRmafAyDJylXr8kOgfYJ6ZWi2o3YmSWsDGHo2X3hkqvpAJ7kFCd9du5ccZX3iSvL7LMeVRpc0AxGJanxrF1K7Q3TpOZkOeSdapc0cby4c8mHJyeEqCl8QpJ5rAqcV30GOzWLJuP+8R5hkYCS2nGWhq+e3uCzNx7hXtU8nUwIy4T0VJRsNZZYw2Qldey2lAXT/DWHcqptjmyxtMzckIOjK24MxcqiVCTRgS8+vMNoWJDOxAJS7hqyi7itaXc98RWHXiCZW3wGq5cd6bnZNkiWR47kymAKRX4BzUQGKbMnCdFE7IXF9aAZRsykYfmihsMKpaAuc0zZDi9msvDTThZ+6WUbh4fYSrwHd7ckOI2LieRie0VcW5STNBJ4TrF2G/VcGi1dHxmqrNimk4iqLvnW2eX1IGczlpzwdCbnoZiIlYdMcu03CSLpQtJ7NlnjUYkPOlkHfCa2m2A3KrncV/808OSnwerAeHfN5w/us58s2DUrRkbaZRe+R0lCGRMu3QBN5NL1eVpOyLTjqsn56vFN2pAW6iLBZo5Br+azR494ffSM6mOW+2e7lPcGkt/diL98kwAT2jIjOVntP92S683vKntNxnXZEu0LeZ2Sdfj2tsp3gY5wf48wzxHuygWcD9tCnA4dOnT4IcM/BP5HwF9rP/6D577+V9qiss8DV3+QfxsABW8eH5D+9gBedKR7JdUv74sd5JlifC+yvqkItFFkA2noA6lEr6eKclcSIdxA4tnUwFEdKrJTgwqiBvq2TET3HeYipxm1jx+/vTHQFtKQV4/F/51dJFSfKCiOUnQlLZG+Upi1RjcKc5HQvFySf63XJl1sBtvAjQLD+wYVPMpHbv/Xa46rHdSPL1mFgSjLtUYXUvmeXUbqiaa+VcPKMn4kyr4pIXtmqe7WuH5C/xjmL2sZ0Dw2lDFl9M4meg2y39JcvWIobmhCHtn7l4azf60Rb/mZHN/yrnhuVe6JHytZXubotSGmbeZwhMuLITu7S66e5IzetNQP9kg+u6CqDebS4vuB9SpDKVg+GrPz4iVlnVA1ltf3T7AqsGwyIdRuj1fHZ9zJL+mbirXPcFHTBEPf1tibgUe9CcXTIdm5NGuumglfTxsGaU0oDXp9/XfVZ7Ktv1FsVYDxfU8wluWr4rfQg4b+sKKXNpSNZVlkPI2K1DqS1NMEjVtbiiQlpDIEqLzYHXQDbmBEpT1TRG0YPBYbSXpu8JlYOcZvaqpDBS+t4ZsDXA7Njgz+Dr6Vs7oN/mbF8kCjbMCvLOntNd5rjAk07RAqSspnQiLlMpvr066FwNKAbhRhkZBeGmm6nASxsDhNM/HU04Apronz5pr2mSIMr/Or89OIO1QURwFTapSL2CWgYXVb4vd8FhndlzkI5WHwUJRribaMVBMDUQaLbSHkOrbqt7ey45SsJBc/WQnhr3YUdh25+KgB7zE28DMvfpmb6YwQFUYFLtwQ3W6avVUe8riY0jMNWgWeFhOeLsZY4zm9GBNmKcmFxlSKeLfBLRNmecqXzC0+e/iQo/6cR3aC89LYCWLh2aSRbCrspcQotp+3eduR9hdCgEaTXBnyEyU7K0XcRny+15SSjhm+S8TvcF6V+t1Wk688mf+rOaAOHTp0eB/RDr7/C+B1pdQjpdRfRoj2n1ZKvQH8N9r/g8zc3APeBP6vwP/03TyGX1rMNwZUn16j+p78V4aUe5KBK3+wJXkhJOIrXd/x+BekMKU4FPUxPxOfaDSw96lTlImM3jLt0NSmGU6U8N3pClMo0jlbdUvXUO1IlJpPJTLN9aReO12A1gHXi21EmkZXMHjUqnf7NZPJGt9rYwcnUO+K8pWdiVpajw3RKppRwtGvrsl/fUiz71h+psReiSfaDWRQzZQKe5KSnloWr8gWvm7EA0utCf3A8kWP60nEoWlEhVv9SIHPFYNnDp8pdr/hmH5N/MX1tF0YTEKbkQx7X/WYUqFPU/z9IWbUYJeK9Myw+5uG8VcTxl/Imb21ix87yv3WuvEbIwbTgvzlBfbKYN/JsYlj/+ULUuvZG67ZHawB2E1X7GRrPjp5xo/vvYMmbi0BifJMkoKBrVg6Id/WBBg66nHE5dA71jx7sEvpLJhI6AXxLPcjppQhPsmwlgVTPZTscl1qVC6lKjEqGmcYZDXea86eTDifDyhdgvOGdFRTnvWkZfEgbgtd6qHE3GVXgfEDz/DBdbNgOlOy2CoV1Q4kFxqlI9W+p55G9MAxna5Y35SEF5s5bt2+wKaenRtzfvTOQ2JQuFpUclMryptOUj1uSZOjzyPVrUZ2HVZy/epGnltUYEuFrmUuwawVupB0GxnejFs1e1Oz7rNNprUQRd1A7HmxViQyIwFtOsogEnKxbGknhN9nUI8kV1taXCUO0K4lMEI3cVvbLuq3EPRqIjtU81dhdTcw+2ikPPLYg5J/7/Vf52Y6I1fiy3in2ufCDbnyPb65vsFXr24ysBITeV4NWDUpZWM5fryDuZcz/obsANk1pGdWSotsoHaGRZNT+oRikcsw6SaBxLaV7QnPebe5VrY3ZLv93WBmlsF9y/hNGBwH0lVLttvz/F4NdZ3C/T1A8bsJ97IbnOzQocMPAX6fwfd/4zvcNgL//nt+jDyQ/sgl7htTDr4KKgaWL8LovnixQ9ImKRhY346M7sxZvj0hWciwVjOEbCE5w8PPnHN6MWL6S7nUXPci6ZWmGUjucf1yyeW8j2nruKVFT/66umEgWWmaUWshaAl+uQuuMWiNVLcvpR1yfVNyi/f3FzivhTRvtumdIp3J8WkH85c06ZX8P5trBk8D2YXl7CfATRy9RwmmFDURFRm9LWpgfio+c9eDajdA5omNRo8dtUmpdyD2PTSasLZcfdQzfKIlvWJq6F0EsmPxDt/5546nP2lZ3RS1v1ob8jMp9sFGWCWYD69AReb5UApKaBclJtLsOZobkrqRVJZP3XnMeueSt8/Em31+OaQ/qHht75SruocLGq0ir/ZPeVJNqYJFq8DjYopuw58fr6YMkpraG0pnscaDkqQLU0mFeXpqSF/17OwtJTqyBFPLcKQbKEwhlglKhfaSI50sFNUUssxhdGCQ1czLjNdvnHA6HmyvvZujOVfLHLM0NKNN/J0ouqZNEElXQITehdSgNyNpmQwW/MRh14lcayc9YhJpdgK39q/kOR05zKRGKZgXOdoEfuTwMefVQBT73KPvrFGJJ48KNxviDhrsOqX3TFE58fBvSmFCFslPtcTaRfGL1+NIvRsIPU96IhGZUUkaTtTX6SnNSK7d+kbDPCTYNdhLGSjUlZDiwZNAua8YfPKCyyeTbbJISGRBmp/LsKjPFMkqEI3CtS2YsQ2PkEFWOb/1UBbCzUhRHzWoWjO8PSeznv/uS7/Bi+kZZUhoouVBtQfAKCn55vqIy7pP39bcX+xxWfa4WvZoTnr0nhrGhSy2TCUectcDu5LISBcT5o1muZORaplnCDZi2sbPkMRvSyfZ+rcVqKC2TZNmYcjONL0TsY5oD8R2seLj1u//XtER7u8Rv1P5/t/8v7/GP/mf/YkP5mA6dOjQ4QcJUbH+xpTRfSHPi5cUw4eydT14jBRjvKgobzjuvnLKw4d79M41zShSHkSm31Q0A8ULP/mIe0/32f1nOc2gVR7nomypoFjfCkwma2bnQ3TCtnWyOIwyHOYUxaFkKaso6Q/ZTLH6ZIl9nDF4rJh9zEEw+JXErzUHjvOLIcYGrAJbRXrPhAgmS1HMXV+KTla326zuqDG1eMsPf8ly8UlwH1/i3xxQ73lIA/VlSrUfSO9p6rGQz94zjZ9luH7E9wyDp5rx/UCwFp9KakRxpHj875Sos5R0phg+0gwfRi4+FTj+vGX4oE2esPLPFpHhPYtPpY68GScUNwLcLplOVlw8nZDvlPSymqJK8U5zeGvBIKn57Qd3OdidczRZMC8zmtqSWseiyfns7kOqYDEEypAwtWs8mpfyc3qm4eF6h1ndwwfN8XKE85p1meIaS3R6O+hnKmnrvP/mER/+8BOKl1LKyxw7s2K/SKX227V147ZUbemLooqKGKGsEowO9NOGp4sxg7Tm2ZX4NaqhIc8bFhOpXVe13Fc6i2Rzj+uZbS628hITl10oyr2I32kgigI8fKgI1jD/eENMAkVjuTgZY1aa7LDhcLyk9oa1Trm/3KVnG5JBg3eaJHVMBwWnlyPc1GPPEpqhRPz5PIKV7PNkIa+xckhsZNbGWxaKOo/olcRwZJdt1Xs7xKmaTayfkEXTczQvBNxlimrkPnUD67uO/Nzgb0jjqR3XFEdGfOQW6iOHf2gpdgzJOmKrAHVkedOQrOR4TAX5ZdgOfW6Oox5BNin5xM2nfHh4wn6yZNcuedZMedaMWfqMi7rP0Na8uTpgXuc8uNjBe009z8ApGTSuJdaw2hWSrBuFrmM7ISqJNHalafqeVZOyIoVGob0SVXtzTHqTux2vPR5tFKBey9By7zSSLsJzr73cTAW2LpL4XfhDOsL9PUAp9bsI9zefLT6Yg+nQoUOHHzCoWpGsFIuXI+6gQRWGemxIYxuz5oQYD1+45NHTXcZfTlndDUQD6UxT7sL0Tx7z9vE+o1/rUe20NdlKSIB4cQPxsGJ2PCIZ17ihIT8x4o0F4riBhaiDpo7MXokkc1HYbx7NuHzjBvUIyAMhNTQDqG41qCSQvJ1TTwNxErFFoB4a0pkkMfRPHfXYbAcwq10ZTuudylBccQDpJdRhgHptRaYi1SwXArPQVLty/CqAXQmRbMaS8awcXL2sSeeR3lkgm0N+CRcqxw0i1YdKypcVydOU3lPD4IkMFk7eqjn+iQyfwfidwNKKFxctW/PZmcavci5HKWavZjIo6CUNe4M1msgoLXl7tsvLN84IUZEZhwvCPBbLHotlD6MCuXGU3jIre7wwvmQ/W7FyGbOmx7NiROks8yLHOUPTGHxpUWtDMteYtdoWwiTLSHpmeHQ44c7ujAdhhzpCNEZuF0WF3QzxGSVxdc3ThPqOsKRlUBzuLFAq8vRyTIzgyoTjWU5/d41Kxadr1xuPEVRjqRtXARa3zZZI1tOI70XsWYLvB6ppJD+TtIrkzDJ4orj4xJRkZmh2HSFonl2NqGvL7mTFyWLI7ckVWd6wPB6yrgwhaELQ2HGNmvWwK0kNMUVrGakVzVii/1Roc7BH8ry1A7tQ1Hsec2mpdiPNJNB/JK+rilBOgSjHGM4yYhrb95UiWUO5H+kfrbh6fYRSEecNSgdcL1ApeW1Vo3EDyaXvP4PeqcjY6obZkvtkHdBOUk/KactGAxQfq/jzL3+Lu/kFifJoFViFjDM35FvLQ07WI/Z7y9bvn/NsMdyWKOmFof9UattV2MT2qTZpRG0XHirI4qHajajScHw14nO3HzC7lTNb7WJK2S0K5rlByDZ1BA14Re+ZoXfy+xDt5wcsAZ/q7UDou0VHuL8HKMCH95yK1aFDhw4dkD9k5aEUuAy+mZIsxBuqgiREEGH+umPHa/I3M5oR+EEgvTA0o8CLn3lC6Sw7/zSXUhstmcZVLh7seifihwEKix44RsOC8ssDdAPVDsQkkg9ruJ+RXUSKA0WY1mT3M8qfXHK57FNPA35HGiV9Hlm/4qDR6Csrud6XMkQ3f9FiSmmv3PyBzi4dixeS7R/p8iCivGL4SPJ/iwOFLRXlLEPlHjNsWN2xUsTzaol9Jye9gt1vVDRDixtY8lPxjmZXgWagOPuMZu/LkdWRJl0IIUq+lLK6rVm94GmOPJBiakWxl0GU83LyY1q2yT1Eq8hPJemj2Ff4VAjTuk44PR8RaoNKAi/cuODHjh5yXg3o25qzUurYM+s4HC55eDnlm/dusnO4oJ82XK16vOkMp70hqfYkxqPbeD6lIjFCaDRqYckuNdm5LHqSZcQ00PQU6VyxnPUIkwX9vKbW2VZldL2IysVGks5l2NFWkf5TzezQcHBrxtWyx+nVcCuO+cZg84amzigfjEhvr6gXVpJqRrI4avqyOzG/a6h2pfp8o5DqRpGfKda3lXidU42pIm4YmL+qSC5l2NLMDexAcdkDryh6NcVbY/SPznhx55KvPR4R88iwV3FZWw535zy5kmGE9EqRLEVdBsnk3tS46yYKKffXi0vaMpf6ZsNod0U1m6KdojyU0iZ3q8Jf5aigUMManxj8WKGbRFpEq4SQRcyTnJmJuMJCFqAUX7xaGbn/idS455eW3nFJukgkOjETz3Y04qm/+FQgudLUNxv+3U/9Jq/1nmEIeDQPqj2+cnWLgGJRS+3jb71zl+gV0WuyYUV1lTP+WkJ2EUmX11EgmyxxgdhDXCYefhUUTQOhD/2sYeVSLs9HmFq1XvW4bfQkytAtQewo/WeK/Dy0pUNqax8B2tKizQGAT8TjX0+uU2TeLTrC/T0i/A6JO7XdHGqHDh06vBuEXiA7N0zeDKQLRzSKYlfjepIzbSrI9wqaX9ojDKG60ZCeivd05yMX3B7M+NV/+nGyqWJ9M7LzNbj6MOha1C/Xj4xuLFivMz52+5gvf/0FRhXUU6gOPMlhQfWsz2ANPlcULzSkj1KqXXhh/5K3j/eJRxXmJEM5hRt5CJBMK5zPMWtNegX5BSxegvxUbZW4pq8lxtDC+O3A+Vgynd1A0VStvzaKr/ToFw2nf87h5yl+10l6yNrSTAKzKaxuZ9thN8kJj6wPRenOzxTP/lgk9BvM3Ei1+I5i8DiiG8PyBclFXr4g5MtUoiArD/Wux0wadOqYe4V71idp5/5Do1mvMwajknFesapSHjzZ42Q+5N98+Rvs2DUv9C6ZuxyAhcuZZgW7L6yxyrNyGatRyqPFlKJJKEiYr3OOJgtenl5wsh5xEfr4JOCB7Fx826Zu2xAVJEUknoG/n3KvuUG6U2IGDSEJeKeg1tilqLm6EUW6yMVikj9KOA1T8l2xxSzXGa62EqO3yGG3QTeK+rRPTCIhi1TDgK4MphZy2YxlyC6k8jrqJkItfny7ViRzKSFSXhFHjunekvVv7aFraMaBEBT23OJHgdWTESTw4fEJ/59vfoKYBPJhzTgvOT8fcrXuyXCohdWdiCnktQomErMATpTeaioZ4CFtI+4SGabUDVBr1qscG6CeBNivCI9ylIlUO7K4MolHpY4sdayupiQrhT/PsEtR+cvaYM8S3H5DyAKh0TJMGBS2EHtGuaPJz0ThrXbFLtUMFC63nH86kt5Y88onz3lleM7EFly6AQuf863lIV8/PWKQ1ez21pTOsq5SppMVWkFRJ6wXGXplKI4kOcYURgYWFwFTBtkBSjU+V+K7bilXtGKp0Y3hYjLg8mqAPktQretkQ7Rl4FOIdnah6J2F60HIKMp23Cjg7Y+pIAuJZiBEuxnKYi+8RwbdEe53ie+kYysFG4H7zk6PR5cFtQuUjSdPzHf4iQ4dOnTosIEuNIPHG0VbU40VyxchPxHv8/LPLKkuc9I2F3j4VsL6ZiB/YcFef8VXTm9iKiXb4k8V6xvgbpXok4y0UbBfYXVgNCj52uMbJDNDtSPb7tmNNeV5j2QhkWZNDirzmCqhfK3keD5iMl6x/OIeyUKxvuPRlSa5vSJNHcW6D21NdrIKhP8/e38aI2uapudh17t9W6wZuZ88+6lTVV3dPd3TPT0z5FAiRQkCKREm4B8UDEOQaAky5EU2YIGkDcMGLNvgL8MEDC+EJZsCZJsCJMKyKRmiJI44XJrkLN1d3V171dlPrrFHfNu7+McbmVXV09VTRU4P2cO8gYPME5kR8UXElxHP+7z3c91GUu5FeoTLAsvb8mp40pQOl0p87mJ4y1TEOO1NoVgPRByk67YIAa6R4ARmFgcu10eeYAJ6VCFkYDzJYsqdgN77iu3vCModQ9sPZOexUz+/J+g+DWT5Jlwl9TgvyS4E9baP0dUq4EpFv7emsRp1IcnGsN4PmA9j97EVBc8PbSSZZC23RxNKZ/ChgxQBHySpbNHC82wx5Fj2WTUJWjmM9OSmvbKjyH7goupgvYpR66sCf5Kh2ljE6CoOQaoqRKKEFiTLgD+ReK2pTYIwHlYavZDoKvKVVR3pGcLFDjUShu956lNNtdNj+rCi2y9ZrJKrD3NzFkN89DwW00EH9E7JumPIHqcIoB06kHFIVq3ja5ufBXQJdSnIzgPrg0uPgYiWjK6neB656LZR+J0WudDoZbSGvCgHuEaRblV085rWKbqDEi09Kx1wfQtBIKzCdmLXXi3ja2jzS/tGoMrElS3KLOL3+VNNM5K4DHzf0uk0NGQEL3AHNeokRYhAs06oFynGAh6yk3hfXgOzyPh2xpOdJjSDzfMaoidcNoJyD3SZsrgT7S+k0eJRHgRe+/knZKrlQfecHbPkvO3yshrww/N9pk+GbN+d8MrwnGmTx/MSMMqzqhNW5wV6GokjsonBQrIN1EOJTQXFBei1x6wswkX7mWwDQQqaNA6Htt0QazMr0K242gEgbOLna0E6FeSn0at/dRBiE5DzCZdIkPHv1Jv4N2o3Ox8+DdFjL39cZfjZui64/yEUC+74hP9bf/Qhf+Y/+h4Af+G/fI8/+8de/0d5aNe61rWu9Y+9hI1pfkrHCPRqJEgmsdN58QdbOtpj3jc0g4DtBsodi6gk5SIjDAXTcRc5iKl9shW4X5kRJjn5iaDaCxzuzjgZ9+n31riVQW+S4ULXUo2zzUHEL+WhhbXGdgOhid7itlWkExEj348V4hszQhB4LwkyINik9AXITwSzN2LwiplJBu9uBrFs7HZffZhfopd9ZGy3XVjdCsi5Rr80DL5xztnLAWotaXYttlD4rqX/gwSvOtgu9Oawuu0RbSwCsgvY/V5DuaMhQP9xy/EvJbQ9we53Wx7/iwK1lPg0bqt3H6vII1aS8qZj8nzArftn8CtrxqsCVxmatUamDqkCmXFkSYsQgUfnI5ZNyk6+Itl4uF/vnfDN3iO+3H3OzBY8q7aYtRkH2Zxpm/N8NeR41aeb1EgR+GgyYr2OxZ8ftpgnaUwvXAe8FogEzNzS9jQ+EeRjT7IUTF1Cda8m21tTZSl28/qJUmGmkuwsdre9hvWeJJ1uEILPUhZDjRq0OMANA8wVeiUxc0F56NBLib3IufXKKc9We4hmEwRTKsKDFfbDDmYh8EZQ5ZCfBZpBJIJIC6JWjJ8NKc4ltgDX9UgVkKmDhaa50SJnmtN1j2AF9SSjbeKgqM5ahr0SXCwQu3tLmvMBoXCIC311vgQdZxqcEVdhUE1/EypDIJ0IXLaxOtSS9TKFIqBN5F5XfU142iFdSKpbDUFGmk9+HHeEvAlk5zIuJFc6Ihib6H1uu5HRLTZx8fVAUB5Zuh9qyj2PcIL8tSnjsqBsDA+6kUIiRbgi09x45Yxv7DzltO5xURZYFz3s55MebqmRK0V+LChOI1pTV34TsONRtdskxAq82hTPNlD3446YXke7S31gyRJLPS7ic7YZ3lQN6GUciEznG/sIVzOXn8IBXnrE20LQ9CLZxxYRq+hNiEOYqf9Ucf55dF1w/0Pq0sP9yQCcv/q9l9cF97Wuda1r/Q7yKZT7sD6KW7z5eaBz4pi8oultr1g9GiC3NwNUd1fI5wWqjh+EkypHjA2u5+h8aFje8Wgn6b2VUO4H7n7zGYOkpLaa86dDuh9obBeqwxaayC3GeNoh2J4g3SmpL3JsLxYHbaPhLMUeemQraIeOW901z16OkMaTnUnqUcCsY8CH10R0X1DsfMdjlp56KyYjBhU/1eVKYfsOhMZl8cNetrFDuXzVYk4N81W24U4HMAE/sIilZvieZXFTIXx8nlwWi4fx1xy6VCQrtRn4Cqz3DcP3PLMHkvktzf7fDkxfFbCS2AyG73vmdyQiwOCHcfv+abrNweEEayXeSvTYoFdJTCnsBBZpwPUdvd0lN7oztpI1SgSmTc5F28EhGekVRjheKU75sNzhN85vcbpZ8CgZeDYdsprmkZlcqivaRJDRPpDMA2YZC5kYPBO7l04K1nuRTiONJzGWwWGJD4KzkwFmKlFlRMRJE6PHXSpY3I0FeFCgSolvUzA+plEqcCp2KvVKYvs+kisAMWjIv59T7QjMQtCEgmwpSKeB+YOAWUqkFSzvO8xUxk50KUgmCl1uKCLG46YJqpRkZ5J2bWh2LU9Pt5CpQxxn+NQTSoWda1yn4rUHL/jwdJu6MrS7ljt3zni6OqB4Hndh7CYdlc2sQrUNfr9GPU0RTlDuBtodC5vwIv0ipd1radeGbHuF2ltRPupFGk+pcFkgmcVFWzKLXfLsIkRL0iON2TAgmkH0/etVtLK4NDLqVb+h2lGIGxVSbYZUqzSeQ0FQqJon5Yh5k1MkLfcH55zXXV4sByyrlPUqJUwTcAJl4yC0tFDuSPLzeHvJwkOI54EIcbHhN9Zdr6OXHQl1T2CL+Pq1rUK0cVGCB10L0nGkqOjqcsXLlXUkwBVTO0iw2cY+0ouMfLdZqPok4FMfUZqfSKH8vLouuD+HqtYxXjW/7XKBuOpwKyn4S/+dX+Rf+ff+Hk/G69/rQ7zWta51rZ9JxRCa2NlTdWRIr36uIow7mw9hQf3VNW2lMetYALV7cDHpRixaP1Dtevxug/xuj7YL/S9dcLc75v35DufHfbITjU+g3nGgAqbb0E4zhHIEJHq7pF6myF6LXxqQgTBN6LyQrO44xI0K9TJ2xKXxhNP0yvMpW1jvbzy0VqLnKhZ+LnYBvY6YQNlES4J9paYexWKmGQXaXoiFxlKxut8iXnYQRORbmzlUbmFsED7Q9mNHfXE7+sGXqeD2f+YptyV67Wk7krajrgZPBx94dB1iKMwq2mKK54r1nqT7LDC/H4sUl4LJW1Z1gv6NHlJDs+Vj7HiAxsSQn26/IjOWR7MRp6bHg/45Hd1wUvZ5a3LA7d6E/XROV9cMTcnrw1MK0/JsPCRLWgZFybAoma5z1suUYCWhkbBWV4mRYePGDErQdCQuiWmgQcVOMtpxNJiRSMd52aG7tUaOAnWjqVcJYm6weRwgDTJQ7UU7kjMBtZY4LQg6YCabTq6OXn+6lqJX8eJ8iEktQUI6Fvg0Bh1Vu7EFGlTAbZIpYUNISX183TsBn0LxEtpTHTvSC7FhYXv0VBO6LW6tEbsN+jiJVhUL7W1Fpiyj/prZKkdvl/TTCt+16HVCtRPZ0S6Nrwke6gcxBMoraLcdshHoscYdNHSHa9bTATJxhElCcdgyWRQR1TcI5M8V7SBEzvuepfeeJj/eFKzdONybjeMAa7IQTIvYJQ4KsnG0n/hWEvoOVgaZW7K05XAwxwdBV9e8vTzk2WrIjc6M7XTFo+WI8aqgsQprVXz9C7d5DJ7m0FNOE/Rc4TJJdhbovvAk85awSfAOSsTY+MqjZOSnqxJUGne1ursrluOCdLFJcJ1+XGiLT0AuwoZ2cklzIcSBzKYraHtxcDYuLjYdbRMIyabYlgEhrwvun4pmZfvjf/CJJ1sI+MOv7v7eHNC1rnWta/1+kI/DfP33JWYZu3Jn/3RL0alJ/voAm8P650oG3ZLVmyP6H8LyNtBIkn5Nte1QucM8TVBnWRyg+mqc+nu0HPHo/X2ScxWHunqBoAO7hzPOPxzRfapYfcXGocpVBrUE49AzhR0F5KiGJ0WkLWSa9NaKwjT4aYL0sDradMILic2jjQEVO4YuCcxvKWyxiR4Pl4OcgU6nYjVM0Su5KeokzdDjt1pU6vCVRK9jXLcpWtqVIZ8LlocxCEWV8XZkK+g8DeiVIxOC1b4mWcXhMpcIkqUjSMHiSOEywfYPLarSEYMmYP5gE1ZSC9quR39QsOxniENP96M4lObyuI0eVEAdpywbRTuoMMZhneTN9hCjHIly3OjOWLYpz5a32SsWaOHJVcvd7pieqThZ91jXCa1TVGWCNo7WSkQbPe1mGdB1xCvi46Bi1sYCMyjJ7NUQF1Ve8nQ6JE9aEuXoZjWNVZQudkqFi7HntivITwTtvYq20iACthvxeW7osLn8mGCRevRJwtoK1FRTbynkl0vyN3O8DrHISwLtg5b8UULbjYN1so5hKfkLjWpgdccRjGf0Q0UzkJRfLuFpRjoRJAdreKtHc56SjRV8eUF9ANmbKcLC/KTLtCjJtOW80YQAp6suyBjs5JM4qOnygC6jzeHG3pSy1SwSy3a3Yr7K8I87MNcsqh4K4DxF7tZMlzltpSNd7X5JM0ticqWMf4fVTiCZRT67Xssr5rTX4sqyJWxAWoFqYuiMOklxhSd9qRFfLdnrLenohjf6L5nZnJOqx43OjBerAcs2YbrKWc9yqCVmq0IlDlvp+P+xoXgRb9ur6Mk364BZWtS6xeUGV2jwAVVdLi5lTIYtwCUxjTTRkShkFpCfR/uI8CEu6i/rbQEifBzS45JIHmm70T7msujTDnLT3U48GA8qXEJMuIqq/QK6Lrg/h+SPxklu9IlB1mtd61rXutYXVNDQf19SnHpcKjj7lqezVdK806c7C0y/2bCztWL56zvsvukQAaavxXS77d6KUysR7xekE1jc94jdmv3umkxb3n+yR/cDTXnoaXYd+TNNux04OxnQeaZwBkxq6Wc15TpF9VtCiINTopYUuzXYIkagLzX0ax6djwDwWUD0G9SzDNuJndf1bUvWq9HrBFVvbAWaOAC4ISlsvQ3jWxlhryYc55hlJE6Udy04QTjNYmrlQYPUHmclMnXYPLC4B2xSMEUAWUNx4VjvJyQLh2oD5bak/9hiVoFqpGlzgd9Eny+O1NUHljcweD8W5vnYsbipWR0FQubZuzlhOt/FbDrioWNjrLwA0UikDGx31nSTGoCTZY95mdE6RdlqRkVJ5QzWS/7us7sEFyMPk7wlBEGWthxszwCYJDnVrHeFVxMuWgfkhoHsE2g6cfdg+JbgoqsZjKYsljl1ZTCJRSlPVSZ4LxEmMtrzF9GaUG0H0rdz5DdnlOsEpR1tLRE6spZt4TELiZnGtnr2JKHe9iQvDS41NMNYlC0ftqipBrsJMBKbmPA0Mtsvo9fVUiLvlrR5B72GME5pdyyyNZGxnsbdDAIYY6lFfOC2E73ij59vgxeYToMxjtkqhypaVhAQNoU2bDzFQSAFfP3mcwDO0i6P1gax0BSPNdWeR1YC10pM4ainGaHrMCLgdMQLegPFR/oq6rxOZbSMTCN6styW2CLurDSDaKupRnGRqapAENGeJWVgVmVsD1f8xvg2g7RkN1vyvbNDxmd9xFohRzVpt0YPPesXXZKxRAVBMofOS0/3eYWsHfVWit/g/2yhEM4grI8x9R0Vi2ciFvGSFNLsOJKtisUyp/OhofvCo8uACJtkyA3qL6iPd9S8FrR5tCJdcsbtZjEVTIy4D8mm0NYbTqAXn+huXw9N/iOR2JwA/9Iv3OIv//pTTucVe/3sH/FRXeta17rWP94q9wPrI4E9rAlOsjrtUMwFp3+kYWt7ycWjLbpzmLwWiyLbt4jccT7v0K4NYuBpt0C0MYissZpFlVK8u0HpHa0xb3Upjyz9vSXV94dxOzyBTh6H+IT02GmGKCyuCJGbvE5JsvgB7VNPkTXM3t9CejB3VlTLhM75BonWjX7WtlV0FrFT6+rIde48i/eF2CDvnmekD+asbqbkJ5JkFreoVeIR5wa7baPFYsvSriPD2+9YkjNNdh4DPqyO9pv1tmJ1S9B9LCj3Y1HUdiVtLmk3KeZBxQLbrOPx1NuB9EJw8ZVoTajGmsGHjq2345Di/M4e9lsl9jgluVDUiccMapQK1KWhftblcVJA6jk6GvNw64xcxV3gWZuhpUcLT0fXuBsSGyTzKtuEqkiECIyXBd4L6lWCqQRm+bGfVlhPEGALSRCRy930Yyd55+8qlrd3sPdqusM11sahOwC31Ohei9tqsLOU9CIyvNteoDzpgPF4Gb29oY1FYv5S4TLoPA2sbm5OSBFoB4HuI8Xytmf/78LxtsDvNggRSKeath8XZumpQjhY32vBCfSgYXew5PmvJIi1ovtYsXjoabYc6HCF8fMdz3ZW08tqjm/t4XOHyB3yPMEPLe0qYXgwY/zWNtlCkvz8hLJMUCcdxKaLbzueflKzna3IVcsH8x3OFh3SJynNyOHy6P9nplEnCWvl6b9lWN7y6C1H60HamK56GaZTnEC1xafqSJdHS0yyiKmRhOglj11lcDsN8lZLWxnKdcKqSmgbTZ43zMcdsscJchjJQgDreUaz0qilxBaRLjR6qyU7q2j7CUEKkmlD0JKgBd5ImkGCdAGvokWrLSKS0KVxF6YZeERhkTLQvCjILi7xkh8/kEuudhDxek0nfrUdrt4PIgLyYwsJxl/ZRy7DeILkCjH4Rbvc1wX3P4TEJzrfl991s/iU/uo7Z/ypb936R3BU17rWta71syHhQL625GA45+WkT/ZrPRb3Peu7LTJxTJ8MUWtJuR+7VNKCWkmcDjSVQc41g3dit2ryrZZbu1MWVcpi3GHvWeD0Vxzmow7NwGO2KhZP++SbJMPyTstO0saobeNoVUBcJAzfEixvQdj30d+cBURhWa7TzTELbmzN+OjFDVQZP6jbXkDKCI/2Jg5d2TwmTiZLz/JI4XUkcJiFoJM11BsKRr0lkMaTZg22zWKh9kSyeDWQvTTxGDqe/HhTIO+EKwuGdBGhWG0L2k4gPxNMXo0hJaN3HNVAkl84VoeK6WsQRPQf16NNiIqFct+zvB/ofpSiyjhwaL+fU+946sMW1bEkiWNYlJihY76V0ljNIK+YrHJeng/odCuMcux2VgC8nPfpZjW7+YrGK5T09NIaIx2zOiMEwXKVgZXYjqftKpL5xr6gRORdB7CFuLI21NtxMFXVwEKzaLqb9DmB7LaoXotrFL3hGvvlmvr7A4qXEcLc7AVE4glOIGuJXF8W8/E8bLtxp6EZBjq3FqxXKesqI3Qt6/2Eg1+Dsz/R4MfpVQrm+kHD1q8bFncuT2aQyjNeFqjC4gQs3nDIhY7phgFs16GXirBX44JgKyt50bfIqSakHrFfw1qTHGvWWwndJ3HhNB934pDjXvTVh7lAWsG7Hxyyf3NCbloeP91BLDXhID4XYZojFjp6jz2oZxnpJOBSibjnEXXkuKeTuNhwaSykZRtJKD6NODy9DuQXnmooMWJj2ekF2ls18jxBCLCNJnsvo7zdUlpJqCX+RU5xHhc2vuNYn3UwY4UBbN/jep7iiWLrHRu59f0EM60Q1uNTTdiELwkXkGwWYDLaW5pe/Pu6fA8JJtDpVwgREOeSZLlha3uuiu6YTCniQGQRr39JHwkqYihdEm1nl8W20J8mkYQgPi60rz3cv7cSfFx0X9be/9Yffci/+zc/YrL+7UOW17rWta51rY+lO9HG8eR4RPFmzuoo8PBrT3n3rZuk7+aUt1qsDohagg6IuSSZSMqRRScWuUhJFoHzb8CNG2OevRyhU0v2KOH8mx7ZaZEnGnezwntJdqwIEtp+YP/mBBcELxc9mtqgL6IPVzWx2JCbgapwUCNlIHgZt5mBnqmj9aOIj8OnAeklttQEJbBZoNqJ5AdEHPhLx4JqG9IxrOuEoGJcu8uA0xR1v8I7gapg8UZD592EZrjptiWeajfyovOTGNaxuC0JGooXgdlrgWA80kWUW3ohGL+m6LyMNpPeU0fvGUxf2QSK7Fj0RGPTGGiSXChWX6lQL1PEE0EyA5dJVCVoa8mqK7E2FkBJYrk1nHKYz+ns1IybDlJ4lAjUTtMzFfd7F2jhMMLxeD3iaHvGWdXlvIxt97rVJKmlXRmSicIs43Ot6pj0FzSo2rM8NFR7RI/5GgiC9WGkiahFRBsGE0jez6mOYpd9ftbF9Gr2fumYF6dDzJMUUctIIBEBt9Uizs0mbTSi9LyB8shBr6VpNH6lyeeCsi9YfqOk/1cSxNMcFSC/8KwPFO7Asz6E4kSwUho3sAQvEDrgFgbVtUjlaBuJyB2UCtmL57Mxjvk6Y1mlIGKRJyaG7M6C9SQh6OgTrrYjOjL/MMHl4crD33bAzASqNJzYEWarxpwY7I0GSoU/TyEPoAKylLi+JfvIUI0gPwlMPuiDibftE0Fz0JC8NDS9uEtiVpFUYlae9a5meSPOQcg2LvII0B2ULEoNXkAVO/3pS033Mcxeixzt/DSwvB2L1PyZjp35bkDPIw9+8KFDrx1m0SDKlmAUPjfRVlRakIK2n2x2OwQ2FbgkFs5tNyINY7R8LKqX85xOy6bQjsfpTcQIXhbbNhNxGDKLHfqgoj/em81gpAqQ+CvbSExEvazzQhy2/GJOko/f7/7BrnatS/2ovXtQGLYKw0fnq380B3Sta13rWj8jsk6RJBb1Wz3K3cDXf/k9vvv0JmohaQaeYnvNepITRKDzYQx2cXmARuISRboQTF8VDF49p3UKfZzQ7ghCNyD2Ktw8wXY94jRi08w62j/a3ZZ1Y+ikDVWZ4CYpdD3JC0WQAZd7ennNZD9Fy0AA7DSBzBMyrrjC3sQCQlWCJGuxC4NsQ0zK7HvMUm5wZbEwDpsQjdVpBwYWERJkCz7z7PeWfLDdJ5iAyi0uT7D9zT64jqxx4WF519N25cePpS8IhUUkjiA0nWeC4Xst1ShGjA/fq6lHhqYn6bzw5CeCxT1D/4NAuSephzEIyDxJaXYc8weSrR8Idr/jaYsYHW8OGr559JRlm7KyCa1XfDDfYSdfsp2u2DYraq9ptcJuMCO111ihKHTDrM0oraG2mlWVEIKgbRWocPU8BXW5XR95ym0hMevAMgdXeMSNBu8EodRgPGa3pF4lIAJ1x0K9KWyBdpzx4iwnPVij3qgRVtJU5spKAmwCk6KXW5WCkDtGW0vGx4O4wAMO/yvFyZ+wLI4i6vH4jzrmd00MPZkmeA31kBjDnihaZfAvcoQJyL7HPy9QgO9EPjsXKULFrrv/7oD17SZ6tucRa1jvG+RWg7zIsW/3CUlAeEF2BuXBhvcdYofZrGJ4i0sV1maI2xWdTk39YkA7cqTHCptHfn0M0ol2Il1C8SL6tCNlJyBWmu6zSDsRIUT/uQxXrOpyNy5MzCraL8xSsDjvoOeKIBQ+89hOIDuNoTg+8Qzf2gwhDjzFIxMpQSOPLgX5mSA/i+e2bNxVsS1ah880PlUIsxl88AGbboYa+xufdRGwvYDvOEy34f7uhOfjAf1fzyhOotfbm2hDcqm4in93aVzgxqCjSwsJcTD2MiT8E6x8gODjCRMQSBUIbjM0uYmG/yK6ziH/HPqMmclPXS4+sbdwe7vD82n5Uz6qa13rWtf62ZZSnsVxj+rLJYPXL/hgvAPP8mgdqQVaeeRcc+O/iAVCRIAJ0lFJmMWCR7yxoHWK8dvbeB0QOpBMBL7dWAckuL4jPxGUe4F626NzS10btrISpT1mJ75fp5MQudmpx3qJSB12luCbWByqTstwb8GNfI7dbal2PbIRtFuO1SwDL67Qab5vqXZCpH2kEennTaQwZC8iZ7ztxK18JHzwbBdVStRSkn6/QNYQtEePKvL3o52l+wS6jyTVnmf+0FI9rJh/tUGuFOkHGbqEg781I5m3qDZuvY+/lOGNwJnYvew9bRAuFh3FsSc7j7hCvRIM39Qg4OIPtKwOJKqFzgtB+6TD3/rOq3zvo5scz3ucLLrc61+QKctF3eGH80N+MDtEisDNdELrFb91dpO/e3wbHyQ9XXOjM+Pndl5wOJzTNhp/kaIuTDwWE5+Huq+wHUXbUXizKa56jtGtKd1OhUktuhtpLvUqiYXPzMBSQxCoFymhkahBS8gd9YsOdWWolyniPKZMbu0usHttLLpSj08iwlGfGerWsHM4I/Qs1a5jvS/Jfpgz/2ZN2xWItWLx5bh7rUuBbGPwTXWr2cSvi9gp7TjaRYLru5hkutYUR0vUWpC/UPC4oDgOmFMDxjN4f4MnnCexi6pCHJQMsShse5FyA7FoRcTwmbYjosWk4xj015Qf9ONQrY0Jp7YTO+IiiwPH7dBfYSqTBaTjQDoLdJ5Lskkgm3y8kMwmIZJc6rgTc2m/ucToZU/iYlGvBdmJIpnEhaXwsPVm5GPbAjpP49BntW/RK0HxIhbbZh2QbaAdGKqbPewwxfVTfKZoO5p6y1BvGdb7hmokcBsLiXSX3vP4ejgnOZn3cB91SScBXcdFlDMikkyu7CPiiiEeO9wBbzbdcUncaZCb9Ei5eZCbYltsfNwhxC43TqAuDLK69nD/rit8xvaB+ESZ/cni+7tPpz/tQ7rWta51rZ95pcryKz/3Ln/7/ftMJl1MalGliNHJRxWLec7eb8LyKNoHhu/A5PXA0XDBxa/3WL7W0DOW5TwnDCwydQz/Vsb0S56s0+Afp9S7ju575ipkph05/NIgC4sPAmclJrGERUThzV9vuX//hA8/2EeuFaHjkInDOUFwgixpmduU4faSWTkgmUJ1CHJqCDpyjZthIB9UlLWk6esYjHIsaPpxIaEa6GU1553YOZSlRPQ9diemEQax6ZzPNbaW0Ikpf8kidro7TyVIST1UqEbQ9D31jiO9UJx9s09+Ebt8wgvKXcHsoSQdR390WyTg4fyXbezkBh9Z4g8b2lND/33J+tAw+WbLfGIoXsL2dwVtRwGKcj+l2rf8erjFXm9Jz9S80X+JFIHSGU7bHgBf3j7GBcG8yZmTkUhLoRsOizmDWyU/NAfYpx2SSVwU2TymB5oyLqyWNyTrI4/oWjJjOerOmNQFL6Z9ykWGzlo6ecNc56inWeyQ64CaacS5iV7hnsdWGpO3tED2OGE+3YItSzP0qF5L72hK3RrsRYGd5Kx8AdqTXkSeuk+AhaYeCLpPBOtvOIIyFC8F89ct+TMNVsbX0MVuPK0EExeLNgugPbu9JY+GHRAKWUd7EQSECqwOo42n3hPYhUGlcVAXL8lPJD6BdALCx+dK1bFAl83mPJlo5uMR+Zmg3PekZ4rF12rExJCfCiqXxMXkscKsAqoO1IkgWcXObnYWUI1n9lq0Vbk0ziGoNiZNmiXIJhZC6SKQTaOn2xtYHQXafgzGUWtBdhHtG8vb0fJhuw7hom2p8yKST4KI3up00kAI2EJjCwWZAhltLjaLwTOXSY8+iZYa33XIwpJmLYWxTC+6+LcH9E8jkaTN40ClNxvLyOZ7bz7R2b7saF+G31ymTF4O7sq4KxC8iDsS8aXCVxpzrum9EHRfOs7K3yVKiRDie5/j+mchhH/2C93j71P9uHVOCOFTg5XXuta1rnWtj+WD4O98eA95mpBMJcksdoeXt6Mv13YiDsDrGGBx9ouOfG/N+bLD+ssVWdGyOO6RjkrqMiNME2xHsPfwjNPTAdqAWkuy80C5G0Ne9ERHW0phOVn0MInlYLDg0c2EymaYQU1lY6dXLwVNl/ipbAV7N+acnA0ASE3k/QKYsYoJlYOWtpvRdj0pxAS80Sa98HKbW0e277JKozVgIVCHMSwtHZSsfU6NRjabwvyRQtWB2cMN+7iG5Z1Au9fS+0FC5zgWP7oKLG/D6iY0A4WqYf6KI+hA/lzHQbe9lvJBLPI63Rr1awO23mlZHmomX9Z4dYkMhLlLqG81lEeW5VlGMpVXgSsAibYcz3owgJO6H49fWbRw3MkvkATWPuGl8JTOsJctUHgckvebmFnhN9v6qhTU24HlPc98LclPBc1WtAwkqWVZpTS55mH/jMNixsv1gNNFl7rVjLZWDG+cs24jYm+6yhEClPTMj3t03k3Qq4TVzeiHT6YSvzbRDnSeQn9FVRl0p0VIj36zuyHTRD95vevAx0VU/wMon2aIAOsbAT1T6HV8/cWDFep7XRrAjSw3bow5K3q0kxTTbXg56YMAd7PC/DCn7W2G7hbRKqXXIiL8OnFQVM8Uuoo2jrKIdg9p42LE62gr6T6FzjOxGQiMQ4/dx5LlbU/yJEFVG4zfdhzOtUW0NdlCUI0ALzGrQLrwVENF2wt03oH1YZw7UC30nrWsDgxNPyaBVltxR8RlArMKtP2AmQu6T+PiTniodqDt+5iSqj3BSlwtaAZx8DGbeJKZRTiPNwoR4lBj05dXqa0uF8gmxPs0gmbkCbmL1BARd8cO+3MWyxxdQrKIj80lH9tHrgpsw8eEGBWL7fgvbO6b+FrouDhCQPDxXA9WQSMxE0n3GXROHKq8RJ58sfe7n9ThVsC/8BN+LoD/5Ivd3e8vfcpS8onv/+f/4pf4X//Vt5iVLcMi+b0/sGtd61rX+hlQtUjp/52cajcW1KubATMTDN/esHFzWB5J0mlg+lpAzxVN2eXGV04QIrA867B1Y8b0yRCziGEx1S+sqOYF5lkcNDOLODC3vuFjOqSFkDtu7EQW9Gs7U35wekCYJjTbjsI4ZuscAiQLQTAaX1gwcXhKHacseylbRUnIHEFLXBEHroQXNIO4RZ0aSxmIW9MC2p4ACU3P4zoet8o2OLZAlkVGdV0Z1MQgjkpsrSjeTckmHmc2hJJtEX3styqKH+bkZ5F8kk086dwhnGZ9GLf2bQd6H8UubXnkCCKgJgazErgs0ISUTMD0FYPwsPfrgekrsWtL4qGSdN5NaHuG9Etz9r+8YLwqmM9zqDRlndAvKgZJiUdwUXfYzxbsZgsqb/BBIEWgo2tKZ2i8JpGWxmtKa9Da02w11LmKCxcJZlCT5w3+VYErE4wIHG7NSZWlcpp5m7FsU3wQKOkZDdY4LzlZdOlnNXf7Y6ZZzkcXI/Kk5dbrT3lva5fqSQcVQxmx3UC7H/0R6sKweHObcLvCjxO27k2YvaHi0ONSxoAbGUgminbgCVrSfSKYfq1FLRRuZFkWiuxUUZ3ntIcOvZD4peKoO2MrK/lhe4izCjuJi8om8UgH7dAhrCA5V3FHJydysTOBTwLFc0kzjK1Xs4iDvDbbJLPKiPFTdRxwLHcjPUSXkI09LpGbcy4wfRXc7Qr3Mi4Uyp1YhMs2Wj7yi4Bee2wqSMcSEXxMJT0IuERglhq36RDbjKtZgrYLi7vxOY3nVIybJ4Bexy51myj03DB4F4pzx+ogDj0mC483kiANQcUFg3ABU3pcquKuAnGR0GwF2qFF5BH7V3RrHowu6Ccl7013kZvdjXogPrEgEVeov8vZgKui+rJWCyC8iN3uzT8AWklogCDQc0V2Hr3y+blDVS4OZIaAsBvG9xfQTyq4/7shhMc/6cpCiP/eF7q332f6JKXkk7oxzAF4Ma2uC+5rXeta1/osBZh9qyZ5nDL9iqXzSJOdx6FD1cTBsGYQqLfih3z3mWD2izU7+ZKXFwNE5pg+HRISjz20pEVDfZGjFwrXCXFQDVjcBrlT42aRgCASz16x4HtPb2KUIwQR+cbDhvU8Q6cOUcfAFZsH0sTS65Ykyl2hdxunPsXhFbmNCLodByJiAkUjo8Ug8/AsQdhIQ0AF3Eoj92qalcGvU0IQMYXyhmRrsGK6yBEhpe4L1jdAVYJ62+N6Dv0iQ1UwewjJVLD73YbFrYTVDYFsgG8uaGpNfZFG3FwjQMffTSdQnHnGX1Ksj3wc2Kuh/8iz+13P6lgxe6hABNav17DShHf6fHiQxccrAr3dJUoEEuV4thhSFSvudsfcSKeksuW87WG9ZNusMMYhRWDRZvR0xbgpSJXF+8jD1hON7bvI+tYeJT23+nNGB6sr8knlNLvZklRabJCclx3ypOViVZAZC8CL93d5rnfoHyzIkpbxrMNkUdDJa/QbJXWrKStDkji0FxwO5xz3e5Qvu2Rv5ZS3LOPjAbdun/PsfP+q46kXiq23A6e/DJM3Av33og9B3Vrjz3LkqMHtOeSzgiCg3bGYc83aJlgv0cbhvcSrQLPjkKmLYS2JR5YbqsxYUO169DJ2UiEW1M3IkUw1ySLOFogE9DpQj2JxuT4QFMeB1U1P93EcPJ28Hr36APWe4+6DE86XHeo2o3gZ5xiEF6STj0OGCLC4LckuAs7ExW478EinKHcknRNPcR6TS+uBpNqJKE6zEtSpxyUbzGQbj1uXscOtZ5Lhu7E7P/5SLDcHHzjMIjLfvY4ISNV4QGCzOKvRdqIH3KwAIfBa4owEFeikDVo6fv35bez7PfofxDcSr2NXO8hL28gmFEdcht1sTl+/uQw2nu3NV4BWIKxArSXpRNB5ESjOWlTtCCJanoQLyNZdvX99EX1mwR1C+Ju/05U/z+/8ftBnukLEJ60kH393OIiBNy9nJW/c6P80D+1a17rWtX5mFZKAmBrqmw3JsSE7D+gqFgBtN1IG9KsLqmWKPDdM37Dcv3GOFJEcImQgOVNUR55kU2xnx5rqToM0Dv1Rhs0jRcTVCuEEoXAcHUz47pOb+EpxtuhilGM1aFEqoF8miFtrULGLF/otWjsebp/x3edHyBZW84ylz+OWs4iUEW08towR4smw5s5ggnolcDHuEqZJHOTKNjYCGz/xgxeIwlIUNVVtGHXWrNcpUgSUCrSduPio91tMv8HNE/RMx4JKbNIsFTz95xL0UlCcBFZHgmqcIVpJcriirTVeajofGvKTQDMUlNuSw283rA4iR9orOP+qZutdR7knCMqTnUn0s5SNJZu2VJitGuck61XGGzdfcrOYsrQJo2TNYTKjDYrzzRX6uqINinZDLZEi8Hg9wnpJaQ1GO/qHU9o9yfi0j1Sen7/xjFRZTsoe1issMErWSOGxIca3j5I1tiM5L7v0spqzaRdbmWg38IL5cQ+Mp7e94psHz5jUBYs25aC7QBJovKJ2mnmVUZUJe/cvONEj8mcaVcHx2QH5a3PKl130TBLulpSv1oTjHmpUszr0pO90qUUKHYv6MKPZdYg0ELJYUIPm7ecHaGNjWqjadMlv1mR5Q7WXQiNJLyQ2D+gK/ExSnAQmX/Fxt2QT5FJvK7IxiHRjKVFg5kCIhfXsVfCFIyjJ8o5j/+E5x09GqKVi99aEx893CI1k+Fyg6oB0gtU9i3xPo0qo+3JjSYJ0HmiLGCaTnSiyi4BZwXpHko9hvSdpBjFoJjuXV/Yil8ciPojoK49fI3O+3Nmko3roPvdIG1jvJ9Gvv443UA/iOXI52Ct8jLO3W3ExpQpLllgGnZLb/Qlvne1TP+mST+Jg7SVz+7Kb7fWmEx829mwHwRAHI1X8PYgdbtzHC3O9lGTnguLUk40tqv4YQ6LqDZ4kAD5aUT5zwO8z9DsOTQoh/gTw7wB3Nr8vgBBC+Cemkvw8z+kni/KrDves+ikd0bWuda1r/f5QGDXo45T8OBIeqOIHNBKaLY/xAlYatxWHIudVbGj0uyXTx0Oqg+il7uQ14aJLveMwRUN43MHMBWEQqI+a+GFbOITxaOnje7YTrM4KOrtrVOLJ84bK57SlQQDN0EMjsVbR0Q3OSUhj0WzyFn9hIlqt02LraI0QtSRL29jVXWeEebLhAcctfgKQesRKoROHVJ4A9DsVszKGwpyNe2jjsN2AH8bEzenjIaoWuP0aXqasbsbCbDn0yI7FThLKW9GDak5NZDm/10UJyBaCehRIJzD40NIWkuWNiDDMzuPWfdsLPP8TFjkTFM8lLoFmEDvybd+DDtiLjNCxSOP5/pt3eDO/yY2jMeOsZJWn9HVJX1eMdMTizlzO0kXCipGOnWTFs/WQi1VB22rypKWXNtx5+Jjzskvj4/P81eELCtkwtxlLl2KApU14shjReokSAR8E+8WC7XzN0+mQ6bgT/cKtRCw1C9/lN7nJl3ZP2M/nPF1t4bzkbNVhOu1EOs0HOYsf5vBKQ3nTIppI3PDfG8COg/srbGlYjPsMb82Yz3OGvYrJHUPyPMHfK0mngubQE4IkfWFo7nrUK0vE213aThzy814guoFQKdZNgakE2Wks8GUjKI49Zh7TQod3pkxeDBgOV0zOe4iNVcmbWGgHFdNG663o/7e9iN1bHXmyG6s4Y+AEru9Ylind4ZrynSGLez7+XQ0iq7vcC2z9MBam9VakmsQuMQzf85x+C7beg7aIhXqycOjKc/xLCtnEnRSvYlqnLmPMu8sjKs9lMSBKujjDoBpB53lAOJg81CTzQOfUX4XRND0Z6UBqM7BZgN2y6E6LNo4saRkWJbv5kh+cHNC836f3PNJWgrj0Zm+62+rj95arbvYnBiQ/NSQJiFaQziXpGLovHenEIhsfCz+1oZS0Pgbo+IBwPqahSvkTurE/Xp+HUvK/B/6bwJshfMFy/ve5BOLq+f7k077TTdFS8PIaDXita13rZ1RCiFvAvw/sEz+i/mII4S8IIUbAXwbuAo+APxVCmIjor/sLxNmfNfCvhhB+8yfehxUwNSST6EPWVYxvli1Mv+q4/fCEx092KA6WbHVKtPQ86J/z5sUhdavJXyjKA8/+q2ecTXpoJ+jemrN81qeYxG1396Dk/t6YRy+3YTNs1U9jM0RPNHboYmR31tA0+iq9MMiwQaxJ5CauPDiBH7V0exXdrOZ4keLPZSQZrBQYTwiBRMctZ9sqgojD895A6FrkQsMifvQKGWgbTZJYZsuMVw/OWK5T0tSynOYoK+gMKqaPh6RnKoa7tBKfBXzmMRMFSMxjQ9MP2P0GsdL4ZOMbT+MQXfeFx7zpqYcSs3DkJ/Hxe6Ootw0EhWwFw3eSWICNoPMyUA8F9XYsqtrehpVdG7J7CwY7MxZVSusUdztj7uTnzGzBB+sd5kmMeJ+2OS/LAY1TdE3NjXzGfj5nZROWTULVGA46Cw7yBQ97Z5TOULqEgSopVE0mW9pasbAZSgS+svUy3ua6z6JOOV332CsWjDpr6lZTLVOyQU2xP6duDYtpwXeaI/6pOx/y5cFLPlju8N54n+AFtpWEh2uaswxRKkLiMfsV1VDTeTNDvlBUbQFDi94pmT0dkD9XrL9hyXsV611J9k6BsNB9J6H+5pLkvS7y3Yy2l5ItYlXgvELa6BXGxmj54rlgfSMQhCCZQ7Ulyaae8ZEn2aQYTo77ZM8Nuoysb9kAcuPjXgSaWlAdONRSUm972Ktx7/TIKoHb8KWrsgPDNnbfZaC4uUT+zUHE9zmYvRJwGSTT2D1fHUjMMnD2dUEyFsjWIVsoTh3SBlZ7Mdim2omebWkhuwh0jh3ljoo0kTQOmBYvBNVeoDgWZBeealsyfS2w9cNA/3Fz5TMnCLKpp9yStF1xtdgWa4UaVPSKikFWIQn85pNbJG8V9M5idDuwsYTEGYCN4ylaty472Ze+bX9pAY6pkqoBMxfk54H83JIsWkTjP+ZwS0FwMR5e2E3BHQJyWYNzhGHnx9MyfoI+T8H9FPj+Fy22hRD/HvAngNMQwld+zM//28CfZTOnC/ybIYTvbn72aHOZA2wI4Re+yH3/XikW27/9GVdSsNNNOVvUv+fHdK1rXetav0uywP8khPCbQoge8BtCiL8G/KvAfxlC+PNCiD8H/Dnie/kfBx5u/v0S8H/afP1MCRu3cbvPopUkSEHbESxvC5LdNbVTfO3hU14s+1gvyU2Llo7CtEx+sANbgeRwxcW0i1sa/J2adpGRP1eoMnZo90dzKqvxlQYV+NZrjzle9THv5nizSeJzkr3+ksdPdtABZGbxpY6Ft/YUacuszRAStraX5EnLZFkgakm55xFBxFS/hcb3LUIEGq/Z2Vpw0g5Qxym6BKFioayniuJY0B55bKvopA3LxwPaXcUv3HrKWdXlZRCUxpMnLavC0Yxiey59oan3HHqq0MvoM5UuEkymewIzibg2O3SYicIbOPkl8N2AaALJRUJ+mtL0o8Wl7QV8v4UAzcCQzGPMuc1j6mVQsL7fIownWIEuLKuzgvRGyy8dPsFIR1+XzGyBEY6b2TRaYoRn2/gra8l53WVlU27mExqvOVNddOHZStfkskERf3fbrGiD4rTpY6Sjq2qkCFivmNuUvqnY35pT+oTSGWZNRqos93cuYAfeO9llNu+gtKPoVxRpw7df3GE1y9nZnbO9s6CxisU0xoTK3RiQdHTrAqMcjVOU/5SJi5xzhb635rWdU36oD6jLHuLDLv03LliH6FmWDmignWTkIaaYJpMYNBPRfTHoJXqAYXHf0XZVTIzsB2wXzEKAlCTn4N8fwVcaBt9JIi86geowIBtQTRyOrEaCZuTIThTuq0v6nYrJOyO2vxd4+Ucc/Xc1eh0Y/3wg+yCj7QYEguqjHuGmJ7m1ohxnFI8MzV5L2Qf9jqEZBpb3Hflzzd53WiavGLZ/UIMUnHwzYfCRZ/hhzcUbWbRESYGuImu+HgqqnWjtAFi86iieKDrHntNvCuzA0ntXk84dq8NIlAkyXk/V8fFBDLVpB3H3xllF3WrWynA27WLeLsjO4sDnZVBNtI7EgWYZgTIfF9p8aswi+swbQbKA7MJHf/baxqJ6U1gjxGagMy44hNuUvpfdVR9/J8gvTqD7PAX3nwH+UyHEfw1cVZAhhP/d73C9/zvwfyB2SH6cPgL+8KYz8seBv8in35z/mRDC+ec4vp+6wudwxv/o8GSeKGr7BWOIrnWta13rHxOFEF4CLzffL4QQbwFHwJ8E/sjm1/4S8KvEgvtPAv/+pjnzbSHEUAhxuLmdHyvpoHgZu3+rPcX0qxbRsZjU0s1r+knN0/kAJQOdpKFnKh4vo63AbrcUw5L1RcHu0ZSxl/S6JbNng+gXfel58SXP+axLM8kQTrB//5yjbMrf//AOl0F2EMMs+mmFmunon1UBmVvEPMUl4LygcoY0a1gsc1whaeqYCuhqBWsNMuLRmpGnbAylNRSmJclbmizBa0Gooo/c9TzmA8nqURd9K5I2EIFUW9Y24cMXO2yPlvjfHDD5EpGcsEGWqVIj2kgtaUae4QfRW7s+DKRPk4g6Iw5xtsaTjhMO/g6s90ykTGhY3Qi0B21My1MhVilOoF5fILSjk9XMyoyjwYzHFyPaRYpKHPdvnaOkZ+fekpfrASdVj5tFLLDboCidwSHpqhojHFIGWqdQeO4WF7RBMbM5R9mUnWRJG+LPam/YSxZI4Vm7FCMcXgoqb1jYjOOyR6IcJ+serVPMygzvBTeHM1ZtEu/fS6QIbPXWTBaxmN7prphXKVp6ZOI4ezaMuxzdFp1aTGLp5TUzkzNZ5dwYzjlfdlhOc248PMO/Ijif9Pj+y0OG3ZKTfo6aa8anfdQysuHrYSSHJGNFNQq4NOIfVQ3ttkWUCvUU6mFEQgYTu8q6jOzq4qW8shz1P4zDf3Khyc8909ckso40EpfErqxex4WkXkrafiBLLIt1Sn4sKbfBTAWyjgOVEWcY65DsVLJ+taHoV2x1Sk4/6LK+bZFrRTqWSBuDlcRHiv7jmvmdJFJ0+prloSKdBNZ7knInZ/BBCxLajqIafryYSOZx4NJ3Igt8feRYv9HCwkQ0ZR8mDxX5WSzM7SbMpu1GO0nbiR3yoAOkHm0ci2nB+mRIOokLQRG4KuqD4irGPbK1Px6su4x2v6SqmCWYZSAfe7LzFlVZghBI6+ETtZrPFQiBrCO2ECmjFUVJpPUI5wlGgxS/q1jAS/1vgCWQAZ8buRFC+BtCiLs/4ed/+xP//TZw8/Pe9j8uEp/xPUCqJdXlJOu1rnWta/0Ma/Ne/vPA3wX2P1FEHxMtJxCL8aefuNqzzWWfKriFEP8G8G8AJMUWtoDmDy/Y6q6ZPtoBL2hPc+ojx3vP9xgOV+wUS06WXSqrOezMOVt1UFNNeDSA+zVnp3106phNC7JjFTGCDyTd/TnLky54UFs1DwYXfG96hDKRTy3cxx/ex8se2ZmkPPAxMdI45FrgRoHZvOD17VO2OiXP5xk+F7hSsX9jyvmkF4vuRiKcIO/UNI3mYlWQaEcnr6nTHJdKzKCmnaZgNvgzE0i1YzzrEDqxu5ooh19r1p2E6pWaQbfEfjdn+bCl+DCh3vHIStJuOdRCMXlNYJaw+1sBgufsGxKvA/nbGe0gUG8FzkYCVcLWu550Ynn+hw3JSxOxd8WGbZw5ytMC2WvxXpJoy8t5nyKrubE1Y1pm1E6zly5Y24TdbMkwKRnqNT4Inq638Ahu5RMK2WCkpfaG2mtqrzmp+4yS6O0+a7ooEejpih2zoJANmWgxwqJMrGLaoBjbLjtmwc10wkXbYdmmvHu+R1tpaCTvnnbAeJJeQ5q2DPOK7c4SLT1lq6mspps2VFbj1hrRSsxU0gT4yutPeNA94zfHt6gTTd1qnl4M6eQ1d2+ekyrL2arD/f1znk6GzFY5ZlBjHhnKTF2xsGMaZGS263W0MFVJgnyq6b5vWN12tB1JMo/+5GSsaLYdYSbJ7yxYph2yY03nRbQwze9HasbyVmR82yLSZWweC0yXASHaIeodj7UKaxWpjVjNoKIlyHYComtRI4t/XrB+paE7LOnnFS/PBoTC09lfxd2KDyTdF45yJElWgfndBFsIVBW4+HI0RQsXcZLdp2A7MeTHZgJbCGwnWl10Cb3TSFRZ3o3nVvIsJT+JFVJ24dF19F3bTKJUoBoJbCdaYGweCLlD5hbfKtz7XbY3SEGI9+f1pVdbEPwnAm1kvPwyCfOSyJnMY9hONnaYeRuj5FuP2HSqN/GRBCGiZzsQKSRXlwNSRARgCAStcFsF83sF7UdfLKz98xTcN36cJeR3Wf8a8J994v8B+M+FEAH4v4QQ/uJP+f5/sj4raVJ8wsP9IxV3ahTVdYf7Wte61s+4hBBd4D8C/schhPknd/NCCGHzPv25tXk//4sA6Z2bwX9rTl0apr95gHi9Iu/UVDphddohHZVo5Xn7B7cwuyW/dP9dxk3B4gfbdF9EH2lStLS1xk4TzEyRzGLHzH59Sfusx+XR5UVNKi3vP9kDJxADj5nG5L7t7pqXFwMSAT53KAHtIsVo6AxLqjKh8Yob3RkX3U58XkpF6yQhgDk2tLv2yiOulaesE2Zzza29CZPcEpQmzxvsOA5Gtl0IvUhh4GXG6NUxyyYOGKIDqWlJRpbptIO44RGJwycGvZTUu5bshSY7h8W9wPYPPC4RLG/Gx796YOFC0nka0y3bXkDVMLsnab5uGL4L6dzT5pJyLw7cBRMwK0mYK1ZDQ7tVxUHOZUZjNSEIJpMuz9QWb9x8SaEbXqwHUMAr+Sk7gyVS+E3XOjC2HZYuEld2kyUH6ZzWKwrVkMqWTFgKGX3aY9uNz50I9GTJ2qco4dnRcxY+xwtLHTSH+Zxy13C27GBtjPXeHSx5bXgKQOkMuWqRBN5b7bC0iof7Z0iRIozH9Bq27q85Pe/z3Q9u8cNin9cPT3FeopXHB6gaw06xpmtq2lyhpGeru+Z03Mc7gX29Iqx0HCI1oJeKZjt+1ota4GcJo5tTFtNt0gtB55GiHgU6P4xVYHEKJ38oXBE+1LChLSVLJdl629PuW5CB5asOc24ws9j9bYbRjgQgK4kbtYilxr3fRbm4a+ELT/cDRfeFZ3UoWXQM6iTD3q/Z3Z2zWGe8eD5CjQ3yqMS+OaA3j37n6X1F75knWThm9wzZRcAWgmQaUYTCx3NGl556qLCpoNoVNL04FJmdxwVskNHjHQiYs818xoUnv3A0fcX0gaIZBGx38wQIYrx67pAmsvKlCoSZIr0Q6NpHi0gA1UY6iDOXXuxNgezAizgJGTve0aKSzuMC0yxbRO1ike0CwrmNLWRTMKtLGgixqx3f+OJXKcAHfKKoDzJm9/osb3l87vF/83eZUkK0k/zzIYT//Avd8ueUEOKfIRbcf+gTF/+hEMJzIcQe8NeEEG+HEP7GZ1z/qlty+/btn8Yh/kR9losn05L6usN9rWtd62dYQghDLLb/gxDCf7y5+OTSKiKEOARON5c/B2594uo3N5d99u07gXunR+h5wjfmFDKwftnFTCV6KajWHeY3YXh7yqvbZ7w33+XRyTbJPJIayn1PnliaVYLwMQGv2gnUhxb5osAsxdXQVGYsZ3WX9GlCvefARWa2WkpG2ZpTHbfYMZGRjQy4PNA0CiFCtCUQ6OY103lBUIFe2jC5GGEWgvYgFlR1bbgxmvHooz0wntZLdOJoB547vQVz1YNWsLpr0ZllfdLB1IJVmWJU5FAn3QajPPN1Fjvm2uPO00i9KDxs4r37Ty3NUPP8nwskZxKzhHQcqIea9cOG/l/T5OfR83vZ/Rx8ANnUs7wRQ3HSacAWMgbwnMYhsvk9DS+6zNMOwcBytyHrNtw+GHPQmXNWdjle9rjdn1A6w8JlTDYe7i29BmnJZEshG9qgNl3uhC29JpMtDkEbFFUwdKgZ6SU9WbLwOQufY4RlKNesQ8rYdTlve5TOsLJJTAEF6tLgK82L0rBuDDf6c6QIvFgNSJVlr79kvCp4+/kBd/YveP32Mc9nAxLl+MqdF8zrjKenW7xzvMfOYInzgu3OmlOnyHVL4zUffriPaCQh8bGr3G84GM1ZVCn210YsX29whQAr0KVAv7IgvNnHHipc/nGyqL9TUR3neB071qQteq1ZHXfI99aUW5bieRLj7VcKM5e4PNB9BOU+lAebQnTUIJ5luCygzwzZOCZMFi8C4697spcqdn8FpJNA59cEk9egO1wz+cEObq9B5xbbF8iTjGIC86/VmLyFIKi3C2yhCFlLkIb+Y09+7pCNpx5p5CYtdb0XO9yxyBa0Pa7CdyAOUhIE2ThgVjGc6exrhqCiJSa7ENRB0mw7VL+hU9TkSYuWkdizqFKW5ymqIXas7canLQWS2CF3SVyIfBL9J9t4f8nCk8xa1LJBNvZj1NxlJ1t+ojMtN5crAUJcLdDxHp9omq2E+R3N4i7YoQXaTxvDv4A+T8H9bwL/thCiifcE/C5hAYUQPwf8X4E/HkK4uLw8hPB88/VUCPFXgF8EfmzB/cluyS/8wi/8VCgqn3Wjn5U0CbHDPStbrnWta13rZ1Eb6si/C7z1IzM7/wnwrwB/fvP1//2Jy/8HQoj/F3EeZ/aT/NsQPySbLXfFwbVvDkhEYPhOwOawvue4tT3lxbTP08WQ47MB4iRlfTsOYPkksFWULC8K9FJii4Dfq0mepmQXgsUDRzKWJDPB7f6E7zy5hUxAlpGBXN61uF6g0A3eybjFPsuQSw17NWQOZxVZ3qCFZydd8n17gGslSFg1CXodkXpCx6LMNopBUpGcaZptx1ZWMjEFdtiyahNEYdGJpZ2n9Lolk6UhnQpqL6hbzSCvSBIbg1oWKUeHE05bhdhqQAWM8rTHRUSv+UB+Fij3Jc2exd231M8yVCVQzwzTh4Lus1gkEQLb3wtkF5bpKwm2gHI30PxCjCTvPI1F+eKNluxZgi5hvRVjsGkkibEUpuFOMeYgm2O94gfTA07XPc6qLn1TcZjNOG76lC7BBsleumDHxH+ZaJm5WJQXwmKEow2KqSvY1Yurc8IFgRHwwm4xtl2McAz0mrkd4REcdWcs05R1UbJqEibzgtmsYLnKGPbX3B9ecJDNOa+7NE5xb2tM19RMm5xuVjNZ57y4GCClxzeKoB2LKmW7s+Z+75zdbMnSpnR1za075zx9tIOaK5KJRDrD+Bctr+6c8luvdzFnhnbLIRtBeiFY3UgIB5bqpEuySV9sth37oznnNzLsbqTM0EjaQcBMFZXtoLYb2j4s73rSsUK00A49bVeSTiBIiVnBSiWw35A+ShE2ep5lA7YTA1vabuz6tl2BM4LZK5B9ZUL797ewNy0ma3GtwvQb5JbH3fGIZ116OwsW39/Gdj1iqyF9L+fg7zeo2rG8kTK/awgyhiNlY0f/iWO9K1kdxgHE3qN4ntg80lfkMWTjgEtjhLztBYII5CcRJ+jyOLyo5wqbaEJR44NAS8+6NSxnOflLRXbhSZY+Di4KEDZ8alhRbjaIaMGUnmTuMPMGuW4QrQMfYodayugzDx+nQwb1ceF9WWxfft8MEpZHhvk9aHYdJG1k5wP4f7BiGz5HwR1C6P0D3/pPkBDiNvAfA/9yCOHdT1zeAeRmSKcD/PPA/+qncQyfV5/FZ/m0h/vTL0KmJafXHe5rXetaP7v6FeBfBt4UQnxnc9n/jFho/4dCiH8NeAz8qc3P/lMiEvB9IhbwT/9Od+ANjL6rWNyF+kmX7phNlymwvCXYPZry4YsdsqLBSI9fGuh6Oh9pbAE3Hp4xXhX030ywHai+VBJWJkZT70cUmqwFiweWgalI0hZ1keMygS1iF663vyRVlhAEedJSJZGb3euVrMqEdpWguh4jHeOmoKoiYQEZWFUJLgtkpxJLpH4EJ9HSIRykJ5r9ry+Y9zKWSYsLgsEgIuxaYLHMMf2aIA3eRa9sZTWreYZOLdSK02kX97LAFw7Tb+IAqIwFyPSBodoG4QL5zhp+fcD6jkXcqXAvC2QDF1/37H9bkMwEsweS1UFCOg10jj2yUVRVJ27DO0BA+sJQHcQobaECYWkYHiw47M9598U+b711EzKPKRqyrGW3u2KUrthPF/ggrgYmLzWzBcbE4vrSQuKCJJMtB2qKwdGiOLMf9/CmroPfdBE/qHZpfIx1bzbPkfMSHwRHvRn3hhcs2xTnJc9nA77z/IjDrR6V1SgRg24ezUfc7k1YtQk73RVtXpGblpNFl6pMKJKW7WzFo8U2u/kS6yXfPzvAWsXRnQtWdcJ8nhPGKerdPu8Cr9475t1wiFwogg64zYSbyB1iapCNwKWBZG/NfrHkXO5F0ksjUT0LEx2HKJOANpZq35JcKLJzWN4OmGnEOWYXlslrCbINpBeKehMu0wwCySz6970GvRY0+y1+oXGvlejvdyI//ftD8jnwTCOedvEjTzu0YCW1CJB5lt/ZxhcBs1fSjDN6jwOLmwabJ9H6JCE/D0gL8zsxeKkaRSoIxFh1swok8+h7nj8MmNmGYe2h9xGoKg422k60U7U9j+t6EIH1KiMUkUZz9nLA4LsJxaknWTpkGxeM3sTudNhgAKUD0XjM2mPmNnazqyYW2bAptC9RJeHKsx2kvOJrA7EQdwHbNSzuZCzuSMpDRyg2RfZl5LsMsdgW4RP8wd/pHe7T+jwdboQQ/w3gn97891dDCP/fz3Gd/ydxkn1HCPEM+F8CBiCE8H8G/hfANvB/3HgCL/F/+8Bf2Vymgf9HCOH/9wUe0++prjrbP6bDfU0puda1rvWzqk2S8Gd9pPyzP+b3A/Df/yL3IVsodwTuZkn2wzxuEbvoNS5+/oKzJ1uIjuXhzjmLNkU4EXnUe57iwYxuUnP6nX2Gs8D8qy0HO3MmH+5jO4H8TLBKJbYXuPPKKblqMdoh15vIZyA51uh9T+ujbcR5ETufwCCvWK4yhPYoEchVyw8nB/E9f2FABapVgmoi71uIgO15kIGBqaj3HMVjzaPliG4SO3iLKnq0nZOIxOMaRWgN9pZDiUDVGOpWI41n2Cs5W6QMuhXzG5CmbeSEGw9ZIH1XMfuyZXQ0ZfJ4i+a9PuGra8RZRvqbXYSD/CzQdiTLm4L04nJbHZJlYPKaIpnHi9qvLRGJw05z/FyjpwpXWA52Zjx4cM6yTXnz2RHySUY2EzTDwPbXJvSTmgf9c3aTBa1XGOVwQdLXFWrj5zbCsXQZqWwxIv68p0r21AKHYOo6vGi3WPsEKTx+w3urfFzYHKUTMmE5t12WNmVuc7qm5rzqsrIJK5twtzvmZdnn9d0TLqoOT09H7I7mjPI1ADe6M0bJmlGy5tFqRC3jCfDq9hnffXqT09MBrwzPubf1nLvZOS+bIf2k4u9+/wHHjSbLWhBxUNEbqN/ts/x6yZcfPuMHb0cXlf3KCmpNaCWD9yXVzsfoujef3EC34OYGdCB4CLdL/HEGHrwXyFpG+8mGvJFOYiG4uGXQZUCXgaYfg3nWd1v6e0vW7w4RLg5rBgE0EnZq3EnO9oeedKIoDwKqjuE5IhBTV4Og85GOMxBzWHytZmt7weIH2wyfxIKYAPm5RzjB+gaMv+6QpSQ/jW8J3sDggzg7UO0KZjdix1m4cGVpER58ImKaqQGfBELiIHPo1JEnljxtCEFQ1gknJyOyY43bDIhGekv0aQsXCTvCg1l7VOnQK4taNxHn530stjfDjXgQNiZwotRV8S28v7KEBKOoDgqmrxhWRwHX8wS1aZs7Aebyb2bTKeey2Pb/QJ3uz5M0+eeBbwH/weai/5EQ4ldCCP/Tn3S9EMJ/63f4+b8O/Os/5vIPga/9Tsf1e6nPwgIK8ds725e69nBf61rXutZPlk8C1YFDnKcx3lrFBL32VkN51oPU8+DoDCk8H364j6oE9bYjP1aIB/DuD2+Sz2J8dD6sWJRZLCpWAlvEgifcLvnK1kuOqx4BsDEIGBGgHXlm84LOQQ0isnwBXM/Reol3AqkDg7xi3BRYL2kWCXolsTstodSoKnpXfalJ99e0teas7pLvrLFnPVZNwjcOnvLeYo/TSY87e2NO6dIsE5JuQ9PEiPDt4RLnJWVj8I1iXSekg4rD3pzFOqUqYwtVGE+vX7L+g5ZEBpbrLHZYe54ia1mrlOJloP+kYnYv8pJtDrIv2P2O5eRbirMdQec5TN+w7N8do6TnYt5BKI86WLM3XHK7NwHgB+cHADw8PKXe09RW008rvjV6zECVHw9KqjgoaYSjpyocgoIGh2B9mTYpHJlsUQQetTubAlzQUyUjvcQFgRIBFwRt0Ixdh+f1FrM2RxI4qXpkKlo1D/M5HkFPV9Rec1RMmTQFR50Zh3fjz46yKeO2Q65a+rpkbnNG6Yplm5JtIuSzvKE/quibiq6qeVJvA/CLg0fc/8Vz/urjL7Nep9zam/BMDtHvFTRDz/Hbe4yPViADaqbJDhoqoA06PudZwB3WPNy94J3fuk0yiV5nPVfk72oWr7WYStC9v6C1ijb1+ATyl5p0HIf/1nsSl8HgQ4fXkbneDASdX5rRWIXtO0DR9sHfLWFpEKcp29+Ju0TlfiSojL/u2Pu2Yn0Qd3byJ4Z6K2D7jnokEROD/3s7jGaeINkkWQpm9yXd54HOMxBW44o4jCjb6MWut2IiaT0KuNxjdYieaBWYa0UylvgkFstCg9iu6XUrnI/DxkXaUrWaptEYE/3cbqwilSUViL5CNdGuEolCAb1ymGWLXDexqL4ssF1MhxTWgd3UXiEgLp29nxiC9L0Oy4cDZvcV1W7AJZvAm00yJRvaCe2mwx1EtIwpCF58Iq7yi+nzdLj/BeDrIQQfj1n8JeC3gJ9YcP+TIfFjvotKjbymlFzrWte61k9SEGx9X1LuCcwi0HbjkKPOWtp1wo0bY1qnOGmjs9HvNmz/asrkK556ndL9SOFSqPYCvjSEWUJ/DKujQP9DqHag26k4bzp8MN7BKMe6iNQOX3hEKwhWsrIpWdaSJS1VY+jsL2JRME9I91dkuqVxCikCcqkJKqBzCxc5st1E0VvB4dacZ2dbaOHQ2lH1Qyygg6BykfQxSEqetUMIsDNY8mIaGderOsF7gbUKeW5Yy0Bwgo/GIwB2txZk2rJqEoQIzC860EjUUqEdqPtL3HcH7DwKzB8IXJoxfL9mcStFPwq0HUE9kOiVYHXHMiskqMDJyYDemylhOxB2LCTR0/z3Lu4ilWNvuCQ3sWox0vHa9in7yZxMtjyvh8xtjpGO0hlGZkUrFWsf0yKNqjEEMm2RwqPwVN5Qxc1uMtHSUzWe2AqWeBY+pwoJa58wswXWK2ZNBkAiLR9OtlEycKs/4Ze2HnEvPeVFu8X7633uFGNKl5DKllRaUmnZMmskgX0zY+YKFi7jWbXFSdVjP19wMo9sb7dZbBnh+M70Jo/NiFc6Z3xp94RniyH3+he8sXXM97cPefbeHt0PFP5ZD3HXkY4F1dtD2t0WOdOsDwOqgaRb026SJm0R+dJ2aHFTg2gktu+Rmyk90Qo6TyPbW9hY1NaDeK52Xsb01fzCst43zN8boZcCMfIRz5cHQqPQY40dWRZ3DdXDml6/ZD4pECvN2S94tu9PWD4dYp7KODchFMlM4HXkX4sAdS96+VUD9ZanvBkQrUBWMHwXsqljvSNZ3xC0XU96IaOVKvOYc43tefSwwheKsquRpYodag9hljCv1RX/3XYVo/4KU5QUpuFk0WO6r2lHErmWSCsws1j06zKQTh3JtEY0Nvq6vQfrEE0bi2x/GcmuCNaCcyBkxPoZg98ZMHu9z+yexHYDQYUrd8jlHKQIkbByuXAAooVr8wtCBWLrXfz2wu930OeylABDYLz5fvDF7uJnX5/p4f7U0OSPergVdeu4++f+Kl89GvD/+R/+Ia51rWtd61ofS9j4T9Xg0sgabkYO2Ub8QKYtldUIYOfGjNW3d0AE/G5DKPXVh6Q/rPC1QghoepCdx+340G/56t4L/t7TOzSV4Rv3nvAb93qYk4TsqWJ1ryXrNPggOOwteLnokSXRejKeF5idktujCeOygBx8iAmCPg3IINAxIZ1qJ6BWCuclrpWsbcKN/px3iu6nHu/N3QlaeqpJFvnRypGNKrp5zflZD5xguLtkaTuEWmG6DVWZYEvNWIBzAlsZ0k4T/aWZg3XkfzdnBbLnmXw5YswmXwks7qbolcDlcWhteVcQlEe0ErYaxMww+nVNW0SrgWgkJrG0VhHOUtrUc/y0g2piAqA6XLNsUozaZ76xxxz150gCd7sXbJk1C5eh8PhNZ3uklwzVmioYpq7AB0lXVRzoKR1ZM3UdjLAc2yG1NxhhaYOm9oaBXjPSK26kU76/uMG4LuimDf20Ym0T3lwc8bwe0lU128mSSVvwg2nsyA+SCo/gYfeUVFoG2pDKlrdWh7x5ccgoX7O0Ka/unLKVlGybFUY49s2Mw70pH5a7nNR97hfnrG3Cbx7f5OH2GV8ZveTFaMDSZvjcQRA0W3FeoPNuQrMVaEYOUk8eBB8d7yAtNFse0bXsbC8YPKh4fLaFvciZPRrCoKX3kSKZRRZ3kLC6CcIK7MjSdvSGe61JZ4F0Jpg9BDONqaLp7SXpX+8z/bkWvMB9ZUmmPItnfcgd2cGKpjacPxtC5pi/EcgfmdhJLgKqjmE5y5uSehiQrYg+/szBMpaJruOZPZS0LxTpLCBrcAee0gAioKc6nmeZp13HOQgSj3eC4qmmGQaCduAFsrDkRUM3q1Gb0KKTRQ8pPTv7c2qraFsN3++x9Z4nmVn02n1sH9lEtIu6hbrZFNbiqli7LLaFMYReh+ruFtP7hmpnEx0P8fgiSRDhxIaxvUEUqvDxz7lCcm/ebETscrufTvDN/xb4LSHEX4+Hxj9NjPL9J0Y/6Tm94nD/yOWpkayauK3x5vMZtXWkWv1Uju9a17rWtX4WJVz0E9tCIHwcjurdWOCcpG1jR7ndDMpdnPcYHccueKgVMrPR6yljE0usFSEJuCxygdue4M7RBSfrPm2tYWF4vhxAqWJynAAST5a0fDQf8cbWCR+c7DDorbnRnXN2PEDnlmfTIUIEliol1TZ2BtOAW2qMix/gPvUILxivCnRqGZcFr26d8a7xbBUlXV2TKUtlDSfrHqKRkVYiPV/aP8YGxXjSQZ5kzNMc0kD6wtCMJPRjd7ltNHlRM+yVTBc5InPoxCFvNfgPuyQXkv4H0Z8+exgLh0svbPdJTNpz6YbC0BOUbULxQjK/F2j3GzpbJYdFycm4TzjO2PvSGRff2aPzVICEpicI511e7haogzVpaumkDdMqZ1ZmrGxCz1TsZksAnlVDUulYpwkukezqObt6Tkc0zH3G2qexm+0NC59Re8OOXuCQrF3CzOZMbUEiLUfphK/1n3Ha9Ng2KzwxhfJ5NQRgagv2kzlf6TznK53nTDbWlrVP2NIrFB6HpA2K3WTBl0aSk7JHV9fsZQvUBoo90ktGesmzZpujdMpesuC06fGwe0rfVLx1sUfVM+xuLTg5y5AdS5JaxPMe1U5g9aBFZI5ur2K9TKleduLrMHQk2xVp2pJpy8P+GR882yU7VpglrI5iCqjNBd2nAZdu/OIakjNNMg+c/iLsfxvUIlCOJKoUNFuO5GBNOc+wR4HO7hrnJEp5VuMcVQuSg4pqlZB+kCHzgD2y5O8abCfQ7FtELVEnitWtGJkuQhz+NVOFaFX8fxLPG72OVpflTYFeQf8dvQmhiRYTrwTz1z7e2TdnJtprioBPA+hI8xEyYK1ksigIXtApalwQrFYZ7SJFrhTFc0k6DldDkkEJfGYQ7Sa4xm68Ilp9XIhZSwgBkSS4nQGru12WNxT1kCtri7Txb0Rs7CNhgw0NGrikBV6hAUUMhbqcvbwssi/tJ19QP7HgFkLIzc3+MtHHDfBnQwjHX/yufv9p8zr9WGU/Ulz/1pMpv3x/+6d+TNe61rWu9bMiuYl3VnXArAOrP7IiM5bzJyOGd6e8/94h3f0lqyf96JWtYX0ISb/GtrFYmX+1gZVGegGZxXYkei2otwNf7sz49m+8Snq4pj3OOH4yQvZbnBUkTxXrRjI96SELy8/vPKffLcmMpWtqaCRWxI/ILG84n3e4uzPG9h2icMhJRKW1PU9IQgz6UI682zKZdRgXG3+v9Lgg2U5XnJUdFlVKSD04QesU3aKmcgZlHO2WRauAHba0GEQr8Faic0u/t6ZqDErGoa/D/SmN1Zwf9xEHDemHKSIEinOHriSTNySdp5DOAie/EgiJZ+fbmmzqmbwhCKmn+lbJoFcyW2ZUH/XgdIA/chy+cRoL71sVq5BhlrHQavoBsVdhT3NYSlZdD8OWw70ph8WMVDpeK04wwm3CbRqqkKDwTF2HM9u/Km57qmLqCma2YOlSaq952QzwQXCQzFm6lPO6gxSBcVNwM5te2S/2zJyXzZCBKSNOTjgmtkAJz6GZcic5B+DCxR2Gy4I+lS2v5y84Sif4niSVLR1ZM7ZdFi6LkfJB4hD0ZEUbNA5JKi0POmfspEtmbc7dzpi/YxWzt7dpZcDdi35ifW6wO/EYlXGElSR5OKeTNRx0Fxwve6TaUrs4GFvebXDHhvTegvV2RvFuimoCy5uS7rPAel9Q3rGc/CGJnkmaHpg1rG4KfBJtDvZJB+3j4G6RNqzrhPUihVYiG0Ena3h97wR/V/Ldt29TvJ1R73j8TsP+7px1Y1iGPmYuqXccSEhHJc06IbSS3tuGehRodlraYKh24/mOh2Si6D4GWwjaDpgVdD/S1KPIfLd5QK8FrgiI3Zo8bRl119zoznixHDBdx4EKreKC1RhHqz2y0qSTQLIM6MojfNgkSQr0qold7TQhSIGoQhyWVJLQ79DsdVncSil3xdXgpXRA8/H7jvCXyZSRNBJk+BitfVlsq4BQcYHgm40NxglIPGm3pl6kv7sd7hCCF0L8mRDCf0hkrP4TqfAZnpJP2kh+O4f705Gff/r/9vd569/5Y7/rx3ata13rWj+zChEp1jn2TL4kY2DMe/uIvqVqIglk9bRH94mk3A2oNlCPAokMyGcZi6/V8QN1pfG5BysIPUeYSLLXpzxbDknHinZb43oOtVSEjsXMJcKGiHATAaX81VDkIK0w0sVuSiMReWC1yMiKJiZB6oDOWqiTGG6Se1CB3u6SLGmZrzPSrEWKgDbuCmHXMxVVq1mcdFG9FjdNMCoWeM+XA4xxiGGNdxIqhaoFNg/0t1eRmFInaOVZ1Qm9brm5XUAFZOKoDi3VIez8PUWy9Bx82zP+kmb+MHD4NwTltub8ly0Ht8YUZYb73oD8O4pgC3YWgYuvxkWK3G6Y/tcHpCLGg7cDT7vjkYVFyoA/jwsGc7Tk5/ZOOMgWbCdLXJCUznDedtkxS2TwzNyAQjbUwdAGhUPgg6TyhpftMHa3bcZ78118EGxnK7SIvua+rsg7LdZLpm3B3OZsJ7ED3ZE1h8mUkV7RBsXCZbRBsaVXzFzBzBV0VUVPliTCMVSSk3aAEY6xi2zvkV6SiZZMNhzpCcd2gEMihee19CXv1wfs6Dl/sDcF4KN6D2McqYwM8RAEg9cvGD8d0h+tsE5SLTXJsWHpO/T2ltT3VggBe50liyblZm+Klp6TqkevU/EHHj7i+zcP2SsWfLe+iQhcWUqCij5uc67R68hTJ0TbR+d5iLsY/Ra/1Ki1IP25Kb205vzDUfRTD2tsR7FdrPitH94jf6ZJskD5ah3/9gSc/2CX/FTQIWIGzVzR+dKExXtDhh9s6CcqWkwIhmbHIQqL0h63MJF4ksVjDSp2wqWNt+2T2DFvty1yqeA0pUoSXqwSTsZ98qJm1FnTTytqp3k567M+69B7V9N97tH1Jr3Tg08kQUWGtuuliCJBlC2ybglK4vYH1Nsp610dd2J07NTj43sMNjav/eY4vY4Lglhsx+52MPHvmMQjdbxvbyWhUmDlBgMY/xnjaJMvDsX4PJaS/0II8W8DfxlYXb1PhjD+7Kv8/tJnebg/qd/G4Taf7nCX18SSa13rWtf6lLyCzoln9kDyy3/sTX71rVeRtcSrQLkuEIVj+29rmmHkDE9eF/hOi/ugG5P4hmtWjwaoWsBuS7hICV1Lve35pYNn/I1vfxmZB8SzDKXjtnZoNiznXMAkoXNnBsCL5YDFRYdsdI68bF2JgPeSUCvu3hrz/skOInPYWiN1wPUcInekecv9rTHjqqBtFa5VfOi3GfRKRtmKpUuxQSEFiFpCN4Z++CD43ukhy3nOzvYicogvehR7K6q6R3YuGb2xprKaImmvAlq+MXrKR6ttPhjvoM8S7NAiGoncrZjfz0nmCrOMXbvihWT8OiCg+56BX90lywXVDtQjQT3yuIFj6zc01a6g+OsZ6dyz3pV0XsDsFYnLBc4L0p01+6/OSbXFB8GkLni56tM6RSdp+MboKQBP6hGFbDhMZpHJLRwFNUp4Vj69snu0KFofkx0lEaeYq4ZxU/Cb81uk2nKzM6WnK25lYwaq3HTLC4YqIv8qpxno9VWwzr6ZsXA5tTckynJmO0jhuZ+eUoiasetybAe0QXGgp2SipQ2aG2ZCgqNBMZQVD8wFT+2QC9fFCMud5Jy5z9nSsQz60w++za9NXmF83qNpNaPeivNDhX1e0N9bctifM6szTk4HrHoJvaTmZjGlq2q+NzvitZ04fFoODL9xfBPxOMcsYoGZXcTgp/4Tx9Z7ntk9s7FWQLUd6DwPmIVE32uoV5qgA3nSsmoSgg7oTku7SEiHFU/+qzvsPg2Ue8TiuJUM9xbMng3oPhXk557pqzLu1uy2TC+6sN0yDwm9R4KmHwtSVQlkKQnWoKaS3guBT+ICoe1GzrbazDQkU0EziNYUZMBvbewfrUQZT17UFElLrlsuyoJUOXp5Rd03rG5JmqFA1prsIpDOI/9b+EBQApdIzNLiOwavOzRDTdOVVwsVaQOezUDjxv4RNoX1FYFEfvz/oOLwZCSTCGgkvpEfs7YvhycD0WLiBUIE/CouOL6IPk/B/S9tvn6SrxqA+1/onn4f6pNgmN/W4dbyR3/9Wte61rWu9QkJD9NXJH/0T/4GHkF3WLKemNgBLjXqJKFzEqkL0kK17Sg+MvgU9r5+wvPnI0g9slJIGcieS9aHmqM3TvhgtkN2KilvOIpnClUJVt8qcQsTI6VLTTqRmPsO7yW5btk/nAJQew062j6KToVNN37ydYJKHa6RCB85vSa19IqKk3WXbtLQrhNk4ijHOfdfvWArKYGYoHh+2oeuI80a1n3Dbh7jx4UIWCf5+b3nvKccuW5596yDKiXjVUEvqzHKUaQN+8WCVFpWbYoPArvTkvcrvBfU8xS347D3WjhPES3kZ4LOyxhKMnh7RruVU28Zes8c0wcRcWjeEkxfj8WKSwXTB3E7fvZq7OgJL5CVxFrJ80c76GkMe/EGGMRi6v7Djxi3He7mF2yZFYpAKlsUHiMsHkkha0ZqydqnVMFwZnssXUqmWiZ1wWo5QhLomJob3RlH2fSKMgLwqNqhUA2pbDlve4z0il29oJA1fVlRyJo2KIZpyYXrMPXFFXrwwnZBw11zzlCtacJmNsB12VMLGmIH/khFD3oqYJRcABe80/aZ+2g5uXDd+Jik5U/ufodXOmf8teevI4h89d3XzxnPOtw6nFLZXR7ePKWXVGjp2UsWuCA5KqbcycYsXUquWqxV9D+AZOGxuSCbBqQNmJXj7OsJQUQedfeFR68k0gXqLY+/yJGtYP/Lp9zrj3nrYo87D055OemTDGra5x1yC4u7AvlzM0KrUF5SfmfE8GX0il/8nEBVcUFrV3EOggDb34O2G2j74NJAOpaM3oyDwjaF5e34N5xMN0PPeSy+q12PLkXE8QXASoSxJHlLmlikiJjNUbZCikCuW1Y2oXaKJG2p9wRNktD5SCF8jHB3SRxs9DqgjKAe6thFV9EaInwMA/Im3qcQXHWwvY7/LhcsQcbudtDh075gvyGUKD7RzWbTJRdXQ5RyoWmebdGbwekXLPM+T8H9pRBC9ak3SSGyL3Y3vz/1KUrJj/zsRzvc17rWta51rR+RgNt/9DEewd96fo/luEBbgV0a5Eqx/b2ASyXNtsNMJdmpojgOnP+y5cUHu6TnKlJNXCxoOy886wO427/g7z+7g+3HD81NUxI3N4iOJSw15S2LmSpyY5muc0prInavTdnNluTDiro09LOaADydDsEKnFf0dlYsFxqZRPxfYVpmZUamLbQCkQJOoIUnVRYbFCdln+Slob1VkxpLcjSnoxq08ujEMV/mPOsMudmdxoNNHUFp5hcdfuHLT1m5hB+e7fNoNiKRcTBTS88rd05Yt4YXL0aYc0MyERTHiskb0ZKw+50GtbbM7+Wc/IEhnRNPNZTYI0W5F2gGm6LaRgvL9Oc8ahk/v8wi+mb//+z9eYzsWZ7dh33u8ttjzYxc3su31977Os2e6eYM1yFpWTRMGSJtC6IoQ/AGyDYs2TIEUKAJA7RAC4Jpi5ZhQqQIDWGRlESapGaG5AxHs/U+XVN7vXr19txjj99+7/UfNzLf6+qtiuwme6bzAIHMjPWXEZEZ5557vue0VyqkcgTf7GBHlrZn0AuF67aMRgs+t3OPSHrirYTfju+rnMYpEJKF6axLcFIqG/iSG5y/HNiOlvSDksIElEaT6ppn0hNS5e0PCocUlr4uzgt0YtGyped0VcHCJExNSu0Ue3pKICyxbNgUSxY2YWUj9oJjurIkxDKQOTUKhSVWDV1Z0zjJygWc2ohdVZEJSSAkjbM8G8xp3JyxDYllzWnboXGaWBb0dcHPXnmdNxY7HIx7HD4c8uwzB3x5/xq73QWJbohVy6V4Rl8VzEzC9XjMzCTsBL55KNCGfFcQzZ1vKJ206NLQZBpZ+4WpaKGNfDxg3REEC0E1bLj13D6f3bjHV8bX6UY1D4+H9Lo5w7Tg3SJg1RWkw4K2Vbj7GarxXuvZ855Bqso3YtoMgp2CpghIX4+Y34R4DJsvW5yCJnOsLgmSY6h7PvlG3Fxhw5b8cZfwRNEMLdFYYiKf+KELQaMkTilE2hBqg7GCcZ4QKMNOsqDEx01uJjnP9E8BuL8Y8iDZJLkTEs5Alw5lwQR+kNQPPzpv6xXuvIGSc9eHP+9bPNZrddupb1W8z8qJPNl2TzICLX5RLQADqpQEM4GqIFg5endbHkxbPgjeD+H+deBT7+O837VYlB/sSYXvrHD/0ptH/L4Xtn8Qh3SBC1zgAr/jYToO4yTjOsUB0aPAD24JyB5KpLEUGxKnDelj/+FXbgrijZLsv+2wuOW3g+vdBv0oZnVZ8Nwn7vHGeIcqD3ADb+XThcPEAtH47WC5VmXVvqYTVqyqkMZK9jozrBMEwnJtY8KdwxHHsw5b/SVFEaI6DabUZFHNotv69mjpKFuNdcJH5VmBWQSIVhDrhoHO15YSSbAQNEAUtDw3OObt2RZFHeCsQArHqgmxCG51T+gMCuquL8cZBDn7RY/lLEEPLYd5j9NxB6Wtf9zTDJErbOAodhy6kPTe8QkP8+sBqgqo1/nKi1sSJx0694Q6mHsSZxKf+RzOFNHEtxoW274cRR2HmEFLfq0l2crppb4afTNe0Q0qerrwOwDrZslAGBY2JpU+cjFet480TjFuM6ZNQm01ldFMa98c2Q9KPtTZp69zFJbdYHYeEbiyEVOTcmK6LExMX+ekskYKT5670muCY9Ph1eoyA5XTkyXGSVY2onGKqck4aAe8GO7TlxWhsExtyMqFLGzoCbzyuxGlEzTOEglLKASZkP6951p21ZxYNBy0AxSO6+EJr5eX6QclcdxQ3U9ob0qKIqTtSGZ1zId6+2yHc1JZnb/3u6qkr1YsTEzdaHQNTSIICkewbGk62rcqrlN86gEgBdVHCtq7MU3X8Mln7vPR/mOMk3xq4wHTJuGzo3sUJuTV6S7PXD1iWYdMv7SDTR3uSoF9kJwfgwscvdcE5UjQdB28nREIT2iHb1mCpWV+QzN70SBq/36ZfMwS7eS0RYDYTzGNIJ4KkmOHDSSycQgH+baguNIi0pYoaXAOpvMUIS1KOe/ZbgI2k5xLyRwtDb11iVFvo2QQF9zujZidpESHmnAG4cwRFJ5sgx+GdA6sOiPfayFaiG+1kbxHET0//73wbTM+icj5hBK1kgRz4XPVZ46N1wqC46WPIrTuO9zJd8d3JdxCiF1gD0iEEJ986vB6QPqBHuV3OP7nf/1r3/H8b/Ftf9vQ5Lcr3H/u7752QbgvcIELXGANKS2Hiw73joc0swjRdyTbOe6VHib028n5ZYFa+tprVTlWH6lJv9ql2gQbOGSvIeuUVI8H5B/zxO/4sI/IFaLbwNRnAsvG4ToGtwhId1bkswQ7MmxEOQ+nA0bhiu14ybhOOao6aOnJrJmFHFmvpKVJzWIekgYNWb+kLAP6ibcL1K0iDlpk6cmZG9aMwhV3800GYcGtzgmvPnMFKR1K+FPZakLdsjpNuXHjiK1kyaNlHyUce/0Zb446jLKS47rDSZ4RJg1COK51Jiy3Q8pGk5cR+tQr28HSl/0U237YceObEhMKxh81dO4qNl7x5K0aStoY6oGjTR3hTCIaiE4FJoLVZe/tdqmh83ZAm4DdskT3QvTtHiefCvjEtQf0g5IPdx6f17DHsiGVFamsCNfEe2VDFtaTPOskqaxJIx8Z8XT9+1mySbYmpRJLgMEgiYU//yPJQ2qnaJwmk5VvdYTz2L8PhYfEwiGBhZWEwrKpvL0FoF7nvt1rh8Si4bJekLqWBknj/KkvDQqIhaTBsbKOTELtHAMJlXFkouZGcMyDZpPSBZzWHQoTsJrFZFPB3bd3uPX8AY/GffY2ZqSqPvecb+k5G2vbytSmzNuYflZQ5V2C3CJbyHcjZOuQtSOeWGZD5ZXtLiRpxXIYMLo2ZTfxFpVn40MkljIOyWTFW+Uunx+9S2U1f/trn0b2LG5UIw5iwqVgeaPl1vMHPPyNPdrUR/yFMyh2BDbwVqHpsxKnJE3H4bRD5ZLssaN7V7K40SUy/jZtCtXIUg8hWApk5W0ZqoTsrqYeKJorjmcvH5Nov/Aal6kfjI18w+esiVnUMZvxiki1nFYZtVFcHU45iWrGDJCNJlj5v2PVeAXbrlsgnfLKt1PrmFDn1gU2azyVqQ3rlBIHyHU8oBNgvMoNawW9Ed5utYDuI0P3rRlysvQV7/as6v2D4Xsp3D8L/GngCvAXeUIpF8D/6QM/0u9g3B/n3/H8b7WUfHvxzRn+yb/zM/z0f/jLdOP32zN0gQtc4AK/+2GtZHHYQSQGmbW4RlI+6iC7lsB6tay43hAcB1RDKG/UUPu6a9lA7zaMtyTLWQID77nOmxB9FBDOBN0vnnJYbIDwQ4QyMLiloq4C3x5nzxogfanNQOeM65RJlTLOE5KkZjWJaGYRoytTQt2yjFO6QcWR6KC1oReVnOQZUdD6yL91DfWlnSlSWBLV8PLpZV4aHnqbSWBorUQLS2skadgwMYJEN3R1RSeoeWc+YtmERBsFizxi2k3ZSHLGs4zpLGOxEdEYxWIV00krppEjXAisgupyg5orRCNoOoLlDUt8rGgTv4AJFw7RrjO5pVc341MI535QL1hBPHE8/iMtYqFZXTdgwJWK8mqDHq242lnxaNkn7re8urxMpiuGQY5ydq106/VJUbqAWDRY5LntxDjJzJyRcP/ZWVlNJFtyHZEqT9rP7ClPYvoUoXgSQNCVBQubsKvmROvzy/X9qTXx9nYURywMI+EIhWBLnTK1GuMEMxvRl76AZWojDDUD2YKzxELSlXBsBLFwLJykLxsCZ1nYEINX0LfCBSd1hgws8bFjddMvpj60e8CVdEpfFUgsjdPcio7YkhWPTcpvrJ7jQTH0yTYWgtw3RzaZRFV+6NWEgvjE0SaCxU2HLANEp+WnLt3hWjTmsOnRlSUGwbZcnHvTpXBsBitU1iLHmnYRoC7nlBsBn3/uDq+f7GBulcxGAdGxWsf4WWy/pdGWIG6pZ5EvvzECs9MyiUL6b0uiMbQZqNoRLEFVkuUNQz2wyHqtLo8cbtDgcuUz6guv02ZhzUbsOdWjRZ9FFBGplkAZlm3Eso2QOGLVoqWhtoqxcD6tRAuqnkRYbzMBT7Dt2q99dnJKnFtFngzaPdUmaUCKdSwga+vImR2l9Up+55Gl+6AkfDCBunmq/UaAkiDlBybd35UBOuf+KvBXhRB/wjn3tz7Qvf4Y4r1Dk1o9OePahn+jvfxw9s/zkC5wgQtc4EcbrUA0EmcE0ZGmea6Ag4itr0I1cCyuS2RsaFPfKilnAYPXBXXX50tPnwex8CkN0URiiohmRxIsBeEM8jrg8o0TVq/tompQ2tIqaEsNjUAa6AQVw6xgK1lyWPW4O9vAWMnktIsMLGQtVBIlLUo4oqymtuq8AfJR2KeqNZu9Fatl7OPFtGAzyTkoe2xHS+p1ec/oypTZMqYxkkR5lbdoNPFmweGyw63OKcM45+3xiNYowrBFAKmueeXuDVgEOOl4vOxTNRrTKIRwiM2KaapRaYuYhNhRTfx2TDhzxIeeoKSHDqu9/zc7NOiVYX4jZOubhqNPK5bXITn0ecrTL5boxzGdewJVOvJdQfPhCmsE5qsDDtQA89KKS9mckzYj1TUyc1xKpr6+3QUoPPnuipKZScltSG48SY1lg3WCVNWM9PJc5T4j1kpYn4ftvLqthGVhkvPrZMLQlQWxbLx3G4lxAuMEpQsIMaSyYeEkpybDIimdb7HsypKeqDhaZ3Rf1TNCYamdZFfl1E5i1gKmWbO1UFhm5xWF0DjJo3bIplpS2oBAGCZlil0GNB1B/5WA436HYVwQCHPuNc9EzWVVEQtB2QZM2pTaaMybXbJDgxMC1RjisfGFMYnCSSi21wrubom1ksFgRUdVXA4mPBv5WpQH9TYEE26Xu+tBUclB3fPHu1Nz48oJznlL1cuHl33SRuNZqWwETezTRLrDnMVpRnOYoAuJiRVCO6IjhWihXNeJ1ENL+aEKZwTOSNJ+gVIWayVVGWAWAVSSeKtgs7si0i1aWFZNiJaG1vr37sG0h7WCpghwtTzPv3brVBCdtBBaqg2LDXzGfrBw5y2v7yXXZ3YSOMvbXl+0Hpg8q5kX6+sKB7LylpFgDtmhofvOAjlZPLGMKIkLNEQhphvR9ELKoaadfjAR9f1c+4oQoodXtv/feO/2/9E59wsf6JF+zPA0/xZC8Kd+4io//+rhv7DjucAFLnCBHzXIGoa/LRl/0tA+n2MqxbVfsgjnyHcCVrcahBHIWrDxGkyfE5SbgnrgKEeAcCT7ijY7U7scRR2gc+/bXrw94CM/+Qbf7OwijEBIhwssYVZjWoVtJNZJNpKcRDV0gxLrBEnQ4IzAlAHZ9ooiDzmddoiTms3uilg1PmP7JMJuCLppxVay4vBwGxH5YxmEOYd5j0mVUjUaKSyb6YqT4y4bWxMqq6lbjbWCIGiZTjNWWyFaWAJlmU4zBoMVO50lZRsgA4uJDXtXxhRNwF5/xt1W0Y1qxlUPWkG3U2Czkvlhh2DhM5F79yxVTxCsLOXQs4/lJcX8lvLDj0uFXgqyh7C67Gi3GoKHMdkDH/s2e8kSzCThKynlyFLcaNi7espLw0NfUpMs+HD2iGrdGGmdV7IrF2DW9e6V1QyDFRLHzCQ8LgdIYQmEYbYm0gsTo4Rl1qZs6BVGSuZrK8oZIR+o1bmVJJYNV9WSq2pJ4GfcaBzUruHYpvSpiKVhS00oneDYJJQu8A2XxGSi5sh0eW21x0fjB2SixiAYyAoLVI5zK0ogOFfQ77XDtVqtuFuP2A1mGCSXsxnv9EYgNfGJhV/r8PYX4I9uv8KWnhMIww29JBOSx8YvDPaiCW/MdjCxY7Wj6N9rEMYhjB8WbjrS+5Ql1BsWNwtx3YZP7zzkSjhmS89ROFYuZFf7OMSZSYhlwyhY8CuHz2Jbwaefvcd2vOTXHt2kKAOaRYSIDHGnogk1blTQLkO6w5w4aIl25ux1Z8S6IZQt8zrhMO9Q1gFSWooqxJ4mRHdinIBmw1KNu8jaJ4aYgUWVguyRpNjSPNpISEY5SlnyZcTJPONjlx/z7OCEeRaft8kWbbDOpheUraY1CiUt43lKG2ncCqKxI1r4+QQTiPP0PmHOkvwc1oFzvgXWaZ9eYgOHbMV5Q6SwrEm2IxlbsgcF+nSJaFqcVrhOik1D2izAhhIbCEwksdovfkz4g7WUnOHPOOf+YyHEzwKbwL8G/OfAjz3hFuJJRvd7n/r3Kt43RxnjVc2saOgnARe4wAUu8OMO2cLko5ZwWKJ/q4OKAdFSDhTVEEQpcVbQeweKkcDEvkwjeygodhyD1wTLKxDOhbdMdAxKOsoEogmkB4LaKvKbDcHLAW2jUFlLGtcslgnhds4gKIhkS6RaCuP/N0e6Je5VlJOYKGhoQ0ldBlRlQKc/I1YtxghUIc893FJY9FJijMNeKhkEBY/cgEAamlZhnTxvSgyk4VE+oJ8WlI0nFmHc8sZkmxeHR3x444B3dMu8jJiUCZuJX4yIwLKR5Dyc9dmf92hqzW42J71V8/b+No1RWCuQK0X/XoteGk4/Gq0zkRXllqPeNCAdcqno3NFsvt6gc8NyLyS/LKCSRKeCNvO7DKIV6KVPpdh+6ZheWJHohvvLIcM455n0mMoGzExCR5WksqarCow7U5UNsfDJImMylLHsRHMKE9DXBR1VorD0FeQ2YmYSvjS7SS8oCWVLR1XsBHM29YxMVueWCYCZDQiEBQepMEhgIC1baoUFSudYWcmxTblTbzNQOVOT+mi+YMLUZPz65Blm3ZQ/2H2FgayQOFZOs1h7z7vSD1I2TpPKioHMObUZpQv4xvIaH+s8JJMVkypFPEgI5o42Fqz2HJcGi/PfPcQQACtnOTY9GqdZmpiH0wHRiSQZW4JZA0qAhHIzoO4JdO583vVWjZCOj197yLPpERt6yUAWTG2CcZLaKd4oLvHq7BIv9Q44rTsEyrC9Nedg1eNrr93k6o0TlLRMJjEORbZRQ1xjrOCZrRO24iWNVdRWMa9jWidZNV1OVymrRYwbR74aPXZkDxTFtk8lCd9V1EOHrAVt6t8zJrUsbjn0UiKMoBgniNjQ7+dYJ3jzZJvrwwmhbJmUfmG1meT0gpJE+R2Q0yrjnfEmWlvMsKaWIUshKQpJOPNpIeKMQK892RgQ6xht1hYR3YKr/GJAWNC5Izl1pPsVel4i6hakxGYxNtG4QNLGyhNtLRDOfYsP/Mw29kHxfgj3GXX8Y8Bfc869KsR76eSPJ572bb/3KXnvz2e2kgfjnP5e/4d/cBe4wAUu8COONnPoUUHv5zOccDRd/3/TBIKm5zOHjXWkx5bxiwpdQO9dx8mnHb23JMJaTAx17Af+ZCE5eTggjP0no1453p1u0BmtMMkANwnZfe6Y03mGmQdcvjVl3kaUJiBSLV/ev84qj7jRH3MSZlRRwKqIcE6QZBWhNuRNSKprmlkE2zWt9XYG63wcmokcNy+dsmojjJVEqkWsiXYvLBHKMS5SbvTHaGE5sF1ao3AOjk56XO9NvN0iqHlwNCTN/BBh2iuR0iFxREFL1Wieu3REKFu0tFza9Akrj+5tkh1KZjclTUdTDb3aKGtBNBZ07yqcgMVNWD7TUuwqTCaQBYQzQdPz5SrtdoPQFnESUlwxiH5Nf90KuBPO2Unm7EZzYtlQ2oBItGzpBVt6ztRklDY4H3YEfFqI1efRfkvp2yHvV5sEwjAKFoz0nOvhCS/Fj1nZiMOmz8wk7Nd99us+2+Gc56IDMuHztqcuQQq7JrWWWDgaoFxbAWY2YOUCMlGTyop/MPkoHVXx7mqTrXhJJFu+dvcaXx0/y5c+eoM/eenL9FTJQPoinVRWTG3Ko2aDxqnzGvqOquiqkkBYXl3tURnNM51jXu7cACkpNwXuasHnt98lXvvWu7ImFhKDIxb+OfvG9Cp1rehMHbpYV5gLgWgt8xvSp8V0BW3miNOaW6NTPr9xh1vhMVt6fv53VLqAk7bHq7NLpLrm1dklpmsSmwQNVzsTXvj4ERvhinGdoXfvAxAIv1DsqIpU1XRUeV5tP2tT7uabxMoX6pSBoR3WWCtwDvKroOeS4maNjAy2VL5OvpC4wBGeKqTxkYNOOW8fOw2Zlop0MyefJrzysEe8u+LF7UNi1dI6SaYrWqtonG/9vD6cALCsI9SuJW8Cjsc9qv2IcOaJdzh3iNYPUIp1u6RQPi1Ftt6frUpHPLPEpw16UYNzvqUyDSELMbHGhhITC0wgaGPpB7cj36Z5VqxzBml8vvcHwfu5+teEEL8A3AT+PSFEl3NR/gJneO8S5L0rkq1uBMDpqv7nc0AXuMAFLvA7AFt/K0HVhnzklcuqJ6n7AllBMzRsfEMRLFvqDcHwVcHqspeuOvuGxRUfheeUI3sM+Z5DVBIX+IGuui9ZTjPitKbYsyT7ivillmoekT7QmJuCjq7p6YrKaso6oK0VsyphvkgQylGtQrJ+iZKW6UmHbG/9P3ztNbVOcKs/Zl7H2NjBoOZaZ8J+0aMTVrRWEmpD6yTzOmYwWLEsI/qjgmUTcTLpIoSj181JeisyVbNofamNrRUrE9NPSm5ujkl1zaxK1lvtjmXtryeF46XhAYdFj8kooTnq4XJB0/EKYPeut9jEDwzRuKYahhQ7mmbgf5X4UKNXsHy2QdQSXQiCOyHC+Mrvttfykav73MhOaZ0iUxV9Xfhq9rUV5Eo4pitLjtsexkkMEhw8rDc4bTKuxmNSVVHZgEmbkcqaQBg6qjxXgRc24d1qm8pqDJJFG/siHF3RVwVdWXLQDIhlw66eksqKhY3JbcTY+GSTsel4+47y1e0Lm7DAK9QvpIf86vgZvvHaTdRCMXzpFFsrsseKN7jK/6uK2evMGEUrtPA17uM6Q0vDYdHj8xt3GAVL7pabfL24yssP9/jI3mO0tMyaGDWsMGGKKsFZ6K9jBjdlQV8apFBejZcND5oNYtUgpaPuC8I3WpyS2EBiM0098O/p5RVB22/Y7uT89OgtXoj22VYLVi5k6hIUjt9aXWcULDnJM44f7SGXiuDKik/tPeSnhreJRYNBsjQxzyXe2to4v+syMwm5Cc+TZvqqIDcJx3WH2ipCaXhx45B2oMh0zW+fXsI6wXjawS1i1ERjE4VoBaoUdO4Lwvl6wVsa6q5kflPRXK0JtwqMEdTVepdfQHGS8o35dTrDnMu9OeV6l2laJjRWEkhLYyXOCepWUdYB9jQkPZHEx+6cYJtQnFfMu7PBSfVEjXYamkRid0LsXogJfCKPDdb19OvEEmG81UTWjiB3hCt3PlDp1kU6JvR2FfEBmfD7Idz/JvAJ4I5zLhdCbAL/xgd7mN+d+F46/3sV7l7s30QPvkviyQUucIEL/NjBCYpNSXZo/QeagiYTFLsOd7UkClqgQ7mhcRIWN6AeGgavSmRrfTaxg83fEoRLi+sY1FjTppY2lVQbDjcJEVmN67SIxyGLKkKUivjEkVchiazp6IpvTK9ijECHhspo4qSmaRS2Uow6K8pWM8crhod5l7BbU08jAmW4no55tbmEzQyDQY4WlrwJeaZ3wqKNmIWeOOZNyFa2Yn/RZdHEaGERwuGAxig+sfWYd+YjGiuJdUuY1Wht0NIyKROmJKyqkKrRVEWA0pYkqXlm44RVG/Hqo0u0lYKdFrPwSSWD1wXxzHL0aYnVCl0k5yQkPtTIyu80LF9owAiSx4qm7wjmgmjikxnctZbWSn7x3RdJoholHVWr+PTuQzLlS2NSWbOSEfYpGXBmUiyCvWjqK97Bq9l6SV+tiGVDbiNqp8lthEHQ1zmTNmOkljwfH3DSdnlUDRgFC+J1bGAgWh41Q/J1TfzTlfHbek5pA+7WW5QuoLLBuoFS8/X5Ne7NhmzsTVl9fUT5yyPkJwpw0H9TUby2w2uDXZrMF7eIdu3/jR16IXh5cIPLzx1zuTPjrdMt2kbxyqPLxMl6EfYgITnxLMx+M+Ht57b5VHqXVBhC4bO9AyGJ18U9p2VG8ygjna6LWtaNiCYSZA8EqrHYUCCzljRo6KuCXT1jIGswPr3lV1cv8NZym1+cvcjqN0b0llBtwNXNKb93+BaBMGSywiBRWLqqwDrJ1KQsbUxfFVwLT/wxI30co2iZ6QTrJNYJItVSGU1hAj6z9QCL4E6yyaO0j3MCYyRto2hzzTzSdO5KsgMfcRjkjvhEovOI4rKGbkuQNKikxUjneZT0STJHSz/IWtbe/uWcQEpLW2mcEaikxRlvuWm6DlUIguV6fkOtSbcGs66cP1M+PREXmNDhpL8968FJsd4NkZVA597mJhtfJ++EYM3/cRLaBJxe+8Z/SJaST6y/3nqKRM6EENo598EbYX4X4Xs1Tb43LSaL/FP97//Xr/A//T3Xf7gHdoELXOACvwMgQsPkMw3u6yGrK16plo2g7RrkfoQrY/Jdwex5h+211IFi91f9h+D8mka00L8N0cL4D8DWWydsAKs9QX2tInkrotwMffKBhEUeI/o1bZKQhg1LEyGFt2pcHU15eDogXucFX96Y8/jOJdo96dNAlK+itk4Qhi218aXLfVXQC0pk7D8SWydp7HpAsYmoGs1x1SHWDXvpjMpotDR0gnURihPUtaZxkkD5qME7p5u0tWKjt+J4kXF9Y8Kyjhh1VizrkHJtK1HSMqlSStNgrSB7IyI5csyfWZOQRFBZycarDlU58i1FPYBqw2Iyi2gFYlAz6BVUX93wH2YOym1Lfs0S9Cuub024Pxmy2V1xMO7RzUpeHB3RWMXYpPzMxpvnimkg2nNyLYVdV7v7nxunaNa0Y2ETDts+XVkSy4ZY1eTWvxa30qM1AZfcjI7O4wSnJqUrfdrHIDzi1HTOLSuxaM4jCFciOifgOSG/PnvGe72B8aMB4bEiHkPvgUGahCaF9NjbDWRtEcYiG+sVzUjT9DRVX1H1JbMHu0zFLjqHvYeG+bWY5Wcl8nHM8HXQpfUlOSNBoprz0h8JBEISoCidILchD08H3hax8IPConUI6ds9k7FFGIdeQSNgK17SkwUK5xNZ8IOXJ02Ho7xL/msjOvvr+LyfmfGF0TsABKJlQy1pUCxIGMicselwNTzlRbGPFH5XYGUjrINM1ixssraYVOdxjY+rPhaBRTBvYmZVfD6/ECjDsg45rAc45cgvOWQriab+OZetV42TfUUB1LXf/cCIdY62Y95kBFmN1pa60tjc17eTNQRJQ1NpeBwTTSXCcE6OTSIIZ85HVyqHUeJceT5Tu30N/JMgbqv98+TWf3tOOUgd9dDfB3Jd/b6ue8cCVqxjA307Jw5s+MH+370fwv3/xCeTvOwPm48ArwJ9IcT/4sc9rcStXfTfbin51jMC9WTVP81rBukHfKUucIELXOB3GQTQG61YfbHBPkrY/goUm4LoUPkPVOPztk0kkGlD+FZIelBy+pGYugfd+/Y8j7fuSJAtwdLHhDXPFQgL2SNHsRN5hdtBuYgYbc+Zj2KupytmTcKkTlm1Id2gIggMg6jgOMyIdYNTULWaS9051YZm1YRsxitOlhmy11C3mplJeKFzyOu9HeKwYdFE9KOSUeQLTuZVzIPpgBdGR0SqpRNW5K33grelJu0XbHZy8jYk07XPH64VOjQ+Qzpszn3dg8jbFGLdYqwk0Q1KWjpBRZpVLG8GqEoTn0DnkSGcG8pN7evcU08SnILkSLL5imF2SzP7rGD55pDQQLD0ldxt7Luwyw813HlnB6wgTyOCuGW+SPitYo8v3rjDp3r3OGm6zExCXxX0dX6emd0VBUo4AtFinU8dMU5Q2YCOKtlQKwyS0gYMVE6ocmqnGJsOxklyG3HY9Ji3MT1dMm4y7qoRH04f0ZUlm2pJKivuNiOmJiNfMyCF4+1imy8fXaduFb244mjeoXrYISgEnYd+cE5YR/eBIR9Jr1pad34ysUaVLXpRoScFqTG4QFFvZRSjYB2xKAkXjujNhHAKqvJku+5I2q2G6/EpqazoSoFacwKLpXGS3Ia0jaLr28xxUiDwj61KiyrBRmvFtlJEqmVX+2hhX9SjedBsclh1mf39S2RTXwhz8NOGP7z3LksTMQokA5WzsAmbasleOEMKd55lbhBIOB8MXa13GWLh1fTSBiDhuO4SSb+YzFTl8+qrlNuHI0yrEAJMrgm6FTawtB3JdCgJjzXZQ6h765KlYYsoFGqhUKWg3jC4pPXe60LR1DGNdsikJR6WNLVXttvDlGgi15nf3h6lS7+AtlpQdwXZkSE7MFR9hVNrQhz4y034dJW7Z+A28Iq1Dbz6fVb4s36REK3P6XbaQQBIvwBDOQz4SvngB9Q0+RQeA/+mc+5VACHEh4A/B/y7wN/mxzit5FtJ9XuHJr/77f7m1x7yP/virR/OQV3gAhe4wA8AQogY+BUgwn9W/E3n3J8VQtwE/gY+teprwL/mnKuFEBHw14BPA6fAv+qcu/u9HsM5QVVrkqSmvdmyP0xIb4eoGtoORKfeM9l2LMHtFCdh/yd9FFn/jvWEvHU0qaSNBBiBbCE+FQQfypk87GMiiE8k9cjgBKixRuw46p2WVNc8XvYZr1ICZdgcrdjIcu7ONhg/7hNctehbS4o6wDrBR7b2uTvfRAuLVoZOpyTULZX1MXWDtEBLy7KJmFUxgTAkqqEXlUxWCcdFh1C2xKp56ol2SOl4pn/Cy8eX+PzuPQoT0Faabr9gskzZG85w63Dh3z64xId3Dnh36gORb/ROOcx7HOVdqjJALRT1ei6/HXv1NHtcEy40s5ua7kMv/4Uzw+yZgHzXcf3nFE625Nuaaui36fUKph9yuGlI967PYF580uCs4IW9Q65mEzaDFf9k/DwAma6JE/97LdbK/xm8cm3X9g4/nOcztSWxqEHAvXrE7XybyioiadYLoJJIesW8cYqNYMW8jXlcD1maaF2XXjMzCbM2pXGK/bKHEo7GKk6nHXiY0BwJqssWFzrSxxKdO6K58RXha87kFxggy4bljQ5Hn5HsfsmQHJSI1uLQiNYSnuSoIqTcjogmDRiHLmKEg3BhEK0jkAIaufanGwIhqZwlcLBwhq8UL/CbJzdx45DOY8P8uiJcKoKFtyys3xZYLSg/WtDLSvpB4Vs8Rcuh6XC6VqW/8vA6W/danBDMrykIWnq6ZC+aoNZlO1eDUxY2ZuUC37q6bvhUuLW9JGNhY4yTjG2HrioY6TmlC6lsQGU18zahtYpfP7rJLE8wRtLNSmaLFJNrRCFpywQXOITxzY1t5jCxJNv3kXzLns/ws1rgEkd0rDCxoh200GlQgfW582mFA6o8wK00QenVZQQ0XZ9LLowgmkByaglyH6uYb0l691p0YRCNXUcsWkwW0GSauisph0+GIFUN0cTbR/zJnb8X2lTQppzHDloNNnSYCExmcaE9f++8X7wfwv38GdkGcM69JoR40Tl358c9rESIb1eyvxvS8EmU0Z//e69fEO4LXOACP+qogN/vnFsKIQLgV4UQ/wD43wH/kXPubwgh/jJ+zuc/WX+dOOeeFUL8SeAvAP/q93oA58BagbESISDpl1QfbXEHMemBL2xZ3LIkB4rOA4dqLItrEhP4D8V45sljOZAEuW+OtMq3JQLI2ufnpvuOcjckv9p637JwXL52inWCw2kX0yoKB+2G5CMb+7x8ehk112xnSy53ZhzlXYo2IEkbLndmHJcdpMCT7sD7d4d6xV42QwrLft5nWUbEsqFxksponBMcLzNudMaE0g9R1lajI0PTKCZVymKZcFJnTMqUTr9AK8N8nNHfOWB/1aOoA7Z7S1orWZUhxUlKOzwmUIZAGa5uTTiMWuzX+zgFJ59wbLyi6TzyxLL7wKBzQ5sqTj4WUA0dvXdhsadpuoL41JEcWYLCcfqSQpUgGsHiuZZ4s8DNIrJhRS8subvwg4NKWj4+eoQSjnfzTY51l4HOiWRLV5XkNuResUmytiiY9W5vLP2gZCMUjVN0VMmHO49onPIxg23CO8sRszphM15xWmbsJAvfPFhnBNLwsBxgneT2dESsW3YzH4H3+LSPuJ2ijcAqbx8YviZoOv6xVeOQrcMGAicE8cQnWlglEI0h35Y0my1WSZpOgEl8E6MqLMG8AQfhrKXJNOGkpvfOChtp2kxTbmi/6yIdm2pJgKVyjtI5EPCwTfjS/BZvv75H565Clw2dRwLZuLX1QVD3fZLM9AXJsL/iszv3+VR2l0y0hOtkkTv1Ft+cX6VchjSpJD1oCBeSja05kWw5abqMggUDteLYdOlK3xRjkOc++0C0KNx5vnnpApSxTE1KbqLz1+hGfMLSxBgE15Ixh3WPaZ1wWHSpmoBGWcJNr4CHumWxTGhmEaIQzF9okYVEr0DPlM+/LgVO+xjBcApiP8BEAW3qaFPHUseezCoHgaPpG3B+MFM20Hng389OQZMKdOnov9sgLFQDhWwdwarxqS9aImtL4Fp0IYimEhNL6o6kGgrqvh+eRPgCIFX6XTXZONIDUJUjKCyy8Qt7EwrClSM+bpic/OAV7leFEP8JXtEA/w/0tbWa0Xz3m/144LtZSuR7zsgiza/+H34fX/gLv8Rnbwz/eR3eBS5wgQv8U8E554Dl+sdgfXLA7wf+x+vz/yrwH+AJ9x9ffw/wN4G/JIQQ6/v5jhAC2kpjjSKMGgJtiIKW8qphFaYEU0l0Irn06yWLaz7paeP1ljYWTJ73ObnxxNF2IDvyfmTwQ2PNIj3P4tWlIxhLmqs1otWcTDt86toDrBPUyxC5bqt8u7NFd7fiVv+EA7HNcZ5xtTsl0i1lq1k0MV1dcUpG3Sq6cYVFsGojchOxEa6wTvJg7d82TlKYgKrVSOkwxmdxzlJQvQABAABJREFUb8cLvjne4+Mbj4jihtUs5sG8z+ZgyaRMqYwmi2rfbNmpKE3AVrLihIxZEdMPS5wTBFPFtE4IpeEw73CzN6ZsNSdJj+hUUI0c82cETSdk47UKG2rqvmb8kqQaGaJjRbHtt+mFgTYFnQsmz0nK50u6/YJuXFG1msks8wsaJ/jy7Rv0BzmtlRRFyC/c/yhEhu4w57O7D0ijmlT6hUjjFFfiCaNgce7zTmV1nkkOrIf5ynOiJ3FEsiVWLbn0tpqdZMHLh5cxRmJaSRQ3vLTly3dOph1MpXgw2yU6lYjIedtI4ZVsqwWqcnDg7Ul2Hft2Zv/Qha9Rd1rS9mKmL1m2/ztNfFphIkk5VDQpFDuaYBmy8Vpzbh9p+iHRYU6wylFLjWxi2kQhSl/7njtN5mokUDvHo3ZIZTTBTJLtW0woCecGaRw2kCB9ws5q279GiRW8lO5zLRjTOElf+lzzo7rH1x9fof/1CFUbiq2Ak88YbsQVd1YjPtn30X9vV7t0VcnCJGyoJWptcG6cZmUjFjZhata167IilRWlDWikIrchgTCUTmOd9K8fgq4umdYJkWpJwoZOXKGkpRtW5zsx01ZibbBODXKYxA8m+qg+sMK3O8rGk1qcX/w4BdaCSSwutohaerW8ZwkWCtlA3fM7WemRV7FNKLChQBWW5KihGmraJCFYGF+EowROy3Vqic/VjuaGaO6TRkwoaBNBkwmqgY/GNCFrr7hE5xJVOdITS/+dHHWyAKWeFLG8T7wfwv2ngf8l8L9Z//xrwP8eT7Z/3wd6tN9l+O6Gku9sKbky9G/qr9yd/NCO6QIXuMAFflAQQii8beRZ4P8BvANMnxqYfwjsrb/fAx4AOOdaIcQMbzs5+W73r5RFh4YmDyhbAVmNlN6znF6fMNtIkW+klJsBJoBweeaxFWx/veHkYwHzW9B54D8cRSOw0Tq+6yQieyjJ9xzROrLYGUH1ovcV78Zz7ixHiFwRH0majmO1itnPe3x08BhxueR0lnEpm6OFpTGK29MRP7n7LhJHWQUM04JAGo7LDpfjKdZJBkF+XuXe1znLJuJ41iFLKqKg5e3ZFp/busuqDkllTV1phHIUVYiSFVvJknGVsqo7oIxvzHOCR0vvE3FOkOqaaj+l/1Aw/0TMhzf2efXRJfpRyaVszuPNEW3qCWX2AFZXHY83I6IxDG839O4Ihn8/Z/pCRjGS1D0od1uS7Zw4bCjmKfphTPkwYj40dN/RJBKWzzXkbw0IKmhfjckeW8S2ZPHhmt4wZ68/o7KaQJjzyL5IeKXbrmvaGzTjtoNaK7WxaNmv+1TW7zyc5UFfCxZci07P/eGvzi6RRjXHB32C44C6ha/sJWAF6e2QamQx/RazCM5jEPNdSZAL9MqeWzSClfXNjV0Fwqdo4By6cMjasroSo7dz6n6H9kShKkuwspx+XPB7Pv86b022KI5GBIUlPmmoBxqbBsiyRjQGWRnC1iIrb6tZuZDYGjakoXRwajokqiEa+7ImafyCxypPGgGaxA9O6rmktT6PunaKSBgs3qKzMhHFOGHv5YK6F1CNJHqhfElNHTKuUj7c36eyAZejKVfCU0oX0FiNWTOWcdvx7ZsmwiLIZUggUgJhqGxAJBtyE3HaZOyG8yfDsNKxl0y5FM+41Qk4KLssm4hRvPJNrbohDlqW6zjkxTzBnYQ4BVgwEbSpJ9km9DYaq7ztJJyKNdmV2FJiQ192Fc4kNoK87/xuQwlNJolPHdHM+aFp4X3XwdJQ97VXoxf2fHDyvLzmrLDQC+dI4wgXjnAJ6ZFYD7D6xdlyT1FugklgcVOiP9IhPurQfdzCo6eCud8Hvi/hds4VwF9cn96L5Xc478cG35JS8m3FN9/7tkeLku1u/L2vdIELXOAC/wLhnDPAJ4QQA+C/Al78Z71PIcS/BfxbANFOl73RlONFh9U0oThJkZ0Gl9R8dPeIq3sTDm92+fJHriNf7tJ9aBDGQSyxkWDrt2oOfyJkec3ReQSqFuglRDPHNIPk2FFtwHJP+oiy4wAnArIXJ0ybhFg1RCeKaOwNoo0y3DkcsZ0s+PDePr/9tZu0lxSb8YplExKua6crownDllUd0gkrSqPpqJKl9LnYoTIURcisTXl3skk9i8iS6pw8B8LwE9v3CaThY1ce8cbxDnWlMZFgJ5qzn/cwVrCRVGzu5JzkGSfHXZ6/5jOU9/MeSJ8VPM0TOlsVSepV435Qkm6tqKsAawTzZ2KiiU9umL/UsryhCGeCut8l3/FDYVb7IbFO4hM/5OMYWfkPse5tTbnlB9S6bwTowrG4ASaA6XOS6moNpWQ+Seknpc8KbxO+Nrvm1fxoASEE66E7g1jHAYZM6i6FDc8bJc+82tZJKhtw0naYNCnjOmPVhJxOOj5OLtZk9yVtGhBdW1J9xJB9JUG9HdCmgmrgVVRYR7w1FqcEqrS0mcIGAmEdbSKxCqKF8yTLOuqOoJnEBEt37hu2WqAKQeskw7jgrS+06Klm+2sh6WFFuRWSlg1yURKcGjCWaJzwVrnLZ5O7BMLS4It4chvy9myLuu8IFoDzVe42lLSxRKx3ZJZXob1S8YW9dwFfbmMRjE3AqenwznxE79UAqyxt7F/ftmtovjGkSBzVi1PevHuJ7saKj23vo7r2PPZvZjKksFgnUTh2gpkv9jEplZNUBOetoRtqxfXohIVJyG2IcRKLIFU+R13iaJykG1RkqvapJqqlFxY8UENWdci8lbjEIhtvKTGRw4aO8pJBpC2uVIhGopeSNvO/B9J5S4lyMA5oMoc066xs/E5MsOK8LEs1flAS7RdSOrfYwO9mfCevtQ0EBH5xrhpHsDAEsxK5rBBlBVWNc46+1rg0ptntM7sVs7gOsw8Zph+D6isfzFb9fQm3EOKn8NuE15++vnPuwoT8Pfzb77WUnOH/+q98jH/3b77Mq4/nbL9wQbgvcIEL/OjDOTcVQvwS8Hlg8FQs7BXg0fpqj4CrwEMhhAb6+OHJ997Xfwr8pwDRtatumidcGUypukseHA+xpxH5MuBVuYvcdnyk+5jnXzziv9t8lneGVxi+6j2bcuW34E3o83gff1EgDHQfWuquTyoptgXB4iyZwxHMBOWWZXrY5UE6ZDNeUW0b0n2JDaE9TRCN4JXsEh/Z2scOG8ZFikzcecGMFI5O6FMvjBKc5BlKWg6qPo1TDFVOoht6nYLchuRlSHioyQchOfD5a3cpTMAgyAmEJ/Bn2/JaWgobspUsCdaxgadlhrESFVqywJPqSZXipKNNBFUZsDQRO90lnaCiG5Q8MzqltZJ3jka02tEmkD2C3i9JlnuSYtshax+p2KY+meTopxzjNzY96dlpMbEgPlTY0BMk2QqKbYfZrRHTAFV7kpe9GdJ0HNFHFwTKEErD7dUW8zrm2e4JwyCncpqA9nyYMpaNL74JDbn1pSvTJiWSDZUNaJxiTMYoWNBRJVKsn/9dx52720gLq6uW0dcF5rUuuidYPGsIJpJwAcHcK56dRxYTScJZi6gsTVf7RArlU1ic9MNzTepj6nRuCHKHXihU7Ym6KlqyA0t6KHj4jefItyS7M0e54dVUPSloOhrTCZFl6/0QWtF55DiqupTOtyYa0bJyAbfzHR4dDaDnsNoTbBtKmsz7g+ueoOpD/aGCP/b8a7yQHpDJik21XEcBahY25s7hiI2JH0p0UpAdNIT/SNHGlmogke8O2C6g7gz50o0BLz9/iThoCZXPdd/N5myEOQOdE0iDcZJYNkRr3/aZ5/vMgtJXfjDCD1t6RLKhsZrr8ZjchjROEVn/GhYmYCtZspVAN6qY5AkT0UdUEvoNrlAQWtzK00q9WSK2HLZVsNSeaANyFvhCqdDhap+BrSrfvilbQbZvfayi4UkF+5p+yWZ9Hj5Tm3USjSocYuHQyxo1KzzBrhtc04CQ67hA/3u7toWyJBhP2bodMsoSzEaHxc2Mow8YjP1+LCX/H+B/i99W/KeI+v7xwLdZSr7L9T51zfu3/+2f+wYv/wc/+0M9pgtc4AIX+KeFEGILaNZkOwH+EH4Q8peAfwU/1/OvA//N+iZ/Z/3zb6wv/8ffy78NEM4cyc8NuPPxIfFLU65uTZh1YiaHPVYPurwdtCzbiFudE356620+8fsf8k9eepbFr2wzeNthE/8huvmK4fiTEnujoHo7oc0EdlhT1iFOO3q3BfNnfGmOU4703YDHh5fRP/kQOg35ZU8EO3cUxY5jmUd8+cF1PnrrEdMy4ZnOMZfTGb/y4Bm6wSaXkjnLXsSDwyFh3LI7mLM0Ecdlh91wTqwaXtw84l6+QSctKeoOxTRGpi2FCVhKv9WeyprLyZx3J5tc6s5Z1BH3V0O24iUT5y2IO+kCgLYj2YqXrFqfVa0HNeWWQgjHm9MdTlcpwcBw12yyFS19gc5xgi6FHwarHLqyJCeC4VuGcqiY3xQ0fW+xiPc18SnMn7XEB5rh6xbZ+udVXSpoFiGikSRvRsRjnxltIsH8OYsbNtSHHXa6S94cbzFISj482GfVRrybb7IVLpm1CbXVZKpiqHMC2SKFJZXe711ZjZYWLb3SPW1S7uUbaGHpBSWHRZdH4z5Bp4ajgGAhOP4JQ+euIjl2dB4LTj/i499691tsKNbFNQITq3MlGXzqhK7WsXKtOE+nsEoQTQ0mUtRdQXoIol2nUWhJcljRue/TbjoP9Xlpis4NJpBoJRBInPBWhkmV8qX8WT6VvEsgLAftgGmTIKTPglaNL2IxIZhAUGz574tnal667HczpLB0ZenjE52iRrEwCfYgpv+Ot5N0313h1sOo0kiygwZh3DruTjJ4xyH+YUbVV6y2FE0X7l/dIdgq0Ou5iRuDsX9fSUumaiLV0tU+I13isP43I1XVuZ8bWA8GK6ZNytvzLQJl+Fj/EZn2uyWV1VzrTJDCMe8luMMYcRyCcJjQogY1ZhnQzENk4Zs45ahCKkdbamxqUAvlY/2sQBmIxoLOQ0u4MKjaIs4GYKXAKbG2nYHA24Rkbfwpb5B5CU2Lq+tzZ4Iz9pxgn38Va7uIEtC2YB2uaRCFRJ84eo0lWHywqsn3Q7hnzrl/8IHu9ccEQjzxzH9bDvd3YdxnFe/z8se6M+gCF7jAjz4uAX917eOWwP/XOff/E0K8BvwNIcSfB76BF2VYf/3PhRC3gTHwJ7/vIwg/ILbzZcdJNeT0E7CRFmzeOuDu4SbTVzY52epxb3PIh7cO+HjvIX/i2jf4xn//Gr/xzefo3PFDVKp2qFpg92OqPzJnNYuRU6+M2W6LbAKSY8HylgNtkQ1kj2GcJ2xuLjmdhuhC0LkP5SY4K6krybyKeWl4gBSORNa0rWTRRAyjnEFUMOvFLJZ+eKyjKl7NL7HsRlxJpyzamNMqY5CUTLYNBBZbK/I2pLUSG0oS1TAIcjaynHGRcrkzY1YlTCofU9gPSlYmpDGKZzZO2I3mPLRDZmVMELZQCIKkJg1qTkm5lMz58v41il7Aqg7RowLmGSZxtJlAHHuLRZtK+u/kLK9mmGHL4Ksh1SbMnjdkDxTpgfNJHR2vbkcvZ5gPFyhtKDqaAnCNREYGNwtBOj7+oh/Ss4lgGOUcVV0S1ZC3Ie82m2xGOT1dsBf5GaYz64gUlneLLe4uNxgXKXWrCLVhEBccLrpsZDnzIGa8SqmWEXKuCWtB03P03lYsr1mslux+qUK2AeOXFOMXAzbe8KRTrXPabSBx2g/Wucyrwlb7VBvfOOiV5mDRku4HlJvQPlLISvl4uXbdIKnlOtFibW+yoIoWESlsGp4T3XxL8vjBZf7Q1msYJAdtl+O2ixSW5y8f8sbpVUwkyLcEwcpnQDddT8T1ccAbapfOMxVf6C3J1n74qUu5Xe3yl772Mzz7NwvqfngegSdrgyxbhDk7LntORJyUuFijioBopnw29VuScpBRbgpaC3fzDf+6dATFJQuXSvrdnM/v3mM3mhHgUGvPfYM693MbBI1T7EYztkYLjusud/NNH+moWqRwBNLwXO+YxigemCGmUtCsk1ICg+pb2kZhJais8TGDM42IHC41uB1P3k2uCe8HdB5aH+vY+IFIm/r7EgaEcQTzBlU03h6Sl54wKwXG4KxFSH99176Hh52R7KebC61vW0UCzuHqBhEGoD+YfxveH+H+JSHEf4jP3K7OznTOff0DP9rvMnzr0OT707j7ScDHrw745oMpRW1InooLvMAFLnCBHxU4514GPvkdzr8D/MR3OL8E/kcf5DGsEtSZRLaO8mpN+MtDJm7I4pMVl3YnzJOa/G6P/HTAl5Yx48spnxo+4CcG7/LcTx3xd/Y+iviVDZwSNF3fnFjXip964R3uzjeojUIKx/gPpTST2MeSXauwQYjOYTzP0EGL2KhoJyFNRxHO/Aeds4IHh0OEcD5NRLYMuzmLKuI0yLh9POLW6JR5XDGrYhLV0FrJcd0lUTWnVcalZMZvTm7gMkPaKynzkGmZ8MLgiETV3C+GDIICKRwH4x5aWrbTBZmueX28wyD0hSQOuJJOMc6nnMxXMVpbipGlFzakuiYOWh7lfZanKQ+tIApawtCw2myRK6/YNh1JuSHXRCUhv9mQvh1SD3xmcvpYIWufOew0FFcMLrDkG44wMNTTCLVQ6JWkzSzhjZK4n7OVreiFBfcXnrSluub+YoPGSpZlxKd2H7ITzWmcYml8PnkgvCH3pOkSypa9dEYnqDjKu6zqkGUd0RjFwayLEFCVAUJbbGR9EVLjB976bwmW1x37n4/Z++UV8Yni8DMx82uazVcKEAJZtSAF1WaEiX3ihM4tdU9hOoI6EtQdQbz2uvfetRx9FuqeJFhJT2KdA+uwoQIlEIW3jzRbKbIytIlGRAqVt6AETUcQJzW5DXnQbJ43cO5ECx6tBrhuy+wFCGaSdN9nn6sCpBRUI0/uP9Z7RO0UpQuQWP7h7MP83Zc/zrW/LdGnc2TVIlqLqFsQaxbStCAlKHlOuIW1iFWFqFtUoUEIrJZEU0XnsTyvO89HmmrD50xrYJTmjOsULQ2jYMmszTiyvgSncZ50n32fyppANmyGS6SwHJQ9urpCS8Pj3LdUjvOEJKtpQoWUDmsFVR4gA0sYtcikJp/HyIXGZBbCtYJ8HBFOJPEYsH5R0MaaaG6Jpi3xUYmarMCsTRjmifLsGh+md8bIzlRtIcQTa7dz/rZKgVRPlG/nEEoC0t+P9Sszp9e87YeQw/259dfPPHXeWTTU94QQ4q8A/xJw5Jz7yHe4XAD/MfDHgBz402dEXgjxrwP//vqqf94591ffx7H+C8O3xwJ+9+v+23/gWf7Mf/ZVfuvBlM8/s/nDPbALXOACF/gRRjQ3PPiXHPGDkOGbDcGyZfN1xfEndik+XpDdnLE4yQgexrx9cpU7u5t85PI+nxve5Q9fe4P/5nMf5Wijg2gheaAJX+3wa+Pn2bnht8i3syXXehPe7WwS6ZYsqHn3Y7AIMpyDugxwS420vugiGjtWs9B7SLXlYNrj+f4Rb8x2uNqdcrDqEcqWchXyjhvxycsPebzqM29jLndmZLrioOyR6trbRxYxlJLepZJeWvLwcMgz/ROsk4yrjK1wyaV0xh07YlWH3G+HXOlOqRrtBzBlSyeozwtgKqvOP2/cRo1Y+8qzsOZw0UXGhrZVvLB1xFHeRe1YitcG1APH7KZEGmgywbTvEKUkv9EgKsno65KTTxv0UtL0BFZDMPakbPFcS1MEiEb67OQ5VFda6lojhK+7f3u6RaQMQji+cXCFqtJ85PI+zw+OOS47GCe4FM/Ph/Fy6+v/uqpEEdJKxeVkhnWCSMVEuuVad8LjVZ+TZUZbauRUEy4kuoBgvm4crBwbr8ByT3D3X07Z++WGy7+y4PhTHU4+kbL1NW+3kK0lnNTYSFFuBOcDisKAstCmgnIIspUkxw29d0KmzwmClSZdNmAtTklU2a7zLC31Zszqckj/do4TYFKJMMpbGgw8NzqhsgHHbZdb4REoGOqch6cDovsRqvL++XDuvJd+4T3H+XWLVA6JI5M1qaj4cv4Mv/D3P8OVb1g6rx3itPKe8ab15LpuMKMu0+czsoMGlbfYUKHzBlEZhDG4KKDajNErr+wK6/PITSgoNjXlps+h7ryjAc07O1d4e7tGKkevm9OLKzbiFZ2gIlh7u+2ayoayJRCWrXDBXjQlUQ3TJllboCzHeRdrpf+bWy9+275B9WqktJSTGD3RaMBGDplL5EytjxNM7FhdgfhIkIwd2cOSYJwjimqdI2g9cZbrhcZavRZC4JzDtQah1ZpUS3+b9SLKV0uub/dedVuJdenKOubEWJC+mfSDMu73k1LybdF/Qoid93n//xnwl/DtY98JfxR4bn36HD7L9XNCiA3gz+JJvgO+JoT4O865H6k8ve9V/PO9LjvzcX/9/uSCcF/gAhf4sYVsnSfbDwM2XzHo0itUVgkGtw3YhMWtgGx3RduraI9SzOOUb6yuc7TX5fPb7/JHnnmdX5Av0iwjwllEm0F4qjhdbvH5L77KNw/3WMwTdrZmPLq/STws6WQl1cdbLmUFj9/cRhoIloLkyNHGgnCsMLEjGJZUq5BH+YD74yHXNibsZnOOiw5Jp6J+p8fpRsaiCilMyLVswkHZY1olPNs9YWVCtkdzjo+2UMJRNBqXaxqrqITm3dMNduIFSjiUslzqznljf5ssrHlhdESiGiqryYKKd1ebfHF4m2Pd5crGlGmRIPuWsg64PR75hJDIZ18vVjG11TjgUm/OW/0eohLkN1qyOwFtZrG9FiqJWirCqaTqg4st6lTRJo5oIih2HHnsn896y6FXEtkIVlfXA2VHMe0ly7uTDZaLmCSr2chypHBsDZYc5l3ePt0i1C3TMqGnK2wgmbQZJ02HlYkY6Jx5m3A/HxLKltMyo2gCNmROpmu20wWNlSRhwzjMqKOQuhXoviCYC5J16GRy7Bj9dsP+TwWMvqnY/ZVTHv+BEcefztj+6hKnhCfetSU5qam7AW0icJnABMLbMNa53MJphm/WtGnE5DmNbGNUYZHGoieFj7brRdjI+6VdIFG1peloZCQxkSS/7Kit4l6xyRf7b7Kplkytb8NsKo3oWkDSe9eS73oCF6w8gYsONZs3Tghky6npcK8e8dff+CzbXzOkjwuvSDsHdePJY9PS7Pa5/T8J2bhyyuk/HhGNA4QFaQL6by3BCvLLCfNrmtErBhvI8yhCpwS6sPTfBVX717buKOJTQfU4RpWQ7yRM9mo6z1ZshadEsuW47jKpknNrkJaWg7J7npYzCHJ2ozmndYdVE2ETwaKIITLIxle8m0CTbOQ0MqTtGVAOuVTo3Nevq8on6IQzyA4sqrZ+gbAb0XYC4scL5Gx11qK1/seytns8PULiLM4KbwdZe+9FEEDb4lr7hGhb5/tVpCffzrknfgVnIQhxkfZNlj8EhdsfmI+F+hP4woOXgMvf7zbOuV8RQtz4Hlf548BfWw/W/KYQYiCEuAT8DPCLzrnx+rF/EfgjwM+93+P954HvFQjzvS4bpCG3tjK+cnf8gz6kC1zgAhf4HYN6IEjvBPTuepuAaB1OC0wiqXoSnUN8oIm/3mP8cYvrtIgmQE01j8wmP19GPL95zK3RKftRl+T3TmitxFjJsoj4+v5Vrg0nVB2fsHDj5hGPx32qRlPmIQdVAICsBU3Xx8QhIDkQtJmg3hPI45D9zS5JVPNgMuDju499VvYqpWlhf9ElWxPdwgRMq4TTPOP53hESx15nxmE04mSeEYUtspQ+szha+sxrE5CohsubMwDak4SDwPDhwT7TJmHexEgc8zo8f4y8CRDCEwHjBG2jeXbjhEmV0hhFmlZoYVmWEWnQEIwK6klMOKjIP2yI05rmTpfuHZh+xPrFxVIg45byEoQnmtV1Q/JYkV9pcYFEVJLuu15VbhPB5GMSN2jY6K04eLBB0KvopwWzIibPI8oqoJeVJGFDPy5JdMNR1cEieJz32YqXZLqispqVCamN4mjVoagDQm24fbDFg3hAvoxwRsJSozdL5FZOXQS0OkA2kqYjiCaOILeYRHLt5wvu/dGEcrDJpV+ZcPj5AUef6rDz5Tlo7+M+82EL538fLCC8RaVNvOdZGMXub+YU2xHLXW9fkAZUqrGRoOyv4+cKhy69TSXIfWadk9B5ILhzc5PPvXCXgco5NR1+YfpRpk1ClDSUqSa5I5nfkJjYxxgGSz/k6bTjendCIAxLE/NfPvgk4pUu0WmOnBeeUAb6CekONPUgRC0VyzzG7jiKHd/o2H/bnRNPWTuaji9/sYHAhHJtz/ERiCYUOCkJVt6qoUtJuJQ0qaCq/YDy4bLLso6IVMtmvCJWfrB5XHQA6IS+iTSSrY8IlC09XfCx4SMKE/LmfJsTZVjFLaYIENJR15pso/CvdSOxqaVRPspT5JL0wNHZN6jKogqDnpeIvPKDsGvyjJTeFnJmK5ES17ZPxM8zf3Zr1kq29M+L8hYSZ+05EQf891L42wuB0BqnFCIIcBaE/IBsm+9DuNeT6X8cT7I/CXSB/wHwKx/4kb4zzosS1jgrUfhu53+nYzzPdL127doP6LDeP86e8u/XNPle/Mzz2/z137xH2Rji4MLHfYELXODHD3oF8dhRbkh69/0WcBsr2tiTgGJHoHPYfGWFsBknn5P0bk0p64AAsFZyZ7LJVrbiam9GaTTjIiXSLTtbi/PH6QYVx0WGAPqdgqZV5K1EPw7R1nuWxXZFOUmIT33BDkKwKgLSiWB83GPv8phQGw6LLoE03ByOebnXY/mgR75Z8aa0fHZ0Dy0tkW5ZtRGFCXjtcJdgy3uxm1YhtirGZcpWvCQOWlonqazmQ8MD3pmPwEJx0GG15wfsizbgWjZhUidIYX05TNDQSEvVaOpa09SaflBSG82jok9xkrLqLomClm5Q8rlrd/lNe5OmCPjMs3d59e+9QGcGdR+inRw77TD/aM2tS6c8+PKe90a/oZh+uCV5rLEaookvCGm6gtlnKoKopT1KWPYjZNKytzljvEqZH3Tp7CxpW4V1MDnpMQ46jIYLulHFNx/tcXPrlEAaFJZItjyXHrEXTzmsetxZbGKd4GpvwqqJuFOMkGFDXUmaWYRaSqKlpOlYVCEIZz5tpNzwhKqNYq7/vZyHvz/j0R8csvfzY+7/yxvsf7HH5X80xnQi5Pq918aeAiUTr5rWXe+DlgbqrsREMcHS0L/benIaS8oN/3l9Vg1f9wTCSWTjGy2t9m2KwdJhQ28Derm4hsTxW6d7PvBEG0RsKEcaHMQn0HQg3xVUI4NoBdM6Yb8eUJiAg4MBW/cceuFJpgv9QhEhIFtHLZ6U3PrbgnojIhzntN0AGwjCSb1WfC3VQOG0zxUHbynB+WNG+IFDXfiimLajqDMfl7m65BcBwVHACT0W3Yokalg2IVe7U6pW0wkrRvGS1iq0NFgE8ybhoOyR6Zq7iw2MlecRjwiH0Nbv+ADGSITwNi4RGmygMI1EGEE1FMhG0X3kdxjkqnjyT6Q1sPZpu7V3W4An0lqDMX5IUvLEbqKf4lzOAeqJSCql92hLiQt8jCTCN1XaUPndBbVuxfyAg5PflXALIf4L4IvALwD/d+AfA7edc7/8gR7hh4ynM10/85nPfPAlxz8DvqX45j2a9vcrvvnCc5v8lV97l6/fn/CTz4x+CEd3gQtc4AI/2nDCZ+U2GQSLlqajfV12IihHAhs4goXAxJrp8zD47YD63gblMzVIh4oMeRMxOewR9Ut6WUk3qki0/wCujGZRRdStIgpa0qChajWNUYRpQ5Nouu8q5s+1SOfbFpu+r4C2oYFKUW5Zwv2AYktTVCGy4zgpMy715sS7K5rbXdSO4XjegRFoYXlpeEhhPClyTlBPI55/dp/H8x5pVlI0AVJ49+tuPOeo6jKtExLdIEcV+u2U46rDrc4J8zqhspp+WJLbEOsE17IJp1XGqg5Z3O+RXllyWqUcFxlx2FA2gsYoupHPOXgmPeFop4uWnpDkz9Y0RwEmcbg8IBCQ9gvGqxT57JLOL3R8258VqALqHUfTdbhRTadXkBhJPo8Z3JiSRjXb3SXGSrQyZNsrtLTEScv47Q0IHaObp9zoj3nzZBtjJMs64mE+IFYNWlhuT0ekQcPN3inP9o6ZNQlvnW6RhA3bG3MOxz3CI02w8h+sdc8hjDh/D0ULH/lXdyTLK5I2Trn6j5bs/1SHu39ig6u/uOLh78t4+LMbXPr1HKt8Soxq/MLKBD7f2QkwscAEoJr18KhQBNJHzanSIhv/vQ0EbSJpEVQ9gdU+uk6XDln7MqHFPOHXx7eojOZKNiUJGu4dbWAOE9COaOyJtg0gXMBqz9t2kpem3OiMSWXtGzbfjhi8vULULbYbY9LQe8mtpd5MCMelH54Ugui4BCm8T9s6ZGN8XF4SsLrkrStOifOUljMPt2y9Qn+2kLDqqed3yvnznZuAdhywAKaZ4WSzQyctycKGg0WXYVqgheWNMvHv/VahlWEjLdhKltyfDwm1YT7vgBWIxC+0ba2QocGuAkQhEdr5y9snKTImlLSDGC1BlA2i9n/nBMG3qNFOSe/V1srnb0twak2y17874K8n8LcRPCHSZ/aS9XsC+LbBPCfFk8veJ76Xwv0hYAK8DrzunDNCfFDHyvfFWVHCGc5KFB7hbSVPn//LP+DH/mfGtyeTvH985sYGUsCX7owvCPcFLnCBH09I/4EWLnzsWjUMkY2j3BI0mSMae3IzeT4imgp691qqviSchiy/kHNte0zeBMxWCXWt6ccl17IJK+PtF+G6brBSmrLVPBr3Ma3CHnhVULWC5XWfO+2ONU454lPvXY6PNMJA86kl7t2MxTKhKQJubI45Gvd468EV9FZB9Pyc1VEGgeXV2SUWdcRmtKK2CusEg07OwWnCncMRV7YmzMuISLccFj0i3Z4fZ96GnjDHDfnA8mje42P9R2hp2M97bCVLDqo+h2WXG9mYULX04pKT0FHXitIEbCUrTsgodnPSoEZLy6Lxv+uldM4/efM5PnXrPh9/9gG/vbiJygX6Sk0dhbRFyJVLx7y1f5koE+SX/eBa9ZklttYwCRGnISarqMoQasns7oD6yoKmUYh3MporFTpqKdoQpSw2tly+ecJOuuCdyYjlKubKaMozvRNem+wQ65addMHHR4+RwvIoH/Bo1qcxirpWfoEjLRv9FfFPzDicdmn3U8KpJH3sCaIw3sKhKkc8NUQLwWJPcfKxjK3fqhi/GHHnf5hw9R82PP4pzeMvpOx8tfLWjTXREs7fXjXew2/1Ohs78vME5XCtajf+urIFHOfDkbr18XRt6q+D35wgiFpi1dAYxWmVcbTo0J7GILwvHjyRdBryTYeJHfpyTmskdxabmI7g1bevsPemQVYtLgpoe5FXpltLsxFTdxWqClCrxmdQGwfG158jPXkU1lFsJzgFnYduTbi9St/GPiUoXFj0ql1bbhS6soRzt7bIiHXONUQzQRsJTCwQVlGOOky2E1Y7OWHY8vB0gFKWjU7ORpJznGdEyjArY+4dbbDRX2GsQCYtbh7iKoVM/BNqa5/RqCqBmkiiif/fIBtLULhzf7lbuwJcGnmV2bl1rftZ440n3W5Npr11RHjr0Pq657fR4rwUB9aLkTO+vWa85+R6fTpbkDj1wTjgdyXczrlPCCFeBP4U8A+FECdAVwix45w7/ECP8t3xd4D/tRDib+CHJmfOuX0hxM8D/xchxHB9vT8M/Hs/oMf8geFbq92/+2XfCb044PmdLt94MP2BH9cFLnCBC/xOgIl8G2R66FjtxeQ7EtmcKX4+Kk0aqAZ+iNJJSI5b2iQgeDUlunTE5zbvclx3+ebJZe4dbbDoR9zojwlli3UCJSzH8w5BsFbSjMAmFrRDH+n1ICBk9xxNZ12a0UC1ab23Ow8QlysuDxfoTUusGq5sTXjw6DJtremkFSvpoJYYJxHAyyeXeW54zCAquD8fQuR9pY9OBiRJTe4EB7bLbragdYraamqrUcKT55sffowWlsb53O5JntAYxXa04NGsz0a0QgrnlfoTRWMSRtf9dv5kNSIIWo5XHXY6PmKwcQrjBNtbc6wTnBQZYquiHYcoJ8ienTE/zXg06yNLSbUByaEgOXEcbwU4Iwh2cpp5RPG4g4stvdcDyi1HFLTkhxlxI+j2C5Z3+7Dpa+x1v/bHqAyb6YqrvQmtU9xZbDKeZ8RRg7GSSLccLTosZgk6NPS7BdeGE45XHVojyauQycwnlajtkrKrwYaoyg/W6RySY0FQWGTjGNxuWO5pps+EbLxRES5C7v33JJd/2XL0WcnRpyK2vlFhe3qdVOIbCmXriCeWNpbUHYnVgIQg91nvbeSJmQk8UVa1t9kAmNiT8zbxrYZNJoiiBusEWeB3GupG40JLb3vJPO3gpMaG3mvd9Lz/u5OWNEZxtOxwfzwkfhQQzqp1/buiTRTxfo5wjjZVVH1JPBZgnLdkOH8SzZllxGEjTbmhUBWkx9764qRfqAjr0IUntQCi9TnWKIFdK8CebPr87mDl/O89sZQDiWj9cxSFLcZ6W0jbKI6mHaZ5QhrVWGlR0jLo5eR1QFmEnlwrr2K7WYiLLCLwf5dtahFrf76wwnvblV/UiEh5T7V1iMYgHDgtz0mzkwIXyPMSnLMF1RlpFm79+8gnCwn7XlfveZziOudbn/nb1xev78N9MEfJ9/ZwO+fewKeF/FkhxKfx5PsrQoiHzrmf/H53LoT4ObxSPRJCPFzfV7C+778M/H18JOBtfCzgv7G+bCyE+D8DX1nf1Z87G6D8UcUH9XADfOr6kL/7W4+pWkOkL3zcF7jABX78kN9sKF6wcDaE5HwGNvW6zKKVyGKtuuU+Qq0YCQa3Le/E15FfdGzFPvpvvoqZrRJsT1Aan97RGEUaV+RlhGkVQdTiQkMYtrQDRbmucxdWIQxI4/2qJvWFKvooRFh4VG8Q9SpWaUgnqjD9FlaaMg08cTCCS+mMrzy8Tl1p3gY+t3OPUbrCjASTSQdnBP1uQdlo8jLkWm/Ca5Nd8iZglK4YJUsOxj2sE8ybiHv5Br2w5F4zZDZPeWl4wHyRMB8k9EKf390MLE448jZkM1rhnGC1iOlu+SHMULUsTURtNaEy5+klw/6KVdSgtWGVR3TeDMk/akgfSYKFVzbzHUFnkNONKx7f26T/SuCbKB8G2BDiD0+Z7PfQc0W1YaimKUjHzmjOwcMNgm7FRpKzEea8PR4xGe8gtcMUitHunOv9MbM6QeK4PpzQ2Tpg2UasGp/DLYTDOIExEtNKKCWcJrDRUD9X4GYh6QNFtm/RlUNVnnDbQJCMLasdyexWSDyx7P6q4NEfsGz/Bkxecow/FDF4u4FEYoI1wXJnrY/eGsJTpMpq307prQ2c+7VV44l43ffkXzivkpZbjuZRj8O4IlSGo/Wiz/QqqlqjxxqnvFrepg66Lc9fOyBUhqINuH8ypJ7EJI0n9TZUmDRAldaT7X6ECQXR3PrEDGMQdetVVwtiXQzuIkU9DGkySI7t2g4jn1o0+GhAHN7nzLoo50wtXlel69yAWw91Km+nMaE//t6biup4SDUyuNQQdSq2+0ukcBzOupxWmjSrWE5SxFLhQgeBRfVqBNCuAkTlYwBFKwjnwreHPmpQ5VrVlpwvjoTx7Z9O+aSVcyvIWnW2am0jEQKn1rsIkvXiQTz1PWtl/Il1xK2JuIc4H8oU66fo7D3x9G3eL76Xh/tPAb/gnDsFcM59DR/P9+/gvd3fF865P/V9LnfA/+q7XPZXgL/yfh7nRwEf1MMN8Adf2ua/+NJ9fvPOmJ9+fuuHdGQXuMAFLvAjCm3RnQapLEpZnBO0jcLUChdaVGiR0p9fbEtcLcEKcFBckuil4K39bQ67XQZJQS8rWRYRd2cbjNIVQjiKIoQEytOE6EjRdBxit6QTV0wWKXrm2yplC/llS//5MWETEDgolhHuJETUgvAwwHV97nXZakRoEdrSthJRKkS/Zj/v00kqpu90GAPFKOAk93aUS9tT9g+G6ybFlkAZhmFObTSHsy7DuGDSphgjOVlm7PYWHKx6fGS4jxDQ6ZQo4YiTmkXjbSvzMoJeA6Vi2UQMwwIpHSowNEYRq4Z5HXM9HdPVFZc7MySOo1WHJGjIwholLY++OWR5q2U0XHF6JSI5kOgSyi2HKL0XXU81i1sWFxvKS5Z4s6Dc70JoMV2LCy0UCtFrOTrpEZxqkq0lWlp+4/ENFsuEpFOx3VsyLz2ZXjYR3aDkpOhQW8Xt4xFx2HC5N6dqNWWjWRx1EKVElRKrHS5wyIXGaYXTjtXzNU0vID6SJKeCcGmRa/KdnAqWe9Iv2gxc/mXJ/hctvbcU8+cNuIDBnQYn5bl6jXuKoOFVa2GdL9qR3v7RJl71VBU02tsrTOQTTrD+fmwITlse7w/RkaFdBCBBJi3NSkPPoBcKo50nugvNrIoJpOXxaR9TaJKH2jdgBhLbC5GtQxpL2418cc2k9QQ6UphujDB2HX3o6+edljS9kLqrSE6dbxmNffGRzh1O++QSYd23RKuJxs8XOC3PmzPPbCjgdwKiaYs0irJQOOVJqqwUyYkkOVVMb3ZZXvPvC1lK6ndjdATtqEGGBo4i1EGAiRwidMh1CopsfVpM1ReYICDIHdHMEs5bZG295SVS36JgO7lWt5U4J8zflVQLvuU2VvEtr/sZpHHI9snlsnEI+8Ra8kHVbfjeCvc14L8UQgTAPwL+AfDlNUn+QaWU/I7G9yLV78ff/XtubRIowa/fPrkg3Be4wAV+7CAEhFFz3jpX5iFSOXZ2pnTCmmGUc7Dqsf+NXcJ6/UGp/QeyU74O2+0nnI5jTrMuQdLQNopyP2O8mbE1XBCGLfUrfToz306oV4JmlXCwGZLurKh3K1orqEeKeLNgvN9HzTTJoaBX+yQPEzpM4rCVJugb+lHJsh9RFCHtSYJLDMP+incebfH8lUNO0yH6Qcz+Xo/LnTnGCmLdsjlasCpDQm1YFCG11XSCime2fJj03ZMNNodLijogUi2LKiLTFZf6noDeXW5wdThFS8tplVHWAVm3RPQc0zJhI/I18acu9TaOaMX9+RDbFwTSoIXlndkmxgrSoKYTVNyfD6l2WmTWsCpDNn5bsLoMiysGlxjkfkqVC/TzS6S0xGGDko6y0aidFfnjDqJf41YBvTc1y0832FWA61hCbbBOsNNdIITj1vCU1492KPMQN444zvro08DbNFILnRaTSN7K/edhW2lk0hIMWqpxglp6X65NDViBnipMKuDZFcssRZcCYSXhWgGVjSN7bFntSsKFo+oJRl8TnH7MEkwls4816FwTzyy6dKjae5+dEDSpoI2fKJ3g7U9t5sgegirPYgTFeZxgsPTWkqbjaDcbBqMl0/0erROIxOAqhc01hJYgaZCbjl5SMX44INwomecxadQQhi3FIsBJSPcdTcfXy8vak18b+kWnqu15VJoJ5bka63TgIzbXpDIet77VtacwkaCNoe4JwoUjOzDrYVBfBCPWFhmfzgFtqs7vRxjvoxbWIWqLyluChcbEkuwA2lQyfUZR9ZVXzysBhY9PbDNPqqMHIfXAIndLZGBo8gBXaKyC6FjRvesIlwZVninLDhNKmo5CNvKJ1/rcQvJEkT5XntUTgn1Oxt9DuHnPz8Jx/lz6uQC/2+HOzAf2yfCmsP46P7AcbufcXwD+ghCiC/xB4M8Af1kI8Trw3wI//wP0cv+OxVmu+gdpmjxDGmo+eW3Ir71z8oM/sAtc4AIX+BGHWBe+CKC13u5xbTThSjalMAEPFgOOXt4heyzWSpy/ndVPFDen/Fa+DRQ2DBGpw4UOMw9pe4pyGREZQdNzpI8BBPUAgqmiGgQ8f/UQ4yTvPNxCfr1Lt14fW+sJW3QqWF31vnLXSk7nGYdtj09cfcjXXr0F0iECSxy0uFxztOyQXlmymibcGw/59OUHLPMdsrBBSa/kD5LCK/GLDfYnPa5vToh0i7OCbuRtGGeWCoXlRmfMaZWyv+qx15lxb7ZBLy7Z6OQcz3xKxKKImKcxo2RJuY5pW7URqzJk3GRI3NrT7lisYj6x9ZhMVyybiOlkhF1J2suW5VXfNrj5Ncn0RcmlXzOcfkgThg39pAQgDWrmVczi53fpCKiGMSaG+Yst3W5JdS/G3CrQyhCrhue6x7yudnlnPKLY93nNshaoeYCJwfRa0A5aQb0IEdohlCXtVow6Kw5nXXSvpg00YqVQcz/QaqO1mfbtDBnA+HMN2Zsh/Tve+2+VJ0zJiaXuCaKpJ9TddyXz5wyikJx+1nDjv3bn7yVPpLyXGwFNpiiHgjb1C7bkSCCcv74NPMGuhn7g0YaCZuhj/QajJYtVjIgNMvBvXAOI2NDtFVTrOMdSedIchi1Nozg97YAT6KkmnHufeNWVRAvP+GSzVrHbdX74mepcW1RjMYE8J83COMqRJ+5WC/JdweqKITpVZA8d3UctqlpbRdaE3S9oBTbwJUE6NwjjSbZbD2E6LX29vQNVtAijaFMFDrr3LcWWt5ukj/0gqc5BNoJyE5q+L4wR9xMaBa5jkIVEFz6VaHVJYE4l0dwr8tJ4RR3Wr491nmw//X/EuaeItd99cNKnzZzjaYK9fq2f5DqDUU+Ra55Su9fqN+4J4T77+Qfq4QZwzi2A/2p9QgjxIXxD5F8DfvaDPdzvLjzdJvlt/Pp9enu+8OyI/+gfvsVkVTPMwh/YsV3gAhe4wI86hHAEyntNV6uYK1uebGthmdcx+29tsfs191RcwNnA0lP+WndGwJ+oXSaS1H04rYfolaQaWlDOkwrj00+aDrS1QgqHli39Qc5sLyC764fLVO3Id/3AVjBfD04Jr8Tb45jZTkLQr/xQpXDsHw4IxoqJ7K1TFyAOGx4sh1zZnHK8zNjpLpnnvsimnxUcTHs0leZ4lfHsxgms7SpJ3DBKljxa9rm92uLZ7JhFG7GVrrwXW7fMS58+EgSGnc6S+5MhsWq4nMw4yrtURjOuUjY7OaFs6emSlYl4LPs4K7mSTDDO5yK3exXqcYRUlupyw62fs+z/ZISJLKcf0ojPzvjD197g9fkur96/RHg7odo2JDEgoN5r6G6sUMKxem0ICi5vzvjs6B6J8oODp0XKbJYiBjXRmwkmWvvPOy1iqUnuKYpLhmAqcRrMlZK60tw72gZtUWnrX/PINwbKVhDOvOJdDw2yEUQPA/KrhtWzluHXNOmxPfcodx63lJsBrRR09g1OKxY3DWjL3T8uufm3DCbxg4Gy8e8vE/n7VxVrawW08Zp81z7Sr/7k0lt+ooblMoZS4UJ8AVOukbFBBy1aW/qbM8aLjChoScKGvA5wzhPF1cMucqNGas/qZA2yBtU4TCAwoVjHNPqFZ5t4n7VV/v0vrFfohYUmld4S0TiaRNAmApN4VX77ywKwfjhZC2TtFxDeG+390aJ9kgZiYoUTEtVYZGXOEz5sqLChTwgRzqvbq221tt/42Ma675XtcuQIZ9Kr8oUvmTK7NS5XJI/8wiKcrWMJDQTzFl2sPehinQZzpt4/RfqtFthQPklnAaRyuMb/vZ7ZgM6HKcXTP7tzRRwBEuHdatKr1zxFznny7+cJET8bvvwA+L6EWwgROOeas5+dc68JIY6cc3/xgz3U7z48/Vx/W0rJ+2TcP/XsJv+3X4TfuHPKH/vopR/cwV3gAhe4wI84pHDEQcvBcZ/t0ZybvVNWbUhrJffGQ1zgB+B04WhSeT449bQy9S3DS2sFSpWOpIJwpmgT/8FrYoGsBKrySla9Ycj6BVpaWivZ7iwZvbTind4Wnd+KEc4rmsWWb2H09y+I44aldjw4HSCVJepWVCcJspK0VyrEPMA6TTDRLLOYOGipW03brqPlpGNcpHSiisP5gLhX+Rg8o/nM1QfMm5hVEzIIC3bSJQerHpcTPwApcbx9MqKb+NSLULcI4biUzGms4o3jHfqXSzqhTwmpjGYjzrm72ORjw0c0VtGukyQOqh5b4ZK9dMbtYIveOzC+HPDCM495+89sE0YLVKPQ1yu+uHeHv/X6Jxj844SBgmIbOu8oqg2viI625xR1QDctWF4v0IHh9+7cxjrB7dUWd2cbHB31EZMAm1iqocV2DfGgRH21i7CwumrI7iuWt1q6lxYspyniXkygwCTev00tfR34oEVuN1StRJyG4PxrC2dxe4rZFwqmk5DRVyXpiSfbqvSxf4s9RXJksUqxugHZ3oIHf6jPjb9fUg0DXw4jJCb0xK3uCequL2mSrU/XcQpWL1bcGk15cDxEK8NLVw64fTTCGsnyOEPEBiH8oqgsQpqoZqO7Yiv5/7P358GyZPl9H/Y5W2613f2+tV/v3bMPMNgBEhtJ0wRNkbJIwlIwHJYdiJBkhUIK2RIjTFO2qTAlOyTZskwJthBWyAsoUhJFUZAIgiAoYhkCGMxgZnq6p5fX/fZ399pzO4v/OFl1bzdmeY1pbDP3F3Hj1pKVmZVVWfk93/P9fb8LDpZ9QhAsF9FDMKSeJG0pjwvQnjAILFTUUetFiImQVqDEOcsbRAzpCSoOEFbuI9J18hgBydyTzCOj6xKBrgLZcYtatquTENF26YwX7PJcpiOo7kJynFR43clWAqjaIRvH8lrGckciQlgPDlaNiqqK0g9h47mkKqhW6tmpBhNoNjzCS3QJcgq69HHgk0r0wqGWLbLpwLeO21kz++LCvruAaFqEjYOpkJkuxEZ24FyunVeiFl+upSUulWunktX7DYrO+u8CSL8A2FfSkvdTX6tp8oeB/xTIhBC/AfxECOGd7umfBb79/W3qW6uepGkS4OM3Nuglil968/gScF/WZV3Wt1QFBEfjPi/dOOBm7wzrFSNT8bmj67St4ns//ga3b22z+Jk9slOPF1F/urrgrYH2RS1nZ++2At6qidradthZtqnIYMmt6FP9ztkmWnqKpOVaf8K3P3OXz99/gcE7UG8HfBIQyAj0WxGBs4cQBO5egduyqFGLtwKpPb5vUcajHhmqRYLaCEzmGcY47hxtolSglzTkuqW3WeJ9XGflNJluuZpPebPd4bQuomyjSpm0OXvpjPtug6xjRgdZTdVqcmPxCF4aHnI873FU97leTPjyeI/ctPRNzcImlC5hN5lRj6JFIEDtNbfyE7ZGVzn5YcGoV1E7jV9oitGCj998RE81/OxbL3HzP9HItuH44ym9+4FmQ9DsOJLNiuOHI649dUJhWvKippc2vD7f4zfuPIVULrrD5DEtkiBQV0v8PMG+3SefBMYf9uiFxBtAB2aHffqvGxa3HHK7psgbQhBUJiFUkvyOAQx+x+N7DqzA5ZI2jTMZBIE8ThEBpj82Z/bFAaO3YpqkWUQWd3FVYhaB4euKie7z0nfe5d74FnufbbFFZE+DAGcEi2tRw++yKHuQLTRXLLeun/B0/5SBqbkz3qRvav7Ys6/xiw+fZRoEW6MFp5PeWoqzmZVc6024v9iItonSx8CXQZeUGERMWqy675iGcj9qn5MxgESXHmEjoLZZBMi66s4nKXAK8NHGbiXJCBK8ZM2A+0QigkY0Hml9p08O5+EvWsbHAeHluayi24btK5pBdAgRIVAcOWwuKXfj+enyOBATbTzfXB5odEDWgqDptBlA4mEp0UvITqP7irCebNwirMcnKnpq65XNX9wX2URHlnU8uxCgJUEl0DqwDlE2MRinS59cL7e67X2Mc6dTK6yCcdyF6PdVKqWM2pGQmrUHuHCB2wv3vn7vvhbD/W8D/4MQwitCiH8K+HtCiL8QQvg0TyyY+Oaud4Pqdx+SJ7EFBDBK8j3PbvNLb17quC/rsi7rW6uck1zbmvLJjfssfYJSNW8vtjm5s8ngTcWvjF/g+Rce0fvT97l9d4/NXzWdLZs4twlb6bpXGkwBLgi6zJsIOmyM8hYu6m5tAa5SVK9vYeYw2wssnl5Eu7yshGcXiLd65I8li49WtOnqYiwopxkiQHucE7YsxRsJ5Q2H2SlxNgZ3aGNj9PipZr6TYA8K5NUFedaileNgMuDW9imfvPKAX737FELA20fbvHTlkK1kyfXehAeLEUY5nJe8M9viQxuxZWqY1RzPe/gg2CpKNtMlB+WAF4eHGO04KQskgUWd0DhFbSPLLYVf2wOmyjFrMxqvMcKxqBNspRmXfXrXG67dOmE7j1KUn7/zAuGdHst9mD4bo8cBQuEQc0WzSDDDmkxb3rq/CwJefOaILx1eIft8zuLFBp1bbKMwZxpvAmIzspTpqaDci+yuOlbR99pF0OkN9G7MKMuE+VnBYGuBmxrMUmBmUc6h54JQaVwa8LlHFJbgBLQS33OowlIvEjY+dcrRCznDT+cU1mOWnv4DGD8vKQ4CG1/QfDlc58U/cpfDyVOM3m4JPYlEIB30HgrK/QgcuVYRROBTNx7wseFDMtniCkmiLFrEqPorgxnXhlP6nf92bTVCBL5z+w63FztMqgzrJOPjPjhBOozNvkIEelslRjkmd0d4QDy1pBpnuFQRjqO+WVsXdc2dVGJlhxiEQLiorZZNYHYjNknmxx5bCNKxRy89svGREXYevEf4rmFSCHBhLWZWrcMnMf3V5Zq2A9rSQjL12FxQ7kjsnsSl5+ejXoj1ueh1fKwdBnwaMFOJKmWU6XS0sk+g3Jb0HzqkCxFY+4Ca15HBbi3CXgC3Lu4v6lxEHYyGxBCkhEQi6iY+ZqIkBe+hteAcwdpzIC674Bvb/WC8B5gLY87BuOoYfimg8zh/P/W1AHcSQnglbjP8za5Z8r8QQvxrnE/ofUuXuDDs+62Skiev73t+h7//2iEPxiXXN/IPbP8u67Iu67J+v9e13oS+isBk6RM+97lnSc4U/Qee/n3BvYObDL/jiO988W1e29qj/sIGxeN4kfaKtYzkXMN9rsMUHkTSTWc3AVWtbMMC6kyTnkUXEoD2ccHjRnGkB2xvzJnt9unf98xfVMjC4qeG5FTRXI1srO17aCTLZ1t6bxoWKkP2W8JC4xOH27CYY0NjNaFnsXd72GsVz1854k6V8vbRNsPrFbd2z3jr3h4ycdw+2Qbg6d4Jn3t8nY2iRErPwWTAfjHjRjHmtOoxzCvKxvDc6ASAq3kMtHlx84jjqsfCJlEnbCJzmiiLD5KhLnkcos/3aV2gpad2mj904zY/99q30XsgeDTd46VP3mVoKn7p/rNU85ThQ0F+0nL2IU32WOHSQHpb4TIoX2pplwnH8x4bmwuslyxtwuKogGdbrl+PERqHZwOSF6c4J9Hake232Hc2qZ+roFHYfsClATVsokvHSwFVJrhpAqnDKIdoI5BbXovgTdaC/ECgS6g3NfWmwm22iC5oaDRcoGSgbAzbW3PcH19w/Jvb9O8qiiPP9pccpy8r0rPA8Mua18M1nv4zD5j99DWKY0e1IePgrEuOdFuWzDhubI355Og+hWzY0nMAtrbm3Xc4pb9V8+r8CpU1bGYx0nzeprw226fQDVv5kofTIfmoQmtHuUzxTnB9Z8z9o02qkMCoRXdNxG9Or2CHHjdXVBuSXh3DeXTlcYnEJZ1logCziEDSJ4L8xGNzia4DxZFFz9rIFneaZ9H6ddMlEMHq6n4n27A9Tb0ZA4LMzDE4WXUVC1QlkVbTDCRNP+rEXRKZeTy0g4AuBaIVqKXE7rQ0qSe/ZzDzQH4SMAsHHnza6dAXLWpWRZDdXgDG7j1sspRgzzXlommhahBGE5RElHV8jTHnLLXRICVCCIJw4Lt1vhc4X9hm8AGRJpAmcR0rsH0B7D9pfS3A3QohroQQHsf9Ca8IIX4U+DvAc+97S9/k9V6A/aSSEoiNkwC/9OYxf+47bn6dpS/rsi7rsr45qp/UfGIY2e1UWv5/v/7dDO7EAJr8qCFIwdargkm1y4MfdHx494CT75vz4Bdukp5COzhvagqSdzsR6Og0ImQETM5GYKZLIAh8Kag3wJtA0IFkIvCLDDMTHH9M4K45Nl8HNVH4xEHi8UaBE7Qjh/CC5FihSsHypqP3tmb5EQuZR7xVwPWGdssi2siOZUcSu8y5l8bo6+qkx68tnuF7X3qL0+2cybSHc5IH02GMA28Vx9MeO8MIYq2X1D7KTuo6QyvP0hpsUDxVnPHlyT5PD044FQVHi5y6NdG+sE261EpJGxRXsinzNmUrXXJU9rlTbbLME2QLy6uB/NYMKQK/9IUXKHaWsIhe0I++V+OTwMbnYhPi2YvRlSJUKko4RGB8bwNRC955SoGEYiu6qGjtkMqjf2HEzlstd/407FydMP9IiVYef5xgnp3x9OaE1ilOlzmhUmzuTjmqFSrxtE5Bx5qaSWwgdHmg3g7UAVwacH1HOqzxXtBOUyazgitbU0oM8zIlS1quftcj7t7cwn4uIz/ybL7uGD8fvdizx5o79gqD/9GY6m9t4BKYPQ2ucPRvTqE23No+5Uf3XqP1mr6qKGSNInBFTxi7AiMct8soVH44H5Iox6Te4WTcpyhqAjDIapQIFEXF4eGIUCmGV2Y8PTjlwfEGaday01+QKkuqLRv7MyZnPZa3PNmJptqMCZNmGTALH5sfu+bhalORnTlkHZsXdReJrmrX+Wr7GCZjO7Ato6bZ53odAw9Qb6e0PYlZeHoPa/Dh3J3EhgsNizEoaHXuNRtR450fCnQVZVwuizIcfWIIKlA+3eB1gteC7AyyE0cysbEJNNeIkCHKNmq038tmr5hlISJrfUEeIiCCb4iPOQ+2jD8CEPXqWoNS8X8IYC2hXbcprpfDrzQ0HfhW6tx+7kls6L5CfS3A/a8D+8Dj1QMhhPtCiB/iq4TVfKtVBNVf+cA/adMkwIv7fXb66SXgvqzLuqxvqTLSUXlD5Q1/5/ZHGL5isDkUjwNtT9P2YyDJzZ+bMXlnj3/8w9t86kNvY37kHd76pVv07kO9Kc69ucXKxaRrJFMgfLR6cypOb5tl5zqxtvoSpGNBehoYfyjul3ozx+45ym2FqsCVGllJXO4Riae3W1K/NqLZcVz9B5JZrZi/2GIeprRbFgIkRUv7uKAJKapvsQX078HpVp+QRQAvE8cXj66wkVecOUF9UKCueR4vhoz6Jcdvb8Fwwem04HRa8MkbD2KSZJ2QaocNKka1Nz08Ah8kV/MpZ1XOdFaQblty3bKXzbi/3CCVlk2zpNANXzi8ymKZcmNnzNP9E06/u+D+401cZXj90R4EwSCvWeY54w8HkjPFxmuCtogNeOVVh1pGRlSklsmdEShIbi6oK8Nwd04/q3l4fwu9WZJ8ehA10akkOZS88OEjDrKKt798FXW1QsrAyaJg8uYmyVRiXo6MsUodSnk+vHvAvaxmWmYs7g5RlSA7Fph5oBkK2qFD1hJeHSCBogafGB5uZiRXF1zdnJIqy8myR96v4QdLjt/YYPCOJDsJmGVg8pxELySzOyPqPzGn93N9hIcbLx6yV8yonOEjo0e8lD5i7Aq29ZxMtJy4aHW48ClvVXuM25yD5YDxLI8yI0CbyKYKwEjPbJ5DvyTUEjNWlBuGN8a7PLN3wtODExY25e5sk2mT4oNAaE9SNNQbg3VjpM2IDiJNoOnHcJ/szKFqv44lX4FHYS9YbUCMRW/tGjwK72m2C8o9AwGyk5b84YIYGtPpp7tyncRKl25tk+fKuJ70TES/8vzdEpMo9Yoj42ScYHshRre7mPSpWoVZBlTlsblGVQZZp8jWISobmyWtixIY6yJYXgFfJxBSRka7Y8JDCJHB9iGm2AoBDoJzEYCv3rcQCGMiOF8vLyLAX61fx6Cl7gXdcXz/Qo+v5cP9c1/l8THwb77vLX0TVtfLGm9/A5oSIQTf99w2v/zWCWGlo7qsy7qsy/omL4WnDYpXp1ewrw1REtKzQDb2LK4ovIGt12pcpuk9anj+/xN45YdeZPf7HvGJH3qdz/7yiwzfClRbK81oiFruzkkA4oVXdK4J3kDQAr2MjgnCRh9lm0MiIT0R1NuB/h1BUIrZU9EvOjmKaXrtXnQFmY9z1K0Spgmzm5LR2w6fGJZPt8iFitPov9HHfWKJqzS+lTTPVIx7CemxohlF54b02ZLZUZ+yl8LUENKYXJlqyzCtOHbbnMx62MoQKkVzVbNoI9g+PhwyXWS8dOWQg+UAiAOYLbPgDblL6Kz4rvamGOGonMEHya+d3kKKgBSBJLGcLnP8lsAHQfCRKlKv9kg+OYlAb6lIThTpGXgV0C1Mn4aQe/pfVkz6ElKHXkjavRZjLNU8od9Fmve3lzSvjGh3A9mx4Pijima/YS+LTPrR9R7zSU7St4zvbjC4I/E/NOZKf0HZRiNlpTxfPLjKYpIhjScUDnO9pH5KEVLLYpwjZhozjS40qoqSIhsgP5DotwccFgPK645sf0GWtCzKFH1rzmTf0P9chksE/buBo++zDPbnCODmP3Obt8+2+OT2fT5cPGRXz+jJmg25ZFvNcUgy0ZKJloVPUcIz0iW5ammcIstaqjKOAnt5TWosIcRjDUQNtwp4ExgWNam23OiNUSLwcv8xUnjeGEe2/EM3HvPGwS4uB3EGyTy8yw5QVwEzd13DcFhLrSIzHUGzsB7ZWITtdNtSYDcL5jdzvIlgffDOMuqmPcgm6ppj0qQipCqmPGpB21fUA0nbE/g0DmbbQcAWAZ/5KCOpossLxM9j5faTTCAdxwbL1WDZIaAAm6qoQbdRriLbC++lsyBUpYtAvHXIykam23eyEusIZXnOgqvuh0C8RwKyAubdXaE1aPUV2G4VwfdqwPEN4LMnsQX8k8D/AbjVLS+AEEIY/ra3+s1S4ivejPff52fyA8/v8Ld/8yFvHM55cX/wDe/aZV3WZV3W7/cKCA7qIV/83NOMHgqWVyLrlcwFbU+w9eUWWTuEDzRFgmwDN36+5OjsKos/avjId9/mC+YZhm8KmmHUgQYV3i0vgTULJwBnAj6JrJuZR4mJFTFFUDqwQ4fNNWYmWN5w7P2KYHFdUu55hPHo1GI+30c4WH64YvG0wKWK4jBge5pm02F7gmQsEPdylIp646AC6TMz6tqg3skxM0FZ9CF3+McZYbMleZhQh4x6pMl1i9ytqB8XiFZAGvjy4R79vOaZjRPOpgX2QcF4I6cwDffONtgvZuSyoZ/U+FbSOsVx2efF/mH05W4Kjpc9EuXYH8w4WvQ4fbDB450hW/kSfd1z58E2g8PA4pUh5UcniI0GTjOCjMmE9WZsHFNjjVkE1Fyi9lqsTlGZY7lMoVaM0orHswFNo2lvNAw2llgnUQL2s5p35tuU1qBEYGdnxvHJgJB6pp+0XMlqytYwnudo7djsLzk4GaFSR5JY6gDlYUH2WFNuekQSEFs1vWcXzOY5y0qjjhPMXCBsHFCpCrY+K6k3hyyGgXYY2Hw26sv9D9TMH/RRpURPNL2nGq72pjzVO+NHd14D4IqZkIkWiadB0RMNVdC0qwZD4bmmzxjIionN2c0j610uUwiC+SJDDUpy0/LoZITovOWHOwuakWa+TBlmNV8e73GtP+FGesYzxQmVMyQjx4PFCNsqZOeWUmnRyaYExZGLbHJg7Uet51GS5VONp5OSlG0Eoi7Q7PVZXklimuXjFnNWRacSHd05ghE4kxCMou1rmqHC5jL60Ses5ScxCTIy2MIKfOJj4ytxQKtcp+VeRv9t4Yj2mieBZNr1XHQDYpeItVXfu0yuQ7Q/FC76kgv/bugqXEBXHll7knGNnKaRvbeO0DTv1n+vJCIrlttFtjzYTn+2apDs4u6FVvExIeJxEdGZ5bdTXxdwA/8e8E8CX+hi3S/rQn21pMn3Owb6vudjs8wvvnF8Cbgv67Iu61uiPIIvnl7BXFkyawtGbwhUFSh3JLLpvLMbjXQ+ggcTG7uSSeDkzS16H265+ZHHPCyv0r8LzSheECUBLwAVOnlJ3F4EJPGi3g5iOp2ZRzC2YrrNWFHtBEZvwvIGTJ+RpGedZMVJhIBy37P3q2DmGS6NSYPLPYGZgqr0WrOanQgW1wN4QX6g0F8eUT/lafdbVJUwekUxfV7g+w4qhUtg6zOa+80ei1tnSOnxAtITSbUfQcPZpAdA8AJzY8HRtE8/r6lrw7jOuZJNuZpPebW6wem4z9bVQ24vd5g3Cc8OKkZZRU837GZzvvzWNcxGhRaek7Lg4aNNdOpweZwFKMsEAphZJwlIoh/1Si4we0rgrlUM85rJNY3SjuAF6e6C0hrOHo6Q/Zb8yynTZyTZZoV/vc/BtuMwG3Hj6imtU7S/vMXO48DRH24Rc83BwQZPXTuhl9fUrcEHgXeC3qCmaTRKe7wKtC8vEUEgRCA4waJMaSexw9ENLW47gBWYY71mV808UDyGcldypjcJ2pNfmfGj3/VFvnh6hWWdUJiWzaTkqfSUl9KH9GRs6r2ilhgBRy7BIWiDZkOWnPiCnmhohOKh3WTuUj6xcZ9JP+e/b55jmNUo6ZnVKWfLHG2iTMaWmqvDKcOk4p3JFplu2ckWfLj/CIDWK57pnWC95O3pFld2JjycGZq5pngcaHJBOgvYTJJOHWppkdbjU0WzkWKmDaps0TOPaB3BKJY3ByyuKPITz+hLY0TVgtHRqaOz32uHCc1IEySdF/nq84/Jl/mJx5v4uEtjkqTwkJeB7ER1g9+oq0/PBNmRoB2cNzIDuDT660vX9VqsgmQEXbT6e/yvO7Tadtaf7/LCDgLhZQTzNxKCjN7uso1SITOzJOMadTKDqo52gD50FoBRl47vJCgr6Y3WiI7VjimW3SAidG4w8L6Z1ScB3PeAL16C7d9aF3Xa79Vsv19ZyI3Ngqe3C375rWP+2R945gPZv8u6rMu6rG+khBAK+HXgQQjhTwohngF+GtgGPgP8hRBCI4RIienDnwJOgD9/Ibfhq1bjFY8fb5D1G3Y+eoj4KDx4uMXoswn9Ry4GT2iB04qzlwz1ZmzA8iagasHxL8bsguTbJpxtF2x8IUoQXC4IIqytyVaAOwBCxBS8oALtELwRJBNQZVzAawgpLK8I+m8rZi+2CBd1rdQSmyhC31LuRjA6vOsQb8f120xQbUnavqDci5dMVUcNeXXV0fYl/XckycxQ7kYQsfklQVCa+U1oth3Vtmb7M5LJbBt7tUFYgR0EencV1Y7CzTXHixH5XUP5VIsZ1kxmOYNeRQiCxmvaINHDBneUMbwVTZobq1jYlJ6OLhOTNkPmFu8lXzy6ggD6r6TUn1qwuOFxGxZKjek1IKAZBfoPAru/abn/IwrRCswCmtOEZqAJhyltEvjwR+4iReALX479SNo4ypcr0rzFv95n9DqM/4cV4U6P4dMVD483yD2cfRhoJWopKW4umVYpk0nBld0JD9/eIb+vmT+tQAZE57UdvCBJo8zHe8H2cAHDBWVjGJ/2MQ8SsiNBeSUw+64SpT3tJCV/oMFD9kjRbAomZz1+sXmWW9un/MD+bWqvuZmdcs2ckQhHT7QsgmERNLvCMpAtM29wCO7aTRLhcKIlwWGEI5WW++UmM5vy0d1HGOGpvWaUGM7qguN5j0Rb6txwWhZspUte3DxiaQ2fGN5jSy340vIa22bBnWoLIzw+CDazkkc9S70tkY1EVXGQmY67JsZUIa1HNB5T2shAN5Zmt8fsZkK1JRjc92y9WqImVWSBlcQOM+rtlGYgcalYh+aswK9Z+s4J6ALmcWBqj7TdALYfX7AKnWr7gmZDsLziUZXAzON5tgKsQcdzT7gQyeNVZDoXgPeKjBbnjwvf+YobccEb/Bywr3szPICg3oQgFUGmyGaIWQSyiSM9a9FnJXJWQtNGhhsFdGy4taDTtTtJECIy7517S/DiA7UFXNX/GvgZIcQ/BOrVgyGEf+d9bembtD5IufX3Pb/D3/7cQ6zz6N+G5cxlXdZlXdYHXP8S8CqwkhD+W8C/G0L4aSHEfwj8z4G/1v0/CyE8L4T48W65P//1Vr5oE/qtpH2nz6HrYzctvd0l+Z844+HxkDBNkEuDdKBnkB3HhscY7Rw1oMtPlOzlFU+9eMar4jqbv6Fp6Lx1RXQhWUc0yw6E245FU1FaAJJ0HOUlQQmsDDSbHr2U5HcNy1sWPVEgJD6TyNRR7cbpcVVLsnGg3JIks+gKYeaRFVZNWDdzphOBaiJw0UtH/34XQmIEzVDhjUIvNC6D+c1uwNBKzDxqYZvNgD/IoHDofovLNOZUE/otdpowv1fQ+3jDfjLltLnC9Z0xD8WIyhlKazDKk6uoT5XC85mHN/HzOJBYOMH21pyjl1pubU+4szAMvpTQDCG83OB1bPhMpi42hE4k5VWLf7ohnKYxxGUpkDcWPJyeq01FYTHG0ZxlNEEg8sDiusQ2GnGt4sFkBI9SmlGg90DQjjXtxxdMH8VZ3t2nzqhaDSp+HgQQc41eCtJTgXAa24NqxyN3ag5OhxAERa/ixtVT1HVP2RraZUY7zfClRmQOPrHEe4F3EneWIoCN/hIX4nX36eyEfTNBCo9DcOj6eCQnrs9j0VIFQxUMp7bP3XobIyNIa73iUT2idAYtPJWLABtgM112xz6w3VvigyDbmlKYlrlNmTUpPdPw9w9fXmvsh6bizmyT7XxJYVqWbYI2jjZ3NBvRErH/wCEtmIU7D6txHllbmp2C448OCQo2blv6Dz2qdKh5je8n1JsDbE8iPJi5Ix0HbC8mbNqsC6kJoCuxnikSvktg1MTZJBeTXM0igv7Q+W4n00AyifaE9UZkwqudOOujmkDobK+FZz0oXgHsi4FWF2vNgrNixTu2uVuHoPPj16z3HUA2oOp4vtkCpkONf1YTZN4FYwWyM0/v7vycBXed80kXfiO8J3BBx71qxHwf9SSA+98E5kAGJO9r7d/kJS4McL5RSQnA9z+3w//3H9/lN+9P+NStzW94/y7rsi7rsn67JYS4AfwY8Rrwr4g4bfcjwD/dLfKfAP8GEXD/E91tgL8J/N+EEOLrzoyWivyOITuJzVDzVlPNB5RigLpasvvcEaezHtVJjploklkHUhX4EFi86NHax4jsNiHdqGiHA7LjQDMS2J7AZXEqHBPWF+tgOp13EKAC7cAjG0k6iQE5QQi8gsUNz8ZrAjtQeBVBdJ2rqBNXsPfrHrNwBCnoPapjCl8RbQ1dGplt4QKqjrZsonX4VLO4njL60phgFD7RqNqTH7U0I01bRIa87Qn8qaHeiIewfwdcJvFG0ow0qoye4vZujn6qJLlT8PhkxP3NeO2482Cbnd0Z2+mCu+0mizrhpC6QInC4HFDOMp59/jGni4K9/hyPwO5PmVYpg50F9YaJg5MQJTSbXw4EJWj6ElVGdxd/nNJ/aspymeI3PDtFxdGDDW7eOmZcKrKtEmujC0e772CnwV63UOn4mX1+E7dn2fmcYvMLY27/2Q28l2SPNV4Hes83sXFSBlQpYhPds9G9pHlW4JxEKU9hHIO8iix+GQG0UY5UWTbTJdf6E/QVz7yNcpNJnXE07nNr75Tdp+YcVX22swUjU3La9HhrvoPtpkV81+S4anQMnYRl5WEuCSjpY2pkENRO07oYYhOCwPoI0ubNBkZ6pAj4IGicQknPvEmY1Sl1qzkNBT7E99U0EZ4FL3jkN85lFDIgMoe97pgNDMurEr0U6EVsNtTLwM7nSx78QHQz2f9MhTlaRlZWKZrdnHJviLSBdNxiluCVxBYKnwicEdi0G6zqyCK3vTi4lHal32bNQHvVpaxbkCGGTHkdJSUrCUl+FL/DLo3rXIXhrIByfKO/FWhflHGv3YcEXT9GePf/LnlWBoGH89ktEZulfSrAxwE7xOO0YsNdCtOnFePnR6h6RDoOFAct2cESusbRd1UIa638+6knAdzXQggffd9r/hav3w7z/X3PRR33//iv/TLv/NUf+4D36LIu67Iu633Vv0ec4Vw1lWwD4xBW3BT3gevd7etE+SEhBCuEmHTLf80I3ZAEymcbqj0NOpAeKQavdZrqVwpOr/eorrcMrsxotjSTXp/iUWTLltc8oeewpxnz1HI4HZHeTtFz6D+yNHPFci+CV5FFjbZf+XWrroOyu1gjiAyqlJjpOdPdJIH5U6AqQXvFIoJCzSVOKtqRY7mn2P5i9ChWsxrRWhKtIhOzti6T+GEesf14iW4tR5+8Tr+XosdLhAvIyiJah55rfKJwucbmimYoSU8EQUctan7qmd1QFA+h3oR61yNrAfdzypdqsrTl3mKD68WEa1fPKEzLQTmgtprMWKQILG2CD4KNrfmadX3rYAdjHC/sHfHO2SbLZYpUMQlycUOjditmNwqKoxiPrpo4O5Adadx1Sa+o2dk75c7hFqKS0fGkb8nTBu8lMwXmccIz33WP0hruf3mPUDhcBmqmmN+QHH37CJ87sjdy6r3oklFZjZaemzdPuCe2QQZ62rM4KhC1BAVOBhoZWFCACggdcFbxzjxDyMgUIwJShjVYztOWjUHJwazP6TInM5bWDZmaDC0jzZpISyIdWp433KXSkatmfb/2Gh8kNki08CxsQp61cZvASV3QeB0ZawIeQWk75xXp1/uzug8R4EsRqFqNdYpATGRNtENKT9UYltMMMdeIVuCTQGM6x5IA7UBw70cLZAvDO562pwmiR7lnaHNB77ElPbMELWiGZs1mt32BSwTJNKDaQNNprIHOzlHQjOK5oepw7j6yAsqrZElzfn57I9YhVBGgRw/3aDPYNXiGC+vpCORwEUB18pLQgeOLAF2wYrjjAHr1uhWYX7sVrV4jz0OMvOmW7QYSqgwYG9fbFnD6cgIfSpCdZr04bDBnFVj/2wLb8GSA+2eEEH8shPCzv60tfBPXRUz9Wxnu94+4N3vnEwjz2tJPn+TjuazLuqzL+mCrc6c6DCF8pste+CDX/RPATwCo7Y11U57XAlnHqWizjMAumQv8bcXi6ibNUw7zwoLlC9CMU0g86tSgKkHZDOg9is2Ug3uW5KxBWoOuJYu9zobPC1w4n3JeBwV37JjPAmVhIWiSCZg5ICXNyKNqSE4UzY4lOdYwVQQN1ZagGRmKt84QdXMOtE3HTiYGu9On3koo7s4QixKAzTda5rdyNsZLfBKZSW8i2hDdBV01nnQcSMcgbaDtK1wiGN512DSCq6BkHDMo0IsUPlbjguSk7jFZ5py6Htc2J0yrlMxYrmQzaq9jQ+PRFneVZ7bMcNOEnadOOSkLZgd9SDzawvyFFjE2iL2S8mpg83WHyyWT5yTpoaK6YsmDwHmJ85JBr2Jcak5mPTZ3Z2TGcnA6xBcesZAo6Xl8OiQkAbGI6YVcrzAvVOAUi9OcZsOjJzE+/OiVXdLTGK7SazpHmSIlzSHIgDdd3LoMkcE1DqE9tlbg47S/FyATh1IO70GpgAsC12pUB3Ybq0Fb5k1Kqi1GOhLJGjgD+CCZWU3pDFJ4rFd4IlNtg2JaZ9ROMV1mVGWC0g7vY6pmCAIpA84J+kXNZFqwtbGglzT0TEMiLUubEILAKEfrFGfzAqU8zklCEMwWBlcrhAxgZZylMQHRCmQtCIYoPw7QKYc4/ni081OVis2Lp4FqS2GW8pxFlvH7XxxGwF8PY+NkcdQNALTApQJTevxcxETJ5N1gfC3ZugCeIQLqOBAIBETXfMj6dcGItS77IuAmnN//LfKSi9vw3ayDFO82Nen2Rbjz+6t1rzchztflBQgl8CsIFlin0wofY+dnT2UEmWFm0DtwFI9r3m89CaL754B/VQhRA233ti9tAX+H6q//xPfw53/y0/z3rx/xJz529fd6dy7rsi7rW7O+H/hTQog/QZQTDoH/C7AhhNAdy30DeNAt/wC4CdwXQmhgRGye/C0VQvhJ4CcB8qs3Q//1BL2IjgLtAI4/KTBTTf9+wOZQbwnqzUDoOZpJimglZrtEykA7NqiloHcfeo8d+UGFLC31fkFyWmHGoKqM+VVNtRvnl4UJkd1asWmys/+y8bFm0yOcxCxAz6Ne1aeQnAlsT9FsOtIjHWUlGqZPabzZov/6WQTbiUEsK/zmkPLWgCAE6XHN7PkhPD9El1HHXW0I6mtD6k2NVwJdeYSD+TWFaiCdduElupviJ1qjtXkEQN5EazW9hLYX2Uf76oA3r2Wo3OJPUtR2jRaeG6MJUgReneyzbA1SBPJRhRSBG1tjbteanWLB2ydbiNwRGok3IHJHcqCpkwyRh06DHghKkpwK2qFkbzjn4WeuMvtoy7JKUGNNkzqubU5wXpJlLeJOgWwie7u3OWOStczPCnzQcJgx7hnMsSZfCPLDiIKmz8LghTGTs170B9ce9TDF5QG1W6HezCkOBNOPtrF59QsJi+9qcLWCRq6bK2Xi8Gcpte3AWS0oNy0icYjThORM0o484mrFp27d5eODBxSqZkMtGcjYcGqEZewKqpB0/tuCmcupgmHuMh7UGzxWQ47KPofLJDbUaXhu/5jv3L7D7cUOB+WARZOQact8mXJ1MOWp4ozniwMK2eCDYEvPUQQ+PX+Oj248pPaG+8sNEmWZtzEAZ9akPHy0SfYgRdbgE2hGntB9P1waqHcj0pS1xEwlehlZ3GYg8EnnjS2itlmETg5i43fJLD0rUj90QFp2zh3J3GMWke1eAfUgO013Jz9aNy/SvVbEAB7pzllo0aVBBtmdh13/48VmSX/BS381OF43R8o4tl1pvlfM90X//XWJd9/26sKAwHeYW5wPPOj2m06GsmrEVHW3vIKzFxWnHy5o3lBf6Sfuq9bXBdwhhEuPuq9SF51I3utK8tttpvzUrU22egk/+8rjS8B9WZd1Wb8nFUL4i8BfBOgY7n81hPDPCCH+BvBPEZ1K/qfAf9W95G9393+le/7nn9TZSlVAiFO8ehEYTmB2K1DuRQ/lct9jri94dvuMXLe88uAq/n6B6wJugonWZctdyXK3wHbg0xu9vlgKK9a665UfNz7+iS5NznehY0FBsxmv4GYek/PaYdxWdigpr0RUoRexWcsngmpDEV7eYnZTkZ16ZAuLK5JmI4Ia0KgmalttT5IdRQbRpRLZRlA9v9ZFpUuBWXjqoaTcEWtdbjoJ1KM49X9ulyZo+5HJy48DZh5wbxpmtxKqpxrsNOFNt0vwglAr8q2S1FjmiwyAg9NNjgqLNo53TrfY6JVUZYLuN9jEE0pFMok+49LC5OmE/NQzeAfGH/YEAXfe2kPeqEi0wzmJ63l6RbOWqyxbQ/m9Y4IILNuEw7MBvF1w7XOB5a5k+rxHLBXtpiM9i8epf7/h7COG2SJDZy1papmfFAw/csIwq3nn7i7+2Yp6buhvLcmM5awoSBJLNU4IqYs69NpQZA2TVhLKKMEAQfJYg4j2jdWNFlRAPcr4x+PnkZ8I/OjWq2ypOYlwGGExwrGhlhzZIUp4DJ5EO05sHxQY4biSTbmSTdHSMy5z+mnNfjGldIZvG93luBjwyuQqtdPsbszJVEuuGs5sDzQ8aja4YiZIPD82+k1+rXyGw2bIt23cow2KR9WIXLWcNkWUm2wuSbTjbFoQjjJc32N1AA/p8epzi0B7FfCEh3YAPgnr75BeCmQTA56kDVAKvIoNgarxqFkcWLrOFUQ1MWjnIsgNSnSBU2LdJAzxee8EJFHbHToZ1xo0q/AeZrqTmqykIxc028hzoHwR0F8EyuvlL27/gpZ7peuOK4nHZjVIEJ5zi+4V8935+fuL+9I9L+sL63rCepLgmz9D/PGcdPc3gB8KIfyt97epb766MCPx22qS/EqlleRHXt7jZ195TOs85tKt5LIu67J+/9S/Bvy0EOKvAJ8F/uPu8f8Y+E+FEG8Cp8CPP+kKVRVI5ucX5LYQ7HwhRHszF9i4DS4pONnss7wqkGm0BAwCfBpoRp7qigftz227AGwn0WgFaiExC4Eqo49wkF1jV9L96YDsrqbeBLwOuBxUE18jfPSe1iUkZwrb8wgnMLMIdpuRwBZR0tIWsVlTNlA8iu+NAOVOxxpbQb0Nso1Wab5rUpMWmqGgGQWq3W7K38dUviAFs5viXY1mK21sUNEH2WaR+Q4Ckhn0Pm1AgM11TAHsQ+kFZQAyB0GQblQ4q1DKR8/vcG6zZ48Nei6pNwPFo+gn3g4FSMn2KyWn354g6tjgWF0LKBEY9kv0aMEgrVnahNfuXYGJidKHwvL81jGLvuH0quaIpEtFJA40jI8OEs8IhE+iG82DnPRQsHjasXFjwrJKMcrT2ywxyjET0DRRI+2PU6oNCYMW/Shl1gzQGw2LZcrm1pyqMdE2sdE0lUZoj76fYu5H0XF1s2VzfwrAsR2QyZZtNacKhhPX54qekMkGFyRDWVEFQyZbBqKEHD4/v8EXT6/y8J0dSB3lyHC6KEiN5RM7D9lNZhS6Yd6k7BczrJecNj12enMOmyE7ZkblDQNVcuL6DGTFtd6YmctY+hSfRm33hlmykZTcXWzSOsVub052o+W47PPwZIQrNc2moNkAJOi5jN+VzutazwWy7Zohh6Fjt+P3yqWC5V7UcQcJ9Ui9CzwLC9nYn39uRLC9AuLCdzKTzrbPq2j7t1q/V++RlLgLrHSgQ76s13EuVxHv8uWW9oL8BDrHlG43V82V8sJ6LgLtDjivkmdXkrKLf8Gfg+73VlDdb8cqYOt91JNISv5yCOG/XG8shLEQ4i8Df+v9beqbuz5Ie8A/9uF9/uZn7vOrb5/y/c/vfHArvqzLuqzLep8VQvgF4Be627eB7/oKy1TAn32/6xYO0knoZAqxeUu1AV16bC5JFg5Ve2SmojtGHS/wtgi0I4foWaQO0aGra5BzTuLnhvRAk52AmcUmMEJAtVFXKl10XfBaYPPoCNL2YlplvLBHOYsqI8iA8wt08ThQ7kvafgz1WGlZqx1BuQv5YaB47CPYTaM2PYhom5ZM45R9kHG7px/StH2wfU9+EH2Vk7FYgwLpiOy6Anz0INcLQf9B3KbNwPYEtsea/XEJtKOA2OU8eTBEhl9WElkJfCUZfVkwfV4jbyxpG41tFVp6mlrjlxrRt1itMKeKxfWA27CIe4b5DUEzKBBFRW+/Qt4K3BjMWbYR0J6O+4zv7ZC8OCVUiuFbiuV3LXGnKWd1QfOPdrj1hZbjTwiyo0C5J8kPA9PnDKqKIUJHnwqE3JE+MixuOkQjmC0yfCupk5bUtOwUS6bTnLbSKOXReyV0Dh/J81N8mbC3NUUAWnqM8iTKYZTj9r3dCDj3WzgytJsW3WupW83SJlTesPApA1kylBVIqLxBEVCdMFjiGciSh+0mvzJ+jl+5/QziUUbvRLC8IViKjGduHHE46/Pph7fYG8zxQXCyKLj7aIv+qOTpzTN20jmFbChkw8KnSOE5tX021LKTsUTNeKEaKm+Yu5TjusfTvVNuZqccNgN+4/Qmj0+HuJmJbjyZR9Txs05P43HWVYhWfyoCYJuBLgXVTox+p2s/iDMxYs0qB3EOyO0AFtfVeaNhTbTBXARUzXkYjonPr6QoEAG5lEAIay33So4CRJ23PJdwrEDz2s5TrkC4WLPfcA6ovTkH3UF1jiimcyJ5D3O9ZrsDCH++vhVbLtz5+bRe52qb4cLr3mc9CeD+Shj+spuPCLK/2iH/RgD4H3phl8xIfvaVx5eA+7Iu67K+eSuAdIGmH+UT7TBQ73UuEUeC3gODbGPsui1ik5jNA2K7ZtCv1o4SK/u1+VlB8WbC4I4nncTgD28ELpU4A86AzyUuixfXdBJIZp500jXPDRTVpqDalrSDgMvotNwRLNtMIFvIDwL2aWhGMeCj7QeyE9j+kiM9tfhERqZZR4Yv+obHaXmvI1Pde2xJ5pJqU0adeBLZ/mwZsHm0FFRNBPVeR502U0HvcWT+Y5KeIDvrmgdNlBD4LUFyJuLgpGP+IvhgHdohG8HiekywtFWPYMDmnrN5QjKsERsWIcDngkamyMKyNVpQbRm2e2W0v5v2mB/0yR9o3royhJ4lOEHy2NBueHrKIQtLtaOx44Rsf8k7b+0zbKMMp+3FwYPtBfqPLOW+oR0E7E6LTBzmTsbG657Tj0javRbmhmJ7iQsCCTycDin6NfPHfWoVkybDQoOEVnmyvGFZJ2jlOasNdZVgEov3gqwfnUYSY1nmKSqIaFN42OMLZcJpVfCH998kE3G5ZQeEE+HYVVMyYWmD4nEz4v/++h/GfmaT7XvRucPmoKcSi+bO4RY8yJEt3N4rEHW0lMwfaOY7CV9aphS64aODh7RBsaunKAJbeo4PkioYli6lUDXPpEcsfMqZ7bGplwxUxcxlHNTDyHRvzvAb8X1MFjnVNEXMDdVOYHHDI9s4WxM06MX57Ez/Xvx+BAXJOAJz4TvpSN35yMsVfRzPm7aLeBchvrbeiDDRzAPJ3JOssmMyQTMUawBryhAlVCZKPVQDoWO1V3KT1bZW0pQVu30uD7mwvDhf5mKDpGzjYMAlXTqtioPoFZiX7kKTpYjymRUAX/0urQj38A1guffWkwDnXxdC/DvAf9Dd/xeICWOXxUVJyXs03N+AyCRPFH/ohV3+3pcO+Df+1Efed2rlZV3WZV3WH5RqenHKOztZBcbodVNXvQU2D/g04HJP6Fs2thYUaYMSAaMczkuWrWF8b8joS5r0LHQXetVdiCOD5/WFi3ET0GVsQGxzhWoj86xLT2EFqpI0GwKXRFCiq9BpVzsWvo7OKuU1i5kqssOY9ueMoNrWMZnPgVo4pPN4JWOqnpUEHZBNQFUOr+P0/fyGxKWdd7eH3iOHN4K2EB2wjn/xeAmSeQQRtojMvC4jSNIltLbzRm7j1LhsVgBEYFux1p8GGcFX/16UslTbEjmR2JnC9x2DvTkbeUUzWCJEwHV+0o/e2CV/pCAPFEuBywNBBZK8pZkljF6HyYuS/Q/NWCxT9EKgFxpxxSOaKLWZPqWxPU87iIBILx2br0tOP6QQ2pNkFj0VDN9e0gwLZk9b1Js59WSIG1kQcOXGKWezgs3rE/KkxUhPYSJAfjwbxMh4p5jOcsJJGtM++xqMJ+s31EtDPStAQHqk4kDuao2UgcYpTtseVZpQhRYjHDOfkanoAb4ICaeuz0/d/QH8r2xSHEdwShAoFSU4/ljB20UXjw5tKwnGU7xtcFkc7FR9zePFkFvFKQBJ4qi8wQjHQzsCoFA1V/SEKhhqb0hliwuSU9ujdIaernl6eMq4yVm0CYsmIU8bwoDYKOoFpB5ODHoRB7UrRtjMAuk0WvW5JDLb0oEuuxmaPDqLXJRXBAGqXfltC5JZ6FjreH+5E4N0knkMgUonDpdKmoGkHkSdeFAiBtE0HmUv6sG7XgtxsU/hnBFf67FXriQrFlzEIJ3IgotIE3eNjusgnC4p8qLzSZSaiN/CXl/UC79LonJRH/7bqCcB3P8i8JeAv97twt8jgu5v+XpXtPt7PoRvFCP/0Q/v8/e+dMArD6d89ProG1vZZV3WZV3W78cSkRH0iaDaJjYjxl47bBHwSXRdCJlD9S2bowW5aUm1JVUW24Ht49tbbLyq0FUEE9KCrsMFLWdYay9dJqi24g90Og6oKu6DSyRmES0J8zOHriVNX6w1o7qKAEKngukthe0FsseaZBaZPdnS2ft1FofdFVu0HulBhA64VBFsCxcwIjLo0hrK7ZhUiYCTj+ioF590chjAekinXfDPygO5Yw5tFsGEbKPkxaVRCy9bmD8VcH2PLCU+iVKaldZduCgpWLlVNHuW67dO6JmGw3mnCV5qaGV8/Sgy37KBMIR6K+C2W4pRSQhxH04/HlBLQWVNTEUcxIEKvzkiXLGUe3SuDxH8EeD0QylmAfWmJzSK9jjB7gQOvrMXpQhv5TSjrlG13+JOUgrTsr9/SKIsPd1wf7HBo+kQox1CBMplipvGJE1Sj5ypCK7vplTXJPlmSaOj9ttm8fPzpwn6THK0mfEbwJZZkGUN2zpqudugcUjaoPj37/wIs//8KpuHbj1QolnJIgIinLOoqobkVR2X8ZDe9agm0N413P3O6Bzzp29+nkM7ROExwnLNnLH06Vre0nZBPLU3nNmCNigar1nY6F6SqZbXH+3hDnKSU4kQYNKALmPz8ehtTzK1LPc0k+cC9SaUe/FzSMYCs4gguhXdILSJ96XrziMl1nZ76+CbEAeZQXWSERvIxqx7Mcptiaol6TRQHFoIAZ9Imn6MkHepWmu8pQ3vshNUTUB0kpSgu/4KLS6ActZgeS03UeJcW909Ljnf31US5vp3wXUg/qLOW75bwy1WUe6r9chztvwDa5oUQvxF4L8LIXwW+Nff32q/eeoJG+0/sKbJVf3oy3tIAT/7yuNLwH1Zl3VZ35QlbQyVkA7MTLK8EqUGLoNgAj7xkDuyfsNGf8kwqTHKkUiLD5KFSzh8bZftzwtU6/FKnKfZpTH63aeAP59mhnjbpbC8CqqMVnSqYX1RNguPKi1mKWkLub6gyzYwv66ptwP5YXRV0VV8/EI+yrkGtGPj1LIhKInUnW+2loxfyqMeetPjeh7SJoLZowQIpKcRXLQDgc1jo6jLBKoKtP0oQQkCbC8wfAvSWVizj2Ia0HPH7KkE4SE7UDFlr42sfbPpcbmH1LOxM0eIwKJMUVbx8HADeZRgJpK8hGo7SnnMRGJbg9202J5i8DYsrglcX1LdG+BTj56qyKKOPHfe2aXYXtLutfQ+m7C8FtBTFX22S4HteVQZHVvGH3Fsfl6SjCXtfo1zHcA60vQfelymaLYd+YdnPLN5Sv/pGiMdpTMsbcJZXawZbR8ESnrcXCNryZWXDzk4GWEeaVxf0Gx48juGaqkwV5a4YUtoDbKSJGdRu9x/WzI72OPvfr9k6+kFSgQUHiU8lTf8rbNP8egf3kBsQ96ZX67kCroOSCdwacQOq1RFr2J/gtdxgCQCmGVg75cFZ+Md/n76En949032zYRMthHcB0kbNEufcmp7ZB27LUUg7ZoLbJC8cbrD2ckAphpE1PqbmUBVYj04S6YOVXl6j1qCMFGD3QbaPDZYlnsCrwN6KSger/TeqwFh98VeNRiGjjlW564kNhPrRl/p4l86jgPIeiRY7hpkG88Xs/CYMvYyrGQfq/Ns9bugq0Ayc+ilQ580iC7xMRhFUDIGRGWKoOOL4oBarANtglw5p5wPFvzKqWilH9cCqbsmyK6JOiigy66S3W+CcNHq3XefcxAda/4+f+++FsN9G/iXhBCfAH4T+G+Bnw0hnL3PbXzz1tdA2d8oAN/up4xyw//159/kX/6jL17KSi7rsi7rm65WrFaQ8YLfDkN0CUkDIfGI3NEbVGz3lgzTir6OiLnxilmbcOdLV9l8NV6wbSHXMe4+6aQoWcBnUeet5pL0RKJWEosGfCVoe7C4Keg9CCTHqwbOuIxeeoSN67aZZPZSbJbMDwRmHmUEqolT5KtGLBmzc8AKXKfllo1DVi0+M9hBwvxawuxWBHfZkUS/IxFes7gZyF8es9NfcDzvRXJWBGg1QgT6vRIlYnCLEmHN9D/86JDJL2+z/6s19aaOWvRRZESHb7O2DrQFlNcsxf6CIm3ZLhbMmpRHb+wyei2yjfXmuV5XOEim0RYxHUN+CPbQnAOjFvL7kblth5FRN3Oot1mHkuR3EtKxp96UDB8GZrcktu8Rmw1ikUVAlHrOPh7t7MSDDCVjk2a9FXj8iYbnrx7xsXyOFDGe/ajsx8+0i0ofmIqDdkCetDQ2Au98u6Q8yzme9NHGUm959EShy+gEgwy0pSEpWuzERHbdRKebek+AEywPhvzi8Dl+YOst9s2EJijGbpP/7pc/SapiQ+2qKbYjoNf6Z9mllqwaA6WKswuqZm11J220hEwmgseTAYMrFW3QzFyGEY5Mtsx8RhsUbVCM64KeriOrjcCFGLwDII2HWmLm8XOI+9HN4tRxFskninqgsEU8Z8w8gn7zMDC80zX/bkjKfRFTQMs4I6TqsG4eli4OMON7jQNVryKwj42LIlpsrtxnZHzNSg/e9gXVdtxnVYOwcR3SsmacfQJVIag2NdJqdJV0520gmVrMpMaclRjfdUP6KGtBq8h6axmBuZZ4LXGFjsFRJg50nOnYcN3NfKnIorukew8d4+2yeBxlt3+yC4+NjRHvH+d9VcAdQvjrRBkJQohvA/448F8IIRTwc0T2+1ff5/b+wNUTEty/5ch/EAD5+mbO2bLls/fGfPtTm9/w+i7rsi7rsn4/VZCR2Zo+HZvnfBLwqY8pkrmj16vY6S/Yz2dsJCVaOGY2Y9zkvPnGVXY+F6eIm4HAFudNgrYI+MITdLwgy1JFUH/VoZcSPRfo8hyUeAOzp6HeVIxuO/TCre33VOXwieD44wphoXc/MnSqiay28AE6L23fXQhcItHWo0uHrB3tMCFsprT9GDdfb0TtszeBOo0soDmTDG4Db29w9wdTru+MabsEx9RYeknUJ/sgSGVkW3UHOJ/fOib5Uwf88s2XeOY/t2SnAdF6fKoodw2zW1B87IynhlNOy4JBWnM87/HGb94kPZUUbQTjLhFru7fVoEVVgv47ETDpOlAc++hEkQjMAsw0dHHeke0s9wO9B5L5h1rsl4YUJ1FrrhogQHoK9b6HVmI6b3KZW5iltAOPN4H9F455ZnjK4OMVszaj8YqD8jwSJFUWLTyNV7z2cB83M+zeGGNdHAlsFiW5bnn9LKetNdo40AF3tcE2CnOiCa3AtxLZizMDvfsSbySyicei3nPI1PFoMeR40GdHT8lE4G8+/hQbrwoWN+PMgkuiLvmiVd3KYYYQvxfp0q8da6SNn/dKn59OHNLCo1t9Pr3/DN+58Q4AmWzXUpKJzVF4hrrswLfEB8lR1efBbMR0VuAqBZstPlOkRwohI2C0efST15XEzH2Uf9SdlKqIbjnR5i9+d4WLdpYiQNMXVDvnjZaqYi2dkra73cW2R8Y8yi1W/Qgxvj1KNFbgO8iVN30HbtPOS75jz2VL7HFYDUxkbMpcNf0Kr1B1gll2Dc8nDXpcIZcV1A04j3CO4H301Q8BA+RanwPyNAGtcL0kAnMBLlNUOwabCWwej41z8b0L3w2ku/trnffKgvQJ64ncRjpZyWeB/6MQYgj8UeB/AXxNwC2E+OPEdDIF/D9DCH/1Pc//u8APd3cLYC+EsNE954AvdM/dDSH8qSfZ1w+6vh7eXklOvpEmya9W/6//2XfxHX/l5/hbn31wCbgv67Iu65uuvBZMnhOdXjsQUo/ILSazFFnDTn/BbjZnJ52TSosPkdW7fbTN6EsalwZcJtYXRS8gdEyiaEX0CBYdy514hPK0aZyKtsvog60XoBd0biYwfk7ReyjpPWpQtcf2dATbbdfYuQgkC792T9DL7iqRAWHVeBYQIbC4mmAzga4jGy5CZBXj60Tn0iDjoGEIZ59w4EDdzVkMlwyzispqnJfcPdxCSM+VzRmNUwySmCJpg2RpE6Sp+eFPvcLPmw9x67+CxX7Kybd7etenfPeV++wmcx5VI15/uM/slT1UDbnugFIF9eaK3YuSHlVHFxSfQL0Z91UdhDUz2/Qiy5+feZyJPuJmGSh3JG0fzEHC6K34vsw4HqPFtZiOKSuJTx3NpkfvVDy7d4q57tjJ5igRKJ1h3OQcVX2MdPRNzXa2YFzn7GQLPv32M5jEsj+aEbxATzT1vmZ61McMauazjL2dKb3tJYuDHn4YCIVFP0px12raTVAzhZwp6sQQMkezIdBzgcujj3nQktpomlFkl5c+xSN55fZ1NoHhW1Hf7JWI71/G791qEOaMwBt5Dr4hAu2+iMAxxIGbrD30FJufl3xx/yo/uPX62v/7zPa4U22vZzRWfQGN19ROU1rDokpwpynIgJ7FgWW96ygeKNQsfr7FkSc/bKJbT6pwiegah+PnGTX1cQC5klo4EyUno9txMFFuC+qtCIL1UqxDY1ZsvnAxKGbNCDexB8Nm8ZiuXE1kC6JdMf+sGxwD8XbbZy0LES6uyywCykX2PKiVFaag3JHImxphc5JZID9xpMclcrxAlDV4D86DFARrEc6BEIiqBiHQk9W0RDcb86aMgDxL8EWCHaTUW4amJ7H5+SzGSqKyckZ50nqS4Js/S2SzZ0KI/w3w7cBfCSH8xNd5nSI6m/xR4D7wa0KIvx1C+NJqmRDCv3xh+X8R+LYLqyhDCJ98P2/m97J+S9PkB7DOnX7Kj338Kn/n84/4S3/yw5chOJd1WZf1TVUujR7UPjmXkKR5y6CoGKQ1V4sJG6ZkqCt8EIxdwTvTbXh1gC2g3QeXeoS/YPNFB3osiFoSEg8qnHdB6YDvW4JUmJk6dzSo4p9PYH5D0PYT8mPP0ackegHpGegqakuFix7bQUHiA6p2BKEJueDsQ5JkDPlxZIGrLRHdTYoIVrLTQHHo1l7cqwasZAL5kWRxHeqbDeNpwXaxYJDXTJqMvKiZPRpw7yzj1nOHLNuEyhq2sgVaeqyXLEj4oY+/xv3nNtgWnq0gqJ3muOrzj159kY3PJFy/Y3GpI0iwmcR1gFraqP1tR56QeZwTyKVEl7E7LCgodyX5oV/LZlbAymZRolCPBHoZNeZmKpCtRy8hO3XMrxnKm5byJjz/wiOuFpO1PKbx0f/6uOojRaDQDfv5jNIZXj3aZ3Z3SOg5CLC8ecJwsETJwKxOyIuGcJZTlgmq12KPc5K9JalyqKLE7Ujs7T6i8Ni9FvMwOpY0+20MR2oUmECz7bCFRLZRZiRbyB4YTt0Gv5HfpNhtMMJRvJFESUU3uHJp96VrRdTgu5V2O/YQiADWrwCujw2krICrI2jB9JakOAiUZzn/ePIML/cOyGTLcdsnlw2nbY9Zm5IpSyotkyZj1mYsW4PRjrJnMY+TtWOMmUoWz7WxQfNAk52CTyJ+iBHlYc0mehNBchDRoUR0AwYdU+0JStDmkMwCWecAVG0L6s2o70aIboaD9WBsJWmRDXGg4M4lJzaH0OvOU3seYnOx0TEmz0JIQ3Rb2Y7ns2o67+8la7tNl4EbCOpNwfyGRLYGVQ9JJ57sxJE9XqJOp9Fk3HuQMv4HcB1ilhFoY+N9EQLSOpJ5TfIICIGQGHw/od5MaYZx0CI/aMAN/KUQwt8QQvwA8EeA/xPw14Dv/jqv+y7gzS4oASHETwP/BPClr7L8/wT4y0+017+L9aRNk++tD0py/ac/eZ3/5vOP+EdvHPEjL+9/MCu9rMu6rMv6fVBBxrTIkDlU7ih6FYOsZpDUbKVLrmZTBqrCCMfSJ5w2BfcfbWF0oN6IEdUICLprsEwjze2Xat3cFeCcAREgVEBoD9MYIx4BRnxOttGTV6QxyGbykiA5FR3YDmsnhuilHf+XO5riIGq/51cV1bWW6irMFyp6Ad8sKX4zZ/i2py0Ei+uC8UuC/EBi5hc8sokMmioheZhgb1XMmpSNQRmfC4Le0w0Hb+1w58E2f+jlN7g722LRpuzm0a7OBknpDE/1ziid4QuHV1k8GHDtH8AzE4sINfWGxhuBbKMji7RR12qLCJL9iUJYhcuh7Ue5SLPZDQqmgiAlZtYdAxd9zvNjSzKVTJ7VyCbQvx+YXxecfUjQPlVT9Wte3j1gZCqkCNReMW9TljbBBUlPN2wkS/q64f5yg8/du0FbGnCC7IHBmIAvJe5qzaIxXBnMOFr02SpKrK+599EEX2tuXD3lvt2kHmccKY9WnjxtONuyqIlC7rR4o+k/kLR9DZsNwUpoBcmxwsyjn/MqREVXoN/R3Cmv0X5UcaM/pjjoHE1M99kpcHkc8Kkaqo7tXzlsEKLtorTE4KPSd/IKgQgB0QSq7UDxGMyxxnqFR3Bqe4zbgplNOasKrvUm5Kpl3OT4IClbw8OHW5gDgxFxgGAH8VxqBxZKRXFP0w4C06dlbADuSco9sU5a1Iv4vfYmDqCcXp0P8Ti8KwUSus/83Amn3BWgo5/9atAVVoOQjs2WNiDLgBJRfqMq1sE0Lo3yr1WQzCo5NfZ1nLuNQBwIu9xHSQfRS16VHaivu0ZO0yXHGmj7ksU1CR8doRcj8hNP73GNOVogFuUaXMeV+3PQDfG/EFFT3N0WrUVNHMWkpJASnxtU/f40JU8CuFd79WPAT4YQ/psu1vfr1XXg3oX79/kqIF0IcQt4Bvj5Cw9nQohfByzwV3+vouR/mxLuD6zJ8Qdf3GWQaf7uFw8uAfdlXdZlfXOVDISexeQtvbxhkNX0k5phUrGXzRioilS2+CCZ2Jw7003kscHmgaBDZ+cV1j/AMnEELwjaE5yAVkb22wI+emDTSmg06STqdZNpBNLrEI2uYXL6PCRnkuwkykZW3sNwDsx9iCDi7IWE/MQz+ZAjGcXGTjeQKONoT3J6Dz2qDZhjz+CeY3or4fQP1QjlCZMEWYsYQV9HyzNVCcK9jFm/osoNhW6QIuq1lzcS3Kc3+UXxAt/zwm0OygGV0wxMjcGxsAmlM6TKMj/skR0pyp1AdhIt2fSyAwndlLheQjIXaz1924vMe3oa0HNBM4Jqz+NzT60ltic6+7UVAIdyRzO/Jlne8JhrC65vTXipNyZX0Ty8dAbrFbXXmI4WzJSl0C2ndYEUnn/0pRcj8KoU25+RHH+XQ/Zbqqc62aYMDIYlrYuJmJNZzvGDEc8//5gbu2cczXrs5HMeiA1IPM5JnJMo5ck2Kiqf4Y8zxH7Nss0IuYNFdPUQmaPZcrhMRpu8s+gvvWpy1AvJvdE26TMWXXa+1V7gUoHPzq3pmiG4PCCcQC/FmuUFOhs8MGXXLGx9ZJWtxyyiq0l2LLg/3+B6PsYHwaTNqJxBSc87sy1CEEyrlPkiwz3OIfOoUpCO6foLJEFJmpGgvOIpX6rofTFj403Hck9FOdT43ZHkK4Z75XG9SplUHYu/1qWvkxlZyymKgwi061H0k89Owzq51WVd06ET68Ev/lwDrcv4Z3PR2XUGXM56MLCOWYe1d/ZK0gHgeh476mavvIjJmrVAldGdRdrz1zQbUG9JJs/m6DInHQf6D1vSwyVyuozm9fI9mC2Ed7PhcK7ZlgE5cwj7wQPuB0KI/4goDfm3hBApXzl98hupHwf+ZgjhIkF/K4TwQAjxLPDzQogvhBDeeu8LhRA/AfwEwFNPPfUB79b7aJr8HapES37opT3+/msHeB+Q7/1SXNZlXdZl/UEtBVm/YdQr2chKtPQUumErWbJj5qSyZSArTm2fSZtzcDhCaKImu2uIFDrE3+la4WuFLixCBEIQuFYSagWrABAHIrcEpRBeoZcxWU9XMehjldY4ezo6PSQT1qEyNo0gUziBtj66mMA6AGT8gsLsztHaIQTn/6eKZtABrgRkq0hnga1fShj/UEWyv8Q5gTEO7yXNIsGeGrJjyezxALsxJu28phc24ebGmFduDUjuJXx+eI1RUXLs+xS6wQhPIh1La/AIvvejb/Kb73yI3oHj6BMZxaFncLfCG4ktVNfA5nE6IhmzjKmbQQmavoxgs4L0TND29ZqJbwaBZt9SZg65OefmcMK3FRO0cNgOFUnC2kkjlQ7bNT6+fbCNP0sJMiCsIH+oKF+q0UeGZCKoP7bEZTnJiUJsl3h9IU3USTZ6JdM64/rOmLtui1mdkpuWEASzNkNpjw2C+jjn2rPHHJyM2Bwt8BuCZp4gZYifY6mQOzW+XVmuRGAtG7pkwqg/XlyPYFBUikmVkVZRGtIMIxXrEhAhNv65fBVBHtaezyKJg5rV9wiIwFMKRIiuKGZOBLcCNrKS46bPo+WQWZOynS/X7/9w2qdaJAQr0bUgO9K0w8B0x5M/UuilABn9281MElSGbALHn1DkB4HJM9GlRy/OT8FAHMwA57Hp4dzrfaXxXks+Vg2DdCx5FUOk6q0oNcmPA/lJbKxt+1FW49J3s+XSxturpmXZdumPy27mIItORd6s3FBWVn/d4LoLu8F1o+TEQ9qCDtgArROEUqMWEj2P32NCtAht0iihmt9MkG2CmW4weGjJDmr0pEQsq8hqSwmdjFe0nSWh7B6H3wrQn6CeBHD/OaJDyf85hDAWQlwF/ldP8LoHwM0L9290j32l+nHeE6YTQnjQ/b8thPgFor77twDuEMJPAj8J8B3f8R2/x/D4d6Z+8MVd/uvffMh/9uv3+PHv+uAHFZd1WZd1Wb8XJaVn1CsZpRXDpKKnG3qqYTeZRb2sbHBI6qB5e7qNPIzNYaIRBC9BRc2qUCFaurUSZyV5r0YpT1UmWAGh7ZIrVEAZTzqoCVtwutdn8wsSEWJUtUsE45eJ2tfTqEeWdmUjBtWGYP6Uon9XUhxalIskiLSCk+/07PZLnBd4L6O2tonBK+1QoA9i06TLBbWEdOzp/+Oc5ffNybIIGHtZxUZ/yWIjYbZZIMeGsypnN5tzUA3YThdkvqXYW8C9EcsHfT78bY9pnOawHJAoF6UZpsZ6hZaO5/74bR4ePsP1nzth/LFNHvxgQe9hIBs72kLilUbaGMmtSofLIxDXVcDryOQu9yXLm5bhtRlXBjNGaUlPN0gCUgR8ELReIWVg0Il/f/3kKR6ejWju9ygeSIrDQNuDvB8bVVeBPCKA0B67aVGNxreS+S3IDwRVELTzhHRUYYxjPs7Z7i+pneLmYEx6zTKpMx6dDSmyhrvHm7x87YB74w3GyyFn84JrO2OOpn20drjMkSSWaq9GnCTwOCVsWnACPVZrSUObBVwuSM6g30W2ByU5GfXZ7Ql690ogp+1LpCX6vevoQqJq1lpkv2qy05HJFV2TpXb+Qmy5QJVx4FcTbf7O6oLWK5Z1wniRUy5S1MOU9EyQ6Qjsoy97IBAHCu0osLzpKO5pXBrBoGyinWPypmfyrMQWgUZFZjk/FGu3jYB4l+NGUIDrXEY84ELEymsXFnE+rb9qjVjGAVS1JbqG4LB2Q4na7XMnIZucb2sl6YqJrnFsLBaCUMdttL2A60eXGXTXGe3O9x3VDRacxIeANB6dWVSvgR2wVmKdwlUKsVTouVxLgmwP6g1Y3FSouoeqemTHgeLIkR3VqGWLaCxh3S0ZzmUn/sLtJ6yvFXzzGeAXif7bPxNCqOL2wiPg0ROs+9eAF4QQzxCB9o8D//RX2M7LwCbwKxce2wSWIYRaCLEDfD/wbz/pm/ogK3wNUcnFY/076ZP9Iy/vAfDTv3YJuC/rsi7rm6ekCPSShly3jEyFkY5cNYz0kjYojHDU3jC3KXfu7zB8uJquvpAc2XNRKqICohUwNdQq0OtVDPoldWsoFwkhCIQMCOkJAaxVMGw5+5ghe6wi0Bp5hBMUBxEERReRbmpbrZrL4PjbAzuf1fTvNwQtqTYVxc6cwrS0XjItMwrVMG0zEJERTk8ik7e8GhvHVC3JjoDbPdxLU7TyOC/oJZZRWlH3lhxv9BgvctiAvq4pnWFkKq5tTLm9M0DPJSdVj+u9MeVySGkNiUzIVGTkljZhaCrGf+4x85NdRl8c07+TMn6xoBophndqFtcS0rFD1Z52qJhd0yyvxybCbLtka7DgZlKTKYsUvvsfr4u5aslVbCY8aXv80sNnGB8MGL5q2HjDsu8DwllcLik3FV4LmmEEKumZoMwE9WbAzwx6GtM7QxlhSVuAcxK0x1pFc1iQ7i1xQTBZ5IzSimcHJ7wRdjkoR/TymhDgaNnDaAceqgd93EtLjOm0QCLQNhohA+mZpNp3sdmxlQQTaDainGflPuEyaH3UuMsmoB5kzJ4SbP1Ggy4Ny92M4rBFFQppBck04oDVTIBdOejYjjXX3UxHLZGtX9sEZuNAMnWUe5KD2QDrJUIElssUNzfIuULV0coyNgdHMJyexfCldiBoBxCkorzq6N2N8pH8JK7XG4EuJbYAsxB4E6h2IBmfh7vEwxMIiAvJjR0YvhDv/q4YdDp5SYgMPEQw7/Ko5V6tO4gIqJNJNxBJIth1aVg3SQqiHeNqm9LGQUD0FVfRMjSThMwhc4tUEZ25OibvCOXXTL1zEu/iMUxSS6JrxLCb9fKS1irKWYqYafQyRtG3vUAzCpT7MLYK1RTouaA4CPQOLNnDJbKKtoMoGQH3+6yvxXB/N/ADRHb7fyeEOAH+LvDfhhBe/3orDiFYIcT/snuNAn4qhPCKEOJ/D/x6COFvd4v+OPDT4d3diR8C/iMhVqGa/NWL7ia/m/V7LSkB2Ool/LPf/wz/70/fYVq1DDPz9V90WZd1WZf1+7yU9IySklFSkUpLKlt2zJxMtGQi6n/boDioh9EdogGRs9aWigBmqtYBFrKJUpA2JMysoDessFbiSx314kEgCqidwi01ch7Z3GrPg46APX8kkDXnDZUhIFrwNjqKJAjqbTj7MBSH8WI9eQGuDuekytI2KW2rEDk0yySScgksrwg23vRsveIptyX1VgRJxWPBtN+nd3OGFNA6RSIdo6Qi32h5PBvwaDnkejFhZlNSZdnPZzy8NWN51ON4HgH3c8NjTpsixt1bQ6ZsdC8JkudGx/zqXygw/0EPM60ZvVUyv5lx8pGM+c2AHQlEEegN54zyipH0EaxIh+pkPoVu6OuG2mlmNuWtyTYHRyOStzPyQ8iPPaOZYyQgCIsuXWwsNXJtoRhZz8h0pqeQP+r8lYlNrrbwYDx6rmlH8eKr0g79evBOMlnm2FZR6IbH5YBZnSKNp6wT8qzFecmyTsj3ljR3+hyN+/TyaDH5wCraRpMVDcvrhvyBprwewIMrPGas1kmENg3YPDLXK4ea7FAwe6nFDTP0uMI/mxGkQC8diAhy66EkXcS+gLYnYuiNW9kp0jWqhhhf3kZaOT2zSBuodgKiNjSVAS9iH4IXXZNhoNqO30HZRl102++kKT4226oqxqVXOwFpBWZuET5gszjDk50I2kFMoQwCltdCjHWf0bH7nWwqsHb9WclrVo+tgHcUV79nGd9Jn+uuyTGNgD6eR12SY+fDnVZxe+0gNk4GBSE9365LO5vFznJQVXHwQqnwtgPeiaMYVggB3guslesVKO2R3eC6aiJmytOGUV6RaosdSVqnaJxiXqa0iwTmBlnGPop2I9BsB5ZPwYmV6MWQ9ETQe+gZ3K/RZ+X7BohfK/jGAr/Q/SGEuEYE339FCPE88OkQwj//tVYeQvgZ4Gfe89j/9j33/42v8LpfBj72JG/gW6X+5Ceu8lO/9DY/96UD/slvv/F7vTuXdVmXdVnfcEULuJZctaSypa9r+qrCIclEi0PSBsVbk20gsmKygcQKmkGg3fAEFcgfavLDaEfnUhBO0QBzJ5GJQ6QOeRjt4DiLl72k7RwmiqijDYknv29iQqDsfIMdsSErxKZJ18aLfnYkKW+1zG5qklkgvLQg121sdFvmJEmn+axipDoSbD/QDAWDu7HxrjgWVBsSlwiGbyqmGxl6tEQIRaolWjoy3VIXmnGVs5fPkCIwbTNSabm2MeWtRUqiHZUzDHX05T5peuznMyqnyZSl8YrSGT517R6/9s/dornfx/ccMq9R2qOUJ1Ge1FgS7chNi+qYbIBZm/J4NuDs/ojRa5rBfYcqPVmAp30giAZE1zjYubfo0uESifCxwTAZW2SrWFxRMXClx3rQZOYRTOkKJgOBmET3mFoHQitJ8pZeXjP2gnaW4JzEJJZJk3O9N2ayyPGtpGoTRL8mNdDParT0PA59lAoY7TDS8eLuEadVwdkyRw1a2g81MEkIJiAKi20FeiFxaQxOAhBBEZSgvBJBbX7PcPxxzd4vn7Fxu8JmCr3oPm8lSBYxRl24gGpk1xgZmySlC8jGI5xHtC5GlOc6zi70Ne3NGkoD44T0REZrvs6yEuL30ScxmGUdUNT5W5+no4IuOxvHbU1+Yim348BGNZBM4oAHD9mRwPagGbEOtaFTX62ZbDhvKO6Y7fVz4vz2qplypfleNVi69MJ91/U8dC4miO58bjp/7SJE8K3jRkQAn7H2LWe9HkGoFM4KylaijKcoaoZFPFDOyy58UhCCwAdBoh0+wLxOKFtDP63ZypdIAlWuaTdUbEpuzVrGw0LHbZlAu9PS7sL8JTisE5LjnPbff6Iom3U98dIhhIfATwE/JYSQwPe+ry1d1jdU33Zzg+sbOX/n848uAfdlXdZlfVOUFp6erkmkJVctfVWRibaTk1hcSFj6hJNJDy2jbVnbj9P+qhEwlthBoLxucZli4/UI8OY3JAiJrSQ+jVPOsgUzi7rQZhiwvU6CIkBu1Yi7OXoZp7WlBe1Fx0LSJetF1tARwYmoJYtrgqoSXNuaRLs7p6nKhF4vXvhF04EGHRv15jcFvccS2XhsoSPrOPboKmCLjOY7a4q0wQeB7QTA29mC2ka7OC08Pgh6OgbBTLYzTic9rg8mvLPYAqBsDabnkMJjOlTWeEXlDJ+6fo/fEDeoHvXw8tzyQcpAWScsSsHBow30sWF4G4bvtJhpy/6iZt9PQcsYJuTBDc+FuDGQJDKywgZk61HL6PzgjcQnEpvLziYOzCzKDvKjyPy2/cispseKthd1v8IJ5OOUpm+Q+4HhoGS8HBCcYHOwxEhHKh1NpdGppR1nLK1k43rJbr7g8WKAGzloNLIXuDfe4IXtI4xy5EnL/Kxgc2fGxIu1A5wvHG0SIPFs7U5pncLvRWlCXRnqs5TkRLG8Ipi/OKL39hy17PytK7vW+IauoU4tJbJ1iMYilnX0vwZ8P8Nu5nGZRQsucPjtGVK1hIOU7EjSvx9IZ47JLY2uwhrYyvKc1V4xy1Fj3smKffTHHt1uWVzRTJ41NINz/bXwEZTbHFwSGyhXMg+Xd4z0BfZ63TS5albsBkor1vuitGTFgPv3Gn6swLlknQa71oMb8CoQDMhakB3HsKW2F/C5j+D7op7FxyZV0cY+jiDi66dnBTMVSPOWfl7TS9o4CCYC7tYpytaACGjlaJ3iaNlDioCRnq1sQd/UMXhpYKisYWETlq1hVqXUtaGtdWzC7lnaYYPrf8AuJUKIF4lNkrcuLh9C+JH3taU/oOV/P2hKiBrxP/KhPf6zX7+P8wF16VZyWZd1WX/AS4pAX0UbvaxzJHGdCZbv2O2H1Qb2JCcMwjqkxqVhrUdVFQQT/Z6PbgiyN1P69wKyFug8st2qioC53ugs7hIPJiAaCYMWt9T0j8+tzHxYOScAbbzOuySycCvgoRYS2/PUe56eaeibmpMyRmxX2uC87Jwiol940IFGC+ZXFf1HYGYO4SRtIbEpjG57Hr4QmwIBFjYh1y2JtPSTmnGT86HhY46aPj5IRqbkWn/K0cMNGq/om5qjss+NwZjSRcCwnS7wQaw11z4IPnrlEb82fQZzaEiPE8w8xmgP7jWYaYOaTWJKHxC0AqMJSoESXbNcdNeQdZR6eC0RBEQQ+BC1ycJ5guoGLMsWMOjS41W0aVR1wCw6oCijg4ctBMkE2o5xdZstaqIJJrLvWdKSb5WUxwVSxGbN0hn83BByCTKAFcyqlFFaoaUnHVVYq/Ad0/nOeIunN05ZNAlXrp5hneLm3hmTMqNqDK0Ak0Qt+Nlpn7Ro2R/NsF5CXiG3ppxeKVg+6nPaKmTTo7g7BUC40KHR8G59bwiIpgUpcZs9mu0cW0jSsxZ9ViKqlvrmBrPnLfIgJZlGmdLyiqDc07EZ0UE2vZhuytoHvu1FlnoFcmOceqAZRIlLtSNoRqswmgsJkdW5Z/VK7uKJjPQq9GbFcK9DpVYi3wvSkovge82Cc/7698pQQuBd8eir88krcEOP9SBsTDbVpYzx9EMXmyOlP3dKWa3TC3wVT8xQC6paUS8SpPEUvYqtoqQwDaOkxGYKScBe9EWEToaVMGszjHRspUt2szn7wtN4zcIm6G7welL1OF4WLMr0PW/269eTMNx/A/gPgf8H557c3zL197508Hu9C+v6yPUR5a/c4f7Zklvbvd/r3bmsy7qsy/qGShDQ0q8dSTLZUnmD6brW5i7j1bN9zJmMQRkDF4GVEwgvqAbdVdcDcw060Hyo5PhqwtbnJBtvOczcUm8aTl9WLJ9uI9Ceq6iNzVyUHNxLkC6CFtlCte+wmWT4dgQ2QXUR1el5Q5m00GYwuDoj6/ymrVPIxOGsoq00iRW41J9bmclAMxLYM4F0Ar30JBOLT6P0YPClhHLfsJUvWbQJqrvIb6QlB8sBp22PpU1IpSOVlt1sTrZR4bxkL51zVhecVQUvjQ4odcLCJkgRaJxaA+9MWT723H1ePXyG0duO3oMSryWqbCNolJKQp9BahHURPCoXgaNS0FkIrowCzKzGJ5qQqugkIUQH4FZ+3wLZOJJpQHi9ZkWli3rnlQ/0KghFuvi8OTIIC24zMF9k+CDwHapsnaL1ChskomcJtUKkjrRoqWvD3bNNro6mtJ3ryWyZsT+aUVmNDYpe0tA6xTCpOZz3ARj1SupEs6wSRv2Sze0zJnVGpuNnW1nDrE6oygTRCsprjsNEc7Xpkz2YRS/nFeBeVWctF9KEkBlckZCcVmR3qvVy7f6Qe38kQThPdhzdcnwS5Re2F6g3o+SmGSqSSVgHMOnao+fRVWaxFxNTXRKPT3YarS69iY2L0kawvbL3W3tpd/7bK7Asm3jso30lay/rlXwELmDMFfO9DqphzWKvnoeOhX9XxyXn9n6cr1dawHaJlEnAZawdSEQrkHNJ0HEWQuadhKdb38oGdK15byWulczbguUyRWtHkTVs95ZspkuGql2nnFbOsOwAtezOt3mbMm9TEmXJVMuVbLomBvayGeXAsLAph2nzVX/bvlI9CeC2IYS/9r7W+k1UZfO1xxi/m/z3c7sRZL91NL8E3Jd1WZf1B74EoPBkMmq4AdqgyWRLEzQTm/PwcIN82UWgLyUhCTBoyXoNtlU4JxEyEJzALwz+JEFVkrMPBabPKba+KJndlFS7ncVIFcG6155k0GAfFcgmMn2y7ZwSdMDutbgHCbrkXdPmLotaU+EgFI5rw8hwztuUxip04qK7xjzBm4DrdQmYXdlejFTXdYAs6pzN3OKVZOtLgTsfGbJxq1xLVLT0UXKjWyZNRt/UGOnQ0uERDIqKSZ2Rq4YbvTGvne1xf7nBtXyKNB4fJKm0lM7QdCB1O13w0ve8w2tP7SPv9rjyK47eW1VkL72PYNtH8E0I0Yc4XPDs0grhPUFGiYloXQTcSkQpyRpsEwdDRhKMRLbRw1r4c3DYDjpQ2Ma/oAR6Gd0pENBsS2yTsAB8oxBWcDrpre0I93amHByMKAY1G0XJ4bhPP6spW0OwEpV4quOcdrBgrzfntCwYphVH8x5tKtnqLZlWGblp0dIzyGo2spLtdMHD6ZDpMqOXNdwanTJMdZQqXGl5/c4V5CPFw+9PyA+32X6lInk4iey+jDMBaEWQEuEtYlGRTJes9CshS5i9vMXJR2KijJlEeYTsHE1WaZeqia48toBmJJBtnNUxc4HpSdKJp/8oNqm2fY3NBKrtvOOzKM/QCxG10Z2dX2TBz8HzGiSv2OhuAETnLhIXOn9+JQkJ3WtW2u53gWgR3VkgfqZBhwi8vxJ4fw9RvNqmN2Gd+uJ0tB2USwVLhe/F3gydWLT2UavtRQy+CiLuW4j3vZPMFxnTec4dsUWatVwZztjN5uylc0jBI5jbhMoZfIgNw1IErFc8roYAJNKxlSy4kk6RaVj3OTxpfS1bwK3u5n8thPjngf8SqFfPhxBO39eW/oDWkwLq3w2Bx43NAoCH4+rrLHlZl3VZl/UHoESUlRjh6Mn15QWJZ+kT7pZb6PtptEOTESxYE5A6NsKNeiXDpGbRJiwbgx1IrI0gfJDX7PXn1J/SLOY9/DhHnUZfbNf3JJsVWjvUkQQRWT2/cltoBXqzodwzMT2vEDRDQdujC+SIoMD0o3vHSiOqOlcE30r0TGIHHtlvo4VZELhSYYvoNjF620WwogVeSWTjMNOa4eeHzK8mGOlpnCLXkYXbSEoOygGbScncJuQq6rx3igWTOgNgJ5lzc5DwcD5CS8+L/UNKZyh9ErWsnZ61dpr9bMbZVs7DWnH/z0D+5S1u/IM5alpFGYnv2FoloxVaCJHxdp4QAugkgm6lEDIgK4usOubRXIgEFAHReoTy0bNci/MAmAvfgyBZH2sRQFWBekugSglXaqQIBO3xxpPnDUIE3nm0zXBYsrM7YzLLSYcW1yoybVm20ZnCJJbQh/EiZztfUraaYQovbh/xaDFEioCSntYpnh0dc3uyw+EiBgm9sH2EDYpE2ujUQkPjFEeLHip10dIw87hcMr+ZIts90nH04s6PPb37FXp1vU4TbC+hHSaUu4bFtcjup2dRr34RyAoLaNbyD2lF1DmrgBcRgLdDgWwECytJJoHiSCKbsJ4hWDHYvQcem4sYw04H6OU5I/3ez2JlgxkDneKE0mqZi+z2u5om5YXnRcdgA+i436xsBi8CpW7G56K6411OKAFkI+Myna4+dIMQfFwoNJK2SXCpw6R23awMkfVev6cgcE4SgkCpmEJ693iTO2GTNLXc3BhzvZgw1DVDHX+H2iDXfRQeQSIt1itmNuO06WGkw3+AkpLPXDis8O6wmwA8+7629Ae0vpaEO1Hn35TfDaZ7ZQd4+2jB6wczXtwf/C5s9bIu67Iu63emBAElPIVskHhmPkcKj0eydClvjnfo3+saFluBcAKXCaRyaOUIQXBaFuSmZbu3ZFanOB2fGyY1iYp6zM10yT2zyelkK0bBJ54sbSlf3SBxnZZYnwML0SXYNbsOXpMxgTKJgSPRAzzuz7BXrX2pz+qCqjG4VhGaaFUoNhuyvInphl6wrPLI+AYY/MZDQhOnpIXW6wS7q/8wcPt7etzcGYNTzJsUKQJaeJatYeESKmuYi5TtdMlWuuRo0WfhUvaTKTfzM6yP/tx1oclVbEKV6KhD7a7obZC8vHHIybRHfZbRfGzJ60+n7P+jgq3PnhFpzkAwCuE7sC0EOBcZb6O753znUiJACei0zD7VeCM7pjOgKouce2Tl8JlCl/GqaZYSm3WphLnAJwF5Jqh2BN6AnkvagxS3V6ONo0nioCqEOKMxcZLN7Rm2URzO+oTTlONej63esuthDOjE0TaaaZ2hZODxbMB3XrnLvE3R0nPqcsrGcGCG7BUzZm3GUdlnP5+xtJLKGa7lE2qvGSYVO9mC037BO+kW7e1BTI7sDGnqrfi+FtcER5/MMfMC1cTD6ZOYoqiXMfxHNmDmAW+ilEJ0Az8AlwSkix/WGrQG4ve3+++yiD2aASz3FWYOxYHHlHEd6diRHlcELam3U+qRPI9ST2PPwkXM+C65SCc7cemFfob3arLjSRxfsgbx4V3AO0i6ZMjz169WcBH0v2s/ZPc+V2x4YA2yozxr9VyUl/lSU7eK1jiSLOr9U2PXoNs6RSNUNDkJAqM9Rrt47BrN/cmI07JgkMZm5L10xkYHvOsucrN0hlTZd6WpfmCAO4TwzPta07dQ/YXvucW/8MPPk10cxf8uVGYkWgp+6pfejhaB/8of5vm9S9B9WZd1Wb8zJYR4B5gR+3dsCOE7utnPvw48DbwD/LkQwtn/n70/j7Y1z8s6wc9veoc9nnPuuVPcuBGRMeREkklCQpKIyiAKaMtSkVaqVJQqdCkllm036KquWmXVUsuqbqXKLodF2Y2WghZogYITKIqMSSZJJjnGHHGHuPfMe3qn39B/fN+9z7mRkZFxITNJkvNd69y9797vfqc9vM/v+T3f51Ei6v1u4OuBFfAtKaX3vur6SeT9vHNE00THjl2giXTJcHA8Yv0LZ5qE04p0qKldyVHvp1xkHSEpqs5hdMToSIiao7rE6MjSZdTe0nqDuVwRgibPPfNZSTlTp44JiY3vb9KgdCLbrgnZENW7T0QLsZRY+ZhFLg6XWB04bgfcPprgOyuyh0YTtjzDQUtmPSFq9BpAyIFLhZ4xrmpSSqjMoW+12A88jvvqg96dRLNoc64MZ2iVOKiHbOcr6uCY+5w7qzFKJQ7bAQ/mRxtt98pnfHR+mbdOb1L2GnMbAzFpquDw0ZDbwFsfuMW7l4/glw477jj+3TXHT1xg+yMi/VjbyYkUpJfSaJEJhOzUY1qcM/rmTKuITp4Pjk3S4rrpNGYCUP0wSfiJjZvwIjMTI+zmgmzfzbQMtGYOtetRJhG85mg+ABtRNqIVaJvIrKfqSc6jVYm2cQO6RsMaHzVV64hRsfQ5k6zmpCnFMi5qIhIPP81E0rPwOcsu4+pghlMBrwzjPoAoJsXl6Zznr2SowwyzUhv5h24UbgWra4HyriGbCfA0DbQTGUikHn2ZLqGCwtXC7ttKPh/RibMOiCtHtAiYXX9We5CqVN/4qBN2D1yVUDFRbRuYakI+wC2ll8HNob7gKA46/NDQTAz1tpagmjOs9wZY94PDZHqwf1YKcqZBcvO60y/25r2+x7cbNrps4BSI98+fBe3r5syNDCWo/rbflovYPGze3xA0sTXUjaHWOabw7EyXZCbgXLf5HnY90x2ixqhElnlMv46qc9zyU24tpuTWc3VwwparegelhpgUq5hBAqvCpsfitdZrcSkpgD+JhOAk4CeBv7VOnvxcr5cnTf7An3gXb31wi8ze2+X6mZCUKKUYF5ajlXwLv/vHn+J/+YNv/wxs+bzO67x+A9dXppT2z/z/u4AfTyn9FaXUd/X//07g64An+r93An+zv/2EpQCjIk556j6ez6nAMubMfEE4yjcaX1slTJ2wTlHcNvi5pp44qjJwkgWMDTgnrHfXWvzCoZcGEsRhYHJ5wdZkxbLOBGB9ZCSAMhPN9mZa3wAqEYNme7qkG4x6Bwo26EG5SDlsKG2HUxGrApNhzeHxCJ0F0tKI3CRvRYvd9VeI9sx1IyVQvbsGBhWCNN4BD/xUze0vnjAtpSFy1QnAe/3WHs/OLpDpgI8aTeLyYM6LYYsb8y3eNHqJXHtGpuFSOeeF+Q577YjrhbDe66l/pwOzrqCJhsJ05MOW7tYQbyPaRCZftM/xm3O654dkR7oHRvde84DThrn+8O7xSk4ijTidNeilCqEPFfKQH4qd4Hpd7URsH2ePxZ7JlVTEZBLkEd9ZUqfpVnYz/55ixJrAcFjjTCTmibp2pKhwuadrLdYFms5idEKpRO4Cd6ox06yi7JsitUp04ZREm7oa27+3K+9onGPWFdxcTrlYLtjJV7TRYK9Fnk4XUYsc1YFBoXo/bN1o3CJRHEcJwPEJlTSmkQTI48cd3UBt+gfWbO8mLCZIuI3IK8A0/aClB7MSUZ42TiObfoMkeu92AqsrBrc02FUiP5F0y5Br8r2a4qXIFGguDmi2DO1YEZzovtezPvSAPppTOcpZKYlYE/aM9fqxnpU+q0DZsNVR9Z/5XqutTv+SOdVs36sHl8HYWf23UhCDIiWxbczLDjuq6TqL7wwx9lp/HbE2UuZt7zPvSYDpewDmdU5IilXrCEFjTSSzgS5qbqYt7qgJRkeZ2ciWTGzF1FZ00Wzcf15rvZamyb+HMBz/S///bwb+PvD772tLv07r5ZKSdzyy88oLfobqrB3gP3//Lf7Mb3uCxy6Ofg336LzO67x+g9U3AF/R3/9eJBztO/vH/16fGvyzSqktpdTVlNLtV1vZQEs0+CrmaBUJSdFEx+16ij3RG6DmC8XgbmR80zO7bqmMws0MKEPIBXg0ThwO8iPN9MXE8G7g+HHL/O0t1gSq1nFhtOLGS9sUjQCLkCViJjZpvoR2GkmZsKiZCaxG4t+tIuL0EKQRa5B3EkwTLW20hKgkjbI1kEfGwxrX+/0qlQTwJtk/3SrIHMoa8AG8F110TKAV+bN7LJ69xqW3LuiiJvQSEQqZxvZJ9k2rxJareJEt7h6PWFzK2XULGm2Z2IZLgzkfPLyK3zKM3SlHpkkMe6bWqMQXXLvJe555A3ae0V7RHHnDztaC+nHP8rkpo2cFJCarNr7Pa9ClzzTVrZvdVATdpdO0zph6oL1mehO666UnmRZ5Q6aYPJ9Y7WqqS5rqQQ8G3B1NdqJYGkvo1ubPYBZGGvFax1ExYDxomK0KzI5IAYYjOV6tEqs6w3eGyaCmdB2LJtskesakcCZwLT/ZNGKufIbTMkuQGU9MipnPybXn9dO7zLuCoW3Jk9jJ7e7O2fMat+dkcNhJPHy5pzBt6iVRiZCJVaL2CdNERrcDPldkc3EeWV7WdCMFcZ2wmCgO5Tx3I0UoZaCiWxm0yGyByJ1MC24ZUCnRjjTd8FQW0k6h2VbUu2KRWe1mDO5asnnANBHdRsq9iGksxWFLO3a0Y003UPiBSE98CYQ1wN58kCTl9Ywt4Fnm+54JnQRxzV6vxcpJvlPJpE3C56ld4FnEforglU6nA18Nqqf665VocYbjmkHREKOm7aVHKSkWq4IYNMYGhmXDxeFSpFo6yncTNvcT4HTEqsiyy2iDYdYUHLkBRkd28hW7+QJ9n2Li1wK435JSevOZ//87pdSvScz6ecG8b0r5L3/b6/lff+Ipvucnn+Ev/963/hrv1Xmd13l9jlYC/rWSedu/nVL6O8DlMyD6JeByf/8a8OKZ197oH/uEgFuptLHi+rmT1/Gh/ct84yPvw6jI8/PtTQOa8qJzHdztKJ7eY/BsQf3ghNUlSzPR+BHEjbsFDO947Cowezhj/qg4GdStY5CL/MTezOllmBLEoYXl7krxy1adElZR9eyh7nWsrYSDKAWlE4/smDSVdzR9kx4q4SYdw0yY06CEVe06sS2MZcS0Sjyuo0JpDc6KbCWs4wMTu7+o8G/RaJWovaE2ljZYHpvu0wSLTxpngnhud5ZunnOnGbPrFmiVyHXH2DYMXctzix0eHR9QGtGMd0njVCTqQBMNQ9Pypnc9y7P/7FFM7agegYM04sL2gvzxQw7jDg//aEfx/BFkjqSUMPK9LzcpiWNJKedAdUE03VaL60lEji8lUibabpGnJPzIoaIBND7vA10sZAeGbpTELrBMpJHHFIFQGdRKb7TMphKwNMob5qscP3eoVuPzjmqRM55WDMuGeShpOst0tGDRZLx4d5vJ9XrTA3BclyybjN3RkoeGRxy2Ay6XM066krFtyI2nCZZ4psvPqsi1wQkAx8OSMLcymEoiFRk+E/vo9yizJCNDtL0uOxPXFnLRrpd7HdobZtct0dGnSQpwX88KmDMudMn0rHPv8OIWqbfxE5C8/lyvP5Mqyn61E9GRdyONW0rDpVtFdIB2qCn2oby9ZHBD9PthYOlGlsUVS31RfLyjO2XZz+q9zyZPrv2y1/iaDdg+Mx1yRs+9+bWBe6lxdfZ1Z5bt168VKBNQqg8oaixta7E2bNJTAQ5nA2HCM0+MmhvHWwBsDSp2yhWF6aiDo/JOZo9UYppXXB7MiElTB0tMiu2sogqO5xYXqPpZuddarwVwv1cp9aUppZ8FUEq9E/iF+9rKr+M6O375B//Zx8+OXhzlHK86tPpMiEpO9+eBrYLf+4UP8oPvvcGf++1v4MIo/4xs/7zO67x+Q9WXp5RuKqUuAf9GKfWRs0+mlJJS9zevqpT6NuDbALauFpher73lKr72+ofZsQtutDu8tD9l6yRtLuimSbjjGkJErWqK5wJ2MWL+cEnXKZm6Pwq4E0El80dK5o8omHSY3iXE6Mje0Zj8SCLg/SgJm9j7DcdBhDyI64aL5NbTTRLlHoDC1Ao/UmAjo6zBqciJz2i8pW36CD2TGI9EqmB0pAmWZSsMKwn0qMMtBYiqmASQyok5dQQBdt5/wlN72zx48YhKJerOsnQZhe02gKCLhlx7rk9OyGxgvx4xLwuMij17F9guVtyYb/HcYocv3HmRJkojZRUcEyvddU10vGnyEi995Zj0A7uo6Fg9CvtxzNbWkktv2uPZrW0e+BcXmb5vTwYJ6/1OCZxACb2Sc5+cEbC9tge0muB0z4JHdBtIVhOdxlReALxP6FITraG4C37YD3o6iSq3iwzePqNqtdjD+VMmuJnnVCNJAiSJe0c1L0heXFlGWceMktbLfg6yjoUVWc6slsbJtS3gmv3fciuaKB7NtXdcLBYb0A2gVWSvHnFnNWaa12yNK/ZrRzPQxMxilwo3F7CXHTXoVYuZFNixE3lJG4nOyMxJgGbHyue8TYxvyYBldVGLNKQ87S1A9b7avRtJzOXx4kBmEkImem+7PAOMjQxc3XK9DpGx+AGEQtF0BlOLPn95LcdWDtMkTB0wtadYtBQvwerBIbaKdCNDdUHTbCt8ITIXQdeAPaMMUPdiKM5i5rXTyJkgnQ1YR3Tr6VV+WpRK/Xgvbf6vjXzejIkYE2m9ZTYfoE1gZ7JinDf4qOmC2YQnNcFwez5hUtRcLBdsZSsWXc6yy5m1BdEpCuOZupott2LbrZiaivfOH/qUupSs64uAn1ZKvdD//yHgo0qpDyC/t5/T9Go6oyn5TY/vftzzf/9b38lPPrnHdHB/I51faa0VJUYrvvXLH+H7fv4FvvdnnufPfs3rPyPbP6/zOq/fOJVSutnf3lVK/VPgS4A7a6mIUuoqcLdf/CZw/czLH+wfe/k6/w7wdwCuv2WSAFYx5+FynwfcMXe6KcfdAHUnx9RsLsCDux49qyR4pSc4zKxh68MdfpzTjS2mDoTScvxExuJBaK905GVHjAprI5kJpBcH+IFIO7pLHXbPYZeKUCZwEZMH6c3q5MLsp56k7CbsRnWiDZ5kNVYHfDSEpIhR5tW1TYzzFtdLPmLqExmjAq9IQZPPAhhD0gnVSytYM9wxgtbooznmqQfRlw4xWgD3vMkZ2palz9jOV5tzerFYsF8N+fBzV3lkdMjY1nTJ4FSkNB1bRcWsKTbhQkfdAKciTXQbP++lz/myK8/yz756xPSnCnjGsXo8cXQwYmtnycXLJ+z93gHt+DIXf/IOaZDL++Ajqu3kbeqBuGrF8zk5jeotBUkQ+jh7U3uU7wccWmEqL4mhJttITlSS5st1IqVbwOrpMepqQ9zusDeyjcaYTnO8KImdIdszosuvDLrRNEPHaDJjT0fa1sgAqMkYD2sGtmWYt+TGM85qpq7mqC0lxTJmhKQYWbEknPscTaIOlpN+mWWXE6LmqTu7XJgu2b04o2od7dRyvFXQbmUMbsuxFMsGuz/HHmriuEDVHrU7IGSuD6BRpD7wJjhFNo9sf6yj3bJ0Ay3ge7uPQTe9tWJcD0YFqK/9zWNvvbjWdJsmYWuod4Sh1gGCO42EV5k0taoo0pVsrnDLhGk1prGYJmKXnuzE44eG4bMLxh9uSZml3R2wvOqod7QkhKoEhlcWW6z7IJLouO+xFDRJZnxirwlfy+k3upReJ55Aofq0SRlIq/55tWa9dUIBmfXkk44YNYs6JzOBraKiDYZVlxGT4uHJEbV3+KQ5bkq6aChtx1u2bnEpm/NivcNxVxJR7LUj7jQTcu25U403UpTXWq8FcH/tfa3xc6z+7n989lWfvzIt+P3vuP6qy3wqa82kG614/NKYr3nzZb73p5/j237Lo4zy1/J2ntd5ndd5ffJSSg0BnVKa9/d/O/AXgR8G/gjwV/rbH+pf8sPAtyulvh9pljz5ZPpthcg25qFgxy6leSlm3G1GDG7pTVqhDpAfNv3VVpGMyDBS6ejGGSgo7lbMHhtRXdTMHo+kLQnH6TqD1pELoxVVJ+B67Y4x3lmyWE3Ijwx+AHTCulonqSC1t+ihJ2lH7w6GSpJKWJoOHw0RhQ9GAICCLPcUttvogVNSGzYOl0i1wS06GTh0fiPJ2NCCSgmzEhMXPhCpv8RiTYDOEqLIVwDRF2eV+AUHwySveSkP3K1HjEc1BnFs6ZLeeIV/dHGZt01u0BlDEy1NlMS8JhqMSgxp+aonPsaPzT+PyUctwyczlo91nBwNGU4rLmwtWPxfOp596ArXfqIWq79VK8eSBGSLU0lCt57U63bW8p1oFTHTxExjKw8hoduA0hCNxjSR8jDQDTTNliKbi5woZGoj++HYYStNN42kMuL2LKpTtHcH6E5hV4qmSFAEUlD4/YKTaUG3zFAuMs4abh5MsVY+W9tFxSSrmTqRClgdubHa4kK+JCbNpWKOj4aZz7m9mqJJ0sjqHduFDHrKCx0haiZZs/F8nlyZsxwXVG9UHMwc04/scukXFpijFar26OM5+bLC1FOa7ZxQaNqRxnQS2d6ONWHXYOtEceDJjxXVBUt1qZ+dGcrsjKkVthJdOKm3+ysRMB7ALRPlYSQpsHXvHJNDN1Abr20/EOY75tANE91YZnPy44RbJnSn0WNh432pUL7ENDm6CeQvLSieqUlGE3ZGLK8PWF4xNDsSEHWW5VZ9UujGGaive7y1zybpnNVw9wB7LTF5pYk1eUzd85wzEWUDA9VidGTeihogt56xq9EkBralDpaBjUxdzdJnPL24yAfDVT5/6xbXi0MO/VCAd9Isfcb14dHG3eS11idFaCml5+9rjZ9j9dzB6pMv9Bks0wPuNfD+k1/xGP/mQ3f4vp97gf/8t/yGsEY/r/M6r89MXQb+aR/hbYF/mFL6l0qpdwP/WCn1rcDzwDf1y/8oYgn4FGIL+Ec/2Qb6PDgiilx3dMnSJcOL8y3yI2HsZAo9YeaNgG0NZI44yGinGclq8r0V7XbB/Lqm3U6oSzU7kxWNN4SgJL7dBG4dTFGlMGtp5LkwXLHayTFPDYRAsxFtI93SoZaW5TQjy/0pk5qACDvlitJ0zLqCWVPQeIN1ga6xlHm7SYdcTzlrlQQruIi7m2GP5wJOlWi5laeXaKTefkHOy+TDJ3z0zhYPXjlCrWUlNmPoJJq8jQarFLnx7BYLjrZLVj7bSE5iUjgVGdoWHzU3FluMXc3FbCHe3L1+fmRbuj7kYydb8ugTL/FsvMrgRcPwacfy9S3LeYFWYr0XP/+Em3HKwz86Ew9qrcWPW0PKLar3705GZB8AKdMCConSKBkNpgrE3KK7IMA7SaOgXSncyuALRTPRwsj2iYndSCQmxZ5hdU20yu5EY5cibfADYZTtXka0AtAOjkegEB/vYMiyQNtYifXuMrayCqciuauItmHmc4xKtGcYzIuZNFEeNQNWnSM3OdDwwuE240FNYT13FyMuj+cs64ymtVjn6aIFr1hcTyweHFIcjpg8G5g8qdGzFXrVMjgRaU93aUS9kxFyhS90/5lLdCMDClwV0bd6t5MI9bbGD4T9F4ZbNO/RgG1g8kLALcPm8xSdFhtHoJmaTdpnyEX33Y7pPbqlkTjkClsr3FzeE+0TIVfMrzsGewHTGPzYQRxhlx47q5m+d8YUiOOS6vqY+TVLs6PohmkTXJNcIrle3L3Raa/v9yA2nnkcTlF7UBvXE712R0lqc1+pRIyi5zZIk7FRCacjmQ4YHTeONPOuYN7BhWLJxWJBGy0nXcFuvuRtkxv84uw6P333dRiV2CoqLhdzStOyV4/Yq0cUvd3ma61XS5p8b0rpC1/txa9lmfP6FNcZSQnA2x/a5l2PXuB7/uMz/OEve5jcfma9wc/rvM7rc7NSSs8Ab3uFxw+Ar36FxxPwp+53OxLKksiUZx5K6ui4szdlPBF9aHEcyWanlnk4S+gT+/zQUOy36Krj6J1T6l1xxggLx9zm+M4SGoO3kXpsCScZOutDdFzE6sgDF044KAdEl3DDjtGwZmUzuoWl6wxbo4plNsb0QZixSEwyccCYdQVKpT7FDkgwKRpsr6EGNimUJMiHLWaWo+8eQZGTnL1Xw316MgHQB8cMPrxDvCzPta1lpiQIx5lAHZzY+gGl6XC9ZnwRciZ27dIRN/uTW88v7j3I5114iR23BKBRkSo4Mu2xOjD3BY9P9nh+e4dVyBncNJTPZFSPtsyOBgynNdvDivadLU9NL/DYP1piTiowGuUjyeqN1Z8Ka7mMQlcecgtodCcpmzHTGyBlag8hovtjVyGhoiFphemgG0A3BjfX2IXok/NDTcgTfpSwS/Gt7sbi5CGNruKLHY5ywXOF5858jDMBb8TfvIsanzRNtCx9xtC2THoN982wxXOLCzwxvsvMF0xdTRstd2ayjso7xoOaZZ1hBhILH5JmOqyYVwVaR7RONBcg3cmJDhaPBpYPK/bePmV4a4vRrUB27DFNQPlEsdfQbmUwFHAcnQwyfd77d2uAdRonjG8EulIxf9DgB5KGaloYvhTJTjzRKTBivxhyje891JuJotlSlPsJW4l+W7fQBiXa7izhB4lQQjfsG5KX0ivRThVNY8R9JYBpZRDVbmWYdoSbtehZxfDDewyeNOAs7cUhi2sZqyta2O/haf/kpoFy8/mXP5XUqTXz+nl9ukyKgFZofeqHrXvrR6XSxqHkbGmVGLmG6aDiqB1w1AzYq0Yc1EMeHB5zpZgBcLPZ4koxY2ha7tRjbpxMeXr/AkXWUThPZsImFOe11qst/Sal1Ptf5XkFTO9ra+f1q6/+s3e2SfNPfuVj/KH/7ef5gffc4D9558O/Rjt2Xud1Xud1f6UQwL2uOlmxqrudk80SiwcVplNMP1wJcLOGOMzptnK6kcEtAnZvTvPgluhHBxF/2WPyQAwabQIBQzFoWdQ5utEkm4gaioHILHbLBXt9EEuWC+s9ylvuJLVxIzkZQTZLxEzBhYapqyRxrm+60zqRZSJDGTiJe9cq0fZevSkpotcYExm8lEhdB12Hcg6KXgsd40Yys/k/sPuBjtmXiX1fDJKyuGwd4zzReEumZSDilDRynjQFJ13JqB8hrF01tEqMXc2qc6JTNR23a7mEd9HQRbNZdmgb3nLtNr80f4jlI4nR05bhRzOWj3dUy4wYFWXeUj464+lvmvDoP9HYgyVoJQ4lxiCaBiXJkzqhokQlqpiEae3Eju5sYI7yEawmGU3Skl5p2oStIypompUWLX2QBMRoQbfie+0HCVOLFGJNkoZcnDtoNTGPBK+pWycOFpnnpCq4vnUMwElXEJNiCKJrT4odt+SDB1eIKB4aHLGMORfzBXFHsWhzfNTs3dhieHGF05Erwxkv9XHxueswOnHSuH5wIQMP1cg5jlli8RDMH1GYKqM4UBQHCdPJDExx6ElG0U4M3VARcmmGXNsFkqAbKxYPGprdSMwDKijyA4ObCTCvLjpCrmgnYh249YxHNzJYKY7FWaYbKVZXFPlRYnQrUNeGalehCxmsxEzObchlMGNqmUkwNeQnMvMQnEYNRCsec0U3KtEXC7KTDjOvUY0nu3XCzi3YsYZuZ8DywYLFNU19QUD92nd98+ZpTpsmN6y3OpMyyT0gXVRZSgKklPhsax03wLuLGqM1JkUWXU6mPW8avwRjeHJxSaRtXc5BM8SqwIV8xcVsTp77zWxR5R2LJufu4YTgNbk+jZJ/LfVqgPuNr+H14ZMvcl6fylrPqpz14/7yx3d52/Ut/uZPPM03veM67kzk/Hmd13md12dzrUKOU4GQNDFp9psRxb7CtJHiUMBCLC16pYmDDD/O6EYSN17cnIM1HL4pp7oSMbsS/72WkQDEwrM7XnLrYLppxop9AmGImivlnF/ajmIFCNJA52oGruW4LgFotyLTp6ShbGd7ieulGDv5illTbNwvXOYZ2LYHbHrDcletQ5lE21h29zwYI97byxXUDWpQSsPhy/XcwOCpI57f2+LilROUjngvOvMmGGJSlFasDiNKgHMwWBV7yYjYLg5tg1aRpc8ZOdGrTu2KmS047kp8khAdnzQhKfA5Dw0PuXltysHz2ywe84yftIw+5li8IdEAzgYK57FPHPPkfzrhif8d7N5cjmM9hgqnQDoZAdv4hImBaDXJCiBPVpGCQnUR5SNxHSynRDMsATiK0Y2EL8WTXXtIVhpZTY3IFTo26YgqwOgOrK4IC66iIq4srUroQdxouGNSWBWZdQVdMExdjY+GO92E3HgemR5yUA9ZhqwfQEUmrpYBVTCoMhCCZtFknNiS0na00XB1OOP5kx2MiXSVwy413TSQ71a0lSMuXK9hV6Bh8VBk8Yg05aoAaEfMErGQ/VSNlkbIlSIacAs5B34o7LSdG2ylcHORYPlCmPFQKpptCRRK1lLeSWSLiGkS+SzhloF627C6rDgurYTuRMhmkBa9XryEMEh0k0h0MujxJfg9janA1jJI6PrGSxkkJWKWwW6GbhP5USMzISHi9hZs3Z2z9X4ZQNeXCk4edtSXoBvHfnAimu8k/pyyU7214Fl3krO2gmdzU2JSwpD3MhUF90i8Zm3JL7UP8thoj7dNbnC3HbMIIiUKSRJHq7CDVhGjEteHR5x0JVaLe9G8zrnd/z681nq1aPff0Nrtz9Zau6bYM4BbKcV3fPXj/LH/3y/wQ++7xTd+0YO/Vrt3Xud1Xuf1misBTbJMjWhYQ9IcNgOyE9GoFgeReltz9MYB2x+B5DTNliNaxeiFCrVYUb3hMsvrCXWhYTBo8EHjXNxMJQ+KBmcCYWUhj5t57K4TwJppj7rYwG1ppopJcSFfURjPos1pgyHttCQtkoALgyWlaVmGnJ1syR03Zl7nJJXIrTiTOBWJKqFTRKuM1SJHm0RXW4q9GqW1+FRrRfIe5gsoC9Sa3dZr64aEmi0on7uEuxYwPWjvgqGgY9k6SusYOWGzL5dz7sxHPDfbodzuGNpmc0xrx5JxVrPocn7q4HHePLlNFTLqICxsSAofDXUfXf5V1z7GP977ImgMi0cCk6cMg6czqjc0LBYF5UDSNHeuH/Pkt0549B9uk91Zbvy3VTwz1d96VIwkZ4jOsFYBiDViImlFHEl4ybqZUjuFChLAEjNhbXXvRW1qYWrXYTshSyIlSZLI6IeJ7Hlx9Ji/Lm3kC7GyMGhZVhnDsuXOYkwxFS3ui0dbG1/u3Hq28xVaJa4NjzlpCwAWMWea1RzUQ/ZXA5ROTIcVMSkWXUZmAjf2tkm7ilHecDwbMJjUtEUHlSMGzQOXj7mbj+iOC8LYExcCxVIWyU8c+ZEcZ72r6CY9O24TyQvrnB1q3EqONY/iSmIrsCs5B6aVcxPKvkFylAhFYvVAorqoyA8NOx8JZPNANzQM7npGNyLVRYl9B/C9Z/jaY3sdJR9toh0pqkvCiocM2rHsZ7sVsUuFXWlCz4wXhwpTQ8gc0Y2kN6OXjJSHEbeImCpy8X1LktO0Y8fysqG6rGi2EzHvewPQ4OKpL7dC7Dt7O8C1jjv1DZcxKXR/X/USrNJ2FOa0odnqyNOLixzmQ4amJddepFkqsNU30R62Q+6sRuTWczFfoIvEAUOcCVjzKY52P6/PztJnADfAV77hEo9fGvHn/8n7+T1vv3YPA35e53Ve5/XZWie+ZNdKE19E8eLRFuOVJPMVB57pUy37bxsxe11Jtox94mSH2Z/TPrLL3hdkdBc6BqXIOJQCZyTi3ZrIwHXsLYbgNar0pNqgvBYJCAJG86KlykUqUZgOpwNjVzPKGmrvKIcN1cWCZjtxdTDDqcDCZ9xeTTmuSjIbaL1hUtQMzzDcfcYJqTYw6tDHDn1y3LPZ/R9RpsGrWqQYRoMxp+A7JXY/4Fl8sSNznrYWbXnINUYnFl3GhUI2NHE1k6IhJMXSZ5ugm5g0EYXTge2sQqvErcWU94brPD7eJ9MBp4OEAumAD6Jp9lHzztc/y8//wutJZWD2BEw+ZojP5nRvWLGa53ivJbnvygnP/MEpr/v+IcXtBcnqjS49Wd3bHiYUAbPWetvTgYduA1Se5ERSopKkMbpVRCVNbKAdiZzBVj1oUwpfgvaKOAhEbzagG6CZaIqDSHVRE4qEH0byiaQQArTe4GzgxnyLqnVUs0IcRi7U5MZzazHl0el+r5X3HPd2gE+f7PLA6ISTpiDLPUZHiJpZVfDw9hFZ3nG0KrEm4DLP1qDCjiK1t8xWBYeLAdcunNBuLZhVBXWeEbxme2tJd8nQdAbfWZmFmWVs/bLF1IlmR+FmornOlvGM/Yccsw6JkGmk/1WRH8c+3bIPw+nDalSEdqQpDyWQx520oBXDm4HkNL406E6Y8+jUJqyHJEB+HfGuu/X4NWH2odgXrbgvwIZeQ5+J/CcZAeuhFBmKDrC6alDBkDR044yw5THHRgJ+0rqxUsG4FfXIiRPLQSczJqYQ6U9MCmvDPfpt09/GXmpSe0sbDLpIXC1nGx/1wnZoEl3S5CpKk6WOOBUwRFweGNqGvXrEjeUW07zisck++81Q3vf7qHPtwa+z2khKXha0o5Tij3zZI3Qh8X/8wosf/8LzOq/zOq/PsoooDJGxqaiT48SX1C+O+xh1pJGs6Rjd8qwua+qpYXCnI7895/BLL3PjK0uWDwbcqGVYtOTOU2anzgHOBEZZw2JWiuVYlOn7ZCM7wxWllWWtERatay1HzYAqOHItXtu58QyLlupiwm97xrbG6bBxA8ms7y/sirETsCtyErkYn/XqzY41quq7L7WSRsNeApjaltQ00HbQdiTvSV4GBaMnTzg6GGFNQJmE7wx1Z0lJUbWOeEbMmltPYT2HzQDf6+PX+xKSgO7CdFwZznjq9iVeWG2zky03+w0wdTW59ixCzqODfdSFBnNiSYPA7IlAeTehXyixuaeZ5SyrnBAVWxcXPPtNmtUjE5GTpEQsLEm/DGrEKOA7JFQQHXcYWOLAoRLoLqBCwtSe2cMW00byk4Bbpj42Xhhgt0inEpJWEcpIKBNhkDCtwg+FfTUN+B3PZFcaRetZTvCGrjMsqpzWG9rOUk5qrA0cVwV3lyMSiHNFU/LMyQWuDU7ogqGLfaT7YMljF/cJUdMFccaovGNcNnTecDIfAHBSFTgjg7KHdo6wNnBSFRtQqHQkdZqj/THLeUFbObidM3j3gMlHLb6QgJrybmJ4JzK62VLeacmPPW4ZsVVEh4TPTzXupkvoDoqjyOSFwPBmIj+E7EQCcER2orErYY1Dbugmjm5kBWQ7tbFjJInziS8UwakNgPYDJPo9XzdlSmPn+uOog8xEuBm4OT37rciPFGalNvKVbhIJWx5U74bSSLCRnStMo9D7Ge5GTn5gyO8a3IHF7jvUjQJu58TDnOakoHp+zOL2iPnhkNm8ZLEsqFvHybJkUee03nJclzwzv8DE1rxueICPmio4YtI4FTaBUkZFBqalNB0j0/Dg4JjHJvsMbct+M5RmZfOp03ADoJR6c0rpQy977CtSSj9xX1v6LKyUEj/0vlv8js+7Qpm9urvHH/ySz5zX9qvVWqP08t8vgP/0nQ/xT957g7/2Yx/jG77g2ic9pvM6r/M6r1/LCkkzsTUhaZroeLHaprijIUUBXo2XeOlcLNKW1xSTFxI3v2aXelcYyzT2FGXLMBOrPIDYg5/MBLpgSCuLGXekBDEo9ECml3PrcSpQZh3zJOE0tbc0wTK2MLQtJ01JYT1+KzC+vCDXni4aFl0u6ZUqoUwgWMXINeQ9WyxNiNJohYsURYfbB3x/kY5pw3IrAwkHIYjEJCUUVsJBUoT9I4rnLsDuHK0j3luaRhopfdTM2oKdbEVICq0Sh8sB46Jh4TMmtiGiRJvdl1GJwnh2t+d84JlrPPSWI5yKzIOjMOJa4pMmS56VyXjbQzf4wI3HodMw7Th5Q8bWhxQndoC7Jppk5wLDvGV8acGLf7Age3KH8XOJyQsN7mAl9oG5kYa/M4TR5n3uWW1xOOldTnykugjjF8WP263ked0lXBXpBppuLK4aKghQ89OAVxq7FL1zdUlRPehxo5bFc73PQxZJlaGziTRpxUlk5RhPK3Ln2T8YkxUdk2FN7R3TvOKoLln6jAeGJ+yvrrLsMo6rgse2D9gpFc8d7OBs4PbxhO3RCmMiF7fnLGqRKp3U4mhzsBryxt27zNqCmydTvDdyOhSYI4mG3ziujBDZyDGU++LWY6sg8hunscuOpBXd2KGUwiYBz9GoTTNqdGrjcCLpkSI5sU0iP+rwA4MfOWHG+9CcpHpG2ijx0dbSoLoG0snI+7bW0sO9spN13LxphSVPBtqpOvXkVmxeF3JwC01+qNH9WHkdyGO8uKOo2Puw97jH1ApfJtxcTlwoE6r/7ietSMagkoMI0ctOewUnWcKPImkQeP7OBaaTJT4YpmXNleGsb4LsiEpx4ku6ZPC9bl+rxFA3WBVoguVuNd5Yab7Wei2Skn+slPr7wF8Fiv72HcC77mtLn4X17z56lz/zj94HwHN/5XduHn96b8Gi9jx/eOrB/ae/+onP9O69Yq0tcl7OcIOw3H/+697EN/3tn+Hv/tSz/KmvfPwzvXvndV7ndV6vuWLSjI3Y19XRcWc1pjhMGz9mQqK9UFBvabae9hw/Zrn5WwoJ4Bgl4jCQD9uNdno9A5iSIneeoWu5PR+jOsVgWNM0js5rhuOa3HomTrZtddxoQpdNxspnLI0kCy76RLriQsVDW8c4FeiSkdf01QaDVsIkO32vl0AbDNrJsuV+PE1jNFp6coyGgIDutVNJjCTvhf1WgjK2noy07wDnAr6xDAqRi7St5bAacLmcM3UVDw2P0CSaID7TI9tKWAtrBlv2pQ6Wx7f2ufvkLv/uhcf5rQ89zXOLHZwO1N5hdOTa8JiYFA+UM95/vab4aEn7RIe62HD8xpztDyqObIm7umI5K4gjkfHkRUfzOBxMc5YPFJR7OcOXAtlxK+mTPmFntdi6IdcuiJsQwljaDWBUCexSzqmbe3RniE5hV6L9Dc6hvMhvTKUIA0UsIrE2RAfVgx5da8ztIcolkgXVmT7JMuFTRgyKVBuWTgJoAIIX9vtmmrJVVuwOlhw2A64Pj9EKxq4hN54nDy6yNagoso7WW6wNzKqCGBWzVUGRdcyXBW1rmQxrrAm8MNtmmLWMioamsyyWBTRagK6CdirNksorRi9oyv1IfhwEuE4sdhkw7Rk5g1KolAhOE634ZZs2YVcSeGMasQSMpm8qBbJjT1KKbqCxtfhrR3PKaq9B7zqHJmm1GRBF02vpFaeMdur7GtekrxYXFV/IetZgWQU2/vpJ9bIU0wfwlKLNNvUZfKMgFBCKtEnXtCtF1vZyJSPSFd31Uhe1jprvk2HX2nPXD8q8Js00KMdcFzKQN3Aju0yadAwmNVvDiovlkkkmAVcSNRXpMDgVuFTMGbua96gz78FrqNcCuN8J/A/ATwNj4B8Av+m+tvJZWt/zk89u7j/yXT/yqstend5fNyrAX/3Gt/Lmq5P7ft2r1Zrh/kQa7S953Q6/7U2X+Fs/8TTf/CUPsT3MPqXbP6/zOq/z+lRVAga6ISCa4buzEeONbCCBUVQXncR91wnTCCNWX4rEYaDYqrk8nW+mdte/ij5qBr17wclsCBrq2uEbYY0f2T5iK1sRk6aKGfM6R3XCDoegaaNhGU5/O5vOcmEs4Rgj0/DL8wdYtLk0Y+lIFzW5CZSm2zQe5kaY8BA1Wie81wzutPf6bYP8qGsFUaOyTBjuEAR0AyK8sUyfXPL0fEA5aEhRsaoznAukqFjUOU2wGBfZzRe8sNwW/XkQC8Bc+z4VTwDC0LQ0wbLlKvTFmviBKTd2txi7hqXP2C0lBGTWln1wTsNbr9/gIx96gsEHSlZvrYjbHbMnMi78omLfleitlrrKmIwFfGqdCIVnNSjxQ8PymoVk0R4mz0VMmzG4WYsndy8vSU7LYKuLpNzQDS1+kIiZJj9s8AOHXQVCqUVy0kaKE43pJL2y2U64uabdCfhtz6IwXPppg1tFTl4HfqjAg+2dTVRUdBNNW2vII2FlqYJC20gMimpWyN+W4+J4QRcMB3bAKG+og+X68JidfMUL821SUjgT2BmuuDsf8cDWjNsnE+bLQoJYgGWd4WxgWopU6cX9LYqioyhb8qKjbS3dnRK70KioGb2gyGaJaldTb4sEw/WpkjHXhCxDpZ5F1gKKm4mivqDppgk3M2w9GRjcbggDS8g03Ui8z7uJwecaXyrx3C7UBmCvQeqG3XYSipP65kzd9M2qZzTkSct3UzTaSQB2L0cR6YgSl6C1ntsg7iFBbcD3upkyrUNsgrxOJQHZyp/ZXr+86hM114O1tQQGBGTfA/bjKZhfP6a7/hgzBQc5KeUc6il7veY/uQR5xA1asiyQWc8ob9kpVrwyCvvE9VoAdwdUQIkw3M+mlO4P1n+W1iuQxK9Yb3vwV2Y3/k2fxsj3V2uK/H987Rv52r/+H/gb/+4p/p+/682ftn04r/M6r/P61ZZWiSY6AprV3pCpB1LCLT1+nFFva8a3PIurlpAhzgUTjyk8xkS28oo6WAG3SdEFzaRoKF2HVQKiyHprNZPIi26TGLcOrpiWNcswJQSNTYrQ666tkijwRZ0zyWt23JIuGVY+uyc+2gfDhXKFUQmrArkW794qOJRKWBeoD0rc8UJekNLGcWpjBQii6U76lOkOofeyDpjbh8SXrqMebdAu0s5yfOFxuaepHbOuYOxqHnaHOC3T3jEpmuxeHbdRiYjYCD45u8jF7TmHtuQjP/063vxlz5Abz9TVVMHxwnwbnzTXBoGHhkc8+Y5j7I9vYZ8v6K43+CstszbjgX8Ht35Lhtppmc1LppMVmfXU0WEnLem4RK/WMeIC7qpdTb01YPc9M3E1kZ0EL82AqovYBCTL6qIlZorsxKNiIvUyeBWihMZUGu1FK96NE/bEkFxi+4OK0U2ZCRhlitnDvSd5J77q0jQIJ68z1LsiRfDbinyrxmOgVhChWmbciWNhr+ucSdH00qNdrg5mTPKaeZ0zzFtmdcEDEwlPGeQtMeZURzn0IF4N5L1etDnDst1IfULQdI1FRZGUlPtio9hOxX/biMSZaBT1ljiICLuL+JT3H6HBXmSwD9WO5ugtkVsPR3Z/rmSwF1heMgKCoyRNRrdmg9UGnEYr2us1iG+nCd1CdH2jahTHGDmR/ce5hyOmlYEMnHqhb6QmWj7rayDfv4P94wLA14B/nT6Z1Ok2okuk7FTOolt5b9ZNoIR7bLk3LPrZhHjdybFt5DH9dohgl/3+9ufAVArTmP5zBkllBAUrk1g4uK1gvvoU2QKeqXcDPwR8MbAL/C2l1O9LKf3++9rSZ2H9ya94nJ966uBVl/lr/9e38Xve/tljs/dKPtwvr9dfHvONX/Qgf/9nnudbvuwRru8MPjM7d17ndV7n9SuoLhmOu5LitkXFiK0SuvLMHx1iq0RwcpFvpxC2O1zZoXTC6MhxU0qzWudYtY6tsubSYM7KZ8y7HNVo0tBjbSTPPZOyZsutyLXnuBvQJY3RMn0fWkMdFYfFgMuDGSPb0kbDgR0SogRdrKKsFyDTQcBrQvy3VdhITnw07GYLpvmEVZPhZwa1aj7xSdBK9N1Kb2QnhHAKzJcrRs9r0qMifSFB9Fo0urU0g+3kS1YxY2Bb7q7G5Naz8hnGNVgEdK8dGYam5cVuSxj6B1vy53L2qiEXyyXPzC8wzcRruvKOeSeWeF/6wPP82JtH2JkhLS163NFc9RxVjms/Ebj5lRlqu2Wxyrm0tdg4Rqx2LaPnnLCISXyh2wmEazB9tsDNBBQnrYil68/H6anJ5wKMmy2HqSO2DkSjiJnpA3RC/1jO/ttFWmJOJHXRDwz5QUNxoOhKhx8q+Xz1Dhu2jlz4UOT4cUe9CypamlSgvLDtqQgoDd5rcicU67yWtM/WG7Qa43Tg2vSEwnSctCXP7u1wffeY7aLC6IgxkWqVY51nkItQednKcbatxXtDqCx6bhnc0pR3xMdaJWimIpMIpSKUYv0H0qCoAoQtaC5oulGivKPZeiri5oHJc57hHcPJI47VZdBe4uEFPPaMsDl1G9EeuhyaCxEVRWydPzGjvTvEzA3FQe8PrnrASi8nOeN9fbbWQBrkdi3zWDPLp4i8tx40Z/7fM90y8FqDZ7WRrWzW3YPpdAb43/P8elOxB+n+9PGk+teu/29B+dNlQp/dtNaVs2H/ZaYhGU4Z99dYrwVwf2tK6Rf6+7eBb1BK/aH728xnZ/2mx3f5S7/n8/kL//QD9zz+1gen/PC3f/mv0V59klo3TX4Sev6//JrX83++7xZ/498+xf/wjW/9DOzYeZ3XeZ3X/dXaD3cVM15cblP0/IdpI2HgaIeKbJloJprqkqK9ENBFQOlE8IZGJU6UNKNVTUYICj2omLcFQ9fw0nxMMgltJWLb6sg0r3uJRcTqQOMt46wh5n3GgQuEKM2QpW65XrYsupyBbRmYlqNu0AfK9IKP/oqd6YDvw2bk2MRa7KQpBNAHUL3rCErJxT7di1ZSiD1IVeLsEUKvb4bkPdsf67j1pRnGRIJN4LVY3CU4mA+5MpyxCDnbWcVBPQRg3haSfIkS5QqqbwRLbBcVA9uyNxxR3M25dXOHh994xHFTUgfLpcGcRZezV49oo4TCXHndAXc/fFEkAkGhS8/qUbCV48pPRW5/lUUN4WhZcnG8JEZN2qo5emeifCZn9/2ewQtLlq8bcfftmpPXZex8qJcExVPZS9JiTwciL1I+gVOEQqOi2EaGXKObgO4Cy8sFJ49qph8Tb2h076JRKDKj0V2iPIq0rTRnqgjdUKwLsxPP9NkOkqMbK4Y3HfUOxDzRJQhRETNNpRN55pmWwmiv6hzTD/xyE7B5ZOxqru8eY1WktB2l7TheCOnV1o5jb6iKjtUiJ3UagkJVhvxY4+ZQ7icG+x7l5RjtyuBLRTOVVMhuqDC9u4fueplVIU2EMYPlZc3WImCXnlAayoOIW4qWei27QEFYs9twaheYgCS+2STF8s6QwQu2f2/OgGV65jqd3q4fk0h2NiA7mbRhlNfrWL9GwH/agH8B1KkPq+k3tNZT6Fe+r4MA8dSvb72v9zDYfbPmZoCgTvd5fQxJQXJnfpt8r/3O+23pMzKaxL2SmtdYrwVw31VKPfSyx/79/W3ms7e++Z0P8XVvucLb/7t/A8C//79/BQ9fGP4a79Unrk3T5Cfx2b46LfnmL3mIv/+zz/Otv/l1vP7y+DOxe+d1Xud1Xq+5DJGApo6OGydTBsexb6SKtFO70ZKGUtFOEmkQKMu2d3ZIOCfe0W3j0DoxHTV0UaOUYQicnAwgi9gsSC9iUkyymqldYUiEpLlVTdEkkk4onXCZJ7MiybB5pNAd1wYnmzRGgGlWcdKeTieXTgIzNEm8e3WiiZZnVrvMq4Iy68hOFHTiQIIxIhc5KysJUYB2EsCtjCaF0wAcYmTwzBHd0Q7lpRXKRlJtia0wl/VCAmzmXUFpOomzDgYfNT6KlCBXfuO1DXI+6uB4+MIhz14dgZJY8yvDGbcWU5ogITuTvGZghYV+4/ZdXhruCANsEsZE9LBj9mawK8vOL1iOvizSkHFoIpfHC+7OR8RhS/144sUHDZMPT3ng3x6SHw24/a6C7kZGdtxIw5tWmCaIiUsJyYq0Yv3XDjW+sAzudthVwA8tJ48NaKeKy7/Q4mYd1ZWCdqyFFZ9qyj1p+LMrkat0A5EyDPY83UATCo1uE8OXAs1KowMUB4lmqqguGbqxRMO3S0s79PigsSaSkuj7y6xj1QlaMzoSoiagcSZw1KcRxqOMlEVC66i8NP7aWuEWCrsEt0rkx5HiwONO6o0Vmak0ajuTfToG30e1y+cGTAPTpyPTp6GdSPNjNzKo4FjtGkIuMgoUhExet26ejOaUwY1OmhNtJXKKpKG4YzfgOJpTcEqSJsZk+6j3s6yxWJKDShu3k7WWOxk2LiXRJJQW1rzH+X2c++nvg4qAPX1M9ayzSj0jHSH2ITibZcLpc2ugLDt3ul7te7a+tx/V4cygwZwurhIiqu5lJ2tA/yut1+LD/SPAP+9vfxx4BvgXr2XlSqmvVUp9VCn1lFLqu17h+W9RSu0ppd7X//1nZ577I0qpJ/u/P/LaDudXVtvDjGf/8tfzvv/6az6rwTbwSZsmz9Z3fPUTjHLLd/7g+wnxPodi53Ve53Ven+5SIifpkmF+MMQ0CR0Suo34UuMqsTVrphBGgWzYYoywwAloGktdO2KU4AuAzASsFhuv2BmUjeR5R4yaaVlzKZ8D9K4dEus9ySqSFWZN94xl21t+hSRSEvHf9txpJpy0pYDr3qlk6Fq0iuS6ozQdufZcyuabEI3WGwYvrWm4l/12Kwm62QTeGC3yEpDHgbQG53cPGLxoiVGJhlwhkegmQm1Ydhld0kxshVKJLmqqzlIHS0y6tyqUy76PhsJ0VN6xk69oL3uUidytxgxNy5u2X6INhqFrxXNYB7qksSry+OMvoSthuGNSGBswo47DtweyeWL6bmkoXa1y9hdDtgcVWebFrcUkZm/wfOxbtpg9JOmdz/9OTSgsKdPEXGzqkjm1glMB7Cpg6oT20E4Uh2/I8QPD/HpGO1Vcek9DcXsBWjG4XVEcBexGN26IRlxPTLt2QxGv6WwuPuAxV+iQGOwFiqNAfhwY3wyUe4n8UJHvG7J9g97LWB0MmN0Z0Swz2k608ikp8dvWovPeXwx54XiLk1VJfVigOoWZGcxCU9zRDG5r3FzcNUyTsCsJtNGtfI5V06FXLWbekO/X2GXAruImyl5v9NJsnEVsD9oBVpfcJqRmzQYnDb4Q5l+aIc+w3vS3vZ57o9NeNyL2Outo++c0+D6GPZrTJM9kkvytAbQ+Bdnr283G1uxyL22JNsn6cgm9iVnaAPZkE9EKyN/ozV0fxNOIPWHMxYN93ZSZrOxvKJL0DgwSfpToRpFmJ9JcjNSXItVl+at3E+1WohsmYs6pp3lvc7jOB3g5SH+t9UkZ7pTS55/9v1LqC4E/+clep5QywP8H+BrgBvBupdQPv9zTG/hHKaVvf9lrd4D/BrEfTMB7+tcefbLt/kpLKcXW4NePo8cnk5SADCT+4jd8Ht/x/e/jH/zc8/zhdz3y6d+x8zqv8zqv11gKaKKjiRa7J1d/U0eik6u09olqRxrhyIVR7Lpe81pbgkpkg45h2bCqM8Z9M9ska7i5mEKr0WNJnew6kVH4ZFiFnKldMTAtufFY1UdGN8KcKwSQ+qhFm60ldW4Vcm6vJqLnNh6rIyHG3s9b2PouGQyRu+2YWVtgTcAHQ3F8hh7r49tl1jueenLrJPRgipz6c7OJSE/es/VUYO9tCmWSLO8VOFBecbAcsJ2vaDK7ibbXik1S4ilL34Puns5ro6Hcqaj2BnTR8PRsly+68AKPTfdZdDkj16BVxMeMmDSPjvd59oEL6FsF6XJDVFqS/rZr7n7xgOs/3tGNBtRvrZgvSpwNbJU1bWtJhSKaRNSJvd8Eemm48Lojbr9rlys/3+BL8ep2cS3QBeXl+HUbcStFOzK0O3DzKx3lHcXVn1oRnSb21/BkNNms6wNZNPW2IZ8pTCVUr2mTnFulCIV8zqIV0Gq8yFdME3H7LdnMcvREQTeSZVVUuIXDl4kwjNRJ0TaWLPc453luf4fgDS7ztK2jW2SYudkEuti61/5qYafFsk5cQKIz+EGB7nLsSsJ/AEwXsatAsr3wWBmCkwGCaZMEB2VsNM5dH+m+Actw2iAJ2JWA0dQ3KsYemCadNlpmFfumxDXj27uOJJ02gyCzlAh3YcmTPH+GIaYH0epMKKY8qTb2hMmc6Wpc/yisBwEGUkybZfuXSvV9DElDu5NO5SMRMP2+9PudrGxdBXE6EWeUtJGRpSC68ZjFfkZFnZGOqI1MRvm1/aC6b/12fzrur1JK70WsAj9ZfQnwVErpmZRSC3w/8A2vcTO/A/g3KaXDHmT/G+Br73dfPxdr/aG1rzG6/Xe/7QG+/PFd/sd/9VH25q/SsHNe53Ve5/VrUF0y7DcjshMlQRqdXIBtHfGloptAGEe0C4TOUM9yotcMtyom2yuGZcMobynzjtdv7eGDgOa9ozFkUWz0kiJ2Gh81F7M5U7vCqcDI1JSmEx12EaRxMugemItloFERH8V3exUztBJm22iJgW6CZWBbct3hzsw5S9pkonCeqnaYKn48w93LRzaMtlLCdKu1j5lGWQvObV43eXKOb8TvGZM2TCEaFseSLlnFjFHWiKQkaCrvaKMR55Ke2V+nU66Pb3u0gl52U3vLv37hjbTR4pOw4kYlxq7euJ284+EXiEUirmx/KAprI/baipu/1XLhQx77lMgpjmcDqs4xLBuZoTAJPfTo0pNcYv/WlPD2uciJfKLZMvjSSqS4guh0H3gTyY5aJi92IpOIUO8k9j+/xJdGwnOCDNhU1zuYtAKmo+3Pc4RsFgR0JwGrvlC977QSwJn6lNPWY2Yt2x+tGdyJlHcT2TFkMxjeVOQHBj2zpIOc+qBkfmdEc1Lgl46utaSoUUtLsafJjhXZXNIx1/secmGLYwbJCmhuR+pUxpFrqouOgzcVHD9eEI0iO2oZ3GnJ5wFbJWwVccs+hTOJ5MSXyDE7JWE2mdqwwaGQ7XUjQAnjHbLe63qQNlrmUCTarUjIhVm+R+6hoLnWEYa9+88ZX+21NV+ysi4VTuUv66bD9dckZolYJMIgblj0DQDvGzy1Vz0AVvcCdXV20JA2OuzNc/p0my//W+8bCtHQn7U0j0qezyMpj8QyEkeBMAr4SaDbjjQXAvXFuGkefa31SQG3UurPnvn7c0qpfwjceg3rvgaczRi/0T/28vp9Sqn3K6V+QCm19tF7ra/9DVfrJpvXIikBYe7/22/4POou8Jf/xYc/nbt2Xud1Xud1nyU66v16SDaXhilb+Q1b1Y577XYWSUETVxa1EkCdu44y67g4XHJSFYyLhr16hO91z6G2uEHLpfECZ8SaYR2zvmVWjHXFWNeMbY3VAVd2mKWWBMdekrLwGauQoVVkoFucEnu83PhNc+Sqc2S9DaBWCackaTLXHasuo7Ce8bCWoJIYxYmk/x1Pa3vAmNikwLyskRLoQXlvaXcwQ+9lDMtGkh8jJK8FqCwsyy6jCZaJq+m80I2zOqcO94JuEHC9Zr4HroMs0gbDleGcxUsjXlpOBJwnRRUcVZB0y4mt2clWDB5YYGaW4CXZMyWF1on4QM2dd1guvdfDSzkxKearHK2kKXXtspIVHrtbQYIrW3Ne+DrH8WOOxXVNO9Zon9CNgG7lI2bV0k0cR6/P0B2UexIBPns8sfd2x+pKTnSiaY+ZhNtki4htPv6cJgPtUPfMtsIXmnYk0eVJga47VNWiVw3ucMXWB47Z+dCS3V9umDwXKA4jWx+LjJ7X5Acad2SwJxZ7ZFF5wC8dfmUxlcItRJawZqBNlejORHTo/rl1raPVTRUZ3O0YvRRIFm5/ec7xEwOyOwuGzy0oDlvsSkTQIZdEybV+WQc5xxLJDt0AulHCDxPRQTeOKH8q6Yh5gqjENs9AvFYTt7uNM8mpRloGLXbPQVCEiae96CWIKk8i/XA9aNYyCyOMuEJ3PdjWpyCZCLrWm3OzAejrc9GvL/UzOsme+VOIVtwmsD0NvWa09SkY739qNvu2adps1WmDpzpl9aXDst+P/hiwCVwkOfHmTlmUx++jXgs+P9tt5xEt9w/e11Y+cf0z4PtSSo1S6o8D3wt81f2sQCn1bcC3ATz00Mt7Oz/3av326tcIuAEeuzjiP//Nj/K//sTT/IEvfogved3Op2fnzuu8zuu87qsUTbTcON6iXCWyRUS1kVhafCGuDGEgXVKp1eiVIU491gWMTgyzltx6lquca9MT9ldDpmXNqsvAK8bDmscne3w4XOG4GXOyLDdxzBIE45mairkvKIuO2kNbWwmrIeGjYdXLKACaaDnpCvHp7hluALf2uEacSSKKRRCgGYNhvii5UIfTZsn10WstANtq0voCHwIYaaJcS0swBhUCaEWaDCn2NP5xA1lEVYbkFbiIXljmTc68yGmDxUeN1ZFllbMsTmc4102TPmoGWUvVlMSkyMYtdWcZTRqwieefu8jb3vACC58TUVwrjrmSn/BsdZEmWN56+RY/c3eIOsngkhfPcRtQKtE8BkeLkqv/MXDj6x3ZtmdR5YwHIjyu5jnhyZFgpIdrXjoe87ovuMlT5VXGT0tATsikgTEUmvn1kvnrSrppYPgcXHxfS7VriVbjh4rqWpB3wOYUR14ivs80zHVD0SioJD7kwgSLdSCql0UkYYZDIQMZ1bQyGNJKGlnbDjO3uGNLLBxJK/IT8QmvdtVGs9yGnO5yB51oi9f66mSEtXWrRLoj2zV1zzr3ko+g1+DZMtjz2CqQnXiyE09+7Dh5zHD3XRfY+dCKduyoLkhj5NpKT3lEimFkANvsKJoHWwgKomL8pKUbnzZGrmUlREhZor0U2LlywnxRkg4zYibSl7PNlWjRhpsTRZpbVFAkkwhlIpQRXEKtDKY5Zbc3TYxnWHDRlwv6jUWCVm3kJWcBuerkwY0u3PaAvpcdqajE7UQr8ePuQ3ZS1oPwqHrmWnoIUn8ulFdnQFW/XyZt5CT36M17MC/SmbQ5rvup16Lh/m/vb5WbugmcTX55sH/s7LrPmmB/DxIbv37tV7zstT/xCfbv7wB/B+Ad73jHb5jOwFeKdn+1+vavepwfet8tvuP7f5Gf+s6vui/Afl7ndV7n9emoBCxCzvKlIdO5+AeDAKxuoOhG/QXQa1SnJPXNy2/XwHVMs4pbiyn0LGxmAqOs4ebJFBIUzjMyDVtFxa25oRsbDrohodAUqsNpcSEBKLOOqp9iPlgM2Cok1lks9GIPvBVWi2bbqsBRI3ZvawCr+1CZLhrmXbEB5F1tUam7V06yZq37hsi1/R/WStrky6v/zQ7jnHIvsQqawVbFKpXQauhZxaOTIQ+Oj4moU+vCoKk6R6aDPObFxtDqyF41ovaW3AS2xysWdY5PmtHukvjzW3xwdJXHruwRU87T/iLX8mMy7Vn4DKsDuw8ec/SRHZqTgmKrJkbxq9Y6sXijwS0cl35Ss/dVOa7sWNaZNKZmET9MTD+mcR8r2P+iiNk9ZHR1wdwNWV43TJ7UdA/W3Jw47AImT8LOR1rs0THJamBEO3HUF+QUrR7y+NIwfdqRz6JooNeYyyi6AZv3oBsI4FYJbJVYXVbUb66IlWXr/Y7RM1EGPSHI+3TGylG3HfpkBYB7SVHcKqmvDuhGhuCgmWmaRUY3SWTHCrcUNtZWsp8hU7iV7JsEsSjCSCLKTSMNwd1YsX/VEY2jOEzsfLhh+sEjyv0R+28pWD1QnIbf9KB+7TederYYeo/tE0tyieIlGWz6UnTR8W1z2r0B2b4R4H2hxbrI4Y0tVKs3SY5nrfxAtMybj3E41XUnA6rT6IoNaF03Hq41z2v9t1pLoZJ8tnXVg+reXFsFRSJJs2k/yxFtkoTKtfvI2h4wKHlb0xlgrnqg3htup7X8ar3vPXhfA25hxU/7BkiIZOuMjAaVULafhEr3j6E+IeBWSv2z0135+Eop/e5Psu53A08opV6HAOg/AHzzy7ZxNaV0u//v7wbWmod/BfwlpdR2///fDvz5T7K93xC1/izo+1TfDzLLN73jOn/txz7GN3/Pz/L93/auT8fundd5ndd5veYSqUJGcddiK4+pPCnTdENNN1TEbM1kyfLJJnQpEo2Ba9EqcXgyZDyqyEyg9olMe1Z1hhl5Rq6liY4L+ZKw5clM5KQr6ZJhoBsimqlZoUnslCsODKATWidmTcFWtkJHy5ZbMTY1L3bbtMFs7AEBnAkbhntdAU1pOqwWRxUqg2rqU62298J2K8UmaVIpSZg820AZOJWaKA3WEgpLcRzZPy4ZblcoJw4lKfaNb7OMo2bAohGGvfOGlBRNZ2mdwcTeaw24XMzpcs0L8x2aYCisp9KOWVtwYbjirtki+8CAW4MJD05PaJPh508e4fHhHpVxnHQlv+nqM/yzoyF6P6cbWHQh9oFl1pG24Pgthp33aaa/kLP88o6uM4TOEL2GPDJ7DIo9zeWfVXzMPMg73vYU762uk21X+IcjaW/ItZ+A7KRFRcSbO5bi3nG3YjA2dENDrTR+t6PbUSwrYVdt35S4//mK4lDhZmwAVMglTMktEkdvSlx60138ey5x/cca8hf2xMKxr+S9AO8Qhe3OMijyHrwn9KJi8GxLHObE3OJLgx8ZVhcMKsrMDYhG/Gz4y8ZmrwerXQYkAd1mlTasOwqabYdd5vjCMLgbRXfu1D0o7R6/ayWDDFuBvqt7PTSsroo8I1xsGdiIr4QNVgHM7RzTgo3S2Lpm5ItDtUmCdIszTZYGQi7Mb3QCqnVUvb5apB6mujeSff1VWQfwrP23dd9YKfKWKL7X3ankQyQnCu1Fd08vdVn7YSd9OsOwZqDX8pRTXbiA7nUj5OkbzIZ9vwdgb/Lj5bXKSJATvQf9p5Lh/p/ub1X3VkrJK6W+HQHPBvi7KaUPKqX+IvALKaUfBv60Uup3I1KVQ+Bb+tceKqX+OwS0A/zFlNLhr2Z/PtfqfhlugK94w0X+2o99jJ995pD3vXjMF1zf+tTv2Hmd13md133UQTPAzUD1oNMXBl9qulEf5+z6xqxGk1xiOK7ZHawYuYaDeojSietbx1TekRuPT4bgDdoEtosVec9gm1KkDsdNSUCTqUAg4pSnNC0j18h0uE68bueQeZtzezXlweGx6LNJLH2OT4ZMi0NJGwxOn4JtpwJGRToMR71Pd24kehzoZSKi21Yx9naA98pMgF5KouS5M/puVYgVnqki+U0H2xU2C3TaQlCkPGJPDHdOxkwGNcO85Xgh+9F0IpUJUZo522jZa0Zk2nNlOEOTWPmM3PjNuWyniXJPsbg5oRkt0SqxV404bkoyE8i0x0fDI1cPePboKnFh0YMG1TeW5s7Tbjccvblg+4NgPjSCz58DAWUSIQrL3+xGXnpY6NkX51tc3plxvCxZzgr00qB9xA/NadJhrskU2OOK0XNLghuRjAYcoUh040SzpchfCOLg8VhFWA7QhepZ5bSxvTv6/MAjT9zh4F9e4+qHO+y8kfej60h1Led/XVqBzmSA5AOpyIT90jJw0lWHqj1mDm6RYReOmOmenZWmT+1Fsx8z8f8OmSRfJgX1BZnVcb0vd3AC6rRPaJ9YXStpxmYTv04SVxWAGNU9TPSaL1Yr8KWE2bRTyI56VLlfEE1B3vtWbxxOJgk/DLhjvdFcd4NTyUo36kG2EqZbRWGidQfJKmmw7AHyZmARBbgmOJWM9Psanez/mqlXEXS79p+Xv14FtqHYdXuGpeZ036Prtdb0+xbWchmF6pDvVFQba79N4+SaAQeR3qzLnHnvk+i7Ewp0EivO+6xXA9zPppReuO81nqmU0o8CP/qyx/7rM/f/PJ+AuU4p/V3g7/5qtv+5WKpnQ15r0+TZetv1LX7pv/ntfN1f/w/86e/7RX70O34zo/w+22zP67zO6zdMKaW2ELnfW5DL3x8DPgr8I+AR4Dngm1JKR0o0Ed8NfD2wAr6ld7X6hJVQPH+yTXYidoAqRGKm6YYQyrRhuFWr0a1CXerYGVTkViizu/MRF6cLLuRLnm0uMMoafNRkeYc+09BUmhaXeYLXNMFy5IccmwED3ZCpwMg0jG1DyiN4zeVizsTVfPjgEkPbcjU/oUl2IxGJSUlEes8Kg4DtJlppnNSBZZdvmjTtogcQRgu9FBOJKBpu3ftwp94141Xi61LuhNVUMLgNyzcYtOnZQK9JTnya61XGdFgxcB0Lm2NMpGstXdTkZxom1/sHnv1qxCSvKW1HVTuU8cRLDewVlDcNN3a3eGj36B7QPrCRW9WE0naw1aFOHKtFzmRS0XqDNZHRsGZ+GWZ1yfTJxMHFAcXVJTEm9DDS6SREcWUYPut4Kdvi0et7hA9O4KGWmEcO32gZ3kpkSwE53UBTb5WMbhmyu0vGz1UkXaJ6awrdCgO7uGLJFonxsMbHASokAYVKXEnaL1hyZWvB8Q9dY/JSIDvpMC8dkeYL8T4HlLOnoHvtk55nG490CSUCrN68hySFXrTkK2H7xaruNLZe+YjqAimTGYtkFd3QYlpDNOLLnc0DuktEI8ytL6TB01VRUjYziXdfy1JUPOuFrXoWWtxJspNENxag6eYCvKPrbQkN+EE6jWvPEvm+QbenoP6szjkqROIRT9nqe9hlpU6j49eMds9Oq967OmT0vtpicZxMEkBMv1xzVnrSb1v1/8RT8P9xyZe9fnuTpKPSRtO+joxXXp2G3KxXnUAFLU2fa1mJetkC/Vu9bvhNQfMqX9VXrFdDW/8n8IUASqkfTCn9vvtb9Xl9OutXArgBpqXju//g2/n9f+tn+L/94/fxt//QOz7Fe3Ze53Ven0P13cC/TCl9o1IqAwbAXwB+PKX0V/pAs+8CvhP4OuCJ/u+dwN/kk1jIpqQ4mQ/YbSTsJhmNL0RbG7MkF8qoUK1YdY1HVe+bHZi1BVWV8cBkxklb4EygMB13V2NJP+wvklZLI2ORdSx9ToiaeSiYxVIcRVRgxy45cgNUEVBHGS8strlYLpgUDXWQy+QqZEQUtvc0m3UFh8cjHnroiNK0m+0VuqNL4qQS+kAUt+wPeC0hWf9+x7jRFK/vK6NJ/pXZs1TkgjmMojxIHC0z3KAFF6E1kIsMIK0sdeu4OFiidRTf8qBpOovTEU3CmbDx6l75jIFrsSpsjgNgurWicZKKGF4cMB+vsDpidaSLhtqfZmFf2FlwMN8mzTKassP1zZO588RBw2zXMQuW8pZh/FjNMGs5WpWcdAZzs8D0Gl53O8M9HGguBYrncrqRaL1PHlfsfgC6UqLZ/UBx8OaC0bZj9NQJWx/yZIshyytGWOM64SoBT8cHI6ZV36QXEr5QpC85wSbF4t9eppwn8kOPu3FAnM2F4e5nIFKIArJdhrIGMiePawXWbN7XZBTKJ5LWG/BNSqIjjxGiwvQgO9leE9502NYTBhnrM+kHGp8rlpetSDZ6S7/Q2/cBGz/sdZ1tmlxruUnC+OoAFeCHQYBtUqhJS4qKVFnROa/BcFCYWlE/1EKjsXMjGvD2lBVWsT+PnMqYzyqqohX101o7D32DZcvGui9fCTButgTs6279HegBM3J8G2b8DABeP6bW0pV1dPyZBlkB/v16Y/9gv8MbZnut306nshSJfBfGHtP/reUpCjln62O9f4L7VQH3WUT36P2v+rw+nfUrBdwAX/zIDn/4XQ/z937meX7k/bf5nW+9+incs/M6r/P6XCil1BT4LZxK/VqgVUp9A6dN7d+LNLR/J5Kz8PeSeJf+rFJq62V9Oh9XCYgHOaa3betGFl9qSZJbX2A7hWkV3QXPMG9xfZLk3cWIougobbeJWbc6Mq8l5VCrRO0dhe4kLdJ5VjqjDYbDdshDuSGgMCQGuhFQPmwJN3IOqwFv3b65CYpxOjBrS7IeacSkuLsqUSpxqVhs/LdjUnTJcOJLUlJitUd/QbcaQjzVaQMpBrnQnpGWpFewBVz7cqfyFOCaJmL3HO7xik6fAgpfJvRKs1gW2O2AM4EQNEonWm9prYDqxyb73K1HtNFizziurO0Nu2jYGlTcHCXcXJEfaA5PhlzalgTNxtue4ZcY+euTIw6nQ/GkXuTYrRV16yDrmJY14+sN7QOGo5Mh+x/e5fDaCqXEGrAZR1SnoVBkM8VHP3aNRx9/iWeLi4x/KWd0M3Lrqz1HjaPcEw1ttCJvOPg8w/zBHS7/7JzRRw4p9oZUlwuaqabe0bhFonghQ7zdhRlWv+2Q1f6I7Xe7Pl3Sk794RDqZnYLtvlFKKYWEEImGfsNsrwdP6/taizRDqQ2gjk6TnCY4TSiNAH0tMxQhk2PYMNRBUjQ3VoZVRHexB67Cquo2bEKA7vkeGRmEqLBOeFSSpFkYVpcysnmg2KuJVpMyjS+MSFpyRTfQfRqnOLaEHEzjNmha9Q2KIT8rFhcZih9G0jAI7R1O9c4qF8mQMfK5ip0+ZYS9QrW9jeVactJJKJBIVOQ86E6JpGytSw/yGEkY/HtY9P63RPVykXtYcCPbPAuwTc+mh0xm0jaCrrWWO+NUTtJJP0UCOU6lNsE691uvBrhfLik/r8+iei1Jk69Wf+Hr38R7Xzjiu37w/Xz+tSkPXRh8ik3mpTsAAJChSURBVPbsvM7rvD5H6nXAHvD/VUq9DXgP8B3A5TMg+iXgcn//E+UnfELA3SXD1r7BLTtUTPiBwRecApFKBKlJgx12aJWwKrLyGSezARd3JKa9C4ZRJrZ3ISkK56k7ubx1URImrY59b2Ji7vON3V+mO5zyOBXYHq24a8YYHdm2K5ZZThMsC59vPKhL09EEy6zOsS4QemBiVMT1LiWH7YD91YDLowWrLkMF8COH6e3lUuqj2pUidfEUdGsBTknpUx036dShZGCJRthUXUemT0L9BJgsSs9XLbIStzCCG0ygdJ6mcxgTaWqHM8I8//LhVZwJIgeBXl5iiT2Ft+ocuQn4QcIuxKEj3ixpJ+LOYXSUQKGk2ClWxKS5dvGYGweX4cTRlI7d6YLtoiLTIlk5npf4WcZgXxOWQ9znnxCjYnB1QV2N0TMBTMPnLHtXhgynFfVOhi80eiXgqdlSDF5KG7u6UML8kUg7HnPl3TnFMweMjyvK7QH1xYx6ahi+mFhdVdhKEX7XEXXruPDTDu0hn0UGz8/g8JgU1tYe+vTWGJECrW8RgCsAW4B1GGSkTMJ2mgs57aj3TA9gVxFTB7LjjrL24CMqRgHO68GVUgLyz9baMnLt076eDVm/xvb6fqOFVd/opQGjCMOMbmgZ3aixx1W/GQGeLtwL6ZJSJGfA9AOC/vOmmiCfRyNA8yzYF5cYNvuUtAw0Tm810ZnTRlGrNo2ea7/waMQOMRSyKkm77PXV9vR4khYPcWwU8GzTRnOtvCJlUVxV/KnUZeOprc7o2hP94IFNM6ZEtvffr0Jm1VSnSH0mvUrqdDZhfdp6L/L7dSp5NcD9NqXUuqe37O/T/z+llCaf+KXn9emq9dv7qwXchTP8zf/ki/id//NP8u3f915+4E98GZn9FQzZzuu8zutztSwiK/wvUko/p5T6bkQ+sqmUUlJK3RchczY7Ib80wc3Bzf2GcYuZWJ2pfqo35BDGnjLzmL5B8c5iTOw0mQm0fUeVVolFl5OSwgdN4TyZ8XTJ4Ajk1qMUFNbjo954a2vEGnBgWraLipfyxLzK6ZIhJLHWK00HrLhdTzeSi2qVkxcdeR96kyuPUZGQxKEkRs3INewtRwK4S0OWOVjVPWPdAy5tSLEH3b39HFqBX8/H9+Any/Cl7QGMuEpMn205rjIZlGQJ1YjzBwl8baUJ0npC0OR5x3Je0AWDiwHXs9pdMBvwXHlHaTsK29EEI4FBWy3psIAAbqbZPxgzna7oEI120JHDekBIipFrKR+c03WGr370Y3TR8J47DwKQO3GXOe4Mq9clRh9zLPaH7Fw5oW4d5vqK9NEh0Yh39fzOCDPyDI4Vq6tRQH/fVBcKYWSzWSI6RbOTqK57Xhw7di9cZufnXsLe9QznGfm0ZPFgTnaiaL7+hOqpLS78krhdmCZR7Leo4zkpBGGxzRpI9s2Q2oiUxMqAKA4KwiSnm2R9dLywsirA4MUFw5OaYYzgz/ith7VLid4A5vVj/Zdi/YXa3N8s2wNaFVPfGArKi2NK0gLUN37uQMocfqvAl5byToVq/WZgQEqoLvTLWXltEN25aj2ptz5c2+2pNbhfe8Svd9kI+E7mDMNPr01HgLocw/p1p5/lpNSZ9SZU158bJwMYFXsXkrPuPYpT2U5K4r1ems3594WVxMxC0jpjJlKVUPR9ICCWorqnxHWCoNCNhr7Zch26ozq5TVrkWfTb3nSiRnXfgTfr+oSAO6VkPtFz5/VrV//oj38pP/jemzjzqwPcANd3BvzVb3wbf+J/fw9/9V9+hP/qd735FZe7fVJxdVr+qrd3Xud1Xr+u6gZwI6X0c/3/fwAB3HfWUhGl1FXgbv/8J81eAO7JTigeu5ZslVAh0m7l+Fz0qmd1lsmKhGBUNpS2I6I4OBxh8rCxBtQqMXE1z852+m0opkXNlWJGEy2dMlgV0TqR6UCmAye+pHYOl0LfOFlTmI5YRlazgohiYmuavpvsuBuQG98z2hpfW4qy5bAdAtAZQ6G7HngnxkXDpXzBB5srZLFPD5wOMFVD6joB1DEBvT/aGnRtWO4zbKZSUBYCMNYAAMhvnKBuXITrFRgBDSn17GCjubscoVTCd6IpT0HTdYZaWwHTURN1RPVR77YX42ZGZCdV50Rmk+WYupec3MnpRg2ZlQFQFwxtUiiVKMuOb3z8fXzg5AH+xQfegik8w0FDAso+5n4walh4zfLhwOijjuVUBkmDouX4UsHgeYubJ7K7ljDy+AEb3+eYQX4kXszlXqI88OjOEq2hejAQBpG9L9R0g6tcfM8JatWQzVZMF2OO/rymuTPisX/eUu2KNMfWEXtUneq2AZU50WsXuYBvrUllTiwdYS3pSQl30lJUHcRIGOUCNhfVBgxvdPrr91FreS6+jEVfM9cvf7/XtxsArl6ZCe/3B6WIo5xuWmBqT7k/u2fdSSlxxumXV03XO+Ck08eUkmNO9+6buH2oj9veptagP947iFA+3fP/FFM/1pQBxNlUVbW2XAxpA9BlgHFm0NGvT4dA1vYf9jP7tQHzvQwm6VMJSig0vtAko2hHCj9Q+AG0kx6YO0hFWK9ow2arqEQGs46Aj2rjcHO/Ou5zi4pfZ/VFD+/wRQ/vfMrW97VvucIf+tKH+Z7/+CyD3PJnv+b1m+eqNvAPfu55/vsf+TB//Lc+yqVxwbd++es+Zds+r/M6r8/eSim9pJR6USn1hpTSR4GvBj7U//0R4K/0tz/Uv+SHgW9XSn0/0ix58mr6bYDkxVEiGb3RtK7dEmwlemSz0qTr4riR6cC8y0mNYbK1ZGBbVj5DqcTQthwvBhvdqNPiGuKjYWibnsVFgKUOBDThjM1BoTouFQv0sCMuHSe+xBCZ2JqBbrE6sPQ5ACvvoBUWPSaFTwbocCrQJYlPD0m2o3umLBmFH2WorTH6aCbX8xDEk1tpkoov03NHSGsAkEhl3oMu+hAVj1pWjF5QzK4J65Y0ErddyHlbtY5JnzCZkiJFhW+NuJYEAybgo8aYiFHSDLkJy0lKJDR5y0nWJw1GSUZcHpa4iwu6cHr+vvDiLXayJe8+fJiP3b6EObKEKeTTJZ03tN6SWU+ZdbQDS5sUzY4mvjhk8Jiw3IOLS7rDCfkxlHcVJ5cszXak2NNUDwTcTFPvyqDsoX+1RDceu8pRMSfmhvp6S9ppORxkJDPlwi+vsAdLPvYtY9QteMP3igRp0EW6sSM7adH7R8QzTZKAMNrOEgfFhu3VqxY9q/rZhbhhm0kJN6/uAa5oJe8fnALpMyzvPdVvM2l1DwjdsOJanbLhKZ2uN6XeuEOJe832SBoSXzhEVc29khStJYURTl9/tvrwJfniWdKgII6L03UAoXToLgh7rSEWjuh6xj0lCAnpcl7PTkmvQjL6lCXmVIWhvchqVC9hSihh3yOo9SxOPN1/aZCUdak1INdKZNmvMDufzg5UAN1Esk5elx/3mNoIiI5WJC5Jy+9QVyr8UFHvQLsViYMoEpYIqtObMJ77m9s7B9znBfxXv+tNHFcd//OPP8nrL4/4XW99AIA/9wO/xI+8X66Xf/vfPwPA73n7NXaG2Sdc13md13l9TtV/AfyD3qHkGeCPIhDkHyulvhV4HvimftkfRSwBn0JsAf/oJ1u5CiIf6CZWoq37BinUqddvGEbGAwHMEcXt4wnoxLSsKYxn2YnzyF49oq0to3GN6Z00gA2A3NyScCrioyac6XwqdMfY1uRlR32Ssd+M2M0XmD5lsu1HAlpF9qsRqtGbfQIY6HbjeqJV4rHpPgPdsjgaMFH9Rd0owjhHr7JTsLQGYymS/Fk9d4+se+Zv3SiWetLPzFoIga2nWo7foVF9bLXyilhEsj1DtcrZGYh+t+sM2gWi1wK+16l8SRH65lDRyAvIX9sd+qgJo4BpzMZNwhxbVuOM7fGKN+3cYeoqnppf5D13HiSzgQcunPDiSYaqDfNVwdZoxbLJMDpidGRYNnSNpbvSUT6bsZwXZIUnRk13uaM7zLArUK0mTj35xxzNrqK93DF4OmO4l2i3MwbP1WS1Z2gUvswIhaO7oFBDz+G7YHV1SH3dYcqGx//frcwcOIOpOlRIuDsnxPlCPgDOofIM5Zw4kYSAPll8PEAGYWiblzHTZ9npV5N8xnTvOtcAe63pXoPMnkVWIYjkaG0h+fL190DdHMyhaSWkZ802rz3e1/fPSFQ2+wpsEk/75VXVoK0hTAqSMfIxLA1+YHCzbjMACLl4iZ+12FB9A6g0gYr+e913APTBNeBmHe5wiep8Lxfpj8+aDZsfc0sYZoTcoHzENCJjUSFtQLc6K0vplR/RnQLzDThX6tRGsP+NkeAh1dtxynm0dcLWoPZh8pzMTCWj8LmmGynqHUUoE37QS07uo84B93mRW8Nf/r2fz3P7S/7CP/kAX/LIDj/x0b0N2D5bH7x1wlaZ8ZZrk9Mo4vM6r/P6nKyU0vuAV/IO/epXWDYBf+p+1q+ChJCETJwS1s4kmwunBr3dkjuPVZHGW6rDknyrZpw1rHwmIS1WwlpSVJg+3XHiaq4XR9TRMfMFWiVSL31YM9xdEqcSR6RQHYXumAxq6jTk5nLKbr4Qv+0kcovQ/+bduLMNQOk6Mu037iVdkhTKKjh2siXHfoC764g5PYiClGniZIA+jr0bhoHQykHHRMKjlEJpvfGClnPVM89W4VYRvRLmunxxhppvY3YbvBWHkpQltFe0s4x4QVEOGlZLAbX1TFxc1oRr7BsfUQKuPRqrI6XtCFHTaoMed6Qj0zeZKbqtyFuu3OHtWy/y7qOHefethzZBN+vQm+HlJatbI+pZjh4vGeYtyyZjmPdJlMOGps6oLwXszQL3xmNWq5zhdoUfZJgW3LEmXGjwwwxIXL9+wNFHrkKCwzc6opsyevKE4oVjktkm5BlVsHSTiNLQPlFxcXtB/j07EFv8NBeWftViVi2sKtR6cGMFDqUYUU0r4UTra5w5g6xeSdIBp2D4478Y90gn6H26CfHjJSJn759NH/We1DdIYgzK2tNthQhtt9m+svbUZaUPWRIgH0+Pp3dV2QQurZtD18caI+pkga1b4rjETwoB17nCtHETPGP6QYcv9WZmShkAYX91lzafWxCpU5drdEg0FzL8aIfy+WPU0WwzAJXj6xuIa4uKiegKVpcdKvZOM7mA5+LAkx82cNa5xSjx1La6dyrpBy7IeVg3dcqAVmQq0Sl032AJ9D7mPUBXYsNp2oTbSwzv9AP3LrF3cn8U9zngPi8ARrnlr/+BL+Cr/1//ni/5Sz/+CZf7Q//bzwPwF7/h8/jD73rkM7R353Ve5/U5WZvgjH56uJdMQI8/s4Szp97QL83HYBJbI3G+aKOlDYbdcsHt5YQUhL0dZOK8EZLGqdC7kXhSWvtyizf3KmZ0yWJI6P4xoyPJJmZ1jo+GgWnoeiorJk1MirS0MPSUtsP0+7ZeJiCSky0nITumXsdiC5OmvLCsqcxRIQq7FvuYd5JITNb2c2dAUCyd+JMbcAsBhaSEOpoxvLFLvNYRSo1aZtIIlgn4rr1lmLesVhKAI5vQtMbiTAQd0VFjjaeL6+OUZtGINNGVg5YuFjQ7gUuPH/Bbrz7Few+v830f/SKCN1gnzie+l5i0wbA7WvLCqEAtLfsnElBkVMLpSKsSmQ10OhLHnrQSltu4QF07wgMeW1mymWLRCMOaH2hOqoLqakR3muIgsbxsWF3Y4dLPHFA+e0QoLpCMJWSasNvyjkde4D0//wTTKwoVhxv21c4bafobD1HWSqKk0hCDWDOubQDXbPDL7BrVGTCrXs44n2WQX54gChugm9YA+GzD5LqMOX18DcJDILUtau0BrsSmcLOfZ7Tip2A8CGPuvcygyJt7+rk6ozNX9gwcXL++adFth6s7SCNWDxT40ojbThDwqnzEtBCtyDHWdnwqQXBngPd6hKfA531zpFHMPm+H8qUh2fP70HWn8pa+l0HPEsWqJdtz+K2cZtsRjfR5rC47mm1LudeR7S1Rjd/ozjdp3GvGfM36a03MzMZRRY61d0NSck5SEA/vpJEmbtX/Pq17K+hnrO7TnvkccJ/Xph67OHrNy/7oB26fA+7zOq/z+lVX0n2wh0OmaNdSWI1EldtAZgI+aaoqww1bCttHq/dYZOQaTpYlqITWkaFrGVphgNeSj7XExKqI1YGBaWmiExcT5Xs/7pZpXnMri8zmA7gCXbRUwdFEg0+a2juUV9jtnqk1HQPdMtAtEZFn+GTQfQOiqXtC053R6KZELDJ051FrgB0TIhLVJO9RayZTa8KVC8weH+FzkeBkh7XIB7oOtGH8QmTvC4ThT1p0piFPmFpxeDzC2CBeyHl/bqMmRkXTWQZ5i48apczGdnEjx0HsFHeGKy791ju8fnSX959c4//46XdiTzR+HBlcW0iseFKEqDFaEjgVMJxWLFYj2pOcqo+aP1gMKDIJxsmLDt8a/LZHHWW4awua2jC4uKTdn5AdK9TSEp0kJM5emFA+Msc/ArO9ITu/aIgZ3Pwdu1z9DyeMnjymHe8QjaZ884z33bgmTP9EUdWGwX5AJei2C+xxg257Q+aUoG0EgBqDWmuC184fZ1w10OoULK+fWzPIZ91CzoDxtAbN3t8DbjfLvKL3+iuDueT96X/69eGsgG9rX6Yl1yiTSFhhyVsZpG1ed1Zasmb6e893Mrc5JlU3uJcCdiuTpFN6Gclapu4TbhVJWrzG18bYOghA1ZY+aTJt7PiiO22QXl4r6KZXGTw3Qx3PT48vRlTnSSmhUyK767HHljB0tFsZzZamHSmaSYZ5MGNw11PcXaGrDjq/GSzps84nWqOUfBFM4yEk2stDqosOW0dMn+Spu16r3miM0/1xs2G90yd4f16tzgH3ed1T/9XvfBP//Y98+FWXGReWZ/aW/I1/+yQXRjl/4Iuvn8tLzuu8zutXVqn3332lq5GLWBNxJjBvcnxnGE8kbRJg1hQYHamDozoq0aXogI2OAoRNwyrkRPoY8zO+uSFpumhok6VIHfQMd2E6dBYInaZLmlXMWAS5QGsSx02JbhRZFhi5hqFpGJh2w3Cvl5vYmrvNGFNBuyWPq1bi6zd63TwDH0TCEMMp49gDOMoCvztm9tiQbiB2iflhxBz10ZVatjl6vuJ25dB5IGUJs9CEImGXim5lsVMvevigwSSC16Ts9FycbZZUKuGjzBTk1vPA8IRrxTHPLHf5vp/7UsoXLa5MhFxsAqutjLzsiFGAWOtPPbonZc2iLFEzx8l8wPDCCUBvRejJrKdyEVN4uqak6/qmOwX+4Rq3KLEzCULSPlHcNVx60wKtEsuy4fjOJYoDKA4St3/zlKv/ccbOew+582em+FVBem5ILBKhVKyuKvzQMropDKoaOpHlOIuiJNlTdnWTLvnyOsNobrT3mweiyD5S3IDWtPZQj0nY884LsHWKl18x72HLz1xPlVKkEO6RF21Y79iz1mvbwH7wttF79ydTGU3Cih58DdjXA4MQem/4M/ruXjuOMTAdk8ocYpIgHq/QbcQPDTHvddk9g+1WERUV3VBvouVVPG1cVFGkGZIYKeA1ZDIQbaaG5m3bDG8NyZ/bl3MVAS22hSklyByqC5gllE0gPzJ0I0uzZWlHitkjluXVCcM7nuywxcwbAez6tPmSlNBNRzSZSEsyjW4j2Ulg/pBl+YAluoRpFG4OxWEim0fsSoKIJJpei3VpfIWB0qvUOeA+r3vqyx7b/aTLPHZxxPtePOZ/+tcfA8TN5I+du5ec13md132WAkwn6X8A63jltR2gzgKZFaBxPBtgbGRcSAPlymesOsc4bzhpSugUaiBgDk6bGI2KZNqznVWbRkFD3KRCngXKue4YuYa87AhB41RkEURaUgdHTIpbB1OJwNYRq+Lm9Wtwv9eO0UpcP47qAaaV5qpuCKtrBdGIG4tpBdiYdoqbB9ysRR8vUYsVyQewlu7qFvOHC7pSGkpNA8PnFqi6FdY0RZRzuFuHmMMHMQ+1tFkP+NaR1LWGKWiT6BqLdpHYGLzXGKM3bPTaTj30splZXXB5NOekLfjl/TdRtY5sXxhlUymi7bWstwrU4y3eG2Eie7Dtg8JozdbOkuNmQlhZlmPH1rDiYDYktxItXxQdTe1g7OnmOXbY0TaWCzsLjrYKSWFMoL2w3Merknc98BwfOrpCc8mjgqW+oDA1VFcHNNMR40snpJ/aRluxw/ZFggH4IYTMMHxJUQCmytEnAUwf2975j5eBKPXKzh4gIHr9vFaQwmnz4f+/vT+PuyU767rh77VWDXu4p3Ofc/r0PKbTGUlImswBFAIBkfD4IBIVAVFERUT0UZx5Hd4H9HFARBAQhedFwiBKFBkChMmYmUydkKTT6bnPfO5xD1W11vX+ca2qve+7z0m6kz7p4dTv89mfvXft2lVrVdXe9VvX+l2/y/mOtKsDapOliC4VvIEuWn5AL34oAVPDwe90ZLpdJ0Yj0jGanUyb/Lm0jhS5acBnM7Squ0RKSZrtTtfd2RYKMhqio4EVxQGyWWB+JKc8M8NVFmUOpWm4rUKkputaqUdCKJNt9VLp9FBIqiS56E8opCt4s31rSXHVtax+fBd/fufgoCbEbkZAm4gD8j3wVaTcclRrnukxx7nn5WSTnJWHBwxPzfD7FQS1QUQa6rjpYnZD5jV+4ikveDbvcuxfN2DrWcLeLYHd262MvFQeP8/IdsVI+I4+3ro3PeHucRDPvWb1065z3ZEh73tgC7Df6D/6Hx/mZbds8oLr1i9z63r06PGMQjtTnzSZ5hqAFZ1wWHloF9mvCupJzsrmpPPdnjY58zrj6pVd7jl3FAR8FnAuUrhA7pJjSNpJ6Rojguq6bTiUecypnKcACmlYy+aUeUM+DJ0VoNkL2vfqCyU+U8rcIoUeK3azFwYEdeyHgoFvmMWcs5MR0kpwB2LEeq9B6tBFutU5e1836LBARxZNrzaH7F5fWiGP3AjnkT/Yx1/YNVIUdRFJncwYPyzMb1LcoEG9R4IQS7MHrGY5ziuxceTDmrifERpP7ZQ8eW6HVIo+d6GbOVjJ511C6MZoyiMrq/iZWTb6uRALpTwvTKeFyVai0DQe0iCpDo4ybzqrxd29IW51igjMG2+RdWdRWlcEwizp4JMWvDlWUzySm9ImBWa3zo+5Z/Uoa+WMq28+x9ndq3A11Otw+qUZw5ecw//qUU68bZtHvmidagOa9QWJjrlH1IFmuGZAERSZVsYHl6O8iXjrgUTGuHD6aKUXbcS4dXAMEZHEHpfrf3tvEVFZLFNVi0bbm4OuIe06Tbi4FhwO6r9bNxJVqOpFxNr7gx7ZZYkk2dJFPcFbZJnNwIiY5V/mcNOG5poSRMj2Kvw8UB0pma97Qi5dRFuikk1NdtEMhZBxoJBOzMClAkfLiDmgMF8VqhevMT45YvSJ88i8Sh7mujhPziX5FLgU4Xe1Ul6AaiNj/yrP+ed4spvHrDw0ZHRqjt+p0m/v4PGUoEhTo0HRccH45Jy1exrqtYLzzy3ZvTkSRtGqZa7C9DoFgfp3Hh/j7ksL9jiAxyINOb5Sdq9//Ju+AICfesd9l61NPXr0eIYiJVh1b8VuuqbfVopUXfL8zgiccmQ0tYItwO687Bw2JnslFMmqLDgGWd1FuAGqmJG5gEaYh6z7XlRhFnMijkp9qhJZMS6t6mRUYRpyqhTh3q6GFBc8sVAKb4S8TS6cRYuAt/Z6bRVHiVawJeZQbFdkZ3bxWxPcpEJmNW4yR2ZzZH+KO30Btztleu0KOzcuyHY2g6Mf2CM7uWUVBpvGoquQopSO0alIU2eW+5eB1JZg6RogChqBJslqBMRpp+MWUY4MpozziqjCOK9YLedcmI0AOD7eI3ORuNIgjVV6zPew7QTgdIn3aj7fjUMwmUodPCE6hmPTu9fTnFmd4X0kBEeILnVhQfRC40Bhb1oyOjJFc9A8DTpqyE7bgGba5EzmBWEcqY4G3FzIXrRl/YmKqxqu+e1tVh4Q8vMev+eQSmjWArNNZb4hzDcy5seGxLWh6aBDcgSparRp7DiHYEQbjCy3Ee2mSVIRk6Bo3Syisa2sZNn2EZJG3HVJkdJGldsE2Tbh0S9cNLp9t7jYPbqVoeR5t0+tanRewXx+YNAgziGDEhkMLLrdfj+RbikKZGWMlKUR8LZippr+OnpMihEjMq0ZPLTL+MEZ+TQS8uRhnXTcvrJqnlbN0Qadrc1eGFjhmZjRSUzaKHgs7BrbuSnj3Cuuor7+aCcHkbqBqkaq2krPp4GrNCZ5kQj5bmD9vpqNuwNuDhfucDzyyiFbz1+lOjEmjsuu/DypgqUWFn/2uzP8XkUoPa6JnHj7Drf+lynH3u3J9u3alGCFcA78eT0G9IS7x6Pw9/7Icz/l5+vDxVTVnTcd4UufexXvvW/LfuQXS/7o0aNHj4ugjWhbBTd7HTMIA0XWKvIsMJkX1Nsl+bCmzBYhsf150RFbnXkr/KJG3rLWcYSYyq2LkW8xyYnZAdrtb64ZVRKQBxyla1gpUlXLVKa9iY7CBU7urJLvCJpbZNin/YP5eO8lvXjXxr0BYCQlDGB2fEAcD5AmILPKSMNsbtE774hXH2Xv+VcxO+pt4OFh5WTg6Pu28eeTX3SnCV7IDnRlRD6JhO3c3BbyiGuSLGcuaG2abCI0tR2rWDu8V46v7nN0OGHa5JyfjpjURTcoAZiF3AoOzQuK1SqVVjcdrpubrnz8kCMEoa0E0gRHkQVWU9GdYVFDHmHmmM9yYhRiNMItgEYhzD0UEZ15VIVqnlPmDc04ErMky1kFFPabgtwFRsliUILAc3e5dm2H2QOrTK6BC593BBycePsOa58EaYTyvGf4UIYozDeE2aZjfiRjdmxAHFk0txvMtDIOXSLRMZgFXwgLIu79gji3WPbaXvgvGglvHUhact2S4Y58u8XrttDNkma7W/ewu0m7/zaanSLeWjdGupuw2K5zJjEpyy4xV0Q6ss3aium20/bNXSciVYMLoN6l9zUynZOf3GJ89w6j0zWi0JSJdGMDvmymuJBId2mPmFniZDM26Umr7LIIuUXH1VvC66kvGLH7eVdZm1Tt99MEpKpxswY3T7NGjemsLelRyfcja/c3HL0rUGwpOzc7HnlFybkXrlIdGxNHOXGYm2tQZqXltcxR7/CzBqki9VpJvV5w5KNTbnvTNte/RRk+4iH0SZM9ngD8udfe+ikTJ5cJ96jIuOXYmF//yGle/v/9DeZN5B/+0efxx15y/eeiqT169Hg6o+WMS8+xUMIokucWPZ7MCqRxrIzmFjEWNUIYhZXRnGmTW9TJqwUHkwd36Wq8xKSnVpOXOGUePGvZjKjCXAv2mpJ5loODebT/tpV8bhFdTIKSucgsePbOjhlm4FdrVos5Q2860O1myMhVNOqpo2foa0rXEKcZrl5E70IpNBslOHDbE6sImJIjq2s3zHatFEIBxa6y9jHTsepogI4HMK3sO2r6bZxVGdSVISpCvuOIG0ARkehbuSoyc2iWioNMMigiWdlw4+YFRJSHd9YsSTJvugTKTGLy67ay73XwDMqaSWl9acaQTY04Dc4qu1sDiiMzYnCEoOzNkt93FJxT/CAQKkc9y8gLk/fYZ9hgoLKETr/rCXkkRnM90ZWGuF8w3xCKHXCNcGp3hevXt8ldxB2ZEy+UPOfEaT56+iokQLUZ2bvek0/HDB+ectXbzjM6vc7ZF2SU2+AqkxEg0AwcLsD82JDR+T0jxVWqztm0iaTSJTVqK98QAXULR5MQ7HJuo8YxeeMdKHKz5IXdEu6WMLdE23Z48HlZ191tSxfEu23Tsl94+q54bzKXOEdjZtru1q0j8yglEk2uIStj4pEV+6xqzIkjSVSM6Hpco4TSk6XItzqxmZpzW4y29yguHGH3ljHVmqTqmXa9+JmFr0NpCdLaRraDbUMbcFU63tESj6NfFKvZui1j75qjHP3wjOKBC7ZekxJRixyHRd61tfAkVdcURYINXFdOwuSYZ+sO2LqjYP3jBasP1mSTYEmn7WFX056Lgp8HXIhUGznN1SWDczU3/eI2zdqAM/uPj3T3hLvH48Yy4fZOOJYkJqd351y3MeS7fvb9NEH5ui+44clqYo8ePZ4GEBZkG2dRLj+zqFeevJ3rWYaWgWFRd+XG96oCEVgpKj556igEIcsDITgyH3nW8DRjZ6TJo52/dJYHs66TSK05TfTsx5LdMCAgTELJNOSMMoucToP91zlRquDJzmXEUllf22clm5NJYBoLtqoh1wzMgWOnHpC7wDTkyNymoDX1LWZCKByyYtFUV1h0bXrdiulgS8HPlY2P7pPdfxqt6y6PlFgSNkbmLzybg1hUUsuCZrVE1PTUk+sEvEWEpTYdd7bnqIu2IqAyWp9SZIH7zh2hqY0AD4o62frFLrpdR8+F+YhMIqOiZlLlhGEk3zUXlHxXoLAGFmc8/lhEoySbQIxoeyVGR1HWTHMPjbOE1DxQ19403wCZ4sqAfyQnjD0MAtNZTjGqacqceg2KHSHfU86fWaE4cr7Tn8uROQ/trjN/eIyuN8jEMz+qbIWMybEVxicDKx85R3l+jZ2bB+ST2A1Gsol5k6sXdDSA3b2DFRrBpAewcApZ9sY+vKy12Pt0WLITJEWZu+UH1jkkKXHO/KoPr38pG8G0D12K1ncJlc4hGYDJWXQ0MGlFItpSN0hVm6wktbO80BBK1yVaShPMnjJpwrMzO6xFZXrNiP2rPGGQmhdJ8hIhDKAZLpa7GjsHpeAaNRmUkjTvKaEyQD0WHnrNkJUHB2x+YAe/tZckPgGpBFLC9LJ0I+aCg67S6/B8ZPAumG04JtcI+zcUDE8qKycD2V7A1xENab8pgZsI+V6Dqz371xRs3Vay+lBDtn9IhP5p0EtKelwUv/s3/9AlP1sm3ACrg8X7X/+uL+K1tx/jb/3CB/hvv//QZWtfjx49ngE4pOFufX1ZMwJYNRk6ychXKgSYNRmzJuuip010hEkGAs5HUGFzOEnJkrErtZ67QK2+K87isO/uNCUXqiHbYcg85t1znjIdpyFn6GvW8ynzkJHvGlkY5A1OlHv3j3LP7lE2iwmZi2QSyCSwms0IONw8RRmTOYKKRVZVhDDMmd6wxs4d68w2PaKwfveUzbc9hP/EQ1aMpZUjJL9ovzc3crE6Np9kEZq1Ac04Q52Q7yixShG+3IhL9JDvCtI43KihPDKjmudsP7jOfKc0pUQ028QQpSPbQKdDjwiZM7GMroQUlaQjQmEgjB4RqirrzkPTmPtJa9OYZQEpIgShmtk9I0ahqT0+C0geEadoDn7XgyjNLKcoGuIgos4kJRJg9MmcrfmQ0jfcctU5Xn7zvVzYHuNngsw9bNTU64HJtZHJ1cLWbRnz6zfIz+5x5CO7ZJNINo2EQmhGriPfzdoAvDf99mGpRivTaO3l3CH6dPj9MpadNpas98iSdtu7BQFfLnjTkvllEt5WkTwcBYcDg4TuO8sDgRDQ2RydzdD5fGER2Oq3q9pyC+qlpMKUM6BVhU6n+ElDM3Ym6ZjObfA3t8Gt5DmaZ7jdGeN7tjly94x8YoOZWAihTOXTJ0q+n2Z+Ut5GK6FqRkK1auu3ft5AsuEDX8HuzcJDr1tn8uzjaJYGN40lHss8dDITV1s5eAlmK9lGsa1aq7L2ycjoYWV+RDj7wozt2wqmxwrq1ZyYOzQVt4mFVa4kKuOTFWsP1EyPeZrx44tZ94S7x0XxqXIn10eHCffiohsWnh/9M3fy8ls2+Rs/935+//4Ll6uJPXr0eAagrUwXPTQjqFfMDhAwuziFzbUJVfDM64z9eUHuA4O8YdZkpqXMTE6iEYZZTelqCgmM3ZzS1QxdRekasix0toEATfRWHj7knb3fPGbU6roKkienq3xs+yoePr+OryGMFxHHUVaRuchOU3K+GjOPGZmLJidRwU+l62PMF/aHoXTMjhVMj9l/59onZ2y85zTFvWdgXiUylhkRIzlVZN70vBe2YTqD1TEMB4RhZslo3iQeMvWgpq2WpOOuNhQdBkSgOjmCB4fmTZx0qG1UGkzeEVXYrwtUzf7QoV2yarkyt6TMCGFo5y4UUO5E4nmrZhmjQ6NQNx5V2BxPGBU1xaC26PvME4IjRnuoCiKKAPWxGj8HbRw6t2g4g0DMlfkRpRkJxZYd/4GvEVE+sX2UjbcOyCaCVKbpzzfmhLXA/Ghk57kNj7yqZH7tGm5SUZ6bIY2STZU6Ee5sakSN1fHCg7vVNh/WaMOlb5JdOfVD7iZgcpXDUpLD21l6r8kT/PD2H+Vmsky+D0fIL7JtDdESKlvC3RXmCcj+FNmfGelOg4LOSaVp8PtzO2azOTqvbGCYZUhR2CCwLQK0P6W4/zyb799i7b4GV2vKzzAybWXak6QkM113PbbIdxjYf0EYiMmvQtJ1t5MhE/u/OPnKglNffBVxY9wNWCwq3yB1xM8aXBXIpg3SmLQEFrNq6oRsBqNTSnkOZpvCued7tm/JmV6VU4+tamk3BnVCzO1YjE7WuKZPmuzxBGBUXHrktkywAVYOvR/knh/5M3dydKXge958V59I2aNHj0tCBZCkbx4rcWTR0BgdzV6OjALzOmNa5czmOdNJSdVkRIXJvCBbrUEU7yM+M8322M0ZuTm5NIzdvEuuHOQNdW0R29I1lKmc+X5jspJ5tGTBKmZdsqRVjVTqU0NzaBgEchdpUrn4jWLKZjFhI59wNN/HiVK6hv2mxFWLanpg7gvzzZzZZoavIusf32f9g+fIH9ky94WWrLXWceKsuE0qey/zylwxZnPY2kGHJc3YGylwgq+VbCfJWLx2kcMwjshuRjxbggpJbWPEPEW1NT1aP27FItwhOqroGecVw6JmWNZd0qQmMmSbEoYPeeoUsY5q2u0iC0zrnGmVmy5/2CBTz3yao0GIQYjB4ZPGHG/bpnYQLWrui0gcmDXb7KhFK2eNDW4KHzj5wCZHP7TP5kcixQWH2/PUOwWrV+3B8TnSCNXzJjzwuoLdO47gKrNnLLYbit3IfM1bEuj+zA77YIBk2cGiM21k+TCWHEAO3OvSOZRlC8EDeu4l55JLke+oF0+YXJajtNtajmgv67uX0LmStNFz52FQ2uCuTeBsE3rb/IJ28JeqY8rEBlzdttsKl8OBRZtVkVmVDNADbmfC+BMX2PzwjME57YhzzOlcdGxgCGGohFLN1ccbCW8GCycT15B0aCZD8TPYuwnu+6o19l5wvIviG/EOyLTGTS350c/bh/mFi9LZFIIldq48qKzer9RrcOHZju1bMmZHM5oVbxFvlyLe3qLejxc94e5xUWyOC375r772op8Nc/8p3wOsDXK+9Qtv4/0PbvPghSkfemi7J949evQ4iDbSlKzAzB45UhQNsyrHTTySRarGM50WNJXvku2KLFnyRdMsOxcZDCuKFImNOOrkPhJVmMeMUV5TTXP2mhInythXDLOa/VCw31iBG4AqeIoUpW6iY78qKM+bHtUPArkPFK4hl8hGPmW7HjKPGbkLVCmCvl0PLFLrWkcGez08U7HxwS1GHz+P35os9LFthT/nFiW2U/XJTnNbN/ZZMBcNza2Udkjb9lXSVc+NrGpmUb3BSc/gjDPi77WTUBBTJDlFuFuCrUCIVgAnpGVOlEHWWCLkWtN5KLcOE6Gwqnz1XoFz5vnd+mnvzUqq2hJdi7JB80jcz4mVRxtHDII4RURxWbSo5tQiz2GaWUiyTLaPQ2v/2a0VJk3BWj5DKkczzhmerlj/hGnM3b5n99yY0XhOdmwKDw2pNxtOvtJx7sXrqICrAoOzFeVWsMqJa0PTMq+Ou9kFu0APyT3aZa2VH1hUN5Fc8ZaQeGD9i5HtEB9FiltSZ9sMB3Xi7XeXNOTtvg/g8PsltKRbyhIZlEaS82xB0FtCn5xATEKTytF7nyo3YsV1ygIZj2A0tO2kUuxG3JvFdV035Ce3Ofrus2z+QdXZBNJaWEZLZPUzsdmgTIlla0GY/hs8RrrrtiMWHS+27Vg99IWOB//IVYTNleRDnyQmIeCqBj9r8NNANgn4aSLetenEJVg7ZkeFZgArD0ZWHlTqVTj/fGH3uozpMU+16oiZSV3k0of4kugJd49L4rnXrJH7R0+bldmnJ9wAL7p+HYAv+Ze/zVf9wO/x9T/ydk7vzp74hvbo0eNpjZimlGMObtSQ+8Bsp0Sd4rPAdL8kbBXExiGihGAyhKrxxHkiEMDmaNpVfwy6uL1lzpYNshqde85UKwAcLfY4Wu6zV1uypJNI6RtGWc005MxCTh09e7MSPzU7POeDlYkHMhcoXc2xYo+1bEad/LpzCexWgwPT4Ortxp7tWLnpA0TrYjZv7XKwaf0mWoXAlmR5R7NedgQALPLr51CeyUxe0QjFtk2Jt24pbeS7ON9qXwVtHKHxNMExry3KL6Id8a6jo4mO0hvLliLiarHIpJl1EEpLaMzP5tRVRpYHqlnG3v6gK9lezXMGRQ3DgJs4aFophMlanI9ISvj002QT0YhZPQ4bdBQIw0i1Lhatx5JUsz1nU/0C40dqNj4erf8zz97WkPUVu+8MHrIiOrs3C3s3DggDj4TI4MyUfKchjHOa46vmCCPuUMT6UCR6WcbRupe0WCLiGpKdYNSDpPZispKLyFSWfbxNYhIO7iuEg5H35WTKQ9Upu2h9az/YNMn1Rk2ytNw2JwtrxG4b3iRPClrk6KBAByVa5ka253Vnm6hLgwmJSeqxN2X4gQe49rcusPJA7PIA2p+qryDbN4/rmCuxVPOiz5YGra2uu5OFgJtDse3Yvz5yz9eusP38jS5iL3XodN1+1uDngWxmxDubLSLerrbfSDMW9q92NEOxiPe9ljuwfZtj/xpPGIgVyol6MP/kMaAn3D0+JT7+T7+S73rdsw8sK7KDl82wuDjhPrFm6clVE7lxc8T7H9zij/7A73VVKnv06HGlQzs5SSyUOIj4PDCrcmTfo8NIDB62c9xqzbXXXGB1ZWqFU6KzxLw8GncBBlnNWj5LyZJGDnNpWPUz5jFjJZ+DmHXg9cV5rsm3uG6wxUo+58x8haGvU+EasxKch4x5kzF5cAV10KwGhoPa5BW+7h4jX3XJmS/ceJiBq9mpSotwi0XtzKUEK5PtDhGrQ9Zw0hKe5ESCc4vy4a1UYTCgXskISQ/rK6UZONSbbrsZaZd0ppmmqXs7UGGgZHttFNVkJYrpt0nPmiLb3qUE0ibvXmdFs/BPl4W+Vp0wPCWE3dwSINUkI6Hx1FXGaDTHuUhWBmMfaqS6lbXEaJmlMdc0YLBCPTE4+8wpWkQm10YGpz37dcE9545SrwfmGx5XRUSVlYcq1j4B2Y7DbeecPbVmkpRSCauR6rYpe9eZB3cYZMTc4/cq3LRhfqToorodLuZ/3Z63w8Q2hINJkm6ZnF+Ech3aprTfDdFmNKDTlEvy/JZW/nFY4rKc6Hm4rXFBniXJQ7SNYC8ncbbbWW5HIs9WHt7sJrXILTKeebMUrBsrGtQE04fDQavDEC3xsmlwZ7fZfNcZjv9+RbmV2pTyONSZVMRPzZ0k5kli0pLu5IrjQtJ/C12+QnneQYSTr1Xu/+pjVNdvWLuTJEjqgKsCrpWYzCK+UrK5PYpdK9nuq+Sbf8TaMDytDE8p1Sqcf65n77qDeWyPFT3h7vFp8R1fcjv3fu8f6d4fJtyD7OKE+/jqoiLln//CW/mFv/hqcu/4un//v3nLh09dnsb26NHj6YNkvRVTIQwtI1kWme6X+Jn9z8SzJUThqmM7zOqs8+JugkkhVtemRtoSSdxrCrbCiIgjqMOjjFxFVMfAN+CNSAdMJnFLeYbrBls4lHU/5epym7Vszk49YN5k7M0LBqeSvdkgUuZNIvVmn9dG09tqkyNX4SSaHjosonKxjMRCzO3gU1m6HahCmAhw5jtCA5imezSgGSTZRS5Mjzn2r7Zy10RAlDBQNNPOltDPQZIEBwE3b9uRuLnKATnJsmMJ2ExB5iPeK9V6a5lHF+mLGeS7ijTCoLQkSY1CrG0/8ypjd8/84GIZrZ1LiZvGEa292RRkbgOEGEyK4vIIXokrDWFoVo2TvRIZNezc5HCTOmnLhbX7jXT7iaTBW6C5fm5WidOMvTsqJic8YeiIA4+WHjeryaZJA1wUi+TJFssEe4lkawiLqO6jLvE0SHJyiHwvRbkPzW5I0m4fkJJczBWlJd3LEpKL6bbbIjqA5NnCFSUecjWJVmRn2ebvwDWaeShyu6ZLj3pvXt0xWjn59nvJI/7AcYMFiY9WNGf08bOc+N0LHPtQY5VLSfKkgf1u/FSQKISB0qzYIDLmi2j3MvFutd35nlCc80yuidz7VQXnXnqUOE5cpInQxES6A74y0p1NI9lM7TFR8l0l37Ood8yFemwyn5WHlNFJZes58MCX5tQrj56R+FToCXePx4xf+o7X8EN/6iUUh/6EBpdIHhgsSU3WBhnPu3aNN3/7a7jjxCp//iffzff9yh8QliMBPXr0uOLQDIRmCLFUI4IAW7ndbGdW+GR0wy6zKufYaEJde8q8oWo84pSrV3dxuRVrOTKYkEtkEgvAotu5NJRJ+Fkm4fGksc+jCmM359bhGUZZxV4oO8JcOpO27E1KXIBQKuJtP7NgTibzmNEkX+9JKNhKWu69MGBvVnYkAMHcOQQ0d4uCIi0OSxQO2761hU269R1xdUDMrZBIMwIURqcj+R5kE4sUk2mnjQ8luEo6gtuM1I5xEGhSJDpIcikx7/EQhWm1iOZFFcZFRZ43xHU7luromIR6Sz7ze47drRExJm22j4T9jHpukdW8aCiPTtMF4BDXSiaSWiDJb/IUhY+VJ8sCo/EcP2qQPFIdsUqfOvOUo5rpNRbddlVAghIzYXwyMH5Q8BOHzEwv7k9MkTIw3pyy/bIZ2zflhMIRhhn15oji3BR3bse8rqMe1GpfwpnkIKl2j57BSERbRBba8JbMXmTQpa1O/+BODhLr5Qh3W72yPYiH29nJkNI9OcQF+V1uQxPMdWQ6O2Af2JFvQL1dv9LY8ZZgWm+NcWEhGA4NANLg0bTtpgUnFa1xu/usfOARTrx9h9X7Yyd9ErX/BIkgdRq05tCM1apVFvZo5SitplqdSUMGZx2uFs68PHL/69eY3LiGlkl+VgezDawivrLKlH6Wot51Kkk/oytLD7bv6XFh/xpheFJYuU/Qx8e3e8Ld47Hj+deu8xUvvOZRuu5LabiXsZa8ujfHBW/61lfwxpfdwA/91if4Uz/2dnZm9af5do8ePZ6piHmaJo6C5JGm9gxPesoLtqxcnTPZLakaj3dJPqJCXXvWV6asl1NWx1Y50qGs5jPO1qtU6jtrwLGbkztLsiTC1nzIXhgwcnNuLU7z4sF9HCv32GpG7IaBJWNikorm3DBFqJWsCF0lxqiOmO72udi2d2uT0dXRIq9tcph6RYpoFfZEFuXcW1wioVyWyXeInWOJDErmx0dMN10XDR6diax+ctrpUW26XYmZkZZQ2FS5JIlJm+yoRUQahyabvqbx5r2tQu4jRZaIrQrzkKVEVUexUnXeyNrKSlK0u9gWtHI082yhzx42+DyQ5YGm9ubF7dX0urVDg6DR4X1EV02yUp5LWqHaEjDr2uN9xOWR8tiUoPb56mhGXG0W0ct56HS2aw80rDyQSPduRj3LWFmfUteeI0f22H3NhAt3FPhpQ7WeIfszdDJdyCI6SUS46Dk6QHwvFUBq/bsPYzlqvVyYJrbWggvtduf/fbHvtqXmW1K+tK5Wh/oRdVGWPgTz4m612sFIcBuxJ4QkE2kWjiXOgQOZWVl3mVWm215e71JYHhjAYmAigj+7w+Y7T3PiXXMG5yB6TQnH5ijiUzdMQqKWTJmi3ZqkKC0Bbl9ne0J5xjM/Gnng9cLJV60T1gpisSDefr/GT0MnMTkQ7Z7bs8TWshSKbcgmalKUx5mS1hPuHo8bbWnaVjIyeAyEe9lKcFxm/N9/7PP4Z1/7ebz9nvN83vf8Gnc9vH15GtujR4+nLLTVb+cKyaGi3i0YnVSaIcjROfOdEnZybj92lkldEJrkntF4RnnNkWLCVSt75rKBWIn16JjEkv30yCUwdOmOHYSTW6vMYk6tGSebdXIJvHz1Hl62eg8jb555u7X9vxXnnGlIB5GitKh3lrTMraQEjHRnLjDyFfOYoXsZfq4LIuC0s0Dk3Ba6u28yEViQkDaZrSU2y5FVb5FTGY2YPv86tm7LcY2S71lErtX+SrRpdl+Jkd1EimNhOtcuYlda0prMko1ginxblUjpiuC0NoFNSpx0opR5TZ4HmpF2RNus4iw628kD5mYRCCR3GUddZcRoya8yCGgeF7ISTFIiXlNlSZOnSBt5D46iaBCgKBou7I1Ahcm8YLA2p9kY4M9s46rGfLUrqyI5PmWRbokgexmzWc6grNmflmRZYPKqPR5+7YrZxVX1QhLREsJWbrFst5fkF+mgPTqq3XpeX6oke0uYQ1yQ5WUS3ckvFjKMxSYOLeu2FR4diXcpqtwS8GQ9qW2Ue0kis9zWLllT0vfLAi0LdGQDyc7OsFmQ/XaAKN51ji0Lx5Wlfntn+m/vDySYShMo7z/PNb95lqvfGcj3zE++zX9wzeJabgaWVKmJcHPo8CMQC7s+y/MOv+fYfnHFvV85YP/GEbHM0NwKTrnaBmm+ikij+LmSzY14uxqqdfMMH562Nqi3Ij76OBn0ZSXcIvJ6EfmoiNwtIt99kc+/S0Q+LCIfEJHfEJGblj4LIvK+9Hjz5Wxnj8eP//znX87/+CuvASA/rHO7CNaGj04y+Lo7b+Bvvf45AHzND/4v3vrR009sI3v06PHUhljUKBQQRlbJsDidEUqY3F4R557iVM7qDTscH+wxqe1/pKoz4syIbukaTox2uk3mLhBw7IYhId2FB1J3chIE6nmGl8jZZpWH6yOcDyts+H2uzS6QS+gcSs7tjfBT05CSmfVg1haCcYFxNieXkMi7p3RW2XKnGZLteCN4ESQILovEwore4B3M5+j+1CLdyf+4e8CCNOVZJ0nQE5tceNX1bD2rIJvqAWuytqiHq4CYXD5SNBsWHsauEqQWNFc0VySKFcGpbWRggU5Hk+wNNVkDOtGu70UWKLKGZi3S1Z6XJF0pUgRwx5LrmirDZQpJyx2joBE0mP5cBgFSsqQmYp0VDc1QmW8K+a4lwtWVBW1mU5MDbQxnzCYFfrXGu8iwrDh95wiqGrc9wc1q/DymCoMmtxk9YnaJ9XbJ/v6AomjI88DG6hR59QXu/wpH2FwzEhiXpCRtafQWh0m0c5bQmGeLc9eST+dMbtIua+UWS9FdSFKNZYKvcUHk24j3cjva1y3xv1j1S+hIrWRZR4S7xEvvzXIy5WFJGuRJnry1yxIZDc32bzxEhwVxkFnBl2WP8LR9ytISK1tf7+XjtRx5dw7NvPU5PRauIuacMv6Ds1z/q9sc+4Cac4kuBo/SAM5kXs3AchVCoY8i3hIl6b2VbCYUj+SElchDr4s88qoxzTgjjDLLqwCkjmSzgKsjrkozQyUMTynleSPivlIktDKgRx/uT4XLRrhFxAM/CHwF8DzgjSLyvEOr/T5wp6p+HvDzwD9b+myqqi9Oj6++XO3s8ZnhVbcd61xIWhzWdi/jcLGcFn/xi2/jvX//dTz7xCp/9ad/n71584S2s0ePHk9dqDNfZc0UGTeExjE4J8yOCn7QIBNPdbzhJVc/yIVqaIVu8mBR0DyyUU5Z8XM28imZtyTGWcztWTMKWcgARmlOWspAnGVdsmOtGVthxEBqrvJ77IUBF6oR0yZncn4EmKuHHzWcWN1jNZ8xzio2sglr2Yyhr8klpMRMuwPvNiXFjnROHi5AbMxBpBm2kWsxbWwq227E6tG6XnWCFhmz245z9s4j1GOh2NWuvLosyxgEXEhT8HNwVYpqChCtiIifC+oVv1Z3ZNw8jU3HbbtVk98cQpMi03mK8LOy9H8tFvlrbRDLc2b7p1NLclU1km3yEdfNaORlY9H/2BbfMe6V7wquTtFLB2Gy0H+LKHV06NQzHs+4enWXzEemr9hj55U32SBGBAkRPw+42kjS+OHI+CEHQQh7GZOJ+bFP5gVN41m/YZuP/vkx4fbrO0IsPpHQ5VmITlpxkXve4dLqXTXIQ/KRNrrc7icYadY2sXI54uwW+16ufHmgTel6YekzyTOktAqQUhZW0Gc07Ii0jEdWsKYs7JosC2RQ2nrjEbI6RtdXiCsD4iCjLSjjGpLcxCQnllCZLfZRll2hnK6/nbOKLNp52EmljYpnZtfot/fZeM9prnvrviXAThe6aVeDa8xrvnMyKaxwjmZtMkC7fyFmlhmcX3D4nYy9O2oe+JKc7VsGxMKbzMRb6XlfRSQo9VDIZspgK5JPzXLT1W2ipvJUsgV8GXC3qt6jqhXwJuANyyuo6ltVdZLevh24/jK2p8dlxH/85i/gN/76F13y81bDfTFsjgv+wVc9j51Zw/f/+sf4hv/wDv7db93NrL6EZq5Hjx6XHSJyx9Is4/tEZEdEvlNENkXkLSLy8fR8JK0vIvJv0ozmB0TkJZ9uH+pIRS3UWOFWjqtgdpXFpv3UsXnNNg6lihlN48iSREG8kiVddi7BEilDxjzajb6OGY5IIYGAdL7c+aCBCJNQ4CXyYHWEM80a+7FkR0tmcfFf5bfNnUQLi24Ps5pbxucY+ooz1SrzmDFwRrgnsWCz2Kd0NedmY4qkkpNId2O2AjGysGWrKnQyNW/juBStbDW/IoRjq2w9f53tWwoGFyIbH5viGroKlmanJqZpLX1HxF1F594Q81a7ndw/GiHLGwjmpY2a3luDLAXWQ0e686RbnzUZQU1WUjUZxajqCpK0/siaipXk+1jxmiCEyuMLa6wIiI+IU2LlaSqzdkSN6MfgKYqG+WZkeCaS7QoqilQO5yN5FlhfnRKiReSHRU2T2jQY1Jx8mWP/uSeMsObOCNTUSKKrYfxQZPSAacvDfs68ykwikwWqxrNyzR4f/4sZe695lkV/23Ls+dI9bFnS0bqELEeapXUBsSRC+048JBlaIpvLMpDWUSRqR6g7Yn2xpMmL6Lq76PVgYH1o5RxttLvIYVCiwxIdFJBnFmnOvEWyV8fo2pi4OiSOCrOyjFjJ9CbadTevTetepRLxYWlmpiveJMmvemnwEeJB95O0XPPM9l/k9j45qUiIZGd3Of6O81zztjkrD7SyDmwmZ55mR7yVju98vZ1d/25pTGiFtWxZfjYj5sqZlwdOfUFJveYJpSdmlhQahjYDMzwbUmQ7mm93pbjKrqWnEuG+Dnhg6f2Dadml8C3ALy+9H4jIu0Xk7SLyNZehfT2eQPyhO67ihs3RJT8fXcKru8WLbtjACfzo736S3/34Wf7Zr3yUL//Xv8PvffzsE93UHj16PAao6kfbWUbgpcAE+K/AdwO/oaq3A7+R3oPNZt6eHt8K/NCn3YfD9KBWEZrBGU+1DrJZ0WwXhHHkhrVttusB56cjQuPJfaBpHHlhd9KY5A6jvGa/KVIBG7sTxnSL8yheIrkLpgGuHDvNgFo9W/WQR6p1TjYbvHd6M2eqFVazOftVQTYxfblmkZXxjMI1nK/HRHVcO9hiPZsm/+2G64sLrGdT2+Z0SDaxiFoo6aaezSZQUpGRNLXeNFaqPcaFi4QIOiyZPvdqtp49Jnph7f6a1Q+dsVowA1lE8LRNErOd5NNoWtcAUrdyBdtsLDQRcaGa5pCZpEQagVyhsuTEEBx146ka3x1joIts5z7gXMT7aNtcsmVr2+FnSjYVXOXQyhm/ikk2ElKUG4t6i9PFMRKrOBk3LHHyyMeCtS+YrGQyKdmdlEzmhVn8pfNv16xF2E/fmSNB8XsVBMXXkXw/GFkKsPpAZHh/juSR+YUBVZNR5g2ZNzvH8dqMh/54zc4rb7ZIcLYkFWmfD2uuD5Pf5STFZSwT0JZ8H3ataQdd7e9EjXx3+uvlBMpHackT2W09swHUrP50PrdH0xzUo3ftMds/HRbEUUEc5qgzRxK3P0MmliXo5wp1bdupzZVE69pcTep6sb1WStLu53D1zfYYtNUuiyRvWbZejNGi/3XD4JE9jr9njxPvCgwfMZlJKJK2Owg4pa1eGQqzEETTwHMp4q1J3+0aoTjrmdwQeOiLHDs35pZXMnDUQ8fgQvLsnqXqlJVJStoCUxeZBPqUeEokTYrInwbuBP750uKbVPVO4E8C/1pEbrvEd781EfN3nzlz5nPQ2h6fCeTwj+wQBrnn6IolKf3ZV9/CT/25l+NF+NP/4R18z5vvYnvaO5n06PEk4kuAT6jqfdhM5U+k5T8BfE16/QbgJ9XwdmBDRK75lFtt7eSKCI0jm8D8iEVB8y3P+vXbuCRU3p+bdrdqMpp5RlE0C2KtwiivmNY5VczwRCJCpR5HxEukdDVBhSJrcHNhtzbCfaEace/kKAAb3mQiTpQz51dNA5pKUHunRBX2m4KdpmS7GVK6umvf2WaFSSiYhJLtvQG+sht+GByM/oaSFMVbil6GYFUkvYMiJ1x/nL0XHGf/RE42UzY+vs/w7rNI3VCt5R2Btg0YwRDVFM2NyaEjRf8wcqGebjrezwWdeZtZgMRAQBpnJdmTU4kmL+4m+XKXWdO5wYyKGueUasP8tNttyxJxlGB6W5k7tHFGiNpdRqEtetOSbk1Jmk3jER+p1sTcICbOpAPTzMrAC+xvDZFa2JuW7M5L5nWGqnSRxwdev4Gb1uTnJ5YQN2nws2RtJ1ZFsLynhCKyd37EZF4wLEwPrioMRxWn/sSUU6+/yWQWbeLhxQrOHCbaSxKQA8mU7WfLRHuZxLfPIT6qomRLujscTphsd3FY2pklPbbqQsLUNIvS7bW9bhNztcjQMjeZRb5w85C5uZFo5ixRdlmL7lL0PMRFtHs5ITNEI9LeiLXmdiy1yG1/mbNH7tFsEdk+TLxRxU1qRp/c4Zq37XL8vZHyvKTItZrtZaRzLYmFdtc+siDIghH0Zi1QXVOTb5nbz/nXzrnvK3Nmm55yO9hsUdZKfsw6MJtYMqWvnlqSkoeAG5beX5+WHYCIfCnwd4GvVtV5u1xVH0rP9wC/BXz+xXaiqj+iqneq6p3Hjx9/4lrf43OOVgN+fLXk1c86xi9++6u548Qq/+lt9/Lq7/1Nvv/XP97LTHr0eHLw9cBPp9cnVPWR9PokcCK9fryzmotI07DB7XojpKuBeKGgGUeuW98mqqOKGfM6Q0SZz3IjmdExzioCjnm0qPa0zqijJ6SiN7OYU2OkO5dgxW9yi4w36qijpwoZZ2YrXGjGnGlMJvLQZJ24lyQEYjdW7yJRzamjihm5BM7Wq8xjzl4YkEtgPZsyiQXNuSG+hjBI2tHU2ZgpoRB0aIMH8W4RsYwBHZTMnnUV288aU40twrZy7z7+3J6R8rKgGS2TO5Oo4MDN1SzO5rH7zM/oHECW5SXZnlVxlFFDGKT1g0XNtbHth7DYT0yJkzFVnwQY5hYE0ZXActJkd24dDE9KF0HXuTNOmaLci40n8g1oEELjUBUG44p61ZxFigtiFoJTR9zL8T4ie558T5ieHnFhd0TVeOraE0bK6JRSryqnXnMU2Z+Sndo2u8CgFLshubrA6v3K4L4SVwb2zw/Zm5VkPpB7u88URWD6lTs88CdvRVbGlnSYZwdJ7WEd8jJavfXhdZejym3S5HLCpJ2Apa8d3P6jAlhJkiKt60d2KGeqTWIUt/h8meCn/mju0dwTc4fmRnzdPJV/r+ok/TBnD5rmQDse1SafZCLLhXZUTSrSLnPWX2lSCfY6mN1gOxBopTDLfQ8BiRG3P2ftA2e44Ve2OfZ+S6zs8kHStW7RakuubAeprVOPRHATR75SUd84x88E/0iJbtac+uKGnRuz7rxYboJF1F2jZJNIPokHkpYfCy4n4X4XcLuI3CIiBfaHfcBtREQ+H/j3GNk+vbT8iIiU6fUx4NXAhy9jW3tcJvzW3/hifu7bXvmY1m3SiP3o2G5Gq4OcX/nO1/JL3/EaXvOsY/yrX/8YX/n9v8u77j1/2drbo0ePg0j/318N/Nzhz9RCcI8rzrM8Kxl39wnjSKw8xbajWlUoIn7fkR2fMcqsCM3WbEg1t2TIprKCNzGaL/Q05ESEga+Z1zmTJqeJnkksFpKSdGfMXWAlr4ilMs4siXKtmDKtc+6eXMV902M06jm1t2IkUZIeebVitZwTk+5h0hScr8YABHUp+dLu6POYkW8ZwWjLTpuTh3YWZ1pk4Hx7PJDBAL3hanZeeJTd6wvUwdq9M1Y+dBK/X3UkLK6UhFI67bYRbtOT5rs1MmtwdUTF2m7OJGoFhVRAzE/Yz8DNzDlFhxEtI6KtW4ngfGQ0mKdzLAdmEkQUn9xaAPygIRQsdNzteVbI95NtoFeLcgcjzkTp7AnbYkfL9VpCEKYXhiYNKIXRSUUaZw4rjXmwl+e99XHmqPYK5vOcarcgjgNEI/s7t8HpL7mesLlCs1oQM0EaJZvFLtl0/ICS3TfADYx0V01m1TRT/1QFee0F7vnmG5EjGwuZxqUK4SwnM17CXz2d+MU6yxHdtKyNbi8T2UdFuZe3taSbRpw5mzSNaaxFTMvdRqNbL+5Oe74USZdE/oOS7VW43SnM5layvaoJg4xsGo20l2WKbLeFdZxd14ci/lrkZinYykXqNsJuRJu66R4yr2A6u3jhn2WpSohdYuWRd53m5v++x7H3Cn4mxEK7QWDMzI2n9evunEXSDJDeN7YB9S17hKGSP1CACluvmnPy5TnVqrMEyZTAHBPxlkYPzOY8Flw2wq2qDfDtwK8CHwF+VlXvEpF/JCKt68g/B1aAnztk//dc4N0i8n7grcD3qmpPuJ+GuPnYmC+4efMxrdskq50jiXCD/dk8/9p1fvgbXspP/bmXM28if/yH/zd/9Ad+jw8+uH1Z2tyjR48D+Argvap6Kr0/1UpF0nMbLHlMs5rLs5J+ZWxTvRNPNoV6PUJlyUqb6/upvLhjL8lJ8jzAXo42jjwLRIT9pmQacga+oao8k6agTpHotrR7rRatCkuMsI4H80rOzUdEhNOzFbZ3jEzHwm7WRdkwzGoGvma9mOGwhM2Bq43YJ5lFrZ4HJxs2zb3k2OECHRtVB7FMEUjvkfU16uddz+6zVlGB1QcrNt93gfz+szCvOk00IlRHBoRcumIzMRGIfGLkSIJV0LP1UxSvtoSyMFCyPZNc+LlNqYe5R4oAeTR5iVcIQrVXsL07SlIS01UvI0RH7iwSnGWBZmVhUajLBNFbaXUc+JmD2iFe6Uq6a0rSVKBxJi9JJd4JwuyqSFMKxX5E5hYtd5WRfgkQU8VumXrCJMPtZuCVek3IpkqxJZx/obJ3ywptyXf1gp8rxV5MkgEYPwjuoQH5SmUFi4BhUVPmtfUvOIqXXOCjf/ka9Iar7bx5t9Btt+RbUkJsnh+MfLtEgtN5PPBZK5lYfp/5RWJtkm60RPtR+u00AOhs+coytU0OJF5S5EhRLGQtyZrPtN5uEYV2ggQl250je1OrOtmkQjlNw3wzx8+jyWw6C0C3uJ5bPbZzNogQWchIkm2i1I150NcNMq+7920kXdvqntkh8g6L493aCQISIu7CHkffcYabfnnKkQ8Lbm6/X9JPT705mIQCS6hMoQKJ4E+WzM8P8cdnNDfP8Nue7MGS2fU1j/yRhgt3lFbVdSBolgazdVwMGh8jLu7V9gRBVf8n8D8PLfsHS6+/9BLfexvwwsvZth5PPbR/6RujizuavPpZx/jl73wt//63P8EP//Y9fPUP/h5veNG1fMtrbuWF169/7hrao8eVhTeykJOAzVR+I/C96fkXl5Z/u4i8CXg5sL0kPbko2t+833dWpnkYyS5kNKtm/edEadSxNzESFKN5SPuyIUTHpCkY+4qgQu5CR2pjijjX6qmS/R/ANOSUmRHSvbokDK1a5DivmDQF85Dx4O4GoTL5QxgomkdrC8rA10xDzko+Z+hr6mgVGSMep8okFuZQsqOEvCXKdIVvYqGoE+qVjHw8REcD9m9epx47fKWMP7GDO3vBomlNMAlDtGislgXVemZWgMGkIeoEN1cG52qkSlPwQQ8cYDcXwhhiqbAnXRKZmwOVI1ufU1dlp6+WKJZfFsX8uMVTJGeYEF2q9mnHYqWsmMwK8+M+4y2E1xJoTFue70H17ArZGVgBm7kzYt84tLbX4hVtUkjSWYEbGTboCOpxyeBCoNjJCaUleVaznPEM6lUjTjJP56AW4twxO6oU21BeUGLuOPNi5ar3mH90LARXKW6u5D4SBo5QCKv3Kjt+hFw74/yFMUc39xjkDYO8YW9WosDq7Vt89M+v86z/X05298NIljTLUdHlyPYy2sjs4UI6h7Xb7fL2a96brt9JF9m+qFsJdARUhgN7XTdI06DEjriqN09wk52YfpoiN4lIHVLEWJF5wFeJ/E4PJUFmGfM1x/DU3NpVNYhztp8lu8I2GtxJLlQtsNxG8pOmW5YdS9qoe+ui4r0NCOBgVVYwvXeREUZjmoEnFs4GVBm4Slm7t2KwlbF9q2e2uRS9T97zwdtAVAKdi1C+5eH8kHgkkF07Qz45ZPBATjNS9m5Q9q/zKZ/DijFlU6H54CWkRJfAZSXcPXo8HpTJfP5Snt1g9oL/15c/h294xc382O/ew0+/835+8f0P87rnnuDbvvg2XnLjkc9Vc3v0eMZDRMbA64C/sLT4e4GfFZFvAe4Dvi4t/5/AVwJ3Y44m3/zpdwB40182IwWXypKPG9aKuRWfmY6IwadK1A6pxVwtMF/o0jfM6wGlq81/u8lpEsGuNetkJW0p9lFWgcJ2NTA5igqNmjPHdj2wZEnBbPKGih8b6RpkddqGsFnus55NWfdTztYraV+eJjq2JkOKOV2Z87aflqRoZDcMHbNbj1NtZIRcGJ+cU9x3Dp3OrKx2spJTtWQ3dUJcHVCtpL54cztxtVLsKcWZfWRWmX+xWvW9Fn4m1AqxjMTMmaVgAdlEqOeOwaCmOT1ESwuba5J8WC6nY1DUljzZbjA6ZppT+MAor6zU+kaFuiHERUVAiypapJnTJdlUCKNExGpn8hVSkpuTBVFPyZMIsJVTr9ggoTwH+9cl0jRriRjdIMslmYrfd9Rr1ldRGJyD3VuV0y9xHPuAJbypt+9kk0iRiR3PQhg/KOwzwF074/z2mBObO4BFu0OK9m/csMXdf2GFG3/uZsbvewj1HqoaCWFBqpcJ9eK3lI5fknC0OvDDSY9NMNeaFEVvI9xKij4vRbql87ZebEO9Q9QvEg1t50ZgXXIEyUyrrT4NkqIgVYR5wLWR5qZJkW3t5B0yHBJz8NuzAwRbVNEYU5GfpYGERutPG1VvNdnLbVt2cSnyRSRcpNOUNysF8yM59Viox0IzsNkjUUyP3SpN3ELCZRUkYXBebDCfgexJV6kyZtoVpWplJiowOJnBSRvYxtxcbUJBqmqZpCql2iC2eHySkp5w93jK4Jr1AY9szz5lAZ0WV68P+Htf9Ty+40tv58d+5x5+4n/fx699+BSvvPUo3/Elt/OKWzc/rTNKjx49PjVUdR84emjZOcy15PC6Cvzlx7UDAaLdGOfHIgS7kZbDmnlIlQWrnNiY1ICJI+XqUWQN1wyNEDWJCGsU6ug66Ujrvx2wgjiNOopkzLtfFUagEergCSrsVgPiXo4MG9M0lw3ra/tsDidkEpk0OUfLCUNvjWg9u2v1nf/3zu6QqxormkHyBJZIF0F2Nexf5SkHFtVeu2cf/8h5iyQulfPWEJClYinNakEY2LbSrnANDM/UprNdkiQcXgcFvJXCjjkWoZuBmzuaxqOFSUm6CHWwAjQxuC5Z1TtFRfEpobCJjixZA4JF3H3FIqJPkpTM4djvC1t3aEpWEwanPPPNSBy2OpT0yJQsD4TgTF8ehGYIOCi3lMm10AwjUrmulHwrDaCV7TZCWInUK5KqcSrjBx3710cuPNtz7K40mHGCOMj3jZzPN+zaG55y7A9K8uNTHjm9wcbGPitlRXSRKnjmtWdlY8IDXz/gxOqNHPm9B5K9YyKlidDaATx0vXfEeEGEtZNytJ8FS1D0zqQpWh3YhKpaVctlG0lYVLDsKgdlNghotdot8sycQUQWouK2OfMUzW69w9O12ME79q8TiudvsPHeqiswhIjtKzOy3CaA6tK9vCP4JB2Qg1hkNKs5zdDRDBz1SMzFJzN3oFDQuetY9LqVQ6VrrT33zq4/WKzbXoearmlJZeEhzfBE6Yi6XUvaDTjb6zfmaYDnsQGis2eJLbfoI9w9nqb453/8Rfzk2+7lpqPjx/ydtUHOd33ZHfyFL7qNn37n/fz737mHN/7o23nZzZt8x5fczqufdbQn3j16PFUhit9LJcQHETfxNKPIxmiGiLJXF8yq3KQHDtzUo5lZ9BVZIHOhc88A0MalSKTrZCUBwbOIiA9TAuG0sjt0VCPpAHt1YZ7PAppFxCvTeYGM96mix4niJDKPGeerMUNfcSSfMJKKoI5z9Zi4k3fT2yEn3cAFmiXy4aDYDYzu2UK2dheHw5tDB6RRRZah3iNRmW3mxCy1LUXPs6lSnN4/mEzW7qNN1lQjoW1FPj8TwsAIrAswmxQMjk6Z7RWmn28tAp0iLnZl3p2EA/wxqjDKKnIf8FmgXlOy08mizbUFT6AZCcVuRDNpDV9wNRQXHPMikRuHTdVnsXNH0SDEUSAMhWbgKPYjfu6pc8Wf84uCQikyLkuvAaoN81luXSmKC47p9Q3nNGPzI1Z9sk1iLfYi6oXZEZMZjB707GcD8vU5u3tDRkVN7kOylQzMG8/K6ozzf6yhGt/IiV+935IAW113S3qzJPVoJREXcSc58FoVmoA2DYK5oXRnNKrpqJeSNqWtWNp+VjcWvR4kFxyA2dzIeNumJOMQaRmpJf9JG81OCZuLxM+Ihoh4R1wf04yUlfuntm6qwqneocOCMC6p1wuqVUc9TjIxZ249oaQrPBPayLDQzfq4JsnBvF2nYZjyApL+WjOTcvip62RRoslze2DVVd1M8MlnvlunvU7S9dFKstrBmgopsXfp4haLgocy5TUsDeraIlHp4PB40BPuHk8Z3HZ8hf/PG17wGX13XGb8udfeyp9+xU38zLse4Id+6xP86f/wDl5y4wbf8SW380XPPt4T7x49nmoQyHcczYrduPxMqI835D5QuMDOrKSaZ9CYptdPzforRmFcVAx9TRWzRIStUmIdHE4itZpdoEWxDVGFoa/RIlLXnmnImYWcJngyHzh5dt0cNQAyKz2+uTIhc7Ej9dOQM/Q1m8U+I1exF0qOZBNyV7PflBQXjOnGLEW4JSUdZtGm9MWSKDuyvexGIWJT+SniKZkNFXSQMzvirCqnGGH1lTK4kPyRSVKCENGg+LlacZwEV4vZEabqfLFM0+kN6H6GX5njskisHQQQFcJujo4byAJVbVShyEJKZBUmdcEoqxjmDbsKzWoknkuWcY4uahoKrNx8I5BjAdw1Ze0TMD9m/W4JjM7MeUSKiHiTuMQCmqEwPNOQ7XnTfLfkmnQ8Erlq++emjnpVyXcFnxLj8l3QUxmT2yqyScH6valwUhoI5Pt2fuYbRtJH92VMboJyc8rZnTE3Hb2Ay5WTk0EK6iqroznxa+bcv3kTN/7sA+hkZlposKhyli0IsPdonpmzRSsrWXa58G6xLFWolCI3LXdXxXGhE5eyRNZXzUFkMk0HO5jeH8zPusgtEt4EpG4s4iySypLHBRFf8rlur0XVtE6WIZnte+v5lhDsZg2T248x3/A0Q0n5BOl8eFlIO1jMdnTkt7YS7QDVEaUZKeU51yWwShS7XibL9+sFgQbQPHls5/Y7JSaiPoAmJf6a1MSeXSVIqqrqarHiTzFFsD1dlUqSVC0MYkf0wdrUup6IpsqnKouL8DGiJ9w9nlEY5J5vfNXNfP3LbuDn3v0gP/Rbn+Cb/uO7+Lzr1/nHb3gBL7ph48luYo8ePVpEIZvCZEMhRbhcaXfVvbqgajIjgRFQwU+FZiWiUcgkUrqGJnoyiVaApnbsT0tmISeX2CVNRhzzZacSr1TTnHnMTMMdnJHiMyWMg93cs8hgULNSzBn4msIFhr4mcwtJxU4cEHDshZJaPefmY4rtpINuCWGmVvFxyRnBKmwuCJeqmv4VaB0flvWx86Nj6lWxAjfRvICLXWVwanIgocwiy9FKT6ccUhcS4VZrC1j1zJg5sn2rqjfZGVjjOimIIjOPzjz1SgOjmsZZtDUq5ElGMmkKch/Q6JD1ilgMcXXab/I6log5jWwLk5ER72Ylks2FfNdRr8YuUdM6DlqbY4kMG+LU0ZSCa5RyS9kT7fyVF9UtD1IfPxXqow2htGPZlvcuLkAY5Ow8t8bPM0anIy5oJ4Eo9iIqjmrDztfovoyJHzDanPDJ00e5enOHUVmzOykZD+eEKDbb8oVnuc/fwI2/cMoGQN4nH+kI09ra5j1SFqZRzjyat7IL01FLUEt8bRECBLew3Uv6bVXFFTmytoKOh8i8MnIcTAoidWOkPumgcc6YXkwDARFLxhRBquSlnvkD+1VVcz0ZlOh4SLM+JIwyqlWh2FLOv2jNyGqKDncVVNvr0C8kTcv+7BJZlF7HZl6KLbseKRfyD+Kh5/aRotpKIua1Eh1ILbi5kWr7HaT1WstJAS0UHS2ucVrnoLbKqRoxj7l2+QxG8s0uU9L77jfi2pD3Y0dPuHs8I1Fmnj/9ipv4ujtv4Bfe+yD/z699lL/8n9/LN7/6Ft573wVecdtRXv/8qzm+Wj7ZTe3R44qFxJQAWEayXU/MlbxoEGBaZ8QoMDdCorVFhzW3m9wwq2mio1bHLGSUrulKlu/VJeOsYhZzduOQgdSd3hqATNG577TfzkUm88J8eTeNwLpMKbKG0K4jSq1G/vfVbPHA7AXLwiowbs2H5DtK9JaI1xKIWJpcQjPF12rLnVgENIQkDUgspAmpqqEkOzXP9HhOM1gQWFfD6GSN2550UoHWV1pD7KbRW4WF6VeNOGhmC5sxFLtQbQhywYoJ6SgVscniIt/TW4XNEBwuJTS20f69yv4/fRYIdU69ohQ7sqjsF9XOyapQbCvTq22bqkIzFEYPC9t30EUjTSebpvErh5YmC2l1vL4CKkv8DEViXpFOK9++FgWKSBi2ulw7Bk6hPCs0q46tF0T0w56Vhy0qbNIMKHdSpHvTEuxGn8yZ+CErRyac3R1zYn2XcVExD57cRaZ1Th087hUX+NjRq7jplyvKh7aNl4Vg57VpOtmIzCuoXZc0KUslz7XIYGMVWRkhs7ldCyLE7R2oa/Ae5z2UJTooFxHpNjourpOlSJKX2MXsDui4pW4Wg71UUj2OSrTMqVcLmrGnWnHdrEini1a79mKSK2lmcpG2siNw8PWSbAOWI8qtTMQ+i+k3bUmQsvCrbi/gJBnSLFHcdN4lCllto63WIrOLhIsRejvG6dpgMevUkXG39LoR8FBszAnBEWuHzj00aRZm2YXnM5gw7wl3j2c0iszx9S+7kcw7/sbPvZ9//D8+zCB3/NIHH+Ef/uKHePWzjvHHXnIdX/rcE6wOLm5H2KNHj8sDCVCvWvTI1VCvKFkWmdYZsyqnabzd3MqITL1VbfSK8xbRLl3DXii7wiwAOs2Y1AUMLQqdSyCwIM1N9Lg8oNOCKpgue7WsOH9mjRzIyoZQe/KiocwbHJqqXXrAE10gdwGnRmBK17DqZ5yNK5zbHzGaWHRPs+Tj7dvpZ4swq5iMQXNvZMsb2cI7kyN4B978knVYMjsxYv9q10UKVaDcjpQnd81W7TBSifdljbCrxKKDvo2Sm3PD4IxyQI7aTp0Hgdym1SWzGYUYHNFHgrjOl3u/Kch8JAaLSMfC9OpdFDPJOZqxUJ5vtbA2OJivC2v3R/ZucEaMUxRR2/LvyS1FM7Xqmi5FGIN5cTdjc7Rpj4tLBCy6VFVw6gkDxU9Se3K6SOngEc/0ppqdZwngGZ9Kmu5kZTfYNuePak3QCMNPFOzdBqub+5zaXuXY6j6DrGHWZJRZQ+YDsyrnyHPPcc/qBrf8/DrDe84lizzFwrCHrPIO6baJETfVzhpPixxWRmjuYXO1s+4DkxhpKrvuWIO1FbP6yxyxyIi5Jw480S+xwlS0BZeuP29+0qGwwY96kse7WtJicgFp5SFtAmPrAS+6SFQEu9YlJJLbOvQkcmoDT+2ui06bna671iu+01Wn67yzqgxyoKhSp9lfunYlLDhwt26SN6lb+j2kdizIuaBlxI8bQmHHtKk8edngy5q69MTgCZWz30drX/kZoCfcPa4IPP/ate71L/zFV+Mc/Pf3P8x/+/2H+Ws/834K73j1s47yFS+4htc978SB4js9evS4TFAII0XmRvR0EHAuMq9z6iojBIefOEIZcROXIqeKCIyyGidK6ZqFhjsRwVmT4VDCodpumYs4UfKyoWoWRH2Q1ciepxkqg8xITZ43eFHKzCwBHbaP3AUK15AnGUvrWNJEz/72kJVGu8igcXS1YGJYTEnHDOKowO229aYl2bnV5kzRNOAcYXXAzk25yScSyfBzGJ6tzbptKQGvKw0ugmu1ri2pSDrWMLIoO40QBkZw/KyVmCTyUUSoBXJNz0nl0uqsgRgXpHtWZzRzC1WGlQjnXCJM0lXiUwe+VvxUiKVto1pXfBXJdzPCSiq800asNRH+yhGHkWboUtEacFWyRizMLaKN5reSWnWW7Ca1s8hpin5KNL7UkrPidEa4Zcq2L0E845NtIqUlTuZ7SvRQrwi+hsG9BXtZZLw64+SFVW44tkWenEu8i5S5ecNvXrfFJ9+4xo3/7SpW7uoKaNupSQOh7lx1H6SBVz1Ht3dM8tF+NB4j4yGEiK4MiYMCLX2XmBpyb0m5kraTjrmb2dUvIVXVXE7WDGquIilvwBxEBGkiblovyrgPCzT3hNJz/5cPOfGeQLHVIE0i/rkjFI5YOEIphNxcZZqBpJLqWM5F0niHYTQyHgTXGDmXSGcNuSielC63RLRbwr6cMGzHk8UXSMQ6OYi0xL2D04OkHRZkHAhz3203zjLms6yTm7g84PJ4YIwU04zb40FPuHtcEbj+yLB7fcuxMcPC85yr1/jrr7uD33/gAr/yoZP88odO8tb/8gH8fxVecesmr3/+1Xz586/mqrXBk9jyHj2eubDIo5LtGpmWPLliNKmgzNzjARrTere63SwLrOUzvBiBbr0cRAXNLbFvPxSMszlRhVwCuQQcVkinLBqaxjTITpRTu6tk+476WINzSp4HyixQZg1LPhE4iWQS8cmtJE9ZXJ1cZTvvIoLmyJCmoX20pETxXXQvDDP8knZW6gZa/W+WocOS/RtHNOMlgbJCsavk56cLctWWBm/9rFkQkVbv2kbywKbPXZVcIzxk+1CvYLpV10aaUxn2FPGWNMhpZSUkm0DLuRNcHolBkDwQ88wIf5J4tIQ45EKxK8xya2sYQDV25PswA6RyNjjBjo8UIOOGOPfUq0oYCPXIKghKGkTELNnEpeh2R76T64nmip9DM1xEY1tZjp8KzakB2dVT9iYjJLhO0x190ozvWFvqFZuBKT8xYP822NjY54GzG1x9ZJdB1rA7L4jJ6SaqcOT4Lvf/sRVOrF3N5jtPW+Li4aT9ZQK8NFjqEM0dhNnMrAZVkT1wIcLcPLUlBPNf392z6HeRW/Gblkh7S5xUEfDpeolA5hLJtpkDTSXh3TQN5JL+XOoGdcKFV11NuSWsfOS8NXMyo3Up0bLopCsyq0y60iZjemeSFefQUUl1dMj+1TnzI45qFZqVlownqVOgI8xdprO3c9mOltrkys7d5sCxxAaMyfKvJdO2zoKIt7+DLjHSabLFXBB2q34qoFZMyQY0ipSRrGzwWbCqqY8DPeHucUVgWS4yLBY3OeeEl960yUtv2uTvfOVzuevhHX75Q4/wyx86yd//xbv4B2++i5feeITXv8DI9w2boyej+T16PCOhDrvJYppccUoIVoQGFWTmrUJiugm27gGDvGHs55TS4IlEFrpiBHxyFWnUJCM+MdCIEFQo84ZJLUybnHFesb09IgPcsOnIZZk1lL7BSXwU6QbMdhCrvoiDeczIJpJKrrc3bYHMyLY4oAyo8xZ1zd3BoidNMIIVIlIWVNetMzm+9Lkk3+1zAZlWC1eJllwtRU07PfdShFta14algiEhF/I9ZXbcKnhq62XsFKmsOI0GK3ojqblOlEFR40WZVLlV4XSR2JjWPowUPzfpSlYDUfGVyRb8jE5bG8aR2aYn37VESvUpuTTDIo9Tj2YON2wIw4xq7GjGkE2N/LZyE+ZGriSRfHWmMwYhZCY78d6kS5AOWYqiF9uO2bBkcNsee6wg0TE8F60ipVgJ+HLLBjLVGvgZDD4+YP7iOesrMx4+u8G1x7YY5E1nM4kKTXRsHtvlwlcPmG9czTW/frrTUD9KBtS606guvLQXFxtaVWgzQMZDk5nkmRXukRTujbGrdilSpMh0SRxY0qQ08SC5T7e/MMxpxpnZ6VURVwXUOeLq0L5T1eZ6MyrZfhZc99tzZGfPujibg0bIC7vW2oHjdGbXcGtV6MRsCaPidhzlI8rgrnSdem/tXB9Rrw+YH8mYbTpmm0K9plbltfW/VhsAtQPHVqPdEepWbtW+TwO35eTlNnzdGcO0kpXM/ndU0/+MpOckf6LVbifJlc489czbgC48vhB3T7h79EgQEV5w3TovuG6dv/Fld/Dx03td5Puf/NJH+Ce/9BFecN0aX/KcE3zpc0/wguvWeqvBHj0+GziTOqgDLTQV6bOokoh2N1A3c51kQJwyLipGvmLgaoZ+IfdQseREn8JYdbTy7p5IwHXEeZA1phkP3qzqdnNTMRQNmTPS40TJXKTwoZOeeDE9dy5GxO11TS6BRp0Rbrcgu+q1q4qpikW5k466GTm0TKSoTtUlk8+yro7Yu7YwYtVyigDFljI4Ne3cJZbJ2nKEe7kQTEe4G2xw0ybBOYsyD86lRLisjYAnYt6SmtpEtzFaQl4tnt04sITS6Ba+2VHIBw31SqS44JcS56SLaOf77UxEIt0lDC4o2a5Qb6Q+tJFMFaiF2OQwjMw3MmIO+Y4NPOSISaNbTXDLk7qoZyL2MYfRI8ruIMlo0uGR2khZccZTr2b4W/bZn68Qc8/wTMTXJilxAYodJSa5hKsgvH+d3RfsMhrPOLW1yomNXY6MplyYDNtdUwfPkdUJZ17hQa7ixDt2cVv7i3PlZTHgasn2so96mxCZEmjbSLK2yZXJmaTNA5Bhga6M0PFiRrYj20k2Qoy43RnEiE9R75i1liHSzUqoF3PNmc6Z3nCc8rxQfuB+4mzWVZ0kGinXyQTJl6ikLBJC7QRZG1QjiMmNRMRsD2eCbwL+7A6DqKw7QfMMHZQ0R4bMjhXsn3DMj5hmvxkpsUwDl2ZBvFHMpSTZ1cRMiQO1PICWWLeHti3wlHzfzQ1l6T6e/mcWFwpIGex3sKxJiYvf5mNFT7h7XDH433/7D9ufzGOAiPDsE6s8+8Qq3/Elt3Pv2X1+5a6T/NpdJ/k3v/lxvv83Ps6JtZIvvP04L7npCK+89Sg3HR31BLxHj8cDsSlllyoUOmcJeIgmUiRoYaXfNTeJhmCa66Dmt+0lUkXPGIzAe03JkY4mFb8ZiJV9jwhVzFgrZ5wSmDcZ+3WB33XEQimzSOYj3kXyVFGxdTFp4ZJ2O5dADV0E/cJ8RL5nhBWXpr0L7W7g4qztMaWH1CNHGJdIiPjWDs57ZFAyvWHdfLRbeYRCNoWVRxr89nTp+MmjpQoh4MISwUjab1dLZ3EWO1mHmLZ65qzIR5DOscG2j7mFpOI90UNTe6sGGVuXDduByUocOgio96Z0EYu2a+vQEYwsdyXuB+Y8kk2EMHBJlw26VJVEatBxYHqVEevBWZMVdHrbpOUOpenQdcnmTYLQjGDj7inzjRHTE61ThiLetO4SwD0woHzOFns3z3DNANQxOh062Uo2V8oLtr16NQ1QPrRKeNE2RdFwdnfMynBu0X7RbrZlf15wdHOPC69S5kdWuf43HNmZ3cW5a9FWcxQxwrpcNr0okDxHVc1be7l4jsOi3psbxDIVu6lD0s8v1tPMJWLtcCJIE5A6IHXELQfVI2ZNWJu9oI4GnP78nOt+dwrzOQdKxUP3XkOw3IP2euhmWxLhj2qSlvaSXPYfb4vxqIJL0pR5RX66IT8Nqx9K0payoD6+wvxYwf4Jz+SEUG1E4iAuItCJIIMRcr/ju2tEC4Usmm+3M4/9VhKiQeySScRbO1mJmEPJNOt+SwfI+ONET7h7XDG4Zn346Ve6BG4+Nubbvug2vu2LbuPc3py3fvQMv/GRU7zlI6f4ufc8CMDVawPuvPkId950hJfetMlzr1klewxl6nv0uJKhuVWYDHnEZ1aQBhViENpKeK4SmuShq2rJjwNXdxpqcyCJFtGCLiJtVSgX2tomOoqU9KgOmuB46OwGLljJcO8iIQplFhnnFQNfk8mCkbTe32Dl3C3CbfrwrfkQPzUHhJisz4iYntQrGgWXhS4i2zpFgDMdbohI5gnH1phvZAtrPzWSWuwog9PTrtDNYSlJKyMBcJUu9NvpMLZJaprIh0wdMbd2+BnI2Mi2mzs01+SNnchrMKmHRgGveB87wu2c4pzSBDFeNQwmBQgWcXeNHrCMy/bEnGkakw603uLZRKgz7frcOaaooLU5mbg6HYvdiMRULCU5TqjH2h0WswwoVBuRUHqOfKymGeVUG2qFU5L7ip8JRNi7b53Vm7bZudEjIQc8ozNJXpJbP/I9iEWKdNfQfHgN95w98ryhbjyrgzmzJqMJVvE0z2z5ynjG/vMj9xVjrv1fBcN7zi9Ia3KnQSTpn0MX+ZY8Q8YjdHgJ+1rnjHAnSKvnb0c7qlZsKZqURTNLhJSq7nTlMXemCw+KxIhMZuhkhjph7/OvwVdQfPRhu86WsxCdM6vCFikJU2FRAbNFex/UCPjOiQUwh5ZkedhZXIZopLx18MFIePHwFsVDykrm0dKSR+v1AZOrc3ZudkyvDpaLkCk6UMIoRaGDILVDJpm5tAxid42I185NsSPrrh0tLjmaHJaP9IS7R4/Lj6MrJV/70uv52pdej6pyz9l93vaJc7zjnnO8574L/I8PPALAuPB8/o1HePktm7zytqN83vUbFFlPwHv0WEC6UupkatExNSu2NuokdYo6ZYmJNc4K3dCS6kUpd4AYpNNvN9GzGwZsZqY9batSFil6Pa8z6u2SApBhoMgCIR68sUaEWcgZ+NoK7ainSKR7ieOyPR2Qzek8qNukLsmiRe6jw/sFEWwGgLdENZImVscr1BuDAzPXEmwGYHSmMTnA4SO43AjnkKrGz5IXdyISoum5dS9JiY9GuKHYVuZH00AgV0s8C77zMVZxxn+90kTpZCSDYbVwbgimR9Bg0g0rJw80RgQt2mzuFG0AO5RKtSL4+SLyH0cRv++Sa0patzbLwVhYlHlwvsE1hRVsLLSzuyMaeRZSsZIAcajs3lBw5CN7rDyUsTWGME6DN68ENVmTnws7p1dYu2qPvf11UIc6x/hUOpaZOa0UO3bdVutqBYU+vgK370HesDcvWBvMmUlGSOclYvaUw0HN7Nn73D8ece3vHmP1Y1sHvLGJZkVIkSNVbVd3llmVyiK3z0WSi4paUmOTlolYwZtU0MbOcYqQZyCVEn1OdEIcZEY86ybptgVXB/zuHNna7apWysYaW7dmXPs7e+hkerDce4Lm+aIPrde3c0aoVRakGixyH0Mi5s4kK51V32KmRtrS8ypWFKiNhqsuLBOHZpvpticMzu0yuAeOvNOjK0NmJ0bs3JyzezPUR0IX1daigVWTeOWZJWfHvTRYcYoUljQsYl7zXRDegbhox7Ml3en/qncp6dHjcwgR4bbjK9x2fIVveMVNADy0NeXd957n3fde4F33nudfvOVj8BYY5I7br1rlhdev88XPPs7RlZLPv2GDOkbK5UpfPXpcKVDwU2cJkz4SY4psAzQpgjp3xEw7Iosoo6zCS8RjkpKI0KjrppWjClXwzCRjEguCOjIXaaIDb5FqXHLdmBi584Wx0TI3HXcmgfV8xn5TgMDQ15SuJuDwyUJhlFVdxHt/UnIkQMiWAoFtDldmbXUuEgvwU4uUhtKTnQtojEie0xxbpV7xC29sMRJs0e2ZEao2Ka3zdU7T4qlsN03A1ZG2Sp/EBel2Hd9ZDHTUm7ZaGpMxOMybmTaJEYy4J99mouDKcICYiIAfNGatFo1w57vSlfdudeTRmzRmnt4ToVoX8l2lXrUkxnmRxNguWmQy2IHQTNFBBMnIt+dIk/wFnRKGuigd3hk8p0M4F/auF9buz1m7b8Zsc0goHWE12DEqIOTaSRD2xwP81RNmcUTMjXSPzsSumqKf2/kIhc26+JlQ37uCv22HWoXdRLpVhUltSaWZs3M/HkbmNwUeKlc4emSTY+++YOTZp5FRniF1ZvrmvEQGA9M0Z840+E3Ezdsy72m6p6pxc9NSKyAr49TvYAmWYEmNunSdZN6+N6lsm7sTZG+CtrMnTtj5/Kst4fTjD6ZKliYVAjpiLSmivZC4uIOkvJXItLMwPj8kiZGUXLmkIz9MsDv5iklVNM9Q7y2K71xXsRPnkDoweGiPwUnh+DsdYZyzf92AnZsds6siYTWgeSQvG8Qp9cChlTM3krnR4dbrv9V/y1IkvJ0xkjRg7Ql3jx5PMq7bGHLdi6/jDS++DoDz+xXv/OQ53nXvBX7ro6f5z++4n//8jvu79XMvfN2dN3Bmd84dV6/yl774WXzwoW3Whhl3nFjtdeE9nrGw5LF0Q0tVDLVxdkOrLQzqGsEFQV0yUnZK6Rtq9QQcpSxZ96WoU+YiQR1VzNhvUjVEzEKwChnjrEpRWG/lnEslz1KFSdFOi9uos31F3xHrKmYMXUWtHqKtP48Z9U5xQE6iS/rQkOQxQYRcwM/N5k4Fi0wWBboyJAwz85tOEWBXmzRkfGqpqmQnQVgiUGCkpbUJhANa07akdudxrdpFv1tJh5+apESjOZZ035f0veUpdVHWVidM54VJgEhyk5RIFkZWIv1AGW9dbMs1rb7b/LjL80n2Mge/a5IWN1+uWMnCyxyQWUOxDc0oReu9SWSWE96k9WNuoF7XlLypbNzdUK1laO5MWoBpe7V2NhA5U8LVE+TqGXM/QNQxcY7hafOzjlmyCLxgHYolFFvC7JOrjG/bZjovGOYNx4b75D6wVxVUjadJRZbGgwp/3Q5n/SrT45tc/+vbRnxTQiSrY2Rg12wrF5GqseqR7XluCXoTkOkc3d83QlrkJtE4QFQjmuXEIltY4uUeN5lBmOH3Iro/QZuUR5BlcGSd7Vs81/7WtnmCL9saxmgDAp/aqxZtb0m4Lke8Q1xUTU1l6RdRbYuIi4g5m2g0KU/W6qWTNKaNcscIWQ7OkoxlmZh7b8cvJaK2Wnc/rVn7WM3axyAOMqrNgv2rCvavK5kfi+hqA3lEiqXrKwhuYr9tbWd7ku5bfDtd1E5hPT70hLtHj8uMzXHB619wDa9/wTX8/a96HtuTml+5y6wH3/XJ81y1NuCnEgH/tQ+f4gd+8+7uu6951jG++dU380sfeIQj44LPu36d1z3vBKOi/+n2eAZAIQ7MjcQBofFQLwqctLZ25tOrXdLS0Jt+u7UEbNRRR99t06dodtScnaY0cpzQtNKT1Qam3u7nuemSvYvkLiY7wKQHR1nLZ0R1TNWTibmWxOgg6bfnmuF3suT+0WqqTf6gKjinxCAmKVm6T2ezAJknrq8Q1geEwiGaKh4G85gudyLlyb2D0W3fevS1mpG0rE4lxJedOlIkWXTxUNIxFUlaciXft3LvXbvzhfzFiLRaJFAg7OdskyxSk95enJING5pZBnkklqkUe4vYSlZs+3gbTMXMIu+tdWE2FWZX1WRn8kVjsaTPKDBftwM4PBeZXiOdLp00wdHKZpadWpphpBl5iu1Ivt+wdq/n3KpACbRSgiygGNGqzw/YvGGLbRWaiZm/x8wxPJN8oFOkXjOYO9Ac8h3H3ifXWb/tAme2VxjmNaVvmLuMCt8N5MBsLTdvPc2Dq0e4v1jnpv++hduZpOOUEhEzv7B+ZCG1aJdLSC4h87np/71DxiM6LXjrfJL5LiIssyYNunQRTRZBytKIrvdQFmy9+DjlBcU/fM7cUUjfiYpWlWm022h361qy1PbutYjptgNGsLVNunTJ85ouoRZxaBMWJBus/VHNwWdJ8y3NomjPgWo07Y8rpJPvBS2d7cMJ2X7g6AenHH2fEocZ1XrB7g05O8+C5miN5BEyIXpFMkUrh8wdMl3I2rSMtt5nADmQLfo0x5133qnvfve7n+xm9OjxmKCqTOvAA+en/On/8A5+4I2fzz/9pY/wwYe2ed3zTvCCa9f5V7/+MQBWBxl1iMzqyK3Hxnzza27hze97iEHuufXYmJfcdIRXP+sYx1YukVzT4ykPEXmPqt75ZLfjcwkR2QU++mS343OEY8DZJ7sRn0NcSf29kvoKV1Z/P1Vfb1LV4491Qz3h7tHjKYR33HOOf/jmu/jJb3kZR8clt/2d/wnAb/71L+Lmo2N+9a6T/MWfei8Atx4bszLIuOfMPntzmw78omcf5/986fX82l0nKTPPdUeGXL8x5PrNIbdftcqxlaKXqDxFcYUS7ndfKX2+kvoKV1Z/r6S+wpXV3yeyr/28dI8eTyG8/Naj/Mp3fmH3/t+88fM5tT3j1uMrAHzFC69hXHj2q8BP/fmXc836kBCVDz20zf/80CP8+9++h9/+2Bk2xwWFd5zanS3XUuDIKOf2E6v8oTuu4ptffTPv/OR5mhg5vjLg+iNDjoyLz3WXe/To0aNHj2c8esLdo8dTGF/9omsftey//KVXcWpn3vmKeye86IYNXnTDBm+56xT3nN3nF//yq7lhc0QdIie3Z9x3bsLHTu3y8dO7fPjhHb7vV/6A7/uVP3jUto+tFHze9Rt81+uezYcf2WFrUnF8teSGIyOuPzLiqtUS5/oIeY8ePXr06PF40BPuHj2eZnjO1Ws85+qLf/Zz3/ZK7j23zw2bltCUe8cNmyNu2BzxmtuPdev9mR9/J7/zsTN8+x96Fn/4uVdxZnfOA+eNlP/qXaf4qh/4vYtuv/CO644MedH163zjq27mLR8+RdVE1oY5x1ZKjq0UHF0pOb5Scmy16JM7e3w6/MiT3YDPIa6kvsKV1d8rqa9wZfX3Cetrr+Hu0eMKxAPnJ/zah0/xTa+6GX8oYv32e87xp37sHXzzq27mr37p7ZzamfPghQkPXJjy4IUJ95+b8MsfOtmtPyo8kyoc3gUAw9xzbLVgc1yyOcrteZxzZFxwdFxwZFSwOS6692uD/IqNoF+JGu4ePXr0uFLQE+4ePXo8Cuf3K46M8ksmWP6333+If/6rH+Xff8NLecF161RN5Nz+nLO7FWf35umxeH1+v+LCpOLCfs25/Tmz+uK2Sk7oSPjmuOCa9QHXbgx5xa1Hec7Vq/z+A1uoKoPcs1JmjMusex6X/mldQKgn3D169OjxzEVPuHv06PEZ4WKlfh8rplXg/KTiwn7FuX17Pt8+2uV7FQ9vT3lke9aVSf50yL0Y+S5aIu4PkPJHLSsOLu/WG9hnh6P/lxNXEuEWkdcD3w944MdU9Xuf5CZ91hCRG4CfBE5gLtA/oqrfLyKbwM8ANwP3Al+nqhfEfjzfD3wlMAG+SVXf+2S0/TOFiHjg3cBDqvpVInIL8CbgKPAe4BtUtRKREjs2LwXOAX9CVe99kpr9GUFENoAfA16And8/i1laPuPOrYj8NeDPYf38IPDNwDU8Q86tiPw48FXAaVV9QVr2uH+nIvKNwN9Lm/0nqvoTn3K/PeHu0aPHUxnzJvCDb/0EHzu5y7d+0a0MMs+0DuzPG/bnDXvpeb8K3etu2TwsvU7Lq/CYCfwwb8m5T1H0ZfLuDxF2I+1Hx+UBvfxjxZVCuBNJ+xjwOuBB4F3AG1X1w09qwz5LiMg1wDWq+l4RWcVIydcA3wScV9XvFZHvBo6o6t8Ska8E/gp2I3858P2q+vInp/WfGUTku4A7gbVEuH8W+AVVfZOI/DDwflX9IRH5S8Dnqeq3icjXA/+Hqv6JJ7Ptjxci8hPA76rqj4lIAYyAv8Mz7NyKyHXA7wHPU9VpOqf/E+vLM+LcisgXAnvATy4R7n/G4ziXiaC/G7v+Ffu9v1RVL1xqv31GU48ePZ7SKDPPd73u2U/Y9lSVWR0fTc6rhr35o4n84WWnd2fsnzUivzdrmNYH9eu3HBvz1r/xxU9Ye5+BeBlwt6reAyAibwLeADytCbeqPgI8kl7vishHgOuwvn1xWu0ngN8C/lZa/pNqUa+3i8iGiFyTtvOUh4hcD/wR4J8C35UigX8Y+JNplZ8Avgf4Iayv35OW/zzwb0VE9GkS8RORdeALscETqloBlYg8I88txg2HIlJjA4tHeAadW1X9HRG5+dDix3Uu07pvUdXzACLyFuD1wE9far+XlXB/umnDTzUVISJ/G/gWrCjod6jqr17Otvbo0ePKgIgwLDzDwnN89bOvzBmisl8toujhM6v6eyXhOuCBpfcPYpGjZwzSzfzzgXcAJ5aI1klMcgIXPw7XkUj70wD/GvibwGp6fxTYUtUmvW/7A0t9VdVGRLbT+k+XaoW3AGeA/ygiL8KimX+VZ+C5VdWHROT/Ae4HpsCvYf19pp7bFo/3XF5q+SXhnph2Phpp2vAHga8Ange8UUSed2i1bwEuqOqzgH8FfF/67vOArweej40Y/l3aXo8ePXo8peCdsDbIuWZ9yLOuWuWOq1c//Zd6PGMhIivAfwG+U1V3lj9LUbKnbOTvsUJEWv3re57stnyOkAEvAX5IVT8f2Ae+e3mFZ9C5PYJFdW8BrgXGGA+7YnC5zuVlI9wsTRum6Zd22nAZb8BC92BTEV+SpqXeALxJVeeq+kng7rS9Hj169Ojx9MZDwA1L769Py572EJEcI9s/paq/kBafSlPQrc77dFr+dD4Orwa+WkTuxe7tfxibzd4QkXbmfLk/XV/T5+vYrPbTBQ8CD6rqO9L7n8cI+DPx3H4p8ElVPaOqNfAL2Pl+pp7bFo/3XD7uc3w5CfdjCbcfmIoA2qmIxx2q79GjR48eTwu8C7hdRG5JyWdfD7z5SW7TZ40ULPoPwEdU9V8uffRm4BvT628EfnFp+Z8RwyuA7aeLxldV/7aqXq+qN2Pn7zdV9U8BbwW+Nq12uK/tMfjatP7TJhqsqieBB0TkjrToS7Ccg2fcucWkJK8QkVG6ptu+PiPP7RIe77n8VeDLRORImhX4srTsknjaJ02KyLcC3wpw4403Psmt6dGjR48enwpJ5/nt2M3JAz+uqnc9yc16IvBq4BuAD4rI+9KyvwN8L/CzIvItwH3A16XPWueHuzG7sW/+nLb28uBvAW8SkX8C/D42ACE9/78icjdwHiPpTzf8FeCn0iDxHux8OZ5h51ZV3yEiPw+8F2iw8/gjwC/xDDm3IvLTWNLjMRF5EPiHPM7fqaqeF5F/jAUQAP5Rm0B5yf1eroGIiLwS+B5V/fL0/m+nRv7fS+v8alrnf6epiJPAcZI2ql13eb1Ptc/eFrBHjx5PV1wptoA9evTocSXickpKHsu04aWmIt4MfL2IlGJG+rcD77yMbe3Ro0ePHj169OjR47LgsklKLjVtKCL/CHi3qr6ZS0xFpPV+FtMNNcBfVtVw0R316NGjR48ePXr06PEURl9pskePHj2eAuglJT169OjxzMXllJT06NGjR48ePXr06HHFoyfcPXr06NGjR48ePXpcRvSEu0ePHj169OjRo0ePy4hnlIZbRM5g/olPRRwDzj7ZjXgScKX2G/q+931/fLhJVY8/0Y3p0aNHjx5PPp5RhPupDBF595WYEHWl9hv6vvd979GjR48ePQy9pKRHjx49evTo0aNHj8uInnD36NGjR48ePXr06HEZ0RPuzx1+5MluwJOEK7Xf0Pf9SsWV3PcePXr06HER9BruHj169OjRo0ePHj0uI/oId48ePXr06NGjR48elxE94f4sICL3isgHReR9IvLutGxTRN4iIh9Pz0fSchGRfyMid4vIB0TkJUvb+ca0/sdF5BufrP58KojIj4vIaRH50NKyJ6yvIvLSdCzvTt+Vz20PL41L9P17ROShdO7fJyJfufTZ3079+KiIfPnS8tenZXeLyHcvLb9FRN6Rlv+MiBSfu95dGiJyg4i8VUQ+LCJ3ichfTcuf8ef9U/T9GX/ee/To0aPHZYCq9o/P8AHcCxw7tOyfAd+dXn838H3p9VcCvwwI8ArgHWn5JnBPej6SXh95svt2kb5+IfAS4EOXo6/AO9O6kr77FU92nz9N378H+BsXWfd5wPuBErgF+ATg0+MTwK1AkdZ5XvrOzwJfn17/MPAXn+w+p7ZcA7wkvV4FPpb694w/75+i78/4894/+kf/6B/944l/9BHuJx5vAH4ivf4J4GuWlv+kGt4ObIjINcCXA29R1fOqegF4C/D6z3GbPy1U9XeA84cWPyF9TZ+tqerbVVWBn1za1pOOS/T9UngD8CZVnavqJ4G7gZelx92qeo+qVsCbgDekiO4fBn4+fX/5OD6pUNVHVPW96fUu8BHgOq6A8/4p+n4pPGPOe48ePXr0eOLRE+7PDgr8moi8R0S+NS07oaqPpNcngRPp9XXAA0vffTAtu9TypwOeqL5el14fXv5Ux7cn6cSPt7IKHn/fjwJbqtocWv6UgojcDHw+8A6usPN+qO9wBZ33Hj169OjxxKAn3J8dXqOqLwG+AvjLIvKFyx+mqN0VYQNzJfU14YeA24AXA48A/+JJbc1lhIisAP8F+E5V3Vn+7Jl+3i/S9yvmvPfo0aNHjycOPeH+LKCqD6Xn08B/xaaPT6WpctLz6bT6Q8ANS1+/Pi271PKnA56ovj6UXh9e/pSFqp5S1aCqEfhR7NzD4+/7OUx6kR1a/pSAiOQY4fwpVf2FtPiKOO8X6/uVct579OjRo8cTi55wf4YQkbGIrLavgS8DPgS8GWhdGL4R+MX0+s3An0lODq8AttO0/K8CXyYiR9L09JelZU8HPCF9TZ/tiMgrkrb1zyxt6ymJlnAm/B/YuQfr+9eLSCkitwC3Y4mB7wJuT84UBfD1wJtThPitwNem7y8fxycV6Vz8B+Ajqvovlz56xp/3S/X9SjjvPXr06NHjMuDJztp8uj4w14H3p8ddwN9Ny48CvwF8HPh1YDMtF+AHMceCDwJ3Lm3rz2JJVncD3/xk9+0S/f1pbAq9xvSm3/JE9hW4EyMvnwD+Lako01PhcYm+/7+pbx/AyNY1S+v/3dSPj7LkuoG5eHwsffZ3D11L70zH5OeA8snuc2rXazC5yAeA96XHV14J5/1T9P0Zf977R//oH/2jfzzxj77SZI8ePXr06NGjR48elxG9pKRHjx49evTo0aNHj8uInnD36NGjR48ePXr06HEZ0RPuHj169OjRo0ePHj0uI3rC3aNHjx49evTo0aPHZURPuHv06NGjR48ePXr0uIzoCXePzxgi8q9E5DuX3v+qiPzY0vt/ISLf9QTu7z+JyNd++jUf93b/ztLrm0XkQ59q/aW2fFJEvu3Q8veJyJue6DambX+TiFx7mbb9WhH58GPpe48ePXr06NHj8aEn3D0+G/wv4FUAIuKAY8Dzlz5/FfC2J6Fdjxd/59OvclH8X6r6w+0bEXku4IHXpmJITzS+Cbgo4RYR/9lsWFV/F/OL7tGjR48ePXo8wegJd4/PBm8DXplePx8rYLKbKgqWwHOB94rIPxCRd4nIh0TkR1IlwueIyDvbDaXI8gfT65eKyG+LyHtS1Pyawzu+1Doi8lsi8n0i8k4R+ZiIvDYtH4nIz6Yo7n8VkXeIyJ0i8r3AMEWmfypt3ovIj4rIXSLyayIyfIzH441YYZRfA96w1NbH2yafIugfEpEPishfS5H9O4GfSm0disi9abvvBf64iLwxrf8hEfm+pf3vicg/T/35dRF5WWrTPSLy1Y+xbz169OjRo0ePzxA94e7xGUNVHwYaEbkRi2b/b+AdGAm/E/igqlbAv1XVL1DVFwBD4KtU9Q+AIpXBBvgTwM+ISA78APC1qvpS4MeBf7q838ewTqaqLwO+E/iHadlfAi6o6vOAvw+8NPXhu4Gpqr5YVf9UWvd24AdV9fnAFvB/PsZD8ieAN2GVKd946LPH3CbgxcB1qvoCVX0h8B9V9eeBdwN/KrV1mtY9p6ovAX4H+D7gD6fvf4GIfE1aZwz8ZurPLvBPgNdhpcn/0WPsW48ePXr06NHjM0T2ZDegx9Meb8PI9quAfwlcl15vY5ITgD8kIn8TGAGbwF3Afwd+FiOp35ue/wRwB/AC4C0iAibReOTQPj/dOr+Qnt8D3Jxevwb4fgBV/ZCIfOBT9OmTqvq+i2zjkhCRO4Gzqnq/iDwE/LiIbKrq+c+gTfcAt4rIDwC/hEXML4WfSc9fAPyWqp5J7fkp4AuB/wZUwK+k9T4IzFW1TjMKn7ZvPXr06NGjR4/PDj3h7vHZotVxvxCTlDwA/HVgB/iPIjIA/h1wp6o+ICLfAwzSd38G+DkR+QVAVfXjIvJC4C5VfSWXhnyadebpOfCZXePzpdcBi8p/OrwReI6I3Jver2GR8R99vG1S1Qsi8iLgy4FvA74O+LOXWH3/MbStVlVNr2PbFlWNItL/B/To0aNHjx6XGb2kpMdni7cBXwWcV9WQIrobmKzkbSzI9VkRWQE6lxFV/QRGQP8+i0jtR4HjIvJKMPmIiCwnYj7WdQ7jf2HEFRF5HjZAaFEnmcpnhJQw+nXAC1X1ZlW9GdNwH5aVPKY2icgxwKnqfwH+HvCStP4usHqJbb0T+CIROZYSKN8I/PZn2qcePXr06NGjxxOHPrrV47PFBzF3kv98aNmKqp4FEJEfxaLfJ4F3Hfr+zwD/HLgFQFWrlCD4b0RkHbtG/zUmQ+GxrnMR/DvgJ0Tkw8AfpHW302c/AnwgJR/+3cfT+YTXAg8lTXuL3wGed7GEz8fQpuuw2YF2QPy30/N/An5YRKYsklUBUNVHROS7gbdiMwC/pKq/+Bn0pUePHj169OjxBEMWM809ejxzkaK+uarOROQ24NeBO1JS52eyvf8E/I+UzPiUaNNnCxG5GevTC56M/ffo0aNHjx7PVPQR7h5XCkbAW5N0RIC/9FkS223gH4vIsWUv7ie5TZ8xklXhvwPOPhn779GjR48ePZ7J6CPcPXr06NGjR48ePXpcRvRJkz169OjRo0ePHj16XEb0hLtHjx49evTo0aNHj8uInnD36NGjR48ePXr06HEZ0RPuHj169OjRo0ePHj0uI3rC3aNHjx49evTo0aPHZURPuHv06NGjR48ePXr0uIz4/wMdWkddaU1gVQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Alternatively, see the SpeXtra and Pyckles libraries for more spectra\n", "vega_spec = scopesim.source.source_templates.vega_spectrum(mag=20)\n", @@ -155,23 +129,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "center-latex", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAE9CAYAAAA4WbXTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SYxsaZ7dif2+4Q42m8/P3xQvIjIicp6qWMmqUjXJVlNqsiVQC0FoqgWohQZqweZKG3GnhTa9kQQJLbRQAgiKm+ZCEKgGRLXQIkUVUSRrrpwzY3zz89nNbbrTN2jxv2b+kmQXM4sZHdXkPcCD+3M3N7t27Zr7+c53/ueoGCMdOnTo0KFDhw4dOnT4dKA/6wPo0KFDhw4dOnTo0OFfZ3SEu0OHDh06dOjQoUOHTxEd4e7QoUOHDh06dOjQ4VNER7g7dOjQoUOHDh06dPgU0RHuDh06dOjQoUOHDh0+RXSEu0OHDh06dOjQoUOHTxH2sz6Anxf29/fjo0ePPuvD6NChQ4c/EX7/93//IsZ48FkfR4cOHTp0+PnjXxvC/ejRI37v937vsz6MDh06dPgTQSn15LM+hg4dOnTo8Omgs5R06NChQ4cOHTp06PApoiPcHTp06NChQ4cOHTp8iugId4cOHTp06NChQ4cOnyI6wt2hQ4cOHTp06NChw6eIjnB36NChQ4cOHTp06PApoiPcHTp06NChQ4cOHTp8iugId4cOHTp06NChQ4cOnyI6wt2hQ4cOHTp06NChw6eIjnB36NChQ4cOHTp06PApoiPcHTp06NChQ4cOHTp8iugId4cOHTp06NChQ4cOnyI6wt2hQ4cOHTp06NChw6eIjnB36NChQ4cOHTp06PApoiPcHTp06NChQ4cOHTp8iugId4cOHTp06NChQ4cOnyI6wt2hQ4cOHTp06NChw6eIjnB36NChQ4efC5RS/65S6sdKqQ+VUn/jsz6eDh06dPjTgo5wd+jQoUOHf2UopQzwfwL+EvBF4K8qpb742R5Vhw4dOvzpQEe4O3To0KHDzwO/BHwYY/w4xlgDfwf4K5/xMXXo0KHDnwp0hLtDhw4dOvw8cA949tr/n7df69ChQ4d/42E/6wPo0KFDhw7/5kAp9evArwOoJP2F5PgAosKUoDxEAyGRz1FAlI/BAGmQO/EKggId0UkgArHREBVE0K69vY0QFLqW+1GxvT8NPpX7VQGUk8eNWQCvUF4Ruf155eR2KAh5hCD3YWwgRNAKvNPys04eJ2q5vzTx1EUCqj3WqIhe/cRzwykwUY69VEQr34tJBBNRCqLTENr7bo87KjknSoFaa6Jp7xO536jlPJrqtXOJnJuQyufa3d4fSs4Fuv3ZALq5fe2ias+BlfNl1/I5yO1DAqaRx/HZ7X3r9vxFLZ9Dex9abht68fa1a9rH0UD7+L7Xvn6hvUZaqTDmEZr2XNoAXsPmutGAjuAUqr1uYkRez0YRNZjc4Wvbvg5x+3OqUnJOojxPQF6fICdWeTk2VHscmVxYqtbo+rXn1j4/7W7Pkwq3r/vmfG5eh81rg42oRsltuT1PKrbvi/Zrm/OwvSbi7WNE9ZPvode/9/rrqSKoEIlGQYhyu9eemwqbH2zfE68d8/aaQKFibI9Lzt32+b/2nKOR5xdNez417TfaO/QKuwLt5L50EyBsDlgRjaKeGoiQrOL2HG6e2+ZYtscX4/Z7tO/97dtA394+mvb1ee09EvVrzzUCecDogKsNqlGgobm+wq9Wr52NPx4d4e7QoUOHDj8PvAAevPb/++3XfgIxxt8AfgOgd+dBfOvf/1+y/mpBKC2T7yZk15HlfUVx16MrRUggJoHkxqAbqHcCdqkxhcLnEd+PqIMKmzji+0MmH0C5r6h2I6YQIu9zMCXbP7K984huYPFQ/nBOPwg0fcX8LeR++5FgwB3VJLmjuclQlab/SuP6kepegzKRWBqGR0tS60it53I2JD7rYwohZa4fOf7GCZl1fHK6x53dOS9e7JIOa+pFip5bwsSRDGqaq5x0ryR+MiDYSO9EU+9EmmmAIOQ7P5E/2eUdh+o5YmFRtULvV/AyRzshO/1XinIv4kYRXSkGLxSmiizegGShcAMh9+7NktHv9FAOyn2o9j3ptWH8SWT2nhC24VMYnHlMEYhWUexaTBOph4p8FnC5ohprepeB4kAz+7IjmRnsUtF/FQkJFEeK/JztQie7jtRTRXEYsWtZEK0feKKNmIUBHfEjj2o0/aeGqKGeRtyuI3tlGX8kr+nVN4R95i8t/gsrwvM+MYmEsRMi3hK5fK+gWqWwsGR31oQfDfG9iLpbMh6tub4eEp1GJ554nUJU2JUiv1Ssj4W9hjwI+Qpg1xqzVqgI9STg92SVkD1PsGuFT6E68CQ3GuUVIYsEG7ErIeTJClBQ7sv5UQ7sShZabhBxQ092bknncr7qSSRZKLIbMEWkGctjhEQWJCpAM5Lb6BqakSyydN0ujIpIVApTR/JZIGolxFeDLTdEGZJVQNcBtCIkCuUidtWuBJQipBqfaUKiMGUgGiHBdu2FZFtNPZLv+1Qew1by2PVI0YzldWzGHvLXVo9OkVxaDn8/kCw8tvQkZ0tU1RC1AmNoDkc8/vdy0rni4NuNLNRShW7kWg6JErJvNguzKMQ93n6uQiRqhesbQqIIVlFOFfVEFmAbch6sLBhjuwhGQX0g5yE9s3LteMXL/93//mf6BdkR7g4dOnTo8PPA7wLvKKXeRIj2vw/8T/9lP+R6YJ/mqHeW5P/uNWcf7JMsYPDMkF9Ebt6FwY8txZ1IPYn0XhrqaSRkcat4+pVFjwLZl244Pxhg5laU0TyinaJ/EjG1kArXE0KuG+ifRpqBoukrXF9IYTaTr2kXKRYZ1UGCOSwB8Hc99UmfwQcpxZcKzNjjnEGrSFGlpJmjvFdSX6XsfE9TjxUvvn/Egy+fcH9/Ruks+biirqwQtGtN9lHK6tdq6Hnu7804zxoWJyOW73nSEyHUMY1CGvsJLBLMwuDTgB4K8fDLBJVGBs816+PYKtOKMHDYhSWdR2wZKQpNcSzEVkVFrA3NANIbIW52rfHvrDm/Z6HRqIHjeiehfG7pnUchM07ITbqMNH0tpEZBsafZ/3ZBOs9Z3lOsHzWE1NI7U5gKVIwkc6iHQlSFMEbqaSS91uSnhvLAE3qB/JWhDgo/dhTHimSuMKXCBSAqmgGYJpKdGaojh3bQBI2fOFSpoVHkuyXVqz4xjZSznHRcUQdFmjiq95aEsz5cZMyCIu/XNB+OCLlFH1SEyxQ3isQrg26ExNmVxvUDcehJXskioNoPhF7ApAG/SDClLBDRoKY1cZmTzqBKhPhqJzsA0QihUx5sI6ougDPytcFTKwvNdpfBFqJ2m0qu48requjaybnML2SHoJ6AG0ZUUGgn17vy8rmpwSfqVrlviap2cn1s1F3X0+g6glL4vsUUHuVlWydqIbnaRWgi2guBj4kQbTneuFW1VYhUU4XvyQIhGDk/m10q1WjyE8PhHzboJmKXDfZ8gWocKAXG0twZ8fQv5mTXioM/qolW4TONqdvFqBXiH9rdCNOScAJoH9FNELKtFD6VnSCXK9YHGtdvCfpruz/RsN3xiEbWBMmVRXl5Dum1Zv97jrPVRj7/6dAR7g4dOnTo8K+MGKNTSv114P8NGOBvxhi//8f9jHaQX8LNuxFeDVicjEhb9ShYuPhlh722LN+I+GEg6sj6QcCsDLoSdTo4yF8m1GPDMs9Qfc/gnRnzsyHJlcXnsLrXEpZC/rgGA8kiUu4pyv2Iv5DHG7yK9M8crq+5+ryhfK+ERULv232CheogoA9LVkmKfZFj316Spw2DrOb0aizPyXgmj67x7+8zeBkwpeZJ75DB0YpRryRPG6qzPnanongjMnqSUH9niDv2fPz4kGTQYBaGdK6odgMhD6iBoy4t3CREE8kvFWGWUrxZC7krDEwaij9bEF71aQZCEvsfJ6zfbJgZy+C5Jr+I2LXBZ6KI6gtDSFsF1CjsWhEu+qze9Aw/MriBpXhUs34UKL/ksJ/kJEslP9toxp9Ebt7SJCsh4pdfzhk995haAwk+bwmMgmoqRDmkongPn0fqiaKZeopewBQa3SiSuSYmrZ1lbVrLj2qtDorq0GEqi67FvmPmVgjs2qIyD5kHpzEmoHZqrA1oE6gWGaowFP2EPG+oRw36IsU8zimODSaJpDNNWOWE+xXqKqXcj5hKFOrsStHstJajCLoSVbruR/zSoryiPBQCqLwirC3WyfM17bVqKkhvIvVIrjddyXUphJ7WCiG7FLoW8r2xkJi6fdNsLCge8EK2TSVk3PUVvhcxa4Ut2pu35NoshRyq8JplC7FvbKxcyoPvyTnXPhKMQoVWGTaaYMU6ol1EuwC+VceNEHEVIskqtlYXjQoRl4uvRLdWIwBdaqKR93nvRLP3PSeLj5XDns1RVQNGE/OU8sGEZ/92Qn6p2P9OTUh0ez5Ca1NRrbrdLk7KIKp3a4UJiSbYVtFOFE1Py6J7T+FziFqItW5U+1zi9vyYUhbmyrO15UQju2U3jyyu/1O7SYCOcHfo0KFDh58TYox/D/h7P+3tXR8Wv7rGPO8BUO0F/K5Dpx6beJIIfmlIFor8wmDXsD6O1EcOPwbV8+T9Gu81YZ6RvUyodxTFyRSdii3ENkJINt5V3Yi6WE2FOPqhZ91TxJ4nu0lZH1nWR2JXUVcp0x8qoo7UY4VdKtS8h39Q43Yj7rIHe6B14HB3zs26R9MYGm9wf25O/neHDE48xR3DOgwJR4pxvySqSHzR4yu/9Akff/gWuz/yvNpVxKmnWaaog5paCbnWpWbnDzJuPgfJXFHtBYovFUSvMRcJvTNNtRvxIcEfBOzdNYXp0XtlGD8J9E8t87dF+bSlwvXkfGRXosaGBAanDk7g+t2EwasAGFBw8IcO9QeK63cS6kkiNomlYedHkaYvdoTJx5GbtzXBihI7VxZbCGmxRevbTYEItoTkKrK+C6tjRe8U0rllfc9vCVPUELKI74t1SHmINqILhS41yb0V9WJIdqm2/vLyyKNKTfY8obzf0Nsp8F6T92vKJyPinVK8/LsV3hnKEuLK4gei2qqlxU8cyTwlvVHUBwbTKKKNUINdinqqKiF7wYIfRll8TDT954ZqT6wgauBQFyn5y4RmHLZKs10qWfB5QMu52VidlBcyF1oVXDdyrjbvEeXBroVAbpXxQo5DO7FMBKNwOei6Pe4ghFKU8fb9qWl3bxBSihDuYBURUX+1i9iVsPFoFLoQ8hoyQ7RilVIuEqxGB7GVaB8IaEwR0LXH52Zr+djYcHQTZUG1EjsMWpGfK6YfOpSPmMqjy2brGY+DHutHY178muyS7H+vluM0csy6iVsS7XJFM2g/jgzNKOKGgdj36NSJ/SsIOda6PY9OXsvoFVRGXlsd5dwp5AXxClNosbCVrc++nU/gZ+PaQEe4O3To0KHDZwUr/lg39qha/rjlT1LqnUC8s4Yo5MFninrXCwGtNCrz6NMMFgZ9kZNUkAPFUQQDzX4jQ5U2Ut9zJImnriw2ESJRr1LUyoCG0YdiP5l/DpYPIiEVNdNUivxCMXraYOrAzVsp2glZ6H2cURw7lFNUJ33qqSXNHcNexcFoyeWqz+5wzYu/kLP/W2I10KeGcpRyNFnw4O1znn9wyCdXu+z+hVc8e3NfVPo7LamrNdmbC8xvTSiOIsW+IplDOofxY5g/6lHtBcJ+w2of9GVCdqExr3qU+5Hxc4UpRbnsn3uUN7h+FF9tAiGNmLIdFksjr37FkixFJZztKdIZNGNwfc3gRcnO+7C6Y1HeUB4ElNdks8jyrqZ/FlqFVdTW1X0hVroWv67yYndIbyKrY/H22rXsNugGUDD9gdgRqql8LbtWVLta7BkR6mkg7osNJoTbYcLyUHYAdKkJfU+1J6p+PbH0Pz/DB03cF2nYXlrijSGMPfSAJJKcW0wpinXlrXh2Udhr+XrIoBlG0rlqrwtDPQ40w4jbcYTUkl0YUZ8DQq6TIJ7zSSCM/HZwNb/Q6EasFhs7iE8j6UxIqevL10wN6UJu57PbQVLlwPcUpogyj4Co2ptFitggZJB142WupxG73Ew/tkQRMHVs7ShC1H0q51QF0LUo2D7TreotZNtnonAb3/6sj1v1OyQa3QTssiZajamCPM9M1HJbRZxWW7+5KRXJEkbPHbqO2MJjV43YQ/IUehnrN8Y8/7cNo08Ue98rcT1ZBIZEUY0NxYGiuBNx+w3poEapSPCaZpVgrxJ6Lw35pcZUCSEBnypcn61VJ42yi2BL2mFYwUbZD4m8JvUkUk8D2EjsedTCMnihGT8OJMvXfvCn+XX3s/127NChQ4cOHX4+yBJHr19R6UCICldavA0MxwXTXsnJ1Rg1rTFHDj4ekl0LOVpmFlQUW4GHci+KmuhFqWaTBFFquM6pLMTcE2Y5gxeKvdNAuavIZpGoAzfvaKY/1AxOAjdvGZohJEtR000tHmifKfa/XbE6Tjn7ZY9dGvILRT2JhHVOOXXofUktmfaEER3cueHi67sAxDyQPs14bneIUbH/5hXnZ2PyxDG9s2DGiPRxTn3gOPwty/zNCcXXS+zzTIbpehFbKlZ3NSGVLfDh72YUR5FkrhicBHyqqEeiZh9/r94OiQ2rgG4CIdEs7yYQoXflqMYa12sTO6qIaSLXn1cs3wjYQrG4r/Fpjqki6SKgn2rKhSiD6TKSLsQeQWtTaMYyHNjsOdILS+9UCGMzkvPZP4nbbfhqVxYQLgft5Pij0qzvRtxA7BohEbIbrcYNA/agYDoqOD9McSNDTAPTwwVVYylfDUjvrGlWQ0wNi5sesTYM9tak1jE71qRPMpS3MLOoeyXNcSBcpNgCxh9r1kdRFOVIqxIjdoOadogQwtBD35Gljir20E1rV8giaiLkPuQB5WQYMO40hFpT1zLUZ1fyWoZUiGe11w5YXmmiBX2jxMqhN3YNaIagvULX4uEOiViAdC1EUrtI6N+mlmzV80KRzURdFpKvSNbiZY5WbCk+Y/t4ppLHbIZihtZ1JKS6VZbbfyqiA+jKb6+paBS68nLeNqknVo436taa4iRZJBg5hnzmhWyXHrNuJI1Egx9mrO/1efWrisn7iumHFcv7Kau7muIoEPZr0p5sbfgyQS0SkveH9E8i2TyQzB3aVQSrqHYT1vuaZtS+jo1chzJAyXYgMhhZoEQLXt1K19pD/0QxfhqwK0+1Y1kda1Z3I8vPeap//LMla3eEu0OHDh06fCZovME5Q5o51ssMSk1UmoXvU397h6QCd9dTZRadRcqD1qowN6LS1pJGogJMfmQwTaTaSTGlEMhyVwhxtlDkZxpTR5oBrI/Ex1ntCGHf/b4nWQdMKYZaXUN+Eal2wfUVi0ei9EGGcpHRR5b1NwvKkJPeKJpxRDlNWaQYEwjRMUwrEuO5mDakn+Q0Y0W979FeYR/nXI4y1G7NbN7naHfOLJUFQ7ZTcvZvZez/VkKwGfWBR58JAVIeJp94bh4Zeh9BsJH+S6h2RBkdvKxJlwkv/6Lj8iajfyYqXDUR0uQzUaKrXSXn5MrTDOV7SREwReDgDw3rA02yjtSjzaBepJwaXA8GJ4FgYX2oIcLwpScaTbmn6J0oXE/h2li9cleG90IixNwWop7aNTQjuU09iW2UnCwkkqWiPPTUuxFdizcYEOK+yFjagFob8QCvDfNFj4dHV7xoDNVlD3a8RM6tLXZuWBdD9MM5NvVUx47k0pKfKqomxx84/MSBNjRDSSURT7UsXNwgbv27umkV6BtL7DnxhHu5fqqdSJg2qJuU0PNiNxg3UBliaTBLjYpQHgSSTFPvy22SpZWF1F5B3U9Q8wSfRVSQTLrNAN/G+qPrjRIuiSNiFYloJ4OUP+GTriFfQrKOuFzUcu1a/7YW377LW99yO8SofcT1VBsVCD5XNEMtHn8r7wEVZQB245/2ucWUHtV4YduAz4x4qKNC+YjdWFpqIeNJEWTxUAZM4UArojZEo1nezzn9ZbFPzd+Cq28pbN4OLS8SsicZ2WVOdhNJVoF0EYg6EFLxZ5cPU5qBKNSboer0Jm4DUTae72CFYAO3MYjxtQhLA2YlKrwtgqQbnTUMnzrMusGNMs6Ln+33XUe4O3To0KHDZ4JQGvJ/OKLcB/3eGlYGP3bg2+G4SY151mPwvmlVZhl2Gj8OuEyxfAPSmfw/avmjagshcMt7ko4xeiyRd8tHt4G8449g9FySC6qRoR5qir1bcrf7Y4/LJFbOriOjT0T1rHZkgM+WoJ/lhAclzuX0ThRVo6l0wqI2jO9WpMbjo2Y6XXF9aMnODVUOYW3JvzKj/O6UZiqq/qvzCYNJSfFWIKxSMJGrr0TSuUY1ivRG4umakeLyS4ZkKc8ku5FYvt5VZHmsWdwXNdxei2pti0C5azB1u/0fFcv7imYoEXWHv7Mg3h+yvKfRrrV6VIH8Wu6/V0XKHc3g1DM4ddRjQ7kjfllbCDmrh5p0EVkfK/JLIdN+pVjfEY8zCMkrDiPJSlE8aNBLUad7Lw3ZtcK0RDJZyke71DRHDWanYr1riJUhGdY06wTvNftvXnF5NUS/yvE3KReDAXvTJedBo3XANYYYJUmk98pQlFMh6EnE3ytZGxn+TC4sza5HNRKjmF+2KnYC6QKaScQPAo1TmEJRTwIxlVz03cM51092qO42qDSQJJ54lpLcWdF8OEJNS+ygppjn+HEkLg1h7KgTA7kn7Tf4ywE+j/RSz7BfUY0t68s+PtNUO4HsWmIoQa4715cFpm6gf9LaOgpJ3DDlhlyr7ftA10jSRntdu76Q6GQhr11I5HVWHpJqE4EnC6FgkfdA62cWn3V7HbnNQOJmISjWipBZfG7QlSdaCVJXUfz9iZfFi27ktuLpDkSjhawDizdzTv68x4wa4nHAV5b0acboSUL/3Le+bU/T062NRlHsmZZgq3YnJpJfy/ui3NVtxN9rufev5Zfr+idzyTeqd7CQzCPDV26bCW6qgFk36FKsL/amIGm97j8tOsLdoUOHDh0+GyiYfaNGJYG4tqijCmq9LS0Z/2avjbiTP9b1qI1Qi6I826VkOrverXqa3gQuvpqIfWGgKO4osisYPRGCsnigRanz4mkGcAPF+jiSXUlGdznVNAMh7Mkqkl95TOlZPExli3+gGDxXVKse1XsFhc6xK4VZaXwSuFr2SYxnVacoFcn2CtTpiPxE/OJuX1MfeMxFQtIOZDXDnHDUtuZoSOea6kB868u3PDENlPsNybOU6kFk/l4AExn9MMENoLjnULVi/IFh8ExsIemNISmikOSRIruKlPuBZKG5/ppnfTxl8FzObTXWZNeOqDU+U0SlyOYe36qg5a6hGit8rqgnQmJUlOHTbCbkZX0sFpL8EtK5wvUjo8e0XnzwWSR/kUiSxo2muOsxKy050kcN1JJbHVVELQ30a7QNeKdJUsfBzoLTqzFVYwmrBNJITALea6rGMhmvCEFzM+tjhw3OKXxhcGNPdmoxJaxtAgOPXVt0o8hPLOXdBjuzVLvi39cO6hEkc01IIs3E43qamAb0qCEsEvJ9B0OHSQL3D6558skB6k6Fcu31GxVNbdGJJ9QJdqVodiPZ0ZrqrI+zAbWJtlQRFzQxKvTKUNxz6LUW4pvG1hMuQ77RRNJr8V1vlXcDyTJuM6hNKYtPUwsB9zKTLIOt69amkqttjneyFMuQKL5txne7I5JfR0lNafOslYutvUTItqk8hCi2n8EmQjCivJcc8EQTrH6tSEihG8n7Vo0Q88VbAy6+rggPSnSE9Ad9Jh8H8iuPrsWm4zON68u1GazCvxa1mF8H8iuHKT3RKlZ3Mqo2W1tvSoo2RNuLH36T0qKiWGxUuFXB8zn0LpwMcIaIaQK6cOhKBjzja7aTnwUd4e7QoUOHDp8NdMReJbj9BtN3+MKiVhbtoP9S6vU2DYb1WAjC4CSwfCB+ztHHmqaNWEuWkKwU59/Q5JfQDBXJMnLwzBOs+FxdT7cWFIUtNEkRGZw22NLQu1AEI2TC1DLgV+0FeqeKctcwOAkMThw+16RzRbkjynPzIpfj2w2EPNJ7klI0mgsT0CoyPx2i+45w6EgvjXidVxkY8aAHE7Fe4tz00hBGDmVkC3v0oaEeb9oeDXYlA3XFoUZ5zfpuYPGFhvTMkp1afCZb/8lSCmWaoUJ7ITnlrjzezg/EipJdG5qRLFwGp4FqrLh5K2X6YY2KkXLHkM4dvXPJZLZGrAvJylEPjXi3kcUHtCUqa/CJDE7a1aZgRzF+ElgfaBgq3FCU1PKOI9kpaWyOXmvMlWRPZ1ea6q2S4UR8/Lv5Ghc1hUt4b3LGy96Kmzone+C4uhnAIqG46OOmJXd2FsyKHG0j8VVOttT4LIKJVEeOwSeW/Exoj10CWpRMu0oo7gT8IGDXluxKrjmfS1RgVPJ/lyHeahM5vx6hk8BgUJLbplVQFc0qReWBWErWetJriD1HfU/iCevSEtNAdBqVRcxaM+6VnFxMpDH0qESdS4lRMwn4qcPMLMU9BxGSG4PvR1wtQ4ibAUzlN5ndsgBNlpLi4XptKgiSFpOe3hbdGPdaHGAu3vGNpz/YtiwqRiGtEUKmQOttvnVUoFwAqwmpIb2uxIu9UY01xCCKd8gMwWh0LUkmITXMP9fj+gsQ7pcoBb0/6rH3gwa7LoUER9mt8rmmHhqCFS89UdT8ZB1Ill7Iuw/43LK6m1CN24HPNov7tjWTdrj1llyjbp8LQD6LpDceFWQBb0qPXjcof5vcItWvtz/z0+JTI9xKqb8J/A+Asxjjl/8F31fA/wH4y8Aa+A9jjH/w2vfHwA+Avxtj/Ouf1nF26NChQ4fPDr13ZywuB5hPemgFzWHDzj9OyK/9tlBl8QjqHWl6Kw81+RlMfyh7xKZka0k4/1Zg9JEhu4r0zx3RKKqJ3hZxrI41fuBZZ4pqR2FXmskninQeUDFQ7FquvghuHBh9qNEnmuErR7FrWB9a8ktPMnekAYbPPae/2Jd8cBUxK4NqoBkIiVqvMowJ5C8SQOLqopU4PneZoo9K+t9JaEbiMU2WotwVhwn1cYN/Z818bclepBRHYi9olCRhVDtCaLMLTZzpbYV3M4nMv9RgrxLJjR7KAJ3y8vyTlWSPBysDjLpWJCtpjdSNLGquvpgxOPFtLbvCZ4r5I8vwpUcpWi93q662+c2z98ANQpumIQNo5TslcW25/FZENZrBJ7QNfTKoZxcGF3qSEtIofD+g9yvKfsJgVLHbL/jyziv20iVDU3JSTdhLVhykC87rEU0wXI97fHB5wHqdQVRcrfqEoEizhvo4Us1T7MxAozDTmtWbkL8SpVt78EauneREMsFDqvBZW9SSR5odT3JtSG9EJXYmEi4ylIbmJkMPGowO3FQ5ZuAIsxTSAGMnHG9p8Kkn1gbdcxgrsY+7d26Y3QzAi799tuoRGk2SO0IQxd8d1JL5bSK+Jy2XyimaiUc5RXZp2uMVYmxWQhCboSxMbRlp+mobQRj1ZlEqhHxT6mIqGTbckOyQSDmOqYWUBqswjQwN+1STrCWBJNaRZCWKL1phFxW6kGHGaLUo4G3jo88MPtn0vCvWxznLe4ZqV2YKBr/dY/KJw5SVkOQICkk/cT29TUwxDaQrsZYoFzGVkHflAs04ZdH6t7dFNhsLyYZwt0OS0SgZ7oy3iw/tILuJ2HW4JduF+LVxYVtTL6siRdSb7vefHp+mwv23gP8U+Nv/Nd//S8A77b9vAf9Z+3GD/w3wm5/i8XXo0KFDh88QOgn4395h6KDaiygH0z9MqSegnabYF2tEzAJmqemdaPIriUKILVmKWoYflw8ie38ghCBYqKaGpqcIKfQuxBKSzA3ZuSEkkcELWLwZOf+GImSK2A/0P1LkV5A8MazuRalxf6635MX1Ndl1YPEgxecwOA1MP45cftFK/faVprjvwUOaOpra0rxZMf39DN+3JHNF7zzSjBSjd9ZcP8pJ5pp6ouidyUCndgpVGNSgIRtXxFFNvMqpP1cRFgnNXHzPyYI2rQTSuRCH/omi2E+lUTCVpIrLX27IXiToRlHtCPkq9+ScaQdlLt5r7aJYQ3ykHohHtvpcut1BWDdmG+NXTYWgmzoyeBUYvoDlffHLru/K66WuU9ROjbpKCX3P+ms1MShiYSENmMwTl5aoDX7sUX1PaDSDvTXfuvuEabJmL1nRNxUhat7pnbIIOSNVMjEFHkXTs+ykBeflkI+vdzFKYiFvZn2yfgOjhjBoSF7kNKTkBwV1MSC71Fsfr0+FeKY30l6oHLh+pHeucO2uiuyySC6zrtU2rjKkhnWZsioylIqopk3/uEy26mmvX7OqDTbxNJUlGdYUVUpoNOlSbl9XCTiN0m2JTholG7rvsC8z3CDQv7MktY7rsxFRS/KGryFkmxSVNknFi83qVvmOKKW21pGQtOp1JbtH2ey1tkQlfvBtZr2T5BrtIvVQU4+UZGkXcgMVhGzryonSrdTWbrGxaoREi7qdSDNksDKcOXrumXwspH0zgBlVm3Bi5LXYEG3tWv946wHXTUTXHl2L6lzt5ayOXyuiaZ9SfM2vvf3ya7sBMcjCwxaR7CZgS1HnTR2wywZVu+0gKAFo1e2tyv2nReGOMf6mUurRH3OTvwL87RhjBP6pUmqqlDqOMb5SSv0CcAT8l8AvflrH2KFDhw4dPjsErynueexSo2tpP5x91aF6nnlp0CsjA2BXRpIY9iQ5RDdSRuMGUWLanKL/zBIS8axKc6I0Gk4+ChT7Bp9afE8xeBFZPJLH77+UbF5dG1Qw7H+vZvZ2wuAk0D8Tdd3lYDQkbarD+t2U4lB8y+sDhZ621fGVxLSlC0O5D2Xaw84NyaMlxWGKrqG47xm81PROFRfPp5jjknKcgI74PGX0JOJ7imRhKJd96uOapNegBo7+oEINS4qbqVhYJkKeNxGGvUvP8q4RRTvA4nMOXWju/peGm7eFNLs+ZJeRQQnLN6SMpXcmUXiu3yqruXjX8yspRNn8XLyGcl/KW0w7bFZNRZVXAdKZWE5As74rsX7NQBPzIIUi85RkvyCfFMxfjvAqMj5aMn85Ir0y2KMV436Jbju2d5I1AcWLaocn613u5HMAEuU5TBeUIcGowBu9S3bTFbltCFFxU/VovKGf1dyEHlnWsNg36LmlnOWoVBYWG0U3akWTy7Wn2jZBW6i2xl6IdTRSLa8L8ZgnC1GW656muuxJdXqlsKVCzxKCadM6clhd9kFH6huxEbloMT/KydqYuvLQExcJdmZxPYeqNLpS+H4krsUm1L8nZNvoSD6p8E7jbgw2yk6DilAcysBn/1TIthBboBFybcvYNn5KHniy2rxe8pqnyyCzEOuIaW4bKDdRgaKQi40DhFAHqzGutVpYLSTUBaIxqBCEdCdiyUnnDaqtgd8M08rPSVyi8hGMwvWMkG8tj6HbhBMVpOzGVB58xJSOkFmKo4z1vr4djOS2aGmj4t8+2OYxb+0mySqSzyQ1RdolPXZZo8r25GiEaMPtgkKp9vn+bL/vPksP9z3g2Wv/fw7cU0qdAv9b4H8G/DufxYF16NChQ4f/BtAo8lNDVGyrqGursZd2q7IlCyGAtohkM1HcfKpYHWlqr4gLzfhjqZqWeDvZal4dGdIZ25SGfBYICyEiyVLU2MljRzL3VLuWYBX1yFCPFSpoxk/c9g+/yxTrA838XS+Z18+EhFVTqKdy7PWuF9K11FIF3nqqm8oSp4Hd72qu3mhYPsg5+CMHylLuWlQ/tuU+kcuvttaPG0V2pfB5QnOTgI2sFgnZ4Zpwv4Qf9+i/kttWO4rzX/IMPxEPdPH5kug0lFqyrC3svO85+4XWz6zUVgGPo8jOB2E7lGrqgCk8Z9/sEYwQRomSi5LtnAkJUg0UB0JwmqGopCGFeippGfmFptwP2MukvV9L+bCmOe/hpgayQHKSMgf6Ryvc9ZjixZDDLyzZydbspivKkPC02OHZcoez+ZAfqDvsD1fs5itelRMy47AqoFWgZxoOswWJ8uykazLrOFmOsNYTo2LncMFykBNusnb41LTnT56DKSPZtXidVWij4Rzkpxo3kIVdeiPRkq4fJT+8r0BJsYtcvxuFFsjU9pyl84R6GkQhB5Sz6KrNfO5JvXl6kshug98MQipCrYlJIEwbnNMYrUltw2RQMF/nNG1WuE9h8Si26TmKcNX6slvV25StZ9lDua9loLIt1TFNxGWK/FqGY00V25zuzfCl2CuakZHvFXLdA7hEPurKbz3NADExhNxiVhVojaoDSSW2j010YDSGmBmC1dAOMMc2zxva4329U6ZVnTdebd0E3ChleS+lHqltA6W811sLSftRbUj25rWB7XBpdhXpXYZtXb1dNthlDZvFgtoo2e2cghKLTrSbQdA/PZaSPyn+GvD3YozP1b/kySilfh34dYCHDx/+N3BoHTp06NDh5wXtZTs8u47M35Jki4Pf0WQLj1Qoa+rhJj9XFGcVpTwlGsguxdbhcokFixrqgSLRmmpXFOdqrBg9d6Le9jTrA83weWD4osZnZkuobRnpnVZEneF64h1dH2pGzxxN3zD5xJFfa3wK/TOP60mN9P63I6NnFfUo4eWvCSHrv5IKdbtWFHkGto1ru0opP1dRPEtJFlK/XU8U9VRKUKIVD7tuEsqjQH5uZEu9gmQFq8WQ5K0lxVsV5ZFl//e0DDLODMsv1AzeT2GWQB5E8c/g6ksw/bEimSsy15bJLCKDl5risN0RiOBGimZg6J8Z8bK2SRf1SFo3l/dh+Dy2tdyQzeQ1XL4RKO5F7ELj80Aylz38/EJT7QWIYGqFnluy+0smg4LMeJ7aXdQ8ockt5t0l+umAZ+c79I4bXhRTzsshs6JHiFKQZHTk9GbEvMwYZjXLKuXueM5BLhmJQ1Oxl6w4TBe8kV/xg+SYx/Ndzm+G7EwLlIpcNwZzkuF6MriZLKPUqXsheaZgq1rK8CyA2iZdpCspHyJCMpfXbEPiNjXtUUPVE398eiPXreuLQp7O5BptRlGG9WrF8Ezuw9SRepxtbTu6VlKXvjA0dwPVdc5q6BgNCyaDggs9QteK+o0SZql4vZGF1MZbrzyYtsI9tMO0wd7mTFdj8fBHA9VIk80lblN7pJCmCtRTK6p0IUTct3Xt2oGuAjHRUEkWOyq2anUArYlWo2tRijeEO2TJrWL8GmIbR7hRpuWg2+hDJxYSST8JlAc5y3t225y6tY7o1wj35n5ff4zWdq2d7PT0rsO2Jj5ZNJhVLckpGyVbc2sh2f7S0kSjqaepqOo/Az5Lwv0CePDa/++3X/tl4NeUUn8NGAKpUmoZY/wb/+wdxBh/A/gNgF/8xV+M/+z3O3To0KHDn2JEyC8j11+MjD/WmCqyvqNY3bWSDbwSldC4iE+EFEcNxDZzew3zhxq7ltSCbB4wVeTyS5ZmGOmdCjFfHluSQlS+4YkkEBT7SZu+oGUL3Ueu3+sJ+dhR1GPD4MQT2+QGgOGLmld/Nqc4kPbJZCn2imI/Jb9s2PmhYXVXLC2jZ8LEykOFajRuAP1XmuVEURyptnVRToM7aEhnKa4f0HNLvSdtmboBM28JkoX+K8UqGWDaevOLbwayS7PND149cgweW7F+tP72dCXFPf2XkfVd8XFHo0lnouAVe5JSkt1IZXs1kUjEpq9Y34uMPpZ4xZDB7POI8j2U52YXGuUUximaHYn4q+7X2J6juklJrg3N1FMeBuzcUBUJJxd9hkdL/uznPuG3P36Ed0LUdt67onYGqwOX5YAPnx6ibxJpfBw6bObwXlPOM5aDmmG/Ylb2toS7Zxr6pmKkSxYh553BGeOk5LfKNwlRUdYJSeZoegm6lkIXdSMJHNq19orIdiAULYOC6RzcQNT9dC6LQ58ipNAplJMFTHEgVo16LGVL6Uyug2YgRFtaONkmi9hCLCDa33qrk5Wk1oRUPo9rsU75qwztIVSabGfB2cWYnfdlBiF6TTbTNKOAXcpj+kxsFZtdIyKky7D1Sbuewmu5rS0jqyNpy0zW8rrbKsqMQCJtkRtf98am4hPJeA+ZhkasJW7QFuCEiHLyWMoFUYt9S8+UQteOkFuClXjOaMSeIRYSOdbYftyQbVOJXztYzfp+n+WxEdsIt4vxaNrP/0Xlj5vbaFkU9c7kd4VkiweSeY2qPIRwq1q3ZBsQ/7YVBb6eZqzuWKqpIv7uz/br7rMk3P8F8NeVUn8HGZa8iTG+Av6DzQ2UUv8h8Iv/IrLdoUOHDh3+2w0V4OobgezUUE2FZGTXorjpGrKFKFDVaKP0tskLyB/O9R0Z/NNOWueUh9nnLK4fmXwAIERGSILCj0SZXR8Z+mcBsxYlPSQGl2nym0A90FR7kd45pHNPSBT5leLqi5ZgLM0kktzINnY6F3XMZ4r1nZRiXzF8FlndU+hGCmOSuaEZijqYrJHBu6odamyJkVobyqMgquZ+A5VIcas3JErQFApbgK0jg6ea8jCSXUo7X7UbSRaKeJrQ7HhZqCw05YEUn6RztbVJ5BeR6695dGMJx7JD4PqwOtL4nm5j4OSYslnELoWgN0MphSn35f6YG5qxpHjQNj/aG8m7VqUh9hzJtELtRnRtCItku7V/99EFL1/scj4e8q23HvPhbB/nNfNVjtaRWdnj1eVEhgadlOBwkxKSVPzgvUCzSrlxhqpX88NwxCiruM76JCMPFgyRvqnYTVY8mM64LPq3roeRI84SikOJzbNruSaSIhCMLOp8qvDmNqsZ2PqdibIQlAx3GfRVUa5X7YTUZddyLkOitrYcXUuOtm7E+iFtqEK+afPMdQXWKdKbyOzzgfxco71q719R7wTOzsekTzKakSSWmGtJXQFNds22TdRnbHcpNu+1jZVCecjXgWCgnMrQbv+0TWfJRNmtpjI/ETUs78mu0Ob/pmHr3Y9aEXUqWd0uErTCVB7VBEIqra14D3Uj6nBmpezGi8qv4q0KvSHMysv7SoV2OLIJ+MywfJhT7EkjqTx2+8/IQnCrjCu2cYAbVTsaicocPg/iX29kYNMualkYgBBsfbs42Hq2jcINE9ZHKcWephnKjsa/kNz/Mfg0YwH/c+DPA/tKqefA/xpIAGKM/2fg7yGRgB8isYD/i0/rWDp06NChw58+xLFH71RUPiM/FYJV7gnhUAFWdyS32q7lj2AzEPXR9RXXX3XoStM71ehGsT4yrO9Esms4+l1PPdLUQ/F/R32b6FGPVGtzkKFAW0iWb0gV1dhgy4gpNOnCS1LCZgu92Qy5Rdx7NetKCk6Sc0vvfKOKise52kX83WMr1pihpzRarAUzSzOU59CMI+FuKakXQP6jnIqEcFCTPM1wQyEJ6UyG10IqBDlYcD3oXciwZrUHzY5n/3ckW3vwKmzLPEwdqEea9bFYbPKXluHzSLmv6J8Grr6i2iFUIEIzlvxp5VVr4wnEo4rFjtQSNnsRlXsICrWwJDs1tUlwI8ArSANp6iiXGQBvPzjDBc3Tk13SD3qcJ5579674+OU+L/tj3js445PrPbSOTIdr+klNCAqz1JiqLS9pFOkKiAbX1zQ7gWgD5TqVn8sLfnh+xHkx5FcPPqaJhokpmNg1bw0veDl/ixAUrrKSjNP3EAzNWFJhmgHYSjzNYj1qfe4ZNKM2CWYRb/Oco5Bon4FtIGy8x052XdRKZg6qqaI8COhG1Gw3iKAD+YlkSucXkWpXSomaUZQZgLU8fnYlRNv1kEHNFTRjBYtEvPoHEcYNyUc5AOmNeNG1k/eJinK8LpUM+tWd9jGvI+WeJpuJFasZyOu8PpJz7XP5+Woi751q57YsRzkhtmkhvv/Qlu/4TPzf0Uh0oCkcMbudVoxWg0mJqSVaaZbclODInMRt8ofyEVvKYKSuRTGvd3NWdxKaQXv+/T9DtDeP85pK/jrZVgGya7neTVspnywaTNHcqu8x/oQXHaWIicFnRgYzDzTNUIZlQxa3VpafBZ9mSslf/Zd8PwL/8b/kNn8LiRfs0KFDhw7/miFUhuE/7dMM5I/n/D2xUjRjLQkaF7H9o982y1khLW6vZvBByuCleDpRsD7S5JeKwatAuWPQjVQ8ByvkQXvIZwHfFmf4dKNmanwuW+3FvkJFSSDZKGjrQ03vIjB8ERg+XVN+kHPyrZT8SuFyaMaRegQ7Pw4Ue5piXywu5RsV9knK+m7ErGSQshlLekfxdg1OYRaG4UiSORbLHq4fyc81nOeiOE4kOaTaE9KZXUX6p7KouHkvUB5LVF1MA70XlqjFtnD+i5CfSRqE8kIW+ydxW1JTTxSjJwHtIzs/UBT7UO2IxWT0ROIJ7TriCuidK5ZFjgqKZhTgsCJUBr2whL6nXqXo1G8j1owNDPKaPG1ovOFsMeSbd54zSUueTqYs1xmzdY/D/TmXNwO+9+Iu0/FamiKzkr6tCZUhaxsoo2ZrmemdixwaXmjK/ZziQUNpIh+X+xzuLPBB8+HqgHmdM00L7vVmJMrz+b0zfu/ZA2Kj8bVCZR57btGVeICbkSKfCRHTRuELsTC5vlxvg+eb8iE5lqYvZJRW1ZUFnJA9WSDSzhWAqRTJjaLab7PUR6IUmxJ8T4Za6xFUB57eSyupIEp2blxfBjb7L3XbEqmwq02dOuR/lG93g0wVW+VZFpPKt/afTEqgigOJBvSZoh5DSPRWWm4Gkd6ZNIiWxw57Y+idyvP3vUjvTDzWwcZWKVfg5HrxvY3KHdGJIlk4GSo0SgpvUoMKkZDZ9rhbf7dqfdtWbYmyKR34drC3EjtXcdhjfWDwuajq0b6eMNP+ItmkkbzmAd98T3m5bvKrgC2kyMauHKbNDP/noOUHfT+h2stYHRnqibzXQ7oh9K9NY/4M+NM4NNmhQ4cOHf4NQLqIDE4CF19R1Pca7HnC+GPJla6morpVu9JioetWgRs7dn4vIbuRgbxyV7O+K57T0ZOwJWex9WCGRLVJBHD1nvidh89F3fOpwfU229iwvhdIbqSpMiSK7NoBhuV9w/CFDGvJcSsWb3uGnxiyJ7C6F7n8qiI/g8U7Hl0o1Moyf0vUSTfx0iy5NOQXCjcyoKF3oinLKfHtFcZ6kqUiWUK5L889WQphGrxoIwmPxftdHClC36ELg2oU+SuLXcHyoXx/53uKavfWb7xZTLgh5BegXKSaKEKqGZx48vcjo+ea5bFidayop5H8XAhYshTvcnEoqndwmv2jOctxRnneQ6WB8ahgXaa42jAerXFe897+GYfZgp5pOKtGPBxckduG+ShnN1tzXgxhAosiZ7bo4Vv/9kUxbC018ryjFjKrm7i1NDRGCKmZW1wSsbnj9GpM3qsJUbHbWwPQREMdLPd6M64O+7zKxyyeTIiAKdpzvScWpulHklQRoqjTwSrSRZs+YiE2UYYo23ztaKQoyFSQLgK2tePoRojqtsDFbXZX5PrwLRFXQbzhuiXqmEh6I+Q/nUmBjQqyYGqGQvjtsl18tMRShjrl9VRBCLYKMs8gA4ViEdlYMFxf5ga0E6VWeagnrarfl50NOxcbSGivm/4r2SkpdxXaK0y7GElbzhmsqOTJCjkHCtzASo51lMr3GCFaJYkkAFHU65BZIhrtI7rwQsbbbO+QGtZ3MqqxbtVkeR28bJzc+rVf+whsYwCjjphS3g+b2L9k6STyz4VbRRukHZM2fSS1NJOU5bHMQvgcfBpvC3Q265SfMRIQOsLdoUOHDh0+I7ie4tVfbtAXCePvpqQz2WJf3ofwtkx8qZc5yUJTTwJ2rdj5bVEBm56i2hVVNb8QG8rqrhRl2CUMT0LbsKhwuWJ1R5MuYPTMsd4Xq0r/IpAubwn39ZckWWJTClLtWHQjw2n1WJNdSeHI+r5j98GMq94YtbRkl5pkJeqmmtQk5z2YQ7UvbZlmqUlvJGu82otkl4Z6HDAljB7D1bhH7+6S+msr6sd9+i8Vq3tCcIcvA7PPaWwhw171REhEshCLR3kQqabiDR4+FZWzHot9pNyXiu9qR2FLWeCUe4re+UaxFWLpJorlfU29E8ku2jQN0w5tlnJutIPmqAEvGeLJpEI1GnWlmRVj9EjqzWezAV94cMJlKfv/h9mC3WSFR2NVIDcN46RkP1vy7at75KMlqzpltpD8bK2E9EUrthdTIguuNqrPVBFbRNKlNIVWq5TynmJ6uGCQ1YyzknmV07c1dbDM6h6DXsW74zOWdcb6oCS+kOFYIjSTQExFFlU+bgsFtZOvbci3imxj9LKbSDlVW3LnU7VN90iWkdUDKSYC8V4DNPsN8YXksaNaousk9rIZQnIl13VIZDGxiRtUDvJL2XEIyW0xjXZthfsqohu5rWnkWH2iqKZt46Jvj9+LQr5ZCNSTSMgi+ZluVXHQV2qb9qE820p71frIN8TeNLFV0SPl1P7EjpHrmTZNRBTwaOSMutxgqkDcxgAa/CDBZ4Zk0aBrLyQ6MYRUU+wnuFzezyFR7XPnllhvyG/7OqI2JLwdqF4pBq8i6TLIYORNg1m1iwCjfsKfv0lUacYZq+OEcrf1afda68hrJH6rnL8eW/hToiPcHTp06NDhM0HUYF+l5OcKAlx9JRLGDbtHc66eTxn/yOL6sH6rYfBRwvQDv/3DGhIZWvSZKLHFAWTXSL5yFJKBFbJdj4Uk9S4DIZGUkMnHYXsM5URT7suklYpCNnzaqqgVDJ4r5m8HRk9keHH9KFLWCaPvp2gH9RiqXVGT9ctcBukC7HxfU+4p1o8a4kLIg88jrheJWWT5MDJ6rBh+YliqIapWGETRVFH84iHVJEu5/3oM7lFBcZKTzmH8caB/Cqu7mtW9gOuJDWP6oXhsT35Ziw1hCes70p6oPFx9LTD9nmb8zHH2zQRTsCVt67uB0A/otUY7RXkQiX0PjUKtDEwasIFmmaJsJLnR1FYRLzPS4xUxKi7WA3716GOumgHfubrHl3de0UTNUTanShJWPuWq7nPUX/DR9T6VMwz7FTdVzn5/RUgjus0QT5rWMtGq3LqJRAtU0D8PJEtFdpWwurPD4o2S7MiRGcd12WdgakZJSRUsY1tyd3jDTZGzyjNYGNwA7EpjTxXFTsSuFLb02EShom6H9RQ+abOpfcRWoiRvKtSjEs9zPRYLVLTgepH0WqEspItWoV7YNiFGLCf1OJLUG/YmJUTlrvw3WYBd0eZ1S1KIeNmBnijwUcvHzev2+ntqkye+Idsb+8UmhlNKbBT2XBaq5Z7ClG0qy408h6gkV13VyE7SfmT0STs02c4/+L7IvZudh81z2aSPYOR97XtConWzyerWhJ7EDZrSS1yglUZKNzA0fSmyCfY2XcS35UTJQm39269bSIJphzC9IruSuFBZnAXSqxK0wk2y9lw34NzWs+0HKat7OesDs02kCWncPnY0t0Rb1HSxcv23qfimQ4cOHTr8mwwFyVxR7keaXY+qFcpGmv/vPrvLSHEExaOa/kfi166HGp/B+lhR3m8wc0OwsnU8+QCpdTftAJcWVTtZR6oJ7HwQKSea4lBt/bjBykBZ7zqggqY8gPVxZFxIsUe5J6R++MKzuquZfV680aPDJYurAXdehTYuTZJN7FoaB7UTqwJIlfv6gfif+y9bBX6l8G1yyPyXC+J1SkwDMY9kj1OakTynYCM+F+/3Jp443qRwXFLsGIp7mt5z2zZdapYPA4PnMiw6/ahi7zsZ6yPxtaugSW+iJLFMNbMvBSaPYf87jvkblvnnPNMfaKodOQ/qqIIXOcMnWjz0/Ugy11RBMr1DS0rqqVS5YyPVdY7KAqdXu/y/1jm/9vAj3h5fYLVn1aTMgmE3XVEFS4iKeZ1zNBQpeFlnJMYToiJMHE5ZsSf0WpU7xrYQJYJThLxNq6kjLGUobp1nPLdTsqzBe82ySfkzB0+pg6WJhge9a/I7Df+0ekRT9ckuNfl5e/+0tocgSq4JgWQZcX2NT3WraCvWh3pLxIIVkuqGQtJcLgtBVCS01ofNtWaXCjeU5kTXl9fXlDIUKddEa/vI5WM6F3XVZ+K5T+dtdvhKfPobiE9cPvpUVHefibq9GfhNVnLbanq7eBm+DDR98Xabsh0I3muHPh3Qkm4VYH03tup43BZD2XaXSTva+nV5jGZgMO2OwMbq7DPdNkUGtAv43G7bJaNWuFHaLqL1Ldl+Lfs6GvGZm0r9hKXm9RhAFUGXsujJZqLAJysPIVId5Ogq3Hq3g9TQh9RQHeQsj61c46nMiURzOxQZEimmwkBsfdvKq595YBI6wt2hQ4cOHT4jxDSwfrsmf5piTiz12wX5D3ri4d5VlEee5Cwharh5W9FMAmHsODi6IfzRvpCjRCwlqNiq0jJs6FP5o1+PFc0ksnigsetIdi1e3KYn3taQyF/Ocg/8wKMWRryt+0JUbj4Hq5Vh9CSyPhZikxmPuUywZWD2jhFfqYLBM/l+ub95gkKc7v4DxcmvSOJFdq6JVhYa+VXkqp8xeuOGokzwL/uyPd8TJQ8UPpc88fVxpPdSUU8N6qRHSAAVcUOxmSQLIQOrP1OwVpHLX8jITqUYZ/FAco6vvxyZ/FiTXSuC1Zz8R2uy3xwJgUwj19+qsacpo0804UWP1dcLllkmBHu/pkoSeieGehxl675RKA1+FOiNKoqrHjZvCEkgBMXvnT7gl+884cPFAYUTC0zRS7DaM0mE5T6+2WW26JEknkFeM0hr0mGNu7Gizhcb33LLslTbOngd8D0haNDGSF5pStPH3l+wMyjwUfF8PeXt4QUuaDyao2zBmwdXPDWRphmSPpMYvKSIcj35gKkVIRGFWzmNH4j3Ws0iq7sSkbjxOddTtpnQyzdkl8WuFfUooltiVtx1qFqTXWsZbE2lTRSEqCardki1r0ibttGzLcNpBnqbBEImKn/USlJCNg2LqVhRNtjku9sCdB23hLzejdi13u7ANMM2XSVIao4bRsKVwng5Fu2hGSA7UK2Sv1HIy129TfgQ33jYLgSUF5IdtWTY+1SRzQMh1aCFbOtSdqtc3+Jzif2U56O2WdiSQiI7CehWnTe0No924aE3ViPx3OfXEbuWZB6fWgYvK7KLQki21uLd1ppqv8fyfipEO2tj/pS8p0Iqi6loISaRaOJtXGBQQrxj/JkHJzvC3aFDhw4dPhOoSnPwjxKuvxAJ90vs4xy7huVDqUqPNrbZ0m084PEaVxtWv3VAc8djV5rJR6Lc0Q6NLe9rkkWbI13JgFc9FvUqWQqxCKl4gUGi1EAU0nqi6b+SP6hRS2rK8GNDOo/YteRrl18tmCaOm7sl1+/2QEFxz2FnhuJIbfOYs2tFcc8TrVTM6zZyLpvB8o2I6wmJiolnmFdkieN8mlJpS34mnu1iFPH3S+Y7Cb0XltUvrQnXGYPHBhSUB2KLqXY0LlcMnyqWKiMcViRXmt0fBWZvSz35+GMAzfydQMgCyUwTgqL58zeYfzwhuTZEY3CHDTdjzZt/NxBNj+VbDrRh8N2c5VuO8osFYW2FgDhNcm0IJrI7XJNMFjw92cUknv3xil7SMLAV741O+d7sLu8/vsMnyT5v3zsn0R4fNHeGC/pJg9GByllGabW9PnQtr0+yloISXYtKaprQJmMo8sJh155maFkdW7TT1IcWOwoMjOO66vPKjjnO5xQuxejA13efM0pLfqiPWLsxgxfQP23QLmyj6KKSBYItPKtjgykj9VCRXSuWbzuSK7P1Qzdt9bvbC/iekkr4icTHJV6RXpptzTooGhW3xURiXwJiq96G11M4xN9t1+3/2+Ic7cTuoNoIO8nElkFLU8kCwPWEmJtKBv9CAumVeL5BGlk3C8XiMBITUeGhjawcymtgqjbHPpVFQbRyXyEB2oSR4Us5Z+WOwRZi6RLCDTdvmzbmU1RuSkk50aUkmPjcbBsbo5b38KYNM1ghwuVelMSdCNU04vsyMB2tzDkkc0kGGr70ND1NPTD0zz3950vxazdi2I4q4qY5y7sZ5a7G9WjJtVhSNgko0cbXlO02DjK85h9pB2d/Vk/Jn0AU79ChQ4cO/7pDKfU3lVJnSqnvvfa1XaXUf6WU+qD9uNN+XSml/o9KqQ+VUt9RSn3zp3kMu4brL8LwC9f0vtdj8gEUdyLJV26kXfDG0H8qzYvv/NITQDzSxV3Pzvc1h78XqHZEAVsfK2ZfiKIWFrepDQD9k5ZkjKRGvR5DcSDqWzSSDNEMparb9US46l1E+k+FKGU3kfzat77RyOnVGJs44i/dsHqnZvDYks0kQzldiAq3fujAK+px5OZrNW6/obzjWb4hhTLRQD0NJDeGl692mC162NzBXsX6vsOuI9P3If2oB0Z837zooSY11S8sqceR0ceG7NLQTAJuFEnnkbf+7yU7v5nTvFFx/a5m7weOwQtJKckvI4NnmmijlOl8e0hZpJh/64rRJ5BeK47+gUU1msf/QyNE58pIMsg4MnhiSd/vYeYGVRhUz0n5TVCcXE64WA7I+zXNLOfFkz0+Od3j//P8XT5YHlIHw4P7l8RG8/h0D6sDk6ygcpbzxYCzxZBhWhGi4tH+FaEXKA8jy4eK1bEo2SG9VUB9m/OsXaTaTSh3hWTt/NjT+50BTx4fcLYcsm4SzooRC5ejiTwrdsh1wyip2BuucUMhv8pHiaTzEdV4tA+SKb12lLsydFruymuMjrhxIJ1J3F/IJJoyJmL7aEYSsxdspJ6E1m8ti7HeWSSbSTSllDbJ9ZYuIroWy0w0Ym8JiSwSQWwgdi0E3bRrks1wpQqiSKNkgWLX4tH2vShDvscyX7BJ3yn3FL53W0tvKoVP5b2Dlh2aai9gKsiuIqaUnSFbyS6AtEgKUdVO1PVyKu+VYEXdrsYSkbl6p5ah0vw2b9tnmmpP/NSL+6b1nSvqoabc09RjRbmvWD6CxRca3NTTjCL80g3p5+Ycvn3J0TsXJLslyUzTO1XYVWT+0JAUgZ0fr8kuK6rDvhTgAH6QsnxrzMWXeqzuasmzb8n2pqkyJDJIGixg5FyI16XN2f/nBO1O4e7QoUOHDv/q+FvAfwr87de+9jeAvx9j/E+UUn+j/f//CvhLwDvtv28B/1n78Y9FM4mMvnDF/Me7mGHk/Fcduu/wfzBF7QXCvZLBl5ekzvD+Hzxk9LFEAE6+rRm88px/w8r29v0Ge2k5+h1Y3pP7dm0+cLqI0iS4kja/UAlxMXXcDl0GK77a8ceweCQDcvlVoH8O84eG+UNNM5Zmv1Ff2M7ypkeSu7beG9ASw5dfB5KlJllYyoNIM5a4B3tmsYWiebegXFkIivzEMn0/cNZLaKKSOLxWNLv+SiD2PelJQu9JQnnHE9OA1RFjIs1ew3yiGP8gwZSG9T3P7F2NdjnTDyouv2lxX17yajxg8j6MngXWR5riTkQPG/b/rXOen+6QZY5BVvPi6x47N/AU7v3DSLEvA5/1JG7j49xACIYfeZJRjU08LnMEb1Cvba/v3L2hrBPytKF2lo8v90iM52i04K03zrhYDrYWk2WTUj0ekZ9r3j8ekx6veGPvmnS3pPE9sXTkkroRjSbZFKS4QMgNqzsJ2onKO/ucxeVCFlWtubkeUPRrEh14uZ5wvz9jYGueFzs8X02ZFTmDN28oTnbIrxPSuUO7zTCtoty10iSay/VkC/molwZdK+wKzEChE/kcE8muNNVuILuGxZcd+dOUakfKb2hTP0wBoY3l2w4AtoOHm0ZI1wddScpMPVW4tqo9pKpNy5Ba+ZC1OyXtsGQzlOtZ+Y0KHfG5yOambrO1s7bxsmgfM5XFwupeILvU6AayC0129ZOpHJtjNZWo6a4P2isqL8cfjKjhIMr0+o7CnieEDKpdRbSG/jmUE0PvyjN/I2vPs8wJbDzjPoPyzQplIrs7S6a9ki9MTrmbzaiipQmG02rMd/xdlp+PqK82XL8cs/tHhnKiCbYnw5I3DhUjxYMx6wNLPVJbbz3cEu1oN4ucdtFE69feDk5wy603H7tYwA4dOnTo8PNAjPE3lVKP/pkv/xWkQRjg/wr8Q4Rw/xXgb7eFZv9UKTVVSh3HGF/9cY/Ry2sWyx5+7NCTip4NlC8H8LU5h4OCq/mAyx/vMf5IM1KwfBAZPlUMThznX7M0o4gbebKXCfvf8Vx90cgAmGtzrFcAQhqavijb0YC9jC15aKvha6gPHM1FQn4hlpbs+1J2sXwjYFeK5Itz6mXGepXjK4NaG+rS0H+cMHwZOPszQNC4vjRmxnYgND+3rO4HqfOuwD/Jyd6bU7wa0juNlDsau5LynN5LSzK/TWRwXtEMI/WhY7C3ZnXVg2c96jTCQGrpi6PI4IUi2oh/UHL5KFL8bp/RB7B60Mc4mL8tBK7/EvovFfN+ij6MGBuo1gnJ1PPg7XOePd5n8TChdx5Z3hc1N5lLyopqtLxOs4R0UtHPa2ZXA3CafFqSJo7GCfF+a+eStUu3pHovX7FsMm6qnJ284M5owapJabzhwWhG/jXHxx8dQRpwjWXVpOyM1pwVCXGZbmPnlBdriXIBtBBYFaDckc+zq8igjDSnimqqKQ811b7iJnVM84Kruk/PNBQ+wahAZj1KRS7uSimNLTTNMEG3kXYqQrVrMZXsoGRX7XV7pjFVm9ediEKtAqhaBir7rzQhiVBrfNbWq6tIcSD5364v1hDXb9NDWntJ1DKDgJLhycRLjfr6OBCyyOSHRvKxU0mbKfckm3pTGR91hOLWnpEsRCXXTqOC7LZsiDNt5GBM2p2goLZ2kWQpxxesKOKSrBLRTt4vzVBsKqYWj7euxNKiPaQLj8vF4rSZRfCZPMfJxzXFQbK1xNRjRXEUWwuJ2McAvvDec3LTsJet+erwObt2Sa4aZr6PUYE6Wr7af8avTd/n3I343dkjfn/ew/2lBfOTEff+Kzk/wSrm744pdlW7O9IOWqrXle0oNpastZDENlpwYyFpowZfT0T5k5Bt6Ah3hw4dOnT46XH0Gok+AY7az+8Bz1673fP2a38s4S7KFH+ZkR4W1MsUP7cMHs0Z90p80KgfDRnOpCBkdS8w/lCTLiNnv2Cpx4Ew8CTXlsFLqa6uJ4HxhaLcVdQ70pBXj+X/GwtHOtfYEnyb66u8ENzsRKqj88uIioqrL2ohWAcF9cQQfzSGYUAfFoR1iqoVveM1a9OjPLLEaYO/ytj7fsPyrsUNpVilGcDwsWb5ZmDwVOTCukrYe3TNRTJBOY0a17BKKO45yn2J9rNrhVkrGRxca4o7Y9JGfLbVLqTnVpTQcWCRKklOuEnxChZfL1GXKbpWDF5K5Nv6WLN600Ea6H+Q8lQfwaghFpYnr/YwNvDg0QWX+30WPxqLHWI/YBaa/GWC60W8sphS4Z/3KR5Eprsr1mVKXVlG/ZIH0xlWBVwwHPfmFD7hR5eH7GRrDnsLplnBs8WU3Doy65iXOdemz8PhNYPP1/z45JB6luF2NJOs5EyPb62ybRSk62m0laFB5SNJEWiGRuIfJ7C6q3D9KMNuALVmtc54wg7DvGKSlRz1FsSo2OuveDUfw7RGxYyoYXU/xVSx9XRHrj5vqKeSAe/6imQO2kuUXjVVRBvQVUsqC4VuYwPXdxV2biRqcKXaRUOUrGzXpry0RTW2lI/1BNL57Y6LXSvKHUnVCb3Y2p/aFBHADduIyUTiGUF84mFEm9Ut6SchaVNLspYot48X0tuBTxVE1dZeyHYzFDUdxGoxeNHG/SWqtae0+e6tWp/eyALE9TTlVAaDTSHzEukc0llkeS/F5ZAuI1eft6zeqTG5ZzAoCVHx1f0z3hxc0jc1h8mce8k1I12wChllTNizS+Y+xxA4d2PWISXTDb+y8xF/bvd9LpoR/7f4dU6/NSG/UNilJN1scrSJr6naRgYjxY8uQ8Bb9dpGaBS0ar1qGXZUt9GDulCo5mdj3h3h7tChQ4cOPzNijFGpn3FMH1BK/Trw6wBmb0p6tCZLHd5rPv/2CwqXMCtyyn+yz/As0oxEERw80+RXgXJX0zsRK4ipLIPnIj3VY8gvNNWO+KdHH1iJFTz29F8Y8tNIvQvNSKID0bLNbdeQ3ojtpJpKm2N+CYs3A7rWKAXJacL0x3DzOU3dy9j9rmyBl3cS+h+lUpJDQjSwvGfJbgLaaW7egf6JqIwhCyzfjOhSYz7qcXEnARNJLjR+ncPEoSop1ymPHMmppRlGmmEkaUlbsGIh6J+I57za98Sex5s2D7nviEExHJfoScHy4wnL+zB4odj9ocf8IZx8K2H9bsX4jzLKfU1+oSgPDcopni0TdN/BGyXxJmX4sfi41VfmuFmOuU5wg8DkR4ZFGMK717jacOfghuPBnLP1CKMDmXEsXIZVgUmv5JPrPbQO3BvPGSY1yyalnzRUzvByPuZsOaR2hqYS//jpyZS33vuI6s4VTxdHmNLg0008niG7jiSrIJGAUYje8n5b7lJIE2g1jfhRQA0do0GJUpGysfjQxwfNvM64N7whRAUzUdFVEMKeXUH/DHwiKu0mGYPYDiSmm+sG6klbU24gu9RUe2LLKO+Jzal42DD9TsL6OOLGnqYvOx5RQ+9USHLUkgCiwiaBA0nfCEJ87VLy79b3Ij4TIh41MlDcd0SnYSaWkbCJ80MWkypIGY9r71+SS8S2kZQRnwuhV06R3UA1EVLfjMVKJIOU0tYajKj52UzKh+qRDGE2A0U+k/bWYJV44oN4xl3v1nNej2WXotzRlF8pUI3m/sE1b48veHdwilaBXDl27ZJEOXzUXPoh65CxChnrkLL2GQHFZT3koh5gVWBgK/aSFU00/IUHH/B4d4/vfecNsgtDspDzgL5V9jfWmI3C/ROKtQKcDE6rTVrKRuEOoNeadKbJrm+bPn9adIS7Q4cOHTr8tDjdWEWUUsfAWfv1F8CD1253v/3aP4cY428AvwEweOc4vnVwiVaR75884Ps3D9i9P6P8J/voBlb3ZNBsMyhWTaTmudoT/+rghRCSZtzGeBlwI0/+0lJPxHubXmtMIdvvoS+kthlqfE+IiTQJQtOXoULzqk1JcIr1mw2UhvFTIWLRRgYfJVx9zZHMDL4y+F5EOcXB70G5A7P3QEXdVnpHxo9FJnM9i/mla4ofTem/UmifUL5RUe95+k8tYZVQHjopfRk31BPD6LE87vw9R3ZqGT6XRJbh88DyvqbaB514Qq0xK425zKiPHMtXQ9TQEfNAGETmQ43PjAxNvoDBy5Sbd2SHQPuE9EZR7UbszBJWhjD07D685mY6gJc5xVmfnfs33OR94soy+6ZHlQYXNINRSWo8a5dSe8M0qTlbDnlS7ZImjjd2rnl3ckaImsInJJnHqsBl1WewU7NoMh6f7BEWCSipHWdp+P75Hb555znubc2ryYSwTEjPRclWY4k1TFZSx25LWTDN33Eop9rmyBZLy8wNOTi64c5QrCxKRRId+Paz+4yGBelMLCDlriG7ituadtcTX3HoBZK5xWewetORXpptg2R55EhuDKZQ5FfQTGSQMnuZEE3EXllcD5phxEwalm9oOKxQCuoyx5Tt8GImCz/tZOGXXrdxeIitxHtwD0qC07iYSC62V8S1RTlJI4HXFGu3Uc+l0dL1kaHKim06iajqkm+dXd8OcjZjyQlPZ3IeiolYecgk136TIJIuJL1nkzUelfigk3XAZ2K7CXajkst99c8DL/8CWB0Y76751sFj9pMFu2bFyEi77ML3KEkoY8K1G6CJXLs+r8oJmXbcNDnfPzmmDWmhLhJs5hj0ar559Jz3RqdUX7Q8vtil/Hgg+d2N+Ms3CTChLTOSk9X+0y253vyusrdkXJct0b6S1ylZh59sq/wp0BHuDh06dOjw0+K/AP7nwH/Sfvx/vPb1v66U+jvIsOTNv8y/DYCCD08OSP9oAG840r2S6rf2xQ5yqhh/HFkfKwJtFNlAGvpAKtHrqaLclUQIN5B4NjVwVIeK7NyggqiBvi0T0X2HucppRu3jx59sDLSFNOTVY/F/Z1cJ1ZcLiqMUXUlLpK8UZq3RjcJcJTRvluQ/6LVJF5vBNnCjwPCxQQWP8pF7/781J9UO6s8sWYWBKMu1RhdS+Z5dR+qJpr5bw8oyfi7KvikhO7VUD2pcP6F/AvM3tQxonhjKmDJ6soleg+wPNTdvGYo7mpBH9v6p4eK/04i3/EKOb/lAPLcq98Qvliyvc/TaENM2czjC9dWQnd0lNy9zRh9a6qd7JN9cUNUGc23x/cB6laEULJ+P2XnjmrJOqBrLe/tnWBVYNpkQarfH2+ML7ufX9E3F2me4qGmCoW9r7HHgeW9C8WpIdinNmqtmwg/ThkFaE0qDXt+GqvlMtvU3iq0KMH7sCcayfFv8FnrQ0B9W9NKGsrEsi4xXUZFaR5J6mqBxa0uRpIRUhgCVF7uDbsANjKi0F4qoDYMXYiNJLw0+EyvH+ENNdajg0Rp+PMDl0OzI4O/g/ZzVPfDHFcsDjbIBv7Kk99Z4rzEm0LRDqCgpnwmJlMtsrk+7FgJLA7pRhEVCem2k6XISxMLiNM3EU08Dprglzptr2meKMLzNr87PI+5QURwFTKlRLmKXgIbVPYnf81lk9FjmIJSHwTNRriXaMlJNDEQZLLaFkOvYqt/eyo5TspJc/GQlhL/aUdh15OoLBrzH2MBfeeO7HKczQlQYFbhyQ3S7afZReciLYkrPNGgVeFVMeLUYY43n/GpMmKUkVxpTKeKDBrdMmOUp3zF3+ebhM476c57bCc5LYyeIhWeTRrKpsJcSo9h+3uZtR9pfCAEaTXJjyM+U7KwUcRvx+bOmlHSxgB06dOjQ4Z+DUuo/B/4J8J5S6rlS6j9CiPZfVEp9APw77f8B/h7wMfAh8H8B/tpP8xh+aTE/GlB9bY3qe/J/PKTckwxc+YMtyQshEV/p+r7HP5TClOJQ1Mf8Qnyi0cDeV89RJjL6yLRDU5tmOFHCd6crTKFI52zVLV1DtSNRaj6VyDTXk3rtdAFaB1wvthFpGl3B4Hmr3u3XTCZrfK+NHZxAvSvKV3Yhamk9NkSraEYJR7+9Jv/dIc2+Y/n1Ensjnmg3kEE1UyrsWUp6blm8JVv4uhEPLLUm9APLNzyuJxGHphEVbvWNAp8rBqcOnyl2f+SY/kD8xfW0XRhMQpuRDHvf95hSoc9T/OMhZtRgl4r0wrD7B4bx9xPGv5cz+2gXP3aU+6114/dHDKYF+ZsL7I3BPsmxiWP/zStS69kbrtkdrAHYTVfsZGu+MDnlz+w9QRO3loBEeSZJwcBWLJ2Qb2sCDB31OOJy6J1oTp/uUjoLJhJ6QTzL/YgpZYhPMqxlwVQPJbtclxqVS6lKjIrGGQZZjfeai5cTLucDSpfgvCEd1ZQXPWlZPIjbQpd6KDF32U1g/NQzfHrbLJjOlCy2SkW1A8mVRulIte+ppxE9cEynK9bHkvBiM8fde1fY1LNzZ84v3H9GDApXi0puakV57CTV4640Ofo8Ut1tZNdhJdevbuS5RQW2VOha5hLMWqELSbeR4c24VbM3Nes+22RaC1HUDcSeF2tFIjMS0KajDCIhF8uWdkL4fQb1SHK1pcVV4gDtWhJddBO3te2ifgtBryayQzV/G1YPArMvRMojjz0o+Q/e+12O0xm5El/Gk2qfKzfkxvf48foO3785ZmAlJvKyGrBqUsrGcvJiB/NxzvhHsgNk15BeWCktsoHaGRZNTukTikUuw6SbBBLbVrYnvObd5lbZ3pDt9neDmVkGjy3jD2FwEkhXLdluz/PPaqjrFO4OHTp06PDPIcb4V/9rvvXf/RfcNgL/8c/8GHkg/cY17kdTDr4PKgaWb8DosXixQ9ImKRhY34uM7s9ZfjIhWciwVjOEbCE5w8OvX3J+NWL6j3Kpue5F0htNM5Dc4/rNkut5H9PWcUuLnvx1dcNAstI0o9ZC0BL8chdcY9AaqW5fSjvk+lhyi/f3FzivhTRvtumdIp3J8WkH80ea9Eb+n801g1eB7Mpy8cvgJo7e8wRTipqIiow+ETUwPxefuetBtRsg88RGo8eO2qTUOxD7HhpNWFtuvuAZvtSSXjE19K4C2Yl4h+//Q8erX7GsjkXtr9aG/EKKfbARVgnm3RWoyDwfSkEJ7aLERJo9R3NHUjeSyvLV+y9Y71zzyYV4sy+vh/QHFe/snXNT93BBo1Xk7f45L6spVbBoFXhRTNFt+POL1ZRBUlN7Q+ks1nhQknRhKqkwT88N6duenb2lREeWYGoZjnQDhSnEMkGp0F5ypJOFoppCljmMDgyymnmZ8d6dM87Hg+21dzyac7PMMUtDM9rE34mia9oEkXQFROhdSQ16M5KWyWDBTxx2nci1dtYjJpFmJ3B3/0ae05HDTGqUgnmRo03gG4cvuKwGotjnHn1/jUo8eVS42RB30GDXKb1TReXEw78phQlZJD/XEmsXxS9ejyP1biD0POmZRGRGJWk4Ud+mpzQjuXbrOw3zkGDXYK9loFBXQooHLwPlvmLwlSuuX062ySIhkQVpfinDoj5TJKtANArXtmDGtoZdBlnl/NZDWQg3I0V91KBqzfDenMx6/iePfp830gvKkNBEy9NqD4BRUvLj9RHXdZ++rXm82OO67HGz7NGc9ei9MowLWWyZSjzkrgd2JZGRLibMG81yJyPVMs8QbMS0jZ8hiT+RTrL1bytQQW2bJs3CkF1oemdiHdEeiO1ixcet3/9nRUe4O3To0KHDZ4OoWP9oyuixkOfFI8XwmWxdD14gxRhvKMo7jgdvnfPs2R69S00zipQHkemPFc1A8fBXnvPxq312/0FOM2iVx7koWyoo1ncDk8ma2eUQnbBtnSwOowyHOUVxKFnKKkr6QzZTrL5SYl9kDF4oZl90EAx+JfFrzYHj8mqIsQGrwFaR3qkQwWQpirnrS9HJ6l6b1R01phZv+eE/slx9BdyXlvgPB9R7HtJAfZ1S7QfSjzX1WMhn71TjZxmuH/E9w+CVZvw4EKzFp5IaURwpXvyPStRFSjpTDJ9rhs8iV18NnHzLMnzaJk9Y+WeLyPBji0+ljrwZJxR3AtwrmU5WXL2akO+U9LKaokrxTnN4d8Egqfmjpw842J1zNFkwLzOa2pJax6LJ+ebuM6pgMQTKkDC1azyaR/klPdPwbL3DrO7hg+ZkOcJ5zbpMcY0lOr0d9DOVtHU+/vCId999SfEopbzOsTMr9otUar9dWzduS9WWviiqqIgRyirB6EA/bXi1GDNIa05vxK9RDQ153rCYSO26quW+0lkkm3tcz2xzsZWXmLjsSlHuRfxOA1EU4OEzRbCG+ZcaYhIoGsvV2Riz0mSHDYfjJbU3rHXK4+UuPduQDBq80ySpYzooOL8e4aYee5HQDCXiz+cRrGSfJwt5jZVDYiOzNt6yUNR5RK8khiO7bqve2yFO1Wxi/YQsmp6jeRhw1ymqkfvUDawfOPJLg78jjad2XFMcGfGRW6iPHP6ZpdgxJOuIrQLUkeWxIVnJ8ZgK8uuwHfrcHEc9gmxS8uXjV7w7PGM/WbJrl5w2U06bMUufcVX3GdqaD1cHzOucp1c7eK+p5xk4JYPGtcQaVrtCknWj0HVsJ0QlkcauNE3fs2pSVqTQKLRXompvjklvcrfjrcejjQLUaxla7p1H0kV47bWXm6nA1kUS/wT+kI5wd+jQoUOHzwSqViQrxeLNiDtoUIWhHhvS2MasOSHGw4fXPH+1y/i7KasHgWggnWnKXZj+uRM+Odln9Ds9qp22JlsJCRAvbiAeVsxORiTjGjc05GdGvLFAHDewEHXQ1JHZW5FkLgr78dGM6w/uUI+APBBSQzOA6m6DSgLJJzn1NBAnEVsE6qEhnUkSQ//cUY/NdgCz2pXhtN65DMUVB5BeQx0GqHdWZCpSzXIhMAtNtSvHrwLYlRDJZiwZz8rBzZuadB7pXQSyOeTXcKVy3CBSfa6kfFORvErpvTIMXspg4eSjmpNfzvAZjJ8Ella8uGjZms8uNH6Vcz1KMXs1k0FBL2nYG6zRREZpySezXd68c0GIisw4XBDmsVj2WCx7GBXIjaP0llnZ4+H4mv1sxcplzJoep8WI0lnmRY5zhqYx+NKi1oZkrjFrtS2ESZaR9MLw/HDC/d0ZT8MOdYRojNwuigq7GeIzSuLqmlcJ9X1hScugONxZoFTk1fWYGMGVCSeznP7uGpWKT9euNx4jqMZSN64CLO6ZLZGspxHfi9iLBN8PVNNIfiFpFcmFZfBScfXlKcnM0Ow6QtCc3oyoa8vuZMXZYsi9yQ1Z3rA8GbKuDCFoQtDYcY2a9bArSQ0xRWsZqRXNWKL/VGhzsEfyvLUDu1DUex5zbal2I80k0H8ur6uKUE6BKMcYLjJiGtv3lSJZQ7kf6R+tuHlvhFIR5w1KB1wvUCl5bVWjcQPJpe+fQu9cZGx1x2zJfbIOaCepJ+W0ZaMBii9W/OU33+dBfkWiPFoFViHjwg15f3nI2XrEfm/Z+v1zThfDbYmSXhj6r6S2XYVNbJ9qk0bUduGhgiweqt2IKg0nNyN+6d5TZndzZqtdTCm7RcG8NgjZpo6gAa/onRp6Z38M0X59wBLwqd4OhP606Ah3hw4dOnT4TKAClIdS4DL4cUqyEG+oCpIQQYT5e44dr8k/zGhG4AeB9MrQjAJvfP0lpbPs/P1cSm20ZBpXuXiw652IHwYoLHrgGA0Lyu8O0A1UOxCTSD6s4XFGdhUpDhRhWpM9zih/Zcn1sk89DfgdaZT0eWT9loNGo2+s5HpfyxDd/A2LKaW9cvMHOrt2LB4m2z/S5UFEecXwueT/FgcKWyrKWYbKPWbYsLpvpYjn7RL7JCe9gd0fVTRDixtY8nPxjmY3gWaguPi6Zu+7kdWRJl0IIUq+k7K6p1k99DRHHkgxtaLYyyDKeTn7RS3b5B6iVeTnkvRR7Ct8KoRpXSecX44ItUElgYd3rvjFo2dcVgP6tuailDr2zDoOh0ueXU/58cfH7Bwu6KcNN6seHzrDeW9Iqj2J8eg2nk+pSIwQGo1aWLJrTXYpi55kGTENND1FOlcsZz3CZEE/r6l1tlUZXS+icrGRpHMZdrRVpP9KMzs0HNydcbPscX4z3CZa+MZg84amziifjkjvragXVpJqRrI4avqyOzF/YKh2pfp8o5DqRpFfKNb3lHidU42pIm4YmL+tSK5l2NLMDexAcd0Dryh6NcVHY/QvzHhj55ofvBgR88iwV3FdWw5357y8kWGE9EaRLEVdBsnk3tS46yYKKfe3i0vaMpf6uGG0u6KaTdFOUR5KaZO7W+FvclRQqGGNTwx+rNBNIi2iVULIIuZlzsxEXGEhC1CKL16tjNz/RGrc82tL76QkXSQSnZiJZzsa8dRffTWQ3Gjq44b/8Vf/gHd6pxgCHs3Tao/v3dwloFjUUvv4h08eEL0iek02rKhucsY/SMiuIunyNgpkkyUuEHuIy8TDr4KiaSD0oZ81rFzK9eUIU6vWqx63jZ5EGboliB2lf6rIL0NbOqS29hGgLS3aHAD4RDz+9eQ2ReanRUe4O3To0KHDZ4LQC2SXhsmHgXThiEZR7GpcT3KmTQX5XkHzj/YIQ6juNKTn4j3d+fwV9wYzfvvvf4lsqlgfR3Z+ADfvgq5F/XL9yOjOgvU644v3TvjuDx8yqqCeQnXgSQ4LqtM+gzX4XFE8bEifp1S78HD/mk9O9olHFeYsQzmFG3kIkEwrnM8xa016A/kVLB5Bfq62SlzT1xJjaGH8SeByLJnObqBoqtZfG8VXevSbhvO/5PDzFL/rJD1kbWkmgdkUVvey7bCb5IRH1oeidOcXitM/Gwn9BjM3Ui2+oxi8iOjGsHwoucjLh0K+TCUKsvJQ73rMpEGnjrlXuNM+ybx9bRrNep0xGJWM84pVlfL05R5n8yH/vTd/xI5d87B3zdzlACxczjQr2H24xirPymWsRinPF1OKJqEgYb7OOZoseHN6xdl6xFXo45OAB7JL8W2bum1DVJAUkXgB/nHKx80d0p0SM2gIScA7BbXGLkXN1Y0o0kUuFpP8ecJ5mJLvii1muc5wtZUYvUUOuw26UdTnfWISCVmkGgZ0ZTC1kMtmLEN2IZXXUTcRavHj27UimUsJkfKKOHJM95as/3APXUMzDoSgsJcWPwqsXo4ggXfHZ/w/f/xlYhLIhzXjvOTycsjNuifDoRZW9yOmkNcqmEjMAjhRequpZICHtI24S2SYUjdArVmvcmyAehJgvyI8z1EmUu3I4sokHpU6stSxupmSrBT+MsMuReUva4O9SHD7DSELhEbLMGFQ2ELsGeWOJr8QhbfaFbtUM1C43HL5tUh6Z81bX7nkreElE1tw7QYsfM77y0N+eH7EIKvZ7a0pnWVdpUwnK7SCok5YLzL0ylAcSXKMKYwMLC4CpgyyA5RqfK7Ed92K6dGKpUY3hqvJgOubAfoiQbWukw3RloFPIdrZlaJ3EW4HIWNb7vNam2SkJfqp2Nfqifxucr24XRD9tOgId4cOHTp0+EygC83gxUbR1lRjxfINyM/E+7z87y+prnPSNhd4+FHC+jiQP1yw11/xvfNjTKVkW/yVYn0H3N0SfZaRNgr2K6wOjAYlP3hxh2RmqHZk2z27s6a87JEsJNKsyUFlHlMllO+UnMxHTMYrlt/eI1ko1vc9utIk91akqaNY96GtyU5WgZBoikNJj/B5ZPlQb4cnk8LjM03oeSlvmSmp026JYjVRMkg3bFAKfK3BK5IbGbhc3wvEJGJ3S5SOXF3n0nKnYPShYe+PFMV+QjOO5Bei1M/fVAyfRfJeW66SBXzQ5JeKai9IdbWJ+MIwHq2pncVcavIrWB9Fko9FfWxUnxfHTpJM8oaHu9cUPiHEAVpFQtRkusGqwPPFlBM9ZlWnWONJdKCXNFs7ih5HLssBLhipWl/1Cac5phESY0sZgjRllEQJq0iXkXCqCdZSJSkqCbCy2IXGlpKvbCpJz1BeFGo0TD8IVGeWcn/E7J2S4bhgsUq36nhyLiU+di5kOtqI3S9YDxLyJxkKaKYetAzJmrW8tr3ziC2gKhT5RWR9Z+MxUGLJGAb6LyQX3dWGsN+gFxa7FGvIy2KCrw3ZTsmwV9F4w3BSYHVgZSN+7CAqlDO4gaj2Zimvoett7BuRMldbW1SykM97zyz1rsbnEMaOwaCmJicGhb9TYU4zlIrU65RqkZE4IEB+Ko8VLHAjGd8+CeRnKfWkPa9RPOG6VhSHYIuMxRtifyETi0dxJ/LeN56Sm4a3hxfsJ0sumiGvygk/uDhi9nTK3qNrPje9YFb35LoEEhNYVSmriz52JokjupZiId1EqqnGZYr+Jdh1IFk5lBf7mW4iUSvqTIZDm2FEKQhOYRu13QEgtvXzlSKbKXpn4tXfHoRqC3Jec4lELe/TkMh71LU7HyGL4rF/LbP7p0FHuDt06NChw2cC5aTNz1ipQC93Fem1KJ2Xv9IwsIHkw4R6EnHDSLHvUKWmWOTEqWJ2NURPpLVPNwr/qzfE6x69U0V5GDk+uOH0asx4tMavEmzbDBeHjvIqbw9CPhTHDtYWN4zEWrzFTWPIrpVUvp8Y1DdviFERgibqiKJt6YvQO1XcfFGKV5IbzeT9dhDLidq9/WO+iV4OkrHdDGH1IKLnFvsqYfLNC85fTTBrTX3gcH1DGDrG308JZoAbwmgOq4cB1QgJyC/h4Ds1xb6FCOMnDSffSmlGioNvNzz59xTm/8/en8XImqb5fdjv3b4t1ozcT5791Kmqru6e7umenhlqtBCU4EUgTMAXNHxhi4IBGV4AG7AgyfaFLwwZvDIswIANAjYsWYJNwbJgwZIXyiLF4dJDztLd1d21nqqz5sk19ohvexdfvHGyqonpmSpyBGrs+AOJPCcyMr5Yvox43uf9P7//UuLTuK3efaYij1hJytuOyasBdx5ewm+tGa8KXGVo1hqZOqQKZMaRJS1CBJ5ejVg2KXv5imTj4X63d873e0/5ZvcVM1vwstph1mYcZXOmbc6r1ZCzVZ9uUiNF4PPJiPU6Fn9+2GKepzG9cB3wWiASMHNL29P4RJCPPclSMHUJ1YOa7GBNlaXYzesnSoWZSrLL2N32GtYHknS6QQi+TFkMNWrQ4gA3DDBX6JXEzAXlsUMvJfY6585bF7xcHSCaTRBMqQiPVtjPOpiFwBtBlUN+GWgGkQgiLYhaMX45pLiS2AJc1yNVQKYOFprmVoucaS7WPYIV1JOMtomDojprGfZKcLFA7B4saa4GhMIhrvXN+RJ0nGlwRtyEQTX9TagMgXQicNnG6lBL1ssUioA2kXtd9TXhRYd0IanuNAQZaT75WdwR8iaQXcm4kFzpiGBsove57UZGt9jExdcDQXli6X6mKQ88wgnyd6aMy4KyMTzqRgqJFOGGTHPrrUu+t/eCi7rHdVlgXfSwX016uKVGrhT5maC4iGhNXflNwI5H1W6TECvwalM820Ddjztieh3tLvWRJUss9biIz9lmeFM1oJdxIDKdb+wj3Mxc/gIO8I1HvC0ETS+SfWwRsYrehDiEmfpfKM6/irYF91ZbbbXVVv9Y5FMoD2F9Erd486tA59wxeUvT212xejpA7m4GqO6vkK8KVB0/CCdVjhgbXM/R+cywvOfRTtL7IKE8DNz//ksGSUltNVcvhnSfaGwXquMWmsgtxnjaIdieIN0rqa9zbC8WB22j4TLFHntkK2iHjjvdNS9fj5DGk11K6lHArGPAh9dEdF9Q7P3IY5aeeicmIwYVP9XlSmH7DoTGZfHDXraxQ7l822IuDPNVtuFOBzABP7CIpWb4iWVxWyF8fJ5cFouH8XcculQkK7UZ+AqsDw3DTzyzR5L5Hc3h3wlM3xawktgMhp965vckIsDg53H7/kW6y9HxBGsl3kr02KBXSUwp7AQWacD1Hb39Jbe6M3aSNUoEpk3OddvBIRnpFUY43iou+Kzc4/eu7nCxWfAoGXg5HbKa5pGZXKob2kSQ0T6QzANmGQuZGDwTu5dOCtYHkU4jjScxlsFxiQ+Cy/MBZipRZUTESROjx10qWNyPBXhQoEqJb1MwPqZRKnAqdir1SmL7PpIrADFoyH+aU+0JzELQhIJsKUingfmjgFlKpBUsHzrMVMZOdClIJgpdbigixuOmCaqUZJeSdm1o9i0vLnaQqUOcZfjUE0qFnWtcp+KdR6d8drFLXRnafcu9e5e8WB1RvIq7MHaTjspmVqHaBX9Yo16kCCco9wPtnoVNeJE+TWkPWtq1IdtdoQ5WlE97kcZTKlwWSGZx0ZbMYpc8uw7RkvRUYxbx77QZRN+/XkUri0sjo171G6o9hbhVIdVmSLVK4zkUBIWqeV6OmDc5RdLycHDFVd3ldDlgWaWsVylhmoATKBsHoaWFck+SX8XbSxYeQjwPRIiLDa9jx9/r6GVHQt0T2CK+fm2rEG1clOBB14J0HCkqunqz4uXGOhLghqkdJNhsYx/pRUa+2yxUfRLwqY8ozS+lUH5VbQvurbbaaqut/rEphtDEzp6qI0N69SsVYdzZfAgL6m+vaSuNWccCqD2A60k3YtH6gWrf4/cb5I97tF3of+Oa+90xn873uDrrk51rfAL1ngMVMN2GdpohlCMg0bsl9TJF9lr80oAMhGlC51SyuucQtyrU69gRl8YTLtIbz6dsYX248dBaiZ6rWPi52AX0OmICZRMtCfatmnoUi5lmFGh7IRYaS8XqYYt43UEQkW9t5lC5hbFB+EDbjx31xd3oB1+mgrv/D0+5K9FrT9uRtB11M3g6eOLRdYihMKtoiyleKdYHku7LwPxhLFJcCiZvWdUJ+vd6SA3Njo+x4wEaE0N+uv2KzFiezkZcmB6P+ld0dMN52eeDyRF3exMO0zldXTM0Je8OLyhMy8vxkCxpGRQlw6Jkus5ZL1OClYRGwlrdJEaGSLiLiZ8diUtiGmhQsZOMdpwMZiTScVV26O6skaNA3WjqVYKYG2weB0iDDFQH0Y7kTECtJU4Lgg6YyaaTq6PXn66l6FWcXg0xqSVISMcCn8ago2o/tkCDCrhNMiVsCCmpj697J+BTKF5De6FjR3ohNixsj55qQrfFrTViv0GfJdGqYqG9q8iUZdRfM1vl6N2Sflrhuxa9Tqj2IjvapfE1wUP9KIZAeQXtrkM2Aj3WuKOG7nDNejpAJo4wSSiOWyaLIqL6BoH8laIdhMh5P7D0PtHkZ5uCtRuHe7NxHGBNFoJpEbvEQUE2jvYT30pC38HKIHNLlrYcD+b4IOjqmg+Xx7xcDbnVmbGbrni6HDFeFTRWYa2Kr3/hNo/B0xx7ymmCnitcJskuA91TTzJvCUrenBculajKo2Tkp6sSVBp3tbr7K5bjgnSxSXCdflFov+HLA4QN7eQNzYUQBzKbrqDtxcHZuLjYdLRNICSbYlsGhNwW3FtttdVWW/1pkY/DfP1PJWYZu3KX/3RL0alJ/voAm8P6V0oG3ZLV+yP6n8HyLtBIkn5NtetQucO8SFCXWRyg+nac+nu6HPH000OSKxWHunqBoAP7xzOuPhvRfaFYfcvGocpVBrUE49AzhR0F5KiG50WkLWSa9M6KwjT4aYL0sDrZdMILic2jjQEVO4YuCczvKGyxiR4PbwY5A51OxWqYoldyU9RJmqHH77So1OEriV7HuG5TtLQrQz4XLI9jEIoq4+3IVtB5EdArRyYEq0NNsorDZS4RJEtHkILFicJlgt2fW1SlIwZNwPzRJqykFrRdj35SsOxniGNP9/M4lObyuI0eVECdpSwbRTuoMMZhneT99hijHIly3OrOWLYpL5d3OSgWaOHJVcv97pieqThf91jXCa1TVGWCNo7WSkQbPe1mGdB1xCvi46Bi1sYCMyjJ7O0QF1Ve8mI6JE9aEuXoZjWNVZQudkqFi7HntivIzwXtg4q20iACthvxeW7osLn8gmCRevR5wtoK1FRT7yjkN0vy93O8DrHISwLto5b8aULbjYN1so5hKfmpRjWwuucIxjP6uaIZSMpvlvAiI50IkqM1fNCjuUrJxgq+uaA+guz9FGFhft5lWpRk2nLVaEKAi1UXZAx28kkc1HR5QJfR5nDrYErZahaJZbdbMV9l+GcdmGsWVQ8FcJUi92umy5y20gjAPSxpZklMrpTx77DaCySzyGfXa3nDnPZa3Fi2hA1IK1BNDJ1R5ymu8KSvNeLbJQe9JR3d8F7/NTObc171uNWZcboasGwTpquc9SyHWmJ2KlTisJWO/x8bitN4215FT75ZB8zSotYtLje4QoMPqOrN4lLGZNgCXBLTSBMdiUJmAflVtI8IH+Ki/k29LUCEL0J6XBLJI2032sdcFn3aQW6624kH40GFNxCTL6Jqv4a2BfdWW2211Vb/WBQ09D+VFBcelwouf+Dp7JQ0H/XpzgLT7zfs7axY/u4e++87RIDpOzHdbre34sJKxKcF6QQWDz1iv+awuybTlk+fH9B9oimPPc2+I3+paXcDl+cDOi8VzoBJLf2splynqH5LCHFwStSSYr8GW8QI9KWGfs3TqxEAPguIfoN6mWE7sfO6vmvJejV6naDqja1AEwcANySFnQ9hfCcjHNSEsxyzjMSJ8r4FJwgXWUytPGqQ2uOsRKYOmwcWD4BNCqYIIGsorh3rw4Rk4VBtoNyV9J9ZzCpQjTRtLvCb6PPFibrpyHkDg09jYZ6PHYvbmtVJIGSeg9sTpvN9zKYjHjo2xsoLEI1EysBuZ003qQE4X/aYlxmtU5StZlSUVM5gveR3Xt4nuBh5mOQtIQiytOVodwbAJMmpZr0bvJpw0TogNwxkn0DTibsHww8E113NYDRlscypK4NJLEp5qjLBe4kwkdGen0ZrQrUbSD/Mkd+fUa4TlHa0tUToyFq2hccsJGYa2+rZ84R615O8NrjU0AxjUbZ83KKmGuwmwEhsYsLTyGx/E72ulhJ5v6TNO+g1hHFKu2eRrYmM9TTuZhDAGEst4gO3negVf/ZqF7zAdBqMccxWOVTRsoKAsCm0YeMpDgIp4Lu3XwFwmXZ5ujaIhaZ4pqkOPLISuFZiCkc9zQhdhxEBpyNe0BsoPtc3Ued1KqNlZBrRk+WuxBZxZ6UZRFtNNYqLTFUFgoj2LCkDsypjd7ji98Z3GaQl+9mSn1weM77sI9YKOapJuzV66FmfdknGEhUEyRw6rz3dVxWydtQ7KX6D/7OFQjiDsD7G1HdULJ6JWMQ3pJBmz5HsVCyWOZ3PDN1Tjy4DImySITeov6C+2FHzWtDm0Yr0hjNuN4upYGLEfUg2hbbecAK9+FJ3ezs0udVWW2211Z8SlYeB9YnAHtcEJ1lddCjmgos/27Czu+T66Q7dOUzeiUWR7VtE7riad2jXBjHwtDsg2pgu2FjNokopPt6g9E7WmA+6lCeW/sGS6qfDuB2eQCePQ3xCeuw0QxQWV4TITV6nJFn8gPapp8gaZp/uID2YeyuqZULnaoNE60Y/a9sqOovYqXV15Dp3XsZjITbIu1cZ6aM5q9sp+bkkmcUtapV4xJXB7tposdixtOvI8PZ7luRSk13FgA+ro/1mvatY3RF0nwnKw1gUtV1Jm0vaTYp5ULHANut4f+rdQHotuP5WtCZUY83gM8fOh3FIcX7vAPuDEnuWklwr6sRjBjVKBerSUL/s8iwpIPWcnIx5vHNJrloAZm2Glh4tPB1d425JbJDMq2wTqiIRIjBeFngvqFcJphKY5Rd+WmE9QYAtJEFELnfTj53kvd9RLO/uYR/UdIdrrI1DdwBuqdG9FrfTYGcp6XVkeLe9QHneAePxMnp7QxuLxPy1wmXQeRFY3d6ckCLQDgLdp4rlXc/h78DZrsDvNwgRSKeath8XZumFQjhYP2jBCfSgYX+w5NVvJYi1ovtMsXjsaXYc6HCD8fMdz25W08tqzu4c4HOHyB3yKsEPLe0qYXg0Y/zBLtlCkvzqhLJMUOcdxKaLbzueflKzm63IVcuT+R6Xiw7p85Rm5HB59P8z06jzhLXy9D8wLO949I6j9SBtTFd9E6ZTnEO1wy/UkS6PlphkEVMjCdFLHrvK4PYa5J2WtjKU64RVldA2mjxvmI87ZM8S5DCShQDW84xmpVFLiS0iXWj0QUt2WdH2E4IUJNOGoCVBC7yRNIME6QJeRYtWW0QkoUvjLkwz8IjCImWgOS3Irt/gJb94IG+42kHE32s68bvtcPN+EBGQX1hIMP7GPvImjCdIbhCDX7fLvS24t9pqq622+sci4UC+s+RoOOf1pE/22z0WDz3r+y0ycUyfD1FrSXkYu1TSglpJnA40lUHONYOPYrdq8oOWO/tTFlXKYtzh4GXg4rcc5vMOzcBjdioWL/rkmyTD8l7LXtLGqG3jaFVAXCcMPxAs70A49NHfnAVEYVmu0819FtzamfH56S1UGT+o215AygiP9iYOXdk8Jk4mS8/yROF1JHCYhaCTNdQbCka9I5DGk2YNts1iofZcsng7kL028T50PPnZpkDeCzcWDOkiQrHaFbSdQH4pmLwdQ0pGHzmqgSS/dqyOFdN3IIjoP65HmxAVC+WhZ/kw0P08RZVx4ND+NKfe89THLapjSRLHsCgxQ8d8J6WxmkFeMVnlvL4a0OlWGOXY76wAeD3v081q9vMVjVco6emlNUY6ZnVGCILlKgMrsR1P21Uk8419QYnIuw5gC3Fjbah342CqqoGFZtF0Y5fRCWS3RfVaXKPoDdfYb9bUPx1QvI4Q5uYgIBJPcAJZS+T6TTEfz8O2G3cammGgc2fBepWyrjJC17I+TDj6bbj88w1+nN6kYK4fNez8rmFx783JDFJ5xssCVVicgMV7DrnQMd0wgO069FIRDmpcEOxkJad9i5xqQuoRhzWsNcmZZr2T0H0eF07zcScOOR5EX32YC6QVfPzkmMPbE3LT8uzFHmKpCUfxuQjTHLHQ0XvsQb3MSCcBl0rEA4+oI8c9ncTFhktjIS3bSELxacTh6XUgv/ZUQ4kRG8tOL9DeqZFXCUKAbTTZJxnl3ZbSSkIt8ac5xVVc2PiOY33ZwYwVBrB9j+t5iueKnY9s5Nb3E8y0QliPTzVhE74kXECyWYDJaG9pevHv6817SDCBTr9CiIC4kiTLDVvbc1N0x2RKEQcii/j7b+gjQUUMpUui7exNsS30L5JIQhBfFNpbD/dWW2211VZ/WqQ70cbx/GxE8X7O6iTw+Dsv+PiD26Qf55R3WqwOiFqCDoi5JJlIypFFJxa5SEkWgavvwa1bY16+HqFTS/Y04er7Htlpkecad7vCe0l2pggS2n7g8PYEFwSvFz2a2qCvow9XNbHYkJuBqnBUI2UgeBm3mYGeqaP1o4iPw6cB6SW21AQlsFmg2ovkB0Qc+EvHgmoX0jGs64SgYly7y4CLFPWwwjuBqmDxXkPn44RmuOm2JZ5qP/Ki8/MY1rG4KwkaitPA7J1AMB7pIsotvRaM31F0XkebSe+Fo/cSpm9tAkX2LHqisWkMNEmuFatvVajXKeK5IJmByySqErS1ZNWVWBsLoCSx3BlOOc7ndPZqxk0HKTxKBGqn6ZmKh71rtHAY4Xi2HnGyO+Oy6nJVxrZ73WqS1NKuDMlEYZbxuVZ1TPoLGlTtWR4bqgOix3wNBMH6ONJE1CKiDYMJJJ/mVCexyz6/7GJ6NQe/ccbpxRDzPEXUMhJIRMDttIgrs0kbjSg9b6A8cdBraRqNX2nyuaDsC5bfK+n/+wniRY4KkF971kcKd+RZH0NxLlgpjRtYghcIHXALg+papHK0jUTkDkqF7MXz2RjHfJ2xrFIQscgTE0N2b8F6khB09AlXuxEdmX+W4PJw4+FvO2BmAlUazu0Is1Njzg32VgOlwl+lkAdQAVlKXN+SfW6oRpCfByZP+mDibftE0Bw1JK8NTS/ukphVJJWYlWe9r1neinMQso2LPAJ0ByWLUoMXUMVOf/pa030Gs3ciRzu/CCzvxiI1f6ljZ74b0PPIgx985tBrh1k0iLIlGIXPTbQVlRakoO0nm90OgU0FLomFc9uNSMMYLR+L6uU8p9OyKbTj/fQmYgTfFNs2E3EYMosd+qCiP96bzWCkCpD4G9tITETdFPcixGHLr+ck+eL97h/u17baaqutttrqH03WKZLEov6gR7kf+O5vfsKPX9xGLSTNwFPsrllPcoIIdD6LwS4uD9BIXKJIF4Lp24LB21e0TqHPEto9QegGxEGFmyfYrkdcRGyaWUf7R7vfsm4MnbShKhPcJIWuJzlVBBlwuaeX10wOU7QMBMBOE8g8IeOGK+xNLCBUJUiyFrswyDbEpMy+xyzlBlcWC+OwCdFYXXRgYBEhQbbgM89hb8mT3T7BBFRucXmC7W/2wXVkjQsPy/uetiu/eCx9QSgsInEEoem8FAw/aalGMWJ8+ElNPTI0PUnn1JOfCxYPDP0ngfJAUg9jEJB5ntLsOeaPJDs/E+z/yNMWMTreHDV8/+QFyzZlZRNar3gy32MvX7Kbrtg1K2qvabXCbjAjtddYoSh0w6zNKK2htppVlRCCoG0VqHDzPAX1Zrs+8pTbQmLWgWUOrvCIWw3eCUKpwXjMfkm9SkAE6o6FelPYAu044/QyJz1ao96rEVbSVObGSgJsApOil1uVgpA7RjtLxmeDuMADjv8TxfmftyxOIurx7M855vdNDD2ZJngN9ZAYw54oWmXwpznCBGTf418VKMB3Ip+d6xShYtfd/3jA+m4TPdvziDWsDw1yp0Fe59gP+4QkILwgu4TyaMP7DrHDbFYxvMWlCmszxN2KTqemPh3QjhzpmcLmkV8fg3SinUiXUJxGn3ak7ATEStN9GWknIoToP5fhhlVd7seFiVlF+4VZChZXHfRcEYTCZx7bCWQXMRTHJ57hB5shxIGneGoiJWjk0aUgvxTkl/Hclo27KbZF6/CZxqcKYTaDDz5g081QY3/jsy4CthfwHYfpNjzcn/BqPKD/uxnFefR6exNtSC4VN/HvLo0L3Bh09MZCQhyM3Rzuy6x8gODjCRMQSBUIbjM0uYmG/zqSf/xVttpqq6222upPXkp5Fmc9qm+WDN695sl4D17m0TpSC7TyyLnm1n8cC4SIABOko5IwiwWPeG9B6xTjD3fxOiB0IJkIfLuxDkhwfUd+LigPAvWuR+eWujbsZCVKe8xeCcTtdZsJQuqxXiJSh50l+CYWh6rTMjxYcCufY/dbqn2PbATtjmM1y8CLG3Sa71uqvRBpH2lE+nkTKQzZaeSMt524lY+EJy/3UaVELSXpTwtkDUF79Kgi/zTaWbrPoftUUh145o8t1eOK+bcb5EqRPsnQJRz97RnJvEW1cet9/I0MbwTOxO5l70WDcLHoKM482VXEFeqVYPi+BgHXf6ZldSRRLXROBe3zDn/7R2/zk89vczbvcb7o8qB/TaYs13WHn8+P+dnsGCkCt9MJrVf8weVtfufsLj5IerrmVmfGr+ydcjyc0zYaf52irk28LyY+D3VfYTuKtqPwZlNc9RyjO1O6nQqTWnQ30lzqVRILn5mBpYYgUKcpoZGoQUvIHfVph7oy1MsUcRVTJnf2F9iDNhZdqccnEeGoLw11a9g7nhF6lmrfsT6UZD/PmX+/pu0KxFqx+Gb0oehSINsYfFPdaTbx6yJ2SjuOdpHg+i4mma41xckStRbkpwqeFRRnAXNhwHgGn27whPMkdlFViIOSIRaFbS9SbiAWrYgYPtN2RLSYdByD/pryST8O1dqYcGo7sSMusjhw3A79DaYyWUA6DqSzQOeVJJsEsskXC8lsEiLJpY47MW/sN28wetnzuFjUa0F2rkgmcWEpPOy8H/nYtoDOizj0WR1a9EpQnMZi26wDsg20A0N1u4cdprh+is8UbUdT7xjqHcP60FCNBG5jIZHujfc8vh7OSc7nPdznXdJJQNdxEeWMiCSTG/uIuGGIxw53wJtNd1wSdxrkJj1Sbh7kptgWGx93CLHLjROoa4Osth7urbbaaqut/hQoVZbf+pWP+TufPmQy6WJSiypFjE4+qVjMcw5+H5Yn0T4w/Agm7wZOhguuf7fH8p2GnrEs5zlhYJGpY/i3M6bf8GSdBv8spd53dD8xNyEz7cjhlwZZWHwQOCsxiSUsIgpv/m7Lw4fnfPbkELlWhI5DJg7nBMEJsqRlblOGu0tm5YBkCtUxyKkh6Mg1boaBfFBR1pKmr2Mwypmg6ceFhGqgl9VcdWLnUJYS0ffYvZhGGMSmcz7X2FpCJ6b8JYvY6e68kCAl9VChGkHT99R7jvRacfn9Pvl17PIJLyj3BbPHknQc/dFtkYCHq9+0sZMbfGSJP25oLwz9TyXrY8Pk+y3ziaF4Dbs/FrQdBSjKw5Tq0PK74Q4HvSU9U/Ne/zVSBEpnuGh7AHxz9wwXBPMmZ05GIi2Fbjgu5gzulPzcHGFfdEgmcVFk85geaMq4sFrekqxPPKJryYzlpDtjUhecTvuUiwydtXTyhrnOUS+y2CHXATXTiCsTvcI9j600Jm9pgexZwny6AzuWZuhRvZbeyZS6NdjrAjvJWfkCtCe9jjx1nwALTT0QdJ8L1t9zBGUoXgvm71rylxqsjK+hi914WgkmLhZtFkB79ntLng47IBSyjvYiCAgVWB1HG099ILALg0rjoC5ekp9LfALpBISPz5WqY4Eum815MtHMxyPyS0F56EkvFYvv1IiJIb8QVC6Ji8kzhVkFVB2oE0Gyip3d7DKgGs/snWircmmcQ1BtTJo0S5BNbPumi0A2jZ5ub2B1Emj7MRhHrQXZdbRvLO9Gy4ftOoSLtqXOaSSfBBG91emkgRCwhcYWCjIFMtpcbBaDZ94kPfokWmp81yELS5q1FMYyve7iPxzQv4hEkjaPA5XebCwjm39786XO9puO9pvwmzcpk28Gd2XcFQhexB2J+FLhK4250vROBd3XjsvyT4hSIoT4yVf4/csQwj/7tY641VZbbbXVVoAPgr/72QPkRUIylSSz2B1e3o2+XNuJOACvY4DF5a878oM1V8sO629WZEXL4qxHOiqpy4wwTbAdwcHjSy4uBmgDai3JrgLlfgx50RMdbSmF5XzRwySWo8GCp7cTKpthBjWVjZ1evRQ0XeKnshUc3JpzfjkAIDWR9wtgxiomVA5a2m5G2/WkEBPwRpv0wjfb3DqyfZdVGq0BC4E6XsfbHJSsfU6NRjabwvypQtWB2eMN+7iG5b1Ae9DS+1lC5ywWP7oKLO/C6jY0A4WqYf6WI+hA/krHQbeDlvJRLPI63Rr12wN2PmpZHmsm39R49QYZCHOXUN9pKE8sy8uMZCpvAlcAEm05m/VgAOd1P95/ZdHCcS+/RhJY+4TXwlM6w0G2QOFxSD5t9uPrv9nWV6Wg3g0sH3jma0l+IWh2omUgSS3LKqXJNY/7lxwXM16vB1wsutStZrSzYnjrinUbEXvTVY4QoKRnftaj83GCXiWsbkc/fDKV+LWJdqCrFPorqsqgOy1CevT73Q2ZJvrJ630HPi6i+k+gfJEhAqxvBfRModfx9RePVqifdGkAN7LcujXmsujRTlJMt+H1pA8C3O0K8/OctrcZultEq5Rei4jw68RBUT1T6CraOMoi2j2kjYsRr6OtpPsCOi/FZiAwDj12n0mWdz3J8wRVbTB+u3E41xbR1mQLQTUCvMSsAunCUw0VbS/Q+QjWx3HuQLXQe9myOjI0/ZgEWu3EHRGXCcwq0PYDZi7ovoiLO+Gh2oO272NKqvYEK3G1oBnEwcds4klmFuE83ihEiEONTV/epLa6XCCbEI9pBM3IE3IXqSEi7o4d9+csljm6hGQRH5tLvrCP3BTYhi8IMSoW2/ErbI5NfC10XBwhIPh4rgeroJGYiaT7EjrnDlW+QZ58vfe7P6rDrYB//o/4uQD+g693uK222mqrrbaKqhYp/b+bU+3Hgnp1O2BmguGHGzZuDssTSToNTN8J6LmiKbvc+tY5QgSWlx12bs2YPh9iFjEspvq1FdW8wLyMg2ZmEQfm1rd8TIe0EHLHrb3Ign5nb8rPLo4I04Rm11EYx2ydQ4BkIQhG4wsLJg5PqbOUZS9lpygJmSNoiSviwJXwgmYQt6hTYynfZEYLaHsCJDQ9j+t43Crb4NgCWRYZ1XVlUBODOCmxtaL4OCWbeJzZEEp2RfSx36kofp6TX0bySTbxpHOHcJr1cdzatx3ofR67tOWJI4iAmhjMSuCyQBNSMgHTtwzCw8HvBqZvxa4tiYdK0vk4oe0Z0m/MOfzmgvGqYD7PodKUdUK/qBgkJR7Bdd3hMFuwny2ovMEHgRSBjq4pnaHxmkRaGq8prUFrT7PTUOcqLlwkmEFNnjf4twWuTDAicLwzJ1WWymnmbcayTfFBoKRnNFjjvOR80aWf1dzvj5lmOZ9fj8iTljvvvuCTnX2q5x1UDGXEdgPtYfRHqGvD4v1dwt0KP07YeTBh9p6KQ49LGQNuZCCZKNqBJ2hJ97lg+p0WtVC4kWVZKLILRXWV0x479ELil4qT7oydrOTn7THOKuwkLiqbxCMdtEOHsILkSsUdnZzIxc4EPgkUryTNMLZezSIO8tpsk8wqI8ZP1XHAsdyP9BBdQjb2uERuzrnA9G1wdyvc67hQKPdiES7baPnIrwN67bGpIB1LRPAxlfQo4BKBWWrcpkNsM25mCdouLO7H5zSeUzFungB6HbvUbaLQc8PgYyiuHKujOPSYLDzeSII0BBUXDMIFTOlxqYq7CsRFQrMTaIcWkUfsX9GteTS6pp+UfDLdR252N+qB+NKCRNyg/t7MBtwU1W9cIAGEF7HbvfkCoJWEBggCPVdkV9Ern185VOXiQGYICLthfH8N/VEF9387hPDsj/plIcR/92sdbautttpqq63eKMDsBzXJs5Tptyydp5rsKg4dqiYOhjWDQL0TP+S7LwWzX6/Zy5e8vh4gMsf0xZCQeOyxJS0a6uscvVC4ToiDasDiLsi9GjeLBASReA6KBT95cRujHCGIyDceNqznGTp1iDoGrtg8kCaWXrckUe4Gvds49QscXpHbiKDbcyAiJlA0MloMMg8vE4SNNARUwK008qCmWRn8OiUEEVMob0l2BiumixwRUuq+YH0LVCWodz2u59CnGaqC2WNIpoL9Hzcs7iSsbglkA3x/QVNr6us04uYaATpeN51AcekZf0OxPvFxYK+G/lPP/o89qzPF7LECEVi/W8NKEz7q89lRFh+vCPT2lygRSJTj5WJIVay43x1zK52Sypartof1kl2zwhiHFIFFm9HTFeOmIFUW7yMPW080tu8i61t7lPTc6c8ZHa1uyCeV0+xnS1JpsUFyVXbIk5brVUFmLACnn+7zSu/RP1qQJS3jWYfJoqCT1+j3SupWU1aGJHFoLzgezjnr9yhfd8k+yCnvWMZnA+7cveLl1eFNx1MvFDsfBi5+EybvBfqfRB+CurPGX+bIUYM7cMiXBUFAu2cxV5q1TbBeoo3De4lXgWbPIVMXw1oSjyw3VJmxoNr36GXspEIsqJuRI5lqkkWcLRAJ6HWgHsXicn0kKM4Cq9ue7rM4eDp5N3r1AeoDx/1H51wtO9RtRvE6zjEIL0gnX4QMEWBxV5JdB5yJi9124JFOUe5JOuee4ioml9YDSbUXUZxmJahTj0s2mMk23m9dxg63nkmGH8fu/PgbsdwcPHGYRWS+ex0RkKrxgMBmcVaj7UQPuFkBQuC1xBkJKtBJG7R0/O6ru9hPe/SfxDcSr2NXO8g3tpFNKI54E3azOX395jLYeLY33wFagbACtZakE0HnNFBctqjaEUS0PAkXkK27ef/6OvqlBXcI4W/9cb/8Va6z1VZbbbXVVn+YQhIQU0N9uyE5M2RXAV3FAqDtRsqAfntBtUyRV4bpe5aHt66QIpJDhAwkl4rqxJNsiu3sTFPda5DGoT/PsHmkiLhaIZwgFI6Towk/fn4bXykuF12McqwGLUoF9OsEcWcNKnbxQr9Fa8fj3Ut+/OoE2cJqnrH0edxyFpEyoo3HljFCPBnW3BtMUG8FrsddwjSJg1zZxkZg4yd+8AJRWIqipqoNo86a9TpFioBSgbYTFx/1YYvpN7h5gp7pWFCJTZqlghf/XIJeCorzwOpEUI0zRCtJjle0tcZLTeczQ34eaIaCcldy/MOG1VHkSHsFV9/W7HzsKA8EQXmyS4l+mbKxZNOWCrNT45xkvcp47/ZrbhdTljZhlKw5Tma0QXG1+YW+rmiDot1QS6QIPFuPsF5SWoPRjv7xlPZAMr7oI5XnV2+9JFWW87KH9QoLjJI1UnhsiPHto2SN7Uiuyi69rOZy2sVWJtoNvGB+1gPj6e2u+P7RSyZ1waJNOeoukAQar6idZl5lVGXCwcNrzvWI/KVGVXB2eUT+zpzydRc9k4T7JeXbNeGshxrVrI496UddapFCx6I+y2j2HSINhCwW1KD58NUR2tiYFqo2XfLbNVneUB2k0EjSa4nNA7oCP5MU54HJt3zcLdkEudS7imwMIt1YShSYORBiYT17G3zhCEqyvOc4fHzF2fMRaqnYvzPh2as9QiMZvhKoOiCdYPXAIj/RqBLqvtxYkiCdB9oihslk54rsOmBWsN6T5GNYH0iaQQyaya7kjb3I5bGIDyL6yuP3yJwv9zbpqB66rzzSBtaHSfTrr+MN1IN4jrwZ7BU+xtnbnbiYUoUlSyyDTsnd/oQPLg+pn3fJJ3Gw9g1z+0032+tNJz5s7NkOgiEORqp4PYgdbtwXC3O9lGRXguLCk40tqv4CQ6LqDZ4kAD5aUfgT7HDHOyTEnwf+58C9zfUFEEII/a91pK222mqrrbb6BxRGDfosJT+LhAeq+AGNhGbHY7yAlcbtxKHIeRWzrfvdkumzIdVR9FJ38ppw3aXec5iiITzrYOaCMAjUJ038sC0cwni09IhNaMrqsqCzv0YlnjxvqHxOWxoE0Aw9NBJrFR3d4JyENBbNJm/x1yai1Totto7WCFFLsrSNXd11RpgnGx5w3OInAKlHrBQ6cUjlCUC/UzErYyjM5biHNg7bDfhhTNycPhuiaoE7rOF1yup2LMyWQ4/sWOwkobwTPajmwkSW8yddlIBsIahHgXQCg88sbSFZ3ooIw+wqbt23vcCrP2+RM0HxSuISaAaxI9/2PeiAvc4IHYs0np++f4/389vcOhkzzkpWeUpfl/R1xUjHAJyZy1m6SFgx0rGXrHi5HnK9KmhbTZ609NKGe4+fcVV2aXx8nr89PKWQDXObsXQpBljahOeLEa2XKBHwQXBYLNjN17yYDpmOO9Ev3ErEUrPwXX6f23xj/5zDfM6L1Q7OSy5XHabTTqTTPMlZ/DyHtxrK2xbRROKG/8kA9hw8XGFLw2LcZ3hnxnyeM+xVTO4ZklcJ/kFJOhU0x54QJOmpobnvUW8tER92aTtxyM97gegGQqVYNwWmEmQXscCXjaA485h5TAsd3psyOR0wHK6YXPUQG6uSN7HQDiqmjdY70f9vexG7tzrxZLdWccbACVzfsSxTusM15UdDFg98/LsaRFZ3eRDY+XksTOudSDWJXWIYfuK5+AHsfAJtEQv1ZOHQlefsNxSyiTspXsW0Tl3GmHeXR1Sey2JAlHRxhkE1gs6rgHAweaxJ5oHOhb8Jo2l6MtKB1GZgswC7Y9GdFm0cWdIyLEr28yU/Oz+i+bRP71WkrQTxxpu96W6rL95bbrrZXxqQ/IUhSWJCbTqXpGPovnakE4tsfCym1YZS0voYoOMDwvmYhioliD95Ssn/CvivAu+H8DXL+a222mqrrf5USghxB/i3gEPiR9RfCSH8G0KIEfBXgfvAU+AvhhAmQggB/BvE2Z818JdCCL//Rx7DCpgakkn0IesqxjfLFqbfdtx9fM6z53sUR0t2OiVaeh71r3j/+pi61eSnivLIc/j2JZeTHtoJunfmLF/2KSZx2909Knl4MObp613YDFv102jo1RONHboY2Z01NI2+SS8MMmwQaxK5iSsPTuBHLd1eRTerOVuk+CsZSQYrBcYTQiDRccvZtoogAkLEgil0LXKhYRE/eoUMtI0mSSyzZcbbR5cs1ylpallOc5QVdAYV02dD0ksVw11aic8CPvOYiQIk5pmh6QfsYYNYaXyy8Y2ncYiue+ox73vqocQsHPl5fPzeKOpdA0EhW8HwoyQWYCPovA7UQ0G9G4uqtrdhZdeG7MGCwd6MRZXSOsX9zph7+RUzW/Bkvcc8iRHv0zbndTmgcYquqbmVzzjM56xswrJJqBrDUWfBUb7gce+S0hlKlzBQJYWqyWRLWysWNkOJwLd2XsfbXPdZ1CkX6x4HxYJRZ03daqplSjaoKQ7n1K1hMS34UXPCP3XvM745eM2T5R6fjA8JXmBbSXi8prnMEKUiJB5zWFENNZ33M+SpomoLGFr0XsnsxYD8lWL9PUveq1jvS7KPCoSF7kcJ9feXJJ90kR9ntL2UbBGLMecV0kavMDZGyxevBOtbgSAEyRyqHUk29YxPPMkmxXBy1id7ZdBlZH3LBpAbH/ci0NSC6sihlpJ618NBjfuoR1YJ3IYvXZUdGLax+y4Dxe0l8m8NIr7PweytgMsgmcbu+epIYpaBy+8KkrFAtg7ZQnHhkDawOojBNtVe9GxLC9l1oHPmKPdUpImkccC0OBVUB4HiTJBde6pdyfSdwM7PA/1nzY3PnCDIpp5yR9J2xc1iW6wValDRKyoGWYUk8PvP75B8UNC7jNHtwMYSEmcANo6naN1608l+49v2EN+iYqqkasDMBflVIL+yJIsW0fgvONxSEFyMhxd2U3CHgFzW4Bxh2PnPJGnyBfDTbbG91VZbbfX/V7LA/yiE8PtCiB7we0KIvwb8JeD/E0L4y0KIfw3414B/FfgvA483X78B/G8233+phI3buN2X0UoSpKDtCJZ3Bcn+mtopvvP4BafLPtZLctOipaMwLZOf7cFOIDlecT3t4pYGf6+mXWTkrxSqjB3aw9Gcymp8pUEFfvDOM85WfczHOd5skvic5KC/5NnzPXQAmVl8qWPhrT1F2jJrM4SEnd0ledIyWRaIWlIeeEQQMdVvofF9ixCBxmv2dhactwPUWYouQahYKOupojgTtCce2yo6acPy2YB2X/Frd15wWXV5HQSl8eRJy6pwNKPYnktPNfWBQ08Vehl9ptJFgsn0QGAmEddmhw4zUXgD578BvhsQTSC5TsgvUpp+tLi0vYDvtxCgGRiSeYw5t3lMvQwK1g9bhPEEK9CFZXVZkN5q+Y3j5xjp6OuSmS0wwnE7m0ZLjPDsGn9jLbmqu6xsyu18QuM1l6qLLjw76ZpcNijidXfNijYoLpo+Rjq6qkaKgPWKuU3pm4rDnTmlTyidYdZkpMrycO8a9uCT831m8w5KO4p+RZE2/PD0HqtZzt7+nN29BY1VLKYxJlTux4CkkzvXGOVonKL8p0xc5Fwp9IM17+xd8HN9RF32EJ916b93zTpEz7J0QAPtJCMPMcU0mcSgmYjui0Ev0QMMi4eOtqtiYmQ/YLtgFgKkJLkC/+kIvtUw+FESedEJVMcB2YBq4nBkNRI0I0d2rnDfXtLvVEw+GrH7k8DrP+vof6zR68D4VwPZk4y2GxAIqs97hNue5M6KcpxRPDU0By1lH/RHhmYYWD505K80Bz9qmbxl2P1ZDVJw/v2Eweee4Wc11+9l0RIlBbqKrPl6KKj2orUDYPG2o3iu6Jx5Lr4vsANL72NNOnesjiNRJsj4e6qOjw9iqE07iLs3zirqVrNWhstpF/NhQXYZBz7fBNVE60gcaJYRKPNFoc0vjFlEn3kjSBaQXfvoz17bWFRvCmuE2Ax0xgWHcJvS900328frBPk1q22+WsH9rwD/kRDiPwXqNxeGEP6XX/toW2211VZb/alQCOE18Hrz74UQ4gPgBPgLwJ/dXO3fBP4GseD+C8C/tWnO/FAIMRRCHG9u5w+VdFC8jt2/1YFi+m2L6FhMaunmNf2k5sV8gJKBTtLQMxXPltFWYHdbimHJ+rpg/2TK2Et63ZLZy0H0i772nH7DczXr0kwyhBMcPrziJJvy9z+7x5sgO4hhFv20Qs109M+qgMwtYp7iEnBeUDlDmjUsljmukDR1TAV0tYK1BhnxaM3IUzaG0hoK05LkLU2W4LUgVNFH7noe80SyetpF34mkDUQg1Za1TfjsdI/d0RL/+wMm3yCSEzbIMlVqRBupJc3IM3wSvbXr40D6IomoM+IQZ2s86Tjh6O/C+sBEyoSG1a1Ae9TGtDwVYpXiBOrdBUI7OlnNrMw4Gcx4dj2iXaSoxPHwzhVKevYeLHm9HnBe9bhdxAK7DYrSGRySrqoxwiFloHUKhed+cU0bFDObc5JN2UuWtCH+rPaGg2SBFJ61SzHC4aWg8oaFzTgreyTKcb7u0TrFrMzwXnB7OGPVJvH4XiJFYKe3ZrKIxfRed8W8StHSIxPH5cth3OXotujUYhJLL6+ZmZzJKufWcM7VssNymnPr8SX+LcHVpMdPXx8z7Jac93PUXDO+6KOWkQ1fDyM5JBkrqlHApRH/qGpody2iVKgXUA8jEjKY2FXWZWRXF6/ljeWo/1kc/pMLTX7lmb4jkXWkkbgkdmX1Oi4k9VLS9gNZYlmsU/IzSbkLZiqQdRyojDjDWAFnF5L12w1Fv2KnU3LxpMv6rkWuFelYIm0MVhKfK/rPaub3kkjR6WuWx4p0ElgfSMq9nMGTFiS0HUU1/GIxkczjwKXvRBb4+sSxfq+FhYloyj5MHivyy1iY202YTduNdpK2EzvkQQdIPdo4FtOC9fmQdBIXgiJwU9QH9UWMe2Rriy+sIpto9zdUFbMEswzkY0921aIqSxACaT3YL7zaPlcgBLKO2EKkjFYUJZHWI5wnGA3y60e8f5WC+18HlkAGJF/v5rfaaquttvrTLiHEfeBXgd8BDr9URJ8RLScQi/EXX/q1l5vLfqHgFkL8S8C/BJAUO9gCmn9mwU53zfTpHnhBe5FTnzg+eXXAcLhir1hyvuxSWc1xZ87lqoOaasLTATysubzoo1PHbFqQnamIEXwk6R7OWZ53wYPaqXk0uOYn0xOUiXxq4b748D5b9sguJeWRj4mRxiHXAjcKzOYF7+5esNMpeTXP8LnAlYrDW1OuJr1YdDcS4QR5p6ZpNNergkQ7OnlNnea4VGIGNe00BbPBn5lAqh3jWYfQid3VRDn8WrPuJFRv1Qy6JfbHOcvHLcVnCfWeR1aSdsehForJOwKzhP0/CBA8l9+TeB3IP8xoB4F6J3A5EqgSdj72pBPLq3/GkLw2EXtXbNjGmaO8KJC9Fu8liba8nvcpsppbOzOmZUbtNAfpgrVN2M+WDJOSoV7jg+DFegeP4E4+oZANRlpqb6i9pvaa87rPKIne7sumixKBnq7YMwsK2ZCJFiMsysQqpg2Kse2yZxbcTidctx2WbcrHVwe0lYZG8vFFB4wn6TWkacswr9jtLNHSU7aaymq6aUNlNW6tEa3ETCVNgG+9+5xH3Ut+f3yHOtHUrebF9ZBOXnP/9hWpslyuOjw8vOLFZMhslWMGNeapoczUDQs7pkFGZrteRwtTlSTIF5rup4bVXUfbkSTz6E9Oxopm1xFmkvzegmXaITvTdE6jhWn+MFIzlnci49sWkS5j81hgugwI0Q5R73msVVirSG3EagYVLUG2ExBdixpZ/KuC9VsN3WFJP694fTkgFJ7O4SruVjyRdE8d5UiSrALz+wm2EKgqcP3NaIoWLuIkuy/AdmLIj80EthDYTrS66BJ6F5Gosrwfz63kZUp+Hqvg7Nqj6+i7tplEqUA1EthOtMDYPBByh8wtvlW4T7vsbpCCEI/n9RuvtiD4LwXayHj5myTMN0TOZB7DdrKxw8zbGCXfesSmU72JjyQIET3bgUghubkckCIiAEMgaIXbKZg/KGg//3ph7V+l4L4VQvjW17rVrbbaaqut/n9CQogu8O8B/8MQwlx8aVAohBCEEF+rzxNC+CvAXwFI790O/gdz6tIw/f0jxLsVeaem0gmriw7pqEQrz4c/u4PZL/mNhx8zbgoWP9ulexp9pEnR0tYaO00wM0Uyix0z+90l7cseb+5dXtSk0vLp8wNwAjHwmGlM7tvtrnl9PSAR4HOHEtAuUoyGzrCkKhMar7jVnXHd7cTnpVS0ThICmDNDu29vPOJaeco6YTbX3DmYMMktQWnyvMGO42Bk24XQixQGXmeM3h6zbOKAITqQmpZkZJlOO4hbHpE4fGLQS0m9b8lONdkVLB4Edn/mcYlgeTs+/tUjC9eSzouYbtn2AqqG2QNJ813D8GNI5542l5QHceAumIBZScJcsRoa2p0qDnIuMxqrCUEwmXR5qXZ47/ZrCt1wuh5AAW/lF+wNlkjhN13rwNh2WLpIXNlPlhylc1qvKFRDKlsyYSlk9GmPbTc+dyLQkyVrn6KEZ0/PWfgcLyx10Bznc8p9w+Wyg7Ux1nt/sOSd4QUApTPkqkUS+GS1x9IqHh9eIkWKMB7Ta9h5uObiqs+Pn9zh58Uh7x5f4LxEK48PUDWGvWJN19S0uUJJz053zcW4j3cC+25FWOk4RGpALxXNbly1iVrgZwmj21MW013Sa0HnqaIeBTo/j1VgcQHn/2S4IXyoYUNbSpZKsvOhpz20IAPLtx3mymBmsfvbDKMdCUBWEjdqEUuN+7SLcnHXwhee7hNF99SzOpYsOgZ1nmEf1uzvz1msM05fjVBjgzwpse8P6M2j33n6UNF76UkWjtkDQ3YdsIUgmUYUofDxnNGlpx4qbCqo9gVNLw5FZldxARtk9HgHAuZyM59x7cmvHU1fMX2kaAYB2908AYIYr547pImsfKkCYaZIrwW69tEiEkC1kQ7izBsv9qZAduBFnISMHe9oUUnncYFpli2idrHIdgHh3MYWsimY1RsaCLGrHd/44ncpwAd8oqiPMmYP+izveHzu8X/rT5hSQrST/BdCCP/vr3PDQoj/PfDngYs/rGD/ZQM2QojvEr1/fcAB/3oI4a9+nWNvtdVWW231jy4hhCEW2/9OCOH/urn4/I1VRAhxDFxsLn8F3PnSr9/eXPbLb98J3Ec9Qs8TvjenkIH16y5mKtFLQbXuML8Nw7tT3t695JP5Pk/Pd0nmkdRQHnryxNKsEoSPCXjVXqA+tsjTArMUN0NTmbFc1l3SFwn1gQMXmdlqKRllay503GLHREY2MuDyQNMohAjRlkCgm9dM5wVBBXppw+R6hFkI2qNYUNW14dZoxtPPD8B4Wi/RiaMdeO71FsxVD1rB6r5FZ5b1eQdTC1ZlilGRQ510G4zyzNdZ7Jhrj7tKI/Wi8LCJ9+6/sDRDzat/LpBcSswS0nGgHmrWjxv6f02TX0XP75vu5+AJZFPP8lYMxUmnAVvIGMBzEYfI5g80nHaZpx2CgeV+Q9ZtuHs05qgz57Lscrbscbc/oXSGhcuYbDzcO3oN0pLJlkI2tEFtutwJO3pNJlscgjYoqmDoUDPSS3qyZOFzFj7HCMtQrlmHlLHrctX2KJ1hZZOYAgrUpcFXmtPSsG4Mt/pzpAicrgakynLQXzJeFXz46oh7h9e8e/eMV7MBiXJ8694p8zrjxcUOH50dsDdY4rxgt7Pmwily3dJ4zWefHSIaSUh87Cr3G45GcxZViv3tEct3G1wRU0h1KdBvLQjv97HHCpd/kSzq71VUZzlex441aYtea1ZnHfKDNeWOpXiVxHj7lcLMJS4PdJ9CeQjl0aYQHTWIlxkuC+hLQzaOCZPFaWD8XU/2WsXur4B0Euj8tmDyDnSHayY/28MdNOjcYvsCeZ5RTGD+nRqTtxAE9W6BLRQhawnS0H/mya8csvHUI43cpKWuD2KHOxbZgrbHTfgOxEFKgiAbB8wqhjNdfscQVLTEZNeCOkiaXYfqN3SKmjxp0TISexZVyvIqRTXEjrXd+LSlQBI75C6JC5Evo/9kG4+XLDzJrEUtG2Rjv8D3velkyy91puXmciVAiJsFOt7jE02zkzC/p1ncBzu0QPuLxvCvoa9ScP93gH9ZCNHEIwFfDQv4fwD+18Qp9z9Mv2zAZg38N0MInwghbhEHdf5fIYTpV7ivW2211VZb/Qlo0xT53wEf/AMzO/8B8C8Af3nz/f/2pcv/+0KI/zPxvXz2R/m3IX5INjvuhoNr3x+QiMDwo4DNYf3AcWd3yum0z4vFkLPLAeI8ZX03DmD5JLBTlCyvC/RSYouAP6hJXqRk14LFI0cyliQzwd3+hB89v4NMQJaRgVzet7heoNAN3sm4xT7LkEsNBzVkDmcVWd6ghWcvXfJTe4RrJUhYNQl6HZF6QseizDaKQVKRXGqaXcdOVjIxBXbYsmoTRGHRiaWdp/S6JZOlIZ0Kai+oW80gr0gSG4NaFiknxxMuWoXYaUAFjPK0Z0VEr/lAfhkoDyXNgcU9tNQvM1QlUC8N08eC7stYJBECuz8JZNeW6VsJtoByP9D8Wowk77yIRfnivZbsZYIuYb0TY7BpJImxFKbhXjHmKJtjveJn0yMu1j0uqy59U3GczThr+pQuwQbJQbpgz8SvTLTMXCzKC2ExwtEGxdQV7OvFzTnhgsAIOLU7jG0XIxwDvWZuR3gEJ90ZyzRlXZSsmoTJvGA2K1iuMob9NQ+H1xxlc67qLo1TPNgZ0zU10yanm9VM1jmn1wOk9PhGEbRjUaXsdtY87F2xny1Z2pSurrlz74oXT/dQc0UykUhnGP+65e29C/7g3S7m0tDuOGQjSK8Fq1sJ4chSnXdJNumLza7jcDTn6laG3Y+UGRpJOwiYqaKyHdRuQ9uH5X1POlaIFtqhp+1K0gkEKTErWKkEDhvSpynCRs+zbMB2YmBL241d37YrcEYwewuyb01o//4O9rbFZC2uVZh+g9zxuHse8bJLb2/B4qe72K5H7DSkn+Qc/f0GVTuWt1Lm9w1BxnCkbOzoP3es9yWr4ziA2HsazxObR/qKPINsHHBpjJC3vUAQgfw84gRdHocX9VxhE00oanwQaOlZt4blLCd/rciuPcnSx8FFAcKGXxhWlJsNIlowpSeZO8y8Qa4bROvAh9ihljL6zMMX6ZBBfVF4vym23/y7GSQsTwzzB9DsO0jayM4H8P9wxTZ8hYI7hND7h7nhEMLf3Pj+fpl+2YDNx1+6jVMhxAWwD0z/Ye7HVltttdVW/1D6LeC/AbwvhPjR5rL/CbHQ/neFEP8t4BnwFzc/+4+IO5afEhsn/+IfdwBvYPRjxeI+1M+7dMdsukyB5R3B/smUz073yIoGIz1+aaDr6XyusQXcenzJeFXQfz/BdqD6RklYmRhNfRhRaLIWLB5ZBqYiSVvUdY7LBLaIXbje4ZJUWUIQ5ElLlURudq9XsioT2lWC6nqMdIybgqqKhAVkYFUluCyQXUgskfoRnERLh3CQnmsOv7tg3stYJi0uCAaDiLBrgcUyx/RrgjR4F72yldWs5hk6tVArLqZd3OsCXzhMv4kDoDIWINNHhmoXhAvke2v43QHrexZxr8K9LpANXH/Xc/hDQTITzB5JVkcJ6TTQOfPIRlFVnbgN7wAB6amhOopR2kIFwtIwPFpw3J/z8ekhH3xwGzKPKRqyrGW/u2KUrjhMF/ggbgYm32hmC4yJxfUbC4kLkky2HKkpBkeL4tJ+0cObug5+00V8Uu3T+Bjr3myeI+clPghOejMeDK9ZtinOS17NBvzo1QnHOz0qq1EiBt08nY+425uwahP2uivavCI3LeeLLlWZUCQtu9mKp4td9vMl1kt+enmEtYqTe9es6oT5PCeMU9THfT4G3n5wxsfhGLlQBB1wmwk3kTvE1CAbgUsDycGaw2LJlTyIpJdGonoWJjoOUSYBbSzVoSW5VmRXsLwbMNOIc8yuLZN3EmQbSK8V9SZcphkEkln073sNei1oDlv8QuPeKdE/7UR++k+H5HPgpUa86OJHnnZowUpqESDzLH+0iy8C5qCkGWf0ngUWtw02T6L1SUJ+FZAW5vdi8FI1ilQQiLHqZhVI5tH3PH8cMLMNw9pD73NQVRxstJ1op2p7Htf1MdF0lRGKSKO5fD1g8OOE4sKTLB2yjQtGb2J3OmwwgNKBaDxm7TFzG7vZVROLbNgU2m9QJeHGsx2kvOFrA7EQdwHbNSzuZSzuScpjRyg2RfabyHcZYrEtwpf4g3/cO9wv6qt0uBFC/FeAf3rz378RQvi/f73D/KH6YwdshBC/ThzUfPJL7tfN8M3du3f/BO7SVltttdVWcJMk/Ms+Uv7ZP+T6AfjvfZ1jyBbKPYG7XZL9PI9bxC56jYtfveby+Q6iY3m8d8WiTRFORB71gad4NKOb1Fz86JDhLDD/dsvR3pzJZ4fYTiC/FKxSie0F7r11Qa5ajHbI9SbyGUjONPrQ0/poG3FexM4nMMgrlqsMoT1KBHLV8vPJUWyELQyoQLVKUE3kfQsRsD0PMjAwFfWBo3imeboc0U1iB29RRY+2cxKReFyjCK3B3nEoEagaQ91qpPEMeyWXi5RBt2J+C9K0jZxw4yELpB8rZt+0jE6mTJ7t0HzSJ3x7jbjMSH+/i3CQXwbajmR5W5Bev9lWh2QZmLyjSObxovY7S0TisNMcP9foqcIVlqO9GY8eXbFsU95/eYJ8npHNBM0wsPudCf2k5lH/iv1kQesVRjlckPR1hdr4uY1wLF1GKluMiD/vqZIDtcAhmLoOp+0Oa58ghcdveG+Vjwubk3RCJixXtsvSpsxtTtfUXFVdVjZhZRPud8e8Lvu8u3/OddXhxcWI/dGcUb4G4FZ3xihZM0rWPF2NqGU8Ad7eveTHL25zcTHgreEVD3ZecT+74nUzpJ9U/M5PH3HWaLKsjWFH88iJrj/us/xuyTcfv+RnH0YXlf3WCmpNaCWDTyXV3hfouvef30K34OYGdCB4CHdL/FkGHrwXyFpG+8mGvJFOYiG4uGPQZUCXgaYfg3nW91v6B0vWHw8RLg5rBgE0EvZq3HnO7meedKIojwKqjuE5IhBTV4Og87mOMxBzWHynZmd3weJnuwyfx4KYAPmVRzjB+haMv+uQpSS/iG8J3sDgSZwdqPYFs1ux4yxcuLG0CA8+ETHN1IBPAiFxkDl06sgTS542hCAo64Tz8xHZmcZtBkQjvSX6tIWLhB3hwaw9qnTolUWtm4jz8z4W25vhRjwIGxM4Ueqm+Bbe31hCglFURwXTtwyrk4DreYLatM2dAPPmb2bTKedNse3/oTrdXyVp8i8DPwD+nc1F/wMhxG+FEP7HX/toX0Mbb+D/EfgXQgj+D7vOl4dvfu3Xfm3LCd9qq622+lMknwSqI4e4SmO8tYoJeu2dhvKyB6nn0cklUng+++wQVQnqXUd+phCP4OOf3yafxfjofFixKLNYVKwEtogFT7hb8q2d15xVPQJg83hsEaAdeWbzgs5RHZMoNx/ErudovcQ7gdSBQV4xbgqslzSLBL2S2L2WUGpUFb2rvtSkh2vaWnNZd8n31tjLHqsm4XtHL/hkccDFpMe9gzEXdGmWCUm3oWliRPjucInzkrIx+EaxrhPSQcVxb85inVKVsYUqjKfXL1n/E5ZEBpbrLHZYe54ia1mrlOJ1oP+8YvYg8pJtDrIv2P+R5fwHiss9QecVTN+zHN4fo6Tnet5BKI86WnMwXHK3NwHgZ1dHADw+vqA+0NRW008rfjB6xkCVXwxKqjgoaYSjpyocgoIGh2D9Jm1SODLZogg8bfc2Bbigp0pGeokLAiUCLgjaoBm7Dq/qHWZtjiRwXvXIVHS2HudzPIKerqi95qSYMmkKTjozju/Hn51kU8Zth1y19HXJ3OaM0hXLNiXbRMhneUN/VNE3FV1V87zeBeDXB095+OtX/IfPvsl6nXLnYMJLOUR/UtAMPWcfHjA+WYEMqJkmO2qogDbo+JxnAXdc83j/mo/+4C7JJHqd9VyRf6xZvNNiKkH34YLWKtrU4xPIX2vScRz+Wx9IXAaDzxxeR+Z6MxB0fmNGYxW27wBF2wd/v4SlQVyk7P4o7hKVh5GgMv6u4+CHivVR3NnJnxvqnYDtO+qRREwM/u/tMZp5gmSTZCmYPZR0XwU6L0FYjSviMKJsoxe73omJpPUo4HKP1SF6olVgrhXJWOKTWCwLDWK3ptetcD4OGxdpS9VqmkZjTPRzu7GKVJZUIPoK1US7SiQKBfTKYZYtct3EovpNge1iOqSwDuym9R4C4o0R+ktDkL7XYfl4wOyhotoPuMTfhOMgiI8hAO2mwx1EtIwpCP7LcZVfT1+lw/3PA999U/QKIf5N4A+Af9SC+5cO2Agh+sB/CPxPQwg//Ec8zlZbbbXVVv95VBDs/FRSHgjMItB245CjzlradcKtW2Napzhvo7PR7zfs/o2Uybc89Tql+7nCpVAdBHxpCLOE/hhWJ4H+Z1DtQbdTcdV0eDLewyjHuojUDl94RCsIVrKyKVnWkiUtVWPoHC5iUTBPSA9XZLqlcQopAnKpCSqgcwvXObLdRNFbwfHOnJeXO2jh0NpR9UMsoIOgcpH0MUhKXrZDCLA3WHI6jYzrVZ3gvcBahbwyrGUgOMHn4xEA+zsLMm1ZNQlCBObXHWgkaqnQDtTDJe7HA/aeBuaPBC7NGH5as7iTop8G2o6gHkj0SrC6Z5kVElTg/HxA7/2UsBsIexaS6Gn+e9f3kcpxMFySm1i1GOl4Z/eCw2ROJlte1UPmNsdIR+kMI7OilYq1j2mRRtUYApm2SOFReCpvqIjd60y09FSNJ7aCJZ6Fz6lCwtonzGyB9YpZkwGQSMtnk12UDNzpT/iNnac8SC84bXf4dH3IvWJM6RJS2ZJKSyotO2aNJHBoZsxcwcJlvKx2OK96HOYLzueR7e02iy0jHD+a3uaZGfFW55Jv7J/zcjHkQf+a93bO+OnuMS8/OaD7ROFf9hD3HelYUH04pN1vkTPN+jigGki6Ne0madIWkS9thxY3NYhGYvseuZnSE62g8yKyvYWNRW09iOdq53VMX82vLetDw/yTEXopECMf8Xx5IDQKPdbYkWVx31A9run1S+aTArHSXP6aZ/fhhOWLIeaFjHMTQpHMBF5H/rUIUPeil181UO94ytsB0QpkBcOPIZs61nuS9S1B2/Wk1zJaqTKPudLYnkcPK3yhKLsaWarYofYQZgnzWt3w321XMeqvMEVJYRrOFz2mh5p2JJFribQCM4tFvy4D6dSRTGtEY6Ov23uwDtG0scj2byLZFcFacA6EjFg/Y/B7A2bv9pk9kNhuIKhw4w55MwcpQiSsvFk4ANHCtbmCUIHYev+C+f1V9ZUsJcAQGG/+Pfh6h/il+kMHbIQQCfDvE/3d/5c/oWNttdVWW231nzMJG79UDS6NrOFm5JBtxA9k2lJZjQD2bs1Y/XAPRMDvN4RS33xI+uMKXyuEgKYH2VXcjg/9lm8fnPL3XtyjqQzfe/Cc33vQw5wnZC8UqwctWafBB8Fxb8HrRY8sidaT8bzA7JXcHU0YlwXk4ENMEPRpQAaBjgnpVHsBtVI4L3GtZG0TbvXnfFR0f+Hx3t6foKWnmmSRH60c2aiim9dcXfbACYb7S5a2Q6gVpttQlQm21IwFOCewlSHtNNFfmjlYR/53c1kge57JNyPGbPKtwOJ+il4JXB6H1pb3BUF5RCthp0HMDKPf1bRFtBqIRmISS2sV4TKlTT1nLzqoJiYAquM1yybFqEPmG3vMSX+OJHC/e82OWbNwGQqP33S2R3rJUK2pgmHqCnyQdFXFkZ7SkTVT18EIy5kdUnuDEZY2aGpvGOg1I73iVjrlp4tbjOuCbtrQTyvWNuH9xQmv6iFdVbObLJm0BT+bxo78IKnwCB53L0ilZaANqWz5YHXM+9fHjPI1S5vy9t4FO0nJrllhhOPQzDg+mPJZuc953edhccXaJvz+2W0e717yrdFrTkcDljbD5w6CoNmJ8wKdjxOanUAzcpB68iD4/GwPaaHZ8YiuZW93weBRxbPLHex1zuzpEAYtvc8VySyyuIOE1W0QVmBHlrajN9xrTToLpDPB7DGYaUwVTe8uSf96n+mvtOAF7ltLMuVZvOxD7siOVjS14erlEDLH/L1A/tTETnIRUHUMy1neltTDgGxF9PFnDpaxTHQdz+yxpD1VpLOArMEdeUoDiICe6nieZZ52HecgSDzeCYoXmmYYCNqBF8jCkhcN3axGbUKLzhc9pPTsHc6praJtNfy0x84nnmRm0Wv3hX1kE9Eu6hbqZlNYixsayZtiWxhD6HWo7u8wfWio9jbR8RDvXyQJIpzYMLY3iEIVvvg5N0juzZuNiF1u959N8M3/AvgDIcRfj3eNf5oY5ftHSgjxfyKmke0JIV4C/zOIy9oQwv+WXz5g8xc3x9gVQvylzWV/KYTwo6/0iLbaaquttvpTIeGin9gWAuHjcFTv1gLnJG0bO8rtZlDu+qrH6Cx2wUOtkJmNXk8Zm1hirQhJwGWRC9z2BPdOrjlf92lrDQvDq+UAShWT4wSQeLKk5fP5iPd2znlyvsegt+ZWd87l2QCdW15OhwgRWKqUVNvYGUwDbqkxLn6A+9QjvGC8KtCpZVwWvL1zycfGs1OUdHVNpiyVNZyve4hGRlqJ9Hzj8AwbFONJB3meMU9zSAPpqaEZSejH7nLbaPKiZtgrmS5yRObQiUPeafCfdUmuJf0n0Z8+exwLhzde2O7zmLTn0g2FoSco24TiVDJ/EGgPGzo7JcdFyfm4TzjLOPjGJdc/OqDzQoCEpicIV11e7xeoozVpaumkDdMqZ1ZmrGxCz1TsZ0sAXlZDUulYpwkukezrOft6Tkc0zH3G2qexm+0NC59Re8OeXuCQrF3CzOZMbUEiLSfphO/0X3LR9Ng1KzwxhfJVNQRgagsOkznf6rziW51XTDbWlrVP2NErFB6HpA2K/WTBN0aS87JHV9ccZAvUBoo90ktGesnLZpeTdMpBsuCi6fG4e0HfVHxwfUDVM+zvLDi/zJAdS5JaxKse1V5g9ahFZI5ur2K9TKled+LrMHQkuxVp2pJpy+P+JU9e7pOdKcwSVicxBdTmgu6LgEs3fnENyaUmmQcufh0OfwhqEShHElUKmh1HcrSmnGfYk0Bnf41zEqU8q3GOqgXJUUW1SkifZMg8YE8s+ccG2wk0hxZRS9S5YnUnRqaLEId/zVQhWhX/n8TzRq+j1WV5W6BX0P9Ib0JoosXEK8H8nS8cwObSRHtNEfBpAB1pPkIGrJVMFgXBCzpFjQuC1SqjXaTIlaJ4JUnH4WZIMiiBzwyi3QTX2I1XRKsvqmFrCSEgkgS3N2B1v8vylqIecmNtkTb+jYiNfSRssKFBA29ogTdoQBFDod7MXr4pst/YT76m/siCWwghNzf7m0QfN8C/GkI4++NuOITwX/9jfv6HDtiEEP5t4N/+425/q6222mqrP92Sm3hnVQfMOrD6sysyY7l6PmJ4f8qnnxzTPVyyet6PXtka1seQ9GtsG4uV+bcbWGmkF5BZbEei14J6N/DNzowf/t7bpMdr2rOMs+cjZL/FWUHyQrFuJNPzHrKw/OreK/rdksxYuqaGRmJF/IjM8oareYf7e2Ns3yEKh5xEVFrb84QkxKAP5ci7LZNZh3Gx8fdKjwuS3XTFZdlhUaWE1IMTtE7RLWoqZ1DG0e5YtArYYUuLQbQCbyU6t/R7a6rGoGQc+jo+nNJYzdVZH3HUkH6WIkKguHLoSjJ5T9J5AekscP5bgZB49n6oyaaeyXuCkHqqH5QMeiWzZUb1eQ8uBvgTx/F7F7HwvlOxChlmGQutph8QBxX2IoelZNX1MGw5PphyXMxIpeOd4hwj3CbcpqEKCQrP1HW4tP2b4ranKqauYGYLli6l9prXzQAfBEfJnKVLuao7SBEYNwW3s+mN/eLAzHndDBmYMuLkhGNiC5TwHJsp95IrAK5d3GF4U9CnsuXd/JSTdILvSVLZ0pE1Y9tl4bIYKR8kDkFPVrRB45Ck0vKoc8leumTW5tzvjPm7VjH7cJdWBtyD6CfWVwa7F++jMo6wkiSP53SyhqPugrNlj1RbahcHY8v7De7MkD5YsN7NKD5OUU1geVvSfRlYHwrKe5bzf1KiZ5KmB2YNq9sCn0Sbg33eQfs4uFukDes6Yb1IoZXIRtDJGt49OMffl/z4w7sUH2bUex6/13C4P2fdGJahj5lL6j0HEtJRSbNOCK2k96GhHgWavZY2GKr9eL7jIZkous/AFoK2A2YF3c819Sgy320e0GuBKwJivyZPW0bdNbe6M06XA6brOFChVVywGuNotUdWmnQSSJYBXXmED5skSYFeNbGrnSYEKRBViMOSShL6HZqDLos7KeW+uBm8lA5ovnjfEf5NMmUkjQQZvkBrvym2VUCouEDwzcYG4wQknrRbUy/SP9kOdwjBCyH+lRDCv0u0gGy11VZbbbXVn4xCRIp1zjyTb8gYGPPJIaJvqZpIAlm96NF9Lin3A6oN1KNAIgPyZcbiO3X8QF1pfO7BCkLPESaS7N0pL5dD0rGi3dW4nkMtFaFjMXOJsCEi3ERAKX8zFDlIK4x0sYvVSEQeWC0ysqKJSZA6oLMW6iSGm+QeVKC3vyRLWubrjDRrkSKgjbtB2PVMRdVqFuddVK/FTROMigXeq+UAYxxiWOOdhEqhaoHNA/3dVSSm1AlaeVZ1Qq9bbm4XUAGZOKpjS3UMe39PkSw9Rz/0jL+hmT8OHP9NQbmrufpNy9GdMUWZ4X4yIP+RItiCvUXg+ttxkSJ3G6b/6RGpiPHg7cDT7nlkYZEy4K/igsGcLPmVg3OOsgW7yRIXJKUzXLVd9swSGTwzN6CQDXUwtEHhEPggqbzhdTuM3W2b8cl8Hx8Eu9kKLaKvua8r8k6L9ZJpWzC3ObtJ7EB3ZM1xMmWkV7RBsXAZbVDs6BUzVzBzBV1V0ZMliXAMleS8HWCEY+wi23ukl2SiJZMNJ3rCmR3gkEjheSd9zaf1EXt6zj/RmwLweX2AMY5URoZ4CILBu9eMXwzpj1ZYJ6mWmuTMsPQdegdL6gcrhICDzpJFk3K7N0VLz3nVo9ep+DOPn/LT28ccFAt+XN9GBG4sJUFFH7e50uh15KkTou2j8yrEXYx+i19q1FqQ/sqUXlpz9dko+qmHNbaj2C1W/MHPH5C/1CRZoHy7jn97Aq5+tk9+IegQMYNmruh8Y8LikyHDJxv6iYoWE4Kh2XOIwqK0xy1MJJ5k8b4GFTvh0sbb9knsmLe7FrlUcJFSJQmnq4TzcZ+8qBl11vTTitppXs/6rC879D7WdF95dL1J7/TgE0lQkaHteimiSBBli6xbgpK4wwH1bsp6X8edGB079fj4HoONzWu/uZ9exwVBLLZjdzuY+HdM4pE6HttbSagUWLnBAMYvYxxt4vi6+iqWkv9YCPEvA38VWN28T4Yw/uW/stVWW2211VZ/tLyCzrln9kjym/+l9/kbH7yNrCVeBcp1gSgcu39H0wwjZ3jyrsB3WtyTbkziG65ZPR2gagH7LeE6JXQt9a7nN45e8jd/+E1kHhAvM5SO29qh2bCccwGThM69GQCnywGL6w7Z6Ar5pnUlAt5LQq24f2fMp+d7iMxha43UAddziNyR5i0Pd8aMq4K2VbhW8ZnfZdArGWUrli7FBoUUIGoJ3Rj64YPgJxfHLOc5e7uLyCG+7lEcrKjqHtmVZPTemspqiqS9CWj53ugFn692eTLeQ18m2KFFNBK5XzF/mJPMFWYZu3bFqWT8LiCg+4mBv7FPlguqPahHgnrkcQPHzu9pqn1B8dcz0rlnvS/pnMLsLYnLBc4L0r01h2/PSbXFB8GkLni96tM6RSdp+N4okn6f1yMK2XCczCKTWzgKapTwrHx6Y/doUbQ+JjtKIk4xVw3jpuD353dIteV2Z0pPV9zJxgxUuemWFwxVRP5VTjPQ65tgnUMzY+Fyam9IlOXSdpDC8zC9oBA1Y9flzA5og+JIT8lESxs0t8yEBEeDYigrHplrXtgh166LEZZ7yRVzn7OjYxn0Lz76Ib89eYvxVY+m1Yx6K66OFfZVQf9gyXF/zqzOOL8YsOol9JKa28WUrqr5yeyEd/bi8Gk5MPze2W3EsxyziAVmdh2Dn/rPHTufeGYPzMZaAdVuoPMqYBYS/aChXmmCDuRJy6pJCDqgOy3tIiEdVjz/T+6x/yJQHhCL41YyPFgwezmg+0KQX3mmb8u4W7PfMr3uwm7LPCT0ngqafixIVSWQpSRYg5pKeqcCn8QFQtuNnG21mWlIpoJmEK0pyIDf2dg/WokynryoKZKWXLdclwWpcvTyirpvWN2RNEOBrDXZdSCdR/638IGgBC6RmKXFdwxed2iGmqYrbxYq0gY8m4HGjf0jbArrGwKJ/OL/QcXhyUgmEdBIfCO/YG2/GZ4MRIuJFwgR8Ku44Pg6+ioF939t8/3L9o8APPxaR9pqq6222mqrL0l4mL4l+XN/4ffwCLrDkvXExA5wqVHnCZ3zSF2QFqpdR/G5wadw8N1zXr0aQeqRlULKQPZKsj7WnLx3zpPZHtmFpLzlKF4qVCVY/aDELUyMlC416URiHjq8l+S65fB4CkDtNeho+yg6FTbd+MnXCSp1uEYifOT0mtTSKyrO1126SUO7TpCJoxznPHz7mp2kBGKC4tVFH7qONGtY9w37eYwfFyJgneRXD17xiXLkuuXjyw6qlIxXBb2sxihHkTYcFgtSaVm1KT4I7F5L3q/wXlDPU9yewz5o4SpFtJBfCjqvYyjJ4MMZ7U5OvWPovXRMH0XEoflAMH03FisuFUwfxe342duxoye8QFYSayWvnu6hpzHsxRtgEIuph48/Z9x2uJ9fs2NWKAKpbFF4jLB4JIWsGakla59SBcOl7bF0KZlqmdQFq+UISaBjam51Z5xk0xvKCMDTao9CNaSy5artMdIr9vWCQtb0ZUUha9qgGKYl167D1Bc36MFr2wUN980VQ7WmCZvZANflQC1oiB34ExU96KmAUXINXPNR22fuo+Xk2nXjY5KWv7D/I97qXPLXXr2LIPLV99+9YjzrcOd4SmX3eXz7gl5SoaXnIFngguSkmHIvG7N0KblqsVbRfwLJwmNzQTYNSBswK8fldxOCiDzq7qlHryTSBeodj7/Oka3g8JsXPOiP+eD6gHuPLng96ZMMatpXHXILi/sC+SszQqtQXlL+aMTwdfSKX/+KQFVxQWtXcQ6CALs/gbYbaPvg0kA6lozej4PCNoXlJvokmW6GnvNYfFf7Hl2KiOMLgJUIY0nyljSxSBExm6NshRSBXLesbELtFEnaUh8ImiSh87lC+Bjh7pI42Oh1QBlBPdSxi66iNUT4GAbkTTymENx0sL2OX28WLEHG7nbQm+Cam2HIDaFE8aVuNpsuubgZopQLTfNyh94MLr6UEP9V9FUK7m+EEKpfeJMUIvt6h9lqq6222mqrf0AC7v65Z3gEf/vVA5bjAm0FdmmQK8XuTwIulTS7DjOVZBeK4ixw9ZuW0yf7pFcqUk1cLGg7p571EdzvX/P3X97D9uOH5qYpiZsbRMcSlpryjsVMFbmxTNc5pTURu9em7GdL8mFFXRr6WU0AXkyHYAXOK3p7K5YLjUwi/q8wLbMyI9MWWoFIASfQwpMqiw2K87JP8trQ3qlJjSU5mdNRDVp5dOKYL3Nedobc7k7jnU0dQWnm1x1+7ZsvWLmEn18e8nQ2IpFxMFNLz1v3zlm3htPTEebKkEwExZli8l60JOz/qEGtLfMHOed/Zkjn3FMNJfZEUR4EmsGmqLbRwjL9FY9axmLULKJv1t6ukSpgftzF73ls36EXitCz7O0t+I3DZ6QyFt5KxO34gVrTBgVCsnDdTQhOQe1NDLkhxJ8DB+mSgakonaFymkI3PCquKFS0PygCUngGurwJ0MmEZV/P6amShcuZuoImKE70FCM8mWzZFUsWPmflU07MJT1ZkeAZyjUNCoUnUy092dAGySoYrn3KkarpCIkRkjZ43jJz2jBn7BMy2XBtu7RBk8mSgS75L97+gA8Xh5yN+5y/3OGtR2f8vdd3OeotyHVLpizH2YyBKpm5nHvZmJnLOTQxechox/pIkM5DTCidWHTlaDsa2cSFqbBg04gHbLoCsxDUOy0PH7/mB6Nn/P3xPXppw8vLHfq9NTtFyeelYdUTFDsl1irC8w6qjV7r2duxglR1TMT0HTCHJW1pKD5ImT+AbAy7P/EEBW0nsDoW5JfQ9CP5RjxY4RPL+rRHcqVodzzpWOLSSPzQpaBVkqAUomhJtMN5wXidY5TjMF9QEXGTu/maR4NrAJ4vdniR75J/lpDMQFcB5cGZOEgahx8DQsQu9JsESm5cH/GyX/BYb7rbQf1ix/tNOFEstsMXjEBPXFQLwIGqJGYmUDWYVaD/1PJiavk6+ioF998BvvcVLttqq6222mqrryzXDbggGTcFAUhfmTi4JaDzUiKdpxxJgnYUp/HDr9oVZKOKzv+zy+Jh3A5ujlr0q4zVLcHj7z7jw/Eh9doQhtFnqcuAywSijdvBctOVVa813aRmVSe0XnLSneGDwAjP3dGEz873uJx12R8sKcsE1W1xlaaTNix6NqZHy0BlNT6IiMrzArcwCCvIdMtQrzeWEolZCFogNZbHw0s+me1TNobgBVIEVm2CR/Cwd0V3WNL0YjjO0Kx5XfZZznL0jud83ed63EVpH4973UGsFd4EysOALiX9J5HwML9nULWh2fCVFw8lQQb0OhbUZh6LOJdH5nMyU6STmGpYHsRwFHWZ4IaW9V1Lvr+mX8Ro9N1sRc/U9HUZdwA2yZJGOBY+o5ARuZht0kfaoBjbDtM2p/Ga2mmmTUyOHJiK97qvGeg1Cs+Rmd0gAlc+ZeoKrlyPhcsY6DWFbJAiFs89GXuCY9flZ/UthmpNX1a4IFn5lDYopq7DmR3ybvKagaxJhGfqE1YhYeGTWMCruBtRBUEbPKnwJELQETKee8FypOZkouXMDlEE7iVXfFDdYmAqsqylfp5jH0jKMsF2JbMm473+aw6SOYWsb879nqoYqBULl9G0Gt1AmwtMGTBLS9vVMVVxQ/FphoAU1N8qsU8z2p7jVx8959uDU1yQfG/0gmmb84O9Z5Qu4WfTIx7duWDZJEx/5xBfBMLtEv8iv7kPwQT6PxdUe4K2F+CTDkbEgnbnY49Zeub3NbN3HaKJ58vkVzzp4RpbGsTrAtcKsqkgvwx4I5FtQARYHwjK/y97/xUr+55n92GfX/jnijufHG7q23m6p2fcM9NiEKNki4IpQ5QNwjIFELCfbMP5hYbhF9ogDMOyJUvwA0nDJCySsmSL9AzTcDSxZ7p7uqfv7RvPPeeesHPl+sdf8MOv9j532hP6jsiHIWoBhb137ar6166wa/3Wb33Xum0QuSHJOryH2SJHSIdSPni2u4jdrORGtkBLy2BTYjTYqRmlFR8M9phf5CSnmngO8dwTVYFsQxiG9B6cuiLfGyFaiN9uI/kh58f1+T+M0DYTkoh8SChRa0m0ECFXfe7ZebsiOl+FKELnf4cb+d3xuxJuIcQRoWo9E0L82Cfu3gDIP9VRtthiiy222OKHIKXjdNnjyfmYbp4ghp7soMR/f4CNw3ZyeVOgVqH2WjWe9edb8t/o0+yCizxy0FH0apoXI8ovBuJ3fjpElArR72AWMoFl5/E9i19G5IdrynmG27PsJCXPZiP24jUH6YpJm3PW9NAykFk7jzlzQUnLs5blIiaPOophTV1HDLNgF2iNIo0Msg7kzI9b9uI1j8tdRnHFw94Fb71yGyk9SoRTbTSxNqwvc+7fP2M/W/F8NUQJz63hnHf3euwVNedtj4uyIM46hPDc7U1ZHcTUnaasE/RlULajVSj7qQ7CsOPOdyU2Fky+YOk9Vux8P5C3ZiwxKbQjj8k98VwiOkguBTaB9c3g7fa5pfd+hMnA7TuSJzH6gwEXX4n48t2nDKOaz/VeXNewp7Ijlw25bIg3xHvtYpYukDznJblsyZMQGfHJ+verZJNiQ0oljgiLRZKKcP7ns2e0XtF5TSGb0OoI17F/n41PSYVHAksniYVjVwV7C0C7yX17YsakouOmXpJ7Q4ek8+E0lBYFpELS4Vk7TyGh9Z6RhMZ6CtFyPzrnabdL7SMu2x6VjVjPU4qZ4PH7hzx8/YTnkyG3dubkqr32nO/rBTsb28rM5SxMyrCoaMo+UemQBsqjBGk8svWkU8d8rIKy3Ycsb1iNI/buzjjKgkXl1fQUiaNOYwrZ8F59xNf3PqJxmr/3ra8iBw6/1yJOUuKVYHXf8PD1E579yi1MHiL+4jlUhwIXBavQ7FWJV5Ku5/Hao0pJ8cLTfyxZ3u+T2HAdk0Oz52jHEK0Esgm2DFVD8VjTjhTdbc+rN8/JdFh4Teo8DMYmoeFz3qUs25TddE2iDJdNQWsVd8YzLpKWCSNkp4nW4X2suqBgu00LpFdB+fZqExPq/abAZoNPZGrDJqXEA3ITD+gF2KByw0ZB70SwWy2h/9zSf2+OnK5Cxbu7qnr/dPi9FO4/Dfy7hAbIv8ZLwr0E/lef+khbbLHFFlts8Qk4J1me9hCZRRYG30nq5z1k3xG5oJZV9zqi84hmDPX9FtpQdy07GHwAk33Jap7BKHiuyy5Gn0XEc0H/G5ecVjsgwhChjCx+pWibKLTHuasGyFBqM9IlkzZn2uRMyowsa1lPE7p5wt7tGbE2rNKcftRwJnpobRkkNRdlQRKZEPm3qaG+cThDCkemOr53eZM3x6fBZhJZjJNo4TBWkscdUyvIdEdfN/Silg8Xe6y6mGSnYlkmzPo5O1nJZF4wmxcsdxI6q1iuU3p5wyzxxEuBU9Dc7FALhegEXU+wuu9IzxUmCwuYeOkRZpPJLYO6mV5CvAiDetEa0qnnxZ8xiKVmfc+CBV8r6jsdem/Nnd6a56sh6dDw1uomhW4YRyXKu43SrTcnRe0jUtHhkNe2E+slc3tFwgO1aJwmkYZSJ+QqkPYre8rLmD5FLF6mQ/RlxdJlHKkFyeb8enN7akO8gx3FkwrLnvDEQrCvLpk5jfWCuUsYylDAMnMJlpaRNOAdqZD0JZxbQSo8Sy8Zyo7IO5YuxhIU9P14yUVbICNHeu5ZPwiLqc8enXA7nzFUFRJH5zUPkzP2ZcMLm/Mr69d4Wo1Dso2DqAzNkV0hUU0YerWxIL3wmEywfOCRdYToGX76xiPuJhNOuwF9WWMRHMjltTddCs9utEYVBjnRmGWEullS70R8/bVH/ODiEPuwZr4XkZyrTYyfww0NnXZEqaGdJ6H8xgrsoWGaxAzflyQTMAWo1hOtQDWS1X1LO3LIdqMu73n8qMOXKmTUV0GnLeKWnTQsPp4vhyyThEQZImVZmYSVSZB4UmXQ0tI6xUT4kFaiBc1AIlywmUAg2G7j1746eSWurSLXRPsqc5sNoRabWEA21pErO4oJSn7vuaP/tCZ+OoW2+0T7jQAlQcpPTbp/V8Ltvf/rwF8XQvx57/3f/VS3usUWW2yxxRa/H4xAdBJvBcmZpnutgpOE/d+AZuRZ3pPI1GLy0Cop5xGjHwjafsiXnr0OYhlSGpKpxFYJ3aEkWgniOZRtxM37F6zfPkK1oLTDKDC1hk4gLfSihnFRsZ+tOG0GPJ7vYJ1ketlHRg4KA41ESYcSnqRoaZ26boB8Hg9pWs3uYM16lYZ4MS3YzUpO6gEHyYp2U96zd3vGfJXSWUmmgspbdZp0t+J01eNh75JxWvL+ZA9jFXFsEECuW77/+D4sI7z0vFgNaTqN7RRCeMRuwyzXqNwgpjFuryV9PyWee9LTQFDyU4/Twf9bnFr02rK4H7P/XcvZVxWre5Cdhjzl2Tdq9IuU3hOBqj3lkaD7XIOzAvsbI07UCPvmmhvFggtTkOsWWXhuZLNQ3+4jFIF890XN3OaULqa0gaSmssN5Qa5a9vTqWuW+ItZKuJCH7YO6rYRjabPryxTC0pcVqeyCdxuJ9QLrBbWPiLHksmPpJZe2wCGpfWix7MuagWg422R039FzYuFoveRIlbReYjcCpt2wtVg45tcVhdB5yXMzZletqF1EJCzTOsetIrqeYPj9iPNhj3FaEQl77TUvRMtN1ZAKQW0ipiantRr7bp/i1OKFQHWWdGJDYUym8BKqg42Ce1TjnGQ0WtNTDTejKa8moRblaXsA0ZQP6qPNoKjkpB2E+3vYcv/2Bd4HS9X3Tm+GpI0usFLZCbo0pIn0xyXLy4LuNENXEpsqhPYkZwphoN4Nj0E7dtSfbfBW4K0kH1Yo5XBO0tQRdhlBI0n3K3b7axJt0MKx7mK0tBgXXrsnswHOCboqwrfyOv/ab1JBdGYgdjQ7DheFjP1o6a9bXn+YXF/ZSeAqb3vzq83A5FXNvNhcVniQTbCMRAsoTi39D5fI6fKlZURJfKQhibH9hG4QU481ZvajlrUH/CiXvi2EGBCU7f+Y4N3+X3jvf+5THWmLLbbYYostPgHZwvi3JJMfs5jXS2yjuPtPHcJ7ysOI9cMOYQWyFey8DbPXBPWuoB156j1AeLJjhSmu1C5P1UboMvi2l++P+PxPvcN3e0cIKxDS4yNHXLRYo3CdxHnJTlaSqY5+VOO8IIs6vBXYOqI4WFOVMZezHmnWsttfk6ouZGxfJLgdQT9v2M/WnJ4eIJJwX0ZxyWk5YNrkNJ1GCsduvubivM/O/pTGaVqjcU4QRYbZrGC9H6OFI1KO2axgNFpz2FtRmwgZOWxquXV7QtVF3BrOeWwU/aRl0gzACPq9ClfULE57RMuQiTx44mgGgmjtqMeBfaxuKBYPVRh+XCn0SlA8g/VNj9nviJ6lFE9D7Nv8TUc0l8Tfz6n3HNX9jlt3LnlzfBpKarIlnyue02waI50PSnbjI+ym3r1xmnG0RuKZ24wX9QgpHJGwzDdEemlTlHDMTc6OXmOlZLGxolwR8pFaX1tJUtlxR624o1ZEYcaNzkPrO85dzpCGVFr21ZTaC85tRu2j0HBJSiFazmyft9e3+EL6lEK0WAQj2eCAxnNtRYkE1wr6EzPeqNWKx+0eR9Eci+RmMefDwR5ITXrh4Jd6vP8z8GcPvs++XhAJy329ohCSFzYsDG4lU96ZH2JTz/pQMXzSIaxH2DAs3PVk8ClLaHccfh7j+x1fPXzG7XjCvl6g8Kx9zJEOcYhzm5HKjr1oyS+cvoozgq+++oSDdMUvPX9AVUd0ywSRWNJeQxdr/F6FWcX0xyVpZEgOF9zqz0l1RywNizbjtOxRtxFSOqomxl1mJI9SvIBux9FM+sg2JIbYkUPVguK5pNrXPN/JyPZKlHKUq4SLRcEXb77g1dEFiyK9bpOtTLTJphfURmOsQknHZJFjEo1fQzLxJMswn2AjcZ3eJ+xVkp/HefA+tMB6HdJLXOSRRlw3RArHhmR7somjeFqhL1eIzuC1wvdyXB5jiggXS1wksInE6bD4sfE/X0vJFf6S9/7/KIT408Au8BeBvwlsCfcWW2yxxRZ/YEgD0y844nGN/s0eKgWEoR4pmjGIWuKdYPAhVHsCm4YyjeKZoDr0jN4WrG5DvBDBMtGzKOmpM0imkJ8IWqcoH3RE34swnUIVhjxtWa4y4oOSUVSRSEOiDJUNKmaiDemgoZ6mJFGHiSVtHdHUEb3hnFQZrBWoSl57uKVw6JXEWo+7UTOKKp77EZG0dEbhvLxuSoyk5Xk5YphX1F0gFnFqeGd6wGfGZ3xu54QPtWFRJ0zrjN0sLEZE5NjJSp7NhxwvBnSt5qhYkD9sef/4gM4qnBPItWL4xKBXlssvJJtMZEW972l3LUiPXCl6jzS7P+jQpWV1K6a8KaCRJJcCU4RdBmEEehVSKQ7ePGcQN2S64+PVmHFa8kp+TuMi5jajp2py2dJXFdZfqcqWVIRkkQkFyjoOkwWVjRjqip6qUTiGCkqXMLcZvzZ/wCCqiaWhpxoOowW7ek4hm2vLBMDcRUTCgYdcWCQwko59tcYBtfesneTc5TxqDxipkpnNQzRfNGVmC355+grzfs6f6H+fkWyQeNZes9x4z/syDFJ2XpPLhpEsuXQFtY/4zuouX+w9o5AN0yZHPM2IFh6TCta3PDdGy+u/PcYSAWvvOLcDOq9Z2ZRnsxHJhSSbOKJ5B0qAhHo3oh0IdOlD3vV+i5CeL919xqv5GTt6xUhWzFyG9ZLWK96pbvDW/AZvDk64bHtEynKwv+BkPeBbbz/gzv0LlHRMpykeRbHTQtpineCV/Qv20xWdU7ROsWhTjJesuz6X65z1MsVPklCNnnqKp4rqIKSSxB8p2rFHtgKTh9eMzR3Lhx69kggrqCYZIrUMhyXOC969OODeeEosDdM6LKx2s5JBVJOpsANy2RR8ONlFa4cdt7QyZiUkVSWJ5yEtRFwR6I0nGwtiE6PNxiKiDfgmLAaEA116sktPftygFzWiNSAlrkhxmcZHEpOqQLS1QHj/23zgV7axT4sfhXBf0fh/Dfgb3vu3hBCfntpvscUWW2yxxSdgCo/eqxj8bIEXnq4fPlpsJOgGIXPYOk9+7ph8RqErGHzkufiqZ/CeRDiHTaFNw8CfrCQXz0bEafhk1GvPR7MdentrbDbCT2OOXjvnclFgFxE3H85YmITaRiTK8M3je6zLhPvDCRdxQZNErKsE7wVZ0RBrS9nF5Lqlmydw0GJcsDM4H+LQbOJ5cOOStUmwTpIog9gQ7UFcI5RnUuXcH07QwnHi+hir8B7OLgbcG0yD3SJqeXo2Ji/CEGE+qJHSI/EkkaHpNK/dOCOWBi0dN3ZDwsrzJ7sUp5L5A0nX0zTjoDbKVpBMBP3HCi9g+QBWrxiqI4UtBLKCeC7oBqFcxRx0CO0QFzHVbYsYtgw3rYCH8YLDbMFRsiCVHbWLSIRhXy/Z1wtmtqB20fWwIxDSQpy+jvZbydAO+XGzSyQse9GSPb3gXnzBm+kL1i7htBsytxnH7ZDjdshBvOC15IRChLztmc+Qwm1IrSMVng6oN1aAuYtY+4hCtOSy4R9Mv0BPNXy03mU/XZFIw7ce3+U3Jq/ya1+4z1+48U0GqmYkQ5FOLhtmLud5t0Pn1XUNfU819FVNJBxvrW/RWM0rvXO+17sPUlLvCvydiq8ffES68a33ZUsqJBZPKsJj9p3ZHdpW0Zt5dLWpMBcCYRyL+zKkxfQFpvCkecvDvUu+vvOIh/E5+3px/T6qfcSFGfDW/Aa5bnlrfoPZhsRmUced3pQ3vnTGTrxm0hboo48BiERYKPZUQ65aeqq+rrafm5zH5S6pCoU6dWQx4xbnBN5DeQf0QlI9aJGJxdUq1MlXEh954kuFtCFy0Csf7GOXMbNake+WlLOM7z8bkB6t+czBKakyGC8pdINxis6H1s974ykAqzZBHTnKLuJ8MqA5TojngXjHC48wYYBSbNolhQppKdIEf7aqPenckV526GUL3oeWyjyGIsamGhdLbCqwkcCkMgxuJ6FN86pY5wrShnzvT4Mf5eLfEkL8HPAA+F8KIfpci/JbbLHFFlts8QfH/t/NUK2l3AvKZTOQtEOBbKAbW3a+o4hWhnZHMH5LsL4ZpKvesWV5O0TheeUpXkB5yyMaiY/CQFc7lKxmBWneUt1yZMeK9E1Ds0jIn2rsA0FPtwx0Q+M0dRthWsW8yVgsM4TyNOuYYlijpGN20aO4FbzXV15T5wUPhxMWbYpLPYxa7vamHFcDenGDcZJYW4yXLNqU0WjNqk4Y7lWsuoSLaR8hPIN+STZYU6iWpQmlNq5VrG3KMKt5sDsh1y3zJttstXtWbbicFJ43xyecVgOmexnd2QBfCrpeUAD7j4PFJn1qSSYtzTimOtR0o/CnpKcavYbVqx2ilehKED2KETZUfpuB4fN3jrlfXGK8olANQ12FavaNFeR2PKEva87NAOslFgkenrU7XHYFd9IJuWpoXMTUFOSyJRKWnqqvVeCly/ioOaBxGotkadJQhKMbhqqiL2tOuhGp7DjSM3LZsHQppUuY2JBsMrG9YN9Robp96TKWBIX6jfyUX5y8wnfefoBaKsZvXuJaRfFC8Q53+L82Kbd6c/aSNVqEGvdJW6Cl5bQa8PWdR+xFKx7Xu3y7usP3nt3i87deoKVj3qWocYONc1QN3sFwEzO4KyuG0iKFCmq87Hja7ZCqDik97VAQv2PwSuIiiSs07Si8ple3BWbYcdAr+SN77/FGcsyBWrL2MTOfofD85voee9GKi7Lg/Pkt5EoR3V7zlVvP+OnxB6SiwyJZ2ZTXslMg2HTcZni1tPF10sxQVZQ247zt0TpFLC2f2TnFjBSFbvmtyxs4L5jMevhlippqXKYQRqBqQe9jQbzYLHhrS9uXLB4oujst8X6FtYK22fjhBVQXOd9Z3KM3Lrk5WFBvdplmdUbnJJF0dE7ivaA1irqNcJcx+YUkPffXBNvG4rpi3l8NTqqXarTX0GUSdxjjbsXYKCTyuGhTT79JLBE2WE1k64lKT7z21wOVflOkY+NgVxGfkgn/KIT73wO+DDzy3pdCiF3gv/fpDrPFFltsscUWPwQvqHYlxakLH2gKukJQHXn8nZokMkCPekfjJSzvQzu2jN6SSONCNrGH3d8UxCuH71nURGNyh8klzY7HT2NE0eJ7BvEiZtkkiFqRXnjKJiaTLT3d8J3ZHawV6NjSWE2atXSdwjWKvd6a2mgWBMXwtOwT91vaWUKkLPfyCW91N3CFZTQq0cJRdjGvDC5YmoR5HIhj2cXsF2uOl32WXYoWDiE8Huis4sv7L/hwsUfnJKk2xEWL1hYtHdM6Y0bGuolpOk1TRSjtyLKWV3YuWJuEt57fwDQKDg12GZJKRj8QpHPH2VclTit0lV2TkPRUI5uw07B6owMryF4ouqEnWgiSaUhm8HcNxkn+4UefIUtalPQ0RvHVo2cUKpTG5LJlLRPcJ2TAuc1xCG4ls1DxDkHN1iuGak0qO0qX0HpN6RIsgqEumZqCPbXi9fSEC9PneTNiL1qSbmIDI2F43o0pNzXxn6yMP9ALahfxuN2n9hGNizYNlJpvL+7yZD5m59aM9bf3qH9+D/nlCjwM31VUbx/y9uiIrgjFLcJs/L+pRy8F3xvd5+Zr59zszXnvch/TKb7//CZptlmEPc3ILgILc9/NeP+1A76SPyYXlliEbO9ISNJNcc9lXdA9L8hnm6KWTSOiTQTFU4HqHC4WyMKQRx1DVXGk54xkCzakt/zi+g3eWx3wD+efYf0rewxW0OzAnd0Z/8r4PSJhKWSDRaJw9FWF85KZzVm5lKGquBtfhPuMDHGMwjDXGc5LnBckytBYTWUjfnz/KQ7Bo2yX5/kQ7wXWSkynMKVmkWh6jyXFSYg4jEpPeiHRZUJ1U0PfEGUdKjNY6UPwhwxJMmerMMhat8H+5b1ASodpNN4KVGbwNlhuur5HVYJotZnfUBvSrcFuKuev/BmBiAts7PEyXJ/N4KTY7IbIRqDLYHOTXaiT90Kw4f94CSYDrze+8X9BlpIvb74+/ISTZC6E0N77T1ezs8UWW2yxxRYbiNgy/fEO/+2Y9e2gVMtOYPoWeZzg65TySDB/3eMGhjZSHP1i+BBc3NUIA8MPIFna8AFognXCRbC+JWjvNmTvJdS7cUg+kLAsU8SwxWQZedyxsglSBKvGnb0Zzy5HpJu84Js7C148uoG5JUMaiApV1M4L4tjQ2lC6PFQVg6hGpuEj0XhJ5zYDil1C02nOmx6p7riVz2msRktLL9oUoXhB22o6L4lUiBp8dLmLaRU7gzXny4J7O1NWbcJeb82qjak3thIlHdMmp7YdzgmKdxKyM8/ilQ0JyQSNk+y85VGNp9xXtCNodhy2cAgjEKOW0aCi+Y2dQFI81AeO8q4jGjbc25/y8XTMbn/NyWRAv6j5zN4ZnVNMbM4f3Xn3WjGNhLkm11K4TbV7+Lnzim5DO5Yu49QM6cuaVHakqqV04bl4mJ9tCLjkQXJ2HSc4szl9GdI+RvEZl7Z3bVlJRXcdQbgWyTUBL4n55fkrwesNTJ6PiM8V6QQGTy3SZnQ55OfBbiBbh7AO2bmgaCaabqBphopmKJk/PWImjtAl3HpmWdxNWX1NIl+kjH8AunahJGdPkKnuuvRHApGQRChqLyhdzLPLUbBFLMOgsDAeIUO7ZzZxCOvRa+gE7KcrBrJC4UMiC2Hw8qLrcVb2KX9pj97xJj7vj875mb0PAYiEYUet6FAsyRjJkontcSe+5DPiGCnCrsDaJTgPhWxZumxjMWmu4xpfNEMcAodg0aXMm/R6fiFSllUbc9qO8MpT3vBII0lm4TGXJqjG2bGiAto27H5gxSZH27PoCqKiRWtH22hcGerbKTqirKNrNLxISWYSYbkmxzYTxHMfoiuVxypxrTxfqd2hBv5lELfT4XHym/eeVx5yTzsOt4HcVL9v6t5xgBOb2MDQzokHF3+6/3c/CuH+vxCSSb4X7jafB94ChkKI//42rWSLLbbYYos/CAQw2Fuz/kaHe55x8OtQ7QqSUxU+UG3I27aJQOYd8Xsx+UnN5edT2gH0P3bXebxtT4I0RKsQE9a9ViEcFM891WESFG4P9TJh72DBYi/lXr5m3mVM25y1ielHDVFkGSUV53FBqju8gsZobvQXNDuadRezm665WBXIQUdrNHOb8UbvlB8MDknjjmWXMExq9pJQcLJoUp7ORryxd0aiDL24oTTBC25qTT6s2O2VlCam0G3IH24VOrYhQzrurn3doyTYFFJtsE6S6Q4lHb2oIS8aVg8iVKNJL6D33BIvLPWuDnXueSAJXkF2Jtn9vmX+UDP/mmD17pjYQrQKldwmDV3Y9Wc7Hn14CE5Q5glRalgsM36zusU37j/iK4MnXHR95jZjqCqGurzOzO6LCiU8kTA4H1JHrBc0LqKnanbUGoukdhEjVRKrktYrJraH9ZLSJZx2AxYmZaBrJl3BY7XH5/Ln9GXNrlqRy4bH3R4zW1BuGJDC8351wDfP7tEaxSBtOFv0aJ71iCpB71kYnBPO039qKfdkUC2dvz7ZVKNqg1426GlFbi0+UrT7BdVetIlYlMRLT/JuRjwD1QSy3fYkZr/jXnpJLhv6UqA2cqvD0XlJ6WJMp+iHNnO8FAjCsVXtUDW4ZKPYNopEGY70HGBT1KN52u1y2vSZ//0bFLNQCHPyRyx/6tZHrGzCXiQZqZKly9hVK27Fc6Tw11nmFoGE68HQ9WaXIRVBTa9dBBLO2z6JDIvJQjUhr77J+eB0D2sUQoAtNVG/wUUO05PMxpL4XFM8g3awKVkaG0SlUEuFqgXtjsVnJnivK0XXpnTaIzNDOq7p2qBsm9OcZCo3md/BHqXrsIB2WtD2BcWZpTixNEOFVxtCHIXf2/iTVe6BgbsoKNYuCur3VeHP5klCmJDT7bWHCJBhAYbyWAiV8tE/p6bJT+AF8O95798CEEJ8FvjfAP8z4O+xTSvZYosttviXDkKIFPgFICF8Vvwd7/1fEUI8AP42IbXqW8Bf9N63QogE+BvAV4FL4N/23j/+vY7hvaBpNVnWYh4YjscZ+QcxqgXTg+QyeCZNzxF9kOMlHP9UiCIbPnKBkBtPl0tMIsAKpIH0UhB9tmT6bIhNIL2QtHsWL0BNNOLQ0x4act3yYjVkss6JlGV3b81OUfJ4vsPkxZDojkM/XFG1Ec4LPr9/zOPFLlo4tLL0ejWxNjQuxNSN8gotHasuYd6kRMKSqY5BUjNdZ5xXPWJpSFX3iQfaI6XnleEF3zu/wdePnlDZCNNo+sOK6Srn1niO34QL/9bJDT53eMJHsxCIfH9wyWk54Kzs09QRaqloh+GmzSSop8WLlnipmT/Q9J8F+S+eW+avRJRHnnt/S+GloTzQNOOwTa/XMPusx89i+o9DBvPyxyzeCd64dcqdYsputOafTV4HoNAtaRb+ruVG+b9CUK7dxt4RhvNCprYkFS0IeNLu8UF5QOMUibSbBVBNIoNi3nnFTrRmYVJetGNWNtnUpbfMbcbc5HRecVwPUMLTOcXlrAfPMrozQXPT4WNP/kKiS0+ysKEifMOZwgIDZN2xut/j7MclR79myU5qhHF4NMI44osSVcXUBwnJtAPr0VWK8BAvLcJ4Iimgkxt/uiUSksY7Ig9Lb/n16g1+9eIBfhLTe2FZ3FPEK0W0DJaFzcsCpwX1FyoGRc0wqkKLpzCc2h6XG1X615/dY/+JwQvB4q6CyDDQNbeSKWpTtnMnumTpUtY+Cq2rm4ZPhd/YSwqWLsV6ycT16KuKPb2g9jGNi2icZmEyjFP88tkD5mWGtZJ+UTNf5thSIyqJqTN85BE2NDeawmNTSXEcIvlWg5Dh57TAZ57kXGFThRkZ6HWoyIXc+bzBA00Z4deaqA7qMgK6fsglF1aQTCG7dERliFUs9yWDJwZdWUTnNhGLDltEdIWm7Uvq8cshSNVCMg32kXDy168FkwtMznXsoNPgYo9NwBYOH7vr186Pih+FcL9+RbYBvPdvCyE+471/tA0r2WKLLbb4lxYN8Me99yshRAT8ohDiHwD/Y+D/4L3/20KI/5Aw5/MfbL5OvfevCiH+AvBXgX/79zqA9+CcwDqJEJANa5ovGPxJSn4SCluWDx3ZiaL31KM6x/KuxEbhQzGdB/JYjyRRGZojnQptiQCyDfm5+bGnPoop75jgWxaem3cvcV5wOutjjaLyYHYkn9855nuXN1ELzUGx4mZvzlnZpzIRWd5xszfnvO4hBYF0R8G/O9ZrbhVzpHAcl0NWdUIqOzovaazGe8H5quB+b0IswxBl6zQ6sXSdYtrkLFcZF23BtM7pDSu0siwmBcPDE47XA6o24mCwwjjJuo6pLnLM+JxIWSJlubM/5TQxuG8P8QouvuzZ+b6m9zwQy/5Tiy4tJldcfDGiGXsGH8HylqbrC9JLT3bmiCrP5ZsKVYPoBMvXDOluhZ8nFOOGQVzzeBkGB5V0fGnvOUp4Pip3Odd9RrokkYa+qildzJNql2xjUbAqWG1SGQYlO6HovKKnaj7Xe07nVYgZNBkfrvaYtxm76ZrLuuAwW4bmwbYgkpZn9QjnJR/M9ki14agIEXgvLoeID3K0FTgV7APjtwVdLxxbdR5pPC4SeCFIpyHRwimB6CzlgaTbNTgl6XoRNgtNjKpyRIsOPMRzQ1do4mnL4MM1LtGYQlPv6LDrIj27akWEo/Ge2nsQ8Mxk/NriIe//4Ba9xwpdd/SeC2TnN9YHQTsMSTKzNyTj4ZqvHX7MV4rHFMIQb5JFHrX7fHdxh3oV0+WS/KQjXkp29hck0nDR9dmLlozUmnPbpy9DU4xFXvvsI2FQ+Ot889pHKOuY2ZzSJtfP0f30gpVNsQjuZhNO2wGzNuO06tN0EZ1yxLtBAY+1YbnK6OYJohIs3jDISqLXoOcq5F/XAq9DjGA8A3EcYZMIk3tM7lnpNJBZ5SHydEMLPgxmyg56T8Pr2SvocoGuPcOPOoSDZqSQxhOtu5D6oiWydUTeoCtBMpPYVNL2JM1Y0A7D8CQiFACpOuyqyc6Tn4BqPFHlkF1Y2NtYEK896XnH9OKfv8L9lhDiPyAoGhD+gb69UTO63/1qW2yxxRZb/GGF994Dq82P0ebkgT8O/Lc35/914H9NINx/bvM9wN8B/n0hhNjczu8IIcA0GmcVcdIRaUsSGeo7lnWcE80kyYXkxi/XLO8mAOz8wGBSwfT1kJObTj2mB8VZ8CNDGBrrlvl1Fq+uPdFE0t1pEUZzMevxlbtPcV7QrmLkpq3y/d4+/aOGh8MLTsQB52XBnf6MRBtqo1l2KX3dcElBaxT9tMEhWJuE0ibsxGuclzzd+Letl1Q2ojEaKT3Whizug3TJdye3+NLOc5K0Yz1PeboYsjtaMa1zGqspkjY0W/Yaahuxn625oGBepQzjGu8F0UwxazNiaTktezwYTKiN5iIbkFwKmj3P4hVB14vZebvBxZp2qJm8KWn2LMm5ojoI2/TCgslBl4Lpa5L69Zr+sKKfNjRGM50XYUHjBd/84D7DUYlxkqqK+bmPvwCJpT8u+drRU/KkJZdhIdJ5xe10yl60vPZ557K5ziQHNsN89TXRk3gSaUiVoZTBVnOYLfne6U2slVgjSdKON/dD+c7FrIdtFE/nRySXEpH4YBupgpLttEA1Hk6CPcltYt+u7B+6CjXqXkvMIGX2puPgv9Sklw02kdRjRZdDdaiJVjE7b3fX9pFuGJOclkTrErXSyC7FZApRh9r30msK3yKB1nuemzGN1URzSXHssLEkXlik9bhIggwJO+uD8BxlTvBmfszdaELnJUMZcs3P2gHffnGb4bcTVGup9iMuftxyP214tN7jx4Yh+u/95oi+qlnajB21Qm0Mzp3XrF3C0mXM7KZ2XTbksqF2EZ1UlC4mEpbaa5yX4flD0Nc1szYjUYYs7uilDUo6+nFzvRMzMxLnok1qkMdmYTAxRPWBE6HdUXaB1OLD4scrcA5s5vCpQ7QyqOUDR7RUyA7aQdjJys+Cim1jgYsFqnJkZx3NWGOyjGhpQxGOEngtN6klIVc7WViSRUgasbHAZIKuEDSjEI1pYzZecYkuJarx5BeO4Ycl6mIJSgXF4FPgRyHc/y7wPwD+h5uffwn4nxDI9h/7VEfbYostttjiDw2EEIpgG3kV+D8DHwKzTwzMPwNubb6/BTwF8N4bIcScYDu5+N1uXymHji1dGVEbAUWLlMGznN+bMt/Jke/k1LsRNoJ4deWxFRx8u+PiixGLh9B7Gj4cRSdwySa+6yKheCYpb3mSTWSxt4LmM8FXfJQueLTaQ5SK9EzS9TzrdcpxOeALoxeImzWX84IbxQItHJ1VfDDb46eOPkLiqZuIcV4RSct53eNmOsN5ySgqr6vch7pk1SWcz3sUWUMSGd6f7/OT+49ZtzG5bGkbjVCeqolRsmE/WzFpctZtD5QNjXle8HwVfCLeC3Ld0hznDJ8JFl9O+dzOMW89v8EwqblRLHixu4fJA6EsnsL6jufFbkIygfEHHYNHgvHfL5m9UVDtSdoB1EeG7KAkjTuqRY5+llI/S1iMLf0PNZmE1Wsd5XsjogbMWynFC4c4kCw/1zIYl9wazmmcJhL2OrIvEUHpdpua9g7NxPRQG6U2FYbjdkjjws7DVR703WjJ3eTy2h/+1vwGedJyfjIkOo9oDfz6rQycIP8gptlz2KHBLqPrGMTySBKVAr121xaNaO1Cc2NfgQgpGniPrjyydaxvp+iDknbYw1woVOOI1o7LLwn+a1//Ae9N96nO9ogqR3rR0Y40Lo+QdYvoLLKxxMYhm2CrWfuY1Fl2pKX2cGl7ZKojmYSyJmnDgsepQBoBuiwMTuqFxLiQR916RSIsjmDRWduEapJx63sV7SCi2ZPopQolNW3MpMn53PCYxkXcTGbcji+pfUTnNHbjJ5+YXmjftAkOQSljIpETCUvjIhLZUdqEy67gKF68HIaVnlvZjBvpnIe9iJO6z6pL2EvXoalVd6SRYdUPi+TlIsNfxHgFOLAJmDyQbBsHG41TwXYSz8SG7EpcLXFxKLuK5xKXQDn0Ybehhq6QpJeeZO7D0LQIvutoZWmHOqjRS3c9OHldXrPhySII50jriZeeeAX5mdgMsIbF2eqWot4Fm8HygUR/vkd61qP/wsDzTwRz/wj4fQm3974C/trm9MNY/Q7nbbHFFlts8S8BvPcW+LIQYgT8p8Bn/qvephDiLwN/GSA57HNrb8b5ssd6llFd5Mheh89avnB0xp1bU04f9Pnm5+8hv9en/8wirIdU4hLB/m+2nP5EzOqup/ccVCvQK0jmnlkB2bmn2YHVLRkiys4jvIgoPjNl1mWkqiO5UCSTYBDtlOXR6R4H2ZLP3Trmt771AHNDsZuuWXUx8aZ2urGaODas25he3FBbTU/VrGTIxY6Vpapi5ibno+ku7TyhyJpr8hwJy08cfEwkLV+8/Zx3zg9pG41NBIfJguNygHWCnaxh97Dkoiy4OO/z+t2QoXxcDkCGrOBZmdHbb8jyoBoPo5p8f03bRDgrWLySkkxDcsPiTcPqviKeC9phn/IwDIU5HYbEellI/JAvUmQTSFn/A029HwbU+u9E6MqzvA82gtlrkuZOC7VkMc0ZZnXICjcZ35rfDWp+soQYos3QnUVs4gBjpm2fysXXjZJXXm3nJY2LuDA9pl3OpC1YdzGX016Ik0s1xccSk0ckd1c0n7cUv56h3o8wuaAZBRUVNhFvncMrgaodplC4SCCcx2QSpyBZ+kCynKftCbppSrTy175hpwWqEhgvGacV7/2MQc80B9+KyU8b6v2YvO6Qy5ro0oJ1JJOM9+ojvpY9JhKOjlDEU7qY9+f7tENPtAR8qHJ3scSkErHZkVndAXO74WdufQSEchuHYGIjLm2PDxd7DN6KcMph0vD8mr6l+86YKvM0n5nx7uMb9HfWfPHgGNV317F/c1sghcN5icJzGM1DsY/NabykIbpuDd1Ra+4lFyxtRulirJc4BLkKOeoST+cl/aihUG1INVGGQVzxVI1ZtzELI/GZQ3bBUmITj4s99Q2LyA2+VohOolcSU4S/A+mDpUR5mER0hUfaTVY2YScmWnNdlqW6MCiJDgspXTpcFHYzfievtYsERGFxrjpPtLRE8xq5ahB1A02L956h1vg8pTsaMn+YsrwH889aZl+E5tc/na369yXcQoifJmwT3vvk5b33Dz/VkbbYYosttvhDCe/9TAjxT4GvA6NPxMLeBp5vLvYcuAM8E0JoYEgYnvzh2/qPgP8IILl7x8/KjNujGU1/xdPzMe4yoVxFvCWPkAeez/df8Ppnzvgvd1/lw/Ftxm8Fz6Zchy14G4c83hffEAgL/WeOth+SSqoDQbS8SubwRHNBve+YnfZ5mo/ZTdc0B5b8WOJiMJcZuhQs0wABAABJREFUohN8v7jB5/ePceOOSZUjM39dMCOFpxeH1AurBBdlgZKOk2ZI5xVjVZLpjkGvonQxZR0Tn2rKUUwJfP3uYyobMYpKIhEI/NW2vJaOysXsZyuiTWzgZV1gnUTFjiIKpHra5HjpMZmgqSNWNuGwv6IXNfSjmlf2LjFO8uHZHkZ7TAbFcxj8U8nqlqQ68Mg2RCqaPCSTnP20Z/LObiA9hwabCtJThYsDQZJGUB147FGLmEWoNpC84t2YrudJvrAkUpZYWj5Y77NoU17tXzCOShqviTDXw5Sp7ELxTWwpXShdmXU5iexoXETnFRMK9qIlPVUjxebxP/I8enyAdLC+49j7tsC+3UcPBMtXLdFUEi8hWgTFs/fcYRNJPDeIxtH1dUikUCGFxcswPNflIaZOl5ao9OilQrWBqKvKUJw48lPBs++8RrkvOZp76p2gpuppRdfT2F6MrE3wQ2hF77nnrOlT+9CaaIVh7SM+KA95fjaCgcfpQLBdLOmK4A9uB4JmCO1nK/6119/mjfyEQjbsqtUmClCzdCmPTvfYmYahRC8FxUlH/I8VJnU0I4n8aMRBBW1vzK/dH/G912+QRoZYhVz3o2LBTlwy0iWRtFgvSWVHsvFtX3m+rywoQxUGI8KwZUAiOzqnuZdOKF1M5xWJC89hZSP2sxX7GfSThmmZMRVDRCNh2OErBbHDrwOt1Ls1Yt/jjIKVDkQbkPMoFErFHt+GDGzVhPZNaQTFsQuxipaXFewbHiy7zXmETG02STSq8oilR69a1LwKBLvt8F0HQm7iAsPf7Y2BuiaazNj/IGavyLA7PZYPCs4+ZTD2j2Ip+b8B/yPCtuIfIOp7iy222GKLP2wQQuwD3YZsZ8CfJAxC/lPg3yLM9fx3gf9sc5X/fPPzr2x+/09+L/82QDz3ZH9rxKMvjUnfnHFnf8q8lzI9HbB+2uf9yLAyCQ97F/yR/ff58h9/xj9781WWv3DA6H2Py8KH6O73Lec/JnH3K5r3M0whcOOWuo3x2jP4QLB4JZTmeOXJP4p4cXoT/VPPoNdR3gxEsPdIUR16VmXCN5/e4wsPnzOrM17pnXMzn/MLT1+hH+1yI1uwGiQ8PR0Tp4aj0YKVTTivexzFC1LV8ZndM56UO/TymqrtUc1SZG6obMRKhq32XLbczBZ8NN3lRn/Bsk34eD1mP10x9cFXe5gvATA9yX66Ym1CVrUetdT7CiE8784OuVznRCPLY7vLfrIKBTrnGboWYRis8ejGkV0Ixu9Z6rFi8UDQDYPFIj3WpJeweNWRnmjGP3BIEx5XdaOiW8aITpK9m5BOQma0TQSL1xx+3NGe9jjsr3h3ss8oq/nc6Ji1Sfio3GU/XjE3Ga3TFKphrEsiaZDCkcvg926cRkuHlkHpnnU5T8odtHAMoprTqs/zyZCo18JZRLQUnP+EpfdYkZ17ei8El58P8W+Djw0uFpviGoFN1bWSDCF1QjebWDkjrtMpnBIkM4tNFG1fkJ+CMJs0Ci3JTht6H4e0m94zfV2aokuLjSRaCQQSL4KVYdrk/Fr5Kl/JPiISjhMzYtZlCBmyoFUXilhsDDYSVPvh++qVljdvht0MKRx9WYf4RK9oUSxthjtJGX4Y7CT9j9b4zTCqtJLipENYv4m7k4w+9Ih/VNAMFet9RdeHj+8cEu1X6M3cxP3RJLyupKNQLYky9HXISJd4XPjLyFVz7ecGNoPBilmX8/5in0hZvjh8TqHDbknjNHd7U6TwLAYZ/jRFnMcgPDZ2qFGLXUV0ixhZhSZOudcglcfUGpdb1FKFWD8nUBaSiaD3zBEvLap1iKsBWCnwSmxsZyAINiHZ2nAqO2RZQ2fwbctV8Ie37ppgX38VG7uIEmAMOI/vOkQl0ReeQeeIlp+uavJHIdxz7/0/+FS3usUWW2yxxR923AD++sbHLYH/p/f+/yOEeBv420KI/y3wHYIow+br3xRCfABMgL/w+x5BhAGxw296Lpoxl1+Gnbxi9+EJj093mX1/l4v9AU92x3xu/4QvDZ7x5+9+h+/8N+7yK999jd6jMESlWo9qBe44pfkzC9bzFDkLypjrG2QXkZ0LVg89aIfsoHgBkzJjd3fF5SxGV4Lex1DvgneStpEsmpQ3xydI4clkizGSZZcwTkpGScV8kLJcheGxnmp4q7zBqp9wO5+xNCmXTcEoq5keWIgcrlWUJsY4iYslmeoYRSU7RcmkyrnZmzNvMqZNiCkcRjVrG9NZxSs7FxwlC565MfM6JYoNVIIoa8mjlktybmQLvnl8l2oQsW5j9F4FiwKbeUwhEOfBYmFyyfDDktWdAjs2jH4jptmF+euW4qkiP/EhqaMX1O3kewX2cxVKW6qepgJ8J5GJxc9jkJ4vfSYM6blMME5Kzpo+meooTcxH3S67SclAV9xKpsDLanEpHB9V+zxe7TCpclqjiLVllFacLvvsFCWLKGWyzmlWCXKhiVtBN/AM3les7jqclhz9WoM0EZM3FZPPROy8E0in2uS0u0jidRis80VQhZ0OqTahcTAozdHSkB9H1Ltgnitko0K8nNk0SGq5SbTY2JscqMogEoXL42uiW+5LXjy9yZ/cfxuL5MT0OTd9pHC8fvOUdy7vYBNBuS+I1iEDuusHIq7PI95RR/ReafiZwYpi44ef+ZwPmiP+/W/9UV79OxXtML6OwJOtRdYGYa/ulwtTyYCXEp9qVBWRzFXIpn5PUo8K6l2BcfC43AnPS09Q3XBwo2bYL/n60ROOkjkRHrXx3Heoaz+3RdB5xVEyZ39vyXnb53G5GyIdlUEKTyQtrw3O6aziqR1jGwXdJiklsqihw3QKJ0EVXYgZnGtE4vG5xR8G8m5LTfxxRO+ZC7GOXRiIdHm4LWFBWE+06FBVF+whZR0Is1JgLd45hAyX9+aHJOorki0/YRVxoW0VCXiPbztEHIH+dP5t+NEI9z8VQvzvCZnbzdWZ3vtvf+qjbbHFFlts8YcC3vvvAT/2O5z/CPiJ3+H8GvhvfZpjOCVoC4k0nvpOS/zzY6Z+zPLHGm4cTVlkLeXjAeXliF9bpUxu5nxl/JSfGH3Eaz99xn9+6wuIX9jBK0HXD82Jbav46Tc+5PFih9YqpPBM/mRON01DLNndBhfF6BImiwIdGcROg5nGdD1FPA8fdN4Jnp6OEcKHNBFpGPdLlk3CZVTwwfkeD/cuWaQN8yYlUx3GSc7bPplquWwKbmRzfnV6H19Y8kFNXcbM6ow3RmdkquXjaswoqpDCczIZoKXjIF9S6JYfTA4ZxaGQxAO38xnWh5STxTpFa0e15xjEHbluSSPD83LI6jLnmRMkkSGOLetdg1wHxbbrSeoduSEqGeWDjvz9mHYUMpPzFwrZhsxhr6G6bfGRo9zxxJGlnSWopUKvJaZwxPdr0mHJfrFmEFd8vAykLdctHy936JxkVSd85egZh8mCzitWNuSTRyIYci+6PrE03Mrn9KKGs7LPuo1ZtQmdVZzM+wgBTR0htMMlLhQhdWHgbfieYHXPc/z1lFs/vya9UJz+eMrirmb3+xUIgWwMSEGzm2DTkDihS0c7UNieoE0EbU+Qbrzug48cZ1+DdiCJ1jKQWO/BeVysQAlEFewj3X6ObCwm04hEoUoDStD1BGnWUrqYp93udQPnYbLk+XqE7xvmb0A0l+THIftcVSCloNkL5P6Lg+e0XlH7CInjH80/x//7e1/i7t+T6MsFsjEI4xCtASGCk6IzICUoeU24hXOIdYNoDarSIAROS5KZovdCXtedl3uaZifkTGtgLy+ZtDlaWvaiFXNTcOZCCU7nA+m++j6XLZHs2I1XSOE4qQf0dYOWlhdlaKmclBlZ0dLFCik9zgmaMkJGjjgxyKylXKTIpcYWDuKNgnyeEE8l6QRwYVFgUk2ycCQzQ3pWo6ZrsBsThn2pPPsuhOldUegrVVsI8dLa7X24rlIg1Uvl23uEkoAMt+PCyszrjanmX0AO909uvv74J867iobaYosttthiiz8wkoXl6X/dkz6NGb/bEa0Muz9QnH/5iOpLFcWDOcuLguhZyvsXd3h0tMvnbx7zk+PH/Km77/Cf/eQXONvpIQxkTzXxWz1+afI6h/fDFvlBseLuYMpHvV0SbSiilo++CMuowHto6wi/0kgXii6SiWc9j4OHVDtOZgNeH57xzvyQO/0ZJ+sBsTTU65gP/R4/dvMZL9ZDFiblZm9OoRtO6gG5boN9ZJlCLRncqBnkNc9Ox7wyvMB5yaQp2I9X3MjnPHJ7rNuYj82Y2/0ZTafDAKY09KL2ugCmceqKR+F3WsTGV17ELafLPjK1GKN4Y/+Ms7KPOnRUb49oR575A4m00BWC2dAjakl5v0M0kr1vSy6+atErSTcQOA3RJJCy5WuGrooQnQzZyQtobhvaViNEqLt/f7ZPoixCeL5zcpum0Xz+5jGvj845r3tYL7iRLq6H8UoX6v/6qkYRY6TiZjbHeUGiUhJtuNuf8mI95GJVYGqNnGnipURXEC02jYONZ+f7sLolePxv5Nz6+Y6bv7Dk/Cs9Lr6cs/+tYLeQxhFPW1yiqHei6wFFYUE5MLmgHoM0kuy8Y/BhzOw1QbTW5KsOnMMriarNJs/S0e6mrG/GDD8o8QJsLhFWBUuDhdf2LmhcxLnp8zA+AwVjXfLsckTycYJqgn8+XvjgpV8Gz3F5zyGVR+IpZEsuGr5ZvsLP/f0f5/Z3HL23T/FaBc94ZwK5bjvsXp/Z6wXFSYcqDS5W6LJDNBZhLT6JaHZT9Doou8KFPHIbC6pdTb0bcqh7H2pA8+Hhbd4/aJHKM+iXDNKGnXRNL2qINt5ut6GysTREwrEfL7mVzMhUx6zLNhYox3nZxzkZ3nObxa8ZWtSgRUpHPU3RU40GXOKRpUTO1eZ+gk0969uQngmyiad4VhNNSkTVbHIEXSDOcrPQ2KjXQgi893hjEVptSLUM19ksokK15OZ6P6xuKxHOF5uYE+tAhmbST8u4f5SUkv+/6D8hxOGnOsoWW2yxxRZb/BCk8YFsP4vY/b5F10Ghckow+sCCy1g+jCiO1phBgznLsS9yvrO+x9mtPl8/+Ig/88oP+Dn5GbpVQjxPMAXEl4rL1T5f/8ZbfPf0FstFxuH+nOcf75KOa3pFTfMlw42i4sW7B0gL0UqQnXlMKognCpt6onFNs455Xo74eDLm7s6Uo2LBedUj6zW0Hw643ClYNjGVjblbTDmpB8yajFf7F6xtzMHegvOzfZTwVJ3Gl5rOKRqh+ehyh8N0iRIepRw3+gveOT6giFve2DsjUx2N0xRRw0frXb4x/oBz3ef2zoxZlSGHjrqN+GCyFxJCkpB9vVyntE7jgRuDBe8NB4hGUN43FI8iTOFwAwONRK0U8UzSDMGnDnWpMJknmQqqQ0+Zhsez3ffotUR2gvWdzUDZWYq54fhousNqmZIVLTtFiRSe/dGK07LP+5f7xNowqzMGusFFkqkpuOh6rG3CSJcsTMbH5ZhYGi7rgqqL2JElhW45yJd0TpLFHZO4oE1iWiPQQ0G0EGSb0Mns3LP3Wx3HPx2x913F0S9c8uJf3eP8qwUHv7HCKxGId+vILlrafoTJBL4Q2EgEG8Yml1t4zfjdFpMnTF/TSJOiKoe0Dj2tQrTdIMElwS/tI4lqHV1PIxOJTSTlTU/rFE+qXb4xfJddtWLmQhtm12hE3wGSwUeO8igQuGgdCFxyqtm9f0EkDZe2x5N2j//7O1/j4FuW/EUVFGnvoe0CeewM3dGQD/47MTu3L7n8J3skkwjhQNqI4XsrcILyZsbirmbv+xYXyesoQq8EunIMPwLVhue27SnSS0HzIkXVUB5mTG+19F5t2I8vSaThvO0zbbJra5CWjpO6f52WM4pKjpIFl22PdZfgMsGySiGxyC5UvNtIk+2UdDLGDCwoj1wpdBnq11UTEnTiORQnDtW6sEA4SjC9iPTFEjlfX7Vobf6xbOwenxwh8Q7vRLCDbLz3IorAGLxxL4m28/hQxwkykHXxidsgivGJDk2W/wIU7nDHQizUnycUHrwJ3Px0h9piiy222GKLl2hHgvxRxOBxsAkI4/FaYDNJM5DoEtITTfrtAZMvOXzPILoINdM8t7v8bJ3w+u45D/cuOU76ZP/KFOMk1klWVcK3j+9wdzyl6YWEhfsPzngxGdJ0mrqMOWkiAGQr6PohJg4B2YnAFIL2lkCexxzv9smSlqfTEV86ehGystc5nYHjZZ9iQ3QrGzFrMi7LgtcHZ0g8t3pzTpM9LhYFSWyQtQyZxckqZF7biEx13NydA2AuMk4iy+dGx8y6jEWXIvEs2vj6GGUXIUQgAtYLTKd5deeCaZPTWUWeN2jhWNUJedQR7VW005R41FB+zpLmLd2jPv1HMPu8C4uLlUCmhvoGxBea9T1L9kJR3jb4SCIaSf+joCqbTDD9osSPOnYGa06e7hANGoZ5xbxKKcuEuokYFDVZ3DFMazLdcdb0cAhelEP20xWFbmicZm1jWqs4W/eo2ohYWz442edpOqJcJXgrYaXRuzVyv6StIoyOkJ2k6wmSqScqHTaT3P3Ziid/NqMe7XLjF6acfn3E2Vd6HH5zATr4uK982MKHvwcHiGBRMVnwPAurOPrVkuogYXUU7AvSgso1LhHUw038XOXRdbCpRGXIrPMSek8Fjx7s8pNvPGakSi5tj5+bfYFZl5FkHXWuyR5JFvclNg0xhtEqDHl67bnXnxIJy8qm/CdPfwzx/T7JZYlcVIFQRvol6Y407ShGrRSrMsUdeqrD0Og4fN9fE0/ZerpeKH9xkcDGcmPPCRGINhZ4KYnWwaqha0m8knS5oGnDgPLpqs+qTUiUYTddk6ow2DypegD04tBEmkgTIgKlYaArvjh+TmVj3l0ccKEs69RgqwghPW2rKXaq8Fx3Epc7OhWiPEUpyU88vWOLahyqsuhFjSibMAi7Ic9IGWwhV7YSKfHGXNtDrv3Zxm6UbBkeFxUsJN65ayIOhO+lCNcXAqE1XilEFOEdCPkp2Ta/D+HeTKb/OQLJ/jGgD/ybwC986iNtscUWW2yxxSeg15BOPPWOZPBx2AI2qcKkgQRUhwJdwu731whXcPGTksHDGXUbEQHOSR5Nd9kv1twZzKmtZlLlJNpwuL+8Pk4/ajivCgQw7FV0RlEaiX4Ro13wLIuDhnqakV6Ggh2EYF1F5FPB5HzArZsTYm05rfpE0vJgPOF7gwGrpwPK3YZ3peNre0/Q0pFow9okVDbi7dMjov3gxe6MQuw3TOqc/XRFGhmMlzRO89nxCR8u9sBBddJjfSskmVQm4m4xZdpmSOFCOUzU0UlH02naVtO1mmFU01rN82pIdZGz7q9IIkM/qvnJu4/5VfeAror48Vcf89Z/8Qa9ObRDSA5L3KzH4gstD29c8vSbt4I3+h3F7HOG7IXGaUimoSCk6wvmP94QJQZzlrEaJsjMcGt3zmSdszjp0ztcYYzCeZheDJhEPfbGS/pJw3ef3+LB/iWRtCgciTS8lp9xK51x2gx4tNzFecGdwZR1l/Co2kPGHW0j6eYJaiVJVpKu51CVIJ6HtJF6JxAqk6Tc+y9Knv3xgud/Ysytn53w8b+xw/E3Btz8xxNsL0FuXnsmDRQomwbVtO0HH7S00PYlNkmJVpbhYxPIaSqpd4LN4aoavh0IhJfILjRaOh3aFKOVx8XBBvS96i4Sz29e3gqBJ9oiUku9p8FDegFdD8ojQbNnEUYwazOO2xGVjTg5GbH/xKOXgWT6OCwUEQKKTdTiRc3DvydodxLiSYnpR7hIEE/bjeLraEYKr0OuOARLCT7cZ0QYONRVKIoxPUVbhLjM9Y2wCIjOIi4YsOw3ZEnHqou505/RGE0vbthLVxin0NLiECy6jJN6QKFbHi93sE5eRzwiPEK7sOMDWCsRIti4RGxxkcJ2EmEFzVggO0X/edhhkOvq5T8RY2Hj0/Yb77aAQKS1BmvDkKTkpd3kyoMNm8WIeqliSxk82lLioxAjiQhNlS5WYXdBbVoxP+Xg5O9KuIUQ/w/gG8DPAf8n4J8AH3jvf/5THWGLLbbYYostfgd4EbJyuwKipaHr6VCXnQnqPYGLPNFSYFPN7HUY/VZE+2SH+pUWpEcllrJLmJ4OSIY1g6KmnzRkOnwAN1azbBJao0giQx51NEbTWUWcd3SZpv+RYvGaQfrQttgNQwW0iy00inrfER9HVPuaqomRPc9FXXBjsCA9WtN90EcdWs4XPdgDLRxvjk+pbCBF3gvaWcLrrx7zYjEgL2qqLkKK4H49ShecNX1mbUamO+Reg34/57zp8bB3waLNaJxmGNeULsZ5wd1iymVTsG5jlh8PyG+vuGxyzquCNO6oO0FnFf0k5By8kl9wdthHy0BIyldburMIm3l8GREJyIcVk3WOfHVF7+d6oe3PCVQF7aGn63v8XktvUJFZSblIGd2fkSctB/0V1km0shQHa7R0pJlh8v4OxJ69B5fcH0549+IAayWrNuFZOSJVHVo4PpjtkUcdDwaXvDo4Z95lvHe5TxZ3HOwsOJ0MiM800TrQonbgEVZcv4aSZYj8a3uS1W2JSXPu/OMVxz/d4/Gf3+HOP1zz7I8VPPvTO9z45RKnQkqM6sLCykYh39kLsKnARqC6zfCoUEQyRM2p2iG78L2LBCaTGATNQOB0iK7TtUe2oUxoucj45clDGqu5XczIoo4nZzvY0wy0J5kEou0iiJewvhVsO9mbM+73JuSyDQ2b7yeM3l8jWoPrp9g8Dl5y52h3M+JJHYYnhSA5r0GK4NN2HtnZEJeXRaxvBOuKV+I6peXKwy1NUOivFhJOfeLxnXH9eJc2wkwilsCssFzs9ujlNUXccbLsM84rtHC8U2fhtW8UWll28or9bMXHizGxtiwWPXACkYWFtmsVMra4dYSoJEL78HvzMkXGxhIzStESRN0h2vA+J4p+mxrtlQxeba1C/rYErzYke/O3A+FygnAdwUsifWUv2bwmgN/u7SbsEvjfftbvi99L4f4sMAV+APzAe2+F+LSOlS222GKLLbb4XSDDB1q8DLFrzThGdp56X9AVnmQSyM309YRkJhg8MTRDSTyLWf1Myd2DCWUXMV9ntK1mmNbcLaasbbBfxJu6wUZpaqN5PhlijcKdBFVQGcHqXsid9ucarzzpZfAup2caYaH7ygr/UcFyldFVEfd3J5xNBrz39DZ6vyJ5fcH6rIDI8db8Bss2YTdZ0zqF84JRr+TkMuPR6R6396cs6oREG06rAYk21/ezNHEgzGlHOXI8Xwz44vA5WlqOywH72YqTZshp3ed+MSFWhkFacxF72lZR24j9bM0FBdVRSR61aOlYduFvvZEv+GfvvsZXHn7Ml159ym8tH6BKgb7d0iYxpoq5feOc945vkhSC8mYYXGt+fIVrNUxjxGWMLRqaOoZWMn88or29pOsU4sOC7naDTgyViVHK4VLHzQcXHOZLPpzusVqn3N6b8crggrenh6TacJgv+dLeC6RwPC9HPJ8P6ayibVVY4EjHznBN+hNzTmd9zHFOPJPkLwJBFDZYOFTjSWeWZClY3lJcfLFg/zcbJp9JePTfzLjzjzpe/LTmxc/kHP5GE6wbG6IlfLi+6oKH3+lNNnYS5gnq8UbV7sJlpQE818OR2oR4OpOHyxA2J4gSQ6o6Oqu4bArOlj3MZQoi+OIhEEmvodz12NSjb5YYK3m03MX2BG+9f5tb71pkY/BJhBkkQZk2jm4npe0rVBOh1l3IoLYebKg/RwbyKJynOsjwCnrP/IZwB5XepCElKF469NpsLDcK3Tjihd9YZMQm5xqSucAkApsKhFPUez2mBxnrw5I4Njy7HKGUY6dXspOVnJcFibLM65QnZzvsDNdYJ5CZwS9ifKOQWXhAXRsyGlUjUFNJMg3/G2TniCp/7S/3UXjsfJ4Eldn7Ta37VeNNIN1+Q6aDdUQE69DmstfX0eK6FAc2i5Ervr1hvNfkenO6WpB49c+padJ7/2UhxGeAfwf4R0KIC6AvhDj03p9+qqNsscUWW2yxxQ/BJqENMj/1rG+llIcS2V0pfiEqTVpoRmGI0kvIzg0mi4jeyklunPGTu485b/t89+ImT852WA4T7g8nxNLgvEAJx/miRxRtlDQrcJkD7dFnejMICMUTT9fblGZ00Oy64O0uI8TNhpvjJXrXkaqO2/tTnj6/iWk1vbxhLT20EuslAvjexU1eG58zSio+XowhCb7S5xcjsqyl9IIT1+eoWGK8onWa1mmUCOT5wedeoIWj8yG3e1pmdFZxkCx5Ph+yk6yRwgel/kLR2Yy9e2E7f7reI4oM5+seh70QMdh5hfWCg/0FzgsuqgKx32AmMcoLilfnLC4Lns+HyFrS7EB2KsguPOf7Ed4KosOSbpFQvejhU8fgBxH1vieJDOVpQdoJ+sOK1eMh7IYaez1sw31Ult18zZ3BFOMVj5a7TBYFadJhnSTRhrNlj+U8Q8eWYb/i7njK+bqHsZKyiZnOQ1KJOqip+xpcjGrCYJ0uITsXRJVDdp7RBx2rW5rZKzE77zTEy5gn/7rk5s87zr4mOftKwv53GtxAb5JKQkOhNJ506jCppO1JnAYkRGXIejdJIGY2CkRZtcFmA2DTQM5NFloNu0KQJB3OC4oo7DS0ncbHjsHBikXew0uNi4PXuhsE/3cvr+ms4mzV4+PJmPR5RDxvNvXvCpMp0uMS4T0mVzRDSToRYH2wZPhwEt2VZcTjEk29o1AN5OfB+uJlWKgI59FVILUAwoQca5TAbRTgQDZDfne09uHvnjrqkUSY8BglscG6YAsxneJs1mNWZuRJi5MOJR2jQUnZRtRVHMi1Ciq2n8f4xCGi8L40uUNs/PnCieBtV2FRIxIVPNXOIzqL8OC1vCbNXgp8JK9LcK4WVFekWfjN3yNfLiSc+u3/l17GKW5yvvWVv33z681t+E/nKPm9Pdze+3eAvwL8FSHEVwnk+9eFEM+89z/16Q61xRZbbLHFFr8d5YOO6g0HV0NIPmRg027KLIxEVhvVrQwRatWeYPSB48P0HvIbnv00RP8t1inzdYYbCGob0js6q8jThrJOsEYRJQYfW+LYYEaKelPnLpxCWJA2+FVtHgpV9FmMcPC83SEZNKzzmF7SYIcG1po6jwJxsIIb+Zxff3aPttG8D/zk4RP28jV2TzCd9vBWMOxX1J2mrGPuDqa8PT2i7CL28jV72YqTyQDnBYsu4Um5wyCuedKNmS9y3hyfsFhmLEYZgzjkd3cjhxee0sTsJmu8F6yXKf39MIQZK8PKJrROEyt7nV4yHq5ZJx1aW9ZlQu/dmPILlvy5JFoGZbM8FPRGJf204cWTXYbfj0IT5bMIF0P6uRnT4wF6oWh2LM0sB+k53Ftw8myHqN+wk5XsxCXvT/aYTg6R2mMrxd7RgnvDCfM2Q+K5N57S2z9hZRLWXcjhFsJjvcBaiTUSagmXGex0tK9V+HlM/lRRHDt041FNINwuEmQTx/pQMn8Yk04dR78oeP6vOg5+BaZveiafTRi930EmsdGGYPmr1sdgDeETpMrp0E4ZrA1c+7VVF4h4OwzkX/igktb7nu75gNO0IVaWs82izw4amlajJxqvglpucg99w+t3T4iVpTIRH1+MaacpWRdIvYsVNo9QtQtke5hgY0GycCExw1pEa4Lq6kBsisF9omjHMV0B2bnb2GHkJxYNIRoQT/A5synKuVKLN1XpurTgN0OdKthpbBzu/+BdRXM+ptmz+NyS9BoOhiuk8JzO+1w2mrxoWE1zxErhYw+RQw1aBGDWEaIJMYDCCOKFCO2hzztUvVG1JdeLI2FD+6dXIWnl2gqyUZ2d2thIhMCrzS6CZLN4EJ/4no0y/tI64jdEPEBcD2WKzUN09Zr45HV+VPxeHu5/B/g57/0lgPf+W8C3hBD/U4K3e4sttthiiy3+4NAO3euQyqGUw3uB6RS2VfjYoWKHlOH86kDiWwlOgIfqhkSvBO8dH3Da7zPKKgZFzapKeDzfYS9fI4SnqmLIoL7MSM4UXc8jjmp6acN0maPnoa1SGihvOoavT4i7iMhDtUrwFzGiFcSnEb4fcq9roxGxQ2iHMRJRK8Sw5bgc0ssaZh/2mADVXsRFGewoNw5mHJ+MN02KhkhZxnFJazWn8z7jtGJqcqyVXKwKjgZLTtYDPj8+Rgjo9WqU8KRZy7ILtpVFncCgg1qx6hLGcYWUHhVZOqtIVceiTbmXT+jrhpu9ORLP2bpHFnUUcYuSjuffHbN6aNgbr7m8nZCdSHQN9b5H1MGLrmea5UOHTy31DUe6W1Ef9yF22L7Dxw4qhRgYzi4GRJeabH+Flo5feXGf5Soj6zUcDFYs6kCmV11CP6q5qHq0TvHB+R5p3HFzsKAxmrrTLM96iFqiaonTHh955FLjtcJrz/r1lm4QkZ5JsktBvHLIDfnOLgWrWzIs2izc/HnJ8Tccg/cUi9ct+IjRow4v5bV6jf8EQSOo1sL5ULQjg/3DZEH1VA10OtgrbBISTnDhdlwMXjteHI/RicUsI5AgM0O31jCw6KXCah+I7lIzb1Ii6XhxOcRWmuyZDg2YkcQNYqTxSOsw/SQU10xNINCJwvZThHWb6MNQP++1pBvEtH1FdulDy2gaio906fE6JJcI5182w0Ag8ITrXzVnXtlQIOwEJDODtIq6UngVSKpsFNmFJLtUzB70Wd0NrwtZS9qPUnQCZq9DxhbOEtRJhE08IvbITQqKNCEtphkKbBQRlZ5k7ogXBtm6YHlJ1G9TsL3cqNtKXBPm35VUC37bdZzitz3vV5DWI83L38vOI9xLa8mnVbfh91a47wL/iRAiAv4x8A+Ab3rvPduUki222GKLLf4rQgiIk+66da4uY6TyHB7O6MUt46TkZD3g+DtHxO3mg1KHD2SvQh22P864nKRcFn2irMN0ivq4YLJbsD9eEseG9vtDevPQTqjXgm6dcbIbkx+uaY8ajBO0e4p0t2JyPETNNdmpYNCGJA8be2zmcY0mGlqGSc1qmFBVMeYiw2eW8XDNh8/3ef32KZf5GP005fjWgJu9BdYJUm3Y3VuyrmNibVlWMa3T9KKGV/ZDmPTjix12xyuqNiJRhmWTUOiGG8NAQB+vdrgznqGl47IpqNuIol8jBp5ZnbGThJr4S58HG0ey5uPFGDcURNKihePD+S7WCfKopRc1fLwY0xwaZNGxrmN2fkuwvgnL2xafWeRxTlMK9OsrpHSkcYeSnrrTqMM15YseYtji1xGDdzWrr3a4dYTvOWJtcV5w2F8ihOfh+JIfnB1SlzF+knBeDNGXUbBp5A56BptJ3iv3ATCNRmaGaGRoJhlqFXy5LrfgBHqmsLmAV9esihxdC4STxBsFVHae4oVjfSSJl55mINj7luDyi45oJpl/sUOXmnTu0LVHtcH77IWgywUmfal0QrA/mcJTPANVX8UIius4wWgVrCVdz2N2O0Z7K2bHA4wXiMziG4UrNcSOKOuQu55B1jB5NiLeqVmUKXnSEceGahnhJeTHnq4X6uVlG8ivi8OiU7XuunvFxvJajfU6ChGbG1KZTkxodR0obCIwKbQDQbz0FCd2MwwaimDExiIT0jnA5Or6doQNPmrhPKJ1qNIQLTU2lRQnYHLJ7BVFM1RBPW8EVCE+0RSBVCdPY9qRQx7VyMjSlRG+0jgFybmi/9gTryyqvlKWPTaWdD2F7ORLr/W1heSlIn2tPKuXBPuajP8Q4eaHfhae68cyzAWE3Q5/ZTdxL4c3hQuX+eeWw+29/6vAXxVC9IE/Afwl4D8UQvwA+P8CP7v1cm+xxRZbbPEHhdgUvgjAuGD3uLs35XYxo7IRT5cjzr53SPFCbJS4cD2nXypuXoWtfBcpXBwjco+PPXYRYwaKepWQWEE38OQvAATtCKKZohlFvH7nFOslHz7bR367T7/d3DcTCFtyKVjfCb5ybySXi4JTM+DLd57xrbcegvSIyJFGBl9qzlY98tsr1rOMJ5MxX735lFV5SBF3KBmU/FFWBSV+ucPxdMC93SmJNngn6CfBhnFlqVA47vcmXDY5x+sBt3pznsx3GKQ1O72S83lIiVhWCYs8ZS9bUW9i2tYmYV3HTLoCid942j3LdcqX919Q6IZVlzCb7uHWEnPTsboT2gZ3vyWZfUZy45csl5/VxHHHMKsByKOWRZOy/NkjegKacYpNYfEZQ79f0zxJsQ8rtLKkquO1/jk/UEd8ONmjOg55zbIVqEWETcEODGgPRtAuY4T2COXI+w17vTWn8z560GIijVgr1CIMtLpkY6Z9v0BGMPnJjuLdmOGj4P13KhCm7MLRDgTJLBDq/keSxWsWUUkuv2a5///y16+lQKSClxsBXaGoxwKThwVbdiYQPlzeRYFgN+Mw8OhiQTcOsX6jvRXLdYpILTIKL1wLiNTSH1Q0mzjHWgXSHMeGrlNcXvbAC/RMEy+CT7zpS5JlYHyy26jYZpMffqU6tw7VOWwkr0mzsJ56LxB3pwXlkWB925JcKopnnv5zg2o2VpENYQ8LWoGLQkmQLi3CBpLtN0OYXstQb+9BVQZhFSZX4KH/saPaD3aT/EUYJNUlyE5Q70I3DIUx4uOMToHvWWQl0VVIJVrfENhLSbIIiry0QVGHzfPjfCDbn/w/4v0niHXYffAypM1c45MEe/NcXxdFCrDqE+SaT6jdG/Ub/5JwX/38z9XDDeC9XwL/6eaEEOKzwJ8F/gbwpz/d4bbYYostttgiQAhPpILXdL1Oub0fyLYWjkWbcvzePkff8p+IC7gaWPqEv9ZfEfCXapdNJO0QLtsxei1pxg6UD6TChvSTrgemVUjh0dIwHJXMb0UUj8NwmWo95VEY2IoWm8EpEZR4d54yP8yIhk0YqhSe49MR0UQxlYNN6gKkccfT1ZjbuzPOVwWH/RWLMhTZDIuKk9mArtGcrwte3bmAjV0lSzv2shXPV0M+WO/zanHO0iTs5+vgxdaGRR3SR6LIcthb8fF0TKo6bmZzzso+jdVMmpzdXkksDQNds7YJL+QQ7yS3synWh1xkc6tBvUiQytHc7Hj4txzHP5VgE8flZzXia3P+1N13+MHiiLc+vkH8QUZzYMlSQEB7q6O/s0YJz/rtMSi4uTvna3tPyFQYHLyscubzHDFqSd7NsMnGf94ziJUme6KobliimcRrsLdr2kbz5OwAtEPlJjznSWgMlEYQz4Pi3Y4tshMkzyLKO5b1q47xtzT5ubv2KPdeGOrdCCMFvWOL14rlAwva8fjPSR78XYvNwmCg7MLryybh9lXDxloBJt2Q7zZE+rU/tgqWn6RjtUqhVviYUMBUamRq0ZFBa8dwd85kWZBEhizuKNsI7wNRXD/rI3dapA6sTrYgW1Cdx0YCG4tNTGNYeJos+KydCq9/4YJCLxx0uQyWiM7TZQKTCWwWVPmDbwrAheFkLZBtWEAEb3TwRwvzMg3EpgovJKpzyMZeJ3y4WOHikBAifFC31wdqY78JsY3tMCjb9Z4nnsugylehZMoetfhSkT0PC4t4vokltBAtDLraeNDFJg3mSr3/BOl3WuBi+TKdBZDK47vwfr2yAV0PU4pP/uyvFXEESERwq8mgXvMJcs7Lfz8vifjV8OWnwO9LuIUQkfe+u/rZe/+2EOLMe//XPt2htthiiy222OIlpPCkkeHkfMjB3oIHg0vWJsY4yZPJGB+FAThdebpcXg9OfVKZ+m3DSxsFStWerIF4rjBZ+OC1qUA2AtUEJavdsRTDCi0dxkkOeiv23lzz4WCf3m+mCB8UzWo/tDCG2xekacdKe55ejpDKkfQbmosM2UjM7QaxiHBeE001qyIljQyt0RiziZaTnkmV00saThcj0kETYvCs5sfvPGXRpay7mFFccZivOFkPuJmFAUiJ5/2LPfpZSL2ItUEIz41sQecU75wfMrxZ04tDSkhjNTtpyePlLl8cP6dzCrNJkjhpBuzHK27lcz6I9hl8CJObEW+88oL3/9IBcbJEdQp9r+Ebtx7xd3/wZUb/JGOkoDqA3oeKZicoonsHC6o2op9XrO5V6Mjyrxx+gPOCD9b7PJ7vcHY2REwjXOZoxg7Xt6SjGvUbfYSD9R1L8bFi9dDQv7FkNcsRT1IiBTYL/m1aGerARwZ50NEYibiMwYfnFq7i9hTzn6mYTWP2fkOSXwSyreoQ+7e8pcjOHE4p1vehuLXk6Z8ccv/v1zTjKJTDCImNA3FrB4K2H0qapAnpOl7B+jMND/dmPD0fo5XlzdsnfHC2h7OS1XmBSC1ChEVRXcV0SctOf81+tua07OG9oFyHDEGfOOKko7rIQTt837NWwUet1z40QhqBEi9VXi9CSY9XYYFwlT4i7cYeIyBeOeJVUHRtLNC1J73oUGV39SZEdJt2xk/E5dlUB1K9KcmxUuH0xrbiQTUW2VrKmynlnkR4f704uBpUVHWwfggT3kuqhnp/815daIg87cghnERXIBegKxcWPolEry2q7JDthnzrcJxrZV984r5bj2g7hAmLKZ9GmxIbuSHn8jp5JXjx5bW1xCbyOqnk6u/1ik303ydI+icI+5W15NPg9xqa/GPA3wRSIcS3gb/svX+8+fXPAV/5dIfaYosttthii5fwCM5nPd64fcqdYopximFU85vnt+g6xde/+D6P7u2y/vsHpBOHE8F/evWBd020P+nl3MS7XRFv1QZvbTfYRLapoGDJnZBT/Xg6RktHHnfc7M35yoOP+d6z1+g/hmbX42KPQAai34lAnB14L7BPc+yOQQ07nBFI7XA9g4oc6jiiXseokWe+Sokiy5PzMUp5irgl0x3FuMK5cJu11aS640a24INuj0mTB9tGnTDvMg6SJc/siHSjjPbThrrTZJHBIXhjcMbFquC86XErn/Pu7IAs6uhFDWsTU9mY/XhJMwwRgQCN09zLLtkZ3uDyjwmGRU1jNW6tyYdrvnjnmEK1/NyHb3Dnr2tk13LxxYTimacdCdo9SzyuuXgx5ObdS/KoI8sbiqTlvdUB335yF6lsSIfJQlskXqBuVLhVjPmoRzb3zD7r0GuJiwDtWZ716L0Xsb5nkbsNedbivaCOYnwtyZ5EQITbc7jCghHYTNIlYScDL5AXCcLD4l9fsfx+n+GHoU0yWgcVd31DEq09g/cUc93jja99zNPZPQ6+02HyoJ56ATYSrG8GD79Ng+1BdtAeGe7duuR+b0I/angyG9OLGv7Uw3f4xRcPWXjBznDNZF5cW3HGacXNYs6z9SjEJkoXCl/6m6ZEL0LTYr15jWmoDoP3OZ4BSHTlECYQapMGgqzrzftJCqwCXIixu7JkeAlOcq2Au1givEa0Dmncxp/sX5a/aBnOB4STL20Vm2OYnqLth4QQ4T35ucVkkmo/vD9tFhZiogvvN5t5Wu2RjcBrNt4MIHZQSnQJ6SSkrwjjSGcdwjhcrEKmtr6K+Qv3RbYhkeW6nl0I0BKvYugsGIuo2lCMs2mfvL7c1ffOhTp3CIU5V8U49hPV71etlDJ4R3wSXWeAC+t5tLaf6v/d76Vw/++AP+29f0sI8W8B/1AI8Re997/Kb5tn3WKLLbbYYotPD2slN3cWfHn0jNLFKNXw0XqXyydj+h8ofmX2Gq++dkzxbz7j0ccHjL8ZbWLZxMuYsCtf95UHU4D1gk3nTSAdJlR5Cxt8tyYHWyvq93aIVrA88Kzvr0NcXlrBwzXiw4LsRLL+fE2XXH0YC6pFivDQXWT4HUP+fkx12xLtVVgTijt0ZEL1+ESz2osxpznyxpos7dDKcjrvc293wpePnvPNj+8iBHx0vssbR2fsxCW3ijnP10MiZbFO8ni5w5ujMDI1SBsuVgXOC3byinFSclr1eX1wRqQtl1WOxLNuYlqraExQuaVw1/GAibIsu5TWaSJhWTcxptbMqh7FrZab9y7ZzYIV5Z88eQ3/uKA8hMXDUD0O4HOLWCnadUw0aEi14cNn+yDg9QfnvH12RPq9jPXrLTozmFYRTTUu8ohxUCmTiaA6COquulAh99oG0ukiKG4vqaqY1TSnv7PGLiKiUhAtg51DrwS+1tjE4zKHyA3eCugkrrCo3NCsY0ZfnXD+WsbgVzNy44hKR+85zF6V5Kee0W9p3vW3eP1PfMzZ/C7Djzp8IZEIpIXihaA6DMSRmzVeeL56+zlfGLwglR02l8TKoEWoqj/qL7k5WNDb5G83RiOE52u7T3i03mNepxgrmV30wAqSQRj2FcJT7FREyjL/eIgDxN2SepZiE4W/CP5mbWzwNW+sEldxiF4IhA3eatl6lrfDkGR24TC5IJk5dOmQrQuKsHXgHMJtBiaFAOuvzcyqs7g4tL/aTNNtiLY0EC8cJhNUexJzILHJy/ejXovr96LT4bxu4HGJJ1pIVCWDTWcjK7sYql1J74VFWh+ItfOoVRMU7M4gzCfIrQ33F/XSRO0jDXGElxJiiWjacF4ULCk4B50Ba/HGvCTiclN8Yzb/MH6ImIsoeknG1UbhlwI2GeefBr8X4Y6992+FY/q/sxmW/HtCiP85Lzf0tthiiy222OIPjJvFnJ4KxKR0Mb/5mw+Jp4rec0fvmeDp6R0GP37O117/iHd2Dmh+a0R+Ej6kneLaRvLSw/3ShykciHiznd16VH0VG+b5/7H357G2r3laH/Z5p9+0pj3vM95zp7q3pq7q7qK7aWigoY3FZDCRwY4ty44cIRknshQ5ASRbTmKcxEri2MIOGMutgJUAwgPGDjbQTG56oqmearg13OnMZ89r/I3vkD/e31p73+quqnubcuyG9UhHZ6+91/r91l7DXs/7vM/3edSVJr2KKSQA3YuCF63iTI/Y31myOBwyfOJZvqGQhcXPDcmlor0d1Vg79NBKylc7Bm8bVipDDjvCSuMTh9uxmHNDazVhYLGPBtg7Na/fOuNhnfLe2T7juzUPDq945/ERMnG8e7EPwMuDC37hxV12igopPSezEcfFgnvFlMt6wDivqVrDa5MLAG7nsdDmjd0zzusBK5tEn7CJymmiLD5IxrriRYg535dNgZaexml+0713+bGvfA+Dp4Ln8yPe/O5HjE3NTzx5lXqZMn4myC86rj6hyV4oXBpI31W4DKo3O7oy4Xw5YGd3hfWS0iaszgp4tePu3UsATq9GJG/McU6itSM77rDv79K8VkOrsMOASwNq3MaUjjcDqkpw8wRSh1EO0UUiV96J5E02gvxEoCtodjXNrsLtdoi+aGgyXqFkoGoN+3tL3O9Ycf6L+wwfKYozz/6XHZcfV6RXgfFXNV8Ld3j59z9l8efvUJw76h0ZF2d9c6Tbs2TGcW9vyndPnlDIlj29BGBvb9m/hlOGew1vLW9RW8NuFivNl13KVxbHFLplLy95Nh+TT2q0dlRlineCuwdTnpztUocEJh26HyJ+e34LO/a4paLekQyaWM6ja49LJC7pIxMFmFUkkj4R5Bcem0t0EyjOLHrRRbW49zyLzm+GLoFIVteXe9uGHWia3VgQZBaO0cV6qligaom0mnYkaYfRJ+6SqMzjoRsFdCUQnUCVEnvQ0aae/LHBLAP5RcCsHHjwae9DX3WoRR1JdneDGLtvUJOlBHvtKRdtB3WLMJqgJKJq4m2MuVapjQYpEUIQhAPfH/MbifONcwYfEGkCaRKPsSbbN8j+h8W3ItydEOJWCOFFvD/hS0KIHwH+G+C1b3dgIcSPAr8HOA0hfPpX+LkA/n3gdwEl8C+GEH6u/9m/APzr/VX/eAjhz3yE32mLLbbYYotfAxgmDZ8dR3U7lZY/9/d/gNHDWECTn7UEKdh7SzCrD3n6WxyfPDzh4jcsefq375NeQje6HmoKkg8mEeiYNCJkJEzORmKmKyAIfCVodsCbQNCBZCbwqwyzEJx/l8Ddcex+DdRM4RMHiccbBU7QTRzCC5JzhaoE5X3H4D1N+SkLmUe8U8Ddlm7PIrqojmVnElvmPE5j9XV9MeBnV6/wg2++w+V+zmw+wDnJ0/k41oF3ivP5gINxJLHWSxofbSdNk6GVp7QGGxQvFVd8dXbMy6MLLkXB2Sqn6UyML+ySvrVS0gXFrWzOskvZS0vOqiEP613KPEF2UN4O5A8WSBH4iS98jOKghFXMgn7+gxqfBHZ+IQ4hXr0RUylCraKFQwSmj3cQjeD9lxRIKPZiiorWDqk8+m9POHin4+E/CQe3Zyw/VaGVx58nmFcXvLw7o3OKyzIn1IrdwzlnjUIlns4p6FVTM4sDhC4PNPuBJoBLA27oSMcN3gu6ecpsUXBrb06FYVmlZEnH7e9/zqP7e9hfyMjPPLtfc0xfj1ns2QvNQ3uL0T8xpf5LO7gEFi+DKxzD+3NoDA/2L/mRo6/Qec1Q1RSyQRG4pWdMXYERjneraFR+thyTKMesOeBiOqQoGgIwyhqUCBRFzenphFArxrcWvDy65On5DmnWcTBckSpLqi07xwtmVwPKB57sQlPvxoZJUwbMysfhx354uN5VZFcO2cThRd1XoqvG9bnaPpbJ2J5sy+hp9rne1MADNPsp3UBiVp7BswZ8uE4nseHGwGIsClq/99qd6PHOTwW6jjYul0Ubjr4wBBWoXm7xOsFrQXYF2YUjmdk4BJprRMgQVRc92t+oZq+VZSGian3DHiIgkm+I33MebBX/CED0q2sNSsX/QwBrCd1mTHFzPfzaQ9OTbxXtLZuf/yrwrQj3HwWOgRfrb4QQngghfhj4Vz7Esf9fwH9ATDP5lfA7gY/1/34A+JPADwgh9ojtlr+OqKR/Xgjxl0MIVx/inFtsscUWW/wagZGO2htqb/hv3v0U4y8ZbA7Fi0A30HTDWEhy/8cWzN4/4md+6z6f+8R7mN/2Pu/8xAMGT6DZFdfZ3GKdYtIPkikQPka9ORW3t03Zp05sor4E6VSQXgamn4j3S72dY48c1b5C1eAqjawlLveIxDM4rGi+MqE9cNz+W5JFo1i+0WGepXR7FgIkRUf3oqANKWposQUMH8Pl3pCQRQIvE8cXz26xk9dcOUFzUqDueF6sxkyGFefv7cF4xeW84HJe8N33nsYmySYh1Q4bVKxqbwd4BD5Ibudzruqc+aIg3bfkuuMoW/Ck3CGVll1TUuiWL5zeZlWm3DuY8vLwgssfKHjyYhdXG772/AiCYJQ3lHnO9JOB5Eqx8xVBV8QBvOq2Q5VRERWpZfZwAgqS+yua2jA+XDLMGp492UPvViQ/PYqe6FSSnEo+9skzTrKa9756G3W7RsrAxapg9vYuyVxiPh4VY5U6lPJ88vCEx1nDvMpYPRqjakF2LjDLQDsWdGOHbCS8NUICRQM+MTzbzUhur7i9OydVlotyQD5s4LdUnH99h9H7kuwiYMrA7DWJXkkWDyc0v2vJ4MeGCA/33jjlqFhQO8OnJs95M33O1BXs6yWZ6LhwMepw5VPeqY+Ydjkn5YjpIo82I0CbqKYKwEjPYpnDsCI0EjNVVDuGr08PeeXogpdHF6xsyqPFLvM2xQeB0J6kaGl2RpvBSJsRE0TaQDuM5T7ZlUM1flNLviaPwt6I2oBYi97ZDXkU3tPuF1RHBgJkFx35sxWxNKb3T/dwvcVKV24Tk+eqeJz0SsS88vyDFpNo9Yor42SaYAchVre72PSpOoUpA6r22FyjaoNsUmTnELWNw5LWRQuMdZEsr4mvEwgpo6LdK+EhhKhg+xBbbIUAB8G5SMDXv7cQCGMiOd9cX0SCvz6+jkVL/Q36x/GjGz2+VQ73j32T70+Bf/vbHTiE8N8LIV7+Flf5fcCf7Yt0floIsSOEuA38MPDXQwiXAEKIvw78DuDPfbtzbrHFFlts8WsHCk8XFG/Nb2G/MkZJSK8C2dSzuqXwBva+0uAyzeB5y+v/78CXfvgNDn/Dcz77w1/j53/yDcbvBOq9tWc0RC93nyQA8YNX9KkJ3kDQAl3GxARhY46yzSGRkF4Imv3A8KEgKMXipZgXnZzFNr3uKKaCLKc56kEF84TFfcnkPYdPDOXLHXKl4jb6zw1xny1xtcZ3kvaVmukgIT1XtJOY3JC+WrE4G1INUpgbQhqbK1NtGac1526fi8UAWxtCrWhva1ZdJNvnp2Pmq4w3b51yUo6AuIDZMyu+Lg8JfRTf7cEcIxy1M/gg+dnLB0gRkCKQJJbLMsfvCXwQBC8QgHprQPLds0j0SkVyoUivwKuA7mD+MoTcM/yqYjaUkDr0StIddRhjqZcJw77SfLhf0n5pQncYyM4F559WtMctR1lU0s/uDljOcpKhZfpoh9FDif/hKbeGK6ouBikr5fniyW1WswxpPKFwmLsVzUuKkFpW0xyx0Jh5TKFRdbQU2QD5iUS/N+K0GFHddWTHK7KkY1Wl6AdLZseG4S9kuEQwfBQ4+w2W0fESAdz/597lvas9vnv/CZ8snnGoFwxkw44s2VdLHJJMdGSiY+VTlPBMdEWuOlqnyLKOuoqrwEHekBpLCPGxBqKHWwW8CYyLhlRb7g2mKBH4+PAFUni+Po1q+SfuveDrJ4e4HMQVJMvwgThAXQfM0vUDw2FjtYrKdCTNwnpkaxG2921Lgd0tWN7P8SaS9dH7ZfRNe5Bt9DXHpklFSFVsedSCbqhoRpJuIPBpXMx2o4AtAj7z0UZSx5QXiM/HOu0nmUE6jQOW68WyQ0ABNlXRg26jXUV2N36XPoJQVS4S8c4haxuVbt/bSqwjVNW1Cq76PwTiGywga2LeXxRag1a/gtqtIvleLzjEr07dhg8XC/h7gH8LeNBfXwAhhDD+VZ814i7w+MblJ/33vtn3v+P4//zMI/7jH3/3f4hDb7HFFv+I4ntf2uX//gc/+z/23fg1gYDgpBnzxV94mckzQXkrql7JUtANBHtf7ZCNQ/hAWyTILnDvb1acXd1m9dsNn/qBd/mCeYXx24J2HH2gQYUP2ku4LqsQgDMBn0TVzSyjxcSK2CIoHdixw+YasxCU9xxHPyVY3ZVURx5hPDq1mF8aIhyUn6xZvSxwqaI4DdiBpt112IEgmQrE4xylot84qED6yoKmMaj3c8xCUBVDyB3+RUbY7UieJTQho5loct0hD2uaFwWiE5AGvnp6xDBveGXngqt5gX1aMN3JKUzL46sdjosFuWwZJg2+k3ROcV4NeWN4GnO524LzckCiHMejBWerAZdPd3hxMGYvL9F3PQ+f7jM6Day+NKb69Ayx08JlRpCxmbDZjYNjaqoxq4BaStRRh9UpKnOUZQqNYpLWvFiMaFtNd69ltFNinUQJOM4a3l/uU1mDEoGDgwXnFyNC6pl/t+VW1lB1hukyR2vH7rDk5GKCSh1JYmkCVKcF2QtNtesRSUDsNQxeXbFY5pS1Rp0nmKVA2LigUjXs/byk2R2zGge6cWD31egv9z/UsHw6RFUSPdMMXmq5PZjz0uCKHzn4CgC3zIxMdEg8LYqBaKmDplsPGArPHX3FSNbMbM5hHlXvqkwhCJarDDWqyE3H84sJos+WHx+saCeaZZkyzhq+Oj3iznDGvfSKV4oLamdIJo6nqwm2U8g+LaXWordNCYozF9XkwCaPWi+jJcunGk9vJam6SERdoD0aUt5KYpvliw5zVcekEh3TOYIROJMQjKIbatqxwuYy5tEnbOwnsQkyKtjCCnzi4+ArcUGrXO/lLmP+tnDEeM2LQDLvZy76BbFLxCaq7wMh1yHGHwoXc8mF/yB1FS6ga49sPMm0Qc7TqN5bR2jbD/q/1xaRtcrtoloebO8/Ww9I9nX3Qqv4PSHi4yJiMsuvBt+WcAP/HvA/A77Qq9H/k4EQ4g8BfwjgpZde+si3PxylfNfdyXf6bm2xxRb/COPVw8H/2Hfh1ww8gi9e3sLcKll0BZOvC1QdqA4ksu2zs1uNdD6SBxMHu5JZ4OLtPQaf7Lj/qRc8q24zfATtJH4gSgJeACr09pJ4vkhI4od6N4rtdGYZydha6TZTRX0QmLwN5T2YvyJJr3rLipMIAdWx5+jvgVlmuDQ2DZZHAjMHVeuNZzW7EKzuBvCC/EShvzqhecnTHXeoOmHyJcX8dYEfOqgVLoG9z2uetEesHlwhpccLSC8k9XEkDVez+PoKXmDurTibDxnmDU1jmDY5t7I5t/M5b9X3uJwO2bt9yrvlAcs24dVRzSSrGeiWw2zJV9+5g9mp0cJzURU8e76LTh0uj7sAVZVAALPoLQFJzKNe2wUWLwncnZpx3jC7o1HaEbwgPVxRWcPVswly2JF/NWX+iiTbrfFfG3Ky7zjNJty7fUnnFN1P7nHwInD2mzvEUnNyssNLdy4Y5A1NZ/BB4J1gMGpoW43SHq8C3cdLRBAIEQhOsKpSulmccHRji9sPYAXmXG/UVbMMFC+gOpRc6V2C9uS3FvzI93+RL17eomwSCtOxm1S8lF7yZvqMgYxDvbdUiRFw5hIcgi5odmTFhS8YiJZWKJ7ZXZYu5bM7T5gNc/779jXGWYOSnkWTclXmaBNtMrbS3B7PGSc178/2yHTHQbbik8PnAHRe8crgAusl7833uHUw49nC0C41xYtAmwvSRcBmknTuUKVFWo9PFe1Oipm3qKpDLzyicwSjKO+PWN1S5BeeyZeniLoDo2NSRx+/140T2okmSPos8vXzH5sv8wuPN/H7Lo1NksJDXgWyC9UvfqOvPr0SZGeCbnQ9yAzg0pivL10/a7EukhH01erfkH/ds9Wuj/78QBZ2EAgvI5m/lxBkzHaXXbQKmYUlmTaoiwXUTYwD9KGPAIy+dHxvQVlbb7RG9Kp2bLHsFxGhT4OBj6x2fxjC/Rj44v8AZPspcP/G5Xv9954SbSU3v/+3f6UDhBD+NPCnAX7dr/t1H/n+/fZPHvPbP3n8UW+2xRZbbPGPBIQQCvj7wNMQwu8RQrwC/HlgH/g88M+HEFohREqc1/kccAH80zd6G74pWq948WKHbNhy8OlTxKfh6bM9Jj+fMHzuYvGEFjituHrT0OzGASxvAqoRnP/d2wAk3zPjar9g5wvRguByQRBhE022JtwBECK24AUV6MbgjSCZgariFbyGkEJ5SzB8T7F4o0O46GulkdhEEYaW6jCS0fEjh3gvHt9mgnpP0g0F1VH8SFJN9JDXtx3dUDJ8X5IsDNVhJBG7XxYEpVneh3bfUe9r9j8vmS32sbdbhBXYUWDwSFEfKNxSc76akD8yVC91mHHDbJEzGtSEIGi9pgsSPW5xZxnjBzGkubWKlU0Z6JgyMesyZG7xXvLFs1sIYPillOZzK1b3PG7HQqUxgxYEtJPA8Gng8BctT36bQnQCs4L2MqEdacJpSpcEPvmpR0gR+MJX48e7No7q4zVp3uG/NmTyNZj+zprwcMD45Zpn5zvkHq4+CXQSVUqK+yXzOmU2K7h1OOPZewfkTzTLlxXIgOiztoMXJGm0+Xgv2B+vYLyiag3TyyHmaUJ2JqhuBRbfX6G0p5ul5E81eMieK9pdwexqwN9tX+XB/iU/dPwujdfczy65Y65IhGMgOlbBsAqaQ2EZyY6FNzgEj+wuiXA40ZHgMMKRSsuTapeFTfn04XOM8DReM0kMV03B+XJAoi1NbrisCvbSkjd2zyit4bPjx+ypFV8u77BvVjys9zDC44NgN6t4PrA0+xLZSlQdF5nptB9iTBXSekTrMZWNCnRraQ8HLO4n1HuC0RPP3lsValZHFVhJ7Dij2U9pRxKXik1pzpr8mtL3SUDXBFM4MI1H2n4BO4w3WJdOdUNBuyMob3lULTDL+D5bE9ag43tPuBDF43VlOjeI91qMFtffF77PFTfiRjb4NWHfzGZ4AEGzC0EqgkyR7RizCmQzR3rVoa8q5KKCtosKNwro1XBrQaebdJIgRFTe+/SW4MV3NBZwjf8d8FeEEH8HaNbfDCH8ux/pTL8cfxn4Xwkh/jxxaHIWQnguhPirwP9JCLHbX+8fB/7YP+C5tthiiy22+Oj4V4G3gLWF8N8B/h8hhD8vhPhTwL9EHHj/l4CrEMLrQoh/pr/eP/3tDr7qEoadpHt/yKkbYnctg8OS/Hdd8ex8TJgnyNIgHegFZOdx4DFWO0cPaPnZiqO85qU3rnhL3GX35zQtfbauiCkkm4pm2ZNw26toKloLQJJOo70kKIGVgXbXo0tJ/shQPrDomQIh8ZlEpo76MG6Pq0aSTQPVniRZxFQIs4yqsGrDZpgznQlUG4mLLh3DJ30JiRG0Y4U3Cr3SuAyW9/sFQycxy+iFbXcD/iSDwqGHHS7TmEtNGHbYecLyccHgMy3HyZzL9hZ3D6Y8ExNqZ6iswShPrqI/VQrP55/dxy/jQmLlBPt7S87e7HiwP+PhyjD6ckI7hvDxFq/jwGcyd3EgdCapblv8yy3hMo0lLqVA3lvxbH7tNhWFxRhHe5XRBoHIA6u7EttqxJ2ap7MJPE9pJ4HBU0E31XSfWTF/Hj3phy9dUXcaVHw+CCCWGl0K0kuBcBo7gPrAIw8aTi7HEATFoObe7UvUXU/VGboyo5tn+EojMgefLfFe4J3EXaUIYGdY4kJUNF/OLjg2M6TwOASnbohHcuGGvBAddTDUwXBphzxq9jEykrTOK543Eypn0MJTu0iwAXbTsn/sA/uDEh8E2d6cwnQsbcqiTRmYlr9x+vGNx35sah4udtnPSwrTUXYJ2ji63NHuxEjE4VOHtGBW7rqsxnlkY2kPCs4/PSYo2HnXMnzmUZVDLRv8MKHZHWEHEuHBLB3pNGAHsWHTZn1JTQBdi81OkfB9A6Mm7ia52ORqVpH0hz53O5kHklmMJ2x2ohJeH8RdH9UGQh97LTybRfGaYN8stLqJjQrOWhXv1eb+GII+j1+zue8AsgXVxPebLWA+1vhXNUHmfTFWILvyDB4tr1Vw1yef9OU3wnsCN3zc60HMj4APQ7j/bWAJZEDyYQ8shPhzRKX6QAjxhJg8YgBCCH8K+CvESMC3ibGA/4v+Z5dCiH8L+Nn+UP/H9QDlFltsscUW//+BEOIe8LuJnwH/mz7K9bcB/2x/lT8D/O+JhPv39V8D/GfAfyCEEN92Z7RS5A8N2UUchlp2mno5ohIj1O2Kw9fOuFwMqC9yzEyTLHqSqsCHwOoNj9Y+VmR3CelOTTcekZ0H2onADgQui1vhmLD5sA6m93kHASrQjTyylaSzWJAThMArWN3z7HxFYEcKryKJbnIVfeIKjv6+x6wcQQoGz5vYwlfEWEOXRmVbuIBqYiyb6Bw+1azupky+PCUYhU80qvHkZx3tRNMVUSHvBgJ/aWh24kM4fAguk3gjaScaVcVMcfsoR79UkTwseHEx4clu1KoePt3n4HDBfrriUbfLqkm4aAqkCJyWI6pFxquvv+ByVXA0XOIR2OM58zpldLCi2TFxcRKihWb3q4GgBO1QoqqY7uLPU4YvzSnLFL/jOShqzp7ucP/BOdNKke1VWBtTOLpjBwct9q6FWsfn7Jd2cUeWg19Q7H5hyrt/YAfvJdkLjdeBwettHJyUAVWJOET3akwvaV8VOCdRylMYxyivo4pfRQJtlCNVlt205M5whr7lWXbRbjJrMs6mQx4cXXL40pKzesh+tmJiKi7bAe8sD7D9tojvhxzXg46ht7CsM8wlASV9bI0MgsZpOhdLbEIQWB9J2rLdwUiPFAEfBK1TKOlZtgmLJqXpNJehwIf4e7VtpGfBC577nWsbhQyIzGHvOhYjQ3lbokuBXsVhQ10GDn6p4ukPxTST48/XmLMyqrJK0R7mVEdjpA2k0w5TglcSWyh8InBGYNN+saqjitwN4uJS2rV/m40C7VXfsm5Bhlgy5XW0lKwtJPlZfA27NB5zXYazJsrxF/3lRPumjXuTPiTo5zHCB//vm2dlEHi43t0ScVjapwJ8XLBDfJzWarhLYf6yYvr6BNVMSKeB4qQjOymhHxz9AELYeOU/Cj4M4b7zK+VofzuEEP7n3+bngW8SLxhC+FHgRz/qObfYYosttviO4d8j7nCO+sv7wDSEtTb1gYH2zbB7CMEKIWb99c+/1QlCEqhebamPNOhAeqYYfaX3VH+p4PLugPpux+jWgnZPMxsMKZ5Htay84wkDh73MWKaW0/mE9N0UvYThc0u7VJRHkbyKLHq0/TqvW/UTlP2HNYKooEqJmV8r3W0SWL4EqhZ0tywiKNRS4qSimzjKI8X+F2NGsVo0iM6SaBW3mjfRZRI/ziO3n5boznL23XcZDlL0tES4gKwtonPopcYnCpdrbK5ox5L0QhB09KLml57FPUXxDJpdaA49shHwJKd6syFLOx6vdrhbzLhz+4rCdJxUIxqryYxFikBpE3wQ7OwtN6rrOycHGOP42NEZ71/tUpYpUsUmyNU9jTqsWdwrKM5iPbpq4+5AdqZxdyWDouHg6JKHp3uIWsbEk6ElT1u8lywUmBcJr3z/YyprePLVI0LhcBmohWJ5T3L2vRN87si+ntMcxZSM2mq09Ny/f8FjsQ8yMNCe1VmBaCQocDLQysCKAlRA6ICziveXGUJGpRgRkDJsyHKeduyMKk4WQy7LnMxYOjdmbjK0jDJrIi2JdGh5PXCXSkeu2s3lxmt8kNgg0cKzsgl51sVzAhdNQet1VKwJeASV7ZNXpN/cn/VliARfikDdaaxTBGIja6IdUnrq1lDOM8RSIzqBTwKt6RNLAnQjweMfKZAdjB96uoEmiAHVkaHLBYMXlvTKErSgHZuNmt0NBS4RJPOA6gJt77EG+jhHQTuJ7w3VhOv0kTVRXjdLmuv3tzdiU0IVCXrMcI8xg/2AZ7hxnF5ADjeV495eEnpyfJOgC9YKd1xAr2+3JvObtKL1beR1iZE3/XX7hYSqAsbG43YFXH48gU8kyN6zXpy2mKsarP9VkW34cIT7rwgh/vEQwl/7VZ1hiy222GKLX1Po06lOQwif77sXvpPH3gy7q/2dzVCe1wLZxK1oU0ZilywF/l3F6vYu7UsO87EV5cegnaaQeNSlQdWCqh0xeB6HKUePLclVi7QG3UhWR30Mnxe4cL3lTK+UrdUxnwWqwkLQJDMwS0BK2olHNZBcKNoDS3KuYa4IGuo9QTsxFO9cIZr2mmibXp1MDPZgSLOXUDxaIFYVALtf71g+yNmZlvgkKpPeRLYh+g901XrSaSCdgrSBbqhwiWD8yGHTSK6CknHNoECvUviuBhckF82AWZlz6Qbc2Z0xr1MyY7mVLWi8jgONZ3s8Up5FmeHmCQcvXXJRFSxOhpB4tIXlxzrE1CCOKqrbgd2vOVwumb0mSU8V9S1LHgTOS5yXjAY100pzsRiwe7ggM5aTyzG+8IiVREnPi8sxIQmIVWwv5G6N+VgNTrG6zGl3PHoW68PPvnRIehnLVQZtnyhTpKQ5BBnwpq9blyEquMYhtMc2Cnzc9vcCZOJQyuE9KBVwQeA6jerJbms1aMuyTUm1xUhHItkQZwAfJAurqZxBCo/1Ck9Uqm1QzJuMxinmZUZdJSjt8D62aoYgkDLgnGBYNMzmBXs7KwZJy8C0JNJS2oQQBEY5Oqe4WhYo5XFOEoJgsTK4RiFkACvjLo0JiE4gG0EwRPtxgN45xPlnYpyfqlUcXrwM1HsKU8prFVnG139xGgl/M46Dk8VZvwDQApcKTOXxSxEbJZMPkvGNZesGeYZIqONCIBAQ/fAhm9sFIza+7JuEm3B9+ZfZS26ew/e7DlJ8MNSkvy/CXV9eH3tzCnF9LC9AKIFfezgCm3Za4WPt/OKljCAzzAIGJ47iRcNHxYch3P8y8K8JIRqg63/t70Qs4BZbbLHFFv/TxG8Efq8Q4ncR7YRjYjPwjhBC9yr3etAdrofgnwghNDAhDk/+Mtwcds9v3w/DryXoVUwU6EZw/t0CM9cMnwRsDs2eoNkNhIGjnaWITmL2K6QMdFODKgWDJzB44chPamRlaY4LkssaMwVVZyxva+rDuL8sTIjq1lpNk338l43fa3c9wknMCvQy+lV9CsmVwA4U7a4jPdPRVqJh/pLGmz2GX7uKZDsxiLLG746pHowIQpCeNyxeH8PrY3QVfdz1jqC5M6bZ1Xgl0LVHOFjeUagW0nlfXqL7LX5iNFqXRwLkTYxW0yV0g6g+2rdGvH0nQ+UWf5Gi9hu08NybzJAi8NbsmLIzSBHIJzVSBO7tTXm30RwUK9672EPkjtBKvAGRO5ITTZNkiDz0HvRAUJLkUtCNJUfjJc8+f5vFpzvKOkFNNW3quLM7w3lJlnWIhwWyjert0e6CWdaxvCrwQcNpxnRgMOeafCXITyMLmr8Ko49NmV0NYj649qhnKS4PqMMa9XZOcSKYf7qLw6tfSFh9f4trFLRyM1wpE4e/SmlsT84aQbVrEYlDXCYkV5Ju4hG3az734BGfGT2lUA07qmQk48CpEZapK6hD0udvCxYupw6Gpct42uzwQo05q4aclkkcqNPw2vE537f/kHdXB5xUI1ZtQqYtyzLl9mjOS8UVrxcnFLLFB8GeXqII/PTyNT6984zGG56UOyTKsuxiAc6iTXn2fJfsaYpswCfQTjyhf324NNAcRqYpG4mZS3QZVdx2JPBJn40tordZhN4OYuNryZSetagfeiIt++SOZOkxq6h2r4l6kL2nu7cfbYYX6W8rYgGPdNcqtOjbIIPs34f9/OPNYUl/I0t/vTjeDEfKuLZde77XyvfN/P0NxAe/9urGgsD3nFtcLzzo7ze9DWU9iKma/voKrt5QXH6yoP26+pX+xH1TfFvCHUIYfbvrbLHFFlts8Q8PQgh/jH5YvVe4/7UQwj8nhPiLwD9FTCr5F4D/qr/JX+4v/1T/87/5YZOtVA2EuMWrV4HxDBYPAtVRzFCujj3m7opX96/IdceXnt7GPylwfcFNMDG6rDyUlIcFtief3ujNh6WwYuO7Xudx4+M/0bfJ+RAQIhKHdjd+gptlbM7rxvFc2amkuhVZhV7FYS2fCOodRfj4Hov7iuzSIztY3ZK0O5HUgEa10dtqB5LsLCqILpXILpLq5Z2+Kl0KzMrTjCXVgdj4ctNZoJnErf/ruDRBN4xKXn4eMMuAe9uweJBQv9Ri5wlvu0OCF4RGke9VpMayXGUAnFzuclZYtHG8f7nHzqCirhL0sMUmnlApklnMGZcWZi8n5Jee0fsw/aQnCHj4zhHyXk2iHc5J3MAzKNqNXaXsDNUPTgkiUHYJp1cjeK/gzi8EykPJ/HWPKBXdriO9io/T8EnL1acMi1WGzjrS1LK8KBh/6oJx1vD+o0P8qzXN0jDcK8mM5aooSBJLPU0IqYs+9MZQZC2zThKqaMEAQfJCg4jxjfW9DlRAPc/4menryM8GfmTvLfbUkkQ4jLAY4dhRJWd2jBIegyfRjgs7BAVGOG5lc25lc7T0TKucYdpwXMypnOF7Jo84L0Z8aXabxmkOd5ZkqiNXLVd2ABqetzvcMjMknt89+UV+tnqF03bM9+w8pguK5/WEXHVctkW0m+yWJNpxNS8IZxlu6LE6gIf0fP28RaK9LnjCQzcCn4TNa0iXAtnGgidpA1QCr+JAoGo9ahEXlq5PBVFtLNq5SXKDEn3hlNgMCUP8uXcCkujtDr2Na0OaVfgGZbq3mqytIzc828hronyT0N8kypvr3zz/DS/32tcdDxIfm/UiQXiuI7rXynef5+9v3pf+57K5cawPiQ9TfPP7iX88Z/3lHeCHQwh/6aOdaosttthii1/j+CPAnxdC/HHg54H/pP/+fwL8p0KIt4FL4J/5sAdUdSBZXn8gd4Xg4Ashxpu5wM674JKCi90h5W2BTGMkYBDg00A78dS3PGh/HdsFYHuLRidQK4lZCVQVc4SD7Ae7kv6fDsj+09SbgNcBl4Nq422Ej9nTuoLkSmEHHuEEZhHJbjsR2CJaWroiDmvKForn8XcjQHXQq8ZW0OyD7GJUmu+H1KSFdixoJ4H6sN/y97GVL0jB4r74wKDZ2hsbVMxBtllUvoOAZAGDnzYgwOY6tgAOofKCKgCZgyBId2qcVSjlY+Z3uI7Zs+cGvZQ0u4HiecwT78YCpGT/SxWX35sgmjjgWN8JKBEYDyv0ZMUobShtwlce34KZidaHwvL63jmroeHytuaMpG9FJC40jI8JEq8IhE9iGs3TnPRUsHrZsXNvRlmnGOUZ7FYY5VgIaNvokfbnKfWOhFGHfp6yaEfonZZVmbK7t6RuTYxNbDVtrRHao5+kmCfRdFzf79g9ngNwbkdksmNfLamD4cINuaVnZLLFBclY1tTBkMmOkaggh19a3uOLl7d59v4BpI5qYrhcFaTG8tmDZxwmCwrdsmxTjosF1ksu2wEHgyWn7ZgDs6D2hpGquHBDRrLmzmDKwmWUPsWn0du9Y0p2kopHq106pzgcLMnudZxXQ55dTHCVpt0VtDuABL2U8bXSZ13rpUB2/TDkOPTqdnxduVRQHkUfd5DQTNQHyLOwkE399fNGJNtrIi58bzPpY/u8irF/6+N79Q2WEndDlQ70zJfNMa7tKuIDudzS3rCfQJ+Y0t/N9XClvHGcm0S7J87r5tm1pezmv+CvSfc3Iqj+b8e6YOsj4MNYSv7NEMJ/uTlZCFMhxL8J/KWPdqottthiiy1+rSGE8LfpuxBCCO8C3/8rXKcG/sBHPbZwkM5Cb1OIw1uqC+jKY3NJsnKoxiMzFdMxmvgBb4tAN3GIgUXqEBO6+gE55yR+aUhPNNkFmEUcAiMEVBd9pdLF1AWvBTaPiSDdILZVxg/2aGdRVSQZcP0BXbwIVMeSbhhLPdZe1vpAUB1CfhooXvhIdtPoTQ8ixqYl87hlH2Q87+UnNN0Q7NCTn8Rc5WQqNqRAOqK6rgAfM8j1SjB8Gs9pM7ADgR2w8aO6BLpJQBxy3TwYosIva4msBb6WTL4qmL+ukfdKulZjO4WWnrbR+FIjhharFeZSsbobcDsW8diwvCdoRwWiqBkc18gHgXujJWUXCe3ldMj08QHJG3NCrRi/oyi/v8Rdplw1Be2PH/DgCx3nnxVkZ4HqSJKfBuavGVQdS4TOPhcIuSN9bljdd4hWsFhl+E7SJB2p6TgoSubznK7WKOXRRxX0CR/J63N8lXC0N0cAWnqM8iTKYZTj3ceHkXAed3Bm6HYtetDRdJrSJtTesPIpI1kxljVIqL1BEVC9MVjiGcmKZ90uPzV9jZ969xXE84zBhaC8JyhFxiv3zjhdDPnpZw84Gi3xQXCxKnj0fI/hpOLl3SsO0iWFbClky8qnSOG5tEN2VNnbWKJnvFAttTcsXcp5M+DlwSX3s0tO2xE/d3mfF5dj3MLENJ7MI5r4XKeX8XHWdYhRfyoSYJuBrgT1Qax+px8/iDsxYqMqB3FNyO0IVnfV9aBhQ4zBXAVUw3UZjok/X1tRIBJyKYEQNl7utR0FiD5veW3hWJPmTZynXJNw8YFByDWh9uaadAfVJ6KYPonkG5TrjdodQPjr463VcuGu30+bY67PGW7c7iPiwxDuX4nDf5jbbbHFFltsscU3RwDpAu0w2ie6caA56lMizgSDpwbZxdp1W8QhMZsHxH7DaFhvEiXW8WvLq4Li7YTRQ086i8Uf3ghcKnEGnAGfS1wWP1zTWSBZeNJZPzw3UtS7gnpf0o0CLqP3ckeybDOB7CA/CdiXoZ3Ego9uGMguYP/LjvTS4hMZlWYdFb6YGx635b2OSvXghSVZSupdGX3iSVT7szJg8xgpqNpI6r2OPm3mgsGLqPzHJj1BdtUPD5poIfB7guRKxMVJr/xF8sGmtEO2gtXd2GBp6wHBgM09V8uEZNwgdixCgM8FrUyRhWVvsqLeM+wPqhh/Nx+wPBmSP9W8c2sMA0twguSFodvxDJRDFpb6QGOnCdlxyfvvHDPuog2nG8TFgx0Ehs8t1bGhGwXsQYdMHOZhxs7XPJefknRHHSwNxX6JCwIJPJuPKYYNyxdDGhWbJsNKg4ROebK8pWwStPJcNYamTjCJxXtBNoxJI4mxlHmKCiLGFJ4O+EKVcFkX/Objt8lEvF7ZE+FEOA7VnExYuqB40U74f37tN2M/v8v+45jcYXPQc4lF8/B0D57myA7ePSoQTYyUzJ9qlgcJXy5TCt3y6dEzuqA41HMUgT29xAdJHQylSylUwyvpGSufcmUH7OqSkapZuIyTZhyV7t0Ffif+HrNVTj1PEUtDfRBY3fPILu7WBA16db07M3wcXx9BQTKNxFz43jrS9Dnyci0fx/dN11e8ixBv2+xEmmiWgWTpSdbdMZmgHYsNgTVViBYqE60eqoXQq9pru8n6XGtrylrdvraH3Li+uL7OzQFJ2cXFgEv6dloVF9FrMi/djSFLEe0zawK+/ru0FtzDR+fV3xQfhjj/fSHEvwv8h/3lf4XYMLbFFltsscUW/0BoB3HLO7tYF8bozVBXswc2D/g04HJPGFp29lYUaYsSAaMczkvKzjB9PGbyZU16FfoPetV/EEcFz+sbH8ZtQFdxALHLFaqLyrOuPIUVqFrS7ghcEkmJrkPvXe1V+CYmq1R3LGauyE5j258zgnpfx2Y+B2rlkM7jlYytelYSdEC2AVU7vI7b98t7Epf22d0eBs8d3gi6QvTEOv6Lj5cgWUYSYYuozOsqkiRdQWf7bOQubo3Ldk1ABLYTG/9pkJF8DR9HK0u9L5EziV0o/NAxOlqyk9e0oxIhAq7Pk37+9UPy5wryQFEKXB4IKpDkHe0iYfI1mL0hOf7EglWZolcCvdKIWx7RRqvN/CWNHXi6USREunTsfk1y+QmF0J4ks+i5YPxeSTsuWLxsUW/nNLMxbmJBwK17l1wtCnbvzsiTDiM9hYkE+cViFCvjnWK+yAkXaWz7HGownmzY0pSGZlGAgPRMxYXc7QYpA61TXHYD6jShDh1GOBY+I1MxA3wVEi7dkB999EP4n9qlOI/klCBQKlpw/LmC94q+Hh26ThKMp3jP4LK42KmHmherMQ+KWDWSJI7aG4xwPLMTAArVcEvPqIOh8YZUdrggubQDKmcY6IaXx5dM25xVl7BqE/K0JYyIg6JeQOrhwqBXcVG7VoTNIpDOY1SfS6KyLR3oqt+hyWOyyE17RRCgunXetiBZhF61jpfLg1ikkyxjCVQ6c7hU0o4kzSj6xIMSsYim9Sh70w/ez1qIm3MK14r4xo+9TiVZq+AiFulEFVxEmbgfdNwU4fRNkTeTT6LVRPwy9XrzNd9gUbnpD/9V4MMQ7v818G8Af6G/C3+db5KfvcUWW2yxxRYfGiIqgj4R1PvEYcQ4a4ctAj6JqQshc6ihZXeyIjcdqbakymJ7sn3+7h47byl0HcmEtKCbcMPLGTbeS5cJ6r34qZlOA6qO98ElErOKkYT5lUM3knYoNp5RXUcCoVPB/IHCDgLZC02yiMqe7Ojj/fqIw/4TW3Qe6UGEnrjUkWwLFzAiKujSGqr92FSJgItP6egXn/V2GMB6SOd98c86A7lXDm0WyYTsouXFpdELLztYvhRwQ4+sJD6JVpq11124aClYp1W0R5a7Dy4YmJbTZe8JLjV0Mt5+EpVv2UIYQ7MXcPsdxaQihHgfLj8TUKWgtia2Io7iQoVfnBBuWaqjdepDJH8EuPxEillBs+sJraI7T7AHgZPvG0Qrwjs57aQfVB12uIuUwnQcH5+SKMtAtzxZ7fB8PsZohxCBqkxx89ikSeqRCxXJ9aOU+o4k361odfR+2yw+f/4yQV9JznYzfg7YMyuyrGVfRy93FzQOSRcUf+Lhb2Pxn99m99RtFkq0a1tEQIRrFVU1kLyl43U8pI88qg10jwyPvi8mx/yT93+JUztG4THCcsdcUfp0Y2/p+iKexhuubEEXFK3XrGxML8lUx9eeH+FOcpJLiRBg0oCu4vDx5D1PMreUR5rZa4FmF6qj+DwkU4FZRRLdiX4R2sbL0vXvIyU2cXub4psQF5lB9ZYRG8imbGYxqn2JaiTpPFCcWggBn0jaYayQd6naeLylDR+IE1RtQPSWlKD7+QotbpByNmR5YzdR4tpb3X9fcn1/102Ym78LrifxN33e8oMebrGucl8fR16r5d+xoUkhxB8D/rsQws8Df/SjHXaLLbbYYostvjWkjaUS0oFZSMpb0WrgMggm4BMPuSMbtuwMS8ZJg1GORFp8kKxcwulXDtn/JYHqPF6J6za7NFa/+xTw19vMEL92KZS3QVUxik61bD6UzcqjKospJV0hNx/osgss72qa/UB+GlNVdB2/f6Mf5doD2qtxqmwJSiJ1n5utJdM38+iH3vW4gYe0jWT2LAEC6WUkF91IYPM4KOoygaoD3TBaUIIAOwiM34F0ETbqo5gH9NKxeClBeMhOVGzZ66Jq3+56XO4h9ewcLBEisKpSlFU8O91BniWYmSSvoN6PVh4zk9jOYHctdqAYvQerOwI3lNSPR/jUo+cqqqgTz8P3Dyn2S7qjjsHPJ5R3AnquYs52JbADj6piYsv0U47dX5IkU0l33OBcT7DONMNnHpcp2n1H/skFr+xeMny5wUhH5QylTbhqio2i7YNASY9bamQjufXxU04uJpjnGjcUtDue/KGhLhXmVokbd4TOIGtJchW9y8P3JIuTI/7qb5TsvbxCiYDCo4Sn9oa/dPU5nv+de4h9yPvwy7VdQTcB6QQujYxt3aroVZxP8DoukEQAUwaOflJwNT3gb6Rv8psP3+bYzMhkF8l9kHRBU/qUSzsg69VtKQJpP1xgg+TrlwdcXYxgrkFEr79ZCFQtNouzZO5QtWfwvCMIEz3YXaDL44BldSTwOqBLQfFi7fdeLwj7F/Z6wDD0yrG6TiWxmdgM+koX/6XTuIBsJoLy0CC7+H4xK4+p4izD2vaxfp+t/y7oOpAsHLp06IsW0Tc+BqMISsaCqEwRdLxRXFCLTaFNkOvklOvFgl8nFa3941ogdT8E2Q9RBwX03VWy/5sgXIx69/3zHESvmn/Ev3ffSuF+F/hXhRCfBX4R+G+BvxZCuPqI59hiiy222GKLX4a1qhVk/MDvxiGmhKSBkHhE7hiMavYHJeO0ZqgjY269YtElPPzybXbfih/YtpCbGnef9FaULOCz6PNWS0l6IVFri0ULvhZ0A1jdFwyeBpLz9QBnvI4uPcLGY9tMsngzDkvmJwKzjDYC1cYt8vUglozdOWAFrvdyy9Yh6w6fGewoYXknYfEgkrvsTKLflwivWd0P5B+fcjBccb4cRHFWBOg0QgSGgwolYnGLEmGj9D/79JjZT+5z/Pcaml0dveiTqIiO32MTHWgLqO5YiuMVRdqxX6xYtCnPv37I5CtRbWx2r/26wkEyj7GI6RTyU7Cn5poYdZA/icptN46KullCs8+mlCR/mJBOPc2uZPwssHggsUOP2G0RqywSotRz9ZkYZyeeZigZhzSbvcCLz7a8fvuM78qXSBHr2c+qYXxO+6r0kak56UbkSUdrI/HO9yuqq5zz2RBtLM2eR88UuopJMMhAVxmSosPOTFTXTUy6aY4EOEF5Mubvjl/jh/be4djMaINi6nb5737yu0lVHKhdD8X2AvTG/yz71pL1YKBUcXdBNWyi7qSNkZDJTPBiNmJ0q6YLmoXLMMKRyY6Fz+iCoguKaVMw0E1UtRG4EIt3AKTx0EjMMj4P8X70uzhN3EXyiaIZKWwR3zNmGUm/eRYYP+yHf3ck1bGILaBV3BFSTdgMD0sXF5jxd40LVa8isY+DiyJGbK7TZ2S8zdoP3g0F9X68z6oBYeMxpGWjOPsE6kJQ72qk1eg66d+3gWRuMbMGc1VhfD8N6aOtBa2i6q1lJOZa4rXEFToWR5m40HGmV8N1v/Oloorukv536BVvl8XHUfb3T/blsXEw4qO7S74p4Q4h/AWijQQhxPcAvwP4L4QQCvgxovr99z7i+bbYYostttgC6AewCsn85Tg855OAT31skcwdg0HNwXDFcb5gJ6nQwrGwGdM25+2v3+bgF+IWcTsS2OJ6SNAWAV94go4fyLJSkdTfduhSopcCXV2TEm9g8TI0u4rJuw69cpv4PVU7fCI4/4xCWBg8iQqdaqOqLXyAPkvb9x/BLpFo69GVQzaObpwQdlO6Yaybb3ai99mbQJNGFdBcSUbvAu/t8Oi3pNw9mNL1DY6psQyS6E/2QZDKqLbqnnC+vndO8ntP+Mn7b/LKf27JLgOi8/hUUR0aFg+g+K4rXhrPuawKRmnD+XLA13/xPumlpOgiGXeJ2MS9rRctqhYM34+ESTeB4tzHJIpEYFZg5qGv845qZ3UcGDyVLD/RYb88priIXnPVAgHSS2iOPXQS02eTy9zCIqUbebwJHH/snFfGl4w+U7PoMlqvOKmuK0FSZdHC03rFV54d4xaGw3tTrIsrgd2iItcdX7vK6RqNNg50wN1usa3CXGhCJ/CdRA7izsDgicQbiWzjY9EcOWTqeL4acz4acqDnZCLwn734HDtvCVb3486CS6Iv+WZU3TphhhBfF2npN4k10sbne+3PT2cOaeH5gyE/ffwK37fzPgCZ7DZWkpnNUXjGuurJt8QHyVk95OliwnxR4GoFux0+U6RnCiEjYbR5zJPXtcQsfbR/NL2VqohpOTHmr08LcTHOUgRoh4L64HrQUtVsrFPS9l/3te1RMY92i/U8QqxvjxaNNfkOcp1N35PbtM+S79Vz2RFnHNYLExmHMtdDv8IrVJNgyn7g+aJFT2tkWUPTgvMI5wjex1z9EDBArvU1IU8T0Ao3SCIxF+AyRX1gsJnA5vGxcS7+7sL3C+n+8sbnvY4g/ZD4UGkjva3k54H/sxBiDPx24H8JbAn3FltsscUWvyp4LZi9Jnq/diCkHpFbTGYpspaD4YrDbMlBuiSVFh+iqvfu2T6TL2tcGnCZ2HwoegGhVxJFJ2JGsOhV7sQjlKdL41a0LWMOtl6BXtGnmcD0NcXgmWTwvEU1HjvQkWx3/WDnKpCs/CY9QZf9xnIGhPXgWUCEwOp2gs0EuolquAhRVYy3E31Kg4yLhjFcfdaBA/UoZzUuGWc1tdU4L3l0uoeQnlu7C1qnGCWxRdIGSWkTpGn4rZ/7En/TfIIH/xWsjlMuvtczuDvnB2494TBZ8rye8LVnxyy+dIRqINc9Uaqh2V2re9HSo5qYguITaHbjfVUnYaPMtoOo8udXHmdijrgpA9WBpBuCOUmYvBN/LzONj9HqTmzHlLXEp45216MPal49usTcdRxkS5QIVM4wbXPO6iFGOoamYT9bMW1yDrIVP/3eK5jEcjxZELxAzzTNsWZ+NsSMGpaLjKODOYP9ktXJAD8OhMKin6e4Ow3dLqiFQi4UTWIImaPdEeilwOUxxzxoSWM07SSqy6VP8Ui+9O5ddoHxO9Hf7JWIv7+Mr7v1IswZgTfymnxDJNpDEYljiAs32XgYKHZ/SfLF49v8lr2vbfK/r+yAh/X+ZkdjPRfQek3jNJU1rOoEd5mCDOhFXFg2h47iqUIt4vNbnHny0zam9aQKl4h+cDg+n9FTHxeQa6uFM9FyMnk3LiaqfUGzF0mwLsWmNGat5gsXi2I2inAbZzBsFh/TdaqJ7EB0a+WfzYBjIH7dDdnYQoSLxzKrgHJRPQ9qHYUpqA4k8r5G2JxkEcgvHOl5hZyuEFUD3oPzIAXBWoRzIASibkAI9Gy9LdHvxrwtIyHPEnyRYEcpzZ6hHUhsfr2LsbaorJNRPiw+TPHNHyCq2QshxL8OfC/wx0MIf+ijnWqLLbbYYostruHSmEHtk2sLSZp3jIqaUdpwu5ixYyrGusYHwdQVvD/fh7dG2AK6Y3CpR/gbMV/0pMeCaCQh8aDC9RSUDvihJUiFWajrRIM6/vMJLO8JumFCfu45+5xEryC9Al1Hb6lwMWM7KEh8QDWOIDQhF1x9QpJMIT+PKnC9J2K6SRHJSnYZKE7dJot7PYCVzCA/k6zuQnO/ZTov2C9WjPKGWZuRFw2L5yMeX2U8eO2UskuorWEvW6Glx3rJioQf/sxXePLaDvvCsxcEjdOc10N+/K032Pl8wt2HFpc6ggSbSVxPqKWN3t9u4gmZxzmBLCW6itNhQUF1KMlP/cY2syZWNosWhWYi0GX0mJu5QHYeXUJ26VjeMVT3LdV9eP1jz7ldzDb2mNbH/OvzeogUgUK3HOcLKmd46+yYxaMxYeAgQHn/gvGoRMnAoknIi5ZwlVNVCWrQYc9zkqOSVDlUUeEOJPbdIaLw2KMO8ywmlrTHXSxHahWYQLvvsIVEdtFmJDvInhou3Q4/l9+nOGwxwlF8PYmWin5x5dL+RdeJ6MF3a+92nCEQAaxfE1wfB0hZE1dH0IL5A0lxEqiucn5m9gofH5yQyY7zbkguWy67AYsuJVOWVFpmbcaiyyg7g9GOamAxL5JNYoyZS1avdXFA80STXYJPovweK8rXDDcusoSPZFa6SCKFj15riOSyyyFZBLI+AajeFzS70d+NEP0OB5vF2NrSIlviQsFdW05sDmHQv0/tdYnNzUHH2DwLIQ0xbWU/vp9V22d/l2ziNl0GbiRodgXLexLZGVQzJp15sgtH9qJEXc5jyLj3IGX8H8D1jFlGoo2Nl0UISOtIlg3JcyAEQmLww4RmN6Udx0WL/E4TbuDfCCH8RSHEDwH/GPB/Bf4k8AMf7VRbbLHFFltscY0gY1tkyBwqdxSDmlHWMEoa9tKS29mckaoxwlH6hMu24MnzPYwONDuxohoBQfcDlmmUuX2pNsNdAa7NlgKECgjtYR5rxCPBiD+TXczkFWksspm9KUguRU+2wyaJIWZpx/+rA01xEr3fy9uK+k5HfRuWKxWzgO9XFL+YM37P0xWC1V3B9E1BfiIxyxsZ2UQFTVWQPEuwD2oWbcrOqIo/C4LByy0n7xzw8Ok+v+njX+fRYo9Vl3KYx7g6GySVM7w0uKJyhi+c3mb1dMSdvwWvzCwiNDQ7Gm8EsouJLNJGX6stIkn2FwphFS6HbhjtIu1uvyiYC4KUmEX/GLiYc56fW5K5ZPaqRraB4ZPA8q7g6hOC7qWGetjw8cMTJqZGikDjFcsupbQJLkgGumUnKRnqliflDr/w+B5dZcAJsqcGYwK+krjbDavWcGu04Gw1ZK+osL7h8acTfKO5d/uSJ3aXZppxpjxaefK05WrPomYKedDhjWb4VNINNey2BCuhEyTnCrOMec7rEhVdg35f87C6Q/dpxb3hlOKkTzQx/XOnwOVxwacaqHu1f52wQYixi9ISi48q39srBCIERBuo9wPFCzDnGusVHsGlHTDtChY25aouuDOYkauOaZvjg6TqDM+e7WFODEbEBYIdxfdSN7JQKYrHmm4UmL8s4wDwQFIdiU3Tol7F17U3cQHl9Pr9EB+HD7RAQv+cXyfhVIcCdMyzXy+6wnoR0qvZ0gZkFVAi2m9UzaaYxqXR/rUuklk3p8a5juu0EYgLYZf7aOkgZsmrqif1zTohqG+ONdANJas7Ej49Qa8m5BeewYsGc7ZCrKoNuY4H99ekG+L/QkTDdv+16Cxq5ihmFYWU+Nygmo/mKfkwhHt9r3438KdDCP/fvtZ3iy222GKLLX71kIEwsJi8Y5C3jLKGYdIwTmqOsgUjVZPKDh8kM5vzcL6LPDfYPBB06OO8wuZDWSaO4AVBe4IT0MmoflvAxwxsOgmtJp1Fv24yj0R6U6LRD0zOX4fkSpJdRNvIOnsYrom5D5FEXH0sIb/wzD7hSCZxsNONJMo4uoucwTOP6gLm3DN67Jg/SLj8TQ1CecIsQTYiVtA3MfJM1YLwOGMxrKlzQ6FbpIh+7fJegvvpXf6u+Bi//mPvclKNqJ1mZBoMjpVNqJwhVZbl6YDsTFEdBLKLGMmmy54k9FviuoRkKTZ++m4Qlff0MqCXgnYC9ZHH555GS+xA9PFrawIO1YFmeUdS3vOYOyvu7s14czAlVzE8vHIG6xWN15heFsyUpdAdl02BFJ4f//IbkXjViv3PS86/3yGHHfVL/YCeDIzGFZ2LjZizRc750wmvv/6Ce4dXnC0GHORLnoodSDzOSZyTKOXJdmpqn+HPM8RxQ9llhNzBKqZ6iMzR7jlcJmNM3lXMl14POeqV5PFkn/QVi6763GovcKnAZ9fRdO0YXB4QTqBLsVF5gT4GD0zVDwtbH1Vl6zGrmGqSnQueLHe4m0/xQTDrMmpnUNLz/mKPEATzOmW5ynAvcsg8qhKkU/r5AklQknYiqG55qjdrBl/M2HnbUR6paIeafrCSfK1wrzOu1y2TqlfxN770TTMjGztFcRKJdjOJefLZZdg0t7qsHzp0YrP4xV97oHUV/9lc9HGdAZezWQxsatZhk529tnQAuIHHTvrdKy9is2YjUFVMZ5H2+jbtDjR7ktmrObrKSaeB4bOO9LREzssYXr8u91kjhA+q4XDt2ZYBuXAI+50n3E+FEP8R0bf97wghUn7l9skttthiiy22+PBQkA1bJoOKnaxCS0+hW/aSkgOzJJUdI1lzaYfMupyT0wlCEz3Z/UCk0CEmBzQK3yh0YREiEILAdZLQKFgXgDgQuSUohfAKXcZmPV3Hoo91W+Pi5Zj0kMzYlMrYNJJM4QTa+phiApsCkOnHFOZwidYOIbj+f65oRz3hSkB2inQR2PuJhOkP1yTHJc4JjHF4L2lXCfbSkJ1LFi9G2J0paZ81vbIJ93emfOnBiORxwi+N7zApKs79kEK3GOFJpKO0Bo/gBz/9Nr/4/icYnDjOPptRnHpGj2q8kdhC9QNsHqcjkzFlbN0MStAOZSSbNaRXgm6oN0p8Owq0x5Yqc8jdJffHM76nmKGFw/asSBI2SRqpdNh+8PG9k338VUqQAWEF+TNF9WaDPjMkM0HzXSUuy0kuFGK/wusbbaJOsjOomDcZdw+mPHJ7LJqU3HSEIFh0GUp7bBA05zl3Xj3n5GLC7mSF3xG0ywQpQ3weK4U8aPDdOnIlEmvZ0jcTRv/x6m4kg6JWzOqMtI7WkHYcpViXgAhx8M/l6wrysMl8Fklc1KxfR0AknlIgQkxFMUsiuRWwk1Wct0Oel2MWbcp+Xm5+/9P5kHqVEKxEN4LsTNONA/MDT/5cocuYhZ7MAmYhCSpDtoHzzyryk8DslZjSo1fXb8FAXMwA17Xp4Trrfe3x3lg+1gOD9Cp5HUukmr1oNcnPA/lFHKzthtFW49IPquXSxq/XQ8uy69sfy37nIItJRd6s01DWUX/94rovu8H1q+TEQ9qBDtgAnROESqNWEr2Mr2NCjAht02ihWt5PkF2Cme8wembJThr0rEKUdVS1pQQVXxui6yMJZf99+OUE/UPgwxDuP0hMKPm/hRCmQojbwP/2I59piy222GKLLW5ASs9kUDFJa8ZJzUC3DFTLYbKIflnZ4pA0QfPefB95GofDRCsIXoKKnlWhQox06yTOSvJBg1KeukqwAkLXN1eogDKedNQQ9uDyaMjuFyQixKpqlwimHyd6Xy+jH1nadYwY1DuC5UuK4SNJcWpRLiClQFrBxfd5DocVzgu8l9Fb28bilW4s0CdxaNLlgkZCOvUMfyan/A1LsiwSxkFWszMsWe0kLHYL5NRwVeccZktO6hH76YrMdxRHK3g8oXw65JPf84LWaU6rEYly0ZphGqxXaOl47Xe8y7PTV7j7YxdMv2uXp7+lYPAskE0dXSHxSiNtrORWlcPlkYjrOuB1VHLLY0l53zK+s+DWaMEkrRjoFklAioAPgs4rpAyMevPv3794iWdXE9onA4qnkuI00A0gH8ZB1XUhjwggtMfuWlSr8Z1k+QDyE0EdBN0yIZ3UGONYTnP2hyWNU9wfTUnvWGZNxvOrMUXW8uh8l4/fOeHxdIdpOeZqWXDnYMrZfIjWDpc5ksRSHzWIiwRepIRdC06gp2pjaeiygMsFyRUM+8r2oCQXkyGHA8HgcQXkdEOJtMS8dx1TSFTDjTjA+DoPOiq5oh+y1M7fqC0XqCou/BpizN9VU9B5RdkkTFc51SpFPUtJrwSZjsQ+5rIHAnGh0E0C5X1H8Vjj0kgGZRvjHJO3PbNXJbYItCoqy/mp2KRtBMQHEjeCAlyfMuIBFyJX3qSwiGub1no0oowLqHpP9APBYZOGEr3b10lCNrk+19rSFRtd49pYrAShiefoBgE3jCkz6H4y2l3fd1S/WHASHwLSeHRmUYMWDsBaiXUKVytEqdBLubEE2QE0O7C6r1DNAFUPyM4DxZkjO2tQZYdoLWEzLRmubSf+xtcfEt+q+ObzwN8l5m//lRBCHc8XngPPP9JZtthiiy222OIbIEVgkLTkumNiaox05Kploku6oDDC0XjD0qY8fHLA+Nl6u/pGc+TARauICohOwNzQqMBgUDMaVjSdoVolhCAQMiCkJwSwVsG44+q7DNkLFYnWxCOcoDiJJCimiPRb22o9XAbn3xs4+HnN8ElL0JJ6V1EcLClMR+cl8yqjUC3zLgMRFeH0Iip55e04OKYaSXYGvDvAvTlHK4/zgkFimaQ1zaDkfGfAdJXDDgx1Q+UME1NzZ2fOuwcj9FJyUQ+4O5hSlWMqa0hkQqaiIlfahLGpmf7BFywvDpl8ccrwYcr0jYJ6ohg/bFjdSUinDtV4urFicUdT3o1DhNl+xd5oxf2kIVMWKXz/fyQ5uerIVRwmvOgG/MSzV5iejBi/Zdj5uuXYB4SzuFxS7Sq8FrTjSFTSK0GVCZrdgF8Y9Dy2d4Yq0pKuAOckaI+1iva0ID0qcUEwW+VM0ppXRxd8PRxyUk0Y5A0hwFk5wGgHHuqnQ9ybJcb0XiAR6FqNkIH0SlIfuzjs2EmCCbQ70c6zTp9wGXQ+etxlG1BPMxYvCfZ+rkVXhvIwozjtUIVCWkEyjwRsvRNg1wk6tlfNdb/T0Uhk5zcxgdk0kMwd1ZHkZDHCeokQgbJMcUuDXCpUE6Ms43BwJMPpVSxf6kaCbgRBKqrbjsGjaB/JL+JxvRHoSmILMCuBN4H6AJLpdblLfHgCAXGjubEnwzfq3T9Qg05vLwlRgYdI5l0evdzrY4d1pvusX4gkkey6NGyGJAUxjnF9TmnjIiDmiqsYGZpJQuaQuUWquNhwTWzeEcpvlHrnJN7FxzBJLYluEON+18tLOquoFiliodFlrKLvBoF2EqiOYWoVqi3QS0FxEhicWLJnJbKOsYMoGQn3R8S3Urh/APghorr9fxBCXAB/FfhvQwhf+8hn2mKLLbbYYosbUNIzSSomSU0qLansODBLMtGRiej/7YLipBnHdIgWRM7GWyoCmLnaFFjINlpBupCwsILBuMZaia909IsHgSigcQpXauQyqrn1kQcdCXv+XCAbrgcqQ0B04G1MFEkQNPtw9UkoTuOH9exjcHu8JFWWrk3pOoXIoS2TKMolUN4S7Lzt2fuSp9qXNHuRJBUvBPPhkMH9BVJA5xSJdEySmnyn48VixPNyzN1ixsKmpMpynC949mBBeTbgfBkJ92vjcy7bItbdW0OmbEwvCZLXJuf8vX++wPyHA8y8YfJOxfJ+xsWnMpb3A3YiEEVgMF4yyWsm0keyIh2qt/kUumWoWxqnWdiUd2b7nJxNSN7LyE8hP/dMFo6JgCAsunJxsNTITYRiVD2j0pleQv68z1cmDrnawoPx6KWmm0RCo9Ke/XrwTjIrc2ynKHTLi2rEokmRxlM1CXnW4bykbBLyo5L24ZCz6ZBBHiMmn1pF12qyoqW8a8ifaqq7ATy4wmOmatNEaNOAzaNyvU6oyU4Fizc73DhDT2v8qxlBCnTpQESS24wl6SrOBXQDEUtv3DpOkX5QNcT68i7KyumVRdpAfRAQjaGtDXgR5xC86IcMA/V+fA3KLvqiu2FvTfFx2FbVsS69PghIKzBLi/ABm8UdnuxC0I1iC2UQUN4JsdZ9Qa/u97apwCb1Z22vWX9vTbyjufobruN763PTDzmmkdDH91Hf5NjncKd1n4AyioOTQUFIr8/r0j5msY8cVHVcvFApvO2Jd+IoxjVCgPcCa+XmAEp7ZL+4rtu4AsrTlklek2qLnUg6p2idYlmldKsElgZZxTmKbifQ7gfKl+DCSvRqTHohGDzzjJ406Kuq99d8eHyr4hsL/O3+H0KIO0Ty/ceFEK8DPx1C+MMf6WxbbLHFFlts0SNGwHXkqiOVHUPdMFQ1DkkmOhySLijeme0DURWTLSRW0I4C3Y4nqED+TJOfxjg6l4JwihZYOolMHCJ1yNMYB8dV/NhLuj5hoog+2pB48icmNgTKPjfYEQeyQhyadF380M/OJNWDjsV9TbIIhDdX5LqLg25lTpL0ns86VqojwQ4D7VgwehQH74pzQb0jcYlg/LZivpOhJyVCKFIt0dKR6Y6m0EzrnKN8gRSBeZeRSsudnTnvrFIS7aidYaxjLvdFO+A4X1A7TaYsrVdUzvC5O4/52X/5Ae2TIX7gkHmD0h6lPInypMaSaEduOlSvZAMsupQXixFXTyZMvqIZPXGoypMFeNkHgmhB9IODfXqLrhwukQgfBwyTqUV2itUtFQtXBmwWTWYZyZSuYTYSiFlMj2l0IHSSJO8Y5A1TL+gWCc5JTGKZtTl3B1NmqxzfSeouQQwbUgPDrEFLz4swRKmA0Q4jHW8cnnFZF1yVOWrU0X2ihVlCMAFRWGwn0CuJS2NxEoAIiqAE1a1IavPHhvPPaI5+8oqdd2tsptCr/vlWgmQVa9SFC6hW9oORcUhSuoBsPcJ5ROdiRXmu4+7CUNPdb6AyME1IL2SM5usjKyG+Hn0Si1k2BUV9vvV1Oyroqo9x3NfkF5ZqPy5sVAvJLC548JCdCewA2gmbUht699VGyYbrgeJe2d78TFx/vR6mXHu+1wOWLr1x2fUzD32KCaJ/P7d9vnYRIvnW8SQigM/Y5JazOY4g1ApnBVUnUcZTFA3jIj5Qzsu+fFIQgsAHQaIdPsCySag6wzBt2MtLJIE613Q7Kg4ld2Zj42Gl47lMoDvo6A5h+SacNgnJeU73Jz5Ulc0GH/raIYRnwI8CPyqEkMAPfqQzbbHFFltsscUNaOEZ6IZEWnLVMVQ1meh6O4nFhYTSJ1zMBmgZY8u6Ydz2V62AqcSOAtVdi8sUO1+LBG95T4KQ2Fri07jlLDswi+gLbccBO+gtKALkXoN4lKPLuK0tLWgvehWSvlkvqoaOSE5EI1ndEdS14M7eLMbdOU1dJQwG8YNftD1p0HFQb3lfMHghka3HFjqqjlOPrgO2yGi/r6FIW3wQ2N4AvJ+taGyMi9PC44NgoGMRzGw/43I24O5oxvurPQCqzmAGDik8pmdlrVfUzvC5u4/5OXGP+vkAL68jH6QMVE3CqhKcPN9BnxvG78L4/Q4z7zheNRz7OWgZy4Q8uPG1ETcWkkRFVtiA7DyqjMkP3kh8IrG57GPiwCyi7SA/i8pvN4zKanqu6AbR9yucQL5IaYcGeRwYjyqm5YjgBLujEiMdqXS0tUanlm6aUVrJzt2Kw3zFi9UIN3HQauQg8Hi6w8f2zzDKkScdy6uC3YMFMy82CXC+cHRJgMSzdzincwp/FK0JTW1orlKSC0V5S7B8Y8LgvSWq7POta7vx+IZ+oE6VEtk5RGsRZRPzrwE/zLC7ebzOqgMXOP3eDKk6wklKdiYZPgmkC8fsgUbXYUNsZXWtaq+V5egx723FPuZjT97tWN3SzF41tKNr/7XwkZTbHFwSByjXNg+X94r0DfV6MzS5HlbsF0pr1fumtWStgPtvDPxYk3PJpg124wc34FUgGJCNIDuPZUvdIOBzH8n3TT+Lj0OqootzHEHE28+vChYqkOYdw7xhkHRxEUwk3J1TVJ0BEdDK0TnFWTlAioCRnr1sxdA0sXhpZKitYWUTys6wqFOaxtA1Og5hDyzduMUNv8MpJUKIN4hDkg9uXj+E8Ns+0pm22GKLLbbY4gakCAxVjNHL+kQS14dg+V7dflbvYC9ywihsSmpcGjZ+VFVDMDHv+eyeIHs7Zfg4IBuBzqParepImJudPuIu8WACopUw6nClZnh+HWXm1xnCDuji57xLogq3Jh5qJbEDT3PkGZiWoWm4qGLFdq0Nzss+KSLmhQcdaLVgeVsxfA5m4RBO0hUSm8LkXc+zj8WhQICVTch1RyItw6Rh2uZ8YvyCs3aID5KJqbgznHP2bIfWK4am4awacm80pXKRMOynK3wQG8+1D4JP33rOz85fwZwa0vMEs4w12qPHLWbeohaz2NIHBK3AaIJSoEQ/LBfTNWQTrR5eSwQBEQQ+RG+ycJ6g+gVL2QEGXXm8ijGNqgmYVU8UZUzwsIUgmUHXK65ut0PNNMFE9T1LOvK9iuq8QIo4rFk5g18aQi5BBrCCRZ0ySWu09KSTGmsVvlc635/u8fLOJas24dbtK6xT3D+6YlZl1K2hE2CS6AW/uhySFh3HkwXWS8hr5N6cy1sF5fMhl51CtgOKR3MAhAs9Gw0f9PeGgGg7kBK3O6Ddz7GFJL3q0FcVou5o7u+weN0iT1KSebQplbcE1ZGOw4gOsvnNdlM2OfDdIKrUa5Ib69QD7ShaXOoDQTtZl9HcaIisrzOr13YXT1Sk16U3a4V7UyrV79Zww1pyk3xvVHCub/+NNpQQ+EA9+vr95BW4scd6EDY2m+pKxnr6sYvDkdJfJ6Wsj+kFvo5vzNAI6kbRrBKk8RSDmr2iojAtk6TCZgpJwN7MRYTehpWw6DKMdOylJYfZkmPhab1mZRN0v3i9qAeclwWrKv2GX/bb48Mo3H8R+FPAf8x1JvcWW2yxxRZb/ANBENDSbxJJMtlRe4Ppp9aWLuOtq2PMlYxFGSMXiZUTCC+oR/2nrgeWGnSg/UTF+e2EvV+Q7LzjMEtLs2u4/LiifLmLRHupojc2c9Fy8DhBukhaZAf1scNmkvF7kdgE1VdUp9cDZdJCl8Ho9oKsz5u2TiETh7OKrtYkVuBSfx1lJgPtRGCvBNIJdOlJZhafRuvB6MsJ1bFhLy9ZdQmq/5DfSStOyhGX3YDSJqTSkUrLYbYk26lxXnKULrlqCq7qgjcnJ1Q6YWUTpAi0Tm2Id6Ys3/XaE946fYXJe47B0wqvJarqImmUkpCn0FmEdZE8KheJo1LQRwiKPqHBLBp8ogmpikkSQvQEbp33LZCtI5kHhNcbVVS66Hde50Cvi1Ckiz83ZwZhwe0GlqsMHwS+Z5WdU3ReYYNEDCyhUYjUkRYdTWN4dLXL7cmcrk89WZQZx5MFtdXYoBgkLZ1TjJOG0+UQgMmgokk0ZZ0wGVbs7l8xazIyHZ/b2hoWTUJdJYhOUN1xnCaa2+2Q7OkiZjmvCfcafbRcSBNCZnBFQnJZkz2sN9frjsc8/scShPNk5zEtxyfRfmEHgWY3Wm7asSKZhU0Bk248ehlTZVZHsTHVJfHxyS5j1KU3cXBR2ki21/F+myztPn97TZZlGx/7GF/JJst6bR+BGxxzrXxvimrYqNjrn0Ovwn9g4pLreD+ujystYPtGyiTgMjYJJKITyKUk6LgLIfPewtMfbx0DuvG8dxLXSZZdQVmmaO0ospb9QcluWjJW3abltHaGsifUsn+/LbuUZZeSKEumOm5l840wcJQtqEaGlU05Tdtv+rftV8KHIdw2hPAnP9JRt9hiiy222OLbQAAKTyajhxugC5pMdrRBM7M5z053yMu+Ar2UhCTAqCMbtNhO4ZxEyEBwAr8y+IsEVUuuPhGYv6bY+6JkcV9SH/YRI3Uk6157klGLfV4g26j0ya5PStABe9Thniboig9sm7ssek2Fg1A47oyjwrnsUlqr0ImL6RrLBG8CbtA3YPawg1iprpsAWfQ5m6XFK8nelwMPPzVm50G1saho6aPlRnfM2oyhaTDSoaXDIxgVNbMmI1ct9wZTvnJ1xJNyhzv5HGk8PkhSaamcoe1J6n664s1f/z5feekY+WjArZ9yDN6po3rpfSTbPpJvQog5xCFsREW0QnhPkNFiIjoXCbcS0UqyIdvExZCRBCORXcywFv6aHHajnhR28V9QAl3GdAoEtPsS2yasAN8qhBVczgabOMKjgzknJxOKUcNOUXE6HTLMGqrOEKxEJZ76PKcbrTgaLLmsCsZpzdlyQJdK9gYl8zojNx1aekZZw05WsZ+ueDYfMy8zBlnLg8kl41RHq8Ktjq89vIV8rnj2GxPy0332v1STPJtFdV/GnQC0IkiJ8BaxqknmJWv/SsgSFh/f4+JTsVHGzKI9QvaJJuu2S9XGVB5bQDsRyC7u6pilwAwk6cwzfB6HVLuhxmYC1fXZ8Vm0Z+iViN7oPs4vquDX5HlDktdqdL8Aok8XiVe6/vnaEhL626y93R8g0SKms0B8ToMOkXj/SuT9G4Ti9Tm9CZvWF6dj7KAsFZQKP4izGTqxaO2jV9uLWHwVRLxvIV72TrJcZcyXOQ/FHmnWcWu84DBbcpQuIQWPYGkTamfwIQ4MSxGwXvGiHgOQSMdesuJWOkemYTPn8GHxrWIB9/ov/2shxB8G/kugWf88hHD5kc60xRZbbLHFFjchoq3ECMdAbj5ekHhKn/Co2kM/SWMcmoxkwZqA1HEQbjKoGCcNqy6hbA12JLE2kvBR3nA0XNJ8TrNaDvDTHHUZc7Hd0JPs1mjtUGcSRFT1/DptoRPo3ZbqyMT2vELQjgXdgL6QI5ICM4zpHWuPqOpTEXwn0QuJHXnksIsRZkHgKoUtYtrE5D0XyYoWeCWRrcPMG8a/NGZ5O8FIT+sUuY4q3E5ScVKN2E0qljYhV9HnfVCsmDUZAAfJkvujhGfLCVp63hieUjlD5ZPoZe39rI3THGcLrvZynjWKJ78f8q/uce9vLVHzOtpIfK/WKhmj0EKIirfzhBBAJ5F0K4WQAVlbZN0rj+ZGJaAIiM4jlI+Z5VpcF8DceB0EyeaxFgFUHWj2BKqScKtBikDQHm88ed4iROD95/uMxxUHhwtmi5x0bHGdItOWsovJFCaxhCFMVzn7eUnVacYpvLF/xvPVGCkCSno6p3h1cs67swNOV7FI6GP7Z9igSKSNSS20tE5xthqgUhcjDTOPyyXL+ymyOyKdxizu/NwzeFKjp70/I02wg4RunFAdGlZ3orqfXkW/+k0iKyyg2dg/pBXR56wCXkQC3o0FshWsrCSZBYoziWzDZodgrWAPnnpsLmINOz2hl9eK9Dc+F+sYzFjoFDeU1te5qW5/YGhS3vi56BVsAB3vN+uYwZvEut/xuenu+EASSgDZynid3lcf+kUIPl4ptJKuTXCpw6R2M6wMUfXe/E5B4JwkBIFSsYX00fkuD8MuaWq5vzPlbjFjrBvGOv4d6oLczFF4BIm0WK9Y2IzLdoCRDv8dtJR8/sbDCh8suwnAqx/pTFtsscUWW2xxA4KAEp5Ctkg8C58jhccjKV3K29MDho/7gcVOIJzAZQKpHFo5QhBcVgW56dgflCyaFKfjz8ZJQ6KiH3M3LXlsdrmc7cUq+MSTpR3VWzskrvcS62tiIfoGu/bQwVdkbKBMYuFIzACP92c8qDe51FdNQd0aXKcIbYwqFLstWd7GdkMvKOs8Kr4BRj/3jNDGLWmh9abB7vbfCbz76wfcP5iCUyzbFCkCWnjKzrByCbU1LEXKflqyl5acrYasXMpxMud+foX1MZ+7KTS5ikOoEh19qP0nehckH9855WI+oLnKaL+r5Gsvpxz/eMHez18RZc5AMArhe7ItBDgXFW+j+5/5PqVEgBLQe5l9qvFG9kpnQNUWufTI2uEzha4iITKlxGZ9K2Eu8ElAXgnqA4E3oJeS7iTFHTVo42iTuKgKIe5ozJxkd3+BbRWniyHhMuV8MGBvUPYzjAGdOLpWM28ylAy8WIz4vluPWHYpWnouXU7VGk7MmKNiwaLLOKuGHOcLSiupneFOPqPxmnFSc5CtuBwWvJ/u0b07is2RfSBNsxd/r9Udwdl355hlgWrjw+mT2KKoy1j+I1swy4A30Uoh+oUfgEsC0sUna0NaA/H12//vskjG2hGUxwqzhOLEY6p4jHTqSM9rgpY0+ynNRF5XqadxZuEmZ/yAXaS3nbj0xjzDN3qy45s43mRD4sMHiHeQ9M2Q17dfH+Am6f/A/ZD977lWwwMbkh3tWeufRXuZrzRNp+iMI8mi3z81dkO6rVO0QsWQkyAw2mO0i49dq3kym3BZFYzSOIx8lC7Y6Yl301duVs6QKvuBNtXvGOEOIbzykY60xRZbbLHFP1QQQrwPLIjzOzaE8Ov63c+/ALwMvA/8wRDClYim3n8f+F1ACfyLIYSf+5bHJ5D2+84eSeMNe3qJxNMFxcV0yKi/rmoCRgrCpaQ2OVd9nnKWdLggqDqDkh4lPc5LruocJT0rk1BbTWsV6rjCOUmaWhbznHwurhMTApvc3yBByECyW+OSAaJPn/AafB5r5X3iORys0NIxbQueX42xnY62h0bidiyDoiXRFuclck0g4i8e4XrFuKoJISASg3zWor/wOuZHLvp0EsmyTbk1mCNF4KIesJuW1M6wsCkn5QghApdtwb30auPtLm3CVxfHfGbylLz3mGvv8EFSOYP1ilQ7PnPnGT+7ehm7MuhRx/T31kw/ts/uV6L1Yx0nF60gvZVGRpuAS64zpmNyRj+cqQXexJ87w6ZpcT106pNIUO0gxPIT7TflRWoeg7Cb/Xh+M5dxoTU3iAOLUAFnJVeLArRHaI8UIHUg0ZaqFzmvyhyp/YZ0DQc11kuq1uC9YGVTxknNrMljZJyXeGI9/CSJlp6lTVl1CbeLOUY4rFCM+gIiHwTHkwUPbyWIywRVio39QzYCU0J515GfKpJ5JJ6qgXYcFxKhZ1+qCwgnMHVU93UVXx/exGQdiKkcXhPJ7Pq12pNUIfrBRxnQZ2CqgPCBalfBROLSArOKswxmAfW+IbvosANFM1bUuzIW1dxQvTfEul8cBtWT/ZtWkBsDkpvbXb+xN8/1B3K7YePLBq6JeP/zm6R9PZy5saE40f/fn8t4dOo2z69zEt8q6kZRyxSVWfYmKxLlMKbbvA+7Xul2XqJEIEksqj9G1Rme2QnPlhNSbbldzNgxVZ+g1OCDoPQJBNDCbWYsPiw+TEpJBvxhYglOAH4c+FPr5skttthiiy3+ocZvDSGc37j8R4G/EUL4vwgh/mh/+Y8AvxP4WP/vB4A/2f//TSEAJTxGWOq+ns8Ix8qnzG2Gu0o3Hl9dBVQd0EaQPVfYhaQeG6rcMUscSjuMiap312rs0iBXCgL4gWN8vGRnXLKqk0iwvjKMhDKJnu3Ntr4CRMA7ye5kRVcM+wQKNuxBGE8+aMh1hxEeLRzjQc3ldIhMHGGlot0kbaMXu+tZRXtj/zwEEH26BgrhXBy8A+78RM3z7xszyeNAZNlFgvfGzhnvzfdJpMN6iSRwXCx47HZ4stjhE8MXpNIyVA1H+YJHiz3O2iH3s6h6r7f+jXTMu4zGKzLVkQ5aumcDrPZI5Rl/7pzpJ1O6hwOSK9kTow8mOwDXA3P9r/eBrOQQrRHXuwa9VcH1pUIW0ssYJ7g+VjuOsY/z13yv5MZWxKACpB7baUIn6Uq92X8P3qOVYzCoMcrj00BdG4IXmNTStRptHE2nUTIgRCA1jpNqxCSpyPuhSCkCnbu2wkxMje6f29IaGmOYdxlPVxMO8yV7aUnrFfqu551wiFimiA4UAtHnYctGYpaBbOpjAY4NiCBRTWyAnL5u6AqxmR9Yq72bshgXy22ivQJU0y9aejIbK8rDJmlkM28Qot+7HUN5S2FWCl0G0llst3SpJD2ryV54JkBzWNDsKNqRwJno+17v+tATeq+u7Sg3rSQxmrBXrNff61Xpmw6UjVrtRf+a773aN4Yyg7r2bH/QDx4XYzf930KAd4IQYmxjmnfoYU3XaWyn8L73+kuP1p48bfuceUsAVD8DsKhTXBCUrcE5iVaeRDs6L3kadjgRY5T0cWcjWTHWFRNd0Xm1Sf/5sPgwQ5N/lqhw/In+8j8L/KfAH/hIZ9piiy222OIfBvw+4If7r/8MsRztj/Tf/7MhhAD8tBBiRwhxO4Tw/FsdrJCxGrz0KVJ4XBA03vC8nqBnckPUbCYoTj2jp5b5fU2lBGauQChcGolHY2LCQXolmTwODE4d09c1i+9p0cpRtYb9YcmTF7tkTSQWLgn4JMak2RzaiSckUUVNlKMcxvxu4YlJDy4OYhVpF4tpvKb1GudFbKNsFaSe0aDG9Hm/QoRIeEO8f7IVkBiEVmAdWBt90T6AFKTvnbF87y5Hn1nSeYnrLSJkcRvbhnjfpAjsmIrH7HA6HbI8SjkwSxqpGeuGo2LBly5vY3cUI3OtkUkCg16pVSLw3Xef8vl330QvEtpbkiur2NtZUr9uWb0/YfheJIlBi03u85p0yRtDdethN+FBduG6rdOHnmivld6A7HrrSSKjvSERjB8GygNJdSSp7llQYE4kyUywUhrXrcOfQS1VHMRrDVdZwahomJcZai9aAQbD+PtKESjrBNspxkVNbjqWTbJp9PRBYJTjbjrbDGKWNsHIuEuQKIsPgrlNSaXljckpiy5joFvSEOPkDg4WnFmJOTNxcdjFevj8TKDa0FuiAi6JUYnSBlTjGT532FSQLGLyyOpY0g0F+HXDYiC7jI9zNxS4PC5UZBsXLXG3INqdVAtm5RAh0A4l3eDaFtJOoNkV1AcxIrM6SChONcnCoRqPbD35mUc1muyypR0Z2pGkKwS2iNYTmwNuTbA3L6TY8nojFvCm8v2BDZ0Afq1er83KIb6nggqbhs/ruMCbjP2awQsZrhe+EkQv9ddl9OIMRjVF1uC9pO2tRyEIlmWGdxKlHYO84XCwilYt6eN7EzZfB8BIjxaeVZfQOsW8ybgyBUp69tKSg3SJ5DtPuD8dQvjkjct/Swjx5Y90li222GKLLX4tIgB/TcR92/8ohPCngeMbJPoFcNx/fRd4fOO2T/rvfVPCLUTYRHH9zOwVvnx+zD/18i+ghOfhYnczgCZs9LkWpx3ZO2cU72XU98aUR5pmLLFD8Jt0CxicWHTpmD9IWLwakwzq1lCk0X6in6b0NsxYxCGjyt3lMS9bdCKqiqJXD2XvY21jOYgQkJuYke2DpLKGph/SQwTMuGOQROXUiaiqdl2MLfS5R7UiZlx7gZASjI62FbeuDwwc/LzAfloiRaC2ilppWqd5bXJO4zQ2SIxyMXO703SLlJNmxIFZIkUglR0j3TAwLe8v93h1dEGuome8CxIjPF46Gq8YqJZP/OB7vPdfv4qqDdXLcBGG7O8uSV+/5NLv8eCvdGQPryAxBCGiIt/nchNCTCzJ42MgOhc93VrG1BNP/P1CICTR2x3tKQE7NAivAIlN+0IXDcmFohuGGBeYB8LQojKHqxSilBsvs6oiWRqmDYsyxS4MopXY9P/H3p/G2pbm533Y753WtKdzzj13qlu3qrqqmt1NNtki2RJFSRYtMk5kOYkQyxHiwIalCGaASIYDI0DsfAgQf5FiGEEEOEhACA7kxLasSLEpJRoiyaI1UBSbbJFsdje7q7truvO5Z9jjmt4hH/5r731usbq7ypBBtbQf4N5zzp7W2mvvc/bzPuv5P09PvcqZzGpGZcsylLS9ZTZesWoz3n92zPR+s5sBuGpK1m3G6XjNK6NLLrqK2+WCeV8ysS258bTBEq9N+VkVuVfNAbgalYSllcVUEqvI6FtxqH6PcpZkbIh28GVnktpCLt718qxHe8PiviU6hjZJIe7bswLmWgpdMoPqPCS8uFUaYvyEJG/f19v3pIqyX91UfOT9WOPWMnDpNhEdoBtpiudQPl5TPRD/fqgs/diyumNpbkqOd3R7lf263/t68+Q2L3vLr9mR7WunQ675uXd/beBFaVxdv9+12w6PrxUoE1BqKChqLV1nsTbs2lMBLhaVKOGZJ0bNg6sjAI6qmpNyQ2F6muCovZOzRyoxy2tuVwti0jTBEpPiOKupg+Od1Q3q4azcR8VHIdxfVEr9zpTSLwAopX4M+KWPtZUDDjjggAO+F/F7UkoPlVK3gL+hlPqN61emlJJSH++8qlLqp4GfBji6W2AGv/aRq/n997/KiV3xoDvhyfMZR/O0+0A3bcJdNRAiatNQvBOwqzHLV0v6Xsmp+8uAmwsrWb5WsnxNwbTHDCkhRkfOLifkl1IB78dJ1MQhbzhWEfIgqRsukltPP02UZwAK0yj8WIGNjLMWpyJzn9F6S9cOFXomMRmLVcHoSBss604UVhLocY9bCxFVMQkhlQOzTwQBTn5tzjfOjnn55iW1SjS9Ze0yCtvvCEEfDbn23J/OyWzgeTNmWRYYFQf1LnBcbHiwPOKd1Qk/cvI+bZRByjo4plam69ro+Mz0CU9+34T0F05R0bF5HZ7HCUdHa2595oy3j4556a/eZPYrZ7JI2O53SuCESuiNHPvkjJDtbTyg1QSnBxU8ortAsproNKb2QuB9QpeaaA3FM/CjYdHTS1W5XWXwwwvqTks8nN8rwe0ypx5LEyBJ0jvqZUHyksoyznoWlHRe9rPKelZWbDmLRgYnt7GAW/X/yG1oo2Q0N95xs1jtSDeAVpGzZszTzYRZ3nA0qXneONpKEzOLXSvcUshedtmiNx1mWmAnTuwlXSQ6I2dOArQnVt7nXWLySBYsm5tarCHlfrYANeRqD2kkMZfLi3M5kxAy8Xvb9TVibGTh6tbbxxAbi68gFIq2N5hG/Pnrezm2dpg2YZqAaTzFqqN4ApuXR9g60o8N9Q1Ne6zwhdhchF0Dln0UueJFDfg6Z94mjVwr0tmRdcS3nr7Dnxal0rDeS7uftZH3mzERYyKdtyyWFdoETqYbJnmLj5o+mF15UhsMj5dTpkXDzXLFUbZh1ees+5xFVxCdojCemWs4chuO3YaZqfni8pV/rCklW/wo8PNKqfeGn18BvqaU+hLy9/aHPtYWDzjggAMO+J5ASunh8PWZUuq/BH4H8HRrFVFK3QWeDTd/CNy/dveXh8s++Jg/A/wMwP3PThPAJua8Wj7nJXfF037GVV+hnuaYht0HcPXMoxe1FK8MpStm0XL01R4/yeknFtMEQmm5+mTG6mXo7vTkZU+MCmsjmQmk9yt8JdaO/laPPXPYtSKUCVzE5EFms3r5YPYzT1J2V3ajevEGT7MGqwM+GkJSxCjn1bVNTPION1g+YhoaGaMCr0hBky8CGEPSCTVYK9gq3DGC1ujLJeYbL6NvXWC0EO5lmzOyHWufcZxvdsf0ZrHieT3iq+/c5bXxBRPb0CeDU5HS9BwVNYu22JULXfYVTkXa6HZ53muf87vuvM1f/qkxs79fwLccmzcTl+djjk7W3Lw95+xfrugmt7n5d5+SqlxeBx9RXS8v00DEVSeZz8lp1BApSIIw1NmbxqP8sODQClN7aQw12c5yopIMX24bKd0KNt+coO62xOMe+yDbeYzpNVerktgbsjMjvvzaoFtNO3KMpwvOdKTrjCyA2ozJqKGyHaO8IzeeSdYwcw2XXSktljEjJMXYSiTh0udoEk2wzIfbrPucEDXfeHrKjdma05sL6s7RzSxXRwXdUUb1WJ5LsW6xz5fYC02cFKjGo04rQuaGAhpFGgpvglNky8jx13u6I0tfaSHfx0MNuhmiFeN2MSpEfZtvHofoxa2n27QJ20BzIgq1DhDcvhJeZTLUqqJYV7Klwq0TptOY1mLaiF17srnHjwyjt1dMvtqRMkt3WrG+62hOtDSEqgSGDzdbbOcgkvi4X4gUNEnO+MTBE7610+98KYNPPIFCDW2TspBWw/Vqq3rrhAIy68mnPTFqVk1OZgJHRU0XDJs+IybFq9NLGu/wSXPVlvTRUNqezx494la25P3mhKu+JKI468Y8bafk2vO0nuysKB8VH4Vw//6P9YgHHHDAAQd8z0MpNQJ0Smk5fP/fB/594C8B/wbwp4avPzvc5S8Bf0Ip9eeQYcn5d/NvK8S2sQwFJ3Ytw0sx41k7pnqkd22FOkB+0Q6ftopkxIaRSkc/yUBB8axm8caY+qZm8WYkHUk5Tt8btI7cGG+oeyHX23SMycma1WZKfmnwFdCL6mqdtII03qJHnqQdQzoYKkkrYWl6fDREFD4YIQAKstxT2H7nB05J7dQ4XCI1BrfqZeHQ+50lYycLKiXnyWPixpcize+wWBOgt4Qo9hVA/MVZLXnBwTDNG57kgWfNmMm4wSCJLX3Su6zwr61u87npA3pjaKOljdKY10aDUYkRHT/5ya/zN5c/wPRrltFbGes3euaXI0azmhtHK1b/o563X7nDvZ9rJOpv08lzSUKyJakkoTtPGnw7W/tOtIqYaWKmsbWHkNBdQGmIRmPaSHkR6CtNe6TIlmInCpna2X64ctha088iqYy4M4vqFd2zCt0r7EbRFgmKQAoK/7xgPivo1xnKRSZZy8PzGdbKe+u4qJlmDTMnVgGrIw82R9zI18SkuVUs8dGw8DmPNzM0SQZZveO4kEVPeaMnRM00a3eZz9M7S9aTgvrTivOFY/Ybp9z6pRXmcoNqPPpqSb6uMc2M9jgnFJpurDG9VLZ3E004NdgmUZx78itFfcNS3xrOzozk7IxpFLYWXzhpiPsrETIewK0T5UUkKbDNkByTQ1+pXda2r0T5jjn0o0Q/kbM5+VXCrRO61+iJqPG+VChfYtoc3QbyJyuKbzUkowknY9b3K9Z3DO2JFERdV7nV0BS6SwYa8EK29vUmnese7oFgby0mH3ZiTS5TL1znTETZQKU6jI4suxyA3HomrkGTqGxHEyyVjcxcw9pnfHN1ky+Hu/zg0SPuFxdc+JEQ76RZ+4z7o8tduslHxXcl3Cmldz/WIx5wwAEHHPBPA24D/+VQ4W2B/yyl9NeUUl8A/rxS6o8B7wJ/eLj9X0EiAb+BxAL+0e+2gaEPjogi1z19svTJ8P7yiPxSFDs5hZ4wy1bItgYyR6wyullGspr8bEN3XLC8r+mOE+pWw8l0Q+sNISipbzeBR+czVCnKWhp7bow2bE5yzDcqEdBsRNtIv3aotWU9y8hyv1dSExDhpNxQmp5FX7BoC1pvsC7Qt5Yy73btkNtTzlol4Qou4p5l2KulkFMlXm7lGSwaaYhfkOMy/eqcrz094uU7l6itrcRmjJxUk3fRYJUiN57TYsXlccnGZzvLSUwKpyIj2+Gj5sHqiIlruJmtJJt78M+PbUc/lHycZGte/+QT3o53qd43jL7pWH9fx3pZoJVE78UfnPMwznj1rywkg1pryePWkHKLGvK7kxHbB0DKtJBCogxKRoOpAzG36D4I8U4yKGg3Crcx+ELRTrUoskNjYj8Wi0lxZtjcE6+ym2vsWqwNvhJF2Z5lRCsE7fxqDArJ8Q6GLAt0rZVa7z7jKKtxKpK7mmhbFj7HqER3TcG8mckQ5WVbsekducmBlvcujplUDYX1PFuNuT1Zsm4y2s5inaePFrxidT+xenlEcTFm+nZg+pZGLzboTUc1F2tPf2tMc5IRcoUv9PCeS/RjAwpcHdGPhrSTCM2xxlei/ovCLZ73aMC2MH0v4NZh936KTkuMI9DOzK7tM+Ti++4mDBndMkgccoVtFG4pr4n2iZArlvcd1VnAtAY/cRDH2LXHLhpmX1wwA+KkpL4/YXnP0p4o+lHaFdckl0huMHfvfNrb7wcSG69dDnvWHtQu9URv01GS2n2vVCJG8XMbZMjYqITTkUwHjI67RJplX7Ds4Uax5maxoouWeV9wmq/53PQB/2hxn59/9gmMShwVNbeLJaXpOGvGnDVjiiFu86PiOzVNfjGl9CPf6c4f5TYHHHDAAQd87yGl9C3gcx9y+TnwUx9yeQL++MfdjpSyJDLlWYaSJjqens2YTMUfWlxFssU+Mg9nCUNjnx8Ziucduu65/LEZzakkY4SVY2lzfG8JrcHbSDOxhHmGzoYSHRexOvLSjTnnZUV0CTfqGY8aNjajX1n63nA0rllnE8xQhBmLxDSTBIxFX6BUGlrsgATTosUOHmpg10JJgnzUYRY5+tklFDnJ2Rc93PuDCYA+v6L66gnxtlzXdZaFkiIcZwJNcBLrB5Smxw2e8VXImdptSkfc7U9uPf/o7GV+4MYTTtwagFZF6uDItMfqwNIXvDk9493jEzYhp3poKL+VUb/esbisGM0ajkc13Y91fGN2gzf+izVmXoPRKB9JVu+i/lTY2mUUuvaQW0Cje2nZjJneESnTeAgRPTx3FRIqGpJWmB76CvoJuKXGrsSfnF9oQp7w44RdS251P5EkDxl0lVzscJkLnys8T5cTnAl4I/nmfdT4pGmjZe0zRrZjOni4H4Yj3lnd4JOTZyx8wcw1dNHydCGPUXvHpGpYNxmmklr4kDSzUc2yLtA6onWivQHpaU50sHo9sH5VcfbDM0aPjhg/CmRXHtMGlE8UZy3dUQYjIcfRySLT50N+twbYtnHC5EGgLxXLlw2+kjZU08HoSSSbe6JTYCR+MeQaP2Sot1NFe6QonydsLf5t3UEXlHi7s4SvEqGEfjQMJK9lVqKbKdrWSPpKANPJIqo7yjDdGLfo0Iua0VfPqN4y4CzdzRGrexmbO1rU79F+fnI3QLl7/8s/lRRp+wbZXq/3t0kR0Aqt93nYeoh+VCrtEkquQ6vE2LXMqprLruKyrTirx5w3I14eXXGnWADwsD3iTrFgZDqeNhMezGd88/kNiqyncJ7MhF0pzkfFd7r1Z5RSv/YdrlfA7GNt7YADDjjggAMGKIRwb9EkK1F1j3OyRWL1ssL0itlXayFu1hBHOf1RTj82uFXAni1pXz4S/2gV8bc9Jg/EoNEmEDAUVceqydGtJtlE1FBUYrM4LVecDUUsWS6q9zjveJrULo1kPoZskYiZghstM1dL49wwdKd1IsvEhlI5qXvXKtENWb0pKaLXGBOpniRS30Pfo5yDYvBCx7izzOx+Bk6/1LP4XRLfF4O0LK47xyRPtN6SaVmIOCWDnPO2YN6XjIcVwjZVQ6vExDVseic+VdPzuJGP8D4a+mh2tx3Zls/ee8yvLl9h/Vpi/E3L6GsZ6zd76nVGjIoy7yhfX/DNPzzl9f+3xp6vQStJKDEG8TQoaZ7UCRWlKlHFJEprL3F01wtzlI9gNclokpb2StMlbBNRQdNutHjpgzQgRgu6k9xrXyVMI1aIrUgacknuoNPEPBK8pumcJFhknnldcP/oCoB5XxCTYgTia0+KE7fmy+d3iCheqS5Zx5yb+Yp4olh1OT5qzh4cMbq5wenIndGCJ0NdfO56jE7MWzcsLmThoVo5xjFLrF6B5WsKU2cU54riPGF6OQNTXHiSUXRTQz9ShFyGIbdxgSToJ4rVy4b2NBLzgAqK/NzgFkLM65uOkCu6qUQHHn3Lo1tZrBRXkizTjxWbO4r8MjF+FGgaQ32q0IUsVmImxzbkspgxjZxJMA3kcznzEJxGVeIVj7miH5fomwXZvMcsG1TryR7NOXkEJ9bQn1SsXy5Y3dM0N4TUb3PXdy+eZj80uVO91bWWSV4g6eLKUlIgpSRnW+u4I9591BitMSmy6nMy7fnM5AlM4K3VLbG29Tnn7QirAjfyDTezJXnud2eLau9YtTnPLqYEr8n1vkr+o+A7Ee5Pf4T7h+9+kwMOOOCAAw74cGxCjlOBkDQxaZ63Y4rnCtNFigshC7G06I0mVhl+ktGPpW68eLgEa7j4TE59J2JOpf57ayMBiIXndLLm0flsN4wVhwbCEDV3yiW/ehwlChBkgM41VK7jqikB6I4is2/IQNnJ8Ro3WDFO8g2LttilX7jMU9luIGx6p3LXnUOZRNdaTs88GCPZ2+sNNC2qKmXg8IN+bqD6xiXvnh1x884cpSPei8+8DYaYFKWVqMOIEuIcDFbFwTIisYsj26JVZO1zxk78qjO7YWELrvoSn6RExydNSAp8ziujCx7em3H+7jGrNzyTtyzjrztWn0q0gLOBwnnsJ69461+b8sn/J9izpTyP7Roq7Il0MkK28QkTA9FqkhVCnqwiBYXqI8pHoh1kTCWeYSnAUYwfJHwpmezaQ7IyyGoaxK7Qs2tHVAHGT2FzR1RwFRVxY+lUQldx5+GOSWFVZNEX9MEwcw0+Gp72U3LjeW12wXkzYh2yYQEVmbpGFlTBoMpACJpVmzG3JaXt6aLh7mjBu/MTjIn0tcOuNf0skJ/WdLUjrtzgYVegYfVKZPWaDOWqAGhHzBKxkP1UrZZByI0iGnArOQZ+JOq0XRpsrXBLsWD5QpTxUCraYykUStZSPk1kq4hpE/ki4daB5tiwua24Kq2U7kTIFpBWg1+8hFAl+mkkOln0+BL8mcbUYBtZJPTD4KUskhIxy+A0Q3eJ/LKVMyEh4s5WHD1bcvRrsoBubhXMX3U0t6CfxGFxIp7vJPmcslNDtOD1dJLrsYLXfm2ISYlCPthUFLxg8Vp0Jb/avcwb4zM+N33As27CKoiVKCRpHK3DCVpFjErcH10y70uslvSiZZPzePj78FHxnardD97tAw444IAD/jtDAtpkmRnxsIakuWgrsrl4VIvzSHOsufx0xfFvQHKa9sgRrWL8Xo1abag/dZv1/YS60VJVLT5onIu7U8lV0eJMIGws5HF3HrvvhbBm2qNutvBYhqliUtzINxTGs+pyumBIJx1JiyXgRrWmNB3rkHOSrXnqJiybnKQSuZVkEqciUSV0imiVsVnlaJPoG0tx1qC0lpxqrUjew3IFZYHaqtt6G92QUIsV5Tu3cPcCZiDtfTAU9Kw7R2kdYydq9u1yydPlmHcWJ5THPSPb7p7TNrFkkjWs+py/f/4m3z99TB0ymiAqbEgKHw3NUF3+k/e+zp8/+1FoDavXAtNvGKpvZtSfalmtCspK2jRP7l/x1h+b8vp/dkz2dL3L31bx2qn+zqNiJDlDdIatC0CiERNJK+JYyku2w5TaKVSQApaYiWqrhyxq04hSuy3bCVkSK0mSRkY/SmTvSqLH8hNpZ1+ItYWqY11njMqOp6sJxUy8uO9fHu1yuXPrOc43aJW4N7pi3hUArGLOLGs4b0Y831QonZiNamJSrPqMzAQenB2TThXjvOVqUVFNG7qih9oRg+al21c8y8f0VwVh4okroWIpi+RzR34pz7M5VfTTQR23ieRFdc4uNG4jzzWPkkpia7AbOQamk2MTymFAcpwIRWLzUqK+qcgvDCe/EciWgX5kqJ55xg8i9U2pfQfwQ2b4NmN7WyUfbaIbK+pbooqHDLqJ7Gd3FLFrhd1owqCMFxcK00DIHNGNZTZjsIyUFxG3ipg6cvNX1iSn6SaO9W1DfVvRHidiPswGoMHFfS63QuI7hzjArY87DQOXMSn08L0aLFil7SnMfqDZ6sg3Vze5yEeMTEeuvVizVOBoGKK96EY83YzJredmvkIXiXNGOBOw5h9ztfsBBxxwwAEH/HeFuS85tTLEF1G8f3nEZCPNfMW5Z/aNjuefG7P4REm2jkPjZI95vqR77ZSz35bR3+ipSrFxKAXOSMW7NZHK9ZytRuA1qvSkxqC8FgsIQkbzoqPOxSpRmB6nAxPXMM5aGu8oRy31zYL2OHG3WuBUYOUzHm9mXNUlmQ103jAtGkbXFO6h44TUGBj36CuHnl8NavbwjyinwetGrBhGgzF78p0Sp1/yrH67I3OerhFvecg1RidWfcaNQjY0dQ3ToiUkxdpnu6KbmDQRhdOB46xGq8Sj1Ywvhvu8OXlOpgNOBykF0gEfxNPso+bHvu9tfvGXvo9UBhafhOnXDfHtnP5TGzbLHO+1NPfdmfOtf3XGJ/7ciOLximT1zpeerB5iDxOKgNl6ve1+4aG7ALUnObGUqCRtjG4TUUkTW+jGYmew9UDalMKXoL0iVoHozY50A7RTTXEeqW9qQpHwo0g+lRZCgM4bnA08WB5Rd456UUjCyI2G3HgerWa8Pns+eOU9V0Mc4Dfnp7w0njNvC7LcY3SEqFnUBa8eX5LlPZebEmsCLvMcVTV2HGm8ZbEpuFhV3LsxpztasagLmjwjeM3x0Zr+lqHtDb63chZmkXH06xbTJNoThVuI5zpbx2vxH/KcdUiETCPzr4r8Kg7tlkMZzlBWoyJ0Y015IYU8bt6BVoweBpLT+NKge1HOo1O7sh6SEPltxbvut+vXhHkOxXPxivsCbBg89JnYf5IRsh5KsaHoAJu7BhUMSUM/yQhHHnNlpOAnbQcrFUw6cY/MnUQOOjljYgqx/sSksDa84N82w9c4WE0ab+mCQReJu+Vil6Ne2B5Nok+aXEUZstQRpwKGiMsDI9ty1ox5sD5ilte8MX3O83Ykr/vHwIFwH3DAAQcc8FuCiMIQmZiaq1Ax9yXN+xOmu3zhgGp7xo88F592xHPF5P2O/MmSi995m/mbmvYk4MYdo0IItzVxG8qAM4Fx1vLekxOJHIty+j7ZyMloQ2lFzbNGVLS+s1y2FbOsYWIbpllDSopR0XF5M+GPPRPb4HTYpYFk1tMP9o6JE7IrdpJITPqFrN7sSqPqYfpSKxk0TJoUIqnrQGuUtWCiRB8qjTKa8Vtz3j8fc3K6RJmE7w1Nb8mt1NXHa2bW3Eo6ykVbcZSJ11z2RfLCnQ4UpufOaMGvvHefzAReG53vIs+0kmi0mBSrkPN69Zwv3HgV/bggnPQsPglHX9WEskS/tqZdyJmBUdlydHPF2394wqs/O6V8dwkpEUs3RNRdc6DGCGGIb1OJaC2hslJ+0wVULy2WpvGcf7Zg8sDj1omkjMTSBXl/uCSpGSRQnSKUEeWHgcJO4UfQeSl9aV/yTE/XtJ2lWeToXPZnlXKKrKfrLeW0QanEVV2w1DnOBEmuaEvmbcEP3njMe6tj+jhUuldrTqs1zzcj+iDJGLV3TEqpmV9vcrLBK35numTR5LxycsmjxZR5XTDOOyGIOpJ6y+XzCcoKkdZnGdVDee/4AkBRPkvk84hbekwrg4rRaSGzTuFzSTbRgaHZE9w6UlxBOxG/drRyvdhONHYjqnHIDaGQgddtGU00akfmo5VYx6T3hToyXKl2vvq4TfMZ3o46AP1AzK3cVqWhlMeySyHqjiJhFkBJGopYasAuh2Kf5xmmkUIjQPZTAziSScQi0eaRfmVEES8iOgsYE3GZZxM1drBAXTUltXf8yMn7jEct725OqHGMVMKpsCuUqkxHZbqdLSyvPD4Z6uB43o5kWNn84/NwA6CU+v6U0lc+cNk/n1L6uY+1pQMOOOCAAw64hpA0U9sQkqaNjvfrY4qnGlJEJdCtl3rpgUis7ymm7yUe/gunNKeiWKaJpyg7RplE5QHEgfxkJtAHQ9pYzKQnJYhBoSs5vZxbj1OBMutZJimnabylDZaJhZHtmLclhfX4o8Dk9opce/poWPW5tFeqhDKBYBVj15IParEMIcqgFS5SFD3uOeCHD+mYdiq3MpBwEIJYTFJCYaUcJEV4fknxzg04XaJ1xHtL28ogpY+aRVdwkm0ISaFV4mJdMSlaVj5jalsiSrzZA4xKFMZzerzkS9+6xyufvcSpyDI4CiOpJT5psuTZmIzPvfKALz14E3oNs575pzKOvqKY2wp3TzzJzgVGecfk1or3/9WC7K0TJu8kpu+1uPONxAfmRgb+riWy7F7nQdWWhJMh5cRH6psweV/yuN1Grtd9wtWRvtL0E0nVUEGhW4WfBbzS2LX4netbivpljxt3rN4Zch6ySKoNvU2kaSdJIhvHZFaTO8/z8wlZ0TMdNTTeMctrLpuStc94aTTn+eYu6z7jqi544/ick1LxzvkJzgYeX005Hm8wJnLzeMmqkQXJvJFEm/PNiE+fPmPRFTycz/DeyOFQYC6lGn6XuDJGbCNXUD6XtB5bB7HfOI1d9ySt6CcOpRQ2xR1R3g6jChGXhBNpjxTLiW0T+WWPrwx+7EQZH0pzkhoU6YFwJ32NTCPXqbT30sOLtpNt3bzpRCVPBrqZ2mdyK3b3Czm4lSa/0OghZW9byGO8pKOoOOSwD2tX0yh8mXBLOXChTKjhdz9pRTIGlWShF73stFcwzxJ+HElV4N2nN5hN1/hgmJUNd0aLYQiyJyrF3Jf0yeAH375WiZFusSrQBsuzerKL0vyo+CgK959XSv0/gP8AKIavnwd+/LvdUSn1+4E/jYxQ/JmU0p/6wPWvAv8xcBO4AP61lNKD4br/APiXEJv83wD+7SF26oADDjjggH8KEJNmYiS+romOp5sJxUXa5TETEt2NguZIc/RNz9Ubloe/t5ACjnEijgL5qNt5p7cfECkpcucZuY7HywmqV1SjhrZ19F4zmjTk1jN1sm2r484Tum4zNj5jbaRZcDU00hU3al45usKpQJ+M3GdAFwxaSQSf0y9mCXTBoJ3ctnwe922MRpNSGurcEdK9TSqJkeQ9ymxtJ3D0VqT7PDgX8K2lKsQu0nWWi7ridrlk5mpeGV2iSbRBcqbHtpOyFtSQQiL70gTLm0fPefbWKX/7vTf5iVe+yTurE5wONN5hdOTe6IqYFC+VC37tfkPxtZLukz3qZsvVp3OOv6y4tCXu7ob1oiCOxcaTFz3tm3A+y1m/VFCe5YyeBLKrTtonfcIuGol1A7HPEHclhLG0O8IoiqgcU7f06N4QncJuxPsbnEN5sd+YWhEqRSwisTFEB/XLHt1ozOMRyiWSBdWbocky4VNGDIrUGNZOCmgAgjes6pyHacZRWXNarbloK+6PrtAKJq4lN563zm9yVNWiknuLtYFFXRCjYrEpKLKe5bqg6yzTUYM1gfcWx4yyjnHR0vaW1bqAVgvRVdDNZFhSecX4PU35PJJfBSGuU4tdB0x3zc6gFColgtNEK3nZpkvYjRTemFYiAaMZVGUgu/IkpegrjW3kTEE0aqdYb0nvtocmabVbEEUzeOmVqN1bFVzFPZFGS4qKL+RxtmR5e3Zi+7i639pNwJfizTbNtfgRBaGAUKRdu6bdKLJB7U5GrCu6H6wuals1PzTDbr3nbliUeU1aaFCOpS5kIW/gQXabNO2ppg1Ho5qb5ZppJgVXUjUV6TE4FbhVLJm4hl9W116Dj4CPQrh/DPg/Aj8PTID/FPjd3+1OSikD/F+AfwF4AHxBKfWXPqCW/4fAf5JS+rNKqZ8E/iTwryulftewjW1t/N8DfgL4uY/ypA444IADDvgnHwmodEtAPMPPFmMma/lg1X0Co6hvOqn7bhKmFUWsuRWJo0Bx1HB7ttyd2t1+TPuoqYZTwfPFCDQ0jcO3ohq/dnzJUbYhJk0dM5ZNjupFHQ5B00XDOmS7/Wx7y42JlGOMTcuvL19i1eUyjKUjfdTkJlCafjd4mBtRwkPUaJ3wXlM97V7M2wYh2FpB1KgsE4U7BCHdgBhvLLO31nxzWVFWLSkqNk2Gc4EUFasmpw0W4yKn+Yr31sfiPw8SAZhrP7TiCUEYmY42WI5cjb7ZEL8048HpERPXsvYZp6WUgCy6cijOafmh+w/4ja98kupLJZsfqonHPYtPZtz4R4rnrkQfdTR1xnQi5FPrRCg8m6rEjwzrexaSRXuYvhMxXUb1sJFM7pCGshwti60+knJDP7L4KhEzTX7R4iuH3QRCqVEhSZLNXGN6aa9sjxNuqelOAv7YsyoMt37e4DaR+SfAjxR4sEOyiYqKfqrpGg15JGwsdVBoG4lBUS8K+XfkuDlZ0QfDua0Y5y1NsNwfXXGSb3hveUxKCmcCJ6MNz5ZjXjpa8Hg+ZbkupIgFWDcZzgZmpXjE339+RFH0FGVHXvR0naV/WmJXGhU14/cU2SJRn2qaY4XuwA2tkjHXhCxDpUFF1kKK26miuaHpZwm3MBy9Faget4TKEjJNP5bs835q8LnGl0oytwu1I9hbkrpTt52U4qRhOFO3w7DqNQ950vK7KR7tJARby20k+URJStDWz22Q9JCgduR7O0yZtiU2Qe6nkpBs5a9tb7i9Gho1t4u1pPf7tbW+7Mh+3JP57WW6H55jpuA8J6WcCz3jbPD8J5cgj7iqI8sCmfWM846TYsMHfpO/Kz4K4e6BGigRhfvtlNJHofW/A/jGUJ7AUPf7B4HrhPv7gX9n+P5vA//V8H0atpUhf0Md8PQjbPOAAw444IDvIWiVaKMjoNmcjZh5ICXc2uMnGc2xZvLIs7prCRmSXDD1mMJjTOQor2mCFXKbFH3QTIuW0vVYJSSKbIhWM4m86HeNcdviilnZsA4zQtDYpAiD79oqqQJfNTnTvOHEremTYeOzF+qjfTDcKDcYlbAqkGvJ7q2DQ6mEdYHmvMRdreQOKbE7YbuNAoS9p3urdAfxMhMC5vEF8cl91Ost2kW6RY4vPC73tI1j0RdMXMOr7gKn5bR3TIo2M8NxlmNgVCIiMYJvLW5y83jJhS35jZ//BN//u75Fbjwz11AHx3vLY3zS3KsCr4wueevzV9i/dYR9t6C/3+LvdCy6jJf+Njz6vRnqpGOxLJlNN2TW00SHnXakqxK92daIC7mrTzXNUcXpLy8k1UR2Erx4mFUfsQlIls1NS8wU2dyjYiINNngVopTG1BrtreRKTxJ2bkgucfxlxfihnAkYZ4rFq0MmeS+56jI0CPNPGJpTsSL4Y0V+1OAx0CiIUK8znsaJqNdNzrRoB+vRKXerBdO8YdnkjPKORVPw0lTKU6q8I8ac+jKHgcSrSl7rVZczKrud1ScETd9aVBRLSflcYhS7mfiujRdSGY2iOZIEEVF3kZzy4S1UnUWq51CfaC4/G3n0auT0H5ZUZ4H1LSMkOErTZHRbNVjtyOnW470l8d0soTuIbhhUjZIYIwdyeDsPzNN0spCBfRb6zmqi5b2+JfLDK3jNL75X1Lftk0nttxFdImV7O4vu5LXZDoESeIEAb1X06w3xuv+A13zYDlF85bA/BqZWmNYM7zNIKiMo2JjEysFjBcvNP6ZYwGv4AvCzwG8HToH/m1LqD6WU/qff5X73gPev/fwAUcuv41eBfxmxnfxPgIlS6kZK6R8opf428Bg5HP9RSumrH9yAUuqngZ8GeOWVVz7CUznggAMOOOCfNPTJcNWXFI8tKkZsndC1Z/n6CFsngpMP+W4G4bjHlT1KJ4yOXLWlDKv1jk3nOCobblVLNj5j2eeoVpNGHmsjee6Zlg1HbkOuPVd9RZ80Rsvp+9AZmqi4KCpuVwvGtqOLhnM7IkQputhEeVyATAchrwnJ31ZhZznx0XCarZjlUzZthl8Y1Kb99gdBK/F3K72znRDCnpivN4zf1aTXxfpCgui1eHQby1VTcpKv2cSMynY820zIrWfjM4xrsQjp3iYyjEzH+/2RKPQvd+Tv5JzVI26Wa761vMEsk6zp2juWvUTi/c6X3uVvfv8YuzCktUVPetq7nsvace/nAg9/X4Y67lhtcm4drXaJEZtTy/gdJypiklzobgrhHszeLnALIcVJKxmyhH2jIJAvhRi3Rw7TRGwTiEYRMzMU6IThspznPyzWEjOX1kVfGfLzluJc0ZcOP1Ly/hoSNmwTufGVyNWbjuYUVLS0qUB5UdtTEVAavNfkTiTWZSNtn503aDXB6cC92ZzC9My7krfPTrh/esVxUWN0xJhIvcmxzlPlYlRed/I8u87ivSHUFr20VI805VPJsVYJ2pnYJEKpCKVE/4EU4agA4QjaG5p+nCifao6+EXHLwPQdz+ipYf6aY3MbtJd6eCGPgyJs9mkj2kOfQ3sjoqKYrfNPLuiejTBLQ3E+DDOqgbAy2Em+jdF3S6RBvm5tHltlec/Ih+hBc+3nQemWhdeWPKudbWX32AOZTteI/wvXbzcVB5Lu95en7Tzo9mcLyu9vE4bupq2vnJ36L2cakmGvuH9EfBTC/cdSSr80fP8Y+INKqX/9423m2+J/A/xHSqk/Avwd4CEQlFJvAp8BXh5u9zeUUv9cSunvXr9zSulngJ8B+PznP3/wdx9wwAEHfA9hm4e7iRnvr48pzuVy00VC5ehGimydaKea+paiuxHQRUDpRPCGViXmSobR6jYjBIWuapZdwci1PFlOSCahrVRsWx2Z5c1gsYhYHWi9ZZK1xFw+QqwLhCjDkKXuuF92rPqcykpqwWVfDYUyg+Fj+MTOdMAPZTPy3CRabN4WQugDKD/4u5WSD/sPjCWlEAeSqkhaQwiDvxmS9xx/vefR78wwJhJsAq8l4i7B+XLEndGCVcg5zmrOmxEAy66Q5kuUOFdQwyBY4rioqWzH2WhM8Szn0cMTXv30JVdtSRMst6olqz7nrBnTRSmFufOJc5599aZYBIJCl57N62Brx52/H3n8kxY1gst1yc3Jmhg16ajh8scS5bdyTn/NU723Zv2JMc9+WDP/RMbJVwZLUNzbXpKWeDoQe5HyCZwiFBoVJTYy5BrdBnQfWN8umL+umX1dsqHRkqLhC0VmNLpPlJeRrpPhTBWhH0l0YTb3zN7uITn6iWL00NGcQMwTfYIQFTHT1DqRZ55ZKYr2pskxw8IvNwGbRyau4f7pFVZFSttT2p6rVQVA1ziuvKEuejarnNRrSWupDfmVxi2hfJ6onntJbOkTdiPJLO1MUkb6kcIM5TS6H2xWhQwRxgzWtzVHq4Bde0JpKM8jbi1e6q3tAgVhq27DPi4wAUlys0mK9dMR1Xt2eG2ukWUG5Trtv24vk0p2diQ7mbRTlLePsb2PkP+0I/9CqNNQVjNsaOun0B/+vQ5CxNPweNt9fUHBHoY1dwsEtd/n7XNICpK79rfJD97vfNiWvmajSbxoqfmI+CiE+5lS6oPy8X/zEe73ELh/7eeXh8t2SCk9QhRulFJj4A+llK6UUv8m8AsppdVw3V9FhjRfINwHHHDAAQd878IQCWia6Hgwn1FdxWGQKtLN7M5LGkpFN02kKlCW3ZDskHBOsqO71qF1YjZu6aNGKcMImM8ryCI2CzKLmBTTrGFmNxgSIWke1TM0iaQTSidc5smsWDJsHil0z71qvmtjBJhlNfNufzq5dFKYoUmS3asTbbR8a3PKsi4os55srqCXBBKMEbvIdVtJiEK0kxBuZTQp7AtwiJHqW5f0lyeUtzYoG0mNJXaiXDYrKbBZ9gWl6aXOOhh81PgoVoJc+V3WNsjxaILj1RsXvH13DEpqze+MFjxazWiDlOxM84bKigr96eNnPBmdiAJsEsZE9Khn8f1gN5aTX7Jc/q5IS8aFidyerHi2HBNHHc2bifdfNky/OuOl//qC/LLi8Y8X9A8ysqtWBt60wrRBQlxKSFasFdt/3UjjC0v1rMduAn5kmb9R0c0Ut3+pwy166jsF3USLKj7TlGcy8Gc3YlfpK7EyVGeevtKEQqO7xOhJoN1odIDiPNHOFPUtQz+RavhubelGHh801kRSEn9/mfVsemFrRkdC1AQ0zgQuhzbCeJmRskjoHLWXwV/bKNxKYdfgNon8KlKce9y82ZUfmVqjjjPZpyvwQ1W7vG/AtDD7ZmT2TeimMvzYjw0qODanhpAP8XxKYvmA3fBkNHsFNzoZTrS12CmShuKp3ZHjaPbklCRDjMkOVe/XVWOJJAeVdmknWy93MuxSSqJJKC2q+cDzhzr3/d8HFQG7v0wNqrNKgyIdIQ4lOLvbhP11W6IsO7d/XO0HtX6IH9Xh2qLB7G+uEmKqHmwnW0L/3xYfhXD/f9mtCSiATwBfA37gu9zvC8AnlVKfQIj2/wz4n1+/gVLqFLgYPOH/HpJYAvAe8G8qpf7ksN2fAP7PH2FfDzjggAMO+F6BEjtJnwzL8xGTNg3+zIgvNa5OhEzRziCMA9moE3U3CPVt2/1HWJaJSpqZgNUS4xV7g7KRPO/pe8tsvOFWvgQYUjuk1rvIapIVm4YeFMtuiPwKSawkpYo47XnaTpl3pZBrHfFBM3IdWkVy3VMaYTAzW/OkmcpjeUP1ZCvDfWDUSmmxk2x/vD4iNRDzFALKGHh2TvX+LcKpZFgnhVSi20jaWNZ9Rp9rbtsaNVSPN72lCZZqyBcGUd99NBSmZ9kX3CxWfO22R5nIs3rCvWrOZ46f8OsXdxm7TjKHdaCNhlwH3nzzCW//o3vEsSJqKR1JY7j4YcWdv6OZfSFn9bs3bDY5z1XiuKq5oBTrRK9ZfMqzeuWIG78q3uF3/yXN63/RolKSynenZXByq4YGsBvxs+sc2iNFc5xz9M2O1UuObqa49cst2dmaMCmoHtdoXwy53WIr0V1ERRm09KUhaqmLz5byXou5FMdUZ2IGVj6RrRQog+4V0RnJnt5oNp2cVSCLKAW586SkmNcFtydLLjclnbdc6JIYNc1FIUkajUF5RTaXOL24raZvE3YjhTa6E1an2h4VZPGVh0h3nA8JIUaq7PW1aL1Mkkm2jwGwueV2JTUkhMxqKZ2JDuxGvpqOFwjzdT/3Tqm+RqR3PmsNfhJRUQ/EdZsakvaDi9ei/AZHyF65TuoFi0nS12wlWzU8XXtcLSlEUvc+3GdQxe1akWzCj7bDlrIIUMP2k903jaLltb3uF1dx+BrUMLQryrkaPN+7IdLrv7ZbJf9j4LsS7pTSD76wEaV+BPhffYT7eaXUnwD+OuJ++Y9TSl9WSv37wC+llP4S8M8Df1LJ9MnfAf74cPe/APwk8CXkNfprKaW//JGf1QEHHHDAAf/EQwFtdLTRYs8cqIRpItEJodE+UZ/IIBy5KIp9P3heG0tQiazqGZUtmyZjMgyzTbOWh6sZdBo9kdbJvhcbhU+GTciZ2Q2V6ciNx6qhMroV5VwBPoo6XA3NkYbIJuQ83kzFz208VkdCjEOet6j1fTIYIs+6CYuuwJqAD4bi6po8NtS3y+d93Gdy6zSwmsg+n5tdRXrynqNvBM4+p1Amye29AgfKK87XFcf5hjazu2p7rdg1Je5V+qFQZZDzumgoT2rqs4o+Gr65OOVHb7zHG7PnrPqcsWsHkp4Rk+b1yXPefukG+lFBut0SlRSL6OOGZ7+94v7f6unHFc0P1SxXJc4GjsqGrrOkQhFNIurE2e8GvTbc+MQlj3/8lDu/2OJLyep2Me0JkZfnr7uI2yi6saE7gYe/z1E+Vdz9+xui08RKpvmS0WSLnpArktE0x4Z8oTC1SL2mS3JslSIU8j7blroYL/YV00bc845sYbn8ZEE/ltuqqHArhy8TYRRpkqJrLVnucc7zzvMTgje4zNN1jn6VYZYGu5GccNsM3l8t6rRE1kkKSHQGXxXoPsdugkRjAqaP2E0g2cF4rAzBKXSQ+L+kpdFxSx77odJ9mx4C7AckEbKd7NbysS21GUjt4GVWcRhK3Cq+Q+pI0mm3CDJrqXAXlTzJ9dcUYrREL6prpZhypdrFEyZzbapx+0dha30xkGLa3Xa4q2CYY0gaupO0l4UjYIZ9YU+4YSDUniEZJe1sZGkg2jGLwxkVdc06onY2GeW38YPqY/u34b9F02RK6YtKqQ8OP3672/4V4K984LL//bXv/wJCrj94vwD8Lz/uvh1wwAEHHPC9hT4Znrdjsrn4TLOFfADbJtJNNP0UwiSiXSD0hn5tUC4yOhoG0nRknHekpPi+ozN+/fldlEqcXU4gixKjlxSxl9bHm9mSmd3gVGBsGkrT0wYLRUCtLSHogZhLZOCx2kjMn5WBSa0SDNuNSdEGy3GxIdf9zr8NDK2NicJ5ztYFJ/Ug2enrRtitX5uBdCswCrbcXGmUHYwsA+mevrXkcVuQlT3BWPB6pyaurir8saGOGeOs5dl6jA+a2rudJSQ3HhK7dkozqN3H4w31s0psJt7y/3vv0/zArSf4ZIhJY1RiMqSXAHz+1ff4xYtPSqnQVI6/tRF1b8PDnxjx0t/1PK1K/Js1V4uK2aRmVLYsgyZFhRrJfqRO8/zRjPyHl6QvZGifaI63OdlCMKPTaJ/QfSS7DJjW0t7IIEJzknj+gyXTdz26j6gQCYVFd4HsyuMLR7RS6GLExE62CPQjI7nSWhG23l0lSqmozgHVeYyPHH8NVi/n+FLRTZTYcy4U7Q1DFxRJWZrc0aj0wrAngFpbijO9G0w0rZTRRCRGDxiG+tQQp6fI53KmJ+aadmpoZ9KWOXm/I7vssBtDN7MkpXZ53LqXiD+fC9lOWr2wL9ENtpEh+81Xsl1fMMTiQagSqpcFXFSJ6BKmEfuFDnvrCAraez2qNuhav5CrvY8TFNa8JbdbUq2CvAYoiJnUtyeT0I3sbDJDVCBC6rff7ywjWx/4lpArhoWq2u7abh+2Cv314U3UNcVbAV7tPd8MCrpNe0Kf1O57ototRIhqNzz6UfFRmib/nWs/auBHgEcfbzMHHHDAAQcc8EGIj/p5MyJbgooJW0shBwq6yeDdziIETWo1qtOoo0DuepyRIcgnywmzsuGsEYIJEBqLqzpuTVZcrCtIalezfmQ2aCJ9skxsQ0glruxJzzJpcJyKJWXlMzY2Q6tIpTv6ZHhldMnjeroj15vekQ0xgHqohzaDvWTTZxTWMxk1mM4KaY5RrCKwH5qMiV0LzIf0u+2GKAF9vkCfTRl9akV7Xgop8BpMQq3EVtIGy9Q1PPQzABZNzsh1u8fb5pbHpHbKd+V6yCJdMNwZLfnVd1/lyWjKOGulMTM4wtCsObUNRiWql1Y035wSKoknTElJ5vhLDU8/X3Lri55H45x4t2G5yZlUrQylBlkkZIUnuEA/z7lztOS9f/EOk29p/EhUZ7eJ6FYNFo+IqXua2xXz1x26h/JM0U1h8WakPXEcf01TPusGMiekPVtFfKF/0zFNBvpcY4a0kpCJlSJbKnSb0E2PqjuUUujOc3RZE8cZfuToppa+UpTnsLmt6SYyZ7BVd8OdFr+WMza2VrgVL1gzTJ1oXxqGExlKZK697NGJ3cXUkaqJuNqwuWl4/HtyJm9nnH7hHHdp8bOcpBW+NIRcyPbWv6xSIiohhdEJuY95kgKYqOgnkfxcD1YOuY6o0EFIebrbEHuNfZB9wCOtSCphzxyhTISpJwC6NjuP8zYKcOu5SGpQhQfrhqSjDNaTKIuF3bDlB9Kto712pmM74Li1nwyTnmlQ0WVHJO97az3ZZnqTBqKtB6U7Ap3ak3C1tavsybX424Z/Sn43U1RyXRou/xj4KPx8cu17j3i6/+LH2soBBxxwwAEH/CYo2mh5cHVEuUlkq4jqIrG0+EJSGUIlU1Kp0+iNIc481gWMToyyjtx61puce7M5zzcjZmXDps/AKyajhjenZ3w13OGqnTBflzsfsxTBeGamZukLyqKn8dA1VspqSPho2Aw2CoA2WuZ9ITndg8IN4LYZ10gySUSxCjkxKWIwLFclN5qwH5bcPnut5YPbiuoLyPVGQYg7awnGoEIQMjEdUZxp/JtGPMS1IXkFLqJXlmWbsyxyumDxUWN1ZF3nrIt9JOF2aNJHTZV11G1JTIps0tH0lvG0BZt4952bfO5T77HyORHFveKKO/mct+ubtMHyQ7cf8Q+ejVDzDG55yRy3AaUS7RtwuSq5+/cCD/6AIzv2rOqcSSUss17mhLfGwmlebXhyNeETv+0h3yjvMvmmFOSETAYYQ6FZ3i9ZfqKknwVG78DNX+moTy3RavxIUd8L8grYnOLSS8X3tYG5fiSSqEqSQ+5zhS8lOhA12CIGVT0Ugy+57WQxpJUMsnY9ZmlxV5ZYuEGNlpzw+lTtPMtdyOlv99CLVztpifNLRlRbt0mkp7Jd08iw4tbyETQDebZUZx5bB7K5J5t78ivH/A3Dsx+/wclXNnQTR31DBiO3UXrKI8qvkQVse6JoX+4gCFGcvGXpJ/vByK2thAgpS3S3Aid35ixXJekiI2Zifbk+XMngHzdzRVpaIeEmCQEvI7iE2hhMu2Xp7IcYt0r41oMeZSozFmlPgGHvBY+I6s5WzR4sIorhrNBAlJUMYTKU5SSdSNnA0gdlOtkIJpGGY6H81ljObmBTiDx7i8p2w7uzF9eI9gd83d8NH8XD/X/4eA95wAEHHHDAAd8dCViFnPWTEbOl5AeDEKy+UvTj4QPQa1SvpPXNy6dc5XpmWc2j1QySDEBmJjDOWh7OZ5CgcJ6xaTkqah4tDf3EcN6PCIWmUD1OSwoJQJn11AoIivNVxVEhtc4SoRcH4q2wWjzbVgUuW4l72xJYPZTK9NGw7IsdIe8bi0o9LwxMDj7ubVrJNv4Pa6Vt8oMYBivDJKc8S2yCpjqq2aQSOg1OyMflfMTLkysiah9dGDR178h0kMu8xBhaHTmrxzTekpvA8WTDqsnxSTM+XRN/8Ygvj+/yxp0zYsr5pr/JvfyKTHtWPsPqwOnLV1z+xgntvKA4aohR8qq1Tqw+bXArx62/qzn7yRxX9qybTAZTs4gfJWZf17ivFzz/0Yg5vWB8d8XSjVjfN0zf0vQvNzycOuwKpm/ByW902MsrktXAmG7qaG7IIdq84vGlYfZNR76I4oHeci6j6Ct2r0FfCeFWCWyd2NxWNN9fE2vL0a85xt+KsugJQV6na1GOuuvR8w0A7omieFTS3K3ox4bgoF1o2lVGP01kVwq3FguDrWU/Q6ZwG9k3KWJRhLFUlJtWhgP7ieL5XUc0juIicfLVltmXLymfj3n+2YLNS8W+/MbvVWWVGIYNh7dND3puSS5RPJHFpi9FEY6fW9KdVWTPZSA03eiwLnLx4EjOJKVrFo5r8X/K79/HUpCTduRd9RpdsyOtSQ+Dh8Nbeuv/Vmnvk0YrdD2Q6iFcWwVRm1WvhLgrUbvjsDhg8JSLN0fJy5quEXM1EPUhcHuniG/3fSDvW8K9s5Go/b5z3V+uAJVQdjgJ9cEpyo+Ab0u4lVJ/eb8rvxkppf/xx97aAQcccMABBwwQq0JG8cxia4+pPSnT9CNNP1LEbKtkye2TTehSLBqV69AqcTEfMRnXZCbQ+ESmPZsmw4w9Y9fRRseNfE048mQmMu9L+mSodEtEMzMbNImTcsO5AXRC68SiLTjKNuhoOXIbJqbh/f6YLphdPCCAM2GncG8R0JSmx2rJ1aY2qLbZp5F4L2q3UuyaJpWShsnrA5SBvdVEabCWUFiKq8jzq5LRcY1yERpDisPg2yLjsq1YtaKw996QkqLtLZ0zmDhkrQG3iyV9rnlveUIbDIX11Nqx6ApujDY8M0dkX6p4VE15eTanS4ZfnL/Gm6MzauOY9yW/++63+MuXI/TznL6y6EKsK2XWk47g6rOGk1/RzH4pZ/17evreEHpD9BryyOINKM40t39B8XXzMp//3Df4Yn2f7LjGvxpJZyPu/Rxk8048x6WBWGKWLfmzmmpi6EeGRmn8aU9/oljXoq7aYSjx+Q8qiguFW7AjUCGXMiW3Slx+JnHrM8/wv3yL+3+zJX/vTCIcByTvhXiHKGp3lkGRD+Q9oVc11dsdcZQTc4svDX5s2NwwqChnbgCSUTsSCnuLxHbYsM+AJKTbbNJOdUdBe+yw6xxfGKpnEV+I7eQFK8r1vGsliwxbg34mEYnaw+aueKbDzY7KRnw9WDACmMc5pgMbZbB1q8gXF2rXBOlW14YsDYRclN/ohFTrKF7vZMXqYeoXK9m3vyrbAp5t0ogeBivF3hIlTaRXex92EuVae/G5M0QdbvOwt551OZ77IUk57mlHmHe+8uvsNrFT318g2Lv+eLmvMlLkxJBB/49T4f4PP95DHXDAAQcccMDHw3lb4RbiOUUpfGHwpaYfD3XObqhlbzXJJUaThtNqw9i1nDcjlE7cP7qi9o7ceHwyBG/QJuyGGQFMKVaHq7YkoMlUIBBxylOajrFr5XS4Tnzi5IJll/N4M+Pl0ZX4s0msfY5PhkxLQkkXDE7vyfbWv91juBxyunMj1ePAYBORWne19XJ/wGYCDFYSJddd83erIsdXBlNH8ocOjmtsFui1haBIecTODU/nE6ZVwyjvuFrJfrS9WGVClGHOLlrO2jGZ9twZLdAkNj4jN353LLtZojxTrB5OacdrtEqc1WOu2pLMBDLt8dHw2t1z3r68S1xZdNWi1FAG4zzdccvl9xccfxnMV8bwg0sgoEwiRFH529PIk1dFnn1/ecTtkwVX65L1okCvDdpH/Mjsmw5zTabAXtWM31kT3JhkNOAIRaKfJNojRf5ekKHIN2rCukIXalCV066e/PIHA6998innf+0ed7/aY5etvB59T2oaOf5baAU6kwWSD6QiE/Vby8JJ1z2q8ZgluFWGXTlipgd1Vkkrpk8QEzGT/O+QSfNlUtDckLM6bsjlDk5InfYJ7RObeyXtxOzq10mSqgIQo3qxVEbeSKgN+FL84t0MssuBVT4viKYgH3Krdwkn04QfBdyVRvcyMNlXe8tKPx5IthKle+t71j0kq17wXO8WFoMf+rpFe7uv0Q0+70GpVxF0t80KlH+DC2wnsevumkrNft+jS7BNJBmytsUuIxF/qMFKEveLkp2HextJGK6xaHPttU9KbDco0AllXlxkfxR8J8L9dkrpvY/9iAcccMABB/xTAaXUEfBngM8iH3//C6SH4b8AXgPeAf5wSulSiSfiTwN/ANgAfySl9MXv9PgJxbvzY7K5xAGqEImZph9BKNNO4VadRncKdavnpKrJrUhmz5Zjbs5W3MjXvN3eYJy1+KjJ8h59baCpNB0u8wSvaYPl0o+4MhWVbslUYGxaJrYl5RG85naxZOoavnp+i5HtuJvPaZPdWURiUlKRPqjCIGS7jVYGJ3Vg3ee7IU27GgiE0TIJFROJKB5uLR5tUpLUjO9QX5dyJ6qmguoxrD9l0GZQA70muYj20GwyZqOayvWsbI4xkb6z9FGTs38O2/0Dz/N6zDRvKG1P3TiU8cRbLZwVlA8ND06PeOX08gXSXtnIo3pKaXs46lFzx2aVM53WdN5gTWQ8aljehkVTMnsrcX6zori7JsaEHkV6nUQorg2jtx1PsiNev39G+PIUXumIeeTi05bRo0S2FpLTV5rmqGT8yJA9WzN5pybpEjV0eutOFNjVHUu2SkxGDT5WqJCEFA7DhN1vW3PnaMXVz95j+iSQzXvMk0vSckUaFkHK2T3pNgZlNOTZbvBVSokAq3evIUmhVx35ZhhUjYDZ19YrH1F9IGVyxiJZRT+ymM4QjSSZZMuA7hPRiHLrC020CldHadnMpN59a0tRcZ81ncwwLGmHQdB5op8I0XRLId7RDbGEBnyV9nXtWSJ/btDdntRf9zlHhVg84l6tfkFdVmpfHb9VtAd1Wg0FMyETBTxa0Er832rwiKuoUO1168mwbTX8F/fk/zc1Xw7+7V2Tjko7T/u2Ml55tS+52T50AhU0MZcCrJ3Sff0Gw0uttuklw+Dvx8F3Itz/FZJIglLqL6aU/tDHe+gDDjjggAO+x/GnkR6Ef0UplQEV8L8D/lZK6U8ppf5d4N8F/rfAvwh8cvj3Y8D/dfj6bZGSYr6sOG0Tuosko/GFeGtjluSDMipUJ1Fdk3E95GYHFl1BXWe8NF0w7wqcCRSm59lmIu2Hw4ek1TLIWGQ9a58TomYZChaxxKmAU4ETu+bSVagioC4z3lsdc7NcMS1amiAfk5uQEVHYIYph0RdcXI155ZVLStPttlfonj5JnndIipQUbj084a2FZGstiXHv6x6+V0aT/IerZ6nIhXMYRXmeuFxnuKoDF6EzkIsNIG0sTee4Wa3ROkpuedC0vcXpiCbhTNhldW98RuU6rAovRBvOjja0TloRw/sVy8kGqyNWR/poaPy+C/vGyYrz5TFpkdGWPW4YnsydJ1Yti1PHIljKR4bJGw2jrONyUzLvDeZhgRk8vO5xhns10N4KFO/k9GPxes/fVJx+CfpSqtl9pTj//oLxsWP8jTlHX/FkqxHrO0ZU4ybhaiFPV+djZvUwpBcSvlCk3zHHJsXqv75NuUzkFx734Jy4WIrCPZyBSCEKyXYZyhrInFyuFVize12TUVKoovWOfJOS+MhjhKgwA8lOdvCEtz2284QqY3skfaXxuWJ924plY0hPCcUQ6Qe7POwtrg9N7hJCkii+OkAN+FEQYpsUatqRoiLVVnzOWzIcFKZRNK900Grs0ogHvNurwiruC3euR/VtEa24n/apI8OAZccuzi/fCDFuj4Ts6377O8ALRTc7ZfwaAd5eprbWlW11/LUBWSH+w+PG4cJhh3fK9ta/nfa2FIkSHJJKzPBva09RyDHbPtePL3B/R8J93Z3y+sd/6AMOOOCAA75XoZSaAb8X+CMAKaUO6JRSfxApLQP4s8DPIYT7DwL/SZKsu19QSh0ppe6mlB5/u20kIJ7nmFY+1PqxldY/N3woJvFxmk7R3/CM8g43NEk+W40pip7S9ruadasjyyZHDRF9jXcUupe2SOfZ6IwuGC66Ea/khoDCkKh0K6R81BEe5FzUFT90/HBXFON0YNGVZHofp/dsU6JU4laxwql9VXqfDHNfkpKSqD2GD3SrIcS9TxtIMcgH7TVrSfqQWEBhMJDKPcE1bcSeOdybNb3eEwpfJvRGs1oX2OOAMxLDp3Si85bOCql+Y/qcZ82YLlrstcSVbbxhHw1HVc3DccItFfm55mI+4tbxUvLHvR0UfqmRvz+95GI2Ip3nNKsce7Sh6RxkPbOyYXK/pXvJcDkf8fyrp1zc26CURAO2k4jqNRSKbKH42tfv8fqbT3i7uMnkV3PGDyOPfspz2TrKs7TLQO7HcP4DhuXLJ9z+hSXj37igOBtR3y5oZ5rmRONWieI9ibazjSjD6r93web5mOMvuKFd0pO/f0maL/Zke4hhVEohJUTiod8p29vF0/Z7rcWaodSOUEcnrZnBaUJphOhrOUMRsiHHeatQB8n/3kYZ2jqi+zgQV1FVdRd2JUAv/B4ZWYSoMJBTrUhKEQvD5lZGtgwUZ420eGYaXxixtOSKvtJEC76SxJaQg2ndjk2rYUAx5NfN4mJD8aNIGgWRva/lbatcLEPGyPsq9nqvCHuF6rRYOLaWk15KgcSiIsdB2j3TcEzld0j3gwfefEBFH/6WqMEu8oIKbmSb1wn2UAZLyORM2s7QtfVyZ+ztJL3MUyQYogLVrljn4+I7Ee4PWsoPOOCAAw74ZwefAM6A/7tS6nPALwP/NnD7Gol+Atwevr8HvH/t/g+Gy74t4e6T4ei5wa17VEz4yuAL9kSkFkNq0mBHUixjVWTjM+aLipsnUtPeB8M4k9i7kBSF8zS9fLz1URomrY7DbGJi6fNd3F+me5zyOBU4Hm94ZiYYHTm2G9ZZThssK59TB4dRaVeUs2hyyZQeiIlRETeklFx0Fc83FbfHKzZ9hgrgxw4zxMulFNgNSvZxT7q1EKek9N7HTdonlFSWaERN1U1k9hY0nwSTRZn5asRW4lZGeIMJlM7T9g5jIm3jcEaU51+/uIszQewgMNhLLHGQ8Da9IzcBXyXsShI64sOSbirpHEZHKRRKipNiQ0yaezeveHB+G+aOtnSczlYcFzWZFsvK1bLELzKq55qwHuF+cE6MiuruiqaeoBdCmEbvWM7ujBjNapqTDF9o9EbIU3ukqJ6kXVxdKGH5WqSbTLjzhZziW+dMrmrK44rmZkYzM4zeT2zuKmytCP/DS5rOcePnHdpDvohU7y7g4ooUttEeev/VGLECbb8iBFcIthDrUGWkTOro2xs53XjITA9gNxHTBLKrnrLx4CMqRiHO28WVUrtiox22kZFJPN+7syHb+9jB32+0qOo7vzRgFGGU0Y8s4wcN9qoeNiPE04UXKV1SiuQMmGFBMLzfVBvk/WiEaF4n+5ISw26fkpaFxv6rJjqzHxS1ajfouc0Lj0biEEMhDyVtl4O/2u6fT9LQjxPYKOTZpp3nWnlFyqKkqvi91WVXUKOu+doTw+KB3TCm7veqeijkrJrqFSlts8HVC1necsPhsT9mUsl3ItyfU0ptZ3rL4XuGn1NKafqxtnTAAQcccMD3EixiK/y3Ukr/UCn1pxH7yA4ppaSU+liCjFLqp4GfBshvTXFLcEu/U9xiJlFnajjVG3IIE0+ZecwwoPh0NSH2mswEumGiSqvEqs9JSeGDpnCezHj6ZHAEcutRCgrr8VHvsrU1Eg1YmY7jouZJnljWOX0yhCTReqXpgQ2Pm9nOclFvcvKiJx9Kb3LlMSoSkiSUxKgZu5az9VgId2nIMgebZlCsB8KlDSkOpHuIn0Mr8Nvz8QP5yTJ8aQcCI6kSs7c7rupMFiVZQrWS/EEC31gZgrSeEDR53rNeFvTB4GLADap2H8yOPNfeUdqewva0weBMgKOOdFFAALfQPD+fMJtt6BGPdtCRi6YiJMXYdZQvL+l7w0+9/nX6aPjlpy8DkDtJl7nqDZtPJMZfd6yejzi5M6fpHOb+hvS1EdFIdvXy6Rgz9lRXis3dKKR/GKoLhSiy2UJaG9uTRH3f8/7EcXrjNif/8An2mWe0zMhnJauXc7K5ov0Dc+pvHHHjVyXtwrSJ4nmHulqSQhAV22yJ5DAMqY1YSawsiGJVEKY5/TQbquNFlVUBqvdXjOYNoxjBX8tbD9uUEr0jzNvLhl+K7S/U7vvdbQdCq2IaBkNBeUlMSVqI+i7PHUiZwx8V+NJSPq1Rnd8tDEgJ1YfhdlLEpIL4zlUnhVPyPmRQiYf34DYjfrvLRsh3MtcUfgZvOkLU5Tls77d/Lyelrj1uQvXDsXGygFFxSCG5nt6j2Nt2UpLs9aHsJxmFLyy+gFBIxX3MxKoSimEOBCRSdGi/lAQghW41DMOWKoqlRvXyNWmxZzFsezeJGtXHLrzZ4tsS7pS2nUkHHHDAAQf8M4gHwIOU0j8cfv4LCOF+urWKKKXuAs+G6x8C96/d/+XhsheQUvoZ4GcAijfuJVsnVIh0Rzk+V0MT3t5nmaxYCMZlS2l7IorzizEmD7toQK0SU9fw9uJk2IZiVjTcKRa00dIrg1URrROZDmQ6MPcljXO4FIbByYbC9MQyslkURBRT29AO02RXfUVu/KBoa3xjKcqOi24EQG8Mhe4H4p2YFC238hVfbu+QxaE9cFZh6pbU90KoYwKGfLQt6dqp3NfUTKWgLIRgbAkAkD+Yox7chPu1NE0OHD5ZoNU8W49RKuF78ZSnoOl7Q6OtkOmoiTqikhr86UJ+MiO2k7p3YrPJckwzWE6e5vTjlszKAqgPhi4plEqUZc+/8uav8KX5S/zVL30WU3hGVUsCyqHmvhq3rLxm/Wpg/DXHeiaLpKrouLpVUL1rcctE9swSxl4qyIfs5JhBfilZzOVZojz36N4SraF+ORCqyNmPaPrqLjd/eY7atGSLDbPVhMt/T9M+HfPG/6ejPhVrjm0i9rLe+7YBlTnxaxe5kG+tSWVOLB1ha+lJCTfvKOoeYiSMcyGbq3pHhnc+/e3rqLVcFz+gom+V6w++3tuvOwKuPlwJH/YHpYjjnH5WYBpP+XzxwmMnpSQZZ7i9avshASftL1NKnnN6cd8k7UP9pu3tsCX98cVFhPLphZ9TTMNaUxYQ11tV1TZyMaQdQZcFxrVFx/B4OgSybnizX9uvHZkfbDBJ7y0oodD4QpOMohsrfKXwFXTTgZg7SMW2KlPt1GwVldhgtu2UUe0Sbj6uj/tjNsEfcMABBxzwzwJSSk+UUu8rpT6VUvoa8FPAV4Z//wbwp4avPzvc5S8Bf0Ip9eeQYcn5d/JvAyQviRLJ6J2ndZuWYGvxI5uNJt2XxI1MB5Z9TmoN06M1le3Y+AylEiPbcbWqdr5RpyU1xEfDyLaDiosQSx0IaMK1mINC9dwqVuhRT1w75r7EEJnahkp3WB1Y+xyAjXfQiYoek8InA/Q4FeiToQ2WkGQ7elDKklH4cYY6mqAvF/J5HoJkcitNUvEDfu4IaUsAEqnMB9LFUKLiUeua8XuKxT1R3ZIGgiIUctw2nWM6NEympEhR4TsjqSXBgAn4qDEmYpQMQ+7KcoYa9zLvmGdD02CUZsT1RYm7uaIP++P3IzcfcZKt+cLFq3z98S3MpSXMIJ+t6b2h85bMesqsp6ssXVK0J5r4/ojqDVG5q5tr+osp+RWUzxTzW5b2OFKcaeqXAm6haU5lUfbKX1+jW4/d5KiYE3NDc78jnXRcVBnJzLjx6xvs+Zqv/5EJ6hF86s+KBanqI/3Ekc079PNL4rUhSUAUbWeJVbFTe/WmQy/q4exC3KnNpIRb1i8QV7SS1w/2RPqayvsChm0mrV4goTtVXKu9Gp7S/nFTGoI7lKTXHI9lIPG9C1TdvmhJ0VpaGGF//+sYypfkF8+SqoI4KfaPAYTSofsg6rWGWDiiGxT3lCAkZMp5e3ZKZhWS0XuVmL0LQ3ux1ajBwpRQor5HUNuzOHG//zIgKY+ltoRcD/Xtdv8+3CJdX6gAuo1kvdwvvxo4tRESHa1YXJKWv0N9qfAjRXMC3VEkVlEsLBFUr3dlPB/v3N6BcB9wwAEHHPDt8W8B/+mQUPIt4I8iFOTPK6X+GPAu8IeH2/4VJBLwG0gs4B/9bg+ugtgH+qmVauthQAq1z/oNo8ikEsIcUTy+moJOzMqGwnjWvSSPnDVjusYynjSYIUkD2BHI3VcSTkV81IRrk0+F7pnYhrzsaeYZz9sxp/kKM7RMdsNKQKvI83qMavVunwAq3e1ST7RKvDF7TqU7VpcVUzV8qBtFmOToTbYnS1syliLJX/dzD8x6UP62g2JpEP3MooMQOPpGx9XnNWqorVZeEYtIdmaoNzknlfh3+96gXSB6LeR728qXFGEYDhWPvJD8bdyhj5owDpjW7NIkzJVlM8k4nmz4zMlTZq7mG8ub/PLTl8ls4KUbc96fZ6jGsNwUHI03rNsMoyNGR0ZlS99a+js95dsZ62VBVnhi1PS3e/qLDLsB1WnizJN/3dGeKrrbPdU3M0Znie44o3qnIWs8I6PwZUYoHP0NhRp5Ln4cNndHNPcdpmx58//UyZkDZzB1jwoJ93ROXK7kDeAcKs9QzkkSSQjo+eo3E2QQhbb9gDJ9XZ1WH3Kfa/d94TG3BHvr6d6SzEFFViGI5WgbIfnBxx+IujlfQttJSc9Wbd5mvG+/v2ZR2e0rsGs8HW6v6hZtDWFakIyRt2Fp8JXBLfrdAiDkkiV+PWJDDQOgMgQq/u/t3AEwFNeAW/S4izWq94NdZHh+1uzU/Jhbwigj5AblI6YVG4sKaUe61XVbyuD8iG5PzHfkXKl9jODwN0aKh9QQxynH0TYJ24B6DtN35MxUMgqfa/qxojlRhDLhq8Fy8jFwINwHHHDAAQd8KFJKvwJ8/kOu+qkPuW0C/vjHeXwVpIQkZJKUsE0m2X1watDHHbnzWBVpvaW+KMmPGiZZy8ZnUtJipawlRYUZ2h2nruF+cUkTHQtfoFUiDdaHrcLdJ0kqcUQK1VPonmnV0KQRD9czTvOV5G0nsVuEgaA8eHoMQOl6Mu136SV9khbKOjhOsjVXvsI9c8ScgURByjRxWqGv4pCGYSB08qRjIuFRSqG03mVBy7EalGercJuI3ohyXb6/QC2PMact3kpCScoS2iu6RUa8oSirls1aSG2zkBSXreAah8FHlJBrj8bqSGl7QtR02qAnPenSDENmiv4o8tk7T/nho/f5wuWrfOHRK7uim23pzej2ms2jMc0iR0/WjPKOdZsxyocmylFL22Q0twL2YYH79BWbTc7ouMZXGaYDd6UJN1r8KAMS9++fc/kbdyHBxacd0c0YvzWneO+KZI4JeUYdLP00ojR0n6y5ebwi/zMnEDv8LBeVftNhNh1satR2cWOFDqUYUW0n5URbQmquMasPs3TAngz/5l+MF6wTDDndhPibLSLXv7/ePuo9aRiQxBiUtftthQhdv9u+snafsjKULAmRj/vnM6Sq7AqXtsOh2+caI2q+wjYdcVLip4WQ61xhurgrnjHDosOXendmShkAUX91n3bvWxCrU59rdEi0NzL8+ITy3SvU5WK3AJXnNwwQNxYVE9EVbG47VBySZnIhz8W5J79o4Xpyi1GSqW31kFQyLFyQ47Ad6pQFrdhUolPoYcASGHLMB4KuJIbTdAl3lhg9HRbufeJs/vEk7gPhPuCAAw444LcGu+KM4fTwYJmAgX9mCWf32dBPlhMwiaOxJF900dIFw2m54vF6Sgqi3laZJG+EpHEqDGkknpS2udySzb2JGX2yGBJ6uMzoSLKJRZPjo6EyLf0gZcWkiUmR1hZGntL2mGHftrcJiOXkyEnJjmm2tdiipCkvKmsqc1SIoq7FoeadJBaTbfzcNRIUSyf55AbcSkghKaEuF4wenBLv9YRSo9aZDIJlQr4bbxnlHZuNFODIJjSdsTgTQUd01Fjj6eP2ecqwaESG6Mqqo48F7Ung1pvn/MTdb/DFi/v851/7UYI3WCfJJ36wmHTBcDpe8964QK0tz+dSUGRUwulIpxKZDfQ6EieetBGV27hA0zjCSx5bW7KFYtWKwpqfa+Z1QX03ontNcZ5Y3zZsbpxw6x+cU759SShukIwlZJpw2vH5197jl3/xk8zuKFQc7dRXu2xl6G8yQlkrjZJKQwwSzbiNAdyqwR+Ia1TXyKz6oOJ8XUH+YIMo7Ihu2hLg6wOTWxizv3xLwkMgdR1qmwGuJKZwt5/XvOJ7Mh5EMfdezqDIi7t/X13zmSt7jQ5u79926K7HNT2kMZuXCnxpJG0nCHlVPmI6iFbsGNs4PpUguGvEe7vCU+DzYTjSKBY/cEL5ZET27nPo+729ZZhl0ItEsenIzhz+KKc9dkQjcx6b24722FKe9WRna1Trd75zs30OW8V8q/prTczMLlFFnuuQhqTkmKQgGd5JI0Pcavj7tJ2tYDhj9WFnP74DDoT7gAMOOOCA3zIkPRR7OOQU7dYKq5GqchvITMAnTV1nuFFHYYdq9YGLjF3LfF2CSmgdGbmOkRUFeGv52FpMrIpYHahMRxudpJgoP+Rxd8zyhkdZZLGs4A700VIHRxsNPmka71BeYY8Hpdb0VLqj0h0RsWf4ZNDDAKJpBkHTXfPopkQsMnTvUVuCHRNiEtUk71FbJVNrwp0bLN4c43Ox4GQXjdgH+h60YfJe5Oy3icKftPhMQ54wjeLiaoyxQbKQ8+HYRk2Mira3VHmHjxqlzC52cWfHQeIUT0Ybbv3EU75v/Ixfm9/j//XzP4ada/wkUt1bSa14UoSoMVoaOBUwmtWsNmO6eU49VM2fryqKTIpx8qLHdwZ/7FGXGe7eirYxVDfXdM+nZFcKtbZEJw2Ji/emlK8t8a/B4mzEyT8yxAwe/g9Ouft35ozfuqKbnBCNpvz+Bb/y4J4o/VNF3Riq5wGVoD8usFctuhsCmVOCrhUCagxq6wneJn9cS9VAqz1Z3l63VZCvp4VcI+NpS5q9f4Hc7m7zodnrH07mkvf7H4bHw1kh39Z+wEuuUSaRsKKSd7JI293vurVkq/QPme9kbvecVNPingTsUSZNpww2kq1N3SfcJpK0ZI1vg7F1EIKqLUPTZNrF8UW3H5Be3yvoZ3ep3lmgrpb75xcjqveklNApkT3z2CtLGDm6o4z2SNONFe00w7ycUT3zFM826LqH3u8WS/p68onWKCW/CKb1EBLd7RH1TYdtImZo8tT94FVvNcbp4XmzU73Tt3l9vhMOhPuAAw444IDfOqQhf/fDPo1cxJqIM4Flm+N7w2QqbZMAi7bA6EgTHPVliS7FB2x0FCJsWjYhJzLUmF/LzQ1J00dDlyxF6mFQuAvTo7NA6DV90mxixirIB7QmcdWW6FaRZYGxaxmZlsp0O4V7e7upbXjWTjA1dEdyueqkvn7n180z8EEsDDHsFceBwFEW+NMJizdG9JXEJeYXEXM5VFdq2eb43ZrHtUPngZQlzEoTioRdK/qNxc68+OGDBpMIXpOy/bG4PiypVMJHOVOQW89Lozn3iiu+tT7lP/+Hv5PyfYsrEyGXmMD6KCMve2IUItb5fUb3tGxYlSVq4ZgvK5wu2SEAAG9kSURBVEY35gBDFKEns57aRUzh6duSvh+G7hT4VxvcqsQupAhJ+0TxzHDrMyu0SqzLlquntyjOoThPPP7nZtz9ewtOvnjB0//1DL8pSO+MiEUilIrNXYUfWcYPRUFVIye2HGdRlCS7V1d37ZIfxDVFc+e9310QxfaR4o60pm2GekyinvdeiK1TfJCuvaCWXyNzSilSCC/Yi3aqdxxU621s4LB42/m9h4OpjCZhxQ++JezbhUEIQzb8NX/34B3HGJhNSGUOMUkRj1foLuJHhpgPvuxBwXabiIqKfqR31fIq7gcXVRRrhjRGCnkNmSxE25mh/dwxo0cj8neey7GKgJbYwpQSZA7VB8wayjaQXxr6saU9snRjxeI1y/rulNFTT3bRYZatEHa9H74kJXTbE00m1pJMo7tINg8sX7GsX7JElzCtwi2huEhky4jdSBGRVNNriS6NH7JQ+g44EO4DDjjggAN+S6AA00v7H8C2XnkbB6izQGaFaFwtKoyNTAoZoNz4jE3vmOQt87aEXqEqIXOwH2I0KpJpz3FW7wYFDXHXCnmdKOe6Z+xa8rInBI1TkVUQa0kTHDEpHp3PpAJbR6yKu/tvyf1ZN0ErSf24bCpMJ8NV/Qg29wqikTQW0wmxMd0Mtwy4RYe+WqNWG5IPYC393SOWrxb0pQyUmhZG76xQTSeqaYoo53CPLjAXL2Ne6eiygfBtK6kbDTPQJtG3Fu0isTV4rzFG79TobZx6GGwzi6bg9njJvCv49eefoe4c2XNRlE2tiHbwsj4qUG92eG9EiRzItg8KozVHJ2uu2ilhY1lPHEejmvPFiNxKtXxR9LSNg4mnX+bYUU/XWm6crLg8KqSFMYH2onJfbUp+/KV3+MrlHdpbHhUszQ2FaaC+W9HOxkxuzUl//xhtJQ7bFwkq8CMImWH0RFEAps7R8wBmqG3v/W+2gSj14ckeICR6e71WkMJ++FCbHWlPGujFlqLStcIb2KnlL/jFPzCAmcKL99mR6e1tYhQiHaPEyWyHP6/dRmVOPOBNQ+r63SClGjzbO1/3LrZQoaqSVBVSigPYJtAeO/KzBt2Jyhxy8XBLQ2Qa3teJvlKEfIitvladHjI1NEnun0/I1K7wZv56TnbrJSZvLTEXixcXNSHuzggkH9GAW4HpIvmVppsa6lPN+fc77MYxflRQPm0w6w5CkkXEsNTR9f7shmp7zMaQXxpOvqxZ3yu4elOx+kRg+UmpkVedwbQWu1RCwhfp4/beHAj3AQcccMABv0XYnqkfPJmSGoCUTmikHlpH1l1Gv3GMTza73O3aO9recme85FvnN0CBsQGtI5kOOD0khgwbybUXIpj07jE0iTY6Om3IgEx5prYldx5Xhl0UoMQLyv36yxxjE7kTpdAgZTerUBCSZh0yCuNpouP5pkJtLbiFEmK98qg+7JTupLX83HtSmZEqUdO7k5Lly7kUeTghnMe/scZcLoUUxbRXUjcNo0eK9tWELjzJGFRQxFziAbvGoU0ieo0re+LaEryh1wk3ZG6HoYre6bA7czB27W4g9KiqeTyeYBqJbDStImaJ/EJR15nYVqLCewPDIqkPmtz5XdTiclWiJzVKQeuNKOtaVFqdBUIz+OAHL7g/7ckeO3HaDMLs1cWIb01uMM0b7rx2zvPlLXQP/Qye/ail/JFzzF+/we2fn/P4J2Z0R+BnexIdnUElDcmifUEWEqruhA9eV3kH4p1eGGSM+6SPrfViqxhvExxDRKmBPV7v/zZGFFG1vyylJGq0/PBiasj2Nj58uBccXvR/b9NIUoKu3yvWxryYkZ3nqMG29KGZ4FtYK2dglJLIP6vRtcffzUEp7KrDtIHuOKedGYJTO0VbxYStxXbhS0WwvFCkEy3ooeDoOqIDErQTRffbpoyeVFTfvEC13ZBhnvavk9aDfQr0oPDrPpFfQndkWd8yXHzaYF8bMX5YUj1tMYtu+N178XiqkFC+J4VEGmWMnrRMv+XppxkXn8lZvhYJVZS2zAnU9xIo6P/OwcN9wAEHHHDA9wKGAavdj0o+dMW/nciHdsmzqzHoxHFVS2ELsGzzXcLGZpVDNkSVBU1h+53CDdBFK0OTEdpgd/eLSdFER0TTJYaWyI5R3jFyHTEp6uDoBoW7j4bs0tBPI5kRQr4dLmyiwxB38XrbFscsSmFLdJDNO8zFYAcxWuLlZKdRTYeae6hK1p+6yeaWldPyDmwDx19ZYZ/NpWHQe1FXtQxWqpSonkbWvZXZPwu6kwFL00GIiqQS+MFWo0DptPNx585zXNTiiw9GnjuKy6bidrXg5kgq6uPYY1eOUIiy2N6QpBme5Zj7a4LX+KRxNuxKcbSCctSxXjv62tEUPcZEQtA7W8X2Z4DgNUolVnVOdVzTP3ekMCw6erDPMorXPWufsWkzwijiTSJ/arGfu5LnExO689z9b+Y8/d0z1sEQM2kd9NNA0xpMozCdJamSbG7QqwaaTrzOQc4evACl2TWEhsjOwBwHu0OMohbDYCuxe//29QzubU38B9tFX/BTD17wD92PD/F8b4m3E991Gkg3IHaSPN8Re6U1FDl4C20r76Vr6rbKMrFubNNOfBCPeBL/dTRII2TnUXWk2HTYZUFzO6edGJIWRVt7OYuTNNIg6xiKbeQ9EwzEmNDdsNiOe3/0tlhm8aqlvnmL2Tdr3OMr2Yfek4LaL1Ty/THQMRKdxi0DszrSV5rNTcPlpzTz10vGD3JGj3vcvEV1frcIkKFKee3MsiE5I7njPnL7Fxbc/GXD5Wcq5t8Hfiy2GXnxDpaSAw444IADvgewVbTVwCvSQBZDkVDTDmcDmzajn+e4WUtupWgGYN1mO2KbGgNOim2MEauHUwFDHOrWlZBvJZaTPhnsQJjaZMXHrToCmlx7xllLYTxxqGnfeEemA+9fHeEWiu6GKMNm2D5IjvdlX+2GNAHWq4IMISmhgOZmQdkGzHwt9gXYn843mnh6g839Me1M7xYe4ydBbCQrydPee4KTCKhKkcYVbhMJc4c56kguojeGUCT0UpP6wWISwfcGdCL2GlcFbk7WjLOWdZ8NBFkWDGbwdTdBnvvTNiObdKhHTvzhK4VuxVc+eqhpXlJsm0B80JRZT6l7Om8ps561i9Bo2sZhndhJghr83lERWgNZlNeyCHStYzrZUI8iyotntp8ACdY+w+lAlXcsARUUfGbJS9MF3/jSy4S7cPlDx8y+vuT2Lyx4/sMT5m8o8pVGBYgu0R4ptNckbYlOU8SIWdVCQLf+7BfaIgf1uL8my26HLEMgXbd5XL/vPn9RCPs2gWSrOm8zsrfe7eupI9vWym3M3/XbbrFVsrfb397uWqygApLLdnF7ACrTOwfXzj+eZajxiFRkcpkf/O4pSTMqHh0gGS1zCD6gfMBtGsyyxNwbs7ntZLjXim1EeyG1Xit8Dlh2pFslIeK6S2I7gd0ZoWgUaOim8PS3V8zeyRh//QpVS8LMzjKVEslq+W02ejinoEkJ3DoyrRPxiWJ9S7N4TbN4NWf0KGP6bodddftB5l1koqTimMYTnaGf5sRMc/y1mtMvdqxfHXP+A5b69sesmeRAuA844IADDvitwlbUu/Y1ZolQRZwT9XjTZCivGVet+I1VEpU6KsZVS+2dDGGZJHxlyODOdY9RcfBTJ7GX6EQbDFPbEJOiTRkrn9NaBxraKL7XsWuxQ6mNT5JL3QTD6vmI0oKZ9EyyltKIijj3JZXu8MnQR0NpenLtibVF9wOJSKL0+aMcNOj5RhoBh+HI7qUjiV3LFSGDbJmYfl18rKkqSKMC6k7uk4YVipaWwTQuSUrhFpp4BGQRFc3WropqNMkO5SAbC1nE5p5XTi5RKvFoMZUhSed3A5RWxSGvW2rf+2Ao8p5NLs/Fj8DWskAqnieWVwXZcUMMmhASq2bI+44KrROmCIRO0zcWl4m9R65DvPWdDHSapSG4SIySepLGnrjOaI8U2QK0Vzxdjnl5NsfpiD5uiZc5n779jK89u4UK0J1EVi8bXD2ifFRz6+cvqJ7NeP5ZSz5HVNUgtgBfaHSA9rSkulgJKe6Gdk6/HSRVO1KatvYNpSDpfaJJCPJ23qrcccjGe6Hk5loW9geV7S3Rlg2++PW6r3v3WGlPzLf7dD0vfLivMkZsLrElRSve7m1ahzUkclQUu4Yaj4jHY7mu85LEsVXLU0J5g/aJkBusHyw3WqGaHn1+RTVfkV0es/zEiG6qhvZMeb+YRuh9yGVAOlm5XAV5jOSFeIP8vmiSFOYMh/fqDcvq7g1ufKUhe/9SbueHQdTMoRHlPW0jPBnaNVVCBVm4jp/A5tRw9Sm4+lTG7K2MyYMeuwkydLo97Em85yqBaQM6RLojh7+TU5z3vPqzc/y04Gx9sJQccMABBxzwPQDFnmyjIRkwjdQquyHbuW8sKQ+UWb+rG191GUrBOOt4++kNCArrAiForIm8WT5jpIU0GdIuX9q6INF1KtInh4+GdcxZhoKAYhNy6uCorET+1UEIuFaJLhjsuSXmidl0zdi2WBWoY8ZVV3K3kASORV/gdKAODtVq2PrSjaQ2hEyjxuKN1ZkjOUN9byw+2Fxh2sTR19bY956R+n6nQhJzwlEl+cJNC0oLAcwz/CRHJfFTb+4pMDKoqXrxcduVps+2jYCJalaT2cC758f4XghwkfVDrF/cqfZ9NFy2FVZFqqxn0zlCGXFLSUFxSwWZ7GB2ZjCnolZLTCBCtE0iRk2W99TOgNcykOoCfW/E8w1gEzoPmMeOMBKVu24cWdXjc0c/hWyhcKvExdmY7Phi5z9Xxy0PlzPaRyPSzKM2hvZG4ipYNqdjRk8C46+ek19MWbxW4DZxtxixG8kmT0aRqgKWqxcbGmGnXu+SQq5nY3/wsm3E3nfDtThBhvjH3eUv3OYDSqrWklf9wdt/uxjBYRu7+ELYD1RqjbIAonynqiBldkfiVe9RXS9K+7Cf+aUn5Hp3Zkb5IPGUgyfcni2YxkR9t2J9yxCKYfcimFaYbCjAl/vLdY+8BrlCe1HFJclkUOm1EPN+pHj4e0rGDwpOfm2BuVoNHvOA6pT4VHjBOS+lNrBrei0vIsUXoDnSbO4q1vczyieJ8ZOAXQVMH0lh2O4wwE0Et/Lo3rC+m3H1Rs7koceuP2BC/y44EO4DDjjggAN+a/ABD/fWFstUCGDbO9LG4o4bFNB4i9Fxp576qAkbCwq0icTeclJuhmHJvbLtdKBPZlfOopH7LnzOxmecZCVGReahpI0OpyJ90kNj5IZMe55uJrilop8lCufRKvHO+gZdMLw5eY7VEZsCVgUmtiGg0e2gMg7hCEmJspqUIpSO9kZBN7OETDyvs2/UZO+fk1ZrIXJqaMTreihyzKoVcjEZkdYbUAo/LfAjS9IKt0jEbrCMuLTzcWcLhZ9q1KzDZZ6uddRPxqQ8oPNh2DHqnaK9LfP5/7f359HWZWd5H/p751zNbk73NdWpegkhkOBaiDIIDMQXrkEQD4s4xIZ4xNhhhDT2vSaJb65s38QeTjICN4kdO+4G2NiQyzVgGds4brDAYBwT1FqotaRSV43qq6897d57NXO+9493rrX3OfWVVFWqrz6paj5j7HH2WXvttedca52zn/Wu532emLy1XWF+3ALoVkD2UzJoIkJhIsyegqPXFBRFIAZH33sKH0cS7xxIFdFFQbsqKUv73BgcvgiE0iFO0RL8kSdOe/pVyXx3STuJuNbTbcPkKsw+XbL/4JRZ2fLwnde4Y3rMb376YfxKCIWHvY6uLIiFo585unlBsdijfuqQc8uO1R1Tu6Ox6wFnpBvodyYUVz3atOtzcrOhMAT7/WZNhpuNiWex6bSxGVDjHUlX80ziPHwenCbhg7xkswq+GbSz2Ui5mWSZiKmu0nZTuNKmhaC0XUoq3aCGQ89A30PX4Rc9zbmJVZf7YMubxrZVlmhZ4I5WzJcd1eGMwwcntNsy2n5KrxQLkChGulPfBtjfQF+JVcSHuxBpapoaq30LRw8Jy7t2ufhbU6afvjFqzce495AkQRRIFIJYAmwUkkuQUC6UnU8r3VxYXRBWdxRML3umV80C0DdxbPLUYi0Pml9qiaVjcWdBP39+FDoT7oyMjIyM24YhmS566GfQbZkdIGB2cQrndxa0wdN0BQqmn3bKqi+MsBQ6ymynRUftOioJTFzHiauZupba9RRFGG0DAfroLR4+lHSpKtnEgk7dSDovLbe50cz43PVdqg5W8zWpmhUtUWsOk5OJS6ExtetpYoFfyjjHWK7tD0Pt6Geebib4DnY+vaK4fGhykaGJbUj+U002gd4Izo0DqCrYnkNUwrQgTIxYF0uQpUdnwQhKD3GqtHug02Dc/dIMv3LodrB9B2NVGm/yjqjCSVdRuGhkGR2bVeuthlhYzHaYgl9CqGB2OXJwvcbfc0zfFTgiXW8XOefnC5ZdSTspaBqPrjxh5ojJG12cImINpN3FjupSSegd9GLNlJNAXDqac1AshGrfds3Edyy04pMHF9j71Qkn9wqxEuLKU+41dL6i8bC8L9Jt19zzf+5QP3VEfU1oz9UUS6XddhTLSLEIuFUP23Okaaxx0rl1wM1mFDo8a0V5TKDUDZeSoUot7oyURJ65nY3fNXmCn93+KTeToQdgeO/m65vPN7atIUJozSqwqtYkvg/IyRK60holRaBIGnWAvsefNHSzGazSPupa8/4uSwvLSZV0OWmpFivO789Y3L/N8b2efiowOplYM3CorEkyOAh12iXRJCeuE1xnTZgx9XcAFAt7fumbKmYP3skd7zvC7Z+MVXmiHTevPbG0xMp+4k1i4lPvCCZlKVYwe1rpJ8LqvLC4yzO56plej5THyXt7COxxQkwSodmlDtfnpsmMjIyMjC8TqACS9M1zJc4iVRGI0dEfl8gs0HRmy9e2BTE46klHXXYsmopiu6NfFHgf8YVptueuYeYafHo+NFdOyp7DkwkRoXY9dYozP+lrjnxHE83BpI0F56sFR12dUiOV7ukphQedBEoX6VNc/F4VOV9ZVb2UwEE3pXY919u5VZhLXTeCVdCct2jq+jAwe3KFP1ohTTc2upmdm2MMUBFMq+0Fd9KiUdFVA12H3nWRfu4tiEPM07w4dHTTgHod0/woInJUEI/sK981wLbtfI1GsDU9Bj9uxSrcqNAC87JlWZU4UQ4nlmI5OFLYasL0SUd30VvFOjhcsh1cdiXL1qra3bRHr9U0Sytr2mc6fGH+3fjEhjqT47Rtga8iYRLRUlhd8MyftIutwplbzKXHz/OVHzqhPpxx/avMcabTiu27jjk5niD7Fe3rFzy+NeWud55j69NHSSJgVdBmx1OcBNzJCgCZTKBpT0tG4LT/9YCBrJKaD4flyf5PRNDB3eSUnnvDuWRTj31q23oq5CZtcP3eYdlmdfxsBXwDpufesA90k+RYEtbylmTrRx/QQVc+OJaEgCwaI75jdHpKuJxO0CK5rzTdOCd3uGD+yZ7qYIvDhyY056zRVpNhjutTs3RlF6WWUCmjFCt6RomJ6zeq4Z0R5+MHYfGqHe54/4ytj15PdyEE6QJ0Add7ohZ4GWLnHbFK2vONqPZipVRHVklf3C2sLjrqG47ptUi5iEmDnna3AMUz9+8XQibcGRkZGRm3B8PtYiF9CYIWkarqWbUlbuFh1tP2nqYpkx0YxCgjKbfKrAWuTKYtVarERhwxdVxZg2TBrOy4utzmuK+Z+o65b5kWHSehYtrX47Da4KmcOaL00XHSVtTXTY/qJ4HSByrXU0pkWjQcdFO2ixWzsqVNFfSDboJvGJ1XsB47pldayisL08bCmugMCX/OocRU0gtj9VDBGsScjE4ZWlqUdiiH2+1KeeTo9hxEQQtrGKuvelBoLkS03Kh6RtDeGTlPxDtEh/OmdZfkkU3yIJ8UdiziTk95bMwn1ElWUlkq3+K4YrLb0DVJq+0Dx6s6EfBIVfesyhI9KaE0LXUUpaiM7LkiWlPp0hGnkbAs8NMe6ggLT5has+PV/S0uzk7Yq5ZI6+jnJdPLLbtlxf5XOjrg6NqcrfMLmiIQH5/Tne+59E0F53Z32X10iWsDk6uRbqugn3uKnSnucIluz+1Ow1lJxybZNUucU+R3SIoUbw2Jp957M7Idot252AzCSetJxI5/CGsXkc3zZai4D8E1p1xS4rPqyAfSLXWNTGq08LbtTfcVNcItG2OXokD7PiU3YuE6Pow2hyPZ7vq1HMYnZt31lJcOuHD1mNX9u1z76opY2xxjqmhbI6t5u1uokpjHtp1+o7OJ6xLpFvu9OhD6GTz5bY75q+/knv/jCLfozGs7Ofm4FkQVCR7p1e6aJMYfS0WCNXO2O4JfKVtPREIlLO4WlncLs88V1AcR3yjF0jy/h4vo54ObXK5lZGRkZGS8dIiFEbdYgpv1lD6wOqxRp/gisDypCfsVMXk0h2DR423viU2KAwfOz5Zj+mPQ9ddb4WzZpOjQxnOl3QLgQnXMhfqE486aJZ1Eat8zKzqWoRy9t49XtUknJorzwWLigcIFatdxsTpmp1jRJb/uUgJH7STFWtsY1Bv5LQ4tbvoZt/o3CdXmcrDb+n20hMCBBHpHv1sTCxkbAF2v+AbqKwXFQpBeqA6s+j24pVjlG6rraWC9oL0j9J4+OJrOqvwiFjISoqOLjj46am+kTKqI6wTpU3U7eS2Xx0p5taRrC4oy0K4Kjk8mY2R725RMqg6mAbcwychw8DQKzkckNXz6ZbKJ6MWsHqc9OguEaaTdFeJVu0A67CYUx45Y2t2A+VMde5+INv+V53h/yu6WVa4nT1qIztFDwvEDE8LEIyEyubKkPOwJ85L+jm1zhBFndxs2j8WZBMjN56fW9Wv7PQ3RiHPcqGJvuotsHuebVKU3I+RNYhJOf9agKx+w2Ux5Jp1yjIgf9ON9n1xv1Ij/5ticJB/wzW14q/wraFWafeCkRutyXdlO56iGtdRFYmrAPF4y/cDjvOrXbrD1eEwhV4xOJL6F4kSMeJdKrNUkJwWjJ70Kp3o/1Nkdm+rAcXJf5FPft8XBG/bGar90AWlMLuRXPb4JFKtAsQgUKyPRrleTrnTQz4WTux39VNh6Qtn+jNlRHrzGcXKPJ0zEJCZxrS9/rsgV7oyMjIyM2wQd5SSxUuIkUpSBVVsiJx6dRmLwcFDi9lruvuOAZVuyaktCtMY8Ka1MpsCk6NgpV0ne0RNxlNKz7Vfsd1O2ygbErAPvq64DFnazDCVXmi0u1sec9G60EmxCQRc8iye2mDrotwM7k4552TL13fjwElNTlvC1e59j4joO29oq3GK3rqM30qClX3tpj7shPU9NdEIiIUmLatXMJEkQBwRkMqHbKgiV4DuL1O4n5lethdLPTPaB2u/uxAg4ahcO1SVHew7bd2n/aXInGX4GldG1ZNmXTAuryheVVTldz1pz6606O31aONwr8edWpgcPoOoJwHy+wrlIUQeiS+xJkrOJEyt3pqpjdcPR76bqe0h3MpyiVWTxKmFy2XPSVVw52qLbDTR7nq3HO2Ll2HqyJZQ1B1/pCF3J1biDTCKhc4TtSLy35fhkiuuKtW3dcYuWjtWdU2bHzemK9M38rzeP2yaGyuoAJ2uWKDepcZ650JKoVuUOcaw6DxHxYwz7MKazjZpjRfomkpLNuyipP0D7YE2TQxPn0Cegum5gHjTkkuLhsWOuVWlV5EH73VljpQ6NlEVx2uowRLQ1mY67esD5d7dMr57j4NUlzZ6MoToAfgXqhTBRuyPjrNotESQ1T7p0sRcLxn6F+rqj21Iufaty+PBF7n7niurp4+STzlgxt8mPBwhRu7ZzAUKLpWNOYFUIxUqZXjbiv7ogXP9qz/xJx/YT3TOP5RdAJtwZGRkZGbcHyXor1umLs44URWR5UuNXjn4ax0rmnRcPWXXF6MXdB4dGYXtnydHBdNQgH/cV+2HG3DUEdXiUmWuJ6pj4HrwR6YCjlMDD9RWWoeSTx3ew65ds+xWwy343pekLFm3J5OlkbzaJ1GWfSL0R0W4oYUtkFUtmrsWJ6ZElrKtysY7EypwzvEtykZtJFZIl3Ui6wW77d725RYBpumcT+olVdUMptNsWo61JLoyoSWCSrEW9PQ/zpJMWcI0jTuJw3WP7EKtqD1ruTWFC4SKFj3ivtLuRyRWL1x7ISyygPFKkFyZ1h4jSLk0K5MpI0xYsg8UIxtokJObSoWgUI1OiRJcaQBtBp0oMQjXpaSmIQYhbPeGkpA2exXGNzHoOH5yw87GOWNaoF3Yea1FfcfhqQZ01kva7HXK9Ii4Ljl/XUiwrykVE1NI63cKWoWqJi01zJtr95iVNDUn6IW4kx+tTPGm4naYLpps0Ng6kdyDESbv9efXjA9ne/Hn2XCJJSDai6qUs1q4oGtYsd9RwmyvJpnvJqVAel0KZag9NejlGi5PvunU65s0kNGMIUETajtknrjJ5csLi4R0OHyxot+08HXTafinWUDlRqI1U+9b+riBJTIKdRuoBgfJY8I1ncU/kM7+74sL7L3Duo0eWLNlb1d0NYxrvDAkSzXlHgn1OrJKjSWm++BJg60m7O7T/VbD/VSXdB5+fjjtLSjIyMjIybhv6idmDxVqNCALsl/ilWGDLVs/s/iNWbcnF2YKu89SlaYnFKXdvH+FKC2s5N1lQSmSRsqFL6Smlp3ZWjaqdEdZFn0ifCnPX8OrpFWZFy3GoR8JcO5O2HC9qq3zVivghfdGcTJpozZxeIotQGUmPBcdhwvGqti/04eEtWENLtw4UGXBWonAz27dTDhmOuD0xMlCbuwtqTiHlsTl5oAKFjtr4UINrZXQm6Wdq+zgI9EIMQgiSXErMezxEYdmW48dGFeZVS1n2xN2kI3eszTi8NZ/5Y8fR/owYkwOJj4STgq6xGl9Z9dQXUnJmb3aAkDgga/lNeWxjja2nKAKzeYOf9UgZac9Z0qeuPPWsY3mP2bi5NiBBiYUwvxSYPyH4hUNWHu0d/q4lUgfm55ccfMOKgwdLQuUI04Lu/Izq2hJ37dC8rocUwkEi8izOJKbdThaOzp0mmzASbRlIK6wrzjfx0bYKdzi9jU2Lv+H9AyHerL6fdSaBDRlSItchrsnv5hj6gK5WsFyhqwZdrdCmGT227Rjb+St9TLpoS5vUGEcLwVPOKhsSFdO2mx0hKbTGHZ2w9YGnuOs3D9l+LI7SJ1H7nyDRKtMqRsT7uRJq6xkI1fqidNBUqzNpyOSqw3XClW+MPPaWHRYP7NhFAiBdwDU9ro34NuI6xa/MCtB31gvhV4NveNrdJSzvEE7uEaaXhK3PyhiU81yRCXdGRkZGxm1DLK2aRBSkjPSdZ3rJU9+wZfV2w+Kopu093sXEP4Wu8+xuLdmtl2zPLTnSoWyXK65227TqqSQwdw1z11A6C0khwn4z5ThMmLmGV1eXeePks1ysj9nvZxyFibmaYA2E/bVpqlArRRXGJMao66bMUmzbR52lfHTRKq/EVOH2ah7URZKYrBrzMR7wLJVT2STfIZqG1gkyqWnumLE8bxXmYgmzK5HtTy9HPaoEULEGNIkQKjVv4yQxCXWSgVQpOj2YTV/fe7rgiSqU3hxjvCiqQhMKm3t0VFvt6I2sg6wkVburA0FbR98Ua332tMeXgaIM9J2nXZXgrWEtdg4NgkaH9xHdNslKfc0kMHTWgNl1Hu8jrozUF5cEtde3ZyvitlUwXRtwTRh1tjuP92w9nkj3UUG3KtjaXdJ1nnPnjjn6lgU3Xlfhlz3tboGcrNDFcu3FPUoiwk2P0SniG29+HAnh5sd4s2q9GUwT9VRQzfj8ZlrtYfuDB/foQJI05O2ZecR08abW2Kh9v9ZqByPBQ8WeEJJMpF/bDzoHDmTVWcz6qjXd9uZ6z4azspzhwkQEf/WQ8++6zF3vbphcg+g1NRybJZ9P01CxvydNmu5BUjK4nsD6eXEs1Fc8zYXI428RLn3zLmGnIlZr4u1POvwyGNleRbOIXKk9GvspcbAsheoAioVJuIrVs0/1ZsiEOyMjIyPjtkAH/XZpIkpXRLqjitklpZ+CXGhoDms4LHntxassuorQO3PT6D2zsuNcteDOrWNz2UAsYj06FrHmJD1KCUxd+sYOwqX9bVaxpNOCS/0upQS+cftTfMP2p5h5u09+1JmUpbpmNmJxYg4bpTfSDZySlJQSKFxg5luaWKDHBb7RNRFwOlogcm0fPTox3SusScjQzDYQm83KqrfKqcxmLN9wL/uvKXG9Uh5bRW4M/Yh2m9231kw5kOJY2a3ysWJXW9OarMx+T1Pl21IihZBcSwZpSZ8aJ50oddlRloF+piPRXjuxCOVxOr6NWQSCXSTF6OjagpgkKzIJaBnXfuCYpES8pmRJk6fIUHkPjqrqEaCqem4cz0CFRVMx2Wno9yb4Kwe4tqdYBlxrcpn501bplghyXLBalUzqjpNlTVEEFt98zOe+dQvXq7nHDJKIgRCecZIZie0pPfWZcufgef1skewDYQ5xTZZPOY08U4ax3sSZZeO2wjMr8S5VlTesC0d/76GCnx6bYx2bNSW9v67QukJndiE52hn2a7I/XCCKd6Njy+C6MjaNDud4mSrdGw2m0gfqx65zzz+/yt3vCpTHyUIw9T+4fn0u9xNrqtRiLSc5vf8hVnZ+1tcd/thx8MaWz3zPhJMHZsS6QEtv2u3OLtJ8G5FezY2kMeLtOmh3zTN8ejlpx70Q6nXs/HNF1nBnZGRkZNweiFWNQgVhFimA6nJBqGHx2hYaT/V0yeQN+9wxOeZzxzsAtF1BXBnRrV3PXbNDntjfBaB0gUWsOApTZq6hBCbSjXISBLqmwEvkar9Nlyrhe/6EksB+mI0OJdeOZ/il0O2oRY87C7ZxKKWzVMlSQiLvntrZ74f9lOLQjwEfEgQpoulR60Q4msYI5tYsVRdv4qmsasQkSRL0rvPsf/Ueq3NCsdRTX/iDrtW1QCSN26rZIGODo2sFLQUtFY2KRCEW0XyvJ5IKnY5ePN71Rr6BcmPuVRFQFRY7kfLIj7IZdXYsi4XiDz1hN9C3Ba5QYueInUOSz7YG0zXLJKArDypW5fZCUfX0U6U5L2ZzuBPp2gLnIqulyYH2piueePocfrvDu0hV9Fx+5AL3ffIS7mABzPBO0MIaLmeXI2HiOLk30h3UxOCZza2xc1p1rH5Hx2MP7vCVn9vBHZ8YQfQ+NS92pz22z5Jo5+y1QfA+yihsuUa1gzLcqRhcQAYSikk1gOR+oUb6ByIf7VjLENEODHHtcpZ0n0UitQJpm3rqNSlLa5YEs6T0KSBGnFlSVqWR7WmNlp44KSzwZdMjPG1fxSExnJZIDftrc5zOmY3gBiStI0maMv83V5k+MeXwddscvNrRz3W8eLRGYAiFNSOL2sWkRBlft30p6UJQKVaCe6qkOxd58ndFtj4x544PtPhCIKSL1c7+B4XK+kPUmWRr+rSuPcDFZO+64Q70XJEr3BkZGRkZtwXqIEzV/KLnPaF3TK5Z1LKf9MjC097R86a7n+BGO7WgmzJYFbSM7NVLtnzDXrmk8NbEuIql/dSCStYygFm6Jy11IK6K0Tqw04L9MGMiHXf6Y47DhBvtjGVfsrg+A6xpy8967to+ZrtcMS9a9ooFO8WKqe8oJaTGTPsGPuprqkNJJCk1dvXmINJPh8q1mDZ28ON2G3KADdKtTtCqYPWaO7j6yDm6uVAdmcbZtr+pBQeXUvF8A65NVU0BIvQT8I2gXvE7XSLj9j4JpuO2j1WT35zBEP9epgo/WxvezWKVv6GHtL5mtn+6tCZXTSTb5CNuvKNR1r1V/+MQvmNcrTyylEG19HXCYq3/FlG66NClZz5fcff2EYWPLN98zOE3PWhyHREkRHwTcJ0iQZl/LjJ/0pxgwnHBYlHjRFk0FX3v2b3/gI/9R3PCa+8bK9aSfKZl8y7EKK24CYU6G0YzNh6ekY8MxHr4nJRsqRuNlSO5duvPls1K8uaY0vnCxmtSFkhdQVUidYVMJshsCnWNzKbIfGaBNXVl52RdIZPa1pvPkO05urtF3JoQJwWomv65J8lNwqlk1PEz6nqdlDrMdwzlkfU4zxLzoSpemF2jPzhh772XufdXT9j5pF1EDrIR11mzoxZqFoKVVbRDbf9PNq0DUTFvb4HyhsMfFhy/ruPx7yg5eHhCrLzJTLw1rPrW0iW7qbmUTPYj5dIsN4fky83Y+eeKTLgzMjIyMp4BEXmdiLx/43EoIj8iIudF5B0i8on081xaX0TkL4rIoyLyARF50xf6jCFhTr0aK9wvcS2s7jSXDr90nL/nAIfSxoK+dxRJoiBeKZIuu5RgjZShoEn5z120ePFKAgEZfbnLSQ8RFqHCS+SJ9hxX+h1OYs2h1qziuknQH5g7iVZW3Z4WHQ/PrzH1LVfabZpYMHFGuBex4nx1Qu06rq3mVAdpP25U3NRDqDZs2doWXSzN23ioGA6hIYmkhIvb7L9hl4OHKyY3InsfX47VtrG5zItpWms/EnELEsEqcuWg3U7uH71QlL1ZEKYUPxW1YKFEaMoijKS7TLr1VV8Q1GQlbV9QzUzHTTp8aNLTFlCegFsmctt6fGWDFQHxEXFKbD19m6wd1Yh+DJ6q6mnOR6ZXIsWRoKJI63A+UhaB3e0lIcXCT6uOPo1pMum49A2Ok6++ywhr6YxALY0kug7mT0Zmj5u2PJyUNG1hEpki0PaerXuO+cR/WnD8LV9h1d8hjr1cnxenkh4Hl5Dh4Zy9J1VsR2cZjWckQxtkc1MGMjiWxHXYzUisb9Y0eRNdtzVneiO/ZbmupA/V7qqESW1V60kFZWHNkIVH51N0e47uzInbU+KsMivLCNL21iwZQZrOtO5tezokaLwYsfmNFfthfCGuLyw3xq1lYZ9flfZ7clKRECmuHnHHO69zz280bD0+yDqwOzmN2N0Rr6bndoyNvBJs3c3/N5qkKeXVglgqV74x8PRvr+l2PKH2xMKaQsPUHICmVwO+MRJerCK+VVxr51Im3BkZGRkZXzRU9WOq+kZVfSPw9cAC+HvA24BfUdXXAr+Sfgf4buC16fHDwF/9gp8xWNilsL3JFU+7C3K+pT+oCPPI/TsHHHQTri9nhN5T+kDfO8rKvkmjCk6UWdlx0lcpwMa+CWP6ivMoXiKlC6YBbh2H/YROPfvdlKfaXS71e7xv+RBX2i22i4aTtqJYmL5ci8jWfEXleq53c6I6XjXZZ7dYmue367mvusFusbRtLqcUC6uohZrx1rPZBEoKGUm31vveoto30wFF0GnN8qvvZv8r50Qv7DzWsf2hK5YFM5F1BU+HJjH7kHIZTesaQLpBrmCbjZWOiX7tsoTCJCXSC5QKrTUnhuDoek/b+3EfA2Nlu/QB5yLeR9tmIvbIehx+pRRLwbUObZ3xq5hkIyFVubGqtzhd7yNRI9571jh57uPBxhega60qfbSoWTQV0sl4/O2ctQr75UdKJCj+uIWg+C5SngQjSwG2H49MHyuRMtLcmND2BXXZU3izc5zvrHjy3+s4/KaHrBI8VGvPhN08g+xu/r7ZpLiJTQI6kO+zrjXDRdfwd5KSJkf99WYD5TO05InsVuX6fNKIdh3aNPbo+9N69E1LyqpEpxVxVhGnpUWg9xF3skIW1iXoGzWZTd+nJsu0/dXKrAE30ziHZkuRdbjOJryz5WVhYx6SN4dHjFb973omTx1zx3uPuevdgelT5t0dqqTtDoJZL5reO1Rm4YemC8+NircmfbfrheqqZ3F/4Ml/y3H4QGl9JRNHN3VMblgfgF8F/NLItm91DJi6yU2gz4tMuDMyMjIyvhC+A/ikqn4WeCvwU2n5TwHfm56/FfhpNfwmsCci93zerQ52clWE3lEsoDlnVdBy37N73wEu+X2dNKbdbfuCvimoqn5NrFWYlS3LrqSNBZ5IRGjV44h4idSuI6hQFT2uEY46I9w32hmfWVwAYM+bTMSJcuX6tmlASxund0pU4aSvOOxrDvoptevG8V3tt1iEikWoOTie4Fv7wg+T09XfUJOqeBvVyxAsRdI7qErCfXdw/DV3cHJXSbFS9j5xwvTRq0jX0+6UI4G2DRjBENVUzY3JoSNV/zByoZ7xdrxvBF15u7MAiYGA9I6YUie74JNFoMXbRxXqoh/dYGZVh3NKu2d+2sO2ZYM4Dp7G0ji0N832SHqigCQpSSLdmpo0+94jPlrUdqsUC2fSgaX5cIvAyf4U6YTjZc1RU9N0BaoyVh4ff8sebtlRXl9YQ9yix6+StZ1YimD9qRqqyPH1GYumYlqZHlxVmM5anv79S55+y4MmsxgaD8/GqMMzifaGBORUM+Xw2ibR3iTxw88Qn5EoeSreHZ7ZMDl8xBkfcIrCxq66ljD1vYXVJGs+kgQH79CqQOvSZBbl2s1DGnMj0cJZo+zQczA0lw5696HavdmQOUTYeyPWWtq+1Kq0zyucPUqPFuvK9lnijSpu0TH79CH3/MYRd7wvUl+XVLlWs72MjK4lsdLx3EfWBFkwgt7vBNp7Osp9c/u5/q0Nn/2ektV5T30Q7G5RMUh+zDqwWFgzpW+zpCQjIyMj48XH9wN/Oz2/S1WfSs8vAXel5/cCj2+854m07FkxVpqmPe7IGyHdDsQbFf08cu/uAVEdbSxougIRpVmVRjKjY160BBxNtKr2sivooifgCOqsmREj3aUEC78prTLeq6OLnjYUXFltcaOfc6U3mciTi13i8ZCqZ1+slrhoTh1tLCglcLXbpoklx2FCKYHdYskiVvTXpvgOwiRpR9NkY6GEStCpXTyId+uKZQzopGb1FXdy8BVz2rlV2LY+c4K/dmykvK7oZ5vkziQqOHCNmsVZE8fX/IrRAWRTXlIcC9I7ZNYTJmn9YFVz7W37Iaw/J6oQEvkOKdZ+Wpr2XLcCm02T47F1ML0kYwVdG2ecMlW51xtP5BvQIITeoSpM5i3dtjXBVTfELASXjnhc4n1Ejj3lsbC8POPG0Yy293SdJ8yU2dNKt608/S0XkJMlxdMHZhcYlOooJFcX2H5MmXy2xtWBk+tTjlc1hQ+U3qrLVRVYfs8hj//7r0a25ua+URanSe1ZHfImBr312XU3q8pD0+SmI4odgI23nd7+2d8HSYoMrh/FGT+Mokif69avbxL8NB8tvTVGlg4tjfi6JsW/t12SfpizB31/ahzPGJNPMpFTQTtqUpFhmbP5Sp8i2LtgdoPDhcBGU+n4OSEgMeJOGnY+cIX7/+kBF39LKU5k3Q+SznWrVpuH/phPlZx6JIJbOMqtlu6BBr8S/FM1er7j6d/Zc/hAMR4X602wirrrlWIRLTDp8zgg3gyZcGdkZGRkPCtEpAJ+D/B3zr6mVoJ7XnUeEflhEXmPiLwnHp0Q5pHYeqoDR7utUEX8iaO4Y8WssBCa/dWUtrFmyL61wJsYzRd6GUoiwsR3NF3Joi/po2cRq7WkJH0zli6wVbbEWpkX1kS5Uy1ZdiWPLu7ks8uL9Op5+njLSKIkPfJ2y3bdEJPuYdFXXG/ngEXDW/OlfaM3saDcN4JhnsFpD4mOFmdaFeD8sD+QyQS9/24Ov/YCR/dVqIOdz6zY+tAl/Ek7krC4VRNqGbXbRrhNT1oedciqx3URFRu7OZOoBQqpgJifsF+BWwmuiOg0onVEVFCn0AnOR2aTJh1jOXUnQUTxybEEwE96QsVaxz0cZ4XyJNkGerUqd0qVJMpoTziEHW3mtYQgLG9MTRpQC7NLivQO1xp57zpPfd3bHFeO9riiaUrao4o4t+jB6SXh8DVw+TvuI5zfot+uiIUgvVKs4thsOn9cKT47wU2MdLd9YWmaaX6qgnzrDT71hx9Azu2tZRrPFoSz2cz4LP7q6cCv19ms6KZlQ3V7k8g+o8q9ua0N3TTizNmk701jLWJa7qEaPXhxj9rzjUq6JPIflOK4xR0tYdWgvd2FCZOCYhmNtNf1mIxqx9LZeX2m4q9VaZaCg1ykGyrsRrTp+vEhTQvL1c2DfzalKiGOjZXn3n2Zh/7hMRffJ/iVECsdLwJjYfHwg1/36CyS7gDpZ+d2Qf3wMWGqlI9XoML+Nzdc+saSdttZg2RqYI6JeEuvp+7mPBfcUsItIm8RkY+lJpq33eT1B0XkV1KDza+JyH0brz0gIv9MRD4qIh8RkYdu5VgzMjIyMm6K7wbep6pPp9+fHqQi6efltPxJ4P6N992Xlp2Cqv64qj6iqo/4rbnd6l14iiV0uxFaa1Y6v3tCVCGq4zjJScoywHGJ9o6yCESEk75mGUomvqdtPYu+okuV6CHavVOrVoUNRthFf2pc15oZEeHyaouDQyPTsbIv66rumRYdE9+xW61wWMPmxHVG7JPMolPPE4s9u8294djhAiMbVQexThVI75HdHbrX38fRV2yjAttPtJx//w3Kx65C046aaERoz00IpYxhM3GIs14YOZJgCXq2fqriddZQFiZKcWySC9/YLfXQeKQKUEaTl3iFILTHFQdHsyQlMV31JkJ0lM4qwUUR6Ld0nfS3SRA9+IVV4P3KwWALGEkV9dSkqUCfrNhiWhaE1Z2Rvhaqk4g0Vi13rZF+CRDrNNWlJywK3FEBXul2zDax2heuf61y/PBW0rrbcfGNUh3HJBmA+RPgnpxQbrUWWARMq4667Gx+wVG96QYf+yP3oPffbcctxZyPj1S5lqKwBsvNyvdgs5eO46nXNiLdx98Lv26sTdKNgWg/Q7+dLgAkEWCp6zQ2OdV4SVVaXP0gaxms+arSiPJQhXaCBKU4apDjpaVO9ikop+9pzpf4JprMpipTtdytz+dBj+2cXUSIrGUkpc1Jut486Lseabrx96GSrkO6Z3GGvMN6f3u3tlIMEXfjmAvvvMKD/2TJuY8IrrG/X9KfnnpzMAkV1lCZSgUSwV+qaa5P8Xes6B9a4Q88xRM1q/s6nvq3e268rrZU14mgRbqY7eL6ovE54pb5cIuIB/4y8LuwW4vvFpFfVNWPbKz2P2Gav58SkW8H/gfgP0iv/TTw36vqO0Rki+c9tYyMjIyMFwE/wFpOAvCLwA8CP5p+/oON5X9URH4W+EbgYEN6clMMNM6fOItpnkaKGwX9tln/OVF6dRwvjATFKEgn+LonRMeir5j7lqBC6cJIamOqOHfqaZP9H8AylNSFEdLjriZMLS1yXrYs+oomFDxxtEdoTf4QJoqW0caCMvEdy1CyVTZMfUcXLZEx4nGqLGJlDiWHSigHoswYfBMrRZ3QbRWU8yk6m3Dy0C7d3OFbZf7JQ9zVG1ZN64NJGKJVY7WuaHcLswIMJg1RJ7hGmVzrkDbdgg96age7RghziLXCsYxNZK4BWkex29C19aivlijWXxZl9OOukjNMiC6lfdq+2KpbFquKfifCFW8lvIFAY9ry8hjar2yRw4kF2DTOiH3v0M6ei1e0TyVJZwE3Mu3RGXTzmsmNQHVYEmpr8mxXJfMVdNtGnKRJx6ATYuNYXVCqA6hvKLF0XHmjcud7zT86VoJrFdcopTdv7lAJ259RDv0MedWK6zfmXDh/zKTsmZQ9x6saBbZfu8/H/qNdvuL/W1I8+jmkSJrlqOhmZXsTQ2X2bJDOWe32sHx4m/em63cyVrZv6lYCIwGV6cSedz3S9yhxJK7qHeJckp2YfpqqNIlIF1LFWJEm4NtEfpdnmiCLgmbHMX26sXG1vXl3J4/xzWRUdbKWXAwe5kMlP2m6ZdOxZKi6Dy4q3o9e3adSWcH03lVBmM3pJ55YOQZvbtcqO59pmewXHLzaszq/Ub0v7QI6eLsQlcDoIlTue7g+JZ4LFK9aIZ+eMnm8pJ8px/crJ/f61M9hYUzFUug/+CxSomfBrQy++QbgUVX9FED6J/xWYJNwvx74L9LzXwX+flr39UChqu8AUNXjWzjOjIyMjIybQETmWNHkP95Y/KPAz4vIDwGfBX5fWv6Pge8BHsUcTf7wF/4AwJv+sp8puBRLPu/ZqRoLn1nOiMGnJGqHdGKuFpgvdO17mm5C7Trz3+5L+kSwOy1GWckQxT4rWlA4aCcmR1GhV3PmOOgm1iwpmE3eVPFzI12TokvbEM7XJ+wWS3b9kqvdVvosTx8d+4spVcMYcz7M05oUjeyGqWP16jto9wpCKcwvNVSfvYYuVxarnazkVK3ZTZ0Qtye0W2ku3txOXKdUx0p15QRZteZfrJa+N8CvhE4h1pFYOLMUrKBYCF3jmEw6+stTtLayuSbJh/VyOiZVZ82TwwajY6UllQ/Mytai1vda1E0hrhMBrapolWYu1xRLIcwSEeucyVdITW5O1kQ9NU8iwH5Jt2UXCfU1OLk3kabVQMQYL7Jckqn4EwvKiYVDFCbX4OjVyuU3OS5+wBre1Nt7ikWkKsT2ZyXMnxBOmOBeteL6wZy7zh8CVu0Oqdq/d/8+j/7HWzzwdx5i/v4nUe+h7ZAQ1qR6k1Cv/5bS/ksSjkEHfrbpsQ/mWpOq6EOFW0nV541Kt4ze1uttqHeI+nWjoX24EViXHEEK02qrTxdJUZA2QhNwQ6W571NlW0d5h0ynxBL8weoUwRZVNEZkU2YjAhptPkNVfdBkb45t08WlKteVcJFRU95vVTTnSrq50M2FfmJ3j0QxPfagNHFrCZclSMLkutjFfAFyLGNSZSx0DKUaZCYqMLlUwCW7sI2ludqEipRqmaQqtdpFbPX8JCW3knDfrIHmG8+s81vA7wX+AvDvANsicgH4SmBfRH4BeBj4ZeBtqnpG1JORkZGRcaugqifAhTPLrmGuJWfXVeCPPK8PECDaF2NzMUKwL9J62tEE+3patSWxN6kBC0fq1aMqeu6ZGiHqExHWKHTRjdKRwX87YIE4vTqqZMx70lZGoBG64AkqHLUT4nGJTHvTNNc9uzsnnJ8uKCSy6Esu1Aum3gYxeHZ36kf/78OjKXf2FppB8gSWyFhBdh2c3OmpJ1bV3vnUCf6p61ZJ3Ijz1hCQjbCUfrsiTGxb6aNwPUyvdKaz3ZAknF0HBbxFYccSq9CtwDWOvvdoZVKSsUIdLIAmBjc2q3qnqCg+NRT20VEka0CwirtvWVf0SZKSBi7+a2H/dZqa1YTJ057mfCROBx1KehRKUQZCcKYvD0I/BRzU+8riVdBPI9K6MUp+kAYwyHZ7IWxFui0j+xKV+ROOk/siN77Sc/HD6WLGCeKgPDFy3uzZuTd92nEyqSnvWPLU5T329k7Yqluii7TB03Serb0Fj3//hLu2H+Dc//F4sndMpDQRWtuBZ873kRivibCOUo7htWANit6ZNEXbU5tQVcR7S2Qc9ORwOqk0yTgkhLVWe0BZmDOIyFpUPAynSdXswTs8nYsjvOPkXqF6wx5772vHgCFE7LMKI8tDA6huNJeOBJ+kA3IQq4J+u6SfOvqJo5tZsqMW5g4UKkZ3HateD3KodK4Nx97Z+QfrdYfzUNM5LSkWHtIdnigjUR/SKIcLzuH8jWW6wPPYBaKznxKHi6kvnQr3c8EfB/6SiPwh4NcxvV/AxvWtwNcBjwE/B/wh4G9svllEfhjze+WBBx54qcackZGRkfFiQBR/bKRBJxG38PSzyN5shYhy3FWs2tKkBw7c0qOFWfRVRaBwYXTPANDepUqkG2UlAcGzrohPUwPhsrVv6KhG0gGOu8o8nwW0iIhXlk2FzE9oo8eJ4iTSxILr7ZypbzlXLphJS1DHtW5OPCzH29uhJH2BC/Qb5MNBdRSYfWof2T9a7w5vDh2QriqKwqK2o7I6XxJTnPRQPS+WSnX55HQz2fAZQ7OmGgkdEvn8SggTI7AuwGpRMbmwZHVcmX5+sAh0irhospLgcRJO8ceowqxoKX3AF4FuRykuJ4s2NwSeQD8TqqOIFjIYvuA6qG44miqRG4fdqi/i6I6iQYizQJgK/cRRnUR84+lKxV/z60ChVBmXjecA7Z75LA+uFNUNx/K+nmtacP6jlj45NLFWxxH1wuqcyQxmT3hOignlbsPR8ZRZ1VH6kGwlA03v2dpecf339rTzB7jrlx6zJsBB1z2Q3iJJPQZJxE3cSU49V4U+oH2PYG4o4xGNajrqjaZNGRJLh9e63qrXk+SCA7BqjIwPY0oyDpGBkVrznwzV7NSwuW78jGiIiHfE3Tn9TNl6bGnrphRO9Q6dVoR5Tbdb0W47unmSiTlz6wk1Y/BMGCrDwnjXx/VJDubtPA3T1BeQ9NdamJTDL90oixJNntsTS1d1K8Enn/lxneE8SefHIMkaLtZUSI29Gye3WBU81KmvYeOibgiJSjuH54NbSbi/YAONqn4Oq3CTdNr/rqrui8gTwPs35Ch/H3gzZwi3qv448OMAjzzyyPObeUZGRkbG7YVAeejot+zft18J3R09pQ9ULnC4qmmbAnrT9PqlWX/FKMyrlqnvaGORiLAlJXbB4STSqdkFWhXbEFWY+g6tIl3nWYaSVSjpg6fwgUtXd81RA6Cw6PHzWwsKF0dSvwwlU99xvjph5lqOQ825YkHpOk76muqGMd1YpAq3pKbDItotfbEmypFsb7pRiNit/FTxlMIuFXRSsjrnLJVTjLD6VpncSP7IJClBiGhQfKMWjpPgOjE7wpTOF+t0O70HPSnwWw2uiMTOQQBRIRyV6LyHItB2RhWqIqRGVmHRVcyKlmnZc6TQb0fitWQZ5xirpqHC4uZ7gRIr4O4oO5+E5qLNeyAwujLnEaki4k3iEivop8L0Sk9x7E3zPZBr0v5I5GqYn1s6um2lPBK8GqEqj0CfLli8pqVYVOx+JgUnpQuB8sSOT7NnJH322YLFg1CfX3L1cM6DF27gSuXSYpKKusr2rCF+b8Nj5x/kgZ9/HF2sTAsNVlUuijUB9h4tC3O2GGQlmy4X3q2XpYRKqUrTco8pjmuduNQ1srttDiKLZdrZwfT+YH7WVWmV8D4gXW8VZ5EUSx7XRHzD53o4F1XTOkWBFPbZ+2+whmC36lm89iLNnqefSuonSMfDy1rawfpux0h+O4toB2jPKf1Mqa+5sYFVotj5stisHq8JNICWyWO7tL9TYiLqE+hT469JTeynawVJqaquEwt/iqmC7RlTKklStTCJI9EHG9PgeiKakk9V1ifhc8StJNzvBl4rIg9jRPv7gX9/cwURuQhcV9UI/AngJzfeuycid6jqFeDbgffcwrFmZGRkZLzUiEKxhMWeQqpwudq+VY+7irYvjARGQAW/FPqtiEahkEjtevroKSRaAE3nOFnWrEJJKXFsmow4mk2nEq+0y5ImFqbhDs5I8ZUa5sG+3IvIZNKxVTVMfEflAlPfUbi1pOIwTgg4jkNNp55rzZzqIOmgB0JYqCU+bjgjWMLmmnCpqulfgcHxYVMf21yY022LBdxE8wKujpTJ04tTDWVWWY4WPZ16SF1IhFttLGDpmbFwFCeWqrc4nNjgRimIIiuPrjzdVg+zjt5ZtTUqlElGsugrSh/Q6JDdllhNcV363OR1LBFzGjkQFjMj3v1WpGiE8sjRbcexUdMmDtqZY4lMe+LS0deC65V6XzkWHf2V1+mWp6mPXwrdhZ5Q274c4r2rGxAmJYdf3eGbgtnliAs6SiCq44iKo92z4zX7bMHCT5idX/Dpyxe4+/whs7rjaFEznzaEKHa35duu8ll/Pw/8wtN2AeR98pGOsOxsbN4jdWUa5cKj5SC7MB21BLXG1wEhQHBr272k31ZVXFUiO1vofIo0rZHjYFIQ6Xoj9UkHjXPG9GK6EBCxZkwRpE1e6oU/9bmqaq4nkxqdT+l3p4RZQbstVPvK9d+2Y2Q1VYfHBNXhPPRrSdOmP7tE1tHr2J2Xat/OR+q1/IN45ufwSFVtJRHzTokOpBNcY6Ta/g7SeoPlpIBWis7W5ziDc9CQcqpGzGOpYz+DkXyzy5T0+/g34oaS93PHLSPcqtqLyB8FfgnwwE+q6odF5M8C71HVXwR+J/A/iHkO/TpJ/6eqQUT+OPArYpdz7wV+4laNNSMjIyPjpYfE1ABYR4ojTyyVsuoRYNkVxCjQGCHRzqrDWtqX3LTo6KOjU8cqFNSuHyPLj7uaedGyiiVHccpEulFvDUChaONH7bdzkUVTmS/veSOwrlCqoicM64jSqZH/EzVbPDB7wbqyBMb9Zkp5qERvjXgDgYi1ySW0UHynttyJVUBDSNKAxEL6kFINJdmpeZZ3lPSTNYF1HcwudbiDxSgVGHylNcTxNvqgsDD9qhEHLWxhP4fqCNo9QW5YmJDOUohNEdf9nt4SNkNwuNTQOFT7j1vT4/oiELqSbkupDmWd7BfVjsm2UB0oy7ttm6pCPxVmnxMOXsdYjTSdbLqN3zq0NlnIoOP1LdBa42eoEvOKjFr54bkoUEXCdNDl2j5wCvVVod927H9NRD/i2fqcVYVNmgH1Yap0n7cGu9mnSxZ+yta5BVeP5ty1e8S8ammCp3SRZVfSBY978w0+fuFOHvwnLfWTB8bLQrDj2vejbESaFjo3Nk3KRuS5VgXsbSNbM2TV2LkgQjw4hK4D73HeQ12jk3pdkR6q4+JGWYokeYmdzO6Ujlu6fn2xlyLV46xG65Juu6Kfe9otN94VGXXRaudeTHIlLUwuMiQ7Aqefb8g2YLOiPMhE7LWY/qatCVLWftXDCZwkQ1okipuOu0Sh6Oxqa7DIHCvhYoTe9nE6N1jfdRrJuNt43gt4qPYaQnDEzqGNhz7dhdl04Xl+xW3gFmu4VfUfY53rm8v+m43nbwfe/izvfQfwf7mV48vIyMjIuH2QAN22VY9cB92WUhSRZVewakv63tuXWx2RpbfURq84bxXt2vUch3oMZgHQZcGiq2BqVehSAoE1ae6jx5UBXVa0wXTZ23XL9Ss7lEBR94TOU1Y9ddnj0JR26QFPdIHSBZwagaldz7ZfcTVuce1kxmxh1T0tko+3H24/W4VZxWQMWnojW97IFt6ZHME78OaXrNOa1V0zTu52Y6VQBeqDSH3pyGzVziJFvG9qhF0rVh30Q5XcnBsmV5RTctTh1nkQKO22uhR2RyEGR/SRIG705T7pKwoficEq0rEyvfpYxUxyjn4u1NcHLaxdHDS7ws5jkeP7nRHjVEXUIf49uaVooZau6VKFMZgXdz83R5thv7hEwKJLqYJLT5gofpHGUzJWSidPeZYPdhx+hQCe+dNJ052s7CYH5vzR7ggaYfrJiuPXwPb5E54+2Obi9gmTomfVF9RFT+EDq7bk3Fdf41Pbezz89l2mn7qWLPIUK8Oesco7o9smRtxSR2s8rUrYmqGlh/Pbo3UfmMRIU+y6Ywd2tszqr3DEqiCWnjjxRL/BClNoCy6df978pENlFz/qSR7vak2LyQVkkIcMDYyDB7zoulER7FyXkEju4NCTyKldeOp4Xoza7HTeDV7xo646neejVWWQU6FKo2Z/49yVsObA47pJ3qRu4+8hjWNNzgWtI37eEyrbp33rKeseX3d0tScGT2id/X0M9pUvALe7aTIjIyMj45UKhTBTpDGip5OAc5GmK+naghAcfuEIdcQtXKqcKiIwKzqcKLXr1xruRARXfYFDCWey3QoXcaKUdU/br4n6pOiQY08/VSaFkZqy7PGi1IVZAjrsM0oXqFxPmWQsg2NJHz0nB1O2eh0rg8bR1YqJYX1LOhYQZxXuaMiblmTn1pkzRd+Dc4TtCYcPliafSCTDNzC92pl120YD3hgNLoIbtK4DqUg61jCzKju9ECZGcPxqkJgk8lFF6ARKTT+TymXQWQMxrkn3qivoGytVhq0I11wiTDIm8akD3yl+KcTattHuKr6NlEcFYSsF7wwVa02Ev3XEaaSfuhRaA65N1oiVuUUM1fxBUqvOmt2kc1Y5TdVPicaXBnJWXS4IDy858DWIZ35paKS0xsnyWIkeui3BdzD5TMVxEZlvr7h0Y5v7L+5TJucS7yJ1ad7w5+/d59M/sMMDf/9Otj48ZEKlQ5MuhMZjNb6QLry6Bj04NMnH8NJ8jsynECK6NSVOKrT2Y2NqKL015UraTtrnbmVnv4SUqrnZrBnUXEVS34A5iAjSR9yyW8e4Tyu09ITa89h3TbnrvYFqv0f6RPxLR6gcsXKEWgilucr0E0mR6ljPRdJ4h2k0Mh4E1xs5l8hoDbkOT0qnWyLaA2HfbBi2/cn6DSRinRxEBuI+wulp0g5rMg6Exo/bjauCZlWMchNXBlwZT10jxXTH7fkgE+6MjIyMjNsCqzwqxZGRaSmTK0afAmUajwfoTes96HaLIrBTrvBiBHrwchAVtLTGvpNQMS8aogqlBEoJOCxIp656+t40yE6Up4+2KU4c3cUe55SyDNRFoC56NnwicBIpJOKTW0mZurhGucpBOVYEzZEh3Yb20ZoSxY/VvTAt8BvaWel6GPS/RYFOa04emNHPNwTKCtWRUl5frsnVEA0++FmzJiKD3nWo5IHdPndtco3wUJxAt4XpVt1QaU4x7KniLekiZ5CVkGwCredOcGUkBkHKQCwLI/xJ4jEQ4lAK1ZGwKm2sYQLt3FGewAqQ1tnFCbZ/pAKZ98TG020rYSJ0M0sQlHQREYtkE5eq2yP5Tq4nWiq+gX66rsYOshy/FPqnJxR3LzlezJDgRk139Ekzfmhj6bbsDkz9yQknr4G9vRMev7rH3eeOmBQ9R01FTE43UYVzdxzx2O/d4q6duzn/rsvWuHg2FGeTAG9cLI2I5g7CamVWg6rIMbgQoTFPbQnB/NePjq36XZUWfjMQaW+NkyoCPp0vEShcItl250BTJLxbpgu5pD+XrkedcOOb76beF7Y+et2GuVgxuJRoXY3SFVm1Jl0ZmjG9M8mKc+ispr0w5eTukuaco92Gfmsg40nqFBgJ89jp7O1YDldLQ3Pl6G5zal9iF4zJ8m8g07bOmogPfwdjY6TTZIu5JuyWfiqgFqZkFzSK1JGi7vFFsNTU54FMuDMyMjIybgvUYV+ymCZXnBKChdCggqy8JSSmL8HBPWBS9sx9Qy09nkhkrStGwCdXkV5NMuITA40IQYW67Fl0wrIvmZctBwczCsBN+5Fc1kVP7XucxGeQbsBsB7H0RRw0saBYSIpcH760BQoj2+KAOqDOW9W1dKdDT/pgBCtEpK5o791lccfG65J8t68FZNmuXSUGcrVRNR313BsVbhlcGzYCQ0IplMfK6g5L8NTBy9gp0lo4jQYLvZE0XCfKpOrwoiza0lI4XST2prUPM8U3Jl0pOiAqvjXZgl8xamvDPLI67ymPrJFSfWouLbDK49KjhcNNe8K0oJ07+jkUSyO/g9yExsiVJJKvznTGIITCZCfem3QJ0i5LVfTqwLGa1kxec8wxW0h0TK9FS6QUi4Cv9+1Cpt0Bv4LJJyY0b2zY3Vrxuat7vOriPpOyH20mUaGPjvMXj7jxeyY0e3dzzy9fHjXUz5ABDe40qmsv7fXJhrYt2k+Q+dRkJmVhwT2Syr0xjmmXIlWqTNfEiTVNSh9Pk/t0jRemJf28MDu9NuLagDpH3J7ae9rOXG9mNQdfAff+iwY5tAxCXTWgEcrKzrXhwnG5snN4sCp0YraEUXGHjvopZfLhdJ56b+PcndHtTmjOFazOO1bnhW5HLeV18L9WuwAaLhwHjfZIqAe51fB7unDbbF4eytejMcwgWSns/45q+j8j6WeSPzFot5PkSleebuXtgi48vxJ3JtwZGRkZGbcHzqQO6kArTSF9VlUS0fEL1K3cKBkQp8yrlplvmbiOqV/LPVSsOdGnMlYXLd7dEwm4kThPit4048GbVd1RaSqGqqdwRnqcKIWLVD6M0hMvpucuxYi4Pe8oJdCrM8Lt1mRXvY6pmKpYlTvpqPuZQ+tEirqULpl8lnV7xvGrKiNWA6cIUO0rk6eXo7vEJlnbrHBvBsGMhLvHLm6GJjhnVebJtdQIVwwV8ETMB1LTmeg2RmvI68RzFCfWUBrd2jc7CuWkp9uKVDf8RuOcjBXt8mS4E5FIdw2TG0pxJHR7aQ5DJVMFOiH2JUwjzV5BLKE8tAsPOWfS6EETPPCkseqZiH0sYfaUcjRJMpq0e6QzUlZd8XTbBf7hE06aLWLpmV6J+M4kJS5AdajEJJdwLYTf2uXoa46YzVc8vb/NXXtHnJstubGYDh9NFzznthdcebMHuZO73nmE2z9ZHysv6wuugWxv+qgPDZGpgXaoJOvQXJmcSYY+AJlW6NYMnU/GbYxkO8lGiBF3tIIY8anqHYvBMkTGuxLqxVxzlg3L+++gvi7UH3iMuFqNqZNEI+W6WCDlBpWUdUOoHSAbg2oEMbmRiJjt4UrwfcBfPWQSlV0naFmgk5r+3JTVxYqTuxzNOdPs9zMl1unCpV8TbxRzKUl2NbFQ4kStD2Ag1sOuHQKeku+7uaFsEOdNiXaSgEkd7O9gU5MS13+bzxWZcGdkZGRk3B6I3VJ2KaHQOWvAQzSRIkEri37X0iQagmmug5rftpdIGz1zMALvNTVHOvoUfjMRi32PCG0s2KlXPC3Q9AUnXYU/csRKqYtI4SPeRcqUqDi4mAxwSbtdSqCDsYJ+o5lRHhthxaXb3pWOX+DibOzRMknoZo4wr5EQ8YMdnPfIpGZ5/675aA/yCIViCVtP9fiD5cb+k2dKFULAhQ2CkbTfrpPR4iyOsg4xbfXKWchHkNGxwbaPuYWk8J7ooe+8pUHGwWXDPsBkJQ6dBNR7U7qIVdt1cOgIRpbHiPuJOY8UCyFMXNJlg26kkkgHOg8s7zRiPblqsoJRb5u03KE2Hbpu2LxJEPoZ7D26pNmbsbxrcMpQxJvWXQK4xyfUX7XP8UMrXD8Bdcwuh1G2UjRKfcO2122nC5QPbRN+2wFV1XP1aM7WtLFqv+h4t+Wkqbhw/pgb36w057a571ccxZWj9bEbMKQ5ihhh3YxNryqkLFFV89beDM9xWNX7/B6xTmE3XUj6+fV6WrhErB1OBOkD0gWki7jNonrErAk7sxfU2YTLX1dy779cQtNwKioext81BOs9GM6H8W5LIvxRTdIynJKb/uNDGI8quCRNaVrKyz3lZdj+UJK21BXdHVs0FytO7vIs7hLavUicxHUFOhFkMELuD/14jmilUETz7XbmsT9IQjSInTKJeOsoKxFzKFkW49/SKTL+PJEJd0ZGRkbGbYOWljAZyogvLJAGFWIQhiQ81wp98tBVtebHietGDbU5kESraMFYkbYUyrW2to+OKjU9qoM+OJ68uocLFhnuXSREoS4i87Jl4jsKWTOSwfsbLM7dKtymD99vpvilOSDEZH1GxPSkXtEouCKMFdnBKQKc6XBDRApPuLhDs1esrf3USGp1qEwuL8egm7NSkkFGAuBaXeu3024cmtQ0kQ9ZOmJp4/ArkLmRbdc4tNTkjZ3IazCph0YBr3gfR8LtnOKc0gcxXjUNJgUIVnF3vZ6yjCuOxZxpepMODN7ixULoCh3nPDqmqKCdOZm4Lu2Lo4jEFJaSHCfUY+MO67sMKLR7kVB7zn28o5+VtHtqwSnJfcWvBCIcf3aX7QcPOHzAI6EEPLMrSV5S2jzKY4hVqnR30H9kB/dVx5RlT9d7ticNq76gD5Z4Wha2fGu+4uQNkc9Wc171ryqmn7q+Jq3JnQaRpH8OY+VbygKZz9BpffM/HueMcCfIoOcfrnZULWwpmpRFC2uElLYbdeWxdKYLD4rEiCxW6GKFOuH46+7Bt1B97HN2nm12ITpnVoUDUhOmwjoBc8BQ8dYI+NGJBTCHlmR5OFpchmikfHDwwUh49bl9qieVrcKjtTWPdrsTFneXHD7kWN4drBehUHSihFmqQgdBOocsCnNpmcTxHBGvo5viSNbdcLW44WhyVj6SCXdGRkZGxpcPZIxSp1CrjqlZsQ1VJ+lS1alITKx3FnTDQKrXUe4AMcio3+6j5yhMOF+Y9nRIpaxS9brpCrqDmgqQaaAqAiGe/mKNCKtQMvGdBe2op0qke4PjcrCcUDSMHtRDU5cU0Sr30eH9mgj2E8BboxpJE6vzLbq9yak71xLsDsDsSm9ygLN7cHMQziFth18lL+5EJETTz8G9JDU+GuGG6kBpLqQLgVKt8Sz40cdYxRn/9UofZZSRTKbt2rkhmB5Bg0k3LE4e6I0IWrXZ3CmGAnaolXZL8M268h9nEX/ikmtKWrczy8FYWZV5cr3H9ZUFNlY62t0RjTwLKawkQJwqR/dXnPvoMVtPFuzPIczTxZtXgpqsyTfC4eUtdu485vhkF9ShzjF/Ou3LwpxWqkM7b9tdtUChT2zBa4+h7DluKnYmDSspCOm4RMyecjrpWH3lCY/NZ7zqX15k++P7p7yxiWZFSFUibWdnd1FYSmVV2usiyUVFramxT8tELPAmBdrYMU4V8gKkVaIviU6Ik8KIZ9cn3bbguoA/apD9ozG1UvZ22H91wat+/RhdLE/HvSdoWa7nMHh9O2eEWmVNqsEq9zEkYu5MsjJa9a3v1MgQPa9ioUBDNVx1bZk4NdtMd7Bgcu2Iyafg3Ls8ujVlddeMw4dKjh6C7lwYq9pa9bBtEq+ysObseJwuVpwilTUNi5jX/FiEdyAu2v4cSHf6f5VdSjIyMjIyvjyg4JfOGiZ9JMZU2QboUwW1ccRCRyKLKLOixUvEY5KSiNCrG28rRxXa4FlJwSJWBHUULtJHB94q1bjkurEwcucrY6N1aTruQgK75YqTvgKBqe+oXUfA4ZOFwqxox4r3yaLmXIBQbBQChx6uwsbqXCRW4JdWKQ21p7gW0BiRsqS/uE235dfe2GIk2KrbKyNUQ1Pa6Oucboun2G76gOsiQ0qfxDXpdiPfWV/oqDdttfQmY3CYNzNDEyMYcU++zUTB1eEUMREBP+nNWi0a4S6PZIz3HnTk0Zs0pkm/E6HdFcojpdu2JsamSmJsF60yGWxHaKHoJIIUlAcN0id/QaeEqa6jw0eD57QLG+H4PmHnsZKdz65YnZ8SakfYDraPKgiljhKEk/kEf/eCVZwRSyPdsytxTFP0jR2PUNldF78Sus9s4V9zSKfCUSLdqsKis6bSwtmxn08jzYOBJ+stLpw7z8X33DDy7NOVUVkgXWH65rJGJhPTNBfONPh9xDVDzHu63dN2uMa01ArI1jzNO1iDJVhTo26cJ4W39y1a2+bRAjleoMPdEyccft3d1nD6iSdSkqVJhYCRWEuqaK8lLu40KR8kMsNdGF+ekcRIaq7c0JGfJdijfMWkKloWqPdWxXduTOzEOaQLTJ48ZnJJuONdjjAvObl3wuFDjtWdkbAd0DJS1j3ilG7i0NaZG0ljdHjw+h/037JRCR/uGEm6YM2EOyMjIyPjywLWPJa+0FKKofbOvtA6K4O6XnBBUJeMlJ1S+55OPQFHLRvWfanqVLhIUEcbC076lIaIWQi2oWBetKkK6y3OuVbKIiVMio5a3F6dfVb0I7FuY8HUtXTqIdr6TSzoDqtTchLd0IeGJI8JIpQCvjGbOxWsMllV6NaUMC3MbzpVgF1n0pD50xupkqMEYYNAgZGWwSYQTmlNh0jt0eNadax+D5IOvzRJiUZzLBnfL+l9m7fURdnZXrBsKpMAkeQmqZEszCwi/VSMt6635fpB321+3PX1JHtpwB+ZpMU1m4mVrL3MAVn1VAfQz1K13ptEZrPhTQY/5h66XU3Nm8reoz3tToGWzqQFmLZXO2cXIldquHuB3L2i8RNEHQvnmF42P+tYJIvAGzahWEO1L6w+vc38NQcsm4pp2XNxekLpA8dtRdt7+hSyNJ+0+HsPueq3Wd5xnvt++cCIb2qIZHuOTOycHeQi0vaWHjkc54Gg9wFZNujJiRHSqjSJximiGtGiJFbF2hKv9LjFCsIKfxzRkwXapz6CooBzuxw87HnVrx2YJ/imrWGMdkHg03jVqu0DCdfNineI69TUFEu/rmpbRVxEzNlEo0l5ikEvnaQxQ5U7RihKcNZkLJvE3Hvbf6kRddC6+2XHzsc7dj4OcVLQnq84ubPi5N6a5mJEt3soI1JtnF9BcAv729bhbk/SfYsfbhcNt7CeHzLhzsjIyMi4PVCIE3MjcUDoPXTrgJPB1s58enVsWpp6028PloC9Orrox236VM2OWnLY10aOE/pBerLdw9Lb93lpumTvIqWLyQ4w6cFRdsoVUR1L9RRiriUxOkj67UYL/GGR3D8GTbXJH1QF55QYxCQlG9/TxSpA4Ym7W4TdCaFyiKbEw2Ae0/VhpL50fLq67QePvkEzkpZ1KUJ806kjVZJF1w8l7VORpCVXyhOLex/HXa7lL0ak1SqBAuGk5IBZet3uSohTimlPvyqgjMQ6RbEPiINkxbaPt4upWFjlfbAuLJbC6s6O4kq5HizW9BkFml3bgdNrkeU9MurSSTc4BtnMplNLP430M091EClPenY+47m2LVADg5SgCChGtLrrE87fv8+BCv3CzN9j4ZheST7QqVKvBTQOtITy0HH86V12X3ODKwdbTMuO2vc0rqDFjxdyYLaW5199mSe2z/FYtcuD/3Afd7hI+yk1IhZ+bf3IWmoxLJeQXEKaxvT/3iHzGaMWfHA+KfxYEZZVny66dF1NFkHq2oiu91BX7L/xDuobiv/cNXNHIb0nKtq2ptEeqt2Da8nG2MfnIqbbDhjB1qHp0iXPa8aGWsShfViTbLDxRzUHnw3Nt/Tr0J5TaTTDH1dIB98LWjv7DCcUJ4ELH1xy4f1KnBa0uxVH95ccfgX0FzqkjFAI0StSKNo6pHHIci1r0zraei8Acqpb9MsYjzzyiL7nPe+53cPIyMjIeEEQkfeq6iO3exwvJUTkCPjY7R7HS4SLwNXbPYiXEK+k+b6S5gqvrPl+vrk+qKp3PNcN5Qp3RkZGRsbtwsdeKRcZIvKeV8pc4ZU131fSXOGVNd8Xc67uC6+SkZGRkZGRkZGRkfFCkQl3RkZGRkZGRkZGxi1EJtwZGRkZGbcLP367B/AS4pU0V3hlzfeVNFd4Zc33RZtrbprMyMjI+BLAK7FpMiMjI+OVglzhzsjIyMjIyMjIyLiFyIQ7IyMjI+MlhYi8RUQ+JiKPisjbbvd4XgyIyP0i8qsi8hER+bCI/LG0/LyIvENEPpF+nkvLRUT+YtoHHxCRN93eGTx/iIgXkX8tIv97+v1hEXlnmtPPiUiVltfp90fT6w/d1oE/T4jInoi8XUT+jYh8VES+6WV+XP/zdA5/SET+tohMXk7HVkR+UkQui8iHNpY97+MpIj+Y1v+EiPzgF/rcTLgzMjIyMl4yiIgH/jLw3cDrgR8Qkdff3lG9KOiB/1JVXw+8GfgjaV5vA35FVV8L/Er6HWz+r02PHwb+6ks/5C8afwz46MbvPwb8eVX9CuAG8ENp+Q8BN9LyP5/W+3LCXwD+qap+FfDbsDm/LI+riNwL/D+AR1T1awAPfD8vr2P7t4C3nFn2vI6niJwH/jTwjcA3AH96IOnPhky4MzIyMjJeSnwD8KiqfkpVW+Bngbfe5jF90VDVp1T1fen5EUbK7sXm9lNptZ8Cvjc9fyvw02r4TWBPRO55aUf9wiEi9wH/NvDX0+8CfDvw9rTK2bkO++DtwHek9b/kISK7wLcBfwNAVVtV3edlelwTCmAqIgUwA57iZXRsVfXXgetnFj/f4/ldwDtU9bqq3gDewTNJ/Clkwp2RkZGR8VLiXuDxjd+fSMteNki31b8OeCdwl6o+lV66BNyVnn+574f/BfivsLBwgAvAvqr26ffN+YxzTa8fpPW/HPAwcAX4m0k+89dFZM7L9Liq6pPA/wQ8hhHtA+C9vDyP7Sae7/F83sc5E+6MjIyMjIwXCSKyBfxd4EdU9XDzNTVbsC97azAR+d3AZVV97+0ey0uAAngT8FdV9euAE9ZyA+Dlc1wBkizirdiFxquAOV+gcvtyw606nplwZ2RkZGS8lHgSuH/j9/vSsi97iEiJke2fUdVfSIufHiQF6efltPzLeT/8DuD3iMhnMEnQt2M6570kQ4DT8xnnml7fBa69lAP+IvAE8ISqvjP9/naMgL8cjyvA/w34tKpeUdUO+AXseL8cj+0mnu/xfN7HORPujIyMjIyXEu8GXptcDyqsIesXb/OYvmgk3erfAD6qqn9u46VfBAYHgx8E/sHG8j+YXBDeDBxs3NL+koaq/glVvU9VH8KO3z9X1T8A/CrwfWm1s3Md9sH3pfW/LCrCqnoJeFxEXpcWfQfwEV6GxzXhMeDNIjJL5/Qw35fdsT2D53s8fwn4ThE5l+4KfGda9qwoPt+LGRkZGRkZLyZUtReRP4p9OXngJ1X1w7d5WC8GfgfwHwAfFJH3p2V/EvhR4OdF5IeAzwK/L732j4HvAR4FFsAffklHe2vw/wJ+VkT+O+BfkxoN08//TUQexZrVvv82je+F4v8O/Ey6QPwUdqwcL8PjqqrvFJG3A+/DnHf+NZa2+I94mRxbEfnbwO8ELorIE5jbyPP6O1XV6yLy32IFBIA/q6pnGzFPf+6X54XIM5GTJjMyMr6cITlpMiMjI+NliywpycjIyMjIyMjIyLiFyIQ7IyMjIyMjIyMj4xYiE+6MjIyMjIyMjIyMW4hMuDMyMjIyMjIyMjJuITLhzsjIyMjIyMjIyLiFyIQ7IyMjIyMjIyMj4xbiZWMLKCJXMO/EL0VcBK7e7kHcJuS5vzKR5/788aCq3vFiDyYjIyMj4/bjZUO4v5QhIu95pfrr5rnnub/S8Eqee0ZGRkbGzZElJRkZGRkZGRkZGRm3EJlwZ2RkZGRkZGRkZNxCZML90uDHb/cAbiPy3F+ZyHPPyMjIyMhIyBrujIyMjIyMjIyMjFuIXOHOyMjIyMjIyMjIuIXIhPuLgIh8RkQ+KCLvF5H3pGXnReQdIvKJ9PNcWi4i8hdF5FER+YCIvGljOz+Y1v+EiPzg7ZrP54OI/KSIXBaRD20se9HmKiJfn/blo+m98tLO8NnxLHP/MyLyZDr27xeR79l47U+keXxMRL5rY/lb0rJHReRtG8sfFpF3puU/JyLVSze7Z4eI3C8ivyoiHxGRD4vIH0vLX/bH/fPM/WV/3DMyMjIybgFUNT9e4AP4DHDxzLL/D/C29PxtwI+l598D/BNAgDcD70zLzwOfSj/PpefnbvfcbjLXbwPeBHzoVswVeFdaV9J7v/t2z/kLzP3PAH/8Juu+HvgtoAYeBj4J+PT4JPBqoErrvD695+eB70/P/xrwn97uOaex3AO8KT3fBj6e5veyP+6fZ+4v++OeH/mRH/mRHy/+I1e4X3y8Ffip9PyngO/dWP7TavhNYE9E7gG+C3iHql5X1RvAO4C3vMRj/oJQ1V8Hrp9Z/KLMNb22o6q/qaoK/PTGtm47nmXuz4a3Aj+rqo2qfhp4FPiG9HhUVT+lqi3ws8BbU0X324G3p/dv7sfbClV9SlXfl54fAR8F7uUVcNw/z9yfDS+b456RkZGR8eIjE+4vDgr8MxF5r4j8cFp2l6o+lZ5fAu5Kz+8FHt947xNp2bMt/3LAizXXe9Pzs8u/1PFHk3TiJwdZBc9/7heAfVXtzyz/koKIPAR8HfBOXmHH/czc4RV03DMyMjIyXhxkwv3F4VtU9U3AdwN/RES+bfPFVLV7RdjAvJLmmvBXgdcAbwSeAv7n2zqaWwgR2QL+LvAjqnq4+drL/bjfZO6vmOOekZGRkfHiIRPuLwKq+mT6eRn4e9jt46fTrXLSz8tp9SeB+zfefl9a9mzLvxzwYs31yfT87PIvWajq06oaVDUCP4Ede3j+c7+GSS+KM8u/JCAiJUY4f0ZVfyEtfkUc95vN/ZVy3DMyMjIyXlxkwv0CISJzEdkengPfCXwI+EVgcGH4QeAfpOe/CPzB5OTwZuAg3Zb/JeA7ReRcuj39nWnZlwNelLmm1w5F5M1J2/oHN7b1JYmBcCb8O9ixB5v794tILSIPA6/FGgPfDbw2OVNUwPcDv5gqxL8KfF96/+Z+vK1Ix+JvAB9V1T+38dLL/rg/29xfCcc9IyMjI+MW4HZ3bX65PjDXgd9Kjw8DfyotvwD8CvAJ4JeB82m5AH8Zcyz4IPDIxrb+Q6zJ6lHgD9/uuT3LfP82dgu9w/SmP/RizhV4BCMvnwT+EimU6Uvh8Sxz/9/S3D6Aka17Ntb/U2keH2PDdQNz8fh4eu1PnTmX3pX2yd8B6ts95zSub8HkIh8A3p8e3/NKOO6fZ+4v++OeH/mRH/mRHy/+IydNZmRkZGRkZGRkZNxCZElJRkZGRkZGRkZGxi1EJtwZGRkZGRkZGRkZtxCZcGdkZGRkZGRkZGTcQmTCnZGRkZGRkZGRkXELkQl3RkZGRkZGRkZGxi1EJtwZLxgi8udF5Ec2fv8lEfnrG7//zyLyX7yIn/e3ROT7vvCaz3u7f3Lj+UMi8qHPt/7GWD4tIv/JmeXvF5GffbHHmLb9h0TkVbdo298qIh95LnPPyMjIyMjIeH7IhDvji8G/Ar4ZQEQccBF4w8br3wz8xm0Y1/PFn/zCq9wU/09V/WvDLyLy1YAHvjWFIb3Y+EPATQm3iPgvZsOq+i8xv+iMjIyMjIyMFxmZcGd8MfgN4JvS8zdgASZHKVGwBr4aeJ+I/Dci8m4R+ZCI/HhKIvwqEXnXsKFUWf5gev71IvIvROS9qWp+z9kPfrZ1ROTXROTHRORdIvJxEfnWtHwmIj+fqrh/T0TeKSKPiMiPAtNUmf6ZtHkvIj8hIh8WkX8mItPnuD9+AAtG+WfAWzfG+nzH5FMF/UMi8kER+c9TZf8R4GfSWKci8pm03fcB/56I/EBa/0Mi8mMbn38sIv9jms8vi8g3pDF9SkR+z3OcW0ZGRkZGRsYLRCbcGS8Yqvo5oBeRB7Bq9v8JvBMj4Y8AH1TVFvhLqvrbVfVrgCnwu1X13wBVisEG+P3Az4lICfyvwPep6tcDPwn895uf+xzWKVT1G4AfAf50WvafATdU9fXAfw18fZrD24Clqr5RVf9AWve1wF9W1TcA+8C/+xx3ye8HfhZLpvyBM6895zEBbwTuVdWvUdWvBf6mqr4deA/wB9JYl2nda6r6JuDXgR8Dvj29/7eLyPemdebAP0/zOQL+O+B3YdHkf/Y5zi0jIyMjIyPjBaK43QPI+LLHb2Bk+5uBPwfcm54fYJITgP+riPxXwAw4D3wY+IfAz2Mk9UfTz98PvA74GuAdIgIm0XjqzGd+oXV+If18L/BQev4twF8AUNUPicgHPs+cPq2q77/JNp4VIvIIcFVVHxORJ4GfFJHzqnr9BYzpU8CrReR/Bf4RVjF/Nvxc+vnbgV9T1StpPD8DfBvw94EW+KdpvQ8Cjap26Y7CF5xbRkZGRkZGxheHTLgzvlgMOu6vxSQljwP/JXAI/E0RmQB/BXhEVR8XkT8DTNJ7fw74OyLyC4Cq6idE5GuBD6vqN/HskC+wTpN+Bl7YOd5sPA9YVf4L4QeArxKRz6Tfd7DK+E883zGp6g0R+W3AdwH/CfD7gP/wWVY/eQ5j61RV0/M4jEVVo4jk/wEZGRkZGRm3GFlSkvHF4jeA3w1cV9WQKrp7mKzkN1iT66sisgWMLiOq+kmMgP7XrCu1HwPuEJFvApOPiMhmI+ZzXecs/hVGXBGR12MXCAO6JFN5QUgNo78P+FpVfUhVH8I03GdlJc9pTCJyEXCq+neB/zfwprT+EbD9LNt6F/BvicjF1ED5A8C/eKFzysjIyMjIyHjxkKtbGV8sPoi5k/z/zizbUtWrACLyE1j1+xLw7jPv/zngfwQeBlDVNjUI/kUR2cXO0f8Fk6HwXNe5Cf4K8FMi8hHg36R1D9JrPw58IDUf/qnnM/mEbwWeTJr2Ab8OvP5mDZ/PYUz3YncHhgviP5F+/i3gr4nIknWzKgCq+pSIvA34VewOwD9S1X/wAuaSkZGRkZGR8SJD1neaMzJevkhV31JVVyLyGuCXgdelps4Xsr2/BfzvqZnxS2JMXyxE5CFsTl9zOz4/IyMjIyPj5Ypc4c54pWAG/GqSjgjwn32RxPYA+G9F5OKmF/dtHtMLRrIq/CvA1dvx+RkZGRkZGS9n5Ap3RkZGRkZGRkZGxi1EbprMyMjIyMjIyMjIuIXIhDsjIyMjIyMjIyPjFiIT7oyMjIyMjIyMjIxbiEy4MzIyMjIyMjIyMm4hMuHOyMjIyMjIyMjIuIXIhDsjIyMjIyMjIyPjFuL/DzTlZ8s9Wq//AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "n = 100\n", "wavelengths = np.geomspace(0.3, 2.5, n) * u.um\n", diff --git a/docs/source/5_liners/source_point_source_arrays.ipynb b/docs/source/5_liners/source_point_source_arrays.ipynb index 03bfe5bd..c0255954 100644 --- a/docs/source/5_liners/source_point_source_arrays.ipynb +++ b/docs/source/5_liners/source_point_source_arrays.ipynb @@ -12,7 +12,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "general-exploration", "metadata": {}, "outputs": [], @@ -48,23 +48,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "alive-renaissance", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD4CAYAAADsBlOYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb+0lEQVR4nO2de6xlVX3HP797L4wk1lAvFCkz0yGRf8Axsdxgb/ijV4dYRComNAabOPLQiRFTSUmUgZCQoAPWRoYGH0xUMjexGVHaYAwGkXATmrlo76DUAtVOUXkEKk60mhgGZubXP/Y+3M2Z89iP9dxrfZKbc/Y55569znp8f4+19tqiqmQymXSZ8V2ATCbjlywCmUziZBHIZBIni0AmkzhZBDKZxJnzXYAqp5xyim7ZssV3MTKZ3nHgwIFfq+qpo94LSgS2bNnC2tqa72JkMr1DRH457r0cDmQyiZNFIJNJnCwCmUziZBHIZBIni0AmkzhZBDKZxMkiEAKrq3DLLcVjxh+JtkNQ6wSSZHUVtm2Dl1+GE0+EBx+ExUXfpUqPhNshewK+WVkpOt7Ro8XjyorvEqWJrXaIwLvInoBvlpYKyzOwQEtLvkuUFqurxYCfnzffDpF4F1kEfLO4WHSOlZWi4wXYSXrL8CDdvRsOHTLXDqO8iwDbN4uAbQaWZlLHWlwMsnMYp05duGR4kB46BDt3mvv+SLy8LAI2icQddEKIdWF7kEbi5WURsMXqKtx0Exw+DMeOBe0OOiFE19jFIB185yDRaOIchj2qLAJNqdMAA6s3EICZmaDdQSeE6hrbDsVMe0AWPKo8RdiEQQPceGPxOG7aZ2D1BgJwwQVhuL91sTGtNbC6N98cV110xfTUY/X7XnoJlpc7FzE+T8BncqmuSzts9W66KZ5ObzN2r1rd0JKEtjDtAS0tFYbl6FFQhbvugu3bO9VhXCLgO7lUt0EjSQiNxEXs7rsdXWKjLxw7tv78lVc6t1FcIuA7udSkQWOd9nMRu/tux7a09V5M9oWVlcIDGDA727mN4hKBEJJLsQ7uurjwYkJox6aE4r0sLcGGDUXSeWYG7rijczniEoFBBzWQDMlMwLbQxRguheK9WKi7uERgwN69RUPs3dvveLLPuPSoTCQhQ/JeDNddfCIQiiJn4sCUGx+j91KT+EQgJEX2RSrTayaoazQSvsYjPhHosSLXIpQEVSzUMRqJ16kxERCRWWANeE5VLxaRM4F9wDxwAPigqr5s5GQ9VeRahBYOheyVDMo27RLh0OrUMSY9gU8ATwJvKI8/C9ymqvtE5MvAVcCXDJ4vTUIKh0K2oE3KFlKdesDItQMishF4D/CV8liAdwLfKj+yF3ifiXO1JoJtnmoR0hr8puviXbZBk7KNqlNbZQ2xH6pq5z+KwX4usAR8BzgFOFh5fxPwn2P+dwdFGLG2efNmtcL+/aonnaQ6O1s87t9v5zyp0aReXbdBl/PZKqvHfgis6Zjx29kTEJGLgV+p6oE2/6+qe1R1QVUXTj115J2Tu5M387RDE6/EdRssLha5gG3biscmHpOtsgbaD03kBM4H3isiFwGvo8gJ3A6cLCJzqnoE2Ag8Z+Bc7Wga8/lKdlU3vTS5151N6iZpXcfdq6twzTXF+R5+GLZurV+XtvpLqLmHcS5Cmz/KcKB8/k3gsvL5l4GPTfv/c889154/tH+/6q5d010wXy7b4LwzM6pQPPYtdKnbBibYtatoQyged+1q9v+m+8vg++68010dVGBCOGBzncCngH0i8mngR8BXLZ5rOnUtlq/poupGJOB2S7Imnk8XL8nl1G5Xq2uyv0yaqQhgitWoCKjqCrBSPn8KOM/k9zvBl8s2OK/rLcmaTKWFPCU4jKtFZXX6yzihCKQ+41sxaBtfKxKr53WZE2ji+cS2qMaF51Gnv4wTikDqM4vAKHytSPRx3iaeT6iJLd9Ma7dxQhFIfYpWdynxzMLCgq6trfkuRnq4yglkjsdRfYrIAVVdGPleciKQO3Emdlr04UkikFY4EEgiJpNpTb7vQEdCWbEV4vrxusRcdt+YqDsLfTgtTyCEREzM3kgsZQ8x5DNVdxb6cFoiEMKGJK729bfxGwOZ0ppIqEK1vFzcMUi1W93ljUYN4HtDEtveiM1BEIInNY0uQmVLPFdX4WtfW79fwNxct7pLfqPR2LHtjdi01iF4UtNoK1Q2xXNlpWgPABG44oqg6i6LgA9seiO2rbVvT2oabYXKpngOt8n27Wa+1xBZBPpGDNbaNm2EyqZ4Bt4m6S0WymTGEeKsgiHyYqFMpg6hhzqW6PdiobywJZOZSn89gVDnizOZwOivJxDKEuFMJnD65QlUEzsxLGzJZAKgPyIwyv0PeFomGnqcMc8U9EcERrn/O3fmjtsF23mVLDBB0B8RCNn9j7Wz191Jt81vy4nbYOiPCIS2Kqt6I5HBTTBi6+zThLXLQI7hisQqsQp5DfojAnD8Yg+fdxIaDA6RYgtxl/cR6Eq13iYJa5eBHLLnNkzPvZZ+iUAVnw1XHRwzMzA7W4hB6J0dRtfbzp2jP9tlIJvw3FyJfGxeS0P6KwI+G254cOzeHc+9BZvUW9eB3GWZrkuRj8lraUF/RcBnw4WWn2hC03rztd7epchPa8/I8wX9voow8sbxhst6i312wUY5LNR/ulcRJnpVWCuGO56LeusygELxtkx7JB7Erd8ikKmHL6vadQCFIPKmw04Puaz+XkA0inxp8Wh8XWw1GECzs/Em3AYeyc03mxFPD3XS2RMQkU3AMnAaoMAeVb1dRN4IfAPYAvwCeL+q/qbr+VoTSgwZIr6SqKG49F0x6ZF4qBMT4cAR4FpVfVRE/gg4ICIPAJcDD6rqrSJyHXAd8CkD52tHz+d6O+FzMDYdQCkkex2HOZ1FQFWfB54vn/9eRJ4EzgAuAZbKj+0FVvApAj2f6+1MCPH1NFx4cymIzBBGE4MisgV4G/AD4LRSIABeoAgX/NEX1zNlbHtziYaMxkRARF4P3ANco6q/E5FX31NVFZGRCxJEZAewA2Dz5s2mijOaGKyda2KyfLa9uarIvPRSceuw0OvEBKra+Q84Abgf+PvKaz8FTi+fnw78dNr3nHvuuZpxyP79qiedpDo7Wzzu32/++3ftMvu9Nr6z+t0nnqha3DBMdcMGO+fxALCmY8Zd5ylCKUz+V4EnVfXzlbe+DXyofP4h4N6u5zJGniossDk1OHCtb7yxeDRV14uL9jaLWVyEiy5aPz5ypFmdRNqvTIQD5wMfBH4iIj8uX7seuBW4W0SuAn4JvN/AubrTNu6LyW2ui033OsbZmNVVuO++9eMmNw6NOJ9gYnbg3wAZ8/a2rt9vnKadc3W1iA3vuquwDJE18EQGydLlZfPfHeNsTJcbh9pYPuzI6KS3bLhJ5xyo++C+8hCPVWvC3r3F79q715zAxTgb0+XGoSZFz7FXkZ4INOmcA3UfCEAsG4M0wfatzGMY/AO6CJdJ0XMcSqUnAlC/c1bVfXYWrryysA4xdexpxOi226SLcJkSPcdtkqYI1CVGl7YpKfzG2HDcJv3eVCQWfMw89HG2IzOWdDcViYE6SaA6A7bJoI54OitjniwCvpmWBKorEk0GtYs1+NnLiIa0NhUJkWmbSNRZ1dd05V/djSvarICztVLQF5GuAmxC9gR8My0JVCdT3GaH4GmJp7Yhg8vpLdseRyJhUxaBEJg0tVRnwLbJJk+bzmo7mF1Nb7kYoDEufW5BFgEfNLVgdeafTS/MaTuYXU1vuRigiayhSEMEQkpUxeJidl09Z/s3uRigiayh6L8IhDboYnIxQ17262qAhlwHhui/CEwadD48hERcTCckMEBfg6X+2n8RGDfofHkIibiYxxFSSBYjFvtr/0Vg3KAbN7fuoqOmaMFCCsmaEoKAWQwj+y8CMHrQDXsI8/Nxd9SQiSkPMkwoAmYxjEx3xeDAQxjcPurQIT+34kqBLrfWartiz9RKP1+3aBtmuL/mnIAhhj2EUBN2IbijXWibB+myH6Qp6x1SItdSGJm2CFQJNWEXijvalTYduG0YYTL8CLVfGCSLQJXhjjrJAruyzjHH011pa4VNWe9qG+/c2e47IiCLwDgmWWCX1jkkd9Q1ba2wCevdFw+sBlkExjHJAru0zgm4oxNpGwd3jZ9j8MAMeaNZBMYxyQKPml685RZ7g9T1uoKmnSv2xOUoQvfADHoqWQTGMckCV9+bn4drrumP29i0c/XVbTbpgdkQSYOeShaBSUy7zn9xsfAAQncbm9C0c8XgNrfFhAdmSyQNeirpLhYyRZeFMCHS9Pf07fePosvCI1uLjQwuHsqeQFf6lrhr+nv69vuH6WrJbeYWDOWKsgiYwHbiznXirenv6fMFUV3DnQhEMotA6PQ18RYLJix5G5HMdyXOvEqIibdBB52fLy688mnhbE9n+rDkfbsrsYhcCNwOzAJfUdVbbZ9zIrHNaYc2Xz3ooIcPw7FjMDMDGzb48VBcTWe6DnccC7/V2QERmQW+ALwbOBv4gIicbfOcE4nxxhgWLyFtxaCDHjtWHB875u8S26aZ97qf933DEcczLrY9gfOAg6r6FICI7AMuAZ6wfN7RhOha1yGkxNvSEszNFXU4YG7Oj4fS1Euq8/kQcjCOQxDbInAG8Ezl+Fng7dUPiMgOYAfA5s2b7ZYmNNc6RhYX4Yor4M47QRVEimMfImVjOjMUQ+FQ+L0nBlV1D7AHiluTWz1ZBNM1UbB9O+zduy6m27f7K4vp6cwEDYVtEXgO2FQ53li+5o+QXOtY6bOY9vm3jUFU7RlfEZkDfgZsoxj8/w78rao+PurzCwsLura2Zq08mR4T26yPY0TkgKoujHrPqiegqkdE5OPA/RRThF8bJwAZj8Q+gEJI5kWM9ZyAqt4H3Gf7PJmW9GEAhZLMa0og4us9MZjxTKwDqEqMybyAxDeLQOqEOoCqVhImW8zFRdi9G+65By69NBwRm2TpAxLfLAKpE2I2vGol5+aK9QhHj463mKur67s7PfwwbN3a7HfYcMunWfqAxDeLQCzYjB9DmzatWsnB8mTV8Razi1W15ZavrKxfX3H48PFlCkh80xaBQBIzUwkofnRC1UoOewKjLGYXq2rLLZ+ff+31FfPzx38mEPHttwhMu3lILAMroPjRCcNWEqbnBNpaVVtu+aFDxRWWgystDx0y870W6K8ITBvkMQ2sgOJHZwxbyTrXBbRpP1tu+dJScYl1BG3WXxGYNshjGlghxI+xhE5tsOGWV9tsfn79suUA666/IjBtkIcwsJrgM350HTr1RXAGZQ887OyvCNQZ5IEkZoLHZeg0LDi7d/vfwqwLEYSd/RUBiHeQh2YJXYZO1UFz+DBcfXUxOxCoFZ1KBGFnv0UgRkKctXAZOlUHzczM+lqBQK3oVCIIO7MIhEao7qMpr2qalzOcUKve5zFAK1qLwD3SLAKhEYH72Jq6Xk510GzdGrQV7QNZBEIj1IthxjFs2U1fNBO4Fe0DWQRCo+vFMC4Zlckfvk07rItCn72ciElPBELLvA8Tak5gFMNlveee1x4vL792Q9IHHww+SZYiaYlAiJn3YerujR/CQBou66WXFt7L4BiOF7SdO8Or88TppwiM25AiBis7bUopJCEbVdZqIg9e6wlk9z9I+icCkzak2L07jph0UjIsNCEbdaFP9Ti7/8HTPxGYtCHFoUP2O6VtVz225FrO7gdP/0Rg2oYUbTtlncHtwlWPYAVaLwgl7+KA/olA0w0p6lB3cLty1bN1XcfH/oDj/md5uXi+fXtU7dM/EYDpG1I07Th1B3dsrnrs2NwfsImYr64Wbf3yy8XxXXfBQw9FIwT9FIFJtOk4dQd3dtXdYsvzairmKyvwyivrxyEkbBuQngiM6jiD103sYZdddXfY8ryaivnSEpxwwronUC1LBLmF9ERguOPMzze/qCXTDtMDwqbn1aS9FxeLMgznBEJa0zGB9ERguOO4SOZFYA2sY2tAhCLOo8oR2pqOMaQnAnB8g9lM5kViDawTyYAwSiSJ4jRFoIrtZF6KnX8UkQwIo0SSKM4iAHZdShudP8bwIpIBYZxQwpUJdBIBEfkc8NfAy8D/AFeo6m/L93YCVwFHgb9T1fu7FTVSTHf+mMOLCAZEisx0/P8HgLeo6luBnwE7AUTkbOAy4BzgQuCLIjLb8VyjWV2FW24pHkNlcdHcJbTjpjgzmZZ08gRU9XuVw0eAvymfXwLsU9XDwM9F5CBwHmB2pMZsFduSYmydsUpXT6DKlcB3y+dnAM9U3nu2fO04RGSHiKyJyNqLL77Y7IwpWsVBeHHzzWmIXsY6Uz0BEfk+8KYRb92gqveWn7kBOAJ8vWkBVHUPsAdgYWFBG/1zqlYxx9ZmiDHBaoGpIqCqF0x6X0QuBy4GtqnqYBA/B2yqfGxj+ZpZXGScc0fpJymGkmPoOjtwIfBJ4C9V9Q+Vt74N/LOIfB74U+As4IddzjUWm1Yxd5TxxC6Oef3Gq3RdJ3AHsAF4QEQAHlHVj6rq4yJyN/AERZhwtaoe7Xgu9+SOMpo+iGOqoeQIus4OvHnCe58BPtPl+73jq6OEbmX7II6pLl4aQV4xOAkfHSUGK9sXK5oTrECKItDUyrruKDFY2T5b0dC9MAukJQJ9s7I+O2wfrWgM/aOKofZPSwT6ZGVj67AxEEP/GGCw/U2uGPRH3esHBlZ2djbsWLbOtQYprpa0TSz9A4y2f/yeQBNF7FMs25fkXEjE1D8Mtn/8ItDUhetLLBtTh40JH/2jTWxvsP3jF4GULWJfBC1lusT2hto//pxAvqouYwNX+1QEkNuJ3xOAbBEzZnE58xKAJxu/J5DJmMaldZ7kyTryRvrhCWTsk9JKOtfWeZQn69AbySKQmc64DjlOGGIXjBBmXhwuXMoikJnOOPd4nDD0YSXjwDoPXHLXYuDQG0lLBGK3UL4Y1SHHWao+3dbNp6A59EbSEYG+WCgfjOuQoyyVbQvmsh19X0vgaNYrHRHw1aB98T6GO+Q4YYjhtm512ySA6TsXpCMCPho0Ve8j5Nu6pXqtyQTSEQEfDerbnbSJL4Hr2o6pXmsygXREANw3aJ/dSZ8C16Ud+9wmLUlLBGwyKs7sszsZ62Dqc5u0RNbvF+KfhYUFXVtb812M5qQa+4eQ9AyhDBEgIgdUdWHUe9kT6MrqKtx0Exw+DMeOjXeN+9hZfcfLqYqvYbIIdGHQCQcCMDMz2jX20VljFp26Ze9z4tUhWQS6MOiEAwG44ILCKxjuiK47a8wWsknZY81LBEZ8lxK72uyhDtWNKTdsGC0Aw59z0VkD2KiiNU3KnjeUMUJcnkBoFq5uptl1RjpmC9m07LHsCRgwcYlAiDFg3U7osrPGPA0WetlDM0QGiEsEYrZwrvGdue+CibLbstYhGqKOxCUCoVuJTHNsDFab1rqHhsiICIjItcA/Aqeq6q9FRIDbgYuAPwCXq+qjJs4VtYWD3sWTnbA1WG1a6x4aos4iICKbgHcBT1defjdwVvn3duBL5WPa9DCe7IStwWrbWrc1RIEaABOewG3AJ4F7K69dAixrsSb5ERE5WUROV9XnDZwvXnoYT3bC1mAN0VoHbAA6iYCIXAI8p6qPFRHAq5wBPFM5frZ87TgREJEdwA6AzZs3dylO+PQwnuyEzcEaWtgYsAGYKgIi8n3gTSPeugG4niIUaI2q7gH2QHEBUZfvMo5p9y1EC+Wb0AarLQI2AFNFQFUvGPW6iGwFzgQGXsBG4FEROQ94DthU+fjG8rV4sOW+pdLp2xBozGyEgA1A63BAVX8C/MngWER+ASyUswPfBj4uIvsoEoL/F00+YNARn346WPetlzQR3VjFIlADYGudwH0U04MHKaYIr7B0HrNUO+LcXLHWH+y6b647dKgDqG7MHHCCLVaMiYCqbqk8V+BqU999HC5WgwF85COwebO9AeO6Q3c5X9M6b/r5ujFzwAm2WIlrxSC4XQ22fbvdDua6Q7c9X9M6b9NGdWPmgBNssRKfCPRpNZjrDt32fE3rvG0b1YmZA06wxUp8IhDqarC253LZoduer2md96mNEiDOjUZDTW71Gds5gT4R4G+ftNFonCKQyYRKoLMXk0Qgvu3FMs0JaUu2vhPh1m7x5QRiIoQ1AIFapt4S4exFFgFbhLIGIPV5dddCHOHsRRYBW4SyBiBCy2QMnzdNrZ4nwERhlSwCtghlDUCElskYIXhBq6vwjnest8tDDwXXBlkEbGFy8NWxJJPOl+q8umkhbmPRl5eLO1RB8bi8HFxbZBGwialdc+u6tKkO9nGYFuI2ocULL7Q/pyPyFGHoRDjl5JxJU6CLi7BzZ3dxbNMOq6vw3e+uH8/NFdejBEb2BEIn5cReHVwl/9q0w8oKHDlSPBeBD384SE8ti0DopJzYq4Or5F+bdhh1VWqAZBGIgRzrj8elp9S0HSIR8CwCmbgJfaBFIOBZBDLxE8FAC5k8O5DJJE4WgUwmcbIIZDKJk0Ugk0mcLAKZTOJkEchkEieoPQZF5EXglw5PeQrwa4fna0LIZYOwyxdy2cBP+f5MVU8d9UZQIuAaEVkbt/mib0IuG4RdvpDLBuGVL4cDmUziZBHIZBIndRHY47sAEwi5bBB2+UIuGwRWvqRzAplMJnsCmUzyZBHIZBInWREQkWtFREXklPJYROSfROSgiPyHiPy5p3J9TkT+qyzDv4rIyZX3dpbl+6mI/JWn8l1Ynv+giFznowxD5dkkIg+JyBMi8riIfKJ8/Y0i8oCI/Hf5+MceyzgrIj8Ske+Ux2eKyA/KOvyGiJzoq2yQqAiIyCbgXcDTlZffDZxV/u0AvuShaAAPAG9R1bcCPwN2AojI2cBlwDnAhcAXRWTWZcHK832Boq7OBj5QlssnR4BrVfVs4C+Aq8syXQc8qKpnAQ+Wx774BPBk5fizwG2q+mbgN8BVXkpVkqQIALcBnwSqWdFLgGUteAQ4WUROd10wVf2eqpa7U/IIsLFSvn2qelhVfw4cBM5zXLzzgIOq+pSqvgzsK8vlDVV9XlUfLZ//nmKwnVGWa2/5sb3A+3yUT0Q2Au8BvlIeC/BO4Fu+yzYgOREQkUuA51T1saG3zgCeqRw/W77mkyuBwZ7VIZQvhDKMRUS2AG8DfgCcpqrPl2+9AJzmqVi7KQzOsfJ4HvhtRei912EvtxcTke8Dbxrx1g3A9RShgDcmlU9V7y0/cwOFq/t1l2WLFRF5PXAPcI2q/q4wuAWqqiLifC5cRC4GfqWqB0RkyfX569JLEVDVC0a9LiJbgTOBx8pOshF4VETOA54DNlU+vrF8zVn5KuW8HLgY2KbrCzmclW8CIZThOETkBAoB+Lqq/kv58v+KyOmq+nwZ1v3KQ9HOB94rIhcBrwPeANxOEWrOld6A/zpU1WT/gF8Ap5TP30PhegtFgumHnsp0IfAEcOrQ6+cAjwEbKITsKWDWcdnmyvOeCZxYluccz20owDKwe+j1zwHXlc+vA/7BczmXgO+Uz78JXFY+/zLwMZ9l66Un0JL7gIsoEm5/AK7wVI47KAb6A6W38oiqflRVHxeRuykE4ghwtaoedVkwVT0iIh8H7gdmga+p6uMuyzCC84EPAj8RkR+Xr10P3ArcLSJXUVye/n4/xRvJp4B9IvJp4EfAV30WJi8bzmQSJ7nZgUwm81qyCGQyiZNFIJNJnCwCmUziZBHIZBIni0AmkzhZBDKZxPl/lni7khP8HMMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "tbl = table.Table(names=[\"x\", \"y\", \"ref\", \"weight\"],\n", " data= [x, y, ref, weight],\n", @@ -85,23 +72,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "comprehensive-enlargement", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD4CAYAAADsBlOYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb+0lEQVR4nO2de6xlVX3HP797L4wk1lAvFCkz0yGRf8Axsdxgb/ijV4dYRComNAabOPLQiRFTSUmUgZCQoAPWRoYGH0xUMjexGVHaYAwGkXATmrlo76DUAtVOUXkEKk60mhgGZubXP/Y+3M2Z89iP9dxrfZKbc/Y55569znp8f4+19tqiqmQymXSZ8V2ATCbjlywCmUziZBHIZBIni0AmkzhZBDKZxJnzXYAqp5xyim7ZssV3MTKZ3nHgwIFfq+qpo94LSgS2bNnC2tqa72JkMr1DRH457r0cDmQyiZNFIJNJnCwCmUziZBHIZBIni0AmkzhZBDKZxMkiEAKrq3DLLcVjxh+JtkNQ6wSSZHUVtm2Dl1+GE0+EBx+ExUXfpUqPhNshewK+WVkpOt7Ro8XjyorvEqWJrXaIwLvInoBvlpYKyzOwQEtLvkuUFqurxYCfnzffDpF4F1kEfLO4WHSOlZWi4wXYSXrL8CDdvRsOHTLXDqO8iwDbN4uAbQaWZlLHWlwMsnMYp05duGR4kB46BDt3mvv+SLy8LAI2icQddEKIdWF7kEbi5WURsMXqKtx0Exw+DMeOBe0OOiFE19jFIB185yDRaOIchj2qLAJNqdMAA6s3EICZmaDdQSeE6hrbDsVMe0AWPKo8RdiEQQPceGPxOG7aZ2D1BgJwwQVhuL91sTGtNbC6N98cV110xfTUY/X7XnoJlpc7FzE+T8BncqmuSzts9W66KZ5ObzN2r1rd0JKEtjDtAS0tFYbl6FFQhbvugu3bO9VhXCLgO7lUt0EjSQiNxEXs7rsdXWKjLxw7tv78lVc6t1FcIuA7udSkQWOd9nMRu/tux7a09V5M9oWVlcIDGDA727mN4hKBEJJLsQ7uurjwYkJox6aE4r0sLcGGDUXSeWYG7rijczniEoFBBzWQDMlMwLbQxRguheK9WKi7uERgwN69RUPs3dvveLLPuPSoTCQhQ/JeDNddfCIQiiJn4sCUGx+j91KT+EQgJEX2RSrTayaoazQSvsYjPhHosSLXIpQEVSzUMRqJ16kxERCRWWANeE5VLxaRM4F9wDxwAPigqr5s5GQ9VeRahBYOheyVDMo27RLh0OrUMSY9gU8ATwJvKI8/C9ymqvtE5MvAVcCXDJ4vTUIKh0K2oE3KFlKdesDItQMishF4D/CV8liAdwLfKj+yF3ifiXO1JoJtnmoR0hr8puviXbZBk7KNqlNbZQ2xH6pq5z+KwX4usAR8BzgFOFh5fxPwn2P+dwdFGLG2efNmtcL+/aonnaQ6O1s87t9v5zyp0aReXbdBl/PZKqvHfgis6Zjx29kTEJGLgV+p6oE2/6+qe1R1QVUXTj115J2Tu5M387RDE6/EdRssLha5gG3biscmHpOtsgbaD03kBM4H3isiFwGvo8gJ3A6cLCJzqnoE2Ag8Z+Bc7Wga8/lKdlU3vTS5151N6iZpXcfdq6twzTXF+R5+GLZurV+XtvpLqLmHcS5Cmz/KcKB8/k3gsvL5l4GPTfv/c889154/tH+/6q5d010wXy7b4LwzM6pQPPYtdKnbBibYtatoQyged+1q9v+m+8vg++68010dVGBCOGBzncCngH0i8mngR8BXLZ5rOnUtlq/poupGJOB2S7Imnk8XL8nl1G5Xq2uyv0yaqQhgitWoCKjqCrBSPn8KOM/k9zvBl8s2OK/rLcmaTKWFPCU4jKtFZXX6yzihCKQ+41sxaBtfKxKr53WZE2ji+cS2qMaF51Gnv4wTikDqM4vAKHytSPRx3iaeT6iJLd9Ma7dxQhFIfYpWdynxzMLCgq6trfkuRnq4yglkjsdRfYrIAVVdGPleciKQO3Emdlr04UkikFY4EEgiJpNpTb7vQEdCWbEV4vrxusRcdt+YqDsLfTgtTyCEREzM3kgsZQ8x5DNVdxb6cFoiEMKGJK729bfxGwOZ0ppIqEK1vFzcMUi1W93ljUYN4HtDEtveiM1BEIInNY0uQmVLPFdX4WtfW79fwNxct7pLfqPR2LHtjdi01iF4UtNoK1Q2xXNlpWgPABG44oqg6i6LgA9seiO2rbVvT2oabYXKpngOt8n27Wa+1xBZBPpGDNbaNm2EyqZ4Bt4m6S0WymTGEeKsgiHyYqFMpg6hhzqW6PdiobywJZOZSn89gVDnizOZwOivJxDKEuFMJnD65QlUEzsxLGzJZAKgPyIwyv0PeFomGnqcMc8U9EcERrn/O3fmjtsF23mVLDBB0B8RCNn9j7Wz191Jt81vy4nbYOiPCIS2Kqt6I5HBTTBi6+zThLXLQI7hisQqsQp5DfojAnD8Yg+fdxIaDA6RYgtxl/cR6Eq13iYJa5eBHLLnNkzPvZZ+iUAVnw1XHRwzMzA7W4hB6J0dRtfbzp2jP9tlIJvw3FyJfGxeS0P6KwI+G254cOzeHc+9BZvUW9eB3GWZrkuRj8lraUF/RcBnw4WWn2hC03rztd7epchPa8/I8wX9voow8sbxhst6i312wUY5LNR/ulcRJnpVWCuGO56LeusygELxtkx7JB7Erd8ikKmHL6vadQCFIPKmw04Puaz+XkA0inxp8Wh8XWw1GECzs/Em3AYeyc03mxFPD3XS2RMQkU3AMnAaoMAeVb1dRN4IfAPYAvwCeL+q/qbr+VoTSgwZIr6SqKG49F0x6ZF4qBMT4cAR4FpVfVRE/gg4ICIPAJcDD6rqrSJyHXAd8CkD52tHz+d6O+FzMDYdQCkkex2HOZ1FQFWfB54vn/9eRJ4EzgAuAZbKj+0FVvApAj2f6+1MCPH1NFx4cymIzBBGE4MisgV4G/AD4LRSIABeoAgX/NEX1zNlbHtziYaMxkRARF4P3ANco6q/E5FX31NVFZGRCxJEZAewA2Dz5s2mijOaGKyda2KyfLa9uarIvPRSceuw0OvEBKra+Q84Abgf+PvKaz8FTi+fnw78dNr3nHvuuZpxyP79qiedpDo7Wzzu32/++3ftMvu9Nr6z+t0nnqha3DBMdcMGO+fxALCmY8Zd5ylCKUz+V4EnVfXzlbe+DXyofP4h4N6u5zJGniossDk1OHCtb7yxeDRV14uL9jaLWVyEiy5aPz5ypFmdRNqvTIQD5wMfBH4iIj8uX7seuBW4W0SuAn4JvN/AubrTNu6LyW2ui033OsbZmNVVuO++9eMmNw6NOJ9gYnbg3wAZ8/a2rt9vnKadc3W1iA3vuquwDJE18EQGydLlZfPfHeNsTJcbh9pYPuzI6KS3bLhJ5xyo++C+8hCPVWvC3r3F79q715zAxTgb0+XGoSZFz7FXkZ4INOmcA3UfCEAsG4M0wfatzGMY/AO6CJdJ0XMcSqUnAlC/c1bVfXYWrryysA4xdexpxOi226SLcJkSPcdtkqYI1CVGl7YpKfzG2HDcJv3eVCQWfMw89HG2IzOWdDcViYE6SaA6A7bJoI54OitjniwCvpmWBKorEk0GtYs1+NnLiIa0NhUJkWmbSNRZ1dd05V/djSvarICztVLQF5GuAmxC9gR8My0JVCdT3GaH4GmJp7Yhg8vpLdseRyJhUxaBEJg0tVRnwLbJJk+bzmo7mF1Nb7kYoDEufW5BFgEfNLVgdeafTS/MaTuYXU1vuRigiayhSEMEQkpUxeJidl09Z/s3uRigiayh6L8IhDboYnIxQ17262qAhlwHhui/CEwadD48hERcTCckMEBfg6X+2n8RGDfofHkIibiYxxFSSBYjFvtr/0Vg3KAbN7fuoqOmaMFCCsmaEoKAWQwj+y8CMHrQDXsI8/Nxd9SQiSkPMkwoAmYxjEx3xeDAQxjcPurQIT+34kqBLrfWartiz9RKP1+3aBtmuL/mnIAhhj2EUBN2IbijXWibB+myH6Qp6x1SItdSGJm2CFQJNWEXijvalTYduG0YYTL8CLVfGCSLQJXhjjrJAruyzjHH011pa4VNWe9qG+/c2e47IiCLwDgmWWCX1jkkd9Q1ba2wCevdFw+sBlkExjHJAru0zgm4oxNpGwd3jZ9j8MAMeaNZBMYxyQKPml685RZ7g9T1uoKmnSv2xOUoQvfADHoqWQTGMckCV9+bn4drrumP29i0c/XVbTbpgdkQSYOeShaBSUy7zn9xsfAAQncbm9C0c8XgNrfFhAdmSyQNeirpLhYyRZeFMCHS9Pf07fePosvCI1uLjQwuHsqeQFf6lrhr+nv69vuH6WrJbeYWDOWKsgiYwHbiznXirenv6fMFUV3DnQhEMotA6PQ18RYLJix5G5HMdyXOvEqIibdBB52fLy688mnhbE9n+rDkfbsrsYhcCNwOzAJfUdVbbZ9zIrHNaYc2Xz3ooIcPw7FjMDMDGzb48VBcTWe6DnccC7/V2QERmQW+ALwbOBv4gIicbfOcE4nxxhgWLyFtxaCDHjtWHB875u8S26aZ97qf933DEcczLrY9gfOAg6r6FICI7AMuAZ6wfN7RhOha1yGkxNvSEszNFXU4YG7Oj4fS1Euq8/kQcjCOQxDbInAG8Ezl+Fng7dUPiMgOYAfA5s2b7ZYmNNc6RhYX4Yor4M47QRVEimMfImVjOjMUQ+FQ+L0nBlV1D7AHiluTWz1ZBNM1UbB9O+zduy6m27f7K4vp6cwEDYVtEXgO2FQ53li+5o+QXOtY6bOY9vm3jUFU7RlfEZkDfgZsoxj8/w78rao+PurzCwsLura2Zq08mR4T26yPY0TkgKoujHrPqiegqkdE5OPA/RRThF8bJwAZj8Q+gEJI5kWM9ZyAqt4H3Gf7PJmW9GEAhZLMa0og4us9MZjxTKwDqEqMybyAxDeLQOqEOoCqVhImW8zFRdi9G+65By69NBwRm2TpAxLfLAKpE2I2vGol5+aK9QhHj463mKur67s7PfwwbN3a7HfYcMunWfqAxDeLQCzYjB9DmzatWsnB8mTV8Razi1W15ZavrKxfX3H48PFlCkh80xaBQBIzUwkofnRC1UoOewKjLGYXq2rLLZ+ff+31FfPzx38mEPHttwhMu3lILAMroPjRCcNWEqbnBNpaVVtu+aFDxRWWgystDx0y870W6K8ITBvkMQ2sgOJHZwxbyTrXBbRpP1tu+dJScYl1BG3WXxGYNshjGlghxI+xhE5tsOGWV9tsfn79suUA666/IjBtkIcwsJrgM350HTr1RXAGZQ887OyvCNQZ5IEkZoLHZeg0LDi7d/vfwqwLEYSd/RUBiHeQh2YJXYZO1UFz+DBcfXUxOxCoFZ1KBGFnv0UgRkKctXAZOlUHzczM+lqBQK3oVCIIO7MIhEao7qMpr2qalzOcUKve5zFAK1qLwD3SLAKhEYH72Jq6Xk510GzdGrQV7QNZBEIj1IthxjFs2U1fNBO4Fe0DWQRCo+vFMC4Zlckfvk07rItCn72ciElPBELLvA8Tak5gFMNlveee1x4vL792Q9IHHww+SZYiaYlAiJn3YerujR/CQBou66WXFt7L4BiOF7SdO8Or88TppwiM25AiBis7bUopJCEbVdZqIg9e6wlk9z9I+icCkzak2L07jph0UjIsNCEbdaFP9Ti7/8HTPxGYtCHFoUP2O6VtVz225FrO7gdP/0Rg2oYUbTtlncHtwlWPYAVaLwgl7+KA/olA0w0p6lB3cLty1bN1XcfH/oDj/md5uXi+fXtU7dM/EYDpG1I07Th1B3dsrnrs2NwfsImYr64Wbf3yy8XxXXfBQw9FIwT9FIFJtOk4dQd3dtXdYsvzairmKyvwyivrxyEkbBuQngiM6jiD103sYZdddXfY8ryaivnSEpxwwronUC1LBLmF9ERguOPMzze/qCXTDtMDwqbn1aS9FxeLMgznBEJa0zGB9ERguOO4SOZFYA2sY2tAhCLOo8oR2pqOMaQnAnB8g9lM5kViDawTyYAwSiSJ4jRFoIrtZF6KnX8UkQwIo0SSKM4iAHZdShudP8bwIpIBYZxQwpUJdBIBEfkc8NfAy8D/AFeo6m/L93YCVwFHgb9T1fu7FTVSTHf+mMOLCAZEisx0/P8HgLeo6luBnwE7AUTkbOAy4BzgQuCLIjLb8VyjWV2FW24pHkNlcdHcJbTjpjgzmZZ08gRU9XuVw0eAvymfXwLsU9XDwM9F5CBwHmB2pMZsFduSYmydsUpXT6DKlcB3y+dnAM9U3nu2fO04RGSHiKyJyNqLL77Y7IwpWsVBeHHzzWmIXsY6Uz0BEfk+8KYRb92gqveWn7kBOAJ8vWkBVHUPsAdgYWFBG/1zqlYxx9ZmiDHBaoGpIqCqF0x6X0QuBy4GtqnqYBA/B2yqfGxj+ZpZXGScc0fpJymGkmPoOjtwIfBJ4C9V9Q+Vt74N/LOIfB74U+As4IddzjUWm1Yxd5TxxC6Oef3Gq3RdJ3AHsAF4QEQAHlHVj6rq4yJyN/AERZhwtaoe7Xgu9+SOMpo+iGOqoeQIus4OvHnCe58BPtPl+73jq6OEbmX7II6pLl4aQV4xOAkfHSUGK9sXK5oTrECKItDUyrruKDFY2T5b0dC9MAukJQJ9s7I+O2wfrWgM/aOKofZPSwT6ZGVj67AxEEP/GGCw/U2uGPRH3esHBlZ2djbsWLbOtQYprpa0TSz9A4y2f/yeQBNF7FMs25fkXEjE1D8Mtn/8ItDUhetLLBtTh40JH/2jTWxvsP3jF4GULWJfBC1lusT2hto//pxAvqouYwNX+1QEkNuJ3xOAbBEzZnE58xKAJxu/J5DJmMaldZ7kyTryRvrhCWTsk9JKOtfWeZQn69AbySKQmc64DjlOGGIXjBBmXhwuXMoikJnOOPd4nDD0YSXjwDoPXHLXYuDQG0lLBGK3UL4Y1SHHWao+3dbNp6A59EbSEYG+WCgfjOuQoyyVbQvmsh19X0vgaNYrHRHw1aB98T6GO+Q4YYjhtm512ySA6TsXpCMCPho0Ve8j5Nu6pXqtyQTSEQEfDerbnbSJL4Hr2o6pXmsygXREANw3aJ/dSZ8C16Ud+9wmLUlLBGwyKs7sszsZ62Dqc5u0RNbvF+KfhYUFXVtb812M5qQa+4eQ9AyhDBEgIgdUdWHUe9kT6MrqKtx0Exw+DMeOjXeN+9hZfcfLqYqvYbIIdGHQCQcCMDMz2jX20VljFp26Ze9z4tUhWQS6MOiEAwG44ILCKxjuiK47a8wWsknZY81LBEZ8lxK72uyhDtWNKTdsGC0Aw59z0VkD2KiiNU3KnjeUMUJcnkBoFq5uptl1RjpmC9m07LHsCRgwcYlAiDFg3U7osrPGPA0WetlDM0QGiEsEYrZwrvGdue+CibLbstYhGqKOxCUCoVuJTHNsDFab1rqHhsiICIjItcA/Aqeq6q9FRIDbgYuAPwCXq+qjJs4VtYWD3sWTnbA1WG1a6x4aos4iICKbgHcBT1defjdwVvn3duBL5WPa9DCe7IStwWrbWrc1RIEaABOewG3AJ4F7K69dAixrsSb5ERE5WUROV9XnDZwvXnoYT3bC1mAN0VoHbAA6iYCIXAI8p6qPFRHAq5wBPFM5frZ87TgREJEdwA6AzZs3dylO+PQwnuyEzcEaWtgYsAGYKgIi8n3gTSPeugG4niIUaI2q7gH2QHEBUZfvMo5p9y1EC+Wb0AarLQI2AFNFQFUvGPW6iGwFzgQGXsBG4FEROQ94DthU+fjG8rV4sOW+pdLp2xBozGyEgA1A63BAVX8C/MngWER+ASyUswPfBj4uIvsoEoL/F00+YNARn346WPetlzQR3VjFIlADYGudwH0U04MHKaYIr7B0HrNUO+LcXLHWH+y6b647dKgDqG7MHHCCLVaMiYCqbqk8V+BqU999HC5WgwF85COwebO9AeO6Q3c5X9M6b/r5ujFzwAm2WIlrxSC4XQ22fbvdDua6Q7c9X9M6b9NGdWPmgBNssRKfCPRpNZjrDt32fE3rvG0b1YmZA06wxUp8IhDqarC253LZoduer2md96mNEiDOjUZDTW71Gds5gT4R4G+ftNFonCKQyYRKoLMXk0Qgvu3FMs0JaUu2vhPh1m7x5QRiIoQ1AIFapt4S4exFFgFbhLIGIPV5dddCHOHsRRYBW4SyBiBCy2QMnzdNrZ4nwERhlSwCtghlDUCElskYIXhBq6vwjnest8tDDwXXBlkEbGFy8NWxJJPOl+q8umkhbmPRl5eLO1RB8bi8HFxbZBGwialdc+u6tKkO9nGYFuI2ocULL7Q/pyPyFGHoRDjl5JxJU6CLi7BzZ3dxbNMOq6vw3e+uH8/NFdejBEb2BEIn5cReHVwl/9q0w8oKHDlSPBeBD384SE8ti0DopJzYq4Or5F+bdhh1VWqAZBGIgRzrj8elp9S0HSIR8CwCmbgJfaBFIOBZBDLxE8FAC5k8O5DJJE4WgUwmcbIIZDKJk0Ugk0mcLAKZTOJkEchkEieoPQZF5EXglw5PeQrwa4fna0LIZYOwyxdy2cBP+f5MVU8d9UZQIuAaEVkbt/mib0IuG4RdvpDLBuGVL4cDmUziZBHIZBIndRHY47sAEwi5bBB2+UIuGwRWvqRzAplMJnsCmUzyZBHIZBInWREQkWtFREXklPJYROSfROSgiPyHiPy5p3J9TkT+qyzDv4rIyZX3dpbl+6mI/JWn8l1Ynv+giFznowxD5dkkIg+JyBMi8riIfKJ8/Y0i8oCI/Hf5+MceyzgrIj8Ske+Ux2eKyA/KOvyGiJzoq2yQqAiIyCbgXcDTlZffDZxV/u0AvuShaAAPAG9R1bcCPwN2AojI2cBlwDnAhcAXRWTWZcHK832Boq7OBj5QlssnR4BrVfVs4C+Aq8syXQc8qKpnAQ+Wx774BPBk5fizwG2q+mbgN8BVXkpVkqQIALcBnwSqWdFLgGUteAQ4WUROd10wVf2eqpa7U/IIsLFSvn2qelhVfw4cBM5zXLzzgIOq+pSqvgzsK8vlDVV9XlUfLZ//nmKwnVGWa2/5sb3A+3yUT0Q2Au8BvlIeC/BO4Fu+yzYgOREQkUuA51T1saG3zgCeqRw/W77mkyuBwZ7VIZQvhDKMRUS2AG8DfgCcpqrPl2+9AJzmqVi7KQzOsfJ4HvhtRei912EvtxcTke8Dbxrx1g3A9RShgDcmlU9V7y0/cwOFq/t1l2WLFRF5PXAPcI2q/q4wuAWqqiLifC5cRC4GfqWqB0RkyfX569JLEVDVC0a9LiJbgTOBx8pOshF4VETOA54DNlU+vrF8zVn5KuW8HLgY2KbrCzmclW8CIZThOETkBAoB+Lqq/kv58v+KyOmq+nwZ1v3KQ9HOB94rIhcBrwPeANxOEWrOld6A/zpU1WT/gF8Ap5TP30PhegtFgumHnsp0IfAEcOrQ6+cAjwEbKITsKWDWcdnmyvOeCZxYluccz20owDKwe+j1zwHXlc+vA/7BczmXgO+Uz78JXFY+/zLwMZ9l66Un0JL7gIsoEm5/AK7wVI47KAb6A6W38oiqflRVHxeRuykE4ghwtaoedVkwVT0iIh8H7gdmga+p6uMuyzCC84EPAj8RkR+Xr10P3ArcLSJXUVye/n4/xRvJp4B9IvJp4EfAV30WJi8bzmQSJ7nZgUwm81qyCGQyiZNFIJNJnCwCmUziZBHIZBIni0AmkzhZBDKZxPl/lni7khP8HMMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "point_source = scopesim.Source(spectra=[vega], x=x, y=y, ref=ref, weight=weight)\n", "\n", @@ -111,7 +85,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -125,7 +99,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/docs/source/examples/1_scopesim_intro.ipynb b/docs/source/examples/1_scopesim_intro.ipynb index 5a5954dc..86b66279 100644 --- a/docs/source/examples/1_scopesim_intro.ipynb +++ b/docs/source/examples/1_scopesim_intro.ipynb @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "fatty-excellence", "metadata": {}, "outputs": [], @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "346dd0cc", "metadata": {}, "outputs": [], @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "022b83d9", "metadata": {}, "outputs": [], @@ -87,24 +87,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "premier-mount", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\MAORY.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmpxq_g90il\\\\MICADO.zip']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])" @@ -120,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "golden-division", "metadata": {}, "outputs": [], @@ -143,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "bronze-generator", "metadata": {}, "outputs": [], @@ -164,31 +150,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "undefined-flush", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAKbCAYAAADxH8WgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fbSt6VnWiV61JmvvTZVVFSqEVBck6XAgGDqYbsLHiQ0JGAniMIhDbUczBoIHVI5AnxBzENrTjrbH0WoZDml70EEdfuDHUdCWEE4PWi2MBBHtY2Oi0ghiixIJgfCRSqWKvffKXPv8MddV8/f+5v2uXQRIdnbmPcYaa873fT7u53nu576v+3reOec9t27dupWjHOUoRznKUY5ylKMc5ShHuUPk5IOtwFGOcpSjHOUoRznKUY5ylKNQjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpQ7So5JylGOcpSjHOUoRznKUY5ylDtKjknKUY5ylKMc5ShHOcpRjnKUO0qOScpRjnKUoxzlKEc5ylGOcpRfcXnqqafyghe8IK9//et/yXWPScpRjnKUoxzlKEc5ylGOcpRfcfljf+yP5TM/8zPfr7p3fJLyhje8IS984Qtz7dq1vOxlL8s//If/8IOt0lGOcpSjHOUoRznKUY5ylEvkx37sx/IjP/Ij+c2/+Te/X/Xv6CTl27/92/Pa1742f/gP/+G89a1vzWd/9mfnC77gC/ITP/ETH2zVjnKUoxzlKEc5ylGOcpQPqHzLt3xLft2v+3V54IEH8sADD+TlL395/tf/9X/9Fe3j+77v+/Ka17wmjzzySO65555853d+51judgcJr3/96/Poo4++33p8xPtd8wMgf+pP/al8+Zd/eb7iK74iSfI//A//Q/7u3/27+ZZv+ZbbDvr8/DzveMc7cv/99+eee+75QKh7lKMc5ShHOcpRjnKUS+TWrVt54okn8sgjj+Tk5M7jyq9fv56bN29+UPq+cuVKrl27dmmZj/u4j8t//9//9/mET/iEJMlf/st/Ob/1t/7WvPWtb81/8p/8Jwfl/9E/+kf5jM/4jJyeni6u/8iP/Eie9axn5eGHHz6o8+STT+alL31pfs/v+T357b/9t4969CDhDW94Q/7z//w/z5/9s382X/AFX5Af/uEfzvOf//y86U1vyote9KK86EUvyg/8wA880ylYyq07VG7cuHFrs9nc+o7v+I7F9f/qv/qvbr3iFa84KH/9+vVbjz/++NN/P/zDP3wryfHv+Hf8O/4d/45/x7/j3/HvDvt7+9vf/oGClM9YfvEXf/HWww8//EGbkwceeODWJ33SJ9168YtffOubv/mbn7HeH/VRH3Xrz//5P39wfbvd3nrpS19663f8jt9x633ve9/T13/0R3/01sMPP3zrT/yJP3HbtpPceuMb33hw/TM+4zNufeVXfuXi2q/9tb/21td//dffunXr1q2v//qvv/VxH/dxt17wghfcevazn33rgQceuPVH/+gffcZjunXr1q079iTlZ3/2Z7PdbvPc5z53cf25z31u3vnOdx6Uf/TRR/NH/+gfPbj++UnuTXKe3bNt5xfXT3DtLMkm+2ffNkm2K/fPUe48ySnKTHVbbntR1tf7+jTJDekW3Nvi2ulFf61b/bYX/1umerEfi+9Z//MkV9F371Wny8Rtt97ZJfWr/xZ1rDt1m9YkF+85J/y/ZgsZ9HLZlknW9d/qfW2D69ZxTvdYr/qszQuvs+9et7gt6+u22d4Zynje2R/HQeGYOc/nKuf9lVy+Jlez3H+9N9nQ2mu/97xMOrLM2h7rurpM58Br0blbs/sM120rlsv2P9uoHtada8u5tX302tXs99nVJFeS3Exy7aK9q0n+YJLnPnBR8Hcm+ctJPjr5wXcl/5+Ly1ez84mbJNeztKv3Zel3aSuUNRvn2K5f6LbVPc5Lx34js+/hnNi3VOg3Jx/EcrVpr4ttrvdOcT/Q375msveNyrNdxkXGw2QZz2xjZzmMd9Q5WZ/Haf9XH4r1t57T3DIGdAzcc2v9dcy1E8eZlufcTEIs4LjEvjZZ2iHnnbY6zV9Qh2Um25nWxrHoMpnw1JrNEkedJflfktx///3PoJcPrNy8eTPvfOc78/a3vz0PPPDAB7Tv97znPXne8573S+p7u93mb/2tv5Unn3wyL3/5yw/un5yc5Lu/+7vzile8Ir/7d//u/NW/+lfz4z/+4/kNv+E35Au/8AvzdV/3de+Xrjdv3swP/uAP5uu//usX11/96lc/fWry6KOPPv3U07d+67fmh37oh/JH/sgf+SX1c8cmKRU/qnXr1q3x8a1v+IZvyOte97qn33exr+XQYTDwGNQxaXDA7n868UoP57oRr+UQLFmHKXBSh2Q9iWgSUodyrvp0OAbnDEoMqm1rmx2wmAAo52UCS8lhgHegrO50nE58nskcdIwFP1My0TYJQPq/a8O5m5JV6s3gQXBgob5XpRPno2vYe527tt0EscHsNMsgx6Do+ZzE+hYMcQ4coE5Qtm3ckE4EyVezDFTVk2PieLfZraEDJ9ediUjFQP9c/2sXPDi/jvIlLzpfXPsKx+Z+k+WcdRxOUjeq02sGDl3D8+z9h8dM4R7v3NO2kuW+n5Iw7y0CFINMjjXZ72ESGe2/7ddT/5qL/x+R5JEkn/hIcusdyT23bu1u/KW/nXfe8zvyufcmf/+p5N3oo/PTdWSizbFMSbr3GuVUdbp23FtMkrtmjAFODggCJ8KD5NEE8r2nnXRzn3Yfdk/RVhxLDL67RrYb7j0mSow1pyhDUmyylZZj39yPjF8TccSkbjO8b1nunZZjn8nh/NC3uD2TPPUlyeX7t/1NvqTCtZ72Lef3auY55li5ZsQhjpn0lyZFXI4xayJ2Lksqu4dKujI2sWxyiO/uJOnnPe5U+Zf/8l/m5S9/ea5fv55f82t+Td74xjfmkz/5k8eyjzzySN785jfnFa94Rb74i784//gf/+O86lWvyp/5M3/m/e7/l3qQ8P7KHZukfPRHf3Q2m83BYH/mZ37mYFKS5OrVq7l69erBdQPXZLnBTof7Zj7tcKekg4GEztzgedLHTBb7oh52TBu1y3pk4CdWjbo4uNiR8PUms9NKbs8wneDe1MYa0zfNCfXgekysHp3xGd5v0A7nyYwanX8DSnLIhHP9PYau2Q2UJ7iufgxeGcp2vDeyDyTVrWzzJodAjid5ydI+nXQ7OTWAqK7XVM/JEcEqQQTtpe14zaiH9eR176UJnDQxOcXfWZaseMV6bHNof9x3BRK0UwJQjoV2RwDLeXLb9EG0E87DVm04+aBNre1pjpdzeFkSTlaUOjtpYCL7tN1sk3tewhZ/+07fk0MwdjPLfXYluzWlLp1Pnz5Wh6tZAuwbeE3Cgn7FSQbnxsne5NenBJEAmwms9wTbMPu9GcZ/pjLUsePlmnHPE6DTDybLPe5TNce0CZQ7XlxTH0zIOFaOi3vLsZd+zb7FRGCTUCf/9CdOaJzk2ra5xrR17gPHuopPfzK87lgYW871v+042dzoXts+V3n35QSRtm6c4vWqrpzfiTRbS+DuLHnfxd8Hus9nJp/0SZ+Ut73tbXn3u9+dv/23/3a+9Eu/NG95y1tWE5XnP//5+St/5a/kla98ZT7+4z8+f+Ev/IVfkSTxmR4kfNmXfdn71f4daytXrlzJy172sjz22GOL64899lh+/a//9b/k9hp0+kcnTSc4AdTkEIx2I/r/JocbnAwa23VAORnu0XFStzrAsxy2VT3JVFeP6zl0LGxvCtTV40RtOQg4qeB4p2sGXXRmHH90rWUdbC281nYadNfmywDSOqzpsVaW7FrXouvFYOeN2LIUgs3T7E+7DEa7brznAMPAxf5pS0wuknX7rV3ShjhmjtUJkNni3iNo8j4xe23Wk/2eonyTOJ5WcW8yyJup7/97czi3BHkEEk6UOe+coy3qEURdBg7YJ8dtdrllaX8Vri33Pm3D4+R4qIdttX1eyZK0OU/yriR5Innyh5LkY3cV/vU9eVaSX3xv8hTaO7too31usktaOGctR//jk40+Nlaf4yTRpyo3hnuXAckbOWTqaTdO/LrGXWevZfvjOhuA81rwflqz7i/avH375K+pT6937ief1T47tjUg7HZ9mhu99/xwndcSubbZ1/S9HPNEdrUP27aTHydt9pVr4Nz+wa+9HskyMamQBJ1II5IIk24knkxCcf563ePl/Ne/9l6Fvo+k4FF+eXLlypV8wid8Qj7t0z4tjz76aF760pfmT//pP71a/qd/+qfz+37f78trXvOaPPXUU/nar/3aX1b/v9SDhPdX7tgkJUle97rX5c//+T+fv/gX/2L+1b/6V/nar/3a/MRP/ES+8iu/8pfUDp17N9L0vQ12nhOD4+vJ3jkQhPBomO0SIBGYMfGhzm0jWYKY61kGIJazg+TxegM9wRiZR+o2Bc6gTHXqPdZpYKDTmpKyBvMpCDGZ5FjpNDmH09xx3diHmbvzLJ17/zshMfghO+41m0D0BC4IJoP7U3JEIHnz4tpTSZ7Mcq4IcqjrBBCoH9eF8282MVmC8YKAaS3Zt4OXGU0m0tWdDGXUBm13Atd9f/WiLJPUaS37nskG9Z6SR17j/rLtcNwWkh3V3/u7Op1m/7mPtuc5Spb9T2QLfRHvkWyZ9pT3DveFwTn169y/O8ljTyX3PZI8ec878s577smtT0qufNzuOfV3X9S5L+u+iLZwGcjka+vMe/YZl5Evla5zk56ruL7FddsGbTQ53JfVwX0yYVqLD2uJ+wRSPRe19UkvlqF/SWYfwSTIZTbZ70fea79MntdslPVYx4kF4zGTk2l+7AeneGeZ9kH3TeeS/qNr2Me4nPxS/EQHySPaB0kYjqdj4lqcZLln+p5zPpEswb0t7pP4vZLDGDslqN5fd66874P09/7JrVu3cuPGjfHez/7sz+ZVr3pVXvziF+c7vuM78uY3vzl/82/+zffrF+Arv9IHCWtyxz7ulSS/63f9rvzcz/1c/rv/7r/LT/3UT+UlL3lJvvu7vzsveMELnnEbBkUTW1OHRMDUDU9HejrUqbPg5mV/bIOv6RAMBJiMMGjweXoGBAbDybmwnhOS6d65ytHpV18CIzI2FbM51dUBibp7XdiHdTjJMlg6cJO59XjInFcMKnk64NMel/H1y4TrRV2pA9lhAo9kCfavZf+B5OqT7EF+7xPoM3E1w8b2z3SNcj2Hdpxn8N5Bn33Trp2cuf8JaLYcbZLt+5Gk6sZr9AO1DwOpKZl3/14/9+VTEgJA2zD3FdfP7C7F9sJ54eM1fU8bZgLStaBeN7LU0T6Lr9vv9YtytcenkrwpybvekfyX2SUrv/iO5K/9h+StF3WelaXfK6nUzxg+leU6eOxTYu4T9Ck5IPiinA1luv78TBxtj3PCNT/N4fP60zgmn7Jm88nyka7LpPdNilAmtptxgp+Zon0QUDtGMgluO9sc7kPqY72mxx2pM8slez9Yfe07+PglSa9p7rkPKVOc9x5su2dDeY7DPpHzGJVrG/x8YGUtIW0dYhX6K88pP7Non9g67af2wOR9Ig+IeY7y/sl//V//1/mCL/iCPO95z8sTTzyRb/u2b8v3fu/35u/8nb9zUPb8/Dy/6Tf9przgBS/It3/7t+cjPuIj8uIXvzjf8z3fk8/93M/Nx37sx46nKu9973vzb/7Nv3n6/Y//+I/nbW97Wx566KE8//nPT7I7SPiSL/mSfNqnfVpe/vKX58/9uT/3fh0kXCb3XHy92F0n73nPe/Lggw/mt2UZnAxE6OQJbM0OTuzp5JySwyDlZ9Tdr8FJyzqwkVkhM+kEIdCNz+MzMNeR8BvFCFCnb7uZQKUTvDUARvAwseoOcq7De9SdAZH/OcbW5Tp5zSdgOwV7r0nL9zMil4F7BmfqUHFA4hh6777sT03uT/LJSR6+uPeuJD+cHYBr8tKTCYL1CdxVuNYMoq1XhtAJu8fcufQ6tMxkF+y7/bo9fpiXbXCdLdNpDf9bvDerV/ec95ETl6DuSS4PymtglGOh/zH4NRhku9Zn7TpBBfe123fSNNkAk/vOS0/8Hspu/p5An5uLa09e1K+/uv/iNR/96vzXpqtn+59ONA16mWQ5afZ+NrB2EmI/d1nStGaDkx6TTayt5+T7JiLE+4X2E9Uhs242v/Vrg0/pPWPIRKRl0G0aD3VzsjclA5eRRPanfE1du1cZE6kHr3E/THuk9SZsQJnGyPZ9EleCyDbiebFvox9bS0qqy71Z7lHqdFk9Eywd16TTeZL/Ocnjjz9+x304vdjx8cd/8oPy7V4PPvixt52XL//yL8/f//t/Pz/1Uz+VBx98ML/u1/26/KE/9IfyeZ/3eWP5xx57LJ/92Z998Psrb3vb2/LsZz87z3ve8w7qfO/3fm8+93M/9+D6l37pl+Zbv/Vbn37/hje8Id/4jd/49EHCN33TN+UVr3jFMxzx7eXDIkmxY/LGN8tIZsdOqOKNuhaMLktGJgdrAHZN9wg2CRK22X9bEcc6gabJqUxlecLRpClZOp61sbWc2SfOddteA6Id5wQ8fHI0BWEDq8sSRcoaeOF4zY61zWQZ1JLDAMTTKDPZU5kJDF1L8qnZgz4+xvDPsktYHMycfE+JQlCWJ1ac67XTl2kNzNYlSxumECxPwIDzcRnIm/qvDpONsJ7HlKEvPtrGdjlnT2XPsHN9L/MBtLPKmk3xNGtNX4Jurj11N/ie5mUN8ARlpkTxJLtHQLZZkirXsk8+msRssvfNbbP6rbHaU0JNfSYwbOJlGifBXPf3WrJtWUseJxtds4Vn4mcviyu+5ljmU4MpIa1Mj/sl83jcf2XaO6c5THIn2z/Lut+ZfAv39zRGz3Ht0smF9b7MV7K/idCccIPnZ7IX629y0ntzWnP2MSXYLusEZo1InN7bztue/XDX9Y05Jilz37dPUj6cZCIS70pxkHFwSvYblAyQN10DLsttcL1/BmJ2GmdZBuDziz8yjBuVXVssszh0Fm3XJwBuy06r7VBOs0uEqPc1XO83txBsrIHNoHzQnkHFxJoxELRNJ3r9z3Y7bgMhznXbbF0nIdSX1/lVkSf481c59r/HYrDCZPVcdbZJnpPdIzEPJfnqtya//+eTV16UeeSi3StokyD1RO3aprlmTDI7b6dDOfYzXbctsd3L9mKynKu+J8t7WYLRek5+LgMSFAZ0grtrOVwztssE3f6i7SZL0HaOsra/Xifg79yxnn0G+7Ku3Qu2ffaTLJ+fb5n+Ua+ufee7v49SPWqPTbCuZWfHn3zxv+31lMSJJnWg/dlntJ7Hwr3POen8d6927xGMkQSwT+Oa8Xrbnua/dsV1oo60Lc6t/bTnhjEkOdzvvX51KDclho4DtLf6wPbN/cVT2Ckhrl0X2N/I0ub8mUuCeNoB52oiJei3gnK971PJ6sN5ZjI79bOWELO+k23bov0d+z/Va/oG1vHr7lEmHhMGok5dU85554iPhk9YZMIV3hNtd4oRRznKJHd9krLGdnWTG3TSURKgus0JxE99nuA/AQF/v6XOgJu4dRhs+e0ZBTUMXgygHQeBncGgGR4nGNXNY+n9a9mB5IezAxn3ocxaUO3cdWwE+xzjNIfJoc7U0QGSYHptLSdnaebU7Jt1aZAiuJnmmwkLwZ2BExntCpPPK9klhTeTvOajk/ynb00+6lZe9Lv3P0yX7J/jd4Ji8LXBf9oXg9sEeA0ODAzdjsEcgcq0DrQT2qYB+Vri4TEkM2Cp3h4b19d6d93WQBz1Iahru2yf89B7Pn0xCLEv4Hg6btrQVmU6HpMq9CkG5GapaedTUtkTktZ78qLeUxf6P5ndh+R/PrvTQO7Ts+wfa7yMxfc+mYQAnsRCbWmT/SM+bJ+xILg2AVjuJSYO7ctJR4Ux4Tz7bwnjuDq/9OXVo19/bZKs5QosJ5vbqj3rziTCcdQxKipje+M6ej37OCpJE65NcJ9xun1zzipnw2v6sRPVqU7Tl8yYvKTQ753pOsH4dHLRehMIeyanHbQ57t/aAO2YPmy6bgKObZ5lT4rw0WEm29R1Wme2vzbmO08+tD44f7fKh4at/DKkrICzfCcaDiwWM00UtmEWhNcZQJgoTQyMgxdZJOtPkEggNbEeZskbuP3VxBvVOckyyN+XXYLSutezA84PYHwnOZzP6RrFwN56O8C3Tf6n8+W6T+CRQpDhgGfg0HbIajGp7L2n0I+TkGQJBpzIcr0NFp+4uPd3fjbJj/9nya178pN/Zf8sv1l8JkIOTr1uIEUA1iBsUGIga3av7UzrRzBu3SbgyeSRzDcf+wlek531aYrXZC3hdZJkMMq97VMxzp3n33OwyeFnmtq2E5Zt9iQHx+dkgeVpS9PJA/XhX1lus6/2pzxZ8trdl+W+bjsPZGer/z57/0EA4/25dkLadre6PoHmCcjSH0y+eJOlrdM/dO0NImmrHntyOEaPlXu07/3o01mWyRWTRiYe9sX2f33PdQ/qTDa75lOT/SmIyRcz6J5Ltsl+p0TF4n3Qvc5TAZ9+OhFqOwXktCf6PvrKkoVBuV7nHqH/mObCts2TJCYzHD8TEiZfnXvHqurEU2z6qylp7Vjod12XMZN11pI6j/0oR7lM7uhv9/qVEjr25DCJmJ6bTPYOa6v7dDyXsXgGL9anfZf9riMkyCUDxke2GIwndnsC7GR8+MH4bfaPYjhg88SGffaxr89P8prPSH7m/5f8seyZvUD/KRAb9Pg6nWnFAPZcZTvX1Zfreqo2grYYgDao57Vdc+Jun3ZSu2OAM5BcSwh5n3XOsvvMyRMXr//sx+91vpLkHWrzJMsfwKPNEAjQLmt3Ttj4WNK0n5zoeH39vkztWfYg3Ws56eNTq+6R2+23k5X300lAX08ncAQFa+MlIJnK994a0GFCaDFY6uvpUaVJp0rvFexyfslqs2z9yER4EBwa0FCvnqQ02Wzizb3odWw/1dN6cS2ZyBC0Gzj3NX1WpWWZpNGvkjzytekki7bc+aGf83rSh3EM3B8cP8fFxINCfbhn1mKj1+0ygqn1XaZt2GbsZzl+6xfVo5+kn107ha9dso2Ox3PFr0BvmeC9gb59CsfNcU5jZ7vdb7QfxvxNlrYTXOee5H9iCJIW7a9jsR+x7VKIB/jUAmMV55o+1OtwZ8s2H/iTjcsQ5YeneF/d1WLguZbRc6Ne9ugR2Vszzue6Xym7YjaObZOVmJKN5DAQtE3WNVPYtsk8u++2zcdkyKoSGD6Z5DUPJfnTycd81e5kxd+VnuxACIMggQIDF+fDjoxBqEIWiPV534FvrS6Du8FNx+9gzeDWetMaGbRMwIX6OVlI9uMug349yb/M7nGZZ2V3gpIkb8v+g/R8dKFfRVwx2LLODmjVi2tApnBiTS0TM9y5854gI8oEMjmc57Y9BVXuoerluZ0eISMYpHT89gNsi36le8mJXlS+7VBv25KZ4CnhOc8yGbXNmXCYbKKvC0IMLtsOH0Fy8kBQRH2mxKMESefVe5/z2b1UH8ZHf7xXNrrG/RuU4f+p3lSe732yw7oGs/QJtnnP/0TktDw/k0Tf4/WaTvA4PvrINds6yXIftj2KCRuuP/cg9zXb8rz2GpOktb1MP+35dexmjO4er/7nmfd87cs+cUp4Wcev7TNal7HIPtKElv0x2+f8XIYxeOLrBKW6ed6tf9vkHqwuUwzg59qm08qjHGVN7vqTlMnZ26mQxe19BsVuWAZRP+7QMg7+ZkPaNh3EZYxhsgQ+rMvxnes92RYybxMDRzaEgXV6RKh69jTmsZ9PPu+/SZ78nv0jSHWmZGWpC4PiDdzzPLfvNadGEM4kjfPZ11w7OuNNDvvwWJOZQWRffc1vXWL99rXRPa6JWU6C8Yl1fCrJ/5ZdgrJJ8h70MQULjsHrwHFn5T2BRe+zD4PAKaGrMFHuawZDs38nWX5wk3Nu4HSSy+2GSfDtEuOoHPv0/k+W+3Kay9oiAYXHPvXP0wk+wrIGJgnwnolf6tgmcFtgyQ+0ty36hupQe/a91r8v+/VsEnOaXbJCX037YptrdnUZBznZwhqRQ9s6Qzm2Qb2sM/fsdMJKQMz3lSmu8N7klwjqua49BXJMuB1fO+nm2DcBaj62NM2X1/Uq7nMeu9bTCaT9mOeH7XHfkRSj36Af8rhoYyYaPBcT4Kd4rzqmOK5XN48pWa4fMYGxBLEBdfLpLedmbT632cdcl6EOHvs2h77jKEd5pnLXJykM0nRQDE4MGnTidLJk0vvfzELr2wlWJraezrP6OgAyaXAwvZnlo1o+xiYQpROjM2Ig7lhPda/tV57M7gPz/0uS/+V79vPzhPQ1AGbQpTMzq+5AdJnzrxjsG4ScZPk7FwTqDkQGm01kycJNiWpti4/TURefUFWY0K0lv+dZJoL9YPwTuM9fIjfIM6AhsOHcr+lg/byOXDuOl4kvbX2NgTQ77CTLwZoJCQFVoK+T+MkuDQY8N9TRiZXtiXY0AQUnD5MUGHC8J9kTKtbRiZd1ZJ3eD15P/qJ9co5vqG4wDgK3iTlusnNvlus5zWXXhnvG4Cq4ttV9kw32P9wnJKkMUm0v7dN9eK+6nwmY9n7nzDZk/+vx8KTbtuTkp3NzWVLUvrnWLdO6HC9t0/bFOEk/6z6caHAc967cdxvVnfHvTPc4XvpG2swaQVk9e533rXPbpK/ka+5X7yPbN+MZ57HJPU9Xqc90cjgl6ueZbWHyzdNjXFMMM2mRzHZ/58sH44Psxw/OW+76JIXOg8Gswo3m4ETG0ycbdHLJEuSZ9T3JobNwuwxEBAUM2HRq1PlE9afg0bJ27lu1QWC4XSnTD2b/XHYsfhnQx7Nj8yl0lgUcBoXth8wrAw6dc+dvYhP5emKn7ZDZlpMV9ltdGNQMvt1m14zfac/2DZInfTievr+WQ9va4HqyW48noSdtin23/2Ac/IFMBtpeK5gzAOYanqpsxzEx/9PrCue+bZzpvet7jaek3QDSgJzr7rYJ3gzCp8TO5EavFWRQCALW1msNsDHJ7Xg5DwSOJgzWwG3bm8CZy0/JIpMd77v+TgptlN8cRCEoZwIy+WHOAffQRAzZv7Qs+/VJyFTW4Jz1p4THpBR1S5a+gfY4tWnxCQT7JhFE+2QZtkG/wTlei230AW3H8+W1pP1eNiavqWNqY4vj/WQfXH/6Y463CYDLtA3qRVu/bD+xHPucbI4n/xwP8UBjC+1yLamxmHQhscSxsm+OhzjDJIJtiuTVdHJ5lKNcJnd9kpIsH/mpeCMxGJA1qqPoZmtbDhRlzwkSWo7AyuBvClLUuXpNwJwO8SxLZ5AsdVxjc5OlA7Fz4lww+Jxl/61elf7qOoXJyVrA4NzVEXdMBkacfzNlZsgIMlrG60dH66DA8TvxY5JlHVzO4rl2wHWwaRmyy22HwKuvn0Qf5zm0V9qkQYZ1MbNWFp3AwoFwStyiMtbJLC3BSOv50UAntQYT7HdNJ84F9y7n1vPhXyN3QsA63GPcqwa11PFcr1nWTOY2e7a57bTctJeYdDrhoZ70d6fZ7/NpzyVLX8X+puSM+tOGphPY5HBuW4bXqXP9ScttVGaqkxzuEY/Dc8a57A9U2k9NBMh04sB+rRdt26QA/VDnkMnH5Ie6HvTdnPPJB7Z9rnHbWiMfvD5ROYPptVN+n5Ly9ZQY0KYI7B2DplPWye+4P8cf60Ds0HGWsDGBUnulv+eael6rM4mwqOyUxNLm+Po8e4KLj65Ndju1S79l/22/69PSO1+OJyl3gkxJ9l0n/krE5DCr57F28JrOyQEvuH+q/0FZPzZGMGjW/FzXmSBR6tzo+OiQM9SZwBsdix1jk4vq3HbbZ7+f/kaWDDpBCXWdHNMG153gdExTsKM4+TrJ/lGoOnI7XLfTcThx62sC+o6f8z4lKAYitJ1+kLDtEeT5q2iD9wQsfd9kkUGGwnEk+2+vqf1wbVl2AhSXPX7Q+5MY2LTN/pGNY3nOEfWoGNAaIK0lsgygfjyJQZn6nGafoJyqrAEC2+q+7DhoRx1/94fZ7SmZaT9t+6HsvjzBNsu2qwN9hJP6oEyFJykFNNSRc0j/xQSE/RhYtV3uMevEuaTvNDjkPDJ5nWyb+9E2y/nnvPEE3HbPz6JVF7bH/jh3JBc4dtoNASX9WfWbQHFyeEJBm7V+7Nf20P+0LwP93vecOMnm+O23TTCZNKNf5R6krlwrxy3GAe73fqkI613J8rS45dfANeP52mNVTh55CsNyfM39xFjffcDfW0sO7cM20dNK4pU+GXG7Uw7uLepVoR0ZO13N0ld/WADPo/yKyIfFScome9A6gSVuqu1w3cDAbC+FAYeOhW34ERoG28kpT07Hr6eg6OuXsbK8Nz0q0P8G5xQ6pjPdt1OaGMGK9eJ/X3fg6Nz2W8bW6lEvAgL32XtMHg02nJhUzNqeqw7LG9SxjAEVQYD7Z38WB0ADba89+ydoMAiszpw3Ax+zxRtdn5Igih8vax0D1YrBgPu3fXZ9PSf+qm6Dc7O2bZ9sax+PMYgrWJj0S+b56X3aSH8PhnNtf8B56GsCFYKf2nzH27Y9X71+A+0YZJ9nn5BzvSrbzJ/for48uWL7wThOdN1g0jY4+XkntiZIXI7+cHqs0LZ0O6EdOMFYiw2OLbZP+wWWnx7hYTkK94ATn9qMY5jjhuPVie5N/vVc7TDJt7+ZTqi2auc8h2PlY1PJISHEubYP5xisI/3MFDf4miRTsrRVkhtrft7xx3667fQ1T6WZiDtRpJ6T3j7d7721uMs9epSjPBP5sEhSkv3nJgigKNezB7aXbTI+h2oxI9ry3Ph25GaH6pBYjw6C4ILOp46i7XN8E7MzsZV2wr5X4OFgYz0M2qc265R5j4Gw9zpX05F/sp9vMsOTM5+cu+eRDp+PjLANM/6tR/vYqkzngMHKNuY2Wm+jOtSvujtJs6wBAK7V1SzXgvpSN/43QF8Lyma/ea/lpwTOzC/nggTAJkt7MRhN5rHff3GtJ1H0C07Mguu13SlhynDNIKtjMyNJcOv90zpm3zfZPd63VXs9jTMgYzJY8UlD5b4sv5Wnvsm6em2qd/8/lSUTz/Kex+pzotdTIrr2KBD3hwkbJ2YGvB2r95jbbHvWp0lX708JOcdu++Rem2zP9unX1ov3eNrjRNiPtbHeml+YSA0TXZ7HtSSa+joJoF/uHmhi61jjcfG+T/EYZ7gW1IG/X2ZCYc0OpuTU8+m+vfZMFLw/2t5kHx2nr7ktzquTkp6uGDdYN+/djoXzfLpSb4pTd54cH/e6E8Rx9a6XOk0zqfz6y2TpKJn9OxgmsxPZ6j9fT6Cyjxt583qBJqdzgv92jG27zpVjIaNWoGeWrY7zDP+T5TzY+TNY9Ag9eL/JEiwQdFbvtSRxbV4vA1/nWQIRzykdKdk26sfgSluYkoReP8nheJnQBfVZZrKTAmbbR687ESbQcZJ4GetFO/BjbRzjBMgJAnutY5uYVAMM6sQEaS0xtH1fxz3+t+4d0/WhjEEOE9MKbSJZ2oGDdvdb/5pAU0f6EZMa7a+6cz57jaTJVVxv+8nSNiY/Qb/Q9zdRZmqHYMPJGP/6SMqUPJ5nl2Rxbf1oFYV7ce2k1vd4vX6WPo1rU71uoM4aadV7tGECeI6Xr+kTWc5g3H6TY+O8216C+0wybaNn+t/2KPYNLU8CyaSQiaLpvpO36eSHJ9jst99oRR9NYfLg07D2yfrJ/pEn++GzHPplxhXuxfbrH4OcCAwmKG3T9pRLrvnUiLGZZRmbbY/UuzbOOeW8Tf6b/znnjHuOd5OtHuUol8mHzUnKBMYIlCY2bZPl1/ydZscKkr2zA/LjIeyf1+r8pmBaVpuOa2JOzGTTkZiZ8dF+x1Xdbuc4DD6nYEZH1PHxxMTOdWKgHEQZwCbWkUnVGuPXD7UG98nE9TpZbJ9yVB+eshTccCy8Pj02NwHnigMB+zQL5YBDXThO6k9QwABJwOZkqvdpk9NJz3RKcp7D/cW6U5CcgpjfT6w2deZ/s4rV8SQ72+R+ZoB24tf7tMGOrbpPzP60X5kEelzJci24rwhmyXo7Gey+I6PvpK7X2S7bm/bCSQ4/L8X91jbtqyYSZ7puUNQyk3+yL5ySXvsZs9L2iU4MDUqrFxOu0+w/y2YQb2a/5f17P1y3kywTJAL01qdvq05O9r1/rQfrcM28h2yn7pd9OsGe5p82FlzvnnOdU5W1vVm/2voUzwzq3SbjFve2Y/cUCwnq1/yjfTb9MeeEbdn2qPNEZDgBXCNep/cmJp3IsS+uddduWiv7KpJPd758MDT90JiZD6QYE911QuDDwGWhIyrgmJgTlm9bZFKjsmatJ3aWAK5Ol9+8woBxjj8vnpMtOqOtXpPxIwtjnZMlExyUncAKnSQfmZoC09T2WoJXhovBlkkNwQyd/lpyNwGJzn3X3icxTnB6j8wu9eYPX9EOvT4GSL3HADk9QlAdHQRtFwbrXEc/0rLN/kSv7fYa9XBCOvVJRo11a9sE+GauLd5b3ENcf45xq3IGV2Qpbd+cTycTtZ8JAJhZpO48qfQjVgaPa6dq26EO3/fPj68wka0uBjPUufX9qEvnhacjtvvW73g8t/SVp9n/uOOUoNMevdcq3D9Mig12uQ/atk/FpkTOPjw5tCUKgRnLRte4v2qDJiVap7/RVN3OMvdN/5Xsba5/0wnVaQ5tjgm3y0/x8zzLmMWxWc8pVna9WqdjSQ7Xl3046bCvMQlFWzRIr115b/sE+7JkgnbhxM9rHtVl3OQpL8fgNbGdt71pbIyNazG+Zfk5ssnPuG5lepKBa7SWQB7lKGty15+kNBBVpoBWcbBlICPb4HoG4AS/3ODe3BObQ13MkK3l9Tz+Z9k1JsuOxMApmfvxGBy4yP5Wr63qTeyigznZSgciMuhnKGNwN+lbuZl9QLLD9MkW57HvG8CrA9fJLGd1cNBsXxwPA8omh1912/onQ32y/0wMuBZkxqcklywq9ZqY/xOUY3D1XiAzzHEbbExJmFlvJp18TzG4mxhms/5t/0zXJsDIttznNI4JVBnIJMtxsH+2ZxaSp2rc2zy9DF4T2Djx4liYTFUPA0uvtf1M+/Xan2R5yjOdWHE/b7Lc2wQ6tOfJfqoXx9A5pM+jbU8kkh+tuSxBJWHlteWcWx+WmciVtUeyGMscv9rOtN6cM+51k2+db5/get+1Hm1l2nvWwWXsdzoOJw+cI7bHcXmeCOp5jeXXnlbgOBkL6B+4/ybCiGu6Fvt7v0SY7YNEV+97Hyb72EE/bR9O4XpP7U31OKfJ8nMsnGfvyYmEujNlmw/8Z0QmxPLhLR869vJ+Clk3MhgMVBNosWNl0DLQY1A6y/JZbutSkDtt+n5lo/tpnTKY/RpQCwGqj2TJ4Bfo8KSAAYrjZrAlIK7QqfmYfGKX+N56d1xTotBnhul4pySE46KODF782sYpcHGs1rHBl6wyWVqulVk7MtbWnUnTGcpO7VjXqDz151zWvpy4W7iWLd/n+IPrPBHZ6l6Fa9a2zSxucmh7BlZnwzW+n04Cp0S3+rbcBALbdv9bLzPL1J0gcwI7fnTGtsC2CKjZN9t00rLN4dcEe1wGIGuAouvqBKSvebox9TMxpvRNtBuSMJxz2lW/xYzgnnuFoNykDm2Mc8i5m04Je4/jtG59Td+3Hf58quj5nWyj+tAv8No2+3hjH9H7tsNeI6nBmNa2nBT0v/25QTq/Sn6yA+tpIE8hCLY9VxcmOk4YJ9/uesnh6WmyPIVycsCk1uWYXK1hDpNpvs86bIOJle2V9kGZkgTODefhdnuA+nIstO3eMwk3tXuUo9xO7vokJTlMSCaGyc6UwbTiRIVJRPtpEmHHwgBMpmkNJLUe9V5j0zo+H9cXLJ/ovsfA/sg0Vwh4JyaKTpLH0XxNncmGGiBNgaNt0Llu1cYUzNYeiZjG6WAwsX5O6rxmDFiWNQbLoKnXJnvsGrp9ljvFf4I4jm9i7afkmX0Z4E06sDwTd48j6qd9T0Ce+lMXCoEBE8g+NuE9Wn2TGZy0zNUsH3vwYxQGPxw/QeuUeLdvAu/q7FMKAiP6kCb2kS5OfpND4oBjJ1im7rTBKemhf/KjHW3nVO/ZN/dTslxDM/YTEKI/8mM1TaonH+o9wPmlvTl5pJgkmfagQfw0R67HpJX3TrKPK12L/vbE2hcTtI36ZSYjkw/3CbD9fcszGWu9ZJ8sWW9LdfJJCMu3TL8q1ye2GeoyNkT/uS9Ps/sBVJ/UtE3blPeQZW2/US+D8stAuv0z95jjRfU81z2PhwSbSQAm/fRzjg1tbzpx5hzS3mlHtK2JZD3KUSa56x/3SpaBODlMNlw2uZzRoyPl5q4ToFM0k+DNfJqlEzFwYLvJ0jlQzLhP96iHAyGDDefKoN3sJx0QGaeO3V/jS52Sw/nuB7TZhxnBOlCCxgl4t4wfk/EauV2vH+flRg5txroS9BEYmq3mmjGwM9kyo8aEkQGoZVye80CAQrBL3agXhYkZmdq+pu0zQK7NVfUnMOKpy1py2f8blZv0aj8EnJ5bzzuDM9ftslMXipPp9uXHWMxK9jER6j7ZtMc0+SgK52Wr19WnUpKF7Uwsu/VgO/RPBsK0WZbhHp/2H+2K/mI67WRy7CTPQjud7N/2seYzt/g/kQv8z7550jwlmdwjLcdE2InZZPuc365t7dFxiEmjbYTtJssfNZ3Ac8v6Cxw83smXV/fWT5Zfqc39wT0fXLe9tAzJgI7VPmrNZzGhMxnBvcCyXhevD0kJ4xQK14u+pOtJu7N9nmf5KBbjnX2q4wkTUtZ1cm3sYftKDpOhO1+OX0F8J8hEDNxVwg1GZpeB8izLTc4NOZ0+GLCTGeAz2Bv90QEYsFaPSV86BgZzAjqCTjNADqxRGxwzy1QHOha2Y2ffMdJxUzjHDIDUweyq2esJcDG5a9s8+p4A96RTy9IumEQ6kPL1lDiSLTaY8Ou2x0cHzGLSLqzzdrg+6eoEinoyaNJ+WNblu94c6wn+JkDM0x6C1hPdm06NCIwIwEw82M7cRnDfCYDHagaQ88bkre2ZmKjQD1AXA+5pzakPdedYu1d7L9mfBLF/rod9FBMFsqcEFlMiRR2475hwdJ24xpN4/Jwztuc2vAfXTqe5v7lu9VsFuDy98RxP4Lb3qvMEOHkaxnomfgh6Ofe1Od7jOjG+eD1v5jARdvvum+PiPBCk046S5X65kqUv32T/bZnUjYCW8+YTAScXG1yjzzCJcqb2LNvsfyuJ47adc/1dxmPw/WS5F+hHpzjPcfMHJxkzKY7l9I22C/rc5NBHT/GM9X1yx/hrwpV79kMjOTnKnSR3/UmKkw+DigkEkfWY2MOJTU/WARGTGurEYHCu+yd6f6q6azqT1bMYCJ3l8OSCDoXBk6+DPsx8EmBTGDQ7h2yHazSNYfpVav4GQOuuJUfsa80RT+yXEwonMWboLAZv/M/Ax6SPgIBslpOrjrliAMfrXD+2Q7DvxMPjcDAmYNjmEFCYCXafQZlkCSbYbxn+8xzuHYMaghsTAMlyfrpurOM5L6AiOUBgzoRpWiePl/bD8dLu3cZJlr8Qvc3hXHGfcg+0b9qA7Yg+yjqyXQJ6j3XSjYn9RI54jPR3Hi9tyH1Wv9afvnCiOtm/eF/0etugL+ZcdJ04J9Frz3vHaT9im2jSwCS+ddm+Y9Ga3+7/+hf2S1tpfxzL5F+c5Ex+j3Xplx3vHJMmP+n2DI5PsrQz98N96g93czz1uyR9SNjweuMmx8/HoNgm9cxQz3GNejtpqo/ivJEQYntc87bD8XOOJjLJr1vHeKrzy3ZO8H/y6x8acjxJuRNkwjR3lZxm/0E+gi+yjg043IDnw7WzLIPCucolhxNqx3+e5QcdG1wnFsZsh8EFGdCslOF/ssQNgnaEZEjWEpRk/RGJCvspS1XxN/60vNkZOr/pdIiMltkotkuQQXDMtaU9dHwcG4N9+6cj5hjO9d6PhCSH80kGkMIxeZ3MjjFQWDj2tcS8dTkGjnWyFYMY3nNCyPbbr5lsJ3udQ+4vB1GWn8BYcriHnHRxbqrj9LgCWWcD3tY1mKKPoC9gcjYRD95P3o88datUvzWgQVBK+2xd6m07OkWd6j8lSl4zJ6rcA52T6uakrf32/gTmK9bnsgT+TP/Z57QXTVhUfCpEn8wfF532NctTP5MA1Ifz6Fhk3fieANpk2LQO9sXUm/e8Vyn8WvE1uaoy9cn87/pTnOH+5QlnpeOvb3OCQjvofc9dX/NUx3GUe9IJJ3Xm3qPvdRLg08z+91zztJM25TFNMYB21znxfNBHreEd+rg14m4toT3KUdbkrk9SkqWzvzdzsOn927EJBEVk7rixuRFvDNf66/ZlGOgQ1xZkAml2onS8dtJ05nRi17P8pfu1RI7CgOigQkdIFnBKdNw2nWx1rkOeAIYZMn714wQKqoMf86j+a/o1yPBxArbZMg4AZJDMJlUHrmHHQxDpMXjtLZP9TCDBbNgE/ieQyvoElP1GKZ7M2Naqdz8s3n6vrpTzo3JTQmQ7J8hkwJ7aMNDqXjBoS5Ygz8Lr3AccY3/wz2CFr+t/aAsUJ1K+zmSVAPYsh+OnbdM/bnTde7H9dMxOcJIluOy47Asm8NL56j7eoOyUtFnW5od2wLLca8myv9YjAKXP5jonhz6XydwE6G3nbqv1OC8Ugmv6fdsChYw6dXCfJytlCbqZQPrxHo65/boP1qndm8AhYGbb1tnEHD/AT4Jqbe9Z163u8bSX4zdh0/r2+26/a92xM6aQ1HJScX24xpNcn+px/PTva/PYpJpJMfcekybvYdr4qepwXCaVjnKU28ld/7hXH2laYxe76a5lCbAqZsXJmNKZkQU2kKTTZ90zvD/TPZ+ouP0JpJ6slOU4DE4JiOvI+ViEgQnrOjhwLio3s0vKOP9TQlYnN314mEGa62MGyCdWBCucUwar6fSBzt6nBWfZP3rk9Wu/BG5mhDmO1ikoq30wIHc9p2TRQnBlOySwJDs3ASgn8Ru9Nss2MWvT8X7Hx0TYfQdluH6308n7oetwWTJHAFMwMtm0bWM6FaDO7ndtbqk3x2udyUwaePo6ATkB7GmWzD7FfTIhYxLtNZjscppvJ4kTSOEe76OdHCttm8nwVtcMeGmftnX7yUm3jpHJHB899TxRXyfdTp4M5JwYtIx9ymSnXptkOSfJoe0YaNKH1Q95bO2bhFDbsi2Y0Ntkb4MmF7xHmCxNCftavbPs4k2gd+3fZIyT0c6H5/cM95xgeSzdZ/ZP1JFryKcKmAz5KYGOi1iCPr1t9/WkG9tjjGgbnbfKdig7PXZNwor4ofNEXPGhJcfHve4EueuTlEo3l3/Jnc6dTpVB+RR16zwZVMkQ1InYqU6PEt3M8tuvDMi6wVluAk4n2bNH/IX3lpvqtAwdXQMxQZaTm86TgTtZWDosfqNM21lLBFun4sTIAdNOmj8QN5VnoCf7SOHpAOXhJM9L8vYk78whEOX6T+348THe43yc696kmx+lat993pjMtdfYetBezQCeqHzn9WqWz/1zrFNwbjs+GSEbfaJ7nIvqMoFb6sikjInTJsv5cj8c64nKcwzdSxOAnpIT6pjhnpNH+pO2y76m5MXjdDna30SAuL3W4V5xgsF+bGdkdidhgjolLk42JpJh8gH2McnycZqg3nSK1HoG9bYbJkAsQxB2ksPP3Fnosy4jV9oeAfvEZttfd55KqJBYmsg6vjZBxNeTbTle2W9Xqk91YVLmPpl8ng7luRdtq7TTNb/RPs9UxgSJ/cDtyKLe77eaMX6SEKzujP+2GZ9AMgFIlvZG3OI5bf/2z06Ap73Wfqev9J7IKepPP0D/M/meoxxlTe76JGUNmNhxkUHh64mNsUOb+kr2rLu/htHOnWCDQKLS78E3yKveZTjYVlbeGwhVDALspMgitnzFLG5yGBQnBpjAr+3416id3LA/zpsBrYE6hYwqAwbZ95a5kl0C+ElJXpnkB7JLUjgefhix4jmfkgCX9boSINAetsNrBuv24ySDzBiD1anqOFEyM2jQMwEFA7c1oH0ZwKDeTkQM/L3PPUYnQgZ1BCOcF4IjlqGenbvz7D9Q6ySofVxmj7RB+hoCpCm5tq/i+vneZrjG/yRu2FYwD052+LkC2ort/TKCYQ3wOIHLcM+P43B+PHbvCa/F5PPWki7Ol5OsttFrtO+2aT8/6VOZfFmBPBnrtkGwPyWD02NCLOOEzz6h9X2qSN/qZLSvp7W0fyB4Zvm260R2IoH42nNHYqFraPJhjezi3BrgM052rCQvK0xQuG7sM7rvhLF1+n8iI223HEfneDp1YfnJPqiH/VHtyuti3e982eb4i/MffLnrk5Q1pilZOmKzKgTsaw7B4NxMXTepAxfBSOvT4RmITCC2CVDbbv0p6HIsBncGy5wfslUEuFPQNstp3RmQHbwZMCcnxrY53gk4+DEE9lOZHqtwglZA0ROqf5vkviQ/muXcTadmE/iwTAkp2yp7amFgcQBoO/zWM4MnX+M88htrksOg11MxzqWfoaacoXwBPAHGpDvX5lTXbP/cQx4jAWH0mkF/SuDZB+u6fwMrAxGLEwDqdq77T138d9JcsT23Lk97OR9Ree7PlmFSRjY3et2xuH+C+vqi6XSTbZxlaXdOmCZW2UB6kpbv72tMoHta1/bN/Uk/1bEkS3/XNidSoHrTn7ZfxxL7IfZr5rtA1wmovwaf4zYxNI2Lj8yt7Q8mRow/9g1T3a6HY5GJsSlG+YmE6tB15vy2bZNPJBumE2fq2z3lvq2XE7T2V9umXXgMxA32z/aB/Ws9kybWz8SDx+fTmHPUse/gCf656rL+2rqvJWxHOcplctcnKWZYvZGnYOcgYFDrYJMcbv467TWwzqDpZ5yjenUIBg8T8+i6yWHw6BgmVp+Bp86HLJF/4Zpj6nU7xIodLusxSWS7ZWo532tsnl874NuBMmBPjrVO+iS7JOUd2Z/03NT4DJ7WGMmKE5wJhAX3OHYmUQ5yGcZrEN3HtQjYaqt8ZCyqO9mm12w6JWiZPiLG4Orkxo/iMPAbRBhEOfnpvpmYST6O4ccoLmP7CEa4l6kHk+7tUJagqHq3XnUmuGZQ59zZpgyob5fcVOh/6G9oO9O+Wpsns+seL4VjM+mT7JI1kkO0ewNOJsCdN36VMMc5kUwVMuW8ZqDvRNE6si5Pwdb8hkEu67c9EjQ+QaJPn/a+fTt1P8ly702gln5pYsg5PybZ2r7jbZMAkh2Uy/wggTETb68Txzi167nZ4LqT8+RwTnttwgOMIdTL6zuNmwmD/SLtgf1ZT/shCmOT18UxbPI105MlFe7DiVi4jGC4c+T4mZQ7QT40bOWXIRv9pxBYexOusdgEWRPwJNCZ2ILJyTOwsE0Hs43er7GCBiiTAydLRSBVULHR/U0Okyk75nNd67yaRaMYpLJeQSS/ynIKoARSE9u3wXsCSs9F19UnPQz4J9kFVQYfgvqJbSPoYLLKBKpJAwNf2zYbxkdFep1j2ahuZY3F4pgZeNbY11Nc8xyzXoNksrRdJxLt3/ZN25yIhGlP8zNnZmJpm/2Q6MTYer6rz8SWJvPYDFSpM39gkWMnEdHyZCzpJ1rX4Nb2S/3p70hAePxOupL9NwDaRtcICQIkJy1rQv9T4d5iu309AfO+ZoLq08cpOaLYD9vXsBxPskxM2N/7pGWLNuhTkuW46cN5jWLSZ1qTzhFZ+9rRZeOcdOIePMlsN9bX60vf0jHS5ifiYIq9HRP9MYmtCmOFkz/bqv1gr3G/OZFtH95rFH6bZoWEiYE8Y4bnhn6Z//vnfWqfQKGNGRPZp/DzNmvJX9/TdjyfRznK7eSuP0lpxj8BM4Kp6VjWzulErydWtEGzoN6MZPs2s0oAaKaGbLT7pn5kUv0NOWw/aM8M8nSaYWlf96pttsGxsoxZNMr0OAWDCB8x4Pgnvan/FCh6z6wWmafO9XW1w3nu2FrebJGD2DbLtfJa1pHbZqgPmXKDEidEXOfqyg++U//JDpyYU6YE0zZVPXlawD75aAllYlXddwP69CjF9EgJx2Ums3X86JETX64b9yKZU5at0DYm4LTBX9uZ9pLJCq6JTxYnoDkl+n5EiGCHJ7dmb6c+JsDPshMhQT2YnK6Bms6/QS9ttPVNNBBk8RTSbU/JK9s24KcvcEJRH9L7jBcs07Y9ltoMfQD1nU4z7cPat33sRBhMsa6vOfftf03W9ibrsU+eaJ7rXvfGRFpwj/IUs+O8NpTjuvvElvujfXHufJ/xgOXcj+e+a8yY5rad+NBXELewrY7jZKjvpCFZ9u/4xf3YuWw7nGsnlZQpYbvMtx/lKJS7PkmhY6uYoegm6wY1o1nHQFAygWX2yb56nG3G2c7AwS4qO7FHDV6bLOszeJth4bg9P5MOdiwE1pwbtsHASSdFZ2cgbGEgNONLXZwAtgyDO9tz0OnYNipP0EfdOc5Nlp+D8bqZbeR6eX62WSYP1mtiFakLH23Zoo7nz2vTfvsBaNZjkGIydrLy3/PKZGEK7BmuJ8svUAjaNyiarrW819OgoPW5D/14xA3cm04dOsbg+gQApzlZA3hc8ylZI1CpfZrVrS605dYl8PdnNpJD22g9+wUCwL7vmJzcub3pxLF9d025Lwi6DH5t41zTCdRWV/ZLgGk9+56+YEoGqaPJJPp+9+d+KvaLU4LDx2qm5HHNv7aN69mRTfZrPn1nwj/tV8sEhquv12aje04InDByvk1KPJllUkLyhnZLksfx2gka1477ezr54hpOvnCLa/RPEzFVfSpuq304+ffeobCPKUZTL7bBZMTr5xjJ/TvZzEQ83JlyfNzrTpAJG95VMgFYbxIHtjols2GsyyDnBMRMLR1uHZUnvh8qXmNJJ0Bjx7228et4/egEmUQDefcxgcomcwYCU5JDx9zg4fHVYZ9mD5jPcL1tWkcGCurNNaLDfaZAt7obnFd6bL/G8Jl59SMdE1AzCDGbzkQ6aIOAgkHZoI5j3WQ3z/1a0KjuBEA813y0woAqWSbXnAOP3aCxwfRE96nTNkvbmJJutlm9pgSlNuJgzTFxrZ0AEuxWvP6+3nvtx0wq7YG+ZbJftjPNSYV7z2DU7bJvJh0nuObyHZP3LW3e80IwTwBIQMXHc64M4zLR0j7bZk9DTW54babEivpb57OVcr3GOeNcEMBOhA8fTfPr5HC9J71JSk2JSu25uph88ymL/ZL31TQXPEldi8W+NsWFCr8UpGMwSdBynheuNUlJiok99kHb4X6c9JjaZln7oepnQvFc90/0t3aCQb/L5IJxjMRSsjwVbBk+Gkhf7xg8YY8pJq/F2aMcZU0+LE5SkqWDmo647cjpRK+pbF87uNNhmP2zA/KHwSsMVGTs1hhB1uGYOE4zRz52d6JChzOxNwRmTky2OQzUHiODsB2jZRoX2cq+36pO9TDj2oDJ9T7BNfZpMG4gMgUls7kdI9lzBisy4hWCGdbj+hAklA2f7GQNxLfueQ7th3o6qWB9BismFWa1J4aQ/fK0hfPlPeZ1bjsGamRjvd4VA/f+N9Dy2Ew4sB5PFqgLy/O0quNfezwrWe65CXQwseE6V7y2T2X5LW2eJ5+4eJ6m6/SrnD8z/NwjFe/j4DXHRVuZbJbCevQvbMtz5j5rb+e6FtXhviABxTgy/WYK7Z3tcy7Ps9xvbqNiewj+b7I/XaBNM3mZ1p1+n/6A9Woz1a0nMlO7QblzzUnvmYAwiUD/dz37HzekXUwJIOOzk7H21T1hcoSx1Amt5yg53As86ZwSffZlqT707d53a3VNZk0/gWA9qH/byMq9ZOn/SI613ZbpGHjfBMedKceTlDtB1mz8rhEyhWUEzFBMoJTXzAKxrBMbX6czZxmzEWYmCJwZmA0Q6JDpIO0E6vAI6Axs2t8p/gxe6aydGBDEdZ4JWlmOZS4TOrvO3fToSv86DvbTdib2t8ITia6XgXT7bLleJ5AkCLGT53gm1tr3umYcq4HINvuAP53uRWV7nwkIhUmTA7SBBNfaejtZtQ2wXbJzBBlXNVYCIurQtr22N/S+7U3kAkFVbay6VMdrWY6BiRpZYwME2iMf+WBycD3LvT0lljyFONV9i09J2Z7tcUpKuwZT0uag0XtMujmGCm3ZII1tTgkI/SxtcWK+Ky1zPYdr7n7cn9lzkzAub/C3yeGHoQ0ADaa5DhMR4vbZ3tXMcpbdV6e3PhOw/ne71tUnOlOy32SMIJXtcp84Xk6xhDpaj5PsfzusvmqKeVOMqzB2rPl3jpO+qeWYdG0y2wV/XNmkVmUiAupv6PMYb9Zsn7iCPtGnTaxTH8Sx1wd6Hij3Zmm/JPoYO9hey/ILTo5ylMvkrk9STrJz4Nwsk5NMDpl5OkWDOQrBHjc1/0+PtzABYVkHgupgUDUBtmTp9OmgrZedEtkWB2kCtsk5Ojkj+CRDPgEkMzAGIMny2XcmDwY3BQtkhgn0znO50fNeHakDGP+f5NCOpraSZVBzm5Styk3sk5Ogja5x7XxET3aXffr0oP87DgPpjmkae3TNyXCy3FNk47j3PC6DmbX+OIbaVHUnMPKYudcJPPtoH5NQ3mcyy71qNph6UZxQrgF96rXGgNoXEayYIKhdbFGuydzEulLXrldfWz9eN1g0cJmIIurl8dCHT0la9UiWCeFlQh85JbMcj9fQQJL+p9cJYun3WobfoDbtAdow23S8sF+2nVvo1xmPuo4+hV/b1+2v7zmXazZvvWhTbL/xZG2t14hEJhdT8utkitddhqQRdetrxl0TFGzHyZtJw8knWSeOr+1Qz8sSXCfL7ceJjP1br9cWJxzCNaderDthl6McZU3u+se96HgdZLlR+kFdBie2wQ1Gp8ENd6763cx+fIWOro6XDJ1ZTzoQfvsQj1ufytKRT8mJx/xMAKOP7JMlOCfTXD04L56rKdBFZQzm6PwNhi4DrTxeJ7iMXnP+3R6P61tnLWF1/ZZ3csxxENh6bghEyW5zPNF7g8MK2dxp7pl4GjwabHHdHZQo1d2Ai4F3AtkVB2CDDAOk7pMpiXJyypM57oO2s7ZePfUok0s9yejS7mr31aM6bvWftjU9XkK5kUM/wr1IVjO4lxwCShMJlwFaJ/v1L3xMxkkz2+T1jsFE0do+4v/WNZD22jt5tG+18ETVCSgBqK8xEWwdkzxsi0KgSBsgUDTb7zHRxmmXfRTUY2X9aX/wcSXry0Sfjw7aB/CkMLrfftdOFyo8fZlICcaYKc5xDiffzXFz/5zn8JFs151i44QPJlsxRmh7ky3XZ9BvVtg/x9817yNx7YtrYfKOSfSab/da8h5/ooDCOPChJcfHve4EueuTlAodkQFZsgzsDAgTY8fNy8DHMnQ8E+hcY3bMZtDJMrBPSYuPv9kvT24YZJhUEYg54DFYVrc6dLZxLftvuzKYqfDbzjjWtTmgbkws6FDXksvLhGvU8k4WLktIDVJZbwJxDHi0BfadLOeu97hmp6p3msNgs2Zr/e91mRLIZ138vSvJE2g3Ggfr95ofU5sYSOqbLOeOrw1gg/ITgzwlxh3PJsm7cyidi+4RzxeF625Wu9d7bQJvFAZutsdvjKOOBFETI8oEhPW5bhMJQpa4/sMgbI2ZJQDkfPNxkQlgeX/xOk9hmfB1jWgf09ipr/eMfZgTxbZhkug8ux9x5WN/yeHeWSNhuKe59510VDqvU9LJcU4kUu+T3HAbjB1ROZNBBKDTEwZT+0647SOSQx/eayYlHLO7V/rXvro+nGvHwqjORGB4j21U1r7IfTFBYfydsMNWdad97R8i5f5mvKGvvQxbOOHi3qfuJhgoXAv+7z3GgE325M4aQXCUo0xy1ycpZIkmZ22nea56fU2W1uxLhc6Y/VvMBjuo8l77mEDezSwDVR2nWfA1hsviMTN4N7Fg2UodWhMoJkucu84bAeEaw2t2ewI4rXOa/dfveszVf2LgPXbqsBZUCMimhKPX/P31ZcOSZTAyECMwbLsOmA6QlQk4TfY3scm2iYlZ638HbAOF4DUTkMt0bx3PMxOH9t9ntXmaYOBwWRC0rhPL7Ne2NwI1Awuul4M1QQtBrU8QnAyXkaY9TkmpH5GqcK5abmJNN1l+LTH30rRnCVydHK6BIoJvJjLeg+yLic7kXzlvBLDWt2Vpl2eoRx9Oxruv+UisiQzPI/9b36nM5L+S5aOZJACCsrZZ7hmSJR1z18f6MVmd9K8Nk3yZTkrYL/3kFDvtj7oOU+Jfoe1wDfy5scpav0x66Z+r75ofYVtcN65ddZyIpY6Ja0Kd6Sv63v6cdszfvpowDXXiGnOvdn9N/q/6ck3p+3u/4vFusvzZgQ8N2eYDf7JxTN8sd32SQrDFwGngb4fNwNX/BEFmeLgp6/AIVCfGl2UZUJNlwCaz5CSCLLnZJwccjs1HynQ8dWoEImRU6NTqGKdAzfGaGXVAYIAyI9py01H9lMBZl7WEx7o6IBvMRe2w7yZx5yo3MYXui2tg9tYgxEzsia51vAWaFCbDDsAE27Wld1/8rblNz3v1rm6c2wIt6mWQ3CDpX2Q2iGXQ51gMSgzWfj6HAdL1uOZbXTfI8Otp3N0bHQM/W9U6BsNcU+9fv/feS5aMZa97vxsUeUxrIJvMPPt0Wf8oJgkPrz/np+Xtu+yPonu+vpb4t5z7rM4WA2HOKf322VDee9m+ak3XoB+SQ7aviShjshXcp7+YyDDaoHXrf+8dJlQGsNar7xknTSCZMGF5+0DGA88L35PosJBw8IlQcpjI974TwAyvK7Z5Jto+6WM/awRT2/Acujz9Y8fk3zSaxjHZQFDGPtZ62Y4ZD1jvsn6OchTKXZ+k1LmSzak4kBCEdzP28aXWpQNjG1MS0XJkvwyWz7P/6sY6Gp8EsJ/qF+nc6wYjZVZPcZ+AoTpT75OVMmZHeNrQOn1MhXo10DrR4JxNjJIdGx0k15MJAIPKRnXMXLOegTCZOethsNJglxzOHcUB0U7f/bQOf616OgWbANd0kuFkeGKZzSCTlfZYaRfTOAg2OM9MBAyGp0dGyEh6fD6lMAin3dgHuC8DYds1T2GnRLrjMFlhW7sdqLaOtdfurepDooD7nglK9zPbqbB/nu4R1JGQoEx7goCJQHKyGbbP/ehyFScDbMM/gOoy3JucB/sIJ6cnObTTljtRPcoaIOb9aa/a//hzR2zHJ3Fs+7LEdvLnjlnJfg5YniQE9Z7GxPbWEm72Y3GCzXhDPR0X2OZaosp9PJ02JPO+XtOv/+lTW8Zjd8ycYvaUCJDsaBmundeQ69f+vdb0b7bhliEGoP7si2OZfA3nxonsnS3Hz6TcCbKWrN91YgdqRqyvK2YlLmM1LEwmbsf+JYfHxAb5DfoTGzEBJgZgOiEG5zr9lrkMhBRkGOS13TU2tf3YwdOpGZgR1Nkhs+9kZj63WepzPfvxEdRQV87BBn8cA/W2PTjRMnvG+eU6dlxM/Lj2XMczlPW6d32o27QO1M1ALVnuAwc0J2bRe4MlMnktawDvpMMgt+XO1UZUl/NHQMV5d8KdHOqbLOee7Rf4M8iu+YTqOfkc+wH3y31hQqR2wM90MUGorhw/25mA8Zpe59ntkym58jjpD2oHXfsJ3FT3Jt+TPVXMoDthYHsd371DXe/jbWZ7ps3cwJg4vwbk1M9zzv743vr3v3+Ty0l25/REdd325GNINEwseoUnCPXHtEXORwmEtmPyptdPUNfjr570/dOYrubQj0xkIPefySLvDe67Teb1pT73Jnk26tA/TSd/BuUTXqAe9GFNYJw80d74hMKJrk02RHG7a+uyJrULr0XXYA0zfGgkKEe5U+TDIknhRiOj4SP6ytqGdRknGhNgmB6JaVtktemkqWfL1Dl180+gl2M0c+cPPpqNsl4MBgatZk4ZEOpUqy+dJ8dnYN014LcmWcdK2/Hvg/A1AYeD44nKblGOQfhM7dH5TwkWxTrRPjruKWBflihXxzVG3Gxv26BtdZ3IirYfzn1wn/OwzfIZedpp8NqPN9hGDWKi99Wb305TYTLHUyaCabKv7GsC0Mly7an3GpBtnwZvHmP18dpM42+b3G9MsjgvBiate549mLNw/9svMeGdCAH24/FQb4MqrovZ2nuzTGRZxkSPyQcCoeRw7u1DCNA99xwz/VTtlgl9dK86tz0ndpxX2qAZ7+r7VJan3yeqz4SMc9U9sbbPOJ9rQtIqem1SpDqbTKLQVvme9sE4cy3LfnxK2jWYWH/6R+7F+iInUvRLte324bmiPv9pkk9L8hDKTqcDTi7tR2m/3B/07Y6xbbft3JT+jvlMWoLX9F+O6fYn9FUcK2MZ7W+jeuyHxMRlyc9RjkK56x/3soO082AQXQvQPlo3A2N2w/Ur3Ny85mTALHPbZd2+noLK5MQ7ButpgDuBDzq5iY3keAyy6fyC/61rp2x2r3NjVoZzQTbpNMv55JqeDe0wsDHYMDCcqA7H2PIO/h3LzeyAdnLI7DnRnZKqKQlgUjUxl0x+qRfH7iSZj0B0TAbengPb8mUAiPX4vvU6F2dZfjvPk1nOV+VM9f3IhE9wmCjT7gx+bTu+RjsjMJwY0talTOxohv44TgKsaY5t031MiMDavsH7fhovfUxyaOe8733ANeM1zq2BNX0DfQvHxDbPsj9N7ZreyOHXtNMnRG2Y5OE8RH3SjjLUsw1yDP5SkU12tl3peGwX9Ee+3/4KVCeQ3TWfTli958+z9JETkFyLEx0v7xGQO55Vv5YnyJ0eI5v8vz93R/LEsZbrTxLK+7bzNa3zNsl7svPpPAW0fdM+p4Q+usdELsO4OCbGqytqm3GO8fZMZahnr51m/zip54TrOfnKCeskh8SRT4TvfDk+7nUnyF2fpEwsrhmyXuN9Oo06kWt474BNxzA5ZDo/B8w1lnYCg3bOBKxbvbeeU5BmG31t/RjkOGZ+EI/gt+0T6FMvJy7tg9fofCewTd2nBIFBlsE4que6Hv8U5NgP9W4wJavMBIr6sx+uE5MHP6ZDMOh58OkK553joO62QSeQa22xjepnEBDcW2NhaQcEWGRNpz0RlGNANRig3mvJM9/3Nd87GeJrjnVaTyfwHGt0fc1OnFRMIJrJan3VZSDT9mUAwf+9b6aWJ9Jsey2RIljm3DmJdJ3JV9Dmo+uTDy54PdV/joV9T76KczYlDgWl13SNgIz/J/BKe1xLJtpH9Vnbq2vtMCmbxkl7mnxmMhNXayQB7d3xqDHlTOXYp4kix9zqSqKFujZxPdc1tt02mNxRj871JsmPSg9+q+S0t6dE3GTSDdxjgu61pR/z9WnP0Uf6s6K2Y7Y59esy01gnDFSbot48UTrKUW4nd32SMoFQOtsT/fd1HoEbiNspOpj6OJwOqs6rzoOJB0EuAx5PQjg+OpxpzNF1ngrRIRZE0Nn4x8A4pgmMBv/ZDoM1H7lx3ZYzMCYgdT2yonX6BEXRa64bxYzdlJi0XMfJttg3+5wST7Z9lvU5W0tmDZKd8PGREdu1A9AECqZ+J3DB4G6AxDmf2vNeIfNL8BqVZ59tby1B4Z4803UnvtezLkwQueZTcrgGyCdbWpPa0X3ZMbcVJwv0P0wAp778FaXcG7YfA3r7C/vAKalxmxnKUpx09hrbpR8hKWN9PMaNynIfMqmjLzRoJYlQX9EvPQna7Li5Dp5rrhfb53zT9/WeEw36vY7TYj/SNjpP9Ol9XK19uZ322fInWc7fBFw3Wc7FZBdtl7Guc8n1pH+oTj2xNhHTBIXv2Y99i4kFEyFPZbfe9FNcb45lijHWr2tMn0y84CS510wOmryiDff92lpyvO2nda0X46xj8ZSMOLlnHFw7eb6z5HiScieI981dLXQAZu8m8J8sHQIDWrLceKdZBi8zDWZ17RRvdyRbOcv+K1rNHK4x0VG53jdg8KMNyRysXSa67tcMamb9DEQncFUHyDpmtTlXdNAF7F0fAxiDoIrtYipHW6CjX2N6WY8/1kdAQGAyBfWpz2SZmDiZsY1uUZbAa40NDO4xIFcX2271dOD0vE2MGm2EbZ1lHiMDa9+7vTXWjnthAlkEa7UvJ31rfU6ntF0PkwjV0SDgPMtHgtoW/cVESJiJ9b7mmKhX61pf9jURNmZgfXJAIMVxtAz9MsdIYN6+rudwvtkP/a8JAa8d9ZlIF9sCQXP7uo4+ovqdbwO9DOUDvbkv6Oe5bxkf6GcmYEwb51x7jiZCqWNh/fZpcGsSYKty9v3uo9eps9f2PPvPrnAc13K43zhGJjfVlzHQJzC0x8bcZL/eLcO5ZwLL5NS4Y7IXEoEV7lEnINSx6+L9ynjIWOP1996c/HmF9kZ79v5lWzdQhvjkKEd5JvJhlaRYCLy44boR6STMnve12SQ6WCcIa4nQ+XDN4M9sBJMssmlrYI26E7i6zcnR07mzT47pNEtdOCaysh0Xx5nMTm5tDBUHvUofh2Bi40RmYv2qj53/JA2+myyfi6/YCVcHBkkGID+SQjatf1w3BungWtsgUOu9Cdz3dYMkH5/Y5DCAUW8G6AIS3j9TOdtW9XSy0g/wc914jckKx0LbMrilHu7PwJBj7T0yz65HABfdn3wB/8ikGnRd1fWondr4WlL3TAAB15Ltca94PxFsGIg2+SZwpZD8IHnQewZzJoVcZhIz7dSF60Qfaz0MxHqttsUPeXvfc57W/IdJI+rV9qmL9yD7PtP1U9xzMlY50701PasP+3ZCwjGtAeKp/yk5dXtObH06NRFctDEmDl4Xxvn+eb9VfCLOL22xjVLfKWGYZA2IdSwTWeD55V4k2cF+HXf9VANPUelrW3eaGyeBHg/nzgnxUY5yO7nrH/eqmEWhQ5sCaR0oHSMdzASk2ZYZaT/+EbQ7sc6V8ywds8dkIObXl10zYG/g6AdPOx4+5sHHAawLkzb2a90MLnm0TDbUzIuBgx9Tcd+9f7Jyn9e41vyGnoklJtjdZPcYgIMnAda0fg4enY9kHyg5D77P99TPbDATAgY6ng5wDlyP/ZCxs95tmwDQAdA6ty+zuGRso+veV9XV+hIAMblhot2xkIHk11rz0b0pqHrP0q7NjDKh4Zoa6PHH+1je+puR3ah8xWtKfZ0oe2z2i9fRDsE515jkScfdMgVWTl5ZjoDIj8xwLfhB9AnwVpe2ZfaaNkPdtzmcW7LtJqj42mvL8mw/WX6WoX15fjlm+0D2YeKI36BEUMgxGDSfqq32fQPl6UOm/VDd6c8JdJvsmhCkLbJuVLbj2A6vO64pDrENj5GPWds39vW53nesjOmXETkT0ely7Z975ET1TDBSvF+JWeg7POaJAGF9+7WsjIf7lfiA8/5MEuI7S46Pe90JctcntHSCBFMMsgY5a8+mT+wyN2qdIR16y6wlOcnypIH6kKEwi36SOci3HTJqBsSTY02Wetsxtb4DyMQeJ+sMWlnxAkO2yUTSc2bgSeF4qQeDt8HdBFoYeMxQU1cC/zpkMnYGd9XhKsYzPZbRcpxTs0687zlaCzzUiUl3y06gqFLgsAYA2YavE9xNjzNU2H9Q7tlJnpPdc+A3s5+f+7L88LCTfAI2M9UeBxMi79nq5f3Juk5iOe5kuX6u37FTpzLoBCzetxXbBk+Put49jTEbbxC1yaE/cIJ8mvm3iegX+577mvdqB7Y3Jm1cxwnIVbf6Rvp3J0+32+tR+f43u07pD2la98nHnw2vqWuyPDVhe5dJ+6Jt+mSB42RyQd9/rv9tK1mOcZN1vXzdpMZ02mebnIBw142EGT8E333uEwavl9+3n22WjyL1/3Z4z7H6GpOl6s5y1YmnHEysW286vTNJ4kTBY2LCx/lhv4w925XXvGY/kxzG1KAf2lbHyd//4aN5RznK7eSuT1IYMBlw61jWEofgno9sLXTgk2M4QRm2YaDK9xv9nwAYXxNIOqhfxlyyrgHQpA8dLcXsrVksArWJiZtYcjo/ixNJM9NmrdiPWTqWNSiqsycg6WeCpkSXY3XiZFb4dowSAaoDJfWd2F0CGIrtamIYqfdkf3zf/ieGj2vuR5fMdjKQN6C9O8nj2T9C1Ee+bqKNiplOJ/K275ZtvwTETtxaf41Brv4E4GYhyYZOa09AfS37x4k8pu6f9kXfZIBK22EiRoLgdqdc7Y8+h7az5sMMap0w2O4IDJ1McU87YWfblCnxMmM+JeYE6D4Z7H+fZtD27D/avvvkSUB92b3Z7RMSLG6n69g2LvMhBJKtP9kk79HPM4mwbXCvBHW8ZwKdJxLFbfI/dTM4v8zvmkxrefoqjiEoT4KsbVFfJ9lTkmcfV5mS886L54Q60BczESNBNvkb+sCp/dutQ19Ptth77ZO+1nume4m460MDeG6zP035QP3dDhV8+MmHhq38MoTMkQOc/5J1pucM9xm8fKwZXCdjZqBOIESWl8HbLCYBAY/tp+Sk7wmKJrBv3dgOdWGAL3gxmHAC1bFG9+qYuTZ+LKJt1hFad/7IX8fJNWIgr85cy4nBuizRCsp0PTinBbFrrB3nsuUrTGDbth8RK3AvQD/Dn8Edg0Tb5BrSxg1KqlsDHwMr2cDabfeCgzvbq2x1ncDoZvZr1XkkgGtycprd2pOF5InhVveqt9eM4ON6Dsfa9XDS4mBtfzCtP9nsqFzX5L4s91TXu2vn5N1jJhAI7hs8nev+GrDm+GhDEwA3gN/q2mRDyXKuuQcnPxaUsR1XDK7M7NIncG3pD6hLdXOy6P1BXZg0si32ybY8TsYj+mSuZfU1IE2W68t5dzxKlu1PMWTy16xHAtDxgXPvxIBj537lXG7QDv3/6VBvAuDVhfGVPrBr47hKgqHl6KcMxCtOdEnCTHvEdVu/ZE7rM55Oyd6Z7rcP+iPuYes5zZ8fG6uOTsw8py3PJwtKOnlPHeUoz1Tu+s+kOOhU1lhRBzoG2Y3q1UkQXPQ/v+5zCsYEemSvp1Mb3qfToXNn/2RV6KzMiPhDrmYdG+gIsHtUO4GaCWBM89kAdDtn1TJ0+l7PBqLr2f8IIPuqdL64FhNL1rrU0fbjQEaGy+Xad/ubkrFkGfymZKf9XcE1Al2z81NC1v5tI71vUGcGjkDMyfkEFDjnZABv5lCeneU3JT2Y5FOSPCvJv03yYxdjP7+4dyO7k5Zpv5xm/iICJxzen0zOz3HPSaZBFoGoE+bO4QRMOGf90c8+SkTbZKLdugTqXmvvQfdd+zJgnU5O+ZpzZjb/dqe1rD8lOx4P53WyaxMIZJRN9rSe9wAB4LS+1cWnQ1yXCdT3te3Ec1VdrmS3/lwXjoNj7B69bE3bv/WbEkbaPoG7ky/2Me2L0yzXhN+K6YSrbXlvOomcSCLHOY4nQ3kmcrxG33ctcx/UyXaVHCYSyfLk0YQj95tjP99bfxI7ToYpXG/7btqxx0Z/1fV1wujX0euJvHG7LbdGiNx5QgT1gezzKJS7PklJlsyXwZWZlArBDxlLOtLgtYM8WacGZYN4OinrwGSErJgdG4P2GiPK4NL3DHS8XodNXSfQ0A/XT0kJ601z66DLDwuzjBm86BoBZn99l4FhDYAly/WnTgb+nAezlEFZ1jnPcs2meaJOBqxmUKsf58nlydpNCVrbYMLNQDIFdjOgvOegTSac8zEBCLP5vd7yn5Dk87NLULZJXprkh5P83SRPZPnoAAF8x0bbpp6cJ7K0naMt2kyWc+x5cKLj5Ju6OVmd2muifZrDeTOL3X6c/E6/tJ4s14l9JkvQQ7u1nUz24X1l3ScSgqBljSjqmrWtaZ55j+16jJMPIhPMZK1203HxFLrtMAZQ92l/G9T5BMK+x0kT7YX26T65btF9A8m1ZHmaSwPVyQb4vvZL3bkvLku+6BeqJ/Xl2L2HPK+b7PeC90H7IwHVvj3GDep77itOMNbIqonsceKSzCdWjg9cj2kvT0mh9acfYV+T7/Z4KJ1D2gzXzTZOGzjKUZ6JTPvurhJu9Ikx4F+y20A38TrD6zUxq9J+CMbMbtRZ3LvSFwEk2cqN3vc+neQG98lMWQg0CxYNsE/1mj+S1WDAo1+zYSzXPpmEVW+DRzJyduh2fGcXet3A/bZFNspBrvpOzrhzSsfbD28aRNDWGOB5JE+5mqUz5+MHBGoM5lMAbJ+T46ct8JEPBymDGbNp/c9ybc+JFEGuGbuKWdKnstt392eXoDyV5P/yUPKi1+5ePy/JZ160+UT2p4BcV/9+ApnJzuUaWM9Qz9d5j/NKuzQbPCXKBBEnuncd9bh/CdTdnu16g2scL/de6/OEhrZo9nRiU7sn2h5P6Wgz9F9MfGgDtI2uqRNjygT6nHC6Hyc8nN/q17b6DUgtN5Etky/3Yy22F5Nc7ZMEh23I+rcd6s9+JnB5kv2XHnhNJgDOsXD8EzNe4difymFywwSess3ez3MtqKv9bNtZO7nzuOi/nRS07mQz3SfECxw719jECJOzye/Q/p3c01b7GcizLONZ/7t9x1z26TjrpxSqj/eSY8A0T5ONOya1/7seeB7lV0w+LGyFm3B6hIWb6jTLZygZ8Amy6Ti32QNjO6NucIIGA8LWd9B0wCMD7MdOzIj4NcWA3Y6MCUmFSQmFdRkQ7FANjDf469h8HG0det1BnPfMKPpEyMzpBMRbj+1XP7OcfO2xMSgTIPc6k0Hr3D6dTDAxy1DPwHtiRTuOs8zjtg4+bXTfTEo4B8F7JmtrSfaV7E5P7k/yqUnyc29PvulWPuXWvfl3ST5eY2wb3Asc0wTWJiKBwLRl1uyia9XHsghyOhbbFe2Dujqx7AfmW2+b/eN9nPN+Ve3EnrMufY0f1THYNJi0bRIQci0p0/p2/5vwod/wOt1Qee4jA3OvS8u3H/oZCueoe5P2S1DectXbScc0HwSSFSaE3G+NNyY+uEbT4z7scwJ+BJgsz2SS4NW+ZTpdYMxxIl5ZI+roK9k+AfMW5ahH5WzltRM0l+GedLI+JbxO+Gv/V3WdnyGhHdCuHNdMJlIam+lTK9VhIsOqE/9aln7Hp0LWue1YqK9jWfVc+1ZU1ndieWfLB/pD8x+Mrzy+8+WuT1IIgsk+GMgkyw3vJCBZOmQyQmQU2eZWrx2gLL7uYGhWZi142HE5kTBz03F5Thi86+CcDDmgcB6mJMP6FQQwEEyBbwIzJ7pWx+6v9OQaTKwuHxeiXgSD/WPQMeNkpt4JTHLIWrsd2kl1N4hiEKrQttbsi20SxBpUMPjxfsEE37PNytq+IWgyk0uAdJaeLH7cxdVf+/QcTsxp69SOJkBqfawbgSnrGSQkh0wiE5++vpa9jXX9poSvQvs/z3J/NlHxOlWXKfHimGpT1YFtE7AkSzs2QHWCNSUJE+jp+35zFU9KWIc+jtI5c1Jt210jgioTAOV/jskgj3PcciYuovYsjTt9FKl2cmWow/kgYcNEinMYvGZyM/nNKSHh/csSoDXfQj/KOfN+Z1uMGW178ikk1Sr0h5NPYEJ+O3849WfxSVLHZFuiv59+jJVz76cOOAbOnxO2yVdxrieihsmYfXr0momM7b6vb+iafaWFNrBGchzlKJPc9Z9JMQCk05qY9OBeMn9eguy4A0WyBKsTw9b+WI7Pk1P31mGAbaAnc0EWjkHNj4KwfB08WVbODR//suMyQL6MHfHctq06ZwKnOtjr2X3jUet7HasT57AfrGa/G5Xpe+s1ZevToxvJ/rEifjj7PEuHnhw6/dPsfxzNyVKyDJJkbWlLp/pP/S8LFJPdOwFi8tr/TNQqUzsEwl6nZJd0EAS1XsF8///8RZ/fk+TzPv+e5P+e/MJv252i/Bjq0g5pDz4pnVhHz5vZXc4ZxSCMCRFPDZrg2i8QHPixjX5wmjone/9TQOsAz33U6+2Dj0ry+mTrvOZTio6JpwhmoKc2adfc49zznE8TSOyfPoN9EjxzLvoDqxX6MOrEBIS+3MCLCWT749613bW/NVKjunV/OVm8hv9McpPZ355l/ztMbLtj9akl603StZjYcSayTAS8Nnzf8tyr9m/uPzn0pxMROMVwzyfjJm2A4+h4p9/x6O8y9QSV7dAGu+95fRob19LjZLv2qY5nHFtQj35p8ieeB+IF2hDHwTlqG2y//dq/Um/uuztfjj/meCfI2j66a4SgYBIHRwKg5JCZZbCgo1xjJnyEbWaz5ch+MECa4T9B+VOUoUObTiMYkMvy2MGvJVaUOpl+9qBtb/GfelgISCbm+iR7dpH6WS+ypqxr528n7aPqtnEZS821IRDkfDEIU05wvzKBleRwPgigCY7WTpt6v//XGESfojnIeay3A6BRGwa4BO5dp9oRE79tdt/Y9Q+y+xHHt/295Ad/W/LTF9d/ILvPo/CXq9t37dlMp4G7wSb3sMfK+jyF5ZgN4rYoU1vmvfZBoMJvO/NcExB6Ti3Vj589cFuVCfiSheUYSWh0/byvKvQDayd9ZIJpx5xLngBw/zAZaeJ2ijonuE45Vb22y6+4vg/9co28B9sXCSAmz9vsT41abu20oOPuHAdtOBngHLYcx8f/1Yv6cuzboYzbnuKA46LJEce0lmVCwz3k/WSSw20xKbJtMl56XPRNE5nU8ZpAalJyLbtvFbw3hz7iPHvCqvZ4mc/ka84j16fr1dMY+jPjDycxLc/9XV1PV8pWFybsXg+2kezjyJSMcm9wD6zFpKMcZU3u+pOU5DA4T4wzj17XAGuydJx2RGvswHTaMtUh+1a9CaB5vY5kAs3RvSnIltGvGLSZeWeZ5PBrG9kvP7jeeqe6xkdHyD4RCFE36sq1WGPcpn5Zdq1uyxIUUp8pMa1T5piSw3XkNQbwNXsz62Wm1kCOQMCMG088rF+D7Jo9EBhWCDZ7stSxkKFjedv6vdKnrPEPJ3lXkk/LLln550n+WXYJSoF/Wcunslwb7g0CMq/9xPrxfcdNgOX/bJfzxG+aM/Du/5an7V9Dne7X+5M8maVNG5RwjU2qGIAUjLV9+7M1P5Uc2i5tz3M12c20bykTGCLp0fWxL2ld27YJJ5M2LD+dOrDtKSm0rXOPkghwstCxdSz9CuJz1WNiNiXWFALHCsEikwnuCycF7nutP68PgbH9NeOQmfcT3Xec5Tjal+/RpknguF/ulekkxL6UfTyZ5Zd1cD8yyfDe4V7n/LBv2gdjNddsarv3uFY8pbIvm+pOvpHt0B6DclMSxvst0zFMCc9RjvJM5K5PUhg46MQMDA3QCEynQJnsN3mBWtTGSQ4DOp0k2yaL0XJkNTgOshSWOpb+Tgt1ob4MFGRHzB4zoLINOmwmSnSGZtcrDgJkaaeAxfp0gA6OvU/dKQY1Hh+BBvtnOYNTrgWD3RSs+HiL54X1+8jBNdQJdOqarYE9j7V6riUeXEMGTydGBlgEQU7uGbgZRAvIaNOn2Z2UNPnYZJekvAn1eu9KdoCBzHWy3OP8X136f+0EwAGZINaB2vvfIKff0NXPkjhxYAJaXWkTV7J/rKJj5jcOkvUlA+8TP7LLHgMfLzVwpZ/kF2YYuBbYn2eXcFKn2hd1afsGR5OQJeeaOBFqm8meIKFP4/4hAdKknOvORIViYmsClhTq1XomKSj0OY5DPIXhHu2akUjpGGnj9h+TX1rTi76etup5JZiu8FSCPsYJ5vlF+1d03T50SpynZITz7X05CefLsct9kMihb6Sdt85lwtjE/eV4MxFvfO1Eh2OeklYKfWHjLvcak6/e95xM7VOX6tAxTr75zpZtPvCPX61RRB++ctcnKWSSyMRNjAyDmQEnQaWdgwNDUNeP+Zxm6SB8IhKVT5bOvWKA0bYapP14A/t0ouaAwKBqxtaJ0sQOMSCRcWs7k4Ojbny8wwBzmz1g5deERvUZvJ1AGDCeZf+IDIU6TGvZMgRdtQ+uSbJkF800Ur8peW2QcHLq0zJKdSbLODHPbdcnVVu10X5pT9wLrVchCOG9m3ht+2tyxvWjrfRZ8YIazhHba//Wh/d9gjWxmSxbHTYq57pcEz5KROGcPZBd0tV2TpN8bHYnKD+Z3Wd06jNOs3skiacztXnOQ/Us0DeQbRmfEpkNt+5OCuhPe/pzgr+Oib6H9mRAyr3OOaXPTg7XObjeMRFUmvklS902yFbbn1UnEkeXCYF59e+cVMfaeT+L1BOVJkuea+oQtOW9lBwSNJ53+iwCVe41+iMmMiSw2m/b5/qxHSbMHFN1uJJD/8VY4rF4vCSO2h/HSpl04zjYB8tbr8qkn4ksStfM/od6Oalm/KFua0nYNod7zv44uGd84f2x0T32YfKO8Zf3rdN0MnmUo0xy1ycpySHomIKGmeTWsziAskyBFJOaa7jnjWk2jA5uDbSuBSmLATUBPPtlu1NCxjYcyE5Rh0GlIIoA2XO5xsBUzBK3TEHINssPrhOE2nmvgQoGKQLQjqlJEANFsnT4J1kyjQT9ZvrXkmLqWxDkIMYxEiwxyDQgUM70vzIxqAwsvcfAaFaYQaw6NdFwGx0DQR4DWO3mOtp41sX/Jy7+2qa/7Wp6XJDSvV5b5B5u0nsd7xmgOy7OA+2Kc841JrAgWJiSyk32fuJ6kncmeU+Sx4fxbnCt9sDxU2f7Cu5hA9bgHkEsx0vbXrNdJhRMELouXhuum8Em14BgaBInEUzaJvDZUxfug/Mc7gsnN4Fe9M1dC7PR9hV8VLFJAsUJzsSrTkkn971PXHrfifoElief73v0N5zzNXDvGMlr9rnJkpzpe7fd9fM6uy79oxPMyadH96szfUhPDVuP+5r2w7arl5MNJva2P67Xucqzbe9TJ+4W7l3PE8VkHn2dk1W+XkvsfPp958vxg/N3gnzo2Mv7KXZMHjCDETP8OiRveIMvMiN2jsmSrZoc98T0bXLoQM1It66ZT96bmBY6jIktdvuWCbgwsSKrVsdMFo1tnKgO58jBhIGZc14d2p4BKE+sWpaPqTDIeW6YCGzRHtcm2a9hk1S2NTGvBv+VKbE0I80+Wa5lOE9OIjL8n1jlXuc8JLuk4V7c4zzcwDUGcAI3Mt0FbC33FF73Ubfz7E4SnswyWbieHQO9tmc9R9TpVOXbJxONab3aDm2WdegrOp/Tnthkn3TUrvpDrh3TkxfjTvbfcHcle3DUev5P/SefwPUiqOr4O76ukQE7T162KLPV+86HiRmDKNpw58/s8aSzk6/K5M/c95QskrQ5w59BItecPq06Tglyy7b8zSx/Y+da9h/YZ6KczF+6QL9H+65dTXFgIqOS5fj6no+8VWf6Hvbf97RxExCUXrPfm04j/J6+jyft9JHVjacjvW7yr/qwH5JEHBfnmeRZT8HstxlrGGdt94z7Ho/3iv02E9y1ZMtzcz5c7/vOzZpPmxJj6z2Vc8LCPo9ylGcid/1JCpMHb5g6LrOMDGJmJNeAotsmCD0ZrhEM0ZEYkPc69WUfrc92K5scOhVeM6hofQZygkwHNYrZ7Ukfip0Ux7wGsPhoggHJZcf3bINJh/uedOtpCu85sK0J182MLMfoNZ+SSyd0k5iNc7/Wof3fyG6cT+XwN2ao47OyB1lMAJMlIHFSTRaXJ1NeY4La7kd+vuPJedgHAOYUf/wF9zUG2qDVdsN5bKLFvVEdOidmtU+ztFH2//CFjj93McbnJHlldr8Q88NJvj/7X+9+7kXZn76o20fnOoauyxooo3Df+1GPCWhPSS3LTj7T5ehH1uy/j2h1L3N+g7pO4ic/x9f07xwTk5MJQLPdnl51vnqCVfucTrRsC7VFngjzEZi2z6SaJMNlvmcC+k2IPAckEIL396EdxgX7yynhtL8xYA/KMME2gz+Rdh5b+2TydaY60T2eGtnPeIwtzzX2/i2RYruiba7NCRMgx2w/8sXynDeu6WUy4R7GGNoabYQ2t5Y02f+x/Fb3Ogav950rx5OUO0Hu+iTFTHqyBLx0eBO7nSxZtDoQH0fbKZ6oHF97o1sYROoUyfKQmZ0em4p06+s1IGaH06N0n4BMOvM0gwwUAQad4lbXuBa8fjV7dr79cN46J2tH/U6WCGym8RicMbhyfgxwtyrPdVkLthOj534nZt+MXftxsCbompI96s/kjnZXEEUw9XPS0WNgYDOobHmziv7tj453qzr+ql+Oi7ZGe5yATesSoE7JEsuRqSSA7DgIJA36yEZXNlk+FvrkxbX/LMnvvTe7H4W5nrwoyWf/m+R/zO7zKU9kByJPs/vMyhPZA1HOvZPV6m0w4+RrjRww2+7XTETbF+t3fU6y/EIPt2HhmM5UZppT7wGOyyDde2PydbbpfnmBgSlZ9+ne5O/7NdrvQbn7s//GOiZytZfpN0sMap38JYenQry3BkC9d2r3bodJO69xvKdZfn6Qc+KY6zhHfTq3/TyP/a/HwvXk783w/jR2JjZcf+rYOhOpUVviGq6RS2t7q+2sxQrauuMM18PjC8pu9L7rOyWkXFOfnlSYQDkJdFx7Kkc5yjOTNZx8VwoBUjc3H1diGTpYsq0GWZXpec6JNaBj2GTpKKkbdZ6SKgI7P7o19XOanaO+N4dCYFiHdJLlYwlMzs5Rr06IbHFyCHINMFifAMGsc8fKPhjoeK9lO+4J4JMd5Pjbt4VrwSDr+W7fl7FEdNacO7bXMRooRPXa3r24zuBTEMRkp3bEeTNIJeAkKLmRHShucJkCLm2Ej0h0HfgZIu6p6ksmm/PEvbhRua49x8M2NvhfHTtOj3cSJ6bso/ZNgOxTtzWQsMmOff/5izr3J/m9VeSTkvztJNeTZ3908l9mn5S8J8v1q479M2ihvzK4NHHAR654Au35YJ/0FclyLTofTAqctFFv+gvrauBdvWnjfp0svxCj/TKZ4hyu+XDaohPotlFfeZJdIum1Nyh+Irvk9OHslvu+7PZWT/7uz35fVPzL9NvsE5pK9etanqiNycdxvHxNgO75dyJhvYL7W5S/nU0l+3mt/dBvMLnnY3kn2f+GCZNSypSEV1+Oj3uI8+Vk1/rTTnmd/dDneM6IPZy4UaYxcA5tx0xoWJbj4HgbO2o7E0ikT6aPcYLS/ia/fJSjPBO5609S7Jj4eIODNNkXO1gmFX2sYmLfWpf9T/cve1TM9acTnulo2+/pqM22UnitH1pODgFYdZtAhNti3+2XYIinUhQCHDtVJy9dkwYy980EwKyRx7HW9sSKNthwfGaa1gJixcyi19kB1kHR75nIJkumkeCI17ge/iwNbaWPg5FBM1NHPX361OtrrLiZOYMBJgN+pClZJq1mJslods8aTFgfMthBG0z4CGScgHQONqh7Jcu9eD27x+fa7vOS5JHsFuJ/vrUr+Pbr+cl7PjK/9t7k2lN7e7mSHciN2l4DZT7VDF5zfSZ/wbY8T9XdjHPbOcv6D0uy3e5dJ3Tu/0TvrZfXIVk+ruQk2Kz+9JgZkxKP41z/6S/bNx/3u5b9I5Ub1TnN7qTmgeznvvbOx46S5bysJdieO16zX7qMEa9f8VMArUe/Y7KH+8zk3hSzagt8z7KOg0x6mQgZQNcWmXBMJ93Uz0nCVvcpl/lt+oBgfPQfjk32WfRbTiqSQx/UNkgaTck919X6nGc5n44lfPTNiW/nuwml/bKTvztXjo973Qly1ycp59lvFjvMCjexNymDowEf2Rc7NzpOBsy2x3t2MAysJ6pPfaegHF2fjuJd1o6d96mzWUT2zSBj9s06ERTwvYEmAdCUKLH/XvdpjpMlfjD0XPXtcKfk1Xpy3pjoOIhEbRDETkmoQfpassvgz0TAa8x+piTHwnXmb2q0347V43VQnsY0ScEYE7bWKZjsB8u9ptSBTCjta0r8W7/XOrY1ppL2T19gQE//MD3OQhC4YB/PcpGtVK49rdxlzKP3D+fIhIxZTyfTm8zjX3us9DJ7c1trBEGyBGFrY52SJCcNHqdPfvvf687E14AwWc7xNJbqRznJMjltgtKk4yy73wdi/Lme3YkAf6TUyaT9ltlsi8diAoZxaEpM/WgckxMmTvQBtT36SY5jAvbTSRb3m/1q60y+nD7hFNcqE0hmG07e2Zd90BQ7Oz+9znWzTzcx1OTCp/+Op56PKSm0fSdLG3aC6Xq2q5b3nHaeTSDRJ63hgaMc5TKZsM9dKQyADKwEsgbNrdf/dDyVM73m42NkceiU6Ai4mXuvwLCBnmzbaZbBgI83bIY6DAwe02UAjQ54zXH1f8fHH22aWC+yh+2DDBj7ZL/Ts9is4/E5iFEIhFvWoJHsFduZgvg5yk+PejkwGGRZt46LpywVg0k+Fnaew0f52L4fQ2ob1seJIB+p6PxQNz7GQ1aOYyWLzce8PNcTicAxnmV+5MVlHbj5+NmUsLScPy+xNmfT2CwmPajvSfbPyPfau5Lk3ckvfn+S77wnyR9IvuKefOyDyTvfuzs5qa3dzP5xIOrhvjkG6+vEn/fNnPY+901yuL9pE7xPgEPfyDnx/qoPMOHgE+QpoeE+pp21HRNF7Jf72GOnOCHmXp1s9Dy7Lz64N7u1PL14/ZIkn5rdFybcm/2J5vOyPHHp//swBo6X8YX3+chmyzoJ5ZgnP7b2CGvnkKc5BNckr0j4TT6Cce9E7VX/yf5sa1E5nuq03ESieU5pMz7xZtLB+bS/6Lh5etK+6pe8hyeCwCch9R+tw+smJoxFpuQrQ53+eV5LWNFvc76ZlNT2MpT50JD3fZD+jkK5609SvFmSJfs6MTrenHxUymCHjMrEGnhzUpfpmNSsnI+pDSKp9xqAYLtTvfZDJ9T7dih2bGROJsfXoMVkinN+msPTF56GMIi5fzp0BsZTvbfjt+Ml23e7gEHgRF0IJqZ1nOaRjr79OeAbhJNZ3GTHuBYYEmi4L7ZRmZjLiu2F88RA1bLbLOfP0uN/P9rVfpvkTuOl/TyRw5MdJ71md3svOVwn6nKK/31UaWIYp/mtXU/7fpL28ZzsvpDgp5P8raeS3/lQkt+b5Eu+JXn2rtC3X4z7/uwfGbJP4xjp25g0VK8z1XGi0zWf9mFQJirT922L/TLpMKPuE8/akU+A2f6a2B8TINcXmbxpuemxMb63P7Mt93ptpO1fy/6b2/79xf3nJPmKJB/7adk99/cvk+/86eQfZP+5lGdnH3vW9rbJJIPyjsH6knRomd7r78dMwL59bvWevqsAd/ryFSeZlepnoqC2MPn/9u3xcEyMNU6qaRvTnm6bfO0x0H+zvcnP8T3jkvs+1+vOrZOc6sn/1G+KX+6jupMI9DpSbxNAlK2u+wTJ5Y5ylGcid32Skhw62GRmYKJ7LV/WgknJeZZfAUrGb20jOyDwmdA1vQn+JwaYCcKUNNzOUfVbtMhUTky1g3fvcaxrj9VNyVQdr5ODlutY2KdPFpwMtkzHsAaIp6B6GcDm/TO899zwdIeAl8kIg6aDqp26bZOJsdfDwMyBlGOpFIjeQDmPxcJ9s2a3a4nBdrjupIQ685E4Mntka53UEaQRMBisE6waaDvY8hrZYZY5130nCtwDtKGT7JKPdyV5S5J3/Hzy25I8/yT5l+9NvuPiXrL/CujT7L8RbJsdu36WvT+qLk0KTXRULkucO8+91m+Xsm+rzdhXsT22T126J7huTQ55+ux2ue8NQl2u//nh6/6vnbcNrxP1qv6cow3q8ZE/zlNPPrZJ3nHR17OSfF2Sj3xJkn+eXcbyRPJFL0nOfij5u9mt+X3QtZ/FqnAdamckglqmYjvkmDjHldsl+9xbfsyp9y+LbWsEEPViua4t23UZ+3KSRWzbMY59en0ncQLdtafvsY8P7k1PbLAs99fNLL/4gL6P11o/WSZLbLP7eXrKYZtdIr2WYDn2OsnjNfrovifmuR0uOcpRKHd9kmJwE72mNBisOVAHAz5vXKDTDe/gbYDKzW0p60ywa5BrcDQlFtbf42Lwbj2DYNcxyJ5OBNo2dTXwJvvIeWUCQHA7zdWUoPC/T4U4Rus6gc21EwI75wqZN8/bZnhNcETG2veTZXDh+tJOzrJsk+O2/p3zp7L+aE/LriWGTu4IdKY6XFsnBvzwtIHmFDQNHvu/gHqb5ZxWnKR1D1NH7juDN+pr1rrtGARMc9Jr78p+vs+y+22Uf57k9HzvBwpUnszuMwzn2QOKttWvxzWLeqLrkx/knlgDZjdRxyDP7PAm+9ODjtPJUst5vp2AsHxt5jLgO5061z/VLqh3E3XaQIWg/yTLD7TTduyn23bX7uZF2e61j0/ykZ+RXdZy8+JLEvLc5NrP5HeeJP/b+fJbu/y465RE2xZp+yYHnPj5MSX34/k2GcDya36PBAj7me7zv4kkJivun0IfwjjUdZl8/6S393Jt0nZmP9XElQQJ/UPt0adb7P8s+0cHS0JcQRknCPbHnG/HK86nk0nas8fnvW6ypq/dBuebc3VnyzYf+Mev1rzbh6+s4eS7Tia2IZnZjIqfU52cpoF0N33rGsC4r+kY30CNyU/b8KMUbqMg4CTzIjtxIGAwK0/xmLaoOwGhjoGOfeqb+vO9nRkTqSlosf/zoQ0CZUuDrx3/JNNa1j445+zbSSwfc/EaGjSd6f+UPLZ/B6e252stzz7WgMl2KLMGxDmHXBuv0wR0q5+TQ5a1TXC/8b5BEds9zfLH+fhNNJ1D7nEnn9O+uoydTfZAP+jrPPvPKFT3E9x/T/YJybuzBym16yaal8n02BRfdy9ts9QrQ9k1f8Z5qV5k//n5ipZLZnujLTnZ6nW2U/19WlRbNctdu6ie7Mu+r3/2WbWd6tJfe+d6F6SeZ/n1uM9Jdlnu11Lbn84v3EjyrKUt88dVr+A17Y9rw2Sw7XD8lyUSbaP2fy370xzuQ64FE9P2Qx9IO2Gccb/T/ub6dX3XyJNccp17n+OsHo7zjGX0j9uhLNeB60E/whjF5PCyZLtJDJMD/2AyXzOhru7Xdd/YJ5lPWk1WbFeut37bNIk06enXRznK7eTDIklhsEmWwaaOgExH/9YYrL6mw54YPPbP6+fZARaDLTsAOzEDXoNOg08zTqfZfyDfzraOkGCJAM+6sV0CSs4t2fK14B/Ur45MfDy/U+JkYZm2OYEdCoMqx8WxOnlhEslH9wgI1gJmgxT74HWWN0PncUxJBu3ZzFoD3vQIkNu0TRHMcQ6SPShlkPd42ie/ZMGJTOud5/Crs2m7BNUFg1yT4L33ZAP+8y7+zrP/5qXqb738WAvZyIrnretH8LrV62T/OZOC2F+b3W9olI1/N8rfzKGNkGGdbKrlgrF5f/NRqF6nT9jqvn0LhcnORvUMTjfDNfZX8T4gaCLLux3eB3XZR0GdAXHv0W4I+tvmTf030dL2GkvOcvH43kl2v9L5tLwgH3XxqfracsvbV3C+aN8E8rZDJ6SVaV9VCNQp1mdqj32aYGkMitqp0P4oTm6mueZ1v2YbtW3W3eie7b3tkWhaIz89Fr73Kf4UJ5jo3C5mVa/+ZyxlW54vxzXOBxOc6evpW37a0217IrGmE7g7V44fnL8T5K5PUqZHMszGJ0vWyyzKBNL9TDMDiwNhX/f61eyTozU2tk7zMifL/x3bBK5ZzozSxFBOjpvXCX7NNJ0M7+lIOfd+bITO2wF5YuAnJqwAjnNnvSrn+nOg6n+yqZvMv/1AtozPv1OH9nOSw3W9zOH71KxApHPYtaDOTGgdTMlMnqveWhJJ1pnlzEZPNssy1st7i2CZ5fi5mSnYEmj2XstONr7N7mdJvi7J67P75iXXqxh49V773KhsyQ8mMgWxnKPr2ScfrXue3VNA/za7D9TXZnoyUbBL8L/JkvTg+nasyeH6EeCb0Oja0mY531wjf6vcc7L7xqpPT/KCLB/T4snABLI2OVxf+ta1xIGJpf2D9xP7KxDkXJ3h/wn+G8BzT/MEwgnKtYv79138/7Ekv/DWixvX7kmed0/yrJ9IPjn5zrOdTTAZupalXU5JP3+Ar+NxQh+NoXp13GT6nYRxPBX7TOp0Xw73thMm6l/dOk7W83s+RuW4VvtwnEtmsE2SY81PuB2Pp36Y46jw5JvxgPug+2OKZ/0Sg7ZLf+YT0mnfWN/6D6/jGmHKeyYkXYaYag1YOnk5ylFuJ3e9vdA5l+0mu0XHMDnUra5N4LKBgcGS9xl4venNOPPkYQqkfc2gyADroN/3rXuGv/Yb1dnqj9fMCHt+DGA4Fz7+rnMnEKNOZMuneaEj7/s+djEFls5b/9iHdXW5oLwfEfEmOsE9/qfODuxrIIT3Ovf8HNGpylH3vm5iRcCy9pjQieqSXd/gdfUxyJgSt675BGYMrKojky/3U7vZZqnfxFomS9vh2j2ZHSB8dw5PO6Zkycwy95oZT46bOrP/ntxwb/U59fdk/9sxBYoEYtSB4ITJp6/zvoFObcxA0o/ecNwnurfJ7lTqU7P7cPhpkk/O7lSIH/4lQWGGn/6yfwTdlSau/JC6k0WOiz6Yj0ayPO3biQ731BoJRH2dYG2TPJRdQncju0OUn/zR7CboE5Pcn/yd/z35nou6z8EYeKJvG+36lJxhst7EdkoOTrJcU5689j39JYka27b91n0XY+0jcWvkjGPTBPo3et/yJqEoTNA5ZpNVrkc/PfkD6sI4NhEh02k6+/MTBlPC3tdOdKhrx1Lis203OXYC7j3iRL7rsPakBckA616bMunUv/Ms5+7Ol+NJyp0gd/0H57tBGvCnINzN5+DrQOXrdjotx+fbqQfZmjp763QyvF57dIuPAiTLZ5aDe3QOdiIT87j2GBCZEo+JwYDjdMLC9TDAJxCY2CmOZ1qvXrPjnUAPx8P+p4BHXZroBmUnXRq4Wp5B3sL2CT7JavoRgYoZQPbd9vr6KbxnfwSzE/tse1kLdtMauS4BD4HqNksbN5io3ZgF9R7g3myg7hwZtD+e5Jsu3r8b9bq3OF4K19D+pfcJ5gw6Oj6CnpPsPptCsHKe/S/L00+0zZtZ7lmDUPoJsqDTSQTHw6SLp4L2U9xXye5byj4lu8eZ/h+/JsmnJn/1+5IHszup+vdZAm6e7LTd9uOElutiQG2wyjme9gf34gRmCVRP9ZrX7BvoB/pNa7WNm9nNS5POdyd5NMnDb90lJP8uu7Vu++dJfj77xx2ZnNJPmVRYIz8MvpMlIG1ZJ2WcP/qU9mVQe55d8n8zhzGX8Y5r5XhqkE+x77GwXa4H2/Ga0t5NTE3Eg4Vxp36G+5t7muWn1+3Te3Q7lKNMJzb0P9xbXdPT7L/23diAY+WaGYt4b51mabO2Dbd9lKPcTj40EtpfptDxV8y20KnUWU8/Isg2z/VHZmUSM3Dtx0EgKDexgwzu7ouMLVky3vd7MyJnuk8dmly0Hp2PWbjgPftiUOg4OQ9s24Cc80w2yQnKWqDZ6D9fM0iRvWVy5XGR/Z3AAgMi2zXDF733aU3bNSg3m0nhIyl8dGUtePN92zsb7hHwGnQbeFYYsG1TUx8Gz5UpkWz7bqt7eJqXAqinsv/GrN5zMOUJD22ya9ug7CSeJyfJfuy9x7FOYCW4b+DWdW0bTKJ9utB2+XgPhUmVr3Gvneg9v+3qSnZJyja7r1DOE78nectb8yVfvpvj52TP9F5BO7XJ+tra3JRYcq54WjHtaYsfZ2lf59knYpzD2gEBnfvgnPHb1p5EO/Rp78ouMb6WXUJyPcmPJPnfLu4RJL4T9U6zJ6BoNyYVbE8ea7I80aKfdrtda552dry23T7+yn3zBK5dtl+n92yfsWVK+i0m4XiN8dnED3W1nXMfT/F2TY/2c0P3TALab3j+fapzksP14X0mESQoWLf3SuRUL5NAtTHujcrk4xnb6Te9b6b9eJSjTHLXn6Qk+41O9oxO1gxccsh80+lPjrDtTL8E2yRp+jE7gmL3P/XNr1c1G9PNbyfI8TEhYnCnXmSFDCDtTLd6T2aY7ONGdaq3dSWL3fdOiMgKUS8nKpWyRddQv2NtXY/FjC2Z8o1eO0EwuCLImwKskwaeEvQagSaZKILRlq2Q8eS8Wwfr5lMdi5NlC+eEerk9r6vZRiYJvTbpxPU/zXIO2R6TgfPsv1WrdaYEi3M29U0gwXERUHhMfE9brO/oh+gLTmt/3EcEp9Slul7P/rdNeq/AaZPl3vbjM5TO1+lwrdK5aXuPJ9l9kfIPPo22qXdPgOwTTNaYpOk1A0m2T1/GtmgXbJv9tv5E1hCkB/c7N02Ga6+ek9PsHoOqzfVRqIezS+7ejbJP5OLjKtmve2V7UZe2OpEXwWuu1wS2aUv0sS13nn0iwvK2A88thfG3c7O2n9nWtDZTbCVR5OSQp4n0n5wLx44tyvb6RmWC+5vhvvcTTyQ6dsYZ+/C2w6/S5xqTUOHp3vSfwjY8z9MJ1hQv2FZ14XsK98BasndnyvtyOfXxq9XnUSgfFklKZXIedFDB6ymAJUuQzvJkGhio7HgmEH2isi0/Be3qQKbT5SZGjWDZ/TcI3UBZjq2v15Kf3veJhPtvHTpWA0rPOefF7qJjZ/LnBKQyJTqcrwaPe7Ncy7ZFxpEMJp29QYITlCmok9HjHE9MYwMr18FrniyDwcSEZ7jmALLJ4dpMCRGTUrKUmxzqcVlSU6kdtU0HfeoVvO8fEzPq7ESyQtY+Wa5P26ctOaFjIks9nVDQb3hPsbwfvTFIqqzNLeeGfoxzz/HytLD1KdOXRDhhK2h+6kLPx5Kc3vPP8on5inxLdp9P+bEc2ijb5WN59gcEQt0HBqPUraCO9mL/auBJYqXfPuW9nhyuQU9i7s/+BIW6UJ7I0lb5eG7nr1+AwHLn2fml6xd1+oOerdtHy9aIkgl4eg87+aXYBsyMT8B8IvEo59kn0pcBe/rzvuc1rw/Luo1T/O/vMnFfdU95L5kQdNybbJRJGWMO57B+dy1uMLF0EtW4x9hlkqZ2xK//ngjWyS/W1irVlYQf63LfmkDkmDjGoxzlmchdn6QQQJU17QeG6ajJ8jDon6hsss4gub1Jps05nVqQGZlYDbJDvU6HZyaMwZ26cOwTgKXDNUtJx2M9yS6R+eE9Bs9pTvl+7TTGc7YWJKPrdNp1wF0DJwRTAsn3dsC91iDB4Mj+XKf9sxyvn+g155cBikkYQfuUNFcM7H2Pssb0NXj1fln8Cdj1fkFKVJZjcX9OoDhW773adoHW2glkVI9ffTwBlOlkwb5iLTEgm8xHpphobbL/Ni/a0ZnaqN5MRmi/FZ8isa0CM9q6gRWTGT5iQjt6Msm/zO6z4P88yT/L7gPUb8/uMxfJEtxU33Ndoy8wmO5YnKBQj46H4DtZfkbCRBT9gk8mpv/9Mc+T7GzLyRV9XE9ZOt/3ZneqcjO7g6Z3XMxLvyXtRvYg3uTQBPSmxMJl+nqyd/r/CcSuseT29702rRn7af9NTK9mTlCT5dhNXHStptjU/kjq0Le6HJNS9se9wnmjz6FwfFwX+m2Wc7zmOCY/RnKB+qzFjWmPcI91jeqH2vb9w5h7r+vVcTiWeX69NmvY6M6TbY4/5vjBl7s+SamYSfBjXnQoBvIGBj6mXXtcwk6djE4DIcXArH0bBE2gquwaHXnZIjNpDsrbzMGvdczaVgcCFQPG5PBDsjzxIIO9lgDymLjteY4KjJkIkFnyeKkrx0OZEi8GXJ/EUHfX81xO4qBc2+IjZm2f68nE1mvvOXRfBrIGEx6PdeB1n2JxLL3vdWbyNoH/2j3HbBBBwOLE2gCJZdqO94F149xP/XNuTTQY7BPEuV2OfyIkak/s/2Qow/Y6Jtsp/VZ9BB95M/D1HuB8P3xx/YnsPyj989l9xuLhizZ/LrvHv2pvfYTJdpgs59aAmkn0lNgF5ToPTNBpQ2y/wnE5kZ/2rRNrtte2mlxSz+653ut63EQZPlrlPTb5o47b/TOprNBf2C7tJ9tukzGD7qDsZLctx/u2f9qt26Cf5smR7XHy57Z7M/suPwH42pATYiYtLGOiy3vKCYh9IMfEsRqDTMmkkyzH4pZhIuI5Iak1JSi0wSk20Lc4FtB+phPQoxxlTT4skhQnHcn8yAOdqZ1Xr5nB9mmAA5pZizqYiSGrQ+Jm9r21ZMUfflsLWuf4O8myP47bSZeZzeQwqNhxmmWiA26bdsQTS9a2qAOBhx9VIlBxcOQaO0hXNkMZA+bbARf2yTbo8KeAOrGITCgIQFmuCanXs8L1rkwJzmXjqX2vAQGfZPHUiG1QvF7Uq4zdxOBOCRbBNkGn7bDr26DK0xy22fr8sLFBAte2OnSder/XLgOWyTIhYCLFMZIUOVfZNbKB4Nv2cW+Wa8D1816sjryfLMmIfpPVj2lcrf8krl+5KG9/xjpO/Hite4tgcKP6FZbnWq/tl4r9fPUoCK1uT+ZwH3PP9tfbn8zeFs6zs/F+PsVscxnuyca2quOEu2WvZqkX5zMa+40s7bHt9LSDCYNtinZjH+D9a3HcZLyk8Jp909q+mhIiXl9j+blvbfsmNO3j+HqKb73Ok+aJXKmNMEl0UlC9iAvazhRTet/7nckSfdXk07n+J1nqTJmwRMtf9qVERzkK5cMiSWGQIdvMhKViho0bmgGyTsOAlQwF+ydLYbafddwX24jKWE+CFAbuyQmz/ASu+ViH2UDKZcwOnVuyZNTPs3/cp3Kq8n3NEyEGeLZFfasX2yh7ab09z7zvsn19u6BLZo3vzfqxn+mRBAOtqCzbcAKWLAMjAWdyGMQm1tEB22PveJxwNblgUk6WkX0w+Z4SP+9RBkQnbFNC6qR6Yl37vl+ssMnyw93ep+c53LcUJkttnyCRfbJO29xkCVynRMvJhJlW7z8DoMoaq8k5ap0mFCcXr3/64jW/bpfJfPVJlo95Peui/pNZ7kHaKImcCXQyGTFZsjYWJ+pMxFrOyUj1YtJo8oZ7nTbJNeePzHYctava2kQiEMCavGKiUH3PUY8J7ZneMzGYQPU0H1OyX31oc04kve8M1r1+jmuci2m8FScM7K/+h2QO45+TgYmgc0zJcJ33uS85RySHOH4+cuX1nhKmtfjgGOAxOX6eZP/19NXBNjE99eH4ad/SOa1MieOdLe/L7B1/tfs8CuUDvQIfcCFQ5xE7pZvNjBUZCSYPBMNroJ1tOLDWOTLokQlxn9QlKstxWm8yxtXNwMuOhWykmfCN7idLcHWapQNqf9WBDKb7IiBj8LDultYzEHNwPFEbBgQcf+/zj9cpDmjJ/pnyyple04ZOdZ0ghno6ALOdCfA6MfLcTnO5lvye5nDcTA7bXkHsOerx//nQXt/TVlq2H9J0EPQ+YB3ai22RAKD9tsxLkvyWJJ+Q5d7kL3nTLk9x3VJfc64/26CBjueE4IAAxY+MRPWCMfT1BOQJ4twv56rCdWp9/iYC/di1JA+gDn834znZfVaFdj3ZHsfX9eM69Lr9pJOJyc9NyU0Jkd5n3DDoDK63D57iTXHhLHsG+TT7b26r/vehXceoKbE26Kw40TExwPZMCFUIoAnSDZKndtqvExGuDfVY0916TrG792hHPAloonWWZYJigqt9nek913daV8Yt6tP++p7z6TE5FtQPmjhifY55bT6IdzyWLf7zdGRKkpywcR1sj54fn3bTHx7lKM9E7vqTlAKiiXUws2+nYDZ8YjYdXKeEI3ht8GwWrk7A+pyoHhMNlpkSEB/PW9gX604MLetM4+o9Ori1fpOZhWTAadvUn47vMvDV9sn4sI/oXt8TlLRfBxYHQANp68ZEh/1ZHwNxAgUGKQcQgwXOEZObXrN+1K369jNE0zjMQCZ7Rv00+wSjMiVSE1nQspxPgoY14Z406eBybbfvN9mx+w9l+Y1L/OAy14esbq9xP3tea1O2MeqRLPf/TZSdiIRz3TPANDChnUxM5lSWtn6mspWTLL9koCdA/dC/k/iz7D4szuvTSa9PqeqPbX8+MZ5OFPnFDhb7EvoDMvAuO829H2E5y/y1806k2/eTqOvEgGQW/Y/L+7XnoTr1HpMf+tsKv/Lec5TsbZH203VxueA1/SzXjvPO2ECbpB1MYvtmPHaiMIF82kDLTSezbc+xlnaYod5G75nsOo6wrek0z+SGyQL6JZedYlbntv+ZXE4JaXVy/Kf92hdNc35nyvEk5U6Quz5JYaAzC81NnBwCNYJngjEzTKxr55ssnYsf55kAw/T1fueZgZ2v2SEQYNjhM/BxPi4DsN6y1ouOjY6y/a4ldROzwuDiAG9Wa81JVn+D/dsxOQ4O/NwCdfG6Vp7M0pmTeWz5Pl7ERz+oM8dnffsse7L/2lIGe47DQYx9nOTwx8Y4PutFIbO/udCHtu0EkB+aNtDyXqS+TLydTCeHwNTJtIM6gUTn6n9P8qPZfdB7LQFdA4JNaE7wRzul7zCAYBnOe8dEn0X9CYCoK22b8+c96Pk3iGKbHgf3txneCh/R5Hwk+x/PtD+y0JdOOtIuCaqSw3X3Ok6kAB8tow23fueDzDP1dzK3todd7kTXnFASBJ/rGm2k7fPEwICy7XJ/WpisMJ6sJbfck7zuvct9RyLL4JV+kkJ79Fo0EWUy63FXL/uTzhUTtepluwr0NhlnIoxjc3+8b99EnbnXmRxz37cu9wT18GNl1ce+lL5rOvmZYr3jjokH2uiExY5ylNvJXZ+kOABOx+jd3E4cClD5eBcDRt8bBHoDTo9JnOL6mk4VBxs7zzokOpo6kwn8TEKQs8ZUkZE0EKRsdJ9z3PcepxlSA9S2W5ae/RIE+cSAwMNJkpNNO3kG1wlIkWXt/Hc8TUCq23kO12P68KAZtLZNZvIku0dDCLS32T1XbHYsWerB/13rLdrgeCq2hTUW0vNUu+V4HSzZHoMfmUknIxNo9ckCbYb11/bak9mB57UfS21brN/rfMyt//kbBi3b9wSYG5WpnlE9jtl2ab2Sw/XyXk4OwZfX1YCb+tWe6Te2We7Daf7Y99ppEu2Q7beebZM+12CRPnLaW9TDIIo+9VTXt9mvMf2Z90STd+/1rpnXhWvAHx702nAe1sDf2jqyjsuQXLJf52cmmKDyPeff6+3kiP7Ce5O+meCYQL71GLsZCyfyJ3p/O7LK8z59lbkTDccE2prFSdCU7ExEpBPTykSk0IdMcbL92r9SF9o91+3eLPdZZZPDmMK1WSMmjnIUy12fpKyBcjofPifMgDqxfd6MZmwMzqdyyTI5cTC34yFzWTnVfTO2DSAOggwgDCxmb89UvuPzCQ2ZIfc1JRrVnawQZToq53ioj8dkdrIAgnUmID2xa71H3aeAxwA0AfCWMXN4PXsH33EzYPfaSfaPaXR8D168fuji799CB/5n/1Pi2c8IOLFbA5B9z4DH9SeY49fMeu0ZCA0y3AeBT2UC3V5f7hfvq+pJIMCgeja0c579Fz1QH4PX+hKzkRQmUBNre5I9sK1eTAR6bZN9wm5m32CU97m3DUgIOp2QMcFl8m0Q5SSrskZseJ7Pdd/tT/6w1zhf9t3eXxPIpA14Dileu4lYql/23rbt9BE5t1Fb8rxxvzmZ8D4/w/9T3Ku9EcBy/qPx0Z86IW/7E+HUvjoWPiXA+GRw3P58Okjb63xMe2wtWdvo/Ro+aP/00d0ja/t5ipv0bU4STIr2s4z2x9yX1K3t0C+1DyZojPHJoQ9rP1yT2xF0Xo8JZ0zv1wiTO1OOj3vdCXLXJynJftMxq+drBqOJWaoTcBJCeTLLX2hlv207WQYYO9fqNAVZgyeD9Ykhm4KXHfTUlnUO3resf8OjJxxmMBn0CHLMMrcNAruJEW15n0TVkXtOzKKyX86ZAyxZYutY6br4SL732K+BjE+66OwNpggEW//eJF+d5D/+6OQv/mzyluyBrQHtNN6+P83+x00rZlUNKCuea7Y7JZ9O8Hu9ejipYB8GqgQAV3O4bz0OJu0eD8EQ27E+BgpXsk8UKz+f5F1ZPiazlqR7Lu7N3iYMUCcQYEZ4An60IQO8iaXf5lBXA0Wyq/RTZne717g+vE8du5bU3ePeoHzXhzo5wXY7BuEds8sykaAN2PebtGl5s+lMJjz2/sYTx2Ub7RxPybb16j1/U5TJBQrnZmrTbVAPxy+vF/dRAb/jCv0CY4YJIiZW3j+cf4rHQjKv7TjWeq95nzpBbbtMCJ1YdY5NhDDJsw/z/ioW4Xuv6Vpi0f49thJgnfOzLL9xs+1Mdul4RWKGdSdCaUp8jnKUST7QaeIHXOzYCBIrDSI3da3/fWyZ7INAN22fx19jFJggVA8HLus0OWECW7KOZkYIFOgsGGzcPkEOgXNwbRqbnVeFLD2DgwPKdPRckGe2xwCIyZeDNev3JGKaayZrTGxoM1ez/GXk2kV1qi7UtXr2P+ed80zxYyFTkts+r19UMAvpRMrtdV24JhYHT9qbg/RmqFexHRukrIGLSQ+/dyJJxprtk5mdhGsxJbNre/HB7BKUG9k9fvdE9h/Ar67bLBMO71cmui2TLE9KCAanvUMgNu0BgggnkrTjJos8yZv6XBOuTW3SRAITJD/uNPlmjttJN08XaaNcw+rQ/ugntvq/QTle5/g4Du5fJ++c+3OVoQ+ofZj1vky6Zk5a2rbnlaB2Om1mG7WlKzkEq7SjCmMKy7KPluvYrB/FftO2wITXpMHVLNe7+/7aUNbkEoV1a0/2a9ST+pxmjnvJoX/ql4t0PrgHT1DeMdz2FNRhLON4Kd03HJ9tZIq7xkDnqkOdWWYiaNbW/86S7Qfp7yiUu/4kpUxrXzP790bm5wi6Mf2VlK3nUxP+aFbNrKwH27QDSPZAywAzWQbNqzkMMk4UpqNlOhYeMZMRJdCdTox8bQpKE7NOx8aATidvp2ZGlkJdHUxOhnLsk0fiE/PechOTSgBlxnFir/ia4Ii6s10H5dpT+yOYqE382SQPvDf5yYuxvVv9T4mSxY+HUNiGAbvn+2y4bxafc8eTPPcZ6U6wSwDNdgxOKZ1vzuVGdSamu8Kx85GJZ2WXmDz6wiR/Isn/M/lD/z55dna/su5fRk8Obbvv/bx/bZcnTPVRye706zruE0x1fLWhSTxeJwD0BdwPLWuCgX6LvvCyRIQgrPfolzk21rWfmeyafTKhmMbLe309AWn2431RuZFDH+6EcqPya5/1q448xZ/8VX09wR/H4DomHNhOx9ax+nM39HU+3TTz73Xr62nPTSQLkz3bhv0b58BESvW/hms+xZ58RuuaFOS+4phPsvxBTOIItz3FLa8B41TnnfGPPpfzPvVNH3+K91xX4gbuldYxRuD62x9UJ69h8P4oR3kmcjty7ENeyBRyw1ROs2dgXIbOxsz8VmXIirBtbv5k2SaPmMn4GLTTMZg9M2ij8zHAoWM8z6GjIgtiB+U55FioU8t0fhzMnZxQF7bZ12XIzAq3bQMJgsK+dhLRfs0U8xGy9t9yZJ+i+5WWtQOeTtguA9RkVKcktI9nPZ7k7Revn0Rflc6XQQr75Rh9fQ2IuR3amtfEiUXlJPuvqJ1ALEE9gYKTfAZ4gl2ymbRv69C/rpv3EJMF1iGIy1ck+Z2fmnzF4Z62nVtn2iATYtoA713Be7KflIk1bnknjqxTfQyW+RhnZWLvz1Ce/wmqtrhHW+GevSo9LSaD6B/bH/+C+04WqT+F8+GTodapLUTXKj5p5T7LRdl7s/+9FM4HQadPEWk/1Jditp027rXLUOYsuxPBT774f1kC13EyoeWcUQfbFX0ybZr6bXLY1tRey68BYPsH16XNdQ645hXOI2Mf14z71kmEbYC62Yaow9qcenweU9fqusoZB7U/J08kUDmHZ6h7jrLUu/eJIaaT+ztTttl9RuQD+XdM3yx3/UmK2UGyLAQRyZJZqdAZmDmYEgpv8KkchUB/CshOKjqOoLxZjjrQU71ve2yHjLaTMrNX1ImMS3U5QfmJAT1XWSYPHEv7rm7+ilyDlOpkqWM180e96GgZBAzg2Hf/MzjXPqZgynmaAKWZQM5jxaCq3yi1yf5xEds6+yALy0AzBTszfWssY9Qfk2Mzaq6XLAMXAz/tr/NsgMf+N1mu5SZ7htoyjZOJkoG4T87aRuttk/zkH04+9of+WX7ib8wgyaDQ4Nrt+3Ea2igfDVrzK5MtMOmlrbP/js3sL0+gzNZOfqInvqdqg+Ikw74nme2O/tBt09YmEsb7oHXaF33EZqibLH0R/ZBjw3kOf9289s5koKCNjxpzTPRHTujZp081KrQxnnBNDH79VD/If549kcBxmJzyKY7nm4CedjGRCJNvicptVW6N2ONYTVTRZpmwTO1ObZmsmHSb/ADJtmsr5TtPTNoYQzx+6rt2Qu15JQnFJJ3JMnWY9o1xgzGKST3a6lGO8kzlrk9SCLaS5SaaNrsdHp08j3Kjcpcxan6Uo0LHYLbFANIBgnoTIPgUgMDP9+tEOg/8NqEJ7G7VBvUx2J1AAq9ThwrBVO/ztdnf5NCJe+24Zk7qouubHH4F7WmWnzN4R3aP+LSvKxiD7WkKskwee41AuHrY+ZPNZjBqGxb3xUC9Zhuuy8TgJHvweRkD174IPFq/INtCIETA0EdnpsA7sZIEmDx9YzDu3HaNDXC5fkzop6T/XUmem+R/TLL9G7v792dnI62z5i8mAMyyrWvg6fk3cPU+4DwZ7NJGrIt1dOLjZGyD+wRXBPITgcM9MvkD9u1yTG77mgCSyQEZ3rZt30WCxNfJaNd2+NgPExL6GfexRTnqw3VwImZbrVxBXc5D58jitWa5ztl59gnTu7M7oe2e7Y+1tq3JfxjIMtHvWtDnRa8t9pXJDICrE23Pid1Up9ebNPD+Za+NH85w3XbNBI4+ZRpX37ct2t2TeG1h4jeRGLRL6kfdknkd7Nt9nacvLt/x8JRtildHubvlqaeeyotf/OL8zt/5O/Mn/+Sf/CXVveuTFAfByhrjQSDjxIYbfy3JMdtoUNr2yNTVufKZWQcAJwgTMzLpyv62l7y23vzWD54QMKga0FgH3pvETPIaQ3aisrxfhzgFnwoBn087LmN1zpM8Lzvg+dRF+edl94N/78qSFTMzlSznl3ZAwEF2zQGidTjvU4I3gS2Dy4kBNVs8gReC/emRGPfLZJlsW7JM1p3EeM9UXwJu25H3Z197LQxWqB/fe39Pe5tg/D0X156TnY1cT/IfsgMTBGQTKJ/mzGPiOk1JwRTsDdAMBDnfnOOJqV0DU9Rhuu5HVNzGicoZ1F0mBDkmg0ywGKC1Hz8+xTIUJ8L21d5HHlf74NxvcM2Jk+eKY6O/6P+bwxho+xXOM8EihUmE/TF92LTn1mLBmr9oHa7HWp3JFqvnGtnCOML9wH20lsz5cSWC/olw6H8mrCRHfELhtZ/GmkG/k+y+nMP9XkaEcK+XZHKS4HZIlK35V+5ZE3TUp+PsfmEiN43/zpP3Jbnng9Dn3Sd/7I/9sXzmZ37m+1X3Mmx3V4iDGBk3PmLCx4AIIOjQCZiSJUgliCAw6HsHDjqDiRFyELHTohM1K3Wa5aMudEx0ggZkBGbVwQ7wRH91ug7oBDB0lmZj20fLX/YDh1PSRekasv065/bPtfccb7ML/K33UHaB4UqS//cLkkev7vR79sV1BlWPqcJTAiYvtLHgelbe+4SNaz+BEtd3wKnt254rZkwJztunkxruB4/N42p7HYN1sa0wqNWm+p/goHWeyrzvJqDPvre6Ps0b5Xp2Jyc/kt3v1bznokzL9du5qEfH5qRu8hG0/dYjGK0tGXisgX6uI/9MMLgN68FHQLzfuPe5ZwnUKEyQ6Ie4TyZw1v+0H/r1tsc9ah/mdnmtc3Oa5ZiDstbJMYS2SruafgPFe8dfzkKyZUpG6COC1z0h4P7kN3dNa9P4cjPLNSbRQYDO/nqfczGtI+dljdiyH0qW9t9x06cYiFema7VnC/0SCaY1wsy+j8QQ6162fsQmHivjO8fpsU3J17Qv2KbHUT3W1oRrZ1Jo7eTLrz32o9y98mM/9mP5kR/5kfzm3/yb36/6d32SQuBNwJwcggAHG4KNbl6yKyybLDd7sn8EwAH0PPPXDxr0Vdw++6GOfc/23ZbBKefGfxNIbhvTdQcJO9EJQBgU0Qk7qNTh+5EFrqHZoGQZLMnyeF76v+Xvy44V/6ok+XcPJf8h+YKLdu5HfwRJa2wmnf8UXCi02ZZpOdvvtJZmeFu29Z1QE4BUT4OK3uc3zK2xfn1dG3Q56jABVto0E6QKkxH+MJnnw4BqbX9NAbbgjnZLHckkXsdYq0cfbePjQdXjKVyjrhwzAWrHRTv2vveYPA9+TMzlmSTRx7Ee/U/HbrDvtrnP2Fb9nu2avoc+17qxfZZbe6SnbZtMKVjn3iHA5HiDss8kEeSJSrJnlJND/9CxdN772SOSQRxzx0A9O5fPye4D78/K8jNM7PeJLEmd+y7K87GhDGNkosdx2q/QD7NfkxPt50aWJ8xdK8eh7i3bBOezSdOUOPhUy0lI652rDueC87lGJnrted+gfqP3lTVf1v12kkMfZ59AW+nfmr/ufyfLnuu2135bj36K5AeTtMmf3rnygf7QfP9uL48++mg+/dM/Pffff38+5mM+Jl/0RV+UH/3RH/3lDxnyfd/3fXnNa16TRx55JPfcc0++8zu/cyz3hje8IS984Qtz7dq1vOxlL8s//If/cHH/9a9/fR599NH3W4+7PkkxY0NGjA6XYGpitxkI+CvP3YR1dGR4edLgYGXhpq8TmxKDOnIz861rFq3XKWZPCTrdBvViOZcxaJqCKpklBxgyRlPixXV0gCA4bHmzaQ4EBuEMnp3/Pp70z5PksZ9Pviv599klKA9lDzjM8rPPttf1YnA2g1Xd3A7ba1nOEZM6zgMTTs+D17DCQOIkjsGHQNkgtq8JCHyPoJTgxDZvwLjN/rcSDOxru5xfj2EiBQym1oB36/R0rHKa3bc0XVN5+gf7mDXwx36c7DMRnvYXbYi/DUEQRiDDOeDXtK+RCH5MhckBheQLTy6dNE9ExgQIo9f2UZSJaTZ4I2EwnaBfltBbJ+9Xz1evkQxa093zeV1lz7I/mau4rU12v9/z8dknHRNZVJ1o6z1FbpnruN+6TbTcr08juEa07f7vOKoLY1jbmxKB2ux0slXhSTLnkwkJ15in99P+ZzzfqMwagHICUHt08sJvwJtO1+jrGf84LifmTBxol52zyX9RuH+aPNLPtg7X1+3RN/m0+7J5O8ozk7e85S35qq/6qvyTf/JP8thjj+V973tfXv3qV+fJJ58cy/+jf/SPcnZ2mBr+yI/8SN75zneOdZ588sm89KUvzTd/8zev6vHt3/7tee1rX5s//If/cN761rfmsz/7s/MFX/AF+Ymf+IkkyZve9Ka86EUvyote9KL3Y5Q7uefWrVu33u/ad7C85z3vyYMPPpjflr1jY9BN9g5rizLc4ARPrHOi8i3b5y7ZF8vTmRhA8RrvtV7lZpZgqPeZhNFJT6w92Rw/arHV/7MsP5+SLPUm0JnuU8dp7HTYZFX9Q2KcG4Mlz9k0t5W2vQZAuW73JvmPs2MdP/nifpOUd2X/wdL2yTmrjpfNhefZttnAcpbZ7mi7yT6Y9pedW86/r8M1o07Jcm6ZzE0ga0qkuB8MZNZsbmprAr6XAVj2Pdkx/7d92tPaY4YEM1PiY3/htj3PBPunKON15jPc7d/r1jbX+q+tE/Su6ZUs19Z7yUnVSZYfFrcPbJl+dsPzS32pA+8XoF32JQgVgih++QVPwyZ7nvSY9mfF9nTZtaBf12/flM4x9XFds9O2y/PskpMHs/NRJHioC+1gSmTWTlImAD3Fw8q096axeU/7xIuPst2X5NXZnTa+KfvTIkMwrsVp9t/4N52iTGu3UV3qPdmN4xT3RsfottveWZb7yL6Kellnx/sp5vD+ZNMW+rVn4u99rWUbxz3XZ0nemOTxxx/PAw88MLT8wZNix8cff00eeGB6GPBXs++zPPjg//eXPC/vete78jEf8zF5y1vekle84hWLe+fn5/nUT/3UfOInfmK+7du+LZvNbkX/9b/+13nlK1+Zr/3ar83Xfd3XXdr+Pffckze+8Y35oi/6osX1z/zMz8ynfuqn5lu+5VuevvbiF784X/RFX5RHH3003/AN35C/9tf+WjabTd773vfm7Owsf/AP/sH8kT/yR57x2D5sEtrJ1G63me28DSQ3et2AwGeAGeDp+M1EUB8CE7P0V7JktNsuWZVTXCPjQydTR+KAF5RbY1XPcW2Sc5UxU2bHR/au41kLaHXia0yW2TWf2kysEdeYul1P8u+yT0p+/qL+jyV5Z/ZMJ51y53MCkwx6TmoM2mkDlyUo1dPjayDw4zAEDWT3LKcqxzl1Uup61IP2ZZvz/jHj7/W9oTZan7bOa2vJdOWZgMKWM6htnWsqUz3KQHYuuCfPs7Qb2mDL+DEdgrRT1aFNEATkop2bao+EBst3jghqOWc+jTDItD/YJHk4u8ePfOLAueF1tlfpo3Qkgcgs06b4ta5rwHk6oY7ue8/1b83nBfe6x+3jKvXF7ptjsR+ZYgPZabb/7ux+P+kp3E8OP6dYnb2PNyvXp6SivzHm+v1PvTf6Y9mWoW2fqTz3wnOy+2a9+3MotWvq0/Wckg3OnRODjpWnorUp7nkKSYrrWfqL1uN89JpP9do+T2o5p7XN2gv3pG3Dp9m91n56n2OZ/AnnJOiX1zu21t3q/YeOfPAe9/r0T//0fPInf3L+p//pf3pGmj7++ONJkoceeujg3snJSb77u787b33rW/O7f/fvzvn5ef7P//P/zG/4Db8hX/iFX3jbBGVNbt68mR/8wR/Mq1/96sX1V7/61fmBH/iBJLvH0t7+9rfn3/27f5c/+Sf/ZH7v7/29v6QEJfkw+XYvsnsMWH70g46boIbOscCv9xhEmCjQcbCcgaGBVJ9j7/v2y81NR8n+OTYH6mTPak6JFsGT2/PctdyUSEzMtefRLDvZoKisky8GcoqZrdYl21vpHNfhr4Gt8+xOUX4su2B4nv3JSXVqkDvPnqWrrgQ51CnDvc6B58X3T7L8JhmvF22r83WK631Uql/vSxvlHJphNRCagvkW9XiP1/reieF5doG4c+BHXQhSCPANZipmDG2rTBBrC9vsgB3fc01op9Wh4N962h8ke4Bke5z2EU93qAMTeidx3NtMZL121Ms+w0IgRXuiTmRo21bXuyCt91iGvmGjdvreyfG0ryaQeJbZFqM+OK/0W90LJgQ892dZzqPXbvKJvd79yuu2V/qiMvo+EWKiSwDLOTI54/q1eSa39DmOkRUSITyFte3TJ03Jr5Nu73fq++4k33XR1rugp+PLNEeUKY6xDMdCu68QRzDp6JywTccEr/vEFt+fQ5KzvnHaq0y4aiM8RZ/wDPdj7ZmEQMtRpuR1q/tOpCa8c5R1+af/9J8+45OUW7du5XWve10+67M+Ky95yUvGMo888kje/OY35xWveEW++Iu/OP/4H//jvOpVr8qf+TN/5v3W8Wd/9mez3W7z3Oc+d3H9uc997uojZO+P3PVJSnIIrhhICczoELypCP7MRrJtBwy2aabC98iwtj06ewcwsxhkPQgoeM0JigHtia47+NhRE5DVST6Z5Qd/CYLXZLrXOSHb2vcGeWSdDIAZGH26MB3Zt14D33WVm3TmWhj8tC/ampNDjoWv3RaTRyYmBIkGFFMA96mYwWXLTY/CtBzbYbnJVpsgMZEq682EoWUJ7qrfSQ4BQPWagCD7Z+C0PWeox7bZ1pSoTeUm/ToOn6Qly9M0gh633bH4dIpgtmOl7Vk/J+bTqRN16tybzGACQxKhfTRUUU8nftWp/Xierd8EXtmGE5wpEWGiNQG+3qfNnWQ5J2x7DdxSz7U1o+/kPK8BUY+p/50AMI7YVje63mTLiRqJufZv3+AkrTqYBKHeQV3HlIrB7za7U8ErSX5S46huU1/cB8l+j7QPz0XFybCTFurV9bOt8b4TNp/i2Bddyy72fFZ2j7i9GfVshxX7R4+bj27bTriGJhMojB22K5NnrEPf9KEhHxpfQfzVX/3V+Rf/4l/k+7//+y8t9/znPz9/5a/8lbzyla/Mx3/8x+cv/IW/kHvu+eWPz23cunVrbPfLvuzL3q/2P3Ts5f0Ugy8zWTdwnScH3Ii9fi1LB0CHXaFzb1kD59ZlkmPWkAy/H40g8PACthwdEMEFnRYd0Vl2TDbbYbBnAGr5zosTrfv0vn0REG91n460Mh3HV7b633anwEzWneCaOjk4U1c7XAYtrwXn/7LTIYK5tmWba1+910eLmECtzUP/286mU8Ap0WYfFNpLdXPS6rJ9zTn154Koix8hcTtm5rjXJpAQ3DNwnABc609gy0BwSiK9T6hrwR1BK5PLvneCQGE9i1ndnpx5nGdZzrnXmf1OtrzN/kSyIJMgrvtsLQln25xj1ufack8YPHmv2yc7aWg5Jw/Usff76O42yw+tT/PVevYZ9HX0RQWUnb/zLP3qlAB5X7AMfZj126iMx0Dixz6QaxnVOVUZi9eeJ0zta9L1RK+5n/ijkvywf7IE2bVb+uTa1dUsbc5jsM9cI5JadlqXKVnt/YnUYp3q+4Ik/7cXJ7/rs5JPUTuTLfIzIF3rnopNcaNCH9cP1q8lHB5ny3AuGdcYHyefdZT3X77ma74m3/Vd35V/8A/+QT7u4z7u0rI//dM/nd/3+35fXvOa1+Spp57K137t1/6y+v7oj/7obDabg1OTn/mZnzk4XfnlyF2fpNQJNnibreRjCWSp64BZZwIzfKSiQtaegdAJEwHhmhMkUFljGyegy3GbWaTj8ClS9S2IYZleP1d7lTV2p2OmU3PCcplMYCdZfhjXgaF9EBScoJ4DC9dwcs5kUg0iGBCTw9MKlumaMAFg0GJwrC4nWSbT08nfeS7Xv+X5zXROaD1/BnAEtbSzrg1Bkte0456EevIZ7rbDsbX8BOqnpIPlL2MAk8N63PcESVdVziC5yUz7bHnOT8tO/XdtvJ5kfQk2vM4TgCZA6vs1kGqQP5VPdqRGbeil2X25RLJ/rLTrSJLDe4pEDPfENHaOzwy0yaM1O+xYpmvUkb6S9504TT6NBMP0vjpezXLNGXOYyE5Jz5QUch4aV0i8JIc+ift32hMd89o9xz7GjfZB/+IEe6vy9UH019M8d/w3srSbZLmvfArvpyEm3U3+mIyreI6YeE2JsW2WYzrL4SOuye7x01/8V0l+YPcjwq7f/u1DqgNPOBlvqKv3DgkC4pxkmWxPNul4YR3XEp47U7b5wH8e5Zmlcbdu3cpXf/VX5zu+4zvy5je/OS984QsvLf+zP/uzedWrXpUXv/jFT9f5m3/zb+b1r3/9M5yLQ7ly5Upe9rKX5bHHHltcf+yxx/Lrf/2vf7/btdz1j3vV0XfTMkivCR2ZHSX/8/5p9swiQSTbcjvJ7Giox5rjWxsLAfLpUK7912mZLdrqNWUKxhMbTOfEutSfdau3ga+Z9olRdrLDOad0XH50YWKlT1COgCFZOuvgNQFt63Q+GDSZIPYay1OHKdng4xHsw8kFy/Ya2+H6GqzShtfASbLsk0wl26XNTACp8+Vvf/LJCKWJAvcWgzRthwBtAvVch62utT3X82nRlCh0TSf9WZ5zzflwQsy+ksO9wH69ztF7JsMGidQxWc4rx8rrDyZ55cXrd2X3mQHqc6by1qtrRN9Yvbxnp/FwXPRBJnWCe9NemPbsJLYHxgDamoksJ/GcF+7HKbkyweT5mOzae9hrajsnKcDyjHct13i3UT37UxJaJr6Y7Nn/dqz2rSzj+OsyTtA65rY71fF4PFeMr7aXac3cNn0z+54Iv012++m/ya6Dn7/Q+SmUoy60f8aJtZhcsY6MRbYdtr/N4TdHWv+2yT3t5PAov3T5qq/6qvz1v/7X86Y3vSn333//06cZDz74YD7yIz9yUfb8/Dy/6Tf9przgBS/It3/7t+cjPuIj8uIXvzjf8z3fk8/93M/Nx37sx46nKu9973vzb/7Nv3n6/Y//+I/nbW97Wx566KE8//nPT5K87nWvy5d8yZfk0z7t0/Lyl788f+7P/bn8xE/8RL7yK7/yV2ysHxZfQUzWKzl0qgQidP63e89N77YKgMlc00kThDIxoLi9NXapTqVBY0rKonp+zfIETpf13Xp0OgSpTphuDG1xLtzOSXZfp/lEDkGsx+f16DXKvVmCg7UA0nr8gHrFunq+1nSxTk4wfcy/Nu8++UgO540B0I+TtExQhm1XzrL/IHv1JRO5BrzWmMPkcM49pvMsf69jDTgn++e1nZwQOKwBZOqzlshxr1/J7nNWZnTZ1xrAnPaH/YbH1367XybfsDbXBuqX7Qu2PdkB94p9TbJ//PU8yWde3PtnF/e4Xw1MJxvwD/Al8xq2PY7Be5f7Zi15TZa+nGXWyreO95Lt3zqTOOE4nJit6eD71MP9cl48lyZe1ubQY/X6r42p5ME53nMNTCBNCTzHOJWZEo/2Zf/INrw/aefex/3P8VOvrplJRK7NeQ7twuNzP96L3V/8Pa4ncjivbXONAJ1Im35BSMfDebXPWmun/uHacJ1rQT15WvWm3OlfQfwb8sADH1ge/z3veV8efPDNt52Xtc+S/KW/9JfGz3489thj+ezP/uxcu7b8Na+3ve1tefazn53nPe95B3W+93u/N5/7uZ97cP1Lv/RL863f+q1Pv3/DG96Qb/zGb8xP/dRP5SUveUm+6Zu+6eBrkH85ctcnKb81ywCY7DdPN1iyDL5rzscAICjTehUHSIMxllljFuwcvNndB8XXDcjavtmq5HCcayBsAmAV68N2p35cb5P99/0/kR2jxKSvMp3GTE65AJunSwY0TvwifSdA4JMZfoNTwZeZ8kmvjt1JsAPPlKRUvFYOFAaJDJJmsav7xBDSVg3SLgO9yaHul43lsqSAZZLZXgmqPX/Uc/p9o2T/TUrXsnv23WOfQIj3aXVbA2cTqPBaeK48x9P+YWIzJU0mB3x/SlrJWjspZtlNDpMU62PfYVu7na9dIximcV7mu9bscM2fUn/GC5dx8ut2mMhMJ5fTCdtaQtL2KvYZLGP79d5fK0/b5LxN9Sj2A5PeBslTwrE29inOmDS6nS30Pfcp7Y9jn8bW+r3G/Wm/Q2Jr8pNre9K2xuRgIibap/WsTLGY8Wca11Rvksv2aOvfyIdCkvKKD1KS8n135Lx8sOR29vZLlkcffTSf/umfnvvvvz8f8zEfky/6oi/Kj/7ojy7K3Lp1K//tf/vf5pFHHslHfuRH5nM+53Pyf/wf/8eizI0bN/I1X/M1+eiP/ujcd999+cIv/ML8h//wH37J+kwsBjfPCf77GPgc/7k5+6gNy2wv7vtkoq/7/PE5ytFR1nFRHwv77f1tDnUxgGGg4dgJ+Bss18AL251YPwrLnKtMr7M/n0K0jXcn+ensjrkJOPl3hj865XO9rgPuOgX/q4ftgoCYevN9deA6sN0CETJIHCv7ZGJs0FfbaBsGOz5yP1f5KQC17Rs5DHZrNlA9bOtMCto/98wWZTbD+7bX9dmg7WTZH3U/yf6D9hNo6Nr6MTb+jsn0uEL73ObwF5o7npbx6QjvU59pr7BsdaotcS04V35sJqjT/d4ynksD7C3q9H3nKjncK8lyLpi8tJ+1X85eW7/eN/hlOeq/Jpzj7omTLG3O7bkM+z3Vddpg55t70bpNbU17eIv/tpNT/JnQoT7n+Ot7+ozq2tftk7a/BvgrbZsfzp72juPMqa75dDYY10R4kQBhGb5mferEvRJdn+yK9kdgXXvyvnebyd6fcu2qQ+3AcqLXtmOefG2yfyqAdU3aUN/W2wzvuz7UrbbkNmyDbcfJL5Oa5FDXoxzlmcqvuM285S1vyVd91Vfln/yTf5LHHnss73vf+/LqV786Tz755NNlvvEbvzF/6k/9qXzzN39z/uk//ad5+OGH83mf93l54oknni7z2te+Nm984xvzbd/2bfn+7//+vPe9781v+S2/JdvtZWHqUJwIJIcsINkrs0d1Nn70Z2LWomsGsE56pgSq/TLgTEmVHc70eBaDgQOgAYwDiB+/mNgvttM+nKBUGOip8xZ1mRgQ8Dix9ImVH9eZEoGJ7fP8MjBE99jHdrjHBHeyBQYrXp9AmfUxGLiK62X7zZo56BjgNfD5MTonPAyM59k9JtDAxiB2rv9dS88/99RakHdZ7h+2T70mkMF2t6o39W9QwmvVwaDcdsX5MvCocB1IinC9ePKwBiQnUGwwZ5DGBJSnfhO5YkDrfms77edJ1fXac52oq5Oc4D19goMV15B7ZYM6BYweA9eS88C+mVjRHzN5YbJdYdJpn9Tk5ERluW4mwbZ6fTLct62d5PCLRao7bau6nGU539y7TFTZTutH9XqdMYXg18lG/eJkZxNZMfXHsXS+N9n/AKL3XPWijXovMzmcpGOhv2Jd2p6Tr+kD/9Sp/vtejIn1meSa+DOxwISja0G7M1ZgOxNZQGndNbtg/9T1QyNZ+eD9mONR9vKr/rjXu971rnzMx3xM3vKWt+QVr3hFbt26lUceeSSvfe1r84f+0B9Ksjs1ee5zn5s/8Sf+RH7/7//9efzxx/Oc5zwnf/Wv/tX8rt/1u5Ik73jHO/K85z0v3/3d353P//zPv22/a497dfPxFIGgm++7kfzcJeV8pc4a6+dTCDMTZiDaLo+LT1XuJDvweJLlDzYSdFkvtxOVYxudg4qPrqfyBqYePz/vsJYE8dEsCts1OGFgZAChHpfNS/SeLN6UNDIp9Jwnyzlu4KJDnx6326iOWaqWcWDhPdve2roTnLCs+1qzZbKEybwOtnMnFLx2niUh4CSRyb0fX/NY+5qAa+r3sv1HIHy2UofieyfZf6ZlWkv6JPZBUEYbm9bEY1wDAmyTwNF6r63n2n0CT467Mj221LqTXlF5P/o0zUn/b7MOTNeSIdpTweFEapjAOte1ZG+P3Oe0VRM8m1y+H12W7bR8+6Cf8p7gY10Eqp5P68D9ZlJvk10itHzK/dAuJ1tL5j3k+bT9MZlLLv+BVNoNgf/aySn74ck89UjW1yAqw+R6SgRMeDime487FjIG1Gf6iYLKmh/u9ZvZ/3QA6675/ooxQMV7JSqzTfLG3OmPe/36D9LjXj9wR87LB0t+1RPaxx9/PEny0EMPJdl9Q8A73/nOvPrVr366zNWrV/PKV74yP/ADP5Ak+cEf/MGcnZ0tyjzyyCN5yUte8nQZy40bN/Ke97xn8ZcsN9D0uIs30zQhdF5mXCYAPTGgLF9nueZMpoBahzKBSTpE1iUQr058FGNiYs34TMGOOpoxYfmO1Scfle1wzwEz2bOWDZTUlSdVW5U7R5tOuCYQ0vERNJhpMojkYxwV60/2cjpp6T3aTsfBR4C2qF+Gk+Cm9QlWDAi5HmZ1J70uC1Lun32wDV6v7fuREa5Hx2yxfXk/GyyyfUrn0vabLO2nc8W957FQH97r6+dc/JU8IGPMfmhjG7RBW6q+BjT97+R4oz+Dqrbhz49MUkBksNa+Wpd6XQaagnJTkulEt9f73o+/1K7ug672+UyGqM9mKEMbsY9nUuQ1JaBne9OjSh1j2+F+pG+jdO88O8kDWfqf+n+TLckhyUQQzNNQ+wSWTw5tkL8jMz1aRZ90gjr049E8UJzYsk2Phfu1vtPi+ac/5pxQLwP7CZTz/eQTpnK0Ee6baR6qX8vUPrin+37CMLY/J5JXsowz056gr5mIQsZavnfy+KsOOo9yV8mvqr3cunUrr3vd6/JZn/VZeclLXpIkT39Vmn/s5bnPfe7T9975znfmypUr+aiP+qjVMpZHH300Dz744NN/07cVdAP2GLYbaHrso4GCDAzFyYqBKUGtAaj7YrCyQ1gLOGRWttk5GTMlydJhsD++7t8EoukMDdKqHxmiNdBBwHyaJTByUJxAQYUAuz/IxT4aqJzoGURPyV7b8NpxrH5MiICJj2kQaN4YyrN9giHOMfXtGhm48AceqRe/pnJ6vIIJXPVlvw2U13F/EgMr9kObYvkb2T/GZybO88D9ULvn4yF8hGHaf0y0aOstQ4DpAFswxTnn+nOPElhwzE9l99kq2gXrOSmnLfLEsu1e1zWOg3Ng4ExATek4+3pK2ipOWp30tDyv1+8ZkHlcLM+53qher5lICF53Xtkn99WNHO4X7sHa9NqJyin+0646Fq7HWtLX8XZPR/3THk5Ujo8BVdjv9MhNx8hY1PeMQScq13bo5zx3PiGwMIFqPyTPnCxyDTl/fjSVhAxtJnjtGM2+aG/clxMRQHDNMZpk495oe0+pHMdYYfziyS39PvtxEknScC1R9aNr9pnJco04B/bxfL1VfWMd2tNEFN+5cnzc606QX9Uk5au/+qvzL/7Fv8jf+Bt/4+Cev0Lt1q1bq1+r9kzKfMM3fEMef/zxp//e/va3L+4bCHVjG/Q5KDFA0FFdxjSxHhmjCcgxOXGiQ4aI4segymb1vZ35NC6CBTr4vqfjM1i0E23/Tu4YDHnMbiAwOTkyQwY2TU7Ocxjgp8fDOjYnS2vMcsvzBMTCOSFjRIBNh76mD+ei163L9D45DLAdu9nQ6eSL81FxoGa5Keh5bGat18DMJA68tJ0mCwbt7HdiL7l2BFp9TwBMu20ffPyHbU3gxqxs/z+R3aNeHWOyf/yUbfbXzJlkGNS1zvRo1ZQ8GNyYIY3Gy/3UBNDJjoUJH+enetjvdQy9f5rlj2PSBviZjsoE9s5VhjqdDXWyct37gUDatjkl99RpEu8VJxP0e9St72vnT2b3ZSJP5NBmSAyQiKt9GqR6z96APq3P9ZyEe4l6tC79t+eRiedEpFWaTJ/rWqCfT9hahr7IJydblZ0ILCe80f3pj3PN/nhyWnFi47nkvNGfcd2vZrlul8Us3nfc8ZzQh0w2ZDzT+46b1H/S7ShHWZNftQfuvuZrvibf9V3fle/7vu/Lx33cxz19/eGHH06yOy35j/6j/+jp6z/zMz/z9OnKww8/nJs3b+YXfuEXFqcpP/MzP7P6S5ZXr17N1av+LehDcdCZkg6eHEzMULJ87Ikbnd/s0Q1pp5SsO6bLgG11Y/1pTHTyJ1n+Wvka+8HXZmUZyOjECAbs3ChMfpLl89qTDg4UZnUIug3QGqBd3uJA7DUj4HICNq1BMtsL56hl+N7lz3I4r5PuZEy3ej8lfmy/epAhJBhpm2YUee8U9R3UmJBONjGtva9xz5xmd1L4brR7muV3/bN/68rkcdKJPoDzvwY+nYjY9icAwiR7WlOyoMnSbziJ6pclTGNwH056e9824nY8Roptwv5nYrBry9xP1Ye2y2vc206MmcB5/j0HTtpap316Pqf1od+cEj2zzmTBmTzYlyX7k2XuHSddXo8ns9x/XlM/ZucEjOOg7/Scde3uvSh/M8vTy5ad4hv9F8Ex+7bNs+9k9/je9Sz91lqyTJvhGFmHSVNQloSEY6B1pq8kaTetre9PRAKFyQLxA8d3Lbuv599ml6xWf/73aW+vnet+ZSIS2970etKrMsUMrq3JkztX1hDN3dbnnS1rWPj9llu3buWrv/qr8x3f8R1585vfnBe+8IWL+y984Qvz8MMP57HHHnv62s2bN/OWt7zl6QTkZS97WU5PTxdlfuqnfio/9EM/tJqkrEkDyJTB06GtJSM2mbIxN4YyBd/dhJxcs4plHOxcJrDT/368aQKXTkLoHJhMOCkgGGKQDd6b5aHzN7jqPDlx4jUDXMoENp0wTCDA7TJIVLct/tgPQfuaE51YKs4P+3bbPrXg646PbKrZpwkgsS8zaRxPmTbaUOsx8ZoAR3J4SuATSOpD4GRWlOtGG+Y12lnf9zGn0+wZVSaVZh/XWHSSAeyz1zw3HNN0ipHs58ZjSpb7daPXE2PrZKJ9G1yv2efEwvKex5gsP/hMMJ0s65Ns8BgM1DxO+9qOx2uXHJ7qrCXKLs/X9jvcC/1gfU+v+AOi/c9H1Sr0Pe3rJMuToFP9rw68bx9CcHsZy7xVGe6b2kV9LE+7Wbe2xHHQN1c6NsaMaQ18Osl1NrvP9TdYZ2Lademadc9zn/EkgDGAvrTt9nTIjxParpiEeB+1LNtu2TU/mBwSdH4E0gmPExnqQp91L+rTJryOrE+ffRkUbnuMQY6pFZ9ecZwsS+zT90c5yjORX/GTlK/6qq/KX//rfz1vetObcv/99z/9GZIHH3wwH/mRH5l77rknr33ta/PH//gfzyd+4ifmEz/xE/PH//gfz7333psv/uIvfrrsl3/5l+cP/sE/mGc/+9l56KGH8vrXvz6f8imfkt/4G3/jL1mnaUOa6TvPjiW6kiVDwCRnaq9OaGKWeK0OiD8e6Ud+fILQvnqfv15PNsJB3qcLbN8BzsHCfbftNebVzslOmYCBY2GfE7s81TdQpj5OCnt/AlZm5chCcr3aJ09uKJNu05qcZRewG3ypo5MCgr3aiEGlH1naXrR/JXum03PhABj1TTBBHQj+1tixtuVATDF44P5i3Qn4Xs/ShqfErOWd4FBXghk/vkUgZiBaPa5ktuHJZiYSgABhzadQR4qZcs/DtD5uIzn8cdFk+SgR97v143rRxznRmB43rfAxJLbd/5uhzMQOm5yoPvXh9u8mjNoe7cqP9BRAeh7NxlOm5IPvHVuo13QyymTBc0/hPNi2NlmOpe0SbHO96RP7rVEcr22D60I79GlOoDu/OINjcrygcG/SXp3c8TSKMWBN6j+rM23rDP+Z1HGOOrclL6vfeZZ7q3WZqHKO6EtYnu+32T/udz1LTDD5Z/tl2viUdBCDWL9+wylJTetdHRu3ag9c1w+NU5Rk9/mQD/RvnV9mqR+e8iuepHzLt3xLkuRzPudzFtf/0l/6S/myL/uyJMnXfd3X5Rd/8RfzB/7AH8gv/MIv5DM/8zPz9/7e38v999//dPlv+qZvykd8xEfkv/gv/ov84i/+Yl71qlflW7/1W7PZTKF3XU7wfw2gN3BP7Kad+Zoj5SNGdNTst87TYMrBygFoCrLn+s97a0GVQcqA1Y7KY2WbdNonqmOHyK+oJAvGNSDr13Zab2Ie2ZYBHxmvtUCdLNei+nNOtrjm4EQG0ywZ58FJqwOr12AC1WTdqJeTznPVYz/VrWKAyADX+pwbywQKHFQ5js6j73m8TBptI26zY+Le9ZxUtwI8kwIGXdMjEvdm98jJk1n+qCPn0GDPybOTpoIZnipSuL9Os7QrJwQGj3y0s3oSeBHonWdpJ7aXyxIl70cCkclnGOhWCE5th5ybm2qT7UynFxXu074nGKf/oC+aEs7J73v+rmWfVHsunGQF15nYM3lM5rmc9hPHMyX99Cm2/bWkrjpcu/h7UvUZH2nfjHOWxgXauZNzx8/pUaNknoepT9aZbCi4N+0JEzrcX2yzQjxh0sg+ruSNTzQ5vu7tXn8i++SKa8C5tG9h0mvCwY95ef91TCfZrd190HOKt22D68jYe4TiR3mm8qv+OykfLOl3Xf+2rDvtZAk6GLw22QXGiZXlRvZ7Onf25UfErAMdt1k0tuvXbsttroEOgg0HUzMfk1OfGKw1HS8bD9uegHEDmcdpwMNy1KflzrL8bRYChonVvGxuJx0MzMxSTSwcATaFLF1yyEh67k9V1/bua9VrzQZaj4FlAhG2sbVy1oGPK7k9r3GF6+Y91vpTPd7jPJkxPcn+pMRifa+j/M0cgr5gLBNryCTlsqRhKuuEdZqzqV8DxzWb4BiSw2TJdXi9Zaf9PQHuNRuunhxHQdzkz6Zklvp0bFMS431CP0VdKueqE5TlZ1um0ymWZR88AWXZCYCviZPzvr+GtqszE9c11vxE1/qZlOsXfz554ZpeZmPJ4Z5lopYc+gyWvazfKc5PCUtlinP2T9SX9dxXstzDrLsWN9vXmm9di8eTzrV3+/SgzkR4GEtw/VqeyTtPizy3a7HSJEkf1/2fc6f/TspL88ADz3QH/kr1vc2DD/7zO3JePljygf2lmg+ClD2yI6w4kKw9hjWBg2S5WblJHRDN4PekgGDGQcM/sFQxq7bmwBzQ6UTNzk3Mi7enAwkdGwGEAQrrTQxN6/kHM6d5JZtFlo8gaG2dW3d6JMunHEHZMlxNIs3iTfPpgEcGq3pyLqmP52jqrzZ9lsMgeDJcSw6DoceXHNrWZfXXglL1upoly0adKWyT+5D98dEcBmQGyon15PVzteE92uSj4jW7cvG/83Uz835jfY6pZZjcGcB2vtYeF5nAs+eBwJ+nTP3PfqwfdZkA3sSu8jp1oa5lfL0+J/hP4MYk36C315nkO3HiWk/6OxEyWPMcBn07aeEeqv59fMiJ/kRkTetAhnstMfQpD6Xv+1kuA+mNytH/b/G/j+08kb1/pl3Zp9G+2deUcHFcXQP6RJ9qbTKv57muO1EnsOYacn5Zd438oJ1M+8CnjJybyf9PhAz7mBIU9s3Yz3VhfAjKcs+3fyd8frIgWe6np1baru6Mj8nhmhND3flyfNzrTpC7PkkhaPUmrZB1mxyhGSqbEX/R3sxcr9Mp0YG3rPtJluCR9+yEeK+B248z1aH5EROCaY7vRPWTOWB6rBwPX5MVuqyNKThMic3acTpPrLhWnKsG24mdozRAV58mr+3fZc3ublWOdtbEiuPs+AliJobUCannlaBuAgcEBlzfiYlkG1MCuSaT3u2bIJ1BnWvP9faY1pKjaawV6t++DQjuu/j/nov/V5I8kt036fxcds+Bt959F+08qfHdDjDbPipmnqcTkmQdCEykSfvPcN8gvv/5mZXa2vQ41eS/Jib5bLg+AcMpIas+wXUnNcnsN+jn1xJvzpNBbNu3ri1jn2NQTWLrfKjLJKk2ZX+2tsdoRxUTGJwD78Pqedlnhzge+/0z3aNea7Fy2pc+IbZwfZ3seGzW1bJGjLFN79GJRCDpZJJq0qdCm/Eetr9oe4wf02m5pfUYE0wG2HdM+8ltc077OCPnzPihdj+dIk+x/ChHuUzu+iRlCo7dzHR23VwO4ry+luRMSc107EoHRsd2puvUh3qsgXyykw22dHQcV4/qKzwdIONax0OAYXDj4+NJr6y871r0j+3T4fG/5699BvfPcwh02Cf1KIDwLxNPQcpsOPVoAKKT5+nJuepRlzVQSrtlPwRzDGQGTG2DgXBKHs0yGqSZAfR9ywSMWM8AapN5vl2PoOBM/52gGRgzMJvN3KDOafb74f4kr0zyiRfvbyb50STfn+V+3aAex9X2aQPtw6C246s9Wt9k6Qc4pgJez50Bc9u6kuWJEdedNmydJtLCOrJvJpTVlSCdunmNfEJAWzGQIrjkuN2+/VbQ71pSPwE4+hDbUsdHEMc93Pon2Z8sBfdrI9SderTfyRdwPibbYnLEfqd9431WHa6gPRIk1K/9Ppn9t6h5XqcY6gSr5U5x/yyHtkYCo226PwN9Jp8mhC7ThW21HZZnTHeCYD9TO6leTp63WfqXNX2Sw3ll/xOZQVsjrpgwA+fMe65rQh8RtOE4bMx158vxJOVOkLs+qXUAM7O20fsJlE2MIx+jSA4TGAPfXm9ds6pmOupMruK6AwzH4GTGY7PTCd7TsTaQ1ZlM42hdBlT2OT2ClCzBwTW9X2Og3CedaHIYeN132zTLREDgeamYFeb80EacWDoI80SGZcygGWQyEdmoDtnFNTbSAYrj6n+CDY6R60E7on3QZt32VV3n/HOsW/w5gF3Pcry0GSeF/U8gzUDqcRp0tr+O7ZXZnaJcT/IpH7173OUFSf6z7JMS2j914VzRFnx6NOlgIWjh3u/eJIib9oXlyczJt/eHxf6v+tdegvERsHAuCIxafkqseOrtAEUf0D8/ruUkkmM9zdIOW2cCeNO8J/sPMNPvVejbCdpoCwavvWY/xPWb9tq072nznb+rWe47zqvjhdvpXE0+6wz/ac/JMkFh21Nc4HsSbAS/TtQc29zuRGTVNrZDXSYEFI55k+UcrsUMzsOUBFDPayh3qteb7B+ZrUz72utiMpHEI7EMbWU6MSyBx+ve65w3z4cTus79tG+OcpQ1ueuTlMrNi/9kEsiOcOMmSyBrlsBggUHNToqB0PcmkFMH2scu+KHZ9k8HucZ00zHaObY/nmawLsuusYUMYB2LHbqTwYl54hjYB8VJCB0w9bZ4zp0Y2imzLYIMM3P8GmmeiPB1htd16J5Dg1oHXb/nnGcoO4Eu158Cf/U9UZ2JqXfgdOAxqKW+U7Cyzsn8WRkmvH4EwmJ2lboShJFwOM3uFOXhJI8n+b/e+vjkXbfyOU8k/z7Jf5w9o8x9yDWhHawB/s5/vzXJ+rY+gYATvBIYBHUee4XjbB3O+aQnk3JeY5tMHKn/ZA+0I9rgBJIvAzEGRSZGCFLNEDOpou9km6xrXZPDNU8OY4j7oXB9DQ5rg2y31yfAb51MLkTXW9++sO0xPrIv+ncSW+2LZIIZ8wl8m5Bg/9a5c0vCjnu6Zad4bj84jZm+vsL9FtQxCUYb7PtTvPa6TXqxvhMQj4U6MTl0YtS+SXa1n8m2W8/YxfPc8o491LP6tO/2WXtn/aMc5XZy1ycpZlArdOJk1xhouIHJSLRO/zMwmClxcpHhveuRjWT/1M9sto+8KdeyDDpsl0kWxckGkzYnGO1zkz37fZb9V7a6PIOFgR4Bb69fy6ED9ThvZhlQPM5kH0wJllvWwYfg0NfI5Hkcnnv3Nzlns8FmWCkMdA6QbcvlLwPLTBYmUEogeYb3tTfaqdlFM6L9v0E97g/uLQa2Sm2K+9XSNp0I0MamBJfX2+5zkiR/bvfm1/y/c3/2p5tkKfktgGa3rSPb71x4/QzUemrT/TedEPiU1TbkfToBM/qQvje7bHDZPc4ExCdIbYtzs8k+2fMjVNPaty3aLE98LWvzxP9Mpuznff1GDn+ZnnqZ/HCSPsUgAvsJcNvnOzE3ucX/9h8TCURyzay316pzSeKO5Tm3tvEbKmsdJoLIccP9sHz9Du3V65Csj4N7jvNZktA2wXVo/ckXTUkYy5k8SZZzMZ0Wn+ua/SBJKs4xYxATIvqg6XE6J3W+Po2FpMCNi/+N4VOCf+fK+z5If0ehfGjYyi9D/NgJna8B0pTQTEer3PzBeyYO08TSedbZFYRcxhwafLSOAzkZPCc9Bk8OLGTDgusTmz4BvEqBx2mW4HBKjtgGpX0ZhJDppJxk/qE9B3QCJjNfnAMyVNbTgITBmP+ZADlBnezLIImsJtt18jQFcr5eY6xqI9SP68pkgnpynE7ICS45b2bPnMwwKXEQppyozMT6TfY0zX3Xmex623squ8e7fjJJfs9vTN53T/L5/69sLq4XuFSfK9knd1wfj2dapyey/w0QAvRkXqPeP8F/jpPzPrHbU7JinSi03erBsXHN+5qPsEx61S6b4PjkYC1Jpx0xIdpk6WvYz2XC5MrrRF/ataYPNVA3QeHX1fU0ex/Jcjw1rA05dlXfa6jn2EUdqcM0TjPsk19iYsxTJss2y3Ve64NjYQI8tekEmePzyRn9/onK8/2aD/JY3CeJGPpEkhXcm46NJrw2+ovutW2uo4k0r333EskG+v+NrvHEkPeTeW9Ma9T2nMS1jctIh6Mc5ZnIXf/B+bJfdG52mnTEBn1OAlre7EXQh1kQs8tk+diuWVTWqTDQGcxNyU51oZ7tk0DDDpFMuccQ3DNIb58GJRwH63mu6eTpYAtCzrN7rr5lu7bTSUhZdyYvBtkMWmZaM7w/V9n2zSC5FgBblrY2jZ3lOR7OGYGi7ZLAsu8L5qqDxWOeEjTeY398fxnrzjUzK9r7lwUyP2Jg5r9gdZMd8Pe3F9Fm+bXVTKyb/L8tu8+lfPe3Jte/dfcI2ENJvie7b/9qP5zzNZBa3TdZ7gfPHdsg6N/qdesSbPQ/EyVK+zXRQHBDYqBC8LUmBl9+7NF+h22f6P9UnyDHdmPf3na5v6xf++o+nHwYhTGDpALnufb0pPpkwtP3XVuv1fQ7PS3P9ebvlFy2N6tn9Vkj1SgT2Hfb91+8vqnrfc027ZOrC2PXZFsmQBg3e422s8nyd4vaBmPJWhJuXdzfSZb7xOTPVbXRv5Psv5Skc915q/9Ilsl3+yPQZ4Lba9M+pS1NJKnHW/E+pR9n7KRNm4ya4rnbXLOrO1e2+cB/cP521MqHn9z1SYoTh2QJUBnMLgvEZAQMML1B18A7xQy6gaUdZgGI2Zc6DDoRBjT3QZ0mpxOU4VjprPibB1MSxPnxYwTUg066dQwwWq4A9KkczmkZWetHRqpymkPQwYDvNTxXmV5nObKYBOH/f/b+P1q3La3rA7+1N/vcwzk5da+3uF13FClhVKUsxEIETFAiA3+AGRmiGWpCD0ViB5M2/khLorHbmIzYPbphRCMmtrYROrZ2GAkmaWnTdtIirc1IDUylgEAXIDRagRRUbnHD5dx7OIdzzs7et/9Y77fWZ33eZ+1bGurWrVN7jnHOft+15o9nzvnM5/l+nznXeukY6Ry8w0PZOq529n1t8h4BbHmXpYPjW7yqI1OkrZ+ndUGHRr3yuFAmArLT7K8Pj11JA4/tPMz6w3KW/XYWAFAZ3pwFNO7tJrX95r9z+PswyQezjNfnJ3lrkheTfGeSD6OtZAtKSaK4C1jgYVLRz81TcpVs7cMUiew6OVdeEmbqHCOzrqvjTHB1mRU0U/8N1tyW7ZnXKsebYIjEZAKuJi7TfUawXb+vJ9tf67b9aRsmzmyfO2YPs9VfJts9vtXJvqN/C7hZjgEG2jC3R50xeH2tRH3pbvhJtm+v86vxTQY7bgwETMA2+OzdtN6rPa+Otn9t+yzH686RfK9F/zgqbaJ9ZeuhrA4UdB47FvQtto0n2e6kte8TmS0Br29hcNP99rqxzOxPn+2xb56wCOuavu+RZK8Pkm0Slut0nV4rPfEkhQA/2YKFE303eSGITrZGmMZwSgRzBCcG5mwzuOd8lZUOjskgocZ9Amh7UY/J0RPQ1JByvGiU+g71Jsvorf3WTeJwkm2bBdz3s447ZZyIZZ0QiYOjuTWedB5Njm5H8vCenUI/t86C170dgomwXOq6nRf/Um4C0T2n1bITgLQenl5xz9GwKYp/kkUnbmT7eyJTVI1yEtjzaEvXQoG5SdzjJJ+T5NckeV+SH8hCJkpUJlBH/bibLcD5ySQfyhbEd+z4di8CIOoJSVlwnZHaj9VZk8CafBOQTjsVE8kkgSEApU3yj1Umx/I62GJSzna4rrvuDXJJgtiGATD7TX2hbnknkrLZvlImtnlV1NdrimO1Nx9Tm03cCeca5roy0CPIpzyeF8tNYO57tNMXWSP/d7IcT6Tusw+cx9o/At+9XRPKbB/xFO7bhjKYxcDbebZrxAEbEmgG4aZAAH1Isl1PxgfsB+shGWbdE6E2OeA4TtiF80W9n3xQ81C+ysF81gmTrhOVdV7jB97zmnhjp4tc76R84tMnj778AyYCh2mruIaRTu6qSFrLn+k7jVANXp1LU79fogwXNb+f4zsd7A1co1G1QSY4qIz9NznxJgMbgsLKzYgrwaSNPKO8jnz3WiOQVkQSkspSMEXn7CMbnLvLbJ3RKf62frfZPCfZ/mp0sp1365Kj1r1nmaLPk9Pm/HpMqY+dSzsnOyXqhOXqv8rN/JaNIIN6RGJhQHCedXeD0cbWX/ndL68fA1fKV70/TfKbk3zRb01+R9Z5ISD2rl+TwSn1p6Cs81HSNQEvykywxnZoA5oqW9df/z1S+fal0WUCjGQ71y3Ht4eZDBLckWg2WQcmhzERcK6F6rMDB1x/bbvlHum7AxPsr+3nFIThuqbO076SOFIHODcmlhw/B19sPxwQOce/h7hm3a99JakwyfE4TQS2900gOQ/V8ZMcj8Gl8lMXTlRH+zIRJ8rRRFtCO80+7gVXWCd1w3rg45/cxaROkPiyPNfthAl4nXrGIIZ3z7guiB/YHv1v63YfeZ35HQxi29UT6v9EWv2dxOZhtmsg2c5zx8Qk+okHntfp5y098brCRcqFScBJ5zRFpApY9xxVsm6NJ9sHR+0Q9+R7rQgDHRbTtMtTw+DPNIoGsmy/QO0yK0iyU6Fho1w0xI5Y1hAzCsjxdiS6MjgiWuf6MOuby+gMmgxsOs81rG6LbfR65bUB79gaADTRWVwVeXO7nE8D58n5cpxPcjxWjBTauVInruqD+2yy4kib235wuPdI16ddvmSrlybdnWcTqdb33Uny15adFM4dx5WgmWua/ezf21meRbmF8n2bl8EDk4EPQV91gmTUqTI9he/s5ySzQZ+JQuVqfuuCgxjsW4MjtFfJdg1NNsI7hQ6ccK6fUjmD7f6d7Knbtt1rnvaP4Hsqk2wBJdtl/5KtTeGYXaW/LW9g7b4RWLPuKeJtklQ/ZEDNsia4nROO0a0sOn83q82l3aZuEayTHHsXgf8qM8e79bJs66S9YfnXAsGV2+PheXNQqH6Q+sQ13PZOVKbJclqv2z8GmSxH77PvJl3U3ZMcj5ODIpXFa5qBromI7gU3Wx8J9B6x3COa1+k6OX1KHPdKtuDJhoCRI+bl5xqlLkI6FhoeG2PW44XpSA8d/QSM6RSa9wz5CGYJgOh8en2SwzL180SgJkM8GcHusDARhPCewTjrmr4XZPoz58xlCOjpIPbGxjtEd7IC7yaOU7+TTEV1OMrJZGI3jYed2oXyt57e7/xRz9gWj1lUVtbVsXEEmX00SHS+ZDtOBsgmo5S5Yzcd32Dfz5L8zSTvf7QAqh4/ZISyYLj1kWxRf1r3wywArff8cgruNDoay10ZA5/2kXNIHWaiDvXvBKQmkHWuMlPUs/19kO08OmCTHOu6r+0BGPbNoJzjvheEcVv8axDMHSkCwiYSF+6MTmS99RCEOeptghHkt/3bC8IY0FF+j3WvOaDB40Imv9VPE7OrgmOV9UEWotIdxJL0s+w/izMRSR9LYjsGxiYvrcu7Ma2vemSbykBPk+2RdYn3W6d3zhnIY9u8x2ueG+5asn+9zsCgAzKXut5rlY82jd8v9N3zVd0jcbZdTLYvbqB+e15ZH0k663pjp/8xr7+k1/TN6ZNDV/4nJALSphqSLq5GWAgeHV3iAuMZ7gkI08n4Ho0V65+iSIys0NlSjQk+DGaZx6B5imbZeUXfGcUjiZmObRDonWYFhr1u42nnSRkMsAgGagAZiTNgYx7Oi52Vx6/j1jl7Jsk7svx+hh1I6zFQucoxG2xaBgIRgg7OF4HVabavpu7OxdS/zsceqPEYux+95jll+eoJ5fM68xwk23mcSFrzn2SN1j7M+ta386wE5QHycQ2d6LrJ4lnWh5fv5RgcVceo6/0+BUK4ds9RHwlKsh13A34TO4KX9scg4DTHY8i+9tgYAwcGwU5X2bamidgS7NV28kgMx8x6awJDsO91WODE9XGJ7wT1rPdSnyci1nu029RX5jcgtO1nWyU0TfQtU4Co7d5E3tbNB7NNukikPXZT5Pxh1nXybNY3e9UHTuvzIlt7ciPHusx1eIG/E1CeylV+kgrbVJN3z29lPdc1AnMGfRwMJDmz3e6YdQfWcvUvgyX0q11/k0+0vZ2CE22TyfNOneXLZ1pX+0osQlvHObrM8RqwXK1vz65cp+s0pU+ZnZTJ4Zzq8+2sD89O2790xjT+jnQwCsFEMO3oaJPlpFO3U9mL/CXbSDgjKDYkwTU6UUageN1AgRGlaUzYR28De3xqmAm0KBfB4bSb5R0ByztFDflQo8e2evDokO9hkpeygNar4h1sx0DDjoBz6N2MKK/75HHleEz9YT2OGDJN5IF6UJDkI1SeC0ZGg3osU+VxPy23CSD/1gG+slO/SR4dJkFm83CnzLJwHTJgYeDMz14bJ9nK0T7agZuoG2gYfFvHuYa4W3iB6wQhBlPt8/RmJfd7mutkXwd5rXJ2p4rgz3a1qfISgHctmxBNAHbapZmCPbQr3T1gexMwm+bDtuBB5ki09dE2rMShb19rXyY7YJ/FfB2T6sJNXU/WN+mVqHO9sC/0d9Xx6txj5EmWYM9Z1hdasP9dG/wB4r3dtGmduf/nWWw3CUbHg+WoI5XDc3eZrX5Qh06ynYc3Zx27HPr6INtn2Uzg2dfaWtt4r2227WBe+9u6uMPIOl5L55OtPyR5Yd6rCDnLXuU731jpeifljZBe7xl43ZOP8XjRN/2qJP90kndnjcQmW0fhaN40eAZrUxS4+ejg9iJG3qWoPDU4E1g8Rz7220SCf6ejCux3y9YgkfSwvElXUK4OiVEjR7Ec0d+rk/Wy/PSZRtXO21vuF9k6nGTt48Msb3y6m60+7M1xo9TUk87DdGzBOmrgfKFydmwTkSEI4NiyDHXQ64Njab3imWj3iXJwNyg7+abEyH6TdZr61L54nCwbiWHl4a9iW5d7Dp7O3GNGwMcghwMJLn+ZLVGu/nkni8Sm16YjR63TRPNc9woiqSckkKyrddD+cJ0k23FnG44at66oHAkSAzJRHVPQaRpnrj0SDOqLZWFiH7nTY6IzlWke+wrbdB8l3QvuNHHHy+0+pTZoY6c+kpxUFtebbHdluktLYmRSRpvEo5YeuyD/jazjRVn5K+WOwBvKUYe8G2mdZ7L/8rogMeGbxugb2b9kIScNat1BvcUU7IttmYOA/kFktsUxYP/plzp2LXuW4zlosp44iMQ17zXQPrVt29vr3ZPr9A+anniSQmfpCAud4o0sxqUG6kJ1sC5GUqO8EziaIvhRPjpmRlomo0pjwOiJ62D9jBgxKmNHa+PD/hK80/C5b5MRdcSN9RqQnOUYhNAhth91YP5M+ZP96NlEEnlMKbg/RUxJvGi498A4wcsUeWrqGBicTY6Gjig5ngtHriZnPZFCvjCh5ZpIVk3AXA+jkk10ugZoJlKdW4MqlicAMMCd5Oq1jsNZ1mgro6EGFQ5U8Dz+BHacCPBNRD8WQ0yyZbLKAAAjqNMaNbhy9LZ9Yzm2cYrvBlXu4zSXBpMG9LbRnj+uf5I3rifbjOR4rTd5rbOPjjKbnNrWMoBjIL1HbhgIKqDz7hrHrPL1WSmC/crfts9yTALYv96/yPq8Cce7438z6w4ICTXtUtfD5Ldo0/tDq23vsfJeZn0WbCK7lI2//cTxchDuAvmpM7Tv9vn0k9N8thznL1lOZNxL8vuT/Ou/LfljGIP+m2xS8zhoRftH+dp+kI/3kjmo1b6wzxNBbRm3dZF1biyT19s0Znt9v07XaUpP/HGvOmxHWOzYvjPLr0y/nNXQsfyUaLgIIL1bQUNo0GjwwOSjSP27Z1AIdpqnvxlioF6ZCSTrcPj7KpNBIaBkPXXaT2UbmW6e1jdFGVmvt4+dj/00MImuGwxWTkaFDSxNCii355Y6wKgk206Oo9QmUybN3AH0uLD/1FM6HJNWymEAf4YyU91s0wR973hCsoIVjmX71jY5Lp53A1fvhrleJpLyPbCYbB0v63R9LcPffOlzLwSEPBLD1webyE5z0LGYdgdJhghgOX8GXgyQMJJ9mfV3ZayXrZPPR7T99pE2z33nr2+3HtueaZfOwR9Hf014+5e65HHyutwj8JwTrrFeK2Hjsy6tt2UYLLB+nmdrgz0flGdKkz72+mTz3DfaE9u4ZEsGJv036CUR4zNwlWGK/JMk7bUz9dm6wxdXMEDBXd3OEe0I55b5qK+2reyzbWP7xXl13z/nM5L85uTTP5Tceu96hJT1Vb7WN+2w9N5VAQ32jXiBfaUNpawcg5af7CrnjscUudaIP4wPqPOfHDsr18e93gjpid9JuSpKya3gx0k+ktUw2jhMoNqRXt53lJB/LV/zMXpHOXyki3+nNlsvgRqvtbyjXgSLdvBNdgDMT2JUsmIZDEAsr6OfPLJBMGFgFdzjMSFHgdyuCZ+dW6/ZoZKEkWR5vPvZkX47Ae+uTPKRtFxl5H1vIsXWBTuZjnHnayIOBCcGnNV3O1teZ7T+qugagYrBS8tbJx3dtgOnXO1rddhkmNfuZzsunkeuYeopZTA4Zh9bB/vjNUqAnqwvSCAJb5u2Z22feujx7zWuOQcGTEjbntcuSTHJS9fKs1mJTPXagJN9owwm3JR9Au/WEc531wPnjv2YADVJyYk+V5bmm+q8yvbQdjU//c4ULKGPuKH8TBdZd0y4E8P7Bf9vO/y7SPLTh/vPJnkaeTyuk3708zn+Fex2LbFPttMmWfTJJPXUMdoKB7FMNBnM5E5W10GP09mvMPElHGdJvvl/SF75quQvv3cJfjK5zraVHJPPZH3RyZRKkB18sS2vXLQ9HXvbn2lH2Dt8lZPz5l3+lrP/feKB53X6eUufEjspe4vX0VNeS45B43lWh2pCwDImFHR+BBw2rgRbU6SV6Rz596LqBpBnWR+67HfeZ7TXhuwkx0eAuPXPozG8Nx0rcoSbOzc0mhN4vUR+GsEJPLcNk0zvJkV5m64iAnVqjuw7sU6CVOrQBEYrG4nkTZSt4XfbroMOinWy7Sm6xXHYc45sl7rH65WJsjmSyj7aeTnabNC7pwPcRSBgOs1KMOncuZ64hiuD13yv0+nTWTO6zjraLmW2U3dAxH1rAIBtMErpuXPU2qS139kOwd00L0E+1mX5p/sTIe44TD9eyTwGO9bt9oPf3T6/c91zrRrERtc797ShJhV7pIgyVk5+944MU6P//czE6PZjyHQrW+JHm2Gdrv3vuuhvHBGMvpxt8Kjyciw5LxzbPcLHt/RV/qY93ZsCEx03EmGSdK4F2p+JbHF3u+2d6pp97mWWZxafS/JDSf43WddricpUH68nxzvQE0nP8DnZ7oxcDnmmQFXbd1DJ9reptsIBAQZP2g/euyoY9cZLRCmvV3q9f+H+jZ+eeJKSbA2IDScNtUGagSsXcbedCUAbBexnRhVqYBxNjNowoHa7BoMt3zr5MGb70HZrwNseHSHBnPucbM/+WpYm9qn57dQ55oxiGmxPjmnaxk62fbHRTFZwYDI6zbEj4J1nk6ZT1UXgRVJoY+/jAa2LfytHUKbnzalXfrMU++RImY8KsR2SJ8thgMzxKWHs/LFfjGIyKmeyxPYoH49L8RhV81fPp2dn6DzPM/fL4JLRbpPHlrWOmZhY7xxNbupbfwrEuOMw2Quu2eRYR2nXfKxoAvxcp52frkkHPKZdKO6Y2J66fYI5tlOAdC/HAQuSBvaPLzNhf5ps09qW9dDAayLU9AvTeFun6U8qC2061wPvUX9pn9kHHx+1/ea6px7Rdhhw74H2kyzPVDzM+oKQyyw6+2xWH8e166OBwT2OUWW/gesG6tUfE9kM3z2PDqw5eDjtpFiXPT70WZy3Cbxz/l/M8oavBhNezvoiAa6hzpt3iXmvyfNUnabOl1jWPhq70HcTKzhY1D4aI3heuOYnYkoZ94IX1+k6XZWeeJLShUKjlMyAkA76RPlpZB1ZpKExsJiiB1NkdJKlhoqEaIpSEUBNbdDwPMzW+U4RVhsdAzMCUm/vEvRzS59OvnU56k8wQUPMfAXGlLdjPRG/ghQa46j8RAqn/p1kBRUEXayDhMgEaIo+XSKPwVnbKAj4wiwA4r/MceIc+pkiykvQaEBu/bkqgs58yVZHJmC8l0j0uU7ZD4LNZDuHvU6d6zNRBukmRSYVzXszC5B6Rf0hIGz+6goJjNejCfqDzDuMHQMCpLZDW8J6vfb6zxFy6mfbiT573ghq2ta0Ziby74gqdTDKQz3k7rKJH9fatFtyqe+TXWQZk50pALHXPgGlya8j1Dd2yrJ921naGgPVysXnfZpaf+89PPzrb5U8k5UYUrbbh+/9ZfnW1RfKPDiUO81KYtr/zmvJB4MnHZM7aNevcG5eBrA4/ya+tjFMk53nGq2e0Z94vU3j3kS9m4gK/dZdyeMAT9tvHX1mxUGX9os644Ad66dNtC+ibTAOadtcB+fK5/E/wX3LzLl1edveN2b6H5O86XVu83onxemJJyl0il10XYg2gEyXytc6eJ/R+TqrU5UnyJ6i0sE9R20cdabRpvE7x72pDzQkdqgEIRMomAwOx4KRGY91MhtxGq0mg6j7WR0oieVp1jP4JA8nykO5JhLSvu4BPctTx3KW7fyYYLTNSa4on6N9dTA8jlTdenuS35PkTbeSFx4kP5o56lh9aNpzBhM5oVPeAwEkq+63dYVOmeXscJPjsaTum9AyKtx8JTSMxAd5+tfA6CzHu6IPJE9/1JEAun89fxPw5Fi0DbbZl1s0GZQ5Utr6CLTy9/HZkWvPF/vg8em9yjytreTYprJPE8GwnZ0CPNYLkigTDtfZ77zP/tBOui/9nSQmBjGmHQ3qk8E89dP+x/K1b9w9JfBsHezfRdZnp5Kt7puItQ0eCbvISmqez0J4Pny4fzPJP5xljbyQ43l+JuuD+Mm6W+j1SDLO1H6aaDB1nCe7ZZJKu2NbeKHPnDfrF1Pb4Pqz7rL+iaCSzDAxz1V9m8ha1+rNzHITU/iInvO1bRNhtulyXAdTcMBr7Tpdp48lPfEkxQaNycdcugC5yB31IOCnIXHkkhE1L0gasUmutu8t6sric9s0WDQQkzEhGTGAcqSl+dlGVKafGaV/mGMDZrB/ovy91+uN7BGwEPCy7y07Oa3e4xb6ROhYztFZ7xYw/0TIJjDC+x2vE/zt2JsQ11HcTfK+JLcfLODAUar20WDXRIygzuvCEb/ma13UheoZARKBM/vKtgjuPAc8kma9T44DAY5SNg/LGQhwbjxm/dwocXeweL6/icEJj6P1zACf+T3WJsh7YINgwOu1RN72rX0kCKR+eFfjMisoNhAzWWffo/FwYnDBBI0yJlsddlse8yaTbQPDiZRx/TmQcivbddM2SDAYFLFM7MseUab+Tn6h10xMac8rL0k17eN9yFc/1/l9kFXP33y4/zDLsaVbWX4/7N1JfiDJj6GeZ7IlYfcOdfT3PXrv5Wx/1LHk/yLb3X2mqwivbavn1zZjqnfPXzif2+hnr31/p5430XfTFjWfgyoMjNF2JsdrsjZrj1jRt9tnu2+0L6yDn2kzWmeT121lrMxX2YfrdJ2YnniSMhkiOmqTjSZHSKPvBpM2UFM0bYp+tOxTqGPPyPCIURe6FzsNOI3I5XC/9bovyRqRNpBhcl/alh+ir0EkUSB4M2A9R/7JeU2J0V5HokxM2h+Op4/18biTHdGUJqN+VbSIoMtgn32oUX+Q5P+Cvp5lG7Fk4ngn6+4MCQQd3FQHHSzHk/N4pnvJ8RoykDCJYl6mvUjplFyWMlUGR/J5fSJUnZu9gAKBp+0BAScjlsH15m1dLUcCFVwz2epzBo4QT8Ao2YK1icS3L5Sbye1zPEzeXPYS/ywf7SNJbq+RENGGsW5+tk2cgiuUfS+QYDkmgmmSRMLRzwSH3omrHJOvcV2eM9tHzl12rlUWvkq51yrL7Sy7ti9kISDN+8zh/q0sR7duZj2e9GyWnRaSu4kcNDHYQRtmsu9xn3aoTXK55ibf6LFIjgM2tvU8Phvl4dqd9MhkxnhhCkTQfrgPxAeeX4P/5jXxqVzGGv7MoBKT2zBZsU+Y9HsKEr7x0vVxrzdCeuJJinc7CFgZOZ+cLs99emEaBBDU9wxwsjWAdLrnWQw08xHAT4bP0cIpQurjTQYDNg40cARnHA8bXxpJ7yZQvpZlRIXguO0TnJio0TGRqE1GjobXkaPKa4Ddcj1idZLjsfW4Tk6QusRdh44r7wf3eH9yltUnPpx6mu3bepoqH9/8xHpZp0Gn65kia3TwE2CvXHtRUeqAHTOdeGXbk50y2Dk2WUdIUEkEPAcGjXvRSYJIrlfLQzIefW856rhBNEENr03zX7m4ngjSHbXnNRMTBnKmHYFk/a0VtuPIMPvj3ThHXtnung0I6iR5M7jfA8mOJifHa3IKQtEe8NXZ1M8p2MJ0lnUMrKt7UetJz3qdfXBEve3bV1GXq9sNkj06fP/pLGTl6ayv5X9/Vr925/D5uUPelyT3+SEfd+HaZ5KiiWR33U/628S+TicYpp043qcN2bOD9AEml3s6ztT1RBvgOow/2Jbbsb21vlwVqKFMtpVTQIJBrikQdZKVHF7qvgMKp8P1q4J31+k6OT3xJKUL7kKfbeyDewQrl5l/nK91Ezx3Qd7O1kA32bjwXfbJ7BDbTttve1MEkU6TgJ7GaTL6E6hue4w4T8B7Mjo2ni3vsZicaMswQmgncNVuRv+aFDj6xPuXupZs+2eD60goI2VThK7JYJDlHAF0f9vW5BQdFaZ8jmLRAbW+vfEymNpzyEwkMFeBOAcC+nmK4DdR3zgeJlNTdNC6xh9KnY7fdHwIaB3M4FxRHoNggmu3R2B/qXrc/6Ye5zGh2VuPXvsmD5WFb+QroPZxjhKktnkzyxGfts8gUNuk7UjmtUjwbhvFtUiwy/Fk3Qa9bp/PmDia7HHn+p6CCL3PPnF83OeWm8bDejyta5YtwCaQ5NzZrtH3nGR9y9w5rj9M8p4kb0ny/Vnf6PWeJJ+X5LuT/OTh2v0kX5zkJ7K8brf1nmQhMidZdWMijD6+1Hwc+44l9dT6NQUjrLMeC65D2pG9401MrbPjXztRfWz7nKfos4OJ9l2c+2IJExUH92h3iHWm+hnQ29s1ZR6WnQKJDix4LU/r9I2frndS3gjpiScpyTaSMUUvapwcjZoAQuu5n/Xd6q6bC5IRYh+5cFRjit7xWr9fqryNoOthsgOnYTEhIKBk+3b60Xc7+Ojv2ZBvL+pjUExgQ/kmchXcn4D4NN52TOzDhb7byBuIuC6CQIPv6S/7RsfDPlzkaoNPoHmJ/JzHaS5JZpoM6LgzdTLk4fzsgTKC4WmNTt9dTxP71Oiw83W9ElA40ekWwDVq7/57/VO3rgLmlrvJUUlHVgsOmX8CI9TVifSy3fatMpPANd+JyiTbXTPWYZLmIzkcf8rPddZ8BOG9Rlkcced9kjDasOrshcoGZUluuFYvUQcJ/kRc/Wyj13V3MfbWL0mn14IDTRM5O832OJXH7lJlnj58/+wsx7cusuyWfO0/meRPJHlb8s4fSvKvJH/+v16eTXmU5HOzfL6d5dm5kmiSpY7RY4zLrWznwWSQRIKBmqZpDEgYnM/lWc71Tfhg2t3Z8yW9Rl2c5OYcc71TVge12C6DL95xdFn3z/I7iGWya/kZfLIOT7tNk3zX6Tq9VvqU0JfJQNhpeyDO9ZmRAW5TOxpSI8njORfZOi8aU8piGZpnArR0+nY2dNiur8ZwAh6MqBHA1MAZRLQtRzYpqwFG6yMo5dGVvXk41bVp/GxMGWE0YKRx5viRKLAcI2013pXLMp+pHOs5z3H/m4/JkX1G6Flf55ny8J5JVOeq7U0vOWgfSDyu0pW2awBBx2ugYPI3rVGuO5Pns+EfyxJ0Nz8BccEn56d6wKh0sp3PiVBPieui5Uxcmo/J+pZsx4n1cl6nXcnaocmusDxBu6PJTSS4HYPuqrBe79LxH/vgYyQOOHjntv3pdwZqHE2nPMk6x1znk313W47gB3kMvpumwAvnvXnvZCEAe78xMkXZ+fsiHUOOCW1E67APMMCsXHey7J70TV4fykIivva3JfmzWd57/l1JPpDkLya/+1cueX84y87Kzay7JxdZyMsEuClDkJ9k1PO5Z2tpN6rrExDmnExBguqabQP1x37Y7UefKetptragdfX79Er91jfZEbbFsTrL8S/TmxywTy3Dew7E9E2H9vm0j1xb3BVm/x0wmsjidbpOU3rid1II0rgT0e/OS4MygVk73XPdT7bb6MmxYZkWcdMUsXQygGG/aHwYlbKRYxSQ0UICEYLU4L4Jjo3v5NRpvaD18wABAABJREFU2Ej27FjbXvPZqPId9pxHt9s87PcEEAlIL7M+z8Fxo+OcdnKYOu/9y7F3ZNyROupfsh23yksQXd32zs5ptkcEJkfaPvHIoYk7HXPrtB6x3ZYjiKVuecv/1uHaI1ybdKeyekwbmfWYtv0JsEzzZsI/kd+J8BcAcLeKiQENAh3ajAJNkuPq4uPD9zr4SU9IrFpnd5EIEvdIQZCHck6vSLYdM4Dn8R3K6Z1TyhTdoz1gNNb52f4UxHEw6VTlHKihHNR173TQppgQejc+2c4L11nJnXd1rGdT8MJHe6a58S5/79GONe/DLPpy93D9hcPfz0+S35fkryf5F3EM5d99U/JHk8/9yuVV6B85tNdXEu8B0Nobvi2PQQiu7eZjn0we7KeqI5wDB9bsh0y8J9t7iWsmIskxwaI94s5ElJ95TFDcBwZUmKjfHL9plzvZjhUxCvvKNTjNJQNjXPMlp277tYLAb9j06uXrf/rq+rTXUbLuPHGJRowOzwA0OQYMXsSOTE0g+kL/rnJAlMnfaWyZh8BgMso0nDQSzc98jDKzPzb8HYcpIsMICaNaBLiN7pDk7Y1L2yfQeZjtg+0mI3QQrifDX0bYLTPrZvSYYIWAio4u2ToR3+cYUr7mbdSbdUzyFAiQ/BjAGRhOYJIENzl2xpTVgJPAiA72Ju5Z3xm5T7ZRdc4hZSfYI+Hpj9TRCVuvWJ7rcdqBoYzse7KdO4OE3vd4TMEQrjOuDwK16B7r6z1HYgk+2R7Hrv/enFXPKBftgUHwU5nX1sOs+jrtTHjng5HWym3SxLVpkmnC67V2lTNjfhIDrgvahI7HzRzbFqaWt42ddkzbp8ssY3cvazCB8+r1SHJZO9G2OP62GyW57EdQhuvs0UGetxyu3UzymclyhutXqNNvXTK+Peur4p9B+xOQ77z3h1K549b7Z4d7DD7YjnfsuIZ8lIkymJg7sMU81stLXXN97mvboN0zQWnbXDN95Tnbpm3aswVsg30sWajeMpBB21/7z75OO9K0bVObU99azvbZgY3rdJ1eKz3xJMVRhBr5CSTXiRBYEuQxomvwyF2B82zfAJMcg1xGPFhPk6NeE7ByxJpOrca74J5O9EG2hn4iT1MEzhE7RzLrUGjk2fcTleGRCeZjdKYy0vB667hHCxihbl2TITUZaV2cownANh8Nfseh/dozwCRfTdQN6p7JC3XS8rKeZKsDrJvgx2+rsi5OpK+AgNFGRjJJKukI2Xe2N4EAyjSN/6XuN7Xd9tOktP2ZiBrXuMFFcL199DHOkxyPVe9Zdo8Ny02RRecxqOfvCzFRF1k22Y5Psl2DBLGOwHJN0X51LdzMlvxwnXMsrBscZ9oZEnzqpskar7XvvWYSN+3EcNfM92vHHTDiHJzgn+to/fyF9f71emb9nLOSDbbrcvRLDviUoNDXObjQwMLNJK9kXcs/mcOF78o2vZjk3vbHHO9mISxsq3abtpK/lcK+VLcfor9nuG5C3QAF+8/EOfPaL2Hj+qLuB5+9o0CbF3y2n3cAwjpEQsB+2e8aZ1BGBr+S42DCRPIt09QHt9e1P+1YTwCSOMCJc/qGT5efoH/XaZOeeJKSbA0/CUWyXTCM9DoqyohNjS0d7Z2ddulU+d2AySCFoLb3J/01+Gt9vObIbJ3SVI+dOesnCeCYcrx85MEAypFTGvuSxzp8kp1TXOcvsjMVQDIy3zYmslowRjDLeieg2fkvyeOcmMjVUBOcMG/zOKoe5LcsJBwdjwdDudZNImqCu+cUDdwdiTS5Z8Svzpd6xF2Ijseprk2JukSZXGf7YX270HcSra7n9otyPBrKnCJf+1V9m3TLyWM2laO8HEem6us0biQQrbPzXlm7A+VEuTjHHSfqtm0R15P7Y7KQbPWatsTgudceDO11rKybUzJJfQrlGMW2Tabd79g+lTnI0X6yLwTWJGsOhvB6cryu2OcpcQ2cZn12pXLeRz+9I95xu5llg+RRlmdlHmb58dj8ySS/Jsn/6U3J/+dNyV94U/JPJfm3lx92vJf1DWDPZmtTHITgGnqMPBk+M6gyEV7qlANt0/zQHlX/7yAv8QHl8Q7cWbb1O2hpn8jgxAm+k8wz8MEduOa13eW4BJ+NLdjnKeA2+RySD96nLarcldHrkHPkQIJ1/Dpdp9dKT/wzKTSYdTI+xtLk85n9zHr6mWf5T7Iavj1HyairIxoEnbxPcMDvNtAGYwQne2c/bVhYLjmWYTLE/GwZ2Mbpzv0mjhm38Pudn20Up3SRrSOpMaXBrJHtfbZZ2d1O33rUOiaAQRJB8EC5kq0xD/J4rC50z3PldivLBIqbr2lyTmy/Y8/I34W+s+/BdwMsEk0S97Z9ru8OHDRVPo4zk4kn++wINKN6Z1l36kxWScA9ZnbCHt+9uWt9BrOcR8o66TtJOPtsEOOgS+95TU7BGSb+LooJlXfN/Hs5JisXqoOgjt9p/zjGBklN1NHkeCw53yw7ReKnnTwDts5X7cee3dmLirO89bnj2uOykw5MwbYb+N46b+A++8od0P4q/POH9n4oyV/4z5KvfZDl7V7vyMJEflfy579jmeN3ZyE1P5rl91Luot5pXGiX7Ad7/Vxlm4frhEeVDJDtE03wusZvH+q5m2Mf5IAEAxucX84td8iqW5TFQQTbJbZHWYkzmriOiRMoJ8dlzyZzbqYgJ8czyNfrPfJJ28E+kWA2TSTyDZmuiqB9PNu8Tpv0xJMULs4uyr1IZHJsyA3yGFlsmhacy58P19qeAQzJ0qmu2VkxEtkyUySXZQ0Up7qd1ySNTtdG1g7Z7Vxm++OXNNqOajmaRkLB6CHHpG3VUVJ+GkiSjmTr1KZIqXeo7Hw8D22v6S1ZIo99Dacf+mYyGN6LIibbX5B2n9gXk5/K62NmjOKZLE2OqKn3p51BA80Skx698Dy8Full/3ivfTGhpwN25LX5DYRoJwpCTEKnCO+FyjKxfuoNyzQfQRDn4UR5gnu9Xp1/nOV5gV+ZBYR+4JCHQZWuW0eInR7mWK+pOz2mw7E3YfaYUP8M0tgWj13RPhBEGuAShHFMTIrpF6I6e7/yVBbbCvaXu+bTziV1aiI3HBPvwJsYc55uZt0p6/WSkwkcd/11PPrA/Aez7KqcZiEe//Z3JO/+guV3Ur4vC3mp3jxzyP8gx/PI9VhZ/UpkExX7tpY9y1bXqH/W2c6PfSvTedbfcLEvb530UZY1WV78Memzr53luF/0HybvDFYSCzDRbnQs+Nymd3mnkxpBPvteyu6gEstPfpW6SxlIzPf83nW6Tk5PPElh8iJzdIVApIkOlg6HTtGgic6ydXg3hA6ssl2oXFDGZIeGzvXReFGWC9V3msWwUT6OC2UmUJ6AKuWxUzAooIxXpQkosa+OEDlC3b5XBhrUgiqWsbObIrQG+exPy9hpJctDpv9Elld7fqfaa2J7BkZMHQOTxPYjw3c6Ss8hAaqBbu+3nCPDJAITwTfZYn29dtW6tCM3CWBydNrRxtY36ZUJGMfX5Uzq2CYB8qnKEQhwDhg1ZvTd64zj1NetMogx7dKdZvn9i8/JAkJ/GHn5XBrBmAHtaY51o4l9JCCkfk9kz+DJQKaffd1BkI7LXqDD9XDcpwAUySfXDNfcRKgY6JlA3Z7OdpymneNJNhMdzhmffen1koIpkv4wq22/k1XnfiyLrjyb5fGT8yzPp/y1rLbiZpagy3drjCpbj6BWvzhnE1n1GqWc/p0dkh+OTfvOsbK/oO98jHIOTJEUJVu/3Pr4Q5NeB0Heyd6QeHk92b7Yju3t3rKeiyH/XvDHNtH223578vMc29om7vAQt1jW63SdrkqfEiSFxzpoDL2oGaHsAqVzngC5HRUjpHRKdDyXyGMjNjkytu1I/RThoZyMatHw0rm5DRpHO3vuUpgwsU0a7qhcsh2rtmnidq6/lomRM+/U8LvH87OTvC1LVPmlHBvus6xHfyqbI2TMz0hhv3N+24d7WY23ZWK9HruWr2yMVHl3h+2TPJwP+ZlI+LhGCMrchsHGRF45FnuRTQLCyYmyToNcttXUuhgJNaGaHKyDDVw/BOEGR426muhyDCuXySmDCBN4bnuOxlKHGjnleuE6+kiS/zzrG6UmQMggBufDZI9yXWR9WL7ymFDvkQIHhAgGTXoJNpumQI7BlNtMtjtkbcPglW0H92jzJlJl8NjPEyClnfSODse/fbeNaXvWpb3U/vh3WdrGA5R/SxZyUsB5kYXkflYWXfqxQ96fPuR5Llvbdp7tvPc7iZp1vv2ZdtW4Y0HfSp1tOySv1qPzrC9daWJQsXm5xpOt/u4FOTyvvF65rDO0LXu79FEZE03aqCg//al9vv10k+fOtrp5KkvvTzv4bZc6bfL/hk5m0q9Xm9dpk554kjIZsl6fWP1VkQ86Kxo+GoLmMxicoglBOUfa7HwYPZp2TiaiY2DZ3xixo3uAz0E5Gm+nvb7skR4adzqPKUJrwHBTeab+2kCaoHG87mT7Sk6OOwEoidREUBnJmmwLI58vJPmryEsnQfmsB1P0awLKJH9RfiaPfVDWu317JMRjEV2njBf63nwkWQbHbN/65WAC14T12n1ufVz30/i2z1znBZDMb2dNwLmnTx33giXuUl4FfqeAySQzCU2j6BdZjuT0Pt8K5h0T7nA4utr2uy4I+KlPN3KshwZCd7L+KrnnYCIu7SNlsey20STdle/24dq9bMcyOR572oDmm9b5CfL25R/s61M5Xhvt31X1cUfAfsFEy8Gf/s4Igx59JXHn8Zlsx7bHxD50+H436xzcP/y9l4XAPDjkvXPIf19tJetuQz9b5imowj5PwJ7rid9dPvpcGagjBOn8fKr8bMfkhbbAQSAGILomrZNcO9TZi6Fs5SGR4PjY/jFIYl3neqWcxkLsJ9vwW9pKTtmuiQuDKBP5uU7XaUpPPElpMjDxboodBhfaI+Sbjt5M3+18J2BHORqJJaBnxMWRRx9FuCr6uGe0m/cM+Rn14XiwfoMX5uG4etuaxpCGnclA4FJ/nQr4OkckdDlcr7EsQPu+LL8XcT8zEPA2v8c62fZpGqcmjs9DXe9YEijQyLONCbC5LYLrtsG+PcjWUTNqzH5YpydyMkXoLBN1gXpJBz2Vo35YFp6hN6ktSCQIcR+eyrHT9jjezvYH5wr43J7n3rsRvM6/BmATGWM7PJZVmaeoPYmfSRrJR5DPoMprlLbIc1HZkvUZq8usz1rxl7Sn+T/N9ux8gyXsO9fHdMzFNo1kv33osxpc366HczCBPc75FMSifKzDkXvmNelie7Y7e6T7PNs5sw6SrPSI1r0s43F/rTJ3stjKV1DnzSxHvm4m+ZEsz6LcSPIPZ3m+6YUsO9GU7xauFcjePFx/Wf23X+x8OlDhsaAuTvMf1NE1QV9KUskxbJrsTsvSPtfeJNs5YT4HuSjXRFK9I9t2q5/Nz51TjsEpyk8+vGR0wgfBZz47xLVYGe5Izssc79JNfmwiQ2/Y5MF5vdq8Tpv0KUFSvMCvcjQ2et5JeK1I2hRNSY4dYA1IjXWd66McA9WTbF+LSoNKwOhEw9xUgz1FYtkftuVIKfN4TXE3wO2T4Bhkklzc3MnT8bUcHCs6g8pMY1qQ+wrquBg+ux7WPzmXCUwF7ff6tNNRx/xI9617ff1p5Zt00brBeT7VfUbIDNS9BkiEWa798pyYzBLwPlK+9mdqs/rNcgbT0/yTgE31MlGXz7I6aAcJKFPHg4TDa2EKOCTbY1/eTer9+keCf875BCwmcs/EB749Zr7e9tt3krvaLAd6+CvhtjMkutbt06wk0LrV+yc5JovEEFMfTA6TBaCbAE2knqC5yVFz2wGOmY+0eL03P6/Z5tN3ONrOYBj1sflu4/sN1NO2qEtcS7ez6uPDLLsmDe7kcO/DWUlfSUD/lmg+RrvctaY+nGUlkA4SWV4Sjq4dzjmDeCaU1DeTUdbB3QnrX9uwraQ/4I7qZY71wQTmRHWxPfs6ymCCVvwx6eOkv68VUCq5ZWKbJjfcDWa7DkYxXWPx6/Sxpk8KQvs/Ndkg2AjaMZLpG8jRANHR9j4BcSNiNUx2Tl64rY8/BMmoCB2yAWyvT58dlWEEdQK6TY50FUwzTUCA9bJ+Oisfiwmue0eg487fUXHimBiskpQ6ckenM4HuST5GdOnoOcfsSxOfczHYdL861ifZ6mPLUhd7zfNs4Nt6KXvHhqSMxHdyOCzHPhgwME1RUIKVymb96BhyN9P6wbZJdtl399/lLrNEez83yxl7RlwdzfaPibLuab6oJ5FsPLoxBTT6o3UkRdahymp947wxMuq5qXxeI807jfMF7rV82yjAMUBk31o3+x/kre4zP/tAcMY17nF/mOXY0gTeCgRbpiSYes5+dJeO9oG6z7pqtw2Ao2sT+W8y2eI12w2TII5r5X6chXT4R0AvspC3e4drT2chKxdZdlvuH/r2zOHvS9nu7t0+1PPgkJfEqHXcPXy+mfUh/b6JrOvVBMK2qvX1nu0j/W7XrfVrL7hjf7gHjCiHiWqPy7Vd6ibLTgTFhKFj4fVnMkJbGuXzziPxiG2S9af1NkBC8uVUHbMMxiPnO/eu03W6Kj3xOykFHz1+MP0QYI3G2c53OiVH95PtkSI6DUY/aXTquLnoGSVqm5STRIURNUfWWKaOYOqXo0jeUneioWxfGf1ru468sk8FXOxPsh2DQC46BIISA+yW3SM+rNsROCY+J2Cw0zos66nyGVCQ+Fg2gxKOlQl0sj3SxjKTY3W0rGWnSGDz14nx6KFBJmVzO5yn3ku2OjFFud+cZWerZU04eUSCMnueqdME3VEf+PaZZJ2b57K8VOEiCxAjwDFo4ZoyUa1sLOsgA8E9wQTrSLbrpf3n2HXntb/bxAjofZSnDAZuPJI0AX33vXPBnZPWdScLmH0h63ML3Alj36Z5ZKTcMjcxUMQxJvDi/LQf7R+/M49/Qyv6PAUCSEpYP+XuvNBeEvRNbbG/Dl5cZvva8b5meA+IM8j2WPm8fksyCo5LQEo0TrOSlXOUoa+L6m2+G2j7YVb9sfwOzHmNcBya6KPpO2mDbRNZ5iTHYxGVnQIdtHn0CW17Wk/2ua3Hvvw08+uuW7/tH+vz94lg1D+TLFvH+YpiB1eMF2xPScq6RvcCJW/ItMdoP95tXqdN2gsYPDGJW7COnCUzsHS0womRYjpIpzpog0If74i+2wjSiDBiarJkGWocGHmewDVBE8s2n41OHQcd8zQebJeyMr/7e1WqoTWhpMzT7lbbmJx3dG0iJMk65j5q4H5ZJo9N/07z4J0g98UEhfcY7fJ4VlfqaEyQOY8GgLwefZ92WxyNr9PjOqQeTqTR9VQ+RgFZnjJxjbT8HjFkwCBZoszfm+QncrzmeEStOsAjKE0kU54Lgg/rmcHvRY5/GZ6At+0zmszvF1kBJsHxmf4mW92xDdmzgZbvLNtfte81ryEmEjCuq8meeVeCYLi6TXvLYE7TBGxvIE93Og0sJ8LJNUFwfCPHD8/TXp4of+unjG2LukVyY52yTaP+7fkbE37m71vgkmVX5U62ALrXLrI+30KZk2PyWoJ0P+uOjdd9n2XqPNo2TAGQ4NrkRzz/HHMS9slGn+V415SJ69/rZiInnjuCfNoh7tDQf9n2026Q5Ex2qevKdnovGEX5jYXsN5isj8m6k0fCep2u08eanvidlC7eGiVG6HjvLCsQscGh8eVia/1MjcZxsTrCzWtT1JT10kBMDsXtsH6CUUYl6VDOdW8iAWc5diiVnc5zzxH2s0HCVUTQ9/smICY7pQncMJpHmU6Ga464Efi6Db5xjADkqh0pE6VTXGMEzWPNiJeJIaPTdQDWCTsTR3tb9kx5Ow4kGIw0TqBgAj+t/yTrLgbbvocyJBB02o5o0rkmMyjcSyQSgSz9QbpGff2igyaDwMrYxOjqFLxosp4QtHMNMpp8mS0ApD16NslvzLKL8TezBUUkICc7nyf7MpHiysExacSXANeEw/1l5Lbzyod62XcnruNL5fXasSwtV+CcbPWSdpH9nAClgwetzwCPOkGAeFWA5iTHv2VTmfjmLhMTylod4g4K5esRJa/tzuWHUe6ZQz0fQRu0kZxfB7zcRmVq4nXaOJbjPNiGmcwwTQHB5rVOWp/YvtMUxJp8UO+fZH15SRPXgLEFZeIYePd8mlcGh3jf/ZjWZLL6A/oArks+O9v77nv9E3XytWziGyo5evR6tXmdNukqG/nEJXbWJINRt2krkgvZQI559uqhc2Kk2kCXERACs+jauf5OddIQ7/Wp7dKwEPzV+OyRq9PMBmpqqwZtkpHO/FT3T7OSAstXo22StUfKCBjYvuWz7Oxbo41TXx1FdZuWn9HbZD5S4OibjzaQcFdO/pL7GfLtgW32kyQ+OQZTHI86M77YgXVabtbZujzXLsvoG+fO88V5o85fqgzJIetjHY/1feqTAYLXpnUx+u5nA5LZTlyVSLiez/LL8l+YdReFz4dMa5RkpX87r7xO+bij1WsE/Mnxmmk57ojQ7tD+WUbOF+WYnJdtromFifml8tv2TLs/03q13aA9Ps26Y+M2nar/JDkkS5VpCgZ4Z4YEsHrQcTjPNvBje8x1WtvSXYWHWXc9SCL544bBPZO8x9nKPfkCrgnvKHOXpfduZt3Jm9ps8hw3cEKdoF0hwWp+6z3lpq2yfSXw9868yUT7yr/Jsq7fnuVoKo9pTr7TAarqw4Wu109MfoY61D444MAACOenR4xtYz+piMp1+oSnJ34nZQJLyWp4CZa6UBlpIbjk4g/uT5EKA2NGoh1xmnYvJsPBNri7QYDathzl8bY262WErnmmyDT76Wgix2mvLhq6E/xl4ni0PxNwNYhu2+coT+PZcbBMlKHl9xy3DXPlJUifQK0dLvtHskcAQ8cwkQnLzCglAaePH02O7DTH82GdbuSMMnANGUSSrPteZeBOifWLOzuOZE5rwtfYb/fJxMhz6vIMCBjsG/j3GiONp0O5tse1OtVbeSmT83cePpzkW7LsZNzPug4n0j/pKefR9sfkgXqWrOveR9QMSLg7QBA1BVHcT15nwGJKXSMOZjAZhBlstlyfmSAY53VHndlXg34TH46xQaXJK+0c6+ovx3NuuzNUQkDZKivL0Pc0yNHnGRuU6bEujjtfO82H5Z2sA00cW/tX+xjuInQ8GKRpcpCQ9zxOJMfTTgBlnnZHpiNPbbPjSiJnOYL77a93Zdp+5X2Y7ZsgJz/FupiHYzvt+BMH0Vft4SMS6OhvbRvXBkn3dbpOH0t64kkKF7uBxBRNSI7BLp2ZQXiyXeg2NJTDAIHA2qToNMdGcLpmUpRsdxGS44fn29c9483oJgEWr3tcGAEk+DLonkA+DacjNsx7VfStaTK8zUMANRHOfje4MzmjQ53adbSu96eIIHWBbVQu6iHJV3Cf/WliVLN5+qNyExGnXJSvifIQJFn3p7GfnBKJ9jSvbcvpUvlMqJ2vnw1mOIbecTH4rix2yJSR9TEPH3A2eWfePlhdIEhSQ2BI8Ox+30vyXshd8NhkG9N6es3Euf3jbzJc6H7r7bgSuLsuru/LHM8vwdokyzQ/JNaVlfk7Tiad3WncWw8EVo+zbbcy8chVy7Wf1lMCPAdDDPJsN73eqHOnWY8mPtZ171ZOQYooH8mH+9TXYT/Idu4Y6OgOs+0mU697d4eyVwb6Bo+lyUlwn7I1TSCZOjGRA9c39YP3rY+215UjOfbLlZdjTrvT7y9I/glnWK/dz1OVZ7+nIBDTNBe9NgVd2GcGn97waWKXr0eb12mTnniSwmQA64hJFw+B/ASUDXRIYIJrJiwEB5THuwb93DyXKE8j5Eiuv9MYP8qxcSYJS46JG6PkXK93svwoWOV/kOSnIUMdgd8aVNntROiQcyjHN0wxqtMyp7jmKCMNr52OI4jezbnM/BaiiWC5D3QEHN/JCXNni+1dqJ7W33HhjsYELgiCqOuc24kUJ/P4cmweZvu2l353/5Ot7phI0Ik2GdjuOd5kO5Z7foTggH2hg+SYTGS0/eT31vtQeVsXSb3nr+0UIHOe+Pperm/2cyL01PMbqPchrjmYMgHCpo5niUnb4LgZhHgMSdapQyak1kESM5b3jhRtCPM4UHCJvF6/Hfc9u+4ItImbyd2lrvFHR7teuTPBfjvtyU4dbuouiuW9j77wuuenfw0aqV+nWd6Q+ZYsdv4BrtN+23ec5rjePV2gjySwpv+cdl7tCyZyZPvgfFNQoPmmtdzv07iTdLBPJKSdRxJqn4xoImnd83sOirm/Xr/sX9vwTmDzmvQ72b9NpLJlOcbTzul1uk5TeuJJihfWBDD9nSCKQIBGO9kaqSmC7+MTdg6TPFOEgtf5mYRkSq7bET5GwAjOKzf7xyjgM9lGgZLVgZnUMAoYXeN1OkXes+OzIZ6iMnZ+JGME6u0X5XAbEzkxEWSbJKtTxNmO1oBnis61D44M00GeZyV2JiEEEnacBJ7sO+fR/ZjmdQIIBiQGNdbbaQ1ZLq/J5mE+Ez6OsXdYOO8G2wSfDFhwfJkmknqZBeA5z+OsxIR95s7H3vqfdhRYts8LnKoNyszIfr937Hp92q0hYTCpa3uVvXVO9TjwQdI66SIBafN7F9rJuxPWBctMMsA0BXaYprHouNOO8pkJ1jtFrh1saT72nzbgquQ17cQjV7ZpJWyXWV5B3NdKe03YX7W8yfup8ifHeunPDqQY8JrYJMc6xzamwBT9HHWT68b65sAbfaQT+zLdt99jAGDCIdblqTwJEW2dg0T0SxwLEjGu4yn45r52nOwLz3H/DZ/MpF+vNq/TJj3xJKVGoUbHOwx7UdZTfU+2Tj3ZHndqmckI0UD290N8dptRo7aVIR8d+GQkDLYdCe49ArL2v/+uOoZ0+3Dvlyf5mq9K8sHkf/vdy1GTvhqVho7GeQITJh3tk8EuAUSNMHcYavgs9xnyMzLsiA+dAR2px89z9Mzh80vZGnQm1sn7Bo97YIu/j0JnYyJD4mW5rSvs20UWIM2orQE/CXfTU/pMeegcKz9B/xS9nchh81UWrhPqLUkSd9UmMELQd56tzk0BBRPuXjdQ6PU9chdcoz6YiBjAPcb14N608xWUI4AxmKR9OMtW3imgYhB0lby9twdCJ/008Z/I+6k+c81SHoOu4L7XPXcHrwKyvUYZCRw5FyQF9D2vtc5N5GqX/KzHBE4ZWGIbtpnc2ek97xL0XuW5cyhz73Cdv48TlHk4lGUgjGRoAt4OoE1kkMGdM/zlWqNtYz32nU0uG5ShLbFf4pga8E/6b/vm4AlJD23mFGQwqU+ObTDzTNjXJNiBi2kHnH+TYzJIW9C6fG0vqHqdrtOUpsDKE5V6nGa6zohhst2GrQOjY+q/aWE7ShF8J3j2MQPL1L++74VNMOkt58rOa/18FUCoo7jQ/Y4VidyXJMnvSfLPrT+AR2Vyu77GfvBf25uih3VSE/hx3QTCjCrtyWBjznyti/fqrO9kfZOSCYidkz/XwToi6P6dKL/l4rgxUedYj4HkRKo9Tiad/czdBa6L6nD183woO9VP2TqGldHRfpMDlqO8BEoGHXbqJLcEdWdDPoMM1+f83jlIlh3IZ7Md72k+9qLCrO9E/1i2Y9A3GVEnPNcEY3uAgvV1nAiQSRS8lpKZ8HHeCGpuZjvO7Gu/k6BdtWNQ+VpXj7VdZKu/tmUkvbYVtB98oPkss33u2ug8UHb2hQGJPhfjNkk6mZ/5OH4lZJx/2iD7J+r1nRwT2HP8mwI0TBPR7WfOqUlt22od1JMp+GIb27V3ni2RciJIL2Z4CtcsM+VLtkdhfd/98lg4QGDyUhJIUkcbS70xWaUvYt/ZJ7ZH3WTqWHKtTLtaJCVT35N5fb7h0uUn6N912qRPCl35n5oITp7SPS7gHPLwV14np8kyH8sAMiIxRUOnSMnUhzomRwMJNimfgZGJQP8yStl87nfr6jGv/zRJfmvyyu9LfijbV5020el7nKdE4lfnQ5LnumgoOzY03kF9JnRRHbzWRGLWNjiXj7PsoPz0UA8d2+R0ky1QZt9tp6gzBEB0JAY37Auj5gZhdqbTfLEvHGPqIkkBySCBWWWcIsvT9r/10dFNE1zmo86w/1NUlHq2F0FloMPzSf1qsl0gqKZuP85WxqauJ/7A3QQwSWA87xMYM8C3vnmNEjxV5xzo4DpyQIFymdA6UT8e5VgnK3v7THLgqLJ13WRsGnOuBdpPkwzPf3c7TrL4l5vZ6hbLGUySxDfPU1l/FJKymWjczBao9jvb8nzu7by3LwT0lfFe1l+IP8n6cHzHhn6nhIU6xiBR//VtYcl2bbbNKRlcs/8sz8CGSRvLM9nP0Q4k83xS9rPML73wiQbPc+u4yv/T5rdsiZTLXgz57Zum+o0tomu097YbXIvU2eD+w6HMdbpOH0t64o977RmdKZrAqIWj0GdDGTsfJke/HfH2w9mUt0aDILHXCbDsNBnJtfO2EbTRrFz87ohhsjyQeTPLG0Z+/0vLtdtZnU5lo8NgeZOyq44omRg2sd8ei2R7PIrlCrLqVEgMpkg559DkpemeZDbRmvTCETm2x2NMLnOh69xZ6X06pkbf6jhYvxP1fG+tWDdMNpL1uZjmodPksTzuUiTb8eaYNJkATmnP2ZsYMj/J0xR4qC6fZP8FB5T5qtT+dk5Kckn+WG9BIYGdgTWJ7ok+XygP+9PksTzH3wnYB+U7bhdZSVVfz+u583r3mrIdOEG5ptNsZfK9yjyBPcvjI0vUuY5xx4YvH3C7zVvA3V1422bOKdttGeZpG5Rh0q3O5a0sz4o4kag1sT77hgm4d+ftYZIXD3lvZzv39E8kUxk+1y72e8eW4z7Vw/4yaMJ+MKCVbG2K18Z5jo9HJfM8O/hAm9Vxm4g+9cD2jnaZ69OEo/W1zybOTTz6ZtK3F/RiHTxx4LE3HmEd9APRNY698dCEfa7TdZrSE09SmgjkDUImY9SFajDPxVZANjnLApoaF0bjed7UkRqCEhoLgoY9cORIx160kmDIQIHHaipLI3UFIHezHnO6yALU7x7qaPSKhIqpdbYvnAuCgymKOvWFxtukxmDJxypYxv0PPpvItbyB1hRhowwGHBwnEi6WISltfZMTcKrsfoPMRB7PsyUyyZboUVcqS3cWDJrPdz6zTwQHJlosO0XlOq57497UOj12bs9jx8gs+zAB6j3ifDMLmSeIap3etaF+c20a5JoceQ0ZvNDeJdu55GfqKEkuAdgF8pZcWc6zHPe17Uafec3kgRFo1zGRqykia2BI+ToufvFHMhOz1ldiY/vbvCUnPZbV9ifSzF2yZH0YnW8Esy3hnHf8H2b5Yb93JfmxJD+uMu4L7Ut/B4U2rDqwR5paB8f3AuXsiyYb5fXmFwxMARkTk47vQ+QhoZ9IavtDMM8AV+2qdbDtV3YHxrg+Ddj3bAaDI62Pa5c2iva+7ZyjrNcB13TzsC0Tf8oU1OF+l1RNJHIi0w44kZyY1L1h0zRYr0eb12mTnniSQhZPJ0oH5si600VWQmKgmBwbZ9blqDAXNCMfBBqOrCYrsDOIt7OlAZmM5V40khF0EweCq34+z0pMHFWpnB4DR51s6DtOdDSnmfsxOf894GpnbXBi4sS+mIBSdjtFOzO2V3l7JOB2trrCMahjYfseAzo4OjSCcfaVOsj+OI9lpq7bge/NcSSXSQX7NZGcaVxOsiVGlMmRR97jkQpG8KYdP0YMvWabp/Xzr8Fzf8nbu6Ucu4f4PNmdaRwLLJNjHaYcl9lG/0lWT7MeMSNB4fpv/RPY8+9n9JkOgrCCGa7dqY9tl4Ej9sFkxtFiyrq3PpL1194Lllqm+bkD7R9udB86flOijePngrzW592vpvtZCcxUd7LVtcruOWGiDht0t44pyNExYJCqx9h4TIvBtybqVO8/1D0HDJKt3XJgodcsY2Xnb9lw7Zgwth7rp/XCARYTx4kA7iXaEtosYhPufCRb+eoTTaK4bkhGjE04hrzGcbCfOMl2LCsD7YLnxWu09QXlLrJdX9fpOr1WeuJJigF6sl0kXdTebvUim6J6dUJM58rPdmlUHNFlJJMANPqczEabzqT9c7sEtZfIz52b9tERUDsPy7y3pTxtqU9OkfdqsB2JLFC1I2F/JrDC7xMB4nxXdgLWCWwR4Dqi5lTDz52BieR6XKbvJEYnWcfXxKRzYyDP9jhvzmO9pw6dDPkmstDPU0R50ple967lxXAtOQYGdJaM8jZyzDLth4MHFyo36W7H+lLXLlXOYJprxlFQ2wXqBAlucI9AOKir/UnWc/v3kZdHbCr/FAjgr4g7+sn+TaCLcrreJoIu92MKQnA8HM1tfQagJGvVOb5ymD8Y6KAE5eh1g2HubtAnkAzeyPq7UndzTDRZj233awG6F1Fn8/XHHT0fJgVeL00NfF0qP5+5aHqUrY3nrvBNyEJ7Y/DL9rlTQLtu2+/1QhCdHOuGZbvKZ1wq35Sm3RQSwb11b0Jtv82+WfaOgYOuJIkOop7n+DncJuu2g41uh/0y0fEOG+unbl+10/WGS58INnXN3o7SE09SmPYAbLIFf446neDa+VB+AiSODNpo7kXzmZ+GaS/iuOdomChbfxDQZIsG5nIo6zz9y/wGxBPIo8wcUzqvieDVwE3jRqJpYxqVM8CmkWVfC14MVgkQo7qmtk0kfT+63zmfCAPzcMufIMxRbQJIE9+JwNDpsf8kD5THRIf1NHEOL1WG5IOynuuaifoeibBszdvrBU9e73vRwer4I8hBGZr3Yrhe/e5zCAZ47LvJ0lQvSSd/2Z2EhLq+F93tERsCOh7hIqEmCSX5qhwdu2cPn1/EGJQMWF8nfZhIru015aNOUzceIz/fZGbd8efOE0lqQe3jHNtEzp0DAB0nPkDPsaru8rkEr2WS1e680QdMdoWvKra/IKi3je040H5xZynZvgq/clWmR1mei2m5zs/jrGSJbe75m0mmvV2naR16d5fXbROpb7xvm8h2bWtJDijLhB+4M+GgEm2s25/mObpnXDHtArF+218HVbyj07Yos4Ox3KWeylNm79pep+t0VXriScpksHh9z9g12TEnxzsTNGJ7wLz3awRaxg/QeVEzr40RHSrlZ2KEt7JXlql/NpwnKnOmcpHMNpwcZxs81t0+EWTxLWt7oJrg0gSO298Gb44oGqzeVh8ncrJHJNgXy0vwzXrpFElWXadJb/PS4SbbMfCcGuDvkY5kjlQ3XeT4JQXeceGYneJ6cgxcmZfzQ0Bj4E7na8fn9dp6uW4IGFy/gamJcMeQrzUlKO1nRt8LXluGOwLWE0Yi2V+SimQdP9bdZEA2fSbwL6EyaWl+61PHsw9un+YYwFTuZLtL5DmzLkzBH95nOY4f9Y07JT5yxDQFHliX5aTOP85Wtx3Iqo6UXCbrXHE9MwDBNRLkMYgs6aasTZSZQLjkdgpOcM0yb9SObcZegOK1Agn0XQ6QmIDSv3IceG1KDvKwrrbt+TK5DMp5TTB17mqXTZD4mTbDxJxktbKagFCm5Ng++f4ePmC63LneexMpaxtT265r0uvrdJ2uSk88SUmOSQQXyFWGvWUm8vEwC5AleJmAlR2tDYWB+V501jJNoHgCxEx7hMdgfC/ZYU+R0bZLMjgZV0b0bJCb2s/p6AHrZh9KfiiP22HEaIrqGlxxS76JxvyRrvP5Jfa3+SvTngO3PtGB04kR0LBcI7gTIbU8jmQzMh+VmwgoddvEf9Ip93mPeAXXWvekG4zQMorpNly++afjL5TT8k5gzMdSpkg9r/eZlQKgPSK4BxhM6BwR5ncS8/ND23y2oONykuP1bJm482Idua/8lZ/9pk24wD33l+t4IjPJeozIwQ+TMJa9yPbZnD2b7f7v2cSz4f5llpeKJCtxO0vytsPfF7Mlkbeyrjmve9vTkqHLbN8Sdj9b3aMOWVdaF9eIycwUfKFM3UHxGrmK5NlHtF2DVgbVWqdBv+tu4vxPdqE6TDA/EWnq+uTLLDP75kAiiSf7Z5Ld+ry2Kgv9le1t8zVgNO2KcE4fDfdpd6dgDdcRCRZ374kPJvtLEvxJkRjdfT3bvE6b9MSTFBqrZAb3BpDNx0gIAeFJtm9DmkDJZOjbnp3qnjzNY1LA7zZ4duh84H4iMDT8BP08l+xyHqde3+vzdI/RIRKNaQt8z3g7muWxbeqctY69PkxkaoqaGZSYhNLw05i73slYkwhwnOyc+v12tr9IfpptxHMCeGyHgPa1dHcPhFA2y91r0zETA6ned33eIZhAI/Xbdp5yPNK1ixzLVADLuei8mqjtATQDHeZlu9aLlnU/OI/cRWld3aFoW3eSvPvw9zzLcwsfyvrKbLZj2annPEJUIGKgeCPJc1nm5162QNGv5p36ybmuDkxjw/XLdcrdn45Trxm4G5gl293symPZ2h8+z5JsfQPnpG/seibJr0ryzqwk5X1JfjhrQMG7U9717VEq6h4JC9dastVTB2NahvpPUhPcn3YLJl1z35toC1gPj7J5HbRt2+EeK6OM7Y/9xrSzQ2Litd1ynFOT99dKJJjsc0mNx3Oyyb1XfWh+774n6zxyt4tr0z7RhLx1nOq+yQkDhOwXX4fO4Bht5UQCrzH4dfr7TXtr5YlJXUQEw4zUnONzsjV+LJ+sxpzGjMdEClYMJqNyNug0Mj3De457l8N31sPjYozu1cDsRV4YpSGI3CMuNq7sT9uenNVk/JOts3S03gBvIg/9x7E/1f22Q1lOsnVAnJtJdjvxCbgT+JjMGCCwbjoKAttJR6J7fiVq5/Jhluiqo6p2EFcRJxI7y5sc67zbqE4lx3PnPjkyyfao9x6/6F7LEJBwt6N/aw+e0rUp7TlVR3s7NtRnruepHo9v5TeBnewGI5e93h2aW1kISuXsunxXFlI7kSoD0huSpden19OeHNq8k21fq88kKN0FcLtNBFf9zjVSe+TAA20hgVbls605y3b9TLt3lY/2d7IVBIAnWYnZ7SS/NguBu3u4dzfJlyV5x6HtexgD9qt+ib87xDn3NZIV2lLPK0E59c92tHk7Vo6iO+reMZ70NyrrAAGBbWVz3tPsPwDO+n0ioW2w7ikw0DEnWI/+2u+7bfswEyDqrHcaWD998FmO7UTH2AEh7wpf6r4DSdRprreWm2xny/eoon3PpfJe6PrHQvjeMOniE/TvOm3SE09SaFT5CtNp8TdxkU7GoXmm/N4h5KJPjs+LVx4aeRp91sHvJkN1jowS2UAkx+ug95/StRouO3AaVEcnvb4IMAsu2lfL1vkx4JyAYK8ZkJg02WEyGmRZHYl06rhO+sKdGRt8z5PbpT6RdBmksm3udvnooslC549yJVunxR0zzmdlImHkvF1k+4rf1tu6HH3bS45sc7wMhp3Hu0zVo86/1yOfBeEOHYEDHb4JuoGb75MkERj13k1cazkHHZqv+s21No0V5+s86zHUz0nyO9+XfM3fXYBxsgBm74QQYFG2PuyfQ523stWR06zHrj6UZZfgQY4BD20Gjy21Hzey7XvwmW/n6rjcPvybfpCxc+J6CBgdTGqZad1zrDoeE7HhLl9t050sx7xuJvnSV78wv+jVv5Pf+MeWH8L9nMzPkpTA8VgS+8C11XwGoa2ThI5z1uu02SRiHIv+vZ2VbPLZnv7dA/9e+/QD3P1oPbaR3FnxDpBBeZMDGwXkJET01dTFzittNwkG/eup6ndghH1qX6ZTG/adJAi0tSYeTCSItNtTIIrjbSLS66yPBO4Cf73jM+EOE7ZJR67TdboqPfEkJdmCnglMJ1vDTMBpkBZdM4DwdisdHyNue1FtGzje5wKncWh9jQ4btNtBE7zX4Tl6QhmnazR2lM2EpqltPoDse1G38+F6t5Jbr3dg7OAYdWz7Dw/tFqh6/JpIEOlUaHwZwXSknMCY4IwglWSCBJekYnLwdATJ9g1Cp1nesvS5Sb4kyWcdrteZFPgaRNu5Um94dKJ94PibBJyhTNvoZ/ZjOiJymmMQ4GMw7LvnsO0TUHTOOvcGry1DG8H26Gx7zbK0HuanPOw3QQ/J42m2gPuGyrA+9sEAL1mjnL/2LMk/9keSd/57+WXv3j82Yl0zkOhuiPvAMiXMtAUEOBfZHqnq/fbbNouJpInrmg+st76H+Md2DJgM9rgjTiDWPpD0tk4m6uxJ1md/zpN80bNJ8j1JPif5N5/Nvayv521dHSe+LIT+xHZoTwYTc6/daQ1N9rbt9+/9w/0buu5dBZMQ1klSz35WPgfpKpPl47w5kOgdHrZtsNM2ahtYzvrdftIPMZH42WZNNsf2n4EWrwHqpclLU8ebZLZjxyCByS5PN7jfJEbGAJbReuD5oW5+0oDOV7Muptfr36uvS88+qdIT/0wKE6PryRZk70VvkvWBNEeGCdRoYGwgDaRobLhoWW5azOfDtaYT5GE7U4TLRpHkiYaLchgcE4R7h+oR7lEmGjeO+WSU/XkiltM5Whpr9tNAj3+bz+PLKCYJSbIewyDptNMgoHPUsvNiIspUYGdnT2dE+Z9L8vlZn994NsnzST6QFbhVFs5nZeF8UEcnXeZxE+YjwWIdJqx0ltN8uzwT5WHAgOU5vhOw5Hyb8HrNTHJeqAxBlmXrfNOmtIztThMJy17k9CTbo1Sc07Mk/8F58jX/+29Ink3+Xz+yRPZfzDbSWjk8115v93MMuKrfN7Ie9bqXY3tYIjatx2m8TDBtdw2svL4N8qlHnkuv6yBf6yI4pp3tLpBT6yuw/xsvJV/xg29KfsnXJL/2pTyX5KWhTxwHpinwZXmvIsa2TRMR5PXaNdsZ/r7LFG23PCzLNdA6SNK5nro2p8Ch63Ww7imUZ784dpMdsGyX+tx8JTTUyWnNmFS2n81H2zP5l2RrWy+UL8O9JgYdHWwh2aZs5/rcNOlix8F6OcnysejddbpOV6UnnqSQyRM0JjMxudR3A+E9ktO2/GNLjJywbK/RANIA1xgYxBqUmQBNyQ6dToD1JscRrrZB4FanxP5wrNx2cuyQzrNtt8lRHBpvG2iD/LbTvzTClHtKJDkG8SZA3jkhmGId7c8EtChj89BxERgl6xgYPBXM3s6yg/JylqM9v/A9yX/yAwtxeUeSH8l2rKmjnDuSjNOsTpnRubbP+W49XmNMnFMe92A/Oed88xH117rDtdq8D4d62e/geteh71PGttsXUfBB/j0iXYJJgNV6J/0u6G1byfa4E697/VGOu1lA8J0k/9a/seR5y6HsS5KnJGeKsBO02n5V/ttZd1FM3Pj7MG/G59qB06xvBWN7nT9eS47X5GTTmSaiMdVnAF3iwYfkqYN9IJ9v0eM6qN6+lORHs6zLv/KeJPkPcifLw/TvPeQ3aGwdnnfKa2A82ffK3+tc3w6i2Q5XDx10qA3g7990DdBG007xSF7r7XNaHDMCf5PB1zoiROJJQuagQvswAW/71clPmPCy3uR4TCu//Yf7tOc7PV9cX9RZ+6L+pc+2fkzlaI+9czIF42i3rL97hGTP/16n67SXnnidOcc/XkuOQa4X2kRQgr+M+hDEtPyZ8rcNOhgezyJ4MBFiG4weMVLbuinnmepruxMQnqKklKvtO/rnSLSdQB0SQTDTVQCC30ng6jAusxDD7hR0DHgsxnPptll3x5f9b/sTOUvWN/R0DjhHJIVtm2TGOlX5SV6ncTjP9ix/j3J9fpJf+Oo/lnzgQ/lnvin5cBZQxH7bmSeLHho4UM+4hqgXXj+VneDGRJrj4Oggx6mvyG2b1kfPJ+fbzrnzxrXAvvYf59CAyTpFx922SJ6pL713ojran70x4pxUBh+bcpmHWcDxT2eZ+7dk2eH44Wx/yNGkksdCTM7tKG5ked7is7Ls2N0/tHsnyWce2qVcr6iPXBsMXvCoFq+XHEy2gu34/rm+83P7eAv94xh6nqhHJm3VVYPd9x3+NVhwkeSvZXku5SKr7bCt6d/+47FO62XHiWNg4sJAWvP5WaCJFJI43NA9Bp5OVJ6E7hL3uaabjzudLH8j2zVmUOzAGe9PgJ92pmUsB/9xh4XjZv9K+5GsxN925lG29o3++WSop4m7Ik22vbSpXqvTbgyT14iDKixfveNb6byuneyHP5bA6hsiXXyC/l2nTXrid1JICrjo6HgYHd9bqKe4RuPF6KpBvMlBUKbJINTGNviezFElRjImJz7tWDQPyZAdFMuQiPQ63zzj9kzs2G/ucjBR9knelvNuRtuZjPFeXWzP7RpITpEjtjmB3mSrL61/b7eJDo9l68QYmWsZ/przXrSBpGoaC86bj8nZEZqgEfSbBE0yUJ/pqKadQYPGZDvOXjeO+HJXhbriMfaOl9cPnb/XM/WPpKTyMO3ZhD4/wmhzQUDBesl3I/Ssr7JNwYMPJvmJ7K+z86xgo7/p0TEheOIcn2UBjydZiM+9bF9X/iDr/N48yMznQyq7iVnl5/G1k2wJS0Gvbcul8rSP7R/zMjJ9inzJFoRTT7gbwPGnrU5WYtMXN1T278+yk3lyuOejfHyZQ3TPfWI/aQtKeLzLV/kNyE1ivIZ9v/3jSw8m4G/5nbiTToLKvtQX8Yc4k/1dkvaJ9VRnaTf31vQJ7lsv7WdYfvK1HMvag64nklyWb/5pl9T293Kog76Z/aR/rpyUzXaw4zXNact1rdO+ctyfyqLj9sdN9mfX6Tq9VnriSQrTBPonwMv7zDftvLBuL3bet1GxUzKApEG5xPcpmrQX+ahTtCxME/Buf2v0+P7z9qFlz7J9BoXRkilCaHlpyGy8TNYmIx19phxMbGc6vtI+0+CyXsvGsnY2QV4CiCgf83NMW38JsIGiycNFlmNe51meP3nHm/7rfOYvfnv+k7+zRHB//JDHD+qapFpHGPWiM6euTI7OxPQMf+lUuXsyHbVg3ZwTlmuAwMGFPR3gjhqPYjExeutxmuSbdgi9y3IxfOaauqH8fHNbwWf7yd8oOEWeh7hWkErwlRzrHYEaQf9Epk6znvm/m+36vXP4Wz1sG08fyt7N1t617a6NjkmPyLWvJA4OQvRz+8XjWfzHMia/1P/HQ/5+9rMnFzkmTHzb4MOsc3Jy6H8TAxJ8aJt1MzlAQbBNwjP5k8fZrnv32+3Q/jSRpE3lfbTpROVsqwjAuwanwAOJadtxkMA+l0ekPNcmIrQl1A37eIJxXwvK0FbSX9A+TIS6QQKOv/1Bx8i/89S8tK/nyOt8/Mv6GbiY7G/vcf4ZUDC5mXT4PIu+38j2N2/esIlM7vVs8zpt0hNPUrq4mxjdMFg2ULNDT46POF3iWo1k8znSx8+M7PLcqsEOr7ddg/deN9gjiGMymKKjp7Fn3TTM03gw8WiBQWyyGnAbZYLf08xGn3PkaNXkYG2QWy/JKXctmhxtDL5zPE2uJuDrCNYEGGnsmzjulb/XW6ag7nGS781y3Ou7kjz8O4szuJfkxySLydiJ7nMu+kNy7NtEED0nlJNH3wiICUKmHUjKMhFRH0/y+iXgZaoeOGpq4rC3K9JkUMdxm9o0sSCxcp/9PAGfHTH4KiDmDmaj57cPeTrGlaMA+h5kfcvh713IfXKo6+msdoq7LncO5V/G92T90ciXs+jQ7cN9vt0vBzmeOdR7D+Vqh5oKtic9mAIwDo64DMe3bRGTTDo+EReTn14vIOv1Z7KC0cfZ7nRUTy23MdJEvL1L4rLsH++x75SZedwOy3ItkxTQFk/roPNFH+F1wMQxnIIOrYvrzuB6D/dx14V/3UfaSgcqOQ4kJZcqTzlsMxzY6T0GZxiQ7NxVnyg32+Z4cr5J1kjYJp8w4QqOCX287WavsR97R1Wv03XaS088SWHUlQagi5nG6ELXk61jYJSygIDg+TzHhp7gxJ+TNdrBerjwk+Nzt93GNdGxI6ph4zGrvaNGBFgmSpNME2D3rhTHYgLYLMMxPFVZAgiWN4GcEoEnDavbIGE4w7X21f3mPNKQT46RjthH4SY9o1Hf66Ovn2Z5BuG7szwrcCfLm5w+nONfKG/9U7TrRN+TY31oHXbq3KVItgTQ+pSswGeqv/VxLKy7jvhPfXR+RlWbCDSnwESynUPruYHXNF8mLwWX/O2JnsF/WxZg/3KWOW29t7N9ZqNyEmBSj7hO2Nem6kDrZ1Q+WYjJgyzPnCQrselxjjtJ3p5Fzx7i2rPZ/rp97eKzhzz3JJsDMb3mfjYZrE/rtfrTaP5e4MI2kXXQXpMoTrI4oEDwThvMMfZLSmiLTYimPJZhIlO1eZcqM9U11VEdpZ1/jDztK+0p17yJPwEtdxgc3LGsl7o/BYpIlJin30kGWXbvpAHts3fG6SdoVy70l3Wd5Hh3g9fbDu0e+7Vnl05U1vfdN9tRBmO8W1UZm8/zfHnFX7ZnX3udrtPHmp54kmKD0FTjODm7GgRurzrS1jocNWei4fI5ztb5KNto0GQIGO1g3c03vZGrZd037xQ5kmxgYwfOSBkdh3dJmujITP44fjXejOAkx/1unQanJGwtx+hWcgxMaZD3gFwTnX3rav0EWfxux1qw08Q+XuXc9mRoOUZ0X8n6uti24aipAS1BumXwnDGZQJiYtTy/k9wZFDPftGPQ+ibQM0Uio8+cFxIGk0tGMffAbb+f5fiZi5IGR0irp6dZdwZOsoLoO0m+OAvwr3w/nOQHskbfO5ccz+mZj+ahbehfPoDOdC9b8tTfxOgcP4PrL2YhMB/MQj5+2yHfe7McLyyofybrzszLWY+L9VmVi6ykJZmDDzdw3YC67ZCI0K77CJfHJ7rH+22PQRoCLq+TpnPU0bZfyXYXi324SiZeN9i8ymbVllYPWZdfCtC+TkDdx1Qn0kKiRt+VbI94tm0CfspI2986WX7a4WRgr9dOVVd3lJ/K7IdJVIkLJtJnDMGyezaJukogbyzw3OHzi5mJQNu8yNY+TsRgCrZUhomINE0keM9PuhwJH2XzjtUeXnnDpYKc17vN67RJTzxJ6SLhw+02TjSQNgjTZ5IZRnNp6Bhl5Q6LHYKjQzT4LN/Prp+7KiQ7NJgTQOQ1G3gauL01Y3Lm7yQ53mFymkjIVRG+tmcS5iiXSSUTSRYjps7D6z7eQxDLcWQUNbhGHaFjc7tTVHGK9jVPj0RQv32Mz2fKWTfbbZ7JWfG7o2PnuEaiOkXpuoPCB//39K1rwuSvn+9kAU33cqxj0wPD2fm+F0nlfUcK93ZOONbcgSFY67U+e3IzC0G5dbj+ZUm+LQthOc/yrFGTI9UlOwX9jjJzzIPPtBMGLyQ/lfnFLLs8Z4c+Pn/Iczurnb2VxSbdzLKL93yWOfrwIU+DPnwgnt+7E9c1dKa8HDuORZCn/eZYd054bInzRKI/1ctdP4O/yn+287352baDL54n95O25kL3H+t6x/CqYMTUh5PhWrKut+6kOUBkG+IAk3ehOCfVYR8narIdor+2vp6iPO30Y9TPoIoDdCfoo/uVHNsSBsGIBZKtbaDdal7XeZZ1x/Jutv2236bNDMpzvrkbQ79zgrrcNx8pdWBxss1NJIb00VO/r8IV1+k6OV21EfBEJC42gl5GM5Jj5+QIBIEJFxnBcs9M29AbzLRtkg1HKqadk16nsZrAvyNZNWjcPm5yxJjHoTo+HKfK6B2W/nNUaTrKQ9laH3cHOFcmXI48kgS23x6T0+Ff6+7fqyJEBWD917F3VLW7YmyTfeI1HsHwdUbdg3t0XNRTguezw7/b2ZIBAgbqHevYmyfKR2c/kWeTSV/vDkofqGUfT/Cv/Xe0ut9vZ4k83jnkfTbra2+br+Px9sN99r2AxEcf6Gyjz/0+RS5pB1iHxzlZASMByp2sr4r+0ldv5E2v/p38lv90Afdvy2pbup4L3AtQqV+2a3vAu8m7ZafZ7myeZn026W6WHZS3H2R4KcnfS/JXkvz1w7Wek//srDsuyXJ8rHPCdV57YjudzLtZtgP83l2iG1nHjKTArzFm3We4zzdZkVwwTWSJdnAiAX02yADTfblAfgdrbItz6F8f3Ccp2SPSzLPXp+qZwbkf1nfAufaSc+U59RE82m4Teesv7bDr9JqsPFy3tPt8BXTlZvSf47mXJr865Z+IGG3nR7Ksl4kc2aZMtpfymCgwTXaehI++wDbNgUHunNCvcIwtg23uGzZdfIL+XadN+pTYSWFUiRG6Lq6roks9kuXItw3kZZZjNl3s05GnJu5iONrVz62X5IhRoL16bRCm7V1GrqYt2AIDE4e2eYk805rq+EyAlW3SAbR/3glinWyPEU1HLE0Gp3GdxoQG+SLrLpUjQJwzG/cJQPA625nyto3qpLf92Q/OD51wn1t4lAVckpzszYWjn8l2LigLo3ImUMm6a0kC3DkmOJ1AHsuRtJh43jlce3OW3+r4kUPZ21l1+fJw77dkeXnAX8uy49Ix8DGp4B5l9ZEO6yfHdCK8HjcCAAY+TrIQkuTrk3xO8ltPcpLLzfGgoA5HVK3n/G5d6/hwfnnvqSxj+8pB/pcP128m+ZIsv8PyUhay8nSS35FlPP/jw98Xk7w1y4scvvNQ/wPI/WyW3wpJ1nFmdJvzbbDqPpOInOXYViRbuzjpbPHB3puwPPa0NT62OPmR9olri8dgqGPeGWH+C+Vx4KXtRNd97M9jxL+955cL7OkQAxeV08GTyc4E+Zr4og7LQRkcNJki8/RbUzCPPt9BRxLFqW6TpF6bTjJwnAnebQfu6t658rVPrr/XucvE9ZBsMU7/cXfLJMP9sswMlrZ+2uxk2z8G8DgO1+k6vVZ64nVlAg0EBTncZ0ScxvARrrc+Rx17PdkaxdZjg+Loh50e2yJRoax0cEwG5gTVPJKUbI1Zkx0e80b3JjDgqJojPtE9jvskmyOpdE40rpSl/wwKHbC4yvmYpNlJ7pFVjkcjTQbj7kNlLDg8U346tomYUG6Sco4hwQfHzWPeHyOlM6KDJ0mMPl/oGh1n79/JAmw/O+uP6FHuph4Z8rGMvg47h/L/289IvvZ/lfyeHB+5ucgCjH8yCyAuiLAOt+/Zud4xmdYc+3ih+9016LqbCGLn4f5B/g8kyVf8oeT//abk9mXekgW8MALfeSTJat17b3uinWJUdFoDt7K86av3H2eZt1tZfpDwVhYScjPJ739b8jU/krzp1V+UT3/1F+Z3/u3knz+U/UiW3a63Z9klehZ1nmV95oUR8mDM2C/aSPbHO0gmaLYxBb38zPqZz4EjXuMu0GnmN491jH30koSj/6h/rMu7w7Ux/Ufb17li29SLvb55TU/Ep/Vf6D7niSDZ5JeJc8fv7Q/n1HpwqfJcawbBbvumrrX8A1yzrtDOcjy4i2BiPAXYHPDrWEafk22fontcP8xr354c28K94Jpldj22FZV3OppJv0mdtU+b7M4bLhkwvF7/rtMmPfE7KY5W0HBORtROzg6G4MvlaFQcYZ+i+jUOvefIc7L99drLHD90ybysy5GgKRJOAjCRCDttRlSYxyTHEd4pKjQBRUef+N1jzr7V6TMCxeTvrd/nlNs3R/oJIgiaHeGiHGdZ5uq+8nIO7Iyia4zMEZxUJp4953i1fkevmBi9plyel/aFICXZvilnIrAkiG3n2Sy/Rt4xfmuW40wvHOrle/cJwPqdY/LR9g5Mpmursjb6+kKS/yzbYzOeY/qF0xw70clOEFg72jmtd9ZP3bqZBSQ9yPKjf1+Y5C9/R/L4OxZicJbkh9SmI5gX2T5czms51DE93M/fVWldp1nafWsWktExfS7Lm8YeZHmD3EUWYpjvz8JYfu7/tyj708npDyX/889N/nKS92cZ+xLOu4ey97LqVpPH2eud/WtidLjJgYLm9wsDOG5eV3xGhrLxOR3rj2XjWiZ55DpqfpII1ktd57MVyXYteA12fdpP7I1TCaP7NK3pymVAn6EMdYvjfZJjPZ3GsuPN31zZ81W9V9tq28FE//zUFfmausNjnax97nXvXJjMeqzYf86Nd6NMQiZy7tdat05jminoRZLhkwYkY/3rnzboqQP6yhP8Y3vT/F2n67SXnvidlJIKL65pS7z5bdgnsExjyi1eRt3tTNmWo9N7JKAy9rojRJWJUVvWSUBNYEWjOQHZiShcFQFhvzu+Lhtdd3K/kmOn7CNLUwCCY3Q5XOuDxmzDTt6OmuPYcWbUjxHqRufuox46CI5BDf+NLNHmW6iDOyHe0Wj71iMCIZPiOi4SrgvlmRwhyVevm0Ds7RbUcd7MQlDuZjku9E9kOS70bNZnMfZ+mK59cz8fJvn6n0j+8p9M/my2wIzAp89JtN6JZCbHOnCR41eEM9l2uE4Cib4Vy31I1nn58Sxvx3qYZUxezPKcx4sHuRth5zqcjsJwTTPKy3Y5nme6/yDra4WbXsg6hnez7LS8+Y8ehP/Ffyv59FeTz3g1+cX/avLO5J1fvfThI1mJ2Es5tqVMJMzt796Ye30a+Pm7yVj/kuR4N6QyFmhe9QD/JNtFts9JEDh2zU8yWtfZJ7bpABbvkYB6PJj43I53GXu95K52vDaJdTS/H/ynzH55A9fENAcXQxnPId94x7bqD/mcqNfbDf3lOmVde6SrNoHXSBqp322jzw15Pk9wr9/rU/isUf+dIc8l8hEDnCgv1xLznOj7UypL2+9dFdbV/PSRDmDWHnldX6frtJee+J2UZAvGGPmkA0iOScXE+qdt0ml7t4kGl7sZBO7NU4PAd6mfZ430EIC6frfLfkwRIrY5RfaC+5Wj9VEGGlOX4/iQpLUtH2WjzFOf7MA7PwSQPh7ARKdgGYJ70/Y077c8o/dsg7sqJDE+ukaAdJZ89GgPyzFiyXnirh13ICp/y1R3LnMcBTahNTgyiW3f9kAPAwKOiN85tP9PJvkVh9c+PXeS/LnDvXtoy2THwLwk8E4WEPzhrHrct2V1Dh+jvAEf12Plb7BgmnMTp0AuRk3b58rRV7YSsDb/vWyPobyY5G9mO++VmT962aNtBuDJSsInAtt7TQUVXP93D/XzeaYHWQn0R4HQZ2X5QZRf/KtR4x9PXvwTybuW54POs/6QI3cV+5pmPkDtnUGC4Qkwsi/U10bdHTihvnNnY4/QlDibfFQ/SopNNugjSrQcXGme1jX9WKJtFeWZSAttA2ViUKr5TLpp82w7+VszbNe276qjc8mxzPSBey8nsI82MbXt66u9nTf4TJmqQ36tcvP4+CTnh2uHO8u1k0E+7naTfE11Jcfr3+Sg80FbRVvNwApxA32cfbmT5aatc6Lt6/faZAZMpl3/N2yawN3r0eZ12qQnfieliaCPC8rAf8qTbMlFnTSNbQ3uTZVxHYyEEJDRIXNSCDYYwT5FOco+OfMLlOM4XDX5NrLNT0CxOXaDvrreiSDRQVEWtsHdqY6T++d+cKxajqSUhn8ilwVhBn4FtQSvve+dBQJiXqdD5f2Czhez/sYJHc8e0aysfi1ospATEpQ9cjeNKfvL4woEcNR/7wyxjmS7Pm4kC2p907O5ky0BJ5l11M9HHh5mOX5079D+vcN3A4rK7104rpvkeLwn4tx+JNuxm/SeAK4vMmgeO3uT114jyPIvglNHCWza9kPltb56nJKtDOfKVxC32dX73izbY/nDKPlFyWfeSD6wRvPvHvI/k+1Yedf5QdbIONdZCRqv9+iPd8Q9H7aJ3I2yvvPzVUShEXra6+pN9cykJpnxB+XgTqL1gdF999N+oHXxAXyfEPCuSbIdyybqvOtqn0g2G/Wnj6Sdbx1XBae4dkxwJrn4t+DfxztzkI27FT0+ZxBOokPf0bGjXt3MEiypjjqQVDxwhvY5Bh0nlq+dpJ+kj3G/+bn1kcBT5+lLPP/VoXP8o03bs8+0hVOAse1SfpPR63Sd9tITv5PCxbEHliejf6YyBG01rueqx86fx8CY7KhNeBytMAB0tOVkuN5yjMjY4bYPNiwGCSZblL33p+1b94N1cOwrw5nyTBF5bzO3Dj40zd0y9pPlWTejipWnffT4VFf80DLHY0rVm8rBdlrHXckbfWd/Pad0BIzKXSrfRLwrn4EhSVnzs56JZFYWjsVllt3BG1leVXvr6eSZvJRvyrqLQgfYMpWlc2AdPM16pK76050LEifKQmBL4MM1Zt0I7jmQQEDFyCXtBIGOdZogvMDodhbyVgKWrM91BNesbw8z7xAY3NDeXOovSSj7+FzWtxe+LcvbvX7w30t+ye9P8syfSL73TywFvizJB5Pv+b8tpPHtWQnKWZZr52qvf20r3Q+SZv5gJsEpy5jAea64O2AbNhGU6H71jOvIgQgSxJJH1ttdisowERbuZFC29p27AKfZ6nKy1RHad47BzWxJjX0j6/Nv3FTGCdBSbo5x5dxba4zEc0ymZ4i8K3GadReP9U7rY7ItbINze6r7nc+O5e3DfeKEzmnHgnVd6nvHlVjiJvKy39MzOtaT5HguufY4NufZBoyIATyv024Kx9Jkhfe5Jt/wyYDu9WrzOm3SE09Skq1hrDP0QiZQTY7B7CPdJ1ghQCTQYz62NUX7mOis+0AaQQ4dLQ2QAT7bnyJnJGM0+q2HxxqYaHAq7wTAbKh436DachHwtWz7xK31AseJJHE8OE/uC7eh6yjaHh8Q7Jve3BZ3bFhv0+1sQcgp8hicEUg5EmXwY32jE9ojxkzerWhf9kCZQTF1gPJT3r484G6Wt2w9n+S/OOS9k2X36F7W6KHBtEF0ckzKp3Gxc2a+PUdJUNH+uRzzMjk4wchs759m/wFq1tHf6KAsfbC5IMRH9aZ+XWQeB5OEzpX1jkDqRcjxnixH7P56kufek/zP/tMkv/XNSf7H5Fsf5L/7bcl3ZNH7L07yvqy7KVxDtX0OBFw1NtNcun8eF6Yp4FJ5mKw3BPZt17tdEwHtcS+Or0myj2bRVnNOqTf8PgFpynEz2xcB0D6Q7PR+P/sYm3e5OEa05fSFJVDNS79EcmIATpko55QY7KtcJpytgz/qSdvbfjlwxDnqfT7vM9l8z9fkc0hkWu9t1N18U0DqY0kmsvQ1Qdv2I8lxMJCJ5U/0dy8oy+Bcx/oai1+njzU98SSF0cyrnF4NpaPqBveOpHqxGchMDrT5uMhZt3dAWN9JjsGP8xDAO3LcvzUUPhvNerw9T4BhZ+XozBRtmaLyBL4mFRfKOwERRm8IkJPjMTcw62ePtaOwbWNySCRIlMf6ZSfh/rJe65T1wiDeYKVHwJLtw7WUg5/3nJ8jfQQTHC/rL8ekOxyXWR6cfpTlYfnTrMfbGDm0LgVtUpcN/CgH/07kgevC88+xIBn23PVaiawBSddIj+IF3zk27RvJsiOuHRceVfHc7EWZbcMqJyOuHZOH2e7WcHxfOeT70Sy/i/LWLI+jfFuSi386+dK8kossD/53HbwtyQeT/N0sc91foyfxnMjRREh4/Mbyu09caxcoP4FeBg2oE1F+f+Y64lxzx4sv6JjIzWutP6fmpw2g/MH9O5DhHu7XlnIXqRH4ZLXHtO+XOX57XLJtt/Zhsvu9b1DbzyYkyTZw1H69lp3yuHJ+TTD71z629dCHmNg10XawH5SD5LU6Msl/kXVnhON+//B579XilcMBpF7n7srkD9sHByu5Rr0+X4tg2BZ2bBzYvE7X6WNJTzxJqbNylGciB8l2YXUx8oHXKeLSe7cPbdzLlvCwzBRxoBGjvCYYLXPVMZ09YO6t79NsAcPk+GwU96IkE/jfc1QGyAaSjLi0ToIsEy7P56Mcz08Tj+Lw84OsO1at+1TlmAhOpog2QS8dHq91a53X2d6l7p9lAXkFuSZuBKSBLM3POvecs4mmidgUseQ9zi/BSB31edZdlaCOPTLNsevcMhpN8kKH68+sm6CRDplgiMdaOPd9bS9l9DFBR6jZT+4wTYDC4LwynORYt5j/MfKe4R5BkgH5tL6tyy/hWnXvPMnfznL862aWH8m8zPJjmiVSZ4f7L2YhKJW/IK11T89gTACI+r0HXA3UOx68xnUzBUZMPkxkLoY8yfERmkbFS9B/Y5bx+7Ysum9bayLtfjBNttl967MPd3C/IJg2gnXwzXjUq77UYS+YVJlKrnnsjrvc3u0mUTFRTLY627/VF9sy56O8JsG2D55TErfK4x2zyhDdMwmyHX84XJvkoi4TLzRxDpl8tM7XnNj/trUXCL2hsgz+Bp+NTaZgK8u/odPETF+PNq/TJj3xJIWvXWXU3YnX7YBczgaQUXkueJIAOkfWT2AdlDUgpNGwkWb/em2She30viNfBgAX+N62CR5JFggoCYRrDElIOAbsb9NEci5y/H72ymxy5AhWATWjd8zvo1wmT5Sh9V1mO4YE103e7aAT2XNm5/pLkH+W4x/BeyZLdPthll8Gd5oI3x6Apo7xnkFvVH4C2I3+OcLJxPq8NqnbJkcEeh47r7M98rMHcCxXx5qgegIbZ8jvXYK9XZiCQIJwO3fOn8fHRI79NIif9LnJILL96XjeO/y9c7j+oSw7YrezAPAvPbT/vqzP0ryQ5Uc7G7Tha6BLZhopLhmrrE3WrY4po//JMRirDvgVzXsgn32e5moq62NJ05p6LsmvvZXkTvLdH1nHYg/wW37quvtBHeQaupnFJlR/ns26U1ai6GBGP3MnMNk+Q9NUXfGar6+9xGcSS+/W2yZ494T3WO5cn2/q/kTKvdPA9T3Nq0kU5U224zIRZPsf23v2Y4+4BP3yfe/8swzHkzIz2MpyJCZTW5e5muy4LeoofZgDsdfpOn0s6YknKQanyXFUlYvH25y8zzqbGBXnti8fQpui7f08kQ2C9ikS7yiTjZwBtuuctrIn8Ni/BoMnul9DbvLi7V4C7dZnY0UQbwLY6+w/wTUdJwG3AXgd2x5wNiiaABzzuQ+TrjFq5fHmfNnxmTS03c7B27MAx8sswOR2lij1Kzl2NtZDrgPPjcFR+2JCy/Ez6PdrSwmAzrKAVuZnIIFz3LllZPwS/zg2p6iHYK7y83cVLlSufxuJviu5KvuUmqftUy6PdeXvvDcC/TjHusTvfhUsE+sjOPMcXOQ4KmrA6mBId1EeZjm+xe85fP/pQx8/nC0Q7/f2pePTZ5U4h+0TX2XLHc9e2wOXQV7rLo/LdE1Tpo6Lj6RwvBxd5phN5Po0y1r8zx8kNx8sz2Q5ERi7XgJD1t954Vi0rzeykJIHSf7ZJO98Kvl3Hy1BmGeyHq90W11vvebfH+EuSWWw/UjWdcejblwTtklTcGQKJnPHxWS999kf+kbOqQM2XI97bbfOJpN/XmMdBuV80UJtoAMorM+/20PylBzbgv4eUXfwmmqbpqDdZM+85qZ+G1M4nV5x75MmcUG8nm1ep036lCC0XTBn+Eygfqp8/VdDxiMW0zGv/r2V7XvxG51nGddBMNi6mMdb8442nirvmT7XAdVQ9xqNyASY+S/IP0VTKpN3OeqUCN481gT0nhcmR30MCjqG05GC/vK6I0zN0/Jum/kth/WmsrWus2wNuqPirHOK1nlM7MxPs0ayL5N8eZao7cXhb8t6J45ggu1NMgV5eJ99n8aUeab1UrLgeeTOlIkUI3KUlyR2T2daN+embXOsW+btWR74fttQl+eKffC8R/kMgqiTj3OcJn1kGZN15m2aXl3LMbvIOhfPZNGdEsJHaOuZrODmXtZo/LsO9/+jJH81C1B6x+Ha3SxHvtq3O1lt492sgOq5rEeTLPe0Xppom2p3SzIZzZ2IDP2B56BlHyg/iW+y3f2ZSMutJJ+Xhdj9FeT3kUG22WQwaR1o+w4QPHXo/69K8s6/leTnkj/wDy33Gswg8SeZpd+hviT7v2Ni23GW9UUhJOo9DuY6aJP42Wuyf7nepgBXCRXXCIlC22fffFKiOw7Trtq0zki+mzq2JnuVpXNXu2w95XzTxk5krPkaUOCzaVxD7ot1i9dt33nPc5bhM0mb7fR0/Os6Xae99ClBUhxZSGaG7wXIfK2DQGMyYt4loCFJjqMtvF4ZLBPr7TUa3Rq3PYNR+e0I6ZBcbgJTNKKup8aH43GS2cjT6TyV4/GZCJGjVyRkjU71swkNd3LYjueaxwamgAZ3Q2zgSZQYtbLe8dd8KyNlatuP8N1Ry7bx5ixg719/d/IrXk6+9o8vgO+prOTFAKttElRQl0jaOj508pMOmIxE7U3XOfauj3+pQ5dDnmkdkxSz75Oz9/MEj7MAiHuZ10frYeR1b80SILA/1Q0+CN/EcWGAof2yTZnWfmX08TTKxt+zaDt9o1iygunzLGNxL1tQmyy698NZdgt6vOeFLA/XP0D9/XXxB4d/nY+TrOCXgRb+wB7zMJlYkEAbhNruldRE16jbDJ5UPuueAWZ1jrt+/0iSd2chCB1nB4D49kSSe/dp+kx5WMdLSfL+JO9Lfupn93XNZM67H9Sh3mtZ6mD/MijVRHkJ6BlAsa9g/bbhtucn+jsRctZF8sd2klXHH+fYNkx2bo9w2T9UJy7QBk8F8HXCJgkmNuxr5eIPmCZbPaGusX76T+tG26if7XrZI28sw7VEUlI/bbv4hk0Xn6B/12mTnvjjXoyW9PtexNiOqcmRLD5kzTw0UAa7PmrTtlp3jVf/PkIeR8OnY1D9PAGm1tEHj6c8BMKT86mxMdjpfRo//50iJzwaxzaC/NxOJqh24phS7o5vwaSj2RwLgrbLrCBjOuLUNqfIVNul8w/yTjsYUzt8hsg62iOGH53vZ5O8+Vby3IPNw92tl68Bpc5ZF+hgPGenkKf32SfPiwE8AR2BOs+rn+HehfJw94P1MyhAfT0Zrrdu6jkJePP/WJZjSvzV8olsT7ZjAsjsr9dUP3MM+9m2o8lrvnpdG0Qy4TpOsz1PX0LwIOuxrPNsX5t9kfXZkTuHvz2qV/LyTFZyx7VfonGOMpWnJChZwfCtrDtt0wtL2ifOWQEe59I7UwZhtl9OPA7a/HwNrUkOdyovD+VfzvKMTp8VK+inDyLYthxcg9YX6hKvP8gyVz+U5Jv/8LIr+L6DPD+N+hhwcZqCEtQf97mJNpHBLtbhPk5Hiy50nwGB6PuprlPGylPC7XGnz2O//dk+o21dZF0nTA743MG9Av772b5EwcDdRJQyGDdMf0kSiDfYNxIb2nMTHdqKx7pmzGS8FeSj3l5j8ev0saYnnqQ0ERw9yvrMCAFEgdDediQjRTUS/PGu1tdEoGUjR+NLQ0IQ2jZo5BnRs3Ew8GXEibsKBsx70VoaSgIv9oPgrH1u2ckwOaKVHDuGytf+krxdZv2F30Zr2Z6dKQG1HQHb6d87WaLB/XEzgvLKYjJn+RnJt/N4ONTh8qc5biPZEo3LLI7uLUm+8W8nv/NND/K+LOfee96/fSIRo2zJVgdI4qi7Hi/W6zHYO9pnInOW9ThNcqxPjLa7Xh+XbHmuM+afdjvcrkHB/SwApBFV6h/HhfWWJPiteU2ca+rFzRzrAXcWCOImokMgkxzPC/Wu/3jchICD8rVOAph72f5ydvO+eKjndhai0XVQIuJ+cw57DKpEprL42ZSWd13JenTMgG1KJpLUN95v3ycSk2zr9zqv7D+ifJfZHofiXL7Ww8lsy+SmzwldJPlIlldE38tCVs6yzM/LKJ9s5559oKzUjebha6qpnwa5XlvnO/kqC8t5HU+g12A9OSazzWtS2cANdcD60vlnGwya0O9Q/gaJTvG9vulB1mPg7RfrJqnjXFgPT4e/LWOSlBzXx/ze1TjJ9sUUXIcTCTF5YmDVY1NZPil2Uq7TGyI98SRlitLQuJlUOKKdHAMxG9HgegGBIxotX7Bjp5asBMLy0vgwQjLJ5uuVK9luR7MfdlY2+pTFwJXj68gU83VcOb4mFnQSNZ6UpW0/m5VY0dlPYJRE8Ex1kQSeJPnNWc6Q/+Uk35vViVxkBZ4eQyYbaAMl7lRw3hypY6SQgIlR8otsj9n8uayRvRfUXp3qw8wyMRJZp5xsdYpknE665bjjRR01yGl5E3TrvaN+U51B2dZLQNt2KXfrNplvP9mGI/nNa6LyWmCWDp/AphF3vv516ntyvDbYH4Pu0+EayZ2JPedv6gP1iD8yeSfLDspdlHsK16Y3zbEv3m1rn9j/yvkw61n7Asy9B8szlOc4UI6rdpCpL9QhE0P2gWVdX3VreiaF8rJf/DHIZPsAOwk4wXxJY8u3PdZjXZ/aZpmOI18ucBW5pX4FdXhtEuDyOoE27SDrYln2hWNvUtRy1PkT5fPamdYZbWb1qG37N02qu7XB3k1j6vzaP0z95rU9W9v6pmeKaG/8a/Um+iaK09hRB73euIt9lk8S4HmVs/94tnmdNumTQld+PpLBBRcgHfQeKHJ0YfqNkQdZnd7eq3Kb9sB567YR5uuDLdtkUAj6bODrWCdCYVm8DdzP/eG3CSQYCNuhMc8Uya7TTba7KS3/Yravt20Zjg8TAQbr7T1uyz+TbdSN8nRcJxLLvpwjnwkZI3EG1wZrJrkPs0RMmT6U5dmUO1mJi4EGQeF05I/kuIDGZNY7LnQ6vU6w3rGaIqCUqeTH5Dd57fnsPYOmaV03L8EU18lEyk2+DQ7aRtdid1HYdrLuFFCPmuckx7sN1T9HMAsiCf4oL3+MkTLWltButB2+qYtkOFkeir+Z5AOQl6/dvZslWt/AwXkWYtLnTpg4B9XPrscSe65hg+gb2a6X1sX+mPg20Xb4eA8BsNfMZFOtPyw/7dp9LJjjKj3kmCTbNzyRMF1k3cVisMEgmuPV+jyG1E/aYqcT/WV/nOhzam995M07LKfIz/XGgIjz9y/tK20W7bRtbvN2TLr7aBLAfrY+21OOZ7IGLnnU0jvuJYH8QVCu9X7n54l8sF83lL/3+eISrsl+ZmodHI/2rWvAO+Vsj7uxk0+4TtfpqvTEkxSD3jrEEpYuMhr+Eoyb2YKw+1mNSlDfnaxA4yTrg8vJ9ofrmj+Q4UKf21ayNYyTgw7K0Pj3u4/AnOke0xQNY7uWfUp1qO4Hx7ey1/hOR58K9gjc2Ma9bB0SiQedANuoE/AvXicrMP+Pk/wXWXYiWq/Jk+XJcK3zUNA/OWPKxHtNdozn2R5RoGN4JQtxazvcseIYt/9N084X2yRIOM8Kgh5k+xBnyxIIVDaTGjt7AzpHVA1eHFU0UPKOTfvhNkhs6TwJYlgH7QLHuXaCoJtAn+1WFgZMGmWlzhIweG24P/zeMfAvrxMAuR0TQcr9bBbb9mNZiQf11oSjbXcHykdh2wYjzZ2LrtvJ9jEfbXIyg0jqLesywWC9rOMk2zdRee1zDPvMTedzChC4HG2h8yTbtzNVHxnIIPjjGLTPtWe3s75Km7JdBXq90zEdeeKYN1+TdZH+jX2fSMZkH0xImm/a9ejY3FRel7Ee2+5M9tw7BtRtk0vqp204SQCJN3WKv4NlwhjlT47XuwNwTNQdH+2tbJyrU5Xxd7bBtUvswfF4hDxv+LTn8D/ebV6nTXriSUrBhY0BAdUU+eFCa/SZ+egQ7x0+8z3oBKOMVtkg+qhInaTJE9ukjM1jB7PnjBwx5D0bxmm9EDxNQGDanTEQ8O4MnQbL9b77NTn5tm1CwHoNHugw+xzH3RwDYduqU93Pzv0SFI9rcnys0HNNOd0P6jJJAJ0C7wV1GMRf5FhXmDj2JeTnWQk7I6TUU46bHSX75rmhHCawjnya4OzNP+W3vnqHck9W1kO5C2g5Dx775puuGTwnW/vhPAb6lKXXOoa3swUd7DeBbXS/AOwDh88Ps9hQPp9DOR5n/W0UEjYCq5uHNmsrmQj6aCdpq7pOk+3D+yV57FvbI5kyifHRll73bhSBpPNyTRtgsx7bLOuBkwkLCYJtD0EgA3HNV0Bc4tL6qAct2/Hu2DDqPdk8Xp92g+1L7EO5i+bP7m9yTHSS7brsvek7dbLBrL1gW/NzLVEGrhsGACgXyfRZ1h/cfTnLCwwcsGO7DJhQv/rZmME7/wyumfRzDSTH40XdtE/lmtzD7yYs1vu90yPX6TrtpSeepJj9T0DPQCYqc6Z7/KEqg006OCYaFD6zQhkImveIkx3ElC+DXEx0Pq2nYNL9nsDrdBSJW9cTqKLRZATGhthGrm+5al0Gopw/jxtB0uR0CaC5lX2e7RuyKI93KdhHthvUV7kcDePbsiyP2yQhJSBqmZsoQ1DE6NpUlmPadi4yj9fDLA/ltj466hPUQ93jsQWOFeedgQDPactMOktH3WTCbSI/AcQJCO2lyalzTnk80fImW/3dCwYQ3PJ4V/vgX1u3TeD89k1CJoSVY++X2i+ykICXcjzGPiJ0I9uXWXino6DJ49E+lOgZbJ2iHO24I9cmaZF8/H6qcidqlzpIYDe1ScLbvyY11F2Tes8V6/azKEw8ytRE0N46ujtFe9VjPj7+ZZ1sos1if2nnaXMm/2lw2/uOvNPv2Ne1ffaniTbOft6+fwroNfkHVWkvKxftw55/pX50rh9mXSOt6yHy7NXnuWldJgokRRMm2CN/e/PQfH2BjOWz77f+3FC5jmPzcUf/Ol2nq9ITT1KcuIAZRWq6nWVR9Y0cTQWC3TYn2Gv08H5Ww9MIZHCtbXor9Az//FClgVyv+X77UQfUv5e4R6OSzM/NNNl4+d703Q5iqnMiGt5xofFlNIr1T8CT36fUdqboMR0Ad8EcEWIfKi/rnbbQSbyuiqZybDguZypHh995Yn10fHyzjPOQcHHMWR/BT0FOsu2zI6b+7qi2x7+7nee6Rv2jTk3gxVE6k5zmI5l+hDwGw5zvq6LeyRZ4sr622e8GakwT0TDhah4/hE/Af5bts2J+iUdlKoilrO3rK8hLkpGsRIAk7Czryyz6muE+71Jye57tjlP1tnaSOtI+ewyb/EKD2k2CK0aiTX6YTD5MoqvPPFJDO0Nf4KNoHScGT7wryv6x/7SF1kXq0TTvHYub2f6A5n1cZ/9oL+vPOMaUqfM1Bfa8m9S5pk3zTumeTaBsJ0OeCYhPc1ddnF6yYPvJOdnbqYny7BGLpsp+L+samFKfQ3Hgy76jZJ4BPuq7H9q3T+ZcFuv0jXoTaabeT4E7rmX7X9bj4ONrBYPeEMmO5/Vq8zpt0qcESZmiMjQwdCZ7jmIPiJO88IHX24fPBVs02ASjJCuMhrcsE50V+8YFf5nj39cg4E22DoOOgGkCSDZAe1vmHttJVtafIb9BuOdwcg4kF8x/jvvJ9jyxAWw/E3QyUldQTtDIcq6HUXU+VO0IH/tlR9Fk50q5kuNjid6JIfHkkSLXTfLlsaO8BVwnuu+14uNLT+F6EwmD9dHfSa4ok3cvvPsyRf5O8K+yc/7dLteD9cQyt1+MfLPtaTeTeazzzcPjTQUsBsHsL3WlwMS7UL3P6Dv10HMayHgv69ukktUeVpaOY3d1CvpPVA/H0X2gzvP3HVrWAO0M9/gMgNc9k20VAxIdc+tY5bW9NSnk+ujYTqC982IQ5+d72qf6mR57u8xCDp/JqqP3sn2jFAE8x7DBtNr16omPMlm+ae3btnD9T2UY7LCONU0+qkT3tQjA5Mem3RvbGs91221ggM8P8fky287avR6ZnHaBudvgIBF9P8fHxJrXrXetp/b4PFs5vd5pA0qi+AyabWPTtJ5Zv/Nfp+t0VfqUICkTuOXCTI4JSo25t89b3218v5dlAb8ji4P4YBZnfK68PbpRORih4JGIGhhHxmmMLnO8E0LjaBC155SnCN8EWJunddY5sB4SnwINA30b4ej+JAdB4RQBPFF9BjZMNdA+MvYoW4dImbLTl5Z3RKmJoGVvN4TyMnEspkSwy+cqDLQod8fJhGVylhNQspwnOR5rzjHLEBBwHAjwTI4MCCeiXzkoN3W0bbPsBI5Ps11jybq+piCGd2q4rqnDJih7gQfaIwPS4N6k0ybLBh2ci+ktPoww9zqPb7Bdy1Xwfi/r2Dfa/uuTfGmSv5rkuw/5/MYyvh6X80Zi5WNcBZ0lOh477hC5rIm+x5NvVmJyIKF/aXf2QDJ13ATGwRjLYhtgcnEnSyT8dtYxfB7X76O9PhfUyDnJcLKSnK4tyrZ3TLm2PtmOLXcnfEyKc9t+kqAxTfreN5ixzb31SEC9Z3dNpnjNQTW2SYKyB7rb7s0sv2mVrD/s2cTAQ2WgznL8OBYcs8mX7tmK1s+3Dk7rgsGC9oUy8eQGSSYDsG679TzIJ0F6Na//ls+rr3N7nwTpiSe0Bm2PckxQbNRoyEoueu0y61uOTrMcc3gmy6K8l+UMd/X6+ayA41aOjbNJkUG3gTwdHJ1e8PlSn3m8jGVs1Pcc4QTADE6deuyg0XG2yeM0p1mAYH893Wdbe+0Sf5MZnLYMjbLHM9kCtuhz++2IWwknE4lU++XE66zbwOqqROJHXWHZymsZCH77fS+axaiZI/0t510J6lqy1c/zbGV3XR0HzxnzWmf20hRwYPm9aKj7a2NoktPPp7rP9cRrU+TZTp8AYyKaLG8AwbZJ0Ape72TdwUi2P8KXbHdkCBj5zAmP/XgNkvQ8e/jXe6dJflmSt/ziJXhj+9q29qKsJDwEgi3feei48LWxOdwn8GuqzGzzIlt94FxNDpK6naxBpkbRKV/Hz3WaGDbxHL99UA71dGeDBOPpw98HST6c5AeyvJXt3uH682hjGsO2SWDK8fdc1QeYVAZlpzntg/vnQzn6FdbF/B0Dk1a3T1/L/kxHxjgWbptrg31joIMkp/kZoHwuyxz+dJb5uJN1B4zlTlRX/067IZNdu6n7Uz98ZKt94FyVNPLZuM4b66vdYfCWNpv9o1zX6Tr9/aRPiZ0UsvwmRg4crbDjrJGiwX6cxdgUxCbbN9x0a5SvbGVkqokG31Hlyn6qPDTwyWqwKP8prp+iLhoKR5QYzb5QPpKe9tGgcIpQcfdlckx0OI7mXKoO19vPUbn2mwZx2s6/GO5PUSs7X/bZZI3OkePDqHzbc5+Trb55t4dpD1j3GqOH7VvH0E73IlvAw3om59+xJWho/oscgx7K7ONje33tX65dr2HWzV0Z1s910rGw0/d669sACcgnksToLNs5UZmLbOtju5SrbTk6Sp3q9Rs57s9Jks/OQgqeyWJzfjTLzm4TH2gtsLadm45xmvz7vo9aPczyo6jv/jvrLgoDEWwv+E7C9q5D3h/JGvWtDjzG37bt34zgmHJN8scQ+Rauicx6B8BAa+84VOtq3T0KZHtMYh/I1rJnKMs13DpvZiEo97K+Drm7Kh2DFw95n8vy9kLON4/x0M5y55Drp2PQvD7aE9RtHaHt4Vq2XeZxPgLysxzbLwJrzv/erriDcSZrtmHBWNjeNHFOOW7u870cB416NNxtUp9s/016qR/eXTlHPgaIKNtE6M51vYm6Wzk9L/3sICrTJwVZmZzl69HmddqkJ56k1KES8PDYjkHPBJ54hrjRsndkIR8/nfUBxS/NEk18X5Yf2avxfkcWR/HTku0sK8GhESS4pEyMWtlRthwNKo0FAY8NHJ2BwZSPxzQRVDcPnZ+NuhOdjkE9HSxBLYE0AcZExrgLdJrt76cwcawcvWOE2sTSwJFOpsaZkSifT+YYTXVPn1uer9TuNZYnwHdf67z4ZrELlZ/mlODI8zCRFSeSB+qR9cQ7T941IlluIoiyXrH93ifQch8I+j0uTSUyXUsco2nHxPo3raN+NiCaAisFN02Ncn92ki/M8js/d7OAogL9H8qxDjaZmFsf+5dEsPp9+9DOT2erhzeS/HgWknSa9fc6WCeBkQMVjUJzfbDfBFFMHlvbDYO92vMpEMD+1M5Q7rbB73s2Zgp4TCCedfZ4FeXo58rztizHh9rGVyb51Z+V5O1JPpD8P15O3pvFzzydZUflQ9kCyMpl+0XS3Wud9ylgQEDcuSGJdOCINq3E2y96IJHgujQp5viaNO3ZVAdDKA/t916yHnN9dzweZP2R51tZ1spd5OWzTtVVBioeZnu8LTn20dwxNAlyUMbj4CAg594EmuU8Bq67clZPHJDhM4jX6TpdlZ54kuIt6hq8RzkGpTZerqNHCG5lMWAfzrLofmWSr/mCJP/okvlXfCT5sW9L/lzWhxZvZTFOt7NGs7qlysglSUGyjX70dbwEjE50BI5eTDsI/e5IOgEt6ybY7OdbOT5yM0Xhe53RHIOwGvcpsu+oDCOgkxPyjlhlYj8I1AlkOyZ00JXR40oASpBqY78X4cuQr4lzbWfNiD132OocGOEyOJvG4mMhlhOgs9OcnFgJ9p7uXhVA8j3W0XoJVLzzQfDU+qY6HQ3e6yPzdpz5Bj8DiokAW/9JAvimKx5lYdS616tTp1lw6YeS/O5fn+SvvyP59z6Yv/R71uv3ILfXq/+y/5WXa8UgkOV6/Kn28iLrsSOvSbbJz/ez/E5L62vZrj/23UGV5HgdsfykD56zPj94qn8XWQJR97IA/rtZ/AAj/rQt0b29MaBOc0fAJKtzXdtXgniW5Hcl+UW/MsvW2fuSvDX5je9K8t3LblbBcrIE1e5l1bHKsBccY9v0MZPfKjk5zfaVzH4zIO1uy7Tf/qV0g+EpGGNfMukyy+3tzNDOTbsOtJGsKzkOatnuckz47BTXU/Wvn2sXrD9dCw6kTmRhIqWVKShvXbfP8lpvvj0i3r6xH+zDdbpOr5U+JXTFRmo6rhDc3zN6fHf9hw75/uEkX/PLs3qNL03ygeSzf0Pym7MQi49kPgvaiAnbTrYGxZFEgn8Cs97vXwNpGiP2jca6MtQ4c6xonM+yBQcmeG2v/bMRm0Cc5ZsARstOuwgFRpSD0WGCdtZFZ1Z5T3LcH+oPHfh51shisjp4kyaPr4FrcJ/98nzZGU3kiPnsnAP5Cjw7V94JsLPr+LWPlWty3Jz3KH//Wp+bj+UmoHGp/EzUn/7rc09N1Ivm9TX2hWVKIio/d2eSdW2YRFHWM5W9kdW2EBxQnsdZddxydjxKlvLNSfL3kn/x9+Tdhzw9alQZaHcIDpuos41y8xfrq2d83S1JVP/dz/aZCtZRUp0c26u+Cex+tmNZMMs1W52h7WrdF/jM4ENyPLfBd8rZdJHkdyT5N59OvjzL8am3qb4JENqeu03vurF/7aPtdefv3uH725P8ovdkORv3wr+cPH41+f8m+WDyG59aAkkPsxIVjyHl5LwwTWukst3McsTwLVmDeNRZ2w2SkM4Nx4IEvW0aQE+2ma9k7j2Pb8vzWYrkuN7Jj9Le2Pa1XOu9kWVMnj187zg8m/V5Vdvb6g/H+ER52leuZdpRk4T68JuZ663s3JFh8MMBKNZRPZoCoLTRHGPv8L9h0+Un6N912qRPCZLS1AXHhTRF9LngCJZqdE+zGPunsmye5N1JvizJn381+e2vJj/6byc/kvyKt61R0RoeRt0ZZeVfT0qN2QX+0gknV+t2AXo/2/kaePAaIzj+6y3i4K/bo3M+y7Y/kyyWnzsGTSQsvlewSHk7BwaNLU/iZ+DBRAJBUmKCQgLFvpEYsv5JBzk+jNoRRDa/nWyynY+JkLVs+/sUvhso8XPtKcE0HZvn3YTfO4YTaXPfqwMmASVblZ+OsK8nNWFNtrI3cScjmY+nFGwYHJtYtT4mz7l3d7yb03sT0SVoKaA/TZL/RZJ8ZvJ//HP5QFayYNndTrIlAjx2MgH7rpmCTJL+jg3J8jnqNUk2kCFAJfGcAgi8X3lKbqZgD+eRwaPK4wg7dfiZLP/dzvJg+otq9zJbXbaMztO2qOsE8E3N1/FL1rjYzSRvTRZ28JuS5BuXG7/g1aWD79jOMX91Pll2VSa7S/3q2FDXz/DvTrbzfjvbZ2PaX/dtspu8x7+P8W9vjJq/7THwUjI1ER7O2Yn+GZg3T5NtYfvrwMKtrOT7XrZr3f6d8jGg0bzEMlxD3j13MIHymSxMBMM+wDazz9+ahHC3l/bedv86XafXSk/8ca9k6+RpNH1UgFvuNFhNzXsz6yv0nkkWi/PPs8U/mNz7Q8nzyc0Pb3/l1/VzAROA0rDyzSos28903lMUNrpGA25DyTExEDZgO93Jx8iuj954N6PlTTj4rn7veBDUMF/z3M5y/vo0y9vWaBxfK1Bx8Rr3KWsBbRNfBUwHOYEjkxle67M2F9n+pohJhncDPd4Gnya0BFCn+u7yBCbsC++fIl/LT2SK83eWZS1NpKx5ebTEsnd87XA7fiYoHDf3weuu9ZMkN50pn6PSTewP6/B8si2TE38meElW0PbBLG/U+ua/ldx804fzMIt9+lC2rwju7k2y2iaPjUHZJOdFVoBC+3I7K0ghIfT6m4IFybFN6jXb64lIdiwKkAnsKDsB6BTZncbhPMm3JHn+xxeCUtvDlxGwzF7/mHzMholR9vaVR8EIPB+0sveyhu/76E2uTxIGkn8mEvX6SuogA03N+6VZnon5a0n+y6zj3znxc1TupyP5Tn4bnfWOet1EOZNtwKj6yFfxVh6SR/omBiKMKZLVzzOgdz+LPnZH5V6W+SJgpz7aP7Y92nfOxRTom3ZMWfYixy+aYB+uWhPn+nyq+yY23EGrfJ8UuykEU69nm9dpkz4lSG0XrQE9jU9y7ABtwOuQ6pzOc3hzzmmSfyb5qAn8r9607K780EpmaNCbGJlom81Hx0C5CFQIiKcolLeAryITNHgX2a5P191rjZhMhIXl+XeKMtawTyCw90+U3w6Kcj3O+qpp56EDMKhmXkarDHIJjvZk2JO95aZIVckKAUHbp2OqbnjxTm9lappsXx0zo6QkVSxbPeEc2vF4jkyKCgoMvg1eeZyQbVI3WXaKwgbXGPH1bttE5B0VbWJZkh/u2rGeyneGv63fDx87wlgQyc/WmdqTgsQPZ3mOo8dM3pzFPv0IZOHrhaegzZQeZvtAs21my1Y3uUPhEww8EsYxYb84T/5rANQ2mvhr3CzH5OAA+8JE+9vxeynLSwi6I/4o68tHWuYsS9R8bzybLnJ8tGuS3TaqbZxnJYQ/luTV/+Yg1Be/Kfm33pS8/QuSL0z+3o+v88Hdl6swGEmEbTHlryynSf6pJDf+lwtRYTKo5u+x1K5ULvrntuc5pL+jPfdJAPoJ7go2VadZzsCdu31tyz6sfXEf+q+YoeSEsnJ9+EF9+7tLfWc9HKPKa/9O4m38YF2dcEbl7V+undprzmvLkhTv2errdJ320hNPUmik+v0qx0QH5sV7msX5JEtU5DLJ9yZ5/G1ZDie//dOT59+U/GtJbiR/4Xx1Di13U/VNBqLGlMdxkmPQX0Ph/jnCQkdEsmIDTMJB55OhfJNBX0E2SaCNZGWrk3yEzwSxNoIGtwWxkzN6JctbjrjdbgDuY2vtH533ie7XobZ/bY8EYSJjNs50EK3XTsQgguCt/WfEzE6NfWyiDHQqPDJTAE4Z6eRNdg0S6FQLRjm30+5C81APp91DzpmveW4NaA3IJjJiENKo4iX+eS47NhwHEi2CWLaRrECJkdoJOFoX+r2vH236cJYo9nck+c4sBOU+8vCB+2Sr92yfJKzHTTmGXEsmT9OPGjLPVYSS9UzklvlJYGiXqg98gP9WtjpG0Jls11/XM+3nedYdvxPk4cPgk710P9xfg9vK7rVkgtx7z2R9a9SfTPLqjxwufleSz0l+7r3L7s+DLEeynsm6u0FZ2DavRdcIenu/9f3VJI+/Kfnr2c7HtMb2bG7thoM0rIf1+dmWkyy76LXRD3K89kxgKAN9Itc9bZqJAXXqRra2gmW582XcQeJmP8KdS5claXCbDgA5yDPVY0LsfA5sdI5pxzzvDLBcZv9HT6/TdZrSp8RxrxolRsSdCBL6vZHKZBsdPMvy0GR/0fd/l+R3/D+Tz/lVWQ4Hf0fyF15eCEySfFYWJ0Kn1nqS7Q+m0fHSuHDxU/7pCJZ3CpqPzrl9cpTMY7UHmNgO8xI0916N/bQdTEe0x5gLkrmNTnmn4womJAZjLb9Xhm02aurx3Kun9wn8mUxiSMoIgkxCDIROskTLL7Lol6OclaP100H1d1tIjJqvjvJ2FrL3KMe/vk5QXjlNiKzDE5AkKaBe8XjPpO97R9KaZ5qfR5kBRlP1cIpycsdm6vu0bgmAWVf1lUel2t9pjRhIGQCSID/E31OVc73ud/XrIlu94VFJ7/hc6FpBY/M6qBDkZd2eh9eKnjn/lDi20/rv9z4n0O8nWYmZ7Rx/KbvjRWJxnuW1z+9O8v1Zdjj6Bsfm6Vh47ltn27LP4pGpynE/65u6XkzybyR597cvD9K/lOWoX/3O01neBEYCakBLXfHa5S5vDvLwGY/vyvJSserPg2zXNnWDvy1jW8ixoG+x7XXwhGSAumb/YLLIgJcDg90J6dHFBgVMjEkAWH/X5rNZXhH+QpZXc3d9ts3pxToOhtgO2p/TPvQ7x48EiGlab9SJ5nGde4Sc8piwuL43dHJk6PVq8zpt0qcESTEoZLJT4GJypOUk64N7H842Uvp/TnL23gXYvXgoc57FiL+c9Qe1vJ28F1Ug8KPR5veJSPAM6ASSPQ42KntRy5YluGP0ieCToK3pRGUdLeIZaEb4maZ3q9cQsl0aUUbkprJRHhM3E7KWOx+u2xE4AsXynB9G0M6z7btJpx2ywbGdlCOWlYW7GhOp7dt5CNor6+TUCMK9I9Q0AXivsdbFvu6tXYIoRncdOU1WPZ3qqlxT9NHj2fxcZ2yXOjjpHIlAk/WThHLqd+/z2SXqMI+ATbsoTJ7Lad1bxwjoOmbtE38X4ypAMtkOkiK2VzvLPEy9Nj1Q3by0vT7yZsJrfUq2645knbpbGT8/ya89lOnrifmMVGUmcOe11svxu59jgHkzCxFJ1mDK4yR/O8ujKTez7rLcyeKDTNgqkwMMnVvPx7RD2fu3so7hvczBo6t0goEAktxpDQZy9Ojk1A+W2Wu7dorzUWLJIMBF1h9eTPZ9swl5672ThSSyP5Oumwya+LTOydc3v32QbTjHg2thsg98AH7yM8n8Y6Nug+N8na7Tx5qeeJJi0NGFRUDY5AU9Oex+fulQb51A876IeroL88LhM51jIz6OzEafHQ2pnFz8fYMR+zWRCaeTbB/2bt1tl2Uvr7jPZIBPWU1+mupk7PgN1ttPgmwCKPZrmt+JONERVn6PmQlBZXOdjvJPcjk6ScPubXSDpuhasv5A3h6xtNOeHD7BSuX1W49Yl9uxU+r88LW/1KEJeNDRTvrq73R4dsAuT/LYNjguBAVT9JH9YvuXOQYlyXoGvXVwR4V1+Ny/9ZUyGFhaX9yPzudEAtl3A+32xaCcust+dbxvH/rzAP3aI4Nc15xz2ubk2O6xTtvjST9Ytq94btTaO5Jtt/13nsrTOZ9AY/N+/6GdD2Qdpz6cbT3n8TuOieUvUat8BM33su7CPcyyy9++XuD6+SF/dZOvnjaAJ0HhmmZwwYThXo7nrL9o3zov9Xnqt4MvTdZHEtCb2cpnXa2/bT1c7/xNl+bvHHUX5Sr9qp7Qn1SW7jS9kPXnCHrtPmRhn0u2JrIx2aDonvXpUtc4TtyxZnmOv4/UXWTb32l3psSsJIfpNFvf8IZNe5Gmj3eb12mTjNt+3tM3fMM35E1velO+7uu+7qPXXn311fyxP/bH8ra3vS2f/umfnl/9q391fvAHf3BT7tGjR/mX/qV/KZ/xGZ+R27dv5zf9pt+Un/iJn/gHkmEyeg/w3eCTRqqprxNktP1B1h8pu5nll+W/MMuJr56BbgSswKHJAMjOkMbEjoEgnZGulj3LsSFnvW2fBob5HMVpIlCbHGkTnwOx02AZArAJAHu3hVG8s1z9i8AmESaqnUeOo48RBN8N4gkqSUodyeXOQ9sy+em/aRcnKNN/HtOOi+fD+hbkmSKOJpMXystIp0EKy/dz+94dsKvm1gSmn0s472R15l5PlHMCNa3zoe5NfXAdTfZXdPImzPytBpIZtks5mAx47bOmY279zuNi9w5yVAavnYKPKWiQrL/2HvzlmHN90S54F6o2k+uAYM4Aif2kvnm3x0ToDP3Zs0ss33/ddXI0ujJ03RskXhW1/2CWN1x9BP1Ljm1ggbGPJ3Z+qje3sx6tYuT8Mqv/uZ/t8xd3shwxevZwrW+T6rE22wMCXq4ZymkbdnJo57msOtaTBm3jBur0TqN9YNN5tjZzCi6dZrX/JWGVdSJ4JJyVtd/5zETr9vEr203qRYnOFEzsUbvqZ+vnnHfcSqDp79l/zwvXnAl1693T6Skg23FwMK1paod2ir6RwRTOyWutzet0nZw+riTl/e9/f77pm74pv/SX/tLN9T/+x/94vvEbvzF/5s/8mbz//e/P888/n6/4iq/IvXv3Pprn677u6/Jt3/Zt+dZv/da8973vzc/+7M/mK7/yK3Nx8Q+m3jQyjFDQICYrwyfA7wLmkaRKyi3hF7OcAf5IFqdQp/Ew27PMfU9962Yi8KyDo2OgYad8BBKT82xk23WwHkdXTod7BGQ2goysmPwUyLC/jAz2u52Moz9nuj8Z070dGzrHPcV3xLygoACB1+5kSyL7jNJELijfnjMhqGafPN/uq52ZI2kmcx6bCRTT4RKgm+RO/TGRoPNq4lE36ornhQSw4MKk3IDK5a0zBtYm6AxE8DgHSccUqY3unaMcifZ07Mo7CgXQlKGyU6dIkkzkk20EP8g3JR8ZaeLcczx6LVlBMu8xKNI6e427WmyfwJLJ6+djATtth7af66sykITfzlYfHWzh2vJapb533h/k+DcqWE8TSVmy+Ii+bKXlC4T5o8KPszw3lqy/cfSTSX40665+daYguO3Xn9km2j+ZmNIm383qC0tm+Aaxq3ajJl2agjCdxwYqep3P+ZC8eZ65nilTnzOhHKdZXi7w9iwEj8TgdpY5oZ86ybqeSzQ8ni37HMbGgR/2J7rnQAV1j4SVsrJM9Zz2lfaDx8bYdssyv4NXvB5c507VWbZzZPzxhk0Xn6B/12mTPm4k5Wd/9mfz1V/91fnmb/7m/IJf8As+ev3VV1/Nv/Pv/Dv5o3/0j+a3/Jbfkve85z35S3/pL+XBgwf5D//D/zBJ8vLLL+ff//f//fzJP/kn8+Vf/uX5gi/4gnzLt3xLPvCBD+Q7vuM7/r7koDOrYTFBYaSMEZq9aFlJSY3TnSzG+aUsD8WdZHlIsQasRyBKjmgkW38jeq3/JNu3yVDuJkef+NefrzJ2bdPAdDKSdBJnWRwjjRV/TK/Gy1vWBNUT+GW0ntdYp42udyA6XjezdVavpfAGzXWq5/p8A/eZGvlsXSQ3rdMkiY6K0duJ2EXXm7cPtjNC2b9+u1THxsSTstDJN93OqqMdJ8pnAtPx6d9pdyq6TmDLcbqn7wQJbttOkPo5kVqucwLNyrJnDzpOBHu93r8EDWz7PNv6qAM3swAlHgdlYt+4Rkn8SAj2ggCPM4+HgYTXWKPCXLsFpyZvyTYwZH/M9rnGPVZetyQ0rKc6wTXDsZ0AFSPitj3tb3dbbIOtdyUCD7MQN9vvKYDSe9x1qm8h4Z3sd8f+YdbnQPo8xYtZCMu9bO2QbWivnWY9AcDxrjzsS+fkYZbnLAqw+/tUlc+22gECrrNk9Y93stg0Bwm460WyxGSQvjf/fHFF2/6sLC89eFuWFyB8drZvt+Nut32O5/by0I/PPIzPC1l8+q3DP+reperj58pPW9Hx5E5g06k+m/hZv+0fHVigPeNcuQ4GWkqmT3I8R9PxsOt0nfbSx42k/L7f9/vyG37Db8iXf/mXb67/t//tf5sXXnghv/7X//qPXnvqqafyZV/2Zfmu7/quJMn3fM/35Pz8fJPnbW97W97znvd8NI/To0eP8sorr2z+JatBtAG5yBp5YuSrqdEqRjkcpaxDejFLNKtnYx9mISx1OnZ8jKwxcmoQ/1SOHRUNQ1/dy2u3sjUINMDBZ0d6psjkFJWKytW41ojzR6qar29VYuSy481Is4F6x8JGk5FRRtJt7C+zjrUN8FTvhfJO99h/nrV9axbn9jlZHFNBwUXW6KzHloSiiUeaLGP75Aj1REAv9NfAjQCZxJNt8P5JVgAz1edE509dMEGz7nGcL7OVhevD5K0gmGTeJM9rvOSC69MA6yJrMMEAqzJOgH4yrAYe3Jll++9I8suzACT307aCusCz/xzTAl6uL/6tvpOMTfWT/Ha8vTNNOVsfz59X16zbJJvUFwNm6sje+m07tAnn2crd656nBpTOsui7I99td88Gtg8s035wPTmfA2jJSnJYR4kBSVHr4jHbksYbuGdiz/yVy7bAALh9LXBnIKJ96dixjwTJwT0Gxqy33U1qP+7l+DdppkBHk9eWA2NRfc9nfTD+V6GNt2W7Vtmv9qlkofPXz2/J4g/Os+w6nWd9FXTzeKf7hj6TwLWv1TtjEuIZErraKfrd4HPn1XY7yMf1Qv2/KtUHu28fN+B5nZ649HHRlW/91m/N937v9+YbvuEbju698MILSZK3vvWtm+tvfetbP3rvhRdeyI0bNzY7MM7j9A3f8A15+umnP/rv7W9/e5J1gXYBMhpA504j20iYI6B8GJYGiWA52YKqk6yEp3X4WEXb5Fl2Rm+aGJlKthEV1kUnyDI1KI+ydd4tOwE9tsu+mjhN0aXgXo0kjSLBkp0XZSow4JwZ9BvcTEBmSpMDttG3XASKJ0nemSXqdieLU20krv20LBMYDuo0wahskXwGvXb0bivK3+jX5GgYNa1c95C/a2baKWr5yniue2zf5JjHQHzMKfhuEmcwlWzHjMdO+GvrBS8EsZwbr+221foJehxpZOK6daSXa8PgkyDmVHVk+MzkMeNfyjkB7pOhzJuzHIHhcaDO0f2s0Xa+IMRtNRnA761Tg0GCedsFglHujJyoLo6h9d9jnyEP/QWTj7OQDLGvQb7afAagGH3ufJg8MKrff9WT+pKbWeZrivhnpw9MN3I8/gb5PCpEApVs1+QjlGdZBggNmD8/C2FnsOES3+k3TNA5LhO5IFluAObZg/z/wh9Nfsmrn5uv/WNL3tsqT6Le8h1zYo1k2WV68XDtuSyE/cWsbwDtboPXaueX+mgZSHy7cxF8n97OGNTtXQ7uTnkdsV76tY5155BkqIn2svruZzffkInO+/X652jjdfr5Jykf+tCH8gf+wB/It3zLt+Tmzf1Hm9/0pjdtvr/66qtH15yuyvNH/sgfycsvv/zRfx/60Ic+es9ANFkXKh2/j0v4SAGdXCM9Pd5Tg3H/kIdO43GOHd0eqG89PArGPvjZiGR1AMkxkdkD+HbcNax9yPlhtsaJJI9Asm3QSNF4GujYMRKgXZWm9Uw5OpcEMiRwBNzN70gb5Q7y0Zm57HOHf3eT/Cu3kn85iwN6PguoqwNjPwiIOz+MKPYvCYtJCI8KRP2uEzHxY//5Odk6VhIArh0SbB73cDSUbTZ5x+Ec+af1aVmj79Ou5qMc61ujsMl6zML6S0LW7yaqBg5tg8DLc8hghYFNsoxdd9lIlj6Y5fcmPoR6qAvtF0Fgdbdyeh6oD5Tfc9LEIAb1gs9DmBw1en+Ccl7XE2CfxtSJ67My38jxfAffW9dE7JqsC03nWXfDacsbGe6ueXcNSObZVnWL4NXBMY6n1/2kdw5KdTxuZjlu9Zasv/1y73DvGchhUtZ/fRFM1zkfgm9q+R5ftu53vB+hnvoGPs/R1M+PDnm7e/K5SX77yfIq58rZvBPpnXzrdL8y8y/7lmSJMuWfSD53axNIxuhHHPRMVv/9KNvf4OnRvM5p8xGHtD3vtPZ6lI86Nx1vth9oXyr/NAa0zb3f/nu90t7Rn5GAtj98Hfp1uk4fS/p5Jynf8z3fk5/6qZ/KF33RF+XTPu3T8mmf9mn5zu/8zvzpP/2n82mf9mkf3UHxjshP/dRPffTe888/n8ePH+dnfuZndvM4PfXUU3nzm9+8+ce0RxK6GLlL0vsG6YyU1sAw6soydGoGlAYlzceILndEaGj2tnfZNqMnBEcGLgT7rZv9Zb4aHYPbCRC3nMGlUw0m63SUj/VM4MVg6SldnyK2BpbTUYHmn6LKBB23szihf+0syf1/Lm969Svyu7PoRs9nk+QQ+FsHL7MdS0YFg7qme73WPp0MY9E2Ge09HfJw3KxLTNPOU4/7EShTd5ItoWR/qwcFn6ybwIQAYZq71tfoaMH1jaxR0WnHceoz2yahaLnJgHKeki0Jmog+SWt3nu7jXncoovantVfZec1BANusKL+BWcflbpZz9Q+z1V2WYfTV4Jr6QsDMtm2LHCTiOPZ6+/cY303K2TfmqV2+yNZG06byXufhGclRouI5sd6adFifrFMGp62P+lMb9iDbo7U9dsydTAY5WL9tLHfyrcsu09Q1z92Oph7b8k4wj0mdZo3+v5jkBy+XZzzblgM23MWh7Fxv9lVem+1niWeS/Ff/bJJf9qfy/q9aiRr9M+1XSTntZ+exxOwthzI/loUEPpfleDCf4WpfpvkwueW8d07bN+5kebzo66iTXu9Nt7O+uY04YG9XuvVSvrZ5I+szRhNeeEOmy0/Qv+u0ST/vJOXX/bpflw984AP5vu/7vo/+++W//Jfnq7/6q/N93/d9ecc73pHnn38+f+Nv/I2Plnn8+HG+8zu/M1/yJV+SJPmiL/qinJ2dbfL89//9f58f+IEf+Giev9/kqB2BGI9jcTHWiXCQHPWtcePW+0UWY3Qf+Q2KHe0kcAzqucg2QmwZJyd4os81MpfZGm4DC0a1L1EH2yOZ2wNjk5Niewb+3tWZAPNk/PqZQILA1eCNJNHAyPM6Oei2ZeecJPfPk+QHk/zg5rdLHubqseD3iXCeZN0pM+hLtiDP2/gGQgRQp7hH4JMc20nqwtS2yTyjeVPkb3KKnBsew2o7U9rbDTHIK4B9mAVo38923E6yHfu9xFerdq1bTq49k0uTXZYheOZuVXWQbbRs16Ij5ATTHgf210SDkVNHYAnkW1//EsQw+s45aTrXd+sl9YAkgkTWRIO2bQL6tKvJqp+Vjb/l0TYuladjdCPrW5/eluTXZAFyJLYnqo9rsvfZvz4DQx/ANcfgWPtDO0e7XR2/yAKOnz7Ufy/rW7giWb2T0zY8dwXVDCRMgYOWY6Cubzk7y3Is9o76eyfbt5l9KMl/nORvZk7VZ46DgxcXyMc12PL0R5dZf6D5e5N84/cn7z/0oT/IyXllv+1L+LsqHduzLMTW9sXr7TzzkfDJBp4oX9cd10qP7HlNBHnot4kNns1yIuBmtr6wR9T26klWfS45vcj69ssM5a/TddpLP+8/5njnzp285z3v2Vy7fft23vKWt3z0+td93dfl67/+6/Oud70r73rXu/L1X//1uXXrVn77b//tSZKnn346v+t3/a78wT/4B/OWt7wlzz77bP7QH/pD+bzP+7yjB/FfK9Gp8fN5tmd4u2im6AON3YNsnXsdzV6kkmCa0UBHgQ1egnIEX6yvbU6/d9C8j/C5Rp19rYGmUW39JC4T8Gp+Er+2zTFvW9M4FZC2jTOUY+QmOTboybHRb5oCEowA0wG3zspkAN/r1pGLLJHK55P88SRf/ab/Og+S/NUsAOFetuM5JQIXO3qSsz0nxc8cGzobAp6OZ/tHIsPUXRgTO+tJsp1nglhHn0tA3G8CeI7BmcozEai2H5e6X2BEOS9Unmu1xzOq8waXURuM5LL/1KG2y/mM6uDcXyJ/++Udpf51UIDrguvnJKvun+veRbak0qDLAL+J41ZyUrluZvvmsPOs+kT7y3omUlRZeY/gk31Ijo9/dR64G5SsR7Wazz+y20QZb+N7bdZvS/ILPz95+/cn/1fIzflikIhHXBgYqO6x3SkYYrLC8eh6fJytf7qV4x8pZN31g1cFBLr+KD+DH9bdS+VpkK3y3znc77gXuCZbYsNggv0jbQrbMhFpH5OtPZ/6dz/LUctnD3Lcy2Lf7x3qsg43cffPJPpeFn15e5YjbD+U5ScK7mV7EsP+1TuO1JFpPTLgQh/a/JXpZlab2KNnfKkCx+du1rfUEbvwN4oq3+3DZ/7UgsfG+OU6XaePJX1CfnH+D//hP5yf+7mfy+/9vb83P/MzP5Mv/uIvzrd/+7fnzp07H83zp/7Un8qnfdqn5au+6qvycz/3c/l1v+7X5S/+xb+Y09Npie4nOnsC/hosggQaPB/Pal6Cty5Sbq/33lM5XpBc1HQUBH4u03oMsCpHz3ky+tLoOyMb/tv22H6yBVKM7tRIMupJgNRkR1WnTbJBJ+YID+eDALvyTGPE+ZzkseFvmQlcGwi0DMFio4T3sxjyH8vihP7W4f5zWX6n4BXIYwDZZOfbvlCmi2x/VfmpbEFN+0nnyXEiiChYJnBrpMvjYTBkks/U9cPxou5eZgXKJCUGTRMxDT6ThDkayh0I6poBlXc12i4jjh3nID+jsQaLBRR7wYbkWNcJCrq+3C8nA2k7e4M3AiaSKZOMqT6TIBKe29k+c1eZe9yEZIjkqMm2wAGMyV5M64Y2bBrzEijbWtt2z2eyDUqQaNYm/kiSX/hDa6Sda6Bj4XXCticSzPy0tXw+gf2kTueQ77msRwbbxvNZbNXdQz4CUwZpLCMDXCwz9cl2t2W7Q1K572bRn2fQB0bYTdj2fE2ytRMdp5KMlw9ttVzH0LtQLP8wyxEz6m5TAThtDr+TiFLmG4eyL2YbEG3quHiXhvWYnGXnO+szYff6INmobaKfv3eQu0dlaffPDtd4FLV1PHPI26O/HH8HZ9/Qac+ofLzbvE6b9KZXX3311U+0EB+P9Morr+Tpp5/OP5XkH8qWkBB0MAJDMNpkB0uwyegogVDBhqPWybpIb2bbdpNBdD/7XtvvdwLaq2Smk65sV0Wr9yLAdIyTg9tzKrni+kQmL4a/raPpBNcMAkmEznWv/XDeDOXc/1tZjHDH+2YWIJAs5/Z5LKskMtnu5kwA0VH5vV0U9oM6y3G61PXm91g0NW8J7qSDbGuSz5Hkficgc9Sc9yadNzid5iqZy1MP61QrF3dCroqwMqI/7fBMuthkEOk83C1jX5w8rr22t26bOA8G9tN6sV6c7Fw/ywIGkwV8FWB1TTDfXr0km70WXffapk47cHCVvWAfLQfbvMj2magpiHEbn5/JCrovsgA76nzlmB5Ab9s9PkObYdtK8Eidst9JlmNo9TG3shydup01qh/0laSDto5EK1l3x5LtGHoHlvcqe3ehHmbdReG8dNei17yD5iCL22jfn8n6VsXWcS/rc1QkKU4OEvQvgx/0rdWTZD0uyPFq/vb3UZb1ci8rYH9J49BxIum3Hpcssm36AK8F92e6nlztO5PtCQzryGPlu5NtoIJ60zp/Lsl/kOU38fz88Cc6FTu+/GeSN3/669z2zyVP//435rh8otInZCfl9UyM5ibrQuXWKY29o/E0UKeqq+X7t7sa93Wv9TgK1fqifIyasW0bjBpjAqeJTBi4Jce7FRwTOoKpTu528NhE87stRi0bteOYOxmwTsDN0ZsJZLJtGk3Kx3IGuXsRczqjjt+9rAAlWXc7aKQ7XgUYnVOTRTpp98N9dxSU9VpXncek3dHFtpFsx7jzNgHkk53rPBa1F0kz2eI6nPoxgSzeo0yX2b5Jh7JOuxEEhLYfze9dMkY7GS2/qfy9PvVnj3iwT6dZf+yxtoZrzIm2x8Rqas+7J9bL6hwjy5PucO68pjteBfTUx6hcUIbfCcqmAMNegIL1Mz91ibbJZPh+1gemX8K1PttIwF05/Xra2uXqZbLqf3XMZLZjQKLmXaLTg0wnSf6RLIGTFw//mtdrl+PDaLftnm0lwTEJHYleyUnr7g40CRkDd89l+QHK9rNtnWXRN9to2sq3Hur+iiSfd5L8hcuFpD2T5VXAewGMynCCsfH1JhLoibS1Xwz45CDb52TZdf9g1reZcV2QoDg4E9R7J8drz89UGe/s+dLO057/NNah/yS2eD7ryYLaJP6YI/PuBWLecIlK+Hq2eZ02ac8fPjGpEdNku21qZ0GDO4G0qV4uvGR9WP48x06KAO9SeWqg2n4Nb996QuB2ku2PPNqx2uBMoMWp4/IU6m59rNdbtY7en2b9gczKsQe6Gk1iXXTEe4bsUp/PM79YYCrHufWxCspB0tDEue44GESx/yZ+dOJsswChfehD8hz7jiHlb117x11IBg02CKZNmjkGzE8nzn5NBJhRYOZ9NJRrvv71XBCIsO4CF/aVaW/dMr93RNg+yYnHiePHPphYUo5L/a38nVPOs/OyrcusEfJbOU6dK8tAMtV2GJjh3JBANN1APR33+1ntXVPXhUH1qb53vBpEIhgsmT9F/r1gC8nFhfJNgHMvwDSt5crF33ZomYdZd43Os9j+Fw9/+SIWjsWkI26Tsjig0jkkefLziNxl+mCWZyAeZPv61+5W0ybR5rcNBlcucjxGF9muUY89iU+y6MqL2e62cWweH/JUlr4uvPLxM23VRZZdiNMsv6vyee9NcvFL87X/2NLWnRyvQwYWJoJSG//UoXzvnWQL7Nv3PtvReeNzQMlClN6a9a1wPSbFh9KtmyTbZ4c+XmarXx2DjoPXQLKdxz2SwXZ774bGi+uvZKnr00S0dfT4J23JXpDqOl2nKT3xOynJx0Y6JlC8F0V3XXaEydZZTFE5fj7NsVw2IIxcVTYaKu4M9a8jiDQ0BCot4zomOVsPo6qO7lE+AjoaK0ar2XbvkayRRDoiS1DZ+zxS1XuXKOcI76XqYR+sFyScjqA3usrImHcCCEbZxkQYSP72QBoBB+tz1NZ/+5ljdTHUOek4y3CeOweN7LFv/UtAwKhkUB/1pEDW49LE8iaVvn4D36n/1EEHFJhO9Jc7P7xuctq/JgHUn6meJq6z1vNS1t+ooVyu2/U4Gm45g+8kTQVVXGetI9nu/rKfloPr2okBpeoo54PPTnE8qNeVya+HZx8fZ/vL17UNPUbTdinntH69JgvOaMsoiwkK7a7tVddgv3uN9lp3Juh/+nsk97Lqw62sb16rHJPf8fpqfgfEIpkI2GuDbQtPD3IU1LPPBesvZh3L5w/5XkAfT7KAdb+oIcHY3k2SH9u+zixbfXykMvaBtVWch9ZRfbup7zz+xDwHaT765rVkISt9ZiNZQX/brI72L3e37mY7D9Q5HmlNtmvjBvLbt9inn6KeO1mDaBe49gzkuovr54e+ee1zHf9crtN1+tjSE09SJiBKp8AFTgfSt2DskRcThMus78p/OOS38beMdrJNJBolPHwbD48ITE71JsoRnF0FFA0CmTheUzka7CliYuLSOqcIJ9uYgDzntcCCgO8E97xlTwd61RGZysModOUi4OaxBkcYDQyv6l/bZvKui/XEOwoGmEGZ6guBg3c+DMhIEpIVLLIvLFedM9iurK23dVhO6o7nzkR1IijJrCfMZ3DiHRwSlgtcr7O3vk7rhNFN988yW37OH+eo7TDiPJGBPeLmRF11xLNj4l21trW3S0t9Pc0KnGiD93SApCPKY51zIphv8vfOH9eayYPLNI9JHtul3fUxoNtZ1+5E2Bg8ov30NRLCh9mOE3cBH2V59fA7sgDJ92V9gPx2jgNLba+ynWV9SJ5jxT5y3XetPkR5HuuqfHvlWY56cY68XHN8YUPnqoT9g0n+xlcm784r+WtZQPOL2epubSTXdcetsrYd2nmSxt5/kHV3g2Urdwnj/axvG2z7lcG4hHpSW+rgEteJd7coY8fthu6xvua7zPH66NhPvq4csGV67x76xWAt07SO3nCJA/R6tnmdNmnCEU9cckQt2eqCjfAUDZscIJ1LF2iNGgGtt0opg8Gw6+ZuTo0/8zTfebaOin10NL/98U4G+zlFzSZQMkV9GZVxBM59miJ5BEcEl7zHMTExc5novqOS7YdJAJMj1h0P96Nzb+JhUsu5sAN3H7m70Pk5UzmTMDo6Oz7qhaOhE1A1OWu5jhkBEx2vSQznj1F/jgd1bwLaE+i0fjdf10uB2f3Dvenoi9siAT7NChaS49coG3xSphvDNRIfzsFeOh/yddeOa37SG15nom5UX9rPplPc87pNtsEYHn/qr4Y3b0E7d5Ws900O2HQOTaBtnxq9Zl8YJHDghWspObYvlNfXHyN/ZXqcNTJ+mvWIULKNyPf4kAnPqerrtWSrQ+3THjGufN3NfAZyVIem/ngHgUDcbdieJ+tvnxTYl0R356PEqmPE9Z8cv53yNAuxevlw7bmsPyx4H+Xav/Msb1m7meVFAd+BNgumTTTtO3pU18lBr/rch1l3GEuSku3bsPrc2FuSvCfJOw/5XkZ/uQNXgN9xZ7CG8pJc7/WHGNvE2fib9ol6kizP85xnfSPbWRZC92JWMls7ziCS26Fev5bNu07XqemJ30lpIuifnKPBPQ0TjWkXMxcfHV2jIa7PRr2J0X8CQZahjCRPBmXsX1PzkzwE1/q3hoZOkHVTNjo5RlSb51GuTiRtTDa6Npwc8ynq6r80ihc7ZSYjyjp6fS9yTLBJ4DDNE/XF+tQ+nereBOLanh2V54z1n+l6dZrRxdbVrX3uBDj5mAPTRJxMmDmePj7k+SLh47ESrjP2l58b9aPOMqrv16NWntbp+aTckz2hfvLsuCOJnteW3dv1KZApQJt2T050jZ+5e8w56HdG9LnTdp7tc2reIbMNajvPZAGZ95DfuwZMtDkkiFMUe7KPLEtgZjBPXXKQonL4xSXJdpwN8pPj18CTHF0gT8/s3z1caz8MSttGbe+p8p9kGeO+GasEvATxQZLvPnx+OStR57MDZ4f897LdzbD95Q83Vheav/N9MwtJuZt1zjuWJBVsw4GarlO23fG7l+M5qe2pjtzPQlRKArt7cT/bnYtk1SmD6lPlaf/vZauH7YOfPSmAL1m/fbj+MMsRzZ8+jOHtbMlTsv3dNup79aA7ktxxYV88plwTXDdBHZWT6TTb51G6G/QQ/yovnzmpjvQz13HHpkfZPinSnvP7eLd5nTbpU4ak0Ph2wdKpTlFS6qijwHQmBkx8hatT8zsyOjlBLvzm2QPgFzkGLCYW/t46G7nx+jjRZ8voo0O9zvwkhzas7Ec/+ygZwYQJGMsy2j8RkbZpYELw1rImcgRmBEj8Wxn2yCjrot553lgn9ZXt9RoBqEFMlI/XJqKabJ1J9ZkE2vNwnu2cUCeT1fn5TWjup0k1dwX3djl4n06yYJ4/Jti2fF67icTNwH6KrHf+KNe0a2GwHOQpQHpK5SYSdBVxc1m3zTon8mNdsd5OO239zvnkzlRBZcEpySzHlHq0Zws5npVv+vFays6+9l7rMjm2jeZ3j2f7wTXYZyuqx13j3GXqswsuw/asw5Vvz47dznKkqy88mAJaXJdcSxy7O9muJe5qkpic41/J9+lBDj40fo57BLSTf2KfnBhcSNadmcdJ3oxrL6JM9euFbAM43BVosn6QwFAvS3Z4fVonTXyJy1NZnqt5KskPZDmKdj/LMbw7Sf5uViJ3M1sCWOJ4mdU3lxBMpy+oK5Sv3+0DrFenWcnIOerrL8bfG/pfUs4AE9dgdWEiT580ROU6fcLTpwxJ4REAg0qCmRq0CUQ6CuFrNXaO/AV5aRwL8ljXniHxNfeD0fApCkgANsk4HVlheaYa8FtJPvtQ34/k+GzxmfJfZP4hwspAWfp9IjaVpw+6Nh+BAcdmOiJUY+95rAwmIHV43WngNfaxicdo6AB7fdoVYKTZEXoDOZM555n6w+t7ZKrtmwz1mvvYOgzcWc+FypBcJNu+J1t9ZV+Zl3rRdccHqx3BS9aIakHjY+RntJjjSFJQ4mOywPHv34KN06Gujg/X60RUSfIL0jweTibZ025Vk8kVbZnzEYg0VX6C1LZfgMU14l2RlncUONn2f7KBjWL3Nyo65v3LOXUgxAEX3uN82N44kMMfsmuZKYp8ifx3Ub718Ve6CRbZDu1hbV3H/CnUUfCYLK+8fS7J+7NE8anXtUMvZKuTDoycZT2u9dNZjyTlICf18362NsqR9KB++gcSQJZlvttZd1tegXxPH/K9nHXsb2QhMrW7D7Ku3VvZ7lSYBDuQWcJ4T31LtmuLPqM7DCVMHce3ZTmK9mLWX5w/O/Th3uH+WZYfAr5zqNs7FW23a4k7QZTHz8h4DvgQfVPJyZ0s430/63xfZiW0L6OvXMMMLgXXq7P0WZ8UiQby9WzzOm3SpwRJsZOy00uOwRSdNsEEQUmyBf1XHekwEEnWrWFvORNo8RqNJB3qtMuRHDsJg0HW2Xz8zkhvshpjO9/W5eRIL48u2OAaPE9kxkcfCP5pNPt9ivIz2UElWyfFfGyHYKzXDALP9dmEzfNasMExdfSLoIm6yHluW9OOUJOBG+tn9MvlGwF2BO40x0f8OmatYwLhQX0mzFNk+BJlTCSS7e5Jx+rGkN+E+CzbNzBN+SYQ5SiidwM8TpPPM4HrNZPsifAxEfx5N4cEzIENlp2uVz8rB4FI+3yhek6z3e3wsZR+Ptd377Bcqjxt795a45xx7dvW2SdM9oNynagMdwyCvJatdXVMmr9AuW2TAHE9nGR9kLnj37ZLth9mBdO3skTqP5wF7BYkvyvrL85fZFmvtROct4JTE2Q+x9V1Y3Jh29a+069wLTFIZ732+r6PPDz62DpzyH8na/SfOxEvZBsYIvHs+E1H0xj4op7Z1u6le4f6ns8yL/eykL3K1me33pXka//ZpQP/9z+b/DdZH8zfwxVcq09lJevVkwkTdN6803GWrS0r2e2aO8863q2H9s07daf6fL1zcp3+QdOnBEkh8JnAw/SZxpvJzr4OzMc/pgjmtPtiQFF5Ww/Tue4T+D7K1ljWcJAMXOa4X96K5Xf2y06koPWDOX7TDPMS7F7q/iX+1VHZ4NFAc2diL9HhmrDQGZLgXdXHveiedzImcsO+GNCeqI6onMcq2b59pgDpYbbjSbDntkxcgnIG5nVaJB/TLk2/O+Jt+Tmn1G+ux3N895qqLph4+zr70bG5yAJe3p4FIDSy2qgn+1FQ3yjnebavO2VfKjOP53CXyFFK94m7alyrUxAl2Tp6R6ibSLxM4HmfsvcHaBkZNahvPRx/6sGp/jbKz3WYbPWea9w/ujul6d5EJH28rvcvs31O5VT3K1O/U6dos29mq7PtV3V7+vHW5mmqbt3Karu73u5mCzgpC8ezhKX1P5Pk3Uk+LwtB+a4kHzlc+9wsEfwfzbqr0vrtg6axexH3KgN/uJg7NB1fr+3W37/U/zOUsU113ptZf539xazr+B1Zdo5+/HD/S7LsIrWfH8o6N5W//SsZS45/oJj96+faKstMeZNlTp7OMg8/mmVuP/dQ5kfR9rNJ8oVJ7ix96PpqkJC2f/I5JasOBtlmn2R9DTTt2TuWpvPBg4wds2eyjBmft2q9VwVNktXmccyTT8wGxXX65E2fEiQlOY6Gk+knxwvO4J1AL7jOzyYJdvLNd478EzB2VG8CHb1umRzNo5Ng25a/hsMgZYr80iibBNlYsw8eY5ONaYemDoEyneMey/La3u5SdM1gejK8BhnOU7kYWdzrZ8fP88P2PT+cf5OvyTFODoCEYI/U0Am5jomAXuWkSAz7nUD0NOtumXfaznL8Gm8CW4PzzmPbunMofyvb51AKQk6yfaD1Tra/Zs1fAG8yAfIvfbdeJ44P131BwkS2DAa8E+F2CDYcnJjm7Uz5k2U8zrJGkkni2cbULusvgefa2svHeXcAKdnaMt9Ltrtf/T2JEoOJKLJfN3Ncn+diChR4PnqNQQPm7Rj3HwNNN7McS3ol2+cv3pYFHDYANO02Vq7zLPr73GEMPpgFjPcHHJ/J8hsdHz7UcyvLW6ZezrK74LVOe9v03OHvC1nBcOs6y3ocyGnaGbvKZtCGO0BF+9ZX+SbrTunDrLsOZ0l+569J8i8nv+x/nfylv7Nc445ij3p6zZ1ltQ1BOxwP2jTu6rRvt/H96Sy7KC9nmYuXsv7wZPXlLMtLDt75dYtNfO8hz4uos/NS0uvdD49VZXYAp7rSN6HdxFjcy1bfLrIEdYL6WP/kM6nf9pfUkclWvuHSa0VNPl5tXqdN+pQgKXRWjt7SkRKg9xrJAZ17stVfA3ICLubr1vIe2JscIo8BESxFn+sIuYszOZ2mRu4KVEliTnFvb+fCAKx94TjQkU9Ruo4bHdre9v90jKJtEnCTcDVKacMdfG86Q1m3fVPXDX6sC3Yu1jd/nlLLc+zYlqNkdhoGfHtjwD6ZyE+grHNBIku5TpGfAQHb/PPXuG7wb+JZORsVbVs8plCQcS/rWfpGqW9mS4g4ZhxrRw0JqKfdOSbO/0Rum6f943jY3pBwMfI8EYlprJgmXTHp5Vh4N4nJY9N8lIF6UPm8pif7yR061sH2mKe67T51Lhsl5zr3WFrfHQDpNcvyUHnPkI8kisGHu8hfcFsikMO15w75uNZ47y2H7yU1lfszs0To2c69gxxPH/J1XVSu2rnnDrLczXa38JkspOoy6yunPdb2pdxdTLZz1URi7l26s2x1gEEbvpnqJyEDJ+DFrH6suwiM7nMNXWRLTG5mDphwl+s+rreOfv9wFmLyWUl+Z5K/nuQ7D/fvoo2zJH8lq025n+1bCG9mfWsbZfWarf/s2jrNMmfJMm/dfXqYZffkLMvO04cOZbu7V/m9bjsuJfHVC74MgrI0/3W6Tv+g6VOCpDCi0EQARHCebBd5sl1sEyBssnOjk54ier5uEEOZCGhs9E2KWB+P61gW50+2hKifDSILDGrEHN1ltI3X6Hy8Q0LjOoFBEsu2RcLXefQPcjEZ3NThtZ+MdEdyTQSreVifHQbnkGSM7VxFGB5lC968A5NDPXyjHOU4UZ729amsz0OZ7HiHhTrXOjlvE8iljnSM9/o4fXYf2TZTQUTLPs4C2s6ygIMSmLdmiVB/OIuTPsvi8BuBfjlbHWf9laVzdifrq00rW3Wba8w7ALQLXLNcK85LsE/QQgBIYjbd65pycCRZ58y/o3Cq603WA9bB1DXTNe2gTde0d1tMShy82LOX1D8TzcrDery7Q4JCcmF75d0f2uBk++vnJPgE0x0DgtoC1RtZnyNJFiD52Um+L4s+t39PZ3mO4cNZAGbXwFmSLz7U911ZdlHeleXo0wcOdb+QJUJ+53DvhUM9yQqC33H4+75D3s5XsuoU191VR8dMKPkq3Sbq0hREom0KPvPlF1wHf+Hbk8//9uR7s7URd7LdjTAJKUkxLijn6W5N5aQ+nep6bUKJZ+1F13HluJd11/c0K3GsDeYLIqo7tCVMDcB0l6t9o19v/+4e8laujvU91GdM0jEiBuH6ZyDFOynJ8Xp5Q6cpYvl6tHmdNumJJyl02MkcmXP0xiDP0XkTCQMM3ktmR+xIUXTNbbB+H30xsHF+y2dQMRkh1teyNewEGCdZo4Tsh4HCtEvFvHT+lsOgufcIIO3w61xazsa0iZHTpjohEziPkwEjgWnTZKD5mfPneyZ/zsN+uV2SSJNvlt8j0ibuyfZ9+ayP/ScwZbSx/WH/TEZMvJjXa7BgjbLXKd/J6nhvJ/mqJP/4s1nCyveSH/xI8h9l/TG2Z5bLHz3nzmNEbLtA4bksgLHl2zePJ9e7o6xM7DePW/AoCvvafKyPIJpz0Wu8nqzgjG/Hm8Dj7Rz/foXT5XDfx08K2h9kAUwkVdNu0JuzAjySg6l9jhHztP8XWQHgtJ44Xx1nr1kHB1p3x+1tWR+8fvFQR4MCyTaAxeBH2+xuhwnggyw7BC8f8j9/yPfM4f7drGvuLItuviOLfr4r6+7MO7I+V9Ax6fMvn5lF/+9k1esPHdog+L7IGo1vquwkgbSJtq0k277Ozw5wdUwMfC+zfYvbg6xvy/rb2ZLz06y7FyUJBf1cC7RTDgjaT5Hs3Mp2DpN1t+uDSb4ly67Fmw/3KkvbvMj6/If94GnWnSv233a3RO0O8t5FXW893P9I1jfCNYDlgBMT2wg+e1weK3+vETvRtl6n6/Ra6YknKYzi0hkZNE8Ls+XpRAkeTBr4wN0UJfLnysNjVY+UZwLMdMhc8DVayfa4BA2PHfkUmWwfr3IkJH63dZ35bZAIKg2kGuFvHw1eOKYmfIzYEsBznBwpdV08XrNHDqYo716UiGR0b/xNBJjXwKhyE7xaLuukdbyJUW0T3erRtDPXPCUMBAtNPt5k4Oe1ZvLo/u3Nl+UqSbmf9ZWhX5nkH/+M5Gf+h+QXfFbyc383+SVPJb/tUfJncxw1nEhX56EPCn8422c3bFc6Pg5gWB/ZP5b3GmrimJjcUgbOx6THd9DvsywvFHjXIe9LSX44685S7VJJ0WW2YzKRg+qN54+7lgRZ7P+F7rUPLENQynGkDA6SXKWH1EcSb36vHEHZZAGm78z6fNXTWR9ALtgkEbMet/+XWZ8joWwvZgWZz+SjPDsPs7z2/TILyfiCLL/FcT/JD2V5OPsrfnOStycv/OnlmFHB6+cf6v3xrDsDBdrPZ31N7oezEnbqF+2CQWpyvD7tfzgWJAG0NbT7HKN+5ssJaH/vHsbg+UNb97PsFFVnbmR9Zu1etg/L9wc5m89HK7uuTrIS0j7En6zjSHLT+t+WZYfrNItunKHeBn4a7CtBf5iVZLZOY4nqf58vqc6xHyVtD7IS6LMsuvQw24CHiU9T9cABC+bjmNkW0F9U9ut0nT6W9MTrih0Dj51MQKmLiUapyaCFRqvfuQXsaJAHuwCgf01+Km8dFyPjE0CmEeCxKffVDpyf93YPaCRZZoqItK881tB/vE7HQyc4bQV77Cwnx87OrnUyaum5db8qC4+pMJ3qX/NPTptl/Lny9F+yHZt+pwNkBDbI03YdbaxsTOwvI/AkGASHl1nBkQlNP0/jQPn5nSDQoLRr9FT5CJrZ54sszvFe1jP1p1lA3Zck+e/+h+QXvPovJN/7aj791f8m9x8lv+TWElU8zRIYKOgwSLaeJOsbwi6Gf0F+Ew4n6qOvs44zXefa77hz/E+ztSlNfMi4/Xx3FoJSUJok/2jW32moXp5m/m2FM+Sj3JWNOl09os2zzW3dBVXWc5NxJs4Bv0/BgSkoRf3vMSK2zzLnWcbjnYe+vDPJ7/2HlqOGN7Mc0fKv0HNs2B8GbprX49bdgBcP1x9mAZlPZwG/7zx8/x1Z5u88ycW3Jfnzyd/LApK/Ksubv24m+bLD3wLVs0PdBd7P5NgXTeuewR8Hthj8qd1yAIIBQwbkrBP0fSVUTRzPyvZCln6/lG0wrP70LAvBfDarzajtbH4/h9i+MJhxM+trhV9BudtZn3+5l2W8v+g9S9DkJGuQ4M2H/PRdnY/uYibrr9e/Ocd2n/b+5uHvbfSj39mHHMbobrb2oDuO/XyWlcDRN1y1nrw2abdJzN7waTLwr8e/67RJTzxJcYTxEb77WJQBZg0wQYEX4An+tk6CMhv5sxwbmcpDgkHAR1lMdgwImyaDYjBIp0Inwh0JR8AoJ9fVBLTaBskYx/2h7hnUsb8Eq77PxPKcj6eygNJnVd5zQnLHuX2UY/BqsOH5mcbLsnYMToZyrpvGnTpKYuY5TbZjRtLR8nbGdjw8e36ZWWfbNmXjetmLtHK8OQckZCbQJJxNda7NU+daoJB80+HOL8vt9ywC3c4KEJgqt+ftcba6wTGkDnluqoeUjwSL/bA+u5+2H7QTjrQ6iMCjXLezANG3ZwGmv///kPyBF5Pf/fQCXN6VYwLV1zKz7wxIUI+p+95tISknyEqO7cAJ8vUfCUSy1R8SbO5ita7OgcnLWdZo+0mOj4e1LV4/y2JXzpL82m9Pcu9fzW/5s+uRI5IwjiHXM+eMMld/T1HuUZZ5e2vW+TvNEpn/4SwA+MNZwOfDJH8qyTc+WgDx27M8X/LFWWzgd6H/z2ZZJ89lXesPs84f7QcfKg8+c9yT7TFD70wl648z2oZPpL3XOTaVz7usTbS1N7OQ7rMsY/GTh79vyaLnzx3kICl+Nuvv0xSw83duSCIuDvfenvXHjdt+ycp3Jnn/DyTfcWjj/8/ev8dblpXlvfhTa2VVbfZmV22qKKpSTdNNQ9OkhQMCbQvIUQniJV4Onigf8ZZ4OSQxepBgoiYxBiNoEonJAfmFmBPzS+IlF4li8CgeDJeg0ICQblugsemmustqNlXsqt272FUra9X5Y8ynx3c+a8zdEKG6KPb4fNZnrTXnuF/e93ned8wx11Tl2qj772uui1TfoyL1+1xdmYfVf3h9u8vnKV3bpELUNrt8V1T1/PmuHK4HGle9xrhOqQPdV7zG8UusQiPAFQ88d8NnLFzxcyW9FVKf2UuLW7O48FJAtMA4hQetwATkVkp+WJlKnMKKgRakBMSpPKgUpL6gZDtY3/T2ZF3p5XDeqfilRWFEoJEgbaT+9rtUUPmbSs9p3CbepwIjUCcoP4/rBA/0YiTAchto/XOY4Drj0YJIBeB6M58EMbP49u+sL++lZSr/e24ovj2+SZ5SGSaBa1mEWUaSYuZDkOjA/JIYJ6l2vNyC4fXjOm6rWDbX1VkRP7anS/1cnbpN0vn64OhU1XqZ60aqyp+kI+c8w5CVMI0X6X1qxUvA7vuuA40KXDMks663QRbn51TF26Qf/bvSIy9K/6Vc89vEDZRbhhCupVb+wv0HM/a4790mkiF6XVpzs2UE2NZiIMFu5cV15voaqDr4mQH3yXne0LY0XZwXOd9pVea1VqAc3adyShQfsF5W8ZJ82f8uPexIqduTJX3Zt0ovu3idXnrxm/RV/1J64qS8gX5T0hO+RfoaFeBO4nqtyjYpqb8Nkp5WejB2qjfbRnngMeUx32mkYEgjSK4Nl5X6zfPW/bSh/nxNfbukSiz9Mkipjj/jejxNlJZUPJJPVelTkrsjqlvo3qRyeMGqCgkaqR5VrC6PG1S9ZluqRiwTc5Mj9+V+VS/JavftPhohnmXGpvpj63lIQqxI6zzTk8q56eu5LXQnI+JlH9Iieak+u6EXrniSkgo2FxWtMXQxZyAIddq0KtACJ/VBvXAtFbbzS3e5QxILCyFaN3z/fMTPtnDrSOse86Ll0f2UQInpWF9/JziW+pY1xfUMzLtFYhzcFpNAKiH311n1tyuRvLKtbGcCDM8Zj5cBlctxHlk/jiuFu+cC5+IIv9lW1on3COpdt5wXrD/rkb+5XkY7xHebEmDkfM/A+Owvh5anjFuOso6sp6+7/zdV9uIffbh06oj0x3v26N49v6tDj5TeNi0W5wuqyt1tmsd/rntpsR9GKvOOAIr6hiCbFvT8zzFIcp7Eyfnn/f1afHs5CZ/j2gI8UXmpnP7fn5D0pdLfLSDNACxljK9zXc9UwfsM1xhcT/bDUtxPL53LoTWXbXJbcl4YUJFYkgAzr6wfDRIE06yj+2Oq6uF449dKF/f8X/qVl5R2nVYf3DvsRV7j+NjKncSV6Q24L6hYyp+m8vyJlqQP3VfyOHSbpH97UWXD07+XvuuidOH7dVjF46J7pb1PKumfozrHL6g/HwnGTcY8ZkkiOX+5PijHZnGdYL4lA9IKT3k2jnucX87f93zfXizrs3XVl1suqXhWPPfXVbe+2VthME8ZYW/tTPX0NB7he1rFu3WjpO+S9DyV8btT9XRKxz+u6glZVT0AZq5KRJa7vI51/13PFRXis6oyR25XeeZo1l2z58oGF+paejWt17kO2M9e61IdD//3MzTUp4mXcnx2w254sHDFPzgv9a2KJCRSfeDRAjkBirRo0ZUWAamF5lb37XKodIV79AxYkPO6BWtaQpiH4/nTslZaUfqblskEmElckmxkfPaF4l5LmbAObkOCTadh3J2MC+67rEOCF4/TVtznGDu/JFQelyQuUy1aFhVlZzlU2klW9kUcghzOYdeL9SVAzzius9Nb8bkdrB/bwLo5b1oxW54Tjhf7QXGd6RiPpG+uxb502VL/AWp/DCRWVADDOyVN75deIOlxRySdlt7w8brt4oAqGHAZLctN9ne2JYllpqXC5hYVp/GcZx9nXAf3c4KIier2I27Rcz09R/z8zRnVk6JufZ50o96qN6qAtferWnBzHdEIkuS79Z9zhfODHmW2jfV1IPFKwJrXs8+G5Ef2jwFoy1ji9rCOUgGW16rMtZ9XJSF+6Hyv+t719Nof6q5taNGL1/JG+FmosYqVXl36T/67Uvcn/4CkL7gYNd+W9M+0cvGf6+ieC/rjt0qP65Dxqip4Pa368D5lkNcHyXauRc5HjpXrx8A06fl2Hr7Oucf51DKwkaA65DwiQTVYn6qM0Rbq6jyuUX0h5jrK4po1GfGzPOuq20yPqfaX23awy3+9u3deZSynqu8wmajMjbPqj7nT71M9HMT50qNqcqmublJ/jDgGij5yv9GAy+sZj/mQ6LRkYurXyzqkcLpUZe6GXrjiSUqCnlSYBCe0HLYUG5UM8xg34swbcVknX6cASw+IFW4SB+aXgJsWDAoKp3VeFBwptFymv1lPqa+gfD3JgvuQ4IgAjOkyf6mvvEi80mvh8Z1Huuw33nNo9WsCbakqS7YtiUCrj5zXGPdbBImBFq0WEHTgnMv7c/WPeGXe7CuCxVFcYxkpq3NO7EQ+mH8LgOYYtazHQv3Sip1vkR6rKOU11Yc936nyvoRD95UHXBM0baDMpbj/YAq1ZXF0SKBFssJ2sG9zfbTAaktezFX31KcHzG0j4DMIu11lm8qTr5F0s3Tzvy9P75xUn4TzORCWn/VjPRXtJClPopHyKuf+EEHhPZe71PUFt6ewXF9zHp431BWuk+vAdnDunlOxxh9WtWKfRjy+n4KAzsSFngvh9xLyYzu4/e727v+NXR2uk6SfUSN4FO/VEw8c1ofO1Kvv1KLHh/WdqIDiddxPYwVlGfvPpz2lscttGdKPLQMX68X/XrOOP2SsSkPIWNXqv6lC2OktWlEdyw3VcbBRc0XV87Smahg4h3JukPTtDy8RfvEe6bVd3L/elfEfVcbN5MQGFvav5ZHl9rbKuLudh7u6r3d19fXV7ntbi3ovSYNU111ihZTD7kvmt7cRjyHXnrRz/N2wGxiueJLSAhlWEn4bORcmwX4CN1r3k5zYGjOKuAxerKmIKeRn6gvjXNgJ0lN5Zxoqe7Zn2rgv9S1Zvm4h5/LTwp3tc/5UCg4J5i3cWwCFgZ6uGeK1+iOvJaFIxUXl3LLsMQ4BNxVHWqiyX/jNOeDrrEOS3vSisA0JGh38QDgJ1qgRt5U+530LiCeRy7XAPKzYW3EJxrNfGHce3/5tEJTjf1IFSNCiuIE8DQg2cc3WSNc7SX4SQ/6faHiNEVi3vFwtQtYiPa5H3iPo8FzMNFIF43zZ2lSFwB27W3rK3eX9Mce7+64z1zLTEVDl/Mk142/3Aec8ZW7KPo9VAtoh8DTS8JvQmSbHIY0QlvFpcfZ/PlMxUb/PWKdcMwwGpy3rsrcN+5mIbZV15Hk1Upm7Y0l7DqggVUn6M49RO/wPSY+U1qT9Z0oGnv/uX5N6qfYlt585pGd56FrqLhppkjQMWdxTLzmvJfxuyaEsY6Y+2RupeE4MsCeqW6iOq7918YmqL8Hcq77cWVE99tzhoMpD9FdL+uT90ub9/X42qb2+i3NS9Vhi61kfd862TZC3yc19XfmHu3vHu+t86STlIr1ULZKY8939xX6ca9FbRqLNfGgw8TrPsd4Nu2GncMWTFC+QtGr6fSQEW2nNoyKzYEsrD70N0qKiZj1oRUqrnrQI7h1cl9xaREIzRBhagCat2tleqVris31uG70tCVKyXG4ZYR84UOEkoGV7+D2Ka7kNIckeFeg47rvtSU58j0I1wbjrTyA2ifvZtwnQqCzSA8T2MnD++ZuEhPm3CCwtoNwK5jQcz9Z2OuZN4sq2kuimp4vrwfVqlUHSnCCP87ZFUrfwe78KCNlQJSbco+5rDNxC4nFymZOI0yJR6a1kW90nCaAtG9LCybQE7tnnLYJiUNci6VIBRP9R0q+pjo3JDh9AT9BvK+1IfWsq1xHnXnqECDyTUJPUeQyGgA37gvm3frM+lFf2ynFu5hilJ8Df6WnNNdgCb06Tc9r52XPlcvgsi+Nd3bX91JkClu+S9IT/8FHpm6T6xIPDn5H0k/rk3cWbePj+8v0MFW+KiV32o71zbNuWFtdetkFa1E9JNKhfGEhKeZ9zI40eno+teoxUX9RKeUIDhuev73leH5b0JNX3rayqbM063cU5h/SrKtvDblQhD7eoPBMnFULytSpk5HdQzpdIeq7Kw/V3qL7gcdSVY+65rEJol1Q8ZhuqcijnvdetyU7qSfedda3Hgc+qJKHMPuXvC43rQ5jAsig3JF6WIRt/qcrcDb3QMvxeUcHAV+oDTVr7uMAuRFwHx7cC9vy1sBmrPrTdsj5lnaj4bNWwddZgdYT/TCf1hXjLakGQwzhCHJeZFsNJpMk4Uv8UDzXu87fPWyeYZWgBdrZtyLvCPmA+SVAch6CjBaYTRLkduUiy/o7jNjr9PtxLctsKBES0XiVQTRJHgOcy7OFhmY6zU95eE+kNsSJLwKeIKy2uB/YXAQLXkutEwsq6DVmk/dApD6xgXILuTdX3Alghb2nR6ij11xHbnMCMgJxlOi7JmdtFcMa5x/pn+6W2HGDeWabn3hL+j9V/lseAeEl1K5HnDQEMwWHKOKfhWLcMMK22tLaepNEmCSDLyHzTADTDh/O+BWiTwKRRI9uW6fOEJLaLcs8y33l6nEn6bJ2fqS+zePLUQRXAOpN01ZeU+f3Jb5akH9OiSUvSi/+O3q/yMtPxNfWh8Bwr183z2CA0gWjLMDePtL7eMnJJFbROEI/rR43fM/X1I/tREc9pPY85hzzGTndalXxc233WJf2uyjNGR1XeNfM05LesQoCepPIulKMq27HeoSJXjnTXZ921O1VOX7uuK/MPuusTlVP2buryNGGeqBwn/J0qROe0iufztMrYXdPVZVPVA8S252//9xi5/0y2LAekqs+41rkOuM58jyRUWvR8pq7eDbvhwcIVT1IIfAku0trt0Hp4knET8DOPIUDbskR4gVNZE5Qzrn9TiVDQS21A07K+sz6TiNfa3mCFMInrFFoJ7OhKpmeK1pXsF/5P0MFyCCJcJ59oNkRMnJ7faQlvWYho6UywQ+IxjW/W0R/GyT7kOLSsvmk1nEScOeJ5TnnMOMeSZLbanYCFIddFzklaSwm+CGg8JpzvaS3lt/vEcZfVX4PeKui4Bnv0ci2pAK27VF/4SA+I53gaBLaRLz9UxK0+biniBG00UuwkhOlJYL/lPPF7HNjve9We11xnBhYma1uqb7/2OG4jLvPJdrZIbcsDORS8ncmB7WS7aR3m+JF8sV5S/23YLcDNQBDndmU7fJ9kI2VF5inEsUU7vU6cz3wDusH8muq7M27rPpuSdLP09IcXgKzxT0gXfeS2JL1GeuEe/eHrOgD6baVRx1UAuJ/FOKi6NoS2UV5v4T/X3ViLcj1JBmU29QLnbBqxEvRKfUKZnqnUcf7PLY4rqqRySX0vir9Pqa6F9e76qqRHjPrek2slPVrSV01KXreqEBGp9Of3HpSe83+U99OsqxzU8TV/QXrRM4vHZaRCgG5VMaA8Z18hMNepblcdSRofqQclnFAZ83VJ96ivWyj33Pa9+LhPcg04cD6nAYaymfKTzwXSU9V6t4y6uA8c3X05h9lD9NkNvXDFb/eaqig/b19iIEhLK3+CUIL5ierzLFIVrn5IkpblIZf4NNIThBMMEuil8E4Lb7aJwov5U4mnx4XpWsH1SXDvNraIDsv1/ey7LMPfSQxbVn/XqeXJ8bgZyDCdgb37N8ebgeNFoOr8MlBou24eW+bTei4q5wqPosx5wPKyj5yv07rfuaWBYznUFpIvAmyHeeM6ySD7zveSLLpdJAZJ9vybc8llenuS+8B7xl2222lAzvkyVbUeUtG7rq4L1xHnh+8l6RgyOLSsjSTEOfc4P9ITlXNhjDjukxxjRb3c70ncKbdyTQ5Z0T3HWoaeiQrw2mr0geuS+bG+ObdYV6dvgVTF79lAPMoItpntnCIey6aHKevCMDRe3HpDYs68tlSINonZnSpg9djPSA87WMDrx+bSuZG0pD06oHJS21GVLUg3S9LrpTeeLmB3ov6zLptoB/vLY0sQ67rTZ0N9kEYztr/Vt9RRGYbkCPPPemfItZuYkAaTdeTjMtclvWFe+m1ZZavWTOWo33unhWisqJCPVRXC+L7T0tHXSY97vvTXflrSa6WTr6vey+d15dyu4h350Plyqte2infmd33vvrLdzLrQcszeNrYhdWTqq6G4lF25RlLmUfbY00YZMlb/+G7n6TL2aTfshk8tXPEkxUJrSPl54Z1XW3BSaSTZ9cJvKRN7ZJjW5VGoWNkMCRorqxQytLDPVB9ka1nGU0EQbLJ+9NDkA7gWQAYgCVrY/sw320bwSWCQSigFaJIqB/ZPAoMhApR9wHawjs6Pinje/afVk0CQ84MeEv9vgawWwRo3rjFkHZMQM58krvnb8VvW4KFx9JoZGmuXkQCCZSSwI/j1mPOEm9ymM4n/BLMug3XM9rlOF5C+ZRgY8qySKGX/8TvXif8TCCZIZrkEXyShBrfMi2SY9WgRy/T+sc5JrNz/rXmZa9r1S+OBLazcLtqSyUnWW+A0T++6gOsJkma4xnFNQEsZoIE4LeLjthC851rI5wMoW7j1JvOi1+U+LXqwrlYBsudOl61E71R9tmFZhXicVNlKdFzSHafL1qG7VN/p4lOjHCzfUp7lfKEecp0S6HK+Wk7R+JQyWrhOeZC6wWva45pyJmWmZQpJtj1sfiBe6tdXqnN+qkoUVrt796j23arKc29P+EuSfle6/m5pz/O7CD8g6alPkL75Qzr6Tkn7pMfc3hX2PdLqPytje0J9b/CSyhhuqD43l0Yo/+bJYg7ELByrIRzk9HnIgMsdMppSlqaBIstr3d8Nu2EoXPEkxYuntdD8TWFoL4njtqzr40hPojFVXeAErbnAKSy42FkOwVACUSsuA+YEplTybF9aR4bql9sbkghQ2Kdwd3xa1xOUMW4LYKfFK61ajJdWdgpvKqoWgGY/OnDMbfFhf7ENJDQJqviMkq8lOMrxd76Ok2PI8tmn6QlMQJ5tc2D9WkQ45wfnYQLqVFzZT1L/bd0MCWjS+kcrbgL7lmJ2GraNWyFcP19rASXhHgFjrjVf45GrO5FlGgR8r0Wi0sPWCvQU5dxorWupP4ZsF/PMueY2TtTfImOvFNtBMun15b4+HeW05rLzGSEe5XTOa8sal5UWXId850uCLIYkSa4j+45tIBF2YFkp//xg/NA7PVJXXFCxsB9QAbIrKoRjScXC/yRJv6kCog+pPBD/hBeoPNDwaumWjxevy60qzz74GS0D35nqywzvUPV25VwYa9GA1ZLPlg857922VkjC52uWGTT0+F4aU2iQyaNxPQY0OHEbmHVargchzVp3f1PFQ3VNd/3xXdqj6m6ckvb8FUnvlD75B9Lxt0rn9CGtqmzl2vNISd+j8hT928rzJdvdvbepbh3bVn0ZY3coW6//PTbcPpUkK2Vky9tCPe28qPMpZ5iO3xmGdD/rdlmHi9pZMXy2ytwNvXDFkxQq4palkkqU4KtlCWUYAt38b4Fp61IqsLQWkewQpNEC5f8mJ1QitFBMVRROC+S0hLvjtCyIFHIp0Kw4khiklXzayIsejIkWhSlBy1iLD1Wn9dj32C7WK9vtNhMAUcmy3klmW5bAaaQfxf0ktAwJmggM0kuUgN6hZR1OAME59WDAnFZJWlZb84LtcP3nA/eTmA0Bc//eRjrmzcC1m/NwL+KM1T8+luU7Tet3izCkTEhZQbnjPAy4vXZ8jdtHZ+qPVZIZh1T8lCmUBT5cINexEJ9k2PdpQR+pvvVaqtbnJfVPgKJxg/1KudQavzQYcC267v6ffdCa9601kEaGnBuMy/ZZlrm8HFPqDq77zKtVl5YckCrAXlM92WlDBbDSkn9CBbwe7/6PVN9/Mn699Lhfk3616+yTXT6/o0pOVlWedbizS7vRtXGlu7eOenkMXH/Kwqw7CSHntse55UXJ9eS5QtLg58tMhNn/rAMfxqcnijrEB7p4Xm8iP7fD9bKxaop4N0u66uHS799fj3O+S9IX3CjpX0j6IUmr0sO+RXrCMyV9/0j6D/MyADOVo7/+b0lvk+7+g/q83JrKO1bOS3qTqlfMBgIabyxjaRhhv7ZkVI4TA0mg1xblMsc1MZLzbGGm1AOXGvvvhs/dMGTUuOJCS6FLfYudQ0thM/DUpBSSDvQkZB4U6hT6CUjTG+H6GhDkCVvC/9wiNoq4LHMIXEmLgogWWAdar9w+khIDjzHut+rNcpyvVBWEXeDOj6COFmHWnf2ZLm3HoRV0Htcd34o160mQRIKShEOIwzGgdZZjntb4nAezyMMAiXEzEOix71tzwsrddchtVtLiOPM7r7tPCOYycFwcpwVosr60Zrfabas1ySHHKNMkqfTvBMkErlP11yPbxzkplfmc/cq5tZPVMy34atznfGy1OY8a5fzhuLscA1/39fUqW4dIDAkGCb5J5lsyiG1OT57rRBA2xn+Cp8wrCf2scS/ldv6fqI5VkteWLJD6bWSd+NA+jUpOM1Ilk55LM5WtXE9VBafHVcDrpor13c9bHlchIbbGX6vyUs4fnJd8ntblsSHpXtX3eviN6Nsq243u665fozLOPBnOD5qbINGYQPnotrqP+fxBrvEMlCnZx/SSpYea4HhJxYF0jaqusDzPHQIG3t4u5vHxNqtZxLXBxEcOX7y/egi/4NHSFzxc0qtUBuculf13v/hJ6fsvlty+6aL0zy+WAXGGP3RM114jPfmGuq6XJB09UMqg7t9EnUzEPE/driTenm8p5yiLU09zbDlX+SB86n2uq1acIQPQZRtmD9FnN/TCFe9JaW21kapCJphKK+JOoF1InwDK6fgulnHEp+Uw60qAagu2A7cmtcp3Hem5SQtLizgp4mogHr0eE9V9sC2wNYpvty0toex3WippiXM+rTwTHFHAugynybz9ewgE05LEbSfuAwJk15/lOB/mN4q8NRDfvzl3XF/2G71vrj/ryf6i4uI8Yr8k2Of4mkhJi4ec0grHtOkpa4G8BNyzSJsWPubPeeF+YF+5rQa0CZKTOLIerifnIOMmWG6tL8+RfDcT60ZZRJBAcpdEu5WXQ4Jlkmne57rlvNuOeC7nsKS/IWnPo6Wfu6cch9qyqJ9Xn0SynUKeaW1N2eW+pfz2HKTXheAoSZJwT7hHEk4SIVXQ65Oc3BdD7XBelDVuN08/kmrfLiH9PtU3zPsIWnX12kD8bdXjiS+oeAFWuv/rKiTjX6mC7AOS3q2yA8nEZEVlHKXiidlQJUYrqPsJ1HW/qieH241Imt0vnJOKfvH4UqbymRzKwTQsUoZwfTie+3lf1z7LGcb1eHKOpSdIXZ0OoS30ALkd9kzNVDwf+jZJv6GyKH5e0lWSXj2wf+evXZTeuEf6SUmTE8Wd9cXSVVvSiXsK6bzqTG23PTXc1rWm+r4Urzm++ynXgtR/Bie9KCk/zKFy/vq3t7Z6XHINpk5hvrthN3yq4YonKdKildmBiy4Vj9P5zfSOP4n7GSaN3wl8fI/AKwFuC1Q6XZILC+0kJgQPFhgU9Myf7U9Qzfisxzy+h6xk6epn+/2byt8fv3XXysFbEGYqAnsLbTaQ9hjRm5QgZ4o4rHMqVgJH5ifE4XeSKCrizK8VmH+SKZZPIE4gz7APcdnGvSrg5ZzaDxZLi0qbINz307vBMtJyN8I16cGVFPvReZO0tPoyvVdZJ2nxvTGKNKxjGgASlBGsJDBreasMmJJMOa8cJ/Y5gVt6TdxXBMe8l2QzwXVr/mcfTNTfYnOHpKvuKdbjBEIuk5bdlnHIIeca1xLHt2U0yramgYVWX9aBJMWyn/3Ah+tTb3j+0To/QlzPBQJnGplIliaqa/G8Khk5qEIKTqqQjntUCYbHQioAeVMFkF/V5Xta9fjoVdVnGba6+ysqeHja5X9Odb66v2aqbzSXijfngKq3RSrju9LFcd1yDqScIsFIHeO+ZT+mzuHYpm71aVkjlb68RdVjmLKJOiLrIFVZayK4V6WPz6n0KYmr896UtP93ughv6S7+mHYOvzGSXjiX/r2kx0l6gzS7p7Zho9EHfpHkRte2NRUy2TJw8TAQt3eIPOY4pLxiIJHns1WUH9Q9JC5cI5d9IHC8lGXuhl644klKAqx0sdMCxDTSImjMxdWyGg8RHpc9U1FMtGwmWEmhzPrzurQ4p1v3CGStQCwIW6SNXoFU/K2yWG8rIBKFFKBpTWMZeUqZ87pa9Rmbiapw3lIVkgnU3ZYUoD4qujV+Ocb0RCTopbJtAfZUpLw2ZGliPRLAcTxYNvdLsw9aZHZZReFuqCg75zlRf++468jwYAS9da/VdsbJuU4rqVRfXjdSfSu2jQepWFvjT5JNspyg2Nd9zePdmifOk+sySQbbJMSjxbhFrByyH6Q24HPeJEaeizk/fZ9lJvnMcfF9/9+U9Jru/2aX/7lG/kMGC5fT6n+2kaFFzLh+uMZ9fUn99ZgWZRs1pPb7ZDhnWoYJAm7Xm21wWfY68B02I1UATbLjctZV+nRTdXuPUBcak7ZVjsA9o7ImrlHxAKyrEI1tFdn5lC7tB7r4JD3bqnJ3A9fcD6e669w22TK2tPrLJIg6gbLyU5Ux1GFDhhzKgHWkYX1W8N/PtNjwRVLqOrvex1T6zXX24RGWTyckzd4tPeL7VF8L/zw9SPiH0o0vK26TZ0izX6rPFu1T3W7GcEz10INZV3fPJ9d1rP4x66mDTWJJ2LL9/KaMJtlxfux/B5eb4XOGoOyGyya0sPQVFQg00kJLS740TJytQHLLRMahFySVr4PB4Fz97TJUogQYLWue25UeiJY1khYtgtu0QtMDQMXp+9lWlz/B/xbgc79lHnPVBxbZxsxnpEJIVrt8vlZlr/RU5SVaBA18YRX7yso183U9qIwo2KXqah9HfN9j+/nN0PpPAkPBTYXSUjBS6Te/1NB1plLh+Cd43FYFQflA+iTyYJuzLVxPLYXl32mBduBcHw3En6kCNSrGSSMdvWVpqaUnzmR2pP6L64aUZ66/XBMkLKwbyUgC21zHHj/n73ZwjXK+kJjRKzhkHGlZWXOdkeiwfUKefk5iqkpQkkinRyM9T+xn1pWyjGvJ1yfq911LvpK4sP72jAy9zK5loPJ1yrEE1qNG/JTd6v5fiLgOm13eK6rEyt6XBNiUUSS6U5XnTE6oejpcloHupCvrPi2+MNIExaRtG3nMVWUFyx2rfzqY15j7gevOfUFPif+nTKa+oOFrijQt/cq+oVHN84eyynWwXPcWOm5JI8mcqZDA9AxcQPuXJD3i4SonEMxUGM379SDhv5QMtiV9UBo/Urp2VP76ZEiGUVcPer/cV5QZqes4d3mamb9dXup9jhsD1xn7mv2bGCNxQIvA7Ibd0ApXPEmhtT6FKK85rlQVTSqg8UA6hxTCzktqK97MN+uRDytzgSewTYLi+rSAUoJSpm/VPR98nKpvCRyyiiUp9DXXf7txPZX5XhWSsinp7y1LTz0jfeO/L0c+UtGQjPHMe4ep+ieTENQlGGDZbFcKcJJWbrdJkNwCVEkyXafWmKXbnX1E4O45lvPY9ZJKn2+ogswWaMx1wvGnJTQ9D65PWq1JPPzdWl9eOyOUactpPjOQZHpImfK3vW5JGnIdcG2y7zmmBKTsC24py35gnXJ7llSBCbe0sa1pVHF9Ca7Gqp4nh/FA+p1Clunffh7C23xskc++9neCvanq2M4jzRxpXK775DziDPUt1xm3Mu5txMn0uabcZ/yffervFvlgGvY3x5fAfkMVfB5QkXmee1MtyigTh5Hqw9VzFQPEO1Sw8vUqz2dvqBxP/E6022VfUB+kkhxZvpnQ5xp32ZNIm96S7Lch4p+khfOP85FjyG/Xd0vDcz2ftXI6zyt7Vkw+TGLujbZL1eAxVvc2+O9ScYU8ucvg5do5/Njvln1pz1V50co3qgyaFom2x+Ne1X72+LGdlAc8ycyHA1ivpKdRSNOSiULaMeJyy5eDPZMk+c7rcwpwzh6iz27ohc+pOfM/G6j4drLAcdFLfZBHZZSAyIKBVkAHCnZ/2yqVyjzrRiWWczdd3o4zZElletZzEvd8LUF+lp91S5BCS1/LYsm6uCz2odvFk2IecGss7UwUFfesTFLptbYtDLWdwN+/sz1UvOyPnBPMN4PblaCEebtf03NDMJ1W9fS2pIeFZbm9LMPW1kxPYk6C5bLOa/EMf47dkDI+j/9p6TZgcd24rknU5vjOtXxYZUeG/xOQknyTULUsgQZZCbjTipyBxIpEkyENKMwrgZrjp8eFn1ZdpX6f+n8LwDjOOfXXat7nVhnWvTWvc11xLBjY3wzZ7w571V+HlCUOY1WDRgv4Ui7neqC8bhkiOHYJ7Agesz1+7mOj+8+5vaW6zccP2juN8yMQ3FLZ0mmixzk8664vqX+0NAMt6ZvqP5id69iEZVmL3jSpP05Ml3ItdRn7kd7SHGupzitu3+PzIylnKMdHuLZXlYQ73VR1C57/H5P0mFHpk/ukspduQ9KXS/oJFeLxL/aoGS7skX5JhZh81/6S8e3S1gfL7TUV4uOyNlXXHdtDw49Ut7B5vnv+0JjHeHuRNvWa57xJiLEL70n9+T1WJURCusRELaPgbtgNrXDFk5RUpAQa/E/lb+FIpZ95pgfBliYCPgIGfqelk54bL3iCUW/L8T78oQWeCn5o+47r3HIpK+pPAJWKmEo7y3ZfpDWYHytV151KiP1zVkUBvuKM9NF90pu/vsh/W2edXvhPhTPCN4P720rK/w3ILeSzzgxuN0Gpr0+RD+vIsh0SiLtvkviw32itcn7c+94CeyQqBGHpGWF8KvRsO+vMYLC0b4e4CVY479N7QVA0V79vkgSnscD9QSvhcyV9g8oefs67IcMA1zrJRcoWEuw0REwjnvNteWuE+PNI1xoPzwNb2NOCme1wfu6rNBRQBiS5TYMEiaBUCSbHuSVHEhy1DEgtMpvzZ8jwtB3xnaYV3/FSVnONtDwClB0cF8YnWFxVeTB+ov6zBTzydksVXBv0TVTJBIneWvfNebvSlX1S5bmUmYp3xvPf9TmsejJYWuQpt6yDKE893wzaV9Q/mtjjRX2WgWs/ZVWOk+deemU5J0bxzfnheqccInH1XD/b3fPYkPxxTp3uEjnPD/y2dNc9Kser3aDCMt4u6Qf3qIzAXZJeVP6/WGWQv1zS/3tWp94v3fr24gnbqyKX9kz68499NlPhQxvqz7lllbEgTqAHxR9u8xPSu2/pEbNONLnmvCaJp8dSqrLNvxOLXfYhrTyX6rMbeuGKf3BeWgQTuVAI6BKgUFkR/NjdOmTRlBaVMIGKQ1qEEwhYkDCt60ugk2HIIungfFvucwcqgk/Fgmkh3yIs/OZ1EpIkZ67XadWXXP0S6r+uomCtfDdVvWG0JvHlYkNt5Zzg0YoeF5KnnEsJ2hw4D0j4EvR5PlFJ+FhOlkHLvC1hrbqzDNbLlmwCMcrFFvB3cJ1mqg/Yc12RcLo9LYtZ9nvWMy2uLpt1JsGiIsxyWiDH9zZU+yPXK+ef6zvCJw+cEOIIcfw7y5mof0gBgRblS4ZsJ2WSv+l5Sk9haz6xn6ZxLQE612TLezRWf55nHvNI2/I4s5+Yb6vMsfp15QEZ2RaDc8piRV5JTKQ28PJ9bplJkmnSkEe4GuRStrY8TLRE01PguHN1ILkLPozlSSrk490qlv4VlTeX85kK57vRpeFpZg574zplBL2cHHO3gfOPckvqz40W6eRcc16p53LdcBuv60BDAcemRVhbxqeM47FbVSV2t0i6+nzhGiaZ5yTpZ1WOIn5y970snd1zVu/VY3VI0pMPdgV+g6QflfTuSvAOqhDLOySdmFadtqLqTaEsdz9Ql5pckRxy3rlf7CmaRHzKPK8lyg4aY9I72VpXJHpZr92wGx4sfF6QFLP41vYLWsTSomPLCcFXLsJUyK1A8JDbABhSmFIQWZi2gEoLMDq/FsFIIZSEjEqAfZZANNuRYIuAhfEIILJ+PHFnpGr1O6EifNe6/xuqwrLlbbAQTePETIvKziCCwpeeLVrmEhwT9LDMVNbs5yFwmJZ4tklqj1XGb4E/luNrLRCQwNikxXnzGSL2s+vRmhMkUmxnkgjXy/fZ5wTuOZ/Y3iQ8U/Wff9hUnZdvVwUeE9XnVXLttMhRkjH/lvpjnwq+5ZHgtfQq5dx1m1hekoLWmm5ZMMfxTSt1kgTXyeNnOck2kGw7P8pdlpuEkfKD9eSaYz2ZV8tAMI14uWZaaS9ouGwTBa4FtsNt5smEnqtTFYC5T/UZadfNMs7zkoF9lm/5NvlxW02I1iS9UNL+R0rnPl5P8rtLldCwfpvdNcqAGT7se//2VmVa1p2XvT++ZxBMuWHjS0tXpkyw98Jy0XPK/doy0rhvLHPTAJHrhW12P3JN+v4G4jvvq1W8VVIhFde4Ei9QIScnVF5L/xZp//dJX/ZXVd6h8rou8V3SxbdKe14i7X2dtHWu3N5W2SlwtQpp2USfeb3ZkMb1SXmT63GG+Jaz7qtcN9RDNBANrRFpcf5K/TWYBpPdsBs+1XDFkxQCn1wkQxaWvJeKNhVrWi4tDHLvcUupMu/WQidgc5qdtqNo4FrL8p5eG4IQ5kGgM41vAu+dvFEEXFbmFJoJ7Ftlb6hvJUol40DvE/uUwpugy3mMkI7jlfWnYKaS4DeDwfDSwH3H8Xhk3RxapI6gMOtCIEgrP++7LfnMib9b6VrzlCHTTzXcbipFx9mn/vxKZcn6kKDkeqAnrDUXSFCYJi3+zNf36UmdRfoMaflln04jjtQ3UBiosR4kclwzs8hnqM9ZdgL3FrhnGs+lJEtS3xOcVnaSjPMqY0wjgNtHzwIBpQkn17xBU65j/iZRStLL4HHkCWCK3y2ywz428JtGPI7RSNVLwRfvsQ4c6zQktLaOOt6GysPxV3+8EBN7606ovgiSa3GkKpMs30g83L70RtBw43xo0OAzCSQaXI9cK9mv1DHOl/OnpZ9yDdLwxEDjAQmj5c+QB5M60/252t1bVyETt3X5HXiN9IiR9Ka5tPbhEu+Jy5K+4FHSnR/ThbcXEnJc0k2SjvxsOdjggqSjqP8TVQ4J21QhulwPXC/SoteLRDZPb0tvpFTXNWUg5+1cfa9i6tc0HlFvsh8/VR1yWYS0Wl+qMndDL1zxJEXqC1OpD6JopRXijRvpKDQJDPzeDeZBAZwgl0oigQbLpfdlHh/n0wJFCeZalrK5+qc2sZ3ZH3k//1NYkkylMrcQTMuawWLLM2HhacvRWIsniozVBwhJWrL8JJDOI62HQhyCXl+zkmPeQ2Gl+84T21LhOyRY5nXWNwEj5y4tkO4z1pUAUVF/1icJQXp8Wtb1XFctwMFxynXSUmKcZ5z3rff9EPAQ3Oda5Glc6YFKZZ5j1CLoeZ/30hgwlC8B2VC7Wl4radHaz35Nguu6ed3luuF6Yn+3gCLTcEyXIj7bzn4Zq98+E1XFvRbZbFnHuSaYzr/TKsy0Q+PBseIcdxn2JExUvBh8YL3V/xwXtoVeKOfd2lbD9vjza6qgdEVVTtJw436R+u9DcR14f0mLbxbnGnbg/TR2+UH2qepLJd1Ot8VxLZeFOKnjaHh0et5rjZeBP2Uf02Z7VlWNS753tYqT5N2S3qdywvBhlXG/savPB1WcKJoXz9ZN10h6mnTrP5L0jz6mbUk3PV966n3S8fdLb+jyX1LxxHzxPum/nS+E820qhOiYpK9UObXtdrRzufu9GfWncYCkYKW7dk51PBw49xyGDEA573Lt5vpxHtQfrTi7YTe0QuLOKy48mDVxpv6Dnik4c9ESdNG7kMA3AR+9Ahl2AixDHgpagVjvVFrSIkjK3wT5FOJj3GM+BKlDFkkqcGkRHLkOVGhZP/eby1tSv6/4bU8ZlU4KT9ej5YlyGu4FZ7okNWyTFWOe3GOgYVBkYEThn1ZXKpVU0Owjju0SfjvQkp3tyi05JElUPAQMzJ+HRCQ5b4FXEjGXn21LJeu65NznnGI7SCDZDl8nOOX68BilVyFJOi3LmW/ORfa765vg32Gk/pxwvbjvP8dVuMZ+9X+vZYY0aHAeUJY5bs7NVh283twGAh+OvcFha94xruuVQLJF4hk8X+kFSZm6EyidxUdaXA87kWeHVdWH38+pPhu3rP4Ycy26H2iM8vMNnBMOnn9sD4mQ5eBcBdw+VfUdU605TiLB/lDEJRHkWkxg6/v7VZ+zcH0nKi+atPzww9tLql4yEphJ/Jf6a87vivJRuG7DBPku4T7n/wQfj80+XLtW5fS/VRUi4vbuOViur6j033EVQnGbCom5BvdOSHrz3dLW68t2MB8NfeG3pfe8v6Q938U/pvLS+ZPni/fkRJf3pCt/pWMkU/TbYdW6uN48ydJ15kEalN0cP/Z1jin7M8dirkV5k7o311przlyWIRf/pfo8BOHcuXO65ppr9LKXveyhqcAO4Yr3pHjx0S2cbtMEgiP1FTMVjBVxelSooKlcSWBmuMb8W14X1yVJDS1FDiybW0EcrAxz6wUBKolFlud8ecoY3cFDFsmW9Z71a3kfGJcKnITGbRojP24naBG1rCcBAvuHyp8PoVN2cMuF0/JB0xYxY1nsU5fV2t7idI6b88F13cZ9zh+3eSvKS8t/y2PgevqbILO1RhR5cLwdRqpejwRMM8RNQEvQ5P7ONdmaR7TGS4vr02WmRT/BKOXHKOKOVC2UG7jGcjm/3CYS2FybM9U1xrEUrjsPtzE9B+4D/2b+JAlDJJl9l+t8rEUZ47xo0KCHJufzLNKSmMzjvxppHLz+3W/Z7/Sesf7+74M1mH8CrqkW53HLOLOketoV8/TDzjlHOf8oC7OeQhs5d1g2/3udbaucVJWeRq4b1oUP+JPUk4AS2M8iPWXCFu6xHFv/qRtbhHEotAwcnFP22qSe59hSjpCkXNW1d131fUArkp6p4sG4R9Kvnq7A/6jqG+LfoUIarlfxetyh8tzbLSpelyd3198r6Z+hLjeobPk62eVxqqvPOdX3tZyQ9P+ckz6scmDYTaoP1293dTZROa3+OiD5dd9SL7cCda/DLK5xDVjHsO8TEyT22Ins74ZLH37yJ39SN99880NdjWa44klKKnla2RJMZMhtECQfKbgZ33EsBLnYEwyktcygjIKlZXV0PhTazmNfpCUoo5fkwUIqRCrJVkilS2VDICH8TvCTAjL7mHkmMGc703LKMv2b/03CVpA+AQ+JiAPBWJaXJJS/6Y5Pcpp1IyFk3/MB0azHBHGk+sAqQWCSSJfVArnOs2X1zrlET0eSUtcxrfqO70DgloCwVW6CF/ZVAi9FOjXawHQkyi0Cc0B1C4VlCutNIt0Cty3yQ48N10T2hwEovWkJJnyd7U/STyOH4yuuOZBo51r1fbeZefka6+J7HAe3k30xRJBIpsfqyx16AlNGuC6tNZ0Emn1AcunnEjy2m6rPnnmesw9IiNgWzwHnu6m+UYhtSW8U17v76ZAKaPywqv5Z6+JtIn0aM2x8MVnhXCHonyC95zvXPOcn+8IEwDp4VWX+nkV/uHypv8XN45TkJNei68v547G2F9VEiwaTkepYrqsQA6mQqjPon+PI8171x+FU99lQ8ao8o8vjnKQ/ViEi51ResPloFUKxrfIc0Z1a1FUb3bXjqg/oT1WPqPZnquK5OqB6nDT1C9dqnv5ovcG5lPI150liptYWZqbzb9ZlJyJ62YS0Tl6qMi9xuOOOO/SBD3xAX/d1X6fbbrvt0lfgQULqzCs20JLgEy3Oq7+gWhYyA0TGSXBri1BaEl0eBSYDBTtJh7QoZAlmEgwk+GqBYwv0JGi5nSR/E+wwbcYxUGIdh9qeCtzttrJIuZAgSarC8oIq4LYiFMrki71cju8zOD4VI4F1Wt98zW3OkEq8FYfgVOqDN/dPyiyDFSpfAop5fEv9cSOgnDXiE4wPCQeSqdwG5zxt5XeeJMbZprzOdcaHpR3c5+ynXEutuZrAPS24aQBwyO1QnM9TFRCzob71n6Sa11oyIIkV+7elJ9NowDbsZHQZWockjcwjLbCUZ1LbYztUbv5nGdwuwvFs6Wt6d9KAIvW3/eyEL9yuPCXJge/D8Dznu5a49q1TLuD3hhYfVLaMkvqyhXWlbOR8o7dManshHHez+zh/A9uUfSRuLVnjOIzrsqcqxGe/qlHMusBpRqpvtPfzOi3Zlhb4CfJJI1SSeH6k9rrnCVbss31dG9xHx1WIx151b5Dv6n2LColwn2+prg2+LHJTRRa8U+W5lE1JXzyRnvvo4qW5W4UIPffR0hO+qOTh51s2ov3bqvPnAv6fkPSWrp6zLr99XfoTqttEV1W9K26380/5mPOBIf+ngcCBsijla2KX9ATuhv/58Na3vlVf93Vfp2PHjmnPnj36z//5Py/E+bmf+zk99rGP1dLSkp7+9KfrbW97W+/+y172Mr3yla+8RDX+9MMVT1IIojPQ5SwtggiDJYLk8+oLay5wX8s0BO2paNIalFZDp3dIpZaCwsKbSj7bT0JF4dHqo7ScU8Ckd8cKOomdEN/3EvTRC5DkgkooSYfzywdLWR/2FctxWayfBSoFOtth5eT28QH+DKkICKhoRU3FSm9Xjjfd9ARKzq8FIhOEtDwTObZsu8cjASHB0wT3SJhGEddjkKDIbSUBZB5JXhMMkQhwnZlUsm85N9lGlpPz1/fG8X+mYj2l92RovZJQEqgRzLbWIAklZU7KHtfL7WoRtPRYuI4kpW4DCXkaClJucTzZx2kI4lzPdex6eY2lDPW368O+5vqYqZIVkln+d1nOk3KF687xN1Uf+va+/i2Vsd9Un4xmoGxqlZ/eTLbH8djO1rhbBm6rzsclVQ/KGS1uwXKfCO3l/PL/1jYwt3VZlbxxPVEGCGn8+4IKsD7b/V9RfUh/qrom0gvNder/ng8mEG5fgm6+wPC86sEGc1WPj5/13O7a9niVrVp+rsj1osfM82JNZcvXcnftvZJ+cSr96j3FE/KCLv6v3iP913dJv4N+cdqR6gtZpeopIUm9SsVTo64cy5CpqlFnU4v4JEldek3p1fM4pjx2PIdcw25P651EKTt3w3A4e/Zs73P+/PlmvK2tLT3lKU/Rq1/96ub9X/mVX9FLXvIS/e2//bf1B3/wB3rOc56jr/7qr9ZHP/pRSdKv/dqv6QlPeIKe8IQnfNba8qcNV/x2LxKE/E42b+VKUJmgltYpKs6WVdHl0BXvay3ikCAngVKeMZ8KwUKKeTG+/zMtg4VUunUJ8FiXWdxL4OFyCCIdN/N1v/rekGLP50E4VkkwSEoSENOy5DpYaO+0X5fp6MHhHLHSS+LEa47Po6GzrYrr9JDlnJTq0a7eGsH8ckxbfcB6cWxn8V9IY4KS/evAcWd+rkuS0wzuY57CxXq38mHalmeh1ccGJqmkU5kSwFO2OHiN5DYqKn3HY32G+s9luR93Uu4tIJHj6/rzZZLZR0n+cs6w/SyPxMHrKT1D/G6RKa4ly9mc+9Ji/7eAdIbWtaFjVU1GePoV5QPbMUUcto15Z5/N1QeFzsdtpPzm+LXKcVmun48V3lQ10qyqD/6dlvVLg0iOE9s1USEYZ9Un6NSbvJYef86Fmaoc5Di6L6S+Z4vpHehxmWtxKyvn7qqqB8SkxoSOXp+5ytYvPzS+rjoPN1VP1Tqg8nyKy1hVfW/MHd31p6mcALahQk5MeEyy7ImzZ5qyK71UNIrYaDpRITmuf8rkltxIfEF9ydDCJlJ/jCg7ea9FXN2myz48FC6frryrr766d/nv/b2/px//8R9fiP7VX/3V+uqv/urB7F71qlfpu7/7u/U93/M9kqSf/dmf1W/91m/pta99rV75ylfq93//9/XLv/zL+g//4T/o/vvv13Q61f79+/VjP/Zjn7Em/WnDFU9SKAwy0Nsg9YEYFYZUFykBA0E8F7eVK7ct5AKlAiJAHquvzNiOFuBKQO64LoeAIwETQQgFjHCfCnQW/x0oENleX09rGvt9jDhUQLTO89mLJJFpDWb7XGYqRFr5KGh5PS2pHD+C46xvkinWh8qAQp99TxIzijRJDJIYu79ZNgkBCajb6ZDAkvEILviOi1RyOUYk/UlcXKbUr1+uFWmRcLntOQfyPudoC1iz7kOWe9enNafSK+H2TiJdtif1HoEdy881JrW3DpKIzxrX2R7nQcs3v70mst002CQQsdWexoAJ8mkF1jPlkvuW65N9nmCpRcqHiApDKw7Lc54jVQMDdUmOWSuwv4bWXhJveqS4zhPwsb/8XI2t+x4/e0L8NnSTFrcp9V+OcdYziXDKz5bhj/I+ZQvlmz8G6jRMtN5fI/UNRQ4T9Q1N3P7H/j2i8vzOXSrkwW2aqBCN0yoPy6+reHrGKvJvGXHHXR6HuzS3q/TzSnd/tYv7XpUtWveovFNlScW7QpzxtK6Ot6rKr5bcJFk60P3eUN0ytqriadns2ubAPk/ST/zg77btfnFOe47xXhoPGFpyeDf0w/Hjx7V///4H/u/bly+MePBw4cIFvec979EP//AP964///nP1zve8Q5J0itf+coHtnr9wi/8gm677bbLiqBInwckhWBZ6isWAigCBQvKVJ4tsJ1WLqkveKxsaTVM4sPQskzzXou8UOgQ2LIcWpoU31RMSdIMSl1W9h3zSnKUAImEJK1bjpfkMMnZKH6P1X8Hid3MDwYgEvAzpAeB8f2b9yjgOYcYN9O2vDBUHK3+zbqlJd/9x/S8nyQ3rWIcv3n89vzgqU+2NJOMOu4IH5KjtCZzTSRRcsh6tyz/HMMcA1/j2iDgdbtXVD0qSX6kxTF1uVzjLGOKOG6r1xPbzv5gm5IosMy83iIv08bvBJrud6ZvWT8JNJMEsM1Se863toiQhCQJTK8b5xDlHYmh87mgfh2zX1prWuqv4VwPfFfIWHXe0yiR7U65oMZvW8+zTp5XDlPEz7qTxExVweXR7tq66gPrWS/WicYfglB6N0zUTIamkUdrPlHecw5Rj3qNTBFnL9KlV78133P9Oe2BLq/17t6GKvFZU1n3m+q/KJjluT95CIC3Bx7s8nuGpMf8jPQFb5F+5ddLfHuZLqgQh6tUtw1uRxkrKqTlpMrWPJdHYxB11lT9LWhT1UMRTIJMqJl+tft/VotGjTQSUP7xWs7plBWt/B7MUHNZBirnS1mmpP379/dIyv9M+PjHP67ZbKYjR470rh85ckQnT54cSHX5hSuepFAoGhBM4xqFJa03aR2aRFwCbiFOC1QzvhrpeI0kg56OtPYnUGBc5jdVBUYOJCRp1aSFjUeeKuKnRXyqvrJtEcMhC0qCJ6elhT3jOPDhV5IAAvbcV5sAKy0+Q7KJ5fDEHe+lVpSV+XBu5HawtJ47JJlr1YkgIMczLc+phFzPBKGuE8dCWnx5aVpjnX9uH3F+LXCbnohMNwSgW2va8UkmqeB9Pb2fLCfjJphmHfJ+Amv2D7cwSf01NIu4bNsc/xOAE1Q6cM22rPAZmB/LTEs+5dtc1YCRsoCB88/5U/bm2KaxogWmWkYGAl8SuVbbDbi57tlnuT0p6+CyWafWd8saTuyzF3FaxINjkG3P/87TOmxL/RPO0vNL0kvdJPXn8AV8S/U5OMd3P6aBS2hD9gF1AoF0ehPpJWN6x9ur4cC2O48VFXC/rkIItlS9KMsqfbepSsQ47m6vn7Na6vI7K+kxXyTppcekm0/o2K+Xh9hXunIk6WskPfXPSU/7I+m1qmPjtp/q6kOSKvXHiQTVa8TEa4Q4Z1QOAXAbDnflnVHtZ8976mwHjl8ejJJrJNeAxzt1iPMgKd0Nlybs2bOn9//ixYsL1yTpL/2lv3SJavTphSuepDhQ6bS8IClM03JDEEFLQlq0vei5CFsWBYLOdL06pOAmEGtZJ9LLYNCXQMl5+JvlJ0AgMGmB6FF8s64EgUkE5qrWKFuuHRLAOX+222TK9cnxIuHzN8c+ScnQdpEkaKxHWm1b3huOk+Owjt5GQqsU5xPBNsFXEr8H678E1QmASLxb85VkL9vX+k/wPMNnokWgzrDTtj1fY3tbwM7xsx0j9U9HY7B1knv2c73SyzNE8gz6CPJd3yESmnMzvUmtPnb8IQNAi/CnvGgRAMfnfOGcS8LFYGMIx5Zj5XxJ/rJdrK/LTRnDviI4y3TMN4G85wLbwwehKVfo6TBg9/gPGTfoPeN1g1vrCa6LecRjv/ka+9PzLI82thV9Q1W+rqpa3HNtkGC2tucIaVxfbu9z2S1DUktf0OiRus1j7DawT+jpdN1nSE/j0bKKl2RD9T01Qrql7vpmd43j5c+W+uuZJ2etqm6xWpb0oXdJT/ibJ6S3lC1fS0g/UnkT/Q1/JH1A/f6jXvX8s07wseYOlP9S/3lGjue26pHF+cwV67Ss6oFJY4v1HJ/J8nXml56tXJdTfCcJ3g2f3fDIRz5S4/F4wWvysY99bMG7cjmHK56ktIAE2T4XfZKGVh7Ox6FlnaSyJbhL8OXFP2Q5TosgAQwDlUwCS2kREM7iu7UlIbc+5HaanbxACYpocXNIK7rrSRKwE+gnUHAeqWAdZ6ctaiQCU/W3YHEc03rHN8ibgDm4HBIM4T8f6Ewi4vLYVpMZKjXnT6XTIlSsk9S3flHhZ3w1rrdIBdeM57Ifyibpaa2tVFTZFxwDxXWvC64tGh4cj4Fr33FIpFxGei9IctjOrFfLMNGqR85hqe9943XmnUBO+D9Xfe9DglmmTwCZoJJtzPnUsn6mrBzyHKScZJ9kXaW6hZNkgcdRe03uZJjxGHrtsK2tucwx5OlEebgF55/zHXrXSusAkNRJeXJeyqaZ2v3memYar2k/8D1VfRicMojzxEQnvRZjXGfZLZJOPea+WIq4JOvpNUn57M9exMk+nqm+28rg3vE2u3YfVCEVJ9U/TGCi6j0Zq3pUcq64P+0t2kL56ypvi3+LpHf/o3r08ykVz8Wyiifj9u7aevd/rHqMsMOBLs8N9bdzUe47UB95nlMerqh/bLHLOahKTNyvNJTRkNJaI7nepf6YJW7hfHd90yh52Ya0ylyqMj9DYe/evXr605+uN73pTXrBC17wwPU3velN+oZv+IbPXEGf5XDFkxSpLxC5p74FDKVFKzM9DOniTKud0+d3CniCogRjtMCNIi4trBnS0uL0CTRaJCzbbwCcD8TyfgJEkiVaAbPPfN33Wso7PUAkIQkUbRmz8vE11jX7m33U+t3qIyuuVJat/J1X1ocP4zLkmDFvBlq1Exi53i1raG5tsmJL8NgC6CSPrXUwwv20pEmL1tuc0wR7uRZa/WBFSEWdwDyBdwI91lPx3+2j0mbdWyHrzPbQSk6QPFLtx5aRg/3BsSJw970kSVm3lsxIwLes2k/uA9cz+7Y13/3foH4nj1nKu+xnqU2gW+sk+zUJZ64Fp/H88elx27ieZIZtp2HiQlxnSEOFZRQ94nzg2P9tTT+nxbWUpGiIbI1VHugm8OU9fzzO9IZw+9aQrqS8cCDppbxPAwXnMddatjHbZk+niafn2KqqV4QP3S+hDRtdnDVVIud5t61Kih24FdDf+1SJn0/QmqmQH+c76co6jXLuU3l545eqvBfljugPt3ldfZlBMG/952eC9jbS83QweoWXVObBGVVDhtNQ9jpQ5vt/rgOGNPRQFzBf6p/WmrfWNrwAAQAASURBVNwNn364//779eEPf/iB/x/5yEf0vve9TwcPHtRjHvMYvfSlL9W3f/u36xnPeIae+cxn6nWve50++tGP6q/8lb/yENb60wtXPEmZq/9cBYFVWuMSSPE7XdRp9SfwaXkachE7DFkWExgMLepU0NLilhSCHSsSgoIWuci31irySmsf25iEhgSEgKp1fC/bkd9sgxW58zOwspC2Eud95zE0TglQpUVFwHqYwG2qb0VMssg8CP6lRQuZA4lGjh/Bdc5pt5358E3S21qcWwzc8jBEOhkv528SvoyfadOCmmAoSVTWh/3ie+yvbOcs4rXmAR86TZLdGhPPPb8zwgDDaeYRt1UX5jlEhBTxhkgJ82A/0Esi9YkYx4HAOvN1eybIYxZpTG6GZFeOS9bX/Sf1yVLLm+k4QjyGfIEiSV/2tcveidi0AJ1JgwPlL9Ok7GWeDEzLrVytOUTC4v9u09num+Qvy7Ic3kIcE5TUeQwJWnP8aNjL+ZxGAPZn6gTW19uTPG7HVMnFmgrI3+j+H1MhLx9UJZ+U2d4C5i1cNHBRB6qrK8fhPtTbsmFdfY9Fkrujkp5wULrvdPGquG0k0mkccj6cr9LioT6cf677lqr8dR+ZkLlNx7rvO9UnbTaeWAa6nPTcpIGHY5XzwvnYgPFgMu6yCK3FeSnK/DTCu9/9bn35l3/5A/9f+tKXSpK+8zu/U7/wC7+gF77whTp16pRe/vKX60/+5E/0pCc9SW984xt1zTXXfCZr/VkNey5evHjxoa7EZyOcPXtWBw4c0DeoWghzYbXCgy2endydBOkJWh2PVuwWMGNIcEpAIPW9Df5mW4V4LVd8krJURs6X23eybq0+ZVkGExk/QZ4ij3RBE/gP5UGl0QJGQ+u/Ze1pkYgU1AmI8rkWW/x2IphqxON1W9BsGWRf8juBUgLvnJMJ7Bl/ivues0PW+lwPs4gvLRL/JLGp0GiFtRJnfVmP9FAMkRMGgkShvtkOqT7c6i0enEcsx321onrc65baayLnzYPppRUVS+h5VeBJAOkx8v/W/JAW50OSFjXSZH+SELTa4pDrpiW/XCeOIYmSQ9YhwZEivseT1nDOSW8PSmJr2ZFe36yjsUtre+kI1zMfGi7YJ1L/mPUh2ZV9zTbxPr3f3M4kVTKSeXJsWsYth5xvlAtzDeuoVl7uQ+oepmM73Q8e76Pd9cOSbpL0+6q65h6k3VA5avicineDdWG/uC4OBPScQ1JdjyfQBz44Jfv0ehUCdYekp6gQlNUuzu1oE0mHDXBbqJPzT/mz3JVvUkJSQeOU27iq+kD/suq2MBPAk6r6iAfSOM/EM1JfFw7JEuJ9y9N/J+nMmTN/6lOsPtPB2PHMt0r7dzqZ4bNR9gXpwL+7PPvloQpXvCeFYZ8q4E4Q1wKlvu7/dpUOgR8qcGkRUNO9TYEzpMC5wGntzG1o51GnJCi07OxTX7BkoJJMcpCEitZJxW/2IR9y9IdtcyCYm2rxYfIhJZd5tvJOa+aQu5mghWST+fJkm1lca1kpWXZLcfh3C5i4Dd5n7b4k4WC7mZZewiHAIPxPT8ko0iriOXhejaN+jp8ElBa3zC8BM69TEaZlMcFbC8ymskwDAOtK70lL6ToQZHqsvXe/NQeddyu/nMNcD6sqoOwk7uX4OY8WaWitC6YnyMw0mT5Jakvm5X8aZ9IIRKME88x553kmLbZxCNgPzd3sO4JK3s86ZttH8e2wHfcyf/eZtyPZYzjk2ZTap2cRFLMM319Wfxtsej9zfvp+guaWISFlEO+xPjsZDKhbs+9zTpIYHlTxApyT9HU/LOnHpP/tu6W3/VJp8z2qz3WMVLY5zfCh8Yd1ceBWK3rWKA+cj8eaOor5jVUPLfiwClFaRV2E/KnrN9Rfr86f+p+6PgkuZZvU9zpaTp/uyllSIXJj1aOYTZrXurgbWpTDiaHYbreLHjbK/yEv8GUVOEiXsszd0AtXPEkh4LTQaoG1FuhOoNcC5FLdZmShkCDMadOSzDJtzUjLsPMhmZlrUVCQXLS2abmezNN1YF5DlsoEk0I5BGstwMt7CX5SgWecIeHr32yTBegQ0UslknmlwE1A7TJsgXP7vXec/Z3bFpIUEsy1CGPLS9by2LWIdoKw3MKWRJaB89RpGJf1Tc9gCyy6PIKVFqnIrQ5sQysNx65l0XNo9dGQHkhvE70HrfXYUrhcQ2mNbK0h50eDAPtypAIa/NBvyyPmeDSCUGalJ5T70qVFwMB+HfIweZ0TeO9Tn4zQ28M65brLedvyOpEMWsay3mntTlLLPAzAkkzTi5Jk3WNCguHysr1CWrbLgVtp2OaUVQ42buyN+Kw/1xD7ynpJEd/lTBrXLNtoiJH64+Jvri++TyX1CoE4jW1CHCFOksox0vYIwzWSHvYE6fCHdJcqIaBXbBPtGNJBJsDn1N/mxfa7HTwVrKWLPL5S8aAc7649vkt/p/qGkaXoO4e96hv53Hb2P5/bWsI196/bwOdZeHDAuGvP3Yi71uXHZ2KoR4TrlM3UU35uJtdOYp/dsBseLFzxJMWgIQUtF1kCTApwWq0IJKS+9cn/WyCLFhypCmAu6rHq/liCY+F3y/LlNlHApQJoAfOWRZMELklYWr0ouNkegrv0rKQQZl2TLLJP2RdM72dSeH6/t3JwW8OQ9VDq98msEb+VjvdJRkiost4kyyQbtIaSPJNs5dwR7psgO172Ma3XrB+JTssilnPIY8o2cf7NG3E9j+i9bG3n8RxqjdM04rW8YNwqQrLJtENzqGV4cL/ypYvOg8Qty0nSxL3wLKPV9gSEBIrb6h9i0WqP60P55jwJ3JMs5O9si9OR9MzV72epPwdaa4dtzLWU7eD/JCMsl7KTFm3KOM6jET5cR3x+zfnO1K+zQ66DnIstQpwEwG1q9YXzy/VHIsW+9nhR35gcT9U/KcprMQMJSeoYBq5p18ng13KYRIrtTdJC3Zrl8sF9X1/r4p3rPutdHh/6q9ITfuJDevOJku99aLvrSOLl8lsyxNdbOxs87/aqvnF+u6tLkqmcw67LacRfVX0uxjsHOBel2s9+PlSqcs5xt/GfhMVtSgNm1st121Rftq51+Z9FnNWu/bzmwHq0jDF8aWkLB+yG3TAUrniSQsVkhT/Bfy5Mn/xF8kFB2QLe+b8FJikgCASynhYcFjgtQMYF3iJLmX8SDocEpgTH07iWRI4AmlvPhgB9ltdqE+MPWVnmah+TyRNdthA3x5fPuAyRESsNtt0h+9EKxRZLKpsW4UkllJY95t/qg/RWuGw+NNkaa6dpHVSQnookSi2FTg8a40w0PI9o2WNoEcSca0nAfb81h6VFZczAtnJ8E1gRjBJQtUC0Ik2CllY9klBlfdkHrW1I7N/ssyEQ4PayT1nfNLA4L1qUCfjSczAErH2Pxpec+y7f3/QKZD8I1wyOud2OW6NcVpabRique5bltrZkdo5/y+uU87cVLBdscPC8SJDs90rN1D8AI+trfdAipVku5xHrzTgkuUl8W6SM/6l7mXdrbaQMoJ7hFjpvYZtI+j1Jv3eiypZ7VT2FOZ9yPDwv/Lyfg+cc9ZXn4khlu9mKpLtUdcpEVb66bksq29JGKg/w36FCTK5TITofVv89W+4LElKG3KUhVZ3I/nMb6E1kWvYL15bH9Jz6J4OtqG4Bc17sn/SmOF3u/KCeGtLxl1WgcLyUZe6GXrjiScqQckiw0ZqPLStoCxxR+TMt47U8LPwmaEll7/qyHCojW1BnkRctRy1LOMufxzcV5QT/TfSovAg+EvSwnKyzQ8vSw3rmNoIkKq7LNtIOgT/ml+Wkgsj6OC5d6K1AQuB8W+9LaJG6/N8CzdwG0EqT19y3CXpyS0CScubj/m1ZqxXXOcdToXGrS4tQcVys/FtAn9s5vE1yCFQkuRPico+34+e1NDxwTbBO04jjay4v5UECtixzGvETDLTAX8orxf+x+g8Mr6r/8O1mdz23H6WnpAV0khgQZDowP3vYKFuk/rYZ3892+n5ey5OpXH7rAAvWd4hwTXeIx7Zk/6fhhvecD4/IpUElSSA9FU6Ta4195/5a7eKfUl27HEsC5DQg8bslE7J/SWQcP+d8qx9cRq5tx0u5SzK6oUICxl0bN1XXoOdX611Ws/jveqfnOOvq+XBP95veetaTZWyq9vmhLv0ptMFr2nknWbbO51ZO9y296C7T39SZSWjdXhLhlNv7tXjcM4mTt8eR5FDmJQHeiczvht2wU7jiSUrLyt8iIy0PxE7WWoKjFuCV+hY4C4TMj8AmyyCwStLCuLRWEBxYSLhtCRooGPNeSxE6pOVL6gsrWnhb1rWh7yHrOX9bsZIEeJ+tBtInkBwar23V4xpb2+UIXKT+ew84D7LeBFmsd7bX1x6MQNH9n9Y2lue5ttNRzwk2WG+pPxddppUeAWSCyQQ2SeITwLQs1QShLRBjxWuw63cXDIGgnI+ury2vlgPO47z6h2XkXM78/Zv1Hqk9Vi1PX7aZ7XRfeR2n3Bhaq6wjQaqPSl5VXTsGtae1SCRb85vXx4jfqkN66NzWBGP+7TZPIw+SGoOmlEEG4JzDLeJpkMd9/y1QnVZjB/ZHbl+igcjE3CB7VfWN4gSGSXDZrzwxzEaP1noi8eHD0mwndQEJge+lQcmfnBOuh+/zAJGW7mM5vq7GvVzve1VO8ZqpPlDOLVTqrifpIAlIGcs6pdHHYzZV/9Q1EwWvsyTOaTCcqmxLm0m6WuWZFKl4YLxtjbLBafIQCRp4SDKzn/zbRJ0vwWTbWnOZ5a2ov77cj2sqmOc0rrHcHHv2O+UTvf+XdXgoXD67DG4hXPEkxYGWKS5SCgFalShkc7sH7+eiT48FrXpZNuvEfFJZpUck2zWN/ymErUAYz4o+PTqKOFmXbI/U71cqMoKmlgJ2PQkmEtQ7tIAn7zkNSQBBTZbBOmTZaVWzoss+YvsejMwtxT33fwp4WrcYN70KjuN6JjmU6txOQMOxzGu0frEvuVXOVmlueUySkZ45qV8/rxHO8Z2AIIlCEuK0EGdI0srAMaD3bKr6TEqSRgKfbBsVshCfsoUyJNcpg9MM6cocM3qCWvE512eqL/p7sQoIfLWKddhHKLe8JC3vTcoxRVyCE6YT7o8ivoPbxWNSGQgg2Ze53tgvBOb0KjFey6rOttHokNstScI8F1ZRNskaAait/w4EedRRM/VfNMiyt1W2I0l1Po/RHxyPlozxnHdc9kMaCpJgMc9Mm544B68Dk2aOkeXMefW38bqOF1SfpaDelvrPSPg4X86TFrDmeuMazoMWVrX4XhZ6aRhcn5NdnuuqL4TcQjyPJcvls4auK+dsypn8PURipEWZTcJxQf3thx4XEouVLu4Grnl9nlNf1kl9Wb0bdsOnE674OZMKhkQg7/Ga92JasLW8KkI6qW/5TBBD4U2FOsInAYkVF929FPQUqARaLdCTQCtPI3O5FpQtC3vm2QJ9aZljSJDXsh7SXT/Gx4IzBflMRTiuqf8ekXTtc2tDEif3hZVCAr1sE61C2c5UHhTsrHOLiDJ/9kWSPl73hwqH85HzhWNKcENQkqSdIb0jLQLOTwtcE+x6ftP6mwCbxIRzhPdy7Bha85j9zDXPPk7vB+fuPsQbRR4EOy1izLp7TBiPZTGQiDP/BI7pMWW9HOhVuFHSk39IOvqz5Y3YtMazz+nJ8f8EuVPc55h5nB2Pcz+BbcqprD+BKOvBuU7PMj0BUt+6zLHz2DsdvaNJHjm/eaQ4wbrUr4/z8fs6ziE/t5+eFfcB53waJqR+f7nveXyu18WmFr3NOyn/JLwkwe4fv/U85THHwzKFYztGXvzv+vv7oOoD8xvqA2Km4/xZUvUIuj7cBpw7EqwXnJ/zonfN38tI77atqQL5pciDpNTPS+b89m/OFQfKrhk+rZd7pk5rtYlyI9cv03DMPM4zlTm0oWowOKzFbV5S3Qrm4PK8Zlpe892wG4bC540nJRUIrW7pjZD64KQFzOnKHrIQZFlerEOekcyH99PKRs8IBZIFQeadYDIBuNMboFhhJkgheHN/Eqyyf9KLwdACzX4fCNvUelA+gQ0FrglNEor8TbKWoDAFu5Uf892rogznqvuOSVBcj3wHCt3krbdms95LcS3HjEqK7W4pKJfHkF4kKpKc166rQYvb1fLEJXgdIT7nE5UbwUZaxX2f23Wct0mDy22RrNYcIKBvxc2+YboEZkNtd+Ba4dokuWx5yTJYBmQ/ZTnsIxLQBCkTdS+k+w1Jh8uDvRla/cNynZdU5UN6dtn+zIv1J/gnISIQ8lqk1Z1HxjoOjRouM2WD4h7rw7nt8hmPfbCiAto21fdeSPVlis7HL9DbUv8Y4pWubuejf/zNtZ1zkERppqonfCS01Afd1B1eP752TpWEe4sYCafbvk/9AwtY3wwce2nRk0EytKpKitZVx891IeFIMujTrkjYWC+nIWm1bFLEEeKudP8t70+p6sdDquTcW39d3wuqL5C8VtKTVdbYB1DvvUiTL+N1W1O+uC9aY+84LfKa3rhJ477H1nFG6r+zxXmcQbuFvLx2R5Enx8B9c9kHCoFLWeZu6IXPG5JiobStvmCgR4MKPi26XOAUxiQdVFwjXKNVyWly7o9RN1qsaEFJoqXGb5ZPZU+lwNCqS1rA6SInMLPibFlmCDIT9GUftSxB2T72BYG5t4JYYHNftOuQD9P6Wuv5liHLFO9JdYvCpvr1yvbMIn3mk3GEug09mM/20/rfsm4PAV+2g/WVFsFZvonZc5Tbvmbqb0Mg8aAyJbnkf4IKjlWCcAfXjaQ85ylJu9egr5O003reAuUsM8lkejb522NCq3S2Kb2JrKvTcI2OcJ1kjXm6PLaXngPKtlOS/s4fSeM/qpbqTfX7x+11Xj4FMclfqz/S+JP9S/nYAufpvfH849odOnLWgX1DT0q2kWV4rOlxzu1LLo9eHBoGDLh9/QZJz1KxQG9Jerek96quvxXVOcy5yDki9bfUUsaxvZ43JCcXcJ/rPQGxy04wL7W320l9GZJzrNVHS4jjj3cvmAD4uQ3XkcYChxx3A2eCYMvSrHt6QVueCxJirwvXY1tlzWwhXW6NSvnKecO+zbIZTMzdFtY35aP1YcoDXmPZrW14qUdS5knVM+e1dlD1RZD0qHgOZfsvNfbfDZ+74YonKVz8XOwEEUMCmICB8aVFwdYC8juREuZBgERroC1uCdzTAkmvBRVvC2hR2RK4WJBuRdpWcL8MAfG0tPo782yBZsblCSUEH62TvXILRAKVlos5iQ/rQYXj69z7bA/KdiMvzzPWt9XWrKPreSHus46sJxWexzGtx4o4fKlXa2sevSlj9Qnc3q5d3ntsJeVnGLjvOL1oc9zPtrCODi1PR44nx8JpGEio2T7XxX1LL4ZwvZVX63+OJ+cqyUbLA8b2TBrXSPpctwyta5Q5SUilMnbrKqf40CK6hd9JdCh3cl23ZE2W79/sIxIy18/EYBtpKYvPRn4EVZwnCcA4LgSaufazjUkC2VZuI+Xxx1NV2T2XdL2kr1E5IndbZb08TWXt/I7qukijV9Yn5dVQ2x3S4EUCMVYhUiTyrnd66Zw+jW/My4GkKj2xlE2+t6/rj6kK6Ge8lixsEdHURTwO2JZ7EnYS3yFyxXmYBpJlVXLsvvN847Y6P39yoru3oSpHz6rvWecWtZRZ1CHnVLeepSzZaa7yP8cod1k45Fzi3PPadZ1P4569gjuFlsy67AJZ+qUsczf0whVPaAksSTik4YViiwy9LFJfcBMYzVQEbS56Wmrm6s951yOtDFTom+orWQvdLCOFFV2wjiP8drtogRbSrGjR26T4bwDLuqQic72F+63Ausy0+K4RDVxzXOft/iS4bZET59dS6s43CR/Hiu75FhDjFrIWmGWeBKAEsgRywn3WO8cuQeVe5ON2bmlxTs0iD6ntYVlSBRTXSPrLkm4eqLd/uy5W+CSUzn/UuJb6gQCCfUtPxRDIZHtzbrofDUS4FpO4MN8kWdmnDrRMp5J3aBEU14HfbJvLUuNe9oX73wSAbTulQlb8SWJAMuz+thxMQJP9xXakN8Bx0msrSVepPCuzgvvc5+655DxyXBx4mpX7l16tfGje/cK5x/U1j/u5xpOQu8xlSc9QefP4s/+h9MUXb9FzL+7VVtfOw5GOxMvlOaTcTfnKNXFQ5ZmJsfoPaavLYx/6wnNzWXWOpOHHgNxljeP30Hxkmbm+96E9QzI/82c9XLfcBsa1ljqgZYxkWtfF1zzfD6p6x86pnjp2GOXY+EOc4PnnvrWRKNthOZQ4IY0vJFnsA4dch0NGjJZnl3Iq+8IhvYq568TkhR4Vry3305Be3g27IcMV70mR+iSBIS3+LRJL1zeVEBX5SP19wBmGyLHLdx4UqLQCEhAY6OU2ECrQUeOe1Bfyk7iXStkK3YLFgJxEZEhQOg63ZbSIYVq9FHGpaNw3E3zTYmMlnIQtwXZLaKclMuuQCtj3VrRoZUurVj7A34rn++7flpKWFsEKgeiSFud4KhlaPdPT4cAxYx4coxtVHrJ+8mOlwx+RbleZ/zwmNQEK86OHIAFxBnoopfaWG1pFpb5BgmsgPWNZtwQDvkfF3UrD9b9T2tY8InFyndPbyTiUR+mhaRlARpKOqHhMTqquE1rPuV3FaVvW5iQr7IccJ87N9GawfwjKCdIJoHIuTSMOrwt5ZP3YJwzUD1wzvs66DHlkWVaOh0HbfZL0Q9+vQlnO6+kH9+hDp/sHR7SekWtZElvyMq3vfobDcijn71Rl3q6qWvYNIGk84Bg6b+uG1nNw7sv0AJG0jVVlZ55olgQwvab04DAd6+fyW7sk2F8ua0he8T7l8EiFqBxUff6JhNn5O59VlWOIpfqeFI61vSWsV4YWEeRzjTSYtchZ6vIknHnNfT+JPBj4vNVEpU82cN/zhIYa1vWyDq2JcSnK3A298DkxV/40gcKOiziVqtQXKjspinRnU6D4wcchwJjWqQy0ctJ6RSVKZUxBNEX6nQY2rYUOtDCSHCT5kCqYYbsSkKWXoyVkGS+BXKYhmEtLDq2XFv7sy52ISYL5VruZzsrWAtou/XzpZLbXno0sqwWOGb8F/BPwWclZMXOf/izi+VprfnLcvS3BW1iksm3lW1SOr731I9I71QeXrDufD8p+TkDF9hgY7QQm5yokcQ1xOS/mET9/W3HmPCGozeCxSsMGrZ0kla35lCA580xvLUFyelTcj5ZtLa+eVJ8hcp4JBDkH0yDieykzOJ4TLa5J9vkQCXR+lKXbKu+RuF39bV1c4wSuLUPOVItrbRxxWnNFiO/AuaVGPLbPW19Srm6rPGi8JEk/93+pvGv8Kr3n9CKYpPGJfdwyckzU3xZFQD1SPUXMeoGGCfaJ8zaxkfpGMv9vyZuUjTl/OA7zgWs0frVkBU+bo2dwHHHy5EfOrZZBhnN5ivgu323xGK2r7G44IOlod++4ythKi8aSsQo5OajSr3erHgawpraH1CQxDY17I77rNLStKsfFIWVwC+9QllGuJ97gXJqqPktEeSFVzxxlVY7FbtgNQ+GK96RQkLWsJhRQjM+tFtzeQOFK8MwFnADM+aaFLy1gLRBDSxYFiRd8AjuXSeVHiysFIPPi75a1kcDbddUO//N3K588oYwgP71c/japoUIYdWm3uvsmWewTWvxofRrHfQLK1viYBHErSQuccGsDfxMMcD4xThI8qc6d1sP0c9XjLamwWWdvbaEC8n2ONxUP5/Relbc7r3ZlHZf02+rvX3f8pUhLgO7ALXmj+PYYJvmxYnV+9vgQqKbFzvO+RchTmbJfnDavMR7XkfvA/S2110QSLaexV44hQWnmRSKcbWAdTqm+dTzJJIGf28Fxocwc6ifmxfnDOvI+ZSvrwnt890grZB392987EWLfT2/QEJD1vLKcYfwE2JTzJEG3S3q+pLd9n3T4+67XKZWToe5QAa5SlSstwtSaC0k0+bC2147neevZOal6BLzeqCv8m9vl0kPhQCCbc3Sm6q05p/5zTwS5Un1QvmX04rpPuZnbgdlmxxPuu22t4Dw9PyiL/YwL87Y+4rx3fBPJdVVP5uHu2ob6hsUMJC5uo1QJYsvg6Xy2VOdBtjfHjjo4iTf1QGub1xABokH1LNIuafEo6d2wG3YKVzxJsSKhoEsQ7geBLSxboMcLfqa+MnagBWzIusc0BDlUdPzt0NqGQBe4Qfdc/YcEhfwIjBwofPigt8ux4iMRIJh3GblFiPESADAtLV1UxgnEWwCBQpeHIbifbYFm/mmJain+BE0un2m8PWZZxXPG/dAJAuyF4D2Pe8ZNAsWHcFugL8lsCwy3QG2OYSotafH9Ace6eOuSfk/lAeAjKg+E+hQegkSPg/PgmmO90rpuazrXHNtAcM93TVghJoDyf4IrzgmClpZHiIGAib9djkNrawn/Z/60YGd7llXXbModX08PhtR/AR0JteOQpG1pUSam3EgiyXqyDx0nvS4t4ui6k0jOG/Fdj0njP0EeZQrlCE+dYx8lUCW4JbGl14ZzeqzFtck2rar27we68p6l+m6NWyW9XYvGj5SbLovl2DNiz33OM4/vXvW3UyWYnavMMd+z3GwReOfrdKlX2WfZJ9aPSZaENg8949eSzV7rHCuORQJv1t33h4wIUt9jZ71j3WqSZX2b3i8bic6qeFmsu46qEJVN1GGivl6T+uttHtcot7kbpGVocjuE3y3vestb4j5t6SqvdXrmWJdtpGFexFZDMvayCgmYLlWZu6EXrniSwsWaipgCgPOxZck6r0WQmxZTPzxPRUNl0PJStECTlVBr3y3BFC1czoukgoHCN9cBFTyFbVoMacHyCSwJZhXp3PbWfZ4wlXFbgpaC2duJ/BCi28f93QzMjyCI/UFykJ6MGeJQIadHy2FvVy/3UxJKgwwSnHyAlP2R5+ETQIziv/vJ/ZEuen8n+WTbSTRXu7quSPrrPyTpudJHv1r6JdSVXpCWIvJ9erwcaMF1Hpy/rbHLLVCuwxLSUVEyzU6A29ezTNerBZ7yf9YxiXgSdVr+ub6p5NOK2SJULU+GryeYGauMp5+hM7BgGoIvXs968joDQYwDAVYLBDsvt4HzIuPS20rZlOPQIu9J4nNcSQAJGHPbZWuuWG5vqr4QeKbiNblThaRMVbxb3rZkgkKwnQYG4brTSJWEOL7z8nXLGtada+Gwyho/19Vpijitvk/DAnUh1/5K99ugvuU9pZ5xXiQ2LQNKjrPza3nVHKhXPe7UsZ5r26pyOHWIvRNr3ecu9Q+akCoRIyBXl25V9WWIXtszfCzbk6BkyPK4DjNdzk3Ky/Scpd5x3DTSuY7OQ+obVyljJoifhpjdsBs+lXDFkxQu+lS2o0Yc36MA48JOYDJTW0gwjyzbIYEMrRG5bYWWxknjPq0yUn9rBwFdy/Ln9vt+PgDN7TvuA+4Jbu2LJRAbejdBkr6WCzsVtRXwTJWc2As0j7q0rJAulwK1BWb8Px9eNzmyIrqA/OhBaAFtf5O0cRsCCQ2tVtJi/R0IIpJASX0rMseCRM1zxe2VFsdNkh4vSS+W9Lgv0mOe9C6du62++Mt18BhzawIBUvbNvBGP1wne+d/90CLAQ0qaY5RGCwJWeinnWiwnre/M09u2uJZpdGBdk3x4LmY706Iv/Od3yqYkHUznetkSn2vT+eX6y/XJ/iUZ9Df7dWhNuH4tIw4BO0lPym/X3cC9tYWGco51HyKtKY9bfcT1xDr5+qbqe2X8uQtt8vr0syPp7aM8YV+nt6dFYqZdvjbcuP45x06jblL16vCB7HGko/x3uWl0cn4p4xy/Rf7TsMF1TWMKyyDxyTFiHrw2tGYoA9MooS7dMZWH4DdUPMk5p6Q6Fw6oEJrj3WejS29jjdvBuTNGHtZtbitJAdua3smsd7ahZYRhvpRxlJWWWVzXDokNNlXXI+dCPst02YYEhpeqzN3QC1c8SSFAS+GVgoGuUG4tcMiFyTytbFLBMv8UYFN8U0ln/CwzAVt6A1yPVN65LSktoeNGHi4/hbotTi2A7zwIaHayiLXaRKCeJLAFVvapuNbTE5NEZ6JiOVxSPXKV5fJ3gnf3idtG5Z3gNclNEs5JxGdftAhCiyA7L3pEHJdzif2Y7ypogZyUk7bIvlvSV/2vkm5+l371tnocsdQHP64LSSAtuC3ikeuPc5iAzcFj7/ueH60Hf1skgcYD5tMCOuk9SPDEOpHc83paZWm9TPKR5IblOG+uAbZvjmsGOC0LNschicGsEX+uepoeAdE40iTYHMU9rgHfT7nc+u02Mm72q+c3AfRUi29OlxbH1HFpyFlR7T/3t7/z2RTWIdvI/hqpgFafvOX7lmFOn9u+2A/+3lR//k8b12nBdr1T7m6pb1RokXghvxZAtay05zYJyURtA5J/J0ltkYfsb3pEeM3tSp2TXgPmnYe8OG7qDqnoDc+pVfU9BE5L+Uevtr3nSXZbngbrGurqxAlDpD89r+P4HsLeKY9axN3X01DKNWcDor3muW4f7D0qu2E3OFxqnnjJAxUjAxf7POJ44VHQpVChV8MfCsG0iKW1gt9U+AncWpa+BFUptA1WeCKIhcZEfeFF62LWxd+t51BSiTBPWkomqtYk9xcFYPY760USkpY0tn1b9WQRqa+Mh8DkqtqKmHHS4ur6EMT4mrd2SX0lnvOP+bTInePQesb2Zl09F/zt7X4E7o7H+ci5lRa8JfXbv6ViARxJ+jsnpL/3+rLHfq5ihXXZ6RForTvO76kW+ya3IxD453i6zBHipBeF7c81SuWZ48C+T8tiBt/jPORWDuffIiucswnODDzZ9oxD8uK6JlhpGS2k2r80mLTmjYH+QZWjjMdqH7lsOZL9mvUmcGMbUhZzfqTscXtG8bGn8ykq7/BZjXj06pHojlSP8aYxQqrrYScSJlWQ7vsEo7NIy/lKMMs0HA/3qz/pyZD664N1ZL9nmKsej3utyhgPeQVI6Oll8YsFTbwogzzn6dFteWHojWaYabGdnicuP3VVxs010lrLKQ+znmNV484ZleOk85k4Govcjk0VD8qSyjN8qyoy0waylFmeB163nJ8kAVlvku/EATlvUy6z3S5LjXhSf417rnNLMdfDiopBcFn90Mp3N/TDTTfdpBtvvFGvec1rHuqqPOThivekUKAxJPCX+sDfipku+LSS0eKVlmvmuRMQbik73mspIrfLIS23/t06u531GlK80qJ1yPfzoXjfs+ua5GCqIqhuUhFWb1ZxjzNP/24RRam/NYvlsQwCIvcjPQZS/wSu0yrKY7O7lu5vt5XlSItkzc/DGCzvxe8WOUpLsMtsCe0E4+4jegQyHcslSN7biL8d8V03WpKpuE93adZUxnRDRdE6T/ev543LJKlLq6zr5HEkYUoCmZZNeg6oVCcRt9XHHAeXmyf2OA7XZ5ZF0k1SlV4yp+W4ua0twJxghDIpy87Aecv27NXiGmNw+S3vhQG7T2aaqS1TKP8SVJHADo1p5pPjxrTpfWHZY0nXqczVO1TWOcdkpftm/wzNU2nxpLEhEJcyrTXvvAVrqv6hCEliWls6J/FfEWem/tZctm9VFVSnLLVBa1v1OPVt9ddattNAfLWLv4k6tPRg/k9ZLvUJRmvtUvfyv0nRXtQrgT/1q/PMNS715UKW7XIOqBCOdZX1QAwwVv+ZO7fBBgyOZXo6hvqL9ScWyZD6wXXg1m9u5XadnYZpU1YbR6XBhvKabaNesIHUns5W3S/LMCToPttlSrrlllu0f//+S1z45RmueJIi9QFGyyPi6yk0KSScT6Z1IJhNoNgCIFaK6cJNy9Ao0vo/wZjTGLTtQxmuhxWzFTYBffZJtsUCOgUplUgKZSsBK0QrMW5LcP477QGmkvB9A2ATIyrKPD0m00v9rRa8niCAoIMExf1+LtKlUiXoTiXgdLQ4tpTyEq7ZwpbztSVLk/SyPY5vIj4UjwcSjFWIymktAnrWT6rKKOsjDW8RyHnPOTmJdL7PtUTi0VrLUn+s6VEZ8pQk+ee4Zt6cG64HiZT/O677i4A368aQFtER0iSBYh0IAElu/Jtkh7KEfeAyNrQ4bor/WSe22/POY8VxImFxHVoyr7XdJMnFpsr7e5ZU5itBk9Sf1wSrLpPlMR3r1TLsuL7Ob+jwDakNkNlmElKOO4GtrfZpyHDg6YBc81Lpm5Uuv02V0/q2VbfCurwp8srTt+jpS88Y5bTzoSwT4rA/mUfKCZLd7DfWiYE6kHFb85d9xbFI7zQ9YPS2jNQnd1L1tlvnkJTTuDFXPWWUOnmE+2mIpBeO8sz3LZO89rkTgfKSY90yYrSucW2wX2ys21LdRngu+mSIZO2G3dAKnxckRWorcF6Xhq2MueeV31SOFJKZV1pAaBFskSgqw7TKESRRoe2LtLTQWjEPGQYSUDCwDo7DdlA4JxAfqxxZ6zgpnChMqRzsxUoSlMDQ9ZlEPNeblrUEWARBGdIilQ//L6mQo021SVaLHDnf1hximbkdj0rL2yqoGKVFJez4eWJY9m+CEVrAkniQvLBts/jN9dKyyBFgu01sK/vLCtr9kvPBwJrKmRa9BIItMJdx0mBAgNgCj4zD8SN49u9U7pl3CzwlWWJgvQlWWoYMty29VcJ/Rbz09FC25DrnmKdng3XIe0leuNZTXvOBbvYZf49Uttik56Ul++nhcZkO9iwkOPZ8mUT8rO+KqqeVgDz7nWmHCDM9k1zjeerfTNV4sqza99yaRJ1gAGuicUYFXNqjQjnmObWE+DmGrG/KgZYxpLXmW+uV+bdINOVB6qchQMz50SKBXKf7VR54n6nsBvjj7ve1KieinVGfQFNWTlTI33VdmuOoq5CGeoGGR9cl8QOJotSWFS0vxqQRn/LBdXAc4Rqv0+DoeUnSNlf/VNSUC5d9uKhLz6YuXuLyPgfCpXZmXfJArwKtmv5NAUcQ4YWbQiA7rAVKKZgNFFreGLp8W+QgQQEX/xDRsvJhHBIkt2FV/YcoXVcC+J0sXA60otGqaUVoIZYucbYlwT33dSvqyes8RWRdfcCaypUKbqL22LAtqfwcCGiXVfoxryepdJhGPI8/9+waBBgg0Nqd1mYCmpyHzsshPRscsyVc9xhmPt5GIi3u1U7SJy2uKdYt5X6WReDAtZTKNAE+SRUJUQJRp3c/EnC2lOdY/XamDMg13QJGBGR53XVLwJvltYCD77Nvs7/5rEWWyXj8Pq/+uuA4kLAwH2mRGI4b6RJs+jrzcXqfPuaPPZpeq56blpFJ6C2DXE/H26t++4fGhvnSqGHDRc5/95XBP9ez80xPstcI68r+YZ9wHVBe03DhPP3+IrbFwe/7ONfls4LrXk/ctkQ5YQu5unRD84s6dt647ja1ZDuJXasfUjanwcOyddyIz36g/CTYtkeAmGCqSjr2d+k21X9XTesdX9xm5z4k0ZYqicg5aHnCeZJ6OuXEUN9wXdK7lvGcV+4QSLns/OyRm6m/jZrHm6ee2g274VMNV7wnhVs6pAogaG2hgKdQdSBATKBDANECO7mlhFZWWkysCBPwOO+0Ckp9hWzBkSApnz3I+FK1TqZliwJeqoKVQDC3NDCM1N/PbXC7FWUk6GuBMSsJkjXX1YKfJGMIbLqfh6zWLaXJa+7fmSoxIqFhfCtZh7Ta8ZvzIr0ijEtFxDbwpDWHFhlgn3veO59l1fnSImkJIObql8n8c+8xwTOJKddaWpjT68J5kZ4/AlSSM5eTW4WyXgaIrTFi+5YiLdvjvFteGNbHeQ15SNyvrttE/blPctryWqSsSE+REN91IhBhGxzSup8kxL/TOt0Cj47ncWkB1iFCyLrmHOTaz9OaMg/na5mc23QcUt6np5N5Ml62w+32OHI8U2611t0YcdNwlnMi29kCojY6ULabrExUgDVBs0Gon/XjGE8jntT3XFmvpUePdWodS0s501rTlJv5PIvDkD5ozX2HfJmuZcN6d53PpJxSfy67LTztbNTFm6l/gEAe8exrxBCsNw19rnuu01x72d8595IsezzT0GHZN41r9pjx+d00NvBl0y2ZuBt2w07hivek0IrWIigEeq0F7ThpcWGwMEhLTVpH02Kd+aeQptXMpGanbRO85vRZJ3/zgW9bFvOFaC2QYiHTIiez+G2ARJewVIVwS4g6tI4oNMmZanGf8IG4b6tWtt9tz2DLEYUzPRds514tWgOdh+dHHlrANpNIztV/sH3oI6RfQp7Zf643xyjJQ3qznH4nEk7SsY37LWDn8gjMfJ2B664liNhnzLsFxvhNss95mOCFY5ztIRHyPdfJluMkjlIfNKTMoIJO0NUi6rTgJvkkmeB1lzcUDEBdvwQU9L6m128ngMHrSY7dNj4jIfX7mH3PLSg5v7hllMRe6s8jzoWZ+vklQeSWsRYBmWmxLq15n8/9OBxUXQdcy5b7XK8ps1oki+SYZTqNVD20K6r9nMB3v/rHLI9VDhvwvGPZrqtPT/Ma4JYvp8vxd2gRziQJrGsrrstr9Q3/O9/0TI/xoQfA85tz1e3m2t+n4im4T6XvV5BW6q8D57ekqjNINNLrMtGiLkhCz3k10qIcIQ4YIr7pIaEc5rZCqd+/XHdr6nvWtrrfbBO3GDq08NNlG3ZSyJ/Nz27ohSvek0JLq0NL6VBhDwGQBC60iti6lZYNp+P8m8c9fvN+ChH/5z5Pp80yCWAIFLO87fjP/sr2sh0ELAbaVDZpFR+r7o+dqn9mvBWk33GQ+VlAs15SPR3HeThfqe+tkRb7vqX4WQ9vB7FioOJ0O1bVBzwmRlK1iHFOEWzOVAECQ0s5k1T4xXCuJy2VBBRUnJyfrq/b5v7e6OISoBgEef7kGvL9oXdGOPCISgaOT/aNUMeMn+MxxTc9D86DIUHMvHHNYYL/WUbml22hHGDfS21vi9NPkYZeJF+j54BkzPMjx8jpHEgK+NwR28o4zifB+07bugj6CUIPd3HujbRSu51Sf96lPGLdsu4J9tOjnuQv5x77LolPK8wa98eSnqFyuuE7VN4z5HehENxzbdCKzzrle5fcRwSFLUJDvTNT//0dG8jrsMohAydRJ495ng7oeUcLuj0HJMEkIWmgsqGJssMyzSF1CtcgDUKUu7O47jZsa/HkL/Y15XTG8y6AVdVTus5219dUQXq21Wk3u7QHu/sbqvrQa3am9nvMaJCgHG5hipQfvscH5vmbOsl1mMd/klh6Q122dbbUH5OU5yRbLns37IZPJVzxJEXqL96WxdYLi4q3ZVGjO5PKy/cY0kKZFqOWtTEtpmNcZyBgpyDNa2kNdV0sjBLgMH+SBwof1o3uauavRlzWh2CwBRS43ShBooNJzma01yAgBaTbkYqd1r8cI1qrCVos6LmvOBWs59xU/WdO6PlI17zUnxfuB4/3NZK+RNLtkv5AVfC3AGLmy7YmeeI91z0JHi2MHNt8oWcCbrY325inhHF+OLAemZ4eRVoVSQZMXJOMDxmsEujnGhupGAnYLpMS1jOBCo0YSZRb4DeNAfSsSO2tYlyjlk+5FYdtIOgg8EsCRJLlPFqe32xrAtkMQ/PU14Q2WCbxWS2WmUaZzJdjYotxysn06rC/mR+/k0Q5Hsebe/JJMmmAaRG+FmGhASXXK9PS+y/cZ3t8f1WLbwbPdJZ7brPlmreIbkday7xzkZZlzOO/A+Wi+4rP+LidbHerfZk35Sl1nPNr6VOO1enu/7Hu8371j2E3UaMssjHA5GaqQmxa68GhZYDgd0uHTwbSsA/ZHselDFWkp+dHqqePbeA6n7WisTANPinPPifCTNKeh6DM3dALVzxJSasVrzMkMGVIoJrgiIuPwoLKk5YR5mFhdR55sT5Ow7cRp+LNvJI0MM9xIw7j0sJFJU1FyhOjmFa43lK4K1p827KVg7/pnWJ/ZHlTlRNVZipKdqz60B6JJseuBeqk/pgn8Rzjvi1qVkCbqOtEdSsVCQ/JLrcUuA9ahJdgn2OwKumoqmLM+05LIu1rBJmci+lxyn6xpyW3jjkOn2VKK5/invuKwJn1zvnN9mQ6/2d7WxY7qQ8I8gAHt9Px3D+cny2iRPIwbsSjN4d1dXlpxPD68sOmuZYTxLc8TCSGLI91IXmZqsoVziN/ux9JCkgEppFXbmdlGy+ozFt7/ygf2U6SZs4Zt3EIjDmPFnnzPYNFzmeXyfJbc5HznnOL88j1Zrvfq/Li001VeUYQl/N9RXWsWu83ahkFWsYUqT/f7IGlUcCEb1v1PUg0qPB5Rh8ry3Za1vKarxO80hCU+oi6kmOX+oPf7LuWvPC3ZVMaL6T+PG4F50vPuOOvqG6j24x0SfYPdf/XVeW2t+Gd0uKBB3zDfGseO940/vO65wPnOPspja1O6/6x92SmOkd8lLDj8IQ350k5k2vH2914bTfshk8lXPEkReqD0BaTJ4glwKUATmW6jThpiXSeVMRJXBiHC5f3vdBbXhYKaAsnKlhu2yFYblkgXWd6GAhUSZiGLFUp7NjPtlyynnQrc3vMSpcmQWIGtr31MHO20YF9P4k4WdY47tOiPFMV5lT8BKYJaKX+SyZ5rHFaPglSndcHVcDEFtInGE/g7bJ9OAL7uuW5Yxq31fvQqYAeLHgekrjsZE13vgQPBDFJUDxvOcdYL1oyW1Z/zj/OGc7PIUtmlpFg2+W1vLEpV5xviwTM1PfasKyUMw5poEii2vL4znB/6NhZ1o1ybAjkOZ5JQY4NxzMJiuub/6U6Pk6X48d153q33lfCcUgZx2uUM60y/D+JLi32uTef78PIfLbjPwHv0Fwe8rQ7zXnVsc8tVJ6n+9Q3SPg6CZ3bRMMVjRMruLfR/Xe/HFZ5jkNdOX53RhIVz7fWvEpgzmcoqXP2xrfTraj9fiypyirXj31t/eVxu1dFBm+qGI6mqiTUdXM6yuqRqiHN3jA/r+JnRB1yTaRe9X1u32K6nEduc4uY5Br31rW9qi8BtVGtpf+HyBTj5vOuLdl42QValS9lmbuhF4bm1xUX6Fom6HSgYqMlI4GR46SLPgUr855r5/lOhZWAJMtvbRdw+gRKrAuVPhV0KgNbHKUKaseqrv1Uqnm8puK+2yEVIef9u3lyjOvoNFYUrg/7xtdW1X+J40Rl3++y6jYTRV8kSWNIgpH96X629WtVfSA0j7SeYwdVPEjOmwJ7n/p7fKW+dZRt31Y5o/9MI420OH+cF0/jcX05Z6i02P6W5ZHAV+oTpaVIR0+Wy0kLKa9beRkwE4gzja+xnpzbS4g7RIyybglG2S9sj9OzTNcn20YFzn5n4LpNwul0rhe3kgyR4HHjPgkF11q2x/+XtFim1Df2cNwIctLA0vL+pidt3kib8szfvM60DpxLS6pH5C414lPWuW5JvHKrVQJrpk8d4C0+biu3OXH+so3My2mSTCdQHKufl69NVQiKcI/jbJl2WNL1KoePENzmKV5ZNwN7epY3u+sGuHNJXyPpe2+QXqC6Prm2qHvT+MCyTRakvmeXbaYuooEn47bK5trZizy4q2CiIssPqW+44bxh2Qnu7c3bQt58V00S45yP1Mnc0TBWv95S36Mv9fOhkZNzb0llPrjup1Wev8n5NY+0LIOygwYBrt2WXN4Nu6EVrnhPSlrauCBtpeQ173v2w9FJZGzddGiBDwvatHIOuXBppXc8CqidwNpOruzWfyp8Cw6X1zrG0cLKaawECASo2IT73LJBwctyXY/cszxR9apYoLM9SQRGuG4QwD3CVgb0erGd0qJ1h8SOymxVRRlvqe4xdr3TQppucoKcPCt/osW+siWa8UxY3Bf2krDeJpQu2/PZ/dyyXtNSZ3KT+SY4T4tkyzrM/uZL52i9JBAjkCKR4JbILGMS92gV5fycIy23E3EuEoSxrARPuZY5R2hRJ5hh2fuQlsqentAhiy/lhZDWedEyzbYk2G0Rtmn8Z52Hxt5xeToQiVa+7drlkMwwTBHPbRrjOr1dc/XH3HXidkrnOVK/TbP4HgJytMyzzRk4d7iW3M+ud44r0zNOet6SsLAdBNmUZelVT29MGtGy3s6DZVN+tEiA3yG1qe7AhMdLV39wcY20AuvC8SFpopzMOer7CdZdLz8nQ93K8c8DSZyvveBPUXmJ41kV7za9Zpbrno88IMb5rOE3iX6rb6gv8j+3YqXMSKzRMrS4HM7rJZVT3/zuF+OhJVWvkHWrVNc81zuNpNwtYDLWWu+7YTcMhSuepKQwdiA5IZAiwOBC58L3ImwB3FTk3EJB0tEiLC2LMwHHTHUPeaYhwEjwk/VJAZEA0oKawtECaknV7c0HJtk2kipaW2gJZd+N1FdwFLYGOEl6pLqN4piK4L9d9Sz7tPAQvGZdDSKtCLcRx8pHWrRu82Vfro/7zeN0oZHOnhgrGAKItJpZKXGrVb4DghbDtG65LZxDUt1mYCsZgWQSOZIWh1TweUoP609rs62KCaQcUrESDJGQs89WcN1E0f3A8WX+WTYVawYq1nH8J+h1X3MNcOykKlv2qb922TbOOdaLayct8QTwbFMSkhYw5nxUfJOUJlhSlOf5bjCZp755O5HLdD6sJ2Uf+yfBdWvuOHjOLXfp/MAy+5gPpQ8RFfaX9QFJQ64pnmrVMkZZFzCksYBbBd1m18397zT7VOb+BuqyjTYRBKe31Oml8myE1N++xDXNttMD63loIOsxnqg+qzGS9AZJz/kv5UFzrp1cmwTOwjXK6tRPQl45t2fqjw9lOvuV5SQBpeFwtauvdYw92i3C1SIDuUatQ4d2UjhQF1NH5zhxfSYxpW5gm6Tyzpe5yslu26rPjnkuUM9L/b72mp+orDePO70nKXuGZP9lF2bafXD+MghXPEnhoqVy4eL1QhryerSE4JBAdEiAp8b9BDytvNKKRqGbQJ/WOl4nSVDcYz6t4x9ZtgXcmbieFhkK6ASH7NckV4oyLRjHqg90WjBbwUn99z7QgpwAUOqDILfbit3WMsZ3e9z33n88UTlt65yku1BPAzF729wnS5KuUwEUJ+IeLZEkIPYw+d4UedFiy7bZc2APiue1+4PzjYp+GnHYT67P0B5wArlUio7rPJKwMlCBkzhLi2+/Zh221Z/LBL20UGbalneOZJhtZN1aQL91nXVgu2gI4XrxvCUYTYu5g2XESIt9xrmfdXO7suwZ7mf9NBA3vT0Eyownle1E16sYEv5Yi0YgWqyFa0mQWDdfTxkzQ1yOJefqUuQj1fnd2uPP9oziOuvm4DGfqMqCJKLZVrY5PYyt4HjUYZw73O5qy3irLWsqW1I31J/39kT7Gp+nS2MX36O01qXd7OpwXtKtqoYuGyq8Hc/A1m2wHCeBEdKkgdAhDVP0LniekGga4DsdifNEfaPTRMUjZJJynwq5W+nubaBe1gPWJ9sqW+nWurSbquNE2dAiaNzW5roOyeWdDBHOf1lVf3see0xd5y38dp/k9jriFxuGXJ/U5TnvdnH4bvh0whVPUqQKyqh0LQipcIdCy/pK5cN4XKS0PnHrwoOVI9XTWFr5plJySAGQxMxx+HBsCjRarhzyoekE8QT7bEsCZLZB6is5KmfWiUrR5WV9t1SUxExFabQALcEpPQIGuCYnLWsxt1/4uttD5ZygjXVcUnXz+wFSWt051iYnHE97OQxK09vhviVoYWB8x/NY5tYK5pmWuxXEMTFNazCVK/s/wRyJQpL18yprIE/oYdvSkp1z23GSkBCI0yBAcOay6DmVFi3cwv8hI0YCC4JmbvdgnBbBYHnsq9bWH8YlCeL4S32ZwkBC677zscUeD4JBzxWuhyniH+4+XGNJqtjH3PLjvAjkp/FNwOQ5cBrpPf/o3WOfk5gwsE7uRz/47fosq3hzDbhtkSZR2lb1nlFeSIvjnsYAtznbMlORdQS6noc01LTkEcv3eHLu+z7JMEGy80hDl9T3RJuYWCaPVWW0SYDDsiqZonHGnhrKbZaZ9WH/OR7JfMp3fntd+jmUCe5vdPcOqczlCyqAf1mLZNqGM9ftvOoD6F5/noM0PlEeOT+2M+s+Ur+tvsYybLgyWZXqO4tOqRwEIC3KNM4Fz6nsMx6I4/qNENdjQQ+6NLzeLquQQuhSlbkbeuHzgqSkhcXXqBytGPmyLYaWQknLRxICCkZaMpOs0AOQFkUvem/JoFBKkEDQmZY5EiYCYir5lgWmJawYSCxsuRs6ZlTqW31bQIzKcqJ+/Smgx6p7i6/uvo+r32/ZDivjIZCQAjgtn8zDHhQ+u2RBvFeVZLqsTRVrYhJJkuQWSSCga1mulpDWz2y4TD5ESVBKoJnWQ1vCx43rGX9Ji8DGyta/Z/E7ZTAtgAw8ctuBOoOgdkV1jbSej8pgpdqal/xNIOyQRLUVOL+SAHqtJjBKi316Q1inifpzgtcSmKbxJT2LabRRpHcdW8aQlDUOKRelMvfvUt0qI8Shp5KEj33dkr+uq69n27KMiRa3sRKAc+ul8J1z0Ot8pAL2Hq0++Dsg6cMqa/6c6uEYzovt4pi12pfzjH2bxJtj7jU8Rx4zfPyA9EgFaB/v2n91V++NKHMc6aVFg4D7i7qKW898DP2qqodljrz2d+V6HDimlCMui7Kz5TlN4yJ1Z8sD5ecuSGo8z93nJupHVDzi51A21wi36lo2eevvRP1dB6xHyjyHGeKxnFxn7CfP+RUtGuMcx+VxLip+WwbSaJH6hzopZZ7beBbX/0ejjbthN7TC5wVJSYJApUAFPFe1gHjhUTC0BCRDC5TTuu18LbQJKOg5yfznjWtsVyskOCXw8PdYfcFCZZ0AZabFh6ipQBNs+75BYx4HSW+AkIb3pT4oTqDkPI6o7s0+3bWFwtMhCWlrX3yOne8z3kzFeramqtDTw6H47b4Y43prXrGNfFZGEcdtsYWMhI5eHucxUn+8uBXEdbXFLee5lSo9VE7LctlOWrSFerUArEOCXf6nMvV/t8ftNCgbyptK154aGgXcVob09uVzO6260kNAC2nL4ul4uT59b5/qEbItb2zLEJLALg0CWb4t1VIlu35egV4R94/nHutt+WAiOVV9JmSmMne21Zdl3Hrj+uRcGgrZx2x7jpnb5fLtkWx5AIX4vjY0ryYqQP+cpO+Q9IhvlT7276T/qOJZuSPqk/Ld/cj8KW9zzrhf6RVNL1TLc5Jr1NcmWszfeaTMY5+wDSkjl1SIzoYKIXXbnOe2+p5kP8g+U302hn3gue15kkYPjo/7ksBfiOc5SyNMGhK8DjhmlmU3dHU/riL3T3dtlQph2UKZfP7KBGhNdVuYiaRlQ3pqqWuch785Dqw/r3m8SaJWunubKn3t/nR+fh6T7U8PHuNL/XfnMLDu7O+ZFreS74bdsFMYMgZeMYHWOVoKpaooRvhtAWdhRws2hRktf1J/Uc/VV04E346bgCLTOJ3rQMVBV3hamNIb43a1FBABVOYzJEQoLN1XBMUGsstaPHtfqi/Cchn04vg/lexe1eMsU2C6vXeqnLKyqXpU8kz9MeW4ErS7HlS2VmYEhfSYrKi8VPF6ledS5irAjsrokIpl8HD33ySgBVYZDPZsTTQwdhuEOnF+uA1U7Dnv2Adb3b2rVZ6VUdd/re0trhPnIvslt2E4fVrjSLBS8Fh5ud5eC567rg/nJec1H0BtCbVUyOwL1i/XrRDPc5z9SmU8j+8k4Pxm3zAugZb7n8dUt9rldAluCDAd0vPg+ZL9ShLCtUEwKFxPeeg6uD9JuPOUr09FCWU8gkwbJNhnUtujaMK9or4sYL7eWpTrTbjG71VJj3i7pH/743rUv6rgs0U2SNZbgXPUgJnrhvM2SR71CMdzpr7xbawir06qbPVZknSVitw8ruJZsbGCY+i8UndxfVynctTws9SXH1zDB1Q9pduRl8M+9QH5kPFB6s/PJFScx54nXl8m4jkeLWOA+9Yyh9jBeXjuSIvPj6x1n6Oq8pdjTZ3tkMbJJIk7hSW0y/Wcqr6fZrX7OC96B1vltcgSyTXnBXUR5wZxy+dEmD1En93QC1e8JyWtRVxIE9UtMhQGdJen8JL6goSL0Aov86PFK78JClvKsFVebkugAKFiSCFKgZLKraVQ0+pBa5kFNZWHfxPQJgii4HKemb8Q1yBAWnzjrb1P3us7ViEGfmiT7Tuk+gIu17uliFyPkfqnm2RbT6p/cpfHcgn1vU51C5rbaW9FAkj3Na9NEW9FVfjn9qP0SHE/tFRfxsg6UtlK9cS2iaoiI9DkvOCcOqQCOtZVnwHgeOZa2EYc97eVMV8ax3YxnsvNNZHznfVM66NDS+mTpLbIPe9J/T3Zinv5DALLSot4WvVboIz9n94oA5IENlynBmVJYNzOKfIx6Wb+zm+MNGmcYR04b7I+ijg5xg4zxMu10fIaULalPPP3PqT1dRJQE6lVFWB5TsUCTjnGtp+TpN+Q9OyXS79Z6yEtelc9j0hyziNOynTPa7Z/hnycp+vm9rI/s2wHvnNkXf03zNNr3pLZBNUkc1sqMu+kFuWUx+ZcpJfKmNgrta7++11aOoK6KfvHbZhGWiE+8eBYVf754/z8nMymyqEPUxW5fo2kd0q6W1Uus3+28HumvmfJ17k+KG9opLAszDXLvnC7pEqSLGcPdtdO4FqGxC+5XnJeco2uqr6rjOOac4ZtyDx2w27YKVzxJMVCSVpU4A62fBEgEOynAJIWhbP/ewEm4E6LpPMY4x6JC92+UhW825EHf7dIER/ApmJIpZ990lL+qSyoBFJxbSKtLVgWyhdwnWVTmUsVABp0E3ROVU+bOaZCTu5V3fvr+G7DlvoKIMmVLbJLqsfy2vorFWHsvjcxsgLZh+sW2D8u6WF/W9LPS3+/29+QZIfbbNwPfr8Jrc6to38JFDNwmxUt2DNV4mUQsK4+QTof7XYefM5Iqn2WAICKaadA8EHAm0SD65AKncrOYzfFtQQurCO/GUhqmY/b421CBKjcspHt43r0t9c2DSQkZOy7XA9Oz7Wcc5kgOglDticDvUkGbS0jBIGe28pA0pFjy/icL0OAJsk0y0hA1LLeJqFLQ5Prmp6NsarX10aF1phuqvTVv/4p6YafmutWlTW2rjrWJKX20LTGlb9T7kv9fnY96IFjO1rertQ/B1Rl9Wb3+2h3Lx90zv7nXKJn4YQKX8stPi29MVGVdxsqRo6ZCjE8rLLeTiCPHKORiuzlNiWXQdAt1bVmD5rXbUsnO++x+qc++gF5n9glFU/0KRXvUxIIyjbnS5k/iXi+NlOfbNCLk4TGfSNVPXt1V966ip7ys5sHVQ143Nbr8tl2rnvKmJxTbhvbwDgt/SUtHjp0WYaW4LkUZe6GXrjiSYrUFwQJtn3fIS2/tBxmPi2rZwqOlhWaArsFyLg2LLBs4WFdcjtJS0FZQbBedKXzm/Vm/dhvtO4wJBgkYZnhQwBhAOD6Jmmjcne59OxcpUIovO+W2yysAF2+96NL1SthjwHbbcArVcLD8bZw3afyQq9NFUWaVs6HPVbSzZLeIa3ct3jWvNAPBrn2CLmetuJd0CLpcz75nBC3TNkLpK5Oh1XnkYnVE7v87lQ9cWeiAhROdflwe47/j1QV3ab6lk3HIVigQva30zg/qQ+uW4qS5CPnGK36/E5g6fwc0pvhQGXteqUiH6F/3C6DJlr7Xf8lLQIh4Z7UX9cJHtJQkLInwRHXbQtoSn1547nBsglEOaYcx+yvlEGUf76f1n7nZ4CbxiIHy4O0yBIksRyC/Glc81j5Aff9KGtL/We+WL7LPamyrlZUnkHZq3pEredUkiapAMltFcPKCsraq/b8d1uGDAOWIfaYZdo0SE1UweqaCjnxcxWO45AklP1MvcK5z3nNfDhf8r6NUXtV+nRbhbgYqK+oHpV8BnEn6nu1Od9MSk51/w2aV1Tkq/thU3W8PO/d316b13d53YpyblYZ99tUDTkcD3vO7WHfQr6UD66rVHUF+5DzyPEPd/mcUF0Tq10fnVPxaHHN8nQxqS9HOJYpR3MucS24ri2ZlKSa4/95ATx3w2ckXPFzJUnCTFU4WAmm5YDxCYxai3UIINEy01JwBPo7gSlaYZIkOW5aCzMe01PQtTw+CST5UDKJUz78loAo8+G+cNd3C+kTQJGMSVWBqcv/mIrSOK36EsejKg83nlZR/gbpY6SjtZEK32BzE9dcZyvJkYoSSEVswM93o/ziR6Sv/HrpLaoKUOqPreth0kTrkseN2zjcL/7d8qoZgJDwsZx7u2uPk/TXJyqvT55IukN6w8el30K5ayogzIqW4I7gtQWIOM9Ict13VuC+7j7ONtICT2IwVxkL95PbTY+dyVKSG69/l0OPHteGA0ECt8QcVSXap9S35tK7MkYeXEPc6uP8nfcW6sFDNVqBY05gnx6cnUjDDGmTHEqL8i3BpnCf8ohlSYuyiN4PkmGXmQaWFtkS4ju0jB4cD7bFZdpo4TlFrybHhURMKmvktOpD4AnavD3X7bpB0rc/XtJx6R+cr+/NoM5xO+kNkPpzl23x77n6b1R3HbkGeEy0VMDuMRXwf1L9tTtBGqm/ZjjvXMZ2XJMWZRgt6xuI42cJN1Vk+qgr51qVfrd3ymvCfds69pr9bcOT1yc97VIlERNV0J3rVV3fzCU9WdKXSPq3kt7btWFbVdZu4/9M/aOVpb4xIokeZRfXjr9NrJy/r13XXVtXPVlupiLD7S2z0Y15eqy28Z8GixZBnUc8ytQk0CkDh9buZRnmuvQvc9z1pCyEK56k0N1qQWQBSmtcEpNM74VIAJAuewYCdgZaRVvBioXu31YZafWwMm5ZmYfq6PstN3VLobgMWuuzji3iMlH/SF4LxLXu3mktCq+0GrucVeR9h+o+2CXV/dDq/h9SFc5S/6FngxYeBWlLloGIgfkq8ry++3+7ykvpxiqAf1nFG7Hd3b+ji+MDBGz5a3nLzkYbObbzSEdQl4Fz03OBCmm9+321pL/+8K5Bp1TQ9mnp6x4tnb5HukV1Dz4VGcFKEqH0IA4pI4KHVMbOY6cz9Am8SQqSLLWAeK7hFhnh9jte95yfqG4xXFMFIasqFs2zqkDNY0mFnuXlfEhyw35peQVo7WR+DpNIx7nB+hCMO8wQN+cc58UQqCGhSVmRxhfWhWmTdJFEJvFnXRXX6AUcqy+PqANMGKT+W+uzHc7bddtU/y3rJDtJjpIEzvCbY00y4vIn8TsNZTSSMV8TbOtAy74LKl6fqYoc5rbJsSrhyTzZDuoP94n7M/Vqi2R67lGGbKJ9F5BuXXWdrKl6f6nTaeCyh8r9tdaV4+uUIfydhsttSfeozJsvlbT/8dJ1H5berr7Byu0xMbJucv9LfU8+CVwSePcFdbB11Lr6b3eXChHytjPPBZOV1rtjpEVSxHZTZnBd0fi51NXprPpYg/KuVe7nFFnZDQ9puOJJirQI2C0YLFzSk+FFT+tuK5DkuBwL4vRsOFCZJGmgUEjwx/TeksEtEi4z98enZTTrkKTEAsvX7R5PBZWhRezYJgqrFS16h6T+cx+ZZkn1jb8n1D/K8agKmFhXISnuu8Mq+67vUxHWfu5iucvzjOozGvbqLHe/01qVrnjWk2kJwqzwN9FeAg3XcwV5cJvBqvpvPabSJwlOi1wSBivMc933k6Vinrxa0hsvlkj/fY/0TOkrVbYzEGj7wAKuCwcrNpbntvEat2VkHIZcO2xPKu8Wmc85yq17LSNVEnvPuQSWHgNvRfFYf5ukd6hYVI+ovV2GMoLjRlCprj0bjToS6LHNCUgTwCaINDFIOWNQalBF4EKZybKk/ji1CInLSgDEujpeyin2TfZlXmOgNdd50urvOhggrqq/1crxrB+WVbbPbKoaLhgILvPdSL6fsvRWSa/6cIl7EveHSFv2i/OZIk3KCJbt4PHwuhbSTlW95kkkSGiYl+uTZGon4ppezDwZkEDYRoU7EX+t+31Wddzs4TYod72E9pokkPywPpStJhVbuL9XZR5IZb1vfLhs8VpT3UrmYP1C8kIjB/UHveFp+PTx4962vKV63P0+le3Op1TI5YeR/wwf9wP72XONazqNNwweC8pEygcb9bzO7JG0USDn4S5B2Q2fThgy6F9RgRZgqS7e9FJ4gRMo0k2+pL7ioHJKD0tLcNON3LIwJGCh12Wk/vMQQn0NUFtEwvm6LS2Lc9YlweZMbcFCouXfBEAGBVb4bo8V4WkVJS0Vr8e16rvCDRiuUyEi51Q8FCYRV3f3NlWIy1L333kcVyEoE5XTWA6oWuBch2OSHq+6bYcej1XVhzgnKgrig91n3JV/sCv7A6oWycMqY7SpCjpNjqwAabFfVX0hoRUq+6AF5gl0HawQpP6YpoVrVapP9zv8L/9Zs3P9t4LnnCLAzrp47HMeEQRbaROwE1Au47fUn1t8gJXeHCtft9H/DYa5Tc119Bow+V7tfjMN25C/va3n//xy6ejFx+gbf6nMhdaYDAlYAtIH8/ATNNLg0poXalx3e3MuWYYNeSIY3+M4baTJNc86zNTvd9/z/9wW5HzSa0zjiYPzJjEwkRTq6fFMIkW9YILG+b6t+sLBvSryw/XJQIu547Bt/m+vwAlVz4VDa21xTae+kipZXlFfdjiNCYj7yl4Fn1h1XsU7fLOK/D2nCvRbBjyp9m/K/BXVLZicN2mYSz1lgpXE1VukVlXkrIkGx4ck2HLVH/9fQ9ncziX0neeN27Cs2qdJeOx1uqAyJ9bQXhqYVlWJqwngtur2sJbXk7oh16zr4zlpkras8kLRVaRzXT1+nufuOxMKjsNci1iAdSGZdv6Ul1z7iW1c9pA+uyzD7CH67IZeuOJJioWjlZCv+TutCRSguaUgQTmt5rRaWNlzOwFBO13hLtuLfxZ5OF9uWXAaCw5agubxYXvTLe98pEXFQnC3k1ChUKM1iNcSGG2p38dMZ4G3pqqcvCvJVuqxCph+hiop8faum1X2fK90eW+qKoRrVa2htqitdemsPK34nN+K6rGYJk2Huzh2uTMPEyZ18Q6jzv5eUiFGB7v6nEYd96tv7WX/UIFR8Qt5ey5xH3yC/hNS0WzfKj3w7t9/+r9pfKS8FZxA1VtEEtSN8fGYJbn1tQQlacmVFj1r3LaRx2C7fh534dvgwusht9vQ83JB/XVIa6FDy4tjWVEi/48H2uk2+TsJFGWGg+uY2ykI/H2fRJCyJwM9mcw3x4EygyGJwBKukywkeJ7Hf8drbQNJr4Hzo1xyWs5x9nHLy8222oPoPjS4I3ijzGG/uvwtlTV9VvVFsSNV2eA1OVbdWuP8OWcomw20L6huVcrxyn5gH+xFfHq5DYadjoFzkF5dqQJnGtc4vu4Xl+v+oiHN+Z3Hb6mvs1xfhzGutdaew7b6x6pvdPU4rCLTV3FPKsThCK5tqhJNGyQcTDpMhhx/A3W0EfJkV5dvlvQ1Tyrbvu5RPeHNJMJEb7u7dkh1nOxRNhFqGWSWUP+Jqr5cVjHWHej+2yg2Vv9ZqMQClCeuR+p/jlEaylI+eK7l9jVjhhni8dvl7+Lw3fDphM+L7V7SoiWHbl4vdFoXrGxozeADiTP1FWgSgiHXqS0tBAckRy6TCtjX0zKX+bv+JCVOk8reZVAhztQ/ez6tIaNGWuetiDtWfwsChZP7k67pDdVtUWsqwvik6kvH3L4bVM/Rv00F6P9tSXsfLb3xHun3VI+LPNrle04FmB9THb9VVcG+rjoGB7vrx3DPwnhJRSk+RdL7VbYhjCQ9s2vf29CGza6Mq9RX7Ab99uTQ0ivV44/HcT0t6Lk1IOMlSJmrKJMNla1JX/lH0so10tk9E80kPeKRpVK/0dXd75IwGGzN26yXy7Vi9RYRpx8j/QjfUt0GkXOf6y9BsRXjIZW+Pq1qBV7pvj3vSMKphE1KP1XFaRCzKulVb5VeuOeE3ql6wo77OR9QpbJPT4EQL78JLoXfOfZc+y0vC8EzZRRJ2BzxKHOGyCdJtdfSeaRnf5MscWtJy1LPrUTuS8oKqQJbWnE5N+mhcP62ZqfsZF95bNyPBq8eCwPMIyrz7RTqa1Jk4sH5zjWbYyAtrgfqK3rCsr72KiexJ8hMQ5Hj+AjiO1Tk3EZX/72q24rcT+5PGw04xpwjlBNce77PdcF8k7RyDEwAR6rv5TilevLhWBW826O+qjrvDMzzwADW19t83ZaVLp8NLc7jc5IesbmYFwmx5aCNTxPVZw+XVD33nAfuC552eFRlrt2jSs7c74dVDW6n0Wcpz+hZ8VikF4rzjnKWayU9ee4nzrex+jJl1vj/6cjbhzQ8FJX8nOiYSxs+L0iKF5AFfwuES33lmYDCC70FHJJEpBWJC3PSuMe6kABQsbUspm4blYXb17IyEoRk26k4pP6LvmgRdr5D4M51IUHhfwYqNAfnv6EqUK04b+g+v9d998jPelE0x1S8K7eqCPEbVB5uXFZRYFZ4BnUnVZ+5OKw6judUyZG9OZsqyvG9XTkvnkh/OJV+V1UYH1UZgzNdPuto41rXb2dVtowRyHlsWtZMjy3/UxkRvBDkJ+g8oqrU/omkb7lbetxjJe2XLrxf+tcqnhR7i2yBPB9lEACl10xafC4j1wCthkLcVpvTgrys+vyAQ1rXPSem6p/q4z4heLIVnORpSW1A4+AxXZb0S8jHRIVrhts6kuCx/gSpaYGkbOEaZNtbRIJyi+R1HvEzzLX4rhzn5/sObusMcZg3CSLBHmWl60TC6nlsz0CL2Er9bXoun8YmkpblLr6JrD2pW+q/ENby0c8E+DrbdwJtWO2+aUmmnG2Rerc9vWYMBIhcY4yXHkgTsVb+inQmAcsqRJ/WcY8RyYLL5XZLj0ca0diesfrjz/ngfBmX40avl8fZ6TdU19cNqgel2FgxVZHd+1XWbJJAyicaoq5RMS7dofq8yV6VLZ1zSb8i6fDd5UWOx7p8nP9Sl/agyhwxifVWXxusXG/35X7Vl+LSqLWscjDLvGvvVvd7X+RFnWEZsRR5eW56jrsfHMZafPaI95wH8+Y2slVVr0/qBKnKip28ZrthN2T4vCApVGAE1hS8qTQd0qJl4ULrgNMTcNPamb+TECSo8LW0irPcVAq0uI0jnuPSQkk3MEFRPmDX2mqjiNOy0kmL/ajGdf8fqwJKg4JVFZCwpuo+/6CkG7syjndteoek2fmiMFa6609TUSJ3I2+pesNsmbOLfAnXpaIsDGCf2V2/W2X/9oUufz1F+oLbpePnSj72wtysckLWeheXRwsbQKWFOsMsPtl3OXf8bSsct434RWbrqt6UDUn/TNLhj5R7p9Wfo96yYHLJMUuw7TomqXAdCdSThJMcJBhP0Oa22ZK70X2vIw4JsUEACbIVJNuQ40CCQqDv9XdB9Z0StoieVp9Qf6GK1+3tKsc+k4xK/XE0mM1yW8H9SLlDkEfjxnn1+50GGsZ1IAFqeV5JIji23IqTXpOULynLCIZdLtMlcUvPCwEa51QSozHir3afDVWw7vFtea4cx/PYoHaq+sLHmeozHlK15m+rPZYTLfavy01Sm8TE7fF8c/1a5MX50GvrvjPgPaRi2Lmg4h2md4fy3waJlneN85Jj6XjpEW2R9fQQUiZk+ymzZ6pzcFsF2O9X9VRsqILpFVUyRl3n/ltT9cCfVgXjrsemigHnehVD1BbycB03VI1l1mfpobAhyPPwgiqZWFWVyfepPO9oT8nBLv55FQLk+eF8nYc9Pq4XjUnUK3yGj2uIgcSOHkuvuyVVLxRlas6RlIG7YTd8KuHzgqTY8tDaHsPQUsqjgfskFBY6VKYWSkv4TwU7jzwSBPK3hQet7LRy0RLJcqw89iKvbEcKkrSi5BYR/zbIYPssyGnV44k5tmzTwjdVfXkcCcOj1X9Jo/v2RSPp1Fx6o4r1bEnS058v6Xrpk68px/6e7tJ94yOl//rxQlp8stVcxaNwRv0z+q3MTEwmuH5GBQg/rYtzXIUsbb+7PpgpFfJ0UsUCZ7C6qnq+/rrquKUHiRZl9n32aSskccmtE+7vTVXFbgV2J8qy9dh1tdfCc88AZAjc08JP0uQ6jSMO09ta635YinRS6c+17t5JxLlKReGfUhl7qSjNw6reLNcp+zHBsP/n+qY3xu1aR95Jvg6revSOo70EcCMVMGWAQiVOWZXEhIAvX9xHoD1pXCNxcUjrqgNlk9cq76VcGDKyJLFgGhpO0mjCtJx7JJoT3CNBscV2RRVI+pot3XepjJ/Xo+eTwTvHS+oTOIdtLR7kQBk6x3fqoCRgM/xPUpj5uU/YVwbeXjMkXumBW1F/S+sHVN81taQ6r+kRd+BWurTgS31yYvmfeo4P37tdCV4tDynHziG+x2yrq7+vH4t7DteoyOM71R9X6t5tla28IxXPBuWJ6/Clkh5zjbR9dzFCOI+9KrplrqKHrEtWu+9N9UnAssrW4Tu6OvmZqamK/DinelgLsYSJKQ2rrgPHIUlBknhuffT9lPNJcNhPUt1qO+36KA1aDil7dzLQXTZhrt33pFwG4fOCpHChpVdgCLS0wjy+W14YhrQaMe+0ELUEuX+nZyLBgQNJAOtDUDOO6wlMKGRSWZLkcC2lFykVVAJPKjmDLLbRCszejjUVUHFMkm6U7ritKNlnP1PSO/6qpJ+TJD3s1b+lp/+nr9Itf7FYr28aS182ktbn9d0mBHfsG6nEOar+Cwyt6L9zIt0yLdduVBHOT3y8dPHDRanNVI6B/Pqu3v9eFXwuqSqsdfVPOnObrdipHOhhyLlKj0HL2+E0HmO3w54k9/d1ql4J76WfdP1t0JMg3pbkFql12bTKUTEKZbS8iwycY96Cxe1bq5JeIOnZR7oKn5Hec6L0/WYXb7/qvnL3MUF/Wg49XgSoGSfHwevYMuaCCnj5A1UQTADnubCkMpdmKnPTZds7M9Xikc225htQtNbdkMEjiZTbQQ+t1Af8BkMcI7ezZVlNmcjQ8gQnGFpSH7hmnXJO2xhCWeYxWFV9noUW9Lu6j9u3gvKdr/Ph2Gbb/N9r5Fz320SFVm3LObeVpDdJotddGobyd+qDJfxncH9MIs2a+s80zFXAsQ0arCPHjmPGfnVbHCj/UyYkEfV8SC+ry15SfSeW54lUvRQ+ufE+1WOdp+pvxfO6ct0cvK1vov7BGxuqhOBqSd+0T/rYeel3JK3eXerzPV15b1d94eSqKjFxXx1Ev7ptJ1QPeNmrot9Oqn9Qi41gG93/02qvrdzCmuueOj3XsbQoE6U+SaZO4lzYVJVTuV55ch6v7eLw3fDphJYn+ooNdO0nsPBvWnzpviRZEH6ntSetmo5LZZ7KxYCBSj7JS1rZXJY/JGFJIAx4rJRbIa36FGYEFrP4zzCP3wSmbB+9TmmRdeBzEMdUlOdc0kdvK4L8G0eS3vFTkr5D0j+X9D5Jvy/977fqpp8q5f3+fcXrMlE9jUcqyoQWZStBH4HrfnK5X/FwSY8u5a5JevbflZ548R9Ld1zUnou36qmnC9hcVhHaj/qScnrX49QH6AfRdm7pcP9wXmSgwnYgmOL4JaCwleucKniax3WeMrRfRel5DEieprjGOZIkaYr4rCutrOmpzLQeB8cbo757Jf1FSc9+tLR1X0mwdUJ6+oHy7hIfE3xW/fU11GcGLVTWXtuua9bfXinOI9/bUPGg5GloOX6s05qqp2hV9b1ADgS9LJdt4rwaNX67PPZ7rtW01u9TfZCYngt6AVIWkAiznGwL77H/EvCwHemFHKvu+XfZe1W9p4dU98r7IeoVVc+c8zioxe1G+9QnTlyjBpCcB1uqFuXDqjKF88bBfbSsvgy0x8dtJimjPvLpUDTypBxNb5jH6byKBf8uFcOMvdInVR7StufAhJr1p8GC8kDqyzPht/sw11fOEbfXhMXWflru19SXa63nHY+qnoLlYI+2VMbVH/f3cpfPKdWH1Ecq3pGvkaTnSo96fKnX7Sre/qOPlZ56sLyB/nrV0yAN3C1nSGDdpysqpON4F4eEy/iDctbbXNmv7LeUZ0PeKWlx/aTxlvk4kKh77no721T9VzHQm5dzIWXFZRtmD9FH0k033aQbb7xRr3nNaz7rzbzcwxXvSUnhncKUitYWpyQvjr+TMmB+6cZvWQ7SGud4SYRIZJJQEYyOI12GVruHXN60kCeYS0tLuoKTZKUl3crWlngr+ym+CUqnKsrltIpr/HYVq5Z+SpK+T9L9kr64K+2pkn5G+lsv0FN++PX6oKoV/U7k2SKSrufZ7v8Ble1dt0vaul/6wP0l7nN+WNLL1yW9U9KLJD1SesS6Hnbxz+vaPf9d75T0tW+vAGZZxdMi9fftsn0GiQY6nmuuZ4611CcIBgBJRBOQe9ucAc5MxfLoPLwdZaMR38GAYS/upWeI3qkEd47PeuVzT2r8dv5+vmZN0hePpI/dIz3q4t+V9HKt6Ld0ds9X6ckHpMNniqXSniMbIGil5Ti4Hhcijscl26NohxCHll56MdmukQooPq6yndBjP1aZ5+sqAHJNFVxZpowi3wQ0Up84tcBKK7jNtGZLfU8g5xgfaqc3JEmyGv9bBh/Ha4EYjhkP9fA933cdDaKuUn34eUllq85XPFbS1dLFt0qvUwWJa12c442y2SaPAdeV5dmqKpneVN3yudrV65QWATUNVZS1NOr4HvvKYNh1VPxOomogSVLqdbyKsnyQiPPJY409R1r3WvrCHgqD8Ln6D/hz3nkOMc/D3fcm7s1VSdpUZb04/orqccL2EI1VXmL7NElvUJF7I1XZsxZ9IhU985Su3HdK2v7NIhsPS/oGla2c//ojpR6HVV6Eu6nyjOSm6jtq1lQPXlntrh9UMWwdlfRm1a1dbq8PeJjiOvuJJMh9TO8056j/524SqY2PKLMTN3juOP7Brk2UtcQtlBVJsnfDcLjlllu0f//+h7oal0W44kmKAxW6NGzlW8F/grBJXE+LJeM7tISvgQYFRQKZWfxXIx0V+UT9IwW5PYPkRuqf/MJTkCywLUy4Z3iI9FjotCzUQ0org61Laaljn1i4HxSeRbhR3b/HR45/KOnZOqzXP3Ca15oWnwdxaI2XurgGKydVgOTTJOmV3y7pv6moqb/QxfjXkt6iJ3/HI3T2/19c/6sqe4m5zcdtJFBbVR88M26LoFKBp0WZRMFEk5asEa5fiDwMtBzP48o50pqXLjO3kmRcWhVJ4KXF+bE3/ns+rCLukiQtS0v3S9LLu6tfqf3XSNpcVNpJppM8sx4EjVS0nJPuoxwDy5Ft9cEcFftMdWvhKRUgZfDyPZKe+DOS3iy94r+Ue3vVf0fQVP05zD5NQtkif+4PNfJxOs9Rr89tFSv2TP1td5YPlDkZSFCyTpZdrActtumdZTuTTHqMTaouqBgdNrv//4ekx/wFlU49Le15nvTis9KvvquA0PtUtw3tVf8YXs6FCX6boLNebssm6nOsu2ZPpvNd6/I6G211mWyb1H++gcYcWrhNktif44g7UbH8L6m+0V2SblKRlbeq7wn1FihFPq3xphxwP22qrhX3Ewn2Ej6bqutnRWVLqj1Ufs7RpJl1dL7bKtt9pyrjebXK2J5SeXbFXvKbu7YfV1/2H1X1ok+7vvD2KxOgw93vTdUXc05UiNCzVJ9NPNflfRj3R5Le3dXJeOO6rqy7VE8JZF+n/JGqUY/92JL1LUMJvXXpORXKo2GvNbc8ZjSweW6kPmoZZi/rMNfuMymXQficmS9/msCF6/CpWBepUL1gLXgNJDMeF+Z2Iw8v/rSAtKyHrUXtthDIU8knMEowSIXH+86XD34SnLG9Ul+IOi6Jia/lnnpb0WiJs9CbN9LZar6kogjsIi9PLD5c0q+pH75S0n/Rfeq/B+WY6tYBK0UqTan/8PJU5TSvg13cA5IetU8q5OQ/RZnfWb6eV5TRTEXRbak+k5DBfUGAwbFjf5BY5XabqfqnCiVg9phZsTPfDEzrLTPcKjjGR7hOIu7rbCe/W5a09AAlaXH+Hh9bFz95v9M8rov5In3i7hLRD6FSwXIcaHRwGVxvSVyYfhT33AamTzJM+WHQdpfK/PBWpAfAeaf56WGihdJ9QGLPtrCeSRyz3pSDJJqON1FZi8+S9NNHpB9UBVaKtE6TxCLrNFFbXuU4kUgRJEl9Au6tLV4Xlh+2Ro9VPCqPeZ7Kg2Pv+CLp1ovS3yg3v/Hh1bPIrTom6Qm42D9skwGcgelKd++CCmhd765dpfpCWMsh5iP1x8H3cjy5XtzPS/heU+3rJIhT1ZPZDqsYYCxjNxtl0jjSmpfsD/c/PcGWRSRxlilLKiD9RtVnSI6gj+5SPfLZHt8L6pOZieq8nKrKftd7nwohsZfjOkmPuqGU535Z6cp8zrEiv98r6bdUnzP53mPSi55X8v63KuTnu54n/WXVLWC/oUKEnjqSvlbVi2Yj2bX7pMd8Udketo36bKt63za69m6rHoE9xTeNFNb/m4iTXgzLaBqPaJhKjJCGHc9R50+ddUKFjG0iD9e7ZdBl/rthN3wq4bNCUu69915927d9mw4dOqTl5WU99alP1Xve854H7l+8eFE//uM/rmPHjulhD3uYvuzLvkx/+Id/2Mvj/Pnz+v7v/3498pGP1MrKir7+679e99xzz6ddFwI1qQpMBoI+goVUGFQQtFxZQVlgW3l6G47rMME1abHzk0TR0kElnOkNxNhGIQ3bOWQBo5WfVkrGo7BJ0kJiwrKYnsDa9Z2r/84VkxPuvz2solQ2VZTpKUkf/SmpPI9yQ/f9Ikn/TtLTpb/+u7pdhWAc6fK5usvL23nsinfbt/FxXf2MicHLqfOS9B5VUOxwj6Q16Y6a57oquXG/uD+oOKzMp3E9iWu62aeqxCQtlCReVExpPed+Yqk/N6aqlssWuM1x5jrjuCcJtpU6yT8BptP5Oq10VpibKgDi0DHpE3vu1Cf27NGpPb+kRzxauuVcAYUzVdDDOmXd2FcE7UkapT5Qdl+3yDuBmfNWpLMFVqrPT/xLSW/4Punn/lOxBtOrxN+cH66zT8mjMcRAwyB/jrQtLwrlmfB9nSTdLD3uQJVhBsSUBQTcnIdz9ftWuE55kACm5XVjvS80riWQm6g8P6CJiqjQO8uNr7pYzOQ31mdTSIhdJxL8lLWsm+c214y9xPepWOw3VWTCoe7+CRV55udjTGwckvAZyLo5NHZJ/Qfet9UPJl0Od0r6YxXr/nMOFpLw3u4609KAJbSP8jKNVg65xjw2rveqiow+1OWx3sXbr9KfZ1X6yJ6MTZU1Qy9eEmvOu3MqHu37VHXyuMvj1AeLIWoi6Tkqp39d1zXwfaoE7jpfPyLpXum5+6T/8/mdd2xb2n+s9N21qsdOv28uPezhJcmNKvpnJumW86URj3pBIceu+90q/Z6GD6lPQLnmOEe9jma4lzqcRg3LCT+jlcYF679J5OdALJJYouvCnlfFctu65XwjzW7YDa3wGScpn/jEJ/TsZz9bk8lEv/mbv6nbb79dP/MzP6O1tbUH4vzDf/gP9apXvUqvfvWrdcstt+jo0aP6iq/4Cm1uVj7+kpe8RK9//ev1y7/8y3r729+u+++/X1/7tV+r2SztrDuHdIO3QIfUX+zS4sJNQmBwRXDvuBbcXKT+n8KAAtWBaRiPpIUALgEB76W1L8FwhrkWBb0DvUAkZC2rLoVaK6+0rOb+2gOqfX23Cg2YSlp5Rtmm8F5JGr9JZdfwj0n6RUkfln7sev3X15Tyn3qN9IhRVVR+eHFFlRyxPi7b43Oj6nsVRiqWMv3nV6o8C/NPu1i/pWL7+qea/USp6xO7K9eqWOQ8X2yhJfn1NdeB/eu+E+ITvCvujdUnfBP8nqoPJlfU3/pnpWTvCcfDZSV4dd4MCUqoNBmHhJ/xWRbnFC32Jh6/K+lXTpQxfsQN0qGHS2++p8yEmeqpcKxHS9Hyv0F6GjcYp2Xhp2fO99ieBOnuc4/5lmq/v1n1/T6nVImsv3cybjh4fe6LOJY/lGGeT7S0O96Wypz4TUlv/HXp1WfqMx4m+i25apKQ3krK0WwDrfJeB0nyfK1FOoV7bIPUHV07knRbFNy5Vwno9iK9t2dZniXx8ppy340kPVcF+NNwYKB2QQWMGpCuqqxFepw9n9ZUxo9rZa56SADXylDw2Kyovw5HqjLgDknvOV0Be5IZHkrQMnoJfeL+pyHCdVxRXb8m1CYdd6i/7eq46st33R/O33OC42JPBOtowphGypmKd+YtXbprJB1dLr/PSHrfx0vaZ0j6im+Rvmy5M3Ktqyif7WXpt35Ih35DD+wFOyzpK75I+rovKp4ySfrD+2t7Ht+1/6SkP/6jku7s/X39J9VxbWEAGtM4XxiPcpNrkGvJfUTvLL3s9GS6LK5lenX2q+i4FtGxPrJXy2FJnyPPGSQYuhSfoW0On8dhz8WLFy9+JjP84R/+Yf23//bf9La3va15/+LFizp27Jhe8pKX6G/9rb8lqXhNjhw5op/+6Z/Wi1/8Yp05c0aHDx/Wv/k3/0YvfOELJUknTpzQ1VdfrTe+8Y36yq/8ygetx9mzZ3XgwAG9QO0tNFJddEPzgsQjLXUEWoybVj2WO9IiyDDIcX78JoGisnMetGwlmWqVq0b9LLyGgG8LUGY8uoAprFrtshBlfOfrrRV7VYS+BaSB80FJ39LF/W0VwT+V9MUPl/Q46UPvLwpvvUv/xSPpTfN69PAK8llXUUjLaP9hFaF7b1fGk1Xye+FyifiGjxeL2hfcLunPfUSFhkjSj0lf+hN6w1uLMnvqF0pv+4NCVNZVFO5SV+6d6nscCHrOqz687v3Grltrjo60aC11vkK+HGNFXhwz3nO/O8wiHsfUZF0RpxXX31agOVcc3224oAqwpDJea6oeCKmAHr/T4JxqvxxS3Qrhec91oIF+4RpK0Ms1yEByMmSZpEeVc56nE3Hbiq3iXJst4kSZkOucsoPxM+w0R9aQblv1OFhaa1tyx2u9lSfrrYhDT1+LsCdQ9j2Xt6baZysq1vijkv6Wj7B6nspWr2+WdFj65OvLORyea5tqry2SuKzHUnfvBknf2x1V+xpV4Exia5K9oUoUNtQ//tpemTT2uH/GGj7cxOvFY8NTq6R6suFh1WdAjqnIqcOqngr357L6x/eauPq+68b1JfXBLg0cfoh+qkrQxqrvBrFhKD29qTcpu6hbltQPLteEz/P1apV+X1OVFVL1elz1RZK+QtK/kvTdKqzp7Sp7tY5J+vWu075DxVXz+5L+ovTJf1T65w6VPj+vuuXrsOpYb6ueIralOra+Z5DP9cDAPki5QNlKsizV+eU8pMVt2YkJmJdUj6+W6vtoPBY8mZP6geO4rbLv4cyZM5fdA+LGjmeulfZ/xs34D1L2XDpw1+XZLw9V+IwPwa//+q/rGc94hr7pm75Jj3rUo/SFX/iF+hf/4l88cP8jH/mITp48qec///kPXNu3b5++9Eu/VO94xzskSe95z3s0nU57cY4dO6YnPelJD8TJcP78eZ09e7b3cWhZDtPSaatjWvSGPBoJ3KW+FTYD86UF0F6QJAS2bFLZsE4WbGldpQVyqnY7WD8qkBYIpQWUHgGS/9w2Mo9rzi/LZn0I/rZVhPuWitJaVbX2/Iak31Oxfr1fxZD10/dL/+D9RWe8H+3/v+dV2FuQbqrok21VQuAxS+H6fhUd9L5zklaqAn/fjZKueqz0T/dIf3mPPrTnJ3TLW0tdb5Ck28u+5FtVwbTBCMfX48q5SW8cgb/nSfbpkEXZ/erxSkDI+ZLWYIeZhsvk/SGDE+M6rbe/JCnOeeeH+4X4Vm7rqv1xQWWufFh1H7eByin1T+CyNyLbReCS64TXPa/YjxP15YnbkvOcHldpERzQ03Wqa6MtmO7f3K5BEMh+IgFLcOLrQyTL97h9h3LGD5S73rnO6S1yvgmg3F8533zPIT0xbAdlUMrzmaol/3D3+6SkX/yg6oT5URUh8mbptV0bV1WfTeG6dLtY11bdpbLe33O+eHpNULgmbIV2vpvqn+p0TJUQ0Iq9qv4D425ja315zro9U1UQbE/MqOuTe1U424tH5UFyzzsTm4mKXNtSlfWrqmPjNUkyKfXX96oqcZTqCxkPqRqGpl19ttTXk1z7lHMTVSOK2zzv+o66a4KP09oz5PV9TmUq3LSvGDuOPrzEvfAulYdGflLF0nW3pBukU/9SOvkTXWf9VRWX7uNVHtj6pfqc2fVd256p+gzNuvqHAlgekuxZJwnfXnveCZCyfoT4xBRqxOXcphxxoGHE9fE4LKkQ/qu776nqKXY+bIBHEbvu6SX9nAgtpXYpPruhFz7jXrc777xTr33ta/XSl75UP/qjP6p3vetd+oEf+AHt27dP3/Ed36GTJ09Kko4cOdJLd+TIEd19992SpJMnT2rv3r16xCMesRDH6TO88pWv1N//+3+/eY/KnIuX9w1SHbyAl/C7ZRnN3wy0dFiQC79JLmbxbUt6WrnpsRHiKO5xy8oY/22pI2GjUk/g2LKSkpgQMFiBsn60FLMtSbhmqkf2+ijDzS7NSZR3owpJ2VJ9oP5790m6WvrQh8u2riUVgnC1ivfiDlXFaGC7pnrUrvvAysUK5ECX7g5JJ+4uQvhEV5/3npBOvqTkeZWqZe69ku45X9u7pL7VjOOR27wy0PqeY0PLl+9RvnFM/N/50TLHbRmciwkIXCbJFbfF8AFjzntae52/t71YGXJ+GZh4nibp8XWvobEqCNpS8Y65bUJ894eBCes+pBfo3aGi9RgmuXR9crzYvgTcOe70Sjq+65H9NMdvfudv5+O60ODga0OEmER3G9cIHJOYpEyjTGC9WZesK9tk+cm2sV5S33o+VX0R37bKOl5XWcev+iPpuX9UjRx+cHmiMoc2u/L9LfVlHeu+qmpU2VL1wvyGFo/x5frk9pe17tv/3Z7DKiD+uBZJpUG3wS7nslQ9QibsXrfsI66nY5J0jXT1R8rTOi7LBGeCb3t73FapvmPK/XRe/fnHNWZPqOUxn99xX2yq/yC2y3Afse4m0I7jFzO6T6zz3P9cQyaRq5L2P17SSWl8vmzDumqijsReJ330zsJknyvpld+rQ3pdzeSP95SKvV/Sr/0v0vP+ux7zlFLYvfPSJw97vPTsu6U3TKvHYar6ULxUT09zX/s31yb7U+oTtyXE8/jRAOl1xrnAOeQ1NkEaGjlX1Ncbd2lRzvs4+7GqN4/kmLLyEjsodsPncPiMk5T5fK5nPOMZesUrXiFJ+sIv/EL94R/+oV772tfqO77jOx6It2dP/2y3ixcvLlzLsFOcH/mRH9FLX/rSB/6fPXtWV199dY8M0CpBZUPAkJY7C/kl3LPAS5eq1PekpDs6gWYKgozLkMDCcSyc0ntBUGDhTPDBtriNBKwJSBmchsKMipLgjkAlASnDkiqpuFP97T1TFaV2p4ry2lIBHQe6cj96XnrM8bLd/Lj6gvFW1Xdr2BOyhjwn6MODqqekEBRcq2JxvF1lu9fdKmTpu5alrXMF6DiP96tYJP0MjMGdLbUE6O4fKiG69z1vfZ/bgpzW8QiQExhRSXkOzLU4viYtresMJJycY1SAvkeF5D5NUtQyGjBv3+fDmMzbytBzg+RgU/3DGFj+hUZe/O+Q4+D8Z43fjJP1bwX2jdvNbTTpQUvixPXl4LlIAwDvp7Ej50jLGNNat2mkIVnjHGM7k6g4JLljfzC9Az09Jq3uN26TuksF7Htb0zlJP486ervRmgrIOou6ETDymuXuIVXjhtQ/FVGq8rTldaEnbUV1/powHVWRV6dUt1/RkHMa/TaK33tVn3Hy1tlruzT3qsq9Q126X5F0/UcKifNzaZaDlpsT1MOy3wYllz1HmmUVeXdG9f1QJoI3qMjQu6JfhTzcj77ua3zOxCSDBMzk0EaTsSr52VANU1ViMJKkk9Kp7rTA/Y9XOZprXaXFr+064ZWNnfGPuyj946uk55yQ/ut/Lw+y3Czpy6WDP9GRrZOlIM8nGq5mqi9LPa26dt1nrbVLDEAZTfnKe8QA7hf2gz0kLfzhvvX9DVWdNVElL9vqGwKluq3xgqoBmF6i3bAbPpXwGSe0f/bP/lndeOONvWt/7s/9OX30ox+VJB09elSSFjwiH/vYxx7wrhw9elQXLlzQJz7xicE4Gfbt26f9+/f3Pg4U4iQsLRJhpcKFNLSAKURbQIQCl+TFgZadBJ90AWdIITPDb5fLuC47y2D9WK60+DwCv9OLQkXpelDRjOM6FY+F15qqxfO0inI2+Disaum5q7u/T+WZkUer6JAfPF90wc2qXpK7VC1yVrTbXfqN7vpR9d86vaa6X3uri/e2Ls2dKg9b3uu+uK4o45OSbuninVMhKneozidvTTikPkFJUMt5Z6uX7zm4v7nVg5bKBLUe43n8dzBJczm5HSpPKvKYE9wqftPL4zJn6ufbmu+5Jh0I5E2GZoi7oXpyko0JF7Rozc52uU9W1D+emn3l8gnUTbaXUAcTM9bXIUlv63p6udhmfrgNkHUkCJnFPSEOCRfjcUsHjQkkH2p8twJBfY6dx4IyRI1rNoAkuM/5xnm0jfie16uqL2h1nFUVg4RB6pr63hC3332SHiuXv6n6fIHbaLBmksB+bhlqNlW3AI1Vgey26rG1ri8t2Qa71k1CvvQsHFAxqKypyjxvd7LRROqTDeblulyrQi5W1X9ugpZ0e1goT0Zd2YdViaLbO0d+s65+Z9Vf20m+pfo8DOeJA+cH07HPV7o+WEb8i/fX9uhqVdb7qhNFwP+Cdgj3FlLzz1ROmJCk07W+Z++XTs7r+Lpc9r/rs6FKvqy7E9RTH3OcZkhDPUCZ4bK9/cyE+yjK8tpaVt0ueU6VoIy7+Ee7up5W3e7l/B1fKuO/ivxzm+JlG1L4XqrPbuiFzzhJefazn60PfvCDvWsf+tCHdM0110iSHvvYx+ro0aN605ve9MD9Cxcu6C1veYue9axnSZKe/vSnazKZ9OL8yZ/8iW677bYH4nw6wWNPkEIQ7W+D+dyCkAsqQaMFQrpmuZ1hhnhOT+JAoZqKwnEzWAmkddUhvTokJkPW0RSKtJKnVYsh1xfLTiVixTpRPX1oqqK87lRVYOdUBOmpLt6qqpV0XYUw+G3ue1W2Yr25y8N1WFHdlnGf6h7auer5/Kvd9VOqCn5N9UVr96l4RrZUBPFNKi/j+se3Sa/s4pmWr6t6UcZdfCsFg469KLcFxgjo+NvjTcDv/kxrbY4tlRYJt1TfCTFu3HN8zrHMK/Mk4c81kFZBfzvOFHk4zbb6xMfpuFde3bfBIec3+8WEyPc5v6nk/aGl1/0g9Z8t4JYJEn2XlzLHfUI5MEccgooWuWMfJpBJgpDEiffdLpJDjkmOMWUowVHrOFEafFrElMYbIU6CTgIa5+W0JCVjxOfa8cfAeKQCrq5VtfSeVrH4e67NVbcskVTRsn1eBYSdUX++0/OScjJJj/MisPT14yqGDpOqFVUPySbacZ3qVqu9qjrFzy+MVeThrarEzXP2dNcvz5H0nfukL1aVt26HjTu3q8hXqZIjG7I8dw6qGImOdWWcVl3Pq933lop8XFf/nS6J0axXHWaq2+RIwuhBm6lPPNj/Hs9VlV1c7huv8T0TbId7h8oDjs/pGn2zpEe+TTuGH1BhcVsqB07+fN3+1FqfyypjR+MIyR3H0HPGc2VVfTlkouG147icjw6b6nvDHJ9ydE3VCGPPv+eqn4k50t3br3rM/2GkTUJNYuY27obd8KmEz/h2rx/8wR/Us571LL3iFa/QN3/zN+td73qXXve61+l1ryv7OPfs2aOXvOQlesUrXqHrr79e119/vV7xildoeXlZL3rRiyRJBw4c0Hd/93frb/yNv6FDhw7p4MGDetnLXqYnP/nJet7znvdp1YcASXrwxUEFLPWVcVqppTYQ938CBAtDAg4Dv9Y2kgcLBI30ZvA3ASPbk1ZSIW5uWaCiTgu886NHIMmU03qvsFS9G1a+691nU9UiN1YFIfepno61pupp2VDdGjFWMXhtqCqfte77jKpit7A1MN9Qf1/wShf3uPp7rbdUjzI+09Vhq8vrblWLklQtd94O4XZZYVBpEbwbRNgDkKCfv6nUpL61P+eeA+eo52POPQIuzhvX3cDEnojcguY8CDIIHLnFinOUebQIScvj6Psk1ZyjbBOJCfNi/QmQCSAZEuQ7H28pbMkX9keuRa4d1pnjz7r4BDinI4CfIN1Ei30j5JMGlRY5ZZs9v9inUn/eOQzJALZnyFMi3M/tLizD1nR7IFLWum82UIeV7vcdqv3ga1NVwwK9SexTkm6HljGAa4v1p4yWqvfNY+m28LOt+mwetx1PVeQh5YJUZYjnistZUZGZ9l6MVB6x2FA55GNyvsi8m7t+uEuVGBzQIrE9qP5zO1IFuqsqstDGHxMr98Gq6rhwrVNmsE2UAf5tHeE+dt9YlnPec8z2xvVc43slffK89DBn+MCAPQhUsmvK6H+p9KllJuUsPemsRxr6RojvNpBIe+ubkF6q83Qp8st16Xg+pMTkyVvOpGpYs7flVFf+fSr69VtUSMpvqOjBqcpcO9jFO4P2uj1+GedlH2aSPqNn334KYdeTshA+4yTlpptu0utf/3r9yI/8iF7+8pfrsY99rH72Z39W3/qt3/pAnL/5N/+mPvnJT+qv/bW/pk984hO6+eab9du//dtaXV19IM4/+Sf/RH/mz/wZffM3f7M++clP6s//+T+vX/iFX9B4/OlxcFpmLYws5KW+Um4pRAIqxqdVtFUjy7ZRxG8FKrUWoaFlJIlMCiZuP8sy6crNLSNUpPztZ1Uss1mmwQkBQpI29r/r6fjn4rpBf1qS1V07rupNsYXvvIqxa6YiHK/v4luBnlZ92NP18lYub82yUJ6pCGETi4nqy8asuDe7z6qKNfasygvRPF6rKsJ8W/VBeY6h+/5ulHEEZdLKxXpJfYBP8CT1vRFUWARws4H/JPJWqhciroPjDsXxfOFcS+LrwDz8TWCXxGuOdDN8sy30gJjMjSKeUD/O/VT8ucb8m2TXdaTRoCVfWB5BQJKW9AC1QK5USVeWLfXnTfYh20Gis9Madnm85jnqb/c165jjnQSHaRKgDZFNjqNP4uIa4Tqj7JDqyVH2aJjk0HiQ5Iv5ek36vsczxyBBdQuMul6+lxZr42Nvq1pD2faY3KE61svdPQPKbfWPDvbzcdYRz5V00zMkrUv/+u4CMp8l6WuOSNqU/uu54oE5rUqSJsjb28OWUO551UNKTApPqYJ0j4PbIKTl9i33IeeACaXzSDKyhOv0OrBPLGPvQB96zC5OKxl42JNU9hK/WeXtwe+U9MlnSg/bAbH+KxVl8jyV01P+snTo56UT91eSxvZYn7AdW6r9y7kg9dcdZV8efJK6mYH5UT5Tbrn/eNjNRGUH3GEVfXe96ngeVyUuyyq6b71Ld1TFqCfVZ70453fDbvhUwmf8PSmXS/BZ11+rKvCHrLIz/J+qr6BokWlZqucqloGWm5qWzCQMaeFOpU+vSAqTVKStMGThpOC2AHKZDLRSukzWw1ZA5k1FTYu7/zudy6fFVKpCl1vAUji7zqsqbvtNFcA/UxGiN3bXuOHQysd1MhXeQLnO12VZ8VvBrap/YtSG6hxZQlxf28LvISLs9q+pWp0cbAlrPVfB8cq5kYA05+PQXHKgZY5WP5LfJAa5NUNafJmbA9vidCTNzMftTI8fAwmOx8LbYrJP+DvXTa4XzueWws+xnSGN1y7nU24dSyu7Q15jfVjPodCSNxxzehl8T3Gf/7O/RpE+60PZSaAotdeDw1R9OZrEy+TOwF1aPDmQ1uAV1XVl8u+5ZiLr9Sr15TrndPZDztUk6TlXsx9yvdAj6t+5RldVtgZtqliwnfZ6FSx9i6oXl3OP42IDyvXqb5OyV3q/CpBcUz0t72oVwHmrqqfJcyT7b9blfTXq47pc28W/S4snxEn9enLNkTi6b9IC7wfBc71O1H8J5Yr6z2Csqvb1qqRnH5G27ivtvfYpKs+Y3CHpVw5KP3K6/P6PQ1DppdKX/hPpxZKeL+kFkr5cmv1E6bundGW/A33oNXS2y+GQik7JLawOY9V3QNGgxHVMI4/7baJKKB3P/ZFecK8he6lm6LdV1V0LW6o7FtZV9fGqClE9pnrgw4bqOnU9ppI+qfKYz+X4PpAH3pNy+CF6T8r65dkvD1X4nHjx558mUKBS8VGBOOxk+bNVkoLZaai0GT9dztIwSMqtGlk+v51fgg1adpmnFby3HOW2FtbZ39km9k2CYqlun+J/kwIrEufr/A53v215cfv5UkPXd6K6ZWym+oDhtMtnVYWsvF/V+mihbYXk+ATZc3yvqA88bFWy1WhJRQmvqWyRuK+r03VdHbxvm4TThItWO4KcqfovJnQf2urEceU8ZEhinRYz4bpDemnUpUnvBglPxnU7PM+4vWAW30luHOi5yGAQwXWUJE3qW6ttGed6bxkWcj2yXSRn0mJ/Ow3zSNCe8iANJENgPdeztOihYGA8eoyG6kIrc3pTxoiTYVnVwkoDRZInGj8cWkaQrL/XSZKTrA+9XTZq0DDi39sqANBtyrlkOcK1xfpS3rNsEi2DYcq09OQN9SlJj/NIIk7CeZ/qejym+owFdYYNNCdUxmsT7Tuq7s3qKiTig6rA/ynd5zYVJ8BMRcaNVR6zWFLxqtyLdlylAkQPd/fvUCWCk64sqVjaN1SfSWjpJhoIKP/dP+wjB85XylM/s+g+9lhalnu7HE+iWlVp8Mq2tH5GOvV+6dDJrrP0ROkH3yF9k6R/sEf6O6+W9H2oyYr0PedKwS+6Trr3ztKJ7yjbj5ck7blGWr1bvUBdMFf14FMm2yO9of78sW4kzvB4O1hfpT6Q+uvXv6lr1lR1pb2PIxXedlJFx16lMt+e/HxJ10kX/3/Sr6me5vY1Kg4ozyd7rlzPT2o37IZPLVxinvjQBAIOKxoLtgTjDnTnUyFTMbTcqflNiykVohd+ejZouXMeVNoJDtiutOhtq5+PA0FN5punO7lOCWhd51HEIxgh+GwB3U1VIZj1sBKmVYcKZ7uLkwDLwtV5eRz94L8tPlK/TczXXpC9qtZbu+M/oGId21B98doHVR6k97Yzfwy8nD8VNPvElj3XSfjNrTRWJHOkTyv2RH2gN0Quhwg55zzzZzr/zq1BOWc5Lm4nyxqpb81LkJbegJyTnuMJMjnujp9zrDUWTmPF735nG1v1FP57zkp9OcN17riuZ2sdJskh8GrJBJKE1nGfBOQG35RjJHNp4fY6YPnjiMsy3Gcksb7v364HDTAmGSlzXYb3zrtOk8gj58emyjodqaxFP19Ga/MB1bVnGcA683d6SBJce07SsMI2ez5xzJdUn4Vjfxpwu6xTKuO6pGJ1P6DimXizCjC8QdJXHCjkwPVZ7eL9RZWtXCck/ZaKMWdJ0jdIetm+Itd+SeX7ZZOyY0kqAPM3u7K/RNJXqr7nxAToJklf9uj/j72/D7Mtq+p78e+pnTqnOGV1H0976GNj003z3oJA0y0RRRSViFFRr8boT+V6vSbxYgxgohhNruYaiBg0MSCG/IzREJTEJ6jxYgzEiLyFF3n5gQg0NGBDp5tDH6q7qLLOqezdvz/m+vb8rO8eq7pV0hyqazxPPbX3WvNlzDnHHOM7xphr7ZYtuUkNmN6m7gxIbQ1uUn9rla8fxedVdSCb2TzqCM6x79Ex3dZ4r2VQUeqy7D7PSvroe6Xzt7X2Ljku3XyLdPs7JH3z65tXd0pN8f/Q90v3OyJdeUQ6fUT6mztN+T9G0ktvkL5C+tiO9LFFsw9ztcm6Xv147xp48ZrbaaY8U4fRqTmnLnd0ZKmnHDCiDpXGck1d5O/EH3ZWL1dzSk6oyc5C0rdeKj1yT9Lvfq/0ou/TkTser2/4J/1ZpU01WTw1/PcRNs//VNDikA4p6V7hpEhjg5wRx0z725FhxNH3pG6AEoRZwVaRSCtM8iKN207Hh0Z3CryYqJg9xlVcn6qfvPKax2/FmgCG1wxO3P+Gxj9UZoDtuZOaQbHCrUCtMz8E8S5zVD06d0b9lb80fDb+NIDMsngc/ttWj7B57szXjsbP0FykpoCPD/VuVZcjOnZsX+rRKamDlvPqv+JNw2tQZWKEdaaxgU5n205NGioej0hHxTwRjBEwcH0YBeV1r5m0bGR9fU1jXkmMxmuf/+aTc2HZ9X/K8bqWnSQTz8enDCYQptz4ux1Zy78dJ1M6c7n/6SyvRl3OWbVPOE7X55oxSFKVJ5kX/6cj4/2bDk62tYI/9+//KsoTwNtBqHSu2/P+tp71/BPsmujMOqCxF/X3NP5tJOozE9eHNoB7iEEnXs+xU7/aKSN4n+E/9Y/Uj8zcoAas5yi/J+nW2xqIlNrRq6vUnIf7rrYs79mh/Ak14PjIB0m6TnqYpO8eyuvJ0mMf2pyeUwMPZ4c+73+sAdYHqT1HJzVH6Y6P9KCMwehNwx/n0c4u5X9NfV9uq9sIz6HXzGtkquSP+9hlTAxwbak7cRtD/84QbEk6v9Ocu4sepJZN+duSHj3cfOEwMU8c/r9Czau7TdLfk/S10n0HIfE6/fezfe7pVJgPyhfHY1vl+ciMsO8vcJ+BQepHFfVn6m9DJG/k4QQ+v34o+xRJunllaPgvSfqH0v94vfTDX6Cv+642n29Uy/7NNV5j8nzB0+LT9HdIIzrwToodhwpcmPLoBg0j25GWozwEYZWjQaLStMGyol3EvYxWUtHQ8WBf6WCY6DglcFyNazb6VPi7uMexVI4FKct7nDQ2zNwQnHrMBvA7Q10+1GyH4rj6D7bZCC7Uz6LbObGR31IHtRy7eTunnnWRxs+FWJnfruGX6DUGqpwbO2oZ+aaj4PY9doJpOs8b6j+0RgPt9VvVOGOY8k0HmSCTEcnq2JX3Dvmv1ijr8I02XnfPYQIMlkuZ3ivuk6p2CXY95u24nmsldae2cuil5b7NlzNvKUvpqDA76/arrEzWZRvJCzMjBMgMyFT7M7N55IXg198pW1MBGv+nHmJWz21lRoJAvCLqhePqzxpcqwbGDbLYL9+mZ9m2LqBjs6OxbmSfXAc6vpxvjtllCPZoS1bxl3PHbAHBubMpdtAMRLc1DgzdqHbc5iY1XH2d+pvLXrfXX5/+tJMts7Iu6QPvl/RG6WGvki664xp9/gulj/2/0vve29r+ppPStxxv0fFtSe8711/p/shhHO+X9O/V9aDHxv1GxznBuJ36PdRnGdpAO2NeD8+r5YhBmzna4qkJ68m5+ksB1iQ9dqW1taaWMLlR0q3vHyqek7b/wXDjWklvkvTLPy79mprX9pvSn7x4mOAbpHcumm3YHKqfVDtOZ4fvLHjgnPiz94NlkK/45h6ljLqNtC1sl/OpYS4cxEuHz+3drBaAOz6M56SkB365JH2FdORHJP28pNPS594hffT/J/3DNiVu46iabNhGVDr+kA5pPzrwz6RkJiGvZ3QhyYqRUUGTDV1GP2jg2R+ji1YsBNVuPyOvwrUF2iIoYcSO5LEx07KKujasOU/mcYY2ZlHf5d2+HRtnJAwADLoNFNKx4rEUPgTNddlGeRtCR5kuVwtqXa+e7aAB2EUdj4lGkkbQ9engrOC/nZ2F+iuO7WS4Lf85WpbgOh08G5zVooxlzOOlsbFRtROWRKNPAGRDlvPE50OqrB8jukeLa4prCTwXUYby7PsJZtLgEgy7jOcoDa2J2QQGB4Tva2qAd1UNi1TZNjp7Jrdr+UmHl23cFRh3uWr/e4+xPo9TmTc6rlN8CvU8frdHUOgsZoIpBlVWop7btTyn7FRzmDrKc+DrzIC57iMl/c0HSLpJ+rFz/UFt98/5mqk/lE/HvNKt7L/67P+5jtaXjJQL/Ps+9SoBtOtQ90nLzgt5ojO5UD8yJrXMyc3D51NqOvLRxyV9t7T+s9JX/RU1UP1WteNKi7dKb5Tue6l036dID3mvWirge6RH/3Try69a31QP5FykfsyKgSbuMa9b6j3rUWYKOL7UF7kH6AxyLX2Njo/7Xxv4vVJtv79VLRN/86LptA1Jn39Mes25Bq5XX9gz+Q+5ZJjYB0j65h+XXjA08uHmrN34Fum2t7R+PN+v22nr8n41W3CJWibqLVp+iyUdMGbhj2v80hbKHutV81Y5K87eX6T+1mTaZcqf9eCG+sPyOik11+U548ZvbfOxgfrHUY925zOCFrrnX0F8IF9j9Reje4VDSyVGIGhFQABZAej0/m3E19UjxgRzwrVFcY2KhGCM4IIRbEbUk9K5IsizonZdP+eRAIMghIbPUTwCsBmum9ym20lDXaV4GV3nnBv87uG7+zyKuoyO3aJmQM9q/EvP5o38uS6BCiOXBHx2PugA7A7Xj6sBpatwfRX15+o/PkYHjjTHn+fXDp55N79bKOtjbjT+PMIijSP3wjWPlyA4HRgbE15zPYLdCmgZfNiZm+rfPNNpzMwLAwl78d3kebOMkQg8PRb/T33gud/S8p7NPqt5zb3GPhJ0M1iR6+XyU0ETEzNorlO1Q8ek0gnCPa6N63IvZXn2S/DvMfK4YepHy6qjxJTDqi/X3dDwPLMkfUS69dzyUTJ/X1M71vQItSNNV2icpZTGz42ZD64n2zVV639MY4eOR7eo4xhYcjnF53QSV3GfZbxP1zTWPXYYrlHPeqxJun1H7eGTb1OLsPympLPS+54tvfnJ0vlfUTvn9aqh8ldK+nf9gWw/RH+V+u9neJ+vqYFe6pLMwppnrif3dsqr71fAlkEOE98gZR5W1HyxizV+Wcjlkk5/YRvTntpjJ2c0HJfbaA+F76o5Ku9WczIkSVdL/+km6QU/15470TXS7Xvt2Nu71X+k8tEr0h07zTa9Q9Lbh/YeJ+khl7V1sX3xnF6pvr7c2yTrOa87r08FaTJzJ3U9vaUeAPScscwlbTruHNeW1H5FWZI+cQSl3yN9wX2lV/cfTrXdOqW+D7z+lU45pEOq6MBnUqRxlJWgI9PyBEaVgqACsDHYL2JY0aK4xwgh+yYgrCKxqZCYIclMi8ebxy/Ynykjp1meYDAj+XQO0mFiFM1lmFWSenTNIMcGiuf+d9XPps/UHZMtjX+DghFd8k5AP4+yqczJl3l32ZvVz4avom/Ofz7vUEUTM7KfRqXigd9dpgJ5FeBmm+xbWl7rikeW5Tq7vP9zvNLYQNFZNhEwMvpJ4EIHP7OYQjmvLff4qsa/YWP+/Eag6zV+u5nXMiPDHKcp+eQ19+96yTPL5B5hpoLtKsZW8bRSXGfkehb3PV90CElTc02q1iT5pF5IED+VsXL5U+pvovqxvQ6EXJ/650r1TKfvX6X+ynIHJqj/Ka+55rQjlg+ON7OPnuucB4JLOpeK69QppNTX5svOxIakvzwUunGvgcY7dezL1RyUr1B7BdPjpIf8X68aLvyE9Jwfb2ed3iHpv0r6TWn1r/XgzJqkB56ULjvbHqp38ET4T9ujuEdHxZTA1frvPO7ZLiQZ5JtsLzbUHeATQ7l1NYflejWH4tSbmg73j6N+1G1+vMnJ44bxvUXNCfmX7+gOxdVqvtz2r/aH3q9Q8+32JL190R+Wl/oR6jOSNm9q/0+pPdtzg8YZNo/ZddPxInEPc84tT+mUc38s1PcO7Q5173H11+8/WtJ/l/SfPi593b95q/S/XyN97EhTpg+5r6T/Kf1vzbE7NfzdrJZ4uVnLe+uQDunu0L3CSbHB4CZmdJPGswJsjOSwnYx4eqOngSIwoEE22dgRHEw5KGnMK8U0RRkJJ9+MfM1QznWOog2pG08+r7Km8TMjVHx5rCGB1rwox+jztsYAchXXTqkpUh45yCxRtmm+F+qOVjoRXDPydlzNcFyPMdBRcx8r6i8G8BhJlezs5zR4/Ix8uW+CrVlRdx7XOdYE33SGvPY8mlGNg8CD81tF99KRXxSfq+izP1dZCfJNcnuONp/Q+OHZKqPEto9FGY5ZGgPGRZRNh6laF5YhcZ4ZPc/6PCLkspzPeXyfyk65fTpEmfnk+lZOPdfV+4p1fEQoy6cTkxkM8nhWDdT52JFpS+P1O6G+5n/nRyU9VHrzd7UHek+qgUSCa8scZZl6gCCaoI72pHIefVSHrzxWfKbDk44ldZhlakP9t5qkfiSH+/r8Xj/udamk+zxZDT1+4VHpn59vDfzySbUzOqb/W/r7/7f0uiPS90p6jaSnSpc8VC1j8KtDsS3pPqvS6uAk+rWylCeP+6g62E6nxfPMZ1fWUI7HT6vgnoZrLKOhjSuH4W6qvZHxnFrW5MFq83KD+vzQydlT+3Hejw5tfMlw/7VDW84Q0BHdUJOpRw7f36ixbHotd9R/K+X8wMs1Q9n3qq/d5UN56nnSXOPfHMng5AKf+exl4hXL9kzddvp0iNt3VmRN7ZjamWF+/vN3S1/9hrdKvyDpvl8ove5N0pdK/3rR+nqc2vxvqR+dZn+fEbSQdOQuS31q6fC41xLdK5yUBBk2rlXkk5+56V2eYNaU4EZolw6Iy/jPSj1B2Tzq0pjOtfw60OSB466iqbzHzFGCVwI3OgfrGp+R9YPljEBXTgcdpHQYGVFdxD2CUs6/26JzxYgUKR0tAtGM3LL9KoLnDM9pNQOzNZS5VM2w3ap+HIJRqYrIB9fd9/jf88FII6OPnp90yDPS6XlzVslUZVr834DBkUvKN2WIjrjL+igCHVjvJTpm5DudaGl6r3L8Wcfj88PTNxb1Le82pAncc5xCOfNN0Mk9l85DglPzWgUuXK+KpNMxNUhhuSqTxL5XNXYappyoql9pvCYpb9lGgnfKDucgdRnJ186oOxhubzfKcQ2fKEk/eZmkv6LrnvdLev27usPBKDwzS9lnymaVUSLvzN7yWFnqY+8NoSxBHAMudPrsfB3Fd6k/XyA1Z84/DnufB6gppk1JP3++HfN6mjR2UEBffIf0+CPS89Qme0PSpdJFg2Ny89CJM9Lr6mtpYO1r58E/54gZZjs0di7nasekpogyeFx93o6qZ9UJrtfUZP1DuCeN535bYxuypfa8yk1q2ZdrJd3/8xpjL91rGYXrJH3VI1qFt79XeqX6ES5n0b0v3ddZ9edK3qOmj5xl8Pr6SJf3p4N/PAZMGclAULV/U7d7/t2n94xfVEO7sDncf62aKCzUZOulL5ZOvFg6qTfd+Va5HTWH7Xq1bOem+hFiBlTuKqB6SIdkulc4KQl4CDByw6SREcoapDMKaZBQHU+ojg9JY0emSmETsNNAptFMo04DSkdgCnSYR/eXD0NzzOuos6uexSAQJtAh0TCvxHU6MpVzYTo+/GdU7sTw2cDFUT0CNoM5AkZ/5jMudFwIdGi4hDaOq2Vw5moK21GoiwdeGNllpOt8tOOjRoyA+/OUbJjSKdsYrjtqy8giHUeCxpnG4+b8ZHk7KvOijcoRksaZNsqpojyv0SlNkG/jb4fYQM8RzgR56bhsaUwrWt4fdHByXN7rexofT0sHhXUyq5E6pnLM3HfluDP7UmUmKMMZmKFO4PjoKOZxIjoELG9H07xkcIMBntSF6aCkXkh9WvHldUiHnPr51ZIe9v03SVf/kl73rs5zBj7MO3UgnelKvhlcYQbQvJk4zwyUpHNl2eY8+of7mGlfVXf8j6uB6DPq+9w6+5jaWwj/9IPSfX5d7bVeb1VD3D92jfal/0fSj6uF+B8q6SXSx/ZqB838n1ZzBLwuJ9QAOPWa56aySXP1LANtD3UE9w2d5pnGD5hvDm1dqqaXb1N7vmJPXT+6j3XUUbRz4zCmD0n62o/05wzvp8HZ+ZD0p58cZ0jWh7GvqL9Nkg4IbcBFanbkJvU1vgnzxX1qmaQtSl1a2eC0fxep2anb1B1Jv+6er+qW+lyvD3MxH+bUL1EQ+pupv5r6LWr2iI7aXN1OV7btgqO5DjMpFwDdK5yUBEA0+NUxK9ZLj58RV7dXGVRGRmgUsyyNpSmdJGms4CueWCYVAHmlU0WQQQeC12z0bSydNXGbjpQR7JqXShHlnKZSTWfBhjczUW7D4NRRII+N6WUCPq9NnotOB4Xtmg8boA21iNh7h3LHhvYcFdsd+rGhO6FusHIM1TrMUNfnsnmULgHuupohPIdrHrfBjAFU9fY0gmbPTToqVR1pee0SxNKRqspIyzJBB5MyZSeUssF1dRtT59dz37BMRielcWaFgQ2pOyiZ/ZkCce7DZMc1nWfX55xVzsk8vjMjOKWbprIdXJvUO5VOMP9cF86fog4DJnRcqHtTR/KIm9c3wW3uGc7jjtoe3ZD0Uy/s/c3U9ooDLHSiPQczjd9gx4AW9ZqvOZo/tZ/oYFd2xn0cjfreh3SSMli1NozRv0lBuZipvwL29Flp/So1tL0uSV+sfelz7ytd+rH2+XLp/Mf7XHm8Am+r6m91ovPl+15zPmOTOneu5lQpygmfKZ/MUjuDsqfhN06Gz84ozdUi/CfU1v9W9fX3Gtq2OzN1Yvi/qXY87IVDn98q6crL2gP0z/nkmD9nbjY1ljnzxoDcReq/s+VAi9SW59TA423qzlPlsFC+PB+5rzzv7tf7Qxi/ZcovgHAwh+U+T+0FAn426YTacbir1Jw028OPqDkrzHR67JaTW3VIh3T36MA7KQQ6FYhglCYjciYaYRsNG7EqCiotR9gy0so6CSQIhtLxIJDxd/PLNmkUK8fA/xM8cpxsa6uoa2OaoLPiMaOOVIzux1kFKrNV9ffKZ2bICnRD3ahtaxw1NuDwOOiwkBen4DlG4bsNPgHrNtqUunOUR4/stFRAOIkRRAMVOxeMSLIdOjRC/RX07bPerut1o9Gcct7cT+XAzFWPiTKRwKxypnPNuA89b3k0ic8VMcNBsMw9zf4SBJsHHxs5rzEg4v6xw5h7OwMfvMZ9zUBJOnLJ71xjMMaxEeyb/5nG7ROo5JykU1FR6g7KTjou2b40not0VAjk6Ui7Tcs29y3bZF0TH8K+US3LcEpdXj6k/iC9Hfl03Li/OFdulzJtR5CBH1+n3NMB21OTIUfsU9alfqTS9+l4GEhvqb+ByjJgx8qgd0XtGYejj1JDkg9Veyj+A/9CeuDPaZJe+bGGSIf35R59snT/V7UHwrdUB4tuUo+SWz+mHWWgxGNmRJ52RRrLA59dMW2ogfj7DWXPqK0vM2IO1rxbLZvC50poc6QGru+nBqJviimxvL1V0pmb+jOJBv3mf1vtbXJSP2Jm4t7cVXN+bFs3wId1+cVq8nubWgDMdih1KOeENjmxh+XJ88wMiveF27ce3FGbVx+J2x543VJ7/sZvQNtV/w2yWzDuFfWH722Pp+zfBUVzHWZSLgBKbH0gyec6pW48/JdGPz/zvjd/1qMBYeQo2/J1ghBGiJiRSOBDh8LfeT2BAnlIwEjjkv1lfQJ8OlMJTHmMgcCBQJhpXiort+VXWa6rO0a3afnNYa7PSI0N4tGhfoJHg8AqgkngRSBE3m1cd9SMxZ76D2Ftq/9ivLQM4nxEwFErt8dsjc+Zex5cNoGU5Ye8cl5cbkvdiWPWhTTXGNzkmuZxoJSRLJ+yTXKEcabxGFguZdNAkhkBOpZeH0asV1HHfPC7inak8YP+/M2XdC6PapnvPL6QEf9q31QBCvdXZTZy/mfq2Zzcc24/51Eow/mgw0TdmHul0mnsK/un/Ew5i+lYMpNEnqSxLHBvCmX92eVuVANQ71ADhPkMCPl1xHnKgUu97H25UH9Bhse7VpRJvVhlHFL2KEvrw5+fe/ADzmeiDalFuddd7qSkL1c7o/MdQ4H/oxgg6ScH5r9GTbld1wbF9fTa7Qx9b4J/Om1eQ86N1J0VjpMAnPbSduIE6u+oP/NwmdobtwyGDaqPqR+D3VR7ID5PQtCOnFFzUNbVnUiP4+TQ93vU/L2z6i9tWVW3D6eHazdq+QUNDB7uqj+M74zYTE13+6HzjaE9ZnqYHbdOpWNHWfZc5X5hEGs2zJ9ldktNnneH+fb4fHRtof7bO++W9B+Hub5cXd49Lp8+8BzvqD8rdUiHdHfowGdSpDGoYDR+Nf4zoiktb3wrzFWNDUKCCgIAghECB4J1X2ca3BF54VpmJzICzPEygklgyL5N1Rl/tzMFTM/HtYyOHY0yAk9zdWfEhjvXh0aQYzH/5lVo08DN/DC9niCIGZC8zoyFr/EoBsm8W1YYKTZvGe1mxL4CW+Q3gaJ5sHHJiC8djHSkGQ12O5TlPIaRRGNL55bgg9FOzofLVvtmgXscd2YFKxk2+OG6VZQRcLZTOfleowTfeZQsMwPHUF8aOxMcI8dHJ89tpaOVlI6b1zvnjZQy77qMYKeOSUfD/6tMyX57LNuudKTLpAOVgSSuibMSdAIIgtc0fgUxxybUSdnOvZ5vvKNtkMbynoGlXI/UW/ksILN0HtsC9+ikWU/5yJB5XP8sae2TLaDygbPSA//9UPkLTko/flb63yT9yBHpuZ9QP9gkSb8v/c0vb+j6P6ih4xsk/UvpAzut7fsN6H2+6POQb9Y7qw6mqROOqh3pMp8G2c5K21FztpIZSTsczlj7OcWZeuCIDo35OIc5zWzjrvpx2rmarNwAfs3jjtoxpmNqx70eeFL6jbPSG9T3n8dyk1qWxbzbWWAGh7JufX5G41+XX6gfW9xSs5fOoO2pv2TANiVl3LJBm7M+3Dsx9Hnr0McJ9Webct2Oqx+Tc0Dw3eo/Zrw2jPkWdZu/om7ft9Uda89VYoNDOqQpOvBOSmUMmUVhFI9gZFGUTSKIZT9sM/ueAhI09Da8BiJVWwQAVkJW5ARDFdAjYDUZMFuRrsX9fOC7iuwmaE2+bUDWoh4dxR2Nz3CzXuUg7akbqx11g+R5m6u/jYztEOh4vuisuW1GiX392NDXrUM9p8ztHHltCGIYRfNbaDzHFbAm6DGZDwIbX6/KeQzuP4G6MCfSOOrmuaveiMboKNfPfQvXzRcd3+ybYJgGN2UgsyOcH0bYPW7u6xnKrEW9qh8eixPGl2DWddgWy2f2M48CEowys0Zn07SiJt90etgvnZ3kJ52ydIZTV3C9VXx2Gc+pnSoC9Dz2lnLnuUjHw+R2uQ65X9JZYF9rGu851+f+9rV0VinnC3wmUXY4XuqL1LusS1miLp+yQzwWxXVb11hvbUn6k092QH9C0ntuan088PvPSt+olhb4sKTv/+xW4CmS/r36Oaer1FIGPyd99GyTzdND21qVPrYzPlmQdsz3OBbOn69nsMXzRj26pq4zz6L9S9R07xm1rIVB8kzjo3Tb6vqAdsFke2I7sYV77t8PmmuYOl0l3e9sz0ZY1nbU1+mouj3mkTKOM2XQfB1Xz9pvDvcuVluq8+rPqjgI4iNttENSf0MYbd6euv15mPrxrLTt59VPKGwM/Xu+nQXaGNrfUrfdM/zfHnhgUEVa3rMXJC10eNzrAqAD76SQMpJoBUmDTMcgDXoaerZZReLWtGyk0xAz00LA5+tMm1fRZBq+BEYEIlaIjvZaKfIIhZUcM0vz+JxOjo2Loy98pqFydo5qPBccQ2aE9qKeNHaWCORm6seqfJ/KlgAkwZJQJyPyufZSfzuM19d8buM6+0mQwvkhQOEcV87LAn2SP8opDfFCPSqZkWYC2ymASkeIfEs9jT8r6rEs9waNKMfuCCfni0fcco+4fc7dUZQRypk3fqYTRHnei8/ux3vQPOV38ug6VYDA88HjJZR3R2zTIeDeJZjlOO1M51irdU0nhLovQb/v5TX2V0Vw+TkBidfXINqgrgqkSH2tfY0BGOpNf+dbB6UefFjTWG94bamzKiDN6/MoQ74JuLk+DN54T5K4P8wjAzIej/fSisZOiefvErTzVrUHs32k9oTaER29UdKvqx37+m3p/HuHH/T7xx34z75U0gPVnJlrpPutSB9d9Net/+Ft/UdsfUzVwJ42I+dvF59VlGOggoETZxBuV88EGCQ7Sk+Hdzbc496lPNBp8UtPfIxqTT3otKVx4ODk0Oa/k3T1W9priE+rzcXt6nK0MszjysCbHzQ/pv48D7N9uYfm6r/jZMB/Ts0x8ZEr7x9nKDY0lmGPx/vk5HBvE+M7qfZm6m2MdTZ8Pq3mr1rv3IIxnFI//nVmaHdN7bjXXN1RY8Ap9f0hHdLdpSqIe6CIBoVK0N+rKJC0bPRnKJ/OAjMZFXiQxm0t4o/lDSDcFoFZAjmOkUbb7VSL66iiU9x2TqxAmOXIaOpR1CfRCaAB9nzTEHn+OGYCfRINFb/73LKvb2n8y74u4zqeZzpcVcSbcsEsijQeh48IOJInLa+7+1X893y7nPs/r3H00ECHcmIgVK0rI9gEyAm+DXh8zaDIfPFYix3JdKw1tHNaLeDqtP4q6hKsee7t1LDNNFjMYnCfkScCfo/xPMoxG0Kailru5xTSqFIG0umgs5KOBB3IDbV5O6EBEGocdbaOsb5JwEYgRj6TOE8m6i/Xdz/si6A6dWUGJ7g/ko8MkiQZSNHp4LpwXtMZW0WZ1fgulHU/5seylTx6DOfju9c6nRvyRH6pO9hO6hbOv8vQHiRVMu/rnkcD21W1Xwe3g/MutYj8hyTpUa3w/Pmt4NFHSZe8UfrsO75K932bNHtya/z8z6mh2M+TPrRoyRW/vWmh9hbjdXWgar3IMQvj4dGtdMJN3C/W7z4G9dHh3nH1Z0yk/rZJtjtTf0boHO4zm8G1MqCe4zN1jp8R3NZyUK2SW68FHx5nhobZNq439wPHZHtnPuwY2qHaU3dWzM8a6tP2nVJftxskvUrtyNptw1ytqy37ppb3lDNZtl+5lzym27Uc1PBRuCqjfsHS/NP0d0gjOvCZFAJTAmUqiATNBAMZ5aGSyno2oI547kWZKXDBa9VnAgdG1Dget0deOGYaiIx0uk1pbGjSGSHl8a+Fxo7BXOMIvh0cl13ReG5NqdwIsgnAE7yaDCr2tKxA3aYj2HQyOS/UEwnc3KbP82aEm+3xuAuJ9wgG/dlGmKA6QY3U5zbBHOUz67q8x7CG65lxSZCbQNPAhPqVQDDboKzsF1GzE5VOhmXaa2g54LM9GYHPMXAfZPtVX/P4TrnLcbm/DBBY9jfU19lyfVLN8OczXrl3+Z3lvL5VUMJrScBCoOBxERBxTabWMMef+4wBgMz6EeBRB3NsnGdpWU64Z5ipowPs+aXMUzcTPHMMuVfcP2XKR2uq+ZbG41VcI29Z3+BTGJf7ZaAiweFRNdm6Qg14GlhfMty/TC2zsidp8xfb/TOSrn1Xa/OSZ0t65iuln5T+9E1NHt8t6Yr3S1vv71H0x6g5KqfUX+O7phao+LC6E0D54txwHZy9sGzuaRyMsqOwqubUn1fj62bM56mhjVvUnztaaPyCEq41bdC6xm9WU1y3Q3FM7ZjT0WG85yR9vaSHXCbdelP7PRAH6aS+ts6seC7Mh+fgHOpRd1P3eh031eVlY6h/VuNs1hVqjsYZ9d8K83Ezv7nrCvUM1KVDvxvDtbNDu9vqQZQbBr4W6s8I+WUNnp/1ob+z6m93o82kDeRrvaugxSEdUkUH3kkhqDdV2Qgrj0wNZzSTQEkat7vQGMxIY0O6UpQlzVQbXvJtRUdju4j7rOc2fcQnz8Yy0jKL8iyTEdTKmNNxsjIi2DMPfhtMAlUChjmuZeQtHQcr7jMaG0jOo+fboIzZjARcCSQ9NvPBlwJ4zIzMpWzQueL1dC7N2x7az3a5DukAJYjN/tLZlbpxt7Oiom/KB4+ZfEjNSG2DL4Lio7g25ZBUfLtvj4GgzmvvKOKWludTGu8v9k25ZjnzX2W/zAv3MIGygSP1SrbrjNuDJf2dayXdKv3EB4ejNsFLzlfKZx5t4VjyM8tWGSMCp+S96p9tpgz6eupMOpzZH4l7h7qMjljFTwY96KisTNyrjnjROa50PJ176gc7fnT4c/3ZF4Ms0hg8E6RyzRgkOaUGPDdR7hGSvuwyaeOmdqLrjeo/pnfdinR2Ib1dzVk5pwZSP/tRkq6QXvFb0g3/TXqypId8j3S/35Re/fH2nMdMDaQ/TtJnH5POnmsye3YY+zWSPv9iaeu25qjMwaPUsyxcb6+lnT3rcGdOfHzJsm7QPVdzvDbVgXUSAzNcB65P2nPuFWczNPBwJdp7lJrOu0HS/W5qY7t84OdWjWWOutLjsv3jCQnuI2ekeTKDtl4av/6ZGUQeH3OQ1ZmRtWEsl6ut/5qaHvqyJ0v6toG5X5D+4zv6K5EfNfTrufacJGaRur3i/uVpAD9Dl0GwQzqku0MH3kkhqCDIkcYRXxp8ghJepzHMCJfrEUwxNV8pzoz82ThZqWckjuCBRrva8HmN4IT3jmrZMcsxTrWdTovHxuMunGMCezoQBOAE8468ULGTb2kMiJjKp3Gfct7MByNvzAZlefKxrmYwnQKn48T67Ctl0bJD53imfsZc6hGxHL+0/INnCWB9LM39eqwsn6/UTQct5yudVfchjeUl5Z3rnSBeUW+h5bdkSWMZPa7+qmo7SW6zCgBQBjIDWsl5Zsaq+gTcdIYV183bObWos75R0lnpsue3iDXXgf2x/5xb/5+pBg4eF4/QmD9mMwjGhbKc63T0qRdZ1oBzEeWzvSS3v6ZlneBx5N5y/+5vgbrr0b7lr2ovHUBpLEPMvKX+rTKdlX5X3K+OyXjM0lh3SMtHCk+r/8DfKTWwfIuk7Zv68xlSi2wvJP3nRQOoV6v/CO0Nkn7+HdKJdzReHqrm2Nzwiz0rckL9tb5bkt5xrmcy1tX1ze23tSj+iprzc4va/pwNvHEerMeY0fC4F2r8bwz87Km9Jet6jW2D29qMtlM/zdR/hNiOZL51ckX9RSjUNcfVHZBr1LJRu8O13x7m9qzasbcPD+PMdRT4oaPmZ1Ro+81rgngGImnj1tScR8/xu4b+T6g9DL8p6Z0aY5Az6pmvL3u22uK+fmj8GdI3vVp62b9p8+0syqraGn0UfHBP364ul+sa/6Cy1H8c0oHJ3A8XNM11+OD8BUAH3klJI+5NT8BOYGEwmUYkDToBV0UGkDR01REWgmc6O+6DfSa48LUVNQA007h9Akk6Z+zXAJ3RLUZxMhLodiswfjTKztUVl/uiczfXGJj4nnlle1wXKn0bPRv+6igcI8hcb/PEMXG9MppLPle0/KNUeezKbXDd5xP3KGOuT2fD9ZyS51E8AijyniCyAtDk1cDPc0WemNGibOTc+DvXMB8UJrA0r4rxWxaznD9vqf8OTO7FBOQ+qsD6BJ/kmfvQZEfR/fiYiDMoBPFcJ+6D82rg69WSHvWjDdS9G/fNcx6VSWcgnV2XMZ8Ez1XQhU6scJ8g0vJIPZmfk1Jesl2CNFLKTeqdBKbp7PI/o7aZrXD/zBgxsGAZ5kP36ail4y7UrfQ614Vl8rjpDNfSQZlpfJxnUy3DsafmoDxK0pslfUDSS9RtjsH/rtpvxHxYDfhfq3bE8LXqr7a9Tg2vbqk7zRtD2VNqAPhDGr9oxgGPt6k/r3GVGqB/ozrInQ9tzNVAMh0S759VdafLOv02jV9d67byGRT/p6wY7O/hL8tRLr3HMgg2G+bgse+S9PnHpfvt6D/d1MZzbFiHd6n/enoVCOOxwE3cy2OGPs7m78YPKW+WG8+Rx8A9fav6aQiXnas7nl99hdqCXybpRQMq/ldHpCdJ3/rvpZ/Zac7ouvpD+t6XfAX2TO3lDMfUf8+M86qhrJ8LStk+pEO6O3TgnZSKMrJXRdr9ORUgATFBN40ejWcVMSOo8XcCA98jOCG4qqKTPG6SSllxjxFeji35rCKO+SyKUMb3COicFZhpDKxdx6DsvMZOSWVQXM7X8qy9lTqdGINOgk8CbI6T36eI0bCFeuTIY0neTVV03315TQnuuP6KujQ+NGrun9GzKqrH61Nn8nkcYVXjteP6cpzcQwTGzNQxysYxcbzpHNJxItDeRZ2ZehTZ9dNhzTXYi2t0mD1Oz895fGe5ebTBNWNmh0c4/gn4NJDk8ch0FikjmdExGDHlvkzHnG8gIm8mgmc6KpRPX8ujlZRH6kFmPQhSSSzvvnNP5jVGdpN3RVnPle8f01jGmPH1NT+wnM50yr51i2WjcuzyO+eKTjwzxFI/amNwvqf+jMKe+qt2Z+qvRF/V8tu2ttSC5jeqZQMer+ZU3Kr28PSb1TDrMyUdOS69c6c5Gq9Wl0/uo7PqR2zN6xk1h8hOFMdBeb4IPJ0d7q+pAehNdQeeus8yJC0HSPzf1w3wDaqp2/LZr8yAk+58ruehkvTF0sWv1M03tV+kv1jNkTuDNswHZc1j4HNzwjXvKwe8bNfoOFeOvvUf5/eouqPpa6sDr16zDal5XjdK+k6E7b93S/rnG9KjpNkbWnk7/Ldp+XdwLL8bQ/v+8UfipLQtpM8Ih+UOfdoyG9ddd51ms5me/vSn6+lPf/qnh4kLhA68k2KlUUVHM6OyorERIYBf1VgBScvn292u61eG1v8JvqbOZ5Mft10BUBpZGloqFo+VRrUCzYxSVYbA/2m0FHXMIw18KjkaDPYzpbyqMh7/unq0nICP5dNxqPhh256j5IeRZv/neWNH2dPxIR+KtrmWCbQI7p0Ro2PC9l2Oxtftp6HPcWe2x/coB3RcSOw719B95r2MGqeDbp4IQE10wrl/Wcafc98zyOB+7eDt4h4f4iW4yL1b6RV+ptxuqp8PX2j8yuw8gkLnJ+fTlPuz2te5/ymDnl/qhuyrOvbGtlfUAErKG4MCJupitpuBGOq4SqaqgEr2tdDYmbQc2tncw2e2xbWd2r+cp7Qj+zlqnGffr4CfZZnHOW8c/p9UA/M+uvMR9Ui++zmh/uvnbmd7aOvdase9rlLD3qeDlyOXStpt5T6qvl9Wh7794LXn27rPzjYzQhvD9VvV5XwN7TAzM1cD0Q5qbagB7spGTNkez9WWlteORB3A4A77cL+/K+n/XJVmD3qlXvP+9ozKu4cyt6jN467a8a/t6MuZPQc3Mhu5q/5L8tQrnJvcczkmOkSUT6+H12YDPOmMht/v/CFJzxvuPLEVOtvb957xPmLb3qO3DuO+Xcv7WKoDVr5+SNP05je/WRdddNGnm40Lgg68k7Jf9Nz/CXAYOUwwTMqoWtXnXR2RSPDvaKSNmxWCoxrkg8aO4yJQMLD1dfZD/gluqCytqBkJzXmcMgZTTkAFcqVlx4K85Rg5vj31X1teaPmMs9thBokKN48irWpZZlzHxsbgzMrbxmZdLU1uXnJujqLNjIonmEyHgGu3q+XX+fLZEkbl3WbKMOeAkTxH5CoHinWE+8yCMYNhHmhAXWcen5l18N7LLJLnpDqylOOt9pv7y++er4zCkzfKRf43bxUf7HNP/deiGQV1GQLqKkCR88g59PfMvFRgzkdQMjhSZbiSTzoYC3xPea74JjELneWo2/YDNblPXMb8bePahvovdPuYoOvls11Tc3w+7ue858tCUkdzDjI4YH0iXNfQ58XqvzTuYzV7ak7GJWpZkDPqe/BWdVC6NfTlV/eeVXMy3ivp54Yy10p6gqRXSPr5W9q1M+rP9rgtOhEz9VfyWtYuUssybKofJXO259Tw+awaoLce3RjK26Gy/Lgf95UORNoT2/DUK3QQ+OwcbSPJ9T3XJ9WO0W28v2WgzqgHG1bUX4hRBRKYDZOW97DlNzPpKTMZKOIYSFMBGc+ZncY/+QPp/t8q6e/8tPTjP90m/wWSrpLePvxujh3bFfU3gFnOaZMoq3ybWTrfFX8XOmWg4p7q85DGVDnpB44ygpwbTbhvZcE6aSCpbFiO4CiNLT9X/EnjCIXbp0OR55jdLoEJoyp5jINRdrezhvsmG2QrxxVcNzBnhIt/bENaNsxT5ZjursC5f0dEWlYemZVYiXI+tpHH3HyP/TjCRWeEDtq6xs7R5lBvV/0scEZMhfp7KE++zU/2x3mkPPoceD7n42zOlPOZbXrej6LddNzMo48nJICmk5MZEjrqlYPgMnQ6DHwtrwku6ABRphI0u0yChnQC8pktO56OPhN0cq+6/dyzVQaBa5uGiHs6o5DZn8fhfuzwsB3uhbzGtWXU3+Uy47Ya3w2sKmPKMmxrXtyrjgNSZjm/lLV0aLmHGFziHJxSi4CfHD5frn6khvuicj6oL6o96bnh+liHkGfvjTUtyyF5dfDhuMb62nvgvHrm6v3qz37waOKe+psO14fxztSPVpmfbXUdcqv6b3v4CJMdhbMD36c01v8p57sDPzdqLFtH1RwYZ7cuU3Nm7Oh4bjaG/37ugY4bgyge45QcklyHul/q6+y977I+SrsY5uGGYV421ZzBN6vN5yPVnF6/hMAyzLVTtG2erUtslzIj7rKVDJl36yiXYXaf4zY/M7Ws2Zak35Kkv6f2Tul3qj3QdIV0/m+0o38rag6w54KOKQM6DgqexFy673xek/wnNjmkQ9qPDnwmRbprT8xG0crDgCIzIXkcxkTnwmWpTBkJlsYgY0Vj4OW2Mlp7LvqoIuM5zjScCR4WWjaUCbIW6j8YlSDXfNJpMU1FDvMImu/ZGK9FnaxPUEFDNtPy8YDK6UknKdeSGRLzmOOQeiTOhndPPUJLJ8njofxI9fM5LscIGHmmA23DniDNdfNtUXYwCaQT/JnfyvAnyHV7nos87jOPe3aeprIg5tngh/wREHnObZS5vzyP5sXznccQMtNRGcwqgk9Qy3b3cC/3Nh0k8kWg63VlxFUaj8H88iiU/zNIYcpsRO45Oi/7BRc4Rz4aQznkGMg7aVZcT2dMqnUoQV6WcX/kn7IzU//xzG21h7p31Y7rnFIHqMzGVM4I+cy94TXKdU/HyXyxn1X1SLwBp2XkSrUMyrvU9Jodnw31jMit6r9VQofJvPho1ik1x+BGNSfEa+l5eaOaw7Op/qvhZ9HG5eq/hZJAm7LPQNKJgc9bh3a9hy9VA8A3qh0nyzWmU0zd5kzI6sBzZsVdh+35GSFH+KmDtqN998996+PDzsgxM7Kt/pwQ17MKGlg+COJXMCcZ8NkrrlH+M4Dq/n3UmZnBW1HvtJpMbUl62Y70ed8tffEwka9YtLd6zYdytqd5LM99Sn09eM9zmNn4tMOHdEh3lw68k0JAUn02pfEz7eecsP3qqIS/M0qYRziodPZQTvhMMJpRXY+FQCSdkQRzGTUlYGBmZo66pjTenpN8E1cSDYoNWkaWV6JcpvVN5M3G24DZ4J/PF7DfKf4I6HJs5JFOlkF/Hm3znJMXrj3HY8CQY6yi8S5PwMlsAMeS3wmYpeWMR4K0qaMQdCTtELGt6mFJOiq+VzkNU0CUZarxeI+mI5jjqtryd7blfUlgruG7I927GoOQCpxyfOnguz1FHfPM41qeL+oa7uU8o5/gOnWO54lHTdwW28h71ZGPqQAQQWSVOUgni9kTAuCpPui4u223zzH6wfKnSnr0qyXdIr3ir7UA8nH1V+Sar0r2qIeo5/h6b47bRAeW6+l7q2ryRPCsocy2xkeJnOHcQjucL8vkCtrdGtp5t/rxJGcs/BzFXO0h+mvVoug3ahxwWFd/Q9hZtJHOBUGo9dmWGpD3ca/bhu83qT9Ts67+Wyp+s1pmvIV+PHcet69zbi3bzg77vtvPfUk5WlE/5nYr6kjN8dpTc/Q21Z7DOKE+99SPGcAwTyYGNh2cSbtgvjI4mVkmysJ59WNaxhV2fu2cL9SSJx+Q9Dt7zSmxTEhtjd6Dtq0D7Wj5mtTfWLZAubRd3j/M+t9V4PhCoCms8L+6z0Ma04F3UqyUUtlVhpvfU/FLyxEDlrcSYoSRzgmjp3sof05jBVltjNz0vpYRurwnjZUj26Fip+JgXSpPf0/QJtxPoD/DtXQSZlGO7WRdEkEwAQPT3jSyBi28lgYj+zblUTBpbOSoeOlkuo6v8VkWxf01jZ/pqOYiASH74DqbP5fNz3RmKwfFn+1Aqigzi/JT0fssm4aW1zxPlD0bXhtqgo3sb65lec65mkUdG/p0lMwfnek8jsG6UwC6kqd89sH9pv6Rxo5ftpXZg3lc575MvUAgPBXAcRmCRbdLh6nKqLgN7hHKHIMs1IPpHFB3LuI6/1uOPIdHNT765H5PSe2Mzql+PEXqe5wySWC5iHa4r11+N8qRmHlwGf92xELj52bW1cDizWpHiG5RD8B4fs6rgXrPAa+zvw11sLylHrW3AzNTf7biWkn3f4z0uLe1fp2x0TDGM+rrsabxjy6aLA/uk5kKgtNbwY/Hu6vmAN2ucUakemjefXku/RIEBgMze+k63sue87Sblk/qdKk5WQv1Hza8Sv0Zmx31Y6EO2Jhny8iO2pqbN+IJ64SU6wy40Gmf47uvGV8woMm/E0O5G9Xm3NmoB6v/to37OzOMz28Lcx+Uc/fBoBnJ/XIcM43X55AO6e7QgXdSrDxNVWQvjbSVV4Irb7CMGlWAxY7LOS0DGUZ92Ac/00D6+34ZESs6gpsKjFuZMnpPMJAOWb5uloZa+JwKVFo2Lvk5gWseg2GdBMdzNUVrAGke8vkCOgcJWFV8p5J3nZyHDfUopZ0Qjjlfe0kwnfelsbNF41gBXc49wYvUx2+5dJaHRot8JQimESEQzihf8sXjAPxPmUgnKQGgVDsWHh+NMR0kt2Fnz3u3yg6mU0xwnFkE82FwY/C7G2X8mcB8ynkhuOD9u3J2phz9KUp9l0f/vPcrwMB2GQRJPUqiDsy3lBEIGpBxr6fjlHLhPs+pvxI1ZYnOrPWux7etFin+JUnPPNmA5qvUHyI2eW7p/LD/3LOrUa6See5lOmenhs/OILh/B8Q8Z9ta3qOcQ9uRbfB1VA1U76g7DR6Ty90+/L9kqP9bkq59m/QW9aOzPLp6VN1pYTvux7bJz8pIDRSvqTklzp547/iZky11Z8lkGXAG7JzGxz25TnbyqAM9x9Z5lOE1jbNTBtnmyfVp4/2KeevWNbXjb1cOY7pJ3Z56DtJuO6NiuSVot5Ol4f/FKOd2tjSWd6nLCAMTtJ92At32WY3fYjhXW9NLh/s3q/8mykk1GeHbB82zM2t29JwJtBzS1phSz6xof/11oRB1+j3Z5yGN6cA7KdIYBDCCx4xJUkZkGMUxWTn4zVvefGncpyKrBGVVJJEAzelWGvEq0mi+fD+vVc4Oj6uY+PxA8j+1kdymyzNDQB6q+c6IYFXG16mIOS823vuB+0qBkj8CF748oHL8aNDoBBCY0XmpnLccZ/JOkESyg2KHxKDC85hpd4NVtzcVAXOfvmfgxLd3eQyV82g++cxNtim0Q+ch+fV46DDzHHcGEPIz96F5zvUzOSKeR1lMloUERO6PADsdcc7b3Zn/dFRZjhHzSmekzjL4rbIjrkM9lHKbzpTi+pr68x1ntawbGMDhPBFIUo4y+0e9tRd1qQsp95S9LfWI/T8frh0feN3RmCiLJn9nVrVy7rkfCMJsG5hNuU0dIF86tH1m4HULPJIfOx3SeI65fswgGTQaZK5r/Lpdz/3q0Pd71SPotw9/PurkIAWfT7Ajw6wr19R8nxv+36quf+w47Q3XvcYGwDvqz3vQLmTGpApgLHCftmQ15ibX2c5fZTvolEnt2Y0tNWBv541ZDesm2lnKNvUd9+aKxjKZ+3RKP9L+cX0YjLGtdJ0Tanvg1cO1o8M1y+CtuG6dSAfHGTnLBbOi3M/mx+udOvmQDumu6MA7KYw2JFjOyGcV0SSwzAgojcZKlMlsCaO+aWxS+SSYz+MCVNDuw0Y7x0EwkwCJmZcEkZlBIeUccV48B45sczz5Ck86FnQEyQf7NlBMwG5lX4F+KuwEjx4/o+N0ZqpjIzy64GjsdrTBs8L8T4BIAJLPufAoSWYbTH6//ldK+lpJL1czODZ0OZcGCBlVz7XNfhIIu4yBToJIrjXnM9uusg4ZTDCPpspp5N7Z03i9E4gkaPAYvFddJyOWuZcogwmuVzXeC5xfAiyhDPthVDUzIqRqXTguy6/3du6NCoxV8pZA3Nf8nQDJx2kY+a7WeR7tZD8kBn94Nt7jWolyAh+ey5vV9uip4fuNqp16ZyG4/nQ8c/64vvndMkK96j1t/XC7+hu3pPZwu509ZyhYz3Zkhu8MVHiuDejNx67G2QrT2aH+UyR9laSXqT2rw2yQedhU15epz60HNobPm+pOiYlBD9qxi4dyt4LHFfUjSZ6H3Pfec5UTzTKUVffP/bCm8V7getI+CuM5qz6vXks7l6njcl9T92egoZI1fj6mZb1me7ShfgzQ951lSnvJ52fY1qZ61sbjPTXUdwDC43HGzevpOXa22X1wbNU8H9Ih3RUdeCdlV+MfTJLGjoSJyoTGWhpHZisQTNBXXZeWQVwVleR1KwDez0hi8j6P8u7XY19oWTFaGeextSkwVRkA8sA+s7+sY5A8jzKV00IjZX6lno6vnEiOMdtzhNDE8SawToXK9XYUic/v0HixTfMujQEFZcpGJ+XFxo2Gc0/SdZKOPEW69nek30O55JXtC2XS0BPcmuhM0oC5nR3VbwXzd0dIOQcJLgn0zVcFxN2u14X8UNYY1UwwWe0V7ruVqGsws6txRJe8uI0EsumEsTzBUgWosp3MgqS+WVOXQ4IEHif09xUtv23N4CODC9Xecltbqo9XMqLN+bcsMbNi3cM189sMKVO5H/yfe9d7hEenpJa92AIvjOYL33e0LC855tRjdNS4tieCb8+vnaXb1faG18tAlw6zVB8xtKxnpo5OzAzfvUbH1eZ2rv5sju/tqYHdc+rZA8qT9zx/s2tDXQ9ynjbUAWtm/5gN9ZEiB7YsByeH+bsR/BkEW8YS6FPeqCvNUwaj5urZfv83n1KXUfPqsTxQ0hXq2ZTECukkmogvmHUwMdtA4n4xL55bBujcB7NZPiK5hrLMiPl5G8ueMyR2srfQPgOxzNrw6Dh5IWbw2GyLM4B0IRJ15j3Z5yGN6cA7KVRg3jQEkDRyCe6d/UingJQRNpfb1bKCWo3vCTh9ne0mXzSE2XdFqfB47IORZ/POI1pV9JN8MDLtcSQIy+MxU0af99Npy3p0UGbq52L3tGy4TDaycy0rnwSWpgRJvibVUfqUL46JoGO+T5lqPa3YeYzBkaxfV3NQ3oj2mdkzb/sZCEZIKyWZxyvMk/cOgdJq3J+rHx1JcG35YISO/aXscg/P4zMd0f0ctZxf91s5t8yknY/y1ZzkHk7eqr7tFLh+OuNcF+qJPE5HkMBocRXNJi8ZOGEGLIMFwjU6ddvRj8tQB3JvMyAhlKv2f+WweQwEnlKtpw0u+aYnUl4zODPxhRZuPzPCBMd5lM08XDnc/6gasCXIv3X4vqVl2eG8mL8c+0L9GQHrhW2Nj+CkbTuu9krmmdqbu86oHWO6buDveo1fbcxjPwacG2q/f+JM8ra6zJ5TfeQz7aL5tk7ckPQhtVci+wUDdghuQT2CfX9nBs92jPLNI3ucUz63Zz4z4CD1I3juz23zuK0p5SozxNJypiYDJLTBbI/60eN3xon7coHvdCioy+zo7Kk7LC5r59RzfWKot6nxvuMYck+SOPZjE2UO6ZCSDryT4s0qTUcprCATTDIzwN8pyegHFUgqOLaxh7IERwQDPDaSIKgC01OgkuXM/7G4ToWbBjGB9G5cSz5JU9+nHBTPeQWCXaYCpWnATZxTUwVGsi86CQQi/M/Iq42EFX3yyPGZGGmmY5c87jdXUs/WXK/2ukiDBkfH7WCTXJ/HIrh+6ZBaPtlOgjiXN3hiucrRnXLESHlkivt2D2XcHsHHFBCpsjQ8D05+TQTsdBo8bxyXv1cOdYKVdFg5btNR9VeJUl7ID+WN466OGLEfgpCpdVoUn72nKmefwKeS55QPU0acLbsZ0BHu2xmzLFE26HCZ3Lf/cl/wGh1l8sCjhtRHubbHh+ub6vK1rn78zKDP802HJdeO/DmTl04vswO0ZZwHjpeZFYN+6vYb1R2cNdWyan7OqT+7kLqavJo4x+TJa7mpnsFx1sJHjphl8dqcHL6fHeowqCAt71/aGo8jgwHJK9f6koG/j6ofT/MRPWaaOT6eTnCfXic7bZYN7lPz6DmYoa5Qjv1QT+b+9fg8J5Yn264TuGZnc0XjV65vod8NdefY/VEf83lRZr88/1NB3wuJcu/cU30e0pgOvJMijZVRRmytVGjwCSQSsO1pWekk+LXCIQBI5ZJgxTxQwfHIhNuulBOP41QA0A4WN0AVdTTI43EYK5eMNmcEqPpM5WQjWB1dSCdRGkf7q+gux+GHSqkUCfbz7Vmei3ywn0aYPCa4TuObTgTHwT5oCKvjIXsT99Lh9Vil8Q8q+lkUyhFBLtfVRwbIH2W0Ans5Bmn56JPUo65sj3OcBjX7S349hsqJI8h1FJDRVUaS6Vi7Dte1yjDNoqyibDom3u/zKF9FZrkeLiPt//KIlDUeF/QRmT018MtIOzNxXmtmW+hkmDehDjMEPEpVZaBmqJPzkDoxHReufTpOBDzSsg6bxXUGKxiIoU5IwJpvcSP/qQ+yzz11XWRQO1cDd9cP5VLG+EC81F/xu6VlfU5Z8T3aCtqn3KvUfbYV7xmuXar2xqqz6r9gz7bZN/e2nRES7Qyzt9b9lby4HIMBpl31HxmUmnyvqmV+7JwweGibyeBA7iNm4hVlqKtyX2+rfpZpR+N1rZxCr8lC/a1oLEP9z2wls1EMiFYZ8XRwXZ620+WoN2fqDkjiG+oXOzSrqMf9ywwP5YdzaCzxmXDc65AuDDrwTkoeLWHUMCMeLp+RXLZFw0qnJ41lpl392Rt0FveZZUlFzmghN3wCRipVK7kEixlZSvJRoixP0GheK4NDBc/zvh5nBSpyXG47I5Y0sjx64PGY73Q6c7zmgUc5yHcFKBMcWhZotPaiXNZ1u4wyuY6N0ZSDRFBOUE0gwPtTET3KrvvJuec8MTPItZfGDwbTqTfIm5KxNJ5c73W0Q97MX4JPXyeIzkyo91TlmGckn3rAQIdvRWPQwFTNjdtKByHPvaf+Ea4TKFQybVk9qnYkxqB4rvZA8k1qYC7P3VsGTflcVAYzKmeDjn8GUqZ0Z7ZPJ61yFCtHiDKaTmjVF3UEr/m/23NbnJeUjUqeV9Qdw+24bmDrtg3y3FY64d7P1GOM0FfEvcB5YXu5Xw3iTw6fd9R+6O+sxm8bozNoYO3ou8ewofGRIGkcjJLGjhMda+p000JjeaSOsZNwXOM952yV65tn6rVqfVk294D75n7dHMZ1StL91J5z2sTYvG55vDAzm3lUSmjD2b7K/mTwgw4nx1TJioNY5GNNXTc5y5dOL/XpTP1o2ya+b2j8Sn6u6TzqM9t0SId0d+jAOynS2HPPTZgAT3FfWo7QZQTcQISKxJufAMzt3lUakcrTvFPRVscm6AxlNEtxPYFqKgzWIRhi+1Y4qRQ5rzRECYyybQIHRnl9jSDDc+1yPJYw9dpjOoGMCpJH8iUtg6PKQLCP/JwA23y4XILBeXw3mEjZdX3KBsfksp6LjEhzbHyIlQ6KjWsVzU2nzu1YXjO17/7yOIaPeUxl5ehccwyUYUYVKwPt+9m3KR2ZBE/r6g/C2rCv4btwfy3a4me3vYty7j/loHIYPH/uz2352MuJ4fsPqr1O9mVq0fFN8JrPCHgeGRXmnJA4HyybARg6qyZ+zsyF18wg3m2xbJLHvaJx5sx1GEWn/kmw6L6qgE8VTd5VG3++IW8T9U6qH405i7ZzPtg/nQk7Auah0gn+zP1JR4uyl/1Qh18y9PVRdZD60OHerepZM8s7+/deYvbW85FExzXtgvA9gyS+x6DGNubnuNp6bKmtAZ1p2+nU4ZwLaSyz1Cu5D9fU135L/QcpTxVzMFM7Wn1OY3nzmuVzOeRtoX4sO4NeHsuK+qudfY/tsBwd3ZRvHvcS/nssPN1ge5uZM2fHMlghXMs12A/7XEjENb0n+zykMd1rHNqpjZzHoKrIm4X1HMrYsEpjUM4IP4EnU7mcdEZ4rbzYNnmjMU4lZz7Zdxpl/9gWM0D87r+M2lDBZnQleUyygiQgpcJMcEinkc4NMybmi86JFa7PLufvGqxEm+n4pANj3udRb65uoFfxl86CKesTFHocPF7iqKTlIJ0jqcsHjbePqRxXB8E+mnGx+i9QJ/GBWFPKXs6Tr2UEnXywLWYSaGzpaEk9Gk3DmU55OnNct5W4TqJzxs8pC5QtRnWzPTs+mRUi0fn2nqH8mM8MYiQw8fw5O8U3q0n9da1/90HSkTu+Sg87Kz1hKHtCy8/FeD+tqYGsS4Zyl2j846h24tPhJP8r8Z/yWgV5qB8r8KqoQ13A/binDgI5t4zSpnGjTmAfvsbsX8oS9dKq+m9mGLxaF51Vi7BLzWExwL8N7bvNSodLy/ZoFtc5r3ZK/J/6loDQb0E07aodCbxR7ccuH6EmR9erObm7w3fPp/clQWrqTANb79kpXcr65q3Sm3xpBY+3nhw+76i/ZndD3YGmHFiGbbfSybP+k8ZvAbVTat7mQx8nh7HcOpS5SOPXP2dQMIMQzEqbcp+wndS32Z7vpe30nqAtqWimsVz4Gveo2zsfdbwn7bRZN61pHPwSPnMtDumQ7g4d+EwKNwSjfsK1SmEQJEnLykcag/j8TmcnlQQVB5Vmpr3Zpj9XWRjySgCWypEZiGMaKyHyma955Hg5B+YnDZLrEYSyTIJlRv85BzSyma3hERwqaB81yLVJw1Ap+iraznZsjNIQ5Bqp+JzEOulAMTKVxsV1qmgco3QGGJ5rr/mG+sORUjcoM/U37TCDUfWdn3OOaZzpQFQAbb+jOm6bDnV1FGI/fvy9Wot8FmNF40wB26FRZjZgA+1X+iWJIF0agxE6bAx8+Dv1CR2jO2V5S5I+Kp3toM7zS0DouhdHe3vqr5TNQILngseXMlCRDgXXOHUCKR1IBi5Y13MwlQmeo2w6elItf/7OPnnN372P7CxaxlfUfx19K3irnr/z9+p4UaU7Uq65VpRFO/Z0Eum4U98527SNz/7bHMr4zVjWcemk2vliYM3AXmijcsrnGmej8h6zY7StthPug2/wOq7lN7glsM7AodvwvOU4M4B5Rt1ZuVztrWgfQH0G23y0inNFyqwm5YZBQMog9+4c9dLWMbjCvUz7r4HfjeHzWY37MlE/0z4xa+e55TE+t889WjmqFzIlNryn+jykMR34TAo3HSPfvJdAQPjOTUqwZXCwF3UM0thHpo69kXmsidFkt8P6acDmxWcToyhug8cAUnmYeOyDitd8HUW9CpjTCJBnRxmpgD1/Hh+dNNdzlCszSI4MO9Ll6+Td7VRKxn2mc0XgkMravDOCThCSUflcrwR8FchMuWLkknOTxxIMrN2mo42nh+vrkr5ELVJuUJVZEgIHymPKGf9mGhvbXfwRhBOUk6r18bq4/3TUMuDgcbO9XEMCTQIZlk0nxGPgGhH4ub7XxxHEHJfBH/WB27B80ymVxoDFe4UOmtu27G8PfTznFulDR96t1zxIeqs6aGQGh5Huo2qy8VOfJf3Ug9pzLVJ/pTfrMkPGiKj55dgTYCXwpzNnXiwjM43lhY4vdVj2lc5r8iotA0WCuypoQbnxmjgjcVr9N0XOqDsoG6i/pbEsUE7TiZhyqM/HtZyHLO89yXk/PvA1i7IXDW3dIOldw72r1H/XaEttzvJZhtx7lqW0cdLYDpEqXVvpXsqD99umuoPitdlSy26sqGUHT6k/uzJlRzLg53VhAI62bUvdgdpQf8NZHoEiHVV/btFt51ov8Fdlil0nHRvuGWk8b+ta1jmJVaTl9ZnCE2w/sQrt6K76iwTW1d5+dlzLWdADHx0/pE8ZHXgnhYZA6pvSAKAC7hntczkqGDoPjFb5z4ZV+M6yNuw0zDRE5J+KyEZ3VWNDRAXEPlLp5TELU2Y3EjzzP6O6+6WRpeWx0+Cznyljlu1J4/S/7zHCyOMDCVw4z1UEinxxvX2MjEcpMkLLebZjZuNCfrhurpfH06RxJqSKyjJyd1xjWfBD07uSfkjSNzxD+lHVRsrz73mzbBLw8H/y4e8cM9viXuALAlxHGjsjzvqwXjranIOkXI80ulx3AmADeV87rn5kx/N/kTq4o4x7TGu4bhCRx7Myg+myleO8H4j13G2qRULXJP1HtQjvhtpRHh6TITDzGl0uSd8u6WnS1Rofy5DGMiZ1eeFD1VKfNwI778cEXZ4Dfs+MWo6dbTK6z6OErpMRXjtbq6jDV4xnkEEay+mKOvCaoQ0T+6BeMjCsnHs6n14Ljy/H67bsvO/EHNCpc8CHY8u5tYxtqh/rukwNVG6qO1fHNJZJ2h7ra4/pPMoK5en8m3KMlI+UFc5bZq2l8et/OScOJFG3O0jBfmgrF2oO/3yYEzrfUg847Kjp1/PqzgrX1HqN2MJ9cs7SBphPEh20zPTR8fJ9BoeoZ7Ifj3dL41cL55xXupT4gTJvZ5C6QupzWTlTFzItPk1/hzSme4VDmxH+6h4BORXXubgnjQUpwUrVVkaVfY3tpCIjUaFlhIopaY6N/SSwZbt0YgzCE0RnBCUpo90cR0Z/GT3K/n30iBF995vtE3DQONzVcTEaQRqsKr2+iO8EFAbtXFu2Xc1VZZiyzqrGxHYI2piFO6HlIzo+K++Huo9udUO9qzGIS1DDcc+Lz+lYEIRn9I5r5CN6U84DDX2VUTHxeuVk+j6fxaicAu+dmZYNrcHPbcP3yzWOpDrAQIfdc0BHjXy6/xx/7m3KLYl7iqB1Vw00bak/QL+lfqSPQJFrKQ2/s/Pi5oy9driW4M7zIi0/36IoS5CcZH4JcFgv9x3b59ywfR4j8RhTf0lj+c0XZnC+fZ8BpnNqDutFao6/gwDU754f/5q7x8m1nWscDU8d6/ssRxnJvWmQ6kg9ZTEdxb24Nlc/3vlgSQ9Sy6Zcr/EcVnV5HIv2xfolI+3W6x7PfvaKOlX4TOfRR7Ssxzxnbu9WjfX0qeFajt/tE7gzi+Jy5t/9Xqp+vKx6GUc6QBxjvpK/qucH5x0MoL5l2cymMYjD48Cp+1IHurx1c+4d2uR0Yir7xzbPaFluXf6QDunu0IF3UripDEp4jlMab34autxICXqozKRuJFaj3ALX91DWxDbcr8seCz5sIGhEUtmngfd1/k+ysudD3HmEyYCAfHMslVJOIm+MAnE+eRQgx+cyBADkxXPDh9vZbwUWOTdVhC/HcZF65JjA3ICRyr4C+QlAbAB4ZIblyQPnfKb+oLyBysWSniTpUcP9N0r655Iu/0Xpw2pg9Gbwq2iP4M3kyKAzSJZPAhW+rtPr5f3C/cVIIp12aflNTXSgKgO9KMqxnXQC83heRjXnGj9j4vGcVIs0n1X/8T3PFX/zgHNg4jEhk+elkjXzxzFnJNXXt9Vk8djAg6OiOY8cO/sy+H6Bun5y2UpfZEAgnRPqWUdyDZwc5WZ5xbWkBDV0zioHN/WEr6dOTGBJfthOOjWkbZR3GWaV0mGgU8yH2CtHxW1QV9GR9v10eHNOXC71jT9b39ys/lwN153Pa/gZxiTvI2aZSQT9tBPUM1VQju2bPHfZboLmKmAm9V9lpzNIe+zre+pHKLl+HudpSVeqAfAPq8vMCvrg8yMMaBzV8rgrp97OJ4ML+RwPg1KeHwYmp+wv594vgNjFddol1zkfbbg/Z4xSF8xwn/o+eT6kQ7orOvBOCqPTNKYJcFK5VYqS9bzJaXzT8DJyWGUDUlHZsNMZsMLJKAcNX/KcUecEO8J3Okh5hMNjoUNEBZcAMo+mkP8EAlPOFMEnv9OoMyrHs8mOfrtc5WSkIeecpoGWxkbFZONNIExHtXoFcq7TFG8JADkW8+VjCy6zNXw+Jem71KL+Hx54+crh+u+qzc2WepaBoILHZuhM+x4NF9eIvPms9lVqgP5GzBfHkqAk9x7BsDQ+cpJUgZIE6Ix4EvTSEXE587aublhvVnfspPGxD+5fRjyZRUl+TSlXvl/Nh6Ksx3RM40xalqczSLLD6SMrM/XfPzDIqKKnbtd/BtwGvSnXnB9fc9/cM1Umkzwzu+17BL0c+xQIIn/Jp8dC+Xe0fFP9GJQpo+gEYuQ117hyTqnTCfLMkwNHBOaWtdR3bs9rxwyhZc98u42b1HWDwbb1BMHuivobLqecSqlncHmNWXppPGYGkmjvch/wWjoYKr5LPZrvfk6o/95KOkAr6jKQOpgO3M3DPWdZ6binDXRwgbzbgXHGNvXajpapsmcMulh/p17mWCwTzgT7+RHPJXVsYgW2advHgKLre5zVOmVg40KnKcf/f3WfhzSmA++k8PgBN3EV/WdEmMZwV31TpzLI+tJYMTATws3tcjbuexpvXCq/zMBQAZrSoFPRTwFm88bILSNsNrhTrxxln3mMI/tWlJ06psa253Hfa2H+6SSksyCNFTWpckj34nrOMdP02Y/rVoBExTWCCF7LCC+duXRIvS4+9rAq6Rq1KN99Pkt62NZTJL1aHziyo0eo/VjbOzV+65P7IB/MNnJsHAfXz/LjtbhKLZPzbnUnJZ0sAhMCOe6LleIzs5FT2bupQIOJmch1jcGx65/Q+Dcu/BwVnY4dtQzLtpajxwSpDBDw+5QsKcpXjrw/H9X44WbOK8vncR0eC/GRtv0McgV2qmcosn4CzTWUJbDzPcoVgbHUQeI59WclMmDDzwRemU11GevIlSiTe9kyYD7mKMc5Ir8mBoDoEGcfHO9My9k2g/xVjffsXWXSva/Oa7yPVtSDOqfVMoUfVgP0XAPX8TE26gWPm4E+j5XjdDmuUepGBgjIYwaseD/1Eftzfa8/ZcJt0QFb01hmGPRyG9bZZ4f52I75OB9tcY0t7zxqm9mLau1M86JsFSRzWddPJ9zy4Prmm/o894P3e84d94DnLGWAupFYrMoeHdIhVXTgnZQEP76WXj0NlzRWCHRYeESFEYQqU+JNn/0nZQSIholKZQqEs40Ef9lPKnNetxLZxfd0nHY0VsyMnBCQLDRWSglKWJdEICqN59+G1nXT8EnLYJ8pZ5cjAK5ehWmaattgw3zkOnCNGNFMpyONUkau2X8CnF31rIbbulwNZFz0CUl6hSTpgc8/ok/8YDsGtqs+vxlJZIYxo55zjZ9v8XqcHP5vgeeb1ByUGzCGysGW+lGDBLg2ipUh8/oRjJjymCWjg7m3KVN8M9fp4fPZ4f9DJX2fpCNf2Ab1Gx9vz254Pa+U9CE10EJHdl3jSCf/MlpbOSrcz9QFlDPzsBf3OAec19xrdBwzgMG6q8O8+C09m9GPy1fXuP7UAbzOegxckAeXz4AT545ym3oyQZUBFQHpito+sdPniPYUgGS71GeVc8kAmNczM9Ful05QlSGy/WEQqOKxsite7zwBsKEOxlfUj3cZxKZDwHUxqK2cjJTF1IF0Qk1c+2q9zYef3VhFfV9LufG128Hb+vB/U8vZJdttj9vrt1Cbq4uHevzttLRtHBv30hx/psy+px2o9nHKuXCdMjmFa+bqWWFm0RX9edzs3/uFOIj6js5LhVEOMynTfR7SmA68Q+uNx4iKr+dRjSpLwQgDo3LSGLBlBHclylpRUOk6YsbNbmXP4zfcLG6bG9+GkTzw+AeNuMdNHvN4TEUGAHyoj/c8h/uBFSpAjncqWuY2PVcJYBgRWg9+/XzNqpZ/LCyfG/C1VPqc+0rJS8tHetZQjmXzzWIex36R3qQpBebrd0b2fgU3f3sM2F2+imjlmBjV9Zg814+W9HhJT1R7vfEp9aMxr1f7Fet8QNnrZ6dgHZ85vwYMU4aM8m4ZIbh2W/lgarZJoESHyUe7Hifp/3qMdOQxal7XuvQNXyh9h/pvSmwNZfkr0VxnAp15MbbKWZ2pv0J0L65X/3l/pi77CQS5z/mcxQzXzKf/r6o5vxsY2yk1kJaUwJX73pm/BKPSOGpPXUinwsBZGq9hOnGpywjYZhq/jndV0sMk/RU1Z5O63mMn0GRGPHVy8pNlOCbKaGYp/dnOAcFuAtXUSyTu8dRpe2rye5laoGFL7QccN9WyiBcF/96jBJyr8Z1jsRPgOaYjI9TPoAXlIfVqBoTSDpMoB15LlzEol5Z/JJIBBF9LZ9A88O1vFZg1kGfbzI5JyzaH7aadYZlKr5nSvlD3UP7IZ+of6uvqtENiD+oY4w6/aIBBA/9NnbA4pEOq6MA7KdL4uIOVN4FvpRSF+zYUubGooCpjI40jFCsagysCGSpTZkO4udmmNHauqDhotDmW/M7oVAKGWXHPRMNJZ4GGnP24DUb+hf8Z6WOfdMoqPuZRN49lpfKVll/nW0W12KZUK1Ua6uSd1xyFk8bzuoe/BC8VURYNQg3Yd9VfPfue75H0V45IVx/RO/9bK/dejc86G8gyyu1xEkBxHXzvavXMjLMyD1IHrqtqQId95ZrSmFFmOQ8eazqnnHPyTDBCh4DEoxsGCZ4Hj2U+jOXbfeFnJJ25Q/rQV0k3SI9+1PDqXvWsQmaeBF7JI8GNUIe8sJ0VjZ1qvpwg9QjBQj4HlDI95Qiz7Lrab+vM1H5D5SevkL5HbT1OafybK253TeM+st2jUZaOAO+7TgaYHP3mOlIHsd3MBrsNy5v5W1fPEm3fxdyYpww6pF7zumVAJB0VZ3I4Z+SN85X6qtJJi6iXTpM0PtpkMM2jTcz0cX3SZlr3SONnVeZoN7MrybN5mAIi7IfrSH5M1K1VX4u475dNMGAojfWJ129N0v3U9sO2WhBmrubkndCy0+r9d3z4M/+5L1jebaTdr+SRAYW0gb6f8uS2KX88xsUgbtrxSgezfQYMuZ8tZ9wnU/vrkA6pogPvpKQC3C9yb+OSURjeZx2CIt/nA3bpLNhAVuCX0eQ8Isbooq/tB56trPN+FQ1h+QTZGdli9IrHgirnIRWmNH4wn2d4SR5bRtf5n/zTIM7jnutkxIrAcT+FOVc/IpVGwSCI5+wZJed3K/R841jyyu+OPEvducv1M9/r6o7Ib2sA0K+W9P72usxfVXs+ZFXjCDjHIoyD9yhHCzWDfFLNGfr2t0hffcc1+puf1wz+5UOZy9XeLrahZtB5JIDtGxx5bZj9MqVT4j1HmfBcG8ywLY6FwOyY+m8cCG26n3VJukI6/15JX3bHUOq/SP+npONtjK5LZy8zge5f+JzymPc9nup+dd6ftKuxQ+z/jELnCzIIOOj4zNWPQn3nYyR96CLd/7fac0dTwNHtzuKawUuuhSn3IEEyQVXeZ7bB80Q5m6m/AY/ZATsy75b0m2p7h+OgrNBZ4v4k754/z2XqAGksXxwHASrXNF/akXLisaatYBnLGwNBPppzVg2kX6Iuz7dq+ZhbHjtj+wywmXgU8a6i5hmsI9/sJ08J+L71fuopjzXbtc6h7K+oP1tGx4dl7dhZLnJ81lvmy3t8D+1SJtO5IDHQ4u/n4zMdydSt6TyQ0lHK7KnLKK7nGvGUBnGL/3jEeuq0yYVOi0/T3yGN6cA/k5LGxERFxo1XRfWF+4oybsvAO4+UMRtRRUZcN43XXnxOB4H1GS1LyjHz2FrlyLCsebLjRp54XIhled/fCd7z6EkaI0a7eJ1ndhnVsQGusiMsmxFMUhpgG6L9eHUkjuCZ/HLsjMqlY1Q5Xm4/x0IjmEf2DMJeK+n9kh50rn1/j9qD0eyPR26YRdhTfx4kgZfQ10LtqJce+08k/bD0zCPa+8Fe7mzUNa/VMbvKYC+iPIMGSVmPlGCdZHCXsu/52VP70PreVHPP1N7pvNpfQSuNdYxl3O1wrQnSKTMzLcsF17+KWPLPclBFljm3nNPM7PEzgxN2ls+/TTr6X2+XXtF/2VsayyQj0RlUyaOn1R7IMVgOqwf1p4gOGZ1Z7kM6l3O1taQN4DzwOuUrdZ7bNnilPTAx8FDVzXHwGp3Mavwsy4AI76VD6edOfOxprn5sdnP4z6Nv1on+XjnhtGWUywosk1+hHuc+gzN0aiqQX80R5YrHkpgFoj2kzTOvW+pOy7qaDJ1Rf3OY5WrKhuf6+Np+60kdmoCfusBjTD2S+5B8EAcwozYFkisb5yOpljc/J+n2zUdm0/bbv4d0SEkH3kmR+sbLrIqJRjkNEe/7s9sx2PNRgYwUZH821lUKnVEaaWzw6Uykkc4sER0LaayMaXAUn/O7lS4jzDTa0lhxsR1HlRxFMp/p6CiupUFyH+RtylAzUmoecu7cHkE471XgMfupvlcAaq7l9v2ZYD0dgrvjwFAOdtV/MMt8nFF7mFvqcmQjfGb4TgDKaJrn2OvC+VioH4f5XUnf+ZPPlp7ybN36gw3w+C1RH1J7roPOEMfg/8wW+LrHZufTTjj3TYJv8s4+XNfkeplJmKk/OHxi4P12SR/6iHTlF0p68GdLvyDpxcPN21pmalv9VcQbGh9v4RoRGORcTJVlsIPlyDPnwLK/qvE+sLxlRN/7xfNAAEvezqpl4/6xpKu/sg1/a7iX62u52dZytivHanIGzBmb/er4GsdY7REGUDxHR9X1tP/o4HusQtvpOFC32qHPvisn3+PJCLk0Hlf2ld+pO3Jd3b7lxkcxybej8J7vi9T27S3qv/9zmXomxQ4Mj+Cl/k+ZTh3KsZi3KrBVAW5f9/eFxvZSaI/rtYp6GYAkXy5jmbe944PiPtp3HmWqB+Hp7FO/UJ/txrXKjs1Uz6GJddhW2rUp+5NyaZ1VZbt5LDAdapbNPZuZ+RxHFWy6EKni/Z7o85DGdK867mXjIi2D+6moDRUmjzFQqeaxhTnKuR4VLBWatAyK6cRQqbsvbx5HgBR1pHH75zR2ftx/Hn2z4tnTWAkRCE2lbDkfx9XeBmTgx2g655jHxdJpy2iTlWW+fz/Hm0qfztpc9Q+i2fBXD8+n0p+hrtufaQwedjU2BMK9vM7IdhoWAs10LH1/XWMD5TVaV5t/j0Eav35XGjtwC43l0vKRcrij/mD5P/8H0j+9th0xW1d7tpxjyqMEnFfK3Wpxzd+vVntQ/Wotg7wK0JIyi0qAtqb+2xEEmCfUnrfYk/RLkj7xJrXzTS8aCt4m/eub+qtaT2msV9hf5VRMGWjKVsogZa8aK2Um59D3UrarLNJc4x8plFrW5DY1WboRZW9Rl3Oef9/W2Mmt9K3nwXvP68/P1LtuL0FDBchy7NSpuffslG4Mf6ejn9Wom/re5apXhyd4+7M4JlU02/d8vM1tMvOcc+b95ww67dh5NUf87PDdcnxGbc2ZzXSUnBlnBqByjq2LCKK9RzKDSVng/EjdNph/zsVURmGh/rpktkfgzHaSF1+j3fC8nhj+LCPe/yfU14PHstjPrsbrU42XAZXktXJeEhO4XT78n3iDdf2ZGTH2aZkhX9Vb0LyGq/jM9jhWZqgO6ZDuDh34TEpGYfL8tTRW8nnMSRpv3tzYjDzO4r77JAjfD1CQByvzYxob52ynAkemjI7SSGUaf0pRpiK3MvK4eIyDESUeIZDGitL1M63PyPdc4/WyQUzlv6axUfF1AruVKM/7wmdG9ivvnUrXgCqfQSKg4rzwc4LDCpD6enV0xeQUfcrCTO2c+Xk1gMmHI2nQ9jOKfF3qqprjuTXUf7+as3LVUOeMpA9oDFAJamjAK6NZOYaWy6sl/eVVaWev/c4LZWGK93Recr2r7Nqmxj+KOVMDcc+T9Mj/0n6D5ka143SbQxsXDfX3NH4pQWXoCfhS1rh3phyulD3K9DzuZ52qneQz9yn1wq1qc0MQ4r2kgRe+npjghmCP/VEnVTprL+5xHjPA4/nkmMzfhtraOAO4M1w/rgYud9WyB3tq63tKXc4J6KqsH/mjfnY2qTrqWYHU1AeVY8v5SlBPp4WZawZSKt26NdQ7paYvzqjrC4+N80r7xGuzuM6jucziUxe7vstUTghfJ5yyXTn7a3GdNir3f5WxrwJ2C/VjvRvDvRNDXzeqybvnhXwyGEQ7kfaA46sCl1mWvNFZYjv8n1hG6jLC9fKzbDON+Uy7Wtka/2eWK/t3f5n1upApT9bcU30e0pgOvJMiLW8WabxhpPrXknkcggC0ivjSaWHmwvdTEVeKkmVNVO52Xsh3At8EJancOa40EhxbRocrA51Oh+/drn7ko4qS72r8g1d5PCOBC5XlWlxP40bFn3POuaAhzfHtN6cEZylTWS77qF4UIJSpjDHLZDTQmSWu40wNfGyhjo2a1B0JUh4NId/miSD8vFrW5EPgN+U0ZSzbJajJ43KOFkvtEZDdvfaAMyOmLl+BvTSCuZ4es8vScfVxplX1N/+8Wu1420z9bXqragDlVrSTzknKXx658v8qO0jZq5yufM6L5ehgVrxN6TmpAyqXc13LjdsmMHY9z8sUCEy55nGlfF4rAVzlfKWDYpDq7O2J4brBpnXneTXAOVd7wcO3PF3SlvQvf6VnCQlsracq505xfV1jJzrBZlLKjLQ8t76XR/Hcbmb/Zxo/GyPVx4c9Xz4yuqOxHuD4V1A3He2Kp5wj80ZZo31g3cz8+Lq0PF88rsdy2W/1PQE1wTmzRm7TxzpP4p71bD4zmUdPK3mecliyTv63HLuv/YiZ8Wpd7uo5Se6DfKaQc5ZOS7ZnGXL5QzB+SHeX7hVOijQG0lX0n1Qdm6JBn8c9lq+MCR0Yfz+nMcCoFJnrMHLGyDp5tAFIo5FHzgxc51E3ozFsizzQ8FVHhDgeKiZmTEiMEJonGusKYO03X3zGIo+rud5RlKseZE2A6Dnw/GUGSBq/wjN5sVGhQcjx0FjTGGQElde5RimT+WB0GuLsOwEoX1lrUEwDk4Cba5RvWiM45DoTtOTeNCC4Uf3hVJ8Hl8ZRU64XI/AVkErHca7+bMlcDdjaIVvFvZPqGROv1Y56BoHgPNtP55IybHnMoEDuBaF8zjeziRWYprPE+vk8ksuaH885HdB1jdfW49hBH57zDHwkEExASb7IP+9xHrhnfXTPsrxQf1bL41DUX6hlUfR4SbdLl8FJEeqSZ85VzoE0lv18ZuSujoVVxwYJeFMvTb0BjvpK6mtoWauCT9yTllfLRwY6sq6pcgZoEzgmE3XmXLVN5PykQ2294uOtPobp7Ed1tIg2XBqvAR2n5MnZBgfgdjRe+9x3aW/Tycj120/+KWfVaRCW4//MJJFX7/E8Ckg9ZoffOv8oyrmf1GPJD/fbQmNZPqRDuiu6VzgpVrDpLPheAnYqKm5Gl3fZdCbSGCdR4aUhodJgXb9/vgL3brPKyEwZVQI5U3XcaxHlpeUxpdHI41+mND77RYgIJtLhIr9VBG5q3tnHVISZ9dknn/Wo+uHnzLCko3ZXY5LGgDKNSraba7anZUdprmUgUDkQaUQJtNw/QdYa7m2jvSoy7vrCZ7fH45gEgzzK5jZuH/470kqi0U55Jw/kj2XcnkGmn1+Zq4GfU8M9/7YC6zlSb1po/CD4FLjbz0HheKo1dztsP4+c5NhI7puf7WhzPeiguF06H9URFR4TTEeyAnRcryln3nVz/JWO42tjveaZAffc/hdJp/8/rc5bVDsKCWjz6BZ54bGePCLGl3tUe8/znvqCxGfYMjhEm7Si8VE790fdaYf7tNrvHPnImzTWIa7n8c80DtooeE4nII/wVfuzCviRKqfCsrKq9oOcD5b062oZXo6d/dhhW9N4DfMz/x9T3x9+/irtfx6L81g4Nt+fCthRXjiHuafzKGK2Y+c4ba4/ZzY958rtJh/pVHNMbKeai6QpO30hUcrxPdXnIY3pwDspFaDJbEdu9IykpKHPTSmNI6xJqYjZBo3xSlF2RdPKk22bbxvZBDA51syGJE0pUipIOkqKsozeVEe+aFjdlteEDhKVZXXcgf2ZqNQ5F1SwlaJNZVwBqwSYCR4rEDm1blXfi7g2ZahoHNc0Hl8ah3wOx/Mi9TVg9LQirwvngFmKBCXJJ8ERnWLKn/uwcTe/CfamHJFqDUncn543X7e8bqkbdB8luW34Myg6qv67CusaHzPymOzsuC1f50OtCcYtU9V4SL5+PspWRxvnxWfOJdunI6u4TkeMIM1t7MdzOkQJDNkvZYOArnJupLFsVHuc+pNyc04ddL5ouLaunhGqnsvgGFL+Kn2SAHmluM8gWOrEiqpoNm1cpVeoU50pYwZ5W+0BegYbUo+kDWJmhjxUclc5JhVlxiFPBiRfK/ifOiHnwJ855yaOyf+ZGbWTZnk6hc9n0U4e+ZJqZyizY3dlm0y03enUcWxe28QjGVTwmPj2sv3653XjHa5JhZHyzYLmqwqcHNLBo62tLT3pSU/S3t6e5vO5fuAHfkDf+73f+2dq48A7KXN18O6NlAbDmyaBua/tF1njcSkqDpbZQxl+T2WQDlWVxbEhp4PAY0geK43eLMqRD7ZL8DGLui7PulPHtwg0PNeem3NqkSnOdY45538R39OZkcZ8JJhyVJvrko7HXR3FyHvS8lEiG1VGKhlZ5Rgqg8C2mIqnU8i+3affb88HmTOavKIOwFZQLsGH+eB116kc1nxxAA3wUS3LawWYLSOONJ/XGPCTP8pcgjDfyyNMOSaCEc6t543708+gsCz7Tn3i53som47Cul5S7ueUFfYpjbN7M43HpihvZ4bOD8csjfd37gvuzwocaaL8DGWZeeAcci9SVzFLwHLJP8dOmeJaCPf8Vjc7kGfVH6KfqT1fVDl66RQK/3Nc5I82ZyXKU08kKM/9ZN4TrEvdsahknsCaAR7rhuPqx+KcIZx6VpDy5XngulYBi/2CSiSPscrEV/ueutF767+o2ZUzqMs5T2cg9bDLTzmIts12TMhrFUBjECTXM8dFqnADddsUf1NZENNUhsoOmGWs2nfV3l0pylFP5GkHyvg5fWZQBiPuqT4PEh0/flyvfvWrdfz4ce3s7OgRj3iEvumbvkmXXHLJ3W7jwDspCch5LdPlJkYFqojFivpGozIiVUqWit6Kp3Ia2F+2l0aMYMVtuG4qCb73nPdZf0qZsUxGuAjiDIozWp48URnmmWTOidvnmDPals5fFSmjwzWLe9LYwPK+la37IPDJYx+zog7BRY41jbqJ8peRs+SPhptpdgK1qfKZ0idwSp49Lhpr4brndxFlzY+vZV3Of/5OAcF+fk/nLo1oRsIp9yk/fAvS+nDf65zOBb/7qIl5tiPg9ecDxop28k1ye2jLssU9lPWl+ghfRilTX6yqZxASMFXHFbNN37NcMXtrvtlm8ufjbQTfuS8zcJF7jGt6NMq5fupfPqfmdvwGQh4rpE7la2PplGYEOZ3u5Jl7rbILQjnPLdug3k5nn21W+yqJuph9r6k/a+H6lX2R+t6mg0J+TXyBQOVg0qlMYFvpRffLYI2DAtvqx5gsi1UQzf1mQNLtTzn7noM9tWOn1G/m12Wl5b1EnW6qZIKfydtK/OdYzB/3ldelwibZl7QcWKz2XO5j4bv55XFE/pf6eI/pM8dROaS/GM1mMx0/flyStLu7q/l8rjvuuOPP1MYUJj0wxAgdKb9XWZAEdAZoBFo0TATIVFrMbghl+VAaiYYoDQTr8VqlxKxU9vA/Iy6MnmbEmJkdGhJTOi1pYCqeXJ6fmQlSjI1jYV3yxfvJm+/nsyj83Qi2zd9qsAE1aKWBnALJnHP3P4s6U2/FcZkN9bcPkQgOfOwo7/F+Gh3K8ZRTSDlJQ5XrmU637xF80Cnldx6Hcr8GjHnsguvgfjk3aUyT1nDd6+g+efyFfae88D/vzdQj8ec1fmjcdezEeA1cl3Ng4EvQ7rIEB+k85jyk859gr8pyWlaYcRbKzKMu5YsBj3Q2yC/XgEDK6z5Xf00wwRvnudoz5JEyLVyzI8p1WI36+bKHzNbZkeE4qr6rtaJjlvqVezL7zoAB58DjSacny7ufCoBbXtfUf9Mq3zRHfWanw3KS/XL93VeVnfO4qBuskxbx3UTd4e9u3/vW6+Q2bVvdbmZDqevSAXQflcylDbQOkZbnPsF9Bp3IR9o24Vp1jzomnZc8IutyuT/JczqRVRk+iyh89toyWEby3BOPHNJfjD760Y/qO77jO3TJJZfo+PHjevSjH60//MM//JS1/wd/8Af6uq/7Ol122WU6cuSIfuM3fqMs9/M///N6wAMeoLW1NT32sY/Va17zmtH9zc1NPepRj9Lnfd7n6Yd+6If0OZ/zOX8mPg68kyItb3SC4YykEAhmeSrGNKRTAImAlYCQfdBRIfBI8Mj+MjNkBZGAOB0gGkQCEhpGH3ExSGIdUipMG4yFxg+Jcl485/nHMXIuqAQZsReuK8oTYBOcErhX0T9GGBP4JjBhxMygwbSusQH28aXjGCOj+26fAIrRQv73GNOgZNbMbaVMrhafM2MhjY/ecHw2sDTeK1o+2pBHLSrnfaGxsUrHpXKaK0BqwMajV1znHXx2u3TQDEAdPTcfF2n88LXU1tZOSQI07wceh+H9BOBum2s09UxQBfzT2eK9lNsp54HgbCp7wXnnmrsfOsdTjkSVMfCcWeesa9lZID+87vlNUHU0vmdAaQ31WKcKZHGvTL3mtprfnHs+I5A6N513aVnX8tgW+3ZbGbRyX/P4s1Pi/XtC/bdiblbbJ5eoyzfHlZHxytaZqNdSD/geH+zmmMyjoq5lbBVtcK/P1d+YOUc5ZidNbItjdJ9cozwyJzU5Pa2WEcjnwri/cy/YJqbNcr/mOTMo7Nt7Jh3cdHTT/jOQaL64L6rgmzSWaa4dbUIGuDJD63Gwvc8Eyrm9p/7uDn3iE5/QF3/xF2t1dVW/8zu/o3e/+916/vOfrxMnTpTlX/e612lvL3N50nve8x7dfPPNRQ1pe3tbj3rUo/SCF7xgko+XvexlesYznqEf/dEf1dve9jY94QlP0FOe8hT9yZ/8yZ1lTpw4oXe84x364Ac/qJe+9KW65ZZb7uYoGx2548+ae/kModtvv10XX3yxvlHj15Ua+FCB2lCmMyJ1ZVCBEh55MOVxFpdNY5rGk6DBvFWOy1SbVEx0fuZxP4F+5USYjzmuTW0epphdz06OwAf72ov7cy0fiyLPU6Ano6EJ6glsXIdrmfPGvqtIFEGH190g2RmYy3B9U+388hzl9zQ2bDnePfUfDaOzRWDK7BCPRs3jvtdsTeNnWBRlqsheZUyyDonPXeTRjYziElSzrUo2uF777UW2zbdLUTa5rtXRmUre+JAy92b14Kg0lptqX6bsTTnePpbF8VROhinnemovcb96flz39MC/ZZay7TkQ6ifYpr5wUKA6cpLOqfniUawcZ+7v3J+pv/P1v8fVHRRnzfya2pR1guwE/5SVdJIqXv099THb8xyng+o6uSe416Xx0UbuvdTZ7Pu4moMyV1tv83/ZUH9Lta5yP3QyzJeJTijX2XJh4pvtqvnzGKo+qENU3KfNoR0lTEv7n224zJqarBzT+HXOtnV8K17Oi8ukHSKfyRN1acVrypZlURrLQqUD2K/5zMzQlP7fz0FNPcf2UtctJN0h6dck3XbbbbrooouKFj99ZOz4RkmfdQ/3/UlJj9Ndz8uzn/1sve51r1vKWlS0WCx0zTXX6MEPfrB+7dd+TbNZW6n3ve99euITn6hnPvOZ+qEf+qF92zhy5Ihe/vKX6xu+4RtG1x/3uMfpmmuu0Yte9KI7rz384Q/XN3zDN+i5z33uUjvf933fpyc96Un6lm/5lrvk23TgMyk0XIzMZHq0yi5UxjIjIbyXfZoyQpkgjW3nEbCVuJ/tM7KSR7fYv3lmhH4K+BCwVbwk+Ccv7JMRFWaokmh0M5pDEMjruU7OoHgWky9lAAEAAElEQVQOqFB932NhmvyuAJGK+3wNpb+vqYG8hbqRWZN0KcbHeSUR7NhoTaXEabAJ1LLsmrosZUSLMuC2mFVkdI9/jEBWQEvRRq5bRpIrEJVAOMnXvY6UMa6f1OfQvORRlpn6PFX9ZFlGcTMyyAgwrycw4H9pDOg4jswqZVtZx3ORgJL1PG9ul1Hf45IeIelhWl5b1qWDY/5zHc2H54NHEat15TE78+9obToBbDdluHIevDf5UPBCLUt2Ql1/Jgj32KTx/PkvnV9FWX9mW9Wa8XkYjsUAMvcE26UM0gHl2pJvjmlHzTk5o77+M0k3qTupUp9LZgW5192X9UoVoOMJBeoE6vwMDLBdjoPtcj2pwzKrnNfMO50X2nX3Y4djF+UtT0fVj8j591Jcno4RX0QwJf/J23mMm84JeaMtofwdje/cT6xv+5F6jm/5qvqq3mi5H7lvHuFd0WfGMynzT9OfJF133XW6+uqr9cIXvrDk7bd+67d07bXX6lu+5Vt03/veV495zGP0r/7VvyrLrqys6BWveIXe9ra36bu+67u0WCz0gQ98QE960pP09V//9XfpoEzR+fPn9Yd/+Id68pOfPLr+5Cc/Wa9//eslSbfccotuv/12Sc35+4M/+AM99KEP/TP1c+AfnJfGWRQrGpKN7iLKsw4VMpWQ63rzZZZCWo6gURjPqz+sSzCbThSJxiAzNzNcIxipolE5fo7dESOWp0HhfBEIJmjJ1HUaUPJUGSQCqfxv42NeV9TBXTo8nPN01Lg2M1yrFHIFTFbUfuxvLumpkq77fyS9QvqJNzTezg7lCMQYcUtwm0Zsjuucf8o1191zTEAn1WufUfBK9ipnwXNc8TFTDb7YJ/9XkXnhO/cWgQVBZOXY+v8e2vCcr0V9OnOOarsu2+XYFxofjaFj4fo89miig8kxe/4YXd4voECZ9WePy31kWQJcZzvmaqDhRjXAVTlbKf8pSxnBzf0zxYd5Pq5+VDTBF9fSD0pP7RHzwozDcbX5/FZJ110r/dFbpF/S8pFKtpnZ3wSD0ljPmqrsh6+nc5UANLNJqbfT0cixu+5UkIvjJUjlGhHUprwxKHNXx744n+nsZT/Vm8kI3NeHNrbAw9QzF3TwTDwexWCLKfUf5ZLl9tScuspx4Fg5jpTTzEyyXhXYyKBCFYSg3d1PT7BO6g9TZvScCbWz5vIec55mYNbX+8Dl6ajcHQfn3kxvfvOb982k3HDDDXrRi16kZz3rWfr7f//v601vepN+4Ad+QMeOHdN3fdd3LZW/7LLL9Hu/93v60i/9Un37t3+73vCGN+grvuIr9Au/8At/bh4//vGPaz6f69JLLx1dv/TSS+88QvaRj3xE3/M936M77rhDd9xxh77/+79fX/AFX/Bn6ude4aTsR0715oatAJ1wb1fN+JkIrKhUFNfZdoKl/Y6KcVMzPc0UekZqqUgYmUsHw0qbRo6KMo1nFcVKxU+i88fPVbp+KvWeRnRd7UFbO3iOdrleAk+Oxdf24hqVb4IKKtoq/Whget0DJP3YcekxO7rqa6Uboi//r2SDkTYCmTSUjLByHYR6BMyZ0jf5+kLtKIPrsy3Wy/mkU22Zohyl4SfQpGGdSucyK0NjnmMljwSnU/LIvvPtZwmkHGW3AWYmypHw/Qyz+5LGAIVHoDIo4ojlNvisQHLuUT507z20PVHefPv6XNJ7Me7kzeN3+ytxrwJClS5LfTZXf1HETP13aipKEJf9mievUa7JdZ8n6enS5z9PWvvj5XboXLo/Op0VL9SLBsHUPdleyqr5NtHpz6NA3GMmyhj3M/ugTaNuXNf4uJLUgi3b6s9xcc0oxyTvtbSB5G+u5XVPeeB9tmcndgdjSweY+646Bux95L3Lo6muz7lKPeO53VP/ccdtdafZ/Wa7pkovmHK9yBP1UxXEq2SY37O84rrv7edMWQdWepoBXMu755FBh+x7P3x1oVA1L/dEn3eHFouFrr32Wj3nOc+RJD3mMY/RH/3RH+lFL3pR6aRI0v3vf3/9yq/8ip74xCfqqquu0i/+4i/qyJEjf2Ges4077rjjzmuPfexj9fa3v/0v1P4UPjgwVEVxTFPRMW+8yiC4TTsoqWwY1co0M9ujY5KRaLdrwFcpNvKT46BBsLJgWfJGpW5DZ77IX/JegV6D+GquOTaOj/dNeTSMc2Q6r3Zc45mS/q6acbVyzLYMJv1gJduj48ix5rjOF2V5b3O4/p8+KOnbd6Tv6aDP5TiezGzRaaShSQfP16rjc3bWMuKVwIiOGA145VyYVlAnz0uvRvkpR9tleGzK9yvwxjnh98yE+R755x5mux47nTi24XZ9ZG9l+HwR2pupHxMjgF3V+O1w/KE798EXJtCIc5330GbWlcYg3GNwNvGkpOvUn2vi26gIJKSxHHj+zBv3gZ0m4TujoVwLvrCB60E9RvI8n1FzUNwe9VKCHL/ZLnWe++A68pjRKz4i6RnS7//x+HW7Un9OJd9aRnl4sKRHq795zzzm8aJZ8dnfUw+S8sib1HUygWtltD3O6ugij84x28l7JzR2cqo1Fa4nEOXxTstRjrOyURXIzr5uV8tGT71Ugfy4TfOwqnbk9ipJD1L7IUbOQQXkvSd8hJP2YqZmR7aHMpZF95lOIeUwgy6VDqfO4p6hjsg5mHJGeK0aryn3t/cA5cZj9VzwGRjrK7edx1nz84EHnfcAfe7nfq6uvvrq0bWHP/zhowfWk2655Rb9jb/xN/R1X/d12tnZ0TOf+cy/EA+f8zmfo9lstvTg/cc+9rGl7MpfhO4VmZSMzDMqkEp9ruUoZ0brsrw0VtAZ+SYfacBpiPk8QuUcKa6zXoJR1jOA8TnQ1eFzlWmgw5KGmmPifUYw0wh7/swDnRhHrzLKZkoDb7KCPCnpyuHJto1PNkdBaGtHywYpjaLXmnPj+zQYcy2vFeduU9Llkl4v6dW/2o+h7WhsyKvMQeXwkQxKq6iqKddx6iiU8J1ryHXP9iqwn3LI8XGMBLqefwIK98W9Yb4YfSRQyz3n/hx55LEOl8tjDDM1sEngQ6rWmICD9SjbzAS6z8wacuw27oxC539GVHmsiuvo798m6SEPl/77H0sv0XJAgetABzWd3Vnxv6Iqs5Vry+wW71MXpkwaAK9j/Ol8r2pZP5N8fVttrX9P0itva9fX1ZyizApYfvKI7oqavjkh6UPDNeq/qWAY549AzjLB7IZUZ005f/vZAveXwSQDTDrvltUVtTd6nRi+bwYvlX3kfqoAp+UxjzTOwUe2Z0oH2np8B2VWUM7tZ19+JvCU+lrPce0j6Id7j+36mBMzvtxPlhXywEwN26bN43+O1fLsepVOp+PDdnPP+b/1h/eJMyTc/9JYR6TOMz8eH+Uw7SqPyvLFLpwHzssh/fnoi7/4i/Xe9753dO1973ufrrjiirL8xz/+cX3FV3yFHv7wh+s//If/oOuvv15f9mVfpmPHjumf/tN/+ufi4ejRo3rsYx+rV77ylfrGb/zGO6+/8pWv1FOf+tQ/V5sV3SucFEalDNAZlWUEjsZpCiTvoRyNJI1GRjqzTAWAzuFzUuWcmN8EmtlGKi1pHBl3dI7OUQUueD2zRMnbnnoU96Skq9WipTdEO4wQVfOYc+f53pD0YUkv+GTj5cZo12MkT2kwpXF6vori7eeU0qjM1V7jeUrd4J9V+xXrbL8yKDlWqc6AVN+5JqybcpTzkU4By6WjwLV29Nj9n8P9/YwP16ByqMkvI7MJltfV1v9WjZ9RyDbJcxpOAwlHBXN98sy9vzvaboDHh3zTsePRhwpQ2kE2UF3VeE9Xe8OfOV/cRx+W9JD3twegK4e4CjikruA6pe6oHI2ptis9RqBkWlPbM1vqv5XiuhvDfcfqqO8SWGXbBNu3oa25eibFc5TPWXDu3fZ7h/53tOz07hc8Ii8E1FkngWu25zEzk0gncx7XfN1Zv1wv8+1jS3yez32kbuHeTaeU68Z+6JylM1HZWTv23h92bqrnxNymUNZj9tu4ZpJ+7DGSLpH+9auaXr5YPXNH+5kZQ6l2slc1fvCc5Q3CWacKUtAJzNMCadspL3Q0kshDOsa0eZnVqfZ3td+nAgJsP79bt05lzi9UqoJx90Sfd4ee+cxn6vGPf7ye85zn6K/9tb+mN73pTXrxi1+sF7/4xcttLhb66q/+al1xxRV62ctepr/0l/6SHv7wh+tVr3qVvvzLv1z3u9/9yqzKJz/5Sb3//e+/8/sHP/hBvf3tb9fJkyd1//vfX5L0rGc9S9/5nd+pa6+9Vl/0RV+kF7/4xfqTP/kT/a2/9bf+XOOv6MC/gvipWk6RV4aayp4KOsvS8LnOMS0bzszeEAS5n2rDk880kjmGBK2M+MzwnRE/3p/H971hLK6zUrRb9Z9tsozUAMgj1JyU6zXeiFOZpnSgFPVoqP3dEW5prFyTUiGz3F05KeaZMrJfpPycxg7d3VFCaRhyTfNYSLaZgJttMgNDma+cWpbPbAq/35VccH7SCWMkL49Gmpes+2C1Ixzv1vJLCcxzOqvVPnSbBnFbqp1+98ss4PrQll9j6zdI+RhIAhppfL7cjt5s6DfnIfnNFxFQho9qfPz0hFpEfEVN/qrnkwgaj+J/JV8E/7lnci+ZdwNHP/Mg1DfPHPO6+l5aQRvrQxsGlOyvAlbmgZTPLyT//MwgkrS8jvksj/nn/OaxnOSJ8kTdlrqG9khRLvdkOvLCdYL9Sp/z6A5fsUugSl7NR5WJl+o1IT/UZyQ7Jrtxf6oPgnDLlMvP1JzSU5KeKOm6mySdlrZXpBcMfdyisX5yAFMYq/cd96THzWOvtp/MrOQcZOAjcUc6nhz7Xc2FcD+dE5eZR7mF+uvpq7XwOLnvySczvEJZOpMrqM8TBXNJ/14X9iuIX61PzyuIn6i7Ny+//du/rR/5kR/R9ddfrwc84AF61rOepe/93u8ty77yla/UE57wBK2trY2uv/3tb9cll1yiyy+/fKnO7//+7+vLv/zLl64/7WlP07/5N//mzu8///M/r+c973n6H//jf+gRj3iEfvZnf1Zf+qVfepdjvbt0r3BSEiRWDkuCGhXfWadSFlXEZU/LioZGx/fXUI4gKYFhRphcfrW4l/wzgjEV8a6Mituu2kt+KxDjo09WUsza5LEK4Xv+T7C5UD97z4c/2Qa/5xiroy77OSd5jCLXh0A7ea+AMyO56VSmEU+Hg0flzLezCtL4t4E4nnPqTnWCmsoZ3O/afk5SZWR5dCXlcKG6r0oGTqi97vlGjQE+DWP1PWkW/7lW3pecz4U6MNmIMrtFmXSEGME02CVIoK4gX3Qscj4pc2sa67kEUtx7ptwn6Qg5Eu06CbQ4dwlocl4V93g0xvc21B0UAyDOQ77ooNLFGbyYCka4b657lpH6HBPMV7bC5bn36LxJY4dpv8CP2zSxHJ+X8txZ79MBTQdzyg6cVpv3TbWME9dS+G6epnQ2KbMv3MdVsCkBtMeUcp8BhATNPHJ5Uu0o2ylJT/vBduE//6j0LvXfsGImg/xSF+dYpbETnjae80+wz/FXe5rj4r0pe1hR1snr7sO2eE1jeazmdb+2LSceD53bzDT6nsu9XBe2k/J7+vQ4KU/ShTkvny468Me9jmkZFFkB+FjLYvhegS1FeZch2Mq0vsuwDx8ToFFOZ4WRiSpSPWUUVuM/QazbznFNGeKqvuenMjLpeDFSR0PFY1WeTwKtanwZzSQQWBk+b03w7//ug9dNVfSS857R+ZX4Tl5Zhk6J26QjaVnjf7Z1Vw6KFX1G7Fa1vK4kG+LqiA+dHt6rnOSco1zHyilgH+k4cO9lhJh7yHxtqq97ZnjyiAS/m99j+EyZoYFNsLhQy1bwtz+OSbpSzWm6QdJHwb8zLbfF+BPA84gNQWUVLCBwJP8EPemAcH1cxw4Tx5uOpZ2TdBilMVgnv9VRmXn899zyAXtH8J2ZctsZwc19MQWaMpMyBYJdlveptyiDFaAkUZ7n+E5d6HvkN508Zk+qfeT5crt81qSiCmySBzs3GeShfFYZxRyvyXOXNpE6Jx27CnhTN9JJWonyi6K8+9xSc75ulvQzz2/3toYxbw5lHLDhePi9Wm/vw8qRlsa2jsHHlLO04Zaz6iH0yhHn3OU98sn54zyvaJmHirIux1q9HCTHm3Zlqp9DOqSKDryTYgPBDUMQWUWbSangrSSrTZmGKR0jK6xU8FUUL8fgqBmjMkzb+1iRx2ijkMAxFZpBDufIfU5FU6SxQWC/5u+YOuCYArKcI/NGpUzgOtW/2zym8dGqBGdTCj3H6bWl8fMYqiN8nK8EZtXa0LiY1ypTZ6qMC8dQZQryCEFGNOmQ0FFLhzvXnmNktofjrYxqyiG/z6Oe2zExsli1PxVcICjMPUMZyj08V49S+wiV952j6Rervy3uRrXnP7aHdjfQLt8AJi0/uM8AScogr+1p+VffzWsCaY6dDgzr5nEutif152x4xIxHP9wWX6ece4Lz6XWjzHu+8jmQ/L0Vqc+/I7B53CqP+XCfZITc8+T1MVVBIX5OWU/nN+tlljPv0bHMPVHpXLfFfcQgWQZcvE8IeCudvqNlHUwnlDxk2zl+88U6tnuUU9rLzPhSpgmyKdOpn1KOCPhvkXQZ+F1VCya4T6+F5WGOP+5djo97gc52OgAZcOBLAfI0RGYIfa+ywcyKVU56/q/0eWY8OYap7DP3FgMUVcaLTqTnrBrjIR3SXdGBd1JMNMaMbOcGz2MqeQxlFW0I16V+hjozJQRReUyICpVAtsreuF4aiQSJed9AeBH159FGHgeoABEjTyxTZSUISvL4DA0mFVc6JhldIwA3cV5WtDxHVYZFGke5hDEl5RgTgHNcVcSwckrdnsn1pjIBNMhT0T3OVTqlGSnkvHu9/TxS9p1tex449qNxn84MgwLJH4E6941lk/utCigkICV/CXJ9z+BiyiEjaJxFG6fUXonqcmeHz2vqPxq4PlzbBm/pjNERdv+cixUtA3ZnQBjQ8PxTZriu7n+GuunUZbkK/FdOOIFc7smKeKxtTf2427b6+q2rg58MsKTzQl5yf1TOKx0MrklFmU3xevjeVOZvv4ADAbFBLvep5Y7HAiue+NY4glTy4LnzK7G5hlOZzioIwuBYZSfp9PNoIYnXp4IX6ZS7bb52O/lkvSpQoaGtD2usnzlnPKqVmaSFxnuQNjSDTvzMvjOQxX6rjF8VPOV+s8ykfcx5OVpc83WXT+cqeU3e0iGqbAM/cy5ST30m0B2a1g//K/s8pDHda5wUE8FRniXl/f2iRS6fkcvq1X7Zbzo5VGypuHydmZiM0O0HQqtxULm6jYxw0IHLiCONcuWg2GDwFcd0lvhgIg0Sr+V4yAsVKeduRe23LKQGIhMAcpwrakd0DCZ31X/AjCCAxp2gvIoGUQ48D1MGVXGP9QgkPI/pGBFophy57VUtG4ZKblg+nWHOLXnkHvL8ODLOMmnMPb4qK8XXmVpm0pFNg+HjTVUWkvPDPbWqcUTT/wme7Qy47dlw7Sr111wflXSNpG+XNLtUeuct0m+qHyO5Uu3tYzeBf+8l6h2PkVFxj42OXwIr6piUOz68SgCWzkSuV/WAbOVYkhjUSQCa5Pb8djQDaM8P9RZlNqPt5Cv7SR1BwMhgBfvlHk/nMTMo1T5IRyWzV5kZpJ7L+sw6me8c53mU83h8PbNMlc7Jvmdqzrd1YI53KqPg+0leg8zc0ClI3TrVlu7iHk8XuBydbL7Jz1F/tsf9QTtXvT65yopwjLkPFXWybZab4y/L59rTycnAwH5H8ch39Spo//facT8qynJuuKZ+XoqU61vp8kM6pCk68E5KAv+M2BiQOYqRR3NIBGVsn4BhCpQq2s90v9Qj+76XGZwKBEwZ0CqDUIFtOlVMzZIvgir3ychqFcWqDLbHwTnLKJ/55RGGHJfbWuBaOn9zjcfPNT6hZbC6rv6LxjRcqWBp3OgI2inznFLmOLeMcmZWKA2K206DVBkPl0mwY0pQl3PtNXVGJdeM/bqs53RetCeNZSwdG7edGZKcV/dbAWSC16lIKvtx2wnGsw7nbwP399SeMTkq6ZslXfeNaq8Z25UeeVR65G9Lz7mpHTG5Xd3h8dupDEIse/ytiWq/kOhgcE75AC+jnRvDNT8Ibf4JzN2u7yWgJKUMC31Jy+0ZELpNyzFBtIHjivo8M4MidYdmCsBV2WqPx3wrylj30wnNNir94fbo8E0RdS2/u39H6Y/iGttN25Htmq/KqaROZwAq587HEXfU5NPz4fmm3mcALv9nZlaqMyTbuO8XTaT8mP+p9eMcuoyDS5TBmdoePKpl+1E54OaP+4Fz4TJV0C+z59aj1Cduw3aN11ym4pF8sD9pec+R9nMAPb+UYV+jHU35Y9nKDlqm3VblEFbreqFSBl7uqT4PaUyfCbLyKaHcVIx+EIyTHBFY4B4Ntds4pnE0MKM0mf71NUauyVs6VVwkZiD8l1mDbJNk5cgILvupMhBuj0DZinMKQAr3EoRmmtvjIr+pxM2PyfxQCW+qGVsbgXSuCBrWJP3sZ0k/e0U7s2ygZMNuXrwe6Zx6vtz+cY0BAtcmjQVlZT9gSL4ZvaJDMIsywn/zUAHO5Meglg+Vu60Eh3toI9c+ZdfX+NtEpIwI51GmpHT03EZGtd1Ggv40PDN1gO8+GSVlPzcN9y6XdN3Xq/2q37dJ+qVvbE/nfpH0d4f2zmr8A3SUC8sXz/yvRDk/SG5HnvLmawuN+Zf6EaqHqWV6TmIsVZCD4+UzNAmAXJ9yvaoORHx8K8cqLe9370P+mrcf5Hdbc43Xys5l8p+Aj/OSznRmVRJYm7cVjIv61fpxprH8r+BaOvWUH4J/acxTynrqmwSdlHHrKP53f7NoI3XDmlrQZkNNVja0vPbMSHAv5ff9nKbqrXB0xipdTcpjTqbMgLhvZ5v8cLv7TL7cbx5J8xpaxj3WKhPE9oR63GMcu8dHTOH6iyhLPihfXut0AFbUdG3Op9unDcz9ZV4s8xX2MC9zjWUxy2ZQdT+H6pAOaT868JkUaTliQaPja1ToNDRTkc2FujGtjI6/7xc5qKIcafB4RMllCZzTMbKiyjETUFYRL18nQElwutCykqkMM69L4zfIMLqaBueuIofS+MiYFbfHTMckjwD4v69fITVEeUq65unSb8UYzR+Va5VVSSBEyrnLMVYKm/2cUy0jFYCnYzRlCHJtpbHTuxtlk/epNjMKmFFFjj2d0NnE52rfMZo/0zhKvNC4PwL6HA/Bs8fuuTmq8S8l76jJ7El1+X2EhgtPkfSlwyni35R0vyM6+kXSxW/ob/Va1fjZFK4Bx8KxG3gxAOA6zizQmVvgmtvfHL7nUc508BIMVWudTjRlMo8XeYwEdP7u+pYzAk8GhNhX1W8FhtOZYh1Go6kzXL8KKrF9g8HMmnOuKh3o+uk0cyyMaOfRTLfH46d8Jonj82e3z0xdOmOWCWcGj6kDdeq2FY0zPQlymamxfeHeS/vhcQn3PW63S31LZ4tOKNtKHUE9wCOv+cOLGaRzBplOHG0sTzmY6PR47TLokuA8g4r8IVyu/6qW9yLHZj1R2bkqA5jZmHlc57zyc/LK/WSbl/Lna8e0PF+WlXO68Ckdz3uqz0Ma04F3UtLbZ+SG96uoUNaXxkohDVhGdFnPfbgeFQ4pI4N8c4Z5NnipwCj7p2LyNYL6iqaup/F3WV/fz1hIXZGbCF4SuBKgpTEj7xmlzHGQP/MwV8t6vFfSn/64dJ/j0hs0Pv7l9hJIcA18PTNW7iPnnkaHwHAvrqVxd58EAL5Oo5CRvZX47rYr47Kr/rBuGhX2SSBLMJJgmJkWEw0WQUQ60Kwv3Ge00v1OyWKCsirKScfENPUbFpTDO6O2e2oH+UlD5wRxfr6FgMZFVXz2HPNVxwQFUg12PX6D0hvU3jxmh4fP/FBeMppLPitdtojylS41cX4p555nAp5L1H/53G3TiXH5FdRLZ5j9ZmDDlPWqoAvP1VcRcY6Fe5h7oHKwk6pg0kzLWQcC7PWCj3SiqiBTpYsdmKBzz9fnJu/eFwwo0DnkODKr5s/Zv79bljz3s7iXDnsGMah3zUPq0eST/GZQstIxDH6lY+A+0jY5qEbHvQqcKK5lIIE6sgrypX1Kxy/tiXnnvKRjQaeec0TbQ6ITT91OXV9hhUM6pP3oXiUvTL9zE2eki39S/XaSTOlXR5hoFNJB4X1prJwyusf0KhUA71f9ptJOZWNK5U+ezc88PtOJoyFfxTXfz8hiKmfOA6NKVKIeu/nyfZbx9Txe5OuO/PlXuH9Q0vfv9IedCbamlDCVLNdDuDZTf77F/NFZSkOWxodzSWPIeSY/VVt0XqSxMZKWeanWicaM+4EOEMGRyWtAooGq1pvlMlordfDq6zzPzjYZKc+oVIL7dAg5l27TR6B21QDUttov3WtT0j9wq6+VfuhI+6ngt/bnT7x/NoY2HNn2OKvsRTpe6XCR0glN8ENn1J9TD+VaUd+wbMqH+6FOSOAoLf+IoM+sC3XX1fw9vhiEoC51BmU4o9tc/4WW5ZL1TBnd9rMyUr02OY9VxDWDQ/6/iO/Zjh3bdY3lkzqC68VneDhWv0Y6QTvH4nt+SYT7T3ngHOzniLq819jXOZ/mubKpdl4rx3CK7JjTMfM46PyYV9ex3KfMJhZwffLv+7RJJmIM3/MRWuq2aj1S1irnmg7EFC/pmJ1Se+mHAywcbzqypCxXXbe8sl+Pjftqvzk/pEPaj+4VsmIgVUWuqNwYASbY4w8WZbuMKJsSCGRki8BQxT06FOZd8Z19EjhXRpWOBAEmx8FjBpVCStArtJlAk4bLyskKi06YFbr5S4WfY0qHiQDLfXqOCEjMp0HV7epRI4PdLS2DMPef40sAshvfXSczBAkYPI50TAkUcn7TuUheCe5IacQ5d5zPdMKSeNSO7REIZL0KxHm8ecynihZa9ujccTxZ12QZS1DriK37SFDF6L33/1G1Z+Ql6XpJ7/x/1R78+NaF9NQnSGfajX+5039EzhkM7q/KARU+76k/7Gs9QMM+j/Icq+eJ4yIgrNYh59ZzzsyccC91WsoRo6apO9iG96Mdv03V2QvK/iw+c2+k4586OHW36yfod/38XZpq/jmOSgdaB+RRI7ZHHUF5z4CB76fO8DUCdVOCSa5z/hq4nwliHyTqc8uW25nhM3nlGtJh4NxXDt9etJtOGsfGMTIoRRlNZ0UYX1VfUdbt0a5xjnIdbdOcqeJeoE2eRb3UpRlQom5e1fKcUC7Y3iVqz9Gd0LLMeu2n9LCvTWGHqj/vKTtnnBdimQudFp+mv0Ma04E/7pVkJeHIqBWIjxgxZUnFks6NNI7WSOONzTQpiZGLNNxpGBLIOKKbwHzq6EMqZSul6ugIsyw0JgT8uYlcj/2nEaqiVP6c88rvGcVlGUZYyV+On22m47SpBiarNZLG2bEEZYvis8tVx7o8juTDbcyjrIF1Oot5DCqNe/KR7VYykhHqKoPlewTMbDPBPeVvFvUJzha4l3vI68wf6GSfCRrYB/smgJaWf0QtxyCNjyOdV5OV42rR7UvUnpH/ZUlf8nLpGy6WdJV0629J/9/hntSilwno3Je0fKyGvFdHblymcgKl5WMorJNtJaBOR4/rmwA628j9aseMfXstUp8avO6pOSoLXDNwOoq682hP6nqAD9VX4zA/lGs6XOQp9zR151SQaRFtmE87uRVlUIJ7RBofiXJ7lN8MDnANMjs0pZMyEGSe+exgVU8aP++Sr9qtHPD97jPLSEeKMkH9J1yjPFe2mX3lc6Ssk23OUC5tMeumQ+TrqVur+kJ/U/aBMuqx7aFu9pdBgjPqgQCpr/vUCRC3W80L76dur2zklA47pEO6u3SvcFISCNhwMHLPCBzBFO/ZmJzT8sZ0+2nwfb1yAEwVSM1N7wg2wUIFHBOUEvzN8T9BTQUsWT55TeWfnytQqriWYIOGNsdCsqLjWfA8OkOwILXjV5ldMQBJB6tKrVMWMiqYvK4U93mPc8Dfk6mcNvNl+ZlyQoVrq6rXc8ppZn8JlKqILo1gOtbZD+Uu17qaP/KdzkkCkOyL/OWaTjluSQZcCRR3JL1HLRppGXm1pN+5TdLbWln/mOOG+muITStDG8c11i2V/CSgSYeRn6uIsK9b1ii/CfYSiFCP5J72WqyqA2E6VAbjefyvast9eV0uUvtdmW2NZSMBcUXW2esY1zktZzCqF50QkE85aAzEZADHa2nHKmVNWt43/pxRZfNAZ7/SiXnUJ+fF68v5Mz+sOxU0SAfS/VAGUt/lCxR4ZNJl7FDa0WIbfA4nncYpcG+iDaNcVyDcz+Dk/mNd8u97qZ9ct3JQKr3NMrTJe1EvZSbHnsGuzLKbJ55QuFUteOJ9Up0Y4HjdjoM8Dt6mLk6dZeJD8f7xZ5Nt2F2t6YVAVdDnnujzkMZUBeUOFDkikEZ5P7CXEahUXgSLCfq8cfOVjVVULOuY+EpRKhy3xyMWaVSpDLOM56JSrFTcLjtTPyfuMlVElIbZtBp1KmKqmACACpqGW7jutnnOlePg/C2K68nbysQ1p61n+POYqyMeBCFVPwRmOWfpIOZa0vmbUmZ0xBLcWJamDKvbTRBEovwQ0KbzXDkge3FfqhVQGlrXIQ/m059TPvJYYUbO+XCuI7lTcrqi/ordW9SN+tZw36BrR81BWahHLffwZyfGY6RM7GcQK4eXc0+HhQGYfC4hx5ffudcqMMugxbaWjxj5eJn3JEFPdWxrHmWsb+hker8RsKfTs6rmPB5XP5q3gbY8JvObAD7ngnqTQQveS4ciHTNngjz2DBzQueM8UF9VwHZL9fGxJDuQ6aCSGJCoAgB2RrkmecSJeyr1t2WPunXqmGOOMx1mRTnXXUHZdIp8nf85dvZPOeRacD9UttLzYt6td6gf51qWWzqhLLuIP15jO0LdnM8MClVBDvNO/ejPLOvxrE58Z79VYMoOi9t2wGdK1x7SISUdeCelilSSUknl/yr9b2VEBZygle9uz0iF26EioANhvqikqUAI7qtjAlSY+0XfyX8qcfJGhT9Xfw+7iVHIKaeNytXt2fiRr2qdsl3OhetUxpb87dceI0UZxXb5jL6txH+34/I5FgIjrw3b9JjY95QTnYAo5zydH7cxFZ2bcngzasiy+T0VSc6JyxqouEzOA41s1k9y2akjCwTw0vI+cfv8cceqLYKzuTpQXJP0YEnXSjo9lNtSf3B+oQ4U3T+BCiPLPnpKEOD5St3C7x6ffx9FGv9IKcfJoysVcElnUyjHh2PTGSfAoR7JbLX7M/A9pXZ8znO6q+ZobGi8v/ybMVVU2UB6VS2T8s2Srh7ubQzlMiORTnI6A14D621mndlW6mtpLLs85lXpRTsbnGOuR47bTg9/U0bqzqH3lv9bTvZQh/svAxLC2Olc85kFr4l1EPcyAXiCZ4LyLF+V49voGBRK55LOc2WnuU/S8a6IciKNg5yVw+f1ob3NvTHlfFWBCdpkl2eAzXW8njlm1vM1j9snQIgneKwrA3mV80MbybqJszyPXrPUA/vp9UM6JNKBP+6V4Ccj3CZuauEzN3AamnQ8rKRyA9IhqfpJIEUDSmXrdplCzeh0GvMEtKu4loC+UsJpfK14MlrOMowATdFU1Nh9V1FE829FzmN3Ca7Yf9UGx+X5TCO2p34ci9FNrifnkAaxMkTklXVdp4rg0QhWBoGgSOprm/KRTo3lgPIglCWgJ7+VXGQ2KPtLY8rrfEsXwQhf22syP+mQk7cMMnCs0nhuyTvBXAIb87CNPv1q4evVjlJsqr8+NdfVhnpbPbtBR8SgzOUzqmm+PZbcOwQyeyiX81MBfToefsg+Mwl8XsB1zDsfds/jVF538kyAc0zj+feb91bUn0eRunymPFhO19ScnGdKuu8LpeteLv3kq3qmy22sRd05/mfQh/ok5T7r0hkgX9zT0rJtyIfzOV85VvJGvcvnQqzDvK/SvvE4WjpDFWCea/mYHYN3uUcrPeHrnCtFebaRsuL/1Kd0BCxH5i3Xjvp6KpCSOp3yW+lqaTyXC/BgPlY1PqLtMVZYgI4Qgz/U7WlH8ogi9SJ1IOWNuIFlU9ZSFmhPKOv+z7ayHddJmftMcFKqPXFP9HlIYzrwmRSpb0RvFv73pvOGziMMVG6r8ZlEhULFkpRRuv2AfBWRX2islDIyVkU0qBzT4Unw7muOnlU8KK6lAjURKGaEJevOok4VzfG6EfR6bStAl7zy2E+27XoGCOa5MoAsb/6ZXcrolymzRv6cYMLgjcbWbWaUsgIGlNE8euPrc/xfoEwabjrMPDqTe2lqXMlTZaBzH6RsEsyT34oIXthe1T+dvKO4xqNijtKnzLjOnvrD8uQxga/7PK/lcbmtVfXjSrzv/ugkc74Y1Uww5r3FvcioNh1Uyv9MLatROTs5JuFa6gnz7KwK121r+HMWyA/d53EQtss54R6YqR3F03slfWhZH9PZJ1VO9Ur8VWvpcnToqFuroMJe1PHn1FV2DqRxG5aRSjfmXFRRcr6ClkEt6/qpTO5MYwcvHWjLGPU6eVlFGWZkhD4tw5U+qMbnucv5o5Ps8pWuqJwYgT/ymPY87YDHkbbB/NHGpY71GtBZoD2jXeFaTmEU8kPn3m1Sd1CWKseSY/Z87+c4sx6JzhTbOqRDujt04DMp0lghEZj4Ow1MGuOMRBP0k3JTV2Dd9xM4sN2Vol5GoKpjRTRCSZWTk1F79+Pv+ykRRms5p+Q5++acZdSIZAOYSttEsEjFyMgTj2+xfyp/AnNGl2hs0jhZRhL0Z8TLNBW55n0TwY7/W7FnBLaSFd5zncyCkJ9ZlM/oYcpn8pX8u6+MnrFOrjfll3si5SvHruB3alzJY8prjj0jj3P1B7l93MkgZlN9nvzc1hl1h4N9+yFuOnYkrj37y9fEZvmULWY1qgBJBaxW1I8dzTXOhuR6Muvm/XV6aOOseqaIc+Dsk9vgfrRjuKvusBAMZTDF85fg3sfEXiLpqp9rDwpvqesI10k5Wkx8z/mj48HyngsGMAgMSeZlXcv6Teq6e2v4zwwJ9U/uzZRnkp3i/QB1AswqgJNRff+avaJe8sL2si1+p17mXmYwxJlL4R7/U8dQ19AOcN6ngoO5JtWRppQl2pHKgRSuVTiCc7IfDkj+Kr65VtSnJOoP76O0hdJy1ifXjY5H2nnec9aNgY3PhExKFey8J/o8pDEdeCcljQiVGv/bQLtOHvtgJILKZqFxGpXRTNYh4CQl0KRBzaM4bDNBsssnJXhLpyT7z+g3DTHb20957eGzNzoVVDpwdAjpcJBvEq8RrNAAuL8pJ9NrlE6b0/THor7U5YNHqRjZTSOVRpsRTFICQtfPdZbG8z5Vh+OXlmWd5el0paORR1gsD5kNmSLPT+VMmVK2KvDBvqbkgkDfMuY9nPvQ9TlWZkAqoOF6a+qvy+U9834U5TIqncES8sRM1izacrQ7+aYuSFCf8s7x2KnKV8gyc5Br5l+iXmj8q9QEjke1/NsIOf+UH5fdVQPvzPzx6BIBWBX8MQ9rkj6EsW9pWX9yr1nm+Ts5/LX5DMDYLtCBpGPi7/mmKo/DmTfqHVMeEzQfyZPHQT3CtahA715xj0DRc8sxctx2nNz3nsZvcDI/3LNuh2so9E/7lhkC9k0eGWhh8IL1XcbHdD0v7psZBupx2j06pW6z0sXUQVXQMnVlBig9l5XTkbLOsXOfZ7/EDql/uL+974lnUjapixksc/vENVyfDDJQvqSxLB/SId0VHXgnJYESHRBuUG8oGteMYnOz0eBVhtOKmlGLKjLta6kEZ/Hfn1c0HgsVBpULI0hWjh4XFUoaBL6Hn45PZRTNA3nMSIwpAV8VMeBxBBIVe9bPiEwVWct+fY2/wVGNje0wSlU5OlK9Vhnxr8ZmShlkm5WTQKeEbdCAZOaIAJxGKnmpInYZLU7KozDVWKsIYTr+2Xf2lY5U7iU6X4zQpsxkhJqAn4CO4GKm8a+oE9CeGO5vafwbD+4/Awlu13zxLUrcs5yDBHGW8XSKVtUjwRyfo5p8g6Aj4+TFYJtgRmoZCwJqO2zHMcZjGp/H93pQ7xpInh/m7ZRaBuS2Yix35UgaDG+r6xDzeHd0kyl/4DPl0XxwbQmWWYZ9pyy63PpQZjvG5b7dPh8iJ9mWZXaJoDvl9O4EBKq5Sce6yohIY5l32xlQIz8LTY/N/1MP0UnnOFLXJ99cfwJ56gZnbGxLuc9cL8czK757PRjIIqBPHSP8516l/uL8c7yUtbSHlXPv9jJw4zZzft2OeaC+ruaoCu6YqkDthUpVQPGe6POQxnTgnRRu0kqZUbnmJqPRSaUj9agqiYqFbRE0EzikkmD0gUCMCmldy6+XZFn/z6hIRneE72nQM+rra1QwlTLLPhKYmuhA5DhZP4FdRhFtEPiAuw2AI7UV4JmpZ8B4zXyY3MY5LT9UXGWN0hCl7JE/rhUj4DRC87iea8Q1IBH05PhnUZcOdR4FqQywP6fxS/Cf8uH1nTLO7pNrnpH1FfyxLPdVOgQJsDO6KdSrHCLfT8dduOdxEXxxTvg9+3B7Bqccq/c6I93535mAhaSTGr+tjPLp8gQ6ivJsO53mExifn1e5Sk0P3qD+hq6FmtOxqfGbxnLeeJyNgLkCbelAmJjJXAw8VGDVMufMCY8r8cUAM1wzD5VM8H7qt3zRgPt3XY+Ret5H31iv2r9Jbs97wXot5S/3Kvd+8snIeeqOKlOjfb4nuX1n87IP85wBNOp2f3c/VSAuwXoGophRIN+ZDRfup14TytEeUIenreU922jyRT7poKQdqcZmB4PXzW/qnUq3+z8dFden02Z+qnbYVjqKU1jgkA5pPzrwToq0DEoIJCtPP7MpvEdD642foCgVE/lIhZxZhQTfee8SSZeqPSS6ib7Nb7aTitvKf1Ud2FfRIfZtJZxAbh73K+MlLWdtqOAyullF81z/qBoI2x3Gvoj75iUNThWZphPhchntJbDO+aFhkMYGdCptLo3XQyjP9c7sTGU4qfjTUaE8MNOWxiKNCR2XBJQJcHyN8ud7lUFP45lHZChzBCDmr4q+7UVZZkx9zXLjB7KlZX3A8Uzt92qdDS4dfb19uG5Azcj2edyr1tkPRdPRIpDmERzP8bFhTMyKpAMijMEZigSG1S+Hc23oMN4+XHuopO+QdJ9Lhws3S7+xkP6buvzbKeR6Myvg8e2o6bM8luN+6ZxaRj2WCrit4p401l1es3mU5zU6DpyfymGZIq4H9926uiykY+RydGy5n+hYZLCGQbR0+n2f+5xA/Th4NaUtoeNaOeBV4Itj4T7i2mTgo4rs838C/Zwbl1lEOe6JqQDJFB/p9E6B7zk+u57fUpe2wfUzY8IMD50D2jJmfLkeiS3c/37BrNTVJM/BrsbrkOuXdaRl+azW6JAO6e7QgXdS+DB5KkwC7ipileA6nQaConz7iRUNsyDe7JlmT4OQ0T8CuvMYR0Y6yLNwT+pHm1yPirUy8qksVZQzEaxWgDKzPVRQzmYkiOZ/zvGVag7KVvTPOU9HgFmKBM9cz3xFJx0NgtRqbB4fwXIVlVzV+Mf/si4NezoMdCwIHv3d7SSvlUGvKMFNyjvLsI2q3XSyPT7Kp2WGxne1uJa8kT/2l0c4TBmxZzm3nc8LpMzmmDwuZzEY9Zzjz85HAhHza7DtDM8Mf3xWwo4IZfac+qtm3fam+jr4uFc6ffkQMrMCBFQL9R8ynasdx9pTe1j+O4bP9zku6cHSzTdJT1V7ecC7gg/uKbdPeV9Ty9Jsavy7MpldJPiz40fdZN3jOfJv2eQaul/fN9lZySyI54dO3Pm4zv/sz28t20U9Oh9c43TwKz1eBTH8/VzUyyAC9wZ1pkFwZi9y71keKEdC2SqDUQF66kPq1hyj981u1CNPpHTIOA+0CZUNsM7mPiZVutHjJo4weV2q3wpiJoXyS0csMYLwvQrYcDzEK4lrct4ysJpB1angIwMG7DP1aoWrPlMog1b3VJ+HNKZ7XfaNA/arFwlsaQi9EXPjZjkaJ4J/oT6j5ZVRI9Chss3o0Jbaw6GbKJegLHmyosnjL+SBCicjZdnuPMoxO8MUdjoB7CeBdBqzVNp7akfrblQDQm67ciiEelMRtQSMHh/XzcaN0W2Wo4GnseVakvg2I65J1b/nkc8IsQ+OgTwyQkrHwXJeUYIkaRwJo8Env0IZabyGvkcyuCSv6diwTc7xVGTTcz/luC/iPuVhD/cTmOb6cSzUAQmMPIf8PRQTMxJeW5dP8EUDbzC8ofFvWlys/gv368O9h0l6vNoxLMvXXM0JWNc4GDBTj6IL7ea4ycO6WhblPhdLF32RpBvukH73Dp1+Q9NNT4h5sbxr+E/Hwvr3pKQr1I6IkQ+ucwYeTBU45GcCWxKdDJdJh6WioxPXuYeroFNmr9KBo9MrLe8dt5XANvcpZcztWJ9y3VeLutnnqsZ2w06IdSblhTyRX/Owp7FjbF4YWGIWkPso54PtUucmmLHj5Fe6e+7MD/UW+5/hP0E415WOnYlBrl2NXy7AMZvXzEBTx1KvUi97HjlneZTLunVKh1XBg5x7E+XGbZsPoV5eT15YN/fsIR3SfnTgMynp3fuaI3hSB09VhCjBAyMLVdQlwVSCcLeVUZssS+VoYqTX4xLK5vjIT0aJMxLN9lmffEwZoCSOazXKmhc+L8LrGdGigpakj2L8dCSF+pyDNCR0fmwMGEViHRpoKvGM0FVAu3J8JekytWzQTZI+oPG6ZxsJMDJilRFCrjGPAfi+ov4UJeDwvNLAM8vmvisj53F4DDwvb+LaVxFz7g+CePKY0eO5xhmDPMLHsVZOVh4nSh1i8sPuzgCkEyD1V/OS6Dw54roXde0ceH63wNua2tHPM0P9DbVMxiM/a6i0Jb1mT/rtoX9nDbbV59V8MAKea+eH7DlXG1JLA34HCv7l79aOfknHNdYdK1r+Icj8v63+g5i+lnvc88/1TJ1kcGjwXjms5CMjxavD2LbUj6XNNd57/KOTkGNaV88m2RmzU2qZYmbdc1sFkFK3JyUfUp0ZmdIzvkc7kTqbtKaxXq32s6+nw5btJXDlfYPxlM20TXnaYBZ10llIZ6PKmmTQT2gzHaw9fJfGzmIGHdiey5qPlHlfzzWcxbUp3STcd72cS8s2g3gpF8e0zAf5z8wP255F3YWW+7hQqQra3BN9HtKYDnwmJUEINwg/V4rK/xOgsr0qgs/IAaPQNHAEXCxb9c+6FY/u0wo3ozKkBOkJ4Nl2Kr8cp8eWfaRhMv/kaSpLI00rUoJAOg9UkFaaHCP75meDQq4vHR1Go6Yc0Rw7jZbrcd2ulPQlkh6k+rcG6KTRgNBhqhT8fhs5MxB0jDIiyPUmaE6ZZnvVkawpBe92KHuMXpI/y1YaZKFcHumjQ8PX6krLa5h70Ncz40jwsIjrzIhUOiQzNCSWdznuDddnlNJrdXy454zAUyVdLen8JyVdI310T7pW0lcOdXfQB/tlZstHUzhnPk42R7mbBkb/9OmS9F2Sfl/62l/S6ZX2bAn3srM8q7juMdnZ2lKrt6UePMrgRjoJnivLr9ctgTP19floh3MxU8tAfYfa3pTG/XHPeQ+saflZFvO1ov7SAzp6PLqUoG+GutV+zHFRFrkXGFDI+lwX6mYC7NTxGYhIwCyNf3GdddPRd3+5p9xe6lPqUstgzk06D4oynlMGKqp5pcPotckgl/lnf6mPpzIH7pf6iDYmHRrWo33PQKK0zEflZPG7+bCscP25LpzHdPpNqZNJuUa00Yd0SHeHDryTwkgMr+WfNFZOVdQjQRSvSeNMQNZxvwS3VIpZlhGH1ajLyIf5z7fCMDPk/mgYU0FWgsDxMqqYUfN0RNh+KlLzl2OfiiBUip5trmmZqHCnxuW1XlUDE9JYWadhdHtsY0VjRe56x/CZxngu6T2SXi/p/eqgKZ1YyhadJ66pnzFyHUZOpbFxpQEW2mBWJKPB+0W83Fa2z6MbBFxV1iZlmOC4AgbCNQPEdLiZnTDxGuczI5gelzRuw84hMx0e04oa+N/U+FWwU+CBc+N+uBYcpzMGXluhrLMqZ4b7pyQ9cqV9P3rHr0mvvEP3u+M79X5J12jIfGicNanAFYFv5WQfH+69V9I7d6T7HJP+5Mi/1QeOfLn0O9KfLqRXapwhSIePD+b76MpRteNodryclaLTRKqyhJUDn8ESPtcz1/Jvk5xQm0sesayCRL5PJ95ZmFU1mTirliGy7HhevUeor9PRSZ2Y9mEK4KUsVU5z5eyzLinBuutVNi33lyltWqULmHWgbUk75v1VZdlzj0nTGZKFxoGFKdvi+1NZRlMlo5wvtpcAP0F85Vym41U5uFUgNNfO5WxLmGHKI2PkfSpLXjl6xAhsJ/XigQeeh/QpowN/3EsaP7joyAqj8dIYdErLae9UZiybkUley83ojZxRCoEvf3b9VPSpFAkqEjwzamcFtd9RH6kDiMopo5Eib4yGJ3CfUnAGDjTQGaWveBPGMWXISWl8EtBva7m/ql3PZSrdqs9sx/J2VtIbhmt8iJhERzbn3fLlFDyjbtkOf9BsygmseHVbeTTLcsc9QjmjM0bwYsojaiQbSfdBmaO8p+HNSKu0vC6URRrePF6WRt/zXTlOdLKmQE6O07wzsp5zxLFnIIARTvbhtk5/liR96/DtV3Sx/q02tHyUrAKTUteR3FeWIT/c7nK/Lunmc9KTJM2OSe88J/2umnzP1QD7dvTrtheYg/PDtWNqwYItzMMUn9Xaz1S/0pj7Ryir+H5ejf83q2V1vM8JmBl1JrikM1YFhvLHHSnDK+oP03N8lFOCW9okjtNj5TFM77U13J/Sj3QgZnGdfdH2pU2snAPuW2Zjqj1H/ZB2j8516hoSAX3Kx5TzYj4ye8eyXhOuYQZ0yKvnjsEk9lUFMxJr0B5O6fGcj6R0Kt1+5TSkTiNO4dG2qXlcVX+bH8eQWMrtX+hU2eZ7os9DGtOBd1JSyUpjRZRZCioFKy4qx1RO2U8ekcqjRxnhpkLLdtPhqMA/AVxGU9w/FQSNGPlklJV87eG6y6WTlSCRc5rOYPabc1s5NFK9eWnwst0Ec56HqWg3jVoaWUazq0wZDUQV6aOhIyU4yTFybsw/ec9sRlKm8N0mf/vF/dL5cr+eK779iX8J4kzmzwaa8uz71R5UcZ9EI+p2GalP8DPT8p533UomOZYcn/vIdvwK4u3hGgFmBZDMEzMlvsb+p6KmVXDljKRbF9LmJ6UHfuCI9MDXSL/xBM3UnAYec3K/2R95IfBxX37tt8d4u9rzLr8nSeda9oBR6q1hTjwOA/V19XXbGO6fUX8F8Yb68xzMHpqv1KeKa4u4TmdzVWMd4HnwkTk6VdzHdM4XGgM1B8C2tCy3lUOeYJQ63Lx7nL6+V5Rh25T9dKaTJ4Jd7qXK8amcfMoG+690sHCfc54ZLu6ZysHhvJsHtk2AXe0/2qXMSlKmcr3dPnHAlLNAm0rdad7JS9VGZa+r+aQTV81Bls11SZ1GHb0S5dOx4veUI/fPoCOd2hznfoG9Qzok0oF3UqRlEEmFRIDGH01jJDEjDFJ9Xj/Bg40fgVJGiKg8SOyH9xjRMa2qGcn93jzD6GM+FJxAkQqP86ao53HmkaHsO8dMotKeMopZvuoj+UqQl06JoizHMFP/sbFttMtz5Rxb5Shw3FPRQzp8q6rnio4eDZfleBf/K6cko3YEOLkvVjR+VbWP9yjK7qmWC393Hb9eOmWLe4kgQJoGAlyrheox0IH0PZenjFDupfH+djsGyFXUncQHrOnIOjo/BTTcFvmrnDh+9/72kaIN9YfiXyPpayR99EHStp6giyTdb0X6t4surwbUqxof9SDwJADPNTEQn+EaXxjgPTJXl0u2J43fMpeyTgfJ+4b7i44jwY/7vDsg0pQBH/7opPsnn9UPPrreefVfj/cbzHiEK21GZg2r39Egb9K0LNIp4fxlMMzjyEy/eRfKVnqUAJ9jYhmXczvpcEwFKRLUJ1D2tQoYV6cPPAbyNhvGOdf49fVcYzoSGYSj8+trU6cS6BybL47XxPmp7BqzuN5racsyiMg1X9GyzFdBNf/PQJV5Z7CscoYZ2EoZVdSdcqguRKIc3ZN9HtKYUhceSKJSzKMViuuL+MuNnmCEwHBP4/b9AGhu3DQA2W7lJKSyodLb09gZSgNSRdL4nUA4KetnZNmGInkiH1POiykjWBk5znllG8fAAyNojHhOHfVgu3SyMgK3h3vJl8c3VTfl55zG82GwQgCjKM+sntuz8+y+/FYlAm62ldFPO2Ict42U/1z/oZKeOPSRDsUC9dL5Z9+UjwRki2E8dKTTEeL8pDymA51HZDjmqShx6oJZlHf7/O5nDQzUPW9zjV+1y7l3VoMZ1Iwwp0Gns3Ne3ZFcVT8i9RZJvzrUf/BQ9t8u2i/Bz9SOalUgIgMCaxrvW+5NgzwGSk6pvbFuA7xbZrkudCRNZ9UyJutqr0zeGMaypXEggPJp4hxxD/tekh/S9zpUQRWvpVDGfPM5mQ30tdD4OB0DCRy3ZcmZN87Dfq8dNlFP87vrpdNuPVGBxpThKlhBfZp2gX35+27cnxqD1Pc3ASsdFKFtrwN18FTAJ4FzBh921Zz71Ndsiw5kBqE4vrvKWC2K7+arai/HlYEwrxHXJQMrfHkB7ShtER0O9s+2aNf24lruMep/zjnrVk7fIR3S3aUDn0nhBid49YZhBD0NV0YZrEyraLdpvyghN3Y6Dm47sxJVBCsVOhUugaoj2ZlF8PjzeFcqEvJTKal0KDKT5HZcPp0998t5WY2ylUFyRJj97mrcF492ENgSiDNiRN52UXdV3ZDzhzQN5s5rvNacL4L2PM5QRfo8J4wi0vFK55hzvNDynGZfLkt5TeDH6wZ2j5N0udpbnTbBdzobrmd+OBbf5w/OcWxV5LiKoKQsV2Pg/LEcx0fZzaiv551AKkFPgivyTXCbwQbLkucm9xDHw30+1/IvoG+pZ/e2Jb1d7cUMBvvkZUP9x0MZmeV+TqCa68KsovfVWfUMwgx9+P9M4wAKyXJ8bmh7V+PnXlIH+r/BPokBJTpWBOpzjR2Vai9y75rM05Z6JH5P/TdmzCtfj0xnR5rOqiW/FXFc6bRVutftVs4aZSp1TwZTsvyUrpfGv2eS7fo622N9v9KYDgntQlKeLKC8TpWTxuuTANq8+Zr/Z3YubZaKe9KyTqCeSEcleXewwO1O2c2qj+yb5LXZi2t0bKf0YQbpaM8yyJX9p56uAo4XItHBuyf7PKQxHXgnxcebpiIbJjoXVq50GFKxUNHRIagcDToGrO+6BDKMoJovGgpGzcgTN/5qXOO4M7qeCpBkpZN1aMQzguzvyVcVVaVx9HjmRbnkgUdJyOusKMsoNUG1cJ1glUaAzmmCzWruEhRPtcs2GLmba/lh9XSimLWiE5POkFCPkWMaXQJt83AuxrUr6a1qEfmb0GYlb8ln8pFyTABDHiqZrKJvedwiy9D4ZuTWlAY5938GJfjZID/XwPPj6wTUmWGZAgbkbRZ1ffTI0f1jGp8tX6g/72T9t6sGqv38jOXOR/rclsdFYCL1zB1//FFqzojBv0G++6fTQ4Di+T0x/H1I0m3DvcvUQf62alCUGYIpw04nOcFY5QCtD/c8Jg3jcgZpU2Pd53HmXmCZymGe45plqHKuhHIZ1Kr2X0bk0+5QN6ez7blynxXgJaDP+uTB45oKfqn4LI3f1DiPz5bH1D2m/caezlIG+KpAQfKYgcHsMzMMq1Ens0Gc6wwiZf+pH6jDmO3aD/xbB5jo8JtPzlnaJfLiMZMfU2KN/E0dBjgO6ZDuDh14J2W/zZvR34p49IMREYItlrMhpwOTCtQ/rJY8pLKikk2+CWYr41sRDctUtCqVKDMtVFZUOjyeMzWPi+J+Og1VlM1GropgEbgcQzkbNM6LcI0R/FX1qC/bdPTXRwQI8KxkPYf+dXGvV0ZPE+Bm5I5z4HlJh8dglOvmsfDNdQnA6fi6Tzsj6UjzaJn73ZX0DrSf/VSRYUVZ93NO47eSVRlMOuFsL8n1c7zptKS85Bi4t9l/BUYScPk75yaBxEx9v1cAhU4r5yvBKfeKQYvbtGws1H+V3r/PYcB4XtJFw3+XOav+CmCCLDtVGUV3/54Tzl/KnqPB5J9jWqg7IWuSHqXmCN889M/z9zxOJ7SXe4SfM8jE/ZKg2U4I297Qnb+JqTPq2VW+ftjZXI+B2ZOKp+o3cxLcqvhu/cN7jIgTUGYb1R5hgCP1Dnmi3uCYDD49x9J4D801zlgpylROAfcLKfU+/3vOCbSz7QT5nrcMJlYBDAYB0zlLXTOP+/6coDydxMQGGRjNIF9m6iunIfXZVOAu5YVlppxJBn1znJV9Thl0PTqkh3RI+9GBd1JMBBbptDALII03fEYgcsPSOLg+Hz6m0vR/bvKM0FBZZgSYSpjGRlGXvFZHCQhepyLRNFh3x3lKp81UGc6sU2WYEqSmApyKnvqeAU7yRFCYfFPJu/2LhutbGh+34HEvl2WU15Fstp/rlZkuRgvdVp71TuPBNtLpILimkcjIllCOxAeF7XClIaN8MVqY8mZ5TlmXxoaXvGeUtnqdp8sz+utr6TAwkkyws4LPBNyVQ+W2hTYycl7959hStjOaOo/r+dyAx7Sn8bpK/XkOyo3bOjN8tuzaQfeaHRuubQVv1EfpnDBQwOekCA45Fkamt4Y6l0q6YuD5Jo0fbGYfOe+cE8vP+bjGY6DVi0WcCdsa2uOzAH4onvJV9e19wH7Ih9Qfpif/1ZikMTBfqD8LZvmdctwV95jNMH/McpvYF3mYciiE8lx/1q3aT7mnLcl6aVszOJCZGerZan44DgZHeL8KmFDfLKL8XtQzP/OiLvVKOiwztOexZ7/EEK7L4F06WsyUSGPZnaK0lZR581AFNqk//T2DBb6eztWFTOlk31N9HtKY7jVOCgGRNE6TUnnamLA834ZFUEAwyQ0qfHa5NNrkKyMgCbZcLoGcVBtNRvTZliPxqaB55IDt0vimYU1FTp4q5ygVsZ019mXQlGCZ/RJIsl2CIcVnKkdTZj38MOuWehZlJukk6u3iekbR2C8jpnkcKA1byqXHlAaI65IAQRrLZx7nokO8UtQx0akhIOXRIfNHsEnZXqC+ZY3yL9Qj6GdmStGGNJ4f10lZ4J7kGNNosn4VyfY+M//HNd5nDGC4HPszUXek00LQWgUXrItWtPyqavbFKKY0fm7EGYIEfDvqzsnqwOPm8N1ZwWMay6H7s+yvqr/swNnEdfUMg3nxGKu3Xc3U5vYWSW9Uc1C8VswYEpjPNXYCqC+refbnFfDgIJEzNN5TG8MYblV/9ipBoTReK/fLvvjfOsPlzD/5TX2X0foMYuwXRU+APBU1l8a6mDLi67YXaWOoj9zXOdxPWZ5HeR893O+kgDSWhdzT7iePx/p+EuWYAZXsL/tge5Wdnsp4JC+5VpRxaTmwmTKQdemIZB1peV+QKgziOtSHXmvbDcqWyzNbSmIgI+Xq7jhMh3RIpgPvpBDEZrTXxI3IaFumrL3REtgkYEzj4mheOjAu6/+O0JsywrytMbDnGLNvl6Fidh8EWqv4S6CfiiSBaRoPPitSRT+tWBmhocPjtv1H4JoApzJMuQ50Ik2LKMco6Z4aUJmpA5gbUZeO3FRGgcR5OjF8P6PxUSvPCR3IBPQE4wmuq0i/tDynKsp43CkjPj5EY1RRgheur7TsnOQ6kDdFGdfhOhEwEqhx/7rtBIBVgICyRzngGhwr6hKYTAUfCCgro0zDnWuZlM4Cj4P5/jY+m6c9lLPj7KNd1nMZtLFj5HtVkIEAmOu7oZ7JYRDC67AV42PdHZRLGWD/HHs+w8CM0zyuVdko6z2vozMPC0kXa+zIWL58n3OfIJs8rWkctCBvpikHlGNNJ5p2g454OuUZJNgvi0r7QAc8dflqXOfYuAdpu3KPUqdkW9yT5jPnoALnzHrxLXWWK+6v1FXSeA6mxsi147xWY82gIu0M2xPK0Akl5dxlAIdrmc5MylflsKbeofNBvcPv3jOrWtZNaTPSXp7ThU93qN6b/6v7PKQxVfJ6oCi9fysKGh2pKydGDRwRzOwFwTzbmsU9kqOhCaZMCcwJbhxVdoYnwd4uPqeCqBaYfGakOpUJjYPbrkCtVGdA9osyplEliJiKTLnNBGo8AsDoX47JkeNsb6YGso6rK941tUyKI6yOTK+qv3LVx70oA5xf39/V+PXDKTNToF0arzdBC6P4NMCUafIzJZv8Tjk0MRtUZR78PQF/Usq966QR9HXeZ3aI0W/XS1ll9so8JSirHKRFcY9zS8fHWQOCqdyfadilZT3CdquXfJgyQm3KYIjvWy/k0aMdjR9Kp4N/kcYPu3peuf52vFlmV80BpyNioDhXd0LsXKyr/wjiQyV9raRrhjbdxlGNsw5ed8vjVKCGa2UHwUfZmJWaqe13Aiu3fw7XpLGec/u0FZzL/IX5KfL98xPluAdT5xoES3XgijxK47elUT+lzmZgJYM5yVfqDfJZzRHLVnve9fnbQ1NOe/IsjV/5P48/HkUkn/ycOjgBd9o+8meHhnPs8gya+B4dCbbnfmkT2U4VnDPvlI100FwmnVfPd5ZLDOG/1fheOegz/OWccbyHdEh3hw58JsWKtvKIM7NBZZUb2/+pBL0JM+pUAauM6rL/BK6OpNC5MvGVtzQA5NHXKoVGIyTwS6DNa1UkjWOwIp9rDGSkcYSnisL4OxU059AOQ0YTGS3LyJ3/ezxU3kJ9ko+4nFA76mFj91RJTxq08pvPSb+pbuxPDe3uqH5mKY28xyEtv8+en/NH9nyda5uR3DRUnHPPp+eEAIeyJtSxkSIYofySyGP1A4EJbtJ54PWUhTT4HnuCUzrLdFQpYxw7QZrHx7GwHe7B7D/limUzms8f+GPApMqAJTDj/sx7XJMTaMv7wzJAEO0/OwwMjth5WVf/sUg6Hh4319efvTeoY+w4WeYJ+Lg3NtV+xd71+TC/+fb6+AUMnhvzlPquAtbravPkcW2hLB+Kr95OVuk/Ai+vZ6WrKjBX6TXyPhW8oBxaJvgaX+4nZooodyZmA12WMpxZpNT1LpPf3WbuCZ4qYF3OJ49bc13T6cs9WjmFdjjJG9cjA5irBY/kpdJhK9FGjr1yiGg33dc5lKFdd1+ZmaFNmCLqTWm8Fv7OY6eklF2fAOA92xLfo7zkXHGOKjx2SIdU0YF3UriBCQoYJfS5YYJb1nd5KziCz1R66Vy4fTooqUyppBOMmty+o/ls3wAtjYfJbTIqVKVlbRQJ8I7H98roUnma5ho/eCyNFW86auQ5szrZNx0RjpkRK65DRrJIXPPtoc/jkr5P0kM+R/rEx5sCvu649KAd6flqbyA6qw7+vcYed85xBYg9dgIcjsvX0kgm8E6AlAA/++WaVM6OjY2Pn9kJzzXOuSQ49j3vNRrEbINAiwCH91nX9wzK3Hfu2wpQSvXREs4hAUMadM6p+3a2YC/KELzTQaFscl4ICDkWOpWVTCvG42t+rip1gp0mBgXYl+V4XeOsIsfOjKLb2gYvq6jnt+KdUnPob8Yc+N4NavtpW03uTg7f99DG+tD+psZyUkXlTRsav1p5MfS3oR5gyH2SuodyP+Ws5n9/9hpXuvOunBjuZ89x2gz2yWy6j+pM2TEV9yhL3HN0+l2/ejMT9RzbdnsZwPIaWh8xMMZ63Eeps3Js/J4BhwzEsS/3v6IxL+lQUBcToCff1GucD1+j7maAwPWr4FHquKmTBunI0L4RKxD/pCPkeU4dkVgqHb39ZI66znxe6JR77p7q85DGtJ8T/uei//k//6d+7Md+TA94wAN0n/vcR1dddZX+0T/6R1osuhq544479OM//uO67LLLdJ/73Edf9mVfpj/6oz8atXPu3Dn97b/9t/U5n/M5Wl9f19d//dfrIx/5yJ+Zn1Q2GXWh0s0ohVBuKgKdUZUqcuH2HG1MQ+h+XN4PrVIhpeKgsqTiT6NIBVIp+ARMVfpduOZ29rRsODKKROWrohwBmzSe51SIHGsqunTm6LxwHU35KlCX2RrKPVrSQy6V5h+XPvuOZ+r0Ha+SHiV99jHpSRr/mKQj0QajXrfkjYCXoLBy7riGVJQsT8Vvqtpa0dgg+dgDo6Kcv5QlOoOpQPM757tSLAYAmY3keKsjBwQA3Lt0cJIqY+h+eQTBZTmfXCM7nQnm0wlhO+Q596O0vCe8FnzrH/eY1F8jzHlNvcVsruv4mt9UleT1p36zs7KlDpI31NdOw3f+XaT6RQKu6zeOXaLmhJxUczy21ZyQK9QcmT317AbXdz6U80sMci+sqjsgPtol3LdjZUdpS+N9OlPPIjGLkkCR/0kzjV9F7n5zP9NBORr1pbHcsDyz6xxXUoK/PLZT8U75Mb+pO+kQzjXW/+SjCo7k2Cpn30GBtD+ewwTtqf/4nW1kRibBsj+nTqDTknghgx60Tyk3GQhK3XIO16hfch1XUb+SyWqOvT5TckO+PTbOQ6WTK/tEXtIWu27O/yEd0t2lT7mT8lM/9VP6hV/4Bb3gBS/QH//xH+t5z3uefvqnf1r/4l/8izvLPO95z9PP/MzP6AUveIHe/OY36/Tp0/qqr/oqbW1t3VnmGc94hl7+8pfr137t1/Ta175Wn/zkJ/W1X/u1ms//bL6mDWtGcdPQpfKo2kgFkQZeGityK1fTQuM3R9F5kfpxCSq+qehXFT1NYD/XsrKj4s6+aKSohFLxEnBbEaVRy/nYL8rN+Zhy8ExUdJWxk5ajWfwjmGA9OrKXS9KmNPsvkvQzkr5Cev236fZz0oOi/12Nz9un4iffNEKmFY1fFZpRuJyrNLw04GlMWH8lrpG3leJ67gFGrtNQ+9pUdM/teW0rx5Fy6DYy48H/FWijE8yMA3nwHLsNrgn3gUGv63GfpxPtMgnQfZ1jquYvnXDrK2ZPuLaLaIPBjMoxT2eQz0zQ0aJc7ak9Y3KbxvuTgPa0pG9U+wHGFfUMhcDvebRzUl3ed9QDRKclPVJt32XGbqHmYGypORfO7NlhYTkNbdxv+OzMqPnhL8Tvxj2uPYkO6FzjjCnXic6UM0x0pj3HlfXymtAWpa3KLGkF+Kf2vcdV6U3uQQJKOlDsixmRCnByr2T9qf5M6WT7mvulXmTAgnJMnTCLMivRpnA/9+U86gjjqsA4x0o9TbtTnQyoHDw7L3mNmMLjz4AY7Rj/E9uw3J7GY0pZdl3bF88zjy9nsICBl7R5LpuvSL8QKdf7nvo7pDF9yp2UN7zhDXrqU5+qv/pX/6quvPJKffM3f7Oe/OQn6y1veYuklkX5Z//sn+lHf/RH9U3f9E16xCMeoV/+5V/Wzs6OXvrSl0qSbrvtNv3iL/6inv/85+srv/Ir9ZjHPEYveclL9M53vlOvetWr/sw8eTNVoIf3uZFsqBN0VsorAbiNL9u3QslXJhLM81XHBlze+FREBJMsR+eIVCkv98m2ncGp2sj2PD8Ep6m82E9GxaeAmnm0UqejlZEzfnZ7lVER/hssJPggH9tSW4xfxo23/6o21MGViQ8np4Pn9nLO/d9G2evHefe6en2SR9+fqYGv3Mh0gO2MrhblyFdGCE0ZmcyIWEYhafiyDbeTDjUdUkZFq6gh69GJzrFVzlCWqxwr7iWuQcoWAZDL8GFx4T7XgfNHw05wQ9CwqmV9wPk1oKRjQBBOADfX+GF0jsHzsRjG4SzhrtrzIj7CtTGU+T8+T3rgi6XvfHg/EsiHl6X+kPzJoe3LJD33uPRMSU9Qe+5rT9LvSnqvWhbzS9TeruWM5dbQ5nrRbjpaZ9SP716itjcW6r9zNAeP3lfWWQTh0rIMZ/TYc8V9nMGKo7jGz9LyW78yYu++MnhAZ5+6MbMQHgPBeTrYCTS9BytH1jqC87AfYDdVAbV0EK0P00ll/eyXQYG8lsEB3+eeNjFQVQWt3AYdpMomcS4I6mnHqLMqO5n2MbFFOhdSs0kum3qKc0HbYxlK2+SyxC92mKifzEseHaO9475gH2k/DmmZrrvuOl199dV64Qtf+Olm5dNOn3In5Uu+5Ev0X//rf9X73vc+SdI73vEOvfa1r9XXfM3XSJI++MEP6uabb9aTn/zkO+scO3ZMT3ziE/X6179ekvSHf/iH2tvbG5W57LLL9IhHPOLOMknnzp3T7bffPvqTxpE/gnlGKtMwZBTClFErGoB0HjL65PLe1OkIEJQK7VIZLOK6x8OxCffJB9tMI7XQshKv2mFUi3z7fnVWmWA6jU9G1WikWZdOHo8HuIyNm+eKEawcTwI79u3jKm+VpB3pE/9O0pOOSN99RLc+Rjpysv2eA5X2TOPXXWaEqDK6NBCUyVToJhr0BJTpvHD+VuM6jcMM19iHybIgjeXe/DMC6TbTQKaxZHnKjflxHe6TjFRzPBlBNaVTVwFxGnmCC9Y7p/G+4x5WUb5youhYpG5g39VvodhByHoJPDKQMot7OW/8vhtlTHS6pXacawP1VqX2gMiWGkrSeA2oDzzfu2rHJfUPpdP/e/uV+dNDu5sDv5eqZUMeNvw/qd72Nj47G8Ist/vbRH9zlMk15n7g3PuhfcqfdXMe0UrZmsf9KfKby+ZxLefQ7XjPVBmMDCxx73LcKxrLPCmBZR4BI/iea6yTMhuRfWXAIx0l6o/ca1KXw3S63Q+JTnwS+axskWXWa02bl0EY7510LCpAlQEJj0n4zDWugitTTk3qdPOXwRAVZad0deKeDGCt4I9OGB1GjpV1qv4OaZne/OY3693vfree/vSnf7pZ+bTTp/zB+R/+4R/Wbbfdpoc97GGazWaaz+f6x//4H+vbvu3bJEk333yzJOnSSy8d1bv00kv14Q9/+M4yR48e1Wd/9mcvlXH9pOc+97n6iZ/4iaXr1WbIzU3lTieA5av3etNB4Uamoq0itKvqbxAhiCUooFKm0mWEh4qWEQ0arCkDWjklBDFVO+SFY+N8EoBOKWWOg4o1AScjYO7vWNxjlHBqngxmXIYPotJJuEQtEnujpBfsSd+/Mny5UbrkpPSfz0pvHtq7VGPw5flf03j+kuhAkdLoug2+VpZlF1p+wxHbqfpmXRpsUxp/j2Uv7hE8eI3T6Gc5aXyckMc6Morr/t1GzlU6NDmOjDKTDwK9lDWWsaxRnhgllJZlzcR5MpBhhqVyrPINO5TtBC+pa0jVfs/v/p+/HZLrSR1gmfWrtI9L+teflL7mB6X/jn68B+mgmN9L1B6If+CvS3e8RXqJurPxqOHef8N8XSnpKknvUf+RVa+Bsyzk/aja64xvUHtLn49QbQx/lmVHnnOPek/wdfEE5VXwxg5m2gvzVM196lvOEZ2XKuiwF5/pQDAAwOCOcH2laIv8JkCtMvjU2W4zj2lxPjx3bCuda16bRX1pvE7sgzYqgTZ1iP9X+ne/bBTBN8t7rWjHOJ/zKG/KYCbXkW1LY5tuIq5IXUnZkMa6gdnatBcMdK6qvzyFn6XxOnnMHAOv82VB5i0DsBc6VcGbe6LPQxrTp9xJednLXqaXvOQleulLX6rP//zP19vf/nY94xnP0GWXXaanPe1pd5Y7cuTIqN4dd9yxdC1pvzI/8iM/omc961l3fr/99tt1+eWX3/m9Mkj8TkXGTU8w7I02BT7dLvuortsYZIRGUYbGQ6oBUhofAvvkNa8xCmbKY0HZ91SEPeeT4zBlNLky+ryXESL2SaXrtfX40qg4Q1JlxswPf+9Ekt4t6YcX0qPe3+q/U+2Xsc+rA87b1A1Mri95NY8pYwTnpgRDHCcp35xGh5dOgPuZo8yUzFXgynOac8v1cV98BW06I3ON14AOQBUdZrs8SpOOJctKY4OZc0DeaDD5Ji9f5zVT8kijTGDBIyycRxNBVeqbuTrAZyTaZQxgK2emcljYX+UUSeM3ubl8OlRbaGNj4HFL0mvUnIuZ2lGuiyV9ZGjTgR2/3esySR+V9Oa3tDqcX2cvLEd7as7GVWoZlR21DMnmUN6OzMVqz6Bcr5Zp2Rz4PTHweaP6US8eP+GceM59DHQW93LtGPHf0/iFBy5fORnZLtvLetUzIdJ4n5G3qWM7DmakDuEeoHzx+yzuuT8Go9LucJzCd98n8MsjU7kXpDFf5CkzMqlLrW+4BzMgU9ln2hFfp+6obBLfNFiRA1ne12nPquDFXtz3WKZ0d2Xvqeu4/iw3tYYZAM2TCuzXdf2dNszlHfBS3D+kQ7or+pQ7KX/v7/09PfvZz9Zf/+t/XZL0yEc+Uh/+8If13Oc+V0972tN0+vRpSS1b8rmf+7l31vvYxz52Z3bl9OnTOn/+vD7xiU+Msikf+9jH9PjHP77s99ixYzp27NjS9YyuV158BQKlZSWWjs5dRVezr7xHMFf9z3FIy2A7ATJ5T8Pj8prow23xOpV+Ohb7UTVfaQiyfWk6MpfjpINSRb8qIOu2+RYu1rtJTZn6dy021c7Ks61VlE2jPFc/y51Gjf3Q4UuHkHNGEEvjPovrmbGQxr/Fwj2w35G7PE5Rgd+pe2kMCQxSBmjoMqrM7MhctbOQwYJ0PjPi62t0tP7/7P17tK/pVdeJfmutrL03u6xUSAJVFiQhHNMhMRc8JWBouYQgQkvCRQaMjkYa0yKCSgRG0Kbt5nBogg4PtIoRoR1GHNogYrBPN00TmmOCBjAEisHFIGjQIOQCSaUqVdlVi7X2+eO3vvX7vJ/ffFdVBajatfObY/zG7708l/k8z3zm/M75PO/7cs7zGx6nuNbzgrzJiSOQpS6gU9U8BZ90WjnGkxNp/cUtJnTAPI4H2cqx+8bz0hFYtpH89/8K/vu7MZs3dP1aNk5KVzBOslkluZKNI9G2Xs5mS9cfTvLabIICT0zyJ7OZdz+cjXPxK2d8PSUbh+WnsnXmTs7qeHY2z8z8cjaOzUm2H4ssddWlbaVjMTkPPi9II6DznJqckabnOEy2ZhqXiZc6VB1zr0pMqxCUj0nvH2QXyE4BNAJh6i3en4JVXM3u3HYbqVunFQRS52N1dc7KvydbuXUdXkmYAnYn2TjTT8rGub3nrBx+A4QOavNOq92c0x0zB3nOc2woXyfZfZb1UOe2mW2ndRbrdDDsPF6C8js+bs+Uh044653mwLVGtLmPZJ17WtLv+Mrbvffem4ODZbGHh4cPvIL46U9/em699da87nWve+D+/fffn9e//vUPOCC33357jo6OFml+/dd/PT/3cz+36qSsEZcrk13g0nNHOQoYqoy8nNl709JqsuxYGrb+qqyrSBxNYyQl2Y10nuh+dH6ktK6XbW35vOeol43WWpS59RwOabisbSN0hP/273n1E0RN+/ZNNMTM3zr7oHANXcfhpmyitUxbg3tjto4JnYW1Nh/iGo0kwQGNqGWhfXOSZX12xuxA2GGmseJ4sPzoPssh0KdcsfyWyYia+3/NgLLNUyT1KMvxYz47SezHpnUEl3xbZg/0n+yuQFI2LKMu386Tt3p4HOmET7qmc5ZBia70FTz5Z5rAEvuP9Rxm4zzcme3qxmk2c+A/nP2SzbMmH5bNHLmQreNSR608/8ds5tfXJ/m4bLZbcuXlxrO07zjL/8RsVkk+CtfvyPaVwuX1zrN705w8z+jR6axjQfDs8qivki1obl/5RSKWCTrkWUk36evOw8oIx5bguWPL+WSH6FTpKktd2bJMH2f37VNuT8vi3KPd7BhwxYK2iu0I7tXhugn1+IUObGfr5Woyy2T/X0jyKUm+MMkzkI4OAOeDATrlj7qU/UE9Nzli0xiT/6aZ7Nwk19R1dRjMW3GIV0UYBOu4eIWlxJdPsB9Yfq+d5xDtaU+m3/GVlBe/+MX5n/6n/ylPfepT8/t//+/PT//0T+dbvuVb8qf/9J9Ostnm9YpXvCLf9E3flGc84xl5xjOekW/6pm/K5cuX89KXvjRJcvPNN+flL395vvqrvzpPetKT8sQnPjFf8zVfk+c+97n59E//9IfNE4EYJxIV8rQdKNlGbI6Vr0SA5hWZaXvRxBcjXXSEWD63T1DhMDrEOhkl9HK+QXMVkA1X62dfBXkNEpmf6dkP07I8ASwjUFbYk5Fhvax/clpY9rHy3ZXlV5uT7Ve3u7XF35rotgvy59WrtsP93+gaaYp2uk/tfDLCx7GbImfsE9fNPGurLslSznp8X3bBTIbzEiNz7B/KgOdO23mSJbDhSkRp6r/WM235qUwwcGDwSOeKoLXbhDr2HA/yw+0e7AeO7Wk2TvKNaNekM1o2nRADjGS7xYJ90VVEtoHzwY6jgVTL4/MhJ9k4LHVQLmbjZNx5dv6Ws3qfkOSzz67/1Nn5xSSf+8eSfEnyaf9b8pbv2jgqT8jmua+PS/LPz9r6H9BnN2X7sclfzu4rlC0XHB9fb9+0f9bIqyftd/fv2jMlQTrqPX/sc+LrnuyCZMoHx2iaT6WuTBqYtk3eNkZAzXnRc+q8taDD1E9BXs8zX2O7KLu3Jnl5NuP/T86udQV0jTjn+99r92fjTF/IRgYnkO1xMd/k3UEi2jcHUryKWeKYTIGgHp8XWJrKm4Jqk9PkZyzdDuMOB6ZsFyc7fq3SpH8fiTr3tKTfcSflb//tv52/+lf/ar78y78873znO3Pbbbflz/7ZP5v/4X/4Hx5I88pXvjLvf//78+Vf/uV5z3vek0/4hE/ID/3QD+Wmm256IM23fuu35nGPe1y+8Au/MO9///vzohe9KK95zWtyePjwxLsTqYaAURwrrGSOhE5Ri+ZzxLEPdDafDSdpMpbJcg+oQb+jwgTzjBobuJFn1jOlsQLyxKESXltR4QSngl8DoIzU2DiafxuhtfFh+ayf/FzIdrwaDTrIdpXkbWf3LmTzhqO7zs69ZcyKudcuZ/fL1u2/qR12tGqUGekkoLw3y2cYJme0+cgX62K+yRkNrlW+LJcsx85rAVOUr//c0836uOLUdhuosX0TwAvyE1zxOuWBxpRAtNTzzmcCskZXadhdbstuWgYa7s/6Fi62sfXT6bHcECQTyNohoWMcpF3jd8rTuruCc38286bz+nI2TstNST7iIHnbafJFZ/d/Islb/o/kKf/Hxgl5ezbfTPmki8mP37dJ81Fn5T0h2/n4tjN+6tC9CzyvBSoYaCpxbk3gyXOFsjVtF3LeKfBQIkBu2QbpDGgwKEE61bEDcLzftvvBZjrp7q/KL3UAy2p+r2i6zZw33inA+y2jc75bpRyQ+wNJnvrHk6f+QvL6f7t53mnNIarMr62itt43ZeNAdy7aDjnwQyIon+avx6LtdICJDjZlxGWcF5xp2Wv2c5KN5nF5D9ZepqVeW6PznMg97cl0w9WrV68+2kz8btBdd92Vm2++OZ+TbcTNgMsAicrT0e9kC5iseFkmARWVlB0hb/VhfczLPaAEPQRaNCo1aOa7ynBqQ8uZ3uRR3q2cH6xv6IwQ+J6uHAd1TH1sIzFFzJi/1HbXGSGoaJ6mo3HjqsrpWX2X8sDbVh8gttHUdhzj/DhL4+f6HeUyEDLgoPyw7wzYp/wEX5PrP8mlt3q1DQQFBiHlk7I8EQHFGuibjCjzTkDPPJWv1uFIpfuDoIEgMNn96jvlzc4m9c9aZNlRat5vmks4Xos8W5aahmVZBx0pfx2hjluB7WGWerP88DmoD8tmy8wvZrNtq2/UemaS25+enLx18zKKZ2Tz8H15e2E227QOknz4c5Jf+bmNI3PPWTn/IZtnBu7K9gH9ZPtB1buynQvux7bLZGemwSw6xvy3fLDvKGPloc8G2WGZgiuWBZY1XZsCD74etGdtziRLnb029yaHh3bCK3KeU7Zj5rvkFWLmuTEbmbslyddk89zS3zm7f+fZP23mZLds2zqvvNIwjXVQxnl2bc2elewAT+W0Tupuz3ceMyDDMptvcjBLDJqQh8kxNh/UsWvOC+3IaZJ/kc038R7/+McPpT96VOz4/0nyIY9w3e9P8tW5Nvvl0aI1vHBdkaNVyVIBJNsJXGM5gfCmP8UvWU5oGrbdx/i36TmZu0+UwJT8MpJJXlhOlUlBBaNGye7HJQlYmJ9RIEbP2E/l1cDLER9S+aFzYEPatlIpO/rtKJ9XRrgq4+g/eWkZ7ePy1zbxGwt9aJEOCqNcjFgd6J77qfy43UGeqU8bIbSzO205o/wc4j4BRsdiMp4ty/dZlkHvWvtoPMub+6PE+cnxJR1mV3Y5nuXNfbwWsSW4NBA0WGH+8nCSJd/N29ffWvd0W9LkGJpXg6P2H8tt+mkcW0dXOJKlfDJSPvVT6+mzDUdZymydGEZlOwZPyTb6/+5sV1Nu/8IkL90Ay2ckufEVyWde/d/zR65ezaddfVdueG1y6+WNo5LnJh/19clHZrO1511nZT8xm4flbz6r774s5fDkrD7P6WSrkzlv12Sk/cVVv2ncaBPYRz3mFjvKS/nqa4ftvPS8L0uYHKMpEm6AWP5oD8iL89s+2GG33u71tvFgSE+wSp64knmA/LQF5bfj0O2V/zHJVyX5W0PbWecayHFA7hg/6kzON16n3SjRXtG+eF75n7jDdoFzl/qqMkfePKc5JpODTh1LG+O03M7FvCf6bxrKO8t/sFWWa4lOHqXfnpb0O77d61okgquSJ+4acOg9GzNGVaN8jAIdZbudaErbicsIbfNNipZOS2nNofJSNetkdJvpaWSnqJ5BISNGrocKisav563DgIsRd4/JWl0lRlCT5fY7ktveazRyp9k+B0QDQb4d8T4e7htgJLttSrZtnRyNts2RTr7akWNEcLwWNZsMTNtKA0zn2EC11xklm9q5pnynSOraKkqJwIWAe63Oqa/t2BAkeD7QKXFUkoGFNRBw3qrQUZayElxnsKDbVVkuZdVlk6+Www802hljWxg84TaZY/DQqHMBuH93Z7vycnOSFx8lb+nS9fds6r/xnyX541zIf3LyuVeTe27OE2+4a/Mwyl/cODyfmOSN2azM3Jllfzu40j7gfKkO8FYXjtnlLMfAEfjJOQmut0w6JWurFybLB+cwAWLbdah7nIvsD698Wu57bNnPkNa6mOdTkIJyzz4n7wTqDnSROidOlJ7l3I10B1l+22yar1N7GFwizy6nbS4ftPNN13qadq2/2A/VZR0r9plXp3tMnVSabDfxheumfKyNwZq+obw5oEgdOsntnvb0YHTdr6SsRfitPA3qqETuxz1Ha5LdiW1wd5Tlq2mpbFoeldoUiSY5etOyeo9EAxMcH+v/ZEjH+qi4awhoIBlZp+PlCNQazzTE7H8r92S7KrTmfFFBFyhNDiKVqfnjV6eTLZjkKy/JP8EDDeC0mmaZ6znrs0yeFxE8L2LIMbEMkI7wM2C3IacRDfK4jb1n2WRk0tukCBJMjXK6v72C0vwE65PDbkeZ88FpJ765KmFwN83R3mvd5X2qjyCybbFTXGoU3iCMPLNPWvcEWIO009alZLta23RdTeE2tGPkf3ySq8dn+X8kec8vJ//F0yIHhfTefMQXJu+8L8k/2DyL8q5st9Ddne2qCuc8+9w6mETQZkeA1zsnJ/luHq5Qc6WFThP7OkpzkuXD+px71J2UY4LpaR73n+2g3auseBUjShvdP8xS5jkfyQvrTpa6ko5G28XgilcZONd7fprtq6/vzsZprYNCok7lmFPHEFhPzoidN/cB5+4kJ9Yp1HMcB5ZBHtb+qdtKa7o6uH60krbXJl3UchjE4D/TnSp9V3HbV/cP+a5Valseyd9jpW8eSbrunRQqWQLVCQTQmHiCE/RMy8FWtI1olfhefgJyAzgaI/PYf0fNWBYF/lD1Nh3rYx0XswSzNoJsDw0yFXzzcNvZZCTXnKlJ+ZJvEiO+pcmx65hQAU9gm+mn51caOe41O1Y0AMlS6bDdk0PZPmw/8E1uNmQsy2NEcGVgE5RBmsaI0TXmO8xufs6VCeBwtaBGmmU+2LaHppu2qNkhmYIQ/Ceomuoir6ybIIQgwbLqN2oRQJsacac+KXl7BfmxAzTJ5Mnw3/sXdK/EAAHlqMSgSsfsUjbbr9ju8tf+ens23z15xlkhH3pzks/L+fRXkg9/cpJ3J49/2uZh5l/JVqd5zieb7WRchb7p7DrfgsZnaQzQO+c5HrQHGY65CkEbwu1bya4MUBc0IGKiriAA5gqNbRmDT7xGO8Xof8uzw+C517l1nKXcd3XOeVgeVwCbjvo3+Hf9dDoN9u8DPxwT28q1oBadLTtnwT3OKc/V3qu+NjbwqgevswyWM9k6A1g733SaTrJd1amsrK0002miYzY5bT62rm85to20o5Me3NOezqPr3kmxka3istIn+KGiZISOhnsNqHECTysJnLTJspzWwyg08zY9DRPfhT+R6+8xwQQVk8FNMis4to/9R1DONtgBbBmOjk/RwWQJLg0A2dY1p4rlG5y4vp7XQNXIsa8d9WO716K3jGrfl115Y7mO/tGpdKS1skzeTpGGAOAE97mK0XE4ydKwEhjYya4MJcs6CBSPVcYkD5yHdpbYL75Gp6Fy2DZdzrLfJuPo6JXbQnDn/mm/Wua55WMCj3Y2+O+VGkeQS1MklQCb5TP44TnOcVwb4x57TFg/gyO8d1+GNx0eZPNw17QH03QhuXoWMahj0mxTMIJj0ei9x4f927axHy0Da86JQWPnjCPQ5bOOZMeEjiVlinxUxgg+W5edUROdBIJHy8cR/pnX41myffLzTg6orNkmzjnqkd7jHGR9tDlc0aCss162ZQqAEYzbiaQOo82hXmsfGw9Mzol1atthm9Y8xiGek+THfFvfTYEs26xprCYMQlzE8sj35NRWbtdkdk97mui6d1IYaeWEo5LxBKYRn8DIeSsTvEZAOEWYSd6W4agNoxxU0gWEXh5v/SWns6NyXrSDxsEKxo4DFanTT0avbWDbCUCo5NjX7EMbdxoNbj1g33Is6UBYUXf15DS7EVwaSPJq58mrDDQkdjYuog46KwY/NKyODLNOX7fjw/F23zUvjU7LZvlHSNN+Zl/0ftMcD2kOV8pek2eOJfPaYZsAuMmOOQGCgQZB1QR4CJgsB3YSSpajZDkmyXb+Ftzej3x1aKxnWNbadY6/5aTz/t4sZbH93DLvBA/lkc+/3JTk07L54nwuJf/5OMk/GxgifWNy168lN9ycvPMdm++lfAzqZ4CgdHe2zgnfrnYRvDTibQDKIEhXmw6zlNNkOYcJLI+UrtTVMn47ZXKu6NBwDrWuyb5MqxDWe73uvJxTBsgmOgoG9R2Pw2xfLEJ7aQDdlwBMdTECz7qpV6ZVCc715mlfEChXbumYTqDZ+rzpWl/lvNscSWsrMix3bWXFstM+tKyf6rhl07bZcTvUb+oH8kbn+DBLu2R9Sb1+gH+2qeU9llZTTh+l356WdN07KZ2wVHI0CJx403YdljNFO6iIHY0y2agw2nWgdIzkMOoxRTuqlMuzQTjBl19PfJw56kiicUhmZcs+m8By+9xAjMb+cEhb5WiF2mc9JoBOBbkG9ri1je2zsm/ZvX8f7hMstQyv3tQwEuxMkSSCEjowBuJuEw2Yo78GVj1ueVxpYV+wD2p0plWpEg0U+WRklU44+eRx5+BkrFtvy6aTPvXnKdL5uue128J22hm2M8FVo/LO1UGmS5ZOqXnl9TohrbeycwF1GGAky6hv865FLruvv3zy2QiXX5nsiyj67Z/7s1wtab4nZLP9qvJz4eIZH384+Yg/kLzlN5J8yw0rnF3Mv/++5PEHSb5kK1vvAj98e1dXOAuA22auunSueJ5PKxJtV9Nx/lzANcqjvyzP/HQ8CBR5rTxwbP1GxmRpCxhAYP41sj6Y6qa8UDc3P1cvqLOajgGdCfB6PpKHNV6pz9pmB6YcODDfyVIPl6iz2Qe8zwCL9SfbYHtu20NeSnSc1gIVk84gfxPPlSPbbtoLO33TrpP27X24XmeTus79WD7YFgYJ1tqzpz2ZrnsnZS1is0ZTNKfl0ImZFL7JEfQ1B8COB5UOnZWWRaVsouNUZVm+vTVsUpATqHE9Bo3li8eM2LBNLJs7PuhEkA/m6zkVZPNWMR9ku6/3w7J8JoeGZepDO65H2byT39sMMuQpMZpH4H6o+z2eorS9Z4DcNB0zOyOOxhDws4/o3Lh8Hh/qWttqeWZegnM6Ojb2NYrmmQ5hyX3HqLWjT+4zgygDAQYY2kfum0Pcd3uT3Xk1gbgJfJh4vc4IwS5XHClndtrsRJLPjuMEgPvsAPkn0dmsQ0CgzLcpHWazgnKczTdO/r/3bV4Zm3cn+ZzNvZOvTvLSG5L8v85y/Vzy3Tfk6g33b6Lyn7dh9FeS/F/Z/CebZ2BuFO+cC3RcDNa4Stn0h9k6H+TfDjDv2+luGRyb6gs7JuTXx5bPNfLcc+CIAZHqSztOzE+bQaeOOnPNjrUMbv2abJqdK9sczyHbD46fdeqp8gXp7CSxXOoR8mrdOjlFDgQSpNvBoG1hwIKvxK5tc+CLbeVcLx3genm6OORt/Xaq7ORQZ7e9dnSOVu5NgaGWSTx0njN9rdDJo/Tb05Ku+1cQT6Csk7QTllFfGmdH36gopxUNR384kftPEE1F4DJoICfDVuVyEedWkjZ+5bvK7JLyMkJE5exoFo2WQWXrrRF3FIn1WNmeN0EnZ2cyCq3jUjbRVhu+5mcE/TjLV/ny/mScjvLgipaGiI5CeTQQKD0YqD1RuqkPbCR7jcblPDBER8S8TQaIMkAHr31FXu1A99zOBPvW85B9QODStKx3Winlcev160MrA9NKjHUH22ggd5DdD/mVBz7AzjKofwgyvDLQ1xLb8V6bRwfIl+yufvk1x0xTuoK07YeL2eq0o7PjX8rm1cGn2Tgkd5/x9eP/W/KHfir5iKPkjuPkY/9Z8qP/69fnbfn6HCb5w9k4NbckyU8mb/m+zUcb78nmWyl3n5X5trNrycZhuVv8JbvzuXLW/0n+ea2rTJQ3ypxXcT0Hm4fXW14/8Nh/8lgg3VUJ6uxJpx5kd853PA6Rxi9M4Ly1nk/mQEhtls+ttyb90TzsQzsIGe4dKr/L7XzwyobnAgNbzEvZ8GoC9UTTmmoPmp+BA9polluiHLIc25fDbD9gbD4754J8fACfzknrdzCnvFrfTTp/sh3uF84b2/i1QPCe9jTRde+kJDNYojJlJOEY9x2l8rEV8QQSJ6XGSU6D6UnNqIkj1OXb4MhGLMhDhc+Im9M4gkhj7KhJyUahiuhKtm/UYX/Z6fBSsR3G80AFAXj75d5sPghHoOJoUYnt5ViWfxoR8+aoteugAWDetsnGg2CkZdCZohFzna7b4+V28ngy0qyb8+e+LMeLEdEruGcnj2Potk+OWu9dyQaI0ilgnxkATg4KqWCDTnnTeSwOlHaaX47Cuv3nOYO9fzykn/IyAs22Mbhh54Np61zcn+W4sU/ah54LlCn2db8mf1M249Qx+ZWz/3cl+YizNH/oIHnTr26+PP/sJK873mwN+6+zma+/kuS5SW68mPzL/5h86kFyz2nyM2flXDlLUzlru7lVrW3guJB/yoj70bLCtyQly+gz63LAgc5e0/Aax6FkJ7zXHASa5jTH8d4sAbUBL2Wk48mvrXslgY5J67EOs7y0j+/DMYNb7S/2BwNFHhvbYI6XHQk6Cm4/yzRYX1u16T3zQxkzPz2vY1EiT+zr8t4fy2G/lmeOn+1By2e+tQATy/Wqz6GuTeVaVtv3J0pPXJDszrNrkSYH+pGoc09Lsmxf10SFX8XQ48kglxq9WIvEuGwacivw80Az0ydLB4W0FomYIkgEHx5sGo8pwkFD5yiL22NDSOPN+wTavV7FxmhV+4xOAJWf20ze2s7ul+9YEHAbwLlMGo4jXKMRdXqPZ+vhNhlHt8hDjZ4Nlts1EQ2YHVHSZCQq2xNQnSKI7Q/2q41Q29Gx9AqOZa39w36tbBbcTStxpTVnyO1m+ZartoVzwjLHPAYfx7jHgMJ5BpljbAfBYIx0vHLveEjDH+Xe9VI2T1UGQR+J7bsvm4fok81WyydkK/9vS/JrSd5yulnh/GdJfuTs/sf9geSGf5rc+hWb1Zc7kvyT+zb5fvM0+blsdondDZ6fkY1DdM/Zj+OxNkf5TyfUfUtngnLjj/Ims8y4Tq5geE4eZn5Fb8krwdWj3Q5ox5E6i/PzSGlYpu2Dg29rwKnl+n63lxHsE/AZ3B5l6dyWaMOS3Tnda5Ndn1Znep995rEkTfOGNrblTsG6klfbPP6THVnj2WPkIBT5tN6hbLrdxjukKUhCvdIxKz89t82wcz2N5Z72NNEHxUqKox6e6IwO2XumEnL0OFku8Tra0Dq5JYv1JxvDfhH3CPYI9MhLgT6dIuZtm9kGHhvEWqlyJWmK2lZR0egxMt68dEQcDSJoYKSn7eJ1Grq1CHkdn/OiyGtGl4bWRoiA0f1sg8QIVOvxuZfKCY7b3zQo7mvWT/l1FKxkQ+YtCbzuFbxTpJ1kZeKf7XC6zi2OLWWbjoe/Fp0so7FeLWEbOJ7tFzoRHjODwrUtlC2PUUc6+hNocL/Z+fC98jCBA+oiO7tciTka0rRctqmrhJVxvmqb9ToK3TJ5fikbx+Ft2UTyfxPlPSObL8Xflc1H5LtF7RnZODPf+9PJJ37hZrXkiWf3335W1pvO6r+U5KOT/OezMu/M9gOPH3V2/Jvgp+PIvnY7vIpA55db9JqW/TutwlCvXslyK14dkclxKrV89u3kBFT2DrJx0C5l9/saXPmc9F75px2hzrQj47pLp1luE5ycjOabZHdtLjAgQfs7zfc1J8r2nUS95rn5cGhy0Gg/J2eIQTnqK9pNjl/pPuWfdE6ylF2WQ16Zj/WdZCu3k25nUNGrbiUHrCbb67btaU9rdN2vpHibAoEYjcKp0peoyJnWICiZla0jVQapB9kuiTMPJzXBWclGpMbTkXQqfUdOC1ralq46NI0dCoL0GgwqWYOiacXHZfVaH7qcnESmP28lYLpPpc/0vG/no/y0/9ZA29S35tsOj+uZnIrma5oavQkg8NjRqvLhcVhLOznxlVuuCjn95LQZ+Jt/AvyWZaPZvqbx5kfTCL7LL8eHAIbz77zxMii0AabBp1NFB8Nzhu0gEKTxLn8n+DFd5ZQOlwFd03MO8WHmaaWUsuXVIa8ilb8bs10laZ/XSXnmWdp3Z+No/GY2KyAfmQ34uTcbh6L3j86O/0aStyS5LZv59t6zfB3v25D23Ul++ez6LdlsG7uc5VsKn5iNA9T+mXRK+7J673KWwZVJVx1m9xMvfuj+NNtnTfogNMfUZbbctVV66tmgvNbD4AdB5IHSc35Uv9lxqb5zHzGN5xTLWmtDUH+3BxLIn2bJD0GyAze05Q5C2Q5MOpMrwUzrMSLReXQwh+2cHJQgTeXT+nhthZir6uTlIvJZX7WMzmnWMQXt6lQzUME2Nf9JtliFZbNuB784zizPuOBapJNH6benJX1QrKSQDBJMVoQGQFRuBnVT2VXA3prCvFRQyfrWiknhO1rWsuiw0GAZNNOAeRsU+2eKmjgaR4W4FkknAHa7rMjMBx0+GrUp6kRgQmW8xmPLPNK5ZcRGxED5KFuF3zGyPExj0fou4Zx1EHzyQUxGtAhUKL9Tm+mATOPVsr3dyw5p+6hyVvmjzJFPt61UZ53zzE6QAwgGny67fNFIdm7YUTRIKk/9J+A71P2WU96n1ScDhGQ51+jI8F6PacA8f5Pl+FDWKottn8FJqem4okln9hLy9ntBx9k8zP6ubByKO7KVh8vZbv362Wycmidm41S8IxsH5Y1JfjLJzUk+9qycv4s23ZTNKsnBWVm/ko2MMFJ8JRvn5l1nfN2a7XdbKm+dL/dlV075xqv++1XMyVKnrgHDHvf/QnbHjF+8t46lbXFZ1OPUTU5Ph9OA2EDXuihqH0E85ZmBqWNd6/yY9HHJAHVaDZnss/u4x9PK8KRvW88p7pns5JTafuuxaYWE87PpjB34rCPbxlVzXjvKUjeSH4+h22ObNgVBueoXpLfO9FgxCGynxs4t69zTnh4qXfdOCg0SnQGCUkc2SJMioLFgJDhZKkzeozKfALKj0FQoBEhrRmyNfypGGlNHVCdl1nQE947sGlRRyZpfR8rdBuZ/sO0KVLQ9933mZ1+6rVG+ZLsNj6C75LFkPvLr9ASwTMv+Ps5u/5/3cW6CrpIBt7cTWM4ckSwfll+CljoVPWc/euwpf73f64700ZhN22oInKdtlNPWhui+DTR5mxwozme2hY6ay/KWDPahH6p2hNHOWckgs7JyXh72V4FPQf4EDKN7becTsxnv38zGIeiqzE1n5f1aNlu6ojIK+N+VjfPw0Ul+39m1O7NdHes3W3JWZrJdCfkP2b69q/wX7P9aNtvCkuRJ2TgpJ9m87rh5Lmez+vOb2ToqbvdJtvJsgEwdnCwDEuwnlssxNng7z+k0bwbU1rke72mOGdhyvh7r3IDeqw4t614cT3xT/0zgmXPQKxNToMH89x7n1eTEmGjPOUcNxqcy7KxZ958O1ywXXBlxUImOieWP9XlcGIBYcwCokzs37WRZh1Tu2x92Ph30aBlTIITnxEPXMq3Jwe92nXta0nXvpNDA0ChMRp3X+VYOR0QcIaeiJQgyH44uTOnIE6MUvW7HyE5My6WyII+MvLseK0YaUxrEKkkq2PLFss6LuPWY7TVIOlVaA9ru/7XDSfDd+vuWsZbl6BCNNkG+o5E2ahPRANoJWHM0bWyYptsp+latKUrpCL/BuJ04OyHJ0plze9peygT7ngatztgUqY3ysH7ybtDU84tK71etti5GlFtH+37q4/LbjxUStHjOto0G8rzuCO6h0nL+rTka7jP2h8eY4GtynF3OBFAMLi5l+8rfd4Onvtr7OJtXDTNo0TLvOfu/gLT3ZPvcyROS/D+zGc9/heufnY2j8cZsnJ5ul6pzV/7vze58/81sH6KnruZ3lU7AP/O2bK9OuY8cnCLZ6SDo7PXWFaRh31GndMtY687Ajx146qmmt45hWXQKzgt4GKC2Dzw/fZwsV5aZpnqCdogBQAP2KQjhucVgB+/b/tjeUf/bIWufHCMNeXdAr3mt6w+H45ZPXj2WpcleNV+y1PPWrR7j4L4xC9vWeZbsvumyfNJuTKvdB0rvNHva03l03TspyXLLymS4Ha26P7sKYlLSvb6mWDxZS1Ssa2m9JSVZAhmu2FChOzJj8JBslS6VMPkiUDQYX4u+2DE6yPar1HSkDPJYtlcYJifGDhCJBoNOmR2YpqXB43j4tZFrxmUCMTw+L7JH4880lVWPfYbzyuRkuJjWBjni2/18HshNlg7YFP2jfBF0kO/WQzmceOO9aQ5OwMdgjHO0/FkuWQbLmiLZ7js7jpNDmCxBtiOt1FEODhwoD9u1BmgmB5AAlE5zn6ngNqfyxnE8ycZx6XMQR2fnd6KNTXNjNg/Ks66TbIDOO7Jxek6z2ep1ZzYOykk2KyDvzcZBuRu8XMjWgeS4dyWGc+mmbIMSBVoO4LCNlo1kOd4E5A7+ZDgu2Rn1xx4n+eQ/t6IRgNo22BEiyPQ9glgHOzhXPT/YB8dZPrtAch3J0m5R7qwDk925Y/4Y/OBcoWyvBcQI2Kf5bz1R8q6DZHe8p7mbIS3v26l0oMP5k93xd/AjWc79Sc/bieu1yVmmfr6ENHTAKM8NVJqmnQh72tNDoeveSTnNNvrKSMV5EUcq4MmxodHueTK/E51L4WsgsjxOb+8gD1RefJtLgQwNt1chyGfTVKFYIdLI2BgyekIiMKSyorF/sAgKo8GTg2QlPo3h2rY30hQt63F5dV9NMsD8k8EN+CWtOSh0EicjlpU8jRZfylIW6PCYB5ZBp+I8Z9zgwTyxbVMfmwdv23BZjOw6ijrJX8u0Ae4xZclG2U6p5b7pvQWNfUzgw7b5OaNJd9C5Yj2dj+SxeaYviLetlB3rMKZnv3RfeuutPrqUrYPQh55Ps1mReOJZem5JrCNBUF5ge4j0v3B276OTfGI2z5b8BPqodNNZW7mqQPli2/jMx53Zjh0dlkaED3H9KJvnX+7MZgsZ5x31QutwsMjyeIh6vHJNG9R03nbIdCXP52kekDxfHRSYHNvJ+aKjzHGpTDCtt35R9ii/tl3H2ZVTkvVP5WnNHnWlnW2gPiHP1j0OnrEtUVr2o9+w5nloHXiAnwMPdDo8X3tt0lkPFmBycMmrRCzbARheIz+0xcY/DsY8loiBrkeyzj0t6bp3UjqpanDPi6IQ3HiyJUtly8nqbRY0YFPUzVuKHKE71r2WaXBrpVnlZqVT42YF6YiPo4XkYcrba5ezMRhdGr6SpSKcFK5B7BT9NpDzik+pyvES0rUfDPJPhvzBvRoVjvG0YuMoEu+1bD+0vBbhpHxNDtHEs50+AqdkN1pl8JNswZNXfQgaep3y7sgg58sEfAj4y7ujdfdllyagQH6Ypv289vxOAcRkBHzNDgrbZyf6vO137V/Kr6Og1A+UC+fz/OOWE9bXvJxbBrtM48BD23PT2fG9WT5/wD668+xewAcdsToBTzi79vYsx+cA19+UzQqLx+gg26/NH2XzbEtlhfOm/fPubMeI+oDOyM1nee8Bvzdm842Wy1l+BHaKzk/bY070X57qhCTb7VseE69uURY4Ll4N6L/7gdfI49pWNturyVmwjBskcz4SCDtY4rpbNs+5S6Btpu40T5Pe5FyybqtTOK0stjwHCKNrbM8UXGR55MX964CKZYJpms4OC+0mnWYHCZ2f/3yNdNPZFpPHyRni+FgH9X+yb3va03l03TspyW7U3aCZgIzGIVkqggmsJtvXX3LSEzA47zRJmWdtq1HBSI3cWgRjinxQOTBy3vyMiAW8WPEzjYGQeadBaf/aMWTklvepzHvsSJ0VPoFjaYo2kVdHD1sfHVAq+9Y5Rd/MC9+IZMPA+idAyT5di8L2noEvy6TBYv0FQnZsJgeu9dGJa90TOCCfBE0sewItkwyZOD85PpOjMNWTLPuboOBY16dItIGdqX09bclx0OIky+9LuO963HOCt8Nst6UaHLhfu6JhIHSa5TYq6rBL2aySvOOsznvQ5huzfT0wgV755Zy66aysu7LdhtVybjpL0y1gd2ejSwmAj8/4qMNEHqcIMFcl6KTcfXZ8+azetqm65+5snq/h63H9FXvPi0Pd4//9OL6wUkaPOz7WgwwIGCiTCOR5jfrVum6KhtvRPdS/dWWQ1kCaaZueb5Aib15t8JuvCKxZfqn80R5WxqZVVdpP9jfnNO3NmtPG1U7yNo3xNPZ+Vqdyb/zgfuf8sEPFYBz1LrEF8UDbfQHl2UaRB4/zFIyxg+I8j5XVAurSR7LOPS3pg8JJ4YSeHAZOnCpvGplGsaxoGHXvxGTUzjxMUcISJ7OdoWnFhIpjKtOAl4qb2096n1vcyKuj571/hPtXsgUxBrMEey6nhtn94j6ukjXwY3ublmTgEB3ToLWcaYuanVy20caLPEwRq6ZhNNbG3GCo1xyJssExwGgdNDwG5lTEB0NetsvtpeGjIXXkjEaXPJR3OwflY81xYR1r2/ts2JnO4zHNIfazncaJWAZ5nfjjONpJZ5q1ehid5tzqPc47gwzrDgYxku12qXuyBVKl9tedWfYX232SjSOQbN7O9Xlnx/84G0eFQOY3z44/JsknZLPd66ezdQ76rMyVbN7g1fIvZCnr5I/j3YfuuXrRLWttV9t7nM2KTsmvOU52dUB5pEPlOb0WoOB48/qh/ttGR995v+dTwMCOB3U0iXre+tABsMrfxSydQlL7us8wsQ6W0/5sOdRzrJNtcFAmWcr35MhZnzQPZZdBBOp+BxeoFyZHprzzJR+0vwT3yVKG2yZe83axCTjT6eIqkW0mdfzkwEzlTo6GeWN+f5x6srOPNPjf02OXPiiclCoFEyMPjsA08jmBuuC8yoCT30rBvJzHJ5Wao2cEj66rht3v4Q/SOJLG+iYFaMeMwMrppggu+81G2QpyinxH1wgUGQXzOJWnNTJIbHlWuO2jtSXqyZkkQPQKFo3ctPrQNLze9tUg2kCcKt8U8SXRiHklhMbRstO6fZ3jYRlo/3BLhQH2ZLgIwibnyjySWO/aFpAbz87vzzLyyLZw7C5lXQaYd5rrk+Nph7/Am0GDNZnotoym6XmBIPWHHfnKNL9z0t/J2fXL2Ty4fm82qwsEmMlyn7+J41d6VzYrLl21oONcOsr2NcF1Lg6y1WnslzooBeBr/XSa7VffO4fK27uQ/qZsHRe+gpgOSttLuWxf3gMeG5yirrLTTv4MgK0nSdSxdrjt3PbaZPOo73htCrpM+tTA204Zy21/UP4417nich545er5VE6vWf8y2MH0BOlNf4R0DkqdKO80FnTm7EyyD+yQTAEw358CXyQ6age65nTlxTrYZfHNmRwfBzXcHpZtO8/zx4KTwqDHI1nnnpZ03TspXCHxtfMEgqshnVjcN88I6Fr5juYmu4A/mRX8FC0v1XBeyfZ1mnxzkI3lpFBYHkGfwU0V1BqID/I0rdtNBVdjYnKeKSpGgN003sZ0qPs0pAfZ7q/3CgxfenCeM5As+8vG3dFS5jlUHq/oebUg2TV8LYs8GWRMTvkUeW3bqIwdeTs9Jx370g5Z03tcT5HHwH9yPuxwd6XSRHAxgRSOBVcSWSfnGkHtFEnkvGBZlq21SLofpp8cc+4TNxhkuvLD/mSbDYAK9jt+F7NxSI7P/puvOuUwSwBvWZ9ATrJxBv73bJ3hOnuVozpLv5QN2H9vlq/b5nar9hfHYg34uM+p1+oQltru8tPtZDdmdghanp8tqRNDPifiPGF+kvX2mhwbYFo/e5y82mB7UH6s36YghuvmauCkC+1ImegIUqdPkX7Ku9vVcwf8er3/J/jnHJ+chtpaBvZsuz0uJtuQEgM/7heXa5tke+G+K006ww7ysfIx8Nd54Of66Ki1T6hDiQXcvvMCaXvaE+m8gPN1QW1gl+ypYGoQDRZLBs1HSENw4GgYQZu3ACRLI8X6eEww74iNl6XJL6PBzWtlTwVRfnle8FDlxWgrDYGvcb95+Xf0kI6MAZ4VcttHoErDxIhq67HTWENEENqyyNt9Aw8TwGmZNHBWxI62UYGbP65qTPVezK5M0mg3banggY7ZaZZjReNzgjysg7JNmeaY0FByDBrFZnvct3z42UDrvIgg5+RN2TyvYMBFJ45gsGXdnw0oNo+MFtPBCtp/EekdyWdggbxPxtn9b3k8yPJZktbXvB2LyUlnvZzfrLttv5jtW7eS7dZN1hvcqy7w8xos/zib8b0xm4fmWxYjrJS7S/jl7FpXuSg3x+Ct+etwcDXJbz27In7bJ/dnFziWBzovJfaf9Q374uSsbMqX9Sj74UJ2qWM8OcTJUncm27Hq+UWktYN7qDzJrh2Y6qTjd5DtPGlZXllue6svKB+c99PqgZ0T57EDafvmFRTbOKZz25qXH/N1XZNjfjD8er997z5inRMfbJttu7eB0abYWaQ97vhxFZDzgzY8OPaKFh2UtpN2t/UdZ4m/9rSnh0MfFCsph9lu8SjR60+WYJERuqalMmfkzFE7TmxHgAwmg/uOrPH1iuSBPE9lOWpmAG/g5Eh57zkq5sgRr7WcbtUgyKXhvCm7/eOIP53ICYT3Ole61qKTNFaOGJEYHTP4uBfnfBCXKwbsE68OsA+7WsP0BQcc69ZHA9DjCRQ3r1c7DrLc/kdwlCzHxwbIfV6gQeMbHZcMeJrOBoqAunJt0OcIeefzUTYA+FK2Hxx0P7i8zvl7syvXydKhtzHm/xQFZD023AWifGUrwal1CHnhN0kK3nstWeqDtq/5p+DLSbYfU3x7Nn3Xh8VvRLo6mnTQqZfsbPG8vF7O5rmUK9m81vcEZQd98ZQk/9VZ2W/K5uOO7mO+NriRbc/lbhMrmLV+WsvbOcKXhzzh7PjOLOdTy/c3ZQ6zdSr7Fq81R7vXbBcmh6jXK/uUrbWVX96byPW4rygD1onUU7QtzNt8l7MMMtEBcP2cW9St1JfTeK6Vxbnfcjh3WCbLoL4kHjD/dhCs22wvp6DbNGbUdwzEuWyXwTR2oDgnmb5bIY+z+2YvlrVWh1eHrMPb7ml1x226FskBtEeqzj0tacIY1xV50jCiwMnDSWMF33MCoZbd63Qm3KlH2a3LBju474hqlZuNw5pAsz4DRjpYdqqYhvWwXJKjvzQcBGnNe2M2jspa5IxGpwqbbeE2D0cmzbsNmx0ugqvKwrQq1WiaAZ/73wazfE4RMNbLVRQbB7btvswGseVME5lOyBShoxFPdufBZJzIX3+Tsz6lZXTNddKRbJ6SjVyN9LvOfhxzb8/hP8ES+719W94IzFnm5Ljw2MGNQ5zz7VkG9eR9+ho55+kUBSfR4TzMcvtRgzWH2T6DcVO2KykG7+bRfUv9cD/SdeXiXdl8nPFd4rHl3JSNw/SbSX4lm8juE7J1ELgiyDGhXujKLz/AWx1M/cR5QGebKx4ti3zWuTzS9WQ7ZtaDHfMpcMD+WlsdcTkkBkEuou5T/Vjesf5L1Rt07E7wz/R23NnXrcu6yDqM5UyOmXmbnCFvcYrOqeMNMstbx4N6/XQoww5VsmsnmsdBCuus+7I7111u62RbqysOsvv6brefATqOFx3Rji11iwNuHJ/q2tPhevMQ83DFa8ILB8P1Pe3pPLruV1JKBnh0Eqg4j3W9ab3cuTYJp4iwlUkVnYGqI0rMX8V3gjwGYY1yGjR6dYJGlum4mhSlY7lcnWiZjcyQd65uFKixHEaD2N6+FaZKbS1ix9UatnMaWwKT9vMllbcWtSJRwZ8H4mmECVZYTtM5Gugo2SQLPWYfu95kF5iUF/aD+XYdXqliOvPJ9KQJnHAuHej6WqSQIOGes98UqePKk4EgDSw/wEb5SHbBCOswYOvreNu/1BfnAbILujc5MOz/zgduafKKcK8R5HzY2b13Z+s0nGS7Zeck23lXsmPUeUj5v1/pD7JdUbg726+9M5JbGemKzn9I8sNn18qndStlzUCL9VN22Re9zrGlTTjOJvJfOX03jj/s7Pgd2W5D4xvGkvkV7pRjPjPI8T3Ktg8Jjm1fDJ77Tx34YHPLQZDp/nSe7M7/aUWfepc6gOk8p2zLrDej8/arnUDr2MnBmHQXv3HCcsib+9eBtOYntmD66B75ZHuNN2xH+/xp83FsptXjaY7wnoMvHW/rGo8zg2qtg29n43ge4Nc092XZN9cq2fl8pOrc05KueyeFkz+ZgWjTEZxTOa2tIDQPI8QtiwC7eTrhuazbdFSIydIoTAr7CGWRPyulw5XjKRLjaFgNOZ0jnzPfReSZjMTdasMEMg6y3ZpXJeEoTrLbJywjWQLxnttwEBDbUej9gr3DzEaQBmwyBjVeNCTMQ4MXXaNzaIdsoql9po4720wZLhG803EvX2v1O323uBnwkl+vmtiRpuNj4LPm3NOhPg8ktayOkR1d9vkELCw/7UeCtDWwtBaQcFqvKJSnbivqFpaDbJ0M6zmvnPb/7mz7pIEB5qvcPZhDTr3gZz2sa5r+zmwf1P+wbFZU3nZ2/17kpR4qD8dZfk/DgZUgTfuFb1Czvj7KdrWr9ZXvu7J8iUCJK7zcJlSyXpjGeZKRyelmmyZd5vTUj5b5I/2bjzU9Y/vBeuxAebyahn3G9J7vrKPXLVMtZ3IIHIzkPZbnla6O+WS/OM9tM0otz8FO6/61VZpJv7H+8l75tH7zV+8tX0xvGaz+a9m1ucYYDuTUNk6rVn4Wpe32XNnTntboundSkq2nnyyjAFQUNHZVQFP0iERwx0jBBCgIdBihsCHjykPPDZKCfIwAkS87Unx7lRUV6zeob7up3B2p8UpI+SavLdMKkcaO5VCRTw7VFKWagCKBPg0hjZidgjUnr8av/b62DcHOrqN807+dBEb9KEdRGkZrXW/LvJhd48X6DrLk1URePG4lzw0b2UOlpWNvfgn87chMEUDWs8bT5PiwTgczWOcENDn/WFfltceHujc5OHQ4GCFu2r5Jit/u4NfLWU+ftznN5svqBep3nqW5R+XaqZmCNW1fj617Jv1k8ipMsnVEup3qQrZOC4FnV2cIcFhWXzVcmuYEV5m9YtaxduCg9b0X1/qa5nuzfF7NOtB69X7dt75kEGZ63qVlNhBEveMgw7QyYl3L9rH9vd+IN9M5H/Wq0zAdASp5XAvwTEGQE+VpecnybZZ2mLjyQl7KO18a0evJ7ioW8ztoyba6DezzQ6WlnuMqBO32RA6OsG7bkZNsn4XjnLVOtfNN54SBo8mB9DXeu4Rrtq172tNDoeveSWEUmwqSAJMTfoqOWEl5MvbfEQorLirPyaAFfE2RKbeLxxPfU/rJmLR9BPXJbjTYUWPmdTlTtIh9niyNL42keSQQZHnkmQ6iAWf5n8aFhpJAltHWNYMzgWUSjYENCttOHqfybKAJprxC4QihI/t2am3Ues3yaNBosEDngW2hTDRaTX69otO0fiX0IX5TFG5qB6Oa7A/eLzk6SbJck/iiiJZpkOEVADogvdcVEc/LZPlAtgFFQci0qtoH4rs9yUC5wH8KfjBI09WISZcly+jvhex+/PAgWyBJsHT57Pq7snl25f5sVlFvzma7FR0NrxgF9VzSdYPYZLkt0CCO8s05RfDdfFxtcX2UneatczmNLXWLndDy1HELrh8ivXVQ55B5m5xwrwBSR3HVv+U2HceVdnWys1F6A3HTNHYBL3xhSq87oLUWuJmcs/I9ORiux4GO42z11JS/fUHZsuwZE1B3nDde5c088Z/bq+1Y2Sk0lmFwgnPf9p3kuVKbQFmhDbvWiU71I1nnnpb0YNj2uiJPeoItd4Sjp01LgJEswT+vOSpOJTRtP+HDm5MD4Toc7WNd0zI7tzE0HZXa5BTQ+DTiOwnMAdKwbewr1kdgQAPP6M5plt+SIAiuEU2W7eGDhb133rLyZDAIVNkn7pupH6a6pgghI/dsc9NPSrx5Kkc8ngw1+2tyOo/Uhu4T7sO4Hm/zbPLDxXSeKh9+JWuyNI7knX1JuWm7JnmisTYImubUcZbyZyLo8RYbO269xnEKzgs4OScsGx5zt4Ngpw5BstzWxMgx5wYBMNvs9rM9U2S0IKWAPWfnfPi+dZQHrsKQB75pqe2hzFqvEZidZvnaYcoMdQvbxT5ZCwjw2hRkmnR754sDSpzHa6sjQVo7n83HOtuXvG77YGepP/LbdC2T38ExmJxsI3VX54m3/ExbhCzLLpftqI5i/fciDVd/7XSw/lOkO8runDbIP8lyPC177g8GHeuIJ8uXnVA+W7/Hu04Fy6VMsY0cA/dj9VrnpVeQS+7bh0pecbfce95wnNZW6/e0pzW67ldSqIj9oPQEKhnt93YdR0IcuShdzHL7AT8EtQaaraAnRchj8rIWna/R4OoMy10zGOShkVpH1A90LcPxWh3cKjVtk2F+gmQS23+S7ZYmEh0AK2gaNDqGh1ka7Bpqt+e8cZoiZnaGWw+BsFeD6Ii0v2tw+n8vjilfBlNesaBx49wwyKCzYqeAbZrS0LAbcNvZmaKHJhp7R0ZdFs+nlT3Xz8ihI4Itc+LnIMttMcnyGxVTv7WsC8M1zyXLZutp3X3WooGIgrhksypRB8bzxx+KtFPTcafzd5ql/DFq7fKtEyvbpLvP6rgpm2dS3nV2zY47t/NQXxwjbR2xzh/qPm9HmiL8PC81LfUcV62Oce/Gc/JMDkmyHPdkqccN+Kw/GJ1mmXYo6YhGvDf9NA+45cfl0smnvqI9ZN9QlhjsSJYyzf+D7M6NXp+cxyAdV1Ddn1OworrJfcXybVPJiwOL03gzeHE0HEft6vUr2X5Y9Lx2+JhlUfev2Wue2zY4OMp7B8o3OfCdN1PfXstEG/ZI1rmnJX1QrKRUkRp4GMTSCPO6o8kED9OkpJLqvm8armSpRMujDcK0clJ+bKSC/I7iNh2juH7olIDS0U+WTwPQa3TiSO4fAm+nZ383Lc9tnKdIEsfOCpjKmwaHxpB18fq0TaTpTrN0jgh42ueXs7sCR37Ln1eeyAvTN/JJ8E+iwaVc01G1cSqYpXxPDvlan5YvA6nyzWgrgZUNwTSHmIbzsUSQUufMUXXOG/J2HvgwWGx6Awue01E0ECuQtrxOxDFpWvZby+BqStO1v/wRQ84dOkFTRPUQZdvhZXmOLBNEccy495/92jZeUd7+35/Ng+v3ZNe5pg45AL9+lTLHvPOB+q1ya71EPddXLLdf78lWh/L1ywS+fAOb5yj1Xfm2w2CZPRyu23Fb0xttd7cAesyn8aUTYp4rO03H/9bvQI71WDI7aa2j9zne1guth7ZvGntS+acTVzt2iOsE+Wv6aAKydF4YQGKbJgeyaTquDuywPacowzqvZbn95JV2kHSqtOVx0lWUwVOlK29TUPZw5fqe9jTRdb+SkuyCrskhqLE16JgmZ4Gpo1hULEdJPi2bD6b9TJYfYEvmyAIBWJWVI329V35p7JuG7bPjVYXiVaVDHRN8tEwaRJKjvVO7Wk4BgYEj3wzGPD72ufveQMcrWATpBtxu96nu0bgkW+NlGaFRoyNMp20Cz1O/GSQTQJ3ncDTtcZbPd7BcAgBH2qYIW/lwWjvKjqJ6RY9E4Fxa6wcCycrieZHkCRRTpi3LbJfzUjdwJYPtan5+iPUgy7ddcZy9PZE8s1+PdK0Pbx9lC95L/kBk7/Ehe95nOtd9jHNHTxnhLU193747zNYRobwcnV1/V7YP/U8rtwbsHftjlN2Vo4mf8mL+fO6os/8NIC+f3buC60844+3ubL/qbeeHxydZvnnMvFFWqb/57M+avqzzRmf3WHno0E9zhffKQ+eBnfvej44N1j1/mX+K+rMs2ijOR/M82fbSFIBpHgcEa7NKtq929ui8MaDYstjmqY10PFiHbTLrW5N7BlxavlfAWo4dJ+pm1m39TJvmvqb9Zd94bl6LNDmgj0Sde1rSY0FWfkdoAtgGo/3v9giunKwZECoAAqhnJ/miJyZ/MpsHQVmflRz5cYTXabx0TqohoSIkIOdWFjoDjjwfIL/rmQyowa4jk20P62B5E4gl3/ydR5NjSQN/qF9pLVLMCGTz27gTcDCfI50ErdOkswNkar7ywI/0sQ2OIp5k2b7JGaLxn4Bc5aHjOTkynl+HSNsykmUE2/1U/tnf7nPy6/FxxHkCzSSPRcvz3nDWQSeb4MwRTYNZ1uEINFc7LMPcdtN+7wcI6eQ27xWVY8eLTkt5sA46VB4CnGT7Ni2DmTVHm20N0t1zdv1SNtu9bjq7f3dm8hytLBHkU3cZuFUm2TcEzZX/6nQ7qybLCr/gTUedgYPgGvuPMmVnvnx33tfxPRjK6jxkW8rjpFvo/DggMulFy73tSI9JngMto3ndN8muHLncjl2fxWI95bv9tlaOAxzmJdkEI70aMdkx8sU5PNloy8VUTsvyagzb1rnPgJV1YfO1bWt9cqDrzF8e1sp20IF1XsnyWzTmc097ejC67ldSqMQZFUiWxsyTZtpnWkU+RQpo5JLk15Lc8e7Nf43uaZYKhcqSkQwaHYIV8kmA55WRaWXDRoRG7UTpyqtBa7Ist+fsu64wWbE7D/9LdBptLM6L1hXoODJMfhjZbx/baZgM+UG2z7tYudPBm8AM5a5lsV8doZr6je3heHCs7HCRuP1nzUHiHGF90yoUx5JbBnufx13F6bM3BLME81P/9P60tSpZysfF4VrTuww68HYKCT44H5nuwWTYBtvR324NonPBNzj1+RIDxcNsovZ3Z7ffSo7Krs1hp63cUResOe2ORlOXlU/KZp0qr7qU7s/GQXnS2fndyMv2Ue4MBJu2epBOH3VKV5Os/whuD7PcpuU0k3Me5DvMZnsa58VN2d2C1jxeES//7iunm4JN1CXUSSc4P1WakqP/yW7/n2Y7nz1vrTvbX0fZrpB17Gx/vWrn+TbZYdpB8rq2ujrZo4kmcG6HnwELBvMo963HfcK81MfVbdZPXnXpddfFuUgcQZ12hHzV3ZPjsWZrrZ9N05hZZ3jVeU97ejC67p0UKiQrU0ZzuAxORWqjbcXMScto89uTfFuWSmKKHJGPCYA76jQp+x4bUNXokvcpgkUF1nLs6JAfAzWD0zWDTuVWx+Igy294MBp6H/Ixr40W29L2l3/3LdvBcVtzSMl7yy/5NblW3DSkBDo0RAbQdlJZrh2JyVizPQSNdrCmSFsBMVdA1ozXmpF0uy27/CffyfaL55ND1fk5AY+Jx2Q3okzDPX24kHXxJQY0tN4qkyzBANs39UnT95/Hx9k+0M750DTTCx1IUxSa8sT574CErxHQl6y32K6CDwL8lre2vaUg8DfPzrk1yisRJ9luA1vTqQVf7QPqvkmXldrnbPNhli8XcBlrwNkObseV/et5zPIOdH1aVUmWOoHBKzuvU9Sc99acHBLtTP9Zf4nOt8fD42C+OKeY1s6TncsT5em9tUg92+D2+uUOp1naVfPqucX6pzHjHOS9Xm97qa/Ok1tvwaLddH84yOLxnuwByQ6T7RSDYeWdDsnaeFzLdDWPPN9XH+H6Hgv0QeHQEsDRiBzjvwqi92xID1AODRmNywnKojI4yfINOwTWh7rG8q0MWee92TVMk4GaQFgVzrT1hMaCoJq8NV3LYrS3dKL7PWbEsP01lVMe1xSmnZMD/Fo/V5sOcZ98VpmyXoOxCfQlW2PANpYKzhzJtoNogzYRjRjLL3Gcj3R/MuJTBDy41nFpX3jM3X++xzEg0JhknDLA1UBv0WMf04lqPf52RXli25qHkdYJ2DNN5YPOu4lO1eTYBvcJWD2edJzqSN14lo8Pa5c/z29HbVsOt3bZGSEIst5JlrwaMB1k3qrWMo50304Py2rbpkBNnYfjLF88YN7J76SL3J4St65NzsN5QLH8Jdvx4Nw6yXZbWx2ty8hH3XiIfz5MzzlsJ32yU9TblZfOZ+vptosAmvOMNoI2s8Qtd6c4p+PGIBPrp730qg7nPceK9iLDsUG7dVfTTwEl4wQHReyI9DrxBPvhPIBrO3teWgfa2j+0wXYgyJ/vuT2WB9ts5mt6YwTPfROvPVjf7GlPpOt+JcWg01EPGmVuXzkPwHC52gDsNHMkI1kqpp5PEVgrZSr5tUiUl54zHDd/jSTr50qSgS0j5zbmkxLjFhsbPvLkyNnUP61ras8aOdJJgFhHlJGk1kMASCeJkTkaBCtnPwg9jQNXkDj2BtjMw7znAWEDrCAfjQm3V7g+yqqdUzpLjhSXD0ddm9d1M2rJlaZk2ceOZHo+k4/JUSfvBi5RvZUPyjtBV+fPaZZ95Tp5zvHwK6YnAMV+pEPbV9/WIbPs9XrPOSb8loj7hX2z9jHJNUByqjwEL9PWuROkqbPRB95vzWZF5b1D/cl2VcMrGx33aXWF2zz9IcvmfzAH5KHYA47nhSF9smnjPdl12ro6RAe2ZLmi/uL2X+sEB5wYKCBva1vImobO8hqV7/NA/EQG+dRJ5Nv2y9u7WEbbxLZOOwy6Am7npjK65mzaGZiunWbu9/twfc2Bns6tZ6v/HDDlGPoay6o+4zfIkl08YfvhrWiT/XAZ0wqqV9evZXIw45Gqc09LWtMh1w1RqTn674gZI5N8/SbLogJj1IQg6ADnVLRVDJNjQnJkhUaeEbH+GBF39O9EZbV+ljOtuDjaPpV1kF3jdIq0bQsBG8tyVNgggCtch5mj2I5IcbmcqwA9Xotkm7+pve3bvv6XjhqXtifnqvVxWx37yu0/zXYfOyONBOuMSrIsgt8CIa6QtMwJ1LNMrjhM0a+2m/m5+sW5YcfCxp7/bF/75WKWY2ZncXLaM1xnnQam5Jtp1lZeeo8rsFNQgG0z4Gd9vt5X81bu7lEdUxSTbZmcsX5XpdesK6b5yvqc3nWzr/rvVyGz77p6RPnqA+juD5ZLfioLdHYtc8zP+t0XpDo31COu3zaE7ebWN297Yv7+7IwzwHOQzRygbTE4LjV6PgFV9qWBLmWGAYTqNG57NACd9NIp7pO3aVVniqxz/thOTmV7rhVUWx74TA0DaF5ZcB+2jMp0+bPtZzBjCuKRx/bBWoCu/Ex23GDfARzmb3t6Tvt1jHzGNMzX+5Yp69jz+NivoOzp4dJ1v5JCYMHlXE5AK7zJIDXNpewqzzVHw2UYqJEnKsNpH2yVh19vuqbkCTbWDAsNnQHbFHkzsCVwpjM48d1j13Fwzn22zaDyZLh+kmV9dvSSJeDo2HMJ3PydKg1lqDSBCwMEO4MFSeRrIhuvZLcfGGFlGgIoOwYlRpun8WDf0CGhMzgRnVy2g+Bgcm4ZVWWUl06co8eTY7YGgg6yK0sk3iNPDEw4uu38JbbTckH5KFC/P9vnMnp9cpInoNytQ2vb0eis8/oFpe2KhSPbdLxbH3ko0Sm9oPtemWvQ5p4k//ns+DLKtw61U3UBafscD++xDLczWerxRpen7WuUGc5jAk3rvOCawSfBbbJ0CB5s2yLLO9U9yhb5YFry6Gu2T3ZYywuve3WwaRiQcV2cB5NNcUCxeeyUrc21yTlf6zNS03Flq8QVrKnNzMfVIZYdlEl7aSzhtk36iryWmteBIxPHdG21iDLMZy8tM9UT1otReuusvbOyp4dK172T0knXyevJ3mXYtUhxJ3CV0oUsIw9UisfZVZJUjgauXI2hUrPRm8qclMYUXaMRWAPQBlrkK9m+Panlc5sBy2gfTREkr9asRUdZnqNJTes+5XJ0jZmd0La52yuafw1Ath0nKo982zExUcGzTwl2zzPKNh5Tf/DcEWkDKgOfoH0G/TZOybqTY7C21h5v8fJWjLV+TOa55e0xJbZ1AjKkKYJNUENwxq0KBj1s7+Usv2FBKnCeQMhpdl/ty/STXqlOm7YZsW2W3wnIsq3sp/azVzjaHtebLL8DVQeAeQ6zcU7a7puzXaFMlnLXOds6CIxKdE4q78e6V75PdNwy/dB/9Urr62t/2xd0giibE6jkczUT356bBL0lOo50TCYgSEfYQSTrSZ63HjvoR1l+tHZy5lt+61sLQnhOrAUVbKs4blMfMeBiXWue7TAdZ1f+a/eKHdpfXi1k29lWti9ZOiiWSQeHKCtcIYzS2ImkXJTnNZ3aeWInmrqWDgXbfaQ8zdfACvMZC6w5NNcaOSD0SNW5pyVd904KlVCyC3KS3ahR053ix8iRDQvPm94T2ccnw721yBDvHWejPL0CQiBOpdp7BZx0MLyNZQKhk3PnKBGNgY2z79ngsLy1CboG6mgQq/gmw8w8yVZx8/3tJ9lurTkvIuly1hQux4tkw+021NDSKJYIkoO0rYdgOUpnYhvpMFluvPo4AZAJrLC9NFoEBHYOSo7o0nC2XZyvB0rrttFgto8pU24beZj0RQHbND4GEgSvbDtl6zhbp4av0o7+PX84Zz13mLbzz6DEYzDxSKedxHFtmjqhJ8o/RVLZ90dJHp/NMyn3ZNn3jGjXAXGkuQ4anQYDu9a5NpebhunYb26/9cOa/itfJPcrnaq1lW2Da0bM18B8iTJSXum0UI4qix0XripYz621l6CVttd5fTyBcQegguM1e8F+4CobnRnKkLc6kX+Xa5sw2QjbbN9zgJMyRp6OdMw540Bir59kVy+dx7/xjdN75ckBD6axPTwv6LSnPT1Uuu6dlCrzZLlFpYqIwCbZVShWHFO00UZgiiIZOE2AyrQ22amYqKgYNWd5BqmMvnCrzwSoGUEmLzQaB7o+lWV+7PhYAbNMK0WCYgJ7AjyDEkaWAv4YvWvUlIA2WRoJpp8MAVeU2J728drD9V62d5tLBTPdKtPyL2aOmBOAT33a8pq+fehtbQYS0XUDNrfPBtvj2Hbb6e7xWhTZVGDLgEHLLtFR9xhOYIM8nGS7+mqHh/PbYLPyZ6PNa3SmzBNXCKYH3Ctb7O8JmBewTauJBtMTTU5feZ/S9d6h0t6fjaxdysYx+c0z/m86a8vd2UaS3X7WVyDK8wvZ7cduh6PenuSH/ea5ObWxcjH1dWmqh2WUprl1nu5nes7PznnbG+ehrqJjemOWzwtWXqxD7OCRZzoolvnJ5tKmTGCcbZ5sS/XYia7T9pUnOniWEwcHWb7nFuWCebyyFF336s3k+LidXklmQIXBANe/JpOlSa/22DrO9TLdFGg8yK7MPJYcF9qPR7LOPS3psSIvHzAdZbvy4GhFAU3JQJFUgXXkOtlVoi2bZU1RlZbHrQxUrFRqnDAGeOa1hoUGy4b2NFtD1Acy6XRcBD/kr/+T4jpUGdNSM/twIjsKk4EvPyzbBttj4pWj8miQTgPaPp/G8jBLA2OHlWWV515bG0vm9Rt1GLm2o3uaDXB2ZM35bbRdrx2b8j05JT1mOybnpuBmMtwsi9uG3Dc29AdKS5DA/i4/bF/7oPJAIH00HFNWSi6vfE19z/nNVwzff/YrD46EW4YpcxNAPM7ulq9+FNCOu4EGdYPluvnbX2urkwaHvFZe2Pb2cbeHcK45eEGnbPpuiYMT7Vumm4A1y6As9GH53j/IdqubAZ9lsTQ5NidD2pPsjvc0Vw5x3t8039e2Z3bs7ER0HP7rJH8yGyeRuptzjHp5akfLvKg0DgJN9qpts6Pu4/vAC9vEQGTL8nizTcl2LtmW2N52DpvfljFtlzsY0lE/VTdNuKBttd2hY0PH0Y4B67G8VxdZ/loO+8P2ouUHeU2ev+1L6p1HA/zv6bFL1/1KSicHVwJq1AwCGIm4N0uF6aVoG9QpatV0nug0jMkSgFrZRnWugWBHVVgWr5eowLntif3Edq2VkyEdnz1wxIll8xqPp61OVnwlGt7ea51eIm/ZjgY6WlelOi2xt07ufV6Tg/Ldep5wlvde8T9FEA306LRNqwRsM/PZqHAMpj3SNIATKG3eaYXCoMhywqgd59pBlg+JrxnCyeFNlmPKlUEbcM+H3vd4sV7KiUGmZchyZ2fHOseOOOWJ4LzPZPC5BgMcgxGuLtDRMw+8T4eG98or5cvkfmR7yCcdqXuznQtPTHJntt+D4VjV4eCzKayj88XO2HQt2ZV3j33TOBBFPeP+tpx4paA8UP4nHv1CAsuTzw1mk+V8sKwG9+qY3ZrkM39PkkvJG39jMw4GsuWTK9FrKzz34ZodI6a3PTjOshyO07QCSaLtWLMzthN0wOwY2mnxCtQUaGE7yJPTsVzqGa+GkyinbLv146T3yIdlgfe91XQib0mkTFPuOH8OspTHxwpNuvKRqPN6orvvvjuf9mmfluPj45ycnOQv/sW/mD/zZ/7MwyrjundSqhy5tDuBYCqvKdpjZ8eGruVOUQw7MJy4Xr1puVRIk7Jz1G4CeFQijjST37aH+SdltbbSRINsA1GgZseMZGC9piTd9gkIe0WjY0YDW7Lzx35yOpbnPcx0Wsgnx7hlXMjSSaFT2H481LVkOS6OClte1hxZ5o/azDbQGTYYmcCZiX11oDR2TljPeeNJngxcOP96vhbxZUDAUUwDvslZnQDQBAQ71t3OxHQc5wJTb+FKdrdfXcj89qnmPdQ1pslZvZezGxmeHAufl0d+i4X/Ezjy27Uop9aNpWOlOclWLq9k+X0HzzfmcRCJ95jP8ssx6QpKV6TaTqdn2VM5dDrZJtO0+hOkrTy1Dfz4JZ1063DzxvTJ5s1qP/C+5NL7krdnV3dezHaLY8u1XnL9HtPSYXZlj33YZyengNkE4qnvCIaDdNY5nKu9xxWKaSy9GnqsfK2P/LHsOoRT0KT96f6zHTFRX/X+fUrLuUQHebItDtY5CDLZ0Im4GtO2czfGnj546PLly3n961+fy5cv5957781znvOcfP7nf36e9KQnPeQyrnsnZW1i+TWCjkwSoBhQTc5NsjspJ+fCy9MsewKUkzNFZ6ZGqPvRp8gblTR5rTKcIhwG7FZeU7/SQKzlS5ZGkADRxi24lyyNxZrhnYDLBMx7fW3VpveouB1FMrid2tK6rmQDAFrvUbYPX68BHfPTPFPf0rlglNbk8bFM17gY6NMRmJwgOjw20gUeBswtr+cG8S5nAg499vy0A+ogActYW21imWv3W4f7s/0wBRvoGBaYTl9mPxzuMU35IU+XstVt1QmMak5z3bIyyY2dDdOVbJ8F8ergVF7luTrzzmxfSlJw33puzLIfJ97tfFAX9xqdOcqX9XRln3JiwMbrlDXLW5SWW4Mm3di6bQtOs9weyPucQ2ur9mtjUPpnKOM0W9khoOV84SoJ+Z7A9HStRL4Osl2F4ccP6VystcerLkdKx3weNzoR5osBJuoo15Ns5ZdbEk+zOyZsj1eqpyAhdbFtMp05t41yRHtNXNG56kAm9SXrdUCIOoYBvGTbp7RNLWtPHxx0eHiYy5c3nw+/cuVKTk5OcvXq1YdVxnn647ogKp5pC1WJTkOV8yWldwSohqP3D5FuMmDBsUEgjbCjiafZndg2yj22QnRU+yC7yoKKrnVWKVM5MT+N5Rq5za2rCnFafZgijIz02Jic5xQdZingTGtQSeBpcMy+tcND42hempdywbaXOn5sH3mfwD1598rS2uoGVwjLA/nxqgdlkNEx/wfltGw7lsE5ydHPZPsRS+YxaGjeqe7zHJwpykheJkfR42vHpvfY7vYPH0BuXoJzto3HrfdkSHNB6e00MmhhJ7t9yznF1wVPIG7iJ5n7ifohSmtQzr65KctVktMs39pl0OZ+6nX217Tq0vJYj9tHR/3+IV2JMknno1vzWG51unXDdFzy9qfTbFbl+nHMgnbLYtvQt3RxDBigqZzcC95Ps3lpQTLrg/aLwS3v0X7wWrJd/bH+aB+s6esp0Nj2TH3XuUjZ4C4FBhHs7B1naYf742rLgcoo4L+UZRscEKFenIIj/FHuOG5sD9tLncldHXbeOU8YMKFtaD20GxOW6soS22W7NAWopjG71uj0Ufo9XHrVq16VG264Ia94xSs+gNzr9IY3vCEvfvGLc9ttt+WGG27I93//94/pXv3qV+fpT396Ll26lNtvvz0/+qM/urh/55135vnPf34+8iM/Mq985Svz5Cc/+WHxcd07KZ1knsSOzBQ0WJG7LCsJvv+fRjq4RjoYfubpvEExcLYhK7VtbQt5mqKRa8u47BcqIC6xs0yD+FNcP9S5nUZHB0+RL8pbIqhvOTRCjCZNAIEGYe2eHceW04fVm/9A+U6Uz+Cazh7bTGBJkNEvJUf3mt5tOEaa42yjlE13KUsDxH6m49RrLbdzaYrgRXmabk359l774SCbyDn7aALQjB5PxACDjTdpknv3Q4+ntDTwbDdBNvvyIMv+mIA/28vVokPc5yoF+5bXLyPvpWye+3hKkg9D2uOze3YS7Iic6Gci6OD2pOZ1v1PmL2XzvNZNSH+Q7Vap6W1d5G3tofa2w5HtC8jHrSjJUtcdr5Q9BUI4j6cVd+sGAnw7XJR9B2jKD2WT5Qf3ywedfsrHMa7fm41zcrfKYPryZP1bIjA+yuZZF4L2KWjFfwdurAc5F/pvR7zXm5+6u07Gmi5iX3s+J9v5YT3uNq05VBMusKNHx6hlTbapeYN0xgYl6nfrQtpcyuIUcLMOYP+TB/cvgxYte9Ihe3r49KY3vSnf8R3fkec973nnpvvX//pf5/h4NwT8lre8JW9/+9uHHMk999yT5z//+fm2b/u21XK/53u+J694xSvydV/3dfnpn/7pfNInfVI+67M+K//pP/2nB9I84QlPyM/8zM/krW99a/7JP/knecc73vEQW7eh695JmcgKvWC6TkfPGWGuAuH1kyyVZyd5J/4UeXDkp3msPBn5MQhK5sgkHaSDLAFo66JSonKyoXW0kkr0UHla1uQwMeLCspyO7TPgd+Sr9+1k2vCRbNibnmM3RSTbhjUnrmXZANGwJ0tjFNy7gjyOmrVu8me5Yj2+Xt56jw6mQdNB5r5keTbCdCwYZSzZ6J8XJXKAgO0xYC6tldcVg5Ll2mVxfjiQQUDSPqCsd45OKzzT8yOVwfPmc9N0e0/L4vw4xvXouM8uUKc8LcknJfnDST4lycdmVy9MIJ9tm5xEbsvyf4/phNrRqZPw7iTvPbtW3inPlE86J+Rh+vW+VzK4tewgW/DPN7DVUYp4SbarJQxSlDe2v/1PR4sAnECa+osBliAf/x0sSJZzznZoDTyyv+wYGaw6YNN77p9nJ/mcJM89K6POypHyUOcQ7NYOc+5S51tXUV5oo8yX66LNTnb73cDbAN02nrbRY8N5z3Tkx/k8J9kHl3At2Q1inKfDm29teyDH+6E4FJOD1HadDPceC7SmU363f0nycR/3cXn2s5+dv/N3/s4qf+973/vyJ/7En8h3fud35kM/9ENX052enuYrvuIr8tKXvjQnJ9vR/Hf/7t/lhS98Yb7ru75rzPdZn/VZ+cZv/MZ8/ud//mrZ3/It35KXv/zl+W//2/82z3rWs/I//8//c57ylKfk7/7dv7uT9pZbbsnznve8vOENb1gtb6Lr3knxpDMwT5ZA1RHzadJ5K4OjHXaCShMIpQPUrSBORyBqxXuEH0HWEdJScR0ob8s3UJmUY4mAstF9OkB0yMqzgYkjK5Ozxyge0/vL11XsdurI+wQeDpRnIsvCeYrWziafe2JdLZcAh1HLZDZuroug1UCpPJ8XtTI4say3Hs+h1ldHgBFU5mfbWGeUjnnPi1onS5BjJ2iKZE/RW5IBj503RrsPs314t+kpnyfZBZt2TAlkpu08TFs5L3iewHv7635dP8lma9BBktuSPCObKPlTzuq9Ocn/M9sH+/kBv+Zv+QVDXlGdgBrrp1w7bYFrsv1Oyj1K17R9aL/jMYF19hf7lK87Zn917Lptys/9OJhA+bqQmainW0bnIL9Wb4f5wYAgy6zDVX1C3W/7VZqCXJNO9HxtPYfZvvq36di21ss+vjebMb07W2fPdtPHJQYAT7P7AWWOp1cgmoZbGqd6HKyg3XVf9T7lbc2edNWqc4nOwhREsrweIl/vEatQZqYdEclSj9Cu0la6TvYXx5U8TPyyDzgGR0o7BdL2tE5vetOb8gu/8Av5iq/4itU0X/EVX5E/9sf+WD790z/93LIODg7yAz/wA/npn/7p/Kk/9adyenqaf//v/30+7dM+LS95yUvyyle+8gPi8f7778+b3/zmfMZnfMbi+md8xmfkjW98Y5LkHe94R+66664kyV133ZU3vOENeeYzn/mw6rnuH5w/D6SRGtGbokhUyFNEL8hjwBikpeIhfyQ+AN8yqfRaFie/wUCyVGDmpwalEScrYO/dZYSLfRJcp9JtPpZDxTcte0/OI5Uqo7imtYhjeWubW89RdvudvNfYuG/ozNApKn8ED2tyMAFMgoLyxggh+2StnRyrjm2ylGev4rnuNfBAg948BPGsh+kNXEqUgfaZV2JsGO3A2dmuMabTz0gxDf/xcEw6UHnks33Atyy5D1rfmgNS4rMgrJerJ20/5763kbEPWk7bf5jko5K8K8mf/Yok3/ZX8zH/7v+d733mpv5uCTvG/wSm2D7WZ2DOPO0HOlEGkm0fHSGvXjQf5YNEvWt9mMxzkfendJx/ky63XvDY0hkzzww+UTYNSO24M/K+FsSY6puusy6Pn6PfJ7pmZ4e8dIvcLyV5W7Zvtku2r/U/VHo6HOaD8sixYDDOts3tqTzReXH7HNiaaK1vg+t8cUVpLQBWPtoG4w2WW6LMsA+MXUq2odE9l8FgFbHTeWPufpk+LGz53dNvj777u787P/VTP5U3velNDyn9bbfdlh/5kR/JJ3/yJ+elL31pfuzHfiwvetGL8u3f/u0fMA+/8Ru/kZOTk9xyyy2L67fccssDW8h+9Vd/NS9/+ctz9erVXL16NX/+z//5B92aZrrunRRPruk4WToRPLfCOMryPfDJEpRyn6eNW40ez22IXGfvtTxPdBrKqc7eswJihJDlMFLM+20bjQz7qvw3mkLF7LqaZzJKLYf96T7zKzGTpZI9GcqZwK/5OFY5vNZyzlO0bPfkjDqy5nb7nEaEDsia8m+6IC8joRzbqX8JdtaAHfO1vTSYrNeyzNW91tE8k9NoB5P90DG9D/ctu6yPgNPOhNtKsF/qG8paboHIGjCY5hD5Z1r2KcE758M92W4ZIiC/X2WY9/J4T5L8uST5huS/uDPPyN/OL52loZxwm1yJZVeHHGfJr2XYc3a63nIpQ20f5aT3pq1XPL5feShfE0ArcVwnnqc8U0SYMsY5YNmiA5Ts6hIHxa4gHcffesB6uWR9zGi3QS/lZ3IOyN8UeDjNRtYK1nuPepi6Yi2IwTnL+ie9TH7M/6HScR5TLqxjDPypN2ynmI9tcRraj/OcUY4Lr5Hv/h/ovjGMA1lZOWefsw8oO5Rr2kn2+XkBwJbbcq51oqP1SNb5YPS2t70tX/mVX5kf+qEfyqVL/uzzOj31qU/Nd33Xd+VTPuVT8tEf/dH5+3//7+eGG274wJk9I5dx9erVB67dfvvtueOOO35b5X9QObVeIp2Mpyd20/VHg8Yoa/+pcGzUOukdMeVkMLCtIqJBW4tG2QmiYvA2jrbTKy5rvEygtfkNDPkyASplOwgFJzx35JaA2BHq0yzHy06o28N7vFbg5SgS28l/R/dsSChnHRNuySB/rONAaegEePxKh9k1emvUB/3LP4EDt++UpgggQWX718aZc4BGnu3ymJWHoC2ea01zY+b92JUTlsU56q1XJAMFk8fT4Kb90K9tT8CTckueAr4NbsvTBGDYjgmMnGQDFO/O5sH0/IEkP35D8if/dt50xkdfg03dxj7g1qYj3bN8TLqz6Sb5fUI2D8sfZ/M8Sr+D8ni1c83JcVsPh39/n8X8EXSxHJMBJ9N5FTA6tk47Ha5XR3tVwfOavE51lR86ltSTnHdTkIDBDgadbFvcNr9mnMfNz7TWwe4jltH8nMNTX7NtE9jj9alPep3AP1l3/tbwQ+spr1M+2nEGWtiOqV7aU/JAm00HZ43fnlO3JruylCzl6SKu0XFqO4+Vvn3JPqZzuqeHT29+85vzzne+M7fffnse97jH5XGPe1xe//rX52/9rb+Vxz3ucYvnTkjveMc78qVf+qV58YtfnHvvvTd/6S/9pd8WH09+8pNzeHi48+D9O9/5zp3Vld8OXfcrKTa+09I6lXEyGwGDAYOL4N8RnqZfM2I0kIxoOQLdNrh9BIet19H/pmUUZAI4pGkp3UqMCpk0RYCmKH2VqgE6o4bsT4M1jiHb0nKqVJNdg2EngY4EnRz329QfNAAGvDYYlBnmnQCI+8oOQLdQtBwadEb81laDjpHeK0nsExtfGjaDDbbbRtSR0ckpcASv6S5lCRwuJbkr25VNjw/73I4ct30cZjmfCQ6mVQK23eCOx+y/yfgbTHmu8vp5c/Uk26+xc5xzdu2XkvyhJP/wOLn7BZt6b03ylmyi3tSJaxHbZLdvTrL9wKPT3j/kO8zyg4xTIID5WNbkuJIoR+WLD/V7PrTsPpPTtlN2GbRYq4eAq3PJqziT7ncwigB7GseWz/qs67ha3jasBS5oT6hb1pz3yZ6wLOpWzqXe95xxu0iVR7azThD5LS+9x3lGnef2OoA2tdf9E5y3/LUVFZbDfJSrltH2rs1rzsm21+NMB7fpuOuBsmUe7WxM/FO+LQ9reYljmOax5Jw4qPpI1flg9KIXvSg/+7M/u7j2JV/yJfmYj/mYfO3Xfm0OD3fDCb/xG7+RF73oRXnWs56V7/3e780v/dIv5VM/9VNz8eLF/I2/8Tc+IF4vXLiQ22+/Pa973evyeZ/3eQ9cf93rXpfP+ZzP+YDKnOi6d1KSXRDfrRreYmDwNIHylkODsRbdIzAyKJ2UZ/M2nxUgnRUa/ioqfq2XPLhuOg2n2TWKa9HkUvulCogGbopi2ZHx6gnbTyBCYMI2cGzsQLqPOK4Eo3RsWM95UUoaQoNogtUJhDOylKwbD0egklmeaPAov+0LR6J7zrFjucx7iLSHymNZmq5TdggaCH4pr85HcNbjPjh+fzYPf787mw8AGiTSQNNpm4w6yWNPB4uOXrKU7/YdV1ObjrqBYGCKSPtr8q2ncsk+cVo7VdH5e5O8Mckzs3mI/u4kP5XNMwME6/eqvLaPcsMxmoCwHVYC6I7V6Rn/3Q7Ut5Hx2ppjxP7kK2E5lyvrF3Sd488y7AwHefrQPucw58QagCVftBdTxHqaU/3ZWXXQw+DbjsQ0P9t2BrWmIBHbVOJ4T0EIt8f6yTqt6d0/nMtsJ/mlXgrSTUG/SUbXnIPzAinn2UXbTQfQ7BytOTiUI/Lq+7SBJzp32xog6DHl0PWb76ZjYLD1917PaWeoCx3QsmOzp4dON910U57znOcsrt1444150pOetHM9SU5PT/OZn/mZedrTnpbv+Z7vyeMe97g861nPyg//8A/nhS98YT7iIz5iXFV53/vel1/+5V9+4Pytb31r7rjjjjzxiU/MU5/61CTJV33VV+VlL3tZ/uAf/IN5wQtekO/4ju/If/pP/ylf9mVf9jvW3uveSeFknCJRBMcE3Y3mTIDdCpXKcAIgjibYcWgZp8N9Kt1O+snDP8h26wYNwhThb1nJ1lkzUK9Rt0Kc2kfDxUi7+XYe8mQwUt5Kk+KcooGM3rCdBu9ROiteR/vo/JDYj1M03mDXNEXi6aiWPz8D0bwHuk55Pca9iXfWbUPqFZQCn1PcN9lokewAVF7tfK6BmKNsAOOnJHnZM5P3/GLyDWdl3JXleBXcTKtA5cUGnHndl1OwwhFd5iEo6zHnLZ35/nO1oFQ+14IWBGx2MCkvp9msFvxUNqC89VEe+walNRDmeTo5kj2e8tUJMWCtA1AHZSrHYPEQeS5kV1bMw3lAdAKw1kPtq0mX2j5M4H4C0Xwxhx111tXxd/T9APcOdS1ZrjyUKLOTnBEQT2NLu+i5a6I96bl1uPmwo3SIMmhfmH6yzwbS1KOtn3OW+Vxe5y7bkiznYuXIc9H2aWqD85B/8slxtw62LSWfDEZ1XGkTH8xhI5kHBoRoHzmuk42e8M+1SA7APFJ1/k7TwcFBXvWqV+WTPumTcuHCdgPvc5/73PzwD/9wnvSkJ435fvInfzIvfOELHzj/qq/6qiTJF3/xF+c1r3lNkuSLvuiL8pu/+Zv5hm/4hvz6r/96nvOc5+QHfuAH8rSnPe13jP8brj7cb9Q/Ruiuu+7KzTffnM/OFognu1G3ZHdye3VkLdIwKYtOWkeJW/cEeBj9a7oMaa3U7SwRtBKk8VW4bA/vXxqu23GaosL8z0oer+6wjczjMgyuDQBs6An82Nc2PObJacvDUbZbidYikiXy6+idx8WRNMuFx3+q12NBI0pD5OiX22gyAM2QluBn4tmyT8DV8TJYmniibBVcf0GS/+rTk7wx+Uv3bqL/VzI/8D0BGLfLsmk+LH92gD0/y7flzUEKO8/N52inZeU0W8DPOs0bnc3jLAE9P9oY5OM3eyZwe54BXZt3rMf3qpNY741nx/dkOZfaFgdgKD+H2TpCnIOc79UZnn8lln8p89sWPSbsI+utSX8bxNGJnZxAO7TWBZMskR5s3FwH25PhfOoPByGmIM20quG2Um9Yf062ZBoD5pnaOdVNPkmee5PcOFA1BcLYlw+Ft67yWc6nMZr62k6CZZIBGOrkiRzMmOTM/XSkYzvip0n+RZL3vve9efzjH79S86NDxY6fk0d+e9pxrt1+ebToul9JoYNiJTQZmqY7zyi4rEnBTQqvnnkVGY3/FHlYixSVjnSfkSiDH/JZpTGtArQMR2ea35Edrx643TbyVIaOQK5tB/P2L4LdyZBPfWYnqLwX4DuiVwUe3FtzFEiMcLINLc+g1+NfmqKzrJcy57Y68rrmoEyOYLKVjX6AbYqaUtYOMq/0HCmNx4ZzwU7acbYO4nG2Xwf/v5K864c3W5XuzlK2DGYmeTBo4hvBOG8Y/TzPYStRT0zAt0B0ckaZb1rVNAjlW65uzNYJ4dwo3ZMtgD/I1kG5kuWcWXNY3eapL6xr2MdOz6j9SbbfNrmc7WqO9ZfJwC3ZbokL2sO6pr6hTFhGWibPpznqFYNkOS8nndl+Z/CIMmg9xTxNYz1dmoIjPGZAqUEYy7ij346SN2/rI68MYHDed3zqiFL3VjdSR7RM1msn/CTrK1JRupMs7cpUPvt02rFQvXqf8lDWWG773jrOtm4toGnHaI0YzGI7O+8t92yTAy5rTt+0k4KyRbk4zdJ2TvZtT3t6qHTdOykmrjAkc3SmxjOZo/SNShrgcXtFlQWNAMGGjZKBNaMcpCtD3VSINMYEb0EaRkUNzg0QDPyi9MnSqPgeQVfTGMCcIC15m+6Vp8khYh7XyX5pXvfBWiRtzWGl4l5Ls2ZcDOw41pPxPC9/83SMLDfsu/J8jPQui3zYwFBeSQS/LWNygh1xvZRduZqMWkH4Pdk8X9H23JPlOBYQWjbJf4Y8PU52+2gy9Haem69BEcrXmgzY0fN1A1i3oY4b5wsfGKfDxVcVE9D7+yVsr68lW93oB+NLBCesz6tnlY8r2TgoR9msirHe86LfrI/OMaO4a8GdpvN3ahyJ95wuz+cFEJIlUGRAiHan96ZVa89Jz4e1YEnTnQ737FzwGoMnU9kE42uAmQ5Nz8kX+4P62POQwQWvAkzR/skBbNsmx89k+846aA+pPx1wmJwC18HyznMK6chMQST2ifl0mpaZbPUBV0yZ/nK2K4e2P62DPFvmOu+5u8NO7ppTf63So+FcnaezPljpg8LBpaEnaGYUhEqVb55mZKoG90KWHWdFyeiEo2KtdwLvyVLJTpGf1nWeAiNfE5Awj458UUlZ2bDMoIwal2liU9mXf0fiGH0p78zPOuiQOW2PCaQ7/gYlbB9pLc2agW5Ummmbrkat49m2V5aaxkCRTh7bQR4NONh/7K+J2E/lm4bajokjmeS14z4BMYJ1y3P7pn3Ssmi0a1hPs1k54den7802qjnJueuj7HWVqHkIQNn3lrHyxnpbpldsp/nnfi+xj3vfkXKvcDVfy2xgxfJSmezXyu1wkcyn51a3jE16YAq0HGapTyk/7bcr2TzczxWiSW4t/8n2deddkeFHNtk31Gf9rTludnTZX5MjPEWwW55fRkCdbbvkecc2dH5Xl1A2CvY9HhOQ5bgSZFtn05lnncF19hnTcNVkytv6uVpxqLIM1h2kcltMHB/rSbeDep2y47zBNesr61/3J9t0muWb59pHk2PtgN55dJCt/DsgQB6mfGsO1tQ3Jdvrg5XrtEW2D3va04PRdb+Swglh4OUJ6Gi79892gq1FZVyfj6toqwwmIzcpihIBzn3ZVRhVmgSejDQyclbjzjQEk9PyM8s0mOo9tokAz6tRfci/9x21dBnJEgS2TO7bDe7bAWQklxHyNTDGrRg0HpMDV/KyPseifUaAcZjdvqZxIciwET9EvrW+7j3uw58iYjbcXCFq1I3gcop08p/ponRcTaSjXh67/YrOs6Orjbi7Tsq3jTp58XxL1udf++3ebMEJo4eTY895lWydirbL3xogIKQ8cKwsz13NuP+sfD5A3vx1nglum4ZvByP4c39OTlbrD671OmW+jhHvT4DnMEv5ynDusthnvOcXAjhSzzwE9+c5827b5Oh59abjyjS2HdO8MB3gfuvgszLnOZWso2XZiWe55O08UGwn1SscXkWi7uX2Sn5g1kG88s72W8/QZlM/eAsT/yfbPekxjnWylAGWaX3LlWTObdu6riBPNq7XphXwCcPwvHyXr9Ms7dGaPN6d7fNcxD/lqTbb8mS7S74pU9ST7I9rmSbn+pGoc09LssN/3REVisE0lSMneCeYo1o2pleyK1SMShjIBHlNBExOb2p7DIxavw0eQU/TkgeDYbepEZj+es11Efizv6usDLSY1x/Ba/nmhUaPwMegnoau42wQeTG7Eb8q58lIn2ZZ17HyOVpqpUzeKEdU5AbTPa4cGTTaYWBfty5Hk491bGoeOlLk5SDLuRCce+zJa41cHSc7V+XnRPnIA+XW41k6ynb7AsfJoNJ1EOjZoE/Hk4xMQO9Y9z3HKk+MLJcsi5UpgpfjbCOznTdTVJ6yQJm4kKXTQYDhfpuivq3/MPND+UzrCHLO8jwhyc1Z6hCODWXWzlydJgYhkqVjaNmxo9K+8mpUZYerA5Rz6ikGPwiwqZsYWDCwb/9NbSfInbbrlAiq2QdOV16ooxwssW6wo1diIIPyf6z/HrPPj5F/4nM69zwtb5QPjmn/PTeZ/1Tnbj91t+eot3tRH3UOVfdZ3zCgyGuUY+vaCcjSbiZLx8m7R4LzKT91cMuyLBhLdTuux/B4Jc+e9vRQ6bqXF27FmcjGgmCl92lor2Q3uuJoVrIEeKyHCo6GZAJpLIfna3lJx9mutkwO2hQxdkSsfFtJJstVJYL28niapbIluPW3CVqPDQXbNzlYjHwTVBLsUTE7qurtUAQdE7hvG6elaxrFNeNi0Gr+W4cjZsluGwyaJ4NDHghaezzlcxvW5g6j0GwX8x1kV357nasLk7NSMqgh2Kas8i1sh9lu/+FYHKsc9nnraBoGKwwCGVGN7hN8se2T0TZIan5viTAQbjmcs6e63/JNV3S/K5H+7kr1VUExwSkdPOoXOiDJ8g1kHRO2te04zubZovuyDBpMctPrdN4Oh/QOCBxk+wzPBLTLY9tAOe53XNyf1FcT0Dc5qsy+a59wfOhw0imyk9d6ryA9ZaLznx+25Txi/e7H8mu7YP7KA/UT6+c84C/ZOrbuEwYS1+YayXrPdnYKALg9pSlwRJtLXujwRv/W7f2nnrBTQmeY56UGBLha136jrHj++JxlH2brSK3ZEtoR9/UlpKEjXrxE+zM5WXva0xpd99u9JsNogDMBzZIjrpezBKkTYPKysp2EtfrXoh2MQl5QW6YJ72V2Eh0r56Vy5bYlR0MY9SF/k/IuP8kWWFxBeivwAiICj2mpP7hOQ2YnZjKuLIf1TGm9XaF5HJX2mJen9h3f4GKZ6rX2z8Q/+52Ghc5v20UDn+Hc7TtUutLULt9ze8sD2+V6DIK4har318aDdU1Gt8b+LpTDfCybzqrLIZ+Oyp5mlkfW0/wn+rcD43LteLAcOpDT/DjN8kUEF86OqwNPsnwuq6Cc/TQFP46QNtkdF8+DtXFkXZUrOgYnK+XQYWCZ09fuzRvl17LILTtTu5rOLxcoL9H5g20nah10srjtdQpEHOufDqzlYk2evbJEHqlrGLRZW70gj+wTOuGUG9bjPmO/29bZxpAfvtHLfE72tVt3e/+8lYj21+XsvtWQtoB2x3aQMkq9zXnKLXYMsJQ4jym3yfK5MF5fGxvSFJhLln1Unsljr007Q64gDXUcAxN04qfgybVIk8w+EnXuaUnXvZOy5iz0PMM5oxvJctIy8jsBidZ5MlwvTUvyVFZr/F3AdU52G0fWZ4UwGdrmp9G24lyLgjgSPjk05IX9Qp6qEKxoA968/cRRe+dz+whMaWBoULyVbDLyUz+wHoImOgBTdG+KvtERab29xrFiG8kb+8CgvNe4VbHOL+lgyEPjbDrAPYMPtnfKa5BCObFTcB5Q5Jawk+zK5SSL7MfOKaYzCGO/UF7WorYGOeWT5PZRRsmDnTLz3uOW5dcSX8D94+w+l+L5aUcwStN8BDATSCTvnGdr99kHlVU7E125OVB+A2cDrI65dUaQzm3uOKzto5+A8qQnPC+b1jJtR89yznIm3uzkcV6urYqUaAfIU+usU8X5Q0fCTsU01ms6gLQGDqlnPDepF1kGndSTLG1BspWLy9kGOWhTp+DLtKLDMWEQqXVMc9wrri6Tx9Q1dEatk9dWKtZ0KsfKzt0lXG/fMS31fctmmTw/LyCwpz2t0SPtKD4qZLAw3fexo6VVXmveNYHKBH5bBldLuD3GkYpD/cpHlcQllEPnicqBW0MYpbUS43J7slT0bD/TNB0NBY3FtFw+5bWSm5wXPgBMRVqDaEeg5bZ/p3rpFBjgUwFPvE+gwWXa0ZiUMvuOYGTaMkL5spNLshFwtJjU6wSv7suJdxvFylUyb5NyJHvigcZsAmHBeQ00ebTj6XnMOcw3hFVWWU/BDuXsCGXQebYzzYitHWeuvCZL+aST82C6xtcKBM8D/vef3b8x2+1LN2Z3vrU8ltH85csOsOWBc+gk28ivndGmPUxyE8pjvQR0JG/bWnsz2CHSdtyPst0O2PaeB96pT0qTnZjy9Jhybn3BtlUevCp7sJLeeslyw77gy0AsK+c5/0xTPjj/pvEhILYTb1k9zEYeL2aph9gOBxh43nnF/nHQYOKN+T3naSc4573aXbKzueao02nr/b6C2zJGHcIymtf6hHqI7aYdY5reO9D1o6y/8OI4222ZHQc61m3DmkPfOtYcqWuJTh+l356WdN07KQShBGwVCE/04FrJRs+AvGl4bOfD1AnO6C957l7O/mjw7Bwku8qcho2K5D7lNThnWxnNq+KjsmKd3K/a8uzkJbPim8BRz4+zrJdEg9J6zvvyuIEvQX8NJA3geXIw1VGeCKLp8JhnGvkJJNiBK13MrhM4yWipwLzpj5GGAJ682mlhe8wnne3Jwe2/wVPL6hfjmZcgxw79JDsn2TXw0/WjLF+J23o59qdZyizLONC9iK8CYQYYHOGdgKTH3/JaWej/VK6dNuqNgvJ7sgFF3bZqR8XkgEBwTrnyc2Z2Itb4bP13n5XfN5W1Djs80/w2r5Q5gs3ydyXb7+tMOuhY15pv0h8HOu8/dcdaMMHOAh1szkHqD9qTyRGwI+2oefMZSJ7iOmXM7WIZLP8kW71EW8iyKedcdabuOMzufEh2nWG2r3XYNrmcNR3FOvpve8f+JT9N421uHg8CeRKDiWsyQ93MNrfOKfDGue8y6UBZl7WuBjKYnn3urZOXdH9yqEtrwZc97WmiDypZcYSBCuI8ENu0XC7u/SlSTuNiJdB8BlRWvjaedK68ha1lTlEXgtICcX9Aj0v23h9NhUYl77oYLaSCnIxVgZyBmsH6Sbbgx4rNSnOqr8aG/E9gq33E8bSD0nrYP45CTwaW40fHlVFJ8tr7Ja+CdVsgjVLl7UjX26c1Im7DGrXddGjtZEyR2l4/1fFahJoPgPqV2KammeaTjbej9M0/RSvZ75N+COrzChblyWkZTFibm4fZnXe81/I6dtyeRV7sBJ9mO8cIku5P8lFJ/kqSP53N6sUUIKBTQXDJviKQO832uRI74zwuH30upv1zlGXf8zXCnK+cz5Tz4P4UJe+Y21myHFR3TUCUK2mk84Dn2kpuibJhXTUFjSbdZXthPcpVCzu9drztNFGPN13zG9D3eseTvFe+2y+VTYJzOzGtw2MUpOF528ygo/uKwacHc7wqS5Qn6we2hXPEMmj5mIJd1BUcGweS2hbyTGeJGMHBNreHzjCJKz0MDjBgWH4Ps7TnLLftKk19s6c9PRhd98+kEEh4UnqC0mgmS3DcicmILhU1wQKVnKPWrbf/rKNpqCQM/KfIGMtx5OJilmCzZFBUYp09T3YfUHV7k+2Dhn7GgcaIoJH8u13m6TTLd+wbTLhPJ0eQUUY6LnY4et3XpjY3HVfEOg6WM4JZt91Ox1G23+ZwW0iWXwIdksGo5cfnyTZS336jcacDcjSUQTLQ6bk/rlnZY3nHSOfI9gRWeu7xZR/yJQaekx03Bx2mel0+wV4jyyy3suPVUztzdnr4UCvrZ/+3DrbB49hX/T7pTCkcZbui0PKmMXT/U7dNAN1AmeDYTuAVpTFYbT6m4TdhLOtuix+yrg6iQ1VeklmW/Z0h6jPag2l+M+LMNvDY7Z30L+dZqd9L6X06VXbIyN95W70eaiCCQJW6sja2fcNjB2HshNkGcG71nI6ZbcBJNvLcYAbH2HPBdU6rkr1ffcFxL5UXf+8lWeqZySlyXb5HPEC7ZV1jx7dt50oL28+yme9I6dh/3RJs3ZPMc2Z6zpEyMK2wXGt0XoDtd7POPS3pundSGFGgAi/ZYE2KtJOTE8uKhVH9ZJ7Ak1EkD5NCrlEkwJ5WWQzKet9L6awzSEc+eu28KJ4BikElDSWVH/OtRbSYlqBuAnYEBm3jia4VmBxk40h5+w/bmOwaKwON4JxfuC5fvD85PyfZbHNhv9twst8oF5YjXrfT1nN+x6BlczyZj4DLzjP5a1o6iOTH/BIEnCDfkc5NdJTIH3lycGACjWzL5PB53ia7wJljyb4sGZxz/K0PWP60QkMePJ+9rdJApO0hYGnan03yN+9L7szmlyznS+t0VJ/8renC9r8dM8/Jk2w/RlkZKODmOCbL7y9UDugwsZz7s6sTCNwn52pNxtm284IVdh5tN6i37Yyyf5J5LA+ylAGm44rEpeE+ZZ2rV1NbJ9BqfUs+CVZtM2mzkuW4UR9bjiyHlknbHOutg2yBsYH5BDYrM/w4Jh2zjhedKeoxBz97jfPfvFo+3E7W0XKnVZWenyebk44/0XnLqXx4zKJ0064Gr6xwHJjPOwn2tKeHQpNevu6IxpuTw8qLCodAumU4rVcdmH661vpZTxW+ATkjU/0nKDrJUoF26Zl5JlBRZUJDY/BIIiigwmy7GV1eA3KTUaRiS2bjw2XqZNn/NTA9poKk0ajx9taLlstIJLfIGBycZKmc6UCy/aTyzzzctlTiWHhLgT9yueagTI5r03DLR7KUacrXifIV2NlwT+TrjczVaHKuWMZct51pO+BrUTiWYyNsY++I/pSOPFAO7byXOHebhuPa8zUg5no5TgXwLft0yPdgAKZ5fibJ27Lbz+TJ0XUD06Zjn9OR4Jyc9E+y/W4J22CZofNP8NN+4LzjionniQG65+oaYOQ1j/sEtM4LFvS+5zh5L02O6OTEd5wnR5JzpfqP/LCfqMsoO+xT2gHaQzvH/Pc4rK1keTXGTtbk0DStA3y93r7mtb6EpT9+36N8lH8GHQ5w7MAW54vBe/+nIOYhftN8dTmWNwJ/z1m2YSrX+CI4t53kj/3ea3Q811b8HYiZZPlao5NH6benJX1QOClUwKWTLJUy/0lV7FTOTVvlzYc5JwBDoOKl9uZhlK88k9fJsJrPLsnSCBrA2gkKrplvbpEo3wZVVbY1qtPqyASiPRndr+XDEaGjbA0No4fMM21/YdvsNHjLlsGqAcBklMg/FTGvWwYpQ9O+4eYhKGD/r0VxLdfROcclWW4nMjgyUCx51cryRKCZbI3xMfLY6E1OglejCI5472C4xnaaR0ZaedzntswHI/HJtr85L9fA/HRM0MiVvuCc4NpgqOWstWnNYSHIupLNA+sTmOo5x6X5y4fnUnlvv/VhfcpR/+/PUramL9FHaaprqSe9KjI5qc1bvg2wDYgnoE3dNrW/fdByGAC7D+W4LznfvJ1oApe0R5YFyx75pvy3zRdxTh3vgEyyG/zxWLWM8jdtqWKb7NicKE/5mZy5zgfrBZJtGuvnOLAcvpBkzeFNdsdtzdliH1EPToEWbq9aq89yYXl139pBbj12sKegyZpDzHJ6bbKFvEY7tebE7GlPa3Tdb/fqxCIYJXFiV3lUYU7bYwwYOwnXwDfL9vHaf/mtcePefQPk8ss3cZSPKaLbsmlICbbsrExbnZqv/dNnUcrLxSRPymZ/8HuzNOqTM0SQ7DSMXh2f1dUPWvI6DT1BisHEmnJmPhr3SalShrxNoGW5fJ7X0NphnYyHI9zH2b6ZqbRmJJPt3uC1/caNTrcd0wfMmo7RMI6928Zz1tfrk5PBPOcFDZx2WkVwNJT36yQxim9AVhmknPMbRr3ONhH0kD9vhTGYt4GnE9D0lAs7HL1nXcU5TRDIeXqqY/b/2raOoBw7773HyHvbWP3E7ZF2YNomk/Vd60mWY+g0DO5wLJuOPLesNYDYdHZKJ/I8Zp10jHvu/nAZPD7S8aQHCAxPdJ3lcXzp/HA82/4pGME29T6DLuRravvhkM/BDJdBvsxHycGE3q9sWu/YOeBctd12MJHXWb5pchYm+aEjTXLgpmmn4Bj5ZPuowxkcsRPF8aL8N1+yHA/iCcsIZc9yeK3T5DA+EnXuaUmPFXn5gMlgqddsBKokG+GkAqGymsCHlQqNmAHyBJabh7/jLD9WRl7sfFRhTINpfqsEDSrJk6P6TO8oGdvd/H5gzuDGhs6R06me+5SP5RCMBfkY1WO/kicrTkasaFTtXDoyFuRhXx0iTes/yZKXA50biDqC5baUHDXl/wQo2Z4158KRRYKfyXBWXhw1LnGusc4DXJu2ppnnCWScNxasnw+CGwidZrtS5yixQTvrbt/X8BNsTcD3BGkJCJLdSHHHh9sE6aC0Ho4HwRlXNFr+FIyYdAHbMjkCdIIYXZ7mk3nwds2mIbVuftekfWE5Yd9z7Ngel817XpVpuSzHQH4KRBjYMh1B+bRqSb6mOiyva4E3zkPWU2K7Ws6arZn0c4mr6ZMNNP88r7z6I8Ys0/z6HnXN2gpDaQrkuV6Ps3WYnR87sJMNncbPfNNWOAjKvp0CntRPJb+q2wGg8mBdTceezhdl8Uhp2l73BdORjz0Q39PDoet+JYWKy8A0WRozAiUqixq/Tj6+7YPbZAhYrugaHRYqnEa6O6kZySa4oCFnfUF93K+dIS0VC6Od7Z9pVYJAyESDwXT9DoHpQPmqXO3UTBE0/nrdRmbN+LDvDUI45uXN+byq1q8uM7+NVsfVkX5G9MwrZaNOQL/4S2eKho9vL0qWBmvNuDFyfEXpyRt5p2yvRZDX5MRp7HQxwmegyPomg+w6PW8fikG0XjDg6v2+utsOREEW5axvZlurj33oVUo7r+WloJ71GAS1L+kk1emqHqM+otwysj2N9WmWcjQ5X/xwI8fGbQ6uMz/LrfyzT+gMcxxOkI5fqKf+NK8EYkzDAE1wbWqzo84lb82xc8O8llM7KwTM1Bucs+TR/d45xblt8F25OO8+y2F9ba+d39Msx45BN/Y9z+0QsW/pcFkvJLsOE+0v29gy/XbB4B7Pk91xd0CENti24KEQ22PdNdXt65ZxO7qWd48z5Wpyeicnln0zjT+dlZ47mLGnPT0YXfdOynGWe02rqDtRqei4VYHglcaLUQcqIRtzKkRGGxhxaZSz5XDvsiPCrMfORLIF+uZtbfmZzhDLsVPHyLyNE4G6we1UNsFj+9JbKJrH15o2uO6xcvSIy9AdE/aFeZych8mJq9zQeaG8FKxRiXNM+Z0a9h2BZdMZhCZLw1Mnhm0qb+wb9ufUXm4hs6OzFkHvNTtA0/YAO4oEdRwHtn8tgkuDTGfboImro8myToNIll3++uYfG1eOvVcVO+8vZ+uwn0cEpNZHBiccUzs5Hac1B5j5pvmebL9PwjQTgGfZ54ENf5RxAkB1KAjuSnzpRfPy9bIsz/O1+UqW/55TD1J/OaCU7I4HVzUNLFsGZY7A1sEvOxZuk8d9mock5jFYZl1ruqXt49sQPf8taw6yOLrPtz6uyeAaMG9bbC/a5/ynvNXR9ZxdK4v6nXVP+oUyWJ3f9jCwwz6irmTdvH6IH3mkbLU8j69X1jzWxAdszz3ZYhG2adIla3rFDsolpK9unPTatUonSW54FOrc05KueyfF0VdPaN5PdpUkJxUnO1dTbHitfJJdQEODRqXgCM0E+Kdo9RQRYv4HA5c2ZFS0Nixs2xTltGNCZ20yplW05JUrBDTMNDRW+HYGbVim6LsdQtY1KWbKiQ0JlfVa1CnZNTwFwuynCRzZeJJ/glS+UMDjvmYg7LReyXJ7BFe/pnGkXFFm15zklrsWwTvI5jXNUxTY7bH8TE4kaRrvEuvhBzDtQDEIQZpAMqP+BtbTXPYqZ4kBE4KIY6QlCKY+YX+xXAI68s0tcecBLaZt2QTd5s8gm9TXCTPC7WCMAVIdqwnUlriSbKeLgRaTQVf5pj6cwOxUpnVieW4e8kV9XeI3d9ymU6Sfgj7l0Q4Nx7ByQvnv97UcPOH4T0GI0gSy3YbWT17paLAfnM68VNY4Rg5GuC+sV/pdMQcMgnwe88nxoJ5kO6zDT4br1KEdY/NQcuCO8524p2Rc0Hx8dXP/7aDQ3k/OHWVicrQf6sr2nvZEuu6dlE4YRwOp4KkYk3kiEQSS1oCTt204KmHD3zpY36HuNV8VIKNLTTMpj/aBjQyN9uTBG6jbYNhQUkmdF3G1YWObWqc/INf0B9lEfQqApkiiASz/g3xU7F4J8gqMQQw/1DUZnskAty7WPUXVHFl0X7Isrw4VWNtAcesD65qAPMeHToDr5tiad0bY1nhg/9nYu3/WthyUdxvO8nFftgCPxtNk58vGmCuTE8g3uFwD1pMslbhiw7Sn2R0ngniXy3ZOsmOdNYFLAxOW4Xae6Jh8MuBAMG6Q2a1sbc+0CpPMfLVNlaNuteSX6xsMoCxO8sTVDwOt2gh+2Jb5qM/aFuvQNbJNKM/VM56vtEUeg/J6Rdc4JhwLruwmy3lph4dBuWm+OYJuG0E+7Nh4jEx0QkqUDzoQXGVnwGIKFpRYb1fs7kZ5bGf5tV1h4IBpKL/cpXCe/aUzaz7LR+9zFai0FjQkPwwiMKjgfuoYTnOG25851pQpz6s1PXwt0Un2KynXAl33Tkqyq6STpcJkBHyNCAaanwredXBSTxGJKTrsukxUilYivE6QXp4cScxKutZPI970fJMVjQCVjssmb/5n2+kETsaU7Tc4530DYSpzGzg6qZQNgiwa+x7TqaFh7LVp1W6q1wBgGsPzHL+2t+0k8G86O2zlhUCE11gW+8bRw2RpdJreb2qjMWQ7e411rAE6O/2kqe/NO1c0uBI2jQ+NctNxrlK2nJft48qUgw3RuQHT6TnHHGc7ogYFzD8FUxzd7FveqJfYf5TbqR8MgAroyU+PJ5DIYIqBX/Rvp6v5CN6t36hf2GfmbW1V+TSbZ40YCCCAI3nOeLx5bF3LuT/prImmyLX1puv3fJrSUb8xsDWB1RKduDX5s77lc13ljfYoK+fTXPRKFvWdncFJ7xxkuV2TgHvSY+c5zhxL68tkdx5MgSTPsal9dAgddLMeXpMpBpVYVpSXfFhfe95a17Cde9rTQ6Hr3kkhKCl1Mto4Nd2kfAl4a5RskEuMoE2Ah8feRkOisqnycITWCo3KwMrTEUy2g3Xa8BLwT6D5ONtotY0TnQqWaR5Zt7fUmBz5NXiy01QjeN4YT5F8RoZbVusmn01/pLzu9ynayhUXGhiOqfvgUP/lzWnJ07QCyPIPddyf+4mrcxMwczqOx+RksL8zpLUjyHyWeYOnNaeneewsG3jRaSxN0Vc7kDTydhLp3FKHUB9NAL7Ol9+ExHYSBDkowLpZTsfyYpYfM2VbDnU8AS/3CYMODgCxfwyY7JC4PybwROej9RzrniPMnkMtsy888Fixb80r62vQio7WFECgvik/U7CLjlCUn9cnJ7jBJMoMnaIoD2WVcsN+5dxsn1Cey3vLXFtJJj9rANbtph3y3MrQLtuE8mMQP9V3Z7areZwTDOT0Hp1YpqF+op5wvZwv7NM1WrMHLG9t5SdZ6gU6oEwzBbccFOzx5LjY2bZe3Tspe3qotBYMua6ok4oK14rFEY5kVxk4gjcZmk7Ug2yXjA3Y7Wg0Auw67SiwHc1Hw2BFT4PACJUVIcs2UHMkxQqq5Rv0lKdGoeyM8HiKBtOpaZ86gkRwasPIOh2Jo+PkaBdpMgasZ82QdCzYZoIyr3YQULDctclJ8OeyKuNc0WEaGwhHll3+NAe4WkEe1wz45GDTkfDqxwQKmmfa3lQ5vJLdOuiwHmY5R5vGsmkAY8DrPiEf5Zl9ztUut4lbK3hcmvqi5dHBOdU9y1Dn+Gm22zOYznN0ApfkiYCq99nP5Y1z4STblZXqhSnKTTIItyy3LF5zH3JbDdtCfW554EtMmpb6Nlk++9VypzJdzqRXOM6eQ2t1MDBh58yON/uENqDt7ZwwkC5R51L2eH/SB83TOqbVGzvkE4DmR1ZpqwmA6fzSeSL/JMsD6z/NZlsx5+QaYGf90Tm3dlV/UbfSAS7RwZgCSa4jSsd2eIxKlkNiGdZzMct5TYd26ueT7M6/iZ8p+Hit0emj9NvTkj4onBSC3WQGS1SgNri8X8VhkEQjR4NBZ6iTlJOV0Z+mpfNAY+LB4ptXqLwZOWL7yLfbUWXj/fuMClHBME+J4Os8oG1gzaX+GqT2B/PUuJ7i/lrUje329i0CAEfe+9898iQDfq7O2OBZBu7LUgFN4M4OJa/5eG3idtxqQOwUl9puAi06C9OWl4nYH33TWMfKIK58cyzcp1TWlVHKuIFWMoON9rlB4wSSkuW3UfgcgB0MBjqoEwi2L6vsUsGJHQc6ZgZBTee51rx0tj1fSAS2jrI6L6+xDdN8s/PC+tlHpUtZzrNkDrpkSNe0p1nq2V7nR17J5xRMqBNv0OV7LMt6y/bgJEsZ5dZQ9hWdTDt6Ey/RdY672zPNKc8L5vEYM7DUOi1frdvfqmn6ZDmeBLGso/OLfdz7UZ4esz47D+yf8kBbx/yUs+mbIgbbdhbrcNDZiM5PkY42K1kGziYcQX0wBTfoMJm3tZVu287JiWu+/thGO8ftHztnwbnnqeVtT3t6MLrut3txi0MnPA31NMGOs5ykBFWO+vXd7zTanPguv0qAD3Xa4LMcR6isfJpuAr2MPNOBaVvYXr7KlhEpg4IJMJWYtm+HsoOYLI1H85Fq/Mtz+73/jAzSINv5OkZ5rJuAgoCNyv6mLPuVRu5ExxxzGwyvdpVHyl/5IM+OrpKH3uc1A7nJ+SKx/wjG6FwxP8eRBo48eoVgAp3sHwNeyg+B3QT0WCbHvzLCfuSbypLluLEf2fapDraFcsA5Tn6ajg5F6yqxzzlfHalmPq5+UYYN9OxUROkmufVWKM+5iX//G0Czfus53ifYZ9q2lfOIKwbl5/7hGttkgOiypvbxnPJPXqcV7GRX3o+VlrqU4M9j53EmHQ9pzbv1nZ28qX7fs452wKr5vNUpukedP+kDO1Fu13G2QQT2v/WTeZ3mrvvU87bXLPsTGI/SBfytgXe2n/on51wn0b45+Ma+47hQl/HFCrbrbScxD2WCeo421GlbPo897tcqnWT/4Py1QGsB2euGGl3ylp9kNtYEjE1vhUglzH2rJJfJ6EadAio3R4GoVKZIC9t3gP/yYueo5bSMpqET0/8J3NBQEwjakHIVxAqLzp6Jhp3OgbfOuI2OLh3julekSpYFt/U4y33cHIPpmoG6yQCX1ysTjn5y5YhERzHZ3a7DCB77w/LIOvhwMyN7yVL+3T+Ts+posQGDo9ctr+eUEa+ARfkMPFhW71OOTnDtdLjO8suLgYZXB9x+jkvrcgSyvNEpMzBklHgCb470Ow2B6VoUlPyWuEWVz6hQ5qhTCNh7bdILHEfWuRYhL7Fd1KNMe6Trh9ldxWP7p7ls55L9RFmufiMwW3PEp6g9AzTU24fKQ30wOZisj3roMMu52vk7rXJ79b96gPPRK/XT6kb5oAPHoFbTeq6srfYwEDK1dVplnPS7+bQT7IDGAX4dJwcAyBODYubTDoidIvcj6z7KcsWRvFH3WWaok1g301B+XI8DOZ4T5cE60y8XKA6YgmTUI3va00Oh695JcQS2isrRHhsSGqkabioeA9yWzclLhUbAZSNC5WWDYsclmY3WqdLTQFTxTSsDNbpTXXbMWjeVqttnB8CKmcqVwIIgn8ah+QjWDEisrNeir2ynDSiBuhX6idLy2hQxnqKgTEuwZCeS/LoPprYE1woqyefaVpfyQUDMc+5FtjO2ti1nDUAwLWW4ddlBYFr2d8E5eZo+lsiy+5uiuxNYJlCgzFFvMBLKOjnOdpL5fzG7889AnLwR+DPQQSeRY9IyCIS9XYftJ7ilDiBoaf81HcfBjofrOsjymTXWTWer581XAOWVUvY9HbT2y5Us5YJAkvrC/HjuOYrf9J6HDIxYp9m5NKi1U9f8XN3myr51i507B586lynPdmj7JjrL+SS/nOPk+Z4s+6ntZ772gZ3xlmWd5VW9EgMFU7lBHjuBdhw419lO1rHmNFv3OxjA9pVXB6bY3iDtFDyZyAHVUsfSjhh5rbx4PNeCW25v6yQmcsDNwZmW77G6FulqlrLwSPyuPiIte2zRde+kmGhM7Ag4AkRlYYB/mu2WLYM0A6/SmnPh6IzT0khPqwpTG9eiKV7aN9CeojFUrC3fisbltF00Iowc978Gov1mw0glaOBDZd++WQPPvNa91MxbsNDfBO4NThk5Yn+sRQijdHaIjnGfvE/ydJqlMWC76ABRdg90fKRyDodyk6UstH02MuW7/BLoEPhw5YZziw5Ay6Ks0lElcV+8HUSCP/chx5GyxvloUBilD+7Z6XTUk7Lq1b8pP/vPfFM+mp/PpyW7ILt9xz4lAOGYExSTDlAGyyUfzmMA1Lb1n3qIc/0kSzlZc7qtm+z0tA8vZrl6zXlPnibdtrYCMOk/jisfvqfsWi+TrBvswK/Zl47r4cp9kvW009qJIeieVjfpUEblTc4zncpeZ3lNY73PtlO3lEcGENrftOUsi3qqZV7EPbaRupl8rM15/qhrreNKnouee9M8nK6XXM6k+ybnwnVQNibnNNmOfXCfNtz2nE7cnvb0UOiDwklZi6T2HiNQBM+eYFbCNXonSnOSjYHi9zUc1axRa6RjiiRNYIR88zoVJNN420mJzoEVmI0oI3Gsm3mSJdChATLo5TckyAt5JBAggJgimSQq5AlcrkV2DAgZCSPoOVSeaSsXz9kfrNcGL1mCIRtVGj0bj0k27OwQRB1maRR73c5r/wle68Cx3pMs+659Qse/39+4nK1RM8jgnDDoTJYvM2B/MHpsoN0yJpBMAGtgM0VxHY0sH01T/m3M3e9TGXQSm9fjzXlwRdcd6LCsddw49o7Em1c71L12b5YvuzjJbrTeKz1eAeg5HYdku32W8toxIrVfumXFjswhrrEvLyBN22B9z/KD/+az3Ln/TQSLbHvAI8e+eQz67HTyWseYTsAkt9QdJzgmoHT0v2U5It+yDIS5omRda1vhgJADQSyPduRUx55b5IXX3Hccw9IUWKJO4os1pt0NlSfmZ9nsK9oX6tRJTxDHTLa+MkSH1c4ay6Z9IJ8O4NjWTHOa5dLmUX9zRXdq3572NNF1/+D8Gjgk9T6dg07GOhHJUmkH12zgWq/Ld13mq3UxUtSyrJQYBTlEPt4/L2K25vz03tRnjqYwgkJASONuED2BLSt0RpsmnlvnpOjMN8shUHC7WiZlYM1RmhxYykl0jwap/3SK3b4JlDINjdAEnB0x55K/DTV5I8CJ7p8qne+ZZzoRU3SbZVh+CUAt523/vWfXmWaaU2wvwZsNcuvnnEuW87FtYHSVc/MoS9n1SlBUjsEvo66nQxrKrfuZPCe7/W3niVHrydH1GLN/KFMl518D7RyTwyw/EEtQy206bK9BOB2ZkqPcp7retHyTYXkjoLKTaCfe8kqH8d4sx4C8kQymyy/T0bFxO3ufPE/6m31unUNnxQ4MVw1c56Sjy0eyy0dlp07lNGadV3YQPZYdc/JXGecX762/er280Knu2FEX0QYwD+V/0pce95ZVPm2r24/uk0m/W39OgbvOrcoEdQCDNJzL5wXbWo5tIcejx+x/jiX7xHVdizSN4fVY57VOjwVZ+W0TQUSyGx2y0W8aTkJO4iu4TgA2GYaSFQ4jaS2H+b3kneyWT2Vxktm4MSLJfDasBNDkyQbtCD9GorwFiAYi2VXKjEBOzl+GawSEBCcEEDRudpg4lgQx5ov8TkaY24iSpdJvnmRX4Ti66AjsBEo5TuSXoKXtZ6ST0TM60pRbgxD2t0EBI2KNahtks83so25FOl35We5ZXstkxPEY5x4/g2vKD/uq/LcNN6oc0hRlZd0eAztY5YcA0U5Ey+l4XdE9Ep0h5qUOM7ghiGuf0/lqXQ7YtDw7EdNHJSfHxI6So/V2TMx3dQPl6cYsweBxkscn+Yizf77lyxH+BkZad3mbAgzkmTrSeoNAtz9Hy7kaYKB6qrTkh/rakWquWLBOzn3SkfJzdWAi9h/LJjnwM4HvtitIy0ALeSKfnkMs/zTb17pbF0/20IDbcm7d0DyeZ22XdZb70U50y2PdnKfsRzt2HifKooMMlMVpNYeOVsu6T/mT5cPwDGDR1rJvKcOcq1MQbk97ejj0QeGkOGroaNAEspPdaKYBHo0PlRLrYZlTZx9mY1StNKmIet2A3aA22VVABu+MqBF4nCC/FTrLtgJi2wmoe/9UaYNrBOsETqe4ZkM8RfzWAIYdkV7r/mmOZzJ/16O0BjJZTwEN20B56z0CevfJ2oQkqOc1Useh6dj21lXeuBXRQKCyRqBG4jYZO3EcW69KWK7s1NlBI63Jjj+654e9J/nwPHKUuvev6J8Oecexcul5vhZJ5X2DegZSDlf+Ccoc4KDjb4ee+fpSBALnlp0sAUnLt9PfMijLfXEDARRlv20Pjif5Ik+U3/LQsrp1sE7db2a7MnMp21egX8hyvDpmE5Bi/ZNujPLYmamDQeCY7H5ThHqNfTM5rgwkTHJjYn96fro/vWrBQIf7gfaNdXHMJ1BK4Hwy5CFfTF9dTVlmmyw/7BvaAPM96c3+G2zT0TlWOl6bggKdE7YzXN1YIzq8ky6xA81+oI1ac8SPdM+OMbdhWr/RcSa2cICIOod45bECOk8epd+elnTdb/daAyS+7+jn5FwQ/J0iD5Uk6WQlXw1PldaF7CpVAvgKb/MTrHvbEfmNrlVRs512SuhsmCYjRSNKvq0Ej3WNxnkiGno6VG5L+WpbJoPpiGbLZ3sc6et4eMvRwUpaKnJH3qa20ZmdgAR5dRo6mZbXyWGYDBhXAFk2y1yLcppvOupM1/ocwXV9lA1G+mzcWRbfxpZs94mTdzsTnks0suwHtqN9zXscG8vwZGQ47/psjuXfztQ0J5vOzgPrmPRd05I3g0SWbRBV8DeBwmS3HK7csf86HnUeqAtbDuvor9tWKI99tqT36CBRv9aJSZZjRv4IRE9wnTxO83la+Wk7LEvm7QDHvUe9PgWffOxtOr3u/uJYOzBl4N80dNxdB+fsJO+2RbZ/yW6QLLjetnVOcP5PAY3moxPHcWF/mUfbfY7JtPLEebo2H1ou+9FO6xGuk3faFgcLkuVcox4rn+5TOmkTUfYYdCCtBaE4b9qmKd/kJO9pTw+VrnsnhcrKwGctslKyU0MDsqagWzbroSKoYpmiZpPxNxCtcZu2WxwoHY3QpDAOlZ7AvW04ybI9VJqHw/0porZGXiY3rxPInsqe2lbyGLGdfADyPCVOfnnNPNkg8Hkb9zXBkJ0QGrbJyE3ystb2adWGEWWn63n7pLJmIGSDaxBSUDqtDE6OqgGVQXKyHOcLOKaTSIBZogNtPqeVi8kAlwxEmNdOpdO5n3ut7TVgJ9BIdvtrCopMDi3nZ3RsgHSc7Uojyz/K9jkg10ne6dhbptgv0/Yer3RzvlGf3XSW5p4zXi8keVqSpyT5tSS/dJbvSpInnpVz99m1C1m+qttkOXH/0aEm+Pb8s+yyn3lOotPEKLZXB5ifq2bsP84nOyKcX7YHbRPn9vGLCwAAREBJREFUQ8mAlvqIskonlH1hoo4g0J6AMuftFHRiv01zaHLgJ1lku6dAgp2I9mH1D/V66ym5HjqObHfz9pkp6zi23wEuln+ePaSsOADiAM9kQ3lMvWtn25jE+ndPe3owuu6dlNL92W4FOc1yz7cNSlauNe+BrhcAXspSOU2KgErP0XIbqJNsgS6VrKM0k+IyoGGk384QI7NTtLV5L2ZpfJJd5c/XMk+K2v0xASrnnSJxLpf3T1BGy1sDRWzrmsIvTQBmMsQEuQbzU3TVkbvzopPm7zywxbyNYHvpnn1lEGMnsoaP2096nX08jZUde4MoygwB7SSTjJaerqTlOechnTPK3RR1dr/wRREnK/nX5hL7ocaffXu0ckw+LN+Hunek/AQkLcf80nE1YGR6O0wEx71O2bb8M3JuZ7l8WI+xL5Nt/9+YjdNxmuTDknxekudn64C8Kcn/nu3YM7+/q0PQzWscA4MuBwUmfeoAyySXpEmGWHaQz/O3ee3gGdSvgUv2Ua9325wd9SmwRGDKOROlq62l/mWgKLrHeTI58FPApOcOPvi+9SODGxyfKShh/XFflv13qLTs65IfauecZV7z4QDLZEedzjZjwg/JLk5IZqfR+miyhayjda4Fka5VOs0j/8X5vfO2S+dhsuuCqhj7YaxOlMMs96/TqPbnpfxD5J2M8AQK7BjwmsGOI83JHFWqQpi2GrQ8R7cOstnDzfyTEWrbJyXdbT0kgq1GuPmK2UMdsz8mENvtMBNZ6XK8yMME1sjnmiLwZPB42Omayuk2EhpYG8W28RDpKj92RifnyfzQqJ3nMFDW2IdHusYIoZ1IruAZxNrBsAFlYGACW5PTWQDGaDLbbt459gQH5IfjZyeNZXt70I1ZypGjzLzW8jom5et+1MsoMPuO5U0AgEDUq8FsJ/mxU8k6e82rXpRHO1fVPxPYaDv8LI/HlHqQfK71a6/fnS3I++wkH5XkvUkOP2+zuvLRST79LP292a6ilChnBGXse/Zrx588cD4dDPftWDeP65/A9ARwy6vzO6/PD4b75q1jshbI4lgxaDTxwuBcsgvek63sTPakdfblHOXpSnbtWnCNc3pyMmjX2a7KeZ0yBw8c9GsalzX1KeWCurUBzQz52KbyTV032UCe85htsb6kbWG+8upgGueweabTRHvPvG7j5DzuaU8TXfdOykTetmMgluwqdwILghiDPgJSKyanbR1UljWIQTk2joxKsTzm6fEx8nivsmnN8PBaFR+NlYHwBJ6T3aiMHZxk+5Brr1FpmjgWNBp2HiYQSmNsw9u6GaF0ub3O70PQ2LceltUypv5nGRMYsSPGcQ3yVNYMVOksuS8dPaPsU0ZpoAww6CBNDrnb7fYku+Pm8SpQCI7Z36yHbaSBJWiY5gLBCvMfZ/sl84lPOx5tF3XAYZbyPTkUlVXP9963jERpp3kybTFjmV49WYvOHiL9pHOm9lB+7GwF9wnsojLYt3QObspmm9d/TnLr1W9M/vnVfPjVb8w7kjz37H7LuzEbh8V6ojo32e3n4J5BNWWn843jzwe+2Uee05OTZ7mk4815VqLO9ZbDNZkwLyY7zAbBBOq8X/5q7zwf6qBMepB6rW+cslPLuWd9TGDMQA0DAJbdCbx75ZFyybLoKFBHTk42y3Ve3pvaxrImvUZeHfhxeQ52TJiE/TwFSUuH2X3ZDJ1Dt+GxBjYdfHukfnta0mNNbh42TZOdSrbnyXIbS5UegQHBno0xJzUVUEGstx1N2256neC29xx9c2SIbaXxONJ9O1mOhDhK1LfSOPI5GXGerxmF4+wa/AlksQ2ODLKtHRP2kesstSwCCLbFzpWv2UBwPLn9yE5lsqyH4+oxIdlxCMqlM2uDM40XDTbvTU65+915SW0rI5psywRuCAjaXxOYI8ibyuKbnEprTlTr5APWk0PN/fTuz7VVvs4zzpVSx3cCt8Fx+bF+ICAir5xnlh8GOdai1ZQd5uWqRvufaU6yfaW022EZXaubEdryTpltmzm/znMonpAk+bqzK1/3wDMrBvMEh+zDkgMop8jjtnq+Tvp8qqPyYAeueSwHDgxwu8wU7KBMT/pscsztbNhusI1t51ogpdf8rQzroKY71TH1yESTo9vrfNaobbFesf7jPc4jB2mIAUycHw4g0YHlePANiZNeLD8mO+yso46hMQ+DMmyjnZiWaYfMfeigjPvZzjFlmHN6T3t6KHTdOyl2SNYmqEFJ09CA9p5BIRWi9zzboWFUjAB/cqbWABFXZcg/67ABdLlH2b5G1MqeWzoYOSYIseCwzp6bP4ItGn8DZYLe0+watTXwPvVh29Q0PbfTYTlZiwJN4Id19HjaFuctJGzbBGhYNw3XFJX1GB7o50gh20MHmuDJQMxOS48JmOp0EGgYdEwAh8cGlizbjgeN/xSNtMxSBkjeHkYqKDdvx0jvMV+bu1PdvWYee0x+7s9M5Nv9ZJBhHgwsDE7oOE1OKufXNJ8JqlmvAyCUVYLmlnVJ+e9N8u6cbef6phuSvDT5xhtyks3riO/OVn/xGYu1AMa9aP8k4+XN40h9YOBN2byY3bm19n+E/Cy7Y7Dm6E4r1dQxdmjtiLEM19Hx8jiRpnaUqndoKyizBruTfuAcOVX6SS+7TM9/B8joKNOxOshGD0xzt+TgDPUu+7YyxIDWVK7llDxyLDj+zDfpQwewjHsOdM92krjFfE0O5umQZyrjWqSTR+m3pyVd904KoxbJ7oSu4qDjUaVBBdztHtNyepS39VbRFQBaCGnMm8cDYsDmLVKOclqxkqg4GTUxYKbTZCdrWlEgrW1DaltOsxv5tnExEOW9Gnr2mQHNedHbEsd7zeGa+OF2KvY7wbnr4fFafcmugxuU2+MCldZJOZ2ctNPsGhuD9cp1H2JlmxxJZ79RXnh/Mq52sjiuJzqmQ7DmDNrQBmW2j/rP+wcr6UvNY75Zd+9RThgEaRCg5THNGtBn+ZVlgpeW31VAyh+DKt6mNm1vcb9OQYDzHOEj3acjUjovWlqH48Zsn/M5GvKsrTD0+yhXkvxINg/Pv+Xrkjff8L/m3//V5NYk/78kd53luynLvuGKBPuLTgDHzLrpOHMfTfqcfX1flnOZMsOoOMtqu+lgta+nVbeoTXagkmV7PFcn+8TgBO2dXwPeuj1vON9pd6k3vKWNc7D/HsPOk6afwHOJepM22faJDvo0rtaxBvTnUceuDnPL9hy388FyaQOoz/nP9hCHsB2VKeelg92fZbU8Nj+DXF6NMS+W7z3t6cHog+LtXjWAVFSM4vQeQVeJk5ZgoNcmEMiIRxUfDYQnqJVRFYsjWdwywuPmcSSNBpeK5kjXzV/rmqKGbB95Zjt4buXWY4JV94f7imlNk4I+0XnbY8VJhentJgVDx7pOgEZnkMaSQPm8yO3UDoKA4+xGj10GDYWNOx1S/0/ONZfu2aa2tf3g7URTNHSKhtPhcR0syw4ux9jysiarBD0er/bBGpDmXHLf29C73ZOBbp3lobJh0Fyinpryc/5btt0m3iPY79hUvqa5ZZlhHeTHRDmpDHcrzo2os8/I3ZjlB20Ps3xj0qQz2/8/m82Kyadn8wD925J8T5L/kK2DcoD611a47Cia2F8Gr1xRI78TyHWQq2XT+W9ZlC/LrINVdGYM8NkGym15p+5jO6yzPR8oh5PMk6o/6tiw7dPcpTNPJ4sgmX3IvnX/u584X6exn3QQ7Y+DmJzzttnUdT33qoJlknI1lZtsA0rnrWZZLug0r7Wdc5zOpR2p8mR9xL51wOo8nbGnPa3Rde+kMIrA6IQBphWPiQDECsP3S1QijsJQuU6GcQ3cMkI7ge9JsfGfkSIbQhpVG1SXxShtFZ77j2UaWJVsMM9TvFaGVsYsx0QQQJBOAM06bTwsJ3b+pogzX1lroG4jSB7bl83Pttm487xyzusTAJ2c9tIEVtoWg1y21WNK2emYTjLryCAdJdIa+PLYG9DSGTNRllt23wKY7MoR54uNu433NMdahnlpminKfjHLsWSeZNcZty7h6tgE+o5RB8e39/sjcLVeskw7cELAeSkbh+QZ2byZ6yeTvDGbFwow0s1+cxvvzvY7OafZOCbfkaVc34tzvhZ90u+Wn5J1oGX9RGnXwOp0nw68HUw68slSFzFw4iATdfBFpHPAi9Ty3Ne0Bfzek1fd7RBYb5h8j/JG3df2THbHMmpd5DQkO352Fq3byzPlhnqW7XBwcwr2kNfq7I4v+6FyzLlK/o+Rf2qr5dxOMNuSLD/RULLusqNqm2wZc39wDqwFA64lOs3+FcTXAj1YAOS6oDXHgpEVR9kcBaCy8ZLlWvSUaUpUUs4zKVwClE7u1l/FZtDGuvuL0lZBFzRNxoM8sM2TojRAmcDMxMd5AIHRnyPkazqvGpU3t8VO3ORUXMxyzzjBeonGuUS+uG2FY0Tq+NHpWSvfYJt1GJT0FZ12PG3Qu7Wrxtig+QTlJEtw4HYTkLVfCQQ9/p6DjiBH521r892cbSTbUWcCPcqIefAKCqOn7CuPm0GTgZ2dhskY0/nhvCaoYrkMcHSc70ee85Q3o6esh3NkCp4w8luqvBrskm8GACjfrDvZPlPzBUl+/59IvvhouVrYcqzXLId3ib+TbF4/3DewVXYauTfgmoIdDLz0HutuGgNK/k8OZWlyUKljHDChXLWOSR8ZINu5IpnfboVmW0+yff6iILrPQPTtdFyNZ72UeTtxybLf3a4pWGKnxWB/LSrPeqxjyYt1Dx3s8pEs5aLnk9PPvJ1btK+2+xw76hb31zF+k351O80P5ZO6g3boUOkZXCB5DNYc4MNsgz6sbw/E9/Rw6LpfSbECoTfvyUvyFgxGjBgBmRSxzwlEJkeEBpjR5KaZQCSj0+W/ZfMDWZPidDsL9Ag0DvFrG/kKYys6O1OkSSmxXWtRbjuDNVQ2jGxLwKNXlRytNsjmf+s5zPId/Yz2TQCN7eEHu5zWeQjY2xZHz3xMItA7yhZ8GHQfZiMfBSF2Er2iUd4ifh1RO9Axx3xaGaO82sl2BC5nPF8Qj3aY2Z4pOmsHyu03z75fmmSIq7UeIwIdR0gN6OgcWj4u4rhtIHHMGCV2ZJZONfuQUfAJOJUnluvo6iHKoZ5kXxwn+Ykk/49/lvzo8fbL8fcoHZ1Qyh35uj8buXhCNlu77j4rp457AeLdKpfEMWbgx/qPx3YWyBvlk84GnYqWvxao8tiwPy27dpg8FrxWfm0/ovutv7q0bb98du2eoV7PzUP9B2W1TXYy6KwwAERwTvIWrMlhY7nURba/DujYeZ8CDslSJmy3p3lM3rx6NpH5Js9O13t0dA+UxuNR4rMyxh3uG8qjg7yc7wycra36XKv0aDhTewdul657J8UKxFHCtYjkQ92mRcPO+qiw+VrT5qUSMRhiNMerAnQgzFPLpuOx5kQZBDMtV0PaFvPQ8qic2DbyWh4JPNaUMvknmLdB5xJ5ja0dTxoogy5HmTpefgaEhpqA2IA35xzTGHbcbUioyKe2uJwT3V8zoMm2r5rPKwk2riQDMJfBcbK8eK65HT02v2w7QfJdSOu+8bg2jx0J3rMjMo3XZNR7zYB/agOBK+e152zJ9RFkMgCRzH0enBuMTvOUoK5y53lJR4r9xTa5TxxYMMj+4SQ/cd8WGPGlEZZHB2/Ib+u78+z/7uzqtnsyOwR0GhzpJli2vmo5fdZmcijch55z7EfOz2mVnn18NJThuprmvuwGPtgP1F90GCYZuJLk2dk8+/OLSX4UZfBHR5xtp447Qfo1x6806b/JMXYwZrLx3tI01f1Q7Gv71AEH8zs5TRz3qQ6OBWVxLTjUvBxT613qKRJ1qW2s07Itk1M86d9kN/i3pz09XJowxHVFXiFIlkrjVP8TTcBzirJY4VHBcLXCk3UtUmTgU2XA6EgNrEFIty7R+FrZTspyrS1TJKjn3VpRAEX+zAMBAfmn0SKYM/i20WKftm9owA+VluVRKU8RPToSTV9g5rFpHc5rxV4qjwREdMhanoERZeUgS0M2GfTono2JnTfm7xYP81xi/xF42Nk1P+TLALn9VkeIDlFfBTwBPm53m+SaPLCelmEjaiDJ8mycOfeYhn1zMUugwHE1n1NUks5h5wjnqOcJV3ZK7JtjpfEKylrklmNqcM76OJcZ8Ol2Qz/jVCflQnaB5BQk4vGlszLfhbL7jAvlxWVNoJ8yPIEq6in2Ac+tmykTlg86ks3PPB4X66kJvLbNBNNe4WBgp3msNw+VlvyRH+qhnlMmreNKdmZLk25Nlnp4clDMa6+Vzwu4Xn7oODO/g3u2ueSZ+t1OiO0Q20i+7fx4RZU8s/yHEnmfgoHkn/p6shWcE5ZP2yvyZKeytDa+e9rTRNf9SkqyCyC85OvJb+AwRYtZHkFL87c8rsY48jJFrxmhOVH+A6U1MOU2J0bRGqkkMEiWCrSKkdFKRx+5OsOoWY9Ps7u/PCgzmY1LI8Q0bIy+Mi+VIKPhBvp0Pg24HEFyZC44n5w7HnO8uCpSOsm2T1ze5DzTQFJu6bh5TMoL+5nR2fLBcW4dBXjHSENgRFBkQMD6y4NBIM/pTLfc1k8+J4et5bNs8uT2Mn37jPc5dpQ99+9alNfOi50PRtgnUGEHmcfTvLH+sXxzvpA/yhLnuuc2y6QsG+B4dcoyMQVvOCc7B+7KBjTer3qT7XMrDNzYMSCobl72fYkOnZ1s0+SUeBWSfeYVg/at9UvLsTPJ+tivXqEqTRHyZKlvzFOylB3+t0zXM6U7TPJL2TqCdkCoLysHx9lsD+vWU/bNQ5E9tsV91bQnuu7+7Y/tNJBeC6BMQa2W0fzu+2kLm/lpGcxnXTDJVv+pp2w323/ELNF9lxnlsVNBG9a0zE9dyrluvED+1vroWqKH4gBeD3Ve6zTNz+uKOlFo7CsI3eM9TeBkVyl5tcMG8hS/3qeR6vH0PYxJeZHWnJNGV1lv63L0lYCFzsAaKHYknNFGgmvybYU0tdHp2ya33ekJxpLtdgsqZANbruK0nraNytT8ENSx7cF9RpfoJNEhmaKo541lzzkWrN+rUD6mA8f/ZCt3BiQEAjT8dqInwDptbSFPlH+271KW48moNx0lygcN39RnXl0oD5NjZecuOGf+NVmm0+etGa2LusLAbi1yXLmcvl7vceM/ZcbUcZp0EYlyQGfJgLUfgWXfTqA62ZXLHh9nOXd7nR+PddvZZgZgquOmKHiyHSPONUd9SQw0cB45KFWeHQjgKoVtguXJjjX1xBSk6JyizNyX3W+w2CF1n5jXypv74ySbN6V1W96d2eoR6kDOu3vOjo+yffaNzqpXv0vUM3ZObVesQ6nXL6Euzs+m5bOVbqvBOnloGssl7W7rJRj3XA3abjvbMmhLmJcOGm2XZbt8W++07iPdI1/tIwYgey9ZznXbTxP5XQvk7WlP59EHxUoKDSlB2bSlopOOinEtOtv/4+Geo7dUsJ6gVkoG1FYAjrY17QHS26g7vyPgVmyMCE2KikQHouUFZbCsNYNpftgX7UMDDUduWB4NnsePwG7iZ4ouOoLliGrba0eGdJTlm4cmgFL+1hwagxz+u363w+Cq5LJ6fF5Uhw6P+5eOWpCu/442TtFKOw6eW2wTHcQD3SfgPW+sCepaZ/8r/wYINPZrYHeqk20kcJjmRbIFey2TuuIw21VSAxXqoeC+QZZl2w6xAROBL+dl22Ow2367iGuHuu8AAz8UWN6sv9lGAvJLuN/yyc8a4CTRWZ4i+tOYEhgny75vf1In0hZM5dphYYSdDon1ZZSH5ZHafsoJ7UeJwbW+Qpp9ynId/GGZHKuWR8fFNs3EdloPtu3UkeXHAaWmT3bnLZ1TAnk6tWxj89j20d6131hv66azfZDtDgjKHdOZJh3b4wkf9B7rIN9BvsnJJj/BNeqEzn/u3igPlq1rmU6SXH2E6zzP5n6w0hRQO5fe8IY35MUvfnFuu+223HDDDfn+7//+xf2rV6/m67/+63PbbbflQz7kQ/Kpn/qp+fmf//lFmvvuuy9/4S/8hTz5yU/OjTfemJe85CX51V/91UWa97znPXnZy16Wm2++OTfffHNe9rKX5c4773zYDbS3P0XDem5wS0B6lG0EkQ4KAQsBwhS1tNKogiDYsEKYJjQdIG4TcBubtoa7z6m0bPNDQ0lFRqXM8hm9qnKi0aOzFxwzMlhin9HI2yiUNzoGBCVr45os+S5RgRoYH+o6QTDHfHJcJ8fuOFswyQitwW/b5YgiZdHkaBaNsp0hgtHJQSlfvW4AzbavOT6TE8R+aBn9b7vKF6PRye72A87pte1pljvz1XJbp4MWreNidolgnm3kfKDT4zldEGRwyuhn+9f9yrE2sKRccf4eZrly3J8dlBL1JB2ICUxTV5hOsn29d8en6Q+Urv11Rdepg46zXTnw6snEp8FVdN1tMU+l9hN1gdtJuaausONN4Myxc4SasjIFLXhuvUpg3fZ6DlOfum73YeXy7ix1wxpRHsgbx5G2sfw6gMT8tB+0FWznQXZlq+d8Ha6davLq1QfOaTqhdpo4d6m/GECgU79m02xXkqVOYruoY3qftqfXaKM6h9p+89+yaYtYH/W5+9lBoxOltc3Y054ejB62k3LPPffk+c9/fr7t275tvP/X//pfz7d8y7fk277t2/KmN70pt956a/7IH/kjufvuux9I84pXvCKvfe1r893f/d35V//qX+V973tfPvuzPzsnJ1s1+tKXvjR33HFHfvAHfzA/+IM/mDvuuCMve9nLPoAmLsGYl+8NstaM13k0RZ8MLiZQbhBLsG3AS2PX61bIB9kszXP1pgqTRjS4Z6NM0N9rye6qAKOGp0jDPpiWk8sn+5/9ToPBY0blTnWPHxuzw8BoIcuZFCjHyPfbFpY7ba/huARpWQ6paQ0GgzYaMJbc96yP48h2tT4bsvLOf/NfHgguJkeaclXDZ5DEfI7KOvpmh56y63JLkwPgvl6L6k2g3fd8jdStN5Yvtodz0oGF8n6MNAfZne/JUja4Zac/9xH5II+UZ8qGARQBTc8Zce4x5/59WYKfZAuU2F73Y2WNcknwR8BHgN5vpXDOUl94XB00sDND3qjrJxCXLHUtHSiWYz1lexHkodPLdByLXrtvKMcOJeUp2Z1vnJvWxXV0Ka+0Vw4gsP9a93G2zyLZrk1OebIcS/ehwbLLJJ9s45qNPsjmWRrydB/OpwAM+4Y6b+Kv33qy89B0lq/ep77yGJOPNUfWq3edd5xTdFqi65xvyW5QKOLdNnCyjdcynTxKvz0t6YarV69+wCtaN9xwQ1772tfmcz/3c5NsVlFuu+22vOIVr8jXfu3XJtmsmtxyyy35a3/tr+XP/tk/m/e+9735sA/7sPyjf/SP8kVf9EVJkl/7tV/LU57ylPzAD/xA/ugf/aP5t//23+bZz352fvzHfzyf8AmfkCT58R//8bzgBS/IW97yljzzmc98UN7uuuuu3Hzzzfm8bJ9dIPhmFOVY15OlYnEUg+DDAPRgOPeEpQKYIqmO0Diq4e1FjPJxS8EUQaZSLKg4RR4bT/bBZPx8jXkytIPXTFOb+crVkkEU+8Y8rbXHY9B+pOPlJffWd7RSHsuY2kPgeZRlnzCN22V5SLYPTLJvzK8jmSd56OPRVZ9J1o+yNNruU1Lb2n6Zvs9Cvvi67jVjNvW950jLZKTVfcp2EMybB5bLLSqTTKzNc/cNvyRPHs0vaRo7zpEpul++rQ+Sdd1jWWwbOi9aX9vsbUVr5U/3PIYE9xMQdpt6zPwt3231XDRx/nq8uBXJ82gKQJEPz8m1MWAQY3KkDpSnfCXLFYrz0nJ8p3nkudNjXp/6YALd5sG2snV3Hk7zeSqv5yXPF7ejbff49Ziys9ZWz2XbxTV9Yf3pdpA/t8WYItntO8uU+4xk2SNfzmv5bpppW9c0Rpat4HrL/RdJ3vve9+bxj398riUqdrw1j7xDdZrk7bk2++XRot/RMXjrW9+at7/97fmMz/iMB65dvHgxn/Ipn5I3vvGNSZI3v/nNOT4+XqS57bbb8pznPOeBND/2Yz+Wm2+++QEHJUn+0B/6Q7n55psfSGO67777ctdddy1+JE60/l/J/MVdb/dgdIoTeoqkU+m0c6dOrlNBJbaWltdPshuNYBl0OkqOjrW8aXtGaeoD8ju1vXw1j+vvMaOf5dsApPcIhknkhVs+WNdapI3ta1mt3yBhzShNETDmM1GuaCx53jY56uRVHIIgtofXDnSPRteRMMo0x8TA9zTLsaUcTn1gp4tONNNc1nVvXyDfDxaNo5xbXg00PK79X3O+a5hZ90F2txu67OC48/cYP/aT5c79XR4ZBeY49p9fWmc6zq1eC9J0HO1Echzal63LoJzlVc84Wk45p3xTjqiv/bbC6rhDlMExm+S9c9DbjPxvANzfidIdZimLvX8v6mX/GsCdZrviMzlk03ye5MR8sx5GaKf5ueYEVNa51YltZJ2Uy8lJupJd0N8xIOhm+1reBHapA9z+U52b39YxrfJTDzNvV0nIT+Ww6a3/zC9tS6+xP5znMMsxWwsIWF9OuqTH1AvmawrG2YaXL67wt44p+Mby6LhN9nhPe1qj31FZefvb354kueWWWxbXb7nllgfuvf3tb8+FCxfyoR/6oeem+fAP//Cd8j/8wz/8gTSmV73qVQ88v3LzzTfnKU95yuK+nYyjLN+bPoFSXusEp4FMdhWNJ/fasrOBBtNWeUyTuYqYyr3l9IFGGn+Wb8eFvJd/Kt/yOoHCNVBuY8cIFhVVlWsNNe/bqLaNrrvEN5H0XiPVjBQZNLM8g4DovvloXd6KYbDWMaz8UG6q0O/LVvEbqHGbinmhcZsMXbLdVlPeHLGb+DT4cl/YeDLyd1nX2ed0RHmvsnqke6zPc6HtcfSyfdzrl3GPhvNA+bvCU7IjRbKzMwUayBPL9JwvTU6/x34qr/XYAW5dDMJM/ddjOsRsU6ljzi0i5O2S0nde2BFOZueV9ZQnylWyBVLVD9xGNm1zodwQqK45NAwe2IkyWX4ZdS6/BbbstwK54HrbZoexfdryHNGmLSMP5Yn9POk1j/8kl8lyDCi/dOgJYlk2dSNlgDqZ/wTh1DOTE32qX5TebZqcheYpj0e61vEnCD/IUrYpdxx/ytWhju0kWx7ZV22f9aP1EPOzD0h98xnbeKTrrMNOEOcF+ab9Yh9YP9muX8tk+Xqkfnta0u+KvNxwww2L86tXr+5cMznNlP68cv7KX/kree973/vA721ve9viPhU4oxSOePDYiq7fdOi2DyoN/pKlErICD9JUCVhZTcJKY5ssDdxBkhtX2jcNMiNZBMclKhMbPUeEmI5K3o5hdE7gs0ZUePxnVMtAjsCiUa61/pz6m8CD5bJtkzPQvIwUs8xkGeErTasgdGB4nWSHsmTA2HpbLkE8I3QRbzyenK9epxFnpI5AZeLf9zznCLhcxkmWH5ukM0PgYBBBeWUeg+41Pg06ug+dKxmtx/l6TkepeSZnd3LWuXoxOd8T4GcA4nRIR34PkLb1c7557rsutvVwSHek8+PsAiQT5xLna+W3PF/IErw2r0GjAxVtq/X/sfLz3kk2KybkrUGiI6VzX9p5sD5pu+wwUhe0neTNOs76nGkaUKDzYBkk0blifXbmKT8lb3siH15F4dyfrlOnUJ+R7Kg4wGEeqTM4r7jyW56mIEv56Zi1D5ue85SrU0G6ZNk31H9eeZ+2BK4FlPpvEMy+tE1nXR4HvzlvcpDY5vI/Ofp72tNDod/RVxDfeuutSTYrIb/39/7eB66/853vfGB15dZbb83999+f97znPYvVlHe+8535xE/8xAfSvOMd79gp/13vetfOKk3p4sWLuXhx9z08VRQ2jjZMBDV2NHjPS99TtKL1lmj0HVFqOY72rfHnqCKNsgHaGlGZtiwb8ikPoyoGGowSrgEgnrOeh9KH7Lc10Evw5/s2nGxzgZIji1be03hYBiojBKFNd5jtatzksJanNYXe/DSalmtGwyn7bLf557mjggbObV/bZkex7fY2F4K31uu5wC0H/Sf/NHwGN4yo95rnmQEdHWSD1LV0TOtxoDy37wy66FSRJ8vJBBLLh4GNo8PUNSzfwMMy4D5jv07ywbI671l39H+S5arhGlkXsa+Os/s81tSuNUek98m3wVvTrOlt8kMAXQBn2Z8A+pq89Xkfj8MEGjk/PS68x7FpGRxbOlGTfrdtpA1kmingYx2+FrjwlrfqmPuy0Xnc9UCic2HZY51Ns2ZrqH8Psxw7Bgo8ZtT/7k/y0DZxPvVZWTtMrYfz0/rAc2RNPloXHSyPXYbrbD8dtROlp64mTXOQevGx4LScZP8K4muBHgzPPix6+tOfnltvvTWve93rHrh2//335/Wvf/0DDsjtt9+eo6OjRZpf//Vfz8/93M89kOYFL3hB3vve9+bf/Jt/80Can/iJn8h73/veB9I8VOrXixlZK9jqBGMn0EFxVM6R117zVoseG9iQXDajyCSueJQMcAw2zAvTJtu2O5pnhcdoULcN2Yi77xz5ZxoeX85WsbvNBGE9J09rEafWEVwzIOh9P0cwRWpp3Dy2PHYf2Ck2SG27DUzJT3A+bRVhW3pM5W++HZ0Mrk/XyLsNU+uZgN401slS1tgekvuMck2HmqCBeafoMvt1ipa7fZafaWxLNrbsE/YRZcRRU/dTy+HqVPleA+Ush/piTblPdXL+k4eW6cBC+ThAXpbrQM4EStdA01ofc15NIGfKN0WzyY/1AtuwBjabr2m9impH1PqJjoXnOueUHeg15+4gm1X0NYBDmZzkwg4ueSeP7nfPpytZ6p/+d55R19v5nN4o2T6+kOXr822TO+/djo4feZjAc+k4W6fBYzPZX7b1EL9JNjtutyT5hCRPUP1eobSOZBCGQN+2kGPLbdBeCW9ZdkztyBGnrDkjPndQiXxPfOxpT+fRw15Jed/73pdf/uVffuD8rW99a+6444488YlPzFOf+tS84hWvyDd90zflGc94Rp7xjGfkm77pm3L58uW89KUvTZLcfPPNefnLX56v/uqvzpOe9KQ88YlPzNd8zdfkuc99bj790z89SfKsZz0rn/mZn5k/82f+TP7e3/t7SZIv/dIvzWd/9mc/pDd7kbw8WQXgyWIjNkXeJgNRBUBFQEA0GTwbv/LIBwzXoh0lRjkcqStfBBdUglYibB/rN3ijonJ/tB5GpAwAGNXi60cZrS44aj73W1cimG8igjaDOx+3bBpzttNp2EfsC47HFJHsdY6Zo2V2nlmn25fsjiudMgNj9gW3MrB/DUIMOmk8OT7TClrlkZHQB1vps5yxrY1WTw6liWPDMsrXmtHldTu3kzPjY84hRiMrI1eyHDuuwLCPvapE/sgn5YmyY0A26Z81sMbIrwHuGnE+mI6ylMnzdJsDBnS4+FV189N+5FfsrXsr31Nku+ecaxOIbbqWy/6Z9F3HqE5Z+TxWGQcqx4DbzrUB+z3Z1Xd2iK2LprKmecexow53evYf+6D32PfTqsexyiDwn+ZxeT7MJhg5OTreqjXlL13O8hmuSUew3bZdtU1ti52cwySfePb7F0n4CiDqBDqyLP8ky35x3mnsTLStU1BoavPadi3KwgHSWu4Cvsnrnvb0UOhhOyk/+ZM/mRe+8IUPnH/VV31VkuSLv/iL85rXvCavfOUr8/73vz9f/uVfnve85z35hE/4hPzQD/1QbrrppgfyfOu3fmse97jH5Qu/8Avz/ve/Py960Yvymte8JoeHW7H+x//4H+cv/sW/+MBbwF7ykpesfpvlPJqADAEilfVJNsqOk4nbNmi01qJWBB50dta2QNWITYB8AstMd5rlqxvt4BBonQdK2s7WS54cUTH4qqIieG0ZpyqX7WFbbETZZt/rtiw/E9Q+Noi1w+M2EzQb1F/MZt/51G/N1/JpoCajRgNJuTjIdtmfeSZHdQIKNiiTIW4aypnTcBVgqs9tr1EOyrPD0+ML4Ktv8kq2b0FqXS3bUUmDPW83cR8c6zodKp4boBFEUq6PldZb10qUp25LYjS//ULH1rLFAAH7lACUvNBRaTsyHNNRYD85YktAap1lUDmBFM4np5/mYNOxPgJEgj7qHK5eW29O/XSqczssTePji9mdFw5wcS6XJ+sHBwTYRwaHnHNts/O6zvJxmK1NsK1YA7HU03YMqTdMdtQ9h6qTrSfZP7QhkzPedk26kPaOc7btaf0dJ36fZGrDceY+sl6b5hUDYZyb5a+44j9ks+rlzezskx6zLMrRWlDJ7Sk9lAAX9WOylXvqIhKdc/YZMcc03x5LdJpHfrvXI13fY4F+W99JuZap77r+nGwnnCMCE1Az+KCSM7BJdo3u5ABMSjZZGoTJEKyBDEe+emwD4XImwMm6HdWyo2EnqHlPsmvkrKDWjJGdqijfZCgNLsgb8zPCZ95Ja4Z7Ldoz8bxGBtRTWTmHPyt3j72dXUaUCeZax3ll0iFY6yvWbT5ZfslO4qUkN58dvzubL1ivAabmt6Ejf56zBnn+XyvHefnsT87S0AE2WYaobzi3HHFnn5s3lt36297mZaR12jLC/lnTCdN5eXEfTroiuN/vUTlYYSfXfWlH3e2aQLwBJvlkew3UzwsAJLsrKjznisB5etT9Th6m1e+HYjfc9vLhOUJ59qrcUXbl3f2QzDqTvHIM1xwgXvfWNaab5ubkVJv3qa6pLaQPRLeZx7V85ZHBDY5Xy7iQpbOWLGWDxOBXsqsbaXvdj5P89p6DEAwGJOt94JVHjhH1UjLrlJZzJclrc21+D6TY8UOTnP+6p995uprkPbk2++XRot/RB+evVXIkO1lGpaj8Dfxt6GkcmIZlUjnfn+1WFyty5psA/WSoozLsKExRRJLBhsFDyw2O1yIg3rJQcrSaPE+GhnU5fXk2gHA+jyfrMkg4LypoI38x28jkmtFrWo8vo30GMB0vgs0SQbLrmECDwVnbPkVBT5HO/b22L7zl9bqjpo2aTUDZ9dyD82nrk2VyGiv3lesyuD7NPHat1/XYIaEctZ3UAyfIxygq+8JbZEqW5zVgfYD7BMqed20/x/hE15j+PMBOmWo6g3QDK0fJSSzD8nUlS14IgMg3QZ/nHCPnk8NsfRAcux4CZYKuaa42DWWP+oh9yDnZOieHOUpnqk6qzE2BkylAMgWJpog6V0Bqg/rSg+R8h53tpSysOSfuj2RXDia9bDBsh831TP1IefFqF9tjx4PlllyvQXupz8l61XGaM6XWbdvBeUKdTN1RWZlWDls/P1Lbe5Oj6LbyuHJfnWbHh/U+WHDvWqDTPDpOyp6WNGGA65II+GzokvMn4uHKP9MYDFUBXcjuhKbhItBfAzzHypvhHg0glTbJiqxR9yky6fKP9E9++LOiYtoqe4PX/mwsJyeoSjpZV+gcE/Yrx7pl2kEN8p5kdzvdeRPGDi7b0H6j0Wc+HhM4le8Cejqg7AfWPfXPBITJV9tbQ8j7lAU7A8H5tGpwoPSHSd6b7fNXLXcC3P0nkHDfsf6pfVMa9tVRtq8R7j1GHQ3We97nI5iOq4mU0973iomJ8khwnCzBSdNOgDbZbT/rorNlIvhhHQb87BOW5+ANxyxZ9mPTrAG+3ueWQvLZ+u7D/eo0t6lE+bWcs12Mbk+89px9yK17Paczz3KrG+0scD4ky7nT/0Md22703u57LndllNdplzjenPvngehk284rOHa7PU8Lhu2cnDdODIZ4hb3E8aHDw/OgXtbfvLTRHqteL+/9r4x5/pInzvG+jMbBlpYzBW5aV8uhzPd13hw7rrRwjIl/6DCSh+a33bOupq3uq7n74D5xS+mDBnju6bdNH1SyQuDjyLANULIbNTPRWJYY4ZjyEgRZ+U18lhwd7bW1AeR1Kxk6MzY6VYD8MWLHt3dZUU3OkUHreYa/yr50CXloyKh0o+O1VR8SAfV5RtcG3Y6FnapetzOzZrD4z7xcuWv+C0hrsMqIMmXXDuipzkuOsl/EdZOdk2S3X/rwMueAAW/BxyTXawDO0e62Y1q9KWCY7pUK/Fsu5TzKxznHetk+A1f2f1TXcZZjVyL4NOim80Pg6nZ5XhM0ek4TEB9mCZoswxw/By2q86hPCfgmB9QgPuDPkXQ7+80/EZ18O5Kc+w4+eE42/zQP1shzk8R+ORrSJ0sdSMfdwQQ6iHQOe0zZt8NCmfP8mIIg5YXHdCYmneB5QKfCdri8UkeVGNxyGQw2BfkcLHLbJgdtsimUm0mvl5f+e5WFuoljNckz6+r1SceTN+v8jpmdw6kd1AOUMX9ja5q35OE024+W9hr1/kFm/h4LdPIo/a4nuvvuu/NxH/dx+diP/dg897nPzXd+53c+7DI+KLZ72ZBTAU8GpQrgMMtlZU/2KTJho0FiHYweV/l4/ynpBGm6OjMtbZO/GoEqEypAfmHbaUuTEzABItZrXqbo6lTeBLZIE19VuFNkfcrnbTLkh84QwbPHw8aE+Zk3qis6TpZtj9IxMtV7B5n70u0jEeBPYKJGs7zRuHkbBuXqIOtj5kgjDfzklEzGtuTxJZhlfewXlmMeaUS9uuU2GMAR5J7m/DnYc48fHaEJkJVHgvXJaZiivNPYJruAp/92Iice3DfH2T4bUx79Eovmj45Ps314mVuHWL954ThxKysdufJl2VhzYhrwYEBgTR9x5ZPPeU39Ql4MBk3O33GeiHphSmd+yAsdYsup9U75ncA+dcHEJ/ueYP5Q1+0E0Lm1c035s0NCfWu957lFGWL/USfy+mQHp3aTL19/OGDTK9CVs0kfMt2DBeSmvm+Za3prsm/sG88pzkneZ3CBuuzhOPx7euzT5cuX8/rXvz6XL1/Ovffem+c85zn5/M///DzpSU96yGWs6fHrijwxrHQIIHg/w39pWp0o1RB7r7brSJZKctpq0eP++pXtU6WjIaOhmZT+9FYlKmYDoNNsFCefISjv7oNpOwoV37R0TKNCw14lvBbBOck28uPxdGS25EjstD2ECnaKTLEsRja9TYNjTsNFfji2zEN+WCZXgGh4CA5YPr9dwOhrspUlRtZp2GjEKEcTiHF6963BScubDJz7w9H1lsHopcEbwSyj/WwDnfPy2O0SHMv+DrNdaeg520gHdQIpbJedjjXgtwYO2A472rzX+62baTwvpjrsWPKDhZO+IEAl3wfZBHw6bnb26kidDmVYDxBw0hFbA3YlO6tsD/l0JLjpOU+SXUdnWlk9QBqPj8Hb5DS0DDuXze/+sk5mH9mmcHXC83WyJw50Tbq/5dC+rUWIyT/J+pLXrFtaj3Vx5Ys8eNWQOoi2zluezB8dEwYdeN8rJbWhbHvLdxDGq5Oul3J23koxy+z/hAvsgFE3MsBFG9R/tsnzwkEElv9Qdjzs6bFPh4eHuXz5cpLkypUrOTk5ycN9V9d176RMCpLL/ZycBg5WdASUVPae8N3uwmst31HeZHfyJ/P2pjWlzUgU07F9k9K3M2OeaZhqrE71My8tp/wXBNgpi/49Fk3LfxtbggSmo6Lv+E9GZ3Lw+m+Hkf3Bfn4wEGmHmOmOsv1I2YHysH4CbtdTwzONf8uisVhzYHqvbfSc4fjRCPeYxsz3ydMEkE2emwURl7KUkYNsnYrTbB5INWAjeYWT4MWghQCf+YPrdP4IfAyGOR/dP83v4/JEPhztt+x6/tB5tQPrB4+nstwvdnLtOHpf/nnO+BSk4fmafNBRYB2VcTpCya4cm1qOx2Ry2qaVt+o6y/Wpjq3fDJyjtOyf/hMcHul8TTYa2KLsUY8wH50QAmSPjZ2g08xzzateBLtrQRX3nx23KW2JK2Tuf+dZcwbWxnyiSUZb1+UsZf4gm1cPe/7bLhc/UF/adthxNp6hkzXpLzq6JY+D+51EXMLtYZz/5N1YZ82ZutbIWOeR+j0U+rt/9+/mec97Xh7/+Mfn8Y9/fF7wghfk//w//8/fbpMX9IY3vCEvfvGLc9ttt+WGG27I93//94/pXv3qV+fpT396Ll26lNtvvz0/+qM/urh/55135vnPf34+8iM/Mq985Svz5Cc/+WHxcd1u96K35ogAAUCyNMo9J7itQjMIoaJLlsv8JEYPHeVpdJbAOVkaICoXPsh9qHxVEORrimBQkZRfKkVGOGmA1o6bl0u/jnC37m4VKT9W2NxeQR5bV7eJdEITIBwrXcvkygj7/gRlkVg/x5yKvO3knmqW460I/dhYx9tksDIpc0YJKzOTYWC023v6bYRbh6Pck2Pff4Jnjnfrt3NxpDQsgwaYRrfX2Y99INPRfMpD5wGN9cnwP407+8nzhrLGcpqHQLHpPc6tl3I1bUFsWjr8XqUxaO24Tq9OLpXnwyTvA69MZ6A+AeFpHk3OHvuivJWoxygvjhSzfPPR8w/N5lXW/tijwTPPrTsrS3Q4O88OhnQcl4Nst+FShrxFzONWPtsO649kdzyYfi34wrGIeOh52zPpdM5Jt/MUaV0f+WNb7JzxOvWH66HNTJYfAGa57jtS89vOUc4mQG5HjPdPdM04oNe60tC+tz2j3Uy2wc0bkI5l2r7VppxmoxspM8QwhyqDAQ3rRFPl2mPLsZr60vqkc8G24Fr+AsajwdlDrfMjP/Ij883f/M35fb/v9yVJ/uE//If5nM/5nPz0T/90fv/v//076f/1v/7X+fiP//gcHS1H+S1veUue8IQn5NZbb93Jc8899+T5z39+vuRLviR//I//8ZGP7/me78krXvGKvPrVr85/+V/+l/l7f+/v5bM+67PyC7/wC3nqU5+aJHnCE56Qn/mZn8k73vGOfP7nf36+4Au+ILfccstDbGmSq9cpve1tb7uazZjvf/vf/rf/7X/73/63/+1/19DvbW9726MNFXfo/e9//9Vbb731UeuTxz/+8Vef+cxnXn3Ws5519du+7dseMt8f+qEfevV/+V/+l53rJycnV5///Odf/YIv+IKrv/Vbv/XA9V/8xV+8euutt179a3/trz1o2Umuvva1r925/vEf//FXv+zLvmxx7WM+5mOu/uW//JfHcr7sy77s6j/9p//0QesjXbcrKbfddlt+4Rd+Ic9+9rPztre9bf9hnOuQ7rrrrjzlKU/Zj+91Svvxvb5pP77XP+3H+PqmD3R8r169mrvvvju33Xbb7yJ3HxhdunQpb33rW3P//fc/eOLfBbpw4UIuXfJ71tbp5OQk3/u935t77rknL3jBC3buHxwc5Ad+4AfyyZ/8yflTf+pP5R/9o3+Ut771rfm0T/u0vOQlL8krX/nKD4jP+++/P29+85vzl//yX15c/4zP+Iy88Y1vTJK84x3vyId8yIfk8Y9/fO6666684Q1vyJ/7c3/uYdVz3TopBwcH+YiP+IgkeWDf3p6uT9qP7/VN+/G9vmk/vtc/7cf4+qYPZHxvvvnm3yVufvt06dKlh+UoPBr0sz/7s3nBC16QK1eu5Pf8nt+T1772tXn2s589pr3tttvyIz/yI/nkT/7kvPSlL82P/diP5UUvelG+/du//QOu/zd+4zdycnKys3Xrlltuydvf/vYkya/+6q/m5S9/ea5evZqrV6/mz//5P5/nPe95D6ue69ZJ2dOe9rSnPe1pT3va056uN3rmM5+ZO+64I3feeWe+7/u+L1/8xV+c17/+9auOylOf+tR813d9Vz7lUz4lH/3RH52///f/fm644YYx7cMhl3H16tUHrt1+++254447flvlr72UaE972tOe9rSnPe1pT3va0zVGFy5cyO/7fb8vf/AP/sG86lWvyvOf//z8zb/5N1fTv+Md78iXfumX5sUvfnHuvffe/KW/9Jd+W/U/+clPzuHh4QOrJqV3vvOdD+/B+Aeh69pJuXjxYv7H//F/zMWL/ubunq4H2o/v9U378b2+aT++1z/tx/j6pv34Xjt09erV3Hff9O7QzdasF73oRXnWs56Vf/7P/3l+5Ed+JP/0n/7TfM3XfM0HXN+FCxdy++2353Wve93i+ute97p84id+4gdcrumGsyf397SnPe1pT3va0572tKc9XcP03/13/10+67M+K095ylNy991357u/+7vzzd/8zfnBH/zB/JE/8kcWaU9PT/PxH//xueWWW/La1742Fy5cSLJ5puWFL3xhvu7rvm5cVXnf+96XX/7lX06S/IE/8AfyLd/yLXnhC1+YJz7xiQ+8Xvh7vud78rKXvSzf/u3fnhe84AX5ju/4jnznd35nfv7nfz5Pe9rTfkfaundS9rSnPe1pT3va0572tKfHAL385S/P//1//9/59V//9dx888153vOel6/92q/dcVBKr3vd6/JJn/RJOy8DuOOOO/KkJz0pT3nKU3by/Mt/+S/zwhe+cOf6F3/xF+c1r3nNA+evfvWr89f/+l/Pr//6r+c5z3lOvvVbvzWf/Mmf/NtrIGjvpOxpT3va0572tKc97WlPe7qm6Lp+JmVPe9rTnva0pz3taU972tNjj/ZOyp72tKc97WlPe9rTnva0p2uK9k7Knva0pz3taU972tOe9rSna4quWyfl1a9+dZ7+9Kfn0qVLuf322/OjP/qjjzZLe3oI9KpXvSof93Efl5tuuikf/uEfns/93M/NL/7iLy7SXL16NV//9V+f2267LR/yIR+ST/3UT83P//zPL9Lcd999+Qt/4S/kyU9+cm688ca85CUvya/+6q8+kk3Z00OgV73qVbnhhhvyile84oFr+/F9bNN//s//OX/yT/7JPOlJT8rly5fzsR/7sXnzm9/8wP39+D526bd+67fy3//3/32e/vSn50M+5EPy0R/90fmGb/iGnJ6ePpBmP76PLXrDG96QF7/4xbnttttyww035Pu///sX93+nxvM973lPXvayl+Xmm2/OzTffnJe97GW58847f5dbt6fHPF29Dum7v/u7rx4dHV39zu/8zqu/8Au/cPUrv/Irr954441X/+N//I+PNmt7ehD6o3/0j179B//gH1z9uZ/7uat33HHH1T/2x/7Y1ac+9alX3/e+9z2Q5pu/+Zuv3nTTTVe/7/u+7+rP/uzPXv2iL/qiq7/39/7eq3fdddcDab7sy77s6kd8xEdcfd3rXnf1p37qp66+8IUvvPr85z//6m/91m89Gs3a00D/5t/8m6sf9VEfdfV5z3ve1a/8yq984Pp+fB+79O53v/vq0572tKv/zX/z31z9if9/e/cX0lQbxwH8m5tb/2RkMpdJohCsmoFt9HckVIikV0GQWApdFa00oZS86CbLq4ggjCK6sTCiBRYRzbKBbLmYsywJi1ZGuFZhS7BauN971eHdO7OIvW1nfD9wLnyeH4fn8D0H/c3tWX+/BINB6enpkRcvXig1zFe9jh07JgsXLpSbN29KMBiUq1evyvz58+XUqVNKDfNVl1u3bklra6tcu3ZNAMj169fj5pOVZ2VlpVgsFvF4POLxeMRisUh1dfXfukxSqYxsUlavXi179uyJGzObzdLS0pKiFdGfCofDAkDcbreIiMRiMTGZTNLe3q7UfP36VQwGg5w9e1ZERD59+iTZ2dnS1dWl1Lx9+1aysrLk9u3bf/cCaFoTExOydOlScblcUl5erjQpzFfdmpubxW63/3Se+apbVVWV7N69O25s27ZtsnPnThFhvmr33yYlWXkODw8LAHnw4IFS4/V6BYA8e/bsf74qUrOMe7tXNBqF3+9HRUVF3HhFRQU8Hk+KVkV/KhKJAAByc3MBAMFgEKFQKC5fvV6P8vJyJV+/34/v37/H1RQUFMBisfAeSBP79u1DVVUVtmzZEjfOfNWtu7sbNpsN27dvh9FoRFlZGc6fP6/MM191s9vtuHv3LkZGRgAAjx49Ql9fH7Zu3QqA+WaaZOXp9XphMBiwZs0apWbt2rUwGAzMnGakTfUCku3Dhw+YmppCfn5+3Hh+fj5CoVCKVkV/QkTQ1NQEu90Oi8UCAEqG0+X7+vVrpUan02HBggUJNbwHUq+rqwsDAwN4+PBhwhzzVbeXL1+io6MDTU1NOHLkCHw+Hw4cOAC9Xo+6ujrmq3LNzc2IRCIwm83QaDSYmppCW1sbampqAPD5zTTJyjMUCsFoNCac32g0MnOaUcY1KT/MmjUr7mcRSRij9OZwOPD48WP09fUlzP1JvrwHUu/NmzdoaGjAnTt3Er799t+YrzrFYjHYbDYcP34cAFBWVoanT5+io6MDdXV1Sh3zVacrV66gs7MTly9fxooVKzA4OIjGxkYUFBSgvr5eqWO+mSUZeU5Xz8zpVzLu7V55eXnQaDQJ3Xk4HE54NYDS1/79+9Hd3Y3e3l4UFhYq4yaTCQBmzNdkMiEajWJ8fPynNZQafr8f4XAYVqsVWq0WWq0Wbrcbp0+fhlarVfJhvuq0aNEiLF++PG5s2bJlGB0dBcDnV+0OHTqElpYW7NixA6Wlpdi1axcOHjyIEydOAGC+mSZZeZpMJrx79y7h/O/fv2fmNKOMa1J0Oh2sVitcLlfcuMvlwvr161O0KvpdIgKHwwGn04l79+6huLg4br64uBgmkyku32g0CrfbreRrtVqRnZ0dVzM2NoYnT57wHkixzZs3Y2hoCIODg8phs9lQW1uLwcFBlJSUMF8V27BhQ8KW4SMjIygqKgLA51ftJicnkZUV/2eDRqNRtiBmvpklWXmuW7cOkUgEPp9Pqenv70ckEmHmNLNUfFr///ZjC+ILFy7I8PCwNDY2yrx58+TVq1epXhr9wt69e8VgMMj9+/dlbGxMOSYnJ5Wa9vZ2MRgM4nQ6ZWhoSGpqaqbdErGwsFB6enpkYGBANm3axC0u09S/d/cSYb5q5vP5RKvVSltbmzx//lwuXbokc+fOlc7OTqWG+apXfX29LF68WNmC2Ol0Sl5enhw+fFipYb7qMjExIYFAQAKBgACQkydPSiAQUL6yIVl5VlZWysqVK8Xr9YrX65XS0lJuQUy/lJFNiojImTNnpKioSHQ6naxatUrZwpbSG4Bpj4sXLyo1sVhMjh49KiaTSfR6vWzcuFGGhobizvPlyxdxOBySm5src+bMkerqahkdHf3LV0O/479NCvNVtxs3bojFYhG9Xi9ms1nOnTsXN8981evz58/S0NAgS5YskdmzZ0tJSYm0trbKt2/flBrmqy69vb3T/s6tr68XkeTl+fHjR6mtrZWcnBzJycmR2tpaGR8f/0tXSWo1S0QkNf/DISIiIiIiSpRxn0khIiIiIiJ1Y5NCRERERERphU0KERERERGlFTYpRERERESUVtikEBERERFRWmGTQkREREREaYVNChERERERpRU2KURERERElFbYpBARERERUVphk0JERERERGmFTQoREREREaWVfwDZGYuoZjI1xAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.figure(figsize=(10,8))\n", "plt.imshow(hdus[0][1].data, norm=LogNorm(vmax=3E4, vmin=3E3), cmap=\"hot\")\n", @@ -207,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "d82e5257", "metadata": {}, "outputs": [], diff --git a/docs/source/examples/2_multiple_telescopes.ipynb b/docs/source/examples/2_multiple_telescopes.ipynb index 6a4be6ff..b9e68f5a 100644 --- a/docs/source/examples/2_multiple_telescopes.ipynb +++ b/docs/source/examples/2_multiple_telescopes.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "hairy-information", "metadata": {}, "outputs": [], @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "0150da5d", "metadata": {}, "outputs": [], @@ -59,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "98186ac1", "metadata": {}, "outputs": [], @@ -80,25 +80,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "unexpected-appeal", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\MAORY.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\AppData\\\\Local\\\\Temp\\\\tmp5sh4rx91\\\\LFOA.zip']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\", \"LFOA\"])" @@ -116,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "lasting-gender", "metadata": {}, "outputs": [], @@ -139,21 +124,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "casual-strength", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Warning: header update failed, data will be saved with incomplete header.\n", - "Reason: !OBS.instrument was not found in rc.__currsys__\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "lfoa = sim.OpticalTrain(\"LFOA\")\n", "lfoa.observe(cluster,\n", @@ -174,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "chinese-spirit", "metadata": {}, "outputs": [], @@ -198,31 +172,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "directed-mother", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, '39m ELT')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA98AAAGnCAYAAACuHeQ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydebgdRZn/v9V9lrvfm4XcJJCEoAiJYYlJxABCwhLIQEBglBGHxcERJeLEiDjAjL/ISKIwg1GWIA7DoiLIOCijgIRBgmxjyBCJhF2WsCQh4ebu9yzd9fujl1Pdp7qr+5w+9557eT/Pc557T1d1VXV39en+1vvWW4xzzkEQBEEQBEEQBEEQRM3QRroBBEEQBEEQBEEQBDHWIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEARRY0h8EwRBEARBEARBEESNIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEARRY0h8EwRBEARBEARBEESNIfFNEARBEARBEARBEDWGxDdBEARBEARBEARB1BgS3wRBEARBEARBEMSY4LXXXsPixYsxe/ZsHHTQQejv7x/pJrkwzjkf6UYQBEEQBEEQBEEQRLUcffTR+M53voNPfvKTeP/999HW1oZUKjXSzQIA1EcrCIIgCIIgCIIgCKIKnnvuOaTTaXzyk58EAIwfP36EW+SF3M4JgiAIgiAIgiCIEefRRx/FsmXLMHXqVDDG8Ktf/aoszw033ICZM2eioaEB8+bNwx/+8Ac37eWXX0ZLSwtOOeUUfOxjH8Pq1auHsfVqyPJNEARBRGZoaAj5fD6RsjKZDBoaGhIpiyAIgiCIZEjyWc85B2PMsy2bzSKbzUrz9/f345BDDsHnP/95nHHGGWXpd911F1asWIEbbrgBRxxxBH70ox9h6dKl2Lp1K6ZPn45CoYA//OEP2Lx5MyZNmoQTTzwRCxYswPHHH5/I8VQLzfkmCIIgIjE0NISZM1qwfaeRSHmTJ0/Ga6+9RgKcIAiCIOqEpJ/1LS0t6Ovr82z7f//v/2HVqlXKfRljuOeee/CpT33K3XbYYYfhYx/7GNatW+dumzVrFj71qU9hzZo1ePLJJ/Htb38bDzzwAADg6quvBgB84xvfqP5gEoAs3wRBEEQk8vk8tu808MamfdHWWt2spZ5eEzPmvY58Pk/imyAIgiDqhFo867dt24a2tjZ3e5DVO0rbNm3ahH/8x3/0bF+yZAmeeOIJAMCCBQuwY8cOdHV1ob29HY8++iguuOCCyg8iYUh8EwRBELFoaWVoaWXqjCGYqG5/giAIgiBqR5LP+ra2No/4rpRdu3bBMAx0dnZ6tnd2dmL79u0AgFQqhdWrV+Ooo44C5xxLlizBySefXHXdSUHimyAIgoiFwU0YVU5YMriZTGMIgiAIgkicen7W++eQ++eVL126FEuXLq1J3dVC0c6JuqC3txeXXHIJlixZgr322guMsUhzQRxuvfVWMMakH2ckrJY49T/99NOBeV5//fXANs6fP9+Tl3OOO+64A8cccwzGjRuHbDaL/fbbD8uXL8e2bdsC6ygUCpg8eTIYY/jP//zPxI6PIAiCIIaTzZs346STTsL06dPR2NiI8ePHY+HChfjpT39alpdzjh/+8Ic48MADkc1mMWXKFHz5y19GV1fXsLT1vPPOC3y+i4LAeQ/413/9V8/+ixYtCt3f+cR5LyKIscjEiROh63rZu/3OnTvLrOH1Clm+ibpg9+7duOmmm3DIIYfgU5/6FP793/+9onJuueUWHHjggZ5tEyZMSKKJiXHRRRfhrLPO8mxraWlx/zdNE2eddRbuuusufPazn8Wtt96K9vZ2PPvss7j66qtxxx134De/+Q2OOOKIsrJ/85vfYMeOHQCAm2++GX/9139d24MhPpCY4DBR3XB4tfsTBDG22bNnD6ZNm4bPfvaz2HvvvdHf34+f/exnOPvss/H666/jn/7pn9y8F198MdauXYuLL74Yxx13HLZu3Ypvfetb2LhxI5588kmk0+mat7exsREPP/xwRfvecMMN6Onpcb//9re/xXe+852yd5p99tmn6nYSRFTq8VmfyWQwb948rF+/Hqeddpq7ff369Tj11FMTratWkPgm6oIZM2agq6sLjDHs2rWrYvE9Z86cMityvTF9+nR84hOfCEz/3ve+h7vuugvf/e538c1vftPdvmjRIpx55pk47LDDcMYZZ+CFF15AR0eHZ9+bb74ZmUwGRx99NB588EG89dZb9LAmEseEiWodyaovgSCIscyiRYuwaNEiz7aTTz4Zr732Gm666SZXfL/99tv4wQ9+gOXLl+N73/seAOD444/HpEmTcNZZZ+HWW2/F3//939e8vZqmhT7bw5g9e7bn+wsvvABgdLzTEGOXkXrW9/X14ZVXXnG/v/baa9i8eTPGjx+P6dOnY+XKlTj77LMxf/58LFy4EDfddBPefPNNfOlLX6qytcMDuZ0TdYHfNavWdX3lK1/BLbfcggMOOACNjY2YP38+nnrqKXDOcfXVV2PmzJloaWnBMccc4/kBqDX5fB5XX301Zs2ahUsuuaQsvbOzE2vWrMGOHTtw8803e9LeeecdPPDAA1i2bBm+8Y1vwDRN3HrrrcPUcoKojAULFmD27Nm4/vrrR7opBEGMAiZOnIhUqmQ7euqpp2AYBv7qr/7Kk88JsPTLX/7S3fbII4+AMYY77rgD3/zmNzFlyhS0tLRg2bJl2LFjB3p7e/HFL34REydOxMSJE/H5z3++bIkkgiBqy9NPP425c+di7ty5AICVK1di7ty5+Na3vgUAOPPMM7F27VpcccUVOPTQQ/Hoo4/ivvvuw4wZM0ay2ZEhyzcxpjj55JPx3nvvob29HYsWLcIVV1yBOXPmlOX7zW9+g2eeeQbf/e53wRjDN7/5TZx00kk499xz8Ze//AXXXXcduru7sXLlSpxxxhnYvHlzYoMDpmmiWCx6tum6DsYYNm3ahK6uLnzxi18MrG/ZsmXQNA3r16/H17/+dXf7rbfeCsMw8Hd/93c47rjjMGPGDPzHf/wHLr/88mEb2CA+GBicw+DVuZI5+2/cuDGRCKgEQYxNTNOEaZro6urC3Xffjd/97ne47rrr3PR8Pg+gfOmidDoNxhieffbZsjIvu+wyLF68GLfeeitef/11XHzxxfjsZz+LVCqFQw45BD//+c/xzDPP4LLLLkNrayt++MMfRmqr/9kOWBZxTSNbFzH6SPJZH4dFixaBK/a78MILceGFF1barBGFxDcxJpg8eTIuv/xyfOITn0BbWxu2bNmC7373u/jEJz6Bxx9/HIcccognfy6Xw4MPPojm5mYAljX8U5/6FH7/+9/j//7v/1yx+t5772HFihX485//jIMOOiiRtn7zm9/0uJMD1lyV4447Dm+++SYAYObMmYH7t7S0YK+99nLzAlawmVtuuQV77703TjjhBDDGcN555+Hb3/42fv/73+OYY45JpO0EAdTnPDCCIMYmF154IX70ox8BsOZ7/vCHP/Ss2eu4bD/++ONYvHixu/2JJ54A5xy7d+8uK/Pggw/GLbfc4n5/4YUXsHbtWnz1q1/F1VdfDcByXX/yySfxs5/9LJL47u/vl84tP/bYY/HQQw9FPFqCqB/oWV8bSHwTY4ITTzwRJ554ovv9qKOOwkknnYSDDjoI3/rWt/DrX//ak3/x4sWu8AaAWbNmAbCWJhCtxM72N954IzHx/Q//8A/427/9W8+2Aw44IFYZ/iUVNmzYgFdeeQWXXXYZdF0HAHz+85/HFVdcgf/4j/8g8U0QBEGMSi677DJ84QtfwM6dO/Hf//3f+MpXvoL+/n5cfPHFAIBDDjkERx11FK6++moccMABOP7447F161Z86Utfgq7rUquzf81f51l/0kknlW3/1a9+hb6+Pk9gVBmNjY149NFHy7aTZw9BECIkvokxy7777osjjzwSTz31VFna+PHjPd8zmUzo9qGhocTatc8++wQGUJk+fToAK7hEEP39/di1a5c7FwaAO//7tNNOw549ewAA7e3tOPLII/HLX/4S1113XVlwNoKoFBMcBo2GEwQxDEyfPt19Njrzui+99FKce+652GuvvQAAd999N8477zx85jOfAWA9u7/2ta/hoYcecp+JIpW8A6jEt6ZpFByNGFPQs7420CQUYkzDOR9Vc63mzZuHcePG4d577w2c73LvvffCNE0cf/zxAIDu7m43oMyCBQswbtw49/OHP/wBQ0NDuOOOO4btGIixj+OKVu2HIAgiLh//+MdRLBbxl7/8xd02adIk3HfffdixYwf+9Kc/YefOnbjiiivw0ksv4aijjhrB1hLE6IWe9bVh9KgSgojJa6+9hscff7zipT9Ggkwmg2984xt4/vnn3XlnIjt37sSll16Kzs5OfOELXwAA3HHHHRgcHMS//Mu/4Pe//33ZZ+LEifiP//iP4T4UgiAIgkic3//+99A0Dfvtt19Z2qRJk3DwwQejvb0dN954I/r7+/GVr3xlBFpJEAQhh9zOibrh/vvvR39/P3p7ewEAW7duxX/+538CsFzNmpqaAADnn38+brvtNrz66qvusgLHHXccjjrqKBx88MFuwLWrrroKjDH8y7/8y7Adw8MPP4zXX3+9bLt/CZQwvvnNb+JPf/qT+/fMM89Ee3s7nn32WVx99dXo7e3Fb37zG7S3twOwXM7HjRuHiy++GA0NDWXlnXPOObjmmmvwpz/9qSzwHEFUwkhFQCUI4oPDF7/4RbS1teHjH/84Ojs7sWvXLtx9992466678I1vfMN1OQeAH//4xwCAD33oQ9izZw/uv/9+3HzzzVi9ejU+9rGPDUt7TdOUTnMDgLlz53qisW/ZssV9vxFZsGDBqFkuiRj70LO+NpD4JuqGL3/5y3jjjTfc73fffTfuvvtuAJYVe9999wUAGIYBwzA8btkHHXQQ7rrrLvzrv/4rBgcHMWnSJBxzzDH453/+Z3zkIx8ZtmPwRzF3CJvD7UfTNPz85z/HKaecgh//+Mc499xzMTAwgL333hsnn3wy/vEf/9Gd//bss89i06ZNWLFihVR4A9YLzDXXXIObb7458nIpBBGGaX+qLYMgCCKIhQsX4pZbbsFtt92GPXv2oKWlBYcccgh+8pOflAUt5Zxj7dq1eOONN6BpGubOnYt77rkHp5566rC1d3BwEAsXLpSmvfzyy/jwhz/sfr/99ttx++23l+W75ZZbcN5559WqiQQRC3rW1wbGVQupEQRBEASAnp4etLe344XnO9HaWt2spd5eEwfO2oHu7m6KBkwQBEEQdQI962sLzfkmCIIgYmHYEVCr/QCWm+Xs2bNx/fXXj/BREQRBEAThkOSznihBbucEQRBELAxufaotAwA2btxIo+EEQRAEUWck+axfsGABdF3H8uXLsXz58uobN4oh8U0QBEEQBEEQBEHUBBpoL0HimyAIgogFBWEhCIIgiLENPetrA4lvgiAIIhYmGAywqssgCIIgCKI+oWd9baCAawRBEARBEARBEARRY+rO8m2aJt555x20traCMRotIQiCqATOOXp7ezF16lRoWrLjrCa3PtWWQXywoec9QRBEddCzfvRRd+L7nXfewbRp00a6GQRBEGOCbdu2YZ999km0TCMBV7Rq9ydGP/S8JwiCSAZ61o8e6k58t7a2AgCOavprpFhamofn8spyuGGEpjNdV5bBGhvC09Py9sUhUhmN2fD0QlFZhNm1Jzx9cEjdDq4YvkrAchHpumTCzxnLKs4XAKhGB43wc8qNCCEkCoXwMorhfTQKPIEhRZZW/wywD80ITd+2dJy6ork9ocntTYPKIra/OSE0vfMx9ajvuD++E5pu7tylLMPMq+85JVzRh1T3m4IiCngM97m/qQRRbzh988Nf/hb0rO95y4HAdzYxLej/uETd118fqqgTAGcA4+X/O98rIsZxcAawGkdEYr6fMuc4xePz50mEuP3E2e5PV/WNoP3C2hGn70TNGyWfrK3V3Ddx6k5yvyrx31uy/ufk8ffVSDCAa4CZBvQcEHepa67ZbYqwn5Ebwqs3XEHP+lFE3Ylvx/UsxdJIsYw0D4/wK81Z+Es4YxFEXkD9brqWgPiOUoamEJOa+lhMxbGYLIoQHAbxncR1UaQDUItvMzydR3lbUZwPzqoXcFHuBRWMRRDfengfLHtxltGUC01ONavPqaYYEEul1eI7pbifVPeKlSeJNwXV8VZ5be3da+HOS6PhRBI4fVPPNkT7DYmK+EIf9nIfRXTIxJJKbMXAL7jF7VXBvOW4L/JCuWXidxjcQ2VCXLY9MrJrUKnAjdJHKulPsn0q7UOq9lQyiBQnb7V9f4TEdhCyAaBKhLb03nHKyUJ+nfz5omwLuU/oWT96oIBrBEEQRCxMzhL5EMnz6KOPYtmyZZg6dSoYY/jVr37lSeecY9WqVZg6dSoaGxuxaNEiPPfcc548uVwOF110ESZOnIjm5maccsopeOuttzx5urq6cPbZZ6O9vR3t7e04++yzsWfPnuQOhAf8HwUW8H8liELDX1YCXVgmRhO5NZzBN+6zbAv1MV76DIfwBkrHlpjV2y9E/WKlFj8zQWVGFb0ykVVJ3f5+6R90iFpOjLxcpRq4769/u9NeVRtr3B+D+p9/u7Jvhh0Lh/d6y865ZH/nHHPbeh56rWrVx23oWV8bSHwTBEEQxBihv78fhxxyCK677jpp+lVXXYVrrrkG1113HTZu3IjJkyfj+OOPR29vr5tnxYoVuOeee3DnnXfiscceQ19fH04++WQYwnSus846C5s3b8YDDzyABx54AJs3b8bZZ5+d3IHILD9xBHkUAV6tRTRhgZD4O6rYRokA8AjhGr/Ee5oVUk/F56Bai6pMRMnEbDXlh30PQtamMCtq1D4Zp+/KLMKqe0p2vCohKiunBgT1Mf/2SANhUTwAggbufOeKa97BDY8lXnbukxqoI4adunM7JwiCIOqbJF3RFixYAF3XsXz5cixfvjyJ5n2gWbp0KZYuXSpN45xj7dq1uPzyy3H66acDAG677TZ0dnbijjvuwAUXXIDu7m7cfPPN+MlPfoLjjjsOAPDTn/4U06ZNw0MPPYQTTjgBzz//PB544AE89dRTOOywwwAAP/7xj7Fw4UK8+OKLOOCAAyo/AP/LbBThHHVObsD2INfv0PpVaf6qfO7V/rneNSFMUDpfNZSLyxGwgjvnImj+eySChF/c/WXfw/qYzBXc34dFK3UcERqlnU6dYl2VlKHIG+l6hJ2nOhOKMi+M2IjXFpCf+5CBL1nsA7/oF/O41WiltFrer+R2XhtIfBMEQRCxMKDBqNJxyrGhbty4EW1tbdU3ilDy2muvYfv27ViyZIm7LZvN4uijj8YTTzyBCy64AJs2bUKhUPDkmTp1KubMmYMnnngCJ5xwAp588km0t7e7whsAPvGJT6C9vR1PPPFEoPjO5XLI5UqxH3p6hCCMUcRNyEt96NxhhRioyO05RMy7XyWismyXWr6X+uuU1CUVucMowINwBEfka1Or8xhljrfKqh3hOgTW7Rf1Miqxqlc6Z1u1f8wBqbDrXMuAg7Kgf+7uPPz3pEwYa0K+mG32exM4ruZm2nZ7L8ATHqbqGAkxSfJZT5SoW/HNc/nAYFKqSOaRiBJVu0ER7TwbIbCXIgBCcco4ZRFDkxpD01OD6vPR8KrieCNEeFZiqgNm8aIiiniU6N2qSPZR+oeuCMjX3ByeHiFCuCoKPe/vVxbB8+ER05GvPvK/6nwCgLarKzR9wla1eNqVag9N39mqLqN1e/j91PyuOmI67+kLT1f0UQDQVBH3M+rfBtV14bnwAHXqMtiIv0AT9cX27dsBAJ2dnZ7tnZ2deOONN9w8mUwG48aNK8vj7L99+3ZMmjSprPxJkya5eWSsWbMG3/72t8MbWeELvTM3sqo4lqoXaL97r9/qFSBugYTFRaX4LP1mBig2c2gFQB9k0BJYxKHipvkEjX/7cImNMqJ4PqiErH8wQ5Zftk32PanzUG3fi7h/aB8XBs3i3gux8vvuU9e12xTKEc+tIL45yvuemQG4xqHlSs/Yii+LcPxcL3134jTwlN0GE2BGNRUR9QTN+SYIgiBiwRMIwMJpstqI4Y+KyzlXRsr155HlV5Vz6aWXoru72/1s27ZNaJS/MMn/IS+e7stpUBmK/ZXWdVl6xBdh0ZU6sYBqcWDwtN2x7JkZjnNP/D0mztthveT7XaXHGKq55sVGwFTbZRJqjO//qOd7DF4XaWwC56vknol9/9jWaTeAmWy6h2TAB0DJGi1s0/KAlmOl+1oQzXFx2gX7fjRTHIU2E+m5XWAH9cBo4DDT1icwNkMN+wQ962tD3Vq+CYIgiPqE5oGNTiZPngzAslxPmTLF3b5z507XGj558mTk83l0dXV5rN87d+7E4Ycf7ubZsWNHWfnvvfdemVVdJJvNIpsNWOovaK53xGBXkdzNgwR+mOgW940z71fcByMguEWCzqEJ/OIvc9H7Xgsa4gxU1Jiyc5WAxdcabLA8I7QAhyEtH8PCHtV67aAa2KjWDbxeUJ0D0WNEEY9AWnwl50hwa/fcCqLbub+P+dro7xfuCgIM6lVDA9okNojr9v8aMOOQd/A/s+9FgRs4ovFv0LNpopuHFTGs9yY962sDWb4JgiAI4gPAzJkzMXnyZKxfv97dls/nsWHDBldYz5s3D+l02pPn3XffxZ///Gc3z8KFC9Hd3Y0//vGPbp7//d//RXd3t5snFjIrt4Pqvc2/b1AAIi5Jd0S3LE22b5iYDxJUGGHhzXwfoT16niG3pQPZd9LlwjPKgMQwwSoRNxLCLJSMW6I8cl2iWItznoIGiaKWUQPhFcsjo5r6Reu2/96JcA5i30eSMgOX1pPMr/csxScr2/9/Fd4LzLTqMRo49m15HwCQZjrGNQxa/RblfXNEvGiIRCDLN0EQBBELg2swlAu+qspIqDGEh76+Przyyivu99deew2bN2/G+PHjMX36dKxYsQKrV6/G/vvvj/333x+rV69GU1MTzjrrLABAe3s7zj//fHz961/HhAkTMH78eFx88cU46KCD3Ojns2bNwoknnoi///u/x49+9CMAwBe/+EWcfPLJlUU6j2pNFr+HvRCHvVgH/e9vR9ggQESLZ1lApwQsuLERBaKvnawI6CYLFpxhbQ2yFCZBDc4T44A+GNGyrep3QWJL0gdMHd611mUeFFGt3rWyjjOg0MKR6mflUzckeStKl11TvwU8qWOLUI57bzoDUpp9jWy3dJnQ9fcddw1uHpynrF3+gTx7G9et/fVBhhf3TMLzkwfwcmEi3u5uBysycI2X2ug7jlpCz/raQOKbIAiCiIUJBrNKxymTIsfUhKeffhqLFy92v69cuRIAcO655+LWW2/FJZdcgsHBQVx44YXo6urCYYcdhgcffBCtra3uPt///veRSqXwmc98BoODgzj22GNx6623QhcClf7sZz/DV7/6VTcq+imnnBK4tngkwgSt/2+QCAnarrJQBwkDCNuDRKxCiHsEeJDoquWtoBAiZS/vMld8vzjyWw4rdAUuO/6wgZUEqDhyuqz/RHQ7l7q4RxDtkdolqa+SJdo4A3jKKquiJd5UhFmGkx5MiFset48dglu3rNgggW1fA44I5y0knRUB6Ja43vlMJ5btXg6zoCH9VgZIcbBi+SDZcAQhpGd9bSDxTRAEQRBjhEWLFoHz4JcdxhhWrVqFVatWBeZpaGjAtddei2uvvTYwz/jx4/HTn/60mqYGo7LwxbUaVmoxDLPIBaVFaQtsS5u4T5Lvp/4BAl9bPQHgNIAZ8LrixjmmasSTIMo4K7fqOdREEEYhrN/I+uBwuwAHiNlIQlDcxQQyXVZhSZ3nsmBmwncn6JmqLlWk9EQ8Aezr5vY/xxItuVdEF3TPXHGhvQwI9soJmNLCuJWkFa3CdAPQXm0AM5k70OXen1Gt7ERdQ3O+CYIgiFg4QViq/RBEGUEiRjZP08kvI8qLaZQu6Lf2+i3DQe1ydguog5nwvOTX1AIYIgzLBK9fNAWd8zArdQzXZFfkJDSvOwqR58kGWfqD8pVVFLlJieHMHY61D/cKy2pxls1y3bJlFnvF/upKJOVGxJkr7QhaVrAHoPzBzBgC51W750o28MIkH992WfR2VgS0gvPbwFz3d62I0nQAyX61JMln/YIFCzB79mxcf/31tW94nUOWb4IgCCIWycwDo2F7QoLoiux3SQ6wHAW6tUZxA5XtG/RCLbbJ364QF+DAl2TBeuVazfxt8Lt3y86HxArosYyFWPDNtBXlW5oeVJ4kvex7gNXdX16g4Auy3ieAzG1YrKvsWFWeCUFCMGgQKShtDFFo49AHGfQcys5PIiJfcq2irgnv3JPu/alby3zpOeaNXO7re0Fr0UfO42u/6KHg+Y0wYZ03sWxxsED4Tal10LUkn/UbN25EW1tbEs0a9dSt+GYpHYxV3jxuht99qjVNk4I3ZELTc3s1KMvomxq+8GRqUL0wZaq/IzSdjWsNTQeA/ITwtuoF9dB15o3doenm9p3KMrihqCet7jesLfx4ixMV6S3h1xUA9MGAyUM2qfcCltwR0PoGQtPN3j5lGcjlQpNZ0NI/AnxCR3g70hHuJ8VlMxrU/WewM/wh0D1TfT9N3D4hNF3LpJVl8M7xoelGU4T+0RV+bdm76nvB6OsPSdVGxPJCEIlQrUVYJuCD6kBAXr+oChHRQYS+GAvlM9O2FMJ+yQ6q1y+6g5rkF4++NjnpWiGkfUHlxUVm5YtgSeYarPm43LL8OfOnnfabQhToitsXZtVU5IuUVk3eUUy6u7QOdpRj9t8nYQNWqv39gydin1PWI/Q9o4lba3oXWNn7i6c+rSSM/XmcOv3tCZq/7QaBkw3KcXl+cj8ffdSt+CYIgiDqEysIS3VvkdXuT4xR4oqcsG2VdDGZpVUmIsR8AfVIrVp+Al6one8eQe6vG6X8TPg/qB1uXtFyZgeZqpn1LGjgICwf4M5Hzx0wCLMvjaY3Up42mjpgNABmliPdwwCjChFShQvzB4KY54fZgyVAqf8mQoyBEu7Lo7wH/eKZAcXJebCuNLLvs1Cvk7AI8aKFWibE/e0oc3YJEPUASnPUawg962sDzfkmCIIgYmFCg1Hlx4mgSvPACA9BruWVlBNlvyDrHJNsk7mX1/C9UjYvNOr//nJE91THuuYEW3Pn5tYaiTVS1mZxm/ZOAzK75d59ub2KYDP7S8cTxQU3rlU7yv613K8eqEHfiOw2zSC/F/3ZxCkMkikY4l8PmjX1gnHrLxeWGsu8kUVmj1Yq0y3QdyyOklL8hoQdp7hsmec4JINuokeBdM3yBEnyWU+UIMs3QRAEMWLQPDBC9oIpTfNvZyh70ZZa6cKs1FGFhVhXrebt+l6qw1xkI7vphtTFAJgpK6CT8gVeVr5sDrhwDFwhDvxWwbIqTSCzh3kFiUDjOynw7S1u8LpIVHvNKt2/gv2izmFOguGsKzLVXCvxXg+afuKIXQMAY67otm4MYUpGmLeG6EIe5tkhpMuivXvc0O156G57xGNy8tdYdBO1hcQ3QRAEEQsKuEYkTpCYDiKqa7kolGXCPsSdVFqOqi6fQK5EzMj24fYawEm9cHPNLtN+0WeGpGzxfNjHxjWhHT5x47i/O1Y8d81kQXTwNKD5wpDI3OJLG3x/nX3Eed4j9VNSQ3d1zgAzYw2OpAZqL4qNrHVO9bw6b1yCAg8qLd6+/f37Kad1ONfH/1shlpUCuMbBDAae4oDJSm7kEc+5dM63pC7PdsE1PnBKidh28bdqGPs7PetrA4lvgiAIIhZmAq5kJg3bEzJklukw67e4jyiG4gh4VX1BbfLX78sXSTCFHJ8nqJIwhzaypS2sWg7ABIrNHKk+Jj9myaCEp24bZ2AgUMiL+0oCvIliKpbI9FkCI82rTZLhcNUvi75XG7RCxHNW6+ZIypYFF/OL+bB53TwFN8iZuJY3ACuQGmMwshx63hbeYXOpfQOE7pQHOy106b4IeI6hkgHAhKFnfW0g8U0QBEEQxMjht/CI20X8L/6ViIAorucyC534Yh3WxrjNsa3FsvdTmbhgEkEcyd3VqcNnzdaHWOn8ixZsLlj0gtpuu89CaFtY8ClAIk7E8kLOpdLBgcn/lmf0Fei/lnF0QoSBE38bo0bhBixBrBXYsAwkaIrr5lJhf1dOi5Cky85P0PUNFN46kNvLQHbSAPjzLZaF2/HMsPuiK8r9y4wxlIR4wD3PTMDIcmhFpuz73oaVynGEu+OKLs47d46trqYDEFVD4psgCIKIhcEZjCrDI1e7PzFGUaqskDxh+/pdUGXpAWU5Ltq6uB52hJfhKC/NUV+quV8s+qxvZYflt87ZX7l4DjSg0MKR6REyBLXdlwZNKFfmDh9ncKCGlM1ljjPwUkWbVT9v0vn7zDfQMwYEF2clzwjH+sxTlmBlJqDlSifCfy9EWi1ABQM442CMl6zTQl9wxG6hlSPbxQAD5X1X/Cspn5kBniNA8DWUDSJKinFiM8A5j+Er2CYOPetrQ92Kb5bJgDH1WrmBFMN7KI8yB2FoqKo6APV7hD6oXts4NahIH1KXUWgJX7u462MtyjL6poefsyhzhcY9PzU0ffyT6jL4+3tC01m7OnhTYUpHaHq+I/x8RVnXmqn6WIT1pJEOz8MirGmugs/eT5nn7U+Gr3vee4B6sdiJe3eFps9uf19Zxs6B8Ha8o01WltG0Y1x4Bk2RDmD3R8OvS7FRWQRatjWHpu/1v/IIvyLaq28Ep3EOKH7CKsWJYlpdGWPgzZJIBr+LskogBQlwv2VXZvH1iyvVyzVsq6DfqhXhfTKyG2+lOJbqFMDsn2AedDzMXhdbFMwA0v3Ms5+4rranKrFcx9qdsoNScXle16KfwK1eifVPJnBDLfmyAYewOis4rtCI1wzIjecwWgw0bUvFs6TWOe65ZdZUh46DduG9tzuQ2ZGyvC9Qfv6r1mzM6sfZ91Iw32tzBzREjw4n2rrmLLcnCPLIA2Mpbglwu05/G8IGpjz1hPz2Oe0cbhlLz/raQPHfCYIgCIIYOWRWoKB8YdZr5svnt7wGCfa4cN/faol6/AFtcaIyi3GRzAw858OznJj9Is81oNjArTTBFdcRSeISZTxVqs85n1oerqusKFTMLIfRwN26klAMlQhvTzRpri5juFx7w+phHCUhN0bgwqAP1y2r9y0fvR2z9n/bSrNJ9PwLA2+W+35pQMkNjib0CU9MMUeAS6zXXEPZ2uVagZV5mojH5fnd8v9GuQWXt58L3iVgIMU2hqhbyzdBEARRn5hcg1llBFSTIqASMoLcg500lTVbRCVqRYEeVo6qXUG7RLXWhswbjmL9K5sLDpQCS8ESAs7tmh9vgDcbgMGQ6kpBH2QoNlsuwPoAKyvH2yDvVzNjL1Pms9C6YkRxfHGIci6DAnD59xPLUpYbJpAqJOiaMg5kuhjQpY+pOb5aHpbnRcoSwPoQw7LfrIA2xJDOl06G//opCfJM8A++Odsk+cwUYGY49EEGM8vBCoCeZyUBbSCwD7h5GAcYs35ChEjpZZZ82RJjQZ4honXcDmLIcpJ8NYae9bWBxDdBEAQRC3JFI2pGVBfzSoyDUVzagwhrQ4hwr8Z1Nuq+/iBs1hx1q1Fct1QA40Ch1cT0A3bgkTm/wrFbT8HrfVPBioA+yMBMS4SAA1qxZMnjKQ5WZDBTHBoXxLlj+Rba6qaFRXyu8rb3C+ewfEGECfNQkhbifoEYwTo/Ggg6t44w1YcYtLxeFn086mBToCu3+L8/YnnQAJdhWcWLTZYA9wQ8809jEco3dYBrHGDW/cI1blu7mWe+vmfqg2bVF9r3BOs5NFhzvE1EH8hLGHrW1wZyYiAIgiAIov5RiXDVO57f0h2HoPwh5cVeOkuyf3gGeI/fid7MLesz16z1m8E4zBSH2cCRMyx/WI1xmC0GzDSQ7zCtAFiGVVixkVtrHmuAmQagWdZA9zidKMwpuO7p/nYHRfuOMsc+9JAjCG8VYjt4pYI6Ac9w7r9+YxlhgIgZluh23aptoSkNQici82SRncMo3jDO9U9ZolkfYqU2cJTUEbOmUXDdbqMOmGkOrnFoBrMHu7gljotWoWaKw0xzt21m2trfFfOSAUDHO4VrljUezpKCdjvCVgkgRh9k+SYIgiBiYaL6CKb0LkFEQnQtj+JqLnOb9rufysoJcnN30oJc2Jkvr7+ICm+TyPv5z4UockxLVHCdg6cAvVfD9rfGY1bf2cgNpIEiQ9sB76PrnXYYXENRN5Hq16zgUxrAGYeeYyVRL0bg1gQXWxZNHEiXSYtBokGTQ6yOkQm79op+AQSfs8gW4DolaNCIcZQijtsC3ExzsILl5s0cwet3xRb7S5ioDnIzD5oCwWEPOHHkO0xk9mjuAJT7gNJK+5hpXkpjtsjOAEaDCa3AoOUtS7Wz3r2Z4t6BKOG4yuaaO9WmuHd5uSrvmWqhZ31tIPFNEARBxMKEBrNKx6lq9yfGEP6X4yDXcJXVNILgKRPcYUI+KE+UQQCUXEVjvbuq2hNSF1Da1wmo5pTppOt7Usg3psBzOlhzES3ZPPY0GJaeaCyCD2aBlG38ky1iIbMyIoZbbIXHlySJu+/K+l0VdYxm4a3CmePsHKOWY65FmdkRxxlQ3k+iim5hm9P/3csT0kf1QSuz4xouDrgxw7mRrW3OUmmAbcFPc5jccj1npmUB14TVB5hZvla7a/G322rqluh25pvDOQeqY60x9KyvDSS+CYIgCIIYOZIWG+LLq1+wc2G75IU4aG3rwEEB0ZXUl6cikVeBUPcIb0d0c8G1V3e2cxitBlqac8i092PTvF9Y+x0EfPyZT6N3oAFDbSnofZrlQutri2eJJkekOO/VUc1bKk8D/7VLQGzIRJez7JqW5LrJUQZ/PuCUufnb/df1ttBtS7iOYOsv85bnDxIoLsnFUxyw3cP9Qfac+4RrQHF8EdqOlCWaJX2TM9sd3MZsK4IN6dAnDOG8j/4vnu6agWef3RdmswFtT8pd+9sabOClRjFvG8y0FVNBc+43/5SNEbJ4E7WFxDdBEAQRC4NrMKqMgFrt/sQYIkjwwvuyLrUeSbaXCWKREGtaoFgOegGOYMWNZcUUXszj5A/63wq6Zrs3m6WC+95vwkPHrQXQ4u7ynwfdgqPXr3AbIFoLoaMkru3BC2bCjcKcWKCwsONJWICEuclXFIzNU7hTUIX71xFi8LGkgn75l/ESI/NreQYzY82R1nKOuwbcQGXSW0Mmlp1228IbENqvWXqYmbag5kBqt+XuwXUr9oEz0MTtQSsRo9FOaCvg/z75I7RoDcDEF/BP7QfhZ08uBM9ymBzu+uVO3Vznbr8zM9YxaXnmBkesx/5Cz/raULfim3MOXk1P1PXQZMbUTzeez1eVDgCaYYSmZ9/MKMtI9bWEpkf5MRya1BCa3j9dXYi+X19oerGg7k7ducbQ9NY3xinLSPX1h6bzbFpZhpkO/zFgxfDzkekPv64AkO4aDK+jd0BZBh8ML4PnZX6BXrRxHaHpOw4O718AMDg/vK2fnPkXZRnTG7tC01v1IWUZbzd2hKZvn9aqLGPPh8OPt6A+HSgcEn4vtDSp1wTZPaEjNL1xd7uyjJZ3gu8nxnVAfUorwgSDWaW5str9iTFEmOu2BhTaONI9rDTH2NktTCwHlS2zrob973yXbZfl8Tclitu5T1zGcVWX5uP+RGuDJUisyvq593n9vlF6bkY6r06xQhWxl4qKQq1+JhyPAdPbVmf5KGbah6c4jlBBOoasls40Bv89GJfAvi1cB63AwItWoDNWtO57M2Wnh9RfVq7o2m0KeSTR+I1WE9oeDbCDpnHNEeHcUxxg940iw8EfedsS3jaf6/hf/AwLS8fgWNh1gDNuDSBosOIvDJXcy5nBSoNBomeJ8H2koGd9bYg1HLFu3TocfPDBaGtrQ1tbGxYuXIj777/fTT/vvPPAGPN8PvGJTyTeaIIgCGJssGDBAsyePRvXX3/9SDeFqFOcIEYV4Z+HGybMg7YHuUr7LfYSq30kEe13rw1DFBQIOC+CddqJsCzq8OZxgzhz4997dvmbjV9Ay/gBV0Q7c1KZY5nk8IoWbi1N5kSHdoRGtRHehwOnzaLF1U3TgMF9iig2qQ/CEeqh11jSL0YTTh9iHNCiCO9KBivE/i/0Xa3ASkHZ7O1mqnS+xb+B18ARs/Y0A+ugSvuZWQ4zDaS6NRgZey63I5pl3iS2BRsMeHnXRE9VGwb2d93NzRQv1evcE441vlA6RnF6iFuPc47q/D4iKieW5XufffbBd7/7XXz4wx8GANx222049dRT8cwzz+CjH/0oAODEE0/ELbfc4u6TyagtuwRBEMToIUlXtI0bN6KtrS2JZhFjEGYC6b4w0zjCxU0Usa0iSLTXSFS5VsZKXsC5YIz2WXeZAbBeHf2ZRqCgYeavvwitpQCz37J659ImUj26W6/U08BpD7PWNxbXQlZNEYgiymXLljn1VSJGuLNkU2AGb/uYCTRsT1kCSYFjiY002DCGXNFDUdwTsQIQ2ueKmQymXurYjDNwpy9KBk+sfYT2CPeE595l1lr1ZgootptIdWuuxdpppNhergEwAS2nwWzLY2BnM45/fhm+u98vsaH/QFz75LFgLQWgO21ZzXXb1RzM7VvWPeQUaP8J6tv+7SPQd8jtvDbEEt/Lli3zfL/yyiuxbt06PPXUU674zmazmDx5cnItJAiCIOoKAxqMKiOYVrs/8cEg0lrXcfC7lztlRBXw/jKSQnjRZn4rc1A7gtokCGJ3rq5RStN6U2AGYDSZaGsbRHd3BtoQg5nWLIEguugyUTT4qnTSUarL3Q7v//5gV2Xl1AiZ8HbnqqPkSi22SbNnDUUR1bGt/GPIFb0mCH3YcdMGs9bU5gwotJrQ8nagPPtcasWSmC1fwktQz5r1v9iXjQbrPkCRwWjiwKAd5d/eR/Rs8HiA9KfATOAvz+6NT2+9yBX4vMCswYEUt13MOVIFVoqgzpl3yT7hPi3Dv20E+k6Sz/oFCxZA13UsX74cy5cvT6J5o5aK53wbhoG7774b/f39WLhwobv9kUcewaRJk9DR0YGjjz4aV155JSZNmhRYTi6XQy5Xmh/Z09NTaZMIgiAIgiCCCbKExxHUMcRiYms2S1zapS/sTEjTAKOBQx+0AkiZWQ5WANLdmiUOmIaBLeOgNXJoeYZ0n2Vh5Gkr2BXjQLGRQx9i1jJQgjXetSg79YmCXfgrO/6aie2I1mVHCIntdtOGQ9x8UKzg1SBOexDWAc90a+A6R7ER0G3pYDRwaHmUOr4tsEsWa+6xOFtLgln/pwYsN5PGA/Zg8MUOaPnSjeUPtCaKcL3fGqgyshy82QAb0AGDWds5YDSa1v9DJbHtDhKIInoUTNNICvJyKxFbfG/ZsgULFy7E0NAQWlpacM8992D27NkAgKVLl+LTn/40ZsyYgddeew3//M//jGOOOQabNm1CNpuVlrdmzRp8+9vfru4oCIIgiGHD5AxmlW/Q1e5PEADkFt9KSMolXSwy6ku1IwSjVBfmvi0IXiNrCWotx1wroj5gW+RSViCrTA+DmeJI91qWKSNjBYXSB5l7XCn7fyNjrUMMlIS3aEH2W9pl7a36lg8SrRHKlZ23Sl3jEyNMhDsCLcDaGdeNPyyvO83B9nAoc91OmNABKcn97IkbaItorWiZmk3dXqaMAdC5ZZV21uT216fzUplOQDV7W+/2VqQY3IjkZoa758TMcGswyhm0cQLPcYAVGVK7hCC/dr1ajllz5E2Ap5zzKljewyzeQjnKbTWGnvW1Ibb4PuCAA7B582bs2bMHv/zlL3Huuediw4YNmD17Ns4880w335w5czB//nzMmDEDv/3tb3H66adLy7v00kuxcuVK93tPTw+mTZtWwaEQBEEQw4GZgCuaSW7nRNJU4oIedb8gkZ3Ee6X/JdxfZoDl2BVgjkATXaftYFXi3FfOSpGkjSYrWFqqn8FotASHPuS1GLrzvpkwv9tJ0rxt8Qg1x43fsZJHcemvxH1bbIt4DiWClfnEmJEGoJVczP15hpUKBhWSbquZBvS81YZaiW6HskBmUaaWCP2bmQCz3c6ZLW6dYGyaM1dfiB7uRq93BhXsASMzbfV7nuaYNvM9vP1cp3V/6KU6uQZ30MkpzxMgzSnHndZhiW5tiFnLnAFg9sJIPMVtl3a415Yj2IOlHjwj6FlfG2KL70wm4wZcmz9/PjZu3Igf/OAH+NGPflSWd8qUKZgxYwZefvnlwPKy2WygVZwgCIIgiDFOLV4yZWJZti2q1dzvou5sCxPNSSEKRwjetZqdxIREv3Dytc9xtU71Wa7oRiO3XG8dF3INrqjxFOO4mfNSupHh0Djz5HXmgbvWQdGCW8mhyyy8ojXUPkY3T0Bf8lvgmW2VVNZVaRsrwWfh5Xrpe6VW+qjt0nMjNPgQNuAgDOyIS8CBwZ0DbrllWGlGswGtxzppZgryuAkcKLSZYCazPEF0y3r91iuToNkCnhlAsdUEZxzpHr3URuF+c8S3mTXBMxypHt0Kxmb3K+ZT1cxkpWXSfIMJoRHgiTFJ1et8c849c7ZFdu/ejW3btmHKlCnxyx3Kgwf9EvAIw3KKdb4jYVbf+7linW+2Rz3HPTWoWDM4pT7WVPNeoen6gHpt7NyQIo9Z/ZuH0aDukimmWKN7T6+yDFUMfq5aJ75QVNZhheMMIR3h9gtf5hsw1fcCbwwf3Mq3q69bW2v4Ot+dWfU5V7ke9Rrha9EDwIR0+BrvH+7cpSzj5WnNoelahCi3rc3hC2iPb1JdOKCrOXxN8mJjhP6hhZzTBO7HwKK5BrPKCKbV7k+MIfzCNopolu2rKkPVhqB6/Ntj3FqJelwKLsSOtRfMsrxphZKABmzLoKch3jKccvQcK20PcYHVCnAt2o7lj6fhERRumxzrqWygI6iOkDS/OAldTzygHGk+5s3vBqeL+eqXhGgVpiu7AyzgQLHZmnOvFcqt95XW49+/LuYch9wnYuA/zy4cgO06zkwg3W0L7zR3o40b4wpIvZ92LeOAJbYBWGJaswKuZScNYGh3I7QhzbJa563lkkWvCs6AYpsBvU+3gsGlOPRBDTxn3W+Op4mzyoAzrzzUzd6xsIv9TvRmGWHoWV8bYonvyy67DEuXLsW0adPQ29uLO++8E4888ggeeOAB9PX1YdWqVTjjjDMwZcoUvP7667jsssswceJEnHbaabVqP0EQBDHMGGAwqjTzVbs/MUZJwrU7qAyVW2+lXVLhHpyYABcHAZz/bVdy1702aLzfES8+1/FCM0e6l7limRlAoJeoY63TSt/F9cA9okF0rdVL9TrGyqA2eo7NL7idj1me7mmjJM0zD91pj+CqHEV4R50/Xa0wdupwpglII7ZXWE9dCG2RqCJTMjAmTnlwPDZcDw7dPoF5zQ6cZot0YaCl0GEgM24Iad1E7q0WjNuvC0VTQ9/bbdCGLOHtzAl3PUyYvbNmiXutYIl92PegU7b7j7BkmWdA3LF6Ox4iwjGF3iPDDD3ra0Ms8b1jxw6cffbZePfdd9He3o6DDz4YDzzwAI4//ngMDg5iy5YtuP3227Fnzx5MmTIFixcvxl133YXW1nALD0EQBEEQRCTiWscdwtLjWNfFvH7BWEsYyi1kgthk/jbwgP+d4rgV7ZkJ82PLxJAjtiWWcy1fCh7lzqcVRIW/7YF1SI7TX1eZhVqoS7qvf7Mort0lrKxgXUHCO0jgJuVmHjQoI4p8PYfStfWlxQ26Jl4TLdwpc/iIeh59fcI9d4y7XgJORH5HwJoNJtBgwjQZWEcOZk8arMjAMxx6Wx4pAIUdjchnTWgTc+h6tw0sp4GNzwMdgNmXAstpgAawjjx4dwassQizkIaWL1nixSjmTgC40Isj3rOS61BvApxInlji++abbw5Ma2xsxO9+97uqG0QQBEHUN+SKRtQM0WIqs6gCKBOYDIGiK2pdsYR5xPoTjZ5tC29oAAyf+HKEmd/VWxS88LbFES9mllviwe/yKpYhE6C6bRU0GMyM5farFRlMp02mb39RNDF4rbkBIrpsKTDhWKs5r6IlvixYG+ARxX6B7FnCSmIJDxPwomu5t1DIz4GvTsbD65LVWxKp1nEPTi0iu0sHBtmICPDIXiBBA16+/uneE85u3JpKwXWA5QEtl4LRbKKlZQi9/SmgpYiO9gF072kCL2po3qcPB+61A0VTR0OqgM1v741cdwNY2sS4KT3Ys6cZfFBHQ0MBg31paLszVn0ms0Q2YEVO15h3QEhY8kx5nJKBlXqBnvW1oeo53wRBEMQHCwPVu5LVi+GFqAPEl02f661nm6zLRe2GMsu0TETL8sqsyRHqTdLlnOuwAjkJN44YybysPv+ggMSFmzN7+THNzmb68srOh72fuwYysyI9a0bpQLnGLWuhs00TyhbbIFYT0Af8wlQlTMoiwEtghjN4AMuC6RPHTj2ya+cX3v7/Q9sUlDfqMQXsL2u/mCZavhv2GkSxtwW6OixJTYh6T4QOVAiFMS4MOjl90772WtF2Nc9p6N3ZAtZgQEuZGMylMWFCHw7rfAM9xSzaUjlct/f/4v+991E0T88jqxfxv9uno6e3CVrKhNkIDO5qsqziHEChNE2DA9bcbmdgxJQPuJQfYOmvOLjitt8+VhY2xWIYoGd9baDhCIIgCIIg6hf/i2fQi2gUV+YohOX1W7kDBJrnJTomZUsxMUswunO2BQtwWfOc5cXEedk6wFO+NvHSi33g0lL+OkQBnrbKLLRx6LN6oR3Ujdw4qyArMrrlOysGhpOeV80R83Dzm2nuFbkMbgTpKKI3SDT7LcGy/DJxnQRl11T8KhlckFnQXQOicL4AlFytheOTRc/WCgDb3IpMt3we+YjiHzTwt893jdzBH18aPOeIW30/bVrzrRnQ1jKIbKaITKqIL+/1CD7a8i6unPIIAGDF+I2Y3vg+vrTXI2hMF9HUlMO4NiHYrG6t/Q27bo7SoJgY/0CchuG0VzVo5+8DzHfPcOF/YvRDlm+CIAgiFuSKRiRK2EtlgEty7HKCyg6zqkfZz4dprxEcGPgsjAqsooEIVnE3AnPatvqy8jSPWJOIf1k7jCxH877dePbjPwcAHPzHzyLX11Fu/bOXKXODS/mFiAaYKW4PCJRGCESXesfKCJSLZZmFVDZv1rOfJhFIMsTtVVofwwLilVk9Zfvbx8SZtS63Vih9D7Mou4LegLtYUCWR3ZOYRhHpPCu+O/1CFKTiYASY1Z94moMVGRhn4MxEKm2AMY5JrX04btILmKpzfHPCywAaAQDj9Cb8v722YqdhYNneW/DwzgOwvbcVWsq0rLd2fWaWQwOssmVL+wn3i7UyAQcYkw6ayTwVIFwv53hGarCEnvW1gcQ3QRAEEQuDazCqfKBWuz/xASSGy3ckKhXcIftphloMSdtRjaiRzIf1BGWT1OG85JspJ0CUunxxjrmWB4qNgC6oh5RmYshei1mcq89Czp07l1kQF0ywcscJKCY9jwHbHE8Cd/1y1bH7olJHJsKASqR+YucxU0BuogmzyYDWp6Nhl1Ym+Mqq851Hv3XdtFdWVc0BT2Iuctl94W+3zCPBZzn2WL1tzw7PPs41063pD7zBsPq6qaFg6Hh/oBEG13DfwDR8rnV3WRvXD0yHwTV05xqsajmzrN5pE4Du1sMg9Auxja7lmoODuUuOee5RlVu6yAi5nAP0rK8VdEYIgiAIgqhPVBax4SJGvbFEiiAwqnFV9wRMQ3k5Mpdkrnn/97iGC+6ujluzi2YLHsbR3dWMI589HUdtOQ1d77VaEadTjrXPOwjgrg/ur8u2eDOzFKBKdOGNdQ78It8j2uxNeumYROEWRlzhLXM7DrN6R2oDB4otHId87FW8dvKPkZ3eh2KjemdVkDbHzTlpV3sZZXVI3OMDca+pt5CywRNR2ZgAiqUbi3OG8U3hE951222kIVUEF+sqsrLYBWXX1NOv1QHXIl37ON4/xKigbi3f3DDAmXxsgKXVzday2fAMEcrAUC483VD/GrMGRTvGdyjLMJsUZRTV/ijprvAfm3EvZpRl9OQbwpvRFOFXRPGD0T1T3Y6JPZ2h6dpLb6rb0T8Qmqw1NYamm53jlVXkJzaFpjNTfb4yb4e/GbB8QVkGG8qHpjftVPefHW91hKb/D/+Iuh2Kp8xezf3KMj7a/m5oeiZC+FYzFd6O5rfUY5Jdb4wLTX+/Wb28Yvat8L7euFPx+wOAh/xGcR5+3auBg8Gs8unP6e2BCMLv1h3B4lyPKAWNxH3a+b/ySkOSbAudK7o5UGzk0HN25GbHuu24jfvK5U7gNCHwW2p7Bjt2Ws/kTMEu21lqiQt12RZLZlgFG1luuU2bjgnR/vjmiEujo8uO2W/p575j4N7zq7TARqlLlc8R3WHZopbl/GsAL743Cc9PH8BgTwMajGo6i11mPc7/dq6R0B+4xt0BGlN8TPuvpz3QwQpOgDTNCrzGOBozBfTlM9hZaMVlE1/E5lwOhwp6YVMuj79p7cLX+2YiZ+hoacghN5SGYTDLzbzIPINKHqO84DIuDbrm66OhgdjqBHrW14a6Fd8EQRBEfUKuaERNqdTaWSVJL/UTRXiXLSEliLVqRHjgMTgWWPv2swQwSoGjGGBmLCXDhDWwzZRtyTZLDddymlWWE+SNA0jDXQrNdZXWuTuX27J6c9vtm1nHL46ZCpGrHTFupqwBAuvAUC5QxPMkcekuOxeCqHcsmc4ghHscouVc1ccEd2LTnlcvzkkOE7eRrrHg9p/qY8i/3IaTt61EeoBBk4y/qvqx0tV+JIhwH7t9D+Vi2/3r3D8GgwZeEu86R3Eohf5sBprG8dSOfbG2YRf6jAbctKsDH27cideHJmDv7B48MZDH4zv2w0A+jVwujcJA2g6yZg0oWfPIhfqY0P/hPe9lwtt/2D7vEOU5kv1fQ+hZXxtIfBMEQRAEMTpJQHi7L8COKDPLhUslwjzQks0gFd2JILhZy9rjESx+YepYm3VLlHMGy8Xctjg6ecw0h9HIoRUYjAYOMwVkum0hXXAslqXKHBd1S6BYB+8IVM98cJ+Ici3HBoOZEqyNzrx6/9JowjGI5cgCyplpS5jpOcuSqRWYRzA758tpg3v9TW85zjkCSlZaabuqRRiUye4RD7KCuurMuhrqTeAXnLL7XfCMcZfmguNVwcE5rHW500UU8lZHyuVSeHDnbPTkGnBU5ytYOf4vuOCtTtz79kGY0DiAPX2N4JzBNDSwlAlu6O7vgiOmmaRNpfuZlb6HiWbB2ySyVwUx6iHxTRAEQcTC5AxmlRMEq92fGEPUwQunqQNmBuA6h5Zn0OwZPar5srGRibigrBK3dWeOsnIOsk8UBAV2YoYlOs0Ud9fq5rY4tVxsSztxjaPYaLv+2vuxgmVhNBoAVrSCt5Vcha19zQyHPmSXneLeKNEh59TJ47jB+13RpRZvwQrtOR2Cq72WtwKXAbBd5O12i67iosswhNPAhGviGzTwLAdXC3xtCOpDicwzjkHVlnTxevkEaODUDbtD85RwznkpP09zmFmrr/HWIsZN6MOebR0opEy0TOrHQH8Wzz+/D7TWAjamZ2Dm/30cM6btwo732/DOnonQ2gpoaMxjYE8WMBn2mt6F997qADd0mGkTWt52QQdK0f2dc2FIhHfQ7whHuUAXz4vk/7K4CDWEnvW1gXwBCIIgiFgY0BL5AMCCBQswe/ZsXH/99SN8VMSIoXo3q6E4d+f/6kDhI4P45AnPwsxwTzAyoDLBIg2gFuKCGgVnHW+lJ6evXo+Ikby0a0VbhKe560qen2DATFvnxmjgMJosMaMVAKPBBBhgNHLLqliwRHahzVkL2QoOZjQAWp65FnXXZVdsS5Q3UUEYAygFTGPwBnGD9y/XveU7eXmqJMDhPy+s/PyKdbllO4MMfot9Asj0iugl4YQ38XhPwCfMhoG4QQLDpkN4/galw1sfc+IP8NIgjdFoxRZgeQa2Vw5sIIWut9utgaIBHQNvtMEcTEFvL8DsT+OVl6aApU288cokGD0ZZCcOwszpGNrWCm1QBysy7Hp9PNiQDj4+bw88MRSbTO9gmjP9QtLOoOMPc0n3eGAEwRXpVZLks54oQZZvgiAIYsTYuHEj2traRroZRD1TQyHhilIO8Pey2KB/CLqhjlI8IgiW1kjLEwWdNydNYm10hbLGofdbL81GA7fnZjMYzSbMIgNvNrD3rO14t6sNuV2NMDOa5S3A7TnjDNByzKrGCGlviKut6OrviBquoyS0Utxykc8J7u1+913n2qbgBotzzoHj6uu4jpspy93emQvuWBa5XbZjYTXtWJmOdwT865cngEykBS0ZJvNqGK7+y3gELwwB2RQMaV8N6r+C+z0zmLtuOZg1/YGZpf6gFRiM9zPQB63l2Nxo9ykOvVsH9qSQndGHxmwB3a93IDulH4VcCsU3WqDD8oKxRDVz7wujN23HTODQhzR3EKY0B1yYDx71d0vSX91zAPn1tQ+ZGKWQ+CYIgiBiQa5oRM2J8/KaAFoRyO7SgN0trity1HWmZThW0mrccZOMel62ZrIjYB3B6tvHDYTGAJgMTOMwsya0CTlomgmeT+Gd99tRLOhIj8uBc4Zifxpav17aBz5hZgsTVZApv5XeXapLiLJuuV1bypjrwj6OIM8z9zi5brvVF5gruF0xz4QxDZ2D24Hm3IB4vqjarpuzuNkR3iEDCdUgrsstDkiUxQ0YBZS5kUdtu38f4Ty4K5jYng5ct641YAl01yptBxosZqwy9CHAfLUFvWmO9LQBFN9oQSpvXXMjy61BlTyDBmtfM20Jd2Zobr3MYFZcBAZAF/pG0CCDH/+2OhPZ9KwPJpVKYc6cOQCA+fPn49///d+j71urRhEEQRBjExMazCpdyardnxhD+Oc2DsNcRhHn5VZPcHU+xuFZE7gSd+CKhUpggcJfR1wygPmsj2JwMZ4CjBYDWk4Dz5r42PRteP69Ttz+8VvwiQZrAvpRW07DxMY+/PmdKSgUGmy3XA6tT3PLt4rnCFx2SLDqexCEp3S7uEnj3g12sDgrwJttHU8B+XYTet76PjS5iOwuy7XYzaOVlyHO7/VEphctljVCHKwIs3aPagIG28R5+P6/XLet3YYluoutBlI9OvShUoC+VD9zy+e2h4JWhGsltwbIGPLdWaScuduO+7jBoNllA9a2zG7dEviwgvVxHSi2GUi/r9sC3Zq2oYlLwNmeFNJjrnPoWR9MR0cHNm/eXNG+dSu+mcbAmPzXTGsMX28aADAxfB1mrlp/G4DWF74WNApFZRlDB0wJTe/6iHpd62Jz+K96pkd9Bzd0hQ+/8/DlpAEAevhS4eifrvY9ap3aG5re1au+toWWcBfVvbsnKsvg7+wITWfpdHgbxoWvAw4AQ+PDby89r75u6a7wfsoy4e0EAD6oWOP92T3KMvR8R2j6wKQJyjKKilvupRnjlGVs2zu8HYN96vu67fXwB8Fezyg6OoCmHeH15FvV93XTe+G/Hw2v7VKWYYSs8865+veJIOqCINfTEEzd646cBEkvNSYjyTm5sS3r4jkW3HBFEeBa8xwrIgBWYOA6R7otj7f72vHX+212hTcAPHrQPZi78W+QzRZRbCmC7Xb8soU6LT3udUH3WwNDznvZuuNCfq7z0tx9zVnuy0q0zpEl0syMtU0rlkrShjQYWQBZISic8D5kLbsG6IZwvsJ+WsOs35VYxgPyjynhDZS7XgOui7lnMMgZA0lx1+Wd269B6T2669mgCY9G0UuAa5Zbuj5g/34YDMWMiYlTu9HVPQFa3hHtGrjGPdMV3IB9drR9ngJY0aoXdiwBx2vCyNrL4zku6OIxqq7dMHv9EMPP2ByOIAiCIGqGwVkiH4IoI2K3qMXSsbVw4Q0qL6weN7iX4lxUNPAgCAF38MJvdbbnz3oiLBcZigUdQ4UUvj7h/8qKTacMaIwDvekyy7orZn2W9SDhHXbcZeeFW5ZLzV6ODLCEV77DRKHFckE3M0CxxVJu+hCD0WDCTHGYOsCzHJrt8ZDvMFFs4OApDiPLkR9nuBHczQwvuS6L1WuSvihzOfYfbwj+ZdFkfWXM/XzKzo0owoV+6wTXc/oWM+CKZmYwO5o+s/s3K01RMEvr2jt5Aatv73q7HVoRpUj+doVanlnbnWkP9nr1zA4yCNvDRcvbrukpyAcSELBNRo2mL1TCSDzr3377bfzt3/4tJkyYgKamJhx66KHYtGlTYsf06KOPYtmyZZg6dSoYY/jVr34lzXfDDTdg5syZaGhowLx58/CHP/zBk97T04N58+bhyCOPxIYNG2K1gcQ3QRAEEQtnHli1H4JwCesOkhdRvZCs1bsWsBBBGdb9azoIIFq+xTZ4RIIgOJxNKY5UpojmTAFff2dxWfncKazF643DuG0NtOv0tAXe7WFt97tdi5HJ3WBxBXv5JxPQBzVoeQajkcPIWNZ8s8FEod0EbzIwcfYufHjem+BNRRRbOYxmsxSxvcUKtKUPaK4Y0/KSQFp23aJF1ttwCEG+gGITh5kW9g0gylSDMWf5BjyDNg6uxdrxxNCtwZFik9U5nSB4zCxdI3GdeUeAA6W/WoG53h1g1gBNdtyQvfa7dWJZkZVcx8ULwrhbBzMdEc7cbJrd180st8qz2wvhOMKO1yqompOYLMP9rO/q6sIRRxyBdDqN+++/H1u3bsW//du/oaOjQ5r/8ccfR6FQ7gH4wgsvYPv27dJ9+vv7ccghh+C6664LbMddd92FFStW4PLLL8czzzyDT37yk1i6dCnefPNNN8/rr7+OTZs24cYbb8Q555yDnp6eyMdJ4psgCIIgCKJGhInpMBFVscCK8q7rt3w7LrVFQWTaH26v+V3c3YimdB6PbdsP335vNgAgxws45I+fxd6t3ejrbQB60+C63XBh6SV3DWwHmfutr92ii77M4i23ltpCx1mKywnQluFgHXk0Tu1DpjWP93ua8Mbu8Ug3FpDdpw+pCUMws7y0jyPshBEI7hdLYVMIhCkMXAcKzRx8/34UW2xX5qjXNuBajumxS9ul28Fo4G5Qs2KztZRdpkdz52a7wfVs/NNHPPefk+hcO1sFFbc1W+JenMknTGtxBmGcIH9uUYy7FnE9b+cxgHSvBq4BhRZLcbtB3OAtv+x7HQnvkeB73/sepk2bhltuuQUf//jHse++++LYY4/Fhz70obK8pmli+fLlOOuss2AYJZeUl156CYsXL8btt98urWPp0qX4zne+g9NPPz2wHddccw3OP/98fOELX8CsWbOwdu1aTJs2DevWrXPzTJ06FQAwZ84czJ49Gy+99FLk4yTxTRAEQcSCcw1mlR9eC79hYnTyAX3hLLOEJUXY+RSFtYMviBhgWwnttul9dkCyAsMr2/dCbiiD2589DB9/5tOYs+Hv0d/fgC3bpsIcTFkWwyHL6uzO+eZw1XPZusa+/xlH8GBFkCs+KwkhUSAzDhjNJniag2dMTOvswgF77cTfHLgJLx11O54/4if4/vxfYFJbH+bs/Q54g2m5qTcb9jkQhL9jwRbb4BPjsrY5Ftvi+CJ+cdiPYXTmIsXYUTEmLd9i3zRLLtxagcHULat0uleDPmh5N7AiKwXCE/ZlHB5rtNjfzbTgzmFarue6HeE8NcDcKQjiAJQ71UDsu4L1W0xjBgTvC2aLcKvtWtG6p9w21JF7eRBJPusXLFiA2bNn4/rrrw+s795778X8+fPx6U9/GpMmTcLcuXPx4x//WJpX0zTcd999eOaZZ3DOOefANE28+uqrOOaYY3DKKafgkksuqeiY8/k8Nm3ahCVLlni2L1myBE888QQAy0Kfy+UAAG+99Ra2bt2K/fbbL3IddRtwjSAIgqhPDDAYVUaEqXZ/YgzhtybWeddwXGGrwb9slKd8oPpzIDmP0iW8/AKAlTIbGTsCPCutp83faQAzGYyJBQwVUjCKGnhfCvqghlSRudZjwBI0POWLIi+rK6JngCcL8/0F3DXARbHMDAaYDOmWPIqmhp0Drfj2h59z9zmpaQg/a+7GO/3taOgYQm6gGaxgr9/sru3N3ajYblt9os7fVs+2IpDencJp91+EdLdecsMPYKwI66DBCOV+4rrZ9j6awTziWlYu4/YuokB2vtuDM4UOA2y3Dg3MnqNtzf3XcpZ1mjMgZXsxe4IjcngHkxjK15SHpG3OPHFmucI7ruqee99tH6AS48PdN5J81m/cuBFtbeEBk//yl79g3bp1WLlyJS677DL88Y9/xFe/+lVks1mcc845ZfmnTp2Khx9+GEcddRTOOussPPnkkzj22GNx4403VtzeXbt2wTAMdHZ2erZ3dna6ruzPP/88LrjgAmiaBsYYfvCDH2D8+PBA3yIkvgmCIAiCqA/qXHgDtrATXFIrKkOcyyqbD2pTkXVc9RLvzFUWRKQTxMpdM5nDmquaY9AHGXjKWUaJQc8BfHcaQzs7oAvzbs00wAp2uma5C2sFZm03HWXE3Pyyc+Ics2y7p/2SdPc8Om7dQjmFvgz4OOAjHe+V1btkwnP4j74jMNSXgeZcEwCMWdZX3VnvXBBjnvWcfe7noqBy8qb6GfShlGUZ9ZUnOw9h66DXO+71cCPPl/qx25/F43f6oF7qk1yz12YvMs995gkQKCD2GbcOv1eFyZB9L+WxZGt5BqZzFFo50r32XHDfwJVzPZ373jOlQGi/dPDFFH4vjJLlWyuU6pGuWjAKrOK1wDRNzJ8/H6tXrwYAzJ07F8899xzWrVsnFd8AMH36dNx+++04+uijsd9+++Hmm28OXC0rDv4yOOfutsMPPxxbtmypuGzy+yMIgiBiYfIkArGM9FEQowbBQiqdJznMaP75yxUgihHp3NRqCBFunvncKIluxxVayzPX8pjp1qDZgaf0HEO6TwMzAKPBCkzG7KBsZsaax6wPWa67zLACtqV7NehDdrRpex1tdy1uv7gJOH7/OXKPS2JtdIQbK1rXR3x1zrYPIaMbeKFrUtk5+clbn0BbdggNLXnLRZhx12LquCHDBKAJbQkQgP7Ads75ZoYdaVt0YR6jOEt6GQ3A0NQijAbuEeTWP959uA53sILrVrAyPWdZp1137gj3XFlfEq+DWQqI5hncEEdvRE8LR2xDyCt4PLh9U5i2UTZQ5KQLsQ/0IVYKxsbgLlNWUWT0GjPcz/opU6Zg9uzZnm2zZs3yBDrzs2PHDnzxi1/EsmXLMDAwgK997WuVHi4AYOLEidB1vSxg286dO8us4ZVC4psgCIKIRbVzwJwPQcTCJ9rcbaOUkXIvLhOy8IobyzprCx97jWMHfciyhGt55i5Hpg8xpHuZG6yN2YLGER1u9GnGSxGkK2mrH9ESbQs0cT1my5rKAZ0jt7sR3YMNmNA4gOOfX+YWcc4bRwEA+gsZDO1utH2cUfJsYHCXMgucq+5skggv1T5jmUKbiSUf2wKjkZfUhkxUstI14ykOLW/1MSd/2YCFbwDJ810yOOcKconHhSXQOXjGyiiKculAiTAY5Apu4diYv03C/85AAmDNB7e8Qri7X1lAP3/dI8BwP+uPOOIIvPjii55tL730EmbMmCHNv2vXLhx77LGYNWsW/uu//gsPP/wwfvGLX+Diiy+u+JgzmQzmzZuH9evXe7avX78ehx9+eMXlitSv2znTrI+MbFa5u9nRHJpebM0oy9Cb0qHphiIdALZ/IrytQ7MG1e1IhQ/39e1sVJbRsDM8wofpj8Ioodgc3o7x0/Yoy1g4+Y3Q9HcGw+eDAMCzO8ujHooUJ6nLSO3pDc+gh/9YaDkjNB0AMr3h5zzVr5j4BYD1KfoHj/DLrBh2ZNt2KIto3/F+aHpHWn0v8Obwftr/EfV8mf7J4de2dUB9PsY9tyc0nb3xrrqMN1tC083W8N8fAGD58uUxRHiPoo8CYOngn3DGTSC8CoKoLwIsimOVIDdrWZ5a1AtYYgdGSegA9lJMjmCwt5n2Mk/6kCWq073W/G430rSTL2W51Ipu2dbayqV5ruB2PoPJBRN8rtdOUdyb7pRVcp9nYODgJgDbkqoNWlGxuc7Q09uE3r5GZLIFHLXlNBicYcf7bdaYDuNgBXvt5qJWspiapXrKPApC2leNaBrtc76da5fp0vDww4ciPWQN5JRFqxe+mynLKs0KQl8MO59hbtmCwA8U3I7Yt+fya/aycp62OX9Ft3LJtfes/S5rk3isYhmsdK+5ruhOfc6g1Qfo9xAAvva1r+Hwww/H6tWr8ZnPfAZ//OMfcdNNN+Gmm24qy2uaJk488UTMmDEDd911F1KpFGbNmoWHHnoIixcvxt577y21gvf19eGVV15xv7/22mvYvHkzxo8fj+nTpwMAVq5cibPPPhvz58/HwoULcdNNN+HNN9/El770pUSOs37FN0EQBFGXmGAwq1RJ1e5PjEE+QF1CFN5hAdwqfgEX3GPd7069tmXXNUjZrtpuNjGQlC0GtALABZHOTGvZpxS3rHjO8l66LWDEAFhORGommefrzHkFvEI37JClgeI4AK20wXKLL7WFM4C90wAOYHCShj26CcPQYOZ1aLvT4BxgOkpB1gAUGznSfcIcYL8g9A8AiG2pAk9/GKVzf5lpBdqzludyNpb/dUSnVkTgoIYUf16xv4p/4ftfcg2dtb1NnUPj3jnmkaa5sIA0f5/wWfth2vcEStHZnUEINyDiSFu+h/lZv2DBAtxzzz249NJLccUVV2DmzJlYu3YtPve5z5Xl1TQNa9aswSc/+UlkMiWD6kEHHYSHHnoIEyZMkNbx9NNPY/Hixe73lStXAgDOPfdc3HrrrQCAM888E7t378YVV1yBd999F3PmzMF9990XaIGPC4lvgiAIIhYGZzCqHJKvdn9ijOO3FsXpLqPAgl5zq5bMmixGa7bbwJzAT/CmyYSDOHeVa5a7ubN8krgdgnj0i1LnmLV8+cFzHd5lzyTHJAp1LggtK0CXnU+Yx54asCzu1lrRtuV+exYDO7Ng3DKQa3nAaLTWa9aHbBGkl8pw5qlreWaJ8w/AvO1q8LhuBzlM2uLS9ZxgwjWthKB+6/yVCVlhm+OdIRXuQfWJg0B+q35YG0PaqxXgRu1376mQwblaMxLP+pNPPhknn3xypLzHH3+8dPuhhx4auM+iRYvAI3iNXnjhhbjwwgsjtSMuNOmOIAiCID4gFItF/NM//RNmzpyJxsZG7LfffrjiiitgmqW3ZM45Vq1ahalTp6KxsRGLFi3Cc8895yknl8vhoosuwsSJE9Hc3IxTTjkFb731VmWNCrMmif9HfQGtc+HtIBWoCrhtnY1eCbwWR/F/7vtI2uXO2xYDXtn5TR2lyN/OPs4ccb+7r72PMwfcE5wsilgR2uY5X7bw5hqHnreslhxWdPHUoNVurQhkeqz1oU0dKLYaVtC8ImBkOYysZXlM9Wnu2tGpIYbMHs1th8clWKg7sSB5Qcc3VgS+eK4cq68TTM0n0qs+pzKhLQpk8To6wc40eIMByn5zxHvF730Rx2rvb65v0MsJGFh2zogxA4lvgiAIIhYUcG308r3vfQ833ngjrrvuOjz//PO46qqrcPXVV+Paa69181x11VW45pprcN1112Hjxo2YPHkyjj/+ePT2luIQrFixAvfccw/uvPNOPPbYY+jr68PJJ58Mw1DHwyhD9WKpskKNUipZQiw30URuvKk+F4KA4LplFRbX+IYjqk35C74YvZn7hQiDFd08Z301M750Eb+br7hNEOOukNHs6OmOqPbXHSButCIT/rfdnQ17njm3oqxrBYbUAIPer9tRtYHUoBUszgnw5Yo+x8pv2gMe9jnzWznL5jFXIRrH2hzfMq8H5yc/JHyQf8mwiohoeWbCIBEX84gDR7Lr4Wxz8kkGsCrBf76cwYlYg20JQ8/62kBu5wRBEEQsTFhLiFRbBjH8PPnkkzj11FNx0kknAQD23Xdf/PznP8fTTz8NwLJ6r127FpdffjlOP/10AMBtt92Gzs5O3HHHHbjgggvQ3d2Nm2++GT/5yU9w3HHHAQB++tOfYtq0aXjooYdwwgknSOvO5XLI5XLu956enmiNrlFXcQSYsw7xcCMK3Kj1p7u1SPOBPUIbXpfxoPyydOYXFY6Fuwgw5pura6czp/4gASOxGDpzzi13ZObdTxTnzoCC4xKuW2uPO9tcC7U9oOC4xRsZQC9a1zrdZy2nxnUrYBwzrAEEnrKDrgmxUJnJ3Dm4TlscMe4cu3vu/C7IMfuU9CdVOFfiXPfRFJTNaLBc+x13/aiW3EiPmJB7QJqdl84jh3XdtIIdPLAomZ8uWLk963H7vC/itiFOOivaA2hpazm/4Xxy0rO+NtBwBEEQBEF8QDjyyCPxP//zP3jppZcAAH/605/w2GOP4a/+6q8AWJFft2/fjiVLlrj7ZLNZHH300XjiiScAAJs2bUKhUPDkmTp1KubMmePmkbFmzRq0t7e7n2nTptXiEKPDBMvrCBAl2rl3B+vlW7PHLwItYqK7qm1BYzIrXYCVUfmubQtfrQCvRVPMEuQ6HWQpdL7bazGXrUcuCCA3aBy8x8cEa7V/yajUACu50xetOd7FZu6KZq1ozfdmRe/xM9OKzG6muHtc/oBo1rxwybFUQFlfED0QNKDQzL0eAaMALS8Z2IlwfiK5n0cciChbh9snns2MrxDf10IzR74jwOMkAeFd5vXgvz9N+zyOokEXIhiyfBMEQRCx4AlEQOU0Gj4ifPOb30R3dzcOPPBA6LoOwzBw5ZVX4rOf/SwAYPv27QCAzs5Oz36dnZ1444033DyZTAbjxo0ry+PsL+PSSy91I8sCluU7kgCv0ZzHMEvwcFDVizQXrMWeQiWW9AgCRty/zNodUDdP2xbwgJkGTBTmYWJc1h7BYg9bbHPffpphWck96zgLf+E7D6Ibr5aHFQ2dldrvCHzRim2mOfJTrTUbM++koefs5cggtJGX2hd0LqIQJLwdzAyQn1SE/mZ6xPtuVEL7Uphrt68MN3p+jN8BWX4nAr/f+0IbYqHW7NQgA88xN38lRLrfnekNfvjwWrxL1dKzvhbUr/jmzmQMCRHmlLFCeB6mWPsYAMxM+ESLwUnqtcIH9w5vx/TOLmUZKt7oVbfDzIQ7ORjqpdOlo9si/YPqQlTreO8caFWWoQ8kcCOPC2+HKhJieke3sorUrvATplrnGQD4UC48gxZhMpCRD68jSjv6+tX1KGCKtdObd6vvhZaGhtB0ngs/VgAwFa6uPMLvi6Y4lrD1t6PCMur7mrUGrzeumTngjaqbIcXkCbiijSbTzRjirrvuwk9/+lPccccd+OhHP4rNmzdjxYoVmDp1Ks4991w3H2Pe68M5L9vmR5Unm80im43wsPETo6uMZGTgRBEFqN9qF7SL6EIf1T1ZIfiCYByAExjKk4Ay8RzrVhdEj/+4uW6pKWbAe26C2uwL4uXiuI47kcud+lD633XxZsAnZ70Ek2vY+M4sr0XSb6kU3MLjEjgFQShPzwFNb6RH1FujIvznK6jPhfQTf3BCz1r14hQLXz7Zvv7rxuyBHDGfZyDGvubSWQEhAwOxrlEl9+owQM/62hDL7XzdunU4+OCD0dbWhra2NixcuBD333+/mx4lQipBEARBECPDN77xDfzjP/4j/uZv/gYHHXQQzj77bHzta1/DmjVrAACTJ08GgDIL9s6dO11r+OTJk5HP59HV1RWYJ1EScOsclfiERlmUcAfRSuzbt1r8dYru3EaWl5Yvc9KE9CBRFXgczn5ifmZZnwFYS0E5O0nm3pYZCBwx7GuPmbFc5rUcUGziCBOFrMjw5IaP4n8fneWZE8w43KBsorYwM5aoL4uMLkE8B+5a5AHXzY08b2DUWL1l5Ns4zKDxN5XHhYDYh2Si2j+lwx3AEQU14AYjZEUGM83dqRz+GAn++mT3hLRNKiIec9JR9YmRJZb43mefffDd734XTz/9NJ5++mkcc8wxOPXUU12BHSVCKkEQBDG6oQioo5eBgQFomvfc67ruLjU2c+ZMTJ48GevXr3fT8/k8NmzYgMMPPxwAMG/ePKTTaU+ed999F3/+85/dPBVDL5hlKC3fzst/gEU0iZd2Wd3O0l7KOnzixN82qWBhJTGtGdZcbFaw1oUuCx7nH3xwLJWm/JxYwb8YNINBz/ncjZ197Y+eA9L9DOk+Bi1vtYkJ5YPba0TbS5e5LuzOvOwQAR57zn/MvPWEc87S/QxM5WxX4TGKLv+OJdqN1q9JLNRObAQnZoA9uDIsj6YQ0S0T8wC8QQyHCXrW14ZYvpHLli3zfL/yyiuxbt06PPXUU5g9e7YyQipBEAQx+iFXtNHLsmXLcOWVV2L69On46Ec/imeeeQbXXHMN/u7v/g4AwBjDihUrsHr1auy///7Yf//9sXr1ajQ1NeGss84CALS3t+P888/H17/+dUyYMAHjx4/HxRdfjIMOOsiNfl4xUt/O6oqsRypxj48z59Uv2IMEvL8NQeX73XjFSPFR26LCI1Ydg7SzFJrpEx8yIeK3mgfVY89VBwCegsf1vDyzT9QpjpfZkdH9Qdlkwe08gd1C6h/tiP1WGqdARsRrKdYh1iUKbK5bXhp6ngFi/U4dtjWcaygtMedvThLTWaocZBmJgRd61teGiicmGoaBu+++G/39/Vi4cKEyQmqQ+K546RGCIAhi1LNgwQLouo7ly5dj+fLlI92cMc+1116Lf/7nf8aFF16InTt3YurUqbjgggvwrW99y81zySWXYHBwEBdeeCG6urpw2GGH4cEHH0Rraykmx/e//32kUil85jOfweDgII499ljceuut0PUKFqUdAwIjLmVRsyMQRRj7v8vSguaoiu0Je192Im9rdogNroWI0qiC2HELFsvyuYN7zhmHx+UdgOXL6bdiS2AFuHO+tXxAPkGYhZUlPxiUBLcjxIUy/POVPeJ0DN8LoYNHQYMpYnol9TArsv3Uj72Lt7ZMLi3V5+uXRgOH5veC8LWPQzFI4o8BILZ9DF9XIj6xxfeWLVuwcOFCDA0NoaWlBffccw9mz57tLi8SFiFVxpo1a/Dtb387bjMIgiCIEcJMIAKqs//GjRvR1hYeAJFIjtbWVqxduxZr164NzMMYw6pVq7Bq1arAPA0NDbj22mtx7bXXVt8oWeAqcZMY/GiEqIU4UpYlCyoVdV9hvyChLSs3SJDLRKIb4E0WVC2k7Z48tjBxLNCMoySihestDbDFfX/Fch1xDnm/kc6d9oukKq61f74wYB9jVMuvrD1jDK5Zc+SZgdJa6lHFrQK3r3JAyzG8+UIn0gMMPMVRzAB63prCwJldvzCFQlqebKm0sPaIxxLlGtbptU7yWU+UiO2If8ABB2Dz5s146qmn8OUvfxnnnnsutm7d6qbHjZB66aWXoru72/1s27YtbpMIgiCIYcRxRav2QxBlSLqF43Y8ktQi4JFyveYAC3ZQO0RBLbreVnurycoxUwBsV92y9cZ97fBs931cV3PffO1Aoh4LC75mzLREn9HA1UHqqv2Z4sLHritoXfQyl+k6FGOJYF/zYitHbloe+fGmteKO6nhVfSNgH2YA2fetTpqfYKLxwD3I7WXAyHJ3EKnYyN3rEul+kQ02VTpw47jG+xZzEe87U6/+Pq4EetbXhtjiO5PJ4MMf/jDmz5+PNWvW4JBDDsEPfvCDSBFSZWSzWTd6uvMhCIIgCIIIokzYjUJkwcBE92u/SFMNAMSZE14tWsGy5PrnRCvxzYN25+oKEahDRVaYqLH380Sz1uB1H7fr1gqAnmOlcxx03pL0dAgJTidGO5dF7x7tMJ8w5TpQbDLx2on/jiMO2+pGtI9ESP+Q9X8rmBrA00Dnfrvw7Md/jlkHvgUzA7e/pAaY63lR0SBbFR4TRgOHmbKC+3nabd/PZhoYmmLAzMoHbojRR9WXkXOOXC4XKUIqQRAEMfqh0XBiRPBZf8Nekkeye0Wt22+hBiTHVIEQGJZ5w0w+eKAUjEwiILjvE6cZ3PvXv91Th/A/11GKXO5PrzUBAy6Rdh2Jfl2Lc2MC+qCGuRv/Bn/404GW23lcJP0l0EOEWXP9t785Hue8cRSef2VvawDJsXbby8NJpzeo2hD2PQL6ELOEd8BvmpnmaN2nB0bD8LtC0LO+NsSa833ZZZdh6dKlmDZtGnp7e3HnnXfikUcewQMPPBApQmocWCYNxjLyxAgBXbSegdD0dEE9VMvT4fXouYD2iXl6w8vY0d0amg4AxUJ4GQ3vpJVltLwRftMWGyvxs/GS36k+lj/t1RyanhpQt2PCn8OPRRtQrWMBGB1N4WUMhZfBdnYp6+C9feEZMur+w8a1h9eRVt/CrCe8HTyvPl/Qwq8LS0X4KeHh14339SuLMFXn1IhwXyvysJT6fmLp8DxmU9BCpmImRR2m+kFrjAu+nwwjAwSH26gKioBKjAgx53yOFKq6XVdre94ot92upYG3RBfkCMc/bMfNLddzzW/5FtrpHo8wB9sdNHHaGXE6QZhVv0yAi+dVZmUW5l5zXfhfK5/ekLQ3QWBAO+ccide/XtzOa/BTzUwg3csw8OdxyBYZ9CFUPu855N5g3NbomuXpkHkvhScen41MjkEfYvY63xzMZDAz3JoHDu91Ut5TEdssliOWyxFehz7EkP+/cUgZw3h/29CzvjbEEt87duzA2WefjXfffRft7e04+OCD8cADD+D4448HEC1CKkEQBEEQxFjFebH2vGD7rNsccAWimRGibqvcqkWBInmn5X7hKyEpQanlwy3f7nmwt7vCVhh4iErZoERgRqEpJqSCjhkld3TPMmIJxRXwB6iTne+yfiGz2MraHkV8xTy3w4HoUu9eSwNI9YkdppoK7L8BMSNgX2d9kEEfZG5eK/CeFXhNKzL5dUiAOCsS+PMxA+BiTARi1BNLfN98882h6VEipBIEQRCjGxoNJ2qGTDjUoZgIQxRPsndlLrhe8xRQaOHIvs+Cj1MU3f65pTKxq5gPn9itp8EVNbK2MvjEpTj32l5T2d0WUfiGWiLF8xHiTm6m4M4LN1PW/O9KCBrEkAWoC8obZAmPZHENbFiF+9UC+5rIxKbs/FQ7MCTzXiir0+l7HG5kfbdKlfU9ZGCklrj3tbMSQICLetLQs742VLzON0EQBPHBhKP65UNoAJ8Y88hcnoV5xlwHYALZrpIlrkxAii7qfiq4BZOyejvLjDlixh90TXQx99Tnt94jWDDFaxAinw8nWJxl7VTnl00HiHIOxYGQKPEJ/AKVM3jWBx+VhJynIGuw3z07Fv5BF9mAhyEIfcGiLF5n5eBHhGsi9pWqBlME8uM4tByQ7hseQUvP+tpAcfMIgiAIgqgPavBOOeKGF4lVE8wSgGWCW2b1lwkJx2VdMKGI4iUoEFlS58IR28yUCG/Rwi22x/n4Ipv71772i1DZcUkR61AR03Io1h1VSEUN3uU5Ll/7R7zvjjBxo497ouYDnvPp8UjwLfMnWt6ZfT+WeZBUoCLde121rGBEtLztHk+MasjyTRAEQcSCXNGIYaUaN1RWsjDLrKuJWF2j4LzM2xbhwakG9PE5FHM6Mu9kkOpn8mBrMjdzwXJuZjiYweTrWSdk5ZbhWvAD5ixLDfUc7rrgrCi3KPvzy/6XEtMN2GmHHmL5DqpTtp1rcN2Zw/pT6Nz1AEvwWCWONTixvuz0E1+AQ8ed2xXgZnX1iQNGHBVcS4knB+O2xXuYXM4BetbXChLfBEEQRCzogUyMFpxgS6HzhBNEOm9VeJFmJlBs5mic0ofnFv4Mrxb6cNxvVyLVnyq113MAvnYKf7WiYAULcLuO4yYdB2baItpvafTVWwb3Wsr958pjfYxDzPxaEeAGqpq765ljnwaKHxkAe73RFUgOznrSoXPL/W0YA8LbGWzimty9v1IBGbtPOzEIBIu2WJYjvKXRyGO2UTWIFJuky4sJPetrA4lvgiAIgiBGJVGiYFeaViuYCeRz1nKFv+49GMxgwS/5qvaNoEgLEt6AsN0/eGC74YrW4VgW7tAGhbTH3zzHNb5Cr4eyQRYTKPZkkPWJTKORI7eXAS2nIbNHg5aTFSb8P8yBvGqJO/Al9JNq5nOHRQyPVY5kakdZ2UKaLCFJcR7IGOkHRDl1K77Z5ElgunytXGOieukypljHW9/dqy4jlw9ND1+x2mJCS3toev9u9bFkZT/WAuNeUofqbHyzOzSdpyJM/1c9pCKUUWwNX/9Yi7D+ut49GJquWp/dKiT8V5/lwqOw8KEhZRW8GF4Ga1H3IKM9PI/ZoL6FU4r1tdmQooMBQD78XmC6+pxz1TrfEdbohmLtax5hbWwlXP02xguKdeAH1OdUuY53hPXXw37nWJTzWSE0Gk4MKwFWXa4BpmN9NaPPw62l4Pa4m4rzuB2rm24td1R8pwEz7/8CkNfQ8J4ud3+PI7xH4HYKdOcPaLcT4R1mgu7+Tt+IcfyixV5c8zt21cLAj1YEGrelvIKMAWYa+M4xv8TDXbPw2PqDoJUFAPAX6vuetBgPuJcip8ckTKAmdR/Gvaf9buCxDte5v+PsM4pJ8lm/YMEC6LqO5cuXY/ny5Uk0b9RSt+KbIAiCIAgi6E2XM2Co00CmS0dqIGJRvCQCHfFXa0FuVVayBAJAdrcG7M6Uta1iggYoanhskUSrII49AcuqEd5B86UjagTX7Z1VLrzLLKXOsmm+NrEi8E+PnA6W05ANmJsfhLMWeew5vmHnQnWORqGqHOtz48cKGzduRFtb20g3oy4g8U0QBEHEgizfRC2IKxQZBxp26JGEnCxq8bB1QZ+F2p0nrKMsUnhZ5PMqhEXQusmJLTfmBF2LaKHneum7azWX7R9FIHLhr38+vJgnoN0umleMJ+3qmxpg0N5JW1Hhiz53ZcVxVhys6wPGsAyefUChZ31tIPFNEARBxIJzBl7lA7Xa/QmCmYAmmUsqzwxX9BWbOWACqUFmCS9WI5EjEXPuQAGzg37JIpzbJLHOs+w2SypqtLg8U6RdTO+gQ6BwF8+FSlCzkPwB+zHTcjfnurV0U1m9ztcKBoPEfZ1tetAspAiDFhX1yShu5Qm7l48mxpxQr+Hx0LO+NtA63wRBEARBjDiVvBRHiYzNBbFRbOKY+vF30HLobhgNvCbWTnd9YGFgICxYlJkGjKzcQm39U1kbAHtefFqwOieFc2wqrwPJfGzmt3gHHZ9sPrTEg0H6PWwuuD0AkBtveK3gCRLYL0Wr90hoEub7O8rxrylfj9Rce9b58RPlkOWbIAiCiIUJBrPKJ361+xNERTBg0aSXsSPfhv9hE0qbExTg0nWgxe7OSlZVowHI7VUENCC7U0dqQDR9l/JHHSQQLa6cWdG2s3P2YOiFDqR6WbJrmkc5Z35BrFlrk+uDkuME4g+GhOUNSrMFcGaPVts13kUrsyyNqJpKIo5XywfJzZ2e9bWBxDdBEAQRC5oHRow6bBGk5Rh+dt/RAAdSOeaZ/13NC3XU/d15vPY+XOP4+yM3YJ/Mblz5y097ynHnVAMVCwytyNC7swXZ/DAJBue2lrmCO8HDiixQlJope03oKG31z/321yf7bqMVABRYcD3VeER8gF26PwjEvY9Gs1CnZ31tIPFNEARBEMSIYepA0l7RIo7gBaz5t1rBehkMWmu60jqUbZC4lWsGw78/ughc48gWS9GwObPmpuuDDFoFqwa6FvAC0LgtbS0VWmsR4H/H9gvYCO7WWtAKi/7gaiKy4GtimqQs9/wE5RGL8M/Ll2YK+J7QOY/UBiISHyTLNVGfkPgmCIIgYkFBWIgkqanrbx3U59YrCeilD1kR24GS8HRuDTNjBwSLIb79It9ZAz1+YxFfOCrc5J1558yIb+F2I8PLxHwlbutOAL4gISaZox81b82Iemxkea85IzYYMszXlp71taFuxXdxYiuQapCmDUyVbxfRc+F3RPNAPjQdAPD+ntBk9pa6jAk94YuPjm9SHwvyQUPBNl3dyiL44JAiQ4RfED3cNqE1NymLyHRlwjMYEd4S0qpuq6gDABsICj9q090XmmyqzicAmOHnlLHqf5C4ri7DbGsMTdfMDmUZbE9PeIaierFUls6Gpzeo7wU+pDjvg4PqMhQvstxQv+maveH9Q1Pds4jwDqWpr21YrCDNVPTxKiBXNCJJkn6Blb0YixblKPXWdH1sx/XcLl/Ll6eDAZkuVtGc1kSWEqvm2AP29Uc7j1wHD8nvtzCrynRc303hGvtd5QXMFMBTAExrcMTTL2rZP2TB91T1JRHIzS/u6lzI10IER7n3q73HKv59kdVZwwEAetbXBop2ThAEQRBEXVHp+5qpIzSCtROFOsrLdVJtUhLwQs1sV3GnLWLb/R9nH+cT5fhq9QnCERxla5tHISmBwb39w/1fJjIZYDRwtMzfhdwE0xo0qIHQkXlEiNc8ekFJNKYGZdYZSV3DunFdH4PXaKxD4psgCIKIheOKVu2HIBwCl9mKC/MFKlPUE6voWr1sh4jYqCLMky5YA4MEsbscWo3xeB/Yjm08PQKu/0z4QLCYinPhJSKYa8AB43eCNxjlFuEkm1cvQm40UmU/Fu+DKPdE3PwyRsv1pmd9bahbt3OCIAiiPuEJuKLRA5kQSeplVFPMgKmXl17RbTWoTRW31WfFDbvVwtxf47j0BtUh216R5bsSfHWXWZT91m5f1HRmAqlBhqcfmoUGg4GpZ1eFtoWz8kGHsjn6wvSIEeurI+BqXtXxhngOhNUTND0lTl8ecSqYlhKreHrW1wSyfBMEQRAEUR/UiTiuNTIRUHFZmtzVXhQXKndw8SNrU5ClPG7buQYY2YgXOaF56+658YutsABm9natAOiDDHou4BxGbCNXzMX2lz2ig0R+C/8wtCXqNI8kdJzK68MR4DILd9g9K7tnhgXStqMOsnwTBEEQseBApBiNqjIIoowPyItkRXN6g/CXIREKgZZAx0VfSJdaqwVBIpujHAnb8qsPsXDh6xYcsdyAusT/PVZnheB2d5NZyf37Rh1HML1lBtaTNKIVW2XR9h9jtcHbKiSoj/kHkTziWIMn1oG/jKA+HYbMCu4OTmn26TKDRfqwDKDU+PrQs742kPgmCIIgYmGCgVX51Dc/KCqLqI5hdIEdUVffKogSednv2uyZ8wxbhDviVCGMo4htqSXTrofravfrOEhFlug+Xgxuk5QgMTwK+0ase8e57iP40+zcgzJB60nz91GJK3lZf/ILacSc8iGZHlDLOAAqhuP3ip71tYHczgmCIAiCqE+G8b1NtJpxrfZuo0mWzwKESFTXXdn+qn3CkLmxu+t8F0v/V1p+WF3exJhWyJGcZ13rfYKEYh0NMjii2ePe7bdwA17rPLx54O8LvgEZzqxVEWQxAcJw+5kG5Ds4cuO4tRSdwo29FjjtIEYndWv51gwTGuThMDVD/cvAVHkUazADAFf5WkRY65kPKdbajeLPoVgPmjWEr58MANq4jqrbwduaQ9P791PUAaDQFP5r0fC+OqJJujv8nGqD6jWW2VD4Gu08p7huEfqPap1mHmFtbC0XfixGm3pN88HJ4euv6x3q/tPwtuKnIsL5GJrREZpuZNVPksbt4et4a395W1mG2RO+RneUdb55IfzaGYr0KGiZtDoTCz5nnIf38WpIIoIpBWEh6hFHJJppQM+hpkKkJlYr2W3FrOMBt+YwS5FY8rhmBUerek66YGXnGsBT5WubV43oEh/kIl7PRD3HomVatU+YFVsmTuO0o4aIbvhcdh19fZTr1oCOu9nvau/b32iwlpDLdjHpsm5Si7JQZ76DY8Kc9zCxqR/PPzMDDTu1Up5h6nMVL9kXE3rW14a6Fd8EQRBEfWJyBlblA7XaCKoEURMYUGjhKIw30PRGynJbHk0izka8vYwskNs7DzaoI7tLDxe+ogu3Bo8o9yzLVQFmyiqHaxxmmsnbIXEb97dLbB/jdjsd4eOb1+13SR+N19LDSPxsjrAruh+P27kgQt1BHjejbGdAH7LjDsT1iLALNtMcTx36nwCA/f58QWnKxmjvWxLoWV8bSHwTBEEQBDEqqLmA4kC6lyHVnxq+oEk1QJwby1Mcf//xP+CJ9/fDKxtmRi5DK9j7C/PBua6wuIVY/7QCYGaAYiOQ2ROwvyi6JVZLJ83fD4KWAZNZNkec4RKzYXXEaUM9aCefdd5MWX1yaIoB3lREakcGmR4GM2X1Mxbi/RC2xnzg74tQv5Zj+ND/fB562oA2qEWOlUAQDiS+CYIgiFhwHm3GjKoMgoiKKyQZALN2QorZ1lNWwzpqii06xMBjrMhw80OLoRUYUnFdVX2BrAJFm3iu/Ok+67me9+Zx5q6651smun0BuMS5wUFiqpogbjWlHtpUiZv7MKJaa5sZwODeRSyZvwU/3PtRfOyp81Dc2hY9kj7K55c72+QV28UyINPNYOQbwBmQHWCePGI7R+Xvhw961tcGEt8EQRBELGgeGDHccN1ynwbj0HIMeqF2L7j1/tIcetyOOBGEpz4EaEXN46IbB2bAs1Y2hzVvmxUFAeNrm2fpJ8FSbaY5ik0c+oCwky3K3eOSCG1AmN9roCR0Qq5VRT8xZL0sZ5gFuGoNbtMZrGky8KN9ngSQxocm7sbz2TboQ4h8/fxR1MX/g9rg5NMHmed7UPn1/luigp71tYFi5REEQRAjxoIFCzB79mxcf/31I90Uoo7hOtA0dzc+fNTr4HqdWjSHAeVxB7zss2J1AZqYKcxrdebcwhbZmvXXndMtCFijwYoI7QhyrcCQ7mXWPnZeM8Nh+mKHutGcWUl0c807D71m62ITJYRrXQ94lszbk8bCP52Br7/7MWx9awpS/Va/kgaQUxyDbGmz8kyQ972g6REo9XGVJZ/4YEGWb4IgCCIWSY6Gb9y4EW1tbUk0ixjLcGDP6x3oyrSj8QMskIIEZ9jyYYkvacYB2PPBXRGuW1Ztx+3XCYbGisxtg5kGuG6JcScvMwBmMK+7PAegWXm0fCmNGUKdIfN2qztAeFzt69py6bdIR7BQRzqmEQ6wFtZvnWkhPAU07NSwa2gS7mmaiOz7OrQCPGvIcyZMSYhwHSPfJ4rBnyDLuezcJ9G/zBoqObJ81wYS3wRBEEQsKAIqMdxoBaBhhw4wQKt+Jb9RRWwR6BNPohhIeh60E4zNFTya4GruZNKAYqMlurUioOcYCu2mZQnPW9ZwZ18I+7jt1IR6jPCAWUlSl8JbvLb+6xjhukqPyS+2mWTbSCMG4gPcAHuZHgbep7teHWLgvbjXz3+flDVBcT6c/cMGwmpBLe8HetbXBhLfBEEQBEGMGFHezRgH9KA1qscwzrrjQdG8HcJEtX9Oa8VIBD0z4ZkGYGa5tUb6EMBMBiPLLZFdtLbxlOVmrg8x6EMMRgNHMcOtCNWG1dBiI5CyA1mZaWtfZghWd7stHstmBCJbfeuZWugYmfU8pkV9OBGji3PhOzMhHzgImMcvuydk95Eb2C/gHgu6t6IMdCXhXTFcg1FEcsQS32vWrMF//dd/4YUXXkBjYyMOP/xwfO9738MBBxzg5jnvvPNw2223efY77LDD8NRTT8VqmL5jD3QtK01rLkSYuFQM742suzdCIxRT4rOZ8HQAMMLbwfNhC25asIyingnjlGUUJrYo86gYmNIQmv7+gbqyjGJz+K9M4075NRdpeScdmp59X/2Glk2Ht1VLh98aWm+fsg7kFe0oqs03rH8wPMNezcoyCi3h/djIqp+q6b7G0PTcOPV12/3R8OtmhFcBAGh+K7wfT8x3KsvQ3gpP50M5ZRlccW25EeE3iit+GyL0Dz4wEJhm8topFYqASiQJjxh9JswqVa9U22bHzTapdjhlVirCPQGpHAFs2PrGsMQ0TNvFnHFLaOcYTB0wWk3wJgPp5gIKfRnw3Sm3PUYjBytalnBH6LCC49NufWTiJk6bxzxJiGTZ/hEGdZKkrG+K4tk317qs/giB+Pz1qO4HT2R9odyw45dFUg+qv56hZ31tiBVwbcOGDVi+fDmeeuoprF+/HsViEUuWLEF/f78n34knnoh3333X/dx3332JNpogCIIYOawHMqvyM9JHQdQLWsRAYKNy3e0EXrBjW7YkIlX8VNUW//4+C6OeZ9a0AGYbUE2g0GHAmJwH2gvQGgxM6OgDS5swJudhTM3BTHN3bjg0QMshdF6texy1sMiOAkEUSJS2xxCnocWw6INmcRH7qbOUnLT/+q3bQYQIZNX/QduCLOD+tgc2icn/rzfoWV8bYlm+H3jgAc/3W265BZMmTcKmTZtw1FFHuduz2SwmT56cTAsJgiAIgvjAMhot3g7OElrDikSU+q1wsazfPqEgrsctBreyAq1xgAOmDvAUt/ZNm9h/2g68vms8rp33cyxpKuD8N4/EY2/sh86OXry1ZxI0WC7rWrfmRkZnpn0ooiu0GExLbF+EvhGp/yTQxzxu/uKSa0lQ7YCDat+I5TOOqqLnV4N7bsWNknOssmxX4/0h/l/JtVXNLyfGNlXN+e7u7gYAjB8/3rP9kUcewaRJk9DR0YGjjz4aV155JSZNmiQtI5fLIZcruXn29PRU0ySCIAiixlAEVGI4qfXLaa1fgof95TrCPNOKi5bNiXUCognu6GAczASM9iIaO4awa6AJL37ydnefm6c/hnO4hr90T4Q2IQ9zVxaswNz9XYGV4kCRlZY5E9pRaoC63ZGvcUQhH7U+2feq+kMUC2+U6xuUJ0bfqLU7f1DQM79l2d8OErXJQc/62lCx0wjnHCtXrsSRRx6JOXPmuNuXLl2Kn/3sZ3j44Yfxb//2b9i4cSOOOeYYj8AWWbNmDdrb293PtGnTKm0SQRAEMQzwhD4EMdKUlsCqTJSaKcvKW1cE3FxBkZhDCRKRYlAuJ9iazr3rLHOADVgnp2CUn6Qbpz2E7sEGmAWtFMHeLtdM83Ih6EwB9x9HTMFYS7hwXswMkG/jKLRxz3JQNWuDP1BaDTF1lK3NPhxIrdsB0yyc9CAx7g+UVtH9kTAjXb8fetbXhoot31/5ylfw7LPP4rHHHvNsP/PMM93/58yZg/nz52PGjBn47W9/i9NPP72snEsvvRQrV650v/f09JAAJwiCIAhi2PC4MSdZZh28eVb1Qu9zQ/ZYvv1pJgOHIMA5wJsNmCaDYZTbem7p+RDSugGWMsF1eN7StaL93ePj622HbLu7SbPFIePQCswTLb7m18V2my82cnz2pEexqWs6Xv7DvtD6WHnb64kYLu3MBFgdrD7AuFrcBU23iLI6QGCdNRLJdds3iESpyPJ90UUX4d5778Xvf/977LPPPqF5p0yZghkzZuDll1+WpmezWbS1tXk+BEEQRP1SfQCW6l3ZCCIJGLfWEAezrN9x0YrBAeMSWd4rASIHWgsRI7L/3fymEBTLZIA9z52nLMt3sZDCzAnv48hnSwaYt4p9uO65Rdi3432YfWkwA+BpS0lZLubM+j/KvGLZfN4UYB7Qh0mHbbes6GL2YRQ43cVGDBbTpXnrw8EwHJ8TCK0uCDmvMks51+B6IqgCrcmQRT6vhnoOvkbP+mBSqRQOPfRQHHroofjCF74Qb984mTnnuOiii3DPPffgkUcewcyZM5X77N69G9u2bcOUKVNiNYwgCIKoU5LwJaMRfiIqNRYujAuW1hqVP5JEtvQG5JG564qb3GnSghu6nmfWXHAdMHrTeOFtKwjvzN+dDy1twixoSGUN/OmNfaANaYDJoPczN0CdZpbq8rcv0nxvBpiGjsFC+BKXNYFZwjQ1yHD/AwsADqSGSh04sfnfIfWXKoP83pFtH60aiVfnzRA0tzwoPYlgaYEB4BhKQQbrAXrWB9LR0YHNmzdXtG8s8b18+XLccccd+PWvf43W1lZs374dANDe3o7Gxkb09fVh1apVOOOMMzBlyhS8/vrruOyyyzBx4kScdtppsRpmvt8Fk8knlLCQtW1LBYRfbTPKGsuKdb5ZSn36uGpoMEI7oCl+ERVrUgOAmQ0f0jd19a9uri38fBRa1XeY0RR+Pgr9atNDviW8rcyMcD4y4etjpzrC1zRP71IvSq11h68FzgcVa3gDgBZ+znPj1C8WgxPCy9Bz6uuW7VKt0a12olGt411QrAEPAPn28Guf26tJWUbDQEdoOuvqVpahui7I55VFcEWeSGuFh+ThNVznmyCGlWEQBbW04o2U+3kcC53jps1M2xMACJ077qb7hJ4T4dyJ8g0OpHp0mEMauM6RnjiEaXt14S9/6QR/Pw2e4dCHmOV14LgD6wAMb7lxX+BZAUi/3Ihe1lg6Ht8xJH1NnDKdYrU8oOXLOy/jdpwABo87fE2Ie+8Mp4U+IeJcR8bhemoEpQcJ44pXC4hAabWAiN4exKgmltv5unXr0N3djUWLFmHKlCnu56677gIA6LqOLVu24NRTT8VHPvIRnHvuufjIRz6CJ598Eq2trTU5AIIgCGKYScINbYy6ohE1YJRbTkYq2nmU+a1OfjPLYew/gNwkw5orLbEuB4l5M2WJbq5bgcWKjRz6UMmdHyaQ7mHQBzQY7zbirf/dG2xIgz7AkO7RrLW9DXt9bwDFZm61VxMCr8V09WWmVZ4+5BUzUdZgTgK3fOFaeNaANkdYZIX1hwTOTT3/vKvWvBfTg/IkfXzOuvXMqCOrNzCiz/o1a9aAMYYVK1YkekiPPvooli1bhqlTp4Ixhl/96lfSfDfccANmzpyJhoYGzJs3D3/4wx886T09PZg3bx6OPPJIbNiwIVYbYrudh9HY2Ijf/e53sRpAEARBjC44tz7VlkEQwwG3zQwjNUd1OCzfnvdbwXoZeR6rDpw+azPWbzsAg+9NkGSQ6DVmRYpnJgDGkBtvAFxwHS8yaL0MZopbVnVuuWIDQLpXsyLMpwB9kFlC1K4g+77lsm6mObSctZGnABSE4wkSRXawt4qFbRXXyS/sHUEVljc2Kst0EpbrKvZPej50vZD0utyy8moZyK1SRupZv3HjRtx00004+OCDQ/M9/vjj+PjHP4502uud+cILL6CjowOTJ08u26e/vx+HHHIIPv/5z+OMM86QlnvXXXdhxYoVuOGGG3DEEUfgRz/6EZYuXYqtW7di+vTpAIDXX38dU6dOxZ///GecdNJJ2LJlS+S4ZRUvNUYQBEEQBFHvOOtQjxTD8VJdlSDggFZguOd3C9G/ZXywcPVP9EZprrypc/AMx92n/BCTZ+2EmYY7F1fLM6T6Gcy0veSWCRgZa990DyvVJ1j/tKLPYm27Z6uuY5BF2RGEyuBWdSZ+yojSvmr6QgLC29Stj+pamRUu71drVG7niQVIk3iljLVBC5EFCxZg9uzZuP7660Pz9fX14XOf+xx+/OMfY9y4cYH5TNPE8uXLcdZZZ8EQpuC99NJLWLx4MW6//XbpfkuXLsV3vvMd6QpcDtdccw3OP/98fOELX8CsWbOwdu1aTJs2DevWrXPzTJ06FYC1stfs2bPx0ksvhR6XCIlvgiAIIhYUAZWoGbKXzwq6CtdKL7V+ITfcDLvlW4LKGqnlgFSvJZJZEYHn3PEidQY0XEunycCKDFty+6BnsMG1+nKNu67nmS4NqQEGngYy3Qy6E4RMsFYzA6UAWiazI58L7XG8WGP0iaCI1tLzMdrFj3huhvlYGLf7RAoYnGLATA/PoFdQ33cjm8dcxUC1zFjUvNEqq2/BneSzfuPGjdi6dSuWL18eWufy5ctx0kkn4bjjjgvNp2ka7rvvPjzzzDM455xzYJomXn31VRxzzDE45ZRTcMkll1R0zPl8Hps2bcKSJUs825csWYInnngCANDV1YVczpon89Zbb2Hr1q3Yb7/9ItdR8TrfBEEQxAeUJOZsk/gmZKgiM0d0q/UHLooUdKxGQbjc9tTL0kwBeNrnPw/iLc+sOd6uS7huze9Od2v4zn+fAc0A9CFmR5G3wjeLgcg8RduWbpilsplpfWfFUuA2Zlr1mCkrkJlTb5RBlSSuqyP4R/wahvV/f1rUKOdx0iNgNHC0TO9BrrsDWiG4MM0oPUqquT6h0col0yXi1hf2qKq6b9Wx8AYw7M/6O++8E//3f/+HjRs3Rso/depUPPzwwzjqqKNw1lln4cknn8Sxxx6LG2+8sdLWYteuXTAMA52dnZ7tnZ2dbqDx559/HhdccAE0TQNjDD/4wQ8wfvz4yHWQ+CYIgiAIYuTxBamSEvE9TqsgirToVpqUCHfccJMUbbL2RXFtF8VznJd+rglu2zoAE9ByzK3TEcCpfgbdWYzGEatG6dgZB0zNEu5OYxyh7Yp7x/Xctng7c8GdenTDtq4CtmUdpXICqGfLYmyi3BtRBHRQnmrHRLnVD4qbxiGlWL6PM6s/WfEBkr1OHhdxodxK7m1VfqfMOGWL7RoOz5jRwLZt2/AP//APePDBB9HQEL7ikMj06dNx++234+ijj8Z+++2Hm2++GYxVP7jvL4Nz7m47/PDDsWXLlorLJrdzgiAIIhZOEJZqPwThwR80TNweErwq8WYkXA8zayMsKsVMed2BA8sTXJhd4S4u08RLxyZG92bOdkd4C9eOGdb8ck8wMiaUJZTtwuER1+75VIiWJAN/MV8b6powy3hYngTuMcvbwV5mLULkbjNtRdoHajcHPImYC/79xSBp4jGONYeu4XzWb9q0CTt37sS8efOQSqWQSqWwYcMG/PCHP0QqlfLM6xbZsWMHvvjFL2LZsmUYGBjA1772taqOeeLEidB13bVyO+zcubPMGl4pZPkmCIIg4pGEECLxTcgIenkdpS+1zrzTeli71xEh/nWvA+fMOgLdnrPtlAF4hSgX3LHFqOVWoq8ee363mbbbEee3xO8ZwUvWU7dtEiFEVkUb1T2U4D0W5Zwzbi0F51Qc9zpFub4y4V1JgLOgNb5lEcvHFMP4rD/22GPLrMmf//znceCBB+Kb3/wmdL188v6uXbtw7LHHYtasWbj77rvx8ssvY9GiRchms/jXf/3XipqbyWQwb948rF+/Hqeddpq7ff369Tj11FMrKtNP3YpvbpjgAU8rVojgTya5SJ4yMunQdACAFl4GL6rbwXP58PR8eDoAIGC0x0Hb06ssIqNIN5tUOYDM+PBzlt2jdqQw+8LPadNO9V2a7QkffjbS6idIfq/wrp8eUIVUbVLWkVEM90V5zg3NnBiavmOeOpJIYcZQaDofUP8McC28f3S8qu7HzW+Hn9N8q/qMZLvDz6mZUfdB3pQNTdcGwtMBgKXCzxlXpAOAaYYfCy8WQtOthoQdr1b9Q5MghgNZP60zsR3VNVT6Mm6G56m03mpcaP37ls1NtwcNnGjmYa7qZW0IE0OGtbRYVfiEjjMfnGtwo6K71vS4v4ExXfJj4x9AqFUdMWMkJLJEWQV4rk9c8a2VD7gE1RFn3rbqvpJZwSuyeIvXKGLbxjKtra2YM2eOZ1tzczMmTJhQth2wop2feOKJmDFjBu666y6kUinMmjULDz30EBYvXoy9995bagXv6+vDK6+84n5/7bXXsHnzZowfP95dRmzlypU4++yzMX/+fCxcuBA33XQT3nzzTXzpS19K5FjJ7ZwgCIKIBUU7H928/fbb+Nu//VtMmDABTU1NOPTQQ7Fp0yY3nXOOVatWYerUqWhsbMSiRYvw3HPPecrI5XK46KKLMHHiRDQ3N+OUU07BW2+9VVmDyiIiBeQbwZfQSpcZcgJ1RbG2ycqOE3k5Do5g8MdTcoS3tfwYSuc8rK44gtIsuaQneT2ZAW+Udsn1ikSt+5jgyl+z+lnA/0FCdYSEd7VoQjyBSvFbsP3bVfkcwlzPq3nUib87I/HIrOdnvaZpWLNmDX75y18ikykZiA466CA89NBD+Ou//mvpfk8//TTmzp2LuXPnArCE9ty5c/Gtb33LzXPmmWdi7dq1uOKKK3DooYfi0UcfxX333YcZM2Yk0va6tXwTBEEQdcwHZDR+rNHV1YUjjjgCixcvxv33349Jkybh1VdfRUdHh5vnqquuwjXXXINbb70VH/nIR/Cd73wHxx9/PF588UW0trYCAFasWIH//u//xp133okJEybg61//Ok4++WRs2rRJ6h4Yir8vRXE9rzPBIFqoXEuYI6BNe7kjW/zIrGxBc0pHhErrjrif6KaeOJI2jCr381r26VF4XyWF3y1cpgeDBsiC7lF/uqysKBb0MKt72KDdsFnFR/C+eeSRR0LTjz/+eOn2Qw89NHCfRYsWgUeYiH7hhRfiwgsvVOarBBLfBEEQBPEB4Xvf+x6mTZuGW265xd227777uv9zzrF27VpcfvnlOP300wEAt912Gzo7O3HHHXfgggsuQHd3N26++Wb85Cc/cddi/elPf4pp06bhoYcewgknnCCtO5fLuWujAkBPT4/1j9/9MsrL/wgJBP/LuyuyxXmgjk8hL313xaZjwfLn95U7bOuCO27WEndrMYJzXOOVbGk10apeC/EtbadvfriTb8RJQuRWU0bQvnUgvGuxLF8koSrcA/4I5qr+H2YZZwF9TyXMq0kn6htyOycIgiBiUc+uaEQ49957L+bPn49Pf/rTmDRpEubOnYsf//jHbvprr72G7du3Y8mSJe62bDaLo48+Gk888QQAKyptoVDw5Jk6dSrmzJnj5pGxZs0atLe3u59p06apGyxzla2Dl86gSNqukLbFDdfgBl0To7a73wPKToIg65701osoCiITYkU0U/K0SMVyuYAJ3CYRTom78EaYd+zJCyQjcispo9r6R6mlVdbPyvpMgPW6WhyhHDUIXdh31fakoWd9bSDxTRAEQcSDJ/Qhhp2//OUvWLduHfbff3/87ne/w5e+9CV89atfxe233w4A7vIq/iVVOjs73bTt27cjk8lg3LhxgXlkXHrppeju7nY/27ZtsxLEvhAW8CpJ4ZIQ/pd2ZgtrR3SDAWYWrsWb69b/QYGmoswHj9U2VRkKMSsTA1EiO4vxcv0u+TKrZliZTp1BVkNV+zWnLapzWOlvkmoetz9vXFT3Qxyi1B9WbpQ4B2L/r4DhEJZBS4XJiHIcce5bcUqKO0jni78gs5b78wzLPHB61tcEcjsnCIIgiA8Ipmli/vz5WL16NQBg7ty5eO6557Bu3Tqcc845bj7GvG91nPOybX5UebLZLLJZyWoCQa7CqnwJ4Xcxjbuvi/C/mbYEKE8DxQaOlMksQWpbxuPWV60gUQWKUpUfZJHzi4RIxxQg8KPMyw1rkyqvP3uZK3DYwE+1cKH8uP046v0Qp+ywvFXcZ5wBxUbAyHJk97BRJbwCpy1EOIaobumlDSgN2nBv3WJe/5xvMU/FUdaJEYcs3wRBEERMWEIfYriZMmUKZs+e7dk2a9YsvPnmmwCAyZMnA0CZBXvnzp2uNXzy5MnI5/Po6uoKzFMRI9QlKhG2QXOLRRfzYjOHfnA39j/sDbCDe2BmuZvmilSJS3SSBFnHorrBRsFfVuAxOGLXrM4yWimRjrlWbWK+v7WsIwyV90gCfUIrAnquPn/f4wRasxIBZ/pIKVPl9bsDS77yotwLsukTsu3JQs/6WlC3lm+tMQuNydcWZh3tyv2Lk8Lz9M1Qr9NsZMM7TMvb6rWNs8+/HV7H4KCyDFOxrjnftVtZhtbfH5quRzin2XHh6x83bVevnR6wdHupjPcirOGuiFKYn6JuR6Ep/NpqRnh6sVEdzVdvDT9fel69jnO/4lgK03Oh6QAwe/q7oem7BpqVZezZMSk0feKz6mOZuGkgNL2oOF8AwNPh44WsGGWIWpEnFSFSs8ICCEMdLYbp4cfCDfXYKEsH/4QzzgF196iMJFzJRpFFZCxxxBFH4MUXX/Rse+mll9wlVGbOnInJkydj/fr17lIs+XweGzZswPe+9z0AwLx585BOp7F+/Xp85jOfAQC8++67+POf/4yrrroqfqOc/iRamWRWwkqshjGoyurtL8sACpMLeGzBTZikN+NnvRPwT++dgca3h+G1K+ClfDjdeaUI14+Z8a3tSRFpoGAkCevn1d4Dqn2rPB+MA1re+tRjQLBIUzHgsyo7gzYVWsX99TEOwF6bHlC/F48o9KyvCXUrvgmCIAiCSJavfe1rOPzww7F69Wp85jOfwR//+EfcdNNNuOmmmwAAjDGsWLECq1evxv7774/9998fq1evRlNTE8466ywAQHt7O84//3x8/etfx4QJEzB+/HhcfPHFOOigg9zo57EQXnLL1igWt9WjUAqjwHB374FY3rENj3Z/BCwvGVCr0YupGIW9XkSQGAWea7DW/K5B2ypx5+cMpWjsFZRTLZ66wvp5VOv2CN4rFZ2zEWpzrBgLwvxs5nyvAFHUW40I+J8Ys5D4JgiCIOJBo+GjlgULFuCee+7BpZdeiiuuuAIzZ87E2rVr8bnPfc7Nc8kll2BwcBAXXnghurq6cNhhh+HBBx901/gGgO9///tIpVL4zGc+g8HBQRx77LG49dZb46/x7RAkwIO21QH+OZfiHGIzDTS8k8a/PX08ftQ2iN5dzWjcpcFMA3qulF98iQ+aw+kXgaFLZolpdXaPOeKW6wArDo9lu6J9/OJoGEj0XNThvaKkxm1WxXWIurQYZ4DRAOhDQFjgRA8Bgprr1nYmOnzGFeG1vtb0rK8JJL4JgiCIeCQRZrUu/T0/GJx88sk4+eSTA9MZY1i1ahVWrVoVmKehoQHXXnstrr322uQbWKdiW0Q2N9QzfmDPxGl8oQFF1oAm+4Vey8NrjfaJatWSSM536e0jziWPYkWNQWJW4DocFABQapNjlQeg1WAtcmJkUAUW9N9TQfcY44BW8HpMAChF8JdNl7G3e+5NJribC/uUeUD4B4V8c8aTXg+9DHrW1wQKuEYQBEEQRH0wWuPz+F7cmWl9OAPMDCzBbUab6xypOlkZHOUW74TEbmJtZgCvJ7OP//yw5K5RrDbUEzHaY+reddvrFb+HiixYWaQo+7b4Fvdx54M7ZUYNJqj4rXOmjjhBGsV9kgyYSAw/o+CWIQiCIOoJzqGMWxelDIJQInO/rAPLeNkSYz5rlftCbgKpAesFWrR6WYXYf7SSBatm84wTtoRX1ATn3BTKtw+7kAiqT+KRUHPqZbDJJyIjwSzxzYz6FoNhS+UBFRhnA+6nsGjqYqRzM22LeNuNXct521Iv4pqe9bWBxDdBEAQRD5oHRtQSlbgeYQFZ5hYqm/fpE+FlbqkCMtfRigWpap/hEuGSaxjmyjus0G+PnAr6hFaMKbzrYOAsaGpHRd7R4gCaz4OibMzQiXdgloQ3YAlvMMD0DcL5y4o0vzxp6FlfE8jtnCAIgiCIkcP/csYC0urgJc5jMeMlC5X4Yuy4nbtWRO79X2aF81viai5Ia11+mAVQts53Au2JJJ5i1JPEdNdK6k2sjFrnt4nVV+vFym/jXOOgoIZREQfQnN8GMw33vueaNd2CGVaa0WBv0wEzC3daCk/B676eQkngj0AgQKI2kOWbIAiCiAcFYSGSpE6t3DLCLNKO9cx1G3WsWBqk1u0Rdyv1B3OKs6vKMq+wcJbNqw6JLh132bDA9sSk7iKQxy2j1vnrkNCVAALSxfu2YiTlOnPDnajmjuh2fgtyE61/0j0MZoaBa1ZARs4AaLZQNyXHM5winJ71NaFuxTdraQHTstK0of32Uu7/7hHyfR20ud3KMjqaBkPTX319orKMvdfvG5re9j9DyjKM7p7QdJ7PK8swzfC7VEtnlGVkunKh6U1p9Q1mKvKo0gEob+TUkPoXSRUhMtMbniE1aISmAwArKiqJMBEmPRieh/erb+FdA82h6d39jcoyUgPh6XpveN8AALyzMzQ509ykLIK3t4SmF8apjyU3Kfx8pJrDfzsAIL19T3iGvj5lGSq0COeDpYKvv8bzQITLUglJzEcbceFBjD7qwN3c/9IebedyERklqrlYb83xz0X3W6XrUMh5gmjZP4XM8D3f68DNmRg+VPdK4nO/gWj9y7F+69wS4AagDVk7ch0wstwS65rEX30EoWd9bahb8U0QBEEQxAeUMDE4AlRqfeX2S7emHq+tqt5EiDJfXGFZVO0T93yE1eOkmSlgaLIBrSOP9IuNnqWg3DaMMZxI2DVfagqoi/tvuJHNAfcETQxAGnBNt8S2meYotHJoeYaJB+/Evx5wNwDgq8/9DbpfHI9ixp4Pnres4MwoL5eE7NiA5nwTBEEQ8eAJfQgiCH808YiMtIej30tTdD8fVcjuU/+5jXIPywKsJXg+3CWjmopoax0IjhcQk7oXOUnOR49Q12jHv9RYUFrYtjJ8keHL9pEMkOg5BrPRxPcP+AWOaNBwRIOGq2b/EjwFaAUWT2QPx3WhZ31NIMs3QRAEEQ+aB0bUCpmVLYblLQnRVKmrtxPNmGt2FOiQCOcj0b7EEYPJxdiHawASWJrKPQ8G0PBaFoOvZ8GKdXJuagwzx4QmrhhTt/5W6lEi4l/iK+jRJB00knh2WF+ELL4pKzzF0a7lAFhTy9LMANesgpgpjtz56pHVXWvoWV8TyPJNEARBEER9EPU9rQYvnlW7djKg0MqRm2C65XHb8pXk+2fY/NSaCk8u/HX+ryAqdFJrQovzdfW8FayqmnM9bJHmEybRqOyegmtQZkIwM54HhSregjigFWtKRViaz+rLNcDMcKR6dFy1/QR0GQN4q9iHq95cCi2nwUxzcJ27eaVlDKfHA1EzyPJNEARBxCMJV7I6frEjRgE1eAGtWnRxK3JxuscKmuS3qCVNkIioCSr3c78VXGIRV7atyrnFSVjSxf/rUYSLA0TOvG8zDbAiAH8E+WrxR9UWr7H/WiU8L9yxbJdFxXeaktBxOudQDIpYzT0kGxhztuk5Zi0tluZ47JE5+Ni4AwHOkN6jAymO1ACDlrd29A8sjFhfpGd9TSDxTRAEQcSDHsgEUQbj8CwNNCaDJMlEuMTVNhCf0ClLq6QtCbv1A/V5zUzdmtbATFj9zD6PQ3sZyHTpylVJqkJ1rRMW3sUWDs6AdC/zBB6rBWJfrEh4q7xABAs2KwJ60RLhbEiHVrQ8NrScFc3NXZ6QwVpuLMi6P1z9k571NYHczgmCIAiCqA9UL2pJWrxqgN/aXa0lbdTit5rCGym6YnErC+KUUJ+oSoDVGCdKvHlwL4YmmZ7+1bhdh65etbZyhvt8MMCYOQjs1x+v7pj9wB0ck6ylXWnAM4/3hA5vwDUNSA0wy8JdBLJdGtI9GsAZ9BygDzE3SFuh1YqMbmYkZZOYHfXUr+U7nQI0efN6p6nXpE7N6wpN/6fZ9ynL2De9KzT99glHKstY/97HQtPbnp2gLAM9ijWDTfWwIDfC8/AB9ZCp/u77oemNhXZlGYNTw9dYHpyg7pKpXPgvT+POgrqMgfA8ynWrixGGYhXreLNB9SLMLa+Gr/E+YUKHsow9u/YKTU8NqJ9uE58NP19sT6+yDGTD71veoL6vjdbwNbj7925QljE4MXzMMd2vbsd4xRruWtceZRmsIfxYWIf6fuKNIWUYOSD8Z7ByaDScqBWyn6MKI59/EBlWsR/F1VgSDboi4T0MvxfD6angujsj+txlxoHCW81I95VOKrMt4PVoqa8YDqRfbHL/j0zc+APVurMHTMXwLAMnDjZxuMuO6YOsbIqGuLwY1zmYyazpBMx3Gmrg6REIPetrQizL95o1a7BgwQK0trZi0qRJ+NSnPoUXX3zRk4dzjlWrVmHq1KlobGzEokWL8NxzzyXaaIIgCGIEcaK+VPshiCgM03zpJMseCTE0IgIsxst5VdbuYWI4z2G+g6PYGO2nkHFLmDW8p0EfZB7BPpaEtxOgUM9ZnySimVdKJfexm5+X5qu7H9NaBQEMMLNw7x0zbe9rlLY17NKQ6WYeAe+tqLJjig0962tCLPG9YcMGLF++HE899RTWr1+PYrGIJUuWoL+/381z1VVX4ZprrsF1112HjRs3YvLkyTj++OPR2xvBMkYQBEEQxAeXMSQkHJIWR3X5LhsiwmXBp4LSo5ZZCxyvgVqeX8d9HAxI9VvuxlFh3BKjWkLR4hMlqekgtiqJG8280vrD1viupi+4UyyEdolu7lqu1A/0PDwrADhC3R9sznPN6+36E7GI5Xb+wAMPeL7fcsstmDRpEjZt2oSjjjoKnHOsXbsWl19+OU4//XQAwG233YbOzk7ccccduOCCC8rKzOVyyOVKvz49PeFutgRBEMTIkoRlr+5eHon6pR7F5giiunfiup5zzTsf2yoElb3gS1zRmUyAxJ1f67TJqSNhKmpPBXDNsnpqOUArYOy4jCd0j1Zs6U7wN0IUwar7yB0sEPuPf9DAf09we2p3xGN1703hnhQHKWoJPetrQ1UB17q7uwEA48ePBwC89tpr2L59O5YsWeLmyWazOProo/HEE09Iy1izZg3a29vdz7Rp06ppEkEQBFFreEIfgvDje9k19dKLJvWZ6FT1whvH4uefjy8KZF8bIpcpig3Zdn/9CQiv4fAmcKzeQ5OKVjCusSK8RzFh51+53JwQ9E75XOPeOeDggJmyPuI2fx5Pmb4BIia7R5KGnvU1oWLxzTnHypUrceSRR2LOnDkAgO3btwMAOjs7PXk7OzvdND+XXnopuru73c+2bdsqbRJBEARBEKONkJczj/vpcAYaGgN45puGfDTDNz/V9Lo2+61f/nmsZfNcfWWJH0AQGNy3j9/VViY2/Dhl+NpaycfZv1Y457ppW8qa+0vUNYF9wj/AVEmfYbaruSGUJ6Iqk4TtqKbiaOdf+cpX8Oyzz+Kxxx4rS2PM25M452XbHLLZLLLZ8Ki/BEEQBEGMUUKsN1WvBU1URVR37KiiNarI9S/ZJqvH78I+GqzIzIRrMSXqk8B1v5Oc9sBhRT7nsNZsrxT6PRyVVGT5vuiii3Dvvffi97//PfbZZx93++TJkwGgzMq9c+fOMms4QRAEMTphqM7CxDi9MxAx8L/s1ki4UGDeaCjnwYak+9NUZfnFtj9422gUsaOxzXVNwudTFniPawieDhGjXLE8x+OEVzMBuMZ9iZ71tSHWJeec4ytf+Qr+67/+Cw8//DBmzpzpSZ85cyYmT56M9evXu9vy+Tw2bNiAww8/PJkWEwRBEATxwcH/9lajt7laibmxJOiDxLMsorlsMEMWICoo4rQs6jQJV6LWyKzdnn4bow/KvDKc6Rhi9PNqvDfonhh9xHI7X758Oe644w78+te/Rmtrq2vhbm9vR2NjIxhjWLFiBVavXo39998f+++/P1avXo2mpiacddZZsRpmNjbA1OXu6MVG9f4djUOh6fumdynL2C+VD02f1vC+soxic/hdwZvULvdM18PL4BF8VhR5eE693oXZtSc0XePqX4BMUzo03WhQjwfpg+HHkn03QsT89xTXLl8IT48wVYJlM6HpvKie9MXe3hmaPmlDeB8FgAkdTaHp2pDiWAFo3f2h6YXpeynL6P5weDuK4ckAgExveB8rZtVvuap6okQPNRrCfzr1xgg/UhnFvbBXu7KIQmtwHysWh4AX1c2oiCRMhCOgSF588UWceeaZnu8///nP8alPfWrY20KMXcJcpUcb0qBTzKs/olizuS8wGkd5uU5dsv3r9Rwqg3KNZqqw8taMGrZJ+kjipT4p9k1ZP/VPlQjqx869IMay4PDWE9SeYe9ro/RZX+/EEt/r1q0DACxatMiz/ZZbbsF5550HALjkkkswODiICy+8EF1dXTjssMPw4IMPorW1NZEGEwRBECNMEoFeRuCF9YADDsDmzZsBAH19fdh3331x/PHHD39DiEDKXkxHIY6L6mg+BgClNanFIGjMikBfFjCMBd/SXBNEBbe++2PnySzosvbUk9Ctt/YkTj1qJt+SXUlEu5ddR5l49rihBwwwyWIVSMsGPHPIgyzkQW0Ytn43Sp/19U4s8c0jWDYZY1i1ahVWrVpVaZsIgiAIoqbce++9OPbYY9Hc3DzSTSEE3BfTUUzFaxXXEY7wNhqA1KBgqeaW8C4TBqJFUhDqzncmCCWnnDIhBVuYC4MWMnf2esAZUOD2QJHjRlxPbRzzBPW/GJS5mEvEMxBsyfa0IyCPaAn39A9JXwnKS/1qbFHVOt8EQRDEBxCe0Ccmjz76KJYtW4apU6eCMYZf/epXZXluuOEGzJw5Ew0NDZg3bx7+8Ic/SMv6xS9+4XFBJ+oHetEceZx5qakBlFnmlPNTbZHtChFbyHPNWteYa/C6oAvWS1mZ9dYfHNE9ML2IwSlGSYTXWTvrDacPeLYprMmRiblvWUA1wdsmKPZD0PJ0QTEJwqLxM146HzKRLZuSMSKM0LN+NJBKpXDooYfi0EMPxRe+8IV4+9aoTQRBEMQYJYnAVJXs39/fj0MOOQSf//znccYZZ5Sl33XXXVixYgVuuOEGHHHEEfjRj36EpUuXYuvWrZg+fbqbr6enB48//jjuvPPOag6BqAUyC1aFVi2iOqLcox6LoN/ijZKwdt3KbZd8boeyYT6Xdv+Lej0LWmYwMMM6sLptZx3dO2KQMXfbCFl3/ZbsSgOeMY6ypcKilCGKfdnAjbMtbP73cDBSz/rRQEdHhzuNLS4kvgmCIIgRo6fHGyAxm80iGxDQcOnSpVi6dGlgWddccw3OP/98dxR67dq1+N3vfod169ZhzZo1br5f//rXOOGEE9DQ0JDAERA1h8R43RIkCkSrt5G1XNVz40yYrQYyO1PQBxl4CmC58HmsgS67kG8bDhy3+ca3dfd73Vq+h/E+iTIfuR7Okb+d1Qrbio/JP2gVUmY9nDciOcjtnCAIgohHgq5o06ZNQ3t7u/sRRXIc8vk8Nm3ahCVLlni2L1myBE888YRnG7mc1xnii2WUF2ES3iXq+aWcWRZuZgCDU4qYu+AVfH/Rz9F2yG4YDRxO8DUVYcI27rrhUeqKEuCZmdbcfmet5g+yOApaZq62lVa4m2SAYMSu3WhwyR5mt/N169bh4IMPRltbG9ra2rBw4ULcf//9iR0OEG36GqCewtbT04N58+bhyCOPxIYNG2K1gcQ3QRAEEY8EH8jbtm1Dd3e3+7n00ksratKuXbtgGAY6Ozs92zs7O91lMQGgu7sbf/zjH3HCCSdUVA9RAySBtwgvymBPdQYT7nHGgezEQfznhx7Cp5r7cOr0Z1FoN4NFa0DQqiBhnLTQcwYEoojwJFZiGs2I0wmMrLWUp6l70+LgxgRQUcEcbyAZN+rESCBSe80ZZvG9zz774Lvf/S6efvppPP300zjmmGNw6qmn4rnnnpPmf/zxx1EolC+X+8ILL3ie+yLO9LXrrrsusB3OFLbLL78czzzzDD75yU9i6dKlePPNN908r7/+OjZt2oQbb7wR55xzTpkXXxh163ZemNgInpK7BKbCl/AGAGzbNiE0/acTDleWoVrH+7fvzFGW0fSu4lfEUPdK1qBYU1qx7jUAcDO8HlU6AOXa1+aebmURaS38fOg9LcoyWCF8fWzW3assgyuORbkGd4TI/6q11ZOA9fQp8+hdih+EgnqtcGP/6aHpby5VL9LdMf+90PQpTeFriQPA1jenhKa3/1HtRtz8Tvh1yfSpr1uqNxeazlvVEbTNtvC1wIcmqo/FaAy+n4qFuv159+CMcCcFY963Gc65Z1t7ezt27NiRWH1EwtT7y+gIESgYEnbBd6J4R4nYrhRXzhxuBuT6M1jbtS9WjHsdD20/EKl+rbSsnP/YHOupL/K5W2yNxRNPASjK65YhW17qg4aRAYam59E8fhDFP7chNcAsz4aY54QZtTmHdXddJPENCGDZsmWe71deeSXWrVuHp556Ch/96Ec9aaZpYvny5dh///1x5513QtetUZ+XXnoJixcvxte+9jVccsklZXWopq8B0aawTZ06FQAwZ84czJ49Gy+99BLmz58f6TjJ8k0QBEHEQhb1tZJPkkycOBG6rpeNdu/cubPMGk6MMuglVU4tzkuMezPMFZw74oJb1syG17L4wVPH4cDHzsa25yYj1cfAUzxU4EZ1NffUGZInSjkAoOXhiXwdVpfMfbluLOHDed9owKwPvYMvH/gouO49P3HOR0XPBe7763ytl+sggZlAWIT/eiHJZ/2CBQswe/ZsXH/99ZHqNgwDd955J/r7+7Fw4cKydE3TcN999+GZZ57BOeecA9M08eqrr+KYY47BKaecIhXeUYgyha2rqwu5nGWEeeutt7B161bst99+kesYHaYRgiAIon5Iwtcy4TejTCaDefPmYf369TjttNPc7evXr8epp56aaF3EMFPHL9EjRsIWbwfRXbyqMgA3orNmO1c1vZoBZxk02IJMyykihQdsL8tvC31R6EWN1B5lm2i9Vbm8M6Ed/mWnhl1k1fi+8cz1LgCvPjEDa/UZSBWYZ1Bl2I47JJJ6vVHPAwMeEnzWb9y4MZKX25YtW7Bw4UIMDQ2hpaUF99xzD2bPni3NO3XqVDz88MM46qijcNZZZ+HJJ5/EscceixtvvLHi5kaZwvb888/jggsugKZpYIzhBz/4AcaPHx+5DhLfBEEQxKigr68Pr7zyivv9tddew+bNmzF+/HhMnz4dK1euxNlnn4358+dj4cKFuOmmm/Dmm2/iS1/60gi2mqgHZEGhRgUqkV0jEZ4E7nl2llTSLZduFmZZjuCOW6YFfMJYZnWtxjVcKryZXa1oBXeW0hKOwb9k1IiTYH8Rz69WBFifPZhS+xl3voYMc30J4J47cj8v44ADDsDmzZuxZ88e/PKXv8S5556LDRs2BArw6dOn4/bbb8fRRx+N/fbbDzfffHPZ9LNKCJvCdvjhh2PLli0Vl03imyAIgohHAtaxSvZ/+umnsXjxYvf7ypUrAQDnnnsubr31Vvz/9t49zI6qzPf/rqp96U7SadIJ6U5DEoMGBRIuJhGI3AMZcgBFfEYcMMQRL/wIHELkOAJzHqOjyQyMiMNN4/GHOA6GmTOgzk9EwiBBBtEQyRguCkgwCSZpEjrd6du+1fr9UbtqV9VetVbV3lV71+5+P8+zn7131apVq1bd1ne973rX5ZdfjoMHD+IrX/kK9u7diwULFuDRRx/F3Llz6ywsESsxNj79XJSBBAkiGY5x0zbcsz4peKZO4lpZeFoutiVAKzjGcguOydpGNg2TsgwCsRyHpbGqrExuJbe2CePaHzkR14PrOCSu+oSAVqinJrzrM5kM3vOe9wAAFi9ejK1bt+Kb3/wmvv3tbwvT79+/H5/97GdxySWXYOvWrbjxxhtx11131VzcRgxhI/FNEARBhCIKS04t259zzjngimCH1157La699toaS0U0hTgFZFmMcQ0wsqZ7rFaEbbkMeh02NZiWt36c1rImWr6dc3CLLHi2BdTT2SET1y6radD69tZH3Dis3YUOjsIRBsCBdL+G1Agz68WnLA23CjeQht4fCfb4CIK3YyipHRbNetc74Zzb46u9HDhwAMuWLcNxxx2Hf/u3f8Nrr72Gc845B9lsFv/4j/9Y0/4aMYSNxDdBEARBEOMO5zRIhU6OYm8O2tsZZA5p9jjkwA3fRruHWuLCT2Qwz3cTcNWbo5EudAv3cRX3RbXeMxSVodzBkioLhqJ7/LpoHHbNWMfDgEKHgTc+8m28WhjGioc/b0b5DlL+KIlRiCZ2uIb33uCO5UTLcsstt2DFihWYPXs2Dh8+jE2bNuGpp57CY489VpXWMAxceOGFmDt3Lh566CGkUikcd9xxeOKJJ3DuuefiqKOOwo033li1nWr4GoDYh7CR+CYIgiDCEaEr2pIlS6DrOlavXo3Vq1fXWzKi1fETarU2qjnA00DhiBJ2nv//4tyXPoy9v+qFllcE+/LQtHGsTnEhqoMmWQC98yaLRJrLvd9hIXfWpWy7KiQBtTgDjAxQeu8wiu+0oW2fDiaZRbMuIe60+HOGx0fS+EPu+OZZtWM8/1wDClM50oMMLMD0cw2F+fxuEPUMIUhUR4aMBrud79+/HytXrsTevXvR2dmJE088EY899hguuOCCqrSapmHDhg0488wzkclk7OULFy7EE088genTxVNOq4avAYh9CFtixXcpo4GlxDOhZQ6rn3DTf5WWrn/sbfVcbMXJ8v2079OVeUx7Q/604ll1HvrUDun6IM97VlKUQzF3tplIvifV3NkAYLzTL13PRkbU5VAEUuAswAx6WcXc6ap5vI0Ata4rzu2Macosct3yec95Sv3GyRwcla7XDyjmAQdw6Fj5vNWqObwB4Lb3/V/p+nel1HOW3z/tA9L1/9x3ljKPGdvHpOvTfep54lXXoGoObwAYO1KeZnRGgMezpBilfIwzSUYxZrG8fdAIqMQEQWblrTE/VgRSAzoW/voKDO+aimyRVdzRE+zy6cKvQ6JJwttbZ2HqULa9aooqexkzXb65BqRGGLQCYKQ4PjjvDTyXehf4/g7xdopyBFln58eBzCEN/8//dzVgAJkBxzN3nATSYhx2RxXhoY73oChKfiKJ8F0fhO9+97uhshaJcgA4+eSTfbcJMnwNiHcIW2LFN0EQBEEQRL0wA0gPMhR2dKKtwEyX81YJuqZyp22C5bveecD90jjHkKsCpBWmcHSd9DbOnvU6/v3J05A9qEHLMzz7xAKwEoPusSeIrPOyfUjLzitVnhoFUqMV0W2L9qRfV0HhQCqATWQiUs+zI+y0eMT4IkbTCEEQBDEu4RF9CCIAtUaqdoogrQikhpk91rtui07YbetJLzv+BgvvKKb99at3V0A2UVrnuHIN+Mjs/8b6mb81pzDTzEjqqWEGfax6mIBofm6/Ob25Vv4w8bZWWZxR1S1LODMqy5MuqoKcR2tYQdTH4qxnIsHQuz4WyPJNEARBhKPB48CIiY2RMV3HtRrGnLrcmS2BFMW1F1SAiizXQazVQdbHaPV2WqHrcTGX5S1bJ7RMO4R/aoxh4+Zl+HbqPKRG3OORRXn7jUuvTmgGbStO4UgPsMoc5T5uwhzizgJLkNczv3jcNLU8DBibYSA9pEEfTV7dEGXoXR8LJL4JgiAIgkgsmiRwVlCa5gocp2W6AVbvqIW36hwEcffmDNDHgGxBM8f0e4W3wrKuLGIKKHYYSA9Wx21xusWLLMLeMevkWuyPnmNgAcINjVfompi4kPgmCIIgQpGEuT+JiUPirpV6Lc5RiuaYrN9xuBnXkl60ne2ebrj/mxuo8/WOM3flywEtB7Tv0auec5Yrujdau591O3HXrQPOACNtDsdoSpR2DqQPM6knShK9BaKiVQKu0bs+Hkh8EwRBEARBBCWIkIxKFNfrnp5QZGOu5RtWfjKf5TJElvwq0SwS9Y59ONP7uZzbm2iOdTGMna4VxsseA7XEIojgmgviiZKUuooDCrg2saFQBwRBEARBEFHSoqI4SoJEE68reFuIgE5OF3Drt9N93OtK7jduPIgl0B6zrgHFSRxjM426g9TFgVaq4Tw08DiSWGcWcQYeJMY/JL4JgiCIcFAEVIIIToKudZdVNgJx4xSxXoTCTuBuG5fIUlnWve7i9czZ7HcMpTbAOKKQ+M6YJArBJJZJNI6/nus3icfogt71sZBYt/Ps22NI6eIzln1H3Wcw9ffyCC3Td2SUeeSmt0nX85T6imJFeRojoz4FeiYt30dWfSwoKQb16NWBRarzqCHUrBfFxPZ8LKfOQ5Off5YKcFlr8qclY4qnaVtWuQtjTrd0/YETpyjzGOlVlDPAKen4k7w+pr2oHvBVbJeXY2a7eiLQd6WGpOvnpNT1MTd7QLreaFffk3pOXmksX1DmUZrWIS9HRn0/8ZS8Tg35bV/ORLJ9gFu6VmgcGEGEIMaI5EDIe8mKkh52O89+RW7X3nVeUcsd+3am925XC4GjmQv2HdezjBlA9h0G9GfBDHrmybCnHOPV109SsK8v79Ry4xh618cDWb4JgiCIprFkyRIcf/zxuOeee5pdFIIQE2XjMaK8DN2cEstIhetoq0csiMSqLHCULF2Q7ZwN/yCBzPxcxcNuExaZ5Z8ZZif5eBdp9cDL07vlpnHX/OrO4QD2vOARuHvXWkazUEApA+SP4DBSEM5TnmR3eSIZJNbyTRAEQSSYiETE1q1bMXXq1GgyI4g4iLIxHZGrNxiQP34UpZyOSa9nGmIllIlbb/lqLYvMou7N389yHeR/lAJJdqxk9QsAA7gOFDtKyAy4ZYltBdeAwmQOxoHUcHPULeOAoQGFTgPvOWU3dv5qDtgQq7oWx905H2/HkwBIfBMEQRDhiGIcF73QCaImGC/fgm9noRfhctWNm1qEtZ/QDeP27Y1K7pdnUHfzOMeaE8GwzycHtDwwaXdKeH6tNHqeibdvENb+Moc0vPHrOUiNsUo0+/Hq2UDv+lgg8U0QBEEQBBEzUU4txEpA236z5R9Hw18mbETjuv3mzw5iFZZNOybaTz1wrdJ5Me4slC2G67rxXsNW9Hmj4umhFeASco08f/a+uFmO9CAD14HRo4tI9+tIH2bQIgiLZO1D6SETJA2RWEh8EwRBEKGgICxE1CQtuFIcRHl89jzNMeIroFlFvHoFsXe8rve3nUVAESVyN5ctVyII+kY0j6rrR6ss4ykARbfwTYLHAjMAaOZlpE8twBgKGd3UK5y9/5lgWVUhPNvHBL3r44HEN0EQBBEOckUjIoYaaMlCej4kEamdQbJE66uykqz3Cm2RhV1ZVm+epfDbEA2ifJ6NFJA/wkBpkoHUYR2ZQ8xenYTTZkc6LwHZl9rDRz33imqRyE6KVZve9bFA0c4JgiAIgiAIF6LI0rUEL6vH6h1kXvKgllDLihe18G62JTYwCRVB3uuhOInjxA/8ETsv3YjikQUYmcq47yR0mljXkFYyBbhWanK5WuX6I2wSa/nW9uyHpvnMX62asxoAuDxNaop6TmGgS7p2bGa7ModSm7x/g2ci6P+IoD6YHqAcqjSG+unDi0X5+gBzLKuOBYHm+a6v3rVOdXTmobmTpOsH363eT6FHPl89xtTHkT4srw+eVrtMTdkrP2+//9MsZR73d31Aul41hzcA/N99i6TrJ+1SH4s2OCpdzzPqCbZ5WjHXfFF9T6aGFfONd6mPpdDh/9YtpeN7I5Mr2vhhw4YNuOWWW3DDDTfgzjvvBABwzvHlL38ZGzduRH9/P0499VTcc889OOGEE+ztcrkcbrrpJvzwhz/E6Ogoli1bhnvvvRdHH310k46EiIOgEc7DIBrLLUpj7cvP2u039Vmjny2B9idzI27U+N2EirSqzpkSsGPPUbhz+rvAhnXX8IqkdXTUdK210HhtetfHQ2gF8vTTT+OSSy5Bb28vGGP40Y9+5Fr/yU9+Eowx1+e0006LqrwEQRBEs+ERfYimsnXrVmzcuBEnnniia/ltt92GO+64A3fffTe2bt2Knp4eXHDBBTh8+LCdZs2aNXjkkUewadMmPPPMMxgaGsLFF1+MUinmgchEU5FZn6XzXYe8370u57L8RdsljqDjdxtFgurJ23mSGmHQdrbjnp+uQPagDq2YPNFdF/Uci+jdGee5pHd9LIQW38PDwzjppJNw9913+6a58MILsXfvXvvz6KOP1lVIgiAIgiCiY2hoCFdeeSW+853vYNq0afZyzjnuvPNO3HrrrbjsssuwYMECPPDAAxgZGcGDDz4IABgYGMB3v/tdfP3rX8f555+PU045BT/4wQ+wY8cOPPHEE806JEIB1wAjYGwop+hVETSiuSj/WsTyuBJizSJoHTZIODndyplhRhPPvsOgjzrWT3Qsi3mDgq0R8RFafK9YsQJf/epXcdlll/mmyWaz6OnpsT9dXXL3bYIgCKKFoN7wlmf16tW46KKLcP7557uW79y5E/v27cPy5cvtZdlsFmeffTaeffZZAMC2bdtQKBRcaXp7e7FgwQI7jYhcLofBwUHXx48gVk4iXkQWa5mLuF86P6EtO8eW+7jf/oOMBU8kQV3U49p32LwD1m0U54A5y+e8NpzCnLuHHIzr50SQcxX3sdO7PhZiCbj21FNPYebMmTj22GPxmc98Bn19fb5pw7yMCYIgiObDeDQfAFiyZAmOP/543HPPPc09qAnEpk2b8Nvf/hYbNmyoWrdv3z4AQHd3t2t5d3e3vW7fvn3IZDIui7k3jYgNGzags7PT/syePVuYjrOylTZtWmpbVmglDGYg1FzEYVy9vUJZZDlXBW8Luq5WeBJCDAe5fh1pnJ4KdV/7XqtpRNRaLt/tytHENUdkemcUffva0gCuV54TLYOgE0qIX1T0BorZKN/1RIXIH0UrVqzAv/zLv+DJJ5/E17/+dWzduhXnnXcecrmcMH3QlzFBEAQx/ti6dStefvllrF69utlFmRDs3r0bN9xwA37wgx+gra3NNx1j7pYf57xqmRdVmptvvhkDAwP2Z/fu3T47B4pTOHDyIEptcDVCk9SQszoJEiHqIiSMSK4VZyA10bhuP+FfV9kafe2I9hfSEujsLEnSte+kVoHlt41omjqRQOUMyE03YJx4GFxvISt4rWVM6PknwhP5K+Pyyy/HRRddhAULFuCSSy7Bz372M7z66qv46U9/Kkwf+GVMEARBJANyRWtZtm3bhr6+PixatAipVAqpVApbtmzBP/3TPyGVStkWb68Fu6+vz17X09ODfD6P/v5+3zQistkspk6d6vr4oY8x5HZPgZaH61pJUuOaa0BhMkcp05oC3E/gykRRVPXvtYxL8/V0vogs7EFouHj1m7+5mddwwp+71phv67d1zflZUVNDGgp7JoebZ7vZ+AylUMI8397lcUDv+liI/XUxa9YszJ07F6+99ppwfZiXMUEQBJEA6IXcsixbtgw7duzA9u3b7c/ixYtx5ZVXYvv27TjmmGPQ09ODzZs329vk83ls2bIFS5cuBQAsWrQI6XTalWbv3r148cUX7TS1wlnZPboAtPVp9hy63qmnmg0vi6jC3Bxy041ElCkMnJnuumE6DRohyi2MDGCkFJ4FrVTnSXnetUCdOd3MZR0tzAD0MaDtbQ3MSK5nQEtD7/pYiH2e74MHD2L37t2YNUs9DzBBEARBEPHR0dGBBQsWuJZNnjwZ06dPt5evWbMG69evx/z58zF//nysX78ekyZNwhVXXAEA6OzsxNVXX43Pf/7zmD59Orq6unDTTTdh4cKFVQHcwmI1oJnh1gnOhnUSGtmMA5wDba+1AS3a8GelYAHUwsydXWvniHc7Vix/eyyarrzrqPOGzwfeCNHLG7SfBmM/EzzfAKruvZa4D8fhOSLCEVp8Dw0N4fXXX7f/79y5E9u3b0dXVxe6urqwbt06fPSjH8WsWbPw5ptv4pZbbsGMGTPwkY98JNR+jIFBGCwdtng2LCU/NCYZ62ah5YryPIwgd7niLisFyCNfkK7mPuPp3cWQl4Pp9Uer4AHmd1Wm4fX7DnGurlPls09RX9DUT09lkJogh1qQZ6KNqc0WqTF5fbAx+XUOAJP+cEC6fuYT/q6mFv984Czp+tIUdYVM+pP8vu59blSZhwqjc5I6keL8a0N5ZRZskvz5NjZdfY0NH+1fZ8ZYfH54UQRRaYlG0gTlC1/4AkZHR3Httdeiv78fp556Kh5//HF0dHTYab7xjW8glUrhYx/7GEZHR7Fs2TJ873vfgx7Bu8TCO+ZT9LuZaCVTgCOC+6HRMA7A4d7rXecSwgIrJFCdxrssDCKrppJyYC5vPkHORaLOV1Si2VkfE0jgJeV5EDvWddLAThZ618dDaPH9/PPP49xzz7X/r127FgCwatUq3HfffdixYwe+//3v49ChQ5g1axbOPfdcPPTQQ66XNkEQBNHCROFKRi/kxPDUU0+5/jPGsG7dOqxbt853m7a2Ntx111246667YiuXyKKVtIZ2S4019RC0HmVBz5o6DEDSGaDctFnXUdzieAKJboskPQ9ipRnnlt71sRBafJ9zzjlSy+LPf/7zugpEEARBEARRC1xDS1qik0QQEevtDGmKAPdYvr0BuqzyWeus/02d/sgvCFsUtJjbuRU3oZ771c8ro6UIe9681u9WPvYJSuxjvgmCIIjxBbmiEU1D4GpMRIufmPazgDdEeIvOO3cv9xurLnKPbxrO/cdVby0gwjkDuA4UOjjSg0wYNyFMnIGWxu9cyc4juZ23NCS+CYIgiHCQKxrRLBTXTSu7gbcSDbd4+513ifD2LvdawaW7i9OaGrbOvFZOb9A57xRUCRfeUdPylm8/knAe6V0fCy04MyVBEARBEERrE8cUXd784yR24e0Uk6K5jf2Wozz8QCC2W9KaKqtn2bokHYMHxgFWAjIDrO5pwhJ1rhrNRD72FoYs3wRBEEQ4qDecaDBeC2arN7g5MwUi42XjpeR46j3emrf3GVPdMGQWXzjG9zvTS46z1a8ZAOHHBicYFsV7BOPjeVAzog6oKKF3fSyQ+CYIgiBCEcX7PuHtQqIJyNyCw0Q7twI5JdkFnWvA2JEGMoMadMUMibVGenfOixx06jBX2jqiideMd2y3Jbol48tF143z3CdSnLXAuOxWIXHndhxB7/p4SKz45gYH97mjWDpAsRVzjfKCfO5sANAODUnXt2lqr32elqfR+4fVeQyr06hQ1hkLcCyK+cR5QT1ftKocbOpUdR4pxbk1ArS4VPONl+R58DH13OpTdstbVMX2yco8xt6WzwWdHla/dTrfkM85rQ2NKPPgw/Jjmb5FfT91vt4lXV+YIj9WAMgckpdVO6S+Vwo9ndL1o91ZZR6qRv2kt+pvDZTUxYDRLpnnGwlWHgQhIKj1N5FiKiSMA5lDGjT1o9O1DVDb8ftF/xalUVm4neK9Kp13rumw58mb3jtmu/w/N43DaDegjTFk39ECR39uehA2b6RqJ2GXT0CCdr5xDdAUzbxxQ4s/CyciNOabIAiCCAeP6ANgyZIlOP7443HPPfc09BCI1oI5BJ2q8c14fFbvyKy/HNBzqGm8a73jY62x5qIx50HGoUujnDst1VGIAm9ANQ4UJ3NkjxnEG5d9G5PfM4DiZF6VXlRmb7kbNeWYoZsfc+cIH8G6BYR33PELLJznS3ROrTRJ9nqpGb9rtRFu5xG864kKibV8EwRBEMkkyulHtm7diqkBPF6I8U1ga25EY0SB2q7hqMRaVPnUcixeK7g3r7rwWr6B+s6Zj8A3DNN2VCxpofMPO3a9nusF8AhB0Rj2Zli2veeoTprhiSLzBGlEeRrugdOEThiaaiweSHwTBEEQBNF0VI1Z2+1YkCZ0QzigZdbpppzERqTTku38H8Q117utO2PUJprLQtLK08iYFn7nOvu3inIZuOZelhphyO+cgmP2fQ76qIbMCHO7c4vyFgSPaxTKfUXoTSF1a49jn9auE3p/xInyHrMCAtbw/JiI9TmRIPFNEARBhCMKVzJqWBAOAgVRA0wx5tMw9Y4LF+Uty8dvHLPTtTXOqOS14iyz3zGI6kVq/S2L3poiUvOKttMcIUcC5+exCLvOUfk708+AQ7o7L1m+dbrqJwo/cc0837LtPHlwrT5X7WbVUUOj7wfAVR7PPRfm+RCqPuOse3rXxwKJb4IgCCI89EIlmoFlDQ0gwJ3L/Ajqep04ASZBJLxrESm1TgVlWaqZ4daBVXUYwgpunVdnJ4J3mSq/OM9hKNd0b5qwbue1Ck7m8xvjdIx0g3B1eFnPJ90MmspKgG51QLXQM8RFq5Y7wVDANYIgCIIgEoEVqdhXLDZxbCkgLpdTCEZFWLFsiVC/DonQWOchSCtRIPaZn6C0lovGhjP3NtZ14BehXCs5jlfUURDHmHYB3FFXIstnFZ7j9BPTnJmB2gKdA9n+iFgQDtkoe4wUJ3N0LDqA3JElGGnQuSFckPgmCIIgQuFs6NfzIQgvQcfHKseGR0SV8BbkHfZadnYwiCI211J+6djtoHiEox2J3SGOfYUgq3xcZZEJYmc6jzu8KCK5X6A41/6dRNUREQAjCxhpz7Xg1/kQFGbOBV+cxIOVO8x4+nFGo6KtV+FzLZYywLr3/QSTjhoK3nkSZRmiypre9bFAbucEQRBEOGgcGBExLuumYBw2AFusiaygMupyu3aUw/wRPp+qPAKsC9tgdaZ3Ha8oH+az3CMcvXVv7yfAcdhBpkT78Jw77zbO43HVC6t0CHjPP2dy1+laroGg3gyMA/powEzDlIED2Xc0sKDzVXvPTVh39lbFKbxrmLqv5t2W34Mu4V++DlMjDGse/mtoeSBVaEx5YoHe9bGQWPGtd02DrmXEKzunKLdnRfnTig8NK/Pgg0PS9drImDIPcPlAGj6qzoMXi9L1LONTT07SAdKoyOelq1lafTmx2b3S9cPzu5R5FCfJuxHb++TlBIDMnn55gsOK6yPAedNff0u6fvoB9fRKfFJWmUYFKyje3Kz+t7NxaECZRh8Zka5PtbUp81DeC+m0Oo+0/PrJd6i7qVU92elh9XnL9snro2OX+p5l3P+eK+US+3gnCCVCgQVUWb5Fkb69hBFdouBlsry924nGm1eNB9XKVtISoBUry8OW1bsPv+Oo3kCSmag+y+UTiWNnmb1WLuc5qhqXDf909jm1zoMG8JQZvM1azgzP9RFgzHI9HRo1pXWKX+u38xuCZV7X+kKAsnhFtqxzxDEev9Vxnv/8NA5WAjIDrCliz9vhlRoF9ByzPUisNHUzUTpUxjnUOiMIgiBCEYUrGbmiEU6c4lXkQir6Hyawmv+OUWVpF5XJ+V9E0EBtXAMKHRzFo3PQ9meRGWS2wFLhJ3y5BsDTwPetC497t5+Idq0XnBOvRdpKI5rSy8+iLR2fzgAjZXZQ8BRgpDhY0VkAn+MTINpn1GP0xTv2/Oc+65hgmbVIVUaRtdvKS3QNRHjMoYLMxYDzWZEeYPa12oxy2PDKNzPk5anpGmyw8KZ3fTzQmG+CIAgiHDyiD0HALeyklmuFIFdSgxgRiVlveZ3lk5apLJRKbRz/cdY9mH3yn2GkKtuq8GsIh+qEENx/Iu8BQzfLZAX8ElquvVbd8n8jbc7vbY//drQ0Awk2BnDd/JmfZiB10iF0LerD6LtzlXUB68vvf1MEgZ8grjdP2X/v6gjElDMvoHL9NGXMNUyRq5XMjppGnlfvM8sbm8DyFgl639ZekIjy8cub3vWRQ5ZvgiAIgiCai8diKlwmcrl0CsCIkY4/httS7yyDr4W1fDypUYYPPXMt8HYWWflIGiW2Oz6qG/8qMSRq/Bsp2BkW2zm0EgOKjrpwuit7reaaucxImytYkQE6lONwq8pZbrAzAOgdw45THwQAnKNfirf2z0J6yM/NQFCmpODX8SNwN490H37UuU+VB0hDOzdYc93owwhr63lgdW5F4paepOucCASJb4IgCCIU5IpGNByntTnIuFWRmK/xmosyUBozgNQQg/Z6uznm23I5r+N+ELnDK4Wnn3jSK7+NLMCLHKkSg5Eul9Vr7eawx2QzAxibVcIRsw9B1zgO7DkC7W+l7DwDCySnl4FR+TOcz8jzSOIzxSuwnaJX4m5e0z4sAnhfRCXYrHMPXo5f4On8aMhznse/L1GHmp/olnVA2K7yKWD06AIyfSmkRhi0oEH1Ggy96+OBxDdBEAQRjihcyeiFTDjwDcrlcWd1BUTzc4cW5deg682v4e2yUBuAPhZtmWqJ5l3Z2CwLT5lWa1Zi0BcM4Kyj/oSDucn471fmIrs/ZYqssnuvs04ZB2CYwj07cwS/XfwQAGBB/koU93dCK7rrQxSpvsqDoHze9V1tOPbpq5BOlzC6bwraRpgp9NVxVeurk6iIUmj7XOs1TSdXh+XbNcwiBYy9Zww4lEFbn2YKcLjrvVZhHHi7GC3fTqEd1KqvLDMzPUy6Z/fjwOEZSI3UeZE2wu283jwIFyS+CYIgCIJoHlYjm1VbmACP4PYsq3IN11A9P3UTGn9+wcmCCsIwgkUkEHyReQRwQCsy5I8wcP6c13H3Ub8GAHxg6C8xuP9IM51A5DhFM3fkXSppQlEkG4ttLysC0IHUMAN2TAFnQLtRPr8FwTH40FSrm/ca9NZ9WCEcZUdCwLxUkfS5Bhw7ez/+mD4SeHuScHu/fGT7DNJh5rruGmj5rhdmAHoOGPzVTGSMCDoOmt3BRISGxDdBEAQRDuoNJ6LEup48AtsbRZvrQCnLzSl8nGOlmeNyisjVXIhMEHhdi1U40vhFA3clV1jdahH4fuViJWCwWJkusVDU3V4EhuO3o9MDHCjumoz3PbMSAFDcPRkZSzAHdKt11UV5G54yzz3LOazuqPM4m0mYaySIC3mMSCPSc7OT5E9Pz0XKUJ/jUAK83IkWqJ5qsHwHKYvIQyMqtCLMmYgjcOuOFXrXx0JixTfvnQGui+fKHZ01Wbl9akz+FMj+KcBcvu/0y9cPB5grvCCPpsKLAeYYYfKyMl2XrgcAGPEPKNGmdijTHD5OPo/3gQXqS7I4SX4nT9mlnmP5yBH5XPEp1Xkz1E8T5fURYK551iGvU2NutzKP0dnyPPQx9VurbedB6fog94IxmJMnCFAfKoLMeZ8+KK+Ptk71NVhKy1s8qSH1fa3tf0e6vmtoVJlH5x/9j6VYHMOryhxqI8pxYEuWLIGu61i9ejVWr15df+GIcQXXYEe3ZmUrEWcAzwCicaaxNmRFeTst3LqZxvV08GwjEskiASmaTsxyXReNPQ0sQh1WbtFUWEaaIz2o4ZlX34O/GJmK/rF2HH51GnS9HHxN4FHADJidIRqQ6deAQ+ZzKVNOyzznqKpIgo4F1zEWzfHmoqnPvB4PiUJ0ToIuky0Puj4mnNebVgRgNS/9zp+zAw3VaYT7sDpeVCLZ6qDzOf/O/atcx1WxHaJ+tvhdrw0bKx8AGvMdD4kV3wRBEMT4Z+vWrZg6dWqzi0E0G68102oIa0BpEoeWYxibm8eR3QN4e/c0tO1LodTOwQ4zs/1dy7jPoBZIyfauxrxACDOgSpSoxLYvnoawnztwrdZg0x2WgTOg7fU27HpjDpgBZFAWN8XKcQrLXwSs8azgCDR/uZ9bs+h/VQR5UV04rfEJEjF+07K1Kq7OIZ/lzv/OThN7Ox8h7PX+8DuP9vUu6XgJMsQhyP3Y6OsoUdcuETk0zzdBEAQRDh7RhyAAt/XY+bts9WYFIP+uMfzNaT/Db075N1x52q+QO7IEVii7JLPqBrso7ypqvQYtK55DROWO4BjtMZA/glfK7mPe8C2rbJchOhbqarQbFW8CI8NNd3LDI7xF4pFX1mv5ivD2Ws78xupXPRO8x+C0WsrckUNaNBNBreeLe76bhHWOg1x3smEToo4jp2eHdz0vd7R483Sm9Ru+4bc+CURhbY4MetfHAolvgiAIIhSM80g+BOGkquFtzX9rMMzqPoRrjngLAPDVmTuQnjFaZRH1y4driNbS6BGJxckc7F3D+M9L/xHG7DEUJ3HTRV4weslPXMgIKm68QenEmVWnd+arlSriNjXEoBXM9VoJFeHtY3V2usE7y+udmsn3WLyeCNzR6cAgFd1BxsI3FVnHQpgyuszMdW6fEEQC2e9arvJ+KFu+/fJyLgtyfyRK+CYAetfHA4lvgiAIgiCajqvhy1GZc5px7Hu7E98bnAkAuGX/iSgcaFc20F3//dp/EbgAcx04avoA5qWnoOuIIXfLSuG+GjTyuYrA1keH5dpZ11aEeEv4WPMOO8fZ2/89Ats79roqMr3Xah/Cam0vH2/t93qOp55tE9AZIbxWFeOt7d/e68vRQeMK1Bj0OB0dUCS6iTCkUimcfPLJOPnkk/HpT3863LYxlYkgCIIYr0TRGKaGDiGDwQ66VGoD0m+04yvGxfhO9yH8+c0ZaHtbR6mNmxGwPQKwiiCCtA5Swwy7XpqFeTs/A21YR7Y8b2+UjXnZ8XmDuCnd2iX1ZI2ft8bRqqKsO6kKhuaMiu7dN3csF7iYuzP25Cfbv5WFp9zewFsNx284BPdZHyQvZx068VuuWtdMgnhCeNM5x4R71znq1RuXQZQfjbH2gd71vhxxxBHYvn17TduS+CYIgiBCQRFQiUgRiCZ7mQHoI2brOvvHNhx8swftRVMc6iPMdkWuWXgD4kZ+gDJbQpWVgLY+DUZKcwcZCyhYVQ3/IG7pgMdCWIvAco6hZY5yeQWin9t0eTsmSq8SUqK8HOnCPi+aHTBLirMu6hHCftsGHHbQ0nhEtaFXvDK8z5NCJwcrAKkRJow/UHfgxXEMvevjgdzOCYIgCIJIHmVrp1asBPDiutmS0wqOacZqFRSC8cuhs+CVBr9WlLt/exv+fmPW6ykL4BHetQg0T342PuW0x2KX69MVyIp7vlWIzodnXG891BLsLlJ8zg0PcozjUMQI74GyILanJ9Mcy7SK67nzXGolx7AJR3rACgDIKnmjsp39zRp4TTRryEELsGHDBixZsgQdHR2YOXMmLr30UvzhD3+IdB9PP/00LrnkEvT29oIxhh/96EfCdPfeey/mzZuHtrY2LFq0CL/85S9d6wcHB7Fo0SKcccYZ2LJlS6gykPgmCIIgwsEj+hAE4HIfBdyC1lxhfrSC6eJtzxvtWG83xPXqRrUv9brgOq5lxh1u0T7XtyyQlDNNzcURCQgf63KpTSD2PNZmYVlk963D8h2ptctZtwJq2RfzO75G4dm3zCXaZSUXufCLtmkRhPeDdU8Z7vXe+9nQy/d7CjDSHs8Px9hwfawSOFCE0nsmKqJ47/l5n8RFg9/1W7ZswerVq/Hcc89h8+bNKBaLWL58OYaHh4Xp/+u//guFQvWchr///e+xb98+4TbDw8M46aSTcPfdd/uW46GHHsKaNWtw66234oUXXsCZZ56JFStWYNeuXXaaN998E9u2bcO3vvUtXHXVVRgcHAx8nKHdzp9++mncfvvt2LZtG/bu3YtHHnkEl156qb2ec44vf/nL2LhxI/r7+3HqqafinnvuwQknnBBqP6X2FFgqLVxXnBSgz0DxUM20ZQLkId8PL5XUeXDVICX1sTCt/jcEzysm3DQCzGOiOt72NmUWo9N06fpcl7ocRps8TeGQ+rLOTZeX1WifIV2vD6snMNX3vC3fx6EBZR4sI74HLMZmtivzOHyUvD5So8oskB6YIl3P3j6oziSfl67mhQBPaMX9xAuC8MIe9N37peunjAWYnDYtr1N26LAyC6P/kHQ9P/COMg/tz/7l0Li8vuuBXNGIqJHN96yKTuz8bUUYd+UncyuN6joUubOi+hi8oq9ZApBJxIidppa6cXZoRHmPe85hFOO3k/YM4hrsOAcAKvXoFaai5d5t6u1YahCqTpCqZwAvdxqVm85cB0pZDn2UAeVpB7UC3NeKs1MswH7CXBeh0kd5XzTo3Eb5rl+yZAl0Xcfq1auxevVqYdrHHnvM9f/+++/HzJkzsW3bNpx11lmudYZhYPXq1Zg/fz42bdoEXTf1xauvvopzzz0XN954I77whS9U7WPFihVYsWKFtMx33HEHrr76ajuQ2p133omf//znuO+++7BhwwYAQG9vLwBgwYIFOP744/Hqq69i8eLFitowCW35VvUY3Hbbbbjjjjtw9913Y+vWrejp6cEFF1yAw4fVjVGCIAiCICYetuVP0NDzc+EWWkPDNhRV1vEw+VhF8Ahv67cq0nk9DV0/ASPMjztc9hV5Kr0HhBsiEvHnKrsjv6R0YIQiwHnVAthzAs1bH7TuE9b5UIVf5wIDiu0cXAfyUw0UuormnPS6OTd9TVOwWZuErJPQ92vS6zxGtm7dipdfftlXeIsYGDCNVF1dXVXrNE3Do48+ihdeeAFXXXUVDMPAH//4R5x33nn40Ic+JBTeQcjn89i2bRuWL1/uWr58+XI8++yzAID+/n7kcjkAwJ49e/Dyyy/jmGOOCbyP0JZvWY8B5xx33nknbr31Vlx22WUAgAceeADd3d148MEH8bnPfS7s7giCIIikEYX73ARuhBAenBZqxzKuVUS5bTRiEhdk2TUVt7umR2iHpR7rkl9kb2fefpZ3bxmc0zWx8jkwtLJYD10wn+USTwSpJVTgCZHoKNWNtj4HCRymspw3GN9zbR2LZz3XASNlPgPG5uTxsVOexwcmv4F/2XcqXvyv9wDcdEHXRA5skmdAw6Lhq7xwVOfE51kZG01813POsXbtWpxxxhlYsGCBME1vby+efPJJnHXWWbjiiivwq1/9CsuWLcO3vvWtmot74MABlEoldHd3u5Z3d3fbruyvvPIKPve5z0HTNDDG8M1vflPYQeBHpNHOd+7ciX379rl6C7LZLM4++2w8++yzQvGdy+Xs3gMAoXzmCYIgiMZDbudEpPg0tIXXCEN1A9bTILWnyip50iVAbFiIrLe13BMyd31nGtFvv/RmQsAKeBdVtdnHLDnOWqzYiRXgzutaNBa/Fo8CK1/ZPlVlCrH/MFPNhUUqvJ3fTsodb8wAjpv3Z/xD93YAwJFHb8aq7rnI7klXeV7Y48bL0+fVM7NAJIiGEXj363d+GjysoJnv+uuuuw6/+93v8Mwzz0jTzZkzB9///vdx9tln45hjjsF3v/tdMFZ/5Xjz4Jzby5YuXYodO3bUnHekAdesHgFZb4GXDRs2oLOz0/7Mnj07yiIRBEEQBJFkRA1JZ8NZZuXxinAewiU9amu4T3vPct+Wie1aG6iy7aqEEzMth073be/c2FWu3iEsX6pjCCqsg4y/jaLuZCTGlb2WzqOI6sPqxOK6GdwsKux54Gspp8MFZjBXid3z65F3g43o1emcJCHEtPd+cnY0MMFyP5JyfcbE9ddfj5/85Cf4xS9+gaOPPlqadv/+/fjsZz+LSy65BCMjI7jxxhvr2veMGTOg63qVbu3r66vSt7USy6Uo6y3wcvPNN2NgYMD+7N69O44iEQRBEFHBI/oQhIXnuhBZ3AKPP7bEdxA3dOt3FI1ZH3dWax/OaZVEv6PGnnrJ0clgRThXTYUWJG8vQa3qYQNaybaPY+owK4p2Xais1EHGbqvS+RFkmyBWbw3IdXGMzM8hyqm4rGteOrxA4prNuDm2e//vunHBK5fgr3ediY2/OxOZgzpKGdhDVbyzJ8gingMN6nCJ8VkTCw1+13POcd111+Hhhx/Gk08+iXnz5knTHzhwAMuWLcNxxx1nb/Ov//qvuOmmm8Idp4NMJoNFixZh8+bNruWbN2/G0qVLa87XSaRu5z09PQBMC/isWbPs5bLegmw2i2w2G2UxCIIgiJhJpJsn0Zo4XckdjfxSBii1czDDnGLMKcwZ4G/JFq3z0iC3TaAiBuql3kjMdiToiPIHoPQeEAWV8xPUzuUycRbE1b4eIjlfYazUPl4fDcPnXmAcSA8zMJ6JRexVdawFKBczABQAHebzYM+W2djDZiPFAWhAapTZEeOrXMwlXhQNHboQ9NnjTWf9b+CzC2jsu3716tV48MEH8eMf/xgdHR229bmzsxPt7e7ZfQzDwIUXXoi5c+fioYceQiqVwnHHHYcnnngC5557Lo466iihFXxoaAivv/66/X/nzp3Yvn07urq6MGfOHADA2rVrsXLlSixevBinn346Nm7ciF27duGaa66J5DgjFd/z5s1DT08PNm/ejFNOOQWAGTVuy5Yt+Id/+Icod0UQBEEQxDjAmpPXNhKXLbTFyRxXXPg0Hn7jJORf7ERqhPmLAIdob3bHkFdERpFfWAt54LHdgvW28C039GWu6eZ84dz33MjGtnvPV5WlPkA540A2p3jdeAVUGBEV13XtUwZmAPoYoOWYcqx0rdRibbYEOAAYGcDIcqSGGFix7NkhKmezLd614NcpE6aTscW47777AADnnHOOa/n999+PT37yk65lmqZhw4YNOPPMM5HJVKaPXrhwIZ544glMnz5duI/nn38e5557rv1/7dq1AIBVq1bhe9/7HgDg8ssvx8GDB/GVr3wFe/fuxYIFC/Doo49i7ty5dR6hSWjxreoxWLNmDdavX4/58+dj/vz5WL9+PSZNmoQrrrgi1H704Tx0XXxHtO9X3yn6mDw0JxtWT26smsc7yIB+NmmSPIEewLdJl48OYJMV+wAATTFn+dCIMgvuM8l9pSDq+lBNpaGPBcgjL6+zlKKYAFBql9dHvlPujZEeks+/DQCTB+VzY2NQPf0eL8qv49Soem6S1Khinu+c+unNivLWSJB7gSvntA8wz4oyDzWGatrDEfW9oDpeo6RuvSmfL1qAFoEh2Y9iTvS64Nz81JsHQQAYm1VCusiRGWAuYcY1YNGknXh6ynvwZ9apzMcZndslFgI0vIMIC9tlO+CtVa9YqccaF4lQCuAyruUBHjC4kXcst1NsVwl/RR7OfFqSuNzJIybKgHtenBHG3Tu1ElTfn5a41krmOj1nthvtYGqGeBt7GIrV8dEsarFaOz2CmOf5E/c10eB3PQ+5rwsuuEC4/OSTT/bd5pxzzgm0n2uvvRbXXnttqPIEJbT4VvUYfOELX8Do6CiuvfZa9Pf349RTT8Xjjz+Ojo6O6EpNEARBNA2Kdk5ESXpAQ8rR2cSZ2bhOjTB8/uFVYCUg5eiYdQYQsxvSDmt54ag82l7Pgqnmsi43agO5GTOAp4BShiPtcIH3TV6He7goj2YKTWngs5K8/S/bVtXxEUaItxQNdhtOKr6zGVhiU0NVBxorOTxlyvet9bwA3MvtwIKGJ2/P74ZeR1F1ujSoI4He9fEQWnyregwYY1i3bh3WrVtXT7kIgiCICcCSJUug6zpWr16N1atXN7s4RBPQhxm0bKWRbLU1U6MVbyihEHOKmHKzRMsx6Psz4ga3D0KB6HXt5OWATUW18A5LIJEdY0O7VmEvm9JMth+V23iQIGoTzuo9UfCeU1GnVPne5jrsYRH2tWVItm2Cu7bwOq2x88XVSShyQSdahkjHfBMEQRATgCCWwiB5ANi6dSumTp1ab4mIFsZyF3XhtFx5XZK9ottyxywL5MwhmbkUVdeuUHj7NHJdaSMWxFILeIxioR4RqxLBsjHfqjxEItxpLW9JAU5iKRhcXVWsBNsd2xpmUus88UA815JvR1qrEOG7nqhA4psgCIIIhVAs1ZAHQQhxNNa8Fmzm+G0vdyC0Mtkr3XnZSfws396Gp1P0S4R3U8dpx4BKXDt/e8WP9d+aL1oruOs7jIBWRsduBRrhct4Cbu1V471F95O3082BsyNOKdJ5RaALx5db12J5PHns96Hf+Qlz3pzPvxjPNb3r4yEJU84TBEEQBEG48QpfOCzfzuWyxjJDdQPVMabUXqSjuhEr+19nAz3p4jEqAWJ7LRiwp4AC1NZGZ9Rz0bhTZ8C2liLq8ia0w0aGrys23F4usvNup/Xcx37b+W7vyMMoPwMafk0FcLWvwjPchmgtSHwTBEEQ4eARfQgiKE6x5mc18i7yaURbAZu823NPQ97er7dBHrO1qVnUIzpEYtrrGu6MQC8T93ZUZ4/beS3Tp407RB4aXlrg2hRNxye7NnwFNYfvNGiy+AKu/9ycMq/YEe3F5PecUU4h5nf+vO/NRpxnetfHArmdEwRBEKGgCKhElPg1jF0NV4EVvAqnK2Y5H795f6vWOdxSveOKq8oYwbUb9vrnTsEfg2us3fGgmM/Za7WUzUEuEs2BBT6vzpueGWgJYe2HrPOk5nPLUNVZE2rz8nWmj7mnuq03ngDXACNdzjsP9/CZqsSouL/Lzm8TOlroXR8PZPkmCIIgCCIxKAWaqoHqtLaIRKFW+RQncZTaeUV8CoKDuaY7CtCQjNpt1Srb2JEGjHS0eauQWgwd/61OC9WxB3EXd7oOB8lzQjAeBAxzn9t6scd81zsm2bKeWx9R518N5KYZyE8TFM7v2GUWb892rvtiPFwbE4zEWr61Q0PQtIJwXeadw8rt+diYdL0xKl8PACiVpKtZJqPMgk2fJl3P27PqcjD5EyA/Y5Iyi1JWl67PvD2qzEPfe0CxE3l9AUD7gaJ0fX5PgJaFossoPax+Eo1Ol2eieuim1NUFSKbkCwo/PCRdn92pOCcAUocVkaRL6nJqgyPyBJ3qaNVae5t0vepYAYAX5NcPS6sfaVxxnar2AQCcNyKCiPyeBQCkJfcL50CAx1xNcF7/9R3B/UGMX6TPYNWloxDnXHe4hLKypk6VDU/W2GRHA9wWCiEau3FEUHaWOY7pzkRjsmXHITxHkrLVY5lsycjmQVBZOy1arANCFFQv6sBbvp4pNeYl+l/zdceBtrc1+7d85/C/DoLcS3FeG/Suj4XEim+CIAgimZArGhElVZGPI8QWb1rZrVwDjCwHOJCfUcLVS5/GswePwR9emIPUiKnE9RyzXdDtb+/1WqcADtuoZxxo69NiETF++wue2PyyOgc0Z/9mBEI8aNpahZLTpT/2uvW6GLeYqA6Kd+x/HKimsIuCumYuMHzyCOM+7uzwa8K1Qu/6eCC3c4IgCIIgmkYY4R1WoLssY5YIL5nW71MXvo6/nfF7PPreR/Gek/ZUrN1OpxNRsK8QZfBzmw4rPplhito4xKEoMFTgei4LyVIGyHdyFDo5Sj4OfaI8g+wnaFlqFd6WS38pi+qAe1GjCqo1TmjEUIGkxwOIyr3ezAzijqwEHjehhsQ3QRAEEQ4e0Ycg/PBpvIcRn6JIw9b2RppjRmbYXjU5nbNFN3NarPwavLLrlwFGBhVraoKvdUt8ikSnX8dB1XhTBvAUx4fO/zVWXfgLGClePSUcxGNpg9RNQ+svweeqFYhjuEWQ/UWRT9COl8g6FqKooxiGoLigd30skNs5QRAEEQpyRSPiwraC+10fIRqbIou6ZeVNjTC8cPAo/HRaG94uTsVrB4+EVmDgmikcve3rqjGW4+T6ZRxAyX/Mq2w7l4g2GB7+3SlgOkfGYJUp4QT5NOveF7kmW+7B1vhcei7VR1PqL4L70bejzS8t6hsPrhxyYOVbo8dNVNC7Ph5IfBMEQRAEkRikbuiqhpxnbKQrYBcArQhw3Ww1H3i+G9f9+RNAkSG7LwWuc2hF5go8ZuURtgxa3mdbK0mCAojJyihbb640v7Qc0Pam6W9uHXtURFVXfnmEEV5EsmC8eaeununRIklDtCzkdk4QBEGEw4qAWu+HaDgbNmzAkiVL0NHRgZkzZ+LSSy/FH/7wB1cazjnWrVuH3t5etLe345xzzsFLL73kSpPL5XD99ddjxowZmDx5Mj70oQ9hz549dZUtqil+vFPyAGVX8rLI0oqAVmDQ8gzZPWlk96ahFZgZaK3kyCOs6A5BUoS3DD+rl2ucbfnDDGuuZHddR1WOKJgwU5a1mMt3q5ehKXg9cWLbD73r44DEN0EQBBEK51yt9XyIxrNlyxasXr0azz33HDZv3oxisYjly5djeLgy/vm2227DHXfcgbvvvhtbt25FT08PLrjgAhw+XJnmc82aNXjkkUewadMmPPPMMxgaGsLFF1+MUoApJ2NH0RhlxfLHAFiRQSvCFJBFAAbA0+487AZ+DY3cZoiDRu6z6l72CS4XWcdKHfhNl+Y35l1ES4i9IGWM0ZOgkSShDA3BrzMr5uOnd308JNbtnA8eBmc58bq82qfJyIvnCK9koo7awnT5PLusTT1HN8/I563mmQDzEqfkb4XCFHUeuU75sRQmT1HmMVlRDv2gev719rfkczlrefWc5cO98vnVD56ovtP12fJ5q/Mj8vNW3K4+95N3ysvJJk9W5oGifM5p4+2Dyiy0dw7Jy9GhPvel3unS9WMz5HN4A0B6RH4smTfeVuZhHHxHnoCpWx2q+zrIPN+N6MnlhnofTCZ0eAJEEJE4HnvsMdf/+++/HzNnzsS2bdtw1llngXOOO++8E7feeisuu+wyAMADDzyA7u5uPPjgg/jc5z6HgYEBfPe738U///M/4/zzzwcA/OAHP8Ds2bPxxBNP4C/+4i9Cl8tyD1c21FRzbfsFavOIP3uss8jFvGDm73R/r8X12enyLipLKxDmuC1LuHeO5yjyjgNrirFS+fVlW+0DbteIKd9ioxU6EULQ7GspNjgq48OdAnyCRM0fr5DlmyAIgggHj+hDNJ2BgQEAQFdXFwBg586d2LdvH5YvX26nyWazOPvss/Hss88CALZt24ZCoeBK09vbiwULFthpRORyOQwODro+TgI1nmXXjkeYWw1y75zDtqgWNVy5W1QJLTchp0WzhagWfNt6iFKEhBLecHdW+AY4C5l3vXjng3aeF86AwhQD+c5gStq25rWy8AZqev4m0erf6OjqccOZOW2f0NuGoVqIx33c9K6PBRLfBEEQRCjIFW18wDnH2rVrccYZZ2DBggUAgH379gEAuru7XWm7u7vtdfv27UMmk8G0adN804jYsGEDOjs77c/s2bOF6YIE+BIfEFwNPVtkCxqA3iBblqCquj7L6VxlsqxRAZgo17lXBDXjHvcTh36dL1bnQPaghra++prDSRSmUkJ2IAHJvJaTWCYl3meJ9xiCHJMqWnpE0Ls+Hkh8EwRBEMQE5LrrrsPvfvc7/PCHP6xaxzxDODjnVcu8qNLcfPPNGBgYsD+7d+8W58OqBVNlpWADp0XImc7PQukQ1Hbj0JFvoEjrIQQ44BD3rW4x9SCycDvd9ZuF1wJvj+32iknHeann3EQhMMLMNd0oSDhFjPXcsOpVMCRFL3g6/yD4bW/gs5xINIkd800QBEEkFIObn3rzIJrG9ddfj5/85Cd4+umncfTRR9vLe3p6AJjW7VmzZtnL+/r6bGt4T08P8vk8+vv7Xdbvvr4+LF261Hef2WwW2aw6Xoa3wR9YyKkuKYGFyRI7zsYus9J6xXyQfaCSXyuP9Q6MJXLRHJdyV1EU143VSWANOXAmj7q8cY5BHm+u1hMK0bNM9nzziuuQnX51Q+/6WEhYHxtBEASReGRju8J8iIbDOcd1112Hhx9+GE8++STmzZvnWj9v3jz09PRg8+bN9rJ8Po8tW7bYwnrRokVIp9OuNHv37sWLL74oFd++ZRI0JqWC27uuzuvJJWJEgtsPyfpmW36bgSi4XLPKYf8uj7M30kCpncNImf/jLmctwjjIWHLOACNjBolLQl0ngZbqhLCeVWHOncirp1HQuz4WyPJNEARBEBOE1atX48EHH8SPf/xjdHR02GO0Ozs70d7eDsYY1qxZg/Xr12P+/PmYP38+1q9fj0mTJuGKK66w01599dX4/Oc/j+nTp6Orqws33XQTFi5caEc/r4XA0c7jtFLGlPd4jcZsiUU7gF0CjtVp3WbcFN656QZSs0aQe2sSsgc1s9zl8kZVVvtca4BRnlRDK0ZcFwwoTjI7EfQcI2EzHggqxq1nnzctdcK0HCS+CYIgiFAw1N+gpPZCc7jvvvsAAOecc45r+f33349PfvKTAIAvfOELGB0dxbXXXov+/n6ceuqpePzxx9HR0WGn/8Y3voFUKoWPfexjGB0dxbJly/C9730PumIqPxGB3cyjvmicIjHGsZMTwULJeHJ0oLe+S20cxyx8C5uP+w+875mVMA53IDUa/X4t0W+kgNHZBbAxHW19GnTFzLeh4EBmgFUCCRKtRVi383rSRgC96+OBxDdBEAQRDs5R91znDZgrnaiGB6h3xhjWrVuHdevW+aZpa2vDXXfdhbvuuiuacjH3tzhRJLty5+eZnswmbgv7OEQ03Vizxn47ryOtwPD6q7NwIbsI+b2T0eYRw5GXkwFHzT2Ig4cnA30dkeZvBwcc59fSuCWsy7n3GRXxkBv1/uldHweJFd/GyCgMVhSu46VS/TsIcDGo9sPHcso8tIHD0vUspw4+wye3S9cXJk9R5jE4Vz6838gos8DoDPl+pv1efTml+uXdzZmBvDKPvkXyOpt3yh5lHh+d9Vvp+p25I6Xr/9VYrNxH55+mSte3t6WVeWhj8i5ztvegMg8+PCzPI6Mux2i3/Boc7lFbu9Ij8jSdg53KPLSBQel6nldfPyrxwTT1m5GrTFlRvGy4OvSuIXkGGTxKcwtBxEtTImR7ow47f8dEVMfodWVPgrB3lUdDUyyzrvotu4DrY0Db/hTeODQH2VEGrVgua8SR5+155UvAwed6ACuKegz10OxzTdRILfd/MwOuEbFAAdcIgiCIUEQ59+eSJUtw/PHH45577mnuQRFNo2mBuqyGbFwuvCyCjzc/q+ieqbS8v0XrGoG9H0enQKP37Xy+WAJbHzXdtfVcJY3f9rVi5akVTcGv5wCtNDGGHRABqcVS7XwWeJ9VDQgcSPN8R09iLd8EQRBEQonC1a28/datWzF1qtxLhCBixe9ajkKUR2FNF4nwkOWKy0Lunb4L3IrGzcFKQGrELDxHAxrhHuFvl8t77A7rPNfKy6Keg93ZAUDiI1aS4PURiFqeBSI3c9n/qInwXU9UIMs3QRAEQRCJQmQ1ETWwRZYV0X9p41zVwI2CKPNU5CWygFtELVJc+XGA60Chg+OcC7YjPyePUhtc4jdWeLWAdp57zTmSkJllLS4cQm66EchCH6b8LSEGxwktU9cyL5ugItebh8hDhkg8JL4JgiCIUDDOI/kQBKB2AfYG8vJrbIvEeqCGuTdNVI1ZkXtoLS6novxkmwR0qY5DDHMNKLUZ+LtZT6C3px9cqxQmbpEky19oheZAYSALLceU248HrA4GcoNvImGvMacod543JlgfA/SujwdyOycIgiAIInH4iQTvclF07VBCSmaNqgc/kcMl66DuZFDhrR/L/drrniua4q0uAcrM8c7pQQ1L//Xz0PIMqRyz6zdJ7sHMMK1Pk/6UFlrMhdskpOxhUN1DQY4pSeetFeFlM6d9jYnOiaxDROSZIxLiRMtA4psgCIIIh1H+1JsHQXgIG/XcKyK8EcCd66p3hsaPRwzh2hyV6PGLih6FyHd2dljjq9NDzBzrbYnaOvcTNc5gbFFHPE8k5fo3dICnAC1fOS9BxuIn5by1IpwBxUlmBaaGWXid7PV8cbqZW//jPD/0ro8FEt8EQRBEKKJwJSNXNMKJ0zpbWWh+8fL4XGYArARhg9NvjLMUpwXJ4doZSJRaZWhw9OFaCVI/dVtBeeWbGe7/RONxRp43MkC+00BpegGZP2eQGmKu80jW7XhgHNBHAz4UnM+TINbxBjxr6F0fD5GL73Xr1uHLX/6ya1l3dzf27dsXKh9eKoGzJg9JV1wwRk49zzc/2C9drynm8AaA0sxO6fqBY9T1lF84Il3fPkl9LO9Ml0ck1nNtyjymKorKCuouspJiN93t8rnVAeBdmQPyfSjCIaQnq+eTzk2dLF3PiupznxqRT8DeNjSmzIOPqdOoYCX5vaAFmFJaZWEw2tWPI71DMaf9iHweeQBgKcV+ikVlHsaI/H4KMt+4ci7wIC8sXqptHUEkDJlgNrJAbnoJqSENqSFznuZI8nY2dC3rYApui61oPLh3DGYEjWB7jugGjIuWuSKroqLL1rss6rW4/xOR4jzXRgroXbgfDx//A3zg4c9DH2FmR5YEZydUvV4SExkt6Ku41udJQjv8CH9isXyfcMIJeOKJJ+z/uq7HsRuCIAiiGUQR5IUacUQZUSPfXGGOlzTSHP/PuU/gn1//AAq/nQYUoXS39AoGoeD0Wr4ZYKTLFna//jPuTh8VLiukd4xoXRlbmZa/QgZec00lZmWp6CQggZYMnOdMKwJ/frEbH9h/PdJDzHVtiWIo+M00IOp0Iat5k4mz7uldHwuxiO9UKoWenp44siYIgiCaDefBLPOqPAiijJ9AZhzQCgz3/eJ8pIY1pCy3cwU1uaED0B2OQrwcK0zYeIzT2iQboy5bHyYvb9Yit3/PeiBcXRLNxTn/upYHMv0a+GCba8y3E1H8BG9+oo4YIia8HXxB3dEjLQO96+MgFr/u1157Db29vZg3bx4+/vGP44033vBNm8vlMDg46PoQBEEQBDEx8I1QXrZuazmgbb+O9CAL7sJZC9xt8WNeqw9zfMJmHVUDOWKLuwoSV+OA8jnUCmbnkm319jm3nJW9L8rXuvXbXg6xVZwIQJi6apF4EkR4Ihffp556Kr7//e/j5z//Ob7zne9g3759WLp0KQ4ePChMv2HDBnR2dtqf2bNnR10kgiAIIkIYj+ZDEF688zADpljQCuVga94gXlE1SJ3B3Ry/axXbFl4LvEqEKy32MTfAvUG4RGUm63frUPW8DTh2274HNICnKveC694Yr8T5bgobnbzJ9Uzv+niIXHyvWLECH/3oR7Fw4UKcf/75+OlPfwoAeOCBB4Tpb775ZgwMDNif3bt3R10kgiAIIkosV7R6PwThQTgmWatY3MwFgt9BG6lOMe3j5m6tczUaa7R2ey2EYaZ1EqaNYgymKFuFqHLOE06N6QqcmVN4tQKMu+MICM+jw7pdagNGuw2MHlVE/gheuTYC3AuG3sB68d4TYa9PVYeed70qHxWt1HFB7/pYiD2c+OTJk7Fw4UK89tprwvXZbBZTp051fQiCIAiCmHiIxGqg+ZhF7uHSHZU3KwdZ445tqtzN/XapsGSHcc21rcyOVhn3ttAS0IZtpMXT0JNvYfUK2lbAGzzN621i/S9O4vji8p9g54c2othZAk8FvzcAgIcU31WdbGHwzkLg13Hlt603nU/HhLIMIrwdA968w9zXHP7lI1qG2MV3LpfDK6+8glmzZsW9K4IgCKIBWGKo3g9BqAgtvpjD6hZwW1YSuFv7tI5kUb9rDfLmzM819Zm3gV2nC3yt+B1n3MK4VazsrVBGJ9KhEM7fBvDQW4vxo+EpYHkGGII0PlhDRQKXSTPFfmEKr0+AA5V7CI7/VTv0We7Mx29b2XJROm+5vPUX5j6KYChMGOhdHw+RRzu/6aabcMkll2DOnDno6+vDV7/6VQwODmLVqlVR74ogCIJoBhQBlYgR2RRH3rmovXAGFKZygAGZfhbIzZsD1S7iRrB9eaM/h5kP2RaxOsBTAAxzSihpw74Jt02zrM/NaLQLp80SCaha89cSLkZ4peMpM8iwa9tRuOm/P4HMkAatVK6fAOWvpUOilDHvhfRQ+G1d54UJ/ju/vb/9lsnOdT33RJ3XEBDuOVPfjuhdHweRi+89e/bgr/7qr3DgwAEceeSROO200/Dcc89h7ty5Ue9KTiNOdoB98JIiNGuAOdDz07LS9WPT1eWYfWS/dP30tmFlHtuH26Tr81PalXkYurxLMz3oN7lqhcl75Mf7mz/Vf63tH+2Qrud/mqzMo+0d+blPjarD9uo5RRpD/RZkijpHoajMo61vRLpez8uvDQAoTJFf6/kjMso8tHyXdD0bUx+LMUW+Hy1AHvo+cQBJi9JB+f0GALygvtYJgnDjFcOiqY8yA8yVtrKyOq3/jmALXVnAsSiEaSnLMfWUgzj45jS07dftxrnQcugUgfUQNvCTh6S7g9eK3zho4e9aaLIOcXotWFHMmYGKILTc6Mu/s+8wgFUOOjaxx4HsIWb/rjUPWTyHUNs786hHLEd57Tgw0mWPnThnfyBiI3LxvWnTpqizJAiCIJJEFGPOqDOcqBGp+HWOwfWOA3f+5WJRzbWK+zdPAXBGWI8QZ/AqrgPv7erDf+2fCq7ptugWWmHD4hUQ3PE/qnwJkwAiLSku6lwDSu2mm3e2XzOvOe/YZMDusBIFaouyAybMWHJxBgHSqM6Pn1BOYEeTVmjQtUTv+liIfcw3QRAEMb5gnEfyIYhaUE5h420wehvSokBp5eVOKyArIlyD3VG+wHBAH2N4/onj0LY7A60gGIfrt1/Z2FHv+nosgn7QLewmgSLNFwbkegtY9IHXYKR5lUcIc3TSaCX3cq/Lc9O9IIJ2BDW7nBYRlKNRnTj0ro+HyC3fBEEQBEEQ9aByD/dzOxdnhioLjbwu9wAAKctJREFUsD321vmboxKhuWz5tiyC1jhY2yquwz3vuKdsIpHih1YAUDAT25Z3lPfhNwomQPAm19RQTkEVJKCUKE+BG/94EOCReBi0Ghxo25PB9gPHIpVnLsu26LqVRe5PWt0lflw9MeEh8U0QBEGEg4KwEDHijDbu14gO3eC3rNnlAGvMIagBU+haosNIcxhZIDXMwFNmOq8reJixliJx5xc8jhkVAS7dR0DrWaGDo9hhoP3PnpgbQca7i4T9OLxtlddSKwXICoAlTrUcoOVM4e29HoHq6zMJZZdCQyGih971sUDimyAIgggHR2XamXryIAgBzLq+Ali/wwoCoZW8LPaNDLcFLyuay420uQNeYqFEmF+QNpmYYdycIs3ucIhA7OpjDMwQjDD0ChWf/1Wi0SrTeL5//QJv1UFShCtzPLvt6OXcsc6bVvA7cXiuWelwFL9zGUEHy7iE3vWxQOKbIAiCIIhE4bRQO5GJBXmG/su4VrZ260DpCANLT/kDZrUN4D/3HIvh33VVIguXBXkUothP6FiWb7Bw1nW/fWgFQCuop1xzueOLOgia3YBupDga5yIs0UK6FlRRyf2GaIjyIIgGQOKbIAiCCEUUQVQoCAuhQuQCG6lwcApLbs6xPf/43fjBu54CANzTdgD/+OcVyBzQq0V3jS6uXou4yN1XFPlZZuV3RX/X3Nsr68tHdFTtr9ku50kUR+PAWhp0PvpEC3ZR2ZznRiXOa92t45nQjPrhGmK/J+ldHw/JFd88AX5NrP67lCnm8WZt6vmRVaSH1OXcPyCft3q0kFbmUTosT5M5rD5f6cGcdL02PKbMY8Zv5euZMVWZx7bZx0vX6/Jiouc1tUli8huH5Anyoklc3TDFHNx8SD0/OwzFeSkGmNe6X74fVlT7JRnpKYr16uu41CZ/ZLGs+pGW75Rfx6lRdR7ZQfmc9uzQgDIPrj79yYUjgnFgkZSEmCAEadwGCr6moE2v3JiTtRzAuGtseFTIgsgZ5UeQc57vIEHnuG6O8WYlc7y6161YRqDxvc0cU9sIoWvtI+i+Wlx4ByVRwtvv3Ig6h2IYPgB4njHemA0NqiuuAaU20xuH5+PcEehdHwPJFd8EQRAEQRA+iAJEqdILKVuwuA688OpcrJm8GEdl+/HjPSchcyCFUpZDKwKMMfecx3U0Kv0iSnNmWuBF6f0iqDujmrcdO4CRoSxSf2gPVx9+lm3vWO9m0SihqxLe48Da3dIEqftaxnyHLQM3O8lK7RxakUEfc+yiAfcJZ8DYrAL0IR3pADYYIlmQ+CYIgiDCQRFQiQTgHPsdZLoxBnE6VgI0zmBkObJvZfDogSUoZThSw2ZifYxBK7DIoz/7ld8V6d3jli7dpwEUdnQizd0RrL0Ig70ZAfKXMG6md5KNGXaur1HIjZt6ShreIRLeZc7l9ezGESei0MEx/cS3sX/PNGT3ppEaqaSJW4AzDrTvSoMZaufGuqB3fSzE4ExFEARBjGuMiD4EETGqRq8o0JklVO1pl4pmkDL7UzQjnTvFsLmxM6PwZeWs8rGXlaOdMwOu6c+86YWdCIbZUaCPecrp2d767ayDSiLP74Cu5uNCUMo8Iyy8Y/7D7mI81FMcyLwuVPgFUwt7joLuj5fdvicZeO7k/4vzTnwFXOf2/hph+WaG6SFjPbtig971sUCWb4IgCIIgWhrvfNnqDcpCyIrwXSxbxnVAN0wBy7WyC3i5se10veYpAEUAUVsyHftipRrGsUvGhotcx6sa7jIRM5ENWLVYuslFPTiycdy1uJrX0kkS8tmRGtYw76efgXZYRybPXOO/GyLAJ/L92OKQ+CYIgiBCQRFQiaSiGgPOvUKSmyLXtlpZsTRZ5bcdQdw593h5XDbXK/lAN0V8PXBvqyxsp4J3c80h4B3HFDyD8vdEF5Eib4eg2xAVwnZIBBl/rwq0FiH27AQGkB5k0EfT5rAVaxrCJkU+jwt618cDiW+CIAgiHDQOjEg4MrEqtJI7LNqsZP53uoB709ljsAuOfCxLOkPN1nAtDxQnmZmnRupQEJYQKJfJ6jwILQyc4ibJFnCJ4KrLEhl158NEtYZbxx3lsft1iHj/h41ir8K69w1Az1f+R3lfNDp6ui/0ro8FEt8EQRAEQUx4GEfFoq3VYCUWCVVA3CgXCYTycq3IKu7wRqU8rnKGac/W0/Z1CotmRzyXIRFVXENtHQ+yfL3j4RssqBMjzoISZ+eFqv5r8VqQZefsvAsSCLGOfRDjExLfBEEQRDioN5xIKC4rp1cscnf7WzZOvMpy7Sc8LTfT8pBPzgBo5cubwRR9VrmcbuuispbzK2XNhekcc62zXNyrXNudY9EdbvDMI5i9LvnKBr5fB0GLEUtQqlqFXFQRt5mjU2EiBbSKIrBaREwIgUzv+lgg8V0PTB0snumKNJm0Mo/UmLz7fepO9YU9oHdI1789dYoyj0l98mPJDKnNBFxTPCVV9QVA7+uXrp/5uHw9ABw5ZZJ0PU/Lbw2Wyyv3gf4B+T5GRpVZcCOCt6qmqNMA5UChIN9FgPpoUzyAeUb9ONKGc/I80rp0PQCkFdegPhZg0ObomLwcpXHeGqIXMpFgvOO6XUHLBFYy0VzbXPdYvlWXq0PYcwOmAGcAs+IwaZVvK19WDq7GU6b7OjPM//qYmZNVBs4AI1OObuwok3M8tyXwXe7mgnLXZDFt5q1ap1WZWx4EYb0YwtDAQGycAaU2wEhxQAP0EQZ9nL9ulPgNDfDW80R1+a8HetfHAolvgiAIgiBaGq/12halIgEeIB+nQBblL964vA0AWEHctMpyni7/tsRSeZ0V8I1rgJHlLsumNe7bHodubVPe3vAEUZOJzJpdlZvpbl6nWGLO+vYQWVRqlagTeWIEEILC+di5GRdAKzB76ruaiEuIhs03qnJ4x3Q3eVgAQcgg8U0QBEGEw+M+W3MeBBEB3jmrlSJT0hi3Ld/l8daWAAo95ZeTshUc5bm7mcv33fwy0gBPcRg6oJfdzUttBkqGOQbcGZEdqFjn4R0TrhgPXpPYdG4TlxCPUSCFdrf3EnRMsWy9n3W2BrRSBB0HjRSjYc5tFNeBN48mCW/rOaLF6XURN/SujwW1jy9BEARBOLCmH6n3AwBLlizB8ccfj3vuuafJR0W0CtwjQi1xbCESJUGFsy3c62kwOsdYWx8NdourOJmj1MbBdVNAFydxGBkOrcCgFQGuc3CdQx9j0AoMpQxHcVI5vWaOCbciooOZbuu2q7lCkNXcgeA5tshpkEDiWqWjQto548TruqxKL1rOBMsUyMR1bOON68037JjsGupFmEeQ8xLiGWA02zSZEE/tKN/1RIVmX14EQRDEBGbr1q2YOnVqs4tBtBBOl3KV6PZuEzTv2gvn+WtZz61QEg4LtRVYjTPTOlbKcBQ7DPD2kjk2fFhHelCzx4Zb6bU8AzRuu6Jb5a7av6A+6rL61tCGjsy1OyICWSHDWrnDXC+itFFb/evJL+5OEKtsftbpWlzWnd+AvxgPQwTXLLOGlNS0cf37J5ILiW+CIAgiHBSEhWgycQk6kfAOJcYDuBfrOQaucTMpB6AD+SNK9kFpbSXouoFCiSGfNnsYUv0paEbFaqvlneZ/nzKIiseqx8NLEQmlgHCHu33U58sVXC6pj5KgdRa10GqGcPMT1V5qEdkqRB1OdeRfl2huNIphJvXnT+/6OCDxTRAEQYTDiKDFa9ALmQhHI6yosjHjgUS4J40tEq11rLLCyBhgRQYjxaFPzaOtrQBNM/Do+7+DNsawbNunkS+kUCpqMIZ0GIzBSHNTeDPYUc4Bj4dzANfzUAK8BjgDSlkgN6OE9j/rgcVMkDJZY2mNDKAVYAa3Q33HYp2nUMMNvEKzVovzeAgIFrb89RyzX723eh0GxXn8cR83vetjgcZ8EwRBEASRWGqO0h3Bfp2fYBu5t7d/a5X/ptDjttXKmFpENltAPpfC7z7wQxydmoIZ+mT89wd+CMNgSKVLKB1RNK28JYc6tcqmw26As4CipmbhHaKhr+WB7Nt64P3woEKCmePk297/jjn2vc5OBK6Z03eV2hyB64LgLWuQsovKGbV4aqbWqcVLpNZ9eL+54ztI3q2mCSMM2kc0F7J8y1C6Sqi7SLkqj7x8/mQASB2Szyk8NUBPLStlpetHugPMr62YyrnYpn4i5KfJy9E2pq4PFOXzMPPDQ+o8+g9JV7OsvJxQzVcOgI8p5qQuBJhPWkWAckCxH54PMGe5iqFhZRJNcV6Yrp6jmyvOPcuklXlkDrbJ9xHgnjQOH5bnUQxwHbcy5IpGNJC4Rbc3Wrrzd+jx335jejUAhjk/s72PcuZsOIXCFB2zj+yv2vS9PX34/d6ZYMPu5yPXzCnJtIKl6CtZ2gI8jnoLmKc1xZeeC37+WAjRpI8xDP1+GtKjLJLjLHQY4CmgfV8I9S0aa+xdD0eaRommoJ0A9ZSn3u3j6HAQ1X8zj9Evj1rz9duG3M5bDhLfBEEQREgieCG3nNmBGI9wZk7zVZrEkR5gwkjq1u9gGUJsES3no5WYbfm2855sdiruPVQdePCPB6aDMYC3G8CIQxhyVgkeVt6ny2U66turhvzi6jRhHNCKQOaQOdd13fvhQPagZv+urVCSZY0S3mH2U295ZEKwnnVhjsHb+aFyP/fmrRLFtYrmRr/aYr226F0fB+R2ThAEQRDEhMUvwFLQSOpKOCoi0SiLZG6O9QYDtKEUUikDjHF8fOd59mZX/eksAEA6XQIb0U0385RpjremFWNcME45yrZuQtvNjJuRy6MQ+FZe0vy457drkL1gGTzrRb9FedeDRITVPcVcVYbhyxB5ILawbv+iAAnwWcYFy1X5Oz0dXPEdfPZJTFjI8k0QBEGEg1zRiHEC4wCKQGqIVf6jMs67JnFnWaKdbuuVYdr2uGI9Z67UcgyjByYBGQO/fufdmPfyuyvbpDiQ16DnTcGtj5YzZqzSqA9ZxlDHJBMsrUSt1meRNVVm5fbbp9/+g45NrsOKbgWoiySCd1jrctRWf299eUWubBgAfJaLzoHTCh/0GGT7s+7ToHENRDRy6IK9T3rXxwGJb4IgCCIcRgRd+RQBlWgwVWLYGaTMJ73ov9KK6BlD7k3PNXOhPVe5AaQGdcDQUZpkIN09Cs6BYl879FHNFPKWcNLMAhg6h16qjHeujCNXlC0szWjwx0GtxxDFuGaRIA2Tf531H+nUWSrRXe8Ya9k+ZGUQiXKZeJZ1hjit8GHvJ+8xqDptwtCM+5De9bFA4psgCIIgCKKMMyp56OnGfBr7PAU7RmspA2hFjtSYOd93KWtGBtcKDNA08D9ONq3cGSA1Yk4vZqTKQU85A0+Z/7UCACvSedFT1oDCQWnd9+YjyzegUOcaYOiA3opxKYOINi/ea0IkxGX1Vs+2URO2M0Z1XFaaoNZ9VR178/PLN0j+tXY8ifJQWdCDXgeqNERLQOKbIAiCCAc3zE+9eRBEApHNga20fjst0GV3XzCAFU0Bbugc6eHKxqzEoBWAUobDSHOwkhlMDDAFuZExM0yNMLtcWpFBB8rpmWnV1Mq7rGESjUDu9U7XWVmaQDtEuPm0ayUqsaISYUEMe2HEpHd/YYVoEMIIyyCW41pFqugchS2XyrMgqOeBSDTX66XgFP7evGXbBc0/buhdHwskvgmCIIhw0DgwYgJjiVWpFdzZ6LYudQOmq7jhTsc1c+osaEB+KgcrW7F5qjwW3ekiX84HAFjRsdCAIwGCCUIEEN0WinRhxsdH6gZtFwDVFs5arZgiQRjEsh1ApNrjr+uI0s41M9+6gs3Var1WWY6DdFTUI7St337ls/6Lxlh7v2UiXWRJD3IN+XUIBLHqq2iGxZve9bFA0c4JgiAIgph41NgmDCK8LZHlbDCzEmzRxJziqdwSY+Xps7SSmUF6kNkileuVPJzbMgNmBHWHRZ57haej3FaaQIQY7mmkTVfyOLDc1KX4WZBD7UiRt8zd3g9PubgG5GYY9vkMsk3Vaplwb5TOUdWVH966DFpeWQeAKo8gZRVZx73u4l5LuGg/qs6JIEQwzJpINrFZvu+9917cfvvt2Lt3L0444QTceeedOPPMM+PaXXMI0JvD83npeqP/kDIPlpcPjMocalPmMbXYJV2fHlHnUcrInyYsgqAKLBfAZy6Xk67mhRr87rzo8jc9S6lvHZbJyNcr9gEAXHGNMaZ+wvOivD5U1ygA8JLCTKFaD6CkOC9MC3AsqmtsWJkFmDZY3z7MRIr14/zNSUFYiHGOn7hRWrsd1jKulcdlo2Lt9KZhBgDH45NxwNB4eT+sUpaiY3uYeWhF89tpCTXS5fSlyj68t2oc829rhTosuWWruSWwq8QlD6llnMdcq+u5n/XSM6xAuE6WrWHOKR7I8u9nRfVLB0W6mHB5PfiJ2IAWX87MjiZN1Yyr1Xrulz6Ml4Nfmlqt2yG8AbweJlwDjDh9mOldHwuxWL4feughrFmzBrfeeiteeOEFnHnmmVixYgV27doVx+4IgiCIRmK5otX7IYiEorIOV1mvHeKLM9NCrTn6ze0xzoLLnpXc673Tk9ljpH2shszhcq4VTAs692nMxyG8683XEt5GFsh3chhpd/mFc5kHytjxqfe4g3a6qLLhFe8FG5VlNqw1uRGEvaa8ZfSKXetaLtdPYDhc27v2JzovzJOeC5Z581eJdWda1TK/MgXEJbyZed+MdUc9hsMBvetjIRbxfccdd+Dqq6/Gpz/9aRx33HG48847MXv2bNx3331x7I4gCIIgCKI2RILYp73oEtwQi9xQ46i9jX4GaCUGZjis3t70svysbAxH+RydAqFplCWVAWNzczjljFfNyPD17tcrcoLk5zc2WJQGNeRf3qbq+ggyjlj020sQQVivDgq7vZ912Lus1g4i7xALp6j2s3Q7t2GSZX7lFSHzPqjnfEtgHNBKQPbtmMZ7ELERubNCPp/Htm3b8MUvftG1fPny5Xj22Wer0udyOeQcbsSDg3KXUIIgCKLJcNTfm02d4URSCNjAFolX7jBhRDHXtjM/noI9hVgY4VyVnjn+G5U0iYID2d0Z/PbgfGTK7vR14ydGwwp75zYikWUti7ujQlV2mSu03/+wqFyrQ7iYR4pzv36iOwxhj0EkuGViPKL6YYbbwyZy6F0fC5Fbvg8cOIBSqYTu7m7X8u7ubuzbt68q/YYNG9DZ2Wl/Zs+eHXWRCIIgiCghVzSizL333ot58+ahra0NixYtwi9/+ctmFyk2hIK1PG6bGai5kWkHTytb61ix3KB2WKy9+3ZuI7XSG47yORr83CnIRdTSkVDj8XNmWvD0UYbsQc0eP16Tpd6vPGEFmZ+XgZ/lW+aV4F1Xj/U4rOW7TrifSvDbl1cAx4nfNernhh/kenem9SwTXo9+x1nLuaix0yDWjjR618dCbNHOvYGgOOfC4FA333wzBgYG7M/u3bvjKhJBEARBEBEx0eK7CF3MHdHHvZ8wONN7xbxIaHunO5OJc3tbwdBQ7hV21ifAmPfqhfJtVHlpJfPjLXtgwrr3yrZ3jhl2CjE/geS0fHvFttcq7hV29QjzWgmwH0MHSlnzO3RHSDm9HfVfVRZFear2r7r+RJ4I3m2c59RRXj9quuaDjhcXLSfNOm6JXHzPmDEDuq5XWbn7+vqqrOEAkM1mMXXqVNeHIAiCSDCGEc2HaGkmSnwXoZVYIbItcSxaLxLpzvyt/cm2927jzNcPZadAlJbmZiArf5gx30B1J0SY8cBO4R5kX0HHGAcZKxz0HCjy4gzgKSD37jGU1JPhqMsVZJl3ubNDStSxEtQjQFUnfuPNw9wPfnUvEvxBz1MSxDi962Mh8jHfmUwGixYtwubNm/GRj3zEXr5582Z8+MMfVm5vTa1URKH5D/JIkN+9mnSyx3IORlqxXv2EKBbH5OsDjBkpKaa1CjLVmFaUR2UsluTTiAEAuGL6Nl7/ABim6OZlqqmmgsDVESqVU40FeDtwrphqLEB98QBlVSPv61PVuVmO+h8Kqv0E2kcLTDVWhHleo6izKqJwJUtAHRG1Eza+C1Ad42VgYAAA0Ln9MFKpOAcumnCRgBLhbdQzgDNWdjHn5bwYmHUNB7AU+xfK81dj5hzQzHQ/r3qvysbUBnCdtZc79md2JPDgLsMyUSTbTOA+TyQTc8ovhsJLGtLDQ2AlTucuoVjte3rXtw6xzA63du1arFy5EosXL8bpp5+OjRs3YteuXbjmmmuU2x4+fBgA8AwejaNojUd1zY0EyCNIGhXj0wswPuJvB048VPdCozpHJ1gn7OHDh9HZ2dnsYhDjjLDxXQAzxsuXv/zlquW/eWpDLGUkCIKYKNC7vnWIRXxffvnlOHjwIL7yla9g7969WLBgAR599FHMnTtXuW1vby92796Njo4Oe4z44OAgZs+ejd27dyfaLZ3KGT2tUlYqZ7S0SjmB5JaVc47Dhw+jt7c3jsypN5wAEDy+C2DGeFm7dq39/9ChQ5g7dy527do1oRuNSX2GNBqqBxOqBxOqBxNVPdC7vvWIRXwDwLXXXotrr7029HaapuHoo48WrmuVMeFUzuhplbJSOaOlVcoJJLOssQkaI8zgQlkeRKsSNr4LYMZ4yWazVcs7OzsTd+80gyQ+Q5oB1YMJ1YMJ1YOJrB7oXd9axBbtnCAIgiCI8YkzvouTzZs3Y+nSpU0qFUEQBEEkm9gs3wRBEMT4hHMDvM6gg/VuTzSfeuK7EARBEMmG3vXx0BLiO5vN4ktf+pLQXS1JUDmjp1XKSuWMllYpJ9BaZY0Mzut3JaNxYC1PPfFdgAl67wigejChejChejChejBpaj3Quz4WGI8lNj1BEAQx3hgcHERnZyeWHXEVUixTV15Fnsd/Hvo+BgYGaDwfQRAEQSQEetfHS0tYvgmCIIgEwSMIwkL9vgRBEASRXOhdHwskvgmCIIhwGAbA6hzHRePACIIgCCK50Ls+FijaOUEQBEEQBEEQBEHEDFm+CYIgiHCQKxpBEARBjG/oXR8Libd833vvvZg3bx7a2tqwaNEi/PKXv2x2kapYt24dGGOuT09PT7OLhaeffhqXXHIJent7wRjDj370I9d6zjnWrVuH3t5etLe345xzzsFLL72UuHJ+8pOfrKrf0047reHl3LBhA5YsWYKOjg7MnDkTl156Kf7whz+40iShToOUMyl1et999+HEE0/E1KlTMXXqVJx++un42c9+Zq9PQn0GKWdS6rNRcMOI5ENMXFrh3V4PUb0vcrkcrr/+esyYMQOTJ0/Ghz70IezZs6eRhxIZGzZsAGMMa9assZdNpDp466238IlPfALTp0/HpEmTcPLJJ2Pbtm32+olQF8ViEX/7t3+LefPmob29Hccccwy+8pWvwHC8D8ZjPUTRHg9yzP39/Vi5ciU6OzvR2dmJlStX4tChQzWXm9718ZBo8f3QQw9hzZo1uPXWW/HCCy/gzDPPxIoVK7Br165mF62KE044AXv37rU/O3bsaHaRMDw8jJNOOgl33323cP1tt92GO+64A3fffTe2bt2Knp4eXHDBBTh8+HCiygkAF154oat+H3300QaW0GTLli1YvXo1nnvuOWzevBnFYhHLly/H8PCwnSYJdRqknEAy6vToo4/G3//93+P555/H888/j/POOw8f/vCH7ZdOEuozSDmBZNQnQbQCrfRur5Wo3hdr1qzBI488gk2bNuGZZ57B0NAQLr74YpRKpWYcVs1s3boVGzduxIknnuhaPlHqoL+/Hx/84AeRTqfxs5/9DC+//DK+/vWv44gjjrDTTIS6+Id/+Ad861vfwt13341XXnkFt912G26//XbcdddddprxWA9RtMeDHPMVV1yB7du347HHHsNjjz2G7du3Y+XKlbEfHxESnmA+8IEP8Guuuca17H3vex//4he/2KQSifnSl77ETzrppGYXQwoA/sgjj9j/DcPgPT09/O///u/tZWNjY7yzs5N/61vfakIJTbzl5JzzVatW8Q9/+MNNKY+Mvr4+DoBv2bKFc57cOvWWk/Pk1innnE+bNo3/n//zfxJbnxZWOTlPdn1GycDAAAfAz2u/nC+ftLKuz3ntl3MAfGBgoNmHRTSYVnm3R0kt74tDhw7xdDrNN23aZKd56623uKZp/LHHHmvsAdTB4cOH+fz58/nmzZv52WefzW+44QbO+cSqg7/5m7/hZ5xxhu/6iVIXF110Ef/Upz7lWnbZZZfxT3ziE5zziVEPtbTHgxzzyy+/zAHw5557zk7zq1/9igPgv//970OVkd718ZJYy3c+n8e2bduwfPly1/Lly5fj2WefbVKp/HnttdfQ29uLefPm4eMf/zjeeOONZhdJys6dO7Fv3z5X/WazWZx99tmJrN+nnnoKM2fOxLHHHovPfOYz6Ovra3aRMDAwAADo6uoCkNw69ZbTIml1WiqVsGnTJgwPD+P0009PbH16y2mRtPqMFYNH8yEmHK32bo+KWt4X27ZtQ6FQcKXp7e3FggULWqquVq9ejYsuugjnn3++a/lEqoOf/OQnWLx4Mf7yL/8SM2fOxCmnnILvfOc79vqJUhdnnHEG/vM//xOvvvoqAOC///u/8cwzz+B//I//AWDi1IOTqI75V7/6FTo7O3HqqafaaU477TR0dnbWXi/0ro+FxAZcO3DgAEqlErq7u13Lu7u7sW/fviaVSsypp56K73//+zj22GOxf/9+fPWrX8XSpUvx0ksvYfr06c0unhCrDkX1+6c//akZRfJlxYoV+Mu//EvMnTsXO3fuxP/+3/8b5513HrZt24ZsNtuUMnHOsXbtWpxxxhlYsGABgGTWqaicQLLqdMeOHTj99NMxNjaGKVOm4JFHHsHxxx9vvyySUp9+5QSSVZ8EkWRa6d0eFbW+L/bt24dMJoNp06ZVpWmVutq0aRN++9vfYuvWrVXrJkodAMAbb7yB++67D2vXrsUtt9yC3/zmN/if//N/IpvN4qqrrpowdfE3f/M3GBgYwPve9z7ouo5SqYSvfe1r+Ku/+isAE+uasIjqmPft24eZM2dW5T9z5syWrJfxTGLFtwVjzPWfc161rNmsWLHC/r1w4UKcfvrpePe7340HHngAa9eubWLJ1LRC/V5++eX27wULFmDx4sWYO3cufvrTn+Kyyy5rSpmuu+46/O53v8MzzzxTtS5JdepXziTV6Xvf+15s374dhw4dwr//+79j1apV2LJli70+KfXpV87jjz8+UfXZEDgHUO/cn9QbPpFJyn3dCKJ+X7RKXe3evRs33HADHn/8cbS1tfmmG891YGEYBhYvXoz169cDAE455RS89NJLuO+++3DVVVfZ6cZ7XTz00EP4wQ9+gAcffBAnnHACtm/fjjVr1qC3txerVq2y0433ehARxTGL0tdVL/Suj4XEup3PmDEDuq5X9db09fVV9Q4ljcmTJ2PhwoV47bXXml0UX6xo7K1Yv7NmzcLcuXObVr/XX389fvKTn+AXv/gFjj76aHt50urUr5wimlmnmUwG73nPe7B48WJs2LABJ510Er75zW8mrj79yimi2ddo3HCDR/IhJh6t/G6vhXreFz09Pcjn8+jv7/dNk2S2bduGvr4+LFq0CKlUCqlUClu2bME//dM/IZVK2ccwnuvAYtasWbanlMVxxx1nBxmcCNcDAPyv//W/8MUvfhEf//jHsXDhQqxcuRI33ngjNmzYAGDi1IOTqI65p6cH+/fvr8r/7bffrrle6F0fD4kV35lMBosWLcLmzZtdyzdv3oylS5c2qVTByOVyeOWVVzBr1qxmF8WXefPmoaenx1W/+XweW7ZsSXz9Hjx4ELt37254/XLOcd111+Hhhx/Gk08+iXnz5rnWJ6VOVeUU0aw6FcE5Ry6XS0x9+mGVU0SS6pMgkkQrv9vDEMX7YtGiRUin0640e/fuxYsvvtgSdbVs2TLs2LED27dvtz+LFy/GlVdeie3bt+OYY44Z93Vg8cEPfrBqqrlXX30Vc+fOBTAxrgcAGBkZgaa5pYeu6/ZUYxOlHpxEdcynn346BgYG8Jvf/MZO8+tf/xoDAwMtWS/1kkqlcPLJJ+Pkk0/Gpz/96WYXx0Wi3c7Xrl2LlStXYvHixTj99NOxceNG7Nq1C9dcc02zi+bipptuwiWXXII5c+agr68PX/3qVzE4OOhyoWkGQ0NDeP311+3/O3fuxPbt29HV1YU5c+ZgzZo1WL9+PebPn4/58+dj/fr1mDRpEq644orElLOrqwvr1q3DRz/6UcyaNQtvvvkmbrnlFsyYMQMf+chHGlrO1atX48EHH8SPf/xjdHR02L2UnZ2daG9vt+cvbXadqso5NDSUmDq95ZZbsGLFCsyePRuHDx/Gpk2b8NRTT+Gxxx5LTH2qypmk+mwY3ED9rmg09+dEpVXe7fUQxfuis7MTV199NT7/+c9j+vTp6Orqwk033YSFCxdWBS9LIh0dHa5YI4DpGTh9+nR7+XivA4sbb7wRS5cuxfr16/Gxj30Mv/nNb7Bx40Zs3LgRACbE9QAAl1xyCb72ta9hzpw5OOGEE/DCCy/gjjvuwKc+9SkA47ce6m2PBznm4447DhdeeCE+85nP4Nvf/jYA4LOf/SwuvvhivPe9762t4C38rj/iiCOwffv2puxbSeMCq9fGPffcw+fOncszmQx///vf75ouKSlcfvnlfNasWTydTvPe3l5+2WWX8ZdeeqnZxeK/+MUvOICqz6pVqzjn5vQGX/rSl3hPTw/PZrP8rLPO4jt27EhUOUdGRvjy5cv5kUceydPpNJ8zZw5ftWoV37VrV8PLKSojAH7//ffbaZJQp6pyJqlOP/WpT9n395FHHsmXLVvGH3/8cXt9EupTVc4k1WfcWNOPnMM+ws/XPlbX5xz2EZp+ZALTCu/2eojqfTE6Osqvu+463tXVxdvb2/nFF1/c0s8W51RjnE+sOviP//gPvmDBAp7NZvn73vc+vnHjRtf6iVAXg4OD/IYbbuBz5szhbW1t/JhjjuG33norz+VydprxWA9RtMeDHPPBgwf5lVdeyTs6OnhHRwe/8soreX9/f+jyjod3/fTp0xu6vzAwzmkkPEEQBKFmcHAQnZ2dOId9BCmWriuvIi/gKf4IBgYGMHXq1IhKSBAEQRBEPTT7Xf/000/j9ttvx7Zt27B371488sgjuPTSS11p7r33Xtx+++3Yu3cvTjjhBNx5550488wz7fWZTAYLFy5Ee3s7vva1r+Hss8+u6ziiJNFu5wRBEETyKPJc3a5kRRQiKg1BEARBEFET5bt+cHDQtTybzfpOxTo8PIyTTjoJf/3Xf42PfvSjVesfeughrFmzBvfeey8++MEP4tvf/jZWrFiBl19+GXPmzAEAvPnmm+jt7cWLL76Iiy66CDt27EhMRz9ZvgmCIIhAjI2NYd68eZHNGdrT04OdO3dKpyEiCIIgCKJxRP2unzJlCoaGhlzLvvSlL2HdunXKbRljVZbvU089Fe9///tx33332cuOO+44XHrppXbkfCcrVqzA3/3d32Hx4sU1H0OUkOWbIAiCCERbWxt27tyJfD4fSX6ZTIaEN0EQBEEkiKjf9Vww17if1VtFPp/Htm3b8MUvftG1fPny5Xj22WcBAP39/Zg0aRKy2Sz27NmDl19+Gcccc0xthY8BEt8EQRBEYNra2kgwEwRBEMQ4Jqnv+gMHDqBUKlXNXd7d3W1b6l955RV87nOfg6ZpYIzhm9/8Jrq6uppRXCEkvgmCIAiCIAiCIIiWwGtJd1rXly5dih07djSjWIHQ1EkIgiAIgiAIgiAIonnMmDEDuq5XjUfv6+ursoYnFRLfBEEQBEEQBEEQRKLJZDJYtGgRNm/e7Fq+efNmLF26tEmlCge5nRMEQRAEQRAEQRBNZ2hoCK+//rr9f+fOndi+fTu6urowZ84crF27FitXrsTixYtx+umnY+PGjdi1axeuueaaJpY6ODTVGEEQBEEQBEEQBNF0nnrqKZx77rlVy1etWoXvfe97AIB7770Xt912G/bu3YsFCxbgG9/4Bs4666wGl7Q2SHwTBEEQBEEQBEEQRMzQmG+CIAiCIAiCIAiCiBkS3wRBEARBEARBEAQRMyS+CYIgCIIgCIIgCCJmSHwTBEEQBEEQBEEQRMyQ+CYIgiAIgiAIgiCImCHxTRAEQRAEQRAEQRAxQ+KbIAiCIAiCIAiCIGKGxDdBEARBEARBEARBxAyJb4IgCIIgCIIgCIKIGRLfBEEQBEEQBEEQBBEzJL4JgiAIgiAIgiAIImZIfBMEQRAEQRAEQRBEzPz/AvF4qf5qO2kAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.figure(figsize=(12,5))\n", "\n", @@ -249,21 +202,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "38429fa5", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Warning: header update failed, data will be saved with incomplete header.\n", - "Reason: !OBS.instrument was not found in rc.__currsys__\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "import scopesim as sim\n", "import scopesim_templates as sim_tp\n", diff --git a/docs/source/examples/3_custom_effects.ipynb b/docs/source/examples/3_custom_effects.ipynb index 7866e549..7df55e77 100644 --- a/docs/source/examples/3_custom_effects.ipynb +++ b/docs/source/examples/3_custom_effects.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "constant-weekly", "metadata": {}, "outputs": [], @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "661ea82b", "metadata": {}, "outputs": [], @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "1d33b08d", "metadata": {}, "outputs": [], @@ -85,24 +85,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "gorgeous-blond", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\Armazones.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\ELT.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\MICADO.zip',\n", - " 'C:\\\\Users\\\\ghost\\\\Desktop\\\\PhD\\\\ScopeSim\\\\docs\\\\source\\\\examples\\\\inst_pkgs\\\\MAORY.zip']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" ] @@ -117,73 +103,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "celtic-fluid", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Table length=23\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
ELTtelescope_reflectionSurfaceListTrue
MICADOmicado_static_surfacesSurfaceListTrue
MICADOmicado_ncpas_psfNonCommonPathAberrationTrue
MICADOfilter_wheel_1 : [open]FilterWheelTrue
MICADOfilter_wheel_2 : [Ks]FilterWheelTrue
MICADOpupil_wheel : [open]FilterWheelTrue
MICADO_DETfull_detector_arrayDetectorListFalse
MICADO_DETdetector_windowDetectorWindowTrue
MICADO_DETqe_curveQuantumEfficiencyCurveTrue
............
MICADO_DETdetector_linearityLinearityCurveTrue
MICADO_DETborder_reference_pixelsReferencePixelBorderTrue
MICADO_DETreadout_noisePoorMansHxRGReadoutNoiseTrue
MICADO_DETsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
MICADO_DETextra_fits_keywordsExtraFitsKeywordsTrue
default_rorelay_psfFieldConstantPSFTrue
default_rorelay_surface_listSurfaceListTrue
default_roextra_fits_keywords_roExtraFitsKeywordsTrue
MICADO_IMG_HRzoom_mirror_listSurfaceListTrue
MICADO_IMG_HRmicado_adc_3D_shiftAtmosphericDispersionCorrectionFalse
" - ], - "text/plain": [ - "\n", - " element name class included\n", - " str13 str23 str31 bool \n", - "------------- ----------------------- ------------------------------- --------\n", - " armazones skycalc_atmosphere SkycalcTERCurve True\n", - " ELT telescope_reflection SurfaceList True\n", - " MICADO micado_static_surfaces SurfaceList True\n", - " MICADO micado_ncpas_psf NonCommonPathAberration True\n", - " MICADO filter_wheel_1 : [open] FilterWheel True\n", - " MICADO filter_wheel_2 : [Ks] FilterWheel True\n", - " MICADO pupil_wheel : [open] FilterWheel True\n", - " MICADO_DET full_detector_array DetectorList False\n", - " MICADO_DET detector_window DetectorWindow True\n", - " MICADO_DET qe_curve QuantumEfficiencyCurve True\n", - " ... ... ... ...\n", - " MICADO_DET detector_linearity LinearityCurve True\n", - " MICADO_DET border_reference_pixels ReferencePixelBorder True\n", - " MICADO_DET readout_noise PoorMansHxRGReadoutNoise True\n", - " MICADO_DET source_fits_keywords SourceDescriptionFitsKeywords True\n", - " MICADO_DET extra_fits_keywords ExtraFitsKeywords True\n", - " default_ro relay_psf FieldConstantPSF True\n", - " default_ro relay_surface_list SurfaceList True\n", - " default_ro extra_fits_keywords_ro ExtraFitsKeywords True\n", - "MICADO_IMG_HR zoom_mirror_list SurfaceList True\n", - "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "cmd = sim.UserCommands(use_instrument=\"MICADO\", set_modes=[\"SCAO\", \"IMG_1.5mas\"])\n", "micado = sim.OpticalTrain(cmd)\n", @@ -201,21 +124,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "bound-literature", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DetectorList: \"full_detector_array\"\n", - "AtmosphericDispersionCorrection: \"micado_adc_3D_shift\"\n", - "NonCommonPathAberration: \"micado_ncpas_psf\"\n", - "FieldConstantPSF: \"relay_psf\"\n" - ] - } - ], + "outputs": [], "source": [ "for effect_name in [\"full_detector_array\", \"micado_adc_3D_shift\", \n", " \"micado_ncpas_psf\", \"relay_psf\"]:\n", @@ -234,7 +146,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "allied-matrix", "metadata": {}, "outputs": [], @@ -257,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "aerial-warehouse", "metadata": {}, "outputs": [], @@ -275,38 +187,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "indoor-norway", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['A0V']\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjtklEQVR4nO3dYWxV93n48ee2JjeQ2m6TBl9cXOauVpuUkFLIKCQtrAmu+HdRMqauLWnH1G2CQtp42URGeRFUbXbCVEQrVibYlBFtjL5Y0mRqU7DU4rRCqEBBQaRKmWCLl+J5iZjtEmZCcv4vulzFIU1ieIwv5PORjhT/zvH1w89X5KuD73WpKIoiAAAgwdvGewAAAC4d4hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0deM9wKu99NJL8Ytf/CLq6+ujVCqN9zgAAG95RVHE0NBQNDc3x9ve9vr3JmsuLn/xi19ES0vLeI8BAMCr9Pb2xtSpU1/3mpqLy/r6+oiIuCn+X9TFhHGeBgCAM/FC/Di+V+2011NzcfnyP4XXxYSoK4lLAIBx93+/LPzN/MiiF/QAAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQpubeiqiqVPrVAQDA2CqKtIdy5xIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANKOOy2eeeSY+//nPx1VXXRWTJk2KD3/4w7F///7q+aIoYu3atdHc3BwTJ06MBQsWxOHDh1OHBgCgNo0qLk+cOBE33nhjTJgwIR577LF48skn4+tf/3q8853vrF6zbt26WL9+fWzcuDH27t0blUolFi5cGENDQ9mzAwBQY+pGc/H9998fLS0t8cADD1TXfuM3fqP630VRxIYNG2LNmjWxePHiiIjYunVrNDU1xbZt22LZsmU5UwMAUJNGdefy0UcfjdmzZ8enP/3pmDx5csycOTO2bNlSPX/s2LHo6+uL9vb26lq5XI758+fH7t27X/Mxh4eHY3BwcMQBAMDFaVRxefTo0di0aVO0tbXFjh07Yvny5fGVr3wlHnzwwYiI6Ovri4iIpqamEZ/X1NRUPfdqXV1d0djYWD1aWlrO5c8BAEANGFVcvvTSS/GRj3wkOjs7Y+bMmbFs2bL4kz/5k9i0adOI60ql0oiPi6I4a+1lq1evjoGBgerR29s7yj8CAAC1YlRxOWXKlLj22mtHrF1zzTXx9NNPR0REpVKJiDjrLmV/f/9ZdzNfVi6Xo6GhYcQBAMDFaVRxeeONN8ZTTz01Yu3nP/95TJs2LSIiWltbo1KpRHd3d/X86dOno6enJ+bNm5cwLgAAtWxUrxb/0z/905g3b150dnbG7//+78dPfvKT2Lx5c2zevDkifvXP4R0dHdHZ2RltbW3R1tYWnZ2dMWnSpFiyZMmY/AEAAKgdo4rLG264IR5++OFYvXp1fO1rX4vW1tbYsGFD3HHHHdVrVq1aFadOnYoVK1bEiRMnYs6cObFz586or69PHx4AgNpSKoqiGO8hXmlwcDAaGxtjQen2qCtNGO9xAAAufW+Qg2eKF2JXPBIDAwNv+PoYv1scAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANKOKy7Vr10apVBpxVCqV6vmiKGLt2rXR3NwcEydOjAULFsThw4fThwYAoDaN+s7lhz70oTh+/Hj1OHToUPXcunXrYv369bFx48bYu3dvVCqVWLhwYQwNDaUODQBAbRp1XNbV1UWlUqkeV199dUT86q7lhg0bYs2aNbF48eKYPn16bN26NZ5//vnYtm1b+uAAANSeUcflkSNHorm5OVpbW+Ozn/1sHD16NCIijh07Fn19fdHe3l69tlwux/z582P37t2/9vGGh4djcHBwxAEAwMVpVHE5Z86cePDBB2PHjh2xZcuW6Ovri3nz5sVzzz0XfX19ERHR1NQ04nOampqq515LV1dXNDY2Vo+WlpZz+GMAAFALRhWXixYtit/7vd+L6667Lm655Zb47ne/GxERW7durV5TKpVGfE5RFGetvdLq1atjYGCgevT29o5mJAAAash5vRXRFVdcEdddd10cOXKk+qrxV9+l7O/vP+tu5iuVy+VoaGgYcQAAcHE6r7gcHh6On/3sZzFlypRobW2NSqUS3d3d1fOnT5+Onp6emDdv3nkPCgBA7asbzcV//ud/Hrfeemu8973vjf7+/vjLv/zLGBwcjKVLl0apVIqOjo7o7OyMtra2aGtri87Ozpg0aVIsWbJkrOYHAKCGjCou//M//zM+97nPxbPPPhtXX311fPSjH409e/bEtGnTIiJi1apVcerUqVixYkWcOHEi5syZEzt37oz6+voxGR4AgNpSKoqiGO8hXmlwcDAaGxtjQen2qCtNGO9xAAAufW+Qg2eKF2JXPBIDAwNv+PoYv1scAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0deM9AFxoO545kPZYn3zPzLTHorZ53nAuPG94K3LnEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDR14z0AXGiffM/M8R6Bi5DnDefC84a3IncuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASHNecdnV1RWlUik6Ojqqa0VRxNq1a6O5uTkmTpwYCxYsiMOHD5/vnAAAXATOOS737t0bmzdvjhkzZoxYX7duXaxfvz42btwYe/fujUqlEgsXLoyhoaHzHhYAgNp2TnH5y1/+Mu64447YsmVLvOtd76quF0URGzZsiDVr1sTixYtj+vTpsXXr1nj++edj27Ztr/lYw8PDMTg4OOIAAODidE5xuXLlyvjUpz4Vt9xyy4j1Y8eORV9fX7S3t1fXyuVyzJ8/P3bv3v2aj9XV1RWNjY3Vo6Wl5VxGAgCgBow6Lrdv3x4//elPo6ur66xzfX19ERHR1NQ0Yr2pqal67tVWr14dAwMD1aO3t3e0IwEAUCPqRnNxb29v3HXXXbFz5864/PLLf+11pVJpxMdFUZy19rJyuRzlcnk0YwAAUKNGdedy//790d/fH7NmzYq6urqoq6uLnp6e+OY3vxl1dXXVO5avvkvZ399/1t1MAAAuPaOKy5tvvjkOHToUBw8erB6zZ8+OO+64Iw4ePBjve9/7olKpRHd3d/VzTp8+HT09PTFv3rz04QEAqC2j+mfx+vr6mD59+oi1K664Iq666qrqekdHR3R2dkZbW1u0tbVFZ2dnTJo0KZYsWZI3NQAANWlUcflmrFq1Kk6dOhUrVqyIEydOxJw5c2Lnzp1RX1+f/aUAAKgxpaIoivEe4pUGBwejsbExFpRuj7rShPEeBwDg0vcGOXimeCF2xSMxMDAQDQ0Nr3ut3y0OAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmrrxHgAutB3PHEh7rE++Z2baY1HbPG84F543vBW5cwkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECauvEeAC60T75n5niPwEXI84Zz4XnDW9Go7lxu2rQpZsyYEQ0NDdHQ0BBz586Nxx57rHq+KIpYu3ZtNDc3x8SJE2PBggVx+PDh9KEBAKhNo4rLqVOnxn333Rf79u2Lffv2xSc+8Ym47bbbqgG5bt26WL9+fWzcuDH27t0blUolFi5cGENDQ2MyPAAAtaVUFEVxPg9w5ZVXxl//9V/HF7/4xWhubo6Ojo645557IiJieHg4mpqa4v77749ly5a9qccbHByMxsbGWFC6PepKE85nNAAA3ow3yMEzxQuxKx6JgYGBaGhoeN1rz/kFPS+++GJs3749Tp48GXPnzo1jx45FX19ftLe3V68pl8sxf/782L179699nOHh4RgcHBxxAABwcRp1XB46dCje8Y53RLlcjuXLl8fDDz8c1157bfT19UVERFNT04jrm5qaqudeS1dXVzQ2NlaPlpaW0Y4EAECNGHVcfuADH4iDBw/Gnj174ktf+lIsXbo0nnzyyer5Uqk04vqiKM5ae6XVq1fHwMBA9ejt7R3tSAAA1IhRvxXRZZddFu9///sjImL27Nmxd+/e+MY3vlH9Ocu+vr6YMmVK9fr+/v6z7ma+UrlcjnK5PNoxAACoQef9JupFUcTw8HC0trZGpVKJ7u7u6rnTp09HT09PzJs373y/DAAAF4FR3bn86le/GosWLYqWlpYYGhqK7du3x65du+L73/9+lEql6OjoiM7Ozmhra4u2trbo7OyMSZMmxZIlS8ZqfgAAasio4vK//uu/4gtf+EIcP348GhsbY8aMGfH9738/Fi5cGBERq1atilOnTsWKFSvixIkTMWfOnNi5c2fU19ePyfAAANSW836fy2ze5xIA4AKrhfe5BACAVxOXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQZVVx2dXXFDTfcEPX19TF58uS4/fbb46mnnhpxTVEUsXbt2mhubo6JEyfGggUL4vDhw6lDAwBQm0YVlz09PbFy5crYs2dPdHd3x5kzZ6K9vT1OnjxZvWbdunWxfv362LhxY+zduzcqlUosXLgwhoaG0ocHAKC2lIqiKM71k//7v/87Jk+eHD09PfHxj388iqKI5ubm6OjoiHvuuSciIoaHh6OpqSnuv//+WLZs2Rs+5uDgYDQ2NsaC0u1RV5pwrqMBAPBmvUEOnileiF3xSAwMDERDQ8PrXnteP3M5MDAQERFXXnllREQcO3Ys+vr6or29vXpNuVyO+fPnx+7du1/zMYaHh2NwcHDEAQDAxemc47Ioirj77rvjpptuiunTp0dERF9fX0RENDU1jbi2qampeu7Vurq6orGxsXq0tLSc60gAAIyzc47LO++8M5544on453/+57POlUqlER8XRXHW2stWr14dAwMD1aO3t/dcRwIAYJzVncsnffnLX45HH300Hn/88Zg6dWp1vVKpRMSv7mBOmTKlut7f33/W3cyXlcvlKJfL5zIGAAA1ZlR3LouiiDvvvDMeeuih+MEPfhCtra0jzre2tkalUonu7u7q2unTp6OnpyfmzZuXMzEAADVrVHcuV65cGdu2bYtHHnkk6uvrqz9H2djYGBMnToxSqRQdHR3R2dkZbW1t0dbWFp2dnTFp0qRYsmTJmPwBAACoHaOKy02bNkVExIIFC0asP/DAA/GHf/iHERGxatWqOHXqVKxYsSJOnDgRc+bMiZ07d0Z9fX3KwAAA1K7zep/LseB9LgEALrBaeZ9LAAB4JXEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmrrxHgAutB3PHEh7rE++Z2baY1HbPG84F543vBW5cwkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECauvEeAC60T75n5niPwEXI84Zz4XnDW5E7lwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQZdVw+/vjjceutt0Zzc3OUSqX4zne+M+J8URSxdu3aaG5ujokTJ8aCBQvi8OHDWfMCAFDDRh2XJ0+ejOuvvz42btz4mufXrVsX69evj40bN8bevXujUqnEwoULY2ho6LyHBQCgttWN9hMWLVoUixYtes1zRVHEhg0bYs2aNbF48eKIiNi6dWs0NTXFtm3bYtmyZec3LQAANS31Zy6PHTsWfX190d7eXl0rl8sxf/782L1792t+zvDwcAwODo44AAC4OKXGZV9fX0RENDU1jVhvamqqnnu1rq6uaGxsrB4tLS2ZIwEAcAGNyavFS6XSiI+Lojhr7WWrV6+OgYGB6tHb2zsWIwEAcAGM+mcuX0+lUomIX93BnDJlSnW9v7//rLuZLyuXy1EulzPHAABgnKTeuWxtbY1KpRLd3d3VtdOnT0dPT0/Mmzcv80sBAFCDRn3n8pe//GX827/9W/XjY8eOxcGDB+PKK6+M9773vdHR0RGdnZ3R1tYWbW1t0dnZGZMmTYolS5akDg4AQO0ZdVzu27cvfvu3f7v68d133x0REUuXLo1/+Id/iFWrVsWpU6dixYoVceLEiZgzZ07s3Lkz6uvr86YGAKAmlYqiKMZ7iFcaHByMxsbGWFC6PepKE8Z7HACAS98b5OCZ4oXYFY/EwMBANDQ0vO61frc4AABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacYsLr/1rW9Fa2trXH755TFr1qz40Y9+NFZfCgCAGjEmcfntb387Ojo6Ys2aNXHgwIH42Mc+FosWLYqnn356LL4cAAA1Ykzicv369fFHf/RH8cd//MdxzTXXxIYNG6KlpSU2bdo0Fl8OAIAakR6Xp0+fjv3790d7e/uI9fb29ti9e/dZ1w8PD8fg4OCIAwCAi1N6XD777LPx4osvRlNT04j1pqam6OvrO+v6rq6uaGxsrB4tLS3ZIwEAcIGM2Qt6SqXSiI+LojhrLSJi9erVMTAwUD16e3vHaiQAAMZYXfYDvvvd7463v/3tZ92l7O/vP+tuZkREuVyOcrmcPQYAAOMgPS4vu+yymDVrVnR3d8fv/u7vVte7u7vjtttue8PPL4oiIiLOFC9kjwYAwGv5v/76dc7EC/932etfFzEGcRkRcffdd8cXvvCFmD17dsydOzc2b94cTz/9dCxfvvwNP3doaCgiIn4c34144/kBALhAhoaGorGx8XWvGZO4/MxnPhPPPfdcfO1rX4vjx4/H9OnT43vf+15MmzbtDT+3ubk5ent7o76+vvozmoODg9HS0hK9vb3R0NAwFiPza9j78WPvx4+9Hx/2ffzY+/Fzsex9URQxNDQUzc3Nb3htqXgz9zfH2eDgYDQ2NsbAwEBNb/ylyN6PH3s/fuz9+LDv48fej59Lce/9bnEAANKISwAA0lwUcVkul+Pee+/1lkXjwN6PH3s/fuz9+LDv48fej59Lce8vip+5BADg4nBR3LkEAODiIC4BAEgjLgEASCMuAQBIIy4BAEhzUcTlt771rWhtbY3LL788Zs2aFT/60Y/Ge6RLzuOPPx633nprNDc3R6lUiu985zsjzhdFEWvXro3m5uaYOHFiLFiwIA4fPjw+w15Curq64oYbboj6+vqYPHly3H777fHUU0+NuMbej41NmzbFjBkzoqGhIRoaGmLu3Lnx2GOPVc/b9wujq6srSqVSdHR0VNfs/dhYu3ZtlEqlEUelUqmet+9j65lnnonPf/7zcdVVV8WkSZPiwx/+cOzfv796/lLa/5qPy29/+9vR0dERa9asiQMHDsTHPvaxWLRoUTz99NPjPdol5eTJk3H99dfHxo0bX/P8unXrYv369bFx48bYu3dvVCqVWLhwYQwNDV3gSS8tPT09sXLlytizZ090d3fHmTNnor29PU6ePFm9xt6PjalTp8Z9990X+/bti3379sUnPvGJuO2226p/mdv3sbd3797YvHlzzJgxY8S6vR87H/rQh+L48ePV49ChQ9Vz9n3snDhxIm688caYMGFCPPbYY/Hkk0/G17/+9XjnO99ZveaS2v+ixv3Wb/1WsXz58hFrH/zgB4u/+Iu/GKeJLn0RUTz88MPVj1966aWiUqkU9913X3Xtf//3f4vGxsbib//2b8dhwktXf39/ERFFT09PURT2/kJ717veVfzd3/2dfb8AhoaGira2tqK7u7uYP39+cddddxVF4Tk/lu69997i+uuvf81z9n1s3XPPPcVNN930a89favtf03cuT58+Hfv374/29vYR6+3t7bF79+5xmuqt59ixY9HX1zfi+1Aul2P+/Pm+D8kGBgYiIuLKK6+MCHt/obz44ouxffv2OHnyZMydO9e+XwArV66MT33qU3HLLbeMWLf3Y+vIkSPR3Nwcra2t8dnPfjaOHj0aEfZ9rD366KMxe/bs+PSnPx2TJ0+OmTNnxpYtW6rnL7X9r+m4fPbZZ+PFF1+MpqamEetNTU3R19c3TlO99by8174PY6soirj77rvjpptuiunTp0eEvR9rhw4dine84x1RLpdj+fLl8fDDD8e1115r38fY9u3b46c//Wl0dXWddc7ej505c+bEgw8+GDt27IgtW7ZEX19fzJs3L5577jn7PsaOHj0amzZtira2ttixY0csX748vvKVr8SDDz4YEZfe875uvAd4M0ql0oiPi6I4a42x5/swtu6888544okn4sc//vFZ5+z92PjABz4QBw8ejP/5n/+Jf/mXf4mlS5dGT09P9bx9z9fb2xt33XVX7Ny5My6//PJfe529z7do0aLqf1933XUxd+7c+M3f/M3YunVrfPSjH40I+z5WXnrppZg9e3Z0dnZGRMTMmTPj8OHDsWnTpviDP/iD6nWXyv7X9J3Ld7/73fH2t7/9rGrv7+8/q+4ZOy+/mtD3Yex8+ctfjkcffTR++MMfxtSpU6vr9n5sXXbZZfH+978/Zs+eHV1dXXH99dfHN77xDfs+hvbv3x/9/f0xa9asqKuri7q6uujp6YlvfvObUVdXV91fez/2rrjiirjuuuviyJEjnvNjbMqUKXHttdeOWLvmmmuqL06+1Pa/puPysssui1mzZkV3d/eI9e7u7pg3b944TfXW09raGpVKZcT34fTp09HT0+P7cJ6Koog777wzHnroofjBD34Qra2tI87b+wurKIoYHh6272Po5ptvjkOHDsXBgwerx+zZs+OOO+6IgwcPxvve9z57f4EMDw/Hz372s5gyZYrn/Bi78cYbz3qbuZ///Ocxbdq0iLgE/64fr1cSvVnbt28vJkyYUPz93/998eSTTxYdHR3FFVdcUfz7v//7eI92SRkaGioOHDhQHDhwoIiIYv369cWBAweK//iP/yiKoijuu+++orGxsXjooYeKQ4cOFZ/73OeKKVOmFIODg+M8+cXtS1/6UtHY2Fjs2rWrOH78ePV4/vnnq9fY+7GxevXq4vHHHy+OHTtWPPHEE8VXv/rV4m1ve1uxc+fOoijs+4X0yleLF4W9Hyt/9md/Vuzatas4evRosWfPnuJ3fud3ivr6+ur/T+372PnJT35S1NXVFX/1V39VHDlypPinf/qnYtKkScU//uM/Vq+5lPa/5uOyKIrib/7mb4pp06YVl112WfGRj3yk+jYt5PnhD39YRMRZx9KlS4ui+NXbJNx7771FpVIpyuVy8fGPf7w4dOjQ+A59CXitPY+I4oEHHqheY+/Hxhe/+MXq3ytXX311cfPNN1fDsijs+4X06ri092PjM5/5TDFlypRiwoQJRXNzc7F48eLi8OHD1fP2fWz967/+azF9+vSiXC4XH/zgB4vNmzePOH8p7X+pKIpifO6ZAgBwqanpn7kEAODiIi4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEjz/wFiM/MmRFgUowAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "src = star_grid(n=9, mmin=20, mmax=20.0001, separation=0.0015 * 15)\n", "src.fields[0][\"x\"] -= 0.00075\n", @@ -320,33 +204,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "lightweight-louisiana", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Table length=1\n", - "
\n", - "\n", - "\n", - "\n", - "
idx_ceny_cenx_sizey_sizeanglegainpixel_size
int32str6str6str10str11int32int32float64
0006464010.015
" - ], - "text/plain": [ - "\n", - " id x_cen y_cen x_size y_size angle gain pixel_size\n", - "int32 str6 str6 str10 str11 int32 int32 float64 \n", - "----- ----- ----- ------ ------ ----- ----- ----------\n", - " 0 0 0 64 64 0 1 0.015" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "micado[\"detector_window\"].data" ] @@ -365,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "weighted-mortgage", "metadata": {}, "outputs": [], @@ -462,7 +323,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "empirical-skill", "metadata": {}, "outputs": [], @@ -480,73 +341,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "considerable-factory", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Table length=24\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
elementnameclassincluded
str13str23str31bool
armazonesskycalc_atmosphereSkycalcTERCurveTrue
armazonesrandom_jitterPointSourceJitterTrue
ELTtelescope_reflectionSurfaceListTrue
MICADOmicado_static_surfacesSurfaceListTrue
MICADOmicado_ncpas_psfNonCommonPathAberrationFalse
MICADOfilter_wheel_1 : [open]FilterWheelTrue
MICADOfilter_wheel_2 : [Ks]FilterWheelTrue
MICADOpupil_wheel : [open]FilterWheelTrue
MICADO_DETfull_detector_arrayDetectorListFalse
MICADO_DETdetector_windowDetectorWindowTrue
............
MICADO_DETdetector_linearityLinearityCurveTrue
MICADO_DETborder_reference_pixelsReferencePixelBorderTrue
MICADO_DETreadout_noisePoorMansHxRGReadoutNoiseTrue
MICADO_DETsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
MICADO_DETextra_fits_keywordsExtraFitsKeywordsTrue
default_rorelay_psfFieldConstantPSFFalse
default_rorelay_surface_listSurfaceListTrue
default_roextra_fits_keywords_roExtraFitsKeywordsTrue
MICADO_IMG_HRzoom_mirror_listSurfaceListTrue
MICADO_IMG_HRmicado_adc_3D_shiftAtmosphericDispersionCorrectionFalse
" - ], - "text/plain": [ - "\n", - " element name class included\n", - " str13 str23 str31 bool \n", - "------------- ----------------------- ------------------------------- --------\n", - " armazones skycalc_atmosphere SkycalcTERCurve True\n", - " armazones random_jitter PointSourceJitter True\n", - " ELT telescope_reflection SurfaceList True\n", - " MICADO micado_static_surfaces SurfaceList True\n", - " MICADO micado_ncpas_psf NonCommonPathAberration False\n", - " MICADO filter_wheel_1 : [open] FilterWheel True\n", - " MICADO filter_wheel_2 : [Ks] FilterWheel True\n", - " MICADO pupil_wheel : [open] FilterWheel True\n", - " MICADO_DET full_detector_array DetectorList False\n", - " MICADO_DET detector_window DetectorWindow True\n", - " ... ... ... ...\n", - " MICADO_DET detector_linearity LinearityCurve True\n", - " MICADO_DET border_reference_pixels ReferencePixelBorder True\n", - " MICADO_DET readout_noise PoorMansHxRGReadoutNoise True\n", - " MICADO_DET source_fits_keywords SourceDescriptionFitsKeywords True\n", - " MICADO_DET extra_fits_keywords ExtraFitsKeywords True\n", - " default_ro relay_psf FieldConstantPSF False\n", - " default_ro relay_surface_list SurfaceList True\n", - " default_ro extra_fits_keywords_ro ExtraFitsKeywords True\n", - "MICADO_IMG_HR zoom_mirror_list SurfaceList True\n", - "MICADO_IMG_HR micado_adc_3D_shift AtmosphericDispersionCorrection False" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "micado.optics_manager.add_effect(jitter_effect)\n", "\n", @@ -563,31 +361,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "exempt-purse", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkw0lEQVR4nO3df3CV9Z3o8c/R4AFsklYrOWSMNl0zVYu/Ci4FbWGr5A7bOnbtdNtiW3e6uyNFW7PuDi7lD5nObqLsLUM7bNmB3XFxdin9o1rtba1kpjW2w+UKKCODHWtHumZb0qwOm0SkQeC5f/R6rhErBD6HhPh6zTwz5nm+5+TDNwx990lyTqkoiiIAACDBGWM9AAAAE4e4BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIE3dWA/wRkeOHIlf//rXUV9fH6VSaazHAQB42yuKIoaGhqK5uTnOOOOt702Ou7j89a9/HS0tLWM9BgAAb9Db2xvnn3/+W64Zd3FZX18fERHXxh9HXUwa42kAADgUr8ZP4wfVTnsr4y4uX/tWeF1MirqSuAQAGHP/783Cj+dHFv1CDwAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGlGHZe/+tWv4rOf/Wyce+65MXXq1Ljyyitjx44d1etFUcSKFSuiubk5pkyZEvPnz4/du3enDg0AwPg0qrjct29fXHPNNTFp0qR45JFH4plnnomvfe1r8c53vrO6ZuXKlbFq1apYs2ZNbNu2LSqVSixYsCCGhoayZwcAYJypG83ie++9N1paWuK+++6rnnvPe95T/e+iKGL16tWxfPnyuOmmmyIiYsOGDdHU1BQbN26MW2+9NWdqAADGpVHduXz44Ydj1qxZ8clPfjKmTZsWV111Vaxfv756fc+ePdHX1xft7e3Vc+VyOebNmxdbtmx50+ccHh6OwcHBEQcAAKenUcXl888/H2vXro22trZ49NFHY/HixfHlL3857r///oiI6Ovri4iIpqamEY9ramqqXnujrq6uaGxsrB4tLS0n8ucAAGAcGFVcHjlyJD7wgQ9EZ2dnXHXVVXHrrbfGX/7lX8batWtHrCuVSiM+LoriqHOvWbZsWQwMDFSP3t7eUf4RAAAYL0YVl9OnT49LL710xLlLLrkkXnjhhYiIqFQqERFH3aXs7+8/6m7ma8rlcjQ0NIw4AAA4PY0qLq+55pp49tlnR5z7+c9/HhdeeGFERLS2tkalUonu7u7q9YMHD0ZPT0/MnTs3YVwAAMazUf22+F/91V/F3Llzo7OzM/70T/80nnjiiVi3bl2sW7cuIn737fCOjo7o7OyMtra2aGtri87Ozpg6dWosWrSoJn8AAADGj1HF5dVXXx0PPvhgLFu2LL761a9Ga2trrF69Om6++ebqmqVLl8aBAwdiyZIlsW/fvpg9e3Zs3rw56uvr04cHAGB8KRVFUYz1EK83ODgYjY2NMT9ujLrSpLEeBwDgbe9Q8Wo8Fg/FwMDAMX8/xnuLAwCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGZUcblixYoolUojjkqlUr1eFEWsWLEimpubY8qUKTF//vzYvXt3+tAAAIxPo75z+f73vz/27t1bPXbt2lW9tnLlyli1alWsWbMmtm3bFpVKJRYsWBBDQ0OpQwMAMD6NOi7r6uqiUqlUj/POOy8ifnfXcvXq1bF8+fK46aabYsaMGbFhw4Z45ZVXYuPGjemDAwAw/ow6Lp977rlobm6O1tbW+PSnPx3PP/98RETs2bMn+vr6or29vbq2XC7HvHnzYsuWLb/3+YaHh2NwcHDEAQDA6WlUcTl79uy4//7749FHH43169dHX19fzJ07N1566aXo6+uLiIimpqYRj2lqaqpeezNdXV3R2NhYPVpaWk7gjwEAwHgwqrhcuHBhfOITn4jLLrssrr/++vj+978fEREbNmyorimVSiMeUxTFUedeb9myZTEwMFA9ent7RzMSAADjyEm9FNHZZ58dl112WTz33HPV3xp/413K/v7+o+5mvl65XI6GhoYRBwAAp6eTisvh4eH42c9+FtOnT4/W1taoVCrR3d1dvX7w4MHo6emJuXPnnvSgAACMf3WjWfw3f/M3ccMNN8QFF1wQ/f398Xd/93cxODgYt9xyS5RKpejo6IjOzs5oa2uLtra26OzsjKlTp8aiRYtqNT8AAOPIqOLyP//zP+Mzn/lMvPjii3HeeefFBz/4wdi6dWtceOGFERGxdOnSOHDgQCxZsiT27dsXs2fPjs2bN0d9fX1NhgcAYHwpFUVRjPUQrzc4OBiNjY0xP26MutKksR4HAOBt71DxajwWD8XAwMAxfz/Ge4sDAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBmVC+iDgDkqqs0Hde6Q7/pP/ai8fXS1bxNuXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBovos7bzm8/9ofHXlQ6vuea/L0nTm4YThtnnnfeMdfs/VTbcT3XtDVbTnYcJpDvP/noca3746vaj7nm8PG80DrUmDuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApPEOPbzt7J9+ZtpzTU57Jsa9xnccc8lv5w0d33OtOclZmFD+R/OVx7nSu+9wenDnEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA0XkSdt51z1//vsR6B09DhX+w55poLPnkKBgEY59y5BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM1JxWVXV1eUSqXo6OioniuKIlasWBHNzc0xZcqUmD9/fuzevftk5wQA4DRwwnG5bdu2WLduXVx++eUjzq9cuTJWrVoVa9asiW3btkWlUokFCxbE0NDQSQ8LAMD4dkJx+fLLL8fNN98c69evj3e9613V80VRxOrVq2P58uVx0003xYwZM2LDhg3xyiuvxMaNG9/0uYaHh2NwcHDEAQDA6emE4vK2226Lj370o3H99dePOL9nz57o6+uL9vb26rlyuRzz5s2LLVu2vOlzdXV1RWNjY/VoaWk5kZEAABgHRh2XmzZtiieffDK6urqOutbX1xcREU1NTSPONzU1Va+90bJly2JgYKB69Pb2jnYkAADGibrRLO7t7Y077rgjNm/eHJMnT/6960ql0oiPi6I46txryuVylMvl0YwBAMA4Nao7lzt27Ij+/v6YOXNm1NXVRV1dXfT09MQ3vvGNqKurq96xfONdyv7+/qPuZgIAMPGMKi6vu+662LVrV+zcubN6zJo1K26++ebYuXNnvPe9741KpRLd3d3Vxxw8eDB6enpi7ty56cMDADC+jOrb4vX19TFjxowR584+++w499xzq+c7Ojqis7Mz2traoq2tLTo7O2Pq1KmxaNGivKkBABiXRhWXx2Pp0qVx4MCBWLJkSezbty9mz54dmzdvjvr6+uxPBQDAOFMqiqIY6yFeb3BwMBobG2N+3Bh1pUljPQ4AwNveoeLVeCweioGBgWhoaHjLtd5bHACANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDR1Yz0AnGqlqy875pqXL5h6XM919nf+z8mOA0xgg4s+eMw1Dd86zn9HiuIkp4FTw51LAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0niHHt52hlrPPuaaFy8rHddznf2dk52G08UZ9fXHXPM/d20+rue68z1zTnYcThOLlj9yzDX/a9O7j+/JisMnOQ2cGu5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJCmVBRFMdZDvN7g4GA0NjbG/Lgx6kqTxnocgN8pHccL61894/ie64ldJzcLwCl2qHg1HouHYmBgIBoaGt5y7ajuXK5duzYuv/zyaGhoiIaGhpgzZ0488sj/f/eBoihixYoV0dzcHFOmTIn58+fH7t27T+xPAQDAaWdUcXn++efHPffcE9u3b4/t27fHRz7ykbjxxhurAbly5cpYtWpVrFmzJrZt2xaVSiUWLFgQQ0NDNRkeAIDx5aS/LX7OOefEP/zDP8QXvvCFaG5ujo6OjrjrrrsiImJ4eDiampri3nvvjVtvvfW4ns+3xYFxybfFgbexmn1b/PUOHz4cmzZtiv3798ecOXNiz5490dfXF+3t7dU15XI55s2bF1u2bPm9zzM8PByDg4MjDgAATk+jjstdu3bFO97xjiiXy7F48eJ48MEH49JLL42+vr6IiGhqahqxvqmpqXrtzXR1dUVjY2P1aGlpGe1IAACME6OOy/e9732xc+fO2Lp1a3zxi1+MW265JZ555pnq9dIbvnVUFMVR515v2bJlMTAwUD16e3tHOxIAAONE3WgfcNZZZ8VFF10UERGzZs2Kbdu2xde//vXqz1n29fXF9OnTq+v7+/uPupv5euVyOcrl8mjHAABgHDrpF1EviiKGh4ejtbU1KpVKdHd3V68dPHgwenp6Yu7cuSf7aQAAOA2M6s7lV77ylVi4cGG0tLTE0NBQbNq0KR577LH44Q9/GKVSKTo6OqKzszPa2tqira0tOjs7Y+rUqbFo0aJazQ8AwDgyqrj8zW9+E5/73Odi79690djYGJdffnn88Ic/jAULFkRExNKlS+PAgQOxZMmS2LdvX8yePTs2b94c9fX1NRke4JQ5nldt8xJDAN7+EQCAt3ZKXucSAADeSFwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGZUcdnV1RVXX3111NfXx7Rp0+LjH/94PPvssyPWFEURK1asiObm5pgyZUrMnz8/du/enTo0AADj06jisqenJ2677bbYunVrdHd3x6FDh6K9vT32799fXbNy5cpYtWpVrFmzJrZt2xaVSiUWLFgQQ0ND6cMDADC+lIqiKE70wf/1X/8V06ZNi56envjwhz8cRVFEc3NzdHR0xF133RUREcPDw9HU1BT33ntv3Hrrrcd8zsHBwWhsbIz5cWPUlSad6GgAACQ5VLwaj8VDMTAwEA0NDW+59qR+5nJgYCAiIs4555yIiNizZ0/09fVFe3t7dU25XI558+bFli1b3vQ5hoeHY3BwcMQBAMDp6YTjsiiKuPPOO+Paa6+NGTNmREREX19fREQ0NTWNWNvU1FS99kZdXV3R2NhYPVpaWk50JAAAxtgJx+Xtt98eTz/9dHzrW9866lqpVBrxcVEUR517zbJly2JgYKB69Pb2nuhIAACMsboTedCXvvSlePjhh+Pxxx+P888/v3q+UqlExO/uYE6fPr16vr+//6i7ma8pl8tRLpdPZAwAAMaZUd25LIoibr/99njggQfiRz/6UbS2to643traGpVKJbq7u6vnDh48GD09PTF37tyciQEAGLdGdefytttui40bN8ZDDz0U9fX11Z+jbGxsjClTpkSpVIqOjo7o7OyMtra2aGtri87Ozpg6dWosWrSoJn8AAADGj1HF5dq1ayMiYv78+SPO33ffffFnf/ZnERGxdOnSOHDgQCxZsiT27dsXs2fPjs2bN0d9fX3KwAAAjF8n9TqXteB1LgEAxpdT9jqXAADweuISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANHVjPQBkOWPy5ONa9/N7rjzmmos6tp7kNEw0Z0ydesw1tz/95HE91zcuuvhkx2EC+cGvju/vzccunnfMNUeGhk52HDhp7lwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQxjv0MHGccXz/X6k452CNB2EiOvLb4WOu+dqSzx7Xc02K7Sc7DhPIDfM+cVzrjrz8y9oOAkncuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjRdRZ8I48sorx7Wu7fNP1ngSJqQjh4+5ZNJmL47O6B3+xZ6xHgFSuXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAmlHH5eOPPx433HBDNDc3R6lUiu9+97sjrhdFEStWrIjm5uaYMmVKzJ8/P3bv3p01LwAA49io43L//v1xxRVXxJo1a970+sqVK2PVqlWxZs2a2LZtW1QqlViwYEEMDQ2d9LAAAIxvdaN9wMKFC2PhwoVveq0oili9enUsX748brrppoiI2LBhQzQ1NcXGjRvj1ltvPblpAQAY11J/5nLPnj3R19cX7e3t1XPlcjnmzZsXW7ZsedPHDA8Px+Dg4IgDAIDTU2pc9vX1RUREU1PTiPNNTU3Va2/U1dUVjY2N1aOlpSVzJAAATqGa/LZ4qVQa8XFRFEede82yZctiYGCgevT29tZiJAAAToFR/8zlW6lUKhHxuzuY06dPr57v7+8/6m7ma8rlcpTL5cwxAAAYI6l3LltbW6NSqUR3d3f13MGDB6Onpyfmzp2b+akAABiHRn3n8uWXX45f/OIX1Y/37NkTO3fujHPOOScuuOCC6OjoiM7Ozmhra4u2trbo7OyMqVOnxqJFi1IHBwBg/Bl1XG7fvj3+6I/+qPrxnXfeGRERt9xyS/zrv/5rLF26NA4cOBBLliyJffv2xezZs2Pz5s1RX1+fNzUAAONSqSiKYqyHeL3BwcFobGyM+XFj1JUmjfU4AABve4eKV+OxeCgGBgaioaHhLdd6b3EAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADS1Cwuv/nNb0Zra2tMnjw5Zs6cGT/5yU9q9akAABgnahKX3/72t6OjoyOWL18eTz31VHzoQx+KhQsXxgsvvFCLTwcAwDhRk7hctWpV/Pmf/3n8xV/8RVxyySWxevXqaGlpibVr19bi0wEAME6kx+XBgwdjx44d0d7ePuJ8e3t7bNmy5aj1w8PDMTg4OOIAAOD0lB6XL774Yhw+fDiamppGnG9qaoq+vr6j1nd1dUVjY2P1aGlpyR4JAIBTpGa/0FMqlUZ8XBTFUeciIpYtWxYDAwPVo7e3t1YjAQBQY3XZT/jud787zjzzzKPuUvb39x91NzMiolwuR7lczh4DAIAxkB6XZ511VsycOTO6u7vjT/7kT6rnu7u748Ybbzzm44uiiIiIQ/FqRJE9HQAAo3UoXo2I/99pbyU9LiMi7rzzzvjc5z4Xs2bNijlz5sS6devihRdeiMWLFx/zsUNDQxER8dP4QS1GAwDgBA0NDUVjY+NbrqlJXH7qU5+Kl156Kb761a/G3r17Y8aMGfGDH/wgLrzwwmM+trm5OXp7e6O+vr76M5qDg4PR0tISvb290dDQUIuR+T3s/dix92PH3o8N+z527P3YOV32viiKGBoaiubm5mOuLRXHc39zjA0ODkZjY2MMDAyM642fiOz92LH3Y8fejw37Pnbs/diZiHvvvcUBAEgjLgEASHNaxGW5XI67777bSxaNAXs/duz92LH3Y8O+jx17P3Ym4t6fFj9zCQDA6eG0uHMJAMDpQVwCAJBGXAIAkEZcAgCQRlwCAJDmtIjLb37zm9Ha2hqTJ0+OmTNnxk9+8pOxHmnCefzxx+OGG26I5ubmKJVK8d3vfnfE9aIoYsWKFdHc3BxTpkyJ+fPnx+7du8dm2Amkq6srrr766qivr49p06bFxz/+8Xj22WdHrLH3tbF27dq4/PLLo6GhIRoaGmLOnDnxyCOPVK/b91Ojq6srSqVSdHR0VM/Z+9pYsWJFlEqlEUelUqlet++19atf/So++9nPxrnnnhtTp06NK6+8Mnbs2FG9PpH2f9zH5be//e3o6OiI5cuXx1NPPRUf+tCHYuHChfHCCy+M9WgTyv79++OKK66INWvWvOn1lStXxqpVq2LNmjWxbdu2qFQqsWDBghgaGjrFk04sPT09cdttt8XWrVuju7s7Dh06FO3t7bF///7qGntfG+eff37cc889sX379ti+fXt85CMfiRtvvLH6j7l9r71t27bFunXr4vLLLx9x3t7Xzvvf//7Yu3dv9di1a1f1mn2vnX379sU111wTkyZNikceeSSeeeaZ+NrXvhbvfOc7q2sm1P4X49wf/uEfFosXLx5x7uKLLy7+9m//dowmmvgionjwwQerHx85cqSoVCrFPffcUz3329/+tmhsbCz+6Z/+aQwmnLj6+/uLiCh6enqKorD3p9q73vWu4p//+Z/t+ykwNDRUtLW1Fd3d3cW8efOKO+64oygKf+dr6e677y6uuOKKN71m32vrrrvuKq699trfe32i7f+4vnN58ODB2LFjR7S3t484397eHlu2bBmjqd5+9uzZE319fSO+DuVyOebNm+frkGxgYCAiIs4555yIsPenyuHDh2PTpk2xf//+mDNnjn0/BW677bb46Ec/Gtdff/2I8/a+tp577rlobm6O1tbW+PSnPx3PP/98RNj3Wnv44Ydj1qxZ8clPfjKmTZsWV111Vaxfv756faLt/7iOyxdffDEOHz4cTU1NI843NTVFX1/fGE319vPaXvs61FZRFHHnnXfGtddeGzNmzIgIe19ru3btine84x1RLpdj8eLF8eCDD8all15q32ts06ZN8eSTT0ZXV9dR1+x97cyePTvuv//+ePTRR2P9+vXR19cXc+fOjZdeesm+19jzzz8fa9eujba2tnj00Udj8eLF8eUvfznuv//+iJh4f+/rxnqA41EqlUZ8XBTFUeeoPV+H2rr99tvj6aefjp/+9KdHXbP3tfG+970vdu7cGf/93/8d3/nOd+KWW26Jnp6e6nX7nq+3tzfuuOOO2Lx5c0yePPn3rrP3+RYuXFj978suuyzmzJkTf/AHfxAbNmyID37wgxFh32vlyJEjMWvWrOjs7IyIiKuuuip2794da9eujc9//vPVdRNl/8f1nct3v/vdceaZZx5V7f39/UfVPbXz2m8T+jrUzpe+9KV4+OGH48c//nGcf/751fP2vrbOOuusuOiii2LWrFnR1dUVV1xxRXz961+37zW0Y8eO6O/vj5kzZ0ZdXV3U1dVFT09PfOMb34i6urrq/tr72jv77LPjsssui+eee87f+RqbPn16XHrppSPOXXLJJdVfTp5o+z+u4/Kss86KmTNnRnd394jz3d3dMXfu3DGa6u2ntbU1KpXKiK/DwYMHo6enx9fhJBVFEbfffns88MAD8aMf/ShaW1tHXLf3p1ZRFDE8PGzfa+i6666LXbt2xc6dO6vHrFmz4uabb46dO3fGe9/7Xnt/igwPD8fPfvazmD59ur/zNXbNNdcc9TJzP//5z+PCCy+MiAn4b/1Y/SbR8dq0aVMxadKk4l/+5V+KZ555pujo6CjOPvvs4pe//OVYjzahDA0NFU899VTx1FNPFRFRrFq1qnjqqaeK//iP/yiKoijuueeeorGxsXjggQeKXbt2FZ/5zGeK6dOnF4ODg2M8+enti1/8YtHY2Fg89thjxd69e6vHK6+8Ul1j72tj2bJlxeOPP17s2bOnePrpp4uvfOUrxRlnnFFs3ry5KAr7fiq9/rfFi8Le18pf//VfF4899ljx/PPPF1u3bi0+9rGPFfX19dX/PbXvtfPEE08UdXV1xd///d8Xzz33XPHv//7vxdSpU4t/+7d/q66ZSPs/7uOyKIriH//xH4sLL7ywOOuss4oPfOAD1ZdpIc+Pf/zjIiKOOm655ZaiKH73Mgl33313UalUinK5XHz4wx8udu3aNbZDTwBvtucRUdx3333VNfa+Nr7whS9U/10577zziuuuu64alkVh30+lN8alva+NT33qU8X06dOLSZMmFc3NzcVNN91U7N69u3rdvtfW9773vWLGjBlFuVwuLr744mLdunUjrk+k/S8VRVGMzT1TAAAmmnH9M5cAAJxexCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGn+L3LdI7UQysnhAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "micado.observe(src, update=True)\n", "\n", @@ -605,31 +382,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "sound-preference", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlAElEQVR4nO3dcXCV9Zno8edo8Ag0SavVHHJJbdpmWi1iFSwFbWGr5F5u12vrTrcttstOd3ekYGvW3cFS/jDT2U2UnTK0ly07uDsu3q1LZ7Za3dlayUxrbIdlG6hcudhr2YFd09ZsVi+bpEiDyHv/6PVcIygJPCEBP5+Zd8a87y8nD79k8DsvOeeUiqIoAgAAEpwz0QMAAHD2EJcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkqZnoAV7t6NGj8Ytf/CJqa2ujVCpN9DgAAG94RVHE0NBQNDY2xjnnvP69yUkXl7/4xS+iqalposcAAOBVent7Y+bMma+7ZtLFZW1tbUREXBv/NWpiygRPAwDAkXgxfhjfqXba65l0cfnyP4XXxJSoKYlLAIAJ9//eLHw0v7LoCT0AAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkGXNc/vznP49Pf/rTceGFF8a0adPife97X+zcubN6vSiKaG9vj8bGxpg6dWosWrQo9uzZkzo0AACT05ji8sCBA3HNNdfElClT4pFHHomnnnoqvvKVr8Sb3/zm6pq1a9fGunXrYsOGDdHT0xOVSiUWL14cQ0ND2bMDADDJ1Ixl8d133x1NTU1x7733Vs+9/e1vr/53URSxfv36WLNmTdx0000REbF58+ZoaGiI+++/P2655ZacqQEAmJTGdOfy4Ycfjrlz58bHP/7xuPjii+PKK6+Me+65p3p9//790dfXF62trdVz5XI5Fi5cGNu2bTvuYw4PD8fg4OCIAwCAM9OY4nLfvn2xcePGaGlpiUcffTSWL18eX/jCF+K+++6LiIi+vr6IiGhoaBjxeQ0NDdVrr9bZ2Rn19fXVo6mp6WT+HAAATAJjisujR4/GVVddFR0dHXHllVfGLbfcEn/wB38QGzduHLGuVCqN+LgoimPOvWz16tUxMDBQPXp7e8f4RwAAYLIYU1zOmDEjLrvsshHnLr300njmmWciIqJSqUREHHOXsr+//5i7mS8rl8tRV1c34gAA4Mw0pri85ppr4umnnx5x7qc//WlccsklERHR3NwclUolurq6qtcPHz4c3d3dsWDBgoRxAQCYzMb0bPE//MM/jAULFkRHR0f89m//dvzoRz+KTZs2xaZNmyLi1/8c3tbWFh0dHdHS0hItLS3R0dER06ZNi6VLl47LHwAAgMljTHF59dVXx4MPPhirV6+OL3/5y9Hc3Bzr16+Pm2++ubpm1apVcejQoVixYkUcOHAg5s2bF1u3bo3a2tr04QEAmFxKRVEUEz3EKw0ODkZ9fX0sihujpjRloscBAHjDO1K8GI/FQzEwMHDC58d4b3EAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSiEsAANKISwAA0ohLAADSjCku29vbo1QqjTgqlUr1elEU0d7eHo2NjTF16tRYtGhR7NmzJ31oAAAmpzHfuXzve98bzz77bPXYvXt39dratWtj3bp1sWHDhujp6YlKpRKLFy+OoaGh1KEBAJicxhyXNTU1UalUqsdFF10UEb++a7l+/fpYs2ZN3HTTTTFr1qzYvHlzvPDCC3H//fenDw4AwOQz5rjcu3dvNDY2RnNzc3zyk5+Mffv2RUTE/v37o6+vL1pbW6try+VyLFy4MLZt2/aajzc8PByDg4MjDgAAzkxjist58+bFfffdF48++mjcc8890dfXFwsWLIjnn38++vr6IiKioaFhxOc0NDRUrx1PZ2dn1NfXV4+mpqaT+GMAADAZjCkulyxZEr/1W78Vl19+eVx//fXxD//wDxERsXnz5uqaUqk04nOKojjm3CutXr06BgYGqkdvb+9YRgIAYBI5pZcimj59elx++eWxd+/e6rPGX32Xsr+//5i7ma9ULpejrq5uxAEAwJnplOJyeHg4fvKTn8SMGTOiubk5KpVKdHV1Va8fPnw4uru7Y8GCBac8KAAAk1/NWBb/8R//cdxwww3xtre9Lfr7++NP/uRPYnBwMJYtWxalUina2tqio6MjWlpaoqWlJTo6OmLatGmxdOnS8Zof4LQolcsnXHP0qveM7rH+8X+e6jgAk9aY4vJnP/tZfOpTn4rnnnsuLrroovjABz4Q27dvj0suuSQiIlatWhWHDh2KFStWxIEDB2LevHmxdevWqK2tHZfhAQCYXEpFURQTPcQrDQ4ORn19fSyKG6OmNGWixwGICHcugTe2I8WL8Vg8FAMDAyd8foz3FgcAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM2YXkQd4I3qnLf9pxOu+fz/+OaoHutr7xrd62ECnIncuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjRdRBxiFl/buO+EaL47OeDpn1ol/vs4Z+OWoHutI789OdRx4Te5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkMY79MBxlMrlUa377v5/OuGa/9z4vlOcBiBi75fOP+Ga6T+6YFSPVVnvHXoYP+5cAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJDGi6jDcRSHD49q3X/5b58exar/dWrDAETEO5fumugRYFTcuQQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNd+iB4ymK0S3b4d13AOCV3LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAIM0pxWVnZ2eUSqVoa2urniuKItrb26OxsTGmTp0aixYtij179pzqnAAAnAFOOi57enpi06ZNMXv27BHn165dG+vWrYsNGzZET09PVCqVWLx4cQwNDZ3ysAAATG4nFZe//OUv4+abb4577rkn3vKWt1TPF0UR69evjzVr1sRNN90Us2bNis2bN8cLL7wQ999//3Efa3h4OAYHB0ccAACcmU4qLleuXBkf+chH4vrrrx9xfv/+/dHX1xetra3Vc+VyORYuXBjbtm077mN1dnZGfX199WhqajqZkQAAmATGHJdbtmyJH//4x9HZ2XnMtb6+voiIaGhoGHG+oaGheu3VVq9eHQMDA9Wjt7d3rCMBADBJ1IxlcW9vb9x2222xdevWOP/8819zXalUGvFxURTHnHtZuVyOcrk8ljEAAJikxnTncufOndHf3x9z5syJmpqaqKmpie7u7vja174WNTU11TuWr75L2d/ff8zdTAAAzj5jisvrrrsudu/eHbt27aoec+fOjZtvvjl27doV73jHO6JSqURXV1f1cw4fPhzd3d2xYMGC9OEBAJhcxvTP4rW1tTFr1qwR56ZPnx4XXnhh9XxbW1t0dHRES0tLtLS0REdHR0ybNi2WLl2aNzUAAJPSmOJyNFatWhWHDh2KFStWxIEDB2LevHmxdevWqK2tzf5SAABMMqWiKIqJHuKVBgcHo76+PhbFjVFTmjLR4wAAvOEdKV6Mx+KhGBgYiLq6utdd673FAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEgjLgEASCMuAQBIIy4BAEhTM9EDwKh8YPYJlxycOXVUDzX97/7pVKeBU3POuSdcsve/zx3VQ7Ws9PMMTC7uXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQxouoc0YYeOe0E675P+8tjeqxmv/uVKeBU1M658Q/q9Mbh07DJAD53LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjXfo4YxQ/43tJ15zGuaADMWRIydc0/ixp07DJAD53LkEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII0XUQeACVTTfMmo1l32rWdOuObJq4pTHQdOmTuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApPEOPQAwgY72Pzeqdf/Y8f4Trpke/3Sq48Apc+cSAIA04hIAgDTiEgCANOISAIA04hIAgDTiEgCANOISAIA04hIAgDReRB0AJtDRgwdHtW7633mBdM4MY7pzuXHjxpg9e3bU1dVFXV1dzJ8/Px555JHq9aIoor29PRobG2Pq1KmxaNGi2LNnT/rQAABMTmOKy5kzZ8Zdd90VO3bsiB07dsSHP/zhuPHGG6sBuXbt2li3bl1s2LAhenp6olKpxOLFi2NoaGhchgcAYHIpFUVRnMoDXHDBBfFnf/Zn8dnPfjYaGxujra0t7rjjjoiIGB4ejoaGhrj77rvjlltuGdXjDQ4ORn19fSyKG6OmNOVURgMAIMGR4sV4LB6KgYGBqKure921J/2Enpdeeim2bNkSBw8ejPnz58f+/fujr68vWltbq2vK5XIsXLgwtm3b9pqPMzw8HIODgyMOAADOTGOOy927d8eb3vSmKJfLsXz58njwwQfjsssui76+voiIaGhoGLG+oaGheu14Ojs7o76+vno0NTWNdSQAACaJMcflu9/97ti1a1ds3749Pve5z8WyZcviqaeeql4vlUoj1hdFccy5V1q9enUMDAxUj97e3rGOBADAJDHmlyI677zz4l3veldERMydOzd6enriq1/9avX3LPv6+mLGjBnV9f39/cfczXylcrkc5XJ5rGMAADAJnfKLqBdFEcPDw9Hc3ByVSiW6urqq1w4fPhzd3d2xYMGCU/0yAACcAcZ05/JLX/pSLFmyJJqammJoaCi2bNkSjz32WHz3u9+NUqkUbW1t0dHRES0tLdHS0hIdHR0xbdq0WLp06XjNDwDAJDKmuPy3f/u3+MxnPhPPPvts1NfXx+zZs+O73/1uLF68OCIiVq1aFYcOHYoVK1bEgQMHYt68ebF169aora0dl+EBAJhcTvl1LrN5nUsAgMnltLzOJQAAvJq4BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACCNuAQAII24BAAgjbgEACDNmOKys7Mzrr766qitrY2LL744PvrRj8bTTz89Yk1RFNHe3h6NjY0xderUWLRoUezZsyd1aAAAJqcxxWV3d3esXLkytm/fHl1dXXHkyJFobW2NgwcPVtesXbs21q1bFxs2bIienp6oVCqxePHiGBoaSh8eAIDJpVQURXGyn/zv//7vcfHFF0d3d3d86EMfiqIoorGxMdra2uKOO+6IiIjh4eFoaGiIu+++O2655ZYTPubg4GDU19fHorgxakpTTnY0AACSHClejMfioRgYGIi6urrXXXtKv3M5MDAQEREXXHBBRETs378/+vr6orW1tbqmXC7HwoULY9u2bcd9jOHh4RgcHBxxAABwZjrpuCyKIm6//fa49tprY9asWRER0dfXFxERDQ0NI9Y2NDRUr71aZ2dn1NfXV4+mpqaTHQkAgAl20nF56623xpNPPhl/+7d/e8y1Uqk04uOiKI4597LVq1fHwMBA9ejt7T3ZkQAAmGA1J/NJn//85+Phhx+Oxx9/PGbOnFk9X6lUIuLXdzBnzJhRPd/f33/M3cyXlcvlKJfLJzMGAACTzJjuXBZFEbfeems88MAD8b3vfS+am5tHXG9ubo5KpRJdXV3Vc4cPH47u7u5YsGBBzsQAAExaY7pzuXLlyrj//vvjoYceitra2urvUdbX18fUqVOjVCpFW1tbdHR0REtLS7S0tERHR0dMmzYtli5dOi5/AADg145+8MpRrfv5wqknXNP0J8d/Ii6cyJjicuPGjRERsWjRohHn77333vjd3/3diIhYtWpVHDp0KFasWBEHDhyIefPmxdatW6O2tjZlYAAAJq8xxeVoXhKzVCpFe3t7tLe3n+xMAACcoby3OAAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAaU7qvcUBgMmn9NLRUa079/A4D8IbmjuXAACkEZcAAKQRlwAApBGXAACkEZcAAKQRlwAApBGXAACkEZcAAKTxIuoAk9Cvbnj/qNZN7Tt0wjVFz+5THYczRGnb/xzVusZt4zwIb2juXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJDGO/QATEK/uObcUa17y/9+04nX9JzqNACj584lAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGm8iDpnhJq3v+2Ea46++cQvJh0RcXTXU6c6Doy7d3zxHyd6BICT4s4lAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAacQlAABpxCUAAGnEJQAAabxDD2eEn3105gnXDF35q1E9VsuyU50GAHgt7lwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkMaLqHNGqKzfduI1p2EOAOD1uXMJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQJoxx+Xjjz8eN9xwQzQ2NkapVIpvf/vbI64XRRHt7e3R2NgYU6dOjUWLFsWePXuy5gUAYBIbc1wePHgwrrjiitiwYcNxr69duzbWrVsXGzZsiJ6enqhUKrF48eIYGho65WEBAJjcasb6CUuWLIklS5Yc91pRFLF+/fpYs2ZN3HTTTRERsXnz5mhoaIj7778/brnlllObFgCASS31dy73798ffX190draWj1XLpdj4cKFsW3btuN+zvDwcAwODo44AAA4M6XGZV9fX0RENDQ0jDjf0NBQvfZqnZ2dUV9fXz2ampoyRwIA4DQal2eLl0qlER8XRXHMuZetXr06BgYGqkdvb+94jAQAwGkw5t+5fD2VSiUifn0Hc8aMGdXz/f39x9zNfFm5XI5yuZw5BgAAEyT1zmVzc3NUKpXo6uqqnjt8+HB0d3fHggULMr8UAACT0JjvXP7yl7+Mf/7nf65+vH///ti1a1dccMEF8ba3vS3a2tqio6MjWlpaoqWlJTo6OmLatGmxdOnS1MEBAJh8xhyXO3bsiN/4jd+ofnz77bdHRMSyZcvir//6r2PVqlVx6NChWLFiRRw4cCDmzZsXW7dujdra2rypAQCYlEpFURQTPcQrDQ4ORn19fSyKG6OmNGWixwEAeMM7UrwYj8VDMTAwEHV1da+71nuLAwCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkEZcAgCQRlwCAJBGXAIAkGbc4vLrX/96NDc3x/nnnx9z5syJH/zgB+P1pQAAmCTGJS6/+c1vRltbW6xZsyaeeOKJ+OAHPxhLliyJZ555Zjy+HAAAk8S4xOW6devi937v9+L3f//349JLL43169dHU1NTbNy4cTy+HAAAk0R6XB4+fDh27twZra2tI863trbGtm3bjlk/PDwcg4ODIw4AAM5M6XH53HPPxUsvvRQNDQ0jzjc0NERfX98x6zs7O6O+vr56NDU1ZY8EAMBpMm5P6CmVSiM+LorimHMREatXr46BgYHq0dvbO14jAQAwzmqyH/Ctb31rnHvuucfcpezv7z/mbmZERLlcjnK5nD0GAAATID0uzzvvvJgzZ050dXXFxz72ser5rq6uuPHGG0/4+UVRRETEkXgxosieDgCAsToSL0bE/++015MelxERt99+e3zmM5+JuXPnxvz582PTpk3xzDPPxPLly0/4uUNDQxER8cP4zniMBgDASRoaGor6+vrXXTMucfmJT3winn/++fjyl78czz77bMyaNSu+853vxCWXXHLCz21sbIze3t6ora2t/o7m4OBgNDU1RW9vb9TV1Y3HyLwGez9x7P3EsfcTw75PHHs/cc6UvS+KIoaGhqKxsfGEa0vFaO5vTrDBwcGor6+PgYGBSb3xZyN7P3Hs/cSx9xPDvk8cez9xzsa9997iAACkEZcAAKQ5I+KyXC7HnXfe6SWLJoC9nzj2fuLY+4lh3yeOvZ84Z+PenxG/cwkAwJnhjLhzCQDAmUFcAgCQRlwCAJBGXAIAkEZcAgCQ5oyIy69//evR3Nwc559/fsyZMyd+8IMfTPRIZ53HH388brjhhmhsbIxSqRTf/va3R1wviiLa29ujsbExpk6dGosWLYo9e/ZMzLBnkc7Ozrj66qujtrY2Lr744vjoRz8aTz/99Ig19n58bNy4MWbPnh11dXVRV1cX8+fPj0ceeaR63b6fHp2dnVEqlaKtra16zt6Pj/b29iiVSiOOSqVSvW7fx9fPf/7z+PSnPx0XXnhhTJs2Ld73vvfFzp07q9fPpv2f9HH5zW9+M9ra2mLNmjXxxBNPxAc/+MFYsmRJPPPMMxM92lnl4MGDccUVV8SGDRuOe33t2rWxbt262LBhQ/T09ESlUonFixfH0NDQaZ707NLd3R0rV66M7du3R1dXVxw5ciRaW1vj4MGD1TX2fnzMnDkz7rrrrtixY0fs2LEjPvzhD8eNN95Y/cvcvo+/np6e2LRpU8yePXvEeXs/ft773vfGs88+Wz12795dvWbfx8+BAwfimmuuiSlTpsQjjzwSTz31VHzlK1+JN7/5zdU1Z9X+F5Pc+9///mL58uUjzr3nPe8pvvjFL07QRGe/iCgefPDB6sdHjx4tKpVKcdddd1XP/epXvyrq6+uLv/iLv5iACc9e/f39RUQU3d3dRVHY+9PtLW95S/GXf/mX9v00GBoaKlpaWoqurq5i4cKFxW233VYUhZ/58XTnnXcWV1xxxXGv2ffxdccddxTXXnvta14/2/Z/Ut+5PHz4cOzcuTNaW1tHnG9tbY1t27ZN0FRvPPv374++vr4R34dyuRwLFy70fUg2MDAQEREXXHBBRNj70+Wll16KLVu2xMGDB2P+/Pn2/TRYuXJlfOQjH4nrr79+xHl7P7727t0bjY2N0dzcHJ/85Cdj3759EWHfx9vDDz8cc+fOjY9//ONx8cUXx5VXXhn33HNP9frZtv+TOi6fe+65eOmll6KhoWHE+YaGhujr65ugqd54Xt5r34fxVRRF3H777XHttdfGrFmzIsLej7fdu3fHm970piiXy7F8+fJ48MEH47LLLrPv42zLli3x4x//ODo7O4+5Zu/Hz7x58+K+++6LRx99NO65557o6+uLBQsWxPPPP2/fx9m+ffti48aN0dLSEo8++mgsX748vvCFL8R9990XEWffz33NRA8wGqVSacTHRVEcc47x5/swvm699dZ48skn44c//OEx1+z9+Hj3u98du3btiv/4j/+Ib33rW7Fs2bLo7u6uXrfv+Xp7e+O2226LrVu3xvnnn/+a6+x9viVLllT/+/LLL4/58+fHO9/5zti8eXN84AMfiAj7Pl6OHj0ac+fOjY6OjoiIuPLKK2PPnj2xcePG+J3f+Z3qurNl/yf1ncu3vvWtce655x5T7f39/cfUPePn5WcT+j6Mn89//vPx8MMPx/e///2YOXNm9by9H1/nnXdevOtd74q5c+dGZ2dnXHHFFfHVr37Vvo+jnTt3Rn9/f8yZMydqamqipqYmuru742tf+1rU1NRU99fej7/p06fH5ZdfHnv37vUzP85mzJgRl1122Yhzl156afXJyWfb/k/quDzvvPNizpw50dXVNeJ8V1dXLFiwYIKmeuNpbm6OSqUy4vtw+PDh6O7u9n04RUVRxK233hoPPPBAfO9734vm5uYR1+396VUURQwPD9v3cXTdddfF7t27Y9euXdVj7ty5cfPNN8euXbviHe94h70/TYaHh+MnP/lJzJgxw8/8OLvmmmuOeZm5n/70p3HJJZdExFn4d/1EPZNotLZs2VJMmTKl+Ku/+qviqaeeKtra2orp06cX//Iv/zLRo51VhoaGiieeeKJ44okniogo1q1bVzzxxBPFv/7rvxZFURR33XVXUV9fXzzwwAPF7t27i0996lPFjBkzisHBwQme/Mz2uc99rqivry8ee+yx4tlnn60eL7zwQnWNvR8fq1evLh5//PFi//79xZNPPll86UtfKs4555xi69atRVHY99Pplc8WLwp7P17+6I/+qHjssceKffv2Fdu3by9+8zd/s6itra3+/9S+j58f/ehHRU1NTfGnf/qnxd69e4tvfOMbxbRp04q/+Zu/qa45m/Z/0sdlURTFn//5nxeXXHJJcd555xVXXXVV9WVayPP973+/iIhjjmXLlhVF8euXSbjzzjuLSqVSlMvl4kMf+lCxe/fuiR36LHC8PY+I4t57762usffj47Of/Wz175WLLrqouO6666phWRT2/XR6dVza+/HxiU98opgxY0YxZcqUorGxsbjpppuKPXv2VK/b9/H193//98WsWbOKcrlcvOc97yk2bdo04vrZtP+loiiKiblnCgDA2WZS/84lAABnFnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAEAacQkAQBpxCQBAGnEJAECa/wsz0hK0zNJUyQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "micado[\"random_jitter\"].meta[\"max_jitter\"] = 0.005\n", "\n", @@ -651,31 +407,10 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "future-approval", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAKTCAYAAABM/SOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXPklEQVR4nO3df5RddX3/+9fZ55w5Z2YyZxCUmeRLpLFGBfkhgo0ENKma9EuVq6XLqqBia11EQI22F79p1r3O9VsTyneZRm9quqBeGm5L8btWxdLbAslaStBvFl9DhGVucCldxJoq0xTIj2Fmzpkze+/7RxZzHYOzXwfeyZzg87HWrKUzHz57z2d/9t7vHMj7VcrzPBcAAAAQIJnvEwAAAMBLB8UlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTGW+T+AXZVmmn/3sZxoYGFCpVJrv0wEAAPiVl+e5xsbGtGjRIiXJ3J9Ndl1x+bOf/UyLFy+e79MAAADALzhw4IDOOuusOcd0XXE5MDAg6djJNxqNOceufeRjhfOluffpZ7VUHFSUWTPF/rcG7jFdkefWk7SLj2esayei54tSNq+Uc/7tvGzNVS2l1jhnvsy+T7xjTmY9hWMq5lzOmk1n3s7OzDtgOites6QUe3c66+Huf+d6zse96V6nyN/T5Ryzlkxbc7Uy79XqHNN9trjPDed3cOdy1t9dM/dapsY9PGWufyT3/LO8+PzdJ0vFfAZNG8d0TI239bfvvHumTptL1xWXz/2r8EajUVhc9iwofoH5xWXxRcrkzZUo7qHtHtMVeW41Y79SXM7mnH9iF5fmizq0uPSOmWbVsLmsF7BZtDgvJklK5qG4dNbjVC8u3evUvcWlebx5KC7d54bzO7hzecWlW3TFFZfu+keKLS69uew/oJvX0+X8J4v8hR4AAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6bo+l8+57DNbVO6pzznmzR8tnqfs9ksz+kq5PSLbZsNSp99Vb3nKmsvtC+f0THMb6J7qPSddTl81t3+i8uJzc8/f7avmzFc22/dVE6+vWp+K9627z9zG246+xLufns1rhWOi97+zHr1GcIHLbYgf2RC8knh7u27+nk2jn6rLuU/cNYv82MZdi9R870wYAQfuM6heLl4P97zc54HDbdw+mXr7x5lvPCt+ZkhSf7lVPFfqzeXUEJJXu8T31AYAAACCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTNc2Uf8fm25Uo9GYc8wnH/lA4Txuk9Qpo1Fwj9mYtVoym2AbTYfdJqnVUlxzZbcBrdM02W46bHIah7vn7zbtbaVOs3tv/Z31iGwm7LKPafan7zOa/7vNlZ0m3m5z94m0uIG05O0ht4l9ZONwd82cfshl8znl3k/OdXIbz7uBFYPlycIxrdx7zUXem+5zz5nP3bPu2jrvxAVGo29JamfF5++el3s/Rc7lXidnPrc+mDSuZ68Z9tAyQwQS5143ni2dfBrJJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1CT2OsXa9cEzFTO5wTBtpBJJULXvJF25Hf0dq/jmhbESsuIkcTmqBm2jhnJfk/Z4TmZdo4YpMa2mreD3cudxrPp0Vj3OvuXtMN1XE4ZxbdNqMcw2SxEsecTlpJy43FSWSm+ricFN1MiOKyE37cZ5VbkKS+9Zx9m3LfJ65v6eTJube59Z9Yp5XJHf/h6a5mell1XJ3prQ5KT5W0s9zYzs9gZ/+9Kf64Ac/qDPOOEN9fX16wxveoD179sz8PM9zjYyMaNGiRert7dXKlSu1b9++Tg8DAACAU1BHxeWhQ4d02WWXqVqt6t5779Vjjz2mL37xizrttNNmxtxyyy3atGmTtmzZot27d2t4eFirVq3S2NhY9LkDAACgy3T0r8X/7M/+TIsXL9btt98+871f+7Vfm/nfeZ5r8+bNWr9+va666ipJ0rZt2zQ0NKQ777xT1113XcxZAwAAoCt19MnlPffco0suuUTvfe97deaZZ+qiiy7SbbfdNvPz/fv3a3R0VKtXr575Xq1W04oVK7Rr167nnbPVauno0aOzvgAAAHBq6qi4fOKJJ7R161YtXbpU999/v9asWaNPfvKTuuOOOyRJo6OjkqShoaFZ/9zQ0NDMz37Rxo0bNTg4OPO1ePHiF/J7AAAAoAt0VFxmWaY3vvGN2rBhgy666CJdd911+tjHPqatW7fOGlcqzf4bZHmeH/e956xbt05HjhyZ+Tpw4ECHvwIAAAC6RUfF5cKFC3XuuefO+t4555yjn/zkJ5Kk4eFhSTruU8qDBw8e92nmc2q1mhqNxqwvAAAAnJo6Ki4vu+wy/fCHP5z1vR/96Ec6++yzJUlLlizR8PCwduzYMfPzqakp7dy5U8uXLw84XQAAAHSzjv62+Kc//WktX75cGzZs0O/93u/pu9/9rm699Vbdeuutko796/C1a9dqw4YNWrp0qZYuXaoNGzaor69PV1999Qn5BQAAANA9Oiou3/SmN+nuu+/WunXr9PnPf15LlizR5s2bdc0118yMuemmmzQ5Oanrr79ehw4d0rJly7R9+3YNDAx0dGJv+9j/qXJ17gSeiz5d3F3fTb3oL08VjnHSICS/i72TblAtxSUMSV5yQSvztoWTItCXFK9rJ5y0GTddwk1ncNbDTYRw9qOb0OOevzPOTTVyk5SyX/LfWP88d287+8xN6HHHVQMTbty0DSsJynwGuUkykdxzc0Q+N2pJcSKNJE2ktcIxiblnI9fCvc9dzvPFfQc4zz3nmS1JlcRPfyniPqfc37PPqA8mcu8Z6qy/+w5waw3nOo1PF+//qQ7KkY7jH9/1rnfpXe961y/9ealU0sjIiEZGRjqdGgAAAKe4k//HWwAAALxkUVwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCdNzn8mRp95aU9bz4RrRuA9pKUtwdNLLps+Q1SnWbc7vjHG7TW2dtI5vxRnMb1UbO5TT3XVDxmj5PplVrXCsvvgb2+ZtL5twr7jV3Gp+795zbnNuZz21U7j43nMbb7jHdZvEOuyG4cW7uWri/p3Vu5t6IbNYf2cTefYa697DTrNy9NyfT4sbhbqPv1HzvONz73H6nn+zwC/P2dZ97jl6jUXy57L2bJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3o+faXb1Sj0ZhzzJo9HzpJZ3OMk0Yg+YkEbjqAw00HcJIXUvPPHElePNd8JO+4qUzu+jtpD5GJKNFpM05Cj5NAIfl74/B0X+GY06vj3jGNtJOBctOaq5l5qUaR19PlnFs98RIyEhXfd+4+i1wLZy9KsQk37po5z9C6keQmxSYpLSi3rLlcE1nxe8xOlTLXNpLzDHJ+R8lLTHNFvuvcuaryrpOTyjQ+XSsck3VwX/LJJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1zZRdziNn3vLXqPpaWMutzm62wDVaQabmE1S7cbbJW89oo7pNjR3GrhK0mnVicIxdnN0szmx06y8XvKaCTtNk91G383cG9en4t+zZR7zyHSvNe60Stx1coyldWuce8zIJt4up6FzZLN7t4F01XyeZSpuQu6uqxsK4XCPaQVMmHO5AQdV8/lozWXu7UEV35tus2znvmtlZuN887Ouduq8q2PDO5z53PW35jLf+24ogXsNIvHJJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCnNIJPdWkuIv9ZNpjzdVfKU4xmTK73PcnXvJLZAqFm4TjpOo4aUXHjlmcSuMmAzjrL0l145gvq4xbcw0kk9a4fiehx0zkcBI+srL3Z74pM5XJSfwZK3nJO24KxZHUm88RmS5RTrxUGuc+cdNa3PSsyMSiqpEYFXk8SZKzHmbKWSvznttO2smEOZdjoNy0xi0wxznXoG6mqpUDU2nclDDn/N31f2a63xoXmb7j3puJ4o5ZKxW/q920oor5PLPCuIxDZkbN1cF0AAAAgIfiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABDmlE7ocbrmOyk+rh4zBcfVW45LuInkJO9IXrrBgrKXvNNX9lIoBsvFqTpnlJ+15jrdHOekAtWNRBRJKht7NpWX3NTMvRSNsaxePCh2a2uB8Tu0zBQQJ5GjbCa/uKk6VpKSmbDVZ6Y3OWknfeb9FJm+U7biPaR2Xvysik5EcdJf3PX3nmde8s5p5QlrnJPm5j5bqkbyi+Q9g8ZzL1VnPKsVjhkLTOs6Nl/x82wy9Z4tKnnPA/ceiOI+W9xxVqpRXvw7Jh2sA59cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bRP1//x7m1Wpzt0s9bWfK66Nq2ZzZacZqdP03J1L8hqku82Q3WbrlaR4PSZTr4Fur9H4vGY2nn9ZZdwa5zRId5uj242OjebEdfM6Rf5pbiL31tZpwlyVd/49qTcuyxvFgwIXw2msLPnNkJ3whboZ0OA2BD+9UrxvnYb+x45Z/Hu6c7mcJupO023Jf+4N5MVNzZtms/4Bo0G6G9DQZzRHd+ez18Jstt42bry+3Dz/pPi5fbA0YM3lNoGvloqfLROJ9w47Mu01eHeuQWo+0J5Ni+8B95o773PJq0mcRutWM/bnxtojAQAAgAIUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwXZvQc99/X6tGY+5O/B/d/ZHiicyEHqfz/HQWW4s73fXbeTlsLslP8oniJg3YySnGfP1mOoabaDFgrG1PyUtlcnaQtxJSOffW1pmwba7ZWOYlWgyUJwvHNKe95A4nYSUyeSeak/zijnP3dl+peFx0Qo9znU4re88zN8lnwhiX5t5z20lYcVO9Tku8cQNJccrZoLlnvZWVUuNeaZvpX01jbafMM8vMz7qaeXH6jpvK5CbOOO9hN5nPfSc63GM6nN9xOnffTnxyCQAAgEAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwXZvQ46glxSkCiZnQY3W6L3m1eGgqjXlMt1O/dUzzjxyRSQNuiomTUNJvJu/Uzb3hpO/0lbwUilTFiRBluWk/5vobCR9NM5GjWvLGJcY+KxtrEc1Na3HSawaNFCJJekXlqDXu9PKzhWMaiXef1I3r5KaTVM30o5ZxD4znXnJK1dzbPcYzaMpMOXPm6nPTv4zkHUnqM45ZN9O/6uYzyNE007+qRmJLW96eddPoxpPiVKas4q2Ze8xnUy8xKor7Pl9Q8fajk1hUc57tRs01M9QeCQAAABSguAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYU7qJemY0m64FNvquJF4zYVdq1PZW03NJmbxmsE7jZLc5t9OA1mlG3QmnObfdHNrrU6uqsc+qZgPjmnHN22YD48y8Ts6fIOvmfeI0sZekptEs223C7+yhsbRuzdVnNiFfYDT1P71S3PRckk4rT4SNGwgMCOhPvBsgzb37KTXuzT6zWb/TBF6S6nnxemRm4/zUuM/r5vpXzYCGAeMauM3R3WdQxXhXpPLucxnX3H62lLzG8841GJP3PCib18l5VrUD38EuNxTCqSOceqQTHc02MjKiUqk062t4eHjm53mea2RkRIsWLVJvb69Wrlypffv2hZ4wAAAAulfHperrX/96PfnkkzNfe/funfnZLbfcok2bNmnLli3avXu3hoeHtWrVKo2NjYWeNAAAALpTx8VlpVLR8PDwzNcrXvEKScc+tdy8ebPWr1+vq666Suedd562bdumiYkJ3XnnneEnDgAAgO7TcXH5+OOPa9GiRVqyZIne//7364knnpAk7d+/X6Ojo1q9evXM2FqtphUrVmjXrl2/dL5Wq6WjR4/O+gIAAMCpqaPictmyZbrjjjt0//3367bbbtPo6KiWL1+up59+WqOjo5KkoaGhWf/M0NDQzM+ez8aNGzU4ODjztXjx4hfwawAAAKAbdFRcXnHFFfrd3/1dnX/++XrHO96hf/qnf5Ikbdu2bWZMqTT7b7/leX7c937eunXrdOTIkZmvAwcOdHJKAAAA6CIv6u+e9/f36/zzz9fjjz8+87fGf/FTyoMHDx73aebPq9VqajQas74AAABwanpRxWWr1dIPfvADLVy4UEuWLNHw8LB27Ngx8/OpqSnt3LlTy5cvf9EnCgAAgO7XURP1P/7jP9aVV16pV77ylTp48KD+9E//VEePHtW1116rUqmktWvXasOGDVq6dKmWLl2qDRs2qK+vT1dfffWJOn8AAAB0kY6Ky3/7t3/TBz7wAT311FN6xSteoTe/+c166KGHdPbZZ0uSbrrpJk1OTur666/XoUOHtGzZMm3fvl0DAwMn5OQn0+IUkN7E6/rvdKdvp14H/kbFSwHJ8uJ0Brebf5Z5aRtOypCzrpLUWy5OSnBSLyQpNdZCkjLjOjnremyuOG6KicxECIeTHCRJTRWfW9tMenA1Myehx0thceZyk6Bq5rg+47nhpmcNJJPeOCN5ZMBMCavP8d+5//9j3EQRb2+0rPQd7/zL7nPbeO65ySnOU6/f3LNV456TpLLxPKuVvOdxYj4PHPWSVxpkRkJSNfRJ66XqRCfDOWl0buKYU2u4cznn5c7XSovPazrz3xMdFZd33XXXnD8vlUoaGRnRyMhIJ9MCAADgJSL24woAAAD8SqO4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOmoz+XJdPmnt6jcU59zzBt+32kO7TUZdSwot6xxkcdMzd7cbrP1VlZ8yZ3m6JLXrLxlNMCWpImsZo1r5sUN6pu5t63bRgNgSRo3mgC3ZTbxtprAe9eymXvNiZvGdXKb3bfNtS0b+9FpJixJA+Xiax7ZTFiSeoxm2X2J9zwouw21jTVzmqNLUp/ReLtqNlF3ZcZ90h84lyTVzetpHdMIEnDvE7dteGrsjZb5nOot9VjjMitUwW0IXjxXbAv1WG6oQtVcW4cTvlBNzPU3m5o7jeedGsKtMyQ+uQQAAEAgiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmK5N6PnOn9+oRqMx55g1ez5UOM+0mdzRm0wVjnFTQNwu9k7CjTuXO65mJI84KT7zpWkk/kyVves0bqbNpHLSErz1nzKTLxwtMyxhwrieY9ncaVjPmTLvgdTY25FSI12lE4mRouGkXkh+KlDV2EPlwM8D5iOhx0l0kaSquberVnqWt2bO1Wyb+yw1k5SaRhqXk+hyTPE7zNU0n1PO+TfNZ8aU3GdL8TWYMp/tboJcLSl+b7r1gfXeN++Tupkw1M6Kz42EHgAAAHQtiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmO6NYjG00uLTH6g2rbk66TxfxOnAL3ld/6OP6XATRZxjOok6ktTMvXHjWa1wzOG0z5rL1V8qTr5oumktgYkiblpI00ircNffHTdhXCc3HSMx1tZNy8nMNWsba+aMkbz1PzbOSAExkzsSI1VqIvMSXcpm2kxqpLW44nKspFRuWk7xfnTnaqdm+lG5+P3kJB9JUt3eG8Wc5B1JmjDeAWNZjzWXmxLmjJswj+nKjOvuvoOrSfHudp9nbsZWkhRfT+d3LJmJQBKfXAIAACAQxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCdG0T9d96/5dUqc7dLPX1/3tcE/LJtLjpam/Zazo8H83RW5l3KSuJ15zV4fye7vk/1R6wxmWV4j8PuQ1o3SbYY0nxdXcarUdzG5o7jZ/H0l5rLqeJveSvbZSa2dzXacjuctdiIPGuUysv/h2mjDHHFP+e1ZLbgtnTMprAN3P33vSOOWbcA25zbud6us8W93nwjNEtvl7y3ic1M/yibASGuI3/J4wghMOZF2pxOO23xj0zvaBwjNtEvZ3H3QOp+Vldn7E3ErMhvtP43NXOiteinfnPTz65BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oab6srHLP3B3jUyP9ZcpNrjHSDZwUH0lKjAQEV9VMXegte8kdTpKPe0wn3cCdy02+sJIXjAQHSZoqe3ujJytOyBhPWtZcjrKZzuCmS0wZ45zUDkmaMFNpnFQgV5YX/xnYXYu2+ciz9q0ZVuEmKY0b46pmQkafcf5pcKqUc6e7yTtHjOQXyVtbN0npcFqcJNNjPs/GS94x+43nRr3kPdvd54aTUuXeT87aus8MZ/2PzVf8DnDP/9lp79ycNDr3Xeek77jn7yb0pMYz1EkYclOIJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3o2bn1RjUajTnHfOzhDxfO43TDl6RpoyO+kwgkeSk4klQ2Ij7qFS+doZ15Hf0XlIsTIdx0gL4kLuHDPf9quTgFoWmmezhJFZI0oeJEiKk87lbKzH0WKTJVSvJSdWqJt7edJBx3z7pJUM58zu8oSf8xPfdzbOaYRmJUqmetuZpG+k49MFFE8tJC2uaaHc56zXHFqS5H07o1l5Mk0zbXzNU2nhtOio8kDSST1rjU2NtuqlRmfD7lzuXew1bajLnP3MQZ59wWmNfJTdWJVDeetdW8eG+X3We2+OQSAAAAgSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrm6hHcRtl95eLm4NOZ7GNWXuNY7rNxSObYDsNVyWvUa07l9OoXPIapLvHPDTdb41zmkhPlIobMEteE++q29za3NuOurw1c49ZCzw3dz0cbnNlp0F63Wya7Db1n0qK73Wn0bckNRV3n7icRtPj5vk7zbkl6XBa3ETdPeZEVvwMcvfiQNK0xjkSJ0VAfrNyh3ufTBnX3F2zeskMDDGCQCZS75rXkmlrnHOvuM3RMyuwxVv/yGejc/+2c/+5zieXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAjTtQk971m5UZXy3F32z95aPM+00XVekg63i5eibKbg9CZT1rgsL+7o7ybvOHNJUl8lLt3ASZtxUi864SQljKX10GM6KQitzLuVnOvpJqc4yUHufE6iS7Syef5OKlCfec+5CUPufI5+M8mnx9hnqZkC4nxu4CRyHBvn7W3n3OyEITNt5pnpBdY4R9u4h+tlL9HFeTZKXiqNm1zj7B9JqpaKfwc3Zc5Jn4pMDpLM/ehtbfs6Odz3jvNsScxr6Z6/c687NYRbZ0h8cgkAAIBAFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI07VN1L/xwDo1Go05x3zs4Q8XzuM2mnaaW7sNmF1Oo9pEXjNVt9m60yDdaRoueY1Z3bnS3PtzTuQx7Qa0WfExa4nXXNk5t8xslB3ZQLcWOJck1a1GzWZDXmNv9JmNyt375LTyuDXO4TbBbiTNwjHumjmNqxPznnP9x/Tcz2vJv8/dZuvufnQMViYKx7jXcsC4lpK3z9y5euTdw7XAZ1C7VHzfNc0m/G7YgNMEfiztteZ6Kh+wxjn7zA1ecNbWeedI/nvHve8i8cklAAAAwryo4nLjxo0qlUpau3btzPfyPNfIyIgWLVqk3t5erVy5Uvv27Xux5wkAAIBTwAsuLnfv3q1bb71VF1xwwazv33LLLdq0aZO2bNmi3bt3a3h4WKtWrdLY2NiLPlkAAAB0txdUXD777LO65pprdNttt+llL3vZzPfzPNfmzZu1fv16XXXVVTrvvPO0bds2TUxM6M4773zeuVqtlo4ePTrrCwAAAKemF1Rc3nDDDXrnO9+pd7zjHbO+v3//fo2Ojmr16tUz36vValqxYoV27dr1vHNt3LhRg4ODM1+LFy9+IacEAACALtBxcXnXXXfpe9/7njZu3Hjcz0ZHRyVJQ0NDs74/NDQ087NftG7dOh05cmTm68CBA52eEgAAALpER62IDhw4oE996lPavn276vX6Lx1XKs3+q/Z5nh/3vefUajXVal7bCQAAAHS3jj653LNnjw4ePKiLL75YlUpFlUpFO3fu1Je//GVVKpWZTyx/8VPKgwcPHvdpJgAAAF56Oiou3/72t2vv3r169NFHZ74uueQSXXPNNXr00Uf1qle9SsPDw9qxY8fMPzM1NaWdO3dq+fLl4ScPAACA7tLRvxYfGBjQeeedN+t7/f39OuOMM2a+v3btWm3YsEFLly7V0qVLtWHDBvX19enqq6/u6MR+5/IvqFKe+1+Xv/K24nncVJ3M6GDvjJGkljmuYiYSOCJTadx0hsi0GTdpI8vNVBeLd52cFAQ3LaeeFCd8uGsRmbrgr793zKbxaHETLZxUFCe1Q5IaZS/txDmmmwrkprqUzTQxR6ri39NJ8ZGkseyX/ydQP895Hrh71k0icubrK8ddp4HypDWXm/B0RlKcCuQk6kjSQOI9g5w7vfxL/jO2XzSeFZ9bn8z0MmOuaO49cGS6z5jLe4Y6z1rnPSFJzxqJe5LUVy5+1taT4vVPyt55SScg/vGmm27S5OSkrr/+eh06dEjLli3T9u3bNTDgxSwBAADg1PWii8sHHnhg1v8vlUoaGRnRyMjIi50aAAAApxiyxQEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABAmvIl6lLu/s16NRmPOMdfv+WDY8ZwkmYqZlJCUvKSNsooTFdzkl4msxxrnpKJEJvQ0My8BwU3ecdJy3HQDN5XG+T3dhKSacW41+SkIDuf3bJnXyU5YccaZCT1O+o57zQcSM2HFGFc3r7k7rmrcAqkZ4tM27uF27iWnOM8pSaqq+Pd8Rgusudx7c0LFCSVuqpSzh/qDU5mqxvPdTd6pm6k61VLcZ0qJcW4TubdpUzNla9y4n3rMe869nkdUnNDjvsOcfeY+Z933jjOfM6blbUVJfHIJAACAQBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1TdRXfHyLyj31Oce85ZPFzUjdZrxug3SH06hc8hqf1+Q1lnW56xHFbQKfmeflzOc0KpekwdKENc5pVOs28XYbUjumzDXLjD9DjqnXmstubm3sbbdxu9P43G6aXPLuzQHjevaZYQluc+uy0fg8Sby52nnxPhvLzAbM5vOsmXvX0+EGUVSNUAW30bTT+NxpFH9sLu+57TTYd/dPveTdm7VS8XXK7Mb5xdepbL7DUvNd4dzDE2YT+yTweZy6n9UZh2xlXmnmhIpIce9957nyHD65BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oOeN/HlSlXJtzTOvG4qQBN63F6a7vpqtEdtePTHSRpCwvTntwkwacrv9uOsaCcssaN1BuFo7pS7y5+s1xznxOuofkJQylubf+biLKWFacvuOu2TNpvzUuMZI7EjORo2yktVTNRBR3P5aN8+8xk1OqJe961kvFz40095Jrysa5ZYm3Fm0zycdKuLHTcrxUoJaRNhPJTRxzVY0t5O6fxHxuV40kn9R4T0hSGpgg56yF5N2bLufZcmxc8XV339VOepl7n0Ryjpl1cF58cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0FNqTamUzN2y303CiZKZiRyNSnGKjOSl5SRmgoAzl+Sl70xn3p85nIShupmQ5CZfOEkyZ1Se9eYqeak0jaT4etbNhBjnerbthB5v//cYqQpPa4E1V1/uJadMGGPcFAonfacqdy5znznJKfLuOSd5R5JqRtpM6qaE5c6auWvhjXPugXri7R8n/Uvy9oabODZuJKe455/Kewe0jcd7K3eTrLz92MqLn8lu2o+jbSbqtMzgnSnj3KbM/ePuMydNzN1nTpKPe14ut44IPeZJPyIAAABesiguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrm6j//b6b1Wg05hyzZs+HCuepmU28Hb1lb67IBqiJ2RzabeDqNlt3OI1Z3UbZC8pe0+HTysXtuU9LnBbe0oDRHP3YuOLr3hfYpNZprCxJE7nbONwb53AaAEtSls9973Y2V/HezoL3v3On95lNq92G1KnRLDszG1JH8q6SlBpN5cvm+bvPs2Ze3Hje5eyhptFoXZImSjVrXL8TEGDe5zLfFX2BcznPoGbuXfMpOzyi+JpPZN76j5vjWlnxMd3wEee9WTFDOdyQktRc20h8cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0HPVss+rUp67e/7ivy5OhHA660tSUirOoUgyL2nA6cAveckpbqKInXai4vQg9/yddIC+ZMqaqz9pWeNOK48Xj0kmrbkGzXSD/qT4GlTNP6clRqpLZiZalN3kDmNrtM01O5rVrXED5eL53HQMJ63FnauZeI+8dl68N1pGos4x3j1QNe7NzLzPUyMJp22m5biJUU6Skn3Nzeee+3x3HDazaxzu82zMSvzx9k/bTOJqOqlA1kxS09gbE2Zi3Xju3ZtO+o6b3DRhJi41jX1WSdzEsbiUPDd5J+qYnczDJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF3bRP2n7zhD5drcDZsX60DhPG2zyWjNaKLeNpvB9pW8pretLG753cbnThNUp2m1JCVGE2anOb0kDSRNa5zTeL5mNhOum/1ga6Xi9XAaYLsyc8363CbYxno46ypJDfM6OU2H3cb/zlzVcnFjaEmaMq/TlNUQ3Gxobu/H4uvpNEeXpLbRiH/CbI4+ZjYqH8+9htQOp1G2y2007Tzfnb0oSU+nC6xxU8Yxk9IRay63CXm/0UQ9lfdwdN6v7lyHU6+JvRPk4DbrPzLtHbNsPJMn07iG/rXEe565NYn7rI3EJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACNO1CT1Du8dVqcydbFH9QHHXeTchxkkosZNrzLQcM2zDMp3FnVvNTBjKjOSF/qRlzVU1UiMkqd84tx7zmpdLXnKEk75TLQUm9NjpGO7eLr7mPWaCg5u2kRn3inufOPdd20wncZNfnjHW4zRzb2fyEnqaxvUsm6lSbWNpm2a6R9Nc22ZenFDijJE62Btm+o6jbSSmTcjbP+75O8kpo9OD1lw9ZhLUYeOYTiKN5CfhOMayXmuck+RzaLrfmsv9PZ195qbqOHvDTUxzEvfmC59cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1yb03LP9JjUajTnHfPKRDxTO43bNdzSSpjXOTVhxzq1tpmi4iRBOR3/3mFaqUWCChuQlxLhHdMe1jYQVJ8XHleaB0U2SUmM6N3nHVS+1C8e46R7OfvT3bNzzoGxGbI27iVGBkV3OeoznPdZc7nVyElbG0ro1l5uGVk+K95m7NxzR94mztu5auJx7001SctbWfQe416mVFZ+b/d4077nEeNe1zCQrJxXIfp4lXpJPO4u7B1wd7dqtW7fqggsuUKPRUKPR0KWXXqp777135ud5nmtkZESLFi1Sb2+vVq5cqX379oWfNAAAALpTR8XlWWedpZtvvlkPP/ywHn74Yb3tbW/Tu9/97pkC8pZbbtGmTZu0ZcsW7d69W8PDw1q1apXGxsZOyMkDAACgu3RUXF555ZX67d/+bb3mNa/Ra17zGn3hC1/QggUL9NBDDynPc23evFnr16/XVVddpfPOO0/btm3TxMSE7rzzzhN1/gAAAOgiL/g/5kjTVHfddZfGx8d16aWXav/+/RodHdXq1atnxtRqNa1YsUK7du36pfO0Wi0dPXp01hcAAABOTR0Xl3v37tWCBQtUq9W0Zs0a3X333Tr33HM1OjoqSRoaGpo1fmhoaOZnz2fjxo0aHByc+Vq8eHGnpwQAAIAu0XFx+drXvlaPPvqoHnroIX384x/Xtddeq8cee2zm56XS7L9Nl+f5cd/7eevWrdORI0dmvg4cONDpKQEAAKBLdNyKqKenR69+9aslSZdccol2796tL33pS/rsZz8rSRodHdXChQtnxh88ePC4TzN/Xq1WU63mtboAAABAd3vRDbTyPFer1dKSJUs0PDysHTt2zPxsampKO3fu1PLly1/sYQAAAHAK6OiTyz/5kz/RFVdcocWLF2tsbEx33XWXHnjgAd13330qlUpau3atNmzYoKVLl2rp0qXasGGD+vr6dPXVV5+Qk59MvUavDqe5eFleM2S3obnDPWZko2BnLVxuA2C3ae+E0XS4aTQJlqRy7q1tn3ENnEbrrlbuNfpumuffNho/u/unmcU13n7WbahtNGGummEJh9N+a1zbaIjs7lm3cXtkE3WvObd3nzv3nHtMd59lgY23E7OJvRMK4V4jp9H3sWMaQRppbJDGWF5837nPbff3dPjPoLhjRuorT1njvOeZ9w6LfO87+6eT2qaj4vLf//3f9aEPfUhPPvmkBgcHdcEFF+i+++7TqlWrJEk33XSTJicndf311+vQoUNatmyZtm/froGBgU4OAwAAgFNUR8XlV7/61Tl/XiqVNDIyopGRkRdzTgAAADhFxYaWAgAA4FcaxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBMx9niJ8tvv2eTKpW5kwSWbiiex02bcTrPT5jpJDUzLWQ+OCkUaSkuHcNNYelPWta4KeOYR8xEkXKpaY2TkcrRzr10hnKpeD9O5WYKiBmWMJEV3+ZHM+86jZv3gJNe4yanOPssMtFFklLjueEmhTR18hNFnPWfMlKIJD+FJTItxOU8zyLnco/nr1nxNXDfO+795Nwr7t7OzJSnSO2seJ9VE+86ueefBKZnOXvIvZfc/ei8051jts1UOIlPLgEAABCI4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQpmsTev75G59Ro9GYc8yaPR8qnMdN7kgC0xkiTWfe+S+oeAk3Fr8Jf6HUTEAYN1N16qXeF3M6s7iJFnXjujtjJCnNnPXw1mzCTFhpmuMiOfede29GcpNTnFSUeslL4qolbWucw01rcbgpIBOpeW8av2dqXvOyeW86a+s+t51xbuKb+9xz7oG+xEv/cveGlXhlnr+T5FM2Xyhuqo6Tpuek+HRisDJZOCZyb1fNlD83Ac/hXCf3Wkp8cgkAAIBAFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI07VN1B2p0dDWabjqchvoRh6zZjZTdbmNXqPmchtlH0m95uhOE1e3gXEz9xpqN5Jm4Zh6yWuU7TZud7hrmxp/hmzLazpcNvf2QLm46bC7Fk7jc/eau+McbnP6Zhr3mHWvudPc2uU2W3f6K7vNuRcY95wklVW8H90m6s7z3X22l3PzHWDcA5GN8yXvuW03BA9M3HD3rHNMtyH7ROqtrfWuM/d2O/DeTIz9L8naZ23jfei8S57DJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACHNKJ/RUja7ztcRNTjn5ST6OetlLGuhLpqxxTtKAm8jRyoq3z7NpzZrL1aoUpwhMZN4xT688a40by4rTg84oe3M5ST6RKT4uN5HDTSKykjvMP9o6qTSJm45h7u22sberZnqWm6rjXPfIhC1X3XyGWnOZaTlO8o7kJS45CU/uXH0l7znrcvZjZJKV5F3Pcu4d09mPZfP87YQeYz43uaav7F3PyJQk5/zn4z536pZOahs+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dom6pev3aJyT33OMcs+VtzQM3XrZ6NprDuX1UBaUm+5uJmt20zVbfLqNpd11Iwm0knuHc9tbu2sh70WaZ81biCZLBzjNGB2x1XN/dNvNjSfMvbtmeUxay7392zmxQ2RD6f91lxVo/H2uNk43200HfnHbuf83XH1ste4PbIRv9s437mH7efxPGgbeyOymbbL3T/u3nC4+8cJCKiWvPM6Yj6PnXObMMM7aua5TeTF1919h0VyG9S3M6dZf/G7upOwme690wEAAHDKobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOnahJ5SfuzrxcpyL1FEpeI6e9roci9JtYrX9d85t2ripTO4SQNOikBmprA4aT/2+puOTs+d2iRJ5WpcuoQklY2NWJV3nfpLU4Vj+hIvEaVuJncMBKYyjefeI6M/L/4d3OSRw0ZyR9NN3jGVjTVz04oi9SUta1zd2ENu8o7LWQ/3nnMSniQvscudy+GmsLi/Z8281yPnchLk+s195nBTmdy93TTSctxni5vk4yThtDLv2dhW8R6azrw1qyTeu85ZjzTuNSGJTy4BAAAQiOISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrE3q+/aUb1Wg05hxz4/euLpxn2kxUqBgJK4nRpV/yu+s7pb2b/OJykwscTmqBm2jRzry0kwWV4hQH93esmqlGzjgnEUXy0ncG7POyhqleMpJTvKlUy71zazlpD+ZBm6XihBU3UcRNC2mmcY9GN3lkoNwsHOP+nn2l4nHO/St5aUWSl9DjpuXUjYQnyUtmaqfeM8g5/7aZwlJNzPvEOP/B8oQ1VyOZtMY5+9FNb8qM+ykxb3R3bzSNvVE3ktA6YrxS2iXzXWe8E933ZpJ796aTuue8N7MO6gc+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dom6v/59zarUq3POeaC/6N4nh6zme1kWtzAtWbOlZS8xqaRWrl3KROzIbLDafTal3jNbN2Gzs75u03U3cbnTuNqt+mw0yC9bjZH70u8RrtVeeMcE/J+TxnXqek28TbGuQEHkepms3unObokDRhNsM8oP2vN5Zxb1VyzqtkEu218VtHOvc8zxvMea9xoPlg4xr3PJ7Ja8SDzHZCZv2fNCVUw98/p7t4wjuk+z+pO4+3ce6A1zXfY0WzuukCSJkrGtZTUNPeZcz3dd7DT1L+3bDaxN9fWeVfXzOeZi08uAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCmaxN67vvva9VoNOYc8/vf/f3CeWplr+t8OTBVx+mGL3kd8VMz6cFNoXC4x3SSUzKZcTMm55hO6oXUSQqFkaJhz1U8ZiDxbstqydtnFSOhJzOTm6ry0o8yI9XFTYgpB6ZKuYkWA0lxKoqbxFU2E25OK08UjzHSoiSpz0hOqZq3Zk/JTVgpfp41zfU3l0wN4zq5aTlOypP9aYyZEuakiTkJYZ2Mc/aQs38kbw+52VnjmZmsZrw3D5tzJRXv7P5Dc9ciktTMilP+JGlCxalA05m30yqJd/7Oc6+VFb93Wpn/LO7ok8uNGzfqTW96kwYGBnTmmWfqPe95j374wx/OGpPnuUZGRrRo0SL19vZq5cqV2rdvXyeHAQAAwCmqo+Jy586duuGGG/TQQw9px44dmp6e1urVqzU+Pj4z5pZbbtGmTZu0ZcsW7d69W8PDw1q1apXGxsbCTx4AAADdpaN/LX7ffffN+v+33367zjzzTO3Zs0dvfetblee5Nm/erPXr1+uqq66SJG3btk1DQ0O68847dd1118WdOQAAALrOi/oLPUeOHJEknX766ZKk/fv3a3R0VKtXr54ZU6vVtGLFCu3atet552i1Wjp69OisLwAAAJyaXnBxmee5PvOZz+jyyy/XeeedJ0kaHR2VJA0NDc0aOzQ0NPOzX7Rx40YNDg7OfC1evPiFnhIAAADm2QsuLm+88UZ9//vf19/93d8d97PSL/ztwjzPj/vec9atW6cjR47MfB04cOCFnhIAAADm2QtqRfSJT3xC99xzjx588EGdddZZM98fHh6WdOwTzIULF858/+DBg8d9mvmcWq2mWq32Qk4DAAAAXaajTy7zPNeNN96or3/96/rmN7+pJUuWzPr5kiVLNDw8rB07dsx8b2pqSjt37tTy5ctjzhgAAABdq6NPLm+44Qbdeeed+od/+AcNDAzM/HeUg4OD6u3tValU0tq1a7VhwwYtXbpUS5cu1YYNG9TX16err776hPwCAAAA6B4dFZdbt26VJK1cuXLW92+//XZ95CMfkSTddNNNmpyc1PXXX69Dhw5p2bJl2r59uwYGBkJO+Oc56TupmQjhpIU4HewlaUHZS0qw0kJiA26s9B03VSczkogSN/nFTISYD05CTHQSkSMx/8VDuWRc89xb/7L5ezpn1g5MTmnnsWFjqfEb9JUmrbn6zOQUJwnKTTVykqDqxr44dkzzOhnpTe7zoJxMWePaeXGqUTP3klOchKTxzPtPuNyUNueYA4m3zwbMNXPSd5z9c2xcXIJ01UybmcjdzJ9iqfk8GzNS3/rM937LeFY9PbXAmis1E9MctaS4nnJTyaQOi8s8L564VCppZGREIyMjnUwNAACAl4C4P3YAAADgVx7FJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIExs5+FAl6/donJPfc4xl36suO+m2yTVaYLtNjB2OY12E6O3qCRlqfd7Wo1SzUbHTlP5auI2546Tmc25p8xGx04TZrcheNtoets0G5q7MjlNyL1jts0GxhPGvnXvTbchtcNpjh7NaY4uST3GdRowmxj3JcVrVi/FPv69pv7eWsh8BtVLxc8ztwn54bSvcEzZuEaS/9xzuPunbgZR9CfF913NbI7u7KHUfIel5t4YMB4bqYr3hSQdzsym/sZ1d4NAnHE1o2m75Dc1d44Z/Wzkk0sAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhOnahJ7vbL5RjUZjzjFr9nyocB43VcdJ6HESaSQpcY9ppLrYXf+TuFQdu+t/YApFMytOwXEtKDetce3cu55OkkzTnKuZxyUkyUj7kbxUndQ8ppO8I0njWfHenjCv+eG0v3CMu39a5jgnIaPHvDfL5vMgMgGsamReeYk6UmImKclYj7qZxeXcJ1Lwmhnn35S3f9wkn/6kZY2L5Fx1Z/+4yiVv/1TN/eg8z8rm82wg8d4VhxMjvSn1rnlqvPedJD1JejatWeOcpc3y4us0bTzXOzgkAAAA4KG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQJiubaK+4votKvfU5xxz4ceLG71GNvp2m6O7TchlNNp153IaoEreekQ2NG/nXjNet+lwavx56Mh0ccNbSapWvb3hNPGumg3NHe1kyhtnN/Eu3kNtc8tOGQ2AJallXPfDmXedxrOewjFj2dzPik45zdbTsrcWTtNkqZPm+cXazn40D1ctefdwOy8+ptus3+UEHLjrn5rPUIfbON961sb1M5fkvHWkzHwelwNPLjMDGpwzc59T7vvJ2UPN3HtvOoEt7nk5QSwu592adfB5JJ9cAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACBM1yb07PzKjWo0GnOOuX7PB8OO1zY63VfN1IXpLDhSweB015ekdlp8bnaqTlK8Hm5yUNkMx3Dmc8/fTfJx0oPchCHHeF6cSCNJA0nTGlc2UlGcpBPJX1snreJw6q3/WNZbOObZ1EvocdNanISVyLWQpIm8+HHck3vpTeXc2I/mPeck70hewkrTOS9JLTPIZ8JIuGmbKTJN476byGrWXG3jWkpSmhTvR3eupr0fpwvHJGbiWGTiUtucq2nsM/+ae/emc6+7z4Oo40l+aqDz3nTeYUkH7zk+uQQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACEobgEAABAmK5N6HG43ekdNWOuzEz38LvmF883Pu0lQvSWveSOaqk4eSEpeUkJTipQLSlOg5CkVuZtRSe5IEtj02ZaRkKGm9wxbozrT1rWXIdL/da4aqn4GrhJFe494Pye7jGdJKWJ1Es1cve2w00YcpOUDhtJRG5KmLLiaz5lPAskmVknsjJd2ubyj5upNFPG2TUzb2+4aWKOpnn+NbULx7iJXfWseC5JqhopK6m5z+rmHnI0zb3RNJ5BTnKT5K+t86xyn41N49ymzPdhj/l+dd7VkbWBxCeXAAAACERxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDBd20T93YMfVqU0d7PRV/7P4ibSbhNvp/F5JfEaxk5nXtth55huY1aX0zjcXbOo40lSn9kE/lC7uHF1ZrZ9TnKvIazT9DaRN5ezHhOJ15DdaY4uSfWkuLmy8zseO6Z3DzhN5SfM5tZOE3unSbAkpWYP4LJxb7p7e9z8PZ3m+WPmXO2S0zTZa5TtNN2WpLZxDdpuE36zufVYVg8ZI0nPTC+wxjncvVE2nhvjZfN5YLWx97TMZ8uEsYfcZ2PLXLOjuRHQYD7PDqdeEIWzN8ZSb585zforgc3ppbh3Ok3UAQAAMC8oLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhujah5x+O3KFGozHnmDV7PlQ4j5OCc2xccef5splUMWUua8Xqdu8d0+WkA7Qy7/w76dZfJDWTO9yEGIezFu64o2YKyERSnDzyjLzUiL7ESzVy1qxqJji0zb1hpeqY19xZf/fedJN8nISPyLQiSTpoXIKjibfPnLSf/pK3f9xnqPt7OsbNuZz0nf+YHrDmchOjHO6zpVwqPua/t0/zjlkx7yfjHkjlnf9A0iw+XnAqk/PceCb10pbcVCYnfcdNZZpMi39P955zn3vOfnSeZ+7xJD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAECYrk3oieJ0w5ekalLcnb6VesvVXylOx5CkKTPtxBIY5NObtL1DmikUjra8dAMnFahmps1MpsUpLJKXvOCmFU1OF+/HHvP8pzPvz4ZOKk10wo2THuTOVTf2o5Oo0wlnPZzUjk7UjPQdJxFFkg6XilOeekrePnOTiJw1a+bedXLTm5yEniPTfdZcDjeFxeXsoZr5PD6cer+ncw3s9TeSoNz73F3bKSP960jaa83l7g3nXee+TzIj/cj91M9ds5pxrzvXyb2WEp9cAgAAIBDFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMKc0k3UU6OxqdMcXZISFTfB7i17zWxbZnP0stF4u9doRn3smHFNpCObo7vNxd1GzUb/WR2d9ppbh5+bwW2Q7nAb2jpN5d0m6u6aOXvIaY4uefemO5fbHLpcKl6PJPfWwj3mRForHJOZczl71t3XibEWknduTaMBtjuXJE1kxaEE7u/pPLfd+8TlvJ/a5vtkTN5zbyIr3mfumjlzuZxrKXn70W2O7r6rI4M03PAChxsY4nBCOdzgDukFfHL54IMP6sorr9SiRYtUKpX0jW98Y9bP8zzXyMiIFi1apN7eXq1cuVL79u3r9DAAAAA4BXVcXI6Pj+vCCy/Uli1bnvfnt9xyizZt2qQtW7Zo9+7dGh4e1qpVqzQ2NvaiTxYAAADdreN/LX7FFVfoiiuueN6f5XmuzZs3a/369brqqqskSdu2bdPQ0JDuvPNOXXfddS/ubAEAANDVQv9Cz/79+zU6OqrVq1fPfK9Wq2nFihXatWvX8/4zrVZLR48enfUFAACAU1NocTk6OipJGhoamvX9oaGhmZ/9oo0bN2pwcHDma/HixZGnBAAAgJPohLQiKpVm/03RPM+P+95z1q1bpyNHjsx8HThw4EScEgAAAE6C0FZEw8PDko59grlw4cKZ7x88ePC4TzOfU6vVVKvFtTMAAADA/An95HLJkiUaHh7Wjh07Zr43NTWlnTt3avny5ZGHAgAAQBfq+JPLZ599Vv/yL/8y8//379+vRx99VKeffrpe+cpXau3atdqwYYOWLl2qpUuXasOGDerr69PVV18deuIAAADoPh0Xlw8//LB+8zd/c+b/f+Yzn5EkXXvttfrrv/5r3XTTTZqcnNT111+vQ4cOadmyZdq+fbsGBgY6Os57zvyYKqW5U2f+087iVJqqmaqTGdEvTlKI5Cf5TKbF5+8kA0h+ioZj3EgKkbz0oMnUS13or7SscU5Chpta4CYROfO56RILysW/p3vN3fN31sxN+0nkJXc4ySORyUd1cy43LadlJMm469+Wdz2d9RhLvRQWh7vP+syUMOcZ2s7c59nJT89yuM8WN/nF4V6nduqNi+Rcc5e7N5xnbfR1cvaj+zxw6oPIZ7vknf908F/B6fgOWLlypfI5Ys9KpZJGRkY0MjLyYs4LAAAAp6AT8rfFAQAA8KuJ4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABAmNFs80jcO3qZGozHnmI/u/kjhPG5z8ZbR7NttzDo+7TUhd+Zzm5A7TaslrxF8j/l7Oo23K+Z5uU1jVSo+pttYOTXmkrzf090bkdxG0w63UbbLaa7sNjQvG/ew22jaPaYzzl1/d29P5N69HnVM9z5xAwKcY7pNq19WnfCOGbjPnHvY2YvuXO58buN893o618B+HhvcgIZIkc3RJWnaaPDuBoE4a+s+z1xZZoTEGGvRyTuHTy4BAAAQhuISAAAAYSguAQAAEIbiEgAAAGEoLgEAABCG4hIAAABhKC4BAAAQhuISAAAAYSguAQAAEKZrE3p++6o/V6UydzLB675QnEgwHdjp3kmDkPxUoLaVAuLN1WsmrDybFqcHVRSXqhOZIuMes2yGS0xnJz+hx0mOcOeyU2mM83dTWNwUEEfN3LORKSzu+Ucmp7ic/Rh9P0Vyzq1RaZ6EM5nNTdVxRO5/yUtMGyxPhh7TeQZVEm/Nyioe56bluMd05nPOq5NjOtfd3RvO88xNSHLHOb+ns67TuX8v8cklAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bULPP3/902o0GnOOWbPnQ4XzOAkIkpeE00q95eott61xbuKPo5VVrXFlI0VjMvXmcpJkpjMvRSYrxa2FO5eTXCN5yQtuIoSTHuQmirjpDM51ctN+IrVy736KTEVxk4ica1BPvPvclZbi/qzvpqI4IveZq2k+z/rMlKco7n3i7llnPnct3GNGPg+cZ6ibKuXuM+f3jD6mM5+7Zk4Sl1tDuPe5M85ZC3e9JD65BAAAQCCKSwAAAIShuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAITp2ibqUdxG5Vke19jUacguSW2jsanT9Fzym6lWk+IGtG4z5GmjaWzqNsa1Rnlr6zZHdxufT6bFjbcnrZmk3nJx0+d2Gtuo2WkcHtmoPNqEsf7RTZO79c/d7n3urIe7Zm4QhdNEOrohu7Me7lzOfTJQblpzuY3PHe696b7rnIAAtyG49Qw1wwEiG5pHr1lkE3WHG2QSeUynBnLGPKc7n6AAAAA4JVFcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJ0bULPW2/YonJPfc4xb1hT3J3eTctxkmvcbv7qoIt9ETfhxkl+keK78Bdx0zEiE1amzBST3sRbs4qxN9y0HydRpFHxUkDctBZrrjz2UeAkR7gpGs44N6nCTgExU2kiOXuoz7zPI8/fXVvrepqP0NBjmupJcQJbaj4b3XfFfCT5OOOctZC884+cS/LuE/c+d1KZpNhnkPNOdBN6XM4xD7f7CsdMZd57TuKTSwAAAASiuAQAAEAYiksAAACEobgEAABAGIpLAAAAhKG4BAAAQBiKSwAAAIShuAQAAEAYiksAAACE6dqEnihVM6HHSVToMdNmorvrO6bNdIBITgqIn/bjXScnyaen5F2nlpkI4ST0RCaKOEkJkp8+5aQzuOfvms6M+QL/aOsmcqTmQauKS36xlYrPLcnN5B1jb9hpM+baOqE07lyRiVftkre3nWO6SWJuepYzn7tmbirQRO6l0jims+I9lBr7uhPOs8q9Tn1mSpuT5OPuWWfNIlPyJOno9Nxph5KXUpgbY57DJ5cAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF3bRP3Bv7hRjUZjzjFr9nyocJ622Yy0bDRdHWsXNyKVpP5KyxrnND5vO82oJZWN5tyS1wh+ymwA7Kyt28TebXo7Pl0rHOM0DZf8vZFlxc2JK+b6Ow2Aa0nbmsttCD6ZFjcAdhuyu5zG8y63IXWktuKayrvNlZ3r1KhMWnO18+KAAKeZs+Tfm054RCWJa44uefe6O5cTcOAER0h+43PneWA3lM9PfuN2Zy53/SODEKZS75i9ZhN1h/88Lr5PIsNf3PncuVx8cgkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMF2b0PP2j3xZlerciTgX3WSkJQQ2ne8te8kpmZn84qbvONyEmMh0gJ5yXNqPm87gJHK4SQNuko/DTTFxfk8ntaOTYzrsPWuOi1xbJ+GjUWlaczkpOMfGFR+zaqYQuakuTqqRm3bipIXYKSzm+Uem5bj7Z2y6ODXNTtUpFa+Hk6omxSa/TGbennXS1ySpbSSOuc+W1BjmvHMkLyVP8q6n+z50uffKyebubUdq/I7OmOfwySUAAADCUFwCAAAgDMUlAAAAwlBcAgAAIAzFJQAAAMJQXAIAACAMxSUAAADCUFwCAAAgTCnP87gunAGOHj2qwcFBHTlyRI1GY86xb/lf/lvhfM+8zmvau+BnxY3D3b7QjccOewP/5ceFQ+6f+L+tqc7/oz+3xlXGiy/3I3/5GWuuK165tnDM+IWLrLlGl3nXafih4ovwzDle097/97992hp3sp27zruWC//HhDXu0Dm9hWPa/Wbj+cPe4+Lh/6t4D52z3vs9e44UjymZj7G07v2ee7948vfGby24tnDMU++70JqrPVD8e/aPemEJrUFvzarPFl+DgR9PWnNNneY1Dn/wn24qHHPRxzdZcz2ytXjPvvFj3lxmf33VjhZfg3LTu04P/j/FayFJb3vbxsIxPU8etea67wfFc0WuvyQtu+aLhWP6/t0LPClPei/1if9U3Ky/8cC/WHPdd/AvC8c4tY0kffue/9Ua91sX/G+FY+7//n8tHNNJfcYnlwAAAAhzworLr3zlK1qyZInq9bouvvhiffvb3z5RhwIAAECXOCHF5de+9jWtXbtW69ev1yOPPKK3vOUtuuKKK/STn/zkRBwOAAAAXeKEFJebNm3SRz/6Uf3hH/6hzjnnHG3evFmLFy/W1q1bjxvbarV09OjRWV8AAAA4NYUXl1NTU9qzZ49Wr1496/urV6/Wrl27jhu/ceNGDQ4OznwtXrw4+pQAAABwkoQXl0899ZTSNNXQ0NCs7w8NDWl0dPS48evWrdORI0dmvg4cOBB9SgAAADhJvP4vL0CpNLt9RZ7nx31Pkmq1mmq12ok6DQAAAJxE4Z9cvvzlL1e5XD7uU8qDBw8e92kmAAAAXlrCP7ns6enRxRdfrB07duh3fud3Zr6/Y8cOvfvd7y7855/r6e78xZ7pdrNwTNryfsW0XdyoNjObqE+nLW9gPlU4xP0LTmmreC0kqTRV3OjYPeZ0Vvx7OtdIktKmd52m28UXIW15HYy79S+Puddyetpc26niJthpxWuUnRr7R/LW1v090+LbxG+i/jz/9uT5zMfemDaeB+mUuWat4t9z2njmHTumt2ZJu/gauHvWPTdrn5lrFjlXbjZRd37PPHAtJO8aJOY77GSvvySlxjtletprop5Pey91Z7rpzHhQKa62ceeSvJrEmeu5MVb2Tn4C3HXXXXm1Ws2/+tWv5o899li+du3avL+/P//xj39c+M8eOHAgl8QXX3zxxRdffPHFV5d9HThwoLCWOyH/zeX73vc+Pf300/r85z+vJ598Uuedd57++Z//WWeffXbhP7to0SIdOHBAAwMDM/+N5tGjR7V48WIdOHCgMHIIJwbXYH6x/vOL9Z9frP/84xrMr25Y/zzPNTY2pkWLimOduy5b/Pl0kmeJE4NrML9Y//nF+s8v1n/+cQ3m16m2/mSLAwAAIAzFJQAAAMKcEsVlrVbT5z73OfphziOuwfxi/ecX6z+/WP/5xzWYX6fa+p8S/80lAAAATg2nxCeXAAAAODVQXAIAACAMxSUAAADCUFwCAAAgDMUlAAAAwpwSxeVXvvIVLVmyRPV6XRdffLG+/e1vz/cpvSQ9+OCDuvLKK7Vo0SKVSiV94xvfmPXzPM81MjKiRYsWqbe3VytXrtS+ffvm52RfgjZu3Kg3velNGhgY0Jlnnqn3vOc9+uEPfzhrDNfgxNm6dasuuOACNRoNNRoNXXrppbr33ntnfs7an1wbN25UqVTS2rVrZ77HNTixRkZGVCqVZn0NDw/P/Jz1P/F++tOf6oMf/KDOOOMM9fX16Q1veIP27Nkz8/NT5Rp0fXH5ta99TWvXrtX69ev1yCOP6C1veYuuuOIK/eQnP5nvU3vJGR8f14UXXqgtW7Y8789vueUWbdq0SVu2bNHu3bs1PDysVatWaWxs7CSf6UvTzp07dcMNN+ihhx7Sjh07ND09rdWrV2t8fHxmDNfgxDnrrLN088036+GHH9bDDz+st73tbXr3u9898+Bm7U+e3bt369Zbb9UFF1ww6/tcgxPv9a9/vZ588smZr7179878jPU/sQ4dOqTLLrtM1WpV9957rx577DF98Ytf1GmnnTYz5pS5BnmX+43f+I18zZo1s773ute9Lv8v/+W/zNMZ/WqQlN99990z/z/Lsnx4eDi/+eabZ77XbDbzwcHB/C//8i/n4Qxf+g4ePJhLynfu3JnnOddgPrzsZS/L/+qv/oq1P4nGxsbypUuX5jt27MhXrFiRf+pTn8rznP1/Mnzuc5/LL7zwwuf9Get/4n32s5/NL7/88l/681PpGnT1J5dTU1Pas2ePVq9ePev7q1ev1q5du+bprH417d+/X6Ojo7OuRa1W04oVK7gWJ8iRI0ckSaeffrokrsHJlKap7rrrLo2Pj+vSSy9l7U+iG264Qe985zv1jne8Y9b3uQYnx+OPP65FixZpyZIlev/7368nnnhCEut/Mtxzzz265JJL9N73vldnnnmmLrroIt12220zPz+VrkFXF5dPPfWU0jTV0NDQrO8PDQ1pdHR0ns7qV9Nz6821ODnyPNdnPvMZXX755TrvvPMkcQ1Ohr1792rBggWq1Wpas2aN7r77bp177rms/Uly11136Xvf+542btx43M+4BifesmXLdMcdd+j+++/XbbfdptHRUS1fvlxPP/00638SPPHEE9q6dauWLl2q+++/X2vWrNEnP/lJ3XHHHZJOrXugMt8n4CiVSrP+f57nx30PJwfX4uS48cYb9f3vf1/f+c53jvsZ1+DEee1rX6tHH31Uhw8f1t///d/r2muv1c6dO2d+ztqfOAcOHNCnPvUpbd++XfV6/ZeO4xqcOFdcccXM/z7//PN16aWX6td//de1bds2vfnNb5bE+p9IWZbpkksu0YYNGyRJF110kfbt26etW7fqwx/+8My4U+EadPUnly9/+ctVLpePq8gPHjx4XOWOE+u5vzHItTjxPvGJT+iee+7Rt771LZ111lkz3+canHg9PT169atfrUsuuUQbN27UhRdeqC996Uus/UmwZ88eHTx4UBdffLEqlYoqlYp27typL3/5y6pUKjPrzDU4efr7+3X++efr8ccf5x44CRYuXKhzzz131vfOOeecmb/AfCpdg64uLnt6enTxxRdrx44ds76/Y8cOLV++fJ7O6lfTkiVLNDw8POtaTE1NaefOnVyLIHme68Ybb9TXv/51ffOb39SSJUtm/ZxrcPLlea5Wq8XanwRvf/vbtXfvXj366KMzX5dccomuueYaPfroo3rVq17FNTjJWq2WfvCDH2jhwoXcAyfBZZdddlz7uR/96Ec6++yzJZ1i74D5+ptErrvuuiuvVqv5V7/61fyxxx7L165dm/f39+c//vGP5/vUXnLGxsbyRx55JH/kkUdySfmmTZvyRx55JP/Xf/3XPM/z/Oabb84HBwfzr3/96/nevXvzD3zgA/nChQvzo0ePzvOZvzR8/OMfzwcHB/MHHnggf/LJJ2e+JiYmZsZwDU6cdevW5Q8++GC+f//+/Pvf/37+J3/yJ3mSJPn27dvzPGft58PP/23xPOcanGh/9Ed/lD/wwAP5E088kT/00EP5u971rnxgYGDmfcv6n1jf/e5380qlkn/hC1/IH3/88fxv//Zv876+vvxv/uZvZsacKteg64vLPM/zv/iLv8jPPvvsvKenJ3/jG98405oFsb71rW/lko77uvbaa/M8P9YG4XOf+1w+PDyc12q1/K1vfWu+d+/e+T3pl5DnW3tJ+e233z4zhmtw4vzBH/zBzHPmFa94Rf72t799prDMc9Z+Pvxicck1OLHe97735QsXLsyr1Wq+aNGi/Kqrrsr37ds383PW/8T7x3/8x/y8887La7Va/rrXvS6/9dZbZ/38VLkGpTzP8/n5zBQAAAAvNV3931wCAADg1EJxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAIQ3EJAACAMBSXAAAACENxCQAAgDAUlwAAAAhDcQkAAIAwFJcAAAAI8/8B7SoQM5AmGpYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "micado[\"relay_psf\"].include = True\n", "\n", diff --git a/docs/source/getting_started.ipynb b/docs/source/getting_started.ipynb index d006843f..034d5482 100644 --- a/docs/source/getting_started.ipynb +++ b/docs/source/getting_started.ipynb @@ -18,33 +18,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "tracked-preview", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6ht65Yehn3t72OMOddl386trkelkl3RJcYhkrEdnIBDCJFDFEEejJWQOCFQBGxwgh9s8pJXPwX0EAJFbBJDiGNIIBIR6EFgggNOJEu5SZVSlaSqU6d06lz2fa815xyj97/lobXva62Ptet69ll71cnsm8Xaa84xev/7/7e/ta997fKbu+Pxerwer8fr8Xq8Hq/H602+xpc9gMfr8Xq8Hq/H6/F6vB6v3+t6BCyP1+P1eD1ej9fj9Xi98dcjYHm8Hq/H6/F6vB6vx+uNvx4By+P1eD1ej9fj9Xg9Xm/89QhYHq/H6/F6vB6vx+vxeuOvR8DyeD1ej9fj9Xg9Xo/XG3+9dsBiZn/ezH7FzH7NzP7t1/38x+vxerwer8fr8Xq8/uhd9jr7sJjZAuDvA/ivAvg2gL8J4C+5+997bYN4vB6vx+vxerwer8frj9z1uhmWfxbAr7n7P3T3M4D/AMBffM1jeLwer8fr8Xq8Hq/H64/Y9boBy88A+M3272/nzx6vx+vxerwer8fr8Xq8fsfr8GUP4Poys18E8IsAYKfTnzt+4xuA5S89/1j7wvW/r68e8bKr/3fAvN3CAbf8ldV3bQIY+bP8HD9j3n5+de8+Bt1/XH2Hn+3faff/Xe97/W++78B+Xj7vM7b/TJ8Hvheu3vH6M7t7W7vXrO/2e+/GY1ffRT2zDxNX6+Cj3affi7fyq+dynTke/nsDfMl/5/ravHovziOf3+6x++znreH1eJq88bOvfJ//5Hti/3v+/HNlrn1P8z/2c/DKOPvc8Dloa4+agy4Pr6zjvBprm5/dGnhbP85pk43de13JxufKeh/D5/zMZvztfR2v5xrt99d7Hlffx34udmvIH13vm/6g6/f4HPm/Xofd/fvnr/edv7rv9Ln2fpKtz5nLvv8+Tx4+T3/t5KK9g+aVN7PPGZ8eDGA2sWryeS0Tuu9sv+9zdTUfO3ltz3pFZn4Hnf3KXHobJ3/lr74r2u/gwMM//vYP3P3reE3Xf+2//Mzf/2D7wu/7n/6/Hv66u//5L/zGv8/rdQOW3wLwzfbvn82f6XL3XwLwSwBw88e+6T/zb/xPAPMwLgCWB4NdgPWZSyHB0/g0gRurwUdIsdFADcAPvhMqWw1+cIyLYTwY5o0DE9huHbYZlnN8ZruJMfjiGKvFBsvnzQOwPADzGJtku3GYA+NsmEfHcm+Yh9wrCzA2YB4cNi3udzHMvDcsnoeR7zybkhnAeODAgXly2ArtKr6HLzH27cZhW8wFlY0fYt7Gxcre5JhkSJtC4/vOw/69t1uHXSzGdojPUTksDwY3YB5jHGONe86TY3mosej3l7iHzbaGfD4N8ABsBeYpnzVybA8D4xJzD1wZbQf8GOs9LvHc7Un8e7k3bE885tocfoj1kiLcoN9b+5lkINcM5nqeH1ByMW0/FgN8xJovd4bt1vX+fnQ9e96EvFDeMYGZc73c55g209xQnpezxZhPsZa2hVxyDbkPxqXWl3N2eBly72lUbIZMGGKNOF8AsN20d851HJSDlB0/euylU7wX5XGsITfcd5xTIGXj3rA+i++ONd6F99qezrgXAVGu2/JguDx3HO5Knt1qjbg/x5prgJAlHzXPNDZ+yPUYjsPL+N1cSoY47pFjDhkHMKgIckz3hnkCBnVCrtXMvWdrzLettgc4lJOcL8v5ojFe7k16aazxvfXZTLk3LC/jfttN7NUt59QPOSc5l3xP7hekDjDPMZ/aXOQazVvH8tLifdqYl3PKGWXnEt/XOM4mmTi8yD2YMuBLriNSDrjHb0LeS36wH+vRpdPGOfcd6ncEktzznrrWttQ5a9z7kPuQIHo8mPbpWE2yD6OOD9mwzXYAzNb9O41LzRtxzj/8t/7N38BrvN7/YMP//a//sS/8vstP/erXvvCb/gGu1x0S+psAfsHMft7MTgD+FQB/5Xf8tMfmnScXugUQgi1rayGMq4Ug0XikkpYy+R28MyoDBxLgIBWpSSHPkwdwb5+nEMPCCAgQGH+WQjtjw5mHYMM8HjGtnpebCoixjzXeCxOpQCGwADTQ5UCnQ/jeNKpGL2OkWzBc8zQXpOIuL0DzkN893JULaakgbAJonguNtDzP7pEgntnfD4AURACRAAvwuo+A0yFBWCrn62dT2c0bD6NiVD5entY0jAQdAjX0FDcIrIDzREZha++UskEAiVR+NIJArI/lOPl7ziPBlU0a3BqfbWW0yfjYhmItrI2nrYM+Z5Ahj7XNqVxqnkcaRgI9rcHw2F9HL7CxBFAQcJ2W4JLjS+Wf4wuDVAadl5ikBny1RwjGHAK2cjraZwHA0uhg7l1i22IP8WGcC70f359Y4uSYh5ATT1QTxqWByplG8GK6ty/53SeO7ekMWVua/HC9OceHNMQzx8d5zT1o02LpUyZrfzr84PH/+X5jTRCd+24eU68cGrjM/WwXK8BMOcv1nwcXyOKc+hLPmUcPsJLyrj2yNlnlPOY8SRYpA5fSnfOUY3+wV9d+KXmFW8wzdUNngbZ4R+Q7LOcCc53JlYy0/UNdYjMAnqEAzXYTe52v5baXq1eYtLXZFcor92jqou7k9X2B1CXjoUDp67xCnX7x/33Z12sFLO6+AvjXAfx1AL8M4D9097/7O33ePJQtPTjzQPBSbAZtXgyXoi+lXoZcjMrWvCoLECGknIbG1jQwa2yG5YHKKzbeSOVYwoliCICC1XzvQQWb/z40pdkUuMATFV6+g839veg51kTxl6GM7FKbrAxUKTl9bc2f83ccOm3EEkp0Hry8xCOkSOiNxHhN3ulcUM+a9Oxr0wO1TlTcvsQGF7jbIOVNb0XjnsDy0jRnYTBoIFxrEyAh3nOcC7zKS7YaSzB05cHLqIJrnTIIji3Xde1GifJQxgkEZTJiaQSPObcnxzzQM/QChShgpvF0hd2UteW80gj5EsaObBoBybgE06e1ce6xHNfRZZD6u4gpyjmbJ5dh6QJDQA/i/s0SgMc6S84vprkfl/ZuCVpts9pnBNt8TJ8HR7Jcbb1mvdtYi/2JeTUZKAJFMQaWgO7gyay4mAF/tmG894DDu2f4exesTxr4uNLhtkFhBDGmbf4o0/29Yp5ibB3M2SzDzX1RDGwBy5jbWntQ9injuZ/HOd+9zTF1qKHphgSWGC4jPi6m+/b96EYGq3S0HwCYY0l2bTk3UGDUIa4xCwQJROzXjcx1B8nddo4G/sa5FFmw3PGzWO8YxxQwRjl/M8ZkBCpd5zZ9IgBMIHtIWcp70Dlxo7z654ZvH68/3PXac1jc/a8B+Gt/oO9QBrfyIjANNoI69OYBAJAimMdSvgQhXYGMVJz0jj29fQqgFOwKoWl+BzOFfdsjaCnsDFGJXhYQic02Tw2IEKnnOwHYUbKcAynu5o2MFZgHKiIrGj/Bm4BCggvSpbE5Awz2+CsNKxUyvaeYL8gTR3oYNoNejXewong9wxOrw5ek6+mZSUHU33wnQ4xhuTd4A6fzCFibg6DioTDLLu69WhqIUJgTVuwClchmovC1dluCyQMnHBUG6rZ5cdi5ACG9LTE3q0lxLQ8mIowhoADFpVjHBQoPcn066yUmaCHbliCksyXt7+UMhdrIcjAsxzVYzgXc56Ep+5khyzbXcMPyEPtk5j7pAIl7ohvrkkNTyHGcIwwX+ybX6n7ANq8JHsGYkTUiSTrWZrTz3ss55pZs5CBDsNVagE5GhjU7M7fdAIc7YKXXTZlM4DUHMJ+vePsrL/C15y8w3fDx3S0+XN/CPB+BYxncCM8ShcUYyD5RFgWiNwCLFTM5IQdAuoCyneDEe0LM4hh3+Q4wgZ9xThZmBbYDxBgBAbwA4PDZiDVIPXjNhMl5Q7y/QlQ5DoD7IcMykhFUrlLumXmIHwrMe61fhK4JBNrcWzAhDEHunc1Uk7dNPiYwEyFbhtq5JxnG1wsBArSO0NsM1/ux1o/7XKwS893civ08UGYdbgSaLmZnfer75772y7H5l8+IfNHXG5d02y83GqT4B+PkYwVwchnbyDcI48jLNsNocY7lnF7JjRfgMAAZp04brk3PnBFzSPhs2g4s0PiEYtxvLip0MjryWppBoIEJRiGBDxWbBRBY7kxGzJsykIHIMc6Dl1ebn5GHlWPxQxjqAEMNfKA2qajx9LwY1rKtYtLyKKif08PzxTFvZijywwSmYd4vCpEADWwdmrJay8BSua1Pai3JXu0SZeFiRhhzrsWHlDBpeSm0kwOjqOjwprwMhqV3t0IAATPW1/v9CVSQBr89M+QvPkiFOS4NpCDfnQYDJSsCPlbrN5cCj/MYE99DeUpwJQuZnnxnaOYBym3ZTiEv85gepdc+YphQjMCxGEV+p3vdfvDKy+pMCcdBAcd+fQgy+d4ENzIonZHK0BQ9/lcZqBamOsa70lj3/AY6CwYIKG+30L7g2sd7hkwfnq74xluf4WeffQQA+M7yNj57eYPt0wOQIbh5arJqORcHYBzKYEZ40LSega6swsi6QZtDYBcaCUCdon8k0HGtFdlPMQjHei+C6Hnj5bjAUp9aASdL5ibH4gM4vDABQcpuCHy+b+aQlZxgx1AGEG8ykEZejIRV3g0InBmKvyRQomyTjZkNyErHtb3VQjfalgzFEvQyB607ppbfHfWc2e5L5kY5atb3eIBzMULpmIzX2Ovsx/16owGLqNrMS5gjvZZDbNzZELuEKL8bsfnwoOjdhocLeWqenhDZBpuxWa0pXCrmUNSufJLRQ1OZ7EpPVYZjNQk7N4IvDiezYRDljpEKGzRQMbaZ9CoBG1/WVgsGA67NQxCDmd5kekLL2eCzAY0e0koFQ2UU3kP9vy/FYo1U0H3TxwTEXM63Vjx97w4//e4neOt4j08vt/jOx2/jxfee4fDJEkrNOTd7r8voHaPeg4mJsQaQgSsBQSnaXHMZyjQcW3pCRkCSAG07oSXUGhwuwOjxo/C6yKQcHGOzAI2pWIMlswIibjAqJyk2AAxbHJmoHJ+TjNxQg6bxu4v7Y8Q7uId8jMtQ3sxoY5B8JYjpIUYuFedkR60zP4TL2BzmXRL24kDKd7/84MVSTYPnfPSQzQ7HWQtLzpjjeYBCvwzB4FIAF8f8MvOvcp2VoCqknYYyE+0jN8p2TJ7yDkYZfjiUbMmrMwc2JhabONjEsInTsmEMxzoKTIm5O9RaxPxxbqBwKUOknCbKB50OraWAbYK5iT0IOJRs0liPc3w3ku0NmBnqYT7VJDCpeTHP/wfEJGK0hNuZc0V59mQCPYAEn8lxTM4rKI9e+VXM+crvor0zZbHnFCqszblq+xcj9gVlcm8rIDAk8Js5T/NmwjfOl+l3u9ynZJTEPCeo8Z5v1sYSycY5CdTjs/LGrvfN67hC9fz4AaU3GrAAJXQ9PAKkwUtqWZsuEyi5kXvew1wg5coqHFGiLanKEMZxu+WD8m8mVTG5z6QXq+IhleJMgESKkeGU4cA8WTFH/Z2Y5MeQ0DBteCbo0uBrw7fvERDJWCeg6t5TF98AYXxHhzWN7cPl5TA+LKZBa5LjTeU1n0y89bUX+Od+6lv4c2/9Or5y+AwfrM/xN5/9PP4T/zncnZ9XLlKjwAU2Rqu8AejAcXhg9v1krDsTNZl4SGZgMFfCGzORStVvofyecQlj76OMCqcWS04rlWcmfU8B3dSO1gwkB6pJrDUBl4wJk6OexfdkLhWBGW9RSYSN3cv39wONSHse9eYFwDGfsZm8/uucDQDwpLr9gMgRy2fuqi8yVDrOUdVUcudgAisr7mg45hFKRPZjhOYCReV6WXnnfogKFq2PqtxM7AFDYwqvjJJzGUrf7zmBf+6BZT9HfDbzlyh/4xJ/X+6OeP/lMxxGCOqH909wvjtGtWIHm5TVWXOoUCny/c5NTzRni3dgxZiAHpmFBD903HoO246d4XutxZw45+Jsu/ccgPJ0ACjPxBzh3CR7YGubw8b+wYJZO7xMYYbvmAlWM/K9542rekhO5gYMM1X2wAAQXCXbJlAAVO4hHQHwfcmqJchpuTedOVL1FcGj9p7Bb7yYESZQj7qnkSUaFjYnZaoYX1SiOxKkjAgP9YTn13m9CUmyX/T1RgMWxx6sUNEud1Wy291CmwYeNTCS3WDYY2QeShjpVkFDxe0GHHIvNE9f1SPNa6AA1ublYFGbLwWeFD0vlQcDouRlCBvoAOgBVHLayDwcMj689zyVEscEjDQzx8z/159m/HLeJhM1mXx6AMC8noYelENBQ+2hZO3Jip9++xP8ubd+Hf+lp7+Gr4wNH8wFwxy/9fId/MpHT+CfHMrActpGeT/lVULsA8cZCsl37xRzVd4aEwl5D8pQVFegeZX599qUOPNHsox7ZHkmEAm+zG2K9U7DQwCyhFfF0AaTcyfzawBVRIAgtXmlXIMdSwIorq456qE+RzA+BCntnm4x9nkIdm0ePIyQB71/eZ4e4yGBEj3fFhbbgUl671yzvFfSJhVCaqGazubIILew2DxEnoIAbKP8gSgTdYNKXOmthkGMNdvlN6Rh3xhCyTkcF2iPyfnx9Owty6czNEBgJ70zDfbygA8+eoa78xHuwMPDEfjopIo/hnMd3kKjXC9TuStQbNiOOXBAlIsKB6pEu5i7lN+R5b4PdhXuiuIAMskEJku2AiCYXdK47wBNC3cqpJj/rxwxMhDcNwtg7lhvXXpDoZnM31K4K9eE1X6OkDW1FSAIT0dDugyQPqPulvPCnKwErF2vkGUdZxRjQv1C5yvvTfCsPLFhe5kFsB1d95gHhyUQYS6PL1w7I3aL73aW5vH6Qq43ejoN2JfX5WbYbr02Mj2Q9HbV1+HoUEkzb5Z/K1v8UBVAuxB7r5LoKDp3cYSYUF4kbXfmUog2PBTY6PkqTFbtlRosbQTqd8yxUAJpo6FV5tzvO1jN43pPleM2ZQ1+xqEseZvlRUtZ9BwbL4UDQDkGKjkejrdP9/jJ48f4+jLxjeVp/H34BG+f7sES2s46cF5ImapaJY0LPUqOhZ4lk+VUEkxqnuxFV5ZdBGgochzzlHNjVVExGI6wtjaZQEhgICaESbQpFzRISjgEDWkAm+3kMrqaC1HRXl5jA5TxPvHcLXuliGLONVc5LGnw9HCV19NyJQiozeMzHSiJsWJ+kxU4gld/nZ1M594cWzfIJafab9l+QMxae7eeE6C1WlGGpyXzMizr13s714nMB0M05hkiQXt/ZLIlk6k5NqDy2XKNl88G/MMTXnz3GV5+/xm2j09YHqq3kHKJcgwq1V1KduW0aO/t5Z9OF9fLvBKnCeJYmtznSAnrCdw39dKxCjPnXAuoLbUu8+gy/nwu55MVZuDwHNVviXrN6+d0oEqfocqVuZ45ZsorxzRaaItz0kMuCufxnb1ta6t16OEdlTjnZ5RM7KVnAJRDaA0oGSqUxnG4iZ2xrVXbbUzENVWVdnC2XIUbX9flcGz+xf8B8I6Z/ZKZ/YXX/1ZvOGBxNMFHM65rKVYAYM6D4ue/AxPGZFMYKTtunFQY5xJkUsJKPgRDCPlIfo6UKT0teqjNWwzaGbUpnBtlb7wBJEBJQJbj0sZxCBDZliEGNjLiZm9eNozv5rsYuEABvSK72sR8RwK3Wf8/0pBoTi3WY14WfHa5wfvrc7y/GT6cd/hoAu+vz/HZ5abWKRWa+j+ksud8KC5OL4XeXSo6KmhS8fyZFN+oJlFSvEzWHb57N5uVv6AeK1f/r3HsejGkHG4mQCKQASpFlqrWmnDCFFJra9ZBpScIISCnLIIhgRXqrRJNxExGarlHlYTmeAn2baa37agE51TWfNdozIeWE1WApucPKSyQTbmABEBbe9kE9yovp+HO+aT8cd7U6wV7w6wwYQICAaaW1Mp3UMJoDnK2/cUS03lwlQQDOd/0W2gQCdgyP2H5bMHyYmDcDYXtBO5aZR97mnBNe44L711JPanLPMY0MycoWJLSO7vwYgtFMImaTDFZMspPH8PMuSIoqaZoHoUIKBlUmDdDqpwjycTc9yZRKM6bbW5ARQBCP9tXJiqBnXPK9833kc/C3Ds5nAWcCRbmTYAkMjcxj40hGtjlfXE8vMr55JxHewvZCm/7kUDZ4vfRL6zmRv258GN1fezuv+juf/XLePgbHRLqrAjQjH0m4inpDdwQ1cGxckIQnkbr9hpG3wUI1NjI6JnVJqAiVNVCdpmch/R6YBXWYZWFBV2v16C3SWVCz2yrd5O36i1GnXkr/H+gjF90fS1DZI5IVkxlFobGlUBWxjDHd87PestR4VwPjyRLViJYbeJBYEePMdkfXAy/9fE7+DvPfw6LTXxl+QwfbU/xdz77OXz743eArBbi87WWFht7GyZq2oxVXc6oA+QiuyvZ00+lRDl2hRwYBkIZbxoZKRkqeGvvOcoAX3vEPQFRAIAhwNm97nwAGTBjUnagteV+YH3iyiuoCipvYURrzylwQ2AyDx1AsHw2PL9xCY0/D47R3sXbPAFhACYZnAxjiWlD/EyJwvSaaVwygRQo5qkzBwyJmCP2Hucze4v49RiYRHoFvOcBWO5QrlXOx45lTCCkHj5pRKNcHJhmuzWUjjCuz97xQMrfdtMSJpV4keNuLI6ALRNqTyWuyms7IJJrM/G9GzEys3Iy0jkI9qKV4xtKYxvUuNIHosVDhonYyVVs7kajXIiCvVtsixwvhSGTyXSLtXdg37+nsTy+lCzGpPB9CkAo96yDhBZeAkNoyVAQ4A+ytwRjCyKkiOxWjerPxUR0MsSezqhthpFgTexegl5WtPXEaT+W7iUIZPi9dEHmvdGR5X5I0OYHV7ND9puxvtiv8XpMuv0SrjCqpcC5BNoAmTC4U0SjvhwsBDPebU8lg7kRtjPMqTcKQY/a0GgblO2zMfI77BXRFDfb54t6P4QnqqRbMgRkQPisZnT57iwpZR6L0neMoM3VmVGMhcfmp8Lpnh69zb5JpRjTg+vlpWE8KvmP5YYAMO4WfPK95/i/2s/j2+++i+fHB3x2ucG3Pn4Xn/72Wzh8vFRjsgRVDuwVXq4d6W1MRMJrsgmk8409HCgCNNxZJaa5ZXXOgqKkU7EMli23nKAO7sZm8MMEzgn8BuAt2XN76gJgBIcA0BOtWTEQFHLGwI9XYSEveXXQQKUhODVvEbUW9FZ3LcLJRI0Cy8oPaUm3NgFvSjq3UM5bygeBd8v76PtAITwyAAQvVjk7enbOP/dCVDuhPjv44igZHFW1p7yqXN9q6JgOCFmB7gRgP09kXQUEOecy6Al8Dtz02f4gQSlzUwiMKHMRFnatA0u7+ezlYpnHhGRf67M7ZyzZCTlHI476CDbZgAbwBGqZD7JAJfNKJuU6E4w2YCWIu6WMU67IGrUKQn6WzorCQnS0LMq/xzlAZ88h6cmo7D0TbKFhu53S1QF+vOSbDtgF0auGQHgiqh4Z+mlOCIHh2IBtMfiY4UBcDBuPIXBg3Ee+HfVXrIlV6EyVcfSkUm9+jpUkoIu8lv4LCKwsZKjt1e//qC8HsD0Cltd/8fwNJd+lUiINz1wPeXlZbTCQZ5Ek8zLOpUgL7LjAijWFQWNudEjymTwXBIjPibpE/P/61EtRZJzXn68Yh4m5DfjLJYDLfTVsk5Ila8QYbEP/jAsrps9y1FTEQClsnn1CKrZ7a8rBSWUyHgzGpLRt74UCNS7RykfH+iTj62yg1wyO3S346Dtv46MPnkVWvQP+8oDlxdgZ5crjQVXBbPWHob/oGYGKDfNRLP+cEAhQAm0aB83jQICvSwEcDMd2Mi2mOreuZDwMk2fRJDDw4VHBwTyDRmsz5BF9I8pQ66wlGuwenqKM6aVybEkpz1PI9NIrpy6RvzXO+/Ns4ICzL9EE1tvGPFkaV0twlmfLdGZxuQ9h3gYBCIptGQAWx/JiRA4OE9CtGWstLETjM8dLwG1WCEj5SAz7WM2Z8rVoqFJetO7NieCabi2URNZx3sS7Lg+Z8zZQjOpAlW0j3gPDtAd8BDPF8FPkFxW47eCKzgGBGvei2JEE/5QRb3NB9kM5OgxN5Y22W6+jBIx7MtZqZO7WvKVBdUzqSb7HAoDhC08wcyxwT4cFhmLB+Pgeqm5ODkOisX5WgLSwXuiWM6JhY46HDd0A5Blr+SwWPJCNpBwc43fLuRoPEpyK3WxglbJuCfJkFxowl+7zqLDztWRLcwuUcylHCGLi4gVSH41c++7lNrmVXDQH9vH64a43HrAAhaJHGjpezAWRsM74vbLNaQgoUCP/f3oeODewPADrk9hgmEUNI73Vmch7pIE1IErv2oFizJonRe230UDt+O4Dvvn1D/HO6Q7necBvfvQuPvnwKfw+6k0ZDthOeIWup9GW0qTQJygBQ0X+anUNLqnU1rqX4qprHIpGQypDr8mOjRtxdBM9yzDOSCCgg8lGHyvgPjA+WTKhNTq99pCGFIzvwZji7fkuPU8AaOxAi4VLDjqIWCLBsh/SJlDHe5POT++WFR8MN1h6SPMAjCwrt1lzVVUKXvPO8mlW0FDxZm8QKXUqZ4dKx5FhFSZf0+h2ah4A7Jzx8YFgHXt4i+/J0KShQnAjx2tW1TJs0pVlpJ4gRXPb8n5o3OJdCxgqFJI9Upz70ctAM29muQTgwi2g/j5umhLKHlCOwLhEx1bufz6vh726cwFA/YaQ4czZuhZT0BjS5ToJQDL8lQZvYwXMAAyuXjHIvTAPJTMEJmD37Rae2lpjOeohhVa4FwhKtwqZMRkZrYU9w70aP+d8sR0bV7qvvTqafHLtrORsCOSnoV0CdI8LBPBty0MY8xBMJmIr1NWcmCgaqP/H2ZToK92dHsw8Vmk9kI7XApXGSyfnu6h7MnOacgzrk9Jt6qnFfZIgyC4DtroaePYy57h3ADKDVedr6uUEVd7WNCo16zPBPjtsjh0Afd3XY0jodV9tYzGeSSWoU2DpFc+meBn3zM1pLbegJ35R+WE45mJxTh+rBDbUybZIhTLD2OvUYnptyQLw4DM3YHn7gv/MT30Pf+69b+FnTh/iYR7x/3n60/jbh2/iB3fvYnmxqB8MW2lr3O295CVTESDeUzFvJBV9bN5Zam+CDABFqebUshpmHqFmfGSzqJTHpUJJTJjUOPJPgKS9YXVDnuzKODkU2usABShF6gNXnTSxSzCeLMGlR4dQgronq6iS/jXk+yQw2gYnC8VstPDgPAAHdpLtrBvpes6zJduS8sUYPMGLPMFkdRizCwPdjBQQLcbzkLjBsBFDFpR9Q51SLDate9EZn88cmtnYtPAQLb9TBpTNEv3g2BZgjDRKGcOnXID9eBJIUZlzDRlKKTBBMBALHEYqqPgqXffcXwkaOV7mNB08sBD76SRo5UqJvWKreMo7cxRQcklPvE7rTbaKBtOgDsUKNU1NWeiHBdqnAmMjwQrDE23P2WZigzsI4eWLS0Z8QJ21uW+MDfKaYxbvm692aY3hcow8CmAXXmsOAnIv+DFPKD4VYHjlOIELMA8mpnqePNr/g8DOqpmlfgZ15R4bsJ7YtM8kZ2pWR/CS889jHQQEL+Wc9NBMDwPFeD2WPDvm2pa9syxDqlt9lNWWXIv4XYFPsfMGOXc7R4EyTh2Y83AtjwLNo/Z1Z1gfrx/+eqMBC4FDxUKxD7mk4eF5NpXLkgphqf4TCvfkJpknL+ZBgobwOi8BTFTiyN4Fy9Xn6QV5UbEYDr+ZePL0AX/82Qf4p5/8Jr55fB8v5w02GH7r+bt4/+lbmJexO+sF1rw+JjkC2tjgXCRYs/wdEz8Z6453TwVzmDJ4KjkFvRLUUeyjbT5SWbMUKQwCE/Ice/Kdh8ehI+EJegA1rrtOcmP4Th14WymstbyFeYzE5pF5FWXsXDS2N8OlM3lS0W3PV9hxwrcRRvE8QsGxXHwiAYrL6AZYAjaClnxmJWDW+JlnQMNYwhtKm8pul2Q9AT+VglTYK99/OWf/jgR56r1Sdq/llrT8q9EAJcoY0FB0BTqz0y9SvpHzEGN6dczRq2efYFtAtMIhlCPbEMnx+Y7bATi2Q0y5f3Qu0iFOB2ei7sj8j5kUvubRoLChU75QAEBJjxL2/Fvef4Lc3Bec07FWDx3k3qrjBrxCQgkUxzRMNBCzRIi1h43GJcPELdzK9ybo0+nIKd808tstcHgxQi7XNPxW70ldYA7gTAYw98ypqow6w2Ls7Eqw1nOjvPalxtlYMuk+5tkx/y4dQksdUqc9A5ahwfheYyRSTyhsk4m51sbKiQr52IMVMj8MsfXQYW+qNxJ4y0FpAAoIuZXTMvmMdAT4vW47UqZ6rh+dArFFlG0mWM/92F/X5QDLkH+srjcasDhQYMUAa0aAVKxoQnr/gOKvu54IpMtZNgxUYqZnsiYT1Dy8J23iQzI8ZhLeXlXDQ8pEtQM4jImbccGz8YDbaIyBW7vgkBrbcvxqx532khT7pHFfmO2fYIjeK6B5YOUFvRdWUAj1W74rG9WpZNbkOcf8xec3Vhn1+SfgaOdtuJLUGogwB4yG2uGwyodoylaKFx7N1LINPksGlRzaKyHWBIYt0Y3O7Y4NMWB7tuH47gN+5iuf4GtPPsP9dsR3P3uODz94Dp/HCK9cAQ0lHYKy1UM1KVNZcWEbMEBP2yvnggCEoazs1cLQQlgykwxIiTK3AKiTgpkQTKZkTQYHBKC57mQZ7wegk5kDFNmaf+e6E8CPC7A99/Jwm4JVjD4bn3myC5Sr2YDZrgS6gWsp9NyHzIFSSIds6ZrzmKW81/IcRtdkPLu8Caj2K5kDfS7fX2EYJtgSxCz1M+oQ7c0ML/IRNIZs4Gio+dD6uwVLcNqDAoWjujOS450nMltp9JnoTodEp2NDoLMYwHiXfvhinDvlMq6T60n5IpOajDDDgwCKiS4s9yqI4cGZ1IXL/m+4wY/lEEXid46X7GwC4x2YbqF2y3lmB+MevhNQZv4Iot/JOlyJuQTNUbCXwKwlHpN5p8AyGbfPrfN3zGE6APM0sT2LG9j9EnvpjF31VqzB58jma76+BJz0I7/eaMACNAU4oMPRpIxSKKeUdNKxZ4BVGAQ9YzIjvrwoX1zsw0Qdvkc2xXmiasudEFgaNTYpTyYhTuDu4YjvPryNf3D+Bs6+4N6P+NbDV/HB/VP4w1LeRHqOYhd4f0ChiXn0AGsERMkkqJSaGpBz0MvwmGS20COAYu6M8Ws+0vgpkbB5K0ACs1Hlh/HDvM8TlyGQVzZibL0aKp4TYwmPFGL0Yc1DA6qqiF5WN1SGChEyvGCQJzeeX/AnfuIH+Ge+8i38sZv3IyT37Kfxt/BNfHD/DvBZd3lRuTg579tpr7QVZgGoBRX3Vq5N3se8eeyXrExolUo0nGxsNlXSG57o2AxzeinvpMdtRtXDuFjlv5CiTm9PCaVinWiECnTJI80xjOzaOU/RfZZgia0BbA2AeLg3XJ555RxZGZWFh4ZmBdRgovSAOv4qT2Qrb5qxf/bOGYlyOF9uUW2xXodZUl59xkDkxfJeXmu2MKRGkKJQa1VjKWej5X1VaKgMXiT7mgzszNw19zYvnIc8GE/JuQI2hebICqiXi4CjVe8U7fnUQwuiC3U6W6oObMzm5zECXM8eTi46o2QTKPaCQMmtMZJksvJ5Y0Uc5Nl0o62AHUo25wEY+W6+ZKfeo0u+FXZpToO3YyT6O/kAxkMAUfbu2W49w1H7z8W5c3G6tea5ryd1KPXxFk4RO1IzuRk3jrk4Dm+fcXN7wbYNPLw8wj87wh9yL66cj9z7KW+z9wZ6vH6o640HLABAT6lTyQod0IizKodAYzRPl4qXSkMZ+pVMqdwCbpoMZfS200rwbQkYjIuTQWAewsOnN/jl978BAPjVm5/AeR7wq598Hd95/x3Yw5BXQdq6e+XKxUBt5poLanrU3832Klktw0PqweAIY04POr9Pj49MQPzQpex5JkiMxWrMVAoLwnsi88KkxwZedNFjZrw6vSZbAdzk7/mIDVGe2c9CotHNjsb0aKXQ2OPm5Hj67Iw/8db7+Keffgt/7PAB7v2IDYbffP4ePrx5q5WI57ttENvBhlycb3rhpKe5RlwfTyp/eCh5htwEGKytF8WHxjMVqBp0tTVlyEKVM/m+lJWZxpmfZzIwkPOWfTS4BuzQujF8slQ+luLsI9mZtcKsPXSjNU8PdzvQcHO/WDUFnJmjccqmdg+GCz1pNvhLQzUPjpHGd5xrrpnoyg6juz5Gs9aAYDFYjCxLzjwXNXMj+5WAnICXSdgylMZ7UdaJRBhOLmCjsBGZHSBCj6tFN910HtQ7aPEI88TIMc7AdoNdWDsmhEAnDagBE15ng2VeF8SQWu23DBXyHYvVDIDX2yLo0FO+L3WQUda89qrV2gt008E7ePRuOjUGN/UtGR3pIgIvqtFWSRMdpNv6WsgdQacS9g/tnWkXyNy08daadUDoINvlbZ+TdULuwVHLFHP27IKvvvsZ3r29w+YD3zs+xyfTMB+Oeaq07/Rd1+ev+3L4Y1nzl3EJZBDJv2LYQ2msNxDQ6AmenU7s1CoVtqvBGoLB4RqnwNeha1SMVt72qHK9XiU0APh2wAfzHfzNl7c4nVbMabj77Ab+8qByWVX/MCaam7iX9/qw/RywAZk6VbacnBHVGNOQpZRQKEyhJUCxb+axiI5uBla5AY3+J8CLhk3xfANkVHtvFM2RBQjBNJiF902Fom7DblW5k/djl81oXlWghWwMKWHmkDAvIJ7pGGPiNFacbMOtrdhgONqG09hgy0yQUDkvkT+USi0xED3jfsq3ft8MHw2dKqeWMl5O4DHa2mbyKcOa5r5ja+aNK+FZIb15pXiTvZpLnmviDdzMNHIK79AyNLAxag79aMmKmICnOoSKBYL6pzDPq8I2tgudMP9jO9XYmZzLMKzasdMwJ6hgV2hvBrkYyMqpUKIuQQbf++iYh1xAGopdh+N4rs7pYo+mnBMmSvfyc4V9CZCaka8DMUs2wjmoXi6dpuvGlQzSLkSU41Un4FHfp5xr7wBqlsb11d5pzlCcO1Rzh63YP83PNH1f55GN2q9c1852iEFFyF/l4xA09vlLGWAifJvzeYx908MoIo0JghU6t9r70zAeYq4FWCUrUDsA7i3qukJK2LGFDMHxJcVMLh6l/ccNz05nvHtzh3UOfHZzwmeHOCV3bAAP9yRbNg9xdlMPxz1eP9z1ZgOWvlHaxhGNmD+fCVQEPPK7zGsQ4NjiePGeYd8VWQ/P9KZoSmJshlHGixRx/r/yZ86BGi4PT7BmWIBdWON5kAezbFElRABgDp3aqlBF02jqEruUkZPCZga7E6nFRDAh2HKcjtjI7HjL3AIZ6UOVcTJMkE6X2AkwaZmbPUsYVYkxIeaACYYTme+TcyD2gcoh78WTdHvOwegdPEFjD7BsWFT9arh7eYNvv3wXv3n7VQDAi3mDbz18FT+4e4b5sOC4Ian5XMvhYIlNsDgQSIIF5bzcN1BHajkT93SIXs4rjQFDLUoqzAXWnJMW1+I6yKIIwFGx7xLNEbR1KnKCchiifBgRpqP3qvwMQBQ59xOrQQhUe7WY4vpA9sxJgNWamWHxTAzNOWv7ilfPYRG6kVNA+aQxdhxeDvjFq2vsaPcmjZ970w8OuyvmqYcYd162DrGL9xCQRBln7bMGWsTgHgCsxUTaChlL5d00g7lrONYQHUvDfWnEG/VKc8iuw65c50yvitdnaIjru6EaV+ZenKcoPy7nqtZBMsD1SJ26ywESq2k6ygLJdo22l0X+snKtN2TLd1SODBm4S8tPMoDnFe2uCRgK0Gw3DTAjk6DZrbeFSCWHFuujVglAVhjWIbrmqWepb3Kewi4YfDPMOfCwHnTUyHld4DNPFj9VcrWAjyXb/2VcDmz+e3/sj9r1ZgMWINB/o7rJDmwHwNK7DXrTE5wUrTpPrt4CAW68PLvcHEy8Ko8TlaPBzZbsgbd4r066bVSsbdC5HECFLWw1LHehHLvSprcBoEIcVAaHtpEAAY4ylKUIdBiZ2U6x0etW/xDDzlMhAGNPA86LcnG4idGMbSr4DibFFBFwoUAUUPkLAOP1fNcEXASZaIpP3wf8GDkSVMjdGPZEOSCV4NmwvjjiV9//OoY5fvL2G7jbTvjWZ+/hB588gz0sxWplVYnne9f7tIRtznUztuxnUyEbTWvMOVDVWzTKqUAJrJh3pbNc+L5LgcfOjHWGjMBZeSKHasO/M+gp98jGcZ7hpzh/KJ+7uDzi7abynSh88uxnDaL+zZeGcoiuWUPmrjgnhuvmiCqoNGJjNTE52kd0NA7ZITfzfNQrBEDlejU56kaeZepMDOccZTjSs1WBz6oc7Dk0WhuGkZX8WnOI4WIyxMzk9OjMm2SWCO4p60qMbeFFoBlvhkFSBxE4+HBVm1nqts4qKPzBPkB0fnKxVGrPVgCUYRQwsjT02y3EYClniGGyZMNapFzVOSETJde2Acs0rE9cAEnMcpMnc2C7jbinwDgqLEm5CEcG0tFidRsjyv5Mu2rJfFedjWZQewfeg5PBHKHtkxPePz7Dp/c3cAAvX9zC75fYXwMAZcHrufEQPF5f0PXmA5YZICSS2VJ5X4oKBspIiFZP+piK0KZJMfYcjMqnaCDAUcotN95yTsVzW4Zrl+PQNpk8OVLsGcpSA7jb2Bjz0BqvoRS4aNoWC10e8nMauyspjIBk8B40YNwrTM5MzzjGHO/ggKoLHKkwWx8CeqYyygRP6ekMJpsxJ2BAnh4vghWF5Y4Zh98AQ53pMQ894RP6jnrtLADmFYNGpdSYFgrE8smCT+Zz/O2XN7i9vWBdB873R/j9koYF8qDkVWesieCTCcucQ4ZaGDoxek/HCulQ0TuwY9T86JLbfQJseZfjYpF+kO9YlR+Zm2WR22Frnqdy5ZVbDHfHQAEFDm2NCha/4XksOYYGGOMHvHXIDHMILI00Q1/X3UlZSbfdeLZJb3vObZerBAsAM5pnXkJTMqTmfWJUvN553X8n5jG+yE7MrDxRnhnn+ZThYBTgJctKZkHAsyfgNqMsJoC/a2EhX5LFyjwsP3ixCRmWkBPUwszI7zoTybk23A8ELwfX3gkdlM7HqYc9CG4goMfxjUyujUNEXXuCBhprMFBRPWP1bL47mb3W94i6cVopAOW6NKChPjC5hjrShPuO4UxAPaZG36cNACgcy9DYsdaT72r5P2xat1yuwG2GhVm1JKDDqrCzYd7Gut1/eIv7DEfZwwgAmnuUc6MjYLqNec1Xw3hf9PWOmf0SgL/6ZRyA+MYDFhkO2yuVMIAmK6pEqwQclf1ttRFa2dxIdkTlvPJuoFgrjQgTsOaEvDmgjG9U23j9LsfAsAYVGDeEaGtWwczKUyEemcx9QPNUUEYwYqZo5bLAK+2j6YmnVzYP7Z7ZTEmMBqnoFr6yiaL6kUwMW8872gb3AnHWDCSdzwvXoyVZ5typjJnvYDlHZKdQ31myCozgkp00eabNWPn7mKflkwPmeeCl31TIoYXRGJLpcXM0loIJi2o0NiBvf9f+2xBVaMmALQ8FdpX3pHJtE6gVg4N8bmOJ5C3KMMTvIhQHgTjmOtmWzzimcc53HLxn74DKXAGv+e9gt++9uRQrBuaR5MGby73FdGVjMB0ESf09cg/03KZJQ9V6Ca37JNge9hp5llMxOWkIVMKbeyD1A/Mh5hOv5nJo79jyKPgMVs0JwBIIpgEHoKTK6EQcybIMUVJe3LKCKw/zVMOzLUEsy2rz9F+e/zNPxT4ZQx0WYQ5Y5a/1QxLFxmpecq9lj6bZ9qT6rDiUb6Scqh5KT7C2PJiS9zke6VOeIk3GroUbNV8J+OzA7zKvo2S8rwXlkrk5O/BIJ47OGiB2Sr13uIc4Dq7jDPkn8J+3EKPc7YUv1b6ADHP8nAUEBmyO5W5grtb0KuWz7qcqL8pRTy14rZep4d8XfH3s7r/4o7jx7+d6s8kqhxJlqdhoYOfRg4alJ5WbEYCy9kcm4Mr4bSZh5/1pXOW5JHVqG5SRD8RmjEoHaOOwK6gDYAJmxTBN41A7en4un6XGXqjNs91WiTYpWxo3tD8s5xNAYK4OcvOov0aVFTPEoEqJVHaiY3nNehflq4AedP9cGcsIe5QiUtKgdcVSa7mkh671BQpsANrs6pSLAhHsOkpl1buOis1JUDfuB5b7kUcEQP1XlnPJiwBwkzca710oztr9uXOyw+xObC3WsaUQlXzKmy8ZopLU+Fnpk7Irr78ZA36AZeqafytQIFmgIiZQa/eQ4RjYNV/suRxqIJZ7iqCywnGZjL02YMO1T0OtRERWGh1KrtSvA/WulXDKDVjj5dzQK6/DSOPv6B2Tc5nNGVU9lWXQUJuDZnxI4fO9wbkyGTU9x+ikoNiAbGa23VSIlfIvFslrr+3Cfdx/7bgHzr0cIJZnUxZLDKC8O5QM7M908t26Fju0f17kiHjdK8FoABcoz4xjF2AoLFnOmdhKK6aVjSLbXHdZGZmUrjFezR9zsvhOAkgTke+0ZfUPE9Y5vhE6UZWTBBRck7ZXJftAMfBGXYfY8+dyXHch6Y1jaYDxzbayf6SuN3sqiVDz/6NkOf7JRFd2rKXA7+PU+feo7wMl/PSulRiaj5pssY+G3gFQY3XjvmXJ4bigEi1HMwypTOYx73esJlPqktkSzSj8/MxcClwIoDD5Mpkd5udIceDqXQ2KU6iUtCW+yYNr820z6XqCnIPvPGjdF3sDufOwE1xUX5v6iIxBGlsfEWKSDml5APEDVNgp30udgnMtBc6yUy8Tlnf5HPwyvTuvdQVKrrqSuU7SpqPPZEQZx/xcbwLHtSDT5UePLra0m0y6ZSXYqa2b19rr3gZMVsRRbslKNGAzLijDtmP+rABXjkeU/mSF09XcJ0DhvEhucq1nhid2AJ3AKQGVSuu9GATKPg3fPLg6oMrgZxJ5Gfn8XpfBEU3nttsM/9KwHj1KZA+RvFuefrx7x95cJ45rXCxAbivn7uCsdE0BbTERlL3+AMqHWJcQgGAUag/0nkJDLFKFSnXeD7DPm4Jsd+WA8R+WH/Laz4oZt/yj0VtHpKPAs7AwWgiKbGzKBp05RtZ1cjg3egP80dU47tcB4G7MnOtLMFm+uJpO0qkUMzPjMwxHSTcSKEzUgZWseuLzUwfuQ7RcL5N+Dmew1mLnsOQekG5uITzO6yshz9dwOYDpX/yfL/t6swELjR5QhvhKy9B4lOJKkHKo38mLctPPu3EHagMypk5jJ28PcX+euVMbJjfUaS+sPRcmEoPzcXzOSoTV0DmNL/saUDE0iZfypCfge2qWn98xJsAOYMhgDG+HGKbhamwBQVOEG6pXCOli9XPoz/ZQcMY1c0iT6TDGtr6eilDhkQmFT3YgCFQs5ZnLi0KAnYUVDE1xvJKkm23g1cyJQJaACDn+loujpOIGQMWK8HkCoJasi8mr7Y3SZJDyfstdAW/R3zlvlQxpAnzy5nJvSJlTBiaUeLkLXzaw29kKpxdOYwLsmS+OddTCkWEIZtJfAUgCBVx6GgrS5XnAoEIHzElzKxahrTvBeK8mkVMy+oMYrmuGN+dB678UsGBjNvXPEDBwbDfxZ7JLLg1qq2Ah89lPcAbiiAFfXI30FC7JcBqQ7AzBRA5USa2IMcbxDC0fgoCggSO1509Qp2Ew0Zh9kaw5JWwgd6m5jTEBHQiX8bemxwxysgjuzg1oSO+h9DIgdlzrKvm2nYO3d1Bjn9KJ+FwWhO/VWB71tfLGOnrJCs/e4v4iMyjGBqnbyBg2fdBBr1gasSumMCqvwfy7x+sLud5swAKUwpwQzVgt3nNj0bDLk6vQkdquM1TDRnC9tI8KtjEFOwrXK1dkd0Bd29xUCrxCYRWbsqOYt3w+2YdRtDYN57hUTwxpg64sDy72QIBhtWaYCnBoTN2D4fHw+R6DTbaOOcctVBOA7ApeO+SRd8PWqVF+n6G58GaIMFAhF0BKVGCigclO2/eQkxLkUrkxnKZ7pTKeJ6/ESRrdZrR3f/c1vQJ9ylc4VBxcyrcb0lbNFX1BSqkSDNG4zxvfgRnlBIwySkw85jgdSNbAJU+cU4ltHl44WUGGMsSSlxy3cjq4drlmO1CeMhrslb0CJucNlXhbUwI5MlApA7pfb0SXwF3GhWt0LXZLex+D2LuxJiPIMtQcJxeb7EnkmNiu99ArbEjKkxoIzv17xNrUOHv5sXen6ejwG8f2fNuFlGisJcOj3om/h1vNAe/dgFzP5WOYyJe0n0s+u4OllA+95nDtF5vYHdvBU6jlTHHLEoT0NWF4huwUx5x6SzqH8ycnhmP2+v8EsHRKxOK1aeG6w03HoZBRUwhoFDgzhpC7HkzGuPY+Q6G5xxqrDYSczpPvrSX1B2U8542sFudgu/WdE/g6rw32hf/5sq83GrAYGloHKq8EKMO+WlXRJAhAV1ZA5oTUTW1CCW9dqRIJu1GIyzPelYryvpkoSIPdW95D9Hp54d37j3waywZh1ffCHDsvc+e5rFWKzGROdsFkDoLYgDaJFfqKGzGvoBtkRyiLXcInPWtg19jJmoLup/XqHWZ5LMoxuVJ0sQZUdC7NrLlqA4t1h8rI9+GavG/zjni/Xq6pDqHTduWqyl9BKqy8z8yD+8wD3JmzH02sOXM2OIYOjHeeZeu/Ur13SsYExq3mgg3j2LvFUtYpcwqTNOBMQ/BKWW1PUm8gjWe0dA+TUwcAPAyRDCU9efUQ4TonQFROQhqSboCUj0EwQhCWeULaI3p2gA/KKdephza0dtzLV0aByaTclwInVz0+lE+RRlP5SI5dcqaYrRzncmdKfNYREsyfyHf1o8NPsxyNdAiIa3teW4CXEvxiegla+aX9e8pQ++f83UOBKwsMIP24C8MQo+g7DXRe5yMtyWieu2wF+JLeyOdQjgW++YrJcnR9DqdcXsk1v3MNLK90Nvc6P9TDqhybCdQCPJtN55UleGLzUToWXBv1MsocvxiDy/GSA00ANcli4bVfjkfA8tovbpJuIIWKKfyzhJafUaJkKtNxlWhbdGUabbIvWxnHvlEUf0/PhgqgK5jZlDo9Gibh7bxwxeJdQEnxURnf9o493uv7+bAtgYQSCsv47N6XBimN3CAl7zU2AMqtCANQJbRRC3q1HlKKqVyVCJrzsNb7Kz+DOSbHFpM2zi8TN1HUNpPdDFIqSmpjyEygIcGnKixM9wIAu5ThF+ChQRZDB82JqmcMxQTRYJLlIZimGHiF+pQLkxVF9JqBqMIwb4qT7zqazBBgdJanz/fW1nupTqHsMtpzDAQWcu2Zq8DciS4nMmCj5p8hFrINsCy1JwBhUjiTtZeqomJYQhVACdJGgm94Uf6VIFlzRllluEK9WNx2oFshCoY2cy24rrvQXQOrBAI88K9Xs3Hvcgxi734HramwHUGZeTQiazlQ41KiUIxAAgH2SLEWwiM7RVYRXX/V2vkh79uZPy5hsqdiQ5mfliBmOZvya2JecnDKe4NAW6yT11yijX+05xIcedsDSJbGav8omT3HqndqtlHOZuqH7jwxj2051+e7Lpc859ruqpBWMm3Y7bedPuNYehiI+zzXcVzy8/ku477Cc3RIHq8v5nqzy5rpERKQpMGabdSeLaY7dSlvYAGq/Tpap8s0VAvgTZjGCuWi2IVJV9QsYMpJ+4IrXrlk6S5BxaBxtLZ5gTq7hUpvIA5rRBixeXJgLUoUSIPqNPiQcWfYaef9capWw5JhLMb+5xEqa772uBvJAfLMpDttpvLqyiSVVIVf2pocHLO1PNdaDmB7TjTiUuRLyzlgP4WxIe5BJcA4+UB4O8PhDr2/jNBGgITovbPEO6uCiYomWZ/rBNDd1eb1mrmSB50gieWk+hzj2aeYT3p08OhDQUZFza8ehk6MJbNDxT5THjvD4CevHJUUzDLAZegYNhmXuGGAPQjsM4wkeUgFrDOT2JeH90uj2lk79RPi+4yqamMYybyNH6g+RO2UWwJAzQ2g/knX7KY837ynxCxZwR4+mXniNBJE2JKg8mxliFTe22S9hQurE24clGqjgZP8jEqOKXOsLV9eXSsMj5YBQDE0jaEYG2AXYFiwqLUXoX2onKU8GNI89JnfVKg4QpJl2JX8imIJNvZuATAeoGqbHuYJpoeAyXbs1zinEW+6mX1vBGyWEC4WESD3ys4pRHs/Ohpr9m1J2ZgZ0uTc8VTseYrvzAOq+y/inemoMPw5GwPSGRo6r9uhztjSRR2xVMNCAp9dOL+x0irc2BmN13fNL+vBP8LrjWZY6DFTkStR8VwKnQqCKJq9L1o6ScRqaQiZNEYvmSwC9kZXSYbpiUpZtPuKNUnvhQpgZBxWVHM5Tru/GZ4xAMw32Hm69Ox33lQoVlLK3VMmmjePjT1vvBQ7EB1CGV9nIh9ZISrq7vHnnIq5yN/NIzQm9h65zveoTpulqP3g8NsN470zxntn+C157wIeyj2ikUAZ3V1Z8y4sZGU5UN/VZ+iJocZduU5F5dILAyBj1ClzMhRk9Rgy5L1U8ZOA1FPx9eTZGG9jFZKxUWJfJmsyHq65Rr4718VTZnLeFD9neMlQiZ70wBlOksyVXBnPLmLDNCpfrQX/bWJ3OpjroUIaBD9l+KD18olQHZRf1hNCZzKKnD/NDzpQgkBGz3VgK4JdmJOs4JLVV89W2NMNfjuBZC6L/aJ8VZI8HSQ5LikXwWC10B7nK4EIl2u5G7uQYm99oI6tDnn4Cq12HQOo+vA674qny6P1LCnDyvFnKENJ6Fb6yKk/gJ1y4n2s6YlWvcQ9CCRb2PYsv69DY5fmJFFmxJgbeh6dcv2yGtCzKEDFD41tYhUZW/JLp7cke4Im6eWW7L1j5XNfMXwtZhg1f73q0Efq19YjiXtjt245Jq314/VDX282w4Lc5KgeAm6IVs+fwyrE50tRRUjDdjkZFd8tYCDDuzRPcjiWy8A8OTaCkpHPNt9tYOZi2JqdIZe6B9DG6bWJCb2tHfgQHgCVIjvmlrfajxXYTh4AxA3hhkIdNXeewAAMqZiniznaKXZDxbT5g1bpQSNsQB0qScXm5YkpAZhx6SOTCfMMp9sNp6dnnE6BEF/MW8x5VN6OnrcAhxd5zgftcxpTPyawIpVspRBsonqJsCTbY+2221znbIp3PWZYKk+CyEFQgtZEsIwTw4ZxQB/gTSaYSCk25MDGfdXPpCaehg5lSDbALe41too8kiViEu8uUZagq4HWyhmJplcKj2RX4fWZaz/NBE08WVnsmCjwGNfW8mMkxwY2mJVsKXdig7xRuZsDOiVY9pGsGtkiz065PKTPmeDtAplKKqWhWqD8g+3qVG0cJpZTPHR1RCdZLxbVgDKkIx2fHhbolWON8WEeXVQMtYaLNN70wk+VjDs2wDNMO7aY4+3W47wiAGBFDUPCeBWsAAUMtf7dwWDYJuUoGFbfOXTa4QadHcbQm3TXWjIM9XbiWkJNCgWEdjKJTKKn/IezqeoslPyQnWPzQz2b90mx4cGNBLfzaNL1fqo56uwO37G/k6nkP5dXDkSAkfFQ+2DXzqF1w4a3Eudk37ROBmCJ+4wvgelw4I3IOfmirzcbsFAZJoMgAV4B3AJMDOzhDaAZfiAARnpS4xz0quKLS1DVbsAgzWmQMBI4ACiANLy6UXp8DxMCKsZy1lScamoGQI3QcnwsbKcBKkPg/XX0vHmKDSDWZzp4OJkOZiSmaXFzgEo952ryO6HQdsmPKm3sRqeV5eY9w6AFcOCBecojyHel1RSD5cAYjsVchklGHyivMJUrm+eNjE+LbRgtDNT2JBNBlRfhgN8CzryX4QrVqESbuTAe41VojAaWIQ+GjjjeWZ/f+U9UbNkPRop5YpezseWBdDFXMS55xCsBU2yAMBB5dMGh3pHfrSZgJkBiF4vPLwWWxtkCWOgdwlCPzO/ZuiHOcJ+hVW+QRTTKRT6WnWIHdF6LG9RXxznclDkedkhWRYxOAkjbWO1G8NgMAVrZM2pP+mDvD1fEUcB6Whi6zTAaW0K2aJ48z82ptR9kJdLRYUiTBm576skiWLF5+eBxMcwRDgOPAVC4q+8Rc8zFMJ9O4K0Lbp+eYea4vzth/eSI4yfLrmkdWVCFHXoYSbKSjDSTwFfXHsYBlXvRe7GYV54RpyeBiRsAdhKuj6sDci6KDHesL8p5UWi9sZwoUKF8NYH7uB/ZC4UbDy7w1QEv2U/JAvcEIldLZyt1p4DAKsOXZH/HpU6F1oGlYodnY4q4r/T6tR89gBFDSnHcxk5DvJbLYdje8ADKH+Z6swFLE0YfgO2ysiCE20MHvoSB0iaiRzZRvTfy3qIYm8dIupEh87kAo2/kTLpjIqm+18rgRGs2FkNedSoa9T5JQKZTpPNzY7U6np5xX2PpIcL6u+nnNLw0tDrZmK2kCZSoPNZSBAB7NVgUEGT5Lvuj0HtVO//0olT1stBzQYQB8giA3nrcNoM/LLhfTpi3hm1dMC9DSnfeOOzeJJE9gY9VLcoBgEuhltHMec/5Y+t/nk8EIPJEmFcEtLBV3ovrOyMRcX1W5dwCJt5k5BZq2b5jxAgQUlnzPByOY8veHsr5oMJNhoxHDLD6jYZmnijk2DFglTQF8OwaesXjYpjW3oGgiL9/oAEDyDgRZSjvcomzh7j2Cg/lvJNNGp1hzJAKMqeCBiI6VDeDtYVynac4tVz9a1K2R641cu4DEFZemsIIzOfgCd8pCGNFlHivA/PuEFtys6reIljVPs61Yc5Eb8/fcyPQ5DP3SWdAlWc2ArhNJrS3JO15BPy44fiVe/yTP/ED/PHnH2DA8Y/v3savfP8buFufpwxBjDDZJOV0UI9lRcv2dMKebBjLhG8DMxkenjHVsFroUwLNrGaZOb+cb+V/0NBzC6aOo2GexwoDwZlLYmps2RkVdRA3382nH1xHgdRpzNixTA6Us7BSr3udsgzuydIZPi1a9F8dqMmQk/J7DHWCt0EtLMYKzMPeASTY055iKHZxjMuQDPfy6cfrh7/eeMDCxKhdTF1UtLc4JWT8xgq4W2vZHgouvOz9vYstCGDCxK3w7kydJYHa5M4NNdkcjOxGle4NIngvZUoGZ8wGbhCKsJcy67A9enUeHgM3mUonjxMMZVjGzlkKW70UPD5jtbH6NR5MyaMq/V2xmy8z7AykwAHp+gQ6FWYxhSxUIZAKxj874OFuEdiyBzILpdSokC/Z3p4NuMZ9TZptpnOBaEgBtBBaKrDWXM5b3kB8NkM7u1BQyJSqYhm7NgAMR1H8MnY/e86M73upMOynXAICS5TcqUJjxj2iV0p435bv6kswLBvPUupruIW89+R0AAXe+X5LxPyvE5CV/4FITqYnTOqeeTrjAqynMuowyCNe7pBl9SVjdCDEGrHkdLaDAIH0RAEmAauNOwqfVnMuKFHXDZGLQvCMxjQSFNGbPltQSG462wqI5270wpuuoPElEJmnxqL0P4M5RKhci8ncJmDeEAg3HdX2EJ5u+Pmvf4D/4lf/Af7Mk9/C0Vb86tOfxDDH37k7YX542uVY0UDOBVhYZquKwFA8yykAy7Y5tvulvC8Q1PkunF55Opz7QohkZkWIzrpP70FlhwJ4aijZQJKcSVYqZVXWOBu2J1N5YGTE1NzvpsbVk5/JOit/j3OrPKFK9BZIJPtIhoRMZepZVgfNA6em9AKyqkpJ/gfPpnZtHib3oTewhy/teky6fd1XChM3JSk6VvuUl2eiM0XxtoQo3e6wjzHKQ+OzGHsG7wsBItGXNEoMNTFRtXkLQSun0k1lTLDA/4+QUlHp7L2h5k4cD0Mf7DMi5B+fmcoTqY25nVqSMl+PjAXzJuiRZwUKM9/lsRr2lSItYQ2AmBw/VrKoJ3hQlUMCttkM/fJyYLxYMO4Hxn145YeXFc7iXKxPIJDKEA4pf+Uc5XfUZrv0bDEBvVKLpaPNANIrUoIz2npvNNRVCq7QWK5x7+sxLqgSem+fpcw25S+K2mqddoAjZWxmcqjWsH8u5SdKxL0ZLgiE7GRtXMkFQ1Ze1Plg8m0qfyWmE0xcz1Ev3Zdhdp2MS6cgkmVzflo7AJWeLvF7NtpDhoviHqb796olm8gQaevzwSTjtmfESGRYWGCN+3mG/PceHT1EO0+pNwiECMQmZaAMOdevcqNcDIXYm6Z7ltOGn332Ef7k7XfwJ4/fw586/gB/6uY7+LmnH+DZ8/sKYwDF2pKd0DoSAMWLz80wtwHnPIsVwA6EkwENhqVKt33s9Sf/35vs8XMO6CRldZ7OjSiQ1+Sl55JQpnfAJ3+l08BzbVQ6nGE8rhsZRSMIJaBhJWjKTBVNmELoDFPxs3OBmla68uKazqMMZjgo9nsrdyfj323LrHd6vH74680GLIiF14nE9AjU6GmvKMJAQUABCS6We6uNPmtjUFmyfTKrM8xLUJnTwOfblULmGHUwY6MKlfNAhZbGScaUDBAVAoHCoYybQJr6kGRzKiaCeY2hN2ZiOKyfUxSxbyJAjs/FsNBgFEDMiaXHSJAikNeYIqeyinvSiNY6UtnGvca9Kfyy3lZlCJ/Dwwl3xoP6N5WB+sSA61XJcDqAj9U+A+Fl5zrwnCT1nvD4mUpaBXgKFAoAUM6G70rs+/c4J6w2kXfMZL+cm+ig6ft1cxp2lBGxUrho95D3rTFUgnqFRdG+g2L70qDuOrMeap7JwRPk8J0FerzeY0d7p5wqTJXr2iu9pOQlINDa2IzGbOw3s+tZ1HKPNCZA3ZRpEDmPoQ+skmEZIvZmVMxlWFi5pDy4K9BfTE6TLX0gQk2sDNFRFHkPluzrfQHYmJjYr+HAxDDHnEPrKOay5cqpOof9X6bBHiL0td4fMO8XjLtRYJ/rZjVuNa1EvU8xfmmE87kadwcFyCrMDtwZkm/hr12nX9Taa75bTopKj8meG1nWBmgYCuYcH+se/XRnyoiY8lbKLQBCebHmCM8KpcdNC7iprT9lIhmXkC3o89WGAq/9cvx4No57s0NCgISOgkUPabchKMQXw3Y7Mc4jlUQr/+1MC41UNkdzhj0AeUwCPRS2UfdhnF0eXcvQ16m09ASVR1AAgGXATPJiG3Ql/VltVHoHTFZ02yeA9iPuCRaU1OvlZeyAXWNFyBIYXPkfOvcFUDjHLSspDNUS3qFk0Z3B8kq2DMXkUoLmiHhLgieGokj9B80PMSBs/Ee2x6bBvcDa7iwkruGo84mC4o1wCoBifSj5DbTwO8zboIKz9B6ZPCdDZC1c0O7HcEcY03o3guEoRzWxXKo6IWjZoE67XGuCJc45gRwNTmd05rEZHurbXnFx3MuDzvVhv5UuK4cy8JzzCiukt3o25ReM1XL+XICBXufyECGSMERcbK4rlCeFmVU1y+4jBV6HY7kfYGdgPlvhI3Cu4v0Hw3q5znGgXjOSTPAdXKcIt0QzMMCakXcDDue8XybQWjoQygfLwYgdUmil5s9zjS53R3z7xbv4lac/haOtONmGX334SfzGy6/g/j5OTDVH7c0Es3I1Kb+5x20D8DCAM3UTdk7SuACTOq7rhaYjdweGpn7zdCKi34kB6bQpcZysCk/Opk7Q+E1sEcM21KNizggqteCt0pFjy3uIbWRVU4JxhQnpdHlWm3Fv9crQK8eEDemkLy0+P5/M0olec0Ybs9zVWkfeIJ1Ue8Wpfn2XYfsxTJ554wELyQAA5SmgKVePzUElGr+s7wKFglnSh/R0fQGQya3sACqwsla5XGdm4oZQjgcAVT18HpKuUsgom0Yq+IlE8wcH7q0S+rwZvExepbYSHZ/jm4n6bS0jhYyhjgfD9nTKqNpqSn7knMTBhWHwSecbgO3ZjHdNz4pNyzzffZwN21Ov9+rKAsWIKTR0tp1nrTh4D49w6TIEoSRfKlcgcyh8pzCqlNiENmxDq7JJQNSqn7iGpJfn4kCGvZjhr5DQ1qo8UtntmvVxjdMA0kvXM3AFFpdsHEfKPePeMrqLww8G5l4x7Eam8PLOVCxdbBCBMmP2lKXBUtHaN7t8rBbiQo57ubOqxnLbzdfyYPBbqIJCSY2LBwhliMxjzqMBF89TSY80y/8pp54NBkPWoTCFPHmLsA/DMkye98bsxGGbBrc9aI3JALZMwO5siBwD/owMHdfbI0SqsF1zYrabDCVcNP2RG8dy+yY/3hL9d4nNeS97ccBvfP89/Mfjn8A/fv4uhk389v3b+OXv/wS2j051eB7XQY4Vdo0Odzk8bPqWTgvLrT3LmlWBl/POPiMFmEvpzgGFBHv+CQ39pNzPnI/GLnZnU6Eog3SbuyuHTi36u1yOFirHXk8QCNmKStRP50ftA7bS+Z3Ntnv2pnHJgut/0kEj8NpSd3q9J1k5Jeiy75CKDyJZnCzfrtjj8fqhrjcbsFBIiIIJ0kUPA2wwpH9jn/QEOuPdUKaXynvu6eO457yZWF4ObRjSpvJ6c+OMi8EYysjqELfw6pBjHWdUe+68jxK/UiGR/pwHRBluK2fkffpm7SeEwtoZKFTkrWxRcVi6obM2k7ydC2PZAO6ymgapzFK7CywSwNHzoxKmF9tDLZyH/J7Ce7xYVjjCq50LIlE2w2vz6FgYBkjvTh6gl4JCNpsyZIIy340sTvPQpHiOdW4Pq0I8O7MyeZk0b4/9y9Bl0jVzMwTSsvOn5pygLOdzrMC2hJcax9VXPo7OOhoF6MZdGNH1qe+MSW8XXrk51VNk3qBahnMRyDpswNo7pBp2gFjhwybHk40H+XodtOX9p94jnjUzfMEPKccpZajClJRHpDwbYOFMML/F7rPahswOq0R6yIoA/dLmGwlMu/HLJGYxLUZGjPMYHZjjtN8AIjsmi3vRKrzQ834kB09n/cwz/JZ0rhtgZ8P6/hP8yuUn8OtPvoIxHPf3R2wfnXD8ZNndm+urPc4hNEduF1rMUC5zWbRvG1unTt+UKa5Tgove4JAVU6zCEmsneSl576xhAIfYlwDUUyn+v71LgiMcvfo95Vr1PkO1TiZgbJcAh0z8v3aE9PeESunZP4eyzBC3ZItVYh1wZeK6DysnjSwih0V2lvPyJTAssdQ/fgzLm/1GV8Z6R2O3zUDqDSjlKHr3VAyAFCfvkeCExmLn5bd4sX6eaJudJwFunjBybDu9y8DPZ9D5Y+feOtkz/uzAk3krwXNRur0Ec9d+HGVspGCsAILozTQI4bEVzU8vTooH7RkDAhSK0eZYOC/zUGGiXoEBhHKgF8bPaiPzFfNQQ4ZB4GkoZCQ42djl40S4zDU3/eKpuVofTVQpeAI0Y+7KaOuRuSuFGOuZCl15yl5nbVooj6xFZ97IzGk+Ti7Qo3yVltjIzy33e4ZADEkD4QwzsFqOXWtLeZvkSgaOTQT7/E0oXKXkWtB4l3HaMUe0JwQRzfNmzpeM2W6hUCAs5zWSjdHyjwjCC1w0Z1j3Ye8dhdkIgNKIcF/3ECATewGIUYsS9WTCrpgp/v+8CQDN58dcxz/IWKph2snL6Po+fDnOhnFv8A9ucPe9p3jx3WeY37/FuB8CytRjzMEhODPs1+06R4SHfPa+LPr8aLlLjc1TUUDKupJvmy7R+M2rouxaV67t75arxOdQ7/RBUx92fSxnUnJBcGt6BzJFuznIn4X8chNAQqNw/loA0yZULEA9ps7gx3KKdYaVPo/aK5RX6Se8opserz/89WZPJRVc/tH5JYzhevuDZihauKZ6R3hRmYmAfaRuaw3pCBz4fCHrduaJylKp6Lgh1VeFP2/2jomirLZBbUYJe2tqppbh2CtiGQyUMYn7x+ZQV8YcP3/GnIp5SjbGqKz8lbFq3nbJc/uN61bPWh5MZdnsNFuKwwUuoweHZ6+Rmmsqgl6NIkPGVyG4SMPU8wQABFNw6UnAlWjJrrTVGTXBVZZU0zDOBi5sg/pqqNlWC+P0f+NqTQCIBeiVVZRDViKwCkzllQ2RqKLNQq74/mKM1qtSW6Dercun09jku5xNyYAEaj6A8QDJiOSULCRzNXIuohQ8n9uMwTy6xiTQnkBJ68r14Pq2fWwNWKjKaSn5Z0+bzjDxncUYcr7bXqGXSyOlRo0ADncFVMSoObDcN2O5eLFmqHvznQOYJhC2WiPtx7Z3Gc7l+4vJOBuWu4HlxWhAr9a293kS4J1855IvGl1VvnXQxrGNpmukfxJkNdDLZzFXaqcfsj+M8j/aAZbVCDP3DUMlM4D3eDBgZndfq7VgPxTtcVU5lb4kKCiGM8fD0L2VLrvOcSwA1O6byJfA2ilX1EEMpxKMoHSfH3x3SCWBNubnrNWXcP04Jt2+2YAF6YG0A/tIyVM59Xb09Pqk6AkemH/gtRl5L0NusMXhR6g8kpc2KQU6N/1YC1Soz0vzkCtEFZdyMyjI234Tgp4Qn527o+j+Bop00/qzo4Sb4jcpNXuFmuR3phRPxbjVYt1rPkVz07MV7em7qghDKTp91rFrJsf8F42Fya1UXlSyZELapiew6Mmv4TW5DHybwr2RQ/3/9nTKay92CzIwPLeGa8rOpZQbzAxHUUk2uQmj28roOcfswJzrbdnwit/nnDPHQIe9WQ8bQaXtShxvxtDz+ToxurF3IZemMcX/oBi7XG/20yCLGfklbQ7JvC2OsaGqrpgv0KebzEb+rit8hgu0XwmCZo2ne/mVg5Zj5d7B3jB2VgsWrCbXrsqAo3y+GxyGsTgfkmV5y7EvDncJDKzCB8xJ82ObV75/K91laIx5dfy+pnY1gdidTHF9Lee/MYICoAbJidiBBI2s7BFL4vsqPz5DTp0hc79KFyjJlUmynJ8MH7oVG8iqM0tAxJ49AuM5LwyLF1gyldnLYWJohaGpXG/29/FjyaCSjHPPqfVDBxErdHJ0/BC7M6/o/DKxW9e0PD/JJA8dEMmpasz2j9n1jpn9kpn9hS/j4W92Doth58VWTgYk+KzDp/LblU16GbtQ4qnZDg6fUPUAuzXaBmAxbRD1dxHlbxJehQc6aMp+AWxEJUNJL4aGgYLe+njsUHhTHmJ8Fo8D3JIVkMdDBW9eXmnzukmDlrdFI9ZKgMHNH0rNUzH5BbukVuUxJn7i4WuiUGnEaDw7a0PlJy8HlTdhNcZgJSAjKoYMqdBWi3wVN4EksTRXniG8KbKrKjEp/0NUQMnTaqwCgPLY0zg5yyEBnfPjnJ8zir3wyK2YKZ+j0fnmMcdKLmxrVVUy9Tl642MzrMN3lUvsP6HGdIumEzp6gmEfNa/juqWQwVoVVgcyBiZ8b7fFjFQlSIY8FkRaBteWZcONJQkZg8K3bjF2JTYvJc9+dJ1bQ2OvfC4ro0t2jMnHxoo5VqSdSyYlbwmqCLZsDQMYZ/oUOBnnASRbOJeQj9gfBQI47yp9nQZDGbB5gvaYjoDIZ8yTw/K8Gr1zguRxySIAVpNlkqr64/D+LRxSVXBtfS4FbmylDgTcinUWmORFdot7iTrDWmiXuTHUP/z6dfissxIHh18sk3xtzwSzEkkVlyxjj6RsvhcrC4fykyr/DxRl6kLumx0LXe9Edp16vIcYfZYTHHswx2SI5pGquCuHIH6AXedcJek30Pm6LvcfWZXQx+7+iz+KG/9+rjebYaFg0YjxZ+kBAdAR8T2WLWYg/57t82owlaXA4wGKRapsDWX0DQBdLRo5sSOpwIr6zy+kEe8hBCbUyiMgaBlXeR3tHRUqIV3dKNzRn8erG2tg57WIvWhAQVPW6FteCs/MTCrM++/DPTRwvU8GSoE7jRQq5LOFIpo3Xp6loYx5ghxWqnxeDot6y6QSkeedY9I7oYAK2SGOpcZllbCcBnGXbNo6gGosCZDmIVv3N6UsT5TGlgwCmwzSKCczMzPxt96xQPnuFOwEqQopToKPPLF5w85Q1ELu5473ExumnhvNABDQ8b2W8kbFvCXY7wAtqPVW+QUonKQwQX8+gTTDb74PLRTrUbLGKdpVE6HGCVwZCM5JhiKrM2olVgvE5BqSOdtOzfjzHWcH/20OOVedWW1j0xgbQ6zOuAwrLTWvQFQj7RjfZBHVgyX1wliDidO6X5XLj4cKA4qt672ZECXn/H2AgNZvB7nO/T2WZuST6SMb4kffNY7chUdW7Bm4NlcKvcoJYrWQa86Y67blSfS67yxGlOtO+TX2TUndPNY9SLOrdWK+0Ss5jykncdAldqF16eWHUU5PAqQvKyQ0YV/4ny/7erMBSzOMioPbVVy4JzfmZ3dNipxAo5SmXQysUPAjN2h8VuwM7zUgoyTKt90/Yv00bHXwW8WGOaZURocaMwBRud4VdNvg4IZNgyCFSHbEAZhjYdhss0pAo1Jq3V67AeNc0uvbJSAjlPW8qaZK8xRKXEa5UcwMTXAM3TDx2Z4nG9tm6mTJvAIxNw1oiN4V45XvTC+QjBspdP6xeh+9K1BH1aPmQgwAjWwapQ7yIncigYGMBURn9+Z//XkaSyptghgBxxa6EsPR/j/etQyslH/OBZsKMrFTzyWzYQl6mNxIhtHLECu5u8sJQzu9t40+A93D0sh4ltYrdyBlXuxRKvXljBZG5H5ChkLjM1GujVe8c32HcoyaL4bybMYZUGQHOoBUJ9dkNkczRgRtxfj5nq1UGW88jM6HjJFj16CR1UgEeWQ2d3PUQdjsY2l7i+9JXTdKjgkOOqsM5GcIjKV7WpVNjpXvTdmfTDAetW49BHdtvOM9XbpNQBeAuv+mziqwUXumZKP2nSNPVW8hnT4/ZF0EFjpIbKenU6cUi8IP5jY4UXAgECWmaKLp3ZIxzj/fiYnkTFfQ3m75gpS70UOpj9cPdb3ZgMWbQli8vN1+zHmjg5Wv0ihLKsadAgUA39PxbFLFBE0Ktww4GZfMY4B5GhcKfjeesUlGS9gqIwbR4t0Aia3I51WfBK/NlPcXAKISH6U8dlQulUyCnq5U42bx5/NyDnY/nwEw9N6cZ2XHm5gm9Pni4w/hLSrO3pXV0XfjVAdLgpmDV/+c7qm1zHxYKSWeZwNPL4wghGuzdQ+5jPiuWkCyw94fISsLz3hqpcXdOx+X+vkuJEd2hpU3vOesxOau1JS/c6Q15tzk/KchnZT/XEsq+Zlz1o0yvWqCod0p5A3IGrhnUAY1PydlTrlpc6t1p/fePr87NJHgC20/cg+jnrkwyXWWzCtcsDQwsqIciIbZYs6s9rGeR+OXSeqHWuveB0nsCwgerN6b4Hkk4KNBbsZuMiGzlRQLTDTZUEl1q2jpybbdcEbycQuHWc1pOB+Qc6EpGB0A19z3/DKW9mqv5Dyp4lLHSqAAI0FEvqcANaCustLZQOXHMScLDRjwamB5nKG1sxx3l0Vv60BHUPtc+yuXbOfEuNY+xoUds9377ihExfkg8CR7hPZdyj/H0NjuH01k5ne/HMCG8YX/+bKvL38Ev9tlTfCo8I5OwqWYgf55Clj3WlrlAD0yHVvOj6V2Ej3fFCtQPyMzw5hreT++N/zNq1ADpKbQdjkVLYSi2HB7Z/B9mzIiKCI1K5DVvAJ5BB2AEegw7ntVBt69Op0fBNQBhCyB3pL+p0LihkXNUZ87jkcdZundXNg3xOQR7b5H4533FRVO4Dba80ZVv0SHYRToy2fqDKXRQjX0hBuA0Nzk2mqOkExdX+dUnAJL1ub3KlRFj1Mhk0a/7xrpGVTFxHv05FQC5ghhoProbFm1lYxiD1+OSx3myUM7SaWTLdH6m5dxJdsh0AAByg4Q+X42oyXArlqJRmNDvXwHcrZf+/XWa881GSJ4JPBU6JAhq6NrnkZ/FzE6rtAunKyPg+fVMMSm/i/gu1blSD+BV0mwuadUmUbwmmFLJcJmaEXMRua5yVNP+RRwTzayA3Y5Bm1erpnXHcPIj2YlExkFJq2qU3FjV1gyzBysCG2iHJEEeLYalod6BgGejvVo8yRnip9t7SjkwOVybbcFBAkY4iVC/4SMR/5RD7MJBLXwofZvx++9n1Gb1x1+2iqUhmSpKo8K6vIrBqatCQCwUOMNiKT82FxvNmABKnRDg908FiJvzOqN4kcPYc/4v8I4TShZoUAK0zaoE+ZgrBqFplXFYdDpoZ0K1Wf5PAo3m2w1ilOhn/Zz9XVJoAKLqgYag3lbCrdT+yOPUe+hENALyPdhua88Az3La2NZxnU5RgKBnE+b/LyV0k6gsvPi2/0ILqiQdwwQvSbS7WhGYPDz0DyqFXnz/HdJcQdXe3/KiHo8GJU+jZRprJWHkT/K+5ZsQQa4FCfkuYmS7oqVCvMqMK58APMYC++lHB5IZkeyBiqZTYSufBwaP67TKEOnM3ZYneFt3tBk8VCKnM0MaXTJWIbRyu8JiLmMgdgTGjP+vLGiPO6AhlsGrIGgV84UarakQA6UaM6qNHCa3QJ45FwRjPDASQHVXsl3aGWpXPsEVtzLMrpefzNfzZyy7ZU3ke8sMExDa658FdMY2/2YuDvtFSATc1+tBMRg8ZFXzDCrejQ/ZNCuL847AXTL/+nl8HI0CCBphFH3JZs31iZHtCyNIeM9MbKrdA/dcyq3WovuBOl8Iuri/P3S91IDLHvmp3TDOJuAhnoN9QrS1Kc6ewj1HrszqroTypA1nYNZczpPNbev94qk2y/6z5d9vdlVQkAdukVjjtzsUpohbNvTuW/o1hSjD8T5ElSQ+bfKYrPahxt+F19uHryoWCoDGusW9rHVMIgJMht+nJtRA2SY+F5MuhO7gqROn61xJsdqwMNSx8Rnqe1k634gFBkVpaHOHtHLxDgdrnJwbW6ruLuAwEbmo23c4VGBkZ9zKm0+inkqTQmxd0jE/fNhNCbdS0wDoe97KXLPKqQ9/QIpBbZuj/yknAvL9yNjksa251f4NIEDUvLzBEw4lksBUJBNGjX3cKgs2RoTJyOcRtI7QOL7EBSyHF5l3vG9eaTyY1Jvi4MzhJVgVYzdbL1pGqChkTeLigueowMUeFFuGA1VAhhbDca1Yw7W1ZrJg2wgzUesiVGmALFX4a3m/DERmUnOfB8+Imn5z21tTvCUlmg7mdaVAGI8xJxsI0HVqRnxrABU3hbfI8Mz/aRjY/k6ICaArNMceu06Eyv/f2zxe7jJaTIgj1hoeT8NgNTLo3JomvyyMV8Ph/TvSBbWtvW9jLMT1CBAwDx6HA30YNoDfM48NHCqzs/Q/n6l4V86gLMxa+Ncc9f796jCqoPmBNaSGa9nzZ2s831MsiHng/PllVu33fie0aajNGPwShloTO0EQYvpWd0GUWZ6hR4ZJPVK8rRVX0aVEIDHTrev+6JBTM8FCKNWXnvzZEgvoza6kgjVM8V2oIafZdyYytuxV8Q9KZZ5D7yPvIwsdyVT0Ds6gn/lZmd7cjVGYqlnxua3ZxP2zhnP373DO++9wPH5GX4TDxJlmzFVJgHPPK1UnXapNMRM0CtqICsNfs/56fkMPbzUQY5CFAdgPp3wk+ucEtLf9IJ6GAHeyhnTUDOUUTk5EcoZjXmgN6N22XmODsdLIDJWVAOv3ngNJTM9/6V7vm5XHvmxDLoqcTj3FoqIXuIO1GkeG+BhfgQNOkUwZUFymAZPIBRQLkU0PKNBhpJlrSlQshks42bYTsmOGevn85XQaKWoxwVKYJRnv3AsZUSUuCkjWesluSfAz9Alw4nMF5H880rb5Uvbg6PdtxlK9jQS+OA7EGx7zJEYlDQsDNXE+UPtHYBduIKnbDMnqH9mkFHymkOG9njmUQ9DTHZkTvZge5JHIrT8O1q4nkhLfdDfC74PZ1NPie2lzvKSSTKFYigIHPn+aliZ302wsmMGRDvv9/guxN2ezf+fDA0S1HAs2cDPkg0VA5WgmPqoN7aUbDSxkf5d9vMBQPpIYEbrWbquJzlznRiS44nzZEYxs1N0gqfRmGse0yHA2o7neAOIiR+b642fSilCJcvxF7VhuscIT+/msjcau0xtbiwq0KsNwNhshRzQmhKFAUIbh07Mbfev/iU5NkR5cI9/7865USgBwOJ48uyMrz57ia89f4F3nt9jeboGMGiVJTQEHHf3LsX45MZX98VW8SBvYle1ZDXvzeD0uZ8HwJ9M4N0zDm+fgbcu8CdbsFiozwBNifTEVSp6QDk4BIUj5717nJafi2PsuW6tbX8DWDq5mV4xQ2VWz2QTK/a24PsqLt3YALs0ZsDrPqx4IjOiRlI5Vs3najuFRWNK72+ftBcLVh1sW6iToUSyEW1dKQ+Uz8mxXXnuPYwmoM41a2BBhx8CCbZcVRmi6ScE3jX+llAqsOGokBqf462yDpD3TpDFnAo11Ws9WfQslHGjgbv2oukU9z48vUJv59R0PePJtC3YGXIB6KXGEhVGlQi9S0RHgGg2vxS7lyFWhbiOVSIMt12oYZcXYZ5Jq96S020XYmLIpp9GHiGLWA+d3TNSH42S512eTDtDhwn1ZBYF+sgaJYi2VrAQc1Nj0L9p/FNPM/TZD5OtdW5Jr1Zj746I2O/EKTXPrpQBseMoncnPy3maMfd8t2iFUWCwX2JYUfIgZ4SfZeXjBnxZVUKb2xf+58u+3mzAYqjSza6susLq7AGVll/dhsaE8WZvyoo/zpAD81+4SZRHAEA5HF0xjzDCg70xEmnPg8szC0MMdcdVvkijzEVx07iaYxkTi00sOkmx3l15DUxmawpF4Qf+jHNDb7CtulgjlCLYKY5UvmRA1KH0ZsOT5w94+62XeP7OHcbNto9tX23groAF2qz15kiFrX4d1sbesvK5hgSEesdZcqKDJdOYdM9NXS8TkA2eJN3kiowIz31SnD+7e2qep16zDMHSxurW5rDNOfNBGiujz2d4aOShhcyZEvhubJS8w1aNcc008HkEccp3yfkVc+j8HGWzWgD0Ds61Dhniy2o4ApCeh0Q55Zqyo3Rn7BRe5FhybZYHq7VkqbPXOsLj9GoMBDVPMEHW1aDjIup3+U6t27JdyljJARqUOcqtlTHjuqfslMykDJMZIfPWQA6fzRwjGdd0IDCgnLGuC7iGoT9Qjf8oN1bzbkD1hKptmM8u9q6fOVZguOSAemRmo7cORK4Z2Ph/D1aSP6euarI9j6VHKT9iQCwBlNX3Sn4rL5BfJwviWV6un+dcR1dtCCyrinOWruZe0lxz39vejgh40Rk0bwy215zZfr45qDfAzv/YXG9+Dssob6E62loha1KRLa4r+h6AQiedLiWFn5tlLlBHVCCEfbst7w98BJNpl9iNno28tI+zOkV9HUYCIusbB7s+CvHAHMtq8BsHNsP93QmfHG9h5nj5cMJ2f9gldcUmc4x1lNdtCVRIbZoDZkpYw9VR7Z3lQI6RhgOH+O6uwdKMmfDFMRbHYZk4HTa4G5bDxOT9MlfFtnxP9ioxKFcg8ksiT4Zrod4qA5F7kjSsnr+hJJbKI8dFxoVhHdHmqahnA4eMLw/25UijPx5GfLetqUJH10BuQPR/T0L1NKBB9zt8MZ0KSzBrF8N8kmXxzKtoIE/PbTIvb1NzET+feeJy/7n2BBNNyeYcs7vqMHmQ4wKMc4Yp+tERKa9iShJYRu5PrhVZGnq4jmS2Juwy4KdZoHwgyrLJrvQKpuZds6fIbJVzkqnmKAR4rjkS0zprbmhAyEyNsynZlnqBBxQqN6m/64I6toInCFuBGLIdOzbnUrKN/NmkfGtNAcuwXjE/TcYB9SmKkKkrNBVOilcuCsfU9Qn1AMMgCSAoazTs0TwyBzVRuXxAHgDJRY01GxvgG8S4XgOSAipehpqiuTiU3JfrTEAx2WiOzgM/c3BMPofsjxwQ24ObBJGXW7yi7/vRLiIE6Wx0EJy5P6MhDNoYZ0gtq9zcIEZZPaNatRznft74lwJYHPZGlCF/0debDVh8j+JhXsmipwQTssDQ5pDATu2donWvLyvhdTAkgAJBS93T2v1qfNH+vBLhDPNmhqI/OsaTFfNhgX92kCFhcqr6GgAVP09luH56xAfzGWw4tocFdsfAPsqTBVo+QPxOiYBMCE7PZTTQQI+y952AY0fX+tIA2KUZlFTsvhrOlwOGOc7rgvWywJIftjk0LtHHV6BIJbdGcJPeY08ITSPrSxkqtLnvXhCrlbYns6oS0EAGlZW35EGufybXydvPJN/Jbqo5frXyX8Jok9ImY8DjIcTwXIEtlYAfkZakdQ+1/r34N3vxIJ8lGdyoHA12gRIkZThzbvw2jULvY5IyNjZgPeUzsspjHqutuCOMKhzAiubZ7zcRw309BMlmWdNrvQkmAXrttTZIEN9DAeB6cAwZHuvAVIcidsOYANVzbDsjSDub4zXEft9usgFYjm+cTTlMAHZhFAJhMRizyYBDzI2SQtldNzv7xv1yHOxPYxC453PmMUmbDJlE1UusNxCdaTmf+1AcCrByHq8MJoHbWA1bMolqgghU6CrlG+29aj1LB2lvNhZRbIMqoKAws/PIA7axR+iD5WxxBAaYQF4gU5VZsAA/+Qx4gEmsdbyEKq4SKFK2epL5RqBqXJdiwwWmuV14ptihDnkVy4uSUYUFV8OwZD3XV+f/dV3zxzB55s0GLPR4UEY2qMQyAOOS3lR6RYqpKiYdf48V2PoZKnmJikZ8Zi6pqFu8uSeQ7piR3MAaE5XnAHA7cfvWA25PF9zfHHHvgH0S073b6KN9B+UNTF/gl1EAg1UgKDBWL5EKZXhVc2QHW/2uhc1ogB3NiPEveqcTdcT6qFAIN/18ccD9NJwPB/g24PdLUeQzwmTr02obHwqPyYdhYQjcBhmQXJtdo7hm9HfeF+cwDTHDb70jpznkFUseLCqIZOj6vRTPj+oejoEdLQ1QqaQ9MHcgE/Hgyj0o65Hf3yVtRihjPs8F1LiSIj+UJzoZG3dkpYOJvQtgWIZqF3Iis9RK2D1PkYWlgs91nyePChF6mCnr3sHFLEPYcyP63DtLZPl8JblmA79cLLFQfZpU+lxrumtcx3Vr668E5Yk4GwxlGPtVIckC6AGeA7TsqhDJDih8UHNLVg50UNaU50MZQ8yqBgKQvYty7MrxSPbhEMyWKuvaWBn+oFH3pxuW2w1zNcyHBXYemF3OJ0FO6kOGNa7L8TMMxxLlacUY135KcJbszbhYhSVnrP+4xLv2XivME9puWl7Mkp8dUHWhxrwZRlaIqdfTguyM3VhDYrKjy0GotXUs9wm6Fuz22Li0uXWAZwwxNBksaTpnTLwfrrUQO4kWbnvoAL21UWjPRcqEZAptXI/XD3292YAFKXTHKMnEMTwmIVl6dWrwE+yGneOgOJ71Mh7ygDaGXNzKQxA1ngriBoHyk45kH5B08sJpOZMGb17gcEzGgk8Th9sVbz29x9PjBWNMXM4HzPul6OumDKkj+3uNFWkEIIMWnze4e3kGCXakoBAMCyljzp+oZzIy6YUxvBU3L0UJFB0OR84bqt/JNODFIQDBjPLXCKdgD+AAJTcD2HlxYisyKdCnwUYlqW3MyD9blQbSmLDyZsa4YdglSV6HvMxbLkR6Xj0Bmp+LOUrlnAfRwSvMGPNWxr7n5uyUF+/jZVAsDd52k88fNcZuaB0QKIlx1f1ocAPU5QQvVUbJ9xsPwHqKtZ3HOhyvjGIzKBSB4ZhHq7CK5WisPmeH8ngpT7tcC8lpGtE2dv5hebyAlQxhgABczaOcFYJ7JX4BzsTcmfuFjEQLF5MdkxHKfQYLUOc3VQ3FhN9rNtazWaByniblgQ6Lw08BbEfqDyDkfWyZn9H2oeYu2QTqjrECPPBvfe7AOxe89+4LvPf0DpdtwUd3t/j0w6fwy7HWLeeoWJA2ZiYs09gnMOP8zFONKZJiTS0H5KhRDC4W5fHpxKiajeA/WT8dx7HWHhc7zCMhepPNBB49n2besOQ9n90cDOUGpRwrL0iOR7AhlufEWdMRXJOZrFowuPH75TzqqIouZ2SdCVy8jZ25MAdEqO7gYpXowO3e9TVdDvxYhoT+SLzR7uC59LjUYOlUB9AxNg0CidaMbPDQrTQaVLLM75gL1HQJIFApj9EyntyblzGJsFdjjAtCYAFs03CZA3O2aZ74/H4x5YTm50zjoFEEmiF2hGdJoHNgZ8p4Nxqo+FIqglbyR49w1/iNQ2isS1VDFBAYWYI77i16XbC6g1UC7TWkJ8zrpGOjIa9Qk9gINaorALDzrLda166cA0whc4fqwWIlcu6VQzGgE3HB0mOre243HkBAQCOfkWs3D8VgSVFeySaMdH6b3C7Ltq8uY5lknb9kYryMjBdzMzZUQjq9arI/GyLsBH4OZeANewYhDYywSWMm5YUi2YJjzasfqprJsspNTRpPXko6wS3LPMmk0IiMnqzLkGsDG/SO+0GiTJCtiUPLBWIOTzomKwGRF0tpSCeoQEXJWqveaUxVp/8dMRfzyPV2zTMrfsQ2LdnA7FBlzV0W2QSvTmdugOPkePbWPf7YOx/hT77zPfzp934bP/32J7h9flZIp+8HMrY8xVyXQ1WOu4Z73IdMTucazNrvMT/IUB8qjJz6VPkfuTaqXpLOSdlIgKg9yD1FxrbpBu5btmzYOWy9yo7l2Pk8viPXah5yrQ7Qvif7zLWkw8j2CmTuLMONakCZsuzGPVPhYl3WxkS92sbzeP3w1xsPWFQe20tvu/IdiBbmQAhPJqOq4RbbszOfwmvTeRNAIO6j03stvQjG79lnoXXJ5SBkfBlHdWC7O+CTT5/iw8+e4rMXt9g+PdYZSFK+tq9kqFs2sNXyVQhOcmNwM7Db6M6gHl0JrqN1mqwQWWgrlUbvXBgoL0CbOin/Pvf8mRTngqqqojfMZWMOAt8FKEajlR4ud0a8uXsvsifygPKvmfkg10qBiod09jg3gOSxtjpzJ8GdwhLOTrlQIqllDsLWT8XlHC2s7GiKOY0WmbsK/bmUdgywlN72ZO4ZigQApKCZ4Fqt1F0x92rKZVpnGgWNCWFo1LKeU7nof+PfnQ2hWDTx0Bi3+rwMyEScKt5DeWkMVf0y2zOsfY/38gRIHDfDX+33Kn9GPI8VN9cGTgntjMAxZENQQWCZYWXl+1BOFpeB494ycK7bfB1Ycl/P4zhtAsv9aEyZl+bNzyrcSsCY+/J0WPH26Q5fOb7Au8c7vH26x+m4Sj8pf4I5aqxwBBT2E1DhuOT8FbiTn8dmiC1pl+XrfghHSA3ycn6Wc80DZgu5oN6xX2LG1csI2jPjTNnwOhqE+TXmCkuyHF1NGLtMtrVRU8+mR68dxtLvKP3EteI9t0oux/BgzBiCtFx3PpIypL5DeO2X44svaX4sa/59XMrDuFg1nrIydr1PgifVTEXU49/wouaum77RYPOIdnnEbmACnE4U5majcQPKY3UU2/DpAetHJ9x9+ATbhzdYXoxKGEYpULWCn7X5lM9yqXsDzavhZvRSRmSS+iYaD6aNuzyk8Uzj20NIvJ/mC/m32IuqSrIJeVwzq1dUcpgKWp7XgjocjlRLKxnnWvTkw85QqCmW1SClcJsBRg1zr6hyjnSAota7DNwupyI/rwnplTJOpotGDk3pW+tj0ZRYSwpW6IS5FEhZca5FGDXJFYE0139EHxqdn8IyWXrqVN6s6mnjF6vWyovpjffzrwQyR8XhVYY/a0yshNl5s0x45Bo24CUmYXdOV82RErK7XO9CJxCLsSuNzzCNwkUDFRahJ74SNJjkV3/L4FsxMw0QGiDg2t8NucwhO17gB/luHSRlTgMZIHnh6j1TZa9kJbh2djGc1wM+OT/BR5en+HS9xcv1hIfzQWvDddl13/aWaJxgRHLnpvlVH5UEKLG3W3VQY7p6PpdOTG46mfLMc6m6w8NQV79HOG4QCNFxCsyRSXmF5XlPnPvmxMkGpE6OPlcNeHBv9V4uDShKvpaSqV2+SdPFWFrjSLQ5A/Z6swP8zMnpsvx4/XDXm5/DQochPYr8adG407A9oeC2zb+WAmajsPhMKsb0Ai1j/go3Hcrm0ZgpKXQrBc3NrWTAjJGbx/97ImxchnpKOKDDxMIgxJNETTc6FcgcijN2G02focfYzgyRh01PpCmPnWE6ALY5kBUiiuW3rpmiTwdgPfaP2ps0CmSeKpRgyl0Y5yzpzaRbm5m8SuOy1Lsw50FKY8vvplFRvJo5FI2hkfJPT7kbTMnKZpjHid7GnnkgThZDFBLi/ucQDj86xl2ClTZeNVY7264JnQ8APH5gVLgnQogmg0BDrGeiAVeGtTgfKatjzfljiDLB0LgAExGOHGs+n+DvWlHne1R4Koe0Ar6xo2d+f2tgJr/L97LpAi/y4jnf5oDlvthqzsOT7nMAMQw06Ezk3A61rj0x1C2dkmYoOFHMTeAeYNI4P0yw3VvpM49E3jYNLUNT7VIn4A40cgwd1AAQU8FCeSaHSsdsCPlGW6O8qa2Gl5/d4DcP7+DFesI6Bz548RTnu6P2weyMn9d3ycbGhAA8q+O6Ck19iRKM2kQlz18gJgMWcqB8OebEsF1Dys6Wa8nWUcqHOwBGMOJWrR1mJsxfy2buZ8zmMM72TDoM+YdyoH2TIFY6LEoEkzHL+1FHXawSw3s4Ogs6BMBy/9mF8lgM8C6Ul06DZVI1eFr2a75+HFvzv/GAZVd946icCwqJl0cLlHJndnhRibYzBAxdLPexKXaUKsGRVQLqyKQw5VgoAJzPoZHiXmkNyWrToLyuRtPvyrMN2igAdvkxTJCNe3sLcRRwClYmjQZLEglaFgAtYUyNtDR+ugaon6fiMOaHAKJ++R7qi0Pll96jqgi60R1RNsxkYK7pesx0CYshjgvgJwIOqILI2W4baEm3aa+0jqVkwljEPRgnr5yPWr/whGsto0V9yk4qL/ZSoRcYALmUNkMXvR+Dkk8PCOAHYFnjfBsf7FeSPVnovW4GZE5VAL5Z4DCZKwAt6bfYIs0zgbp69KS83xnm8xzeqHmj3LJCS6XhzJlBgOd5DMPOcnclcBMwkuHJtWTLdAzPkGvJstgFL6aMa7bcAevTlK9cTCXPejkN11fMTU+izblmJUiuv5gtR4VWUGMYsxl87ktujxFVcCrxHzm/BFFnqAx511rftb2iGKCVOpP16SEJWw3biyM+WN/CR8dn8Gnw+6gS4jlJM0EfmoMBS+DZwpN0GMbFlGgr3ZJzouZ3DG/190+57Mm2dDb4/kwWpq7l3u6J2X5IPXEkyPddeCwE28Ty+ZIgilWKqb/ZzE/MCfcaS7Qzp4gHVDpMwMWtHIjtxmMOAbFJvake2cFenrxLtkfqLc5xyzGbNzn+Urmv7XLHG3FY4Rd9vfFvFCwKxG7YVqGRHUhJwRXaZ7+EQU1cn1HJ5Vqfp8Jm4hWA9IbrOxX6uOpJkF4U8wz4XeZ20Auoqoik2XNjjK3+n8r9OgauZMOkbMUerfx9gSsfqMQyZfnnrnZTvPV6HNfsTS+fntmF0gDoZFJvSqTFzumNkG5n8yuFbzJ8pbHy3wR2+exrVsBS+TGO3BOC5WGzoyvqOzrPBAATOBkeVEm8V1tuTVfdJp9nSrYVMMqwThj6TPJsjInycNq/ZwNLBKY6nVdeZgANyZdkEHuvty2v5B/753WDoIaIqD1FFlHNDq/odoGurA7Re+XeVEkpwRaN4GY6/ZwAQuudhmdcaNQg+emAnsCRe0GyMLvsuOZGesAAtag3OiH1vgzDKZwzK0fBNkS/EwIi7i2Gg2eF1V7JnbrkO5OJbaGmXoHH3wGvyrq3/b+8GLDPDpifHIFPjrB7eg31vJ5TNVbuk7188HmaZ4bBOAfcf1y3fuaaNdClkJNLZwp48fleczd16jzlpt0HFXLr/hrZJTAZWEAF0q8aw0gnMt9vPIzMo8l5VfJ3JQhfywD7BgGUqZJ9FWg0x5EDDUBSMqfeUul8wFO3f0mt+X8crzcbsBBEN3Ayj46Np7c2ZSOqPgVHMWNAQqdEvd5wKmeAqHkh0Mn7sp7fmNuSORsRR03BpqE+0EPO5xJIzKtYJhF5B0o8xLFVq/Dm3Fw8WTjCAuUFzJuqDhLY4K+3NEJqWtaqVpoCZkybeTsq/UTb5PQWJ9TlVQmgXb+lkaJR4jgr5wMFTtIIKds/Q2c0OD3GX/0prEBJM2DxTgUSyRB176znXuhPetzqBLqgKmK8PY9MXgKsfeIodoZDuRtLe26uLw3a9WGSNIBKJKbC5BqlMRBYQOWOKHyT99lumrIGdgmAEVIrY6+OsRe2LY/n65gEvruARq2nnIUONlQe7mBiuBJWfQ8UoldJ5TxR7pyhoAQ6WmMvACTmjh71Q8pS7u+eb7SrHroeB4EuUL1wcp0FLvkdAjI6P5T7vl6UAc4BUGAgQ6Jov+sVORUKKR3FowSWFwPLy6H3dO4ROkkJSBX2yTXls4JhbDqLeov7PEOIYp1U7ZbvOrivC+zvmNOWO2JtL9QGRl0EsZx3MnH5/nLYGLazxtii9rEDyn/h/qLecTQZICvXxiAZ6ExdA2c7EE35n3lsBGW6sewCSKlsQj/un/n6LsP8Efz5sq83G7C0zUEDNpqyLj6uFJg+S2PZNiVLfxk7ByCFKi8yQz48y4VKVH0otr2BXhrNTcWiw/AO1ROCJZAAx4F96Wd6YUAqeG5CxogndhUyOwBDb+ZQm16Kuit30tzcXEuNR0mc9H4SAEpxTEBt3sXk0LN1JUGycZUajFm9kxQe7UGGtqSUG43dy9bZlCoOLEyPjUmhV7S9Ehytj9ELZLTy1urLwsRh7AEEmYaOfVn1g/qsEgob5Qygqkvo8XKY67WicwE8eddMdmTuh+X6XoUvKAN2MRkwhlgki8meWJbOjospl0oe4UmiVePsRl7ykwabocgmE73fDtejJ8ny/QQ0eKWMfl6+SNzHdyCBe3Z5MIE4ynMHPj28wXlXI7eUraru6XrFdNKvwouj/u3HmE+eXq31apVMAio0XpSzQUPK9Ub7DnbG/hrEaJ8y1My96nUfndE0y9Dz/j0EpQZsKWO9/JZHAOhzs+aZ72SpmwqQFZAT4Mzx93YHTPztDJT0fNNbM/d6MKC5XgvnxzQO3penjJPxYEKs5lZl+KH/JZdND3I++B2Nj/OUe0pVpsneE+SRsSebA8S+mm984sUfneuNn0pVsqRC4GZX4mSj/4Wyp8FvZiqKipOrwVmWxVGk1eGQsVHkBn8IenceoCoTKZX8DJsoFaWR+ygT/Xrp4W4cM1pRb7exebYbVJ+D4ZEESgNExUZFn5uC+5UKlb0uWL69PXEo0x/1DvLYM28lEtBa8iTbpDeGhfdxA7CUsvQlDKExr+LoUZos6pnPqTWi5woUJTxP1FY0wvqn8pjmwbE9m8BhQqW+UtBUUi6DKm8HzchPTqLtPasGbMcl+svgSQIbVlNkWG0emONgemfG8aPZXI6HYRYaB4ajbsqIkkmoxOMKIXjOPcOUyxlYF+YuhHyqU+soUKl7t1dV4mleNOy+OMY0+ISSPwGk3LvAgE1gPADbLeRp6vydlC0lEFslnStXSM+1kifPnIqk98luBBNaIMq0ZpBBg0ejRiViwjQeNRUEKfr4LhM9oyU8Q5W5+M0YM4xsE5Go3RwLsR6o8QGco/aeKZPOvZSLwZBnlzmd28SE8Ylo0Gam/U420jZUY8i2R8Rqzv1aKBSTe3A4VO5MYDDWfKnUazPfJfQG883a9GTIRQ0GydQtqG60AiSQLNT6lUNBJosN9mrsuT9nA5IggEI5V8lc6YRyJtPuCjCsGPKc73BMXXqC+VHjYgDl/lDyLTB69DiqgkxvNz89hK3v1dy9zsvx45nD8sYDFiYhzmxl7dntliyBweXl6dA8sO+By/vElcEyGqzc+ETP8dDYGPOEaMEuZiCFVnx4i1VeCGACNcX5N57vgGIq6E0Y6gyT9ERDW5iU8K7R1IAOJiOY8n6YmSMUNkwbvrMhzJJnYuS42J7uJlCzAkA0uDIELQbPMJY8v7Zx44Zkp3LtVhpJV8gHiCkas4BBvF88p4fQ5tGxPZlY3j7jyZMz5owDIucnR4zLKBpbxqTAp0JOK6IK7ABMr5+TuXGCH9RYVLJuvgOmfJceuwfiXXsfiqjmQMvxQDJ2tjv3SD08QBCMXS5C9Kppa7RZNj+Lz82D1zknOZ55cnjukyUrnBj+OdwZHp4Ep26XVKq0I81j70nvYh3IYlzy8wzJck3TqHmCU8rcNTOl9+veLMOTVhiC4U6FQU4T437sGAiulQ2yTZTrGJAlkO9y4UDqgCa86ekr78DaH6+PXF9kHFQyngm/vpr0EME6QaRa5xsqlMTPUC7SoHubW87vOCcuyJ/NJYeaupA5aLG3avwCkAyRX72PjjvJ+bP8rKanh0q4h7zC1NR1sxUdBOjL921OxL7VPiok2MNl6SSgVYrZlsCzNwMctca9Mm1Nxw0zfje8yWK+imSihb2DxU6nMxOAlXA8as0qNxG7vcN98WWVNT92uv0yLredcLD5GJG1ELinsF/HYHnRg21Z3KJV6Z3nfdSzpFUxaNOlZ2ntucWApLLb+sYM48GsfcaxyzP1AglLKXN5TlRoBDu+/z2fx4Py5KUtVSnBhm49/szy4X6oXo8HdKZJ/6YypRI0fq9izkH3Zm5LM1AKiwHQQWvTUJo4QJiMmOfaZlhjHh32fMVPfOUT/Nx7H+Lnv/oBvvreZ7CnWwGmHAf7rOzEiMnTnNetjT0TFVllQKMskJHGqDdD0/oynp9zrfCQJhLKCwnmynZAVDF6QKXEpJsLwOWapfepxm8Etj2MZdk9NhkxsTcdUCxVJRehsfx59jWpnJF6X3URnXoM6KGrauJich46EKH8MGTJvUvAVb1MUKFH13DjOTcT8+kGf7pBCddkV3K9ACgfqQMChXQou1utl/Fdcr52uTbN+FwbHSVbcs/k3z1ZVfPY7gnU2nMtvDFVHfTtdElnmJRzkvvqUD+bNxkSndQ9LAzgmnaZaDJmUA7XbECY+neeUjYyvCLnS/qpEngZ3u0haL5gjNVzbDWHu0KC1As6p03HYpQ+gEGdnnvIG4BYV60xdb9On45n9LL2CJmZQIaSxfu6OCqE7W1du6PbmDDlwzxeX9j1ZjMsqU2qSoJgw+T5Uaj84Bj3cUqwKFwKFb2ADlbQ/w6K8PDCgEOEUuYhTkRlrFqVEBbGkFUzNEZKmuXQCWwoxBPyTJ29K1hpMtuezj86+wQoJmg4zIpSV1lqS5CtU4MNfpoyyKK6rRkeh3qayPPknPWN1pX3hh0QFPtExZFMgEJOWf66A2LUvT1UZKUMMdkcLRVnjud4s+Kdm3t8/fYzbG54cTnhg9OGeaqTsKWcR1M4VDQMQzFROH9us54vBikZh+6V0vPkezF+7QlguX67NUfdY9yPBqziPf1YgENszAaY1Rr0xORhVMQZ1niIGAMZGuYQ0aADEUIgSzPOFuWx/Mwr1FjJYfW3aetLA9VzRVByKxlzYLJiq5WvbyNLPbPvz3BE36JTC5NliEcJtwcHbiaW27Ai87xgnkcwPJvBb9o4UQaMiZKs3pCTwz3Q2EJe81A/UMjsYmJ5rr1pfl+5KEq6hHIuYg2hPWgpEzLOE0HyGLDdzjpywYG5FFOpd/MGupSHU8YY54GBPDFdDUogPRNyWT+nHmAzxQHTOym842HEnXqDYIyvRYaY7EQymUpWzXUfW5PHQYDnyofpp3s7QWxzlsRqLM1pJFCZgN+UTjJwDUygWGHcU7Hb8eWQueUMTK8+UtVcsNa675ieY8bbKB2nh/Vf8+WIUOuP2/VmAxZ5sTTgiM3TFI5itFuV2o1UhhRceQZd8EjBp+IYaSxkQIdnKGOfSBhKPJE40bY1lA0qrRj7PDmWzIMRC5HvxtDNdVLWLvSQpX0EFFXrTy/FxCb5yGPnjYa/Npht0EnOMoAcJvtbUPGq+olzbTtj5QAwk8UYNYcAMrki//fkWO6GlhLArmScIbBrL4bnO5kj2q5vEcLxabhbj3ixRvLANkc2fGsKNIEeQ4FhB2LQ240HrUwG5hAPVP+VlkuipmpWIZ55dDXMUpgjQwpKbKVSNN/Np+RjRKhR3n6/X/e0myz44g2YuDqM0vP0NEaDa5xhp3mb+SBXZZXdsJtHiNXJfpC9zL95Bo8ADoFJvx/BwtJIs7Z3u+dJVmScuxfsSlrccp8oP8Ti/ZfbDTe3Z4zheBgHXB4GbFti3pMdmwv2jkMaz9oEKJk7ePX9WWp9mNgvb39rBhTYtyrgeybQ7YzvPMQp2KxoVK4Mam5HS0g2smX5bLPQT3ZCgcWJPGCw9IgfJ45vn/GVd17gnZt7rD7wg8+e4ZMPnwJ3SzV0RK0v5TgYFsSZYK23ivTPcIXZFUJOfcAjT+hIoSUtk2lUUj1iXpYz38PKUWu6Tme35Rz5weHJEjL8LCaOjfOWyk/pOT18315qX+wqlVhb+wQ126n2tVIFcu1rvT1PgbdXQ2QAdowhnY/H6wu53mzAArQ2zagYPwVvrVjr514GNftSB0N6CM2Q24I9cs7PqMSTz8z8F3VjTcPEKgMluE7IYwCgrprjHI2KaJxUOZCeSRxuVzQuE9voYTHPQizTacJtX4HSWRoAFVu/dSledsddHqzGTsWdfUL6RvRucFH3lRIxjpGDyLXjqdbbfjzbbeYVNQUOjyZ+203aAipZGo7VcPnshB/cPsN5WzDd8MnLW8yHBUMULCpEktSxmj4tAKt45CG2KjCweiTBy/Jg2G4TVKDWswysRWdUeqj0djeL/IKLYTu5TrG2jNnzkDt21uQ8d8MCoNiAfDatq4+GBRLMUtmKWWgesEJcZDs831Uhngp7kv2Dpye8tHnlu1ozzsDOSO3GZPU7vSfXhmEKoVgUm+J9jWhlwkKPXnnDUErz3ne5H2g5R0m1aXyIfcXwBMHDeuMK6SwPuVcTfCgMzeRlC/lenxPJAEruPVjbi20uklFjWGG7cZ2Dtk9MjufMkyUAynsA8NQ3M52r8WzFP/mT38effe838cdu3sfDPOJXXv4k/tbpm/jud96FvViSxaOMuIxu7K/MjSITkgNX5RrX7ZwgJbs0e+55MBSY6wjul8wxIePpLaleILslrTNHZuRnl7Nlg8n8TnOoyJZX3gl2AIEtBxhWvs6B0iASXbOK0Lc8DBV5AOmEHF+xrQYgHZt59ApBovZcb16p9/sSrh/HHJY3HrAoPpmVQdwQ24I8ghzydsWa0GDTgzJEVcdq8sCYb8Hy4n2/D5SCs/BA/OBYn/guBKQkr6T13XJjDupZg22F8Hmujsps8+fLFspLiY7NS5TH2DZap+GDpm25DB6Ua4AjNMDBOUkFODuYCIVh1IqcsxURGkkvnWsRyh07doDjgVE5oo4WaOvogJJDVQE2AR8mo825VKUAMl79yYLP7CnuntzAJzDvD7BsFEUQ18Ner8SwaUAWg+s8pRw6PdsEod0zZoKtwotp5Bka7HF0v5mYw+BU4tMEVri2kd+T4Je9e5hvgWTj+Oz8XPRtiXEW1INkmSAmTuo1LPdhOG0FnGB1q3AdQVYIYBrpe9Pc8TiFmUC6J5VLMTemhiGEqKypsSlmoOcR/MQcH15aVsS5mMJpjpHf4dpsDwtezhvYcMzLAM6jyrKRXrwXsIpGhaNkD8lC5rh7/sE8phOSOQz8twgivpehGMQ2R/B9vlyU8TZD1sHZbJ8jQ9kAo/LwyOIwF8/bHCeImEfg3bdf4j/7znfwX3j+q/gThw/w4AveWV7gg/NTvP/Rc8zDIRma3BerqXux5H5pIU2gjG0C5XFJvbnWi5QMmByDXbdwshr8Hmr9BY7pCFG/t/t2HUgWZ5wNZsla35Ws8mOsomPF49gSszBMRebKge0IjNSl5rWPqcN8FJCX3tzyc/l7Npp0jrGpQbdg/JatgeTXeDmA+WOYQPPGAxaA3kdIj7mFcj50baBfFyCQ14OkFlvlDQFF0uvIduRkOJRAa8iwiO8UhTq9IgwOeyH0hEks0YRuO5Rinxm2GRcLT5aeH2oz2ySV2pVAGJzlPIpCZsIa6m8lUtLgMzeCwIAfp4HIhNzBM2msxrDrr+GoM1l6f4P0wqSQcx2oyJm0Os7G4qcCEFnR1DPbIvGtlBY9aALV5WJwO2Deh+UZCWjG2ryovA87nIZHD9HU4SGi8pnWmoteQUUgPLY4VA1AVH705Esa4AWYtxPj+QVPn56xbQPn+wP8kxPwUOCpMwocp2S4iTN/R+MlA0Y2gSCGobpZ86/Ex/TMlauRyb5RPVRjDwCbgOeYHj/3Tc/vaWEzGf9cvkqyZZUa0ojvS3OXe8P6zMMgrgO2ORgC5NlSw1z9YrYn+V7nGEB0LA5jOO4HqqS27QPzDL/mOCxllGW4V3k7BIXePOIIR8S4tts9IMVwjJcjZbx+D6CcHkeVvq+mMEy53BaqQuW7ViGSpX4+1jCsDIEoRwQ1lpvjivcOL/H15VN8fXFc/IJvHD7Fu6c7HI4bHuiM8b0IrLxuw1BRTUCJeIRur5JY18rB2rcPgEBjJPrvjTWdIPVJos5M2bMMS5kD48GwPXWNIY6oyM+TbWQbfmDH+vWwP9dz8CiFxYs5BCqXsOUuKUSVZdYclPIYd8gk/0zU+Ukeup69u/p8Pl4/3PVmA5Zc6PEwssmX7ajAatldCnVPlcf31UW1GXjlJ2QTKCopJvPG5zI0cyz6b9dwDmW8+XkBHyLuBE7dcOrjaaA5xu7dalMwWQzBwiwPlXQb+S90y6N3BdzUbImUaA4t+0/weaZcG3n9BHcjNuu4RN8NgaN2thLvAaRi58Zmhr9DIbztVOCG3svuHhzb2SrcMQFPi6gk1nMyWgSojV0zZ05Ai6/D6vwgL0+LLEl8iUnHsxiqo2Nxw7ydAA1jVkbosEl6vAeH3048/epL/MLXfoCfffoRJgzfevEefu17X8PDD55k/klb03yO6/0bA9ZAY6+cmCevyirkO2QpNddX85TKex6SqeB4jx5snAxUGpuUaxnFtjbM3xnn6BWkRHDKcHr/4wJgY4gx90KC3S1ZH+XcqGy/xs4xbgdgIMZp0zDNg+U8G2bmjYXQlXxxf4DRmUySpXFxi/HtDGWfZ3V4jrwWsYl5r40MVRomMkGshutN8XyJeQjnpskpWb4UBSV9cm0aS+rDKiFUIDf0H5srktl9uBzw8fYEH21P8cE44+ILPtqe4pPLLbZ1lK5kyIfOVwK3ytdw5d+oGRxBcYKjmCOUo4eQn+XOMG+aDmMeFXVzypZRXhJMc656d2D2Ximg0ORMpc6lh20NHTWADPuWfCpBeba/ewuMae2eaOA8wBMdTFsBv8nnzjhiZKY92huAGu/gwZHTXvnI67kM25f05B/l9WYDFgorO5IihIax1A4IYFCybSWTIs4EQX3XM0t/thJUJi0qZJCxUwpmJGPmCbbpKbIJ0S6xy0oT7mL7aeTHCuCmKehUloc7i9eztrlZ6ZJ5Ohwbs/4jhrz30MLQ16Fi8swzjBYKaCguG5VELsVvE2G8CGQYFmken5L/8vP0omWEjzUHytZXOKpAziv0d6PKFY/2XJtLGFjm50gJ5vNooLfb9NgvzFcoOVLStfmugZobFOOvfiGt3wwrZXqYSv114u/xdMU/8bX38S989dfwCzffBQD8vZufwToHfuXFTwIPAz2hV4mNHUXn/PhwjM3KO/XmwdMjTQEqMGa6v7rqZhhJYbYL4kDF9BJtBeywn0/mjHRDH7kvIxviAX6wXJ8cP0/5Rsqr1zwz30a5EOzjYg4Mw1TCYwP4XBcyR1qHBBIcVw9rpYxF2XfePwGEwGYr0Y6kXo99LIOY38k/9K55FowZ3yv2xbgA/YgGyfsswCgZsQJyrBYsFiBffriYQjFybd/0zrFiNafhk8+e4O9+/FN4a7nHb59+gIsf8Pde/jR+7aOv4fLyGF7/VWixO2ys+uNcMBwOQIn7nH/OswoceFF2EmSpNJyyoRA5Sua5P1uoyhH7XEw1mXXmXlEuD17n9nBNM+GcehFuOweRRQlM5NXp8/mz+BCUx6f9RnYNkI7dbjI1gGBUg4AI/52sfUmnNf9RuMzsTwP4NwB8DcDfcPf/5e/2+TcbsAACH1HCG2BC1GY3nKOdibKWQQMIVOilFlr3JfMCGj3IbehHVx6CDGQ+jxU7UjYqxYufzQMq4ZRKNxkcdeCU51Sbqnt+M3Nh4N6Ucii2YHqakc35oEElXW1906ehZgKwLw57sKJCTR+LTpojEt+Yga95U5y3NnJPKpOxJ+AY+UqpaMYD6pwYfq97KmkHx8Ww3szyVAFJqypYjjQASbEzKbYnRmbXX3q5PqoUUs3StjgRWb01hmf+R+WalIKFjAjn4fbJGT/15GP8yZvv4BeOP8CE4ewL/sHTr+PXn30F508PwbKotBL7LsgdqDbgxjwodg/WXDnKGyYYO3qAzZkYo4XEar+Yxi1FbtCxET4SGE7sgZRV7ks/GmBcAsSrZQBiD8yjY7kfWAgY2UDrDNgt4Khk3pH5W7uQFpIRyXHZhgq9zhijlVgL8AjorlVVwlJwAVkBswZ2mOTL/iJknAobglWBrMBy7ed870uxE3s9ZGKABeDB+W4Mhuc8tPLgiRqjjOlWa2gbsH18wt8fX8dn5xu8e3OH1Qe++9lbeP8Hb8Hul6t8JYKueLFqExGfGWv5Dap0zDUhiNsypEv2aLkPMKaQjScYfODi5EVmlaCD7z58r6+li+0q3wdYnwO2uSqQ4miF1v8FNS7eU2Es6tysTmM+oebG+M49ibYAb/wAWRQBscCTCcLJylAGNCdLk6HXeDm+vBwWM/v3APw3AHzP3f+p9vM/D+AvI7iw/5W7/zvu/ssA/kdmNgD8+wB+V8Dy5bzRH+Ty9geo5NpG4e1CKFS8zWuXN5DGF4wtM7GNSYE0pDTMacx2+y7ZFmWPM6wg8FRhKmmn0e5HQ86NNVE1/2ivQS8sjaLeXV5vGTw2fGLIRfPAZ+Q78l1YPqvEOSrEZogY954EK+r1kD9Lxc3qJwGOKy9ZoI1rwd4MgAxo95K1zqxqARQPV4hvtx41NwppeDP8bR5gyXLNPFGXzeKY85TzzUqeChvYblw0MAzNAcCxIY0Bx8k2HMYW1U4Ey41dEkCk3LAj6vCaX0dVyR3r5RW6M+4Hr/EtNa7Ku4Aav4017rncpaFp5ag8UqDemf1SIJm2yZAjygNP4EwQBo/5Y1gmmLliOaztBYKS2RgE7sX6rEHhCBpwoBo5ogDBTg6NP/dcu5IbAW4CXIVsKu9JMiljhn1Ibqt/RxJ+6SGd6s1qrBZuU0JpeuiSG3adTUC9nNv3rNaHRwywD8/lo1v8xre+hv/nr30Tf/cf/gx+8O134S8XsKS7g1Mm8bKJIU+Y9+w/JX3lJrD/CtPA+c08IYVOHAJ6fa/2nik8TJbhKepbyr70HkVhuMCr8mio87kOCaDEYOm5+T8TO9BA+0CWpOf6mZfc6iRsylKyfJqTtA9ArZOnAyiHacU+7+3/P67/NYA/339gZguA/wWAfwnAnwHwl8zsz+Tv/psA/s8A/trvdeM3HrBc939gHwTPTeUZi5Ri2FBNjGQUqhGTSqOzoVlk9KfBz9+NjE0DpVRpCMpgpaIa/HkIuowZQcgVUJHSa57PoIfagAlQik5dI2cr85u1Wca57icvnRsO7Z7m+lnvBDtZaimGoikfPqcZAiaTseqi0+IVfoIU/myhh56rUcmMrjOFeoLpyGoOZvx3sNXnX+/IttrDZcD0+RwPkx/3vXXyfnxHh6rBOkunsmgq9TQ4l/MB33t4jt+8fBXf3Z7j+/Mp3l+f48V6g23br4HGlefmKAG8xd51ppQ3FglUyhU2YDUHz8Wx3XgLGLCZIp83k+kLxsElh5LBpsTFWmTogPkenZUkGOos3cbEXtrwbvQJKpmsTqOPkuGatAZkUr46sA790ACq7p+yuLY1y01Ih0OHEXY2dppKhjvjWWEUh9oXGNrJ203PKEEaeeBerBXH25O6lRjcwroyiGhrudU8AlAlE4AoOf70gMP7RywfHjDuBsZ51Jj5d2NriqkhC1egQom0lmM07PeBU4Yq3w2F6Uue6Iis9cvB/BMvOZNjsLa5B/d7AQXbopCB+1CsEeck8xhH5vmNFQ04FNDkyygMyb/5AmRmjlWh1d+j5AfFml6F+RS2ugJgr/PaYF/4n9/P5e7/FwAfXP34nwXwa+7+D939DOA/APAX8/N/xd3/JQD/nd/r3m98SEjCTwFsG7CqgUoifAE2ayGXRMxqSpTeqwM6BK28Cij5jDFjRz6XBsript3g0RsGFZoUQbEgka8CKX+e9RGNlaz6uOjdkA8HRFNuXhuEG55GmHPVjAKBjzZOegmROAcZPCWiskzv4NUIiu/MBDWyVJyHrMigR+Omx5eXk8pWz0YBGUtwsFPGmSOgPB2CKyl5sj1lfAh+6AHJq86KFTax2pUYsvrqPs/1uYwwMhlOYYkt51ayYo0Vc2A9L/jtF2/jO8/fxVeXz/B0POA++91bghqNJT3nDQYc4p7b4q1E1nb5PcwFUTO4E8qQXDEHu94rMBlusoLFEsVnGDokg+Jcs4HsRloAhgaJFWzKmUIxBv0Z3Dt+wO45SNBvA1lKn8+lzKehtwfAb0omeJUjUMZVpAerqhpAsjPDDlZAy/KsMeaNML9h8exzFKEGtwQ8LL1tckWw2quEmIR9eGkY9zEXqvjLULDCOyP/zeTidBqqNLjkUGzQUiyVGr0xbJYAe7S8pQqJVJmuptO8ChW4J5mjlvKm5OJkXG1DHh/R5POC0h+ea+HBYDqdq61keH3iu7XivQRSm96GJ0BBOo0D4BlRmAn8VlQFG/XeuAIo4Bzkv4nAKCN8P4LcvC9gu/WOPZLzeKFjWJNqM6o/zaEcScnja77c7UcVEvqamf2t9u9fcvdf+n1872cA/Gb797cB/HNm9i8C+G8BuMHvg2H5QwMWM/smIub0Ewjx+iV3/8tm9hUA/3sAfxzArwP4l939Q4t2f38ZwH8dwEsA/313/9u/13PGxbA9nQkmQrn3Q+EAxAGFeSYPkLHD1iiNSWCk2jv7ME+l4HQCbwqyZ6dUsgOKwZrrpFwJo0MKkYcSxmAAO9ezuUk5NqCAQfdkOqXKCqWe+NYNJisVCAp2ZZjgOzP5EBWyYtVVK3t2/s4qB0AVBJcyMMq58BqTYvSO8hTJeCEqiXbgjQYXBZLYaXQu0DuFx+5YtsoLqmTJNvdOi5yMGwJwyAPm9wmQcn0YUmPojtucDJe68iKN7SVzIzI5dntYcHc54qPLU7y4ucGwiYtHc7sxXG3PCR5YmRbjj2ePhzjAcWaLeoYXwmt3GUiuS0/OVI8UeYql/MfZsD1JOWWJag9VbIblPmL6MlwtR2GXhAjUgZm5vt4MjhgaIlbs918Ps7oFmCNI0qGHmZjrebL4dgMdVtdDDbryvRwmRjDApsPWUeMAMDOfi2EKtyxZH1AjM4UXGCYg6G7T2plA5pX5AEYe5SGAkj2hCAY1EO59Jn4m6zL7uxnHYO2A1cpP213pqGheJ+Uj2cmsUuv3C7a5wpDqJM51aizDROkqzlWM52odgFecsc4ORliH4V2DbUQZeWvmhmwlSzvmluCqy9dmcfQDgbXH8+fRMVA9sujkzqPvOpOLqRkeCd2tGorMeQ/pq1pwKXm0SxZhrHyWYVyuQsA/PtcP3P2f+aJu5u7/EYD/6Pf7+R8Ggq0A/k13/zMA/nkA/1rGpP5tAH/D3X8BwN/IfwMRu/qF/POL+D2Sa3iFQkwv5DYOQNveWTHfWTFvZoWHRhkvA6BSwhY3V4tyCnvul5Fe1frMsT2f2G5nUcaLS5lGRnsJYq/8qEStJqBdyDNUsouBzlKQcb9SiiMTPrnhJs8MaeGXTmNyo4/sXrv/jJVHTGPPjd/CaXQWyhPhIpQiqvCAV4iGwCJ/7gQbrZJqtiRpKTLiBB3XXopkebCmZFDxayZ3en1nvwC5TgNV9ooEpn1NrRmiZLHomTI3gt4pWS+uOb0zeuaYhs/ubvC9h+f41vmr+I3z1/BbD+/h/ftnuJwPxYZYjK2PWb0dGLYxYJybIWzrQEWv91cZKsog5frYJZUx82WQa51GlGGhefQAK30+aDy49xJQjIeWz2XtD8qwX8tOl0MBFxoMylWuG4Fa5PugQH0Dpz2hW7LJktnhNQbmMaVxq2o/5pdkJeA55kRlugw3YG9odByGIRv4QcBeIQMCqisAH2PMpWuhK4ZSulGPdUIxkh0sNzBqfDRzgwiE0L4rWa+90ZOGxbgubd/3tQWU6yegQF1o7R5MPib2SAZb+Slkq3nf7KWyyzlC2090MshicO/1e3is6cZmnMa1K9nrVWZq9sj8vJa3xlBPTyg3IWmIQaIzoXwr5W7VZ7Qn8wT4nYy/5mvz8YX/+SGu3wLwzfbvn82f/YGuPzTD4u7fAfCd/P9PzeyXEbTPXwTwL+bH/jcI9PRv5c//fXd3AP+Jmb1rZj+V9/mdLyaI3kyMZxc8eXbG05sz1m3gk8+eYM4bjPs0To3iHGu21kYJMpuesbSZgr09m8DzC26fnfHk5oyHyxH3dyfM7YTxYLscFjZZI7UN1GaI/8+NRZpyZsgDKA84jRzyZ6NtSADgYYRkdgAUVSnDWR4OlbGS27ZSXAJJaOGp3KhKSkMZQXmPK9rpunkjKoM0ZLsYrdGgFJirE6JR58R4Vzomo90TRccZCt9ICcUrqJEe/11GzMqDSiU3T/EOqlbx+q5yDfJ9ohnfUMyc3roo/YOLbas/mZcwBu4/usWv3XwNn11u8Pz4gI8fnuDbH72D7eOjSo27cQ7ZDmChvKEMo8i71gnc2BvEiShRTiUdHT1TUXJqaKMIJhVrD3keKzIEWCwWDYKSErMSYx6CPaAB7Env3fDp3xmu9YMD2T0X2ZlVBskAX1pFxohzsPxoO6BJY9QNW+UmFQOo3j6OXW+U+lLJlNobrCWrnRECYm/Nm8YoUcYt+n4sDz03K6sDjyVbTC7fTqzKq7GTMVHoainDJkZnVgsDys3k0QFuAtRiRy+V7M8qqro/dBQGQSjzd8QeJwjohzeqd4664ZYeZTiNTd3cChxPS5kcFQr0JcrIl4c62BSGqPpMB4HmkLmC+j1DjsnoegfmdLTmPjRO2enr0/spkXEsR5TrbgInYkTb6dfF9OUcwhSmRX7WLgRAtT8eL/xNAL9gZj+PACr/CoD/9h/0Jl9IDouZ/XEA/3kA/zcAP9FAyG8jQkbA58ewfgYJej73omAdHDhMPH/rHj/33od4+3iP++2Af2RfwQf3B/glXkPlhtyIE1BFDRU8lQVDEw7g2Yqf+MbH+IV3v4+vnF7i48sT/OpHX8d35jvw92+yKRaAdGHopfHgMDWzu/KI6UXQCHU6+7q/RyV+XM0tS/+87UNl1pdh8aND/RD4fht7FgDMhUCjacN7tQIL1jbkjMPK1ie1Fow3z/y3qo4SkKj3SxpexXiR4IdnIXn1cdCGNgf7Zs9mtObJMe7K4EvxMDGZSbxe6z4PwJKNm6TQaAxAg1AywHnW/6fXjZsCdWGEKgRIo8S1sc8WfLi8hU8+fYoxJrZ1YL44RvIj8v1gWuftJpS0rZaHFDaZWQrMyrOlDAHFdBGg5D3VjXhtRiGSCkI+Ge5g8vMV66bDInu+SZbuz2MCPy+jJUWfANESFKsJHdETmqwcZwMI3OAQQFQlEtm07gC0y5cAUQRxcT4TdiEZskRK/mxsJkOk6pJMGW+Az9sw5eCMdp/8PL8v42YlXzHWBpITBAczUIZYhrSFmrTn8+fsM6X5BOTZc/wzZZJlxpZN9AZDOpRf9r9peVAK7bUzwmAlb7vPeb0X50vySF3bgXCu33bj9T3nF0t3aw2S8dSJ3Lxf7peet0XQq6MyCPoAYDbHyhqrM3Idbn0XqiwBg/TSuCD26HnofXgoqPQWUPspgVokUtfcvc7LAcwvCSmZ2f8OQVp8zcy+DeB/5u7/rpn96wD+OiKD8t9z97/7B733Dw1YzOw5gP8DgP+xu3/ST6Z0dzezP9BymdkvIkJGWN57rzbYwfHkdMHbx3t85fQCL9YbPDtd8OFhVsx1KaH2hpq7h66/BWQct88f8Avvfh9/9u1v4SvLZ/hge44Bx4cvnuDu41N4ryi567T3TA+qlIuBnjc8ABIVixg1evlkIdjjhM4NAZCF4M88sTXOHypKe+dZcmxZSWLTc2y5wU6I+xFA5MFr4WnktHCT5hh9mJ5JJTyZg7MANpvH5qU8qnNobF6sVK62y7dQcl7OKTuktjy2HaBb7k0GaJCF4nsz2ZiKM5PpvJ8RAoj+fZUarwqe3kPn+nh5AZWlFKSnR2kvFsyXi3IRBvNDeutyTm9WO7BqaaxDiZfxQtiH1RywCzCfZAiAoK+xtAwF9JJsltyr/06GFwerRMSIAFCSahkfsRATSvAUW/E5O5ssSzdmkrWlyYo1hZ77c7sJlmJ4zA9zEDoTzcNM6/T2lJm8t8IgnHKu9axwENd8XIr5lMFd+JwCGPyMnCALWQ05K13D9ZtLjGd5QDt1ukSAoTvemGFFNUyztIENJOj7MqR5L+qdhrDUbHIJ8KuQ8sgDTw9e5z3x/c2BPARROogYuzkC0hFeX5be3Y2H71gJxXQU+vlrNg1Yi7XrNlZOgkI9DdgN6KHbMXuhWAcqNT9oY7YNCitPJhQ79nKmfkm5d0fJ/Dzk0R2XCr2PbGxpm8HSSYiy8UjA9i+lcZz9sCGc3+l6x8x+CcBfdfe/+nkfcPe/9Dv8/K/h95FY+7tdPxRgMbMjAqz8b939/5g//i5DPWb2UwC+lz//fcWwMuP4lwDg5pvfdCnIzfBwOeDlesRx3OLFesL9eoCvI+TLrzyQWXuqPFSvJkWsub9xHA8b3j484N3lJb56+AwA8NbxHqfDhrtUDlvG1aGurumJ9Lgq7zkYpkmwwCS+DXFuUR5AJs/OamN1JVEhGxRSz8/w0EN6DSxRjcTF1BpLJpKZy1AzLGAPOTXMr2lZ9RFu2idn0qhfNzeTl8n5AQqIMA8h34nGfpefQFx5pagAlDdHSpwJbwcPT47jIDuS3hrpbDpwCvuwWdUSyjk8KhfIA7DrlyEqvXmBNi0qI4DyRFEA1BdX6I70f8X/q5qKoZixmuSFSlIKfxrsvq1nTW+8F3sJIdZmeTBVZvQQprMl/ijASiOo4y3YPXqUPeonoUs+twCBMp5kqtqcRR6OSbtYGqjlwdBzynwJMMt8I1stTk7PvAcZ+M0yYTbn3/dG3zy+jwGMZBGY82UZQlESsxJrHUzkpHMwT+30ZO5pAitrSa3M4cg/HN9gOBSAp9DTKLuV4VM5Mj36/Gsq1Az4zPtNi6RSxJ6fOac6UZ2OTjJiCsF045vrwRwaAfgZieqSk8xl6awjOxoz9MhDUwlqxciiZGEkE7fdeuZjATaHdKBAhbV5znegEzEuKMDcWJRdI7fhsAfD4SHK+qPyLe4zqEeXej+GjAr4FQPek8v57uyUzPAQkEA6Q7VkXiX3CXSUT8bf7X2VP+rXx+7+i1/Ww//QECyrfv5dAL/s7v/z9qu/AuBfzf//VwH8n9rP/3sW1z+PePHfPX8FEG1u9ws++fQJfv2jr+BXP/o6vvXJe/jo0ydA9huQcSDMT0XCMFBsxNghPWEPEzhfDvjB+Rm+v76F769v4wfr2/jg/BT356NQ+XiwambFOeB9lFPhSvQibewLqodIbry++SqOjp2QjzXivZwDeY6gguTGM9G3UebXFHqyPKNtxFLeQGcOOtCjUhXtnQBKJZd8/9YLYWfkrxQZPRhZQiqo9OScawGCJYjalYEZUAfR5d7Uj0GXwhOxxvPoUmz07Ljm6g6cISwlgwK7sI/mkevi9OIqd2fHcqSCZciEidNqCMZ8kUYXv6LMDMqp8aXlWrkVs5X5AfIaE6xL5iy9Pv6Op0N79B0aDeiIxTuivFcUaKBMkBWTnHgZbvbQiW60mTBt2IcfPY1t/1lfh2asVbLbynhtQyXNA7s+JG557+YJKxxGfdCYRXnijUWDmxJMmSBPYM2SWOVk5cWzlQj6CWoUXqAxRo2N4Fkhu/xZN9xGp+JKZrRXCf57D528JwEN88zUb4WyTVahV07yHiz99asqmVmNFGeGsph0qmaWKbfcB26IM+CSDRU4YfgxAXyf0M7w+oDC3HI60O6fc6fDUhuIqmqjms+up2pPm54n4N70BAdaibv8Gf+dVXzr/v5y9lZWE+K1Xw5gun3hf77s64dhWP4FAP9dAP9vM/t/5M/+pwD+HQD/oZn9DwH8BoB/OX/31xAlzb+GKGv+H/x+HmIOnXfhH5/w4f2CDxeHLQ5/ecC4H/W5VAaORNSnYgSIogHERruZ4aGuhvvPTviHH30VA453T3f46PwEv/Hpe7j/+Kb6TmgjkZIvSllxbYZnLJTCSMPPmvydgc1NR6XNixnoqv+nAnsYFQIRKKsqE5ZlKjOd4KJ14KQBU3+HWWBgpCehpD7LkJDVOKl0xwZMKh6Guhp4U0OsGaGg6JbLkuUySqz+sQRVY0vvM4GYkprzBGH2XHg1uY6KPxVgvUIqsRZGGWWIYnxeIGQd0AnHjSGhQVZORypoMTSk9G2fh6D5ORTL0hMF5eXxfpRh5oNQwQ/ApmNcRgCRNBY281wTsmtkB46u+PVUDg5BAFQp1EMOkYOUwHdLb/9ie5ZlIlg9epJe72J5byZqCjwj3/8UQuqnCR/RoXVXFpvjgGVu2EsDljrEsMtZdTXOfJ8RbIQO2UwwyRbu25P8HnNiHEAatfVJVVfxM+onQ3+BoZBZ+38eMkl4MYEE3YOyR/3OHJ9Z/x6toR2BAuW7rzuNMHNTVDyQbK9CipdkNUfl1PQ1ot6w1JE7Y8/PUc7FgNBpgPKqCjwTMLQWAfmM/m/le3hhE+njI3NtvJolyvFJ/ZSskl3du/oxxfc2AlGFjAu8ifnkmjj1ZDLSh9oL2tcN6MQchcNq6/6055CZmuMCngTx+/l4vH6464epEvqPUf7D9fVf+ZzPO4B/7Q/2kBCeOGPDgBUYd4cQIuYmZEx0Y7JfIluAG60ZHFK66cEAibQ/O+D78x188uIWp9OK+/sj1vMB9nIRYp+qjDDpMnX99LY5OHQlPGajsFN8f96gum/C6xA2bgyOaStlLfYhlUWBmQQhagvt+uw8hpEY9Ha5+VJr+IjE1O226GKVdraE4LkA4960B+V1jiSWGmMzzqbzT2iowzOO95sL6hC9BGnKl2Cy6UDlanoa5VvKQkywKX7drEIMpqhqhrks17+BQoXdlnauEjuN0ig2j0llsHlPJ0WcysmHKyQiINsbVe2eG0CQGMuSlu8GY3nI3imL18nUKEMUp4p7MSVOQ5Xvnmvecl6LkckqN8+5FzNDTcAw3Uw2onW27fKp+y6AwYEtD8dsZbga67MNN+/e49mTByzD8dndDe5+8BSwUd5+ynqdAgwZE1XNtdBlX0MaBs3zZnWkARmAViWiqhyHwlViR1K0Ru+hcjaxqCqP7eACUB8hWAMCqN+Zl2EcK0oXEYDQ4KE8euW/cKwpz/L4CX5PwHRgnJOdbBWKNlMNyVnDvn9U/1vPifGJsWYIswEZyYFneJpgaCHTtm/ZoOKDQ56ZNFGl3hafW86oFgZ0IhhKp25HgGkl1Ld51ly1+YHZTtdw+A7oJO4OTnchq7yf3rfLXsqJ8d1YgdaB6og1mT+SVJLf+9re/Eb2f+Drze50S6Glwc4Eu35IVw87OL2wAShjO5UZO6dieHXGnKSzDTgbLp8ecE42AjRSeWBa9S2J7zpQu3Qaxow8F5/Ns0wQMZNSNU9mIks8da4GDaSXEtC5GrmZWY0CoBLUhsO2Ic8UyE3Fo8/PCQg6gBv1DKTCjt2b7625ppWMd3fGvaVk89fqaYE6sNGax7EgvNnhel/S4eyfYSuAxXagJE7LjbLBHUPQlE7E8V3jjeWo3BADdlU0xWAU20SmRa3TM9elrJUl4PJdqbqATILqiukXWKExCoA9ATYi5HPpMWquvJQ0DZlTiSYQSDZgYO/Z7uj05jEyaVtJypT9PK3ZF4czbwZc01yDi6lpWDEMDRhtEMU/gDyY1CW/fnCstxNvf+Mz/Omvfxc/c/sRAOAfvfgq/r/4Cdz94CkOZyZOoEI1fOdTA0c0TsP3YYWkqhiCnLnn3DKEQ2ZgGrrzEmxlyRV/1o+sIBtVDGPcN5iV+N3MsBB7sqjZYgOwyptqITudNsxxer0nu/0C7e9mOOcpTnjnV3TmjUPJwnSAPJld554nG9gaD+6qY9q4Q18Cyx2CVQCwnmbtNUvd2k5xDxAW4ezttlUNjihd6OFVCe4sWbItK+j4qxb2c/ZJOjqWl2PnoC0PpkM0ufaHi8G92RDHzpbIyWwAvK89D5odBpUrB1taeg6cu87epn5fsqjBX739j/xyvBkhnC/6erMhmBfaBlDGsnt4KUwzz32YNzMazJGBoYBmrLqvYfcY7GI4vDAsdwPLg2VpaygUbiayGGWY85lMmGzgSX/UlCg3XyowhkGUANc8aeYbyDjPiutLObqBhwfqHh7vJEDQ3r17jKVE0yaTYufOGnt9QiVK72MeoG6+deSBN6OzZxeoxPqcU0nOY55uy1AO35nhAqtkR7Xn7rkfOQdskEWvlfcWYAD2/T0E/hxsJidWhczVbE2mcmxi6xrg6ZVSkTuDYvEs3oEHRAajYWogmOhDF8f76nELmQuT7+XZfAuoOWM4oMs994yz50QOP9iGMmzF/pRMVN5PyRlzSXbvzfkkqNDaAOPZBd989yP8U2/9Y/zZ57+B/9yzb+FPvfVdfO2tF8BxFkjbTMmanaYngDSHzsyiEbTVsNw3UJhyRtaI8ijHgP2SjHuiDKjKvhNobTcxlwoH9ST40Yx0m0t4yAoN4XKG9IfYFDon1mSeXarbvBH42YZ9/6VplZPWnA8d5JeVdrvwZX5WjkSyNGJMW2NLNm+beWxEMFDI0HK8q62muWN+hu6RY9/EztUc7eRJCjLHBSi08gqDQXabtiARspwvNPaRycfUjc6ckmLCq7N17ssGWkOu811abhsB7S4XRvlKuS/I6o32DtcM0B/96x0z+yUz+wtfxsPfbIYFKMDQqfpWuaKY6uLww4blrQuGOdbzgu1lHARGqpEeAw0OL/ZisIcBSxDiA7BsDLRL6mLlD5mFFcHatExyVcwwzABT7oEvBh7KNq/bTzegI+XPd2a2e1K149wMEfvMjPh57NKoXDCGJ5hEOxFZ9+d8hjLuS7Eqzs99nDk4vYpi3I0GFLAHTrM2em/L7jxx2aB4u2j4BXAmJwNAlg5bnpzMEMGWc6bPZc7DDlQ1xskPGXJb8vMcM5OTU3xEZXfvz6FqrHny8pjIcAHNkBSFr5OmW68ZKrW5AH5zBTQWB8yqu6zHacpMJKVinocwBJb5PvQkGWKzDRhWIYv1Jg2r14QRIxGk93O4KAfOPcXxHT08SYJqhxJgGU4iOGRvi6EeFcDtcsE7yx3eXV5g84F3Dnd4ejzDjlN7ROd9pQPCqg8an3nwPFogDUMC+nlq+yfn3s0kE8Oh/+/Jw5oLoAHLfJfThJ0yL2itZNwKqwLm0Tpgx9g6pC8qX6LNK7AHzW2PcP24f4pZqjyiYAVqTshoADln95Zt57HrW6MQFuWQ5cunBvCtARiyGgQB+d7jDOBYMktQA6COS+FFPbAUGOv6M/LjvOY0GRpqjuXesD0tlrwfxshJZfGBnDECdasxMFzDUmN46K7tSe0bOToO6Ow2smEMH7IEHyid2nMDG6PMYgk21fuyrvmj4SP+aFYJvZbLoNbLNBCD1QJexsOPDr/dcHr3AV9/71N8471P8dY7dxjPL5GAeKSiy83VjAwIPmZRmLwkbPSOdqW/LI+NzbDcmZgTxdqtFA2wVyLcxX2TVzgIO2W9C3u1ygAZV0eVha5W3sWlqkNES4PPSLC0QHF5ghpuVCkSxu/ZsTO9N4ZALPMi4jwa1+upp8NA89AgWp8UME9VJWAimJG3neMQ+PFS3FynzlRpXCsZknYfdsK1em8AAsG2RsO8XcjGythp+Uitd4WKAmEcw/XxC5FTA+yqH1juPDhffYycd1c+B6lyZ48IqzmiAXLLvjWW70wPHPVenqHDMq6m0IpNaN/Q0xSOG/X+WpcrWQbSqJ0XfHq+xXcvb+P769v47fVdfO/8Fj5+uIXfL8U0oWR7JEhltcXuIEtL52Mhso85tT73s+ZQCezGPRV/lETOLbQ4eII2nmzA8wtwu4XcHiu0YQyR5l6qlv4p0y3HROMlYHIIzOwdLqismA0WgQw9NcZsXIrZ6KGjV+ede8c4PVonhW7IdDa5k8PUwltkg3ribgGoCq2KnaDOaowDmTmxDtQHS8izwvXUQQxnJdsVYNME1HmJOc57Tlb8pT4Ect6z10qc52VywHbNDwExVmq2me9IWzPU68UL5ALZmRuSEaBY912J+eP1Q19vPMNCdkU5AWwZz0PA0sOzw8SzJw/46pOXOI0Vx2XDZV1w92lSKymI1gSeLccBgAxBp/N0/kg+k55LxG9bc7iDg6e7SolkmKUbMhheCUupzwmVnLzxHHMrG+yenbLnW7wayHdsdLUfeKy9F/PRPJB4ZnoK9HDOBZLYcyA2oMnw650I/nLMvbkUQwvjYnEyLz3kXpJMJbZ49pWpNbCZ65yhgO22KZd26QyQphA5B34MVmieYl0E6CgPqQy3nL95cvjshqg9KN+VZcpqQsb3IMDIEIM6jl6fOkzASKM1PJJh+ZhT2jGyigzv8bMJWpDeJkFNYI5sFkaZJSjic3Pd2ZjMF4+16WFFa88muzej6q0zFaoIy/wfhsPCYw0D4w8D3/7oHRyXn8V3n7wNAPjNF+/i/Y+fKfE0JnW/fsw7q/OTvCo/mNPUEwT6/r1iySQbOYfjkp45mTtH5J5tEVK24RjHQH3bZVTYsbGQVreX4ZYhn2E8jc8nk8r3o6HLcVCGtWdyvPMAVdHY1XcV/knGVLlmCTjYKDIQE++b6zJj7Zh0SsdsJnvH+ws4t/JjFgyQ8XJnxdKVfgSq6aFC4U2eqZOo2911DApDq/AI77FhpfHnjY1iBRFBw9Y6mVPW1Y+n72XKPuXH+G9T+FbjzFJu7adcL51vttR4dikIuV5fSlmzA9uPYQ7Lmw1YHHvDxtDHUj+zaXAPQVsave1uWNcBYzLUyM9SMYiaLAMnGtABHNKAIspFx8ZKH7oiUNk0cwdgkOFhroOoxtSt3MxAU1wrIpM8vZVeStqZhgIYKI8SqLyW9JJ3GfTNYO0S+5SkUqCkG13OfVWjmO7V81MYc94OTaEzoXbLpNr0+EWrNxZru/HqU5JrKuCXwyQwsxVBSdNLPDiqkR+SsUnDnQmW29LGlZ1a58FhWT3AsFoo8CHPTmtnBGpVKTWPEWYaa56wm8prezLFbqlkvclqLTj/35XY2tvth+L2ClcNAFsoZTUOY7l1yoFnl1pkyBGGYFBWaDxAVaz18E4/BoEVTAEKap04Hzw0kXLE+zJRVz070iDibHj5/Wf4++cD/tHpK1iWibuXN1g/OWHcj50sEPzQaG43YfTGuexK0PgBVjqFXyA8y/HzfsWKlHHquU02SwYnjdA2wkabi0WTUfI25znvWtYcv5KDk9LSid+IH421QtQCKGzSlmqE495uXftglzNDvdgBTHN6dAYWP5ehJZuubtX9UEEyOGodwLGlwdVxESOFgRdlbdR9/BDHaaxsk5/zJwaQzMZAsV+AwIryTTKnivmCrNDkfHTgcs1kKJeKOisrFJWflesyb2acZp1Ow64BJlCsywnRXmM4LB/UmSWtM3VTdicfs/bs4/XDX2/8VDq9Sgshn0hP6EkqkxRhv1/w8We3MHMclw2f3t9guywgsrfMweAGD8FMg0p6uCXXQgl5haJ76WKc3OmwUxrMjFuG0vfyFA5Q3wvFh0mPNi9WfSUOpC4h4DGPkV/DvgFsINYTVVVKyz4UbRPFBMUftpMHlXEq7A5ImJTGdupzuMILosNz6gnwlG+zFPhjG3V9L+2KjphHC/O0KiCBD7cwuqCigeLi5oiqm6aQ9KKpFOW9Lg51eE1duYvVt/CG+uwoZJPrYiELQAFdVaMNRNUFe9/kd3XqMOcm2R4lkigE1JT9EqcnMzbPqpK4H3ZeHNk3neKdXqiOY2BLcMqZIXuVoFqzj3qG4vErgMES4LyfN8BraWhoaRDGXaGrlEdWVoy7gfV8G9iJh8qdh/J6YGE4ZHBGrBe7GTMMg+7Bd2DcAHbMpcswTcYpUHsl1rzysQTCkWDgPOAPQ+G83UnhA5GQT51iIY8KqyTg95zbXiotWTBoLJLfTFDlsRy7ZM2US1ZBOio8wfliQvH/j71/6dm0XbLEoBXX/TzP+2bmd9p7166uri53t003Ft2oxcAyA8+AgZEBewAyiAEDixYThOQBGIkfACPDAAmVaAQzIzEAGgmJgbGYITWGQdst3I2r3XXaVfvwnfLwPof7CgYRa0Vcz/d17XLvb2dmbectpTLzfZ/DfV+HiBUrVsTlYo7K1qmHEQos9BJd59rNcaiqGqtmfaPArNLL1pYjgX2uh/2hAAIrrdyySo76PneNhcS2nnuQhxC2gEm9nTzub7bnAPJ7HvmfXENtjJjuGTcrge/e7OZedpTgmZWAbh7av5ZCFQDjXKJsI+2MQNU7uH4Vq4Tee8BC6rtPugEFLNxEr1+/fMDP9i3OSzlvwGUoGpH2gpEsm0MBsbLYPXZrFF5uHuYwI0p3OR8c0sjeDJM9Jfa4X1LaMvL3F50mDehWefKit+MeA/Dk5m5pAoCAyrE/RnRPIWVPkQj9s9Ml9TctUhKdjuXHsfEvY4leyGpRsLbMF9NZ4LOFAHOS/j0EjUwR7xzA4VVQ05yrkeXYrPTSfEzA0mAvQj0Joe+eOdOF6pxqCOeyW3xOjoXN7M1hvO9K95FepxNSYz6v4xoUQTdD1XUE6pvDNZtjOFN7QUMtQ5ggnYCj95XwEwAeCcDeQzzXJh3bPJIlye9nqffFZHx7hQMQ64plvUOOqy3X/j3eWLkc51rTtnYLzp9vr2Nx7ZhglQ3X3TxyHmqN8p40bwQluSY7GPejw8+m77c9GaisPLqdeglvWx+of/OL7GoYGKsgeVoI8EezGcRrVp/RU3eWpeK9I3FPCzrHoNsiq3EL0Af1CeJpyHKoZFA5Dh77ZAKpJcsh3BMbNIYJbiVy5ufMmsfSTHlgisk1mW/n91ulalTOjbJhrCbT2ALVHC8Zb86VumYTtBBjNtbN0u76AHCBAgu971BAuevdyPwR2MWcQmA0bFz9HA3ABxuW+8XavfE5WwaAmi9V3XnYsv0Bb/2Ksubx81/4Z+x6/59IqLstlKRmPduv2wTGZcCuA/vXR/jnJ9h5g12HWpFrY1s5BhmtjE5IhTM/XykWKHI0OTKDHRy2zTJsXs46qoIa+k9nFRFwWDppYPK7eOgewMXvGSnkx2ckoOigV+OcK2JVSSwgI6jSyRQe9jy/DNV+twkNJXwkYLN6Fr6mny9Uoj0oyvPueNIIiBr2TDMQQCTIKJq5Um6K/jK1xHu+b2hWnUCXYWi6j3jfSCAo4THp/BaZOVMvabB7qbsi9DZHUcGCSjGydDLXmxgwOnlqmvi8XbCbg0ZnLqfShbJACRKvlYokkBqXuB+eKcTXEwzJiXM8veaY66mnH5aqMJZgM03F9gIHB4XVFDdWejKdJB0N54iAxGuPARDV31OGve29NDrW94drHwdDZLVX8n3SpRjXaw2A7SF4jf4mFNLbN/ZG1y9pXxB8ONdC/p9s2sHzVHMv1qaBFPaLAWJce08Sy2pGpjfGpe4lALRM1qKhWMaKj0p2wKF1xflgGT0cwYjRbnGddPuZaRIGXNEHpgnNLfdzimf7ERBAdqjttp33nWOkgzzHOj7z5IuGbA38XMPeU0Vdn6Pv5vh3JjjZ6yUlCoiF5Xpxrjn5jngZ7XqA+TXY/hW4PpQ1/2Ov3Hh9A5qjDg/LyhKb1YYfOwWJ8X6+1zdkt8t0ClbpFiB+RqQvLUQ6p+0pyyTh0kbcHidwHcBhArdRm75R4gCWyFAwYgI4VjmkVnxqUeioq7lU3Ne4cNPF/+eYGamt5bbsO7A/RFSlSIdiRavnVQSSTmgqpVNOAwPLwWs0Wj0dwvkSVUrR8QDgngY/XscURM/r225xui1Ln0GHyDLedMQU5mU0q5JmORRXCkiiugS85diwdPFcDE7hxAArr4dYAFUzIL63C6LjucKS07nc6wuU+gMEHpblThbghmyaZnXvaPNkXhoDGvhkm+aJmoN0jo3qYD8bzxRfP0nYZpZj8vvavXPOK4XmwMFgnUE0ApNwTHYzzGcTzk7CninGG+DZ2lygLNNjld4r4bAd2/fToXJPJ/tZR0xkumCvtetAO1iyOS8L1kJjc4sAZNEcGdd9flhG6avGwZXSY6Az07GKTSNjkXOyJ9s4MVOUXSkQIG1Hsr4E5GQH+5yL8WjNG3t6WMFZzl2wkGnvWnUN2jQAOb4UVGf6plc+jbNFc8rCrkqVsNx+YXj5uewM7AXKBKImgUCtJbY2oDiZKZ06E87FfPZ779V7dgVuJ6S9N/kT35J5zTR89TTyYqmbfaKxHjdUp2Cvn3f7okMgr+2053dw7T1i++6uD2XNf9Kl6IoOuZeEJkvAQ9dUOkcGYJZRtLvogBT6ctAa6ftmpKV96dcExtOIPHz2ehkXU/MoGbQe0fTF3KPNNHJkL4juFclauy9gccJif4ajiwqjWif/0zcS78kLUHThmCqvDNXvIY2/ou4WCcMJGlvkQoc/yRTExlUTLS/jNG6tyRfBT37PuKHKm0e9N56pxHzjbJX/5iPmOpGYt7EIYg4oCibT0pgLzf0l89gJBPtRCWSIusEdd5UIYijSyTIqZ6S4sFL5/dJLJbAQW+HNKbInBIGV5fg1cXLv97EIEvP7dcZJBxwcG64zTuus5cMURl8vdoNOteYZQtQHCPyTFcnPGOmg6cAISJRe6GdvWbsXzZetzQ7bs5Ld4DoqnUt0YOW/tS+9SoWVJmDqlSAzGV2Or1IkXo6W651l4FofTIU+TNiLG7bPLtg+vsKf77IJfc2U7qI+k3NEtgbmakRJB2k5trSVPrxiDp7Zwz1Bhnq07+8pywQ91EMpFZr2iyX7jugZpPHn+m572SakmWITv37gKKfYm3C7p9ccZEMh0M251tjTLvU1uwcIZw8anU3W0shwWzSGOriQJeBWN6i93vY9RqZ1ZzLk2wq+dd7ch+s7ud5vwCLnWv8GinZXeoOLPTcvOzQCiI1NWpM19ayzp8FM7YeoeDpwqukbalaOeoZDs4s1+j1y5qISrVH0dKqMxojqZzNwdPZKB6AxJaTVC9HTmClqTGPK/DQd8XIabo8g0ZwJ7jYiGghQGIUCDu07q2dL5r0R36vKESP162KcFOmQDvb6HpZDMj8+roXv1tc3StfDgbIUtFclzMYA6Z6ZNsg1IJp6WhkzAEs02Ch5c6i7cjgkKMqiQZ15P9UpN7+TWiWr11IP1L+bmiSCnf2EyrmzEditCSM5Pg2gLH0/APU3kdNBOck9gblzLTDqb6BscQhKaUJrnfPR5z56bsSHUGe0iDuNHUfbuiMWsVoXNiN46GlJAwT4VUnW1mwvg2YqgUIjiZ1R+07pRD6jon4GRSXYXBw8K+AMdQwH9W50eqeJh2dXvHh+xosXT9ie7difzXp/X6MsNZfjg/qIxDxm88CWomMKTs3OqFtrKRGl/BxiEmSbjN9ltUbbpb2SaRemzbtN0SnhtxoTMR5tbuax7otCYoI/kygXsv+sFKz1EaLpJS3X7jn2dBxuyfHsKU3aLa6DJS3bbGO/5FO6jWy2WuwP16FXSu9tXw78Sp7W/H4DFhorggUK6pJarTKyNLwsQTzUZoI1NM+N2iIpA7RC6Qi7ge/U5vIzvrZR20wzsPNnCCDzsxvoUstqahG2Mm58Vn4nK00UDY5ymGoWR5DVIhvdDzUAGelSJ1PGokUdZH+AFolX5RGfX9G55f2xUV1qBejEx8WWTS8GwqA0EyOU/rlO55xGVdoWzns3JPm9HOfeSIrP1QV4NXctgmpOsfLjNY6KSLf2vlo2ZcCsjWMar34IHyN1Gm7O69IP4g4I8nt0lpS1z+nPQ6CV66RAsyuChEPUegdFvOiMu5PrAFJAqL2f7IR5rhWOZWOF5MwJELSv6ZTyELq+JnONyHnl97N5oeh6oNIvbQ9oL+RzEfzXKc+0EzFG+4PLefcUHnUmAvyDOh1UqsYLVA7en7V9zD22TZg5DtuOoegk51et5X1ZVzo+gY6Uejmr7+5Bh9aj0YFTyFxl8FxPXEt9DShwYLFBY2hHF9QTqND5D4LztrZYfm1e+g8vOylABhQT7JA2sfe14VoXg472Xq+xZlqOguKuSZFOJhsdkikUOGwMZ7H4DcASAKddEhvWgKsa+lmto3fj5kN0+13/edfXu7+Dn3Pdl/FOlmWiAQtFnK6FJ2MIKHoOkZZro8Ech1e52QdK4AUk0IEMHaNoy8oDpQ+4C0gd8+0dSKQKvwMH3Zs1p+rWnJ4tzladNS+20KlLH4tbpYLUBCkjHaUlctxIfQLNMDeGYEmxpW11az8DKm++uTYpI6SepiETwGedGySYcw4FMUWWZcb7vISiFEIy1TTT4HRjngZLAIuGe0CGiffTK8HEvqXDEbNgzWGOAo4LC3Xrr7v7PFQfDX5+f7/ui+kRjkcDnYwuOfe9w2YJWZohJ7Dbam102t9Ax58fwUi3PZPOquE9jDL229mqYypTkWi6sh6VN6fNA/HopJTGzADDHyZun92wf3bD/tHMrtMF2Kht8oFo0d+AI7+fAt+e1uxzpbSpW+gwprXnb4JKriOWGpMVZRVh9ithmgJkFjPwYNuAceXez7Lcy4bL+YhXbx7w5nzEvGylaSKQvBVIsBui3b4DuF/DOa/cK7BW2k5heAMOTM8tAR5ZB/7ZMr1Be9H6Qd3bUjFwPZhkwJVg01vQuLJ8vJ8GlnINz1P8e5ytaX9KSItmVwCock1sXt5Lr9qjdIApoDVtVN8fTFz+exao07P36qxRY4H82Eqz1Q2OlsL6cP3i1/stugVqcfU88Q3wa0UyOicjN892hUqULfPdqqenETfADLi+8OqE2D7LtygPZVmbN9rZwb8zr/0UN9lbynfKuTt+BwRi+jM5y+7ScPSTgVXaeMjyxhwTVQpkpOaMLKzRrXK8BiCdQEZdPTL9BsOS9wmEAYwj4a2cs2VfhWSpbtS8MNWBAlmYFiK90Rxblr9yjt1q/FQW2CsmTmlIKbRsRoHfYXCBFzppzQEi5dEZGBmwWcaNzN14astvb+M4y6BXPr1V+uhco2CCKIgW9Zz9S+aRVRBWdDcdsN1/fgKXhzKeYgUH1M6dqbAtu34yzanKGbdqwpbOmU447K1/QyzcmU2bWaJpd2OPel4A8OmpAYj75TolA8M1Ntjf5OQ4fHLBJx+/xuPxhtfnE778/AXw9UHPwJJUtg0ggO5Ai+mf/SF+t93a+BGMk/FERdUSlY9i9gBI36ZUyiwNk35Oh3l0Rdr9qAug7fPzwI4Ddhziec5DwYfKlb3sC1kS6lHMDZPpi1yb1Wuo1iWZ3149J7ZCbGOVnxtfM9ZSdbJU/J7Oivjm2NgvKu3luFnb3wA2g+05UbRpZBXBeXHZIG/rvxjsslFsPRBALRnPK6R3kt3gZ3O/JihiXxja2CmAl+uCmqgU3nZAB8ufcfga+9PFzwRh8+DRNO7YHvYtX/MdcTu/zOv9Biw0SmgODCA5okoguyVwoFPOF9A5hXKdiy+NMmlJGuXmGPr5E/EB8R3z5DL2dPxdHOgDVYtvYZDnsaH2xgYIIABL2ojvAwq0VI7aJADulD+wGhP+WSIs/cw0ruaIPgv5HaqYorHkczW9A6MnNVHjEPHIBKv5mXcOnhcjzx4xCmTkh9q19AqdNtb9w6qB3NJjgq9NB92iQCDukaxTtNouADcETBzbZeDarN88JkZqzAzbhPO4eTl7Oi2lJFDnnCDA17gaJo0hnfHV4I8zwRdES3PuxgXYHwncArQtaSKOewKQkd+r+9kc81CppIXS7/ooPiKbaVGESqDaKrMEzFmizjERiwkBXMCaE7cCiJ9e8Jf/3E/xVz/5MT47vMaPLx/j755+Az/yz4CvjkulilI9OS77g0fTvmly7tE9ONbOtkMHRiq1NQCDFws70lkRIE+EQcj5ib4eXAimz+iR9L0eKCauSqF9JFjwUeukRfgCVglS5iHNisX9jPb5fU10cCmgy9ua7R5nlrV7gXq7WR726tGbiHaAzIHFPVN0Hscv5HrLuS6tIMRczo0BoyswcUs2aELHNwgQd7H6RFTuEUxkWb4eiXrEHNcoo449vTUATptuO6Rbor1jejVY31Xjo47QlB6QSaT9bulblS8DSlVLT4a2v94RYPlVvN7vlBCdqtG5oIzIAYg24LlhRuVGg7orBoan8BJMABB671SlSk/vDAEjHmkwRP3HzZGuZKMz5OvZ1Iz9CQQirDk3j8ZpAmY90uatbr4Y+m+l3fPfjMqUnuGGsvqj9MNdUzxqI+YR4DEIy1yk41eDNubz5axdc8ZIq1ixJoSmgWjjrq9JSn6eUFR6DlXXmHQNA+nYXj2zAJgc55Ena0vEx9elQWIqDJYCVPOqlsrvpp6BtHjl063GfHLO4jNcTjxTkky/GRbHI9YLDaxxXGabs3SITDsqhdM+i5UsFDezxF2RbPtsRuRiLbAaZoql57HGkrQ7wcp2oeMwsZ7sRROVYKbvLAF6jM0nH7/BP/PxT/DXX/w+/sbz38Vf/+j38U99/AVOz6/w42xan7pfBgdxTlWND5+3jxnXoUAywVZ+JtOVMJYHW41j27Mal2YbekUgO7IqZXK3T6UjYyVKsz/8Hd+n4MPWe2fAsmhkEGPNChzOo+f4LGwrUMeGEGgCCtRYtKAqLIpyqRPLajT2TlJqhPrCQzOxTWuoKsC79PM45+8SwOlQwpw/po/jGTlu+dz5+jgMs8ZI9izlBNwvTPmtwYTV0SN81t30mVpPtPNbmw+s+0HrCM3uoq3Bt3jxLKHv+g/ecR+W9xuwAM2QQIeAderPD9HKXEItdU10LVjmz3WqLx1UF+4Z1NGU0YHb6njjC5vRyM2qRXongPUtjVjrRMrvZeXEuBluz++AjkNAgkZFXUq31oeg5YtLEBz3xo6PqpKQ8QunOa4xJgrXrH5PI6zy0TQOzNdXSSDk6BlNATlPNMh7K9VVm2s+a+sXwdJT3kdzouoj096r+WDEe/B1LhLozIdqPhVG0Vaj3rUXyR4QmErEnYZuNJq4p9F6cygJMSfXQiGDcPLQgZui72fl6nl1ENKF0XqONKD7Q2/WVgDIN0aW+Xmpf1GUa3Q0qLTS1lhJHQDXotoEnkyt3FeR7I+ZOiVQMCj1Jcfq5QRo/A/bxLPtio/HGzwfZzzaFS8Ol+id4ZU6VDDRx+hbotdKp7iO4GD6bXlPAxwMKrqw3tv06fReh8Sl3HudKZTd6D2OGLjQ2hIc7+u9SjPBNcf9nZ/Rmw5qVbV1TB0Pq+siFZ7rlgEW6pkJGqVna0CPv9f3A+rMO85WWh9jaq88NL9K6Vf1k0IBwVax6RbMjAJSjgPvVbRtzVXXZ2kNt3TU5JljgAKxSgFD+1dzlj5B+y7tQWdImD6SjT96+QfEWDKgpTD88PTta/RtXL8k0e2X7v433f1vv4tneu8BS48EaSyVRz065qNjfnrF+OwCfHKFP86Vqm2nDfd8oipt7gxJ/06mMyjQJJvQO2fKkXXj7ZDzmFsBoS7cFR3MaJXlntv63X6osmx9PPuQUJ+hqpPcmBS47rY6OUBWuEpuoZyrSoRbRMbj3UVrN+Eqv+v+KACm6ESvAwWEGEWlY6VRjjOYyigCCUJYfcBUQAMzfI0qUfJ7Yn6bIK4ZEWw9mrPVebqJAhdoHe3vvk4SrHZqX3olalhmPR9F4d9qvNK5UCshNicZHYmLE9jJcZPmTufnuu/1Z2LaOBdkdzJy1pjPaiZHsei4AdubAbI2HGK71WdjeDE4+bnqANpBW2Mc6XgxgdfnI/746WP83uUH+N3rD/CH18/wR28+xu16gNNxNfG41kffE4f6fe/0bFdbyk0l5O1jwdc2RlLzYihGpK3ZttQQQLcE/Ut3X647Aex2/0x9sEnb4Y6J7eCu9UXqLFIIQMux9iZoXItkJFm1x5OQGRDNU4htxYB0J4xgOOaji2Fbjk+ox8lUG2RvKqWcY4MGMlN0TQHr1FhwTNdxLjDTPpNsJ/cd5zUDr/v0uG/hMzgXHBfaMp2eTeDhCUwYEHbGziHGWGwpGVervQov//Hh+sWv91vDklcp6T2OgZ9QRG3Pdnz82Wt88njGZd/wxdfPcL091uFqQBiUzUpTQo0IN2eLJAwZpfSqDiL2/Cy038Fbl93hoa1ozjveg3LojLpQxjP+Uz/X76zeI+1KfifAjWqqZpgHl3hPAjMaPvpKy46Pt/oMpRk6mzJKF+HMVTMd1p5vySmjGZ1p8FMa8B2iRgdqLJmSGtcEdWkcpCPiPXJ8BOLa8PqdEWm0PKMvRtka5/xQpgr5XExVUPcRupF433xojF0X3bYGf3x+pccI4HYrYJWglPqQYKCqAskJvhzL/PfKHR6KiMamCRzmXJkDcyDbt5t0Nshyz+1suH7scSp5VsFVxFnOOahxV7dnpVUNWSLfgMpuudfKcehZUM8en5v3fjG8/vIZ/v7DD/Hy9oCPDmd8cXmGf/jT72P/+qjInMBRJ67nuEprsSebluM0CVI4/oZsD59rmpqDPOvFdsCP3CPl7OHA7aPu/CxPjI5x3x9rn3K9dTbWExxwbXJ84++wJd0h4uAIYV2lOiyd4/YUqYp5LL0GAIHYzi72DqtLUNYMk0TvXu9dQCBt4sxHJ4hlRZzYWdMzax6ygSC1hQQzs4F/pqGZOpUmJNPB82Fi46GuqQcim0NW021dV1ybPbAKQOFKWemaFjo4BsCcB+6HtgdlAxkwcX0zvckxZKorwf3+4N9sPPoWLsf70Tflu77ef8CSxnp2WphRyuY4Pb/gBy9e44fPXuL17YTbPvD5myNwtdxItbjV3jnp7HEuNb9KFNvi5zkwqr1vUZntgLMjIyPpZiBEG57iqPVQoqOYADRDCkSuvkeBVvfTD9hiXxKlY2iEE3TwoK5xXR0HHSS8t/zvDrOiYLbdVnSyG/FM3MoO+ANgs6UFmsECUCXiFiDOWIKLuCcBR+f4h0FiNRIjvnlqp+oC8Tm3uN/5kGApmQkCkDq0jXqKdFwNmKIZF+mbblGF0XsnyFFyfaAcBufEB9Tfpp8r1R2Txsk5PuHsvLMgu2E+zgDX7JysG4eOAxAA8fo8Pg/ByrhmigNAr/5RUz7qrRgN7vXveG7XGr4HTmQqKSh3q7SDm6nqznlODJvtoT6Pe3g7G/yrA34yP8HnX77A4XjD7bZh/uyhzmCapv1hN0T1iSMj9HTuW7tv9kKZrkokAn0fJRo2QIwEu8YKCA5rAKDmMnRbtgL9HH82asOlfswUBx2tb8DhtUUlU9odz/satxBiS1g7oaMNAmCjSmlrOxUzSdCi9g7rnDLA4T3xfsUUjTo0kHbEc/+HtiUase0tJW/X3KsMNkCAUPuGYxpVlWgp+bAh3I/7YwM6nVHlHCTLpBS02XJkSGe5FbRRm5J2joNXTM/6Hq1vtQwwsTKyH23cpTfi+F1MwI4pVQUbH65f+HrvU0K2Z3VOo1Xd0nE5MIbj1Dg3SwaEUaeEWFtD4ojPqg64QGchqreGibYFuEDTQKYoUwK7vRwnc9/UCGjTot7fhZmikBkFE8Xf6nlp6OeDf0MICKDYCLILW/1s2WA0QOj30BwVz8mgA2T/BiDezA1qTYDWqi/iZ/Uceo1VSs2uQFVoQAaUNGqlaVwMUY8Aex+bEmRWRCn9CBkD9Y5AHaznqE6ZKteBaOoQMZaA0inS5bOTbcp7YBQnujvB2pJjaH1jtO7YwIsaBYLYrqEgcOxankZZFydfa2fmMRHUu/ByQ5X2juVXpZki2GsUvTpDt7RW111RQ6CmYLwX1LNub6wcKdfzMf5vrw6YP3nA5cfPMX/ygO3lqFQrN9UsxifGveYYfE7udc09livEkah0KVN2bRyXztPUezTAyT09BPItv4vzDwU1/B4JR3OtdDbGcw+pj5TVXhJwof0iG7jXvYE9mvrZTl6BDYXP2lP5+54SlwYtwV/X7/BiSqiLdjkmYjY4L2g/mzFGlYY3rdPOLNcRCvkcXdgtOxvvlVi3zxNtb295kOuBYJG6tNnAT0ViCXxn19N5HMPS+kj1tBKsAmEgA4G8KQWJDUi9zWvCvvM/7/p67wHLN4RiSctHFDdwfnPEz948x4/ffISfvH6BV28egNtQhCCtg6EMZf7NqJ7GVVFaGmd2il2qBGjU94ak5UBQzqMZdhpNA5aSwQ4k6ibbZ6DukYwPIzvl6XNzqyTZyzgyx8t76zn3nuPtyvvupPUcjHa8NvYC0gjIvD4DqCieG5h0/v4Ym36hSr2iKtOJx0bdW9DQNBjUj0zIKdtuGE+0mPm5otprjqhtUUVYAw09zSPdTBu3riUA0BgUFIjh/DXHoVQXgROf2eo1Hcj0qFjDwyhPqRaTUHGhpBs4V++XVqUU699UwWPpYHsUrttj9U136N4qWVRRUwBY38uxyjH0A3B7Xrqp7rCiGR1weBMaonEeOuKCe01i4FZF0tml/rz9XrlvADqtQr/e5lD7OdcN53s+0OG1uRmAH1tTwAQF/WwuaVeASgWNplGh6DTfP56ShWQjNWIh6kU4FneMJg9JlMapabv6mirtDtNFOSZp37oYmecHae3Rcefp0GTfxtm0H3QmW45/X4tinqm9mXWf3L86aiBtQK3Hqj5a/GWuHwWZHO8ErkvVDlPnrQGd5myuYxM6IF+AHfVJAlO7KX3uxF4Eh3uus1H/vxenf7j+ya/3GrAEvc//YG1qldHVfHXET3/6EX7vx9/DTz7/GOeXD7DzWKNwOvXHO+SdCJ3GnqWZwLrQqlQVYDSsyF/CTKx5T0BRqowc6jMlSmtpCUZKvDoIknYlP79X38Q9mp5JArWWx9Y9cDO1za90QYuovf2/gyFGYKKXG1hbIg9PIyaDEv8e13BOTPPoiPjhAnQcx0VjxI/tQlQdweBipzSuXowO57B3v6SOpFgh6HPMCyD1hlsFmlvkjzbno41Bcyj9nvQgaSj7GSl9DDtNr/Elk5UOiGxGpAq4ZgqQ9QMWGeWNvZ4NjC5ne05HMXuthJvrkePfj1Hg1cuy/RiOFDn3RrZkc516zXUYXW2hfcgUUmeTas4gp8Pn0Xq7NkEqwZ3X79VVlXqjbX1d9AeK31G8zOfWuNNB9QCmOUGNB/c9xzk/Q40p23gzPVLVg+1z+vg2+6B9w3Swt3XYSsiLMWTFXgYR2djvfl0KYJCB8VqfXSdC2yXNEI8QmXXvYj0GpBUZVyj46Z8vYAYUc9kBaQIBsaYMoAABW52jlGPV0zVkkMR4Ke1t+vz+3VHdWSwUv7N6Y7H68FtYFC9Aj4E6Ff0tXg78Sp4l9F5rWELAGEBDjdxoNNI4jDcDfj7h9jDViXBcoaoBImtSwd2wI4+wj8glPrz0K9BC9CNEBwooZH8BaiaKjuSmaefILEYHmB03ZZQ806j4iNyscsgEHa00Oho4EY2hIkgDzPN3dKad/aAhZ6XBluMkDY4vwEDpHy+jwKhpHl1yDYkPPT5jHioiXiOPMuAUoZaBRGM4YtzV9p3pmKb/0YGGzah1TYF5pnxaKfz91XPS+l4+azoizkl06Wz35ncflgK+cbHFYdrNorHZtcbPrsB8rPknE+QGpSN4XtbyPQ2AT96H5RzrNVYpqv6+NPBuudbkEKN0WMLgi6nRlrQ1jaYf+XuyZnBbGqstqRVGr55apD1Qu8qH++uszRFBE59hVAWbnQ2eAu1Y5+kUmibKHNHFdNS6q9wB12S+fgIUucZ8xBhR1DoTYMV45JrNex5XYD5PsACIKSDIH2moloqahiWC1TMBQ/4+H1n7RvfMeQCKzeE9b7kmyMLsgJ+ChSazEPMU7EBvu+8HwDkfHNeB0KVsHktnAN5YLxwdPoMdK6B5t0Y7PqSuyLge+cxeAEggPb+n7U9qQZjKEWPbwL0bpF+ymf2kGMC55QfWWmHbB7ZNkC3nUAzIBgl0MnU72VAv11CzbQZX+jfmB+/keh/O/vmur/f/iXIRKiXCCDHzsnQwdh7KNY7bndFmFNrzv2xClL8nLW/NIAjBX2sh8/skMkynogZN+Vna2HTq7IDYogoKAmfmrwMgWIELAOrwudWGIJiJSh6IyVkZIVPeWA55uIyVouXB0uGyMDQCvZMj89p1eF6Mj5xEjimAhWX6xsGT/F22sLZbNB3jxQqMTnFvl/q3nofgdWtACO0+OH5e4yahcRpi769hvhkQNazoMJfCfvLWDycNPSNjGrqM2kdrW86fy5lzLFTJwEWS/6aNvFk1K/S7EvWM7MRyJCihcDk+rz5rdgalzc9SsdJAI4yVb6gKtR1KL9XYxJgwItX4UWuQqQKOh9aHN9Byt+6MWpXW72RcTM4o7qUJXxlIJDsRp5Wj1h2ridy0nyod0MaD62EUyJCWh+zcaFtTuh4otcJx3M4mNiXmkp9d90XGqDMc7BUlBudQcyQ7xeWd66CzqpxL9YrK1Cn1dxKopyBVQdmoMuFxSUbs1v4kKyHGuzlpVeHlmjCP31uf41w/vE+elaYWD7ONZwY05fArrRoPxX1fZdFcy5pXriUyQA+z5rTb1/y8ArKmz2cH6lpzd3OUe30+QMwV96+YHu7NX53rQ+O4f+zFTZ3oVieX8v90UiwjzcWyn2ohMweuSJaGi5QinS3LL1uqR/nM3hthSZn4Qr+ysRidUad1ey53nlwVH9QYqPFXRlQjIxc+Ex2l0jfUI8jIlgNZhGv5d0XN5XzYTIyaHTnURhMHy9W0PqjNKP3D1h1yGS616m+RCxuUMfmsPgg0tjmv41Z0s1uj/tvrelTc9QW9qybvk8e9319dCFiG0SVaZfS6UOPNKAtQo8ZMYDW/nGBLfXLI9rV77CeOK93EueRLtjLE2+sBsikcy9GAn1IDo4x4fVC9lo6CALS6EHNBFDgPdsgWI0y2kU6djeJ6ZMw5sgbaO7DnOlrSZ2jrhPNEQJmRNvd2B6f8rp6+JRsjRoJlwO17Kq3rlSbLAIffLyeEupdl7Sr6r8/WeUSc14n1frsQwrhP23pr6cLlRG4+rlsFObwIzG7r+tWvadv0zDUusOzJsug44ruXAJH2gcwwy/Qb+OrjtlQ+6pfreAioya56pS/b/lMKJ+2CA2XbUa8l4zpSFyXBbNp19VFpa4sRa7edApSt8oevDVYHckac72KB8A3h91u5fgnpoEwJfWgc9ydd/cTM3p9iQeuMqnNBMUcrhw8UnccNwUXLDZPOYx7LkbD0r7erZiSiHhgZ5bLbKFmgyQ1PYDWh0mnqN3wD/GFiPsygWLNJXM/PxhigWrVn6aHum+BqD3aCeXrpVRIoSVyaAGSesgvoLTdZivEqz48yxHfCOVUJJGgzL1oVKGeuCp6e8pn1bCojbAJXGHB4kw8+Iafrlo6VQtO7UkH9n45a68XklPWZHhUr0fm0xlAVUw38ERjaDQsNr2s2Y5f3rzXGMexOOOd4JgvCQ9YUCedaWXp2JICRrmZkd2cyO3R4BJgCP1hz68DacnzE92/nNLrmciCqosg1FBVAUOWbxt3v7pXgj6BkQmCGl7NvEd+DxsBYaR2CRSm2cj4UwGd0rqZ3htVx5zrTGs19KmaObGoDl/fpig4OtMbanJKFvNfK9PUuvdVWjdd4bRkwmAcjo8Apx40pnp5iJKNrt/yoZFgEQtJR9kNcxcTlmuQa47jb1ZaAiGnnHpBADEIMlCWjTHF0Z1OqGVuuB9pm/qitL6WwGDySucgJKf2SV3+knIsu+PcBAbhFeyRQ5AV8bnn/x6zQvBWoC41dgUx2Be/BnsbQTfuc9q/6dcX6FHv+4fpOrvcbsHgtzE7t83d0kPOUwCB1FxK1yYinc9jL+DFlxA6d9Zr6bFH2pG7phDJ3Oo/5/oyyqCuRc2xGT0as3+fBQ4z2bIeddvhxVkTsfL8pQqbxJLDoEQIj03BiuYF49kenVnkqLEu/l3RK/u5a402tgnlzYvldBGDakGks2Rrcs7swjYLmVGDLypjweR2Ypxjb+ehq3Q2gIrAUGoptOnqVY/N1mys1orJDsUWG+VCpjorgTPT0dinqV6/Jz9I6wfo7CajTacsBEnPz/6ifwbyi2QQ681Tj4x34YH3/6I6GkRzBeHPK9BJkmmIuUWuHLIHAFYXlVgAWNW8SKY+aC7JIQAIK0uc9sOC9cy2MYpBKgxK/45EWPY0kIITajzsFjVxXqO9RereJKULo7AWqW3qXALczX9IdtRJlfl8EN15z3Niepcokx4eHbtIWSDR9umOWCMrynlYhKzV05TQt5ymXU7HS+f3VKqFV1DVWWikk18sULPhIoOx1fwAEXLttEQvFYeA9GG+spcYRa3AeVuE5U1JiJxgY3vcy4V6yAksjQTfX28hGb1GZZXo9m45yePqe4dwR4DHw49qnbVH/Gq6t+zWenzOynP9tX7G8P5Q1v/VraRfPiIG5Z0a3Vhuli8lESXMDWpUpU5RL9Kz+KPzOUXlgRao0/sgNepqYn9yAXztj/uAKf5jYn0+xL/faE0VtLS+KzQsItTSH6GcKPnNDsb22j6ooWIV5YZT2ZxM4zgAtPZ8KGrVG4ea9ssESjV7PDbPZXG9qRaW9qjcICOgQk5ZetF/daQPqBDoogOS8MZJsUad1J281tr2CpyLcZFZOTXSblPByNk+v5Mp5iuZRUJ8eiigFWhuYY8XMUinQn4+fzSg1x46CQc5Zj9S1rnO8+pqmkJfjr74kaTA5vwSM+6OvQGa076B2gKwLU6c5H6pkaU6znzvDaL4eNp+haY3Y10LjTIDDtFGj7nt12H1LgXLAUGoEHUx5S/sk+FVVSQK2Ph8aL9oOjq2TTW1rVq/12v93LBCF6OoW3edOjjD+kJXga6058Qgkal1q7+T8URBLTRK7DcvGyKnmPbZ0t1KNHA4v3Z7YDO55ndxeqW2yuGJQgNKRNLvIIVMKq6V1ShtUY92BJqv5emNLjAKZ1B4Wu1hYRHaoFSTwgwU0qZ3rTRGBBHVNIJ0RhsrP+0GSfD+a7SXoyrHs6ctvE/y/jetXsUrovQYsjKoUAWfqx1FOCaCBT8Cx12LqQkJR52jOiwuJ/RlAUBEGdlxMIKKf5YHhmI8T2ydX/MZvfo6/8ud/jN/68z/D4/efoksswVVGZoxQaJSjBDeN6WXAzxv8MlSqrXwprwYqgk3KH8xiSThgviVAIVA5zhKwMaLKZ/RDfY+hHKE6szYnxain5511Ai8jUF/vVzQ3bbb+Uc/D16oygb+71Xx2eln3m3OsZlnUCKQWgmuHVK1el8ZF2oT7aqN0mOMSz2c3k+BTuXU0oEcH1fdy0scCJ2m0ZwOeYq/oSFCfxy63kjewRwYdr9Va4jpg6pJ/E8hx3/hWz7pEyp2FQTk6v5ufPjYSmrfuv/UAWNKSPCE7wB2CUdxrDBeNmVK2zXES5BgF5vU+mOseVabKnjsJNCvqr/3fx5usV3fCfA6xZXL20FpcS3xdc6zUIplSssOZ8rPUXHTRewfHpb/yZW2QTSRz19lFjmVnf9hLZbb7JIsosNoq98RwcF025oBpRmoIO9tL5k6AXjYSIXSlnXYo3S3R/kRpng4tCNn42rK5OiB0YNWXJVBYtC7nWk/c5zpSgraeY9naA3Q2EWkzAJTuhUAXxc5W+qlAkgIkw9Ja4cP1i1/vd1lzMyZ0AsPpKIt5CE1F+/8edFg3TAQfe0/X5MJStNyMFKtVtDmF1vPenu/49JNX+Kc/+Rl+/fFrvNmP2Mav43evG/brCWM3bQhHc3DMjzKnfgNwMTXCs3y+b+Q96QSvcc8R6bZUAoBxzp1xA/xgMbsJgmR0jFEZlBP3AXij21nqtxj2I+lRGrSK8nq1ig3OCdvsQyWNjMAVsSGNN9mxLUpsnf/eKwIUGwE6C6+UVBoi2w12gXL6VPgrnz8gp2GObN8fhmu2+Q0DmsbshOrHkCdgs4w2BIeock7m483FJHRmTWcAWbyG49XXXWctvN2TxNHDq7/Jro8qEaG1OWopF3Vv5pwfGmjIz4pGf1WVFqWhrnsD0jm3rsrz4KvQ0K30W4j0HjEWHNnkzGGwpUyd1WudUVE6JoFanOeU73fT+MfzmeZu6T9jBE6mowRYmeKHOCNpojn//qxkzjgXcvqQ0FTrNEvgwYaVKFACoFq20ynnWpmPDn+YcAJ0gs+99of2YLJ5WhOM4htbEHNnYj6MPRTS1tm5pazBNFXNH9lXJECA57hkNeISVJC1HqYxnY/U0yW7SiDD1NWO0CIZqj0D54hglIGUAaxGErM2C5z5wTGeWkk38jMfHHM4RgfOPG8LechhPgVtpk6Npt3frVLGtP/UAF642OPas1xc/qpNnNilt3w58F4wIt/19WcD++VGoupdTIqEe4nc0zHpxM18HZ2VjCCNeKdK+T10vlv9ngABQBmCw8THDxd8//Qav3Z8iR8cX+HT0xPGmGJX4t6aATQsNPu4AtgN25vxrW30FVHTaAzX/9loSZE0NTF0hDcDzluAoOsQc4IGOjgeaqak1A/k7HXf3IRWz0aBGstf9Zw8GRtpgNGMDOcA5QQkcmMUOZl/9kqvTTrd1r9FFWRelSOqgrIlDdLHU5F3lozuj5E6GxRvcx5mMUu8VzpMpbA8wSUHpTef8HIGFHP3dcgITtc0YAtdxsz5Vkv1HAcfaf+maW1Lt8VoOcdLIDXBR0XaBWLnKYAf00KaF2QUefA4xJINzZSiQJYPh4Ng92kAJcBuKRSey6V91sqOdRBi1znx17k21g63lUJTVJ+ppd4F12YyZQQUTAEmOLHd6jiBFNPHKeYFE6TRICuRDpX6BnZTpWCbFUa9+ZkYpfYzAJjPJvzFDduLK+z5LRhROrrGlPWfjUvplhjwKM2VNkB6LW/BSQdiyTgxLceT2jlGI4G5qv8ae8EScumSBF7js7cni7XJvjx77eOwfxAY8UOdHbQc4EibTNanp3A7mGVqsP8ugTs753K8S1DvOhlaILWnNe89IjdDCxJoZ/n/pRLL2loh09ROD/9w/WLXe82wAFAkrH/fOUZGbXan7PeZDa0uKKPZem3QuIWhs/YayFrSIG5vDLdHhqIIw3AdeLod8MX1GR7GFW/mCW9uR/iMFU8jqaqLu9ytOxZQpHOIyAKk/kIR3w0ASlcwroaZiB+Tf6djQkThZgAy57tdDDugA+UUbXoO7EgjtBvms6o64inKaAxMF8gVMMwJI5j0YFgY1RSAYy7YZDCHl2OaB8dGWl8VJEjjAhksGuztToxHhy2HQsZjtFLXVnIusLGXSFfASc+boCWfV8fQW3ue5mx4jxzrcTHsz+LwPrUgVySJYKUG4OmpLe8h1jfTHimqJEg/eDEUzUjqEEemdhJokQm5r+iI37W5u0Fl9/NxYnwUnmd/fcB4udX33epzK70BeKb9xtWwE5znupwPHimhS5szgo2DB9ZrjnF4o9TzZ3w9JoBerisg3HQIQFVt0HYkuHWmPt10f+wdAo+286pK4n3xWXplyiBIsErVJksIsqjgXon1tkkn5jg87Dg9XHG1A663AVwhR60Gai1FZjOPBGC6gqxbal4E+hK0+JZAkYBhKxAh8TtBdisrJ4vqG8TcSRvjLgbGRt3T9hRrdDkgEgg27OjYLrnWyEZZWx+0cwmoCTBoe2gH2USS40KgvZ1jvbkh0uEAnGNEO8C1onmqZxTrCVPwq2MM0ka6FWNLttV2w/YE7A1s8Yrg1gr0vOXrV5Fheb8Bi2MBEBK0cfHR8FIslYtvokptYXXkvMpHe6SdqHzjyc2MRlqvhl4eLIN6GfjZV8/xO+P7+NnDc1znhh999TFur45ViTMTVF3yVNFkBMYN1em0LfB5QEWhKMe/VGLkuACQRobU+DyFs5KxQWk4aPj90IBaGrDtKQzCPNRpraJmAQELAqJ5bPedxm6ewspG474CYqJIAZAORztcslCBSxMjlkBlvG2up8GsGBWdPN2U/DHGrTpDlHl+BxHPDGNqyRLo89MhBui5G/ucFyBARzeiZBXUVLCLojm/ZIc4nrthHqc6OfstneVzF4MTh7zFGuXtcw1EqsG1Nr/RlyTvfUsAtG/x7POwOrbluQYwX+z4+Icv8cOPXuFgEz978xw//dlHwFdHWEspxj5LgJmATwADdCyW94q1+dsExhmYpwoY4MUQsD3+uEQn5UVHMtDSq+WsxTp0sevRa5ws3quzc+6iYrfocjuPmcpt4MHHur+ASG90jYgYMEswxHXnSSyowVq8z4E4rbk5F0/QOc7IdAuws5eJ59EW+ew7gxartU+AFVq5eO7tbLBmk9w4bh4gLts28Kq0IOSYJaDNe6SmaLaS/HED9qOGo9Z/lvgu6zLHlOyYqoXyIWx67a0BWOrQ5uaIDsfxt4C61xioT8s1ZABk1SQAP6xnmYmponA7GUQFZxsiTZc2QhWcHaBIz4LVXrTXvK3L8X6IZL/r6/0GLNx0AFT+mikGRq6VonAZHqBQNVHyuHSwAonOgNp0dKAOE1Ue4CM38AHVi+MycP3ZI/7wfMAfHWcwOm8OsNdbamDCMA1nX4PcxAf+8cifDq8Up6VmYoeqNKgTiHubsMuoaN4c4zaS0kWNhSIhfSyAO1p9Jit1cNw+LbAxR97HIY06LU+LMIOhKYflGRVxzuamgEWRq5yUgGBpjmamZ3BpqTdwvMtgyaelkDLEsSaWR0CEy2Gi9CUEoRuAQ2NFeKP8UoZ5Iz5P6bE8nRu+Urx2y3Hcst9GRrXWI11A+Xt+DzUVvUOuaw1w4vIZSMOTFSCockaDBn8srZTG6QCMcwA8lYfu6QRRYGB7YxJ9Rn8X4OHTJ/wz3/sZ/urHf4zn2wX/6M338ffGn8MfXT6D3Q76Ej8AdiH4sG+lv8kmzBNZxxLGz1OMB4+6kE5kB2wg1qMCk/y8ZC5w9DoTx4q1UKQOlA6jsauWgEGpUCvntOy32maYYwXUYE+gm0UfJSCO+misF4CKxHP5iI10g10H9tcHPN0G/DqA8wj2yWiTUCXYQIHXDfAb17fLTlqmi+MojxZ4kB1EbdN+EWRVELKC4s5S1r3kms0x4/hGxZwp/dNZWdnmfrAoAdGtGtOxkup2yuXAMuNM59WcQ0xblW7nveZxC0tfFAmXUf17OKZkO3nvVnanN9ZTOg0E99S7ZSCaoEvM1EQ1vfxw/cLX+w1YgETakPDKSSk3NN0V9dJnIBdPKviXBky3clYSW7HHgvG8Cpdh1xkdO8pDT4Q25PNTIH4gKX+UcUidyThTR4Cl4RmjLn4+n5URB/PL0p/km7SRZKiglJE2C0tL0ylR8zK8OciDwz694OOPnvD84YLX5xO+/uoZ/HUsC6fh4qadea+p6TAju9HGxQhU0h6kMWi//oZY1yaAq2mMi+Vq0UqrWCEI6QJXRVl0VNQh0NF5/UyVFkoP1t89LTdapN57TgBYtSUJzLqGonRVaRD5u0wp7Xeljt2YL2kPg1JZPhqABOS8AmkgxeYaAqVteM0EgEwTxL4qLRRLN/fnO148O+M3n3+Jv/jwMzyMK3Yf+MPHT/DHp09K4OuGcUHR91wLnPP7DsBZBuwJsGP8TZqbDrb0vpxLpuP4fpOjzKFoouL+3kr7uuZYgDKdaswX10mxCWJUgdrzGVVLB5G/Y6+hmcwDq1fktPv6P9XatPMGv448HDLvaXPMzTA4/yjH31PGvQJHwOCGaBWvTsDt+WbZOz3X4JrI72m6PbTv1DMoEOTnurQ1NYb5utShVVfvZvsyIJO+Km1xTw0T5E0jY9rsoLez2si+TABH1HfkGDsIVriOUHsTBeL6WUU6E4zjk+cS8R4JhBVgEaCx8urg8ATx76pK6H3om/JdX+89YLEdEsjFD8q4qFuic4GYUjs2IuIUivbuyFNk5ilgm5FaOFzpyEorQrQfzpcOzUtYNQ3zRHFb0pxHD91N6kmkl2DPjIyOeTIx9jSohkjjXKw2Jr5pPIBKw+pnXo7jG+PX0iWk1P0UYOWv/Pkf4z/z2Y/wa8eX+PL2DH/vq9/Af/CjH+L2k2fx2uOEHxF5aDOMq4N0LVmPam4WcwBAglZ10h0Aeu8IAoEEGpGhyUqwlo7TMxqwXYHbi7sI3mKS5ykNVk8z5X2Ct8deOwlw9ocy6Eqn5OCOi0WEJ1FdY+AOjYIGKs2WovCK4KF7UWkyMu/OddtoZKb/uNYIxnkPEXEDGytjdgvNSIqApVHg79lDI+ec6cbS7/B1ENPAPXPbN5z3A578AEzgPA84s8TOaw3x5GUg0l2KeD3+5vxSwAlAAkZ+lhwcS5sHpBFihVeA8mSUKDbu8MaW/y0pq50pIQJaR6bZIGffmQdpUqwcpJiFEWCiRM2oIIEMpoIJLBcZEbuUXiyq2iINSCDXv4/ai+jxwnuIP7rlrByLtHC+OfdWFSmgnj3toDni0MP8Qo1tZ5uOHswZO21zrBj8tZ48XPfcS9KEOQQSmBrv51xF6qZNQKZu5zZLBsCxYHBBdjS/2Lx0WyUcyttcWhK4ggzOtYIctkPovaM8bBl7C/GMtu3KlGUxdR2sALVnVxT+Z/761Mx+G8Dffhft+f8MAJbcyCmWk2EeZczGOSJW86j42N4MibsiMkq2hMYpo0EatDgILL+vUfgybK1skJtWkTiitA5A5MavppNiZQQYXbW00qAO46FRvumgpM7PjV458kbJznqPGAka8u7ot4oW2GbazeGHiV/73kv8577/e/gXPvoP8Ovb1/jpfIHn2wVfPD3D73/1gLlvwGmGsXFEz5g5sJ2B20N+FvvbzD52ASbdEKWFVj8X8+Mm9oUALcoaTcaPgFACuwNBRdMs8ePp+NhjQemTNm+AIh/P3LdSRhQRchw3Gp4mqKVxuqXwlucieTk3sgRkjgR2gKXMM7QvCf5I36e+ANYAa1LWYD+bFjE79QsJwpfqEcfSy4LHQTAdxf3DzxJwy/t89foB//Dl9wEAD9sNP3rzMX789Ufw14fSZbRKMturjN0JaCydE4Ej5yHTQlwXEpffAGSqsVcusXeJHO+ikTHpIbRPZgy+mwnsIdfPuLW5VlqNe3Fi7KNACsXOqdHgWHfGrcpyK8VpuxU4ZH8nsYKme+1ibYG5ieCcunPOda+1taW2o7G1nkJXBQ+5FxkMMI0ajSdrv8R7428dtJljrR4pWzEgMTA1BkvPq0bvUc+lkuu5zmOl/gw6fHV0RiK/iwyro5g2r+8xxHxKBH8HEsUcNpYZwGJzxeomwJd2pWGo/lyGKGW2ZoMF4jck81O2+p1ISRy/LA3Ll+7+N38ZH/ynud57wLJ0XNyA6dwoaYCukN4ECEfU6XjSd6w0gRsMLoEqPDcaK1PaiAitA6V/aWkLgRiKuXLDsITTdguxHPO1dKqkQhtIsmnRP2Wrz6bAaz5MgZW+eVkZoMjGLQIXbqQHB662lGmK1dkcnz4+4S8+/BR/+fgz/HDc8PG84PdP3jnVCQABAABJREFUn+P7z17jD07fg98MdpwY6eTnNSgVfkZFWne6gYywbIvKmyh1rPHiVZVOCTI8NAuDkUpSwKO9Sblrjn3SwTSi8aIcv1tzTICcACsdvBkaOdEEW4fX5eBF7Wc6BSPEjkp9JaMQ5+Ek+ADEjtSpwykGvwL7CdK18P0LXc1KDgaGh5hLGKQ3sVuloeQ4E9+4xf2a1VlN45b59JbeYmmvsxrMgHEe2L864T/C9/HFm0cMA75+/YDzVw/VWgAQra99NTmmreQ41+e8nx+uE87BMYKK6rmE5ugIbmsDGIUGTPd4OfJxK52PjiCwplvQBk9gRGfM9Ar3FfUVPSWdgMspQqWcxw1qKphpmZ6WApqznARj6dA3r+/hGCU46j1TuEews8cTsvNs2Z7tnM77GJ9JABBMiCnNxfRVr3ohay07kyny8u75XqZf3aQxMwJhQEczCKzwfdy2XPP90SZZaj67CXQpOEyQp5YJjanjXAmsEYjk/7l+lvPArD7HU+fFIw4IZHWRnU2wrnTiLKAinVKupzlrXD9c38313gOWxbgxz51omhHQYIUMo3zPpmoHD3raUBoRbXhoA9yeB6DpTZmCHgyrPm7AvoW4Ejx3RPqO0nPEe5kDryiWYILv0/0xbYDaxL3REClUdbO1tmEJFChEc0blJQDzpOjJJu3pbPkd133DeR7x5Bue/IZXfsB5HnHZt6iAuRKVtFQPade9HFeUMZYxINBgyS/HtLNBApUUtTLnnvfMCPs+V14CDRSoS4Ckxl9kVZKZA3umUJNAgJgM2LgqKNcc7A+azjVqI5ikYPMhrZQnW8YKqfZ6VUPACixYpiVTLMo5mZm+m6kn0SGJHdzupbPS3mg09lKls5u0Rj4c+6m+L16Xzj3xOJ04Xg3M2wN+9voQtPxlRNlqS3fYaGAwKfdKxZpugiB7deDQHundV2NvJODhYYEdGAKxp7MfRjAP5bABQE37UOts3CxEmwdHb6a2RN1kuJLyZxotqmRq7YpRs/iukewS52Meq09JzIcLQM5j3j8/JlNocqItGJHTTTA1eCQD06ne0oubSysnJoIsFu+llqrYQAYSXPfqX4Tax9/WdZsaro5lxgXYs/qx61koHGfxw3210H3rB5aXMx1GO2h9PyRAIWPk2f0Ws4DJPECAmekcrsN5RB6tkGvgwQGeYeRpP/fWPI62loCvM5KsHjKuqRz7LBDpGPltXY5fGsPyTq/3G7CkY9Ol6MOF9NlJNjZt0dzx+7uNNrxRh+FAZChpAJpzInMxT/nLDp7SsBBE6Tv4TzIgVhsl8puxsXsfDrd0fLup8oHP0BkFAhICl/2UTsJcG7ZyyWl80jiV0j2BwNOGH3/9Av/ey9/E83HGDw9f44v9Of7uq9/EH371CXAO6+Hngf0Sb7Y9SypZInqoSMoyynAA21NNloRref/jXGNRYCs3fYoVaUy4+bcujqXxJQDJCAdbE7Z6jnmLdAVmWlS26EdmpmbSgW1vAGQHT89TrbuWSGJC40MWiOlMgoPr61uEnNI/OMxMRnVkN2OmSjoFT9El1wfTJPNUoHIes4Pr6I6+dC7zmF1AyxYHuM3KCjo7uwB2PUTk/hTztj+42EaW3Gqtdr2HFRjvDlAAPwWZtttSGtyF0GTwlhPMWYKbc8nUIMefDsdzDRQAQMzjhOaZ6Tr1KkkAAouy7wLLNe9MCRSgcqWfJ/dcvpgnkUv0j2S5uHcZSAG1vsB7gDQxnY3Q+7D2/2F6iH1xaB+1Ttp64VjrkNKBYByVo0umtpUNc6P60WEsIujAfFqyhhAId0cBfIKn3LtxuKNlcGICJdQvuXs0LLzVGptHLGAUIMOOYkcYGB08O2xz32Nhr4G0P8mUejav42erS3dfh0evNXWXeor1h2K9mC7uLNNbvj4Alrd9MXLOUjI5OJYSKjIzTEabW21UUYL5WT06xIZoc9/AQG+bXxUOlhFAGkumNmgk0nEtvVfIhqS6XCLIvb4LgIS6cARjkYaBPSLYuEpGrVHVPNiN32k3KHIDaITyPr3GQayPG17/9Dn+3cNv4afnF/jk9Aavbyf8zhffx9dfPIedR7Acl1EAoI1Lic2qudJ2rn8vEXHmBNgRd1JgTG1IeoEAjBXJUPxI7Y3dgGkmh8l5pZ1lSobrBQlaOLfzmcccwlZjizCgk+AzHQkdvZypKn4gDQujdc77YiMsMUADMACwnGP1LVc3hhLycT7bkJIh5D4BKjIU27IxDZUCymz7ruZ1THUc6rsbWSgKH373bJk+UYomgR3TON0Z0+ELtCYAVr4/x2Measw9GUkyX0qnImzAIEvDnysPBgmidWxACy6C6kdpaXJeZTdys4xL7l2gBLv568UG5PpE6lbmw4Q1sN6r2+7nlmO6OlGUcyRAm/jGtb0xsRk95dCP9SCD6cODLdXE1nzEmmk2NsdCmpx8EPZy+YZGhP/P8fcZ/xYja5BdKkYNeURDgu2jL78TG8c1M7TMCpDlc/B3BD0KSrx9p/RgsQ50uKWv98/KLmmdCKyPBbJ9Q4H9TA3JZkyDHyfARqR3c/vh+sWv9xuw8OJiGICh6u87lcu/59FlMJZGbFyz3MSZOlH02hYhKWYgXjtuwbxMRqpK0dyJuDzvafjazRPl0LhJfADWyku7UZJQjxUz/HmmuOS4NmSVAeq4+PKv0CGMZCOolPfYfNvXG76Yn+DLL59jO0zMPXrJjJdb0fNXFJNBB3yo8ZLQdITguXs15ccVyQI+yzgtKY2Wr1e5M/smsDFZ9q9ZDIC3sTMoYupppu18l8Zz0rZ5jxPwpHXnQwFXRdNMBwBJ81blF4EZ27UPPRs/P41aE2uOGzAbo6ESaavXFDAtg9iyLOANirK30oCIrmdk3HrWGAA3UxNDfjZTDz4QVSzISJcVM/ms42rY6XQypUQmUZHsAanHYmoivwPlULenoWaGa+fVvKH8fArrdSXYnSdS+ry3Av+VrkVV+xH4N4ApRoU9RI6lc/GtGAitBe5v94heHXWm1E4bUMCcn+knhz/M2n+2aQy+Madc03vb97mGZnPgat7I72RKkcwRnSl1UgokTMwoGsPEMdLu7fdlvqzFrrnqInC1dKAzdwi8KA1pECtmQIneremfqHEh2NBzFyvG+xs8yyttqG0Z9KQGZmHHDhyP1EQ1Jsq5l3OeZbN0qGYb70zjcY/ueV4WO+xqffWxfMuX40PjuHdyRf6zWVYvZ0nqjWr2yIVn/pubZVsd5kLZ05AqD18Ra9cdKCLL17EsTyWkXhvAJlIz0ZgA154s5+UQ3UiGU5HANFGpyoO3MuDOnlDn4f1+sD4jafDZmsuxW+x4GsDr01IxScO7PQH7c8CeCO68Ul1bdRDmNS62nEmjFAYNzKgHintuSvrMl/PAPZ0cPdqc+d1nd5ZitjnOZnLjWucLeRMc6vvZNyHHhRGV1sPm1YCrgWIZXav55XwyBaAovAOkfD+ZhIXG5pyeLR2nCQxOK+o7OrxCaQPnes+1zfEf12i8NW7IypZMYbW0Sq+445of6WwXW3eX5iJwUcoKObfe5vFWYEzPnr1KgFrr5lAfI6Z9xi07QyegMI8TjQedLPcQwkGDaSECmxlsD8+BEpuWc6iDENXbo+ZGTnaz0ni0nj7UEMmfG3SopcpiPUqpbQDzxY7TZ2d8/5NXAICXTw949dUj/NUhtDGch81rLvJemKKWvbvZmibM72clY4Drlo4BND96tnyO+J7az2xFLxvTgLNSnnwuatW2dr9ZAdT1evM0tV60j7e2hw6O7c3A/uh1NlRbdxxr5C2Mm6kPFEvje1pXrCjtN9NWo7Hf1I3l+N6zn2TTYr8bdKjuBniyVX7kuqxxFKPb7uueXftw/eLXew9YAJQAc89NdcdIiH7LxasOormOuDDVe2DFP/ERROX3oJSbuwMC6kqaPgAASM3Pg4dAF83ReTmz2NBZXnuIaE0VA3xPWsP5EGwNHYSqH1J42x0+kOCMZeC9d00aiHEeqT/JZ07AxYExD6ZkXAE/Wmsn7zL0IzeiuoFuCBFxFy82GhZuquZSWouGPcu652kqxTbOCRpmuIVxQwijMy3UjwwQo5Fs1byzEGRbGIndR4cL6EkwPLIKrXe+nA9ziSAJdNhJk/1IVk1Tjg87nfZTowEJknU+CoXXfHTdU94ve9o4lv4RpGdsB4YleN4KeJApckOc50IQnGt6e01NQkalSZvPUU65MyVKwSj92YELlvuiCDScX4J47rO8tyVaZjpiq7Tgdm4OPcd4AcvukKg+9ycn32a9l3t/5hqgsLnr2ODVU2NmSohBxuJ4U5eyMqOQTaAo9PH7T/hnf/2P8Vc//mM8jBt+/+kz/Hun38CP5ydxQvMRUf3FwOZQ99z1VkqRcB0TaHC/Hz0KAnJfIEGuxplrjqew+71jLSBJZx82wGW7cFvfx31ggKr7ppnm85saurTdV4M/VHBSTLXpfZ56GWfgcvBohJZzyoZu1APZMkYNeB1bIInaWGLF2FyRCLTtGZWY7wFy9EwtGLXdsF2A60cFxID63Hv2/G1e/biHX5XrzwRgoShS7ADapstQwrJxEhCv7QaftLlOkU2B5uAG54sJYBi1HMp4+YzKHkbt3CDUcGyXRP+zRyjcYPGz7QzcPgLsthrQnnNGPhsFXmwyReo8DHxGCzerMzAAOZAuPo2f15eJ9ieQS7CxOCK0TdvnYSvmYwF3XVyBMqYYAT6kK2BqoUd/m8M/ueLZ8wsA4Ho54PbVCXg1ZFT2UzlsyzJLT68eP8/nWkqY03Gb0usxThmBirG4v0boJwi09Ny8954Tp1NAGXAkQNKD+soiEdAInFzDqjnaeE6EiDnXF58r2pU3YM1IeyLy7BtTM7kXco6RYun9uav3S3dinIpoplYls7wEwvpj5RpiK3JGpp4OQ0dLdIPN70vQ0tNk81jMkzmicykSFG7t/XSoOroC67qlI21OmXPVA5i5AfNxYj6DmDS7jmiM2PRAGhurZxY7N+OcGgYYWof5Wn+x44efvMR/9tM/wN94/o/waFf8R8cf4tXthC9fPsP19UHVTh1nU6OjHjRZ7SIG6lI2ZvK52mnySlt2kXjfolyTE6lLcQlepUm6cm5iPQx2ACZz2dIfk1U5ZDcyeGCgZ9fSAAEQIKZdFjDzZgP5b2qK7gS0fI7exHNhpRujZO29sUZca6YHekopE5ju9dowGlbaJ1SKVestCyAYPDMFtj9b7ePbuj50un3bFx3NqVUGZO5zPwDj6mX4M0pQKWtzuBGRofQl6VSUP27aDp5walSni9qPRUfHa3voHWZSzux1wpxsL1F2g84IUh55eFWlpNON9+cG5RlGs40Fc8zULpgDVqV6er4eRZD6hMFmOwROBjA/f5bo1xIc0REBKPaHRoAsSj7P/jhFR6tNN6MXvocCwHTC88Fhn13wG7/2Jf7Sx5/jYbvhx08f4Xcevo83t4+kAxo7gBwPGW4aDiGSAgRdG8Pv1cXovaWBypBBxvhwNX2+OVTOznSQtRNbazywGGJWX9i17rGvbQBJP5dhkfZkIrQmvVlX+3v57hyTkYZ2CLijwMxooukEf/48xsp5knWua2qWeMBbrI8CKGRFuC34Hp0w3cae44pZYxZAr6LUZZ1bzs8G0ftiwgwBJoaXI0lmSW0EUtNFADuerKVNc+08Tvhp4vjxGZ9+9ITT4YaXTw94+fUj5pcnHL5e52NJwaSjN5RTU4opfzduYZ9gwEenMz49vMZn4zUexxVfbK/w8eGMMTyaAbZjQpRO5r+9mGUeM4JZ3WdXbQ/3V+19aT/ul10Cfj8Uy8fqo9I/ZZAzCwwCZdMEwu8ZobYPxxWYx7IfSydar/vT2U0IBnB/SNu458/Heg/zUEBrf0wbkc9xez5rTSRYZ/Ao4XSyUmzF71ut6QoQYtKVriXT8+CRRs8x9uGLCFearBbcbedaTx+uX+x6vwFLblxnyd4RGHBFyQByceZCYRrGUR0p0xCKam7GQLn6+yjEw7lbY16kcSCwYMTPiGRGK2rS10HHukAG2/sDkKPxg2vzqdsno+eMkiof6/ICjFDUlA71TDzFmMyQygqBiub0ehPA0Tj13C8A9VJpBtsHlH+X5qSVydIAhNOpyio/OOw81EfCD46PP3rCf/qzH+OvffQHeLQb/ujxE1z3DX//60f4l0e1xOY9O51HGiOmtEayUmwmKCp88xArLoCD/0ClmLKKib1xRO/TKbCfS4/Ujq0qDKh04Kz/cz3OUca+2JusXnqcAQwzXGZ5uDlglyz7nQVgxxXqkKxUp7U5SoCsg0IzWp+HON5AaYsdQL6Pn8XziPhZYoVA0NDcn5xkPlPO9WT/lJnPce37Nf6wqRkBSaViVk2O5r+t40XQns6XAUkFDt7AWYKck8MfdmzPdjx7fsZf+t7n+Gc//iM8jBv+6PwJ/v2HP4cf3T7DPB/jQMhjzR3HRg5sj1Lv23MIcKjpGsHV1fDV+RE/uX6MHx8/wXHe8Ee3T/H55Rn2PSIZanUkxFeaLe2L0s71vLRdtnORQOk6Ab+2b3zc2TJwvF2MkFJsZMvIzliu1fxePwC41r3CSweltCjHKVPfISCugI7sSbS89wUAEcBSCyMgCILSDBwPdSq6zjfbsOprqG2izbsa/GFKe6NxJpA3z/VfoI99aeYxUvME3PfsEMEPGTik/dye7JvHibyFyx0fRLdv/eJGyFMw1WMF0GYKx5qsAcqAMietihQ05+OsVDB9x3bJr0ywc5+zt6SwOwCCRUQ3j+H8lHLid3Cj3AXJUZKYotfstKtTXenc2eQtqX0akU5n6gRgQwGx/L5xCwClCgH2QfC2Uac3sURR7wW2mhOczQkAS3pHThXNYBqjGUDl6HvNCz/3+cMF3z++wg8PX+P5OOPqGz4+PWEcJyajlFuwB/sjqkEgjZ5SWslKzRIDO4D50EBg/pAOdGe/Fxq15qR53pPKtxkR7pWimZbUPdmTDkYyLTeuUKdZjQ8dU44T8+Ix+LmmD4hqBy9AYTuAFNVKNLoVAN6PpXEZ56CiGXEzDabvuGKl2VNz4VuBYuUbcv4Pb8pBd6DWr07jA1CKJ+h3q5TPDh22CKZ3vLRL9Msk0MCD9NIRsW/Jdo5SYrdmnJkqdohhmieHP+54+PiM548X/PDFK/yNT38ff/357+PFOON3Tz/AeR7w+dfPcXl5qNb6HK9cb9IQbcBEVYsB5fRtIpu4DfzxFx/h/3P8LXx9e8SzccEfPn2Kf/jF93F9fYINr94i8AJ/tAEUsCd6tVvlSwhmdmAJ4Pi3qsBmOXGlLC3XglukK/he2rb8HFZJxfk/bQ8B6lvTsEyxFLfVVmnsdqRuD2ItvQddtOl5z5M9Ugg6O9DnPd+SID/luPElmpNo+gnz0gDmOFCkH8+f+4ngKe9F+qde0EGfQJZ5u+sm/uBi4eaD1777cP3C1/sNWHKx29XUPKzy06g8ejaWEhXODcxVPRy4WjTTOnkJybLBFo6xOZnClSHmBpzICpsQX409N/FYI4Z4T7Iq1qoTrDZRAalC+QaUMPEQfSooalyij/5sAOZhStdCWloRbIv087b68S3S14RmA1CzJ4HE2tj9+HeBHTrv5kyjbDkNTmNcdCDetwD+p8sRX1yf42e3j/A0jvhyf4aX1wfMm1UL8mx/zhTVbM5UvXC2Etfd0/gqk97zOTNVsqS3gIpCucbMMW6jct1WglxVn2lAkaC1RJ7YPEuAbVmb/YBA9hCyFMDGuSomQKwzWjiOKAOu/iApAtyerISkXCPHcoTSbxidoet5xfo1YFe9SyBWrT9rX9/mgREMUFrDtwgEqI1YhauWYC2MOteOmBUCuwQ70pBwfq3SlQBWzU2uzUXsOAA7Tjx7uOKjhws+fXiDTw9v8Nn2Ci/sgq+2R7w4nLFts5izrTkvrqNMO409OmRL4Ms0nhrSAYdXA7fxDP+//Yf40dcfYxsTT5cj3vzsGeycJzRTa0bGgc/DACR/x4BJwnFL29P0H7Hva62kTrSYkINjO9OBt+/g++/ZnBxXz/SKSojNxUoGeDLYljbx0IBojpnNWteduWVKTQwRyo6uFZMNuFAQz9e255DOinYngYyCjt0TrJu0Pqxg5HEqS2ABSLPIEnyBVh4jgfo+MjtdGM2S7ndxfRDdvoOLNK9SHE4xFwrQzLbxMnpgrp2ABwbsj7FyBBYOjk6J2w2Yj5neOTm2dD6dWvMtSgjVFIubnjqKRXfSIoi8x3lsQCUPhNP9ey4ygwwmMiKhA+FJx7abuihS+Mu0mOhZ6jS+5QyVSkKjBqoZByDGw7YGbLZwtoz0mbPXkfV5j2yF38WpnbYuYZ/h65fP8Pcff4irDzyMHT9++gh/8NUn8NcHnUrM1IzGZACeUVaxPl5t1GnD06CxMVW06nYxYp2ditfH/cYYQ4CBnxNMHysafC2L3dfPWCo8ajlo6NlgTy3ScyzVJDBLeKmp4l7wARyegP10x+C1NNQ8ALYRgOVrEkT6huy2ClU49by70mV8a4INnbLbwGkHhJxnNZBDW9PU9FCT0pzT0qYdXCOxL222VFoDDlpjA8WA5B7aR6UomBKKNukx3rsbrnPg9e2En1w/wo8On+HFOGeq5jmu102RNlNNOHEtxJ6dJ4N7gprsYDyf5dk9qVugIx+vB/zygK8ej7G3biOcOUFxAwklJs2htfU13lLYBG3d5lhbTwo+WCWTR0ZwvHtZNzzABj+D7f7FouXnkn2TvUin7znGtKnUq3BNTKZWjOO4OnrZu94b6WKYY8JGvaefXaU52qAKqf55Wqdk27lObm2POYJNN8gPVJ41vnMS6Lf7NwB708AMr5QQ0/L8HKW+3vr1oQ/LO7sKOTcWwBLRpzPaH13sBdXpMqoNAeu4byd6LmNHZkHRCqPVjDD2B9R3yFj44oT7Mek6aj2jQjo3n17PlJFSPE/mlds6s2lZVlfOM/LoYZXUHn0U5a/yUBrczAVjIDb2aJs+HaIU76x0yIgIoznmkY6EBoxMCupZGEl3dorN76zrQRzANMzPT/i92/fws1fPMcbE09MR1y8eMZ5GMTj8rARKLDee1MdkHr9XAiDHqIsEOQ+cb562PK6WlUGmlI0DcgxkJ2JOa65EKef3hVEdYVQHGwy6qHU9Dx0wHfxwGetxNaVA5QATOPPEZd639B6t2sH7fDF9yIoFCZ7Tf3NcHKENaqwHPAEMwgnNneX0qxNYGBkC7DttFZ9x3Ay7I0T0KZS1/N6likNOqn1P7hFHrauFHchxadmouN8N1TvoOvD61SMulwNen0+47hu+uD7Hs+2CPz5/jN/54ge4fvUQjQZ3RMPSfD/BDzUsMVcQO6pqMdqmpvuyHdheDWli1LvpkKkdR5xztBGEx/wQZE6yrz0l3LQ6YY9ibW2X2Gtkw+oYgFhj1tLq0pflmqiUeaRg+8GLWjNM+XFvk73keqKomodKboB5vX5hWQcy6HIBcx6poZR3BiNVix9fJqFuAoQ4T67uT3aJaeNsGDiPUa1JcbHAodZTgpA9bILlRvFWGSqALzYZ8j/z4FV9mG0X7IJfpetTM/ttAH/b3f/22/7y9x6w8MwRb5HYmMWSE8SwI2Y3oMqz0pmb1SGF/PyZB5cRRQNFwTJqdZQQUQ7RGz0YP5rpGCYbD3kKgtFA0bWM0BA1Gd/Ze6vQUS49ZXaT8RTLAnyD3XGCkYcZgIZcfTonO5siL2ot9GhpZLanMAYz2axwjKYeLPQerGqy6UvTNEZYnBOBSBou5JxNAz4/4dWrQ6rqQ0CrcaXxyXHBqDNxlqmcpq6ULOu2vVIkfLY+DgAq2qXTe/BqHkeHTiPPSIoltOywmc63xgNq/23TgponUzAImpK9Y+7bcw0YsLVn611I5xFLjwkAej9Bigx1Rqw0shwwsUhsMNaidqD2gBv/3YA/gXIHNw0gctxsjzLU/dAAtlWwoBNsvXQSmgMCOrJNBPZorJCAfmmq3DLAuNg3DxieOT7zgPm04Xw84Lw5vv7qGX7/o09x3Ha8fjrh8uqE8XrT3HYxdQD8tm4ZfDTAigbe5yF1ccm0zJO3gCJABCsBq29MrqfUp2xn4PpxrTXbXUwEK1Ao1hfzyDW7tz1uHCBfqrgIutEegUB9Hn1ZF2Rh9sP62Xx9Z0l6SlYB3uaYm9WJ2R5FBdS/7CcX2OJ8B4CzDLIKpNEWihXKasTtiWA+10RnK5umUA0mKaDN+2TwS/2OAN1wnZbuB8B3qHW/8/Ot7kvB2g2wK+I8s3dw/ZJSQl+6+9/8ZXzwn+Z67wGLTkrlOkjjFijbMG4uVbfSRnSQVg3ewEi2VZxII0KxnNfipeMGIgVEUSkA5eSjV0ts3O1sQBo5P7jKsNVNFShatxkoRil76xCpyN0ISkrs1ZvLsVJH9K02etw3ARtTA/rupPYZpfuWY8i8LiOjvcZGrfWZDkva/tuo1/seHnRG04rBkgPPexiXOA5gPxXbM1MLQqe250GG6gHh9V3MbdNpk0EhszB203lPQM0zQSf1GuwQOi6IQy9Z3mlY0oB0LEoJoeZsnMeqBxi9GZdVqqbdw7LGb3HukbRR5QfhtjIoEhi3uSPbRtbESKPkWl8qL9hVlt1ovdbRPHiBBq7X3At+mFVNgppjOafuuND+BsSQ8d/SfRAU8T44zdzD1kBu+y6BMPb7mKaIhlozc4Q4HIBdNjmV119nXmyP5dzXfAeyANaAoDmtueW6GtSNmVKoSmO0YIrHQOjzmVaxtk7gKgnmVZopL4B5K5ZK+0yN5XKs+TzJsAq0tKpKiX1Rc8B/i/m5m0+yPtsl+gMdrhZztrkq03oV2XbJMWTHXqvv5DqO+TKx0/tDNYysFIvHYZPIQxoPtY/isyCANRG/3y4AbrQJOV/0Dzm3RatCtre0NPH9NqsSjIEhT3bnZ5SYvUrqP1zfzTV+/kve7WUZeTK/O1klsCda76KmtpBGdocl5UrnMq5QB8eKkE2itvwYRc5AfT8bXEnnwUjBi44mY7FQ/8h7xurUSR/PrZysQDHTLfp//Vvq+7ueDUBzxNQLkLpsuhu9LzfmxvOMmHvN71B0kdaqIkKAEeVQRUABPdHw7b4limM0va+MEmlvsj104KTWCVIWjRDoOBLEqQ9E6AnUkyYHlRF51wzpPhD3ru6zpzYGOa6ReikxNfUKa9qpviuYwQJXQHxXj14tmRg6a/YPIYtRVT8WzbxAx9GAJAFmH9sExwIR1HI4Euw2kJnv8yYsBOjIPI1wrEmeYru9IXVWY8a0ZYB1K10CgXc6G2/gn9G/HwpECQTm75im6wC1VyiZlwNkqti89i9BPZB2IUGz3YDDlyM6SZ/HKmBdsYLGKD4E+i6WsnbwSX0IwVif/57KoiNXJNbGnaL1qo6p96s5ZY4fdRzVI8e1BpnSinRljYtsXa7rzpTpmJFcd/AmLs/PVdDh0diRrATvua8rsocCBVyXaS8FPNHGLwMM9alp802gqPHg+kZ9D7+LNndSZ8c9nACoFzEEs5f2KkvhR38WjmuO0TJnvQKSc5vj2iuI3tblAKbbd/7nXV/vN2Dhoqaza0Bh6UCo15s2QZRoVm3+N+r/eeXCogpcmysbIunwwUT3vTKB37X0+OgRyZ0w0S2+W1FxRl5Dv0vBXNskuifUJqgovZxllYtavX5rUTKgaEYOOjcn6U9FrTTGqVfooEg9FuiYgUpJpeEYCTzGlZu+jbfV+KoJXP58ZqWBo4wgIxy1UL+tkVtn3Oj0WSY8LrYY8AIEBRAE3MBnbg6GU+2V6vARzgGjwLPYqL3uhUZPwsYEBzKAIHBw6RDiZ8VaFNvm+n+/ZEhH3fPShKytm3G7e9DuoLKTqvbaAgirLwosSpvhKECo7yy2kXsqGDwskardDHYpUWtPfSm91Z0yU455PAf313LttS99K7C2P/M89yvXB9dd7nEAis7lyKXhyimxdY/NPNICSNB3uHNIDvViUuM9jjdtFwEnHV7aijinps1ljqNek+uXU8j9szA++mW7pZx/sr3rIkpw1MCV9i7u1l/TbHCfCcDPTNGg2Yw9Pls2O+9V4AFYx+VY31MAxOtlySpG4JnpadTz97Qd9zkPp4TXvlr0OqPfS86JQ4UEDAYEirzuj/dzeNPGO5+vpwi/TYD/4fonu95vwNKcCp0kGQRF+xldSQwGlOMdtbg622E7AmRcTXllCbiA0hiMu426Qwu6l8Xe5451+14GwoBFmKffzXJ4C23eHB6Zjn7yMRzRf2LU85XhyhLIZtglzmupG+bXy2kgWY32GkeVyRrawWDQzzjeZGyK5XFgmk4zpShTrFZGUOyAGY30Wt+CGZQqjV113YXmpY9ZLw0XCE0Wp9vwnvIjyPLhpc9o2oyq4sn14VAbdH3W8PoCPido6JjC8TyYMD+Yep4GjCig5fPuj7MYIhlM0+fqOybBXH4/UDs7Dex9lCfhcQPqtidg3HwFR23sVCVlWNI+/URntYdXetHrvqzmWqWt+X6xCgSGA9X0bdQeXDoDMwWYwIl7lHtiUGzcQJPKzsnetL3O77TeU4ljb54VVrUOde5VG695WEGANE6cZzrEwfF0PTeZGe2npotZPoeglB/IeTKItVCqO+dEe5Bvu60MRjQvhMCjmLsGVKqcmfsvGFFWkbm+bwUYWl/LCduc93p22nnT2OXCIeBna4U+V3lfuj/kZ6S97Paz9zviuBEg894IaL41QGgBZNjZ0CPRjojNbsED7j7nrVyOaFfxHf9519f7DVjy8qR7I0KFkK+iy8mFW6WTvaZ+QdH8TEaBLUIRHdkoW56Pwc0JQKIzTFNNPw0fkA7+Zjosjwt/UqVvSc/2dBY34ebqp6K0giKTht49n/m+30RD+F2QSAOuzoxXjpcrNbM4Z/pJRkbp1MUYmCudwkoqqudJ6auapYOKbymH3S4oYJSpg+0pX+NQ51oCETrDbhg7JR8ahjb/92lDpbS+ZU0w4rxz0jCvo+ZHOTPmsQXU2onEdBywGKNifBL0tDSNxgaxxscOaWGUKkxnpD4wXG85jvuzEmJT4MtIuIPposCtgWYXCAk20ZdnrNLyipjHtcAGx5brsmtLBDzy36rUY1ap6QTo5PjMAhd6foIWrp12r/fP6K3snDahgUPNe6/2ynkQK6DPRaVn0IKPg6vnRme0ZmMrfIvgQikDpy2zbDFf99jB+DfSR7R7XOv9OQ1tXa+gZ90fNa/GceB95/gu4+OQA1dKJ+2XdF8cuLYHWVmpL+LHHVHB09bux+5e2x19M949+FxsF/WJ7XkU7PS9SruZ9legzCFBN+dGVVkNdOveuHYJDvNz1YbA29je+Z63dU3Yd/7nXV/vPWCxHRhPsanng5dgsC8SQ+TfDQuKpviKTlCvTSfyzS9b0bEiOuocqIlAsQ5aw41xWTqbUmSarxMdaQVCZEASgGiz0Ejw3mjkm44ndlo6cFYR5fisUSnK6VtqKfLf42zSo/SumAVWXI6Iz8rPH7dooEXH3ZmubqDpwIrdyNd0g7LxdVBawZJJG9fKkfcIsKeNJOTLVIVYB+bJm8EhiyTD3IBURepYGChGgYritxprPgvHWNFsGsJF1LqhmrBRbN0cqPpgOEpXQjaiVTB5pl129j2hbuLodSJxlqgzHULmax4r/WVoaUquGe6VnAv1bGlgk0Aabb0o+t/b53l9N9q829W+EfUSAFErxnW0jE8KJ6Ple95Usk9jr3FQmhAxVvOh1p9E2sj0wrVNYrMNSwrZuB9qXARSqdvxdr9aby7nyHSa0pIIILU9WQNs7TsSLOqe2OAsHatSeM2RL6nhDnhzrIJxa6lg/kr9rkyOG6POwuGY8fc9PU5hvBrLJROhNZbgmCeOFztEO+OLcyfLrTQ0AQMLHbaVHR7J1EpfZy4g39chx1CBqsBNFXeIyW8pp+VvslHZjqBsdD0rRqWx3wnD8it6vd+ApUUsQFtAW/1OOVBAaYB4DVFuLXp+Bo2ib1nSTCfDfG0zuEuVRG4sLnblU7v4EpDR2x+K9mYqRWW/2RFSqSDmkDMKknHokY7ABeQwuYsoNFWEyVxufjcj+XEp6lVRZIIxnVTKiqBmRNTHhY/X0k4joy0+Tzh2fBOctAgVKMfeozr2YQCgvDifn9oYgkOexaTXXlbHX+myFWhRPDpP4cTmswl/3BctiViFfsr0zLfTYXL4G0AkcOt5e/PSF0QqDCqn7ixW71/T13UHRdT+KIJOoImZ6c0BbK9N0XNvFy9nSWPMuSU7MBsYInh83DE/umH/3hX7i6m0GZ2u1kY+Cx2p9hiBM1ObjTH4xmnOHDML1i36a6x6LaYVejO9Dmw8gxeCTZa+KhXKvW05zFsDchYTv3RwpsMhS5E/m6d61koBegnaG7t5vx/kvMkINlapM4EUXCs9mePYT0rm/Sst21J6/XcLkPIASKV3smWtqG9Ngqr9FGuObDPBNu9DY8w55J62egYC9yUo4T7Duu6ppZmnWXansXhk0/teFWAi457N6yzHkYy7bBq/VnNhle7uwCM3oJjsvpfTBsovNUZfmp1Nt/lWLwfgbt/5n3d9vd+ARVEBFNHF6ozfdTqPUQ5bfiuK5cIZtRH4mQCWChkyHADAKp0QwrVbmobt0nL/iM/eT1mCR5Fhp3n5tS36HLpfNIe9OtyFxmfEurUoyKkt8fV70tjIcTBlQeqa+5D5cEZ/KOMbK940zqOnvuhYqMRn7j0Nu6LEpGiHmBcUEGrPuFzdOW++RG6KKtGM5S0NbSsdjjlxMVXz4KWfaJG/P0yMH5zx4tdf4dmnT8An1xWgMIrfEthsEJsh9s5zTrqwjvQ0AUc2KBRASycvx0IGiCk1DsWhgKaYukw30MGKHj/GOnVLx8B10IGs22J4FZ32XjRegMAfJ06fnfH9P/cVvvfrX+Pwa2+wf7IrNdTPJpon13plFRTvjwBO2if+Td1DF3x3i6Q9nvs5QSb7kCy0e2P9oky+HJq1dJzSySBY8Eofks7n/BrXd81lrMsCT/yuSF1aVdC0FBPa9/VmbLoHtHXJNW7xvB10U3NEkOQjU1Pa99DYiDmxeq3Sb9T4NMAt9ic1UWIwOiPlBOtlO/p8iZyifsfKRsjupF0hoNuS3e3rWwDrOkpsz3s0xCGWdyxrAFwIMCptkwFbPU+k4YoNL3vI+ZANIUBNET9/Pk9eBx1S70Q7RTDGsQaq6++H6xe+3vs+LMD9RinDigGYjpOHjIvoUG4AiiLdauO0qE4Rcb6NqRcALT/PaglHdJc1aWN8y54nKMfce7sA0HHwsYFd9+VbnVrLWv/eCA487TQNje1jyfPXM0bqDIBao/cIfTbDqDJGGgF+Fo15Nm/TGDfBoBtSmAlM1EnONCjseaLvb/l8zWfmeruGxDfA3gDzMeda88B+O/G6/RTpjHsRZZ9v6SpmRUNAfJ+fPKpUNuD4yQW//r2v8WvPXuHmA3/w1Sf4Ai/g11P0m0nnoZJwRVol2uSDi52io77VPUh3wfXJSDrTeJYgblzZI8UqZdQ2Aas3OP/j7vA4pTpHW8hu5dBa/m3RLij9ECXu8xhGfntxww8/fYnf/OhLTDf88cPH+JEbrtcH2GXoc5Zy4LwRHnS3NFXs+qUEmYzMpZHKCHceV+GlW85bT7cxJ2txv6zwGWerLsaXtuetxt77/XJ4Wlmrb20Ic40tdoUBAh0+QQxTSyN+6dmThMOPVkZPEKfUj9Va4XrVScMEDvn9tFFM1THwEevTnK113VPeC88Hw8GxP7oaRSpgYmpXdgkFXKYpYNvOtL+ewJzPVmJYBZqo8QcA3CxZaKi7sCGa0/Vy8dmrwhw1no1Nli6K85HjSE1bBKvxOTs70eaNECTxR552x3ar0+E3h12G+oKNvYl/s/s2becCGNHG9K1e70cZ8nd9vd+AhRFbii3tMsqpAi2NYnL+fnDRRqL3Gjrm+6iKD3rX42yS/tUtQnTE3zxNmRGrIz5fWhbHslAxHPsBOLzOjZWfEx+eG5tlozQ0WzIDmaLBVnTyEn0inn3KScR9bcwrezMijMpkDMuJ9Zz10iDKCuioAulO3yJ2ofX3gIVz71R/b5RWh8N56EaAaASG3Ph0uNQiYH32pQ+Ll4hVwt9JIxSOX2lBoNJ7A/DjxLNnF/zGi6/wG49f4+oD133Dy9cPuNkJxCOTKQeHjnJQZNki1fjOHLfWl8QSXPiG6KOSzzGuFs0CuR6ztbpKgxnl0mNaGf8AP1aMoXNd5XgzHcgycY/vMAQrcnuEnLLYlh3wzcrBGDC2HR+dzvj0+ITphtenE7bDxJVAcfB5Yo8xtRXjkgZ9AlCjMgswweaAScer5JpOO/cCy5P5YONmlRlIYMLUB7VOMMgJHt5YAUsUoFG5g0EAsJ/jpDk5NKzHNdpZjXYvOpLgkKwBUw25T+aR8wyBqOrMTDsH2atBx04bdEDcN9dF31/U3XHcHssGKd1naA+Tz5G/IlsY6e1y/gSRdM5M31arAVTQMVNDwoCr2Wh1em77WIez8v8nx5iVyrTd1IGcl9JtAkUoFntGMCMbaQ63smvQPHgcEUIW1WNdsCJPTQjPFTQI+AxP7ZuJFVXaeuS+a+MT94y1jcZbvN6Hqp7v+nq/U0ItOpfAlBFaMxgAnSXSyzSHnM6RzrXnSKvUtDYruEfMJfD6hi4imQRnhDNNGZSeXqGuYBHued2rdC8tagPzrHwuVlz0CEIectXPqMSOabKmIWAEyDNqIkLn57Xvp/NDuzfqDg7tmQlcZpWV87llJPMeOQ/zgGJkWFLJ58n73M6GcS6n0BX3TE1pHJOtGKwUaXRusB6onHkrL1VaxisK2aw6JsNcTdrEhGRai065i6G5Luhc1Bcl8+l9zlkW3AXEHYQpL+7tWXMtEdByX0gfQm0P7633HCLg1DiEMe4pDS4BDC//4MDcN5z3A76+PeDVfsKb2xH7bUCMktdn1Bg4h38ZHzqI6PxZr/dDOZrOYGCytX2+X/su9+rZJMIvBsWXPeH80cHbDcVnKj3UHGZPkwiYI/cOS8aZ6kzwyz1z31PIrdI/rMRaWC3uNfZ6IoPatC/UYkigmze2pBub7mnkAYfSueV33gclEpXPcsZan9s9A2RaexTNduCDtu5H054V2ISeracdlaoW4EGJxcGxQbEzfT3le+9PpA8QHPexPY31d6rca/ff7CyZSK3Nxgbqe7uOhmks3h7b/Ldmc5ynLv79cP1i13vPsIyGfkmxGxI9auNU74+ilAsQbJlyIUVpnU1RdOngGRT67bSiZ61AUzUvo8gu3kvaOCKHZDcecCdARRnlNEBdx+HDYTpuOBkNGp/dFkdQzEY6bJaDHjO6SEPKHKsMk0Pjg+Y8qL2RUbyr3lC6ZQd8tM17NbFP8KoqEKPTjWtjqFjNM26G6dBZMTYRJ0yPMhwElGzPH/n8/NxZYyCwRWfCKNqSScv1g6vh6c0JP3nzEaYPTBh+9voZbpcQy8yTfG8erOZ5vEN9f6QGS5ciR8fv97znDlaRoOToydwFZa9xzshceiOxU45xGbBHh3RBRmCDOK/EG2tIg6t5q8oUpljhYfS3p/ZcnKeLYX99wB99+TFeXU4Y5vj86+e4vjyVVmzWA7OMWl2b6ZxagMHqqtgX+RyNmWF61W5j0erEXsw9tRdgkMYCDfCgVQYxrUPHTF3XzaJayRwO0/1J3zKCIdKcsmIsUxY8loFv9NH+j3oP7RT1S3apUvzSoaH6jSBZvIdiHwjEJfScseb6OptWY99ZKgYG0gEdYmyZXmRJttKWOQb94MZgWNp+5wNiBaZd11PPE3uc+0Z6K8516p7AwCPt8n4AwOZ9DFI7gAHUDVdMeI4FRoy5D8fWxNMBiKB0klLq/RnyHnkA6T5M8yugx/ewnJmBwjHXc3auFqA9fjMl/rau90Ek+11f7zVgKVaEDtDB82t618Y46C8QvHK3s37vfRMTOOTCZ96ahtqPTIOYuq7S6ZCGZqQi1J7ofMmrTyv+ivvb654wkBu1wBQckaeX48o0F41P0sSziYCZU+0UP6OyskD1elVmULSYToWNn2DF5iidQOPIyqABzIeZYs0CHjFHcR/jUgaGh8WBhkUpHchQA411GJCAlKmeeYr3jh3YSQPvZVy7lkOVErvF8fGo+aYx3Z4Gbl8f8Qf4FD97fI45DW++fgDOWzDaCRLdEA4kpxU51tsZuL2INQdG4HTQTfe0P6seIYrgOafdEFIsCAhYuEGHdXYxq6Gi4EiLpmHmOmmEgtIHjbmZh1wS5gXiE+RMjx44BoO9GXhjj3h6fQrm8GmDnUdpp1hqag5DOQeZ5wRTewqfQyeRZernJnQlqNkL7PBMmf1xSkDL9cn+QUmFrs7M4jtvpxi7cTPsW5qNZFp7ryXbc373mMc4kpgOlGAjxlnsi6ExpiZWLVILji1T1ZZt7QmogVq3M9OfsQ9rD/nmslF2M/izAmk8HVrncVnZHB+m9RmMUAASVnAZwSzTu8lS7NRC3a1RaUhy78xDpGw4ZgIjiDnE8Eir5z2NW47zrfYjQU+MfQl7PbvRukBZ2oXHCVxLkMvTrosRcvR+TAQmTBVNNpNrtpFzBnTQ5po/BWwE0rS7t5Z+TH1aFHVksGrAyPsgEIuKTMA62Ptw/ULXew1YOmUbFPQAhXje+ldImS/DFwuSC3tcEl1nZMUNpaj9BFF4lhH4fqyNUfQtFDVtF1taMHeWROkKQE4i7Wqh+KxamIfUnSQIg8dJyTvPW0ljQ22BWz07NyycG4NWrMSw8YyB+udDEyECAoOkzzl2Sp0l/e0jgRrp+Mzj2tUYn4pmlhFKalf9EfLSOStGQ5JiylMZn+1NGH44JA4cl2QFuB7SCE24DLjmqBkxNwDHjOpPXEv5TK83zPPAq8MpIszmjIEwPLhyPiuVBEsAlSCi6xkoapaQb8YBbWQLyGIxsow1ZhWR3aUWlnx5A3iinFGGuQ57zPWdKTi2/+dauK960TojlZ29JcZ5RMrsNZsD9ry+Vcor13mt0frMmZ91eGlKVS6N2rwYoft9rHWezxt7wSqFy0ogh4DoJNBrGqhB7UObD4rd/ZB7kUAhwcP+2L6zCWnFHLW0roDyrLQM9RP0ehKrHrwOZ1ZlXe117ZNMYQ6mPghE8hy0cbGw3l7fvQRjzSD5BgFty/XmhuUQ1L6HZHP4WQkCBEYHZEN4ertspFcq064FarjGewpczEuzvQjzFZ+XY6b741qbNfcMMmO95J58mCppByB9os46agwIHBhPhv0ZCnRkWixsXc4jgwWm4ADoQEYON39O88xUfBf+v6UrOtP+6gGl8fNf8m6vJQebVQTsJQJARl4GiVFmKxOcp9jodCydmQGARSTGz8wNSGSvz5x6SQKFAits1QyDohsJ+tpX2J79X4avLAyakZxlc0i3+ubwhyg39eOM8j4Ow6E6zjL64BkxdHjq/qu+IqWxifun4UeVIqPGS8wAr8Fx4IDEmJS4tzkPGta9lbjSGeW8qIvxoTkGoI5hQBlXrYsZz9erucLJxD2Nmy0t/S3/T8e9vRkYT3kA3qXGjyWSpKpLS9Xnv4/NauQV/bax0r05Fp2S7k3UeP2fmpXOHAL1HEsbc4F56JwjOjCOO9OEKklGjWOkCpBaImhubA+xbDVIy/VFAEfaZ3DtcD2V41KjspwrpR8dApgcH6AAidKLTHdkmlYCzByPYGxcew/J3qi8lltd2o28txu+wc7B+RqsFwGjYxGq8n73ZwW4mKoDoKaWqmrj2nCoDQI/i+lSRvv9LLAOwnszOzjP7Wq3SrbpsgZTbsXOqbItQbLAdwf/TMGRCb4VGwOguh0TbBMU5PpddB/NJqhSMdPPZJ2o1ZEmEQlCmB7MNVe9WqAzyHjpXKm+D2m3WnqbKdjeP6r7gd5Kgun5HsQubSjm+n5pddpBjW/7+nD44bu4vAGLjAx0ym/SqaOBFyA2A18zEhHPEyo6H4z8VrEogQUV4WQB5Eg3V7QKxGvoxEm16nOs3Tc3jpXzvY/e3AqJOytR6AyQDlGaElflBTd9vMYrcmjjF5/p6uZI50QAtzTholaoGax+GnJnnJQCaD0flHKmULBpdJjfVeQmDx9GhtH4foo/oqcz7cXP0YFmQHN+bQwsNR35bKyWsd3Uw4GAU52Bm0Eis9GjdAHIfHbL5+V38jRwzgEp9y78Y46dTtpHOYAu4qV+hQ3hetWPOj3n3C4HwHkxKJy7+4P5eqqOa40Ap4+BKlZw9xwE98bvsIq8k96gUd8f8vyrZCbHFYvQshydl/PmejbIYYsRMOhUYpBp5BrIOVzSjNyHBL8MRJiKG7XXlnnKyg+doTVcTEG1gm/vUWoHsjl9jBcGlmO311qn82PAM5/Nb1hmMW+W6xi1D5c0o2dKj/u0OVCbDag2wFxrpjmkFkxwPTlQDTDz8+Yx1xQPgD14A1U1bgtzmWPfgwDalmBbWqk+56mzM7LTBZC3p2x9wO6zh1XPJlBet6FxjXuoNS6AM+pkdQEQgpUUIPdAjM9JBhDAIl34cP3i13sPWELP4MsfMQlei7HeAFF542pq9MUF7rnhrUU2NCDcnELEXIyMNLi46cTYcTGrjeKHKOTe0hdqYjSa4aZRoLaA3UMnZOTo+KQZ2CHDXFRyUNt1GJ0tjdak9E+HqaqJBH+Djb325kDq8RWNMEXTG+lJxe96HM0BHRrvS8CGX39rDvL4TefmbXXOU97QHZDQjRLLXaonCl8vgAQsjBiNfGeEuCb2Z64jFnR4HlCH/3FebTX00k7RSd6tpRo3rznVm2tqjWWiTC8lo7Fdim2i1oA9WeDFrEiEKgou75PfQYCShlf3xVLoXCM8+0pGnE6JAGIL4GAAupaJUTyB5zy6UnLx/Cimb7eFZdBw5bqrE4H5HG0um5AzGCLT3BvquxmdFysXKVI5fYIyrjkHZgMBAJZeTwI7KBvVK9+YBl0cIdcLK47oVMlWpVaCVT5KfeS9q+Jw4yGMbS2hmC3aokh7ryJkncDex1pjUPZvUKvWnpEpNQH7BA/7Q46btTm9W+8MMiTKFkAJG9qPFIl7zVTwtfbr/iwaOIrVA8e4lTTnaxddzlYd0OP/7bl5f+391MapASFqnwrgArLp6rxMkEjQRbazrfu3eX04/PAdXES22+vR6Oj4M9XKHotBVj52QvoQvkciQa/PZ3QfefSKBuSoeS+dkmTOHfzu+DA6onnI1u+PE/uzGblrGn86cxpPOs3GyFSk68vut91glwE7DynegUaf52s7FbxQ0WlUOsijFqeYH5NxJ7jg5lYk2cEcQR/z6DkmwWy5aGNmDjjuLLUVwGvgoQv+CCi3Jys90Ob1N+qZ6Gg9n5vaGqXU+Jw5RiXa5b0EgOPhi/GMNFr1M80IK8kSgHUaW+uiOVm92Ytpq8ixpcuQkfq1zniiQxJY4HJhf5Fu7BuLIaoeUMkzz1IqlgzoZdhkW/SZjPCRe7GBwSWlQXDQxLMCmBy0USxE3GTNDYMA+iTb616YOpC2p6UJNTDm6iMSB3NmuggoNiv33/Zk+ny+vyoGodQZv0v9kAgKAbCrMYMpVcslyOtsAQEf+xSNc4r92bogPyfmqcr0rY0bWTTOe0xI2RB9l5sAq+U6Iijnqe8BGmwNlnI9zNQEjWvey12TRs4TWTE3xJETOxabVimmZoe95pWBpOzJrcbHR26Lo8NPATrmw6zGmLme49ypWqtGsIL6fy9u6HtR4u3GopH91Gd0UJsVRI7SxMgf5REGkjDwOfve/3D9Qtd7DViUc0cZYTIXYg/QHPJo1Gxudjo8si7MDUtd3wyYGBYHxnno3/PA39WmkyHyWuAypIcAKvj0iuP3zsAnt9hw7IFCgEDWhWr27hAXKjWjlmSN7GLYXg+M8yhg0qjU0lKkcWntrftFpz8u2QSPEcJoETSN615jJMfTjPIC5to9RLtyFIA5RDTOz2I6gtQuxdD8DLFpNGQ9L474N6lnzqs0DPweQIY4GCssaZjxVNUTNJK25/EJXj9XFUsT9LlobTo9FPDszj7XzEytUbwn55aGPed8u7S293zUjNTkW0eLSMU4lEOjoXTL3jY0nBPZawOae7FBeU+VyqDTsYroG2MDlF5Azri/hIAj14Weif7JOaZtLzdx49hrn+vv1hbAvFJZ/RnoRCWWbfNEEbn66jA9yssCyFRQUs/RgV+IPR37iwl/mGKa+BnUNxAQFBhDi/zzUag/krYESoPxvciUzJK2IBg+V1qcaz32pislrn3J/ZOfzTO1viG63WtedWSJ1XcTYOoYCKvPUJCQNkF2bUT6CAh2iyn1WLtlW/tBkvMhmfXHHfj0Cntxi/OtHmMgtzcJ3q4ttUptoLV1nSCawUNnbmI+2/7NfdJ1NAroOB/Wnq8HoHvNM8uj31Ufll/SWUKfmtlvm9l/9V0803tfJfSNfDHSeZ0AZDfEXoljt1hjex6aZZki2M6t1Ff5UX6gA1aVJQCNCFNHabhaZRJQC1ZGORXtfnDY8xtefPKEFw8XvDqf8Moe4ZfiBpUi4T1yA9BoNGdnHs84Tw60xmlkckhll1H3AlLb/c/K+LI7aI/ixjn7IIzsS5MpJLuuYloCuHifaWzYPlPppc3VVIn3NHlP1u7n4NitUlOMkGMMwuGu2hXIyff8MSNcGihFqs3ZKNoDCnimYaax0yGBjtKTjHJUbuV84nPzA9MZSJxNo5micZ5vtABUguUU97qFI2FVCR3fONd6h9miBxK7QyNMCn+H+nqMs1X7/516mHTOXFbsgwOoE2toNOIDzYH9kSk3l3NmKwDuHZXE59B0MMmy+77fetM46kduDdjTQSh46FErN/+McWG6yTcA1BmwFJq3lGu65iG1Dx7vH2fUd6ONzxa9WyQBMY+eLrvB5lhSEQSIC62I+txxQel/UHtLkbkBs4EgP8b3aO9nR18yIodrHfiHmRVs6TjFLuczoInfpSvKOYn5jYWrMTrEmuf72ZOKY+HeS/ibpgiuZxsXAsb8XlVfxR+1UBhV8WUA/DSxPdtxerjCzPH05oSZR0MIiBae0oB23ZADlUK3eoYOSpT+IVabKCEymaiDY6S905pFPROZOLHSXvq6t3k5BDC+6+tLd/+bv4wP/tNc7zXDAjRDMQq591wlN5wMYjbk2i5FgS5sxkD1zHCA1RvSlaDeQ+Cg1tQDYh+4WOfRy5E2NH54uOHFwwXPjlc8Hm8YqX1g/labZ2LVXNwZ8EoppCCvndTKSEin2baIpjv2YqCQOdU1Xxw7MV63P9b4is5sjIbGOZ93Jh0dHYMLPOrYdX6P7hWqsNBzogx4pBXKUfA594cy6EuKa8T4CSh6ey8job29N42VUkDtHpZ/51iqQVVG0BRd8p57ykz2YQLfSCXyUTaPahICGaYUDIq0o79D9nZo1VqerzV+N0EC6XAvHYNSmhoDWwTj/MwuKiynjMVIS4OSoJ1MidIjFs/RU60lmoTGS3oqjknuQUetK97T3NpnMf3HMUvgsgBYTktDACE6rvFgnqn3RGFJOHVtletr82Y156zGWSrAOPkJIHXeE8XzbOjIfdNZkgTKEhbzvlq5vGwBm5KB44RosGYQS7ewq8Z9WKlRINaU2CtqaMhEN8E/Ax7p8xK8d+aqp/akc0GygYf2uRuyFUAHkM0E7bV2eyWW3QA2KNy2iW2barTIYggFW5ecP0/t1V0AynvklOn/Xq9lKlCBqJe97mewRUq37kPgm+uaz9zsxYfrF7/ee8AiGr/lsiUcJcpl9NCNbHNmqm7hJu7OHEiqPl/by9By4+4P5WDINEiLwpy7l2EFgP264XLbcNnjb2/pFKYISEtub9ZnWNiQJs4FMl1wqdd3R0M6VYY3QQJ7vnAsKdCFxjZy6ZhWfSQ2Gq34aI6n6M3OMqFpIrb22dmngAwKU3C61wREvAdGJ4eXFaGpRwnnLV+vUvNMmSlPnZ/Frp+sPIqxzO9uKUAyZhRALnnrNmZAjiXLOvm7NPhM8ziB6a3m0flzjmGWDJc4Fkp1at2TXpZzc521RJ8qUW46RVLyjM4JULtw00e2vAfnxrQuRYX3vhFe91BR8919Or4pgu5pqkzvdDDgo8ZcB+3NGguWzIstayCkGM6qoJrbmh4SGE1wIwbNXMGJousO3nl/uY7ZHHH53g7k9/hTpwQT1JaOqIf/auG+QVqIeIAGTh1i4vQsufcM5XxtAuBz0Enm2lQH2w7gvW5nJgt2P5c8rXnZq6jPKLamUuJkrsksKKVMe5NglkDz/vvmyTUPi66qgbV5HTg/HfH0dMR+3qRn3M6lV1OfJTaiY6o9+/vIV3BP55hbA+Y+6iRmdd02B0/0roKNHGf6Dtoiw8pMOt7Zac3+S/jzrq9fGLCY2WZm/28z+7/k//9pM/t/mtk/MLP/vZmd8ucP+f9/kL//y3+az/e2CS03x/aUC+fKVATKAY6KnuXMaIibEKqzET0vPB9QTCY3bAMFg5GAN10IDUNudrsa5qsjvnr5DJ+/fI6XLx8xXx0rdYSKwjBNXV2J0qtHBaM5r/N6UI6w0lFEaJCRW6N6lKNN0BU3Uc/FaMvvxoT6hZhsz6i/GyKOp9W/vZ6F994BgMa2MQNaT0lJs6spAGlYGEmOq0l7wd8vZzCZFxM2yzBScNqN+32n2c7KUaw4jw2QoOZnpsB3nIeiSzpuskRyMDS+OR9d70Awp3FpYyKWBCgwLQYpDGkvbd4fq68FQE1Qjj+FyVtjYtDWDIEC2TFr6bTe7ZVMXa5bNZPjGhtQq3IfNZ/Ug5D2B1CpVj52E5CSyRhN3xCiXo5j9hpKQCBRckbJ1DJ1wOOjKpdqfzfP3B1aB7b9yrWxXRA6sqchfVmNZysv116CtFZxzETeH9fBXQlvr1yLShjojB6l0rzbuggcxJzwdY5KVTaQv7CF1HO1/jzUwcShf63aaZSNkE2hJijXUQWaVn+Ynkpnvoh5F0bOaw4s7dXLI65fPuD6ZXajTm0cxcKT67Onmtp8Blj3haHi1EeFj2lc9Lu0DT4QpzXnWM8Hr5Ri7ytF3VJWIm7nlqL7cH0n13fBsPwPAPy99v//GYB/093/CoDPAfxr+fN/DcDn+fN/M1/3cy9uEjIgjqIWdfcN6atKwYtiXdZLM1Tc2L0zqvpWcIHTgVhr3QxIad+/X3X5Dow3A/tXJ7z52TP45ydsr0ZpLbISQawMnzMNzrKhM12kz07HJ2OBdKDpFMetjAcykupnssjQdUOaz9uFqjy4Ub8DKipldOnFNvSyP9Gjea/sLyHAxUos5ojT0OmkWCsdg+6ZgHW4StUX8LEV26YuvDMjMK4T3nvOATugkgaHI8tT899Ku6CiPkaTBMCcHy4yRpPmxfRQM5Pv29pJxXR0XdDHahTjPXNtN4ffmRexSql7IbNV7EtzagSSCSaRrKJSUeDeckWeNVd8xpwvPgeBAg8inLUmTVFsu2eeE9PZUV45fMtJwFyvKWjkepbgt+2hWDccN1Oqs5hAkyPu6QSV8o/GjMwUpaaebdU+3aWb+Lc3Bpb2iL+3sjlkDwRStj72UKdrnVVmbQwmqvqJn6N0L8pppp0RI5LgWEBhVmA0WkDQU2B8rp6yU2NDCt5Rv1OAmTaCXXqD6UArH7Ziman5aOCYJ2778CgweD1w+GLD9tUB403ZUgICri+2maDNVLDLtNvWv8cr1ksWZqle4/gDwaQxlcheVW0tSwco4Q2k1XsnVUKOX5bo9p1evxBgMbPfAvAvAfhf5/8NwH8BwP8hX/K/A/Cv5L//5fw/8vf/RdMpf/+YKzdKd5wGVORxQ2tqVpuIVDkXsdT+zDGyL0kaTC7qsZf2xbKiqIDEKuAUcvcydr0yYFwN29cbxqstxI6k5ScUxY4LdN6EHpkbSZ08a6Mp+s/XEcBQ8MX0h06YzufXQXkSyeb7AFnscUUxQAz42xkzBDQ+EOctPcx63x17NTtlza/jvecciLG6frOUVOChASgZQWdXzxL4kQET84QyYHxfF9d1pusbqSKBHixAjFqPGPxyXEv6QZUGVmshgUqlFloEZ338bb1vgmCO41z3gVqj30yAhGuxKlmqbLa33QfCsXXwq3vQmJn+5ndyuO2GZc1Wl2E6ytSENQq+XovSi+SvlGbVwDTgejYBts6KaL3k/mRn3nnIXh2cZznyVpEya1/rvrR+rdKhub94mrJAeXsWPTPZUYeePfZlgYlKI9S60JlerUScXZZ5jEbf6/GQprOItje2ABkFeEfPFC9TGFZj36oGlfIgKMk11au/pLlr1lql1a3iTdVZe32uGDnald5sLfeO3QzbuQGhKwMcV9qczHZpSAqMjUvdx8JMtjXph0r1aG24Kd0WD4Ni4vMZNUbUaPF7Zo1NT8Ez9aU5HvW8H65f/PpFGZb/OYD/IQpD/gDAF+48xgq/B+Av5L//AoDfBYD8/Zf5+j/xks7AayGpDwLp47SkVT6X0cOGb0QAXf9ChM1DDlXSzBb1jdnoqRoxMc2BkQ0RKELbgGmEOg0/LnG2TQCR8gZKK4y6ny7aUzThyJxwOUtqVfSZdXsyIOV0UWNKo0KH0ECc+kq0SB/d6fD1jBQNOjFYeqI2n+zCybkg4NJ9toMSZZh4z/kc6n/T10kru7QEhTHvTSSa4yqmx/idGa3lHMqpUNQnIIpqEqUvrvHUXHitgYqASS9XE6uh78UCtELADKVq6DQl2M61oD4cqPkIcFIROlC0uQSwXmA5Ujr1c+6HAph5rxfEcQdoe0kPuxplP7hSFxRjA82JWIGcHtEKYGRjNAAlam9OW5F0slAhRsdyhAadhcbmrjSX90Gwz/+PFGsqZWjr+mMAVbaiBQEt5eBbHPYotozfkQ5dNiufV3sUud7AvW7LPEfgUOOpMvDUb3E/sjcPbdLSD2bkfd/IOOXPcs45d1xTCgTozO0OwPO+OMcDWdJrGt8SVLf9k2tgf+aRNiTzmuJWiX4PyD5WtjCkbD3gjeniWPaxUPqmASWm7BZxRgtSHBWoVeBUQUWtB9f+iXEylafPo8e+eQdnCQGoZ/su/7zj658YsJjZfwXAH7v7/+s7vB+Y2d80s79jZn9nvnrVcowop5CbR5UhuciVH+204JWRwAoY4NlvgWBkQn0uSH3PI5bcfd1kldKSnmeeVikSRYKQA+wq+t63QTQphWw0lI0q5mJRtYby9CiKl4ljRRF5E4P0dN67t/voYCGf5RvRLqn+ZaIgzQHPmKGTKEDpNXbenKBV6quntTrg0Dg2HYHNFSzUWEJVDwSTAiTJCAVjVM6VxrkbU6WI0OarRVsEg2KBxlqy3efJAAFia2uMoHc0MDSulY5ZqnYIbjRXVcI+nkwAq7rm5pgdueZKL6F0Uzrb7amYFd6wRJSN4tYz5z0Vc8kFbrV+JhcRGlior+C5QL0yro+pb5XmkY5jNsc0IB0P+/Igx1msGB13MhbqOOvNjnCqyN7y2aaFvuVQ7CyZEBpsiWFbBB/PWRoW9nvid2iYBO5rq459HTc/eKRDRnRv1Rh1sLezxDa/f3CPQmyivi/npzNpdOjzIb/L8n2NedQibuASqDXFMQ0BM2SzOGf7YwFzT8Y7xqYCmgjE8gyvadJOeQIBvh4WbSn6uUrfZhsBaNy7HevprOW1uH+2/HkK/QloaL+6Hq+DdgJYpvj0PQSl76h5yIeU0Hr9CwD+a2b2DwH8W4hU0P8CwGdmxin6LQC/n//+fQD/FADk7z8F8NP7D3X333b3f87d/7nx4kXpBvJibnYRslltwqVaoaVSaBh5wN08Vg5a7ABooOKzdADctDglVU69Fia/7du0IaoyyBfSKDLqBsqZxX3URhO1SiFjPqsMT4sKFD2ijJkfsuHSqPd0bY+An1Uqxq4tuhJLZIqWlCpKo0LjqNbT0k+U4fqGqLmBwXrGAi4+6lyQDuLslqdq36zSeZow6N7UFTYrKsYtqwhkvBIYyIAZqly+0IbdoHNT2GyN88U1p/TBKMCh3LbleOyZyyY7d2jgAhy/coi2V5M3tgcvDQy/N99LWj4PtSxmC9oLiiJnzd08OW7PK3XkuY443wJMTcypKi4C89YZtDdu7Awj02q9LJzjG8CyrWt2D20aMmRKhQCkg5/5EGM2N6S+AMU4cJx5D5xvg8TAlVqqMejnSvF3Oiizr7lcT2pyaFic8/4YTo3l62JnaaN2CFh9WwXJdq4KpmAsqluzWN8dODzl2iD7KZCCShN1W0k7wnlqzrsHZko1d//k7aDUBIY8boFaE9oFjnXX7FHb0VsWMNVGbRfaWsuv1N6Z1HCxtHig0mYJcKRFs3geAXOmk261hqrxnS/jwHFUHxz+ftR9A2V26mw4g9i/WwmNP+SDvtvrnxiwuPv/2N1/y93/MoD/JoB/293/2wD+7wD+6/my/w6A/1P++/+c/0f+/t92/zmnE+Sip8CVOcsoN7O15Ldv7jRwxQGWo+mpnKI6rV6DWKxia+ikk52IN0JKcM//jxadyGDaGmVwwW8XpLOPZ9rOqJSMQIGDaa6uESnkjkrNzOYsgHLojBJvZUTquQv5MwXA6hEJf51AL0EDp6WnDPL5yfLQcVNYpyHrYlx+NsKBEMR0BqqfvzFunHMoZeBbvi/nP6oE6EjrULmc/jLe1CqgjDOdcX8eOEpbkcBJuiCCAKCicYqLW0qAjqHn8zkWDgiMhYVsz5JzJUAtQXU6ZuN4340b1xsB7110LgC5xzEOMswci70qVzqoHjdbRJAEFQLwrGqzuxRJgtolSqehv9jiHFmhxDVCx6ihyfleGIt8JrIkIKOaG1PMXo4FK/jUWdgKcEkTdC0WgA5NTtpKxxKpwZbSoqNGux+ve7QGBqx9t+5xFqAp1hELyKON258HUFBPphaUiFXkGKZj75G/2igkEFZaOLvWKqABKjjJ7xlnq/1AANDWLvq9tzGgSHjsnEsXKO/rROPFoyi4fhW0NYCSzJJYKoJspo4UIJQ8YNEnNTtOUOPt0E9qkGAA9jyxvDHrfF6BoH6vuQaXe3/L14ezhP501/8IwL9uZv8AoVH5W/nzvwXgB/nzfx3Av/HzPoiO29tiNTnXNNipy2A5bTlyyGEuaQSheCgNIefr+hrl37mYe/QiBy1gEu+bFMh1VoIXWZF0UtErwEtH0TdMA1xLdNRQfmeeFqfXvpKMysJmeEXiFPd1A0njCcuUWVaL3Ds+pX+YwmLUxPJHB1SlkgZp0QuQpu3VSHntD155Xwvwsl34PaXsl2AwB6RHx11k29mL3oSsU88ymEkHM42k1NGdjoDOTA42jTAjMkbkNLqxdsNhbk/5GQRJSqPEeylkHvfAkICjGdolzZjf4wYcv670JFm3/eRYIkfE+jUks3aoiiGJf7faa9xTIwOFkW0FagytggD+AZSy0sGTbV5qr2Ufj9Tm9P4sDDJ6ClD7mE6BS8Fa2XNLO2nP6+emiiNN64TKr4Gaez1/zun2tDqt6ifTHN2+AhcFUfy6XKcKDmbtHWdKk+nVtt7YJ0dzc4zxV7sFq3EgEFiapjlwe+51f4CANU0IK/SW9deCP4rfe4qp29/eBkHVPE27otO1RwNGPX3TgyPOW67H7VzrX2AxAWlnT7reUQL9ztJJTJ7Aoum7+Jy0M5o/1Oer+eWs+dEwkcn+ZXjX/4Rf30l2zd3/HQD/Tv77PwTwz3/La54A/Df+4394Aw0Hh4+We29t2btwEShDy3MpVqEgwhhSZHZydbDkd3LRzw2wPERtHy16ZBXAXikmOrh5dDiFcxMYZ5TB745qWnRtHFDLdOWgOxDISMgttRothy7qmEZjRxwOtvcdFOPDyMMPpb7nppoHYNCJZ8kjnS/BAXPOXe+w0KkcuwZMBKy8DIo5opGe6PT87NzkPTJ2plV4TPsxoyqeWtwjOweQgjlR8CM0P5uxJX05jVhTEPhkmahSFA/5SAbg6NGJPsHbkJE0OA0znQRq/dARwBwOA3jPGa6MKzAPBHkGf5xQe/l8LIHKnOMe9S70/YAE5NePIiVoqqgysRrutT/IJMbPjVNYY5Ns3HatOfQcR87DMs+7lVC7zTk8mAGKtj2rWIDcMy3q5bqejE75s9YkbgkG7hwD078CjHl/+4n3ZHJIlk0Y3SLNNIA4zuDgxXAZYFaHKu7PchxGMTBicJoTp4iUjJhYlPw/Zo55ApyeFoXlwa0jgCYs7rUL6h1cq6aeQL75ojWwCUDl+660qfav1fqKPVD7kZ8TPp3CZk+WheNjAk+4ITxKY3RVQcnv2gHbaux4lIFBWyJYV9QeiNRc3hdt48GzaV7u6zPKHlgyZjdbGmQybaVTrzknLU3cSPTYmxuiN9fR4bmXojdTvGgeI5jSfjfAcr+TdZ3fMJK//MsBvA+ak+/6eq8xoCLGjDSonld0znXQjGNVQxQ7QePZUXzPs3dDObugDoWy6Uh51ovSImkcxw11iKBD0VY09jIZdEXqd8atnGhz2j0KoEEf7bPB56Lothu9dJ4ZYdPIUBcwjx6NqFqvF+paCqBgUeBbjxCBikJG3ZvEpTnm9ykxGvoqJWTUFUbJZn4FX0uGbaD1/bBlLNUwjADyukZSrIiotVARHs/oUdoA69+lG6jSdP38WsaOUXilM1qE1xcTUGkbgs+cJ94vS971e7JKTF3kPYgByM+WfeL6JK1OZ8H7ISBslWT1+eVcMIHtaRRb1SLNHsWq8upOHC+xLvu57P3+TIwSAabSll5OSgd+Ju0vhonfm/cCcN3aN3ppML3WdW+ddREYpONu86E0DitEcp1UOa/pu3mY37hx3hp4Iljpt9XKyLuItA4A9eozwpQt98+EAiKOs04f7+tOqTpU40EGOezu3PrU1DOuWjlLEL8AZtrNDrRmsxlYbYGPan7X06dinQmoeFhnjutyjAC4rmNBUzS853EjdRhp06/wSAP6kmTuCPDuQbEqofrebfYk9lEVSuhZ91of4ReiZ9RiA97W5UDRyN/hn3d8vdeABWjGSO2V8xeNigcQC4wHIUpHUA7ErVGVWlRc3FY/pz4h0zYwYGR+nQaRWgrm3FnxsTifWRH+7bnr0LZeBcLvJABbdDrZ4El0bevcCqDoxjRIXeAqViYvgiXlb5MZiDRULkQa7NargDoOjT845u0e6DjTeElb4XVfuo80ZmLDloja1Dk1UhbQKbKk6hnNqpIk02oSb94Bt3GtdUMjulDEBKM5J2p1T9Cb48YqKUa+yvm3VIXdP6/5km5QWqiNrWe5ZmfIgHDUqpjg+t/q+2kMBYysvlugcGvfS4M8IbCzcQwlOI7nYqdUjikj91gD0L3KQeccVMqNz1D6BptQdVun7UFfQbannfFFsKyTzSWSrqXdz3ZRpQrTavl8+2M9i8aAW4Ms5mF1PiP3hZx8BgUUj1JkrSxJA3TjmlF9A7K2E6SWhoLf3xnFeEMKqAXsOxAtG7j0zEmHPx/aa/msqLGndsqP1Qyva2e4frqjlk1pNotn5/T0L7VjBFGHJ4qzyw4jwYdSb1yXFuN8eDXqMa2tZdQ6YsCmwGgv4K7nztczWBKAONR64b3IBjGYPdSclV0GVMmFvC8C1tZMlJfSwrfWkO/D9Z1c7z1g4UKlOGtRagu0QAukEDQW3YEBakVt6SzYy6GceHPGhoqA1P6/aQDo0CypZqsNSENDA8xDuRagApSoy1HOFjSOtiB/GtluTGRIkhrFhJpm0VHTwLLyBCgmxUBDw+erMesNlQRs6OzepDOakBBSeftzhL1+BJZqnnxenRdD0Oh1EBtZAOWBJzUSBbpWYJYGic/J+28AggZpe2PLau/5+17+rbnn91wbQFJXSxpCk3Nluq1Xa0m4jbg/pGCVoHic+VrIKY/LqpFQY7gGapU+anOnVIPV2riPEueDJ2jOSpZcV9ovEwLWmv905LrH0e6Bz+XlNPr6FlAm0CdYSaBFp9v3Meft8DKru5pj87GW1ystNCDtV/UicvVU4VqzTEURnDjf18bLB9TmfVwsmZmaU45Z77NT4LuEzGwI2ctm+T398E+CLOeRA2SGuZbYy+iAAspb7nM+PtN6Lf3V7aV0Mdxfe1X9EWQRaHAfa568xpAXAzPpCL3uwduSL9F/rXPun/4dWnOjKne6jkopuwQTBL4RhLYScmtrs7HBFPWzR1GvZiJoq35bOQ+j7r/WSO1LMY20pR4gVsyqAtq79gFv8fogun0Hl1TkbYMrcrtr+c0IBkDl7g8FHLp6vm9upVr6Z7efa1PdKhrRvcjxouhFxP9nGhlFTE3LwQPBeoTNz1QkkvSkKlsm5GB7RK9oddaYAM0BEERZH6uK7tVLBPUslYpbnbjuseW3dW8Ih5CBYG3miTocMaOw3qSpv78DyHFb70nzqMjJ5DxopJk2ITPC8dwfvJxIgsEl70wj1xyMJSDjGKl/xEAAsnYVA1U0uwwbmxTyDCSDWqT3cldVWvVziLoD1LrJdepVwr1luoo9Vzqdr+fhsxIsJRikjmAeo0vs/izASvQHiu+bx9wzyxoAKF7XvXG+u+4on2M7lxBZADT3TcwfBLBvH3mlkQhmKWTuqVe0PUVmLO+vtCXt/60rrd57q/WvtN3Jl7b63Au1Xu8A2N06ACC9TtcZLe0MWkM9VvLwGYq1y6ZnbcyYymE6myCSDBh/3oWovapRAVg+Z6wNKPXa1z+fQyeF97J9guT8XraBWH7vttxnD4qo+1ILAw4/U38JoMUSosaPrGeUVvtis/tnaRycP+C4JHOr9g4xV6ye89yjsOrXxW7JDGYoAyDrGnNQNqczaR+u7+Z6v4eSznYr4ynq3CCDz0vdPhvtyzp5UflA6Sg8Uw/Ztpkb1jPqUaSl9vHNiWQ0oQi2R54EU156BaAZABo1pggERtZnF8tipG8Z9bmcGD8nPrfui1F8r6pRGiPvZaEzG/Dj8fNS/uu98e/bs0wFpEiYTasUnRFwcR4MNQf5vDp/ac9UECtU2njQwKns+V7JP8PxKnVSS0FOpTNu866EejEqdI5szpZjJjqbwJWaHEafBG4qjzRFsVxL/Hxpr4CFDeyGlZ+tOWtjJ0YOzdnn/Cn9lGCk6zAIfiTKZmUPWwOQbTg69ucT89mO+fEN89lejrY5HD9SgFp7iyXmCgrS4Sjl57nPTlXSCrT9kwBfLdCb9oYgYQF2ZLsG13k7hXrU2K1Ces5ZjTXHt5eq66BRleK79sG4mPqkUF/BfjmlfbIFrPHfHaRoTWC1V0xf8w/P67FpIb7l3sj1ICYhu+wqrcM0Z84Tq7Bi31kFE7kOJ4GS1mDcnFgsL+ZKDOPNsi3+3fgaAU7uFVaOAdHPik69afHUDNPXn3cAJnvWxpk9iLqmkWtZaV2r8VIQ18ZfaU6yeVbPx27itG1iIdscqPt1q7biHu4dp9/65b+EP+/4er8BC7A4QTlmpm2E/HNjWGywSW0Dzw9pDIgW90DpLQg2HM1pVkkqF13QkbURJLwFytjlAXUsTRw3UzM2AKsT6fuSEVsCq3mo9E59NyrqszKki3ZhlJGhkyEFTsEqI1QDJGDtaYeu7yAI7GCATIc14aHAU5s3am9oZCfPc2pAVHl5OnCjAWhj1p+lOy8ZJhpnL0ZkQsbU7jYbwY0iojYvYrPIbKGclh9dBznyc7rGSsCop+1ynCrNUsY7JqHNMcefZa0E0fneXkopR8q5v9XemNlLBR0wEviIpk6gspW+yo8Oe37D8ZMLtme3qMQgyCSgzX+HsLTSW2KTrByKHEiC0SE2yVqqKEFYAzsEmgIFDRB0RoHfyS6p+wlaC2ShOI7FRkJVTh2kEPTcs7YEDUxv0uYQgHatGe0GUxqzMR4xblxbuTb4XU3sq0qusX4/Kxn1WQRqmbqjPVE3YaCsu5XNoOas0lvFblWzxvziO4CAdl8MGHsllbRFmwcD6QadQdRuS8xo7jOdOK7gyTQv4wqxaaYvwpJqkw3MxnI61qEFSUupc0uTdeZL7Olov9vqSxRsdJZxMOhNtipZMqUjyfC99cs+dLp9J5f5XbtyFNWqjUTHiYpguPkz0qWDilbSVcZXKRBU3nFHiaW8/k/jKOYhP5dOkRS2fJCcIBbHwe6x/aA6Uc1Me/TopB6xooYOLjhOvXPvph8XIKBzZroBdc/jVj0OuhObjFTS2PWKLLTxAsrByPgzik6l/ELZEnT0P3lv7FJJ56OcPiMrr+dijp9OTZTuAPaHGDjr541wLOnwWwv1ftx9pEfmMn56xmPrPYIEbt4Nmcux8+I4dvah09u6MlKmXkUApwOu7ti3mtMuFNZa5v1nekC6rqRw1OitGVYbXplN9tI5xHgqOhZAafffHLZAX6ba/IA4FqCNU++jwWdQ5Vc7wXpukPZk0VhkxVS8vjni3IAKCqzGjCX7+j+BTQsgirnkez2j59QAtaZtPFhSjAiBgUFnktVCCUC9P7S1n6/ndzNo2i5YgIJSSwyu7oIIgi9qkyR+Th2NDu0j+zRrzRBgiFlk8EM2sS2ZfkgnK2Z0DzMfnXqyttc5Hwoyrf2O88Xn74wKhd60+Xv9Dp62hbY8dWkqZU57xHYGtCNMGxdbSePN+89nuwMa7Fu1pAlHHm/w4gZ8egU+ucIfplJViz/4cP3C1zs65eBPeWV0QYGkjzidVJ03URsIKIcstG3AxuoBAELJHgvUbiMW4WYRdZ1NoIKCS8u85v6sOQ5Gr7kh2YMl8v3crJkjPeV5GWdbQcXBUzNRxl7tsbnI93CGahEPZA8FXzQgEW2G9etpMz80ANTy3gvrwjI9SwYEKJqz0ekSyi55e68D/Kzuj86MfUskZm5AR71XKCQc6ZsZWTJ1c3B49qOwK/ScOvwuv2dhrNIRsNJCmqVDGUNFksZUoGM7jxBQjxDp7s9MESxQAIOHxqnfyKATdKBXvwzALgBSlCs2oWMGJKAa6aTzNeYU6BpvM1lAX+Yl7ivmbsx6dkX4XFsMatn/Q5VeDt8SJFwG5jjg6hYCu+sQA4cLsF0BPximsZ+F6Tm0JnJNkSmahwT4CGd6L2xH65MhgGD8nFxYFBYnm7ac7pyAYm70NrlHKGy+tDYBo76LLGhozLieTLbCMhBhSoVrl+/h+sOxQG6le6xsRV+TQJYeAz7qfgNcEmR5VsgBVDmSUVqqd/JZyCgLVSglXWv8G/1OtnLWXBvSfTAgAdRTJ+wKAALzrGZktRDBMRCME3VVex6f0Nck13EHk2WfixXh/5eUKqAgTSdD37KXlUPaL53TRSCaomKOx3gy2cbtVmuV893TrsEkmgCNb8B4iuozmGM+Blj5/q99jU8eQ8Tzx199hNc/fQ57ucGm4fb8nVAstfZ+ha73G7C0RaqurEegd/QXUk4xqvKrraoB5mAsECf2OrAXUrYZjoO5fpUwg7l5goAyCoyQxg3SusiJkrLnZhtB0wd4yJ4guQlEP7vF92wAUnwIiw6WO/Uh3QDS+KZgcOyQs+sABaBTNzlnNgNjGowf6YcEKj3KomMf8fliKgai6RagyJVpCvQGey0/z9cGCAT2h2Kr3HhPUFRtjmh6lfPJs0foYDE8GsstoskCV2Q1xjUA4/7caw20v/0URnYqRVW0vlq5I1JMiwiQwCefSWLo/G44MA/NqXulGyQKRo2PUpYp3B1pOKP6IF6o6DibKHLelFvPjxy3BqjS0PrwMNAHB5hesBgbtgQYTwN+NRnt7sC4VuxqANm9BBC2A7bFMy6aBaZhAGBLYHUrp0LHFA+S68gBtxo35/6mlsxqzyj6R35WpgJvLwpE6h5YETYBowPmvvYYU80RtT1tTXQ+ms0XxRQCxSxQu3JsAJV7aiSI06aDAK+Z11oYwDgHcFJKK9fiPDh8pxNutpCgg/PkNVZi9LSHM1jZyw5pvg41liyhVlfn1pJAaT2v51W6D7UOgdjf0tBw/sh05dB6Bhmzjdd2rfVr+fu96VC2bHS3XSKIHWyi1+wBAKAxRhzDcbd4aHNmzu3cuGa90lTmmA/1Pj9OfPTZG/ylTz/Hbz77ChOGh+2G37ltuL1+XsL/D9d3cr33KaGek6YYrlN+vWxMm5eWMK1sbxzWPbQcxMGxXVoaCPnZmdftXXCrBLWcQbEWWZ5I9J+3ooZLKSrk33Ik3Izn6szJe2OEZzQQ7DNCLUdGB3vrQWOOVZCbgCY+N8esR8X5J+jTen4+r7Q7h3idGnkBzAJ8gz3gw0uH0Q2iFfDhwX/9PuTsrobtUvPL+yXDpFx0tsTnfSovnWujV7AIzDUgJR0IoLJoMkI6mJCRZIv6VHFCA2xVVWPXpnloht2TnVsiR1/BYQemAgojDtMjcFWDsJw331yVaCGijA8owbIvabLOckQFE0JLcDZsb0Ywmddyvo7SIM2H1G1YGvKB6AY6yrny5ply8lH6Cu5nP7qeT1G9oXRVnGumDJotWAAq2Y78/+1ZOW92Zw1tQ3mOPv6aV66/BB3zLpwj8+raK9UPRIMktAAxEKrG+5ZAm1VWXE/R6LBeKw1FPhufn2wnbQL3voDggeMX8xrA0AXQlB4ju5RrfDJFlGllVbEBYq216fNSGT6fh1stnb1S1GSmkeuolS/TXOue+ZoMBgUM84XUjfCgSZahA9DeZmpZc5yfCe4fq6BB98d5zLlU+six6mb2GFccHM9OV3zv9AY/OL3EZ4fX+OT0hONxj/V9s2V83trl+KBheetXbq7OhABo9K6VM7UyJHovmQtk2aeXkeci7nRrNz6RzoHOWIlmXi4DcR8hCwDQGOe/R4v+tYm31RhGOibpRW5KPmdbIxL4klXg/c47wRjV6t0p5T9oQHv1kKpGWh8SsSrHMlyMbtlvQNExG2KxZwrvd9aXO9v8y6E2Y93SOTQsrPhYTsFlqenenp3OrgLN1Ey0Rl9pvMaFhplOtJ6XYzEfvc61aWXpvXRyGSMyV1obxez0NUvjqPQDau1x3kZz6Gocl/NIB6X7bOJrgUMyPbk/OKfz2cT85Ib52RX7JzfsL3bdExemHGM6LgIBipilV+LaZIVZ9pZRX5tcv2xAtz8UyOrsoA+oc7CADr/fUOzF1hdwm+cEqtI6tHtbaEMrQCDNRN43q/4onu+fpcZwuuf4x7ja0oVY/We4FrnXm4OMfjOtSRsfacvTjvkzBiR5T1zjlcKFgAmdtoKvrNzaEzja1QTMFTzleorg7L5/CQoIqZmkq3zYbhagtpXVU7Nye+bFxjRWVyXvXSfF76L9STCnYJEItt2T0smTayvvmy0ALEA0tY7SJjU2EwncrK03uzWbwDmRX8nnUGdtljTfaVtuhvP1gK9vD/jy9gxf3Z7hq8sj9n3UPXbQ+eH6ha73OyUEVFTFyH7WBiPLYTeDPzQ1e+sOaRbU+Z6/n6cyNtxgMz9/e8rSQZQB9EOcaxHlsw64iy6mcIMRAiyd16j7I3JhiknsSxoGa5GXW6brDx4bjAAFsXH2B48olRS3gIXLaVP3AHDDO2ABNuaDK2XVIxlR2S3VtT/O2NTPd8xp8Ncb7GJLYy7AKm3CxlcIbdF2iUiXXnVcTAyB0mZARVxWlKwf8tkN0hUwAg4DRGrfqhFYOiKdQkygdHCdnbI/mxpLggtgpZFpwBRNbhmZs4trfk+PbgkW6LCWXjgjxoDVH3HqsZfDRhliinm9pZGcODvXK9LJgmkMvzPOnEd1qgXs+Q0fffIGz09XvLkc8fLlI/bLgFKKBAbmMW4EzXTWDmxPdOSQbkfpBE/naewrUyClNwvzrRyXxK/fQpnLEfV2+nlPAgJb4Rg/OpD6nwKBwZoSYBMYIoXWfkBpnBrIMH4X9+MO3FLXxLSUUsa3iPAFJlg918DGcmpwW/dzq3W5pLNzvpk6W8Ce1z4Qw7yhzjXjdpvffOYuIg2dlosFJJtEzYaB30fQk/ssU5LG/Ug7xkCES4b3xu8H1LCt33+s/Zgr2mUOPD8XgJiZYGWgdFxV6wGe7JJOdefa51rjXtpcwUC1U8j7zPRmNbKslCLINA1uOI7hwNdfPcM/PH4fX10e4W740dcf4+mrB2zUynwLs/ZWLv/5L/mzdr3fgCWj4XEroeE8pNN2xBk9sw4HA2ItbZcCHvd0sTYSHQ0rYJDGx1CnrI54fxy8VRqUuBGThkIR/h6OUk6mGZgtu92CKZde0eRWTpBRDvPgLfLUhh7QeSW9CZQfCnSJCaCTvZtppcl6NVGOEQzwx4ntoyuePz9j3weejif4Vyfgajh+ZTj/IFIQ0pp4OpoDcLiFY/NDA1it/BENRBB8soJL9+JY1P3BKFgZQStj0w3C3BrwGijRaLI9VsNZabqbFyORa6Yo9vSKoxzAkuIjMO5pgdRI8WHYSwOt/Nu8nHbXO0VEh/UZk+62mwEPXofEJTiVjiodR6QEM9o+Tjx/ccZvfvIVPnt4g5fXB/zB+ASfvzrAErQ4D1+ECWDUgZQEwpAzlcO0Ej/HWrCqLGlOidUSajGQzwkLgEkWUwY200xi7MhecI/QyTN6zuiefVwc8f790Zsov/a+0rsIR2f0P+cCa0orGNSQkIyukzW1/Dx00BJMypRerO5VrG6+T+AFDDBi7tnMTc+VDIFdUUxlAodiC2xh3MbFxMI5IMZgXCu1blafA6aIskmdn6B74JyQKeA+7x2Z3SDRd09T9jQW56CqDvlDFHvBFCRBmzOlTM1VBaaeoG+7QEGcdEccawa1u0XJsSHYp94Pp60NzTuPAUnWcz7OpcEmwf6Yhrmf8OP9E/zs4QUAYH95hF2HABXTsm//sp//kj9j13sNWMhw2CwakBQhI1e4lVKev+c8GSSgAiCDHqpS1M/kNBH5eKL9dCqep+dWIzdIEKoIhjqXCYAGBAEetgQiFKwp/8kN5VA1kCKPFE0qsrR6Nt8cZlZsBB1r0vASzllqcHYsRiMYAQfGt0dgzG2fTjd8/HjGPgf2feB8OMDHCPHqSB9CYHWqZ5PzTUc8PBxDgEzEeFqNlY/UujBiQoGFABHx4NuT4fbcCyh2sEADiRxbzvXwONX17nUCPmJCHNt1VCkiHQxZMt5vOqVlLhFrY54qQpt5GnEvJ++9IApctKqflvK0PR092TxAjlZCUOPfBTT4e/UYGcDD8YaPjmd8fIgqhtNhB44OPFV/kyqJh26CTMVMMbZdAduQpygHk8aqqNkEsUy1iBFxSN8UImiUg5nlHBls6D2s4CE4TOCk/WOuPasUgtfa6kcj0F5UerNYxZlgsgtLzWstxhozsZd1OCHn39TMDg5MRvVcoLPmUMwBl9WEZFtiCwGNlfRWZCRv4XiV+iPAYnXeTIAjFjLGd+zQKd3qOUK2IVmWjelJgt+mR/ItT+bOm1VQx+fJajNqxiSKHh4CbYqzbzVmnHPpm2azbwQP3kCMglZgSxG+7QEIxs2wZwNL7tcQ5Ob3pHB2XCB2zvIzTYFK/Lk9cx1F0lOl1aSu0rqh8zJMP8JxLDF2XuNS6/vD9Ytf7zVg4UXqHoCcUf1y/Zv5xvgPZMhZkshqHjXxMls+i8yIj0xbZyqA9DxfJwFlEx6SPZjH2ATSw9ygz5j5un54WkRADIUKGNFI8H4rhZOGqQlkFY220luWBosFmWjAJI2P6Pt4wM5W3G4D+xy47gNzZ2jYq1MCDCx6EUZ1jLROrYTSsJRYSp8wyxh1cCUtjiJrXyLsMEzBvEyCEBq8ZF50+nZnQABpMkh9S3i7t/XAtwxkV18TiBZFTIOekRvTPopwWwnn8tkJSgRo+P1M97Gc1soIF2vY5p5jnZU/viEqIhpzeL4e8PXlEQDw8vqAN5cjcBkpJGxj4lgcJn8x0smEsDb0KvtHDnt+w+F0w5wD+8sjxutN9yRARuC5ZUXXbIAqPa7N+GwxS7wdVgyRJeR+FiBrIJtDOwHLNSNGYEDNCCUwtdJCzQeHbxN4nMEwXAd81GfrdG0e95ElydLeMP1otC0EBVGGDrR7OYTjninOBxlAq7kF4vkixVFrwG8FMnDhGBIMukAhx0Z7rWnaBFS41qzGk+wk01hRPVVAiwGT5Z5hMEHGiMHcPDgsKwXtVn15tJc0Ly4GdD9V1RUYi3CP5LoMtihQZoBdE/NHsKkUnLX3JNMKEzGu8VVqMW0B00i2QwyUetuwDB5WwYdxb+canVYpZmBZA2/9ekdf+8u83mvA0gVqln+TraDGo9nVlurBkktnt0TbDb3pV++Wqe/kpmVQm71Y9gfIAcDiu2WsgOV7rUfSC10M4DHuXYCHuImGPI296GYv9ogbaT6UsWG578xofQFWfeySnhVlLvUkqkcIX381+DZwfXPEF+MZ3A2380FOyHeIbVBe2hCUa/bEoLZI1VB8hmulgvRMM+hlagqW8acojt+VhpRMCABFvl24qWehcaLDNUjsWam01I4kEMOWbLUhyt8tAEp3jjLgBD25puYoI9s75c6HEG5z0CmS5HrebhSQZ5Yu2adYp5CDndnbQoLmpMjTB9cc0dhfDG++fsTvAXg4vsB13/Dq60eMp5FA2rPkHUotaC+xGstKG+BbPsuLK55/dMb3nr/B7obPT8/xxp5hvNw0RkACBzITl+xGe/RIxbBNAVNFVoyo3QCz7PDaQA41AWKxhoHaEDYRIzjvQk/th+FgiwOmvfwh0p8PD1fcbhuuTwfM2wnjiQDAZDOWJnhcx5l3YeqoDsVMW8NUZKvO497TP8ngJMMT3bVpW1B/L+OKsmVmBQZoAyzHiyLaZJY993xtlrIJAcZc2hK+RGxiHvSqPWnJZDxAa6XStrERx9WqhyIBDdcqwSAbc+4ZVzXBsNLr/EgyZAfHeDLsx+i31cHuuCLAaLI7LM0WE8uxaqlLdUBuDO3S1FGgNJ8xn8dzPhikuBghLxD44fpOrvcasIjy50Lh33SY3TnnRgCgFBEdJnOdk6AiNQXhZDPqv9wJ8VihcQQOr2OzS8GfjAoNUWd0lMI5OLYnwxyVk94yR33PBoltQDrspB250ZBpgfng2K7VJbcL2yQeS2PECE6iuHRyEpjlvUc/gnxWjjsjkq8POJ9DTTfOIyok9nb/zOnuhvnMq2ETP6+lXuwaAJI5dVL5QQcD+2jzSUPbDHx/DkXaHG9gGVegWCWmIOaG0uwwBdZEzdUkCgLEZNkI4uKFkP6GaUGt0cF15MVqGaSDYs5+3AxzBwa8Ir07vQbHiWsixt6wI5zJPDrGGZHWSye1nQ3XF67IG55Nyr444vXThteHCdxGpK3OphSG2LiuISDD00ALQSAAbMcd33v+Br/+/Gtc5gGX2wFPpxNgWzkibs2s9Au20GHnikKN1XtkJFN70lvMiw0Y5aB9hKeY7MOUjpHn7Szpezo8r7YB8wRsb7Knx2ni+fMzPnv2hOsc+HJ7hjevDhi59jFcoJGMIAA1gFMw0ABs9AaBUgvzlO+f2Y05GbulQu7Bw0YdJnAdwBgVuaejJLDgHhvngflYHtG8nDRyn1mmDIsNMNmWvgdYeQgy0E4AVhMvzVjiH3MIdOpk8UM0+JynBIZZ2jwyQBw3a3Y77dQeVUiVkoznlh1hyiufqdZBHrrYgjc23xuXADL7I2qOEjiquu3SbCkF6AcHDla+xgkEmzCaY7NXGXqcoB3POXPfL+XSb/vyn/+SP2vX+w1YAG0cA9BFWov1bNF6ictqQREU2G7wkwvYKK+agsBxNhlHshluhfareRC0GBQJ9EZbGWXPO6MtB5vRhQRkTPUQLDWHGs7T9Rk03Ky6YXSksszGXhBM9PJd5bbT2IwMEZiKsZkpdwtgtM8yfDrLhumUNIDz0M65cY5/sg2+OmHS1J3dmIfc2LcCXttT9tM4BvCjzoJA0yZUOcO0ilgWDvtMZ5xjHmeyzJYWaEuoVTTo/lvZKMeT6ajBbqtMqaXYkv+WuNKRUT69RTqULKvdHyo1uAh3kZ8JYM9IfX+sNcB5IEjCwRS5Gmq8Qef0esB8KAqMBoHtnCuOaVujApe5H6T3yT25u+FpP+I2B/ZpavAW9z4wri6HbHv2kUkNyn7yOhZgVDkqJin7uAkCSR3OR8HrRDElOYC8V619sob0VebYHwLYjUs5VwzHYUwctx3TDUM9kjLQIYDPnjDUt3A9ai0T06YN2V4bbh/XacKcY50RlvoqH8B8mPDHHS++9wbPHy44Xw9RzfXyiPFUC5P2wtveU6DiudQ4j446UNKt1jN70twBO2W3dzJqtfiZcqQOaNE6TYs014nC2WqfUF3BTY6fYvOcPO2LAM35sU1TxLnSGGcAEWd7BWtXfabW1Hm1FzDYGdifT0ivyFQwnycZHQn1B++z+YsMEnkP8+jhFrhn2CLjAGAvHdFbvxKg/6pd7zdgccgxWDp4wMR+WC4oRqdAbdYCEqjD3bh5csNvd6ItMR2MIBJ4BGJ2+S716KBDIKDxWif31K+i7cybk+Lm0QNuDbETuBiaFWkCQy9nqtb2x3q9xJcj/Q/FrGlcFW2wD0M6LEbRQGxGuwKmqqb6peXBXgIoLRJT9O+m8eMYeEbBcvyMQvJ+57Hdq7U5s4iSQrBnIfRs0c9idPOZgtUqepcdMgOBmtIo3UHHfXk5s63SROYFYu4NVIy5t4lv/R441u1NAkxgmmcuZ5TMY8zzbOsKnhFo9u3QAZe7ZZlmiB4hgAQBXsvzZHQvuU926nIS7O4n1F5Dgqq+JsjY3QzXpwN+9vULPF0PmHPg61ePsNcHCRPHFdifAZOMUCvv7OstGoNFJSDTfuNs0ngtDEBzxDqG41ZzqUZnTZRqE8CxMzHVS4kHge6XgddPoYx0N5yfjnk+VC0sPxR7RmZ2S1Y2BOwAZlat5P3fXrCvUq9KiXXCAEqakpPjkx+8wl/9wY/xG49f4zwP+Icvv4/f+aMfYO4PwUTx2Ud8P/YaC5bqa69lKkKsJKAOw9HCPlJj3LMLe41a14sd4/4iUNYaDHs4bpkmGQkimIbJ7172qcT6ZItczHWVN8efaN7IfZZrJBkRlmP7TMBDe2C5H9q1HKvAz8494AePt8342fbG4JtpreJWe5pzSLaKxxAI1PLe+98fru/ker8BizWjj6q46AfWLRUCyA2Qh6z5IaKvcbHySQ61aZ4nRPtzOqppEeUzAh6svqgGRYOOyAAeJ87X+AYdPV/oPejteQTGGeoHQ+Mb5220SpJE7N04Gaua8jnnI4EHYJeIPstw1dhVuio2FdMaonnRGI+8eJQ6Do79kL8/D+5RAUAAmSPOCC9/jxaB0CBsTx10QqkZt2aocPfMBKDMtWfEP+lEM3qUxoU6jGTNqPOQ8JWRW0aYLJEGfEktAZBOwlr0p2itG6J8H++DItGuxYBb6XdyjNgl1oerp4XWM4EGKyXonN1hc2Aep0TLZCbUz4Pjt9Wzq8U4n5PzTIC7rYZdoufcP9aek0JHuwF4ecDTdeB8OkV113nIcVHzEnMd85I+pAToWUnCVMXcEI3JLKrySvxY1Tw6FNNqf3HdjGsF65jZpv1KnQeS9Yp903sVwQ32ZsMZD7ieY2HPV0cc3ow1CAJW9g6Vgi4QmGD5IVjc7Y2V9qc7rlzLfoweT34A7NkNv/7xS/ynPvoJ/uLDT3GeRwyb+Omr5/j86yMwh3Q/lqW8sn9cO/xcpldZrDDbxBvXWAFeBWhkaxorEYLZHLcjvglgKPBGAM390cVsKT2HZjNzTdDejUseC8G55L1wvd1qXeroiVnfG6LuejQWNViu0/lQc1gVa+3z0ylQq8g9sj9AIJNFDWOOZf7JtnoCTx6jEu0ZKtARkHzL17vS+v7HuczsXwHwLwH4BMDfcvf/25/0+neVXfvTX47m0Joym5tXUW6+pEXolXrhZnE5XgDQUeuNsqz2zGn9Mlogw0PWYulISQPadBVMf9AY98/uKYP4AbSRWKLM1yjCzmfYH8oAMV9tjMCbniK6a+Zn5WZV1Eo7y/FB/d0jd7tFWqi/p54flWrrn8eUWis7LPYCGg/P76SQ8P5epAVgzwgBJlvHy9a2/G7xnu2p3Tej6mM1bSPbtjA5dM50UAZN0qS2hfNIVujgi0Mj2FV6qiFl5uoBtG6d3XnEe7cnKFpbRH99rXRtQ6bF1FCQ4AWo5lmjjbEXq9I77fZ1UMLw2DN2q++iw7OnAXx9gD1tOLzcBGylR5m6jTDoZyuwktG3Skzzc8d5gF1Q54HAjWAJcsqqEkMDSF7PwaqXStdhGfcY+9IujK8P8K9O8M9P2F6OCirapfXHseG93yw1Wvz/apP4/AAWPc44W3WGHY7NJp6PCx7tiodxxdEmtuHBKGaJPKw9u9U99WNFuO95P70CkefilCC49tjIFCRZWBUSUHvVtCME5fPoyW7V3mLLA9lpztOh1pHGlKBvtjOApulwQ9pZsrPqiYOWBup2kmPdAow6Jyz3KOf+HoznPXONsTkdGc/++eNG8NTY1IE6xmVwv2NhCf+TcJnZ/8bM/tjM/u7dz/9FM/v/mtk/MLN/AwDc/f/o7v9dAP89AP/qz/vs9x6w9Dr4eUxjcFs3ggz4uFsczVEudDjfZ83o9AVOY5WGXfoMOgGW0LXv7znUaGJVglOetqwySOCbm4vOjo4RqPOAUEBIeXdL48HENQCdCzJLz6D3NVDQWQveM//u6SQ5Zba8zjFka/Ko/DDlqsWwkL1h7p73inTmnAMLoy1DmnOl8cbqbCi2XnryjNW4bJcyMuW8WKUBGSS2HK+xdTni3g9HxxXQIDfHqfenlkXpuVHroZ4/5k7VTS3K1anTI25mZmpGWh3QILbKiWOBd/UmsfjeLowGCrSAJbcEAwliBcCYWvXmdN2WBnnSJEwIoJC50zykY6X4mGvNU3yp7xQArEo6PxYTJE1Wi1DVZ4PCd84xsDRV4yKjw+DaVVM2oKXmYq/Z2XB4NZb11UEQUM5dwVDOzXxI8U1LT4vxYAqTIJvPSsfuwLxu+OLpGX7v6Xv4R5cf4B+df4AfPX2M1+djCKWpUVvWA2qPkyk+QAGV7bUvuP6UwuT6a3ZBAIfgNoGKtDl8rAQ6I3VbI4MTrr9as651zLQ505fLqeXdqedn9HVTqBelRewdrpHrmcCjgW7NhbnSjwySeq+knm7kM/vBQydzResI7WU/aH9HvYcX/z0PjZF+25f/Ev786a7/LYB/sf/AzDYA/0sA/2UAfw3Af8vM/lp7yf8kf/8nXu91SqjnsLlZSUsql8i/3GB7UuSXFt2SJ06PTYrWbraIT4vWhWr71cOFgIDGLYW6kd7JSJFOVTQqSieB2Ejjmnld9mBRP5jmmClKy7w3e1jEZzi2p9G635ZjkPPuEQy/fCJPJM573AHzpisQUGg0exME8jXUn3zrXAmwQVRtN4KsiOIxAOprog9o88x5yHbvPjI3zuZm427ncD2MSGNRUNfBg5xuA1QqAd1ifPxC62dypPNglX+XJ4XYJd5rN6oAtAb07A/rwYzxHKWLMTbi4lpNliHAZUWu1bm3lbsTPNEBsTlXdrANRxnPNC5BkxtaGougmQ0SE6/xvKmFJaOj60LwdFJ7B6iNgSTrw/Oh4JGeIXvn09QMLdZefh01OAnU1C/kiNC8cG+kM2KKiwPsWzwvgSCFoHTaXH89yJnHdkiiNwfIMcxnlTjfybJFoMBjNSI4QWlYUsibj18nXOf42psNP/niI/z748/h9x8+xXVu+NFXH+P1V1GCrkCGjsNq7SB7szAVGuyh6fTn2Gvrc6qzrVKj0FqyK8DjIfpOMyCqYw4uEDiy98/cEOlNb5/Ty7izVB0GYGPJPNFSvucWOi0e/+BML+fQLWmlq1Xg47XOBAjJ8qLmfHixzHOgGsEJFGcRxjSwLxIDMjdgPhbb13tlsV0Fy/O7zSTL9E6ujqDe5te6/z/M7C/f/fifB/AP3P0/BAAz+7cA/Mtm9vcA/E8B/F/d/d/9eZ/9XgMWRy4Y9legIWnOEIAoYinJD170Iys6AMANA+lIDoCbVwv1XOgT3PC50bMUOXKotZDL6ZA9aRVJjaLsVDh1A0wXLI4OWBZ3iTXzXllW1/pBMOkqGnZz4LKWWcKqFwDvSyI21Pd3Y6YOs/xdN+Dc3JbPjNjgNAqGcMynr0adUkvgskWPAp5Ky3uRloFMk7r4uoyzjP0iLGSpZNOP5P0KP/A7OM85D4dXsa5C6IvQYNyKgWDUxGMg0PPZBnQBp+ajl5JSUJlRX2JLCWD33hQtGxh2RiwMJWRclfLp+guuDwFOKCUmkS2sovJDaCbIoPgpnQqNcAYFhnRAqTUIjQ40T2RBRrKabGrGUuVYZ+WQFWlzHVk8r+Y2S6fpjMelHTeQY6vqMHDfQQAOD669MwnMvdKbWoODaYAGrAClPNjUjS5UrNWsvj8MQg4prO0sazj7ZGVz71e6MF/DlHUyZGR87GzYvzzhDy/fwx8dJ+bNgJfHeN4JaZ2YBkZnfb32tue94A4cdwZ5SX92Q9qeY7J/TKbNnYHG1sDjzaRJ0nghAeVTfBbPRCKrxJJrMk/qXXJq4KcdcLqwVXwG2urh2PZYc1veC/JIEEMdJSD7QUYEVg1Gc4y0ttKujWk6ryv2ZfaqycBTZelIgEXtY0t7zaPj8LqJoX81rl8zs7/T/v/b7v7bf4r3/QUAv9v+/3sA/vMA/vsA/ksAPjWzv+Lu/6s/6UPea8AiCpfI3bJsDrVJeNidcu3pELsIl9SfRLI3g5ookSptbe0VGTedAWl/GVrwZ3mrbQOQ+l1KcPl6siATUFM1/R3fy7r+/z97//dr2bakB0JfjLnW2jszz697zv3hqrrGVV2utlHbbWhKaoQAtdRPIKF+QS14obtpqV6gxSMt/gJe3S9IFhICCSFavOCSLJBAQggEFupWGcntLpddLlfdqlv31/mdmXuvteYIHiK+L2KsvFXl8j3nZPpyppQnT+691pxjjhEj4ouIL2IQqIyrwedaTtj7mACottc02jRkNHAZYaocNEvuWtoqPTQq4nEBkCHcbi1kSLyUGICFSBeH/EEgoDfrM4QCoJFWRIFpiwMAtfCO6dZpwJk6IyhwQ55pU3Mxpfy8wEVX1GjrRg6SOcCeGvQO90p3yVgdSs48S5XJpVFJ5izPjV64OAYddObzfbRIFo1nypuDMkjw0QwHU0sTYKlt52ORQ7RLZuJ4g/0+TwlObgTpW1xipsg8U7BK992UljIFUwfbuaIziqyQqOskqCe4ZNooQUoBUq+qPTYYGwVIVP2ixmfxffYEGmfUXhquhmri62SzR4GXfCbJrKpyaqXU1WfJtR/jxHKuQzpVaeRldDNCyaq/kacdxzNS9hm1PDjGywE8DDUf3B4K0BD09vLeBQSljgygXzpre0BWE+VkU165f48Oe2zzsJMobEqBztS9BIDCN8Ox3zECWeRtRiQVHb/E4KgL6ahpPwELOUGgMj/LtXSjk4NozubW9Hm999INnXPmrojOkqJqQLBHmtwYOWvjIgBnur/UakXus1fVzmjMTUrzq7xa8OqLvH7s7r/+Rd3M3f8jAP/RP+vn33gOy4Ky0dAwvT0qnoESkMyVq6KIBoNeyNGbEoNSJVR2IvfNV8fQSaDmET3p+dfF48o8bXTUXMcMRyhynjpKhbNDRkvcBnoIBvUwkeHkOBn+5eNzo5BTUCx5K4+SgIvjoZFN7y24ETE+cTK8/tBodoIpDT6jMFwzLdwyPi/PnvPM+efYaBwJGjmG5jkuIe0WsodbpdRuFGIPBTOM3AHreIy1iUMH2zu38QCxDp2rwzGRP0FASkOHHrmiIeH/A4rSIIGWOttm+bI+R+NP2fSYN/VimVS6nI8wqCSCy1u94Y9IzjJlykMr5ck3I178gJpTlWcTnO9Q+qgiAZS/VjabcxLN5ZrMA22f1D10TxocEOiboncED/ze0iKehNz+/NHkrOmUhTi66RaqhAIaoDZXZHhktaI6u+b3edhjzH/JIgHluFZ0aFxqv9ZNSgY0/y0lq8+Yi3/2064Afm0OkxcUpyd7pa5aJNgSCOtUczpps4AhI37a/8e8X6s+4hhp8LeXpjlHi3iB60oddvA6JJXgJ6N8TIUKKDFqBxSPjWDIoCjOK6RYJ2htOqvrMkDN8HpKVHPOkvsevf/6+kMAf7H9+7v5sz/X9cYDFm2YvMge74aK/SIEJK7sj9A+R0OTBkRkytvNLC/FK+TLqAuFmyid92T05bZ8EA30eD2/p2vokvIcFXqqBF7cGBXVoUEygYmFKLt4MVXFU6Ag78kSUW06e0XRbGeAnYJZ6SROBO+ZxqMOmMy55gYmUbSRHx0oIPRYPSm6bnBA89nzwbroRfGxHfh4VQixvFhrnmWcfa7gUIM1pd42ItICBgtgFNAzKWu092BlAcmrbGC3rLHVOokkrHLbJpsZARsXqAT0VskyDRoPX+VLIMFDQc/OaZh2Y5BdsqSoJYE9Iwo9lcnFat5wB3c8RZppOj2HBiGNnbhUBLoGRX+QBpSt9Me1ZEOfGwEExO/i8NKg2Q4RshnlUDgoezmJM+NQafsCANB+NrOFwd70U5sTAmGel8PIJSOjAv6ISeGa7vdVaQZAlVIRoWERgGme+3oJzIHPsEYgLr2hMFp+PtJ4DQwZ03K2AFMCsUX2qFMtojmewJf6twS0IsfxYlb7adbJ0pQ3oPR7NL+jHDYQzddI0D15iGbKEOd6PJSdGOyszGep0qi1N2DPKyD1paYw7pvgSfuB8s2KIkCpWn3vq778S/rzz3/9fwD8mpn9ipmdAPz3APztP+9N3njAQu9fnt1AIVYajF7eTCOWm9Gz9I6gwBx5lkwzhoA8+vK6G+JHCaYiFN2rdCpfr/SDtXHeoPNXjDs9nC4QP8UrUviSxtWowE3PlTFJA0WlCUDej0iWrP4Z5ZXznQAoRQW/8W5piGhoJkFHfb+HrqnkCQb0PgmGyC9YLBqaMmmOzq1XHOCgFIyiPcBiWIv3Ec9hJZK4PU0ZxXo3o81hcb1nfH9kBKafS0SAAMS4CESC9BuGaVzipRgJ7AZb854dWFmebjzYsK1L76ejCjfnsyCDYB4E8fl04vrWhB89uiQDSruw1Nhuw/5W89N/ZlliylyStffvQFIXjXT/mNU81XxT+ReYY/tzmKtZmJbyWjLSQe1SWZRpJlaGLT1IOI/72kbAeJwDo2CW80rOz6E+60l6RYscwKNTM9MuAm17HNMgb3+iIk7HWs/eBRhAEUTpwOTa9bXSOrFCKKMnJInWfl7nKOaXDSwhAMd17BHQeXJVmPkWkUit9cDK60G9M6NdFb3yBk7bmhDkdSeTEXM+J/efIrTTsqAhx8vo4qm/a4KoA4XvRt9mWlppXY6/A1K0+6UTsCXXDMMrzdT03wLS/v/kMrP/HYD/F4C/YmbfM7N/392vAP7HAP7PAP4BgP/Y3f/+n/febzaHBVx8L6MJVIrGActcuw5Ay4MBO6chcox9F5VQVzjTdRQ5ldCWzaMYpVFKiWV5WdJHr1gRGCrsGzgY5DV6goDN3Di0pVdoRUJZt03bDEB1zayL+daZh+rZ9Fbd0samKJCH8m2lh1K+WY3EnLl5kixJbEOBGyp1P6aeJmENiE66oyIJxpJbhEG4Pqu1UrSj9ZgBdWY+p/c+iJfm9608pFY2zrblivioYqzkgGm3aJDXCMvkFjDawq/ssXY/VZ4SLIxzhbHhqFbsAlgQwCb4VH+JRpDm89hEr3us23LUPYAdVTWisSaX6Bh/ju894HTaYeZ48fwO85MT7HElBW55QCGy8sVzEfZTzT8r4ir0TfkpUMh13c7IoxdcxGHuIQB5llADCs2Y0rnoEQYA8ESX5NWY57jvXZ+njMpA9yZ7VtEO9vbgeoo0zxRCA9EBVJLobcD1SYs+MApqqJ413p6/xc/VmNEhYjHnhqdCC8g1QDFPHlyUSXlpIOSY+hG5NlZyHJ9DkXt3ZBWOC2guoFfqwZY5Z0Qzzl1D8WcAjJetMpK8qivgdyFH3p6huRKn0AtktnevCB3vyyhmkX75OYFJrjmBW37eDwRWFUGF+XIsBZ+PlAPJ9pWgPMemaKeVwzqjYRy5VTYRx0VYVBm+lgjLrdH4Ci93/+//CT//OwD+zs9y7zc+wkKEXuF+rAZHCqkpjTRqEqC99YagcB4pvCgj1dHzgvDrc0sOPvtMzC1LOjk+eXm+hK7VdZMeLQmfuRk6OEOPmOQ7Kb3VSWWO4gLwUUy/WI1nHpty5bu3fgrdE+vdLxWJ2E3vKm82owXelL088qwmYekoc/bhycdntpflvWhdWAWQ804PR2BV3t6rWmBpykZFxlLDliroqQtFyzJfPa6Rplp7OKx/a8wZdl9TVWWUyOvRWgBLVKC884oC0rsnWVkl9vxdKsTrk7WsWmvitWaKIB0CrPzKtz7Ef+kv/CH+lW//MX7pWx9jfOMRflfpTT94NElEybgO+qOsLhOer6GOr649QmM7twbu0vPU/vL1/7m25E84yhAt0c9M62hvzIr4CVwmMBJon1aHojrUYmCJaNC7ntCJ0YwgKb3FYdLOkg/BXjQXW4BS6aC6N+d2p3PFzswpG7an+OZ9FsDcZIDN0CyjcPD2mabL+npp/tJoC/Tws55r3dIiSo+iAEyX4XlX0RKmqsW3amBDUdjUzYPHDXBSC7voHcSl2rzS+ARLivDGvx10BEsHskS5R2upfzU/jpwLFDDxKvdWWnGiZMLKSdRncq1Y/TRatPa1XP4l/Ilqnr9lZv+dr/BNdL3xERZz1CF6e6HaQP+QsaF3IgDScrRA2mYCmwHYmaWzkFJSeHhGaaPK6yYi2DEhHoSUcLpR8vSbEmF41nvInwooU1uLd4NUJlbPZbmslCBSoW0GjAkfTRFfuRvRFIEVeMjh4pofEWmzQrDqscC27ozMtLkRyFKaJ9/Fq1xb6SdzzM3A82KCMNnmwmhYCqDR4yVfwxspOeaKc98UjtYi3yeNDCzexa4GnGYZWaUAG/AZrijJ9thC8vQGc93keSYvgGe6cExSvjLEFgcBMnXSAZAb2ENbBOAGPhgQ8hHnM9FIs5U4Cd18p+jkafKqfQD2ZMcH7z7HL7/9E/yl+w9x8Q0Hm/jk5T0+fX6EH6yM92gYO/cLZoxh7AB6BKeBzZ6GC1lrFTK5b2XkGD2akR7Z7+MmS/l327uKJNEAKK2QgHkD7BzjZBqgk7RVOttlSByulBcaWst54x4d9W7kvUi+mWrJyBg8PjtTJxlo1FbDpTJylsK2/kRjj0H6wSP6NBAlxoZo1Gchk0wZXTdkjyVb9wKvFoWchwIe6odEWeQcwzCTd+OH2q9K96LmVtGMPcbg7F9yaLIOCGz4qDVG5+VtKNIywcBpJQsz7R9gOPReT7/YBeK5CHjl1l24VbhNIWPZjzoVujlcfL7SRtQx5K4xQryXPpy5JtuOfyFa5P85rk/c/Tde18Pf7AiLF4plBII/FzGLHRbPFd6sJmWokGcaB+VC6WHvtfngqLNpAPETCJAqDACVQaoJVV6WxjvCgV5GKL+3phdWUKW8NqBxKhIzywOMag5PwxXpkGgJ7VIg9Mzn/az3w42BBvQdRlOo+OYBFTLNsW8P9f5+9ORYoJSTQ+Wl6m8Czj85NyjQRqOusDoKRFitSa+AoFe1cA7Q16bGyMgRPe/lzCJgNbiMhnlxM2Rg836xBqY5XojCGheWVM/tDmPenc/s4NoYKfD2XpnmW8LmNII557c5f40XZSyOY+JoE/fjgvtxwd244rDt4NlPlDGmEHxzheN5X/XP4c84J+nJMvqovL+1SB5QPCIOcWQ6N+WQ+1WRiVx7VboxPN/u5QNA66hLwCueAueU8pUAvXc9XtI6aL130nuX5936GwXXhvql9S3Kf2t+budJUQe0AgLT2BVpHUkSZoVMe3cfedaN1XyNx+TG5LzqvfLditRq2mN1VpbXvAHan9VjaJUp7U3O32H9/S0fptKfUKdbjk9VXC2SDKCcLw85ivRgDr85roqWNH0eg4Cc2j4PiqRY+yzau+dn1MyzRZnU5bhfkscaf48KL3brq778S/jzmq83G7DYGqrtuenlRGVOZPbwkMfZ2PYp9wuJqremljfIiEF+ydAUGJ9B7+LQDA43uQwGU1GQpzr2AilLKTTapkUpPJsoEluy1VXVw9JCPo5ckXyn8Dyr7A7AEtlgjrrfRykpRLqGp7uKSNw6APNIe29j0vtw41IpjQrt6vyeWfNAol0n7mr+uyHWz6uyxRqQs+4NpZwwxE7yan59aZ1PkBv/LtDH9SZAYtRoezTJY5VxewHY1tyPESR6Z/0dl7NhuESX8LJpsCinUnqDYfwyKKGQq8RcMpEgw18c8MnLe/zw8S384eN7+MPH9/Cjx7fw4uEuGiO26B17j9AB6Fya2dOeKQ8she6n9/YBOGrPKSpJMGBQFZxb8S06WNDn2z4Z13XOGM0kMFCaqRnEMKKvykfMab5PVm8tcpFrJ5A2s1dLx8f5le2hUhQCr/1Z1Fe5Zo5KnQlA5bPZhG/hmTAq22SXz+dxB9pbKWfFZbFlTyrCkvuTnA1yY7pBX8Ah1yb/7uk1RS0N5YR0kvOECMelEyBeV3cc0YCJzl5jJMZvIjL593bGK2XxqtZqoFt7XZG+BioEzNGisPmrBqaq4aIvc7o02cy2Ehrr19fPfL3xKSF2elW4egMGN++ONDCmUJ0asmlz50ZtSrlvZnIF1DY8L25mgYaBTC1Ax6jLs7RQmow6xLOTSHeq+81GzPJj9cTYztHci8pVxnuGNmIDtnFJ8MUQ8gYIVfWxt+oGRjxsGny6QpyvgAzkhrwa/D5C0uPBikvjUKiY6yKFbygOhtWQHKW4GVGwltbg2nKdfNCoUcFlWLqXizvgJ49W3zuWM5PolfkBSnGYFbhRiJ+9NKhoeO8GBjBMBFoq4ZGptKpWs9bd1tQpVV5XA9paExrHDlQ5JwkA9/u4QR1sWTJEj3UeALu6vED2a0H+BXEKYl4++/gpfse+hR89fQv7HPjxZ8/w8PE97DKW8cZculq9G7kM9GC5Hx1B8CQgJe+HkUGvORfB9XGVtwKDSB4PBKIV3jcofdBTgaoiAtIpqRSGSL3sWpu6ImSkjKhIni2aRb7KkrazIsr65sE9IZgmJ+ZxFMBAvDMraHxUG4EYb+kzph4sU2LmRVjuZ9D0FBLHVZHiAhTmiBQECbS7qTU/AaIcJvLF0MADQY/SbwUylcpqMqkTlHlPq3lGpufUmiEbJI7H6C8kovwALInq2luZ2la6MfWduFGsumOZM8eef+gAMj1FecPBY2mZcue7TUjXEeT0M41sN/GUxJfMAYoLyWj1zj4u8Rr76zxL6OfserMBCz2H5sUoBJjelDy3HivK9Ehzlpbogc57aN6cb8DhhWE+K4UBII1fKuXzmvcVaWxh16dx60YWGb0h+Gauvnnj3fiHAWs/7wopU1DVa8DKoPJdurdiLdfKCUSFbeM4eFvy0zSi85iKt1deeNyfIGhJ2WS4nV1XY/wmqgYNKA1aPyLAB7A9Iiq1PDb7laWibY26tyPF3KM0OUfzFOBBnU05BoZ5GW3SuBF5cKBSPc1782O0tae8DXJcZptroEpYG3hbxt0iSFL+uY6LfJ4aOMwxLSmTTHvMk2c/EMio6jMstT8b/NMDPr68jY8Pz6JZ84s8XbmJxeQYk3+hd2/eZ08Rohl7vgsBhqOVul/a2HMdyKliP47bNgPjbLg+cxEvryz51T6zAi5Xw0jZcVbD9IoktOiO5jNvcyrw0n9ODgdTPCRH87C/PlZV5u2Aqm+y+uh6N8HzoECAQecrewTREEbpckVpx7UcmYiUtKgXweNwzUWMG3A6SSOcu5n8J3fgoE7H3B+QU6c2+oAix9SFnr1QuDECzOe4L0EC3zK16QfPfVYtBqgXxf3JtL2Oc8hjIwwQn02p4d74krKnhax12O+w6NPQEWkLLg1YpPOEje+Ut6JMg6C3QFq8KJVkOnIzzY4juF35gjEeyzH5rT/51VxSeD9f1xufEtL/OlT6ycOxSIQcVE55xLtpM0PHn1u7pxRnM1o2geuz+MXSxfTgCoHSy2ZEYb9n2/+8x25KUcxjCOqt8SsWu+nfvkFdM2tTmu7puaGRnoe3dzAnxyHGypbh8R6usUrhqiKoTi+NcfRdC3k49JTZ60UeKRVKKnQ1SqPnqnSFN/BUc+5A8T7yefOE8sqPXHMoMmIZUePRBmwkpuMFWq5a3Jh8HRkZpgcYUevAhI5YO127/5xzoXehUCVQUy+RA8ozTYW69X4VaAZzSzm7a+Xlo37HNVhPwQXYoyXAdDO6VuPl6d225ynEn20YHx1hHx5x+HyTMbK95pvfF3/pRkP0vbP2M/FKQV5MERKOQ+k/zuFe1X/sx8MQPrrMEMg07gcvOQCHkB301KN1mUEa31fnqNJuWEEsIz6Nc9HPXXLL9usEhzTsW63hXMiwVroiny9iN0qemM5hupW9QTqY6VUn45I9alJeo/GcK8Ko/Zbzu59q3pTiYzSDwD3BrlK6fP9rlynKAaOHpuaXTDfrSIW9zR3flfom562nE1lppv1gbRzWHNG9EbVfifjGPLHDOUv7RSROGVzOpVOKsPU3Yq+b1iuIUXw19mz7jdNJ2+TW0n4/H9drrRJ6swGLN8NHPorXxuJmpKIgoUpCRPSdBhJu6jja0xcKNVKZ5u+k/AA18uLGUUiYm68ZvqWsWEa9flcG0uXRMDdLJUZA1kPTa8+C2gzK8R76ZkZxOmhYruXx9L4GUgKpMMOI1howzSBjSkDSFP/g2T9UjoCIvxHe9mV+1AxqC0C55K/b2uz38Xvmyxdj5FDlxuARB1QmrfGV0lRe87jfNflp86M8f4acWRYtWWkgSHPKNcrP8YBDldmT9JukQ1X2JPhSNIDyRyIzKzNGls07uSupRCnjJJlzTJcGFiYw74p4Ha3frcozUcBMfBsCYi/ZZkm7+og0IyE+DlN4VOp5z0muC59xbYDOW/qO5NaUof73AoYNklkC5S53neRIUMtUK2WMpPx+L8olDaTSCiTrmoYsWdo7EdNqPiLdnD+eBV56VG9miplzFummtudRz5SBtZt39BZhJjBrZPAShGbYXwGMqf+sxtGP/mAEZ+l9klVHTI938n4R4bEAzEoFrj/TiffNsPvB6wRvAq9b0MnvNxmKuSnZYnrHdlNKUgR8bzJ18NZIE8tYuPcZUb/9XZvieD06LglKx47XckmffIF/kFVC7v6br+Od3mzAQjCSo6SXz54QVD773VoPH17HyvA2tHt1hXyzwUiGExjI8O2gQqZnmaWu/LAUYeargQaset6YHkMLlY5zPnAUF4QC791LYY+U7gmye2d6YaomSo9BRo18lcy5snRTikC/z2ddUV1E0ztT5Aq1SZkGqkP7aHGwks2o9OzW0Db9zHRRPp/AUGFqKpam0CknsGYUm1RX5RFkqADOZ85Z62PDiM32cgWr/eyULkNKbeSY2Iq/gwHJ16yjCAAUoGypDnnWQPFD2CY9uRdLF2Z65MqjA/MOdTI4oCZXPCsGaJ7naM9b1jNlNOV65InlAow0lLnmRnDTlDcjgVuey0RwMBv4AgENgSDnjYCYDoLSfrXmM50IEXTz+wK+vA9Qpe1ef5ZGac0QSd4Z/cv7SeZzXm4J4nxnreVW76Xzb+iw5J4kx23xzilSPNaBThcjD9SLjMzyuah37wUBPK9MUYjGS1MVD9+jzwcjLrM90wiQvOR8oHhHzSFb9iGNPiNZNxV7df5Tew+mEfO+SvveAFM3AnrKQAge7/HKs6yAd99T3cFcnFrNRwOT3E908FJv9Cgo0943eObr62e43mjAQq/HmO6hMkX9Hf+oDcxKlh5l6aHFuHH+1aIePX/Z+w7o4uZh6JvKsTHoFWlpz6BiopdGoyIjhuSRWBkHhVPBTXGjOFreW/yAvTZOcV3qOWpilop2PFZjI0USaIStlK2iNy003KWmg0IkS17kva3PvZfSa+TUWoMc/zGjHzoXJ9JNI8GFGnMxPM75JTnUkAdSmtaN60NltnAyWpm5ytD3jOyM+i69fMmU1Rg0FwQMSajuFWmagwGVs+oX3tbW273yOfO0epo0RIv33QC7UhQNhAr0n/muZQzHmfvHlTLjmjByRQArMDspz6a168BrsJqHc9yBmFckxtHWIB0DchgWA4SchwYMFNkBDX3jTLRxvLInW1M0IMbFsH2Poijy2sAoI0KKuBnkMBAEqEsqoxl5L4Eirms6J6peok6hs3UDHsQpYSSKempvR0Q0AFAohgaYIM0LbIqns8qLukLn+imahZIP9adRRWLOBw/Y9AZ68vtyAjUxta7SwdKBJR9Ln6qU/R6FY0qvy1ilk73m20pngUUEDSzaXnqRFZpVCQio8sptObeK97kFjuDav47Lv4Q/r/l6owGL8rUUGjQFxbCnlXBU3bsXSEgPgpsqvlvG1NqzgOY1shyueaEiANPDRW3m5fCwZnwItPQ7lGKiAlt4H1aKoMoU8+uZwlE/CIVMTQaZvUe4OXtpN8fLsOcSBWBPGECbOt639bNhyiTTaiJnEohktCfSaaiUwax1U4om5952k1ISgZIK+VA5Z3I9lI5yW4wOZWKcTamx4s24xqk0G5Ulz0Wx9vmNhgAyQrx6eeiCVrwUfjeqPppCpqfHyJfHh/tJtrcXo0szD5TrgIapB/V1sRovQYUv7+raH/LYt/X9mQbRvqDCTyK3jhkARPyVwVZPljUs3lsBaOxpIJVCIVcgIyaLYd4K7MpxaPNbQJLkSpc+0FxnugqWuuHoy+cs9y1lVae7N+CgiEzuM4E+RgrT42Y0diaXySkfrfFdcV5cOk6iRADnKCOY/6+5BxbezRIlAWpNGAVG7s+MgAqUzphIAbPmSNX5ZPVZRS28yaXFPOwZLRqPTefleityitKpjHyoPUMN9RXCuQ5hbUcMMIo+LpYN96A9FTzCnP9RP+upMM615vemGlHly62pZQc04mm1CGqPwACoM46+vr6Q640GLACNNAQK0lEoo8RwXhox7Y5R/BAqFAAKswN9872qSGwvb0DpkVRmC2FyFEDi4ILsZQqrB4cD2thUEsuJw9bC9C1dpM8ax1djReuXwNb3zM33q6c2et8SEpbJMemh8HlEpiGgscjTk8fUCGzibFgbN8BeJDzYza2MvgwlUKHfTDm5QWmYkREbecE0ojRyXc+0vg/9pGACMdia734lhJ1KngBJipVpEs5R4zuEMrTmwZk6kSqNJqDgKxhuQEWKnTLXAFVFEVsfliyhF2kxwdZsssB34Ni4rpWWwGJcPKtS9lMSCo+NDNwNN7BwrBRORwMf5ChtvqRPKZMystmQj2tAgiM9+iWKmaW4ivwk+Deg0mZMk3Gf+3ofpgNu+4so3aZUHAReJUc3ukhzT2CVvBTbM7rjBaDrsEtIh1BPKLLQok2vGNEmJwSmniCDUThxkCir+T4Cey0SIL20rd8lmJ3Z9VpzQ72XMsE1UPSOUQ7KN+9F+37lnLosD53MHp2j7IDTwj11aR2Z877jChVAUGewqojAUjLees+EIOQDDZJRN6YauUfLmWB002a86/ZgC7hXN2xFprA+7+vrZ77e7Kn0Ciuz9bxCbnsLCyrk7MuGlHJpAECG8obR3SMBjgaIHPBj9cZAM7Bk0vPeIsUlmlcY09uGNJeyIXdC+VkCJIXhrTbTpHGpsfLMmP6cJSTZI0S56elhkZTLqBGPXQ/mO+D3O67fuMLfu2B/a1arbG7oSWBTxskaEOhpCEMDekx9ce3S67es3HHLBlA7ykvMa2OnS6XIiqs0rny3ljdmHruBAPTyYWQ3US/DYzSGBKc0RC3lJ5DDP4CeLdJi97Rm5wiZZPXWiDNcX+m04vD0pngK748ag/preHBGOD80NGycJg4SDVSXT0BEaTbggoA46t2bIVIDQVWm5DNBOewAueaK+5Per97BsHAs1MytgbZKM7lSIj4KiOjK71easgDlkibK9RARfNyAfj03ZZ2OAyMk6r1kJQ+ZTmKLAHDOGyelEz4pB9YBirVnZi8SkeLpyLHyKh0qpqmANPI8m4igpUVWdaAooz25zl2vKcV+JGDHEqGwlvrjXAG5B+98ASc94kZdsD+tapqIIuW+zkaP5Mt4H8OouYmqS5OtUBqXziTq3cNBQ70bQRHX5dL0OZr+2iFww3cQAb33n0LM3fZoy/56XZccpi/wD76uEvqTLwPAFIvyryiQInSfykMpAk4uFZuMSm1OgoHZ7jnO2WSpe1+pFGjYGLZU/phEPn42lQrPq1i4BeCYCjDx6sZHXS5H8WWobJjLBsq4mKeBoeG2/B3HmEa4lzur/NLrXVUF9XTH8d1HvPOtz/GNDz7D/QcvMZ/ule5hKSi7RmZUpXfSVV+OQ5HOFAXLSIZSLwkKRCBU+WDNraquUO8kj5RSnM8uAmDzoFpkTYbF2SvEZIApEzIISeAel1REqgxra8s5GKk0rY2RwOzYLMktiKGWnKV8K//vOh26e3gwr66erXW/jPTewCTvw/bsue4dVBEE9egh3CRXMo4sX7XaY/GFxqkB0jtvXAyv/WkkenYCKsF5AhhFRzknNwAixmqtEVwZ2s4f6F47wZDC+M3o6v8vNY55gCo8xCHJz0X5cMkWl9EmME+oij0+f7a1BxYOBoGKqlQS7KizdAfPwxc57bK/pBUpUjxZPCN71YKhG+5X30HRYO47y/dqYHzZe3ynEXOzP52wd87A29fQHaep94HVO0iXNLnU+Gv7K5ouHtOs8QlsHwE27pSzmnpIabCUdaX3AaXDl5YIfD/UvC5dcjV5tcbUx/sJ1TLiJor6c3C91iqhN7pxnKdh0AY5OOwxhGZYAxnbjXLAaozVK6BFMZQuYMhTpaflqcsb3Ss8TQFlh9WFu8CcMmq8aijVvXLk8xK07OxSKk+EHJxqrNS5C/G+3CX5Tnxng4BKfCGe2RWo0LJDzcLI98HmGE+ueO/tl/j2s89xsIkfH5/h+48H+MOWvRgQh52ltyhOTc6Pj4r+cB6WnPlEdCs+V3MxZCOqCEWj0lsOgOWgo9ZQz0olXD0lAEOApHEx7EfojBUpy433bD19ZLwK8C2pkuHYT1acAgEd/tsLiOSzPMfIX/H9bQfskEt+NR49FQo51+lKmbD6ToyDslQga3s07E+8AH7Kom8eTRQpHO6L8YFBXTlVZk1PMhU9+/ps7EJKYnI2ZyQwGQmQBMLQx94ro2j0LBp36bOuzroaX5t73yCHgoDNhxXIbWs1s+eGnS1OBt9yKmls6DEicUSm/JjuVBqF05bdmDkvStsBgFWDuRpwjpWgd2LpRKyIDervivi4zkJyVApK03Q1WCO7XrP/DAEIO8DqPTOSyvXnS/U9pHOKBBihOZ5HD6I2o0LXknmldts6+sHhb1/x7L2X+OZbzzHd8OHzp3jx2R38xYAfMvrXgFuP7jBCykgzHTC9/567mw5eRlEqDVbzaztgW742nYcDMB4rdaReW1bviIwWq78XU6PSE9xTaZ9IRifQ83o/zFe7qH9lV5+4n5PrjY6wAM3wAtVHpHFQGD3wpmiUVz+kVznZd+Jmg9GzpPAxZJmpEU8jGRYsv5LeCEuI4Vat+0me42f5ufZM5TW32rE8m0ZeX3oAwT/omrB+75vHoW9JjNUhkUwfdQB0W+47V1DWw5d+dGzbxNPjBW8dH/HW8RF3hyu2ww6/m9VynN7NLWCj4mjzYbsV3yU9QQLGIhVWOoqRCkVGrP5U5KHACk+vRSpRb+vJU40Xw3ADSLQe5hU2JkDgGhhQJzejUkVW70T+BRW9nse5IceD0S1AXT5VGmkFSgSIZ42ZcyuLm8/meOcxDgKMwyfbOhOAkwjawupGeUlDVqmMGud+Sl3NaAdRWFsToAFH78CPc9tkcLi4QtUTqBkd7oV0JmISXWOXzHFP5D8kJ1l5Q06C+COOatKnNEm8i6pdmmPBtSPgHmcrrga5G4wO8dkTCdJRKWveszsIOXbqml4sMJLQXpFilB6ZaPNQMr2fADVUvEmNddRDgyodZC5dqZQmixKS16M5oXz2fZj7J0jZE8/ee4l/6YOf4K994/v4V9//I/zy+x/i2TsPVRXVKg/j2fVMgSWmvvTvtl5Wz1QRBpqe0Hvx+1bpPqu54Rg6/4tR1aXZmyO6aTeni+lPRojmEdVLRnPli5x8ff3s15s/lT18nGVoVGo86HC/DwQ872cJPiBtKw4CIwEpTMptEuCMUuw9LDjvvCkMsu+bcstLpMhmaBaF1S6mETrRNZ6Xv+cGWQxijbkMR95wtDCn5eZppFRxCcT4N3kpdSqvAztwvWx4fj7h0/M9Pj4/wfPzCft1C4/1agJJ9E56ZVXcvBRLV2ys2ujKgUq4R1YINhTubXl3AUyuGYECyyrpjTOtRluX8ytuRiNKWxpFpuVUopsPJBhmJEF9P1BjY68Tel2UJ77Lwi0g2EkOzwKI5T2bns+mbIunloa4Xz3nzkorciYWZ8uQPVUoHBCoIYhcSte5Jygj6amyO7M4TWxIBwiQCGA5y0y5kBDHgusIJChrPAPL6REPY6k2c1W36POtlJwAQREGlNETuG/PJniKd0EZaMmaS057lIRzDvNlHIy49XRaBy1wE6GcBGaO6frE9f0O1LsjUuAnIx4JXlR1o8gZmvCtssA0zbgYtnNyXngeltV8deeG81gvj0p5DeCt+0d86+5z/IW7T/Ct02d4/+45jtsusi73ixw1zllP5Q1vi8p1rP1R+5cRv7oHe1UpSkieXH6+y1a8ixcIz2doj7Z+LWoq2HSeGgvamgKV09b33Vd5+Zf05zVfb3RKCEAJ0YY6v6UJwf5kwp/uOL11xvG443LZcP74DnYeyjlS4TISI55Ka052uzmlHDIsOJBeKxUwUlDpjZNLMA3zNLM0kv1BTPfnxp93uUm6UaPxvBqMoIPv2hXhTcg3fg4BID+5DoyDjyytzo3tLaRPbycBgF0NNoD5csOHHz/Dy/MRZo6XL0+Ynx1FSrWdhr9AQfVXiE268/2QP78WwZdH28dcm95tXPN7Ri6FVZt8EqoJBA1xkFkvJUzFaXvja3D6xOuATqRVNABxfx5WNw+OQx6uqBL47B3jXREOFNAwKK9OK9vBKA3HPLZoEE/9HWiGOd5x3rk62BZZ1XS/nWdcCeCmoW08C5Kio/FdDJLzSgBl5hjngXninOXvWGGSA1OEhp53N2BcA65D7iFGF2sszWhzfpzcqw6IKuLipgDIkg6kkd4egdlBTZIwe3UHJiL95KYUFtO/2kckbSP3JEFyX98G7GyHKmy0f1oUb+YZRTxCYR74xRxrru3cwnDPlK9xCZkfnNvUH/M41XxPPVc4Vqt5USQw34vVbUpLStex8ZtDTsOgzNVeXqLQQDke2jhNZyaYOF83vNyPeLGfsGPgPA/Y52iRsgLbAhEN2DnL48mD25qjOtlAsQDBdm7v7/VOlDuWsbNSTnOTfxOQ2OOofY1aN8k4bc9s+2GEDPpGjlGKHItE6Ei+jusNABhf9PVmAxah7QYKGnHMDw68fcF3vvUp/qV3f4Jv3n2OD8/P8I/f+QA/+NG7wE8iEU6lV5sES6RBFUMtKgBA7aptjxBhL3GMn6PuodB24wHwXvln24Hrk/UV5c3QO04QxY3FviIMkcYYa8ysgljC/JvDTntsbpI7dwvNnvOq7zM1Q297AHYe8OsJzz8/BvC5GMbDCMCXKRtVNCXosDRs834qOqTKmUN5Q4CJFKvTbalUGGK/oEK+BD178hGOANME4g4QDBpg8MXL7lG13tG1gyswjIt6Vk9fCUxcE0gwPO2VpqHQsKxVl1szBF73ZL57YiVP8lZe4KaMLBQQGdeSN4JlS4BXfS2y8krhdC/iYq6BA6oA0xkx3nqWZGm7Z4pOqaI2Ju6Rnqrbzob9LsL9TAGwCgyWHKaeos13Hi2Vo/SoyscpExZGg6m6NCa1FpTRMDr7qcnfjcerpny1hLW+BEBZFeMcFwiMUo2M3E+eZb6AIjTUHSUPTS5TXhwQOFwa39FQZiqS41rWGKhThJuusXpUgY2DA+c+Dwn6eAZbT3eCoA7aX8Hn8ZqE1HXkGY6rYV4Nn372FP/k+D4e8pji7z9/B59/dg8754GrT7zmmw4pdfAgQl1Tu2DLBKvKP8DhW3Ji+P6q2GrfHels0KE8tDJurrei8ajv9zXrAO7gefq3Nd5QW9sEqdT/2/lG6L6+/rmvNxuwGKS5xMjfPJoETcCPE2+/+xJ/45t/iP/K2/8Uf+HwMT7c38J7x1/B//N8xMcvDhgvEjUfQsnJU6cxTAAQ0QZU7wchcKtwJCB0zfyuyjnTwJCvMVLJ7YcAKmTb+wZ4gq+eBmLDK1XO7AVKlK7JfG95DzFuc8DOhv3ZVKrI96GX6I2Z4O2wtA2waykCWBIfWaGxj2D7k4BmpZhpSDgHSIPOqJYiEXuuX64lidIzoyNlmDzWwXIN2tywH4bnmTQ0fkqXAEq7uSEMGSM33SjOtHutYkOKzlFKDQGa9juUx9W9ZlRoW+NmxACIKAUFaKygIyJoiJ1nCaJGkRiDX2Fg5EFgbosI0Ejrs5TmtmiAyLZuBRQZWekGO9cLgLg++12Oq1lmP1Lw+3Md7tXrgtwXIIzWfphh8FLxO8m4TH14AQHJkddYCKYYQRQQz/3I9IePbMl+iDVQSk7fNS2R9gtcUQ8CXjfEqc0Eilt4zZyj+TQMlPgiGbGIaAjgGSGwNJi2mwwgZVPOELlJRh5EgoHhiubBgPHSKuVjOW88rdkL8AJQ9E/gQs+FUiWMKBF8E/gSMIdOqwgLgYEfAHtIIDmgpnBa+5yP+cRhLy300GdH/ODyHj56+hRjOB4fjpgvDjg+pA4pPF29c9i3imksd8kD19KAimCz9xZlY0dEh/l54qp8lnllreSsMNreCwK4LzIVzKjzfnLNpfRvPkPRMOqRSaegxv86LntNz/0yrzefw2JeOdxWyuxJdH3vyQP+0v2H+Kt3f4RfO/4Yv3b6Y/ylJz/Ge09fAse0ejOQvZRiP7UTWDzfW5JrRAsgImYBGShszsiNiGR5TyohNYnK03VliKa1ZzfPym3pbxJ/x891dkzbyCR7sUMn3GITXiItNrPDJRURPSVL3oHC/j3/n8p1ezmaIciKkNy4S3O0q1WOGlB/B6CeoecBSg0oHcfoAfuqZHVDJ592L5ypop6PNked+STDvBppGsgChvW7Ilq7DihkaFel9TnWznGRVeR6e92vV83QKMxmrMn9YFVJbzVfStdbqjL+v7d/R39e8jWKj5KAgYYc7dn5h+kayjUSEPDsIHEC6En2K+dLpF92InUkkABE8kbdT40Um7LX/iGnIOVezdWAOpMn5Wo7N9CeqcMOXpn+A/q6mxyOfgxB5wApopVy0lNCTJ8yzXNLUOYEWJPXImzWc9R5WIaUIJuyhxYxKC6SdBDHQ71GIjlxGc+1EthD8Sqs1qv6kVT/HAKqmHRUJI/O24jIAqNfPLR1XAzb84HxoxPOP3yKh+8/g390gp3jpUXk7TLY0luWHBpFqQ++ygcjbMh53VENHH0FIwZge0CdY8VXywhdTwvGqeeQY9WdSR8eEWrk7+eNrHSgZfF5Rqx+Drvcft2H5U+9uEEbUACQKQ5gd8OEYfrABQM7BmZjhCnE3AlQiYLJxK+cLsIo8dFU+KPy7xWVgQAA3ZXFmLOJFg3qFXXoWyOfAVjz0al0xbdhqqOBgyBgcsP7AgjgiKjSw4BdRimzRixUyDVz9SSTykiSAJkn3RKcMc/MUm0p6b42BHxWRp2Gj8/zQ9voySESPwkQKOB45walQZZIBu9PxQyIKNcVRVfyS4pIyhMiQRN8je5NMVJFEvCEZIWcHqDkY88qFPa+YQM4GcwboEWQSm6CN6VXKaQ618fz3d0KaAgETdQJ4CxXRYFNATUacgIUfafeUamMNAR1GGYZdTV5y3dZTrTt2L9HYS6Gw4sG5K5rOpD7SManNfojQNLcoBlT8LsN9JG0mpU+7CtjXJcETMsRCFuk/hh5KMADyV0daFr9dDifsT6xFjoig/dtVWdl6FbnRHPOtF+TX/KWSja85JZzxvfuaWaD0j18Z7sYxuMoncY5zFQUI2QqjeY4rOaM0Vv2+QHivocXlmXlRGPcbyhi+bn9bmuOKcF4ByAsP27zI25jIwkTCPMj+13pvN6zRevHyJSHDqRjq4aAyD1mDXA3PbV0Tm/cnqHIFl7B+F/Z5V/Cn69Pa/7TLycCtzLeZegNHz9/gn/84lv4+4+/hP/8/B38Zw+/hH/04tv4yfOnwIVa0IsoyLBpR8LNoxqXm98rT56bsvENqslW3V9kXUAKjSFw5VNvelX8VFBGxSJDn8BhrN4yvWGFSJHjc1MpnmXjM4VwOSebV8knc9TUIZeoSpGR67ycpmhvjwTokQP+XGeMnA3jMdezkdEcqFw+HUIa9Jl9DAik5L2U4mZen59RaB1p6K+hzAkMlqhEL+GkJ9cAEVMqkaqqde6eKVNFlC32eODvurFW5RfXsD2PIWoa2kI1ZRCkzOUh5txmFFBny7QcvFsZXfHAgFaC3NMCUNMyS6PQ0zXk8vTUCJ/hNKDkh1078HAZznn0Zf7WVv58H7YiQM1B2/tMowRZl+CdP4eMcI9Qdg4I9yyb9Sn839J222MADKasRPSk3BFUd25cc4p4mOOi8Ol8JBgh2VidjL1kg/9P52BuqFQDQaMipGh6qaK+dEAonzL51AVWgErf9/iPUtzkqJCDlAtOR2dcoCIDgtUgz8eYLIE796X6zIxVBvn7hdSrtLEtLQuU0+pX3kNtCbi/CE6458nidpPzxnEQuAK1B8vZQekfT1vRANzSjZppvs5n+6qvLwewvNbrzeew8G8af3oHDuBiePHhU/y94y/is8sd3j0+4JPLPf7Jx+/js588k+AwpM3TN+kR+ggBdYb1yevgM0hMbMrQsiSBPJiuRX0L4iM8lOLhpeH6xLHN8uomTFEFeSQ7ooGZSH6laIFStMuc5PfqfIyKEGF67sMcf/ZmCUZ7jU/3bZ1Exw7Mu1BgfpOaorEVMEuDdHvsOj2PUhIONtiaRyNuaPwTKNVFD7VKP8vI8LRm710qpXghIyquzMWaUcn7jeSIMCXYNyEHJp6OqyFaeLwV9VKXWYGebmxTXkQM9UWxxfxT4SXQGQQ9rQyZ4/MCOsrv23q/DvDmll/lPT0iBmFwTQ6AgAcVeS7B2Ft0hWuiOXY9N0o9y5BrGgl0aOBbNAKjyBcrcAxyIit+mGroJODYJwmIrAjB4HMGZAgBZKVdrM+4Jvl2ojUjq14mBOAEGDaDID/Othz46Ftig52ed64Nm4sZgA3qkKv1202kbcqjDxchUwT1pn/UcZnrkOTRefIECYAdURyMnU0oV65KDDgNLZ0ZoAGtnkINHkgvRuCizhNTORUxBEwAg8+yXNtxacUBuS9EzB78KeW4tavY4nf9VPAekRQgTRnuHCd1KzdgPAL7fUX9unMQH2Z61uP/N4PfVRq4KoRSmJB7f4dSRN05qNOdazyMEH99fTHXmw1Y0muQ13aoskspwJcDH/3Ru/itz55iO+zYrxv2FwfYywGWFbJTqtIY9MJQSs5QlSH9D/krarf9OBQhCG/AC0ihhFrKIzfKfgpBp+H3NMCztfgGoNxn/MMVWVH+mmRBFOBiCa8bokz1WkBDU5mKjykeKm5tylHhZn3HWoi/G0jU351Ax/uLNJlXlbLmvLWh9XOeYtwQsZDrNA/0yspmEmyIsMlxCR/UuIWlOJetV4IiD+1MEFbSLHyTBCVLC3k0wESgSBLhJch6zt8D4hMdzgYcIcPD+VvOvEpAqPz8AHCN1Fnv6zOPjo3pMIKpC42DtWe3RVKkMoRTnByuqaKF8ZB5iE6344Lo9mulmCkXPPupOwSsrGPEpUjLr16sDOOc7PdlwGx3RT6ZgvKB4Miwods1nrc/bfJnJee96oMGxNq4dJhiAwqdD1Eymv97zCn0ZvjZ7I2YrKXFFIWdCXZo0POdxFdCefBAfHbneC8lDxGNa+P0OC25V2spijIQXVo7eMn0rKISF8g5G9dKf4kDpnuRR1jAFQ74iV3HUTp2q3kB2tEbTc/ynRQkIzgHdE7Pcso1S/0ZdWYZuPgsTRcdSh/MFqUWGKMuAN8vARjbNyit5iFrj82ZMAc23metaDKmn5JT6K8BsIg+8HN2vdkpIXlqre49vTGdH7JHrnR+eMLlR08wPzphfLZV3X4Kksh3zfDazDDnQBFnqQxaKeU85j7n0fXc6J33ACgPrGd59fIQqauFlBURQPMUAOVb6XmG8YS8jyJ3oZoc5WfH1erzzajykEBe8qrIZfF6T0ZuujdTjcZKgdDTUk+VvJ/AVVMG9DjZFExpHFBplSGhNyZvOOeA1UW9F8d2ztD0tcp+o6yQnJEq9460WK4L+9Bk9UzvZvvTUg8hQ2EIxWUajv2ulcy2kPxyvhHndDRwuKPxq2idAJanM+2lU79bYzERa8W9gdJaHWQAEFdDUQ0KQI6f8sHSTCnexvVhPxWW+Ys708AfgZ5C9+291FStG4cst1eEDzRksb7bQxnDno7k/ox3M6U/uS/EyUj5YHnrvHcBIADLuT16N659mygB9WtxF3gIJ+eJjf3UJNKgFKe2OYE49clW/BZyuZjiU7l4e76utOw8s6rrMzYLlFPi7Ss3oLZztwgUdT9+15DHEtgyH8s5UYBAKdP3co6605JR5qXogC0cUga5f4f0ZZWc8zNyQgiUJHccr2v9eD/1wNH7M8Vn2o+9R0zJYsgEDNH2oa9D6jemzGAQP4rzOO9cUbivry/merMBi9UmZ08C5pJ7g6NxsSSQWQKG5p2lBzTzPBAa+87sJlGvSK2ANQIkjawEnF6VuchinuNV6mm40DXPbVEHz6zYYUt/eYzW3gdULDEV8ihQgCIsjVUqITfLeCxlomZnOTaS6ZYOu8xj54bvisYPvnicBubRixezdBcGoIjQaPegQdyEBfSuve8BK4Q6457vSb6M0oIka84mIwRyTFkxImL1TM4/UARZvT+BlrX1BsBFViSEin2nAg15qQMHXd6zImgzidjX3ten1q8mhvOGm54uZWALJbftovRJyl2u3cKHaVwCgf9mjALcpnzNKvPWo5ygLeWppdV8i7TIfj8FJLjm0WSwPYsGWv+PttlrPTqIIxmXZM8oo0dEv6zWVu9J2eI6jdINNMr8uThkvE/O99gzqtWaOGpf5rvNO6952ou0z9Jr8YMa+LC9DFyXT+1NET7z3QluO28pnaB5cjWiFN5KWVS0hsafcjNqT3WulNIyWeK8EMpJzG9RMooiULLDdY3x1p6YPBQw9ZF0yk1as1dzCcwN6pRWIk7A2kRHeijfRZEqcsfyd/0gUDqVS0UfZYBgjalDyikaaGdKiKkokr5n3f+1XEL4X+Cf13y92YAFqwERF6ArFiJ7bYCW2snPslyQxk7leVQiZLg7inSbBEdDGA52tVyOf0dtCiknhmy5eW6NEA2XY9lAAOQtzy3q/mk4GO7cXo5SILwvUB56bsTq++Dicigc6miRANRc5efr8LtmEHPeJ8O9G5ZKJxGLlXZqRgANWKA9L5/FlBQBI78LdB6D6b63ioRGkv1O6DGJDJzvvT2ucsUomMqQO8GuyVO/VGZK5UiQychTKqiZ3A55ewj5EaFyq9OIuW5K89CoZSRjv6uxSLmDsmxVWp4AgqkdvUdW0PS50blOuTbjnMRmq0heL2tmpII/0zjTS15BYo5PFgsShOIzcaytIo+R1FuPGk2uWqdS47xRBvmHJbH5DDjUMIydS3U/Q1V+6aZNRjoHJ+eekZXuOEXVlSldWPPGG7nWxBiBZUTSyghrTyfY5s/Mmz7KeYpx1bxhIrhnLZWlU7FTj/ToEaOCTLWGkOZ8Mdrcopmq0GGDO/Z1QRn8SNE2vWo5L4zG5Pt47lU0nUBnSJGSUX84h6F/bAEB47F0w8JJo52Y9U9RZna76U1V+l0OUq4zI0JgxDxTRby0Jg3k9kilxvM6Lv8S/rzm640HLDZLUVEgGTFgLrGXb8aXXN+lEmTon97swmNJD3A7mw7FY7qnRxeYbtDvAeVDVQWSBpz9IQBU/lzKpHlrVID0DhXuhlJhCjEevMKXTbEDZfCkKJtyEiueP7rWHFLJA5V+6OHk2w0aHkQ+k2mqm/eP6iKIb9AJtCxrrJNzVyvhGytI6hkcB1MJAq/AGupuilelpuQpZEM0yU6earukzbIXyi3JkiF4RlM6eOCfDl4IMGN8LVTMd2sHL/IcpyIRGuyCVvK5hsV7i/AAnAUyaGzGjiIszgYCCExRhpDKmWfyUDEplJ7fW7xI3o5RzHlj+L3G3r/fS81ve2PQYCz3bmtKINYNWT97SsZ268Y1v8uKrSNTiBBQnUeoF4sArsXP51ZRChKM+Tv1zaFcmgcfLddDVWutqo3vvJ+ageUYucf4zvzO1VRlUw4ZCdQ53UpxYLl6jxC06kK3FglkLxIvAGHdOF+bjHPf5VD3+1ZdeHQR25fS33Sg5p1DJcBu1YOmgRZv71w3gKKSvDh+HapJ0JrzJyDYHQ+reZDMpczzbDSbpndX5/CmH/Ss3FfxC9R7931qZXuWn399/UzXmw1YqJivVpsSzVBQpm/6ciiiQkVjVGwZAiVzfVTUYFywRlkc+txoh84xl80wpRQcSx9J/iJCb4SxNQ2AdhAfqvMnALW85h6lYhxtow6Ck3hRbY5mcFTJkoq28xkIBAWCADovNecokEYl0L3KkbyMaL9e889UnJSl13uAYXkaGRrcEfPO9B492nGJCEClSVYvszft62GnrszlbaPGxXF23ktU7piiBPpsKnpDWzNrY2K0ThGoBCEi6LYKIp3endGvpogZYRuNA8N+PDKMJDtmBZSMOmUcYVCLe9CMyijiYwHwNv68B/dBoeqSqf5vgSZGLj1TXgIwBbgl+zdcKgDFr7J6z3lCRgdrvca1Gi3OBGYs5SZvC8h9lLLc38+8jYPArzkiSilaM9Qd+HINgFeOQOAc1BgaqMm5LNmF1nSR0xzPol8aV2+RpQSfS3ry2taBUc/uD3hUCW4PTS/kMi+VPoy27rGe0q/gWsfPeRaWUda95s9xA6CySkpArOlAyT8BaYtMqpmjvocqDvBG0k89wzkHKhpIPam0H9r8G8RtU1QEte5oDh0jdz0t1PlX4YyUAyJQ/ZqsrKKOX+Cf13292YDFII+STaoY8bj1sBR+ZUicnqWnICEmPJp5UQChUKbKz4yhf5R3msLNPGhUDq3h6+69khSsXHAKsMAENwtLb5mvPpWhUx6bniUV6WxGthH8CBx6eJzGRyFheuLkwmTLfSoYH6VopGgN5f3xnncRKZgZKekn2+bH5GVyLDwOABN1wnOCrq5EHHwmQYnH+UH05nO99iez8vKpPOnVME3SgZ8D1c2VhhE1n3CSjMuLUnVa90hJlGS6oEWzFLkadT8quAIE9LhDDpcOx+Q2HUJeFZKnktS9mzw1ORaY5FyL81TGRKXv/LdDqZNxtvpOThUNHomixhQCgUDOPZtrdYCHWWC/k5/jAZVyrf1T5FkBPpSh4HEO0WtjTf0KgMgZ8aqAA8COwiQAL6eMt4ifdf4BUKm7prBrXflOxbFR1Gmnc1T/rznkLQeK+5LvqM67V3atjs9USwYTKFBErDWJW1LP/U+TRVZrKZ1yyPtTtxxCWD17NVH5WPZb4fwxqtPTozFp1bsEbc5I7OWc3RpAAe+mc257VsX42vpcuP65zMdKtypq2Nou9PSy9Cf3BQfUyOiKsjTwV72Q2r6TI9eqtIAFcP+cXF93uv1TrybV5kztJIBo3u7QZsIaFk4pM5TRRwMRQAgxP6/+JDSajtrI3Pw9amCoSg02YessfStB1+e9BBoIr2fxclq4VArEsCqBVjUyT1NNxWjklNpKbwiAUllKi+mdXERhXr37ptJWiDHO5ARUSGYFE52H0kO5zFMH2OOYUhGbF88DbS5GTbVSAgemXawMRmvHLrJhelasUKIiY0+MxWij/XtfCcV8v56SVLQpU1w6oA8pH8M1loV35JbciLKAMnzo6xrP6t09O39CqT4CGFVu1dzJK785ikIRyt7UzOJQOja98zYvHRjpyn03j2W8PFu1i2tkqKgVwfqBqZOaS1WN0F5cCe7Wey4EXyt56BFIoBkURhna3q7IJNp8mVIJ1t4zZL3kqO/5SJmhImuJzEUKT1lks7xuEItLUvvIG9DiGmsONsoaNxv0d6/QmycsctRTar3qiM6SKoO8zUF+VlEhGvx8737NppcipVrP6A4Woyjqh8KoX0u5RGrFBT4kf6njBBhyX3X5ZN8j3sMN1WGXcjDXueP79fcSn4djSG5j5z2Jy5SA55WihBY1jvXE6+vD4l/Cn6873f4zXClQVfWAEuSW09fx4fL0EqxMqGxRFSLKycbPSXLbzpV/rbArGjkz165VfugMF6QxvDSSaSodNa3qufv0sEMpNgXboxsZWufmoNKaPAjw5MDdhN9N6PAyKsjsBwKUUlHpZfsZxw0A6i8jhUuPxNOA9lQTPY0CRAq/q+TRM6oS87izs2UqhFsSM42dqrk4DxxvzpGaufn6XbX9JngaOfcucUjvGjI8ikZ4rAm7ABPcId9HJazIvesGngNUoeK4H+eTh8VpjAdWPFg939tnZguzs3ooPTnKJnvEqDKsvfc8uKrS+BnKskL0Vt9hutBHiybQW26GV1dT6AIaE1Wx4yULMiKay5wXEoVzP+33RCE1d0wr1VxApeg9BVddSyGjz7N7KtoFlf9PzT9a2nI1lARa8w6KmgoQNkPUK5DKg29ylWu7AEhOcZbjc0/26IHkC6nrCMa6o9WeX5GzWg/ZYs7XbOC5AcWevhUxmDKeDlD0tWGlH1ECClQ3ncwo0bgyhVfrFPdG44qkbBAIk0cjGYp1UQ+mlpJjelARufyV9uKhevfE/BYXqWS55gNtvhQVbfOApjM5JkUYr7jhQa0p8huc9/X1M1xvPmCh0d6xbm56JIfmSRBgpNCo7bPKoavnCJVy90KQaJhKUu2tmxKaJ68SRxrbBBRiwzdOQEfvIvH1TcrXTEO0dDdNnsI4W51LY2Us4AAOE+O0w+4mWB3DJlB1TkYqBhq9TopL0FCh/JzXNicxB80rBdqmzc/LYwqAYly7WeXnrA7ovTteaXBHg0hwmOt/G77vZy1170ZEQ5TSUG68EYM170z1ZQmv2u0z2mOrEeT9GLXh2TMau0H9etizZ5A4iZIHRoD4DAHEBvZk1K0WhOkGPluH4o36/mIwAYhInY3N4rvrWnJelzD3vJGDdk9G65a1T/AfL5PPYQqXQKpd/Xni6bR1Cc6DVzQwAXpvfhjRMlvmlfM8rrFOBAdAzV2ROyE9wEslr/kqjOr2U8QpnzJ0lwKtvcKOXLH+ftUZOQ1yA8bqXeOQzoooLgTo1Jk6IyV0ijjO9cDA+n+b2bXXG/BrlYLGecm0LdOEXbYINthQUyJER6cBopnVVQtIGFCqSZHmRiRmhEKpyg4Evc1plmVPpvKb3uf6+3EFOUsxwmzAqeuiBtCZrmMkuev03gWY6e8eJeIcLBy+r/LyJkNf4J/Xfb35gAVNGXrlrkXuaz1XAIBIXIqQJNu53q+HZZc8twTNq7GXTkF1GTeFsI2eQ5UaKvVkrX/AwasZ2jk+ICPVGP+diEalxhQHtUYPuWMa5nXAacTufenfMdlnxGOOSDLu56lYV7yZD7c9Uhck4MW8Vbps9SJp+HN+W8nzZBv9BnB8SzDBtXQ0RdPWoyl5Ra0cFaIejvFoZZA61+bodSJw7xtBkLpVOaIiTiIDl2HX91IR6b1aqk5yl4qKaQbl1Q8FcnvOW1G+HLPSAOwIajW2SJm5Ij2wAJ9Ld9k0MOBatJL/pQ8F2ry2NBn3RQf8MiL5akp90TBeb2eq7pXDzkmwihbwZoZKxXQumcpqoXSMt89wviXDKV/w6rQardXzUTRUKTt9nfqRFFxnrg1byTOC0OcBBDK8T75jB0ddFvR8u/lZGj+Vmjd52k9QlMH7uwyeoYRCEvzfyTmDohU9hTkunfzbosldFlH3WSIPaIZZqSdIF1jySfraiz/ltR4VScES9UN9tKJeqcP1bo3jw8hQ3aPtD9RYFlnMdRAPsK03LB0V7o3On6ETQcDoJtnk5QbYuXG6mjP3Wi7/Ev685uvNBiycpESwMv5sygUaHluEmSz28EyslEteHSku5D3+bG8KvIfzaeiacbFpC7m0P6Cf1gw0IIMCIxhoGxkay7LpqSytgACQBvYygJcbcB7x78dKE/zUq5dls4pj1DzKI2MIGGWk2Vpe8zghz7KTDVnls3wulUQoriQgtkiUPCpAXW8ZvmeOmoBPBmqaolKqAqBBuLZGc17j4DxLkWvOG8N/B7aHHs6GCN5BZM77dQOKUrI8ME9plWYMvK2twtzAwhshkdEcVXW21fwuijiNvnWFm3O4GGcQxNQ4OSBxJPK+mid5nvV7gVuCq8Mq+xyfDqBrht526HBHroOxJT8rmwClG5xz3PaRJf+JQHRkuoLzS5DBbtHiYKRHrRQgWmrQIa4JI2mxnm1taTAbRiWpU+mXHinq+sBR3jovRlLa+tMYLqkERtZS13D/atyeeqatXzVWbPLEKAnXBbVn6fTZXntO0TJAIF78F3KnWvGCUtseX1AEt793148tIqIW/HI0ExAQZBP4tf3dS9A596oQ4ppwf6W+G2eLfip0HJq+re+4fk9dKEeMBOR8hzoioHQZwaIA4U0k/evrZ7veaMBiQB1Gloha54BQiNXPA/rbb9MuSR5TBQjaZ/m/NHjpBUb0pjZ8D/+SxwJAoUz+P4Cm8FybbX0pKpR0KXiPhmS7ceXGZn8X8XMMwQdIkNAZ8Awfi3vjptRAJ3nKm5HyMW02dcP1Zpi6p86xtRLviBB45cav7XNU+g0Y6XwU6oIcJ/t6EOjQy2JeXMqICo1AiN1UaaQv9be6GdOr7hUho+Z5nqLlfjdSSi+0iIPNdoIs1+QmdSI5nRX6Zylujd+W03J1nL3X7yljPNyOJaW3nnFvR49m2J1gxkuRdiDxU698vg6tszKO5FBI5nLOewSGJFfKmsBAvjeNxWh7mCBtkEtGI5LvQ/nluBkx7Om7mAcUWb0dggmDTtAOvkNEJOcpZQvte9yTt1UmDbj0zqsg8E0Arb1lkKEEjZpx7/G7vso7wW6X4wY+6cgJOOb6sAXAbbRmOTzT2h/JMv9u64mmHzrBm7xB1LPZsZryKSeMc8OuxvxSjqlSVwUylCLd6sRoWAOImXa0adheJoek722W8yP1JjuHk0BPYnuroqv0ZAOIe5sz1H3JK1zSmeRnNfROZ+q1pVL8S/jzmq83GrA4KrICoPp/NAJf5PGhTS8FxU0LGtzcaKn8xG8AFkNPr6N7MWyVXx4CqrlYap7leUpVEWzFdy2/y/uQBEfDCaAMgfLaJsNhs5FW00uxCYyHIf6Mcv+8bhVOvq8a6emdKpzKYwy2LHtkuSk5QVQMqj4RgDFVazGqoPxufqdSItUWnJVMo3k9k+vl5A6YPEBzVKQnPy9DTL5BHh/QU06T/AeKQZ/2xzqeoTd+4zNkZBrQ0Jp3MqSXnEb1GZTamZmelKfPMTsUDWA/kN5zpB+jsD3WO7KPy5rSI+Bpa3qolIOMAkENwbI1I9WjN6j5pTxUhKsZiJtIJFDpKV77Xc1/XxdPUKQy3hyvUqEpx0oFNtDJMm1xKFjS/lOMYKUZDP14BoIgVRHRaDOtonRWi0AuqQgsCl0gQ+m2jNjZ+pklpXAT/REgSJ1WZzfV+rOUVqlqK9kUr6lV4QnY8T6Myh2DX9RTgGp3QAex9VFRajjJrNqDc51/HRyasrIAkvw+9/i4WKWSkcC3RVlI2pVjkIIxs2GdIvB0CACtE5AR2xPHWxtf0aEEsQV4Yqw87oX7jS0vFGiZTeccSra7w/j19cVdbzRgWXKlxpx1/FOt8r0+J0PRFDgVQtXrl6cjsiQ3Tnra8q4Q/97Zx4VKPr2Der4vpNseEWBTOCrvruT62HWyaAM33ZOkQtYBfjkGRQkYecjNTN4Moxby2BhCRxlhVqOoP8MFa8kjjTiBFdM/lwJTAAQM+f/IOWOJMICliZ0AIMPMPZTuuFGYZUjgwHgckFebHIBKxUEe2gJu6EFNywoC17yycowGUykVgdmekqxnLGe+LJ1aqySUDbgYSdhTcfZIGFNf8up4I8pk07MEgwrPAxUhu2nMZpyPvbxD3vOW26OogdUzaGQcSD7UGmmbDbSKkMm1S1no4Kuq6VB7qRl7Aj5vwIGNIxWROTdD31IwnZ9BGdP/tyqf/a0d+7vX+PN0lufd+TBof9u6rvwR5VMpTU5k6hkeqzBP1fOlg0AAtackJ/n7re5XFXf1d6UpPfk6Mb/7Xd639TfS1aJd/YBU9u4R78dKBuRcpE5UFJTAr71Tlfx6RsdRepGGnXqAOoCvmRWfStPknAjgMUp48tp3DozdgjvD8W3k+Jl0uYAVaQLUPV5zxHGrpBuhiz3PPuKZbUyrVoobJcfax1ZyiVeX4au6GOz5Iv+87uvwZ3/kNV9UpDRYDOdTuaMMSBdCGmYegEZFNB5DaPcnU11Hx7kIpgqzH6DDxajI0ZRApIrJbs901cHhw0qIQYNiKo3ulUU0mCK38mcH19mGvHTaM7kmjkgjnA1gZUIqmHlqpLoJKMQ6miJMQ6SqCQdcY668dnSmhUK8Gqvn75L4qRQTPee+fjON3RbjrTy7KbMlL9ZCUSC9W3W91Vxi0QAqk2wnv9b652daaN0NwMHh9EgdwDXH1zp/dm9W7y5FxhRLCIYfHbjbMQ4T83GDvajTwoOA5wIcWhM9pMZIxbd0L873GedQljvBVcrdykdBleBfAbASKLkPjFb5weFuVb1Bfc7IyF6Kd3KMHO5M4ygC8M16pF1Qaiq9/Kh0A67PElReh95TgCEBgE3yqTKa2uQViM9sD2FcxwXwu1zHHLfSROntuzcj/84V3/jmZ/gLb3+Gw5j448/fxocfv4X50QnIiAdTDfsTx3gE5l21FQiwbrV/rm38oxv1WhPU0BX18QHYcDhsmddxNXhuRNtjDTuviOBuXCAnRxyzPfZNl81xtThR/Ep940qTKGphjnlMQMuIx4TAS9yn6Y50EMY5o26Uqy0dwxmpNUwL+lDrKxX7rXSWSPgXOhEV3VEHbgpX0zeM0BIU8uoVe41uUvuMhPB8p3mo9VuOeEmZUddnwwKg2EKCi9tL2wFUhWaO++vri7neeMAyzrnhgBCiowOMJqCVYropTWNuUpzYmjBRkQIiR1HI5hafje/X58mBWA4/TCQtJMNdlc9lKbI8O+a8Z91c7HRFdJLHQK7DDOCx7cDc6HmxxDPfWwrlpvLBEgxsaYQV4q3+NPQQGYnA1ZTDZ6fYmcYvmn/FPDBMTsU8HHAv8KWwLSMplzqfiZGWUBQ0zAiQN2vs89QBaK0HgQl0Mi7vG5+/6ntEQaXo2ZKdTcnAjylvTZAA2AhFzDONogNsAYk4rydD2E92vPXBC3zw7AXutis+fPkUH378DP7RCePlKKWZym0evCrbqFQHADa/8jDGMFTJJmINtnOhWHm99Bo5VzsqzUkP1tZqHtuzkoHdU0cCPwMOLw3XJ6mVZ5tP3j9BGMmU26Opeik2bM5pyp+Ag+abqQZXStZRskYDTDlS07jOraDxY8RyeICIfK4+h74nHPPtHX/hFz7Cv/7tf4q//vR7ONoV/+S9b+PvPv1l/Pb8DvzDO6UD1ep/u7mXAEO9h/N3gNbCE3gr6mmtSiz3ANOcvpmOyGDjSpUMC2lDHjzneVyAa6b/CKIVPfMaLpBAMNM68841SMu9I53CV2QEzrI6LSNefnQdBOgHwC9YyL2KbCWA7EYcQOo1/p6A0ut3TMPvwM7zv6zuLxAFKI1G24D2t/Qt4jnk98y7CUM5Iqp0a/PM+XVDtW7IyZQOAdQnSO92sdBN7dkLif3r62e+3njA4lbRBRrshQfBiMPmOo0VQIWg9yZYFOZp8NkElGXCqSyrUicU4fYyjX+mWtgiXKkleoYOHSUPtL9TsbI8mueUqEqFLzsRjeCSM1NEuDYuT0VColcHDBvWfg2oVJSawSXQokLqeV917uT3xXmBKmPc4uRjv+MJv23TpxcqAELjMwvAKR8/y+iOC5ZeCuOMJfxte7MHqejkjSbRllwMAkpWFjE6QiMhL7ild8JzTkN3rMiFUjotz97bvfvmuH/3Ef/Fb/0Af/nZj3A3rvjB+R38fw+/iD+6fgP+eMR2MeybySiMqynqwj4jlEk1NdsLfI89oio2kwMyGrDi/MySFaTREs8A9c7cD5GiaGBJYDqeoXnZQmbtUiBTwC2f1UnwkaZoHI8ZsnJ9AszNcaBRNQeGhcHaATODZbrKGNlLMWa1VzeI2t9u4q2MM7K6zAUkYJ1DBBzfOuPX3vsR/htv/0P89bvv4wjHLx0/wuM84PufvoOPnx/h5026QA5FDoa2iamN3sDPjxGN8S1K7R1p7NIpmnRKsk9SHLoIrbHvFTnY7xsJP9fIDcC5Ih1auwS9NjycNpLOc5plh3NeRkuDKKLCsQ5gPBiuz6ZAULxvgvdnF5zePmPbJi7nA66fnmD7wLDohzK6HKL0IefMml7qh8jK8WHVUK6ddIeKGpqOvdY9SQNgJR+fQ1CiyFNvVJnAir1sJHB9vIrQhn4VsJHChmwAdTJ7ctFB215aNUb8qq8v57HvmtnfAvCbr6Pb7RsPWOityEXjJnRUS3AS6FoaRPX0I/aIPObczQxfqvoBpYgw6l6OeLYDYbzOFgqWxvVq6tMgz5C5dBLQEG3PmeOnxzhy7IqSzFRcA/Xc0T+DOvgLbTPmZlJ1zoTSNCT2BkgjIY5aH6kp6hAxPlOHu1FpMl1DENJ7bcwGWpBGvzVZQ74LT8v1tpF6ya7PWrMOKuwC+CmFgd75XgRIAoHOa+jGVO/KOeW8ucHcI7pB0LqXESzECXnSo5d2D+DdZy/xF598hF+9/yGejUc83R7xw2dv4Y9P78C3owBs8YlQKbGWDunzIeOcCpyH+x0+N9hWc6y18ZDTDkrUgLABM7AarEeg0hiI1JnpUEWm7sK79kOAaH4doLx43Y9ilaH8bjzHOQ7du74VaZClXLt1cPbenTmjjJy44u1AKb8iilsZ7wnJul0TOx+B4+mK908v8K3Dp/jONnDEhgf/DN8+fYpnd2d8nBbeh2G7GubwClIxxZhzvt/3+Ucr77dsEuntiACEpmUagfss5XgyxZH3HxeUU3aJyCi2WPM5EmA0Yr0AFCMSm0s+uId7Kmla46SwM/TZ4Cfg+rTaRDhS12yO8a0H/MVvfYR/+d0f4sl2wY8f38Jvf/ht/Pj778J+clCUS07VjD4yXEeBj6thTse8q7Xj/pRTld8xj3sIgDgBeAAaXtL11E8t6mIz1ioigfWz6s4bYJlRZNkbQBwWHUHQ9m8/nJZzBUCO83KAY4vC/Bxcn7j7b7yuh7/RgIXCI3IYG4VdLAQ5oyRlAOrzoaxKCTqjNIwuUMCZipAngiWcaAivjZU7ikJQaXptLkfcxw9pmAGwgmJ7SCDC00U3r3JLR0WJ2umliunSUmSKZ+mqC4TByvwuADUeq4lst8x3XgBJXpPRDKbN0puZ5nUyaxo0VhQAmfulVjRgpHJQxCfnVWHWjALNY1MsTWGBZDekMToZGJkhD0QEvGtFL5QGobxgeT2BP713RlHE7xm19vvT4Nxsj6OwTgJYheXbtdnEsIktPz3MI3LeKs+WtU0A11MfioBlumhuNVdKS2n+7EZuHW4RKQuSN4LD4glArpmKutDbb6CkcRUYjeHPRIDNKKUNREqg8cMoV1qbXomVXAVLUKzwPtf7ilbabuKEeKvKGhcUv6qlcStCZNp/ihRcI4LVe+Zczgc8v97h4/0pPpmf494mPpn3+OT6FI/XQ3t+GDm7AmjGEEhA9TBgs6WqSAhOEHy9d4EnOTGZ9uO79RQo35/VS5Onn3OOmFJm5I+yysjtVrpnf2sHjjNayV8H5tIGoQB/TFaCrN0EWLmuihRPYD6d+Evf/Bj/xrd/B7/+7HfxzM74w+s38M7x1/B/P/8qXrx8C3Y1bFeooeJ4GBExPMR+2+/Z18k17hA+A1qjSaUTGUFuQIRjH49DTux4QHG1kMCRYGGgeD5N/yDlZOzA3lI4SlWn8yUifq472Hn8UrJnLeJ163zIYXwdKSGC1J+z640GLA4ARpZ5eSf7naMToKpNO7WaAWzoRoFjrpekwa70qFib8qXyRobeFXI+eJDGujfZwQ83FiKUOfMzOEBRmojANCWfgg1HhsbXktaIpLjIdNYUntC7hYdjbQrkqbutc5NKaiGJNS8GQDVh8vqsGiflfbd2lDvTaL0vAQxKsZgDPistQyU0t0gbzKOLSGmWioBEvjxUbTuHMVAfGa8qKZUS2joeVh/Q8CtSx8haj4wNh+f72iUVuVIupnmS8d4Nn728wz998T6ebBc8HWd87/Eb+OPn7+B63lSqS3C3RCaA4q4wNcjxMh2zOSZaOunlWKJttUni39vjCniW33t68qj151EJI43ezNSYo+7P+ZlU1A0wdPkbM/YKo3zgQXiDqRFX5EZzMQJk6XiNln7hs2XUKcfsr0S5aylYzyiEujync8A285fnR/yjT7+J/+T+V/DgR9zbBb97/jb+3ie/hI8/fRrRU6B6B2XaZuZ9gQIXii46FrKuwLcAm8Nb3xKCNXHJlBquCidFvTIqEyle7ruag3mslCcOwdF5+v4LvPfsJQDg05f3+NyfwR4HxhnFe2rVYWhjAxqoHjFuPzi2ty/47lsf4689+R7++unHeNsGvrU9x4dP38I/ePs7+L3Ts0yXUo8Y9qyMMmcq88aAcp9NVIEBdVqmbubRcbgY7Jy6IPV3j2ypirADG4I4gTqrz3k9X+NIu6KILHW4tS8sjfM4d6h0OfX2oYGvdDh/moPzlVxfA5av+KJiVpywcSmULiiiGIWMbHMidSAN4Al1Js3moZDyUeMSIev9LozLntEGc2BkXnk/Veh64YVsiPx1PytlAO4Zyn+ZRjVTDcGnsGrtzlTIDVGR/JDtsX7OHjTysphbHQlKpik9VPPoAmrbucKhVC69V4YMVb7jWolVaR5n+Jm9b2gkadC3et+urAkkoDVLwqQXe18h3VHjDAKqizw4LhG+rsZSVc5IYyGwhRY2Zum7AyMHYldg3ld4vuSnZG3siNTUsZTmeDC8+PgJfnt8G5+cn2CziU8e7/Gjj96GvzgI6PG+205g2sBiThrH248XUJWS+FGu+SHYUGh7Bjfm8s7E9qKRqtODZ0WEOEq8mtLvIuDeZKwBLPF92ppqMTPiYF58KkMBoTjELg3/DjhY+dRKd9lteNbzxRHTgXoeMptRGT6fVVTca+PcvrsD9mLD7//gffxf9r+C33n72wCAHz28he99+B6un54w6OTswYmR/DMFabGfx0tGLdp+2VFOgdkCarWe0+p8s9wrJGGTq8JIKuUuQnqpK/bag5M6J9OFfjfx5Bsv8avf/An+C08/AgD8/otv4LfPB5w/uo/qvJZKFRF4w3KyMfcDI2v83HHsONoVRwBHGzjajmETo6EQRRIc2rsVaXPJtubF2hrnHlP6v0Va5pMYb/HSSg9v50rRzkNPgdf6EGhUH5kY5sxn8fDafohtOYKQflEkLSP142KYd7EOc5SOVnp/OA4vB66j5ujr62e73mzAAmjDMpWzPaYyI2lwQ+R487Mktip/zIqXY4KUQ/ZMebpH+BVHGYpBT45eHUpw7QIMaxGMEaRTKdTGXr9liHeETR5H/MOWTc6oCstKZ6aWuEFZrqq0ED3/9hwqsCXsitrkPe/awYmiSsgNSlsw1ioI64RaK2DFHjkM3dpenrW4QG1OpNRa9cq4ZmUAlTfH0i4BLat0SbxncniSz2SPGfK9Y4QOdYrxBrWEj3einEHRDc4nD5J0ADhWPvv4YuA6APv8gM+vz/CPP3mSZGUDHgcOn22xnnuBPJ3jdKDXXGvOEl3+noCxIncVlePFtY6qoijxtIzeIVN75vV8tsv3Nrc+gMNzyw6lJXshEwlGWR6cgETnF8ELlBGwMlK4x3wLxKa8uAF+cmy71Vk8XFe0+3iTldZpVmfrbGW8BXAI3rifaGda3xb/6IQ/+vyb+P7T94K78OIAu4xwBPqpuxkRta3WIuzoTWo0wZCOD6BnjQRJjTcB3ifHHNHGSgurk2p+dlyaIWx7gXpP0dst5v3Z/Rm/8OQT/MX7D7H7wOM84A+fvoMPP70rAi0jinvySSyapo0HUzPN65O2JhPYXx7wg5dv43fP38YH2+d4e5zxR9f38fuPH+CjF08iMnXb9yV1k/hejOiSz0NZyOooAWeviHm/rP1epfszo+0W4DQcjSK9yjlKAMQI3eDeuFjohJTl6MQM7Pcmx86R99uK2xN7pHSkUy/0cVqkxvd7X/bsV3r9HOKknwmwmNl7AP6XAP4aYnr+hwB+G8D/HsAvA/g9AP+2u39kZgbgbwL4bwN4AeDfdff/9M96hvLnmRaZp2xydJPSIIdjJLCRYj2U0dD63U1spx3bYccllRYeAi1zE/kG2MONMacBagqyOVkyBvMAbJfcJxvgubm2R6uTnvn5YwGJHkIUkbShpnlwDEYQshRX3hLic5aKEPIYkJyf8to6CU7M+W5UmGfX5BYwcaCFpZostHSS5obG6grMu/pdP2BMymQkcZLAQcAwPd5Z8wNUpExzc5eRKD4TFY1byCz8WqZclNZaFFtwjq5P40Y+MpUiEJbRDo813bHBnm+KCo3sCMs8uKdR2B4MmFZeIXPgCVIpY76Voh8XwxyAuYu7FbJjAobdU9Uat3bl+ymAS1/7SD2VZypPnqIESC4UqSE5eafxaKlLRR4NGBnJO6XRTfSvTsl7iwBJgJAcEGQaBwI+bDpWHizKWPS1zZuNq2Fn+/X8uV3DIXEDthcD/jx4EIezKQIjLkjOn+V87fctTZs3jGgdtOZM9Qrccm1H7FljP5TcGxRd6wCRr8EeNNMwDzP7g3jtrwSWdk0QnpHDfRrO84CLb9h94OoDM5vrCBg3AFvAteRG+narn9vDht/7yfv4fxz+Mj565xmejjN+eH4bv/XRd/Hxh29VVJN7T9y6di/u964zHFki7Uk0jujPzEMfyTfzgzFwUfK5JTm6RcLouCpKk/uCEdre72cByuxFNdf3Voo7wTG/y3WadxWN6wc7qmFejrcTpL++frbrZ42w/E0A/yd3/++a2QnAUwD/MwD/V3f/n5vZfwjgPwTwPwXw3wLwa/nnXwfwv8i//8SLZDU3em0pWHsqEUYJZnBc2AWRwqL8ZQq+mQEnD2PuhjEcxo18TK7Elsj4qZdhFdu/eThAM6qlfESkHFCPA0VcGO72Bj4IUhiaZTmto23Y5FbMFeB4jjWeafIaOgeGnry+e0VoFnoCaF5ivhPHPy7A9R5rq39A+fPDCyz3YQjb0/D7vVc3XJSB6VEqVq6oVHty7soqSZGSm5BpoYjexGuOJAqK85QNxRRWb1ETfmZYlcFzvmXQ04uOSM7K1Zmdl2NN6Q2PSiem7LZ4P5bdkqc0j6gD3/ZqLCei914AUSkfD47APBWhmyXBIpwfPMqhHYANpQi1bjSOlDkq/0ZwtgRwHDs5KByfvMueCmBEjgRHAJe3fJULq9PPF1k5pjydHMNJmM0U1glKBYlDkiXfJKXyvYGWwgAk+4aURWtrdKj1Y08NGkSg9ouxDD7XP4ClLXuFgDa4V3GDw0vKIrRXu3OlOSAfLnlHHLdbRJKB2AssFZcs8y+mXXeDXw2fff4Ev//0G9jdcJ0bvv/iHXz2/D7aJDDdDMjqqrMrSc/Zh4V8EqXdHwwvf/wUv3X+Lv7J2+/jdNjxcD7ik4+fwj46VssCTt9pJfT3SC9ldW6ttULqX+pioECqyN/dwUlwHTeKiOI08npc8hYct5LvHlWGNxI4CJAaYN/qefkYRXZV2p/pdNEUNiAUdfy/78C2Z/TyK760jj9n1z83YDGzdwH8NwH8uwDg7mcAZzP7twD8G/mx/zWA/xsCsPxbAP43Hl2C/t9m9p6Z/YK7f/9PeoYDlXe0QqvzWEqcYWyV5XoolfLAk5vA81WmARfD3A3nxyP2hw1ITkQ9FNJiquKRYmzAJUvYkGWk8+RV9uqoDUnC4ri598jNdE6lkUBrcKMCOkdHFS35buPRKvTYvttDqcULyB8oVZVRlRlzJe6IFDBKyWcnWXYs7Y3KFkXMv5kfZtUB2no1xaNy3/xO8DCgd1C051hVFQXEfHlPR1ujETwBdeoFAUUawINnl1UUKXu2F7LkMD2lQi2AIvm7W2VS0TdkmJ0KinwiVs3wWah3mel1b+dWHk/C4B5k1v0+5Gc726JIRSREEhvvd9y/+4gxJh4fj9g/P2J8TtRQ+6enhASmU47kUToiYpAyrxLlEc8a2UOGUSRxuhNEjrNFV9tmgLgWPV2DCXiG9QmU+8X7zyO5Wu05PHjSrdJ4R8e+QbwQR8kdO/mKg+M114yeHF6ORn41VboIuDRRGbthtqZnJF0uEZ+UjWh/n+kFCe7aqI3rYCoRdo1xjb4i2tGj9Mp4HLh+fMI/xfv40dNncDc8Phyxf3zCOI9afz6PUYMrK9WaLBzSgPNIEQDjxYC/vMeHH59KB1zq/C05cQk4MWItIu2ScpDcMJUJE/xxnqgHuJ/olO31PaYxB/U/ZQoZbUIC2awCIq9lezQ4onvx9pBzST5jCm+PtKmbN/Vh9KDI9B8AM6VPmW4qp8RUKKD7fH19IdfPEmH5FQA/AvC/MrO/AeA/AfA/AfCdBkL+GMB38v9/CcAftO9/L3/2JwIW5mPqRFQH2APFAKQLNS0ERbnPG2QvQhdaXvj5IRoxXm3Jw9MQUVHwdF4ZkWvb2KOUHU/i5bi9KVZVMeUG7F6AsUoE6z37WTSqEMgp8KbE6AXKMyNxza3mxPJ+IgWiNmPOE3k/8qa70pV3Y0sZnyptbjYk53umFTJYGQtO0U7PJiJb16etRwsVYJ4vtPAuHPAeQO+Kfi9lRUXCrr3bOYEEj2xgSTqNyPBIAdAoshybaROmdJCcCJRStSwz7ikrdjFV2S1TNzLg7b0oLySk0sPv8+UJGPcyKJYtzq/PJrb3H/Hdb32EX377QzzZLvjhw1v4nZ98C5/Ot7O6qMAgScUYHinOJBNHr5gUilnjsh04PMQ49jvolGPxp7pRTcDOxmg6ebpzHAaAmR5tpm+ttaNXdAu1f1S+zvb4o1KLHVRy/thY0Br475FXjsNzjRmhmzylO71l8a3SYQldkM3/DhVF6tExRcs4j7m3OpdL4Phq8OzQLMPO71Ie6c23veOHNRo2zobD44Z9v8Nnn5y0xw+fb0tDQs+xSk8a5aqjmQQzu4tHZzOeYXMsILwbZEZexSsi+T8BiG/pGIpclEcTNDBSaxzvzXTOYNRxoEq+c38ojeMZaW0Ho0akzBpIgvaQ9JybOo9Tn9vVIg1KZ5gl56dwFpk+1T6+czlcWuLNFSV8LdfPIVD6WQDLAcC/BuA/cPe/a2Z/E5H+0eXubnZrzv70y8x+A8BvAMDhvW+kBUIRrgxqlz1UwZICdrEQHDSl5MXYJwDaXmRY+WwisZIXQ/4KjffcBK4rzDnrXkBTBA0obcxrts935jr5KeLW5Hvy80uVTyqU6DuCBTDRO7GrqQJSxn2mwqdnnp+Le9Y96Alxs8sLHu3zKADYAQ29ZJthPHmkugOLt6kQPxVCRnjY22Y52ZeK+WLVPK291yITF1TlE6Kvglrfp2GHRzm0yi5zDbTeCeg6oXSQLMt0xyhD6Vuk86DoVAvZJyixBNfiKSj1ZJpDzq8OmkwDwIgZOyrTg2VvmyVsbdEk7Jvf+Ay//sHv468//QPcjwu+9+QDAMDfe3GH/XIHyzNfgjdFkJXjPZQcenLQZYBzL3jr2srFJ5izJssECgyVR7VNzOXhRfKCch7Ie3KLqJWLO5Bn2xC4JfBUSXPOX5crcQwks9wMJavac/TqHTL4nnvFnUA2f8+zfPjZ/Pw8eUUsG0dDvZ+2SA3R+LJzstLF6QTNXAvqlzhzK9ZkXBBN+xLgYbc4w4kgm3vaYw+PqwU/hwY/FYJRORkK+DB1yp4nOUdqRtn2eciDZUO0fM9MMRFUS8dSL1yB/S2mAQOcVuUUspcPlFrZ9iaTR6DKucHeluFs3pUu8M0xzRYgAkeRelsrCe3jO69ocXMwCbzMEWXouVXnCTqCww4BsvaHDfZyk3O0USfnnEc0N8/Pura081d5Nbn/ebrGn/2RP/H6HoDvufvfzX//HxAA5gdm9gsAkH//MH//hwD+Yvv+d/Nny+Xuf8vdf93df3289UwGGWjK61LK0UeE+zrSVvUBAUEnkHl6Y5e26UHlEcK2PVZImREW5pSZxywuRI6P4UxAOdkFOFBZpZD39uaqTNnxikJmdGVpSkQltbm8MpIrRQCksmL5oLVnNQ8EgNqhkz8Q80GjVDaK/To6V0VRqdzMvXKne52sMBlJBgUCZPTyx946f7/Pd0mNGUatvRNoeDyY+EdXrljjuvEk2fyOr045EUBjTp8Ki8Y6wevS7Gq2d2zvH+OyMrCc6p5H97VHUPB2eBQAGq/GCiQ1z9KaYfcDYPc7vnH/Er909xF++fRj/OrxR/hLpx/jF598gidPH4PbsjXAg7bW3CNdExAMdkeBlSyexuoQ4/NMhcpYUHYWUIX8XF/v6gTLNZdD0iNSAqurzLLxV/dyxVuTQwEZJ8mFQ2db0cAu3Bprss+mc7M+y9OwfYN62Ei+R4ENH8D1Scy7jlPIvR+t+RsP6pBG8eg1/gTzApkZpQG5ahnBo+yOBKTaH2x9zwqmvbhtchhQ0Sc+Q9E3OlXcA8MFotc0FwSmUyS1x7bHBGrUvzn/jMjNoysdK51J/UIghTT+jOyyB9PMuczqIMoZ9eE8oKJbVutqLeJMua9oXo2dUTGClfe+9Tl+5bs/wq/90g/xrV/6GPbBo9ZLnC+UnmWEdD85Srq+vn7W658bsLj7HwP4AzP7K/mjfxPAfwbgbwP4d/Jn/w6A/2P+/98G8D+wuP6riBa/f3I6iNe0JapAJRpVQ+EhiJjI8H0PwVFQvQEH1tXLMBUnYjYFC0Y/gKX/i8L6u5WQ99Axw8TamA048T3oOdNQcV632nzy1tozZYBvAQ1KeUXuHVJQNZdQeJjXSEXP+6o8byYBj2k1q3ntrcN5d92zIXtFkDqpFzV+zcW6XJo/Ge5UAttL01iX3hH5zuQJRHg97rM9tsqp0SotZkZlGEFKBV0E5Zgv9aJ3iKQnQ3sokLPIha/3rrRBAATyMRR9afwX5zja/HTj7EA2pAvZR3qE+xx4nEc8zCOe+wkPfsTjPOB63aScZQy7km5eONNzCrnTSLPvDDsUtxJOORQJqraXCWJIJM69S1mnwLBiKl6w1pnRAMqTepRQbmw1ENxjJYioz2tf8iDLSi3zpGIdhsnvG0EBIlUGyNj3veADdUZMpgfEdbA2zw1gA8C89+LbofYUI8S8f+wDb+OCQIbeq6eSWfrMNUXNO0F/VClZ6Yw2XnGADpqCAoMpx0yNkMw9M91DsCiQOmJsM8F/j9j0ZnflXBq2x+YU5lyX89MixOlcdT0BxFqFXimQp9/NcoYI5Pa77LybYEn6a7T3T+fuyXsP+LUPfoRf/+D38V/75u/ib3zzj/Ct9z+DH2c6NFyP4hF6Oh7WlvArv/xL+POar5+1Sug/APC/zQqh3wXw7yG20X9sZv8+gH8K4N/Oz/4dREnzP0KUNf97f54HMQVEhb0YQKvPGGi4TUBiQfRNAVAJ74dC/gDkuRggIFJh+OSFoDaMDg7M7wURrnKyNAj7obp9Mgct7kN6IOSQ0CMYF4uOk5unR0LAFe9I4lfvjGuzHbDn9XvfwlBEz5RMM20VLhUHIU/xHclt6EagexQ0gKxg0gF+QJQ4MuXRAMtMELFTwVKpenq+iH8z111piARbhqqUygqH0TkMCZBA40JFLGXqwFYkTZ47JPnpXpfFYHiKtbz1fF+ffNHiCrFvzRLZGt2zK/kr3oBpbAGk4hniPWwpEFu8u09rwBLAw8Aff/Y2/v7TX8CwiXu74nvnb+D3PvsAD89PitLQqBBEkFdUDfN45EUAl/0u3pkVPBp6lqL6DahGAkV+hocW7jTQCXTjaAeo3JNE8u1cjd86b8zbfuWz6Ml68+znKHBgWWmk6Eca/OiFYwJFnl/uqY7eSNHa3DlaZRHljDI829om4D08z5OvCcJo3GfIOkv191Md5NmJ+TLMem8vZyTBa/E3TDwiNhTswI9Vf6FAM7Lspmo0nfLcosHi06HmtU6Zd72HIse5tmxdvzhkuRfGJUReDhVTOyeTmvFDNUXkMQXar22vAqlL7hN8PkZFzsIrSlsAzssh+rCQNA5rkVvn2iRJdxjmace7z17iF598gl+9/yHu7YzNJr7/9B388P4d4LNNZc2MaAnwiLqAr68v6PqZAIu7/xaAX/8pv/o3f8pnHcD/6M/7DJKiAFeevXKxgfR98zIGudkZQrUegdhJ4M1mbFYkw+5l6SRbNCHMYbAKiIfj0XAeXkKNyQg8BPjv8xC1VAZi/y9t9g30XsMgFLmYEaAe1r0leIkTMMN4KzR5XQ1lEYSbwvU2Z1sBLZVC9s9eCnzcRr36gAgW2ZHV27OpIGJDV2+ZQZJq3lNL4qjwbr47y10VzeDaEgBSPNLbC66NFSkyyXRS6krP1GcEKtDGhQIj/STfKhmNeRyMuHEuwGdZpZG2IPDROPP7ev+rNfmHxlXRrJih7fmGzz5+it/CL+GHL9/GadvxoxfP8OOP3gY+OVYUiXM+EHyRZZ9AYBoWlUl63x4lSRDXoyMCiqqiy/vsKMOJFoVQdKfJ0tWKL7LbUiLNtNz2ciSRHAX6xWPD4rCILJlr36vq4j2s0gwUNAIFj0jR7OWoM7aoIjyKSMazglgfE6S0XbtnJ40TjJAUz3OiSPRk5KKMYN7baq2WqBPlzxBVOe28M8lSko/pzBHke06IwQTUpSsOKBK6ohSZ0uJp4plC8pYC707CbXlwpDxTJjIKyTS0npPgnimcVy5WKc2IchHkxQGzJcMsiWbPlhCEmjeeBC7njmBNUdd4R3fDzD8XRJ+b6xwqY+/RvUgVEiyZ9NNrufzP/si/aNe/GJ1uUcaFG7L3K1GXxRQghZ9BRbuy85UPB2SUok2+6WwbEkctP6PNnxs+PB8Tv+H6BKpEYviV9593M5j+2cTOn4cEWyOa+k3EgV61QuNk5oPKEbDdyyBktKGHcoNHUxVM+6kMhFqEpxGSkSeZbmc5YoAAsDJhmsizXB4qaCoO4zxpfiFjEYqhQMFkCgxUkHEfkmjjfVEdKa3SBAtHiJ5p1zUTQVJUSNlrLmUQs4fPIci7KSKBH5tnqB43uebzaGW8aZRI3u7+KCwAAQAASURBVKZXzpA2AXKLJmkco55BRSslxyVKYzReDkyCgVlGzCZgHx3x+fN38A8/fhrfedhgjyMMb2saOM4EAZCB4li70e9KWI3bONYNsOlKLSCngN1M9zvHIc/gYRNDTOi05gIUTc4mMF4aZrbptyRYEvioOdle88yLBkmt3VGAAsi53GruCZzU4yMBOkP43ekQL+ommrIQkIfVYaL5bMtx/VRw3+RU4GeU4eVcb4+GK9MuDh2WKm6UUTZMxy9wjtjmv6exOr9kUl8c6v7utZ+d5xgBsMfsWcK53ql/0kCfLfRbwxbi6WREuLd66AOhbFaEkjIX91XpMPcNnaozy90rlST+C+UW4bDEGEsfcnNLh+c6UeTJ1Yuyb8Mnz5/g95+/j2GOp+OM33/5Pn7y4hnmwwEbUFwn6rM+9zOdl9dwLQ7tF3e9a2Z/C8BvuvtvfilP+FOuNxuwtE1ZpZRNMKn4Lxm+luVtRjvRPCMesZnlu+s+dgmlOlIhLorbUB7kgaWSLqUS/IdSwEopTMP+9g57csXh7gozYL9umC823YN8BQAywgz97vcT28vRql2gsCU8jl7fXgIGw4QXEc5jAsa1JHa/i9z5xsoFQNEp3q8fqMgUgR+AnQ3aZns3tDSMynpdBmFcgLGxZLi+EympUpxAGSE3hETOpvuyodOSmhuxTuyIOc6pHJgmYvSgEeHYhyXW3FuUJAyvzQqfu2W7+vvstnlp7z3C/kpO0ivsXjDBhPWD/bIxlw/Hdm0eJFOGKEPI6jJWUNAoCKCkcdG7pUxsnw3s56NajM9TI3KyUmkarHOpcv90cmylXrxkE/VcfpeAjyfZEpByXEw/6eBP/qz1/rEdGA/xjvt9zTHlYs9qviiPzYjp7gqybhdgf9LGNKFKG3YcVsUJU3AEjtbmoaUOSBDl2U1LOjTLc8NDB7DV/mX34uOnBBZtThe5gFIxIhfnvDpfDHyPVrWXpFuBKkYjEoyTd0bDHGToUWNHcXa8n2k1A5h1jpinTgzuT+mczoEiKdi3Ou9M70xARnlNYLadc70uJf8ilauYAiLg2kvohPsAPMkZyyg3+Wrqe9IcCMlt46mRR4bhgbfTMeDXFDWbBEYDDx/f43fGN/Gjl8+wmeOTl/f49KOnsBdbHXngSJDiGgcrq+ZraBz3JV6fuPtvvK6Hv9GAhV6KG2DNyFABczfsd1Zh7cGNWZEUemfyRvbcBOmt7ncZmt0tjhungrdSIurfkmkHWdQ07tZIkAAqZD5j7MdjuDo+Dftpwh5GnnCapX8NqNDbGI+jvBKvTUsQFn/qmYwMlJsU49vZ34FXRpm2HTpJVuHyXp2RIKZ3OuXvBo9HAMrr6YaM3kyruKFHRg9wjuYp3gJEgpOsSCHYJGF6bqkoGCFQFIc3oIE1cWLmMT06pmUyDYI8Xwrt9OnJiBePR0CL8qXyHntyLgzyVPl0KkYSaZ0G0VxL1ytVGCn0rLS6nqr0G4AiApHus+JbzfJkVVmS4ft5B4W95U3q1FtoXRi9IuDlIXP7Pdc7jk0Y13jPfu6RJ9+JnYT7AaJBnDRc7lznOiH3NOdWqb/k+UQbfMDmwORLEkgegLlNrQmrWJTiO8R4ItIY86zjGngfAqImd0Dzgo29ZoB5D+1L9pWh58zO0lwbGvB5dKXTWEHTI2XkuO13ELeOUSylTJPfxqgAPACbQCtJ1BfgeoKaayqNyYhjbirfAvywlTy8Utac2zg2JOSUPUpUcUPQ6yaZ5BlVch5bt2aCuiAJewFDCyeLHb2lF6hvN4hTNnZkKwKrCCB5N+5KCwHpPMLqeIvmxFhLc/PqQFynvdPOdH27G4Y75sPAi588xYuPn8QzzwPj5aiI6BUqxZbzl3pS6fnXcf1c4aS4xp/9kdd3ZaCgjG1bAHVvpTQQ0dOb7R5U/97maoveeR807My7Kj1JZZnkU/E6pimk37uqzlOWayo9ZZgPBzw+nPD4cMLl4ZDt81Fpk1S442xtw7vGKtJfC0Orc+ao11MqLOekExK70tBngcV48n3ZTI+/o5dJA0tSXYEKBAA5IisJ2pQz1O1QRKL4GhXm5xLKMydRzVzh/+5J8gWo8OZdzbnkpUURqPgVWQEwVeWBhpiK5FeGJn9+YaQjjWc7uE1VSg08koAs8uKs9xcPadb9VRXiJp5RgJ/43Xa2KsGdBRhHtl4fzRDsCVbQXpGpO3IJbEYUYqmoyPdVLp+LQhDLjqiUowQmTHcpwkKAlXtB4X4tSJWVzg0CtkprDm8VbN6eZbmevsiOZwqRnAfK9wLWOW7usWbcxd9Brcn2yNJh07MVtQVU1sz3ZfQo/t1KvRu4XLoLj0oTKk1F8Dkos9Ca9vRcrxKaJ1/G1k8z1pbYTWtNORM/ipw67vMk+FNP8rBW8q0sBWXhorEi5tDkRXrDC1ApJZTzRzJ6/nic43OUNVVazVofRsKXikaBNFQEj/PKfZ1RdO0b7g/+oePE9cn1HGeDPQ6MTw4Ynxxw+GTLHl40OvVZRV2RdmjUGnx9/ezXGw1YAFRfEAq/FSIHaqNQgGy/UdQMLzfj01vryxOZTZmjjIpy1iijo1NiAajrZoKdLsjMv4/nG/ZPjtg/OwKPm9qNc+zxQIIhZD663ltGUsDNpDR4FbnWCiSgNpJAwR6TQcU+D65qInEsso8Le6dQmfZmcx344GaOyT/pVVSlpFdA0w2AyLT0lMgbIAeF/28Me9dn1Q+HQKoRLHkys3pQiAeyjp+lrowgKQyfFoVgQ2vvJuIvjwyQ4U1joKhP81QdZbiW9uRARAgIfg81T7ocIifT0DKNqK6wM/L6eh5BIhVz84z5cycwyYjifu8CVZGSLfnnOsoxoLfNIYoL4qoGkeEkGLS18Zlkc1S0czGilMEmNwJCaGti9W5IkNRTFYwcyMil7PB9CLi0pikXjHwUj8eZQYrlvZrkh40UeYJ7J57u9579aGpluTfl+HRHClwboCIYt3MRz1ZGnKktyjijxa26kFWTnRvT06jjahgPQ/uBkTrOwcxIm9JDOiYBasao/cDxWwASppYFJnINrKcm+f2mU+Ss0dmizu7zlPoSqSN4SX9ayb34Jo5Vv4Jz0MeS42xgPQYGOYbcL3GQK5Zo+Vd++Zf05zVfbzRgkXM3b35GZZsldvPkRSI1RFSCaZq9CaNXMyNLhE8lCUD19Nzg3NhSzsNFhqSR4AyKRwEss7q9HBiPhu35hsOnm/KuDCGr98LG1FJueIWPK/Qsb9MaQY8GtylSeT0k5zlEVKU3Vgo8fq6zjmZTJM1gS/mhFDRBzsyKHXptvfKie3qWpYQEP1SuhlgDRgAEYDJatPTR4bpPTkjNtbwyQMYuABkULq5IQRqI1vNBzbSSGBzKOMef0Y7urSuM3b069gJq3S11GnbOxZZeJMcpoDUD7O46wNClMFmdNk8RtZFhvTROA997tDw8QV3OrxoaJlhT1ZSXvIw9UjtKwfJvh+SpDGhHHHFvNei7MbziW2i9mlx5rftiEFGefZ8zVtJhQCCWv1b5LmWO40jZvOXvoMk7UyZ8vrgYTHlmtCC6R9dakxit3hsEKobqoZNzQ75FP+AynKcEQeKYQfuzG+W+r7UeVr+Hlf6jg2b5ThVJ9SLyMwIo4NiQGJ95KHDYWzb0RnOHh9xLj7bYdKX+um5A3R9c+wYa2IqfcymgT2eUjiZKfuRkqK9REem5hoxm++ZJri3boUKATF2q/YNkaeXwERDrCJBL7ReBndb76au+xBr4Av+87uuNBizST7khFGKnAHOjXSFDD6CiB717JKCQK9zEB+CDDKjKg7y/iFepmAWetHEhr53fiwc343eKMkx2zI3Ti02GV6fQUqEeysDJAFwbGMpnBOABcKvIL6UcOtnM+/sB6vJKxbActkgjJcNkUo7dGyWwoVfIKgnb22mznOJR77IYiDRYIpdeyBUo5UvD0bvFVng9vUtGbjaX52+oCF2NrYXk2cEzxybv21fAsSV5cx680gr5fd63d9U0KrBmUASwrAGynJd1nvIzxyZTVHxpDCJvzpy9F8g8QF1BdUkm1344HFeAe5QHnvci38dmfIYVNXODDrwTmGTPmQSiS1QzDbc86lEyJX5Qvh9S1ASyFb1qBrUBPPVZUbQpUxmMouZ7EOxEZ+W252fxdLS/Zrt/B6k5Di4VS497dJEetWXKgv2YgNU56qCtl4MLyDNalTKt1FIDFkolck4SYFM26FkoKkKd2Qj0JYOuiNF4RIta2qIjeqUYzPXvIL5mp+kGnNXJN+/NFG3MTexdyggdH8oRz2lyVKSDqTK9d+PBVDoLy3UrXxXps7y31T0aj0+RquYA0XFzQNE5Rumpd+TI5nuzu/TX1xdzvdGARREDQArGAKURqNBkOflRkbOgkCQVIRG1FFR+f26Ak5TZNp26n7Y8vTwbjivLZCc3rJUww8vQ6rwK3msWcAGwCDu9BwEivl964QpnjnqOHJam6GQgmM5gaJe9HpoR49g4jz13zDOW9JlcH37Oj740YBJnIQ0FDZ7msqdwjDeJNSD5joBE47gUUFlC4uxPQ2U/UCexpu5mj4aeDunv0D0penzkUswjVJXA+VX0hevdz36ykjOe9ssx9shH500AUBUIIxfKtT/W//fyWh3olt/fXprC+9oXlnKZkbmlUV4HEbmQTsCassqUiSHmH+aqHGGFlQ4M9Iw0Ut6s5lBVSo3w2KMdApJNpvY7VDqEr9McCaW0rEdMrdJzQPKRildGcrz2SN5Lxp5joAFFPj/nQWkHkjibvAtstsgMAAGG5XcUF6t5YDppHmIITG1E+spqvKPWRc5Dj8pIpgH2AhEwyBYOSofz3tSTrfIt5q3tpw6uU25IpFZ0IiMlcS9XdSKBGsvZe/pN+ga1Hv3MM6XhslpS0eXeBdnavObf+50vvYUEMg4FNpdozEPNnRricXxOEnGtIxBjMLT1TmHofK+mGb7ay7+EP6/5erMBC1CIml4UmqKhF0BljDKm1TXSKyzX0Dw/S8XLXG0vM5YgMqxu5Xmrv0mWEtL7pXfvhzRYT2ecKULjMoEexgag6E33auZds2RAhaQBpXtYoUEF3L2hGGMZnm7ISRDVz7faxAKB9F6UgjEZe21+NrNKBb/kiLPSQB7orDkkQTJOrfaa6LJlS+i6K3+FcFMpCdBZgcVxLVC33IvlkLONU0q4CMA6I0Zz6wV8t3r3IkfXuklGnOH/fK98zuFlRpL2ep9eNaP0Tk8BKApnkmPyCqrFv6mMuefj3epzLHeOX0BAcFxQ+4y/JshyVL6fhEpgidZ17hc9484vYIqqPxfAmqKyHAda23R+RgApZCbOiTGtoVBpAwHiL3A+KZvk5WSq0DK6J4++p8uYrmrN6YAEQcOxn9DSDC1ihNpXmqNZ37/lzCy/a89lSoKpTb5j7dnSZX183YiPJAsrgjW4l63GlXMvR4OAk3rPOUdcVxMQYqUj51c6imtN5yT/7YzQkaOUYHE2wN+J8ZQtOV6ay/zeVnMmMMuxXCP9xvFWdLo9u80XCytUOUS7kDZicQwznUmgKHDZgLfSrfj6+qKuNx+wTFQLbxmE/Hd6mRJwaxufqRIv71T/7zQ8VmklepQoZeKAlMSep4QyctOjITpmXka0AYrThD/ZsT+btTGake0KpysjGjoZwq70gXXDt3TD3gh9HKd0EHP7+V7GsbSOu3XOR9yfAE4VMXkzcSjkOUMpI6arLJVu8WtKiXcPsV6q5t14/ILV+jNytkS8rs1DBMDeMqW0WzStpc+45qq6ac24GL0Sx0LCV3yE4CyZ3qWXSjI9oDkDxKsi4OZ6h6Emodfr5/lvGTPKGQGeefGUGAFrSp1gnanIWw+UZf+KTBHozlXOkGtxeMlxrQZWUURD8chyTlSieq0SWPIAYK8C0T0bEipKA+7TShOWQeBmjTERyIh43MExATrCyCsaYVhAKoGMjn6gk7S5uEIqU98KYMV9vQARdUA+A4COu4g9UTISz81KlEtLkTHS4dXf5JbPx/fpcy7Q0X5GknF8n/18EgilXO4nMOuBioQW4Z4AtHPnJDv5Dj1at50hncxI63Zuepmgi+Cc+7qlUhnREvjp+jAdDO7HBVC3cRBkMQWu09m1RyH5ZbpN5zvRSZPzBN1b1WiUm16+TNA5Skxfx/U1h+U1XAr3WxOSBkZ6RESC6JAHoLzjKGFF29gGCKhQoBXpIADRhrUqp6MBPhR/guFY430OE+O0w+4jpi5ehPKiNXZtbr3fSuJUX4HmSajHCaM+fHYP9dPQKaXDDd8eTe7CVvfCpPdbDZDAOUqwN5p3T29KwA1lINWPgnPQlI84LNYWEaj0XEu7ABBngu8nZWIoQ5VKmR0r57HIhlw3KWy+b5s3HhEvo7XVsxRx4+TNArDy6hKAqBcQ34ky2CoUKnfuKh+lsg6AXXPew93lyqPkz+rn4o9wjHsoVUYervee+6cMA++ntfGaX0UsGvdBvAk3GTTtTSsZVHSR/UJujCCQqZJD8W9IhObVARB/UHwKVGXebksqRykpRlWv1CkQQKwjBYoUTO4Z5wQ366/oQU8TAkpb+3DpltHGJlkmsHbUKejHOjZDOo0efM7d7H10HIqcDKYmRs1pyQSWKHOvapGsIY31sZU0M2pNOaBjh7o/eT4COrmv2BqBe1LOIffjcZ1fgWArbsxSTDCaviIAyc+OS+lxAuru5ASYbfrPUq84dJAoL4EVb3LLSMmuj60p4BYd4zMJxiIdhq+vL+h686eSoThAqQAnkWl4C82jcpQpZD0VUFUh9TltLm02oEicNyHAVHyOAgIVTg3hl4EFFHZVIzdApMhIU6HlkfMzt/yKzIMCUAjUD8EV6ScGd4+C49KfND78HLIDJpVGdJSsZmZKT41UBC1vG+HSWhoCIZU6sgW8QesBg4is6jvSolfO0sirVVg6vVP1ltiAkcclkATK+WF1hQDInUc6rRlMoPLT7GhMINyBhyIzVK46JBIFmAgCE8wpKsI5Sm+/y+0SDSCIS2UpY3K16APUU2CjV79V9Qk9ecof+UhS6DfrRJAkom56f2Bag7wVzQW0BwSOtA84Hiz7w7ussnz8NkzP7/EdWpq0G7UlVdRSMreesIxnA8xL1FKGvZXctuo4kYUZ9SN3IgngvcRWPBjOSQPRBGy6/2z7hsAqF0bAPVO+As3jBkBLH3FsLap58x4ce9dVABRxUoStc9D6mDnnBxTg5t4ZJefd6ZiHqlhzPl9AJThjbJnASGA/8Z5X172wiGTXURJFihfhlqCHEfKtzhPq1YnkoHQALRl3097mcySXaPKYaVZziMgsfa2OubXuXd/Uy7U1/aov/xL+vObrzQcswBLhQKaBsFGQK3esnHEq+iXygBvB7BsBteEp3FI4o1A3gRI9B8wyet5Cjwxz2nlgf3GAP2wYD2MxlFQS9CI64VCVDD3ywH+z+2n2W+H/8140qM6uqEwbtD4JemcCACrDZlhYDqw0RH5e5FlAkRdFtdL4agMnEOlVTyKTEmxYNPeaJ8f1WZURyhZkWmWemkHe6x26jBDIEEBWWgitmysVfoIcRi4oJyz1BF7hAmkpmqFam6Fh2dhU8PyOUnT5fB1ux0hFjwJRTvMZtudZUF73YrpNfAmmWlARERIdl/t275YgPA0QOPc0hGlMaSRX7hXSMejALB8yraJ1aRyVZqOsWMlJjLWqLJbULueQV4JCGQ/ec5Qhj/v6EqVkZIVgXfuhgzhGFa4365EEVq3tlsa1tc9XWqg5IZJVGszkdOg8rBaR7JHfOBKingWgDsrsxrWphx4BEJBsRpSOiAjTt+CPbRq85N3bGG+B5wIA8/m+FeBQSwN2xW5jJcCIIgI+x+sznvsiH7h0jO1j4X6gHI7UxflzReGc8uCvjqnNkRyqrd2jR55R88fzkeah5Frz2N5DlYRf5fVlgJWvAcufflmbpE54GxeDnU1CuggT0z6p5JEK2tFACPK+YzWq1oSsV5loQ2YnUQnyoYVUGwgAiW0O4Gqwhy2awV1Wsus8FpDouWgqe4UW2x9Z8ySCjqvp/7npdVZPKr4lqd29gBxHKEJbIhdKr2gSgF6SqcZZ9Cys5lthf3J55KlD3rfORkrlTaJsgMFc9vQ6+0Fqt8ZLof6mGJSrtxYabpLOpk7w4A1YN3rm6mBMZS/eQiN3az5GydtS0cD56H1h0jhPeoLDReAkyJV48pwmjpnv7/U5gQc3cYZUuYQy0JwTVcM0kSDHKRoeQtyJPtd9nWXsE2j1tNwrBPhWxbE0SURLk3RDCRoMFPBO4+93RaIHU5RMu/B7BMscQweMo4xOJx8bmvHk+IYXaVzgtGSNYxqa85uxblijgNZ+z0gA9U46OOzP5KlXelSIKQkeBMiKJ/Z/6emWcFZcXJ0enboF+Zo3ayCqvbOA0qWlhG+ApDhSTf8ohUMAknuHAEhdnLsTkDqTGF3pty4vjUjBtLs4TzvE++P7Ivcz38V2AxoRv/O+FDhkCvZm7gHqlbIx4Sh4RaJTv+n5muRX5/3r65/veqMBi8CCM4frIqwtxoGRlTRUJNDxGo91kmn3ZgAaVIBETj34mgZtZni9RTs8Ixuv5PcbsFGu/DyKf+IIZdhOMZUip0LLTVZhyfhZNZwrJYet0jG+OfxuYt7POBVanoTpPaWwHBUl8oqu1MGJnBvIiCvPTc4JIzx8da9x8hn8ubxJnTdii5GTseE4SZhMHeWjeqHIY7R6njgtjIzMev6ieKzep3v1HC9zzr1RHRU102WM8lFJ27Qg7CrP3YiT2ZxKIDHH0SstOEgSP2/5Wp1AzTFUJCEOnWOYu1cA6d1yLCHDa+VU70mjceT6MsXDd5buFzCtaFj3ZLWu/DnlQ2kbU8pJ59lwXlq5+hKxODigdE/19uh8GoFQTtu5eqLIu2b0JaMLPSLR5R7TKprBviU9queU61gngoVbfplAYSeBd9mkHBt5FmhRQtQpwPlcnmUVa20aqyLHnDvqvwT/rzgpeSaSetZ4peDY0Vh6N0+Uj3RVzZVABRo44bvcTVzf2THf2jHvp6J/AoUpr+XArHMiXNLASfBSUimkfPbI1TxxflAgqYNN6tJZ91NKOD9bET4KBZau6aIAnMvBkvyoV0yR8ekwdKD+VV32Jf153dcbDViAErq+WeRF5SVFwcoSAOxASI+F+Vx5EBmK7J4DgQeBxdIdtFW40IulQlMokp5z/lnbtuOVlIFAk0LW+ePMo3dwpd4JW21ibj4/OvyDM5588wWefuc5tm88wk8TCu3Sk+mKS959jZdRExkLzjs3f7sHuTGa/73uQYXDU4AZOlWUadIbSgTRFAtQ6RtxNjgHrUyUyq6n/hSKTmXMeVoa8W2tLfvWyhbzQTrgrvFL5sGXCg4YqrvpRBx1r3FSu0H8G83RtfUasdZ4S8q6A6lcpkeTzPQcPQne4hKooqjNZw6H/CISFPXz7YYAnIRotVvnPmtr1PP7ekaL4lgalSV1IDAKRRnifctwyKgQ+LJyx6Do43hs6io/40BxnY7VFE3GlGuWhk6ylHJPQ7PwDCz6h/gGNepb5jTXkoRKdYzlc1DP2e/Ki4+5KD208D5yvwj0Ztdtp17KtQiHbN1/fDdFaDZvMgVVtHVZw/CYT+7tBKrzBH2IRG1Gpyz3sHh6jazLOZj3E6cPHvCNX/oE3/zFT3D/rZeYz/aKSvD2ubn7dJGQv0QRKadyUL2iVlxLgqtrm+fcL9WfKXV2I+zPky+RHKVW88HOtI8B6CR5rmfOfUSz+BIoTpnWF19fX9D1Rp/WDHDzNk+u2XHfEM3EOifi4NgywiGl1LqcUikPhr9vuAl2AypebaxmCvsa0zG8mgfGkC+mL8qC31tC/J4lprNtiuaxGMOhsIpseBlme/eM97/xHL/09icAgB+9fIYf4B3s8xS451LKrCu6aL5n9W4kHG9YOuaCQ7m0FAAVLvthaFHCi9/OAI7NmJGlD7QoSUckOfeMYADwaXFK97UZrbNVTtkrIkQCnhQFeH/+28qg5lr3CABGlq4m+XYeQ1bGQyycOA802FeLk2BHeYid6+KylqhI3N1sEai2jo0gzgqHnWkBykJGYXj6LAGwTYNdykPvXh8oxpaychcRGaW4CH74GZYcO41/go98L29GcHkAQW7jjKjiRvJLEAI1Rgvjw/mGDr4DUKmS5JwAqDQLZb914vUHgmdb3onrMq7QacQ0rr45plcJ9Dx66IqcwnnwpRKOYBcoo1TzYCVHV9MBmowMELQD4STx7DF+h3uzl7gruseoAFPcuX8s9dg8eewbgvrUJ2BqaFS6dE9Qv6R/uBcIaAwRucnIK8eACSB7MrlkOObUDZhPHHcfvMS//J0f4Zef/QRH2/GHD+/hHxy/g08/fAbbN9gVuD5tfbG6DDWei7Xn0mlihNknyfAJdNt9qEP1c/6sybqqGZXOs7rJcD2H3+0l6SpVHusYpedapE1ddF9XWMD/7I/8i3a98YAFwGLstwdUOLuXo/HQODcZM1paKurZGgUtnipTQtqsWDZDZ9mHsWDJZ91PG6QT1xwycMr9pmAz7zmzfHBJWaAbvfhH9H2wCte7wbcJ3xynuyu+89Zn+O7TjzFs4jB2fP5wh0+fH4FrlX4blSDfE6VnDVi8c98c4yGMcqVcIC/9eu8YL0Zs/oPBTy4Aw7Xq1VlAPF/pkoNXNQLXmaHh9HoWAGfJZTnxw82o5b8lL9bSUAShs+43LhX90e+p8FUmCkyG9T0A0/ZQYfRxCaxGADfyeIgQRpPSUirOAZhJ8RJMlSeIyqtvCZy4Nq2BG1/QdlbGJZjR80pm1dU052F7rHuOawZpdnKE4tlKDWbaRxEhyuXVwhDegBZFi7rhtJiT/SlTZnUERP9uAE9fnuMEu2nEe/fYbuzCsIQB3M5RaaUzom4MFfc6uWMaQhofygy7l/auwVqug8Oy8zBlIXhPJXtw4PrEcXhpIGC+rVoMx6WtGee5ybJSohyjAE6tCeece2dk1Mk3ZBqtPs/I5nLKMvUS5TJlfTiAi2HezQAkI9XkiAEqujP5Tg4/TXz73c/x1975I/zVJ3+Ek+344PhtvLie8J+/PMHHMe59SUcrwcE8eZyGfC1wwPQOG8PFIjTnZufk1D7veiNkA40GkJzAESC5QHbsIYEUVKSOjkJPV3UHBQinYwrhWuzHXDs3YEy8NsDyOlJRX/b1xqeEemja0jvjRtWBhI2QueSlZyqflodcwsHpyffunBV6hIxGz/OTWLgQw5pXwp4XvXJJlRrNoFD4YdC5M3H/MjZKY2QF0n4/5el3YTQDZo+t5pCQ789D85Z0FNo9EmTJOyVAG5XbJnCSYmUk4s7XUC5QERQ+g6CiDZHgi2tCsNbLhKXgmUagQSe3oXm5lkZzqcoAlU49g9Vh6mfRem/E5/PdSLrkNevzlXb0uqe19ybXid1iM3IhXsVeyrHzbfQuvd9DltqqQZXV/av8NIF5ls0XT6W61QItWug3z6Qxy71SXA2TYVQ7gJ7O4MdatdPKgWrl7DfzvIRKrVKR9LQny1Wzq21fW6ZHVV3H/dTuQWJw7yhM/bDwsUaNp3fQVTqZtoiy5usaL6nWBFf0rivtZJJvRaIMZQxT3vg87X/glT4vTE/23ka+3Zwf1dK8rCoU2T313Dz5wo/qUZvtXJywLqeOtkZ0zihDA7DjxFunR3zz+Dk+OHyO97fP8f7hczw9nGGjlUET2CY4YqTULY6X4J6KU+vzERl57Tq0c5a2x4pqiQ/UdLT69JAcPGqtbVYDOfR3ZL+e1NXmeMWWxLOhqJjI08ea76+vL+564yMsDJ0yN850zuJlMdWDNBJnk2GK8sRA5+Ypo92wAuk6hGcL/ht5/+ERQZB3FAo7FGf+jF5HplTm0WPjde+5Ec7kDR9qHBGZiIF1ALZ0XbxBzNywjy+P+PDlU5zGjmETP375Fh5enkoRIN55HgBP8iJD3TS2YulPIjCUYjLHPEEdS8uDMRmlmfli8WXoeRngDN1brs/Vao5HRHKmJ6do4QDkXDswN4ffEODQiMNMGy5lvG2uF8/e6h6MKujiZGUqZHCdhn6cqRco2gACztaHBMPrRN98J3ZlliwdG5pzjtsKUKRR0wGamcogaK60YixURVZQxlLKNQ2237QAuAWx+0+RWYG/HF7uxzA86/fLo83PkkewlVdO3pWOekDJZ0QjI0oyZeV/CjHdo+167Z0yUOSC+CFTPjRu8Jb2qDWWPCeY8SUVhCoRN46vIgA3foJASz8nR80l+ZyrYaRg+5Zzc7GlLNqnY7ty7Q0TzVHJaIM4bT2yRQCbxlXRXV95WxyHnzLaJJCZ4MY6SImuzcMBT6U5GSE9ugDlvAx8fr7Djy9v4f3DOzjajh9f38an53vsVy507lXOxcUAHdHRSNjTMJ9MOEuCqZaUkom5Gi8M8xTgtpfvS08lKBJQOyAiO02PqNSe65n3X8+cGqHfupynTOpUcYJLglBWd+I1Xa/twV/e9cYDlluFCBQJTSG93rckN2cZ/dpQfgex5kNwoXQBSXq33mfPZS7xKBmZ3LT76gl1L2yesppjz82Tv7drMwIkgJIfcmjvPuhRrPPAtM1+OOBHH76Nzx/i/ICHhyP2z4+o4+VDMXCefKTxpNHJhmI85h41dPEkGHnxA6pgSn8qpC+nPFt+Yy9jAhDk5PcZoeqhcubmd+CaxyHMnOcehaLn1HvEWANJDOPPjd/nnNorZ74ABUJ8QzvAzzWmfhieSh+ZbkljrEPVMrKlCBl7BqUxnocEMpl+8WN5YuLbMGpFUDlMoDAIgVSkVtEAyqdh6TPBdCMo31aGGUnwtD05TQ5xVSTnqO/IUJPXQt5OAhymBkXMpYEFynngWTLiGOUaZBSDIHRcgf2INRIHFHdMZfQuwWOqhgab76wIyxJ9gxyH5dyYFA7ybQhURu5PAcJ8N8qSD8DvHVeONedRKZBMMXUuzsK3yjkKkDLA6Iycthm6jARquxpw70DyfLYHKwB74KGD+agE5iOBEcELI9U6xG8C5obtGmktrot4Pqd2QrnVGs8NGM83/ODjt/Fbp+/i4+tTHGzH9168h+998i725wcc8nvjXG0bDC492vUEgZgAUYKPSTAFykzTRZmaJRAlaA9eUAl1Ty36AshdcrE95AGzdIRbRLx6YGUbhh3wG56S9gS+vr7I640GLJbGkKRHkGALlDIHFC6UwbBC8MxRAhXe483tNmzbr0TZnZRKbsRSPjtaPpzRhb08bj94HIpoCNKfNaCU3miF4FGKboaiGI8DM8uXAZRXn5vUpmG8GPD9hOfPD4AAVhmyTkgN5j8auIuNOvNzJAQLgG2AZ/WGwA+Hq54LLqUuAHBy+LMrxnFinjfgcURVwoz379+f2eSOiowVOQIZ3cjIQ4b+pxuRZY05p/x6U0yhxFKREVzOgXHNyhm9Y84zNQ+9MXIHWtREOXMKb+bcOz9pkV9+ztt3PThHc69IG8+x2c55phXbJ9MjVAWba/1phKm8BTh6Q0F2mmUlDKBmdhwb12MeoBJthewbeXeRry1kadIIz7Zndls9bPIqTgX6undLmSfvQjyFpTKrAFukR1YDReBeXASv1N6ocSxpyUzTWF/7jILa1aIvTMqjdIKlwQcwyZUAqsFYvsN2NoGzcCQacPG1FFbAtsmu5D9BmaICXBsrMIY2xv3OgayCI7dKlTUjwABTHnEmWdxze7DSfxm9VmSC6bqc3/NH9/iH+7fxB0/ewzDH4/mAx0/uYZdRnA7kWNv4mE5RRQ9QBRX5GfXOUYrRxb9Cj6A0DMg1IklbMogCJ0oRMk3FlOsOzJHrNhHRsAGRw9UDpzklQIKdO1f37teWFvpy0NK7Zva3APymu//ml/KEP+V6owELUwj0cLkAkX9N+76jDpnLz/TwL0O79E6r06GVMcs0CawMEKMrjtjUflfKbGmQ5qjoBBF2wz7xvAwlduXn1pQUSsmkZzoPlT/W2AbgvgItjsceAN82Kf/aUHmLCSBDuNz4vetoJ5z5AJxRoVnvHaHqinT0S2XNB2C/2zHevuDb73+GZ6czXlyO+Pjzp3j46B523crzR60TAIGASulEBcy4pgJFbv5GZOvlnxgIhcz5zPceeyg/3KeiPLiiRNVrBgKfPV3SKwqowMK7preFSmewjJ1Gg16YA3NMkLy87Rk5aPmEDrKi1bjLIM17l4EWYMtr3s0CBGawq8MY/r+HokFqqrcB88mMc67ud8zLwHUewyhlGms/NbB4rWiDMSLEtB7liu+bwN84f1tEhnIplQJV9dHB4TdOhCJRdEAIUhqfIgbEpoKmfUUgEveqvcG0nDNSMMIoiRdBg9aqYgrAuYCeH2IN9/sCmbq/5XuR4zOAw6Np7LpnewXxetjwrvOtbvdYWnk2GlTUdyKaoQ0ofSTd0NdkYulurD5WSNm+Nh2QRGLMpKk4FOmo0+hLJvq6bs8H5uUOn2+n2s9dz07A7wo4sL0CX1Gl1PxB46z0aN9SpWUNzFAPtTWfh3h3pb7FBSj5jVR+cZAU6UlQGakzaJ0CuKWj5eWYqEroyjVZ9/ZXdnVb88Ven7j7b3wpd/5nuF7HVP75rjQaihLkz5gOCANXSov19qou2aJ51yDrm1du2AASVoTBzhXhJskN0dvMi5B3mwdv1R09ZFrgKm+9ldJfu5iSlAkpT3UvtVLAiuBYB0HxHRqp/tl5qg6lRaS16rMy6I4gIjhb9SCQd3wlH4Cf50YtD90PDnt6xbc/+BT/yvt/jH/t/T/Af/mbf4jvvv8xjm+fw1vJ+ec7d1JzLkfNUYIKADUv3QDnZ3UIpvdmYVD6q0dKbM8oxgFSzJwvhdszFaa0Btd5L6DZK1FYsRTrhZKh4ctcdU9sIQ7yz6hwf3FW8j5HZEqp5JinC/v9VHv9OnGbhh5lxA4OHCdOb5/x7K0H3L91ht/vArk718dq/8Ch5okaP20KScrZr0WEWEekmzKUvj22fYV1niplViXGmuv8vjzZnGsZQgIaRguTD8FUZ+fwCPDt9btIXaLC/beg53at6AikbhgC1+vfdI7UfffAca/TUOPj+1dEgbwlca2MvUGwdMLmTViV1KN2vP9+5ysQajLqeeYPOzArUt1TttN0AnMno2odeU3DeBg4fBbHkdjFqpdQ6mQ5FK21veaY85fAi2f5jEfq2wIlrLCis9INtCq+ssQ8OE+1foyKaB2uLVVsqN5GDRhWFLFHAmseWAQS0csYLw8X/fr6Yq43HrAIXc8SUJEMGTFp5bjGY+hT0Kjk2ByrC6B5Q+YsS8179Zb/rL7ghvdjE2SgNmBPH1CxMdzoESWIsKXrh54bgKfVillOw2teDfHc6qToVK5AjjXfT/1ONB+ZPyeJsPUhMeeGSo83+9j4ccJPsw7/y2ZR45KckH6e0MVAz5hGdztOfPDkBb775CP88v2P8d27j/DB/XOc7q4FgLg29Ejo7bZ1ZxWMyj8Vfs939zJIHQDSMHdFykqWDsxkuPo6ppLkvKrXBz1LSyCjkucC0uQgEQwyiueZW+/gkmlEVW+kIRZg5lhBOTVFkuhF08CR5Mv1q/RSRhgP0O8pq4fDjs0cZh5lyozU3XZG7vuI/TASRAp8H8LjFNepGUsa9sk906t2ckuRIDkuUJpSERICby6tIiSrcS0iKdcHq3bzOpmaZNRJfkQvSZ5WexCrDPIS0bs7LSyZ9XIiest8paysgY1WbagqPqB03ah5F6mWxr0T4L3kzPJ3cj481l7vkWvnR8d8a8f49gPGB2fs716jK21PN7ejFcwz9cI0Uu4XgZbeE8V8AfDSR7PmX99vhQtLVAPUT/HD/akvc0qAQZmy1E0xmAIyFb11HThJ+QqdY3o//bnYOkbq9UvpZC6+7YbtMdZhexiwa6bevOb6tV3+Jfx5zdcbnRICoFI1bmLmd/1o2Z+hRSfyooLoPyPvwAGVy4WCh8Kadm4hZkYvaEiuDClbPecA2DXD3lbENCml9E4YCrUZeWIZXRrb5FAskYruGWe6qyIMprBplT86sMUG32mYkM+/lvIfO4qTQgBTr1TXVlyC/Ul6/eeKXiwe3DSMq6syYk7DZd/wMI94nEc8+gHXOdbGY1uMhZ4QLEO1+bMoac001C15EmuuGgNq3c77i9PC+WoemTz47qHRm3YU6TYBGFAGRM+Q8veVz9HSG/RMbXqVSdPIpMEa+1iNgEXTukWeB6JhF6uwdmDbKyePCeAy1PiO31Erd85dps9wNTw+HuFuuF62qHIi30pnSCU4zsjSvCsZ9NFSBaMZMzQDpGqTEq4qEV3/n97ofgfxR6qnDRRdCI4TyjByPi6c11pnheVTxuv8l/b/BGNIwzczopdGcVxinZi6iJdIGblGuH9Sh4jYnHvm5BiN1EsZWvh2+TPsNfb+nC5vbB4p4j5TZJzelFXnfiAAyDQGnaS5RRpxe/eMX/zgE/ziW58AAP7o83fx/Z+8i/mDe8keoxtL6hrlvInHkqmtijY2IOEJbElOHfXu7M8kIu+AeCuz6XDKRAfInXPoG5ShXYCe1ZjIDeJcSY9Rnxw9ZdrUHI+nttvuAv2xZtxjDodVxDoROJ0TAS98fX1R1xsPWAQ8EqEvPU1ahYiU4CEVWF7mqGoVCuxw7MciSwr0dCVtwOhePxUAvbBb4aVUEoHDtDGkGOkVXw1u5cWFd2lBbjz58l6RuoixzvsJewiLaGS+MwqQwOM2XK/2+xweiZwMsR/SQBC0TYOrn4yJgzHSc2BJstJNk6FviEsxXx7wo+fP8I9P38THd0/w2eUe3/vsPbx8flcRDXOd/2IXwO+Bmd4Zow3zCEU/AhgkOFOpZhkBhnjlxbdwRqUe8udestLD/vzsPDlwNkU7aPCCq2TA9EUx9hRCefph5EZLA3aZ5prCEEozlfe4mL4jXoU3+TYU2M133F6O7FqcY0pQrGoO8o/S7tplYP/0hIcnA34ZGC+35O4UGOP7RJoHUdkzg8Mjr37hQKF559xHuf/oANx4m/ruVY9aNXy+n+f/8910Tg+5XY0rY4521EDc208tjZWyulSODK8mjbxtC/UTkIKRUUZNAFWpMIpp+ftxLi7JeLTqRJw8IQE/nuuTPDynTPcIUeowjplRikVu2ZwxblfyTbmc3E8Oe7Lju9/8GP/1b/9j/OX7H2Bg4h8++wX83cMv4x89fAfbR4EgxyWByYVdhRM0nXMu6PBw7QDpWHEGGakzcmNiLW16VR+lXiegKdBG3lLqUnJEcr/NYxCsSRxWiiwds0F+o7UBAhV1bralqARe6fg+FukYYDgjVrmh+N0EWSPLxf3gUQb+mq4vicPyWq83HrDcEvrCoDXjjHVzj3N5WfOJAzdHsve0kjxwel6juBBE1HOD8u/V/bNVsTC0zdwz0TkN3ebyetIBK27GhDaNGyTk9jhAIrBAEtr7M+qSxlKs9RZWBaAUBZBKkx55Gm1uMs0Bc9M24kC/C8FJ3qNVhSgSxLkTbwGwx4GPfvQ2/sHlgKd3FzxcDnj+2T38xaHAEo3jITpFugGD4IOKvrUw14FuQHpgVESAm5cMpKcbxrsIyAI5aXzEAXIPHZrGdXaZYtqRkaNMIShfTpDHVI65CHksy5yK4mT0ohNHDa8QPRdweapIQD0r1m7etajX1WDimuTaOmURMsTjGhUMTKXO8xFmiD44rNJBvM9+n4aVPJYcmwzf7lqjSn2Gwd6fTJhbKOuMJkHzACETcULafFoevaDUU8rdJMDPdSLXZFyA/R4yMjy8UjqD4NpSXjJK1NOkiqhuxTfqKSa/h0CfHA+CrIwiLOm53NdKCcy2t1oKcEtQo3JYAmkBUggk9Gf3s5hUmp6gV+Xxo/b/PDBqGPyX09MzfvWdH+Nfffr7+KunHwAA7scFP3h8B3/w1ns4f75FZeMoA20eEaf9BuTbSFy/ObZzAxJyqNo7NdAo/UM9xkhIA2mqGvKMZLXfUR/pszP0qfbRhoguofQ+HFltmt9r0S9PvaBzodpFcLzs3Vx7RedaBR1T+7Xm+Pr6gq7xZ3/kNV4JCqSkAFnkTnTV54DK5w9UW/oUWB10mH/pBGdARkOhyPQs1NZ+otA2ChyIOHtiN1lbFJTyoulJsE+MlLRBPUtYDsrv1GF+WHg6SCOjcGnzDFlyuJFgRuWWCqMIY21cfEb+Gdd8d57USkWTfwbfJRWMKoiSmT8eDOOzA1786Bl+/P138fwP3wY+OmX77fTIxJVAeo9NIRPENXJpj1yw2kNpLccy70CFwNUt02r8XL/u4cHbgYl7u2e7FqJnypo8XUUbKjxOkiq9yoWH4Vbe3OiKM+Zk3iWZlidwyxv0qqJAGSXbS4ErUpGgTGD0YjLYzL+PTPPR2NCIMG3JCBI95To4EkVepBwcKi0oj7+NYZzjBwuhGKiusPl8klPVp4YkZ0Z2mgOiOU1Ztsn7FQeN7QnYfLI3YVQEj/dpnIZ5ytPhO2nS6zu910w3pj4C8HEejHLQGpQBGXHIPVzGt+ZXqYucv71HigxN/7nSQJSRLi/YQqHQ8I7heLJdcG8X3NuOe9vxbDziblzDgeJeTuCvd2T6vIGmcYGIx7WXYv/NnIPi+jTgkECOa1B8HCgVo/XLdYmUqKXeKTBOfpo+3P/mRT2RoLXbBUs560BVTiKjoOSsUCYHdepqEyQLW73PayPd+pfw5zVfb3aE5UZ4SB6zHdi7l2aVR+6Kr5cAlsGy8A5Z3ZDeYTQxggwIgErZ8Jad/Of1/VDGVkz+DXB3bbx5AJDhS8uQv/feFJf0ZNvGppFRKSbKMPQQMd+J3jTDt73sr2+YHiL1jGxoP3bWfIu6cBJ6zwLfENGM3LCMaGgudgAYqq7yzJ0rdcR1SoW8gA/kOpI82YAaFY7mo1sAJMjj2JkOIJgh+GTlD1Bpg0M061IprNUcKP2S6SIpbbfl34pmtT4y+mx2T63IVnlsIuemAoxqpQncT9g2c5oOGI8hJHZFlIamvBgrUfjvnL8tUw87DRAM7iGP2xm4bjXns0U+BEboGRIIDhTIspL/4GbVvWRsRq0NOTU0OFwnx2qwFA1N4Nqb8XHjsZ270hOUheQSsKpwqciZqI7LnVVgtR6MeIU+SAOFdo/cA+KA5ZypCV5+ZkkptdSv5ONsIu7r35kqUpSU68KmgrPSw/Gd3I9sBLe3702Do4AyuTycqMeXR/zxw9v4g8sHeDYeAQC/d/4W/vjhbZwfDhgPLfrMUubGjepkdhYSABCvTKD23KaZhjvXVu0hnLLhVRFF/h6FGQGM5oGpVD7bcTxnrxM6gIz8tHQQI2C+RaPNZZ1bO4J4wb7WtaZ8h7kh+2CZPu8UQPeKKF0JsF5NCX9V19cpoddxpbLqDbqAUnyUMGtcDYapyUPR2R2tJNMNMItNMjN/qjB6GiwSC0kcU58HBxjzXUK13jZ0F5Z8Pnu16LCsNKrI1yBwACpCwFSO2OkwEVVZggtUZUg1mGoGXfHhvEXruWCNI6PIRksDxVyvioqGZWRDMykgGu4W0mYUhq3/acwJGAUSbxQ9lQ/70egVWFKaBl5l5lROF1rNUnY6G4lVWLuFXiNo2Qii+ANAZe8Es3nqNk/eFaEzx8uDERc+A+fLQ5epfD3PFJo8Abp5fjiEYcfBMU47Dscdcx+4PoYyZDv/BZxzLhpRdXgaE0YCkzjqo8DhEoqnoUnDouh3i8HyO3w/dk2Nii4o7aPqEgLTDKfTqBqg6IShUm37fbwjZjbJa8ZQ8keS+d5kPMHNrohk7S+09zBvazm5NcilgiJP2xl16B5lp2MchvkFrFzz0w19GFkruZUs8bslp7ZnhI/ppj0bzLF6KOdFoCXlk9EOH5FSrWqllMs90jg9ujc/P+J3P/oAp/GX8ftPP8CGid978QF+5yffwvz8iMPkHoL4UB00Mv2iqAhq/3qu5+FFgXOmcOMAUcDN4HSEhiuCQjn2Q+g9nKZ4IjsLG1IX83gWNjqUTFNOR5R5M0XIvdfnhyBGpGh3+JbE7iT/Ri8lACfHfkfd3oSB+5slzgBItA8d3gjkX18/8/XGAxbm1nspIXEKlYO6s1JgR8v9a9OgGmKpd0GAFQyvhmjN0KmT49WA3pMklXEQ06DICkOeTA3x5E5Mw6CS8hJwbiw1YNqaUdZmcilAeOMM0MC6FWcijbKMkKH4Gh5eO8OqQQ5LrygzDlBZcPFw/OjZjK2MQCkBKLQvjzhLrJlq4DxiWvR2ybNLSNLsHJhOzOwRHwGhY8wDm6XBkmfDufZcVwK1HqHJudtH3b83/ZI8JfhxIMaLMrT8ngCGuTqIcq1UuZLvR24LlXmk1II7gz4WfZ6CH/O/70MkaOlJq1QFPdr+DBKoNXeM3LSmWIpo3ADVasAYqbT9fgoAxAnPVp2KmcbsCtnrmZp7Gct4cHwnDZrm3WUgLMGWSIyXbJ7XKr+WVEy2BWCkQ5wQrX8ZmN7wjl18FdVPD2W/y/TxFapg6qA9GoxhiSjBwukZjzc8EhFFSw4ZweK5XUx7hTfuwCHebTLKlUC8R+CU4nXojC0nCOrL0fQAMjXm54GPfvAO/tOHE377ybewDcfHnz3B5eN7bJ9z8PXuvteaKurVU1MEe4h/61RwgUUqPVOLCM7nuEYxATrA3+u7FeWo0uxxdRHhQQA8Uz94rMM8ZrUd5wAEhRPjcaAfoirZyL2rVDjvTyDCNUXtJ4y+L9uYc84Z/fnKL9q+n7PrjQcsvR6eRmJSSmcTIEAkTR1CeADMKtdJI+pk0HukZ/ZMB3HzScGyAkYlezUW5rh51Ly89QF1lCRfZOF8HGn0wiCwsyy9hvCyUrMZgoSYzcHI5xH/gaSuVpHRlYiMBZVqz9+PIC8zXDqzasquZez6ZtbZLXx/5pSTbCnycZbIqkEcQintmQIY51Lo/Rm3eW4zBDmO5eFAlDyO4iIxzTAurnkRoQ8FiMhVYgTEDxEaFsgj96YdmulHhz/ZgcsIZco+Ns0wVPSg1pvj4rjNiixIgHR9cnN69jHScyNb4Ns11n3iCJym0lkRYSiORkVN6p0jRRGWzE9x5EIcBri2v59sG39wbLNSH3oXnYz+Km+Ha6QIodYt+5tkHwoSQVkFc8h+P9hrX3PNWd3HqOi4AHumQya8OF0pDIp+5D9G7sE4umDdA4wg9pYETEHoZpZ797GB3FGAiYRcu0bfDaXjGqE3+vZkdADp/W8lMzF/qAhnzhkBf/BsCkz6kQDJgWPsHQaWxWWpKVCaeCk7ThKwDjn1BBjPN5xfPMPj6YmMK8876/PH4wnI15qn3LItLUvd6Tkuqupy/PJ+hT30tzp6z3ieThpve5KAj44mK3y6vmMEvCLEplRllEu34xAcIud3gO0Hj/YVw2FuSmWTM8YWG9EawiQDPBpDRGx2FP85BQ2v83od2O+f/ZIWRfFJ2KgsBY+b0jeoqsL752nAaaTVnM3Fv5BXnRt1ZAM5z41cBtzTIFBZhXLm95YyQxIVsyGdjLSUvav0s/e34He5qefJlzwrvTNqCnlzN8Sz6A3gyg/r/I/0kJZqlFYqqPdIAKRGTxx3U1RcB0UdboxaPQDy5NUwi9U69LQBRafUbyZBVp15RLBQoE/z1sYTYND0TJ2c2+Wq/3Paq/NzjJSMPbnKG1t6Z3itUbxzmye+V967RzkoRiw5Nkf1BZKcRhOq8TBgnx1gL7eoBmLJaL4P5V6N7JIfFBEfgOW3a/feHHuW0y6AMfeAp9z1OVnSIpS7WT0oPNN3BM8FKn2RZaZi5p0X38AJfFLoKA97ldQzEsf93JuELdEWymKuSXd0Sje4SOm82JKdEUQadhG2CU624iQo8zixNJ+r9G2TSe4rphhmGdUixldERQ6ZlVyRnHtr+JnqVlFBAkemPTRH5kXkvwLby+hKOx4GxstRhzNSF84qGYZX+lZ8ppTXDhC2c77jrV5gZSW/z/WhTA1UygX5neHaNyT2+oDSkZ0iMK5riroihkU25rM7l4bPWoix+TupCaYiZ+kbRcn4Xa97SU9J3+H1XP4l/HnN15sNWAAwHKqQJ72l3AS1KdfZHKkAKeBSCgI6Fcqjp6Tccj6TqZJoZpSfZepjq34hQBppKxDEdBIA5ch7ygco/WyAyFr8OYVDLehbrlaH9aVxVKOt3KTziUenWnYgXRS6tw0HhZDl1WU0ia26kWMTNwXxHBmObC61pBfae+s96bUC4oIUcKzvqjPrzLG11BlvZpnL11zkmCoU4/qnzXZ4W3JtCOQEarvxbkbP+u7g/EleIEXM95r3s2QhjXbnipTcNhkagJ9KHjrXgAZzZBSvjEfJTowrvq/zUgwCytujVe+cmQCbYXaCRoIZrQlqb3HdUj56DxGmoXo1nMACAUYCt6VZomSt6K822Trd1lB97heCZc+xAKkL2u8ZBRgNBAskEeykFz4bMGBUYLIhWzc+1AesKmGvlQ7eB1RyviWpc80htjVlqwAvHVKpBP4cAnbCcDLCrlJ4DtOYEm7PEfBgw7hDcci03/KzambY0m3m0Dk8nqlcN+gg11gzKHUSVVlQ5VMAzZRFb5/nlDRAQxDJ/cBeVUrpoc4SW0Cet/Vjuorp/ox028XyFGuryGjuezVJdNNz5QwhHQMOvo1vOTKFgBgQeO+cPDnAX/GVGO0L//O6rzcbsFD5MWdKwaSibr08LI22sXIlLVbPD2sjpuD2EDEAMKzbj2QPomyWKXKjdfa4IxQ3uRSZTy+vqcbP6ABL6lS+1zcBeRXcNc1IijxGD4GVGClJvgHz6QTevmC8dQGe7Njf2pX6GOcyrooiEcRYzYumoxEbVXra9bFDYXWGTgmqShmUcuFZHmivV5EdXxQKm9hxrFSI1YHSNcbK6dfadaMzD2m4qUDUzZiGk2vlBVYvhv084I9bGKmLlQcrUFN9N+jxUemzVJ1zA0DcChp2GfS9GXOELExyJzTvdUbQuBqK0Brj4HlJfEemPMW/yKFvL61AR2o13QfNsOcEMrXHeZqK3tT8c54p30rH5FxprRmt6DKdzoLK0HfEu22oKo9rm3fNf/IYUIaDILYiQV4RPEbPGE0cBVwB1HEMN5wVEZ1TLiI8hJJRGiyvdw8AU0R5RUZHpfNoZBnBHAkcx4MtY9Wc5rorMsdpbwaYY+Y5OExl9PYAvQ8Nz57iVf12XOvTwR4dhBhz3ZIdltXrCG3cnBc6aa01gEqm+XOmJts7Ccy16CY7OMdhj6h9k/IjDkq7x1raXt/hWsl5ogd5a519/btHmwladIgjdQCBTE+Bf339TNcbDVgUOm/CMh4p1LVBWfbXQ8KqFGD/EksFOC3KG5O0pWoA0AhbefSJ8OnhVgqjDtJacuNMdcgrco19ZiWFD6gTp9h+er8CUPQyFVZtF5V8LzWcR8DvdxzeOePdd1/g/W88x9N3HmBPdp20yhdVwywU4Ihf5M1535zXUtJVYgkkUBgN7ORGF6GToDGBz37nBT75Lmw6lrmIcSlWvQ4tzHGKlJjvzLA1nymSY8rEIOAadQJyP+Csc4/igaZ+MNvDAB636CysyBHnnu9f7yluB0FNGilLmV3SFCgj1Kue4qYuUGyOKmttKShvBlv9Tgi+mryQy9ABhueZVfOEFrWq9xlnKG2kdx4EQHV/nYXUAAVD8npP/b+LP8R/s5RdERSvuSG/Z2SzQBlcR+NiFPhe04Qcf71TB2QVEciGkNwTk+AXAvIiLieHRfy4FuYX6PEANr3y65Xzq3KP0GHRfA2Xbpp3LWJ5qXdhibZOYhcwDPCldNXRMZ/O4F9ZRjlbpKKnvunQCZyRS5JOQelXV5Q7wFBFE+hI8r0VWZvlGHDeGZHtMqd+KlzSvT2zOTedxK/I+Sy94Kh96eQOKfUT++D2hGcCsuAtNX2ezq30RNcROe+zOSRG2UxA58cEglbVhK/l8i/hz2u+3mjA4hSyvEQISyPK0GnnA3SPU4orhd48NuzIY9+l8BjhoGdF45PfZRMoVSjQ0/ASXOpQdcptG9f2OkcjjHdTOvybaR4CicZZoDLl//shFRyjEkTwB8eTp4/45lvP8cHT53jn6QO20y5lK76BQuzWjFoAh6HKkxiPPPY0vr1SY/Kk21Qu9JjcApQxpMpzZvhMNVQD1ihX8ya5FgDkbTtqXJqXBEXxQZQctD+a85QhrdFWiq8OB6x7dTDaq0tkfI4FqFhtpTRP8o4WoJfGnWvQjWqFuVcgzHRnRYwamAQK9BI4DJe8yPvM39keEQmCSB0UyLNPkng9M9XC4xkEhJq2oFwoLecFGngvnsYr3sph3a8A1tOOec+enph175p77kfKpwtEqFqLzsdPOX6BXIQgulfkjb/TgXjXdDJSdkimV8Qjycz0rC2jiuJTcC9Rdva2dx3gycsEt+IMbaWvtN6Hese+Z3oqaL9zzLd3bG9fcHr7jPHsAr/fNT8CI0BFCyk7qe9UINAWmuvJdxgE6qzqSqBnfMfOfeK65dIpFdp4HuBrUqdT5jLqQZ0nPTVNPa3Y8To6HjdiMSMxwAIwNW/duTnWHmLEu6JNEPju+m+k46qCh4WDCEVA9ycFyL6+fvbrjQYsilSw3DMReN/IYpjfIMBC4wUcAAhMcKNt51IkCu2x/DNTDNyE6hDbDa7uF7dnDlckPj4TpdzZVZQeljZ0C58rVaS0TUtlXPk9W+ek6aBhjmEOG9EmnaXTDNsydSNy3uR5J1SoJq+NytNYxdIMC6sapHTbOJTOaO8oMq3V+9GQAQV+FHXhMmbPDhHinPPkUuZ8LyoXKRCgSLj5HfbdkRfKZ1CGrH5PkFSpHciwLCmlpvjpWXVQw9PA++nTsJZ2oZBQBjJETRAoI9a85Rh3Gg/xFSoM3QFg52eMBCu9Co5GVFFGfnVC/BmlXZhamQVwWI5PWYF6FkGePM/U4aUzZxgx6E7GqD+8xHNhOjjXva+5Ii5bgTeS7Jc55t4hX4JrR1mlTFMWWoptMKWmai3OVZs74t98DudymdxcG/KPVCY+2npbGXGbLX01Uie09KAdJ+6fnHF/d8Hp/hqpGBLC2/OW1HLqQ6WhDpQ7iAMneR5YSN/kaVU0lrKbv88zuXRWD1+/65BZ83I7NVuLfqjzMcfcIrB+RFX1MAprBXQUSWIbA8oOgH7YZteHRaIvGaPumUwj9WklV5Dv5dBRMa/jMvcv/M/rvt5owLIg8CR9RQ8QyAC/YuC9wITuw7RQeq6VIsr0zCE2Pu+piEKvYGEJ8dGVlqBiVRUDf9zSOeR26BC8WbiqpzfUth8IBZR8ECq8Dmb0GZImCa4uhhfP7/Hjz5/hR8/fwicvnuD6cATbZS9KejelOHixVJnRIwIHGkl6UFyb8C75opDRANAUePs754gpraoW8MWY6l2bcRfYaiF5pYEyn6zqIhkYqHsoDTj5Rb1Cgd6iQvMCYyuZeYl05FxQ+bKRlUiDTNlRftr3/Fg/E8+ny+dyb9N4lCNvBkjpju6Z06Cm1+4ZPaJClWFv+4LKe78P40nSulJKHNPmIu4ulUSMwCVY0btZG6PWnfczRSa17j3fz7WUk1DvpDnu89tkzbxH0krukMRTko3ZF6SXwwvItrGoOo+ptRYx6waczd/4PkvKNV+UEZhQaKtOgldkgJ2FBd4ICEnIvkBAS4BnN+zZbGhmryg3X4w498Y8VYqWhthRa9WdAx81Pd1p6uNeUr1cQvJpxprGAZ/jDWw5596lU6jTJYcEf4OKpNQP155cPe3r2dam2xSCXkZYGjjsx2ooUkP7YuWQKm3WI9dNj/e99ZVe/iX9ec3Xm9+HZULldoONeAgEDIiulSbjA5TSh4U3xyqRkDSvDXCcmD4iNHt4NQrTvWxtqtaZlqkc63n/ROduCO8mFbg4LLN5qAkYxjWN2ESdgkoCm6UBGBXWXc4doZG8GjAG9k+O+DTfYz5uwHlkCWe8DDfrYHqtX9xsAmkICckvsVcLDxmTXuHGbyFR2wEcY7Mf2plNUu45D9MayGhRBwAiTKPPVwc2G0SEZBStDl6rZzEs74AUXffag4QIKU15lICiEAQwXK+ZlTTDIf6BDDztjwMOg80eZYnDKh1W5eWMALoViAD0HpyXeYQAiU1g9nsA6tECoLq3ToPlWN0Q3VC90iEysJTbzeFbCQZbxsfa5dxcUIqfa04Z9sZzsjb3Wx5y2WRkHrIXCnlfCbLIS0CLTPWTu9ku3nM+Bboy/RNAwEHyMucBCTj2Jzledk9lNI/8mIxyKBXQgBfnsIM0zoVUSwLocQXmKX+2lyzz3DFGH7pjVqmpkk+lVaiHUM9khQ62dFzOA48vjrgcDpi7xUGq7CPEDs3cPwNqdKeS4ARhijjfOEp0ADpnzND1ccwrI1ULWM01UqfZa+0ZoOYWLeKmSkYv4ATD0vG4hLU9EzVnjPpN6jZW1Qn0uyoTy+Gl8+bLO8QXi7ckYORNBnNclOnxRocF/sW63njA0j08t+STMMdMwypQk+Ht3HnjHOFqGdrMqfvJgbcuOBwn9suAXwcmgO3FEEiAeWw8MuJZ+SNjHlrSstnb9pj5VORnGMo/cXOUNzceTcfK94Ps4l0qBOpsJ00uQA/h5rM6MTUas41oOIY0jo+xW1Rqe62Kks5/kBJbKgWsQBHz7ptjdBJfhqWZ1mCzMPF9Zo2Xngk9x0kOUjOcvUdDr1ZQBGdPYySDWSkTRc7uPPkHxRcxKlMRC4tTQU2rTrteRpvVBd7mygcjGNGYDQNwkPeRc0DuydUCtLhLwav5FmVYXpgHYIWVl945GY3UGhVH5Eih+CcMw6dSfyV3f0h5fbCq+Ely537nOkFYvBtnpR2BXVWCWQO9SitxHRrJm5Z8PFavjTA02SCOkRUeAjqBuZnuZXsAQ5bAL3uTqb2cS8+9R70xEowqKkpgfIjxmBffjSlKGtPBvUbA4LVeLAfe7yH+BfcK52Mnd0Kcm/59q/Fk5M7TURmMuCD0wRyzOEgkKI9wgKbXnG8vDeOy4epQR2fujR5A6tFWrRtQDgtB94yNxw7HivhYRSqNoM3LYYg9EnrMZ4639YbBRmDu9dwUcR+oo0gmq/CKoC2ZmJRR01zs95VuVDqPjyEYSaAbem6A1aJqFpdzIIA4c++2aAoBnfo8JckXfR6bTl3A51d49ajuz8v1xgMWGi6hXWvnY6QC2MkB2EO4LMmktyk3H0EE3N654P33Pse79w+47Bs+fPEEn823wiO54U5QoQPQJgLQyuxC2KuaA9pYbBznG0Lg+XN65GkElU/O26u1OHIss5TEuCBuREU4is0vku9lFKA4tHuhgM7SHbdVBMQvY1OyBwO/rhA8lXJOE08WtrMBZvX+oxSL5g9UzJXK4sF5ul9Go+bTHMus74ZxpoFHdFJNr6l4Gw5sYTB9iwibA9CZRuyPMlAHOFIRtbFGmq/JAomPm0e3ZBlrb2CHk+WFSlJuO/lO6UB6pnoIZDg6+bX4HPmsA2B7RTPUIffaPOCMNl1PiLOJWFHEnkOssGqEQW/rL+N0F8Dr/8fev8Tatm1ZYlDrY679OffzPpEvMyIyItNhO9OptLHAImUhgYSEQXLFMgWQTIlCSiEKCAlXMCWXkZBcAQmlZARUDMhCwpYsgSywqSBjY2zwL+0gnJmR6cyM9yLife695+y91xydwuit9TbWeXa8yHfvOSeCM6Vz7zl7rzXnmGP00XvrrX/GOAHcYzvlPMfyunmgJ2WB75D1jupDRAq9KteYC9P5OAXYYWMab8tx2H5ae4rrwA/UvLNhGYHwXQPHPFIH7CkcRUN1QGeMbYwoK2S4F1HM6aXHnLWHF3DsdXZWQiE6AGLW+P2R6np8Pk4ZxqQOKJZkklGiA8dE4jejS7FPkyVLPic44h4/LA9nz/NY7DOi9s2dtRQoAKByb3kRS26vjwUEKdoO2GjUYf+vv5P5CUtMl0NiITK/poVZxZKwHxSPArgk8tMT4+5EBDBfX9ZRGq8tuZzPTHsl6fOSmcp5Wjq51iqw+jYl7VCN4w4fr6/x+kNBVqlbaEA19sBSFJ63MB+m+lfADNyWAHusSppf/fyH+LPf+j7+7Le/j1/8/AtcPn3BFlBnrDzR7akJNtBGdDsQkX+k/ELfpTervAQmuVVzN3muc4+PRt3PPVmnI2EKgB6vlLFRo+HjC2wNtrS5yHDU5lQoxpJRRctSKTDPpKoi2pCl7qMSc74LLFzjVQs1FjWcerF5xVoHJhyqoR77J6AVTFS/imBZbIXuuoNpV3bQwJAyZ2jE522xHG1sxIJxnqLlQ+EJgqeSAxqredcAUHJayQNbWKDmokuG0dR7sVUdHkidFi5mi5U/9R68f9bnxaJcGjDSMG8lm2Yc6FXLo+S9gW7Ehv65gFi9sEJco4VJ47B9lEd248cokEF2BZAH7HPA/BQ91MbN3Boa3fFCmY/t/TT22vO871bJNrlHuTdahm4N8NrDPSblwdi+3fK37DFiRL2clw4O3Uzbg5iLuaMsYAZwxrav+D3uBwBKOs7A1kzPhVT5dBeIyfN2BAyXKtwSras9n9AZas85lHN32v8vCQdOnt/WN6x5veQ2Bk+2lz4MID858fkvfIk//Uu/iz/zy9/H9375RxifvUi+2EGXa3U+VMM8AhE2mGTytsmL51AxF055Q+/LyuY38Oc9Xx82w8K9Pqn414+3pMsAdJLpc7ztaSW9aXrBibvjxONxxafHE17GgVeXFxyXE+dI4KhTPh8hhL7uU0OiR173WkYkNxYgBVxshZmAWeyIcmKey7PJjhvzzERLhNA/m3KHhGgDHNcAqFRowCw0oN4pVXnF+VXlAZ2kYg1osKPeJ5kvxPj34BCrRNNCCaS4PAaOWZ6IwjjLkurk6dzBEcEYqyd0rgsVPaIpWN6/vCnA1mSklKnOpDEjkRWKYUUYQFYjSxFaHsrZ8sbQDJ+VA/K0gDZQOVbFw8rbAM4jMK71oVofLxlHoM41oRKPTgKdsc5PAjAZIh3rfCRVM1Tn1eB4a16jvs9cHe/sy4ve5nxMhdxYVcXKESZs0ngNyjHp/RngiZ9kds6HMkY16UteAUTotGeM3j9xrtytNaiu0OFhh+tslzTQF9qbfZgiNLcMdSrvy/bQAk+J8bI2CsPAgLFhw+Sp9okbVV4Ef5HAyc7cZCGKieGRHzp/puZRY53RegL9Dp5Po0ovlgkzVwf9OQGhtPeF/X/0nLALr/brqMZs/D5LnqPZIbI0QO0rypbCItF6LICMEOhR6/3kPJdMSgH0c8lQRe05htg9admBHZ2V+VhhxvvE47ee8Gvf/T382qe/g7s48Tcev4PrOfDDry6I59GOWEBngFHGFrinsrC9QofIdFCztxa2fA/XH8WQ0IfNsKQJIdqwbhnvowUapkBmJXwqUbNCN3gZeHq54IvrA373+VP86OUVvny5x3ld1oBeoJQ0IJCgze8oWwqiy9c8MZQbgF5dH3oGGdf1fbSHSCV1aXQvJsDH5BS7Z9CDinxRnTrpulC/FBcpUypV67uh8ZPpKRp0nFDnWfZZkRdV4Gq8tNIh8+PVR/qsUcvMJelcAgNPZhBE01peE5NRvaSxWS8aumZcAIgy9/uL0YndUFCmZKzqOWQotE78DI0g5/NqQCj8++uZnu/DUBwZt+UarwEeTzRErdC9UZ1CBdVbB5HqlRPZoUbv8KqeKAZa6OluLBXfe/R9WKG2AcREhahSyeZb1R7fKWmkIcYoQLAInQju8nHbT4f3ANc2+vOcY80pG7qh13wbVxZrRkBTDpKA/rVzMIaVuTqbIueBcunVIZFibfS9MnKekCt9QIDArxO025jcidvyxazMfPssB8YxUqfM2OSonT37Hn9nOkyHO1LHXtvBkbPJPKcBlcQvYNRhUtcfnYTeY6IzReYvjxu2iHPKubKGdePagPnu7orv3H+FP3H/E/yJ+5/ge/df4tOHZ+BuyqFRvlhAJcmqnvSpOHIBcKt4cv0axhC+rxyWP4rXB8+wdIgDomDjjEpORCPsu4k4R/cFqUsn9BbDgmfgqx8/4q8c38XvPn6CMwM//uoR1zeXOsemc19mxdkbudcYso0IcwA05Gtg8HeW6ZYDosed7ViWBG3saIQi+3RkKvkDgHUVPend2z0UMnkanWR88Fm3c2ueDLB5SzkKT1QeApXVeZ8VsorNsNOr7lLZtoDeqVR9XOr9PXY/XtBhGVMEPAdFlQO8NRWoV3TMZiU4cNK8Arace2RXhOgk7tC9teY1VTyFleNSCO3E/p1oA8t7zEuqY6482CRwWkmkAqaUM4YU0JR8x24YJm1N7VUyAmJlhNXld1ABA9Bpzj3X3nK9G7Bhz0W4AYVZlTgCWWT17hLxXFNaSY3e70gJzfX4ySRf5o2g1svLo2sttvDtWEzblEFP6Qnmv3jCOs+x0ruMekbl9WQUOTRN78xONmZol0wZmw7Gtam18D3NtaGDUjkrOiKBskv9cwATieP2SALpumVcmfANoHNiEnsXY/Rzl3xkJ7kXKNJ+LIYLJXNLxmqe6BBGzbczChZ69vCH58swV21csTlifJ8+XqFCMRfu4ZAsrQolAgsoPCsAaiFDZ3W5T6/XA19d7/Gj6yt8cjzj9XmH5/MQQBIzRqfvJm8KEyshut6Npzf7MxoMt17y4w/e6fWeHvtNXh82YKlLlJvFPak46O37+TD6TCl8IXhukC8v+GK8wvV64HI5cRwTx+MV5+PA8ZrS3uiZ54sAvUkA/1lIuXe1i+lT0qoAmGOhc4DqZx4SwEE6e8qoxwwkWBHTMVcqY3lCVCL0WpMGf59PVy5b51/zfnWQmYVVdA4SqHx7jjmGaUmWW0JvdDXEnmhYimF0zD6ZeFthGlUvXFpZik6mp2brwTmAyYKHgcYzcK2kXo5tq5jgS5Jt4uZneWyFHVRuK2+159cZPz8IMOaa8/nYGkWGo2QbLIucfU+WvWu+a504p86+eX5LhzIYKoTal2/hNL52cq5aYa+S5pKXF1ZmdFhvld6jOhKH1nWF7IJDWaCN5cM1X7yPh1Vhv183q99nqHSdYHXer6TqBrmUxSWvJ4Ec0AY+Wk4QK1F47ZcKBXw15Oy8dXhd4TjPP+Jmywsw3qDb8lfVmZJ5L8DxBhW+KfBT5caRWJWGA+uk7tPGSrkg8I6VTH79fJZMrT0cJV9KQOd3q2Jn5ZX0XOVdChASnE8B1TUv46kFxOU7j1T/qnM0WwZgHStwZ3vy2uBsC9GpJUKFPX2t0OCSuYtBQDv7HZQ/IlY0NR8K2Z3Amy8e8NdefRdvzjt8cnnGb3/1OX74k1eI14fki8nOYnu45DWGvCtZZ+k99zxzKUvnIdYYxhWYW0z84/XzXB82YDEvR8jX8kp4No+M4CV10J1q669NN8csL/BI3D9e8ad/4ffwpz79IR7GFX/9q+/gNx6/hy//9qc4vjjgh/Ax2z8vsAqTLqeddx1miQQm4+ilnGVQqlW7l+3Nh9lHCt2bF16GKSxGmxFthF8CeTc7kbEMr8+JfubJbzMWO0VDXHOTAhXovAS+Ky959aVkX5ZS5amuAMe6vOn+HiB6NCHPRAm5ic5JKaA0Tp49tLyapPdVvTOa4m6wFi8N4BhDVtMsAlfmzNyhaX1jvLx6QwndAHiWDuVynMA8Vk+V+VBlp/V+x1N5sJ5wGEA+rNJpEOASQNf5PsqLYqhkdFIqmSOdOlugUDH3ZBg0t6Zoiw1LhU+3+wXWmGlMRxtGto/3vjw60HG23EvmeWo3wR2ZNjMk3U2051cGcgBRJx3PuxX+QrEXLUNQYuhiORJjA7Q0tC378QLgsW6hiqqm/tUA7QSwGdPcwI0AvRLCIcZ1vAQys0Fega3jaRkr7yZMg82cEybMdr+R7nMDoFmPhMA/QcK8kckEP1trXnuF88f9zpCh92QB18EcMwDVrXi9V1wB3NnYtqT2Cis/UzZ6vkf10QGWo5DR44ozquUAb1ryUTljapwXa32c0aZTQ7CuMGKufcScmCzwMF8f+MEPFkg5jsTz0wXzy8uWN0PdLjmoMa179lwxMVhfKrCXA6uthhgkqJ/QO72yl/6P0vVhAxYpisTWNXQWbrnN4TAmoKnsMqD0vi7A+OwZf++f+AH+q9/7j/DnH/8GHuMFv/npn8C/cvlz+Def/hTOp1dyDXgCtLM2ZDfogSn/okJF9JaANszA6tmA0YwLDUd4rT/vh1JIlpSGI1cvjmsDGnr6nSBWny2vI2oD8nnLW4pmKtBeEJViVpn1WwIfWcoGMkqJtS6rtHM3hkrKvJgCcIAwmz0iPT7rYMot/j8LzPHAvVLU8pBnj49hlngJVViTWSGtrYTlmm8CNc+podEhGqDyokOt3j41/jhDp8dOo5L5jgtIGhAaTLIsQIsutVap82QCclW3nKu3R0zIcOaxeqfMu8TxusNhx3N06TW9QBQQPJZRHFU15UaKwJ6JtTT+44RClOxfw8qqrDWI6sdDBwGAKHE2HON6sR9QlIGazAeqsTJ8IHYkIEYuziUv50MiZ5VRs09JNaM7Hxu4Mjkc1dZAYbgzMGI0qLK9PO+xGfOYth/JhoipzM1pYTgyh7GbNLp2T4Y/bXtVI7f6vh+eSKNMEFdMp0IiYx+rgESWU4Qaj61p70mCNnOIat9kpBKf5z2UKJy3z6utonDhlQmnxqQepbeZv0JgLGakgYDa8cvvoSNRPZ/mAgbzofZXtnPH8Exc+6w0jgk/vsM17vBCp02sZ4ixZTiHYwYBra2Th8g6DzEaNJedOB/d4/t4/bzX+P0/8h6vaIUrar02m+Ku1z6afcvL4KY0j5knaN4/XvH3fPY7+M+/+mv4Lzz8Nv7B+9/DP/j4W/gzn34fn3/2ehk8MzhAA5Yta3/2+MKe5+eAyEhPbFS4jCTf5+ZsF9irrHGgclsAV+BiSTwURkPlq1sGPoA2zExMhSkaU64JtDcv8Nfvk1GGTNmM9kzuU3rIldvg764KnGK+gg+sz0o5HmVA72xSotdAJc6jf62qJ7IqBLBMKq7hkYKWseQaohW8Kk3EtpQCZ1+WkjsBRuUV9PQzdCSZqXXberdoneo9Rh8DoUqQg6wLwDbznlipxMeAACTDH2RuyB6wkaHo+TKQPFVbXiSd7DIEOlSRJe0Mb9BDNxnWa3nvjsMMFY2JhSzJ+qk5GQ0Cj4EA9zUEFrleyOrLRDm447gKrHxy4uEXXuPhu28wPn/BfJxq7sjvI1Kyz7HRi6fz4owimUKWCC+GI0wvRLOktZ46MNFKaSlTSi414HCbj7Drn2xDW4bSw3Dc5wJdxijezr0SrYECf0vOtlwZJpOfxjrw/ZW/t8Y2BT44mVAem9aW61v7spOBoWT/7d1ZBSqgvb+H5xy+lbtXoHB8VeF/Tl9AFYi386w8p9LV08P5wKYLW4Yg4LLJ9ru88hv4856vDxuw0OCjBVeG2AyteyBK0hr9vU7AXJ8/jokRE3dxxWMEHmPgLk48jheMAGD5J/TGj+fYETSg/7tiUXgKrSC6godayYBCVRSx0sWVU5bA6+/Z3w1TcjROCCjHRAdGoseTRze4kxKefRaKDDc9FDSAcWMrQ0EA57S9gSDRqFHj5b0Yg2ZohFflBKgfA+l3VwQZ6jGy3gl7XksYCDm6WRrBJgEYDSYra7zXDD8vwBn2/dHenz5fISrN47Tf/ZQcESXW1hgFvK7oRGsB5v4e/00WTuvpIPBi/54rPCXWpwxxzFDLetIhvs48CXerjnBZKwDryYoCkBW2dfmUtzpsbkomVrfZ9WydcExW06vtmC9AQGl7hH+4Nz3vRct5AHk38fD5E777+Vf4E9/+At/61muM6r+0J5+GfB+eyBy+3vYOs/bL2qshY6q9QgDJvkPXDumtJNr6nFWooe7F86nE+FWoQ/MNKKcJ6Hvxcx1Gh0DWuNp6sJpHjI4BTddtkeU4ENiVwY7SXVsivelDEJgUSHtZ+TsOVhQe4zv5Ggf6TKtsfdOnX0fvLzoXR2I+TDUv3JxGzSOaUaOzy3W9ARe+Ryhb7F+FhI6RiAo1cs4cdL2PFBZth6/5z/u+PmzAAojaizTDhP47FfU6xdV+t230thmRgTdv7vC33nwLf+X5j+M3Xx7xm9cL/srL9/Bbb76LL99Y33R6+yAoKIV47db665do5cgQVC5aWxuWHsPZ41qJWzcJhzexVIWIuKGPLlOVUUsUTdseOZPrRHMDyoMg8OmeI31RYfQPoDBI1rN4HsgWYzZWSKGXSClylogzRLZt4mJUeFYNABk8KjLwf1Hvb0ZDbFUpLhpfoEFEgw8r6X3q9RMgHmb8yWAlgWC2PDGnxL3KuhcTwPVuTDw2xcwD97wEfHm/DIuEjA8Tdqk8xcJxSJXXsBRu4HhqsECmKSoXgbLCcIkYKdLhgBS4h7Y2AFWgMIsNWB8ucMMKJGc6CWYAlX5yUea9yULtccqJDi8k4zb6c+3lQ/fiFWwUSaBJFutIjJF4vFzx2f0THu6uCIZc9J4GcPmezmrVHIyn0L0jzbBC9hVIMnQd6gLnl/tyFEsZ1pOEuWt2cCLfifsra47kCPhVcpp3feBf1ObVMQuJDp9QLxQrRBC/Ab4LdCYRmUGFq0pW5kM964wNpOYB9WdaeUXrvRRGs6nvsnV+pr7vZdAcc4n5Cr0kzk8n8rMTeJibfhILZnucMuYgif2ZpHMoCyNXErxVUa5B7n/3HDDp+PPmcx+v7YqIvyci/tmI+Od/ls9/8ICl8y+gChI2r3KmoA1NNhMDepamFE/g/PE9/qPf+eP4V3/49+Ff/uIfwL/8xT+Af+VHfx7/9g9+Ba9/+IjxZujZHvKh4pp3qwa/D20rz8e7GxLi3iByGVNH3y7QWfkcVBgOiqINk3p6sIkdWZFSQiuptA0b7yHPxnoa2KNl2LdTqUkJcwPS3pzYDXzdazPYMKpU69OKic8db/qdtclnbB7MeIYpoRqvHXvv1CXXRQe/FZjhFefKc6BCJxpTbsZoILIYsKzQY2xsxO3aCVS6QncEWHOosEpSWKDTd+Xxc50CK7H3pHFkfkArSaANorzjY3+mDJn1AxGLlfY90uAG0ilrZO4UetiUdvbPAs1EUH6KVVNDLWOqtlDaQB/XoDwL2zs9ZWAIioAsaag9IZWfuw5cXw58+XyPHz894ullHRAoUISab89lMhCF7Lk7X6339M7bYgFu1poOTmod+C7R7zgbkGCk2ILtxF8Cd+YacViXnveNIfAeIba2fb/1HQJTMXexr4evE4sF1D4iDbid0SzDxT4PWzcyNrXP4iwmyYGLOYnINccCiN5HarQ+no8Tx+cvePz8CcerK3DJvSsv5VuyAulUL4NmnymUvqce4QcERmuczgzpKoZRzQEt/+WdXplf/5+f4YqI/2VE/HZE/Ds3P/9HI+IvR8RvRMQ/tYaYv5mZf/FnfaUPO+kWUNwepReEzssbXSECq+4Y6GQ287LGFZgPy5jODPzwb3+O/8fT34X/4NNfxIjEF28e8OUPPsH44jBNsAQ4rpUwa1KpuHlR7dqApWPc42fVixQBUnkbANS/YlzNWGA9jyGacUWfM+TKn+OxjUTlrl4eZywPB7vt3PJoGOLJ3oiB9ftVEYNmtGpscQ15OKrWsmZVOnywpm7FeUPGHOhBq+qDm7xyImYBF3WinUCOjp3ToKns9iZceKuQgFaOm/I5+h9uDPzMpzTF5MrKjal7Vuv924ALXFl1FAey3idKlmJrv45LruqLAZ1wPF5CYEug/NLJzuM5TPFidd8NAzlOfxdwibHjD8lFAdDxshJdCRAZbks3bJFdDk8PvuSq+9IsZoXGnE5IAso5uDXsYh6rn80mi2GyOVCHRJoBJ6B7Drx8dYcf4hPESFyfD+RXl1VCbOHOxWpBrNBtWIyyEBNVuVJ7/KXCredak6PyQaYqg3JjDiMsQd0AvPJazCiveS5ggV5zTCBQrBvBiIO1AppBpo4gjIBpzGYIOYfZf/KS6ygzM7o6hXpAR0bIwUp7Bp2LSfmxMZWMqE9WVZ+piV7pVOr181VujBMT+jtfJXG5u+I4JjKB83Ig41COlvQZ92gBZh18WVVMOhjW9GuAZe+xrZvWJzwCsMbEA1gRJjT//3P9rwD8zwD8b/iDiDgA/M8B/DcA/HUA/3pE/AuZ+e/9QW78wQOWtVHMi0FvGE8aBaB8Fj/nhUaDMXsppTcDz7/9Cb5/vALDM5evRjMjQBuI0lQqlxalmDXGKOSOVkb8eWYzDJ4o5mCKrc5LL9NT2Sp1hDacbk1EmFGsDaRnkFJn3PvGc4lSXH7eCAcx3nAO+1RlV0SIasVvIElzUfM5mfxIhRyJ+YCtuV9eeNDbXtK8edCa4wI9XmVVk60D+TivrNqpUnIcN/csALGU/fo9WMYcpZyYR1PvRyU5R7NG7C0x2fyqQjwCBVTA2QZ2ZMe7e0EoF6WEaZxOyKv3kEgCCj+SXdvWgD9DeaC3VWECatBJtC67pPbZ/TOe4q01oXFUDxF7J53gTWMkuelxr/e1abjrn7Gs/a3w0o2R0mGknJu5f16yzuTLNwde2H7/rKTlg79P5TJtDRSf4waU23qM3MCTV5ON53U6ta+tzy+yzxDjd2n0Vi5G1FwSZHY48HhTzgCPSOABlDVeHag6GxBue7XkXexZyTaK1QvKq+WO0OFa7E/d51Yvs1Kw7hUIAZmN7S3mme+jKjID+9e7lDN6PC29d76C5BScy/re9eWCiCvmuQYrlnKsk6x18OVEV7qV3I9r7dVi1Yd0+l6xyJwm6hSG6sZzKKFZzsxYMjDf0wGI7yvnJDP/bxHxazc//ocB/EZm/iYARMT/FsA/DuAPBFg++JDQpnAAKWgAlvyWe4ybMeb6vtAwF7A24ngK3P3owPHFWCGJUnZkSgYPCKyfq4W91e2PajPNhLsMLI+4vKysNutr86J6H3TMeGNFqGetsmbLz0ArzOTmkEFHK5maM4Wp6A3Wn7QSzPU8bPO3UfEcHhvDERRoHtcc8MDGLEOn0FHcfKaqoaiwaZQ9w59f478FlPh7vrfNI+emq5Syx1A09Ki53xIcuYbWEE9WxUNtuZSTWqjXgY+8CBiyug+vtagQSo2TIaXbUEWQhi5FzLi9wm00OsaK6Cwf2xucq/FStuSuy6b5bmyK5U0B4+ycDP2ZofyLLRxgGkOG+9Iy6/F7zwGS0bMw6hbC4n6oPcR9S+NIwKD8il7mfm6Nj5VnTJ7l+se51uz4cixW5SVwvGnveL2TVWZZuK1ZDq433r4YHqnxnw897/yOWreXTjmeVgj4eCI4KZ0wQ4wEe9xwrvKSOO/rgD3uR8kKtKe2kDkBGHPgTnR4JPp3HpZjqFAJ6SWrb+nSuea1K7LQxxeA65ICUZ2Lsj6rPaU9U5VekSY3KwznTCkdingJxNPA+ZM7PH15j5fXd8DTaH0I1AGH6x10CjqwJ0Fj7dHjqYsnJos6Cuio8q76efGID7Kd7cQ2CPMk5Hd25Tf0B/heRPwb9ufXf8YR/QqA37J//3UAvxIRfywi/hcA/qGI+B//fjf58BkWCiyT+zhxkYhzbIm4jJcznABgeYgAxgxkMnRU9tINPvMcuHkp2GfguJYSvHS/BQohKUexEwBwQsfLz0tiPI8NaMS1hTvODg3pyuqtwh+LqrXqJ/UkKQNJQygqdb3LYAKmeVH6WQZiJvxQQ487ix4m48S5KuYgruWBV5OmPmE3VqloGS2MbuTEpmpbXxMm45kXyD5cNOJZzMs0QNYGbyk8jpc/Zwtyz/XYgF29lBJzr7U+SIzXi4YGva6BFTKp3iMo79rnhFQyKxScpaAyRpZxSiAj9W7x3BVTx5taazbSYwO5YWCPSj/AMwa3cFUzWOu547nzBVbzvfqOyTE4tZXkuDp79nzT0DmIVpXe43qHeLFGaSqntaqV+vtQ1R1keCM6QZIGlnLmpeY+boVBavAedkMZ/LhCfV8IhAIrPKOfoebpOhadXzlCNFICDASvpYcm92NC4RvlJ4WFbmKBRZ5PQzY1gS2MmgYit15EpiLGmxCwWcnbtfcNABKszIcOuWQELq8Dp1VZKfRT+2M8V/jb9oMzVGRWxlNsx1QoJApjo5i8XUecHE+mY6PfaemRfo6ArhUkOJvN4yg8Zy5PIC+BSd1Uf8bZrA9Db3mUrnuxeWIBATpM1KeLA/MyofAOVW3tbb5DpyVQP5Teuu2U/If7+kFm/oWv62aZ+TsA/ns/6+c/aIaFKHcZDNux9M75sxnyLKgg3VMkY6A4cdDQ1/1KYykzPyB036h6fW5cLRYMNJhAjdOawRFksE5fwMoSSWHGhffr967PWyhJ549Uol1coylrJjwm5Hls6L5oUq8ecoaCZ84wj2YzDvRs3FBdzGBngyTvfaOkRAcSTyHD5fPSbg/BRTeyinon7/PiSoytuKn0dNw9UA3duu23PKxpyoUMEiBjoyRvJT5me7sTNj8pJtDj3/RMOy/AGIQDDXwA0fAMR3jYUSkcBG9mIDgPq3lZ50PRoI7nYraqhFzJlgT3N1UffP/+vAH02bK75nUCn11x+c4z7r/7BvHdZ5yfTAG1LXTqBtLmU/vaEooUxuM7MleNlWZWRs951zoYM8D8Ka+GYUI51yrOBpBLp6DBSn1murNUTA2TghV2jR4LG6Z5+TN/Lvkp4KReNBMdfiQgRRvl+ZBKjlW4McnatS5x+VXOTAEMTjGdHemoYv9WM75+pl/qfVJr0uXzBgQIXl1/sXosbgoAwDWD9q1YZMsf0R5n2NqS/sfzyncbL60XV/ftXhMAxkSicnlal7Sey9YpBobpaMQLkT22XJptrskaUVwIsn/KfL6Ly1nZr+vPz3H9DQB/yv79q/WzP9D1QQOW9l6t3wONyYt9MFIARMro1siiN7numdApyvocf29GT3H0wcz9/jwVBpM2uXmltHjf0Z6kgwBmk/vPtg669X2d/knvhWObDRBCY4V55D2XWz5MTe5GqVdCIHNajqe+h1cViLJ+7pNQ1fzJ6GOtA1o5ei7N7diW99Rj9J+pNPza92ZYYd6nwm68H6ugguFBKi8LG+rEZCvjjMppmGbAc1BZR3dNDchQcBxSjAwtEjQHZSB1vy2syZwdKmLmwbCMVqW76AZ/nnDNEl96hZdUjJ7vrDyX+jxA5ZxtZGd/VgDT+qzwHTOwui4/TLz6/A3+2He+wC9860t88tkT8Hi2jKDj9wT9zPvw8BvZyTZ6wOWNnZZOuTVZ2u7BebDwhsJdtT82sEkjYyd2e+hRh0Ny3WiARr+DWBbc/H32/KnHj3WGXWeC7Wuutg0WPlAot0ILkqOar/NxjV0hMzJNFwcOJiPMTynHzZ0hB9txIwt+GCbn1M8TG1dW+YRygtyh2w4LBXRcRC092HdnA7Taq6k1yEvls7CJG1rPTu2TqHyf1LroEEWrVKNeorxJ1wNQAzwCJrYesP43lBUBEs1PyFbxIE2GuD9e+NcB/NmI+Lsj4h7APwHgX/iD3uSDBiyiGmmUjfqm8pAHjPYScKtMTnQyJhUZS3IvtjESnTRFgS4ANEqg56VBUSPP9qbXh9YGGJab4YrQPTYhem7Mo40jk7k2ZeXPyTZUOv+CJ7EObABlM3Ce82BlulIUFsNXrs4bTnx9rMALgY4rPu+DobyS2uQ0IPOyK1SuN5/n+RPHMypBr9eQoIzJ1M5aseLg1tiuF2mF56XBe4gJ7X3ZYWxexnub78PviEkZBkzqVTOgrrwKX2aPj4ZmPnS1AegR2pqt55vMkjJPWBURGgAmQLDL78qgRBlhhnAKbG3MG6igoT1CeT2OiVd3L/js/hn3lyvGZUIHezI8KWCOBXQMUHMMkcDlq1De0LzLzuW5Yb4ImH2fc91iois/Dgd9IeBAsL+YvpY5hVhQzyVQBjqPiE3LmDju4dJRAC1tPARRHOjEBtz0f44z65lkoUpHce3FDM5QGMNLmqmntK/LmetKMtu3te91grIxXmJLax9oLHS8GPIYK1cnA13lyOZ5lq8CrN+v0n3b+hnaY8z5Ulio9KU6AZt+kn45e6wslRdLTp1D3TcpN1zDUF6aqpTS1qfmUUyql/gfvd7jJqHZ5/otVuldXvkN/PkZroj45wD83wH8uYj46xHxFzPzCuC/D+D/BODfB/C/z8x/9w/6Sh92DkvaZuWpnaTmEqsigx4iQwwHwOSPPHIdEjiAfHAjvH53vB7LY6YQmjFU+MZLcweUTc5cBRpeeiTjWjkHl8oLQQEmGjNAm005JDSUE2BWvUAR1qagF0dvYTO2Pl+m3LUJ7f7IUI7FWZuuK2FCc96ho/I0mBPEA3qS+TmhjSsv8dBHFL2DKkWaDSIj4WwDjlKIDxWOeI51fgrsXjIIVupIpT/1qzZwl+yeFJxngggaYSoWA1zq4aJ37+S6SMunKdQRz1bhwyFWlRurOTKx5MI2P9k5V6xS3CWbLJNlE7551LMMAAw0SAlT8BhQdU1cgYjdqI3ntebnY3ZreRrO8tRzrM/NCCRSIZvn5wte39/hGBPP1wvmdci4idnMNrbMFRMoJ+ACVuVftqEj8zNuzoRB5RpQZAX4jronsM7PeVrlyovlYZgyjemqZaj9O5CtmClnJnCLWVm5IGDiaoGnmLVfo7/Kow/krCTHu+6nsGWFjTGycliIKKLnkACGuot6q/Ys5V6nNBc4HS9DVVwJ9H69T8wq/U7KQkInYeO0A03JatawxkuBpQLJPNxQRymQdQ1sgJLHUyhEy8M0AeX8xVzJtQSc42loTTR/Xol4aaC09GGaI1vvrOZ6a0CUObjs9LIssETAXs/JsSqzZuml8bT0wqAjwVCps8Z0lN+Tld3A/Du8MvO/85/y838JwL/089z7w2ZYAG1SRMUpq7W0yuuCRhxgLgs9gfE0lOCntt9kEwoJq/TSQUr2hg/0z4FG6+rYWh4SN8h4ko2XlqBXokPWSskxc90bfHkYpQ2kKVKs53n+w1J4FeIqtgFAe4Usf62wjgzytHuWm6usefcKCK6YmGyeC7udqnqDuT+53bZvZfkL+pkBnfmYmJ9M5KsT8XjqsLr2oqINoOWIzDpJm43mOjcC8nIFQsjUlZIbzwtsaFz0mul1Hon5amI+rj8sj9y8PgJSqyxiTgQiRZtLrG/i26rUsflm07nb0FBSBkhT11owT4FgTeczFQBi1ZruxYVhiOtqYUWTRxrEeUGv/zWAl4GnL+/xuz/6FN//4Wf48sePwOuj5Y9211hBz0VTuTcr3g6r7Krvqw9TvTjZBzE+tjdUlWUhAToRdFIoZ/zALdPEdx7PC/gMay0gtsjXwpgShZTqHdgQ7a2qOeqa+vdiZ5qN2xiaLXcjNJ9yfmyvofa/8kY4xyXrYgYA6cmNWQ0omTdeqlrGWaW697x0dYzuWQwe12W6nHF4bNVAFpT6znILmaCqPRS9hpoW04P92dbHcgjRciVZqXcXSDT9x07hdFTI1s2HWTluJVfMibI+RJts3VQXvtWJ+A/39e2I+EsR8Y+9j4d/2AwLdrAAoBXDLJnkZjOBJGIWS0EW4VKG24zxrOTH8RQKAyhhskIKY5qSKuWRpH4HACV0Js5PIE+AyiQmlodfG4vJpPFClA5cKwzgwk1PWeGAojyVGDtyMTKe6EYj6qDBFDiABbBkVIgI1wNDz3l7HToUFro/gR5zQXgiseLT9DrK8EygvXh5W2jFAQAP5wotZABHAaJnLEVwnx2Lxv6eSw4sT+jCXhT9WSlvoJuvXayqIbABPgSQ94nx6QuOy8R5DsznA/MpZETynvMKJA1o5HYwoUI3BkbFJlhMfmuQd9R6z1LuDP0E53fND0NXyhHivUnLP3QPoVkVQLiuMlSlOmT9vGRStPlNGbYYsQmMNwN5Dbw8LSu4eoHY5qqpIEV++aoGfjT7iJK3eZc43gycVsIbV2AwNFNAgUZ7Vo+O1ZMpu8pJZ4eF9qCahymMsX4vgMj8CCajA9a8sZ49uhIuAQz2+bED8/Q8HlswQqzMBsIYJnxIHG/W/K7Gc3ZCds2LH8xI1mH9O3p8x9IDDmxX80WrKnQ5oxMxu0xfzGd916symVc0L8B8nAsYO7AsOeHhnx5O8s8oXF86jECbuTOTLQEK5J2vFvIgqzy9Z5PLDxnT+rtC+sxfqf1IYAFYpV/tK7Kko6r1FjNnAGUL6aVy3VbY08P061YMs1Hvv/MrgZ+1M+0f8PpRZv6spcxf+/XhMyxoAQQaOLNsbG2eUq5uxGgoN8+qAU0rZGjD0rNy0KCYJm99FCtTjeIYy9bpq1YdQGW/Pm9GBrWpR/dr0XNHG5oe6/r7vO9YtCbDeilo0wS2BMUtGbFendSmJxxuuSxlITyHhhT0XibY41MyIoFKFB1vTJBn2KvqwcaGE8DLAgX5MtpbNEXmzdxY5quzfmreV/gBYD+RqDn3xEmvutB6nwZOGVN/dcUnnz3h889e49PP3uB4OI0ds7J6ZybkeWK/OL+WRM5qETdWao1PsOnycHOpKuKo8ae9KwFlQOzKMlSQp6tEUSrejO05NJpcMxm88sTHVwPHF0PJi6xeQ4kd5UrzfJrnznFXMqofASE2qGRKdDuBKOfT5coYvm430O8W156vsOc1u9Lr4rlyHXIwQKM9AcmmDjbNFUKjk0EhZ5t5jk85cYEtcbwTo2s+CFayx8D3l/6jbNEQmz7zSpXuKrt/XmvqzAPBFQsJKqlWoGC0bhXjHOs9JIsEhMZuab5jOSzx0k38BBzp2Cm0HmJAG9y3nJOto2yLdeceCXvfCWsNATmp7KPEikKxNbZ/9DnuzZdmlNxxVAm4F4h8vH6u68MHLKUMxguNL7QZVelhdOz6TvSGsNABYAogYT8rDzVM8NDKmQqiD6ELKQ5SrfPSikOJu6XUjtf++fZcMKOS9CzxLHqckegE1lLMAJrmtmqPXRmklNtKXsU25vVyN3N89n2oaMYLsHXOtQqg7RRkenalJMTyBEQrj5degziLaj+ZVGeg6QzEm4F4cwDPq8HXOswvd6WabYhVSXS0omdyK8JzQcz4E8wqgS81ZuYHcS2RgRGJYyQuYyIiBSzVsIvzYHMj7y5D8XuW0W5U/uQaRCenUtHOPYdG4bnTECpB52mGzNYgCswto9BrruUXu5SaJ3rgyHIKeDuG4WhUaFg4B1bFES8LhOw9WeqPywO7FJsBlOfLfV0OioNqARJ2SyVzR1mvMKyeqfLm+jtafsSuEWhIHrHJ7zLaBHgVgqk8EoLc9U7dT0Zh66j9eGfGvT6rfBaB3ZSe4/w4cFcIuz4bcphKxxjocAdoGDPCZFoPmXvnXc69DmlVzpnphNkylZT5JUIGJNijBB0iqXt7qEq6x06G9pPt10PWHBwsY970eH3Gmxja+jjDtq2vhfc28FfPk2xYeEtJ38xzYaXo8O+uMZ0P/gLv7hJw/xr/vO/rwwYsFAgA9Dbdo5GCInihokMrto11qM3vBwq2ZwTFrEcJ3/EcbQGSQAC7InDlgdoM3ATliZyvSjGQlrUYqzL/qRjq3mQ25qMpBxo1gYJ9U6vB2bkncIp5mP0Vr0ChQRQIKeDk5YK4eT82RGIJdB5W1UFDYQqw4+WtiHtdfX0Cx1cDx5cDxxfHyp0gEDNKe6+06HLirWdG3V/zOxs8tScZuqnYLwLXAHACeQ28fnOHL14/4PXTPc6X1SU1A9WU7KfNkSna2JsN5qgOnQ6KqPQqvMNwm9iK3Ol9UtH0FnMsNuu87z3iDCPQa+TyIFkuhU5grjwFN17o5+dN63cavfESVR5fRoGyhpW0SJCoHi814cr3mNbYsORmGXToHQRiog0595bnQ9Ar5jxyXeKMZs82Y7jWZvWz6fnrMBPKcANMwOfkCVRSt1QIhf1BgNoLAYFSGt1ZXVOls4rJ0NAMm3aRQf+ObGiijW4Q5CUKLO+sme5rToYzcut3zYqw+Z6DSVYkEdQvJ6dD6a5rFDZRqBO9F+udXQbkeJz9Wcpe/7332C34QE/L+iVBeXZOk0rCo78zmQNFVvCuwo0TriqkO+ScEQzZfZsFtAd8vH6u68MGLGFC4nFRtGCoN4oJDL3DSFM2s+/BZF2GK5QIVvI/qzqG7cud5lOwNOntRDcfKkDBbPnjub5fFHzynS6pcjpt2AmFiNYLQgDLGRIlmt01VcpOqmyPT2MKNHiR5yOGyPpclIHW5jNlIeNQ1yCoygYnAlLFlkiBmpLgJmclAMLub7kX6yGtpDo5ONoThykDKdWal6Kk12GIIYMqAOBhoMRbZfAAdEYSPct4feDlJw94/cNHvPm9R+TTYUxfszcEs3mBjJ1Ogy7RWaCqZbDpbpN7glauYwEzsSXo+d7AL8yIRBtLgnKdfM1kxloTlTWLRidQWAbc+3yIpXpqAMXQj5yKyiHhGUZcA3Yd3g4ALCPjZcTqpRR9fzE6xqKo+g6+P/k5KNdCCdAKKy65YQt/MTg00gqX1f1ivQPsGRoz14LgkWXzxb4Q+G2yP0xusBtkrq3YMYY10mSEryPnJ2WcFX7j/FKkboxt564sWeTPpCvKCaFn3RVVEOurrt8w8OZg8uj3ohPQVYwGXkevIxkchZxrHmYxzrznVBl2A62tR5Hpk42BZeEAATp1Q4Wa5LSRWX0qAE0mxeaDe0EOAsETGRuGaG+B4ru68hv4856vDxuwoIVQvQlgAkBquTww0doHgQwUP5XHZUInKrO8OA8RaKNZjoKUSH2XRpCUux+uNZjEh/XZUcpViZpUDtH3Wc+zMWUDlY1mHMB4E5oThhKoZPhMetcMTTEZcIVJqLzWd49nNBCpypxtHFhz66Bh83bR49dx8dmfEzgpRTsvuQ63q0RjnjPEiiufb4HUSmyWwiBQMYXBlu++fvJsS/lzjMio56316MZ+HHj9mYHx5YHxxQXji2OFrKzPhZgAzgPBsVVryMtmPgiV9dFrsWS7kz+B5YXzagbGGBuusSluAiOgDZv32OB8df8Vm9+6jmI5dNIuwTfBg4EwsnFenj0qd0ONFctTn6z4QoMlJcJyL6XNZ9yEKbiOUcDPqogEcLl8G6tn8055OmoqbkO1gN550lFiMvfIbc/mXa4mboAY4BVKhfLbljGtvXZSPiz0lZ0TEgmcj6uXjfQT+3nwfeiM4QboePkx2ULNYypM3b2XWrbI5NGJGSq5Xn96TW0d7ByezkmBdCRljHLC87LWA1J5UwJgBPxk1UqO3wpjE0CNBjh9llIzWvItWfkX2WCIYIUOgLHuDZT5Ob6QO3Zcv5RMKmzI7sMndr3wDi+qsW8gJPReq4Q+eMDSXnbIOLF75pYQRQEur9o9CsVSAdzGIpdAoxVERhtCAMxip1Byk67wR8qAeit4UqYJtAcxTaGMVhre3j7re75BlLF+2ZU2aiPJYNxXyWp2lQe9QEf+ChWhgIPF0zvZbf25vlrAZRo7tJgLTtx6no5CsGsDXrOpZCp05nLws6snA+Q5y4hTAVkJ461SEiAFNq+QBjZeYo/dmwe5PL9ssFNrPBwolKIUGGKXYXb19OTOerYrSa2ZlD/klVM+3YCokRcBbgGtDQSW8cm7xPnpBL79gusvvOD87NThfVT4DXxDLAoNiMAOZbaMOM9/6VyfXj9vDNghmF0A+mwW9EFxZrySYQQayJsDKbW+xQi2AWxw0DfbDTeALpW2U5fZmI8OzfoFej/WvDdQgkCumMWSh3npee2E6JC+IDOlITrwMhCh8IYBLcrXvOe+zG1+Vv+nBkK82G/EmQO9IxqsiP2s++mQV4YXD7Ine56IGBIxor3mSy4gFkaHa7LNAEGJwDOa6UHPAcejVhVhv6vJ9CRZMqlxXVVoSv49UrpdIFr7tfc5wSBDi3kYU10ghjkocmQ3DzO0t5WyUL9iF+APgZn4Gq8fZeavZ+a/+D4e/sGXNesYcDvlV4gaWJueyoT0NlmVuf6/vNo24K6chbx5cFahcvfSezBdASGG4kqAgx5boilOS8Rt4NAletq0vjFd0dAjJIYpwOVnVlDx0ZvQPQeUrKwOnuXJegjgrcO5qkfMeAokkzurjLJDTxxzykuSUeZ70ODydQYQlWtBijnq+fMOOopdntbBVuqhMAKAzp+osZKyjxPA3TrJVqERKmt5xcWolPIdzhjRSJfHnQMCVZw/HsCo0lnmzJSHNe8TWWEXefru0dFY15gGmZALwDLEyQPnEjjZTG02UD/e1JkvA8j7ibvPn/Htz1/jnIHXT/d4c3lE/uRY6/8m5JFDCrdB53jp/A95UicwUI297lfzPuUtvLSSV6jPDdfh+RjLgMa5vnM8AfOOHm3LnZgJAx4dXutuuSOhpmEt99FeeAGItD2ydMOe98UcnVWq3PMzDzRQTVtjVtNZAucoRlINKQv4RmKVsmbU4adLdw0Yo2Jyu3oYBTKqmu0aiFHdip8BIBZuvLNwRa1R64w1J0qwpw4hKLd9uPXBsXYI3K8qAT8g8EOwwUM2WewAhhgFiCA9x3DdT6uiGxF95lXpLTFWxpiJeeGS197pkEtisJlblVVHYu0/tJz5fuM91nhT87SFsOudOeej2jUYIdWOUr2b1i57juclkRrJO74y8Q2VNb/X64NnWERlmvCPa4dSPB6vZC73yC3Ew9BRHss4zU9OzD/+jMufeA187wnXz84ugTUPhOEmPq97NER3uwWkMJFkROrnpCsJPsowyFOgx240v+KwKjUl0OJGNPBWlLJnqN+GZFRmyEonKrOaN5ZMM0zRGzn7HnWp6+hb89H3dHB2+TJ0v0156d773Gy0LLBRwTSo/DfM094aR/GPhZOa3kUZXwig0BAJsdb35oV5GGVY69HdAr0MY4FQr6DoOdmNCBkkhUQKkHVSIMBeFXLmaJxYHlphu3g88Qvf/hJ/6lu/h1/7zu/ij3/rC1w+fek1QRsthsbysoDQFhLg+95WNRBAaM2w5Z60vIVKU7viJbf8pHkHsUI0sJQRPltJ08TJSgTP3fCUs0DHwan3BlR7Uvnmfd8l2DuEYR6xMNbiIOr/ZJmoX0b1seFeVfiCsl/oLxIbwBNzSDmJ1WFYTdVKXjgvvF/4Hjghyp/vxbXiz+ZD603pPuby1PxK5jmWhNbPT8gGao5KBth/hiDYZcxlSXsrOCbIoKs5mxif/r7n3XmuiIB79cMh60VmhAc3bqCH829jo56lE+Ql8c2OEbhxz7iOoyw1A328Gc2C2fxymj9eX8/1wQMWbQzfDAVApqjmteFWHgIkISpzzdiQNgDkJye+9Ytf4O//038T//Cf/mv4B/7U38S3/uRPMF+d6hCqsuaqGmCi19b3hIAivBkbDVSHNzZBxvreyiZvxUWlKcN/AF6yuSXnSTku15Mg7j8tNNOtvOvn9d08yjNUUmYDJJVscujmUWQYdeseX7a3x/e4flLr5OW5DBUZ+7CxSLPBn+x1tnIRc8WfUYMntN7y2hgiMaWvMCKpZ77juTw2vzgmhQuNHSLLxnVkouuQR1uKkQCTCjWwkkKvAZ67o4REhQliH9t1AZV5B/WQuNydeHX3gk8u68+rywvGMUGgDWBLaKQSDrQyVik/QwDTE87bqKhyxtgMylhG/9w9f3cexksbRJXk25pTxhZ9v37H/JCt6mrcGJHRLIzCUExg135b9xh1MjMT0xlG7vAbERm031we8kjMe6h3EpPntdYqnQ7pjNuTwyU3NR6FaoN7EcrxcjaR31Ho8Nlk42wGzuWd5cpkApWj8nKjTwgqL9jAruSdOs2rjWbPE+9HQYsaRycKZx1MCOk1gfFa/3HtMCX6ax1ypm4gqCvApANsG3c0U0ogSHbI8p1YyaXQXLQe69yzrnzTPVyHzliHxJoef6si60Ynv6vrZ81L+YP8ed/XBx0S2kKFTDAFzHOI3kjlHTQdvH7GyoTWjEDeTbz69hv8ue/9Nv6L3/5r+MW7H+F3r5/h37z70/i35q/gqzefA4DK3+Jae4HCmFCyH3NmAGxHxxOszEcgzXgR8a8qhXpRfQcK59DQadOnAa7asAJKL4HuUbFuJAVc952M6TMmXtT3uKK7NgKiRCNLAZY31I3MWnDbWEP0cvAeEZh3s89+0jpCawQAqJLJt3Jost8nXvp9y4aa1wydQ9JKI4HRsqE4uoVymADooQLkKGq33/OWEXLQNx86AXPR/0Zzm/HcZLoAV9517pKMagHzcQbOMFmqORtn4EQKrGMC53Xgx28e8OndKwDAFy/3uL4cYgV0X5MbdSp9QCtZy5tR6/tB47DOTGkDv77D8EGU0ZgPuc5kqncina9nc43Rxk9l8LD1vSQmE0vJZpSsrw920ihzKnpPVpgL6JyMUa9pQHA5JWvvLBARTQpVX6B572tfa35foVJzJpYOWHKlPBGYfKlaJHAaC5iBpYErRIV6dxSQGS+BfKJjBsRc4bm8rBAIDx30QyoR6LN+qtpqM7Jie2vPsP+U5dsgo5kuLB1xKicoW54oF6ZTBBjN+LPKaVYIlt1ql2zX/2udyALioLfR4xZL6azOEdofTB0A/ZcrgKPXgsm8zoCOFwc/Kzx6FtAkYzIfeozuSMndD8q3gcsBHC8V5n5fVvYDABhf9/VBAxZ5bTBqGJVHUAKuVuBuTKI3JhuXiaE5AFwSn716wt/1ye/izz3+Tfzx48f4/vEt/ODVZ/iPP/kFfHn/aXk8IRAxTmBGe4VrIACq7fbq7YDeUJEqb6Vn4Z5pHlXarPbPVCRQOABAKYEytCPXmACwHwMCnXtBjVtGiM9fJZf1eSYY2nvIs7+ZfHltZcT0PDe0pnQ2b21ii7kDaE9pLEVz693xs3kBkozYyNWiPwBcG7TFBOZjqmcHAQCT5Zg06r1tPIcg0UYkphEZpbAFwkYxDOytMlHHDNTclhxsia6ngSeb+wW6WBkVdT6J2eG5fnze31RKoYz4Xf+MXuT86oIfxqd4OdcifvXVA+YXd44bBIJX+K7XAzUHYsjQoF+AmcCp3i2jQZrLmOdsqXNz9ZQRM+BzHNAe2EKFBErnovg1zvr5At6dtB4ndLDlOIFkgrc5O/7c+Zg6JwfocSvsRseg9rFKmz1/jfMlg1Us6Au2tIFEyTyAxNrTPCIBqPd/DoDlwQPq9orB+2bPLT38aIAmB2N2LpLvB+XfzADS1i4NPNbasCpp3kHMnxJwTxuD1qh6xdT9eC85E8zFQq7DT0fLX5Qe4NqrGo3HE8zglzdWV40UTSYnFhDysmklhVtnZv0sGkS2gGHLhdoq/6hjs2WVeZIBqJKMso9ineedVWR9vL6W64MOCYnSDxMk/o4er4UZJJCjqfl5SXkPm1EsbXbmwGnTcM71dyV5Dqh8EoDyaESP3ZTDpQmvt9feKnFgsfpijTx3oxNjLYabsVcocUMV2lecvJ5Hb4OJxcx94KU5cWNRG5HPlFfDIZhHQaW3lQzTSDhodCBT8+cJsRvV78qe+TQGZty4zzsAFuNXQimwMxuWR8QxK2RV45l1PtFGf14hZsbPakJgnadykm6vENBLszhKKGTCMlp+V2fQMi53/sLreauCCm2YKhfHwwoEAHEC4/WB/L17/OQHn+Inf+tzzN97wHg9Wp44r8yJMSXtTGTe2VrYXvLxbR5bYjuV97RjBXT/Muzeu4dznrfGCus9kRCDIQN6yWYZ6j4+Vj/iwlsaMIeEsoMAxptOjNzyX2qOt55K8uhDhovlylsFkCXcK7TAkKTLYpjR3YlH0zVZ7Ert8wvnEHVyvM8bzBHrvZI1RqeoFVYnjRUd8gbQ+VRk0IC9n5PrOQ+tF2siVkbrw/Gu+Ruvi9Ujg3y8fV+FTA2gtU7NrvK6lUtgkw3+XCE+x8pKCDdd5wvBfVgMtIobps0L1/JA94cZ9Vmx/+vZPy1M/66ubygk9Ie3rDki/ocR8e9GxL8TEf9cRDxGxN8dEf9aRPxGRPzvIuK+PvtQ//6N+v2v/X73T5ixS2jznY/Z3RuZvEgviGyEeYGMeTe4CPz4y0f81a9+AX/5zS/jP3j6k/jLb34Zv/nV9/CjL18hnkeXYkZRxIA8LHnf9FyVCGuGe7QCI+W4YvhtcNgTxY0yKdn2plKli9owlrS5nmvZ+sHfr7ng0eu+idzbADhfqVJGnUbMjVZujJfvKsGViXNoQMbQmBsPgi1R7yekgOYdNM/OzhAwSNFxTPSYzp7zLeEtb5iVg8as37fb55s8ExjUKxMEEnzKGL1034x+79zGV8PQ/HRfm+73IkBEEHafG/2swwpLDkblwniFVJQhG19cML4aGK8Dx5ulcJk02oLVxlXyxkRP0wSeH0bF7NQ8CJqPDlcyt6KZQMp5s08dOly/VGm/AVJViaFBJcE2z8VRMmrNE5s1KhG9POL5mHj5tp/4XXNrIMP3jbOWdArIBKidu/o9Qbk7KsNXYvca/3iB8r6U68X1GDbvBYo4j7MSObHJL7Z2BVwnOjiUx+04kbP1AvUVE1ox2yi3jJgjxQZ+Jch8bwFx1D7i+k/ohGuVPl8scdXeJ1yG0fMsfFX7W85hgVrKAd/p1gnzXBWycVtYt/QfYoFodbwu/bIcMG03DWgH+SFHjHO37XvqEN53dGjxj8j1Xsua/44BS0T8CoD/AYC/kJn/Oazo9T8B4H8C4J/JzD8D4PcA/MX6yl8E8Hv183+mPvf7PASNlMsrZrIiAAMGN0Y80B4HPSTz8sebgecfPeDf//4v4l/9/p/F//kHfz/+1R/8Wfy7v/1LePPjhxZg5qsQMBgwIYvi3UhV9UNEOncKfvPmnG4u5UfjRbpfYIBeyQU6g4csRZanFNcQva4j4GVs6/kEECO7espiunwW+42o5DegHBZtTCqfWh9XNFq+GZsCX6xNmjJrhamNX8PpZL02ZApN0Ahc2CsiGshM3rDHqPAU59XOsfGkVm9C1scSmAEvg7ByVup9LE+A9xRYqDGyzwsXrIFUNniw8TLBWsmJnjwaqXAeDS2TAo/n6LBb7Zf2HAsg3JawoxWug1jR49HKmbIpEOm5AzSM0QYtZhuNZkP63f0YAoXdCiBsRib63hovWS/KUhnlWccJ5Ccnjl94wsP3XiO+84z5MAWmaeSmsSkK2d3scRNnKG+OvV3oUBC8F5uEwJ4Twvc2QBB2rIU+GJDM6J4vLa/qz0QQSaPIW2Cfe+mWwNvXSGMKWk7i9JBM35/t5l3OxYBfbsZMEJr13rVGArt2AjWZLs4XGcbbsHN4zhlZTLunwBSdUn02te+5ZzbWHuiePcWWaO0IrExuUQ5HM722h+GfqXcG9iTmd3UlgJlf/5/3fP28IaELgFcRcQHwCYC/CeC/BuCfr9//rwH8N+vv/3j9G/X7fyQiftpW6iv2v4tNYWb32QCBPQSQlfexhWbsXgRBbwa++Nuf4T/8q7+Ef+u3fhX/wV/9ZXzxtz/D+NGlFMmSbnlgpRDV0OtK6YeS9DYvlI9zA8FNRG/rhZ4hxCB4Eqgf7Bg391biKbPtL/15b57GI9vZ0bU9gZDR8Wx/AAplKKEQ2L+rP3v1j7ztYlF0HocnKGeFJmbneQjQlAJbmxwK58hQ8f0jofbmbAJ319UYG+NxKz8ER7Gvk4cWc6TOBxJI+Sm5MMHEacoWk0hZPlsgj97gmr9VZcJ50vMJWsvDRpQc0zgBSlQUY1HrKCagFLSzFrPAHjuLbuDhBoiwQeCWc2KhNskGINCiqpjs8WWBYp8XoBgSev2Wl8BcCzaq489aXtaz5n32ydFkUzgXZazGc2A+Ttx/+ozvffcn+OXv/hh/7LtfYHz+gvlqao/GuXfzZZhKJ2b7/HB/sNrPfuesncKzWPM97/eS5Q7ZcJ5MNlC6YnaVlNhhyuaEgKf0wMGf2f7jHrDcKWQ5V9wbmuOef+ownnwuNpl7yWWBQCh3HedM9haiqRybxTrZPW6AwuAc1Ltu3Zn9/6j9V+uhZHa1akjNLYGe9n05bs1U9ufxllzWGMW2hM5Uilw9kQjaPUcussPEcrDf9ZXfwJ/3fP0dA5bM/BsA/qcA/hoWUPkRgP8ngB9mJkXyrwP4lfr7rwD4rfrutT7/x/6zH1KCUBURbVCxncYLoNtgs/TYWvWzmoHfpbEYrweO37nD/P4jxg/ucPfDo5LeSEWWwSKdWUpU5c2sWmIsk0pJmxTdlbf+Q2qTQyeLQeBFr1qeRVoiHvdu7sZ2PWspSw8DdB8YlnvXQKj/GA4ZVpI97HvZCmAdCgajhruXApWOwg0EWObRcBIG6fTAUqLPDTJYzRXo99so4GJP6Hny76342ijnqCRM0xW3yZga48QypNqYlmNAFqoUHJUQzwPS4hZoPJ6iH+DVGwSjHmorZc+Pr07LVJD1e7JHiY2tE/CqY+4V8soG687QeNJrHrmdjzJo7OpVxBQxjyvtfjU+hkzEhtR3jiczjPV1FBDYytrTmbFUbw0xOJyjchpYfiqDYvkX7jTkAeBIPD684NsPb/D5/RM+vX/G3f11Y3AA9qKBmrfFGQr3HU/ROieyAZIxMtsloTKbmlAehUJY2SAvo0Ai2dAKxxJkMHysNSiwrj5J/nhjdNimYBd0iFVlSISsLbDLB0PDOvuJYTh21yXYKt2cph8H9W7NEZ0xOkCqmOHvORcjVbEjR0tVmHzHbEfR5xSts8ii6IgLAhTs00EwMl5WCFVnDGG9k8vJpgPIghewJnD3ORAQNN318fp6rp8nJPRdLNbk7wbwJwF8CuAf/XkHFBG/HhH/RkT8G/OLL9cPKQiXplSzQjDr741+dSaQEuFaGW+sQW2Y47kofPYYKVTuTIYYGgMt7JbZGeJoDxbVfKt+HnTslBtAA58yagqR1POl7LJP4E1RqdnxdlacMAxixs4rN8YLrLOjxWWpNJyRCPszen4Ww2RzdEMRO73ssXl6i3HWFHqeCBOEKwzX4Tj03FAxWJiAHthG+3L8BdyU/0EZKFADBzmDspKbYvSW5wxF6r04b5VsKBYkWzk2ouj35Y851hy9FsyB8HlHgS6FFWDPRzMtfsAjF0PnObEfBfX8HeW7GbnzvsCrcr2wAysq+hNiCzbW5Sb/YuVONXBmUzyyY/JIBTiaehd7pa6hLTs+jxybV6L1eUYref7N9Q7P54HXL3e4vlwAguuBTdZZkt6gfXVLTrG20WyftRlg3oZyxYgRJva+HdjldwPhZVxXRR4dLYYTsekdhV98L3Ed9P7osJrlnHB/ezhsYx0tBEtmjw4gBZdJ0BjdFiGuXQIdE53AXvuz2Vvbj0nWo+6rc72KEbwUgPQeNwEJjI4kqZDLeAKSTfySsmKYjmFj6hEeRVBLez5mOzjHWr951PeoY7M+b/t/zSOa3TxapsnMzIuBtHd8Sb6+xj/v+/p5QkL/dQD/cWZ+PzNfAPwfAPyXAXynQkQA8KsA/kb9/W8A+FMAUL//NoDfub1pZv6lzPwLmfkXxqefNhA5F7V2vAkpfJWl6kyI2jjXzi0ZBj6AVrrr79HVP6L564PVUGzzPllpkQ5kytAVkOHf3Vv0Hij0KOm1cExACztDAhn9d1YJiLPnNShNNFCmOOrv6iJZypEnyqpxHUEMjanFgZtShgzLdoptfacBRxsQjo+5Pcz1WXNZ4zrSvPX9967kO6dkKR6Pg7crj7eMhLwhM1DKdzoXpSs27c4Zmp4XNi8ko+Bsl7x2QEBUjEZAjJ1YpKuV1Ea2h4qWAS7xbfdPHqoHNFhRNUj051bYqAECjRJ7tyCK+at1Y08aFysaBMmB740wA5fGvtW+AOW2fp93VhlW/2OoRGCxppTPZKdWGhaBWy+PRstmJ1gG4s3AV1884Ps/+RT/yY+/hd/7ySc4v7p0MiTBVPT7MRcGkZ1U7bkH/OiJPmMIDT68Kkkt6m0ytf8M7LVcdEXeyjtKGc7Nay8gNJ5De2VbE6DZEALxGrte1f6vMMpoo6rE+hrTYkAXu6Ky4fq9A4iscKIn4AMG8Gazq2stU6F75ZaYfHC+qRd8LZjIzbb58x5bKEfjDAI2bPkuSDTjxxJ55tGMllWyePwcHMwT0B29v8RMMvxruVgfr6/n+nkAy18D8F+KiE8qF+UfAfDvAfi/Avhv1Wf+uwD+j/X3f6H+jfr9/yXz9znsoAyTaH/maFzQjER5AVQaNFJUojLgPLzNgcO4UZjlwQBYZ5bQMyfAHp14ubWiLho3Tij00xVL9j4S9GhPlhn0AW0KKX5T2GJNshUdynti1j8TvdSvA/2+UlAJvYN6vDAB9+xN11U9kCIWlQooJCYlcKMgt4t5CQdaARSY3D52EKSZwTQFux1kV2vjZ7/wffTu9M5qbaMOIiOl7SEshWBkmKLXooDG5u2FyZEBIypDV4wELgQvOkztNkHSvW4P4xSAPO/R7e8TSrJVd1jrfEqGhR6wwLyMZRs2TtLWEIvzMPXrLUynuUPPBY8okJfJ/TW7ykc9P+ihG7gjY7FCM9A+9mq9PYcBPV4BNmA8DeDHd/jqB5/gJ3/rczz/8GGdsH21ZOiSv+NNyxcdIOqa43VVkrDSrcbZjhHEvOiQyCNlyAgCZDwvuwx7ya0ftukdhTkunfcVlttWrJNOQU5fBxjrZvoD/rladxpo/i5Q8lSgm85SMPQWvY9NX7TDs6+HAwWvcPMye3YX35Lth7M9lsTuYNhYVFVBGetEPcIiAgJoOVeVW7PZGgOnYj/JUCnpvtauhF36Y+7M5+X1ruPe6cXzhL7OP+/5+jsGLJn5r2Elz/6bAP4/da+/BOB/BOCfjIjfwMpR+WfrK/8sgD9WP/8nAfxTv/9DerMymSvq52DzNaBDOGXsVBpKgeZ3WAZtFQ7HMzrezg1H9Fy5H8dTCIiwHG6heyIZyFOm0RXzQiM4sSXnejgECfW0oNJX7Hc2vc53ZCXC7oWUp195IUw2U8vset58uOkVwbCBgRGGm/yk0XnXeRIEP/JcwtZJPWTQ3VwrFLOBgWzaVZVJZFXMe89hNspCQkyK1XvU2rmyQi2Dd6RUol7dx6tGXImrJLUAosJ3XLvR/wdqja4W2mC5u82fqposHKLcKzZ2s34aHONtq3IPv+j8p9EGkqEBYP1/lQNbWWgCxxNv1rIftuaew6UQloEP9zaZ0yTWjSEDJedks4V8FQsr6GA/hmu8egq9zlpXqzQDoPyjLa/gOXD85MDlhwfizdFAxfISAOB87GE6pb9Y27rfTSjKgR3XnOwH7BU5dk/udFCs94HtowIgSsSnijFDysTgONniIVvX6X49f2SqVFZez6Wz5HkY3AN0+LhuTEpWKFsviD4I0taMTLKDfsqaSsTpbJHJidaJHop34LDCnw18xVjV+wvMGTu75sCScU+bi1hhpbhWO4Andj6GwGvwmQzToW0G5cZlSlMz14n3f8Su99qH5eeKrmXmPw3gn7758W8C+Id/ymffAPhv/4EeIOAAUe0e/21vHw00Cv3e5mQEgFn5C9y0x/NYmelMLnSvwTbe+UijHPpZAFvjpXpMMxJzyENyJcVwOPczq4S0Sa7daZTJtqJVw0soo1rW1wY0Q+DJiDS0y3vpjppI9BkpkaLL11oV2IBVoCTBWq/H+ZB9Fg64RqWgzVCSOdDWrfnNI+WBXD9pA5YHcHoIqOZtnfScUnB5JOaAEkjppQGLfj51Rs56ns4NOTu0RSXo1PAqRa55f17lwur2GYGc2S9USnaOBm5SoOWByVCSWauvTxp7ymDNzTgbdARPoCVGdWBDGVFytRkGl7XRz8wDwAmAPUPOThzPkTgfAsdznxItz3j2+jng0/46u+oLMzrBswy8jFksGcUci8X4qoCBM3b2XN9cW+K5TnoumYclWTJE9bLeTYmvyuGqz9V68SBEHXqXDWo9HDbvep8QuPOeMrQDOE5gRvRe43vXPKrMnbl3lIvqlbKAZ+LyxdAe3fJ9+O4lvwQnzK3hPMnwU37IKhBYogHKOE2XotdT+TQHx1rMNlle7isHB2S/63dibjnGkmOtMe/PwoMa3jzWl+ZDNdOzsM/gGhpDuLGC2bYCWQzfy9Ir7eBYL6xiaJQPxnmFhZ/p/E5Yh/KW7axxjOcFeuZd4mKnzL/r6xvKOflRZv76N3Lnn+H6eUJC3/xFrUtdTk9io/3RoRRSl7DPjKy4L8R0ENl7i2zAfmf0f4BxXAMo9DpKCQyj6Zei6O8DrTjYFXEeC5hMKvXZlK9i4WcfjrjYi9C46T3Q411fjD3nwQDS2pANiLzzKA3o9AoAj33Xdzw2TYZjJePapq25vM1fkEEuo+kA6LzvtaIiOZ6WAt064s42UnFFnaJs1Ozo+eZcU1FRP3vcvpWlrxtUHj3MINKbIt3OUN0W0jH6XeW47OnCHjY2RqBCHKU0xXIQ8BWDwCRtjGrSxfUuxkTsBNoweDz9dj35XmSCFFZBf055GT7eW5BScn4rJwrd0Dvl3NKYFjBEAThvjZ+o8Y0eA71zdXi1NdRcqVrPAAlarlbORwo86ZUGgZqFnpg7ggYJdFbWuuTSJRba4LwoHFQsEcMmHo4hi6Ikbf5uZIWYmt2TceccHVASNgGkZMZKhRWmoG4kOKo5an0XCqkL0HCc1idJYIs642jHSeCPoZKXXkyXaYkQx8cFj14DsXunrW92uGwK2EIgRwDwhlXJS7HnDmpqPGfl92lQLGs3YCGWiesT/Xn1Xqq50pEIJQcMAzMVwe/7zq78hv685+vDBiw0ttWJVbQy6VdulGuXCpPij4oBAxCdTfqx7w2FejYaHujE3bGYBFXEmIKXMTfjr9/XJnCBZZmt4qoeGiggwoz5bfO5QvVESJ8qKa7Q+yaz7RWX73e4zdFYD2rDQiOkxLpz/5wntSlmLYPbfRRuE4r591vvj0nSBDuXL6uXS2nQsGcCxfbUya7bgWwFhNywiokr5djJg8uQOXDNQCffloGSgvdeNqXoPbSm96o+DwRcUYaa1Vx5t/7NfkIykBbTv/27swvzgi69BNm56HBk2jyQSo+eJzJIjNszN0FrfrNWLu+iwpNMQehz9Mi3HKrALrfpjFCXYovhLMDgeUZ0CjzE4X2BuNYdKo1+Z/Tep0Fu9qQ1MPdOV7/0OxDw831mVaRsJxR7GW2BEnaB9cRh5lJsh2+W4c8DfRBpLtZRa0L5rD2oBnkMoXGu/Z5aBAMNBBmsLATloz8LNHPHsO7qPI1m5azjr8In2cyce/cbSOLvIhXaUX6c5qEBwcl8MLKEZzshGcXgVIWnQGS907yHdBz3Z5q8+PgY8lEfmJoD5aPYHljr3g0EyZIrzM9+PAxnvw/A8kf0+rABS6L7mFwDl68WPQ9AKHedO5JiWcZ1/z6ZlHnXrAgNs8BE7iiZz1NiWwnyW955P0YI32lPfcbBUPYz/X5ednibNOYex8bghMWWtzhT338BuNxYAp25YuWoGrM93+eDibDDzlEBzBjdgLlEGzBVWVW1gIxetCLbWJnLUtbJLpKcRgKDS7+LANXs7r+ea8P5pdLCkX1eD+cMeKsiZOutQLaAvRr40cqJUpjOfu4e5ronB4FiEqJ/bnM875ZcsnmhAODJUAEahNh4vVKnmYlsD989xawzi8h6WahVDGbJzzKu9rnDehpNNGvE9xydPNn5IrZv+M5ZxhmA4gA0Cs7mnW2AN1CohHl0R1EzRjKyebO2gACimCl+pkIjkoGb/aueJbXPz6L9mYwJHx8TzAfUJXblkM0KoYScGhp8n8+w53D9VL0y2kj7+GSYmS9Wa9hVfv1OZAPZ/8UdJOkom1NVVhrzRubLc8A2/TabHeluvabrjsrBsvttYZ5R/XCS+7XHr6pB9HvzWIcGkQBZvTwS82FqgKrmmzZmAzTzLvvwQuan0amiY0B9p311M8fTPvOOrzUv+bX/ed/Xhw1YACXvqccD0XZdPEVz3jebwXgrYJuDyixS8cfjqYxpdo8AsZV3LLm10rRIJaCJLh3ok1EvaS2sczMCDAWJLh5t+G8T1rpjLSA617xLxsCXtxbbBvcKjsU+7QqJsVvFpi2ERK+ln4NuxEdFcWfjQt2LipR2ic8Z/TOYZxqJPlsnVi5N3iXOV2l9XnR7C8cAPD+nBWTNBb04eYCJjdoXc0DlAoBe7arKMKNK48QJoVLmfWzteJ81OQZSbC7SQWz9SucJVaWHlDuTlh241noE33fYeAUsrEooWwYEdi1BXHNBuXL5420ZHuJ+Gli9LmDzkCE2Yb0r869yC0OxEdkK35mxu7TQOUj30NnWx+LWAYim8bdzuQqo7UcTcK13gKUGiA6mD6jnE8GHmqilyWSBYmfStjyiAe2BfJiYn6xzjeZ9Yj6uTeKJ3c4S+j70dfCkYYVlWJFYz1NODNAAk6BmC2NWWbDrm8bPeieB3nIQPHnbwSwAFRbsIWk+G+ryvMZma8k54NhqHGzrwF5Is9ZZOWfFVJFN2RzJwZ+1DeF+psywJDvMMUGgD7+NTmpHtB4kg6p9Ovt5nZ/T4d2P19dzfdhTWUYXaAPXwtGKOypEpPj8jZHXBrIyQmWJE7VH7p8VSl7lwt0PJeDVHzQYHatv5Uua82Yf9Sm/ZAxqDOwx4zkJAGSctgQ+KpYbNkTtoK2ElGfpKL9kZOfHWDjD37lp27q/AQenqEWDEmDcZfcAKZo2+FmCpqJdl/JYXic+f0F+6wXz03OF4O4aePD7q6y1wAPZEVLxnKew8RrzsxqmtXEFGpSQkvaKKnpmNII0aJrz4Ds1COA4lFQZ1YDswAYs46Wf24a9wcp47lLkLeTpRmCkKo/UU4eUuof4TJ4VOmBoKFr+lryt+WtjZ/Naa6lwm+2t+dAARXk8E53IbXO5hLT2bv1OrJ152DGhHkhcRwfxAmkvLbcenlJ/JoIroNmaCmV10jIULh4v9dxiPRiiopEmeGIPEM+FA3ofSG5HIu8m4vFEPJ7A/bQQVVUf0tHgHmZir8mnKvYMUHgbAg8vsVeUaCcxmi3Db53W7oCR+9vy2gTUjnb4+HGgAF3dl7kblGkyeErONVAgXWUVjZ4DpN5WVX6ssHclyq/+MAnPackCOIF+FzkRllwPYAv5ePi6KzgbxIil5j46TKZhMs+8pux5ey/X/Ab+vOfrwwYsaCUDFHi465K4rWXzbEO/Xbm+d7xBe7PVaK5+XcY69HkqOUfwTCxVoyAHClTIdQ+dMnvGBn5EXxvLwpOKWXXTOTbZ1C+NdKxseZ0AXF6qKEhTYFmN70CbEVDyMGDGO/s+NAbt/YcUK4AGgTRWnJMbRuh4RivXKCXGUlAuET3tAHCXuNyfuHv1gng4kQ8pRUm2RaXrVMBjv4/ORqICpoej7/X8a42rAyuNzPmQ+pxkjOs4beinGcKEcl7GCxTC4xp1OKfCVJVjxJ8L6LDK6LqXVSqJ/MjNeACmUGuO2lOlDNg8DcsDMVAzLa+JcjEq/0MK15r7OXtym+MkNpHlvcbyrL2LBvs/xRNe7w8xTmLsmItzu48CkonjTezhYHAtTCaymQcPiaxwwbrf+Zgd3So5Vk5G8ugBiMEjEKC8iAlLe8UA4jIxjkSQ8aD+qCn0PJKtz4uBVO4hgSxOf4WBeV+1HBDT20YZrlOOPvW+9zQ2q+BO1fp9QJ1jsZ6xAF40kPdQ3mH3rc8zZDrvs9lZJvIe9nzmvvDfxtxKbko+BGbO3l8CRxb65biP0qPscE7mlKyKHFACuOy5EO6uXJbj5qwgOQjq34P3cn0MCb2ni/FwUstiGgDIlfHPe5gkQxvHqyBQSnRc0Y3TLD9DNCGNHe/NZF8az1hIXp579qbgv13Bi43xmWfeSb2rknydUZFmW5/X5jEPn+9Ghcax03ubxVooP8Lm15MSgdWUTEmtge57UveTsTbKmf+nEWx61M66AZCX8iJHrvLIkYiRiAAiEkm2q+7HMNFiKrC9r54LeyYVZnnnrKxQgh56bDIEXB9Wid2EhLYQDysVMpoBMQW+XOL+vDfIY88MGtLF3KWMiWRIIJFzvMqNNxnjV02Bq5wYPS80iM7CveW5o3+XsHyJYofIOmi+E90ZtpS9GzXNA+csek0ISJCodui5M6Q0kAbMCDS0/mRv6j3UT8ScGYVgh/3ey+Rrz6++RRDLxv22VRSZ/gAWAD14bpeFYNYv0Y37WM31fOB8cyCfiGjQDK/leHlYVSFr7PLuRpz7ssuV6/az53NLDta69fe9E3aD+9Q6c829eZ2H7dj2wcFwt1/A9izlWNUc5SXLcej8MDXR4x5jAvrgugDs4xMvaGYnb/YX55nzUvPLCkNe/myfJ68WlQxwfmiH5h46lE4R24Letx+vn/v64AELvRYa6w7vmKIypqC/h0LYS+Ao0G3o8VaIY7t/PTLRGz7O6KS8wfuF4whT6O2F8w9/xxBWN0TalaQ+c0JJfd7Txe/NTb0GvP69ZbbHUkjKkYjeUEq+tY3tlQ4eS9d9TuiQMsCUst7PxqKbWgZ+rY1OQH4J4GXg5emCl9d3mG8uGG/GFnZoT7sND7D/Tvf2Jns1jgTkRTGMo+ZcUeGUu64U2DxzelpnhwT0Ll5K7dSyl4vSW/bE5loXJpSvCozQnI2XEIAdFj6alwUk6b3FGSotd4BOhb15xeh3cTAgUJA9PwLknL8AjtfNYC2j16ChGcmaJ6sIUmz/Zr10srVYs2w2M/fvADvY0DvMNrgKQ6DHMcgWaV24drFR9WTIcvTZYMq34eeyZSwvK3yrow6sgmh59Oicp5eS8TcD8eZAPI2WMYba3KGiTroWEFDllyEiGtbs58z7lI7btl6Bhy0XTzLS9zye6r6acEhOGb6VQSa4YQXXcyiRXcA2AR6qysRfhdeo85h4fHO4LWB7wlhdhlpVEs53J8tzYjHQ5rxFohkQVQJVePy+J0u5OsDmDAhcU65K3zHJGoDYR7GMo3U2gA0cvbMrv6E/f5gbx72LSx5jKSjR+dpwqc1BYVsgpIzzKG/oKXDW5mdISElyB7C6pVmyZm2ImGiKnpUapo/dGxS1+1OSbgFuuDIeJ/ocmWdTQEzozZUbMN6EQgYrZwFSOPOymlR1Twuj6+lhUDEGjXUZpVzGjsccsAU2BXPe2XwA6h2jcESVX7rRooLg/wkYYwZSlojzFArjxTlwzotCaJzTSCDZYfKAFOaa/LV2NNg89dZZoKVEy6M2A0iwpJDbSKTR+8Baw/HSSdkAZGjmA5TgHWesU2WrhTsraSBA10YhEqqWmIH9wDwmIJYMECDOC9c6cXkOTCpCm28fW0ZiWF8cvg97WFysH45YuwFkMRIHK4Yon0UIzEpQpFXzg+lkJEe/A38OhjKrTUAnd1R488RqYhdrXlHl2aza0zhpsASkSpAs1MD5XfKaSMsl4GcoOuxf0+0OErgSGYYatm0hkVne/rXB1jJc3d5drHmS6VyDH29Gj4FVfiMRWOvhzS4350YOUjaTc6z18vV1ZoCsnOSuHK7z1cQovUgG7WTzOTLKBihdd/k6kCUDsvOPCm/z7+MKnEdI13CsdIoIUsY1muAzvap3k54AJhoo+Pe2nklHP+PuK1QLAXRYLBYYjNrf3htrPEexNdUmIKCGehyUqouu1WDxwRw4Mq6VtycGFH+kro+N4/4zL2Zxs+OnodY8UjkBNIRbuS/3CfMnADCmyQSqdbP+XdJDOpoS9YRSGRMrpQZo7Crx7AIpQldA6xn1bFKXVOpAh7sSG4Jn3oWfc+KX8hrSPUrml6AVQW0qfoEH4JHeDKCZnGgQ1bkM0Dk4HchFJ7d6vgBf11gLeZ0F/mgYx3NgPA0cX431/6fo4xiCSXuWSIiWA/a66bh2jeVGSyiR0vo+RAFdNmEj4Jv365ld8dVMF+WmATPEplDW1NOD4IDvW4p0XhqsNJWfWmuCYu+VozAL5Ykl1TcVOQA6oZKg5z77HmHg7WaeuEbHMxp4RFW0mNJX0jO970rSvg2xZT0fWSeb3/W+k+G6QAxFzNoXZFto68hsFQjOeq7WPivXrOh5MS3cPybLnGOykVyXTjSv51I/BG9g48ySDbp7YUnsJ/sJ2b6ouRezIpC55GMxKbvc8oBFlSUL5EBshEJzI7c9p0qoUYZdfYWY6N/HOiihm+9q9yF4HmSrS5bHS7xVgcXwmwM86crqGcTpdTau5alvB0776JDhvK/vUJ8wDC15QDGwPY9kdMj83ialpxYTkgc6u1mNGnXCNJlocxTOR7sfbUIJXI4+Bfr9WNnEx7OE3sdVitFPl41SpIAbLn6+4u83ZapkYfSdyI0C1FkRNEjVhZMAYFp1AhLy5NYzUih/Hh17Jhg5q5RP53nUeNygecdMAFsjPOZLyIgR0KCVMZWrzgC55N6KnM8ZqY2/QEvulLaUKfq5VGL2OSWKVj8XV5hrjovOHg28FKMfMGWPTQrZ+n+STeGz+H+0wsi6j8CpGxr07wRE0e8nsFZzqb409D5LiamMnXvVll1VAoHqB4Qtbk8FOS/Z51sV8DofWOGTeg8aaYIr5ReUp0eFfCvzDBnchk6ZFCjWx9FJ69YGMQyRWbLsqJCG58loP7F67dLAjvkNkVjMUzF/fCYZg+N5sRLDEhY3dXgri8YCKLRLsGdz4flIqiialJ/UuMXa8b1KvrbvmyFqMB7y5MczlO8ksMO8nRtZbGap97j2pTE2qnorsJZVTs3KHB1fwXFbKHKc/Q4Ks1zRlUuWuCywcNN/6BY1xLR1IT7nafIDe++T2L+v5HTmKeUKLXJfODvI8Lv2SI2VulgAt/azQH8BglWGvo+TP9OeocPE9WaxQM1BnwCftnC1p19i19HUqzeg30Opx1OoqOJ9XO6YfV1/3vf1YQMWba63jQAlPO/68C9Swi6EQvwXWC4K2tvgs+i1mCIHCmxsBnKxKAw/qI8Lc02K3SHDoY1pyoobRd1GL6n3kOEt74yH6ul4dLu4qdVTpT7fOR+dWyLvhxVSBD+6mU17ebDr57mzBwXkpIzTnkWBtjEBECug5F8q5Goc9Va5HA0SO2EWC6PwDOeSVRGsEOJVVQEyaq6IYx+3KPUz2qhgV47y9G827cEeQV6+y+ovVrEwlMIxTOYoUfvXc30Oas1O69SpNuGW4LlVxRhoVlXP0fuClR2RlRfDdQa2udtLO9/uF0RKXUxlUeCcQ3rvqlZh59D6k0eBUkCsi5iken5cY2OJPGFbByjyD9k7ry6x9fOcrE64piVMzVfrjlQFEpmF7rcRTVAynyrr7zTCcnya4ZWsmVPk+UJkEaNCqJLVYd81ncd/x4l2nLLlgsyzh1JvjQ0dHIbb2QxNMmF6ivPLIxfUT2liD58Xazrte56rIsbmxde15vpljYO6hw4FgXQUe+Ydhc/HVDdngfpaD1X/eUzGGLfbjudebYncy6tbH6e+48CEIHiYfBGsDXYE/nh9LdeHDViAt3IjulSylAM3LI2se3MlSExC1enAcODT4MCiJdWiGY3+oxW3I2Yv62Nyl2LvpiWUoxJ4q0cKezk4YLpNHhPYoZ6teGmzCdkhKBr4iU74iuyQWX1XlQzOFtVzFFoqD0cbs8aMaOaH4QB9nuCxfi9FaAayjyAI/Uw0b0L3JFCYdf7HBko9FGKsjd6z3nsDoZSLtHkVvRwNdLgO7NRZRrWPjodCIwKTfI7yo2quGUo4ax3IPGnxqgHgpcdxK2OuWClP6ndTBtjzEMJvz5BjGXgdTcAfUoGXjOvYCCYY08DcoY3gaMNLFo6NzbYqD4Zw6VgcqbypNcHokEbdWyeK2/25f8azleFzzEy6ZXKpgWgPeXq7ASZfa4sSQGTLoxin0g80sKrMuYbmkuwWP8vEbjowe+k6GpSA71D7kOEtcH67KlIhWrJv1IVXvg/eAulR8s3wMJnLZdhD+yJKD6qyyM4mUjgO6x0GWZvE5kj1fgytC4BmEo0F34Akw51kLjx+hH73y+vS71PLtFr3J7ZO5X6iMudPjI2VjMvhZFjTzpxb9qbnFATFlC3tf0g/5WgwttmhW4fsXV0fQ0Lv+OJGYpjGvAZ1kDy6MRHQgkwloLiyhYHUH6U2gsI8k4YUYCKdjDoaJDWNW8+uRyrZtwyiPP+EdbltQ6cmRtmGUZ0d2YuEzcsOG69o62gvDZBWiWQoA2pCtj5f81LhD3X3rXi22IXBtuPABlRK2UZSIfd5KZvXQXt12cfEckTNVdkHZ4620nMqr0D12aBB4BlJKEOaHcc+y9PJlZSnOWcFBROv+Twpt1RStNgjGvqzEyI5jwQdCpHwPc/Y5kw9KgB5h3zHrWqq8mZYZSPlOk2pUonruW0cdUp3AbrxjO5CagBMYPJkSLLLM3ve+2cKVxHUWS6A7zsxTBUm8FCfKPQBgCFNGi9bd/8Z953noyhcWvtPzCWwMaTOKnJt1ORwW0P2yYj9uwX+VP1h95Q+GstASa5hQEC5JegkebsYJrg9PHLlxRSgI9C7dIiydZaFlg1szgIknKOMyjmjk1OypvyfrSt3JcfXWvNQUjVJi5VgurOv3G+2PrnW7nhTayCA33Owcmd63iRbXC7rk+WhodX8keue2qNcE69ia5YWfcYUL9oGFkGUU5OX1DvS3sz7CueSFbYwn+eQ6RT7W4ta++Lj9fVcHzZgAfZyvJG7YILKJiRwKp0rqlC9ErIVRCscxutTm15epmj1DrPQQ70dHxPhmChLb5xe9G1ohOyFANe1hX3YeLvqYjXG2qqkbBwb/cyrNuUyhFY5VePgZ9YN6Ln2zmJ+zR7LzTZuNGacA6Dzbo6yrTJynReBwkVSuExuYxKf5Q60ZoC6DcugMLn2+nYSLXubCKREgwxPCuR6LpBRa3akKG335GQsZ8ub1taod+UWMZfA14W9Iyq0xfdn5UGfxAzJolfLyKDX89VQrcZGsBuAEnfd8yRoFlCtrqUN6rIbx5UM5IASWhWCsVyILURxk8vE/AWGNpF831R+DYBmG2v9x1M/18NXAkMEyNvcomXewow0iuM5FH5bOqR7f2wlrgVw5LzcPucGAHqSJ88502F4lqPDPDW2RiAg9VCNh1EFklAGno3QsvYhOmR1y172cRU27Nuf8bncb7mHVenIsbybocTBSqroNdE8oOdr63PCMnIHiJW3ExPVUqCGVHpPrHOtvXQmk9JNHytcZXvVZYVnCSm5PqE8Ry/T3q5En9zuDTeVQ0l9Yk40n+9nVAX6SIt3eRlg+zr/vO/rwwYs2YbzLa+KSiSyETuVKXoD0ahS8HtDl2bnhiujr02DVlSTcfrK3wi/3423gYDOvaBnDkB9ApAdVmBoKFlVVGGBeZh3XLkVbMHenmHq99tpzAltTClWehDqi4Bto4pyroorZ3PUhpvvaqEY5WhwYx65eYKcf4aAOF8EEE7HbxU1ZSDJTijX5w47AETLhUCq9cwhwOUp2QQ5zlSRjaLs0LgSkHDu6W1uchKWtJfNzkl5SXEyDASdSbMEoD7rIQN62CUfnbtCo1frQmA9WmYFCurePWe2pbyRQYb6AckgeL4KQWAG8q6Mfsk1c7aUd1HrSJpdvwMU7lM+y9ng2PM86DFrvhi6ip4/fdYdF7Ktyl2KLScpzlWuqn9T5qlXpu1jDir6HfqgSoiFWFYUnaOR6JBztsHuxonY+vLIePLZ2j/RuTQcezlDmo/aA342l4BR7QcycEp0r7GI1bj257fjFrLYXe7relcl0ROg0VHgXkybI5tfsqQrT4VAJZVMfMtoZunPrb8UDABRJoEtrP7THDa1dpCyTq2BziSC3fe2grDmh4DwpxlsHSxL2RytM3uu3/7ex+vv7PqwAQtRvCUwdpITlY15ZwQaA5sxhCun2qj03IjQFe9NCEWLiiRFSy/lxuPaKlHcGBu48v4tPOOEMfVOHCQIMYV/szkXZdsbn/HerYNrxYwZwgFaEXgjM7azVl4A2anZ77R5sze0vG7MDW5eDz1/9bpwlK7voiskZKzQ3nK0ks0jMZ5Xye3efbLLxFn2qdyFbJAgKr0MAWP5SoAsBkpdQamgSjlTqavqxQ0av8OSSyabMpxwLnlTSNON+UtslTLqa1MGWsxXrYWYL7Scct1Js3OtZPRqPQXoTRmjvFiupeL1w6rMKOcsTbakTgf+ShyvyjMq8vMxO2/m1kiUMVZ79Zd4yzCoCdyLhWj9HUr+dBZN1HvNBk8OdpTnYjpDBhuwkBv3f/ZngC1UwvOtOKbOzXkbYGzrVV6/5rv0BPf0eAmd/+VhBh6b0KAb2qME5tJjM3p9ymhHyc2W0Ks1L3bohaCr32VLEmelFOeV6zha/oIAoGQkCsR5VZN0LiuwvJqpFlfMduKtuUAWg17vozGZSdCeAccX3Zma68Ih1ZoyYV7JwnxH0wPbSeQDnVzr+8XSAN7L9TGH5d1fW9tp2xhC44r393foffJwMSmDgHJDPImThxG2V4TOdaChtU2jsEz2BlFfFhrhUuKbMhpQaXPTinWex4nOePfkXje63CiKm1pF1Ni9J1HIVFSlQLz0VuIXxgC5IqOXonBIrcFptHcpJE+iE/BAf++8h5gDkPUi3rr0vb0zqaoCSonmse4jRQz9b/199JwBaz5XKC0UxtKYTKF6su469Ts172rBXbIoGjx6Ldc7Wr+Lybkuo0Ql6bb66CToLf/KDXExC8opAeWs/+8KVWsm2WoZ5XhULg6IkVDMn3LtScg1GBoDgYm6v3IJ+F3+3kpAeQp1581A+8GZUgcCYmXIUl1a+Wt/eMInCNiiw2gVahWInhaGMDZwM4KUcc+xIKNV4abjdeihk+Ox5HGUsXOQIrAT/f84Y+VM3FQ08vfqPSQ9UYdpXvr9WC6/kpohhko5T5SZ2WCUlwx1JVmPJ9MB/Ayrti4pJ0860fQV76H8JfR7UdaOJ8p4scIeoqdTY+sw2GTxMPBRzojWo5K4Xf6UHFtz2Sc8o8Ogdy3wXeUXWhfAdGLNG3VDArgFjGSBpTMYYv1p7M+7uvIb+POerw8fsFCh0ENWHB+iLUlD6xCvWCGiaQpNFhK92eR5VBhC55SUkLIfxvFkTdj6NhJsgiqd4VOW2JU7L1VE0EicjO+28WKYAkDHfMUU1c3G8lq9s6sMtr2nxlNzQ8M52fbbPSUDHEgg2MGxxkQQl3dtFN3bp1fuXsu8yzr6fRlH9hPRGgJdNcH3UCVY6HsAdBYJQZvmNjp5mV5uViKuwj22bnq2MVrDx1TMxprzVCiIgJny1ExGjakAorNY7Ajr4QCeTks6XlS9POGSv5LRKFnUGVDGVClv6rqzZBwj5Ub5VAC2s2+i51thGiU+178vdi967EnD1WHaleDdoEFyyHVld+BsYxcvfI+WPSauq/eRM3ue/zWg3KcVvsQWIhMgqjlgaFcMXH1W5yZxa/m8X/udCTy2eSqAR4avdVHvDYncHeeZsr2fM8O8CzEzti9jLib0eI5mRC62liUzbAbnc6/wTeWKsaJF1THlFJyvcgN3HFPUXF1f9XtuZ1aVHmOL/t4bvPf6Ae+l/kIl90zeV36cwEGtRzlXW5Ky6U3+W+O9Ycg7tl/jfDJ7gda77B+kXi/Ufb6WlFHut+D61PsaQN1ysz5eX8v1YQMWN9z0OG48H6ApPOWamPemfBH3DpSj0HKYl2YBFOfmGC69kWVY6T3P3hiGiSC0bqwE0T8VuBLYDMHyOcwXAFoh+P2ONwxdZIcymPR652GQNZYOUfVLd+inje1ScNDG5DrE1ah0W5+3Sr3dEy8jtvKLYgNEW1VIbXzmaOj7FgpxsKYj3GcbcXX35PtaiMxpd7F1ZCe0npxLbImF6p3BwxDBefS1vpEpo8pVvs3qIUBt32VoLP6vP5Rhvi+MTRR4twZbR4PBPKp5IY3+7M9z3QFsjBQVu5pxzc6N0nKb8l5yauOey5itaonOv2D32fEckmnlA901g7TWeBlS7bcyBmr4VnMhQDw6d4OyRUMlw2Ie956PQieEBrznUWXMdwQQuRmtDvXwvjX+Ms4eCth7JDlY4rvWFrhGMxYFgrx4gEc6ONjxi7J4EGinhccA5VrwPsvBKpnf+vnYXJJJeWkAP6r30JZkyuRfhmSzmNLRbKX2U2Kr/JqXXW+3I1QyT0a4fqRcRWdMi1UKysHRf+SpMNxJAC/AXqFDzpXpwe62zYdDul+TXt9xUM29Ipl7wXu5vqHTmt/rWUIfNmAB5P0qf4Ab39gNhnTUSdY2NY26U7Hew2FcoSz1YTkAnSTXgERVH2Y81fiIXhYRNxVnmsdF9F9GhqCCfxRKQm8K9VAoJUYjJurVxuGtw2VsmbRLBcR58QPz+B0DDCx7VgLfwH6Mum1ssUkZXbZaH/Nwh+jjeqA6S8owQZ7geQ8Z+eA8jC7FvO3wqVLSon8ZRlN+SRm4jXK/YzIkwLJO0dlVuUMjpzwfeu2UCc41bPz07i6J83GNk0aRpbKii8uz6345/X8l+N7VwXZe2gz+O6SUpVwBXB+zmTkzQFuVWxmX4w1BXC/cOPv5/I5XS/AdlIdV8tuLDYEGgjg1fau1VrWTDOMaaGR3h87aa3wPNWjEAiuUWwIIVbJRrsB9uMvjdtUYlFSa0aGhGpszHQQqLofMxVEoaN7cnwzAsYOfJRwFPik7zHUhuwHTWRM6agFYOstP3GY4vBlYKCSpYzR8DUc1YKtzt/YckfWuLMPmGjKBehqTqVAbdSfXlyH9khHKp7NYgB35se2rmhBjcubD+gB1Evei56kAJatisi3UHqZv6BChx6T3QMvPxgpmh6rILsphLaDtjUzXmv8UmfvDe/0oM389M//F9/HwDxuwBLpXAIViM2zMXrfse0BnXWydLpn8ln3vONG0qsXTO0mUqLq+N7LDPlSM9buopEo+wBkfKTwp7n4GY83M0fCcCG2m0dKvcZXSZM4H81PkjbFpVSlZ9V2Qx2NKkeAvqeygMIo2oY/NOqoKoNFjQxv6rUyTBuFSnpDFjqkE3EB4xY3Hpseb6MolKmD0OzA+TqpdXiyVPZknC03FacbY/qi8/VIUurRTASQz8AqXmfeWB1QWKoN3LuCnhnTG+O2GteSI61UeOcNTKt0dO0hGrJN3PdQgtoprPKiA0X16COQ8rMLx6R/ZLGEBOe+lsYVnCLYI8iwfw421GJ7R4s79PRi+idYB62ENTG7ZVtBw+LjR93K2hj/T/jR2zct/fYxyMgZw+ZJG0qpgCJ6AbqAXvbbKh7Gql7XB6rMMU4QBKCW5Zu9Ny63I0pMO7JVLleh9jzKyN2ybGrdRx5bzw+Z6KNAsptIqydjEcUu21f5JcyxWXyS2keiTl6vU/9qsjTNDHVKCQjrMP/HcEPYxYnK23o0OK/Ut+ndk+1xPb+8Yfa4WAQnqHRRluuRyrgyUUq/NywqH/1SQ/C6uj0m37/56q5dFbWTGYvkzCvnWo+Xa3vVbQmOeJ7snKn+B9yjDtIWZStHr8DkK8T0Uw/bN0UfX81mQ17q1Si/GgYwPr6aemz2SUgF0iBl7aGDb6KVoyFAxGZfzWYpPMdzGW1226oqo5odJsvr5S3vU44qmzEFjiTZUVj56eW3PhiliEKB0NYpAy8UAAxWjywdKUdxBzJt7yKJwa075PCUJZzfj2/Ki0MqewM6f2+sIeVwAVNUFQFUGm2enednnhh6jZK9kR4yizYVkpWSDiclb9doMNSDrMu+eF7ZddzZQY6vhir30Oec8Jm76VVA40OE3vm+0IVkvW+sIdIfps0Iy903ZC4CQzYvsJOxp45ltRBWGO2jU9jw4gm05PPU+4PtWWId5CwLgL/SkO4meZ0ap1NXAvvLpKE7c/yVzMMerwXfPG4EuZf9tByvU1HELgzLBP2/mKG0eOJ21JN4egNdW4cR15F85dZeevvHSFTyaWwsVKwx3WpO4K+e494uzwn7tTFC/AxkhJiErNMe5tM+KbS5mKbGDnXFFV3dGak9SrhVGZeJtHTPB/j3LKevxvdNLOuVr/vOerw8esCgPgAg3G5jIuFGQLBFTpXJFSTImqd/T4x/9M8AoZ/OqzlfmzRUV6Y2K/BIzcOnj62ng5WVx01STs3lfQzCqOAOKNyOgrrts961M9jLKNECch61E2sIN3NQEGZ50y9/Bxio6dVRY4mxjcrwxBcBGfDyu3uPE2c8nKBnXBfI86x+oUAC/dqDDNmMdnKbwgO7XYImKX30+sp/txmt1zG15yQPVMj43a8xKKDD0Yp4f76Nk5dHVClzLeLE+KlzfGuaWW+ChR4UeoJAPExMJVHteQ2CByZ5a52ID+TOCFIUl00BRAZSYFmq0dVOeEnMDuM9knVKdUWVsaBT9eZXs6KCC91HOwOg9qzDJ7DlzL1wsaa3/Rr3XXHoyr5+zJTDF/cBmj5aXRvDECidVCFZ41FvAk9EYZM/KCUrgRi/FYmNrXytUR3BRz9Z7Zo/Jw90tP/Uus5nbebG5sv3MnCJnPRkKzAHlO3UoL/q8nzLoSnalrmCIms6j/t0gjeC018wciUrIpeyzequTzHtJCfQ4djlT5jyldddmkn7c7FvKVcZaL0RXmnq/l5XTmGKdufdWb6iUTkbNi/RY2DiZTP/x+lquDx6wOMUK1NpTiBMSBlGa9OzP3UNgbNXDP/ESOJ6wVQz1AVa1mahQ6BkYoAn2SiBAgCl8Cu8tMuXPZehMgVSc1UtiSTef99bL4oZSOJ7Ku6XH7AoF9vzkBg6dGxLX0OnSpGj5bvKC6740KAw9eXdgAgmFHIp92pJhqWQsx2CFJQiEWhmSYh9Py2M5nkJnzNCzeStEEn2ODb1idsZ08DTvs0tf5xpDMGmZYKWo6wTfNZVTwPcXRe+H3zEhmBi6xjMqaVn9bYBNgY8r26in5MBzK3gAYB71dcplAUlVMdl3HMR6p+Hd2JmRK2MheaGcUnYsl0wGo/I2dPAiexUBMtqU5/NV9nMgu9Is5V3vhXmfamo3GeI5b8DqS5QMNqUv42fvy8vDxtzLytkyUO05Hg6EaPTHyzKMxxsDfHbpfgxZJuet13G1UWgA1DlTYe/bMiBgVcyj8rZu916UEbWQkADG4Dyb18TXPu090oBUdKiLeSXKwyn9lmHhL1vXBbb3Ltv+jCWgANs0UA6V2+Yl/2KWIdBAR04MYWI7p60BW1f8oYe2ycQCGlX9VMwXZU5OaOm6VVEarbsnmUD0YbwCxiZb7/AKfP0Jt/ExJPQzXlkb6tqbmcpYYAM3m4IsRBlhMhO8nyeueV4LXFGcK+4qr6OqcUTvSpmHwgUAvx9dXRBosMHwB3M2zENENgDauq1iVzzsyZCXZazOB1PwZTT1qtxk9CC5gcKMMvNW6IXBQEkxC8ebsHFCFHgremOhCP4qUZXvzpwZZ3XOB6y8CXpyR98jaVQAzIfuFrrG14pmKNRiz8l+Ty4tw2Lg2EtmRAmPHoduLo+pWoVXjpDCKbBwkntx9PioYM+mt9WzgQq1ZHnrfEzgWc8Y1wLX5bVvwDQYgsC2Rj7GBST7c2QOlFxaxpLEgxgq2JrWc8naMKFYh/oxhFbP6z4bqTnuObex2fyz0kZsFA1WySqZDh6JEVWFlZrTfMtBWPOzA4e1Hr1gb4EZrRs6vywgj/usnhxbCTN1Ur2jctysQm6xChADxvmNa+99MitiKo/eCx66cvC3hTpn71U3zN3PKjq8kcVkGCDimvJ95HS4vTI9QpGDZCx1iKD6BhG8Xhfg25zJej/mi2jduYfMSkUBHF46o63KwcVoBlrWlW8IqGyeNyPgO/sP2STPdxILZ/9GLieDdkhFAnR60fPz8fp6rg8esFDQaBS4uZTNbXSsyuMAyINKAp26n22+VXXSn1sPaIUsg0ejP20MaGWwlAQp0DTlGgoTOEon+GBlkza/Jbp56ZwMcP2bJavKE0ADDYIxz9CnIUbC2kbz89GdHTnfpZjnfX3ewxRJILO+KyPPdbr0/KlPTilCheAMSOiZWL8fz9jax8uTq3n2MIaUBBoUiEnhO89QHwc+gzJB8OJHy7P8NrC8NiUOBtellXAzb/We1zYgt2BYByv2kvU72nyJTqYx4GcVIoLJyxqDKqFqXpSfwnGzN8jZQHZQ+Q7bR2ooh+roGQI+b7UXl5KHPF8CHQ+1CmCysWFUC4L7bGeDTFMZOLWZBzqnwfGElf+ej91yYFioZUvCNeBA75csgfeL6RBY4qDBJYNzc66Q5NL+PV5i7WG0LGk9jv48GUI9r9ZpsjCA8kDtHOg9WMbwfICckzXmYkBhe9RCkOxDww+cD61rBN6ppwAB9FEtCcQK83fcZ6WbxFZWGHPeY0v2VXhwYu8cbrKhkBjL4dUssMv3513q6AIQ5BDcocGPfuYNGm/a+8uhVSM5SA8LyBQAXKCzxqtT0iGQz+u2AIQhufdyfUy6fQ9X7IZvM+6j45TsESIDXRss71LVC1kxWoVFDqhrpQsZN4pXPSChLrk0wAILVHzAxjKomyZvzE0U7Qms0AcEvJjkpbM+RD2yD0sly90ocbZDl/eYZrAc2BXgU0gHO/BZE9CGj+WLs+Zxa8bHecu+z8qDKEarGlNtCc7Z914aMhU24O9YRSOj70miNBLFfpCCFTBKbCElGrM11n5NlbAXWNuYiqOVnzMwa31zb49P1qbWRU2wyhDTq2aoMbLLw8ONQSl+v25DFUzyvDV8AhhXGs69H0cfhpeaw/M+ZX1pfI43nXS75ju1rmQw1ImYsjYbNJ73nYujPBBVQ/X/x7Xng/Oj5MSa/525S/2cfVEcxGqvew4L0J58yTs7x275DNwDBX4ZFlzJvPUYofm+32Tn5mKFgAYE6odzW2Lt8iwgDH2gQy7ro9QrwXO4FKq4AUIjK1+qdRXZTAfiXlUnGWIlUIGO87F/ToDNvdTfa2Dboe0Uw6c29dRFBQrHafmAHOeshnMn1wgCMnQIxA63SPSYo9dwXJc+d7DKtZG8Uc9Pht1bv3ifLToy533CdaPGLZ1UNqI+3+c4oZkdk7d3en0ELO/+one0/p67gqnY4fLKxmJSyrDSyyDLwHyNjq+u35+P2TkH/J3R8GINyvDlsTyopRxCG1MeBhu8nSHjQgATdW920F0vkjoSHkDnklw6Z8VP5VXvC+bN1Mbo8z/WfQTSRm8kvvy8r5ASN9JNsvLycMwbtxwf5oasNuBkf1pJqFKKnmkNUR56gU7GntlaXlT7Y9HtdXquG3Qqesaj2eVVsmHhACo7Z8Fa2TDp1gxmKWyvaFjGyHIoCE5qLsa11xjAAo3Zxob5FR5GU75NQrkpHK8r2u2UcjEg2I0FeryzkruZtKyQDsuLK2+CuRHHU5W6GwBdTbzMPpONqikRaCwjrVAB37feUyzLpb1aZ5YUauGcHNhAChlFjY1sRNIYxjYuXg4eyMreho05ZyI4/F2tVJpGl8aWss9KK3r0DFEoMXnY+4ghye7SfNhQ0oDwxdbiBoCRPfEyZuRiFwbzrziXZCUImAkq5ICsuVhdaXteG6S0LvPeMNx/flGeWbXF+eCzledUOoxsgxzP6GfPS+v0be4AAW6MCjMXUKD8jerInZfWe6A4WfhI1Z3lbDIpXQDKxkMA5cnYt4xXWGIwD+zEgLoR87u+Tz5eP9/1wQMWKTlD3c5iUHnN+2rSxY0aP0X5RsoTduXo8d1usU6j0vcUpW7etmLFow2C7uPsBnYlwoP43FPcQlBopY7YE7kWSAp7uTa4DsgEHsL+znbYL8UEXNhcrWlfhTWKBo8JASJnV9g/QUb5tnHdzRzx8DrldTiAtIZbBzuiWnyeSn7LCVFMvg1yhyAg0MTTs+WB06CaEWUlDsc/nvhZe279m6HH5BpRkRdQmw8sZU+ts6p70jwwtFIja0TGbTMmNYbjqxBdftjpvALL11a852OBytnzpIqHUqLMmRnXerx5nARMaXkTXmXXHV3TDDrluMbOcF0xnZhtXJnweryxJPgyaADW8Q90JEZqfdo7r5yia1eYeDKp5IryK/AX9S79PQ8hdc5FgWeuZQEwGp+41kGc3Ia2N7LeeTz1AaP6HEzuHMFxuJyDGs95b8DVPHfAACZZQgMavNcGGozp1JlZ0eNW7gVZAwfMRw+TDA/BP/VO1Msvh8jmViHP2ls2b2L9BpPOl4zISeG4bJ6B9VzqrVv2hfsmbL0VhuNUMqx/9HtuJLNXkHJRw2SFAAdQwi9PmfeeVUhjp97l5XL0df55z9eHDViIyGdvpiyGYqscYv+I2qBKIouUlyABi9Tft14hRj8G0MZdShMdc/WNixZ6p/CVP0JjZOhdHp4h9ml5G1sMVO8XGzWsz9Z9vHzWm6mt3i7du4NhM4aeRp2T5MKYdxZ7BsQAMWHOqXG9Aw3n1b3G/oy8+Hs0yLPmVZyHBNQUzXM2CEDFrLH3jMlCGmASi5ULVOkMo+Acwgxxgzq+Cz3LSUDn+RYwA+ZhEALcNHmoRWIoIytcJrawgDHdUwecG0ANM5Z8TnmeowDGvDMAc5YXbWck+VknG21t68uQhHrHuKwR6HOfsaSTYb+8yW3gXJ6h85NoXJHLcVCHU7JhppG479UewHJskuEx+yxb/7uXT7l0sDqei11iQvel10oNDAu0bj1RbO9lgQVEbo6MQpNak73PkMINda9V0dP71UOAt8nneVSIArt8bXkUu+pQVdJb4QmKuo3ZK8L0e+rJyGZ/C4ir4SGZ59J/4yU8ctT7HXwXyLnr1gALKMpJLNDEVgp65wLci72rAyEfOnSmOSTgMadPDPMFvW+NhaUOpePTJzPXexypowR46KTC+CaHkb031N7/4/W1XB82YJEngrcMKJO3ADNU10btTNa7PaKdTIhyOhSTN4UMgo/KC3jBpohZ5uo9MWblkEgx+tijn8EwiCd6kqLl3/Ud90Iqacw9KADaVPQseLiiKN3akJo/lk1mj0kAJ9vQyXPlfHJsnBtTCEArks2o14bm5lXitBRQlNdtdpsKaaCTWF05l9ZzRkrVFMZ8dc+clOe3zWvRt8rncKNSv6dRUb5B+vhyMxRzm8PosGR5uIrrm2zdyksnDJrC51zUs3QoXL0/PWV6uOe9JVArvNXKmUb8eIptPriGAio3xnVesisyCMytfJsXgQxliomwDgjTqmucFVTYNZYX7syh9hrl7trPA9q4i+mo+SSoWN8JjZn5Kuz2K4bFnjUfeg3WImMbQ5f1p+RVbRMoTzel2DnqdgYeHEA740MHQInVZx+wyvUk+GUIVe9GYGn9eVSKT93EeQPlDmrRTwqEOoEAk3vsfJyLSQTEYPId5Xh4A0xaGmeJ6DwUyNk61J5sfNgMjAA22Ww6EcNkk4x4mM5wfe8yZa0AOAkMk5LBcwZajjGTzblett46KPRKUIw/amcJvdfrwwYsdqlMEFAHQnlSwM64UEkklXS0Aim0HbU5Vw4DE1rrXvW5LZ6a9hxTNDkqbureZXlEBFaiEQkIirrP1gtgPki8dBLjlj/ADcYBWoY9pGxCDIeSd88CCJbZT4ZiO7W13ud8bMbAG04R9BCAUDEocbA+r59NKr9WNgsM2TvPpo91eNlYFQwrbNBzzXGjPrOt21m9ZIz1mZc23owvM6HvthTVPUvG/2UQ3BBayTWVG+dUbeqz74W54vpkFZTzBNwoPlPo9fnJxF+rHKJh8+MYvHEgXGbLEHgPEQcmTKTemsuxUyqfi54fsWuw+5YxUfy+7i3gE6lS08Xa9Xuy06kbLc/rWrINhdPCqX2suVR4ceTWw4XzL2PL97D5TWItn3eNY0/WVv6Fg7MBMbINMhwooPUG14IhGxvj9l0DNg2qrSQX2Bg8MWXHAkvODnEtBLLVO6crrLwVAxIdMrQ1YDhRpykX2B5PQ/uIDC7lQ6Do7KossYfUe0e/O0NOKiWfDI3agZkKqdKhguZFISNPurYwoOt2/o5z7k4hP8wT1Ln27hBvbBIrh+g8cVnNweFhpB+vr+f64AELDZuoPZgSVhImvcJ98yHbw/IYsjMFMpYMPQFbHgfvR8+jc2hoqVKHsDEUIfDA5/Oxbpzo6RHxH7ZxCBLKsChngxuMHkb2ps0L1JtFLcTLEyON7DztsJJgjFTCqEp9ywgQTGlcqBARlYq38SZwSRsnGSDGwW82L9+DCoWgS+cVjfVu8tQ9T8a8XCYsikE7bg4+LKXlMXd5YQRn1seHCtF7zeSRnYtx42178iqfjZIlv0ZVcyihddrc1Vp0gnUbGIkiAUD14KA8uScsg2+KXknJ7uneGKmzPOYosLVVMNFYUUEb+F3vZWOYNr+U3ZewKqSWCTcA533JiM2P9pobaftdGx8od4DVQBpfhoykEjipE/hKZFgZRmpVotJ+VpUhsE4wvvaz1jv0PvP97OcqdW6FycQz2YSWK2fjuG88tKD3AbpPjPXO4Tg8zKK8EmCr0lIoxDsfA50IfKTyS+QsFaWXLkej9XEnpIb+v+WEKLTquVC1jnZWkPZnMswbAr+I7DC3scwbeOG6OTBlGwvTSaxKJAu1hYEBzHui174vnRlnd7ew8wz1h3kv1zdTJfReT2t+X1P5M188yLBDNQmvBKCxivLW15fqy0T2NGBVRaRENAJkQ8ikdrdS1kvrgfGy7pE0gjpQbSlFdhQV1Xl1BQDLn0l9d1wBMNxjTJBKg0c2q5AN3GD3jWvfn/d+aw7Dxsbs+AItzLSPE5gVgtiMfClUJWsyNGUlkcBSBs52zIfE8Zo0eSKPaO+HBjBC7+NgIhJAVWWseAcgK8PQVylrGfhZvyvPMK6xnShLMKicpfoMKkdEnphASineyD4z6a3SboDJt+3VpgzqmuPOmbh8GZhkcigLYl+6V0tGIrEAzlHdSwkSnW0bJ3C9B+LCmLmxfTMQIzVv84DOPFkVXw1uNOcJxA3Q2sNZPT9iMbklTf71uaJC1aOoPu7Gk3tYMX8ads1Py3wErINsyJBGLhlpeVjyqZwf9L6kARWTyDk/OCaplz3k6EYRJTtjARjJHPcxAW154v4OnMtwWeFcMyz2UmtJA2sVLwpfc34om4CYs4wOo8Vcc7Oz0sWmlnOVaNngImz5eXo4ZKiPEzrVXc6K6eXhoTvinAkB7rgOxMx2njhWLF2Cl9XhGmSmDJCRdU+sRH3mlQCmIwHMx9xBS/2OoSyFbDg22DyVniJzPfSeuzxEQsCkw+SddP/uLwGMr/v6UWb++jdx45/l+vAZljIOrPhhoqvYhejPeY+TjXIMABlqEJcHthwDYBlWoBHy+seeoU9PqWO862eeoHibMJujPT95nrxGmuHu8Sox0e4hWpOgQxUdnID2XvdKnxDIyE3hZXu31STu1lsQnRxGN1u4TV6f5guI5/bcgFZ2VITTkuWyDOm09+C6iZlirLs8b0RiPsxWupfsuPaEGeoa412DKslTMRRiAZiwyt4KRyp/QYYv0V1wjSHAzXuSjdgBzbq/FOIwZRjFEFKJW3+edTaMKVuCWLEOBUKYkzQ6iVVhL3QuwTj53ZahW/AhhoPA1qj1KfDWcugVMFtY1SuLTKY7CbJl20u7PRFWYxo9Lq0h9wvHdt/GWSeqe7uCkoFmaVnBl5iPfZAqjY3y47SIvZ4yqgMCTnpH5r/w0FMBoWzDdnCdc08U1bsyTLqMrXQZ1+pG1rV3xtJj6sbtHWo555wvjrsAfvp61h5BACDzY6HsNX/r7yqjLz0d2X/nxdYTCldyGmezGmJHON2uE3OXO7UzmP65yqe59Fy3g9JzzMoy6TKXeWOhku9E3U0ZrLwWMWrUTTW3lIdR+VLjGc38f7x+7uvDByxEJ+y7AWyKwIXDEfwWUgj0YVrcfM+mJEoRrzyNzv/o8AuaPrx0HxAvrY0yPl7CJi8T6/vB8UgJdJO72w3aSYYdrtLGJVgjNUulc/TnNIaaMxoCeuhAj0Ofrf/ISIfdz4AJNzCZB+a3UJmeDykQxvwhVuJ0sh+9OGgsCqs9m0KmkTYjp+Pb7y0kckYrlxIZhTbsu2IEso0sgAY9uSbJc4woR5xAlvqqOqaaZq0Ho8/cqXf0Ls0rxAbJsw5MHFheMr3GgSoDL/nKBhJc36HKuALMBq7ZgpxhIgF8Xh6Gyg55SqnzXjS+x40xqjGIrbFbd15VqCJkPFfzOQPTiFTZb/fEiS455rtwKNtp5OgQLvcFDS/s3ervykUCmgW6cA93XoR6ML30MzrUt/5M+79kg6BN4bk2imqbUEC8w2IhQ9lrVvPFPCVWlHGs1HMeJlSeCCTX67sWEuUPa6xynEz3OGgaL0u2nalViDij83vocGWvBfeY5q4+s44P6flkkYSHqjYZ9TYRKn/O1T6ASd0E3yVbrGIEX9nnhKCs5uG2WnM7VgJodptzafd1B4WH0o6XqPYPVXJ/VpjzfeCVBD42jnsP10LJsXmUntlOL2kJ6pIM9agwL5Of30ABPX/3VsyjdI+Y/1YVAIW37iGlYAZli6OTNr52tr83OVrvypJLWM6ATUYhf3aHjJeuhAKgvAt+Vu9Qz2Ml0m05Lzd0oN6lOtQ6G5SBzlVxhZCdzCeKn2wMu8kyf4K/AzqkczYgIQvlZcIwhZI132qLT+V4NcUyIQYksdO+NBQKOVCxWrJse63Y3h96dnZYj4zVrGqyul+fLbQeMl4MIANgibFYOpZxC8z5M1P/P76K9jRHNpNYayPwXq/DhEc1HeP8UHETLNgcU174WQdmZPT8pHKCi1n5IazO0wnqnFcxRWuvqMwZtpYui+cyxN7nRiDgGltDOtx6sLnel/lkZDz4ua0BWu1pAmAeoqkE0woH8D0ZtqKBvmVVY0IngS/5teqmWmMlb1PXUH74rqWbBICqrYEnnvYBnrmHmDgXBkS2ZF7ul5I/T7oW1rtaJeHNfqdjprk3Paj9qd8V2GZFFntgscJy9HxuoSvqNJV7U9ZQY7Z7W0K0wtysrKJeGdh0ep86X12XX2zMNlUK8Ra4BSAAjozVTZrsmFXMDfsej1H5eH091wcPWGhQVhLXDgKofOld0y1TbwdgM17dBr7voY6PpaSmsRSqTApYElcbeyqlYU28BFaoTDQOgDkb7NEAe4duylUnDptBBuz5sI1F4BS94YFSsM+7F7J5ydHvxuRb9Q1gO3syJ1bp5Amnmgt7RzEhpZRbYUYpIbTCrHErFHcu48Xy3z49OKTIlPgsY7gn9AqgWmIuT6LuNupmdGw+Geq6zTMQmI1eX5VU1hpIIdXvxVaA9w0xKgSPlIMNwF6MZbLS7zWu6MaIfJbkqtaBBqYM49awip4uAUnJN+fWDZGHBoM5RLD5NVnj+VkEB+yg7Otyy1I5sxj1PPVQqXEkGSdbI69II1iPBHBYYnrNn5q8BeB5bDTq9IYXa1LyQmBCVsu99SqvJxBfY4DkzMu0xebSWWCnagMA7jxpfwXUu0j9pzzhmFUpKGeDE0MZMQDurKzrRjkCxc56/p3Wg87ETR8Sz/2R3KCfxXlge/youSLQEkMmwGq/u3ESJV9k8K4uH/07JT1Tvowt8rwVyTNzmiharJRyu2D5NOMptuNMKJ9kLJVWYDllsj9hcvM+rvkN/HnP1wcPWGSEC9Uq/g+IumxF9rZ3IeVHRc3fZZf0UWGx1TXbtmvT01gSQJiB2s6ScI9gENRwHFCZrjZ8IXN5ZaUx2LTIQZNi6/dVIjr6eWKaDFRNUciFDbKN7wJq+xzv87p2NBWQQiMJUfdiKWpOkbC+OK2AVmJdKxp25tQBjwRcFuNeWfuQgt1o4vLO9Cwr33YGjHPN/Aiul4xt1NyfUC8byRvzSkwpqWoA2OStPWXS9fyz7sUDFFXGS3mTrHbOw8ZoDVOcvk78M3j/6HDm6M+JTSvQwTJ2zhXzKlRdxVwllqpargnH5WdeSbmXQWSyOcuZPf9Gew/Y5rXjPg3gJVMeCipWx3PW+N0t7FqfTZihL7C6xh/6Ds8nQlRobvSe07ve9aN8LVTFRHkBxxFqHT+PnrcuSQ+FzyItTDvsfgQdNvcbaODcOEC5AVIKrzEMZgAzUeX+N3tqkOk0RsXL1cd15WOo/cK0OZnN1iofDuhkYs1zyda12y8smeh9LsYaWE4O2wUMk+8CXNLntk3EUFVo/3iqsVUCMNdaCf+Ab0WNh+FrVl5yXvyUa0yCpn5foM7kmrtteB/Xxz4s7+Ei1c7zcxQrBbpLItBCfIsCS/KcjvZkOWWxX2OrECB1SPZj65VRhpDhKhknM3x51BlBJvyu5MNCI4mOgzJZ0Nv297tAXsv6C5Q0S/ZgnVVTz2EZdZUhc+w5gOsnuSl7GXwCv5ozemjKlaCiJNAwhdFx8fVOnJM+l4cgqIxXeZ9rvmyOg0CkPDXPYclSnswxeLH7BxRGwKy25mY0nDlQgiCrLRKb5uO8rvm2jsW5h8U6WTi3P/ICS3mvrrM02vuybkmHBfyilKGAqK+73UNybM3PgAYA7JkzXvr59OBpEDSvT8U41FR4CCJqXB5ClFfOTsIqUbfnEFiHvfcw0MZ55L5kTtILlBOxgdbc9+Lb+Rc9P9zT42k9R52CzUtvxgvbqe181w7NtLJWSLoStT0c4PdIk0vAQETNvfbyrQxY2JlVkQ1YIB22gWABWGwOjETabI30VPTztvFWCJ5MGKvSmDgu4Hf0Pp8HuuxY99l1Hbs7b8CznjsdAN6AUOXBcA9Xx2uCIIKRnQG1e19SoO/29G+Baoa0re8N351zxIofMcSl05xZpuxwE7kj+PH6+a8PHrAoHEMjER2CAaDND9iGI9V9whL8bjzp+tn50N+Xp472XBie6FCGNRWiZ2CH3q37BNRUqD7Hjb0M0o7s5Znyn/Q2mOAbN4o5qNSNKpV30E3UGM6hN50HRPN6HxcHR6nwQmwty9XwyUILmMtQ6QTfSWUWUjyi/k900jSrbTRf2Cj1FZteE0HQSFDy0yqxMJtRUF+O5GexJ7cC8vzYf0LhMs9lIXD0ROtaHCX2Tmxj4fiU+1HhFAKeDAPINNAeUuI9ZivwebdKVgmaFT7MCmnQoBLw2Vjzkn0WDg3IpGxBD5ZnW+Wj9CyZs6S8H0DKXZQ/54sAx3uBEBiVwV/JlalxkP2kbNEIhsm45sTmaGMV+Hz2EbJqs9vGbTHrFGsa6Wn3JfNDpqhYyJiU1wY6qjBDg0vqJLGqYJir9xZGM21ku7QOdb+taZnJK+VG40CvA+dkHlW1Y1VzazHbIIvJodHOwFYlhNaBvO/OYFgoiuCCn2MVzZEK9eVYa8NW/uMFyrXbSpmznTbpeeZ9uXyPFPBBhjoVzwsUcmIScsw1zx0aYwgMkmt9XiHVTr6mTG95O2TXCAq9ItU9t8BPd6Df5fUx6fYdX1QsJbT82WZwRtPYTYHmWzHPt5BuIWLRhAdUSrhKgNdzjqdqeGVfbSo0ZJiyjGqHPCAvxRXrGlOIWiV7IWqeHvOLeThWKswyUlHDtwAORqn6mH3jpBlVM9BkE9YXrPkWQwiksNlVtMIZ533nZsy77PW4OfSLgIAxaSqQ7dTfWpes07B9rXjC8C0FzLOP2qh6H5JafwI2N6YcE+WjQlU6eynRhz4epih9PimbXjYb6KoC3jdbgTorNa4hhUcjs/0pOvu87zn1XibjOcRYCMicfYBkH/KW/SVbc4bsNk2QPa4Slw0EaU8dptQJFsLvu1cnLcMR9fcAtnWs0Odk6bsNp0Alwwg0gOrGSz1R78d1I7MJNFt6PmaPRWC8c1/85HLmPSkZ1mXGrpg1JoKOym2ZDwv4u1yuD0AHTyo5NW2dqF48zMaPEcRxKgNbSfE4ew9LTziwKDCqYyGigSnv/xYDSADBkCBLsj0cDzRbdKt+LDzSLGozw94jB4BOxN4ck1ogzwnTyd18jJXji9VmEjjzYCiPCXjSM5s5xolOvq41o6PnYEfzW/uEsuNMcVSl1QduZf9QXR/2VHIz3sTZ2ZY/0jYZM9FJ77FkrehDVxoMM/VBbLtS6lj/SnQ8X5U3VBtdXma20ri9/OwjbXQzFszUH2+imQnsSh9zARluHoIrL3uUB7KBGYi+7MqIgBLLopMa+0TheqaFvVzvzEuFNdhu/4AS2GiI2W9BeSPsWzPR3SkNcJLBYMXIYnRKeY3+O4BOjlRmoI2DuQEObIEe2wUySs2U2fwlpAwZ7jgfDBiZkZUyleK+/Xt2iKDmW/LH5/MPvUk0QFF+TkLroqS+kjWuIQ/Xc0AfBfbWAZK9PtwT00HIGfvzadzIonF+CNTKi2RirSfhEbjwXvSOlTN1XcB/raWBP8MtHmrrUIyte605uE6UiWL6MNAHDpoRVO+MGrMMP5/Fvh2jjb2WnUBMP4T2GNeX8iXvn+ERO9hQe1ShjXJMrqiqkhqv9Q658CRrb7hHcFYA4hasuXzpqjlY4LHnhf1qiJk6rAaFRN1RpAPYVUu2l4JMdEjHitXj/mQ+HBlNsdi1nuq5leourFc4LXwpxgRKrA70Ozug5jsLUAsYUp5hrF4/c2O8CUjJaBH01VfUWDDsnci0vS8LmwBmfv1/3vP1YQOWunQq6E35HQ8RFBovRTTL499ixNm/22j0Cw1CfY4KaEinSLEdb/rwMaAVMQBRiIpDA53TwKZhMkKW72BGj5tRCpcGymh6hb/Q76z3k8GoH2YDNyX4XSoWzb42lUcgD5K2IXvDs28IJjAfyvMzw0Kg6PHvevwyrNYEjB6j55YIzJEZs8+qR0VRzsqtIRi10tVev+x75DKUSih0b/Omkkehh6gwVz3LmYFex5In9tXg5/iqlDV6W5xPK2f2sAe/A0Dx+NvYtxQ0x56tnJHQWSz8rBop1knRyGIKS2zU26I6OdPYEgiOF7ShryHnJTFfTcxvXTG/fcX8ZPbp3h6avVhogPsIbfDIBMmzt9wflU5jl5f5MLVPmXugqrb6s7E4CTOw69/H802uQs2lADt6TOD7ch2D+RwrlOzrvUIaoXmaB/aQat1LlU003LU3Zbi5nqPYIAdIBERkc5wNGdC5NR4ibGDcbI7nM3kYdusQjmJuix1hUq0AIdfXQui3LN3GjHM9KudH4DRjPac+J91rcyFAMRtIMTwUJfcCz3Hz/PqZmLlEh38oX/Z3MTBAO18MHR0t45QtoPXhllPJalIeu/DOr8THkND7uCj0pYji2rKm8tX6nE7W1OaGjPb6YMrgKGfjJvnPS3/V56LowvM+jaZFsyB3NwmXYi/qnmaDp3ktcWNAkyGuSiRFQpt5MkQSKeXALrb0ljvbPhV73YBesVBHleqtsFKaEshWXBk68IzdfAPo8JB5qMr8n02HSwnWXMVtaILG5CzQyaz/+h3pXq4nvRZSsFTMsyh+GLPh91FFVf1cjE+FadS4q8SDyo/zPe9tbrKNPN+rD2dD5wdsuSEWdqvw19Z/Z7hR6uoJj59z3ATEYgBJd3t+A59Fg1ghHPW1IJ0N9PkpPF25QITClHdrDshsYgDz1cTdd9/gT/7q7+Lv+7W/hV/5tR/g/he/wvlqLuPOs7u494J7cF/727gBwTzfRT+sz7IhF+VN4VbAwg2pNvNkeAjkGebzqjGV1GbnT6zwLNTVlQwCQzhcu/HcRlA9cWAsJGXYAHgelVN0GCtDJoyMKNBAliGLYpcV5j5bpwC9v99qXpj9Ob1jJeWqN1KGdNLOkoX2CEoX0onbQkYF9Pw8NgB90rV/3kCWJ6uvbr61RsVMeaK2quDMUXKgLp3EqR79nLS5VAGEJZp7F2yukTuB6x1r3xRYIbuto2DMljDExLEwBPnx+nquD/4soaWsUx6EFH0h9CjAwOS3jO65wJCSYs6lnbZYLRUi8zpoSBMy2uzNwvuquRvl9UqtB0S1wGdpsvcJAJaCizcLySiUctTP2YviCgQ9vsCivK9NC6+NEci7XCElkFXqOZt39t5kDgaR2HreeIk6R8nAifcNUJhiKRBS+lTmOnvnEtqsyXUCpAQV2SGYKMVFo3q8CZWBJtBeip5d8xBmmK4FoAp8SPnX58Z1GRcq7mVw9yQ4HrUwyPIwWbE8/POxf+dsCEM8MjJBow8QIEdS4fZZWFSg8mppvwdU/tyl6fs4CQbPYmmmteDHUb1crugTmAHM6Li7qhsIIokFrsU+jQK/I7bP5wWbQ3D37Sf8/b/8t/EPfee38It3P8LvXj/Dv/P5n8T/K34Vb77/CuN5QCxbpOZdHXwPGweZwLq/2uNfE3EdGEf3tMi7fe2AWndrmoijgT4PAV0MWLTRohzNwCBzWWBtMSfrOed9sVE1X0zejLOBDVRdsvZ+XhKZseR9tryME8iM9bplFBmSFoiyz6uNwjWaZTkSiFjzyL1NdpH5PdxjE30URAJzrAlWYrUZaGeR1/x2wj7Q8spk2y20DtRxDf15D0thrs8wPH4+NoPKfTNe1juSnXhrjUuHM69QFT71DmRkHBYQKCl6bLLFMS7HgxshgFmtDIpRWjJV8lSf6QN1o20MnccNSJWeKp2Zw+T8XV4fACPydV8fNGDZnDBDyPQ4APTBaULDKEUChXvClCXQ6FwbcezC7Xkt2pDVvXJ1mAXyoYbFc1pewow7pAV4Ro3ADU9xvs+lcGjATHl4MzUPX4jpkJIl8Ep5xshmAOQZWyfHZqFiYwr4+/ES1Vo/gbEUJEgJF3AjOCRrQiXIsAdQSvoKhac0p4wB06NnUutdrtwErv1EdzMd/X951zL6dJXqf2VgGKqad4njTYVFWGZ+FCg8A2GhAa4FAgqbIccCHxx78KC+MlTZgPq2m6wAsQBgVVU9B86H2QAuJnLE5k3zUrIwwSBDQVZNIlAQxQJUDkUOW8/skJdCKDVPCjmwaRmXgd58Pf/6auKPf+cL/EPf+S38Vz77y/il4wv8znyFx/GCv/36c/zmDx+BJ9s79/0eC0QOO+cHmyFgLtNitJZMKRH5GogztX6q/qlbsMyWzsUgeOT4KT+i98ujv8lN8WaLa70WRhgWRqL3HHR+yO7UOPOSSIYac+kOvgvDrOM197Kvs/3+ZVX7jEhjKZYxHQmclesVw4x46UUCH+5TnS3FsRlgBaCSX4VkePihVXNJx1pVEo03KxJZSaZ8O5aKW3hWCeIJbIwS0C0dCPItkRjsSVX68XhjetEc12SfK38/5cpEJ/dzLJr3Hcxo8XijArm6xwv3PpTbMi8N3KTvM7ZjBz5eP//1QU+lU5QAFDJRMmPaBiN1qD4Mu3fpBkQKOlGHs7nib+DSuQz9vTygKpk8stsz13dC96Si7Z/zHaisplG4AHaPE1CMmwpWOQc01LMViOeRON3K/hz0alk26T022E9BLbIBVVkwj8MrekTpkqp2ejb5jhBI9Jg34/pan2K8Vom2dAMUM/a1AUzpROdO6EvrPqqMIS3MPKViYzrPY5cLBzxK3uZJz+b9Ko9i7OsNYA/3eLw7+5mnVY8Q/LDia1HW9cqz55AgoMeYGgNgaz768VvooEKJ4xkKL+ngyKPvw5CeujyD4AjAJfGt+yf84t2P8EvHF/jFY+KXji/xvcuP8e3718BldmMtGg0ZFDNQpcyV/1V7lO++uotil31nSLDGzuoWlqUnWkdId9ieVs4S80hqjtaLtxEG0I3z+AdQWIte9GDFCiyExDEOKNcqHMA8d8L8BqT43Cv6aIeBXSfcgPHxXD+r53a+Vf2xXA0yzersXaCXOT/B83CYL1j6wnu96H0sjOLhHeoXya2BX+XTvPQ8MtdpPIcaPQJrT8gBrHnK0WulUuXZY+oE3/5cpIVvLpYfp7lM7SftzwE1tlNfGc77sc8Z0PvVAZceUePxrtrv9PqYw/KOLyp6zlNA9Kv/nJ59x4Czwwazzt0xIaZhALh5egPxTI9tDGzFXUpAmxHohkfAdho081A2r+SOqKc8Qn9WofVbqtzzRagc6RXxdzIupYg3kHe0wlHllO7XmyzQSoFjWt1m2T+hlG6xPt4gS8/iidoM+9SzmOSnMz7OtVbu5Yj9svlwhomN4jjxKt+Up9Xvrq6u9fPbplRbQqfNwXbxvsxTsZ8zNNkgpH7nclnATWW0FSJZiZtUZpZ8CPt/yXlKfmIzsnpfgtWaT7IMwQTjMghbzkAZ8u6d00mgi5Hq8as6hX06zsAXL/f40fkJfjgf8LsT+OG8x4/OT/Hly6Icb7t7cuYod1sPi5ozGvW4mQe2uFdTvPqekkgPMmGck/XdeaB7/rB3RyymYxngVNoac0k4Rhmio/Z2hVF4LIUn3Z4MM3i4i2tKtpXJoayQKZkQWL4C42kU8A2FI+ng+54V41uVRecjZPRVXWTgOM5Q11UybL5f1nr199XwjHNdVTUqMzfgoNb6o5pQHjtjtBlpA/h5rO6zftbUppfQMtKy7uNenzvvc62LVVWJHafDURV97qi9pU+jZOYCvQMrj/zQ0ttLKQN0FAM6MHJ9wGzK+dbXP15/h9cHHRLakLN5BDGBl1eJ4/XQv1nK6wZPsV8mY16jY7hEzcBehUQvlwY9bsC4sRdU6uy2KqUqD4qC74mArcmVa8I+GG4oaiMBvTkyVtWFe1EqF2T/lyrvBJrKDpUX28ZLKwOmkrq0kgXxSGSFhtAojXNDkPESSDYdq/uxhFkHLI4eq9rm32fP++gQghQU48MWU48E4imUma/EOh6UR0VU352Xm/g4k40TonM9QXuPQ0JMEkHauDbaZU8Uhpc8IXe1/S+vjgmOMxAzpQjlWfNdbXk4Zh5ut+RtLHm70svsHBrtF6w1ECPB8XDpLr0OHvKRN0wg7PlS1yVQ4/XA7/7kU/zbP/5V3MWJ711+jB+dn+L//cWv4j/58beA1yxRMfZOL5TISwjIJR0IAeH6PCn1MGdgWBiSOSOy6BDDwM8AUJNHB9V+QjsuVcFUBqr7aaTGxPORomj9qPyGiNAcEVQIFBSrOV8lEnRM9nBEvFSeS+0LMiFM3qd8sp8R95LkZhBoce90qwbmw3m1VwszbP/1xDC86B2KPRSoyipQJtoYJ8/+IsiYN3oGJYcXvjDDs9l7lToAvZbMAwTP2JpAspR6tl5RFR719CxW6A44zwaU2zk4iheZLmXI7tKVgc0QY5Mj5jmtySjb4ut5RoXpo496eddXAh9CGfLXfX3YgAU3IMIADNDGiF7s1pOC+iEAXDpRlgbOvbhrJUUub6KVHg1Ux8NDxnG8CdHSjNU6ragOp6zc4HMBIFZoZMDGW+9Krzo9SYwN6kpBEZysjbqSx9z4SeE/VEiIBvua8FNk1Yys3lFnCJ09Hlxs3ICeoVAcsPVmERN1ArizGDmv0R5fpYispNuHxeicj7UUB1SerjnlutvhYngJQDQ9ZORplD1fYwXAzfgEmkWwtQuvpIiljbx5X15ytbEvY6O1jLajAVOqpVgXs7M86Ct7rSQwqxfOvGAd5DdCsXd6pVEJtRlAFLhSBVLNJ09MRinK89GMB6eswJ/n9LAN/rxPHC8NBpUlGpzPwJvfeYV/K34F33/zGT6/e4Ovrvf4T378LXzx25+KKehchLqvADS2JFgyaCsHINtwETwRuFP+El2tQiZpoMFuAZqgj3JC7IHCwcW8MgwR9XyFmQlQLfcFWeFm65UyntbeoLFb+qkSW+/7ew5s9rlp8CS9wsTosc41QwL5iGY8KKOG13TMwU21CwHQqLyL8cTqyTbKAMTIePidQNzPyVkbr8GExo6aN4LBYfczdo8yIEBBGSMbfLYzKkawnDtvJbG9YwCX17GYrlG/ClQiMwSgAAvVFkhSUYKpWeZRAb32cV15bssToy5fTkj3j+n3pXMN0VV3AABOxklEQVThOk8hvnd6JZDz9//YH7LrwwcsrLIg20EBu0nmdOUAq1LZYqyweyS/XJtWJ7dCho+Hxh1PLZgwkEIlct63h0WgojDQsap/hJG0abB5P/Fi2f8T1W46W4mh8ims42dkV1yoc2yNG0g1p3MPXO8d+fa8zPZaxhM0H3HahkV7vozzzgp1xVzGm4eObQyQl7WiDHHN/erkWhrIDAAXR4mmlffDWPR8mKuaylkOfy8qufonAVBeEuN1ICxBmiCOia/jGZhnVU+Fl5+WLWc+wxkYLymZ4doiysMuGWYDRBnrCeTd0ilekj5Lrpg0ezwFzleVr3ECuE8cbwbmpylFzrBNXAOoBMAooDSu5RGefeaJysRPrFCHybPWtkDnUu7Apb57fDnwGp/g//vFA+KYmM8H8DRw+eLYlD8mACZg2xECotnrjCMmWiuRupT/6poMdVXlmJp1CuAgcKn9edS8Z4iV8Dwylm5nhYzG82JcxbCWXhAAGMDlS0vYr4Tdjfa30JPncnlPGh0BwLkv4KWuxVnrffT3VfXIMGMZ8k6ifVu+95yjztlQwq2FvMnOzQtWtdTZLLPn1sVZy0q5rj29nplyLrJ6RB1PULI8e5CIjQ60nszcjH/nHa2fqUdUXcN0iOvWdRTBei/2u5KTWLqE4EI9nbJ1COctrjesZsmkSvzJWHFvuh43myKHk+Elc4A/Xj//9WHnsGAXDJ0U6n/KuKvZEKjUIMWhZmloAaNy03Mstq48kNvfUyHU5gPKiykWA5EyTDxVeX2hNj03izxM3ptoq0GCYrFX6wXCKgWVEGfnvdSl06sz2nBSoQX/s/6vnBz1D7B5pzGYbRCovJh/wXtyg+rQRdLYpLtH34vNzTS2UUyPQCSkwJWIOtb9CG66adUaQ3tFXUWlHhsGdo6vhsanUInH1/X3ThqeR//OEzVXMl2t+dHPQc2xzinZwNf6Q+/Pk1C7Wqc9ZbIzSKh6BgG8fJqbcdV3JT+d0KhkR+JBArwTgOV3CfiUnNIQLZnqOUIC8TQQv3cH/OAB8cUFx+sBdR8lU8LPU76Bbc/yXf3wP71zKXudkE6ZGgRauzeuXI/qK0JQodYG7I1khgQE5i80qm2oCcTHE3B9ZYnd2kSQMZfTw78TnBT43XrP1JwSACjs5iyQ3fvuJyFnCSWLkjH+AbbqOiUYz5ZPXsrXghnl2R/Jks1mKU0eOAdK3qt14DAMdDk7KLmp/08e6zEAnpau/BEDdVI0ZBkLHDIcxtw4MYywfUpgRRZ1xv6e9j5egeetIMhMiuW8m2/lrHlF2XIOouUNpjMcyL/L62PS7bu/9jh/bd4Ja5aV24aLStRj0zG6rfT4O5mMD4CMnCe7IUMn7MrAUBBpSKpjp4BJdn4E2Y3tWcWq8FnyuKop1rbRLMzBcfZn2nP3JkU9aWigwo1u7IbHi5txgShcXtPCFg7omrF52xB5B1HOFd97WnWVjAt6U1ORqWSy+r5sVTkEUROq+Im+FdRhkoyEfY/zQMMrUEugeoYOlNRzaDCZi2OGZptyGeA1IC/LVFJhLODBhFclaNr6SbnXxPy0Z4lyLzbN2QHlclFR0qDXHyYGnhW2yCMFBvembTZfZF1K9lT5dm2DSjBJQO3MJxfpvIdkkntzXpahUOlvrd15nxuAiAk1EHPDuUIsy/gMsSkLtB8Mg4TNF/dgsUrJexSAng/Z3r7zz2RXxuLN2EyS7CwGdGK1HAPbW8p1mLD1t3WvdeDPV0gUmkdWm3BdPdlf4QnutZLredd5KWxw6FVhIcBAIW99qjBW5QwppJ77XpIOATb9BtRnrBu1sxGLEcnqV4Xt3J0FIhr0kw1U8r6DGr5v9Lz5UQUC22TGa53JZK/5DsmIQt2U3ZK3yNLnAqMhXUAHjjLm66J7/NG5vh0Rfyki/rH38fAPOyTk3gQ3t3sWpRCUu8LkUm5MdL8Reqeri2XR889GHZtib/bEDLEATlczeB8Bbx6knBR5eTfKBH2vHFmNZduQArbpqWSd/i2LtRIAe8P6WBRaMUW/N5eD8guYICb6sp7BTUrDIe+F46i5lyFBG+Gtff+tp69eFg1oEJ1jtOWt+HTdzB1yGRfPk2FVxnhuICnqncrn7HVm2GQxZQBDX14RgbqngF15sduZQgYaeq1yxeZLQYupusYKLQp8puZCDJ/muG+1+jyU0r3L7jFxDYVf5IJk/5sKH8B2BspkXtSEEqEVtqo8nVNMZcnMgeXRRxssys567xTAuA1/jhdgPvbcs9LJ2ZP5Kit1poEPl4Sdp5noLu86q707WQi/jFnh2oznnpezkvAZaqUeIMOXZGYTOoaB68S8k7UJLZzG5O8zEO6VVvhjVTGhjSbXjH+vcZ73CYUpM3S436jTuym/Xa69fnY+pPTNJsslgzGYn9Jj64qWAuuVuzXvvWkbej0sPi+wPhnSrJJvzwMqMXJZuzXm3P/zYelmoNaLuX0GwiWrFW6Pa+Dg0QQXK4Ons4LWAQp933VIHajkYspm9fIRKCsHib/Ti9cUzofZLSSqHQJeOjXgnV8JfENJtz/KzF//Jm78s1wfNsNyI8wrL6AoQWM9/BROT6pVP5CjD4kblt+ixmSlzMbZnqn3NFCpm5WSqjqjWBWWlqpnhhkunmPDrH+9z+gN7+yBh7MWYCovib0pgO5JE9hCLqLm7XNZAI4MkhLQijamt8ANqyqJp040lIfHA/tIyWePRYmN1d+DxggoD2+j9aGW4AIycGPW7yAPzUAcHCyanDgzwn4TYik4p+q0ilaq5rFz7ZZyvWFLLg0uFEYxJm2NrY2H5+NQHnSuk7ED/lx9/mgliZvfiRmsXAvmNd1646pyYIiI47v2vEj2TvNqX2LzlpncCizl7ACQZdKixPkcvn+Nj+wOczh0+Z5jjxCQhcEWrpORrPJ1rW10LhnX3kOhnfcFgVr+XA6JAX+xEAqX9ZpFMbyr1L4Nt8DFqFciO5yQ8WdnVhprD7WQFXQmg++2wloF0OsgUQJWkNkMk/sbdlY5LOVEHW9CzMLKb+oSXe911IC2Q8tybDJahir8xn4kq7ImtP7KDfRcNnNeNN8v9t613NP2AR0E5aMRXBzZ+USUZz7mYmX83DvZD2BF0tT3i+0qZ+A2TNuKqZ+5sesFRAlyP4aEvr7rgwYst6EehHSkUD1LBjcgwO/TWLKz68VoZnrx4CaAzgPxEAiF35tcrRvYM2bTr57IKjqSm5qGuL4v76gUzUoytO+QUnQvlPMwQ16Ie/XehEo06tkGSAeZDb5f90Dw/i5kT2RUa57OV624ADQAqL/TuHpzqu4Uig5PMCdICiuVyMqxy1uhTXAbF/a7CgN4Q6umxqOb/9WrELB5n5c2zLkBjFu2oIUGbWQndBq1Qis0+nYvnkC7MXHlpXG+tG4njWIDIVf2XBf1/iGQGv3ecTKsCa0Fq08QlvvjrASBYoFC5n8khzo62Xdbc2BnHPvVFEJwoCzPc9g6BOy+eKscNBKWL2ZzyJCQJfcCaLCO9bzjKfa1RnvvYoPs7CrKFvN9yBbRGOZN9Yd3Uw2u+dGytsJaaOYjax8riTw1nw1Mb9jLa++VqHvwOt5EG0ga99I5zZyu33NvK4dD79C60ZNbHZxyvtUNt8Z23kO6mMz0eBMbqBQwtlwz/h9YlW2SA+4xvo/NCXP41n5GAwV+hKAZrdv4Tg54FLJjeN/Zan6fuVDmbGXpYA8p63Pm1Hy8vt7rgwYsCYDnatCjlMMySRE3Zbq8k+WJsNoA8I3bzY4AbN48H7iMO6TkGWfn39MapsWLVX8wlyRtoysGX/e3sI6y0pkEeNN9k5uCHgU9aQISPzLdKWhvcpS1EfsenA8zekBrcHpINodbTkSgPDFIebFKiEZpvW9IKW/9UUqhqLtwbXIqd/eC1NKaCoLvRPaiFNpqDR4y3srrUdVGymhqTmpNPEwgw0Kv3ozexiSwb0gpWWc1xD75c2reOiTYuUWxsSDZskhAl8Zw1T4Y16LAS47JQki5z6rQCmMgbAwqsQx7Z86xemOgvd67xHx14vx0Lqr+bKZCbJor7hNduWbGhkaqGajeLzrnJbEn2hI4mNGXLJdcjhfIwERiMYlK5Owx6N/XgE6lFuiMZk9tDQC040I2cDI8Eip/9+MnRrG980A1bTPWlrqnnrEOUMx+n9P2xZ2NkUs2OS87KyQm2UCrqqPQ+7xBGNkVA+clJwIKxhazO666IDsrZYBQeWAEXZeVE8QuwOO53nHkFpqUfJ9ko2N7724RsfQvc15WH6sex3lvOsh0fSRlMtUVGQRJkWDyL0b/WxffkfqLYB5oh6JkVbopCmyTZcZ7uj4yLO/2InLvJDFIEeoDNMhU+ETv9HLP/qPyugRYOsyQi3Ia6MkS5Yf9QSvBFS6pYZjAM9FsfXavPhArcGlA5ZnlcYX1iwlD+GhgAyjWvFGNc5VBTx6hXhtryzO47+oXn+QuaYyic/vGb+XQ8GdFlWat0ZoHgIl3m5cUfQ9XmuzsSS+wjUcrZ2ckvJ9Gh912xscbdGnMXFMqGpsfgF5vMT3VS0EJ2PxOGWKFGwtQRNrnzHgpNMBqCxnh6Fg5IDmVfBXImAyB8h0YsrJllzHnOtYcM7lVoIq5F4Nj7wqq1XsCfXqwQjk1r0cCl2UomHzuzKXup3vXOjE/4+bd+A5+ho0YAMrmXHOk5NTbdZ6NKN2L1hhKzo435eCMBusODBWq0Fzau/C5nos1Oo+G/WAAC236eqDYSJ45IyNpY77D1gBNNFZAOTndf4mTuObcw9U6UNAq8DagczWh4TzFuhdDQG+1lq+k18VIWBi5gNF538m7ZOUYbt9kPvr/S0+jS/Rnjxu51srl0/WHgFGxlhwmQ3MCDsaAKGTGV3pM5MPEfHVivporRHfX+mBjXGv8CvkQgNMhHOu781JArJKBV1irQmkvuwP58fr5rw8asCTQuQo0pOatdIfaElYKRzEu8kBKSfF8Co+lSkc4ks4WdHXHrGs8WTa4mIrsFt/ZzcJCYGR9V4mV1wJUo/Mj1n3WvcQWMJyjOHqNgWflOGUeLAvcE+SABhDhWfb2Tnmx0IJ5vxtAonJkbDhKKREUYQc1s5o50SiSDaOHvYVYqCwMSDBuzXJp5g3wuIX2aBhnN4/SARebOtV70oNyo9TnwZjiZ6fem4Zx/R1oEjlXDG0BNYeD1QTR7f2TBq5A66VB2pq42OSR34tZ1HeYob8JU3op+mqk1s+9fmKefDUny0sql4VyxjDhaqBmglLvfD4048j5kExZ2IR7j6wTc83IIqgyo8Cvy2rkOtlXlUy1d8kAeRm750HwwwKVA3J6tE4WOtbn7vYEYs1pADDZkq4xXZEGXFQdVfLAMMTW14S666yQK2yKa01UrlvyQJZGvX8KbM37fh4AsQ0KgXAc1RW5K3FyY6c3RzD777p3zXlyPWE6hSDMGBPN97E+vzlIBaYY0lSvmNNACOeo5te/T53DuWA11fnQ1aIME+rfucJteUkcn7/g8Rfe4O47b5CfnMj7qbmiLOn4lQHpUrKIZAPVFiMKuHgzS4GzdQyDh6re3ZX4yLC86yvQVC0ANnOSMQ4aB+yefTVYA0qpFUVJrwD86ijvuoyvcjkql2QLH5kH5x6D4tCUVyp+Ur0EHYwTB/szQKEL5RRc+e8ObzHWrEQu9ZVJKVpR5YHOezFNSA9VSjaoxCx3gn/Q//ekRfZPue0FoXi+eWfMmfH+CMzvcXpcg5v2M9LeBUg3poTD28BgtqarAQ826pMRQlHSxegcPafM6/EkXrVkL+VINsmNGSs96B3rLCMZXoan0BR4ySZlhjkhOnemDCoPodTzfK5LZpwRJOV9a/TzqIMW654r1wYCEkxEJSvCSh45AGesiqCXsbrYnrBKiJqjmjYaQC9BJ6PAUF0nWwa2vct3vFljR9XK/wqYoY2m5208XLcF+FrM9J1al2Fywc8QNPg+55wyhKnGYXQ+7LDN8bJCRQpD8L6VtL9VCpYO4l4lGCITGn7Kes3d8bwAsKq5iuVYMp3tQNT4luOw5E+HBvI+0es+C1woX2SYngpsuWebc2DrlgQSg/KLt8NXBbToXFGuG62gQ4xAO6XVGNKT2BkOX6HEaGCBklNjjXIAeDjx6SdP+Panr/Gdz1/j/rPn1tPMDfS1LXmiLDaTlQoHeeiNzL2H5oaxqe/0SgBzfv1/3vP1QQMWIewbo6IKBTTIWPkbbczeouNIk9Iw1iaomuJWwtxAXJtbI+4lupXs6Ycu0qNjjHWVV0Mx2o0yH53fMV6iFQqV19jZFJXP0vBzc9FwcLNzQysZFjIYVKrjzZ6gOLbNGFI0niMjj2q08mKrdaecPat/PnReBNfL/+/3VEvzCg+QRVH/Ca796MMN2XSKrIWoXEAAV7JkylzK2NZX73T0szxZj+Old9hlo9neNRVktJdLsCLA5JUDmv965mjA0AxCAYJoW8++GszlmnW+ScvIujfZD8rNYNItjaQ5TTHR57wUpR3PYzWKO9t40NCtHBKycbExOg6Ot3wEC3HJCJojsEq3UzKpe9O4VuLyBnAJxiEbCOULWdiGjISHP7V/WOVlTe56vbPB0I3x7bwH24MEhLkbd953OxG7gG2UZ6+rQjGSLb5HefYK4xLgM3eEfz8LdBRw8rARWT46BOpZxH1tYJjzyCVlsquHTlZuSgEFr/LJ1jm9poCq6nzfBBRaWuxjtrwkOqfNJ5LvU3pmXm7W7a50fOW4jcvEMSYeL1d8ev+Mh4cXxMNcOosHt2a/y2R+Vo0j77LzKSvBWikA3BMJAa6YUF+fj9fXc33QU0llspWXTWzGQ0q3KHZVpACKuxLxKgN/9PeVX3LsBizNUCn84EZbQAnd2Irt9G8bzMU63VVx7IA8PdG7fvpxGTnlHaA2HhWAvcNR/UbYtKxzPAx0YP1MXU0rUVi0ucXRmZzGGK0rD8/FUH8PN0b1mT3m3gAACVVlUIlRUcCMAqtSOP9rPrhGpsiKOdji3LXeIKjg72hwCMBo7DhXxVxtAKKMJRvdpRg5Jvv2vb20WTHsMoBbgzgDE1tyK5XdSNHLnhukKrXosBpBzPZOaIPN8tYVwqlePJR3Ox9LOV4EO8x5qHb/g6E4Grqz109zUmvvYVsNhk22as24Z72iDbC5ICCxHBaxTNaGXwCRoIDGjnNW+WAE4QL/FsqVvNQ9j+cAjyOQjFC2+A4Bnc3Dc7gcpM5jN7BZxpg6KG3ttiNG+K6cOlZ30cEicysg0T9XyNTloJpXbvqOHZPrWYNJyDe5Glvia83rAjq91gJulvPH4xQEtox5XSG03hcboNX892R4cQAr55j7xOpQz6EBTOdzX9qczuvAOQfujhPfvn+DX/78J/j8O1+t0NDdmrQOGVq1E5nGAiqSY9S/sfb8at2wXkiA353fd319DAm946s2BJU7jc80BRGmDD3PwEMj6sFQyscpPG4e/R4t/ABkHJiY2d4LhLpZPqmGSEV70mteiqH+7k23sD6/+jlgU96bxyiK3u6nLPn2vPPOFEQ0+s+6n85m4fcNnPn8AOtdyQgptGHjihM6X0NzZYpCSrY8YK4Nk2KXp1LGENirGoC36Gin5zUXNGCxz1+Po2VDHpQZIIGESDFzTMTe2ZcGDtPGpDBHaV025mtW0MbgJdsGlsZLtKxWnkFcS3FjrSnZJCVGpoEY38FUqAHMB4htELCMBhtke3joIKl8AF0GzoR2A+tkUEh151Fxes4ZIAAmuaKhL+O22I1sQ2v7fMlG9BwnmuFguLXe3xlCgUGyagQ/vpcLePJsHQeY6hdy68zYv/n+K2+iDOPRc8oQQmB973hCh1/rPfiuZEfG2feQvrJ8Dr4H6p6eGMo9r5/fzgdsztD3Jkhn+GnJZCdc8yBXlbTXXuq8DdsTXMNy7BTqMSYK1NOAQBWdx853aRni/rlFcWJna0y+V48n0wHF0ApA8fkzcIyJ7z58hV/77Hfw57/zt/D3/sIP8Nl3vwLumu0hgKKDuOY+e5x1fzoBo/IRGe5iMYHW6MNuz/qH6vqwAUv0BmOmuspzJ41aduMyGiw2bzutkodKk4rOqPvbBFUZaX4vWpHxpFHlIlQtvxSdJXD+tIoVggqGFTKqTXptbjaoA2AhjGyFyd4eRf9v8VEaX1O8TKpk9RBbijN5kiXTx3OzClJM2XPD9xZzYErXf6f5u/Z3VQprPSdUSVUKcoGZVu6quLgtccQOJtTQSgoGzSyR6eENooHLPPD20e+xcj5oTMUi3Cb+ycDllvgd6fPe78qGXDTwBBJUzs768VnnY+odCcqd8k7KOWBeIQfYzyIgEXBj2K1u5D1Q5BBUvoYbIupwdWK1MnmGAQUGLVmXBnnlAKzfqURYc2ZyTPvwQoPTi69kaAIFDmrrnWPCcusAcFhkFcmEljypMWOi2g7AuprafcDP1ERPW3sum63XbeMxd75uE8UZtpoEfRbG1PcL0IhdBEpuWxbEKPqYfR6oP2965ygp1pq7iWXkmtWe0n7n3nAGjetV+R6aQwI4Ol+uI0qv3a7dCgPXI6wvkqoGS0lvCdWjy6k97PTq/gW/9Phj/NrjD/Brjz/An/709/CtV286HBcdyhXz42fCCbytXKbj2ea8nnnelx4hmPzIsHxt14cNWHiZ5+AJgUoYNGVFCn5BXyZT7ShZmfHgpg8Z867K2Y1UxydrMzz3BmkvMVvBm1eh7wLb81nhQnQ+nrsiwHMQHGCt+zWFezxbrk4ZbaeF84bC9ZCNaPNYnsi8g4AQQDBR36/Nq/bkBHDsg2BxdkSKEvfNrJbaNOoT7Y1wbC/teXFupOyPm/cKtARTYVHhXnYFrjUvRXu8wWKRvIqBjE+FBBaVZe9fSo/VZesXNU93rdD5GYU+6p0FNu7KwJfRi+cui6enq/BIGRi9CxlFhl5ujAbZJe+q7Dks/EEW4EJ0uTJ7iCBsfjm39a7yzoEOa1ZiOUvCvTxaoUb2CLI8C42XYx9tuAjm3nII7CLQBQHgWONm1d5eLZY9r8M681I2s/eKlyZvcpwNoPKCrgwZDZpjBi5vPNfHwC9bvSf3Wx/K2mtMAGlgtIBQMx8tc87+bQm9oV9txp8X5XKTtzCZPI1dq306rq3blHdkbAZBAfUeAIXM2PvGQzd6Bx8zQ3FaOGyhbh1MagBOB77WPWKTdQgY+zzMmqhpss0WEwLlBU627uH23AyrmkPPSzBUzXV9e/o/Xn+H1x8OsorGIvvvWWdhMFN78vyM2nUEM93lE4CXkZYYnY9l2J7i5pkhA+IUtDbCrM31so/NS1/l5XCj33Es0ZnyUbkv95XlT4PssVlTPE1Zdg8FeTx8filO9Z2J9Zl5PxvM8X6VxKoTX/0dK3as49nr7A2NgdM9AdSJ2Q7UgLo/d215slE/4pyOF+CkgSwva2tSNqHzX66fovMKeJ8CizrLpQAZKVqW8TrwWe3qaXDWHOUFO/gDAVQDOLZH31qd06DVfTo00QYtzJjEGyAGkOZpa2wjEVjGnV1D5x2ASwJPDYAlF2WA1f2Vf1f4kzk4FEoCqpq/QHmF67vMAUuTfYzERCiHgG3L11jWwCcNNgAUGJgBAeV5l7i+wgZAeY1rIGfieF7l112uTetjpaFBmYlee4Y5OPfXAO4n4jrWePQe9fxYXjCTTWfU/Na7ElT5uUTcZ0xyVgXQNPBZoa7zsfdFvCyDuPLvUmut9ym5YX8mlVaXnM37FIhfnXw77LsZas495awAGBND5ejVXlAyeVXycI1SIUw7I0x6JbR5xbIO6Jw3powx/LcxO3VfCktEv0f/nJ8Fxhk4i1lSjtToj2a1fVBVGuebYWzlyq1xj+fAfBn48etH/JUv/xhmDoyY+OtffQc/fvMAPI9i+gIsUlCvoAHgWLpe4PoA8IKWVf4MDbi2Kr93fiW+obOE3uv1QQMWMfmWn7DR1NFlqoyLRranv+U1VEx0XMsIHC3IyaZIpxk4AONptbpW901uhiwPliAnS7nV7s4BgLFyeikmO4rjU0nyNgorQQZLnjS/H/WeJzAfE/EypMRi1pgfq5wVlXMQnji7e6uKyfq8Wz+bNYeh/1PxLyq5jBgVVK73xgzlTuzPzLfeNS+JGT2PoqoPAsQOY6zzT1Je1fnQeUJZnpGXETK0RIPbTMqaR52JUtd4WUqKLd5VxWFhpc4hYcK05W/U/8XmcB75LtcG09uVMFkvsKH8mn4Pfu94howisgAvD+m7tiF3ZbrYQYLcfgeyGeO65nkBpO6TIoDAfioE0gcwbT3HNSoPpmS2qpjOV4m8r/yAY4BVMWuf9RiQYdVZCTCn6SbckLcGSsxZ7ykaaDGiZdxiAonu57LNrSeGlxMyzgUqZwCj9hnCThEPdH6C3UdbtYydjpzgHpHTAd2HJeOrIV32uUvWp0QhSDoiaBAdCPpYAgJkLAcBhz13HlBlIql+5dkwbEu9UhVgCqHf6uUCepmx/Yzh6JgQe+05NmJMeQ/DNB6q1wGvbn9nj8NUqNgXqhQBdgTGm4EvfvgKv3F+D9//9FMAwI+/esRXP3q1zXOXyq+XZXk09REAHK/bCRJQOXvfMVw/3Ll6l1cCme8rFvXNXR80YHHajwrXcw6WN0j2IBHlySvz/egvM2wzpaRCSXL0MnlPbuwNTSeAA2pFPxnHtHNV6GXxBFgERGdSqMcTPdxs+ht4y4jJ+5h938kGV9n9W5hLQE/8YNx9K52OTjYUC9AeIgB17uRxAx5CYIhKZ6fM/p3CIARqVW2TNm+rBTk2D6pzikKKTeEi9+rQ/RTOx1KmSlhOxDmaiSgQJSB4E246L2teUG35j6cuu2yUs353+SowH2oNa/0iUSd8E7xkz4cbCp4OXflBOp0513PGFTgLYLLBXhJgROJ4Dlw/Sc0lDdfQCbLYQSGZAyYg3+6jmnvZCjIFrNQYTrmjG8sxhMpw4hWIyxoTQ2lU4Gx0yHyDeZ+Y9xM4EpfPX3C5O/HycmA+H8CXl2auYq2j8sain6dQMMdfoQn2Fsl6o7xLTBocgqAK24V78NIjUJ6VV70IfNR6iJWJnostZ8zAnfJMMnQ0gJic66ok2eSEIryWcuUslb5g7tHxFDJ+825Vpil3iHvFGCEZ/tKVsH4s/Lk3n3PZVnk69RZzSrQ20L2Uv8bcHL7EpGFf+kVnKyWkc0YB5iydy/eDyZL6CNVeFLsnGZkCujGxmHPKCWrMg6BrrWtcax99ecGbry54/fi49kvG1ksnUGs/AZBRJtjjXHGcgcUw1ZrSyUTlzNQ0qJ/Ox+vnv35KZPjDurY4bIU9qCyVNHeTWKhYKrPWsRSImiFVOIkeKrAUxuABgcc+BoZifCw0Wkpctc+4J+89FIAyUPQMhjMfUPMjhmlGdaZl8mEnt6XCVd28qEuWeT8yOVJgADpcZj0EUDHq571nB+xdJsMACXnzW9M2oDd1eWXMw1HfGa4nldxoTxfAxp5p6o9eWzYBU8iiwlNq/GVVL6yaYNwfqDDCtfvL6HMCUHyWMWPXBqRkxNurLoUnJun/1963xtp2XWd9Y669z7n32knt1K7T5tEkwgSFStAoCkEgVDWQpgGRCkWIClGrBOVPEQUhQRA/IuBPkRClFRApSkMSVIUWt6KhQq1MKEJINCQtKE2bUjuQJk7tOI8b27n3nsfec/Bjju8bY+1j5/r6nvica68hXfucfdZea645xxyPbzwmpAyB8V0el4AQgmztbkCWzpJ3w/Ov56w0wt6W7z1DyBoNkmwilnB4UU4lf0s5RjvKTCXOgPYSeV+xfT6zhJSYYKw+Qp6GlF3c4o4XX8VL73gCd93xDezfdgRf90RBSgXLLpJYz3FCzLsblMQp1FI9g8hgvN71M/enTt7uZW4894/KVAsP1ny5wZOQ4cj7iD9KiEg8F/MhJC7ukRU6yI7aWicrzkoZj5uQMuY0VcRD+UxEVeO91R+nUs/v1WTdscaeIU3kWHNyQ+6VKRfiGLlhwJDVPBFe+UB6Rq5Rhq/LI5qrjxBDx0KZerYOEL8FMl379owNlTxgG0O7ZmhPrjA9scJ0pQ1Du+xxVSrRIKqvXvmTjSm5f2MvUfbMevOcBXU//X9nTOfeYCGpb0TxLuiVzfI8bGw0Gg41Fj8TtMWjBjDQm7WnAOpF+fPnNkIt9JprsiCAeXyeG6p4thXGrAjHLCF3WwRuKX22qmgj2ZGt67V5OA9VgNBgajT2UrnPUB0KfAlWn41t5IlgzjH0qsLDGiWfLOtD5nZgfI+IloQMkzw935sKnehMncMqpJTUyQqeKrg4dzFmeo55fHxZt9l3cu5mycaxXjIEqORbGn22KcZuCHu1K49qNZU7Wyq1GvdmOIbXsNJKvKH1h+7PDqcD7UulpXAHe3FE5Q/HuosAyoMuvEhjaVfZik8ozNt8nurRGNOq4+L6GLetj3BxfYz1mnXsUNKpwjcozzfkycmbXEc1btzmvld4he8so8nS2El7PXs10QJl0q3lR8xzGnLEBf/rWZUvqIBrU0I+s4ytGv0jfNskk9hLqRqRrHbp0Z1YRkTpTzL+T+soeV15PsE36u3D/aRO0cHTCJ6iM1MSvjM5ZfybynEVwEB+WoRSiBAxnKNyfs0RZJjXUu46fr2Tp7GnnKwS5gRyPhMVdxl44105B/H/cpJ6zT9jTx3yYDu2cbo3DR9AMn1WRWRly9R1CZnllg7eQjdP59pgkZAsgrQqCxkXNXQDCE1gMzUKGm7kmvleK14IaaocOqTXyJAPCLJkyQ8POL0j2xgRbvXPYEx7CIS5ccPn9BVUNcDKjQxHufIC6JHIcyzN2WS0xMP6XjZlY3kwkKEfeXKbfE+FZXjbWqVC76F0ZEXzcaDYaowvT0seinHWdZVGBu8VCiuFpqcn6ANNWV0zPctj7H2FbIUeuUs0xObGRVYNzboT81/PuRQSocROIj8uI0fCyIqgJTG0Y1AnTyJfPJF73BfZkK4oshnUHiGymbfc892ZRAkguyl7hr4A5DEKPJkWOx52+TFDGZBSqO+2GwJRg7Z4vvilGH7aBAD61nDteI1rmzUONitsNgk/yDMt5cUZKsx52e0WO5R/DlKeMKDGbQzjCHUJw0TJyTuGaiJGrv5CXKtxURlvg9aoevizsAqp5S0UhuGQyBalUZ8M9cIb5Le207171+HwmBvuLxn1gbpVGaiwNBuexTvW0Hg6FzZ3dOL+DHX1vXEYotawhJO0VwvSCSfiDSEvtrX09ZiPRVlW8rm4/rXb7hhX/ixHpPIM/1YqwbSPe46RzpMMybKOSrTn+9FQKnygxHukrN3NEXzO6HlY1nyuc1jEdNyAtKKLhQzLXJaZdJXnVExgRwqJYrUPweTw9UBZ2BE2w0k+E4rAuDeh/gzHFIVGqLbncGoIqu/5KFgojZekwEJpUcBORHPieVVoKbGXD3DGudNQ4/87va6NK69iZgwSjbL5/ACpVNQ4bFO/hzQePcoEWdZnyJDG5LBYo85kVkAOnHkIFN53pkggRS94OnJ5rI9cASXHMoZNoRosIG+522wdFL8uJcN2iAItF7QpjDHG+eHlxFeu8eRRIWMn+EaJxPWMKBmxqWwGH5T3Jq8yIZiGI+PsNIYNqqrIefS4V/Bp5O8oCmAYjeamohWeYtx6Xgn18Rm2AWwquRwYvNmvrPH16RKuHOxhczxhc7gCjtswfkoJe993TMfAZg95FENHbl0bnjwrN5Q3IuM15wcI2cpcL3OMzE3OkachydBLL+uA5MPhUcd7pt05+FDoWMnVaIP3iEgyOV0J3pXXQ1ZYQe3akQkhFj8ZsjovwkDeRi5Fjxv5KuaCc79NfrbtQEC2e0RbQzlHJVvmksX1UXWp5owOhWKEwtDwonEXfKly3spDGxuN2Th3W0OzcKgYZiAS7cm/RNTgmbso9KaNi/t+7uUMh2FGNSzu6x55cGONGS6VnKFMjO+MXKeSO1Sq/7i/WzXUySM+5l8noT/X5I7zcPbPadO5RlhmXkgxIChcFLsnw5U4PdskE2GoCZFirLCia+tywXwrnqSc3501cppZ4uw7UgTNKhCWtWsjzuD93T4UvD8FTghX5q/w3A0YVAKd4ZbcJSeg9ejOe9Lgwmxj05Oq8C3nXYZItygLh45m73t9HNl+oYex47Myzxp6UviuPFPGBCF//j2EJBxpEHSc+D4hWuVpWBpQ9ZgEClf9srMOPLa+eoUKW8V3at7UaPAHITnq4AkqJsuTXQNBk5FT1ngWI+f7KGG68AeNLBnY5NH8eWbw8P4yKPKdxgtAMDgbbOnU5XgHKlaeUySjrJy7QgSgl5OV7TgWshva1YbNE3u49pVL2HzlAvzaNM4nIorJtW+e64hirJaQr8KfYXhKOVmpFqNHGwp9Rsw3chOsz/cgLw40ARn+q/PItSgyif1EBtI7jGYm7s8dgZRhDBW2usahQGVAkI9izRROLL1cHMgwKRVsvE/fc2wvjBsI/WSezg4acaJPFNe/IMKa6+i7o7lj+Gty5ZjVsOYsh29n35GPZ0ZOJcuKpekoDSOG7nnq/cwxjD0k42VHf4znWunUnEbXdDTfI0TQZzkqMfZ62GgN+TDUOEs9ONda9taicz+VCkm0IuzjM+uIRm+WwgTQUeIjaW+gBtNh3DB6nUgolHgns9YBpNABNEuz5DT+ToUXn/OsnHY0DhhEIBUzb3Xic+O7nmPYfW+LnhbKZA+PcBZqYAhCTfXKZjWXMJVRoOTFlCCd2e9xy3roItvme6BKrATx/Q5c6MBeB1Y0otJo4T3aUSp6b2FgbHPD1zBNY4fRbTEGuF5VYHgaiLP8CwmsTIRmPJ3KapbLRM/6qaBbIiBacCg8wfbxtRMr14HhspE0PRS4+gFtOZ9ZzsvxyZgw6FDHEWqg8JxXnAEFwj803V9hhJrzU2H1MD6r0cN9MEs+JKJ30AYrcU2EsAwvPc8+gpLEubDmQLvaMF1pWF1psKOS8GIZhqNxOwtPdcw1KQ28snerd60cJRpCMn7TGK3GXA0b9CkNiZo0X/t8cG2YjA0gciJcxzoohBvfGTxss5wReftFgfOdZ3wAZCimGC+7UruGhuhgMDFVpdQlOVdHQFRe8VTeDCkKXaXB1aGjSBRio1LvOU4awTkolyHIPUOkcyTK57N2jwDh+GoVIZO85bgCqmCUTOGeZ7I/ERo5Aenc2gYlyXZYYoboHswcHIYreR351nfXi3ImDbblLKHTo+saLGb2ATN7zMw+XT57iZk9YGYPxv/vjM/NzH7azB4ys0+Z2evLd+6L6x80s/ue6QBruETJWvod89bj9FwCXakVCNu9nfsWQadzdRwzq3w6NIWHiKho4lSZkgaTsXyRG6uMv8KVGj9ld/GQ9H56UGF85c2YhCHAA8PyXaVUGhS+OHFydclFgHm2JS/PVOKcko+zasmr+761Afvq3sWgaJlYOe4dO5nrap6KMBRqJhnmu2gNitCFc90IZ4dyYF6HcjyKYOHzPA0H5iURAUnIGVk2XptoTSiVapByGMmKPlMyeY4M5xozxUkDd3a+jA4T3KlOifwMGWiAUClfuRIKmcNRPUMhCDHnOoOKz+Uc1H2Q7BGn8Na9UOaTRlF8pyorGiLt2MaBgT2UAitAqiLmnmxRwluSoDnv6THbPAGz8JOSUEM0qON1XCf+Qd7TfCfPR85Qrls1ZGi0a9MEEio+wngHvZv5zEDZrSyaGSYhg2b5KlOuZw3V5DznXFGeDacknt88UNFSmSenKByLncoollVz4O2Y98tWAzmfECKjcDLfHcXowNyorUcsCElTDopJXg4nAUJR+a7TtRHuUuuEuj7I/Yeecy6jlSEeIA1KQymhLvcq6C7D/1Z1EsNOZR+Id849LHDr0DOZyg8CeOvOZ+8G8DF3vxfAx+J3APhBAPfGv3cBeC8wDBwA7wHwJwC8EcB7aOQ8E2KskWWiFBYzhjAkEjBFOEaQMRQ7BaBNIWi1JTO2SLZTm/oGecoVEjyB+BRIkkJIY0UqA4VYqpWOTNDyMjYmow4hnPepiZI+DSVWS7vrmPhcbkAJR26qEJRKdCvJmzAoU35cFHO0Aey4wQ4m4KDBDps8SSmV8FYU+orwjlCHcg3zBahQFRYpiplzW3+QwDEmOBMB8jzAL/ijHeX6J0rgs5tT8fPskXrOSkU1aIASEeKz1aKc7dejI2qey2IKHzKpc4b0bWhom5pszYR5KJ4KtSucEcYpcxvEcztrxzmfjhIaV/4V+ajM+QjJ+azl/VjPvERNzqJ6iPzPBGL2FRHfhgHYdxNMwXkpzd2QPCtDkgZSJG3zPKfpsOzL4B0hsFq8eF7kZMjwLM/ndep0KwQzDQMlaMbYE00pCre8lx6/gdBQHt8gHihOh85g4kcybCr/IivJPPcVEZKRWJ7GEJFZrR8NBIa4N/lsIGQSw8yeBuRsPaa8Tw2bZfVbQfNifmuoX2hPcRLaxlQOTgS0rzKXSCF0JqFbGhVA/kynBBi8MjMYuU+t6AlAuT6NydrkiZ6GtweaLKPSOYdpiLXocEw0+yzIez/1f2dN1zVY3P2/AfjazsdvB/Ch+PlDAH6ofP5hH/TrAO4ws+8E8AMAHnD3r7n7ZQAP4KQRdIK0zj2FcSY9IDZpMrYqAgoUrlhjCH0JfkMm/cXvfW++2cjIWx7u57lRKaRmIYH4XZUgPTeivE4rAoTQMhEWKmjGwo/TKGJFU+a2uDy8Wn4NpABCG17JdGi6J0IRc6PzPJJWqgh4j1Ha6TlWQMYMkYB20ATRAvSCYm5KHw0r3rRix1QSm7znzEu3fM++KodEAhiokElQqOHfrrJufM/xTtX7HA8qXnHx8kzCqObgzPmTik6hRBpbLIlm4zcK8kg0rohbNq7DUx/rwNwtKzlLXBIKYytK2Rx2HEp/ldUbRHborfapCHpA0HetqlP4IRSjvMqS18CEU49jL+phjrWsG0jhzTJefjYLmTq0Xmwo6C1zRZh3xncmGkWFJieCSq06I/XYhZ7rQGTLtpYyh8o8eGjGy1yfWqWHYgS0fO4s72FrM8NQYTDgRH7WU5Vue4ujRKasJqIBQSN7FsY28mPhwZAdNC5rWbBCvUgjSAhHMZqZVycEsPCxbK7Z+Tqh3InO8ZkYczvvEZRy4ERe1q62cvJgjn3MnZe1m68Dv0cHS+sce1DdlhEOxcrFA2is4iz3KrxbIp0KC8KR6QjPKTlekCGhp6F73P2R+PlRAPfEzy8D8IVy3cPx2dN9fl2Sl17CBwAk4B0Q0wGQh5xx2Qwj1ZwT8HuyjpGwoyOTrYo3MGtuFPdkFQp2x1FKjClkpah4TfNUWFY8Siqi4tV78awV4pEiS3SjnnHDEMF2D1FJ4mCPjLrJ9H4UVgyvcA6L0KlChfex4mGrymcm2HPO1MiN1zdPYxQJw6dgtUSvqlHqo6Ow4sorT9hZoaJyzyJ0Kchk/AIJDfdAgVgNxdyiNjcYHFBYo+abAEPQ5anaGXYyZ/yeAj/nhwqo7/noQIsiCJnkyHBlRduoUHhtoGfbPfJ06TdBBWMYXXz5TsErbWN5+qxDPEA+4rvXvcZGbOoES9Rki3GoY895Yv8YmGeTQhowERaj8rNeUL9eDLeeClo8+xRonFApMvmOMquVIWmAFS+cYYgSiqSBoQot5qswDGKuvys3Tu/oJ3LEhMQwDNTKXFAWcF3jfnTQZBj3eQ4IFa2QDCIyPZ8HZ2dwOmBWZE9Z/0AftjznrHGdYgNE2Gw3qXbWW2ibnymxOIxNzmnNO7GCOs6sjA60Q8zkEpdWOYE97z0zjCIEK1lHmVHkuHJ/qCM0JrZHYOECESETz8o4AtLAip9rXthCN083PZXuamJ9KmRm7zKzT5rZJ7dXroxnlLbmVHwA1PckEZdUOCeUPd+0lZgpDRvlHxQYGEQfxmd95ej7js2liAXvl34oQMKEpWS2Cvca01X2vZs2LisiFE/fpFGS+R/lXcv9a8xez6CAKAZUhT6BFCaCWXtu6hrnpjDra8d2rxxl7wUtQj7LynrUuD7Da0qWK4l0TAruBUKlt9/iNOCJDb+sGKGzPAgrazF/V81DNADkfYBUNiyN71MaFppSVj1E6EVNsmSYRSfPUNj8nHFuefnMfepQ7xYhbV6UuJR3XNcL0hO9XmAe8DmyIolVD7E2PH06hff4+6yiY50IRm1uxuoSwu8zOD6SL/ulUSFWQwusaNH1Mf/sUTPrY9GTv8iPzHFoYSwRXZiVh7ppPWSQ9VTWibBCoWL2CVLeWaxTK8ctwBMN1b4Mw5YOhsbhhf9CmaUzEmiInKIova/oAlK5zwz7+H7f9zRs+dkqQ4qra8nDY96DX1iS7YksVmdjHK1QG1967hEaTjwaoOboRV6c3pvjjn0odNpc5zHVE7NpaPCUbaG3NFolJ4oRyP0jhCuPFTiJYuGEMYPKW704P1y34CO0YujEOymcHgelzg1ll1God6AhZz5HE4tOec7IgaXTbdKXItSD+P9j8fkXAbyiXPfy+OzpPj9B7v4+d3+Du7+h3X7bLDlNXmwxPmob83EhtLnouesI9VKOLKYv8Oys9XsRSv2Co991jL3vuIp29wH67ZtZU7S25QbI+85fqigSeosRd5dwR1FwfN+AH7WxfbwLS/KEYERpNwUHgFTiMW+CTPk7hUNRNBTQigsb4NGAbvviLfyeQ/TvOMT2tqGkRggBmZBZ+Jnn3sjoIcKg0F4Jk/H1Wl6f8fUxHpaY17g7kQr1kDBPQVQMRCWj1m6i5ZmsDKjGlwzj+Hs7MKiSqAjS6vVPhyUWT5RrC6GEIyQQHWmPmT+SeVfVA5/D5oW/aQiFsGVDOSk88g4FfxjbypsqIRTdj557UN+LaY4ESxluoTC8+agQu7iFXdoAF7ZFueY+kMJHKoAaGuX8q0OvUAZPtqghOZ9/l8gJQ662nfMXABmRQt6k7FxrVHNFdEAfDY14Z5TPDMg8MCpp7UXKD085RE+77HPmhwB5bV9B6EzbQEnKORkpN/pehLCnDJ/S+GsF6bQyJsSayljmmMMxoNHAg1y3+8M5I1/SqWEYWtVE5HcailH5QwNG7x/rMh2Z7jdLkF6zPUS+M0PW8OKE0vjfQtV6RFnEJ3wPQDxJVI3Vo0TaZm30C1rEMKn6Ghmgcny3RO1amR/JldBLRH4WOhV6tgbLRwHcFz/fB+CXyuc/EtVCbwLweISOfhXAW8zszki2fUt89s3Ji7ewA8fWayRYgqn5M8tPqehYPVK9oAGbFi8pmJ1Ca3t7h919iHvu+Tpec/dX8ep7vooX3XUFfmmr3hqdsd9iHOSJp/EMZrIXYVuT3Wqs3eOUZp01UisVwkOqHkp9d8WALTc+u64CkHKtnStnIRSGzihQJsd09wG+65VfxR995SP4nlf9Ae5+5WW0Fx3HOUo5bwyNOJC9RDwVN4BMciSUT4XdotqpDwXWylHuth3VAGrsRo+q5z82mJrlXiCf1Y6BdtgAQ3bFpRIK4km5u39LD0xLByI/6rhaDMsTOQWOhNGBhPC9JJGDuVI+E/LVQNKJyfVZqhTjpMRDitDXS4QQhpXeQEWhzhpoAWkEVrSixP1tckyrHqfpZs+MqriVRxbhgN0jD9o2FWU7hnI5xPOAUB7ltFDRlPcTssA1Z6L+jlPIRF9ReAe2HQhZL6ELefllCknbCz4zimkcKBy2ycRYOkRTlJ6zrH+3zTx5nqFLnRxvycMG3h8ZHiv7gfuPcpIhO1XXVJR2xzlQSW7ZA+qjZPP3HwvmMpQSvcuQvPJkuN4UQcHzcmo4tOPhNFpZ00R7fSbT+soTEe45pCw3N829DIlAJRUisyJ/qgG2s9bjgSa+UfVYcXrG+yRqw/u2ze6NnkPyfvr/zpiu24PPzD4C4PsA3GVmD2NU+/wEgJ83s3cC+H0Afzku/08A3gbgIQBXAfwoALj718zsnwD4RFz3j939a9cdXRVcEW5RNnhDnqjKRkIdsCNu8FKh4el1UyCo/fYW6KHUbAP4umyABvhex4tuv4bvfvFlvPTCEzgKqXhwbQ/Hhw1+ELuqEyI1uHPTzplVSYuxidrGsL3QE20pnWyZAMnQUT2ILO+biW8UHubjfTRnhHPpUJUYeaOgodALD68bAPZyuLjBy+++jNe/5At41YWvYgvD7116KX7TXo4vfWMNP5iG7m1xgu9k8naIAskDodAL5Uvjy8wSoQKrdZDhlLWNNQ8FoGRTVspEjJmf8f8sW1bsPSZB/WJYYRT5L20TeTFbwI4BvwiFiaSQaZ94vp9FRYAMmJYCTUl8MacMi23Yz6KMh2tE3qvhT185vPQGqpVEsLHm62uG7f6OkuX8mMNhcXpxQP1maQiscw5nyA6NDYXvYpAbA9bZTr324eiTw6dx704DqVSfjWu4vkVJP1UuSnO0w9LrJfhVkxrGi06c3o6PtqvxDCphX2VDQI/3qsgD+hzxa4eZIzWUssEsz8kSmhNKb+QexbPYEyTmfjq0PCW55BTVcFBFD4XsbUdYiMqzl6RzokpSrPxOQRyS8bw8ZzyDlV0+xevRudmOEJm6+yKNWvFeT2OKc9ZDfraC1uh6/n4U+zpC8H0VRlppRNiObN6an/wVISju0RbG60BfTyJ3MkzcRiguZCj3WZ8oA1BQlchJCxSmRZh2GMyDEYRsWyK2RMS499tRzGeLXLJnCwssdIKua7C4+w8/zZ/e/BTXOoAfe5r7fADAB25odCiC7LC0H0cwOD2o0mKarcMJiddeBoxF0tChxd5XUXHC+D2h1WNDd2A1dVycjnGpHWFCx/60ibGFYUFlSQUWYQCFjMqm9DaEIZgcvLGZ4GJWfzu2KNv04umU0lCfe2jDiPHSLhzwmi8QiI46/ZrDLfIA9ke8GuHtsqy07zlW+xu84vbLeO2lR/GH9x7FNiTCw7fdgccuvRj9WiteumWC6wZAy1CVhGgrxuSKWn98R4miRXFnWXRWSNjG5gcLWirpTtSm532IkGTpNjLEuM38JeVDFEErVKcq1lgrCqIe88djHWRIhZFEb69FWf50CGwvjlvslsazFFg7swht5YWsYv0avcQYxyoFec0zCDwlETiiHvs9lfdmbieMfJa58cXwIxBrcNiwPWrA1rC60oSEKE/JiRpYmU+OYxjTNPz4TO7BobiST0YOSqyLIR0TGaaYz2MxSEYow+Sx0wiV904nwoYRz7yPmUHD8A2gsl8p671SDFCN8uOhXIXc+rh29Jgph4ROpr9VZIn308IQSVTTP4h/GdZACQ/6lA7Z2CeBSsAUEuP6K3mW68F8PGQyuW2BBktUwxx9yj2v8FAgqn0v9yWdlXacRQAGZLJ8fG97yVOmch3rHtjNt0E+g71whA454I7Z98H9S+PbrNwbkpUysLm/aBwj5KbygMZYuw2Uk+H0mdOA554cyGMPnkd0vs8SCpInHspdJbglF6XTgw5BaaCSx9h8pR+GxX+UC9Jzs9JrVQ7J1nD1cI3Lh5fQ4Li2XePrBxexOZ6ULa6TRIsRRJix5sNQUagcOTbfOBME2UcjkgDNKZRSwTLXQnBm8TjrJqshBXMMz7vkeSRE7ClkQyn3vRTWrTnW1nHBjrCO2ta1bbGyLYzJcbEevh7G4DjzBRkuqRuf6xKC2HpsrhL/7etUbG6hIAJZs25qBjXL7I+Y+3iWZwKkDaFU4X15RWGwtY3Be/ZfafQIg5c47wrJtZxjvl92WSWyllaXchQCQdtcqvMSRhrfd3KgseQ2PMNQwvncFEQjWZRGl6lr7RQIgfiRxnN8ztwAKnoqFyqP2heoKvY0WgC7NuX+Kd2LfQJ8m+vL9axJ3rtx/eS/UAD7WfVl3ebGGKct1m7LUuqYf2+hUA5oeeZ7VO3RV2l8aP9GKImePBEPn8bc+cqxjfWp4yPCmONAakrur25oG9f4lcdhZc+Gko4tk3xSjGnNZeP6c2/IlkleATKcUQzDgayNl+tUvtO4yDYYyGzsK4a+xfNlzng/nxzTgQ0UqCAKNQReT/8mH0vWFVlFpBd7UL5PVv4YbOuz4w9m+XEy1mMe94fhRXkp5eBFTtNoI4LKfRHzKGeFYepZ6D32Que+GcnQHWmkn4nZ4I7zEMI5bbolDBZ5SuuxKYBg6PAyaxyzrweKYLE5FK7xDLWMC4u3I6nMk0Mh4WjHDVcfv4gHcRf+4MKLse2GJ79xEX51FeMa3xuQ4Hy8QBGS9ICaj0PKSs8Nwa2Ew+uGYngIUNVQXwdMfmEYYsqfWTtWVwzbNrSuSgTj3VWV4gA7AbsZzEtJcGP82YDJsTle4eErd+CzF0fl+rGv8LmDu/DY1RehH0xKfGO+izytapCw8odGCT2QqOayMCwaDZm4jkp8t3V8Ks+YRzcdBUDvrB1DZZ8AJEQ5znZs6PTWQtBMB+OdW3QO9gnppSi5CVLy5nl7CbUaxgsDNZv6pTdXlTaRJ9siT+BGwusy9MK4U5iGc0xDoghvJVoTGTAA4RnS6Oc925Gp0aJCXd2AzaggIpw/R4I4SMzCYh6hWqEyocxa5GzYlomPgG3CaJIhBFVRCf0UIgEpSqE0gYYyrIkVDQuo8qkdmoxe6WwmqUdOnK9jvZn02k8a2wiDXB2045lSSK3s/+2Y976qKGKgBhFG2awG33OP0gjpK8DMMzGV7EA50YmOWDhluSe4rifkSStef0EJGT6WXRXVeAxtKTRyaAOV4VhajsdCkctZovFK+VISX6tcGx9ihhhRVgApM2qeidIAADmwuk/MEXkZTK7tkKx1xN5knmHw03Rk2Fx0dGOrAct3JB9MKWttg+EAxxxq3MfJO74a/OoUEAs9JZnZbQD+NYaE+a/u/rPf7PrzbbBwI4USrE2/GIKoIR74aP8NQPkgJo2CeRdPKohgaGabp5AdP0+HBhysce3ahKuXNsDx6Oza2DU1whN9RcXoyocZOQ0pkLRhS68UjGHnaa70xrhRvYy9KCV2btT3plKWyn4rYQi4egmkQq3VDPrMMTZlZNGvrhmOHl/j99d3AgAevu1OHHvD5574djx2+UWj0y3SCJgdQHZMpZLenbzxKZaLyYcOJTvmWsXyh1Gqd6eCiHejZ1Zbzbc+EANC85yzLEdNb00l72F46oDHUhkgPgrlS2WgU6Mx+GRz0WW0KVYeMfuhACMuTpaMODdRspEjM3hxc7GPKiJ6tWUs5ON2ZJF/VaqfilLoe+H1BkyuEt9VrpVPPnqyFMPZgGEceFxbnq2tSU82jN8ZyegJFCN6sNBgJorIteNtyQe2iU6nRtTIVRLN0kqGQazM5yyEwH/Y4ZkS8uM+JypWk9itvrajGNORu1GvZxgkDEV2LK7VjCOsHeNmztpOTgvKuNioj3Ot0DjlHHM2wkhjz5vayqA2z5u1MFgxdFmMzVC6ElOVR2Pe2jGwJWpMA4h7smHk/9HIolHpQ445zyBDkV8T33PMCVEMTDQo834MFWZi+xhg2xg2K9dBkr30Q+L4aeBbH2vJ887EGwY9i5+pq3eEeXh684ynyOPr+Jn5XW7DiCto/1nQWYWEzOwDAP4CgMfc/XvK528F8FMYGNX73f0nAPwlAPe7+380s58DcOsaLIaiYIOb2DI/wwm0skN4BMIiT92SwZkcR0Yi8sD+BXVT1+6z5sD0ZEM/WssCl5AJr4fexHTVsL1ILWn5fwoNo5B1JZ+1DQaErhcvLpCUa1Fc/CyQESnVMAyAKiwiIYz9NFrZSCXWr0qQDmzWIaNW4+9HX76EB6+t8flLd2JzPGFzdQUcNVU97OYWARCyI69/i9I0KhV59dg5fCqyzaUhHNdPmsowFWeP57VtGlsjRICEzJlgXL1Qix4Ja5vdp6I/3sD+ZqW/RCbx9j1X/gAKSlOVygjbhPHMkuKd6gIAQtCkXCKUNh0EX8aaIObFLyKNckse1bzuD+HajjAvx4xcru0+FT6kfHWNZ/gmkTjIGCJK0TaJ1jG3LB2JzCEg2rG94GiefTpYxjwLKVRlHby/3Y9w6RT5QZuca86BbVJxiAeL8m+bkYDLn5Xsy+/Y4MNZIz9PxU8DAQB4rlSGeHIefQJ6Y67NeMB0NMbeNgCOMyTI/ZJoHHLPBzGR1NblHcPIGeuX1XWm75cQeNkrtdydKRsMh/kUSFRU6Ci5OpAPIcDIfSTeDUdIPEM+3RREmxsJOd+tA5v9vFaeSCDclOEK8Rfkum2Y2zTGso0GeDUErjLzWDPKa8p+yR+HGlnWFIO+dkzHVkKZBl91WG8zB6kRZema/kC7g08C6a3A6guEPgjgXwL4MD8wswnAvwLw5zAax37CzD6K0eLkt+Ky3QyuE9Sud8FZkgNgmZy33PA8Z8NlWafXpUoAGiCe99J9KaNr6/QOlQKSASnwp4OAX8Nznp1TExsgHP5Uyr3E81f16VXohFA4Ls8NpUhPP+v5KaBLEho9qhLm4kZhvgIrPOQ9h4dVBRMV5hBeFNIQRD892dC+vIejL94Gf+QCpstrtKOmyh4AkUAYSb7I+VETKD43hL3OyqGAia/Qg+pxWCWF8QxGnvJnzlv18hniGQK9KOiYPyViG9cUgSjE9eGF0ZjgOkkBEK3y8rxS0sxQkErw6ZWVe9SOq0LRSoMvHVnPtY5cFnaIVd+WgPlpPLfiac+e7ePv5FOOc+wZCHmYJaq2YtjQqLQc55hXz66h4ZrLc985coHjrTy73deyCZnUvmn5Pc71rHkceWFybC/O+xmxX4gSaD3nwlucPQVIAur9iKwemJqfjQcjkZOYg9EteBiD7JDNvJqZBx7VLOwXRKU5ElPpQOXns3yRqGZj+LmOQYeEMuTRMAzV6O/DMnjyD+8h4yf+xKq7vh7z6xjPzSR9xzieIOdXRjnHiRx7RTjq+WI0KmQIEF3xPCjSeshbGRzQvNQWFTCowILvrvBRh5LyeSyJnNMIMdNx1D6gwT8ln+k9LFBog06rH71mXI4ox8e9zzFxjc6Ezqis+WmO83kjgIfc/f+6+xGAf4dxlM/DGEYL8AxmyvwcnA/wdGRmXwZwBcBXznoszyO6C8t8njYtc3r6tMzp6dMyp6dPz3ROv9vd7/5WD4ZkZr+CMbbTpgsADsrv73P39z3F818F4JcZEjKzdwB4q7v/jfj9r2Echvz3MdCYAwD//ZbOYXH3u83sk+7+hrMey/OFlvk8fVrm9PRpmdPTp2VOT5/O65y6+3UPFz4P5O5XEP3angmd65DQQgsttNBCCy10y9MzPp7nm9FisCy00EILLbTQQt9K+gSAe83s1Wa2B+CvYBzlc0N0KxgsJ+JjC90ULfN5+rTM6enTMqenT8ucnj4tc7pDcZzP/wDwWjN72Mze6e4bAH8T4wzBzwD4eXf/7Ru+93lOul1ooYUWWmihhRYCbg2EZaGFFlpooYUWeoHTuTVYzOytZvZ/zOwhM3v3WY/nViEze4WZ/ZqZ/Y6Z/baZ/Xh8/hIze8DMHoz/3xmfm5n9dMzzp8zs9Wf7BueTzGwys/9lZr8cv7/azD4e8/ZzEZeFme3H7w/F3191pgM/x2Rmd5jZ/Wb2u2b2GTP7kwuf3hyZ2d+Jff9pM/uImV1YePXGyMw+YGaPmdmny2c3zJdmdl9c/6CZ3XcW7/J8o3NpsJSueD8I4HUAftjMXne2o7plaAPg77r76wC8CcCPxdy9G8DH3P1eAB+L34Exx/fGv3cBeO9zP+Rbgn4cI/ZK+qcAftLd/xCAywDeGZ+/E8Dl+Pwn47qFnpp+CsCvuPsfAfDHMOZ34dNnSWb2MgB/C8Abov/FhJHcuPDqjdEHAeyWBd8QX5rZSwC8B6PXyBsBvIdGzkLPns6lwYKn74q30HXI3R9x99+Mn5/EUAIvw5i/D8VlHwLwQ/Hz2wF82Af9OoA7zOw7n9tRn28ys5cD+PMA3h+/G4DvB3B/XLI7n5zn+wG8Oa5fqJCZfRuAPwPgZwDA3Y/c/etY+PRmaQXgopmtAFwC8AgWXr0heppOrTfKlz8A4AF3/5q7XwbwAE4aQQvdIJ1Xg+VlAL5Qfn84PlvoBigg3u8F8HEA97j7I/GnRwHcEz8vc319+hcA/h50Wgq+HcDXI/MdmM+Z5jP+/nhcv9CcXg3gywD+TYTa3m/j5NaFT58lufsXAfwzAJ/HMFQeB/AbWHj1NOhG+XLh128BnVeDZaGbJDO7HcAvAPjb7v5E/Zu7zrde6DpkZjx19DfOeizPM1oBeD2A97r792IcwTHLVVv49MYoQg5vxzAGvwvAbVi8+lOnhS/Pjs6rwXIqXfFeqGRmawxj5Wfd/Rfj4y8RQo//PxafL3P9zelPAfiLZvY5jNDk92PkXtwRsDswnzPNZ/z92wB89bkc8C1CDwN42N0/Hr/fj2HALHz67OnPAvh/7v5ldz8G8IsY/Lvw6s3TjfLlwq/fAjqvBsupdMV7IVLEoH8GwGfc/Z+XP30UADPV7wPwS+XzH4ls9zcBeLxAny94cvd/4O4vd/dXYfDhf3H3vwrg1wC8Iy7bnU/O8zvi+sUb2yF3fxTAF8zstfHRmwH8DhY+vRn6PIA3mdmlkAOc04VXb55ulC9/FcBbzOzOQL7eEp8tdDPk7ufyH4C3Afg9AJ8F8A/Pejy3yj8AfxoDrvwUgP8d/96GEZv+GIAHAfxnAC+J6w2jIuuzAH4Lo8LgzN/jPP4D8H0YJ5ACwGsA/E8ADwH49wD24/ML8ftD8ffXnPW4z+s/AH8cwCeDV/8DgDsXPr3pOf1HAH4XwKcB/FsA+wuv3vAcfgQjB+gYAwl857PhSwB/Peb2IQA/etbv9Xz4t3S6XWihhRZaaKGFzj2d15DQQgsttNBCCy20kGgxWBZaaKGFFlpooXNPi8Gy0EILLbTQQgude1oMloUWWmihhRZa6NzTYrAstNBCCy200ELnnhaDZaGFFlpooYUWOve0GCwLLbTQQgsttNC5p8VgWWihhRZaaKGFzj39f8rqs30IZssbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "from matplotlib.colors import LogNorm\n", @@ -91,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "conscious-thomas", "metadata": {}, "outputs": [], @@ -121,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "productive-branch", "metadata": {}, "outputs": [], @@ -143,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "blond-frequency", "metadata": {}, "outputs": [], @@ -166,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "lined-windows", "metadata": {}, "outputs": [], @@ -186,65 +163,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "sharing-campaign", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Table length=17\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
elementnameclassincluded
str16str22str29bool
basic_atmosphereatmospheric_radiometryAtmosphericTERCurveFalse
basic_telescopepsfSeeingPSFTrue
basic_telescopetelescope_reflectionTERCurveTrue
basic_instrumentstatic_surfacesSurfaceListTrue
basic_instrumentfilter_wheel : [J]FilterWheelTrue
basic_instrumentslit_wheel : [narrow]SlitWheelFalse
basic_detectordetector_windowDetectorWindowTrue
basic_detectorqe_curveQuantumEfficiencyCurveTrue
basic_detectorexposure_actionSummedExposureTrue
basic_detectordark_currentDarkCurrentTrue
basic_detectorshot_noiseShotNoiseTrue
basic_detectordetector_linearityLinearityCurveTrue
basic_detectorreadout_noisePoorMansHxRGReadoutNoiseTrue
basic_detectorsource_fits_keywordsSourceDescriptionFitsKeywordsTrue
basic_detectoreffects_fits_keywordsEffectsMetaKeywordsTrue
basic_detectorconfig_fits_keywordsSimulationConfigFitsKeywordsTrue
basic_detectorextra_fits_keywordsExtraFitsKeywordsTrue
" - ], - "text/plain": [ - "\n", - " element name class included\n", - " str16 str22 str29 bool \n", - "---------------- ---------------------- ----------------------------- --------\n", - "basic_atmosphere atmospheric_radiometry AtmosphericTERCurve False\n", - " basic_telescope psf SeeingPSF True\n", - " basic_telescope telescope_reflection TERCurve True\n", - "basic_instrument static_surfaces SurfaceList True\n", - "basic_instrument filter_wheel : [J] FilterWheel True\n", - "basic_instrument slit_wheel : [narrow] SlitWheel False\n", - " basic_detector detector_window DetectorWindow True\n", - " basic_detector qe_curve QuantumEfficiencyCurve True\n", - " basic_detector exposure_action SummedExposure True\n", - " basic_detector dark_current DarkCurrent True\n", - " basic_detector shot_noise ShotNoise True\n", - " basic_detector detector_linearity LinearityCurve True\n", - " basic_detector readout_noise PoorMansHxRGReadoutNoise True\n", - " basic_detector source_fits_keywords SourceDescriptionFitsKeywords True\n", - " basic_detector effects_fits_keywords EffectsMetaKeywords True\n", - " basic_detector config_fits_keywords SimulationConfigFitsKeywords True\n", - " basic_detector extra_fits_keywords ExtraFitsKeywords True" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.effects" ] @@ -259,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "original-appeal", "metadata": {}, "outputs": [], @@ -279,19 +201,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "better-hurricane", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "imaging: Basic NIR imager\n", - "spectroscopy: Basic three-trace long-slit spectrograph\n" - ] - } - ], + "outputs": [], "source": [ "opt.cmds.modes" ] @@ -306,26 +219,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "through-exclusive", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'BrGamma': FilterCurve: \"BrGamma\",\n", - " 'CH4': FilterCurve: \"CH4\",\n", - " 'J': FilterCurve: \"J\",\n", - " 'H': FilterCurve: \"H\",\n", - " 'Ks': FilterCurve: \"Ks\",\n", - " 'open': FilterCurve: \"open\"}" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt[\"filter_wheel\"].filters" ] @@ -343,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "knowing-passenger", "metadata": {}, "outputs": [], @@ -364,61 +261,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "nervous-hearts", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " contents:\n", - "SIM: \n", - " spectral: {'wave_min': 0.7, 'wave_mid': 1.2, 'wave_max': 2.7, 'wave_unit': 'um', 'spectral_bin_width': 0.0001, 'spectral_resolution': 5000, 'minimum_throughput': 1e-06, 'minimum_pixel_flux': 1}\n", - " sub_pixel: {'flag': False, 'fraction': 1}\n", - " random: {'seed': None}\n", - " computing: {'chunk_size': 2048, 'max_segment_size': 16777217, 'oversampling': 1, 'spline_order': 1, 'flux_accuracy': 0.001, 'preload_field_of_views': False, 'bg_cell_width': 60}\n", - " file: {'local_packages_path': './inst_pkgs/', 'server_base_url': 'https://www.univie.ac.at/simcado/InstPkgSvr/', 'use_cached_downloads': False, 'search_path': ['./inst_pkgs/', './'], 'error_on_missing_file': False}\n", - " reports: {'ip_tracking': False, 'verbose': False, 'rst_path': './reports/rst/', 'latex_path': './reports/latex/', 'image_path': './reports/images/', 'image_format': 'png', 'preamble_file': 'None'}\n", - " logging: {'log_to_file': False, 'log_to_console': True, 'file_path': '.scopesim.log', 'file_open_mode': 'w', 'file_level': 'DEBUG', 'console_level': 'WARNING'}\n", - " tests: {'run_integration_tests': True, 'run_skycalc_ter_tests': True}\n", - " spectral_bin_width: 0.0005\n", - "OBS: \n", - " psf_fwhm: 1.5\n", - " modes: ['imaging']\n", - " dit: 60\n", - " ndit: 10\n", - " slit_name: narrow\n", - " include_slit: False\n", - " filter_name: J\n", - "TEL: \n", - " etendue: 0.007853981633974483 arcsec2 m2\n", - " area: 0.19634954084936207 m2\n", - " temperature: 0\n", - "INST: \n", - " pixel_scale: 0.2\n", - " plate_scale: 20\n", - " decouple_detector_from_sky_headers: False\n", - " temperature: -190\n", - "ATMO: \n", - " background: {'filter_name': 'J', 'value': 16.6, 'unit': 'mag'}\n", - " element_name: basic_atmosphere\n", - "DET: \n", - " image_plane_id: 0\n", - " temperature: -230\n", - " dit: !OBS.dit\n", - " ndit: !OBS.ndit\n", - " width: 1024\n", - " height: 1024\n", - " x: 0\n", - " y: 0\n", - " element_name: basic_detector" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "opt.cmds" ] @@ -438,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "thick-democrat", "metadata": {}, "outputs": [], @@ -471,7 +317,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -485,7 +331,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.16" } }, "nbformat": 4, From 8e8e2d041148bd50caf767d4dc9b3c42d01d8ffc Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 06:32:43 +0200 Subject: [PATCH 135/172] Optimize imports --- scopesim/effects/ter_curves.py | 17 ++++++----------- 1 file changed, 6 insertions(+), 11 deletions(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index bced2792..f5fba893 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -1,25 +1,20 @@ """Transmission, emissivity, reflection curves""" -import numpy as np -from astropy import units as u import logging from pathlib import Path +import numpy as np +import skycalc_ipy +from astropy import units as u from astropy.io import fits from astropy.table import Table -from astropy import units as u - -from synphot import SourceSpectrum -from synphot.units import PHOTLAM -import skycalc_ipy +from .effects import Effect +from .ter_curves_utils import add_edge_zeros from .ter_curves_utils import combine_two_spectra, apply_throughput_to_cube from .ter_curves_utils import download_svo_filter, download_svo_filter_list -from .ter_curves_utils import add_edge_zeros -from .effects import Effect +from ..base_classes import SourceBase, FOVSetupBase from ..optics.surface import SpectralSurface -from ..source.source_utils import make_imagehdu_from_table from ..source.source import Source -from ..base_classes import SourceBase, FOVSetupBase from ..utils import from_currsys, quantify, check_keys, find_file From 2e1e034e426ebfa831d7636cf3901968da90f998 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 07:00:26 +0200 Subject: [PATCH 136/172] Assert classes are right to placate IDE --- scopesim/effects/ter_curves.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index f5fba893..7014768a 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -87,6 +87,8 @@ def __init__(self, **kwargs): if self.meta["ignore_wings"]: data = add_edge_zeros(data, "wavelength") if data is not None: + # Assert that get_data() did not give us an image. + assert isinstance(data, Table), "TER Curves must be tables." self.surface.table = data self.surface.table.meta.update(self.meta) @@ -94,6 +96,7 @@ def __init__(self, **kwargs): def apply_to(self, obj, **kwargs): if isinstance(obj, SourceBase): + assert isinstance(obj, Source), "Only Source supported." self.meta = from_currsys(self.meta) wave_min = quantify(self.meta["wave_min"], u.um).to(u.AA) wave_max = quantify(self.meta["wave_max"], u.um).to(u.AA) @@ -114,6 +117,8 @@ def apply_to(self, obj, **kwargs): obj.append(self.background_source) if isinstance(obj, FOVSetupBase): + from ..optics.fov_manager import FovVolumeList + assert isinstance(obj, FovVolumeList), "Only FovVolumeList supported." wave = self.surface.throughput.waveset thru = self.surface.throughput(wave) valid_waves = np.argwhere(thru > 0) From dc4a4347eed0443fd7e6433a6ccafb0641b07857 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 07:02:28 +0200 Subject: [PATCH 137/172] Simplify PupilTransmission --- scopesim/effects/ter_curves.py | 10 +++------- 1 file changed, 3 insertions(+), 7 deletions(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 7014768a..f75766cd 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -830,13 +830,6 @@ def __init__(self, transmission, **kwargs): self.params = {"wave_min": "!SIM.spectral.wave_min", "wave_max": "!SIM.spectral.wave_max"} self.params.update(kwargs) - self.make_ter_curve(transmission) - - def update_transmission(self, transmission, **kwargs): - self.params.update(kwargs) - self.make_ter_curve(transmission) - - def make_ter_curve(self, transmission): wave_min = from_currsys(self.params["wave_min"]) * u.um wave_max = from_currsys(self.params["wave_max"]) * u.um transmission = from_currsys(transmission) @@ -845,6 +838,9 @@ def make_ter_curve(self, transmission): transmission=[transmission, transmission], emissivity=[0., 0.], **self.params) + def update_transmission(self, transmission, **kwargs): + self.__init__(transmission, **kwargs) + class ADCWheel(Effect): """ From 190cbd9e9fbd5ce44911fd55d4217e7bdea7f37d Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 07:12:47 +0200 Subject: [PATCH 138/172] Add some comments about make_imagehdu_from_table and bg_cell_width --- scopesim/effects/ter_curves.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index f75766cd..26bb814b 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -143,9 +143,17 @@ def background_source(self): if self._background_source is None: # add a single pixel ImageHDU for the extended background with a # size of 1 degree - bg_cell_width = from_currsys(self.meta["bg_cell_width"]) + # bg_cell_width = from_currsys(self.meta["bg_cell_width"]) + flux = self.emission bg_hdu = fits.ImageHDU() + # TODO: The make_imagehdu_from_table below has been replaced with + # the empty ImageHDU above in fbca416. That change might, + # have been fine (or not?), but now there is no use anywhere + # in the code of make_imagehdu_from_table or bg_cell_width, + # so maybe these need to be removed? + # bg_hdu = make_imagehdu_from_table([0], [0], [1], bg_cell_width * u.arcsec) + bg_hdu.header.update({"BG_SRC": True, "BG_SURF": self.display_name, "CUNIT1": "ARCSEC", From d58ab0929427725097453ceb14648b7a0de7048a Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 07:23:56 +0200 Subject: [PATCH 139/172] Various style fixes --- scopesim/effects/ter_curves.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 26bb814b..4dffbd83 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -178,6 +178,8 @@ def plot(self, which="x", wavelength=None, ax=None, new_figure=True, "x" plots throughput. "t","e","r" plot trans/emission/refl wavelength : list, np.ndarray ax : matplotlib.Axis + new_figure : start a new figure (or add to the existing one) + label : the label to use (ignored) kwargs Returns @@ -275,8 +277,11 @@ class : SkycalcTERCurve self.meta.update(kwargs) self.skycalc_table = None + self.skycalc_conn = None if self.include is True: + # Only query the database if the effect is actually included. + # Sets skycalc_conn and skycalc_table. self.load_skycalc_table() @property @@ -593,7 +598,6 @@ def __init__(self, **kwargs): self.table = self.get_table() - def apply_to(self, obj, **kwargs): """Use apply_to of current filter""" return self.current_filter.apply_to(obj, **kwargs) @@ -809,7 +813,7 @@ def __init__(self, **kwargs): self.meta.update(kwargs) obs, inst = self.meta["observatory"], self.meta["instrument"] - inc, exc = self.meta["include_str"], self.meta["exclude_str"] + inc, exc = self.meta["include_str"], self.meta["exclude_str"] filter_names = download_svo_filter_list(obs, inst, short_names=True, include=inc, exclude=exc) From ed0b3ab600648a667acf4091580d12bb7018b27c Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 07:24:42 +0200 Subject: [PATCH 140/172] Catch ConnectionError, which is apparently a standard exception --- scopesim/effects/ter_curves.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 4dffbd83..15035b12 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -342,7 +342,7 @@ def query_server(self, **kwargs): try: tbl = self.skycalc_conn.get_sky_spectrum(return_type="table") - except: + except ConnectionError: msg = "Could not connect to skycalc server" logging.exception(msg) raise ValueError(msg) From f6a775a12543ac38f1a508896c6ca7ceadc4171a Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 08:09:16 +0200 Subject: [PATCH 141/172] For now disable inspection on _get_ter_property --- scopesim/effects/ter_curves.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index 15035b12..b7b9e8d4 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -438,6 +438,7 @@ def fov_grid(self, which="waveset", **kwargs): @property def fwhm(self): wave = self.surface.wavelength + # noinspection PyProtectedMember thru = self.surface._get_ter_property("transmission", fmt="array") mask = thru >= 0.5 if any(mask): @@ -450,6 +451,7 @@ def fwhm(self): @property def centre(self): wave = self.surface.wavelength + # noinspection PyProtectedMember thru = self.surface._get_ter_property("transmission", fmt="array") num = np.trapz(thru * wave**2, x=wave) den = np.trapz(thru * wave, x=wave) From 082de8d7ab758ae47aae857f2d55d799891332e1 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 08:13:08 +0200 Subject: [PATCH 142/172] Fix spelling --- scopesim/effects/ter_curves.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index b7b9e8d4..b4c6a49e 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -24,7 +24,7 @@ class TERCurve(Effect): Must contain a wavelength column, and one or more of the following: ``transmission``, ``emissivity``, ``reflection``. - Additionally in the header there + Additionally, in the header there should be the following keywords: wavelength_unit kwargs that can be passed:: @@ -45,7 +45,7 @@ class TERCurve(Effect): wavelength_unit: um emission_unit: ph s-1 m-2 um-1 rescale_emission: - filter_name: "Paranal/HAWKI.Ks" + filter_name: "Paranal/HAWK.Ks" value: 15.5 unit: ABmag @@ -697,10 +697,10 @@ class TopHatFilterWheel(FilterWheel): filter_names: list of string transmissions: list of floats - [0..1] Peak transmissions inside the cuttoff limits + [0..1] Peak transmissions inside the cutoff limits wing_transmissions: list of floats - [0..1] Wing transmissions outside the cuttoff limits + [0..1] Wing transmissions outside the cutoff limits blue_cutoffs: list of floats [um] @@ -763,7 +763,7 @@ class SpanishVOFilterWheel(FilterWheel): This use ``astropy.download_file(..., cache=True)``. The filter transmission curves probably won't change, but if you notice - discrepancies, try clearing the astopy cache:: + discrepancies, try clearing the astropy cache:: >> from astropy.utils.data import clear_download_cache >> clear_download_cache() @@ -924,7 +924,7 @@ def __getattr__(self, item): return getattr(self.current_adc, item) def get_table(self): - """Create a table of ADCs with maximimum througput""" + """Create a table of ADCs with maximum throughput""" names = list(self.adcs.keys()) adcs = self.adcs.values() tmax = np.array([adc.data["transmission"].max() for adc in adcs]) From 5d8c1137e9e8973ae8ea5d2f61feb1beeb949144 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 08:51:02 +0200 Subject: [PATCH 143/172] Empty commit to test code coverage in CI From de36618b8b4eaff508a4cf205cf052c114ed6eed Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 09:48:19 +0200 Subject: [PATCH 144/172] Remove returning unity when providing bad name to SVO The value provided by this functionality is dubious. It will silently do the wrong thing. Luckily it is enabled nowhere. --- scopesim/effects/ter_curves.py | 4 +--- scopesim/effects/ter_curves_utils.py | 21 ++++--------------- scopesim/tests/tests_effects/test_TERCurve.py | 8 ------- 3 files changed, 5 insertions(+), 28 deletions(-) diff --git a/scopesim/effects/ter_curves.py b/scopesim/effects/ter_curves.py index b4c6a49e..5d0e3335 100644 --- a/scopesim/effects/ter_curves.py +++ b/scopesim/effects/ter_curves.py @@ -554,9 +554,7 @@ def __init__(self, **kwargs): kwargs["name"] = kwargs["filter_name"] kwargs["svo_id"] = filt_str - raise_error = kwargs.get("error_on_wrong_name", True) - tbl = download_svo_filter(filt_str, return_style="table", - error_on_wrong_name=raise_error) + tbl = download_svo_filter(filt_str, return_style="table") super(SpanishVOFilterCurve, self).__init__(table=tbl, **kwargs) diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index 5cc38a35..d05c99f5 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -57,8 +57,7 @@ def get_filter_effective_wavelength(filter_name): return eff_wave -def download_svo_filter(filter_name, return_style="synphot", - error_on_wrong_name=True): +def download_svo_filter(filter_name, return_style="synphot"): """ Query the SVO service for the true transmittance for a given filter @@ -78,9 +77,6 @@ def download_svo_filter(filter_name, return_style="synphot", - array: np.ndarray [wave, trans], where wave is in Angstrom - vo_table : astropy.table.Table - original output from SVO service - error_on_wrong_name : bool - Default True. Raises an exception if filter_name is as incorrect SVO ID - Returns ------- filt_curve : See return_style @@ -96,18 +92,9 @@ def download_svo_filter(filter_name, return_style="synphot", if not path: path = download_file(url, cache=True) - try: - tbl = Table.read(path, format='votable') - wave = u.Quantity(tbl['Wavelength'].data.data, u.Angstrom, copy=False) - trans = tbl['Transmission'].data.data - except: - if error_on_wrong_name: - raise ValueError(f"{filter_name} is an incorrect SVO identiier") - - logging.warning(("'%s' was not found in the SVO. Defaulting to a " - "unity transmission curve."), filter_name) - wave = [3e3, 3e5] << u.Angstrom - trans = np.array([1., 1.]) + tbl = Table.read(path, format='votable') + wave = u.Quantity(tbl['Wavelength'].data.data, u.Angstrom, copy=False) + trans = tbl['Transmission'].data.data if return_style == "synphot": filt = SpectralElement(Empirical1D, points=wave, lookup_table=trans) diff --git a/scopesim/tests/tests_effects/test_TERCurve.py b/scopesim/tests/tests_effects/test_TERCurve.py index d49d2653..fa7e2500 100644 --- a/scopesim/tests/tests_effects/test_TERCurve.py +++ b/scopesim/tests/tests_effects/test_TERCurve.py @@ -96,14 +96,6 @@ def test_returns_filter_as_wanted(self, observatory, instrument, filt_name): filter_name=filt_name) assert isinstance(filt, tc.FilterCurve) - def test_returns_unity_transmission_for_wrong_name(self): - filt = tc.SpanishVOFilterCurve(observatory=None, - instrument=None, - filter_name=None, - error_on_wrong_name=False) - assert isinstance(filt, tc.FilterCurve) - assert np.all([t == 1 for t in filt.data["transmission"]]) - @pytest.fixture(name="fwheel", scope="class") def _filter_wheel(): From c42382b52fe76a9b6fc2110ee5913c588f3730b7 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 09:51:59 +0200 Subject: [PATCH 145/172] Prevent variables to be accessed out of scope --- scopesim/effects/ter_curves_utils.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index d05c99f5..e76def7c 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -107,6 +107,8 @@ def download_svo_filter(filter_name, return_style="synphot"): filt = [wave.value, trans] elif return_style == "vo_table": filt = tbl + else: + raise ValueError("return_style %s unknown.", return_style) return filt @@ -193,6 +195,8 @@ def get_zero_mag_spectrum(system_name="AB"): spec = ab_spectrum() elif system_name.lower() in ["st", "hst"]: spec = st_spectrum() + else: + raise ValueError("system_name %s is unknown", system_name) return spec @@ -373,6 +377,8 @@ def combine_two_spectra(spec_a, spec_b, action, wave_min, wave_max): # plt.show() elif "add" in action.lower(): spec_c = spec_a(wave) + spec_b(wave) + else: + raise ValueError("action %s unknown", action) new_source = SourceSpectrum(Empirical1D, points=wave, lookup_table=spec_c) new_source.meta.update(spec_b.meta) From 6d862f999a0dfbd57c54646032893ca2304dc5e2 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 09:56:26 +0200 Subject: [PATCH 146/172] General style fixes --- scopesim/effects/ter_curves_utils.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index e76def7c..b5796bd2 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -1,4 +1,3 @@ -import logging from pathlib import Path import numpy as np @@ -44,6 +43,7 @@ PATH_HERE = Path(__file__).parent PATH_SVO_DATA = PATH_HERE.parent / "data" / "svo" + def get_filter_effective_wavelength(filter_name): if isinstance(filter_name, str): filter_name = from_currsys(filter_name) @@ -83,6 +83,8 @@ def download_svo_filter(filter_name, return_style="synphot"): Astronomical filter object. """ + # The SVO is only accessible over http, not over https. + # noinspection HttpUrlsUsage url = f"http://svo2.cab.inta-csic.es/theory/fps3/fps.php?ID={filter_name}" path = find_file( filter_name, @@ -143,6 +145,8 @@ def download_svo_filter_list(observatory, instrument, short_names=False, A list of filter names """ + # The SVO is only accessible over http, not over https. + # noinspection HttpUrlsUsage base_url = "http://svo2.cab.inta-csic.es/theory/fps3/fps.php?" url = base_url + f"Facility={observatory}&Instrument={instrument}" fn = f"{observatory}/{instrument}" @@ -182,7 +186,7 @@ def get_filter(filter_name): else: try: filt = download_svo_filter(filter_name) - except: + except ConnectionError: filt = None return filt @@ -315,6 +319,7 @@ def scale_spectrum(spectrum, filter_name, amplitude): return spectrum + def apply_throughput_to_cube(cube, thru): """ Apply throughput curve to a spectroscopic cube @@ -337,6 +342,7 @@ def apply_throughput_to_cube(cube, thru): cube.data *= thru(wave_cube).value[:, None, None] return cube + def combine_two_spectra(spec_a, spec_b, action, wave_min, wave_max): """ Combines transmission and/or emission spectrum with a common waverange @@ -367,7 +373,7 @@ def combine_two_spectra(spec_a, spec_b, action, wave_min, wave_max): wave = ([wave_min.value] + list(wave_val[mask]) + [wave_max.value]) * u.AA if "mult" in action.lower(): spec_c = spec_a(wave) * spec_b(wave) - ## Diagnostic plots - not for general use + # Diagnostic plots - not for general use # from matplotlib import pyplot as plt # plt.plot(wave, spec_a(wave), label="spec_a") # plt.plot(wave, spec_b(wave), label="spec_b") From f2464dd826d1ff974d39102ec424a1ecdfb32dc4 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 09:57:38 +0200 Subject: [PATCH 147/172] Remove useless __all__ --- scopesim/source/source_templates.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/scopesim/source/source_templates.py b/scopesim/source/source_templates.py index fd998fe6..3cda7cc0 100644 --- a/scopesim/source/source_templates.py +++ b/scopesim/source/source_templates.py @@ -15,8 +15,6 @@ from .source import Source from .. import rc -__all__ = ["empty_sky", "star", "star_field"] - def empty_sky(flux=0): """ From bd08f5013446c53ae72183322bb1178ac89a0d41 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 09:58:13 +0200 Subject: [PATCH 148/172] Fix style --- scopesim/tests/tests_effects/test_TERCurve.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/scopesim/tests/tests_effects/test_TERCurve.py b/scopesim/tests/tests_effects/test_TERCurve.py index fa7e2500..14fe65e7 100644 --- a/scopesim/tests/tests_effects/test_TERCurve.py +++ b/scopesim/tests/tests_effects/test_TERCurve.py @@ -21,6 +21,7 @@ # pylint: disable=no-self-use, missing-class-docstring # pylint: disable=missing-function-docstring + class TestTERCurveApplyTo: def test_adds_bg_to_source_if_source_has_no_bg(self): @@ -104,6 +105,7 @@ def _filter_wheel(): "filename_format": "TC_filter_{}.dat", "current_filter": "Br-gamma"}) + class TestFilterWheelInit: def test_initialises_correctly(self, fwheel): assert isinstance(fwheel, tc.FilterWheel) From 0974fd92f0cff72ecdc0fe6d7cb2b1b9e159cd37 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 16:55:15 +0200 Subject: [PATCH 149/172] Style --- scopesim/utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index c6aa2595..99247fcc 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -186,8 +186,8 @@ def deriv_polynomial2d(poly): ---------- poly : astropy.modeling.models.Polynomial2D - Output - ------ + Returns + ------- gradient : tuple of Polynomial2d """ import re From 32c512c6f89646f0a3e8e1f2b1089147f2769f27 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 16:56:30 +0200 Subject: [PATCH 150/172] Remove add_SED_to_scopesim, as it is never used and broken --- scopesim/utils.py | 39 --------------------------------------- 1 file changed, 39 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 99247fcc..5ff15c2e 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -231,45 +231,6 @@ def add_keyword(filename, keyword, value, comment="", ext=0): f.close() -def add_SED_to_scopesim(file_in, file_out=None, wave_units="um"): - """ - Adds the SED given in ``file_in`` to the ScopeSim data directory - - Parameters - ---------- - file_in : str - path to the SED file. Can be either FITS or ASCII format with 2 columns - Column 1 is the wavelength, column 2 is the flux - file_out : str, optional - Default is None. The file path to save the ASCII file. If ``None``, the SED - is saved to the ScopeSim data directory i.e. to ``rc.__data_dir__`` - wave_units : str, astropy.Units - Units for the wavelength column, either as a string or as astropy units - Default is [um] - - """ - - path = Path(file_in) - - if file_out is None: - if "SED_" not in path.name: - file_out = rc.__data_dir__ + f"SED_{path.name}.dat" - else: - file_out = rc.__data_dir__ + f"{path.name}.dat" - - if path.suffix.lower() == ".fits": - data = fits.getdata(file_in) - lam, val = data[data.columns[0].name], data[data.columns[1].name] - else: - lam, val = ioascii.read(file_in)[:2] - - lam = (lam * u.Unit(wave_units)).to(u.um) - mask = (lam > 0.3*u.um) * (lam < 5.0*u.um) - - np.savetxt(file_out, np.array((lam[mask], val[mask]), dtype=np.float32).T, - header="wavelength value \n [um] [flux]") - - def airmass_to_zenith_dist(airmass): """ returns zenith distance in degrees From 8787695a5085ae89c91dbcd6683af2579533f5e8 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 16:58:21 +0200 Subject: [PATCH 151/172] Auto-pep-8 --- scopesim/utils.py | 66 +++++++++++++++++++++++++---------------------- 1 file changed, 35 insertions(+), 31 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 5ff15c2e..0bdb3076 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -14,7 +14,6 @@ import numpy as np from astropy import units as u from astropy.io import fits -from astropy.io import ascii as ioascii from astropy.table import Column, Table from . import rc @@ -129,7 +128,7 @@ def moffat(r, alpha, beta): ------- eta """ - return (beta - 1)/(np.pi * alpha**2) * (1 + (r/alpha)**2)**(-beta) + return (beta - 1) / (np.pi * alpha ** 2) * (1 + (r / alpha) ** 2) ** (-beta) def poissonify(arr): @@ -172,12 +171,14 @@ def nearest(arr, val): return np.argmin(abs(arr - val)) + def power_vector(val, degree): """Return the vector of powers of val up to a degree""" if degree < 0 or not isinstance(degree, int): raise ValueError("degree must be a positive integer") - return np.array([val**exp for exp in range(degree + 1)]) + return np.array([val ** exp for exp in range(degree + 1)]) + def deriv_polynomial2d(poly): """Derivatives (gradient) of a Polynomial2D model @@ -202,8 +203,8 @@ def deriv_polynomial2d(poly): i = int(match.group(1)) j = int(match.group(2)) cij = getattr(poly, pname) - pname_x = "c%d_%d" % (i-1, j) - pname_y = "c%d_%d" % (i, j-1) + pname_x = "c%d_%d" % (i - 1, j) + pname_y = "c%d_%d" % (i, j - 1) setattr(dpoly_dx, pname_x, i * cij) setattr(dpoly_dy, pname_y, j * cij) @@ -268,7 +269,7 @@ def seq(start, stop, step=1): increment of the sequence, defaults to 1 """ - feps = 1e-10 # value used in R seq.default + feps = 1e-10 # value used in R seq.default delta = stop - start if delta == 0 and stop == 0: @@ -309,7 +310,7 @@ def add_mags(mags): """ Returns a combined magnitude for a group of py_objects with ``mags`` """ - return -2.5*np.log10((10**(-0.4*np.array(mags))).sum()) + return -2.5 * np.log10((10 ** (-0.4 * np.array(mags))).sum()) def dist_mod_from_distance(d): @@ -326,7 +327,7 @@ def distance_from_dist_mod(mu): d = 10**(1 + mu / 5) """ - d = 10**(1 + mu / 5) + d = 10 ** (1 + mu / 5) return d @@ -355,7 +356,7 @@ def telescope_diffraction_limit(aperture_size, wavelength, distance=None): """ - diff_limit = (((wavelength*u.um)/(aperture_size*u.m))*u.rad).to(u.arcsec).value + diff_limit = (((wavelength * u.um) / (aperture_size * u.m)) * u.rad).to(u.arcsec).value if distance is not None: diff_limit *= distance / u.pc.to(u.AU) @@ -437,7 +438,6 @@ def set_logger_level(which="console", level="ERROR"): """ - hdlr_name = f"scopesim_{which}_logger" level = {"ON": "INFO", "OFF": "CRITICAL"}.get(level.upper(), level) logger = logging.getLogger() @@ -519,7 +519,7 @@ def find_file(filename, path=None, silent=False): for trydir in path if trydir is not None] for fname in trynames: - if fname.exists(): # success + if fname.exists(): # success # strip leading ./ # Path should take care of this automatically! # while fname[:2] == './': @@ -529,7 +529,6 @@ def find_file(filename, path=None, silent=False): # HACK: Turn Path object back into string, because not everything # that depends on this function can handle Path objects (yet) return str(fname) - # no file found msg = f"File cannot be found: {filename}" @@ -570,7 +569,7 @@ def airmass2zendist(airmass): zenith distance in degrees """ - return np.rad2deg(np.arccos(1/airmass)) + return np.rad2deg(np.arccos(1 / airmass)) def convert_table_comments_to_dict(tbl): @@ -647,8 +646,10 @@ def insert_into_ordereddict(dic, new_entry, pos): def empty_type(x): - type_dict = {int: 0, float: 0., bool: False, str: " ", - list: [], tuple: (), dict: {}} + type_dict = { + int: 0, float: 0., bool: False, str: " ", + list: [], tuple: (), dict: {} + } if " Date: Tue, 4 Jul 2023 17:00:07 +0200 Subject: [PATCH 152/172] Remove redundant and never used msg function --- scopesim/utils.py | 20 +------------------- 1 file changed, 1 insertion(+), 19 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 0bdb3076..8fcf2004 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -19,24 +19,6 @@ from . import rc -def msg(cmds, message, level=3): - """ - Prints a message based on the level of verbosity given in cmds - - Parameters - ---------- - cmds : UserCommands - just for the SIM_VERBOSE and SIM_MESSAGE_LEVEL keywords - message : str - message to be printed - level : int, optional - all messages with level <= SIM_MESSAGE_LEVEL are printed. I.e. level=5 - messages are not important, level=1 are very important - """ - if cmds["SIM_VERBOSE"] == "yes" and level <= cmds["SIM_MESSAGE_LEVEL"]: - print(message) - - def unify(x, unit, length=1): """ Convert all types of input to an astropy array/unit pair @@ -108,7 +90,7 @@ def parallactic_angle(ha, de, lat=-24.589167): lat = np.deg2rad(lat) eta = np.arctan2(np.cos(lat) * np.sin(ha), - np.sin(lat) * np.cos(de) - \ + np.sin(lat) * np.cos(de) - np.cos(lat) * np.sin(de) * np.cos(ha)) return np.rad2deg(eta) From 8b88e45df7f629a429815942d30eada4c78d8dbc Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 17:03:26 +0200 Subject: [PATCH 153/172] Catch YAMLError instead of everything --- scopesim/utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 8fcf2004..7190df2d 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -561,13 +561,13 @@ def convert_table_comments_to_dict(tbl): try: comments_str = "\n".join(tbl.meta["comments"]) comments_dict = yaml.full_load(comments_str) - except: + except yaml.error.YAMLError: logging.warning("Couldn't convert
.meta['comments'] to dict") comments_dict = tbl.meta["comments"] elif "COMMENT" in tbl.meta: try: comments_dict = yaml.full_load("\n".join(tbl.meta["COMMENT"])) - except: + except yaml.error.YAMLError: logging.warning("Couldn't convert
.meta['COMMENT'] to dict") comments_dict = tbl.meta["COMMENT"] else: From 353946c0356ac7999721aa70027bccd22a8368ea Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 17:14:28 +0200 Subject: [PATCH 154/172] Make extract_type_from_unit simpler --- scopesim/utils.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 7190df2d..84b24545 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -714,10 +714,8 @@ def extract_type_from_unit(unit, unit_type): Any base units corresponding to ``unit_type`` """ - - unit = unit ** 1 extracted_units = u.Unit("") - for base, power in zip(unit._bases, unit._powers): + for base, power in zip(unit.bases, unit.powers): if unit_type == (base ** abs(power)).physical_type: extracted_units *= base ** power From 8b5e08b7a1bea7c12b25be18e70de8d2d094485b Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Tue, 4 Jul 2023 17:15:01 +0200 Subject: [PATCH 155/172] Make extract_base_from_unit simpler --- scopesim/utils.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/scopesim/utils.py b/scopesim/utils.py index 84b24545..eafb6f82 100644 --- a/scopesim/utils.py +++ b/scopesim/utils.py @@ -742,9 +742,8 @@ def extract_base_from_unit(unit, base_unit): """ - unit = unit ** 1 extracted_units = u.Unit("") - for base, power in zip(unit._bases, unit._powers): + for base, power in zip(unit.bases, unit.powers): if base == base_unit: extracted_units *= base ** power From 97bc6c240711bd6c2df26fbdef40dfcde715a4c5 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Wed, 5 Jul 2023 11:04:26 +0200 Subject: [PATCH 156/172] Update scopesim/effects/ter_curves_utils.py Co-authored-by: teutoburg <73600109+teutoburg@users.noreply.github.com> --- scopesim/effects/ter_curves_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scopesim/effects/ter_curves_utils.py b/scopesim/effects/ter_curves_utils.py index b5796bd2..2fbbba25 100644 --- a/scopesim/effects/ter_curves_utils.py +++ b/scopesim/effects/ter_curves_utils.py @@ -384,7 +384,7 @@ def combine_two_spectra(spec_a, spec_b, action, wave_min, wave_max): elif "add" in action.lower(): spec_c = spec_a(wave) + spec_b(wave) else: - raise ValueError("action %s unknown", action) + raise ValueError(f"action {action} unknown") new_source = SourceSpectrum(Empirical1D, points=wave, lookup_table=spec_c) new_source.meta.update(spec_b.meta) From d77f62ce506154561b4be2960f06f026e5c5915d Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 01:52:20 +0200 Subject: [PATCH 157/172] Rectify some __repr__ methods to confirm to the standard --- scopesim/commands/user_commands.py | 2 +- scopesim/effects/effects.py | 7 +++---- scopesim/effects/metis_lms_trace_list.py | 6 +++++- scopesim/effects/spectral_trace_list.py | 3 ++- scopesim/effects/spectral_trace_list_utils.py | 3 +++ scopesim/optics/fov.py | 6 ++++++ scopesim/optics/optical_train.py | 3 +++ scopesim/optics/radiometry.py | 2 +- scopesim/optics/surface.py | 7 ++++++- 9 files changed, 30 insertions(+), 9 deletions(-) diff --git a/scopesim/commands/user_commands.py b/scopesim/commands/user_commands.py index 6db4ee0e..793c3bbf 100644 --- a/scopesim/commands/user_commands.py +++ b/scopesim/commands/user_commands.py @@ -263,7 +263,7 @@ def __contains__(self, item): return self.cmds.__contains__(item) def __repr__(self): - return self.cmds.__repr__() + return f"{self.__class__.__name__}(**{self.kwargs!r})" def check_for_updates(package_name): diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index cdd6feb7..82d78dcc 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -292,8 +292,7 @@ def info(self): """ Prints basic information on the effect, notably the description """ - name = self.meta.get("name", self.meta.get("filename", "")) - text = f"{type(self).__name__}: \"{name}\"" + text = str(self) desc = self.meta.get("description") if desc is not None: @@ -302,10 +301,10 @@ def info(self): print(text) def __repr__(self): - return f"{type(self).__name__}: \"{self.display_name}\"" + return f"{self.__class__.__name__}(**{self.meta!r})" def __str__(self): - return self.__repr__() + return f"{self.__class__.__name__}: \"{self.display_name}\"" def __getitem__(self, item): if isinstance(item, str) and item.startswith("#"): diff --git a/scopesim/effects/metis_lms_trace_list.py b/scopesim/effects/metis_lms_trace_list.py index 0140975e..040b6967 100644 --- a/scopesim/effects/metis_lms_trace_list.py +++ b/scopesim/effects/metis_lms_trace_list.py @@ -369,8 +369,12 @@ def fp2sky(self, fp_x): """ return fp_x * self.meta["plate_scale"] - def __repr__(self): + msg = (f"{self.__class__.__name__}({self._file!r}, " + f"{self.meta['slice']!r}, {self.meta!r})") + return msg + + def __str__(self): msg = (f" \"{self.meta['description']}\" : " f"{from_currsys(self.meta['wavelen'])} um : " f"Order {self.meta['order']} : Angle {self.meta['angle']}") diff --git a/scopesim/effects/spectral_trace_list.py b/scopesim/effects/spectral_trace_list.py index d42bc8f8..553c7879 100644 --- a/scopesim/effects/spectral_trace_list.py +++ b/scopesim/effects/spectral_trace_list.py @@ -337,7 +337,8 @@ def plot(self, wave_min=None, wave_max=None, **kwargs): return plt.gcf() def __repr__(self): - return "\n".join([spt.__repr__() for spt in self.spectral_traces]) + # "\n".join([spt.__repr__() for spt in self.spectral_traces]) + return f"{self.__class__.__name__}(**{self.meta!r})" def __str__(self): msg = (f"SpectralTraceList: \"{self.meta.get('name')}\" : " diff --git a/scopesim/effects/spectral_trace_list_utils.py b/scopesim/effects/spectral_trace_list_utils.py index 5f68a2fe..d43df124 100644 --- a/scopesim/effects/spectral_trace_list_utils.py +++ b/scopesim/effects/spectral_trace_list_utils.py @@ -545,6 +545,9 @@ def _set_dispersion(self, wave_min, wave_max, pixsize=None): fill_value="extrapolate") def __repr__(self): + return f"{self.__class__.__name__}({self.table!r}, **{self.meta!r})" + + def __str__(self): msg = (f" \"{self.meta['trace_id']}\" : " f"[{self.wave_min:.4f}, {self.wave_max:.4f}]um : " f"Ext {self.meta['extension_id']} : " diff --git a/scopesim/optics/fov.py b/scopesim/optics/fov.py index 84f24c0e..73af7cd3 100644 --- a/scopesim/optics/fov.py +++ b/scopesim/optics/fov.py @@ -645,6 +645,12 @@ def background_fields(self): and field.header.get("BG_SRC", False) is True] def __repr__(self): + waverange = [self.meta["wave_min"].value, self.meta["wave_max"].value] + msg = (f"{self.__class__.__name__}({self.header!r}, {waverange!r}, " + f"{self.detector_header!r}, **{self.meta!r})") + return msg + + def __str__(self): msg = (f"FOV id: {self.meta['id']}, with dimensions " f"({self.header['NAXIS1']}, {self.header['NAXIS2']})\n" f"Sky centre: ({self.header['CRVAL1']}, " diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 95cf85fd..07751b23 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -492,6 +492,9 @@ def shutdown(self): def effects(self): return self.optics_manager.list_effects() + def __repr__(self): + return f"{self.__class__.__name__}({self.cmds!r})" + def __str__(self): return self._description diff --git a/scopesim/optics/radiometry.py b/scopesim/optics/radiometry.py index 7d034e5a..a094eecb 100644 --- a/scopesim/optics/radiometry.py +++ b/scopesim/optics/radiometry.py @@ -91,4 +91,4 @@ def __getitem__(self, item): return self.surfaces[item] def __repr__(self): - return self.table.__repr__() + return f"{self.__class__.__name__}({self.table!r}, **{self.meta})" diff --git a/scopesim/optics/surface.py b/scopesim/optics/surface.py index 25123f0a..8fecb672 100644 --- a/scopesim/optics/surface.py +++ b/scopesim/optics/surface.py @@ -282,9 +282,14 @@ def _get_array(self, colname): return val_out def __repr__(self): + msg = (f"{self.__class__.__name__}({self.meta['filename']}, " + f"**{self.meta!r})") + return msg + + def __str__(self): meta = self.meta name = meta["name"] if "name" in meta else meta["filename"] cols = "".join([col[0].upper() for col in self.table.colnames]) - msg = " [{cols}] \"{name}\"" + msg = "SpectralSurface [{cols}] \"{name}\"" return msg From 3b20d75d14cc1142a438da52c5852e48bab1a7f3 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 01:52:47 +0200 Subject: [PATCH 158/172] Remove unused imports --- scopesim/effects/effects.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 82d78dcc..03be4f16 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -1,12 +1,9 @@ from pathlib import Path -from astropy.table import Table - from ..effects.data_container import DataContainer from .. import base_classes as bc from ..utils import from_currsys, write_report from ..reports.rst_utils import table_to_rst -from .. import rc class Effect(DataContainer): From 6a60141406659afd847035c9edf4437333ae5b71 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 01:53:58 +0200 Subject: [PATCH 159/172] Proper use of f-string for padding --- scopesim/effects/effects.py | 3 ++- scopesim/optics/optical_element.py | 3 ++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/scopesim/effects/effects.py b/scopesim/effects/effects.py index 03be4f16..00dbe9e9 100644 --- a/scopesim/effects/effects.py +++ b/scopesim/effects/effects.py @@ -115,11 +115,12 @@ def display_name(self): def meta_string(self): meta_str = "" max_key_len = max(len(key) for key in self.meta.keys()) + padlen = max_key_len + 4 for key in self.meta: if key not in {"comments", "changes", "description", "history", "report_table_caption", "report_plot_caption", "table"}: - meta_str += f" {key.rjust(max_key_len)} : {self.meta[key]}\n" + meta_str += f"{key:>{padlen}} : {self.meta[key]}\n" return meta_str diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 6a814357..49f94eda 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -204,10 +204,11 @@ def __str__(self): def properties_str(self): prop_str = "" max_key_len = max(len(key) for key in self.properties.keys()) + padlen = max_key_len + 4 for key in self.properties: if key not in {"comments", "changes", "description", "history", "report"}: - prop_str += f" {key.rjust(max_key_len)} : {self.properties[key]}\n" + prop_str += f"{key:>{padlen}} : {self.properties[key]}\n" return prop_str From 412d96b9695a9e24e258246361c4b01cbc5841e1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 01:55:15 +0200 Subject: [PATCH 160/172] Remove harmful mutable default arguments --- scopesim/optics/fov_manager.py | 4 +++- scopesim/optics/optics_manager.py | 2 +- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/scopesim/optics/fov_manager.py b/scopesim/optics/fov_manager.py index ca776ae8..9a4fac41 100644 --- a/scopesim/optics/fov_manager.py +++ b/scopesim/optics/fov_manager.py @@ -189,7 +189,9 @@ class FovVolumeList(FOVSetupBase): """ - def __init__(self, initial_volume={}): + def __init__(self, initial_volume=None): + if initial_volume is None: + initial_volume = {} self.volumes = [{"wave_min": 0.3, "wave_max": 30, diff --git a/scopesim/optics/optics_manager.py b/scopesim/optics/optics_manager.py index 5dacfeef..6783d840 100644 --- a/scopesim/optics/optics_manager.py +++ b/scopesim/optics/optics_manager.py @@ -30,7 +30,7 @@ class OpticsManager: """ - def __init__(self, yaml_dicts=[], **kwargs): + def __init__(self, yaml_dicts=None, **kwargs): self.optical_elements = [] self.meta = {} self.meta.update(kwargs) From 235a56d13fba540258dc8373eff78e2bb55cbcc1 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 01:56:35 +0200 Subject: [PATCH 161/172] Small string/style fixes --- scopesim/optics/optical_element.py | 2 +- scopesim/optics/optics_manager.py | 12 ++++++------ 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 49f94eda..106f778c 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -174,7 +174,7 @@ def __getitem__(self, item): elif isinstance(item, int): obj = self.effects[item] elif isinstance(item, str): - if item[0] == "#" and "." in item: + if item.startswith("#") and "." in item: eff, meta = item.replace("#", "").split(".") obj = self[eff][f"#{meta}"] else: diff --git a/scopesim/optics/optics_manager.py b/scopesim/optics/optics_manager.py index 6783d840..238372ca 100644 --- a/scopesim/optics/optics_manager.py +++ b/scopesim/optics/optics_manager.py @@ -45,7 +45,7 @@ def __init__(self, yaml_dicts=None, **kwargs): def set_derived_parameters(self): if "!INST.pixel_scale" not in rc.__currsys__: - raise ValueError("!INST.pixel_scale is missing from the current" + raise ValueError("'!INST.pixel_scale' is missing from the current" "system. Please add this to the instrument (INST)" "properties dict for the system.") pixel_scale = rc.__currsys__["!INST.pixel_scale"] * u.arcsec @@ -82,10 +82,10 @@ def load_effects(self, yaml_dicts, **kwargs): """ - if isinstance(yaml_dicts, dict): + if not isinstance(yaml_dicts, Sequence): yaml_dicts = [yaml_dicts] - self.optical_elements += [OpticalElement(dic, **kwargs) - for dic in yaml_dicts if "effects" in dic] + self.optical_elements.extend(OpticalElement(dic, **kwargs) + for dic in yaml_dicts if "effects" in dic) def add_effect(self, effect, ext=0): """ @@ -176,7 +176,7 @@ def image_plane_headers(self): detector_lists = self.detector_setup_effects headers = [det_list.image_plane_header for det_list in detector_lists] - if len(detector_lists) == 0: + if not detector_lists: raise ValueError(f"No DetectorList objects found. {detector_lists}") return headers @@ -314,7 +314,7 @@ def __getitem__(self, item): obj = self.optical_elements[item] elif isinstance(item, str): # check for hash-string for getting Effect.meta values - if item[0] == "#" and "." in item: + if item.startswith("#") and "." in item: opt_el_name = item.replace("#", "").split(".")[0] new_item = item.replace(f"{opt_el_name}.", "") obj = self[opt_el_name][new_item] From 74353adf34e815ecaaa071345d1e21fefb3217b5 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 02:00:59 +0200 Subject: [PATCH 162/172] Fix dunder methods, add missing ones --- scopesim/optics/fov_manager.py | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/scopesim/optics/fov_manager.py b/scopesim/optics/fov_manager.py index 9a4fac41..02fe8ce6 100644 --- a/scopesim/optics/fov_manager.py +++ b/scopesim/optics/fov_manager.py @@ -363,19 +363,18 @@ def extract(self, axes, edges, aperture_id=None): def __len__(self): return len(self.volumes) - def __getitem__(self, item): - return self.volumes[item] + def __iter__(self): + return iter(self.volumes) + + def __getitem__(self, key): + return self.volumes[key] def __setitem__(self, key, value): self.volumes[item] = value - def __repr__(self): - text = f"FovVolumeList with [{len(self.volumes)}] volumes:\n" - for i, vol in enumerate(self.volumes): - mini_text = ", ".join([f"{key}: {val}" for key, val in vol.items()]) - text += f" [{i}] {mini_text} \n" + def __delitem__(self, key): + del self.volumes[key] - return text def __iadd__(self, other): if isinstance(other, list): From c191be4a4c8e1e4506ee2c504432073673310c19 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 02:03:05 +0200 Subject: [PATCH 163/172] Make long "pretty str"-methods IO-stream based, fix __repr__ methods --- scopesim/optics/fov_manager.py | 27 +++++++++++++++++++++++++ scopesim/optics/optical_element.py | 29 ++++++++++++++++++++------- scopesim/optics/optics_manager.py | 32 +++++++++++++++++++++--------- 3 files changed, 72 insertions(+), 16 deletions(-) diff --git a/scopesim/optics/fov_manager.py b/scopesim/optics/fov_manager.py index 02fe8ce6..819385e9 100644 --- a/scopesim/optics/fov_manager.py +++ b/scopesim/optics/fov_manager.py @@ -44,6 +44,9 @@ from copy import deepcopy import numpy as np +from typing import TextIO +from io import StringIO + from astropy import units as u from . import image_plane_utils as ipu @@ -375,6 +378,30 @@ def __setitem__(self, key, value): def __delitem__(self, key): del self.volumes[key] + def write_string(self, stream: TextIO) -> None: + """Write formatted string representation to I/O stream""" + n_vol = len(self.volumes) + stream.write(f"FovVolumeList with {n_vol} volumes:") + max_digits = len(str(n_vol)) + + for i_vol, vol in enumerate(self.volumes): + pre = "\n└─" if i_vol == n_vol - 1 else "\n├─" + stream.write(f"{pre}[{i_vol:>{max_digits}}]:") + + pre = "\n " if i_vol == n_vol - 1 else "\n│ " + n_key = len(vol) + for i_key, (key, val) in enumerate(vol.items()): + subpre = "└─" if i_key == n_key - 1 else "├─" + stream.write(f"{pre}{subpre}{key}: {val}") + + def __repr__(self) -> str: + return f"{self.__class__.__name__}({self.volumes[0]})" + + def __str__(self) -> str: + with StringIO() as str_stream: + self.write_string(str_stream) + output = str_stream.getvalue() + return output def __iadd__(self, other): if isinstance(other, list): diff --git a/scopesim/optics/optical_element.py b/scopesim/optics/optical_element.py index 106f778c..f2b46545 100644 --- a/scopesim/optics/optical_element.py +++ b/scopesim/optics/optical_element.py @@ -1,5 +1,7 @@ import logging from inspect import isclass +from typing import TextIO +from io import StringIO from astropy.table import Table @@ -189,16 +191,29 @@ def __getitem__(self, item): return obj + def write_string(self, stream: TextIO, list_effects: bool = True) -> None: + """Write formatted string representation to I/O stream""" + stream.write(f"{self!s} contains {len(self.effects)} Effects\n") + if list_effects: + for i_eff, eff in enumerate(self.effects): + stream.write(f"[{i_eff}] {eff!r}\n") + + def pretty_str(self) -> str: + """Return formatted string representation as str""" + with StringIO() as str_stream: + self.write_string(str_stream) + output = str_stream.getvalue() + return output + + @property + def display_name(self): + return self.meta.get("name", self.meta.get("filename", "")) + def __repr__(self): - msg = (f"\nOpticalElement : \"{self.meta['name']}\" contains " - f"{len(self.effects)} Effects: \n") - eff_str = "\n".join([f"[{i}] {eff.__repr__()}" for i, eff - in enumerate(self.effects)]) - return msg + eff_str + return f"<{self.__class__.__name__}>" def __str__(self): - name = self.meta.get("name", self.meta.get("filename", "")) - return f"{type(self).__name__}: \"{name}\"" + return f"{self.__class__.__name__}: \"{self.display_name}\"" @property def properties_str(self): diff --git a/scopesim/optics/optics_manager.py b/scopesim/optics/optics_manager.py index 238372ca..bce11c87 100644 --- a/scopesim/optics/optics_manager.py +++ b/scopesim/optics/optics_manager.py @@ -1,5 +1,8 @@ import logging from inspect import isclass +from typing import TextIO +from io import StringIO +from collections.abc import Sequence import numpy as np from astropy import units as u @@ -344,15 +347,26 @@ def __setitem__(self, key, value): elif isinstance(obj, efs.Effect) and isinstance(value, dict): obj.meta.update(value) - def __repr__(self): - msg = (f"\nOpticsManager contains {len(self.optical_elements)} " - "OpticalElements \n") - for ii, opt_el in enumerate(self.optical_elements): - msg += (f"[{ii}] \"{opt_el.meta['name']}\" contains " - f"{len(opt_el.effects)} effects \n") + def write_string(self, stream: TextIO) -> None: + """Write formatted string representation to I/O stream""" + stream.write(f"{self!s} contains {len(self.optical_elements)} " + "OpticalElements\n") + for opt_elem in enumerate(self.optical_elements): + opt_elem.write_string(stream, list_effects=False) + + def pretty_str(self) -> str: + """Return formatted string representation as str""" + with StringIO() as str_stream: + self.write_string(str_stream) + output = str_stream.getvalue() + return output - return msg + @property + def display_name(self): + return self.meta.get("name", self.meta.get("filename", "")) + + def __repr__(self): + return f"<{self.__class__.__name__}>" def __str__(self): - name = self.meta.get("name", self.meta.get("filename", "")) - return f"{type(self).__name__}: \"{name}\"" + return f"{self.__class__.__name__}: \"{self.display_name}\"" From d1746a638efd48971324a4c74de6a1130fbe06c5 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 02:04:33 +0200 Subject: [PATCH 164/172] Rewrite SystemDict to be able to inherit from MutableMapping. Also fix __repr__ and __str__, make "pretty str"-method IO-stream based. --- scopesim/system_dict.py | 117 +++++++++++++++++++++++++++++----------- 1 file changed, 85 insertions(+), 32 deletions(-) diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index d50ba5e6..f89c6793 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -1,17 +1,25 @@ +# -*- coding: utf-8 -*- + import logging +from typing import TextIO +from io import StringIO +from collections.abc import Iterable, Mapping, MutableMapping + +from more_itertools import ilen -class SystemDict(): +class SystemDict(MutableMapping): def __init__(self, new_dict=None): self.dic = {} - if isinstance(new_dict, dict): + if isinstance(new_dict, Mapping): self.update(new_dict) - elif isinstance(new_dict, list): + elif isinstance(new_dict, Iterable): for entry in new_dict: self.update(entry) - def update(self, new_dict): - if isinstance(new_dict, dict) \ + def update(self, new_dict: MutableMapping) -> None: + # TODO: why do we check for dict here but not in the else? + if isinstance(new_dict, Mapping) \ and "alias" in new_dict \ and "properties" in new_dict: alias = new_dict["alias"] @@ -35,6 +43,8 @@ def update(self, new_dict): def __getitem__(self, item): if isinstance(item, str) and item.startswith("!"): + # TODO: these should be replaced with item.removeprefix("!") + # once we can finally drop support for Python 3.8 UwU item_chunks = item[1:].split(".") entry = self.dic for item in item_chunks: @@ -44,45 +54,88 @@ def __getitem__(self, item): def __setitem__(self, key, value): if isinstance(key, str) and key.startswith("!"): - key_chunks = key[1:].split(".") + # TODO: these should be replaced with item.removeprefix("!") + # once we can finally drop support for Python 3.8 UwU + *key_chunks, final_key = key[1:].split(".") entry = self.dic - for key in key_chunks[:-1]: + for key in key_chunks: if key not in entry: entry[key] = {} entry = entry[key] - entry[key_chunks[-1]] = value + entry[final_key] = value else: self.dic[key] = value - def __contains__(self, item): - if isinstance(item, str) and item.startswith("!"): - item_chunks = item[1:].split(".") - entry = self.dic - for item in item_chunks: - if not isinstance(entry, dict) or item not in entry: - return False - entry = entry[item] - return True - return item in self.dic - - def __repr__(self): - msg = " contents:" - for key, val in self.dic.items(): - msg += f"\n{key}: " - if isinstance(val, dict): - for subkey in val.keys(): - msg += f"\n {subkey}: {val[subkey]}" + def __delitem__(self, item): + raise NotImplementedError("item deletion is not yet implemented for " + f"{self.__class__.__name__}") + + # def __contains__(self, item): + # method is redundant when inheriting from abc + # if isinstance(item, str) and item.startswith("!"): + # # TODO: these should be replaced with item.removeprefix("!") + # # once we can finally drop support for Python 3.8 UwU + # item_chunks = item[1:].split(".") + # entry = self.dic + # for item in item_chunks: + # if not isinstance(entry, Mapping) or item not in entry: + # return False + # entry = entry[item] + # return True + # return item in self.dic + + def _yield_subkeys(self, key, value): + for subkey, subvalue in value.items(): + if isinstance(subvalue, Mapping): + yield from self._yield_subkeys(f"{key}.{subkey}", subvalue) else: - msg += f"{val}\n" - return msg + yield f"!{key}.{subkey}" + + def __iter__(self): + for key, value in self.dic.items(): + if isinstance(value, Mapping): + yield from self._yield_subkeys(key, value) + else: + yield key + + def __len__(self) -> int: + return ilen(iter(self)) + + def _write_subdict(self, subdict: Mapping, stream: TextIO, + pad: str = "") -> None: + pre = pad.replace("├─", "│ ").replace("└─", " ") + n_sub = len(subdict) + for i_sub, (key, val) in enumerate(subdict.items()): + subpre = "└─" if i_sub == n_sub - 1 else "├─" + stream.write(f"{pre}{subpre}{key}: ") + if isinstance(val, Mapping): + self._write_subdict(val, stream, pre + subpre) + else: + stream.write(f"{val}") + + def write_string(self, stream: TextIO) -> None: + """Write formatted string representation to I/O stream""" + stream.write("SystemDict contents:") + self._write_subdict(self.dic, stream, "\n") + + def __repr__(self) -> str: + return f"{self.__class__.__name__}({self.dic!r})" + + def __str__(self) -> str: + # SystemDict({"foo":5, "bar":{"bogus": {"a":42, "b":69}, "baz":"meh"}, "moo":"yolo", "yeet": {"x":0, "y":420}}) + # "SystemDict contents:\n├─foo: 5\n├─bar: \n│ ├─bogus: \n│ │ ├─a: 42\n│ │ └─b: 69\n│ └─baz: meh\n├─moo: yolo\n└─yeet: \n ├─x: 0\n └─y: 420" + with StringIO() as str_stream: + self.write_string(str_stream) + output = str_stream.getvalue() + return output -def recursive_update(old_dict, new_dict): +def recursive_update(old_dict: MutableMapping, new_dict: Mapping) -> MutableMapping: if new_dict is not None: for key in new_dict: if old_dict is not None and key in old_dict: - if isinstance(old_dict[key], dict): - if isinstance(new_dict[key], dict): + if isinstance(old_dict[key], Mapping): + if isinstance(new_dict[key], Mapping): old_dict[key] = recursive_update(old_dict[key], new_dict[key]) else: @@ -90,7 +143,7 @@ def recursive_update(old_dict, new_dict): old_dict[key], new_dict[key]) old_dict[key] = new_dict[key] else: - if isinstance(new_dict[key], dict): + if isinstance(new_dict[key], Mapping): logging.warning("Overwriting non-dict: %s with dict: %s", old_dict[key], new_dict[key]) old_dict[key] = new_dict[key] From aaea12dd85f72c8662e99d88b9bf3774ecb249f0 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 10:58:52 +0200 Subject: [PATCH 165/172] Swap assignment order to avoid access before assignment... --- scopesim/optics/optical_train.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/scopesim/optics/optical_train.py b/scopesim/optics/optical_train.py index 07751b23..d0ed34dc 100644 --- a/scopesim/optics/optical_train.py +++ b/scopesim/optics/optical_train.py @@ -83,9 +83,8 @@ class OpticalTrain: """ def __init__(self, cmds=None): - - self._description = self.__repr__() self.cmds = cmds + self._description = self.__repr__() self.optics_manager = None self.fov_manager = None self.image_planes = [] From 02c874cb715c564884664fd35c42685d4e9d2b96 Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 11:47:55 +0200 Subject: [PATCH 166/172] Fixed __getitem__, rename item to key, remove redundant stuff --- scopesim/system_dict.py | 34 ++++++++++------------------------ 1 file changed, 10 insertions(+), 24 deletions(-) diff --git a/scopesim/system_dict.py b/scopesim/system_dict.py index f89c6793..e5440dc6 100644 --- a/scopesim/system_dict.py +++ b/scopesim/system_dict.py @@ -41,16 +41,18 @@ def update(self, new_dict: MutableMapping) -> None: if len(new_dict) > 0: self.dic = recursive_update(self.dic, new_dict) - def __getitem__(self, item): - if isinstance(item, str) and item.startswith("!"): - # TODO: these should be replaced with item.removeprefix("!") + def __getitem__(self, key): + if isinstance(key, str) and key.startswith("!"): + # TODO: these should be replaced with key.removeprefix("!") # once we can finally drop support for Python 3.8 UwU - item_chunks = item[1:].split(".") + key_chunks = key[1:].split(".") entry = self.dic - for item in item_chunks: - entry = entry[item] + for key in key_chunks: + if not isinstance(entry, Mapping): + raise KeyError(key) + entry = entry[key] return entry - return self.dic[item] + return self.dic[key] def __setitem__(self, key, value): if isinstance(key, str) and key.startswith("!"): @@ -66,24 +68,10 @@ def __setitem__(self, key, value): else: self.dic[key] = value - def __delitem__(self, item): + def __delitem__(self, key): raise NotImplementedError("item deletion is not yet implemented for " f"{self.__class__.__name__}") - # def __contains__(self, item): - # method is redundant when inheriting from abc - # if isinstance(item, str) and item.startswith("!"): - # # TODO: these should be replaced with item.removeprefix("!") - # # once we can finally drop support for Python 3.8 UwU - # item_chunks = item[1:].split(".") - # entry = self.dic - # for item in item_chunks: - # if not isinstance(entry, Mapping) or item not in entry: - # return False - # entry = entry[item] - # return True - # return item in self.dic - def _yield_subkeys(self, key, value): for subkey, subvalue in value.items(): if isinstance(subvalue, Mapping): @@ -122,8 +110,6 @@ def __repr__(self) -> str: return f"{self.__class__.__name__}({self.dic!r})" def __str__(self) -> str: - # SystemDict({"foo":5, "bar":{"bogus": {"a":42, "b":69}, "baz":"meh"}, "moo":"yolo", "yeet": {"x":0, "y":420}}) - # "SystemDict contents:\n├─foo: 5\n├─bar: \n│ ├─bogus: \n│ │ ├─a: 42\n│ │ └─b: 69\n│ └─baz: meh\n├─moo: yolo\n└─yeet: \n ├─x: 0\n └─y: 420" with StringIO() as str_stream: self.write_string(str_stream) output = str_stream.getvalue() From bb922bfc618b90485ef9698787415952b1fb136a Mon Sep 17 00:00:00 2001 From: teutoburg Date: Fri, 7 Jul 2023 14:42:01 +0200 Subject: [PATCH 167/172] Add some more tests, fix broken ones --- .../tests/tests_commands/test_SystemDict.py | 33 +++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/scopesim/tests/tests_commands/test_SystemDict.py b/scopesim/tests/tests_commands/test_SystemDict.py index 5589183b..fe391d70 100644 --- a/scopesim/tests/tests_commands/test_SystemDict.py +++ b/scopesim/tests/tests_commands/test_SystemDict.py @@ -16,6 +16,12 @@ def basic_yaml(): return yaml.full_load(_basic_yaml) +@pytest.fixture(scope="class") +def nested_dict(): + return {"foo": 5, "bar": {"bogus": {"a": 42, "b": 69}, + "baz": "meh"}, "moo": "yolo", "yeet": {"x": 0, "y": 420}} + + @pytest.mark.usefixtures("basic_yaml") class TestInit: def test_initialises_with_nothing(self): @@ -104,3 +110,30 @@ def test_recursive_update_overwrites_string_with_string(self): f = {"a": {"b": {"c": "world"}}} recursive_update(e, f) assert e["a"]["b"]["c"] == "world" + + +@pytest.mark.usefixtures("nested_dict") +class TestRepresentation: + def test_str_conversion(self, nested_dict): + desired = ("SystemDict contents:\n├─foo: 5\n├─bar: \n│ ├─bogus: " + "\n│ │ ├─a: 42\n│ │ └─b: 69\n│ └─baz: meh\n├─moo: " + "yolo\n└─yeet: \n ├─x: 0\n └─y: 420") + sys_dict = SystemDict(nested_dict) + assert str(sys_dict) == desired + + def test_repr_conversion(self, nested_dict): + desired = ("SystemDict({'foo': 5, 'bar': {'bogus': " + "{'a': 42, 'b': 69}, 'baz': 'meh'}, 'moo': 'yolo', " + "'yeet': {'x': 0, 'y': 420}})") + sys_dict = SystemDict(nested_dict) + assert sys_dict.__repr__() == desired + + def test_len_works(self, nested_dict): + sys_dict = SystemDict(nested_dict) + assert len(sys_dict) == 7 + + def test_list_returns_keys(self, nested_dict): + desired = ["foo", "!bar.bogus.a", "!bar.bogus.b", "!bar.baz", "moo", + "!yeet.x", "!yeet.y"] + sys_dict = SystemDict(nested_dict) + assert list(sys_dict) == desired From c6a0d0d9984c9ef871432003d91c12d0fdb0fafa Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Fri, 7 Jul 2023 15:28:46 +0200 Subject: [PATCH 168/172] Update requests dependency --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 8754c2eb..53a1f4d1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -26,7 +26,7 @@ dependencies = [ "matplotlib>=3.2.0", "docutils>=0.15", - "requests>=2.20", + "requests>=2.22", "beautifulsoup4>=4.4", "lxml>=4.5.0", "pyyaml>5.1", From c10c211db10974c7b32bf44fee503cbe0e62bcd7 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Fri, 7 Jul 2023 15:45:29 +0200 Subject: [PATCH 169/172] Use requests 2.28.2 --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 53a1f4d1..b88fc38f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -26,7 +26,7 @@ dependencies = [ "matplotlib>=3.2.0", "docutils>=0.15", - "requests>=2.22", + "requests>=2.28.2", "beautifulsoup4>=4.4", "lxml>=4.5.0", "pyyaml>5.1", From 1ec7682d1c5458fbf46cd5d752e9951d13312245 Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 10 Jul 2023 11:33:50 +0200 Subject: [PATCH 170/172] Replace MAORY with MORFEO through sed --- docs/source/5_liners/loading_packages.ipynb | 2 +- docs/source/examples/1_scopesim_intro.ipynb | 4 ++-- docs/source/examples/2_multiple_telescopes.ipynb | 4 ++-- docs/source/examples/3_custom_effects.ipynb | 4 ++-- 4 files changed, 7 insertions(+), 7 deletions(-) diff --git a/docs/source/5_liners/loading_packages.ipynb b/docs/source/5_liners/loading_packages.ipynb index 473d823d..b5f3309b 100644 --- a/docs/source/5_liners/loading_packages.ipynb +++ b/docs/source/5_liners/loading_packages.ipynb @@ -13,7 +13,7 @@ "\n", "- Locations (e.g. Armazones, LaPalma)\n", "- Telescopes (e.g. ELT, GTC)\n", - "- Instruments (e.g. MICADO, METIS, MAORY, OSIRIS, MAAT)\n", + "- Instruments (e.g. MICADO, METIS, MORFEO, OSIRIS, MAAT)\n", "\n", "We need to amke sure we have all the packages required to built the optical system. E.g. observing with MICADO is useless without including the ELT." ] diff --git a/docs/source/examples/1_scopesim_intro.ipynb b/docs/source/examples/1_scopesim_intro.ipynb index 86b66279..e2146d30 100644 --- a/docs/source/examples/1_scopesim_intro.ipynb +++ b/docs/source/examples/1_scopesim_intro.ipynb @@ -93,7 +93,7 @@ "outputs": [], "source": [ "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MORFEO\", \"MICADO\"])" ] }, { @@ -180,7 +180,7 @@ "import scopesim as sim\n", "import scopesim_templates as sim_tp\n", "\n", - "#sim.download_packages([\"Armazones\", \"ELT\", \"MAORY\", \"MICADO\"])\n", + "#sim.download_packages([\"Armazones\", \"ELT\", \"MORFEO\", \"MICADO\"])\n", "\n", "cluster = sim_tp.stellar.clusters.cluster(mass=1000, # Msun\n", " distance=50000, # parsec\n", diff --git a/docs/source/examples/2_multiple_telescopes.ipynb b/docs/source/examples/2_multiple_telescopes.ipynb index b9e68f5a..72735352 100644 --- a/docs/source/examples/2_multiple_telescopes.ipynb +++ b/docs/source/examples/2_multiple_telescopes.ipynb @@ -86,7 +86,7 @@ "outputs": [], "source": [ "sim.rc.__config__[\"!SIM.file.local_packages_path\"] = local_package_folder\n", - "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\", \"LFOA\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MORFEO\", \"LFOA\"])" ] }, { @@ -210,7 +210,7 @@ "import scopesim as sim\n", "import scopesim_templates as sim_tp\n", "\n", - "# sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\", \"LFOA\"])\n", + "# sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MORFEO\", \"LFOA\"])\n", "\n", "cluster = sim_tp.stellar.clusters.cluster(mass=10000, # Msun\n", " distance=50000, # parsec\n", diff --git a/docs/source/examples/3_custom_effects.ipynb b/docs/source/examples/3_custom_effects.ipynb index 7df55e77..e2f6b324 100644 --- a/docs/source/examples/3_custom_effects.ipynb +++ b/docs/source/examples/3_custom_effects.ipynb @@ -8,7 +8,7 @@ "3: Writing and including custom Effects\n", "=======================================\n", "\n", - "In this tutorial, we will load the model of MICADO (including Armazones, ELT, MAORY) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system.\n", + "In this tutorial, we will load the model of MICADO (including Armazones, ELT, MORFEO) and then turn off all effect that modify the spatial extent of the stars. The purpose here is to see in detail what happens to the **distribution of the stars flux on a sub-pixel level** when we add a plug-in astrometric Effect to the optical system.\n", "\n", "For real simulation, we will obviously leave all normal MICADO effects turned on, while still adding the plug-in Effect. Hopefully this tutorial will serve as a refernce for those who want to see **how to create Plug-ins** and how to manipulate the effects in the MICADO optical train model.\n", "\n", @@ -90,7 +90,7 @@ "metadata": {}, "outputs": [], "source": [ - "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MAORY\"])" + "sim.download_packages([\"Armazones\", \"ELT\", \"MICADO\", \"MORFEO\"])" ] }, { From fbf00cabd7167b9754d3b651ec192da3b90ce11f Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 10 Jul 2023 16:10:43 +0200 Subject: [PATCH 171/172] Remove outdated information --- README.md | 41 ----------------------------------------- docs/source/index.rst | 2 -- 2 files changed, 43 deletions(-) diff --git a/README.md b/README.md index 4d402f62..b1579cc8 100644 --- a/README.md +++ b/README.md @@ -25,44 +25,3 @@ https://scopesim.readthedocs.io/en/latest/ A basic Jupyter Notebook can be found here: [scopesim_basic_intro.ipynb](docs/source/examples/1_scopesim_intro.ipynb) - - -## Dependencies - -For [![Python 3.7](https://img.shields.io/badge/Python-3.7-brightgreen.svg)]() and above the latest versions of these packages are compatible with ScopeSim: - - numpy >= 1.16 - scipy >= 1.0.0 - astropy >= 2.0 - pyyaml >= 5.1 - requests >= 2.20 - beautifulsoup4 >= 4.4 - synphot >= 0.1.3 - -For [![Python 3.5](https://img.shields.io/badge/Python-3.5-yellow.svg)]() the following packages may not exceed these version numbers: - - astropy <= 3.2.3 - synphot <= 0.1.3 - -#### Oldest currently tested system - -[![Python 3.5](https://img.shields.io/badge/Python-3.5-yellow.svg)]() - -[![Numpy](https://img.shields.io/badge/Numpy-1.16-brightgreen.svg)]() -[![Astropy](https://img.shields.io/badge/Astropy-2.0-brightgreen.svg)]() -[![Scipy](https://img.shields.io/badge/Scipy-1.0.0-brightgreen.svg)]() - -[![Synphot](https://img.shields.io/badge/Synphot-0.1.3-brightgreen.svg)]() -[![requests](https://img.shields.io/badge/requests-2.20.0-brightgreen.svg)]() -[![beautifulsoup4](https://img.shields.io/badge/beautifulsoup4-4.4-brightgreen.svg)]() -[![pyyaml](https://img.shields.io/badge/pyyaml-5.1-brightgreen.svg)]() - -#### Things to watch out for with Synphot -Numpy>=1.16 must be used for synphot to work -For Astropy<4.0, only Synphot<=0.1.3 works - -#### Optional dependencies -[![skycalc_ipy](https://img.shields.io/badge/skycalc_ipy->=0.1-brightgreen.svg)]() -[![anisocado](https://img.shields.io/badge/anisocado->=0.1-brightgreen.svg)]() -[![Matplotlib](https://img.shields.io/badge/Matplotlib->=1.5-brightgreen.svg)]() - diff --git a/docs/source/index.rst b/docs/source/index.rst index f3c6c81b..7b9fd02a 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -14,8 +14,6 @@ ScopeSim_ is on pip:: pip install scopesim_templates -.. note:: ScopeSim only supports python 3.6 and above - .. warning:: July 2022: The downloadable content server was retired and the data migrated to a new server. ScopeSim v0.5.1 and above have been redirected to a new server URL. From c0713a847681d50bfc16acdf8ad02575910734ce Mon Sep 17 00:00:00 2001 From: Hugo Buddelmeijer Date: Mon, 10 Jul 2023 16:11:01 +0200 Subject: [PATCH 172/172] Upgrade version to 0.6.0 --- pyproject.toml | 4 ++-- scopesim/version.py | 14 +++++++++++++- 2 files changed, 15 insertions(+), 3 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index b88fc38f..bed6f163 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ScopeSim" -version = "0.5.7-alpha" +version = "0.6.0" description = "Generalised telescope observation simulator" readme = "README.md" requires-python = ">=3.8" @@ -36,7 +36,7 @@ dependencies = [ "synphot>=1.1.0", "skycalc_ipy>=0.1.3", - "anisocado>=0.2.3", + "anisocado>=0.3.0", ] [project.optional-dependencies] diff --git a/scopesim/version.py b/scopesim/version.py index b1371e98..844b2eba 100644 --- a/scopesim/version.py +++ b/scopesim/version.py @@ -1,7 +1,19 @@ from importlib import metadata version = metadata.version(__package__) -date = '2023-03-13 16:00:00 GMT' +date = '2023-07-10 10:00:00 GMT' yaml_descriptions = """ +- version : 0.6.0 + date : 2023-07-10 + comment : Summer 2023 + changes : + - Rename MAORY to MORFEO #195 + - Fix NCPA and PSF affecting spectroscopy #238 + - Fix line widths bug #213 + - Add rectification utilities #237 + - Include grating efficiencies #215 + - Improve downloading of IRDB #234 + - Improve Windows support + - version : 0.5.6 date : 2023-03-13 comment : Hotfix to include minimal set of SVO data

YMBWdZkU`*~xfu%ZA; zvxvX&Bx0J`ADcWD2S^i!kOG8T6ud};=K<=p4sRdd<^6|vm1l`FBDWs!X#{8z@mi(9 ztMAIdHsm1E%4`6GBo)cL(>z;NXz={C;eotLVRs5#rQjNdaid-^0K8ErS^Tl=W%l`I zPx42`gX2C$MbFd}(o%jwN!$U*up+^KtH@!Hb%UIncyFyY!}iCQjriUvMIl<0<)*&& za6?yv`j(H+jt86AMWv8b>sK*WkFiEOz-h~DVP3!6Rpi3O?kCazJlF5eEpGf7VQLMZ zawepzy5SxN#xFYCb2YB}r;d&q*x^S4p1;mn9V-EL3C@?V&;rpS0eZhrPx$0+w=D}k z`0=*%cA-TFayiBabdD7&7lUOkCbZZWi8(oc7VXQwmS_j3aT_5AQdgx|cI|7_bKahL z^N=F(A`{>WmiyM-C6Ucot>rZMwbeJYEtt;vNdDqh;784e@=aj0xh`~y2$QL%YP$1e zv@t{e515{#UT@%>vI|#@=g_i-rl&zo+>H>UKVMh;eu2!U;Rj-SK&k=ba?A0mpdXFn zubKYhFDubN+$rgdHb zxnT|;7aMh-d>&HhzOA&7Zwbq61yr6~#L)_9wrXW0iD;B8L-0@cVd=c&Pp67G&dp5?VCn%;S@79A1I^1-KJ z-%C!JFb>Snpclo*q9``3gtla?E;iht806*w3;MEW`NsT839Am2uV8&WXdR&dPf*t# z(bQ zyL)=1m2-vC)wvbO$>MxP4Q_#0GQ`ydhLP;b=0WtBmy5B+<44e0MGg;^Z@6!`&Vrxo zgPq2am>UZZb9%o4v+pej`1R!q?VV3#H`(YmuSKv+#wdkUJ(wu#=~CXT7utB1CWm9PD20EX2C<8$0j5!IoRXU6N&LZa6MC+ z*&|A{oaPSvfiIc$7WbWtn=d_JvH!hwtiCFP6Iq`@z>?7*Hh7z7K84!xT+HPIvQuM} zjrF|~>1Akpy|Mz+L67%#-_Dsd2DP_U4Y8FBka~J>v6n(F*xJ?r?zNhM2V00$l4T|3 zpfepN-nHy<)HouM&opI$LutUu9fq1r4M-3?!I#WKm*f2aqd9OuIOs%)=bXn(?LH&N zb2@nX%gWdawVlZUmumO$$)yg8B=?zSt0S52Sj`_kqX0Ck{ysLsQ`HqK&>^b*2ih29 z8sy>9`%VPwDDSAbv}un*WPPDv8Q_0NKp_T1se}ZWDrOIW+@#1O+-^T2e*l+NISSfb zgFhQ|nbMr!*cGk!*Q%QnI%0q_PE#jXhe)-Z->sYh^2ER6q$Jj33gwM$4mN|=o-;G) zYgM95ddYG6xB0ljJooD5poCmk-+}qhA(Wfv3!NtJ}5CoeD)m(C%N-)O)>m9$cSp z#^sZ3%x)C^XY4Ra<0@=zwT<#C5p_AqxnSD*(-dOR*|5nTz8%rdhd|^Cog;l3)yfl| z$KOEP4_dGj;KCR3(PX2ojK{@M6I#;~?jG^7hURr2ef%(7JfEpls@5DGl?BrJa^-5tq5!W|U3;__>D2;wa#6Is@eXQN!v2NNw3P(Z!N@i0lL$L~hg~$uLYE{X zi-F~X41T|I5dkEY*X>Q|p4isT&m$TDpO;G}e$Z$Fh7G{fnl-4EB(?bT*1D8RD$JNH zSD6y~w3DBn^Ih0yy~?7$#LfEa4=zZN$AdLd?<}}HxCOgC@Nhj=I1yq#lA3Wo zlX6HOpWNZ+{4)+2cFS``t0qAn`ySr3R+)!Igp(=f4rkFhmT93LkJ`Ax`+Xp#vOCX% zBL-@L9~AuteVn;Xbdh>;f1T!ZYDdIL8gC`N;y}dBtO*!EdgFDI`eKYt;73WzO4Dm_bKNpvNw}%4v zC7k|TX&$_a_W171`YF)^-*_Yr!e(p($AA5&HjmTW1GHl+Q)YYPrq^+yGlxB5=o( zs`aanh7}TPhvg9(Zvs&wIBRycf?_CNQ!psd3ZUu3Cc~J@6B*B#*qA{|fWYf-)N@Ni z5NCn>Uu|7=SX5j09=bsh=@?o-U^*m}5>Q%@MuDMZ=s`wGS_BCxkq{9S=`KM;N$C(! zQd&VmkP^_};eOBe{q7y_`D>nc_Bwm5cfIHA^PIicK3E+@8gbra9^Xgt)Tt__gx#xIFk=zFNNCeZkrwHhTjbm(e&LwjP}7-8lW@b?VvZvpvv@_t2GDbwR7# z!Aa_GsdV)swZP~~cULdff;H^{SD>mt5vFlNY?S^Z`&E7gUE@!mb5*uCJVlzsS()}4 zUTy)iUMhisG~nXdiH40DDH+zFxV-(6Ga^qqz6p$TBWlF&bt$hnCfWtC^e&kA7P<7I zKRkqfZou$a=C~DxUWh?{TD4}&v~YOXAu7mCK?^D94mc+s8t)m!rr+~SEh^PoujG4Y zjnBwUrU6$7TS7!6u};_&?Npv$#iqC0rf2_%QA~A~zKZ%cO?Jqkr7IfbNF%^^_h3v> zv8g|{D&iQJM{f_R?c3|^8J>xzP3vl^WZ~@(XWf}9s$GlHk{K~FQO+2lY>4Khuy|FK zK%RZ|rI_ESw+JM$;9WkFoa<{wyNHV3Q)ROf>884p<)u zbji96mD^s|9CBQD-S&TH!>CdsTp9Ox^4x0?kkO3DME{sev}MvO@|K6`)v(T(0iIIPZ=3PMq{%2<+2$Ev>3gjRqt8W7qE9uI|{|pdggP8IxnbfmLR&H39QMN z`i7zRw8D=4xs7?evSJWT8<`sT1Y@Q4wiTmt{p@`!)+a;j$A9cCtfj)IMN;pNN3 zXe7l8{5y39L-#jreXpzAzWBcGZgOp|50^V2ZhbFu{&nU4FC_sUO{XT)#uS}4CF&q( z!+FLOMcU3g9b3+FH&vgJb&khaTbYUK@G?emtmaN@b(~Ub^vYjSbza?B6*tw3roUOjk$&SA%)%q&AFU@ za!8yGH)V5kSa&!Zxj4gHlU=cjIa?OXYweUnSj$+>pJy(;?3xfEhJ1LOo!;G^HM%@m z7d4ysoHFZ0M(;~Ws^)kXYzLb(pMkm`O)$!-tEA})Zt9V)S?EUJ#0TsKQ;-+yP|~5; zM}GnMcr)h@=3`LAec7^30&jd88{ayUNCnLs;*S?$kvL<&b85+#$zDr2ZhlbMOS}Tr zL0c&wOzZGT1RZp!p`57_jg{*Ul~^CN;JhyiOO3YQyuYT!Yav=ity_5WmNGuwEg=T# zF8?X{bq7mFDx$UNy$j1HfB(;4czOo7`B}!}WpC*5)Ja2vb9vQA&7W{?)V((90;8?O z$9%)MHhXHH5##A(FQ%UrCRY~JczM0id1uEGSNSB~(nYZ{(BjsJgNKq>o|NO8M&seK zt0_E-j388uRd`8(qx7z~G&g>SE%0Zg!mRPAD_`OzpSZkXavsp+#!yn6_}!m$hb}e; z#hSxG3-nyVQKxU2w=U9F)!tLd)2!+&qg1-hjKV_K-vWowRb=$x& z@3*JCb^|ZgY_Fz&le_zqs{@`@@xH=Pf7CZ(E6kZWM`v?w#VoB(P5JR#DP~QftA@l` z1mku=pxtT1``2Zxa)ulrThaAp+>!{wz-+s>M=Zg*QJGH0ge&1O+GE(X+1ngWTFO+D+#pZR-@ zn+!-9>odHJ`&aZg2Gk*%u*WN@vkp}hmTs!g&Q&+IP3lkP2PcsUEiBCWfl95V?unGB ztVWi`sIL%9)XEwRKew_MqZB29MavOV>hY05 zd8eu~v=w(Ps?%TgB-^jsx@fNKw_a&sw#BbSF_v}Q@7LL~Z$2ND+aCEt>6EB#@na#0 z@J~GhX&6Da5sLOb9}tnBr)OW@o$#}1%zTGV&=E`JUpg@9aR2>WuO=IrE55Z}Myx#P zh6So&3o6(WsYu)HF5LM+m8)5Z^@-Qk8S^YYzxVdRUf*?Po|;xXY&YR;GUueya6I%WqJ@;iRGaKK~CtXoR#n@}I28PJH19}Hi(nB)@b6a2`f#pO{) zsQqfn5*f|y$C|ILW$r*#CWJhH+*$U`VX)*&4v*f3fV9qP?OjV#tystr^fpzsYH>gN zkt#jrXmjW=8&_%7mEw)v$*^rcHxV&vh0^od;C%_=$;)Y!rpxE;uPZWvpGM_oU>$Qe7P20@?>SVXX%-y$1k{JDxEW5=z-L)C7L@8+XoAWaxrCnInnenL)`v} z3YW|ncv84;ueb8JV+oD0B2Pk?!$WH(y=HHUj5sk7=9(g z7@-MQamJ^DZD$kOmYXf$eDmoenci|4#(me1+1yv?^we~>wRDVU48NH$6()^I7%ri; z@cFerCe@cYf9@21OMiV=)gI)s4r&lGV2rfC5&Enl(+T9x3(Ujr@vNi2hW3Z{tAqf> zg(bv>dqiK!xz3Oxt{_5X3v(u@R83mr*}FjhX6iha=;M;{xs(cUPrwDh2S%c{CSbi1LFC3jC*%Ya6~baQDWr z$MjPSl{=bi5-E!5XRj&?uKY+b^d8OZAmheU4(e@`P2HKu7TP#SFjAS5i1_MV%sxc3 zWrcpXlf#1Dk!Ic&vWLo@newFs8Tg}AC-A{BphSiuj_$PjWVc0~n(sEaG&6Y+G4HOZ~SxJd)~iYaPU`Bs}NH zmyZKt^BjUI5|W%F&wLn$ZW4!RoTuc?3#B*al)JPza5u_Ff9i$-3xURPEcZBCC)tY} z9r~+Yan&s?8V*dpy)bM8{}hdDKSD|J+p5y3JL^k(PuTw6?ZR-beIJl@^H5&liupV% z9};l5q=ZX)6shHn8z0H#v>#3}6XIoWbo_b>pAuY6(5VQ|Q19T}lK;G7H2dyCmDDSj zL8{BK>zW?>ADZy#Dl!H*cOT)ldYrvD;)`v`Prb*yx2?3J>Q7^}$xoX)h)5^Br}3D; zO%Qpj4*ET%3c>1K*nx4+QD}YM3?z{Q1c* zCH3baGGkSnW~7C}#czQyeb;jzn0ri(we*GEGj;Kh$a{9$wtvNqXCR{V#{OdLvfvY> zsdRDyZ>G>Sv*qJ7i`q!R7NBT{zeybGfcIo6{wAu>Jj$f^kdiOmH18PsX4S6yL+=f(J_xQRyYe=8#CS~nNnxf9 zWIyelk%#fSwS?N+5w-5uoFVVt&2D4do8i`ZhWT*`^CmZLvpY3!1bv$;<7iwFiO&#s zJYGn={9a$caJqsur2Cf$bE|`>{&l)GQQzhMnFY(K%fiNbWfu}3&(5 zR_wR)61bHZe!0kaX!8kK3%?qF^MTH-GRExm)aj)2ET?753~$}_9Uzw-81Rd9oyki{ zx|O25e;ThgT@k0I#;g6(Vo45!E8l4gNzS%f&6VA{lv*7`v2K5q*7P!` zE`}y+oIg9|{Rtwg;SbFx-An_q5gy zuCtJNae?z$`sD6h`99Hq{he`Y6Mt69h^$+!VDDtoZbEp@M9epv#rz>I{$zC8B=w-2 zL&;Z|1UuuiZe;h&uXpQ?$*I_{>t6%vk-9J54_eQkd2PC#%}gVi|3K^G$H)$=({C3w zmS@S{R4pALx;uHW5%cA|o7-JzfxYj~MwgF9|C*Tah@h4fVqJGG_pA@ov>#aMxD^7c zitxB@E68M4A`>C%D^c`vTHTebs8e%+R`PtZ_QcML#?j@1kK8@(jV5p(;Kf(nizm~I zjI@Q~s)1IT3)fV877piS*wAg$#`YtPI1fefsnx!#iadox$E01~U!I(W{>x#^Vtr4d zEw`kwbSlQ*62v|TRDCsEETA+C@N^F5lM!2|%=AKbt~{6V_t&%=?Q)+c*B{e`{}5#d z9?5g7P1A(yIZ8VOv7xrS^!1{F>HQD9EN1WZY#(Es<2a1Q%GssCXQsImzl>XbD%4dS zrLwRIqOZ~3of3$CtFeHQ~}@wu0#s*gOb=u4jOy*gkr zjh~~cB^LhnPu8QiHw&^OEUdZ6P`(7ATvZ;OB5GXzm6uf;aV4H(S$4UYKH9xYdQ9gc zutO(4eZh*)m0DxvnM#UtwU;BP2e(@@TcaKn9Ce8cno*Ft7&Z9(UA{~*Trr3<+*$C} zCKbn8Hq?@Qjp}^Tm0lxjk3PKLqo6}&1d;H5p0+9X%JKD_*?wFXyeCKO(S-_Ahgl)m zXvmFAzw-iab%&Uu5<4#ptm4ltT$eSsUSgYW7M7QiGLvj}F?NakE+OTE(i!HlB#)3+ zjP@Hf=1~k_|5-nIU&}X%{(}uzgaT(uJD8K0_MxcXSzD4@w!KyGJ=JJ;z3c8U=+4f8 zl)|@V+5F79Ek@#-GvPNMj&lCcN)=c=;#^)d6CKZ(G&Uyq&h!f({}!P2rQH6PBKwoF z^}mYjkyte5zeV=2ztz~QxOux0z)-O4RVSPm*c=Rn{8i{~36?dy<8B9*)w6c6^8za> z{?`_b{JXKIoi)M9%~jQ!U@dI1K3K_Dn75(oD%5%5knV7LrK26i6oNFcahkd^)aKV;lI9RL$OPdA*mt=&Iu+;R3`8*5u?Qu@8PU_uo*n{5qv#?3JHRL;5{?Ahga3y?fei*u4zTNgFa#EggaCy69fLp+2q^kb z41xUvLqh%qg999roDYeFl41Z;0GI!42Z3Y$#9$B%X*(zc^JgCz6tJbjKh6h(La?N< z!Lbk|2?r1)8ipao&`1Q7v|lU~110ef=mAB_6%-D^U`Tj@BH<_upvJ%Z2SpWo97bXbhe6?_+JGZqC=5y7;3y;l zO~Mr%gF+)nxI#b>NF<3b2p9y5Akh^9$OoE)D+Ce^C)E`Kjf9~|;($N^uSxmkoFp~?L;OoSB#b1#KsyvER{(~=lJEzC02%(H4;T#j zCk7|w4={zGNqq)5g_HUMXdFd~p^@-Ee8ED|SQ1_UjU%xndO6WJiX@jO8b^`n^hDz@ z(sqExN#i}yIE*BY6OEJR=tSeByubjBLr8TBXdFTk2cQ-hmV|>7jU!3)ccO75X*(cV z7)jnvG!7%l(TT=MudNe}BS|;_G!Da%Vt~d;?~}m&89{nYpWL(m&NIQ&+6iyxNiQ!C zmeq8%cLV=5NEv`-4cy#L#x@8T_%57Zp|0y-fdq DF?Dd_ diff --git a/docs/joss_paper/Ks-band_psf_grid.png b/docs/joss_paper/Ks-band_psf_grid.png deleted file mode 100644 index 4e2dc8f947ddf21585bd8af2c2449475319da534..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 517872 zcmcG#Wl)^a)+OAyTX1)GcXtxpHE4j~?(XjHPH=a32=0>5xCD2HX>NT}-+gQT%%9m+ zUEOq@?q@$+)>`{;IzmZ78VMc`9smF!$;wEm000n2pAT4Q&^z))i+i9aNGCB_HCT{& z!enwVCBMPmY_Fzoh7xLRqcK_yBRr}0c?z%?XB&ctu2j7T+JMv zEbVMb*qK%Qxq!BAf$g>nR%c|uTx~0V-3u_tAqEvFj;q=-x zJjuP4pG!EEEmC-l_XCs$x|K2kPHQhdz~+OeH`W>Uo5`xX^Trw87r?ojP=w>X&dv0s zj#aM5`3x#MJKg`ZbM-baFL2ENY3ic2<^OGMiurU$|8vO$m>N`f;eXqXkbgzKrrLko z9~dRf+sOZ6FMx_b1LglV2VxQRS^EFs)j32tyr<-U+prJd|8NTB|Fu(btef{Ot=qQ? zieV4$@iw)c=X`qh{ZQ_wCd5%!?ucaT^Ei3$w`HOdBxHYlU(TfY_q|LF4)gqk3@!t) ztzY!$U6EVl_<_&Mtvh`9&p@Z#n{1n$72d<_#$$Kk$9@z5;O2>-EZ38csrU8ThOoD= zaEMIjX$wX;oP9t=e; zruA=X^Hc4|GxIkpbni2(@B9_@bab&8l=9x^PI(*7!1pQO>l8Vjd7}{VUAgqIYYG)z zEN1Ba$3yppkNff0?~w}%{7BQh*^U#my8lil=xZU-jAn8Lr8&!fGxri4=C~309+>+= zO9VSj^O}F{^;*cG64aOjcFcPEz2D0K1Iyy)7!rxff)s)wOL8kuE~>J7CXSyMNMn z-P^UdFgGy?>b)&tzI%Uo>HT;?^sjB(iL}Ytkmvrph=0PK_kHVQs7zoP1247et{4kl0$HxnB2JpC4>&yAEEBsFW-C-EhyZ7a9T;5%kIpLMo$NR;{ z^eCYlf$-fg#eGHJ>!jC&IPc&Yo?S#CP{<#{gkO!8?^9~MDTU8075R7m6HsvuhZTJ{ zr0WO-rZ#`DOC;_;_7WyYcOFmsY3u;sU3_4Ab2W!@{a>x74`EP}_C^H`SYIPGy8?-y z#-y*usq?(YdU`-Xzj`}&6aKu6`@{KPY0g?u_+yAa9!GD6vA<8Ec+Lhro;J=1?b+FO zT}c^eYj1}M?2&qp;F{l_GiM2?W8RvCb9Zecycf|F4MB7X@O{|;`c57y)o0@rrnJ~R8KHRL2*0e&Os^Ywoi&3p(fj^Pj&~x- z?1`4=z7v5f?{lIH+_`d}v~wTCZ)o}c_D>TR;CB`EU7+wkQPbTg-t>B3%X`xndfH2h zi(E-|->3gRE-}On^mcOXo|hPQHJQ_C_4}BpeVs_fxIF~9?0w#TcpZXm;JygoLHH5P zKFw1cD3mwzG|4`*x6*aM>3zRujzV|zn@VvB^}!@~%{sK(>tSb~*^f7SW8G@=C;u>Z z&m~kB=&SluGz}t3En`hHbqDG*SDp^@;uQU!7uxQYb>mzkG5KMo#rP?0yYDo--*56p zqrSfy6ZpMeZ3qks-Jk!B67;&?qGa}vb@gG(_dk)T<^}lS`yZFTzwdvy{rv~o?bWSom#}R&mjCj;wb#ce%Pgs^BG5Pb5>&)c z!tYmcSGQ%tZ|S$aJw36S-T&0vZs)&VJ&p>$r$;+b@ML@BfSTLzho0Zt-NWoDo$r@A z!ls+ehaT+7XwBZ|r461&qd(p^Q;!4KJ^pDuw$^k`ZKu!f0wYC4cje?dQLUSv^vf$NUOxYLTK_mAaB*=poP2&(2-JFvAuQ?+z`pIv zI8Xuycvsj>36X?Az_`;F0D<74_<6$vuE)5-uiGdNAQ;>syl{shx(b)JUN~)uwe!8n zdQ1|2LVsQQ{PU@WX87vyFG}H|$3JKxIL6?~aKn z9aw!G$A8gs7Alz-Ud-1mun>yPb+yE3))0`lD{-*XkON&U*WHDE=pK z6JL0)bjG?PPe#|AG*}fW`*m7xV6EsmAx(qOP~ccr5%2UrQ3EWx7}TF>Nzg}1QrlYJ zQN#|u*?7#<_~_1c6z*tkD{&OG-LG5KgRELvgZr;Dde3!A?G^}{`v3j=XP702j=2$1 zU2`{e2|`-PyvHGG``s9BBFyhRDzC?R@3gi(Pd~gt(FLl!m?f4~z`WrY`S=j-UbUqK zy+xY~KULoO5)9dX?@tIDe;h^$5e{{g9XLSwjq^D*0RsRZN4V{ukIP0+ zY&Ld;-*<&C8`8Q@>qhzR7FFw8T0-r-ck#QuK383iNeeX`a#mUO?&OY;W!AM_jo>?g za=YVF>-AS`_hkF?X6!!h?HoW#U>k(tdaE^`ux~_f<-`7|n;wB5Z{NFK{$7l90^iOz z-$3B@?heA^xKB?uSpO2)cAjy8Qo7q*>%(a9vc7^G`?0>#!^QvNopDq~cQgu%*Wr9p z-TFh)MS=gUsp$NrG4IX#Vtq;Td(3BB6ThsEUV`ZIweF>h`(UYsu?KW5TiT0aV-I_d zrW+6^que}s8wovXT=l^Sv3Me4Z^H;bg4OiCdw#ZER!jF;%Laf%HJOgC1p);7X}-s4 zmvv!+h??JhTwELaKGni0u$LGll{SsyIPqfaLHxA?f_R$Er)jqx5GX^Sc9G=0otj^D zg1Dg@_=)rO(>4fxzsgtPvF3t@3;u-?zzKm+`aj^Y0aBgv8|snFbX}i&wv4PuanD6A@AB}e2_o6(P7OjZ9DGc zF)nUPHg>8DuyykNgAbWVzL2}6A^Yxf`$8~#t^KyYnd06> zvU7*X1xd4Q-Wd;tWfZhe(u;k$BkQ`Wwi`yzdz26W>6k%$;G>kawe=RGod<$~z?DST zxl8Ry^T%~sZ}g{Le(3#pi+k3lr)vomzlw{ALGs>$Anr@bdo>k!o{KYBozbuq`}Dl3 zx_TR=6`o4Z=;YO`vAJ|lfUgJKS5tPr=py!11Oo0X6K7?4zI+P8Z_ZUUHOLcZpgePC zmLC7@1Zho&IZ5p8iprV+`tMH@@`v}I8goL+4d}z2&KvtNL@k5{5_)V3JlnzjSBgB_ zkWDuH?smWSet8`}-tG6P<~^(Vf?&LJ|6Wty1rq}26$sKfZO3-Zou_QjeZn9|8%{pK z5eM+8S*5RGN39JeCqJp~X$W0$FD532JXd#kdT4tdnf(SNuO*@T>^y$!a@n|nP~$o& z_qMnwgNU8|<8|gkAP=PIPrHFle?PA(1Zw>_&#uTwQfn!CVi3$dI>dPqC{m&O9*GlA z)Ot)=xq}c?JIm+go)zE=8Vfo~u6mxAYOmRIuMjtzt+0tf!ss;+yUX9MeLvNp6SVHC zM!)m%?}hKfwy>Jyu(Bb0<|hN-0(wCrSO4*4uq5Kb`;h-Mdlw{_4HrJ=ju!l=<&KF> z@sCar{BfP#3?MM?{q1ynsQCa1L|lk15Myn}-*j9KAYjM(fePB@c>^Scvp~8$y59@L zd+JbcI6H&H?=0N%gTR-~hx2CMuJ^mzLur8>w62~W-`Xi7SeuP&+Oq5czsE2?cRR(B z9iea&N&ZjJgxCVLiLLI7e(>kW5fT151iTaB)*3(AH#J?4EBYozg!h8J&F-YDrt4a6 zv)hXs2*SmUbvw!70wv2rV{LoIf4Iz^b5W0QpaxB7U1Aw$bgy#MBi9NhY&?!4h*8cB1R}uq_b33+IA>hq%#!Yp`Kll@r9Pf#H|j zemC5YAoYiQ@n)1q-$S@6NBPeSV$(|xB=OaGYjK9^3v<3QwL_-qIgYp7y3jP)M5!tY zV)|Xe_}RxrYu0D;=;(N?bZ$1EIX$1d^+suS?O+CZ9AjdR;(@Z93iXhjD=P80jpFD2 z?RgVERXMkU=>OOTIQK}i{qG4M^cv;=YQ#T1B6FDeX+ZEUY8+;m_iiH+`@FJt*b4=a zKIW$Qa788o=ahfUkUcIN0o#SMSS+?Zbjr68?~Mh_{IV-_);BsIWgUd{FNOOsgYIC` zBaTt=%TZkUJ%G0Puqj@f^WI`P?{d*^lXWm$O6<68ci`+-K4p=dJIBtF7jRhJ#M!%G zek0Vi62Q84NQoiyY&P@jZy_7Pwa`bwi{Idb8%gd`mpd!c9(Dt#W@^RQvR?-*5B52) zcAm(it(;d3M0FLwM7wOV&lziZ5g?DMe9A4hQZs9Smo?A%BR}Pi-lU#f>2TrhI^!+S zrLbw7zycm1#VenG_NDu%bG|)fm*M3tOE8pbcafOgoe$w9xaErB1{LoH@w|g0wJYhA zAM+w%N=SKLKElsJxb65YC)m8Un+&M?^~i1R?r+=WJNA5VjcnR`>YHbHt_2792>B&X zy-DU&z?#7K89o^O6W8f|A3|x%LI;sU(T4k7tpVztyF@BLyf*z+kM_o*hd=C}HW6&V ztZRYd!SIV+tD)b$&?(`r@{#Hx3qn^C|Dd9r!EtA{;%fVbn{98as5^|d@V{)>1!~|Pzit^{ux8q`qQ%H%rJmp;Hh zCuHtqpM`;b1CBj|2@%}T_sF(-n7AUzfGZtmWYJj)cQW7=zcve6O~A*m<>OS4-_Y#Kq3jLTVvFH6Ylfq5TirK55nf^)gfNv&HwrmX zlYRr)n52t|uu?b@_O21ZKk)dDd74yPOAc){a?A$~`X_fB2~Epj!FT5|g$y>yuIV&% z>lz8mCxXM?hTph2(4K;4N$KTz{Q02As5_LO>n=Fyzz%W=YaO3 zA&h?&TSFI6|Kq#Wc$wAFqVPXAv>u^ebxO{Y33*XL`-Av%tQk4NV(S(VG56C(^8BeT z_2B06FJ2n%&vf2P`p%VB8K8WO4%J37+eiq6KEYh{P{$H0|_B zlvUeHXchv{8X;6_X|wWk|45{MkSw8-K$8#xuTx89pMxiOD@?4RT;rOc>jM=fe8iT$ zyuXW3JskfT@FoOU>duE)iB!@%tZum%E*HV_OUS`D5R+~H7E4R*3ZuZ6LWRZ>b`KMezi zpPPP>8zQvKn$YpG!&wMU=ckrcb$@uHmqq4mE^kv~T=C4GrzR%#_=WqNtES|O5;XCw zQzYff?QE&`oBTC`Vr7aOkIVeD5ytY8Czj>fb1VJylYFHm4idnIAPLp@M$<1iOO7A(Cty{eW3A51gI!0IKAk zM%Kj>YNB4E?~8}mLNpIW#W-_a2oo~q%jI`R(wSQvuH1FG{3w~zU@LOHHkbJo@l?<) zGKx_GEI;giV|*#0#t$*x1ml!%YgG?%q7L%eLf6=?YYm~|x(hTDh6U$8@gywFBNZx8 zfY78#jhqiU=PBEsrYR$Y(wV)(h%x>Vo0`hKi@sjQy&I$AHQBkB(8`t})H;vP&Vmi) z(MK}02~(oCvS&>sP%iRr)4>#XN&CXqV61>X(kQf-;08&S;70$<<~>5q=l{&Mluu48 zHO{*>BbNzl6?Dib0>J?mEM&7764RIK#Txm0W$lXV+742GmnbtnXXx%72CXY*qF|E;AYsN?Z%lN#g-?6hE z1K!iy;Y%bYVHainDt1?fBN5bPsd-5Bc6W!-w7KDTYYTBB>YuVLM4^ta^WeHVtNuL= zh78(OMos!@>9V{AY7&{I^16L2Y-X`Rn27S^8e34LdO0v1F+G=7qf!md%DWU2RwAs- z2k~5E!-y0*?QJK$Gn4_%TZyofr&Fb+RtxMn$NEf&>KrS^V}+q2=yr2h>wiC0?lV54G0rNFh3DxDO~quFL&IR~YhlbA73-l$j*=gc-r z0o(@#*!Mdj?5uI{_O@N04LEX2ZM+6F|HLs=<52NnxJpa(tF{*tp{ZE)yff1B=+V`P zuxO<8sxw@Nm#_RS^*pk3iBT{gkLTD+slTz%Q(+2)j0MZ=Bg>q1mD1iyVRhdVxna`e zOZPg7k;lOH06wIrIW-VDMvKw-Jxx|reKQ~bZ4^x^xF1b0TRy*ex8gu*A96m~h$uQ#V6a3hek2T0b0tw1I@9wwBQtO;OwsgyWGj>wuE!X1zD6;hP(iz4y61?1 zfWqQ_DLB$SU`CjQokZ85+PZ^%Q{fFJVLXYGhbPZN4xk*-N5AxDsCTBXhJf z(-~Zgz)_^Og1QUrEYJ7cXvd<+sbDN&drlF=Vs9|9n}RNbYpV15?jgca`CB zPo`9l_hF&RC0~{s`gj@Cnz#o=GF6Wh-GiMBA1|L`NTftcUq^WnX=COd>9_ys^IJEO zO$^SZDAK&yh@mrZY)d1@@?MrmN&zY_D<7ujgXvB~{X&(z6)dS;h2(lEdl%eHpfqD( z}G=Js!w6MEr`j5k-BlO+!N-q4=&nVT{=UJnl>iZ^w}al59x9iqWXES&UMsDjN{3${d!zOQ6OP6p z+dk{2L__bO=RyJ{^sQ$L`rZdquEVF+2=;~$TB6eox;;Q}-B^aVm9}+#vNV$BEEoww1jO~!Cak=_ z5!2ksCU+7myNp1{Vq4wOqH1BPwDUt|$*7`TuxUA}FEA#-9 z^05hvWJg)KN?UJSA$Rb@fm!yrLZ7mq8FW=P@=0O3zo|;1o$arZAUIJ^e74aVeDD`9 zs|bQF2I;0s{FgZLuV6{i;2rv4Q5fXHVO^WpWPhQkWJ8G9Lee7{cDz^bG|1G4ACpxi zb9lH{-)oB1HVa9>q!ERJp-8{B(g+K{d!%VwnEujhwsHS~&z3VK{s0-4OWR|a52cij z%aIex!hKRttE#JZ8A8Jx;;-*(cW<-1`9h2jAYDLyQ+O#?^J;$J#mjbu=@C7VA^ zQEXCPUxpEQs?#c#3x`6CksS&-jHA-l7tTwe<$=O|xW%YP;f*{sgEiDJ2Qc%x5Oq@c zMPt^Rs)&*6tFoIPivKl0mdX96JMuoG6oCF8^kqEwc=mE1>CZ0=NTx_>kx=m#WUBLo zV7m_Pqg?aSH_enjbe@2cN6eF4?fH21X&Z+r(lyH?-4rR}AO4TC9AM$#{UqlNT}uXD zzq$8-))s-=qPYNjon8Mbr#$@O>VBP%0%#=l);k|m6&u70@nD@5Ng-<|2a`Pc`~t0P zY^ejvJZ$5|6&BQp=E+sH)TWcZ(*)TO&I|n%e)0>c=efY*%t(`!^skly+8FS-xDrUI zw&*936Abbu^C~fk20}?of@-P2$Rec;tzjae;#|bg(U(69IVBWXRvNC6Hi4%YPh;L( zV~P#!xH(bLiJMV!951s}{T&;DB}%h4G^u)H7bgcJ*>-&rTyd-An_Ov1%c>{3G-E`z7@z{*(a&1g##@cU6Mo8#? zskVuPW{k*m=Llhe?JDJl|NAUJDHsb8gg_LeI#zjveX>th8(bnp>&<)TMx>hyoQRYM zj><$}nMS0B_O_fAMe@ZG8f*hDpYko$?ra#=WjLwdFdp9ZNF|`CU4B=2GOvWxj?*c; zCyBtJVWjvdA|811d|YfFCt%WLfCm9jg`jy*z^r6?%e&6CFUi<2p)&(Cjb<c?kG=C&FkV53R=g}SLaUpYr-n9!=$10`#Ar6s|>={8=Jb+%KaClc)MTqkP-!jMCTePArZAOi*anU6oY1*&$>}$zDP5%h2)AA9C z%n}g&uTsXr7ho3aq-9!M&A6%M%LXzsML~(ofGgh#-oTSL39M@)tKa3QM<^xNIiy)Xyw&O6`p$ z%-u5zqZw#1&&6Eno+L&zqfdu2KPtTkq~KQ_q#9B;nD)nY2P;|mR>2)vE9QE1;X{US zWEzqRHp<;c3Cv6`otV^N^QIh2AVpGl_3D3JC1z5M{mR(20LvqRaTMa^9)s$@D|yS| zk(e@rewL&Wc;O(T#vOY(&HAZdULIsoFMY$X=7*_*Qt&`D(VR1t($M^8mwAmpp@nLg zhW_?PA(J+efrx9N#J{k9fymI_+`!(ab>3ZuO3 z!f@1U)@zh7S=||h+O98HXDA!`ERSMlJv--@#-4=)K3!&^Qe~{hA!D_cYmN45myUoF&X5+7Jj48<`Ku+dX)fH70`W-A()xWPCZ18%?PMo|vizGN3R z2T|DljmNoqGuF90UE&WYzew|i@T4lOY$RO$<=J7JW>(aBb5Y1UztwJmsB${;K&4rU z4a$q4^Iq}x%~*e9t0;r(1os>H4u}nb#m(#~zp3XRWD#U@_QOV*{zcAvxPZd!mAkG~ zwlKDzAz5{y8RZx1x1p&iRJYdu5{hdk;WJTdzu)4d0;>?+!u~dz5rV+mj=H|^) z(%DE>#K|d*;W1&SlT&0;PXljpu_oO zX43+nludK<<${`REdd)6wzj>3{SM-J_6ZBg5W(0fiGiWzAKzmWh{a|Vl5dFWCtX+@JQ_fbFtXG5a>XZZ|^-0C5x5y`0!%>=uxaXEFX4eFLL zPsy3gv?H-jrwx9rJ_Km2H8kR(Bp)AG2knN1r4+djgF-9O#&Gm=*|C}CN$54#%2 zwog?;LyI2*iZ6`US>yll$n>hwiBhU6xhud&qou3m2f#nktaN`H#eBmL36t+Vh6y7L zrr(XYK$~S>DY{;A1#loya?1@B&3NmKUg0;{lpCJHHg(|j3|emj?fiXZTpgN>5S4SH z>XuwG0;mYk8s4J!slSw58;01iDvT&;l5p1`hG?O5t5zph4#eMcQxF_KHw+|fF1*~s z_SXk@O(XsNF_U)iJAo?x{-=|HZ5&gmd$4jvQsMVW#Yi~I8v16(u2dR{`fvh&3kn(_ zd3>@HnV}6Q!3S5?zE?y}?KFxEupa|?z6hyku5IkFYP6D)JeSdbu?Wt~)x(0|ebJ3( zWZ;qV_bpyZcQO?LSTzlm86i=lZ!?qhaw{L@Hv^YADzplC~vX#`UKVI36_!*jg^F^{`7kcRo&ph2?)9zg~1q$(utfY0WwN zCi4HtkeoDciHySfnLcGSLl)gm(D3;8Ef!{3Lv#W6HOEb|MDU=A7pOX4WG1XLF|1oM z^5u;xqqPp+KtyY%dkR)2GI0EB6n@*hEY^5J`nS?Y`b_91FKl-g@X3RGh!Y=_fY`EJ zM=oA32#)@kubYD{_-fOQy}RpDo~4s~zY{b#&9#oUPvyIz-wko-%`Xf$D^cox2TIasQ+qCHjad2PFWGCD6AX49=x0d ze8&&s(rM#=DA56^_%q*}YF${}v*_q8j%I(?MF=@KOUMnVyQ%A=$A~?o82>#PYD>Ch*=eG+-~y zkJw}ly4Odq~@~9@>w}$azLr2C5Yig>Ny$@t%qCWMuZ@P0dWvN(-ciaV2y zA+HxR9n zU=Sdru+P3;R5}W=aj>clIpP*{86FWSYi;Z~iE_U$zi)WHdCO>8WYTbqb}uNaloL{t z$BM-$?)&VO%o9(wUr`U7-kD5U#?n+Si*=A zlG|W#4Yw~Gs#xc=^Tb^ESS5-pL*&4pI^liqR#Fs9Lw5y9LD_xloGKX-}w+R^ocN9rhU7r(?itlL3A+MpHr;YKT46(!NK8Pfh z4}g8ObfFxRu*tGM?>V_ioxZGxf-Wh?*)Uh~5kn}!QZ`BO!^x~mh%}86)2Ls0GP7z5 z$6H|KaQp($LFA*C$w{0muy~;?-l-17CMf~_cX@tqQ;#yj9ef;WiqSI%AuNF*c`{tNmLvtG^{`i%>ln+ zEi)f?s5R&KC|x%Hd{Rj?A7ej_|KJi7 zVS{cKx`I3VY7ywKClc3;W4PW?2kn9^Zg52!hKM>3O})D}L~Axy13~x)V8bJ_&&nFO zV1W_)Z-Aic#*zSl{UlMEjzd5PPdz)dL&cAkkQON(UhVKxL{xW6wpCf(f2@61IX+I^ z^`Cb*#c{`F_rXnZEnr;sKrVADTVb**0~dpkCW1<(*wmfDi^J?+5MnQVp@T~fe**s3 z4hZ8_-;u#RAcfIex6tm(#9gkIRpDX=&kKU9&X0B&0&Az^bB0IH{-G`+-_Mn=zhYJWkZS7SvJ9IZZL$YeT@(7Cl`CF5kp@3nvho%3RB}hJxxXMRK^tR(BI7q$!nZ_ z9|7p0jj*SFdm9dTOZ$$p>MDQN>XM`AAbeT0`Dd_9Xig$K1@sW?szVmq6)BE3G8$vN zt3tE{vket$E7+lta93EN0@~y91mgXCmXPBqKt#R&-vT$B6;wz#_^ zEQKlqeX5YEh<>qJeu5xm!V{6p>@s6yo(;0dTQ0n~fy@g5cOOFgLR}f3jft3uxWdnT(UxZ>#_*IV?;DF0%F)|~1i3Oc3QDFE~i-ZV@U=e-i= z35tUDEfk1U|FPrsOs-1&+M)>58&3QwLysOIlTKBX!k2l z@K}Cnn8yVDc`^qkMmoQ_dDivk;BL}2nxptI8yC}n@7L`o95wCNh!Ab;?m%zXDU0$f z+t3z~ylU$cF_-)FmIBPNvyPOPE;e`rI6!)Yzc@xZ`g$F$)qCFb61+jswnsba&`wNQ z%OwxS%nUhpw8nzzSfoLkqd?9es(i9jf*Z_^DZzr=q78m9-G$c$o`@ldf`Wt+L%W^%&j+EHTC*Cg3+B}<<#Bv`b`U!#?*ehkNEYmAPg|OOf1%CD= zq4m)#A59CmP6udGlPY>Kd4q>Li&tl7_lHt32;+Py#t?)+r!+~Pz-85eS6cBXj^G8) z8F`T@3z4{>3B6%zbg_9#h5ccyb&%k`c4#v}P4op`Jp;6@LrtsVyFxdsWV<)7ma(c~ zVJx5!f_=w_bV}<0wAY&8LlTnMyPEZ_e6Wd(DTu&CmZ+_dwc1otu&!sYjJr*UlSF&&*~iP(!BrDuW{dJh!d_WkaN6_}<&?W<$e zCZCizhRdC1S|Vh1ic2t^E+PDyLRdhoQk3W9G1p}g?s}C&=SPhc$JGpWt=UTQrJ0QE zApN%|1#dIeM2Sw*(tOM%dgeDV;zn({fAHJ#@(@*3!RrVOR1M6mb~ms0%5u09WQR?? zmnaz`c~leNxz?E0`tKErG$>78ZokGVPE84Ym*e?ODT0o~#fqZy^KKPBSauyuEW|d- zx4i_Ao8vhOdDt5er9c~H&!puqJ8I@83u8&-eU3Co2waOebT*YLan$`2g(=Aa z6v^})lj0%gS3EQnrdUyQ1d>8llh_Se?ah}c9`Ifs((Pg2<9f%hGu2QVCL%&nv3cX} zwP>LmUhmRPwAd`~6v_)toLu>tL*dQ9@7-Har}|ij;OiS$*|Xq>Aa%55LzoFNUWuO! z3gaRCH@fLD7PNqXT6`=1_}D^`H0c56j0Zhdy>H(v#IB=mr%)r799$?_0)kEo5f61? zIGMDCN68J%5+Sz=QIVR3Ldw6&7$CacK`qSsJy;lvpw;`usnF=$K656k$W8bXI-10m z(DSOu#f3+1KeyzuP0D>(y~}4Z&0|Fppn@7BB3}An_c<22Z%Lij8{=JrR4zm>^IPHk z(fuj%8A?si!&#CM&SHA^j63R@6H#vOw@aargEb!lnOta9h#(EkAan1{P%@5nrr%F) z39;^ff@xrNoAu{h^V@kn)jtSg!iO`Iv(u||nHOZO zLQ&8-eS$ALhUq~{Bw2nt-y#~J9HdeOr92zX&H=tR&^w{S)`Nu*V^w(>Ecs0P2uWWb zUN|*j#SuAF@}eEy9m}uwOW%xbhOCI!o?Kw?-pJ8=*B7%Fn>xeJED<|qaUJKU8u!zF zlNICTX$&n$>xn!Q(d_YC4HDqe9TAFiWx;Xu~Pz-(dZHhbZ_fGtX~*`^%LV zufMt~I9w$n7s5ZihbyOq%s+F)P*n~rU(~L5B2xXtb9vU4B!<$lm*d;5if336`Im@1 znw+)Q3ky9e5&13g5z{xX1X1}zrTHLS2oWN(+6(!I)D+o?yp?!g{=6|eS_$^(QBfF% zf6l|;oh5U-IE%DvYw(`RRmGZ@@(AH;!&ZWB3-K_LUlOz6mTtHnT5(GL>PU_ zavfFcvbyPr^wYe)*vy60AQa5&+sc+w!FFSME}3j-=0+G0WFvuMD>~*C94F6d-edsn*f0KnoNQ7O zl+i;9k4gY+k^-UksRdmfEfIk(sgwdMmCYG}PIhB7STBlVMpXuK7*-O+MPlFjCDfTh zaZ1GVu}exU67G2gMKG@JELm_S5i+%Ok-qJ3@wsn~a1dC{l1sA!8M}z{uIo8=Ol2(# zHN!+_O7h0u?Rv{Ja++;cGzK4!r4hl8heogvc(8~8ChXJXdhAc|pk|FJ$m zAel|@6#fyKhln%qSM8_p6K<6z z)ABkPXpfR)CNZ-#QZye9Q_YeC{A`VIv&8c)J>c%He5+nVADR-k!bbeD=9dssVO<_t zNH_^*M>n@5;CHvsRjSf!U3^S(98Dg5%)kIW4$~DJNtNB9$fc3&$X)t**d1dtF~i#z z$;`;EN<=g+4q^*3T49a;h&%c{?V>r+_1RE~;wG+cRm70O_{PQFtt*;Z)xCjMwc%Wj zlz^cq11Ud7h)^C5y%gQwx3+u-FicFW_iHJL!6nTUt@6$x#W}=p4M-+lFYM8Y4CfyNWYU9V0NEs!q zrwGU4lzi(@PVSC&;7Mv9S|vb2naM?~mxuYuPFl7fJI;fz(^aH?<&uLs#lr=eXxy0dXZ}~3 z;2_*Wyb9zTLULu;K}imX4&?W({`A(25Xcx>SlFceZ^nE`OLd)0u!yB9rSKL2e;4G) zuim3yE5ZRsA(gaA^&{m>T2Cf1P>hBRR#06XU%05P^0#@%Lh0$8t_YUnrnZ+k`F}c6 zF3x{pIifX3T52|k6~m2ypYz}6#{3Al8tQjP_93z~vUC=aH5`?twM$&#kjTRbd363> ze=$}GsIvNwt99PKUjuPZ46BSdG6qG00imOhghrhMgG>}H#&jVZAM$JdpPU?PhOSg| z*DVXIkF*ZEkq`>7@T3ohdw|43%=u2u#Oc;&XX1rj8&b^6OvJWDEZ5@ zrI;XLg;KHY+vcunvS|Gd6H!POe*pdSycXlVKueJ3t<;?7_aiQKoUu3{ zgNAu3V#(M`aMQ&7*Im~MKZFXT!V1_)&SJwQZ55&D(aw@AT|+Y~67T6I%wVmo_Uxab zD!ZJxI}S!%G5Cxp{`ny}cfSSN*^urCl$tO>QzH1sIR~#mH`h%nh!=07e^ym?x1hnY z?$DAVGFugeg!a&wCE`#VLaKlfDq5{_!(QFKoi)kF&&<6+WDier{J zC?=3l5#Y=u2TVZ09MO7Vs0St*Sl^b!AaA6H>d5>wRLQi^n~=Zou85fTxEu+^*%y~_ zR#F*qKQB>QW4-+HE@31ht7*a=@ePBnJ}llUCXhhyw7(XWx#Be#0_is+H0$I_7a%)BULx=$A+KTw{EVag|$l#Z5pBv=2D zh!6!74we(F;7DraiGFWR=xpeqL)xe9WRns&Z@)SIJ0;-n0X+IgQ%n{oo}gm8kq_gl zA6XbWX6>kg29VW-^;toEAeX4p%CRZ7Oj3{zQJUb@!j@7E{wYygbU@dW_M<{IJlCI)ZVmQ{>7%?#;tJcD^UAUgVbx7m$ghTLWItg8$~iI(7v}B z3Kxl#@1g)4aX`j`Ef&ZS`qqIl9jh>sN*-;&5eiHPhsD=Jyn(vDfZPia3XSw-0P~bI zuuectqQw8!YhD-`wGTK>)ZDx^x{$!Nn{)2<(m+Ud;U2rEQV_d_^M` zL%+d&Wb$~pm+4wAzChhKhpPqO3`MC@-|!_F`Q9V=8(4#~_HRht`i^j}C{FX+iz}MF=?YCHfiM90$5>5VVquYh zvaw4l%G7|pC^fEmx zg=BXmQ~dqeT-ps+5nQ+Jj7^$3HHl(Mf zn!u5N6{O8&<^Mhl&`9Oo`(@dp_%7jqv7^1%i$mTK%SEb1Jrj_~suZJ~_>S8#(<@mV zkt_OrW!zu6e$TGM0NS)HSE#USbUt`Oenc6ETz1l~$eT)vo<1n#EsLBHTt-rk9HnT8 zKGZo+d@fihZ7g%oXD>kcVs`dnBxGIt;7FRY19S$q9=_{p-j4kf&<8MLq>cL%<0`UJ zbS9eJCnGT|l?qxDoZgnB#He;15@2!}6gjrg#;R00WE$hw)E4D#QrTum&}K=@0lClk zrsJlk=^_Un-`m=CNb8$YCyY_H^&8a|se53=cz%cpBnq{1A!|&oobU~q5-=n;#SDL2J4xBzz5PY>@wz8-VAyt*~ z)5~JUheyd^4W1hUItV|+;ztr;ibQMb2~=|Wr}T1fB3YTm@|xua!PvW~U$5}jWl3*y zN#$03&23-nl=Agt^G&rg`$Y?y;Y6$mOqvk>}fKKHLPyCl0; z1iceLLPLlbTb?o&GfY@X|D=8I>f_~9%BzHv$3rVT%xe3GW6*m5r+IZRYqZXZ^FF#NwiTDTWjk94LOz(llUtm@7yFt1nKtECSA|9R7R7P&$KqX8Pe_&gXsZyS+XTgLHVfWz?RIq~MlR}cQZWTh_NEBCM!POX0a0nhwMuDeAT@0w zO>}7;5liZZm96dXi}lKOo$3&!tR}z9A|0KBA34y-fu>!r8hkYJMh8YQzP3}tFpxs_ zElo_MqP^Au(&rbNplSFXN)t31fzblZI7TV(!GkeUD4ixTAUiEt6?eE)^iB7EAjy@a zH7(eKnkIy@GpDvq1D*v#I-3How7L@Lz!o9ZC=x59mCyoaCMr1gF&ZJIBN(GAP|$>U z|E+vh7?!|g)||up-n3$Qo3uB zBT5X2DfC{AERy!*92grR5-5ujE@)yr8a%S_Xt1*tbOg&T#*=hpfl>5mI!zx#Dk*}* ztKJ6TSVOa-hfv#E!J0W7t097q&5>BNI4wfBQ(Ap&kJ8XKN(jbE)jKL@==m+fQbz!% z-^LzF%WtPj64DvGYJmd6dmHh>4LtmP2qORh7>`FBUyH`g=1HlRbLRm7Yir<*X*`;Z z8l#-Ati-$!FBN3dxx|{1;N*Puah|idBp|J;fW%zld*0YcmO;rWj5HyY*`uJ;xa1*J z0ZBJKE#PF2i2;&gP|`&q_^@+Hpwbvi^+xnO9okJ&syFL9LKO;7w&_zT@ABR>5J}iv71$a73mUmGq0f2Vz0CsPJG+OC<@OO*B$TQreNg?O}upVk)u<<(4>WXwKe8ff@nOx^hi+|etnuZ~v zsetetqO8h!1`ia`wZ#K3kk3^18fsexSCq5x#NQ> z4>|-*EaG9AjE~%4l{pHf{m6wh+^9Si&XJNP)T3UG3*V;+AQ{AMv}WYPV^Px0dRBd7 zJj!{KacHonrLk1mA5TEEz52xV`{XMsDk>@}Dk>@}Dk>@}Dh?Yv+JoLp*e8m)h5%v? zXha)wJHw&&k{@NQS=MWyg|3W+CU^uWTBPEbc6=a(i)e^QQ{-q+UI-x?SUs}*jp!}3 zp-hU>0wrF;XtlNByEa^2LP2tmPO#Kc=hKk`rS-~Kb|J^Epg{;3cEPHZ6=sNSeG0`v zuuAcI7ej>x&yAdnLA%$2hkf3rdsVUH8k<1pZR6>Q^wOS&jMCmJ$-D4Jjn7E{}2&)S>%P5H6_G%Skc|AuHr z#!~BTR-IJGpBu}pK0gr8?aVyyL?*(dKrEnG_%OvAm8FOxwL03m|aFH)q84 zO$^Yi2;o()Hivydy_xJK#UvJx>`!a>ok)dz%ZoLoDV|6n$9OeO@buNU3QUqx-N!~mlyl0b-9`>d# z$z`^HYw4j&6ARzGX;QR=t!8dLjxl=9OW~;$y^?vx4gXkFgg5qA(o+Ef`OKsvY zA%9(;waJUkNt8+KzM&L(W%(&{7O@HM(`g5GKX1Dv={F6q8qR@^5pf+rq_UHb=^UBt zr0=xr!navMdQdqvdvaT!LL+mXw9~V;H6m2_u}$j$kkbsgEOOWGx3Qkq(7U%sw%KDQ zHH~CIH;6PLDY|U*k|>k)cnI}rLa&!8h}nBW#t&jUE@>jsZblQrJ_n;q>@!h1`9RZ+ zO8V58JkZV(wd~YIqZ90lMa+4YpF{y=Hw;4NHK?g!;jvf&KAS;tksssXo zC~T;rRnB$6m78Q!FoVNY%QX^+!Q`7#kr6NCaO7H7i@_4u?%#Oy=4BANhlx+q~8K|vSs+p2P2 z&_t~JV3qD6Ix%BMMbssu7<&d`!Tf+=%<6Qm9K*E;$QAbDyv&{fuUOl`xZnfL6gi3E z_YQDA$Smfvk!LwlEqoshzY8ZJh>=STXFv+C8;ydXw=vDX^)i7uC=Ob< z$GK1qKkgr$Vb)%Xh?@OVm2;&DZx}mKP#AR&8ZuZ7p%jvcg5u4cDD0`?EdWr*DW?ww zO#sQ*5XT;P4OSSG-F(w|#{Io8@Mun;7Tz({rDH)X%C9HEQ1+CPmTVheC?RSTk>WmC z9$}ldZTB)N&*8wLXG)4g>IbRVT&cioDx%Kcrh2H-)KD@|L_SPuk1}aC@pp{_@hBQd zc%8gG%hF5bilp7r*7K4-TVoxjrV0egB zW#4SyRj6}C3oD92Aco&tgJpT>@5TAdG$$Qa!TtTtJL>NHk##6X-KTUM(lpx6gQnA( zgMQdhLeN4A_9y~}Buwe1Nok?SO%doR;ynu~QJ!;d+Zd(2r+_2+@t@m6MoMrTk#OnC^ZtU5P>fP0iCab<~tmx%8vq!4w!V^KN zM;G?LvN2|!K!aE)&O&LzoF!eZ{X=>Pby4iHNzhBM09!pw@$C zCLh*%IMnEs31&{lWH1?S=a3k?u2((c$5eFoj|k}xD|KJzvSvJ*ryMFWcsyO4Wg=(491 z#DZ2uQBeS~Fx(=V2t}x}$;owD&XzWSu!nE5HJ@KJn{*m;K7s{CA_||d`2rEDBeCq zqPfX9DAjS_P7x$QAx+-HuazbNQ60=Zz2FkHg+-d6+%1XFN)E8%o2CRnE~@%;Pns6)T%9pch`GuORH} zst-`>^E~)cSFx}jbv-5*=+Q=2r=e8#EuDBoK20QE_@c;lq=`)L@Ub{tR)~C?u(K6( z=K_;mSqU#)1uT8(a^w(LKCo+|V$K7CbZI@!6cCGng&wav^!my+_0r1JvyQSPZSnVo*1?}j<23AM`4TW~8Dbt7o2 z#Wz$}J}z84co545T3Zb?0R*L^?c!b+j~iqT`&!ckqgIR*@_~LFC4oqxp}4m4G>|J1 zaT0wYCRchX-*ZirURF>}e_}m+qJU=#x%R8dxfOC235HSONNtFb=#XX3o|6%*k<>4s zr;x`mcVmR;(=7Ve?0id)d%=^!GZ`MDJicv%;h=HpNHFsonoNLQyMj`(lr*shx4Ihs zkkbv~S5RfS^8nAI;g6Y9I4@J;%c>-+cMu4&SxjN`Awq;W8RUmh(vLA_ktipkY^Kw+|4uJY z3~WLZ_WqEfZanH4GbIQPP7hB8C$^7O`gx0WhAxt-A27%Cqc` z5<6Q#2P8LhS9tLU)^lsSSeb&Qq)P&pejp_Z%|ExBFOhhYo1}=^&9Dd&0s0F!tAuzc zroa#efW8v1w36xB=FDe6lr8x$g^ozVJ!06qz7qtcg<7AUO+r6H9=h?GYyawbwVsJM zmtdLgDR@BIFv{nZ&5$4#TT^X4vl@0?9#&E^BWJ>nG?b`mf-pWFfe$RF;Kj%92_D1! zT{<5d2;sVohJ#9Iqd6xtDl0@uX#|qDu4%w4Qqi~bU{@G=$`p`Nn3i^>N1cltpWsc@ zKTyz_`Fns7*n8>;41Xp<%0d;1Vk063S~E}aXvAZ4vOOT26-=d40z^j8W8OfFHUZLq z(%fCh3!TkVNIH<1J97$4WvjtS7b-O9aYo6I^HH9Fs1PC;-J5&X~dw*8R zp2s0n*BX+dm0g{Hx+e`OhkE>xF?2>AQW|j;8i}IotTcuKz0@b_IMQM1-HYQCPJwum zfo-2DAliW{I0HPa%dyp*Tcw{N9ul9S@R9iX! z&Na+^;4Ez-N+(88I5CIF98amyDHiO(EkKQYckMSC-+hwF?09Vl5=TU-T*Ts2*Rzahr zkhI~rH@43}E+{?ne&bQZ!cS;*6})Q|7&U!ka9 z#Ez*vs8N1o-igx65Q?@#G?7IrmQgU?{HAo07$aC5Lf3XYKOGq_VdsP-`~R#`K>%sEe^Z!5)7Dl0p_f6cmalJJ~Tt0L?|(0uaxgjvId| zB#i>$OW~2&sT7POog`5n9%Ze1V%-f&<0jukbJ{F%vnl%LbQ9!wj$~{*n}OPua16#W zG8qB2ArGHBpKbEV1CcAm5y~{g(jMCaq9C^Y&8<}Eqp)LWfeOQvC@|stXtUu)W0je! z^+>v849kpGKnke>lBZ8-J6`WNJ6a<{${?HKKJjc;Akv{f05rRI2k$^rC@@O|nztbz zf8M5VL@n5jvv$d_BKxzvXDW+S0YO-cp^et#MTs`DNl<3s&CZ&obbc&1$Sxs9L1x{Qx*F*f40yUV*89mHclL;9@M4ZWoaZ1 zu*WuL{i>p4QwL=38KSc9)7~%NjiEFyo~Evg0#{5|Sogs0wc!0-Mn0i?>pY~s#KLfb z!Dtcv-kw3|VtA_+Tv>Spq!xe}@1yZ|uwH{v+Dk8%3)growH~Zs?t)iyC{4=NF|p4Z z!_h~kc(0^0vHpg_+NNR~j`Sdgt6b2hOi3@JTS9#kxo-=_8Tw~NpqUa5sV0!_2{x_3 z(neR%jlOFj%4gC0sK!ZD?L&ycf9(k}Jisbk9d zew6!7VZ|)PGZ=ScDqBetK%kehc$~`2Lmu)b-18#`YqZVeumzDFDqBUT$`DPkb|_uj z@kRfNx#}hlJv8y@bxQPCmb-3^0HtBqzOy0z5!(hAa1Q3j0Zjf|htgp9DcL2jg%lL;)!R!3wQf^vBjTu}0jCPvobBXzE*} ziOCpn4R~V%bo(7}#~l}qyh{T|;DhU+wnex90C+ZoTUkkwH(Cor_aDtEw_b2X!I#w_ zqP2ly@m6bKm$nwzVxB6q5dbeKA>KrFi6YbbM2~TNv%aHT=KJqSzJ>L`rY>?C=|y&p zMyax!vJUogIE)oUt5O#mKdZHgC>Ok<$D1R*oyx^C zqznPs!jDBtINeiWDU8Lr1V3L1OqL}+V0pKDOb=$Ni+Ja=6`I3DO0l{D(5RJK|r0)!|&S`Ws#ns#D`*U z@NIsCn&e8yBi7{E+}bMWxILgfyW#J=3*C?J$O_*q3;5uAP)H_YxceO+XyQP~vE+>n zkWB;8oO5Gz40*OGH!;G{f)$FWWaK@g?SN8Y^30tP)WbNkwmrwSsUE;IhUweF8xvGv z@Kk}S3{A}P&E(}G z@^bH!GUqu&B-rDoh{Ct)3eS|cp|%4PG&DnP5vr~C0a0oRvAAMs_!^SIfV^N;b{*N; z%^V@6;mW1ClXwC_p^$DCu+E0ZIFd90mprB!f7I7xWI#t@AT2D}bztgJxL%c z#p3-r$`x@|{vb-dWsBL|#cQrsSpD>K#=f zGg-MiC36s3&j;s(5&$LV|JKQ?7uNbYT0?O+PC1 z=rMxKTTXV)NWVcr7rn8Pk^!iqosSX66a^*LDU2R)m~))vm1%KAAkl&`c)aef!|o zH~RhVaL{NJ=wZ*U5WYEY(=kv)@=m)b;L^$@FlR4E)C~zsfP7zxKq(c7&E~_bk&0oR z#r+att!XzlELUlv4BZvkCwc_SDVVm_Yo96R#l0{W5sZwYZiOxNijYsoc#;FW8i!hW zAf*#kU^F_#zOT}l<{6AGlC~xxJr~G2jBfvdL1hJigu;7p=KxBnB%zyJK1$!;1MK2& zV_hI1UndrpHbyR{e?;Y4Beaad5!&b7WHML@%G)ytx$}ck{|s?>B!1GHzovy)B|SPn z%I7ou$H=0jN=DDnj6RJx7xsT=&qg=x3{CKO1gx!uqrwgx3^~}#1XZ5LqfkF#)P!90 zGHOW;{Y0T4>u3}{_Qoa!#7xu=mkvQ&jJFp;?^86Y8eb%0CF5T(ZRA>vIx#hdVnn0W zVK6`wN}B@?dW{}ggrWLcfo_uWuk}tC5Sj=LV;WR1B1`y7e9lzYBnx*pb1c(SGN=Q} zx!@VMbYmk-n^0ed)SzFB#2qGL;RP2%;o{3Sc}>wns0DqPLC`bsj1?1RajMd4?-e2J zStV+teAry2m?LOB9+@?Y`ofXsc3C9?z(5{FQeHxpY63~&dMi97=a4G35;`LJ>Ai3f zAA;6wNRNhIQsY3Fr2->q($MPa@sfTQF`i^0qIx7$slWgsoQNckzG-6aECE-61M&a> zAOJ~3K~&)RJXg$hym`nQA}9IhygIDp>~MqvJu6{@_CCCqo~707yyH=z3Gc%?=p>}n z5&DcYV!e4@JRXjc z%oCZSDj%YBqe~mV=07@sS{Fmsv!YqH$YH#e!bGVN%dO_7ITwWBfe=I1BahgFMq{bW zJ{CiOoZVeiN9K(wFx~*|4n-4b_wJN0y-b*l0riNq9cVgF9*(9-))}>+kH_GZNi_I! zoAL+a{-#CyET0fW&jpYf!!l@StfifX;3tiQ6CxKn8kdKwTScS{%hli5OO(@7c5lE) zN^00G6!mDT7|8%#@>nn>qqKJfHwzES-gwco2ri|Gv_G)}sPmzSsa(TY_(XYZkV%vJ z|Ji%HCCQPbJM4G_kXb+7vpe=_X{3>6x)9(0k#r?WqDalobaz!{0*G*4_)mBQkUhQH z85y^-!fd9iGLc9W5FX*j{rGXoUQOUB3kWis8WNF#sGu_7Q7kcb)NtImmP3Aa9)%d66(5Pfm#hB z(KLb1CoN5r(lP^lJ3+Bf?%|k2g904p^-UqN@VX=>Pi+tCY$Eqs4`vhkeMjuy&L<1t zd>6c;AG48NP!!O>kp3KkTU1#!PIO<=YcnBVN(p9Uo+KeLG{-Ks$Le!Kt*r#h_M3ol zOl*>{Nqa^>0^dx2?Oa7$hM;@O!x{Vsm(0FvfZhb+HgBC1+jaF6t02%cwre3ecBo>H z%}7Oz1{A^i_rSTfQ{!aL(fFC+kDJo5Gd0kH-GL&w6J;3{D$qWGeTD;JLy#JD&8Qo= z7#ITpRB$Iyd2QH6n@A~ZMqi5&DUD3#+%{`n*pRjE>GjROi{?qLdD~im!00^o94&Gg z`mOS|0pDI^V>$JrPj@vmBTLH)9;1WP)Y_|4z9qax~pzk~b=aW-U zqX6My_HW!jY(%Gt)FL<>=MIO>L-Yc0_NN|!68}E^9MCySzV^nY-M&9Cuu#yHs^c^Y zf3NII>^4gAm=TB^wN3+?+HXn{JWK#xR#3S#CwEeZd0D~Ga*~q5q75~=%e3vlpA>K?xR=uttSp2pIZ)x0L|GaDt)&xMWV4BNYvymq;01hcjpYM?EY0ciSlq$Gf4+ipi9-}&He16~?S zVJEgXhh<@tnk!$th+w_Zy`36lL-IvULA@`wH8>+NDhu2M=M4}v0DM?OtM=ivDvz>K zvlIWr^&}k57jaUN>!HG)QTNXg!P`kG70ZJYW+$;E#P45ewi0`f+92I-M(5Hp7oo0} z7HF1ef(u^iBfTYXflryhQ4B0zaJE+`TT^=7}ZRJ}Qrg0Px|s;g3mODRpyOE0bKzN|fIB z8SzeScf1GYY}piGS)YBKANM9>jTq=ANWhEQ=Njv!T?Z;7Syp@8J{5F$I~|Hfh_<#^ zpx6XRE46#8>lZ%?-I^*3y)+2HnMMjtlYn$%pTzs|`YQd;qww4v4PF*0-{{J1EC4=% z&S#nT+XlWCUqftA(spW3Pwn%suVQEG2A7gb8em*Ew;c}#TbZXZChVSFuOg5J>@-l``|xfLZ-IrYtp)x4S@+{A zC6>IbJEnouE}z@)*Q>Wh^*ZNm>wL1lA9|dpw-$4GuFjqapP?e+$yVNA!lQurTizwa zN?RU?HPbj@#U!18oCO7=jdcDL?=Qz}LYX%V zw4i(Jh+v&ra_SjcHnzZK{DXs5-wDZljF0g#KE}uR7$4(fe2kCrF+Rq}_!uAK|F7}> zGw3Y!%{0$VJ#nm^iP11XqD^^EU61t`s8Cvj(Ldl6ig*!J@a3@cLNi#8cX5Hq3_N@!=d%h$O!6 zEu@S_8EXg4YOFO+(Ts<(LKsRxDI^RN`-9vjGB`2Fgb&A&vryQ^*G;cso}608zy5}< zZqxpTsNcX9>FEhHPnsEC{1~Cml@?K+CZwk)So=MWYUTGdN&#|4`us_3Vp*FAlG%f` zSh4$)8?}vU~(FcXNlm3EkILNevpOg;VJzF9r`?pl>%$t(hwudScoT?R4S zXF6*KoOPcSzPCZ=6KI-bPaZ{8qrVF@MrUOlwlFnZux?F+H#J+>WzXaOd}Jrzd){_k zIg9qd(1MUHTYPk0FT;&?G5BhZTl7}kunivVHkRMo=j~_JIB~r!rLZ$JlODPRMW%^R z-KptP6b5l^>%`$cNX|AP(^|U4mLB*2KcPMC`v&N)K$!)cs}gB9`9@KhoJ9Ob#RQ!4 zFbZv0-9{E6l5Py(+&6|>;5-d<5%d%h1LmEm0ReTWEwtC=^UbO9&0T~{}!oL ze>jU%y>7tkn^5zjV2b}a)P!lATYq2FMHfTNS?XfvN$#}+J)sMNg9?7mLKmG(Kx>iU z)OFp_1u^9&%Hz%m2b++&ZyV4}U54D8r#7ecdlJdqk6^-R=h4wR02RJ5m@hvrx)cQA zEC3V_NeViw&NhOA$%0!-d8=r(`gWZbY>Gj_Tbl*oVlJfpf2kDkbov?edeb#=vfrsX<236 z**4JFX~k^fG~e#W8iTq(s~L|rqrZz5N}DT@dN_h}s@#`<*d_5kup9fa@7j09eaBz4 zgVC-z(B0c>18A~yXYvozTH&g@-4`FsMLUzcruDDv~ugFM@1 z1$}*yvZ!qXTkW|!!nx5JPZh+quQk1cL8RIo^8`FTXq|rZm3UiGt<{>oPV))rFP}l@ zGx%~r{Y|tk=Zr;_>Z_3Gw}xu~^XTpji<^dMbIbH(te zXsMZX+A&&uD9z-YfYU6`blp_HLIYP@Kj)jUxY`7#Lk*07X1s5J4#=dfA-WMF<*o{9 z5nTUFaDXBJ84V*7_%vyjIV@%ooCgQ2)#yFmYNmc-mZXB6p+pxvm7j1&0@yfcvmcz|5wz889z5&9JVYikM%uT!} zSKzAAuK*&u#VuYFw}nyO;+`3?ZF29Tvwe@F6v^xXeUOT)2*c#uTD;g8fP_q@;aR5y zKC7U{cCd*j^tN_OG?Dh;+yzSl;Mgm>hd(9MrN?9AsFd7R$mU+9esj_(nly7RYymyz zfyyqs5-S9}Rc@jv2LS=Um+?JQ3f(qPA=&iRCPWEY*EE~wtM*0b3LuMqgPxN$$Vk&9 zL5G1^!pkByVq#7Am_b)|0bLha%Y$k+GXvM9iCv9dB{Y!beQT$wdyl6Keh|F|S~k~n z_-o~BV(E($$TEL-ToLNK<9k`6y^l%+^ou+@n zN5VyRUe8p9kw_d#vk_afrYu=NlFT8t+U}__Mw}HBY{CR%O$;jrb6Ht-i8R~3?d|qX z2CtidiBe>Lx3!@b32YE~Cb7$uyKf;jVZx)rtSAD`pS3pqwQ0$?U@TV+vqhPVB{uK{5P9$8%RL4+Vprz_u=e#d>4?*xqHA51m7!yb)W|`K?U>3P>BB1k7la2B_ znvi0^Au*ZQB}gKsAME6itp&8bWL#D~k--fX*q)@A%9D)@7mtg6VyD><{j!OGLO|8F z!gf1H;p^lw8bZ6x%f1LAM|!HgRV^w zjR3@!I6F0J`#QP-&a*jVa3kn48$S8SC+bKGwrsjNXQ@y(`TaZ!(9_ls2o-KUaxFSV zw&2J60C+ZiXbr_vZqcUF92$yXhLo-of$>O#=L)O>_IWlnZ~+(e>A8L8RVZ@I3|uY_ zxVcmj!+KCf>QN!qem-jRa7Tknl@>Uo=mjNFaeX+$vr(n&DR3!)AJ3>yRx-dyuUD~$ zBF~t%Ds$VjAv<~8k0XXawNT&qUERJnxHPv5)tRW*nkhk7zagn(&FdoBt)D*0T6n!S+B+c5F;{WIwYA&b4GmD#uivCCXBb2zB_Uc$ z!!K{Zx(H}Dy0o_O;?K|EXI*=?iuBtzv7L1iM%J<-c0cG+X|`q-nae^q>@U;Xm?`M3 z-s=|HTRE(2U4V;OHd`aN9H^~&{jP&!*pwGH@mxB6V z|C_Y3yDrj2E4Wa~isk?&80*zZ~HlhSx2K$}$1 z)yCVRf#WJ{xT0lg7F@J8!^_%b(_M``wq?DiK}i^&m1TXXxf61eec~j01rcyvOz z{I_kew!rlC2s~*QgHnLszG(Z}t#y>31kBWZM=z8p0kK1|Te5ANk22>xJ}L^EK^lJ7&(z${eV^~0J@o&2 z$p>>kan&|!Rtn-4uUj*y1W+mMV?@%X&?2u#PL0*S9xU)qGtCk(;bj#{dm;&dJU)Q` z@=5--DIrw`eR}~Hv5m5=?YU}KgK;yL>|g}vcZkkwZEFUz)XrLW13)ty52DbnnGaqe z8N`?+p$vXHWBV*w5ZWr}as^!$&_&8Zc%EGM!Rp>`1qr*J;@uktq}zK!XIH!N+FG>z zCTsRQ6JiPNEwx<%7~%T{yYbH^Ij?{lZ9~HXQrw{$0gYz$TR=;{E1{K9S+={osJ3TV z+f!OM&~o1p4%Z^0NSRx)#uvZ>Zm11k`Vv^jm*=lt9T9&pu%|J1c?< z0L_*Sq&v{qgLL=x?2A*oD4u1np`h`@Iiozy{&!~u-|~I6Z;eZuIo0gDuM?g%XPp-` zE(iB9C~4Ve?bioD?u%(%vG`V0s8eKjmHeki)X(D2(pqHRTj1Qf&f91SW&g*qq77j$%vR8JXcj#l@(|3ML) z2Lp*BLApu!0m0hi2S)+dwHvq}N5A{=4W>o|JvGz%^Cx`3}& zX;*YU0c*%=L|Qyi+r%k>GAZp;=6YRL)QZ;lp(~AC)t1266R^R|HjN30S3@HG;Rat5G8bhEmmsat|u;` z1Nsq&d(h0CsXmhzLA>mhEF~kAkyf!IN&+rYX|{AY!hX7Y-R`04zR_fdT%qeGRE%uH4#bFe(uUXxwWf{_d6vGqW^gq;=Ta-So5cj z6CEx1wt$%|-mDwNz8v1Pzb?k^$^Mc)ah;0V4Z|J5d?*a0Wk| zmFgo=b()mkuDg*4Flm;&%v!IeVBZ`nzwRovgCo%JO-Zx$vA*Y?h6$A=+A#@u+e8J{ z7AUO?1h8|oXxWfob?&cKvhAU^4-mUyB9zA&bxuf2L0S%+-C!d-Z3e(?1CWeer0&)U zy+c9N94ZXw06NefZNs9uRNKY?pwX=CG~=d~39uwybf7j?I@t}UX51*;p%oQr{`4r> z!T!9zzFRw^nRB8P23|wR1^VHvyT2Q{d>@wt(lh?w<8uoh{u0>+Qvf9SB z*|Y?~G7%<-8EbCsJZ}rK0_=3@v%4PXT2^pQD1UiGJ!Ry#RRFpT1Lg4=2?M=RgGE-F zlp3(-M5r@)202m-M@pcxw}3u^Qot`SZ9j;|Wf6((GVb>_Jd;#a zX+6yKb<=v=i`>T;Gz4S~OUhV#yC8j0W#qRj>RV7!%%YdUmy3MIzx|B*Fe80=mC`kT z{%UKQQ0a7T*!(ODnCYCD8aU@<^0xL>o7oVaAe~7x|6s;TZs$C4Ml)!7swO)K#<>$YAmO$j|Wv3Lr zqqj#N&2(>omJl)VI7_0;S@#LsAJi}2AOdT)zc>@c{2n-1cZ@>KR{WOSvJuw)}{sHf$I^3+jYeN@Q4=^{o&$p zHr_WtkH&LUt6>X$Yzw7h7vWk9(h=n@wMmT1;8Rio1(FD70NVh1a6SNXoAhJG9Drv< zd}0GTW7zpQAuvT%K(o}6Kt4zeX6owEk=W^mtky+aMKX|KSYycii9v+>g1QIk8o48* zcXs!YfHVn}U0Z(9G=Z_XQSi%~K8vl-f&*=F8wKa$dmY94PB)lw*c=bfgDV56_G}Y> zvn_CRS*6s&UXOK6DZx~o`6Nz+v5t0(2nD)wJ!sC5MR|j>WXE{WD`XeP4dNCRv3;@q zryi8iuTr1waF7xMS%r}n4LX@pwSkWjkCRZO9GJv_lCei(>zWXe=kqKrj=p{sM|qkW zEq&WifBCx{`uHGDa};M9M=ec>*#i{XDnvIKt_(UXczoZ(6}+_;wiBWZWjr=IWnCMk zfL`8^?KxWO70qgJmc53y0)7^74hqhJT>}74xhbRHaKg+Hk!y>4on2!HBt?cv>Opx2 zK!82CFq>i^mH38UGo#h3yG^07Sh{Q1_tmbgMGm`azP2;W89-?PW4Cdj&KYT*fb}B4 zMKg$U&o__;t@1o64Uzl(0PwwwjV08zS<6}zoxo+tuHV_<%6>nj4%q^?-|-1rfp=I=p`EP_OdP3YH;P!N$>GUHe85J_PgcZp7@lbsPfPTs;Al0bT$AAOJ~3K~&mvJN5}_ zu!V&!qWc6}y|d0?nzFJ^E9mhN)mT>?gpzGoBFmC4dHg<`=jH=bd+wG*(S)OQHn0*8 z1K&WyACi#haf;K}Q#*ctAN1dY{XphDoHOFr#*p>hSdFFGNd)QsHvpbdcZ_4;Ss7%` z@-)_(UE07b>p;7|sQz2Ww$d!RDAV2ep_YKhFh?H*|<7Btj;_C(;xzVRu-MAWn z)h8rbj0NyAthcg*iAmKD%}E)kRO6%vZfpt!)IjmQ@=^1O$S&a9R)$y|Gs79s5y0vygrASRCAe-%V@%ATPm#GU60U(FI_*t`R(wfGC!2peOalz|HJps0cd2GZ7&m=$W%C7d&Bjouc7 zu7KN4kJ*9gERfLCXv*M+GiaT`RkPvi0{;3HxLgG!*nFR)Hd9)y$!qmuQTS#2MyU(! zt}Q%gi>#Y!d!nwj+&zw{#(UV)JgQ9F7&7U6T|DdB1-NDrBXwtPE1145vZh*=*XI44 zy*`ev8s!g;mpf2ETY|Ml*jq=bvTdCPh6(kWB|PjwUJAwWef?7lP%UUxA+~K!mC}Yu z>5;DC5Lp~(Hb}m~m_tVTBLgX+&cf_SuX-;_0lh7ljA;=11#?yfcYDoxoJZPqd|oxd z+Iu2Wfz2kit&e-(vgtb*UUMF@>GHzwc}k7`PCz|n)Ke54B?le=JVRKgp_~xGUW~Y* z!72Y<4to#aK`Ph%N$9hK06as8a4(aXgX=UTLQRB}R0IyXm#!7r))WP4Y%L6#8#5=Y zJG(4kWIT@L900aJNx#u{Ow5-wQgDxftI;>=_J{*?dc@+))Vc}9*G-`JG^=2o+~f2r zEEQ)q*ym1j(+avQ4#@ra#sIF3m_z|UYtc-4@_;d5{#NkClqpzeav#eQBDP0(NtNv( z-y002hogaUMlc+-WMX7BYH3JJa#A9swIxfaGO{NsxCQMpM5AltZeJqn4x&lb?wQ03 zJ{qG99AV0TV!VHV9vov%7@Vur-nS@|P3oQT#4I1RMbxt8S~uiCeo)v2&`o#;Bc2uC zN2KI4_I@}nI8EL^b6f|;Xf6>DgyUcWCjNf=TVsufU3WQ41Usz-WJo24`^OB%*3(Ji zf}w#7K2M;Mn=@5NfCn?Mw02O4y-kmzx$;oMADkNauDT%PL;Ie<7+S2Hr!8ss6jN*oCKaawBMuGP- z8EDWZ!$pAN=TicoX9;xb`a{d=6m34uJ?(qWqSvt1Hm9HtjqhjJRU(WfA$2AP8Kiqa z&28_n3Vb|{5@@E* z=VE5L@26Qht(>%6Eobn{tCaFg(t91&N)ix}%m*psi8f*Tx%gAT9>+`6C0>9?Q*CF` zeIsiB40Z$@_+Qk{+wDtsNw%jb&=&Rysmo#)Lw@eG@y_PVw~L9Anpl!0b`P@X9+_^C zbxmQj&8^D!-3q9fKV-g>u}O}CQWoI7*Y>nSuyJ>fVlc}v#1O2C$MpeWZM$|piP$nW z0qdmzuWz!aoKJ9}L_j)Aolla9x9oWc#71V}?i#~;4$iaqYKDQNl+cbF_YDgER{-aB zZ1~Ds%q-Vs7?@XbfSf1_#6|Y61%OTagg5_cw`~Oc0wTd@nxvyLUdukvXo8bo()^v) zpnukQ-vHew*B(TC_jjNNat6*1zzBdqdx6(FRi(P8(!gb#sN4WYSoAw;)v#HN^&Xb# z8!3pR(x<;>=YTBaR&UZ2-J2E3B!|}wlZtxrM3PM`+>W!)WddOW^Xm7@oleclQjsit z2e{7?8E11^uM4~{q1CPH{h^`mjGb;7=!teOjn*=bKRCkmFFE3U93raTfA;9!IT+FR zrU2dzTo7qyO-dZBk8?dus1H)_l(yPw9awuA3sQ~q+Qbu&SS2Gk_iKn7$^b6xHMg7E zT6RcQT@MKqLq>#h{Jgmp)hww&u8F&`74l; zw2Aum(u9~c5uY*994*K-|@H z2PX;$dr!Ov0U&rb-S!o8F4b{jT>_-7rvV;<*Z0=g$GO?8*jsRTYFj^Ot)QtY>r0QB zGPa){00Q#s3cRV>@hW|YJ0)rjkPx7Otnj={g}DxY^wBV?@12jEz}$gA>cKfzi34VU zXj1JAodfIU!4EFg+ob}KAmryy;GdqsIV1h{O_)T0*u=7eE{oVG(5Tu5E-hOY6DfA7 z1R%AfiL)W+w97I^-wBK^iDFZE*Wm!+GYPWpRyd0i5cWyZV`%suRsq{x_mE_I4(#^e z->r!g07y$gzG_xmTmL%f=>EQ>ewEta5d$KQv2-ww(I38tF@khp?<+-c9!G4877`y+ z3RuOGCBavkI4_Z8${)|-Q@>st`;=8X#q^jWAdlJely)lcrkxc9t<5K^(|%9rZUHNq z!th8M?Cb!XYwohcC+wH1Ks_c({1)p6HQCcB?%}uy{4KBm2@rc*+%XAb_X&_%dnDcW zZwDb;Voz_*C@dP=MgKwLeFOA3V&v#Y7MA!xID|_I(Y%;(z2NrRkIDvGvo?_TmMbF z&mm(z$?@WlNnH)SUi!^I)xJ3e@scXw&JDmEW6u`ypzhv8-x$Gh-UVX9X7d5m`*Ewb z%r^0%hb&bVXDnvK4cx3itoLV-I!E#^0$!z!9sBYCGP>;fcv%#V8Q$+~1prUsb?D+A z!H0r$OLcU0?GT&D*9IUs6G#_-`x|!mAl^T~`-sw%wcn=HU-I<|{PJ5X?|?X}rh-o? z2{^x8d$3>;_aVC*vsYXhsGHZU$KjcG6S}D^qE7cX?4DTwh_%*l+$UITaP67enq=8@ ze{YzO+Xi~=YXqs(CNQW$EF0;vxvD$sdg=t&4s6g?!*ZF9lfIy zw!JRk8_6{rA*)h5>yl3euGSs_4C>IwSwW1Kj3jC*?+Ku_Ab;yK*gR*kX>FxNrATQ& z$S9$de%}W4xr7W>XrHz#Wf&c>NcFvQc8QN}pRh=#0CEQ)y0)<0du9;j?i{?VKvD3m z_nS+RlAn_<*wLqYc?DiCVAbL9eaV8v!R})FJ_qjrz_MmDtA2xtjhYLib?PFp7(NzD z4hh4sc-OJb?JeTS#qdUgk}OW1Zpzb!2o1Kj19lK09waw6nQk;jxN;a> z1(@1|mHJzy99N56p=C3yKdojpJAtFP=mSDOB!c(<1zP(q+k9D+j|mW}j?#NMC(XFu z=pPMzo+0z!0E}%W$JC-fBhvLRHLRDcjiW_8zNbBhJ<=K(4)x%33E>ewLccW$}5+>k9hqo7nBktF$9}enOgO@U}^v^O)sb zSFx?6!b^Z;sC=HQ)9ebq`Ydz$$P(HZfO-em!Y1s2k(8SP{-!P1t_w&-eY$6)8FM~Q zLS28ofL<<`jH0^@&y%P*WtxTKAq!$b9{{2qV*3X$I6=+nk_-bpXjOA?qDE6TY@r~b z1{yFCKr8~Ioj9nnvIHpfuLBUxhG2vKw`RQuDS^)kw3bfUUO>BMTHh8a4>-;KY`WG^ z9yBgM)j)1)EskPKPL9u39b<1_H2i$;gA#TA)CkHc&nm8$<(@4Ic-=tj+AykSxrs01KM4`QdQw8-m%_CR0O7PFKLEq&ug1qa&Po`nqs zG*A*L=eH6hk=aF6GUQ$c6&Ng?PD$7Y{o3?+r`{&$7qbfsr^21kAu*7yMaxEth!Rig zw{BH^t>GaW(D(!t! z@#DnkDr958CE7#xtZ(cCX3LgE{{zPza#TLX$M_f@<70e`kMS`+#>e;=ALCot921~9eg6cD0Q z6rxn|cRMzo2k0YKMlJEbU%pKG|EfSqc(2Y92_mkNc+-LrQ{Lq)nGhsxDF?|GnmArp zV{TcWNtKB!kgjWAM-w81m?w!KrX(t?*HtqiAv0pn#ArPlk?a@}+Cr|QCc0oyy*)SX zVH{9*yX>LWrQ7`-?7;=#n0tzq+0mR)Pg&~w3L!0;U05WWWf4t4bPhzcMs4;|Wxt7Vve*qD&L`G^0M9r4R91 zkv7Tt($}{}N!0$$^)#V8&p;-mw@pOVGWHpM>}|s7Fj>+rkEDd%ZHvIIs~IENqm>OuV=8BdxRoTa&D{ za7Q;!jafC`_nd@jdOk^c+a_xeZKe6h!5`!EjQVhrue+`yq#1oXV@4`Y0RT3A4pza@ z9BS3cl-iRsN{ro+HV!tk_qWEfLK`L!+R6&q=l7xiWuLF&*ZW=)SSI!*Jj>5{si2}C zEVXB>WNPe7Wp$B?9s2&R_rfndJQo+GGYyy;-XBY({)F+q0lJMJbU51rT4fT9H1~06 zjRI{_!vP=&R8i}BZik23^hOJ`_j+*d&Q)--5RO4Ot``FuK9|MFq*i|XK0+cEs^Z!L z3#1gVa!x|uO@w?cUh700YP8JoHE`dyKlj4PD3 zb^?~QX)vgm59h3)?F<+|Kg~$zv%J3vnC8nBbX~-0x?Y9qZhuS0TtViCiz>L2z*LS+zNoz&>C=}Z9-C7JCfWxwxA%h2#PKwL92BG*0nF|h`?>z zM4-&pg0(adXn)dJOBikB9zlr)HDde4-MV3AIi-O&9)o<8x_c?X*dpa1IRh67Mlt|8 zpQJ=5XVK?~0hxzMooqeVwuyaNyD8HvFkKYW&tdjb4Pu~@fRJ(~PneA2pk>xl5CtB) zd{@J6@gmO}w$bs6fdy3K8 zM}RJWJ6f3`Yn$h)AUa?cs>A24#6!)E6twRWHWMM6?t~^vtt5n@WsTK*y@PqKly|P` ziq+BbFOTH$B0%Ow#df%B$ecs^V~SU*Ji75fdUH7)UwO*8AlMU zK%-97YCIGy_`+CN=-C=Utc zApu_r`E7*>gQiOn@NQrO4WND z*PRXP6alVsZwA2TtQ)T2mAiFC1p8VxF`m-~zr6_v58#E)Cuym6n&tbyNzjtE0=lSw zuoch3^H0wxpU%SY`0~~T>uIabLb8lmP0H9(Jq2fi0iAH-Avm{v#r!jZ`a$Nbq4VFR z!vULXq@ud*vz?-~eNPq;WWuB|gDFXn80b);yNy9rSUx+ExLcqhCN_-as4Wb4eis0u zNrPisD?h)-7KG6Tew1l;i;){&w{sbzG#q2CI5CMf2VzZn+#|Fey*^B+=Lulwx?0=$ zJc!f)y>y+*s@|?aBu(f!({VE2stH-|vgZRHxiwncRPLqyIO-A+L4sE5)1@FN>;l+k z!{Odm-D0@{saDqo6D;(Det!sDc!!XYd2N_-w3$C}ynld>ep5Ki{)KUq<{pnZGO*z@ zzJP})=x*ZMf;>|v*0Td62F&$%S4p(v#>tKL-GpX1R5enZSbWJ9AxjfJ2fY>r)JA&| zQUM`dw;;4&bWQ~bSwL7h$VEZ0UHFW%n|osRy(=;tI^pgKIkI^cT%a6W$xy;us6!A z6x^}@WC&tOfC-w_ZtuGiZnTYXsRqJAiQcyts+bEuU1Zs3PAVSSn~1IVwNM`}|s z4sXj$@RU#*5A3dY@oMOt3gS;)_!e^Al}xo6k4&x zc7*mkt#`L(u!^pzGC;owt30HCu9UJ?Xm2 zIvE0x%?%8r+T9MgNEe z0+j6JU?UUCNluy>OqE`Uqu!@F!>|Y*7rJsO-QeE^$7|(y1RjM7fmeT^M~h6ZGH03 zg#BJAzivBk7o<)4qH`4`cmDi@^>5E8=ZyTiwb*eG7vz+Da@IMcJZ1@4RUj<_dU@)D zSb*$174n|h(XNcp1Ge^M!Dd1rN?2k#g%1pV$0)OMkgW+WS^zkVOKq3v;M1cAOXzV?X0Mg027U}5L8KC*a=EKH&ordG=Ukc^6Vg0k# zXx46+3Io@*buGvl{4inrd_p-TEr-}Z=&#XzvqS>SPuW4QiCY`1_{9i#&S`fR#w zJqJKL25S92*||%&mq5?#q8`5ht#zTZAAufY`HAB1cA@~VjpC1HtGl*@wLK4v@5L|E zL{?0g{88h51N4LJDS-Y#ML<48nH)rZ2dp2B)`qQrT^xAoY5-+HMmLco6}#3P ztx@WJQvrHgioaJ`@d*HjId976J}M+DM{+$3NWjY4d&lSBflmM=wo_*fKn448a2{z_ z11-xODk}CfN&C?i$O|Jc^1(>!BxbRRB6Q<=Cag)Qm(#NK*J<_VTS2~TVne3{emn`) zy;jNOEvouz-Ve-y|x_x$PMb0K@7FDHXv`_WKx!xyNBD z(K_N9;rmG`?RBD-eXR^fqp;^Apq)|Gd3M@^%>T7W5FpGO>vUn72I5Es$9)rfbgh#R zD62DJJByRm+Ls9^_NSvjh#hc zq@|)xS(q|&a5|Mu754%vEP4sCepAOSs5)39!h@PHZ>U z00LZxMSMN+zXeidZ}`~`h^+@m=~dBCOw`0guHE=$bh}h58iY?lRjVvvqhyiTe+n|mp;6u!yLP!kPMi4K> z?9^<8noZc8P7R#bEZ0$O4yE>4`5t(N(CvaCS(C^?)W~fU4-(CW=~A%f3FVZK9x|qH zBpv={q0uH5ffsN^`t21nvqr1sev;04jzV&P*DM?5ll3(Kk_}G=218HhbrXP*S|4IL zrZzC*LP0Gv?;zyfg%i1DzN3hq4+91v^9SgLZ1i8N!?pW3O-(3h%+$`4i2gAHi%_r~ zY@-T&*Y+Nz=cYw~#q_c@y%e=$ue*hS0qGSkHRIk2O7{d|oRA*d=!?-Iiqv*in;><_ z0Dv|*I9WV22_Q*Z10*$g7cNp%D~QDzoWE(!`ILGPPFpQhUhG$W*;}~f`UzWW}HawVQ48ub7+k= zwn9D4BEm=nEUN?OEkkMq;BQvnwdxwx?J;q$x4;35-xUQ$f%bgtyy5xZb#g<; zE@KY#ev|zU>{*C5|7$M5r&GKl((2F#vW;+b4{4uBeS z$d22y3K7Y}{@jHQYii@Ba<>~ytVue|h*wzO?5NI;lst&FtIL7TU#mOUs4i#ipKi`d z__+ap)cu3;&)P!%sH)Mk3uc9?*sTj zY+~Lja;dU$EEV(1hV8L^iBQ?K5B4NA>a=d4Wkvp_AU&K~0LmQM%&n&|0Nx4+i>Mn< z8I&J9sx23!fO|n7%~hv>a_V~o7p+@c7OzilLR!H=#{Jp^2QX*9ci@cGCWy4Q-vE2= zo(uEV$WKK290G7rfQd;#r783pW!r`cQB?qikuC+ND(ocMs;_zFq+nzg@L_`rBP$8O z{r}Xmf+L-m%|W8JPnct5O7EixX+6n7bb$w#Qx*0}2hIte{Ra}#Dr*OA1@l_Kb3R;8 zC|bS4I`ou!5lW!H zM^UXh=T`Dz??pCToZC5r=D7zWDgYSQD_)gV6oZC2cUkfDwqh;}dRs)lL4ASxB+AzH zVMe+%3NUSq>8%KZYZ8B<&I#LtD7nXkNm}*&+!!X&E}|}q`(;`8l4PHU`%VrBd~s;W z4S*%94zwUwLZ^Gu4YLtDo%x~zkQ1Az4P4u20~oP&1gr}En|7=)vBjf|y8nA`DfAy0 z5tJLgh}Z&X&)^_SZl7%m>+0LO9ig)wPDz6NwoX@*q?0|U0$9gT%U+Y1>1hC>~NcS{w z^9L;$=2{Qx4+@h-ZKKG6N2rj)bE3pRl@NgMPv0BNf4Kkj?g9Eu%E{5-umB~Q6kKT! z(pi+x!KMjq_hJ8)Q97vsEF6!T4p^4KP_7rF%V0XHcbFu zrJj*0kS)Mk80ADL&j~dHr>_9E3Z9fMdC`oWw)3b4&?hybRVh&1?t>_It8pX-hZ{;U z(>*R?H7ra=(JDX3umRby%+&!!^cMjR&Y=&?<#_uJc(Op7ws#%>%$r%&KdfV?L!)c=H1AqIJHTy(c!Y zK8a}3!{2pNBSL=Lke0~SXc?T633QzWI1ouj&{W)qj1%PqcJ3JqNM{y+XZPDS2~%k= zwHL9X_W8&{@t>_;E@pYh5d#7DGJcdjpaDQ$x0XTAEj#D{##s%kI=%*G6o@1OY;G;9 zJf8qOs7i~YxOe5Z6}$w8j#(H@2GA$Mw6fX*J7cQMq*@UWAo9?HU~=x388J4B2xO@? z$wsOwt^0;``>AqVd5}Hs^sUi(^QyrCM#z+?^EX5Gl2yUS7TQLYFmH{D>(7X#*!xNp?5*>$q8yx!kHP+IcP#$D|F?DkRt*y(3b)4cUVf~!3K8nAeuWA#Suvsb8$*Atw1$*USbb%$) zc_7cNfCmeRjYS|A?sEpI{U39-srbZ8&jo ztD%#{Owt#W(jKH&NCc)p7UMe1QKJ(A#{hi*%sU1}!hX_6dsbj!U_)pp3<|ZrbzZwt5AAV)bZ)y`yguEn7Z=2K!B8yV0&S6@`5d>soygj=yS5n#?d?n#8Dm<**)+mps%Bnbs6{@njLpCEMtDuQp(?pb;&>r zw5Zr#)U}{>Q$P}IE9KU!9+0&umLvdeO|!nXIRRT$psi}66 zIRW*om(j}Wu|5d^8O3eLHm{^kn0B#BIvuB1IZrvudCS_)E8xTeZL%iktG!3fw&T1U z_JG5T1#?qlkLvBEbav5!2h$y?wYB!t``aD&9U(YrGxh@koOd>SEy&c@mfNuPV(2^1 zQ2>s}+YwMf z#`cu3KFYDvrOk!qGq621F#D@lhJAlrOISKTBV#^i= ze}-`bP@o6p%uVMfwpcr|B|E?W9Bk@$fC*8{?%vb*E-(jrjKKi}rvCWRzwu+uX9q-x zk%RwbRQ33M2F%SrvZXcbPi0P_R21zv1+jH*2^hBt>bnRmPlWA>ylgO1*(G_xU74-T z^Rx*N;>6&Yq)dt7SSwQ3k8n_jt&XtLjbS*)+7BAL)_xxuyxkaD5B^a091tJw$1d-O z$GZmTJ7cnz8~s5?A8bF5nceYq0DZl;EUr<#`eqjWfbu@pr9**BN2f|*<8Xtp2$)Qy zn)S2_W?Y4F(@e;sG%S|$m$Q7q`kZk7QZc_)Y!68Ue6(J1J0+w|1tknuXtd6SO{&zJ zTTP79O&AT3SfIfE<_y4k5E8+A650Vq^^CVap^pZC@BRkx@@GZ5{^iC1%(`LpT?6UB z(03j>p$=?9PN2^bx+qE-L8wrq%#`rmHb)SGKJK6hpd^OZfE%@m0hofP0}KV}F-uq_ zp@MRT5T8xm1&fM$IrJp58|{wi5WQ#l0#+mrMgoxWZ@7%}~J(eG91-gy#A zZRM85&SndII47wTjBRyHw$!=v#>0pO5w3!B!U=GKSth%Cd>} zx&;hN5&yyz@$Fn3l-(&gIA?Ak#k1=XplAt+mxhq6jf^BJx&=aKWgx%FL{6KahpL$` z3s6N`dRn2*39voOcUch1!L@C5L=BV}M$obmK!ExDjWNAJ+wb6*iUum&_mUR1JlnoRNQ;1u$kYOWnhCjbQ^aR>>v{Cn}GMT;SAjJ!yx#qwEg;tbhu7WM0G2?hj3 z5`lH2==89NK^rxEqSyrl*HHC#X=pzEp#b4Oht>q;b8!A~YLh3~t&5*QSiYIk+G#W@%r*qXB6Y(QGJLMa< zQr}yvgC7Oy!@V0p&CwWXbN4oC73P9(3O_>ctqoj`0W9cqwoRpqXCWN{B;XS7xiL@d z;{-yr%x;(22aMiF1zx8Y0fBsZI3D8oBn8>!1dkpkZ8asdUUrAb0J~k{^akYDW=nMv zn|S=CG&Tv5h_F0llygG9WS|1|dGeaB^wRhEWony%2bZXJv|b-MYru;4pu&P52!cMT zbv)=Y8&={G9o|T<*Y+Uoaeha$<2?^;brFCj2J#lPge*29*R9 zMn!me9tKAAGbw>*71y#lQfsYOl4J$#l1>Tbl+pUil2iSdq*F&)8FiL`liS1wr{*@r zYW5fqm|UMBU)%n}N^cjC-U4S)h1y;#=ZvJ2Grw6oLIoXTzvj3$kC}@Ru>T%t9?F~K z^wd8`|2MW)(dU!s1Dp?xv+nmFVJ6!CV)ro7o-tytkLQ&a`hVvMeAXz@x^;jBDS@tQ z)AX4V>eHn4xMCwNww8eTrDA>&|K{@7ETV9bY&ul|>f0k+Fiynbl$pq~pQNqrMRk(b z^A+B%v%8mZSGGsIo>d{k-oj5*-?0i3B533W{ZggK|rt7Zb9k|z@DNqw21dyrN+$NDVY3;-?H zD6)TSPm;W--u;6Q>(J%<03zuYeG>7Z(>GS|E;YqwP*v+1%c;?vrfWqGG%-)|X~xvA zUxNvqBUa(mcaGPpAl))Z?zkE?%s`!GUcJ^9Eh{sQBk*#sBRWfCP~#}b5i=U2Lv25g z!H@WUg@g4&JBbuW0!;ivTGq5|U)8>~v1G%j?iP`)Gf*DX*1|&1x|v8D68R3H;~Z6#?Kww0|1(4p`bH2Iy zECD^Jhyjq8Q4Ia-T~$10R^;UJZ&dm9?4Sl}RO5k>#D=ztRI3XTuAe4wB22GEbR0JA z#9@xp3M`)p>t_*(vw4@Q+KDMvD=2rRUdZcpmfy41^op1$03w`zW6ZAtGE$L@Ijc}A zSoWCpS?zcY!d}Mn(M|i z$r(UtiI;mFHdhZbtU6+*+`x5Q_uXy?yAC)plOBP2ED^HfbI7=>57V;ia$HrPLE7ub66KjW%czX{f zocBdP7)Ir%;e$h!?ZHVkAQIKx{lf=)Rowso;PJiz`j136Mj-LeWRJ}MwR7AOTspd> zu=owSm8F$V3x83m-ZIUZAXPs+Tz^O=hCh!y`wF8!CIRq=QS~8c!a4QzBIENP z!FfE_y^P=cdksX`u{AXzk_hlB8co}dJ+h_LKKFgmMTQG|Fg%*dRW}1-j~G{TY_wKA z6^+N}h9Q9`pqv?LYxFMGe(5GsUmh9tTxAho3DXPV{CC3iX7yAGw7*uoof6ic2rrcJ z(^cmA_B>(wwj#f^g;@lK^zZ#VBfYL(2iYu9G5LWAELE%^7Gw|g9R-;BpPOi-@e0k{U<A5YVqr zAvi$R|2u2uqX0kwr|jZC<(#~~GZBDGL7fxolsve#{3IfAX=z}joYi5`_GsHDMtQ8@ zNm?D|*M#XCA+6|2N%95YXQ^Qai_IADm|iMK>&jCRW2?HqY)={U7XnoSN?~3q(}O&i z5g!7#0EkkVX;Vgm0dfNu!!z*bV@l&WX}}AfB_A{8Tp2EQW^?48#<1UdKlHK2){c#g ztfLXjHw+ZosZ^QY_YfBoP15neEJ@FW@wGV^6iD9yxxn64r7epM#e8 zlNxgI(dz_U|C&(F!1TuM^OspzS9uZU?D7+^eh&UqX~~9|fFsplsI$ytDrC7ApW|Ip z(Q(fJdVbF}vG;cY6YSWxx4?M^^gE`*Kj0Vr!Fb}%EbL=^jF0g#KE}uR7$4(fe2kCr zF+Rq}_@8sU?+iN7A{w#x^U*O!Sy>mYl6Gp{=b0PL$7^pPt#bW%J74^qp4p~KxFl3#+XWxY&s9?VO5bedyFe1Un|lo zSwbT1WqT&fuN5^Xq3p6~ELdiw&QhO#{Wr$)w++*$73aAirRp|u`F6tTzfL&+(sT~e z#+Y6S^(W23XR)>AS^oBi|94gUtC(JE$9fTawiCdA&yN3WR87VTy zOHrG+U9#lDd|K+^s^mF?vV2d}!va_EHn6eoZP?mSOgmx7FzGQplf*tt{az9n2ppa- z#Y|+J-@h^>s%6`-JHwG75w`Tr$9+{gjjhGV)v7x6;bK zN4EV;vy2S2?dH?CuT_Je6ZIRo?Zd9#Zo;I|p2iHkK3{(>@=)~Jhi)Khe@zqR4*jTz zCyw?>FYWk&^&-se#x67;3;XPOm(_*S+D$~75}^{j8xHj6C<^DDZj=SfNwVs7Qugdw zbQb_A^Yib>0BykAzazZ;hl={shI}rVQWfFSN?0!w=-Y&}PyjH^Z;N&6Yyxq{8Zn$> zm&t)mX*Lo5vttgE+ipiTPtp9>sLpP7%q9iBZqVz0^ep2zJiz<@oYsd*}8+-so#S4r&pWNy?8)iI$yR-~V= zczj$?O2Xy!1ioe6k0OU-VUN#MqCGbR8pAzZ>oW80}Y{0aL`nq*C$XCY8e+1V5bj9=MtJuV4MqLx~ zsp9;w;Ph`BUQcIGJ>%*B((h(q{>rFxYez^$_K$@UPQMcJrAR>F+v@vLTBQ|XCk$r_ z>SJIkD7I5dz?8tt3cg&#Mz&4n`Dq4G!mhV@6`SzD39GKawh4tjXVB>+>*2Dr8uVBu za*x2=h6Q791U_hikr?ouT_pg+yokG$w9#;Y<)9dYMzAJ9>3SFB|HzFGkDTA ztp-8@AP~W;>a^f`&ba=R!5Nrd$aPGnSH|gE^)ifnW&HY|6JGzf1*gvon1Sswg9{;@ z3mzU9oF7)ap3d0*?+2W|w8R5#XuygEc$c$8Z>P5=2A3D^f?XZGJ@iBG5)57f)}Do} z3D!-=!MX0$OtoqAv`^_5>of8ISJ*26aO`F=g7|wKF`#_}(zX1FQxi}I)Gvy`r~u+4 zz1`K?fo3NowcXzDd}sn&vLb+S5jG4!-%gzcoY$;Eh(>YOz*1TPu8y=p-Cf?2`)L+g>Z$Xcu+Qo$LPwo~vj-cAmLIm!+-sAzK+qHEG z&F=NK&oDJDEikuETXtT1HXigEo*%4C@xTT?YS90QaqGtY5BA=!S(5C!4qN-2%&fZi zcF%A)_#i2TN&7EO^1QxrgO z_#prT%%J<;TUD8P&i2FpIQwMP?U^xW7*toEi0)gJm6?^5c|P{qd+oI&m;lWIgmyFot50-6>GfGPk6D>=e0;2`SPI{Ad#%IcLP zvM7sy^R)ILopm7gWh4wpqYWUte+l4KL8P(*Izf~~0BmrCK^C9shWYS$mPPoFp>-bc zi(cTQf=jZfGEEMm0F+6=6-}Kt!A0S` zzv(zgtJ->6mzg7&pMdhyE1o|)Vx9-Ae|Cqw5cqk;{`(W^$XLH|!2YL>cziEm|AE|_ z-Ahrm-o0R)-i8};lCwo9lU6kVNi_pAme`EO)Y8LK(kcd3YFeX!YHCImAdw-x|1>Y{ z-i`x!l$t+87eFK+hH_2-Wf=`-G;f}**RPM!^lNQrD&7~?fTRu%by`u*(y?+D)puhn zq>z-VhA-s-wA;zJIG%vh30M_0?k4a!fDQ~^gznMRmNti_8F7m~D`lHlUrRG7@CD+; zoQg&3Byv8z5D_=~eajtT{_=unZ^@Y8@7`fpf%&Hk@}Ezbr#*)+z^*k1meT&0MCr*-SD|n`Vx&tn$p5 zUbM1n0C0RK;qko{`?pV6<^kisyFq5)^u>bw{Sn9g4%2%NxP5lQ{W}?aFW#=S$ofMC zE~;qn9fTCIf06|xpxa8U(X6*xBj_ATk;2Ln>Thcfl-e8}MDFB!k^$m#imk`Nxnld% zCVBTw>usNnK%wW4C;N-`{4SJW>qOz~crD@D1OR0}&Jx`4^2LA$?xGl+II84Oi=Mk` zI^d<5O=G7HXaaGA+BR&l^;Wh303ZNKL_t)})^@#R2ONIBVEm~g)_K70-|sQ%m`ES) zak!nZ|CtBe-kxy3B;aJVZRLDPHBJD-H0bb-TwITDVg&u7IHCh^1P~6H$6c=h{k>E? z^-6@7Qd@VoE#keufxzGE574(Nt{1>JmFgZZ-hge{fx7n+8J5XQN=aQqHXuFFqd6|z%o53B4(jg# zNTjxa(2(0CSE>kH)vC^^HueLNQFVV7@_Jj79Qrw`Ux_BwVlQ zK~#P7Nrbc39bw9Z;iysX1k_O`^#pwlb3~;u$P+jxBo>uz3`u-ZHql#OPDvu+9kZu; z-=(#PK^vom20)6cwr|CnD$6s~v;|inPXj!S!D!ak7Ew3$0U%D1VZ1!I%nO)j0eE)r z^}cZtAVMlY1}G3r34GKj@O}?hbGP%yxo9i?1jv3{?>^v>^hk4T>jaSIis4w1R%jGa zM1OWK3+87D`6TC=-zJRDWK8gP?y!F4g#YSW{}2Ao{)hPY$1mc4{QYl(zVi(H%P%lI zUogKd0R85N()V{isUk*~3Hem9dr`reke1rS-eR=Ex@7}InC>Pm(u#hwYAL}NyElebZ3UqsY~m>RGadB zaE$nQb&aOAfJbUZZ)Cn@LMKRO+XkH*Ss4|H{Q24II?4Mw5U3=#Ly$D8UH~3s9;a0t zzw=!}R_E8@i-i2PEE?m#yTS3j8UN+Ce-FR7{}KN5_%8nGzx{PAe|CrbwU-$078EV} zHr|WPGn|_3o)%zyWEa_Wa9+Zg;0Df37>%96kK_^4(;^^=m5OL zn$fJzC==Q_BH|3dB1-=Qa8H#-lGo}q6abCF>v^^fSj5NZC8Tt_D=Tg>rv>ClqvZ_wotfyZvL-ZxjBH|KZnhTr!4f#d;?L zDj#G*NQ*?op}8lm#xj%!9h?LJsFH&wnVj^G=B3O3+{%@NJTU;Eq+raV;+~VG5mm}U zm)83$-bDK@1$#ytH5JpXgT*OuY9w5<@s+b0u%j5s7Qs+;WnPwkQ3nLb)uNzY@1-3V z=O7>=^dqT3Qd7YeQgo9ne*Qqa4FzrZ2&KVH~^p|boHFU zv(=`_pxaw9dXJ}8#z;RyDZpu#hP}VMr-Xb+NXHdOl4>#D zXXLq}?1bu`ZA@gsq?HHO8^$nH9FHTO{{`Vc`!D_g|MgG*?|5%m@c!+H_17|f_y79) zc=-z>#<5_%lWWK`W4TMnb3s~?)We+;b|0>&yCl^6Dh3hfgtC)4B(0j-vD7vXr{=Kb zlv-YLY^ADWO6TmXl$2%l=R(sYk@kb!e_mG5eg~Q+z5mrgBWbDvuM4;&p}T8IJeo$W zfWY9x5%qAm>M=pn1loyx;0}wTps#A00kBDb5~nT=gY;p4ZW)+H@56+~JmE--=YH+6 za;`ii)G@azNJ&9E6r2nR#Q?fR18bY7lhzzxZbhkD^mR1vR@b5RIU^4R^J&0aKLGyW zKly`hoj84S!2kB&{|1gfD`R5O(rRfIdne8IeGtHYVE=9d=N?5wbFQTl^2@2MgT|h8 za2}m>Oj_lk^-p);8e1VHpy+*Gi>wl$DCImy-ub0XT>JPpk`f10&S;T2O&hT$Af zMCSgKSS#^<47Jx?ty3)<>*3Bb0XCFBxEmGe@ctzs!D*dEs>u zttk>8uh8A~C#`pkVJujejQu0wKmWUbg#Ye~{|nyBC%k{R!}2Q`|N3A4I*#v57{-Fd zbak`@p#&8}fMu0)rvmNQ;dg86svd9y^&SK=(yXyd09YExHUQY^Hy9gt-8?t5P2;g< z=SHV-WK7sn<@WPu%Q$(x0eYk==C%O%!`tRK#ebI;2{&6~tY_fO=M_BMM179~$$R4Cw3Fz=nW0x1sq3e=jgE*WWHeD&r>crTyuv%@n0 z_xRfF2l&_TR&XWc%vdM6#ySFC;z|K{9pO1CHA~deZ?R1(R+5zUhbp*g!WWRmM7?tz z#o5M*-5(M#e>M=j^9N&&8L=+9|Go75f`AMG;-SA%syivo5TjTZF3!e*?glhkFK|9_ zZJZ!%xwEx4;{ahinT|kr%O!n*Ytr2D3Wk#jHfY<`nDh`)cMxJHS zNps&9>YTCOF}}M05x$aVd?`Oe;d^}j<^%kzuQ0eIUW9b;y#pP8#KA0w|N(wA+PTS5YF3wCjA8lTh7>T7F^GXvZ+f z0#?E~fCgyd^8*B&kE6NOBtmkfjw>2Q0VC7YZD$o~lXQUE_EFFdpizB;F-18G*sl#p ziW6m!aaCC&@7uX5FkD2Zz{UldvB0c-Nxv^ROXZ>^a-LQxC&d}S41LJW*@OfTG3uOg z_!8r*Hy?Ck;;T0w;Gch4KBsAI^S!aabZz2E#(@EUpDQZBJIRUHx9uKnf49x^Hm}5a zycFs8LEH_cf?0JMat7Vr$e`0_!s{wyWDxHJ7X^*ZHhBVI{t6ly zptf~Fw=>p{T_>E{9`kQgYH2!XtQC$_dHaqy=W9SjqJ`}*auC_odeC)hU?iy?5bIbm z0j;tl0q`WkSal+-dZs!s#>C(?;qfbsuW!c0*Ka<+zq*q#fzkNu!q{r-1nb-{>@Fs$ znJ)R}0l@1$HHy32MH$XOv31eGxliLPwpG+u@`$0X=biWN(gW`LH_wX^{C1#ac4>WMj8D7%Qf_fGu zubPX_1k?ddyp6D`L2-G0#FiLc)L2z6l8B_j{jZThsR19nAQqpG|& zeXdlR21Cp=YxMPSkL|q%0V6P%WAt+iyy|<`ZwSxEf1ENHoXK@*{fW;e;Ed*U;Lin1 zyxsuaZlvbekZpU)8@{DB0Piu5K$;1q5GXNrKT7!S;}`I~XEy-u@qXFidxv+CRzgz6 zUi&RoK?w~}K@#8r?&+#ZEskDbKqrvsY~bL0AOaCP2={xZ3h!1souPGnljJ2kZ8JWX zrx>`K#p#TGRI5ha(Q>1&v~ek*dC_$LuuyL)w`$aOHG&I3w6+Bs0M->W>w{6|iBXFD zjDgbEyv|Llfh}^*6(v(QDJNpdrG+}9)^?7>aHZVg2rPF38uHAjCwR^0wCI?~6}Nv$ z_|D-Ac>mcBnI7<$Wy1H4?_zi$l&Lq|%T5-+GNI*bC7`IFiix0HER~!HH77{b0~JtA z1V-|FDR(qQ&xI^TNeOL>-6o+YzTg|9VI2uL*bbZU{K zrvO}KrM0UHJ1KBnS5O+gpYyr`kBaIj$+<1?W*iVTnqEh3Y|qfu*a3;8 zSszS%$#>C+ZxcLEL{YDXob7WH4xX`0}I_cOlVaj45S1g!dCesb$ynW-~hao$7_to zQ2j%U;iO`THg9TrM9jGj+BO#FsG|b+EYWg_z)2q#hLu#YX-rAIw5ectIA15ebNB*o z|B~?H7b|KdB#jadM_>g@rJF(ewxmU|(CZg&K%C*n*>;2oI_tfp%Dyf-cn@R3?NSp{ zjO&Fl6k-IhRu4@0n24a?#twzG9O97iJ3B8Ig*30KZN+u1UD_7sa{w-$9PNcrWhzF` z9fU`49wPFsmbs!1-yc3VpE(4S+Fr97;vh5`Zn^nNnsd;Eo zSr~l+3{(Nfa(wtcwU--&54qfAJChq;MsMm2B0Jrp-q|d#V<#UT2=hE(+^tye7{Bv- zzl!wt7{7e?AMoA77x6oP{LA3y70+&F%=6Ib_=AG*0pdJZn}^MEMv`66w%LTBRC@t` zn+byYpW*k^yk2%4<{@8O&PY24^#d=bGaw^ELpB&UQ61iFzs6RIfDw%{b@W=NKr2-` zD)U99ihRt<`d}?7C0{kZNH{JT(|*O_XBfZzd*8zN_bR@A^F#dU@m>7ZAAJ+) z3l%pvGft<$4JcE*t|Q5LRq$lJ(FNB8e~8q`4WW zm^%SE9u-KeMU32d4x_0X{c*^lG!-PWZgkPLr68cL@}AXTdsR8g*S#^LK0bmpUpY3* zFXvJlFb5>sIt((N=2`Yrsx;4w(5-U@-Rwc*C@BOX1q6dAR#UCO76;ba@=a3%$C6GW zW5mV;6>>T`5}{5B^YaY4P1yfv6=&`wRCp>Z;-8RpVp%fw`vnj0F@Ez8zJ=lM7SBQd z%|HA#3_r)%?-$Ic0mDI#E0a|7FctT-0{K)izcru^z;MXOYXvePtrhts*O}%bzsdTm z{hq+G>6}m2f5$8$aZ0guAhFvCCH;658he=6o#mjSa5M~Xtpxxy4o$^?a&o~r zUKeZ)xvOfmHqC`NCd_skr1Aj(*@seNlUNC_oEjb2<`|2l54m5vm8Q-^Qow5cKXoh- zn@8O~qG+e6?PS{&oYz69?8Fk~wzY$5i!=gaOO-WYzh7|tLd8G(!*62ut<`hTfBW}; z4f`(v({9Bw513xcMdi5yOp^X_L&z&IK31$ZNvOqKRht3w<@#GpZC+BCY+g`CSy&ex zm^+Ik`Ph+YyD@9B*gw$95HYf=&&B3^7lMn-lw?eZkSaA7cU)a7!^)dIhlMZLP61QI zNG#CC466kkol+H$lB*%rBedvz^1zvac8i#YG2j&Tgfm;+oKr{=S?3|(3kZXRDmB0k z0EJLW!v1E)%eQv;7ys|CU`z#HyZIshYXAFM7=r(w@V8?nKxzg-6d$N4I?f#z6*`+fWd*`3G6 zXQfIMAQ}u76|n25RfKz-%A35CSOlFDgI4Vgg;8^sC>_s>^*-_H5Qn}U=-GjMu0T8uVd+G#E2A(Ss5bE8CE7w92nu@)M#X>5_Ty7 zl5dm6L_KZ#`~kr0NMGA{0L~l|TzUaMq4`b%#F>HPNh0Ejyi}Jtye#h-07xU)n8rq% zUsXh;`@$yxpg$|U4x9Hj&SUuu?wFLQVZw4F0A{>TB80V1IK3?baaR9%`U!A&Ibwe^ zBYpiI`Mb~XKfnKISrL^EYizh# zd{->D&j?PxjzHX^>at%0=OUCPRQ8%hxD60ilrgxBjhIh_^^J&9Z+mA2u8^ZyFxrwjg~7A_wOqL z(p^-}K{>nW;=vI62Q-024OV(Rb-y>%cDDO!(e$|X0C3^(kfzWJ*)g76yFa6LT>$-( zYGp^a4dC2CTm$buv1(p5F-r+Bd(hf3C_y8^{lv&h+l>{HycC&s9LrtzQVBrFGgqLZ zLOVihXOz9{KRhyY z^)cCiPYtY-Z=+@)+Teox{3of_87Mv$MV^6j1bBv4DrFM;A-^*P(NX`UysE<~k(j&pMu4ub%e)2RV#qr7_>M^8I6#|vx3mTC}By!3oM+V!Sg zY+T!92f$Nkcr*6{m*=OLRuxOJF$*9Cnh~8+FtE{pxSig>c@B!zgW5`#qif(KLn-aj zk6D33O#8?mj(FVdaQp0p^wpO*9wzW9~;P{grZr>lU|4H02{*sAL03e`jt=?bepH1t!+Dw`-l+E{=0H;BV1% zbzq4)e>iV^e%ojJrb)9v-lg^l9Nf0R2*n5x#Bo+y<3-Wb}!OAw~iu6g)7IP+6mBfCjI+XfaxyaQ_-eezxUq zBa*<~gQZ}kGWb#Ikte0i8YP{RP+ut6HBVN`<6J*vXu6m5T9F-Vj9o>zRL0?v~GJk(mTF$O;HTzZ1%- zjv>`P;3;|eva%g5r>~o zptom?`xT@eb(sgOhXMJ+0mDOTf+|(UQ`s|8Y584Jcb)xrR2W#d4ll1s!-%dwL6W1$ zL`dookwsYN7uK9awh9IW6q2+W2N#<~B7%0Cw?f}%Gvc;&&s{XJ=@49P9{MH62Oy5A zn4izJseae0;%_!@)pH6csW_aD3EJ;Ocxx5fD9;Nl)dRp8y*@f<>^+mDJd_(bX59Z0pmC#)c|W2Ov@pN8m(ldv{Q3rPyi#WAjX|thv)JIzO2D`yTu7 zM#*}+4pUL*p$Tq{xm$xg66R6H@ZBB|(cNa37}f6epY(kU2vW0EYz;8s zLO%w*ZExr0954s~5F?!k^+!A0Kg$^RD~73nhl*Mg$|)ng7;yJj2{%9BfLnmF(|{jK zU(btto>qBnw*FQ>f&$Gwip51C?g-rNI7D!6_up(PD^<7+(nj!Y_Eo?S9Uj@XsFm_Y z#r?0*wgam3q_8glUK(l(@a*2_e$aFg+lmgPGmG&H09-hXA6*~{Hv`9WQ^R7R5$IgR zaAuN)zy?|(pgc-GtknIKi%cZO)b2w@J|>*r*-dYs*asgqCRa(k*w*R9@|wC^hTJ=<6Bi(TT6LXX!Q15%dMjNwl_!uVzBo zC5$iiGz9E^d_tZ_nbaREhDXNoTmXbQtw16mxBG~Z=Zw=kd#ra19%TVYC&Dl+zGy95=IWtsBsK+{)PD}3O`gmhZzHQ zKcgXF(QxhK3_b_vfIC|Ba$6qywKWokhOkFcpJxt81iY?Jb*8KoX+U$z%eiBNNI-m4 z4>YxFBB2Na=Mky+*C>-78K&m62?ksp3F~b_K8fManJ}nhinZV7ll1@f7M>%>Nermr zfso!Gu|6Acysh5<^C4k>FFCtq*C>mY&kF+5Nx%pv!f;^ZqtspJfxs+d)j(5A@jzQN ztnZG4q;S~1i2d10K*i5flKV*n%6g6x93){*qgu5ff>NxR}l*pyo7GFku(Xq9TTac1NrA$@;D-3?OZh5(ug!vkUW5y={J3yhCC1~X&1lh?zM zF&rvVshB=mk&i2^*11*w@EA;O;GAM^Y^mU!-Oiy>dp)1XLa_H?4x;FEx3V4`FtPEW zb6Q0M=1*P`T?(rj!zpn-P>@xfO2 zeavLz_BrVg?y7QF`89jQYQv-x0jCjV7zM;LkWLBvmxSF%T2fFMDF9S}QRe%6l5r8M z8N~YLC76>`+PQu{001BWNkl0I0MRw%#~k210X4P8tK%?`1svo}Hm zNQ9<-UKzuwaX!2wGP#J`aAF@&`wxM6kp;=ce@^0&T5n~+8t;KL6Y7{zM;Sz>sz`-; z>J)2qa3=Sx#maAf?KXH|pal(tUz)p~n9pQE51{O?Gw*Mybh7cUal+TEUA#Z9-j`hs zb~`3&+oqG4Q>aW~vsTa=a?;Hqvk_KtxE3T}$nJexFw<=0s~S@Gcp9k;>TR-Wo6$N80cx7g@Zt zln89Cx3X?X>W4(vrx!A|$|Q7mK#en&TwElH91f4!^K#|;Ax4)8kwU;a5-=Pj*VeR2 z(kkqbk~45Dehw3f%SY8bFcC_NW~AiWA@=*vM0@P_GfNF;b2xbpGtP}zbHo}*_cey) zxmsX6DMJP7jPWnMQYvqZ*aB_-h@kG$eX+E_S2=1gIcp1pP=gp;11x|74Es(4=gLlu z(Q^QvVv(#WSkiw=Yd3I0tPUp<@z2PZa-m!R`H?W(Cl|D`hb0JIX)LQSkX$vQL~8jG=vf+41tjPXI)Rnb8JILJ;3F3%#>58%Mu%cQX$ zX6Yjv;2cX6dNjO*XW)2-`!Vr~=y`u5H|vtytDldv>WVokZ`zyoroCxz+MD*Ky=iaS zoA#!?X>Zz__P3|K-Vt{$%1(F*?KS z%D=;hkMfoCPV&*$3d*X^I}RA`CBnYk4WPof`$56sr!&@Dy~K%-l(&OV$(Ue4ibTv^#fSLB}Y4IW1^WMB)}{WJ&p;Rrd27bQWs+ z_#i?*Wz;dl5VhV_B6VCf|MsLpT7^+}gOru36{gfJYlP z1D2(ao&${mq|YJte$y4W_Il6ECg4=y3=?bdwF~}*2y7Sienr?XvKLwCr^uU#B8B-{ z-=9a+)izRH5E1iis_s_%xv8j!C_3Q6i2x)8unKKm>?Vyo>r_cBG+wH3S~~y?kHG$; zg0wKoE@P-GP)V3wTE&EzF}$3SPBM05X;Ifa^5~!RYl@{AJ!;-ps5wiqsU^_mzm}qR5gz}zZmDoJC#SxokQS5%3Y`he8Hx|kHiQ+zbY0d`Y zmKMVOJ|0D{#tmvm3p?ww^a#Yk~Ly{w3EYg%Oy=$bQ+v$Z+Ie9{pf0( z#~W1I`e1l1M$Vm`_2m0L`tIKwZL94Xbct=U-ToQ2>j3D$C#R>_Knjg2&IdvS^FR;M zS<8di`zWLaGv*mqc8TmO?STWsKoYW{;Zms;9 zY+z8Bi7KD*R9iY4&L2EdjoeCe2L2j|+X zRM%Ovg(r$$czLekh4S9+O`gdqytWWQbI)Um zkM4dzKugk8W(sw0?Y@vM7~<3l<=L#{NtdD{MnbqN=pSXqngNO zk=JI7m7O}MRz^NHt%S0N8%JrCvEVdHTQBqy$__pThocx{brh;^J~HwGaUh#fsgCEg zwA|TpH>mK>BDC``A2$)7+J3*^N;QUKuD_KW1e%j+d%JC(({W()hR}e+b1dh_vX!Dr zy~F03TGzKXeg9LQNKO&y)hYDrxMtYv)WG$t0e<@@fLu4TI8194o()S+&CojNI;ZP# zWnvYV6AG_WYnA#=tBjR8h{&P^9L9V0y65F>s2+p-Hev?N)y0G9w0Pexca!*s?~gu* zldXqUE1ztY+C$^6HZ#sB?49#9(W{-YoAl3UBgEHN4bEc=)OA!o*Qa__d(t@@PXAfl z=M49&@d_vx6IZi??lb>~5zd9`%d3J+qK<2J48tXgF}l^r?29v=jtTl#HYfKk(( zBoNqW>dC|o0k06{O70dwwei6~6oZRpt{seTv=q+3c?99{*zNZ1>)1Z$bdT2>pr08} zvM~&(5EcBGfnZYmU3&_o6M0TLhXtYKUNEe@l6)i-GKAX(}Pj)i04sK^hXQ zwrpCYrtNZ@Fg;X^DhyO}Lb)NyO-!6Ct8fSn-~Ud6&mfwiwpiw~1g!M+Rr?RXQ8buVfYINX)2Vflu`4sBYW}r?XdPr>ym{6$Q5vt9x zl~0gd^GSBi$F`;<6H-(oux3J46?aagxw&G@vikHGspZU=i~* z(c5$?NJ|kX@=|~Vl;=WYsbi9gB&)GZ)JYYc*Zv#gm`EaE81u?2i zx)YBULLE^1EmRaK7y!4QoW(Ir+WR#xc5R4zFB*D6WzU_me*CbMoK+)xSlBfWY>C)&MU6q`U=BS!HAEEae&aP z^|NiMFQ_3q47&f=)p|BDP$_-4x!)9&uI>GpyUzhND75dET?ztjLUoT3!+erbfpsSU z#(?&40IEgK-gJ%4wuIgEg>chr7Dn@-(u>$Mi)k6aLTf6 zVYx>+X~gh?^JzDMO+CL>q5g*GBG>ArAZd}(c$5<;4**7`!UuK`v)8hZVBEm^wMNbX z=vtay9WAxeYB>YLg*kuQY)%`pfbo?2ssyjXA_;A--q73q^xWP{6g)Ucbxat&H?6JD zTRApBollE0suEmej-cmYxG+|l*{g(@NERSqeR!-g&NWI{_L{1tly(ootPDD?Ev?cR zBt-6%@-Y#?w6fZ07=Ya*`6>AtfB!}{{-Dwm; z7z-uMENbm1_Rq^s9acIf$ONG|e9v0@>n=cEYN%2ZKdXJjJOmV?_?xplNmJKsCxZ)@ zfO&i-W)4Iw@d{e|=TV;awFl_2UCf=a3D0P^8!8rEidqF)qJwigSNuE}#c zin*3YGs9)B$T~8N&W^(1{U{*)Sj6*`30Nzpm$JB&iMnz&wvb4P4st`xC@;2XZ3iAH z0I^6&1n@E99dl+ql4$>c=BfU;=R(0aGDk&fc#U;cY|kwW1Ow^z9QeXM7r#^o@s)z~ zE*JSi4Pc36>Gqs9wDc+UUqG)t~VKVN*E3Ww5UN@8Pm%OVsToT(d5d#vy6u>?>4kci=i)GLCHGS ze>T8l`vP!)S6QK@DA!K+p#Noh_wl_-2DY=ejTtNZ2(c&#a==5H0&L;p6g=#6C zWBMYg$eL9~`OMY;%L`6(m7H6WFW}t(9usJ;$W|L&DZyN8uhKhYnHz?z4nKVs=FkJW z8pLeTL=s1dTtEip(xT>8!~VKc&7W*%;CwqKVs5R05?d33%6M0iV94M>Rr`ZY#o06# z@Z|FCpTod4b&gc3>_EE)%R^H7LO+JQ&L^~}VH}<{*fc;l9?~Kso zWnB`8E6RSrdXtgo3f$|hP-bL0E}+xw_9E{l@XZ98S8+h;{Q=NB0a@+V-PG1+W^rl* z!7hzVHwEC#T2gWVN(HG6z`*5{s7odGt`wvL=xm=?wwT883ZVTmeT?(U zE-Qlh5Jd1XLI#{0P5|Ik_oO}`uA8|Yy^ZgG&2c+xO>@;MvGs+L1p209#qc0=zn4qP zf>%8EJV7GnP)Dw%gjAOKLRnS5CJ?pKgnk3`vsb2>ZLtD+r`RQygYC1~_Icxns{rUR z-}Xswu#3|uAlM338Q`|}o;SAvH(KV#DRoN2)dN9Xyyr6k*b(ZKgvx$cr2|tFGNB=L zMhXwIe=0>50L}T!2N_XbZf6oBsg7_joO{PIB>F-90M$$M_pyYUd!Atfp51Vh`_PUB z0aYjO+|fqt_)VuK0z>N}R&IGI>SZIoKxF~^zLG_uB8|m8UVMIB_tn?8$asBUSG~vB#0-b?-af*a(wE}Bt&&2Ncki`(6M$nMK zY3)lWwG#p)yc??m+g8udNPxt-|`)=8Rjjes1YVwE_!+YQmY3yL}I+ zSXxMRBJFHLLN!+5D{NmALbQJD!m}KmrQCuKY<5t~Yh@yLPH_MgNbNO4=JBM!!{&V6 z0bE3c(O4yU7Uyq1aRcWo1DcA$0|8badaX#0a$q{nZb$OX4(mI&s8h!9@`U^Xt&f*- z29#-3hxoFB=UM9Q#k``%q@@YHg>uRzKBP%QXYSnhoh5 zm%zH)w?*EtI(vlqN~i>E878h{mCyv{Nax<}TEh4MlnuxthHB@k@iVw>@83ra{2Mq= zE1X>gWsi`GDrWEJHYRE-KdWv>9^ z>#(TZ6w48Y=W|9~kK49_jN89|L+vU6de<&_N4E5Zl;CRAwts5-kpXt?)mznR(sM{o zESiUhRPo)weI}r)n9r0j6h=OXC z4JaoBAObXy9ld1s7Z7@FjH-laqWv>USOettuPHKKQjoNTGhU0+S*#Xxd|p5kf(ZY* zb67sE9e0I`O4mAXW7S2zO#{5F4Wt9$wYG&m2+f$&%h(~z43}Zo<{-x+jMFH9#DG8G z&x6cJC5NQ)Yfj{$WG`wP?oI(3t+YlAN0Wo6DX=N=^fj#%Lh$G5?x6y$OWac8Qs65E> z64xIy0&NXSLKWm20kl^C+#R_}n*}8LkXCV2)uGL+Or*kDfK9-%9tlwQC}Mp43T}+v zZbRInhfP3B&zIpT92PYfV>R|YF)G))LF%l_uhKNYgDiDCM5T-%K#Igzyf!%I% zL@j+Ek2$z?73a!!t@r0gFdnEs$D;F~rGZ>o>%|WP3jsK%KbIoTT4OM5^Uve_v=(8R zRJf*soP%K+KCJU!jFzzmE+W8@Y6W8ZxKg!^iArv_QK2RnN3FK9q?*WKro)3I^LdP_ zcRou6JY2}mcpKIq`Bb83Igyx?oEj)h2f_qj;> zq=ECCf>Tw%IuLAXN7ed=+uYs>y@mOCE9`95lqj{n?fN>@{`p8V+z{+_->&|CPXS!o zm=Fh++Wjhw>&`L=izFWuNXPRAuw2J1DO`pl)Rr-k-FPoKtev!!9-JFCcnWk!w$`O} z;sQ8-Qf&D%YOnVwQyPwW1S#hA0q0a6=0=&b_huwTO3&tj2t~>!unH9Ou=V@1}RQE^~L;Ic8!{J3~qI8fx{W~G*Nl-@AWe40jaV8uyq3sU@mbI<2BQru$>I%&?h zGfZj~P;Site9jG+nAlr1;5OjGBa(m!)36#LL+-#n-R>nawyb*Y3OdY4^B(KnfU+Nu zhAh#tp-)2rk(6(`CoH!DTuRPoMw|;97Dk>WWrUX&>Ei@ZuLiKyW9YUS5Q*!v8EO_S z?-o$eZ1sV&^e~4$xFDd6QNauyW=w zR`8w}tkp;WAkB<4n-fFV$uWz8Wn(30xhK4~HCg{j&$s8diHauy@22EV3LZH`-_IOU zPMe>vn)=>KtO1ykYQ5-ZTfrG)SlJvMgAz}bpE9cHg{Y!wb2y;TiUfWr!}ScjT0x|~ zwhMJz1PcJ>*3S_fS3qY2k?!9|EZb*B=S^i}x5V*~fnq>pVdO(WKK4#*0CLY3>7RAV zl7@9ENRM*^<3k39oj40mvmeLfAZ(H<%n(nn;nbc%On)+4bYlYmxLC=+f4e?kuB#t^ zb&lMv-4j#!V&l*cZCs?-ccmiB*)gB;eo8fuew(vhQv=~!yWH*e%A(XBnS;7d%VQ14 zp$Ggen86Or%{lC4(l|J*bd9ocoaTx&7o@rLz}dc9Y49fgo98N}2}?UCXVvp5&HikW z^}rU1;QUfFd<)#SjA^?K+kS8ReNHJKuQxykI)D}8*)8)X7ss^k~dDrMAOKooocrTA%B9MEV>6`Bka(rE?NjIx&~dbRx82$X@K za;gAeRolMW0@Vg40obm${XJ2GP9rf<)xFy<8gyX+jWl05UvngwV9QxawQkXCgZ;^N zDSEy+e*5|w!TGi^a}$uk`6A8Hh>eT7Ej+PKDpB`dcT~_WsT#bN4lwfV9(=b4ofgoG z2g%2MJYx892I_4)2a!b3AbpxjaicDs3Pu3S?SQ%?)Q*ae0GQEoby>i&j|ZaW4c_42 zSX$8Y#Tgzs7e`bm^>GP57sjCAya8`QwcN53knO&N;qM|W?r`!4hi&s{P;^{y!E}XOG+Y|D`BGK~gz03);()l_8piAFK5YVp5?#!m$pvT4M z8O}p7(hi(Q8Ly>T3X>Vu^;`k`OwVWQ0DlUcd*A~AsTM~jH*yV}d& zJ1*wx>U^EhQaZYlZ^7(~LZ5E?Fq{DxsqPg(-mn5|CMg+TTLdv5M8(~&H8I$nfXtq2 zo=*Z;^8E?)@=?~qaRlGpfX4yp;Q$;p)hnjW*xX^`#Ui&)wV*%KoYS?XbpZNW*K^aH ziN}AMl47q*iy+;CaoheK19{tZJD)qF9I!`_&Sp3F&Ze!9tfcdW&nxTPPn`yoKRSZ+ zbw3Hqi2_KMYkK+?G=?FEpq+e|y~IpQB-La31etr~JO#fwGFzm{aU< z1f?YBvWaZS;eH;W_P{jR zQX^AgXOcwW!_M$CjKYlJSdc{{$LscJ*F+YISM|{IHzp-F z2ku;3q~3tE{cga8A5p7luFQ+1a2OqZ$f&nF0e7d|=BeXR#)LW1_xmQ&S}XYR06rYL zXnEI+J!K$<5@=K>t);H{amCpr!q%+di=L1xYIg5qDca3HdG6;g@&~926h^y_pEoCoi zmB@7({$NjiN^_&NTQHMjN{pqn){6Xa5`18GpgC6uO(XUn1Yll7%SC~@W3xmehPbTf zIq6RYBra|LI6LVxwxg~Kpl=1Swrxv+j=6wO)l7HeEGaNwdJjzObn}X2v@QTfNdy2o zt)LV{Q>>g#ZeAg-%~0g3oxDmXEmM-{p)C*u^`?;y)_uS;7qMray3cv z%rePB9O-Zh_M$Ot+bL(@W)HgAgNH1ojvgMt$D`!Z8O>Dl-sx~cvJz63pQ|)UI!bL= zR|d8TJyIfr*OID$bgBt7z=aYGjI)l3ya2V5FL3Uws*KKI?PG%a=*f0r3b|F(^>-UP zw!pG~pWnC2{dfTYW)W1WO>C%6V$e|{Bvxk5R$swhhB~z_PG&WwZEiB7x-z_u^tHBa zo+Z#2BG$rv6N8|(zGr0xjj>>TGiRX%4+D5Ng7-UdF0B=Gn#EXH*4DqZ-=}$%eDWj) zKXFsIrlNFkd#_`H?KiN3;4Ib_DUFd#>m-zw^50rT%=1zi9Y3e_Yx~^BjWS4tErpKS zxIG6D=H=k@twVD4bsM8pDrl*#yyIGcQ)yyaH$>jV(Ff$L}!DLCg8)@=v&vQ~2vAzj{O-494>b&*_iyt;#C zWf!0Vq(9nYwx}Uz1tXE=W&PCVc2n$U0A}7LJvKODQ{k505bdAZ{+bR$t1)e$U4-H! zdakJ`;TC!29}~@rK*iMDM^RVDJPXh(MN$^$rA7Yd1@$z$ZA$w+_;xQ&?Rk-)&pfyC zn%0UWA5+dUN0Ft0YVe}24X}qfF_s>rs7Z5$?UfXNT?2SyS6M($DpU}>Y;YJGrsQsp z9*eH0!VVXVjg;1)EfpUHGpLd{q7u|d3D1#&y`ghHIle&8CbZqm?l-1j1n8xW2cx$) zW|nx&j7gH_>N-JwucGZ^x#*>MuDPW-d1|CZ$=51DkEMk3Re%E{bjV&cg4U{)LF&1% zTujmIDi$fGh-C|7`<%r?UvGeZN${ehHL2&YsDZOJ&|Xz9+o*C?^U1XY0M;T4kk)FY zW%cvW;e<3V!8kUfPkVC^SaHz=&BK5iXRNA@o}Z;<$O z7ah2sYqA|spTvWC4K2`qTBKa>YN-H96Pbz4jI&ZCUmR$;x}%EKlma{+ygn;03;1vZ z?RKC$p{(=q=n*P@d5?6OrBqCy8S$uPtU@khm!6VICS9AalP)q$+6RC%%l1{3e(ONp z!XoF@uQUTnJZ*y~?riLqkj_S_qy2(K^nsjq?_?QTh zMK716S`IWXl52i5$uUdo+v&K(@Z~-DNW-Hopm~1Wc8Y9~LpXq87$9N_7-w(Bla-FGxcM zmn6>Zd67AXNSq)5kVauS7~sI>Srwh<9GJItnMfUYR}4bDnQfGE%U2F`PqKR$qlako zU`KOzg?1L8cml{6QH8-{0*|?sHM40>fo|<+@Hh)PbYlYSkw{bn(A+yVb$@1{4&i#i z=onHPkZxk194u(bzf~1?uS5gC*2ai}Mg;ZbAy2krZLZp%*Mjtu2VsaTOY4(2d!$JQ zGQWHYetZN+gB>Dsq*29^bNUS!>mwx~MYyR|av>maVq((d2e}4Gvrz8{Ec)ZC9pFS|w$ytE5E)w&2ga zfKH1#vXiV2F@PGKhW_kod#1`bJgaK(H^{1by#e~R1tB1RA72;v&1djAV2>?MV(Z!j zRE7+`*`e;G6cojr+ab62>S3l;a~&f^p87#=z??O2vE?oTRznd$Ul*6)lYXOphmLNb z2D*@0Uk!$qe}^5)o4*wvDe0(R8{iVbc`FeGzfR5sWRmD7AdwSBQ*giJATj!G35#3= z=fSAn9^dDXTrU`j&7F;=ao>!ONw?dn-h3nTkD=I#%o!zzGtpSRKa zcBAIP`?H@VjER;zW}gMMQ9sre*mENe0C*r#{#9>vI*OPIOduEl}?YdgL^PMP*KZp=--rz^*0tyXYUZ1?e?`wT;`c5P_|taHE8?RXqe-?~A$oj|2Z z&Z*Tn&!lXuDj+?H7-&pa0t_H*j6?0yoj9CsZ`un@MA098?dRk(9R=#w2BG$bz8>f4 z&GDv~ZJ(I{qBWoAiCSITO`oj$0p(VlcmomW#Utq9AYZekEIJrT8Xc^nl+6lmqP{?E zmz2BY-ZwLBvwC|TYnw=5#8}7BObusWv`_s53Oq)79)0)4sBCz#x!2 zro0bB#*CL!vjCkz1G9nbJmzGxZKaKgjzJjS1MvCXoK@X@@v*0YMh)0S@a_()_%Bv< zC~JTJ&0)Bkz_+ae3q2k|kH>JI!x*!5!lLHus*&>G901NS!rA-Hv;GX*^;%+Y+MD*K zy=iaSoA#!?X>Zz__NKjQZ`zyox2V1T5%lO~kwnwWo-d+JJ`Q`X4gkruisdRSZ*3gK zD;6o$r3yta(nQ(W z&O(o`ol93d%6==-x#PzpDACg#-k;TjM)=IU%kEL*7Ci^f>YGv`rC6RTup7;nm_*>` z(lY~^hwbB9jLckfL`0jbw3g;6jov{Qd`n3p=SB&QxoN>8DazIfbaNw7M5U3+YsoK^ zQf;MqFW-755yBVuLLc7m z)5$E7;{U}P)wacmO85D8JZwKl+b3=}T5=+Q=JuIK*WH7yp?zbHEI3!2R zBRj{x`wer%+a=}I3sGDXiNiFuNR!pdwkY8?vSOb4-P8o)ber^5V+*lI((3I5PEuAA z6+zIDVR_o900x}rIfnV#^hjLifLb&q8`DY^)w>$E_8#cwcR81B=WbhfZ3yMLSnokl zhE8>Je_%mQndf;F;mCAarPLJAa@Lg=DYb&-p0TFK&~XNqRv+D-S&QsiDK`R<-c*~@ zHfyyU8fx5r4kdK{qie=81e#rB^z~tAQS!JRdvw^|htrL@r_gHDto5<>QB^^xr0hEX z+{D))xw_jDR?gla^0W}Z`cmxh0ByQXyU-Xt54KHhV+&|$9G(+gtzu3B5hHJHj@(!* zE#)fA-8yeGGw9|9e6s_cX0S!c)&8SWw6=T(7x{~wMiCz$d%;UqyEP|`kT;ebWf7ng z#de$jB30~7JnyWQs#9rIJSZ|SY#b#*)s$UVSvSUCcW>LA?95n; ztk)`3b}i9MM_VV9L0AM=wVO<$@uKv2UZskbe-?28Z~DBg^&f{ZA{GBLYOgmye~OM} zEl!x3d_wK_H>%KuQ|UNz@ugZsVR>G3vLjK1*L-v-ts|48&>h()WGYpu=nP&~keAcZ zMGF9GMOupVWmB(a$@I`63mL-R7cf zX}tzU?7V)RD*H5!?l?@L?k&= z`rx>-1HEprYIy0o{ZO zh|yjuXdxt}`?8K>T3K0{p+nbJS}^7=`l1#94A2{hEq$W_X3tGGLoF;^a(obn3w@qR zhd#5ES<8Jtr-hLh6-+ACopd~CS`4Z>?KT&<6{mbEhc;15^{EZCxbc1MIq08ck+pl6 zfsRvKx#=@R@gLPCp;|@2Npq%$!|eT?cd9I&C1r!xgft5UwF8JD$JZU7jy0tJrvezA zTy|ijBF<0_x+7-Tb%Kf3k2kj=rZn~791hM~1&?M_+I_M8qZ7dlKq;M8!9=KIZtA<{ zWSduUdPkLBA`#!Sn(20LY)!qItplN#>7GafJ^D&^!Z&BkH=g=XJA} z_4hP4->_9CGIe%l1?6a>Z_yTb0&HvrWv{Xs&3#*DE(%G14E>#I1^ZY)f3L%wO@)zc z?oMqi0O){pqqeI(!vxEP?ByPP>_FEj_|IwnFU$%TET}kZLbVg=M(X!v}{cC0NQvk{R(T_ z_rS-4_)pnhZ-8zs-bkWm{KrMRJ*$9FN&?6$3plsj6972P5|u2P z=fE1-^3JJ-SE*oxQg7z*EDS;sPwkLU$7aBY;6kt!H>1TO91U^lh}teLo1fSjT^nG& z6_M*ou|-d_zwZCaaq9ge0tS*A@wJK<+<>@w*W!Y<9nc)b;X?HAsmMrz=e}HPBQ5D6 zU@aK6*0_q8OxT|iIk@i>UQ3bprGO7dpX7L+LDK}fy^(ylWp?8jfOtN~p?z=kFh?Vy za?8<8$<>32A?m*ja3P7bM2|4_dAo58^d4jG#7+9X-9U*iM9fWCi+gb1ff%=t+J63C zzemIn+kLl4p|NGsTmY>XN)=5wF+MN0XzZpx+c?=qggY;>-H^}^uC=A)!bxt_0)CH} z8MLl4x0`s@CF3d{$0`!15iweec>m3DyOvJ4N<;vYg9jIdlM8@%VC_5pH96#&FX9|> z#ddJ!&G>0sFoSK?;%uVl{vE6+}n{u`SN-SeN3g=-hVmMAC z_;v?6%%XT*Rai8N|CkePU0X!N@^=%&KwB z{k}FPN@>g`6~pb=fi7UFL5NHZjA$3LdD@2s!=ra5sH;ie00X&(a)aiOLSMna0DBZY zjFIy0)@{xc#?nC<^{k4y1fDICh+|O_(5u? zV_u|kiml%YR%&pXZP)LMHbDHX=@ot88rr9ckXD%-NkwgXrjy$2HcweUE07LVss{k9 zb~u0*C6D`C5KKP@EWcbZ4~Omk)$yO&6ij``y!0z=j2PICm26_4=~#v=(R6p#YS1ms zMYX0jcFYBKmD?~jr&RhyGj#BCZ5GwoeKVRjpmZMnD>k^a zab-}3DDx_hmLqMN8Id|7(eV~hNw>FNE{zXI7lxAwG1NNW?ZEH6B}V+qNATmLj|qNw z1dXHg=O_#kyvP?9#jwpHE6{}lYRDNC*bKG`6)>%#zgy&wa8_omeL?tI?#F~*OK>{* zz8j}jHwJ9GQSz1Q>|Z%%lzmnZRy_(tTzi0Sv{E84l`g{aWFP44*5Fy!yE;r*yKl#Bmuk*+hW&2IvG$2d zsC#U~8DEh~MSK_Dp7itH+PnJSdER&PKS6sLB&!<9gs$9bt$_#-RbYX^-szy#dhE34 z#KL`ntgErO$NLe;@4ut|kKfG^V#Zt*dcC23Ttlaev%QzIbvCFU9{{|kx-Q3dQ~s{_ zwvM!-?eKJCv`2EMnWJrEq{lGw;5a}%2HcUR?Mb1 zJKT_hQFc_29AqGZR)Qdj>)K+*!q?wUm`uqrKeGEd?*TgUnWz zZ3lgXAW#TmAqL1!+Bxg-LZ)_%%h_t(0LW>Eet+}KxI(c;YaPAaftPdCy=gW+7&T6Y zK)Y7|Uu496mx4Y^Q-JEm8?(;b|(}D*ej8-jzB3r95NzWlh@tfMR;ownh)yG2j48!Y` zl?Koxtu<7FEm|+&A*1S9Rw)Ac`UOfw_;Ex1mw&aal~xN}UEEo@-K^ck#WRNaU9GDx z_6ZtBne(i0^ofq^N9!f4>=Vvx*Dx2H;{bpMuRLO0IQO+*wBkO~-+Apy2AX{#%~;c6 zZl`h&-dAILr(=Ts+^uSy6l#mGEUp&{B9qR0t1sSW=TuOxJ^Xh!*u%S4>%*GP_smEV z0G*D|twPQdP`q7Bu)RvajmZ8TLja2U){Yk8Fl1zIA?=A zDt-8sN7nl+=gWa9p!YA*kg7f3!dy_#Q~bu(sRFl8lN}!!aBXv$`vEXV*U?ci|2Ma1 zCI!p)0Q5mxUnh=AU3b?%&T-oFN%ym?>9FNya_FrNy#&IfLoKJSOo0d-e5lBhCsbe# zq6&l8%L={T%w{dc601D^R3KkpZQt|BxE=0Glh4sVV9D~)nw3#nKY9Gx4m!|;YTHa9 z@<9U@K`CM_oftvsdO-Svul|C4k-=0T*Bf;8$ULLB-uD@Q{|-5y%vs4qb8c9Ln2y5D z$a5BOM)tX|tQDoyR-5%mA^4(2s0=pqxJ425=h-=lpqUFSr{O5LUDiaiASUO8&PQ@i z!a4Wf!kKXgWm>%^#T~MUxJ5>_DKwpm2|Cb6)%e-riCP3Asm&dK|ID6;qs{Cf4KF#L ztbN*K*{ALMTXWLKz{cea{n~2D<>R9f*wkur^7>+i!@vFAV0iApAJ#TLGWbe~_9S*} zKuTJuJg{R<_rWo`Iod~;b4^xuTE@jH%SA^9mokTTj=d~^hflI0dA=Uq@@hmU#mOd> zy@J!it*06Fi|M3#D(Soj$DSsu_n!)6StGa=?<2Cpf;|z(uRX#68+roA=Xr*lPmwLr z_m6%-PWmLj6Fn77x4R*!+R31&8M3S>->#6;j2*YakFJ#gP3h;ll?lO0P~gT=L68VV zdnx!Fjtg#U0DxUK(awqPJh5xYOK-q2&>C`*;lb)_5~IET{Qe9E4*;@km^U?e`&OZ^ z7X-Z8jVHaF44D8x&(@x<{N0{OJCGwrPBY}o7t<}v+Q_uF+S=odeU6`PL`KW!`;=s5 zo}z36OR9kex&Wq56RPto$m|5Vi}f`#hXck#vZ)0bx7K1Z-kSRV6y|Vb$D2P5Nrevb z>vlnIDI41<`gc4!tUKqVw{LnhAVBF-4~Vgql&m!&PSE%5P9`Xqy-5J zBAfoqqb36wXm$!^;)rO}=b=v05>8byIe~6-0>yljt)kq~LF9>CP&)078Vo00l6|D; zP$ja#VT5*F1@g!Q+1dTP{-YpOaE_>N!wfhRgaTlN2Mg#AIL}VN(`)!&VW08)2lkSx z_5swYhBm3yob$RtUff0vJGMgRb0D4dJU98Gzem5ZswFl~C(~`))=J;9bI$RTW#ZR& z(1G3|>zLUA5pzbQ6zIA_*Yv^z+E_tmz}<0KcMF(OW3;o&Jf;_zA(0efpfd!zjA8WU zE4HAm6@b?>P6Euugs=2M%xDUN;M7 zd1l<^=F}_B94MM5i}v5{=J3z6MeGxcayQ00-ZX+3r5wnOOeVuyMY-8=v=~`j<==y^ z8PRBuF6Y{-7K}=s3=k+56;lPR?y5J`^5=F!G^pnIdzOI==TulW$z_MZxLC}XY0XjN zF-X-daGQ~&Fk858DXW_B4U7%H=-@c)w3`=!#xbpg9GIGBgqJ-QHW3&?hiUr3GYq?U8N@|6& zjKu5rLIynJpqyu`qaaJ~fHNSKVPcvLw2sg!>u>*GsU~kF1&(N_+5Ww}M3k8_5Z@_s zt>SL6qr7t=-qa$&o7b+1L+jQJ<=qXiNl-o#)Hg@+*VXh2;qSM*wYmcknc&&xfR2Xt zGmJdVLgrig74`kS*#lA_rx|6IaNOk? zo%CFyAU^;3PQ84U!K-i}FLN&=YLNEwk!BNvH?t$7Hf_OMqJxmjn-Gq6@GJl(1579Y z9cqxnj>`{iQky&gfG73@dzsKSm(@{RbpB~SN#4e@&_-@M1SWE@D6S>xiPh1sqjS!E z^T?mGlf14Lq|yppE|!SB-mL8M?ZeJ9O~Cty1%B1bEmO%dgYv4nM_JQW@EZ5e4En!k z(7>Vt$A0BpAU1c>oM1+`%^-)Di$&yb1@LGju2;*N@X&mb%)ZaF8NxZL67YCRfRWGS zx^(M9ZU&hV$kpfp4Zs}rT=%8w3t0OsbTm~U3Hq)@QWl!^=xEM(wmG;CWT_lvARG{B zzmb$KN0NW!oHyt?um8X~2h52kW2IC`-5?(+!<8M0X=<&x7I#Lrd%WweKE?Zb+k3b_ zE!#1S&IX;koKY?p)W7{5x-QuM_#R4*N=nXW;B+>E zrpv{h!>xDDQ>_kV=xFFXHB!Yj8Of(9vJNqZ>@STZla=O-Gde6qfz@Op>SiBg%R(mT zc*Hr-Em-Zs+ck8~d0Z=!bDoZOC~s{MQ{K0#1vS@$&e!7-_1#X|3IOmN26?> z0urpJ+LzoMUQ2Um8$4aZsgHJ*tD?Bl&D{%ZKX+s@+CqWiw#w)Mhf~aKcVzPRhMDgW z*}<~r@6qNoul^)ML;y!Y0cg)@+w8rPQ%BY6|B2LD zRtrQiNR?Y20WK3_PWoV|i>h&Cls136YdUb!BgmS9r#kf>b!6RZvwg(%aOUJVS_g88 zMxaUpN#zd81`k%HY`M?ZmLxJHq$WhBtW77V_iFCQK6(67Oj5QaoN1^BlH|)52#Jc% zC)Dq6*#4jY?U$1r>}f*z{deoIa$g{~8}xQV^*Zz3c>>DiVsl|#QQtnW%O3vfBbPOm z$!r{;tQM$|$M$W2*~i88Wex}d5rm?X9%Q#H zYf3gqpbDu@le5l_AsoA46wk$}jbzi;WbdTlYgsMXmRqVp1j63ubjl0txw(Fk+$L=* z5u80lz&iSa&ney&V5q7h=A1iGBBlj;TY-Q3dpv(8CS;n-e!ZMqH-u!v=CWi<_Bq;g z-OOJ2%%J}t46%raOvN5Dm7hQCc<|g7*hh1clN^hb*E=YkjCpRg?xT|qm|~`LencuD z;?7E%oJ9akeGRT(yTJP8#v+ljc{$1#*E;#)QGp0n{ek_;p#i1W4X15sUoDhI9VFn7nP z&T}lA$-~f6Dz?eS?(j^NgjZZp>`QkXXS=ogy=TOJmce;`KABw9n%b<@Ht)SeO6I9$ z5EwWro}o?155jcizL@@*r`A?5>oeESaXAlyMF3(u-L$dYih6Hpgp4u6ZN{G;7YbST zdcS2X(a--pz0&3OJPK{w=q;UyKBc;24tQpW2a#SD=$wz4m2rr;^X2EbCxpldOHX92 z9eQV)B4`CEkjva>&`&4m%h>{%w|iI9`!vJRBr?wy$W?9YB?Ft(XKt**y9H$AU{|uo ztYEb)B4%~Im~uSl<2yk>nScPdcbRmc%cKKn^{+gNU-#HrstXcz=TH0bGi@Et-ON9t zeF1AoK&=|>BvDb+A%3}C?e2s5*2KbDzqI>&bEKMns!{8(>9_0_jww*g-D+9%Y*wWy$tNy3T9at<-qlNt4XI!(7sQ4KiMyFpX4l|T{4zK zjv4YF1&8<>lQz+P%N=NT5aKa6(_iY}#iQZxjwC`c6bb!5RYjR+^DP1Bn(DKD()hI< z^e}qqpt%CtWmF}i=(?`J+nYPv&PF|(VhVw|-VDBL2LtXVkYU8t!5|=vgg>;%Yg==V`MlAr-o-k0V6pU*B@WBaxcS1Of)#=6wq|O z%v9ZF%?IbaYtKUiErh!E1{)*L6xJZ7F+r7O1r~U4q($kFjcU$^>RI-swaR;@kpo0} zzk9uEub9j0tCPf8^ic12)W82>HEqiZT^E$g1?4ZlhfL_(yTRX8A{T5;_;5XZ%5_&$Cgp}CUgd4<)9 z=LPi7WFXg_M_u^fs8o2w+2tVrM(1#z?AhOzmc1ftDIwYO+_yUdfK{W%G;a64#_E}d zs?~8iM|oxH~__BV#RHPy7s6 zhEF_Td9)9m5_gQEJczngo6~&cfLq-oQtPP}bjsPo?h=VQNroCQIOnT&S@XldR1Vg5 zb6)$oI5_XJ)mDR^<$|prSs(oYgE?Mr=2+xD_VaAn5+d7R+se8^?#sI?P~+3iRqeiljLY zw_7H3$f*wf#~{ODmcF0taqNK05B84z*dX_4`dt&8-59$q*enNYo;f?m&PSKr@n;gH zX}sR+4bUrUwt0Z4PnVY$Tl>Giq26w&-`^k~*I3tyA}X&hfRyN)uB)vpTJFH@W{&@} zjjB;*pi&{Swgex?JhzN5=XgSp$W{Xx7;}o5W3f^ptscN(Mm>V7?xd$nQu>6_0#%)D zJ?i{GV_`S<%c_U60Q7dzqgYmR+6TRzWRA7xQR3ltzYyt{Wg_eJS`FF9IX^n=aSb*6 zFMGCtZf*+=$UtGD?&RIMZa35Qw;R;Uo4JonQxVlfG-@wr1c3RuP+8~*lMq|9@VRDbr+=yr(M*H21ed^iIdlzpaLr( zlR`0tW0Gsp0i;ZcKsQZxoC$iWR`K(rEnLV8P=A>MIvBk%7K>AMG!7h-=x3M>Go)i> zBMoo|+n3=Lz_zw$B7*`5hhE#~qqYcId!}9h|BTiM|0RYL)caykPbn=};gNWmXH!6K zOzFA;@BX`#_I#Pe_UBxF`)X14bp<}Iw*Q7cfR%=7f=P~}R?GGkKTm%DRUoivvoV+! z&(!!PG%ThDp$&MLs>x3^M`p~9*a7lfMEAR7nIW_*8*AAB%yN{R^FA}#oRYTRFvnrf zFj^2To3*an;pbucYV95EhzyUvd}%I>#CVKa3s?&@>>D1j08+T?-ypWGtjwnUbMP9J4rae~ex zA3WPD|DGUek!I6z{dRIJd|ZtiCfmHee#g_xYFrx@>xO&KUq<0_So@aEq~} z+R>>V1!PBGL5+)yd}RNOcAQV@oqUeZ@i{)n=lC3-<8yqD&+$1v$LIJQ|GCDmpFwwM zf&dl?z7G-hOc+W$Mn)KMmgLPWah};%Nm{Tv%B2khX*O5lcir_f=ku%{uFEfqK z*mwkM?4of;5x0YD>DwSVJkFmX+o}bGF4}|S@U}zrq(HoSmSq|@2+Pz+)Hsf+p0PtO3xK`T z(|jls(fZ2KCIZ$p`N0UyWwsoMNV1_a)a$;`XH>ceH6mwHo6;eGu+$Kepex=jF%hNQGSI=Q0p==%wT&9WzNJ85_qB z$_u+^rZ&%Yn!tX$0yLtb+ui;qMEg9OJ`pin;QhnN|I+c0G9jlKj7}7|02tAedE8wYY?RI1E@* z?X7LwSl;d2{^L;J+irL-i@Rq+y-yn_p`mtYLHIU=@`oK*VC9YJz^B>JTx$icskS>` z)1%tkX(*Xt-)49=@Fp!Q`2OCJB9`;X-*GWp;O))U`RlFET9&EbzR13X+b=$h7PGoUaQq0?*o|}%T|NCB$3K>9V|MOC@^+5U@Jq~`jCd24T40@eIANE(`h5| zdr3&Eqx0uugw3y=40QH>+D2G&UeU^;R_7F=K5zoWuHEH4wT=*vh--6~E+n7JeX|%- zX+)Q+qdr-7aJ$)l2|;M(JCkMGuQ#)0NgA8|$65_4KU=$Q{A8KeSrVv z`YdiQTA@>8y0)A0-wT}+|F61}An3@o+O_SCG!-P`llC2efO&N?;gymN_IT`^@1SKF zkx2O0lJ0+igmwKy)oxN*+qtG7mzPnSl zuBPV!dv?=gBx2{2wM}!TaD~^I=XIhK$nD-3_LIKSUCBp-{_Px5Iyma{-eHYB>@WqQ z=s?sq=Q+oN1)FD0Mp|~pyI#1Dj5Q7?gX`MsfU?r>ALkD!XF5(k&nOdo4mm)(_+4kG zko(>4&6uiA1T-7Dq^w)xo}uGIz2r`azMPG`jHN)&Hl$en_~i`fi;?9qc(-jy3aa0tHQzVya8U~{vS#;9JBZLo3vHbSS&YMp0F7a+Cb^v?N^)mzj41NuH2 z|3Bmw@%?)T$DQ*O)KG}k+#WpckP}`WThm}SceW+w}Q(FQqNYG&-Jou<7)uG5|ATiek%j< z;5v2Xvi5;0mSaq=<2Ll|(hh=E!OK8S5!dON&{o_@k5O&0kWn7;7)n^}??DDe8wbs4 zk87rL&iiEW;sNhMD~%oPqXSuu-^?eH%)AaXKWXb7eobA5f;+5CMk>C#4VAk=aV?&# zQ;~R^PpsQd=PUW89dy7Wh}Ww<^phK-e2DIt=co&d{^9kvjKqlQp2?LFv|OVW1SnfX zSTs55G8G(U5_R1mxI?z#l@u{z3BVi*)_uVpfDPuPqxgd6&UF%8@j4V$v>FxF=9NFp z6!wOg4njIck6WF3Z#W*3VI9@m*7TXzk(}|y7_ZHM^(dTx@6>Ci!&zy9DB{sf3f%p^ zXW)E-q3a5LdoyF`a1&jk@#r`2ALq0n+dCCliQEZa}0lY4$8tlA%ma*F9`0wr5zAj`k z+;N_B?vJvQGqdUWM<(%pw>9?WNT2Mu#JcVom5T+eFi$2sAJ?Cr8Tqd;^nM3EuC`9R zoS`^3nOIjqH$OikyIG%ndHW2Ra*x4TMd9cnl?h>QaEXpY{ zSX%8ZfUZrNOeHz)rIGu6e4ySJOt%|!apX`C&<#55bh045%Y=S>pgv>J%GXGlig!Ml zgWy@Kw`_ETtoaeiHYFkAfZm9T^%LCV{NVdH30V~Pt7^MUVnPf>eqJA89Dj5ngRCZ)nFx=Obm#~i8Z3X8^o8B z?5HQ9k8s`zaoB3>Gu&m){XCJKcT%pZaCQ^hPPHeB1AGD0Ml8gB-xPF`!g)rW-T|Y` z8O|jNgTOeE<{z?QT8CrI{mEv<{wv-|Mpj#lbLWs1W^v474>?9bR%y)b3{cf{smvlK*kiZQFyfqk z1KRJ8vK~LqqO=7qu1nDyp5wOZSn)jg%;}K9nO+}3ziJJ_tX>|{Glt8=wpn(};f;S5 zsQ4vEt*GC=LvDAJzy5BHbg=64`L{A73+}a6bs}jg9c6==l#>Stt3t6gqE-z-S_ z+gG2vqfE59q07>jEF6)DrNC^+g(pCAurc&`&Sfx|l^uD%jxIoyQFPgy=m@gVWfuj_ zd5@9JkZ~U8&0_AiZN|)DIOUt}WMO~6UPlLnz1Gg2*#*l8>m_j?9h(d#&SRQ@x}v_n z+vVpD9);aLQW?X20j^inKfYU_{znACB9~1_XT^{3@R^C*#Jzf0haA_t9T) zr#ymEeh-Jwhb^+Vt=B!9U&z=I0YD&_C(DKhfgG>p0qeSMHOl-tCw_c?j+nshW<+t1 z$d3On#;@(516EgACg}S+^xJoXr=-5vtV_uCRT=)L0oB@1+JNb88!$0SHbfrt$O_Gc z$R<;5N_ea%vJ15ujU0WeYEnR_Bs(uaWYaaA5(Hem)th%Wm8beX^GoM$7;1!-r!yC)jux39oFqyF&+ zw*U8EQC?qK)>IX8xj;nBFm)$gsmr7Uy5tZEvZY8UBg>n!k&=4>XbVQpjO46Ap7TdN zMb%kPy8x7iV-hUaKwDfqm7>D}7{5yD7oCl*^7PF3r405lX2`US=g?lt;bLrmzlS%$C(%J07gE9o}`b9iv0o@7cVAwh6l(!%M&RKNdXUChsfE0fVht>Z~ zWgoj%g1$z?TrKFb`LQ2>)-G)?8@UEI)*W%Q%WynZpsdvI^;jnOobtbE1VlQo8N+e9 zU^~zpjv|Pbr&9q?Ak}r?a)*91heW1=^56ek2MvCfAz!~*>%g}+=->YUE|>QFv;yTE zWdf85O$ma|0Oouqddf3tN`1!pDv~%8h#El)ymq>=IqA8BM`zeOZ2 z9eDL_AChjR>!02^6g>Vgm$S1z7kAupAfrTvU1c*UbiU8si{Z0`>mdN}WW%}wD|Xq! z9As;2y(h53W+i`1wPaEe=-s!u-z|uFyFt!pOn>?7QzET!xtOzfv)~<0XEfA-8vjm0 zELeGI<01(()j@DWwraZ8yEU~Re4X%hAO>4+W<%cFE_eJ4KtGpqTQ-s1ygy7{@GG~S zB56U}COi9izSsRRLSHk1dQbw;Aq_;VT=hW<*hog^=LNJ3y?5q%n2e*N?SBJk!P@+u z+z#y!*zX^P#+oMMb^3(3|NDlV&*q5D6Y3w|I#`Z~bnSFdB(mvU-EvwqfcElo+o-Nr zDE|d|C0VsOhxt1iL}c|jh}2lK&*aDe4xa&Zn)cCOW*NuK8GO;I9!=x6<8v#+Z|S;7 zcGX4Bl5^G7=>EtNKRS1IU?gdZF;kdpQ?h{<*HHmXZix9lX(5uYUyPUF{bPUgzw)RG z`SJ?=`ikj%!uG%aB_ikmAYPMf&wH_Fb+Qb5UdV+;1(hu4mP3UAST>gJ)pFn|JH@IN zB&kUz{5m;*RgPss#LGvrk+peCLMgpb2DA)gf^u~Rn*srYKL`wUPJIqe`Qn*d38J0R z4ZH-+9Ubv38^iNS4=T(BmJS`N^*k5fmf5Yvh|gr6A%FcHdO1V>_`W~? zuRdO1P=9}gTuzXG`TsgnFq!8>FaxlEHh|9IV=J~8ME1;cb4-%4rU!6G{vG|!fgl+K z+#yj!@UMYs8#k2HZac}(hzd~OxkU#dp$X|L? zHDb`;zd%ki^lyKMvQ!XgSt+!s5TC=IVzg5_2XSY|WX^?wdnfzcvetechyd{5FKP?Q zCbI$R93#9A4sXq7$qnqCkvwJ8f2WM35~;p?ul*hTJ!2+42V3)Sr$usIfBtP#xp7E;%D6v41g=J8 zAjJ7}yp*-KcbbCFbG}P9X$yg#wsB5xr>WJxYir!6u^C$0r!G+Q1$X zQ5rK~2q4FSVPFs7l_Vo5^@Eocnj~X>_;EIxT30)M3?PKpC!SWa9Sm^JM@?bhm31OTRqB`~(rT_pS07*naRMqNk=L1OUvkdBP zGFN9NduM1RgFEKALGE0!#yXJ#p)raWy#466!GHnKXIX?@HnK4TTi4Q@2jWs5!hNyA z%0Y(nnG8t_T#d_tlYw^oW#kBT9`pR$X2$_THX#xDBJH+3Jt4*M1EZ>uz8{k>dbtS6?2-H9eHy z9RLq>CTAm!R(q=fbr&F@zlPHAbs=TF0>)m|_8pxfRSV=E*b>4dh7LAOmG*t-prb!_ zcEoA-1k^We?9NFLNz%TdJW`ieJzi7!eG!OEjr2_wz_nisyz3Cu0`3B?ztS?i@c^XR zw*Vjo<@LolOL#rcHs~l$9;D3~(~@jTl1?7U#8@Jjoz(|uLBRE?NC3Ai2tq$tpBPq;tKeqLGzbjz{OvZBXiH`YE5Ou6S7hh=jY*UHe zE|8r&H*I#`;t{u5sr*H^?&I+tk zejZIcs^3v-Lls1FDVw+(nIvv>%)9N9Fel1?l&KjCUbCS*E;Eg5?Xx4S%iRFL$y7Mu z90rp!i8?5foV?x*!7l3DWi-P1(w#8~?4xQsgDm!^5*Qb?Y{c_$sJu-1Z2^&MCrt}Q2X*%hdq$lc45=FM zNz0f`&=c$AYRa6qIo>${{%;VfkW4Xt^94rGD|_V6=syEZK7_|dK+q3sv$D~a4cBfV z+si`0-!`vZW-S&+l;Sjbh)b+3xPrQQ+eW{cdA4_|3i-HMwD{x6P$dBL`3Hi?xS3+{?4WYCzQw^=4?!d1MkRM60n+tF;J@tU9le89}X1v?p;L9b6j# zoMcf_=2zcL7M`*7pkA-N?UPBLizhbd#AjOqX!4@zU2_zKO!UaAv<4A{#WewFb?C|x zD)fZ8d4BsBJLFcD3BT-)NUqzx*(fr~O%6h(d+xe2B^}PJc@U>=6`AuOY@bYWSk<04 z^Ox#&?ATU0lf+RE`7t$>r_qSZNfw^wbJO0r8ounk7s1a%?7s!?)wI=oM-3ryBOF=vGIGs-DKYR;*ZXAR+#j=gl~r3wU3pBwiLi zqQ4`xn78Q?Tf%kKm%KPHJ}X9NIl6F}=%#dnNu#xYIz^HK3%8BFm)XD8ovhDo8#7<} ziu%4UFR=)XO~+L8oy+-aI+`_^$*;yXL$1cDy=^$U1lB z-bsXe+9G2$@d$i|9r1FxwF#d?f>rmZggs$;Y%+UG)F%gB#Iy({{kF;}kQPQ0T_=^D z2@3d0T5-7)5=?e-qgKsVlbPaeYGJxYg+euC{rlDrVRJJsC`Fm=qmr#NnegC}L)@7J zmP$n``q#z6n`u|ryBkWDwjb}VkJbu+O5kqMfA0NVMl}BwL4OXFU=%OMv$}7*123t*_|ZRRd=mPvYTmg!t&xKk^u6l>yj=B;a=>M$PHmQZ?9H~ zI1fD{yvN$N0TmZMS8>n9cV@lS|$?dp?Z4oR@;nYdM3!d#pBb zt}`yI<8b;0byixD<~{$ zYx^#=1Ddjb@UNx@{0WHwjRE7c+shD3pRq^V>qj^7E>?yiQoUXn4Vtrf<0waCkVPgQ zpEr-0EC+OBJ2&=NifJt^-g&d5dYN2r2zm_LcMCpJ(|%Z;6+RwS${5LtD2{6nA9Q31 zjV_8)$|G*2ds0ygcxqYlzA(kuMsd;*DK)NNxU=Opbv`o_55ns_)kFTW!FYy%el zB*7!Ua>()bVuidTi?iTQh-_UB>s(yJ1az%c(o4O5Ih@zF3Tw2OI9hH>Aj*dRnpn=$ zm4g~P5Zy_g2Y0NZW+SO`frZUgUeF0EIJUrBHMf4@RZQOR;Ti2mx;i$fp$nMV88mH_ zf^L)>{b^dtFC4ZyAu)OOvqV#?X4Ds(98gZ}uTh;cgeP82Y%|`9YvFot8=eIjIgT*& z8GW>UTJRRk+{(ytMPCn9_>=tzWWxy5G>>uFMwYSZfh55CBB`ScJCCPz8cGH|QpFO= zBvPwZ+uo4GM_wXs%{HTPC;CBvg4Kkt>xWl-%W|Y5Bb|ub>$LiZ%1JRvBY*Uj#7?$v zMjz)9x6AIkCYkE@bF@b?NM1d8=-;|UBJ;97eu-bzqV+0zDltDZL$jG0nZ%3KJpe_O z5@!HH0fQL5xWaMoy8k*yHVF~XNpH8Yu})yC5vb{z;&_WaNH^9YevU1#MkCi`Rt|17 zP8tPR`gOm!u6o$#gwg6AiE*jLPrmG!zB3|;uNYaTN=1wwgidI?< zBgu)u;hd0}2Nw^G#lVE0_mmHadfpJ0L6VB5ufgtj#Et%;d6>Ht^n-ohFWq!E-$W>@ zBZ$qsFfO;D;b_Yp%t!sY23UaCT4zwl&%>2XokPt6#~(ZrR2=wlv{G#|Bd&2Gy17-w zUlSfo;AiIE!{6>9i>+6gZNqz*Esi~vNs)u{AX%F5a(34O7UXx|pg2H;Kc}2& z#mcL_5=z4f9||w{ahYCpYX+}kV>cP0X5pRZfd(?yyfPL%@E7Cg!9!nK>G>BQgacYj z7<_}i4?+$v+O+S@j%SYJaM&mQW^&b&RrPUl9U8vz)!Q7yw}xNe@6NCH+}EoE+Le>u zrQ)#2y>DS5_5cu;VqvPU6V{88u}Rx;`^)bBocDPf#xfS^NNncy?J+C4eF?+B(B&k0vI`pxVz>Oy9)71%c-+BHy#cjovRhpR}5e%raZcm5W6 zJp#`;%xATqFL4Rq{q zA!|g*=zaFGOqY5W=sdd6aMEjlLB3+LPIK~ZkK>neD|mY!Ke+4^^@l%4ejzK~i4>Ly zXq^!a2igd*LrdPO{!Ul(83V}F077TQZ7ZLyF}49J`$)g zdVsQjJGAN{v=WY2{{fyL?aKNczVnL;?lBqC{tl%PF#vU$~{^38ma9DK47WM@S zqf^ICXd&OibNu7&)2q?F>BJ)G=Ia6V`61ai=7HHCauo~WhNvKPaufNCE|E6U zmmoV&?b}%L2H_yOH0-5_LG}{e7`&g(LYY;13!_7x1_hx>uXIOAPN_a(>+gT_xw7K$ zoO(%sb#AI=c%0QT1ql@0?b>H3i>H7>)|l-R60o=1c~$jAo}G>!@ubz?;C4|U05(L- zGlTd8w~>EUXfuoI4jj#(8Yo7xo%e)>ZKxr8SIjSk$)h+N?Dx3DTJ(lfJ4#UtFG*ak zR+AF2P!?1xfHkGnN|r<|L4!LXpWa-8#5%ufl4nz&uH1SVMz7o+7>{GIdBh<|oQ`~| zuWtSZi+3JBD~WTkD;i*SQdk(rOTdfRN0x2W%mRHbm}_1p4luJzhXI=pVKxG@t}l-V zVP#^2ORmTytdT@k`7#J$;glTtjKdzY4H6DvW=i}!rdHFli(d)H)~EB&w8S%(x+ zNyUU)Zizo)jt>!`%COR)t8Ud}-UAO5fhm@Jv^I9kl@c%oIct@IOct{bTYFCGVGNaz zpJb}3Ash*3PJwhd=dB6*KQvjy9;aNR#@ZsHnT=vSoyDjg+<}CDSBj>_c&F^pbe70? zKKmEc_#NaEwNu?crp%!>uS>8Sf4hDBT%HP7hTOHGNcU@Zl^K30Y|D8ko2Gho7#p4mwPa6}S!p4^^-r-8qdQrodtL^#?K2cB zJ3a|YaX@f9Ip8WR5l|qq&$6FBxG)+`?vn{0T9|~d|5cps&E{Ab?nN1t|5C$hZt6kW zKK-{4=F882|Aq`MFBZc;&KJW^8xjASMyiBjx`ejEhJoAl%Xk>1$wV8e%zYG!GY5By zq*Ddamzj;B(D=9L!MWw$t z!AlC5l*w=OG4C|FK-up6Nbj#--R(xbIztL&sTjye!&4ND6%s=l0Sa1H{5f|p zbsl%2^^5*oAY8x`7P{={Fpk)IU3IevCyc=daoN+?&PIlI?H}^`<#d%7VKThKN17_c zw8qGaPXUj1yT3tg4UcyNW`}LQ%Xe3Tf&=BOU<1oRi&0Vz2NckZ#?b0u_RBO<8;S>l zVJz+=jMZs@O3BGV$wGzJtTGR6`HL9oBClIsB|gV0PE4g=P<#6g+zjR{=`LneLO^1 z$}|_00yVl4XM(bGY)sEL)tbw!L?`T}Vb_By%N43};$Uzrx`*c38b3qW?U}#1^e522 zW!L*Z&nOyaRdhF|7iJEqe@gZ;6+tjcx}~i1O9)+?0jl5h=x*FNiPKHnB&mY5x_yvV zYPPn-=s^1Xx*s6L>I$r+VpC;PW6~4?I12;ok_!G*36Fog3RF`pu-;A zF}?i%pp-r!OD{)6J#K(5YpPJ2gcyo}Uq^#t?fKn3?u6g_Oq<|KaX=ZBJP5UA)H_%r z)U8w#Cgx7$VM_;Y+}K4gtN~`Z@)gRIe|y_S9fdC^GM=SIhFY#I7H=QWVFzh3R-~J$ zsM07R31M&~7^3Zu5DBJ}21q31)CLuuhv_U%T}}e-%Th9zifZi;J)wCZ(M6l!cBND# z$}A@7^BgnFpeIW)TekWyrAZd>U57_&Ei9@me~0VX)M#c?5yIWvJOd+CDfW}5zAG5HR8WJZK6MuNQH7@N-c0)HMxDe z>rUl>Y$dZ>XwXaq+s$9{Q;p};O}S=hyZyS=2=Va@$x$Be^yz9>sGL679FvGz9^kn0 z>6w_7(ay1B`V!DY9}_(}y1seUu9KNhgA+;kaADdML7rsx2|7rb6NPSAIG{LK2*EM> zX4`$wK|jZQzA zz}1?hqMwTij6>V$T|R$b(_G>X7aof#+QjB%xnk{stzrFOk?>Td9UX6M#;{aS(t=C3 zTjL+`_O;t9WB$IT19F}0$q^g7m+jLSjE&}==AF#6M&AX1w#JG+Npm1 zvLAC2IZXT<39Y&3;2V=uVqE~G)T(veCX^w1;OJSG) zAT!qn9atHRHq0HNBuvsLFX11z7x;OsQR0_VENf}xRab=u{-J1AlX1n^=mA3^ea_~* z9-uTH4#KHGj7c|DhtG1d^^_U`SSm^I9_$iG304cI7Yn1~is-Hr2^=g3SVO)d`J11R zdC|I2-y$41q|+4JNREVT;Nx^{>ArrdWc8x%UtaPP%-(^|Ga)7o6|@Mu@aR(K%cbb? zg7k4m&SAB0LqMku;&UMW1K)Xq2sM5SV0oS&VBWD7|I z)ODaryP-aKAFIB{a)>?#iIgJ!MANcKLL%c|p*Hy@XML-q-`JLpuoSmW7k>svSh`en zoe(RE=L%#LxH-NlG5VbqjUb+C20>+4bQ1y|-}g12YOO=`PoSHp##farj@O8-?eP!x zt1h(A*%u=RGJaVQWTS(KCFe3ai<>~&Q-}U-aI#Ga67ow0u?LMizvvS;gi|5}>J{KV z7d)c$2^a`Gws=ywng*KO6O-AfN9=p?S`+IctWmx5G-t+clbIFV+~bUp9aOJW??wQA zd#8^IX^o77C*L`34|G_(FsPJPS;7$wj#%||HJia@>JfQE)lD5@ujUC)d0Ly?LqQmRF>U`-ya7vp!8u zR+a0QD5o|pjJE$va)RMNO+T3szW(TFjm_)zi|^uJ5M*Xx$158sKWir?za2=eQK z=CUotMiGGG>^Cr^06$feYi{pl9I8apxCYeA003A!KBQ`jmEq*rDZs|6(T;F1Q zCs5p+#?hLZ?EhXE|7~LejuZiS)$NcL^T7p{xkR`L#gALqNV^jRuS|GW+*QiyI6{;h zzb|kcfS%OR6jeLTn-LxP)|$tKHt8(9I+{ZERrVhV5puoZ-WhP*U7FQiGdlJ1YVchE z)tcL04W1p9GxeC=O2_ynzG)Rrj#2kn&+TM<~Lq(AL}|p>R@sG5~k$NaD{OU^vGSJ?07y^M23QthEpFTbyo;j&le2cN!9r zI_hG!G9B!FvB@_6m2Py!S!J3Fg?&5f-;2%7KAgqHH}S&7MU95_z;;Qa2}DUl1-i>9 z!7H=C^+@6_SvnMHTs~#oivF)woB=d%*@V>2m_Xm)zWSS-xL=d=t+?5FX8zDLY#Fi0ilY-N_5D zF1PbpuP&IVLZXtfpNwgoc?;)E7LehKMUK=U1pza15Z5!!rhJv1JuAvj*{v`=aPI+0 zbGa9aGDq@=TQL-C+TEq>FD*G;dJbb`wl>(wozg3Iw%#>2sG}}BLn=OYz$R`nd^VgJ57e4{TwxY~1KES+d7J5b`^4SK~g+YsR)68;cs?!`%T*Zo#vgVKPG;ARkcmn)R;Km zFVk}h)kG%DrQV8@Q8Tb{8NUGj=1RgmxI=w=$z7yOFuuyQ-Sn~F452`1tWE!cC&77U zz3(_Nn{&XGzH@spbogF>r=n;98GM|-U)|)%yx%hxPT6FDpg?#`5haOE5RZV_pNMXp zNEbK{%o|Tk(D^!<~P&ilq-1b)_bs1)NUNqNradtdgj z*z2$Ltnj?K-=c2I(yk(wnfcD7BAc3HaRm^d+Dt4we8+>gym_>aqfG?|^6z|1GF^i@ z{m-8&cDV}u*u~qJY{czM1%(t-J(Wi($Lz|W=FVu%;ADRd*wCMIT&Wck>e}#Iq-Mv% zN~@2VbEq8stY39%Lcd2x{j*_O3$19t6I|$YtR5qZ^wweDXP}T?>s-3Z3i?Se9r2Eo= ze$V!4b-ZJZTD`ubn>3&Ah0NpF1cuFT;Jn7(W_8{I2aggl!+ds zsp#Z&C&2JP*yWVr7csDe*=pn$y$DS|TBOl|!u2b4pceiZEu(DC4W5mi^D+qu0lkBj zETL+YuzOWFisg*V4$ZoU0PW|pZ|UzLebX_U@vMiCsU&#H%hhU>>X+0Z7<_u5fk|_> z@8TJEeV_Jd$MLGADZ9y?E%lT6qDSzQ%F#x_&wjWsHLh)-HcYJSd!r^NXo^%Uh&_vKj0N`;Zv2Iw zQ-qvG*EVeh)F;faIr>spAXJsZs8$IxYMTeL0mED4&o*Ke)4#cvu5t7`b#qx1Y=BQg z`;lI=rpzdUl$x_(Yb2SW#@oobcUXkEe(C|J;ziQS!cpZmg)udBlPU%l)dsHD#%kV~ zE3Bg8wM#HK#0Jv?cxAG zOz?y#oikp!O?qRMuVYiYLK%#FlP~Z4@VSQ-L~yCSJ~_;c7HT5c+Mx!DnOeBnHVATr zwo}_efn`R;7e33c_up6mW`cbtL$&6@-PWl^6y5M6uq9S(7VVT0IgUUw%GCf`@1nGr z{f0rz`Q^yMH=#`;-Zjzj?E-}O+h<*n6%v0QqeSN${wr|m45)XN^W%Z2Eh!>9r=r*S zYi5p6P|@Quyqop1QtQSA=`5L?cobKdPh(JhcJ^9_VEs(TjP1)GZjOwQXQeSDO}o2k z*z8;!&qP>&gwo^nq-ZZM>W7*xos00%9FoL2m*mK&EajZ(≪>0yQm}ltqvTyWFF4 zXT9xV9FIX7Zlxxbz(KS$66 zwP$@GaAJj6JVb6>@%;=%R84$aIHPvGXmM+~#V#O0kO@0UHSJZ>kDeJwW5yh}vQ$xH zC9~x=2c>QklTo#qg+_4tZNQk_g_jImTD%x@=rPE>63 zrELscHCdIaL|V>pzW`dV2l;AW@ao#Ya})Sr)@`0}{j*Yc$qec}^<#@%2P zADqr$3EvEyqdvRrV$af0>ua4}8wuz_jta3NV2WI+WS*EzSTgy;XMj~O2kVCir-XNF z8`G%w#aM0FpQMS0mBy2<2m4g=?uRz-!7~Z3LXQiPJg+?()N#ZR?#?SM`m!YYI@RB{ z_)b0Qa_$T`7lC*F7&h=)&Gay4nLv8RhP7{BELNLC7oC4~Y+m&~FKpuc_!ID&gE(HW zF&{vLsYfH@XDoM;AS1>t!DK-MRqP_pzYpN9pHcohAz+J`TS!OGF%a1-fAd%0%p{rn(@Q z9PLi+iwtR}+ioqsQHPpMwdJ$f1{GSE@4`m{qBn3p-{|U-a!{*hK7ZKER;iTC*!%f! zYMDZn@rzU9JU;TOdz|aPvPGWvgk{acxeH9C(q3^Wu6n`qbI>C&Rlb)S9=+N}$yGSA_xAEu0Pbu%*RpCHzwwd))N9cuvlVeVYhJ3EFKJ-!401WL z#3BSY2`A|@xOW$Z4!nuvGb^#Nd-V#wO_DS7PULITEmnDP>W_5N=@c;#5X6U2x7+sU zu4ZL(30;4>0@ERP%#fgBLNS}0X}h*(WN5(uz`M~G9gw1tDcwZWe(K!pIW_rIR@23# zEYGgrti1th@ST03(R;DXM%-WOMsE?{6V?{MwA5%S9nLYVgz3{a;$`pMPwD-#5HAEd6g?|~mayu@E}-kV zWBa)b_S{09@ln9^6GCiEHNCDW)Ha)%1VV5+)`B0u>=lQ&$2I2$&vxvvX?yw%?ME=D zY4{Li??#~>F@RO-LbUBT+?lm@=BQ0a7L`ucQ6k~9odIKWmxB7&<6liXS8C9*Rh5eK zf1-iAU(IpV9OW0PT^RN0eDDRf^@=!u#Wb#W_1Ylba;^0LnTklYJm0(&oJ>aX%YaBb zlPg@36mqJb)pb9lAfOq88^YGmo_=aC#n$AzYY{|8Llu^Ht@ZdwzB-4lYbN)2DteY_ zfp4ujcA!5m?z@?)B}dGmD!{bWOd0JxelO?h;@^@1 zw_8`7#PC&7Y62CRuUi{ep8^ErlDcwky{1LgL|^~GbSW^X1-?|74OA&u6CQHt-W0ih zKQp4SzTSfcUNB_NBzQH8QokYGzsqP^y7{a;alMBY?@=arhQ8gwKUs57R@5-BP-;WN4O}3*qpjQc*zei=8j&&lP zsZNL$V<*i``c%q!)501$nk6TGr!HQx<0j0q6+R(2ZSm$y$Jd;yD#Np!G!FL$-NC-r zVwH1XIvl$u`vn9KgEhp{WQ*fz*h#88m&?A6hny{0>MKDAlVGLk;Rs^Pk(geLZ94_K zMcTdic!CkwNiSLpKlmQ)Bhc+ofEv$?b28{M`+@EcWckll_7$a4oc*(<_dl)~RCT-o=$%K|fD~*RUWsC_=hX2L3XI6Fm%YWD+un2HF&j z1~md@@|YrZHvAye*6$`3ytFqmy&#)QC6>kk=Q%SrQqgo(@vCJ?10UN}|GRhCD~0o7 z!OHA=PRIy;|MB;(JM3w8eS6)YgZ(|pJEse@9aU=GA@B2QyWmE0$yW4&TxEXe3sg=z z7GhCA(zZRc!+f$CoR=2nkx#NPBh8cLCO-Xr)SQKF6EzlfEA1w~Bb2y$~@_sXm}FmqeB zS6BEJP}MI-t&)Ni|4p#-`vnxKCX|TFM#_U0u&`+jCp5f^j11^c7Z)Qy7o?r|1Gm8n zt%_x5m&=cS2bcT3XRZ1 z7ap4b?qj`9L(_m`fePp2Cek#}Mk|+8%vyk=!GpX#{6=hJKC#io;Z(yW>4@XpM*WFm zrAIO-3?H-&lzQJs<=V`gIng*TmqsM9kzX^Iy&O)#I&lEDooiK{*T?pPx4%;qxWSIO z%2v6nMoZn(Mslnv+#TmF2wYkdi0RN7N$DZ+QbwkyfB|H-QF*WrJ#7KJzBfE!NCdiU zZD~XE?;9}Gd&gCcw<-K$70lKa)aPle6Gz-S+T`S=NgHCwUaV5-eCVFQ0hJ3EF#Qkw z3s;LpGJf$SV1slZmzmNzVCrwrYhZtSe)*zTaL05nb=^w)Wem(B=WK1>9LM#}Mcop|iwe6Y6Vy=Dk znHfvMXj2Ox)EHJ#+h@llf?GwpbvGS6@0KeU5CRfMsSnHP8LACr<%TP4zZr@?hEJhu z4W_AUkAx$2DRaMZSqQ2ZJre`9oZ0h6pVlQv%RlMA=+Ki6XzZladNxCSy*^Ksd zFU+K-m81}zK2#(eO>MNw|E_m0TcEWRCR(A~@jFI}E+ZWLFKZMDp|MxyGHZ4WF3f!* zAr6~+kr%?=!~gGCXKL{h2Bvl!`c`OF2k*F;n%I86!;)j*wVr4>VKL@jxP4l>y-_EC z_wb49cEj(OcdK*%_uW`NL2T!|!&csvnmn(W5WGXjh7W&((+Ypr7x>h=`E`VG+QG zrm^6?=O&?&Rq`0Vuf@q(LA|=I?n{>qyQo%GIWtR?FMV2+#nW&z^DLdm2u+mZgDep~ zY7Tq4Kx8Uuxb(32cmb4G=c|#{9oF`a7N0oBqH#%?OUpZTDu_ixjXe zIEsIInb-;nQ)di|&BDYhS|{^-8OoRIAw5h3MFcv2cl^xMl*Dn5+w}Kn&N1>bvzUI5 zOaEobSe6U$j6}fR^@zSJ)scv9WDVxI9`!99vHi`KYrsl)308=NqkM{DVky;3@>Bgy zJ&vn3C@WM%+7UyCVVc7lq=92bHAeZv(0DM4bhhvQ;_a2I+jbiB zUz~GBVA4HGH|vEbt#siR&R>AnT^WYoIi9AEbC2`l1|uThT&2k!yAID6&{N>IkCXe_ ziU(kBm=^fXl3I>{PF&8lks}jJX>n;mVyGgHrs<>i+BR`CqkUg4M^?qDOqA#$WN5d+ zPNYFInMSdHyVBx5v-Of)zY4Yq6x}+bhK>qIQ!MGsk&Ou z26}4E?5lcT#dKDwbjc-RAMcD}rd2SkMZEoa$(9W}_5mXdIHfD`8WQP z!<9D_#9Fv59}4;rW@^m)d||)`Z^+>Ryf$BR~Nm8#@X!QZM>FH$UIu*ojV0Wr04^-d1ns$-7Wd z&5qi<+!HBe@BZG{Qf?WA5@a2~EDGNugR}nm<6T;mQtGmFww_|eNk4V7tR(uc*FQZ3 zpS8B!5#VIcZ_tJNKavFM^gq6`zbt!*i=0e_reZyA2uT}kJa^=#AC6H3VuM1sq<2>e z*zuOCblz7*xGWKfeMbj{sN|eCyvbmJ$Da{$Au27Xy+L0hmg&zN!8?CfRNmYBm`an( zCJxr~3Ei$~h=E+{v+nhk5x)>bUj}*x7$8l@D{LlGw8WYM_+w42hU=O?N8+A#5|a8W z&Fr5W?5m=rFI}g$Y});W3Kh={O2(ex2YzC=F45tf21XZh<4jG>3U^%2@R0)p1*UlG zv;V!A^K_nxB<+WV$wJiP4>>Lh=B%!K%5+$Ft1ICYr2>T*&ex)p;+BwPouOM{Yxwz= z94E0j@`Dr{dp6cdVU@Mr9f{x8s&IZcXZ3w-)&5@?+6K?4-)bE#t|6zS?daEDBAH_Z z0x!~1Em8tb&L*{#{JyZi<^)brRtFzBF%oR%zSxrS>OL~ys0_mv}u2b zc<*0G;f^Nwk-);zjwSh~FGl=$rzY*#>n0?5VVIDoO@KF|Pw~638=18WN^Tp2Gm7_d z2zf1Jug2MU;1qUl{PdxubxR5|djEq?CGsI2-$U9tpLYbQV!*4x{|D(%cxip*jpX{} zyMY-DI~I7F<&roMgIU7vEZLV4$yv_-xW3yYD;$Z*sn$32J8xmL#KHpdnzlXuUc`bghHX(UE$ z`iVN6N}>i4T6fMY=1Z(!qOU|c zI50Z$=`;(>Yh7;-I?XAvc*ocb>RV@fUqnNdR*=VacL!lWhN~nju7)GSHq%vO)L}T6 zf>hC_+EZ#15~1fXiU>0@%Hg3KE&_=Wzuc!Nk8eK1$`-PJrMGl+_oc%T#cQFHdE&*8 zI`Toq9?FvJ@y9Z;7uF8=Zl77FSy5n9*WB^GD%aQ0_M{X z4veU}tGdLlv-JPa1OJotb)wAD4?=WT#GCaG}QZv z)Iz!|hMHttZ@Blm&aX-54?X1IoXgemrV2iy-3WKOecIHc#(h&HBnhk9`)F@wi!VLV zfA4k+!?sk~CG~!2PX%zuhp9S)ll|>hMZ=eQob8N(eUBaEMq4CcB(D!Arj9$!AL)Ho z2pf>Ih~yju>Y5wzOf$39kJ)2{>5kM;ks~Ez}zz=DeN?GbEzGgT6rkWHfewD#P=i5_m{u+xodZG*+=L&OPI8}n8+v3 zy3b|LQSSf$O8oq%-p_mR9v{cC5EYEayxKG7sd++@{)dxx$NHE03XCbtO4Q#lI*a(n z4P(0_Nn_rWbiX>YYkL-(nxhq@M+4k0o!Ba{6D|?{Bne0*wxP1`9f2^=G@MD0MhIri z)R`=%3UivFRE>N)>N*y~(T^r63ZFJYF9^r?T|vS!Fz@f@U7nS+(yj% zBLd`^Gm=T*7K)vXGPyUY5GJnWPkkeQ-BxF|wtQGlxaEQ82&HSFO@2;lS}`ufo!Ug^ zN%*NHB?LYSi!4!Hd46d~ZRI~^l+(B}$Tl6~Uy1#MwTQ0I%LLi`-stjM7}nWTvjD;j zb?iyLWw>rEEnK0L#Ft-s;>9}TrKMZOy*4x{R(^6>N6JN;Kzw;VZ6SUW?2@-V>(}y6 zm%^O?23Xy&Aijcn)n?LR9tDbxy6zY|D|}%g?TAb~A}PB;{0_YZCnH`-Y9`iAKG|vX zc<cS?LE%78xr-Nf!;E?07E_*RDb9b8=(sD?jUJ)A`RXI+fqqIN` zRKS5B+N6a&fUag}KhvU^Hl8V-p);3Zd7oKnF4jI2REt{EQ0eVB>q=&EmCJjY9C+(F zpq{}|)XLctucw@p$j+Z1xjV{UECp69Uu6glqDJ%k#n*l{xzjjxNK%q9L3wPTOr@-! zT1$tWMW97phMXau#9ii`f3uQnEC0=sSHB`u6LDMM-I=AkX0hsa%Jon3)N{54 z!CBkrJTd3^B;Tgyyz!8K>y}<)MM?Ev0kMp{l>dq6&D)ipvD=@vpeIH!uw1^*q9+&mfMF8`5~R_j9;sP?&T~LYYk&gsrB7~TI_4hh_;8f ziyRCbhhdm0Q-6fQyb*$Lih^aKN)2g67RpAJWZ5sq-svlfu6?e1Sfut#J)#VnVgZpg z!9*X_v62}NLg{M~z^Sd;R9R?=K>2+|2Zv3V`Iy!8(%D&Mze^#n)najT%MSz^{z>`l z5_e~*Rj4I6kEP)*$Xa$>TJKNi+2<*oTfu}xq|H^kUe6_3##d%JefzwWT;+4Z1i5C@ z%H6V^U!WkNtJU!#Mr4-)%@+MI5kESc%+XO1i&xzF(@GPvZ|I6SIFH_>9%-R^CprwR z`(-`1Oos8wI2q^57-NHxz>O3yWBO-VqN2#c>bR@4+2h2tk}+WZwNaD8Xd$I*&gJ?Q z0#|C@g+`V44gU&~jf}%mp2&v2fScI-RZs^qw5Q$t9n17dGMHn=Wl(UM`DmsYl;zOg z#u9&2JxhvIXGKTeB1ZT0B=-`LJ%0D3e=R%0@tcT<`U}|fX=OVe@_p4wv$Is@6yz;5wQpoG8EeUjU>h{w~7T^=p2lZ zTE}G|i}Pa7(k^Lrjk9sVL)bnyvG_G38xK%T{G4FU>_yTpBpAFNUbZChWkIrJE9BgA zusTm%rCg~nR4Fw+HMfxWsQcKyf!lDf3a1@yXJ7C2-JN_T;5t9V-Hcf_7Q3dZ5dDvf z9sN*rBh;OvjB%q4uSbO|}$m^-`6COd# zUBC>qu$=rLlHOBx*Zobe+}pDmndsIxvb>qPlUn*k#Ox|3G25pV2cq(1*T@Wv&WQsu zVs@jHj8o9kHR$3mBCdO}V_@r6Ks71u9s}4eu_VIl^&%#W>Nz-)>XL2N5y9gkE1c=~ z;~t*VmJ54tWBzQ-6rP|8o}BUxDql>aBsKF_-i0$s?SN#3))kUptkYWsobLQ&j@CE) z-yoT+pR}=ijozV%POs`iWq=%Z6I_^3Sa^63k1TvAFOmX3PgCnr(FwJ#8tZSA`vDd24 zR%eR};3@@9eS&?sHycCy^eC~RpQHXQN~bq}Nl!CW#@d^Qg8$H9MbFp2fZWjzHrIbN z7s{FZQ(Mny?O>T)SA!mjd`8fdHhSI9xqK#$M#mx7QI2)mv*mOIV;(X6Y0>SJCN#h!dk(N%iIpg&8~Vlc zn(uh53T!V%v`RI7Y@59RRaBQ|lo?(PRsW5QxnR z!9FV95|NZV+VFt0RjB8jZFE$GCCck{KOQI$2skiO(KapolB0ITzIJk19itF;xu^j| z#6qhC5uV`bQ<%|aOOz%3bLRVr!l2^`VNksvX}ra9FNv)`+y9zf;>cpAoyB#1GB>Ef zcT`tb1lx}L-Bb8tEC%L%{>S%2*+X}%Oiw9fyOHhFnu~v%UP{pfcGZ8*vy_Kr>86_n zt`O?u!dIM@-t|b3v)OCpHd_QJT$PkN@Mr|Fjv`F41dPSob`Di#?IQvt!@Wg=KHr0( z(SQdsvFoZ(c{oN%CeP{V#&AULG4e|Q`(Z}(EMAj+ZL;+MoVIbkxHH@d3CKfadUexO z4o1K#kAq>!j*nl?zx6y*D`#<_zS`jmQuh7iVcXdBjxRi5Mtb&QszfxW1g;gdj3?d(A9DuO z(5hR0`j*x!QUHZfWkIxA+%-cAWgVI*GvlUnecr|kBAM0zYObY=`Cs)se^&z5CNFEv zikcyPP2WGvt;^p^RK|HFL2sPTiYckA05TK^jIslvXx(_@CnOsMzUn`hxF}t49-Btq z(FZGvG};=51~%!by_iLtjlHF4a)?seqbZQS4@(}hO#~Ae_9UyN4MsArZT-|0Jfi;a zRyFD(0U161sE+hHzC4jm`c5`jb03$Qa|Zl`?gGJ*OYdlgH^27D(Q*(@j+x~?JjpnH26IM1 zev?zq#Y+2o*U`#N5dHYmCILF^s3nLU36x(8Jh+Z=Kt29%EP%>{0(vRly{HsY{E^R= z7G99SAH%lrFo*|4k`#a-N;rkE|xW-uLgS($XFJjOVj{KEG0U1aT%w?Y ze&CC~diDe}e=Cs+o{Z)GZdR#n)7dGKs;(TGKE|r2<~`Xwo|;u`h=(FAh9IGgx8VKJ zZUAbVRdpZ8>&miAC?Qz{jR2HAhcOD*w$oJlZo9OsV%WrENm?gI2gr_(4dgdEJKkDU zWGS{@wRdZi_Eb#2`ChE~_bSDUD%fm9&(KCjd9*FAh(5#3vm16IA_+4!t3A01prt(d zUBCY3!<|sey$ygg^@)T7IxJxK(+_GQzU zXQK&PeaW$IlKUbWmT64fnJfqa4HQ5h*J+oZigclj=~VN@$U|{GLc7Q{d-=mQB1gEc zK8pXHdP|KU9x@FhM<;Vnal)zL=2*lJx`)oKRLkt%FUl3Dj0^I^y$K>EO$jX9QDv_F zV8W9OsQ?1zuzm{xrAE-vqwM3Uk8mv{EvRDQ1nsk{c8JBxRVYvOY{sYNziJsOK zVRhyO^UwJfy5Oyge{?juyL9|}rmg&Kf}V#ny^JM}TTKcf4q{|>mYBOebnQCknb)!| zXc$-y#S_<8OF{L>#Rnl*m>HM$X0BH7>Fe$@l|Az9vsp>&rvzE<$tr)}Bq}9K{qpEu zl_5Xg1TeMywj!$kHQPDFSX-^_xU$qYoE;ktg^2Nj03=laONHy+E%L(uR*eR=@bU(q zQNo`bcs@;yfXYeb7VNsH%qe@Lp*|9zG|ZlpHrSRR(g+U50H|9vty>A!mF*lx-5AWK ze~_B|C~Q4*FvJ)ZnE_^HaVf5yrTlJMQEGhAY>rPOH=H3}WKpQMx54&)+_~3ovQIvY ze`g5O*i>e>y`Y)946FqyS33Rjx>^P6^cwj| zwtUE>wIyCKz5h6`{5Pn;QwAq}-#&-E3(vNGdk57z~~1v6sFDtVD7{)y_s za=W3Qb#RLh6iQNl#_@V1j}orKX`I_^&TC(p$t5rqzkOyIyhdLvzIVbdJFnQbv}=m% zGh!n^1qA(PQ;NRW@oVsZxe%%bcbG@~-?u+{IU@Ixfc~rVe~nRs{uN~Z|IPpy_zdMT zjrKq1`;Uef-Uz+@e_I4+9H9e|_QL&p*|WFRbj*kK^X5hi~ZfH+JcH2gCn^?RZ9X z-@erK=kRNfr)G@<+fALE#^!a-{dPYJ>!2w|U)xbm6n@Xc5HIL>8cF}`i{T?O+4J&< zF(gNj_pGwPaf~)?JCxY|nB-dc{aTnHM(SZ)v)fs0iGv^(-#7hX(n6?Vul;qc=XGtw zH9H&Zx%IsHmDGac2d_4P&imFQ*nL+U;)QqVlKb529d`}pzbXUYHn()4f%(o?8jga8 zZ$1JeOw)5l^1D3pLkIKe`TQM{zU|QL-2L?N%y0KS{zunMjisZGvwwofUjmw&n~%G$ ze6LhU{SQ(!XIWqRS*JO3{-Sz)+*Odi_ChBUkU7eBC(HJ}Y=aB%d)Xt;J+5^~a`L^- z+$yU7AB25nP+Y;b_26#7o#0MzcMUE9f+uKj8Qd+nySs(p5Zqk{4emC$yS~YNb*o-| zf4-`znyHy{rn-0Uz1HgPeReY+YUDo6RmCn`%*L9;XD`{v7(Mjjr@Xyvk-vR}%4=%h zV`&p;Jg#c9JJf|-SXx%j=(*TOHqU=|^t-yGeo`dUuJy3QfHbIw;wuf)x#vO~BA{av zjxEpc4eVF)?{???bc>lCvis(p&iQ{|&a8KM9mdCcQ~TT$k{921y}vs5z~N6ptggVj z?rs8J1Ph;g+?2@*A2nB-eIj8CF*SaFdkym3hPVM0;3izfd%L*`a&!xC*W(1Nzv0_e zs#^?q`lk~ft;+XUpA(Zqh=oLj?^`B|y&#r%p7dJ34g)_yzErWu@u2-@g@!+WTqJf{ zCwtyQaX)zy+%oH62nqE zPRyL|+cvV78->evZXLA^T>h%@_d?!qU$5BSIXbp+tNAR^pGJrl5_4{fusQJ1O4(vG zT|*o$2k>Y2_i0Zzy8Q5Ed7^$-cV+;lR@UztLE!7htTTsD!Kq`z`_@De_&!f#IjxM6 z{I<1IyPJn0(N5sWp9Mn&z<~+*^P;1{@u7;JKsFG>Pn!O8*VLt?sX0AncvlCiHG&ud z3E=Z~ohw>pO^7-aS@@UyBka>-?z>0pKZ{DVmc;&h-_0sKuI}o*ZW#&w-c)NZMN#($vVIg@xWqTl$l zef;cwthWIPS|VjClGu}*OURWdxvwV{mr)i%Fcw*kgRHR*gwJ=UeL2Ej7ym-(`tb)> zFK6zfV*72SJsei{jU&N4%5T%XNTV0ZxAXTm3~hZ!Y4Ag-=Y_#BaCKs{eAK ziTr~OOBF9&*^)DlNw4kcSl^o&e)5-1gdN}eHuCkWlqQnvKd2!)1GNXSDt=G1&08VF z4g+QCBh^1*YaG~SOg(+6&e?2Cc&F4^|`Eft<@<3MfsVECFblZ=UejRx@mQey ze0>i0*QS4W>sn4%8Sz;*Vp2?4cXMRiwHc`5uA^vDU1<5OeoB3m6EL z>Vq>kUTDqhb->q=Y@Gz;?+-%@y=fd-M0|L!we}k#?&qn{I&^{e?OoK#7-}v-dU`b;?FPGYT z3&jZFpSUm7b(LH#wbJN5VQmOh2l=)0r8urZ&~I?<+}F(;;-_6`GUgAKJ>jFuD~-+j z8P*PvaK(>x@27GF{s>xZvL^>@LTvT6dGAEdGl|v~ty$-EJ;4hD_!lkAulwk3&5}=V zUmc2oAFzC{5_6qJ{HB7)f+2W>^!~c>?lZo?Nf3h|`&-nm<5tUi6NbDS(ssU=lgYP} zDg(cbPM?2Ze$h}WY54O5~!S=%sNfwct| z0zBBU?k|vT?wtzz&*Hv6cfF&4NkEX(&Ol(>6<5mA^=Ffkz!!)wFs;Ar^X_2hKEU$u z@VJ__H!U=ud4mOa5JVq(*bRmpJa?qb!2f>sg@E)X#F9IXu>oOIjke(WI(Mw|GK#K1N@}y{{FlXi{bas_i&`$$x0K3rsfs|y9LkK z^??)I+18qx-0rJGB6sXB7ono7)5F-36ZovI37rjBr8w~ zM7PLx(EuNew!A={sSCkw^r<&tEAGC&(Q`tRkJ+A6=SuhCw2M7uqYY@clWqX}r z+uDFQTMWR&e%_EHMhbEj*__^_5*E(eJ(AxsC`^>*BqLs>Z#1OdR2hbF)0CMvQf zNXSLWQ0aRf7Bj^{?$XnWS@_0>RgsX4AhZbu@UQlJJ?49Vxt;|p&2IktgNqXj(dV>k zmujyy6k=lHho^cgXob(7Lp154J6(*XKY^x6>llodt$HOl<>0n_}wj8>@cW! zAd5WoV4Mv)q&oDW@qU9~mo%Fvmf=kSKAPb>!+1$6A84GPAAMUD_eIjp&oA*QF{@z3ce9B%`VtMgTv6LMtqaFugL#i@&UT2pb zdzuM9OmD}ywVR9*RP{nURMPvzguIU?RljbhmUq1Uf<`L(#Vq6j=H9t&`2d|6}QH1QCDU_ARu1!&}BIhzfBZQ827? zeu2nkX?^#tpM1|J^(qgBXd#6?@i+gjYuk9W6MEUg7q-Xm>!xG=Lj;Kbx`Ti@ z^*fHV*dc4Z%D`9RjR*Kn2&VuxO?&U|T8t;>68qx0!+H7(#~hy1Z&&xj8J%@Nrao27>jH^-CwsL*{(Kjumy1Qa2Ea$^lG4>`_h{D+qy(gYOW? z4o8g*3-i6i_lt+fdm-eHC+@3M z$Hh;!q96ne*BE~H3ks+_3*loOS(lD~-MdK}5(?qr9Cay)a%q zZhsqf?C`U7y*Mo|FY7+Nu)S@wAp(51v2*#hn_0VFu96r0h6LAZckJ0(4=DdhVTc_e z-0)8d|C1MAaNv9(WYV=ZcmbiBq%+4@uPJANjBSIbfPZ->8{+NYx}kh(yY4*$^K??%?| zKMl%(n9O5`c%%8)rX)Ij#P#`f~w^ts$ zKPG_kP0)9LkgBjhI9U1Ehru07!fzP6{2 zp{lSG+%6b@-PwNE@fbf08L}7RoqWv8`TlOekD#4AcHZFjG9z#*r24=W3w5ENaO)xj z&yemQftqR_%g+#Vmc8W8_M*Fe27gxA`zjbR~*I&AoXE`st3GCV3H_1!xZS{A12P1i?=0 z*N@9_3q%0KIfI>~D&SA>J>_{#SK}>M9P#13@ty1#k{6bf{pM42+na3WDMM|&c@^-u z;iybUTDZ{AXvR+*z1hff?M(?yx(sh?Pp2nmQ)t>YvYP6)l!`#9GyA+gg&abG)5p(GS zlV~oz+3Sf^Kky&j>kev*v=#tlaI3{J+kW)CN%^5^bJXs3-K=B4ZM%IumwAcJUN`Bt zd%`aL6T})>cg;$y?o&vjM&G`ZdJ0`8?TZDY%%3ap)<&Py>$ZgG#wt*V&BNtyb25j9 z5=4L~wRRm{&gG#$dqF*qOiz|diVz4y^P}wn0C1N7%2=$pqTyksl}AZnM-N4#8RE2C zY~7&E!L>r6gEyD)qzve~ADj7L1Bo>q5|Jo&Dy&_nR(RN?3LFBefSrjB{R8U3qaGfy z9nxQzE}9)Gh_eV9DX}FDL=Cvwk#oVP-9iEhoDv@aP&(g};C=uDYjDj9XmFHJ#?5W~ z-6sd5HGsdF1IndZXS|`TbUR&>pa5bzHJsa|tIPtNngh8bwttnrKr$4Kv>y)I@6L>p zG&G@=Q07R!0`)TUM$#r{A$yU;xO&3@aDXxyZ@c*KdBm8Bo2#bK%gb^*&XGimIcCz( zDd8l{NS15<$hs_qGdP>b01=VG5}lO7;@etXh4eTVp$>AhZ^gI0LjVmOa|?-2)RL4K zmP(`WLj8y_@Hnrhe1O76agA9A+FF8j(jh^6N2MDfip|in(^cv}IFQ>dw-oE>_sn>)MJXrN zN-D%+s>h`I6DiGmoc|FD2D!TzCQ_Q?>GP6kLz#{v$OFKYOLc%)6JvMFnIQ|U=3Q!g z-!#(Ax;Xq}h2WQ=Bpl2|Z!z9iZ5)1eR^+d!){lx`KO&QYNy0#ufQ;_QYV^9{7k%c< zMvDu9UL)QYI{_>M?&^U{Wgu74LFeqC3)dMvJT7&83aS?+=m04q5bUm5SN|#7CE6wa zumtWew;*+*qw!d?N1v10LXb={lZkUvxfrN#0<7j+2b7g^;1UKrZq1$}Wk>89vnZ~*6MsIi#afUkFb1lMBy~kxQvh>vg4>9etgsCYP3?NrMEQZ zlY-WXx){KV8YMr-Up)TgxVk1Ol?>hTiQlhAN#b0#)R(uwgd*rzx$Q#T_~%CwEN?BdrlK&uwC^sOO$5&yq-(d8*QaoAy8nV{49V1;s_vDfWFBd*++1(9Lc$8 z-pJ*5&rMs#g#n!z%j{C3?s0y>EXFa65q!k^ekPy-5L1f2^LK*PnhsWX)u;=B;p%@2 zM5uwH%eAIc-6SPJM)$5@a-P#KNEZ;qC7l9sk~7v41e%seWRe0GFwnpKHy7X>kgFhf zaKZCw=clMN_iKb3&0G#yhv!61*24(u6^)jkd|@>Q#(y4iAz&_`6|~bloktdbQbUphXZSkcRLlFiaWOsvg#j=w$plK8* zB7acX^&4aE=vnDT7zdVawdsew>wF637t(0Psb&B!*_@1t65G_1+ofRnG0wO{;^zW~ z!^y;%)pdCKZd)n&3_i{B@&53cg9;X%Hvly<4GW$_RWPyU65-*7mRdh^7;@D~w?w{} zj#{PV2!j91i!>{J1&>6sNn93?0fF!vK?^}MwLdrvIYG4?pIM-XfFWJJ7*#AKytiIx zTr=CC>!m0PKAsO*2~~fT#QyK=Xcn8$5A}~x$Pl;Z7M@o$N}(oT0nZ&TOeQ6;Zx*6l1a+86%=_pA{Ous2!p~CnG z7QahYqw=s`wF z6@NsOHqm-J@A;-hGdq%PV$ozN*26$rOj7ox72M`Y*`M*4RCEk~pf09UJ-MTH)aKth zvd0qm7?>TWmb^f|E9NB7H9l!NiNmkKY8@m*{#_`zJIUzvL1QTznHJ*!GFwNG*}g~r z>b1fkPIs9!o6}`siaP{>LV^!t%rIfkjU|0@k9^sVtVlSGbw-QUfued%bro1KW!7u2+ElAxx z#ZsRO&VmxjKKrQ;k9_vHGiHOPz`{E%J9aWea+N0T;cwCxs8je#jF1iOa)|R7Sygk( zF{z$P#m#>ixvR+c>*K-%vZ>>lY`jab2JcXOcwuI6m_H5-ddMjAhYbDa@@ks<6q0*_ zt*e~m{y1#tJ?77Ssb5X@WEhEl=f=~|%QbCzrqy}*(wr#679A3KD$}z}>*O==!XWo< z5)O~b!6sTc=VtPqwF-&l3?&qHnWx8tUh>Rfbl)oRn%<0$2eXtu>QekY8KB~6(XzbRYE6|(2-=kf`0fVcn5Hs89t47NvfEy!evDEqSA+_(O;emtj^_4&!f z#h~_Sy%xxdv-3a)ClYK<7?!!ga-;}1J1KyvYIa0ni5CPWa_1%Li8gWl^l4&Z;I>fX zn877Mvw|02z^6U-i|8`jDWYxXS%v_Z)Fha`{`1W;JyhRUJy{pmJAKW45mH;Rx)2(7 zy@kj2pP?)DaOLu@br!%Bq){EFLzcSTER>(T!Cxqoj+9)K$_Q+8%mQU_i5HYsT*d<` z?hD91=v)MB9!+KcesT+pbHT7xe$bT?TjQK+V4m3bK9_(pM9zAyuyz@NCgE3AT8)9DCt+0Hr}AtY|!3*i2MD)ivjJc>LNKUQN25Rf@xlB$OA#LfGH zNqX;G@7r;VH74-BtM%c+z2vYcQ*xp4b|#e6>e5nDF~Xe>h(zKTW`Nw$$DUR!D3FRo zkuhDyl%aeV{$fX(kHqLZnM-MhQBieBTkSdDni;DNb)re%XF0ttz8Cbx#qTPdXneGW zQL-56+2U7RcQR+OqV$Q`)cK zm$gM@~7vJ2=S>kW1r|%xGKqb@9 zJV#F%+)JU0%9_=mv#wvVs2>rfz)f&0ai>$tfNpS6Nm6_6V93jWu|&PF|^9j zkEF4FpxHPzVzDMlu&Hy0fW^@=K{io%5p?_19ULbn;>QI_=(Pi#K$X!Vjr06ThL{O4 zXWg90MCPr6GxaqFKumHh`D2#B!gLpCvA{`dqivdgVKs94i@Q4!(AIO~a{gS6(nkbY zwLRqbA_dAT=mHQUhhzxjT=4VNjV3w?86#>4QaG2sAU}^m9Ke>uYObbUdX2SEp8|(z z9BnWQ?P9My=B|5NMH56oOgb~j7rn%CMDi7|&8=rRLG6WTO7+X)gu2zX=#Lx6Ilvi+ z30SLYlRmL2Cn=u8C1anZAobv3Y%ckpvFLiwPp9kGldhr5JX3#@nK^o?u69Kt#)3#S@S}sI2fS-utyiI_GPFPE?yCj8IvP0hAzfQ}Gr||h&E^auPrwRMB zhnX)9EP}w_>#wM4IJ6D^>?#M{Q`o+umQ_8+WssQ$-3+sR!6#k)JTbAG7y3vdF_QY> z?~P$$7nO2_21o5p75F-fVoK2BAxH7%YgjKW3?{L>%t|@_C)ZAS0g7a5w-3zQS%qU9 ztYa~!gCkwg!D`O!h3oUz+RuW3)KqEns81xM-L3(5d!9&Qyf{gG;uYz^g#R~v&kAzn zaURT?!1c=(s7t4S`Syq1x?`Pc9hhBW#6^ieVK)or7pQdY_@1NfS4yoMsq-wjb>8^! z?Tdv{_9M0@&0qGQpyE?xe>tD&Y!&N;!oepg$HDJt|T{f-hJFN4`^S#4l0RfpHSzrpQRjIA|x{p%P> zSEEnU+IqIhI;lArT2@WjhjcBS%3bJX(hojrZ1#h(je5)oEe*Ha92^HZ?!*@`Q5}EI z*DJZgQJU0h7%b?XX%u3hDw21Y$IM!j1UXp}$~A@?RsD`xD$e>y{8hVXI^V^S2dR0ej;zYGJu_X(XvZZBtn+ z$LsFav*n-VyHc)9j;+B(7Zmxw@68xfwD*KZ3KiuZ^X=s6Uju_*;Q-iY*OG;dcLm?( zjTwU&gi=uezbzLP1ZK^i$DW&+Bz<$|>_aLD?X5%lnF)JU)6*8q1Ja;)Z&ri%D@~)! zftV9c43cU!NGO&q}~g2O?Gz8qVM?fM#DrP-}j0^CtV(k;}V@ZWRkA8Vbp z$EcQn7Ia(8e`TD8wkQf;Hj6pMlumfT=>}EW5ri(rj}e9LqiH2;qOGj-4)tZod+t`Q zBaVoo`hbiB4ag+RBI=7KrPOMs zwRziR4^79t(qQsVZBzWzDx5^lJ&df?f-}hA{mnUpUlF#-KfJ}b0r0q&UlBHCHF)nwe-66u*75T2YJ?P2u|2#e zp6*j$siBelZ5yx@_1;kye-{w5v*@Uh<08(L<b}xu-!XN6cKDa%(L@;7VJlA6{Dzok0q;4UUR} z$D}>DE}HJoh9uAjaajv19lN}l%OYy-zG(7@R$zcE#`DhD$WD`Dh1-@Dd#P=p*rc9c z|2S4oRK>Nl1VLk15N1R$K}>K!`1gW7?Tj6a;T`cg{GVSFJ&tRqg2~;7AJiQC|C~y} zQuJ5GNG>O&{?y(MmRE(BEgTmR@ zc8f@~Mch`xPk#z9BD2zLh#E(NoyeW9NLdzQg_GE26dCs}8`p|{#ir4T_1H3Emk;GOn^uX?jZ7D|)LqI~&h06&C`VYa7S z@4Zsn+7*DT+ALONMcIGq<09r6Ez{!(}YimR-B@ zWbf;ix0MS?;+1_>X{m)G@3Qy%AlP}|Na0Y+ua!2DM?AhOM!Hcs{tWhg#^&gi)PdlF4)hAHp{qR|@lFLa%cRB>s zwyw|a*%ktdJd`a?r5DRKOSxCyB*(7yNvA##vl5$BbI{S%*nHfF{#$T!mAhIg;u&B^`s;3)9U+Ix}qMHMUFQ&euK@5 z!nTKpOJ^R|lPm&Ai@s8}?IAqbrd`D1YU&%_esHUvhTK~a!5w19CDDAn^n+KHz7hX| z_w;;Dh|`)O<~s+ZXpH--D3?-z9{#n49P-ZBd*athOj% z;pMj6AoEGY0oUlO_poes{2)(8!Nj}_#Ut7n^y#lL(Hhy#%kch>L`T6N!#WY1F!k#O zYUep`GSo_J$bQ*U2zGEdO=V>)u41sfn4Yy;z61=D)fUM`} zBO)T8@1I^~z&kgaHGTjzwID4MfJKnA$#^ck3*Pm1uccN-KIbBwx3z`I!M8^bjeKD4 zL5%0F)WhZsZcgnTq~{G5Y?uIlH2dud>ZTh^t;)n*iu|19080PSBy&+uG!Xr~)0o#w zp!)iCmlUZ`s>8xOy5B-WR!|4JS1d^~5ycjz*lxW%J&h~LknkoY2UW5H)NGsYy&nPn zc2d8^Lzj0-*sJ1Ox7sEfLmHhHy$m1Rx56OCW`d=2wZmTR5`M8ULh0vc|9sim`(9Z|N z=-nr<(}EE_q!rpSIJ!fppeav4SEvB&6^*6Qd_#9gfa`E;8T%YFyDaWjo4NU|A69NO z;|Z;N*M2Xl^gtkvL0vi?4YAtLijWSd@y3^3quQ?X5h@RowX%u%tJG46?5$aa< zl!__9UZodck+3~68+nFL_hQJx)Z6EQnw-{JiTduYsDd zPyS(UW_tQdL|iTl)b#MJLp)I$G!^LM7r3bp5p@UZ4+YcELn}Eyqa!$j1Qus8Bs_*d z9#(eSiHg)iVj>7hiv1=$gNhh-1(#Gwj}fGB+Fo|c#g^x0Ho;#O*5o*`&Km%(uG#BP z$YIgpb6I4X4#e0XXeh*IjFR(&t7vDXa{2W}UY>YtlX=MOc%OEx%vo-JMK$~iTOfO? zw}2UmN_KE{WU2z$J!>%T#KTkh$`^N!lix36AfLfAA)3hTHaIh?<@>?bsgP`8tx_>U zwDGZe*PVkc%wEnH#?qJRb{{61zH*Q?`qda48IDx0*pcjj z$0QkaR%ac2;3huXZLhpp{$WcMB%!`?#bd4smEq8$pEdy`%s9c6fbD95T5cNwT6>LJ zb96(2d@0QgEn2N{7aDubXg|aSC6D&Ff&v2a{p1I9M@32YVcfJ(*TZ=6I~sTT zg&T@h!z-JYoRJguSg57bLeTQKLy(l6J?0_kojncb4uOe{7^v{OGC z6#hKYPf>Hn58wWP2VtHdgMo@@P720BrREXD#l_8-`I#-fBx8yx?-+-%N{2$^)BHXL zNjcjw^npQm3##Jd&N-X~rP1J0Pa+*yNRGMTg6{D-OD+ZNhd;*EB~S zWijbduIjza^sqe<4|)dt+Z4}OFacM2rykqYNH+qjw8k@8=4 zR!Uw<QVsT6t~eXSrfKE@r(AV{@ev zx_SS&hk67kU)Y&oAl6QXpO9*`HMdEdINF`<=8|@Go>pUS`}&^PgaS5L2lUmEK_WBf zmqK>)U(d3}Bw#HF%?^!|#*k#`;XUrx$q(J;4-8%f_d2e1=tD6(${c-w`^mJZrL8bw zp(4pYU5|iKbBwO{Q=Qck7SQV>_pw>&H1tZ0N2adNf z$?s3a)fzrrYK^qh=7Mf_+Xe z6mTz0R#;qVa@|ut^n}BxV-8x6%N2C6&e;fB=tmxF9b`K8haU_&!@b#j<}0g$ z*dp3PpIEmbOMArupU30k&V9(W=Khl8`-Ud_49K`5<`Jq`F}jaYBMw*z85fEN>sXYV z2@>fz(*y}MAV#tm9@p%8*$zW7V5?YNx+#snJVM)j*&V;1f@W%9TS{!#dX8^xE|W9J zsG6*niPPm0-9HuWz2kwr+ROKF!1@{eEd_vyeMAI|66t~1p>Q-vzS84jBit0wRNYlo zxf(VMI?TAl1#vn+@A35zRdXes0+|n9K>bcX2EjN$;nhQQ@a(D(c(1^#)s7$=%#NnVWvMmr@d0Pp94L29`W*|kswvE8>_(jV_oQvs4B+{)aw?aD1m zc40pY{6(D!PA8iBWluNnPqy54gkE$kI8IwY3-Ug+1%=rN@wnVb$6_7NcIE@%>k8tK zG_E=xE`5weOB!mzOPw1jX5my@+%GoRagG_f97Oa+h(N1wnQj>YZk zA-jgWc*xR{*mF1k>4ATC9?=RANhgKyVk2${U^*!67Jvv zr{SvuP|2u2hdd`+l>#9lGH}6`RE%Of$`A{tI?~V>W>fulYjoXyV*PPOW9HPNEd7)5Q~^zH?;WoesE zEvS(we36i?B@;}yOAj^6*$Gdk+zT7Yb?}Hzxb#RtDnI^G zl4jbqY2H>Q-^shyuIb5A%>LUAQuRdgEs(lHze;6;CF?CiR`#2JHhG@u1dYOCxwImi zQ-ZMSnhC=x8`BbFF41mLReddCbk=0PxD`c0okjk!nDo3^XRZxw@n-{>LS2@psxX|P zq|evw9oR$c2>8FZ+t{#7np*a#MCWLbc;ty9v+F`uek0gW~WCyJl+Bf6c` zXc`JmGP}!g6qej+-hn4QSXe@nQc>PLqu(bTQnxW8l1ph&(IhroF7lM5)W-Gh72rYkM z#fv1VaU%P|wpot#GB0D*pGI#l!ud7Jjk)PKX0e75A%KEOF?#0_qq~JXrqU{Iqo;-9roTFq~!@@->N&3SQ9y~Ph&!O2--(qxPMET ze(V=P;@CJ2$qsTH*kcxZGO&{;+9Y~ov5mpvk)=0wUEvOZu}a{NGLa?rcT8^ktdRQX zZcu7@O4%0gc}`@WKUD_1%)aW3?ngnkf>b`Rp;WK~U2}p&Ra~`oXOqwGh5g0-!IlR5 zLl_>6vl=kP$|R_3CFkmur?;Pj{~%9A@KiXrA=N{_@YQ|%6?gx-;Tg7U?~kmqnwAZ= zZPaEj*~2RWCc3?ajDg0r$DI=zLrI6*HYq11rP4w&&3Qgqc6icvaJ{tGXYNUyrHBAc zNTH0!Wgxn~vk)fq>>97JdcK`8mFC`5KX`8$K*T?95bwD7y|ql8oh4}3INhY^u~Y4limyrg!yB_r*QAvE^P@j<| zhoxLO#h9>|Q);N95yY6gZY7IxRi%L3166xlM-P3|)#78pp*;#0>{~BI|DOk0#{e_q zjPk*l8FGn}oZ9BEIH)!1m?uPD=;<+VN&)OY-{I^#T&~8Ffw9bn=8$ zD63mKY-LSUE}JPw^3POUjH@Enf)z_$haB_;B|YR&*4Jv?@;z|&hW?yWS}ls6G=P)? z=Lrq}=DlMQ>uY|@aGDv~L9R9fI)>JHH z!`wcd{-({h*T!2hV5k0ZzVpq-M!o`)q1DN(F-j>=A7u4>_{C-(xCy)nQUJ_(=}Si7 z#Zd*2raO3iRL*8D-WuG8w}2?3)t*H(ZH**<<&^O9z|3N#XqA1v&Er-N6gDp1{9U~G zC;aG~BskR3PgwlX>4=ZK-GtnTm8x~y+pEXYMhjd>l`YQ>PWy@z!cvSh(ZOKjFHm0jY}lxU_K`yzUErYdMiW~-RGcFhiL$aVLVp+2BtXk!?%eXvxF!Q4&8dk&eH|z4j7p?c zXQXWwS3K8Sr-N-P(|9#h_o0fn#D3l&L@E@FdP1 z0Hz^f<2v|boB}aUVI28$9Rx&m6U+WoG6`6i>8eYD_|>05P&?3HQf(+)p?w(Bn4P!f zZsEEIGhi>W#-a($PLvX(+1XpE<>+JtLP*I#w9If;mqK`_Z)_>NYR}ACHlU6eyY?gqYyCk$!%q|J{~E9xQl)p&LA zo~Z}KlY-$sggP}6jID`)ak*7|3@fT%%rT~k)b%I8;lQCZodhmoZCDt=qo;=%-|Krk zA6RO61tlio}3e_>=McF`H=8v??$bf{KlE9%kD2D?^n zc`NpF#V;b3B>E~?IMUUGD#MBDQCR2VF;}~=btZ+s@Fha0L$EM9fuGmDPbbq@Oyk-n zw#jIH)`6}NlP)W>!<1NE;ELwfu$oDc1_Y{>2dsXTshZ`g$depitAgUwt^-6fq8Bvi z=SG&p;xW2!7i;??_x~t;p+=ljfy0@l6h|!`Nh8Etf%T8pWkd;9OP7yU)od?Lj4_8_ zU;m}5BXqz_+8sY~NMd-JpCwQ(35_uQ6+J19P60l~Mguz??@2fzb}5p>^^T+)C|Q;XY4)tDcA{)f+WW&)zzOA;V+Aj zZJ#=hm_Z+TPVE+N_CCEAcZlc?YSqA+AK=uuCqQN`9RFJ=&1g(J-I6EE^yRa7q>I=J zD>rl^k$F=K)-NBlYP|wF8OL*b|DXnoQ?qo;QA@-NghsVNMJMBsvQ3PMeFp^e{4};N zvy$c+-9sO;X{r1A5BIHFQ6)zepxtv_*uO4!b3j&7I2Z035i~tRkr5W$n_GXDHq&_; zS2Y-QUk-j^m_UY=Av9BG_fP`cf@ll>AH;9 zwaR8w=?{~s57JOe$Q zh#pluwF{rO+6V<&e3S5O=0HC{eoeSi<%T^#wP7; z%SA1$Tvkh6@XBg1ifvu?bfZuxLrE<3fQahSBTBpn7!Sp66w%ax75t;%b*(Y{e*mID zUB4EO-qym>?Hz&GW>;lB9JncS9~E)B`G9oa(jbuPI;12vk@+1ZwC$z;sNQrp5ER@B%DFAzXzOM(h})q7fCD@1)V5rgzMU0&5~wO(H!g@Y zn@7P4s;hMr&ha?!G2D-|>*u*9SnA9Rg_HQo}R1J%f+Yd};%5#u#C147X_V z0@l>r7;ZYx^D#NQ$}th@p3L94i-L>BJq^i39z6eD7Rdp3HS%>xDT8!xJ};W`cUiE3 z6vyHgioP3-D%YwAv}7-V%zW_bP6 zeRLd9pE`TXHfPwL0Sj*G=MNl$2RoTzQ3H288||4J@UtfEO-|cW&IBId{u-2ILe^7u zOsHvq=`8D!jR{ic^|%FETHE_hf&9BFK}7*4#*b4J+UR^IXgwiYB9OhwNSQ3yL(y9AlXC*SG)XoL~a@k2NC7?P0 zx7-T9zgP}{O}Km@Y>rU00d(tr_`_3nH1;1TDfyST4;)1WwGFX)UdPG&?Wx}8pWy}2c_PP8!{GkDSr(kr!`ol$PdS`pJ zB0IEvJ(Yo!tUD3wFW=qqq2r`$D!kZuqT94X;2d|)CdxLPG|3VMTaW2RlQC#ga<7Z+ z83)Z{V38!~?75qMx*t`uzK%Ua1)V*xff&e$>&9r*v5$!en9caP#oaaB#sqH9W@5+z z9B`uT?QH8RP^8JH4(n=%2|ph5+9lh%`6BO#px?Rb3eOD^%TB}Sq<5rIoQz$wB&88r z?8)K4!7!?8q(*SkC!tqD*=ha@Ecr0H39#%8&AmM&3@i#0nHDv(Mca_r3i6!XD9Z$e7C_yV$z9eHr?rFL-?uJ)m?wscI;LZr1|;-T zX{rO{dL$s%C+KrZlNm*sOV`m2YE**|>KQoXU3ZUVAk#PGH!|7vA}))*M6u*|a9v?= zv0h1xH9hHj+Xawhj8uRjWeB&Y9Ff-b{obW0d+#O0YlTEj>^G)z^6cVo{RVHtLfT2{ zIrY@EQK55YK5TCT+e(PUpc6$d*U}4xj+(C#{(32 zb*XX=#Z&-gM>{#Xsk5l-UQY~pF;L_jJ(_MOqacpCYOqKyW*bF0G`XfPK?e(ZJqox;x-z=WA3ZahYN)6K~t^jlk5xtB$D-g*oJCmrtB3>>g@IU=sI08}_Q z_#CVpRS1U;!yVpE+Y3^p!MjDnYa_rEUJ2GDYM{?ec4qVL^Vc#lTcn159oCher`mw2 z8+geK0K6}H4195E2?2{Lw+ND0RZlrKX2g1F&i?OfTSD&;Ql6BCd9Gp z8IGx$(wf1=?#8L-jM@i1)r11P&W}b2hYleeI>hg=8l@nho7ZTg^Wn-0erp4=t&!MW zv{)caXSsGAeBD%=-nPJW%G7osWe#aN)|$YYg=Q5Pc?Vfp?%0H(o@m zwqcBAEC865*tQ_z;DZ}gphNs_2w)jWTL*hAm4FGVvKwe#1El1J*cyHG%KluO*QuN{ zHkk!j-{(EXJy40BP>x>gr<4Ns0CXUo0|4`sQJ3wA5lHQBgpN%v!C+DeNLTpGJZam! zeO^pLqsTbE>Ordd~d+ zztvlHS7t;=dW*Yr0c<|l0t4M&)>K#IoF2JwPUZ{wLefbXV9T|8T>+&ik#*w>l2{16 zPqrO@qp;b|pITv5<0#Vm%!=gVQssG?Qcq3|-N1q{p(x$CC8=|SW&T+~|F;erRj+&r ztmAgG=T`BBZr}h^8`vPF;*@hBDf9lo4j!nRyTQC}P+%dUEMiM!05_n7Nz zoy?k&RsfJbv!_RKnAf$_nYTreFBACnHAou`zDeVFknI0S7+&S~X{Is;L00|0N2u1g zlc0hwt!=}4s^>+rh(&w!o*!GlP>M^7rCFVC9jt*NtU{c{>1Rkb^eQ8&gDh!d3$`t! zL{0L{2zlcCRtKN+Ao5HAFhMGa2EntSC@Lc8cfH>jXbC8*SQ>25FOpi|5Ou>@dgb{+ zA%jHVmsiv&tQCO&F6;YmH!bR$Hyh$AvVnGe`S}_2`BMu<6ow_)b9rv{`wPmy`~_*6 zq>{SZd9sQ=Jp(zR{{Bs%rkWiFAie22(r$Du)w>(}y{rds@1A_L>^YtH^33N&P*=Zv zmgL~uNg%r82wW!Q%LIIXYsY+64vj!A2ZO3!1}CbD^9g`dhs_b%i9WcYPIx!Ud^QD; zXcJcX+wZ^!t?Hb$vQ}%We8uX6o>OcLuCCzF!li(0Puf;R0MR&)q;8eLnNSV`>X?y< zkWQDLIUWd(UZ{T9-W2!H&>qtf6g?hMKRw7?H$?_@l&sI0U*CY=z9Op%1e6nib|d&n zR2Ar}kd&oq0kZ8cmlm8K_MoSywm#m`p#9zp5v=;mtO0U52&#nV8EL;q`tzTFQcz#t zz)Hr)r!#OmqkQ}BYh3>GXR)E8bJ8ku`~W(f!S5&SSyxBhiWlb#Xwr51c!Vovq$H5x zoTPA|J=OqZE-INPJt~h1)FvD?83LkhvP{?D=wEs3l^N5GAc5A3Es~K_LOl$iF^Q`; ztw7oIm&d?+TRmj%s_Om0^&V-Pi`j(3eTjfk=ks|2y}XO61d#;kfF{;0d8u1~|OgH7hF4+roxH;;@Kf zJfGWsy^SOFUeRv+!{dn`J3!a02JMt>JqD#ft6)@?Nn)&+M4okJbGEG~2MCLIT)0!K zZbUY}TS0ToyZ~^i4**!K$`-P#TXML~al6Xt70nPq%afRWIEotN`s1QK$1!rP)p=&uY>zNN}z)BYv-@sRczw z00pS-^1FMt|gJG&RqITR!Y85LqR)I0w z9S5n>=$hfora(h=L;@=N>6)By$8udY^R3s&tW}p8d^!tZ5)p7bdY^RqDeLLl;yeBmsh{8dYRld>39S^9ve&S9SxVnthH5O6_zXWOe%C~IHK-%%^`Sw zm*C}m_TDvme30*x%Ao}Z4ZAV0H-{kkR;9q8;z4$h52L;YP1+9aShpa7_TSM)@@7wB z2Cd=qHlMeFLUe>SRp#zkOA(UMBuQmH?3&|f_H9XO=Eg$3{q5UIe`MmeOEH{vIzc8y(|#Z}?P-)OG^iqs7DZueK!bvP7O1l6EY+D7^Z3Ff_T-#BHe zBvSq!@x-0&IzPwH@pJqfKgZAUbNn1X$ItO|{2V{W&+)(K_^~VKH%6@9LScQ9k*}@q zHE0%^j6ny1T1(4xMOfZe!<;r5PaP%+5&LL>u)GZvZG{MpelB!C=()f2|&-x>-E*Q zH>o-qk|kw1*EF@t)Z-)Q&wm1)&LYvW%+fk+iWKYWy=pa((aRn50S87P<%#B3))B0o2O*;ovAN0KzD46-R9i5viQb`flsewz}c_idGnmjA&6g zry=*%Zj**u3utL@`l|{b(8ze~yQD;Nso5PB{ms#S;@Fx*fcWOOsjmzg`h}?V#>PD` z+M>M|tM@^Pg;|I}X%Bp zdA?6uu(8>rV=sPJNv~C^tvQ1)7eVFJ0vdPHBCv0^RNqgnPkk7qzxHwwdy0w`p$*Ok zR~8akN7e0I0+CgVnF1*+*XnH6JTJgBNL8~#N`*Ikb z?Oe8JuYsTAo^8WMT+2-fBn4kK5wOhdzUGXS+gc6)m=}SuL*@b(X;0{Q2yPL}rT_`-X>o--1iZOXgZ(e(7e7QJ`2g;tWP$4Oi95c$V&|l zlSFEQO~2Mp(mrEBIT!2y7=?8j(By!^bpRpE%EJE6_WaJ5M(z-vg>UpqY{IrkozDHW z+{tjpdxf{te&6QYy1KlXC>N+BX7j*;a|^v+=$dqjV{f5Hn?hy>LLFh>8cR zq!$6&v!CTN%;FDx{oeJqTav(K_4a#LcByagNX&QHZ_B3>un2h@C6WZWamQQ+=j!2k zLHYVk{Q}*i_j{!HTr>c&z&<@ZsJ~D=U=Tlmo!E-EbpnI^I(u`L7B(flqG6B#)aK0j zBG3Lw<=H0jA+BU3Kl0%$dE^BhzJA{lTR=-#ZH~t&Ny6BCoWd=c3{95h+=BaQzafHi)#XY!IDZt%o+lwuwP@iO3Pz^3m+Wu*N zjwTJ#X%asu(-Qg@LtA7&Fd+@F*shO~VJm!Cc8|JGquCy^=;iGe07 zpzMV%F~*SQ*03l?hFTluKvf11D%z=^m{(aOn>-!UdKkH}>Bedxk5WD4Dvp;|+7kfp zv$*lwl?ky6kc@dWN&|FXs-4lv_mgM;u-}8mQJkdrle4OF(jYx2uMEnulJxhhgaakb zfN%QhukR!OJ+dQAr5W)K#K^`=Kw?NTJb2`rlTHh5jdxgG}4K?92*2SZtVr7Z*L z3#kS1r6bz_&=%cV+x)ce{mqPQx}Nv;KdUmB15_;FPvCv)QBRlEW&M~$semoe-#9`P z0t$+o0+Gz&uo+ND-eEHj<1gZ)YA7!&==I$L1Qd8L8EX}ti{77|vaMU7u&kX!Drl2F zXa|dSDH(47C11PBx9>2S6~F$-fb5bY(wpA(X{L8=K0<8W@=YmjeXQGWtZ| zhds(sdgf9Es5UvnE@`!~+q2s5UH||f07*naR0yC#ZSQlmTLDJ3?*<+RPg;fEcHWPu zqp-ZElkg|_xwXHX^|ytKX^AuYZK0y?>wmm{tB$ViKDcz8&gE{G%~@>0QCeDIGLk@j z4wMq`_$U?OZ{PcK-pMc?7|KG#hH=*t@<)AE^DK#aBNq&+EcJW=P8A)yIuSrgs_cCB zIV5Y9&i6!}b~B*C`C+dWa1Cyj1$EYb-cU`)5_p3?JqZU#k)Co-@^5{z?OqoD0)2uu z`gla{dv!kBjiA5o#E+vYdloHW?k9ku$+Ecr*?vV@Ah{8wch?<|K;(QzEx3|E-N=#E zevN(Ff^$oj1RZqoccpKd=UEY5cUasoGR>T250B`>9f3;Lgj2m%t}*VXTggXbZNIf2 zq$CNEmbx5zEoxGa4EObY=3S~4J!@-`f`svi;s9h&4uCD@8>o7d#?>c`*m9o&DU ztJiqUjZ-MbHt~C*_uOB1pRl$-9caaq8zjE~-~_<&wK?>StG_D=5iQon*d#S>01$y| z+pBn9ZpT#rj`3p$=$aKbc6KuWCqYmrOEM;8 z-Zl$5F}Htf<`orv;A4N?N#fo)^y@%B8RPdu6{mARasrU_c*XA#uPbPp+V^vI*c&fv z53|=SAs~yI|GEwV(2uB--YV+RK!O8%!?|^b*&y#Ghv&%_eeV065IGrY;?72Td=Pea z%?Jw%bC_F0c49zd*#!`w+Q|d!TbWXazFUBA4RUiHI7FskR)mOUxb41nfq0KFp`ouF z@v=&#Dg<3tad))@eU0{eq?}QwNo0q1qXZ+i&gq6uj}M?feUaDRq6qYTjP&I*_|uaF z3zh(M^iTqgqXq@*bueI#@Hq7AjRhu|K)WNH1ScRWJoyzzu$|74v#QuFM_uP!npe=O zvN2|JW|y{?#0t5ut$OO1wA%V;+v=TF$}2o6MyzPCnLwoL#*ly|Rsv&SlH7)cj4wD+ z+Yyl~Luz|6bGxUJAT%Q79HExQA0To~dqYYi~;4Mgst*TTa6OIzGwTInUC5Q|92$SP{eKLH4=B zr8-#?jS5?*&tKuYcFVhxY zmt$;fGq$jp?__%nvLHn)KDw4ap6p*dc$()Q7W>@H4&g3bF8&MW5&*Q1$MzYfc=LbF?D(EeV? zG%2(fks(zbMnvPbKmdV7-GcOG1ut*Sv9bU`B?e*!HfC7{^g+28bLz8o2B)|0 z#Gabcw4xpPP~gY3s<|Bp05A+v^&E%BSb8sm2>kqr`sEQ=EAqEDXCVb3{Y$|PTw$PA zo%hKr?wnK0RO(#daS%3GB7vf>1)Meu;&z1o(ynR%i1T8Lx6L)?P4ywQ{y#g0W>^We zt?N~7%j~mOP}HBLW-E-+puQn6qM$5*VE|#3-d2}fDc3f!4N3rq(005GVWTHYeyM#3 z1Wwv>Nac>|>Ew_(|L1^G>RwiR?dNEMGrs`MASPPRtpqgG(i zp3;EMVn?WOuOq92&U4tedQ=K43IIuLqB~#KfWgrrnnPhPbi;{sJo2u-fV&h^!$YKrzg-?H7JTJZmde9!xZ~9((dKBn6 z5pbE1f@EtK%p16|6kuvlc}Jp<@@J?@0_}D!q0F@<8?E{kpQ8pzY`#XAZ{9*;EmNUL z;9L!!K-2FGsqHUCc~W#gBbI;Dh1*``NnN@=7E$Aeh<~>MN%ZmJYZlA}Hg~zk9PGLD z$|NblvjLt6)PEZS=HZC?d;qJ2;=K(z9$P%|`hL~AhLk;d@9_kb>x!sxU|B0IG+Z?1 z_r1!aEs`X@QhW&sTh_#6_kNUbwg7UI3=rOwP-Qoy9kcp-DjB;$NO-YkXnUN`wOj4J zK--5hd22`K-vLe96Y$D7gF1Tv(Dt@l`@@ZRYs<@J-ytf!H0UOgjV+=e)fOKH4l7sb z+3jS1AA%CkA2fdG06k`yXe})-%eYj!ny?=(ocgy5%2Rva z7kD!+>$i>73R}!mNCq&22`%7E8u(kFvQ~v-)#m5`vVa2uo3&wmwSX`3))Q{`%{N7J z0yX1GmMwIdHiH!>TxAUPH~XSx{pYnAh-Dz{-|~HiZzPsg+5 zWWermq$^e!*kzQ-yVM>bK>0&|5ydBD6B zw-rt#`KDTZ6O5GvPN_-7Wb(j*iIA2ei?0$Mdcd(1(0T5mu?EElv`2Q)mXDp1uoc<( z=B3SZ3);pCEORFt*n;H%Pg~dSJ(m=^OkgEhv_4GsijQvAwpkd@10W8ny8%2jgg$4nUnPo*JSOS$qeGMLZjc0nG%u)c?*dELkpR$RXpOS| zx<05&aBo4XqCz0^m-jlqO9d?zq)b(8ts9xdH(Su`Ec$h^Jp{Thkp%q0cOuDfj`nW| zm(te!?z%tdQQ!XCW!YlV0f3VOSJkGs&qT>k0CYNo9wb1=oh7Zhcw&*nd<e5OjtNO1b&Ky06h;-xs+Id6H8LGGmcU ziS1ld+^&U42zldwmpLpVj4$uL;c`wx=9oUM=Zx^)4pd2C9aYUy{`_QkLsXv0U zZ(vCNdLY)hdM{>d(SN6df+Vy_tjFpqi*_yXw{6h@w&{6xcW4F-v|jSs!{VhKfV2Xy z*JcnMg$7}i3g5OO&Ma(NgTv=#k)!KtP>0Mj;@tY(y&rv#4H-Y>naXRNMcxDD8&r=EqKw5c_ohZ+92&QGxbvM$lLPFi4-$tkPK^jr8!x2jNS{3O;*9R;@d32o zp}xKW|NJk=(=UBcbSHye-Y}E`eEkkSUqGKfdEYqC3otJ2xkjQO8>(Ib=GN0@J?M&- zh+6j?QBhml8WfpjXfCUAr6j@merR*wf?H;Bpp?`}nBKXwiLO#%!z%OM(-&`w*;M!~ zn}h)|q=$WI0S2RLWikPS!gOs7rV57cOBS?alYCI7ZMw|ug6tS2s7Z_pot_uj-@|zT z$m`wn(f^#a54Tnc9u*pGfjK=r3ZmrOchGB;Yr zkXvfcB_(e!Fp@a=klbG`rR!0b&oAIN(bhKJ3@*i!kXNcNl!QA&1MsTq38tg&3JP{@ z(7o(%Xu8)AVOjjz{yyulM=JVpg<5PoHf~G$TR52tnhJ5;W#C+ z9m;*sVaa2b!US>HV0MVuKDP@u|t#i7{lvx z(`E1M$NUJ}7re+8_MNU6*$76vy)BL;^ZqIxv4VW1tIq?_Sc1{@qKEj0SMajxt2 zu_gyP)YkS{+2=#+Z@U(1ui5KELnHFbYp-s z)YyYDY^VS_pa+{V%Exd3*xzM;8LkybO~r#*=})` z>=!L-U%ercO{FtZm4>PeE`bOkPIAlm(dIsy{LSBzSOa_!lMPqcVtExA2q&{JR6(dd zk@f0CaxD8fTX@iZ2OJMTJ%Hcd!7s1ZnY23?{QfQs_WK?1%V+SAK_~6SKiy!Wv<=4K zsTM#m_vBSp;nKg(l3s#Cu&)D`?e3bLEbEAt6>m4Kp&V=W-)cVaaqCr?E9^=_Rc4I-FXh&~loh)h57I*xe0UYi&I9f_geBtNW&MrQhq$Rf<#y?R=Mu zux0}x8AL!8GF!2sEc3xoc~(u15LZBKVkw^FrH#LnfPnJo6Ttp`4uudy0mJ|<#^)6f zL(|ViluNX^3S7b4qg^LaHsK^KCQy_kZ30KudroWVi5O!--lc@~x9xYRPY2M$0r>U` z{PlNiEc?eFF`gI)(BreLU4|?PEi@78?4)AKfq`L=?IP{(1ND<{c;V>`t;CemD zKkJFr2w68S6`*hJsa4iPE1uc@q)8dM4qO-RYIQY$Rs|=ZkjkaC&vzVJ&^cW-!G+Cn z{r-M%-vgRtTWR<2#iUg%3Mo&RAYKaC5?66Bw;0aQSpgYDkobfn!5n07;e$v?^7|S5 z`g&C$`S*?=-xE_(7(VW0VTz2nYiU6PppO2~!13ac7ch7(};#b|all2|CgMeGYV zJ#=OUDZ6USDBkMX5HcD~90XSR2)*eRk3>RzH4KfID<%a3Je7wGjM{(xe(q)2?qO*4 zfSw*vpB}*bEJ5o0=n>;Q?Bo`FOGos zz-|XA`*dnBMXKyNt?Z}UWVMSpLY~wbBq2qGfko%?Ez}0!Q1+Nb^yilD1dLYU&LYW)h%PZ_%3cfT5US%hg{Qy~=IwRvV2TUDODz%qq3wsq20qg2|^qA&G z_ zbWUYd+i$SBnnbO{);z0pnPh09YY414^5)>Xeb^!GN2Kps;JCLj zYEtNUkiy1VK*m24IF|s(+!+QzACz)UNF2$FIj+HdQmTWQhryQIXI+aULTk&l(fMKu zV^GY2spp&rgV!zW$Zq{y|?Nd~$CsTOLpruH~+&(wvAX~%oJ8IQxy6piQ=ViM$ zxm{|@($=BbIx<~?7_DD$NZt#d<^q~p(u)rR>X?z%Dwh%05?x=m>I#nHu|2R9@aY1R zgQERTs!h>BO631GxHBL2;Qiq11&Ewn(Z~6M^frQ@4c@UKeZ2fILbWV51PcC z+J0|jlgzT-_>2t>SG7{BaaNkEpd*Y}*oJaDK~&GylzkBKt@pAXW(tQ5E;B z!lFW=-xDcaY5PcX2?0rRn{ouD`FJ6*NMKABOB%W+i0~HlZyY?(+g# z^h>~~&o{Qt+2zF-S?CAF^{7qf#%}{ zo4AT`wl<eE4^O5^&g+cow5%MXRNx zEsToT31}F(msR5l4e0l~pAh%|rD05#5z-E{UZg~AVY3GsAHG#Ew$A=IfOkXtUUX*S ze{U;>>Bj3>49vC5~ug&5P^D(|(oE$P41`QK&Vh0sl;)1-<+>Hy>OlT>iuPGE!V0-)z- zhjW?^E1%C2pj{?#DbjELAbbO?0Y`m#1D!9Rw@0MMqx`mXmeq( z*-x!VOQ^h$jo{3yaIqp-x%re7lEI1OlGJIr#cAYwo~;ELvga&CA&R!0QmK_X{H-VTOyZWrQObpA@wXR zROwG&M6L@!I!_Wn1b>7nX+OHWB--fuZ|euu;XwtUYpgl)`r5LBE(&kWN&E`CHchm$ zF}BC=nN1O0qaF4Ao0VyppJzde6kN!VD{5n%kH_4W0)ki00o>pk($^#3kokH^_rcu& z&Lj!E*oI=QX;VnbFDs}@>x~8NJZcill4sKlniu5LPAZ1m_LDmqf&`TU1D~ zcdl??TI^2PXy4P{==?&aqOb|ZJ6qWV=P@AP@&MrmmzVE5Nl;n-Z|_^jRWd2s2LUpl ziChVYmI9jQwg)Pzjn?8PprU@7aWhyOKxy%Wp>=6q#I9mY^#_d~K0tSZ9-ukGHmqWv zs5#Ng+V>oh!J@+^u(k|mgSm&w#3neu>QUNelmgVHL4CuIu*I5!uDPDus+QZ#6s?e; zgCPOA84tu!qj}Z;RtMAJAOT9bu1=~#JE{2i{k-L{OcQv*<{q12Ctn=8`&Pp<2>}tS z!BBYJtA9svn&^B1^P*%Xtsf3Kd+#S1lr9YEN1R*V&7BQr8wVP@a;UO;Wr0~`q2|6~ zPQ9EO5CRWo?;&&+>5mdrHlmH7y+#HQL?hsW{-%r5% zNgOLn-dP3RWYPf8vIz0s*YAK<%o&h1=ixylcy!PUOVF~)ymI2R01f_d{n@OER3%}B zWkq`9mJG6U0WNihEH+$2)!Yc;sygm&W0fWFVUcd*QAin?fK;>!A8pE$2!Nqfs7N(} zhlHAi^h>^1fGrq!^Xc?_ij zNFY+>eG0ZjE2MJHA(5d8iTbb;o2Zg}L9Np6Vb`sDJH`P_MG{&zn8EL7;O!ltbf1ab zb?xEcK%4JFZhMFNPP{C=j4dgOZNF=;O|$s1fChx@#Fai`;@?NcRX|8d0`~~1->zMD z{W(jLEugztr9DYefnEC`(B|`Q6hczv1L_cmQAH2l^=EWH+MrtkslVzqbe8HO znbM?{bd_juf{LKI>^oyVX}1680)FE>-vC6mz3;6vYU|!djrGD z+7pBgvf_@0X*Oe*L5~kY5VNeH*VeZO;F>5cXYadm*{A-%^1pcz_^(0y0zB__-(IY6 zZ{I_2Bi;D~E>*|m)x5Nb?2|xlgWbhMbVPCZi~Vn5qCSyJLhyxg5Sv;=Vu%cGyx%#r zlOur}iz)#|g|khQL(6^SELH7Nz{&JAp%OzyD&IS)RPklP`u5Ml&JJCNwrCoy&gMUT z0qytTcuv)C=e04z(r!fh@>vdXI=9}>I~#nNK!-ijKmG&w;Q+eKsQ>a;dDF-;Eemh! zkm<}Wi;(#3*6V6;BJk^*RGk2D&W#+-K5J0KNThgcm~B+W_QlUJd*!_BwX#uI`oFae zh=aN?+(WqsK1fN4fCR6(o;+ujcdoPECo<^{#7?;R1ZAS}w)@4(mZ`jYPL z%D3UK1;itfwvAXXuFX5OohVV|qcSj(AX^>|sN*20E<>^8)U=B$5G!uBSFu(5tSW9J z?o0mPP#Y4zlURH*hS+A!$zkpyQ)?%K%DRzD4pN+Msri^%PS@}8hZXj83O?>FD8B8< zhrRrM<>&EzM3FH*at0s8ccROzEZ}#BKD0KpoCH0hq|??K)6CNw!Yu=x9oGN zHz`zVh%rWM>jGfyvSih!e*5EO6Ipk$wb&JorILdK-r1tkba%;zJUV z08@#9x%b)vJzOO8;xef{GW4^`mKy`?aBNCwFcD+htvzJXdOtdc&H4dT0_{xW)HF&{ zV|fglA}@;s;Jckm-|)0agxGgWX@(i#a6}}5wvxSBzlZeGr>660aA9R)<;SBK%Df0O z`?7$Sa=jRmI(}KmAK2J4?{LsCfDbz%#p1TuIpob4`iX$ui28Jp&(168?IMfUIRtZd z4Ao-hpo=W9Ep+y9#enM<9@~n@DCK5vG+O z{ayz9H#Y4UPyx~=kdjL=@^LTD=~*G`3I(Lcqa^$c4v(fVKryLh*A|^w)%YcYW-bf( za?!qWI4sv%IqLZ$NvK~wqdx3Gmj(3OSJYQwtR{0N;`#MA2pLiBp>=mOj6AXKN10F7 zdN9qPm$$a25s75ypTD3SN2Iq&pzr5%gD3);*i;y`Idrv3@A|wn=x~H}12AO*caVL5 zNCL-8)`k>#5yp(VA5eG7kiN2$O$j-b1P2mCZ}uQSlUxj17{w z>r~QcLdx>*ptlCp}nE)p6o3w8vZ5iSB zcVNFq{qltJutPpCNWV(2IbWuB+>iiZwP~_FZn`r2FiQYn0kZ||rX0gc+x)l-RQ~)m>0P2G~h`dhDv`fXoRD2e=`5g?v(}Oa&h2{ z=9^W3lD3iLzQ|(7wq!FcK*A1*wS?~vPp}gmjf_KChyYX(TKng;GISTVF<&UK)aK+P5-*cF(+0 z6soFQKg`+UvoKH(Sv7-8TbP(#O3Et2zA4+^VQ7oi_IX>df2YAYAkT^}Dw!6wP?f12 zrct{kOw?Xj4_c$-1Pgm}IgS7UX<9|*3AjpDZRG{8*geBD^QySn#1POdo8VmZ)Ws%h z&Z1Uemr!b3_#qpLA4jEglJ=l8c@|9X3xnpRG2-S7>>z>GRFwBX$#ss}uUxAH&~NW9 zKZH$SX`xr%+Q1#F49SqN)rr{s!3-g`7z4{qrO0rz1dw z^mb_kWgk__0T_zw3aL`%|E#CnNJ@phJ$b*m1@CnyB&gu2ZcGHiU< z2^WS+9`U@m#2n9yuqGQ(=~7(JohPv?mq1$kHIU8{xbs<2C3ncn06@@HXK~;$1>N&y zm7+zKBqGmJfosK&<}Vr3Iv~LXPm=^KU!LW)mv`{_a)Y_OA4CM~j1fCH!d$^CJUFKZ zC1gBEV2)*#=YCP1kmEttX+?t7$0K;3JwZ!BqKe0iIwogeccQm0aMjD$_UjUfhs{y` zR>~^E_ds?U(5eZykgztNFIFTsH$*?knp~5F9}fw2mqD38=h}ZZO5;+Ht5RE*%470A z=;%8M(J}-n_K^hfk31|PQrY=-Iuc7(MszDQnN(fp_YhFkcXtUi^=EfO<2upxspHy+ z*I^?m%Rh0SxH36U^OH?t)2ic|05CE;C%H9Jw8LJKpf+zKLGX}!#gH&OUa`38gZFQK zr~8fQiZaj`m^4$|eU`WPgo7<}L&InSi{_R9l;0-4tn(2ux4nOhERKYWKzsgC*7*+{ zKX!m_qZIHw_gR0SO*YLYiM&hI1w92Ab^;$p)Pq7xDPJS^qJ#$TF>{*;i5XZ)swowXEG%b-@zP~-omydT zSLaN#Po$Y>0Kj1nT0|nnbRoSe9_|OUitoQ|Lw4j<`E?aIy|yXPZUjF)wBw$%ipUJQ zOs;dtrAk5}uwh2%3A;qrojP2A+|zXhzn?(Mu7A(6!^b^1C8X0uS#THEEjD7p`gBBj zRGTP_;oC{b)--#c=Cx&3x9Af8hdTXN1So*P1l`Gxq&lJEeYL<7P<9z*pTG&olWuZT zgKTjo)Iscq7)T2tO$AuVA?^;-8ifTk%~`6Y)7(2c&|qMiTzvq5JBs}Fu8_cxNQ$R(EgWukf-cHD;BoOv_ zk+twY{29v^dG2Yc$p7^(!hn2Hw%4yOattFLt2G3M)&CM_huTF#QgR8ugnAr1*4wnS zN+l|q7P`)>avZQc0Es|$zYgHsY+^XGByvcC^RiE^s61fjCZn#`jlqUvFgT;04X)4K#0UV*ngVlB5@X>2c2SSH?1qCSw4s2V&z zp#0+(y&(zd>l^UfH{g5$e*1>uEX?lpbP`pBU&JQTyR!EK67ZeQP44U7puB)54|$%! z-@Z$*8)2oIh@_`Sx%b~*P){e>Q_czX?Og)+{T}Hb{*3xXh~j8of&cv9f%64)IRcjn z<=5XO(BJQ`i89RxGa0CH03jnXESq#C4Fl4r=Z36cNh**9Iu?ikZb$Xg1J*AG)SQsd z+8%V0K$X>>tGbs!lfP-HASa4KXA_pZPK!$AM!!u*N4N!`4oNEJD@&0_&n?@)_5An$ zq|l1xLAEF;m~sP{fpI{2-urj*`vjaO3CQ0s$g?KmmsJpOs$9?!T3RCCh{U+wr(F=q z`Y_F))dFn$3#mdI+U+vQy|Toqk?V4N zKuZoNYSk;@m3yL1L&b)DhMyipbtIG6D&rL2QC(wdxZEPachY`!Od@d~&`8-NX$a#_K@lGJO zR%LVfjoKf_#z$ZT5g|--?ie+kWh9Bbx@md`5v?+Rbdeo;Hv$zwbP#!c)r~) zmbNZ~7&Es8T>HBHI?m^|5kEeNV_S+ik)?Qcn+@Kq)jR9|k{`hE{>xI3jt9{sKAlAZ zO0)Cy{EX$72Y*f@Gw}5rP$VeFG<6VB)-1X1adM4|_MX}Ge8BVYLyzFN3x~ivXc$}? z3j00q=?VNOj%yl6Ftg~Mm(u!X^8xGUBj#Tu>6NC6!?#D^*RM!K;LAmLAD$j0aCkcj z>#wN`bl0>&uGr8Dm&hn3U+>M4avSsFj5zys%vcW@bu?XBO9rr4IZ~Y`vpm;Q9Pz@MK(ssUDi>zQyE|lYSI3<(3WDT( z5tNXv591*4@rQ$~SBhBUH|f`RCia|BzdT|7lO(P3R4{)3jPjRXk-mOIeLo{TJ%T_O%Bvfg;KADr8vn0{9FBm}U4NfL)W$SCzqRS5DVJFCsD(EQyViQ4{ zFfG;h7D0~bxzlFPvP(*YI*N_-EmqAQ%`fxMX9?0#xK#;3y^CV|SX3+lT2gCBsF@l% zQomCV1J*~|&t?D1=NW+7S*V6vTZ$)Q>xqIY zl&!<#AgTsq>h}plOHvES(@Fv-cV}XAEs)^Z&{-c+l3QF8N78FkM3x{PtuWJgA-r(u zGR>N(vc7a8aL!^^VGZXo3)0i>A0XUG%q{-&VoGWSOb+{@`c18Pd4pB|-#LE#03A9J zpyKw*saAKogd-^_yNl$o&)mkS? zQK)Rl76Ov^uPpiwg4|w)EO*J>*E9X{e*ftAwNEVo}Z-Gd|Aa&;83B-tp}0Dp;f=sK6zdQ4Pk8y zcE5%J1m$_KjQhRW1RJzd=k~@4r6hfqm{&pMXsc>95WbtH)<7Vvi3Lg z`2rmG5+E*1lZ}iv5h^*N=}XGp&;mGm7xGw&klmbtys_C^j`1A~apJ?8L={ikPU&j0$BBXh3ZGRU-r%)fHmg@7?f{k0hi8h=koCV!zfk|3eB$}vw z9teRtk(fR-NT*Os*d(arfB>f~75I6TV2T8mkD?XT&3eSapOnAUAyuS$yNEAWYJ=_P zHU}82fA4U3k|(r;da*5SlJ~ttEOkXHT>G_v2f}<%WaC;S=-*3g2TjX0Jll(R)Ccm0 zOtfN`4URob!QzDEQq1?ePyoUf~fHrCih&`#3Q!kOB<+SrB=SL-F2UzgBq$8xZi zc->4YFHXkf7KK0^tfbws2qWA@w8Hz!ov)$R>;8D{qj%JE?)hJwt85$B=-T5FZuZ;$ z!0}@T=p@dj-?UA3$1B4zTM|DLVM#@xe1O8pYjq=YM%qCRba25 z1(e9+V~6^O9#x5BC%?sIxW@ibKtwnRh zY)+9SwbU-CGB7fDpM@FtxCh=&GVfGB6oA0mHHeensdf=J#FRieOHZfnWHb(-Up}M! z@(7xqk^aj+qrSW%JwFM#pTZ9L)qH;3gQhj0!F03Hq!rII>dULb*@Ar*;0?c%?96utcj+YXDmJ+H1ZPsSX?l@IXj&MbbG-g|E2R+yQ6q zT1ale4?B`LLtRCuY5;hbP!oY_mIQ*G!;&3K0kPUs+y~-5;=eWQ%Q*`i`STt$A2I&7 z-+bcU1HPuK zM2#rCC}Ks)HI2m919L@0(!+zSeWwd(ze9aKf^$Z?%mUe63({I77?p#|@htfXxN?pJ z7O{mf`f#`JA8D>gz6XGT6i9LXbDDfM{viuI{E`@r^tbdjQ}!9$2n1(ZpM+4NVU(=kSC5V2|+qq zykzP=sZ`|CD#y}-syqh?)U(EO)rgGkcW#HpJSez|Uko9vLHZv(e(V4}jLtwJv|H)> zu?Y&gi3up%YztyLR_b7QbrfiAl+5WSs7_+b262La)-y~xiRC-(uYErD(E{pRu^u2) z8AZlGeqTxqXw`(2z@_drU|pnN7yz(nKOn-rT2{%XjZy*a?xSZE(e7cF<+Vy5OZ8O= ztU71ZGH*#>xMXBBF>quS237!=b1wn1Ij1i!+s)moWVYGdTcr@_gY8IC<`Ae*nb%F=^gdy<9;LN*i=45zqgK>M3C@{tvvOwHSMn@yutRl>y8a{z2`SwWgwRU9U)34% z;CvhF4=wOcs|4v#xLVx}QsG>xQ~&`DLNpM|B0Wf#33*;*zAmd=hOj4O+MSwFd|hS1h|NlLm^6k@CLo3yL~ z5goF$0ZdD~e|Ek541PKSfBhX)_Nw49i~n@FApg&=a*D^Jv_Tnxk0*OWOUgVqyEA8c zx0AMpaRAN9<;L!6Bz=auXLi9baFw+13X(y4fp)Kd`-=Ros3K!)Po%as0_%!;z99e8 zKcXIW?Tbn+kY_`W4-#m+y$2H05UiU#l2+XTC_$zK;ZzuOxriSz4$|IeN$6oic%=w1 z9>^0>?h+|l#DZ?`tqsAftB){*fx5zrEZZTypv4tH{XHd>1A&Np-$$QS9RS{E z&?yuyY?G`N`Bjq_!zSr*t1=&oH9jm6nUW(V?s~-FJnp%Gta;QBaR7RMN()HNClcG4 za%$wD%;3Xbkcja(VRVvU_CAM--KN;+>L3(+zj={$)}F7O+y1S;mz6Zpky+67ScCIA zXza7SM)Seq?I_{38}5eeVd&d?4GPcVD|$7*LW*|wJGDYza{`UY6UD-XWC;xT-jbK= zM4-!0`wQG7jpOrBwU3_x`oDE-D}TWCqO&!kTmPNZ(J+7ACV??#n)9O-hP+g`)+M!L z@zBWJphe8MDL8yRoVtU*$7G#W4Z#XGw4dd_PaG#_abH=~5tV7aCh|ZfO%19jvNDiO z4Uok`8Be_rd6T>V&`$ug-f9IZGOWky$W+uFyn_8WsHXzEU+){OKitrf$&FzKeb zbPf!U8D%dE9L=>sr9uFH1tqliOlD0h<#kNp0b&yihv2-ov1;>vAz_4G8OUazW)pBl4LFHfLp1^q6%!2JFW z{Q5icG>hZ-eiA+O{jLRS?SN5nKS753H9mF$aba~yRR2X{2D=!wS7DsP(B|)r6Nzl z3d||B9=ho0m9XXk>aZ}^d#n zOldZ9R5^bg6KGHri?OUb0xJgm(7jI+aTd; z9F5%_h$J{v!#=5Y1E3Wh+m*My$7~`&le{dX*nl7>S4OhLomJ1XI)heh>6qR_!7v~N zVlnh)B5P|yKLhmtwehb)Hbdq23SJxE%f0cjRWJ;iQMFPqOYe_EadlK>j;1P~wJHeE zXPJ7^I6I&In>1T$iLC-~Zh<`cq|?8aII!QAfk0%Pr~_ILgYB&FmR1bGmwc`E5@k_eNnEUO?ca!TIW*zirrd z&G$Bf)5+WuX8>r`bHF$ItDxOp-`Wa`%o^`=W2Pm6-R89liOntp+>$JHC(O}lsdA_f zinpFgwg2umLZIwI;Jr#9;V>%uiM}bcg;c7O&{i1IYh&c8dbJQq95^IMfHg1R#{>^4>(Ktwdtp)X!y(LGq z>QlRyCXctciYeJwtA5b1f0bbdQBbdIoK#-4naVTHjw5RysToCE;C}c{@+(=)e^i8d@ z4Ju+JB|*aQA!=v!x;T@xCCm0UX|;k^*KI#zN|I=^(`dh}{Exk0q82brmr{t=g(p?DvuH5jOX!0M?Qr2bB24f2Ib$ ztN;%~mb5s7^qA@Dh()eH*b_}{j4hIe_-AbOw!qvL@G*&lkpwCmof^shum?9y zBfU*(&gcSixd#1rLU*0M(34Jfdn@a|s~G`nUoC(Fq*9cp&BnUttXGk$>d9BZ#QY{4&K6Sp9I*#v~+fckV05~Is1LAqx7C?*XoDD-Dy z6+wJ#Ah)twF}r{78;$ZabUK|K`Oap(LvOnwyT-u&UfT1b!br7v5YCxU4+V%@ZI zMtVI70%Sjk^dgaDYy&xw+#e05720lnoIK6adzmx%bVj-y1$wLjbo%s+@_+pUcu2@E z7tqVQILH^3cQcYV3km_THN0s1o|H_BOd9fVK>hNJ<K zDPt@QEV`$q_Lp{pN~~D`0!jKBT=O&`KaAqI>HXuU2Q2^bGk72juQSs3lgd9%prTM` zYf~_Y^KK_Pzth$xHhcMI{yTer?32G|S_M^2I#0&r1?%4N%oVp2#FSZU{Buf+w(64ya+OeOgeNg z6~}a*L8pr(&c>!R0zmYrDZYeIS{+?CJr+jNlObls-nH}3`hin2AL<4 z4#A*K;wUoR|7g`c(xAQ&)XMraf(aNd1?eooRa&d~m9gc_`A^W=O3)Gv+u~FAY(JU{ z_n64NF|HEYTVK_Nt=rTPq5z!pNuIg#ix@#48Ap?-eWcUeP*{K#qPPX;+w)ts-2Jo) zrZz835d?s=xt1b+&Ti;@I!;LtC-dq||B_(ULsfPHM6sFhvr`~XSK`r*$xGf?9m(-80ic=H+CvsWgo-MOBRyC>j#AasW9RdV;rm5ovBoS=++{_Y7BCONIaF46Ghiff zwgMyuDYYP5r5@6G1JlX5Wqh;g9)hZOKZRoD9!Kmy8xz=F;38s7?bzn(zzDjU~+2YNdpe}hBJ1W}Tu zx~{NuBS11@9op}Onf-E+K6aH(qyPRFVSl%N%TG^U2}whe-f@G71}HQQL+e)uz(%+d zVC_5yhU-vak8(*eifr`v*nhqqTtPGdW4Mp5QQlcj!o9jkVT!7yc&F)z2!sDPl5vR_iTODWbyhazimCr z`P15xWHziC0s_i`uiTZj=J`S+If4+TlV0r%Md$u?8V_Gom-ED%PBQpLC?ls>KbfC_3Uz z&#CCmZs_{rNxoP`^oJV$yH-!g+|#(}FaE#vA-C+D;k)wew6EG)5n>Dy6S1Md=u*$j zjr`62+hPLV?CFUB1VoD+hl7GrN`Bn>D10jG;|OS?NP>RS`PYgktc1N~*Y*jjQh;G< zbJT4CEw(`dw#rn}N^I>`Vt*pJCcncZqvPNZTRBQt=d{NbK*zJAPodo(EBfjG;`ijf zMO*m$7B+t90NqD~V*wvRn^`vxL~?}CZxD%YtPfo(=B+P7GO_9$5fI@XT_rFq_BBA^ zw}e>!-{BZOV(&&GNkW;Ol5Q|nU(>z|(gmGNSDFNh@4-_ZWixo2nog}%h>Wl&EF6A| z*&vb0Hw7M(WX4oilxdJ&8YMci?`36Y_w(&WaVFQ=Gs$)jt7RjhFcc5eJz)_tiraCk zx_-|iF5+=9vc!n7>I2@&K<4P$APu~SgmP4{MV{Jswo*?V+e0c}C#DQ- zvU&X$+N2JIGPdMbDhw``Pzyo5P9+A3!#F@Hkb1l{A29y*F4=2K@SG>m`?;6@37X0L z@}_GEHAnTZmxSJ0q+;~^C}d)$&kO+5jQr~>a!R0=H}Ls_^!bxWOf9RBEN!d2>)QIs zcUD1aZ61!;+3KCgq~o0?thlOF%Vsz+7Bj%J-19L@0Ad7J!ywP~bQZF))2RjRrX34_ zjz{q4C)DEzx~!mo`3?E6->|QrBzSngG#f116L>s|gMXgDLl#t%!rPH0@O4?g-A(2}cX+`5JvA-Hj{6Fly`;R5bbtd+mh{(+QsH*Oso*BMG za!7)bMbZ-GwShJKi@kMc)RJ1Ms{`n+s(Ul@=8cTU`Of*yci7q9g=Q{^1GqaR z$vKyg6vo)329Y^6JQd2UYsJOXAk2M$v$TzE58e%+;{-ZQ)fqL;=srFIp5R{If^QEX zofB9jvRZ(+&A(+4MoG&wu`-1~75B+e?$_pori9di@bJLMs##tuQ60}vP~N^Cf~;X) zok(7F9Ok*&PMNDCWaz<{d+@dwM$)qvz_XVKrWtS?D?=|cXfuGWF2#{^dl13Q{Z5>s z06+@-?OAob%+;I)tS=BohL+r;%)lg?2l4R+^QEktxmO2Mt1xX%frdDNWq--K+-4g- zOS7-&y5f=`l9F@FP4FS32QU4+8`Sua}AEudD^f$S4jqxx;b+RkiKE-k99!Hoj+6!dW;Bq|KfEjq224?@{WBxBu*(0huq}Bky~}3t2bK+2l3a zUFy+M!M?#X3~)p+G2kuPS?)1En0h3h<%^Hrl!M3uJ&XwYdAp|;Wuf_=Q{anN36+1*(B(~CGaIEG09dFOmKR&=H#^DC(~3r` z+OtN<(1>}-^R;L@12vjnZ?Dqdo8zE)y{%w_ugbh|05fUCBf%{RxhR;D)YJv4cwBBh za7}--;y;$JLYmv%P)P_G930Xn0O;Vy2pTJ0%P3|5q~7}AHFBFZM?S5@F-kcu(mZ4H z{+heVJelSNYrR_MIaF_>=qUOOz@4#Qa;47aiuNzHujw<$y+_`7sYSVvdNY$SCDiL{ z<6i2xN-mR|@=8bHy!>HNp0-u1%!wL$u(`ut%B{6|>we}M-Du~L&e0qs%IHrCeoBa1 z28%r*Z9VA84*npepV$~BIRjlMbX}!ivI(w?vqXAA0GtP(PNLJGQCIFeq<8jUxQbVwn!D?~2Tnqh=WOb{Q6gD=Cn97i1IRVU+*xhaxl&I7n9$j( zbl7VcMh~H}?F})mBO_LqH3Z3XRVrYOMrowvG}e0R+K;r^fG>B5k2c7IhwD7TbP0ZW zBk2t$qNTaB`RNswCtHAk?!^c?WWaZ_#?CcGh?tR;Es=+?-gjJ`W9)<)o(6|B2wTb- zv0}TKqnmkEfpVnn&E$QiIC$+GZdQ8&{ z;!gJofIE-n(FS;Di|)k;|4b_z98aLzBfz=LiS%fXya{k~gd>uO>oix2v!)f$(ATKA zmKZGpih#_eX{zeqG1k&-54;tv78Q%5b0&dvk|q;EofBqDIS=wlm=WiF*>~WJ9rB|c za_`~1hhHN2)eZ2|X8_ccv1jz&6U4_-*W7<{3*6j*I<28T&vg!E23=gp`MZro+b!it znJvPu^WaU7bTJ_9JElf6XKja@>Six8I8 za0Y2=l~xS_#1=%7TF&e>(pOR-Wxq_l1F?f2GyJKh|G6brTdQ-(Lnu`m906{IFl}sJ z8mq-9(PxqJ66pnM*+=_bMS~x_cF)h!n&|n8%HBk6i$;&xI8Lfk@X)F4q|xuF`U`qp zi;D9g0<(ZJC~Te@1Ilc3W@KNrq9i>e3A@#y+V@6R?*sA>q%wz&h3+(Dv4`MhhM)8LJWa9UQj)ZO zFtMhAH0)^kE_Gim&(LnwyQ+ZSj{hdoetym`qP^JweMLq16taLF*HS(Vl<0te?Wrm% z9g39X(rn~x@ zQ~E9-^TXaF23(|)i%uEHj*tkT=n;+y{fnveQ`T~DY1o4D25w3SFOO2X$2%1tQUhkI zhF}+faT3serBwD;*VX9ES!##&UP?-}fbL=^znd1rafF+6lNcwVY&LnHMZMU2p`ONA zpG^YbSq%os>ntV19x!uv)fyVJ(cSYnt^S7g8=XdE=1Qry++3|YU-EIw+A@M}I|QvG zD^AA@T8}KF+2d6nxbLRw9Fw6c!kl%wt+c%(E9Z1U*3Zl(FCIAq zeTVe;0_mz3F<*k(Ks6^m?qv=Zv0X-??#e$sG@;pF7}@B(1OX4a|47MEv3FbpUZf92 zbWY}*lN8BDsa^8YCFh(H;8l)Dl2G}R3i28_Z*3qO^BVLh`!RE+^4g7^ z*-o|A_XC^{ud@};ZKrcQ0a-s+dF5CK5A1l#8CViruHw?B=fp&-XUUyME<&JGZ8l~} zyER)Y3z!GQUUEy)0GI+_#Uk7XnGc;^GZpO+07%;odGM9KPE;_B&5MFp4CCgiQBp+S zGK%o7+*I4gZC?v07cn`RONAn@K^4|LtBP&wYic8s&J9Z|DAfLTIU<57x)<$~v*%Kd zYv;sY!5nzA0Xnb-=H}IETRZ8_^9$P7&hfp?#l&#P;6!C`KnE%Z^*T48x%DJj34$`X z)hi1$1I~_XJx2=4+q&p&ZD;^x1EJg~j@sY_7hx_YiDH(oHAPWs>^w3_6coJ!s{vSQ zZJw2o6M!JXR&g&mUf~c|6I?!Xy@;^_6v_-5SwXpV0;7~uyRV&39Q(p&M#Nfsz^`+2 zA7X2w4G2v>GO(Tlt+&t?|DrBR_dXX=@2ofQViEIB#!?OhzW`(&Pc7eM)dp;Qr;SJ2 z2srl>m)zL4ts>`M!Gd24l(dU?QjsfBv2MPb?gduoS%l>rh{dQ2w+s9E}V4p((?RUug4e}-+5CJCvBW{ccW03WBRMtuG zi0@ute$>MyM*qnPG}Zd8ZpmVJ0VM}LZ#?2w7%J>ga?RU%=5gzg6uY>%2Is^862n2~ zWMAi-TLk161I?4pJrM%(W2)Clxs-;I>oRiZF+b_S?+h3=0pa6ox$o1AaN8s9f-t!3 z8C>lVA8+B74FAau`1)q$gvu=o$nvD^SuC^YHUI+VoCn4cd^$<4r$+P3c^eT%;&DPg zjrZykJcwrCI%(c`3)ow23(mm8>%UWTjkcb=^<`#>Y@cdMRP*K`7-3 zOBpG(;V6sEmOM(7(Hy;{M4<xbPjJ?Cs_28i8XdA{UX-Pl;B_BQa9%&;swLeA4(LQ59vgWCa=8o8A+_@6`pgD`G zyWU6Ih;S}cJdsI)E32wIWVqzqPOI-3<`LVB8pb5Af|+mv%CqLQg8?ikC3FjxqNYTe z9+tg;d72GR$h@N#i?tdG_8nSqZepgTqEu@y>hYmD#>9K?)64odXm3712ddZOHK5|o zvFDWDvvy}tHq`Vgv|(Vl0rv_5+Hz_+h&ry&4!JsSs9wLN@n(;8S&tU%yXH@>UaIU- zDfpdCFgKHUjVJY>8o)Pt){@{8gOX6wioWiJ1s3EDwb2JM`C3l}Pc( zu_<0R0KJqHu`2}wgW}!0OWUX~> zSRV#oL`>*s@ftdyP_as6y&7;#RHsSIzzK!I#Ga4`hvmW{^%Ax7GuH(fSj`7^5*4pe zi)sh~byEOzfsQD2#i-PJDNUmhz%e5nrDRl5(Ivn!!`)8sw-fxfL%QgZb^*D+LbvPT zpIsNRI6A12sAZ#=2x)MLI}Z*Q*u)Ha{t7(L@XxQ|#*NVCZJc(ZB22nr1CU6dMQBqK zky_ETnn;NPk5ZQFoU&_luAuk05|jHBw$Yo|tS>F%3+;qUw*bM+0dqP#q<-^oy*Xz6MBl=k)j8uknvm`pf+v2uw3G0 zhq#rs)xdPS#uqw!VuU33kON`axgvIDj4T(0;=W>AG(g?Wvi7Gz6nv*A0o|=bcRd%% zp|j{@qgJ1KhqxiIAFx~Y@XxM6rwQR>hTjdK(_BQZ%02;zBPm8nH6RjkM0Jw1>f#K* z(s!6u1kU+FZ)c^wvpTw*0rXBvC-S_=*q{#N9_BuQEcMU?Q6r^ZZb*)693|xg+Wn$wWI|@mGi9!8U?X5z zfM9x&!c@VZM*NewfN*0 zTm|Q00Cb>s9e!Rf_0t~K>UI6W(1B3@X4d!hU-oNo0aTBZU8|H0@Q@rQ zLdh>L)OTP#xX;cN3L;b)6u_3?E?l842F+{2Y+qg$1=%DbIEcZQ28VD=@MEe`7W+)A z|CtyWqQspBFA;nN8t%NL7S`vN@@aP{D8PNHixLrS6oX5|w*l#8;cPD2=E^Uv9!p#w+HJYu~b1_tHJez?;PJqfPy5Y{ocyo_h7nrAceN1a8 z+XigWkfOMKR@Cu;G`XF=o zqKE%P<`>-@G~b-7!#PSVcZpQ!n4T9f*GeCxPO0*wQYv-og-N1J1~1IE6^kl!%|X}a zX1UGOh3de1Xw8v;JpK&UnLU%-L|4rjb#DAxItgb1dDN^=!L%|YcfGA_LDO9KpWqQM z2c)gmJYI6uXPBDj*olgJ`rKno?+W$3e?B5SyAfl)txlqigTrzeFkP7gsotX5VFs36 z#43fVwZX*k%fc|}QOkTzY(YagE}`V8yU2w?pF4t|>a|v^FQ7yO+X!NbnyYpY6X|EQ zhFZN2Wd>5Lub%^W+ZW7!Ru)!Ka({@;?8dgg&f7hE?HzF5{(N0Pkg8o&o$vK;V+dM$ zgy@VoU6-@iLhbk_Ad>*rGV6;dP0BGaA__W^P55jRxQGfL1fR6u<` z5A3+w9}tl40r-kbz}0DG_{A72R=V1GXx(=-k?}PkZ-bUC?xXW{=)RigElzA$CaZQn zm)c<9x#R2Kuss}rZtcDtWt%t!v=Qz^09$}yB3G^{H(;KxMgR-Erfsb2o}-*=k?tbm zX8(XyJ$0k-mPvHSYenmcV81Ix%Ib8Mx`b++W$%y%;W_$=;m0KOLeg?qNj-5}*|5OA zZH~U>Spis!m)J&OlhCLrts!Ua zzB=g-v1P6vPUaGQD$T@x+BpGzKK8oxWm&*go8TNsJ2_ACR2j51&J=4TW3XjqSZ=rh z0y$28q>jqGN*!ql4O__3h+{#c7kXKb;_(GbIUGOAPs=e(okRjB=SxYcZtKupM}!wr zL)XecbsrzF>>nZS9Ofqjw$C~ddC?qncXJYBF(z~$-vV?gnDL@dBeo9IH6WY0f{`|=WyW?(S$(KfUO*zL2Fy|drs+=JF?laQ z+}H^KO71@Z%nR}~6)`H>ZEKx+%S~sNDDG}ka;n|!1iC$fOFeG~3>|nofaXO?!?21R zPK@E%Nx+J8Krh#i7rg>lM%;O%Ugl0XCUs0zLu=VN6?g+uFAl4cpFT7EBo1Jy<&0AA z*_>Md;3pEc$w`2^)j{uW1$4)OupDTl5zcZkHv{PMLUPI}z-@ggorRPOK;z?4qU$8o=>qmxOGM6#q%UZ{=ebQ005~oZ zb$^H~D`4%|(>(J#jod044ghUAwxS8pvJ;9xS+0FcB#w|Gu(^l`XS<&S5zr!A3t7t9 zx+$Z3c9eD0IY3M5<%^A6XNg!I4TxKbwEGta(L)(}q09FH%i}sXUf2KtAOJ~3K~xRm zUhXSy#Lh{B0czbNARs#pI&XRrg(D*$C1Ge4ab9OR=&Gj@WG*?~Z){FF5+({U%Y3r( zh^3DKm5^K0;uFK^3+x>zusQ>^|2v@6bdLILkQCs^yp*UvSNqAH3$V76l>WXd+x8Ii z(1E)Et!-zK@M1f)w$vS}v|mTe?LEU2-ty1&`P(%KVp|&>TR+|7KV@O+ zCJngxNgT%<9Im($?Oz91r_RQ3&FR0(jV4v0?1H~Sh8ln<;xx_mX3*G0TqY*5b4 zYp9rrq4P;EP#DXO0o0Of_46vW5C}S(|IDXt!Cxh+z|F zz(Oa6uO6auUd9TDK*4((Wp+t^Z#NBg8YP*5aLQ7v-6CoFUDH5_+YWvfp)4@KgVL=g zqp_pV*-h1#5|@b%0Dek^R$tUBZEb27sazwZR>zmUdUtIuZwE9&|Wics79FS5YFZRlU3;f4g0e?xR;ivpkOIK4SRGjXI#H7)b~KQqv*xB6+WU zS46}LJ&ttqh)E1p1N9pHEr3ylmH>#*-x90BbxTb>r=cpye`t*}1L-VkZmsDL3ZW?F z15lNGF_7*EXoUa_eXViJtk2sc_dx`ErbWQ{JQq4I0D0yno)r_q%?uYa{PhfXb1d_5 zdAtDt#GOZXy{KbVq7vP0hD#Z-6T!K-br>Ie`J}N$22g8ml52E010%rg?*5}A6 zJ#2xvPot^Z>)vaQdb6ikZRVW8Ml%NljC9ShW}5}cu@%OVK1b$t6uy&n&GsIDTEy*7pI&?22-G~YBQ%3)Cl053&1~kpcS6iIExJTT&5&-ZMBb;>1lZcou zJ7sD?<`zX>)qMukX6t|)#mQw9cb6D`mN^5U*o>zAV9`KQF}ZN$vR{^VPxq7R_1GSp zdtbfLfI7M}IOh9K7je@j2t_e##68v^$T{WRer=t-52bw;+wzQUyAsqj`w6%k+#nJL zR14CbD^c;nuFYKRs&by;5X1aQ(jr_5I*4s$I#W52=q{+!2&`k-NidEQBX<%hPranW z0^+#sZZkUlZn;xOZ=>tuW`F|=CEc{6y&P{gm+HQ$jsur84GWrBz|k2YP|f~Uh_MY| zp7(v5D_;7lb8;g)TG0p(B!DXSr5B5&*<6te>8xojL3i5L1*og{#MW&lzk zV9?ie(zu1-PlWEo2%}7B6C}yeVR{^}>^=O>p}&^=aVxpt#|$eqBAWu04-^`GF85g! z<(&<9^KRAXI5`MNzi;g`uWrn>9LRZV84=Ana&cYo&M7Fr1S-nk$o6UA-1=T~&e&0n z^15a|6@eTEki-i~B+ru_SZS~#1gH7~XQ?B^3}$79fJF4hbOJ38siR`huqSw<%qGBF z^t=&BjC+Z6xCpqD9-GyODo!vIY8FKxj2_|W5KfH#He-0Ms@k2y@$)^7p9_flD_s76 zH=yGL-fa+`-C&zC*vb@oUpB+kJGgNV|MC{xInWZ}ULDsC59`OXTsA4;rbekbp|U!_ zaxS2|l$5e{OOHcJb<;8BS7rT(^2!4EkolZe3?RlTNfsBq#mgHkBht7`AI$$rY%c&P1Xm=nlcMA!i69>MkZwrWI7 zvh%m>MXw98?)9R*&^T&_alt9-r+{*)a zI{-^WzS!dC8<&_b2w`OGKbCpx=8Wl`9?M=L>C29gw#pt+uuvl98eowRWTXv&2Z^kA z2c;k@9X^b;%i5@BA{N1{1Q3}6xdq0rc{I#L1go+(4Tz{}wN}$H!OKz+hX|!is(n;j zE$7p0q=)FRI&WuSytF1@WQ@Mj3>co-U6KlzW&KY&E-bwbsLvD)VAp0$S}U0*rT6qb zvxhn-g1gYMm`UJEMoBpp7Ly!1UkQ!f&y4;?#*JHY5ge72DEXIrxd&5buQyhI%|Z4P z7iB*wLA#Qo0a%)Dadr_z`JTmoB(DF;M>y#KD#`8kfoDt;G~nFkMI#8eqQ0*p+3a=UZe0rLDXYY9pGtG!HwlfS=7)}A8qpi9J-^NxOtusP8rM2YtAE~yRA8l678>G z$Rg%e@6dpHp`9>f0kQj6k62+0s6(s(Jw^i#`Tl`_4!qCm6W$SDDfw9qIR7P4QvOCX za#ewvn+E}``=#;pQYjKxUXK|;tyuzT@UOBxa(8tJ2%IoV4VhswC~`?Ucg5eN|caweJNwHU8fvZkZnR^ zwo#P)sJxmNmJ`TI-!1Cb?FPfSnLDqE20T!jJ9%Go_br0j05b#Gyu_NTY^{wTTA4cl zd_00CO(Iq27Ad>I#I$%`CCrxu zw**}N>j|lM;LwRcT$EBl?zkWv)sfIUq-}urzEYLvWu2lJQ+1fwcnm?**l%uuqhB#T zIAzrX$XL~ARxvA12{;_3MtylNujU3h0_QU@DsSj}4-k|%YSx~6oOysA(WX zYh4a=jF>>HbMpSY)Zpm723 zH(=-BQpV{^drVh?3^vcT_Bnu8-`HWkYW5=NK4L(E03LwY1Uvu%DEOZi#|D3|vb%idwWkoSgDE}wn)e6LucUc)IhJbM5RNP{wYsX1nrVVzyY zDP=BMgxW9;)&M+vz$^2%)#$pntF2qiyfmiDiEYIWIC~Y^UpQYoQNmR-~=>%C_qh0TG@|;K63yr?r?+B~tI(wU(4G1>}sYT0! zT*EIiA>^M>t^C9#7d;L#A?FL7=+0yFBB48EEPIF415QOJQZEzA&jy4A-~bT%p@ZhE zqfV%7UIqDER2Qp)I6)m8z@1H`2%N|V6v46j+TC+j;QSm!zHO_xs>y6KG@*#4{osU9Zv5Bq`@Iy3}8o?o^B8>I&>c&%Oc-@e2~xE z_mbB&bah;ssyY$a)s5iJxHV(7bx^gb9d@0Df@ocKZ>`$axONTi|2~1hhXzKP{^FGG z8TYOL4%T|lq6jXVGq<&tttL7kz)_Jdc@G)})f|Ym?3Z4Lmu0<9agyP@+sIg$mpb24 z0yaH}8U0IHfV-C?Xi3O@fIlsWj|RlOFN`O45+&?z8Qqa__?%oT?qn#0BdXH-3N7nL zZU}J)L??3`?o78WiPfzf6!D{r`jZ@$IwyPJCZVb?OvU-O|nNxPc%9^5tXu^#3*_W zZQl@@Y6<0EOH0QZyc_N^kbYnLEEerObD^Z_w#WRE+nWv0TY#of@zv|VU2qOm+Vp1t zkb047(A`m+zV}=M+v}HY5E7#pCah)E+Q@kUF-?S=9gv3#W~4-pejS}Kt}{alh>;K` z7M0%-n66YHWlK1@fbN*l9kO`eIvLEOx=5vjTk6*n->5545MGQu1L{V@vG)NbyH}9T zt$>_@^5$uM=Cd$W_xs*kfkNQn0(Z^|nyExNDhPCSuH3g6z0RwCKJHn|PEn<<%kL0l zs?fXja3Za%iK_T)cp+<4&xAsJ6^gUJ&FEng;2olj#kiy5x%G>9bira+@rFtyJtm28 zgcD)=NyPSJ#_@d#x5q8v)vsRS>Q9d7U(HyqdgMMx-Dw9b7Xkj%gO-GNIg~UH|7xu2 z+FdC9u>ycOOLYCtQbUE#zG@EZ=W<^5g}DM3Z)K+#MLF4w=yoGqMamxLoDi_4V7lvd zjx^vpg!N{f5{N$|vg)XajIq+JiJj(eYHevN^_6nXYggb;7aQcuy-?w;7Q3p!gBjuF zD0&D0csF2qvW1@#uq4EdtmjV4MQvUt&?k)C6OQlsB7hZcCGy8k(n73Ch&8MJ5e|&* z7R70m2H^Of!~Ua${syJ$f}b(~kGPeRKQ1j;-rvi80SG_6hUMXdNYXTlD5U~3X7Hjc zkk+vUG3Z$Pfq@!{l{baqb1r~bzRW!la?U6`(E>nIWmKe8oi-1#+4pXB6aZPvjfHhz zc7W|I=fYU$wWHg$u+7=Ex6c&T(Raw(P6g7c%|!s%IruS_I?>z*#ETvLDD=U2(HHtK z2Zzn`8T$_xaB#T!=4FWxZeC_=K8fH!IK2}PcgoOGTg*T=MIfXa6v;t=OgQSCvOtXv zvD~TCSb>m%5kK?mfkgR!4T!c!aCXkBTvWdM{=MzfY@vHVj5yHpgWV@q?cC;RnQ)&L z+`A7eoQ?aIB~ie+1p?2b=FTcX)z2*fJdKpwSg>(iqUTycij=BL3FzhwFmQS&6vkmV zG5Q->Hf8NNV+M+~6nUTks$>44ejc7FgT0SUtP(yt$zV+<3OzB&8%X*j!` zJNNwk+D4yoVLOJoM$vx>?ac=0ZEJ)}?rrVldY#v+Ikr+r?jCn{;x(_6dAvU5UbzBo ztD#B81-Egdv~fEo4*)v`MJm@Qbd#i1lO#aePXdB+AdFAEL{^SjujMdbi2`qT3l)<9 zC{ywB<{+LVEBgbeu*#HC%2h#Yx?A*|?51dS@5GSW=%7mTO8I_}u6b=M&|dnHnrPr_ zo^k7-QIGS3GrXFyNlM8TTH%?Mb;r1EoglB78_um6Aoje@jj|>W%NF0P0*kT`ud5%J zs=I-TW$VDMM%0Ulhz+$Y5x-?GV4Vqjj&nO*AfOjCjk$zidNf7{QngM5ElzZeBIeIU(>q7uiLOzWE zt5!hfb%g`way*g>EIza{Yb#LgLBY$|H5P)g3(P<*r!{-5y9>BMRGl-e^N|`+t@c{^L` zjV)FfL8IrEHu_oMoWmO6n_zP}$-uec3__u}r$HU5mZxry&{r1lym7K0kn9_P0Q9(( z{Bx@)!im77>8?R-E7ihU<)9A?4g@#XU}8ys1?v4eLNc}_7&JHU|Ex{dE$gd$!MLN> zYg(Z?{EV6N+SFP5JfH?ne!;fW!vW~l&b)%9?w(Oh{<7Dkvl45o_do0Wvty_N^g8j* z-ggF;fwYy)gO++36Th+vF+XDQhLLO*{VRw4Pcr-jEIWczu{RgRL!2&zzB0T-0oW#n zl8u$-P&{m4f>WWBR`r3hlG(Lyix8MaLqT#ayK&1=&Rpp(2GYy(dCf#Is+&R1zEcK@Df0qoKBsO5_sz$Ww*_0sB^r@R$q#55 z4jDHtNj|#iKjn@vUjb=g_=$>WO74_NvdI07PZ?<^YP_@%`j>>OA7yM_CXA0g+*2{| zc7L&8d@^8sN=SW&cQiu2TyD_6oYCFHvLUkr;?{Dy0>Yt#o1>2TwL!zq0iHE?zv)Yh zWIL+m>tdEX&6Rl2**I?UI*TD}b0Aevc^@@#m8<^1<^(yCC}5jPK!ldk%k#X7sIQ~r z@=u(IXVmM=0xCn0JnFuaQd8cEsM+x((fGcrV8lDXoCAP>k$DliyRj;k2=pE1cfl)(8=Rz5~!net%rbdbrA=CQ=8$ zQk^XiO`CxnN@(1)KhA)~s%nALT=SOEv$`IY;|h2&ihRqcXc!`rhhFC(0ma6uc8)92 zV)k;)`H@hj;?BV>T0=RwQaaY=#Pp=c^;acA-oIk(J`zMQy)z&Ug#AYm;}egYuR6?+ z8M&7=G8_s0HG!7K{(+=U$B@U$mz z2yiijmfHWXi=v;i3_18!dWhWMJrwqb=)nDXTN^$9w7{PY?RH+BV+mT@N-f4HtU;x; z7a=*dp{>%B(a`}-Q_VnL;T|Aqa3lv{dMr-aa70NbT=o(a>5h!l1BWj-!4y3Ja1j#~ zc1Yt)Qd=(fT9WM~b0R~qhDFKc`&GLyds%{3l=s#|BCKK6eb7Li6s6SK&(T)twW~Ki zYeN2F_lXDQ0(;xuwzutVd)wZ&x9x3v+upXf?QMJ8-nPGKxkW*4eLm1cj$ixPcVDvdP!?&-ogC&Ea6u_YoJN6H1Z?vUq^EfFH%vl?E!}TBgp`dU#7+_VRss)h7~# z*ZddDM~8ZN&+}@}^FPk>sT|fc_m=A0dJ!RIe(rd^imLSk^#m8S>hxLeu@f2`tJl~fR9>!G#y=#&Yi0S&(8OQemmc7I7FJ>tzl?h?Yg^CX-14e6_mh~rT&Y@SAu{#@&O?3itu9PHPiN>8j zw-TY!=MiJ=znp7?3o>_V#F8YU-g=lHSOgv9K*53If;>&SW>m^EXHoKY!yqc{^CD{Q zi`JAkrSF)97OiydLRD9G0(mF(#zPRM&p3)AeAh`7I5rW>EQ-}MN6>KubCyz4({k?^ zaEZ|!65LVvw(L6`zPv}=5-$EMNvWto_MQG!Rgk6(46hh3f7N09@{Hkf!cOM|04z(u z%P$Vt{8^93|0^I zG_7dt92amzokRE50e!=p^FS8u1h#1R>V0LkDU+n6N}aDC=aIvl>o{;)inF}O<@Hr- zsPd%DJUAx;a7kGcB$4uBr!m9NI)^<0o^X1%M;ZvbkAV5oA?{?a>94uiXY7IP#|u9C z_Xixl7U8c(bX|gTa;+FWZf|<@A9d(o)SAzLq)eH390vj|jAbi=pxrGO=9iyqX|(e7 z)t(X!B8KG-7kiTHYXDX%?F1*;P)bWDdmiVaZ*5~$f2T$p1(3N__Mm1?SVaAy=AXCE z;k>->*>SH;1HA8gZCapTzrVrGU=-O;b8su+F zjkR@KQVN0VuR0vRl##DyxIV!-VJD^RFdqWKivT~W04@Lmm56!n7(9tR$GSzX?6Zvf zqt@q*@A(A9hAHrp?_z1aXAxSPO#Cf>kKHyEug+aAkj zp!~jTw z1cQNOd=%Ya?E6^%GlcSPc_9X}Jt?Lk6((swJ+i9BH{6ycx3}c+0Hrj`-A;aBKt!9B zBUG&N&1h~AktjhLbX2Mh=?jJF$1(nZFI1x>E_N$ZDc#&yD}%*@@bMg z$Ex;ET9(F~FPcN8&LH+Axm89b1VBmDNZo|8VNn83?=$$zCtU3&r0j4y_Q;cm8xpp= z8Jq2l!*+w8_zgby&t>;mt~@r+6UKJ}(jb&X7bR~u^$y)3NDb)T!H*e1Yd)8hkj_;{ zmUnPSa_f$OptSU6bK))lPWvuOy=-$pao;I5IIk#(RB91(UCWI6%Pinr!4EC5iklTs z^DyUvHOV3G6qwb1llKU;-NIe$fe@tD_Td0tBFJ}=vz`)onq=JeYJKDYj#2Vo2d&L~ zIDnT|0!rr@^ymt-8Nj!PlJib_EEJ$)oIt}M&wkQ-3m%vk_>-({og?(mN2wtmJmTem z@rhF%5}{C10>TNn_(??E$r$Z#GJg8+IiznK@#Nx!m>o{X0cmjveZqb>VfX%oSKA$4 z(hl$bo|U-*E`FS_Tn1I`6$5|S3rN~M-Xgp>0?uLh=z!c^08q!;acmq)B((LEB=5g* zBo%=+0JITpfP8yEe(@4CZ6%L9CAi0rL_;A)aZEL-99c`N`P~3!Mm`(?EqzCQ587>I z|91|2IO=n2K<0hG^r19I02HL(Q(}!m0ES-b*)LHXOlDtMdX1K?U6o9;HQt-hPOf5s z%s>~wofoHWak#r$t}{3LNpNsd)wu#*6JJ|cXyZx?j$4oEk*HRujT51^EOTP>B4NIg zjlz!^Klu*_jNcq_aWx_(hw<2h7YDzM*zG3lHZyLvTTFg~&BqOhnSk7@pq$!5xd$Rq zr3|xF3@Q2PT2~!tz_~f;S|DiP+~~<_Us7V-D+rX5*rAqMmbij-=(VjpUGO#c+(3&t zTs-8N*dDVAkkBs;ko>i8t$40Ir>3!2T_0D+X*sVH8Oikk03ZNKL_t(_IyEVRt%^H0 z`aH-i&P4*?3He+w5oh3>Y}`?KuLRB-GgX^2&b&l(sUh&dV^)A{y+C7`Y!l42L z0@VL2ld|N-*fU@tW(AJ=p5~($hk!-X&%Il1{!h6{e%Koffct6%ubP!m^9mkqakAI* zJ)q9|Ge}ee&Z*Im0Z3kS?z}j#to|iXqbHhTdOk-?$zAjet_PAhL;(RfZ-)$ ze22uVd@G;LUh198_Yoy{1LmalF(tarU=jxhYvh81Ta9fiBglgnAWsAum%7pS9k>@Y zap~LUnL0Dxq+C_W(=>6pR!hLSwF2`)FPFnv9H!iC$UyT`Mcq``jbfB2IFUrmLjcAR zoEgsh3hI)E2l@_lxd#Ui=N;0Em*5x$;9TyJHv`IQ~jR z_Xissu67vyomY5rb;Pr;dK`ZuPM-Zo3E`Bm`^e$=Ifonw-OU0QJ7smLz)lz7ZcYe? zt#oBnFsAoOA%Oc%^2uY=(p&0`Ql}sQ(8V6S-@+0TWotZ+>KoRv z?j+*D;{@~_oT}vW>9mTL6A=&sNHqX>!P_~}wq_pGm#8{yozyHZ;IZ8&OdF$#J{maZ zA%MM?TII%&@D6z+0NstTVP2ux&!PK?drSZ_BXzc+b?!FeQn0oqZ6h%zItV`S+IR_!aQ~8e}4-< z0jDoy^nV_(T=u}%Zn3`{aT6WfqNQ^bfV+jjzOmU_yUki-;}xN~_So08^Y=-_>jL3Ws;=N%EJJ|u2AMe3mnDBSM^*wyB`2;^a zy@&thcYg!jkG62Xc8zc~V|pwL`tVY{OjgxLOM{dW2_*Y;!9DG*I~36hn8(aKQ=|v$ z>*u07oMqCiN-8ML(S*Y8qruZz)V(Zj?Z0*bE%cSM^Bzj$TuW>j@VIjfOGIRWY|I)3 zkw>T?#*8kTJ7$b6Qs#?0y$&1j%vwL)uRP0U)U{FfGS;n5u{nsEF>mP=OhVT+6?UV& zy9MwgBW-Iro8^+Ry_mpEnEvDv_{xa?;#>a$Ul~5ZkH&ZLKYs7G5dPH#@U55VuO=M6 zBz@D}O0+zT3>OJ$BV)Wfay9r=%rQfwiPlxYm;mwxIFP6h2M6w?4|&O|(p|?ednd}o zC1t?Yl`J4wTX8V&D61P+S;a|7HwPH^Nv`|a8}#=NG?wSs9m3(yJv&fX>T?+kd4 zJjnA)y{i#O5d0X?9eemmoH?lj!jWAL5|K+#- zd6^Uc!|(qsjDPe9n{R)D-PMT0m&EXT^v4O)zxe{&%L&VsjF;|KY^QJ% z)oM7oemJT?R%-2;rmO6$=X;`a89>l`=f)Pg^Sm1S$f)a4%QLpm%${RR!ld$N&ot}a zV$s^hu`5B41ip_^@etd6c)}vDZS-7ik_r~r=an+FYVVdh=*%?;rOm2G+2^r>?@~IA z>UgqpB2cI(Wa`Kk(FI_UV{WgZ ztxQIs)_HEgH|+h!E~j!m1tIE@wffH%Ib=Hl0CyQ7BurC>?was-{-fW=fB*EK;){O9 zhx-A`Z#w*w-~KJkQ-`jPn09g#`Bo;o(@WW;HITzj4J5l=D>IY;O8Q<#VGl^2vVI?C z=?Ws4TVpk`G#YNliWfjZdt)3}l$AV5?rcjV0^Onia_i}|$c+@gzB6PVOw%$#yiudn z`XVYIH|krf%-hh?*?_}R=ME3Oc=6|Dtq5zW3MqqTX6t$+t}#M(`P@smJao4*%JI@_YDi9{)f1Vu<+hHemUV$N%+D z{{!59qeI_EoG#@%q@JYGL6k9>2KhUT6`23;3fN_X)zKRn|rD~&n? zp-W%v0RXJ@Xq-mLSso|kc>!2+%`=O-JH*l9E-ye`SAaQ%0QdAA@H8R6cmX;d%UM0Jny4j7Xtz+dc2IkPl4$Hkw{@Uy61&+qSX@!^Q+Ne_Rc4vcX|zT6`2)FG4@{m=u)Yx$c< zwHPEvKYI@fxq$Gphb~co_&kG1QVuXp$hQa3I7uqOZ@OF@MVyY>87Ijn#X-%POnLjMx+?i!?_jmE%KKZ}PK9Rpg_{YEdw{iMPkFJZD zHfqa60uL4RXN^pDTBglFNwKAj^-s26aIO7}x(^n`>ND*e>7$w=1qUEO*j3PdJZSo+ zr8~t`*8H+h7iUT1I4g8_bLff#7&(I`nTK~uv%cxAwdd6#zIwgbG!4V>oV}^*9TTkp zyQL0F087U5o%4Ye+pz>K$UwinR_BIA%5$j-g^Dc{$B3Q~YMC^?Yxl=3W7|iGp5GGw z)8F`)`0w8RC-}0T@Zo+y{x;!%|3|+ic%w_0I}5G|A}?y~`q@UIw@A6oz2Y#ipCyok z^0O_$dq+d*?09RIIzq~zWuQ94Z0=+djTpm)ufY@LqndKJzbriQW&?BpMmdq(5baRw zNPCz~-fLNq?z@ytC|J!-l+4kEl6CMnqyt{f2 zb%Cf~hp4_@m?3okcNCAg#Zt5QQ3T@6pwzq!DP2c|MH-4mTS(bFLU`Cut1%Lb3!2hkj9^Pa6FXB$CQ$7N}x45XG(Vw7H% z^)+{{FqqgwBJNqhdf7inoUT^0IrStZIF&fToqTFa4mV%Joqghi%_kV&W8}r7?_!xl zeqrREDy?0?ke^vZxS{|RapX4lV|!gjEknx?r?%lW>#wGn6QckP-Dlf;a_)od6Z%Xj zCUvf#G2lwg`i2qL@%dEo0l@zCZ3@R!3Ajcv;9I%nPIQ1Qe{0}I7&XxllAFpBy) z$hDML2`1`m#&R_~zOmVj?q0GfLSwUcSyf|kN-$@7NrtjP1R-M%Jt7#nB{3$`vd+egRex=A%C+j&UU*7 zmQ55JdK^U*KrRb^{oBnBS;2SzobbcbyZG>80C0;RryhSgK1DbItcty4k#{dQ%4gzr zHgVY;0q3&`4G1sj9M$_t!|75I;SB$ zl-3ydG%tl_SR&}>f{IF+E`RH$PD>P8wb6ZIf*UpGw%y!w1`>gC2BQHGrjTtPXAU4+ ztP35Gg({dDkvJx}nbl|k&@fK?Bs6reiUiFBr?=&1LS};Z85chU{&;*3Ki&lZ2mCk& z{AhfN&Bui08`c+c(WJ(di8I>VEw6h3;L2#RuC@)cVTLfFq5JChR`yNt2CGM%eU?-c z^XQuM(8R+ErMVgF=i|9N*Rv>>IYMk*1O)6nwE19-S(Lm_C!u!|)u>ZuVVt-Kjx2zD zUNj{@9h>t48b{D}D?lAUKAhlQ-H3o(j1^!eQN~8jB0ARvP~Rbs60s*^t`OJSZzqcSnK)jrn)Y(NzB5Ylk(0xq!(fIVvK5_Xc!0p$vm^q6& zpJu@I0?4C^l=`{aNe0d-vDSFj^CAn&%0M`ooh9?0vQ{@Sr%BOop`!XNLU6Q>-fFa) zoLdX!=H^*73>5(DRHz2P(-PPF#6x8t{=9g?&e3BFp1?W>ol;&ovhEnf4Y;l0Wvq>B zI(v=I&a>MouQ&Efb57N}s>~BoTPSo1bOQc#d|L3thiSl{j!!W>C(K{c0NWz-*I6-{ zT(3_SJ#QUTHf-&YBS+(!w#?jS+X`OGy2II!j^=}bRyx9P~ zojg`j>Wnths<4;*5%rRl*OQbISOLSVC6IiBKnpFqE}TFeAW~Awyh(=2l@`t@bQ2<$ zymGxH8URm58Hdt*JE&?QiqIMW_#@8#fA2f!zMJv&?Z^1h_!PhMgKvSZ z82e$tvV^k9*v(pw%8HJ~04Eem%xdD;cO-j5FNgI4(NcTLGXg}^f!gb!7;dgnbCoX+ znNa6qWo?wH0f=Rjw}?%RSXCKQWWZ& zsxotM#n>*>LxCq*Bp4_<4^n0=*9dx(k4F###?SIu>;Si9uowDb8idy9A~3wlm?u`s zInW(hj3fZvjl(<#Y=#9l9{~UJzx)k!|8Bwun`ij5=_&rfAN(fpg^a6V#`hsqRgyRM-36BhK@C>qXv)&??a=v1F&*Z93#^67jTDTEtRH?x*+sv1%^ot zTGw}Qn?Z7*4=1<~KwGU@nG*8zm!M9m^QzXKuWto7GQ;&fvWcW=D>>FNN%^;w1@x-| zw1HAgGs00L%$`7pQK-l%BV7&{-|<*3HhBEK7x3R0ka|MA=+PZB;#TH-cT1R~$9^;8 z#jgXu{e$nK`&OM3fBy&H1%3^9yqR&DJA_+xT5UYK6C?K?xf91&|H%nA-?&5?2*ZmW zew+a3;7&`q&oCy?X(|-*nl_`tc#AqeYG+9Q2QOlByDjMER&v7uQNiDCz=sp^%U1xu zs*m+z4_+4Jn_KyNyA@~25`iRt(|#{=Z<-3j0XMgjdXQBGUbP7xWK->hJNrb-HcV8F zRejwQ!YL+U0U2u|rlQ!+eOIbjP~u88HMeW=MjH^5 zjPA&o_fk!vJ6fd@z|9OFYF%Q9-S zoO8)d=UP&&b>JGKDykz<$ARUub4*xOI(R7UGw{R;O8{#;p_($~bsOt;=`5it+2il_ zYfD{UzfP-TRswSE`)2Oi)M)7M9I8DJ#@c~pk?@5Oqr)&PI9xG)=lkD=`!<&x^ndjK zeh2*p3*MLm!pWRZVp329xRW{OqJAy`F7uk^ZsttF+3Q^H-<(+YGLFwhkImLM)*_SG zr41M_n51Q*oMRLVhU99auJA-U!y><+_GSZg;O>NJ=?g>vx!U=whe=f+&IX8`r?k|n zl1QroWYMs5TbHz?m_)BCASN3;N}*^yN`U-c80JPhcR-kBGf2Ak`LSMhcuBau?h&3Q z+U zWL8$awfQLB9N`Sv#{V4QOfW(nMsSJ2d$Vh3>APkw|hvW0D+0p!`Je zLUkvS&oNIVpenQanmubL8D&v#X3%|%{1Ks%u-Zay&lS-^AL5Qc|b zDChex8Q=fafXy#v`2YMF{@>o>fBN744W9oxVe^fL+cUa<`3NG$>3P8BsTz2cfV80^ zn#fK{kPs_qkGh%ZrXeSyjP->mqS&7G8CbNajC-oDs~Rk49n+@H-BL;I9PQgeVa#f{ z5mhRC(i*w?OkdQtT{~;8ppheR<5A7yD5bb;PILjZ+ktjHT;GWp*)$0yz3V`mjYM`I zp1|WI^mhPsdkf+$CDL{q85Yi0prLEjq70HYW`-+j=W0+`DJxZwM^eE+00w5vAj^Z7 z`s8~;e6xWcf$0tK{GasL|9QrIE8lnjCGh@t8|;2DWAiT`F#ca}@ZbL*{~eCMi`e}s z!0j0QediMaYxv^m$Fyqw?frSn;<=^kvywM?MBUU?YlbO zZC%b>H87m3nhMq@7bv4dB*5J{IF`ETMc}II1$fU9ZodOb|qC8ReOIU-FX4^HL;EpB-D|HfO-=B5eCba8i*10L{8+Ht9a~ zKB`?}hBPxR)=xmd`MRz+17-a+r)M6ZVsQeJQU}mhoVm77bdQAN(}2zAGd6$ogz@k1 z@IU;Y{|2XDC+z>|vDpCmUq1l=&W{5=`?G%S$k;qE=AF>z`;#z6;#R*3>mHVc73e1m zv{*fIS~{q+MccCidu5>+7I3SG--5>LfKCNjTPnIydsD6sc53$bE|j|VrMxO2DK%)s z;hJ^qs@f0W2~rV5v_KrF!9HKtJJC_9j6z}7xh0-xBjruIRF?Tt`_bdnhBvJQrzwGw z+D9VJYv~&!VLbHc`-uLp4v7D7ga7&8{kQlZ-)3z8?64hx>2FW)Oqd^g>_6Dp25K6h z{7n(a8JcHJjB;jFk4q*27EBTuGlSY_;jCU#pollfdFJ_{g%Mu_ z6iRO3dPa&z$sBK%gD&NANFsRwaHo2TKQXp{3^@4>`nwVFZx1*fJ79K5?`9193EpQM zo;ING`{MPrsCe$y#A1Qsz?kmbCPk zsJ@E;&_Y~Ia}52I!9?(*h|h5cl$^hgFuo;hzpIP;-S20dzUcAPZ?V5Sga4Zc9F9GB z^ceq(3ESNS?=l{qcJN;f2s)ow7wUO0^9)B6hKZFrD|5s(Ip{X8i_^~fx>*-&thP$m zYM8mX=9~jrRC(LFw69U=?Af&A-@Lp{P4z`$1{dQv#<9etMF8_3Z|HJRv_k!lfj1YZJlLXfk4IqLh_ZPrXK;yMVM) zI(ip~stlFE^Vu4sK>V{Z)rN0PX`SO*cu@T;?Ss4Ze!R&1wUo(r+ndxLMb0 zZURU^-7{i_J4fk9i`1$LyXBlCrDg7H8?>+GrE=%RtPh_BvoQ z;kVS-rgpqFi{hHifa;V2bgZ`P67b{CfaO;EObL(&x6o6z!Uo^}iM6{Y9`3_=`KOK7N31o%qTI zTQ>Ld0@Y*NbL}BPjWH(4&(Z-{#h=W`h5$`!z>68_8GycrMD=&erKP$tWe@larNk0^ z25=N(OQ^IA$|Nd{BqconnPj(rVED1a;ddT*GsABZXe)?fo&v^0K)6>bua0oaQWl{^ z%(>n(wWSfzd@rC-VHRD2K=c)zo7h41NN^44gt%X%y&{wXt zrstZ%Q(l*xO==>nWTH&WVgwftaRcgrx;PmF#XD6yb*27sc^(!u1_T>fmzbgXjM&AlyyphX}Wwz)YCNfcem&`=-P2o{9nGW*`ru0x#1B-vQG2uz^T*b{+lzFVKtF6mlg;UCQqGsu|HJIrDCVc`t)BZV7JQWApFN;I2owKVkd*fboq0UKi!L z&NsmGZ#{P3%6*M*9Nzw2#y#)w{yz=a+>O|5CtwSi6H~y`(}2w%d%XR-jOkXsNB@-Z z{F{LJ7S#Y^M*qwRCq{T0mB#Eaz1v{Ev9ayN(a}))G0os{lv?L~5MeR^2p;4l{KyZF zqRu|gpv?ffxe>?R;Q)Sm640&Dks@B@eVuRPh@2TJ5+lHU7F~c6LASmo5_SYRaGW)w zexV%YwX`*D6sX|N^3$1R{jxsKwF-q?!<-)$p~_s{aVquQuj!MqEo5dz_jV6Ob2F*$O zMEjQ#3&q_)TWadZ6IIsR9AA`ITY@qj=dH+J*(=m(m68C$c8@W~7c0dbSH>#&2~Ai` zO=mk-_jT5ivkp2(bkI7jd<4bFuCWhX9rxnM!mC*3wN?b-AULJfyOD9)KoYg@|D|mF?(;BZ;twVJML|rOLm_ZY%U9KwAc9ywT~O1 zw;RN3o(*oOwC3GyX(l!>0IlZ?Q7>;diT3kaw^o*8%RtC-O^LD#uqWe<6QC~u)JzOD z-dzLg!>Lk7Tm;eyNE-q3772$^wr>BJvHuD<{AR%PhNaFS17Q~03P?T8CjP?$?g>gq zQJRUH@sei#6W0l@U*+YwE5N)^Q6!sS5T#u^EH~%A7N)-h&g~qdUtfwOUP~+K9lE&W zMtL`-YODeR5RF=DUiy{FYk6<|nl>qm=Uy6nWkIBp%Sh_Ym!?j!RIi%@A#NOcGg<)b zzdU1l+ry7pjG||c`4*UN>u0%{@%-B!pa0t#`!78n|9Xe%EsJVz65WQICvnE*4kecy zK-qBIM5RQCKQsJ{>QHl7s`Hk9sQpn@?^WTwQ6w&ciS|s)>1TcE92glOjYc|ND##jz zYcW5x4>RM{G9X?k@kA>Ab8YIpob@?$4amz2sxzkqJ|1l`0(FB@*|%`VlhoR_Xsv;A z@8O1>^sn`4-_^O)cT&>Lz-kk5Y#k?(f39LQUgs>T9s?ktWV-VhHUqd1$XmkA?+*yS z+JZ8pd(P;N9@8x_-4QnT_4?<}9B%%|*nHRH`0EabTLuTIUE4hp-hM45+Qv6jSS2|C z(;G4N!ddfc8Q6V2qk9--EOr6hdCYrXN+imcpk^J02vCueG=M(T5{^L4UG6*JbO!ak zq!f53>-R8#NXroFYpnU{n8le$A&7&+1LQlIM@hzcKB{xY`{H2X>_pMO3*fUuKA)Gg z_iJiK3B4G!Sc2}7N(21x{;T7^P)uF(w+G0^wr`G62dK5mK%&ZCDga)8Dp)t?6g$## zoLagpGW`XwhaS^ihx3jBC+q)kPq_Vk#^%F}(=R%7&(;qzw}^po z6epHHC+xlk{Mn+^^1V{uq-taZ=bDQznk>?X?0h2(d;uWjTy55-k43q==CPOc=h8E2 z^m^DL>KB@cXL2TWAYR)(vBDFVfU@F=MLv2v)?aJJz*-;Ij_G16ynO$~@2`CYhZ+>o zR_q)l>baSa2bnWu)e#}{ta~POPaV<_O4Wlf0sRAE|COXN%{yx55@Wt0)m;F>Su5^n zB)z4qbK~zRz&ux=ZlJx%4lV(m`USB7$t6hGwl-}U7v8_nUIpi6JfLXA{3YAR4bXv? z5s`HVHXDz4RJrEo{J=G`SgVDyVdyhH-VYKTBfXf(OjjCRnGQs+^Gt>m5?io4Rb z!kJ5Xk{e$K&x=ZnC3N3BwvShBGr)_4XKnu9q=jVvFs1XHG18=Jwp0pWHdn z@r>bK25Ig(G5!aS+=}{f7zhrb9R<-2BPm`L`aq2Tt$gzBc#bw4L6_KC}BX zfxZOH3SuX^3)3B;J21jo?(zJYSbF^fu=_S+_#gt2;V=u;JvemtXK?3KrCQGG-=F1s zSxGMazSMWfVKqLdx%O|$<=OB&1Lw0u&8?5T2f1zmREpT1_u^nrSmLN?hGlTs@MD}`Li$8sf9Lc462ec zq~P6x6BGdiv03^@`7i4*-9CfbJSi{N2Q%t=F_#Z4uK!HA72CQz>kCU^`(@V*Rn_CdUil_Y#Y|A`TkP&~!w?yj2jcV|%)BpagV} z5GIM@n)ZIny*Vy6m!G%-c#WF3n4*?xRG?lW>|AXrqsgb-{LSV3y8pC&!b>XqnrZq^ zY$shSnekKm)IPOO?Nj^IKDAHnQ~T6DwNLF+`_%rUY9D_D9cUs?EANND?Ck{iLEB6TpNIvJjl&Ra3ht-Ijr04)^h#ZWnR=_ z{~=+xl1IXgH>~Y%R4>@#JoRW@q^h*-hdf{F+Nzi5pZ zTxphDeXUV+6NBR{W8R{Lg?Z(K-pN@a5XvygMtQfkR=#GID6q{jOH-I*sXI)qQhBLC zOf{GH65W&;7itZ+;%_P_5 zK%gFQkr9r-_I(6J#?xO*j3-M%s7qI_}dph!Xo0;n<_UpWx5B224>D z?GwYrEb8|b=~GcTno~_Jvu;hRy|;Z9%o<^Tg(0Pkp2eEq>CoDU0Yz_ld?X zS(Hgzjn##XW6#06ACID2THE4ciVIj}mH*!`K-=K2MW!M8Qj7Q1Zl^5c-6ep|Y8!=m z%mNcYZKgm-gQP=+Gow4o0j5>LUiOLZn8l{@HO&vI-(?KfkkQ}?9sg=0)%L;JV^dfTb%jpUWr%mA-1yfPVV0mVy@ z&RRx8@;w>~aaM(L1L@2tO3pHS0dP?v1$47fY6&GB)1Cwruu!e$y+e1%*nS^z{!C`y zyd$LEqkopk;YX5utN}<-a%FQTAjAab0HyZMa!*!1sx5&~azYpjTDvJ-FBBC^pW5WQ z+?9)C*OZcX=!^@v21BLIkL#JhmHH zc`XYK_{D|>t)ZKjU`;HHS_Zj0kDci4U#@#gQI zaQ|Q40szLh4)aZi{)y2YGQydVdPeHhdF90jOM}oIZ5;?_5ns%KkT#NEMGaM}XfrV2 z8!(=FszN8S7d2%>xH_$@*;1vTrR1xVmKSnP#rrNiv-LW6={4Jw+B5}y-3&GIZb^f? zmZkuWGXps;4O7;^Oz!34wi1B@u$&|9yl}2iu34V}EBz5Ax4hmDrwpQ4KqiPveS7wV z^!BD0>EXi>UIhi+7!gh#;?^Pe4#Yw=OdFtoV(h-nc-FL&`Bntx!ci)J_!G)FlUgewVSQ&NW9ruJ|ZlhfzG4TW2PNCcdhbJjIeucei| z{HDa3wI6bV13wBR7CJr`@^lx}-i6bMUj;fjRKYkGrPQtIa=2MRxSADN1wH*J^jmY} zra^#(P9*eY_I<|f-#_8}>mAPTJh~&}=Kc)sJSZ{3^Hh}U zyW>>K%*8ibfK^!0XzV&CoPmXymVkWmrJIzDQbD3w``fj?spnio;1+<=obssW14~$4~_Sq2&~s*`-jH5TzB=a-9ij&HugOwfhuC#Fep)}drnzli3S9HEi58) zCCF=TGMpfD!H+^+rwqic!?dsSx;rq2hlF|O5Vw-<6h`?@tWLQWj9be=Y#y_dd;!jFGPNMA0UQR@%fAIsZq6an%}C!O>7O5sn77Rg z;ZQ{ItRCe>ltS{EIE-8!5jw z-pS490KlOL4Ot`|sJV#YsDMc8+2UNsKP44Av9Ci_MVOsD%&^wELt{k#++n^EnumMSWBBG&*5Bd%2zS?mNy-tr2uwZU z{Ek35WBZ+6-#NscXqd#EdXemF={j#r5di3f#DeX6#=Iw-K9_^LXK^THPY8zucZx{c z4sMFbn}G8#ckVh&_wnzW25s{d-`n%CD9V$tL&;M}2J zqa1YM_Xdm*3)u@mshUv~q_cnsD;y(g>B>mV5`2*A8~_~&-E%QQkUMqKdWg-YpXnlL zH5)D^r20oW@8%CDjKA99`L_WeV0g%&^9*(l-G>wCG=VprfOO|Dy^{?k4G#U|3_8y! z5m$2-O^w)|&h0kGpJJ+-NkJWXw)VH{j;&1%Gl*2Lq8y(Fjl4T?1W1$|4U5*kD;D5<;Wt-s zzGx-duK(KL$R&HIJWF1__F_)_yx8L72k7gF(jw}|OHmmsNZ$&?wY1YUrG=zK$YMik z0fvF}cCTu0!6@%)-y2Q`)hIe!iH*!c>&=XC%IXzn^bZkWk2DbC)?pY0Y486$A#Od= z#vyJ9^Oi(8TJ0T5fKPP-wvljF(C(s6k`h7J4T9pOL#;Og9dvUv$`gCC~Wn|9!&vuE%ua5VwT5BXwF;CzU@7)k>6gE6_55 zArnR^jFQAfp*ln^_-BBncy!tFe|T?cob zF}>Sp#7+g<9AW!DB6k6CN0@F1gMy0PHyLqjtPvFt4XBK*Nf;z)L5=*eOyXS zg_DfI+{^mz#gB{rQSC2htg1?L2LV1xC7p22=nfgfdl_$e@HoHolGgFW*nW8cnBm45 zm}aDRH{i}AeD{pJ3CO+9iNx^Fql|ekHXa9YevqcfaPSJoQ+0})tYAU`d^4R`JD#iE?pFT%p|ryu=fiN)Xz6iY3^&mux~b_Ov>wWNz4; z5L;m_5Vt6E{6m<(vBO;glCS5i>!4d1SkxbsN8Oa=gOLGr7@A&L65 z0{GNdZ&}%VJe386p_5VpdYKp&74oV=Z(cY{n^dYwp}3RbyhgRYbP#GJ(dM7kJ5{F! zoH;CX=XKQV39IXowd=%C=mgN0a(No{ zV^4*~OXq2sieP1@tlZ&Fj1Bj62AxL05&Xje-A0zHyzwA4vgf-Vsdw0Thw#kSvQYNV-Z-#+`e1Vj~ z&cJ;B;kj|Gx(q-CXFmkQn(}EF`Z_1Ps}aSN#P|h3yB%n^0S~>*4Vx1Rx^v%wh7J@w z_;5s9>X4i(Ko!9wzukj_gMXAc!NJ2njp%kVw$s*Wq}yS>@kl+Pe{krI5pm-|QIw^} zx1vWfX%4#6%#!ZF=$>^v4=5!&{ZySvOoX^G@FU~fz`2_R)P!@weA{7s4!5zjj4%6Ekq`MyO6cNso7_>ttk?#>w_74DZ0`0coyFK#IiP6Oj?mKZHHYqVB zlCF*uA}7G#oQS4c9i!|nb5l=oJq9kNFkD;vA;wi}OX->gKq6FtrY=zd?(Ds!I|L`` z5bdQk(7|4f>`Tj03lco7>=99c_LCfxx*A!_feJ;})@@1>=}UtEg{t~4z<@Fk6yO`H zDvXTosH{efFPyMa$bDL-62DFMZ0*e%;!!IoC{qsQL}gNhJj$*+4*fqMb-ncZhQQE+H&TO`G6NPJ zv*#92o?G4o%r_nUu1ELH6X5!*jL zA%3>StWm~!=MXo(M#E?G(gLX?q>auAotwpBHgjQ=Eb^haQsfck{$0bA^)uHE#uMh9 z1AB?w_;W54&le6X1zK&d+myi3HTNdy~-qqBNby|nDltGA+QZT<_J2j1%!7)o&wbrI`PRfyW z4(vTBUZ|z6&VK;N9hGtIÜjZ;+Z6WO8!#H3ysA7vt(%qjy#}PdApm72RkLm4zG&uNCm|+0WX}`MXvxrFo;J3FJ zf4xT@9J&XB2W0HcBDyfW5;6EWxFG-*y>M9>vPQj*9nY0wGE(9MLpzqj+Te4hMcS4%A$qg8Af zea+?%)w#h=glvUwu9w!7+Dg@jM$8H1q}-q%Wj~iYjvIi# ze*O+GgygQa8947N7+Fw2Im_5hl2TFTOG{l>W4Pq$wi~-G?$a#J%uNR#Ja`ULL%Q5Y z2F4ma1cb&O_a5LI^y4IeUe9r+jGZ(34vkn9KMs&aind zYVJ&gxFyW{0Hz%_UuIBBlFteOzQV8|bcc-8%Q`>bcy!N6A{1U6rs0eN=F>!o8_C1X zLH3Dc%Ym^-42Ya+jcKDFT8^Nxr{c~ddl6C$M~RpqWdv2MM$F>C?gGXywwUf*;SIq_yWuq}7vPE_{}LX(OE6kyI-)^qX%^iIYQ*Yj#rkQaJCsRP(K zFl7YwZxth70Sib#gE0kjpfY|9fcOMJolopo^m%koFuHHC?F_h&jNvh(dy;YGk2BmD zWlj=-&Lb!@;up8z;1Et3-NPvRVN5d4fx6%J9p*1~nBD{s1D)-$lT9E_m3Z-o7bxqH7On344&c{ zq$0v03e4Q(L2I+fRr|UP+{7~I+h(4it_nB_JzS{jX%H};29Ma%4Z8cn77w;wqIC|Et+H2Z9VAM-Yn*tJ96p$wiSaRzno~-(%L*@uk=sz=C&Ss zn-hH}Mr%rv!vtqWw-Nt!7}%GyLNj{;tQo_lWy| zuJ1tS5!i0z`m<423I3aVY;(r^W+P>$etir7Ji(pjr6CBwj|uMkjPB7PZ5`sqNi~Cj zh1Nrfy1dw|w2^p{K|%v|QA(>_s#IXqF$4eNU2f@9(kCuukVbyki(Ujxj8^-Cvx$@O z4~tgWv$S>0o)7SH6EVXpk%|pn>6}QZ2*j1V@z$6f$A$*y;dVRF(2EYk;ZOiOx^59k zH>U@6p=dfVGce{7Ae>y!&*EI-L!|*{U-tv25kzBOS!>sR*7OS=oYLGg!YLy> zDdNefl+D3|&I}$zHw7%9KOCbNM!IhBrU#uT@RO+0@z5g=0WL>fyIpZCk|PBixiWG9 zw7MD04Dt@t_p<&>v*-p`b5yAD)CIY|KKJV_Kd81(W}x#+r=I7srUQ^ZwLJ8et#c`w z&YJA!sir>xGJe&7XHVcrbxv5iPp)IQu%8AE2#{*^G*xg+-^VL;)<8uLnmX7zlx_RU zvaZWMz>9srSSI15z#`?B4u2v^_1gAGy+`gn!t;#qJi&ecs6vIQ_UF(8=Mmg@NSy?2 z{5gxNyXh-*oy>`87Ul?`DPL8C^at?UDl4sg_da z(AYb zJ@Vj@gA)-TFN2)sR4BOIkpOvffSwav6ay-ERBIS^R0LK40nTimva&lild*WBUQXmz z**Ziq>MWPbyl+e-c_zghrC!0N&)d9`_A@TkNw3d>m(R9suL1mPHN0918?%7!^4@xk zvnp8Ak`hX!-u1>aU%c^IA|iHOW3Jc&IM+yfzTG0;4)B{E{<{YO-tQkU1PA(JUlvSe z22@N6eFu7|D$xF`4{*ml=Fj&?yMQ!o;YZ19rMcF@6paQc$40DTi=*U)v!lZN$Xe;Z z#~%nmxTtKBv>daGO%vQ0lS0LGqikU8grW%t;4Es}fUO;k5sAa`!cLU}?SOaPBT#_~F4 zxQWp}ObFjSOJ8jU#LxH0gGcw_3_2Y3`!x=NpkidoPC(|;*K1{cxiKkED0S&oKrZD9 zI_w&`p~f3{(h`$b2}Vqd#7apu3g9KLvuP4oSSPO1>wTByKP$Z{IptM9}2_E7eOr11#(Dl zdgMWLSlpc9j}zR(QBt*ZFQX8^H(-{;K!ZE^+8R6js_x&SynnAk_(z`q4O+a`! z0nb`W!O9a_G?z1YS~=K(W&giO8ORmftl!Iwg(uk3e3(J4fZ#Q?c8$qq7_Y$G8Z#J< zXz@gIOkss^qfe!mHCtjCE!XCN+-W&71=}t$FaaeMMD6r;iikZf2ax({Om|18$|8+* z-6(5%V3g05pJHdFttiKtzJjHjEKGmmsE_NifWm$}`~3 zg9FL6rV{b1HVik6TzeKjKwDo#&KuFhS5@2Fn(FO2f5CPg0Nt8-F569{@c_#)`SL`1 z4a@~Eo04yiQzL{lhqP_tEp|fbwH(*ujDC_DvToMb%@ax}v{tCVfjds1*@K2qa#eE> zdZl@z+*vHCwDBc}5I~`uo7dVUR+U=4Kg$il%1hSJb{COC>n274*S_(r6?!n$&unMC zi=yaQlqJ39bb`Q%;UGDVFF=X?eTh~=jmM#VZw=yqh6(l0t?@M1Tr{9W{Dk`MWIoI* zdZ^`lrc@~IrG+37`OUB__r(l4oP|yGd@LIetJ4Yq+*1cklib6X-(d562i^`6Noy8K z9#maEMtPqIbpIsPKhjQ|SKcAt^a~HIKg>cE-g)GXs#B?qWdkY#yp7^65f?1Lxu3a? zZ=itlwiQQKW`q+jbRdX@a+!OJ#8aJ1bJjT|*W=D34@%ui40n#eoGv@8Y@?$}16!8b zS#3|k2iFCOnom=8KshHlqATxN=A>MStCffuA8@q=S0<-3II#F}q4iZ6}6Wrqg{PeUGe6w+_&!9M~m_c19 z)OBWgmd%*Y=doxG$aSt1j5Lj71g#w)=6G$^7u!qNUSB%~ZQUmlCHKx(yFik`; zbiN9{9ZqnjGs3KFG!djkOrq1El?+}qa@7fCYrds8MV6u1u3wG_LJiqQZV!h{f5l04OqC%kBff;o}DAmpodp z9fReBu=C90v!I~Z#O1(@d~xmI=!JxtZk28(4sE_IZah9`ZDy1du<2!9rK~FNdfxL1VU9xm8#<)DlxCZ6)euUIa8BqSGIH-UB2Fbm zPk_12ag8hj6@*wMB{gGRzfg(rQC;lKt8Jf+%w?mnc~by;Z01X5xJK+JcgmRQ9NcWe zCrwHLfTFEn{TMvB!(vX5U9(*eovX&!wMEXGW;L-(YbejixeAYk01A*fkTkEb?~22! zjl3IZr=bV$HpsUdDGzv#VzfUTU^G*9B;y|9NHV7ttK*diDIw^dPjF)pVJK#J-6wLd z#&yhM$QVc;v(gv^OsApIB!N-bGyL+X5ON01Gk{jx zf=i8bY&USjPz|u0MJVfZE+y8;DDw*1Tc_aFI<0J9xDfek?W}Jj<}@v zv9IgBF-E3FJpc+ zClDjp=6yrY<`vuO>h_EE-f7LP<^-D|usYVTfOVs*^T*OasOW#6W9O5UQg9a_zzvEVh!)1Jfdjx#XPZjm(MGG3&+% znqn1yQ^y!(sQq38j7TgtPNo9PZO;?Oh^x-tIaM6O8PwEEHK&%@PKX&q4MqT#k@HoG zbA6u6W8_OUPMV*oecS-uT061UVlVap+D!x~6Q&hgDztN3(4x}Ra|S0>C!C`g$Gv$+ zlX#v1&}jxuQ4~s|sRV1DhfWHsv71IrOW8D2e7v(kX`mf)g?KdDep)=gHO zRHD+Tf(;&3@XF{iEeHq7{FY<%m&U8y0{4Xie92j1(1=C|PEWIY(v6l<79WYzjWk}E z0G5XvR};pb@9T7MZRV2cpic9{W0YtYGh90-ZuZD;Z-B&bhf{HQ`R^X!4rlOgD2_zR zS;~tMiIAEaY&6O_E@oj^>7K=?(My*yGMoy0G60Y1M(Ok$!1oT}RL6IrI+D;QnMBn( z4z&~&B`G%*RN%+-TI61JyqiNR<|1@RDJ`md@J0c`BvC1v6T0t@pwlGz_tw{UH{kt7 zoD|VSkh|Yo!dEIAMr^oP_N|a|U;=q(ij1tdgRar8FCC-4%6fQf3i*R3TnK z$FhR*1hE-xTpL?ok4>G3B?3U~2+oU^f}blWH!(wk%#pYcNX?vZ6Qg^Y5$?}YWn_-^ z`^Q*ySDX{kQ`KnTS;uYBz}U)ucRma7K2Hc=KS-Xs0(bzRn;Y;>Z~DU{_~A*`m(*k zs^I)ZzB&=|;E}qjE8%9*PjSat0k_?}-dEBOWkRc!VEYa!XV7%>41?THhR8>@h z3#c!7`JRw_S3!J&c+m{}vn>Q%7c!u34($Z8#qnY;)rDt%#h}FKYpp6MfVw#YvKhC@ zOVd=xZB{X@7TiyBF?jj;AmbGP?Y79j{0#AK0~a&G93`R-fOZ4;dwBJ@E?>rWoAnmr`-9{GK^DHH;`VM*5gQke^c$V=605@u=X>^Yvn;-)fWNW$w zC4#pUl-PKxftTZ}bZRr^o3?OhHPrQmz!2B-@*uhL*8KAXf1Dc!lo_badKI*!r z&oJLf8b+Uz2q6OEtePX}`%!4|&H;0jQf$E$x;6KqMmTIN1yVMZ()u*g#~qM+aUzFf zD$_b{sIWmS-9u8Knms}1ic2WtHJmd1S;klnR4DVMHg%M+h_F4X4hwq^a;$*d*kMte zb6$XpvxuXY?+pO?Zj0$N>DS&lxPSZ>^wqZ@6}Mu0ewjf*))5T4KFv`?{+jyd3wokC zAvI;;MIQAvw=6<&W#>&7_Rh?ed1yh6%nKFwg(J}-Xj#}EUL8x^d8B=Zxb>h6gy*?b z8^|QU+odFPfD9<0I*nMThJBQ+$0TEvy$aIm8eFLAxu$#oK<-eg+qB^PQWJYc?y-B4 z{RRMd5K&diB)<=xf&-0Ek7Ko^biFXAHRmjO=Eep)3ecv$ld)=P1Yc}1|KbM3K=2Ou z^EcqHz7?l?W;OrxGptgJrgli_!DddZqvODWIb`V|_WI8ui1p8=SrEwk<=AiEhmNr| z)xE83&;t7m7#O9@QtDX+WOL_A+Ju{$wG>qCbrW0844E9|W-3URKcRUa)y4;^txfeh z&MG_sWuBChZDz+b0XS#`-z6@=vv8Q<4r9SaNapmUipN^Jy}?^0TCTxMG&T>-O*M$t zw&?@%PR6LiDT$yy7jt~rX9)uc6{IID^?B@G{)yWa&$3VLQ~T6DwNLF+`_w+Q zPwi9t)IPOO?Nj@Yr+w5B^j74eL|iY?Ioq6qR@B63js)au_MGYz#G{?m?sH>$27)~PaF$4NKdliIJ0WUZw6p%T=KS~tFA2k}_#WM{+ zJkSJWse2<%yu@%#Sslwgk?Vt5@w(*&S0uH5L1Mj(F_2b5h>KXlPtL+DnB> zDajy8?g@w&a?w{FxJq-ON_%PZOMv?OwMP((&8fhasU;v3#B+tQ3x#SZUJqMc;4w4^cbDsf>^MV#Hx##t{Eb^+1 z9fT%gzpiYtzUOOgw&pcdxH85yPnLnLXBMX+RPT5K7gGLonFL{gFuExA$_I<~~X}!UXC%2?lM3x-LAb)c<^;SQ|hgyz*U<;&P^LhY4Rr(A?#dTPa$hJ zGKW)Ta8Tqm4$u%0z?-lQtES~-?)OF7Ei&?rAmQO3D*lFpbi z^36_4BF+hTK7ry`#+hkOzoUs((_}Kzr6#++NW7OCPm{FqJ5I(PC(i z&sYjd10}l4PWJZ&H6AEY^}<56(}NSug;b-@3}vV|vsVC1Wi8js`k@XmF*%0F5+HMB z@Mj=2!fd620ULXTi;Y6F*mlC6LBTx~a}m)N)^7%e9=Q)Pey6yiklQ}N6;rir*#;+Z z-+>1a38k}@^vs39gEs2!ob11>>6!Qq>c8Rq@k2I<-S7WXKWu>MW#TbC* z0-I91zMffWY(i@*xx9^$uqdBUUThpGKlGd%afhp|aciwnZCy9!#wkK1paiHC_-R_^ zX<8W`@4%a07SsDP_~{vVc!VE%zGX%nQ5v{!0xs|>1&)j%E3@<%;i^44|ksKMrD zemUNuf3Ly0T~d$9D&FYKzyv^3MmJAY)Wqg=C#4l#%w zsjUasCj0}SWM5!arp*Ef+`4YP0^@K>NE=_&Zp8tVB$rTyKmh=W zkvoUnS7mB9b4e-UfU-x}I0qWzuxL3rR?=C{QRalBS~fE0n%5gbi)*h+$C|B)#Dp z=LAq~5@3>i z4brWYMRdA5{;*`iJKT>H?_mWsh}E(zyCifd~NHKcPFG!G}Z1HD6SW zFwG1An6tHW#CfZ{8R^q?%Ql&)baA%HXxW7?koVf z1VtJ#&oXuuxEqPBmo%?t^)IhvQDi- zxBa}fT?p*{Q|K^U2S9Ig8;FWnhy2-qrJ^`$PC!Gp#AwE^C~9f<4N*z?{0vY3JABc z@194=(ThoQ-de|%8rC65q;f6VIeyQbZP*TpdjwduC!(yEBCcvMo`l*9fiZGDV z=7cVutM0gYH7D$6YiOImUP|ECk}a>K5s{YU$`>Q(m}hZ*I#>3N;<&P7tj(&}JPWXN z-pL#|o+a{oyAz>Nt3;sB#2+K5_tnwUmIh^pb)rWHetV0&32+Zb@cpCo-xT2vr>dZD>%=q{Q7h8YkWzi3DJ$7H zunWc#001BWNklUF=ZLF|q&IpDw9c1Zx2(2LlUvKHXWAYMM`FuNQ4VJm zMur*h7L~R=+)r7AvTW;VqU$CYXVoy=iiyXBno}MH$h7PHLJSuu>ea;wYf(aFEU|+) zRRPf-N(Nd)z?051q_R#B$HUWEoN`Vo1=RfWX6^P~?4KfLsF6aoA!(e&bbEX*WgPkG z3G6-G7w>@00D5>rzJCzL9q(kqpk~K7l>M7>WyMlsmy}34 zDS$`a3reuA4YoCnow5dFGbftrOYkxWMO;v^4QB}=&Qbco3)7dzNgT2(#~+z7Wq{qB z6(+jZin+xM@GROxE&C}Fc<7M5m(Nk{2Lfb16{qXUF0#)pc%xbKn`2(!1|o%2e|g*K z;|Az0Ft_HKD034*Ez$Ls!t1M%gf3M1{g{-R$2ID!=X3DLJ1GO@4kPG16_Gf4J`1SM zGRSB);GdOt(hiQ5@sgMKL30G1L@~Zj{H&fW`9AJcOB590w;=8^43KP(*cN$isa7 z_tz$1+ppKyaxQeNLOE{*lniv6P>gNR+T7i3QB3CNgVb(i1`bCZM-H44+KGqe4}2RU;}Iv9?k`R%*lyLZGqvY}_vZKdVzO3n*&nz+j2=&$nGM zUj5h{KQ$D@(3InvlhU9YgN z(IpQe1s-qT$oK;!+NQ2q9 zb;@o1vU^62ZW#4lMdE18N}X(-PkP>z0S5de*K(=uJp_Of!IjdRxf+MIo-3WwO-6BK zVZ}It8oPTtBzK$yc%N&@I(U!##T$%YhydK?T)~8UR+f&jLH5c- z*bZ=~5&8b1KI2>syfy-|0Ox%t^ka)AUgMkq>Y8W$v@R#r{@(1*dUCl2Z@OxT$Go7w zI!ZDwnZcb$+y|kuAESU>bL5^;DgnqGsLLF!or<|GzzmeJUIgUw(y?m6gL3B?g-UE9 zaAb2XF))*ecSn|coU4<%tvch5qkxb(3Ol9?pu-6`pGzrG>60k?pV^A8qnmdX;_t%$NdAJDQ&?YKo$umvbxSNG+$ zO?54;#S^bZ&0B|*J*TW7xQPT?Dui6u>|3=VC|5k8C6qzxv`SpqNFE|kU0OmlIvkom zs(nvp+nXt3;%I9?-rDopC^0axvZk_@LR+S^(5xv)hNBEnvwpYp1QWjILBGBEzbT`PS{wjb_tTA}FnLSiD3~i&Cs+w)s&jm90zj`s%-hyFE`P2vwI4S? zZ(D9gn{SMFYigh_Xtb@@r0>96%^8}sCUXm9?3&XInw46cZD2HuztMnS1BvT}FGJO< zb#t`{JE`Zn)O0|jd?5gnOR}>+6Kv8283>E2hOq13ESAc zD*!ORy+OQHb7qO??zd8Y?fC@vb|-XMU{M~A&H_-&Gf%brW}yqO@*Ayw zZc(W19OA}nZf(-q&y8|#!>)8X=HcMCR+<+1y70zDpp%|>$9pHH>i*LI8an|E@`zC(BzLC2FlHq((5j1LyP*s_C;S!6x>4Pn99%S}=!c+q@ zdDDSH-6Vs-V1&E5nVnEab?Rilwe_(qRhivUYzE3!OC+z- zE8XkN?OrEg6{On+{{0)0&S$<{G}+Fe(*gL`zXAaA(}?tX1uj>=_uiQTVh8CkRfTd( zPU#w8Ys2H&Z?)XRz(Z${gn(TBunU8fF);-6vN;|AGyvWj+3Mk8IuY*kt6f({psyum3%fl~ zKO-_7Jt+m$V1E~MH}}?#UAeVG;hq!2k$SU79-QmCu@;3q_M-H@2H$gsm{UsP8$ZzE z;9ZROM~)vmK<6T9Q*V)@GzWX2ChDV(7R@bELV(kO(04BKMjfHM^?=cTvu-k72P`Yn z%UMN$^1aAG{*Ln;oNgql6EtUdVQdZ)P6G^g?$tqS&X={$h;8!_D`AV-W9)>Qb!Jvd zq@LE2)&;fJ))(A^z!m|GN==Dn^&#fv~2!3NC44GX0yD$dGFPI=A5S<+p{FC($Hae`y^`u zP{Ftk>GLP#-@hXL`+p#vo&;rIH?R5Rki7@c8bA|t8b>ka*3)%a#i=F&vrvT7(22;( z&{wD4+7;R}W(_nX!=Q)=lp03T{)r`^h;tYODD6|J3^U*Jc!s+|27LX+>q!UJ)SfeiRd1K0qX}Hr%#g< z71X?;vWLK>`OU`o)6W@lUfF^Ax35iQWDtRmgWFga11^koTR^u3JTJ2MEo-$QIeRkD zf*8(iB9_D7KGqdk5aCg8EKk8 zUp|Yio5M9)U~X%o>+ad9Kl;$J4{teV$ZP-(Tr9DaJ7l-9=_#QYV9^o!RfV9F`Y3?b zbQh%S2I`Z~Mfc4?KKChU+gPm&XQN#gu5CmiYr>PXyCD1#1J=cy3%6@wM{#fTMt1QH zA5_>htKUHywA;RCRQD~nWsJT0a^5O-w>KoEX6=l_KD@M8z)HbN$lnc55_kt`}swRWcygXq*= z;0_7*&jUKiP!XzSZ5L;BuJ$z!L9ndWa3xV31b}$~uWOwwvr^{mSThRaP{rziI;l&k z$a?Bf1{HJA;F_TuQj%*deRA4vLwUPRlj(v_jBr0x6hrR` z?dzryjY{}FLkBgX;?E{##X7BLx3Sfxe(t(#r@P-C{+P>(=y>pK)>pwL=HRUCOF`ndJyq&7GP z133d(cmBSw%%!21MDA^tdeU4pfhF~&Q61LTgq{Q2CM6ihNd%y-H*q3>yLwNkqVJs| zwhishVLppdZLKa;=1LXNvd#r=|24sxHnrJcM`B7}yNJ+M(5+#e>;Lni!*&uXJ8qI- zHN6nZ!Oj|@qJxiv3u!fjxvC!9TG;(|y4*nTSJ44@evQC2#-u@e-Sc*HOQ;6b72>R4}c zVF-1mYd~aW@J+B@Yj*(?#$t#aEh)LP;sJy`x($AAIX~Rj0qP@ef)V@49iixPQqHl} zQWLx0Lyzs#2u_6VLP!@yUMgV6Z5`yl+Vs-YiDMj4o@7m=3qY*wFqU<}MLjt%QuQ1P2LHk1#}CkB{g}~o?8a`J z0|x-=MCkjP<+Mq3x%pm!!j6id@8rQmCC+%Rm`x(8HM|y-tKsunpjGNBJU|}@(6YMX zCnxy#h!7WnSSj@>RaMS7>9pph3>u6OspAB%wX#jh)f}_X&Alaq-%tIwZ=&^{cpHcq zv?yvW*96Z%w?TS62Biq~jM)_+q0V1-)z)!|s`{h;+v*F+0&>lkd3}rBbFYQl?ic!!b*c-6zmRHl6;g z8UP(3U8*7~C#qt3n>f$3N`OzdrLDJ0$|B+iLVO=#B%S|;01maaAb>mO6>qA2@a3}v zDwnIEuZ5AmoiT+qLFcOk+MiCcM$T7Bx;_%ovN_PJLtrB&Z_K_cI?c)|Du-Tc|AKhd zrVJ_qD3O4bCV*u~sG)_W2Ipl;A{qxEQ4(QKOPJc{G=NX5Q0UXDr6EQ!R_dkH#&-=e zPFdUQd`}m_%2~?JKC6%AkvkShS7Bq&mRR>r&nJcs}w`U_o>_Z1{amj!*W zmuV4g5fksUvIl27#Wi6;Oh@$@*xsScCn$CZO|BMeQ5!&py%;V4MHnH3gxEo1yVtCt{z`$ti z0EE{5_6E)coeIaLB0+rrRrD^pu}Av$F2OzkI!w~qv=s2S7x9S~5t3tT(PqzBnQVNU zB}sZpJ%)V>jS%vsCkY#u#-s`p1 zf0kB*Ay9|48^&F$t%mzz&O)9nLj_aV~nPXK2X7frb`qD-{Z61}S;+Qx!3TcQaM zve>9$h)4^}JGFERq93s?_ha4Udzk_2m{JOGn~~mSZd2DGU2c^fLh1uB19_<|T$Z?x z1Ncf>CdnE2XK0oD_yM{NZHePb(Ey~*)+iQ|#i72J7EwblbqCj*pd^=oc0iprU3fg` zVzq1!hxT1@a(U*b+}ACP5{%HgN_O9ZnMsTyDZRo2Da(2S+Lld_$cE-l1go!wQpmY* z6I{sO>{+x9#cQ){WAhBN1;pm`F&fdJ+E>sP4nkn^*bp@6p*f4pZO`YFfwdr=m2PF3 zGdt(d3q{WQfo{2G^7cV^FQo{Sl292xVvuf|z+sYp!pu^W2B6F{Fwda#SptA%mAbYs zpTr41OrT$X2Vbwq|L?D$uiyN%oi3zK z3_Z!Y_<9AupZ$C2^dz;s>(FLc`zm5b%Zl{IpmC_wU;8{X`<;af><57cY6?mIxvB_`m6@5LOP`;c{4g0fB~@CWB~Uehp+ZP=0c|D>$4Gh|qU0{u)7>)CLXy;S=Q5xgs(ZqU z_;|1ARaDmjNcV<<+6e{l0GxZFlJ1!vMl9!#)o7B>uuXP^lTBp8~Ai=aE zOaShB17EJP=bcXCm)g87MOkH?(#li)T(lot#4e2^y1)Dx{8^GzI3B>i{SN%wzstW< zLRP6Sl6b_Bn`dn)yD(qAnZ8)h{;?))!K!fqpLs~bPH(K&T-}zY}orMKJ2x>_S<%xwkDn)FeoS<}Wek(5+g++uTXuJh00EN5{T$Y+V%=K4eO%9si% z$-0}ydY_jS^z~KFPgLWvL~`sn$a7p*)jBGz-y|Od`ccY3w=8RRpH%)&jvqTfw}(jD zW@YGQ0>l<(O3TG&$JPyjJEPkbnM8J4%Z!x*y3I5R^o74c5!r& z0IkJP3K&GV#>BJ?Wke}X&$sJ0nj|(2CRRmGf*~NKp;aLicGLwVwJqLChfGw?g7ZLK zGh3c&_BqmF8beTaB5^S|w`(tQzsRUSJ3*EvYagGt{oe&!`uaRHv&Sm>MCE1-5Z6>9XP$7&f4qj z*My>k;s}N{VZlfU&i&`^*d)z}w8v!M^ajb2>w4TZw?NTJc zHOVukdGVgQA8Moo8b=SzkTY;o^r*~$C9;-90{Kbm>bMh{uL-xAf;a%Vk6n@={d|@C zu37--J8@cKDO7OO_T@P7I(aZe1|IAtBJiX^4?}|p3nZX+-w?(6oizXwr>t8ae5W6b zDiR#`I9)TeR+@7eJ7J(`V%Vq0e(S(O;Q#kX%#JJ{C z*8!jbVh>=JGJ|OXo{kNI&eMqUG$D0K$`U?WfUbl3PVB>BL~I@F_t5rQ^Oq7TlOiMm zqu8H)p5_edH5sqnWn2Y4`U3HKLR%-|y7yZvE73lX???rrr(>)RhWZ)mhb4F*?yUuF zM8C!SmFTM|KoHA0XxJ*st51c#jvWd?kn8nu{=(n#()8uGkdU^u=`A?Ny@$D7-?FF0xK3~Bvub_Sq1RD~p#Ed`L z{`3e9C=5mhU$1(t+^ku?UWFww3i9jJC}T|kK+=SqC8H4MB4nfLNN9_MKG9t6GSr4_@u<%7bT_s>G3@RJ2Li{Ex zXA6mbN6G*JLy%hA2S^(685Z`B{#8c}0FdgTB51=L?G3H6%hh9zf5}6-()&=2h9u0M@-@Z z)dpGcodU}Tkf7as5oJlxbp}=q60>$<8hZCBXj9NImm2gMa29Pfk@rjoG+9OQIRnse zg8*O+??u1E)$BiF5KsU+) zQO(X64G*aA*(52s8ad4MnEg0a0)a^+e&zz|E~q+z=Po2 z4kZ%t87S(q)_X(y-xCEl!nv#ltvT;)Ztwj*q49%{s0PbdrL=Wj6;bL^4I-5O$+;rz zfNb~}dPgnv#Nfi{{`!m5imw~W%d61SbJhe_R~-sVOc|Tx0i%R(bEQS?HY#kJB*$hF z1Z*6HmZW73wCZ}%QWd*K0A97&oX_6#HCyX+0n`mFYBnSZU?Tl1j)$y~7;x;@Kz&I5 zUQ>=TbfPr@3CLizRn3=b63>KK{QEU4VXPq2oL~mMDU~}Ww?5b)?ZUxtZ=$6z40TQ_ zT4J;}wi?ZO0luneA5j$vjkR%wfj@r&KTTrC-Y(vzjiPf8RQtB;_u35A6Y%edHb1i{ z<)$ok-$O#_6G)LsXB=5M2G9l~yS}+Kp*c@xZMj4snV8Q{@f0ept~taz5mNw8$<%KXO4piOWtno&~eVfJa84}n$Ru3{w~L? zf_{<;RDP5p>cwg!Za2Wx$88v5-iaeiizbaCDz!rp^~ADQOuZx(v(%(ZJ-0ELs4|D# zUr@G%2k>o>F2S!BeDDtbD~9)GzYe|>3vO+|od=tWQF zdaHghD_UdEI@J9aD`(SnNd1o;KHQBG_DwDEi1yn{S#934_y!_+ywx?aAO0EcLjV9E z07*naR0h~-sipv9=F@URdnZ7Gbh)7RJ5`~b5}egiFHZj_0SLTn6VQmGd&1T}W`0pX z&VB6NghzgS(mw0P`YkMgqOJ+P&62Ro`99WSLsHP{7u5swI=&MWr|@jdr%e_MKJcA@ z>RZOw3g7KJ_Bvm$^_WEWzu`YQKAtD`bNn1X$ItO|{2V{W&+&8o96!g;@pJqf{{_d7 zp8`u=&3;?Ke;8b(Wd>WF&ooK4B`Y06Ge2~_RVtKcGPM^u0NRvF%OP`R8A+Gl-=XGq zjAt~3LcyETEp2q2WP^&-PjD`Zq^sCjDNf(6^|r}tZfVO-uctNih9(l42!%{p1T6?v z&;%i~W~llu+lExzvk98BLqH;JcmF!VIYV7=d$07~Emr?kYYV*%g4KL&)~<`OujQmJ z0YjY=A8pWK5;bE$=;-GlG?tRA5oV#d=Zx;lXA!!ZXHjFEgk=?koWlV9Je zxzmmw1h{xp`qMAcE^U>yfNcX`Zj$k~vXR^D+9W(^2L3SCXKpq+?@(k8HY?geEmJ6y z2p`f`ytW$vpe-^{1W}|?9Mv`?LukKzKi>g>Sg7!sD-gi&Ha`S*w1pDY`dh0h2fW>z z{XU+gRvs!OM*zw}h3+yVoo6YnFr>wQ|94Q4AOy+Aqr0$%E!6kvLv^~~_hnibcwZ22xp?-?C9E=(u0D#`mOcQrQWqwhx z*Rh41O+72Wh}7Mp*JAAhIq*(awZU3aWStmjUZm@Y2@9W|#J_YVO#(fiz*;VYmpAa` zqNqAK)qUU7+Gy-F^tBU8BGBPbdp|F|bZ}4xT!JvA?7P$HD7qO#4?bT}zJ3){&;`)+ zJFKL|L^QkfF?AU%p3qJOQAJCw}u%Heg6N%>CD#<3DiGQ9-ccO8gj9rjWo zKo#5TdnEHB(f9pyKY_eX&1==(H{WZ%yNNUJ*?-z$qp3d!K)NQpWwq*T@vI$VOfa~g zU`%2Etm+t{6k+kKn+Qu#YU3zX)o+HDc{#(N@2kca5SY^T+qn9BMrZGm_?>pG&H@W8 zAwcJZ#%_ObJn;bn^stGS1L!t`FDCwzE1kh;xF#lNMgJ@`Jl?j3S_CNdYgGzx5HQ#u z=l_q6J1ecps71t1r4&an90xU!od(z22CNIXXy9%WaZd%76XBZ*7<=P?fzAt5;RzqRz{5Wi&ka;(cQe}9J#Cs)Ad6M> zOln6yUVx6&xd;+{IU&71Nv$j(in1nNvu#43J4_OcXiF*1(hUIfSM2M5%C{HL`3zn+ zaSEI=C)6#kjk7fr>!gxUn#gElwsuw259Sb94OrjF@hQo3oEMoV)?Hywv)s{aDQkj` zsn$UHZ>ilENCitcY;4Jd3zH=2JaEzZ@1uj$<6RwC9ndB?4-TijP5?O9P0@tN0BENI zO`Pe!+j`xk^~fD42l2|i@Ypzr;`?!w7D3Af+}b3{hZtQ4K90zz3G~Yox=&9?-)v1> z#c93G;AN3LVj96u6EJtc<)*FJ7VygwsM7Mh==F?F6C}K@RfrML=wcU)nhLPBbuzI} zJFXY%dICVJC4&Qfy@Ql4ZPHo~Hn(ZF9&E(qY!nIg?j5^hfa-{n?g@o8VI`D*9@IfH z+WjLsVbqKu5~0Oit@_>CEet?w|16-kfZc4liNq~ywLd1ZrHaZ}H`xc51$b%Il#MDzoYo%J0#Y9P+D%3Ga=OlKO)3Cf7j%mq zQ~itRivXx}-biU@u4M_VNhLsOz~S=QO`-ZMAwl&&qoVEsg`Lmhuf^crZFF6)qK_lu zh4eH?BFcidSZW!>+B|SD@hmGpOQf~~_1{W~hbpskF2MWQ>E~Xerr(v9SNpL1e_~w| zy=o0~D9Z|ZeXTwvAj$I2&*0Nh%4TkB)79w14D(42+F$z?T8Cv7Aj`TYOdF@`z@+xd z_Jp;yZJbE7W6Wpupg*;=_T4%VYP&8O_aAf_L_z1^KMP> zkyxH(<-j2!7Rv)@IMmnI-I}m#P+wkRArhOuPvEAVU*i%cdOh>fD#cs7JfJ28EbvcV z)v&U?+^yEt=uvWy+ zm7UG`H-`?XUG#tpQ8d8@=_bgi%Idpu7nIwGsCf)X>~l?^vJ2iH1>=T30eZiSJX0dA zRWE3SRP1{UVb$!X3sZcs!M7XI`+(GU(z@$(M6xw;zBB?b)Ioxhl)$$e%54Vq1JdyT z-Zqr$wK;duzUOHi&^@2PEOk1(t$C!h(7*OQN8#JhxrTJYE)f3k}@_ zJqfjCfCR0Ghp!cz_Nm_3AAWi%yAH8Y1<^@9?yNd0ZS*0r=zw6bDM5+Ej9B7I(I21 zUI1y&1AvB3>l-6lkwri*2I6MxBl_5(T@!Zx@EU=DytBV?#DtQemKHem+8%Sx5}e2D zER1x~zqOv;6|Z9}HGTg+d7;5~T>CkPHaWF_JraSA&yv`FKZCDV&_&QMI$u$AEwLr8 ztVQFe0sJ(9hlDh5GA|;_=z|Pi7NqkPrBAX?90w!|7ME3?fwPjNewr3irR3}i$9E{S zCdawx^D|`25;h^RT1DanO^$P#Z332p#0<_!Y;fFLwjw=>!yrZl9byv5e>nU5j~Grq zpLaSDO-s#OypJ=6!Nol3w$ye^2HdO+{`vwWLQz!K)Tu$XwOX59V;}&Wm9=Ed1B;E!U+R+o zo67#%LL8PzleDE>JMsO#mtz$C#GJgPYE1~ZgDBr`>sr}FxXnKi^#9+3i}v)Z9pbN z{O%MoJOG-lrn5fneF%W{JZ31IeIGJmp2g-$IRjKA?%tXE?ud&yZi4%O-TuE9?=zz& z2Ymm#N)dWlOrqFG)F}T-;Ie4Y_yHBG_4(&te?xkENB1v(midwECPUU1N9S{Sc?I6j zFe*BA58A!3ILFj=60AI*K*IpqHk5T$1`4pJC#7kUb=h^m<*KdNbiSyAvVTsp`Eg~x z7>mS%_3F5V?M%N=*F$efH(`5lDc-x;ZA7zKaf<>b*&I>~VnVR}a2RrK8<|nsh@|yT z{OmqirAo)nFxgSbb~i|ZpLwYWPe=%mmC-r$7A28Ts%3f%JYx z`rBUwWewdQFi5*U&f4zf^$oaQLsq?ed|nM+Xc&Zcs-mJ)SQ1|WrSj)*2u(_0S}TRv z=GVH_@}BrT5H^UHVwvsUcQV+5uoVC#r~skP=`}a=#Z=*i8CB|eGSJv%Fa5~CR%%<( z{ap6%RrPLWPeiZ_2<1Dvqzw-YHQ`EzrstyKk)cFk<9*Yw!F z_k^AY<_#OfuGO6W9yIiF@2y|?GzqO*5xPAK&Hhhahjcsu;~?vE-CTsV>5`&|J#`6X zUQu2JRkt7?l;j%hH9*(I3cAfGzkicN{Rb2iMPW(SEi34B6nhop2@~|QdAF=Ux);EG znE3Q$SMp9pZaX8p&g?s=`Vf|gWvaHllso3PefK})k33?HIExnA$SuiSE~O&pwvSP; z+Z?(Pl*%9gASIM$hfV4Ik^f{d4uXR7#0j~c0xq=iA z)@T(tmU0$aR!MHHe|$XgV+ZJkrG~ZZz~>A2Cv0!Ur*0LB%SJ^kqypzlzA`-<}Ke@FWCjH0L?7e+cwAkw-uUIppM6%{Otw#tct z9Fb;#Gk9BNGam43=BilvdVQBhF&&K zeZ3i7l77*HWMgS9?x=I0P=*fDHcfky#$l+Tqd4qny!ADWJ<9!j5G2Qg7H-$q-LTiJ z{KY8lyw&fG$LZh34DwCIT2)17)a;$Tr)2?ryU8Z@mtQ_4oj3jMU!?Tqx3A!T`*);Y zzSJJTrGQQ+u_spIk&;szr3dPFTGSazn*~kAILPx^*XleN+7i+9ki0SG20QI8ImOqR z7`e_lOZpmm%_x8c;0(9V^~Vcko(FxOfV2wA!uC2K6n2|(O*@=`yz8F89Z9V`fOM-# zXC4Req}R7*LF2T3@s56<=Aie3CWs`VRd14e9An?M7kXFlz8wYI5A2bWIXQrjU&o#FkP^ za6B0w67;?%0PKSeO%ix{(!<0m#6DX9tok@e5>RlT0wS*8&N_d!1t%3LCsF56)|a)b zrLFoYR1>eR=w4WY^P=_V<3Vo02Aw8p zEq0ZT5zg)d)K6EtqAX4VDpM*cifdgsB8^)IW&PY;3*fLGe12E(%;&uUY;@m+rWxkP z0PvpXs7YP%`MF_|u*D6XAob?Qvvol*Ce*y{5@0bV(d%E<3Uun+=XvpxQ#wq5=_+V9 zAt?(fAA7}j_=Coe z9iRhRD|i46J^0&eL*JCv6kW|g8rl(1a6_vJ)F9|6#gRtNMJVb(gK&HMGMoJC7DOau zvYB&1rGQK4=k$pI$ZB8d}S2YoE}&z(`S`hik&GCv3{TLCWu>Ed+JnW3&)Cg_J!gOrTAZSDWZC z&@h1i@(aq-h_t7Cet=OvKVkcPK>sv>{_XE5zy0p-(LoU`MFXho#Ca&WZpg-@qL9or zVH{0Dp%kG<`thM>ZsZ)6B50&hWo<9Yr3%-n17GTBp-~NVtI-q;`cx4}$M)2t<@x;q(Th3$&R6yqRt_`gRm!_8#NAN*N(Pr1s ziTVvOm@fsa#KhgnG=L5*B<(XE$eYecIIjlGe3uE6_dPLcx+(EL^@03%HfzG-8J(jV zER)?Yi(8sD)yYwJnZvr5T3lpx?B5y9KCIa-9;9NgLT_@mX&S=_&8UsM% z3F>=EW*(IOxBf#adwkvgw#9Cnbto;k6IChUGyA~>%+%gX+w6y-BCP-D z+5D(OomQTDq+h;>u$$eRX_C!;T_lq}^tw?~t#h;2D0yN^m?K4NaStF;3RJ8u%2{gL za;?8(MHm27g<98G&_0>#)~-VpOhng-p}l<|k&4*uaV`&Gsc{V$)}_nwa8T;FDSmWN4eLX+BK-3LZN6ul&Co@^mHp%i1SBPpgpJvj-EJgnJ*M#{EJaxd+5fp2VC!Nn)e&+#bOhOV> z4G`O3VlZxEy!&Tu_1(=VwazpoC0)_I==*yXM)XhAW_!6uDZq-VN8)T03HlwFFs7g- zwYK`Ymzw|~$g)m00XQfHd|BZ%-_UEEmsOZKMrrR`reyS4o8&eV*mRHdoHP#72i+2i z-8=G2(3DYRoRo34Pr7psEJz~nfRq3rC8XyQ$~buWz(*P!Y&Z7`Tr5kSW8t}Z5AUdz ztXeCjx^eD{a)}K?qU4D*Rsfss+4@&u-%}cX5Bc5MgU<` z)1Ze~O8`(2Siot#A5IX98Tj^!&Z&w;=ym4QTAi)cqXBMYg%$^t>lL&tO$Od-d&=b^ z^!A~mDN?tan|0;ir>)r^Vg~Ay6K}XYBkenc}--mHuA@9@SA?soflX-Ij(n zTI;&>+(CyyT2+}19R2yG^G(kE_VJJr`uzn%Kzix)RPSx4n|{pjo88lTY0R4CkG1G( zgZOq6b=N)wB>R$_h?H1z(#x+(V;2pfYhF(Yd>m0mEvcBLj+#*G&%MMVB9Q86-<5Od z^%GLvA1%oQz;zi=n&2kx349owLhS9}Vw-C*~UL&|M?LKJ>LDN?- zUn2S@ao&dOK@O~_C~9h&A5Ypgbj!6(*(_xmH1xuT zS`ylNGJC`#&>FAN)`aiJ%vJGy4Yj;xp9WnMR*C~4ysKgi3P4T7 zME`SNVz+GockMj(_j0W<-@WfP|3UKUQ3AgCv}uJv*NU~{1gf?|_*8P;P|GLon95ZW3j*W6$e~Ucy_Id)2|B%Ndooxs`(E@oxpCe+kzV7I{)u5C!{cmS@Z zYOlqtwbguWfzrFrOn+~)-J>IBP-2}*+}z^g4~sCKmmrJ8v&|mJ=O&S1NfeGPN%jWx z1B~+a4!pd9x+JKdqUL}G!t?CZU0xRCb#rt(*29UxjG0I+(cmKL?)w1bkzxrcMNiR3 ztQ%nUcT`khOOtB$+>JVjN$SmylV*cM;H}OQfJ!YS>j!NCc(}H-+vIje-h_z!Z;}kP zoWJThq-CqOWp2E0#JHD4?!DDCIAjfmd(ZwaJy;WphJws<_MD3Sa#1agJJ zLyt1`;4Y!NuC0KMiI#4;Qrz`7H%W@`tOtt8yeMi&J36(OA0$WFrT%}Zw%^Kb))hqB z|Ge+SS$w~E;)OrrK5@Q)Za48eMrA65gdnzD1HNsOU^m(yKT!ypfd)aep5Xv$@`-kH zDva1C-I76fHMce$6zL}GwlOHEu(i*U`2N{4k@h=(WMAnqqG`TZ3}C`%X;h)eE{Q{L zV#J9+gZ6=5R-v@BQh6p4v!S?l;)v@d&YK7x6nMv& z_L@+A4EwzOpLS~r>bq%DXag}J~6 zP%W#pC;ndS_@5X*c7P7Jb8mDW8pk?`)(7f;K(j!|7h!UPD(#?(oD2FOEn5%N+9A)p zS_TF}8+LR{ja<~zfR3JhRcb`FB z==K?<^GcR^7bu$p8I&63JmDVf3;})55IA~efkp_XLpIkkX#O3fySHaBgQ{=pV0EKJ z0*T8a zj)JeHLNLSUhEv3b0c6Ujy6I6L0->VFz?PM2AB-w%8Ah!4^0l-Jx?^&x2}Wd% zG?{YCESqBqR0ZL!h!7SeBW=Gq3dcR#FdO>V?zU zQiYlNz6PL)Bw6zZ3!VH|A4DWw2l^i6tSz+?fr>f^^Q;QYrDpB{y}ubqy{w06lrn?R zvJlL&PiSk$C?eB15m757$*}}D1w77iuSJgmEi-6d(B&-k-*Fo-XFAS7bLuRhjX@9K z3c*P76aDr5)cnr8rJRuzOrYCZ-y1b3P-?K(BCGS`b1$-|_U8`?a_T#vpXB##xz(6C zOf{(7G?-t-Ue%yS1y_TEMbjky!uc!-!qce+Qy*y1;UMj|mIZv9wM&LRgKcwE*n^Ll zT-W+d9$K+6nw9M^Xks>^(9FONKxqDE26Y@Vt7z?MM%$eLVvo~Snig#UcKSJR`!Bx- zcc^0ZgXsSC{RpqemX;pa0p3CsfQw||D&07t$gw zQ>lKGU6!C^mua?*C@$b|Uuc&Z_FDZ%s5vu$6pZ&)>m$4BAUbNvSgFJZ|!hYu!*)D7zO|ilPEElB4r(hs4s@77}c?W4kuwFd_=|S z(-ZhGArYZ`{RUibwfjR9qnRe)%d^bS+bsRHm$e3qLl1ruhnoQJzwK0bN)q%GQ|sM1 z0ydbntrAsguO(>M1lw}e(&(y#LS?J}ws{ik93O~q-KqTAeThBHH3$MiAmpFtdL4a| z-*Y<550isJV)7Ny{Sw zJwFSQ$qc-_1M3A%mk95MP>{ZS27fwz%r$YCL`e0Lz~^)AY5+9;0rit2!<{5pOmUe= zg%AnQ)|?Cp(rK1XDmA!B)i3!@LRAv=8K6=Fl9(7M+S$e^v37mTO>04Vl=Nv5VAb9> z#{hMn$GNy4``3sBJzrK$+G#+cfjOn*LRfS<$$eiI;O)KfPfWJr#&-Tx48?XT`v|#f)CWq{GpT`V(siKPf+Gj{#+wnWvw2c#K{MQGI+T?rrkxsl6^*5H_&EY(r&%lIxwoHX+@B%TkcR>T17{1D>Znq zdh@NIQK$Znlh@Rond+;ybOdun%mZDEZbAG+?;Q_4cpStjy=h(7I9AH;BeeW`wCj&B zIM@muGLMtgAC3dc(**81VS!uS`nG{zUP1Fg)(iliMsdbW>Gya5PotDsTyA2=EpZuH zL3SPcWRaC;5dm5s>w9)3_TwypuxSxBrMl3i1+!+r{A04Fi=&WsG`7l+5em_1-Vq+Y@8W>{e<$l||9fv9w zx2(Im?gs&Sb8Xau1OQxf01&_=C6uuT4++E&ErdoGi>rUM7b%SQAbkH_3#BToQojl$AbuD zK?3vg_U3`ReU1(XNzUd1s9Jw|dh*{^u2k%65Mn~pu$Rsavw&0mhk?1UR7i5diF*DMUx0HU$4iQPJg z0Gj)e^4W%JzQ1j|H9|xJh)xs8g5M^wAcDfyMM&=J>MeNfS$NVa?Z8m2Q@3XlMZ24| z0@U@wfg0a+l8kX-IboB~IM&~?uJ>#I4<0{ufL@B+d{!EQ8BS9$emcs8S{Bb@@yddp zoj4$-lxl)F zd)j4OAPEqrVh9EzO+5A+eP955q1tEtzJ~L}y~vK)(-UJ5^e8JGKcA8W9$k_}7acSc zn25a+nO&imOHj2eSu=8DJ^!`Tz+~NOYp;(qN>LTdBFG*9ux#W2q(^$r!Vt*?$;5nK z-^7VHOh`|9%(oZt*RS%qFQ3J^=z9@4F`mBRNG~QN| zM12n&Cvo(*0W>ewcp7>Gv}kyNIFgYXZ0wQX_S=l^)`-^<^e3e@B_luv)TQz=p zuKV8C7ZLrt{F(H32mHeMHl3G(kuV8XhH3whW>otdT)l45lsB7PU6)vybY{ZBE3xa$~aC z>oFiFYStKq*QK2sJn`khc1(nA8+a~ai^tKC_eOAT=d+L{DiS$rOUI+A>ua!K^Ebb| zf`%U5U;ZrTQU*|YdzY=O>!j^w*9m(r*dPni`FfLb!GF-^>W3ULp0ExOrMMuj0eCL3 zYspBBFTB$X)Q44(z$REEs)=`I0J%-*8$kA8RB(;&*(d%MSHG&a62P4w;^zxKe6xp8 zO>&j$Q&UO+aZ|SFw%&Zd2oCO4(wiVY&UcM<$|CcUhF;tL<{Cr!wJSThBrw!R?0e9l zF_*Sk2BqqQszzC|e(c6}xZONX^R{f$3ft{ zK}Ps`YwCcoNzEUxTcx*?Ai!+0{`Q*I-ttyzmI;8>5!rEuh^MKqG<#-2{Vj88*;*5_ z+d^wBRkZc2oz;j$3QTO{v%hblf2p*lDsmqcapc&p4QK=`IAr6zJ(LT|q#ZqGPbHJA z<6Uix-DkT+N*ASN6_E+;|IDkl|1zPPD6F@x{u^Qj^rH=47GR!HqF|L}e-ERe-d!hk z=f4)IQMZ;X%t-(8XYg@CH%-|7pT7eD%FAoZR+wjC7{Tj;{C<|XKlCno!$lE@z;f7& z&UlTk(QcIzM#CWM_4Q2{6HkXqHMaRZjnb<$QYJNX%UUbkP{so#T*@;7^2mV}MpfOH zkbxO;yr~fz!$p38uDjCKZ&~f7F+zsET_X)!rD)yyR_l*rMm^j!{(M3?4kB3hei0F; zEd%o+6gw4~CcX|EoUC?zMv~G?P3ksz|m4+0@@&uzl#xfuKcMuBo8gyk=q{|J&jB*?V@iw$0 zQEdfiWft~bB)SRQb)xznG!j@l6rcdqtO;W~1$4bAh48k?8qwN(Yb)iSgCdW&#n%Me zy0Mm~x+bhVfa99l?7icAFVV9-_=#YN+qP}n`Q>}>+?hLn z!_13*_M5Km-L-4?)4i%{t-2h~b98qbRW`rhLV%a^?3irwf^n*eAfrchT_JKatVAsO zY`Nv1Hc92C*fNdp-o4-7v_nLBMq9Ojl0T<*i0^_DSGjc(7j#Gfp5M7R?ghCJULNtw z)ec5%Kx5*uCgN;5MDhKi{FT=j|LnYk$2{ilw^Ry%1+_hsDF<&s|Bn^1rH6gbjL}>EhnM< zRBW|du$*L>ICUjJZf<`;e|ZA`bZ2z`1F42_)o84cadexzrFbJ9LT$mtx%~`j<7NAc z890e&md3F!e|g_j8gr?lpe?)C49{ySt7|dYNJG_QYGm8`2ATUv?xSuD!BXhpK^B_K zfN9@}k{nfN57&>_`@G%k-FP3UsMLH+*}7w?lxOIy#!6v|azu4ZwD6<}W=;)*ImLDa zt1A#`!IGtGb)P;YfB`p)Pu3a zm+y>6_KUfm-~ZxyP=){2W%&DFf!;kIe7en%Bflwkhn09S%3QWL(6;qR_ZJ!bdi;V1 z8JZzgayW!f&O(!#6mA?Tz`l?aXr_%DPXABol82T%ZOfdh6+EoJrDJkA1+B$rT(kG7 zN2yzbI|H^BM{p(Kym-iHn%CaYQ63ma`BZ-8pEF`4SLEGaO!>Iy!+G=u)e3=8796E_rMhRncVcc)i2~A?}?zPbjX-VOw zo$PeZP_BK+S#mw}*#hHXcjwnRPC{;Yy-Lxjje>N`X(TMeSTO;Ki-%X&&17K*?aNJn zAWLNBC>e4Q@wjxce9nQ}HVRk{ekGt%J&rTH*J z;P$bWS=k&^GHltdT*Y{9jUT@3{f_ zq14|{JwpgT1qiMY@az58=yt|daizBf`vPRU?`k+2XqP4MID|5CIq{IDw}(`{9g6}G zj0odh0M`wZ%nEX&I~A2VblH0DW|H1wD=z2Dtu+#k+ooF}ZDK=K=PE}&So;m_gkGB{ zYc3F;5K|ms5m_8e&jQiUk|f5ZI?ze<1zdLQX^NcQ<2dThG=x3>phv;-~kx{|pb z=(E9Ey}iV~-X^EV#}$_cPn(xY;g^v;N>-n)I`^_24^gg%NMXb zjRA`FP%sxqA`3B(?I&%2L@wxjqfy3Iq%Pmv!gxnS&V(nk2A*PWpS=c<)&zh`h;mc~ ziYtEe!13N3qWn}+5$%JL(F3A#pZ&Np`h+Wcu1z4ifF$!g*- z9o@qsDH^z-hCNjz<8k6E&)`iJ_kN|s_GI{FUWTf z-{!f8u+BQL>3#n5C<*`3RaEa>L<;PROC2R9-2}!Sly)O8fnd+s8r2=HFp)E)P!YDS ztpC4A)iW1!U`cN6Tb1Q_QghBN2I5s(YTOji^TN-nbkod%u?9ZHUsq}I^%GW>9?j(G<0 zC+kGrVGlwk2rweT^!1 z0odwhuITs&v1y$F%9E-`H+Sq5@0*DNBgyeYqGKTShjUv*VmCrcO3Y#R%H;3|Qnp$V z00kA|;Ms}>VtFVYev_Hm&D1=AFUk*~ZM~g|fc%r(?6QvZ$!qRV9LS}-p7{s!Mu%y* zwlF*4Hu*?7nOJ<`ILH(3Yzr28v_lx@%yyD{IRz_JukD#VI?v#`Qr92iAJKwy zs^0e|hlLNnKd){4s4d~%*`!QOG!|5Kyn-_p`r?KQ&d6esM~z(e|GtQlopEBeOm@~S zWX9A5+oUL_i6ygVTmlS)rf*NyqtiDPPOmysa_6} zg@xe~Wb$=Df0+50pg_ftWca=C!*$VajXhKYRQ94<`h>5Zb;Q`$1J)0J|1e|rTD7;ve5>@eBDV%_M8?CG$@&H~OU63hgx&5aCe z_nJamSai{_P)t+n4TGi6ckCHPRwk8T*mAn-swI`#(C}LM>7aYv5J*XU{oF{hEu+B2 zMXn8HDQA?l)!3s zFWou+=u|@@(0s!L_PGj4&TKHw<|OS3Y>n-4(5K+8MZo%k{IOc(SuRnK#9Q9`<5{1X zdvUt2W}}suIe8{FOc}gFybQJ8Z6Xmb#-+{pkvf9rc+2G}-IGgat^2f)t#$7|y2aB4 zOBMj5blJ`thk(eU!E!FRhDU$jmT7DISn2o6 zAkVHhX1e9{iQ(KSgIqlH8I>Lzo1MO`vOx>iimiD%Bef5=nNxr~a@tlC(53=Y!%@jY zn=gEb$Sy(3A%LY3B{u3%{$h~mZJx$v+LLK zzcMRlO?KZBJt@e1zceiE>|p1vPOWn;+qgNfw0B8DHZjPOZW({~J?AZlipULeASR3O z-Z>&>y{L9(h!Kk^h7SN?k~L8VgCf?u8(Fb@up$zOAa?|g%v;SNLe1ik5dofm zIx)0Rl0c6$3J>>>O`s@{mIBDe-PQw)M!{Z}w_}Q+jMOq(G5tvaliP-CnD~rlU>xRG z9>%aceLEFRmg^s>{(s}HhVDQ%o*AsLHypPaJg_d9T__!?sGPE07xI{tg zwkZefnshQX(}4<8s*c4b33+T(kOWXpBsV5iez`NS+XtU=pe1@O&8E#2B zjl6#h@(f6^#W~?QI0ddMqKZ>m5F$hRO$O1{AsY-_C?u%`;?x}T8ZJ3Ma|V;%+PM=8-`}Nei)wJrJqW@)l-Po?=JBm- zjwARk?JIL;ZsFo3H#q{W35%yda`HeC6z+~d-4FB3(V=?^SvrLSVy72A>5OE-a_P4= zfs6Qv*ww40zs2}3mm=tK|HedN>Cz znKph|)f(%2B!xu<{i$U9?Y?XiAlAzP);+()FcN&G;05p78kp zU;%YRTE;i;txv4ltc>v{aB;;R>x(Xen^!1v)D4cgS15)Oq&cq@5C~6cQ_AWpwpamu z=e|!zKU`1qb)`lk?&JawO2BfNBo@a_=&FdG5*_x?Kux*(vAYKncAKiu?3Wy`j-dG9 zxjY)!4ShLkUDe|e4|Jmr2ovvk7~nUrehNh=bU#T+NrHYtNwY5RD>l#vq2M=~q0%jwOXk)!x>IIN@kaDRpb=&`k9|RP0hCteE%uWY6M$$qpiQwE@&I8bl4(XZ;wfmEdB89>8wPC8ui6f>c zYPdEueg33v8+l+I6XlFI5qf>Wa^V&(+!Zbby*t%4IMIw#35+*|;k&2EZ*9+Zc8x#M zltXN>MCDY)lW@QkW*uX$#t3xkDE6(C9x|u@(Ow&XgW$)DxH(2eh*9AoL@6JKDsq4>69UeRxA9@p(VH@oCG%HJG~x z4fPXU-BLkbN<=ANfdQUXrL3338w~VPyo^QV6QW_}e`*0NG!o6t^;y_RGD{Aj|1ut( z%jbs_ES52wFRi_2Jlh992cGjzlM{A4XLvnn zdt5(OJVs=jV9e{zy~j0(5NLyhfP2hK7$F2T{uVILcz>wxai!`;nI_t?7{cBb;@&q= zU%sgE(E&Zc^XIpW(_Y+U7zic&{?S-6M6#GZg3EM+B$!Yj{%rbuCWPagltdH}n<6f0 zWpB_>gX=Dwg>*K9TCK{=xdom4eAgot1S8Rw)`wWifv7hKh5K4;tT8JPmKln#fF%BX z$FuMbwF{w)hMycWsZgd1*h;D9fLq33Lk^2LxAkpOkXopMc{VsIX$u`Q+*6QC^%ZIu zcHOH;P*|}E6HRdj+A8@4j?=l0QQsl{9LiW+mtGfUkti%WIBx;RU)0Iz0nBSaI})0A z_=?pxUbt#;7#c-}1#$O1bJ@?$If`^o`eN^EJtP-G(nM4bckz}I`bN^P&$7oiI1clX zg-~IS89!0ZVy*{7wIbhaH0VI0Twn+r_mv`CAGvT@)Oe1}i|BT}gz0Y2cB*li1fC^c zK3~k$+O6`Sx%4koTT(RXgO2e=M(y@vg1Kc7s3e=vf?~-@1?}R@-L;D)3(%e<@QHWP z%jzBV$v6J;7P8tmOd7yoN+m^A&kz~PYqgtrls7z(Ulcms-A?c5#&iV0VU3o}Nn#|L znpp_B8UsOe%umvuW4Rc?O;*@0X`u;42j?kf8{+vVNNd53EGsg^C8S)>tYnyHMo`U2 zx|)FMtVBL*X8?>ZL498kk1kDwB8b}B!-T{{Y%(HDK`H$N!p4Oh*CDTcQdWwc(&!ZBnT)pa1@h&&p-0O7N|F)?bmHr8y0nyPJN|d(49ilX0aDOkI%Ixy zU?R2VA13w~bN_vnxo{JmFlRP-2(JKYrd%mAHzgF5+>q1K@((G*bbL#43!<96Xe=0K zwlCv}gXmDf0p~Jng;KH75eS4ba*bprrSs4`dMBUUQ#QmX1M8CCSzP@PKyEIB)PdIy zBmR1b_}0CDo^dR-S|wgGr@8raHO7& z5ecG%yN-JrEaD|#>T*WXk;R<3hE`x$AaPVfi9rPRnJo_WtjVIz(FrXpy%>nFAT~r^ zpE~ij0RELqdqf@FoQzxpbJQv|=&S1a?v|{MLFuV(a7m#a-`j zYF)ux4SZ5?4)Ywkia-OTiUjw_! z2cG|sALT4gKz6ZvX<%nA)Pf`xYo8Hf zFOQH&)#h^#HpK=(H4Z4igq>$BI3m1D`*CF1Qn@O22`{+|wvtd&Wo}3A|KMO3D7k}a z7bvBCyX&(>Z6R__$Jd>^EI2h&>WiFwRJ@nsF zn{fOoVY(7BTL)S-mMfm=>HW~(81}*!rsee=U`uHatV`e|D zKobQ3WH(%7x)It9Qb%9wV2{2&b30Nz!*`N*M{6&tHCoDt0S#y$Yo7Iyr``5 zV7gx&p?2nykvk%A<)D-|rs;9^BM)n0k|zQvPXz($tTxs>#%XvG`ORvE)Y9Z~Np`r_ z3Ih!qt09_-Qnc~fJd0}Rb7&f|Li@yFdHjWso_e<4eQUxk?OR--D>=MN1Tk9{=x-4~vKDr8k^P)8;|$E@fDr8&H(~efQ?k88cyfWo3yw09Yy?cJ3wgb|V`1#{3PV0-23R4d@c_Z=c_N$Ugg6gE!4t|g zmX1|Pt~3m_#|C|q@ie7!?x1vr+G1?I@_((hx0@@%TU5Z7AbA~H?KaXS%;?7xJOZe} zlWeMYmAT?)JwPg&;TiK=p}NvTVd`zp9{xCq!eL%+;#u!Y@;;SVbWS&0Zh#8gQJ#A> zG(8<85gJk$V4sNh4CZyWMQwyozuSbmc90O(i+HLfKl1O?wO(ngzj9AW_Vm&svx=Cp zUS+B`EsDq|-o4%QpSMmR?Y*V_#usRnG~u%9zKHjSA2b|cD3R1_7|r#+0zyVnKm!$- zx2+j3>QTa$LG}MI#)i5%s)y=vlwZY>oY7v7U@<5ZOTZfaj^=UG;ILA3MhQuTjc;ev z@wafWd8r-oWZP##L@shjkG{mnXceCQd7;3g;4~C%hM|NQDJkQIIvQo)*qdmgF=q)T z>CJByf0zLFm~UZc57vdCBC2~4EYF=LnM_)xQUB2GOTAyD_%j#nI_i@j`pbYc zU%i)+_r}YQpGzFNdaAK3mHMW)wEP->(I`~7Cr8nI3Ny=OJfuM)59iNY%j8Xbwy*&$ z0%x6RQjMF4DP3v_G00^Kttx)&0xfJy^$(K3lUXYzS|o2faPa<8Jk+Q!oC556mzD8< zVO!#bW{i7{nb>D%6>6=KfH2BaW@sy#Qw{`jU;~_slhUhc90H}rsFDJ zqbkvY#oPBh@V#`!Z(I5E+6iKx05Q)k0ojhlNaNYa+m<&_5HRw3y=CZEK%R5Skl8+8 zf`s)w`#Nusb5)APE)X3@<|N%-qtRe%NVYaQt>|SOC<#(Ep6X{vX{2RUpO>BW$e-9i z3M-c{bKLP*Gfnww9vgF?Qu(OPr2T!@tAImtN-f#&3mi4_vzr}Ni7^qNF1P$sc##AM zfUQ`>n~0{Q0k*T9H;_r#bmbE+)Q4C4r2z>YQ?O3@Xf85cuii|2oNHZTNqs^|8GLH@ zBV64SbwU1Y_a45;D!;GmLKnQPFiIkL!dOmIS?M5?*D*{KJ<+7-(9ndmehOqI2ISMD zCx1_b4SSzpTVCd~HjqG1Zua*p%Uy(o7&_KIEs6ljlPyeQe*Er7PwQoghajx2J`_ZeBUDb#8iLJJW= z3S)4u>WGEQwSF4AgQf_{R2a@_A${4Pk797OYTZ4K;}#>65ac(nKI~E+9YtU^<5LlI zIQ4ceV7Pa}%TA590dRQ|3~0(z#oxb6iy~d_4(#WQ_{U;;pf%N-X2S}`>+eZ|hgw&x za)t}C|ESa^HC5@UEE%9Gpo)jx8S`}ez25Snerg}cAoT;I{^;$PEVATY+m;WEUMEjD zDGtjb0kY|3U@pgwd5E3T*kx>`!O3;GE(;dO7Fneo6T~lRaGt5Ao+@ooT@Thb;2>^Y z_PN0MGYpDV$~}9hZSWHSJ(y@+fyOg%ZBeI=S7RGVSCCavn_!@QLW<1a!KaTeU%r3s z(U_n={wkrn5L}=j<1qFEP3#Fqlz{Ln_u_J3XdFnkb@8ay=-+!Vx%GCtpbj6wakmzwOaG;pCEO6d$J!7FvG-a2A?vwd-tc+pFsa1W!~fOZ zqn>m7R>^?^q&*E^)mO!Yj}o$n1?H1RHI|aE0>glp2KO$$((SqF8WTvel6Yl8n3qw} zT?0^#I^>)jvuH7h1BD``009(@t|TG73rosI>>4x16>MPLcf>{|Uo*A3%oioH8NKy@D&CF;N5D$=F# z=QWT~Za!Oylnb|6?soM}QD)!MG@NAH0-^3s6!&P+J+m8&i(ZFeN;F#6jdd?)*wu^21Pm2D=_3%kBO%Jlw#a5fJ!iO;uLC`FXzdz&&87HZ*aBh(b&miwM zk$jXys)7<}qXpt|mZmtH!anar7Jo@2Um(^b3mna8ACkX9L;`Z+)pz%gvg>hN64fM^cfAAnsvr5RWJVFl6~C^Swgf8M2}FFT zHV|`yiCl)({B^B82W9WC`dI~FP?0%Qp6AjEfU20vTi3$sn_>eKr5qwyTF9&X(Wcp9 zwwP2jz_s%Fkt2`KtQiCLvLD__yI&1m(^$d&59f62qi$9sxAvd^xrxRa4!sIL$PPqK95!myxr&7SyQHQv-wb^rKk4`0(?1s<-W5ljKTw& z?r%2)YrrfNJSeZy+Y$uvhRk?C3}>^f2q^KYXWXEYil@r#D`|bmKg7k@1ORsjdA4HK z$;%&=N>i`q#qEX8!q@jws~Li+<0Rh=&glwHA_cEsqoIsh4KHmMwmU|B+_iTZ(M}Rc zVFKJY(BBvJT?jNtF-9A&{s9GlA6VDxN(rVZNkviV;vH!%(oS`0^J2Gfr)&2D*k_6r zaoYa%V|Pj*@c2SW7i#r)Tt?=G>EvnQ0An<%dq~*aKV&fL6mib(jM`>L->Hf)VJ)G0(s$B0p4G= z0WKz_qsHocJHW*p(M6Pz?r@#S?!CcrA98TiA(dwg3_EO~1z)OZSPz!iS@9bJa7|~Kzv01xW02$*^Kkxd0Pn^NrlfvC#2)a{)#@1$+otPAW+oixxxihobPyaDOO&0eaOy$7F8ri_t+W4%2)xhQ z!^BdvLCrDU^3`&;3Pu+y8)rscImbuuMNcT1o#0e(-I_ReS@b)dyx`E_&PG@)OJYmI zHmO;0$|R>;$I$DDisAEQf<*sVHhEqkLs?N2NH{Q?f`g*}xYYL&S0z_kXbs$X%j2SB zcEIB~gIn~d;Y5n^*tdWk<(4NQB=`6?WbD+8BJCKcr~#S7{lxWLUvhyagRrrI8bo4Y zbl32bLW#Mq6I_*qVcz41r?5PZ+NR^#%@j8i63%UglQ^6{|U|8Qbsfzzc?pZe$6ahfsc6`8}Xn`_LTFA#_98YRdU`RIlYFI^D z`UE601%$o2U4SCcrNqzAa7=TEz7Wb+W#^LhlmI@*%=CwE_ zsbSP1?c;bd>? z#csF`W+nw?1YO}U!-OMkuy)1&uu}8y8u5zhUcw>9wLCb4qW+*<{2H={KkA*}iNbTd zNQwjm;|}!fbW6%XT=KuF(KuwuIIaL6IQ zwz-u=6d0C7RUV<5Q>2xiA}|(-sG;&%?qEk!Iqzw5_?q?RzRG9d?^K`u(-pbXg0tV#phs#7TW9Sek zB5aV#`5#{lRH$0=NH6|Ab?<+CUL9z(Qz%C5=M8miO)v3H7X0fw6Ap6jCz&1Ikyf>u z#ZfJ&^-rOXWJ{;ck!n87+|nTP^}dst8q`H+9p!`^sQ@8Pj4{Y$#8 zi(vlkS%e=s=1?|P2!s5iE8l#7Ox(7@(Sewm_T+U%^+)ht*@mnDp{2TpL(UEJxxESPYNX0}!K z(z=|Dw|>K*ExDJ)TY59$8Wq_LYCwlCZB|A@&cdZI3l}o>DJeqI{W?NAvj>1TCYZ*5 zGIBQ)3GL35I(1BGU`ee{@=S6rw*1aZ4teSV_>B!u`AgAk2?8S5!KAFUOQo~kEBx%=Tx3w{ zi!=@+gHz5+Wm@5w?DnuvDBEZzgi|D2v)(3Q`?X?_a|lyu(hG-y2|M$^4E9#;aM;EL zx!4z-DqPI4W=sc`6Vx9_&}`7>-NFy5taU4FFiA>j?leJr|4!%SxDP!se4#4-x=@-C zhfR^qlsa!70$!rd9o-YkY>2<%QOb*a*z#$z%i0o)b6&VK6BoWW%Wxr_9w7_B)UrEC zLhG4!s2{yAr;^`)#fgZ7DX(^d4l+&3VAuO?MR|7@6^1iJH{kZ;>3t(Y^w-m8H8qHp zzsb(#TCT_OrJ2`(>jO{=UT1`#1vvp$_uGSV5fwrW zz%!j_N%i9&|4MQl-dd;hCpyFg))!k080Lj}VZ zih6bAGCKmKyrAqL(^5v_M6aJ-_Gw=KW)2nd<>4%Il+GoAQ;+yAwU;%+Jv7u|V+=vc zfMHg2)0kenKE7A?zv}Hgt>+L+4_fW$2com9dUr_zJ!w0b;3>|lTDPB3$Huv=olM?e zD&0+)YV7QtjssJ-%xb|>= z;vn|jU78tZ=-She1qU}^26Ug+o3+2>gr{Gej>W(s?wDX`a-!}1)u%>TQLU*B9AN4( zDKwrWLnJZEOmh46e&0-Fy<=j-1XFJTG12Gq+Y)DaCvs>WTz1}P2t}vaP>{sWe5wqR z=4+`3Hsvsrw=L@3ZpkU4YV;Ku-LZ@+C6cku?vy=sCACMK1dX3y+l~%{dt*42y*7!E zd>BM}#|V~RLdM9|nsLqijd$iw@MWSRx@9vX;*bmOo;$bjv3 ziokozkP&98attu=wOQp*$ASSi+_?TF9`q=<)bhOtSftaSLrXW`^@85<(YKJq$3ML& zbv<@aK2S&?yUNYU_0hodIm1JqLJS5`B*7yPJ@+kT{z%qkSk6|!+(#oG3@wqNjhFUN z*E4bME>}ud?+0X7+#2^|@oJdt{UN^;M}~T7;CG#cQ){TPH;QV}Dw!?_OmR#eEsI=9 znUJ<(g=xy&o1{U9xBWRxWF5ti#MSyx-8{TjrOA-p80sHX&h@2uLK9q!`Y=*%oyt5hdp}3dt0x)J>#>Ll78lRv}^DQmY zU6)f<6sfLzVb#b4pHgl;!jG4spuJ5s(iSMBF1sK6oZ*elkc@|!s!0J8y{s*XiO!v_ zNp{s&L2j|Y#)ch%(}DSvhXQdFZYH!ape~f`b3A^Uuro5T2=B+l@K05_S)gH{WN?B| zvliy*FRTj>9tzonWRWmayN;h0IFQOEuhtM`@h%88NY~t2H=Mi(a!G?bK{4pysU-r& z6K}1ydZhbk$0$C!9a2()`_F%!RR&(iypBG-$#Bq&5;1PPw}KyAd@rB%l9KnCwKQxN ztDDWQM<)+{piE31(Yp&Pbf}niXTrUf*s*(beLmO+7Nh3#+lMi+n}Ap$T`-0c4t`>pjsm9X)8Ky*P(kEAc-h^)pD%}UNg9Z z3wj7tvr!FziKwhYg%e-4Sk)vqKaK&oRLI;(KL++BWdbh=;@`1Q>uyaSKsGT%mIwKM zb3%W%0udQ8>)i}VU^^AWE&it#fP;>MkTe1^Xf5J3cYvR*U=ri;7>EzfW~@Ag#*|RV z-_^RwT`p*z1STgtpEj^EN|=RgJjKrW8J?s1L`pI*mSuyaOhg8RIn`%ma0C;9O}k#z zRwK>#dX@&MzHEtzI5qD3ePOHzJ=40tZEBXUb^0gouANo8;n-2;3o4qBB00v3 z9IR{)$F_!@GqMZb8KbNl${`uw#5CcMBt+P5jzis6pLd8m?NPp{vMfa-DSD=vvfQ98 zpe$3E46@TGfogBhaA--c>qB8Cm_WgseGX1oJ#EY&1!K$oYZn~(&^jg&jiELdN4So< zq^h;LqvOW z6jU8Q2x*9+6dBVwIK4zI?u{3Aks3ocea`#{-4dwHAPVSN$`C+*f>NNumRlh;l&Irt zkxfvoQ?851obEz3q1wBKn;Ti_mMHMbLX3!=@-~ysSRbM;3(aLr)FQdqU8)hJzGjcS zFiMKNKLnGPbB|!}3g<`OKoqk8@sUgl_8Ib>HFiW#R#YOc(=raG~c2;9lsw#cY5PZibsx9x#cNL&@O z+CpYYRGkcfA=LfP`B!*`1UJ|mF8MeQr{NIOtYPJSsxbcHtv{TH1;CIoo&)M5MLXJ` zS3V99PZ!W~XV7ac6*SrvJckJ{wB#p?rS$ zN<8vDrY$Yd0O0zxY6xVVHUJXfEE%y2H%XFJ_Mo}TwFgO2?rc>}EKht{n6@N3+MSte z_##7NL;|O+cuX8+CK)DX0R*Hktdv0XttIbsurdmo>%8(CUsB^!9Kj^aOp8*;1E(j# zLjr7Q)>1$kA=^Z#z=%S2nl+vy^T2_5Tp-2R8DswHpOjXrt{RKk^ido)UPIoW&DS*! z#KE=>mC~?+FNtxS(qZB-%j3SJ^dfW^oWQTb*yuiPS7EY@a8kml+FW9%h|QA>8!Mu2 z7|}+Wt0;h!XT(Q)h3>NGtQjk1XD{JUP_or=Bw{s&G$wvMlUD`|wC>uwSN+36X`_ku z%p{&TkuNRFC|4?%Fg*D^zqx5~iXHAmiLi=$YK*h-rnr=N{KGx(A(nWCEb=8ATJb>> z(XPl;H=L+Iom{{zA|Py5d^k#Ro`WtI;F-Y4 z(O+7|Nif6Pg+1t}I=~DNpIa&R9$se3mta7TFyuheD??&r^$8ax;d1 zS!|IDIMF{^@0M6nuVVu{)=m?(Y@rK_(<}58PDxlSH z_f%w-<#S`Vy>nb9NQK#lieMirTvvFJ;R?Ee5ZPbI)}b@Ssh$J{py?Y|I#?Q#_Xhn? z7vlV@!y8ZW)y)T-Tqw}3@Dmb1a0Z$!UMQ&z@h+~jRZ8m?6I5#@->`sv{UL6@*i? zuRuhWK%MX?ETDH9Z>N@&#!^eg>Q;Rji~DJXFd_W3;RzixH@Ac_j0akiJR=hYL}JPQ z-lDPZRIB9X3Ob;P0fBG!TI0bY#GR-hJm>JI(0Vf|aF;DCe8+k?@Nxd*$znX0=2&II zMnOi4+C`gN00v>gUnkEVg_cn#NX`1&#N<~Yo-w7KnH^z@=?%FgY9X)d;S0^a`dtIK zN{FK|XEfHaQo0vb6$Zj7Y9n|<7reTfjQ0=0b|lC~0k4S(1}rn2g&4sEMd@jj@>lC? zEIG?SOUm92qBv+plwlGriKx4L6mE}I;+YCb3#pjX}cu* zT2UGNHSLp~PPq6_bkoh`bEQFaO)R-6)9Gx)YFGZ*isl*)xiX2>IKJ)R@APG;OFMk! z6`w*<&zL!ntmLiFsh6N1>Cm~sCVISW4wkkxsZ^YxF%0K&l(1w#OS%6rs91(tXzx!VjDY|h?w8~MLgg~l7A(*rt?k|L@P zW3o;Bc?Kh3<4z3*l1@0>iq_@^ui;WpoyanYBV*K~_Dq6z0FY0@>_T)I)Bor^)Y{}; zoWv&1znhCCiHDTW%4D}@)&u^QUgI>{U#R|Z zf50C>I~;yE$N$$PK>q(p{I>_A{=ei28|JOYDwo}h`spBtD}m_F)1q|SQPSj{P&rSc zusk2eqnfJQ*Xe(FLl_taH8$H_2Do=ZOjY6ZT^RIkqf$+t6=5h4!PMN_?_1A(Jn4_y zFxoeMw7AP)zcg(}&Nm&Vc>z9UWwuADCVOY))mwAt)TmmPWYqYdCt`M2t;hNd7&{H~ zvi*sw+M$h&jRtK?&0UYQJkPDugL8Ap&X;R};dE_~E}KrO=PBQx+utJ9%l$uRR2sA; z3EDNBj144rJroL6t#{vZcRT!9=3L;!e{LBL-2X#{x*n)@{vFKsK-h7YSUsR-k_l!( zJH@dd(a*KqxU3Ch0Gsrq@@FQks^i5<*LFhm@iG0)6T#TB;|BwO?qcJyzOEb5i;{H{ zuypKDDi^E2Zu`9HGQYP+bGuBN3`$UMd2 zFUx(&0?hwouw4uPPKddT>#`x>mNoyY>n4yEzk1IEUyO)*|2C!Tsj*t-^I7cQgBYk! zRqIh2E$+Hi^Cp{9CB5e^%pX)R-b*t%3tW%S$L0B}&33cxE-wu(@Ib+u)C$j+eta^( z!`pIq*4LrVSKyB|)>^9rIq$XGH20as=kmYLU$pe}^UT?=(r*_gzooKY2FOn`9Hw&T zWw|4-I-j?eYOB32El$;@-Io+}q;fgbC*nf=ArPiE$mv=Skb(J|H|)n1v@Di5tGnLJ zf%$E`&NVcK%cLoqu+l5Pr@gKmPNC#nfjf^_t8<6>o@yQ6PK$q^w0b|}J-<7il@`x&9%nE=es-KH zndjILZ`~y|&*bBOnwqB_)kMifx9^2f!;d3&{R}6n-iN9uRzJ(rgn6>gTJ@{*L}a*t zhDufwr}Sc??{_x z?x(ZOa;DSy3MsGF1L|mMU9Pn|er_7n82p@q@XXPx+I5HKxdVdV^ApP9G~-dmDZzo4 zSj&UIbRwqzeciX*PjN>(g@mC%iV<^bZMYq0zT72uMRjZ<^YR>@w9b@YEw_HLk`rx}D57m%va8xb**cd7Sxpov|f}{x2eDd6pB;LtKac{Sf{6_*%yLeFr%vb)mJ}*w!E2ZI&WkSRU9d|G2i?4GUNYuP%B!x0jmd@Hpb%Zeu(W)+QWlRp33u z5_tX{KdjO7yclk18kLVtSb4@FA537^3K8$Uv40g~Az(ru&V>oS`!Imc3)kB0r>>3g zY3Ctz6LzgOa2z23G`TKw3-;i-QhfE6xYIW+Bkr*i2&bJd{4}OG-0k~vCH!$KEaf8@ zx@YOo`Z5v-1$Q;3=!Y@my>)x#EDUniaeM3X1{p8c=y@D}GvK@RPDL0}H>x~~*?#HT z9srX;==R&@_GXk35qgeu>+8*g<8KMv-B2*&1rrM^K7W6AK;01^iuZpt0SgXz3N9VV z&;JrAU0S11fO!Ikf?L=3ezEm1O^1aLrNy)pb@{)`-tYx&O1TgXMaG(>=IYqB!MJbx za&LjUK}7d>5%A#uAT)7%eArL}+;A8`<^fN+t6!ypwtw3Gg$yw3S+n8alAmrYbGR2UTZ z8vC%OCQe<)A?!!60Q=^+tyziMGf!XuEHbNVYwZscbRPRq{Q}%O_la6hDk^7B@B8mh z+ryku;7|xNl9D}>NMZ}@F(1xWgTXx3-5m!Og{!B35NJYLEV}mDbX&J=J#SvWs*m@z zIq6`Z5y0$uo#=`A$1*&H&O*BTYd!uSMj(stlW=hoZeZoo-*B0ie~jIJjNP#k#MkxM z4SfXpe}Lcw?Jl>v{@#1FKJG-&jSTJxmC|_S3Yx!^5gY_{?eh zF!(S0_tk2>7SRn(C)sBP9e4)ayKi&LFTpRDJK({beFyJm?cVz_Y|fUrx1?h~RNb-_ z#ocu*pUr0wk7cH{NAkW);;`j;w7cOvvw6q!59YfLf1ZDUU6Ro2U8(TU%l3y~=f~S+ z{<9zGV)I{MV-$T)RCQQ4=r&xJ^}s0b*eBSI;O@STWv~4h=I*XveDTRUkV3w*4Ju~Z z1hY1yN^avc-)Y9o+Yqy#<4NObZ4WW`h69w)eYxT;m`U!?^KWW1uE zPm2a`Y62(9@%{J92HPhLSJ(0Wgg_v$^>1Nx+@rQ<-ac5c25E$!WI91zmqRx9`1La{Kmx8@lIEmnm25!LpT5)K@C}W_7mSf_mw-+=1emGah1G z>A>UsrsQ!zLBgwQ?+>Po;QvT|<4CBbI_wGzTmIYUf7FdaED&*8(_t6&%P#MZj&rsJ z0crH^yz-OvD!VfMV=7-h`9 z$KO028uMc-YuXY0A1wUcu-qF2_aOu9{a@Bsz&~6i-a|9gaguJ(|FrPqN%#Y<=KUj@hCsz+{#9_0;Ykm0W$r!6AhA^{|!MU=eK{_(fzV{3Atm~KRhfsyFMfIVguee zwu*-Y%YOgx4@FvO^1kk1U%B5f!88B{WB4-IjD{1gbN4(=6_`|4RRu)!-{(IslrI($0{c(5xsVFFLzI+5VTLJP$-Q3Iw-vk}&VF2b_$-*H=49}wtdfyGpJ?>R z0{#+RdW?|8uQytt{xiS)X}jp?znS0Wn16%sv*>i&S7Oklg-|k6=T*N+cb*vQr|_iI zc%K7`yJ8x_NUttp!JEYRV(!je&W@7b=D>gOJ7lNlfV1S(@9ChB!eY0|ObUeBJ$6u5HmkGuefxoRxU3YWx zwg19HbklN_?=O_=Jk87AlTG6*3!dkL|1dn>5cAJA3)+}?+-7gf#d}VgSaRTl-)4li z*Br;NPZtP3B@27Dh8Oan)ax}kgL4FQKsz{5YrgBu-i_nGAT>dHn-_kY|LP<-^t!8Q zb_jN23}6eozWx4?7I(S^to=DOB=L_&)ABTac(9bo(f)x!{h52+klq!Ocau_T^Ww@i z0CwMDw8uKdD=KK{d0@TT@4THJFnC)u5M(g%I8n`y+J2qd9<+a3vKM4n-bVVzL+@9p zA80MxelJ+JwPN6*-GbAOZ^y7xQ950{DQN+m)Ra1wVL6h1ypN}l6&QvUeQ6CMeFJgvLs zel^;3R%S{;y_Ytjr!| zXGkVU{}Lu!UeK-~@jYGa|EG?!^8@wx%l}hZ`H>Oy|67Zp;gH$5efdcLsDpKoDevM` z9m!&Vih+m#9L+LLahpGL*QNQJ*gocEh0Q?p9`Mdy4%~VB2%uZ~5^>}WZqqEYz3Ung z0?H~Z;#TpX=1(ECU@L&F_sBvvj(ywlFtIca`}MB{f)7mh0aK54YUsTd~HSqak5=yPUT-goq>12eaJpOxa7G3ZBWMo*9k5Y zxV~H-)BuE>asV~e1{5k_n4I5}+kk#T@gg;UHPW36;PEygPHlazmS2F7cK(D-4v_ z{^uxFfF4lyEt;jn9X3;Bv$v}1-|GJSwt5DB&uO+@5VeN-dso}BFABg0cAfrFkPDfl zXSLqXhBVyY?tS|XL__P6KkF+7isV|zQ}TxF{c5e4GYiWX(3%m@-_yY|9D*yYU(kQV zK4WzluAK2|jvC-^@9D_-Dfod}RlV0^4_9eDi&7j5h6*B;DuBTTIzXfN*|)p7r{)}6 z*(3H480j!R*vOWcEWd!Keg*(Tu%8XTPjet@&S7-F8kj)wo(=CX20M3JkH(EsQX#U7 zPL;fIZEl4VPFf3})vzbet0fLT`T3L4kwCS3xOm+`>-Wd@%Z(wJ7=}Nn4VKHUN^S?9 zp+~d?zInHfjY#M&rs63z47a!ZP_rTO13YjCyq1m;=3_H0!(;^MukIONk!JyQoptNv zM-rO`!`0OT)%Lv}5=^z;SLAUGeY23#* z7Z3#!ByfV!zF(*tA!k#9wJz=nQ<8F2XVvGQXT}n)RHyhogCW`(HDD~dfVL&2SRVpQ zQ2)~q+QwOqv4gg{ADN_)9^BXA1PCvfjX0Qv31#Xi$1!KCI>0==VFf;AREG)0z?mlE za>G)AmX^sA0a9TQ``=(3SW=)-c9^h%Hc}V|AR`eu3^|obIJ$egF^F~YC26xM`J;^m zx&q(MHP!4;xwQXWbLTXLQ)yA8HsBg$)g@-0mhKs!Dd+J%p>2aKmj`z^#(?zuOh4q* zI}>klluMI0WqTzLkAeYHlodG)tA7P5;!%4`tAE^f(P_NS$yPMgAU(>*`H3&_$4kfs zrjzz24W6}Pncy|r8YWG5U|z3j^L^bR6&gB{vJU#XTt>jdgf)IblX6Bxe{^XB27 zLbUX2wBRpK(YEScc8ko{DtU4LdMVrzmW=M}USFnX!P0)ib9$}HGWWWceMiZ2zar!| z`;4=7*J5V|qm@TCfWiwwKW3~{yd`s;g(GM<8{eRn*6X#0j00o7();L5UburiycX7z zw%=xf91#=ma2D_xMRcwL8uI_F1yCFM-PUjyPJN>eUUG(1L2ugOcCDEeRulp}buhM3 z()rBxX1b9H!zD?UCF*1!C$i5v`3*EM}g(Hcz82qvIyP3~x$(HFTT#w5;awyLVB z=jtk6Y^iS+lITa!XG1h`TlZe9Y@+(q)^RafQk`~cW*qNx$bvbwkv+L`0j_ajx7zyk zkVo)Sz95Rr`ve-cz*uxC*sgvo(+PCBKe2)0)U%gRnzstU$Z7O|lA2XRI;R51sJyicvL-?PyK ziw6_Y40_Mn$4Pq;Qnss%nkB zqhV$q7;|fDcRa|Y%4>T3o^$cT;O$bW@JA>Fafwt5xclorQ1!koV*+$BW=K=3{+K+oM$%Vrmi!Cp&2)s58+^D-vh4t%E3)LiliYu)ZBGdjx!U)@w7tpTM zk>PT6I~W|d?{CAQhl0>d`-i1jt6-vtW9qZ*#BTwaQdJ&EkAmrDk6QF2EL5ahxV2w7n+asZ(k z?ojXdNGJec5xcDB)dNuBshJ5@~r{7ASaW<8EX-M6zp z{T2F;xK#fE3gKzWZ5`9ur~oQ=Ap-8Jm+qI4-1J#lgd}Y~^eoA_!iGowC!`D<>$W%z z$gfjM$qN)z%OOodQL2rF^IES1_QjIGozy~s;PS3IL&+%f!a5mKD1cO|*j=eY=bT?- zhMXZpf+E#E2dOwjVyO5q9fEw7yJO(qwBjMSqi1h%2w~K&d&vV&=x zg6Z(1*P35^(HB?jlba3GepgRpo|h*I^dluG;uBc*mEC~Uv}-&~Es6b9&I*&P=HjyK zpAteN9x>)-Q_His=iUHAwz~T5(?FbXhhWGW3!_Rxt{EM=U&gOcX8;x$0&+rD_qq=E z0S2Uic8Ka1X|J1(Kiw~hypV28*UtBnA*1xERQVcnJTh~WT``aF?RuI!PkebHeBuk7 zmK?HqUEFoAf*oU~&JtggvC17;tcdD>fXPzP!hhz=kR0JV&A>ZEowB zZ@+Sfo$QI7S7`iq-i)!3P}vLrVY~rYwZ&=|98Y0~dHoi;%L9P{Uh3n&Owy4-Fn|(S zoGpg^XI0YT0f-3Vt!wBKOCBQn2}5@V=P0#J2XP~gC|MFT_`H6?2Rh&8ZBS3;?vmDV z8i)u9SIQRECan(%u1Y_>Fo6M6aX5+?y#gADbS=A%3m2A%xH5DMIDhhKdD{rDGp_qcxkQ@i344S*l} zr%QR$nKmnl)!I)tTk+D@JP@KnW+)=`w%SV?>zB^Itk@842eAY*4i5`L;7ysqAZE$) z7`gKr1^4r~^9B>3ww75?OFN2W+2=bbIz`zKGhEytvNb}1(fw=J#*$GTM5O>4zlPXg z9i8kN#-?1sS>6>H)CouR0CzUi(mY6Q!so7~Qh^uC_Ro)J0Tp76 z_9SN>NFA-SacCAW?){Me<9Z3 z)yIh@4|nX$NJx-2iczI!18B&GfXI> z(Kr=3*x|4wCvg*!DDTpW_TL~4Vu?C|H`&Z*iRMR^FL7&TV$E<+&6pYmA~zz(oz$r$ z7t3g2F6UlTzT0^s4AXa^p}ME_F)%|^0tJ@mzcZ0~%~x;#I>BFf#Gq{7{cKsZfu!kV4?nIT29M(?Bc znGHuEe=FqCJc7JgVAXaSg7OMmw7FSu?4nd2#!*@AA z$f9;}CK8@eQ{CaZU_)0l!Z3*2dTz zcSy5-(-s@uk37dzfUZ_@lr^NjyX^2iOd&m*7KT>sy~1&@Mbztk)hcInV- zdWmcZ2W&JB5VA8o>LX$VVrv4@Tu1yaCuGYzNyv!7+c~SbH1_zh2o4!T5a82gEL`%= zndlLkfL6qjcmCU}7PVDDPQ_B}d^sdj?KelGH`KFNj{~YJQG{V3ZjLIS4yWE8f}C~V zEIs7z_;M zMUP+fQ}7i*oFslmCyCc)|C3O5_j%H!j_Lu~;v5!CS%pX?kWilPo1v@g^EJ{7OLVl% zFNaBDlYQ^s4_>cG>dUk6k%=1wXx2#bc>_q#b(x2j3j4-_sm1n)$0$7HkO8V5m03mU zTi=Mhd{N+7iX5wyvmtJdha7#cm%%O|qx+J{Q$GC8+-`@$@;h0{4V5x^1u$f*pVF#A z$a+^5soc)EngC4&uKb~CcFxP(Rd6(E%p;!V(^rN3`(?J8qoOd_1BOyPMOlS>#%~Az zcu70r07y_I&36Pe_|21+DFCAL7t|zOScEiu_}c(U#54MP{2F@YL&SrcjL6*x!hFOj z25?9a5O0^Y3&6YMt@bs;o`QngXTN(%9FtPSONAme z$ma!XTRkXiI9dE|fG0B}MAak1mq%eE6OxRM+jS~RKdp}mS+uDK#318+EVe~OMet3m zjLfFEdgicItBL9sHlJ8rYe|+4BSBG^?RZ1(G`AuO7#>kF=9}bfC;-cgix*&JJIR*l zo<_7fDR5gwE0J??sM>r2dyq=VGveAg{bTh5uw(3HtO1d4d~)ZiRkFPAWxQ%5&MP;^ zG0-J_`gx#-``vFdB(qsQtuK})XRfssZTJ{m(2+nOyxW&dHT!YIINEX~y`0_<4N@mqT=viY-~J~WEcbGP>n#EL*T9iq8DNo*k*Ev1D1mR!3~EVboD z8?GCV$b)k{grv!Wa98~4jdy7JI;=RXC@ZyjLaB@xzPTXKU9G>miluGE5-Z{!@JI~G z8?>5MS=afWd=BzoO=|B)^S@p~L?SvO#gY_MTWB-0<}p5g%65w|krveVOHgM&R_iAP zjifMlcC7C-AckWRss?~yN=&@ntI5@w%mD- zLmd#q0EDN++xsL56xFn|ET+}Sy5K+KhoOFNFrN=Ikr z&L1lrEd1_(4!2%)PKWKcZiQT}!d-7Rr~tty%GN`Pxc+ZMJ{1|<@@0wgAb$40&fgmS zNFGuI3&@YUCML=fuznB2Uj#z!W=1punu4Jco+1P|nU+4=+4LekTe>kpQ@b{Hqwuvt zGB7>1%QBp_P8O(7lCc}St#5EEbyqhuXO9pEVjniG z!|Z-9oFmRq(%D=dNkTT_)K_-`&T#)*Gz*cNXcqE3;Ljs5w?#mC6)fj;UX`sgKNY?I zc2^A!V6WkL;C-DW%rZLXF8CIM)B*C9pe!nQw=YFC#rw!JB17DKW=eo8c8Gy;eF} znED(a6Zxh(h8Zu{hdw(KC;%mMl8_+jQKF6|7(f{FjZ2&Ilg?2Vnc8S+eAp#E`_KcA zJF!vE=iC0jh03J2bEW)!#rN9W?RL+_7hR5py8JAFKvnqqlCPO(3+w~AZV?BB0Mcx8;IOd32-KcTM7QRp;%eW|dz;hPswzUq1EABI~~eiXM>JTr5Fu+6q$>_T4< zT(k2RdS*-|SYwIhdrD#cv2o7Fx-UHdfp zlc=yb;A?S@6%Rghu{B`QwEv}#&KulUE{G90+oz^}bDM*Fd?>L}DAM>5Smt2%`7DmA zz-pFI7ojWXE3m3NJ@OuTYqj_Gj0`?X*or#_MycP8n2 zBb@w9ss2(Nh~3|yWch2ew}!MmG@4H1q7c4GV_G1*vDpL@iV+U(z@sHpwR8k)SW)5s zwQ>0WYN=$~g3$jZ4$(@QPzkX}X^>JP!&cS5k8w34aM&T5RDeH)_Quk(Urj2 z6TT|v-ePDqs!w^Ozs|2e6%~uO{#E`Ilv@%KSt_}f$ur__@mbM2nMKe`G^v^6N-lx6 za@GR(dte!=&Z9bkD>8*upwJ!^P~_B4^$gob@H#CLG+Eum{YL>gc7qw47wNueWNam5 zY7U@=;B1JkRSU3_RyYa@{*wkH_ik+JxJrlYh4q^8-WA?s*D3MG=$aPv?P3^=}bS< zHda}pg=Q&53XQ`;){#plvq?_*MANbVZDeJ`AJ81I8c-v`=5}J~B5Sd1z%kb?6l&e; z8ZwKR!~^nFkliGi>7rU8vj?W7YOs0hqJE1j@}>uZxt9hu=ThnuDI1i%P4AgD?ENQ0 zM|cWfN82QoO$SC}w@Zi>KUAJkTW9gUK?i^~VSfy@ja)!cCxFNLxNB;TiR#yvB+wVx zOn+*KrH1A1O6W-_N?Yb*5aEi`X?v>Ox1_bBc?bEt7x?r;&!q9e8w|^p@J+lQyseNO zCJ10tmiYE4bT_`qa!RoPx|C`LYP2@|oRQzs`|M9cJA-Ft5%5IL@FlcfW(D#x2h<=E20bfC4X$#-cFt#feqEBBk-`V!$)*QIqnQ=pNTin(HtX;lYI@omN{9x;5MhdzNT z&^Yk}dSgZp=;tSXog~Pm;Az#3E_9_USNrN^7K>*UYuX8KGh3}O*Wrd|j#kBi6jT&e zfQD0_Bu<)`rul~)L0P#nWa;_Qt^6%gy!I|P!pR$rMv42vD=?8asZFV`NR1vX9}UBX zda2Sn|E6$CN%+#| zK-Fpw%6}48*qM+(>1Y-e$P-DYH->irxksSFS^b6x&?NPYKzBLc&4J3TjTiv5^N&K5 zi*rkACY=N!;rzTY^36&9s>WUDaF#jt6MU?~LxchGZWjKGrr50B_Kb}iT(EU6TVn_j{ zT2>(dJ_BVn;yb5d7rwraD^?ij(T+|F4k$~;MHS?h&#$?D>dS3JSft?i6*vZU0A7!y zdpCtUzrNnV_y`4GxH-krfkqB%;9@B(I|A2j(G@L@mGze)Ef(;_ZisgeQyzZw@J9%p zJ}+RVL3*|loXMY{j+wjZoGP`?h&I?>VLSj+Qb!19Ntr8c!%ze6~6Z6|4U8U^1H{$ zQk)(kne{#MhZ%Y@MuUplPCI1ncSls&uq0@83RB>eT*hxhbiC4g6|(Wm&h)Y}+blM6 zj?D$R&)G(%4rpH|nrz8eSw(-zGlPix_M!dV(V7i8S1_tVOjN8(GE^S+bQ35y`W1A^ zRuBpLI3h7Dtv!1j0S31EQBy!TNj(IhWqAKpXhPL5WRDhDZ`6~py~Y6Xoqg~!Cl{1? zA1PSN8qJvVn@U#!doyuZ+CN<`FQ3JX-Ki!Jzw1BPSOE+=kS?vQ9dyWQ=+W#&N0LPn zFnpvVL>}$JTY)2yrl0J}kE85RIcRUI77|adHQ|oZ$2F4D?4ZG;s`$$fLIE)_(e0B0# z8O9mZ1vS_~)QHQgppn9*ra4+rJ2nQh+HBbuGSd^d)&b&Ozi3VV*`EqWnYlD{PC~Q? z9!(gbwZn{JfS_!Gt)C1jF_ZR|cpJ~yA!wslomR50lXgA0rF%XyobwT4bEc-ec3omN zzz}(4ua;o&(H=fNa&YcC0COt>7$jhJwZSk7wM$7orWUkPvG;s>ZGRD|fg| zjLK}mGm&tj0>RQBf*z_wd_kC@vl`H$U1E(8X2?{EnXpX%J8@N*B;pzup4VNbGZ?O{c@ z1}m_|F#j;X16aoPN}5TO$Iv>z4d>}9a$Aq#10i+cy|wH|WdWw=(l*6>=>$$_U$_*4 zs;ojhhcyL~@HrJuc*2ys(@|)qqv`@?(d4zp6l90@i99fPV#N2OfmjLLMqZ2B=qOHC z>wyd3J>$-Zej&?XkUAA?;%qDx*v+;vk{cfO;cKP{u>WPm_`tJ?-LKN8?pt4z{9~Tu zl=5cBO|ua(UdJzQg;HMQj8T6L8S6X8P|y%IE8(I_@ytSUUyn7G(+B7 z;sC%)rVG%OD*ISpQ$wh{EYlj4_v5D6w<0L7|FT=5P*h*#ZJl+HiG_kxHo%T_vw4qb z*P(FkqQZflGgkV`j%(3jjh%iB0rMxmaRv4}r+oPo4tiuEd#O@>dIh4-ifnF)kav*t zL$G)^H?aC=RzNua;5p(2Et+W@&Z>Li9pLJ~S>81wDby>N@n;oGIy$9j(K~?hW!QM3 z6lpUYE@S}zg01)M{!%2yVV$4#`ZPGRRI^z2P|Ln|H@?@xQ>RWnVk81-&FvbLV z27~B!I#<^rk3K1UC!2P5EP$lI5S~fN!8C2Y#ngTuZ^syr4oiY{GlZ)o5A_@=pf*MU zKa?`=IXr@A$fJ#J!l-_=N^;Qf6RY|BQy z5qxMVm(dZv-9M2tJj;$AuHn31pcttIe*akO7}`hw&h6mtJ;j3lmsyzXOv7OYHvyJu z#Tt__Vs-(NCe&17s?A&Ve~>r0Jo1kTLl}C6H~s@(HqW{#POKc9BRxUeDMV@X!Ow1L zB0<=AW1L5Lj*2a0l}1wk(ZmvRl`%c$#M!Y3RG*4+%suQWCzc8KahT?h%>~G9!|Aga zn9mTL^5~2c{))CDCw#0WPRx?AO>YSn#66I0%Ar5*6?~9o66TKZ85LbA=b^;~k&LAg zS@p7`-t$Y8<^(j)v-0~Up{Gl1qrfLvYI+`fTNY!9Hn5h_7c6Tl;od&4`a&o%AlPn| z1R0rIO+XxUnTFq(=dSR~i~j9e=oe-C{L30lUxtVU$qfu6@b2vg?**(;{WnbK2Hm=S z@iPv~OsscF?&Y=g!>rYfiGL^uBz0B*09$TjED1>;F9ptk=2FW>^q)Ld4}*Rd0iT)F z{?A$f&Tnxp1`83)BZDdQ(3BMn_N4yh56bKkVoGZGH3~bCw#k{LibpmcdUtxp(#{I5 zY75Z%hx~^E0EDo#!oOf$Sh7)Cwou8hkiDP2bApYB@>mSYM%2X)!$-*B;H5y+Qvg2T zd=m;tv8A8ktuz{b6Maxwj{aKJlFiEoF{0+w@v& zAJ9MXTU@Dk&K^N0Ead4`qjKGipHZQBd8FiP;1K`Rz(TfuvoqdTy)0Jz6IutB-W?Sr zvR=G)b#<(Y=rdSq!NYzs$Ejmf6Alf#S9E7uIzh!duih~YkrYZOxiA8eLH^fcOyR(f zS?TQ@|KeJr;q?@@zIsR2qn3h9NSmI41A512X;Q^w>hHVca3KwjVEx}n0`06p_% zm<(4-;J@3lg;5sjiO7!sZA^^Aat&a=LH|PDNj3wQ&)h$U7~olR;ISC7JHoJ<;)fPY z*2MSw$Sw;SA=v`|$a@c2Y{Q_BGdCFu5s?a6)G$044{+xcSX8?1ZAZWi=+|8w4j%2^R#q~TXu?a zef!~{ijCIbFSJm(1vT?=&N))xi|N&{5wwsmgrJq4qn1vq7RAMKL?ynE_|74`ds>#2 z7cUupRejAMI_p4Xj)`Fn^!5#DlC~Ydu?2P*;AIzZ`}x`_@Z&WE5uoQSrw8|8@D4No zhF_DvV?cSzDcDoo?(7s&UM5fTXE2438FvRHJhyr*+>M*r`jBL#p+a==yx}!|LNt}2 zQ`_eX69R!Zk`kF_D8^`ENQOyQWINqgft|T_IYig2u69Wrl43zsEa3LxaX$Fl5H?o3 zc71_V9g3r&t^*`kw+?XM(|zhrPjf-^upA5Q}3SS2uL{Lh)IEvZXz>OzX>BS?|+)Y+Czu- zGG6W^+UE!l9JH)k}6_gzo<%u;CUA_FFsgGXSa9Hz8j41^G7a zC$}O~73GIE=cLeMZ!i%#GDSPH^udA+>hCP&(vGjw8Q#p(GH_$+^g2xW%t^ca2EAnc z{;#A*g-xNSoL@01R`|==p;e}sbAr*KSGU;Nz5wAQ#OY4cNpm(y?^}czFGbaI$NnIx{B62?VhNbRt^Vn|>7DsiE^`)amIKx3`P3TA{95Fd z<{q7bPNfX>f`O?1Jf=y!m%H0N6LqS#6SrO_O4BM`O<1m~!?M7mICs8=xblUybM+G^uk~%4?UsxQaP7q1r-4VR?F{EX&EaJ6p=mg!B6IfV=mHTE3OoWt0N@sVsXQ{d z3AeN6j3}}9DU8xNt+*CLw%kc?km8^7U_EJ0{mbR%0!DG@e|<`%%KkyALP+i)5GjU8 z)|3a4U`_Gll*sTc$XBA^CZdDWaDlGFy5AQY1$AH+e=%Q>wmsg3rG; zgSfzFE%r}D=WNrgZrjmMi*&kOg%e%vOFiNRN@)SLs{@?FPc{PmUs9&oK6Z0+%#wSd zwAL}n>~@!dSGUo4pr4J1<)SUSQ{_DQqT=960lCJtmbRQ4tRvD~SSc=0Sl3&LM5K~>EM#34 zhyDEl?y=_$?j+wY!Mj@HN+E~ek4JjxFL$CAzGN#M9KW1J>p9NF`^9tXEN063-qNd^cPj>7=OsGj!%HD zSQp4zinu;)G)ww)yr!;D#RI|{e$bIC3bou95v!uL`#^?4*VK@a75N`pxp&1S#ja;&)HNp%9^#o zhH7(z8BO>sNLXiW@U^A;R#e>B#a2B@xpB1f^QUr{VQB4Yv~2u3+UIMATdO*-31bm_ zm}AD#V}{M@N0`r2(|;hB0x(SkRWtL3h9HW{ z)yYLjm}xa86n)7Y7HrIaGo=*8p>s_oaeb_!8msn(--6aLLL_h;C8qC}=! zL*Q$LJwx~sAGH~l>&JR005LLIo0AweFnG-`++2%U<7z+owFCp6+J0GV!?c00m^g(| z$AnTcfQKntEp5AnjpN&RM{JHDVjoHt0w@t%n-2hT-*JU{fQFN{{c{cP=aa%EQ<-X7 z3*m4`_0^s4+n?GRk@aexV+JkBFT0-RSD$U_()52_AJQs;K$pGY)xA_&YxBiirfdDw zdi1#y3|cZIzwG#XKl|WXkKT24>Nv@A7t(|&N32L|NJjduCZO|y6N*KW!RT|Md;gWjl+1F~gh!g1`(nK}^ z%?Jnf2pB(~`WK(Jy`j81h-}Dql~r~^!xQHx>!Ic4C5fJ*cwZTPYVTzHwfH}VFdLj0 zM+;xazD06V8%<~qv!&I?m@$}q{y)FI`aAn~Rm6 zLDzrML(9Nw6xZg!k4ATf zYYT(T2nyOUa8@0YXx$^kN>~*TS7Uf@beg55-;}TU@SoBoQ>sL=_S<=2z0M7)?!PU3 zTgM}N|9t3!f0!T5mI zRB@iWZXI!HQ_JY3PU@#%+%E@<*yri}6W{XEtsryx6Pyd?B_d|U0@lxWS_sM`n=iX_ z(1iSDCiflj`evBhj@%9w{BtX;)!iqQM{|Q7QeCrSt860*fbkw({pZbXLSBSFsj|%> zHryzxQ&Ozbp;QRyJePf#bZk4;ZP_^*(jV9kz8F0;t?6it4ziR?x|cIQJ;Au}(G)V+ zoeaL8cPff&VO8ix^E|t})2uioN*pMkGUV3Tf*)asjHo`>utWD9BYo_n-eeEpJeHCu zorAy?R`eMQt@Y+W6CA;9nJ%-(S1Jm4b^2ajvNC6sDy=$h?*DOq|HE><++bCm4C0FT@v5T{Uf$Pj}(8kM>eBI*a#K zxWtMZ&dCx{f&^8125wj)5H&a=7A$UY-jx>|3PSQ$UebfiU2&Ek$cA+_phhhY z`E{nE=(e2Vx+TMsQk=;wWmQZZGBTCao`alfp8sV2m*Gld9BGQQyTq_S*35^UoN^D&AzNBZfO*gGo@wq}^& zk1Bh6mQP)_LTBO&N+j>o{UI~ZN%D)E+d~GEL^yb%(Hfk4A3Xc6_=6{aQ{)xRf1|4g z)&5XspsTmcv6U{V3ocjwDq;J3Q4zXs6GD6GBhR<$CA|I~eFO~pJC2$wa(@04Ci+kb zx(d(jwJQyHe2lm{Zk*&Ny$?@?J8yQFj98|ByzDWJ_~04y0tP?^Ky#HKa3DqG_ej&X zUY{?nGyQuQ5}ij2E;%27G+!g_!4E~YQTP&~pJhU2iUa_~?=vSUQL!8*=x>eiF^jP) zv@k>O-V-Ml1md_{g4wo(Vk^nB7*jwp+wxe`T-96L=qV|Q zMrx*-O_`B5Yo!)H@b2GUfj@q4L(PKT6$|C5=p=YA4@F(+b(Ow0e!r1q`!0!kkFRpd z_7fkBdWKsywSx9k_`<0dubk*L{tWZdDXUPB#kbfzei_V z|1Y-QF}M;oTHB0m+qTi^*tTukcCur4Y}+Q>x zTFW-jCXb*6kO{#C@hm?B)%%gdSNfo}1;1A{xZ~TGw*XKSQzf@0Yn&==J)o|Y||53 ze**n-^w=udqXq%vB|O?>jJ%fES){_R*=VZtoT)KQfsqzd zw)aIFB9GU#g2Y)9kyKkYViP~3lOC0#xk(3z#kF?@>Q_wM@XZHM7Ko^GhOcZDt;<;I zJte*)W0GXf;8uHLyY!tQa_{;}WHk1=AT?g=T}puscFEnMIm5Lje=F$sDPk)+BTHxN z^LdW3KG`Bpds8lu%cq@g0S`|sQ`rd#W8Da5RzYt)t9u_j)@WL8Oe-WR8>yb{KCM51 zKS~$U+WROJ5GKcca7d=ovSO0`SkkoQz-L~89C~ENl6onH&h6Xg(W?OCU&kupp_J?- zveb&d21Pasuf=5HD=KB&<|Ghx__BBDXlk6z#o#a6ZF?%D9t{8nFsz_gi&RfO%7=Po zFzZrxDk53)KQrnNL$GMEhX$z>Ut5qpXo!X+CqaDKj;{9)AMSjP3tvygZ#sD_%a%%YE z9I%n2u(#@sHAfVYtA3x{*?*if-^k_(?4#}1wRB0*+&>svXh>Bu^9tIS+3NOaA)^)W z%PC1W74^(Q>iyZTjy{Tiuwj3u!h*zzd2>qFaCx5|CU_*7esK8;WL6e*Pp}o7kpl69 zEs8n%bpu$1`bS^hA`PRO)y^Z24RcQ?kLa>P%7UMbH^9n*uNT~ktW)bzZ8Kg88Brz@P5-C`K zB6^iFfdi7_madD&E0-x`f|?JD{Ao-`Mv|ulKG;!SO(243`j)*Y+3%?s`D$YVLxK-R zJgCsbF|Ku9-L-AtwIbnmep_-F-jCu+U-tL!H8gdhplfzvW6M@m zb>b4O;-1Ky_bLKcRDn=TlZrTI-v_;jB$m_a(h`yP;~Q3BDk+m3fUc@|Vd3?VUw9c7Otyy2lBT84Ds9=d_tyN9g2F`$& ziewFdG~VfsNIthWH;>DatwMly1xb?m#sz;g2FEE^@M0Vu73Ij92H_vJ@T{q0xrRDu z5HArdF8{ZN`TIq|@!RZ%0V>Y>8Gm2A+i`+mHcRvlxVN7x+qyXAq)g$((_wfby1N5y zUl&&|7YELxi#-FV3EV+0vrn>}>jRZWOU$1J~X}3N65L~qE z#vl!XigjjmT$-8VDOtPA>kmu0NOuI&XIcMIz3lMqUnR|h-`*l)iGJ>8CBtRS>_Lgk zvFu(U>_xl!*7z?Vck)e~O-WQ;jkws#bgr?)8iD2FgfOlqlw7KrWE5k%{UkWt1Ts8y z-Lom?yBVplO`js0IP63pLOFw$YOP4^>sfu#M__^Lm$Mxj3Pm~zi9n_++(6xqdWBa%pq;R4=iXpwoEgg8*RM2O(1 zofG`=hF2Pz@x>gXiD;~v;ZVL801m)`nAzIS3HDe8KEUXx3yFXMi3cuAX4jeEww?DU z#p~wVIv>rxZAiD*2xP*0G$syq5GFZ_RI0&^j8E|V>?RA&&d_@Ft9IByDsE1GDu=8U zNZ?6e4ZSX?7NngrgDY%8l6=tP6E^`46`&oOYoLNapZ5fdXC-TW&=>7?AYn7i7H^@e zz%oQ@2o5t$W``8$WLNO!&fHotAgPaegMNM|8*<<<3b}JX%|bE$VPVZOCQvsJhzgvg z%Lz6#&z-P-(>x*PQYhEkPY|`O8MbN?CM?nG{Kk9o31nv#Ut|1!iOAI0n(CGzg7Ilz9@ZgY%( zs-kWC)<`U{ko98$%M1?`?w#}&jgo%{mKl)O6?IJ^q2jl#y%|}!?V4IX60P$TF(HTo zR2XKTK*kU=@)xU!^*de6iXLEy^AYw$S%SBa-#;+wA9gsY{<)t+1(cEhnmk}1<$tgU zumRSt9++1j@%MV8w4`0OO5_Co1M6hm-N#1iNm34fi00XT@Q`5xVKYEIGWt;F)KT`r zu;ym?$T1;0f&`C?mR9` zoEoQU1R)7t$ve!*>r6wOed{#&c7#@EA6QN!h?2=^8b!ZTbD0_O=LW_-ZEUiO`9(AV zM#{0jww$Xg*(E*(!idBKje8IVzCYVT3@u|&Re5Mo1E@4jxFa|L*dE_hsc& zNWlcIYdv;v(mGM}|H09{_vJ9*!WFcULIvVxL`Xo!q-KWJ*o{uX+GC@M{sWh$XfT47 z;$XEn&Ksr(SC;bGtvHvR7L%t!YDOm5Z~APq9>6{*z6r!KM{Z^)b|}*!;!3}aGoo{@ zVnR6IHM5k#vXT7V9c6P{+00j@9CKyw`oDlZT`{me^yKg6#9E9%KYy_9-9mlc79vRj z1D558FKJM98E;(A;ce+oYcl$O7mIDe-oJW;k7;P zFqhF;9~ECK$C;|=<+x`d$(wUI5lxZJnSuV!3WEJvhSvty?k+O+;=CSnUl<3+m!te; zi{Qn9Wr;2BsejzBOS$Sef3A2yk~K|a3MU7*Bd~`n0GHQ-j(sZRHhFz5xDG!+n7i{C z=P&-2nwyCFX!gH`((-rtgyFx3`--~V8Z4)D7p_;(*0c??Dq0G;%rtq<`kgA%;npu8 zplJ{}D!u;>Lqy#^h_$23Y)+a1Vc&xUyl-70!-hggm`v4VTcrw-7^ZcD65)y>>b5Ll zgAbB1OFt5Ys9zGJh~Cf_lm!?eA};3Kt$LlO;`Zhy@HL~Z!2VqoM2j|Ra^M@}m4 z_`c1#3Wa$*hp@?f+mJlp&Pt5uUEYExhqbGqxKf)C#t^Uyk5k zlN4Hrn8wL;qb4h-JeXkcIve43p)#yoV+xImDEb>4xUR()o#~Dbsv(I`7re7lL)p{I z>AN>-5Y69kkzm_85eNDP6ENmFte&;7?KGZ6;X{xzQt;(WK?pO5FmOHT_=vEkvdCSq z1`9LYg9LRa@sRwf0%M9;yE-RiLeyyAAq^Pk7O)gjh@->^x;(1GPf2M+RVuq~shiy! zQzUX@MF-O0a@;Yu=%k;h*v<~*)uoXqthm}#0So)96Fnx%JHM(Imhj9>J}eoh@_fS} z6T7RM<^6wL5Uj(uRkI2zLG=~&vJU=&+VBdg2(!0tD`mZLdB3yvFCDyeb0FL%?b;@7 zBCvyUSbIyYz^SLji|z>Y{{rH>Fwyn@RK-iwF2i4#ZFVzsr4OrPNuVr^<9eck92)D= z36#nL{XRM;7D5sKp!R5cdcY!m`SOA9u~|arGG0Whi0h7RM)*d+2FEnY#Lm9q29Kb) zmZ!@T{{-kLRrY`WK0@1!S@mr3zbrsq`!<)pUE|mYk2y%|{mVx-7H6uQ!J$YH9nm+# z5fnv&czvu_;v3w*2t-!5-|y>ZOBv;BW9NpDDeS9m+zz#H(;3!l(@4#8KPP-)Q!7)=#R z4l`JnMqv1c1R^|tr?j;ZHbbT$DET>~!I0GgJGb0C#d?kR?&uM6F|imvZXgv?(BHs- zVOC0`giO$WUtN!tH8?8GAkmW*ofxMLffKs?m3&mZRIA+6R! zEf6u^%iAG%nk<~tLupn;9(YWg7aqK7aV&~#kzNhe;(lpiQa2?nS7R+D2reVYAgH{( zw6jG!lmd6zBjX}oEZuD42H$~vyEIUU+CyR{1G(Wk+8tKPwDnxkdol!Wfbiz3^FxGh zR$^!SGmSgqz<1iuz9}?SZ=TQ%BC;oHyqPwbC(6m zd|a`YDw<#OXA;qW{~!ZkjDKs{AQ?i`%FHl6=$3W$d0c!F(&6ch1~HUIp& z)*xUy6k|mERd5Khte3KyybMaSK*7cFn;FDdG2A$a&^ZKk9_)u)UJnLvmv3wANdZVtGSP!}z8C$yx-R3@{tS>V9&J8O?dXh@{rl1qXnKc}16V3Jug(wtuD9-rEwS z0aEEh!I22}?UD=lSn;(1WG`eP1<6FWHgTA#j5xlL%qc64_&MeB%eCJNALhy!DNkRa`kP z3#=u7-!PRF*^o)}A2cN%BtHG!4uY!&jJ759hCX{E8PpBa03Nrz)FiH$SLAB-ys7M} z^HfU5r*b#hR^%Dp&c+r>V^5Dlk=)fQbAfWS}#Mw=Xeji!{>}$7sp;#XH{k*18=5C|YZ>87P|p$`|qL3b<(-dcHMr zC{$iwfKi<7nxHS-cADa!H~wFbN%E~+^nDAZ+W*rKkh7-$HPY&ah}T32#M@K?PlTXG zD;i_B_^FYN2P%jzrFpFU?nc3-A6z<$dH5CgGMj7LwZ|m$X9q1tIZbojWDincE11Gz z^3uXAIu;zv3IkehWP8fj7PRCw=K1v_(qgenRpKS57385A2PMjk8}j)lVb#nCt!~sg z5YB;TS#Jaqj^%K*Ztep>W`ayDb>e-JsW zA(0i9Dd+qPJhC6jh*V>{K9!8)2a)r%Rba zjdodK-^Jdc{zmY z!aKHEv9}oduG(Hiq4blx=xFHH?OV$Uo6aF+N>K+Gd#CcY4|q2^A#XMj6qmP|jeqD5 zJzs^WM9HOY_))`nW>m$^q>Eh(79HCu?90u}J^uyaL})+E7^{BTnb9Xp>RIjkx>0=O z0P1l0HeCXdcKn}-Tq}N@tPPe|8FqtQJwmOc?+nK~GGdlBFw%zLo`u#O{G`Tw5fs~;Vi@{{kXXW z1tRL&21ULR>0|6A!Hes=O>5v+S&XR8tnpP;#um^qe0^ig)2B+o?D`M8_$ObO{X@)> z_X)pcG4h4~x10EXjK!XZ=Ni_Nh^9cQr_rX*&_gO~>|~4l5W}v>$aog=Frq*84WEU0 zpA<0f$A~}tF)AN`z_tu$RLm_%ALdHL3xvR(jbEy!iyt9?nre_5CDhKY)y1kNB$E1F z&?rDiIU3$J1f-RER{#r6Mvv`+%&01JTS@w&5#<`C3r_tx^<`tb9f{@$#KLYaIc77* zzOg!1L)WsgmMA03-vFyC=>xC)+EaV93k&Q|WC>*DjH2lnArWfyD)tJOjsON-k~~lJ zcGoPOD$FK3+3}`^-tLM)jb#`g0TYXp_Lt3PKVw5 z=nlrQ>Oe;{h@Cr8qUacw<2ClkC1JqrdBPD3uF4Bsy%dY8*w|*Y>7uWn)PY2~U1JtU z6c-`d2zN9Je9O!7qh5s0WDa4X?BOo_5;_PVHOeIC>p>ss$-4adv-gXF5XXm6qLX~$ zYR(J1RWJArcz2$1wk^rEDatCd`Se&nFgKyGMQbL9r9T5-qIn*sI5X+qBKP|k$E{;V zw(UGt z|7PxyZ|5o79&nh&F0J)Wh^DDR&-A~*H#iz*;>5`Y>h0n)d>0}8TEYE15D|f9D2Gy0 z)xlisjsB13D)B%4ruG}^c5`r!m@0JB*bZedgG_t}ZlH$AC|a%dDwc74PZIGou^o7q zDAl_pC&3Il9Mif8P_oMI(F@++up^KokO1C@J{1tx0>!f~B;z29_+~^Z4R}-=us+*d z-E|{Y4uv-c)}5%QN*HovY=>8w=@~!qzu`)O!qQD)Pjs$OLYq-_E|5~d5-e(1Gh z)}fc~8m(F^69kVsFL%9Q4U5taXHyyuQLx3=)?LYm zI4Z@YQoTYE+`F-aMU04CvlC&<=~BYa*(7tVlN$eO0tIB(eSiSDmM_IwRnx-(Zy@F& z37n(1RU@y9J*G4tw7WDMb5vu6e^5mhF;T2qZ)&Y76|uc{J(kzVE)`-auTg~7?Dcu9 zpASMc!S5Nyv{mfBLSLQ2{m@^;ZfCZr=9^g2-`~jdLk&JqDEUBe>=j#KD=R6mdvyZ$ z^@OO=J*&PXAn5zLCor7vBlK>Y0KdJ%Y$Has95zHkX>@-wg5qqxIFzPD5ZcBJ3zbG% zHPLXtYs^?vJL{rFgd^RXVBVbA+y+K;hw5bCk%a2zSewb}Y8o&2kjoq7?+ParbL^PLB#xWsaIZNR6oJyu*||o5B1CA= z+XO=-djEuUXqTuicJ|b3LPuIg*8w=pCwmqBSG+~s=S1c76;O`<)7A{FZxJ8=Ioc$o z%;RL*_YHVU;WKAU<0qJGd$*-mDGSwn5 zR@(31MEXD`NjNVg&hk_wf#ZV<%C?DWku?fr5DcaI)>wf&2U9Kyq|7AEh?FqsNE6dY zm_*U5-U&|46@bahyIDL7{&q~}r%C*E}= zWmu$2PZ83pbTp6?qp&@&HK<^A-R7&CE23ui3b@Tv5_b2qi<^$A?s7_7MPt`)6)u^j z)+WLsti{hBY7)L^l1^E8J6eOyqNhT;cu%{`^q(cS>~6Dvok{PZjnKZ^2~`A_g=qOm zBuq{03bS!u(ZFhY#nsYe&6;ZoE05CC^VPCzU#4Jr^R|64lfAWxRoH6LUOhosQ2!O^ zmvt^Q7UFbmh!7~NR&XLYQxER^*IUw(r-6d2UI|;bE}g`|bg|Xz6;I+)TpQVflT@rg z;vn|(3&N{I%FdX3uxoM4)ca?+EAKXU#J#dEy#8f5mWxjGGG*)I7b-b-)j%~`!$5sb zgW8dG*Z2UT?O>qQw}4UE=$%y5y<0Mw+e-8-mihfdD)UJ)aheZG+yF zNny+HfA;E%CM``h?lF)fpalAxbaThOQDaHQg19-&I$vf~A39gf@-MwEWTE9jDKUo8ZsAmKyvX+ zo(x(jbo?^>9!+bW<1wFjX@OWiAVeaBTfAM$Bmu^B90mGwC_)J%%-<*O_5#Gz!y90MgW2R8engf;C2X!mFTGT-n}%Yt)V0y18fgSutpLRw&!)DcG5ILWE!Z z#gZIgy6pUzjB1c-a$LDDy6zkvzJg}x4*Quq;L)4OT=Zhen)v$!CZrp}RU9KAx3`Z! zcQ+Q{{W5}EfgTp!c1|netD~nuSYGYl^6R#2Dc0%8vC=18ee(&DvAjSpsRO7|nnU83f zjv$$wN}IOv8oL3c%5ne=lf!A^t{u~|hX&~q!KWYO*D3bxDfd%=DlcGPa_i#?sAn4# z=-Cbuk%*5ExU}&;BL{7|a>zc2;3U+7Ve+YP3N;4R;Rk3h&od$4Xk+g5&9^}Go=SMw znIin~8~Oc7zqt1Ya>W~{1q_t@%+0sTN4OOX)RyXOmjIcik`M|L$nDdgQ_dd3kLQpi>$i; z<-p0}P^JrEAQ4p7;G_tEldp%;k~D*XR6%eoPS~S9n#wX@jh8K|W&;|{*QR3kpgGG2 z@{mB(du!!2CdM;;l*pMVpS5J8!MK*?y!Pawj7>5a!}Ey9L3iM+;T;e|&!AKZxYu%x zKhZH9b*y;%6HHqzJXx1rD_XQY8ef%-dYngyQiK{{vfh+iePMlCFSX1^D55pbaj6aW z2V~Y!(ks1;C zP$H+T5tOW$N&WRoK?C@tCkLe!oCc#RTwzzIU@a&8h__qBf^qiLrvyx@`mX9?*3O}+5 zu0lMu;4MD?0=VSn3VkzBHfA+uH-A52Av%&UP86)gM0Xh zvHf1;PQV6gswnRDxa<$7*Ev+Cr?A$hejy?D@eFC?o4&s4?}XQh2Fx(d6-Ze>U|S`} z7T&8|zp4Aq>h2e{zHjOoT$RF>==%k0H#Z<$U(NPnn#c13!#(SN0lD)Iq*Bh_DIQUQ zDd>`Nptm^{Y}xR*=)$-JWa+%M$Uov@{hJTW`1`HHd^`EWxf16$aZi*z{*WJwW+m#d zvVw-RoHwBhNwsJL>*p-N+0q}d$iaBC)$+LSs`s=XodK#RpQa#3-9IIFsBvCcKp-Qz z8$=RzJ05Mh|NAB{r4J4#=M-$pV7lV7g$s*L%F?~-en_P6r{MQa$&+O9 zXO{FzHq-FDpr1nNlnQ zgMbx|zK(QMAJK#6GH2f81&Ge}IXp^D$QZMk7`0WWV=>nfPI?y1ARL>_U#1fh8MV>J0uXm-zV(r7IG-=DbE@5{Wp96Z_DmP z4D~hrU&0cubJR-wCp~o;jwmQxYE%V{ZdNd3rq?^Qq*P4r?T~(-x_(OwLKhsdO0}QA z&D-SVKoA3vysDSWub6u94&9Xn7CBa_%4vrX5dobLfatS0%#d9F(9YgqQXvl?5FoDL zk~rffd>ZwL5J^xpqSWjJ%b>4kV4szIFFq04he2$<9Ay^X63>jEZHrQey@kedrnOO@<7?m?E9G z?3{S1hZ2OBi(k)f-V^aWH-OGd!g+%&@b^(`C-|Z76b-e(uUWuDrmtu9Nt530L7<zJ}l|WyW2R<>FhZ7_G z&<6v_y<(Q#%Tqz0g*9gNlU!tzXj9j zEKpN49e#t;x3_9n&s{Ajw?*dPGJdWL{i+jYm+iaG6}%=4P^Dc43z&(sxB@TWxeP&K zFlWd%`49#gCC-|5m~8iFKV(ff!}%WY=E?@IcrWD*@16fYLX8pM_iW5(FQ)$<;nhFT zgquzaYLb#0OreV#t@rWHZrmYG0WU)&Vijc)U>mxE7Fp4iV<)s!#)vm{CY}aWJCN8x zokmoLnFy7=&@dWSLTyHsN)5N^fKe^0K;bLbg43X-?Y<$PxuP6a3>Jn9Lc$ZEx}qBk zNO8{C3XF1ZkZ3fe5&~27oE>Fvr)XQ70M54_VLl4pr%7<+hdH>YEL5@j$xk-_iUE0; zIgz&xpp#nRu7+*s#t)&tv%WKOmL}8eIEKa1Ma3C`J7nRQlSEVVXcg9=7Pi<~hSXJ# zl35|v@T?YH7~IbD0xyS=McG9IMRZ67zVb-nU0QIe7Hn`S2S;ke`urwO5o^2SZDrR; z3T*@5Ks`1Ab6sVBwjW-&&!q~cQV|x>iu{7-?-C^ZW}N4o<-Z~1tcBZr^_x0a7Kd7J`MS7f6q&mx#vZgiM?cEiwLM_ z*sPl+GKaeTHk6re^T}iC0;*2`<^Q`z{NYL7VMc4v^C#&~-a(>!jam_coSfay)UQa( zYL}wFY;bQipge2F+4XR5gUB+ynw{Pc5))^4 z$eUu+-+I}$o)!?*Ry*DCV}FW4`S>G)g9w^d13v$v?sY)Gqi*a==6p}f#Ql*viZTZK z`pa{6r+PM(5)#g+uA$b2XV;D5Iq&6ZrR|tAqi&dOk85b!>ZVc2ar&$7Z`sx+>8HMb zXfIEI8f|>)q=%26;KQ|+kwa^0Rl(v7Z8>JVwZ;AmNY*6teATpB;lo!m7(xm2VA}TD zKTkJ6RDL7&e_*Gb|K8y1GQ|V}#SZ(=VIqWBJ=kS5Cy_A(u{kJ}%Y!UZ2<9CgVqphk z$9N$U_U|8uoe(K|%hlJ|-ZVfy4H-9=q#{-m3d7Fdcrp~I3^PnW`0uc4a9jD|r*g== z#oPrxKHETv5TQMq6gF9-uxO#jArCWDNZHK3K$5hxaNzC;9=aT4u#h7ZkUWXX>1x>X zq6Egd?AXyV*htS?^U1z8Zn07`H`Qw5L@#K23q+c^0v@?g#;Sd?K*+Ky$&Y-#JU@b+ zFzBn5sUF4GwVP4|2t&R)j5JF#VR%&pm|9sn?~|0`jEJZu6O|0>wZ5ey+b1z5g`$i+tCt74Qc%F9r zzcg76Uwyyi`M<*&>fqj~=2g8FxidH*Uq((#Am!4oLl5rMno?%rnDxJL_^xe9`FlC5 zj?*imB2J(k-T}W*%WZ&+j#^m;PR)7$cU`#;JlNe-UcmtTN;`ItRcwl$1$pI`*U9T} z+UNhq&QHrWo9`?nORDL3J$!mZb$O(Q+LL^0a+7FHuc0QE~Ely`RyGw}Lqz zx1yuoYVZo`H^f9fuW&$VeqUryukTc=3eJ=CJoeFhQVPEXm&TVk^%xu=R@pT6wT-Lv z{$mL+c$o?RA3GuL*A@F{fqcku4)wmekr;Y(L!`h$Xk+@QxP#6`s5P=h&jdAih{>R( zzG|1vZYs^w`Q2}kLF=6WDI&RDVl76bBVg#bssLh@m-+=Wh0rEL^10!GBC7+q=|eB1 zPT#|W*J#b^NYRnGMoqHWB(f|L7L%yMoO(B+-|0Vx^I|I&F8ok7Np}+s)JSQ>A^RVB zCeaCj+(akhYh(D|-n4OlsnS3qE7?n458qH10*2k&a>Nm-p%i5|pvWdfPiZA}<0=Tz zu9i!pp@BkVgX?NUpamZZc_4+5^EqFbgJ@W3F46%=*R5%8F(@xkipYd5MmHL=dt9a{ zDz>Di7yUYty|S1jW#-SukfrI!mOKRtM%CSWQxNmP_YjYpWbD!VWL3kJ8%lsMJZf`! z6y0Si?gXsx{0E}zof%=hj24u^s~@909PDl7NVJBoqEI;Oj0MjWs2o`|4pDXf)iXEM z%#Uh~BqLh37t^6S8i;m80W^VpgWfN(4oa|Rh)?_CJ8RI5+yOUrzuW8;2p0i$Hm%&^#AU`8W*2K1Sb*>0 z(vR&=^ucg=0QN&_V-wNaF(LA@tW~4f2hcGTIzhNyeFsNK0gCFtg*a#fNV|4 z71k`Z``HmbIdxN!cH9vA4q-kY+ymu$y#*EsHetS3_S)w}0m*-}wJ}CJ+Cb51`Nd&!KgPS!J+ic?1j^3GVTek`NoECN~JvSyAFJ z7O;%EA44OgRb4HI0M=))(-IlnKHw$DS%_@`)xP8%e3?h?ol+yGZVgl9|(v zAiAL~YLPbQkj{!*Ws#8!@BD|CKC{4H5ylYcX=ELwzu>4;6wD@<*Q`pAkW3RtnEA8> z^-fUdG*cKAD5s0tsR@v*(zAcv{Kh{>^y#c@*ygUY z1u|@MW0gOr(RNFyM)-i(*!Nn7JuHxDEpHD9*$2kywl7P`5Yg_L=<*_U-h4bD<*GVb z+y|wsus<|kA4e{6x+=c0$de)nkHbK&0e*b&Gm{~0W{_j(PoL1*E&+l}oUS;aYHFtg}n-VNba2SDr!q z4^lR4{i2-8L?a$HGt`$lHq{{)(J@dX=whx3V;Q2M+s`|eV31>BrM=+9BfxnM`Y6XU zSQ}%3XE06cFpX`dcd_P{;1B^}(0=i1773bAn|`l=&v5!SlBQn$K7E42PGX7f-8*o{ z43v8wJ)SWE>q<=b6=^ekpep?zKvwE~n*@%^!6ksRa?r02^)^C&l8YsWQrhQb{)5i- z7!z5)4=~K2zMD+3hCAK3*LuOr?uE=&dXHM(ty*3tmc4ME9Y4s|b^Dt*@sLe#nNFMw z{4*pVAN zO9{`S4&C&WQR5#KZ6rGAU*M9za$@{uqjvb^5IIb6Ip`#q3^=vI;I-q|dFwK55{W9K z*ta_du^-#QChvt!j4r3-7WZCf>xvH-#%Hur@ zDauE${mEJJZ!P4##kFSa4g4gzUfi`uNq?O@@lIIJS!ElWcPBRSSlSA}?Z;F^dSfD? zfa-t-5n{&ip}pwmF?r_6%N^VTHt+$;oyONd-6Tm2T%Z^v1l>5E@&wCJHYunQ+@2NP(6JZQ z{hCQBN-xJ@Zq<0zz$V_qJJ~Ds0EJ&tc}gOp*J4P+MWf0HOIUIloK=PJA=e31%3T&+ z^Dlp#8Tztmb6KYu<^9)TSZQuk(tF=>>KqrOFt9LkZQXF?5;cU%EY`L#1h)^6m zxWdmv=hv-Nq8m02`+uDS*<4pTD%N;KR^rcj`y?Av!-Q6(f?x62H+r)TtN*aCsLUCY z=Ns6tad^TQ?RI{rjH9kZ@#dJ9HK~pNTenF(LlX6ND#U3i3akqog?+RIzAFZA=j;{q z_D(H2Decagac6g>zaw49qKLI}zNI*?;{vLu%&y%zG}jucxVKT;s=9%E*9OEZrst0lo5K2HEq9n@ zrZ=W?B$r!U+Oy}*0d}L$FvRqP`W0l%)xcl;__>y^#?*miqkF5UbiNFa7;{~tq(8jI zaLvFtsl(xOk!6k-Z^;VN@p;WHfuY0Z-M7e} z*cJ>M*jVH+i`r7(@jGc95CgYo)ltaMASpjjP?2yJSrb&LS;S1EB(jA>w5;{vl5kFU_!o)fG|!FB<~kdl5{qrS9^-bxADJf*2P zKJm8NJpS<9lNRQWflyN<`G7ubWFMYl7>~2Nh_ovrB0CZ(o>I&#;5GAjTobDG)bdk8 zDk&Bkz)4+3JHr|`r{(@J+VYLXc90@f)H z@oRSQj+Toz|7{xgg5ad{MTw1OfA6U7+|{0qVIGb1t_Q8dasjoa&+m>sGS@FaQ*5P^ z`Q}A=5|vdXw_26Td-51Dw~9F7<`SpKJ>*3t*Lk_GoAuz6yFmw)p_X;9gKl{tmrC)M zr&o;kU$nO++~*fGOD&V;KXbOE8eS{x&r@RDKp4&`GbQ+c_bXv;3AWw92pfdOCeDVR zID?pO5I2V17Eu2^PrS>B@5q?4j@oLzRFA*@|MT%ZygZD}i(BVXH-U4Op!e!{%tM3- zBJ_ko)Wodbk&ddR>p_Z+s)Hw7@Fq2>MG2@S@saMk2YyWurxi4s+{ym)MVvs5Bu!KH z8&dQs9XU&Qlqt$-leVeI`7NGt_8bcoLS|lBFZh1=CK@%E(KMhw`jv5+JX)`1fqSnI zlJO};OgBida!n(q52=qM$TBJXhrn^8FaxtPg?&CSd5~lXvL%$baVoJ8DF9iZ@3LEX z+`oOoQ{^uSW8Kq^m~ZOq?+lqpRth2LP|+Xc(@>Clt}s!#zuG(_D&aVm(%3S8?OCyQ zguOy+7L@S(85M26sEhFmC6DJV6kMo0KW7tXw=&A`BO;DaObkG(0O6!|n5Rn3<}-F( zRpQgMtX{d#p;ppBOJD8q@ENw5|HB*okX-u9PccZ>AOkHO>t`Ld(`gV&t4h6&^0o00 zs6g10qzS{)kbCX@CaH713&J`=kxWGYN@{(}af|Y=1;u36#oNh!SA{{gRI<}OPh%zY zYx^XS%|i^3o=c|vpNC+Uwbn5zn8Q7vWl}{{j-0eIG_A=66nEUaTiBb!XzH|vvM;Z+ zA#wbq@1aN8JhN1cNL!xSNBMp=1hvq%mA%dQpJ!feZp+mDcsnykvlg}v(FP3D=mXuW zR%owV+*d|&?pnJPYK2FA2a@6sf1C#v*;!&dw{^vVM3H1DaZ;XF!?S+&ir*b^1AR=+ z<@^e{?v{0I9;|BRKIS0>66&kvOlyRFFCS0Tyu8Wvjh!r!(A>%WIsDTn&tboXTt+G* zoYlis?%@LMuD^7RUp{vb)zth+HPrXcbt71Lqo~gXy`^q+Dx+?FIOFl85inK`oc=t6 zb(z!wLCAE@?$)1ru1LD1R$T_R8!a&x{1=S80 zgjke-P70Hmh*?J;o52-#3g#F*0HgNzAob7Ai_lHV07($6cU+-DiqBi%iO8G?J_Vy7 zlt39=KGF7Xwm>7?UHtCfvM>W((Ng1<)5;2f^ja5UAf{<^HOlHXsj| z1mv+BY<)5hc&)!=e4T9p*n%1?*rDLJV$f88ZAl|Mc*R{YAxJ`&q(VFx!8OhpVhTJT zxv2f!cJFplcZ9O$uTM)93aH~1sz50J^YH7Ds3k7W@U~~3+7J!vezx)wija;;2fFzV z8JB{)*^7h%DlqC_p8yA5pFa8h0(*G3(z-r{kz<#P%40L|&8pd~s=VU-3iFQLB;D}N zwB3@@*Y%3wDqMO?W%afs9L~kp=HZ6?SB;o_C$;%(`IAy`Lq!u$DmDC)Q*@z}tqG_e zwSMU0{F82)&4}S9g2q#q8GArOS-jM|<^>H+P=!L6ey%}E#j^};!s?1?$!7Pbyv%q6 z*oi1o&EReC;B>`?h~%ylHGN_6(mQZxt43wmh+S<0j;e!_tYTZL53EEdgseHLS3r zmdP?{xA4{WJd0tdXw9$Zb6lW}u993$UC3ZNrS~bNh+P6cBD#{%!x)^xV^|;`T?0<| zd|Pyc>u#K5O4yC_Crd`FP+Ev7&RYK2zov%mBi(m2m#qXOz>%g=-D;%k@>Z{R&~|D> zSHz3+@DI6NkOID6Syzj!ubzVLPC+547t@NodMJFaGUsW_=yR?a+CQV}9xM8O`o_{7 zwS}9fWzv5R%A-LLTHn0R?O6A_r5uTY9BpxL@KXwx3is*QGg((6oh?H6Hzf=>li3*XCjyWJMiPl7B4hS))1! zgA9)->af40UHyUnn6w%zJBM&?UV?`qvMv3ZHgEHkbm!l{JI6!<_w7c;b&VZ*HKXi4VO+7kDwZI30k`)RyQS%5z8eNnOKRcJ{!f=hwD z6j1+nR55W>EW406I#$+Nr($*Up;elCGX+C(R|F*gDXl`K<$i@QUzR;9=7^mKvcJ;t z7&PBp3T#m^h~Jchu|ZB_YeDGBYJB`hIY}Q5#j%smiYkB-Jy%jJ14uo&4fn z@-M6CpSMYdItW@7&J5J0U4L|3h76`>nnbp&s$WiHmSR&21jf^@`O;5V?OL7}BX_RN z&_4b}*)mG8OAGn$a-nu5$DJJyOqhBp>J+9NBli?moX%vLG0HaQ&0*;js7V5=5AnGvBMq_)&7P5Nyxrfj*50 z=n!V)$+j5Gwp$3p`%XR5PYx2V_QtRd=C?ob7lQY#5ey_Dj$PbsiwGPh&|Ae@e~{A^ zw6+ts?2~^ExghhI!);m)U-?B;=B+@CYrK-zhaSEDsy|TWCtRtMJ*UD=&QWEIt$9yfzu_X8XTwaq;+m%Pded^bb}*G$WS$; zS%O40A>(zVZcR=%pD7+J{CkeC-KZh`sH{$g!bRUduW9VxXr@%?~f6eUb008wL`A(Lg3a!@+DAg>*E}8wdYOi7x^iBkdmHVy3ezS zv|KUH{!(8}f7ciFe5vzBp>xI?>T9~`-GlO3BlO{0uJAHS2f@n)Hjo+L1hSoak zNS8PKojT!euD%lR@G!_K8>qLR>JU6l-TX1Td1<8EiI&hhyojBpuSF*@&J|t>!vYqg zblQSc#UWl0sYa&co=E}SRm2KI{rUFTzmm0IQU1WKi8A(aNZmrd>mB0%BI_N4>uR9= z;WoBytFdj{wrwXa}7{&X@Lxr=92+Gm3HD~&+u@7%L6fTCBAXTncst*Me1 zMusqgpHYbVTFF}y_Y@ZxakAYEi!IN*aDvA>y$7P1Ujtqawtm9pRXFQ83VK{fgfXyz zI!Zu$`ccJ?y+eFrocP(Lwzl*5mz+~x{ffa@X=0h@n%;l4;Dxy*fznrD)=vmn4AsX; z!W=qzNu56%NO9AGgvpX*?Nb6?>(X{A30r|ad064*SF-O0%8@8j=+enYXQiOFuPP%^ zcO`+#BE+aQ8ay}0pEZ}G{aQYjcbc?Ui>%Mq>mJ~ISe^=_#=cGf9fWM=!8hdjJ1WuL z{)7^|7iQ6|^pJbbWC$l`tPjUA#lGjYe9+!ig*|ate!O1(1yj)wI+pqLTD%AQqqa9@59tsH?G!=y*0DyY&D{ zwx)gQaeR#(%3Z0VtU-e+7iasM_w)0Vr7wvwS+61Vs&dSB*8Mo8X#=v)h0Z`+&HA9l z#;W^;W?jPuit(eP_;s)}W0#k+RNT(iNWI}>h_CsH?!%TAbs)z0`@+g&^y?VQi*EL} z!Q4{d%dkQZ*2Ls*XJ2UnrOvtB zWmPeuuQ5GWKq$xH%sTfqPsM~L%~B*A#i~P@&Px>HKxDb%yFP}bl6CA$lEv4p$+}eM ziEI@zu!HlrpT6Z|y^@_am;WWaz^_VeBjGJP&9#R5<`0Cph-f#;i_;E#C~Ai6l#W`; zCn`3Xx43ZE3to+e9*y*P z%l1u}?`Maq?)d#T z(mBYWqmD9K)OSTiAtTDdI>u9dZ2;?u#J~%&*$~sgmjsZH|L8bch76B3i#c=;Ka(Ah zfBd+YSb#f(Hxlmk=9Ke`5Y0{N0OxmG?ch1q=Jhj;*Q1WW!fWvNKDD*Zn>sy3$t&lw z)!){>kEl_nu7$JH@YNWRRej$?jIPzuQ1kVi(3um z=;1b19aD;RM1#u8(I8r{9<*RX9MOMBa4f!gz{=D)twvQHQ=`fHG zWRkLp1f)%$6zdl)$I2hYY)9t)N5n?jOyroN<&-foz`Zw75Q0<@=6Rg@S^#cZ#v*) zqzm!D&EQ~1QOQ5D!PpZx!sQ9phoJFBj!OsEbr|V=Q{Q>F5RNM-WkY5}r&H|I!e!6v zsw7^2Rlr|b}4pzg-W$8^2-&Zf_cnWmHy))~3@WOUA zDM8!al$ZOP7IiVkhpn%Ii|{zgY0byn6e-W{Zn;SR%8~%AA2@j#{OIi1V<00X3e& zZ6dyp|Ee^V@4`ru)2{L_kM22c%sY8}Ve$U~O-?p5{tf@;p191BPhi-#_e1K5A#8g5 zE_N$8Qi{FcUlVKaxkT z%at%@q|T&662J;Y$*W_JTYuRV5>YCssX~;5*;hYt;G^+8=9x$tCP~o4dfuyI7cgE> zTRbLn}a8+T*kPr6ubN)Vbb439%b`aCcZu zt$*!g?6$Yo>{gzcPS!MiR1GQ7eQ2a4pUfES)SFib@hgdEbW-flQ?$)n@r<-Hyw&A+ z-Rv;@kQVYLalMONJ?1M}mP_8`KKpg#Hb|Y8tWq0z3L8_F2gb03k8}~uQ44Kyq$Ft( zu5W;yENgs`GBD?zZh>Vc=p{gsgMH|ZgIz$f@2=^5jKFT@EHFYWVA<PoH2pAbHH}-7Z_Y8jqMsm+vuBJqzWqtm5M(waaVNG?!>P zg{cfq5`k>)$C{vyn=pRLVr+z2iWdS>Y!}^Xx}(n4;ZOH*qR}BQ4*YbSn~_etAPD)|lO=`E=!Vmb5Uyy=XHN-AQ}%s(xO6j=5oL!wJQ@E(^XgR*DwU1$Uy!GwcsXwjEJW5vQycJibk?XGH$ z%iDjO;2iU)e^ZQfGu?>3>*Qm2=C6plM#R?EGgr%&6&kHjdI9BJtYKtu-j)>0!5ehJ zJ}v`lbhLF7MR5V{I~nNMC$@1;t}rOe4+q3`Z}3fFvw|*YEo6N^Z($A%2*vq7&b95o ztRTr(=<-@?!9WkSIlQ9cyw8d)_*z&kh`J14i!@3W)@b_eOL6ILh$W1D@)f1lMKc5; zK*)`LNyWXY3qYQjh}II?RrV=T9AM}G{yrc$GNqk?kD2oVhI0Xou1e8VtedT}P%TgG zizre?%Sghk-;$QQXjxzFSP{8X&Tq%bZP}ezkc@8CxbOhH_DxG!Cx13FVT~GyFWhnD z7+~J-eth`U|LR&kc^PDtAh=jE$*su)lnb;4j^qCPnU7qbi9YT?XF26|HBHD9`GakS z5E!&k6CSij?Z0u4>?o{|nOJr~iFEw!%T<;tG0sn`eJ-n|C-@ z9{Sj!(i+p{|Fi(c{tudkyXwh;Ubm2J8jB8_w36Af_ahdb@QTM5klnu>-rWAx@#b)u ziTfYO(zqM{zigQB_RQh%Z;07A`^!f)mJfmr8()Ca)M+Uv%|*(55Ma5v25KqY=5YT` zHW%Fa9)FT2m78QCvqzF$jam6AGd8deMQG(V*F@>1VsOqDsrS{WL{?4PMnNmjDZpO} za~OW`!dQKG$7Qq|QA~krsz<_0r|*)*;x*H1p%9YE?Tl3Lf>aYEMNC89R3!&&m(_qp zY%y)Z5qb@NYTNNPGbporwEE7L{19>;hIy$aL_9p|slb9^xxagUKB1d3;c5#d%uOoz zVKfp$MfOSxG7!uV88FHeH$Kp&1(+`a874#oQuls~hUd*P67c%4Y;K3j*+#qAy^<@w$no;cM(Rgeg|7b_+yJR>$Fk^TT1 zeJ2ZYtQ~WOL9QH$<7HPd zA+w+TbTRU=ssm1(P*kqkLJsf{=7n0-0S+9fYpsK#eW8Y-HopnR)D#t%scZ+u%?H_! z!Zm$M48=iEr3lITtQuKCxeRE$+r?7g-OD`7P*TVouYHP5%qFVSV~@d)eYCuLZ@kIS zJysd=k%hY)5=jlPe5xV@O77n3EnN929EurO zl}S4F$JK7uvhC+0?ee;m0B2`S!hC%vyt#Z%=@hlTn)P0VB#WoAk(2HLqb?Fnx0MDF ztsyE#520qS3nn_HktH)RN?#|a5@gjE6m02nl`Hige_A-$Z1|jx4^{_2O|Ip}?Fx=w z#PniLZa(Xby|p#fN&5HzsrJvkEAxJ2cA7Cy1qp%AVEKTXo0JCMtyL41e}(Jbj@m#$9?hKi^~ zm0~9T9fk_d6!(i!ltp~Zs^bMd0gB{UbX0Oo*+AlP@Io$>0Rs!WH~dOlhRbxwlEC7R z1$QV_?0Nw6YQ-B@EDbiXrp!UzY$^%f{%h+Ewod{|zO z%Y_LmnxH584lWlLPF;q#eG)_Jr<+~08-Lt>^mjOZP6=TRuGvmxoQm4`w&2^d zksw5gyL0O!%7=zc+U}cBxR=wIvWpE+>2{vqdzdgLd3{;eN>C5(MHMc*b=OhMQ8zl4 z+Qw=bpU$YQD zTNE@ur+(NHXxc(XDR5H|Zkn!cc6yGTH6?x}H>1~uyD>sPn4V*Q0Gm5vumW%k{J8r> z^L#*n%hGC*1cK?QPvNS6gl zU{S{&S0aVwI}ea0=y)v66j6mf1&Nsa^vNEf3ntw>z1+TFnYMXW+66H>TbSh+If zmAPz34jj6_fROfYxmU)x+B-cJtTlyMe9-Z=&?>Qso+x@z8SkD=3Ao{QA-U&XX+1JY zU@vOcYqx&KH|B$wi!SZQzJ10t&ACh ziS>K$-+s9cS{p;w_>D+Kgy&FSZs_A zsW2J2@=&Oo*^&-Yt&vcY$53)nTzuGhOL9RI7Pk8H^%j?XiWkOQ}`)``vZ{hAnKd&uh)D1H4R=59Heva}9qsPmaRl_~`U!;Hd z3_rA3RBri#^$aR-_`G@?U0n6w)fct-f$`6DywNn|`h@CDxm7u62gVmBwR?jnNjyR4 z3d}=!h2L#^2C9+re0fYXc<6LgM+_}$P&QjsK)w?UFDYbnk{ znSEX^Rk;)r75l*)e%B1uXoCk`dkgni61>{!?GM-N!y6v9d4rU!kGXlV0#qmAx&XiG ztzAEw6>;chUG#L_K|IZxVsYh{tnYor1P{7X=2@!gych9roX5}LlMOJ)N7P#uC@DS@ zMy#a1fUL*X=yY)x(TU4APpG%n7!O+J0x(nZuFFPIjmXGSJabsA-U;)%XzfhW>Q+3> zSKVc}%DfErSB zNk`btV)Q!B1$fuUt$z;?pNY!Ee>jZ3QXN0B)vqdN@J@9|YbDs2`?6M%WdRn52!@&KQmW*<%9j3Tu5En_)t%>Zn2Fan%Y`6gGsxv{ zCVI(v!XIVJ4y+4dWGKJ(brUBiSG-v$zc$YOGLrRE<6B*{!aSl zo{+qYNwEn+S(B_Y{ZLgLiZM~6JVJJFl#$GORTq}g+=^s2R=dhTHBRMO;W}t+X-n>( zpT51mzWpyg5&-yhxfmPxX7>q;FV+gj{z!$sg1WSO;ZC<|`4S_rMzu8^p$gMF#JP}7 z#FrRNZiLy?3j!)_wiN?RmXPztM$7{L{7DyLOLH)h=c}g(jLD&#e zVm0AW3sZ3YOdUYfKWLpR!tu!zB#)MjuK98SYl9SA1;U++hZqf`!4B>BR&#pW(#Dbe z-S0tdQ|5@}`O=Qfw=GU}4fgimPh!iZPJ z1R&{4K%-=9EZ>HFMu{stFRV1v=@d5!8nPWKB}7A~X1lu;XKzVJ_bnZGLEZh%pik^$ zGZ-|8a2&E&GUS$8;7n`Ia}=jtU81t}W>Iq!<6q5nGP(Zr_bCZ}@`I}yLgPGen+{Av z8w1cGd~-@ZVIj+}y+={{Z49Af4TXf1&n#e~1hk0vh&L*nTgsTu#idQKMCJVf{&Q5t z)FW`)wlR7==uNtE*-hlqMbT5ofe38E7-4Ex!{*%`ve%?Ug-(YuunvRp&EK}nhVGFE zik0_&aT}fgrJ(0>exAbLJ7u@&^ntCFyOW`rH!8;PY3=j=337P~=MyF&Mn)fFz^=Kt z99#D3^$;~ei2wq;M+ac%#C9W(TWMxG=bW9Ji>;&&N?|c_dIbpo^9CQVOVsj<_-l$(2TnBsHgMaHz3w4mK(b_cx}G&)?}B?pum# zo8yA7s_>r_IBeGwKc}bD>5V?vhTkRF+96f`c+|9VZeCy5jbBN7*nR;z!G|zys8C|6 z-}txMv2Jl=VAJWR=4FGKk+OpOEUO9sBnu;5z6$Ca_!v2}4*cbJs28?!+Xu(md!mj* z#b!4cI?%1|oLsi_c^Y~{ux}iq3yzm5EDk?ip+dD`HE5%8Q(12x>9NnNG|pgTyP}H9 zcjy$)GgU{PQh-`A9z%J0Nt#$ApqIZ%f?0QeK2G!6q6(~R(&U>s3SJWjZJyzMyj0Jq z{J!orG0A@H_NG0$GXObJqSlv7m*taZmNh4SGVgy+^TDG-kX^OPiar@PRi4&&hRc_f ztDwc7#RB{!f0|z6{q*WR_6MqcoARGEOoP8uD5>0H{Hsir3qaBs&gu^o4*ud+bhi{M zS(WW{71_N_T=jBgp&Fp)#P{21nG*;|T?4bS_Y_Lf`}X)hqa9s9r;G?UC^rO_O_p>_ zhi8E5@bR^)L}t(p*y3=0O%!DK2c1iKHDdu{K=6kJ0AAGF|BB2vtp5Ru8)tXhdH=F2 z^{&8&|F<8bx!KicL73u{Lfp(NP?>8%vx5&~bsm$~R#D} zXWwx>GhuGC&M*Q-3&g%X_2L1iV*PK|1@^K>Rkqgo4-7tE0EPnTD!%8xUyJf}PE@HJ zqV*dzgeD1UL5Z;h2+Lu`UAXbnas=qUg#noHDkuRdaL@zVQFX4;7$l>^-Hxcpp>=rG zlZ=?c3ws_)yTP;G!%$0fhqxrGXdgzkVG>7 z30+D#=GFD`!gbVc;|FZ{46j*Kc&X_AhzH(M0+Gja4H#c8r?s-|wYmz2MuG&aHGSWr z?{ceFH+k}N1AUzb4_+b?UD)VxRtaD-;h`NslvCFv_=y^zyJ%`>Z+0j{)|??BglkDn zkT%OgIO$pG>TPb)G`P&Z^<-t!P;Xer7*xlv%4UD-B^AF;xYRS}-eR8h7-s{#>F?g@ zRY2_NeO2G@|G(wotI)r!`H=r3TSPEQ6ftliGHL=s-Ok`j`R?edYYro$pamn$TtrbF_A*|a(T&b$wJvl5r1n(5KzFNQuvebTbZq7C5?Zv@AR zPWa*hkJR-$1(2ddp>p6rz~8^C&O%yoOp>S>gWd{MRn<;2r;A zDp9qsOD?6S_Q!^u2XxQhdQHx7Tz~{d{NRc~c&rSaHaCSn7A)n^Q@bAU!BseqrIau) zomyuvZZV$s-3Ps2;276efoIxLks3zW3YyxQd+aT>x&K0X< zU~kafuc^K%Otka(ga4na$8iC*^&jkXgT99PW$Ve=A$I=-TI}faJM;XAbngLH)l}rf3tlPm?jcCeb?x+XJ zW{cwQK5R$yDL?7SJnSQhlTn(_#TE!YD7#hRKHbXSo3$X-L9Q*g)W@ox^#>OHrdUY# zSc}Q8#9Fz9AZd}Iil2{#rXT7pmT?W9Y?u7T`mqPWgj|vChe!UB$es#KxR8`nP(jg) zKl*X@L#7r2Hzq@MPsWAAj8$HI`3In(ezJSe3AUI#*-+W^vD&T!1$m{2Le{2_mZET| zm0B;%L7QzVyFVw3=ngyoJQ=K7<1e>aM*iwI=Go@%|Li8 zXji@72Es3@ar)<=7r_cw?a}2cwt~L~Ra>CeBJ!9K%NcBEj?;{e<&=!P-z}U$uF(3a z*QVQFt%!;}A5h=fo=ozQ@61#64=l0-NU2L4D;E?Ui7=*;=%@ z3MX4k$Pqy$6(^?rhi1ih!Zmu_%ESZv4lBk2gplfCcc)6w6*)+=^32XZMLc!sVX$Wv z2u|uTVa+Paf5=+0&m!tCxPbFLkicjDT-j~VC0_T?ufMkeyz4n?=i`@5g(efnSVPMQ za$eo1H@{br(Mzdawc38*UoLFc6LgO`ntkGn5Yl#e^Omit-H7iZTy~+SRbGBRCpT(e z|@=4f7;jx*){7OG>UZx{jApRTK_-Ns-=5w!w zNkDOW`K=xD{XEx)&;=!3gU?RG(A`Q%92!MDu%Orp;Yc6l2>E<3hlpTm{<+KhBN_21 zbq`u;lnYuz2UK>S3}9DOJA4ML7PYKGZI{9W2^#BQqPNfzQ;6dP%VBe4h)IrozY=xqjlR8=SAXBNce>xkw~Kw24>$UNj|~2poDH^J1m-1IQ8F+@zO0>S7SSbWO1u_qxRp%@)N&N1uH`J+Eg2kZNn8Gkwo33 zm#k}044rVNuqzKCnW{cgiTxEE=CvEhB7_P=hzPurL?s0yMC_g-D-+2A}X3?Kw5e3eReHzksh60t3L<>pc6_Ch|cVZk7`C z#W4}JJ?Z=vaEk7>gV(UQ6H4JPb-8D!uxM>XsBz)bk7k5wjWvsPJN-X z`m$5wrL;HmDEsCkEI|e~$s4?F3h4@U<7`)_cYGpiSvF+b+qA?#FGeGdQd;PGAuo)p zX|IN;T>Md0aMlpiwF@SzT7tXUGtHKE{?kDU3lKgG%=`=9Uo`{&2%i2a>8(wtL;<*L z|Gy_>TH{+oKReVq!f2>R^;cYD;O23Af8P(gPCP$%$_yWG06(tV;ZP$$4rS1P&L`y4 z9*))OEU7+uN46}l69VNvA1ZQAk3+2yc3afJ3|sz`Y0PGxKLJd*Kc>`3YnDzj z9y<&nrCGWkpPw0SqBltdM`utU|7?cC&caf^D9TonXJAZ%D%|9F5MGry<-C%2dJ{_d zDGO*Pt^NtR*`Vn)uCiZfBe>Boj65m%MubMeGIBO#=L)#NlZrz<6!Qu9l=@D`(Ep7u z@)#is&<2O}e_DV)aKp$P`b}Lrtt4s9r=|blMO!>Cx|*HbMz47$uT?f{xmh@l{0QU3n<3^^i4?0a zfy2X+?$xDw%Ol3IvgX!Q{YbuaFs90+OFQ&6UpV@N#jnIF$WtlmYBW8L>t^i2`p zp`@qX7af%&L>>7qm(kZ@%=ahY6~O5(J7>@v+!-bPV+#En#~12BXqkI&p(4Mf==2x`@KmcGs?RB~g8=6#6?`AavsPPEe%By1YvkTpwPIB^jRf1g;M3YF>uEFiX;L+ZL|%U}gxG&S z{N3S{!3*0+sH&^ZB9Eyv@l>PfU@dI2`dMqnZ9^4(eEYQ!$Y}E3#aG~E`Lq($eBX&Tno z)8@g4D8LJp`Sz@B1R}9~Q8~M`2PsP&Qxz0VU0=5TQwRc-Sw|YLwI{Xmv7khHww~kcAQJnLjEc(ek6CEzUqjq?o?*sP zDt$xyUfP$AB@=UT`XizU1a!ev^o`KeVK>EfGfzL0>D(A9C`?VahdmMf*Zr)GdKnqT zPfUmsh2ZA$)ed7ON_?@)_=qDEcR8VUnsi=zsx(tT-A{CR128BNf|S#}&Vm+>G_&w& z>Ozm?1jkFEh9Nq9z&=xJtl>N68%gi#(3ltDD@w>v+^0Mj1#t(X2F)^^&urgyeG3_E z%MNed%irEHxHNwI9NPxS(#*uEqK}4~w1c0QzUmjf zF!^c7$TGY&kXHBuBZ{>&mS4W^K!3Uc#zY2qGAaU}(%DKUGE?49aR~7v%q3gT7ahk~ zT}a<|-|a6TS(Y{Lqgv<>3`-{R8iq#$4g$Ndq(9-pJO-(>raLf@v5F}P2Y5hzHL8+* zTt1No)deu2ZnAuD!8d9kcja3U0(N9XMoN8qP+v01?xltV zO~wE?i|6wm^x)aPhh^WAAen&(j>n&up0Q+J-kUpg4RW+PNS#I{$UgW`7!&k4n3x}@ z#{s7%GA>Fp)96EHJn5AoXVMN!3KD@>1;%%V+8(Z z%E3-k1#C|GVY^-N#FE4p3T5wnr!RA0b0gtjTgxT#x*k{5>$A{w@-tyS;3%dav`aA8 zRCf0)V&|XeI1F@Zc@Tq147u~$P_BG;sNG{XLqWw`%F#>hMzb%ry2@&)ehhpxVFz?Y zZaz-n3{Uc~tf}O;{`zzUu_U-?=>DK_`0V{XsX)p5_KD4LoTCU)gnlN|k1OCr>*v;g zN4RC;j1IqLCFP=UY+D!bI`#!@%Wqdu3;0zlsn|eaY8%rXa-lqTuX;BSY9-Qk0z4)r zHcduH4(Xd7nG3O}6p=!{LqmBX3!VU%V8Oq8ArT7|u?A`3@NMepxh-!PKMYRXJ5EgS z?U_F)CjVjTz=lvgoP&eH)h`qCXB^Gj@izjW#*2ZX>bfE~;)E z5)g7RTQY<(aVEK0uRxhF^;TXURN`>sBUnZZcC(H+{&QPR-qc$-XR>d8=d)g!{V<@V zaBws6FtD1-`G$J%ZCw>hlMly-? z8GU|95Eim2a8CXqKc$3Gs3G=^YIf8#z`R*(-ljMC#voc2RWdnWL#~zUsvY=x;Hk5!6wB(=NU`Mbj?!+L~Crn6SF24uYD^_E! z_5G11gi*9($+_HilRgiA&Qb?9i5kfO%xbudN%|>HjeEil*eOXAAxW494)&G0*W_Wl zU^fy1!$O(Y2O-2+d$lReS{hpz?)YcOV|2Bu*5HYM4e~kk4zIH(-6nc<-4hZJpz^LrMu##SHtR2hN z*X(Va^c2Sps{L*~fnI6Ak3LpJBKkKO-}E-TpL=}sc_!>q z3OmM7?|#yK&)p6}-q`k6c)lg~TU7jbXk61X1#^1Z*XLYXuZx2jaD!OZTpSGA-w z`Y6W;`QMzDP%ZcprgZqdue?B}KELAcx$qTrTJbJx*z^B=-tTa8Js^BhR;f&3O83#c zP)y39xdY2(rzvsdkU2x!z*yUoY{ZoH(B_Hail`Dy(?k4_ScXW&`fSrk_=Kd_gKk-c zjhNx(8GVbcdN`D=1%$~}GsCfoG^@tPnowq;daWmu*Chgj{4z*v3xcUjqV}68W-9Sc z#{^1ciw=oZimbJHgiS9VG77aEWup^GP3L=TBLnfp<`lM;llBqufR%5#$7L-{<*65@ z1kTL|MGk-NhuH!Y7RiJKjRW7wnDam~k{15-71_#2DM&}W%G+SLWD|cEuF8mi)n|z= zX=%F(lSB$1Vw?!}Ds=Pi*L4i*Icur)FV6jbp^uyDz}K)Y>20^#U5i(JTzvH-vab`v zfiEA~y@qXoZ=#Xk$-OjKlz)*$I{JBxtSoiRp%Y%reFCYent4EZn2d`Xcji$zs4EDM zj^9gytaYrL@@J|kNRmoxdXHk<(z8I*k}uXd%*#y3^}7nk=5V!gQM-$v%w2Gd%bR_dO2HU2{v{Q)(=%}_+((Qke;*zM0agS)*N z4_g0Y&-Vt{rEPWFE>EtjC&8wujjy%Ab#)!UmhEpd48bpNBT+!dxci(d1$~uH&tGi? zA4eeb;2|e1pm!XQ8^fw;{@#e&ei3-wd*(VvD1vR@aY5?mTcOwWw36!1+2-*{>KqC1nJ}I#;LL91Z&irh}wa#jT&W&i<#l;VRhMI0hS>~_9yhgpTg2L zir$KnsWrq4fpA`kUM$J#aK-jC0tKVC5u~hUmG}{;LOdBs&Vi$K3elvN>tH1yc(6OC zoLt)pjM=+a!#3D+IMD(yhqDi)xqg8A4h0`|Q&9d^^Ovgd6dZd`x|g-&r^`p;x(pZ! zQC)PH-B@gr{)riVoZn$Rg8;rv2b6>*>7TZE4eLF7ataSCLQHZm~Uf8W!TeYYvj|UngS%wd8Qv! z*yL13_D;3=)zJK*VmZ|~=cjWDWe1>!XsFYlNWHxYJoP8R>Jf$?j#|~-|L6>qiCp?R zP1U()nE*!V@&?vscjT7i!kRluIpNOYwF|2@L{I!bQRb-!Ha}nC*+pw1<`EZaj^Hp; z9l0bP`QFk}AEr}vJ8n8Y4YqEtw*8<5--Lg@Z8KzaBkF!whk3s-PC@^I`p{V30CN0z ztdUKKSREdz0KV`n0bgz0YiJkQo$ny_3WR)$+Sbo~uMqxv5bhRlSv=MFMGQ!OwDVMz zwuJsXaYg*OL9%7D?fk2Y!R^JIOXIjh#`c^^aPgN*IF{R(ik2`v3nP6~#uyvm|rD)%GLDLFM7-WeaN;?JZ-(X}N)g&abuK?4AT8JYM z7`MwJX%6y(zKrQ@N?7#xt+eWMev+oGvr=U}u-tZ}tf~>X1Rbhv)~bEppywknQ$rhu zNmEoGGm?kXa0bd;#*3SqQU9PHh`Pa#7NUBVUjQ>gO=_inU%V;p$1s>5WfHS{`aH11 zoe*~V_E8rO@E_uT)`F9&>Wn5*;&+;9Xb44~+yfy=BG}B6*LTJn=5{r!S9iB6eDnTO znA%2xAVOT2^a7W#@P{s!fh)T;mfM}LKAjXLelqs@fjo>M`DL^78T_u>TSC`?NZcHF zAbsfU_4e3**+1cR+K7_h+SD#{ts4Y=^1*4bm*kTB_5s_Gb&@Wjd z4Zhuf%7d^Zg3yT9JX{QEDP;ZE<-I?DHF&43^KlIVH>aLJf!O2Syj&>d(*%wfAMz3P zM#?b~f69^(R7)8!p$Ko;Ko@M3cPpA&JSKRID?uq(s$RLVZWXc>I1@0M$b!yrG)w8& zt~2p!SW?wQP0R=5ySTbWt8n&~hhLWHw`MxE?ULxmOanx9Io!QJ$zvVg8o!%5M^)m1 z4C6{-Mc~8OnsFmi!ukeVo!%$~qY$GR8U`b$NIJdpK0SjKj7swhj?hu=ah?jW%ZC8C zVywtI?%i^z(#pietTOj)jn?S+NWxT1)O&D@i!Yt)ZNHf?j1dbx_!Qlz@{$xOaZSQ? zqa+Rlhue|r`y$6&UxCkqhr*KQJL?!22Hqip&T@uwHU0>aDH7uF_sG*xgL5%T#|{M- z+fCO`k?xFLk%v}1YvMNl2r2AT{ad^)e$*0#qlIh=1t(Jxy6i=?R6>OfZHR~pl2<92 zFn7*@+Q1kLr>Mf|8a*(Ea+d4_zedP;)Rg=AF3y0MA+ z7`B)E|FQLs!I1`9w{Wb9HL*3x#F`l0vF&7H+n!`%dt%$RZJQI@_U$w8d+t~D)vfA! ze)O;Is$Kipd#$zCGVwM}4VrEorS++q<==dTWU+*cwp@P+dJtV1di^5hUDr#b*(&gf z=ZRD8`p^%DH3vqS&2Ag+}iC3Zo;s^0dwGH?i~PtPmd_Iq8I?KLCA)$KTDM(t@^Mq{F- z)_6F6b&9i{(}T#{MmR=wG2K?c$!o|NT!(43!&_+mqu(fh82p zd8sK@3qklY$}Vr7@RjX7N*ujAl!?$gGq+++1hPQx5N<5_dwx3{G-7OW9EZ}AM7fjS z3V#m}h?LnH9K)Yx^HQi5Xv|ZghY(2%Jtty?A0m6zKq~FwAX-*|dgn7D3KWtfiZfUaWH7~&iJkMhYw9q9(ONI97%rbF?@_x zlox_`=#W6x+7F$v65n%b@_t2FoQ!Wn{W!5cY(ZnL8IXdnOdb#D$d4r*Fi24!g zg_a4eKSFXc=5lxhc z+t$7`*0LT@N>DMpX8nyDhel~gs5a>(n8ZG_*_}wr8YW6U)KDwN9+DSZz@A<#-A^Gd zw-9@9Z|6{H%GH1L@dlfIxAR?7s+`W62PzdF(XUy`)7Au8Pp8b|A0*@Fd-nmO?NL(D#MB{}G9!NJME8lB<=L8N?|s-tmiCURaKpp6?>!nW z@5chAk4DXVRTo%xTm3RoDrY9BOsfUFNIIMSU5Rl&c1*3h%&T>bOq}0WJ0?MqSFx7@ zM|c;oJ6T?UM+d(Rl;vQtV!EAjq1H?s;S!KcX741<&QT&=EpHc%F1LZ)uvTr+6YQ9~ zf|4^A94qfK^z0X6sK^IOML15#cFMwP@4pf)I^EvWp7H=yXq^DF_m)7cz_mNiQPDK< z6Gfb}lNFpeF&aF%`v~TZBh)82g@~?~rnWhGq-OxU9No@=sYafD4~+$6{bI<}I4 z8Qm)CX!&}RGDNtn{O`+kJGz6+9L_*EM+3h)j+L$5>#sGBb%q^Ffb03u;qG9TK6PVc zbDzC36XOdheA#sk(9=2$;=m)JoW$W%Va)<)Df!Tya0C?=ry2(r=pXx+ZqFS7qgbu7 zVl=DZ(S9CVA7Y9-FeGv*F-yAoLj%Q7)IST=N1IAmuvM2eyu{TJSI$Zq9b#6b-rR(R z0ug8#8cC^)Z433KV5w9z7BUV;nM_mc$9F^%n_^-Z>BCqdBs#D;d}#sng8<1R21FOe zQkwFguiZPrN&3e)*eh4)ttukbSdCcK#!E!+#oyW)MR{!T%f#5_)Nj`5c(pYLjWfD^nQ4$HV;^EUw1Wku|RRl58{m zOgl&$PjeOOAEJ=a%3rv;7K#`^9Z{u(Tm7Ih8c;f3xpnd@9$F^?v-C|vV2YGR~c zWC~6GK4>2en{n!sUH{u$$@U&KasBKduDTfhLQzU|%U68qODGgQEZFxxV}R>^HKWOR zTI$ogR<8%()^ftEZAoqTA^VY}mBDpuyt(xiqQ#q}y?t=KO5^>N@SRa_u5+41*j0bI z!y=?oC`c-GsQV2N{QUQr(emP>jWO{`tlLTcJYL!gB78#d{nfKs4?|Cf{FJbq;fL4E zU;G}zyXT3A?lT>a1Xq-R4cV+)xla98JslRdpo2}OsuSS%C396Co|)|Ghp%d>Tw9OH z_o@;HFW|IAE1rK)5xg5k<9VI=jKsRmOchyc9Lwe>HZp(!PPDAT5hyOEm z{%6ysxxL+cf`1F0S`+d$*z>7dSmLZM78P!Pdg`HDdSNkRo4mp}c5HxNjG2A0-I zXQ&K{k4Thdza}Og$Pm2rL2_ze1E+r&o#Oo0j5L7xd5ek8U zsw)fzFX}cdlK%bq!-Tnqu{bq+%TYB^duIBlSuA6_^7ZZ8&YIQ;DMq@tU~^Iol>GQMZ~H62_X&**HESnUk?KdT27fgjUlm# z&1|$z+MH5a^0ZX$zQX9ipO4N?4RLpa{2v$;1w2lMfS3!Ok*%64f-VBZGtL^vm)8B( zfELEImo@Byp8-AvxR_*nE2=4kQA$u`O9jI`^2M%ZVk-uNl{aH98& z$S}k%6-QrrOvPwA>L&L0pPHa_rm}`~qU$S6W|bH(*XamJ2%Nx+$uH;4Cx;5oJk+ad zCeax2dTT{nq1Q`)#}M9DuO!`q-8ll9pqlk-cu+5h;fQU(nbPQSq|SIung~11;gBB$ zx{PXUW1EQCc{c8wyWR;G2GDUZwrcf%TEG-hL4$_Yj!o62 zeygl)n(4qv2zBXiD&%ql`WQetVwNzP~KV2Q4W$4gzsL4JJpYs;W8n`8hcJfN z(6gker+V%$jM)S!oj_UqmQ0EoA>6~pf@E_khK_Cs7ujmnpeY(D8_yQ8b0@-S+X!*GoP-+ z&9o|QO{m=U;aVXVnU zZniYW^x@=RvhNb@p#Ax!t_AnEUvnR-I>^lo-kPV80iBim)ERn^?02K>D_|We>;Av> zx%&_80dn=oUCMcVAah4xeBEVMK6MgSnwKif5&+l#289yZP0=(-!%lI$grfwc)!Q_m zm!P`GDnw}}9F`t!DcpnKeZJpv3Bf6o4(D=!_Rm1TriJR{2w8YRZMqy3ms?eS8{a-m zih;to>tur{dQ1()m##V#z{>w|at2Yv{2L+uxL!sayYMeM6je}-wRq6S-tA!do1@Vg z2$$dc5ebn645x-A@;z*cDj^6+#&pD!tJgpy4mkimrwez~mhWxBMjM?Dm&V2+RSOG4 zKD8JoYgt*^Tk7Q5%+25kRcb#YlVTTr6$7ADc`t1g94?6LM(=LcCl`tE*^i{X}y@Vo##H8y=^$=jKe zxJ4@x)6VP#R4rdpqRr3U@4#iX(nC=zM6UXC)D(XlB6zl`m#x^7BecnG(P?OBr8_99 zwpWs({TV@xwVBqm`03^?;j6OCU^*|TUB%q>?k93je{=6e(ZuZEH6z_zelTq7*+Fe+ z=ljZYrdGw}RR(3%iB|LG2rtg=tD8XtLeh*;~MhbCAt|(-x>LH0V%la z1-eIa1Y7m<2{~oz7$oEUs9i)HM=e?8yVxLafBiwlj_tVfhtY`$%v~J-*PJob=y%Wu z{Qc3EXKU3B&W*7FPKJrt~pG*HRo zFdCYZP4R2~kw4*0R@qH=0}LQ~(JGr7HZxvpD`2+#{#U_;qJk%bxxDbSpm zurJ19-l#YChqnS*Xs}Q;{G^uyAuCkB+)vzR@-HN#wa4rpRn8KIk??jv7ZP(Jtil1= zuReCYYzX*~2sHUws&I>DY;>B^VrZrExVdwuEex1RQ%8#POW?;~n9ku!?tsp$>vR`*Js5`0TCdX#R)>+9$e#CMuy;}YVIS6;a6fqbzlSCBKb0Nb# zTG|HLSOM3txJh_FoDQ_kV@LS9?j%l(!$6z(1+s6}{9#A;RBj^}$%NfdogMKj`wZS$ z>w>9cQuTb7RLDFE-vh(K=p^k+TFN3#7`O6*P4`8RfuLXI;}Om1biOo7M^UHPl0%$a zsATPqDV0c)nBmaHYaAs6oJ>K!r0iiYfydtTsV6+Or6=CP6wA+vC(j`E1N&6ManT`1 zyppCC;VdNmHo(K{js0Zps8=OlOmBH__ODEhN@YksRKSvAhCg`UL%?r+-^0R#ZR?w!U8%8&6A!u zyG$>-a$g++vowT_&GaVhZ^KR^A9y%FuL$oMJ99l7vb${H?!TT5=bm6L3dMzZ9%@;T8;ZM3YSw1U7I6Qk_ zQJ^eC`+l{kPwS|r2BvUX*;u;13MOjwh%o7OQhh({PXTyDcj%nDw|<0NiAB()eU#5Q zXDA?qLo1s5-ZpO$!b!@b{E@%~y@#K(l(wH%s}u?ePaav%b068q?>S z#RL%WNyU<&6lTzL0Lhrgl~CmAn$HCj>mdBdVf1;R#(m@+l16t9TQP%D0=1*#EIDQg zL{r9bTXT$rk{eZN(6m_*v@W`6e%rtle2@bx9KT_Z_K%_}zQSNcCBDv_h9U&_h4E*F z?!Knep3cFU^0rLf;w*g{k<-G6Od1*G(V@Z0Br1&ur7GnT3si;3lDfOBk+%7?Cq)DW z@jXEV&q^cpkD8HLt?47@A+C0q0Q^~BE`olIoKA_IRSIa%<;BNSc-usB% zZg=!D3vK)Nferq2g*}7S*|J}p?&<{l*<75Eo&ROIV~7ZbV&T;|M1zVOVi0e5vMd+< zn{T+vsC40$aR^+A4T~Ir^XHm<=T7b*Bb_nPg|Gr!zk0T%J93CZ7JZ+B(w#cIWsv=O z+DQ5|jMx!UoO0ovS-SSF= zTT8#*1bm{&{n;yQ@7kl`qAKEn;!>LTnH?_KQ9`wJ5}gr0_1gi@xI+%pU;XY)3v4d! zaW=@6`{dvTJPNX_KAzN9_Hn#kheWU|rT|*9kCBGXGvEE)6&7F|Uu~VoUa`pn!ALC!f1`RgqEz^ZjJ7 z0BPN*jYfAm*D!>Yp@8v!Uzus61(VNgO?7hqHPu}0E8NllEJ0It57hrb-EUo|ivaoa zYu(LY32c4QGwAPS44WfMW46yY#AyCxwC!dAW^hoZ3GL*>@!Lcdax?2A_vD7&;ug-R z#tyb(C`|fv5twAqp=ijl@>)U0{t~)oSu-bSXR>+4P)qsKvYUU3?^3rlDzK`y?!cRyuKgq-Kg#! zEuKTe5vLjjT$h2XUA3>RtNKoA=u9W@wVFZR=%8-?Myy*S=#*>2xq`ixhM>&n%>FSL ztx)|!|E6sQZ)6sRx@U_5U`$u$El#a){E`D$HGDEOqZKZ-tUtxBJFQ+M=@@V#s=FNe z=*7*o44_F(N$iQ9innkuRy6e1K1?z)NEPym3Q{8yMg8+)lBPVi+W6!{LZB%f4~Yo&=arG6IE=+|z-&-bp?O5-FhDmT-m(2{WJn?`S;%TpB%#n^9ffOAq_1~KFxF~jxE|~87e$Q4tKr}Sm#m|1JH?~E5T7OkFNbg&ZTo|KTMY| zoF=$}zgsL{Z0DI!_nCZAQ8}2>)-xY#J(tZoo}Tr(jJ=ngN?R;>U*Qa}bPm{iybRsy z8kn#&GOKQrO*wH56O9=Vj&{Uexx7Y+9^K?$;&wBb=YHrUueVmTS%7nel_rEcp9@-d z#QE1~P5G|nBI*P{L#mI#Kdpviz$wLvO6sN@8Ho}ZbR>3={cp*%6XoZ<3FUCs+}v%& zeoi*cH43z|&FI1Okltz-bh4AE0usGdsE=_fY`dKajwr%b(2=0(W2}n zqiAtGimh%@>CZyvpa-|f_J@WE4NP;-@mT+b-M99fHpON~`oH`(HLhA`K+-)LJ1U#7 z#D!;~gmGzP5ZtyKPV9@E*W*^tPzdwDia+BC#e+xCr!JMbW)s+`BE}FO?aUWPax~+4 zW)b-P>#jr-&-nlnCFI$_Pra_(&wb0*Q#@9niH_WO#F?J?0t5;6D4l-@}>L&bBz4z|&XI!w22BpCbcx|5m z;xbmu48L?g@zcWRWdo1`1l!Tg9;xXO4${H9z^psW&v)k1 ze=d7?zS|)@&X_bBmo*C4JBAg^=%i~pN#c8JxwG|wm*xiM&m8z|OWWcX1w#Wxj}xCy z-2kTQW2S$qxIo_HK3^!i>EZ8xOFZa-_ir|Ri+vBJw!=BJC;ESUu7`*~!VN+yRH#9_ ze)B!@C1>e8O)ihPPHJW%UwVV|>Y2g<<%DRYqnij${iq-<( zX+vqa)m1^ofG^qM;#s+E5QAdtc_st|n8HvUZsMr1^4Yi$2-gm~j$&vAd9fxH-+rry zv#<`Li8^{@wfO9XL{Ln*`xgNJtokE@9}kKrBkJ=$I@u^?4QPw03%sZ_ZW$i*5_psHFeDRdBR>k-2@M?np~GzY;vRQ4Gk|uUHD5bz2=Ho!oVQH z7<`JW5O87>?F5-q;-us9dvQC*l0sO&14|-yh7{E@GBpSorQ{4*d&x9O}+M2`ZwAO>L1igaXg+u2u~a>dCehEx0URtrH~^Gft0uL%_! z>NVc{^~lkTg45K(2rfXG(@axuIH;aq`cP^_13gr6AMTr{kqiCo{q8FqH#6?$K!Uyd zOJye6E7wRAZ(D2~7_%`%2Q`tfd2AAEUC0c!)mN#09P66K6^jhkh>mH;LKkt|M~&ZJ z&yq{pOXR`GCz7G*vph+SbnHhUQ1dt3fUpFv~YCR2YdK}Ir)n;JQnL4xe1s7S0+cgPC1d#T}zx$19 zo`e^ev2(b1jn|-PP4IsnPaRj8CQlk(x?W8myGN27ug@p;9x3@=S8t%T$$}z( zW)9!?r*L#Zffe-Ew!RgPX{*=6sIh(7;(m=vHyvaBM!v6tPi|!zue{|#2dosP!%B=E zbKlwOoNz`y41)BLX(Y)^m$R<_ZTKWzpNEyy|HCm+FZRlTf}B5)Uz7~FL*4BI4ap+& zULeG$gAqf;ee2S#T)>Ziqf^zxPofV-HVR52iW7gyGt>}=3FHiv&!!e6y=U4aCxx#* zYM_LYu8bYU2SZ2+O&nmBc-0JnP8h=#YLiSLZ+8XlLB!DR5Bw zzBQqe(9}fM8Y7_3UBI>4!1!ucC2fVm<+$KrFs)&)f;U~-J&q>P1!w+HGt;dGSyoyW zMbu@7Ra`os8$DaS3f}=D2AX5MqaokMzwwrp!~mi@HZb#QcvS^ZL5U#?5l2vM_?Qs9 zZWT=#OC`k4{RFKw4|avVoUcSHgm7hCJ{o8ucEO#)iL$>1vz8vz)zlB>ajcgT6M$y* zT~$uItDI?3EBfO7z|QWP-f=WMH46;C*hKCndE;USjzwV9mQ3arHBL&Psg+yL4*}dx z-G>Eu0uS!sMY1}o1;i7tpmW{G*AaIhF!I3ow=(w11^kw8f4lq8n?pgx_@-~SPfove zj>4d`YX@29E7%}OIP|tX;LP*9p%a>jGZ}Gc>Spb6c!PXWv!4@adBsUL?h^fW0OEOS znMMF{p;fxGTjNS&#o(?@gxO zedT+b8}YZtQm#9#8$Q-F^Bn@-g?{l7Uor<`iy04EenjHP#z3KQPvm^7z z|Lpm1z>of0hv`rG4QWLR=7kUfkxqyg^qa9!G+a4S(&@|K-d;HAT$z_SCm~NKlU!Kb zuQ?QJa;MA?ER?jrYLlcVPo%Rb1M>K5z-DlS&!biVfa%T%WdCJ}F=TBU6n>Jl4m{yRsrx|iChJ(8vZXO+@0BC{Ts9*XThT-vj^X^rWt^I} z%63R|o}+;3R5Xh}aKDgKMb02iKwJq0e%EscVZ|j|6hF#tTWY7N;a!*hlSIO}uL5~p zlh$vF!POtv5(Y~>eTF4M6F{L<9mG`UN#`t`XdIAP>T;WyPTu>ku8z5g>oQ9-&zrs0nomr=w8FbQ|QMxl~1(0*Y6+cdo3(8Twxq4;i^y7Agf`tgDE{ZI0~ zFzY!fi9H*8er3Wh#-(kOA+8!DDNgx{p3REu7QNSCE#v;r0nRJaEdv4Govv3R*5Vwq z3(luk*bt$VJHPQSB#T5%!>6q?Y-7l#h+@*`vuxt~*{Ao(hp7_(mj;UZUj)A9A9YEs zfcjUxm@0OiSrGzNEJTujeibc_?P&0upfp-a@|1qLs5!LssS?QCL7o&n*eNPIA~I!M zf3zkSztN`%I5115xG1BuC%ybdE>Myp;w-x(xDlW8*hjuLYtkO-_}A77DVVHf&Y+gA4+bbgC%MR%WS}S=k z?$x_Dg5x4d24f>RP5EzL#>;c;tiFe#evQO?;9-|%sVl`%=!@<@!6#P%C4iH?B3}>> zjc-oUjy<&FMmActf9+E`94SY^^M3HNYmo<7ZIR~$7ZUCF4%J{u1c?O#PvVSbjL4E~ z#w$sLn>D99(~p@qz}AXiCsAX(dH6jo09dC8#~$zB#m2Jy^A8>~gEL}s`3j0N`$E8L zl5mtL*72%U>_z)*)CgK|cA8D5$IHf36TZ17S9N{A1QIPip%90X?g(t^-)eiJaQ>;^ z(uR<)Iv94fU8oU_q-xU^T=T;TtW!&s$UjX?E<(*TN9|!l8pqrD$OaE$)GI09tP1V& z&8zk@y-!ADhK+#3`nxF0N_J_}@Q0gZQPG*Rc|bbjVQ69)6(s=Yz6H>~$xmCe@$u{J z4Zk4D;GrDtug}Ds2_+!xYrU@w{Ny{Y=I$+9#aX^rz;WvogIn( z@9YQyHKz>mI#NaJ3I&Q7|Ar2$Ta}xzi=$=h6fvUJAJDVfKM>7nMOujrhTul9V?Dq5 zM0kuyKo!>GqN+F)xE26jUqXKxC>Kt5U&CZ&0#=Kc`62PoQS%9%Z+-qtJFA6H4F&!lU()eM^yiJxMJQOuWs% zHQDF!{@|@8^DP7b6Yg0>y=|$CF@BZ2-DuWBGB1|DF&}@|G{FZvP1DS>QHhYMqTo%m_X*> ziL8Ceo|-9k3`FU_hgn=zWA|^yW%n@-7a(dTnxS&7eyLej~dbl`g2nK)RL#^y4)xgw&6u<=*<4XH&%wb&ws$> zZZoJBk;)}!wdurHYd0z%C7f}qJy^L^&QyGxTzilok?Gr#+cobZb72v6?)kO>Ipevr z{Y$%&DI9uz(@?MKO2!~Cb5Xd7zIMd|hI2teO8#JPx)EVJlUqKU{rszx&Tnhjv6RK% zTi@+253VlA^~uHxIzK+Z-QAS=4)_$g_~c4W4=;!=rW+L0_ESNM+_83T8pOA4P=2A$ zHB#TbFli9%xgpWv1Wj9-wSE6BA1dUvoqVI$;V5&VIgPyLWuhOq1?boNOk-Oo0*Dqp zWSNss>0SihCA(_vlu^En_vK{*5Sf8UgZZyDYJbF)PCL?vfs>7gE}m1?|1@x*2L?!P zNg!|tlADkGBfzu1-|bFNiA-4gpQ-1e6_>La_=iZRUW=5SBj0ot;7fi%y+)-68lqm- ztjXqez)LFpC2zUti8y@E*9pu|f}@1^N_sHCV!-X&&X~lsa_x?g)8hm#$GP^FLKsLr zB~xDB$P!v}hm(LRMJPe##HWsHsf28`A9eG^!(xtm1VQ z+VU+g7dG_!30-H7xoHYS%5_JogQ?q4>exaxO&paWgNN|8o!ct9EW**8q_vl*Ogr~r zFOEYqZM4?#tf^(PmHgB>_e)EUZ6riuNc%a`0_nO_MYl z-)k-Dbiha6bYT_3n^9v670oiH>`T5mTN`q~y{J}{hSVANSs%8Rmh+V<(!qXYV%i-|twM=8RNoKEzSzGqCHnu_ zCWGbl4)Rs=P}9`ILG6D8HLQDIH{*F(ZWJ*Nf{bc-0p3WYi^eb#EuuQCmQhwV6^)2& z*V&uEvNTS9Wn36%@De(WgmC|jv?ede9+}p)9B!59iX4L+H4U#z{wdKM_Wira{OAn^ zX&r0AL~lyo@Opy1!X>lVAU{^)Y}LFNpWMe<0O?IU+)90?6|FQgZLCz#JQ9H|tsMNT zBVI0_545s-ktU~PWL(@_e+s!rxV0zc&d4RHtt{07TGAt(*r{5mdqM>_xA6dd3PddV zlYD6Nf%F6$L`H5_jZ4htw>H(&OBQWQ*KT6~go;~D30xf>BEkmr9x3kad$yyz+VBFq zeadh}qvy_h9yjCruor%phsdWz4u$3#cpaaajG<3v!o++7M+AcBrrBZ@KEgl5J2pbCV$)Z>U4siGK(RF77))jY=>sr`!3?On>+e^7tpoz1NwN zB@)~UL@4HcL6_TH(5k|1^+BwVXM>5PvzmW#zco#>K;D~ zcnA0F5@oF-lYyu3z(blU+}NCN@(C*cuIXty1G)YU9Ht7(QBtD#|Hl9-n11!ZRF7*UlIJA z%bN44p_mUkQK)v+az5kK!hsPUC7N{&*r@!md9x!5-|7-<|IvY`$URm0M$c;#MfiZ? zI{f-;%c^F}r-JEi4fgHhm%F{plUv&6;obsO9y2*ger0Scm5s-qL1eY z`09?0O39rf7~`dB6@R4q{M`eVzxpn&@h7*iF=wn>uRJq#6qctfB|if z0Gk5r+CgP{$Jq}X{JE+tq1ZT5JPua{H1lT>B#1_oW#{nnCUQh307@htSB(QS3|>X?OoMH-v3F~aT;jWt<5UVE zFpG5wV=z1r9pX6~w+Q4oFJ@|Y>XN=&NVL`GF|D~_BM;rNVd?Ei^bMcN8q~XZ0j5Sr zp#YZYw7}j)rFY9a3+X+LQ158<@aLVxldxB@-afqcA#e4sunIw7O(?62r{QYJKHXif zV6LvlQ2??y!1yrDCR=j-1896iMsL-V$aAjW-bOP-yq3%6A`_`!U{9?Vj?2a;7yTSeFoAn(q-i`c7X21m-*cgCZA`K^N~-hkmT-6sn@9ZWnqW>B0gFnRqH?al=6c`{8Z zHJo5SwbuYufh=q&He39V3|>j+8@Ngz&|Za@vO5g|?i!#!mU-IADobsN;?-uZLMh zw+P?590cR7$!?iemZUAM`V1x4JbV+K=)~Rl4npL(>Lq0pmvjX%sl_?Bh;EyQ^0`HB z4(Ps(#j{u(=!eM)x?-F%$?Ua)irq)92t~x`jYKQbuO{I{ZAVkL3Tv)W4 zIC6|?fLP{c@hDj((rB$x;(Axxq}X=Gz;I9$?zeTzt=^ApAVXg^yG@GGfQEsRWn)1} zBHUSh<{d7g#MybRCh1s9FIRjW{-ULNRV)wt!MjPgw|%5<3)wjBS#D2%NSCLe&%4%H znmbq3)6M)L-Go6lJdGUXcmSE*$7X_ujCmqR8-oBBe}j)AV%7!`zT z4-qf>z?7+wHNrC#gjg$!iqi|vx8UgHjm(o91GZ%rDfgt<%ArbV$7+lGOC|homN90d zt02hmpDYtj& z3$5W_0Ya!?$v=Ht5aVRMDE z2USVQfui^qqjULCq}GUY6P~r%a<8hQvt*14%>>7iX;P&{p+R{_eB2e^X510;1PAVT z=VZtS<#ITcl1J~F=N_>z^aG=JVSZ2+q52h%N7%o}0;4vm4Wh_&XEap&<3iLj(|#kD z?qw+Lwv>FMAdVpb=cyz_V~@HKO&PI{z)eZXK@C7<1CTivSQ@LA*l#_2b4c4%ib^<` za5g~P^XxBdFtNxdj?%9gdFlzN+Gz-AjxoHWnF##?7}b%8{$iMmcE!NXDt<~Y4`lMDomO?!B*zVWMS7Pz zBGxRrvsUXwach2RjG_KfiwP|Q)Tz_&Cb>;Mf)_+sQMzjVV+C;%6`a*87Whp#-Bi20 zro=G5-!T?x%k5@<)g=SMKd%%7&`B$?Q%hXTGx#gvPa_xQIgw19g{*jXUZe9cSee~+ zY*2{f^%EIz^&#>QQ)ghs+4p-iohMIIlOa%QTYsr>KDie-N2T$tTUPf~aU!tl>6nSy zTv1|t?NC!MeoWQ)id$D2PnxLY-x^M-0M%y0K3%UwRs%z{{J*bga32vNDSJM+6kSeLuJt_(4A8l7)%rM zN$C}F+ZP!q9f)w-I|DRSu(JqWu0;?(+|YW91!W_{V=$F8fpePZ9-~~*WFn-W(e~H) zGvYH)o5}%|f(B86vguOq0@kI*H->E7Vo=n#IZIK7MokX1;&HhS9RjLJ8sI@AeCdeGeU5k)Lh%Me-gV&N+`5M%Kx#5B7e+)kSp52apecrx;LLe}TtZw| z91AV45{Q)SLvq1>L;F>#LaMwR5AbT_wC_v_@d0JPY#6pa z=dti;#A)*vizJl@;SU~G%{O>5QHLm=x_9B8KB)c1pP(faUx zSrf#yIMY1BT2nXb8iKRh#xxqbx%GGYNIabwGbfx`|Ni`_sP#jE+@8>~-gd5`7!+S8 z7Uj5SI{A%*e&*WifK21`X0KyJHfaBeL=5`39q4Kci6&GV4U1!yOa1TQjy1~u9H!yY z{grd3VWBiOE%IUl@h@kZ>bCLgIMObSCKJubC>6bZhW+i$q}o*>k)r|b%jmY3@GCu_ z&@jSBl-)xt|F_>qyXmP6xj_mY<-l~4=`@MqQ7o{sRGe@+Mv_-{}wDIwQ!$35hJI8SHx{a1Y{2f`+&1+v~l1;PZbHF%E1 zoUOgdm?iunFx>+2Ak6Lil^q2I5c*3<29?XE^IIviuyv!#_d=vKtd6IsnG%jsFLQi_ znPq&l5TcoZX}PXkw0u~9L${U4w76QW6_pvF*kNw9r88B6F!@;FU5pj01O*7hGDq)c z9Zf`T(c`WJeI`rLimVWNF#7&vg?&phlr6$Z4(9mE6>yzY}iV zua;7M@LSywky<+84+vBioy zt;bTavcTbWah>L${LSbs5IvYLG7-NEpBv9RHFqmw+F&vrhUb2Iu6~%*Wf6%7X&qd@ z`<#nnVU~3C40It{EP*|Zd8zYRwAdbrCB4|bhLY&_&W{anJ&yG3D2_8Zs z=hZna1O#>X_wIEJeSqM=ec{l0{&kECVntC-V;aK%CWQ-~s+3cPh5ZBL-Hydpf$|~4 zy4wrCbJ^|lZ0DM%<3JrI_Qqpm23l8tZ(J^z-orQk}?AY)) zH&zU^d*uLC-ha6-qY@Kcm-w_X&71CW+()6bP`5S=j8Fk5B#Dme#1T)dq;&pR1+}!O z*7BOh1|#)7+KLwG0$&eQ6XWjq_>){kQuS&?_Yp?#cc(FYKShh$PZIz?Yo6pZ#XvV% zr|^>=WE1<2OBny~MgqOtqDSg+0q^1ehsglQcHnJ(_ZG!ZL+dXe^dKuCDUGvF*x7*# zaX}-+=eq0AOtyJ{e=hsiqS(xDK=>$fQ#qhpeH23EcNq_(q+#u#@qBE;8EG<&IimcS zS{A&XaORW4if>mFp0%I)n(dTPq&@QwsIVujN1oE5>wSL=7hpZes@?*i% z#kP;s3`&QP8wE6h*POGFY5%2ej2RYRD|#tqI#$COYWGj)s+Tc025Sd8Kd8XSB8pL|@nDD}G{M(SR7IZ8m@Vb?r9KyBLbU~Ie$HOhh zccaX*RlS(?{i;S)%O*xfHp6zM2PZIL`Jnst+t+Oc{qsL`X7vYa zzgXffAH^)`Ps4tgWtps4F>@(xK9Xa0StouYbRv8t^l2L!Hx>7v9P3N9`xFd8t84An z^)6Tvzu(v)@Vbt3V_rHtZqw@3NwuU-y_Oz^3}qQLkq-I&>;(i<2c)wHh(N-eb@6AMClI?A+bqR|C!oLy~!zPZ3`Bqn1%s!MUV&~a@c)73r7bPy1t=Z*jG zu1)>#Fg#Qs_a8??+EF~7k3;ToB<2u>D*8jrqeQH_A~_=8ZhfsP0{-@>-c?s$fEO!W zNk7f!0C4hNBuVE>#!pcT1xbM;S^1orNynIUJbaG9G6F8Nh7l5B*PHy2xrR%D6V?n= z2OWGBO%(#Eo|oZy3+_(t?J2lZXp@Uhif{M=z^-v7<8su*tX2LtKkB;=;T9S?=>~1j zJr6gi%XmXMySo4arj-Lkp#QL*c@&C*n{E94?AuHWI7!vH@9XNwx;UTYYARu=A)~UO zu)wsUl4V0vhQb2Y2w9;!lfdnW6aGMl3dWU)p&>)?55d5KZ44h8Mx29|DAimb!eSwD&Tp(@VRI+RS>E4SFt zdS=%hHC_`HSH7D*)HVF@P-S70k=88mY{dcO?g^A|+Ah}Ei$Q7H`q}?PFWpby7ap=Z z;-l4Kf=?^P6JfzV`sur=>QBWNC^6~6SK6R`h}oPjjder=6q&r{Dk>Ol2*xja<6RhD zJX~zZ-cLU?R73U=*f%XVEm!7kM-E!s~G~+Tf zF-;*Sf~*s!9?B%6LBAR`oL4(T47i73lU*01H*RoZgUu)m-GT)Jzp7)nx8XSi5?NM) zB`DrD>ldZ9Vw>T+;SOLE32b}Q8NYOvpp1bJjF2!fe?9k{X6km;Ihhzk2Cu360)~%F z`?L@@b{r}w$AG$oPju*VnIPo@FoG4Cx@euu;)MR0aI@Q}Kcp?WmN7mcQ&mAb{i8q- zoXR9zOr@ansd>X5z9WH0PV+)f;kcoxky@)O2X`(loLz-igK))I$1+M|+B_iXrfVRv{1Y^Gz% z)2^9pHXZUTFaXscY#i+8VlR407RBbWk&PTztxD804mFi`OxE1zoM^joyu~Fj$LZ-Y z6Cd9{;?bV}(IbBe>z44oF7Zr=tZSc-DufB*Z)WO=cn`tj=20Al-_W*@(&p*)t0Ja6 z@>edz3|h~>RCxyEd}fIlK}w`NEmElD>s79T=V+}6_6sI1n;@>NJ!tqk8TZodZtw?- zXVu+8Nw3^Wr}xyLx(;hBCR%hjH^=O#sgl&4FJ_(yD^?qySIFDC5d;0F-%7qt%6%~l z7fQEda)#rZZsbRFN{L#eOQ%cdo-79b&FUYOZg%#+bR2_&ev!EY1j$oRmunpn1GIZ& zh;|rLKNrWdE%7^LJN^`IUoNfWQx?J}+nKc|?Yg!fD*W(>yv5DZUn4Zz>a)iGF;ZV! z^F1scZj|iwfVJQKx4P$(zP}c$`?LinMR9R8Kt~R$jx-0@~!mhwp6O*U&q@l8nE)>_=z00oEUyVHd{8KtnePE9}-CGTpE7vJg&mX~j zJn!Mq@h8@eoRfB|k8gT#S9MWS?>hvK*1wC(S9?pNTSa+&{oU+CEqY|*+BC_dFid$L z9jMrZe?4CD_tuJ(^Of>vdys*rwn5Edcv%)wgDjWjk_GfXfPSvsS#Ae}PCy82mv%Q{ zD#u;$W5@)!<(}n$U79~$CbU^s!Yp~?&0^p4jGclgXybDWNU8iB(KV#DJiQ`gZ9Zf= z^-%69*j`%2rJr(OyQ0wHV`BN}=@fE>OB4*oWTeA14Y*{VYz%Rhny~D z^ZK0t#gZ|uTps0F3Pi}=q@ECHV#I!!3UW(O6#IJ+0(xE1-7c=h6qo2U5Yd_0s~6iu znJn8ypd@pyh%^dSFo^;Z-UH%LEhw^1kY4SiuiA8X^2iNgA z?(limE^3Vb6&$D_%1NqMRCV)AN?~-oniwG#A(_;&8`40ddH6%J%ut7I)@w}q=R3n4 z-+Ds?Jl%>2ds}{2I4^a>=1seSZg?9k9<}u6qkw|mCam{Jn;UXzI*R^QA3Hry;%>l? zi0nUliRFyZFt;yO9a6HK&>UAfN`3ThjV`p{i_%OK;YBMh)s7bzS=YMv$k#Vvk5Ve& zNY{w>=MU4k_8;A7YR#nv{&k~}@u=$+MZnb{`@JPzFR)bCt3J5aX5jkS@<^t0ai(W? z)Z&i<#rx*9BCEC&K$m7MhHu9C`7b*6l2 zs;-baGE4}JrceSNu1|A>_Cn*8l9Pf~(e-mwJ$EQn(lbvkRsyvzUNTXA=Hio3g0C{Uc@?k>gM-K9ve;O-7VOK}bE7AO=>p7%Z9obUX~zszKE z&+cBb*Ro=KllvB)HI*_s^XB`p2NPZIKDCT2$&7ldGvo&^9)NkEBBX{2WyEFJ=eNtK zNy@D}tIMgNh9(<`79M@8@DGtWe8d<3!iMw=H{V>Q8Dg2Jj{1tYQycd>+=_i9e4BU0 zc1CHi-{>BIUsv>Rz*vvLJ`z2xP2H_?%}D;a#MnP>UFbO(=l46NSKI8ve9b6lC9+1z z7vlmQ_;`J`?*vYd#xU{$d0IQ;=Ia2;!}Dma0^8rP@@azr?Gg`Rvta@CxL4&zkwggPn}pI ziw}$3CDpDr`DwQmH^yBeueeXfYZ)&Myv%-j;_&ZVkOrK;drC#`kj0+`L2R5QVN|cH zBF1g8N+t(eU)QV%qt;o8Pk)ro=-*)RGy+flhA4eA7w_(ks3D%U8eMO4GCR#&At_Nzn zOdv!*!VpHkqI(H)6hu74LQ&z(s7~Yu2;zLbH@B+}QV}(T2#aquYOSU?@)j3BG-6W2 z-<0QzPv75I)YSx!&@a&^9~UW2FCARZk6kg(6F-;HqiH@qXk0git3|HT`J2o3LAFTp zu-x!4i{db&1^h4(U}Ga415udJ+VS)7n6Z!mMjVA~(W=9f5Hx-rUEk{( zd*6iD)WBAVAvOUVF}Z5sr2*R&bLrTy{)f*tRw2VbAp(<3$r|zELPz{sm9r_c^B;Ds zxILo)vq|?-d{NEHzsP-lH(Px!w^x^Ip@ID*5yK^FEXO`d##3IQ>VBbwMn(l_?AB2huySnW7VG;nzS6&=EXKa4z8&JD@J%1Q zda9uG8Mtmg>&88{f<^Rn6colTKH-YIx(-;+@`Tjs|Av+xAeN?VrlQSD0k?xVRecGj zcvrtjD+5I23UMVt+53>>>PKtH*XdnG*GDH{$l2u`L35|#D*Fo1tsMB>h{*xZN4`8G zL@Cqb(hjWOD_9Vz`a;&c9vro!rso{{Vd~rwGyu2hw8zk43U6fW27pOgFaed{=At2z zyR%P01Wrc0bUeN^1vTyQu3dVgxx?qhxt3y$5!lee|32J$O5)3(Mp>XkP{7 zqE){@u=@5yvUFK<SNKMT}NVDA^qoPjepmd6ESi=a_gy+B^Sy_M7kzseuog$eBdJjM$&PU@bTzo*Ttr z)6(L?acIB3t4r5u+stWH#mct4P?hN7oySr-Pv{dCFY*e%orf)8duh$(aR@0Y%U%ngL@txW_yc{E|1-gG|w!T`@F?&yck8T^QoD!S|;F}Ke(kbx;X(8#^J77^5Dnz1EK z_d#But^m=Hi{M4#kW$Yco=?Rpkgc?D%Z1z|iE9n>4@LR7et+~!2D&fdO9+r~e;iW( zQ9(&^%8!+*4>t+vYqQ(}@1XWZi+pzZiTtPhu$t&ApJ`ASFqdsA+|7rrB@i@$y_6=+ z?uBxm1zTLRQy3Ig%@eMsE8s>9E3^Sr{bD@Qaojn~rfQ6OzDXt?d}h$T%tbg)Aj_5- zOB2C^8I3%{y-2>i_Hzb6c}7J_Mk* zwqNGy_ImWY+^=JLN{)BEhugEtB{e_Vu>x2D(gEN+VHv}Iu<5Z%NzbE0rU)ld#@cJJ$Xdqh=Kni^ z~Zmf0rrm$bZq+>k^1NzrX4Nn&wnT#{lCPGSp3%3?Dzp^NfSz;SR7P zkx6=fP4>;(iP7NALIY_@=K#hJSy1EZJR*XE;~yD!0QNa4p#}Yg%aS;F_R_ic!2sWkh2UN3^vY?7ruaO zeETX(p1yI|+QX&~AU%_`?9c&+C{8udshhpmW+(d$D0f`ODC8OHlwXwxCP6HQrlKWO zb1zK!LaB%;{!vhS`A(#LMAks+R?9Ok7!V}s`jLQP{0`G|H#RlA#Wy)Km(hhV4=SvplPNu5}pR78L^F1^;3#%S<#mt9?>pJ zt&!irZtkfZ8`w908q#*Fhmq5J!31vP21eBA)S0zcp4s7w63GxNu?B8d%eb|AMYE^t z$P)pbSRBTe`YRm5yi0{1vNf0CE%r~&7+2H<(;-Mt^m<73!h1lY31I727wL#|;j_0c zV`@4s7MDRY3xQKa&%c!$U8?)=Yv(&UbnYy;6yQg)W&A#3o~tZ|lNezA&FRNkfmz*^ zmOR3ZDWi`l4FAUqaCw@;j7O7N3GV~YBsVu;KiaK87L~sAL&tIfCfj!yFOsc^I;&qQ z`}|8~Lrs2(4;iKx2UJgq*iyCM3CUt3{%Y3V#FW2U+N@ra8fykvh_%;iuVARg#zpRqM!a8&*l zrl!DWNI#B{R=F|{ul3Jdx+^ykc0k76X2LeTDpHbC_P-wP;TL9go#M_7ic=Ez6CcEW z+LLuw2JG(XcuxoBCJ*=DXPrDAWXqr0GYi?GxicllD_Jg&{VwmEY}st^MTkFl!O0cM zwV|Dd0~T;dgJYRZx~9Tiy^#OwVp#?J;s4XehM;}yq6n_)AX=92A52*!G{P{LA>B+X zq^z=xWiw^Pwkq9mc*mLJZI6P>P3hZ6@*GXt)d~Ze1`%~?$yg_2Y@8f+#ZnMBIM`ym z3{)5Hqw`)@m>Ry(m?Q_=-Cg-7jVHlb=#xKFn%#u(#}dQ3k`)74tEuDkt+uz?T;ue{ z-lHs2o?ijV_LV1pEmfM|8%RFGmiTXK_Ij@Dd~zd8Y+iS9V#=^_k~lcfHD^>dt8JP1 zve+opyy`05YV!w>nk;bAuUQ(rH%}=`VdkT_lJvLrxDTV#c4mKAj3u|7N$Zk>U z=*4kHUk-b5hK7W>OdOcJNtkVyU$60?;JR;Z*c`p@vy>iG)qLXS z*@DoM@@IG;dAB~q)B{?|)XZhj!d*!_E2?B?xx78I2edg0^tX z{W1N}P98A%5)uJp5Sqp1mG<&2pGY^|TGuHZj()W?$3v;x*o|&YVEB&SCg|mb{VSudA2>e;Fa^=%-oH+US!; zlcGuMb>$4-B;roE4XaO!?wtVk-Y5JN@pDYiVP-kvoQDiVrnA{ zJPuZv1!LZL^~_=3e@QPj+S#WsC2_GyTa!YO&v8m>FmuZufdv3-68A?7Zn%7wYz}FH zOiuKL(qZM6<|Jj3ei6?u(&jjP;{tuuj(0VUN8ArS3DrwW@^(L*ElHj_d2-kh1j^cY z(v_?BOJy_NvZLU~Bl4^(tYe0!SF6L*Hl*`u({*^Oqcqu>uo~esSNi!WL_2n_>dw;8 zOdl^q5)A}IU}l82VskHM7C@TCLWts}jW86tTxBu8zI^*!Sjiib#%H@q*WG}nlvvlb zb+BbVbNlHodh-OfIq$A^O9;WsH?%!(NDr?9|2>i$egp=RzjpFyiulvL3y!Lr*Df)@! z^0DY5gH#*f*l2R(lk~k8+b!NaL&&4Mi|v9p=MRC}tUOgJ6KWZw9()bY`c%UFr+z%4)77$0X0EAMCkTt~NVJGenU|NpTnD zEp6aRZY60csX$-Dua!}YdEQ`>hX$#Z;10bo4rTjVJ z6%ee9q@GZzZc1E9@}N-`8280c>8)!KDY1kG!KDDm9;?q+;^{Z1-tgfQR;jy5T5_JI z35}~ib*HZE@V&?fbILprOW7d9X+phE%3Gh=kXGCe7`@sF7aH}xuYO9+YBb@(vNC;6 zAAL|225w_JCwq7U*l?5(l}x|i<{HcO7kZ?DN@&V+Kwm!beVr{}5ln(yC$}%@`8~3+ zWgE&V-K|BSxm~2^gSe6Bti~*VXrDJ)gr5|%$woM?H(AX4s1pPmKQ>rdtIqz(q73aa ztaSaR6Z4(F(@*@Z6jN%(C$mYSY*ZO6kp_uyLq8DVKxKq0MeG*RhyCJ8UfTq=l@1`0 zSn#X0gCP~6ar1tzjgl|_7Bfk|8kwh*^=G#PbJq$jQFxwg!1Tbn0-+8RF2Q3L+#jGB zHJoj%QxP!F4K_@O*p}cI!O!1Ut|{saBL68oxbN1kAL%?Fv&U*p>i&rH2Orz5Ix3Q-AKsX(uJ)#i;dHkK{&G|nHF=K+}>D^qJDjf241&9;1S z`T6~uLNdQByA5C&xA9kqMad79o8?}}mLS(PczJG70U-U0lF9`gy!vG9?HQ|DoYCl` z!9<+u7ZlO3C5iQis6;aAONg@v8ap0hvjIh&V7s`p9=5WNvsixE?kSUXxg#S^j~0iB zsV^*thztCGWW6{2>wlAa;&3UYB)_3DE3x796E9I!HmvwYVg{ciGdS)=6bsPa3P!xj zzNhDem%UsscHIYb_+PiaAu$H|T=9*P9rzOQc6r5-X@KdU&NI>P$5z}`*-w(_x4i;+>ik-OX~2XU2=^FQLE!%O{4QC^N`>%}%^9rOS6 z(l|6gWtzR!;x&Xnt9Oq`fkz3-W+fuc{s;&5!KtD;&3Me2$;cWE@X()so{bMzC44_3 zAusD^LCyML0h{6zt)DY84@+bv1pW2v4b-KI5?J84TWlkQpbR@=-N!q&2hHSrx-R3m z$%lw3p~BR2=>FG7M^jFE6k9>hP#3waQ>`kNnw+(_V{! zzGKR(swq3;MbZ8dtjh_!RHI)R*H^w|QCK(Sdg3_(fh%`;A@;;cUQs~wB^_bA*GUP# zB3=~yWt-m}Tb6WK;^%(+7wN3g-T!@y&rt!r zXwj){PzUeX>)_q$3x3{UeXOyw^*+@+)Vm~z<$ z8j5un)^*&X?}jSu9{bKX0KDRqm!P5%@*<8LN6_GFwAY`)>%tdWgs=e<4g%Ew{n&C8 zUMF-HmqjR|z;fxR|5fdp8s6lW0sJh&9puWc^#PmCU=3oZNmEYaSdHB%A2V7ezhElO z93RX`%}T_}Rw{1n2a|1?;VG2xv&Df)%~jQS`y-?LwlyqVv}Z@>VV@dK14tzNJHH@G zjPRvY-&byK!M-$_6cLr80kAPUE2|Qg<8zj1}Jyolc)%xL<^KKTFA=Sy`rZrIcgl^f)pl>!gn2qxl(sMT#he9KwEW2ys~2 zD_RQexkSo9Q61c-*oPTntNK7NCt!kSVjK(c`i)6Z9fpRBA!CFkvC7(+z)hP+F+!p( z8sc;4)@2b|H+FQ*8LEqt(49}aDt;zPe5Ij8$#@oZ>4{J9V{FR|e z#b17Flmap1JX&aBY^X(}-pDu-8$0tjW!7H6Buay~nq0w(wxod1=&Ighv5xDAQwPdv z#whOtRzUoBrC@vP52EAeB0=P)%L7hwRz+m8bI0wOjb~pRafrFcBL3BZu|HG2vF)AD z8o@buMe7&>Wr;K}V$lP$c5;Z^1JLBKZf*rRL-gqBqpkv@8oq0QgofXr)BxiC&pK>J z=_y~t3hz3Y!X4`zpH{E@=F)%`b=5nEnwP9BN2*PhJn=I60$2LM+_}x0roK18pV8vh z%(M36#%>;HUcQ5%K%k0me;Zn60z1B8t1!nr(M8tW%S%D{Dj_-PkHq9RG zMWm2$#ZZ!%%ta})y7jbblPEM-lHLCE+5hL$gKRbR@E^GB7-uErnRxI%r1DH%b z0M?){+&657O}wmv|LW@=-E<*G&>rbMeSr;P{)AwHV(CY0c)2tTLRM~DgLbeXx)PgT zS)C=FW`1HdkgtWLl*Y?hrf}p2dSmp4qLd)vvkIMA5@eYbf^<zXMlNEK z!}_^Q2-_?hoLjd){zQQ#t+yg9OOG8@vE;PJ#12F`bHB0y`jPmPsQ_@Yq}yfxBE0M# z%GP<0GFCN^;#lDZ@YdP1qmB!(!Q{|o7k<4VLM`5oJ5$7l)INoo50J zi$aauB}rtTz@aaSky!Un$Q%5WY((mMLrUa2Oe)J^-hCjy)voDUrAXSZb(7~ExMpNQ zrE^dV;3e<50h^r%`tB?8YcHaNVpzU;sVyy7(N57)+h7od;zH_Qw%Hc3ZC=G0t}FZJ zGjSEPwpB_;sRDc^ksp_Dgqco?9YsVkxRPw?RC_D2EYHi>&^5(uIfTTT-09n%Z8!t7 zFI=%q8jH3+{v3!(p;B)Qy$HKO_5^3{JzRsPeTUC#APSWIn~l{nGDO_&8-0k*&&}h~ z=YB<38Y2Dx|9PqQ3$jJ)HT9o>2)M3px6rTOPu-f%sm)ol4oOEZ zIh-aIoXv68{(M?c#%3YeI-VLGY{ZSRgz*t?*JV{LF6Y+oSQ@ z`4~P@eK!+m-7VUK8q`BW8AAzS+2;M<=STIwh{YyoFB_^Akg!mw-_rqnJgv+!RnSDKSlQ=QOb@PeL?^xFhNCTktT(>#$2rd=T`?jHlCzwsC*6EjhfQNhrYWiQ zz7KR?Ql;(D;0(r>y40Z3;K8#%;=_hjq~fST`4Rj1 z%uO7(tz(bUybmDz`O^k-CQ{@m^7oH?8Wh$N{^@ccZ5_TeW_HByGy0<*0}ba!InizYR4&S~3-FQ`4GH*p| zKO=G_%W|Bo$tY%P#%aCfaw*HDoZFxoIC-l8X1}+h8Afg7)~(I~wdTNhLT}K$QTq&E zqRmyty$Nje;J&TkIvQ>n_@I_BC)=G@>_9%L_BKgFo}VyJ4-w3`5io&3B?}d0ZBK4> zH~Rn34ZN}%&Hp8y`o?9WapESUZ`QuXQiU?-`sbyXQBdN9WN-nnPb?2L0nUo2r5KT4 zoEJ#+<3HLc49`P4BalDITU~G_OS*7WaK-Eil^KRdVAbJejF}zMZHrCRlG6#?+!1cL zBDa&u1?oIc@MHD5Q{rn-;o$9rW+#s#N6G2`xb@@p2+mWDl=OuqsLo(pItMX@9Ds z#WoiTZ{Y4kAUm?pg93wvj=l#7ct%^14k8mXdx+h>QDU!}BiOVVHYiV;l7Id>TLSPA z8yyF08cjul9|YqwVf!sZ6$N#e1hPqEd-1bz5w={NKE?gvLA|DD-q~XGH!?S<2Nr*6 zfUB$p<7Ua*Pt8g*Nx(A;lCGqoDR;aPWUG8pZ2x(6M^L+IJRV84(N(bj@^yBn-m6IN z=$wV2F=qMh>B+f!}hjc?!ZftRtm&;Ud4N_&O8E@>xj}A@&%mZyUgfK4V6nu%@7+JngS)ViB2*hRY0u8g3W z^UPA7n!{Pz8`&3xakIiMc z<1?gfFdkY)n*v**+>>kR1dcM z4yApnW=R%swF`l>wj7;~Qw{)~v2wZWj0=zzW-6XvVgJVua)>0GzCk&{s|K+fd!gfx zC-oH3)ieYAm&J^V7xGg?<6!-?=v8$-#iXW)&4M7uT*HVxVU*Oz3_#>Qb~9?t)$`m1 ziCmEEHNspYfq~Ue#8RY`nrdwXnIQ@d?jVK+T#V6u8YxtOOlamdv!AnXyc=VR%Hps{ z%)#1tFES(%hu;#tWU#L#bVHeU#AVvd<4kB}9 ztY}EpM3t*&o-~i?B_Km|8D{Xo7uUShT`@FEQ%r5P=PR?8#~iW({xZa6 zE*?4Hqcb;ZP*%leg7vVFXIi%*G>?&GOG&IRcjk8E>xGB5)p;tOH3NuUd@<^DOGMh` zV6eop;`%vn1&<#fdT zbCoFQ3sjE(hLl3dz#pu(xLl!+niU?xr64_`iA$txM>(wczH0o@FN5J&G*e=%{UIN3`jBPm(ug z`frOgRQ5xnl501dI*bmM(dNYnlDU+@OP&8p#doTUN9Um^TW)Bh9Imk|&^ssjxqTN% z^7Kp}nvbo5l2_M`kr9O!M|D@Up947HQkrlqA8NbJ3;A==fqHX}>nJLGItCJw^H9c=4D3H#Y*+ts>J_wvSc> zS^`~Hf|yuBA3V^eiP;qT42Cwv;6B}HYm!AUKRpXWQrgg_B#kIV1+6RJEC!Cw1Sk!S zCqiYOQgPT&44u5gb7$KU((aRSQVP@b=ZrVx4L|i=VR;EHeY+)_JHdW)jlW))dKP-j zVg2yB&#X)pwB)AHYp0579Dw)mOmv_IP1huhTDC>z@i_el_29J|1H2Nz&r-_TBtxDETtKU+OnL29rkS3lq=Tsy{y8%NkJe&8 zN$HmrX=eWScZ7b$pDfgQbh;5nC~N0W!5Xmf#sqA%u_O5P-xQvcq+Gt2s8glOOPL~b6#LIS5NXCvvRF|Ghr=h+00jm|fejaj$R__)S)x~QqJgd6%7v^SO zfPA#Gz9O0%j*5PX*SV6}q({QvHAGsS_u!3gh3^`g2bGA~P9H;cm0V|@y>=lUE5OV? zfoi*5H(Ty;N4QrymSr6H!I|s<gYCRkS3 zTIkc6CB4RmfW;oYzZEVkQM9yb`gAs zvPHii?(O3t&jtC$K8PW;Rryj7kAAWo3q)8B9i#X9fA+cmn{?hE}{U>y^KDalzV(}`v<8fQV6h;^ijpC3fU zRtw;4g0sQ+|6*{!|2$Gv=q1Y5Ffwy4;ae&)QYOV=b!o(wgV3oE!%vggng|~@g)xWr zwvY#HXL}q4tx7iz0GJ&t9LSzVPlVA+gBcihlB+BxVcO&M1#e&Gj%;q??yuy5we*ztTjW890Iws73-9 zAqwh;TA_7Ais-fY+$&FlMY2{R0Xm#bk7EehW*gyRn4R~p9!?t)L$PJ&j})*!M}JHz zQsMw^i$zs!oNn9GUx|oh>4xU97fns%c7GgUseaX7kIr_lU&-@@bN|Iea9 zOs_FlU%CDO=bHwQA;`e8fz_8s01BK=T(&Fk?uvp4O%R`LRkXSY;?=RX9Fc)Q2FnMmcijF#M)cK~eoZJ{-zRsY2reEv}V z9QOi(&fe0Vq^Y$=-++{5|J;%>U&xjp5WaA_Inef8Tw0989fj<8iaMM0OjG0?lV87y8-b$tmTAiFgJ&MYAZQk|2mg}=GJiAL_na)`Z{%ZcAX8t6NVrdY z=da!R6~hStg=5>#IzATaQx?@}+*&{5cujt<*azp3ideZ?hf58YZ+6@*0`);xj$iHY|xr&KohCqNICs zqG+2-;=PB8R!F~jqlTZZ{l5st`9(Zsbm(f<@(5`H|LSHHVV#S$ImB~l=NcC>ZQ(XP$*p^uQf}Y)SQn~}R z>1vk-I4~?KDijQ6NHPt-k}Jx%E34*WoZx8;Wd)UCisO`D(dxwf;G%yPyYDz&OFPP! z?z|#l2>tmbG9}xCpaa9bXM)i4NUMrW1!vCPnX9rp4cWj6Q$bO;D`CY`6mB`s=0*zO z&~|N@KmU;MUsnNP? zbmvq=`!}{PbZMxnmJ)}hi~PlFmsn7nu{UC$AeeU*GHrl%P#ZNF-VJ4&oSWch1o>U& zJX!@MlQ?Yv7m%N9*&0ME#C&g7q~G<@tS6uMyr`{tmj@JQF+g3q5hehZHVH0p`n?u5 z$Z+KmUKz&>=^FPgihZWJCYAOA#p~n$dLP=MrWvTlg9vqFZA-8h$C9DYx@{z4!Df0K zOOiM8F`@J6>%b)N$GFY@^J7%xE-bG_QPHB3D8dZ+_m)HfBRRRpwTt1vN20F@!$w^o z&a}9HLnia7$YHgCLH3!3!AB8^5he9YKxMR2o%Wx^!@`U*3|vV%I$PrQIuQmemGd~? z9b7j7B~7FpIyM*wTbjd(y%+b3DW4=n5lTya8$vX6uEVnFjI?A>lQ6hW3S+-l?IRs0 zS0Xji%m8Km{2P49PyrdERLL1{HNHr7-3O@M@zdU0&xX)C!ZD>0s~ zLl$F#p$euNqA-k*95?EsC9gOM6*uUa-wao+8?ScB@`3(L8W>4wWWlw;Z+9|QJ-R+R z`bz=7Rsdx{<_Cfd5fho;NpusgOjVN(FFSP~eg(r->LfqjdFIXv1i23CvxyW^gUQ4J z&By@o9dpdkPG`c4ZX^~I9e?kZ<1P##%jf?3+||cGe7EjEl^dJOI#@dP`t17%I_j>3 zGCMZ{eMigm*VZ+8zt(F?DIhv}*Rdb)(Pbyyeyiyjn)&;rbNMhR_;?BpvjXpRK_V6b z2nSpStjX+_RHFx|9WJ57^x-IMQxA~YU?9%rhhbVhJf!umT#v{j52PyTO^`JU@EugC zURWnS6xF_NIph)(<#)oqWGw-oBl|QG>TzI@=jAag0^Atug?9c*7yVB1Ja%AP1wG(@ zP%~t}XbFdQx-ba@Wx6kJ|6{sE8c{QnOVKfjs73pzL_Q_o$Ho;8ez-*jR-TKiPDDJ}Nm(!mCn`Pg@R;>{MhJ zU3QQtoE24UI8~R5)H?m~_ZdcrA7A%TBgtC>O~R3vB5qt%sWH(r6IC)ImIQ6*cjDg1 z=oR*OR*e$e9ga0r5;ED5UEfM9^JGHz)#5A61)qlc_o8}9Ig=4O1;Bv10Wp;iotoq;1DK^eq62JtV+wJEy?e`r%4#lX zC%u^odrtS-XzHc+>h3|&3Q?TweSTtk*)@ZY0_bkn-fQieDcPzBmb6vg(m4iFOxl%2 zjM>tb&R9jM6_CVfxseL}aBNe`_GX1q29BQ*1@eWR84T0o7wL7VwfKU%I_fVKvoi$X zj+jpHNh%Ft6|mSicC&LmHeS#ugheB}Iu+Zn+Jx)MCL`E|i{`##6HGa&`4gl@bMR|W|G z__7MdA?S-ZUMf%^QC#ToCOx=*t|q*QE*MO*srf_wm2E&l`tZ9}d8GH(W_2-qli~}S z*oD?}-Sd55IZc9m4BT%Nd->&iVc`I0vqi#Q9E zIUfD_>Uq5s>Jh`)BlT$PnkR9#Z`8`j6W1xXneN`&c;A%71?R^75>C@WCOKJ1r8Z5P zv7GU?3TL&jRaXxk2dBaJ(h@h{61 zr2pnsMjwF+YIjtvoavQL_Hn_ztFA%Cl8=h3`v?^Aqs3>u#70Cjc&_Ac14C^E(FIVo zU~1zEhZ9pqGL0}-l_Z}(ZlduzRwhOw(3eI0CA?zOUl0f{D6|vNskZ;O4D?Uv1r$ z9^_|t_>p?x2`|!(31s5aVdZOs(P@!^l;~6@*cf;Wntctq1WHQg=xtbO|5xsr~t9pA13d~CHP2dR`|E-k_uW3S8t{uQu zPC}f__MvrO;8hhF|DjscUmA01(D&wlL^Vd_Yj@Fda6r zkwb#AmKYL{+ENptr;XZtu?=lwm66z(GW54y!WS)g6;9&xw09LsKpN0}9bdE~)i2S<{u?fW-fWJ) zZ+f@gK2gln#KX7c-MsGg5U?}8=#{e++7Vm5>*$_dkloxeS+inkR@?<=uj&~dzHGqF zxgva)d79#dLeZ#2=l05vGD<@LS2ipspCkR`xWSlHAh5I#5zv=+cNDj{+lxbc783`B zox6|Ifft|L3QU<+#f*SyIx4Osc4}toYqbk| z)Qd=7T0L2<6N6P#MxlVJIO;X`tmxPbf-`!rZ@-`Sb{OARwoKAW_lTE~P@u1fP(hWo zAUxX&bkids$iKjv@pJtBFKWx*Hd{Bwo9CF&g;(qKC2{crov#+=hMWCRtLnFVz@ow! zm&?2rf~kjS5*z{`C}aEb3;K~;Z`*^c)hz-*#|m%jVzK+=^gN9;DX`roqS7ygTh#d5 zUG2jN?B#v)s9<45=^4uehmyWr=#qN;x~qd-D}ybZN5zW(O}Tcox`BEttMIclt1Z+2KXw-7ZQ)DfjhsI>A55m3( zRdF>GsxZ#f3pxqibG&_L;0v28JDa@8aE`N3hKD}VxOu{{q1(cygPQ7{PQHl`Xw(hH zN{_bV+xlrZEhA=2`O6{e9dPZ)Tp>8@Vtw(dq?VabQ!xeu_0Y>~( z{|*l#u2-OBG(gC^((FoxUNk`}eOsC&bu)%r9`70Ff~*Gn_RV*U_m!h!L23 zexxBk(=C6_)G<=_UkRV#tWRq2GONOnnl~#v=FR}l z>b}!g`(zUhTY#07=_vMq&cGHkv-(b1g32LL8%C*7epf5)qmr?H>y)k7W1)X+=??S( z{a)A=^iSLW4d?$uP7Kuh{WqIKFM&lk?xig4wicw^K8VlfYS}Yf0nM2F{v`N{qx<=p zz2yh?1^W?rN6`CZqV_US!vNT_S*B2pjK~|9Gr%;TeGg$FJOZp?Yvk#$Td>=F+2h6j zJ(6;05=wK`!)sZ8%iL9zr0OkNP+2xkyudl({gKNK#D&K@&*cvR)a_HV9Tf5HQN!gf zh}`N2nA{|}4zlyJI@zkLFg5}J=R4G@mI`Ya+yA>*M_hk4q??vH8keDgE)fb|aspnE*mcKGu-}Vla^neih0UI(Ck3Qna=cYrw-yyB zExrN^QPZeW&ihstK;Y$P0#u?+e>(_Qaxg!bw_41S>%OpRGoaKpL^r_)-|Z7JdV(xpC6h-tEikV3pPS|C2*E zKK=*Jl2&?*-i9|_=6;|?1h0q&JL2T62mao+ftRBeEC(pyjnF5VR>~~5Tsu%vS2X4 zs*K5MA!Q4f5I7XoBPJ1kJyB->kVrpn_|J}(Y`r^<5hmP<$T*D;L}jc<`8+X7j5=r- z;|(??Ua(1KJ4Z?!ihtrN&ZZGKHnhM_GB-=xZz;tT7xJl>#Scr0^>()Ct5)CaLo{$L ztj~o#-otKY9JP)zD>6M0L7{ulkgT=%!aNZT5w5msf%o8QJ=%-mhDI_?ntZQNyJB~2 zyT(VWRvFSq%1@8|82G#VM!;E=Q>H5w&wsrsq+^}(^6@%{H2rOmM^UCp^}GRh{@Bc4 z0Tl*H_;_C$8+?5~h_OB=v(7)riyE;$@ml~Qjr_GksCCfV=Gn~nH;2?In|)QJ+^|0} zYns+^0De({ zbu^PoC^G<~Z;P&{wDX5wllg4>GJ2o~2ERV6(NyQrE4E9UoQLb6wEoUjqTX38F_gT# z`{cOjeD(J^)#Co?nI*YrKp?3><7E+Nt~-pJe$E%p-pj`DD-o1;x?O5v#HnF93+AWh zwsK1B5;IgeVM8MdrXyXyzVL;;y{O_Os!M9z7kbo}&pBMvdYs)Q@)w=4L>gMe3&w8S3}5{XO_01NmD+0<4+8 z?TH!tq_{%lq^9K+wm?j-2ekClG=1I04Ky25jW5R4NC*L8dECadv^TDRJK7D9wDS6@ zz8_?-5ilNbS6*RFvE&dbX}(=rk#6u$d};bRSt!%Gu=Y8g|A-1lau^QKd$v>P7j^wA zGTbpPEe7R%cI)czeE3uhKXqNLa%9uZE>wvk8=_yXe{>v>MPWUPazMkUe#J{Qdu|O8 z5}BBlh|{!U0YSAJP_~LF(?sr_b3zu@8xOJ6pDO`*4Ij^L;tXWH6-F&s`&Gil+X-V5 z55k8b+QHR{Qi|1~5famE%aT#XYEyCOtWG2AFm+(0fPo&Z{}SxeE?loom%}%c4A}x7 zeStUd9$uobUbAaR7MuFdv<4L)e{lrC9;zK1^g_oR;8l^GcI(qKfM{TTgw46Mn?68R z!>VN4C6|*zL{0Vcx;BCPjl9W$;3j|Q=+L&*q4g<3MY2Ah!m7uQcxHR3u#F>_^SU$(#s<5 z*^(8^b848buvtN@@`ZWV;SuPSb6SbQnhpANKO2z!boSsacO}%WH-v#bzsYUqw8rhb zLrYC;zmeHfv=>JqZFNpkwq%Se9z64?b%g z+I+-vTmhom)|+5mcy7@iQIBRd@vCyt*v#+(kvw%@m)V%Jdo1p|BNu^m*Z|f$)Xx@s z9@K3iSBx_+EQN9%hg+Nca91CX<>$#b1mK>hm!|74C3bk@c?v!x*t;u4#7PQU+~w0f z&5-r7TbOl)CBRTma?eQ&i(Ic8c`Amuqc8F|_F{Eh4~&4ZyZ(3EB zcFUD)z%fLKjv%ezb2V;V=cvF0c3D5KJ1%yw4zr<_^_q|~W;WJPm#A*4{^`m`Y!zC< zXO*`Ybh7ML*KuhO=VpO+gi4mbf@H@YM^mTsqf}H8F@C0dE+xJ{)#>VdOp9R`pAX;PoS8lI;UctI~@FCeDd00ZAb#2@-(=DsXUcenHXC$%)+=|`AWwI$<9E6|Z z3%7ij2Kc^o3DIJ?mGbv@nfAo8Q0RX6%KPNF(y85Kv`mEOJHg0HN83-&kr@FYmtXgw zsiY!D)nfR8W%4F^AK%Aqp5sk^ivI4px1k!d5N~z|^wFQV|3Enb=3j_H-)@n^HGj+J zk6lxFdK^DQ>3l+Yxmaiwf&PYspSQV2zVUy?DuP0d>9cwN*AY`zq}BhEaE%^P2-wRe z{a@+VZ~xBTb&|RK&z$T`*pwi<|DBy5eZS?`h!NXZ_a4{=SYRle|@V@qW}? zIR0kQ_SI*>&1XT!Q;+iHEY#rkQQ!06J)n~}>h4$N9jf=SF{PJW$GRbJzxB{C~s z#!<)15nKA$SvMNX2BGgJVU>PmM>gak+3%jv`?0}KK)n?IbhRZE^7;Z9C=_`<2wHf` zdcE|UtY?1NHF()Yd-xo*Iku%q|FUQQvIm?v$$DPQ@=;m8^vt?fGq_ee0Mg@yG@vzr zUOOIJI(}2$$5M7737^5ZL(bc8+aMS|^9;i0D7@e*?eg|)>xX{>!Xf{;RkF`wau;7H zmfu~E{k~7f#itHfFj@PJb;r%dt=n`aP0w-&p@Da7(#ZSgP0E)|QqO0_=UK%m4c}dj zX{_f-tSKI!8J;Op55a|ng)8WtqV?T35nx3t+aC@IJr^N^z-Ookk>-H%e)rI+CK*(2 z`iTfrE-pfDudrUvuy|e`^9>%}!-`VA-VLlzTSF!B*g(2|4Lvt`mJ`G0lE?3|%i0g@ z<{Nst-k}&xA>=7n*=4BInpF0*26?7{$x)*=_N(UT3nM-A-<5O$(9 zCcF6Xk&zLd>t4mDUPWxc!==dUCC{~9gU{Z8@C_TRXvfn?hxeIwJW7vF;UqP3A(y8ewu;K`g@($p$&Erc8mErR{ zq1UI&t3Oyi`_AoPgV$?=;v;^~g_gB1lusK-_D|0hiz<8B9g%l^22Wo+C%o1qsDpW~ z9xi|)x6UHBA!M6bk4;&*_IDxn*#`HC1|G{~R}Dwa?O?BVFd91n#>8h~gT*F{H|@0i zt2w#5yQ|}F+OX~B3wA>W_-x^2@!mo8`f8&K?xD`$v995n1l^@r3st2Xuv=w^&}bx~yOCvtCmHlW!vL zDE^Ne*NR@k*rwms@jvolky#+yrlq_`<^%7?XFct7LFDPt?YZ==E0ab1Zr%KDNu4G; zpkohhzxC=!_Pt>6yFhcD9D%%UAc@@ZkzYBI9lTl40od;ad>}#jFjk}@c~Yw36tc!Jsuz3_RsVs=Rhk8`R$vi$<^ z`7ZjE_XRow*sO=yLa51e3QD+hR69o~`W&jwZ&Q%BOZ)ou@ObS5{xBj^asP)f{7m-Q=TtQ_!3Y)?@MFpzXpli1!b|Atrh1nOXYun6C^%J*`&};aSgTdgtx7A+o9)k*RRLn2^O!4(f(f#R;?LULCy?Soy>?Kmf0PlC8}+<8|V^-#XBh9Un)6)^Qcn|^R>sEhZ|yVzpm`0kne z?lHGkFP{%7`r<;@^HszPLSe0?o*3!SPrBk{4ZK$r7}i-=4O06yLx$>H3}Dd0cXO?R!9B!ZhLitb9z=QUZ+Oi3fV{d_0;54IsoHPF^Qat|+6KOw;@8uh!85)B^l#PchW~GJOn|tk{ZIg<)c~fTRRND);-!eD2i3Oc4lQN4w8+C0w5W#26Bp5<{!7E4#2n}ck;4GF+Xi&l zu$k9o=Ahll`r-11HB`V|an?g|`TDZYG5B78Tw7r#(d)Dc3E(gz&tvpTUg#3a48dDbN01RYu#w? z9oq9<7QcHKJ#&_YdO_9I`%WZbf9Qb`_amM4hwOpQQKFDPcV!hk$s_F$$2YNjRrJKo zJdZH95n6zPjSS%5#ARDXQ%1oj`a4&P8YNx;(u!9) zclb?N9g0f~=M%3_6Ykfg29b+4_17tF3dg%;J1^tcBSY&?W9u725DzTjo4?UQc|Mz6 z!;q(O$i__83+LMNsoQ$xw%btVlKEt198;8mo`(MmmZ6#DrZiCvqnct>3vvYSxROx$NdXCm{ zhIaSnXqYrK*rJIl(K9eGnDgz3x1arF*@(3FrnPI@CHO`k@ABLZ!7=WI&V~ERB>Bob zORPiI>2i!G*H$MZBV*(2jMeAm&4v1z`(Q|8@E`I12OywW)ONnQO>xWX4fUc3p|-FS-fav0oo5Up@P_?b@!@ zztQ8h9-FcVT&H+Jr#*Xq3RU7SP}P517N=hL5Vo` zs9EKx3j(dPgA*-7+%vQD$>1J!4JyXXw{uOSpI5-bNPwTYwaIN6KcS|vekrsbWdBfL z-+j`suJ1zNJ|M6bu)S^EdIvqfbD`vjgvEOk?R?y=9naolM91Of$pa9Fa1SNsFoTDD zgQdH%w^;>akDK@{j_998XB6P+SM-uz81Ae>e0ko)@-%P%JZ~DkeAKHyE_*tm+mRu7 zs2sgy)zEQ2X5TOJ)FZO-hO=tG;H-;;LYuZ1YlBB^-Bx#;hE>;PM9bCBiz?6u7>q-2 za1NM0-Fsmi2aCMkC)Cx<8$+PO1puObj*ZWurd7_{ko-o90Dp6#Bdwp}(3h0mw@^oC zGfBs;3#!oe!eIhU{M)epZ=j{gM4%CQ;LGwVu-mmCH3WsxU-tJ&_FY&{omd&35!Bo- zZ$5`ul+sR=z^Ul^tw!08r$K4qz><zj%Y&F4SFD{p%sAz`u40wJU82D~zToTq!~oXI1{MLBnnn=JH}Uo8+VY}+2ih$Lddj(k$d$w$lugvi z)IYVJN80y}@vKKIw4DM;2mGKU(4~@j@ovR^I}+<&ABtIzv>Hny&|qQh<)&dfb;6sz zeOsV?d-ih00L0pKJ+H%-HF5stY9tHURpNQ^eQH|KeSIUKH*B@3D7FDnmAFo$q%tam-p8^S6H+(7mmTeo@{LB6H&wpv? z-ZV6j%*wqn;7;R>GtiZ8l`hV6wCS*@*dgE zJ)=*XSbixmXHZh_AE9uALdzuw6yHPH1&d#=swaAe)1 z_Amk$fKzF;w{knCi!#@wS#X1*M)u$h2HM&gHZH^q-MIYcs0cxL!qsO z#z0PFdjJ~R+*vAmEva>kTUJ}&ykl!=|Ki1`^21Ev<-Lq$(O*% zFQteQGn{Q}TmZ5n0QOpB)R1%2e?HXMo`Z5>YQ~Z5^sNxZZR5b^g73*fJN?4)h#i!k z6C2vE%gu!gppg3eET_Mso^ z-&7~JK?&=>FTKeJ7liX${;y;I>tk*cNH*mEocZ4`T>z=PkbM641^#=uI=K?Aso?8Y zCZ#Vr)i5P%@~fM;S|ZkObO*ub-ghe^C`F9eI4Q&q9dFOm3q(2o;sqstI`d=(BPT>J zyyD?t!(!)RYK?zYiGa8p>L}Z9Dn?}|h}x(~ zc2*$Co-bxcchcYElzQ~>MJyB%C}A|5_P_ELl+3p7vTbl|=QJ}rV;!tvCvKyRVuEz9 zVGMlgkWTENe1UwTa4sLbRn$*=89R4*KtZL0KwDa2IX>37G%Jm+m&7%}`wa9@IlHpM zkW&ESrI5Ndwh`R_{!5WiRm-7Od+*$}&mJQ7Qa@pfE;b&`2zUnQe-2Ozz%+YkJM8sr z10EAi5bEK{K#+O>r=c$7nZrU#3vfrSm&6|A(LKczB+UvAwESWc@aoo62j}h?3Wh{G zX`=HW+XR|=VT>SeO4j@IMbg*flmCkF0$J;1IfT7tD*Em*{cOwqTzj;r`P zXwsOspEKH$AAxeTQ)Q7MjM$|bK8q<{A;0atQf9Oo;P^QjNTZkD8Bc!z&%AJvdLW4} zT1sFckV?AkW%e1I;A3zEG=gu|ALmOqX|ofUY=)xglTfiR$HmnYOmJ2qq zM&%294cA)3T^9`tI6BKgOZqpb9|qI*U0_GE`%qgo3p_9i@q9l!tjvasGlZLDE~T|= zhUN9*WGUwXNzYjR6ZxcicfVe+mgj@}u4 zdjw9`9Kg@=E?d^&E-yk1_P|9#iTyApk1Oq$3zb0oBQHJ%0Q+-pc2>hOYd`D< zTdZXW{jPAAPlx4t^ljT;J=52+z&p*oEY=_mYvNaK9dsG6+$A(4fC7PkHM#21b>f2Q zIox_l3`vRChIEV4Zj;q5dEKO*dC7J7hs-)2;9FsJ5iGmMGNvPuDDXh$dsru6G3D?{ z+nrg8pTqPgJ6vw+yI~}tZ+x)tr9Lw@n`_018?apAj_UWQH$5soG7$|CfCRC)Cy~C5 zB&3%Kku-+;XRQYZoIEpT8lQ+BRur75kGfSu<3BSoNyFE{+()c|oeXd!N;YRAADaeP+)y|JFtBMYb*9TCEmfI6dB36P!bC^WsgmFQ7zW z9-hiR+dtEM^1h;wxWgC{Fowi!EVp73=r` z=tGvuwEihJKN|+#+bC`gtvVF5;@qR$=a{?HQ@(nRtHA$?G|*8;73gEv4~araojFw^TsWAj>-%s$(Olg>LRSzF z?G)*@{W`rFcNGO*+j6qhQr73tv#wmc9$b>`HNF30Yj0(hO&Lcqy$R#aop^Z_RB@1a zOh}*!@He9YpL!AMIz>hC>D3V5Ib`;KwMAl5=L>*wM0c)|oG;2#5j{vraY*o?+vhlZ zln?DCOU%O?J6%+e)XD5g5|zak2rWU){=nVkzK--O+hiJRHI&X@hEG!>Z@lOq1)#be z*ajcPykSwF1hSvbyH(^K@ZOS$9)Y1pRA$NI(qiDnEJXSn`eSAf;F5*y2Me$eCJg1@ z_r{|28b#s_gBEYyW7jm{W{^gdCz-TC{Kwm(K<0AUbF90ZaXB((u$mrkfO9Mq71t{4 z=z{+gZoMo?jK~lF8Cra_cJaz4ERaZMK>;J%aKL{cf?H^qnDfmJn(pATDKez)ZoqH;z6<;kutFe zrMU#kX78pEMh)>5HYbINWXPfi@eZd6v9SNNs~MVbm+^C42ogUE6f=ro<+!_pr&h%s z4B(|b-m{4X5zS^R_k8-Q6VN0#&Yk`jFLytfk1%a4yKbDtY|Mr?*P2@%lec`{kfNNJ zJ4&CYeMpkb*KE=XR1-{}v^neOkSn##Ke+dIEPCH-$fmxTuUvcRrDm0|aGN`4XzIX$ zq<$n=yCCT+#}n=Lw;E=f+olmCYkArueR0bB>$&+c6?VO!w7A5bR3$iw4wVWhN;X%m zx-`0saImwk)rFd_DK(hyrTwONZWpomMQApXeID0ba=tSF6G3{@=#8e6D)g z@ES5(f+So63c}WHcmU5ibY)7jyJ8-wWjol=ufVI z&v)Q8D|R@AFVsbuylX>H_pQhE zhui6fm0=GvN(1p!g%kYJ|FzBHc9}&`(JSYA_E4ejQuA=DkF4Ff8OO4XHKy#W^C6if z;II)vvp$MTOujZ}^{;S!v^$+LiObo$0Kr$&{bNgrm7)w@LVU~xSXp`W>s3ZIOHpx= z_V`4*Z_?~b!fMzoE@v->+r0}fziP0ufstueAN^5Z7GRo09t><^8j!spCm+S0pbSh$ z{jnMlg8V%wqb+v+sE$)bQV)yiVLFT>CD(w*#<|>d9EYRR3ci_d=oyf~l%eqNS;MK4 zVp^qQTG%cz|Y|=a`+HTx5YbFX;38(8e{x%>1U8%t5ghtw*T5%_#rXn@vcXc;rO3p zy>~iMAT{P98`gs_P!SxDkbU!QnnNI~p^xc92{QJDYa*(EPogBE`A#A=tCT0b7Xi%7 z*CxfQ&$$E2WcH$a(K*HNDDz*HT-!c#>}h-c5Q95K(sJf}obYLCpd)A9uSgU*)Hbq~ z@wImBCDJV>Lc*T;XjERP#&&`a z><4At19GJR`dy&T(iWK<`Q@v^%lOBr;)Y$C-v%4QU*MmMG8-lgt;1!+yX!$olKc0% z+c8`jkf#WBc`{!m?VzXBMSK!DeD6V3vNYpD6f*{%N%|R2~NROOVu@ zxXf+*0QRLo6*4~nHXq}Ym={%gG#_wFDG4>k3J9qBSm8D+q}!j6X&lIVTIH1qvP1O{ zw(DFwezmKa{6M2++1H3j7{lMx|78h?XAa4TxC(Eb+5h81LcCW2r(RmUwnREA&#c5m zePA}70)TNhS zvx&v%aCza3wvE!@+p^|2oEV@PVME<1^VcECSR(e*;Wnd*>kRW%>^um$s*rK<3LLwh z3B7_-pBh^*^+;x5o%)uRnpMxb;! zH(BHog?{R5D_;TYK2N2<*h}yK5Stl^LBv6E@-$jKK}6F><|@)Yr@gmq6F2eW7EvZO z{M^93XL{iy9EmE87HNrW2GSwNA+-?NDhDmNY{$~bbC5|vKOp2^Tc=v!aFi{Ap$V<+ z&>GBp#qLH5)djXwF5Zm!!w=SJi&zA;=%*`~%5g3oj7GG2lRcpvI@Mo!4)0qi98m|oxmu_fA2X)@e$?8iIFS<otnSZlT33{{y-(<9o5v@ z$s)_fV&;!F2w)F2SHZ^FGE&Y=&W+nZ53@xoVGMQ-txmaZ!=@wg2yGLf&2b(V#>w}D zwo;V&v(V?*-`RUe48tY+xe$`mGmDWOAZBZjWDg)EbqI9U?i{g#5g^PU#cQeq&2Ovk z@|`?rFX);G;}L7dZ$2ZI&x)pCPw;^pkO=^yir>@s2KuxsHZa&m3=8B%jx#vEx0?Hy zAFR`J^IU_RlR-jOhq@X(l6fBH{pt(5m+CMsr`RjA)fAQUxT+*az1-lHF@&J2{M(cD zbYe-d46IDft#`K)2PtqKk@KS{7&&;<>_wzwUta~{iE8kGtnt=taH}6Spb>Iik{3_W zW5^%Ui{b$PIG0;$Iv0~?K6_lkTflLV|)gmA5@Hf_6yZ>E@D3jqMd|e$m6F zBldZM2(2bu1n7SgeF}<$Cr@1|w>FQHw!VZMqDF-C zuUXMGM|iMDFfZF_o!6d+iw)cAkYLavg-I~A;P8w2K9IZU^Ik6O@2=Ur>_4426nSNsAwOMNT*W-+RI zWOZu6t#a`m+)AP-&cDWo^^xPxerPJIin9tF-Vm?KvZ*wAjPcRb{I`Ta!TmbA9fwS- zrJv!eVUtd2B)*|oA#K?#5Er_6%Qr*>xkfWsIW$*ohGE(NP@ z%aCtC+MERpB)r@Xg$(@{uL7vM z%t}@i)W~#te;5JHiV0`8F*ekEYx5te$6;%X`LmEAVtO#j;Mj`NFL6En9K73$G4!&A zeV47S-;t*(JR@VaeZ&fNweR6J37V_5Cb}R@A64`0L=} z_4!hKzZtj9OD281uCskt4m{OWKXJl8!EaF>@s1u~_)2`D$I{EXQ33$+PdA3+;CyRezzUr8DYPW7pwyp-fwQTC7O_W60ioH94D zn3(?eOy&{~!qRz>e`>_X1-0RMoTAL&(*8`@Al6{Vy6B<&1u7XC6VhX0RKWh*IBf4H zkZDfwinHFEHZ;t%8NOOr5FXE4`^6ABPb7E6+m&8QwF}#Mu*<*g*)3`}j%2z#4v8Pg z;}n*tliSLDQGex&S|Z#PWRtMV4XTdL7U|LDR9@USAJfxZXRJeQqHVI}8b15dFSc<9)HBY;24Qt2T;^;Wz9{)=| zZ)7hn>6S{L2xfJjJk*P?jpCn89RXB3j=k$3J{T=Jrm6ePk={8eZ;Mp6zm?EfB2QQl?o*s*Ewmm=K8TotLfVx$3j)=TtS<)yd6h3D-;*|7gzZHgwR-7*V0DgYG0z5&$$&h= zthC&R$QX{zGFvyEfiwXp;#cvMiB7%fMqSgELOVLNwOLq$TVk)KfaBMc=)KBZF9x;5 z?4W@vKjKj}u^s(OOwXx-&ra&B_!Jj3yNm63?}j8;M{#birAGld^|)chyD$xh@bE~M z0qLsh5Ds*iJSS21m|XS;CzIeFxcl*cML{}M1K3>{uGcBnD{bxwgG@7ngU!)ZBs=uaMp z2vbT>VKCa|>7e>3 zo_IFvgSG%$C9@oml;u~9f;lYW7q1tk?95Uw3uKMptisHO_K09(GmAPmlMpuPa?5o+ zP}MY%Wm`gv5#4t0{N=ohIFIji5=Z}zO&3k6{dK-%c6m6(&@}IUBN+Ng)Yg8*(YKIzoX&oqm!gJ+b4$b<&!r~2&|5XB*WA|4FcQfHQe|q* z!@?MT*D5V(+60CisInupjnGLS5X%8joj%?Qj2M1bgSkxQMfHv4!9|I}EnXJ4+61NN zybmXKoUN%-B|EAiZ&x+Ug}HzvOu@-Lk8X=OXF+1rhHv1&BH{surWYwzJ-PLj-oxhEf0 zmNfW-*0UY*`=iRS6S3%;HqPtR-Dx&9q;9g;X4naaRP0lCYA~Dem`n?_KY)c`N8pzc zAjfYWgXm3%z^X%~RiN_n9g$Jzocp3c^|wD>6LA=`<};R3Q|P>+M^d*@GMKfzNK<6> zUum`SfoAFQ%mPRtwE49W0sN$Z>M|sbPNRrk>9w#;!$7MkniZeFMIHsi)NE!dXI?eyqw3|F1G}f-Sq*(CkQY; zEI^F*O~I{JF-_O(-vhaIqX*_Hzqf@XQKT#jbRRO^JjiXW{wmve>#&CqKW|n0_mkoV z!lwkfGRjz&)1GR#08%9|FR;<_zK`?YI#nXojD}b12Wga&HP#zW<-vr6n+>)Ehg7RK zuiSR$pE0jTxUZ6JnnYR=1-AmjzI>{MMXAH60gbfY1|NJEd*LQe=J&Sh#w#R4q?$jHx zq&Cx+sQ19Nx1TunLn0C2&y46APiDMSCR2LXvDaE=3YW5`N82EP%0RZ476@8X#j!!pbw~J^D))b;9ahz0vV0 z|BEDNqD%}d>&`KCpxT@)Tokb@(7v+mVZufKn|{0bx^Uf1jb9l9C8J z%s(b;g0?g5{id`f*4QpoVhONHaYjVYx{R&tLG*U_`(D98#6`t8(Hz=8L&cV6IPu-- ztMVJQ%~#o_49tRq`0kzpOfm^aW(|@wj>a%-S9hz!q}GkU@Hqoaw!8WMNx}Cw* zptTd#wYxHj`$O4*VaPvKfLI14;gu+Uo_rz$(}h@BjGV>j4_aCq5T}vL(it?F><(l* zl1g=KWa5lGbim23&ONQ=tS-pNBKECDfi=4;1~C0S*W?U$=#iXAO%M8;J`(suV6#{T zPaxH~)YHEvWI716>_A9a5P@j*1dKV_KHFt+LhRM9aDWu7>?{Jc+f~)AcDPzgg(Pov zMIW|#viEOEKyh^KiC#P+XBJ8cx@fC=0QUwUF%4>r#W3zk7s(;es zr3N+Y6WXGZf}-`3l`SkYmO^GLeyn~ElVngYb+M4LFVVB=b=NQCov@|Nu6evzf6N2@ zD^_bC*lM%&sP`hcMWP=fZu;g`-fMP{QapeY%lYGkXNl1t@!*SsJoE4EKDq24qPh(m z*V>*^rF8u^9QsU`+zG6-T691*h}W58R)%v)AUra9J3I2D^C3iI_V>>mQ$_Yu8_YS_ zb(-;UyAn49_yXhY>!|3two0iwYJvb#4l#B7N!}FoFLs+oZ0!n3*}zYv`eaV?#TEJe zRY(3Ci$}2>MHH~KJh2c{vbhW3nOdS(5#(3IVoCsw10B!;UlwVNSkJ8LAVW?H4)A^6 z)k+}1M6nQ7tNDmRRS!$QjFl{ls%R62s%uwe-JFBSvm8YpxHtaqAYsv&h>nDek?N-D zSbQMi;pZdz-#HmI_%aY}1+kQ!)fh=%^{MVrNm#x#J5L%41c?n^tNOfFGZC}Fw$_Xc zb9$YFyNZoCB0XGQL};7aYr|L6(Vr2# zO=RyLv=a@Z%3egwJ_tO(sKO;tf6FSopdO<`JP?fy{76m*R{{C8%nf8mzSR|9&B9|a z{X5NV`(QWUTtV`{5Hs7kv}ARrKYUa~C8q8af$&93i9Cm=r$D8=TMeLyfFt^8%mJ>N z5^7&l8^vg-dCksL5|Kx;F5TBX`4vcd+Ko)Iqf&nm(3UX6IEZ_?R5fcbu8q8KFgE&7 zuUDmwipZHe^%yeHkJOc{FF#tO8hnH%*|Knsti_llBPI(~`>fr_0KRx}&4sU`YEkpi z#MOm3bL!0tAi!SpWJ>f?U;X+{^9do%f>maL<4UOeTzp;+EvEUwE=yM?fC^CjuG{?8 zJGFl@31;pGHhIyfyeLG=G3O%T^mTrSis;Y_Cs&G0?0d{{8*u$|amCJyZMmJ*P)f^1 za<8~8|HQPmYIPyT{+Z}J%2-CB2|7;5HlC_M8`8DSFZa!yT8;E?F6DdxatayCJmFW? zELb+03U*ipS)7p8Bsx;+gz-rI_*qxj6N+iNN4&LI7ycig`jU=o-zNb~ya0d{Ct^br z4?;5?<|LGEZuqpZx_a^QaIt>89*IQym+9E-BKBv+p0 z+joz2_`I6@rN~yfk`aaApS|Epi^hIS?6+&&a-nMlEe_UWZgoPR&+M!9*s0ZzHo0Bh z-qd*VxmFwQh(NUo*(0Ago&E^BPLCcJE?887 z98EYSz+7I7!3NPnxgxME%e4##UDJ;8N3eREP zrFTLTK2{;J9#+}>gWb3KuBq2cDgzW);6Ni8(Jp+1((VvF;ZL%c*VwQ%0a(>`H23%I)+2EG@7gk4={CZ8BDC}N7Ba9b<{<7=f z`iCoQ(E+sJKGeUM?B=BaNfgvGo48Ca=7kM3X(xez@BL%}onTCCtb(Gaw$#|t)Jku( z1UP26pdv!L@a^&s5zCGvEqXWuFfqO8PF#j6H!D#{JI@5(!k;&A=-|dL!{I+g*Cpyh zi$)Y(MuJt&HosLb_$LV8`7f3z_J&y6+6rj8lEv_)xpWIVBX%q#!$xkM1~rRaWuxM% zYS#S>I0XiAxmz<=GxNXPzmB?`hUYR)z~;(T6qQC%97BQowEr#|-Ah zQTyrO9k`k4b*+ro-Q;{>_kn7~p)Fy+H0Uyif51u@K1l+r} znal+#R1vAD&MesEzkrS7VidB&l6*GTh-Hd3>i98Y#gI5eF<6{?ZD!;qBWq(3Q_0sv zbEg7N`@hdZNWyVqhy&$upL98j>Jo_aNLV0}T#+`ciQQ3Zf2y}rXv4!D*F1k7wmJOs z27e)+{A`9ME%WJQ8T~v3^1%ED5)B}vCBpB*&j=MEPBhCG& zFz&41h*(7?o${4kPkUSp$n5irYhO~>8kP$XMBDP$qbLM>%xvg~qNm*=FNPAeR6xrF z&=KPKUf3ys#Ydl0@+_DRE+=-KCg>m=WQLwo(wXPL@$zZB!f{!;yvH~Uu_%&(2 z5NaNIIu;d1b|wTEMg8g_6Ki`)!YT+u!c$FKEfD^dYl4hNE)atJEqw*psktW)5iAqh zxu#IR)z^SMr!2_cCE1Ll(BYMPXwixX<{UW{{5=u{V@|ER11eytD}EDSGJZ6++mg-wZcgx}{hq6!3M4LSW7Vq_*~#JPzWiALA&qQf zQPuEx38qln#4Bj@lr2u-geqoUKb<4Y12f8&NFtDPnw<6^ncO&4O4P+*^VEPpiOSdveQs{^XTIH!o!Cv@NqAz|+3{&kqXnYN;T$;=i!!0*I#_@oHf}ONTAcflUnQ*|Vwi1UJZw5mkvse`n#q^fx4^c-2)=A61U_*hZ% zqe1CYA>PV`q9zq(idI#O>I5qmSljJHao^=f2l=@|w%?v=;jd)MuUq)MpXrNo& zwWrP&ihrumjQQxa*xPBR zF6iP5Dy+i-?Px)^bEvlLMk8&+0+K%tu8InSbo+;~_n|Up-lV6Xto-AUpmv<8=^?BB zq3o(jQQRM?V=@6{*_AqwWM7tRB27swJ)$hKwZ=|q&2l_BrfRzccTUQkWPmL%lIBt<$TvSxPT1@ z;4>bz50Tt8GD*)e7QewXF7d*mJ5vfGAce;tRFKn?gU{khX9vl!_L6-Q=s@5U^dPHh z6E;UO$+d=YdKddHYVa^vWmSgmWd){Wm!wAn61Ppy@v)=oConD&@Qq~hdLiJnNn@{d zzTBBbOVa8vfjr7Opj$;nZpZnfEo$);Kf}c4hE5G}@vl-It~iR4qXZAyXH0*aKoWD3oztxAl^HHJHPK9QTy&W!11dY^>R-vUpYDv0 zRMtZ)-rYp6wF&S#jo&Vqhm{6ePSZ&uDto3VB*x@x zX(?%=?Kam^V3)0Q%knTXzn}J375}X%Ivj<7TRrrGA-b1o*1TA~wYTzU5(J(;ub1}a z)dJfJ&}|LdTw@CJapteX@36QScj&Q^E(!%0okRUuf*w6@bs1_^1%B4_A}0NHdRwRKThoD&J0WiFc> zeDj;1t1IOyfMU%3pL?xMtU`(8uwjT}Lz5X3mP;75$Wq(Pk22(1!NYTFhu097YAGy0xd60!?23>!pX zR>MpOb9tV9FNT0RfjrUP-;i~hZ#XZ`u9YUlh;V6vTC;d5IMYXp6DqfIns$h z00K~{V^d3wUy-@jAQv~4K=c97x&>(q&ZK+e0Is0~h9RNP3}Iy?iPkccLI8I?szocA z{^c5ML|CB$oj(+$+tC8twL;K1sYUP7y##?7oAG8H7SvHIf`q#yE`yfDp3!V7YsZ2C zNbrN}O4b`YwrQmGpGVO}X#-d}v`2D&J+frEM(FyyCRzp&woYkKC34CrZUjuN?WL`8 zZm;J+VjI-jQD$3dqd6WS$XYvOy53Yao+w#9+${OcdGU=*wVIavHw zq_XKzT}u`{jnC}QCM9VAN!(b{kGmc*E|EGyuml8CK*U<00*F?61E&*qoxV@DQR<2S zfT&J$ofk`B5FQ6KHPHHf!ngulAjUi8SHYLKwjFe2hq++dv@F0xAWKqjt4g(6$%|7q zT$;~7=MGY&5)em%7Yo2GtR}25`NXj97-7S7D#nGibqiHyy7q>#V}-YVxt@?AEe=K$ zXJhx#Y9m6^8ajeFIox$fL~vIBI)btlBrHG){Q~kttU_XZE(}L`;Q2QJNkQdzqfDKR z$BZ)j{kly|uSL&8br>zu$89H3`ynQ@f;}gi_eELVA5pU;q(*R|bK%94zONA~Zg23Hlxf~n+6E!6o=V&?+V-&_Z9 z9Ryk893yUO`K=PAk=G>)^0@2*6DO#0V%QErAnE{8iHDX1BtklOKcX+1;c$%A05Y6d zO9{A(z`Yj`E>@e4%}mM%;=u&f5WyENBAhJ6skwOMoSPu;*zAI~1E07tjfs|aKsGvk z0NFqVa+|Ytn+VTnu|iO!0}m0nZi;v~1+{$+ocEm&!!6f&ZBK^33t-tiG5bx~u}OnK z>^lZ*4qpDQtK@)FhkPBoroTVG{@UNQ><2a$YF(L!25HH352tbvCN{ZT` zy2>o+eJ^&R1$~!GY-7*{WUj{6Y&ko`yUnlmqFP94J`YBQ15J`bZe9{+MeXt+MxjeK^%4-2B}M5PGhuV+*7p=pqNFGvke&g8Lq#LI|QtsGC9hcc@AQv`JP~Dbt-C zXcMh%Oz>L$En9R=4M!o0$aPyBq+jZ(o2EPf_guC_tnE44!lRi)(&x;YdEp_-`!vSX zDr9s6OXiS#tDP}PU5a#9JDEWzWx-FiKdujY;tl{rZzdDO<733*V==m$N!qk&-C@uL zjOqsAa1LvKXY-8P7IC@Cwd;`U7X4Y5OM$in31K4rjVT4Xifm!q=DMfIVo1165QEEB zTc*#%2cO)=Cx{RUCWvlOG5?Jrl?Kk6WFX1L1<5*+wa@W2O6=fl%o|yrty}=6m!^Y( zz>`T@V^UU0;mH6bIy?+u7M-9;BYjf=so|f^GBJ@keA}d{OT%zSL<|hd2pfkg;)*~B z*|?ZAh{q?OlSOJ9#R`L`wwJjJ$U0<3cq%mtnY44YE;D!T{nM&VL`_AO#Kz^mD>!bk%GIwsHhO>Jcq~Zq67+ z1~QPzS$9kWlsf1C4WOtkxA9tlE0x4lV*J+?Xi-aF^I^!D zS96LCvEk1hl{3WVbkVjq0?m`%hwQ0Tgkm(>8!~7f^+ASU1_h2hiFp^Fn^WXrPKgpld)<#!?ljmc8 z?w**IM*&l@$wzxRb4KV{5LYww=~zoPcpYa3;DTC~Ne5u<0}Fd;)XtabV~@ktCV4h@)&YS|`YDD_Ikl;h_0E_vRiHqGeEx zy3SB^E+-Fn+J3+w#U2hjnaJd80oIy{^gF9BolhmZ0)Q0W!~iJf44{Xh1Aw)tO10fS z61Vk%xy@~?+*ZffRKTiB=T75HW7g;7jV}+&Br28KUq@T8q(#HQ;SCDOn#D>m&bpS2 zr;jEtmx(aUvoYs;5hrHD2;2do=`?K!5_ON#O#ncc%@hLEB21?UkGKgK2E?Od>ECKF zpv4lyg^Ou^SC6<}BFH)?5^{qNK(i(IWT7?d>Im2-vRr}IPOpM8+=d|fSOrf?sqa0rOA8q@@_-PS!YjOxq1 z<2^>1Fqe8#oLrxg!k4+Kq^Go@RfvE_bzr#$T{;oAa3V1V0d<%rVwfH;B%<$(1NQY` z=EUqGq<1oj84HHSq2*MbciYJvzwvt6%#USGQ_}#eHLBGbxOkk;d0uPY9Jw3} zUbw3B`sCL}K(fPT2u-9vxMdT0(#U>ejJgFP37r-yUI z>kg7mq*ADmyFKvHF>ud)sFd9s$_YS|27FG~vgtk{vkdDFsMKIvt+I1In}W`rEA?bo zq?t(YiB=hoYtNzWWX&9u^W*$s4lE5rYAqI84brHvI)-WAuOv9cfMlu1NIVrXW84x2 z<^&MsmS;v>=ygH^L0r|+#t#725TprncGi8JxpPz!F9qQCfg#V)INB#Hkl_1b$~(t8ZqK338DHB= z0ca0-D?O0l4Lg#u#5dv-Vz$2arHx&P3rHn$#Hc!=fh4xI+v|k=rm2dKOV(1&+eKTi z>7m`WW+!KN1pBt6jFKQ0&VMa^&BcBv#Kj^9l@eK;p;nGvLk0^2f^sB_nT{b8nd0IXui(fA6z=>>YknPIUl^=&@H=`z_@$ z7Vz1P4K#g`KLa#k?iLGszRGgSZi5q4gSM&|vLds#G6Hn*FvyxRT<@IWrS-4Ezo0dq z6beRmkZeAwE~lDG0`1a~kS8t{DX3Llf1UiK3Ifert`bx|MM#yS0n8vOjjyDWie_MK z#}*C_a;=t*2?{wL_nS<0wh&z)Aa80!0LuC1YrTqER6mEeMXY^h!>%18LLVjJUR6MY z5(aF?`@opb^jKDXw1Lvd(4>Juz0~MiMvLnz*Fzo5q`vn=-=jK%0();ks#M{3FE?`!vpy}X*)C* z@D+V>}YLA^WPbYkq3`@rfb%UqnR z8-x@nh!M!MNe)C0*+63*GXa|cV}m+-@f{m1c(CrpIk&yQ&j{8Ly*S_nzAMnQa0{X+|{tMX3WOr=f+IGdZVaCv9E!bKW?1 z?BBpfYeF_em+4hg3+hYfZ0e{3B*S>!`Bch7mAuz@=_rjWs+|BxAe|29xjWIWh}roQWn1@7DUcCS zktK;`-B^ec+ArCx#sveoq=8QugpAe*PA9fG%^pDlAhnnUfX-|dhlCiD!;Q{cWZuV) zeSs>p5}4-|*~?z`vX{N=WiNZ# z%U<^K^(ohO27Q|tJPOFny;gr`%zj;);oDV(P~}V&0O?VwSr*c4BgQRewh?>;2M13z z4VAD?MCH(Qhk{JEK1g*h`{;U zE#J1yey344t~Bd0j$&_#&?Ryq5B(elr0Lq!z)WDDssG{tP^HY)tZ1+>HhF3Bis;AL1)b)Vd4p`R`5iK$sqdKv4G0hzNS|T4AHb}h7pfhQ0 zIy=OP$-tmxC-uL2Y*EWPjx1Y-XiUsF7N>{Q4;dzH`ZWkaQ98q<0arqFMXNT~KU&7i zm7{Ry;FqSqy{o&v+#1Xf3uZ$rvqVaBs^B8u3l1ZU5@3%ywG~!F~XB8BV`}1OYO+r~Q_cNY3;oM$n-5 zoPIxgW~Z#>)JIgu>k>g?x=WNf6l`q1uGb^7ynZ<5WM(1qp|%6}1K8lB!vM6c)Rsd~ zC4BvPK}Vb{v`4+v83sT(V-%fml3C#r5n9{srY@L_(Giu~FMBQ5v-j3^AS=bNESQxS z)_J}cd;x}_Sht&~B_P`$V{vO2*Ll9mHLLs?Yu|9SJ7^F)BoTcYB4nJM43O-(t=E2T z`gU&Vxwvs{gChsZgttSK`AWI&m;!-Yy@x?bJC&3X6k+|KISK;JT05l-yN)j&9}9}j zGL)f`YpvHA>2`Psdc;kj#Zp=WcdbxN7}I#)Cyu1(NRX*+1QBBdkN$b>u=wmPv`k14 zJ~6M|eV;S8+Ge>Zz3YdZjkURE<#yiQIAw3P)`4j)Rq|$XI#K?PGeX2OzZY5b(S6#q zwk&u+v0kTrq#~KGCXtZ{3#IcR)erZ>UahW6Z)XMu>MB*PGxqw?VmBuqlkb~$@* zUtiHQnH0b?#2OQN(;&4X@NlFUWrA;mPkG1&)QImoM1#wd!Yj;})}TQ+ zoTvXMcIz#MSDGLm%HoOAymM{N`Ixocl-(~31>-bMhd-M0QG6bfLt?P^0z%^rQ||~F zDMgIZgE2vehjd=zI<>m~>BRy$dP&Wi=m33(d@l7-4@cvf|) znc}v?aNh-;`&xQ2ogz%7mJUOP1Dj(X4h|%MWDJ+qO@KHNAo6&Jv)dpC-u&Ji79cw!qw{eHGUpXuh=H^52X%s~ zDm(Yy5cG!SxNZy1I5k+M+km+iST3!*#DdNC+{~G?HEB7BL&@6d!GeX>OI_C*)(!|1 zV`^KpOTs575_ny$WNyr7nZ#+mmXaD~3Etj!u`HRIYOqS*i@|^sspxE`-?4*fhrHK} z4SO@x>TIlVrO;sOR#Amq%L^p9AkVeckJW|;x~xIX6^SFR*OmWo*|!2V)@ri0H>P&3 zrWiraCvD<}LbuZV9g%CXk|@y-GtYv5F4lQK_j5MJX}=yV7GQ1tNPyPtS8|N4`}bWe zYTHe(Qd_<0G%+#9;}Znto#bUmOvVatr|C4W(S4uSiDAg4H8vm3IX5Rf5&!A?^xrvB zt8xG%XV`2B`!~s4rJ+xbLvqd`fg+F)dCHiDKk9k+tFtAK)&f&BVvWV)skBl}+Vg$%*xK;`;v z*XOd0r|%P?Xm$kjr(0w8EB}aKDe_W6UXMg{ae{5nB_` z;DFk+fDkKI!v4F54QpSe9cs1G%;xbg1J!=tG@M$|&%JKtrXD zMBHQ$wc3hp#)7f7Z_C;R>9Ne-Z~?SVy~@Tx*Oe1Y7i0i=p$??=xO2^dIb)&75^jmy z*km4kCdX?wV!SEZccwg}&$y{_ZC5wsD4qWumCBu*cOW?I5=4<#xr}}aTKn-Eil)!cA+?UXbS%cGyMokBMweAl#F~)=>U*FNfWt#U4qdod zUUNr;`(A=Dbq$(n04fDh1E|tkX`q;iE^+M zNC8(40X)q$>S5KVc1vLZ@lY4M<*$e zgaL`eh}90|L7$KIV@^&%*B1e9$s(3cJD8>Z+;{_YjRJt-!bMnn-!y*TQ6;sqmD==z z_a#&a2a@@Ws$07zX7flZWodz&+a7CorPN}KA%?O`2KbH_CKiy541n{o9#sWwqFha9 z3Z``@V|~%za3l5#k8St>An`zLx%VKQnhKvG5Wuv#m!%)YA}J`p4+))&=@is75_COT zq;5VO)Jd;GLXgP0g4Fk`A4Nftm!rD+q7#CNt@%`r*V;614c2+F+H~K2VHhM3=DK{H zrCi$%x)PlvHbsM)*kYy`RvIW}pb`vv?0k5~+Cfc)jh!-uzni2fisPa}>BW1dPIKJH zp99%pUkhY#?40}PtZWc=eP@6JTQlcdH%8k)Pn)c!SOL;w)a;`1COmeI(mSC|zc=sM}zdJhFr(FTd5yH|De0C9v88o{^7vGdHPfHE`hA`QuCq?K<5!7K7bW+SphQ;Twr!A zJ|kI&a^JIO>Ir>(W-DcsDzOKMQcwGoO|SVwlh>aB*%JVUnk0Q+15lO``i{t9sl2gNM?(q_0Jt&%XNcq1?Y}t zGKqT+M*Zs8x!}rw_OTb#`b`SGC*d3Cp(SH zU~?LWJ8pbkhYBkKnpFT0^n62lM%?$H^}4X@t=y8kzJ%E;iW!g~NxHkS9puFKNzWN| zpTKhg@h!pf6o5C#yS2kh!4`e*(}@tnGUq`38OgQnpaY=!9DM#jqPa&W8xSIdDlMY9 z$DP)a5ak*Z*ON~aP@R{lwnyv4sM}!PbOsiyAyItq+as8wkAeYG=jgKR7V%_O#zt-3 zG0J?UP17K+KypBM8=MBnQMZZ`WH)8|?7Y3Zjz+B+n;T?0`!)w@O8{V8_hP>x8p>8a zBf}G8L_vrEQ+~Eq#$arzlZj+sYsZMXD?$W1e-6V<=RoTLK^b3tTOnAT6m;{}HifJR zlmDN+H|=&KNv;I1xkm)H_ef@ys;f0UXa4`+>P>1@GLz(60L0>M^T8Ik2!N%TQEE<$ zpr4cZ2q5A(AZpm2QorI5*Y`%=#Wf zHibR&$W3l4ly%T$YIE);d%}tWKmrIG=RRv-$+LdyAeaO0{VMEd`w*$lwa&4s8BcRT zwsj&pE*7LP39Ichh%#I88qIKx&K`yGEFOdt;Bsls$k2Of0Z)^l7-GGkJ-1$@?7TF= z*!w?yK>2t;9WwejzdS-C0zaQnKb?T3B7c2z^&0>(9=!aoHsI1y*TmM-KIBojFwgnyncS7tn7H&xcd;iQEG*fDGv>ik37eZ~_t)k8Mq+^al;MK07 zR4_^_2?+r-3XIX{IuI7&KyazwvhJsb#@yJCR%)@Tw+#sQxLI#{VzaMJHTg0)lbzFR~S8=T(uiJV`h zwBHQ*P~gY3thpTr0MK=Uj_JFml=BC*AKF2W*$J9uf{aeAN3(#{g59#sD(6&g<)Hw` z%QOSGG?FWuC_Q3hhSI%@tRa$Vk^GdK?x<#XX}?={BFiY|)H+`5gi37Zn&NgX8u{iv z81x2L1l&1q*^!18SY=G&Pk*GicD-SHB`h zu|O2HNuBOYpfQk@4tvpD?K_9_8ljWPzyWAPD>^1ta4TcKN4rbT5yC08{+k8zSk2ik zRWk4lR0~WcfaZ!s#m~p;9CJ=c!GUKegpwo(;kEECqm_X^%XR6qpvVEy1&6NIbzn9G zv+X(h8Xn1d?B158X-XT>Dzi9Ap;Q4mi-V~1N~}9fA5UJw@~ACM3vjs#(#q^90LZ&l z|CDhN0#6p8ib2b;R@1n&{h}js53;*;%&k>4$6U**suyAa03ZNKL_t*Vyg$t{&bX8H zfEYTTqB-ZD99WMD3qUau(p)6yueO{Arse{=OzRQ~gW^NS>pUxzcTf_xBF^qKw|T;X zdwm7wX(b2MoaIm!xh$*ST%zokKB zp?>`adOCu4eY^e#X)AwXDK4GnO;IC)l(;ir#6YAu=U5zGTgJ}Qy7EHU_x^^liDp7&|0dN0oL`Hofi-wve;6s5*07SBQpTj5Lf$LwWcaY*rVfM&7AiLRg4+MtwAjtX|yvrBp85a%%e8n z3cl2b@295A?hq-fH3G2GsWo^R0B0rj!QKdgcvCCY?h#<5Tll&qi7MS}59nf77^_-z zofJe<731gqt<9(8uu&t4lZ~n{vzM}}QJ3v!@SA9BTb&yl1FhD7uCf7?q}ELx@T#oX zrlao6*miA@iIMjE=A2Kn^x*)rT-CNlC{tvrj-?X`;ACnBNr~B_At;$e&gw*1rU<&3 zEkO5_D^miaLh8-e5UU1>FCaUg{cg@V(46L_tV!eI*zsuhCL3Ef+m~jX(QYRJyYm(4 z^B2(c)R^BNsL{(Cx>A5I-@unE=;H^k8|P^T`nk=?k$BXavdx0Iab#Exx@N(mhVg37 z-L4g#W>PHsVrYnz#5vz}&0#Fz{r8;&SO8^u=amz(LOxlu%)Hm{#)o1-rf@HtfB~`g z|E>k17*!E03Fx$(!{C5a!O%>mIqld4A5@Wnu2Z`pJ4Oj}cCRHi(=1L;I1d2%e)WFz zpOf-6RGG)DgvRDTdOAs_@as3wfB#?T|NP5ij*0UXiCMJdmqh}iaSmQWdD$j7vT9rV zfs|;iE)BYCbJKR6k4}g=8$g@u%-QIY1epM-o3~S2kO`2rs^X?(XjO&;$XcLI{mT2+ z{?DGxBU$6(n2Dv4y%KOPi)N@Lz~tmtcAd*2+1H%F+%?iXJ+PH&GBfy$*8dHrZVnDt zq{BfRL{l2tybqqHM!2>8UQwddNu50N?2PW|bOh}N)YmuQpZ*1T{AC?HdyvM{1bV4n za*F6r0Jr@=GVMn@B(^xGY90EGg2DHo?AyL<-Gm2lFyKf`ZuRb7k3LV}uP>nac!PlXx3(YKK~E%X(Bml4nA5X#M2nCI$XkRu zJBg3htfA{<;);v3L*EIW0n{2rf5}@IV@g=TCiFNCS-09pU=78qRWkL~IXjKiSj0L7 zBg&dbsn^6&oCqkSa%pY*RgDTHs>YSp5Ewg-Ki}^>_mCyrX4-wf=#0e0S?h2llUcy# zki^E^GEA0D2^n9D)Nv%314M3TFA`z=egVI}-Yis)(D>U6YN??84*CE1t311xR{%i$ z@=faAY}--*VwaubX+qlVq~@j+XNLt>VRyIwY_Pj&Mm?XE)qR6-(EV2DDn*bacE0OX z)D?hW33I zz5>7gzRn0eNGrd80e=4?gq;87Kg)XYg`N+zYFwG)qr;?iy zjUep$ovfeZ*i>BRMV=8eaJ?$iuR3^7C)AH8(8nj>Z@;1b*Z*-N4fzO--`|CqcsBsQ zd<1tHbk@1}d`AJr5*r55wLlZ|n&i-s5c=0y((Sz&q;=a@fwg?pDic_drgi^xY1gIo zGl9UPWzzxAB*sRIA{472N?f6XT8R^uiY@ZR6$rwZpp;rUOq85*xbED7Ns-?uXF;o3 zK(-Vm7QQ_OYC+oXkv=?2f1hXY+j}cbtIbhNhl2zOrb)=;j7z2zA#vr}0_D0+q|*`n z@frEUGx+oGDF6H~P37WITJ$HnPI!EBYG|~1Znl54#Uocnx8bt#W2aWG6Q%vO|J0C~7wCt0OZZVUb+IRMw@WN(~}70f&| zwn>&XQWG;O+uFF5L#r@$tq&&4%Gg2{nIz+WTY08fzh@ai8_ZTGvUQ~6F=@^CON_OH zU}Si@U;^sg>!6Q@B8OvoM9veN+!pNb8J3$#$sNK{#9*`M4Yc>51Ce*ijC#KQ;iL}# z+qWcjYw7t3{B%U!bpkcC%(EH=)+lGGD?c2-OF{keMHy!KW@7YuIiL}97(70Vk!b9) z)rTsPj+AEf;?R#uI;V0L?H;V}Bw-h}Ou8W=OyVceZK;F>d@K+Yn5QYo@Bmn&QT&3} z3uYS+7T5~gWO%lPmL@OfEWy!u+@5E1E?TP84lm^vS+Z^B^ceHWOME!U|-E~M)X$EM{(nnJ>Fw)Zrd^$*9`tlVn-?%~f2zlrv zeL#(McQT_>zUgDMs1af{yCzAs6m@Vm4x?qbvqVTAnQ!gG2-@i|f&2oEkCc_nJwv zeRu*7J?Jt5Z*ReYsU8$WO5mYGdDj7bV7YPf_GWwpsNNk zlySV3*CkON*bhLd!rFf?n{Le=(QphP%CY6Xmhk7MWDf`Md9jx zy3N=v5?FO-r4vVk3IntD<$KvUz@hAMKJdAu=H{@t&rD9p#-s8mq-Lv`+#O1hjCM>a zn5Megg!TQ56+tTp=V#MIdN?6{c#;hL^@{rPrsF|N%xrDd`sn(!Lptn`zrLbA;5uO> zlYH1o@F^;6*qj~vu#o{We;;wM&462i!CF9>+_lfOd9Z4G+*rnv(^j7kArey+GT{(lk$Mrm+)kXFm^JJ> zxer~WJX6qhGV#aAlbJs-Pe^sYAaT9uneC#{>9u0Pi|A zy2d6`X5=u;GAZT^I;k@AcYmjn4V^qR;onKq4TbNh|}Bo1;&K zg*90B6G;<+^QNhUz*Tat29IP{bMl+R;$mB zF#t5pNS6+kv=;evK>C9hng0llPA4ZnqPc?3qZ2ws5*cH2<r-Ssh z!oqV9$!cvw3nJ|Y)cxR4RGOEDI*bAN%C31Y`?rj_BaAGN@BLBFWx*z!rz?Q0QkS|G zL}Iwr+-&wr^<=W0sipx&{Xr*K7=vV-oO98*V!OF(+haGrcRwQu%P%jr4>2W$7Ku4)5H)H}O zY5@fc%Zhq7EI>)A8}jKFpuk4VuZ-xhfE!ty)TwDAM99=n! z>DDQ~XR~a7Ba)Jjq=BuFsF2J%+FZ);GCix^rV6*)fnfC{_A)+4l8{OdS{ZGu^R`Sj zv#bYJ?;Qygt*_1VN-mf7DoeN&LGoy3TdD+Gf++e@@mh1j_2%B zv;?(djg&PsUW)n?@}4D|zJcQW8{3cVpaU9dk%fY%862bRM4+8I6Gr%;Stf^$+e=AJ zD_VYsbRg4C4fV{Px!nfL(iTUhH9wl!T}dzaJ~{wQU(q^SKR9!>X|X#Im+hzb=yhJk zj=dSstH|5NF^LZOwjK+2YGvFXPLf6O&tA8V8z;dRL(?el1e$4#tTY$UIJL!Evrx1Y zKLHhG!MB=QgOwVqB;e67nr0bLW~4n>V`k7e34-8qk;UKo&@f2!5CFfvHqCS+X-ni% z7&HvNDAkKV9@C#biCh_b1d`?j80S`AV{&%=&e145X>j-Xg!*)l-^W?siyb`#Rlef{3v0W6 zj)B(D*!py>NOQ=%_l@Ap(HapsQn|&bDHv~wKp9Av_rd4DNQSJ|8m>l>j24b0%( z06rMOXV63kMDh%{@0djAT)%hj5Odg90a-N>YRkT_NaI2vz@Wautw8H}Fzb9x%Gu-H zA!ObS`Qhgg!cCe52F=$|g4b668|}$)YMFOM&bS>(36wPOw?cgip_@pjiM>i1P{+q7 zLHfL%!B*Mqwo!|1_tWO8|ZQcy`7LwGMDk+L#+JB z%@kB3q#bA+IEh+7-GZ%~`F(|Ewbpmwp=C(b|@d%Dvm?S{2Ar3&4u&y#FppxQR`&ts@5eMD#Eaz%Z6U$JI7X;>mLSOMwN zudk?IzX2~VD+f6pkDw1ve#it!J^He^lgQ^wlTQn*v9uW%6vic^jT^pb)Km%SnharT zP@l^Y@?#XwebF07CHxXNg7f9Cb}fI`#n zj2ks3of*}#kAOJpRetxVI}0j>lNyhH_XrmXF;MP)v zQQC;lLJ7%t=bzZ;Aoe$F?R0wMX5`zs0GB#LCh)FD4Ow#|h^rdlapR=2%+cDXxfil6 zCLk5f!bg=4H!=asK2i~M6L$$U3pu3hSAcDjjk(Feg}&WxgxY`GXJbf`I2RCUa4PF> zqSXul_2Ws#1OWarDt!1VM=Gi9 zMAvDZF{ibh8V~|h%+5*TY6IVMJgm{yHqm3UpftAjmcZhn^B+)i3S@|(PxpC^va%X_ zb@n{~KvJrdW*N`4)HQ1}X}zsFaHM^VhhEBCwq%B0gI=VpC}dY-h7izTb>u3F_o<|n z;OdE7zBiiW}1QDzqa$}n4m${Q+_|M&Q)JtK(DVdCjQ`T;eUkY zgr7hQm{_xnd7>6xwG0_E%9^1~g@#LP_65+cTpt9e>_kcR$!JcX*A>k%$Zl$1W zuIDy%%N99H3nVzj5Qp57dr%u^TJ+y)Q`)t0D9u_HC-bF25M=&5@6E5{2p+L{# zPhPH`TTM4>r}!I^(4+9ZXYLPsU6-!n*Odw`jfV+2JC_Vu31?`+Z!$Grus^WfhT?y= zpY3P+*?zX4?PvShezu?OXZzWHwx8{1`~SWD*co(#1LY)HK_zwAYTSC%!=j-%3-e}# zGsI?*teb3msC!sNdSjGz6DgAuZjLX|_x5uJ?X~vBB*jeA-RgymL}(k-{2p9)6MZwt zBd70duMzE4d?@HO5~IN|0f(cI?GxG5nP4e=hqW_H=11!psc>N2)_w133|eN8l)c)> z9JZMmCz(?{u3Y~h&&*0_T2zXGm2&3SA-~%IV)ej z0bjo9SEN!=+$1jyx@t%dQaG@2HW;DsanM2p-T8Vg7!P4zy1Y$+=H$Y>c9Ld zKN`7>p?a+Bsq3W7X`Y3gX;^Nv!HK}HZ-Pz$z`C}`2U~ZtZ|nQrYxce?LyKa=4X|g< z%TAF}g{A&mVSC)&&n`$=M$ATRkWGYEi)%l4IY-FS&%*n`nZUaYuE}-PS1Fk;)CHR= zL3|fM@7%Lb73=zEdxrB2{Ovd8uF&}?K3~ha1Hxy~chb+VTH{-EeAwCnh^*D8k8+6j z3;6wg&7A!JO{CK*Fl5l_DCBSR0(xycAOLQO(sFjbAD0JQA6WjIW+@Y~ejmzx?(=}e zEZX)rtmp03`J_M9J~`?m%_0xzc8{4A5deA54%*xc6RiP+Bt($tJDKlikt`+a&%41( z#W)hUvFbDTT1GjJ4lVbVvt+eP0Vf?V1u9uuB=bE8%7?EbmbZTrc6QjByUCL3n9G0q z1lsMu@tmsP&P!7yqM;Xi0T5(dPkpu*85BY2CC#L( zgtQZA+k9fSr)9b0Z(d@UoiC}WUd3~Y(w37I8~1`;*LRdTNXfVbeH|4OHsya=Im@s? zR{VkO$9B*GcpdrB%OHuhAgmLS)pr}5-5B5JMHc8~V|Xdt+-pvZfKKb3c{3W;%z~-G zmz-fUNo__-aD8+Rop2ENxMqu;3 z8D<1Z+^$n0Ij)<#D2$3B244z`Cv($$HX@1*Y=?UYv~sB+(r0TB>F}3x5_of$1a@{A zfvUA6Th>e?88YqZIIthA(a?)ywi~2x7<_J7q|SDl97>l?2hcB{M569|MVcnm^I0IQ zW>hJmTt2D<+t3SC=%UP)3#}Y_cXBKMfZ4~5aWc?;59+jDX&hU<*U*EWPICQ8Wvk9w zM?dt=c#Ub6W5pWul)zA_o*9iG$Q*Wqw#T*6oN>80a0Z;sv;veA9-P;UogLeZLz;nv zjgzk9kB}OC)F5aEBUAlfgOg!V_%M?@H%UuvXer<>qaJst`wnSZkX~3>+~)>CjSHwr z9u+z6BSPE(I4M@$^+=@!r+Az|FKK?CwKc7U6DbD%-f{ldb0 z9U!?YGOR>OR;c7|6*8^?u+`jFXz5cpb}SuXmOz&|E3rH zTYT7wgLl#SMN5n5bP&7K;P7b7(G;B(yS5k{-|u9-v{J8m24AmQR}L@VFo$;@#ff{8=^l&d@g2I?^J_c(!DdT$<`*fVe zZnct3KPbt()+JXbi2O9)C9mDi9#g5UWc`$?9Ie$hs5M}lntIt634RR8UQddJ0}}4 zQndX}j25rOsLlB9@|xi{G}p%yK9jcSc`aIkJ0>*o zY9ewH6{`zlZUb~1x!Yv#g-r9RSu{0s zQ%?u*E{DElQC6)#?~}9qI?>z8an;M%@;VU7%*j!PM3y(H<0U%{Xi-Nhj4RjSwG7Vf z1JMmxohEVQxJ#%*24wU!HKQDRYX3n1768Ck=_m=MAnNM`4IQZNtDgsJ#~q%u)H zJIpiqo7AS$VXpzFW&NHkvpvmXBt!enGz&@GhXX)_^mc6oW!ns0Y?^hs$v{^5pVgEb zsgTU=$?MI{d9Q=Jhjz)>u2?>dJvf;Pz<2F0;wFODKmP zARvv4$esZ=PRLd^>PA&2&SN&GS|+gzS;~!bE_&(=N{pJbuu$72l-d#wkVJ+bN2NHE z)}S-FccagRLDSq6HgX0A$UHC>t!GuT&V$;HwTc7%_U>|~*aX1*`Q38>xVls+mPOXd z!(K?ON(E16CwAp&mS8$pu|<~xHV10}v_MP03brLH>dl@dGcZk{nbctkec@3WwP!)* zV4Iz7P0@)fCi9rdjtHg=c`auW5?InTd*K$OS_Q4(`>pJApPR{1f=)2I$*!9XLW-cO z78KAi!6|9RT<@W*{1i_fA|&}C6As->;J%+2p25j7y$9Z%mLrNZ*%tlVCNk8(H(R^ z7X(?5X)y=e{z9_Q7InOiGCA4=Ya~HA0mlQXIpd{(zP`e=DQPLxt3&qeiW}|P%!mSXk}#Q`?QO)x zk>LZ~_9I>N+_JUFgt3ZHOLkrjL_25-6M#k1H-U}1Z{0Orm!_d>L`)W}$jO5hG%ssL zO?_t$seZJk6B|zx`0F=uc4PU08V>Yy5(D+?3+nj{em{dQ3H9w=9QfT1=`Vjq{Uk(j zG%dh?{hz?)3c4PE>xlCCcX9N0yIW!#n>bA_u%vgd76vu?I zXlq8femG+Jv`5Ve`J!;Xvy3;UHYUnWso7t~001BWNklMVh|0|HHp0oE6Z%js5%@Zye*RrbC*s`D_hR&ZcoIkO_iy00cciy7 z@;M2FeVQfe{-6Gg`I7{a(p-`M``@ImUR6Ef%ZnVth{tLTPEYl}#Mw)CB7uFVD|F{fI3=X>RaG@+*S9yqsrqz4IqCdd7~R*ikgX{iC{0U4^lh_-{z3c34e_r0 zCM9;%ibp4H}K3vq}T-z%#$SYl%^C5G)f2sQm629KTQssToP0CgANI>BAF{WS!3+o`8S+ zPkOwB^z{|>x8EhZ{@WL%>jP)o+(#J`e7-tzgqek0mU-IwmS3U1l%ip$b<*@BseSIk!ewe;*PH09M&@-zC`N+XNgZ zLQUiZqe;1UlFcA_nu#liSDjKO|&R*_8*U@cuVQ$xPqv%*t1S9}pzXQ!8 z%}aChWqd4H5YN^EySEK_s%PbwMaG<#DbUb^pN{RgXGNPZgRY}oivtck8?FMk)vL}9Ai!iA}o)!`~xf@ZNYXMYh2U^l{NBg3uLSJ^@$+|N28+Er4xx>V&RtYge-o=WLfljlfsF};P1Yu zr8YrWCJ|7WdZd16 ze-h&&j|Kg=k0^ipjP&Iz>iY%h=>+=l1U_HE)3=pAx=pmqB4y#{w`LP>&SJnQe*}QW zA(2c1F^r{@!21E^I7mjXO11-lM1h0kRGO>zW6AXBxnns-yre{^JtRvQyNyPojWswr z>NSg#j=~L10$PI!tPe(pVW5rkE}>>>QEJ_%?mH}M_}XHbFB1TPy2la^gByDw#(q#E z!r=AatIPVKTL|z-ZRk6w>zc0ZZU=mL0-q$nk@{Zx?aP}6`?PjB@3DM5VERRznKV}H zzn*~4Uyz8v*Q?a?J{`qre>)2svav?5u4$8zw5CW1k=sk&4=ph3vVjivl73nHjAfru zds?p(g}vXUQo%Do9LC5J=FbX{%UVJ*ky)AF0q0+^tO}sPCe1nm5Y>cU1Ju*9zQ>T! zAZ27WN*OrSep$rMN(=p*PQEfh@!a^3!Re2VwmyXD`+)9=b zOMR}DqF6t+^2gxV^5xR{*XbyM@=|0yF2zxmY-KQt@-W^ZxdDdrxs-x**n^G-@cANA zfr<*H=V#2n9Q{4@%)pngKoO@Lql zDzTQDePeazEwNDpny}eYL^__87sxWyu1-^mpjSu~5Pben6$05_0=1MlZe2Gx1{71JR-$D1uEI=;2GpEfY zx|ZsoRVTo$u>`mi!F!D`FGZaGoj`VJoNwXTJ~(LY$XkTiI+Hb%w5V0!leUizTq*_W ztWh`X;1i-j{Wn0X45XlZW(oe4+F<*+ z^#O*CiQ8BDV>ec3IL@m;<3~tI46JF92)fpq^CZw;+U?-TgL@f1h(S)hMD3Xf>Fo?0 z_NX6E;;g)$*Zd)7z;KhkSszeq%+1lx7-F0)E9GHWfraEM7CPQZ|W3HO8EMl7m9DWud064mx4^Cva|WdfWi)&06Zu>IH$ zI&CJAL~EzJR$!_?DxO8M$!|q21%So{IY})oO$wWK(lIsUv{ThjPvAZyy^qq-VuvtC zKLKL(m?LTqivBf15L@VG7D$<~Gfy*U*2(hPh$`CPTX$a5z7+_2Y7WV!j>QO7>=?GV z)=rJI$diz$B{r<4F_CJYqh%C5YZ#n#*!99$R#U0S=S7aC6PCOOS@5zF4OJtQvHRRM z3%a1JpDoZLa0at^z{b%4R^3!@v((4pOkxyFQwV4gNHxh(3etH*uLf{BPeR6|O)>%% z{Q3$S2GsxSA5r%my5HV_FX_er7p6^(IBVZGG7)#oH8M@dqx8M=6|@^rpAX=ik*<@J zb}R*HDQ)c7*q~-;w|-CSC^N-{?*8*5T_#@-IxIve zyNt5WNV|;g+t}dkA+waG1^KLw&yZSH)K1_FK1tMC%W&iYgusB+bCt&>{^5CPuzwp9 z7GSxK;sm~DL074kw$HCQ30c&#Aiq!Om4GV0&!D%nz~yW5Kx=xH%=z?RenHu13||xS z>-nw|c*6*+^O&DNwK#ju8+lk{wa3jvMla?ik zLD~-BA)zJ$)hq!7JBI~3<^p1!f9kr=%f`XrvcQSHlltL^<>L-C9nk-e-+clbJr2DGwndrJb}Cd+6(Dx|k65hbONy|O1&K$i*{ zbsQ`k9r6%l%3}eab)6VXLjeI&md5~H7jR0LKkQJ4gzmB+FPph2I2M387n@0%Tc2)3 zaI66&%?vJ0i394GI}bxRzQN{&y34Bll?8aeEMx3dI0 z`rhHZJWhZH`{X`#kj8*vO0xFOOIt(w4)n`MlwVGu@fqpA{S)fTE7J3mko)O;#xJkv zzDfqYo_3(IX*nC;k~t$hO{g!gT1FWr3nS!$IPoi9nn!8sPk2&?HvP{s!x7CHw+Y)y zazKeQXYDuY8@R&7B93o4_NW~p&sA)Gw`XwQIk)i<|GIym7r=m(zj6Z7!VRSzoOQR0 zs@U#GZ7GnzF=;=kAlC7qgtKx0ZUI*diWLG6z0|Rrt#0dRTnDxa5y1U9Caxn&8eNY& zNnF01#fCIq0CU*qMal{QDe?+57rzqTLSL60pu=Vqjb ztQ`@pC!9@GhQ_JY|3&y=PL0fm8NA;~L^vKNw3Q^7{mx-TYzDKl`Nk~gG)rdQDUbo|gg{+V$9r>)>XfgTtV{UrPS%+dwMEV%Nd}=|fy;O{zv`f{`_v45 z%?Z>eH|(S)%?2Ulo&n_f*1>am2mgZCk-Ydml%4k>9rQ%v3~I)35jA7O9l3+yWN?}VG^gA9Q&?=BEtnxn1r@&7ZJX36 zHiATgE^>g95-Eum2t>S=Kht+rJAii?bPfv$wRtPQYVe}ljEQ@h`LJkuvxPA=sN_R7 zwN6O+5CAy2VeG3w8xsJWPXsK?yy@4k=-;%q^fI<`jGUw&&x=TW{q-ME_Ug2nBNB`R z&oYd&I0?4K6qYr|0bYL}JOcbz#wB2+7Ps_>e` zWb1)4|B5VTMZd6&EvqM2mS5V=wMoetifDZT}R|;1`oaTZL90I{^-wG zQG?FK>MT*ua5Es2v7cuz71OtOUkAXqp7+HcgwlDEpyPas7E7-3vHFai_mVB7se)dv`U--s$LP+;);adXA2GMtg?QhKc@;s#x7{l^8NONx23Y333cDGK;+k08?Ju zUYm3Jy1z{-8S2iG9RCi8k{{bakJ+r?Y)8lJ@3F0~zO#(1eWx$QYfj9Gt`+G#3-oK8 z*Mqe0!24d9%43JC)uG)0R&3}i24)t9P}C~ywJMQige=a42uMAa)^@F&5h8F$QhU`W za0h4Jjjge}qlL_%&UJu|wP-VAZG$x<&@wNQEtf?yTNL#=e;-*suynR1%Ql+ zy2~iLjH-}dlSJcAGAzqpLc~-c&~?N<1sE*MBFMs@fR*FE%EVM^{|4M)w^9;eW=~@1 z>3WeCL5nz4er~mHH3Ny+vrry1oZ$;se8=7_^B#hd+vf20M;jMLwq&v?mBFRS47!%8 zE!fdnvqfL`tzW-^UbVm3Jef1-`3d!D-^e@13B#AG7-~j1YH;4;9_8Z!R4THrA)Hd< zv<=!q} zlDb9-(pB)AY|F3m7w_+~^cZgj>%21zaH6@$b7Dr?G^uuUMB6>sn6O5n+>E(BuQ<1u zed7CUY^r%#CnVJHu7gOe8988DD!O-3=15anIV0T5yiF|q%S(EK1AbGQ6taM>O2BZt zM>NqnI52C6s;YyYW|IECu#6vFD*zykgiiZ;Ql@L4llxAfwxc3x3=sy1x`170)-tZF zUWTw$dk&se~j` z0CB2SX@|o4dh?9B=6{)NE>-r@8Cr_+Z}ozFRw+j+6*SH&lbSp`?=|E^O~Gj++q^oz z1>ON46EQ$XpWauS30eCcr%2gJSUB6=S zBdVOl_w4rc9qZ09hjVKl-*)CWZ1;~rIO-bo?hypvidLiDuI?kr>I6Nq0XDS4J;+8$6p@$RH0P_31 zh&0<%(?O?UKz(@yUS5Hr7l(YB!DlrXK0KkGb`6wa%+-ds;tEU(pR|ktHJmq3voLag zdPezp0285m5lwVH?WK0hUboc}X7=-0#M!emx+re-bXUP90Nep38?!HKkn47lObVg2 zg;k)D@a(#kk1!>1pzJitt04ceFWg>MVkC+lalQ>mu{jx*$()z_wZB_L(IYl>#=I6Y zIBrp5kovCmeXBcH2%TsUug3&bim;vzq7S_YD=dF~LHhP48tG3*c{ggX)aO0Qu}40K zK$M8NflWAGg42<*_LOFC;jxw2Bu&EBMPTcRWYX7ylJP|S}FttlCBF? zoO-G($36&>DPN1QyHAS*i$kVAU4-eI(|TRyoIMa&b`n@l-&(+s4?8jHUfz^@V(&G+ z>2wfs)_H0qO;Jj-R#~nz6PS`@IQe=N1(slZvne0g9QlYX1Sgo+gslKt_8jow;f>R7 z-*2JlEb|%fa#Ok>DbL7D6;jM0%RFrIfP*Luq`AtWzLUI-+R!WVEC9mV9vttb&A)C7 z0cgpH%^J`_AiuJR0)y<5|AK)xM>ET_9)ML2|B!u;;3J*KtF&~6$nH^U^q^i zr4BG#)5Y#G>b?i{8Ck~!1H#KNj^Gzze|J6>)#!HC>1f+-q`{hUP?mK($gZy7#aoW1 ztxfzO?O(m`komnS!-&5{WFM(*9@qG)$fK#scisBDRTT!P%C=@(13*N70ji3^PFAtAKV_sL67ZbfZ0N_ zZT9d(1O`CUQca}BQf><&C4BVzi$h| zI62>fF^Eg8E{WdjFCS5Vc|z?Hy3enGI_RiXB$v)tnRH1YeWJx4SoU|j25~P1JWIxt zOzLMR$dq)MKbUW@&rhv z3k@<)BuK5mChS=sf)XRL7>ZUB0?F_!Pd%7`?ply85`;@jl`$0|qF%3v1{X#%F1JR& z>fL^?FFe|~h!QCUg5KCVY{1&lP)NJ88Z(2sy%^p0Y_Fqd;Ymps$)sHNd(=606Ds~UC&($xBB zTq9h1Y6F9WWg`d4M&@flnk#B2Oz}(^ePLkM`60ExG;}JlW`Qb*k!GbV=MnkX%Q~XZ zkDrd1|MN$1N9bNBq;F@H^%_A%OJb}{!RCo!0MD~H?mB-l&}2%jZQzN{-XH7aA5oIi zn%3P~y|R24AnwsH<>m-S=2d9XJuX%K{qh`Ae`fEp2}G zQwC_e2lr#sK3zLY5WoYfQ9^UIJ=B5UymqRZAyh_pufx^fh&5S~Gt%o>GJCsDB(;bH zDHzC3<@u;Ht^vRdE9mSl6xEpgB%30Nj6 zsfa;Rx07{kY8vTnjBv)vA(v~=&k3vR^aO+2`i+}PKUX+|JKJ{1HMjljzOZ7-jB-Ek5DNUKFqh;{-)VM>17dXoCb<ou6U5o6U}AdI${ zQk8{}$?j9G(TTClfJ?xwzBvKL^hh?ymC__Nt?AgJPNPTRSez9KHRQ40N#8&%oVuvk7Ym?y2(aQ(PRLsv}_@zaIYF1xs z-9!6)QCP1z=xGM>Wc^T#I$`}q8ylEzS9{X6PyqQ1*mn*Vc*d%IM$37&EQtJXYju1$TNL>!VAn(>1svh=j$v&ssw+ zq*A zXdDD)96l&5!;P)xf6K;NKvDY9Ho53)`|YDVEB9nO^YN< zb_3|`jQkZ|+9;XAEZKF1og1O55p~jTC(P{EtJJZpbQ=B7zX|)habkRUa%5HNlJspW zISVB-)OD?19RS;s9$@V}1to-#VUO~w(uyRQ9K_7; zo4?$g!Mjf2d8J5=(6k^!2jEgynR1s1)6BcTmo}f#jCIZ#t|uPvN|mXe4tpaCZav`2;=;l0o?V1^E0Goz?uDuPstq8MNPlK0J$o{`M{eH>aZ*F#tg7 z_?sc#4-zb>Rh)Ix-&H9kstk-$%es8pV^R&?I;i6il?be9|FkhtJJCD`AY?)igRPAV zH5`kK0q17mun1ImO}h2K+K~_rsl(1WBP~+j$YEjc-c6Qj0hTJkjhtlLx!e+##J-#} zSd|Z)U=nD3A86kN##NUcd@zTEt4cp^niD8813ZZ%(r4*=MugaPGA7O!A#XaLo71im zoB%+F1Nh?;>Y)c+7tp`_hWzVS?CJ+`R^P8}T`I~kayZBwcp1T6mMnzA+mU5$F(fkQ ztR$f(IhjCQeXa+@xT<}^a!8nu!SE`Kw4l`&+TUdT8k$)FO5cn|szCo_001BWNkl}v)b`m*0&;}?R=#yOEQ`4L{$3Wbb`<)yCMk+J zN@3ntlY>DDJBA=t^mu97qyOz)P?Ki3Uq;aTWi2N<^sS%1yeUy9wZQj&C-d=A1cCN^ zl6l~KX$X&TLjL@UoD%5e4ScyG>6oB-5z^Kz8faNsJ^5gWvtvxeN2<4!5ZNZkeYlzOc{W~1P zn`hGH-&N;)yS}8PxI&^!GA=YgMw#Hy_bvq4axY1Uw^0%%0kZA{pdqp8kC?5*DtR)3 z`y|NS!jc4~PJAvUPPP5Ava|d7hF;dWrLGl>RxgX&btEWy$}Wc5b=&7{yO&-61KQ(- z!G5-%?PvShezu?OXZzWHwx8{1``LcBpY4Cc_Lv#;do5(oS5Wqlwe?ylgRLZCk>y=4 zI^MHJaTcws)#F-LoOeR>0cd7SqcWbc=vtJm=2nX#5RC%UA%xaC!Qkpchq~*8NmsLX z{hR8ICXrLK5Sv7VwI0i|fD2$*@2aqO({KjRVC>xf7{tYXaz<-=ZcZivxTHfT7my}K zRzfV_Pa%=)5<>07qRd&KeCW{;^6jE7!0SHTLVGtxUPemin8o}l)Y6`>&`C5@L z4ThEGrS+w|1RE2MT2SQG<=XVrb$+G&9{ha7@^O#4%Se4jH$H>Ez6xyB`nc9k*FS&2{L29# zp#O3Oy;mUj(wC+N=_6)T&4SgPzy;G>6{XeYcTUpZ%Pyhpq@O2Cn2oiuwp+3+Adw6{ zoF_&q?AgMag>VbVLX@>IDiV^j$&>Je%tZ;o6iPoOr1KM)`O`-FHaSfjz5 z6{0OuiCC5<&Gxgk7R#SDa9`)>N$c;W&bhWEcF0oIA*1fI+D@b>x*{1cogb|amt96t zg^e`URekJM*2)zM%(_)OWUCQv<$g6l-2v(Aj+UZu9J{L?BzHuvVb&rL05Cx!8z)uah9hx=z-w%SGlFMd$F)qx|UvrVr@8o`KK8RUrh2 zSG^w@6a4WBRXH9~&eFG+A}A3+&?ZEJQtLV`-Knj{JSpO5o?0mz03*a)NlgAbkYfFZ zYz~{=^!gpPVeGpqw#-c((xLCS&kyiTpJa+icdL6z^Ulu3@&`n&aYpk>q}56*q~ zd)N+wC`pk}Iya>cB!HO|K~<3Eg6hgSBx@7U$m7g^K^v=51{26cjjO`!)KKb5sNgQ4 z>^lHG@^t}STbZDhHUbd6^<7qkPt_XvvLf$x*+x=63PT-Q`Z~;GH~z$yyXOzKp?+)! z{d>-r8xb4GLU{O8sSU2+u&clJ9Q*Bi@$KTE`Dt)T zyF>QkHMZKwoD$P)br~w_6bVQbH_*>z0bM7g*NoIaiShBRyew ziHH2Bn-&XP$(X2C211Y^lfr^UA_!m*QV4R%GZfM}fubdWss*NYsY{odb1FdA@$v)ioW(%BTv3@D zq}n(fR8QD>8+`q_g5G*`Nw`VGNT|TmvB`v;uU>Cm57I}I&24Jr6K2%o9=z||ATi^o z_DOfD@c9i!&JP$lGv(VfjfGe&HvED(@p zM)wYMm!j}ak`k}Vs9NjJi9nYb=n|IW4(YNWe|v8-qDyrdt2FhGq*_sx**;AJQVje(9p&FvV|%_LjhdXejCYH61>g1l|X6G&d!&vi+ksY~sXM4h=$z6jA&h1FfJ!}M>Vq*zR{$gS8< zHL|u1JaCM<5!{)fLLqX^Yt82*MqJgJb})b$E@k4ixfCSQbTikao>&KwIQs6a>+!ud z*6txX=SDu{jE&(p+rA6iY;-;!s+n_Lv~D~)?6DS&D=_o=a|y?YI>D)pA$~stm!^-- zL{fu$+)KtQC6D~mta41(MTnm|k+G_O{(xDvp!(C7e6NwWoFlA(1d?s`k zV_FB&#KN}_C4H2&l@^^3j2Sfqt7yAOgy-+Fj#}q0!HnA8aWtIWF)AxUz=vyzfGU#= zb)96pyp}mc>-XTcG&GZbicmHbzdfQ zZv&QNCm9!e2OmyYJ{^$eiu~Iv_~muwT-2D|wYq@DMGam(YcJWS}`6_HVC8SBKqIZ8mn39a>R=*@9e_G4I8;sU0ED z02$IwW&Vss+8pk(&nSCw&hyA#yBganbDlM*l-I<#F=I$NA$4_0vh#hi~tag|}o75a#hOBb_`B)M7o--?#VZTBc)cg=D{(K zGRjdG-E0_h>@9IYH7MO!at-VRj!c4f@!J{~QIhI2D#_T!Aihf)73E75NF;4X61l}L zVL6G7+PyEU1f-mEon$rNiz5JLh2m;yCESZ^l{;=-?Y0bdIw?SLf#rbs*#`t05CQ1lu6dfuai- zu{io^DiU1^utYmocNQkxvP&q3tjyG5K*qTwMBAM4)W&|20ZIm?sgR90Ob+1~zWCXK z#u|NIWH7I8Z%bmK-;pM5K>`s*Sa>NK1oph+dx`Dddy5(Q2V^5PXM}7P?z;6@*k;9h zf!>LO9;U4Vj358ubN@jj7-%)LK+K(rK0A9auBkts9+!$3s*6S5+jB(p(4<( znoU1c49PsH(T0s=kG86g43j|3^Hs7&-L+`8C^+b33m+PyM&|(8E(A*a1h%4X&P_&m z83!G=c`y)@d4RG$*qDg@*;vuLZnajdAkSPS`#SXU-86~e6qu6%tTXK909sZ|S4W7!eiFV8)eg9LERnf4N;)D#M+ zFuEewP&>kWOiqeu8I-h0|6XO$f}@@$L0y%ds2_~Kbm-p_`j^Q|n3ADb0$Y6<5|%xI z^A5-Pg#7shbQ#h8%E-qZ=rTDOqR51r!>yUWoe^m*;y4%_(wTq(gJm--30%q!Z)eke z*7+)#gWiiI7EiPE4eCMZ0Ry?3IcMuQ(RPYPtBs2;J9+NCIq>%QfR_MzX1xW3naG## zv{c|?Yri_$yM*~k=I}hR%)uPaP0cyyBw6u>f@*1JE=2fov8l4jOt3GMjq3|dtmR~* zv!B98hNEa}MuXt@k^oE-N#=Z1#I@d^ar97+d z2sQT@UZ5&gf*58~MhFhNOWE3yy5@gjOE~Qtt^2(DQB3OuR(zMS#LYhc!3n<~-$4hO z(`^xydo2#25J_1%=kf3N2AnzT@i@7Cwn(kPUZpND>7t=J$8jMfpprPOWtUM7GHSYu z$c{+F*siTz7iYq9>ad(LmOVM_)(2(R9BPC5uJ0rKn;}km29SX?E5wDHQOUZGWg<-) zB4w!VdyDq1GVi{#p3^2jUb9>}g#OO+Zka{CKS1JfVjr-5AF(A8Cy)P?=$}naHAKzL z$=JRhg9&pLC(i-^iM%$NW~p6|OtdskZ6WJ2mggPHL14OhuC4CY9Q2%}Ubj}1zkb61 z&EA{;%9b2wVqawDS*q&Z`gFl^8>=u8=14Uny@ww4%2zSaAClp+@h&e8(4NT7L><&=!v1m5;<&9 z%JK|s-GO#{ zIiCpJ1kCGzxf7$x51gatH0az_x*q^c7Y)V-0Zc%%O+q=h(wfGK%0`_Sbn{9ghq6us z3k6%q`1J=VuLcNngorcP@neD?f$7X+S`%X90kr6z?uA`t>^?t5L?20 z*1|s{dGBVc`Q}`_9H)1q z=LU3QOL_jdY3YPLsp{?_x+8(IW7f@P_!B5O_>s|W6Pjxo8)1s2KT?9b+QHopz`N%d z9yXZQ8?2mz|LHSvUfWuH7yu&BI3a9j#NHvc4)LN#xY>cGN%l!CgO(lNRw=<8uH#(>4X9b-mq)svc@*X2|2$!Q{Pd}&%ajZN=g&7A`O5Q!JWCB1{G9K2cvy? z!6p)%n886D$gy(>y9j@Xg|%g$sr#9Wj091KkDZqYzK%n8TzV19^K<#Mg>zY*9QN7* z@2O38Tw-l8hwLV+i`E)Vzr=Pw0Q#{JTeqV~c&18dzQ_W^*#ruH88Nr_jHcx+|6J*= zc1?nK!m3)Zxjwk%r;<&cVn9(6Pgv9e?FTXRI7rs3i5kSt=bRJ~1tJylu?UC&XKH}i ziD;YE&aH*u7PJ}I!k`SjY&t+ zRkhH}Y<;Jc|D?2eDCH%kOi?>2=x~a9be~!}T69iPo5?Mr;Q&yVW6Qaob<`;fl%>+w zL}K7(L7YiMbL##NBD6@;oadV#65No`Jl#p8(K$d%C8e`ot~1S;9(0&j5^47@wlep+ zR_O9=!1S;$HJ^I{=CLzCEv3@{0okzwVhf~JMB&JS1yLd@StP|-4!Y()1~CBLB=g3c zVUEPZP0R>;l(JX3j{%jCThihq!|4m`9VoDZJnjDmGSr!YS)Yy7r`1hDqW)Z*UG`jn z<(yFZ`=V^yeayFwnhysB?hOO<$WQxVx;B#^pW8Q8SCuiz1Ye=VxR>8{6G>#+zU{*I_S-&m^au0^G{y5{rl_JMwt9 zlju50icNM3vX=fDCrMw>eoteaA^`9_N!0y5ra=J$-g1|5W+~)mLW#Al1ZcTGSDpt@ z1r9Xl^mzYua-QfJFlefbWNRd4*6L`R<%XN%NRE^LVnaC?5F66ctx!7%m53sg4W*a$ z$V@}9>=FK;dj%tx8;l)ca6Xr3YgP`;^^EXhFZf8y1vZ~M}TUOSABI;@^HA}*{s z=cKD`C#T!J=$rXVSsN114ukvYwvA&AqWYvpU(9(r8bOKIsmlQMf8s9B~g zWT#afc{j&YodS1XQ$9|$Q#r~O*vp_zu|drgsmH&GAu4Mm2dWHDSby^}t#n!U9QjXzz}gM4>bwFK0U+J4v6JU12bP{S;9Cv!A*vQhYf;SW*Ll}JD~qB4b7 zVvm7+*78Xe1K1pNZcOlXe!LS$I@Do-R4|0pQkQFGHjhTm>l}U5sRFfVuHg=|n=Dnf zb_`oPWl#N*+h-e~zs{R+lE1vtRadIv7d{JCZ4$Jk;*YN^$ zz)As5q?7K%#JP{)qi)uZucE2j>)vaQdX;lyH7rvC8_gULr&SYhoF0N8S_~2)&`2Tk zG78@W`B4Uh-%m0xZUnd>hzjTY<~aZ$t{XHjgdWHQ_#vUa93+o=-Ghb^>0*Wb`y0$F zmlt9`Fv32;q9&;&Olys-Ks>@UbFPJMb0P%-8X(OAUX0@IBEydYasXuKn&tEwYlKux zF6=nhozCq<_mk#LnOIV4eX$+^onHw&r&Fhk7*S;m(3~{lK9|ktnDTDF*2dXAYMdB| zM^STY6_t}h$O^~+RQ*`y#2ul<5P+`DhJt`|2LzAQ1~3uaFbOyxM_Aei02%WpvN%VC zn-OkK@Yf^U%`Wdx)59JBFt0tD>q!kE8OzOWf{O`rBZ71D%HiP{+5FU!HP}F0`=q?l7l#l`;93t8)0v`D6bV|WtdZ23atw;AH0^$=41#S1}o_653Rpc~yaNl5hEPuOoi{{Cdq;2gEXr3_qd9T2N zveOj-K&(1soJ1d?ZL-*8PRq18F-LKH8>m;7PY_P z+q|mP7{XY!M^WCw+^BGY+7JfXlUC#a6lfl$+h*}YyHrxAmHDuoIiTc#q^!YOV+zTR zvx~^wsiVv;%I|fsf}OIiMj-5y)M~f&+S{BU%&P`|6hTEWz@4V~4Mt-}rnB4JrN}uD z2>^bGnO2{xYmt6j9Yn2hifKD|c`pY+QquLM4pgE1UiYuDvu3>BQTrYr_ZUbmM~ zOR5J#mB$!>0CPuoHYcHEC7~Kc9gKBer-4gUfL)t;s;p$1lvL99Opu{*B76cHj3gwH zR45%1b&zAn3!$<5k&`!tl7ov=Ptkv?j!rMg`TW zlq2Q3(a8rgVo%^sBJ0goQ&p4>9}cC?leAap8oWx-@$#~=49u%WQ zVS(bXB9c71lt4E-@NO>vves;vqcBZo@qGFhTlg0;&y0bUHXWvORdEj_LR2h(IxwTT zoe?_^H#1`IuzSm6UJKKsyVQA`AbUeA4l84k7+`UuM9aNK*2CV$5ind3hKCZ3-#igV zbMg-D)d)WZ1zQQkz5-2zu>y%R8RE^z+;+<Fbu$7);L>_{&>x<3Q64cePtOJggs&G?b)-n>xA8mQ4z5Qp%t^mmakJ zT8~4F#h$XNAZGI>_xadA)oNha(+x#U*4DE36vlj zs{_eI-q@D94CpxrEG!Z)X?tb;2lO)o5CZ|7zNSmCn+SeSX!eY7kbS^}aMSECJPepN z9)9i6UdN1EOpC`#+)6Nl@&^iyKIQw&itoTGoqEcsI%bqb zA-NJ60H;7$zjPB6jcfGJJknSK@Z!RM0Z1p6w0&b zT&9P;E6UA{)OKd?5zo3jC;Xrl3mn1U96*N&yy?Nt!Nr9A2OA6*GAH`yTKgQp)mPRS zFJ!=F`jm}r+x$9Ut~MS(0J)ohxdGxz98t}dCC#3+1dn05RLb>OIUk!OOn^(!@vO(! z4^WE=RWCRcpZ8@1X=Bs&OAe*PT zc3g_r9dG zjMGx`WRAsQVq-D{QDeWk1$KTB$>W$*48h-_v6aI64B`xUbhk za{AsqbY77wl?pPg{KOhkF$^h}hjL4Ro%e|-$B^1eUVeA8E7W)9yYyN>oTfeeOFq&biV->>T2zfjhL~q-sKDldvNYTmb_1 z1IP{8T5p1sHm38MzqEx+V}v!$Bk#5K{=lgMBQMzt?kml`?tkFr{a}5bYii4LwCMQp z9!!QOTw%CkhNOH}IN=wzTdDjckEOk?ua`)AiNZ@tlO7uj2#wKhYc_N^!>x{~Y zSj~$?UmXGOqk89e1TV9lRDttf5uW($1N7r|Dtca18cu=nqw_Mgy~-0gKBtbH7ceU4 z2`!}(V={UR%&1?2>YNV+AZdQ78B?htxLGJBZe|?bkViUg2uMJ?RVs!iy<}9F z`k2q#-F93q&7xLyB(YkQSb^yxh2&TqE7Me2bI2*@#Vr=R?67j>oLP+x?|_)VeItTb zw*q{^%^*fx<3V#mx>#X8YY}coaNi&`gs^Ay&m+1gJ6wNFsPW^uXdtvVjIdYb>9*u2 zig=>Vkq+5-lTC%;50sr+Mion~yzhsitzb2#bKO!`=Buf*FPvD%#;>((WK~Wm966|t z8}kyF+jWlSMp17+5jnhXQIm=u$FUMovPLdDrg)wuqTzjZ_OaIGrnW(@i4F*GRHRGZ zgSt+0N#|1bORvMzw0u4sWqDrr@~p;b`ONwj#EkY*=0tOO08J684ePZ-Zl{7_h3qed*_%6oZCb@j+#4DS}dQNCx}MMZ4pm_ zN|`798w8<=L!$T1DEWi?$02)u!=BOJ$gG^!s#+bi)QAD{$|Gg~J+(4P4Wt7o9zBvx zkfY2NiO%TPpQ~fc+m-v~=;u{9TLJ#d{(fnr*Id|+F$&jx-&|~wsqx6`5Xn#dF{GB(OHjlz7ZX>#y_cc{tYo^v4wv6T$8H~gZ z*uCYjc@ojyAggKnAp!81S5iXM#R=2f8@Vq4;pf+|JbVxd{Wgn@sRNH0JjG?nr>eF& zYdtF3<8UNKFEe)w3C^PZ_(n#ps$>gsWda$Hn(|XsWb4#N^a`cQT*T|Q`R*8*}1%B!dK+Gk;^?x)@>2HUR=xPP_*dfl0) z=vGI^E)|xkOhTgNMA7KE(K22K&N(b6n+YQ1lMI|wMK!5J7Np#i9&VG+7cbk`JBgSR z(A>&*3wsd-nmfu0z#IuoN+$^#3DjJZMGkt$;6QL=nXH*!0+jo8glJxCFlema|3#ZF z_|{h^!MLNB=Zv88jA_L6rPLJrJfLh~_s#HH7+D?^yZ|$cE?Lyb92xnvYOI@acI==s zqq{a1s1jeSkF~N?N`2?XBefC{=UA?7(G^Sy@k|i&@L2xuo)<9h_jA4{znii9V2$0| z9w`9*bNRk!AMde$r^n%;e8;c@*fEku(b1|w*2=iIQfRS5&Q))3BwC)=e4|F{-&V>; zzNdhnJf!)q)&hW&ujPIs0wW3NxBAZdxSAxIc`b{ebx91pr|G?iwJVeF|&+UJ&L!;OwUntEUrEZ9HdS|XK20kJb|s>o#cR#hPr?kDHe%zLjpasU;6X|D0XItY z+%$Po18m<3=r0o!()f(Y=iTUXLL{Zh^q#e6Pnu@(>0s+O0I0+dZEd%GSNGWR%u?xRE#)YJa&r;7)qq-1_rCwYuxa%#sz3gwE}(KX16dhZQPDYo!CY+ zQ@%z{hmA5HD9U{EgE-4lARHcfVQTG?Udv&;kcuA7EmZ6pphTHnn1V1}Yum{Wj4&kR zvWC!_?iM{KyD3`SJ29j-I*i%Os>yQ#q}#evgZA8yRLz-}JmcCyqfEzN_MG@^1N2|C zEodXJm{|7kYQSzrw3S1k0-P7Gqw?M=YS&J9mU|5GvTB%W7xW%N|pX`Vcq-xH*BQ(*G}uq91#EIrs(bS8nhG zUGW|pT;xcmL`@MTLY?}-1*plvWd76-tzks7o#B>@DN2XJtCP8=S!xc$IkUIEQ5(7#Ce zycB@;S}42wcNxu_sTr025ZeZiH9|g}_h>IiG&ghJBiRA7 zmL8-O5Vj56IBWcGiMH4|z_aG=*G82_vK^K3b#oF;hlLpFQ3SBkiOG(2bKJ(_d_0xb zvB*`wZ?@B^c4Axtc>TD4-8GM}!}9&toqu!;6@Xp>gGcW>1Is{M2~MD?GSgKg(E@hk z0~R}nWS+EF4x3LB`~XaAf>ZqBX2AyWOwt3pOJsm;BD~46Azfv6F~O<8Zmmj9Ny+Tm zw^=aKSTi8Gmfg5%StKsl#6Ws}J}(L6S&F5l${qzla(fj+=x^EXS*Yam_IdlfecnEA zpSRE3=k4?MdHcM5-ac=ixBqXp&vpd8_Q)Q~=N}#SQaaYD>(%ruzkI*W->az?@;8|n zdTvtBTz{vM6LKe?M6bn8g{r)Gu3{&D8}-B@??UYYuD|H8`ye4*jBss)a}rI6$zj|E zgckw+ph6@NGKodZQ^VjvJXfrqEnf>5r`J34N6U%k&<@~;S7d1kdsg1|p!DEI=N=1~+hLJ?d^ZaFoAC<=H3Gjsdn=N8TSU&;AbBB2?^Q^t*JV@CCt4}99`FA^Pzcj;N z9MCio&dIgr+2i)6Mf;>d`+~C984yaBiN|pu(8QQlGH;q&&XF2FmeOd8G0pn7D!6Cy z7yUl9?nJFNN^r8qC@r1rdAw>)u&TdPmCFc-M>s2$7OG1wX?0)c1UXP};CVtC23<1> z<(ZQxdAqI?mG*HGHTOwt1)I|MoP-vwbnZ-5w>8c?sW%>ic;*iWQG{uXFr7KHHwoK!0_J{$i@&@C z2M0O~Xs=^FFRu?N0g!xr^1kHdcfyik6U0)skMuPI9Yj~raz$zCxG3mQAm6L>~p*WI_8&p=hxAik8blgp`DwG~TtrSiO)c)9M+ zu`m+YNm>o-K444+PYb(%q3fZRTQY_n6Us9>HUW~1Q<9+uW?=3ma_$GA+NM@cTG%xj z6&xNjrne_Fn+dJXiIg0s$>Yg~EzZ8z;GKVQ!0@Qht=bzFO7EGZc7%Px?yZ1n^U7ZHv0R^TFzmwF3rmHG1k0E%`D7y+4J}1MW09%UTrkXM~B)_$NCFI%P)ScLa?%h<-I< zziPoh@8EZ~a0`{H)JN2{*(=SxqP@7tB~2<-faI^!v=3-DgA7%z^-Amkm2szw1#~iU z(n(v_g0^SHoW*25Z`vFIP>_D2#2SSFbgk4Wp5|POc|nKM@*#_oX;uf<>OLD4*K)O* zAa!8pR4sh2lpWFe$BoxqJ;|piWpm`Reqy1GD+O#`c?=JvxtekfxpmZET4=zA`2fp3roOjY=p#U9+0n~NiR`SsS$UGb;c&#_vI70jU zAT`8;$9&%5@W^T2pro)+lsR$s$&7g|gRi|w`1!x%5Wlj+qq9Bc$eA7t=71tHQxMFD~AZ2{WM}a4_XC8*5hd-&b0Nz6~YUt<=j2lA~k0K6fo@$6;L3d zt;Z;N{}n*U0&M`O7j1xayG43&2^vzu3B|3=oZe7<*iovh2Ji53T|iZf}MOWRvCuUw6M_9U7ItwhqlU zz#kG)>!en6E8jm;eH&NVdkzj!Zru?Ol$KrvMYsuo)4rRd><8Lk+%}p*k{0O*Wc!4s z-iXtytas!bpiVNH<|2ZbonQA1lpnX_J+e-Z1&aM+eOv2!9D(vv*RHEbQIzyP0wWo& zICezooM0~N=_!z2mw}aEknMY;uh$}ME&-HE;EoBH&l2#~fc1Jrj1I%L1qKf^3C(%} zy*uG{-63`j`e%AxEBBkLLN)RMvDZB#X~|D2#{nqX5_VrE903NR;UmQh_I<4X8A5qC zyWeb0PwG=46~wJTJ(8-$SHP>%fXH|P$R&aAcJeQOZhZCudOewrRTt}AbEj^XgpyBt zB+hV0z`-_|{9Xo#dB5-sJdiG&PUJpSdCAolSx5B@}+DD&Crrha$0N& z`(K-|dbGzlG-&@~1wR1$_Y&Hl1We~G@TFU9&JVbm9o(c6rV7B_L}1Sa9oyHdyMXJ7 zUmf>48~^xy67f1h@oX&?Bb#tUcQ2wj>yl(fcg5tY$#q|IY+u^)7_0KZ&G6FlI2?Qd zk5)3rL}qGHA1>gWy8!lHYL#2$%R8iA0J=NORip&v84&>IkQ&KJG~Ey^s&Vb|@0BQG6)j4t=<5fF^0(GL z=OD}i03e=at+M|2q=uNx6K;Y`)pS%^%Bf1f2>{iiPxlm@gOeCITsioF#r&YQk^E)v zLGvt8a3YDAhX5Q7;KXp=7f=^9EY~)m^9?w7IPVZ&T!QCW9AW1hq`re2C!|{`y9DpW zv8awPjtR8tg;kOr$PS33C`3c_MBH}Bdl3g2_Y|Sk4g{QUKGE9bs*7;*VZii-1KzmU z;V=b^-+F*{N7((^jOH(UY%kX6{>~L1UF`7miypgAWS`hPi3t0M^%IBPI}Rxjnwtr3 zZZrxb5pFaA?q-j$T}fBY>a^4Qq!7SuBl+a>tR)&1WGL7J06N=%H!C>rk)A#ihXym; z#Rc&2Tnwk(LH9}>+fE`Ld>DYXfm4-y-tQODav}mk0I3E5Pq^#2yoc>nP5DK${lHgy z0#Hh;r4yje))-sMoKt|A03==iy#N!Y>|D=mEL-A^B8#TvUfU#6tC<(;v*e>z$BZ&B zYNhLG1H^X+JUZXuFgBRJbAfJ4IJ_OP`BsbRVg-ET2Imj}0dvxN$`V~?FvjT*^an=LN_Ufeuq~#eOj9Y@y}7eeL9sn4;`zk7_mCsFTGwhhpz`Wqw8&JP&JfcX70^gF_Ik+A+rz`SWO z{>Bdd!vppo68t14n(%d?$Y^*NWI%det+_5pg`jyulkTrI<=>XFG&!5>;NZnrc!XYY|xExpDO+?i*-l^%OG0RNNQFls54a z#saYO`30=kz&S@c%#gbSa@44>Xr9dx2QZvgHV{y5B8r(=;$(ozZ)L8YU~#C(923E@oqJ*|G8YDrQP*cJ zyH!6kdyaFI$cI0Arb)$vjMY;aVlt1S)SteGMi?g+M@EW(^Kh#^M+I|>QGi}z@OF!2 zbTUVGW zAo#h#e5F4(MO35L<#9V*ZX&Yu7e8 z1$48PQR`Z9CMk`aI|UX*%f2F#iVpfZ8RI5JVGSGxq?=o1H55=!T`P=-+bz&{BK)T1 zq<9>WZf+%Y!Kt$a$p2%Kl!tq_M*wA?0E&a^&M_?O&;)sw%Bmtj4HPa;+`K<1ke~D! zH+mg5;F+|3x?k92<|MA8?s=`XdiG}cR|dST$xM>gVJhrKdv_Dy4~)1f%77uNBzwg;Eo>)lLJv)?@(X_al0=fp&^mM$wO1DG?yzBlFsxC+BCJL3RyR ztsTF3@)%UMwta5-I2YAH5UQX-&*;{&XG}lcfZrSN_rLyU_^5w|@9p2h|MVxnh2{q< zxUXF!T#OhV%6RE66+>8+P%TNDOE}B2kL(|-Z(Xqm8vrJ#BVC<2IzfY{qo{kvi1klx)BcL_#Ah3z*PW~j)8h3E$SY6pv3G<>OPbLFu;==mNf%5y zaXzr{I_J%U4D{P;YIqqqcLK}-1?sl;D*c@_Wh<9S;{w)glbKhHRXa=c{Fd+^|JI-5 zzj^bY;zK{+<4uS34Z=V9N56| zp|g)u=|f-5o2cNt2^#${4mW{U9jsm})f<@t2Z~%#9&1lMi=kmg33RLnm&<`9Pgw~% z1)&bQiL=4uM=`*rH6iu_*i!?{YszDFI%8~_8Hb_4*~h?t`1k(=|MjDPj`zcipRNMZ z*9rglPyR0UUue-ZGlpKr=1kzOfc~TmmPX68ne)o#Ud~;wsA@K!7{~@wu556W!z6uF zD2;FcA|x6DHH3rG=!~8?M9Y+0fR!GN{Xue;4+GLT0j#;^iACKVV!*odGf>lHU``>xz3~`4 z3`j3tfOfmwx324uh5@|W%X6FWYCLe;2;+pPJQMGLLlg!0vvn?K7CVQuYT$2oK=5$4 zBf1wIx)%e+H&%$9D6zXSVp5qGzGshgrIU2;T#r~Pl zbtjLeiA5wXLaA2OXX)z(%uS>r)5@%?ZKFK$(A}Zim4A3zT!H1t_JZ7wtYY?JEji$~qaXQ{R?)s8uc1pvTzjz;ffU%Lb3s2FVeu z^Pa7QP8~s3LnAlRh(Ya@w$u-n`IH)$BM$6kjB*mNo&^<2jHIN3C$S|dnWF(QZsb#A zbh!Bv@KOH^?}r(0`wf6CKI)(0@D?LY9&IyAiU%a;J+)M5?dml1Ba2w$ESrcJUe*2R zShqRDpiHH-O)~da)$%yEK2z^*olnkfkm$QU6PlwM!$%RTT(iE4U{%^0Y*AWB#ERy7 zSo0Z>Ini~Xz6Vthz-0ODvS&!`^Yy3KXj*mLsj-?? zO$H-wf{r&V4g7kaWtMT;wjk407$;EM$g^-x)}>ieXzV?@IF~d6%`s2=gE$fU9?qOA z77Y$T#yXLRGsRfev$iQ?ASQ7D+_yPl`-BEJ?(7pum^^u(aPICt0Td^tjW?sVvy*ks z98*?~6O|*kigM*Lc{ao?YHn*RGc2dH7T7h%soVxaU0Wo%WOGc`cBYe*ojID?oZ&wZXeXa#(+ ze}?z{nDNAyS5NW3J{A^?bBxr=*pPHRwVPZ4={Y6Va1BE!@2=cKjdkqn5S7=n$xo-h zqcAl^Co8{i>`aC@y#T>=>Or`JC+fcaw}2-;`v6@Rc{74CEulW-IJc_uREYqCjFv^t zQ%nnha_50o;I@R9ff|?OziIjR9YCL7SCx0aJg4N7l!zkfW)+$U+5ZaO;ofX3?8m@VRQv#f?m?Q~q zsKmAEjme&eFU*ttc~qr+*jRRD0cMo6k324PaZf?Kv&jqny>?a!h?n!ME-po3Vl+)e z^C{s6hd1!kbpWu%Pv?Li9NxhB_kr6lC7Di>f{GDvtpM^_MTPuWyi*3wDT)d!DGR{O zEKv~y;iQ;E$0#LLBQ|3==UY;)4k1Etv}E~cw40n;3YMhmSyhoo088p(1>k9#i*Ib2 zC6ap|8?z{R@ApEHCMxWN#1ct#Gk9hJ5__PUdV~=J#gJRJ6 zp$hIsmz)U9gwRBs{T1+o!<+co+QVUspGA)!4R7GVcYy6zZQay0wXO{d*(1U}BAvCE zdyl3GpkdVaQeOMr#5vW1O)Sz3*?HC!j=~n;QLh072_Z=T4}(P0Rpgb20epP}>bjDC zpmT-iIX^3&6Vg`hpT`j(2dCNsHdpvCz-r|3;UMCF_jR9$66rQdZ(eVXg|d_~o&VM~ zhNf9))i&Pd2zO9zhT2(}5)cWL5;&u9WyqoGelzSXNRZQuSSahU5{YAi8(G(1pdcW? z4?;r+tLW%RaC%#ABqSzypK$g);Jb&n?(7r&r-bP%))#WosLojv-7|rvN?y0jOs#D5I&fxSpBa^-tAJ%Io&Y_L=3=9Z zO;i4MqeD{g-99ILZ~tb-6F-eDet38TVGpoYJ0Od^d%00Q60b8`jm;5o9PL8|!ZW@> zVIAg9D19qmgX=#ReJ_)dm#jtLbRK`j-1)bOCqCN%y`DT)Dx{*J*NTbq0vC^>=Jw>* zjcRI_PBIikjOXqHuBq$G*J*LgLO`y5-_~FQ92NbY1B%y(u>>X-37-h_?9g=+wik>) z{?<3(zQH*M{U80`-$Z-HXuAp17!dXbDs)kp0dB}LI30$k!H&E0TY#L?@V@87`5 zNsr#K_>65b<~?Q-qpbqt*~?W&7>^dhyeXwr0KP?R>^a-9_pxbCEtxQrwc6_&sVqV^ zCsZMv<|y;SqG5B)itXGsS#_3THFum-qr)wu#&vELRk`Qpn6eEk=LeO=-%>rMwdC-H zy+ufn1r#lM=nsT>_E>czuHR4iAO7OE;l9B+2mKGe^*d-j1p02mI0ZDf>f{<&=#Z0L zhtcd9<3?1no1G~O18!vaAonS>d%fq#ATUS;#0;Fv!VZbrRK`&@ysU4598sllF6Fkg zSNv1`cAg^^3fA|fY1u)ZXT;|(;I_L`Doq1$*)vk>ks1L!?Xx{@zH*M( z5xN&G{9yo`gWFH}KEok`_CuzS7do^G<4x-PD4ikwAH0aktyiF%TgeRvL`t^4lX-oGFDLFNfrqPa{jKASu1;bt?xk)ho~Rr zvt-RqU@z%Vv6D0@Hv`>O!Z@%}&SeevqgT z>rqM_FMwgvQhB~YpqZ9k9QHtk34~s#Y*$0&N(*P?bXX#mymGxHDgaML8Hc8WG|;L_ z$U7usMH-+i zFF9p*5!lOP-rms50ZX87SfGAJfQU{LmUBmKSXWgMk}nRKJIA7yHEXSMBS0-dli#T?){DRNywZ|!7u^d>Z z)GVP`Nqx;s%N+>Awnf{{Xg}Cu{{9*M$#;JbfBZ0E^@+o(1IDlK;h8X9x7fTWleEyW z=4gy5ojm?K2Mc8dTvx+r!+f0Q4bQup+QEEOvq8; z5=}fYk?w0ds^=@^CQ^!e)!0QrX6v*I2K^6c_x*JsVymB7} zgxey^ObaI%Ai(3et~dkPn`%Z%>Y!qA;t+@pKr1o6j7r#C6LvQp`Zp%@U%J8YuP^XN z-~N5<-;LOO?9ul?`pp{vz~Q>Xqfhi}&y4`W1%1e1Jdv^Zx+54`-}@9N^ZB_8S6vcQ+j#{7kMt zoq4oZGj2azVO|sZ=TaW)@KC6lu@BOt8pZab+@~8f$F*(Bnqy-;amj7gwWbDzY|g`) z$wnl=-8ndxy69O5v1tW(Pcz(R4eEQL=IXPf%^FzsS@?=4DRY<0?CHHp-SvA0(5X(6 z#hns%WNS>Qc&VvcZ@dWlVbT;1+aJtH7`#y3iR5!?o4}0V+6nK(X+={6SV4Vo#mPw| zDMUwQ*4)fX;$0)DPyGvqKL~i9dqQ`W@;_^;l=f9o9o^Pm1cZa<3X zf9~NnjON#`LB!bKcIa=4!#}2z}ROt z{wx4L ze%AfTTR_Hcs``ELB~SG~-#MmeTvhXEks>JlEbwEg;~_DVN3FOz;glj}>)79(k{ ziqT*eU-Flq+q#>KB3!>-M`M!yb3}Q+Gns&U z2Syg{)OXjsv|Nk0Zc(BfnbuzSxos>7YD96a{XdZY~VYi%f#JJ3fsy7e&-GDd~h@$kX3Z7(&V!i7#zkZGSEH-i|0wYyZ@i?9o zpd2Y#bBwumHffY3)2{8htmzUlf@1>T+(^Fqst51(NLSZzF$&$;|4ns$n&KtOy5nICU9f$7H=ee~0dBX089bR-156*W8 zUw?t^t^)DKZ*JC+(g*E=fqLP0?OH|<5(S2;Dog45LIoS zX3mZx?Km0dMtfHPPDBEXH5Z)65$pSwo~D3=avbrzNOx@xuxG zH(T7aD{L+f;NQB!cGrRjkKyl(Sgl8RmvD8nhW}ZIu-C3p@HK5@FTxHva%iQ_vQV(A za?s6&%wWv=8d*#@?+tZD1azB$V8mG?ax3DNHJ#DuaI6Vq`2f9P=<&_m&s+AdwG1qT`Y~ zsN+Sc?XxB*lT~u2fXut4VcaZ zRJ7MKZr^V)o!R_j_(MXoW%z;7Z09^iQ$soD-Ayu2T$O9(I@W8EKYPun>@f=XtDRH^Xjm!kxTn#Pm(@Y%1m5p62;pf4g+|2Q zrU}VFx&edjetAuKQ~v8axCa;Dz7-|+%PXX-YXPMeT_l%t)TNB4FS)?gI>+lC(?*`v zydt=1gZ_I5aML1O?y-8-VR#^b*UgfqF`WUo?|ZC2mHQeVI6VAL!X>Zq{0jm7#ejY_ z0xN)-FpdE?Hy!$qTRi+u!gwy>1%^&~z7v@o|soOuv8f z;^?R-{TL_kFi5TQHi&>F00a+m!bae$Yf)#PCQ#pj&dy|C*>1r%Hv+nqZIuPxY|R2h ztvxX`sZ)UaB)R}Of^L0FBe=^G58%S8axBB^JSmt2!3>EFDInNp}CpSzi^l~ z;&2UvoHwt4!()%LAInBDJ`8y8pC9lf_PG6WK)4vub~D^+lsPd3Oxp&{&l_~lDLZ7{ z1f)(>;Kk0-ePC2JmDOY?LTr!)9RD!Bp7#g^>rT_8>V2lBackhD7UR1&jmsKws%2+keu1ieq&nAvNYK7zk~yRS zvLX^_b`}I^Qsv|_XHEtK5ZlXsH_ZhbH;~A+Pf**M;1htIIBzB8LNG*9{hqMXap-~b zA2IyUVEds59!&6k1g*sLG>rknHXvMT%7+^Il%#BPj+k?~XR1p#qxxPzPSss>C2Jp6 z_F~Rmw^J(}ECc84DQo@I;QeH)uuE=LiO6F?-#h8Gue$c%pnbLh`hrG6rzaH)MQV{d zVsw;OHH(hFuDLAibMe!xa+=phV11C3+CFsu7H{kRlW#?)1E6)j6{p|r#^v%9HMhzBg zC1Oz3v_0~$8dx{b!H%?ij+W4v8GazlYaq3##OKG;II}CsT&F1CE@&s z3H^%+`?nf2x7H89cp*{!uoH0N4-xApfInE2TE16oD++E>aIU%dl0zwd$j(;+EhomI z)eAlnqLc~`C67JR+)q7|DsPG{qJE;8C>keHV0h1j;y4MorltaUX+d@77{R+8EGkY- zr&RV8+-@(mwk=v~pxk@7ZY@C3o>SWtns(brNjC$l6*Hwah$a7A#b~@bc5E(LfW0M* z7am>Tf!lzzBAoqji}210lo-uzLbLN2&t)w4m*x70M-FEnGy113cJDUWo-;TwXeKn* zgojV0MBDIya47B#M1brX$F&%G=Mgg z(p*5%xM&+-e*m?uq!f53hEvypNXtv2O%m-tSY(v|R<+wl)xnW20Vof-7U&_K~Bi5&6C2*R)BwBX`$%oE`C$ zwNXgfLDCfL#B$vf2y^eyniCYj<|hY?4_o*liIer#V>$=M^YU44V%)yp;*D=j*!;xf z`lB_*hb&bSB3Yg!bujw zvS;GUT(Z7pB!G0EaJ*C+*L|e0(5gO6{L*~_UMTTIDkgeQD;ofKIrEaMlnZ-iHErFT zNr3FPfT)+(!HN3wYLJlR*bE?(TvMX#0_@3n;{@mn09AoI9fPg{^LIP8 zf^t1OpgOkRTaM--C83}I64a`%lXJsO6NDvKBvd&Jf1mF1e$9|gm5h0X}jNiZ(0KyP(dsM@ESF*^Q=nwEd}a1!mgez1Lh2^?P-5= zKEF`Z>ptNnmHpV`e_sLk%bG@z04S*TcQ@K&dOM4#Os2MD>Frz`TF;r3Kohivs{)GG zO)0v2j8LILJL79*O6;y#m&sCUh@E_$zEDp}Gf$=JEh;oK`c?Ir01etIu42Uuqlt zzwEthljKN_Ep`BRk`a-aRW&_5v$NMsW|G}c`u{&g-*hFjyDQD^Jo-^pneia$?$8GS z?oMV@_w3yn*|o}Yv+k;j2r?L?!yN}WI4E(q?ksD&zq!ZaRnk9)$qnVdFU0 zc^!i8=eg)Hog+ojf-)gg#rVpk=rZbWZuD#t4_dvd{bXzyA~`pQ)tOkp7Nqw9Vf(MP z`-)+E{``7PQy*(bH5E}kAtHq9it&@xyK}4w17X4XZoqI(IQ;dd8VT1GAO3H~^ZydH z{NoSGl6d;>SCrv^^FQf%p8i!J|1VHRWk;0}$P-jVcWnT@j8L$0Aq;2KInUYfQy>IS zP)Gwm-rmgxv3g!()mdBo9wZ9+T z^H3(AG+mfqIA>$)x?c?QYti-)GC$nbX0^!H{Y8T}=#pY&)Ol1tUaz^MxLdhkyh&|$ zcKA`5RuWnn#`L+M45WGr1$g+kg43S~>7Y!NJn8%w2lYOOEpyH{0?(+rS-rq?yANok zfO+@6-1+?O*n6Y;Soe}3|B*p0pjPiU@ay>UKRMnaN#)!4Hon_sT&n;8AOJ~3K~#-z za3Z=prJel?5k^rFqlV4?&j zTks!=u=L4a&rCz>H#YBE1eOX^%pn7GQ%aY&lyZT$zD8AoekM;!UyL`waM2HVZJ`8U z{A{lilwMWq!Hh;@5u{ieO{J++W0NWGp8;j5nf2B(>kHX)f3N%8mI^Pgv*-SvzqY^c zr3=Ho)kv@il**|*|Y7991 zsJ3zaen40R@Bby?{7(VvgZ{Q_Bn;1j@uMI;v~CFXCt0R1o;4$M{Z4;l8FZgG{WXIZ z!TJ~x&lzA~eT<+a80`4*=LOO1g)TG7`v+|mxTZ!`Cu^r!Ru#h|>w)f6-;~iiHsj()wfWnAM<<`5WVsdNJW9SX$F)D*V*B_~VRObsY z0i|WpB^N+eyb=%V%clI?d#Z3LAXEAW-)~*3=b`Ew^}dBLfGGeOnErGI0L1G7Wnj>n zRYoWf*2jo&UO}l~{{D#J^Mc?0A2UAxZzrse`kkNt>j|g7taz9UuD^}CheWM4mtfRi z)8+x8mJXJn7k(~u#8Pxg=dd8De{_B1H z^~@pdj^B(<46Y8>;CQS1gpcZr?(V}L3;1V&CiV(c98w9i#h4TRch91OOqk3{5fZ}#`6?C7n8#bea0S*ABTxEO>xnUa&WKlF zePE=C%!leU7!m+$$y_>Q$un)Sh`ZqgR5^Kpws7wHu>X=UT-CXf_UGn)1Fvhz{k76z zjxUX0V&?8Y*RP9z=kav|^!?bYF8&g5{u_aHFMxLM->=WR`>)44J{LlJowC}i(kld% zsrC@0Vr3|1aG?nS*FMl;agh?GT!lq}PFU38N=L@>Ky}d=&VuPv#(H9;qtX-OtiMSN zZ1rH=M~PbN;r*cX{kF;1+H_ysDs>&N!TCMVanJC6$!PlH?w#+gk6Le8UOQC3c3*$R zE;jX4eNB4*KDGCK{F3dI*aYJ^Y0D9>qvO>;xGm_#1bD)%^VuD*JgIGIsRyikfI3>i zY=g4k_M3p^sa^N+r-G;d_Ke#fPPly+FkA$WA8(K$fU+RIELFLFxGc5JTzY>5#00aP z#%{tq?DI0^Eg;|g=#FYzmBBkoWAF4<%DXAFzpCMMCmQW|U>mgBwRm|`!vLBT0ZQ5i zFvOy}#CWB0xf6i{uqh?j(0iFH3#Gfw+ zCKSbULc9)0M@AVLBwD(Z55V{=IQ_NY#puNAlM2kmiz@YoD>i$Q?@{Tb!7hJq_$)a7 zP_R5O)_>CDA1}Gm)Z@)2S}JN2gMQ!gU*3a6F#Pr0+5wtP&~?_9gO^*o7k)3jZ+ZpI zR;wH%RG2c?y7CQ(+&|_JjIu3FOwOKzbfrETuu1?2J?1U;eFi$9c4tj+(LDgQbgGC_ z;diYB`#|r8Lft1$>T5;IMP4ORpaCl?+n^ULs2LggG}P9E@naKflsRKKMx;Z4FoBnZ z<=qjN-=A>&Yr^~g^BEui_a^|r{DHAP4j7*W!?_^d2zeCb!9YpSpl+VDe9Eb>@us3$ zB@*&Mb$zHS5v(=00)!5X=aHJgE}6;sR-2`P5g)zt6ROTFq?SaooCkXA76T{ z_tAEN6$j@Ocw2t?7Dhjh@A*P^Uh_ard*KVdliydo2I*3yicy>FnI2P2q1-{b2&#HJ z0bWbt-3$Orau{ZyY&o|;8axs$@mn7l!@1!2W5Vq>wojZ0c?=j|GbofPahhCGn8SGm$H(Y=Xt=&5!Y&t&Gd+NC1{;k}6_SHQ973|>exeuGSpSv5> z>Pw;i&c4&z0_gkUMq$pr{)3vM`fJDD%?7#w<8_9;1LRfUqyy_st-TWvu{q@vl9Tp} zb^$F;x=EA(1K)mrkB~tHXh}hi*H7`P-|gQsyy(3+{FIOnjO9^l4C7V6i!Cy115rLv z^VGzO*Z_`4d7EmZv_Ea(-x!^N^UbK)c8^f~3NWwFa%VvM=+;{VAN%o38KGhs#6H78 z?Z1tkeChO}wNVwEGuk=ohwl8{ZNV}H#WAVbXYDjlG}z<R2?p=!DSU8v4& z2w5Lo3xXBu?21fPRBEfi@v|QH_^(&Y|8&C3e~ADA)29Nutq^7mKVL!D1#%b^q%&jr zPBZU$VvL_x&}~J{d^-qOI?)lElYNapc|Yjj>b#}3zv-Ra8li6)U-EjXdm=vj`dWYO zEoKRQ7&xz))g2g9t;fTdJKxyr~?o*?FGO0G!8%_z2BatVGGJ+V@|wkG)(n* z-|NEn)sJ6lL7EHt&J%V0aNDp^0o~?UTdS&wCGbi}tDEa~qHV2he{E(PG_R1y5$kU> z?H5i1#=o9b6`ly=zkNo0r$JMGnGxm(%7}IN4u^YTCyT*ma-Q-b+vh6Wi$4oS*=ZN=hN(i9X&!}4IWBHt3$sx zIuI#=YunAu=%2%#@#fpB{nFTh^t()uzI7MwfpXM3^Zu9~qytc(?jYUfWt$_=?+{(* ze6BI6Kku#8I4OXqqP}|>0@9>e@^}**e=ye3cLD2(usjjg2Nk$2g9fUE%^oaxMFo}R z!fS^^;PV-EZ>iwir(o}fbUwcW_4?n&f9Z}PvVgC>MS6dJHDlfn53KL9;+2{E|09O@ z`T_brf^x65l)q;!)`acwaho;*zqGD(K%Fy?Lpx^Q2i@Co zpxHD^)X%zLNjzh79o2|fPs*zb{=`{ZM#Zc5x3$c9R^f>8*;@VBjv-OM*Lz&oNLf}P zpi0y7bxORo0pRWG_QpllB1c^0LIi}O>rA$1gVLO&{+Tk_xpkASedGTYBYLY~T}ng0 z_W-v$0fALfIfSjq$-X^{okv0dB5Qj!rus~4P|6q;B+?G`jjTF)s3LGxn9%3Eov1`I zAwqQYDyc0A<5m0NmQgp6pney|&lXK)&w@0XI|v9#6;0!NBJ!`$c@Tx%oictXxu%*t6n5b5Mwef7{#M`xrFJ^?KsIqqeXdFPtg968B z+hp8Tr~jT=QEl;F{}DM5#%t|XRn#FjBrg@ z-Wglt6fm3y@NLEN-NBe0CfLS=<4*}?h)5^G@<^C0_;mV9K{|Ri(8PWsT83rO%pfny zFo{<^t^`%S*3Jfk!^hk)S_+omOaKw4AB(oWI+#r)K|HUvR$CA2qXH_r-1NSVgWAlz zbdNyiF}-_&Je_pCPZ=~XdLO$$l^-Y9tJ>8NfzwfKBBf2|14&7#>_xUgs>(PqK>rpq z=y!ru+xN{+ic!~{7&_2hj2)DO3^L= zfkC$g;XEQes7>TUKp7)=S&_ec0IeC}$7jev*%%N1@`5rvVR>X+e>dRtC!Iqd{;wvh4e z!VE?McD^70lp(;oo{*JOp%fG75_lI8046%x?eEUcaledZv#)IKz5Bl&;C+iWvBwh| zcE}c6s1L+j->EN8*q7Xrwx-<#p!)gmAia0l`b%)iyWw-k>7bTH7jNxaM9V*lAYO~D z-GcE`0wf?$gmh#~vjU2Te_xP}x{jvb(1wv23j(x_e9Q_t)C8pa8r&t3b;>0oJ3NHp;vkb<%s;^S27j z_v4o`Bz+_}DCh>D&jK*2A=S-CLQooOWTma#$0KP|d<18317F{;R$NU@3PUcDH@#(J_$A3G6 zU# zs?^$bGN4VT6XLKML+y1~pL8l|+-2=)rXb@KfG7bt1JF0Wdq+8&Gh!yxdIP~rYDe0E8c73w;bKou8 z#IFqx>XmMNa+}Ch10Voe)^!-v76t|M)g~-sE`e&f2i=w}#nfB4c^j*f1~2(pZ30XP zpUxN#YJcSrK=!QHcO&x1I0Q!g%O}Xg5pzDwD)u=wN2O;{iHYA?c>$(eYy9Q9C&xE!wr^T z+`oUp!1)~oea9AL$JVW?=Gx6yhT{_R`^|P(N+oA0on7C{2WSb@r69~2VCAf(OX(Dl zM@`lN07so)@tn0wfdTkDHa2ffdIYM$2Z1FG4WQS=o%{V8KMyqt$5u*PDemO)z)rQk z-XJu_iMvqtgS|We>;Ve{8BCoYx;r0v4S)OhuTtXsKmU&7>jvoidMDt^pv0qwY&`?r z8SbeleFoh&CCZxFC3~o_2v{Ms2fL%a*hws6)LI#M#7OBT_L@h4EXpLL$8a(S#j%G` zRvHBvmN6#~Ya6LBi}fNDtS7Fu>|v2Az!h!+#mZ5khf73{88XW$=%a+edGc{ zQmW{BXS3N25`m6XkH*OVEHg1 zPmC~YCIZq=%&Eq~Q z?-_Jon@YQmjaZy#Jig>ydG!B{0udUbuHi{*oGEtHYVU6jK$aDFegWpWmVyY-$`AG< z7tp)_*V%$7N@=HQ0v=D0qXuD^2y$*Uvo*MA^!EHPV0ju4-i?_4asgdtAZ3g{=`rbX z)XW*wF49E6`=HFGB-Ng#j|JhV{h-Ulb zpam|ZD1$@_um%O<{T^ZKj+moD#_FL(*+;d-nurD#rx9|{UiDN2a2ACJ7$fTbUJeoK z=;Kx~gOHvM|*>a~&crSFoqcGG>1jDJt&@_& z>7W+f1?%P_MsWw!2;yu}v9mfgN{{M{sc6l4IRxFT=7Ml7;8lM+@8+Y{Rt2q17uW_M zbpzPff;bC76|D>UKAxKzbYPodtgn@3e6QZ?0O;l-yVu_$c<+K#o~f(%Xish1_vm)| zRizu+JVi&H11d0=Li&sX0VAUXLXdV`V~@zD?kW#}Fhi&y8g8kpCFMDuLZ-W zSsl)lK^Fr9?$nP1*6&YP-bauCgU`D~6|47iP^Lkh)GVOO4RV`n2CCM}>ci_CWvSn( zwA`JO^{T$s7KRG+4Y&+n4#0f%gHcISB>6nmHp3 z=Yl-y{9YdehL^02r=Si_yrF{myjU;WgW69XHPff}1GP79m_^G!<_1PQQ0p~;Bucd} zK?SnnMHyJg1<^ViAQg2uhlu(6BbImEIbjT1liH7$3K$5G#}mrqq`|%C3*`B^&S6O_ z#O~c@_%pKJ^EFfM!e^cKLaj9iDgy%Ztn-1aeCMqW2j^o8T5U=Nr08?aN|mkqZckme zph?wp=mUkmA1$lqw+;hj3XnB|`sZ2-FgKP7pfvXM5CD0^I4=t5?HKkB3Z-EDc}5FM=A%Goyohnm`I!=1^o%)foCIx#R%P>dvO@gr`nAFx_*djMnt7UZN+l&Ae zM!2MH&Gza(545b6LIw44$yHzxMG#U^&<-GujC71hC$$L=Pp?)44rRHQ>4*i4{eb?W*#d(Y~RveV^VWUZU0WZ8P3 z$P!VbX0CMDuFJk!JTlcbiW;fPs^T85Su=k3^7nvr=*NMX28+#CLf4*v|w%>^QQSZGu(Z4nqzSdDp^sfjogzY9A zWY-deS{-^HUB4F*79(8+YIH?F7eWj4NFYd}wq83u&*muvEn6|!!c0~()v1wsomH?B z3lBb(XcVsg`TGnhK6{9)2Gm=(eMzI^YacmRfw)>X-UmJAxveQ7fKMmTG-`eA`CI`zhGCO|a%Yx? zSZj4f1ei{i~ z3>rsW)0S0r1AH)5YCH{5&u`ED&9;^5>x_ey2{==yXB7CFF%BBs$XPWpd@bw);U#ze zkp--RGAAUjjlOO)_gdEWaMIET4_K}%!si>pyAkU{KzfK6#sPGjf#X5Xzj}!SA^hbd zj-_CIf6#V>e|SQ8S-{uzm5&$Z4F0iT_{_*hMmn&nR7Y%Tcq@zRRg%O8DT5KD`wk~< zt#(g=+DjH4{0H-$>S;~yh;sq04#>0)m=)h!A9F>tq?fw>>H?0oZhBF-c*WESEqDi@aI8$|KLVrpRSE_oR z)Tb&znR?`bGeG?-U;8hrSCA(aeanZ4a7*B|)Zjuzu?sM)3*woPCpLWt-!B01+H(W# zwd{ks*So)~FfU9z5p7TE@r&#~FDkUy+mD@>J$~+548SWJ+uZLj{o65!Yg^rWzaKSG zRd5$4{wK%R572v>dvTPy19N+0@ddkIxVz8PY@c-XA9h+dgl)Fm1}lA+q}7FU7GMD? z#n&cgADz^mfcgP4|J&=IKn~(t6ly=H7)>kb_v)W&)cL5&ab7p;G~zM@$jCLj&2w&s z>-U2Q(q-I~dZUX3uY_>R;3d~*AVYve(sM1P~x`>xQi(jCvZ=zbA7}gh6+xwpC z{V{KCckX7L;w2%>1@Y4r{NrcHvVu+rE^Qu<_iSzAXak1q9#9u=Z-i2K-9dfVT?111VKEXU)pS zs1B{QD(rzB0Mu4$03Zx1t5W2ds!$f-^Uu`U0i+KntnWs|%ZT{H3usN?k7pc)0Q&8; zv7c=9wj==G)|#Oio>%Z1u)K?wO{Xg4xo>Ba2ZB>1!z_r>^<0JmcF!UP!`$9JDo?yA z(Q?62zIE*b1EEYVfF~f&%3KS05saS}#2;StUL7W+-#(yB0mIKX(D`D&uL}@F6Rk9M z0*cgoy;s)P3)8k!+Lzu0rzpe9&+8dU-`m%gX)jMlq^AktFe3c$NrCrIpD;xReg9B>0TBUAbP(eJ z`qa7wgg^ZZzC2+4?E~^DB2PzzS@jQSEp@(Y?X9+BBQX)JS?j`usb=(wDOfw5-5Fl~ zI$%CtvMgbjd~rao_r(4ujhPZ|0-iN-BCI7}U;sDm$^f8Ibpd#%flbEnZ**^}A63f6 z9yZT;$Hc%Lg!Cn_AV%Z}V8biuje`^ZWuLf}g7oGug`fibJT{=*yr*#x* z;pjIwh)J`i%li7gaR3idv*ydvfCaPGl*g!4>Pr0;Rb!7)1 z!G$^l%EU-KAe_e4?-Btt-%tYk0?_?Cb*-v=V@_fjiA+_vuA`A)g(l+c%myyfAHxxMcMH2)~?FvmVQ zxF0bnC=cD|ET~DQHP8=VXEEoRfa1%FammWeTJ3db;1N*i-6p`ymj$#2&=jktL5W(f zpkJ-Q0aW&SG6J?D`n0T?K4eyd9N&!zl6FB&gszbj;ssht$5a2RNLx z<5aab!#My!vVftQDX)T86)(~2XG2}YVS^`j7~>y+FTQSozK>Y>*lfOjgX#5Wy%xmp zyBAzL5V!YLNz)ectXU|s%ps_KpDw)mRZXm*sV+)!q^aX)fTq=vAekZ=n$xbn46 zYFA#T)YT5AQfto3LFt0MBgJz9EvbpWd0mXtaikeAvZ!Kep}L3&8}Kd#5N^)dn(I9! zDWI;uk%N^o*ymFLQP~*ACUd@{5VhyI{fz#oE=cp%htHEc43W*f<<|55RojrB3QwdP zi#bwd43MY-gFGj#pP)9ETrJV*&Py5ohF9V4gh4)RVJx4 zD+!h%1ZoCx@Z_ii`&v6?_Oa?5Ne`xwJ$AtSylU&T>#P|b_Bz;91A1iOjxIM99V;2Q zsmd@toGb&Yh4q{Yuw>A6srOROXW)F+6@VD@{t4ybfO3rBC4+NTaJbK40x z%F{vHKHZWAcRrorTwT@4|e!d?(wwk0I))He}Ob+)o)(kn1e3fjZ0$ z^vWjadaEtg$SLy%+Iz6~=D~;$-!}@Hcp^mw0Db*=jA|n(RiR7(8f4@EiUBwtP)-LG zNn8@>(~EX9@D_IfFsM!NWkDEYV-*2vFEK)X`WYBT{d`KGXJuXBFzVisi>bWZaW7ZI zHEAi)G$21{Yqs^t0;^dNZyDpKf-&yT@hF#3-{gRrfoien;(Y&}?G+Z10So!TWa{UpGJp zUPrIIRY(86XcSTU+H-0^7r-W4QK`1lMIVJ~)W^j;YTGb>?rQ-R+GZAai?^`V=T-nK zRrr8*Yi+&E8m($hmi{RSxqz*ri=$>h z_Mp4_b0c0-W!9x;^=g~7+J;S?YZ9PjwGUbgWZ+73?KKaSDpj;K8+;MhE(m0q010S< zDCnLy>Ef&cj%t@xIMF_v2Nl5rfHV*|XpL-G8z^^?DuQk>=^-Ld%}#j{49_d#$D67G zuc`h1lvkmyXc=kLq0u& zhX~3e=(=cT$(>$r=@l5VDutRthNeTg)#kdWQ&pnvqTnP|#H?n<-s)gg1gD{?f@4jV zHGf^N>NNGf|2A0-EDcs4o|3X6MD#h{7Rcvk(BlKjhesd__|Bn<-)n3fK8A`00bqYu{7DWbZrmr0f3 z``*pNMd`n~uQe(s6?5VpXrxjFtSIM=8m}BIkhJK$q%~vs@uKtm)`C`e_Xv47sI&Rw zXUNBAglPn?5qw=$IBqt3tF`H@nbzyAt!qTBM%r5w+HLxdIv_@Y>skY# z?y<6(c0do#L(o7BN52Q`#UpzkbQ9n}U7M@#>pqtU4U^H-OMztTp0p+n zqKwYU%gT5JK-U$tB<+kNV&c^X(n;6d3g-7~nON{=pZH<|s2~_)cC~VmawKpH2v-yS zEVfP>iB`Kv*>_Irta1T06(yt2C3q+ojgfG( zi@OH1F?pSLL#0yP-m*+nW|Piu!+ZB%X9=CqP- zg2OWSoZIA#=e6~zWd^bvc8kWU_-dq%D(>SOd zc^Sd?N36el1PKrW1ONUP$e;dd{kBE@L;ns}RyNA6wv?J%9rQjs4s0^QPV@EG-=c70 zr87%`u0l5IJ z4=QD`0SM1na7J}V;ST;ZfI_ zt{V-27VLxBN3R#MENvYrCc4;z`(>@`kG!09KLwK$lJ24t9WkPUjaq1Y7*aC~~O})SOY=BBf1KtRhN;|GhS}X4(yetTpwF4HNpXa`7 zw0rFd4zFkLRjd1&>2HAi{^)(#essDQoBLj%39Zgw?gw>=5y=EvP<`-n9F*Z&R9W5I z1|nL^+O?zEuSLP8Wq>v5$E}yTw>7kYqzo!_M@!P{3sDnhYeqOPHSv;<(E?K*fPe<} z3oMBvK(h}!xAAR!8{fva@ojt?-^RD`ZG0R56O6AqgZ_%H z=@E{emf*FoRv)s7Y&i`i?4mvPcVV{vgu7^%v^E@`=>wqk)r8gtipipx8u3!f6)IJv zp0C)KGT>rz0xdU1k;XzQK$sxq~BR#GYzkyg!eY9tj(X9tuPV+8|)jW4|S zW?Sd@@ND6iSO#7b6+?{%(>@!!Q4vS8i7BY?k3}q<;nDX@_W7L;NzifHJ8EHHv*fxAR1&m4-LeZy(nvD1(#mo{ zc|2*Wt2F~JS5TT;Pi(6tMhHr!^@!{BrWx3S*22p52LAp#l=lyy%MAJVzt}Yw)2k?& zK@27!H%*m3jhC}hcl&Gyn?PJHD%ND#rP_NtrEU$hY@$EwZ$pRAyRNjRvJk9JoDPRt zUn}#{N^p!~+xkOmb{OLTe0Znp*=pJ1Au0`ZHQH**+LjMM`rSK#P!-(ebkH_=%L>q_ z_2+E&tdv&E+T>AnQ7DS(k%+2L2LdO-@Zw79v|(NO*idu@;JM3m!1jq~wS9}O z&3WLKrI*$z1VAf+Ap%^t1km4YG-t1WEl&@~?REd|+^ zrB#NOvUeyj=<%`I1iUMP>Eci-z`WGVyZr7urK$e;C&=Xretdu=Mmb+VC(D{ItL|Ao zA3}hXv(B$znaC-E4gXjRGKxiR3YODOGo(*6DhA2}5;>BDei_UN^LOwTbpzHhMmu z^+lJl-z%2yulWs)-e;`1;vW6E*F5UQbRAE0t@`ZD)y`yy8=u)(M#@Bz>Zb!hu?`-5 zU3DFep{}9*IcR9Dk_D_8_*4LUU4jY1nb0GcwM2Ez2%nYJ6)wgu3d)ECpv*@CiuTb| zQe_r!*QV38vA}41YroIPZm+4Y8*a(nze|6N`js-U;wdkGwDa{PS9+7QWwa`}XCU3F zMc*-mTNy63vfMr1@W20qY~ia0=s+{7yFmSKbxg(TLL7{;Y>({?E(`dk0Jv^Weg9_v zt1ZAzW*0HwA)ukY2zW{Az~=(Ka@}yM2$oS|IcmEM1&ket zH}(`~*$8hoY|$02B+T@hYGdHHaW11EaTm%T4cLj2c*5GH6~P zrvvhnw!7k&6?8S#Zx=Um3Yyiq`u&kLfrbbgM->xeR@&tlTfhncK0af(+_b;83(oaQ z;9d(20IRi)D!J9VcclkJ9nk1oB-R_!IcINmcs;%}>Yw&yzC(kq$52%V7ogqSj=sBT z)fEEDVFZN$dOiampAnwV2!{z0gDUesJ?LeOj1m~(G=V;-oK{XJE)-R50=J z26=t~K7B@*Mzxpc7x23$0I-q`Mm!z$bAXC3dg($45LtlpWlLAJKj}JyLjXio!!_`-4Y+Q+)5l1?d+zA z3h9|WR7!mk3-C#My@-`hlI}x3-#edovscv@J6!im&$$zy{(C3>zIuSZ8D9ctMF7}h zwyUwN?}tvT>YbadE$LlH>5N`rdy55=6#1b~WpWz0K`dY1t z5^R9Fe$Jw|sYR4}bwdQw$Z4v?i1xlR8q%=Ho6Mqjb+)wERoIVW(b!Id zVWZKo(PR*H{7V6rq#qa5Oq&OJJS*)Rd{~MKD!Nb5W!GIW&edyq7ZDXgt0_+k$ZJim zXDWIu%H9$Y)e&;#c70!Km>AGHu@ z%3$r%#9D)Tn>E(`tOTpUb=?NQG*4RQLWMh3^fBC$bvGdmRPO-*n-l6;y4{*WxoGy> zRNesq*BfYN$cHDCLj-@iKt6uf`?nmXkrKzCr@gZ7uR+EB_Um#gYGyn9p|F%a&y$1k&L zexz&~8a*Jf08EU^XxR&5g`jJ5N(e6zm`2DnXx2X$6{a0fGlOMP4WZf|%Kfz><}uS| zpXmX{2C&1}k_p!Ssoj@Nt!>%;yC0sn;gCN5>XY2)qi#%xz}{r2gUn(>~`YT%Fr|6%sN+ddr#a~ zUlJ&(4XO^7C$I#fDsJWn6}21xZa;s~j5%GPHWEW!e^C-df`WDcVC&3dU7ji%q=It& zO}zjppx9&6X^N~y-54f)OTt$fbfAIrK4|6pQ*l;R2fC$cd?6CB6tIJILhB>H$;fx} zeDgg!oA{NW)IS1GeBA)OH>59R&3mBX4pFg*(`AC4;;QF0r-RKwp;A99)}jDp3uu;_ zJqS<%h&nPFfM9h0Xp@>qDi8>_kMTHizEJv|cXj`f>twtI24Ycn^ngzHm zRainMrLobPDy3%M;;fHERqDD2HY@{FMK1i(j}!8v($a!cbBkU_72pE8#ljqezUS>1 zGUom00qL7=7t-AW@)8dpn>l5R*v9YbHm1YSY$BCSnFLeTK$Qq&2uKf6sqB}eVAmb5 z8>+&yQnH#k(%uOuEm$RJbG-`4m8~P>i+H_qqdvL%ySIgM1yro0O&*fyHLlI6?A1T{ zGHbAEO`7!_qV}=A-D>L}y(dYtc_J;UEk)JV9sHdyz^8JR*Kbw3OjBofB<39b8&9#A_1UG;Myvuv|zJmPpmwP z7cZF-&2}<@=d7!RW!v@M6%Fd{<{FjWz7_@Ex7M-_A)tK!9`pAq5O%mVpvW(lef9O{ z!I%ig34EPVK7MM?xU_(AZxb7EJ`QTf&N_K(;Cw%dF-tsn1#E@({C>LdqzC+L@Vlp~ ztS>KTh_7|$iv@lek~8?>g#5er01?8EBk;pd)qW@?@L_7~h} z=RxBQ;5WZ&EgC%Q%0?iX>0h6QYM){5KEHG&O|fg+xMnMt+4;tRF+1;MhP~U1X9?e; zP4sxe2X|TKE`wUL>wT$5XhByDvH8v^Td9w+t=j>@bG_5(#-yLGZXbOA25y759qY?5l`D32ndChxz5de___glH$<#{qo=w7b>p!Q)t4(s_v44K$pX4Fe|@q$=&;Caomdu)L%+Zj*+iTx z*Z>;X-+}JUz4gzovJHrI_nZVZQ}5Z@3eH6;9TdVSVVTt;6tpvF}D=H0+Fu1+)6m~ z9Mo7NwEg?$w?sl2G=qnvnZ3Ke8KONqr7iIKzS)f{PVXp9HPaV^0tb&|Kb@4eoU?A4 z9Mnd<)@oUrGJDND2~bj_s$I2LdaX0}d(Fx!;9G+H^bveKXol!=G3Qu74+r26zXJf| z(+K{21uoZm@2lcCbc3bC)H+$XgJtw?@iuI4v;>5R^!|FL;uy7d8PKu>|KOThrq%<6 zfhzzkA0CmOEZBHCAp9|_l6w)&=sp~^{o2bF{Nbc!6~LzL5#1D^!rSHK)-I=(mF)CV zG-J(m?#jSOhhQ2ES%G@#I)QZ6T5PS)^vk=O;s61S@?NQg)!~CWKW6u33R;JrS`DCt zmMtQ$FSg&J2kCsQ=d?O~gsz4&ms&>|ZW;9X3>*$xv-xsuZ6S|GgPW{gFZY#rUtyl*UvS9_MqI?=$s+f4hXqj1Xdcn>43;# zM1Gt=c>=%8$`bUoHgt@RHG^v{t=bj5tb|Re-E2noQ^RZ2rGXed2feC`ZM~bDJyE}R zb&fyvLAibyyM>pcy{>)DSlfC6W~6s||H~A#Q%~RPe1BdCX?@b8w0r$#eW!jDX%8@T zK^`9l);HxAy^lH$kfUkUED7{{dF?v^Y9FhWV7R}w$@1o328sJ;TVP!d^js2yCR)Zp znOt2!fxu1gDP^U@uWAbt&1UMFT@Z@dOSiw&3_BUFai_~zTy^dXHhYf;wl?J-z{YoD z2iiS=7dw%$#k>vC?M=V&iS4}qC^qib4bY9wTU!Zv zX0}_vs|Z#puQI!vtUEJ`ZybRTR})%bb6xxIRQE40?r3MuOv9<58x^QvY zb&=Ng2f8p!xaRiwJTYYWAUu zvJ?T|v|qE#i)KidRonXjdT$Nnd9X|J)^U>V?{%yz=zK*i1^D?BWLdy}_`ROS&kcYc z9Dn^eb9XkRz?lPOT=Weu55HJcEKV(&zMpHe>wx}it_z$^!it8 zV^8qCgzB;YxLN(!Qqp}{u zeHMvwsWsIwW#xW&k4&Y45XkyIYu{JHr%c<0mphOSY1wqKg_~*XBNZ25>A?9NU!kw_ z@Xs~X&=v%cf$D2on_f0`;@%rnn7|i+#IiY}lr|}9q}8eSdpQmbwC|l6i|V!r;P&lG zWz1QDwWv5obz1jXa5pkwQ~%@l3qz;|MLSAkJBKZ{Z*=&*s5W7Pm?5L}$BY`_pxlC5 zWE;f2i~xWN3bno|S8)znbL|%^M6KO)2iBX$1Kexu{TOlr=?ec?s}cl!;=O&ZnLpAO3S)- zHO$3qsi)hPkDq{#fGjKc!+YImKELR{AC4&J>+XT-?;;`;uWt`rH+f8^cJ2Mv%PwdI z)JQP((T=w;$eu|L2y+Iqtq(D_Ov4b>@w&~bJCKV36V)N;yG?lJz|Vn{lv;b7R4DLz zQwIsy259Wx68LrJ1RtiR>+8OkWVn6+FL@)h=!(>3FmX_GNI2O((d|VgHq~EB1!3*> zKKnBt0@8z0*>O{c$m{zkOIx$^c72iKPz4t^L!@<4ai?eZ+v#!xykFvTPq}3trc?rTYyM1Bzu9Y0aHY7(<2V zZP%Xz8wQ$4w_7@xivbXBnlV8G@wEg5c$EpS#{-rGLt`>5>o$4V`>`7ud*@%cUu7jE z7!2yo3uIkeGHW)VTGXE2U-DIkf%6z_q{+P^Liv`{N(2@_oC$!hsK$p;w?)#iYVgZ%z+Q2QCIYo4}F*SwVgJwdTYYT5TcK0d=^X zKVG#WsNt#HChKM}uuD> zVp)K4h^8gdi7Y0|co0BLN@{VTL}$#DW)lw1%fu=g2Y`uHh{qiqKhA8CSEbPNYLs6u zMJcd736Kyrc1YRUb$+Sd)oIFQ2QEw?3`A;!=c_)8?>?Z6gNgw?pD}*Y8uT(S;-{DbKbWJsn4Ze#7k!R?3DXFgCg5_>P6}_4RZ>a|Rt$sAr7A=&(jmAWR%Y@3d+5dpweu)?FoVPc>sXX>FamKsDS%=)AOE= z^;&S7TirUKHeJ*Y^kj_;0TN>i8W(Eaa7ik=Qt-pShR)WR`9gD zw}dT|rMCFofsy^#?{ysmg^~%wi73d947zBtBc4qIAQ1S{I`Ifo6U$2)jHgurKHZkB z&JVl)d`F1yt&HAh^ztx&CMi`S5`Z?3V{Gg?PjX#ub-JNQWmzExou7RNnEqV-dg(qm z(6EXH+^Yu7s=7}VppOG+S*uShjQTw)*hnBTN)r|c+D8#!(5Na|_5(oMh*L5# zG8f*l@`BR@nSutY&Nl_=ml^T43*f}idTS1yCtmt}! zT&`OG{qO)tX??Rxu`Ez9S~+(jM}4%sXtr-05q|p}K91oBme**sHkNR(BPHy=Cx1 z3Rc!`Uv!p~)hUWG$h><4t*W{XKvlU5nsPBv0k}jhP1|Si>b|nB3e3KLLU}ysZfq8b+f$~*(}3_73nc`d8zWW0aUV98+u{qPgydPV-r51^kv*3*{T41PH2x)TG! z;Q+Z@)y}$dn=0&Q*WfIaTBc?}Q99|l^BR?SA=pgrGIMLj=uH*(%G5H#@AwX6+~d z=w4k*K*@ZAsI3HtsJckko3gGh9eWBE1UA1}21_P(&pS;gNt+HGw>#QkjjN-&S=S zJa^RDOw$}f7r<(PtbS}*CLVkiX+Eg{;0&wV0&yTmUPUGX}sUFZ7m^Y zEsgp+gY>T(pjS{xt**AGC3se=k4W`&pX#(o%?bi&hCpI;C{xJw%%A(e9Z0tW>V)bi zGl4WP*EvmfA_mlG>!$vqALeAes>P75?!tkGQ}snEeUEyIyKIHo0O+P@ZB44slm#uk zPcw?u8(K8G0{U9V%a-BaUi)38bvr*TYpZkT7QJuE{2fi*0|8_u0x1C;K#{kABWV2@ z5vf!529xN31yKguJh~Ph3bJFJGqo0p(K2M+rrnD;`SCPoP_#wSR6eT;dT(p}^>pq3 zNZPvVEf2M()o8f|TG!;+I)N?5Mnz>boA4TQAH59~dA*?9LfzAJX-;(kuPm4~=|(&Z zDqiSns@J(vZDn3`o=p=d21x2JLt4~z_=SwMIRbQ0DlT1aYIl|`s(sRjsLnub@6v*T z6j(P>qh<5)sBMRQOrz>PFafvQ+suwIgT}D}GvuuI0szXa&sjvXcOj_wl+n;-2vxYv z6~qDPvkAKX(D|y)k=1x2hPJ-dYv>%WexKT1rwq>ULIt}_1eq*2Ca_>rsq;%Wel2GG)K;_vu6IiFKxE~_u`Bj$8bMX@Ee35C;>&c}) zM`8vYRY=gaIbgJ7jL`Knw0hy{?^vmYwh1)RQAYI-y>zh#gzb8Qx9cSREP0n7^X)XS z>_9}CB6bJP>(AX~2{)s^HQnB&jFqm$r59xES&YU`*$A?_eTZ0lNY?er{en`|Uzqe6 z)4Vj_@2w2KM`Udqhp2u}-@?qwH;@DyJmG$n2p~n1Tz*<-?v?_&%~pof(W?8k7U=4^ z&ENU|*n86+HVyg4RrTIqwl?vGLuUz?lvE6aq}Q`yD+5! zxqNnIf3X;el|+`-^@qdUf9?PsfWbc8SQ534PlU5;^@}buuxgN)mFaNkJ%FZ7jWU-S z^xDLXfd`RmrUM#;glK^hAid#gIBR$>SuMaw8`h$(aU}Gb<1voBd;~*6*&EV21n%_yQdbDNmIH0^tKHt-2700JAsBFM0 zSy_h_g$36U70^uyq3=`&Wk`=-Sm^6(1*D9j&f$by~=ZT9TFjZ_#lrzzR3H&y&}J#KwrKAr!&edq-RKkbUc7wUh1X}t%R+ctaEj1+$n<*h^@{WxK!;J-pywI%;RWSyAFEBgp24qga$l}9 za5}4Fr|VbX$7t5y9pa>(q`*~;F+DmdY1srmsg(jG0;kRsO~mR9d0OuP2?d| zzH<>`D-O{)v=Rt)tg=?oHGyRkZ^%j*H?K8Nu-{=2cT249kz99ldwnklXf|=Vf`0#kG);~=Nl#Cpzy76G&Az^ZzkU;U;B*0hdj<7_RInjQt%x8Z ztBc%27ZnC0gD)37S8n_UzFegGHA>~zTk@+}cH?O{~4#$%E_xxlpu4dT0>pg^rKD-=Q| zo)MvN1A8YxCcm6e`<=?rPTCjI2KV}h0Vt`QjYy8}4wik)oRm;G_pvWZ?1CZyRcGC@ zYK6sMI|Q11QCXs7=Fa(RN&5Z2y|u|kK$5lNAnV=rTJ0`pK_0lOOLf4?Z-2;pRzb;-5|2H~i0Tr2(H5Dm zt7Lm!s(ZAy32?3zc0kr;485<-dSGy2bpP^M*0Oa&`SvRC^qe&?>1u+~0uHMZ-l-Jw zb*}Ary8;QeO@f}81Sv5NV#f+srB!_gg&^BG0&o_T=6GJ&=87JP(0D7H#9rJaiLTgo z7{}deU<|@bcpvX=LLWw$@z6;RF(h$^`Ht^o!I=>N`}eC4XVqTw6_`P9+VT^FmPZ=q zGZIzwsO_&nea(tkCD-IS=K7xfP#8Ozl<}4&;S~#AVZE(=O$#ymPp|^~gsQUif~IpT4s<*<4JLgz{IF->2cxvbnl3h)bRC!M@sK|Jwp{;7)LE zZzU4aV?g%dwO$+A|DH$)9*$*uTXWp&++O>8@#4Q@JeY<38o$P`@oW4Vzs9feYy29& z#;@^f{2IT;|C!_GFO{TD`=*mHD#xr+7vRrE05FZp9L^495V&3FQ8I{w_2lYf+GjU) zc(I~LPBx}Rr2pJ9bEsLQn5gjsD9odI4le7~e6Ljkjr?GrVNyoirvDrOt@68F5<>e} zcvj|4BW~#@&&2s>wVw>7NVQ_!q+ys+o88OURo0=>CsYvzeP4TMfRKr_-^Or)H-ocx zNg$|puAa3I)n7p8guvhV9vuHCA2bZ2#hjA#-o*@i5_u42MUgOzO-w^=575`rIaEdr z)}5s9oQT0Cf$WyW-tdCj_Mz$rHx+hB70;xkV$U7`peMH#>9s|z)Ofa++qu2Vyf!T! zW-BHO#i4ehHbDvjG=^=O7hwrDf|utf$!dFrG=W~8!3u-Mw>R+ltd&!8_?nR7h3chc zc89()7bgN84${92081~-+*+|pkjjRAcX~cbKlIRpPZyLgUj#kkM49>>230n4v@Shl zzb!o-fxmo$_4)JbTa`Cf23`W3bS(Ylv&f~bn{W+HRRJZRME&u)BL0JWYFSZJ;%0fxI zT3yrWP4COP%6)x)cD@KYU%`KT6`qL8ER|hj1s|21^mqV0{Z+_?-tS1b{p5oVlQ5wJ z0!KduqOp|Zx-tvIJ!f>EJ_;e?Jd0AqCbmI28SC3N&k;ab_*9fe~1lO3i@EoZ}S{@<+(Mx>XiD?kw;rg*X{6kA(HY)^DF&Cn~# zL3{za%!1M}r4p|)YDIk*fESfvyFA`L;qe4e35mntB2ukv{4&!d)#MlCETD>i<(@DYw1K z{6j$d&{Os8hyb>pazmPgYeT3+y2c#@d_V5-eTx+xw%a3Pd&mBHgkuK&i1u3PwOdN{ z2laZpOtW#DY$og2`jmkB2Sc3`KXN=kfKHVRi&+*PgQ8|7Aj^6qtw*Wrz@!xWM*gz~ zLs4=A(ghzt2>MeCYmbm!Gd5|*u08EGFC$?>2p(kP2*=s$!+rjBih_1KkYMXXv*c^Be*t)Y?Y5+l(x$T_=fXjkz z+1j~giI>ou@jd(C05c@xEQq8dPUZVk)jlkLCss9z zUbzN3lw}3IzPb|(K%Co;FW~2+z@e{e!!G+UqwB!O5&3xneSSjs;R)&M8vqFW_HvPA z%(BQmm`3o^1k4?9zN!@40{*rHsI=}KuP1cs`0~0|f-OM3mfhNDsv^l8j5_ZC0KGuh z698Jxc?exQF^q-k*}J+4CZ6wXtUJ+qQP?7?d^e zVyc`f{#z=mHYriAZ*!~!a}I@1HNjQT`a~TZ9`9-+n$T{7^N_%{=LrDk>f<&0;FfDZ zr2lVHrjZqRez8;s->^+SFLTF9&;v;kORc0sNvTHB=8`?gAN{sDem!R^` z#A5?BA+hQ2ztdhrN~Fk2jw#$$zXJ4s`>+bH1$)+iWEy~$m9+_}Bx3|>gB)tPk!ggN5D5vn9{n*H~xchSXOK9`umS>{c&iL@2bvJZn8b@7kRz5npKIozvA zctvp6|Jz95WKB|Rn>hSdO}{Qxw$JA5%HS{GfJ7*Y-f_)dtFn)SR^8Wjt^?q8lb%m5 zLZn1gGxHGpa?&J9=w6;B5Pv_RoX<$c9)G!1k{Io|H0PE+yolq~Cy`e?T^cs)M;Uy+ z2&vo9p&SO3mjk+4*M^h!jYpQ}Wd&W5*vl;J_;fsqgSJa>@bwBTom41}DhXyh9^Oly z+BLWrhG~ipH6U`I0BGoxFD0U%vJl9{KwNFAL8)|TgOFHp(B}wJ&AX}E*@%IHp<67$ z)~lS&oFzDq=UEu(tdF&y-jxxel$ySNo4nBA+vGS+F34p!tA0HafsQY-UcH~dmka1D zXgWGwP_$yg7Ld424B)2;JS3!flX(%V#}6|2dPRC4kor#ciRUAd7B~2GZU`l*lYNC! z0$;Bv*BR6gNXG+s+fXj;no?BvJdFdomuD~wKMZecO}tZTNHNnmROO1of}&!UL_uMx zjPIn7cv*lJjGE;D03ZNKL_t(IS5)8FQG_Jur&#fBe5%MLWC4V`6}L%dxfoPYjm$xA zum*fNI>1UjR(dGSwOvS%L=3|yoc@vhLOj{ z6TP|m)vh*TXxG9Gxgz`CV+*+XTk112Nx~+qiS9e8owx#k#S@kwMrw;LfX6vaQi`3n7FdfH3_X<@P02C*Ce=HM@{}Nt0q-sZ)ga7?RyM~qv&iW&i;Yp z=MK;TnVhGSI8@I^k^iuZ9VV$|mc&TzNEY04R00&rm;ilJ#4M*lSwQY2kxgo*pz~L5 zkl*&*e_9v3R}J(m6;#MAN$^mDPHu7!tEm=x6}waf0RVxrnKNT-sP~*VBTWKiVPLN8 zmc$CH$v2;oOR7O(-&aVF8`^F`^WV>Pvxu(+A}l!ZCD6Sd0F;F-L z?mgaD0qnmWp`;{E)S8=(fV&PDP|*T*&TNu7`rf|xK+OYlYUi7rt0jke&>(Z#^fGCh z1TLpYj(ye0{!-V8#_%|Zov)jdCN*}X6?^Iu%DkeyN>$y0d{B~eu;&2LykAz(bw>H) zt2ow=M*af;IV1n`e#PRtzHJ#93vfUf+PrC7^V=`^QyVqG6Es1SJ6? zod*%k;I?6iuav;F)>ad9($}rR@#6PDs(ilR81!(@P`w2LL_qe4!6c_x7}-N$V65;` z$td+W831krd|ETGl_~?Yca;2lRpo)%6A|o$r1_@(%7(8|>L8I-({oW$u-$qBR@&^d$NPO|6SQQGYh_H)hD z8G!1m+jrYOrUZ0N+|hN_E>>=Wo@E6za7_hB<8RgW9UEvf3?>4=HO*0-FfJ{8#CwyH zX|z}PE*rbGRW9arH{pZP7=!h))`jGFknf%shjh?k0<2$FSzY0p%ppU^yUKlZP!R%p ztI&UEc-GPvNB!OAoHBz*9f+cavo0!Qp>X{VFOR3?34lI*5LnLZJMi0Aq^CpG@+=G- zMh!koU8Fpjqnmon?AwSzY$+8o=e7|RO0Pbkg$x34*+N_J?>a&dN67+U?NdUM#1r=^ zRK)e$nZZFahl;?2HSH{$TkpF^wP~u3lG{U3n<(0UKB`TeuV7Z2csfeO6cDt=^(u~J zmdrGT%~Yiv{4ptt#GvlwdFrGzLU!r$`iyTjvw8gNiQNFuNVol|>{%2bup1$3Cu z{a^pM>HmC$k^b>_v5DWmfdA`%NBaD!YQ>iVdVZF~g+X^y@>VG#lC|aD25nW^EY)O; zgUp?Et%)#0Z^deQaLTPB$KJ-1ycNXl&=PD4R|VkJYeoSq0B1BdVc%DJg{7-kmR3P+ zu{{q6gx!|pMqV>i-nAOS9Z9b|fOM@+B98-j((_xhpf;2bLyKGNM55qr*H%?5Gjt$uHOpFTF<$^AUr`=jmI-ej+7 zTL53L5)}UJ^W(LB6c(<7t^=RW;BT+MFg83)wY_O;E7~@;4V3A|w`KF)wTQ%~WZ!3ao^4RtYA^v>*OP}rP;H*ikb_S zRZv;a&p$j!|G5KnK(g%5N6^rNzrD8b!>Dby<(g>$YIex7tv8ZlHOL^XHhVus?8}Y8 zd@0}!cdFs60d$ajvCnuQZ+(H`xEe6?O@t$_yCY+Lj`5#mm+f~pSzjY-OETd!SSGt( z<`6Y95Xr0Ve4Q)FoCVC*$Nrr`6c#Oo*0|i0RSIL39lM3E6bX1N%OB-^3<03Y7V3Km zQjZhp{qY@pcEkj*1sp(4SOb+{PFuAat_4F>W)1fD2{c8O-3>zgd_pnE3p4UNX$yAry-FpK z?_=!A!vxwiDA}aHmWBcRx6dd~BT}@@M;X%yemY1z@%6QV`O94I>fUSUsZa&CYBhnH z3cCBRiNsH}BzdTCyL_1?JJ+oiKeQNT$x12(Tsl9d`^w-110eu(4e!{C;5R8${(u0TK-;@izZi}F zcvwVlART5n+N(}Ex7G4+Oxho}Kr&Ip%1F;Q6%}LAmWiH2_DG$kO^Gc+k05}`GHnO} z-CTH`Loay!?YwQkJXa=Mo7}n>?1%R@*?Zz^T_+jwK{D&coa{rZi=@5ge*Bn3@d|HE z!q}_cJEGU+;f8TAOdara1jU}?Y4mKSREISHjZOnmo%go!#9-V=QTCZi>l1B8seA;% zCY;f|=VkNBVv=YA+fHIOfJ;BMMmF4+GZC0xl zMCvT+8cjRRa!0vj_NpJJ1QZ}`Ye3GRqP5lxx~}R(a@&6%_n`gS0o3C$d*YlAqg23c zj|${VuG5{f2jgT3$FB1v8vwDL!y(-C1p4>^W&EjKq(2`ze|hSWK7SHoH(T$gN!FEh z5oFHLYm$R1Z-zZb$pa3l2o~jRIDkl7?;@v7&cc=9ewnV1hJLVpp6Z&$*IDdl=xfnM ziLlUh;-4(51X1Ds(~>;sY5KGQ&}9KFyY>?*KuPG#7A(mN04dl6Py+$o%WlXLJ&|3I zR<3)jp~?zwgOHp3a~Gf}_X{gDpRVfbh1a=D`dg)1@7HRFh6CWp1Apascvzc=NLlVX zQ3#0W5Nmte7!7P4T_xU&^V13wYw%zD9@L}WYxi+W8-#yv7$G5xy>QwpQVWoKY*2NB zz-u7@iNp?V?*VFD0D!iwQ3UYgk;VwdF28H>qm*PiHMXMrP`C_!JkyE?}niTH0DT3>AsHVRJw~wO z$J2y{^*UMRJ3KZyCInfhDlJ8xlzH>uVHA-}JZuq#|Z;+&|0K z`>}D?IUpc#GXQeeL-J_oPzK?BAS0uSncSR#VgXULC3(EFg*b;|A}gE^a;RcN!WHY$ zds3O7EmxVcS>U%c^pch4qU`H(?PxrzlPk_68{|=gFy~(&fpeyu{g`~YH0Q{Tt;pw` z@qG=P4`xe)RN|?tYg>9h1MdL8KVAi${`iI=RC?+8sm{qxlZX*9 z1lHP`0EYvc=dDjg+I1}XVSEh6ZvnVpA#FB5 zxm-ZYf~KEb*QRnl3%q@(=q%xPs6n|N%#Z0jHb6~s0&Stds#<_2HBFk5&R3Du!`2`t zZ{Xueq@dV{YomWh>ZAwzjR83m#3t+-+RreX7&_l$EeLVjO9(Ag;WKu8<~mp7ebT=| z+@*=<_13ohK87~5$|t19j{8L4)dXM~{r;xYRgV4kc>4sO&o#jhRI*~Awi?)asRV6J zB0dDgO(hzTguVsLWCgN656W-+ZNPnQM~>PW3Al7CO@_p~icbOr!np#*uJzN9v)cxg zRBgi0l(rY`WFL(~uaBmNdZ)dh(g(7>+Vkb*T z#+b~DDQYvs+5&)z)B(KR<44C6KX-txnN>E~sG+Y;5+FAt7r2gP$>6oXbT%n0YRyQy z;3G}~{YwST+}WNJDg??tZ-4i&59lP_08j_-$F7hU9@K*pkT*az z78}?(#Cf4jhn)a=n(G z@id>=9ED{SnV5Thiw`i$=?uDF<(`aMfr@i|%QfKJHVJm^{xrdL2%3QgX=0k;0BTSX z=k`7+L)2CcN`UKjVX+6i(oM#WJLuxRwRTFpvs?WhvZ|$>i=Lwpfb4=M`^%xyx!VkA zR06OrN#e&yVG@Ccsm{4&fwzhbgI2w%p39CQQi5mAZ09UJnpf3NB}qK_9Nx6*+I0YF zzas%cKO1@ds6da5qOvwD@t0xa0ZR9UsL0`W~#prMlghA*}P6v?V+ z*LLIW2g$4K(*LhK5Eh(hg`G(C&-+fC)c3O|UU=^VJisV#@4&Y=P?rQ9qE&N11L1l0 z77tz)3Nn3strGj+>jL(CL5;1D9WNV_eB4Lt# z^W&r_#1MFE@)ba}cMAH;fUs5Dxy7~d&OTQX5Bmi4z{h%Ep@+M9R*ZiJO7J0PH=Hs=CpV>j!36j*{ zy)Bj8Br+_CVhBm!Q-0w1xdU`a#t2;}&<&G3uqsD%rkVhv040eot3iC@#&4Mz>#L2K zu$b|2N6i-c8o>Bs-$0hQJr6x5<=kfNY;u*`iFvbO#0eRHs~?_g#x0H*+{C`aZId7Y zke*u0nvdGQXQVK3abT`JHI`9qq#a}dp=kIApufsiamSP|<|rJS$UwsYoC|=Y9rKFYxGT6!>V6q5`u76)MFN zNhzD8WbExr@?HWQ0^aN^){7nkT4vC^pvzhMzhjJJ&QWywEg&%4iODg*6-SWdC;Iby zv)J3RpJPVSVgg;)`kL+&)MoJ`F$$$hZ^DOXoOC$nb0jI759gkuc zi2x;B%&+hA`go9aY*{4n=>ALc;JuNC%5a~=TZM)JWQsfLP*WcgW<`-kTUMxj>-P{) z=TfY~?|h*q=xCBwVmGw20Y_DGMS@A8r3hgnWdHKLBoN2lE7UY?i{G)g_JnH-n#+RP z=sSnw`fI^=B0X=}qn1ka+V?e4nMeY=MLz1}w+%SRO*#41G|6Y@ zN>t}neyhB*z<=p5JtSi_9VQ{PI4AJwRN1P5X6{lyX=S*R%{Xc|_sWp3QaTI?(rFe( z%eoLJcfP;p0C~2a!rYIEfuanf1}(DlV{Rm)=$0B3d4a`LoSmq%;KiB#8_TJ1pBVKB&PEaQmLLO=GE3HzoR?O4Oi+t7~YqKO>cwKNcP80Cy zMQq|ai@vsMrc$rTt0%qxfa`BN6rPeK$BL=KJMm{op{Y72-t-nO=vTzlWTx;IhT z>i=!uh`cFx$Qo}{L+rXl4RcMF0U=@LpXYiWeUhN)veb3J_6Z_EaO46$jNq}Cwyn$D z>Ym%**zXr@)7qqRt^}_}%6B}Z|}f*M#KK?EY}6;(?{@! z=Z9o*r{fWrM#<59`PL-lZT$cM8jnaHKe$>>d3~4l=Q_(i`*d`o(GEcV_Ubz5CQnIy z@0E6rgqeMnYU7->YMyIy%ZTW#3b<|6C$T_YTZ_E{P(zhzz9`|_y6=S9fO>mcn%XO-*V!&I4<{ry=s=WzgQV2GiY&Bq9`#-WnME$gnY z`%Zw~oEx=^H309C1H?8{LK%DTkU$LSacu|`*%M}d-uuMXE*Q9xO1$H2HKXe!(J_qz zVK>P^+vql7H1@WTB-es-miep+FG8+*+IEGyPAao;?t8+kNX7hkkogV?%*)%G+ogSu z4hM0jasiaBKRrG9Z!4F}ZI=82A?`k`suf#zo{myAIiEq}fbukfyG~Hx*0;WG;BT*> z`2c=-l4DGx%mrg^KOVr-DDc_y)z>fp4Htl)$36%!I3*FFJPK}a%)rp2JdHyBSQzQL zw&aarIFjT$)dtGA?UN7h_oM9-xkM<39zgHh5Y5;!Xv^R(dF2qRI=L~aun*L2ows$t z*okwgiNkN2e6Mm@{Adwi064oC~q`Fekii~GbL$*6^!yMA3re%1f8e+QGO8gPdy zeHatRTd7GV>o?y@E!Nn*xZ}GtTt}uhq*7gAt`+mpCP>#nx~tcYhaNl*vR7V}PiP!# zYsbB6`S;p$e&%8EgpIhqSrKbd1&(R-Vg+@Z2h761&^u8p`X1?cs1lIFP?JoGRB1-q z%{xH-2lbDbsvf#ZwR$2(eQbJusug?tj(fhbxBo)?6>GUO+XHG0vnSIADgiLi03_vi zD6~DqXU&>ps9~$78-(1R+apTi`2f`>G$GND`$j~~rX->ci`U;66^%@#Dxhwg0G|-;O1{3F0FhP04!7A~H}k z^eVrSJs79~iDv&w0z;Xu`yMnHOh+BJs8g#wK*{vj4efBf!m5}q%Qj73x#u$+Dle?A z)WW|WVJO)ZG1qJ#7tiMM%ahC_)p(?J0~UeLT2C5}2bq7D8I+Z5Pb=-LPBafac+g4! z&@7s>R>kDfJ;!*%X(Ad+aN>3Z*?C?ba51y@nK? z7dbank`X(H7~pIhcrKD9A4jjeH+HiNX2=p1i5%TS$D^?8Yf{Q&BlEXc(9om%+h65a zTG=gc@8UOhoyg>Lom9Jmb7es~U#I=D9AD|%Ap63 z!qiN2U@DKtycdk@gMq@5eD2LA?gR|!9(s8k`|9`K=TJor zw$0fx$Yqy2nBbFEY5(yz`RM5)Yv23XkL40vpI+*k@a3BmCGzEZQJy;FSEQ?lZbR(gw6ikIZH(V z03ZNKL_t(C*ZtO%5RQlXJKj#-rr?#{M}xS>cw$-VI%Q1vPe-|z8b4s$z$*(H%jV(G zOF`{&ad}%hC`xhCNis?crzDAMaPBss6UUWbj9V$TnH0W@SY>T#pstgIrYZCo!REe= zE6(riy<>BxLE8p+$F?!CZ5tC!Y;AOIP<* z-CbAJd7KBpB~O%BDM@~9t{3(y=Rb%P`YhL3amm4_Y`U$t@cuDb6G({KI#Eu1sg_Yf zk9Mu|s>M?KMJ$0K*bcr_lZe60w|t;)Nf+W$g&Hqt&u0L8vGT(18>4^l{~A7L@C4l; zexx$f*!&*yOd2WpjngIzBVHLx;{^HxDRD0cZMC=~RXm~vJ~r8E$0q&^L}5=(2+VL@ z9r}l3`}G1l!a6|HlBGw;0N4X26`hg*U@c9~eklq-*Af@^in2(WL_Q&zebR{#u}rP| zea{7^p+I{_100}f`v&k?;tL!vZ?fT&vxPS_BDODZ0WEJ+(GPp#EU7CUER81@#rCNU z#R4W^T^%e#byX&P1SogC&=wi2ieMNt{D>l`5>k~xTI9`DVt|{wV8_#hP=bd?+1$R# z7E}=P62&WGi#XejAQPx+)$^=LtLl7-F|YXpJ@sPH3h66F8XwA(%N*Ax!cj@Zc9yWl zCuCCE!}@Uov{`BsKjpFX0SFn8JVqn5p0lG*kiGKxc5V!!|)8cjy{MiuuzZuW>cGr$|F0-8;Eef-+ z(sah>3c)$J!_0$s7hi^UHw4aGSo5#2MnAa`8_TdgX%ti3SzfAr(w>GKDP7UM^ffce z#7DWmea?7LD$m7Fo?Xzq*t*nTg}?Bd6Mc0zkJo6pDTLWhUFIfQ)M>2abk*0;E}cMP zcAt>}pGS;ijA-*77$!rFJZ8ZK8s@kdxQu!7X+f(_)UY3PFSaEQlmy*${d`4YMxvrW z2!2+0y5&6Ne5n;nY>^RUBz%6V-#CbH%C3Hn3W5NRHmtNmGR+LI2hIcEeL*G1wOiU! zRkbrj9xdgK{^=k>#;9);7$Os7uW(ib^Z&4viCkM`i!61q9++=ozk<5*gOF_Rw=I%Y zu#qUP#1t9phxh2K$a)y)Yw%%AOXVE%mfk>Gq%b#=aWss2s8^-W?q8tgFGIWN+X^6@Vs3`WL5(xqj^m0Zs)U2cNvxev32O$y`lubJ0m0 z>Dlm$R-%G(Se#gzR-he+p$$d9?r{AmRV29KsaD;6GCc>2vmMduu|I(WjxZ&QT+NRA z&^$x=Dc%)B*R*Ry^G9^5s${(rh(fT;P%?36t>qRNYTT(^IP@hUx9=Gs$EC<#ckpBC zLBK2vyh=zRR)TBewzTJ@fza|h5aJgNL<*}82b0`l*6uZ8^vzT8A7tyxE6F#n6TZHi&aSmFKN>mh|*41_N%fL)~uG-H6T35Ul4SOU3_bi1GCE zNM9%n=IER=xvkAp5L8TX@UY!JsoA4=PO^BIj7DMHLg5FSrw62fA2>bjx7@&g8R5tj zT%KR);*wYYtkf0;TWFc@z;5*#3>PrwR!85AR6bx%T|Xi~z+-^x{}+@;AHvc4sgz@+ z2%nXnxW9oYAAn6X;9ajf0Z*`Qg*=lns+iyZ7g9^JdAaRE4vSFY-wLN=b$-=lK;l}# zI=&#x!@OaeA+&_lk+D5awmqHS^6(s{q^Iz;r3d$_gp9=1T8G!VPpp-td`;FT)}$Ya$Cf>&-~o{u|UgVnV&w|Wznmu{5UcbiQ^O;L1}<&-G6 z5HtC{GvHq7Ak@@B-~T(K2f5vwOySoAtUfFkrF-8?FFg|(w#8|{5E;zzUx=7ZA_a1c zfK)8XH>0bC@E-{}_#RWRzP^Y$QgT6JY^JtwF%?x_2{}z4)BR~8I>Zmv_!8(*)DCi) zveqsiwT*LopAe>C8da-?j`K1yk_jKZRP?xhZtuXL5&7?utvt%r+Zt!wBY}tvH!FdL ze%^^;$+05y^|$zVOI$`diw3TFOS=rRc0e92Tj!}{kh$O{~CnNT!a z9M%H0m*8xgUmDjT$=5`vsI&|4Hkih6pDxC=I~4&TEYf#sT0e)$K-@LecDxtLHEnAY z6w~@G0T!8oDoZVp+a+AIb?SwPNhTC6e(NRG$0cfN%QZF4e5;UP`3!7NtEJIfl$Y#g zGV2e6(z>}w`zCpe`RCCla4>>m*&w zmGm|M{v_4?#kJIE(1U9&%@jxMRq*_M((_L^(U+xb)9>ccedOI61>z-?;fCzw1O?+b zoj{INV3pxb+Z1IrXB^w$w;NsJlMeVFgU&v-hyF4oD#EyY8Kk$wZ(Up`LqM%e3iXB8 z?01)cfwf&;(oTIgi_0Q*-H5!CE!9nES$~6eA9u-3#K`hIogdP_iag$=hZ1fUM8deE z)yck_JAw`$L`Y7Fe}yQJ!{sF=0N31xjC3Hu#vlFTib!w?HCOr5`gv9%enE!WSL@68ohCfur-(s~cJCxV>x<$!wEK>?N@ zbo@j+`B=K?xBYQ2LqHtb#H!3Su(LCjb4o^6wD3ax-6xLYN;T{<*Ex!ef3q#EnE%Hg z%0ZyiyBc{^O)na;tbD#1vDV?ec%a955F%M)C?bTtzFE$gDU$4+g13YCqi#}lp4erF zc43rA<0vcxAUbP=iY zt8Ls_cy26ZQb(^K2&#=*4ZQrZK=q`$xbn9edTVz>{Og(5>0pP~_X^O%#B{OhKu?OO zqEsR2oXvr;QeYhw6B zv0|9hgk`AK86 z)Y8%8gcYcTCZ90eXy`Q0gpW)dE08_E5Gz_2QbQ)MsK%*ybk`^PlAOPJ$ROQIBB)B8 zFt+01CGGAcGbo%TD*IT!VTh_94?JD=Q?K;Dh_C&4^1XP8zn*v}{#CF4TT?}RIfCJH zmef7LljhDDNRwG`1(lHti3xW~jZ9njrDhHM^bh9{8%f5@5f%S_{O6K#p> zQn4YyTC3;*?)l)dgCXgo5FkCR5mRs6O!&h(f@NzyzR^qngM9G?A+iyOHk8*Z{j0 z@jga#Cev=&4pROWfL>b!=2RI{n!t*H%d@YNH-=tJo6Pp<{U%%oYC&3DL)`dUxYG|3 zsoGO8IhZ3ZNu&63$kTh0^IyN98LDWN?3wcvkiX@|YiNVygY@*zVA1|hR*Gfi#dUM? zjEUI~KCZe0b{(k7U@U^NFd*d(VTe0Gb{y5?^~7Tk*9w8;gjq~_OU0Fe%3jk{pNTo@ z&THkHgek`8Klpx(mN#-kL>!&cO3@?}!x-G{Z-yupMi?F~5m}gj_@$W&M<41&WlGwA zbj`TeoJRu7{qy0IKJ}s~msOWpV5ufus)qY;Nm&3|=iA6pNlFj@db=3jzkYmU{kEdC zq`4TeAUfFDB}fu%)9l8QbWwSx+8{aT7yLilrR@+O3o>o2mvv!(`4cxe$tzLt2of9g zj_YW}qmZ*(@6}5gYf_(=MUG&C-HY{W?V0$>O1n~41TbfT*{$(kUn9cx{&wmZdsY^t zis~}yu)yx=LkpAg9eUja2kKxSISW6(>uAPRYQ_n{3AYn_gg^_AIzVdIZQBfSvHuU|J@Es|8q;brB%49)j@7-A*Q5J} z<;-Vdm9bfh1F%oJ2&7!9N(r3WF+JE+_k>P1>D=sI5y%VFdn;VBILa2EI6sIYBS69b z?PBY(LAEgk@gD|tDU7LRrLBWxC5Sme(xaH55tB&8)7HPtU8@4&L-@PuL>CK92vD2!giFie-(Z40%fs(X(_5v!N1>PSfFlL&FbGeOuN{f79+h9ZxlH9 zq()|75ItNIsE&%q^RCd|{oA+l?a(oeBS7yIm|34t5z+?f>j{ACdMI)l#b)%+nP_bP z`Z)vTpV<6ijW_!P0>?aJruR%{g(Ot1jI? z!gK6_!0rO0C}VAEnbpCg*MrxPH66RJ6`E5b$`HFX^KsC zb;A~Ncxo7sk-DNYZQpVRG16LoTRk`-sC;-SAOZV?`QDyBx+|nJPdS=5U#SYE56IwE&Iv3bs3E6YYIn07?6|j0y&m584O$& zzo_o%#AL`iHwpTY)(QK9rArehHt|x5N!0=gn1Db#99S3BSirJJy&8f?6$M6W?n?Yx zF+J&2mP!SKdKzJbTn`j@j8hrNAeUrHw&n$i{Z9o3L(=L9hOkQxd(n`^SkV?{JWI4q z7o|T;*!M0KC-tTkEW^JVbE7uixKzXfZrKk(ij zw0!IoKzT&Xuz7^XsWU>7rRT)iel6W*n$0$nQ;@oUxt*zz99lK9KWY?`Zg*`V3BZ5*9s9k0-j+p8t7$vEOs-Oq+QGPS26 zD|VxbhN;0<)qccbM3{Gl&cfVrzk7odLI&()!fP4M((SC6ev_KbR>1Cip+Z5tc}RP5 z0#wrj<1ZOGR>vYbJ68@EZ2zAFTQShrPH)Ly1ixrU*tqJEr}gl4T0z zXGz%j*)PGmYxBRYlJpyTdS!Mzlx&>uc>&0RoR@(rk=0Iw0sx;daLGVxcmXxBpJHUn zbm1B^Pp%1(j;I1T8b@TZ*)Xt5w6n|8tK=Eyuqiedt>>0=;N{>E_{pI*#XZ*AN=RXHrYo!U2)otkbB(`=pE!nAmYnX!nFMS zFp1EX#toTSP0j8A^F!F8Az%ae1AJ**S$(B`VtHVktQ_GgK7K;B^q8@QPxOSzO=~}oj4hjVE zIL9h`*v|T#-Zw!ye^-a&G%yZJ_`kiG#&ViKo!rC2MSbR=%t%5I1w^SWBPOY=AB)3V z5^9VZ6fQt`BcPG+j2ATS#X3_9A*P_8f4wBZBbI<~V^-V&qyuN!HFw^WQ!tjK`sfsB z^n~}Tak&0gAD^{j1f3QmKD^Vd-DC&Ad8BrC_pV%PV-+J23VqXl1!00IV-m^p%!*|g z@g{nqY&bLjgiYR_S&lG2xbWY_S9-WyWfiAzGXmi&VgNqR(n&Gde{MT1TZ$wVA}x~7 z>P7UZSro5n_V}Dx^p|C`k+Oi?L3E|?#axhvW%Mee5#4_E4Nf)a-gGYQxb2Rdy+<2d-T^m0JWPE^apoE4XB zpAf5rMVEwc8%&EARH4(W9bG%Zb3ei;VQl+)VJ_<7&bjmNb*u~de#EC@ICnNjX!1f? zmBB7qHxjI_cG;SfRUKb?$V^f+ibUxnO1GzLv*h0ZGrui<2&YMG}L*1~E_;{tAbII=e=P(q~IOrOH7jvq{Fa$I*5zSIoJx@oFkbiB}(ayAcVKb(&n@0Io+s!xopfklh3w)%B&Rlr(B_sL%wtqWbEzM z8990MmF5&pyR8<~w9K?7SU)tMIoOcIUzB9ZS7Ik>MuX0w%BS7e=@m2Kr3opD@`=e6 zFO-W~9Mniwf!)OF=}VV6qD>Yfg5gRV;}L8AZ_^8uo!!zkB+YGgjoXm_!$WX4ok%Zq zdmjR#q=3y4iIEN36njTf;*0fLZx=`z2~}{A2u4n+vCTqE-`{tkd|xO9uqS*Y(kL5$ z-15;~oectAi%|iyF*6~rk*1e;AIcTy4KhQJ+omz!qB^S`i}Q_ZkksM&uP|6XN|os% zLay&p?MHl6n1KSMa>IaDMwF_B7q#tS!q)1pAUT)u28HG-(#&_G)LFNLk{OaTm1va% zA-LSvESV>qbFI>Ur34b-FQA6a-^Aq(Ei7*M&jDVHx6xmSs9x>1&FO(~s-@C4K)YN{ z+dg+h*r1bQ&SX{#JxnU$cV5!!UB?a`qs!;bACda#5XdMxo2@NkQrqW2@P)-;qY z7g4jd{jp#e@C+=}LJp_uehg4k{;g4|F|XPtAvdticx5G#4uwDA_qPFH{C)~V zqq>*FV*~#2d->Uwz|u3BV9wC<{GD5)Ya~cu2wZeAN5}XCrkzf#!I&Z<|NfXSo&f-v^0BP znU?RD?{CEtAy`Bi`(~C)S4FRb?chDX1unin1s+a;;BO~NHbzST8a2os&>_7wljHRu z^EwBRd4NQKtCVKKR0I6;hhpeugBtsD%do*3?qLeDzd~Y5S+jX-qbL&$?ls+Wte6~) zEZS+`J8kQCl=^+7Z7u{tbCuei3udB>G8{L7*fgwt-Uymio`AH`U9RiCP6Bg&1*I_27EsCu0gM_P-Nt6i@B{cxyx*^*4o&xKsHhS|2@WCZT z=;WmVhD*L9K#~)v0IDPBzae^?y6oJj=UzQ5%FIMra+Qz|GJam3;|c>C-&_LotD0aueBnxayh2gS2|U?2egU@sNeIuN+;(^%_0lhHApM7Ks+3 zxV?RjtEO?d=={TG*@B#*gxlPmlOw^uI1gr6bDErukwv~s z*QTAfv_vebvX`_|y5!uj!;9L?)O+cRFt%VEUHH1?vQKYZG8_F%>1x{H=p&u>%Ybh0pi~@5v6&9 zPu739xX2vN0=dq4<>O_@qR1y$MTG}GwVPn&kaN6VMjjpfJGhk_6mV2~#wJ0v#A>)cZL!=-HxsjgIKNUXbs%>59B>ii1x7%=yT22zFsLb zH{wT8-<*Pub2ZLFB{B^Qg9_>7qAV~#MRLVq3}e2R#QY}&)P!c;Up37l8;zY^iVsh= z*gIeVY{J7?MXr^J15~$`Q5O0Sr2LaIEeLRb7xCA(8tIhum^GIWaO7^fv9HU#c{kg} z@Y3jbMXwoMe&H*$#~|-sdw$L>>kHn$d{H%j4EZhNGMhU&FL=O3n0bC>ZfL2W&e!<)>e&UksX1~R$8oF@krCtXwab!k)#fCsD^jP3d!i>2=q*ol)Z65*D7Vnc zNNO8_H0Iql27Zp(VV5>MachCX>S#V6v`lFBvL>c$+1tj8i(9+Mr-qnd0@VS|3xP&WWy1NHT zamiiu!uzOBFx6%~JEcg0u8V;Hu4T6t&6u*nhojG7tq+}0|EzyKaK?y|b8elzzuEe= zs^L(#vOne2%Tz5=rqd?#JCa_U7)l%Q_W6mI9p;Yk9}0JpvMTe3lFOq?4dl7?#;;8@ zf^J=QyLl{2$ZBl`)PQwvt#2as(xsiXsky&hGGF#$pYzPHPJF!~U_%B}I|+Z=&*Sgc z)FhfyM@mM_+9-+W9H>)WQx+T34{o8O)NpRS`{~M9sQ4Lf=?F{tA*Zh_V_g8XHmM-G z+q!gl>GLD1bvi1j$m`0pe0`EuNh<9?nC8cR{#2S7_o?u7Y&*eC zJb834=lBZxmahv6?I3AK1CT6b<5q)il(1;>!q2x0oeLVPD^0i3RAVa@(CWa)pe$8> zz)(!~M~O_(YeTH18>t#F?m6FYkofL2so)xfti#hUN%XUyee%!aMQq!Y+jT2fX)a zFL2tf1y!t}nB$Tb_pvQ0dSCxsbC9Yu1I^PduH1YkphVM2 zmc_?i8S`i0ol*|wwqZ2BzBTrvJXT^FOVT#xARWr6|onilF{6V6qCE5ua{s#Y>9yB5-BT-v@@&5lQ!AwhDgu(!R&Xt|Cn zC#@pT)`lcn>J7(crs`M|`)Ih_*|M{(l?lf5or%5ru|SgyA>E3dogKs^Qxi6WT4;@i_QS**9`=W>h*#h%=;VCg zOZfn_LJ(ANkNPu={A690(0oyL=7!jAM>t0TkaGmZ0$V|)G;svwUtM0wyxEP5PhShA z_H#VPzQ=(1Kx_Ns~F@%_&-P;nz8HG+&F>>bfKIix~`f+$m&zwh4E9 z5JU4}avc%L=l2`UrwrWV&m2f`C6{bm&4)mKp=7hs+KXI>6^oTHX$M5URPT*jWjGT1 zU@tZ43fb%I(1zf?PdI&LLp#bB1*l6(5Dcz+SsCT*ta^tqf2q(Z2;=Xyf7H0kL8d~e zU+2p&^Ck__Lo+2-htE$xfu2SY^cPLUt_h6L%#z`X#vWDzIyI5iqskB;9qTAm~5W;wNE zda9Qphv4n&p)Rdl#G+*?5gs{pYekMrC$A|=27epJ?pE0A>S5OOsz(S{Olkh?Tb3H(Aca>z(fzRlWGg_+6!^{v_`Afda6$4a6DOTrA z5XF^c*Te^L^;W0}wAq#^z7m$EDL=hp87#ll$eFQ=)+(MlI$1!8p4=r3$T>|z&KLfX z0E1_&ER%N8pC-^Rh#>IRHpCX*lx_38icyfc?!I>0R(v&xUJgWH1MW71Dlt;%}}fO2un>y_FN z#Cf!hnE=CjS5C?+2koU&etDdhh{%m^biB6>?~}}KI-LPKTeV8o-}ABWFFpp-Hyv!j zc`ti?e{1%*v~}1z=t-DB69KDLZ>H3@I1+~FTUwHoQPCyeWxJL`zHGFWgO{vKKPBS6 zeMwH{Aq_e49CPry={RR$_SHD1!sw@u#i%wDnAIeBQJq$A3^*P}UIW)u8_Qj6Vpe(u zT~v<&@eyW@{BtDU9m^7s)aF4(*`BW#y#01O+o#_*bXSF9nF3O z-0GFW?3u(50$PVCMv;QB)(UgQ%cd=vpAC;Qo3EdxE1v^2Ap#=EBApGq77-1m$Dk}@ zD*mB?I5EK?2r_&SBm})@Bk_q`Pq2h`m4AFBCoX~#k}I8)#%n=r`q!SNf0xLuHHL0i z>Js(ko%I7lqZ{T69!;FoyKRD0tSUmrjIV9}fi!+p0<$4?G{$t~l0n>bvK9#u ztMs5X@0QN5wH`|4mR~47jHUOEqEqbOsF6J_^;nQW@`ns?hIJdZo$^jb!M8d?z-%XN z(>l}I5CU_nkr24}EWbC7kdUrutehc%LDTjh3$%n&3%mooA)bmI0aiL%e~YJkq!rU} zKA?_i_0b_~<%oQD(tD( zA%kyhBoK_n2%~kaQ42%@Tm&`MKQK5voX*q<8jNEA+D9|6AKMoO9GOHY&>oyw6CTq_ zq@SzR%;S3ds`egObf%J1c?CS4n#A*BdG;pzd;jLDuI{!{(UjK&o%^}Is(lg)wwEiL z6tm3pr3PLDhNtO{R-%iyz{Vy!tVP3S5g6t?AIvv2HN}+H(!ylB0TKh9gm2wxaOCj6160LA3n(gtFvqU3b4k8`4fU2ZD%=@jMTHWT3yCJ;dDlh6-Xd-7 ziRuMTdFu6QQaKFTV~I;16-eo6njb-)ppisCUEN3t9{027KXR0^|3Xcz@M6JU zKT+jUk5jJyJ1s1b&lN1e1q}&8ll-~JJddTLj z%Px~(!-j_p8Zcn`pTT}*|L`eaU9zJ|*OVBdP+WYCwosgFO~Q({^Kd^AZaZi@2$}v4 z6}RLLe-N7)UWAT$UHQml60+ML7Ddr8=>o)cZIJrpG@i z)fgIT&la9E{%sL7B`jfBIn_U=i6Q(U3RUdrRmVmwFqgWW3}Orojgwua#c)!b74C9( zfNI%*7K@w6bI@RxFMG%Go6X~8OX}ifb+7tk<>`PjMBkbKs}eAS@1jmwybxAE$W7W#u!KU&hjUzdv%$?HvooM*_-Z$0^U^?GPe1r6EYN zhRY(Y9z2u0U5Px_;WFc$15uEy&(ISFeSj+Ev^RS^o@AKJwXx@N;^N?$d`XL48mgH9 z>CV~4;`db8kf#s{-t3h$cIis~^inirly^{zokSiv$Jk^3BEu!enRIozCY z9z_=z_wAAog-BjZY7J74J8H+dFk6suFkLJe<&Xx^fHQ`b!XZ9#qfxSpe-3u^7 z*^p}B3Rr^BpkmWV)ZjEH^Py=Q-mkNRBst1kyrCEK)|r2iPj6tE+Vu}1SQKrToF8q3 z6)jkxtq(g@A{_qC@*7%{Y{CVchEPT0L1zW145t(tMb7<0ZdVaP6uQa~pynh!oGmbg z^UJ?j`KrA?-i)L@F%Bng9;ae$6&62?%;HxfytkygdaJKJ+E|P%K&L~;73=803|SQ` zPf*b1wx}JXGqr&=8skkL;!*$OqvTM49(pQlgXGBY?l)JNoLb-jBSfWxzM$?tcf#}= zB2qlk+=oA`+{QL_?^3BlfPmCgVOL{Pk_Nv?It_(_2f8W=Ge`h;B)H?B-^!kWf92l+ zi!beQd}sP-M{zVo7>&sCV#X@%L0v*%-^fQb?9N}}Sne;mu$Q|rg3$%Y{FYy6o`PvK zbB$1E=*U|VJ=mlLyOQb4%VR_YC=x9%2P#5A zPjogbSD~c9p7E7GM#$5#A5J)|&18V};qFyA`c0M^NCf;go`~W@6DQS};4NE~g$gHr zlEWZTtuWV3n}-QqPQnhYezpA}r!N@iOV~2sS~(jFOVpb-G?ro<*(HP}6qIO}R-y>V za5EpI#NJMy!=?69zEF}FebL_C3aj`B^QY<x@uTed#cWSNwZUO$FC^aYh^6Zm6^~?M7Eu&d)XEm6Gjug$|8JP zH3?y}JQ#!cO+x)vYv-22T7h8y2Z_``yt^(94P7efL=GcF@qnp( zVo>3TxD<<_^n0Cu3hB}4MTt|*m;KE+bTx@qg~zng5dOv8GF8-(+&>01=7P8H=Dg@V zxDrPL#jDU?%CX7!TEn!p!Ezj>eaoN_F<;MJ_M#iIH9gW^jmzB#fr85uzP>XP=U1)B zo${{X67~%MS<0i4Vpsqse~@Yd0q%k5^og2;5j%ai9dn+;O05DPA~Zxf2Z!-ih~WTI zrm_jqgeN}d)nFxW2KdarGb(sxj7NS`1dTgJ)y5e|l(RY7)G-Owebzl4*%>I6SjXe8 z3FJD)-F{MA*x!k*#)A_JaRBRPdiF94?E%6Te>^}tZvC*xJ`@vPe!J?nLw5uR&!SOL}fAzl8+W$ z)b#SpUBt;fj-V5M>P<23HeFj342*HNw9na7PgTA#GdukFNPHrq}NL2$>q!{g)mrWTmAU_QyQXoO% zuNss3u8e9~mYgkwE}d4V7I5r$ zN+r(E&>4PdVNMM4a%|D+L!AdHtSV{Bc=t zrc)(|B*IP?N<7<1iwUZPa6snU^Rx3B@%WMm4jS?rOW{zWJptX&BlS{A$>C(fY;)xt zIsV3iT6Y355_4YZL&PZ|Y5eIr3R?b3IKPp8{gyHWbu!ncAXZ*LF3gIynBYbA6qR^G zEuk(cWb3Gp5B>|5-@^XVlR*&RmN@ z(TDDW>W_Me{L6$Dwcc1M%%Bl`1A+T{(H@KXh5o*UKE$w(CGu1${J-)0k?iL*PeRAn z_t~G7)G@k^P{dc7UQYlwK@5R!q2<0Yi^T;xl_lt{f-#P zx4q!Sky6PIg+}$%v|*-raK|G$!+%+^LTKaed=?@tr!<+27=)Nb=Cp?0mh$S)(C@WS zrD!jYnuV;R_=UaBQI+Fl=(~x9;XO#9_sn)47`K|uCe=k~;&QViA*u*2D-}OnigPYx zQ7iruR9MZav6P9`s?y&!9!v~eYK8Hd+Nrf}%-X88@nXK25SlZO-?n&TS;YTdK$c~R zu-U`BC*vh2r2yRN`1%nQ@2e%WU*MN#m>6RzV0v3;Y7ilMd@zx=1YqLW&51-JoJ%%N zYI|3w_7UK-8a3}z%?#VS)S%TjbLe1Nq)=o($0SFN!S6R3`ARb*ON=!}zK!}PX$xan z&!H0II~K5b3YWIwbJB*nyUFO?$BWXJ=D#*<(Hr7pORYj$JH5`915S&i5h-wPaO_cXr;qaV%e1BZ}o7YV?0=B65Pqsnawq3_;;I7BPJAv_`k1)Vixz2-@KM4LHfMnR7z4r=7V8`u47Ud z1SDArBW_fnRf=hTrJ^-_0E|YFOc6N+K|k7|L9l6~FJY%ltbncIBg;LbeGzn##3*h%Rzk{>9-ha>eRc$Nie$c^nYD_vO=&$P zE+x;0`f%*Muq|snzEjbCuq?^mhK1mf)H@J_Y9A-|ZTcCt8zR5g7s0U4 zRTyn;U%bLpiY-!H*AmRPP$=Hymn*_*(M$E3b`?c?t&)7tOkCkRQVZrqvmgh~&Pd2> zrm8>{dDe4QIqSayKaotM@UVI;@?OL64t$pj?)O8QXOR;+6kd?J&=9wjZQq4 zC{0GsRniOPRO`ynsH{H0!=iTPmwgw#6)!JYUiUmev@AiY_T$gDe@U%QTC$}BjXNZM znA734IGh{NJxnHJp`moNQp0jY+(@PQ@DJ>Y5x#bTg{G^IUb?Lq73bp#A{^R}n{*;^ zDezY}gIV06bjK^J%}hNp^~Tpy3wJVh1*R`T~rVFU>u^ z5br}btg$``sf|Uopmg>->|3~*z592@Z_15;IcKsTW$7N&99&--2^-$)DrQGcF@&2z z`^!-~I&~rhHoq}3c!@O}I>G)89{4kVy&{Zfq806*HfLg1Mn9 z>>to}V?P0TkwX8yOyp8=#l1T1!Tum#u}owucFH(%FMZGBKcYHz^`y^fm>hd??w=-! zaPU$Lnk=v}RDJtLY4_QTBKwJ9eY*aB)pz9Vmy{#QFfj~IS!(p{?$r!{!UnmiI^=wH zRpL6LpXI{SIYK1l#iLd|c{Jqw)c6F@m(QJpXgX9lx>$oMNcfYZGzVsT4GSSnV)3DO z48u$UcLc~KIxoSCzi0noj?OoY=qo5ZxbXfYYT*rP&Y3^>CyC%eISEkDl_t7=B?%|k z1R&zWpZvwX?Oq%~Dd*cc`fO-U{TZ!>M`P%gyZh(|Q^Zbf>06_VNJZvp;nS%j`2kw_~7qt|jRCD2J>GOa=r@3PAv3wxv5STzfH|H6Nx_E&Yp}TNp z#Qy#L43=pPIQ1lVDf)vzX+N@(m)=YX*BP|;4be;N$Jw3M&jlTck}{FGt@T&svBHgrUwB+;G@@^X^x7h&gSnmra|iSfWTGYOoaBBo74VVr3TW$@ z7>XfA=v$HU(2QDifzNtBWd4a|k$M+$gp$-U(#tR~W8VHGoL5Qps7*WSEMnn`4dA!T zv48Ct4I>FxpN9Yae?ln#gQN^aK*@0ZH?pz^?oWOC|KKbJOxXY?h^_w%b@|T_iUugn z$NO(62DBgD`TquHzNg3m(gSV(dk+|Z@+`uCt;q#q0NeS$NX~!Oqy+pD=KL>s=l}nR z|2@zDPo2b@!${Wl14XveG{Tq)#{Y5wxNo)zpEl2HyAad#JgEtu>cb3qastC!UE<_@ z?~;f}kWp+qj#74SoGl9JA~I+S+zdC`5d& zQZJt)TK$2f+y}CYtuCyx99LY1-WQ`y@B67g++VMGUlD88p>^Izw4=_9L3`$k3&Umt z_Zjrhm-=6i`ht}}Yxd)y?@gU^=Ysd#4XwZYp1XEpPWZ1q+-HLbz)$d}dCseCVjg4N zy1~SPd%T_r7P4!*@1%9SZ~weh)MmT#1lE#AtA1mZ9U%U~%o*l@Vn>sqi^qK09{j-agw$Y5KkN;xBi98Bg-Q-@?gC?^DaDtgxWoz31CPp6{>0 z!o9;k3G>s~-*+go-Q&f%;|sjx z8pf`1)*bzRCm%1=@*dI-S1l`ge*rIV=XHXWUi`qdnd1d{!Jhnz|GaR%9J$w}I$sxu ztF*p%Q^@|julJLASZn!H2bexm@wmM7{1PGT zZ?gmO{rSJB1EGi3!7EU9eSY|SCX$8F`3*}Y7ARY>yB{T9AN)SJ4PLjgu@8hnK^X$Y z_o^9$Fe&ev>J!I*u1i}wQ=XclYM|Crb`8O91=v zcv~tQlj+cf%j|m<6_>Fz|F_#uc>Ux3VF%RO9&qBvo^9?=e3?`<`WBr$fl?P)2=sf~ z%-=+en06ZdT7Pbgdew*SX=?6&*k=`3*X=;;}q&f zeTKKLu8tK)?ffRj!5cg?Gjs3?p1A{s_~UU{ODvr&3x@~oz0P4ni01$*w9>TqlLQF_ z+#P8zSTk5oF@DHSJ#HcUg@1CPgU9&SOMhqqqcDqRAMdvl!(rmL8R9MGk85U7MSYj- zbu#VYFzhFJ05)4_r)s?ZolHLnu0IZO6Qy0nVM(#ocx}9_w}6r-Zp!cd#;tDx;X})@ zvSIE)u)1|0PvEf^c?eYS@;5tch35Wj6&m1vBxlI?+%6DSC!#_3uzfJb3U8yv^)NQC1%5oneei6*fS4ob>^g4Mz8&$C5H3OB z!xer?5^gnp*Z=`ck^hWC;6!H%@9m#uU#;3-TEQJ|zZ>qWJZM3f?koK6I`la{GWUzC z#Iz0wY(sC>oco4S!uwZ^#8N7^I|xP1*CoF<>~NUUTwl-c9TzWsPRCjN+sg5N&!v8S zDOv^*O5WS(e;aLp(#UN(daUT_rc3Fyy2-{$r_bbt7~UJ-v>sZ0g@ zoO$s1Zp(&ipQgXGm0?re+j@`_B?Y3|LeqbsUV#FDRvrn5*>q7EPFm{zDH2F|+P!5O zytEZG_BwVr@?@asd7U->U0Yk5p{c-k=s-1mo=tOn+DkL_@$tDO_=K-keu0_xZLq{oBT`MS?{uST`=Y{%fB*jNap5D}H4?sxP#SRI zQ~2oIrDW#at{Ysr9gz}3YyS5G-@g5<2}9R?n9$AW0?({xYw4oCDA!Q9|(e$f%_19PMzsPswLeHbSOXgs{YBi z<7N+-p6}D%W7WnpV-`qGWb6$YumEDoqrE}UZcby6T{qbmn|C#Sg6o%|+(ulP#V>C9 z&=-QA%>c`;M0-nze&gA?ol_b%sp|p#OWn7r9GBOc_v0Eki91UML+*8Va{G=e$qo>P ziC=$w8i)hm^MlLJ6p-ThZ2VV;PS@2pT*Qh1)BJ2uE{3(7x1C&$cfXF0&U$jR92P`f zPJO&ig$X)rbor$Jv1r*%luONVKB;PE%C6~kWYCtRNA~*L4*(dxtSmWB@*WiJfY7i3 z0{GSIf$&H8g)8VsO_!?mA3+#IS@CA?Pu?HHdBedxr(Tyv0CU^*ud(9u;z6I>l zlBD4o#$iMaegOg7FX(1UnD`*uZGHA8nhJqG zd*kigZJ0gh3c>rapLjju2+8s054WkQDR_eR)@*$`{&2V^@9qaa7i99we;ca zr*svRO$LD^)s*OEF8BR*^Y4O|VT?_6E7WHkzJsv;5kA~OzrWy0*!A-7!k+$Opq7sZ zYsKT!4mH`O?FTtvKXe=jCJj5{`hq~Z2~xY^L2Sd0y;klGZ*~AiWMXeEIw(Nhm+;;G zpeOjYfDA~~K3o4I({f zP<#4$o5^1Xjs7BiMr`XilmJoaIw5W|^{ag^$cC0MPO*Q|U(@f!=02YbuML&fH%12! z`2Vo}4v0IyYXnd6Uv$j87=9nb{4^(5)oz_O$_@4@yR>T4ap<4?49NfY=LhV;>c;zz z>lK-kI%MxnaDe~sNj~^E?_Kh!I!=&FoB{xdUj7baLEQbE@`h4!??VRxvjfcUG0e{$ zL&?c|9}-~rcC7XNa5{fS^Jx9j4_!)}Kk!p>seQMpFQd92qvWO%!ec&-fD~`P|7W=M zmk7DSuA&TI$udfMKVR0gEw@)0#Gf1rLCsxvRiBu-AZQj@j?k_>X9yE3V*BPBmRkj+{$a&|_q@q0V@{(MxrlLA86=If_s z@?3P>IDXod^xOqdOp%6#xwyHnK#mJL&SS##5+t~0M?9;=u)SSAFSRyHOdXq$%zv*1 z{zFO?jqjk0BsBbZUIK&o)|W3Hmbm5%LjERbDA4=-{9Lx?d$*ufXqD0Hpk?U8`6>51 z`WK$q2Db&+cD&7>rbK3_Z6}t$XX5BR&U3!dasTJHZ4hVRcYauvW`|avNcw%H^*FA! z>h8jG2dT%flGn;ylh1qm`W+J#%kzeLntsz>ql0@t{{OgRx>LSl1(_kxBN;U98> zW)D{O?sM0g9gyeB=H}*(^Ry35LYI=|pP2acTDX92Py;ruJ3hZAemj&R9=}ch`Si{2 z{@YXK?@5!3x6}i{^Y3vxAXFZvUwmVUHm2A00AXqz+3&I6gDdk21TaJ2r*Xr{mxl}H z$z_oD0N?x^AFQ@*d|EnRkW!4ayIt(7DG8?JK23bP=I*+R>Gc5p^})Y(x0}`V`zCTf znxHM5T1scPSvlr^{}XT1WnJuLuhVYsjxEHmu^!9j zX;(RdUQojyw@M$$V3*WFR}uY_C-vh@Up+tEI#2Y!8hG_WVqb#9i2oUMuZ|ih-=#o6 zCf+Qudi>OLeXcOA&SQ;NkTLM*=Hfc9=Z(%k;S)Nk{QU@WXAc+0Yj*;z@CLQ+^Y>w|w2Rl>mr&H&N zyaLB6aeXzfV>O#ves@|Ii7(9koJ)E^8&BCAy$am_ILcmaSU|7#bR+!X{292%VZYa5 zLVRcXj>kdfp@*&q!B>#8c*}MY?mynrw%XIE@x=Tz|2rTxzli-)e!>UBC~wPY{rDxc z-z79ZS9NbKA&vr$CZtjLrMZu(8{&#~bSIq?%r z$Ai?GmN#{6w(PtcWXD6x{fdnOFL(5|`^+S0Y!N%o-0dwj#7EFp-M{=TH)i9dbK^e& zQve0*Kh7a`>Ijr~Oa>s^6}w-Ik1&ici5{xan_c`31=SZs;6!P4%|RN;r4vE_@3f3R z|3X4eOI#2N&3)EwN}FTxDa7_&Ghl8CeVWJ`ydPm2ORYAOoFW+ z%w<5OD~Kk&X0+M`G=UTBec#r$65=r7j_5`&zsaC_&BZ-zyL4zxBhPyf+0fbtr$a`=`s{;dL;NCH{F1^eHz#OT|K-wcN5saar)aeM z4|V|4aU=6BWdmhAXTb$76~>SP2kO!V$20{07gwLWC?4Mc^ONO-f(ZAsqJoHOldlD}S$6sJR0r?E(AONa1!JN5~55?=?z|EmO&b2#Z`Te~PEz9!vf6y5{E@(r^ zybQW|Cq13}sMcLMU>o1?qFfRU6Fd(f6&{_C9n1z45F-Rvo%( zxkwI`Q=J&_688AS>=wJiQ{kcr3Z(@vv)9f|k47O<8<(F#D%b_9vbiV>Gt@07V}ksD zM$Pq2=so<{MyC#OEwMMbj?q1{$A5bm&MsqJE9awMqxlvOL;q0ENaz%7;P?MabJSz5Vgcyf~o{vkRX+$q)<@3^D_E$Z+ZxA^={_ zMw7x)5apFcpGI=bypSL?+UdUN0>16{R5plhkk;s5txV3sS5~88~FJ_J0aj}_@#SMPWod@Xd zc2EYnp*sb)1%GU4h^El<8x{j<PIs51a% z-~7GvGKFrUw>zm!RV4VGx`zUmz8UG<*g+q^4Djv!!val2Ti8KvHTnn_{jO`Ql?Mn$ z)M4h*Oxk3Kpsy3>P&J@2vS~3Uff;u!V{{0?`@Kk`>!*2mD-=woco&p140G(|2#irj z+W4eS#Re;P{$s9dLyI+&`#$+u{F60{|8?GXrc*{wUc zbqE+y0E~5(*I+!YEJIaH-M`Q-4Yo|j9+CRyFpw4H0!Cgu2+-$_!C&M8C%o@sJeUh zoCm{6ts}0?T_$$4zxgy`-0tRAFpv^dMRS-8;=U-4>K+Axjw&_S)Wi9G2FNJX#@nW) z((?R$+h@z6Vm400zw34Pvkn6u=!Ko!m$^@Q@E`{xA52Ap59aUKjT$FlMYW@6B&LsT zHHM7MEM;C9m6@guppW+C`t@S5*SR*);97}7Cyn8pi!qY|_0ogTU@ZHw_F@#iOs8AW zLIQJ209l<#wcXv0^p_w%qRcXmE2T`3JeFOb1-#S5Ob}8+EP1Qww2b$dbB06I*chpA z1x6-b>mhUZX6AmGyaqwWY6t5AmVH_h(gQgC?INg_vZ2uuTpzI4eDpHw{57r^BPvj+ zVaaTQ`~n8}9hqamr=E66`?Y&I_#LV6L~j!p03O@R$*jU5nt5~G)vq2xY@>Ik1bFp)~)g#?$vEzykMh_&GB1?5y0n2U;V-#q$m~~U;y!AQLpT0A)oQ@ z88}x>tw!OLzwRmW<5)pdwLD#XP!a>$5g?{giHNlRwEj&zl}0{W6QbqOPELq)YVAc{ z&IBj*M#6V?dWh*DafuXHwRQLFn%8szVgmqRhc9s0IQu2SQIAO&k>uK3@20R`WzL`M zPi28=q2$>-y_teXF5Y+nGA9sQ1-sPwg{Z@F+@|qL`h?3^Oq5p(wIeJBOO|6RwA%(( z>Yce>nGH>2XLNm%z!hTbS!&5xXI|O~$%7bC*_s(koL!3iN$dzE3adk#hTQ$=bUAiO zkKd|Q>V2rNzT8QY2)Z&fFb5*U@(pjNb%Ms=76uHFVU&)-vL_u#@^eb8BzDrfs(%^XjtNJfQxRns zb31nU1mH$Cq=uq6RI-*h0>1yj?v(~lcH!FRoX!uIRiQhl-EoKV#>OqhbCVyzVjf#T zSVJkhkvWonn0_!-#M-9_w+fKk=h;Tw9SUH9?ZeZ`pGm0paIVG?Z!Edv`vFlv<&EzF z{roPn0)O0T#iH3E#WMTIvJZz>C0!7-dx66?+_((~5s=@dS2%Kfm7z=}Q5?#S2vn zxV4Va#nA8G5_{<+BY+t=&gvMl>{4$9Rs|Crpyl+70AFWI`K1S_df&yC%L`v1Yt4TA zk!NcHm&BHn@Z>`*YDIpYl-Z!^C=@%WOe!9WS0M~AJZ*FCbFGRXHar+aIqc5{lzk^o zK{#K%dRl1J6jK(%asBJ*2{o444I?}*z<%9KBhcqhF(n==bC}-oyP>sRbyE&sYS3kN zOZ7=w4TaAN59K8>Z{as)>IjN zq>;-=Hcn2eN3^T86dGS>pI(;HyWgBYHIl%0V-LPBSBZ$4@J=b**%b3jg==5QoXI&n za(r@eif~4M*Q(D%Rvx(+?tS0F$%i@evwft5qpk??dx zLLg>CPc}~T7kg52#!SMGc(K>RC8g`1(K*}kbf`v!bj;zpM28+Ga9?2~?}1UM ztp+27Yu`pE#mIH$`QA%UgO4`*q9&k$-$zMC66yvePL$SHv95*}y=2Opb=_I8b=Lpp z9`Qw)_78ZF?b~~z=t8j%!xbcBE+RsYc)uelJZ~Bz2j`!Wj}R)e?3iqBcjN>md3;Cl zpGpj0(LB4cb^=Qxe1qfe7Ca_NOIaj5WZZYt3&@5uEL+a{yW);0#;t-pBwJn6H|qp# zwS0MG>Nx(nBJdS;R?{XzP0)rEb>};!Mt5E4{y^JtC|rEfw9yaiwjrv+9C$3egOy51 zt!wnfJP=EgF~-5K?8h0*zd5_fqAeD+(D}8C4lXFYTitLjMMO`#x_TQ9&+Oy^T-J~Z z1QjbcBW%roNl=}4w$y4Opx#sLfb1(OnbQ-I7CX2NbmJAMxMY$g!a~780JJa`S&&|r zs2CG>QE=7u0Uy>HNa|o=bX*Q7UN)gU^P#$Gb3H)Yx`w@`5qb(da zp%C&rL3I{-(YQF--WcJl!T`a<3ILJ>laBTWvCaXo*xcay(xk;yccV_4j6IB{XoaO1 zH<~Gw{N!uRLLH|TJHCa#WCzV%tB4sA!gg1g0}GGgoa`%i#kMd4@->9WK5fIq&wV|K zD3MqZ)F7x|cd{eAQ|r)isvFSDG3K3V7Zh0+P6-&6y*+7=O}m`Y?uweY0$4g2tePFr zvGriiwlQ)!zmdJL{#cMsXa+y(rccXOaN$*4UaE+n{>@OLm6Z#QWfiY_aAbsb*kThk zxAko!NsWann|dIccS2&V9>&DOTmFzq7J?;?4e5t7ttb(GL-H4m<%px*obW&-D52{8 zWu*RNR@V8AC=-e!8?fsHrcGl?@zM|%KwxQ?`oMdk!Ae)WHXj*t31hdZYvC_z++)&V zJ;s56TN6rf;yprEPM&K06ZpZ82jPx(+=5ZA*@#+w(#L)>pJ75|f}&ENlm}a%hHj%Ka5NsCrT zk|4^*SIdM@dd?r8ok95=%=Y|c#M^}apU6ecI}56$=Z1W2jLf70^P$oW8!?&WO3NbL zREuvZN3acY{wz zyWSRTyCSL)I+3~GYYnjQ_t?~Pd@>a03Z^Bt`)Elo$XKapw~KR%AG=BRTanhqt9US+ zHL$Fo7->5f9{X@Kq>WU1q;$G*t-+O3Vs3a4_GQq1Ku1cO4Oj^jZ2R`PPd^lksp{lu z>EcFQkTE_)ZY9EKuZLZ_p%#UQCXk8L`D)KHl_b@sQYYm_%TtMJ&l&qEbjIqD%2Qh8 zS1kPs)P^l*^D3^LC*t#2dm%6xr*qSScM{>rDF8EZ|6bItUXF(|J3C;mB%52KbfGwt z%0!Y@IsW`lm4;_j1kIo^M6l{ceO!#zX>v~yEeaAUKc)?9h|ct9v-*9SwvGU1r%X5V z7JBvQqWfrWjD(YFJ~e8Q3!chZjFy=CArNH|Nr}B%#$!Wdl6`4tM|-f-w?y|RsEW$Y z$)hvN5I>ir24zPyYn%i$oC}q65qEub@^p~hN@Ud#?Qm4o+enh}?Y{eM6_i%E{WRDw z4VeB>2NmP#;MswxIf)*3s&Sk2o(+>ev>m#VPTE@2c)9}<{Mf0F(e-VPC3HlQHl*x$ zjcq?BjgywswIr#-AOL}!zKAuhgEc_(#x*HRjZv`kaW792_KWKV(9TGi`Y)JzNQU3t}|4kE$^p5vTmcjUNe$lIEX9DfvTg zdFf(AuQL-tQmT^-x~&s(g=NMeA(rk$ucVy54SZ{r1Lg&ux&E|h5*Nqqjt#qzh1YQj zY2)9I0>@aeigAzsRS9Fn6Htpsbjv7)am`D2A!R(@rY7E@9Tmcd)j?N|$AH2hIYXAp zkedS*iN!!H_+{m~qXD~=nbG_@i?;Ni`H2Qy4ws2Xg?N|^eJv8PoIx9>q7;K*}STAe8x+C?vaOW*0>?w+pW zL@{--NQUxm9l~>@yMMtTuGr+nb@yo^ht4v?IXloBCvA(jdF2lnUT?jOilkb>vYZ>O zleSCZ|62CKI9LR$Ldmz*7&|~m#M0nK7FTZ}E+AaQbhYSR5P3>YNnRHVgA-*?KBtAU zn=N{l%9qT04aiXJf3lN6=c})u6xO7H3)h^Y${Cmun%3~D)9A}1bpDsJBYlilu0Bn% zGxmsaQ@KDyKNCfJT=#2KSwvuY(wJjRbE*+06MM>wwzRfT4@S`}$DCGU{1)m-kdU}s zEqV7Uy&eqEg+FqHCYbItQ>vSLx%t#F4=pVv<3M`jaK|50lop-+JBX(h^OmpFxK@;3 zS|x$ZTa?R1vsIbzf=ZL0YVfr<(h82%>Z@Z^B2OwT@~O(MC3~93*WWl|B^A+3rs^5f zszQ<}7wXwHUYkfM#$&^-q}4cGDSa4fBlRXuPUm?o*qGhU*!{w#3NS|(ZSpX32-H@- zrlgK?y1j^=jMX$||Bl5xiZExprX-6aQR{;JB=>VP6$z23%W)E8w_pwnz$zxgR42r) z4U^X+7w5*?+h{H>r2 z*cC8ChoU63n@@gI1Yad!+|AJf>T^*r2UT}F;+^VOIKYf7&3;)0@`l}k700tZ=6VXkt-Z@E#gII5st*ssYte z4dvU}GMY0U3q6)}NdBs+kq4~tH_kgP>iFZ<&nWJbHd?qwgCcOOP+)WmVmDFN-sU)_ zoc3LtFv%?WtG7g8N3A)Jz$Nhb%k5d31l?SjD>@oesilxunplyOlP&%MPQmn(`aYL7 zMdTNeQl@KI^E}upE3Kt`usprr#~ZY^gj-&e%TmfX-|I;$9B0A$FNS=$$nJeMKdK9g z`(#wkLPjrxoc@$>Kou*^-=^e9&5dJ8wn)y5uoVXQ8l;qriJi<*6}vkwK?XU>PR)W# z7zi|Bv@Yo0ZTy z)Vt&DjaKPm{%>~_r5IY-$2mZySQOq87(mO-xiwTFoPJ2ppTm%ZZVv86C$kz2@>-Hn?hVJVwmF}8JG86rT{pe{7~7isc*qRA;@($~wn^nqV* z?PtopdVkYe&IBS8FoZacN_`O)7wv_fiKsXLv-Q;OE>%E_2@rEA~K zJ2|L?vd6i9iXj`FNGn<3A6{On%22MlyPnlfg?soODzk;&702L^ei67;P%{Xggu|&u zg|291V+G%fuWWFtX8nKEgdO%)LvtNKGA1&?G1_3_NS++gz?J)v+2lFd0%)@Ebqq!J z(SM1(inx_^o@7v^gOwdDCWI$YH6)QObWTGt(Nc6;Cg_^i(;b5@5qE1=3(!Bwd;0Ru zC4nxJb^}f+D3MI{lToreq7K+4gQ{U7u^kJ0WPYzK>;8<&L77(*X_j^PVT$nV9az~;)6>-B?|4i$K_x-W8=kd}dI-%$4S;P5pJa!971 z3fjt=aFVd@8%?IHO=Xx{rf!c6!>S5F$ko;I0Oqxhd3okr@~Z|Ms4(DtFKEFa!^OvI{CwZ8qv? zC$(8Fiu9C-@)$pNv(X?XyDqzzCe_{#!ewI6Vn@TdUg%aCQHMxZxwT?Dmk(GD6(RT+ z44}uS+^#(9W4o0P6^~L>egtYtMk9)pAY-C2Yz)GE0Lxs30V;oMM$@1YT&muiOJIrn zlryPtwN$5ErF8OtaID=(jHW9V1fH|&mu*Dxx|>bKu#wb8VeSkIY}NagD(pk+{%|lU zz7c}6_aq!|NuX-U|N933$r$@Xdis@emcoBC!mz=EP-{qll`OuXTs_zYElRg(p(_ub z#+rz%n_EGi{_8fOo~FR1*)W#zgsNHGOJuH`%GlUQvY%T(DxSta{l`f1%Yl$D?X&q7 zMTgW%c$X^-l@-4No$G#>f1LT?vQp+qbaN_D2$6E+KSG2<4WhV4j^@Sd*-hioFBW4U z0V1eiU`X2=dudC6C4or>8l{VaqOL#!$!I3F)K@0ZNpj`Trh}uJxTc}D`tA-BTct;0 zbHO*p9|_?GKG~JxBpB!VLp9V2hjL78(id{i3p-W@B0C53=bmG9RG8zO7 z_33_G!ktGY(i^cOJ$WVXbhoLR!4sBmzq+f63uGhX-jC#+(lGqT;7*7!BJB z!c9nriKw$~;XLhiFbsKYicNu{_~Z{x~VXIf~Ij}KBi&@sP|FG%lgVDvvj zo0dGJU{dm=IftiwNy+I3ZO{8Y^W_Ey>deF}$VMayYHiOg(E0|T+%!I;`CuNtxA5C z;b|B;H{_5TEwBz9Rnx^KEP{2-pUc?6rYUZO-43u6R~)Mg;ah?%A$K++@*Et-AxG(J zwwRlcZ_SX}2tu+8PJduVxlW|E_(D|%+(!@-~hWNsY4$5j#37{6M`b&h%7}Jj+LS% zFsV?`LL*6aX`A?Usu!GZaSZ%WaP2*&$Bzq}_aI9Hm?0}FeMZ<=yHcpmaU4H`2ORYJ zN?D|i!?>v#8p&F?NK&Maa0&n*(R#^@9IO%9n&#Z-y$CfkL4@8R0nc$&I3n+T%0uG{ zB6blj0T>(Q1mFQwWM>-d-|b=YWTGF-Fpz=EG9CowCpQAcUw+s@V0oq-e2aCOqi8ms z^X>z)#LnYK3U2JG13PcK6zW9o@aBS4x1x|QtgETUszJOf!WcEfD03hERRV;Kt3)Ia zF@_*6an+QhS0G-e41!@sS#LbVzmYhV-W{K(F`{AT8B_7gfSyNUEjLxoO)@KGn8K(B zsIWlrq|LE&P}Ma_^K^?#_=uk`G;M-I`^P}} znzEO$s3c}va>4(z-K{HfwJx``4bBH<6j?q4EO+jLxFvgPbtWoyr47P424A@z%Rg z*@ZgU0NVAzzwFpg`w%^t>kg!Ar^OSp&h=e`ntTGq0v4*4^PLe+q^u+~yR5rWix#Y8 z#yKgd#*fd0hwG3M#g~f#sIv5zcb+wZ*v|xUMz!clCE6t?&Ni$1;v_$I zI5g*ooDf$$5z8?5HXz*MB()%ylWgcUcPKIV%x zpObLF`$M$vz%T?ePo^c2UgjV3NNwYm3Y#5F*$J>I-<0+6f77}@c(xJSFZ9$xp}3@Wd-V97-b(hS*XGiME!IWOf^>b*=?9M3b% zI6W{k zQ8-~%t2A1Y;9IsCWXPbM{~g0^$eovDTZpb0`W%0m)ws*JfYmV4<1wya+c1k8`gunt z5ol6#R@N^gHy*o#D&PNQg}Jh4hYBhl8d2<((~!Yo&{pjs((|Ea2U=x??&9Tb!VB1i z-f7)7j^^#vvx}_2;Ikg)(ky?B3 zMLFBw@T>y7pioc1_kLq3u4VViROLB9({@uc@kB0&t7$7AV^@g<6NIo-Ei**dY42|1 zg^M}P0c>nYOSyFKqLh|?nESp^ggs(n$>TD=k}Kw|><-FS^!?GM|66Y;pHUedPR6y5 znBsM~-pYsI{PP;zAGPzP?hAQDnsk_Z`OEhmHgf6wuPVyfisFhH+NW^&>FjE#AyQqd z^^U;NBNHZ^jj>+naT?}T`B!O&Q6RdI4oB2BKC65(Wtg`R@}l?CKW8J5$0sH3)Ci@y z8f&y$8+b9RVoW|uh!IwDl12{^l|F}rupoIzo?hpbyuPMG78pdCP=qxIp(NNNNNQf7 zuJ|4ve&no}oZ(fVQ)(#|JSkm4F_z_QKGQ+L({`)a?*{)OCd-e*s>^r>Q;E_?)IMmS zOn(qb)ex3iv4SgL)$<#+$7YmAt&;wr=j3;M>AxX7d=cG?`9ay{N^9!q8Q>rM+wP=o z5uMR^%J>d^e-^l$77=vDKHVjOqVgkz9ap_uPrB&QnQ44T(HtPN*Xmvyx+xTk%6>p% ziK%oU$c1vK(=nrcsd~sOf%TSvvmX79r}H6G?xel^`t^(Et6uKggNh#;bPDlwwoJ|R>&7* z&q8>G35(vFzfY$vx)$yn6bQS+bQytorH6T*7lBk`<0_)m8arXZOj+>diodOBei2N` zHRkYONy$q}MC^jX83WA5Kw{5N;Pa8F#tawA&;3ffYaA=9Su-W^ zX3V%k(Oi#Is->Sl8;x1Bw;oi2K3%Q9wbqIhr{$R*MGIFA8|kCZqBA#;Jq>xht2G@p z=3QNjm70&J!fNmpUNf~x+;7u}#{sSXN29A$XqNmY=n#rQNo?3_k06D?YzhI5Fk66# z8Y@3&7b028^be8^di%qx0bAON&i;sLFn7u|Oj1K>2n+#c4ttzwQzo@!Go+lbC3>>r zj0m_J@-K@PynY7Qt7VJ}^1bZ**`dEmG>GKsTvYJ|HCby=M6O}zipI{->__VQ_<2Du zPKstG1brclGC6l<8*c?m(COX2D2kuCjDsc~tr|s(8r#lf`>WnSE!Ls&CqJIy6xsaY z<)b!BNFj@slzfqE-p^!k?S|Ac%Nrnqh)Kv~_uStMqKbK@P)1@wj>&+`^un@XW!^i6 zo#Kl@9TmgOl))Z~1D#-_6gjzeH^}GZtOMCmfD6noE{i%WJ}t!cg9kh@9d@Mdn1=*YsoX_YsluiG(XX?>YUsvacNsM2Utymbze~p+30BvhOF2NtKlqWH z-sIHxG4+wCaACk?$q_vz$K~|J_+U*+|Kv;lPAiyM@{`7>emte=?jnLJIMp@QZa1t$ zXnYDQgcl%@zhI34>eO z;Y${48$W|CzRPPslizyw%<_C2|5)gj>GN+N+k}ST) zcpYr1reIIvHB=~Gg!UjXA=isk^Y8P(`r*#3+L#VZV(v(n7VBBfd10NH-~_UgVL@du zD!*uc)sP>d<6TsAQj-moD^FZ|6c`ovfkSsBS@2~YjtrdP~~-c^))9Q zqF8`VldwBxSa=cz-9w`fGhAUASTc9%wQ3Qv{&IDPBw~#R=*df@QK?j?GmgRxLLgeavUMO>UejbbJ210@fdJ|6 zS}UDIT{Vivt9lsaj-z>Gymg(w_AhRPXuP_rW5DwgiRas}gaEsOxHK47$zN1Uy+;g` zFa$jMs0ExdMfz(0pH+|x>72(-{!*=$PNs^d{#dxn9g=~`f122?qv*pW=^dzRQ3sZ&?&h6)g8~z(6aIN3| zB`5+v+pxjdbj}#<${>KZwbHW5&dN9nfhM@O{Z*7+OvW-Je^9{#B5Eyh=EU?IHfLGBExH@Xa4rnYQ5q^wB zf)M3gD;m0iIwg)fpC(l@wC|NT@FbxX!F5`E1BBuE0>=)h9gB;7CG5H2K7TJCrzIbS z>}V!{rKgDN%Ulmxz|~OimY6>QU=jW;v4vqOch(AH9eoFpSs7k$jQ5=WF-p?69(KWLh+z3e1kO%AfxNzpItC7N--%FeH@RZ5hz4Kie9#j) z&WlqoIx^y5?+FGGRoXg+BE#{C=UA{^H5?9a^n{D%X^g(ms=(mkS*J0N_G5{0%|E?) zZJ5A3w|^x-dECq=HHy`KQXHxMK~!0d7GCwF2Um@0OxQ)b)3;*B z^K(we}L5k2YwSiPI z0(8tap{%5{kYla1SK(b_2XxblXnjTlNuD(`_ETbsnsiK>x*OfTe3VqW1*u(9n-DHN zZ%H2JkX$G9m*ON^vV~+kwV{)fU@CRO#AJ)2+|p6gS|a8@^zYrJm7DyOYOLZ}0eh|i zKZ5cjuL%U|4cM$m`qZSw)n6?tqeN!*+h(tRSwh_kzUGUU4@o5S@fL5UXFwK`@83*w z=3fLA%DP^o1u+ARf`W+B*RLk$21jf1_`gg;$oU{vAxOWAuI4+K;yBFh#?4er7nIO4 zM74?03|~gFc$dG*Nc4wy0C2L$`$eIY_SXlKV3JZH=eKd8epQ!D z9FkmRh$MhTEw_g z4%hM3D!<~;R$1pw^*ruXFgq9z9!(I9Tpj>XVnC3)tB|Cp$@VM+gB%NGBQO&@NjZzP zmGFgVmlw{HtRW7kZhM7*%|BlPlwtfK3r#x6GBGAg`m~Z(~4q=x4%!O}pB!gkJC8TJu6Z5Dsx4t4Dzs!0q1I4 z0rprY?D6oZD1GC{FEMxZhG0dLP$6K#{LoHOx?`?hTwH7lWzsFX5oymd3tjMe9H((J z!A@=FLcQWbDu(0@5EY_ElvFPMmqd1LV0fuq8V7_XLwn-g2I|>`)IfL>5@&W$`q{!3}QKc_Dmhn zssg!~3Oo3kIwln9 z+yJKk)&eZN?RA)Qfb9~Mvi=FV<-fjKKG^aK4-2J2XW`5HSwaIThRL{@UYVaO4n)XsuRYtgdMMrvnoif z;4Gw_u+-F*5ez%JRqv*5;{l?#d|dTIlt4KdrlZ$^j0ejUGJ)_g?sGR4;7DSA^1S^8h!Xaj{K(7pmfFmB9dfv zSzV($uaSIX#TVhE_DWQsH6ldLQHK>JUEzj!A&Rd7_V1`+416k~PNE9WsKqUcK)FbB zcRLJRh_qflXn?*i%gQpnCI;*|hh{IYSkkAnX6Zy?m-|3OdzUQ#NDxH~{}iWnTVIsD z5c6iQWz7U@$=Y^R-VQus9z!tx!1+-;%;ZWv0>?%~q4HUg$$ew+3GblCw0;h0ZUE$L z$l(lBEex;iccM~MUr%xE_X7_!Ans|rpR@rqA>1U|!!2h{2|v?o3Rj_Q;jaTIH^5-< zOKD!WED9rK#;jzKe=*EHJG9E<^q^Jfmb>Js1L4G?50vy^oMmA5F_W$vRmH@i!2P$z zvAASVRRsg@s2~6wF|uuJ!2?2x>55~=Ns)C$IS~XEr%K;Q@Qx1L6N9K`$!e9x!rlAc z2vtxo5x8xfVE6#G!C9P|Gq4R^SkT4sCncTWbW0xNCW6myuoqFZ2mq5?2uzJhc=zPU z$ISp_adgvzMaADMhedv}vf`(D@i@UIRC%Nd;loAOfRHw1@`rO1q>SlcEPK=DaI!)2 zd%1%~D~8l1K=`0_FqJB5ie-yVCMItbeUQv4OOFsOsZ1@OJ59);Fx_QQEfh z@Er+C{w6u)I0`_L8OD1EPo;SY#DESaJoD&lpK=$5o7Cu6{=JyE-k4@X2<81XE95wX z?gHuXS+cF%ZHY9!d!AgQ={@5?BbD`mO-*;~9gohbu~yYSHQD9rJLMu*a?d}sctfVt zu!PoAHy*xI`e}$kDm|teeij-ciOf+9(Ny^^&gi4gI47(W$R?E&IS4f|;|Ubk27`Z@ zLf+{zHd%Qk$HlB_Tz*nf+^)t<1I5R-(o&AAh7?iQATT3+RDyto_q%c~QMSiPCCW^R zDq;c|6B2KjfvS9wKP*#b!V81Sz}>q>*842IApoB%%ymCI_Y-ZpYy@c@d~)H(>}-o( z>fydqvqCh`OQX-p#N(sJsL0L~J_(GU#i|y;pbl=^XPGTx$dDaagCjUw9%Ssky1W0> z>PWT88o!g?>~E_wD>0@!kv{oTcd%q*U`8>yRDyaO-fwV=)tGkTy3Wx9q+Lt7#(x)z zMg{m|#Ec`4wOXzf{CP<`ga_2xV7oi#+=^N!J9Ras9&36KXEjG)smTULy)BfQBPJ8} zaB<4~_W+px9FsGQPTdHtFE#|<9zRKqKAskJAX8&k*W#|Yh~cAuoe>-bKc0RsU*w&_ zN?&2WT(a6H?S854u63b?%J<_}cHnC%qb;9HbAEn`f*11e{*sZU%%TAr$=-2EuB*G0 z?Gpbn=lm3~wV*Nhrl{-a`Q4yZ1|OP(J^sWg#k+>#8{dR>qgkG$PIdA0EF4+G9NOsnrc}#BcbG%e9qW=S&Kx4mr4388q zn6757t-v)+aQ46q*0!bvK}{3NGQ6z)D?weO!iK4!_Ko&pUY20P8N~H;M{TZ_h(bhx4vlM?v}TKN zME0ThUgJX8ue?i%f|4{1AXw9N?izCp`(3hEk42db|Uw3ySbcfWRT&oRMga7@$R!>LK(Tm_mwrN%W8kgAJ!O{!U_re5v$J znQtf0l(c(nnm`j>2WAgyW1WTGXOGIF&3r=MS8?kVq>DP=xluXEy$6tst)~1@-JwGw z3srA==r&PK(ggjWBS!jv?J=xrL})@qB8}1nbJ$Pym;;$8kDKc%073v^jpw~SOO_H% zf+Xt{U2)|8t%?Yg=SNs)q>sxSljpEPDvVXhXED012>oRag~}w-ZEX#-XAfvThmVD@ zM9vL7JJJOE5aupn?M1t_)x=;Ai1K}+3Fcg{0SL6vG$Exz>hkDlTOEZYdzgwK4eOAS zCq3O$-yg`lL}Z_)sv)(ECOn|)OQon1k@H7%kYdftdI!oh4;?N~l%Gw8ie7Z;Vni3?G;Me)jXu1|U&5F&nfqfe>KQX{D-5;vQI_UsBC_O{EvNo9Q> z>p(avWhbe_u&j&34&bC#&;i8K`Z32=h(kb>bC5lU4NE>Gkc+{^#iA<$0?33G3lc14 z;(8$olaqp3(IAk*@3q1%*AnGob!og2#x(Ig-jl5sBg8upw+O;eaWcMFe&Gai%MWt`lKkZ$10^gRK2bkL!57|z=WK3MaKhLr(wRBQ#4U4@DdUx^VjQM zXt<$lph#&Rl$nrMN-j3Ff=G*S1jVhi$!E!D@GH{K|zy3pw5LV z#}d-n^vd|>W6>WaK!|cK3WryGf+#4ALK9<($QWv)D^XCqxsM8a?w|nx)N`&80#phH zvauoEd*n4}<8lb%+E?2Qo$`Mk7q-(3Vj^QS=98N>bEp$?W3-D z5i8|W@4zt+kvDVg48(Sj06>j|oHl_M&pD@ztQt)K!RZj&FoL4&lzPSctSI(AqzC|N zpK3~)sO18ko+HqTNR5gXv=KHLtYlBuhMXpkSCsWmAeIzarkN_QyaQJ_@Lh$RUyes4BEAWl4~E(!Y>=Z+ISqwa!Na#U?Tnd_Sj zkdnlWkaoY_#^>cDXORmfi;HDTW&`_L!m_4yWwdS&BtIVjPZF|r68W9u<2&fFU4^|M z9h?#TySdJSr~i z9dqAi!kc>`91S@6sf>G(AU5ZP8MF;Os6A_bVE@I8y0t3-b{Uhd{&rOAAxee{H`ItU z3qO!ZICEyK+oI~^a2?UdBaKo}t3(9TX%?s2=S|BDijmS#CJimJwCvL8ga@Zx=6mas za5zYUEFBpZv)3#khx){*Am+(y53x}rLK#pYhe(k-^WKIKyTuJ?NEADjDH@eO%OcWR zdXl%`kWDihW&i3m)BLSW@}IAk*a;KRCa zc;}9|7PFE}nNw2W2A4RDLr+^B9pi5okivaK4EmiKYms%@i4O-7AOKDb=dxn`l%r!F z=d{a*`ox3N!e&t28Kf~{(FFi*Cg z=sep#>#AKk4+3k^cvG41;60IK_O+&v->;9UCye#jobBL@cy`yGeaF5YY?yJaiY?V_ z@~WJ4HMZlw8j$ZYfnjw0n{AM^O1mc$0Cs^`IWAsb_XBD2P2?grLFkYoHn&5t$!mM3 zgqpM1O-tZSi0iyLGhLuJ=`|TlLFf~j^HO`=5W5M=b`K-lj_T77H>J*m^9@)_V85ksUXGgj~w-oQSZ|AqoYm)_E0wmh;zS>XHkQbE(%%$C)Vz27YqR~pO7v| z-qqO4{s9I(Jt18#@`tik`|C4jxm18xUyxYmC0AD1l`1H6k_|-yh+*qcqAHm`;Ek$&(c6mgIVF9I_B~n4zuJt2ga3UI7f8M?V)-09-3iNnTU>c%%+dO z*{&C5p;OfD=E&f1BLvML)E%T=jRGWLbT74cL=c>p(~R`|B=7M(w4!>DK~ERZlQ2`(yo4!hsPUb**9@37Wav^f(AO4!NDz=69Tb_Y4i6|7{;)*={mHraw(&vO+b1okQ+0_Yj2G$wj!XZ;SUkX58bw zdr(W?RWOz%!=*A2+u_;0oKC>=v#7tfx8vvWfd^gAA`>a~rDOn{$kyJq2K{z@(}Cuc z1HF@xbMGhs{kmq!2mO3RS}S%49m)|?ux)I9nr$=eyPtDGJ|&7OfmRJfG2r$@msNMf zV7N>Yk~pqag0W^B27=u#_>`z6Ane}ax<1ZnyKQqA^*eLYJ63CZHr(5{j&@i#@TO~4 z2;7_9EZthZ%C<+7iIl{)IiF>oTfjE@35LE&kk7W(90XjtIcv^%U~u>0>)pXTPuQKS zOC}8KIOpE(850k3OgMksJeqDL$f}XdQ6H!kyDgvy?OwHGLu~20dnV>jB~oZRDMHQG ziUUVH$O*;Y7Ld-JE*M9Y2@8^2=`m4T$+o z?Qq{9wC;q*Ynnn+<<-^ICi*3m>=^EDH`yCdyX4n@cP zV7vY}xkfpb2{EwrZwq{>Lh-TGNXEeHOScZ{o{XW=lnB!E~vmRr{+^;i$jGUo5?%z2ub^>*t2W*re3%CWNY#C=D zS=KzZQJdr$bX*L^&0xA^geG>sVbC{#oO@CZnI-%Zr2(sj7Y5lPQDeK5qHlU?a*7^))9EZ{a85Lr1Ac_| zj&fykF*p}IaLWkl#Qx~d)35jAkEiZC3RAyvjBsE2MC3aWF|dXERD_hb;f!l@O47|{ z3|;{qjNK)T0M8-<=%+M^oRIQma7;p&?q+UfZX6?hdJ40hto^EWZh3ihO&JxI+C-Cd<4O)GC2i+EHtvTq(0j%#`96Y@E z%HpgaLhDMaW9Z=V)Mxp^LfqA#hid}0L5gC%Z6K3#$2|VFdl~X9-_oEv$lufbiJHd_nHu4UK9hq|5 zG@Ce2U4Z0ahRMV#P&Frp({Y#u)MqVqc*V;gVt|906{4gyo<^==#@b;WZgAR1v_q0@ zJWqR>NPS<~cJtKL9me15aP%pVsMIDe;s5|tgTrCJ%^VnYNDgH}o%AtlDfNi@eI$xA zg~}|aJ3^KxwAw5)ek0T?%0R5)YA;3qt?pPt9Tqu89r^23+DXmReocI!LF*=Umh0xv zfoKD#x!bQ9%xYZev!{{F5Rl-nmrAvDmJf_B`|hy5(5@BwjCYi`|{ z>5O@CYFa;B?vJzbjl!TBT6>ypX>zgkzfI27=4uxp&Pf3_Rp$H{xV7IK+HrN~HCd~} zd_U3$ntkM`PfVwm+Vn&zE)!m^@LqwJCqW54vP^7JU&*C*$%Te!>YZXAmaI_Zj_(Vo zgSho`-((>=e(q@W&d1nRQ0B1e5`Wj|?H#+Woj0|$n#QRUoEk@js2}Uwi_M|7U%Rg= z*>>;Eo-{aCg;aFpGs#)zzav4ovm;5LCs%5=X4FB<&AEt4q7m+E>wOh;n+F$k{o+6t z%FJ%xn%!Jqf&B6!sMJTZohaBlTj^T(0%(g|qG7=s2DiCn=LKY~WUBjPbL!`OJTB^o zV1pkfBkbDt{ZY^>oWD;{57(~dXa{|!>oTFX4uJ6*6F{p*Zvj{dS4%jILDxwVlS+8& zCso2YvYRC8%ktvfx4FIzYt1-}ODQHFIgtLDuT>?m)$O}1pzSPex_`5t_}C6Q5pcUH zliyV$!KYJu8Ktzk(4;VwQuc~|fHasw;$Y~~IN1;CAUa1SI+(USk_ipJ!<};u3;vO! zib9%4#mPaLX^%x_kZUsCON}o3H!3f2Y*cs;Virzvs`pApngTRu1SvdsZdpY8ZLwx7 zD%2yV-JV5^G{;|Tb!UL~rAz|r{`m@8*T*BoN(6p;2W=b5&sXrWAf3-GQf{?tW>{NI zdCY>_Fhf_*Ylg1XXgP^STjnQLOSZ1tA zT_Lymo`!piQ_1WgcjD12S(75haGxee1fVL^w}vc?%E?w+aVetFAlsdh>iX(D4_gx`MnDN{r4OKS_Je2S*anah+COS2fZf} zgDE)MqG!V82AwM8#OnMTNl=9cmccB>+^AQ9hCqmhn30Ia8pLRH#p~Ce)z_e^-Z%O* z11W>ASI~d{9qH>=H_9GnBm!S=^3JbU3EZ4dq2{~*$@oP`bwMZzu|Z*d((}4QQfiL| z9LMOC+>?pmoHHRn&ULli9*?B#)%r_ceFFf zY%;amqH}L`y6f7TU3MOIybb2grAmf;Nc4DMs&g!>piBHd6fw7LO(y0O=rp6gUs3+^ ze#^L!T>KzqU!A|PbNB_3Fcg>m`48~8d!rRrMb5ou{Da$hfm_jXj zd~PwzVv*)j+%WVSAu}qc2{@mCast14I+dn1bR=Bo{Kmuu{NOTBarL z7lS9IxS=fYN>yfF4x;jMI!U?5 z;k{OK9*hLn6F|=*9@gp@WIbHZIwNbC8*13gmy8qwI&vMA356U=Hhm1>hI7YJgI*d8 z6bsOfWgT6;xo($Qb2uWaW#Xw#&5)t*GUw5#3*X&Cgs`nKiKHw6IA+H-{cI3-b1D() zsjbYz)|Jx<{PKkK@&x|&1NHC!g-0C1V!VLn3H0@g$b_MZc`89KUTCNk2tD3)vg$*6VhysrD9Y`rFde z1@!d`=*tW0Kfa;-@4t71%a1a6Sp^Mcux4xF2()#7$1xS2liBY>!olT%sJHDs<83xa zlP{Bp5iPhUxgG4M5TJ_5xN)8z5-0+lKj7rJ+`hBmt6YnFgl^Jw!%{&&a6cF;{Z z&y&=}PFZTv$1H;_xI{vXF-@{KU4KC!7NRsf3S1;b*+J-Qi}sjNt&tk1@26hiY@25j zL#>xbmZJcp_kRI&HHhP|tl+(IRKLQowrP5Mk~UZJ6m@pM4Ys(;py(v`-`VOAJGgte z#}Rhi4KoB%k|=W&tQhIfQV&XIfIlEf9CAkfasj=($a7ma@HJ*b`f`nQKI=lnC_i5h zgIWL-3SYq`0km~e}nr*C*76M`1`Q0RcBVX*ARL38yu8WO0wRi*c(0U=kU}du=c03 zw3K{(6RwU28#GOz=O^%&XL%m$*00Bv0Tf@e>3ou4U)9z_N5NM>jdIN_-kZ-y_rsE* za9FKpiy`&_Fd4DZN+M7r{U6*_hoi4>i0-oTb-0imt^- zT1OBxIwgZ6a#%|S?2Q;e4SxL`oEECAHHj+tdT-uKG$mgFTv?H<3S7{l%|!m*P-}xs zT13vHWXVay2%EIs0>n^d@_XkhwV;FvJY}i5{mqb+e}|FIXD7A5rhS1e3QWPVtx}I> zY`(k|q-Bxl`pERHP*KaC$LOPH)JKvV9S(ty^H&#LKF`u=VJ8!*uR%ANh|c-wm>^gYX`B+d#JkjFTAQPnX}$MEY+rPBUN#tF3@;YeP)s+zc;6%FbzV^#!cNGPCla=Kw96fww~3H6i}3X9$e&8dg0$ADGB;k+Iln%-cGJMN7d zGDB=|)IC%&=> z=-_vW40S%@T#svFcVnT(*4FYlIohv72CDtj5nq|jliIV346OhFAOJ~3K~%c^PfT`S z?-^?2=sb@wU{pm=C2GsMCu2-5)agcP35TS7DhZ%1Ib^*fSB&IUzO9v=QHFePb2^FM z#zDyvTMJdLplMcS_E`e~@A};POb%afz|Mu#13B<*L>+=^Cle#NqLYi-2K{%(>p}j#%YdrK7>sRT zGxl|zk-R>ASI$}mOdd;)t(1#$0%2*yw(X{2?CQSB-iroLJg^18+eMCnE4OOkzq4o>T zjq#f`qDkkoMC73n%h+ST!Jb`9uOUSDRcs1B(fh6xj5P3w5cPdTqpA3MmCtWN zoY)z8k2EwROUnu#QEAiE+BI4bM4wZef7BV;K$x5J1U^me9a}JJ7<@4Qch0$f7PMXn z5Dm_`oNsV)bPn!h@W9rQ^;(~c)uo4dPKi4`W%orz5g|5}#~??kAR`B3?TK#Z>5zcb zN|kH`N7^}#tdmMkz}pqPeRtcHE@!cCuQyMU^YzvUkD0yR9HqEzP;WP2S&`l@62v`v zMjw1Mg1F6FamIFCeQ94H@*CGMqT>MVJc(^<+ic%aAH=o$o^!74)L3(2ygO$2aZ@@D z&JN`x9*`w?P}UGyR3O(I5K{<&WT`>djJgG(M%xNd9U0*7HaIx&H37-WCZn7rmxZog z+!CO-o0PYjOw5zq^R~4Bft4HEdo*OVaV$Y?-k-0M&^YxZvcGG5Xb0WdS>HpHOIt?y z_p>R(Nth)@7)GnXf-?y8$r|>%GZR;jU-w!cpD%N zI-O?F^K(1??M6U_fQ#fvi|!K*1D{cRRD%|J^DWjRE@A+iy)^_!Re_p zwalV@y>lwi|1sJlrYxhQt`4|-6pcp40BpzH3szY+hQsfVm#bB#Ymi?ynK;dXZFuwb z#G=Suxk1%*y6?&CcT~`@!SIq-ZtR1WuJB=N^>wDw@ugTK#-^oi?>q)!0Xn6>Gm!y$X~gDIT;F1hjdOrkVCg^LTgQG!6dTM zjR^Ji=O^%6UnA^dHb~PPW3bwgP=SAe7PFBiI3eOi?cA3aP_3x7g5L{xTfw2FB#6Xe zIh|T!%YQiB7I?(^a{z+EE&5EnD~&@TM8CR|DZyB(YnO1~DG&Pvop3Mc(Lvm8+u)q* z+8&XCJ0w(e&fTGh%LH)87hpk!SU?uGJ2Qw$Iujr`>BG+oEH#5dcMIs-sRWI=X)>MJ}}~8zf!7=;=weU9WBfa4c`OL~aO3`hBD%fvs)B zU8MAXWBek;`#C=sLmuc+eq0M;$5Bna=!pLIUuD!UeLdjV#Zem$huPIX|u^N0EL&GK=fh)_G&Gj`Mn`)7{Ozm_dwV$THTP z961v2-J!necwYPZpL%%^(bctnI855ELFRwVh8r@a0L%m;ZjfD*IY_1)o3W=KJU6RH z-`%Ui_L+sa?9IBe49Eog{gzoY*snsiGP@a zmDmW+q_H-qzQkipv|6Tb(@qot1|Rov8L-VM^>hEomeK7azYb4nkCZxC|Km9#0dD-> zTMb%SR^%dqLhP;8XHk8i**=D*77Iz{F!s%^5F0Ns$Ox^*k+YOej@zvccb?p4<$rwJ z+oC{Um&+CD`C0V3ktXUsQnJ}>DVipv=Vw^^J&s*19%-=DH`6?~?oOl5jA&gz-f!MR z*Sod9Ld!PM=6%!yF?(*dbD~}b4)}F;koJ%@@5rH9*Za{g@C>-3K?ane6_p^hgB&$$ z-&^Sw8@fv8VA3o)k#uW9?RXhPCXztew{2hIK_qjKDzNPph06pKVeB(8&yEe=tUsXz8;@ovB`iO6OEFF0n3MPTh+ zJ&-!_^Qk!Vd9gPwt#E3nWAxl&*F+8d1?XIkMqLlO8z z)TYsopY6mNbfHOz#%P*EUbd}g^fh^ibz64^D+~Ew+Q;6pC)#jKu>#spWGr`#IX{)V{ z*~)di9Z40Aipxpr+15!Mm|N-Ly>3M0UM7CkW0BBG*m0D`NlP=?r=i z#&=p);O$*%*v8I{M2#qDs7?3p2dKN(j7LXB|F-_NHexB$=$upK9@cBO#Ct=mTa$

YMBWdZkU`*~xfu%ZA; zvxvX&Bx0J`ADcWD2S^i!kOG8T6ud};=K<=p4sRdd<^6|vm1l`FBDWs!X#{8z@mi(9 ztMAIdHsm1E%4`6GBo)cL(>z;NXz={C;eotLVRs5#rQjNdaid-^0K8ErS^Tl=W%l`I zPx42`gX2C$MbFd}(o%jwN!$U*up+^KtH@!Hb%UIncyFyY!}iCQjriUvMIl<0<)*&& za6?yv`j(H+jt86AMWv8b>sK*WkFiEOz-h~DVP3!6Rpi3O?kCazJlF5eEpGf7VQLMZ zawepzy5SxN#xFYCb2YB}r;d&q*x^S4p1;mn9V-EL3C@?V&;rpS0eZhrPx$0+w=D}k z`0=*%cA-TFayiBabdD7&7lUOkCbZZWi8(oc7VXQwmS_j3aT_5AQdgx|cI|7_bKahL z^N=F(A`{>WmiyM-C6Ucot>rZMwbeJYEtt;vNdDqh;784e@=aj0xh`~y2$QL%YP$1e zv@t{e515{#UT@%>vI|#@=g_i-rl&zo+>H>UKVMh;eu2!U;Rj-SK&k=ba?A0mpdXFn zubKYhFDubN+$rgdHb zxnT|;7aMh-d>&HhzOA&7Zwbq61yr6~#L)_9wrXW0iD;B8L-0@cVd=c&Pp67G&dp5?VCn%;S@79A1I^1-KJ z-%C!JFb>Snpclo*q9``3gtla?E;iht806*w3;MEW`NsT839Am2uV8&WXdR&dPf*t# z(bQ zyL)=1m2-vC)wvbO$>MxP4Q_#0GQ`ydhLP;b=0WtBmy5B+<44e0MGg;^Z@6!`&Vrxo zgPq2am>UZZb9%o4v+pej`1R!q?VV3#H`(YmuSKv+#wdkUJ(wu#=~CXT7utB1CWm9PD20EX2C<8$0j5!IoRXU6N&LZa6MC+ z*&|A{oaPSvfiIc$7WbWtn=d_JvH!hwtiCFP6Iq`@z>?7*Hh7z7K84!xT+HPIvQuM} zjrF|~>1Akpy|Mz+L67%#-_Dsd2DP_U4Y8FBka~J>v6n(F*xJ?r?zNhM2V00$l4T|3 zpfepN-nHy<)HouM&opI$LutUu9fq1r4M-3?!I#WKm*f2aqd9OuIOs%)=bXn(?LH&N zb2@nX%gWdawVlZUmumO$$)yg8B=?zSt0S52Sj`_kqX0Ck{ysLsQ`HqK&>^b*2ih29 z8sy>9`%VPwDDSAbv}un*WPPDv8Q_0NKp_T1se}ZWDrOIW+@#1O+-^T2e*l+NISSfb zgFhQ|nbMr!*cGk!*Q%QnI%0q_PE#jXhe)-Z->sYh^2ER6q$Jj33gwM$4mN|=o-;G) zYgM95ddYG6xB0ljJooD5poCmk-+}qhA(Wfv3!NtJ}5CoeD)m(C%N-)O)>m9$cSp z#^sZ3%x)C^XY4Ra<0@=zwT<#C5p_AqxnSD*(-dOR*|5nTz8%rdhd|^Cog;l3)yfl| z$KOEP4_dGj;KCR3(PX2ojK{@M6I#;~?jG^7hURr2ef%(7JfEpls@5DGl?BrJa^-5tq5!W|U3;__>D2;wa#6Is@eXQN!v2NNw3P(Z!N@i0lL$L~hg~$uLYE{X zi-F~X41T|I5dkEY*X>Q|p4isT&m$TDpO;G}e$Z$Fh7G{fnl-4EB(?bT*1D8RD$JNH zSD6y~w3DBn^Ih0yy~?7$#LfEa4=zZN$AdLd?<}}HxCOgC@Nhj=I1yq#lA3Wo zlX6HOpWNZ+{4)+2cFS``t0qAn`ySr3R+)!Igp(=f4rkFhmT93LkJ`Ax`+Xp#vOCX% zBL-@L9~AuteVn;Xbdh>;f1T!ZYDdIL8gC`N;y}dBtO*!EdgFDI`eKYt;73WzO4Dm_bKNpvNw}%4v zC7k|TX&$_a_W171`YF)^-*_Yr!e(p($AA5&HjmTW1GHl+Q)YYPrq^+yGlxB5=o( zs`aanh7}TPhvg9(Zvs&wIBRycf?_CNQ!psd3ZUu3Cc~J@6B*B#*qA{|fWYf-)N@Ni z5NCn>Uu|7=SX5j09=bsh=@?o-U^*m}5>Q%@MuDMZ=s`wGS_BCxkq{9S=`KM;N$C(! zQd&VmkP^_};eOBe{q7y_`D>nc_Bwm5cfIHA^PIicK3E+@8gbra9^Xgt)Tt__gx#xIFk=zFNNCeZkrwHhTjbm(e&LwjP}7-8lW@b?VvZvpvv@_t2GDbwR7# z!Aa_GsdV)swZP~~cULdff;H^{SD>mt5vFlNY?S^Z`&E7gUE@!mb5*uCJVlzsS()}4 zUTy)iUMhisG~nXdiH40DDH+zFxV-(6Ga^qqz6p$TBWlF&bt$hnCfWtC^e&kA7P<7I zKRkqfZou$a=C~DxUWh?{TD4}&v~YOXAu7mCK?^D94mc+s8t)m!rr+~SEh^PoujG4Y zjnBwUrU6$7TS7!6u};_&?Npv$#iqC0rf2_%QA~A~zKZ%cO?Jqkr7IfbNF%^^_h3v> zv8g|{D&iQJM{f_R?c3|^8J>xzP3vl^WZ~@(XWf}9s$GlHk{K~FQO+2lY>4Khuy|FK zK%RZ|rI_ESw+JM$;9WkFoa<{wyNHV3Q)ROf>884p<)u zbji96mD^s|9CBQD-S&TH!>CdsTp9Ox^4x0?kkO3DME{sev}MvO@|K6`)v(T(0iIIPZ=3PMq{%2<+2$Ev>3gjRqt8W7qE9uI|{|pdggP8IxnbfmLR&H39QMN z`i7zRw8D=4xs7?evSJWT8<`sT1Y@Q4wiTmt{p@`!)+a;j$A9cCtfj)IMN;pNN3 zXe7l8{5y39L-#jreXpzAzWBcGZgOp|50^V2ZhbFu{&nU4FC_sUO{XT)#uS}4CF&q( z!+FLOMcU3g9b3+FH&vgJb&khaTbYUK@G?emtmaN@b(~Ub^vYjSbza?B6*tw3roUOjk$&SA%)%q&AFU@ za!8yGH)V5kSa&!Zxj4gHlU=cjIa?OXYweUnSj$+>pJy(;?3xfEhJ1LOo!;G^HM%@m z7d4ysoHFZ0M(;~Ws^)kXYzLb(pMkm`O)$!-tEA})Zt9V)S?EUJ#0TsKQ;-+yP|~5; zM}GnMcr)h@=3`LAec7^30&jd88{ayUNCnLs;*S?$kvL<&b85+#$zDr2ZhlbMOS}Tr zL0c&wOzZGT1RZp!p`57_jg{*Ul~^CN;JhyiOO3YQyuYT!Yav=ity_5WmNGuwEg=T# zF8?X{bq7mFDx$UNy$j1HfB(;4czOo7`B}!}WpC*5)Ja2vb9vQA&7W{?)V((90;8?O z$9%)MHhXHH5##A(FQ%UrCRY~JczM0id1uEGSNSB~(nYZ{(BjsJgNKq>o|NO8M&seK zt0_E-j388uRd`8(qx7z~G&g>SE%0Zg!mRPAD_`OzpSZkXavsp+#!yn6_}!m$hb}e; z#hSxG3-nyVQKxU2w=U9F)!tLd)2!+&qg1-hjKV_K-vWowRb=$x& z@3*JCb^|ZgY_Fz&le_zqs{@`@@xH=Pf7CZ(E6kZWM`v?w#VoB(P5JR#DP~QftA@l` z1mku=pxtT1``2Zxa)ulrThaAp+>!{wz-+s>M=Zg*QJGH0ge&1O+GE(X+1ngWTFO+D+#pZR-@ zn+!-9>odHJ`&aZg2Gk*%u*WN@vkp}hmTs!g&Q&+IP3lkP2PcsUEiBCWfl95V?unGB ztVWi`sIL%9)XEwRKew_MqZB29MavOV>hY05 zd8eu~v=w(Ps?%TgB-^jsx@fNKw_a&sw#BbSF_v}Q@7LL~Z$2ND+aCEt>6EB#@na#0 z@J~GhX&6Da5sLOb9}tnBr)OW@o$#}1%zTGV&=E`JUpg@9aR2>WuO=IrE55Z}Myx#P zh6So&3o6(WsYu)HF5LM+m8)5Z^@-Qk8S^YYzxVdRUf*?Po|;xXY&YR;GUueya6I%WqJ@;iRGaKK~CtXoR#n@}I28PJH19}Hi(nB)@b6a2`f#pO{) zsQqfn5*f|y$C|ILW$r*#CWJhH+*$U`VX)*&4v*f3fV9qP?OjV#tystr^fpzsYH>gN zkt#jrXmjW=8&_%7mEw)v$*^rcHxV&vh0^od;C%_=$;)Y!rpxE;uPZWvpGM_oU>$Qe7P20@?>SVXX%-y$1k{JDxEW5=z-L)C7L@8+XoAWaxrCnInnenL)`v} z3YW|ncv84;ueb8JV+oD0B2Pk?!$WH(y=HHUj5sk7=9(g z7@-MQamJ^DZD$kOmYXf$eDmoenci|4#(me1+1yv?^we~>wRDVU48NH$6()^I7%ri; z@cFerCe@cYf9@21OMiV=)gI)s4r&lGV2rfC5&Enl(+T9x3(Ujr@vNi2hW3Z{tAqf> zg(bv>dqiK!xz3Oxt{_5X3v(u@R83mr*}FjhX6iha=;M;{xs(cUPrwDh2S%c{CSbi1LFC3jC*%Ya6~baQDWr z$MjPSl{=bi5-E!5XRj&?uKY+b^d8OZAmheU4(e@`P2HKu7TP#SFjAS5i1_MV%sxc3 zWrcpXlf#1Dk!Ic&vWLo@newFs8Tg}AC-A{BphSiuj_$PjWVc0~n(sEaG&6Y+G4HOZ~SxJd)~iYaPU`Bs}NH zmyZKt^BjUI5|W%F&wLn$ZW4!RoTuc?3#B*al)JPza5u_Ff9i$-3xURPEcZBCC)tY} z9r~+Yan&s?8V*dpy)bM8{}hdDKSD|J+p5y3JL^k(PuTw6?ZR-beIJl@^H5&liupV% z9};l5q=ZX)6shHn8z0H#v>#3}6XIoWbo_b>pAuY6(5VQ|Q19T}lK;G7H2dyCmDDSj zL8{BK>zW?>ADZy#Dl!H*cOT)ldYrvD;)`v`Prb*yx2?3J>Q7^}$xoX)h)5^Br}3D; zO%Qpj4*ET%3c>1K*nx4+QD}YM3?z{Q1c* zCH3baGGkSnW~7C}#czQyeb;jzn0ri(we*GEGj;Kh$a{9$wtvNqXCR{V#{OdLvfvY> zsdRDyZ>G>Sv*qJ7i`q!R7NBT{zeybGfcIo6{wAu>Jj$f^kdiOmH18PsX4S6yL+=f(J_xQRyYe=8#CS~nNnxf9 zWIyelk%#fSwS?N+5w-5uoFVVt&2D4do8i`ZhWT*`^CmZLvpY3!1bv$;<7iwFiO&#s zJYGn={9a$caJqsur2Cf$bE|`>{&l)GQQzhMnFY(K%fiNbWfu}3&(5 zR_wR)61bHZe!0kaX!8kK3%?qF^MTH-GRExm)aj)2ET?753~$}_9Uzw-81Rd9oyki{ zx|O25e;ThgT@k0I#;g6(Vo45!E8l4gNzS%f&6VA{lv*7`v2K5q*7P!` zE`}y+oIg9|{Rtwg;SbFx-An_q5gy zuCtJNae?z$`sD6h`99Hq{he`Y6Mt69h^$+!VDDtoZbEp@M9epv#rz>I{$zC8B=w-2 zL&;Z|1UuuiZe;h&uXpQ?$*I_{>t6%vk-9J54_eQkd2PC#%}gVi|3K^G$H)$=({C3w zmS@S{R4pALx;uHW5%cA|o7-JzfxYj~MwgF9|C*Tah@h4fVqJGG_pA@ov>#aMxD^7c zitxB@E68M4A`>C%D^c`vTHTebs8e%+R`PtZ_QcML#?j@1kK8@(jV5p(;Kf(nizm~I zjI@Q~s)1IT3)fV877piS*wAg$#`YtPI1fefsnx!#iadox$E01~U!I(W{>x#^Vtr4d zEw`kwbSlQ*62v|TRDCsEETA+C@N^F5lM!2|%=AKbt~{6V_t&%=?Q)+c*B{e`{}5#d z9?5g7P1A(yIZ8VOv7xrS^!1{F>HQD9EN1WZY#(Es<2a1Q%GssCXQsImzl>XbD%4dS zrLwRIqOZ~3of3$CtFeHQ~}@wu0#s*gOb=u4jOy*gkr zjh~~cB^LhnPu8QiHw&^OEUdZ6P`(7ATvZ;OB5GXzm6uf;aV4H(S$4UYKH9xYdQ9gc zutO(4eZh*)m0DxvnM#UtwU;BP2e(@@TcaKn9Ce8cno*Ft7&Z9(UA{~*Trr3<+*$C} zCKbn8Hq?@Qjp}^Tm0lxjk3PKLqo6}&1d;H5p0+9X%JKD_*?wFXyeCKO(S-_Ahgl)m zXvmFAzw-iab%&Uu5<4#ptm4ltT$eSsUSgYW7M7QiGLvj}F?NakE+OTE(i!HlB#)3+ zjP@Hf=1~k_|5-nIU&}X%{(}uzgaT(uJD8K0_MxcXSzD4@w!KyGJ=JJ;z3c8U=+4f8 zl)|@V+5F79Ek@#-GvPNMj&lCcN)=c=;#^)d6CKZ(G&Uyq&h!f({}!P2rQH6PBKwoF z^}mYjkyte5zeV=2ztz~QxOux0z)-O4RVSPm*c=Rn{8i{~36?dy<8B9*)w6c6^8za> z{?`_b{JXKIoi)M9%~jQ!U@dI1K3K_Dn75(oD%5%5knV7LrK26i6oNFcahkd^)aKV;lI9RL$OPdA*mt=&Iu+;R3`8*5u?Qu@8PU_uo*n{5qv#?3JHRL;5{?Ahga3y?fei*u4zTNgFa#EggaCy69fLp+2q^kb z41xUvLqh%qg999roDYeFl41Z;0GI!42Z3Y$#9$B%X*(zc^JgCz6tJbjKh6h(La?N< z!Lbk|2?r1)8ipao&`1Q7v|lU~110ef=mAB_6%-D^U`Tj@BH<_upvJ%Z2SpWo97bXbhe6?_+JGZqC=5y7;3y;l zO~Mr%gF+)nxI#b>NF<3b2p9y5Akh^9$OoE)D+Ce^C)E`Kjf9~|;($N^uSxmkoFp~?L;OoSB#b1#KsyvER{(~=lJEzC02%(H4;T#j zCk7|w4={zGNqq)5g_HUMXdFd~p^@-Ee8ED|SQ1_UjU%xndO6WJiX@jO8b^`n^hDz@ z(sqExN#i}yIE*BY6OEJR=tSeByubjBLr8TBXdFTk2cQ-hmV|>7jU!3)ccO75X*(cV z7)jnvG!7%l(TT=MudNe}BS|;_G!Da%Vt~d;?~}m&89{nYpWL(m&NIQ&+6iyxNiQ!C zmeq8%cLV=5NEv`-4cy#L#x@8T_%57Zp|0y-fdq DF?Dd_ literal 0 HcmV?d00001 diff --git a/docs/joss_paper/Ks-band_psf_grid.png b/docs/joss_paper/Ks-band_psf_grid.png new file mode 100644 index 0000000000000000000000000000000000000000..4e2dc8f947ddf21585bd8af2c2449475319da534 GIT binary patch literal 517872 zcmcG#Wl)^a)+OAyTX1)GcXtxpHE4j~?(XjHPH=a32=0>5xCD2HX>NT}-+gQT%%9m+ zUEOq@?q@$+)>`{;IzmZ78VMc`9smF!$;wEm000n2pAT4Q&^z))i+i9aNGCB_HCT{& z!enwVCBMPmY_Fzoh7xLRqcK_yBRr}0c?z%?XB&ctu2j7T+JMv zEbVMb*qK%Qxq!BAf$g>nR%c|uTx~0V-3u_tAqEvFj;q=-x zJjuP4pG!EEEmC-l_XCs$x|K2kPHQhdz~+OeH`W>Uo5`xX^Trw87r?ojP=w>X&dv0s zj#aM5`3x#MJKg`ZbM-baFL2ENY3ic2<^OGMiurU$|8vO$m>N`f;eXqXkbgzKrrLko z9~dRf+sOZ6FMx_b1LglV2VxQRS^EFs)j32tyr<-U+prJd|8NTB|Fu(btef{Ot=qQ? zieV4$@iw)c=X`qh{ZQ_wCd5%!?ucaT^Ei3$w`HOdBxHYlU(TfY_q|LF4)gqk3@!t) ztzY!$U6EVl_<_&Mtvh`9&p@Z#n{1n$72d<_#$$Kk$9@z5;O2>-EZ38csrU8ThOoD= zaEMIjX$wX;oP9t=e; zruA=X^Hc4|GxIkpbni2(@B9_@bab&8l=9x^PI(*7!1pQO>l8Vjd7}{VUAgqIYYG)z zEN1Ba$3yppkNff0?~w}%{7BQh*^U#my8lil=xZU-jAn8Lr8&!fGxri4=C~309+>+= zO9VSj^O}F{^;*cG64aOjcFcPEz2D0K1Iyy)7!rxff)s)wOL8kuE~>J7CXSyMNMn z-P^UdFgGy?>b)&tzI%Uo>HT;?^sjB(iL}Ytkmvrph=0PK_kHVQs7zoP1247et{4kl0$HxnB2JpC4>&yAEEBsFW-C-EhyZ7a9T;5%kIpLMo$NR;{ z^eCYlf$-fg#eGHJ>!jC&IPc&Yo?S#CP{<#{gkO!8?^9~MDTU8075R7m6HsvuhZTJ{ zr0WO-rZ#`DOC;_;_7WyYcOFmsY3u;sU3_4Ab2W!@{a>x74`EP}_C^H`SYIPGy8?-y z#-y*usq?(YdU`-Xzj`}&6aKu6`@{KPY0g?u_+yAa9!GD6vA<8Ec+Lhro;J=1?b+FO zT}c^eYj1}M?2&qp;F{l_GiM2?W8RvCb9Zecycf|F4MB7X@O{|;`c57y)o0@rrnJ~R8KHRL2*0e&Os^Ywoi&3p(fj^Pj&~x- z?1`4=z7v5f?{lIH+_`d}v~wTCZ)o}c_D>TR;CB`EU7+wkQPbTg-t>B3%X`xndfH2h zi(E-|->3gRE-}On^mcOXo|hPQHJQ_C_4}BpeVs_fxIF~9?0w#TcpZXm;JygoLHH5P zKFw1cD3mwzG|4`*x6*aM>3zRujzV|zn@VvB^}!@~%{sK(>tSb~*^f7SW8G@=C;u>Z z&m~kB=&SluGz}t3En`hHbqDG*SDp^@;uQU!7uxQYb>mzkG5KMo#rP?0yYDo--*56p zqrSfy6ZpMeZ3qks-Jk!B67;&?qGa}vb@gG(_dk)T<^}lS`yZFTzwdvy{rv~o?bWSom#}R&mjCj;wb#ce%Pgs^BG5Pb5>&)c z!tYmcSGQ%tZ|S$aJw36S-T&0vZs)&VJ&p>$r$;+b@ML@BfSTLzho0Zt-NWoDo$r@A z!ls+ehaT+7XwBZ|r461&qd(p^Q;!4KJ^pDuw$^k`ZKu!f0wYC4cje?dQLUSv^vf$NUOxYLTK_mAaB*=poP2&(2-JFvAuQ?+z`pIv zI8Xuycvsj>36X?Az_`;F0D<74_<6$vuE)5-uiGdNAQ;>syl{shx(b)JUN~)uwe!8n zdQ1|2LVsQQ{PU@WX87vyFG}H|$3JKxIL6?~aKn z9aw!G$A8gs7Alz-Ud-1mun>yPb+yE3))0`lD{-*XkON&U*WHDE=pK z6JL0)bjG?PPe#|AG*}fW`*m7xV6EsmAx(qOP~ccr5%2UrQ3EWx7}TF>Nzg}1QrlYJ zQN#|u*?7#<_~_1c6z*tkD{&OG-LG5KgRELvgZr;Dde3!A?G^}{`v3j=XP702j=2$1 zU2`{e2|`-PyvHGG``s9BBFyhRDzC?R@3gi(Pd~gt(FLl!m?f4~z`WrY`S=j-UbUqK zy+xY~KULoO5)9dX?@tIDe;h^$5e{{g9XLSwjq^D*0RsRZN4V{ukIP0+ zY&Ld;-*<&C8`8Q@>qhzR7FFw8T0-r-ck#QuK383iNeeX`a#mUO?&OY;W!AM_jo>?g za=YVF>-AS`_hkF?X6!!h?HoW#U>k(tdaE^`ux~_f<-`7|n;wB5Z{NFK{$7l90^iOz z-$3B@?heA^xKB?uSpO2)cAjy8Qo7q*>%(a9vc7^G`?0>#!^QvNopDq~cQgu%*Wr9p z-TFh)MS=gUsp$NrG4IX#Vtq;Td(3BB6ThsEUV`ZIweF>h`(UYsu?KW5TiT0aV-I_d zrW+6^que}s8wovXT=l^Sv3Me4Z^H;bg4OiCdw#ZER!jF;%Laf%HJOgC1p);7X}-s4 zmvv!+h??JhTwELaKGni0u$LGll{SsyIPqfaLHxA?f_R$Er)jqx5GX^Sc9G=0otj^D zg1Dg@_=)rO(>4fxzsgtPvF3t@3;u-?zzKm+`aj^Y0aBgv8|snFbX}i&wv4PuanD6A@AB}e2_o6(P7OjZ9DGc zF)nUPHg>8DuyykNgAbWVzL2}6A^Yxf`$8~#t^KyYnd06> zvU7*X1xd4Q-Wd;tWfZhe(u;k$BkQ`Wwi`yzdz26W>6k%$;G>kawe=RGod<$~z?DST zxl8Ry^T%~sZ}g{Le(3#pi+k3lr)vomzlw{ALGs>$Anr@bdo>k!o{KYBozbuq`}Dl3 zx_TR=6`o4Z=;YO`vAJ|lfUgJKS5tPr=py!11Oo0X6K7?4zI+P8Z_ZUUHOLcZpgePC zmLC7@1Zho&IZ5p8iprV+`tMH@@`v}I8goL+4d}z2&KvtNL@k5{5_)V3JlnzjSBgB_ zkWDuH?smWSet8`}-tG6P<~^(Vf?&LJ|6Wty1rq}26$sKfZO3-Zou_QjeZn9|8%{pK z5eM+8S*5RGN39JeCqJp~X$W0$FD532JXd#kdT4tdnf(SNuO*@T>^y$!a@n|nP~$o& z_qMnwgNU8|<8|gkAP=PIPrHFle?PA(1Zw>_&#uTwQfn!CVi3$dI>dPqC{m&O9*GlA z)Ot)=xq}c?JIm+go)zE=8Vfo~u6mxAYOmRIuMjtzt+0tf!ss;+yUX9MeLvNp6SVHC zM!)m%?}hKfwy>Jyu(Bb0<|hN-0(wCrSO4*4uq5Kb`;h-Mdlw{_4HrJ=ju!l=<&KF> z@sCar{BfP#3?MM?{q1ynsQCa1L|lk15Myn}-*j9KAYjM(fePB@c>^Scvp~8$y59@L zd+JbcI6H&H?=0N%gTR-~hx2CMuJ^mzLur8>w62~W-`Xi7SeuP&+Oq5czsE2?cRR(B z9iea&N&ZjJgxCVLiLLI7e(>kW5fT151iTaB)*3(AH#J?4EBYozg!h8J&F-YDrt4a6 zv)hXs2*SmUbvw!70wv2rV{LoIf4Iz^b5W0QpaxB7U1Aw$bgy#MBi9NhY&?!4h*8cB1R}uq_b33+IA>hq%#!Yp`Kll@r9Pf#H|j zemC5YAoYiQ@n)1q-$S@6NBPeSV$(|xB=OaGYjK9^3v<3QwL_-qIgYp7y3jP)M5!tY zV)|Xe_}RxrYu0D;=;(N?bZ$1EIX$1d^+suS?O+CZ9AjdR;(@Z93iXhjD=P80jpFD2 z?RgVERXMkU=>OOTIQK}i{qG4M^cv;=YQ#T1B6FDeX+ZEUY8+;m_iiH+`@FJt*b4=a zKIW$Qa788o=ahfUkUcIN0o#SMSS+?Zbjr68?~Mh_{IV-_);BsIWgUd{FNOOsgYIC` zBaTt=%TZkUJ%G0Puqj@f^WI`P?{d*^lXWm$O6<68ci`+-K4p=dJIBtF7jRhJ#M!%G zek0Vi62Q84NQoiyY&P@jZy_7Pwa`bwi{Idb8%gd`mpd!c9(Dt#W@^RQvR?-*5B52) zcAm(it(;d3M0FLwM7wOV&lziZ5g?DMe9A4hQZs9Smo?A%BR}Pi-lU#f>2TrhI^!+S zrLbw7zycm1#VenG_NDu%bG|)fm*M3tOE8pbcafOgoe$w9xaErB1{LoH@w|g0wJYhA zAM+w%N=SKLKElsJxb65YC)m8Un+&M?^~i1R?r+=WJNA5VjcnR`>YHbHt_2792>B&X zy-DU&z?#7K89o^O6W8f|A3|x%LI;sU(T4k7tpVztyF@BLyf*z+kM_o*hd=C}HW6&V ztZRYd!SIV+tD)b$&?(`r@{#Hx3qn^C|Dd9r!EtA{;%fVbn{98as5^|d@V{)>1!~|Pzit^{ux8q`qQ%H%rJmp;Hh zCuHtqpM`;b1CBj|2@%}T_sF(-n7AUzfGZtmWYJj)cQW7=zcve6O~A*m<>OS4-_Y#Kq3jLTVvFH6Ylfq5TirK55nf^)gfNv&HwrmX zlYRr)n52t|uu?b@_O21ZKk)dDd74yPOAc){a?A$~`X_fB2~Epj!FT5|g$y>yuIV&% z>lz8mCxXM?hTph2(4K;4N$KTz{Q02As5_LO>n=Fyzz%W=YaO3 zA&h?&TSFI6|Kq#Wc$wAFqVPXAv>u^ebxO{Y33*XL`-Av%tQk4NV(S(VG56C(^8BeT z_2B06FJ2n%&vf2P`p%VB8K8WO4%J37+eiq6KEYh{P{$H0|_B zlvUeHXchv{8X;6_X|wWk|45{MkSw8-K$8#xuTx89pMxiOD@?4RT;rOc>jM=fe8iT$ zyuXW3JskfT@FoOU>duE)iB!@%tZum%E*HV_OUS`D5R+~H7E4R*3ZuZ6LWRZ>b`KMezi zpPPP>8zQvKn$YpG!&wMU=ckrcb$@uHmqq4mE^kv~T=C4GrzR%#_=WqNtES|O5;XCw zQzYff?QE&`oBTC`Vr7aOkIVeD5ytY8Czj>fb1VJylYFHm4idnIAPLp@M$<1iOO7A(Cty{eW3A51gI!0IKAk zM%Kj>YNB4E?~8}mLNpIW#W-_a2oo~q%jI`R(wSQvuH1FG{3w~zU@LOHHkbJo@l?<) zGKx_GEI;giV|*#0#t$*x1ml!%YgG?%q7L%eLf6=?YYm~|x(hTDh6U$8@gywFBNZx8 zfY78#jhqiU=PBEsrYR$Y(wV)(h%x>Vo0`hKi@sjQy&I$AHQBkB(8`t})H;vP&Vmi) z(MK}02~(oCvS&>sP%iRr)4>#XN&CXqV61>X(kQf-;08&S;70$<<~>5q=l{&Mluu48 zHO{*>BbNzl6?Dib0>J?mEM&7764RIK#Txm0W$lXV+742GmnbtnXXx%72CXY*qF|E;AYsN?Z%lN#g-?6hE z1K!iy;Y%bYVHainDt1?fBN5bPsd-5Bc6W!-w7KDTYYTBB>YuVLM4^ta^WeHVtNuL= zh78(OMos!@>9V{AY7&{I^16L2Y-X`Rn27S^8e34LdO0v1F+G=7qf!md%DWU2RwAs- z2k~5E!-y0*?QJK$Gn4_%TZyofr&Fb+RtxMn$NEf&>KrS^V}+q2=yr2h>wiC0?lV54G0rNFh3DxDO~quFL&IR~YhlbA73-l$j*=gc-r z0o(@#*!Mdj?5uI{_O@N04LEX2ZM+6F|HLs=<52NnxJpa(tF{*tp{ZE)yff1B=+V`P zuxO<8sxw@Nm#_RS^*pk3iBT{gkLTD+slTz%Q(+2)j0MZ=Bg>q1mD1iyVRhdVxna`e zOZPg7k;lOH06wIrIW-VDMvKw-Jxx|reKQ~bZ4^x^xF1b0TRy*ex8gu*A96m~h$uQ#V6a3hek2T0b0tw1I@9wwBQtO;OwsgyWGj>wuE!X1zD6;hP(iz4y61?1 zfWqQ_DLB$SU`CjQokZ85+PZ^%Q{fFJVLXYGhbPZN4xk*-N5AxDsCTBXhJf z(-~Zgz)_^Og1QUrEYJ7cXvd<+sbDN&drlF=Vs9|9n}RNbYpV15?jgca`CB zPo`9l_hF&RC0~{s`gj@Cnz#o=GF6Wh-GiMBA1|L`NTftcUq^WnX=COd>9_ys^IJEO zO$^SZDAK&yh@mrZY)d1@@?MrmN&zY_D<7ujgXvB~{X&(z6)dS;h2(lEdl%eHpfqD( z}G=Js!w6MEr`j5k-BlO+!N-q4=&nVT{=UJnl>iZ^w}al59x9iqWXES&UMsDjN{3${d!zOQ6OP6p z+dk{2L__bO=RyJ{^sQ$L`rZdquEVF+2=;~$TB6eox;;Q}-B^aVm9}+#vNV$BEEoww1jO~!Cak=_ z5!2ksCU+7myNp1{Vq4wOqH1BPwDUt|$*7`TuxUA}FEA#-9 z^05hvWJg)KN?UJSA$Rb@fm!yrLZ7mq8FW=P@=0O3zo|;1o$arZAUIJ^e74aVeDD`9 zs|bQF2I;0s{FgZLuV6{i;2rv4Q5fXHVO^WpWPhQkWJ8G9Lee7{cDz^bG|1G4ACpxi zb9lH{-)oB1HVa9>q!ERJp-8{B(g+K{d!%VwnEujhwsHS~&z3VK{s0-4OWR|a52cij z%aIex!hKRttE#JZ8A8Jx;;-*(cW<-1`9h2jAYDLyQ+O#?^J;$J#mjbu=@C7VA^ zQEXCPUxpEQs?#c#3x`6CksS&-jHA-l7tTwe<$=O|xW%YP;f*{sgEiDJ2Qc%x5Oq@c zMPt^Rs)&*6tFoIPivKl0mdX96JMuoG6oCF8^kqEwc=mE1>CZ0=NTx_>kx=m#WUBLo zV7m_Pqg?aSH_enjbe@2cN6eF4?fH21X&Z+r(lyH?-4rR}AO4TC9AM$#{UqlNT}uXD zzq$8-))s-=qPYNjon8Mbr#$@O>VBP%0%#=l);k|m6&u70@nD@5Ng-<|2a`Pc`~t0P zY^ejvJZ$5|6&BQp=E+sH)TWcZ(*)TO&I|n%e)0>c=efY*%t(`!^skly+8FS-xDrUI zw&*936Abbu^C~fk20}?of@-P2$Rec;tzjae;#|bg(U(69IVBWXRvNC6Hi4%YPh;L( zV~P#!xH(bLiJMV!951s}{T&;DB}%h4G^u)H7bgcJ*>-&rTyd-An_Ov1%c>{3G-E`z7@z{*(a&1g##@cU6Mo8#? zskVuPW{k*m=Llhe?JDJl|NAUJDHsb8gg_LeI#zjveX>th8(bnp>&<)TMx>hyoQRYM zj><$}nMS0B_O_fAMe@ZG8f*hDpYko$?ra#=WjLwdFdp9ZNF|`CU4B=2GOvWxj?*c; zCyBtJVWjvdA|811d|YfFCt%WLfCm9jg`jy*z^r6?%e&6CFUi<2p)&(Cjb<c?kG=C&FkV53R=g}SLaUpYr-n9!=$10`#Ar6s|>={8=Jb+%KaClc)MTqkP-!jMCTePArZAOi*anU6oY1*&$>}$zDP5%h2)AA9C z%n}g&uTsXr7ho3aq-9!M&A6%M%LXzsML~(ofGgh#-oTSL39M@)tKa3QM<^xNIiy)Xyw&O6`p$ z%-u5zqZw#1&&6Eno+L&zqfdu2KPtTkq~KQ_q#9B;nD)nY2P;|mR>2)vE9QE1;X{US zWEzqRHp<;c3Cv6`otV^N^QIh2AVpGl_3D3JC1z5M{mR(20LvqRaTMa^9)s$@D|yS| zk(e@rewL&Wc;O(T#vOY(&HAZdULIsoFMY$X=7*_*Qt&`D(VR1t($M^8mwAmpp@nLg zhW_?PA(J+efrx9N#J{k9fymI_+`!(ab>3ZuO3 z!f@1U)@zh7S=||h+O98HXDA!`ERSMlJv--@#-4=)K3!&^Qe~{hA!D_cYmN45myUoF&X5+7Jj48<`Ku+dX)fH70`W-A()xWPCZ18%?PMo|vizGN3R z2T|DljmNoqGuF90UE&WYzew|i@T4lOY$RO$<=J7JW>(aBb5Y1UztwJmsB${;K&4rU z4a$q4^Iq}x%~*e9t0;r(1os>H4u}nb#m(#~zp3XRWD#U@_QOV*{zcAvxPZd!mAkG~ zwlKDzAz5{y8RZx1x1p&iRJYdu5{hdk;WJTdzu)4d0;>?+!u~dz5rV+mj=H|^) z(%DE>#K|d*;W1&SlT&0;PXljpu_oO zX43+nludK<<${`REdd)6wzj>3{SM-J_6ZBg5W(0fiGiWzAKzmWh{a|Vl5dFWCtX+@JQ_fbFtXG5a>XZZ|^-0C5x5y`0!%>=uxaXEFX4eFLL zPsy3gv?H-jrwx9rJ_Km2H8kR(Bp)AG2knN1r4+djgF-9O#&Gm=*|C}CN$54#%2 zwog?;LyI2*iZ6`US>yll$n>hwiBhU6xhud&qou3m2f#nktaN`H#eBmL36t+Vh6y7L zrr(XYK$~S>DY{;A1#loya?1@B&3NmKUg0;{lpCJHHg(|j3|emj?fiXZTpgN>5S4SH z>XuwG0;mYk8s4J!slSw58;01iDvT&;l5p1`hG?O5t5zph4#eMcQxF_KHw+|fF1*~s z_SXk@O(XsNF_U)iJAo?x{-=|HZ5&gmd$4jvQsMVW#Yi~I8v16(u2dR{`fvh&3kn(_ zd3>@HnV}6Q!3S5?zE?y}?KFxEupa|?z6hyku5IkFYP6D)JeSdbu?Wt~)x(0|ebJ3( zWZ;qV_bpyZcQO?LSTzlm86i=lZ!?qhaw{L@Hv^YADzplC~vX#`UKVI36_!*jg^F^{`7kcRo&ph2?)9zg~1q$(utfY0WwN zCi4HtkeoDciHySfnLcGSLl)gm(D3;8Ef!{3Lv#W6HOEb|MDU=A7pOX4WG1XLF|1oM z^5u;xqqPp+KtyY%dkR)2GI0EB6n@*hEY^5J`nS?Y`b_91FKl-g@X3RGh!Y=_fY`EJ zM=oA32#)@kubYD{_-fOQy}RpDo~4s~zY{b#&9#oUPvyIz-wko-%`Xf$D^cox2TIasQ+qCHjad2PFWGCD6AX49=x0d ze8&&s(rM#=DA56^_%q*}YF${}v*_q8j%I(?MF=@KOUMnVyQ%A=$A~?o82>#PYD>Ch*=eG+-~y zkJw}ly4Odq~@~9@>w}$azLr2C5Yig>Ny$@t%qCWMuZ@P0dWvN(-ciaV2y zA+HxR9n zU=Sdru+P3;R5}W=aj>clIpP*{86FWSYi;Z~iE_U$zi)WHdCO>8WYTbqb}uNaloL{t z$BM-$?)&VO%o9(wUr`U7-kD5U#?n+Si*=A zlG|W#4Yw~Gs#xc=^Tb^ESS5-pL*&4pI^liqR#Fs9Lw5y9LD_xloGKX-}w+R^ocN9rhU7r(?itlL3A+MpHr;YKT46(!NK8Pfh z4}g8ObfFxRu*tGM?>V_ioxZGxf-Wh?*)Uh~5kn}!QZ`BO!^x~mh%}86)2Ls0GP7z5 z$6H|KaQp($LFA*C$w{0muy~;?-l-17CMf~_cX@tqQ;#yj9ef;WiqSI%AuNF*c`{tNmLvtG^{`i%>ln+ zEi)f?s5R&KC|x%Hd{Rj?A7ej_|KJi7 zVS{cKx`I3VY7ywKClc3;W4PW?2kn9^Zg52!hKM>3O})D}L~Axy13~x)V8bJ_&&nFO zV1W_)Z-Aic#*zSl{UlMEjzd5PPdz)dL&cAkkQON(UhVKxL{xW6wpCf(f2@61IX+I^ z^`Cb*#c{`F_rXnZEnr;sKrVADTVb**0~dpkCW1<(*wmfDi^J?+5MnQVp@T~fe**s3 z4hZ8_-;u#RAcfIex6tm(#9gkIRpDX=&kKU9&X0B&0&Az^bB0IH{-G`+-_Mn=zhYJWkZS7SvJ9IZZL$YeT@(7Cl`CF5kp@3nvho%3RB}hJxxXMRK^tR(BI7q$!nZ_ z9|7p0jj*SFdm9dTOZ$$p>MDQN>XM`AAbeT0`Dd_9Xig$K1@sW?szVmq6)BE3G8$vN zt3tE{vket$E7+lta93EN0@~y91mgXCmXPBqKt#R&-vT$B6;wz#_^ zEQKlqeX5YEh<>qJeu5xm!V{6p>@s6yo(;0dTQ0n~fy@g5cOOFgLR}f3jft3uxWdnT(UxZ>#_*IV?;DF0%F)|~1i3Oc3QDFE~i-ZV@U=e-i= z35tUDEfk1U|FPrsOs-1&+M)>58&3QwLysOIlTKBX!k2l z@K}Cnn8yVDc`^qkMmoQ_dDivk;BL}2nxptI8yC}n@7L`o95wCNh!Ab;?m%zXDU0$f z+t3z~ylU$cF_-)FmIBPNvyPOPE;e`rI6!)Yzc@xZ`g$F$)qCFb61+jswnsba&`wNQ z%OwxS%nUhpw8nzzSfoLkqd?9es(i9jf*Z_^DZzr=q78m9-G$c$o`@ldf`Wt+L%W^%&j+EHTC*Cg3+B}<<#Bv`b`U!#?*ehkNEYmAPg|OOf1%CD= zq4m)#A59CmP6udGlPY>Kd4q>Li&tl7_lHt32;+Py#t?)+r!+~Pz-85eS6cBXj^G8) z8F`T@3z4{>3B6%zbg_9#h5ccyb&%k`c4#v}P4op`Jp;6@LrtsVyFxdsWV<)7ma(c~ zVJx5!f_=w_bV}<0wAY&8LlTnMyPEZ_e6Wd(DTu&CmZ+_dwc1otu&!sYjJr*UlSF&&*~iP(!BrDuW{dJh!d_WkaN6_}<&?W<$e zCZCizhRdC1S|Vh1ic2t^E+PDyLRdhoQk3W9G1p}g?s}C&=SPhc$JGpWt=UTQrJ0QE zApN%|1#dIeM2Sw*(tOM%dgeDV;zn({fAHJ#@(@*3!RrVOR1M6mb~ms0%5u09WQR?? zmnaz`c~leNxz?E0`tKErG$>78ZokGVPE84Ym*e?ODT0o~#fqZy^KKPBSauyuEW|d- zx4i_Ao8vhOdDt5er9c~H&!puqJ8I@83u8&-eU3Co2waOebT*YLan$`2g(=Aa z6v^})lj0%gS3EQnrdUyQ1d>8llh_Se?ah}c9`Ifs((Pg2<9f%hGu2QVCL%&nv3cX} zwP>LmUhmRPwAd`~6v_)toLu>tL*dQ9@7-Har}|ij;OiS$*|Xq>Aa%55LzoFNUWuO! z3gaRCH@fLD7PNqXT6`=1_}D^`H0c56j0Zhdy>H(v#IB=mr%)r799$?_0)kEo5f61? zIGMDCN68J%5+Sz=QIVR3Ldw6&7$CacK`qSsJy;lvpw;`usnF=$K656k$W8bXI-10m z(DSOu#f3+1KeyzuP0D>(y~}4Z&0|Fppn@7BB3}An_c<22Z%Lij8{=JrR4zm>^IPHk z(fuj%8A?si!&#CM&SHA^j63R@6H#vOw@aargEb!lnOta9h#(EkAan1{P%@5nrr%F) z39;^ff@xrNoAu{h^V@kn)jtSg!iO`Iv(u||nHOZO zLQ&8-eS$ALhUq~{Bw2nt-y#~J9HdeOr92zX&H=tR&^w{S)`Nu*V^w(>Ecs0P2uWWb zUN|*j#SuAF@}eEy9m}uwOW%xbhOCI!o?Kw?-pJ8=*B7%Fn>xeJED<|qaUJKU8u!zF zlNICTX$&n$>xn!Q(d_YC4HDqe9TAFiWx;Xu~Pz-(dZHhbZ_fGtX~*`^%LV zufMt~I9w$n7s5ZihbyOq%s+F)P*n~rU(~L5B2xXtb9vU4B!<$lm*d;5if336`Im@1 znw+)Q3ky9e5&13g5z{xX1X1}zrTHLS2oWN(+6(!I)D+o?yp?!g{=6|eS_$^(QBfF% zf6l|;oh5U-IE%DvYw(`RRmGZ@@(AH;!&ZWB3-K_LUlOz6mTtHnT5(GL>PU_ zavfFcvbyPr^wYe)*vy60AQa5&+sc+w!FFSME}3j-=0+G0WFvuMD>~*C94F6d-edsn*f0KnoNQ7O zl+i;9k4gY+k^-UksRdmfEfIk(sgwdMmCYG}PIhB7STBlVMpXuK7*-O+MPlFjCDfTh zaZ1GVu}exU67G2gMKG@JELm_S5i+%Ok-qJ3@wsn~a1dC{l1sA!8M}z{uIo8=Ol2(# zHN!+_O7h0u?Rv{Ja++;cGzK4!r4hl8heogvc(8~8ChXJXdhAc|pk|FJ$m zAel|@6#fyKhln%qSM8_p6K<6z z)ABkPXpfR)CNZ-#QZye9Q_YeC{A`VIv&8c)J>c%He5+nVADR-k!bbeD=9dssVO<_t zNH_^*M>n@5;CHvsRjSf!U3^S(98Dg5%)kIW4$~DJNtNB9$fc3&$X)t**d1dtF~i#z z$;`;EN<=g+4q^*3T49a;h&%c{?V>r+_1RE~;wG+cRm70O_{PQFtt*;Z)xCjMwc%Wj zlz^cq11Ud7h)^C5y%gQwx3+u-FicFW_iHJL!6nTUt@6$x#W}=p4M-+lFYM8Y4CfyNWYU9V0NEs!q zrwGU4lzi(@PVSC&;7Mv9S|vb2naM?~mxuYuPFl7fJI;fz(^aH?<&uLs#lr=eXxy0dXZ}~3 z;2_*Wyb9zTLULu;K}imX4&?W({`A(25Xcx>SlFceZ^nE`OLd)0u!yB9rSKL2e;4G) zuim3yE5ZRsA(gaA^&{m>T2Cf1P>hBRR#06XU%05P^0#@%Lh0$8t_YUnrnZ+k`F}c6 zF3x{pIifX3T52|k6~m2ypYz}6#{3Al8tQjP_93z~vUC=aH5`?twM$&#kjTRbd363> ze=$}GsIvNwt99PKUjuPZ46BSdG6qG00imOhghrhMgG>}H#&jVZAM$JdpPU?PhOSg| z*DVXIkF*ZEkq`>7@T3ohdw|43%=u2u#Oc;&XX1rj8&b^6OvJWDEZ5@ zrI;XLg;KHY+vcunvS|Gd6H!POe*pdSycXlVKueJ3t<;?7_aiQKoUu3{ zgNAu3V#(M`aMQ&7*Im~MKZFXT!V1_)&SJwQZ55&D(aw@AT|+Y~67T6I%wVmo_Uxab zD!ZJxI}S!%G5Cxp{`ny}cfSSN*^urCl$tO>QzH1sIR~#mH`h%nh!=07e^ym?x1hnY z?$DAVGFugeg!a&wCE`#VLaKlfDq5{_!(QFKoi)kF&&<6+WDier{J zC?=3l5#Y=u2TVZ09MO7Vs0St*Sl^b!AaA6H>d5>wRLQi^n~=Zou85fTxEu+^*%y~_ zR#F*qKQB>QW4-+HE@31ht7*a=@ePBnJ}llUCXhhyw7(XWx#Be#0_is+H0$I_7a%)BULx=$A+KTw{EVag|$l#Z5pBv=2D zh!6!74we(F;7DraiGFWR=xpeqL)xe9WRns&Z@)SIJ0;-n0X+IgQ%n{oo}gm8kq_gl zA6XbWX6>kg29VW-^;toEAeX4p%CRZ7Oj3{zQJUb@!j@7E{wYygbU@dW_M<{IJlCI)ZVmQ{>7%?#;tJcD^UAUgVbx7m$ghTLWItg8$~iI(7v}B z3Kxl#@1g)4aX`j`Ef&ZS`qqIl9jh>sN*-;&5eiHPhsD=Jyn(vDfZPia3XSw-0P~bI zuuectqQw8!YhD-`wGTK>)ZDx^x{$!Nn{)2<(m+Ud;U2rEQV_d_^M` zL%+d&Wb$~pm+4wAzChhKhpPqO3`MC@-|!_F`Q9V=8(4#~_HRht`i^j}C{FX+iz}MF=?YCHfiM90$5>5VVquYh zvaw4l%G7|pC^fEmx zg=BXmQ~dqeT-ps+5nQ+Jj7^$3HHl(Mf zn!u5N6{O8&<^Mhl&`9Oo`(@dp_%7jqv7^1%i$mTK%SEb1Jrj_~suZJ~_>S8#(<@mV zkt_OrW!zu6e$TGM0NS)HSE#USbUt`Oenc6ETz1l~$eT)vo<1n#EsLBHTt-rk9HnT8 zKGZo+d@fihZ7g%oXD>kcVs`dnBxGIt;7FRY19S$q9=_{p-j4kf&<8MLq>cL%<0`UJ zbS9eJCnGT|l?qxDoZgnB#He;15@2!}6gjrg#;R00WE$hw)E4D#QrTum&}K=@0lClk zrsJlk=^_Un-`m=CNb8$YCyY_H^&8a|se53=cz%cpBnq{1A!|&oobU~q5-=n;#SDL2J4xBzz5PY>@wz8-VAyt*~ z)5~JUheyd^4W1hUItV|+;ztr;ibQMb2~=|Wr}T1fB3YTm@|xua!PvW~U$5}jWl3*y zN#$03&23-nl=Agt^G&rg`$Y?y;Y6$mOqvk>}fKKHLPyCl0; z1iceLLPLlbTb?o&GfY@X|D=8I>f_~9%BzHv$3rVT%xe3GW6*m5r+IZRYqZXZ^FF#NwiTDTWjk94LOz(llUtm@7yFt1nKtECSA|9R7R7P&$KqX8Pe_&gXsZyS+XTgLHVfWz?RIq~MlR}cQZWTh_NEBCM!POX0a0nhwMuDeAT@0w zO>}7;5liZZm96dXi}lKOo$3&!tR}z9A|0KBA34y-fu>!r8hkYJMh8YQzP3}tFpxs_ zElo_MqP^Au(&rbNplSFXN)t31fzblZI7TV(!GkeUD4ixTAUiEt6?eE)^iB7EAjy@a zH7(eKnkIy@GpDvq1D*v#I-3How7L@Lz!o9ZC=x59mCyoaCMr1gF&ZJIBN(GAP|$>U z|E+vh7?!|g)||up-n3$Qo3uB zBT5X2DfC{AERy!*92grR5-5ujE@)yr8a%S_Xt1*tbOg&T#*=hpfl>5mI!zx#Dk*}* ztKJ6TSVOa-hfv#E!J0W7t097q&5>BNI4wfBQ(Ap&kJ8XKN(jbE)jKL@==m+fQbz!% z-^LzF%WtPj64DvGYJmd6dmHh>4LtmP2qORh7>`FBUyH`g=1HlRbLRm7Yir<*X*`;Z z8l#-Ati-$!FBN3dxx|{1;N*Puah|idBp|J;fW%zld*0YcmO;rWj5HyY*`uJ;xa1*J z0ZBJKE#PF2i2;&gP|`&q_^@+Hpwbvi^+xnO9okJ&syFL9LKO;7w&_zT@ABR>5J}iv71$a73mUmGq0f2Vz0CsPJG+OC<@OO*B$TQreNg?O}upVk)u<<(4>WXwKe8ff@nOx^hi+|etnuZ~v zsetetqO8h!1`ia`wZ#K3kk3^18fsexSCq5x#NQ> z4>|-*EaG9AjE~%4l{pHf{m6wh+^9Si&XJNP)T3UG3*V;+AQ{AMv}WYPV^Px0dRBd7 zJj!{KacHonrLk1mA5TEEz52xV`{XMsDk>@}Dk>@}Dk>@}Dh?Yv+JoLp*e8m)h5%v? zXha)wJHw&&k{@NQS=MWyg|3W+CU^uWTBPEbc6=a(i)e^QQ{-q+UI-x?SUs}*jp!}3 zp-hU>0wrF;XtlNByEa^2LP2tmPO#Kc=hKk`rS-~Kb|J^Epg{;3cEPHZ6=sNSeG0`v zuuAcI7ej>x&yAdnLA%$2hkf3rdsVUH8k<1pZR6>Q^wOS&jMCmJ$-D4Jjn7E{}2&)S>%P5H6_G%Skc|AuHr z#!~BTR-IJGpBu}pK0gr8?aVyyL?*(dKrEnG_%OvAm8FOxwL03m|aFH)q84 zO$^Yi2;o()Hivydy_xJK#UvJx>`!a>ok)dz%ZoLoDV|6n$9OeO@buNU3QUqx-N!~mlyl0b-9`>d# z$z`^HYw4j&6ARzGX;QR=t!8dLjxl=9OW~;$y^?vx4gXkFgg5qA(o+Ef`OKsvY zA%9(;waJUkNt8+KzM&L(W%(&{7O@HM(`g5GKX1Dv={F6q8qR@^5pf+rq_UHb=^UBt zr0=xr!navMdQdqvdvaT!LL+mXw9~V;H6m2_u}$j$kkbsgEOOWGx3Qkq(7U%sw%KDQ zHH~CIH;6PLDY|U*k|>k)cnI}rLa&!8h}nBW#t&jUE@>jsZblQrJ_n;q>@!h1`9RZ+ zO8V58JkZV(wd~YIqZ90lMa+4YpF{y=Hw;4NHK?g!;jvf&KAS;tksssXo zC~T;rRnB$6m78Q!FoVNY%QX^+!Q`7#kr6NCaO7H7i@_4u?%#Oy=4BANhlx+q~8K|vSs+p2P2 z&_t~JV3qD6Ix%BMMbssu7<&d`!Tf+=%<6Qm9K*E;$QAbDyv&{fuUOl`xZnfL6gi3E z_YQDA$Smfvk!LwlEqoshzY8ZJh>=STXFv+C8;ydXw=vDX^)i7uC=Ob< z$GK1qKkgr$Vb)%Xh?@OVm2;&DZx}mKP#AR&8ZuZ7p%jvcg5u4cDD0`?EdWr*DW?ww zO#sQ*5XT;P4OSSG-F(w|#{Io8@Mun;7Tz({rDH)X%C9HEQ1+CPmTVheC?RSTk>WmC z9$}ldZTB)N&*8wLXG)4g>IbRVT&cioDx%Kcrh2H-)KD@|L_SPuk1}aC@pp{_@hBQd zc%8gG%hF5bilp7r*7K4-TVoxjrV0egB zW#4SyRj6}C3oD92Aco&tgJpT>@5TAdG$$Qa!TtTtJL>NHk##6X-KTUM(lpx6gQnA( zgMQdhLeN4A_9y~}Buwe1Nok?SO%doR;ynu~QJ!;d+Zd(2r+_2+@t@m6MoMrTk#OnC^ZtU5P>fP0iCab<~tmx%8vq!4w!V^KN zM;G?LvN2|!K!aE)&O&LzoF!eZ{X=>Pby4iHNzhBM09!pw@$C zCLh*%IMnEs31&{lWH1?S=a3k?u2((c$5eFoj|k}xD|KJzvSvJ*ryMFWcsyO4Wg=(491 z#DZ2uQBeS~Fx(=V2t}x}$;owD&XzWSu!nE5HJ@KJn{*m;K7s{CA_||d`2rEDBeCq zqPfX9DAjS_P7x$QAx+-HuazbNQ60=Zz2FkHg+-d6+%1XFN)E8%o2CRnE~@%;Pns6)T%9pch`GuORH} zst-`>^E~)cSFx}jbv-5*=+Q=2r=e8#EuDBoK20QE_@c;lq=`)L@Ub{tR)~C?u(K6( z=K_;mSqU#)1uT8(a^w(LKCo+|V$K7CbZI@!6cCGng&wav^!my+_0r1JvyQSPZSnVo*1?}j<23AM`4TW~8Dbt7o2 z#Wz$}J}z84co545T3Zb?0R*L^?c!b+j~iqT`&!ckqgIR*@_~LFC4oqxp}4m4G>|J1 zaT0wYCRchX-*ZirURF>}e_}m+qJU=#x%R8dxfOC235HSONNtFb=#XX3o|6%*k<>4s zr;x`mcVmR;(=7Ve?0id)d%=^!GZ`MDJicv%;h=HpNHFsonoNLQyMj`(lr*shx4Ihs zkkbv~S5RfS^8nAI;g6Y9I4@J;%c>-+cMu4&SxjN`Awq;W8RUmh(vLA_ktipkY^Kw+|4uJY z3~WLZ_WqEfZanH4GbIQPP7hB8C$^7O`gx0WhAxt-A27%Cqc` z5<6Q#2P8LhS9tLU)^lsSSeb&Qq)P&pejp_Z%|ExBFOhhYo1}=^&9Dd&0s0F!tAuzc zroa#efW8v1w36xB=FDe6lr8x$g^ozVJ!06qz7qtcg<7AUO+r6H9=h?GYyawbwVsJM zmtdLgDR@BIFv{nZ&5$4#TT^X4vl@0?9#&E^BWJ>nG?b`mf-pWFfe$RF;Kj%92_D1! zT{<5d2;sVohJ#9Iqd6xtDl0@uX#|qDu4%w4Qqi~bU{@G=$`p`Nn3i^>N1cltpWsc@ zKTyz_`Fns7*n8>;41Xp<%0d;1Vk063S~E}aXvAZ4vOOT26-=d40z^j8W8OfFHUZLq z(%fCh3!TkVNIH<1J97$4WvjtS7b-O9aYo6I^HH9Fs1PC;-J5&X~dw*8R zp2s0n*BX+dm0g{Hx+e`OhkE>xF?2>AQW|j;8i}IotTcuKz0@b_IMQM1-HYQCPJwum zfo-2DAliW{I0HPa%dyp*Tcw{N9ul9S@R9iX! z&Na+^;4Ez-N+(88I5CIF98amyDHiO(EkKQYckMSC-+hwF?09Vl5=TU-T*Ts2*Rzahr zkhI~rH@43}E+{?ne&bQZ!cS;*6})Q|7&U!ka9 z#Ez*vs8N1o-igx65Q?@#G?7IrmQgU?{HAo07$aC5Lf3XYKOGq_VdsP-`~R#`K>%sEe^Z!5)7Dl0p_f6cmalJJ~Tt0L?|(0uaxgjvId| zB#i>$OW~2&sT7POog`5n9%Ze1V%-f&<0jukbJ{F%vnl%LbQ9!wj$~{*n}OPua16#W zG8qB2ArGHBpKbEV1CcAm5y~{g(jMCaq9C^Y&8<}Eqp)LWfeOQvC@|stXtUu)W0je! z^+>v849kpGKnke>lBZ8-J6`WNJ6a<{${?HKKJjc;Akv{f05rRI2k$^rC@@O|nztbz zf8M5VL@n5jvv$d_BKxzvXDW+S0YO-cp^et#MTs`DNl<3s&CZ&obbc&1$Sxs9L1x{Qx*F*f40yUV*89mHclL;9@M4ZWoaZ1 zu*WuL{i>p4QwL=38KSc9)7~%NjiEFyo~Evg0#{5|Sogs0wc!0-Mn0i?>pY~s#KLfb z!Dtcv-kw3|VtA_+Tv>Spq!xe}@1yZ|uwH{v+Dk8%3)growH~Zs?t)iyC{4=NF|p4Z z!_h~kc(0^0vHpg_+NNR~j`Sdgt6b2hOi3@JTS9#kxo-=_8Tw~NpqUa5sV0!_2{x_3 z(neR%jlOFj%4gC0sK!ZD?L&ycf9(k}Jisbk9d zew6!7VZ|)PGZ=ScDqBetK%kehc$~`2Lmu)b-18#`YqZVeumzDFDqBUT$`DPkb|_uj z@kRfNx#}hlJv8y@bxQPCmb-3^0HtBqzOy0z5!(hAa1Q3j0Zjf|htgp9DcL2jg%lL;)!R!3wQf^vBjTu}0jCPvobBXzE*} ziOCpn4R~V%bo(7}#~l}qyh{T|;DhU+wnex90C+ZoTUkkwH(Cor_aDtEw_b2X!I#w_ zqP2ly@m6bKm$nwzVxB6q5dbeKA>KrFi6YbbM2~TNv%aHT=KJqSzJ>L`rY>?C=|y&p zMyax!vJUogIE)oUt5O#mKdZHgC>Ok<$D1R*oyx^C zqznPs!jDBtINeiWDU8Lr1V3L1OqL}+V0pKDOb=$Ni+Ja=6`I3DO0l{D(5RJK|r0)!|&S`Ws#ns#D`*U z@NIsCn&e8yBi7{E+}bMWxILgfyW#J=3*C?J$O_*q3;5uAP)H_YxceO+XyQP~vE+>n zkWB;8oO5Gz40*OGH!;G{f)$FWWaK@g?SN8Y^30tP)WbNkwmrwSsUE;IhUweF8xvGv z@Kk}S3{A}P&E(}G z@^bH!GUqu&B-rDoh{Ct)3eS|cp|%4PG&DnP5vr~C0a0oRvAAMs_!^SIfV^N;b{*N; z%^V@6;mW1ClXwC_p^$DCu+E0ZIFd90mprB!f7I7xWI#t@AT2D}bztgJxL%c z#p3-r$`x@|{vb-dWsBL|#cQrsSpD>K#=f zGg-MiC36s3&j;s(5&$LV|JKQ?7uNbYT0?O+PC1 z=rMxKTTXV)NWVcr7rn8Pk^!iqosSX66a^*LDU2R)m~))vm1%KAAkl&`c)aef!|o zH~RhVaL{NJ=wZ*U5WYEY(=kv)@=m)b;L^$@FlR4E)C~zsfP7zxKq(c7&E~_bk&0oR z#r+att!XzlELUlv4BZvkCwc_SDVVm_Yo96R#l0{W5sZwYZiOxNijYsoc#;FW8i!hW zAf*#kU^F_#zOT}l<{6AGlC~xxJr~G2jBfvdL1hJigu;7p=KxBnB%zyJK1$!;1MK2& zV_hI1UndrpHbyR{e?;Y4Beaad5!&b7WHML@%G)ytx$}ck{|s?>B!1GHzovy)B|SPn z%I7ou$H=0jN=DDnj6RJx7xsT=&qg=x3{CKO1gx!uqrwgx3^~}#1XZ5LqfkF#)P!90 zGHOW;{Y0T4>u3}{_Qoa!#7xu=mkvQ&jJFp;?^86Y8eb%0CF5T(ZRA>vIx#hdVnn0W zVK6`wN}B@?dW{}ggrWLcfo_uWuk}tC5Sj=LV;WR1B1`y7e9lzYBnx*pb1c(SGN=Q} zx!@VMbYmk-n^0ed)SzFB#2qGL;RP2%;o{3Sc}>wns0DqPLC`bsj1?1RajMd4?-e2J zStV+teAry2m?LOB9+@?Y`ofXsc3C9?z(5{FQeHxpY63~&dMi97=a4G35;`LJ>Ai3f zAA;6wNRNhIQsY3Fr2->q($MPa@sfTQF`i^0qIx7$slWgsoQNckzG-6aECE-61M&a> zAOJ~3K~&)RJXg$hym`nQA}9IhygIDp>~MqvJu6{@_CCCqo~707yyH=z3Gc%?=p>}n z5&DcYV!e4@JRXjc z%oCZSDj%YBqe~mV=07@sS{Fmsv!YqH$YH#e!bGVN%dO_7ITwWBfe=I1BahgFMq{bW zJ{CiOoZVeiN9K(wFx~*|4n-4b_wJN0y-b*l0riNq9cVgF9*(9-))}>+kH_GZNi_I! zoAL+a{-#CyET0fW&jpYf!!l@StfifX;3tiQ6CxKn8kdKwTScS{%hli5OO(@7c5lE) zN^00G6!mDT7|8%#@>nn>qqKJfHwzES-gwco2ri|Gv_G)}sPmzSsa(TY_(XYZkV%vJ z|Ji%HCCQPbJM4G_kXb+7vpe=_X{3>6x)9(0k#r?WqDalobaz!{0*G*4_)mBQkUhQH z85y^-!fd9iGLc9W5FX*j{rGXoUQOUB3kWis8WNF#sGu_7Q7kcb)NtImmP3Aa9)%d66(5Pfm#hB z(KLb1CoN5r(lP^lJ3+Bf?%|k2g904p^-UqN@VX=>Pi+tCY$Eqs4`vhkeMjuy&L<1t zd>6c;AG48NP!!O>kp3KkTU1#!PIO<=YcnBVN(p9Uo+KeLG{-Ks$Le!Kt*r#h_M3ol zOl*>{Nqa^>0^dx2?Oa7$hM;@O!x{Vsm(0FvfZhb+HgBC1+jaF6t02%cwre3ecBo>H z%}7Oz1{A^i_rSTfQ{!aL(fFC+kDJo5Gd0kH-GL&w6J;3{D$qWGeTD;JLy#JD&8Qo= z7#ITpRB$Iyd2QH6n@A~ZMqi5&DUD3#+%{`n*pRjE>GjROi{?qLdD~im!00^o94&Gg z`mOS|0pDI^V>$JrPj@vmBTLH)9;1WP)Y_|4z9qax~pzk~b=aW-U zqX6My_HW!jY(%Gt)FL<>=MIO>L-Yc0_NN|!68}E^9MCySzV^nY-M&9Cuu#yHs^c^Y zf3NII>^4gAm=TB^wN3+?+HXn{JWK#xR#3S#CwEeZd0D~Ga*~q5q75~=%e3vlpA>K?xR=uttSp2pIZ)x0L|GaDt)&xMWV4BNYvymq;01hcjpYM?EY0ciSlq$Gf4+ipi9-}&He16~?S zVJEgXhh<@tnk!$th+w_Zy`36lL-IvULA@`wH8>+NDhu2M=M4}v0DM?OtM=ivDvz>K zvlIWr^&}k57jaUN>!HG)QTNXg!P`kG70ZJYW+$;E#P45ewi0`f+92I-M(5Hp7oo0} z7HF1ef(u^iBfTYXflryhQ4B0zaJE+`TT^=7}ZRJ}Qrg0Px|s;g3mODRpyOE0bKzN|fIB z8SzeScf1GYY}piGS)YBKANM9>jTq=ANWhEQ=Njv!T?Z;7Syp@8J{5F$I~|Hfh_<#^ zpx6XRE46#8>lZ%?-I^*3y)+2HnMMjtlYn$%pTzs|`YQd;qww4v4PF*0-{{J1EC4=% z&S#nT+XlWCUqftA(spW3Pwn%suVQEG2A7gb8em*Ew;c}#TbZXZChVSFuOg5J>@-l``|xfLZ-IrYtp)x4S@+{A zC6>IbJEnouE}z@)*Q>Wh^*ZNm>wL1lA9|dpw-$4GuFjqapP?e+$yVNA!lQurTizwa zN?RU?HPbj@#U!18oCO7=jdcDL?=Qz}LYX%V zw4i(Jh+v&ra_SjcHnzZK{DXs5-wDZljF0g#KE}uR7$4(fe2kCrF+Rq}_!uAK|F7}> zGw3Y!%{0$VJ#nm^iP11XqD^^EU61t`s8Cvj(Ldl6ig*!J@a3@cLNi#8cX5Hq3_N@!=d%h$O!6 zEu@S_8EXg4YOFO+(Ts<(LKsRxDI^RN`-9vjGB`2Fgb&A&vryQ^*G;cso}608zy5}< zZqxpTsNcX9>FEhHPnsEC{1~Cml@?K+CZwk)So=MWYUTGdN&#|4`us_3Vp*FAlG%f` zSh4$)8?}vU~(FcXNlm3EkILNevpOg;VJzF9r`?pl>%$t(hwudScoT?R4S zXF6*KoOPcSzPCZ=6KI-bPaZ{8qrVF@MrUOlwlFnZux?F+H#J+>WzXaOd}Jrzd){_k zIg9qd(1MUHTYPk0FT;&?G5BhZTl7}kunivVHkRMo=j~_JIB~r!rLZ$JlODPRMW%^R z-KptP6b5l^>%`$cNX|AP(^|U4mLB*2KcPMC`v&N)K$!)cs}gB9`9@KhoJ9Ob#RQ!4 zFbZv0-9{E6l5Py(+&6|>;5-d<5%d%h1LmEm0ReTWEwtC=^UbO9&0T~{}!oL ze>jU%y>7tkn^5zjV2b}a)P!lATYq2FMHfTNS?XfvN$#}+J)sMNg9?7mLKmG(Kx>iU z)OFp_1u^9&%Hz%m2b++&ZyV4}U54D8r#7ecdlJdqk6^-R=h4wR02RJ5m@hvrx)cQA zEC3V_NeViw&NhOA$%0!-d8=r(`gWZbY>Gj_Tbl*oVlJfpf2kDkbov?edeb#=vfrsX<236 z**4JFX~k^fG~e#W8iTq(s~L|rqrZz5N}DT@dN_h}s@#`<*d_5kup9fa@7j09eaBz4 zgVC-z(B0c>18A~yXYvozTH&g@-4`FsMLUzcruDDv~ugFM@1 z1$}*yvZ!qXTkW|!!nx5JPZh+quQk1cL8RIo^8`FTXq|rZm3UiGt<{>oPV))rFP}l@ zGx%~r{Y|tk=Zr;_>Z_3Gw}xu~^XTpji<^dMbIbH(te zXsMZX+A&&uD9z-YfYU6`blp_HLIYP@Kj)jUxY`7#Lk*07X1s5J4#=dfA-WMF<*o{9 z5nTUFaDXBJ84V*7_%vyjIV@%ooCgQ2)#yFmYNmc-mZXB6p+pxvm7j1&0@yfcvmcz|5wz889z5&9JVYikM%uT!} zSKzAAuK*&u#VuYFw}nyO;+`3?ZF29Tvwe@F6v^xXeUOT)2*c#uTD;g8fP_q@;aR5y zKC7U{cCd*j^tN_OG?Dh;+yzSl;Mgm>hd(9MrN?9AsFd7R$mU+9esj_(nly7RYymyz zfyyqs5-S9}Rc@jv2LS=Um+?JQ3f(qPA=&iRCPWEY*EE~wtM*0b3LuMqgPxN$$Vk&9 zL5G1^!pkByVq#7Am_b)|0bLha%Y$k+GXvM9iCv9dB{Y!beQT$wdyl6Keh|F|S~k~n z_-o~BV(E($$TEL-ToLNK<9k`6y^l%+^ou+@n zN5VyRUe8p9kw_d#vk_afrYu=NlFT8t+U}__Mw}HBY{CR%O$;jrb6Ht-i8R~3?d|qX z2CtidiBe>Lx3!@b32YE~Cb7$uyKf;jVZx)rtSAD`pS3pqwQ0$?U@TV+vqhPVB{uK{5P9$8%RL4+Vprz_u=e#d>4?*xqHA51m7!yb)W|`K?U>3P>BB1k7la2B_ znvi0^Au*ZQB}gKsAME6itp&8bWL#D~k--fX*q)@A%9D)@7mtg6VyD><{j!OGLO|8F z!gf1H;p^lw8bZ6x%f1LAM|!HgRV^w zjR3@!I6F0J`#QP-&a*jVa3kn48$S8SC+bKGwrsjNXQ@y(`TaZ!(9_ls2o-KUaxFSV zw&2J60C+ZiXbr_vZqcUF92$yXhLo-of$>O#=L)O>_IWlnZ~+(e>A8L8RVZ@I3|uY_ zxVcmj!+KCf>QN!qem-jRa7Tknl@>Uo=mjNFaeX+$vr(n&DR3!)AJ3>yRx-dyuUD~$ zBF~t%Ds$VjAv<~8k0XXawNT&qUERJnxHPv5)tRW*nkhk7zagn(&FdoBt)D*0T6n!S+B+c5F;{WIwYA&b4GmD#uivCCXBb2zB_Uc$ z!!K{Zx(H}Dy0o_O;?K|EXI*=?iuBtzv7L1iM%J<-c0cG+X|`q-nae^q>@U;Xm?`M3 z-s=|HTRE(2U4V;OHd`aN9H^~&{jP&!*pwGH@mxB6V z|C_Y3yDrj2E4Wa~isk?&80*zZ~HlhSx2K$}$1 z)yCVRf#WJ{xT0lg7F@J8!^_%b(_M``wq?DiK}i^&m1TXXxf61eec~j01rcyvOz z{I_kew!rlC2s~*QgHnLszG(Z}t#y>31kBWZM=z8p0kK1|Te5ANk22>xJ}L^EK^lJ7&(z${eV^~0J@o&2 z$p>>kan&|!Rtn-4uUj*y1W+mMV?@%X&?2u#PL0*S9xU)qGtCk(;bj#{dm;&dJU)Q` z@=5--DIrw`eR}~Hv5m5=?YU}KgK;yL>|g}vcZkkwZEFUz)XrLW13)ty52DbnnGaqe z8N`?+p$vXHWBV*w5ZWr}as^!$&_&8Zc%EGM!Rp>`1qr*J;@uktq}zK!XIH!N+FG>z zCTsRQ6JiPNEwx<%7~%T{yYbH^Ij?{lZ9~HXQrw{$0gYz$TR=;{E1{K9S+={osJ3TV z+f!OM&~o1p4%Z^0NSRx)#uvZ>Zm11k`Vv^jm*=lt9T9&pu%|J1c?< z0L_*Sq&v{qgLL=x?2A*oD4u1np`h`@Iiozy{&!~u-|~I6Z;eZuIo0gDuM?g%XPp-` zE(iB9C~4Ve?bioD?u%(%vG`V0s8eKjmHeki)X(D2(pqHRTj1Qf&f91SW&g*qq77j$%vR8JXcj#l@(|3ML) z2Lp*BLApu!0m0hi2S)+dwHvq}N5A{=4W>o|JvGz%^Cx`3}& zX;*YU0c*%=L|Qyi+r%k>GAZp;=6YRL)QZ;lp(~AC)t1266R^R|HjN30S3@HG;Rat5G8bhEmmsat|u;` z1Nsq&d(h0CsXmhzLA>mhEF~kAkyf!IN&+rYX|{AY!hX7Y-R`04zR_fdT%qeGRE%uH4#bFe(uUXxwWf{_d6vGqW^gq;=Ta-So5cj z6CEx1wt$%|-mDwNz8v1Pzb?k^$^Mc)ah;0V4Z|J5d?*a0Wk| zmFgo=b()mkuDg*4Flm;&%v!IeVBZ`nzwRovgCo%JO-Zx$vA*Y?h6$A=+A#@u+e8J{ z7AUO?1h8|oXxWfob?&cKvhAU^4-mUyB9zA&bxuf2L0S%+-C!d-Z3e(?1CWeer0&)U zy+c9N94ZXw06NefZNs9uRNKY?pwX=CG~=d~39uwybf7j?I@t}UX51*;p%oQr{`4r> z!T!9zzFRw^nRB8P23|wR1^VHvyT2Q{d>@wt(lh?w<8uoh{u0>+Qvf9SB z*|Y?~G7%<-8EbCsJZ}rK0_=3@v%4PXT2^pQD1UiGJ!Ry#RRFpT1Lg4=2?M=RgGE-F zlp3(-M5r@)202m-M@pcxw}3u^Qot`SZ9j;|Wf6((GVb>_Jd;#a zX+6yKb<=v=i`>T;Gz4S~OUhV#yC8j0W#qRj>RV7!%%YdUmy3MIzx|B*Fe80=mC`kT z{%UKQQ0a7T*!(ODnCYCD8aU@<^0xL>o7oVaAe~7x|6s;TZs$C4Ml)!7swO)K#<>$YAmO$j|Wv3Lr zqqj#N&2(>omJl)VI7_0;S@#LsAJi}2AOdT)zc>@c{2n-1cZ@>KR{WOSvJuw)}{sHf$I^3+jYeN@Q4=^{o&$p zHr_WtkH&LUt6>X$Yzw7h7vWk9(h=n@wMmT1;8Rio1(FD70NVh1a6SNXoAhJG9Drv< zd}0GTW7zpQAuvT%K(o}6Kt4zeX6owEk=W^mtky+aMKX|KSYycii9v+>g1QIk8o48* zcXs!YfHVn}U0Z(9G=Z_XQSi%~K8vl-f&*=F8wKa$dmY94PB)lw*c=bfgDV56_G}Y> zvn_CRS*6s&UXOK6DZx~o`6Nz+v5t0(2nD)wJ!sC5MR|j>WXE{WD`XeP4dNCRv3;@q zryi8iuTr1waF7xMS%r}n4LX@pwSkWjkCRZO9GJv_lCei(>zWXe=kqKrj=p{sM|qkW zEq&WifBCx{`uHGDa};M9M=ec>*#i{XDnvIKt_(UXczoZ(6}+_;wiBWZWjr=IWnCMk zfL`8^?KxWO70qgJmc53y0)7^74hqhJT>}74xhbRHaKg+Hk!y>4on2!HBt?cv>Opx2 zK!82CFq>i^mH38UGo#h3yG^07Sh{Q1_tmbgMGm`azP2;W89-?PW4Cdj&KYT*fb}B4 zMKg$U&o__;t@1o64Uzl(0PwwwjV08zS<6}zoxo+tuHV_<%6>nj4%q^?-|-1rfp=I=p`EP_OdP3YH;P!N$>GUHe85J_PgcZp7@lbsPfPTs;Al0bT$AAOJ~3K~&mvJN5}_ zu!V&!qWc6}y|d0?nzFJ^E9mhN)mT>?gpzGoBFmC4dHg<`=jH=bd+wG*(S)OQHn0*8 z1K&WyACi#haf;K}Q#*ctAN1dY{XphDoHOFr#*p>hSdFFGNd)QsHvpbdcZ_4;Ss7%` z@-)_(UE07b>p;7|sQz2Ww$d!RDAV2ep_YKhFh?H*|<7Btj;_C(;xzVRu-MAWn z)h8rbj0NyAthcg*iAmKD%}E)kRO6%vZfpt!)IjmQ@=^1O$S&a9R)$y|Gs79s5y0vygrASRCAe-%V@%ATPm#GU60U(FI_*t`R(wfGC!2peOalz|HJps0cd2GZ7&m=$W%C7d&Bjouc7 zu7KN4kJ*9gERfLCXv*M+GiaT`RkPvi0{;3HxLgG!*nFR)Hd9)y$!qmuQTS#2MyU(! zt}Q%gi>#Y!d!nwj+&zw{#(UV)JgQ9F7&7U6T|DdB1-NDrBXwtPE1145vZh*=*XI44 zy*`ev8s!g;mpf2ETY|Ml*jq=bvTdCPh6(kWB|PjwUJAwWef?7lP%UUxA+~K!mC}Yu z>5;DC5Lp~(Hb}m~m_tVTBLgX+&cf_SuX-;_0lh7ljA;=11#?yfcYDoxoJZPqd|oxd z+Iu2Wfz2kit&e-(vgtb*UUMF@>GHzwc}k7`PCz|n)Ke54B?le=JVRKgp_~xGUW~Y* z!72Y<4to#aK`Ph%N$9hK06as8a4(aXgX=UTLQRB}R0IyXm#!7r))WP4Y%L6#8#5=Y zJG(4kWIT@L900aJNx#u{Ow5-wQgDxftI;>=_J{*?dc@+))Vc}9*G-`JG^=2o+~f2r zEEQ)q*ym1j(+avQ4#@ra#sIF3m_z|UYtc-4@_;d5{#NkClqpzeav#eQBDP0(NtNv( z-y002hogaUMlc+-WMX7BYH3JJa#A9swIxfaGO{NsxCQMpM5AltZeJqn4x&lb?wQ03 zJ{qG99AV0TV!VHV9vov%7@Vur-nS@|P3oQT#4I1RMbxt8S~uiCeo)v2&`o#;Bc2uC zN2KI4_I@}nI8EL^b6f|;Xf6>DgyUcWCjNf=TVsufU3WQ41Usz-WJo24`^OB%*3(Ji zf}w#7K2M;Mn=@5NfCn?Mw02O4y-kmzx$;oMADkNauDT%PL;Ie<7+S2Hr!8ss6jN*oCKaawBMuGP- z8EDWZ!$pAN=TicoX9;xb`a{d=6m34uJ?(qWqSvt1Hm9HtjqhjJRU(WfA$2AP8Kiqa z&28_n3Vb|{5@@E* z=VE5L@26Qht(>%6Eobn{tCaFg(t91&N)ix}%m*psi8f*Tx%gAT9>+`6C0>9?Q*CF` zeIsiB40Z$@_+Qk{+wDtsNw%jb&=&Rysmo#)Lw@eG@y_PVw~L9Anpl!0b`P@X9+_^C zbxmQj&8^D!-3q9fKV-g>u}O}CQWoI7*Y>nSuyJ>fVlc}v#1O2C$MpeWZM$|piP$nW z0qdmzuWz!aoKJ9}L_j)Aolla9x9oWc#71V}?i#~;4$iaqYKDQNl+cbF_YDgER{-aB zZ1~Ds%q-Vs7?@XbfSf1_#6|Y61%OTagg5_cw`~Oc0wTd@nxvyLUdukvXo8bo()^v) zpnukQ-vHew*B(TC_jjNNat6*1zzBdqdx6(FRi(P8(!gb#sN4WYSoAw;)v#HN^&Xb# z8!3pR(x<;>=YTBaR&UZ2-J2E3B!|}wlZtxrM3PM`+>W!)WddOW^Xm7@oleclQjsit z2e{7?8E11^uM4~{q1CPH{h^`mjGb;7=!teOjn*=bKRCkmFFE3U93raTfA;9!IT+FR zrU2dzTo7qyO-dZBk8?dus1H)_l(yPw9awuA3sQ~q+Qbu&SS2Gk_iKn7$^b6xHMg7E zT6RcQT@MKqLq>#h{Jgmp)hww&u8F&`74l; zw2Aum(u9~c5uY*994*K-|@H z2PX;$dr!Ov0U&rb-S!o8F4b{jT>_-7rvV;<*Z0=g$GO?8*jsRTYFj^Ot)QtY>r0QB zGPa){00Q#s3cRV>@hW|YJ0)rjkPx7Otnj={g}DxY^wBV?@12jEz}$gA>cKfzi34VU zXj1JAodfIU!4EFg+ob}KAmryy;GdqsIV1h{O_)T0*u=7eE{oVG(5Tu5E-hOY6DfA7 z1R%AfiL)W+w97I^-wBK^iDFZE*Wm!+GYPWpRyd0i5cWyZV`%suRsq{x_mE_I4(#^e z->r!g07y$gzG_xmTmL%f=>EQ>ewEta5d$KQv2-ww(I38tF@khp?<+-c9!G4877`y+ z3RuOGCBavkI4_Z8${)|-Q@>st`;=8X#q^jWAdlJely)lcrkxc9t<5K^(|%9rZUHNq z!th8M?Cb!XYwohcC+wH1Ks_c({1)p6HQCcB?%}uy{4KBm2@rc*+%XAb_X&_%dnDcW zZwDb;Voz_*C@dP=MgKwLeFOA3V&v#Y7MA!xID|_I(Y%;(z2NrRkIDvGvo?_TmMbF z&mm(z$?@WlNnH)SUi!^I)xJ3e@scXw&JDmEW6u`ypzhv8-x$Gh-UVX9X7d5m`*Ewb z%r^0%hb&bVXDnvK4cx3itoLV-I!E#^0$!z!9sBYCGP>;fcv%#V8Q$+~1prUsb?D+A z!H0r$OLcU0?GT&D*9IUs6G#_-`x|!mAl^T~`-sw%wcn=HU-I<|{PJ5X?|?X}rh-o? z2{^x8d$3>;_aVC*vsYXhsGHZU$KjcG6S}D^qE7cX?4DTwh_%*l+$UITaP67enq=8@ ze{YzO+Xi~=YXqs(CNQW$EF0;vxvD$sdg=t&4s6g?!*ZF9lfIy zw!JRk8_6{rA*)h5>yl3euGSs_4C>IwSwW1Kj3jC*?+Ku_Ab;yK*gR*kX>FxNrATQ& z$S9$de%}W4xr7W>XrHz#Wf&c>NcFvQc8QN}pRh=#0CEQ)y0)<0du9;j?i{?VKvD3m z_nS+RlAn_<*wLqYc?DiCVAbL9eaV8v!R})FJ_qjrz_MmDtA2xtjhYLib?PFp7(NzD z4hh4sc-OJb?JeTS#qdUgk}OW1Zpzb!2o1Kj19lK09waw6nQk;jxN;a> z1(@1|mHJzy99N56p=C3yKdojpJAtFP=mSDOB!c(<1zP(q+k9D+j|mW}j?#NMC(XFu z=pPMzo+0z!0E}%W$JC-fBhvLRHLRDcjiW_8zNbBhJ<=K(4)x%33E>ewLccW$}5+>k9hqo7nBktF$9}enOgO@U}^v^O)sb zSFx?6!b^Z;sC=HQ)9ebq`Ydz$$P(HZfO-em!Y1s2k(8SP{-!P1t_w&-eY$6)8FM~Q zLS28ofL<<`jH0^@&y%P*WtxTKAq!$b9{{2qV*3X$I6=+nk_-bpXjOA?qDE6TY@r~b z1{yFCKr8~Ioj9nnvIHpfuLBUxhG2vKw`RQuDS^)kw3bfUUO>BMTHh8a4>-;KY`WG^ z9yBgM)j)1)EskPKPL9u39b<1_H2i$;gA#TA)CkHc&nm8$<(@4Ic-=tj+AykSxrs01KM4`QdQw8-m%_CR0O7PFKLEq&ug1qa&Po`nqs zG*A*L=eH6hk=aF6GUQ$c6&Ng?PD$7Y{o3?+r`{&$7qbfsr^21kAu*7yMaxEth!Rig zw{BH^t>GaW(D(!t! z@#DnkDr958CE7#xtZ(cCX3LgE{{zPza#TLX$M_f@<70e`kMS`+#>e;=ALCot921~9eg6cD0Q z6rxn|cRMzo2k0YKMlJEbU%pKG|EfSqc(2Y92_mkNc+-LrQ{Lq)nGhsxDF?|GnmArp zV{TcWNtKB!kgjWAM-w81m?w!KrX(t?*HtqiAv0pn#ArPlk?a@}+Cr|QCc0oyy*)SX zVH{9*yX>LWrQ7`-?7;=#n0tzq+0mR)Pg&~w3L!0;U05WWWf4t4bPhzcMs4;|Wxt7Vve*qD&L`G^0M9r4R91 zkv7Tt($}{}N!0$$^)#V8&p;-mw@pOVGWHpM>}|s7Fj>+rkEDd%ZHvIIs~IENqm>OuV=8BdxRoTa&D{ za7Q;!jafC`_nd@jdOk^c+a_xeZKe6h!5`!EjQVhrue+`yq#1oXV@4`Y0RT3A4pza@ z9BS3cl-iRsN{ro+HV!tk_qWEfLK`L!+R6&q=l7xiWuLF&*ZW=)SSI!*Jj>5{si2}C zEVXB>WNPe7Wp$B?9s2&R_rfndJQo+GGYyy;-XBY({)F+q0lJMJbU51rT4fT9H1~06 zjRI{_!vP=&R8i}BZik23^hOJ`_j+*d&Q)--5RO4Ot``FuK9|MFq*i|XK0+cEs^Z!L z3#1gVa!x|uO@w?cUh700YP8JoHE`dyKlj4PD3 zb^?~QX)vgm59h3)?F<+|Kg~$zv%J3vnC8nBbX~-0x?Y9qZhuS0TtViCiz>L2z*LS+zNoz&>C=}Z9-C7JCfWxwxA%h2#PKwL92BG*0nF|h`?>z zM4-&pg0(adXn)dJOBikB9zlr)HDde4-MV3AIi-O&9)o<8x_c?X*dpa1IRh67Mlt|8 zpQJ=5XVK?~0hxzMooqeVwuyaNyD8HvFkKYW&tdjb4Pu~@fRJ(~PneA2pk>xl5CtB) zd{@J6@gmO}w$bs6fdy3K8 zM}RJWJ6f3`Yn$h)AUa?cs>A24#6!)E6twRWHWMM6?t~^vtt5n@WsTK*y@PqKly|P` ziq+BbFOTH$B0%Ow#df%B$ecs^V~SU*Ji75fdUH7)UwO*8AlMU zK%-97YCIGy_`+CN=-C=Utc zApu_r`E7*>gQiOn@NQrO4WND z*PRXP6alVsZwA2TtQ)T2mAiFC1p8VxF`m-~zr6_v58#E)Cuym6n&tbyNzjtE0=lSw zuoch3^H0wxpU%SY`0~~T>uIabLb8lmP0H9(Jq2fi0iAH-Avm{v#r!jZ`a$Nbq4VFR z!vULXq@ud*vz?-~eNPq;WWuB|gDFXn80b);yNy9rSUx+ExLcqhCN_-as4Wb4eis0u zNrPisD?h)-7KG6Tew1l;i;){&w{sbzG#q2CI5CMf2VzZn+#|Fey*^B+=Lulwx?0=$ zJc!f)y>y+*s@|?aBu(f!({VE2stH-|vgZRHxiwncRPLqyIO-A+L4sE5)1@FN>;l+k z!{Odm-D0@{saDqo6D;(Det!sDc!!XYd2N_-w3$C}ynld>ep5Ki{)KUq<{pnZGO*z@ zzJP})=x*ZMf;>|v*0Td62F&$%S4p(v#>tKL-GpX1R5enZSbWJ9AxjfJ2fY>r)JA&| zQUM`dw;;4&bWQ~bSwL7h$VEZ0UHFW%n|osRy(=;tI^pgKIkI^cT%a6W$xy;us6!A z6x^}@WC&tOfC-w_ZtuGiZnTYXsRqJAiQcyts+bEuU1Zs3PAVSSn~1IVwNM`}|s z4sXj$@RU#*5A3dY@oMOt3gS;)_!e^Al}xo6k4&x zc7*mkt#`L(u!^pzGC;owt30HCu9UJ?Xm2 zIvE0x%?%8r+T9MgNEe z0+j6JU?UUCNluy>OqE`Uqu!@F!>|Y*7rJsO-QeE^$7|(y1RjM7fmeT^M~h6ZGH03 zg#BJAzivBk7o<)4qH`4`cmDi@^>5E8=ZyTiwb*eG7vz+Da@IMcJZ1@4RUj<_dU@)D zSb*$174n|h(XNcp1Ge^M!Dd1rN?2k#g%1pV$0)OMkgW+WS^zkVOKq3v;M1cAOXzV?X0Mg027U}5L8KC*a=EKH&ordG=Ukc^6Vg0k# zXx46+3Io@*buGvl{4inrd_p-TEr-}Z=&#XzvqS>SPuW4QiCY`1_{9i#&S`fR#w zJqJKL25S92*||%&mq5?#q8`5ht#zTZAAufY`HAB1cA@~VjpC1HtGl*@wLK4v@5L|E zL{?0g{88h51N4LJDS-Y#ML<48nH)rZ2dp2B)`qQrT^xAoY5-+HMmLco6}#3P ztx@WJQvrHgioaJ`@d*HjId976J}M+DM{+$3NWjY4d&lSBflmM=wo_*fKn448a2{z_ z11-xODk}CfN&C?i$O|Jc^1(>!BxbRRB6Q<=Cag)Qm(#NK*J<_VTS2~TVne3{emn`) zy;jNOEvouz-Ve-y|x_x$PMb0K@7FDHXv`_WKx!xyNBD z(K_N9;rmG`?RBD-eXR^fqp;^Apq)|Gd3M@^%>T7W5FpGO>vUn72I5Es$9)rfbgh#R zD62DJJByRm+Ls9^_NSvjh#hc zq@|)xS(q|&a5|Mu754%vEP4sCepAOSs5)39!h@PHZ>U z00LZxMSMN+zXeidZ}`~`h^+@m=~dBCOw`0guHE=$bh}h58iY?lRjVvvqhyiTe+n|mp;6u!yLP!kPMi4K> z?9^<8noZc8P7R#bEZ0$O4yE>4`5t(N(CvaCS(C^?)W~fU4-(CW=~A%f3FVZK9x|qH zBpv={q0uH5ffsN^`t21nvqr1sev;04jzV&P*DM?5ll3(Kk_}G=218HhbrXP*S|4IL zrZzC*LP0Gv?;zyfg%i1DzN3hq4+91v^9SgLZ1i8N!?pW3O-(3h%+$`4i2gAHi%_r~ zY@-T&*Y+Nz=cYw~#q_c@y%e=$ue*hS0qGSkHRIk2O7{d|oRA*d=!?-Iiqv*in;><_ z0Dv|*I9WV22_Q*Z10*$g7cNp%D~QDzoWE(!`ILGPPFpQhUhG$W*;}~f`UzWW}HawVQ48ub7+k= zwn9D4BEm=nEUN?OEkkMq;BQvnwdxwx?J;q$x4;35-xUQ$f%bgtyy5xZb#g<; zE@KY#ev|zU>{*C5|7$M5r&GKl((2F#vW;+b4{4uBeS z$d22y3K7Y}{@jHQYii@Ba<>~ytVue|h*wzO?5NI;lst&FtIL7TU#mOUs4i#ipKi`d z__+ap)cu3;&)P!%sH)Mk3uc9?*sTj zY+~Lja;dU$EEV(1hV8L^iBQ?K5B4NA>a=d4Wkvp_AU&K~0LmQM%&n&|0Nx4+i>Mn< z8I&J9sx23!fO|n7%~hv>a_V~o7p+@c7OzilLR!H=#{Jp^2QX*9ci@cGCWy4Q-vE2= zo(uEV$WKK290G7rfQd;#r783pW!r`cQB?qikuC+ND(ocMs;_zFq+nzg@L_`rBP$8O z{r}Xmf+L-m%|W8JPnct5O7EixX+6n7bb$w#Qx*0}2hIte{Ra}#Dr*OA1@l_Kb3R;8 zC|bS4I`ou!5lW!H zM^UXh=T`Dz??pCToZC5r=D7zWDgYSQD_)gV6oZC2cUkfDwqh;}dRs)lL4ASxB+AzH zVMe+%3NUSq>8%KZYZ8B<&I#LtD7nXkNm}*&+!!X&E}|}q`(;`8l4PHU`%VrBd~s;W z4S*%94zwUwLZ^Gu4YLtDo%x~zkQ1Az4P4u20~oP&1gr}En|7=)vBjf|y8nA`DfAy0 z5tJLgh}Z&X&)^_SZl7%m>+0LO9ig)wPDz6NwoX@*q?0|U0$9gT%U+Y1>1hC>~NcS{w z^9L;$=2{Qx4+@h-ZKKG6N2rj)bE3pRl@NgMPv0BNf4Kkj?g9Eu%E{5-umB~Q6kKT! z(pi+x!KMjq_hJ8)Q97vsEF6!T4p^4KP_7rF%V0XHcbFu zrJj*0kS)Mk80ADL&j~dHr>_9E3Z9fMdC`oWw)3b4&?hybRVh&1?t>_It8pX-hZ{;U z(>*R?H7ra=(JDX3umRby%+&!!^cMjR&Y=&?<#_uJc(Op7ws#%>%$r%&KdfV?L!)c=H1AqIJHTy(c!Y zK8a}3!{2pNBSL=Lke0~SXc?T633QzWI1ouj&{W)qj1%PqcJ3JqNM{y+XZPDS2~%k= zwHL9X_W8&{@t>_;E@pYh5d#7DGJcdjpaDQ$x0XTAEj#D{##s%kI=%*G6o@1OY;G;9 zJf8qOs7i~YxOe5Z6}$w8j#(H@2GA$Mw6fX*J7cQMq*@UWAo9?HU~=x388J4B2xO@? z$wsOwt^0;``>AqVd5}Hs^sUi(^QyrCM#z+?^EX5Gl2yUS7TQLYFmH{D>(7X#*!xNp?5*>$q8yx!kHP+IcP#$D|F?DkRt*y(3b)4cUVf~!3K8nAeuWA#Suvsb8$*Atw1$*USbb%$) zc_7cNfCmeRjYS|A?sEpI{U39-srbZ8&jo ztD%#{Owt#W(jKH&NCc)p7UMe1QKJ(A#{hi*%sU1}!hX_6dsbj!U_)pp3<|ZrbzZwt5AAV)bZ)y`yguEn7Z=2K!B8yV0&S6@`5d>soygj=yS5n#?d?n#8Dm<**)+mps%Bnbs6{@njLpCEMtDuQp(?pb;&>r zw5Zr#)U}{>Q$P}IE9KU!9+0&umLvdeO|!nXIRRT$psi}66 zIRW*om(j}Wu|5d^8O3eLHm{^kn0B#BIvuB1IZrvudCS_)E8xTeZL%iktG!3fw&T1U z_JG5T1#?qlkLvBEbav5!2h$y?wYB!t``aD&9U(YrGxh@koOd>SEy&c@mfNuPV(2^1 zQ2>s}+YwMf z#`cu3KFYDvrOk!qGq621F#D@lhJAlrOISKTBV#^i= ze}-`bP@o6p%uVMfwpcr|B|E?W9Bk@$fC*8{?%vb*E-(jrjKKi}rvCWRzwu+uX9q-x zk%RwbRQ33M2F%SrvZXcbPi0P_R21zv1+jH*2^hBt>bnRmPlWA>ylgO1*(G_xU74-T z^Rx*N;>6&Yq)dt7SSwQ3k8n_jt&XtLjbS*)+7BAL)_xxuyxkaD5B^a091tJw$1d-O z$GZmTJ7cnz8~s5?A8bF5nceYq0DZl;EUr<#`eqjWfbu@pr9**BN2f|*<8Xtp2$)Qy zn)S2_W?Y4F(@e;sG%S|$m$Q7q`kZk7QZc_)Y!68Ue6(J1J0+w|1tknuXtd6SO{&zJ zTTP79O&AT3SfIfE<_y4k5E8+A650Vq^^CVap^pZC@BRkx@@GZ5{^iC1%(`LpT?6UB z(03j>p$=?9PN2^bx+qE-L8wrq%#`rmHb)SGKJK6hpd^OZfE%@m0hofP0}KV}F-uq_ zp@MRT5T8xm1&fM$IrJp58|{wi5WQ#l0#+mrMgoxWZ@7%}~J(eG91-gy#A zZRM85&SndII47wTjBRyHw$!=v#>0pO5w3!B!U=GKSth%Cd>} zx&;hN5&yyz@$Fn3l-(&gIA?Ak#k1=XplAt+mxhq6jf^BJx&=aKWgx%FL{6KahpL$` z3s6N`dRn2*39voOcUch1!L@C5L=BV}M$obmK!ExDjWNAJ+wb6*iUum&_mUR1JlnoRNQ;1u$kYOWnhCjbQ^aR>>v{Cn}GMT;SAjJ!yx#qwEg;tbhu7WM0G2?hj3 z5`lH2==89NK^rxEqSyrl*HHC#X=pzEp#b4Oht>q;b8!A~YLh3~t&5*QSiYIk+G#W@%r*qXB6Y(QGJLMa< zQr}yvgC7Oy!@V0p&CwWXbN4oC73P9(3O_>ctqoj`0W9cqwoRpqXCWN{B;XS7xiL@d z;{-yr%x;(22aMiF1zx8Y0fBsZI3D8oBn8>!1dkpkZ8asdUUrAb0J~k{^akYDW=nMv zn|S=CG&Tv5h_F0llygG9WS|1|dGeaB^wRhEWony%2bZXJv|b-MYru;4pu&P52!cMT zbv)=Y8&={G9o|T<*Y+Uoaeha$<2?^;brFCj2J#lPge*29*R9 zMn!me9tKAAGbw>*71y#lQfsYOl4J$#l1>Tbl+pUil2iSdq*F&)8FiL`liS1wr{*@r zYW5fqm|UMBU)%n}N^cjC-U4S)h1y;#=ZvJ2Grw6oLIoXTzvj3$kC}@Ru>T%t9?F~K z^wd8`|2MW)(dU!s1Dp?xv+nmFVJ6!CV)ro7o-tytkLQ&a`hVvMeAXz@x^;jBDS@tQ z)AX4V>eHn4xMCwNww8eTrDA>&|K{@7ETV9bY&ul|>f0k+Fiynbl$pq~pQNqrMRk(b z^A+B%v%8mZSGGsIo>d{k-oj5*-?0i3B533W{ZggK|rt7Zb9k|z@DNqw21dyrN+$NDVY3;-?H zD6)TSPm;W--u;6Q>(J%<03zuYeG>7Z(>GS|E;YqwP*v+1%c;?vrfWqGG%-)|X~xvA zUxNvqBUa(mcaGPpAl))Z?zkE?%s`!GUcJ^9Eh{sQBk*#sBRWfCP~#}b5i=U2Lv25g z!H@WUg@g4&JBbuW0!;ivTGq5|U)8>~v1G%j?iP`)Gf*DX*1|&1x|v8D68R3H;~Z6#?Kww0|1(4p`bH2Iy zECD^Jhyjq8Q4Ia-T~$10R^;UJZ&dm9?4Sl}RO5k>#D=ztRI3XTuAe4wB22GEbR0JA z#9@xp3M`)p>t_*(vw4@Q+KDMvD=2rRUdZcpmfy41^op1$03w`zW6ZAtGE$L@Ijc}A zSoWCpS?zcY!d}Mn(M|i z$r(UtiI;mFHdhZbtU6+*+`x5Q_uXy?yAC)plOBP2ED^HfbI7=>57V;ia$HrPLE7ub66KjW%czX{f zocBdP7)Ir%;e$h!?ZHVkAQIKx{lf=)Rowso;PJiz`j136Mj-LeWRJ}MwR7AOTspd> zu=owSm8F$V3x83m-ZIUZAXPs+Tz^O=hCh!y`wF8!CIRq=QS~8c!a4QzBIENP z!FfE_y^P=cdksX`u{AXzk_hlB8co}dJ+h_LKKFgmMTQG|Fg%*dRW}1-j~G{TY_wKA z6^+N}h9Q9`pqv?LYxFMGe(5GsUmh9tTxAho3DXPV{CC3iX7yAGw7*uoof6ic2rrcJ z(^cmA_B>(wwj#f^g;@lK^zZ#VBfYL(2iYu9G5LWAELE%^7Gw|g9R-;BpPOi-@e0k{U<A5YVqr zAvi$R|2u2uqX0kwr|jZC<(#~~GZBDGL7fxolsve#{3IfAX=z}joYi5`_GsHDMtQ8@ zNm?D|*M#XCA+6|2N%95YXQ^Qai_IADm|iMK>&jCRW2?HqY)={U7XnoSN?~3q(}O&i z5g!7#0EkkVX;Vgm0dfNu!!z*bV@l&WX}}AfB_A{8Tp2EQW^?48#<1UdKlHK2){c#g ztfLXjHw+ZosZ^QY_YfBoP15neEJ@FW@wGV^6iD9yxxn64r7epM#e8 zlNxgI(dz_U|C&(F!1TuM^OspzS9uZU?D7+^eh&UqX~~9|fFsplsI$ytDrC7ApW|Ip z(Q(fJdVbF}vG;cY6YSWxx4?M^^gE`*Kj0Vr!Fb}%EbL=^jF0g#KE}uR7$4(fe2kCr zF+Rq}_@8sU?+iN7A{w#x^U*O!Sy>mYl6Gp{=b0PL$7^pPt#bW%J74^qp4p~KxFl3#+XWxY&s9?VO5bedyFe1Un|lo zSwbT1WqT&fuN5^Xq3p6~ELdiw&QhO#{Wr$)w++*$73aAirRp|u`F6tTzfL&+(sT~e z#+Y6S^(W23XR)>AS^oBi|94gUtC(JE$9fTawiCdA&yN3WR87VTy zOHrG+U9#lDd|K+^s^mF?vV2d}!va_EHn6eoZP?mSOgmx7FzGQplf*tt{az9n2ppa- z#Y|+J-@h^>s%6`-JHwG75w`Tr$9+{gjjhGV)v7x6;bK zN4EV;vy2S2?dH?CuT_Je6ZIRo?Zd9#Zo;I|p2iHkK3{(>@=)~Jhi)Khe@zqR4*jTz zCyw?>FYWk&^&-se#x67;3;XPOm(_*S+D$~75}^{j8xHj6C<^DDZj=SfNwVs7Qugdw zbQb_A^Yib>0BykAzazZ;hl={shI}rVQWfFSN?0!w=-Y&}PyjH^Z;N&6Yyxq{8Zn$> zm&t)mX*Lo5vttgE+ipiTPtp9>sLpP7%q9iBZqVz0^ep2zJiz<@oYsd*}8+-so#S4r&pWNy?8)iI$yR-~V= zczj$?O2Xy!1ioe6k0OU-VUN#MqCGbR8pAzZ>oW80}Y{0aL`nq*C$XCY8e+1V5bj9=MtJuV4MqLx~ zsp9;w;Ph`BUQcIGJ>%*B((h(q{>rFxYez^$_K$@UPQMcJrAR>F+v@vLTBQ|XCk$r_ z>SJIkD7I5dz?8tt3cg&#Mz&4n`Dq4G!mhV@6`SzD39GKawh4tjXVB>+>*2Dr8uVBu za*x2=h6Q791U_hikr?ouT_pg+yokG$w9#;Y<)9dYMzAJ9>3SFB|HzFGkDTA ztp-8@AP~W;>a^f`&ba=R!5Nrd$aPGnSH|gE^)ifnW&HY|6JGzf1*gvon1Sswg9{;@ z3mzU9oF7)ap3d0*?+2W|w8R5#XuygEc$c$8Z>P5=2A3D^f?XZGJ@iBG5)57f)}Do} z3D!-=!MX0$OtoqAv`^_5>of8ISJ*26aO`F=g7|wKF`#_}(zX1FQxi}I)Gvy`r~u+4 zz1`K?fo3NowcXzDd}sn&vLb+S5jG4!-%gzcoY$;Eh(>YOz*1TPu8y=p-Cf?2`)L+g>Z$Xcu+Qo$LPwo~vj-cAmLIm!+-sAzK+qHEG z&F=NK&oDJDEikuETXtT1HXigEo*%4C@xTT?YS90QaqGtY5BA=!S(5C!4qN-2%&fZi zcF%A)_#i2TN&7EO^1QxrgO z_#prT%%J<;TUD8P&i2FpIQwMP?U^xW7*toEi0)gJm6?^5c|P{qd+oI&m;lWIgmyFot50-6>GfGPk6D>=e0;2`SPI{Ad#%IcLP zvM7sy^R)ILopm7gWh4wpqYWUte+l4KL8P(*Izf~~0BmrCK^C9shWYS$mPPoFp>-bc zi(cTQf=jZfGEEMm0F+6=6-}Kt!A0S` zzv(zgtJ->6mzg7&pMdhyE1o|)Vx9-Ae|Cqw5cqk;{`(W^$XLH|!2YL>cziEm|AE|_ z-Ahrm-o0R)-i8};lCwo9lU6kVNi_pAme`EO)Y8LK(kcd3YFeX!YHCImAdw-x|1>Y{ z-i`x!l$t+87eFK+hH_2-Wf=`-G;f}**RPM!^lNQrD&7~?fTRu%by`u*(y?+D)puhn zq>z-VhA-s-wA;zJIG%vh30M_0?k4a!fDQ~^gznMRmNti_8F7m~D`lHlUrRG7@CD+; zoQg&3Byv8z5D_=~eajtT{_=unZ^@Y8@7`fpf%&Hk@}Ezbr#*)+z^*k1meT&0MCr*-SD|n`Vx&tn$p5 zUbM1n0C0RK;qko{`?pV6<^kisyFq5)^u>bw{Sn9g4%2%NxP5lQ{W}?aFW#=S$ofMC zE~;qn9fTCIf06|xpxa8U(X6*xBj_ATk;2Ln>Thcfl-e8}MDFB!k^$m#imk`Nxnld% zCVBTw>usNnK%wW4C;N-`{4SJW>qOz~crD@D1OR0}&Jx`4^2LA$?xGl+II84Oi=Mk` zI^d<5O=G7HXaaGA+BR&l^;Wh303ZNKL_t)})^@#R2ONIBVEm~g)_K70-|sQ%m`ES) zak!nZ|CtBe-kxy3B;aJVZRLDPHBJD-H0bb-TwITDVg&u7IHCh^1P~6H$6c=h{k>E? z^-6@7Qd@VoE#keufxzGE574(Nt{1>JmFgZZ-hge{fx7n+8J5XQN=aQqHXuFFqd6|z%o53B4(jg# zNTjxa(2(0CSE>kH)vC^^HueLNQFVV7@_Jj79Qrw`Ux_BwVlQ zK~#P7Nrbc39bw9Z;iysX1k_O`^#pwlb3~;u$P+jxBo>uz3`u-ZHql#OPDvu+9kZu; z-=(#PK^vom20)6cwr|CnD$6s~v;|inPXj!S!D!ak7Ew3$0U%D1VZ1!I%nO)j0eE)r z^}cZtAVMlY1}G3r34GKj@O}?hbGP%yxo9i?1jv3{?>^v>^hk4T>jaSIis4w1R%jGa zM1OWK3+87D`6TC=-zJRDWK8gP?y!F4g#YSW{}2Ao{)hPY$1mc4{QYl(zVi(H%P%lI zUogKd0R85N()V{isUk*~3Hem9dr`reke1rS-eR=Ex@7}InC>Pm(u#hwYAL}NyElebZ3UqsY~m>RGadB zaE$nQb&aOAfJbUZZ)Cn@LMKRO+XkH*Ss4|H{Q24II?4Mw5U3=#Ly$D8UH~3s9;a0t zzw=!}R_E8@i-i2PEE?m#yTS3j8UN+Ce-FR7{}KN5_%8nGzx{PAe|CrbwU-$078EV} zHr|WPGn|_3o)%zyWEa_Wa9+Zg;0Df37>%96kK_^4(;^^=m5OL zn$fJzC==Q_BH|3dB1-=Qa8H#-lGo}q6abCF>v^^fSj5NZC8Tt_D=Tg>rv>ClqvZ_wotfyZvL-ZxjBH|KZnhTr!4f#d;?L zDj#G*NQ*?op}8lm#xj%!9h?LJsFH&wnVj^G=B3O3+{%@NJTU;Eq+raV;+~VG5mm}U zm)83$-bDK@1$#ytH5JpXgT*OuY9w5<@s+b0u%j5s7Qs+;WnPwkQ3nLb)uNzY@1-3V z=O7>=^dqT3Qd7YeQgo9ne*Qqa4FzrZ2&KVH~^p|boHFU zv(=`_pxaw9dXJ}8#z;RyDZpu#hP}VMr-Xb+NXHdOl4>#D zXXLq}?1bu`ZA@gsq?HHO8^$nH9FHTO{{`Vc`!D_g|MgG*?|5%m@c!+H_17|f_y79) zc=-z>#<5_%lWWK`W4TMnb3s~?)We+;b|0>&yCl^6Dh3hfgtC)4B(0j-vD7vXr{=Kb zlv-YLY^ADWO6TmXl$2%l=R(sYk@kb!e_mG5eg~Q+z5mrgBWbDvuM4;&p}T8IJeo$W zfWY9x5%qAm>M=pn1loyx;0}wTps#A00kBDb5~nT=gY;p4ZW)+H@56+~JmE--=YH+6 za;`ii)G@azNJ&9E6r2nR#Q?fR18bY7lhzzxZbhkD^mR1vR@b5RIU^4R^J&0aKLGyW zKly`hoj84S!2kB&{|1gfD`R5O(rRfIdne8IeGtHYVE=9d=N?5wbFQTl^2@2MgT|h8 za2}m>Oj_lk^-p);8e1VHpy+*Gi>wl$DCImy-ub0XT>JPpk`f10&S;T2O&hT$Af zMCSgKSS#^<47Jx?ty3)<>*3Bb0XCFBxEmGe@ctzs!D*dEs>u zttk>8uh8A~C#`pkVJujejQu0wKmWUbg#Ye~{|nyBC%k{R!}2Q`|N3A4I*#v57{-Fd zbak`@p#&8}fMu0)rvmNQ;dg86svd9y^&SK=(yXyd09YExHUQY^Hy9gt-8?t5P2;g< z=SHV-WK7sn<@WPu%Q$(x0eYk==C%O%!`tRK#ebI;2{&6~tY_fO=M_BMM179~$$R4Cw3Fz=nW0x1sq3e=jgE*WWHeD&r>crTyuv%@n0 z_xRfF2l&_TR&XWc%vdM6#ySFC;z|K{9pO1CHA~deZ?R1(R+5zUhbp*g!WWRmM7?tz z#o5M*-5(M#e>M=j^9N&&8L=+9|Go75f`AMG;-SA%syivo5TjTZF3!e*?glhkFK|9_ zZJZ!%xwEx4;{ahinT|kr%O!n*Ytr2D3Wk#jHfY<`nDh`)cMxJHS zNps&9>YTCOF}}M05x$aVd?`Oe;d^}j<^%kzuQ0eIUW9b;y#pP8#KA0w|N(wA+PTS5YF3wCjA8lTh7>T7F^GXvZ+f z0#?E~fCgyd^8*B&kE6NOBtmkfjw>2Q0VC7YZD$o~lXQUE_EFFdpizB;F-18G*sl#p ziW6m!aaCC&@7uX5FkD2Zz{UldvB0c-Nxv^ROXZ>^a-LQxC&d}S41LJW*@OfTG3uOg z_!8r*Hy?Ck;;T0w;Gch4KBsAI^S!aabZz2E#(@EUpDQZBJIRUHx9uKnf49x^Hm}5a zycFs8LEH_cf?0JMat7Vr$e`0_!s{wyWDxHJ7X^*ZHhBVI{t6ly zptf~Fw=>p{T_>E{9`kQgYH2!XtQC$_dHaqy=W9SjqJ`}*auC_odeC)hU?iy?5bIbm z0j;tl0q`WkSal+-dZs!s#>C(?;qfbsuW!c0*Ka<+zq*q#fzkNu!q{r-1nb-{>@Fs$ znJ)R}0l@1$HHy32MH$XOv31eGxliLPwpG+u@`$0X=biWN(gW`LH_wX^{C1#ac4>WMj8D7%Qf_fGu zubPX_1k?ddyp6D`L2-G0#FiLc)L2z6l8B_j{jZThsR19nAQqpG|& zeXdlR21Cp=YxMPSkL|q%0V6P%WAt+iyy|<`ZwSxEf1ENHoXK@*{fW;e;Ed*U;Lin1 zyxsuaZlvbekZpU)8@{DB0Piu5K$;1q5GXNrKT7!S;}`I~XEy-u@qXFidxv+CRzgz6 zUi&RoK?w~}K@#8r?&+#ZEskDbKqrvsY~bL0AOaCP2={xZ3h!1souPGnljJ2kZ8JWX zrx>`K#p#TGRI5ha(Q>1&v~ek*dC_$LuuyL)w`$aOHG&I3w6+Bs0M->W>w{6|iBXFD zjDgbEyv|Llfh}^*6(v(QDJNpdrG+}9)^?7>aHZVg2rPF38uHAjCwR^0wCI?~6}Nv$ z_|D-Ac>mcBnI7<$Wy1H4?_zi$l&Lq|%T5-+GNI*bC7`IFiix0HER~!HH77{b0~JtA z1V-|FDR(qQ&xI^TNeOL>-6o+YzTg|9VI2uL*bbZU{K zrvO}KrM0UHJ1KBnS5O+gpYyr`kBaIj$+<1?W*iVTnqEh3Y|qfu*a3;8 zSszS%$#>C+ZxcLEL{YDXob7WH4xX`0}I_cOlVaj45S1g!dCesb$ynW-~hao$7_to zQ2j%U;iO`THg9TrM9jGj+BO#FsG|b+EYWg_z)2q#hLu#YX-rAIw5ectIA15ebNB*o z|B~?H7b|KdB#jadM_>g@rJF(ewxmU|(CZg&K%C*n*>;2oI_tfp%Dyf-cn@R3?NSp{ zjO&Fl6k-IhRu4@0n24a?#twzG9O97iJ3B8Ig*30KZN+u1UD_7sa{w-$9PNcrWhzF` z9fU`49wPFsmbs!1-yc3VpE(4S+Fr97;vh5`Zn^nNnsd;Eo zSr~l+3{(Nfa(wtcwU--&54qfAJChq;MsMm2B0Jrp-q|d#V<#UT2=hE(+^tye7{Bv- zzl!wt7{7e?AMoA77x6oP{LA3y70+&F%=6Ib_=AG*0pdJZn}^MEMv`66w%LTBRC@t` zn+byYpW*k^yk2%4<{@8O&PY24^#d=bGaw^ELpB&UQ61iFzs6RIfDw%{b@W=NKr2-` zD)U99ihRt<`d}?7C0{kZNH{JT(|*O_XBfZzd*8zN_bR@A^F#dU@m>7ZAAJ+) z3l%pvGft<$4JcE*t|Q5LRq$lJ(FNB8e~8q`4WW zm^%SE9u-KeMU32d4x_0X{c*^lG!-PWZgkPLr68cL@}AXTdsR8g*S#^LK0bmpUpY3* zFXvJlFb5>sIt((N=2`Yrsx;4w(5-U@-Rwc*C@BOX1q6dAR#UCO76;ba@=a3%$C6GW zW5mV;6>>T`5}{5B^YaY4P1yfv6=&`wRCp>Z;-8RpVp%fw`vnj0F@Ez8zJ=lM7SBQd z%|HA#3_r)%?-$Ic0mDI#E0a|7FctT-0{K)izcru^z;MXOYXvePtrhts*O}%bzsdTm z{hq+G>6}m2f5$8$aZ0guAhFvCCH;658he=6o#mjSa5M~Xtpxxy4o$^?a&o~r zUKeZ)xvOfmHqC`NCd_skr1Aj(*@seNlUNC_oEjb2<`|2l54m5vm8Q-^Qow5cKXoh- zn@8O~qG+e6?PS{&oYz69?8Fk~wzY$5i!=gaOO-WYzh7|tLd8G(!*62ut<`hTfBW}; z4f`(v({9Bw513xcMdi5yOp^X_L&z&IK31$ZNvOqKRht3w<@#GpZC+BCY+g`CSy&ex zm^+Ik`Ph+YyD@9B*gw$95HYf=&&B3^7lMn-lw?eZkSaA7cU)a7!^)dIhlMZLP61QI zNG#CC466kkol+H$lB*%rBedvz^1zvac8i#YG2j&Tgfm;+oKr{=S?3|(3kZXRDmB0k z0EJLW!v1E)%eQv;7ys|CU`z#HyZIshYXAFM7=r(w@V8?nKxzg-6d$N4I?f#z6*`+fWd*`3G6 zXQfIMAQ}u76|n25RfKz-%A35CSOlFDgI4Vgg;8^sC>_s>^*-_H5Qn}U=-GjMu0T8uVd+G#E2A(Ss5bE8CE7w92nu@)M#X>5_Ty7 zl5dm6L_KZ#`~kr0NMGA{0L~l|TzUaMq4`b%#F>HPNh0Ejyi}Jtye#h-07xU)n8rq% zUsXh;`@$yxpg$|U4x9Hj&SUuu?wFLQVZw4F0A{>TB80V1IK3?baaR9%`U!A&Ibwe^ zBYpiI`Mb~XKfnKISrL^EYizh# zd{->D&j?PxjzHX^>at%0=OUCPRQ8%hxD60ilrgxBjhIh_^^J&9Z+mA2u8^ZyFxrwjg~7A_wOqL z(p^-}K{>nW;=vI62Q-024OV(Rb-y>%cDDO!(e$|X0C3^(kfzWJ*)g76yFa6LT>$-( zYGp^a4dC2CTm$buv1(p5F-r+Bd(hf3C_y8^{lv&h+l>{HycC&s9LrtzQVBrFGgqLZ zLOVihXOz9{KRhyY z^)cCiPYtY-Z=+@)+Teox{3of_87Mv$MV^6j1bBv4DrFM;A-^*P(NX`UysE<~k(j&pMu4ub%e)2RV#qr7_>M^8I6#|vx3mTC}By!3oM+V!Sg zY+T!92f$Nkcr*6{m*=OLRuxOJF$*9Cnh~8+FtE{pxSig>c@B!zgW5`#qif(KLn-aj zk6D33O#8?mj(FVdaQp0p^wpO*9wzW9~;P{grZr>lU|4H02{*sAL03e`jt=?bepH1t!+Dw`-l+E{=0H;BV1% zbzq4)e>iV^e%ojJrb)9v-lg^l9Nf0R2*n5x#Bo+y<3-Wb}!OAw~iu6g)7IP+6mBfCjI+XfaxyaQ_-eezxUq zBa*<~gQZ}kGWb#Ikte0i8YP{RP+ut6HBVN`<6J*vXu6m5T9F-Vj9o>zRL0?v~GJk(mTF$O;HTzZ1%- zjv>`P;3;|eva%g5r>~o zptom?`xT@eb(sgOhXMJ+0mDOTf+|(UQ`s|8Y584Jcb)xrR2W#d4ll1s!-%dwL6W1$ zL`dookwsYN7uK9awh9IW6q2+W2N#<~B7%0Cw?f}%Gvc;&&s{XJ=@49P9{MH62Oy5A zn4izJseae0;%_!@)pH6csW_aD3EJ;Ocxx5fD9;Nl)dRp8y*@f<>^+mDJd_(bX59Z0pmC#)c|W2Ov@pN8m(ldv{Q3rPyi#WAjX|thv)JIzO2D`yTu7 zM#*}+4pUL*p$Tq{xm$xg66R6H@ZBB|(cNa37}f6epY(kU2vW0EYz;8s zLO%w*ZExr0954s~5F?!k^+!A0Kg$^RD~73nhl*Mg$|)ng7;yJj2{%9BfLnmF(|{jK zU(btto>qBnw*FQ>f&$Gwip51C?g-rNI7D!6_up(PD^<7+(nj!Y_Eo?S9Uj@XsFm_Y z#r?0*wgam3q_8glUK(l(@a*2_e$aFg+lmgPGmG&H09-hXA6*~{Hv`9WQ^R7R5$IgR zaAuN)zy?|(pgc-GtknIKi%cZO)b2w@J|>*r*-dYs*asgqCRa(k*w*R9@|wC^hTJ=<6Bi(TT6LXX!Q15%dMjNwl_!uVzBo zC5$iiGz9E^d_tZ_nbaREhDXNoTmXbQtw16mxBG~Z=Zw=kd#ra19%TVYC&Dl+zGy95=IWtsBsK+{)PD}3O`gmhZzHQ zKcgXF(QxhK3_b_vfIC|Ba$6qywKWokhOkFcpJxt81iY?Jb*8KoX+U$z%eiBNNI-m4 z4>YxFBB2Na=Mky+*C>-78K&m62?ksp3F~b_K8fManJ}nhinZV7ll1@f7M>%>Nermr zfso!Gu|6Acysh5<^C4k>FFCtq*C>mY&kF+5Nx%pv!f;^ZqtspJfxs+d)j(5A@jzQN ztnZG4q;S~1i2d10K*i5flKV*n%6g6x93){*qgu5ff>NxR}l*pyo7GFku(Xq9TTac1NrA$@;D-3?OZh5(ug!vkUW5y={J3yhCC1~X&1lh?zM zF&rvVshB=mk&i2^*11*w@EA;O;GAM^Y^mU!-Oiy>dp)1XLa_H?4x;FEx3V4`FtPEW zb6Q0M=1*P`T?(rj!zpn-P>@xfO2 zeavLz_BrVg?y7QF`89jQYQv-x0jCjV7zM;LkWLBvmxSF%T2fFMDF9S}QRe%6l5r8M z8N~YLC76>`+PQu{001BWNkl0I0MRw%#~k210X4P8tK%?`1svo}Hm zNQ9<-UKzuwaX!2wGP#J`aAF@&`wxM6kp;=ce@^0&T5n~+8t;KL6Y7{zM;Sz>sz`-; z>J)2qa3=Sx#maAf?KXH|pal(tUz)p~n9pQE51{O?Gw*Mybh7cUal+TEUA#Z9-j`hs zb~`3&+oqG4Q>aW~vsTa=a?;Hqvk_KtxE3T}$nJexFw<=0s~S@Gcp9k;>TR-Wo6$N80cx7g@Zt zln89Cx3X?X>W4(vrx!A|$|Q7mK#en&TwElH91f4!^K#|;Ax4)8kwU;a5-=Pj*VeR2 z(kkqbk~45Dehw3f%SY8bFcC_NW~AiWA@=*vM0@P_GfNF;b2xbpGtP}zbHo}*_cey) zxmsX6DMJP7jPWnMQYvqZ*aB_-h@kG$eX+E_S2=1gIcp1pP=gp;11x|74Es(4=gLlu z(Q^QvVv(#WSkiw=Yd3I0tPUp<@z2PZa-m!R`H?W(Cl|D`hb0JIX)LQSkX$vQL~8jG=vf+41tjPXI)Rnb8JILJ;3F3%#>58%Mu%cQX$ zX6Yjv;2cX6dNjO*XW)2-`!Vr~=y`u5H|vtytDldv>WVokZ`zyoroCxz+MD*Ky=iaS zoA#!?X>Zz__P3|K-Vt{$%1(F*?KS z%D=;hkMfoCPV&*$3d*X^I}RA`CBnYk4WPof`$56sr!&@Dy~K%-l(&OV$(Ue4ibTv^#fSLB}Y4IW1^WMB)}{WJ&p;Rrd27bQWs+ z_#i?*Wz;dl5VhV_B6VCf|MsLpT7^+}gOru36{gfJYlP z1D2(ao&${mq|YJte$y4W_Il6ECg4=y3=?bdwF~}*2y7Sienr?XvKLwCr^uU#B8B-{ z-=9a+)izRH5E1iis_s_%xv8j!C_3Q6i2x)8unKKm>?Vyo>r_cBG+wH3S~~y?kHG$; zg0wKoE@P-GP)V3wTE&EzF}$3SPBM05X;Ifa^5~!RYl@{AJ!;-ps5wiqsU^_mzm}qR5gz}zZmDoJC#SxokQS5%3Y`he8Hx|kHiQ+zbY0d`Y zmKMVOJ|0D{#tmvm3p?ww^a#Yk~Ly{w3EYg%Oy=$bQ+v$Z+Ie9{pf0( z#~W1I`e1l1M$Vm`_2m0L`tIKwZL94Xbct=U-ToQ2>j3D$C#R>_Knjg2&IdvS^FR;M zS<8di`zWLaGv*mqc8TmO?STWsKoYW{;Zms;9 zY+z8Bi7KD*R9iY4&L2EdjoeCe2L2j|+X zRM%Ovg(r$$czLekh4S9+O`gdqytWWQbI)Um zkM4dzKugk8W(sw0?Y@vM7~<3l<=L#{NtdD{MnbqN=pSXqngNO zk=JI7m7O}MRz^NHt%S0N8%JrCvEVdHTQBqy$__pThocx{brh;^J~HwGaUh#fsgCEg zwA|TpH>mK>BDC``A2$)7+J3*^N;QUKuD_KW1e%j+d%JC(({W()hR}e+b1dh_vX!Dr zy~F03TGzKXeg9LQNKO&y)hYDrxMtYv)WG$t0e<@@fLu4TI8194o()S+&CojNI;ZP# zWnvYV6AG_WYnA#=tBjR8h{&P^9L9V0y65F>s2+p-Hev?N)y0G9w0Pexca!*s?~gu* zldXqUE1ztY+C$^6HZ#sB?49#9(W{-YoAl3UBgEHN4bEc=)OA!o*Qa__d(t@@PXAfl z=M49&@d_vx6IZi??lb>~5zd9`%d3J+qK<2J48tXgF}l^r?29v=jtTl#HYfKk(( zBoNqW>dC|o0k06{O70dwwei6~6oZRpt{seTv=q+3c?99{*zNZ1>)1Z$bdT2>pr08} zvM~&(5EcBGfnZYmU3&_o6M0TLhXtYKUNEe@l6)i-GKAX(}Pj)i04sK^hXQ zwrpCYrtNZ@Fg;X^DhyO}Lb)NyO-!6Ct8fSn-~Ud6&mfwiwpiw~1g!M+Rr?RXQ8buVfYINX)2Vflu`4sBYW}r?XdPr>ym{6$Q5vt9x zl~0gd^GSBi$F`;<6H-(oux3J46?aagxw&G@vikHGspZU=i~* z(c5$?NJ|kX@=|~Vl;=WYsbi9gB&)GZ)JYYc*Zv#gm`EaE81u?2i zx)YBULLE^1EmRaK7y!4QoW(Ir+WR#xc5R4zFB*D6WzU_me*CbMoK+)xSlBfWY>C)&MU6q`U=BS!HAEEae&aP z^|NiMFQ_3q47&f=)p|BDP$_-4x!)9&uI>GpyUzhND75dET?ztjLUoT3!+erbfpsSU z#(?&40IEgK-gJ%4wuIgEg>chr7Dn@-(u>$Mi)k6aLTf6 zVYx>+X~gh?^JzDMO+CL>q5g*GBG>ArAZd}(c$5<;4**7`!UuK`v)8hZVBEm^wMNbX z=vtay9WAxeYB>YLg*kuQY)%`pfbo?2ssyjXA_;A--q73q^xWP{6g)Ucbxat&H?6JD zTRApBollE0suEmej-cmYxG+|l*{g(@NERSqeR!-g&NWI{_L{1tly(ootPDD?Ev?cR zBt-6%@-Y#?w6fZ07=Ya*`6>AtfB!}{{-Dwm; z7z-uMENbm1_Rq^s9acIf$ONG|e9v0@>n=cEYN%2ZKdXJjJOmV?_?xplNmJKsCxZ)@ zfO&i-W)4Iw@d{e|=TV;awFl_2UCf=a3D0P^8!8rEidqF)qJwigSNuE}#c zin*3YGs9)B$T~8N&W^(1{U{*)Sj6*`30Nzpm$JB&iMnz&wvb4P4st`xC@;2XZ3iAH z0I^6&1n@E99dl+ql4$>c=BfU;=R(0aGDk&fc#U;cY|kwW1Ow^z9QeXM7r#^o@s)z~ zE*JSi4Pc36>Gqs9wDc+UUqG)t~VKVN*E3Ww5UN@8Pm%OVsToT(d5d#vy6u>?>4kci=i)GLCHGS ze>T8l`vP!)S6QK@DA!K+p#Noh_wl_-2DY=ejTtNZ2(c&#a==5H0&L;p6g=#6C zWBMYg$eL9~`OMY;%L`6(m7H6WFW}t(9usJ;$W|L&DZyN8uhKhYnHz?z4nKVs=FkJW z8pLeTL=s1dTtEip(xT>8!~VKc&7W*%;CwqKVs5R05?d33%6M0iV94M>Rr`ZY#o06# z@Z|FCpTod4b&gc3>_EE)%R^H7LO+JQ&L^~}VH}<{*fc;l9?~Kso zWnB`8E6RSrdXtgo3f$|hP-bL0E}+xw_9E{l@XZ98S8+h;{Q=NB0a@+V-PG1+W^rl* z!7hzVHwEC#T2gWVN(HG6z`*5{s7odGt`wvL=xm=?wwT883ZVTmeT?(U zE-Qlh5Jd1XLI#{0P5|Ik_oO}`uA8|Yy^ZgG&2c+xO>@;MvGs+L1p209#qc0=zn4qP zf>%8EJV7GnP)Dw%gjAOKLRnS5CJ?pKgnk3`vsb2>ZLtD+r`RQygYC1~_Icxns{rUR z-}Xswu#3|uAlM338Q`|}o;SAvH(KV#DRoN2)dN9Xyyr6k*b(ZKgvx$cr2|tFGNB=L zMhXwIe=0>50L}T!2N_XbZf6oBsg7_joO{PIB>F-90M$$M_pyYUd!Atfp51Vh`_PUB z0aYjO+|fqt_)VuK0z>N}R&IGI>SZIoKxF~^zLG_uB8|m8UVMIB_tn?8$asBUSG~vB#0-b?-af*a(wE}Bt&&2Ncki`(6M$nMK zY3)lWwG#p)yc??m+g8udNPxt-|`)=8Rjjes1YVwE_!+YQmY3yL}I+ zSXxMRBJFHLLN!+5D{NmALbQJD!m}KmrQCuKY<5t~Yh@yLPH_MgNbNO4=JBM!!{&V6 z0bE3c(O4yU7Uyq1aRcWo1DcA$0|8badaX#0a$q{nZb$OX4(mI&s8h!9@`U^Xt&f*- z29#-3hxoFB=UM9Q#k``%q@@YHg>uRzKBP%QXYSnhoh5 zm%zH)w?*EtI(vlqN~i>E878h{mCyv{Nax<}TEh4MlnuxthHB@k@iVw>@83ra{2Mq= zE1X>gWsi`GDrWEJHYRE-KdWv>9^ z>#(TZ6w48Y=W|9~kK49_jN89|L+vU6de<&_N4E5Zl;CRAwts5-kpXt?)mznR(sM{o zESiUhRPo)weI}r)n9r0j6h=OXC z4JaoBAObXy9ld1s7Z7@FjH-laqWv>USOettuPHKKQjoNTGhU0+S*#Xxd|p5kf(ZY* zb67sE9e0I`O4mAXW7S2zO#{5F4Wt9$wYG&m2+f$&%h(~z43}Zo<{-x+jMFH9#DG8G z&x6cJC5NQ)Yfj{$WG`wP?oI(3t+YlAN0Wo6DX=N=^fj#%Lh$G5?x6y$OWac8Qs65E> z64xIy0&NXSLKWm20kl^C+#R_}n*}8LkXCV2)uGL+Or*kDfK9-%9tlwQC}Mp43T}+v zZbRInhfP3B&zIpT92PYfV>R|YF)G))LF%l_uhKNYgDiDCM5T-%K#Igzyf!%I% zL@j+Ek2$z?73a!!t@r0gFdnEs$D;F~rGZ>o>%|WP3jsK%KbIoTT4OM5^Uve_v=(8R zRJf*soP%K+KCJU!jFzzmE+W8@Y6W8ZxKg!^iArv_QK2RnN3FK9q?*WKro)3I^LdP_ zcRou6JY2}mcpKIq`Bb83Igyx?oEj)h2f_qj;> zq=ECCf>Tw%IuLAXN7ed=+uYs>y@mOCE9`95lqj{n?fN>@{`p8V+z{+_->&|CPXS!o zm=Fh++Wjhw>&`L=izFWuNXPRAuw2J1DO`pl)Rr-k-FPoKtev!!9-JFCcnWk!w$`O} z;sQ8-Qf&D%YOnVwQyPwW1S#hA0q0a6=0=&b_huwTO3&tj2t~>!unH9Ou=V@1}RQE^~L;Ic8!{J3~qI8fx{W~G*Nl-@AWe40jaV8uyq3sU@mbI<2BQru$>I%&?h zGfZj~P;Site9jG+nAlr1;5OjGBa(m!)36#LL+-#n-R>nawyb*Y3OdY4^B(KnfU+Nu zhAh#tp-)2rk(6(`CoH!DTuRPoMw|;97Dk>WWrUX&>Ei@ZuLiKyW9YUS5Q*!v8EO_S z?-o$eZ1sV&^e~4$xFDd6QNauyW=w zR`8w}tkp;WAkB<4n-fFV$uWz8Wn(30xhK4~HCg{j&$s8diHauy@22EV3LZH`-_IOU zPMe>vn)=>KtO1ykYQ5-ZTfrG)SlJvMgAz}bpE9cHg{Y!wb2y;TiUfWr!}ScjT0x|~ zwhMJz1PcJ>*3S_fS3qY2k?!9|EZb*B=S^i}x5V*~fnq>pVdO(WKK4#*0CLY3>7RAV zl7@9ENRM*^<3k39oj40mvmeLfAZ(H<%n(nn;nbc%On)+4bYlYmxLC=+f4e?kuB#t^ zb&lMv-4j#!V&l*cZCs?-ccmiB*)gB;eo8fuew(vhQv=~!yWH*e%A(XBnS;7d%VQ14 zp$Ggen86Or%{lC4(l|J*bd9ocoaTx&7o@rLz}dc9Y49fgo98N}2}?UCXVvp5&HikW z^}rU1;QUfFd<)#SjA^?K+kS8ReNHJKuQxykI)D}8*)8)X7ss^k~dDrMAOKooocrTA%B9MEV>6`Bka(rE?NjIx&~dbRx82$X@K za;gAeRolMW0@Vg40obm${XJ2GP9rf<)xFy<8gyX+jWl05UvngwV9QxawQkXCgZ;^N zDSEy+e*5|w!TGi^a}$uk`6A8Hh>eT7Ej+PKDpB`dcT~_WsT#bN4lwfV9(=b4ofgoG z2g%2MJYx892I_4)2a!b3AbpxjaicDs3Pu3S?SQ%?)Q*ae0GQEoby>i&j|ZaW4c_42 zSX$8Y#Tgzs7e`bm^>GP57sjCAya8`QwcN53knO&N;qM|W?r`!4hi&s{P;^{y!E}XOG+Y|D`BGK~gz03);()l_8piAFK5YVp5?#!m$pvT4M z8O}p7(hi(Q8Ly>T3X>Vu^;`k`OwVWQ0DlUcd*A~AsTM~jH*yV}d& zJ1*wx>U^EhQaZYlZ^7(~LZ5E?Fq{DxsqPg(-mn5|CMg+TTLdv5M8(~&H8I$nfXtq2 zo=*Z;^8E?)@=?~qaRlGpfX4yp;Q$;p)hnjW*xX^`#Ui&)wV*%KoYS?XbpZNW*K^aH ziN}AMl47q*iy+;CaoheK19{tZJD)qF9I!`_&Sp3F&Ze!9tfcdW&nxTPPn`yoKRSZ+ zbw3Hqi2_KMYkK+?G=?FEpq+e|y~IpQB-La31etr~JO#fwGFzm{aU< z1f?YBvWaZS;eH;W_P{jR zQX^AgXOcwW!_M$CjKYlJSdc{{$LscJ*F+YISM|{IHzp-F z2ku;3q~3tE{cga8A5p7luFQ+1a2OqZ$f&nF0e7d|=BeXR#)LW1_xmQ&S}XYR06rYL zXnEI+J!K$<5@=K>t);H{amCpr!q%+di=L1xYIg5qDca3HdG6;g@&~926h^y_pEoCoi zmB@7({$NjiN^_&NTQHMjN{pqn){6Xa5`18GpgC6uO(XUn1Yll7%SC~@W3xmehPbTf zIq6RYBra|LI6LVxwxg~Kpl=1Swrxv+j=6wO)l7HeEGaNwdJjzObn}X2v@QTfNdy2o zt)LV{Q>>g#ZeAg-%~0g3oxDmXEmM-{p)C*u^`?;y)_uS;7qMray3cv z%rePB9O-Zh_M$Ot+bL(@W)HgAgNH1ojvgMt$D`!Z8O>Dl-sx~cvJz63pQ|)UI!bL= zR|d8TJyIfr*OID$bgBt7z=aYGjI)l3ya2V5FL3Uws*KKI?PG%a=*f0r3b|F(^>-UP zw!pG~pWnC2{dfTYW)W1WO>C%6V$e|{Bvxk5R$swhhB~z_PG&WwZEiB7x-z_u^tHBa zo+Z#2BG$rv6N8|(zGr0xjj>>TGiRX%4+D5Ng7-UdF0B=Gn#EXH*4DqZ-=}$%eDWj) zKXFsIrlNFkd#_`H?KiN3;4Ib_DUFd#>m-zw^50rT%=1zi9Y3e_Yx~^BjWS4tErpKS zxIG6D=H=k@twVD4bsM8pDrl*#yyIGcQ)yyaH$>jV(Ff$L}!DLCg8)@=v&vQ~2vAzj{O-494>b&*_iyt;#C zWf!0Vq(9nYwx}Uz1tXE=W&PCVc2n$U0A}7LJvKODQ{k505bdAZ{+bR$t1)e$U4-H! zdakJ`;TC!29}~@rK*iMDM^RVDJPXh(MN$^$rA7Yd1@$z$ZA$w+_;xQ&?Rk-)&pfyC zn%0UWA5+dUN0Ft0YVe}24X}qfF_s>rs7Z5$?UfXNT?2SyS6M($DpU}>Y;YJGrsQsp z9*eH0!VVXVjg;1)EfpUHGpLd{q7u|d3D1#&y`ghHIle&8CbZqm?l-1j1n8xW2cx$) zW|nx&j7gH_>N-JwucGZ^x#*>MuDPW-d1|CZ$=51DkEMk3Re%E{bjV&cg4U{)LF&1% zTujmIDi$fGh-C|7`<%r?UvGeZN${ehHL2&YsDZOJ&|Xz9+o*C?^U1XY0M;T4kk)FY zW%cvW;e<3V!8kUfPkVC^SaHz=&BK5iXRNA@o}Z;<$O z7ah2sYqA|spTvWC4K2`qTBKa>YN-H96Pbz4jI&ZCUmR$;x}%EKlma{+ygn;03;1vZ z?RKC$p{(=q=n*P@d5?6OrBqCy8S$uPtU@khm!6VICS9AalP)q$+6RC%%l1{3e(ONp z!XoF@uQUTnJZ*y~?riLqkj_S_qy2(K^nsjq?_?QTh zMK716S`IWXl52i5$uUdo+v&K(@Z~-DNW-Hopm~1Wc8Y9~LpXq87$9N_7-w(Bla-FGxcM zmn6>Zd67AXNSq)5kVauS7~sI>Srwh<9GJItnMfUYR}4bDnQfGE%U2F`PqKR$qlako zU`KOzg?1L8cml{6QH8-{0*|?sHM40>fo|<+@Hh)PbYlYSkw{bn(A+yVb$@1{4&i#i z=onHPkZxk194u(bzf~1?uS5gC*2ai}Mg;ZbAy2krZLZp%*Mjtu2VsaTOY4(2d!$JQ zGQWHYetZN+gB>Dsq*29^bNUS!>mwx~MYyR|av>maVq((d2e}4Gvrz8{Ec)ZC9pFS|w$ytE5E)w&2ga zfKH1#vXiV2F@PGKhW_kod#1`bJgaK(H^{1by#e~R1tB1RA72;v&1djAV2>?MV(Z!j zRE7+`*`e;G6cojr+ab62>S3l;a~&f^p87#=z??O2vE?oTRznd$Ul*6)lYXOphmLNb z2D*@0Uk!$qe}^5)o4*wvDe0(R8{iVbc`FeGzfR5sWRmD7AdwSBQ*giJATj!G35#3= z=fSAn9^dDXTrU`j&7F;=ao>!ONw?dn-h3nTkD=I#%o!zzGtpSRKa zcBAIP`?H@VjER;zW}gMMQ9sre*mENe0C*r#{#9>vI*OPIOduEl}?YdgL^PMP*KZp=--rz^*0tyXYUZ1?e?`wT;`c5P_|taHE8?RXqe-?~A$oj|2Z z&Z*Tn&!lXuDj+?H7-&pa0t_H*j6?0yoj9CsZ`un@MA098?dRk(9R=#w2BG$bz8>f4 z&GDv~ZJ(I{qBWoAiCSITO`oj$0p(VlcmomW#Utq9AYZekEIJrT8Xc^nl+6lmqP{?E zmz2BY-ZwLBvwC|TYnw=5#8}7BObusWv`_s53Oq)79)0)4sBCz#x!2 zro0bB#*CL!vjCkz1G9nbJmzGxZKaKgjzJjS1MvCXoK@X@@v*0YMh)0S@a_()_%Bv< zC~JTJ&0)Bkz_+ae3q2k|kH>JI!x*!5!lLHus*&>G901NS!rA-Hv;GX*^;%+Y+MD*K zy=iaSoA#!?X>Zz__NKjQZ`zyox2V1T5%lO~kwnwWo-d+JJ`Q`X4gkruisdRSZ*3gK zD;6o$r3yta(nQ(W z&O(o`ol93d%6==-x#PzpDACg#-k;TjM)=IU%kEL*7Ci^f>YGv`rC6RTup7;nm_*>` z(lY~^hwbB9jLckfL`0jbw3g;6jov{Qd`n3p=SB&QxoN>8DazIfbaNw7M5U3+YsoK^ zQf;MqFW-755yBVuLLc7m z)5$E7;{U}P)wacmO85D8JZwKl+b3=}T5=+Q=JuIK*WH7yp?zbHEI3!2R zBRj{x`wer%+a=}I3sGDXiNiFuNR!pdwkY8?vSOb4-P8o)ber^5V+*lI((3I5PEuAA z6+zIDVR_o900x}rIfnV#^hjLifLb&q8`DY^)w>$E_8#cwcR81B=WbhfZ3yMLSnokl zhE8>Je_%mQndf;F;mCAarPLJAa@Lg=DYb&-p0TFK&~XNqRv+D-S&QsiDK`R<-c*~@ zHfyyU8fx5r4kdK{qie=81e#rB^z~tAQS!JRdvw^|htrL@r_gHDto5<>QB^^xr0hEX z+{D))xw_jDR?gla^0W}Z`cmxh0ByQXyU-Xt54KHhV+&|$9G(+gtzu3B5hHJHj@(!* zE#)fA-8yeGGw9|9e6s_cX0S!c)&8SWw6=T(7x{~wMiCz$d%;UqyEP|`kT;ebWf7ng z#de$jB30~7JnyWQs#9rIJSZ|SY#b#*)s$UVSvSUCcW>LA?95n; ztk)`3b}i9MM_VV9L0AM=wVO<$@uKv2UZskbe-?28Z~DBg^&f{ZA{GBLYOgmye~OM} zEl!x3d_wK_H>%KuQ|UNz@ugZsVR>G3vLjK1*L-v-ts|48&>h()WGYpu=nP&~keAcZ zMGF9GMOupVWmB(a$@I`63mL-R7cf zX}tzU?7V)RD*H5!?l?@L?k&= z`rx>-1HEprYIy0o{ZO zh|yjuXdxt}`?8K>T3K0{p+nbJS}^7=`l1#94A2{hEq$W_X3tGGLoF;^a(obn3w@qR zhd#5ES<8Jtr-hLh6-+ACopd~CS`4Z>?KT&<6{mbEhc;15^{EZCxbc1MIq08ck+pl6 zfsRvKx#=@R@gLPCp;|@2Npq%$!|eT?cd9I&C1r!xgft5UwF8JD$JZU7jy0tJrvezA zTy|ijBF<0_x+7-Tb%Kf3k2kj=rZn~791hM~1&?M_+I_M8qZ7dlKq;M8!9=KIZtA<{ zWSduUdPkLBA`#!Sn(20LY)!qItplN#>7GafJ^D&^!Z&BkH=g=XJA} z_4hP4->_9CGIe%l1?6a>Z_yTb0&HvrWv{Xs&3#*DE(%G14E>#I1^ZY)f3L%wO@)zc z?oMqi0O){pqqeI(!vxEP?ByPP>_FEj_|IwnFU$%TET}kZLbVg=M(X!v}{cC0NQvk{R(T_ z_rS-4_)pnhZ-8zs-bkWm{KrMRJ*$9FN&?6$3plsj6972P5|u2P z=fE1-^3JJ-SE*oxQg7z*EDS;sPwkLU$7aBY;6kt!H>1TO91U^lh}teLo1fSjT^nG& z6_M*ou|-d_zwZCaaq9ge0tS*A@wJK<+<>@w*W!Y<9nc)b;X?HAsmMrz=e}HPBQ5D6 zU@aK6*0_q8OxT|iIk@i>UQ3bprGO7dpX7L+LDK}fy^(ylWp?8jfOtN~p?z=kFh?Vy za?8<8$<>32A?m*ja3P7bM2|4_dAo58^d4jG#7+9X-9U*iM9fWCi+gb1ff%=t+J63C zzemIn+kLl4p|NGsTmY>XN)=5wF+MN0XzZpx+c?=qggY;>-H^}^uC=A)!bxt_0)CH} z8MLl4x0`s@CF3d{$0`!15iweec>m3DyOvJ4N<;vYg9jIdlM8@%VC_5pH96#&FX9|> z#ddJ!&G>0sFoSK?;%uVl{vE6+}n{u`SN-SeN3g=-hVmMAC z_;v?6%%XT*Rai8N|CkePU0X!N@^=%&KwB z{k}FPN@>g`6~pb=fi7UFL5NHZjA$3LdD@2s!=ra5sH;ie00X&(a)aiOLSMna0DBZY zjFIy0)@{xc#?nC<^{k4y1fDICh+|O_(5u? zV_u|kiml%YR%&pXZP)LMHbDHX=@ot88rr9ckXD%-NkwgXrjy$2HcweUE07LVss{k9 zb~u0*C6D`C5KKP@EWcbZ4~Omk)$yO&6ij``y!0z=j2PICm26_4=~#v=(R6p#YS1ms zMYX0jcFYBKmD?~jr&RhyGj#BCZ5GwoeKVRjpmZMnD>k^a zab-}3DDx_hmLqMN8Id|7(eV~hNw>FNE{zXI7lxAwG1NNW?ZEH6B}V+qNATmLj|qNw z1dXHg=O_#kyvP?9#jwpHE6{}lYRDNC*bKG`6)>%#zgy&wa8_omeL?tI?#F~*OK>{* zz8j}jHwJ9GQSz1Q>|Z%%lzmnZRy_(tTzi0Sv{E84l`g{aWFP44*5Fy!yE;r*yKl#Bmuk*+hW&2IvG$2d zsC#U~8DEh~MSK_Dp7itH+PnJSdER&PKS6sLB&!<9gs$9bt$_#-RbYX^-szy#dhE34 z#KL`ntgErO$NLe;@4ut|kKfG^V#Zt*dcC23Ttlaev%QzIbvCFU9{{|kx-Q3dQ~s{_ zwvM!-?eKJCv`2EMnWJrEq{lGw;5a}%2HcUR?Mb1 zJKT_hQFc_29AqGZR)Qdj>)K+*!q?wUm`uqrKeGEd?*TgUnWz zZ3lgXAW#TmAqL1!+Bxg-LZ)_%%h_t(0LW>Eet+}KxI(c;YaPAaftPdCy=gW+7&T6Y zK)Y7|Uu496mx4Y^Q-JEm8?(;b|(}D*ej8-jzB3r95NzWlh@tfMR;ownh)yG2j48!Y` zl?Koxtu<7FEm|+&A*1S9Rw)Ac`UOfw_;Ex1mw&aal~xN}UEEo@-K^ck#WRNaU9GDx z_6ZtBne(i0^ofq^N9!f4>=Vvx*Dx2H;{bpMuRLO0IQO+*wBkO~-+Apy2AX{#%~;c6 zZl`h&-dAILr(=Ts+^uSy6l#mGEUp&{B9qR0t1sSW=TuOxJ^Xh!*u%S4>%*GP_smEV z0G*D|twPQdP`q7Bu)RvajmZ8TLja2U){Yk8Fl1zIA?=A zDt-8sN7nl+=gWa9p!YA*kg7f3!dy_#Q~bu(sRFl8lN}!!aBXv$`vEXV*U?ci|2Ma1 zCI!p)0Q5mxUnh=AU3b?%&T-oFN%ym?>9FNya_FrNy#&IfLoKJSOo0d-e5lBhCsbe# zq6&l8%L={T%w{dc601D^R3KkpZQt|BxE=0Glh4sVV9D~)nw3#nKY9Gx4m!|;YTHa9 z@<9U@K`CM_oftvsdO-Svul|C4k-=0T*Bf;8$ULLB-uD@Q{|-5y%vs4qb8c9Ln2y5D z$a5BOM)tX|tQDoyR-5%mA^4(2s0=pqxJ425=h-=lpqUFSr{O5LUDiaiASUO8&PQ@i z!a4Wf!kKXgWm>%^#T~MUxJ5>_DKwpm2|Cb6)%e-riCP3Asm&dK|ID6;qs{Cf4KF#L ztbN*K*{ALMTXWLKz{cea{n~2D<>R9f*wkur^7>+i!@vFAV0iApAJ#TLGWbe~_9S*} zKuTJuJg{R<_rWo`Iod~;b4^xuTE@jH%SA^9mokTTj=d~^hflI0dA=Uq@@hmU#mOd> zy@J!it*06Fi|M3#D(Soj$DSsu_n!)6StGa=?<2Cpf;|z(uRX#68+roA=Xr*lPmwLr z_m6%-PWmLj6Fn77x4R*!+R31&8M3S>->#6;j2*YakFJ#gP3h;ll?lO0P~gT=L68VV zdnx!Fjtg#U0DxUK(awqPJh5xYOK-q2&>C`*;lb)_5~IET{Qe9E4*;@km^U?e`&OZ^ z7X-Z8jVHaF44D8x&(@x<{N0{OJCGwrPBY}o7t<}v+Q_uF+S=odeU6`PL`KW!`;=s5 zo}z36OR9kex&Wq56RPto$m|5Vi}f`#hXck#vZ)0bx7K1Z-kSRV6y|Vb$D2P5Nrevb z>vlnIDI41<`gc4!tUKqVw{LnhAVBF-4~Vgql&m!&PSE%5P9`Xqy-5J zBAfoqqb36wXm$!^;)rO}=b=v05>8byIe~6-0>yljt)kq~LF9>CP&)078Vo00l6|D; zP$ja#VT5*F1@g!Q+1dTP{-YpOaE_>N!wfhRgaTlN2Mg#AIL}VN(`)!&VW08)2lkSx z_5swYhBm3yob$RtUff0vJGMgRb0D4dJU98Gzem5ZswFl~C(~`))=J;9bI$RTW#ZR& z(1G3|>zLUA5pzbQ6zIA_*Yv^z+E_tmz}<0KcMF(OW3;o&Jf;_zA(0efpfd!zjA8WU zE4HAm6@b?>P6Euugs=2M%xDUN;M7 zd1l<^=F}_B94MM5i}v5{=J3z6MeGxcayQ00-ZX+3r5wnOOeVuyMY-8=v=~`j<==y^ z8PRBuF6Y{-7K}=s3=k+56;lPR?y5J`^5=F!G^pnIdzOI==TulW$z_MZxLC}XY0XjN zF-X-daGQ~&Fk858DXW_B4U7%H=-@c)w3`=!#xbpg9GIGBgqJ-QHW3&?hiUr3GYq?U8N@|6& zjKu5rLIynJpqyu`qaaJ~fHNSKVPcvLw2sg!>u>*GsU~kF1&(N_+5Ww}M3k8_5Z@_s zt>SL6qr7t=-qa$&o7b+1L+jQJ<=qXiNl-o#)Hg@+*VXh2;qSM*wYmcknc&&xfR2Xt zGmJdVLgrig74`kS*#lA_rx|6IaNOk? zo%CFyAU^;3PQ84U!K-i}FLN&=YLNEwk!BNvH?t$7Hf_OMqJxmjn-Gq6@GJl(1579Y z9cqxnj>`{iQky&gfG73@dzsKSm(@{RbpB~SN#4e@&_-@M1SWE@D6S>xiPh1sqjS!E z^T?mGlf14Lq|yppE|!SB-mL8M?ZeJ9O~Cty1%B1bEmO%dgYv4nM_JQW@EZ5e4En!k z(7>Vt$A0BpAU1c>oM1+`%^-)Di$&yb1@LGju2;*N@X&mb%)ZaF8NxZL67YCRfRWGS zx^(M9ZU&hV$kpfp4Zs}rT=%8w3t0OsbTm~U3Hq)@QWl!^=xEM(wmG;CWT_lvARG{B zzmb$KN0NW!oHyt?um8X~2h52kW2IC`-5?(+!<8M0X=<&x7I#Lrd%WweKE?Zb+k3b_ zE!#1S&IX;koKY?p)W7{5x-QuM_#R4*N=nXW;B+>E zrpv{h!>xDDQ>_kV=xFFXHB!Yj8Of(9vJNqZ>@STZla=O-Gde6qfz@Op>SiBg%R(mT zc*Hr-Em-Zs+ck8~d0Z=!bDoZOC~s{MQ{K0#1vS@$&e!7-_1#X|3IOmN26?> z0urpJ+LzoMUQ2Um8$4aZsgHJ*tD?Bl&D{%ZKX+s@+CqWiw#w)Mhf~aKcVzPRhMDgW z*}<~r@6qNoul^)ML;y!Y0cg)@+w8rPQ%BY6|B2LD zRtrQiNR?Y20WK3_PWoV|i>h&Cls136YdUb!BgmS9r#kf>b!6RZvwg(%aOUJVS_g88 zMxaUpN#zd81`k%HY`M?ZmLxJHq$WhBtW77V_iFCQK6(67Oj5QaoN1^BlH|)52#Jc% zC)Dq6*#4jY?U$1r>}f*z{deoIa$g{~8}xQV^*Zz3c>>DiVsl|#QQtnW%O3vfBbPOm z$!r{;tQM$|$M$W2*~i88Wex}d5rm?X9%Q#H zYf3gqpbDu@le5l_AsoA46wk$}jbzi;WbdTlYgsMXmRqVp1j63ubjl0txw(Fk+$L=* z5u80lz&iSa&ney&V5q7h=A1iGBBlj;TY-Q3dpv(8CS;n-e!ZMqH-u!v=CWi<_Bq;g z-OOJ2%%J}t46%raOvN5Dm7hQCc<|g7*hh1clN^hb*E=YkjCpRg?xT|qm|~`LencuD z;?7E%oJ9akeGRT(yTJP8#v+ljc{$1#*E;#)QGp0n{ek_;p#i1W4X15sUoDhI9VFn7nP z&T}lA$-~f6Dz?eS?(j^NgjZZp>`QkXXS=ogy=TOJmce;`KABw9n%b<@Ht)SeO6I9$ z5EwWro}o?155jcizL@@*r`A?5>oeESaXAlyMF3(u-L$dYih6Hpgp4u6ZN{G;7YbST zdcS2X(a--pz0&3OJPK{w=q;UyKBc;24tQpW2a#SD=$wz4m2rr;^X2EbCxpldOHX92 z9eQV)B4`CEkjva>&`&4m%h>{%w|iI9`!vJRBr?wy$W?9YB?Ft(XKt**y9H$AU{|uo ztYEb)B4%~Im~uSl<2yk>nScPdcbRmc%cKKn^{+gNU-#HrstXcz=TH0bGi@Et-ON9t zeF1AoK&=|>BvDb+A%3}C?e2s5*2KbDzqI>&bEKMns!{8(>9_0_jww*g-D+9%Y*wWy$tNy3T9at<-qlNt4XI!(7sQ4KiMyFpX4l|T{4zK zjv4YF1&8<>lQz+P%N=NT5aKa6(_iY}#iQZxjwC`c6bb!5RYjR+^DP1Bn(DKD()hI< z^e}qqpt%CtWmF}i=(?`J+nYPv&PF|(VhVw|-VDBL2LtXVkYU8t!5|=vgg>;%Yg==V`MlAr-o-k0V6pU*B@WBaxcS1Of)#=6wq|O z%v9ZF%?IbaYtKUiErh!E1{)*L6xJZ7F+r7O1r~U4q($kFjcU$^>RI-swaR;@kpo0} zzk9uEub9j0tCPf8^ic12)W82>HEqiZT^E$g1?4ZlhfL_(yTRX8A{T5;_;5XZ%5_&$Cgp}CUgd4<)9 z=LPi7WFXg_M_u^fs8o2w+2tVrM(1#z?AhOzmc1ftDIwYO+_yUdfK{W%G;a64#_E}d zs?~8iM|oxH~__BV#RHPy7s6 zhEF_Td9)9m5_gQEJczngo6~&cfLq-oQtPP}bjsPo?h=VQNroCQIOnT&S@XldR1Vg5 zb6)$oI5_XJ)mDR^<$|prSs(oYgE?Mr=2+xD_VaAn5+d7R+se8^?#sI?P~+3iRqeiljLY zw_7H3$f*wf#~{ODmcF0taqNK05B84z*dX_4`dt&8-59$q*enNYo;f?m&PSKr@n;gH zX}sR+4bUrUwt0Z4PnVY$Tl>Giq26w&-`^k~*I3tyA}X&hfRyN)uB)vpTJFH@W{&@} zjjB;*pi&{Swgex?JhzN5=XgSp$W{Xx7;}o5W3f^ptscN(Mm>V7?xd$nQu>6_0#%)D zJ?i{GV_`S<%c_U60Q7dzqgYmR+6TRzWRA7xQR3ltzYyt{Wg_eJS`FF9IX^n=aSb*6 zFMGCtZf*+=$UtGD?&RIMZa35Qw;R;Uo4JonQxVlfG-@wr1c3RuP+8~*lMq|9@VRDbr+=yr(M*H21ed^iIdlzpaLr( zlR`0tW0Gsp0i;ZcKsQZxoC$iWR`K(rEnLV8P=A>MIvBk%7K>AMG!7h-=x3M>Go)i> zBMoo|+n3=Lz_zw$B7*`5hhE#~qqYcId!}9h|BTiM|0RYL)caykPbn=};gNWmXH!6K zOzFA;@BX`#_I#Pe_UBxF`)X14bp<}Iw*Q7cfR%=7f=P~}R?GGkKTm%DRUoivvoV+! z&(!!PG%ThDp$&MLs>x3^M`p~9*a7lfMEAR7nIW_*8*AAB%yN{R^FA}#oRYTRFvnrf zFj^2To3*an;pbucYV95EhzyUvd}%I>#CVKa3s?&@>>D1j08+T?-ypWGtjwnUbMP9J4rae~ex zA3WPD|DGUek!I6z{dRIJd|ZtiCfmHee#g_xYFrx@>xO&KUq<0_So@aEq~} z+R>>V1!PBGL5+)yd}RNOcAQV@oqUeZ@i{)n=lC3-<8yqD&+$1v$LIJQ|GCDmpFwwM zf&dl?z7G-hOc+W$Mn)KMmgLPWah};%Nm{Tv%B2khX*O5lcir_f=ku%{uFEfqK z*mwkM?4of;5x0YD>DwSVJkFmX+o}bGF4}|S@U}zrq(HoSmSq|@2+Pz+)Hsf+p0PtO3xK`T z(|jls(fZ2KCIZ$p`N0UyWwsoMNV1_a)a$;`XH>ceH6mwHo6;eGu+$Kepex=jF%hNQGSI=Q0p==%wT&9WzNJ85_qB z$_u+^rZ&%Yn!tX$0yLtb+ui;qMEg9OJ`pin;QhnN|I+c0G9jlKj7}7|02tAedE8wYY?RI1E@* z?X7LwSl;d2{^L;J+irL-i@Rq+y-yn_p`mtYLHIU=@`oK*VC9YJz^B>JTx$icskS>` z)1%tkX(*Xt-)49=@Fp!Q`2OCJB9`;X-*GWp;O))U`RlFET9&EbzR13X+b=$h7PGoUaQq0?*o|}%T|NCB$3K>9V|MOC@^+5U@Jq~`jCd24T40@eIANE(`h5| zdr3&Eqx0uugw3y=40QH>+D2G&UeU^;R_7F=K5zoWuHEH4wT=*vh--6~E+n7JeX|%- zX+)Q+qdr-7aJ$)l2|;M(JCkMGuQ#)0NgA8|$65_4KU=$Q{A8KeSrVv z`YdiQTA@>8y0)A0-wT}+|F61}An3@o+O_SCG!-P`llC2efO&N?;gymN_IT`^@1SKF zkx2O0lJ0+igmwKy)oxN*+qtG7mzPnSl zuBPV!dv?=gBx2{2wM}!TaD~^I=XIhK$nD-3_LIKSUCBp-{_Px5Iyma{-eHYB>@WqQ z=s?sq=Q+oN1)FD0Mp|~pyI#1Dj5Q7?gX`MsfU?r>ALkD!XF5(k&nOdo4mm)(_+4kG zko(>4&6uiA1T-7Dq^w)xo}uGIz2r`azMPG`jHN)&Hl$en_~i`fi;?9qc(-jy3aa0tHQzVya8U~{vS#;9JBZLo3vHbSS&YMp0F7a+Cb^v?N^)mzj41NuH2 z|3Bmw@%?)T$DQ*O)KG}k+#WpckP}`WThm}SceW+w}Q(FQqNYG&-Jou<7)uG5|ATiek%j< z;5v2Xvi5;0mSaq=<2Ll|(hh=E!OK8S5!dON&{o_@k5O&0kWn7;7)n^}??DDe8wbs4 zk87rL&iiEW;sNhMD~%oPqXSuu-^?eH%)AaXKWXb7eobA5f;+5CMk>C#4VAk=aV?&# zQ;~R^PpsQd=PUW89dy7Wh}Ww<^phK-e2DIt=co&d{^9kvjKqlQp2?LFv|OVW1SnfX zSTs55G8G(U5_R1mxI?z#l@u{z3BVi*)_uVpfDPuPqxgd6&UF%8@j4V$v>FxF=9NFp z6!wOg4njIck6WF3Z#W*3VI9@m*7TXzk(}|y7_ZHM^(dTx@6>Ci!&zy9DB{sf3f%p^ zXW)E-q3a5LdoyF`a1&jk@#r`2ALq0n+dCCliQEZa}0lY4$8tlA%ma*F9`0wr5zAj`k z+;N_B?vJvQGqdUWM<(%pw>9?WNT2Mu#JcVom5T+eFi$2sAJ?Cr8Tqd;^nM3EuC`9R zoS`^3nOIjqH$OikyIG%ndHW2Ra*x4TMd9cnl?h>QaEXpY{ zSX%8ZfUZrNOeHz)rIGu6e4ySJOt%|!apX`C&<#55bh045%Y=S>pgv>J%GXGlig!Ml zgWy@Kw`_ETtoaeiHYFkAfZm9T^%LCV{NVdH30V~Pt7^MUVnPf>eqJA89Dj5ngRCZ)nFx=Obm#~i8Z3X8^o8B z?5HQ9k8s`zaoB3>Gu&m){XCJKcT%pZaCQ^hPPHeB1AGD0Ml8gB-xPF`!g)rW-T|Y` z8O|jNgTOeE<{z?QT8CrI{mEv<{wv-|Mpj#lbLWs1W^v474>?9bR%y)b3{cf{smvlK*kiZQFyfqk z1KRJ8vK~LqqO=7qu1nDyp5wOZSn)jg%;}K9nO+}3ziJJ_tX>|{Glt8=wpn(};f;S5 zsQ4vEt*GC=LvDAJzy5BHbg=64`L{A73+}a6bs}jg9c6==l#>Stt3t6gqE-z-S_ z+gG2vqfE59q07>jEF6)DrNC^+g(pCAurc&`&Sfx|l^uD%jxIoyQFPgy=m@gVWfuj_ zd5@9JkZ~U8&0_AiZN|)DIOUt}WMO~6UPlLnz1Gg2*#*l8>m_j?9h(d#&SRQ@x}v_n z+vVpD9);aLQW?X20j^inKfYU_{znACB9~1_XT^{3@R^C*#Jzf0haA_t9T) zr#ymEeh-Jwhb^+Vt=B!9U&z=I0YD&_C(DKhfgG>p0qeSMHOl-tCw_c?j+nshW<+t1 z$d3On#;@(516EgACg}S+^xJoXr=-5vtV_uCRT=)L0oB@1+JNb88!$0SHbfrt$O_Gc z$R<;5N_ea%vJ15ujU0WeYEnR_Bs(uaWYaaA5(Hem)th%Wm8beX^GoM$7;1!-r!yC)jux39oFqyF&+ zw*U8EQC?qK)>IX8xj;nBFm)$gsmr7Uy5tZEvZY8UBg>n!k&=4>XbVQpjO46Ap7TdN zMb%kPy8x7iV-hUaKwDfqm7>D}7{5yD7oCl*^7PF3r405lX2`US=g?lt;bLrmzlS%$C(%J07gE9o}`b9iv0o@7cVAwh6l(!%M&RKNdXUChsfE0fVht>Z~ zWgoj%g1$z?TrKFb`LQ2>)-G)?8@UEI)*W%Q%WynZpsdvI^;jnOobtbE1VlQo8N+e9 zU^~zpjv|Pbr&9q?Ak}r?a)*91heW1=^56ek2MvCfAz!~*>%g}+=->YUE|>QFv;yTE zWdf85O$ma|0Oouqddf3tN`1!pDv~%8h#El)ymq>=IqA8BM`zeOZ2 z9eDL_AChjR>!02^6g>Vgm$S1z7kAupAfrTvU1c*UbiU8si{Z0`>mdN}WW%}wD|Xq! z9As;2y(h53W+i`1wPaEe=-s!u-z|uFyFt!pOn>?7QzET!xtOzfv)~<0XEfA-8vjm0 zELeGI<01(()j@DWwraZ8yEU~Re4X%hAO>4+W<%cFE_eJ4KtGpqTQ-s1ygy7{@GG~S zB56U}COi9izSsRRLSHk1dQbw;Aq_;VT=hW<*hog^=LNJ3y?5q%n2e*N?SBJk!P@+u z+z#y!*zX^P#+oMMb^3(3|NDlV&*q5D6Y3w|I#`Z~bnSFdB(mvU-EvwqfcElo+o-Nr zDE|d|C0VsOhxt1iL}c|jh}2lK&*aDe4xa&Zn)cCOW*NuK8GO;I9!=x6<8v#+Z|S;7 zcGX4Bl5^G7=>EtNKRS1IU?gdZF;kdpQ?h{<*HHmXZix9lX(5uYUyPUF{bPUgzw)RG z`SJ?=`ikj%!uG%aB_ikmAYPMf&wH_Fb+Qb5UdV+;1(hu4mP3UAST>gJ)pFn|JH@IN zB&kUz{5m;*RgPss#LGvrk+peCLMgpb2DA)gf^u~Rn*srYKL`wUPJIqe`Qn*d38J0R z4ZH-+9Ubv38^iNS4=T(BmJS`N^*k5fmf5Yvh|gr6A%FcHdO1V>_`W~? zuRdO1P=9}gTuzXG`TsgnFq!8>FaxlEHh|9IV=J~8ME1;cb4-%4rU!6G{vG|!fgl+K z+#yj!@UMYs8#k2HZac}(hzd~OxkU#dp$X|L? zHDb`;zd%ki^lyKMvQ!XgSt+!s5TC=IVzg5_2XSY|WX^?wdnfzcvetechyd{5FKP?Q zCbI$R93#9A4sXq7$qnqCkvwJ8f2WM35~;p?ul*hTJ!2+42V3)Sr$usIfBtP#xp7E;%D6v41g=J8 zAjJ7}yp*-KcbbCFbG}P9X$yg#wsB5xr>WJxYir!6u^C$0r!G+Q1$X zQ5rK~2q4FSVPFs7l_Vo5^@Eocnj~X>_;EIxT30)M3?PKpC!SWa9Sm^JM@?bhm31OTRqB`~(rT_pS07*naRMqNk=L1OUvkdBP zGFN9NduM1RgFEKALGE0!#yXJ#p)raWy#466!GHnKXIX?@HnK4TTi4Q@2jWs5!hNyA z%0Y(nnG8t_T#d_tlYw^oW#kBT9`pR$X2$_THX#xDBJH+3Jt4*M1EZ>uz8{k>dbtS6?2-H9eHy z9RLq>CTAm!R(q=fbr&F@zlPHAbs=TF0>)m|_8pxfRSV=E*b>4dh7LAOmG*t-prb!_ zcEoA-1k^We?9NFLNz%TdJW`ieJzi7!eG!OEjr2_wz_nisyz3Cu0`3B?ztS?i@c^XR zw*Vjo<@LolOL#rcHs~l$9;D3~(~@jTl1?7U#8@Jjoz(|uLBRE?NC3Ai2tq$tpBPq;tKeqLGzbjz{OvZBXiH`YE5Ou6S7hh=jY*UHe zE|8r&H*I#`;t{u5sr*H^?&I+tk zejZIcs^3v-Lls1FDVw+(nIvv>%)9N9Fel1?l&KjCUbCS*E;Eg5?Xx4S%iRFL$y7Mu z90rp!i8?5foV?x*!7l3DWi-P1(w#8~?4xQsgDm!^5*Qb?Y{c_$sJu-1Z2^&MCrt}Q2X*%hdq$lc45=FM zNz0f`&=c$AYRa6qIo>${{%;VfkW4Xt^94rGD|_V6=syEZK7_|dK+q3sv$D~a4cBfV z+si`0-!`vZW-S&+l;Sjbh)b+3xPrQQ+eW{cdA4_|3i-HMwD{x6P$dBL`3Hi?xS3+{?4WYCzQw^=4?!d1MkRM60n+tF;J@tU9le89}X1v?p;L9b6j# zoMcf_=2zcL7M`*7pkA-N?UPBLizhbd#AjOqX!4@zU2_zKO!UaAv<4A{#WewFb?C|x zD)fZ8d4BsBJLFcD3BT-)NUqzx*(fr~O%6h(d+xe2B^}PJc@U>=6`AuOY@bYWSk<04 z^Ox#&?ATU0lf+RE`7t$>r_qSZNfw^wbJO0r8ounk7s1a%?7s!?)wI=oM-3ryBOF=vGIGs-DKYR;*ZXAR+#j=gl~r3wU3pBwiLi zqQ4`xn78Q?Tf%kKm%KPHJ}X9NIl6F}=%#dnNu#xYIz^HK3%8BFm)XD8ovhDo8#7<} ziu%4UFR=)XO~+L8oy+-aI+`_^$*;yXL$1cDy=^$U1lB z-bsXe+9G2$@d$i|9r1FxwF#d?f>rmZggs$;Y%+UG)F%gB#Iy({{kF;}kQPQ0T_=^D z2@3d0T5-7)5=?e-qgKsVlbPaeYGJxYg+euC{rlDrVRJJsC`Fm=qmr#NnegC}L)@7J zmP$n``q#z6n`u|ryBkWDwjb}VkJbu+O5kqMfA0NVMl}BwL4OXFU=%OMv$}7*123t*_|ZRRd=mPvYTmg!t&xKk^u6l>yj=B;a=>M$PHmQZ?9H~ zI1fD{yvN$N0TmZMS8>n9cV@lS|$?dp?Z4oR@;nYdM3!d#pBb zt}`yI<8b;0byixD<~{$ zYx^#=1Ddjb@UNx@{0WHwjRE7c+shD3pRq^V>qj^7E>?yiQoUXn4Vtrf<0waCkVPgQ zpEr-0EC+OBJ2&=NifJt^-g&d5dYN2r2zm_LcMCpJ(|%Z;6+RwS${5LtD2{6nA9Q31 zjV_8)$|G*2ds0ygcxqYlzA(kuMsd;*DK)NNxU=Opbv`o_55ns_)kFTW!FYy%el zB*7!Ua>()bVuidTi?iTQh-_UB>s(yJ1az%c(o4O5Ih@zF3Tw2OI9hH>Aj*dRnpn=$ zm4g~P5Zy_g2Y0NZW+SO`frZUgUeF0EIJUrBHMf4@RZQOR;Ti2mx;i$fp$nMV88mH_ zf^L)>{b^dtFC4ZyAu)OOvqV#?X4Ds(98gZ}uTh;cgeP82Y%|`9YvFot8=eIjIgT*& z8GW>UTJRRk+{(ytMPCn9_>=tzWWxy5G>>uFMwYSZfh55CBB`ScJCCPz8cGH|QpFO= zBvPwZ+uo4GM_wXs%{HTPC;CBvg4Kkt>xWl-%W|Y5Bb|ub>$LiZ%1JRvBY*Uj#7?$v zMjz)9x6AIkCYkE@bF@b?NM1d8=-;|UBJ;97eu-bzqV+0zDltDZL$jG0nZ%3KJpe_O z5@!HH0fQL5xWaMoy8k*yHVF~XNpH8Yu})yC5vb{z;&_WaNH^9YevU1#MkCi`Rt|17 zP8tPR`gOm!u6o$#gwg6AiE*jLPrmG!zB3|;uNYaTN=1wwgidI?< zBgu)u;hd0}2Nw^G#lVE0_mmHadfpJ0L6VB5ufgtj#Et%;d6>Ht^n-ohFWq!E-$W>@ zBZ$qsFfO;D;b_Yp%t!sY23UaCT4zwl&%>2XokPt6#~(ZrR2=wlv{G#|Bd&2Gy17-w zUlSfo;AiIE!{6>9i>+6gZNqz*Esi~vNs)u{AX%F5a(34O7UXx|pg2H;Kc}2& z#mcL_5=z4f9||w{ahYCpYX+}kV>cP0X5pRZfd(?yyfPL%@E7Cg!9!nK>G>BQgacYj z7<_}i4?+$v+O+S@j%SYJaM&mQW^&b&RrPUl9U8vz)!Q7yw}xNe@6NCH+}EoE+Le>u zrQ)#2y>DS5_5cu;VqvPU6V{88u}Rx;`^)bBocDPf#xfS^NNncy?J+C4eF?+B(B&k0vI`pxVz>Oy9)71%c-+BHy#cjovRhpR}5e%raZcm5W6 zJp#`;%xATqFL4Rq{q zA!|g*=zaFGOqY5W=sdd6aMEjlLB3+LPIK~ZkK>neD|mY!Ke+4^^@l%4ejzK~i4>Ly zXq^!a2igd*LrdPO{!Ul(83V}F077TQZ7ZLyF}49J`$)g zdVsQjJGAN{v=WY2{{fyL?aKNczVnL;?lBqC{tl%PF#vU$~{^38ma9DK47WM@S zqf^ICXd&OibNu7&)2q?F>BJ)G=Ia6V`61ai=7HHCauo~WhNvKPaufNCE|E6U zmmoV&?b}%L2H_yOH0-5_LG}{e7`&g(LYY;13!_7x1_hx>uXIOAPN_a(>+gT_xw7K$ zoO(%sb#AI=c%0QT1ql@0?b>H3i>H7>)|l-R60o=1c~$jAo}G>!@ubz?;C4|U05(L- zGlTd8w~>EUXfuoI4jj#(8Yo7xo%e)>ZKxr8SIjSk$)h+N?Dx3DTJ(lfJ4#UtFG*ak zR+AF2P!?1xfHkGnN|r<|L4!LXpWa-8#5%ufl4nz&uH1SVMz7o+7>{GIdBh<|oQ`~| zuWtSZi+3JBD~WTkD;i*SQdk(rOTdfRN0x2W%mRHbm}_1p4luJzhXI=pVKxG@t}l-V zVP#^2ORmTytdT@k`7#J$;glTtjKdzY4H6DvW=i}!rdHFli(d)H)~EB&w8S%(x+ zNyUU)Zizo)jt>!`%COR)t8Ud}-UAO5fhm@Jv^I9kl@c%oIct@IOct{bTYFCGVGNaz zpJb}3Ash*3PJwhd=dB6*KQvjy9;aNR#@ZsHnT=vSoyDjg+<}CDSBj>_c&F^pbe70? zKKmEc_#NaEwNu?crp%!>uS>8Sf4hDBT%HP7hTOHGNcU@Zl^K30Y|D8ko2Gho7#p4mwPa6}S!p4^^-r-8qdQrodtL^#?K2cB zJ3a|YaX@f9Ip8WR5l|qq&$6FBxG)+`?vn{0T9|~d|5cps&E{Ab?nN1t|5C$hZt6kW zKK-{4=F882|Aq`MFBZc;&KJW^8xjASMyiBjx`ejEhJoAl%Xk>1$wV8e%zYG!GY5By zq*Ddamzj;B(D=9L!MWw$t z!AlC5l*w=OG4C|FK-up6Nbj#--R(xbIztL&sTjye!&4ND6%s=l0Sa1H{5f|p zbsl%2^^5*oAY8x`7P{={Fpk)IU3IevCyc=daoN+?&PIlI?H}^`<#d%7VKThKN17_c zw8qGaPXUj1yT3tg4UcyNW`}LQ%Xe3Tf&=BOU<1oRi&0Vz2NckZ#?b0u_RBO<8;S>l zVJz+=jMZs@O3BGV$wGzJtTGR6`HL9oBClIsB|gV0PE4g=P<#6g+zjR{=`LneLO^1 z$}|_00yVl4XM(bGY)sEL)tbw!L?`T}Vb_By%N43};$Uzrx`*c38b3qW?U}#1^e522 zW!L*Z&nOyaRdhF|7iJEqe@gZ;6+tjcx}~i1O9)+?0jl5h=x*FNiPKHnB&mY5x_yvV zYPPn-=s^1Xx*s6L>I$r+VpC;PW6~4?I12;ok_!G*36Fog3RF`pu-;A zF}?i%pp-r!OD{)6J#K(5YpPJ2gcyo}Uq^#t?fKn3?u6g_Oq<|KaX=ZBJP5UA)H_%r z)U8w#Cgx7$VM_;Y+}K4gtN~`Z@)gRIe|y_S9fdC^GM=SIhFY#I7H=QWVFzh3R-~J$ zsM07R31M&~7^3Zu5DBJ}21q31)CLuuhv_U%T}}e-%Th9zifZi;J)wCZ(M6l!cBND# z$}A@7^BgnFpeIW)TekWyrAZd>U57_&Ei9@me~0VX)M#c?5yIWvJOd+CDfW}5zAG5HR8WJZK6MuNQH7@N-c0)HMxDe z>rUl>Y$dZ>XwXaq+s$9{Q;p};O}S=hyZyS=2=Va@$x$Be^yz9>sGL679FvGz9^kn0 z>6w_7(ay1B`V!DY9}_(}y1seUu9KNhgA+;kaADdML7rsx2|7rb6NPSAIG{LK2*EM> zX4`$wK|jZQzA zz}1?hqMwTij6>V$T|R$b(_G>X7aof#+QjB%xnk{stzrFOk?>Td9UX6M#;{aS(t=C3 zTjL+`_O;t9WB$IT19F}0$q^g7m+jLSjE&}==AF#6M&AX1w#JG+Npm1 zvLAC2IZXT<39Y&3;2V=uVqE~G)T(veCX^w1;OJSG) zAT!qn9atHRHq0HNBuvsLFX11z7x;OsQR0_VENf}xRab=u{-J1AlX1n^=mA3^ea_~* z9-uTH4#KHGj7c|DhtG1d^^_U`SSm^I9_$iG304cI7Yn1~is-Hr2^=g3SVO)d`J11R zdC|I2-y$41q|+4JNREVT;Nx^{>ArrdWc8x%UtaPP%-(^|Ga)7o6|@Mu@aR(K%cbb? zg7k4m&SAB0LqMku;&UMW1K)Xq2sM5SV0oS&VBWD7|I z)ODaryP-aKAFIB{a)>?#iIgJ!MANcKLL%c|p*Hy@XML-q-`JLpuoSmW7k>svSh`en zoe(RE=L%#LxH-NlG5VbqjUb+C20>+4bQ1y|-}g12YOO=`PoSHp##farj@O8-?eP!x zt1h(A*%u=RGJaVQWTS(KCFe3ai<>~&Q-}U-aI#Ga67ow0u?LMizvvS;gi|5}>J{KV z7d)c$2^a`Gws=ywng*KO6O-AfN9=p?S`+IctWmx5G-t+clbIFV+~bUp9aOJW??wQA zd#8^IX^o77C*L`34|G_(FsPJPS;7$wj#%||HJia@>JfQE)lD5@ujUC)d0Ly?LqQmRF>U`-ya7vp!8u zR+a0QD5o|pjJE$va)RMNO+T3szW(TFjm_)zi|^uJ5M*Xx$158sKWir?za2=eQK z=CUotMiGGG>^Cr^06$feYi{pl9I8apxCYeA003A!KBQ`jmEq*rDZs|6(T;F1Q zCs5p+#?hLZ?EhXE|7~LejuZiS)$NcL^T7p{xkR`L#gALqNV^jRuS|GW+*QiyI6{;h zzb|kcfS%OR6jeLTn-LxP)|$tKHt8(9I+{ZERrVhV5puoZ-WhP*U7FQiGdlJ1YVchE z)tcL04W1p9GxeC=O2_ynzG)Rrj#2kn&+TM<~Lq(AL}|p>R@sG5~k$NaD{OU^vGSJ?07y^M23QthEpFTbyo;j&le2cN!9r zI_hG!G9B!FvB@_6m2Py!S!J3Fg?&5f-;2%7KAgqHH}S&7MU95_z;;Qa2}DUl1-i>9 z!7H=C^+@6_SvnMHTs~#oivF)woB=d%*@V>2m_Xm)zWSS-xL=d=t+?5FX8zDLY#Fi0ilY-N_5D zF1PbpuP&IVLZXtfpNwgoc?;)E7LehKMUK=U1pza15Z5!!rhJv1JuAvj*{v`=aPI+0 zbGa9aGDq@=TQL-C+TEq>FD*G;dJbb`wl>(wozg3Iw%#>2sG}}BLn=OYz$R`nd^VgJ57e4{TwxY~1KES+d7J5b`^4SK~g+YsR)68;cs?!`%T*Zo#vgVKPG;ARkcmn)R;Km zFVk}h)kG%DrQV8@Q8Tb{8NUGj=1RgmxI=w=$z7yOFuuyQ-Sn~F452`1tWE!cC&77U zz3(_Nn{&XGzH@spbogF>r=n;98GM|-U)|)%yx%hxPT6FDpg?#`5haOE5RZV_pNMXp zNEbK{%o|Tk(D^!<~P&ilq-1b)_bs1)NUNqNradtdgj z*z2$Ltnj?K-=c2I(yk(wnfcD7BAc3HaRm^d+Dt4we8+>gym_>aqfG?|^6z|1GF^i@ z{m-8&cDV}u*u~qJY{czM1%(t-J(Wi($Lz|W=FVu%;ADRd*wCMIT&Wck>e}#Iq-Mv% zN~@2VbEq8stY39%Lcd2x{j*_O3$19t6I|$YtR5qZ^wweDXP}T?>s-3Z3i?Se9r2Eo= ze$V!4b-ZJZTD`ubn>3&Ah0NpF1cuFT;Jn7(W_8{I2aggl!+ds zsp#Z&C&2JP*yWVr7csDe*=pn$y$DS|TBOl|!u2b4pceiZEu(DC4W5mi^D+qu0lkBj zETL+YuzOWFisg*V4$ZoU0PW|pZ|UzLebX_U@vMiCsU&#H%hhU>>X+0Z7<_u5fk|_> z@8TJEeV_Jd$MLGADZ9y?E%lT6qDSzQ%F#x_&wjWsHLh)-HcYJSd!r^NXo^%Uh&_vKj0N`;Zv2Iw zQ-qvG*EVeh)F;faIr>spAXJsZs8$IxYMTeL0mED4&o*Ke)4#cvu5t7`b#qx1Y=BQg z`;lI=rpzdUl$x_(Yb2SW#@oobcUXkEe(C|J;ziQS!cpZmg)udBlPU%l)dsHD#%kV~ zE3Bg8wM#HK#0Jv?cxAG zOz?y#oikp!O?qRMuVYiYLK%#FlP~Z4@VSQ-L~yCSJ~_;c7HT5c+Mx!DnOeBnHVATr zwo}_efn`R;7e33c_up6mW`cbtL$&6@-PWl^6y5M6uq9S(7VVT0IgUUw%GCf`@1nGr z{f0rz`Q^yMH=#`;-Zjzj?E-}O+h<*n6%v0QqeSN${wr|m45)XN^W%Z2Eh!>9r=r*S zYi5p6P|@Quyqop1QtQSA=`5L?cobKdPh(JhcJ^9_VEs(TjP1)GZjOwQXQeSDO}o2k z*z8;!&qP>&gwo^nq-ZZM>W7*xos00%9FoL2m*mK&EajZ(≪>0yQm}ltqvTyWFF4 zXT9xV9FIX7Zlxxbz(KS$66 zwP$@GaAJj6JVb6>@%;=%R84$aIHPvGXmM+~#V#O0kO@0UHSJZ>kDeJwW5yh}vQ$xH zC9~x=2c>QklTo#qg+_4tZNQk_g_jImTD%x@=rPE>63 zrELscHCdIaL|V>pzW`dV2l;AW@ao#Ya})Sr)@`0}{j*Yc$qec}^<#@%2P zADqr$3EvEyqdvRrV$af0>ua4}8wuz_jta3NV2WI+WS*EzSTgy;XMj~O2kVCir-XNF z8`G%w#aM0FpQMS0mBy2<2m4g=?uRz-!7~Z3LXQiPJg+?()N#ZR?#?SM`m!YYI@RB{ z_)b0Qa_$T`7lC*F7&h=)&Gay4nLv8RhP7{BELNLC7oC4~Y+m&~FKpuc_!ID&gE(HW zF&{vLsYfH@XDoM;AS1>t!DK-MRqP_pzYpN9pHcohAz+J`TS!OGF%a1-fAd%0%p{rn(@Q z9PLi+iwtR}+ioqsQHPpMwdJ$f1{GSE@4`m{qBn3p-{|U-a!{*hK7ZKER;iTC*!%f! zYMDZn@rzU9JU;TOdz|aPvPGWvgk{acxeH9C(q3^Wu6n`qbI>C&Rlb)S9=+N}$yGSA_xAEu0Pbu%*RpCHzwwd))N9cuvlVeVYhJ3EFKJ-!401WL z#3BSY2`A|@xOW$Z4!nuvGb^#Nd-V#wO_DS7PULITEmnDP>W_5N=@c;#5X6U2x7+sU zu4ZL(30;4>0@ERP%#fgBLNS}0X}h*(WN5(uz`M~G9gw1tDcwZWe(K!pIW_rIR@23# zEYGgrti1th@ST03(R;DXM%-WOMsE?{6V?{MwA5%S9nLYVgz3{a;$`pMPwD-#5HAEd6g?|~mayu@E}-kV zWBa)b_S{09@ln9^6GCiEHNCDW)Ha)%1VV5+)`B0u>=lQ&$2I2$&vxvvX?yw%?ME=D zY4{Li??#~>F@RO-LbUBT+?lm@=BQ0a7L`ucQ6k~9odIKWmxB7&<6liXS8C9*Rh5eK zf1-iAU(IpV9OW0PT^RN0eDDRf^@=!u#Wb#W_1Ylba;^0LnTklYJm0(&oJ>aX%YaBb zlPg@36mqJb)pb9lAfOq88^YGmo_=aC#n$AzYY{|8Llu^Ht@ZdwzB-4lYbN)2DteY_ zfp4ujcA!5m?z@?)B}dGmD!{bWOd0JxelO?h;@^@1 zw_8`7#PC&7Y62CRuUi{ep8^ErlDcwky{1LgL|^~GbSW^X1-?|74OA&u6CQHt-W0ih zKQp4SzTSfcUNB_NBzQH8QokYGzsqP^y7{a;alMBY?@=arhQ8gwKUs57R@5-BP-;WN4O}3*qpjQc*zei=8j&&lP zsZNL$V<*i``c%q!)501$nk6TGr!HQx<0j0q6+R(2ZSm$y$Jd;yD#Np!G!FL$-NC-r zVwH1XIvl$u`vn9KgEhp{WQ*fz*h#88m&?A6hny{0>MKDAlVGLk;Rs^Pk(geLZ94_K zMcTdic!CkwNiSLpKlmQ)Bhc+ofEv$?b28{M`+@EcWckll_7$a4oc*(<_dl)~RCT-o=$%K|fD~*RUWsC_=hX2L3XI6Fm%YWD+un2HF&j z1~md@@|YrZHvAye*6$`3ytFqmy&#)QC6>kk=Q%SrQqgo(@vCJ?10UN}|GRhCD~0o7 z!OHA=PRIy;|MB;(JM3w8eS6)YgZ(|pJEse@9aU=GA@B2QyWmE0$yW4&TxEXe3sg=z z7GhCA(zZRc!+f$CoR=2nkx#NPBh8cLCO-Xr)SQKF6EzlfEA1w~Bb2y$~@_sXm}FmqeB zS6BEJP}MI-t&)Ni|4p#-`vnxKCX|TFM#_U0u&`+jCp5f^j11^c7Z)Qy7o?r|1Gm8n zt%_x5m&=cS2bcT3XRZ1 z7ap4b?qj`9L(_m`fePp2Cek#}Mk|+8%vyk=!GpX#{6=hJKC#io;Z(yW>4@XpM*WFm zrAIO-3?H-&lzQJs<=V`gIng*TmqsM9kzX^Iy&O)#I&lEDooiK{*T?pPx4%;qxWSIO z%2v6nMoZn(Mslnv+#TmF2wYkdi0RN7N$DZ+QbwkyfB|H-QF*WrJ#7KJzBfE!NCdiU zZD~XE?;9}Gd&gCcw<-K$70lKa)aPle6Gz-S+T`S=NgHCwUaV5-eCVFQ0hJ3EF#Qkw z3s;LpGJf$SV1slZmzmNzVCrwrYhZtSe)*zTaL05nb=^w)Wem(B=WK1>9LM#}Mcop|iwe6Y6Vy=Dk znHfvMXj2Ox)EHJ#+h@llf?GwpbvGS6@0KeU5CRfMsSnHP8LACr<%TP4zZr@?hEJhu z4W_AUkAx$2DRaMZSqQ2ZJre`9oZ0h6pVlQv%RlMA=+Ki6XzZladNxCSy*^Ksd zFU+K-m81}zK2#(eO>MNw|E_m0TcEWRCR(A~@jFI}E+ZWLFKZMDp|MxyGHZ4WF3f!* zAr6~+kr%?=!~gGCXKL{h2Bvl!`c`OF2k*F;n%I86!;)j*wVr4>VKL@jxP4l>y-_EC z_wb49cEj(OcdK*%_uW`NL2T!|!&csvnmn(W5WGXjh7W&((+Ypr7x>h=`E`VG+QG zrm^6?=O&?&Rq`0Vuf@q(LA|=I?n{>qyQo%GIWtR?FMV2+#nW&z^DLdm2u+mZgDep~ zY7Tq4Kx8Uuxb(32cmb4G=c|#{9oF`a7N0oBqH#%?OUpZTDu_ixjXe zIEsIInb-;nQ)di|&BDYhS|{^-8OoRIAw5h3MFcv2cl^xMl*Dn5+w}Kn&N1>bvzUI5 zOaEobSe6U$j6}fR^@zSJ)scv9WDVxI9`!99vHi`KYrsl)308=NqkM{DVky;3@>Bgy zJ&vn3C@WM%+7UyCVVc7lq=92bHAeZv(0DM4bhhvQ;_a2I+jbiB zUz~GBVA4HGH|vEbt#siR&R>AnT^WYoIi9AEbC2`l1|uThT&2k!yAID6&{N>IkCXe_ ziU(kBm=^fXl3I>{PF&8lks}jJX>n;mVyGgHrs<>i+BR`CqkUg4M^?qDOqA#$WN5d+ zPNYFInMSdHyVBx5v-Of)zY4Yq6x}+bhK>qIQ!MGsk&Ou z26}4E?5lcT#dKDwbjc-RAMcD}rd2SkMZEoa$(9W}_5mXdIHfD`8WQP z!<9D_#9Fv59}4;rW@^m)d||)`Z^+>Ryf$BR~Nm8#@X!QZM>FH$UIu*ojV0Wr04^-d1ns$-7Wd z&5qi<+!HBe@BZG{Qf?WA5@a2~EDGNugR}nm<6T;mQtGmFww_|eNk4V7tR(uc*FQZ3 zpS8B!5#VIcZ_tJNKavFM^gq6`zbt!*i=0e_reZyA2uT}kJa^=#AC6H3VuM1sq<2>e z*zuOCblz7*xGWKfeMbj{sN|eCyvbmJ$Da{$Au27Xy+L0hmg&zN!8?CfRNmYBm`an( zCJxr~3Ei$~h=E+{v+nhk5x)>bUj}*x7$8l@D{LlGw8WYM_+w42hU=O?N8+A#5|a8W z&Fr5W?5m=rFI}g$Y});W3Kh={O2(ex2YzC=F45tf21XZh<4jG>3U^%2@R0)p1*UlG zv;V!A^K_nxB<+WV$wJiP4>>Lh=B%!K%5+$Ft1ICYr2>T*&ex)p;+BwPouOM{Yxwz= z94E0j@`Dr{dp6cdVU@Mr9f{x8s&IZcXZ3w-)&5@?+6K?4-)bE#t|6zS?daEDBAH_Z z0x!~1Em8tb&L*{#{JyZi<^)brRtFzBF%oR%zSxrS>OL~ys0_mv}u2b zc<*0G;f^Nwk-);zjwSh~FGl=$rzY*#>n0?5VVIDoO@KF|Pw~638=18WN^Tp2Gm7_d z2zf1Jug2MU;1qUl{PdxubxR5|djEq?CGsI2-$U9tpLYbQV!*4x{|D(%cxip*jpX{} zyMY-DI~I7F<&roMgIU7vEZLV4$yv_-xW3yYD;$Z*sn$32J8xmL#KHpdnzlXuUc`bghHX(UE$ z`iVN6N}>i4T6fMY=1Z(!qOU|c zI50Z$=`;(>Yh7;-I?XAvc*ocb>RV@fUqnNdR*=VacL!lWhN~nju7)GSHq%vO)L}T6 zf>hC_+EZ#15~1fXiU>0@%Hg3KE&_=Wzuc!Nk8eK1$`-PJrMGl+_oc%T#cQFHdE&*8 zI`Toq9?FvJ@y9Z;7uF8=Zl77FSy5n9*WB^GD%aQ0_M{X z4veU}tGdLlv-JPa1OJotb)wAD4?=WT#GCaG}QZv z)Iz!|hMHttZ@Blm&aX-54?X1IoXgemrV2iy-3WKOecIHc#(h&HBnhk9`)F@wi!VLV zfA4k+!?sk~CG~!2PX%zuhp9S)ll|>hMZ=eQob8N(eUBaEMq4CcB(D!Arj9$!AL)Ho z2pf>Ih~yju>Y5wzOf$39kJ)2{>5kM;ks~Ez}zz=DeN?GbEzGgT6rkWHfewD#P=i5_m{u+xodZG*+=L&OPI8}n8+v3 zy3b|LQSSf$O8oq%-p_mR9v{cC5EYEayxKG7sd++@{)dxx$NHE03XCbtO4Q#lI*a(n z4P(0_Nn_rWbiX>YYkL-(nxhq@M+4k0o!Ba{6D|?{Bne0*wxP1`9f2^=G@MD0MhIri z)R`=%3UivFRE>N)>N*y~(T^r63ZFJYF9^r?T|vS!Fz@f@U7nS+(yj% zBLd`^Gm=T*7K)vXGPyUY5GJnWPkkeQ-BxF|wtQGlxaEQ82&HSFO@2;lS}`ufo!Ug^ zN%*NHB?LYSi!4!Hd46d~ZRI~^l+(B}$Tl6~Uy1#MwTQ0I%LLi`-stjM7}nWTvjD;j zb?iyLWw>rEEnK0L#Ft-s;>9}TrKMZOy*4x{R(^6>N6JN;Kzw;VZ6SUW?2@-V>(}y6 zm%^O?23Xy&Aijcn)n?LR9tDbxy6zY|D|}%g?TAb~A}PB;{0_YZCnH`-Y9`iAKG|vX zc<cS?LE%78xr-Nf!;E?07E_*RDb9b8=(sD?jUJ)A`RXI+fqqIN` zRKS5B+N6a&fUag}KhvU^Hl8V-p);3Zd7oKnF4jI2REt{EQ0eVB>q=&EmCJjY9C+(F zpq{}|)XLctucw@p$j+Z1xjV{UECp69Uu6glqDJ%k#n*l{xzjjxNK%q9L3wPTOr@-! zT1$tWMW97phMXau#9ii`f3uQnEC0=sSHB`u6LDMM-I=AkX0hsa%Jon3)N{54 z!CBkrJTd3^B;Tgyyz!8K>y}<)MM?Ev0kMp{l>dq6&D)ipvD=@vpeIH!uw1^*q9+&mfMF8`5~R_j9;sP?&T~LYYk&gsrB7~TI_4hh_;8f ziyRCbhhdm0Q-6fQyb*$Lih^aKN)2g67RpAJWZ5sq-svlfu6?e1Sfut#J)#VnVgZpg z!9*X_v62}NLg{M~z^Sd;R9R?=K>2+|2Zv3V`Iy!8(%D&Mze^#n)najT%MSz^{z>`l z5_e~*Rj4I6kEP)*$Xa$>TJKNi+2<*oTfu}xq|H^kUe6_3##d%JefzwWT;+4Z1i5C@ z%H6V^U!WkNtJU!#Mr4-)%@+MI5kESc%+XO1i&xzF(@GPvZ|I6SIFH_>9%-R^CprwR z`(-`1Oos8wI2q^57-NHxz>O3yWBO-VqN2#c>bR@4+2h2tk}+WZwNaD8Xd$I*&gJ?Q z0#|C@g+`V44gU&~jf}%mp2&v2fScI-RZs^qw5Q$t9n17dGMHn=Wl(UM`DmsYl;zOg z#u9&2JxhvIXGKTeB1ZT0B=-`LJ%0D3e=R%0@tcT<`U}|fX=OVe@_p4wv$Is@6yz;5wQpoG8EeUjU>h{w~7T^=p2lZ zTE}G|i}Pa7(k^Lrjk9sVL)bnyvG_G38xK%T{G4FU>_yTpBpAFNUbZChWkIrJE9BgA zusTm%rCg~nR4Fw+HMfxWsQcKyf!lDf3a1@yXJ7C2-JN_T;5t9V-Hcf_7Q3dZ5dDvf z9sN*rBh;OvjB%q4uSbO|}$m^-`6COd# zUBC>qu$=rLlHOBx*Zobe+}pDmndsIxvb>qPlUn*k#Ox|3G25pV2cq(1*T@Wv&WQsu zVs@jHj8o9kHR$3mBCdO}V_@r6Ks71u9s}4eu_VIl^&%#W>Nz-)>XL2N5y9gkE1c=~ z;~t*VmJ54tWBzQ-6rP|8o}BUxDql>aBsKF_-i0$s?SN#3))kUptkYWsobLQ&j@CE) z-yoT+pR}=ijozV%POs`iWq=%Z6I_^3Sa^63k1TvAFOmX3PgCnr(FwJ#8tZSA`vDd24 zR%eR};3@@9eS&?sHycCy^eC~RpQHXQN~bq}Nl!CW#@d^Qg8$H9MbFp2fZWjzHrIbN z7s{FZQ(Mny?O>T)SA!mjd`8fdHhSI9xqK#$M#mx7QI2)mv*mOIV;(X6Y0>SJCN#h!dk(N%iIpg&8~Vlc zn(uh53T!V%v`RI7Y@59RRaBQ|lo?(PRsW5QxnR z!9FV95|NZV+VFt0RjB8jZFE$GCCck{KOQI$2skiO(KapolB0ITzIJk19itF;xu^j| z#6qhC5uV`bQ<%|aOOz%3bLRVr!l2^`VNksvX}ra9FNv)`+y9zf;>cpAoyB#1GB>Ef zcT`tb1lx}L-Bb8tEC%L%{>S%2*+X}%Oiw9fyOHhFnu~v%UP{pfcGZ8*vy_Kr>86_n zt`O?u!dIM@-t|b3v)OCpHd_QJT$PkN@Mr|Fjv`F41dPSob`Di#?IQvt!@Wg=KHr0( z(SQdsvFoZ(c{oN%CeP{V#&AULG4e|Q`(Z}(EMAj+ZL;+MoVIbkxHH@d3CKfadUexO z4o1K#kAq>!j*nl?zx6y*D`#<_zS`jmQuh7iVcXdBjxRi5Mtb&QszfxW1g;gdj3?d(A9DuO z(5hR0`j*x!QUHZfWkIxA+%-cAWgVI*GvlUnecr|kBAM0zYObY=`Cs)se^&z5CNFEv zikcyPP2WGvt;^p^RK|HFL2sPTiYckA05TK^jIslvXx(_@CnOsMzUn`hxF}t49-Btq z(FZGvG};=51~%!by_iLtjlHF4a)?seqbZQS4@(}hO#~Ae_9UyN4MsArZT-|0Jfi;a zRyFD(0U161sE+hHzC4jm`c5`jb03$Qa|Zl`?gGJ*OYdlgH^27D(Q*(@j+x~?JjpnH26IM1 zev?zq#Y+2o*U`#N5dHYmCILF^s3nLU36x(8Jh+Z=Kt29%EP%>{0(vRly{HsY{E^R= z7G99SAH%lrFo*|4k`#a-N;rkE|xW-uLgS($XFJjOVj{KEG0U1aT%w?Y ze&CC~diDe}e=Cs+o{Z)GZdR#n)7dGKs;(TGKE|r2<~`Xwo|;u`h=(FAh9IGgx8VKJ zZUAbVRdpZ8>&miAC?Qz{jR2HAhcOD*w$oJlZo9OsV%WrENm?gI2gr_(4dgdEJKkDU zWGS{@wRdZi_Eb#2`ChE~_bSDUD%fm9&(KCjd9*FAh(5#3vm16IA_+4!t3A01prt(d zUBCY3!<|sey$ygg^@)T7IxJxK(+_GQzU zXQK&PeaW$IlKUbWmT64fnJfqa4HQ5h*J+oZigclj=~VN@$U|{GLc7Q{d-=mQB1gEc zK8pXHdP|KU9x@FhM<;Vnal)zL=2*lJx`)oKRLkt%FUl3Dj0^I^y$K>EO$jX9QDv_F zV8W9OsQ?1zuzm{xrAE-vqwM3Uk8mv{EvRDQ1nsk{c8JBxRVYvOY{sYNziJsOK zVRhyO^UwJfy5Oyge{?juyL9|}rmg&Kf}V#ny^JM}TTKcf4q{|>mYBOebnQCknb)!| zXc$-y#S_<8OF{L>#Rnl*m>HM$X0BH7>Fe$@l|Az9vsp>&rvzE<$tr)}Bq}9K{qpEu zl_5Xg1TeMywj!$kHQPDFSX-^_xU$qYoE;ktg^2Nj03=laONHy+E%L(uR*eR=@bU(q zQNo`bcs@;yfXYeb7VNsH%qe@Lp*|9zG|ZlpHrSRR(g+U50H|9vty>A!mF*lx-5AWK ze~_B|C~Q4*FvJ)ZnE_^HaVf5yrTlJMQEGhAY>rPOH=H3}WKpQMx54&)+_~3ovQIvY ze`g5O*i>e>y`Y)946FqyS33Rjx>^P6^cwj| zwtUE>wIyCKz5h6`{5Pn;QwAq}-#&-E3(vNGdk57z~~1v6sFDtVD7{)y_s za=W3Qb#RLh6iQNl#_@V1j}orKX`I_^&TC(p$t5rqzkOyIyhdLvzIVbdJFnQbv}=m% zGh!n^1qA(PQ;NRW@oVsZxe%%bcbG@~-?u+{IU@Ixfc~rVe~nRs{uN~Z|IPpy_zdMT zjrKq1`;Uef-Uz+@e_I4+9H9e|_QL&p*|WFRbj*kK^X5hi~ZfH+JcH2gCn^?RZ9X z-@erK=kRNfr)G@<+fALE#^!a-{dPYJ>!2w|U)xbm6n@Xc5HIL>8cF}`i{T?O+4J&< zF(gNj_pGwPaf~)?JCxY|nB-dc{aTnHM(SZ)v)fs0iGv^(-#7hX(n6?Vul;qc=XGtw zH9H&Zx%IsHmDGac2d_4P&imFQ*nL+U;)QqVlKb529d`}pzbXUYHn()4f%(o?8jga8 zZ$1JeOw)5l^1D3pLkIKe`TQM{zU|QL-2L?N%y0KS{zunMjisZGvwwofUjmw&n~%G$ ze6LhU{SQ(!XIWqRS*JO3{-Sz)+*Odi_ChBUkU7eBC(HJ}Y=aB%d)Xt;J+5^~a`L^- z+$yU7AB25nP+Y;b_26#7o#0MzcMUE9f+uKj8Qd+nySs(p5Zqk{4emC$yS~YNb*o-| zf4-`znyHy{rn-0Uz1HgPeReY+YUDo6RmCn`%*L9;XD`{v7(Mjjr@Xyvk-vR}%4=%h zV`&p;Jg#c9JJf|-SXx%j=(*TOHqU=|^t-yGeo`dUuJy3QfHbIw;wuf)x#vO~BA{av zjxEpc4eVF)?{???bc>lCvis(p&iQ{|&a8KM9mdCcQ~TT$k{921y}vs5z~N6ptggVj z?rs8J1Ph;g+?2@*A2nB-eIj8CF*SaFdkym3hPVM0;3izfd%L*`a&!xC*W(1Nzv0_e zs#^?q`lk~ft;+XUpA(Zqh=oLj?^`B|y&#r%p7dJ34g)_yzErWu@u2-@g@!+WTqJf{ zCwtyQaX)zy+%oH62nqE zPRyL|+cvV78->evZXLA^T>h%@_d?!qU$5BSIXbp+tNAR^pGJrl5_4{fusQJ1O4(vG zT|*o$2k>Y2_i0Zzy8Q5Ed7^$-cV+;lR@UztLE!7htTTsD!Kq`z`_@De_&!f#IjxM6 z{I<1IyPJn0(N5sWp9Mn&z<~+*^P;1{@u7;JKsFG>Pn!O8*VLt?sX0AncvlCiHG&ud z3E=Z~ohw>pO^7-aS@@UyBka>-?z>0pKZ{DVmc;&h-_0sKuI}o*ZW#&w-c)NZMN#($vVIg@xWqTl$l zef;cwthWIPS|VjClGu}*OURWdxvwV{mr)i%Fcw*kgRHR*gwJ=UeL2Ej7ym-(`tb)> zFK6zfV*72SJsei{jU&N4%5T%XNTV0ZxAXTm3~hZ!Y4Ag-=Y_#BaCKs{eAK ziTr~OOBF9&*^)DlNw4kcSl^o&e)5-1gdN}eHuCkWlqQnvKd2!)1GNXSDt=G1&08VF z4g+QCBh^1*YaG~SOg(+6&e?2Cc&F4^|`Eft<@<3MfsVECFblZ=UejRx@mQey ze0>i0*QS4W>sn4%8Sz;*Vp2?4cXMRiwHc`5uA^vDU1<5OeoB3m6EL z>Vq>kUTDqhb->q=Y@Gz;?+-%@y=fd-M0|L!we}k#?&qn{I&^{e?OoK#7-}v-dU`b;?FPGYT z3&jZFpSUm7b(LH#wbJN5VQmOh2l=)0r8urZ&~I?<+}F(;;-_6`GUgAKJ>jFuD~-+j z8P*PvaK(>x@27GF{s>xZvL^>@LTvT6dGAEdGl|v~ty$-EJ;4hD_!lkAulwk3&5}=V zUmc2oAFzC{5_6qJ{HB7)f+2W>^!~c>?lZo?Nf3h|`&-nm<5tUi6NbDS(ssU=lgYP} zDg(cbPM?2Ze$h}WY54O5~!S=%sNfwct| z0zBBU?k|vT?wtzz&*Hv6cfF&4NkEX(&Ol(>6<5mA^=Ffkz!!)wFs;Ar^X_2hKEU$u z@VJ__H!U=ud4mOa5JVq(*bRmpJa?qb!2f>sg@E)X#F9IXu>oOIjke(WI(Mw|GK#K1N@}y{{FlXi{bas_i&`$$x0K3rsfs|y9LkK z^??)I+18qx-0rJGB6sXB7ono7)5F-36ZovI37rjBr8w~ zM7PLx(EuNew!A={sSCkw^r<&tEAGC&(Q`tRkJ+A6=SuhCw2M7uqYY@clWqX}r z+uDFQTMWR&e%_EHMhbEj*__^_5*E(eJ(AxsC`^>*BqLs>Z#1OdR2hbF)0CMvQf zNXSLWQ0aRf7Bj^{?$XnWS@_0>RgsX4AhZbu@UQlJJ?49Vxt;|p&2IktgNqXj(dV>k zmujyy6k=lHho^cgXob(7Lp154J6(*XKY^x6>llodt$HOl<>0n_}wj8>@cW! zAd5WoV4Mv)q&oDW@qU9~mo%Fvmf=kSKAPb>!+1$6A84GPAAMUD_eIjp&oA*QF{@z3ce9B%`VtMgTv6LMtqaFugL#i@&UT2pb zdzuM9OmD}ywVR9*RP{nURMPvzguIU?RljbhmUq1Uf<`L(#Vq6j=H9t&`2d|6}QH1QCDU_ARu1!&}BIhzfBZQ827? zeu2nkX?^#tpM1|J^(qgBXd#6?@i+gjYuk9W6MEUg7q-Xm>!xG=Lj;Kbx`Ti@ z^*fHV*dc4Z%D`9RjR*Kn2&VuxO?&U|T8t;>68qx0!+H7(#~hy1Z&&xj8J%@Nrao27>jH^-CwsL*{(Kjumy1Qa2Ea$^lG4>`_h{D+qy(gYOW? z4o8g*3-i6i_lt+fdm-eHC+@3M z$Hh;!q96ne*BE~H3ks+_3*loOS(lD~-MdK}5(?qr9Cay)a%q zZhsqf?C`U7y*Mo|FY7+Nu)S@wAp(51v2*#hn_0VFu96r0h6LAZckJ0(4=DdhVTc_e z-0)8d|C1MAaNv9(WYV=ZcmbiBq%+4@uPJANjBSIbfPZ->8{+NYx}kh(yY4*$^K??%?| zKMl%(n9O5`c%%8)rX)Ij#P#`f~w^ts$ zKPG_kP0)9LkgBjhI9U1Ehru07!fzP6{2 zp{lSG+%6b@-PwNE@fbf08L}7RoqWv8`TlOekD#4AcHZFjG9z#*r24=W3w5ENaO)xj z&yemQftqR_%g+#Vmc8W8_M*Fe27gxA`zjbR~*I&AoXE`st3GCV3H_1!xZS{A12P1i?=0 z*N@9_3q%0KIfI>~D&SA>J>_{#SK}>M9P#13@ty1#k{6bf{pM42+na3WDMM|&c@^-u z;iybUTDZ{AXvR+*z1hff?M(?yx(sh?Pp2nmQ)t>YvYP6)l!`#9GyA+gg&abG)5p(GS zlV~oz+3Sf^Kky&j>kev*v=#tlaI3{J+kW)CN%^5^bJXs3-K=B4ZM%IumwAcJUN`Bt zd%`aL6T})>cg;$y?o&vjM&G`ZdJ0`8?TZDY%%3ap)<&Py>$ZgG#wt*V&BNtyb25j9 z5=4L~wRRm{&gG#$dqF*qOiz|diVz4y^P}wn0C1N7%2=$pqTyksl}AZnM-N4#8RE2C zY~7&E!L>r6gEyD)qzve~ADj7L1Bo>q5|Jo&Dy&_nR(RN?3LFBefSrjB{R8U3qaGfy z9nxQzE}9)Gh_eV9DX}FDL=Cvwk#oVP-9iEhoDv@aP&(g};C=uDYjDj9XmFHJ#?5W~ z-6sd5HGsdF1IndZXS|`TbUR&>pa5bzHJsa|tIPtNngh8bwttnrKr$4Kv>y)I@6L>p zG&G@=Q07R!0`)TUM$#r{A$yU;xO&3@aDXxyZ@c*KdBm8Bo2#bK%gb^*&XGimIcCz( zDd8l{NS15<$hs_qGdP>b01=VG5}lO7;@etXh4eTVp$>AhZ^gI0LjVmOa|?-2)RL4K zmP(`WLj8y_@Hnrhe1O76agA9A+FF8j(jh^6N2MDfip|in(^cv}IFQ>dw-oE>_sn>)MJXrN zN-D%+s>h`I6DiGmoc|FD2D!TzCQ_Q?>GP6kLz#{v$OFKYOLc%)6JvMFnIQ|U=3Q!g z-!#(Ax;Xq}h2WQ=Bpl2|Z!z9iZ5)1eR^+d!){lx`KO&QYNy0#ufQ;_QYV^9{7k%c< zMvDu9UL)QYI{_>M?&^U{Wgu74LFeqC3)dMvJT7&83aS?+=m04q5bUm5SN|#7CE6wa zumtWew;*+*qw!d?N1v10LXb={lZkUvxfrN#0<7j+2b7g^;1UKrZq1$}Wk>89vnZ~*6MsIi#afUkFb1lMBy~kxQvh>vg4>9etgsCYP3?NrMEQZ zlY-WXx){KV8YMr-Up)TgxVk1Ol?>hTiQlhAN#b0#)R(uwgd*rzx$Q#T_~%CwEN?BdrlK&uwC^sOO$5&yq-(d8*QaoAy8nV{49V1;s_vDfWFBd*++1(9Lc$8 z-pJ*5&rMs#g#n!z%j{C3?s0y>EXFa65q!k^ekPy-5L1f2^LK*PnhsWX)u;=B;p%@2 zM5uwH%eAIc-6SPJM)$5@a-P#KNEZ;qC7l9sk~7v41e%seWRe0GFwnpKHy7X>kgFhf zaKZCw=clMN_iKb3&0G#yhv!61*24(u6^)jkd|@>Q#(y4iAz&_`6|~bloktdbQbUphXZSkcRLlFiaWOsvg#j=w$plK8* zB7acX^&4aE=vnDT7zdVawdsew>wF637t(0Psb&B!*_@1t65G_1+ofRnG0wO{;^zW~ z!^y;%)pdCKZd)n&3_i{B@&53cg9;X%Hvly<4GW$_RWPyU65-*7mRdh^7;@D~w?w{} zj#{PV2!j91i!>{J1&>6sNn93?0fF!vK?^}MwLdrvIYG4?pIM-XfFWJJ7*#AKytiIx zTr=CC>!m0PKAsO*2~~fT#QyK=Xcn8$5A}~x$Pl;Z7M@o$N}(oT0nZ&TOeQ6;Zx*6l1a+86%=_pA{Ous2!p~CnG z7QahYqw=s`wF z6@NsOHqm-J@A;-hGdq%PV$ozN*26$rOj7ox72M`Y*`M*4RCEk~pf09UJ-MTH)aKth zvd0qm7?>TWmb^f|E9NB7H9l!NiNmkKY8@m*{#_`zJIUzvL1QTznHJ*!GFwNG*}g~r z>b1fkPIs9!o6}`siaP{>LV^!t%rIfkjU|0@k9^sVtVlSGbw-QUfued%bro1KW!7u2+ElAxx z#ZsRO&VmxjKKrQ;k9_vHGiHOPz`{E%J9aWea+N0T;cwCxs8je#jF1iOa)|R7Sygk( zF{z$P#m#>ixvR+c>*K-%vZ>>lY`jab2JcXOcwuI6m_H5-ddMjAhYbDa@@ks<6q0*_ zt*e~m{y1#tJ?77Ssb5X@WEhEl=f=~|%QbCzrqy}*(wr#679A3KD$}z}>*O==!XWo< z5)O~b!6sTc=VtPqwF-&l3?&qHnWx8tUh>Rfbl)oRn%<0$2eXtu>QekY8KB~6(XzbRYE6|(2-=kf`0fVcn5Hs89t47NvfEy!evDEqSA+_(O;emtj^_4&!f z#h~_Sy%xxdv-3a)ClYK<7?!!ga-;}1J1KyvYIa0ni5CPWa_1%Li8gWl^l4&Z;I>fX zn877Mvw|02z^6U-i|8`jDWYxXS%v_Z)Fha`{`1W;JyhRUJy{pmJAKW45mH;Rx)2(7 zy@kj2pP?)DaOLu@br!%Bq){EFLzcSTER>(T!Cxqoj+9)K$_Q+8%mQU_i5HYsT*d<` z?hD91=v)MB9!+KcesT+pbHT7xe$bT?TjQK+V4m3bK9_(pM9zAyuyz@NCgE3AT8)9DCt+0Hr}AtY|!3*i2MD)ivjJc>LNKUQN25Rf@xlB$OA#LfGH zNqX;G@7r;VH74-BtM%c+z2vYcQ*xp4b|#e6>e5nDF~Xe>h(zKTW`Nw$$DUR!D3FRo zkuhDyl%aeV{$fX(kHqLZnM-MhQBieBTkSdDni;DNb)re%XF0ttz8Cbx#qTPdXneGW zQL-56+2U7RcQR+OqV$Q`)cK zm$gM@~7vJ2=S>kW1r|%xGKqb@9 zJV#F%+)JU0%9_=mv#wvVs2>rfz)f&0ai>$tfNpS6Nm6_6V93jWu|&PF|^9j zkEF4FpxHPzVzDMlu&Hy0fW^@=K{io%5p?_19ULbn;>QI_=(Pi#K$X!Vjr06ThL{O4 zXWg90MCPr6GxaqFKumHh`D2#B!gLpCvA{`dqivdgVKs94i@Q4!(AIO~a{gS6(nkbY zwLRqbA_dAT=mHQUhhzxjT=4VNjV3w?86#>4QaG2sAU}^m9Ke>uYObbUdX2SEp8|(z z9BnWQ?P9My=B|5NMH56oOgb~j7rn%CMDi7|&8=rRLG6WTO7+X)gu2zX=#Lx6Ilvi+ z30SLYlRmL2Cn=u8C1anZAobv3Y%ckpvFLiwPp9kGldhr5JX3#@nK^o?u69Kt#)3#S@S}sI2fS-utyiI_GPFPE?yCj8IvP0hAzfQ}Gr||h&E^auPrwRMB zhnX)9EP}w_>#wM4IJ6D^>?#M{Q`o+umQ_8+WssQ$-3+sR!6#k)JTbAG7y3vdF_QY> z?~P$$7nO2_21o5p75F-fVoK2BAxH7%YgjKW3?{L>%t|@_C)ZAS0g7a5w-3zQS%qU9 ztYa~!gCkwg!D`O!h3oUz+RuW3)KqEns81xM-L3(5d!9&Qyf{gG;uYz^g#R~v&kAzn zaURT?!1c=(s7t4S`Syq1x?`Pc9hhBW#6^ieVK)or7pQdY_@1NfS4yoMsq-wjb>8^! z?Tdv{_9M0@&0qGQpyE?xe>tD&Y!&N;!oepg$HDJt|T{f-hJFN4`^S#4l0RfpHSzrpQRjIA|x{p%P> zSEEnU+IqIhI;lArT2@WjhjcBS%3bJX(hojrZ1#h(je5)oEe*Ha92^HZ?!*@`Q5}EI z*DJZgQJU0h7%b?XX%u3hDw21Y$IM!j1UXp}$~A@?RsD`xD$e>y{8hVXI^V^S2dR0ej;zYGJu_X(XvZZBtn+ z$LsFav*n-VyHc)9j;+B(7Zmxw@68xfwD*KZ3KiuZ^X=s6Uju_*;Q-iY*OG;dcLm?( zjTwU&gi=uezbzLP1ZK^i$DW&+Bz<$|>_aLD?X5%lnF)JU)6*8q1Ja;)Z&ri%D@~)! zftV9c43cU!NGO&q}~g2O?Gz8qVM?fM#DrP-}j0^CtV(k;}V@ZWRkA8Vbp z$EcQn7Ia(8e`TD8wkQf;Hj6pMlumfT=>}EW5ri(rj}e9LqiH2;qOGj-4)tZod+t`Q zBaVoo`hbiB4ag+RBI=7KrPOMs zwRziR4^79t(qQsVZBzWzDx5^lJ&df?f-}hA{mnUpUlF#-KfJ}b0r0q&UlBHCHF)nwe-66u*75T2YJ?P2u|2#e zp6*j$siBelZ5yx@_1;kye-{w5v*@Uh<08(L<b}xu-!XN6cKDa%(L@;7VJlA6{Dzok0q;4UUR} z$D}>DE}HJoh9uAjaajv19lN}l%OYy-zG(7@R$zcE#`DhD$WD`Dh1-@Dd#P=p*rc9c z|2S4oRK>Nl1VLk15N1R$K}>K!`1gW7?Tj6a;T`cg{GVSFJ&tRqg2~;7AJiQC|C~y} zQuJ5GNG>O&{?y(MmRE(BEgTmR@ zc8f@~Mch`xPk#z9BD2zLh#E(NoyeW9NLdzQg_GE26dCs}8`p|{#ir4T_1H3Emk;GOn^uX?jZ7D|)LqI~&h06&C`VYa7S z@4Zsn+7*DT+ALONMcIGq<09r6Ez{!(}YimR-B@ zWbf;ix0MS?;+1_>X{m)G@3Qy%AlP}|Na0Y+ua!2DM?AhOM!Hcs{tWhg#^&gi)PdlF4)hAHp{qR|@lFLa%cRB>s zwyw|a*%ktdJd`a?r5DRKOSxCyB*(7yNvA##vl5$BbI{S%*nHfF{#$T!mAhIg;u&B^`s;3)9U+Ix}qMHMUFQ&euK@5 z!nTKpOJ^R|lPm&Ai@s8}?IAqbrd`D1YU&%_esHUvhTK~a!5w19CDDAn^n+KHz7hX| z_w;;Dh|`)O<~s+ZXpH--D3?-z9{#n49P-ZBd*athOj% z;pMj6AoEGY0oUlO_poes{2)(8!Nj}_#Ut7n^y#lL(Hhy#%kch>L`T6N!#WY1F!k#O zYUep`GSo_J$bQ*U2zGEdO=V>)u41sfn4Yy;z61=D)fUM`} zBO)T8@1I^~z&kgaHGTjzwID4MfJKnA$#^ck3*Pm1uccN-KIbBwx3z`I!M8^bjeKD4 zL5%0F)WhZsZcgnTq~{G5Y?uIlH2dud>ZTh^t;)n*iu|19080PSBy&+uG!Xr~)0o#w zp!)iCmlUZ`s>8xOy5B-WR!|4JS1d^~5ycjz*lxW%J&h~LknkoY2UW5H)NGsYy&nPn zc2d8^Lzj0-*sJ1Ox7sEfLmHhHy$m1Rx56OCW`d=2wZmTR5`M8ULh0vc|9sim`(9Z|N z=-nr<(}EE_q!rpSIJ!fppeav4SEvB&6^*6Qd_#9gfa`E;8T%YFyDaWjo4NU|A69NO z;|Z;N*M2Xl^gtkvL0vi?4YAtLijWSd@y3^3quQ?X5h@RowX%u%tJG46?5$aa< zl!__9UZodck+3~68+nFL_hQJx)Z6EQnw-{JiTduYsDd zPyS(UW_tQdL|iTl)b#MJLp)I$G!^LM7r3bp5p@UZ4+YcELn}Eyqa!$j1Qus8Bs_*d z9#(eSiHg)iVj>7hiv1=$gNhh-1(#Gwj}fGB+Fo|c#g^x0Ho;#O*5o*`&Km%(uG#BP z$YIgpb6I4X4#e0XXeh*IjFR(&t7vDXa{2W}UY>YtlX=MOc%OEx%vo-JMK$~iTOfO? zw}2UmN_KE{WU2z$J!>%T#KTkh$`^N!lix36AfLfAA)3hTHaIh?<@>?bsgP`8tx_>U zwDGZe*PVkc%wEnH#?qJRb{{61zH*Q?`qda48IDx0*pcjj z$0QkaR%ac2;3huXZLhpp{$WcMB%!`?#bd4smEq8$pEdy`%s9c6fbD95T5cNwT6>LJ zb96(2d@0QgEn2N{7aDubXg|aSC6D&Ff&v2a{p1I9M@32YVcfJ(*TZ=6I~sTT zg&T@h!z-JYoRJguSg57bLeTQKLy(l6J?0_kojncb4uOe{7^v{OGC z6#hKYPf>Hn58wWP2VtHdgMo@@P720BrREXD#l_8-`I#-fBx8yx?-+-%N{2$^)BHXL zNjcjw^npQm3##Jd&N-X~rP1J0Pa+*yNRGMTg6{D-OD+ZNhd;*EB~S zWijbduIjza^sqe<4|)dt+Z4}OFacM2rykqYNH+qjw8k@8=4 zR!Uw<QVsT6t~eXSrfKE@r(AV{@ev zx_SS&hk67kU)Y&oAl6QXpO9*`HMdEdINF`<=8|@Go>pUS`}&^PgaS5L2lUmEK_WBf zmqK>)U(d3}Bw#HF%?^!|#*k#`;XUrx$q(J;4-8%f_d2e1=tD6(${c-w`^mJZrL8bw zp(4pYU5|iKbBwO{Q=Qck7SQV>_pw>&H1tZ0N2adNf z$?s3a)fzrrYK^qh=7Mf_+Xe z6mTz0R#;qVa@|ut^n}BxV-8x6%N2C6&e;fB=tmxF9b`K8haU_&!@b#j<}0g$ z*dp3PpIEmbOMArupU30k&V9(W=Khl8`-Ud_49K`5<`Jq`F}jaYBMw*z85fEN>sXYV z2@>fz(*y}MAV#tm9@p%8*$zW7V5?YNx+#snJVM)j*&V;1f@W%9TS{!#dX8^xE|W9J zsG6*niPPm0-9HuWz2kwr+ROKF!1@{eEd_vyeMAI|66t~1p>Q-vzS84jBit0wRNYlo zxf(VMI?TAl1#vn+@A35zRdXes0+|n9K>bcX2EjN$;nhQQ@a(D(c(1^#)s7$=%#NnVWvMmr@d0Pp94L29`W*|kswvE8>_(jV_oQvs4B+{)aw?aD1m zc40pY{6(D!PA8iBWluNnPqy54gkE$kI8IwY3-Ug+1%=rN@wnVb$6_7NcIE@%>k8tK zG_E=xE`5weOB!mzOPw1jX5my@+%GoRagG_f97Oa+h(N1wnQj>YZk zA-jgWc*xR{*mF1k>4ATC9?=RANhgKyVk2${U^*!67Jvv zr{SvuP|2u2hdd`+l>#9lGH}6`RE%Of$`A{tI?~V>W>fulYjoXyV*PPOW9HPNEd7)5Q~^zH?;WoesE zEvS(we36i?B@;}yOAj^6*$Gdk+zT7Yb?}Hzxb#RtDnI^G zl4jbqY2H>Q-^shyuIb5A%>LUAQuRdgEs(lHze;6;CF?CiR`#2JHhG@u1dYOCxwImi zQ-ZMSnhC=x8`BbFF41mLReddCbk=0PxD`c0okjk!nDo3^XRZxw@n-{>LS2@psxX|P zq|evw9oR$c2>8FZ+t{#7np*a#MCWLbc;ty9v+F`uek0gW~WCyJl+Bf6c` zXc`JmGP}!g6qej+-hn4QSXe@nQc>PLqu(bTQnxW8l1ph&(IhroF7lM5)W-Gh72rYkM z#fv1VaU%P|wpot#GB0D*pGI#l!ud7Jjk)PKX0e75A%KEOF?#0_qq~JXrqU{Iqo;-9roTFq~!@@->N&3SQ9y~Ph&!O2--(qxPMET ze(V=P;@CJ2$qsTH*kcxZGO&{;+9Y~ov5mpvk)=0wUEvOZu}a{NGLa?rcT8^ktdRQX zZcu7@O4%0gc}`@WKUD_1%)aW3?ngnkf>b`Rp;WK~U2}p&Ra~`oXOqwGh5g0-!IlR5 zLl_>6vl=kP$|R_3CFkmur?;Pj{~%9A@KiXrA=N{_@YQ|%6?gx-;Tg7U?~kmqnwAZ= zZPaEj*~2RWCc3?ajDg0r$DI=zLrI6*HYq11rP4w&&3Qgqc6icvaJ{tGXYNUyrHBAc zNTH0!Wgxn~vk)fq>>97JdcK`8mFC`5KX`8$K*T?95bwD7y|ql8oh4}3INhY^u~Y4limyrg!yB_r*QAvE^P@j<| zhoxLO#h9>|Q);N95yY6gZY7IxRi%L3166xlM-P3|)#78pp*;#0>{~BI|DOk0#{e_q zjPk*l8FGn}oZ9BEIH)!1m?uPD=;<+VN&)OY-{I^#T&~8Ffw9bn=8$ zD63mKY-LSUE}JPw^3POUjH@Enf)z_$haB_;B|YR&*4Jv?@;z|&hW?yWS}ls6G=P)? z=Lrq}=DlMQ>uY|@aGDv~L9R9fI)>JHH z!`wcd{-({h*T!2hV5k0ZzVpq-M!o`)q1DN(F-j>=A7u4>_{C-(xCy)nQUJ_(=}Si7 z#Zd*2raO3iRL*8D-WuG8w}2?3)t*H(ZH**<<&^O9z|3N#XqA1v&Er-N6gDp1{9U~G zC;aG~BskR3PgwlX>4=ZK-GtnTm8x~y+pEXYMhjd>l`YQ>PWy@z!cvSh(ZOKjFHm0jY}lxU_K`yzUErYdMiW~-RGcFhiL$aVLVp+2BtXk!?%eXvxF!Q4&8dk&eH|z4j7p?c zXQXWwS3K8Sr-N-P(|9#h_o0fn#D3l&L@E@FdP1 z0Hz^f<2v|boB}aUVI28$9Rx&m6U+WoG6`6i>8eYD_|>05P&?3HQf(+)p?w(Bn4P!f zZsEEIGhi>W#-a($PLvX(+1XpE<>+JtLP*I#w9If;mqK`_Z)_>NYR}ACHlU6eyY?gqYyCk$!%q|J{~E9xQl)p&LA zo~Z}KlY-$sggP}6jID`)ak*7|3@fT%%rT~k)b%I8;lQCZodhmoZCDt=qo;=%-|Krk zA6RO61tlio}3e_>=McF`H=8v??$bf{KlE9%kD2D?^n zc`NpF#V;b3B>E~?IMUUGD#MBDQCR2VF;}~=btZ+s@Fha0L$EM9fuGmDPbbq@Oyk-n zw#jIH)`6}NlP)W>!<1NE;ELwfu$oDc1_Y{>2dsXTshZ`g$depitAgUwt^-6fq8Bvi z=SG&p;xW2!7i;??_x~t;p+=ljfy0@l6h|!`Nh8Etf%T8pWkd;9OP7yU)od?Lj4_8_ zU;m}5BXqz_+8sY~NMd-JpCwQ(35_uQ6+J19P60l~Mguz??@2fzb}5p>^^T+)C|Q;XY4)tDcA{)f+WW&)zzOA;V+Aj zZJ#=hm_Z+TPVE+N_CCEAcZlc?YSqA+AK=uuCqQN`9RFJ=&1g(J-I6EE^yRa7q>I=J zD>rl^k$F=K)-NBlYP|wF8OL*b|DXnoQ?qo;QA@-NghsVNMJMBsvQ3PMeFp^e{4};N zvy$c+-9sO;X{r1A5BIHFQ6)zepxtv_*uO4!b3j&7I2Z035i~tRkr5W$n_GXDHq&_; zS2Y-QUk-j^m_UY=Av9BG_fP`cf@ll>AH;9 zwaR8w=?{~s57JOe$Q zh#pluwF{rO+6V<&e3S5O=0HC{eoeSi<%T^#wP7; z%SA1$Tvkh6@XBg1ifvu?bfZuxLrE<3fQahSBTBpn7!Sp66w%ax75t;%b*(Y{e*mID zUB4EO-qym>?Hz&GW>;lB9JncS9~E)B`G9oa(jbuPI;12vk@+1ZwC$z;sNQrp5ER@B%DFAzXzOM(h})q7fCD@1)V5rgzMU0&5~wO(H!g@Y zn@7P4s;hMr&ha?!G2D-|>*u*9SnA9Rg_HQo}R1J%f+Yd};%5#u#C147X_V z0@l>r7;ZYx^D#NQ$}th@p3L94i-L>BJq^i39z6eD7Rdp3HS%>xDT8!xJ};W`cUiE3 z6vyHgioP3-D%YwAv}7-V%zW_bP6 zeRLd9pE`TXHfPwL0Sj*G=MNl$2RoTzQ3H288||4J@UtfEO-|cW&IBId{u-2ILe^7u zOsHvq=`8D!jR{ic^|%FETHE_hf&9BFK}7*4#*b4J+UR^IXgwiYB9OhwNSQ3yL(y9AlXC*SG)XoL~a@k2NC7?P0 zx7-T9zgP}{O}Km@Y>rU00d(tr_`_3nH1;1TDfyST4;)1WwGFX)UdPG&?Wx}8pWy}2c_PP8!{GkDSr(kr!`ol$PdS`pJ zB0IEvJ(Yo!tUD3wFW=qqq2r`$D!kZuqT94X;2d|)CdxLPG|3VMTaW2RlQC#ga<7Z+ z83)Z{V38!~?75qMx*t`uzK%Ua1)V*xff&e$>&9r*v5$!en9caP#oaaB#sqH9W@5+z z9B`uT?QH8RP^8JH4(n=%2|ph5+9lh%`6BO#px?Rb3eOD^%TB}Sq<5rIoQz$wB&88r z?8)K4!7!?8q(*SkC!tqD*=ha@Ecr0H39#%8&AmM&3@i#0nHDv(Mca_r3i6!XD9Z$e7C_yV$z9eHr?rFL-?uJ)m?wscI;LZr1|;-T zX{rO{dL$s%C+KrZlNm*sOV`m2YE**|>KQoXU3ZUVAk#PGH!|7vA}))*M6u*|a9v?= zv0h1xH9hHj+Xawhj8uRjWeB&Y9Ff-b{obW0d+#O0YlTEj>^G)z^6cVo{RVHtLfT2{ zIrY@EQK55YK5TCT+e(PUpc6$d*U}4xj+(C#{(32 zb*XX=#Z&-gM>{#Xsk5l-UQY~pF;L_jJ(_MOqacpCYOqKyW*bF0G`XfPK?e(ZJqox;x-z=WA3ZahYN)6K~t^jlk5xtB$D-g*oJCmrtB3>>g@IU=sI08}_Q z_#CVpRS1U;!yVpE+Y3^p!MjDnYa_rEUJ2GDYM{?ec4qVL^Vc#lTcn159oCher`mw2 z8+geK0K6}H4195E2?2{Lw+ND0RZlrKX2g1F&i?OfTSD&;Ql6BCd9Gp z8IGx$(wf1=?#8L-jM@i1)r11P&W}b2hYleeI>hg=8l@nho7ZTg^Wn-0erp4=t&!MW zv{)caXSsGAeBD%=-nPJW%G7osWe#aN)|$YYg=Q5Pc?Vfp?%0H(o@m zwqcBAEC865*tQ_z;DZ}gphNs_2w)jWTL*hAm4FGVvKwe#1El1J*cyHG%KluO*QuN{ zHkk!j-{(EXJy40BP>x>gr<4Ns0CXUo0|4`sQJ3wA5lHQBgpN%v!C+DeNLTpGJZam! zeO^pLqsTbE>Ordd~d+ zztvlHS7t;=dW*Yr0c<|l0t4M&)>K#IoF2JwPUZ{wLefbXV9T|8T>+&ik#*w>l2{16 zPqrO@qp;b|pITv5<0#Vm%!=gVQssG?Qcq3|-N1q{p(x$CC8=|SW&T+~|F;erRj+&r ztmAgG=T`BBZr}h^8`vPF;*@hBDf9lo4j!nRyTQC}P+%dUEMiM!05_n7Nz zoy?k&RsfJbv!_RKnAf$_nYTreFBACnHAou`zDeVFknI0S7+&S~X{Is;L00|0N2u1g zlc0hwt!=}4s^>+rh(&w!o*!GlP>M^7rCFVC9jt*NtU{c{>1Rkb^eQ8&gDh!d3$`t! zL{0L{2zlcCRtKN+Ao5HAFhMGa2EntSC@Lc8cfH>jXbC8*SQ>25FOpi|5Ou>@dgb{+ zA%jHVmsiv&tQCO&F6;YmH!bR$Hyh$AvVnGe`S}_2`BMu<6ow_)b9rv{`wPmy`~_*6 zq>{SZd9sQ=Jp(zR{{Bs%rkWiFAie22(r$Du)w>(}y{rds@1A_L>^YtH^33N&P*=Zv zmgL~uNg%r82wW!Q%LIIXYsY+64vj!A2ZO3!1}CbD^9g`dhs_b%i9WcYPIx!Ud^QD; zXcJcX+wZ^!t?Hb$vQ}%We8uX6o>OcLuCCzF!li(0Puf;R0MR&)q;8eLnNSV`>X?y< zkWQDLIUWd(UZ{T9-W2!H&>qtf6g?hMKRw7?H$?_@l&sI0U*CY=z9Op%1e6nib|d&n zR2Ar}kd&oq0kZ8cmlm8K_MoSywm#m`p#9zp5v=;mtO0U52&#nV8EL;q`tzTFQcz#t zz)Hr)r!#OmqkQ}BYh3>GXR)E8bJ8ku`~W(f!S5&SSyxBhiWlb#Xwr51c!Vovq$H5x zoTPA|J=OqZE-INPJt~h1)FvD?83LkhvP{?D=wEs3l^N5GAc5A3Es~K_LOl$iF^Q`; ztw7oIm&d?+TRmj%s_Om0^&V-Pi`j(3eTjfk=ks|2y}XO61d#;kfF{;0d8u1~|OgH7hF4+roxH;;@Kf zJfGWsy^SOFUeRv+!{dn`J3!a02JMt>JqD#ft6)@?Nn)&+M4okJbGEG~2MCLIT)0!K zZbUY}TS0ToyZ~^i4**!K$`-P#TXML~al6Xt70nPq%afRWIEotN`s1QK$1!rP)p=&uY>zNN}z)BYv-@sRczw z00pS-^1FMt|gJG&RqITR!Y85LqR)I0w z9S5n>=$hfora(h=L;@=N>6)By$8udY^R3s&tW}p8d^!tZ5)p7bdY^RqDeLLl;yeBmsh{8dYRld>39S^9ve&S9SxVnthH5O6_zXWOe%C~IHK-%%^`Sw zm*C}m_TDvme30*x%Ao}Z4ZAV0H-{kkR;9q8;z4$h52L;YP1+9aShpa7_TSM)@@7wB z2Cd=qHlMeFLUe>SRp#zkOA(UMBuQmH?3&|f_H9XO=Eg$3{q5UIe`MmeOEH{vIzc8y(|#Z}?P-)OG^iqs7DZueK!bvP7O1l6EY+D7^Z3Ff_T-#BHe zBvSq!@x-0&IzPwH@pJqfKgZAUbNn1X$ItO|{2V{W&+)(K_^~VKH%6@9LScQ9k*}@q zHE0%^j6ny1T1(4xMOfZe!<;r5PaP%+5&LL>u)GZvZG{MpelB!C=()f2|&-x>-E*Q zH>o-qk|kw1*EF@t)Z-)Q&wm1)&LYvW%+fk+iWKYWy=pa((aRn50S87P<%#B3))B0o2O*;ovAN0KzD46-R9i5viQb`flsewz}c_idGnmjA&6g zry=*%Zj**u3utL@`l|{b(8ze~yQD;Nso5PB{ms#S;@Fx*fcWOOsjmzg`h}?V#>PD` z+M>M|tM@^Pg;|I}X%Bp zdA?6uu(8>rV=sPJNv~C^tvQ1)7eVFJ0vdPHBCv0^RNqgnPkk7qzxHwwdy0w`p$*Ok zR~8akN7e0I0+CgVnF1*+*XnH6JTJgBNL8~#N`*Ikb z?Oe8JuYsTAo^8WMT+2-fBn4kK5wOhdzUGXS+gc6)m=}SuL*@b(X;0{Q2yPL}rT_`-X>o--1iZOXgZ(e(7e7QJ`2g;tWP$4Oi95c$V&|l zlSFEQO~2Mp(mrEBIT!2y7=?8j(By!^bpRpE%EJE6_WaJ5M(z-vg>UpqY{IrkozDHW z+{tjpdxf{te&6QYy1KlXC>N+BX7j*;a|^v+=$dqjV{f5Hn?hy>LLFh>8cR zq!$6&v!CTN%;FDx{oeJqTav(K_4a#LcByagNX&QHZ_B3>un2h@C6WZWamQQ+=j!2k zLHYVk{Q}*i_j{!HTr>c&z&<@ZsJ~D=U=Tlmo!E-EbpnI^I(u`L7B(flqG6B#)aK0j zBG3Lw<=H0jA+BU3Kl0%$dE^BhzJA{lTR=-#ZH~t&Ny6BCoWd=c3{95h+=BaQzafHi)#XY!IDZt%o+lwuwP@iO3Pz^3m+Wu*N zjwTJ#X%asu(-Qg@LtA7&Fd+@F*shO~VJm!Cc8|JGquCy^=;iGe07 zpzMV%F~*SQ*03l?hFTluKvf11D%z=^m{(aOn>-!UdKkH}>Bedxk5WD4Dvp;|+7kfp zv$*lwl?ky6kc@dWN&|FXs-4lv_mgM;u-}8mQJkdrle4OF(jYx2uMEnulJxhhgaakb zfN%QhukR!OJ+dQAr5W)K#K^`=Kw?NTJb2`rlTHh5jdxgG}4K?92*2SZtVr7Z*L z3#kS1r6bz_&=%cV+x)ce{mqPQx}Nv;KdUmB15_;FPvCv)QBRlEW&M~$semoe-#9`P z0t$+o0+Gz&uo+ND-eEHj<1gZ)YA7!&==I$L1Qd8L8EX}ti{77|vaMU7u&kX!Drl2F zXa|dSDH(47C11PBx9>2S6~F$-fb5bY(wpA(X{L8=K0<8W@=YmjeXQGWtZ| zhds(sdgf9Es5UvnE@`!~+q2s5UH||f07*naR0yC#ZSQlmTLDJ3?*<+RPg;fEcHWPu zqp-ZElkg|_xwXHX^|ytKX^AuYZK0y?>wmm{tB$ViKDcz8&gE{G%~@>0QCeDIGLk@j z4wMq`_$U?OZ{PcK-pMc?7|KG#hH=*t@<)AE^DK#aBNq&+EcJW=P8A)yIuSrgs_cCB zIV5Y9&i6!}b~B*C`C+dWa1Cyj1$EYb-cU`)5_p3?JqZU#k)Co-@^5{z?OqoD0)2uu z`gla{dv!kBjiA5o#E+vYdloHW?k9ku$+Ecr*?vV@Ah{8wch?<|K;(QzEx3|E-N=#E zevN(Ff^$oj1RZqoccpKd=UEY5cUasoGR>T250B`>9f3;Lgj2m%t}*VXTggXbZNIf2 zq$CNEmbx5zEoxGa4EObY=3S~4J!@-`f`svi;s9h&4uCD@8>o7d#?>c`*m9o&DU ztJiqUjZ-MbHt~C*_uOB1pRl$-9caaq8zjE~-~_<&wK?>StG_D=5iQon*d#S>01$y| z+pBn9ZpT#rj`3p$=$aKbc6KuWCqYmrOEM;8 z-Zl$5F}Htf<`orv;A4N?N#fo)^y@%B8RPdu6{mARasrU_c*XA#uPbPp+V^vI*c&fv z53|=SAs~yI|GEwV(2uB--YV+RK!O8%!?|^b*&y#Ghv&%_eeV065IGrY;?72Td=Pea z%?Jw%bC_F0c49zd*#!`w+Q|d!TbWXazFUBA4RUiHI7FskR)mOUxb41nfq0KFp`ouF z@v=&#Dg<3tad))@eU0{eq?}QwNo0q1qXZ+i&gq6uj}M?feUaDRq6qYTjP&I*_|uaF z3zh(M^iTqgqXq@*bueI#@Hq7AjRhu|K)WNH1ScRWJoyzzu$|74v#QuFM_uP!npe=O zvN2|JW|y{?#0t5ut$OO1wA%V;+v=TF$}2o6MyzPCnLwoL#*ly|Rsv&SlH7)cj4wD+ z+Yyl~Luz|6bGxUJAT%Q79HExQA0To~dqYYi~;4Mgst*TTa6OIzGwTInUC5Q|92$SP{eKLH4=B zr8-#?jS5?*&tKuYcFVhxY zmt$;fGq$jp?__%nvLHn)KDw4ap6p*dc$()Q7W>@H4&g3bF8&MW5&*Q1$MzYfc=LbF?D(EeV? zG%2(fks(zbMnvPbKmdV7-GcOG1ut*Sv9bU`B?e*!HfC7{^g+28bLz8o2B)|0 z#Gabcw4xpPP~gY3s<|Bp05A+v^&E%BSb8sm2>kqr`sEQ=EAqEDXCVb3{Y$|PTw$PA zo%hKr?wnK0RO(#daS%3GB7vf>1)Meu;&z1o(ynR%i1T8Lx6L)?P4ywQ{y#g0W>^We zt?N~7%j~mOP}HBLW-E-+puQn6qM$5*VE|#3-d2}fDc3f!4N3rq(005GVWTHYeyM#3 z1Wwv>Nac>|>Ew_(|L1^G>RwiR?dNEMGrs`MASPPRtpqgG(i zp3;EMVn?WOuOq92&U4tedQ=K43IIuLqB~#KfWgrrnnPhPbi;{sJo2u-fV&h^!$YKrzg-?H7JTJZmde9!xZ~9((dKBn6 z5pbE1f@EtK%p16|6kuvlc}Jp<@@J?@0_}D!q0F@<8?E{kpQ8pzY`#XAZ{9*;EmNUL z;9L!!K-2FGsqHUCc~W#gBbI;Dh1*``NnN@=7E$Aeh<~>MN%ZmJYZlA}Hg~zk9PGLD z$|NblvjLt6)PEZS=HZC?d;qJ2;=K(z9$P%|`hL~AhLk;d@9_kb>x!sxU|B0IG+Z?1 z_r1!aEs`X@QhW&sTh_#6_kNUbwg7UI3=rOwP-Qoy9kcp-DjB;$NO-YkXnUN`wOj4J zK--5hd22`K-vLe96Y$D7gF1Tv(Dt@l`@@ZRYs<@J-ytf!H0UOgjV+=e)fOKH4l7sb z+3jS1AA%CkA2fdG06k`yXe})-%eYj!ny?=(ocgy5%2Rva z7kD!+>$i>73R}!mNCq&22`%7E8u(kFvQ~v-)#m5`vVa2uo3&wmwSX`3))Q{`%{N7J z0yX1GmMwIdHiH!>TxAUPH~XSx{pYnAh-Dz{-|~HiZzPsg+5 zWWermq$^e!*kzQ-yVM>bK>0&|5ydBD6B zw-rt#`KDTZ6O5GvPN_-7Wb(j*iIA2ei?0$Mdcd(1(0T5mu?EElv`2Q)mXDp1uoc<( z=B3SZ3);pCEORFt*n;H%Pg~dSJ(m=^OkgEhv_4GsijQvAwpkd@10W8ny8%2jgg$4nUnPo*JSOS$qeGMLZjc0nG%u)c?*dELkpR$RXpOS| zx<05&aBo4XqCz0^m-jlqO9d?zq)b(8ts9xdH(Su`Ec$h^Jp{Thkp%q0cOuDfj`nW| zm(te!?z%tdQQ!XCW!YlV0f3VOSJkGs&qT>k0CYNo9wb1=oh7Zhcw&*nd<e5OjtNO1b&Ky06h;-xs+Id6H8LGGmcU ziS1ld+^&U42zldwmpLpVj4$uL;c`wx=9oUM=Zx^)4pd2C9aYUy{`_QkLsXv0U zZ(vCNdLY)hdM{>d(SN6df+Vy_tjFpqi*_yXw{6h@w&{6xcW4F-v|jSs!{VhKfV2Xy z*JcnMg$7}i3g5OO&Ma(NgTv=#k)!KtP>0Mj;@tY(y&rv#4H-Y>naXRNMcxDD8&r=EqKw5c_ohZ+92&QGxbvM$lLPFi4-$tkPK^jr8!x2jNS{3O;*9R;@d32o zp}xKW|NJk=(=UBcbSHye-Y}E`eEkkSUqGKfdEYqC3otJ2xkjQO8>(Ib=GN0@J?M&- zh+6j?QBhml8WfpjXfCUAr6j@merR*wf?H;Bpp?`}nBKXwiLO#%!z%OM(-&`w*;M!~ zn}h)|q=$WI0S2RLWikPS!gOs7rV57cOBS?alYCI7ZMw|ug6tS2s7Z_pot_uj-@|zT z$m`wn(f^#a54Tnc9u*pGfjK=r3ZmrOchGB;Yr zkXvfcB_(e!Fp@a=klbG`rR!0b&oAIN(bhKJ3@*i!kXNcNl!QA&1MsTq38tg&3JP{@ z(7o(%Xu8)AVOjjz{yyulM=JVpg<5PoHf~G$TR52tnhJ5;W#C+ z9m;*sVaa2b!US>HV0MVuKDP@u|t#i7{lvx z(`E1M$NUJ}7re+8_MNU6*$76vy)BL;^ZqIxv4VW1tIq?_Sc1{@qKEj0SMajxt2 zu_gyP)YkS{+2=#+Z@U(1ui5KELnHFbYp-s z)YyYDY^VS_pa+{V%Exd3*xzM;8LkybO~r#*=})` z>=!L-U%ercO{FtZm4>PeE`bOkPIAlm(dIsy{LSBzSOa_!lMPqcVtExA2q&{JR6(dd zk@f0CaxD8fTX@iZ2OJMTJ%Hcd!7s1ZnY23?{QfQs_WK?1%V+SAK_~6SKiy!Wv<=4K zsTM#m_vBSp;nKg(l3s#Cu&)D`?e3bLEbEAt6>m4Kp&V=W-)cVaaqCr?E9^=_Rc4I-FXh&~loh)h57I*xe0UYi&I9f_geBtNW&MrQhq$Rf<#y?R=Mu zux0}x8AL!8GF!2sEc3xoc~(u15LZBKVkw^FrH#LnfPnJo6Ttp`4uudy0mJ|<#^)6f zL(|ViluNX^3S7b4qg^LaHsK^KCQy_kZ30KudroWVi5O!--lc@~x9xYRPY2M$0r>U` z{PlNiEc?eFF`gI)(BreLU4|?PEi@78?4)AKfq`L=?IP{(1ND<{c;V>`t;CemD zKkJFr2w68S6`*hJsa4iPE1uc@q)8dM4qO-RYIQY$Rs|=ZkjkaC&vzVJ&^cW-!G+Cn z{r-M%-vgRtTWR<2#iUg%3Mo&RAYKaC5?66Bw;0aQSpgYDkobfn!5n07;e$v?^7|S5 z`g&C$`S*?=-xE_(7(VW0VTz2nYiU6PppO2~!13ac7ch7(};#b|all2|CgMeGYV zJ#=OUDZ6USDBkMX5HcD~90XSR2)*eRk3>RzH4KfID<%a3Je7wGjM{(xe(q)2?qO*4 zfSw*vpB}*bEJ5o0=n>;Q?Bo`FOGos zz-|XA`*dnBMXKyNt?Z}UWVMSpLY~wbBq2qGfko%?Ez}0!Q1+Nb^yilD1dLYU&LYW)h%PZ_%3cfT5US%hg{Qy~=IwRvV2TUDODz%qq3wsq20qg2|^qA&G z_ zbWUYd+i$SBnnbO{);z0pnPh09YY414^5)>Xeb^!GN2Kps;JCLj zYEtNUkiy1VK*m24IF|s(+!+QzACz)UNF2$FIj+HdQmTWQhryQIXI+aULTk&l(fMKu zV^GY2spp&rgV!zW$Zq{y|?Nd~$CsTOLpruH~+&(wvAX~%oJ8IQxy6piQ=ViM$ zxm{|@($=BbIx<~?7_DD$NZt#d<^q~p(u)rR>X?z%Dwh%05?x=m>I#nHu|2R9@aY1R zgQERTs!h>BO631GxHBL2;Qiq11&Ewn(Z~6M^frQ@4c@UKeZ2fILbWV51PcC z+J0|jlgzT-_>2t>SG7{BaaNkEpd*Y}*oJaDK~&GylzkBKt@pAXW(tQ5E;B z!lFW=-xDcaY5PcX2?0rRn{ouD`FJ6*NMKABOB%W+i0~HlZyY?(+g# z^h>~~&o{Qt+2zF-S?CAF^{7qf#%}{ zo4AT`wl<eE4^O5^&g+cow5%MXRNx zEsToT31}F(msR5l4e0l~pAh%|rD05#5z-E{UZg~AVY3GsAHG#Ew$A=IfOkXtUUX*S ze{U;>>Bj3>49vC5~ug&5P^D(|(oE$P41`QK&Vh0sl;)1-<+>Hy>OlT>iuPGE!V0-)z- zhjW?^E1%C2pj{?#DbjELAbbO?0Y`m#1D!9Rw@0MMqx`mXmeq( z*-x!VOQ^h$jo{3yaIqp-x%re7lEI1OlGJIr#cAYwo~;ELvga&CA&R!0QmK_X{H-VTOyZWrQObpA@wXR zROwG&M6L@!I!_Wn1b>7nX+OHWB--fuZ|euu;XwtUYpgl)`r5LBE(&kWN&E`CHchm$ zF}BC=nN1O0qaF4Ao0VyppJzde6kN!VD{5n%kH_4W0)ki00o>pk($^#3kokH^_rcu& z&Lj!E*oI=QX;VnbFDs}@>x~8NJZcill4sKlniu5LPAZ1m_LDmqf&`TU1D~ zcdl??TI^2PXy4P{==?&aqOb|ZJ6qWV=P@AP@&MrmmzVE5Nl;n-Z|_^jRWd2s2LUpl ziChVYmI9jQwg)Pzjn?8PprU@7aWhyOKxy%Wp>=6q#I9mY^#_d~K0tSZ9-ukGHmqWv zs5#Ng+V>oh!J@+^u(k|mgSm&w#3neu>QUNelmgVHL4CuIu*I5!uDPDus+QZ#6s?e; zgCPOA84tu!qj}Z;RtMAJAOT9bu1=~#JE{2i{k-L{OcQv*<{q12Ctn=8`&Pp<2>}tS z!BBYJtA9svn&^B1^P*%Xtsf3Kd+#S1lr9YEN1R*V&7BQr8wVP@a;UO;Wr0~`q2|6~ zPQ9EO5CRWo?;&&+>5mdrHlmH7y+#HQL?hsW{-%r5% zNgOLn-dP3RWYPf8vIz0s*YAK<%o&h1=ixylcy!PUOVF~)ymI2R01f_d{n@OER3%}B zWkq`9mJG6U0WNihEH+$2)!Yc;sygm&W0fWFVUcd*QAin?fK;>!A8pE$2!Nqfs7N(} zhlHAi^h>^1fGrq!^Xc?_ij zNFY+>eG0ZjE2MJHA(5d8iTbb;o2Zg}L9Np6Vb`sDJH`P_MG{&zn8EL7;O!ltbf1ab zb?xEcK%4JFZhMFNPP{C=j4dgOZNF=;O|$s1fChx@#Fai`;@?NcRX|8d0`~~1->zMD z{W(jLEugztr9DYefnEC`(B|`Q6hczv1L_cmQAH2l^=EWH+MrtkslVzqbe8HO znbM?{bd_juf{LKI>^oyVX}1680)FE>-vC6mz3;6vYU|!djrGD z+7pBgvf_@0X*Oe*L5~kY5VNeH*VeZO;F>5cXYadm*{A-%^1pcz_^(0y0zB__-(IY6 zZ{I_2Bi;D~E>*|m)x5Nb?2|xlgWbhMbVPCZi~Vn5qCSyJLhyxg5Sv;=Vu%cGyx%#r zlOur}iz)#|g|khQL(6^SELH7Nz{&JAp%OzyD&IS)RPklP`u5Ml&JJCNwrCoy&gMUT z0qytTcuv)C=e04z(r!fh@>vdXI=9}>I~#nNK!-ijKmG&w;Q+eKsQ>a;dDF-;Eemh! zkm<}Wi;(#3*6V6;BJk^*RGk2D&W#+-K5J0KNThgcm~B+W_QlUJd*!_BwX#uI`oFae zh=aN?+(WqsK1fN4fCR6(o;+ujcdoPECo<^{#7?;R1ZAS}w)@4(mZ`jYPL z%D3UK1;itfwvAXXuFX5OohVV|qcSj(AX^>|sN*20E<>^8)U=B$5G!uBSFu(5tSW9J z?o0mPP#Y4zlURH*hS+A!$zkpyQ)?%K%DRzD4pN+Msri^%PS@}8hZXj83O?>FD8B8< zhrRrM<>&EzM3FH*at0s8ccROzEZ}#BKD0KpoCH0hq|??K)6CNw!Yu=x9oGN zHz`zVh%rWM>jGfyvSih!e*5EO6Ipk$wb&JorILdK-r1tkba%;zJUV z08@#9x%b)vJzOO8;xef{GW4^`mKy`?aBNCwFcD+htvzJXdOtdc&H4dT0_{xW)HF&{ zV|fglA}@;s;Jckm-|)0agxGgWX@(i#a6}}5wvxSBzlZeGr>660aA9R)<;SBK%Df0O z`?7$Sa=jRmI(}KmAK2J4?{LsCfDbz%#p1TuIpob4`iX$ui28Jp&(168?IMfUIRtZd z4Ao-hpo=W9Ep+y9#enM<9@~n@DCK5vG+O z{ayz9H#Y4UPyx~=kdjL=@^LTD=~*G`3I(Lcqa^$c4v(fVKryLh*A|^w)%YcYW-bf( za?!qWI4sv%IqLZ$NvK~wqdx3Gmj(3OSJYQwtR{0N;`#MA2pLiBp>=mOj6AXKN10F7 zdN9qPm$$a25s75ypTD3SN2Iq&pzr5%gD3);*i;y`Idrv3@A|wn=x~H}12AO*caVL5 zNCL-8)`k>#5yp(VA5eG7kiN2$O$j-b1P2mCZ}uQSlUxj17{w z>r~QcLdx>*ptlCp}nE)p6o3w8vZ5iSB zcVNFq{qltJutPpCNWV(2IbWuB+>iiZwP~_FZn`r2FiQYn0kZ||rX0gc+x)l-RQ~)m>0P2G~h`dhDv`fXoRD2e=`5g?v(}Oa&h2{ z=9^W3lD3iLzQ|(7wq!FcK*A1*wS?~vPp}gmjf_KChyYX(TKng;GISTVF<&UK)aK+P5-*cF(+0 z6soFQKg`+UvoKH(Sv7-8TbP(#O3Et2zA4+^VQ7oi_IX>df2YAYAkT^}Dw!6wP?f12 zrct{kOw?Xj4_c$-1Pgm}IgS7UX<9|*3AjpDZRG{8*geBD^QySn#1POdo8VmZ)Ws%h z&Z1Uemr!b3_#qpLA4jEglJ=l8c@|9X3xnpRG2-S7>>z>GRFwBX$#ss}uUxAH&~NW9 zKZH$SX`xr%+Q1#F49SqN)rr{s!3-g`7z4{qrO0rz1dw z^mb_kWgk__0T_zw3aL`%|E#CnNJ@phJ$b*m1@CnyB&gu2ZcGHiU< z2^WS+9`U@m#2n9yuqGQ(=~7(JohPv?mq1$kHIU8{xbs<2C3ncn06@@HXK~;$1>N&y zm7+zKBqGmJfosK&<}Vr3Iv~LXPm=^KU!LW)mv`{_a)Y_OA4CM~j1fCH!d$^CJUFKZ zC1gBEV2)*#=YCP1kmEttX+?t7$0K;3JwZ!BqKe0iIwogeccQm0aMjD$_UjUfhs{y` zR>~^E_ds?U(5eZykgztNFIFTsH$*?knp~5F9}fw2mqD38=h}ZZO5;+Ht5RE*%470A z=;%8M(J}-n_K^hfk31|PQrY=-Iuc7(MszDQnN(fp_YhFkcXtUi^=EfO<2upxspHy+ z*I^?m%Rh0SxH36U^OH?t)2ic|05CE;C%H9Jw8LJKpf+zKLGX}!#gH&OUa`38gZFQK zr~8fQiZaj`m^4$|eU`WPgo7<}L&InSi{_R9l;0-4tn(2ux4nOhERKYWKzsgC*7*+{ zKX!m_qZIHw_gR0SO*YLYiM&hI1w92Ab^;$p)Pq7xDPJS^qJ#$TF>{*;i5XZ)swowXEG%b-@zP~-omydT zSLaN#Po$Y>0Kj1nT0|nnbRoSe9_|OUitoQ|Lw4j<`E?aIy|yXPZUjF)wBw$%ipUJQ zOs;dtrAk5}uwh2%3A;qrojP2A+|zXhzn?(Mu7A(6!^b^1C8X0uS#THEEjD7p`gBBj zRGTP_;oC{b)--#c=Cx&3x9Af8hdTXN1So*P1l`Gxq&lJEeYL<7P<9z*pTG&olWuZT zgKTjo)Iscq7)T2tO$AuVA?^;-8ifTk%~`6Y)7(2c&|qMiTzvq5JBs}Fu8_cxNQ$R(EgWukf-cHD;BoOv_ zk+twY{29v^dG2Yc$p7^(!hn2Hw%4yOattFLt2G3M)&CM_huTF#QgR8ugnAr1*4wnS zN+l|q7P`)>avZQc0Es|$zYgHsY+^XGByvcC^RiE^s61fjCZn#`jlqUvFgT;04X)4K#0UV*ngVlB5@X>2c2SSH?1qCSw4s2V&z zp#0+(y&(zd>l^UfH{g5$e*1>uEX?lpbP`pBU&JQTyR!EK67ZeQP44U7puB)54|$%! z-@Z$*8)2oIh@_`Sx%b~*P){e>Q_czX?Og)+{T}Hb{*3xXh~j8of&cv9f%64)IRcjn z<=5XO(BJQ`i89RxGa0CH03jnXESq#C4Fl4r=Z36cNh**9Iu?ikZb$Xg1J*AG)SQsd z+8%V0K$X>>tGbs!lfP-HASa4KXA_pZPK!$AM!!u*N4N!`4oNEJD@&0_&n?@)_5An$ zq|l1xLAEF;m~sP{fpI{2-urj*`vjaO3CQ0s$g?KmmsJpOs$9?!T3RCCh{U+wr(F=q z`Y_F))dFn$3#mdI+U+vQy|Toqk?V4N zKuZoNYSk;@m3yL1L&b)DhMyipbtIG6D&rL2QC(wdxZEPachY`!Od@d~&`8-NX$a#_K@lGJO zR%LVfjoKf_#z$ZT5g|--?ie+kWh9Bbx@md`5v?+Rbdeo;Hv$zwbP#!c)r~) zmbNZ~7&Es8T>HBHI?m^|5kEeNV_S+ik)?Qcn+@Kq)jR9|k{`hE{>xI3jt9{sKAlAZ zO0)Cy{EX$72Y*f@Gw}5rP$VeFG<6VB)-1X1adM4|_MX}Ge8BVYLyzFN3x~ivXc$}? z3j00q=?VNOj%yl6Ftg~Mm(u!X^8xGUBj#Tu>6NC6!?#D^*RM!K;LAmLAD$j0aCkcj z>#wN`bl0>&uGr8Dm&hn3U+>M4avSsFj5zys%vcW@bu?XBO9rr4IZ~Y`vpm;Q9Pz@MK(ssUDi>zQyE|lYSI3<(3WDT( z5tNXv591*4@rQ$~SBhBUH|f`RCia|BzdT|7lO(P3R4{)3jPjRXk-mOIeLo{TJ%T_O%Bvfg;KADr8vn0{9FBm}U4NfL)W$SCzqRS5DVJFCsD(EQyViQ4{ zFfG;h7D0~bxzlFPvP(*YI*N_-EmqAQ%`fxMX9?0#xK#;3y^CV|SX3+lT2gCBsF@l% zQomCV1J*~|&t?D1=NW+7S*V6vTZ$)Q>xqIY zl&!<#AgTsq>h}plOHvES(@Fv-cV}XAEs)^Z&{-c+l3QF8N78FkM3x{PtuWJgA-r(u zGR>N(vc7a8aL!^^VGZXo3)0i>A0XUG%q{-&VoGWSOb+{@`c18Pd4pB|-#LE#03A9J zpyKw*saAKogd-^_yNl$o&)mkS? zQK)Rl76Ov^uPpiwg4|w)EO*J>*E9X{e*ftAwNEVo}Z-Gd|Aa&;83B-tp}0Dp;f=sK6zdQ4Pk8y zcE5%J1m$_KjQhRW1RJzd=k~@4r6hfqm{&pMXsc>95WbtH)<7Vvi3Lg z`2rmG5+E*1lZ}iv5h^*N=}XGp&;mGm7xGw&klmbtys_C^j`1A~apJ?8L={ikPU&j0$BBXh3ZGRU-r%)fHmg@7?f{k0hi8h=koCV!zfk|3eB$}vw z9teRtk(fR-NT*Os*d(arfB>f~75I6TV2T8mkD?XT&3eSapOnAUAyuS$yNEAWYJ=_P zHU}82fA4U3k|(r;da*5SlJ~ttEOkXHT>G_v2f}<%WaC;S=-*3g2TjX0Jll(R)Ccm0 zOtfN`4URob!QzDEQq1?ePyoUf~fHrCih&`#3Q!kOB<+SrB=SL-F2UzgBq$8xZi zc->4YFHXkf7KK0^tfbws2qWA@w8Hz!ov)$R>;8D{qj%JE?)hJwt85$B=-T5FZuZ;$ z!0}@T=p@dj-?UA3$1B4zTM|DLVM#@xe1O8pYjq=YM%qCRba25 z1(e9+V~6^O9#x5BC%?sIxW@ibKtwnRh zY)+9SwbU-CGB7fDpM@FtxCh=&GVfGB6oA0mHHeensdf=J#FRieOHZfnWHb(-Up}M! z@(7xqk^aj+qrSW%JwFM#pTZ9L)qH;3gQhj0!F03Hq!rII>dULb*@Ar*;0?c%?96utcj+YXDmJ+H1ZPsSX?l@IXj&MbbG-g|E2R+yQ6q zT1ale4?B`LLtRCuY5;hbP!oY_mIQ*G!;&3K0kPUs+y~-5;=eWQ%Q*`i`STt$A2I&7 z-+bcU1HPuK zM2#rCC}Ks)HI2m919L@0(!+zSeWwd(ze9aKf^$Z?%mUe63({I77?p#|@htfXxN?pJ z7O{mf`f#`JA8D>gz6XGT6i9LXbDDfM{viuI{E`@r^tbdjQ}!9$2n1(ZpM+4NVU(=kSC5V2|+qq zykzP=sZ`|CD#y}-syqh?)U(EO)rgGkcW#HpJSez|Uko9vLHZv(e(V4}jLtwJv|H)> zu?Y&gi3up%YztyLR_b7QbrfiAl+5WSs7_+b262La)-y~xiRC-(uYErD(E{pRu^u2) z8AZlGeqTxqXw`(2z@_drU|pnN7yz(nKOn-rT2{%XjZy*a?xSZE(e7cF<+Vy5OZ8O= ztU71ZGH*#>xMXBBF>quS237!=b1wn1Ij1i!+s)moWVYGdTcr@_gY8IC<`Ae*nb%F=^gdy<9;LN*i=45zqgK>M3C@{tvvOwHSMn@yutRl>y8a{z2`SwWgwRU9U)34% z;CvhF4=wOcs|4v#xLVx}QsG>xQ~&`DLNpM|B0Wf#33*;*zAmd=hOj4O+MSwFd|hS1h|NlLm^6k@CLo3yL~ z5goF$0ZdD~e|Ek541PKSfBhX)_Nw49i~n@FApg&=a*D^Jv_Tnxk0*OWOUgVqyEA8c zx0AMpaRAN9<;L!6Bz=auXLi9baFw+13X(y4fp)Kd`-=Ros3K!)Po%as0_%!;z99e8 zKcXIW?Tbn+kY_`W4-#m+y$2H05UiU#l2+XTC_$zK;ZzuOxriSz4$|IeN$6oic%=w1 z9>^0>?h+|l#DZ?`tqsAftB){*fx5zrEZZTypv4tH{XHd>1A&Np-$$QS9RS{E z&?yuyY?G`N`Bjq_!zSr*t1=&oH9jm6nUW(V?s~-FJnp%Gta;QBaR7RMN()HNClcG4 za%$wD%;3Xbkcja(VRVvU_CAM--KN;+>L3(+zj={$)}F7O+y1S;mz6Zpky+67ScCIA zXza7SM)Seq?I_{38}5eeVd&d?4GPcVD|$7*LW*|wJGDYza{`UY6UD-XWC;xT-jbK= zM4-!0`wQG7jpOrBwU3_x`oDE-D}TWCqO&!kTmPNZ(J+7ACV??#n)9O-hP+g`)+M!L z@zBWJphe8MDL8yRoVtU*$7G#W4Z#XGw4dd_PaG#_abH=~5tV7aCh|ZfO%19jvNDiO z4Uok`8Be_rd6T>V&`$ug-f9IZGOWky$W+uFyn_8WsHXzEU+){OKitrf$&FzKeb zbPf!U8D%dE9L=>sr9uFH1tqliOlD0h<#kNp0b&yihv2-ov1;>vAz_4G8OUazW)pBl4LFHfLp1^q6%!2JFW z{Q5icG>hZ-eiA+O{jLRS?SN5nKS753H9mF$aba~yRR2X{2D=!wS7DsP(B|)r6Nzl z3d||B9=ho0m9XXk>aZ}^d#n zOldZ9R5^bg6KGHri?OUb0xJgm(7jI+aTd; z9F5%_h$J{v!#=5Y1E3Wh+m*My$7~`&le{dX*nl7>S4OhLomJ1XI)heh>6qR_!7v~N zVlnh)B5P|yKLhmtwehb)Hbdq23SJxE%f0cjRWJ;iQMFPqOYe_EadlK>j;1P~wJHeE zXPJ7^I6I&In>1T$iLC-~Zh<`cq|?8aII!QAfk0%Pr~_ILgYB&FmR1bGmwc`E5@k_eNnEUO?ca!TIW*zirrd z&G$Bf)5+WuX8>r`bHF$ItDxOp-`Wa`%o^`=W2Pm6-R89liOntp+>$JHC(O}lsdA_f zinpFgwg2umLZIwI;Jr#9;V>%uiM}bcg;c7O&{i1IYh&c8dbJQq95^IMfHg1R#{>^4>(Ktwdtp)X!y(LGq z>QlRyCXctciYeJwtA5b1f0bbdQBbdIoK#-4naVTHjw5RysToCE;C}c{@+(=)e^i8d@ z4Ju+JB|*aQA!=v!x;T@xCCm0UX|;k^*KI#zN|I=^(`dh}{Exk0q82brmr{t=g(p?DvuH5jOX!0M?Qr2bB24f2Ib$ ztN;%~mb5s7^qA@Dh()eH*b_}{j4hIe_-AbOw!qvL@G*&lkpwCmof^shum?9y zBfU*(&gcSixd#1rLU*0M(34Jfdn@a|s~G`nUoC(Fq*9cp&BnUttXGk$>d9BZ#QY{4&K6Sp9I*#v~+fckV05~Is1LAqx7C?*XoDD-Dy z6+wJ#Ah)twF}r{78;$ZabUK|K`Oap(LvOnwyT-u&UfT1b!br7v5YCxU4+V%@ZI zMtVI70%Sjk^dgaDYy&xw+#e05720lnoIK6adzmx%bVj-y1$wLjbo%s+@_+pUcu2@E z7tqVQILH^3cQcYV3km_THN0s1o|H_BOd9fVK>hNJ<K zDPt@QEV`$q_Lp{pN~~D`0!jKBT=O&`KaAqI>HXuU2Q2^bGk72juQSs3lgd9%prTM` zYf~_Y^KK_Pzth$xHhcMI{yTer?32G|S_M^2I#0&r1?%4N%oVp2#FSZU{Buf+w(64ya+OeOgeNg z6~}a*L8pr(&c>!R0zmYrDZYeIS{+?CJr+jNlObls-nH}3`hin2AL<4 z4#A*K;wUoR|7g`c(xAQ&)XMraf(aNd1?eooRa&d~m9gc_`A^W=O3)Gv+u~FAY(JU{ z_n64NF|HEYTVK_Nt=rTPq5z!pNuIg#ix@#48Ap?-eWcUeP*{K#qPPX;+w)ts-2Jo) zrZz835d?s=xt1b+&Ti;@I!;LtC-dq||B_(ULsfPHM6sFhvr`~XSK`r*$xGf?9m(-80ic=H+CvsWgo-MOBRyC>j#AasW9RdV;rm5ovBoS=++{_Y7BCONIaF46Ghiff zwgMyuDYYP5r5@6G1JlX5Wqh;g9)hZOKZRoD9!Kmy8xz=F;38s7?bzn(zzDjU~+2YNdpe}hBJ1W}Tu zx~{NuBS11@9op}Onf-E+K6aH(qyPRFVSl%N%TG^U2}whe-f@G71}HQQL+e)uz(%+d zVC_5yhU-vak8(*eifr`v*nhqqTtPGdW4Mp5QQlcj!o9jkVT!7yc&F)z2!sDPl5vR_iTODWbyhazimCr z`P15xWHziC0s_i`uiTZj=J`S+If4+TlV0r%Md$u?8V_Gom-ED%PBQpLC?ls>KbfC_3Uz z&#CCmZs_{rNxoP`^oJV$yH-!g+|#(}FaE#vA-C+D;k)wew6EG)5n>Dy6S1Md=u*$j zjr`62+hPLV?CFUB1VoD+hl7GrN`Bn>D10jG;|OS?NP>RS`PYgktc1N~*Y*jjQh;G< zbJT4CEw(`dw#rn}N^I>`Vt*pJCcncZqvPNZTRBQt=d{NbK*zJAPodo(EBfjG;`ijf zMO*m$7B+t90NqD~V*wvRn^`vxL~?}CZxD%YtPfo(=B+P7GO_9$5fI@XT_rFq_BBA^ zw}e>!-{BZOV(&&GNkW;Ol5Q|nU(>z|(gmGNSDFNh@4-_ZWixo2nog}%h>Wl&EF6A| z*&vb0Hw7M(WX4oilxdJ&8YMci?`36Y_w(&WaVFQ=Gs$)jt7RjhFcc5eJz)_tiraCk zx_-|iF5+=9vc!n7>I2@&K<4P$APu~SgmP4{MV{Jswo*?V+e0c}C#DQ- zvU&X$+N2JIGPdMbDhw``Pzyo5P9+A3!#F@Hkb1l{A29y*F4=2K@SG>m`?;6@37X0L z@}_GEHAnTZmxSJ0q+;~^C}d)$&kO+5jQr~>a!R0=H}Ls_^!bxWOf9RBEN!d2>)QIs zcUD1aZ61!;+3KCgq~o0?thlOF%Vsz+7Bj%J-19L@0Ad7J!ywP~bQZF))2RjRrX34_ zjz{q4C)DEzx~!mo`3?E6->|QrBzSngG#f116L>s|gMXgDLl#t%!rPH0@O4?g-A(2}cX+`5JvA-Hj{6Fly`;R5bbtd+mh{(+QsH*Oso*BMG za!7)bMbZ-GwShJKi@kMc)RJ1Ms{`n+s(Ul@=8cTU`Of*yci7q9g=Q{^1GqaR z$vKyg6vo)329Y^6JQd2UYsJOXAk2M$v$TzE58e%+;{-ZQ)fqL;=srFIp5R{If^QEX zofB9jvRZ(+&A(+4MoG&wu`-1~75B+e?$_pori9di@bJLMs##tuQ60}vP~N^Cf~;X) zok(7F9Ok*&PMNDCWaz<{d+@dwM$)qvz_XVKrWtS?D?=|cXfuGWF2#{^dl13Q{Z5>s z06+@-?OAob%+;I)tS=BohL+r;%)lg?2l4R+^QEktxmO2Mt1xX%frdDNWq--K+-4g- zOS7-&y5f=`l9F@FP4FS32QU4+8`Sua}AEudD^f$S4jqxx;b+RkiKE-k99!Hoj+6!dW;Bq|KfEjq224?@{WBxBu*(0huq}Bky~}3t2bK+2l3a zUFy+M!M?#X3~)p+G2kuPS?)1En0h3h<%^Hrl!M3uJ&XwYdAp|;Wuf_=Q{anN36+1*(B(~CGaIEG09dFOmKR&=H#^DC(~3r` z+OtN<(1>}-^R;L@12vjnZ?Dqdo8zE)y{%w_ugbh|05fUCBf%{RxhR;D)YJv4cwBBh za7}--;y;$JLYmv%P)P_G930Xn0O;Vy2pTJ0%P3|5q~7}AHFBFZM?S5@F-kcu(mZ4H z{+heVJelSNYrR_MIaF_>=qUOOz@4#Qa;47aiuNzHujw<$y+_`7sYSVvdNY$SCDiL{ z<6i2xN-mR|@=8bHy!>HNp0-u1%!wL$u(`ut%B{6|>we}M-Du~L&e0qs%IHrCeoBa1 z28%r*Z9VA84*npepV$~BIRjlMbX}!ivI(w?vqXAA0GtP(PNLJGQCIFeq<8jUxQbVwn!D?~2Tnqh=WOb{Q6gD=Cn97i1IRVU+*xhaxl&I7n9$j( zbl7VcMh~H}?F})mBO_LqH3Z3XRVrYOMrowvG}e0R+K;r^fG>B5k2c7IhwD7TbP0ZW zBk2t$qNTaB`RNswCtHAk?!^c?WWaZ_#?CcGh?tR;Es=+?-gjJ`W9)<)o(6|B2wTb- zv0}TKqnmkEfpVnn&E$QiIC$+GZdQ8&{ z;!gJofIE-n(FS;Di|)k;|4b_z98aLzBfz=LiS%fXya{k~gd>uO>oix2v!)f$(ATKA zmKZGpih#_eX{zeqG1k&-54;tv78Q%5b0&dvk|q;EofBqDIS=wlm=WiF*>~WJ9rB|c za_`~1hhHN2)eZ2|X8_ccv1jz&6U4_-*W7<{3*6j*I<28T&vg!E23=gp`MZro+b!it znJvPu^WaU7bTJ_9JElf6XKja@>Six8I8 za0Y2=l~xS_#1=%7TF&e>(pOR-Wxq_l1F?f2GyJKh|G6brTdQ-(Lnu`m906{IFl}sJ z8mq-9(PxqJ66pnM*+=_bMS~x_cF)h!n&|n8%HBk6i$;&xI8Lfk@X)F4q|xuF`U`qp zi;D9g0<(ZJC~Te@1Ilc3W@KNrq9i>e3A@#y+V@6R?*sA>q%wz&h3+(Dv4`MhhM)8LJWa9UQj)ZO zFtMhAH0)^kE_Gim&(LnwyQ+ZSj{hdoetym`qP^JweMLq16taLF*HS(Vl<0te?Wrm% z9g39X(rn~x@ zQ~E9-^TXaF23(|)i%uEHj*tkT=n;+y{fnveQ`T~DY1o4D25w3SFOO2X$2%1tQUhkI zhF}+faT3serBwD;*VX9ES!##&UP?-}fbL=^znd1rafF+6lNcwVY&LnHMZMU2p`ONA zpG^YbSq%os>ntV19x!uv)fyVJ(cSYnt^S7g8=XdE=1Qry++3|YU-EIw+A@M}I|QvG zD^AA@T8}KF+2d6nxbLRw9Fw6c!kl%wt+c%(E9Z1U*3Zl(FCIAq zeTVe;0_mz3F<*k(Ks6^m?qv=Zv0X-??#e$sG@;pF7}@B(1OX4a|47MEv3FbpUZf92 zbWY}*lN8BDsa^8YCFh(H;8l)Dl2G}R3i28_Z*3qO^BVLh`!RE+^4g7^ z*-o|A_XC^{ud@};ZKrcQ0a-s+dF5CK5A1l#8CViruHw?B=fp&-XUUyME<&JGZ8l~} zyER)Y3z!GQUUEy)0GI+_#Uk7XnGc;^GZpO+07%;odGM9KPE;_B&5MFp4CCgiQBp+S zGK%o7+*I4gZC?v07cn`RONAn@K^4|LtBP&wYic8s&J9Z|DAfLTIU<57x)<$~v*%Kd zYv;sY!5nzA0Xnb-=H}IETRZ8_^9$P7&hfp?#l&#P;6!C`KnE%Z^*T48x%DJj34$`X z)hi1$1I~_XJx2=4+q&p&ZD;^x1EJg~j@sY_7hx_YiDH(oHAPWs>^w3_6coJ!s{vSQ zZJw2o6M!JXR&g&mUf~c|6I?!Xy@;^_6v_-5SwXpV0;7~uyRV&39Q(p&M#Nfsz^`+2 zA7X2w4G2v>GO(Tlt+&t?|DrBR_dXX=@2ofQViEIB#!?OhzW`(&Pc7eM)dp;Qr;SJ2 z2srl>m)zL4ts>`M!Gd24l(dU?QjsfBv2MPb?gduoS%l>rh{dQ2w+s9E}V4p((?RUug4e}-+5CJCvBW{ccW03WBRMtuG zi0@ute$>MyM*qnPG}Zd8ZpmVJ0VM}LZ#?2w7%J>ga?RU%=5gzg6uY>%2Is^862n2~ zWMAi-TLk161I?4pJrM%(W2)Clxs-;I>oRiZF+b_S?+h3=0pa6ox$o1AaN8s9f-t!3 z8C>lVA8+B74FAau`1)q$gvu=o$nvD^SuC^YHUI+VoCn4cd^$<4r$+P3c^eT%;&DPg zjrZykJcwrCI%(c`3)ow23(mm8>%UWTjkcb=^<`#>Y@cdMRP*K`7-3 zOBpG(;V6sEmOM(7(Hy;{M4<xbPjJ?Cs_28i8XdA{UX-Pl;B_BQa9%&;swLeA4(LQ59vgWCa=8o8A+_@6`pgD`G zyWU6Ih;S}cJdsI)E32wIWVqzqPOI-3<`LVB8pb5Af|+mv%CqLQg8?ikC3FjxqNYTe z9+tg;d72GR$h@N#i?tdG_8nSqZepgTqEu@y>hYmD#>9K?)64odXm3712ddZOHK5|o zvFDWDvvy}tHq`Vgv|(Vl0rv_5+Hz_+h&ry&4!JsSs9wLN@n(;8S&tU%yXH@>UaIU- zDfpdCFgKHUjVJY>8o)Pt){@{8gOX6wioWiJ1s3EDwb2JM`C3l}Pc( zu_<0R0KJqHu`2}wgW}!0OWUX~> zSRV#oL`>*s@ftdyP_as6y&7;#RHsSIzzK!I#Ga4`hvmW{^%Ax7GuH(fSj`7^5*4pe zi)sh~byEOzfsQD2#i-PJDNUmhz%e5nrDRl5(Ivn!!`)8sw-fxfL%QgZb^*D+LbvPT zpIsNRI6A12sAZ#=2x)MLI}Z*Q*u)Ha{t7(L@XxQ|#*NVCZJc(ZB22nr1CU6dMQBqK zky_ETnn;NPk5ZQFoU&_luAuk05|jHBw$Yo|tS>F%3+;qUw*bM+0dqP#q<-^oy*Xz6MBl=k)j8uknvm`pf+v2uw3G0 zhq#rs)xdPS#uqw!VuU33kON`axgvIDj4T(0;=W>AG(g?Wvi7Gz6nv*A0o|=bcRd%% zp|j{@qgJ1KhqxiIAFx~Y@XxM6rwQR>hTjdK(_BQZ%02;zBPm8nH6RjkM0Jw1>f#K* z(s!6u1kU+FZ)c^wvpTw*0rXBvC-S_=*q{#N9_BuQEcMU?Q6r^ZZb*)693|xg+Wn$wWI|@mGi9!8U?X5z zfM9x&!c@VZM*NewfN*0 zTm|Q00Cb>s9e!Rf_0t~K>UI6W(1B3@X4d!hU-oNo0aTBZU8|H0@Q@rQ zLdh>L)OTP#xX;cN3L;b)6u_3?E?l842F+{2Y+qg$1=%DbIEcZQ28VD=@MEe`7W+)A z|CtyWqQspBFA;nN8t%NL7S`vN@@aP{D8PNHixLrS6oX5|w*l#8;cPD2=E^Uv9!p#w+HJYu~b1_tHJez?;PJqfPy5Y{ocyo_h7nrAceN1a8 z+XigWkfOMKR@Cu;G`XF=o zqKE%P<`>-@G~b-7!#PSVcZpQ!n4T9f*GeCxPO0*wQYv-og-N1J1~1IE6^kl!%|X}a zX1UGOh3de1Xw8v;JpK&UnLU%-L|4rjb#DAxItgb1dDN^=!L%|YcfGA_LDO9KpWqQM z2c)gmJYI6uXPBDj*olgJ`rKno?+W$3e?B5SyAfl)txlqigTrzeFkP7gsotX5VFs36 z#43fVwZX*k%fc|}QOkTzY(YagE}`V8yU2w?pF4t|>a|v^FQ7yO+X!NbnyYpY6X|EQ zhFZN2Wd>5Lub%^W+ZW7!Ru)!Ka({@;?8dgg&f7hE?HzF5{(N0Pkg8o&o$vK;V+dM$ zgy@VoU6-@iLhbk_Ad>*rGV6;dP0BGaA__W^P55jRxQGfL1fR6u<` z5A3+w9}tl40r-kbz}0DG_{A72R=V1GXx(=-k?}PkZ-bUC?xXW{=)RigElzA$CaZQn zm)c<9x#R2Kuss}rZtcDtWt%t!v=Qz^09$}yB3G^{H(;KxMgR-Erfsb2o}-*=k?tbm zX8(XyJ$0k-mPvHSYenmcV81Ix%Ib8Mx`b++W$%y%;W_$=;m0KOLeg?qNj-5}*|5OA zZH~U>Spis!m)J&OlhCLrts!Ua zzB=g-v1P6vPUaGQD$T@x+BpGzKK8oxWm&*go8TNsJ2_ACR2j51&J=4TW3XjqSZ=rh z0y$28q>jqGN*!ql4O__3h+{#c7kXKb;_(GbIUGOAPs=e(okRjB=SxYcZtKupM}!wr zL)XecbsrzF>>nZS9Ofqjw$C~ddC?qncXJYBF(z~$-vV?gnDL@dBeo9IH6WY0f{`|=WyW?(S$(KfUO*zL2Fy|drs+=JF?laQ z+}H^KO71@Z%nR}~6)`H>ZEKx+%S~sNDDG}ka;n|!1iC$fOFeG~3>|nofaXO?!?21R zPK@E%Nx+J8Krh#i7rg>lM%;O%Ugl0XCUs0zLu=VN6?g+uFAl4cpFT7EBo1Jy<&0AA z*_>Md;3pEc$w`2^)j{uW1$4)OupDTl5zcZkHv{PMLUPI}z-@ggorRPOK;z?4qU$8o=>qmxOGM6#q%UZ{=ebQ005~oZ zb$^H~D`4%|(>(J#jod044ghUAwxS8pvJ;9xS+0FcB#w|Gu(^l`XS<&S5zr!A3t7t9 zx+$Z3c9eD0IY3M5<%^A6XNg!I4TxKbwEGta(L)(}q09FH%i}sXUf2KtAOJ~3K~xRm zUhXSy#Lh{B0czbNARs#pI&XRrg(D*$C1Ge4ab9OR=&Gj@WG*?~Z){FF5+({U%Y3r( zh^3DKm5^K0;uFK^3+x>zusQ>^|2v@6bdLILkQCs^yp*UvSNqAH3$V76l>WXd+x8Ii z(1E)Et!-zK@M1f)w$vS}v|mTe?LEU2-ty1&`P(%KVp|&>TR+|7KV@O+ zCJngxNgT%<9Im($?Oz91r_RQ3&FR0(jV4v0?1H~Sh8ln<;xx_mX3*G0TqY*5b4 zYp9rrq4P;EP#DXO0o0Of_46vW5C}S(|IDXt!Cxh+z|F zz(Oa6uO6auUd9TDK*4((Wp+t^Z#NBg8YP*5aLQ7v-6CoFUDH5_+YWvfp)4@KgVL=g zqp_pV*-h1#5|@b%0Dek^R$tUBZEb27sazwZR>zmUdUtIuZwE9&|Wics79FS5YFZRlU3;f4g0e?xR;ivpkOIK4SRGjXI#H7)b~KQqv*xB6+WU zS46}LJ&ttqh)E1p1N9pHEr3ylmH>#*-x90BbxTb>r=cpye`t*}1L-VkZmsDL3ZW?F z15lNGF_7*EXoUa_eXViJtk2sc_dx`ErbWQ{JQq4I0D0yno)r_q%?uYa{PhfXb1d_5 zdAtDt#GOZXy{KbVq7vP0hD#Z-6T!K-br>Ie`J}N$22g8ml52E010%rg?*5}A6 zJ#2xvPot^Z>)vaQdb6ikZRVW8Ml%NljC9ShW}5}cu@%OVK1b$t6uy&n&GsIDTEy*7pI&?22-G~YBQ%3)Cl053&1~kpcS6iIExJTT&5&-ZMBb;>1lZcou zJ7sD?<`zX>)qMukX6t|)#mQw9cb6D`mN^5U*o>zAV9`KQF}ZN$vR{^VPxq7R_1GSp zdtbfLfI7M}IOh9K7je@j2t_e##68v^$T{WRer=t-52bw;+wzQUyAsqj`w6%k+#nJL zR14CbD^c;nuFYKRs&by;5X1aQ(jr_5I*4s$I#W52=q{+!2&`k-NidEQBX<%hPranW z0^+#sZZkUlZn;xOZ=>tuW`F|=CEc{6y&P{gm+HQ$jsur84GWrBz|k2YP|f~Uh_MY| zp7(v5D_;7lb8;g)TG0p(B!DXSr5B5&*<6te>8xojL3i5L1*og{#MW&lzk zV9?ie(zu1-PlWEo2%}7B6C}yeVR{^}>^=O>p}&^=aVxpt#|$eqBAWu04-^`GF85g! z<(&<9^KRAXI5`MNzi;g`uWrn>9LRZV84=Ana&cYo&M7Fr1S-nk$o6UA-1=T~&e&0n z^15a|6@eTEki-i~B+ru_SZS~#1gH7~XQ?B^3}$79fJF4hbOJ38siR`huqSw<%qGBF z^t=&BjC+Z6xCpqD9-GyODo!vIY8FKxj2_|W5KfH#He-0Ms@k2y@$)^7p9_flD_s76 zH=yGL-fa+`-C&zC*vb@oUpB+kJGgNV|MC{xInWZ}ULDsC59`OXTsA4;rbekbp|U!_ zaxS2|l$5e{OOHcJb<;8BS7rT(^2!4EkolZe3?RlTNfsBq#mgHkBht7`AI$$rY%c&P1Xm=nlcMA!i69>MkZwrWI7 zvh%m>MXw98?)9R*&^T&_alt9-r+{*)a zI{-^WzS!dC8<&_b2w`OGKbCpx=8Wl`9?M=L>C29gw#pt+uuvl98eowRWTXv&2Z^kA z2c;k@9X^b;%i5@BA{N1{1Q3}6xdq0rc{I#L1go+(4Tz{}wN}$H!OKz+hX|!is(n;j zE$7p0q=)FRI&WuSytF1@WQ@Mj3>co-U6KlzW&KY&E-bwbsLvD)VAp0$S}U0*rT6qb zvxhn-g1gYMm`UJEMoBpp7Ly!1UkQ!f&y4;?#*JHY5ge72DEXIrxd&5buQyhI%|Z4P z7iB*wLA#Qo0a%)Dadr_z`JTmoB(DF;M>y#KD#`8kfoDt;G~nFkMI#8eqQ0*p+3a=UZe0rLDXYY9pGtG!HwlfS=7)}A8qpi9J-^NxOtusP8rM2YtAE~yRA8l678>G z$Rg%e@6dpHp`9>f0kQj6k62+0s6(s(Jw^i#`Tl`_4!qCm6W$SDDfw9qIR7P4QvOCX za#ewvn+E}``=#;pQYjKxUXK|;tyuzT@UOBxa(8tJ2%IoV4VhswC~`?Ucg5eN|caweJNwHU8fvZkZnR^ zwo#P)sJxmNmJ`TI-!1Cb?FPfSnLDqE20T!jJ9%Go_br0j05b#Gyu_NTY^{wTTA4cl zd_00CO(Iq27Ad>I#I$%`CCrxu zw**}N>j|lM;LwRcT$EBl?zkWv)sfIUq-}urzEYLvWu2lJQ+1fwcnm?**l%uuqhB#T zIAzrX$XL~ARxvA12{;_3MtylNujU3h0_QU@DsSj}4-k|%YSx~6oOysA(WX zYh4a=jF>>HbMpSY)Zpm723 zH(=-BQpV{^drVh?3^vcT_Bnu8-`HWkYW5=NK4L(E03LwY1Uvu%DEOZi#|D3|vb%idwWkoSgDE}wn)e6LucUc)IhJbM5RNP{wYsX1nrVVzyY zDP=BMgxW9;)&M+vz$^2%)#$pntF2qiyfmiDiEYIWIC~Y^UpQYoQNmR-~=>%C_qh0TG@|;K63yr?r?+B~tI(wU(4G1>}sYT0! zT*EIiA>^M>t^C9#7d;L#A?FL7=+0yFBB48EEPIF415QOJQZEzA&jy4A-~bT%p@ZhE zqfV%7UIqDER2Qp)I6)m8z@1H`2%N|V6v46j+TC+j;QSm!zHO_xs>y6KG@*#4{osU9Zv5Bq`@Iy3}8o?o^B8>I&>c&%Oc-@e2~xE z_mbB&bah;ssyY$a)s5iJxHV(7bx^gb9d@0Df@ocKZ>`$axONTi|2~1hhXzKP{^FGG z8TYOL4%T|lq6jXVGq<&tttL7kz)_Jdc@G)})f|Ym?3Z4Lmu0<9agyP@+sIg$mpb24 z0yaH}8U0IHfV-C?Xi3O@fIlsWj|RlOFN`O45+&?z8Qqa__?%oT?qn#0BdXH-3N7nL zZU}J)L??3`?o78WiPfzf6!D{r`jZ@$IwyPJCZVb?OvU-O|nNxPc%9^5tXu^#3*_W zZQl@@Y6<0EOH0QZyc_N^kbYnLEEerObD^Z_w#WRE+nWv0TY#of@zv|VU2qOm+Vp1t zkb047(A`m+zV}=M+v}HY5E7#pCah)E+Q@kUF-?S=9gv3#W~4-pejS}Kt}{alh>;K` z7M0%-n66YHWlK1@fbN*l9kO`eIvLEOx=5vjTk6*n->5545MGQu1L{V@vG)NbyH}9T zt$>_@^5$uM=Cd$W_xs*kfkNQn0(Z^|nyExNDhPCSuH3g6z0RwCKJHn|PEn<<%kL0l zs?fXja3Za%iK_T)cp+<4&xAsJ6^gUJ&FEng;2olj#kiy5x%G>9bira+@rFtyJtm28 zgcD)=NyPSJ#_@d#x5q8v)vsRS>Q9d7U(HyqdgMMx-Dw9b7Xkj%gO-GNIg~UH|7xu2 z+FdC9u>ycOOLYCtQbUE#zG@EZ=W<^5g}DM3Z)K+#MLF4w=yoGqMamxLoDi_4V7lvd zjx^vpg!N{f5{N$|vg)XajIq+JiJj(eYHevN^_6nXYggb;7aQcuy-?w;7Q3p!gBjuF zD0&D0csF2qvW1@#uq4EdtmjV4MQvUt&?k)C6OQlsB7hZcCGy8k(n73Ch&8MJ5e|&* z7R70m2H^Of!~Ua${syJ$f}b(~kGPeRKQ1j;-rvi80SG_6hUMXdNYXTlD5U~3X7Hjc zkk+vUG3Z$Pfq@!{l{baqb1r~bzRW!la?U6`(E>nIWmKe8oi-1#+4pXB6aZPvjfHhz zc7W|I=fYU$wWHg$u+7=Ex6c&T(Raw(P6g7c%|!s%IruS_I?>z*#ETvLDD=U2(HHtK z2Zzn`8T$_xaB#T!=4FWxZeC_=K8fH!IK2}PcgoOGTg*T=MIfXa6v;t=OgQSCvOtXv zvD~TCSb>m%5kK?mfkgR!4T!c!aCXkBTvWdM{=MzfY@vHVj5yHpgWV@q?cC;RnQ)&L z+`A7eoQ?aIB~ie+1p?2b=FTcX)z2*fJdKpwSg>(iqUTycij=BL3FzhwFmQS&6vkmV zG5Q->Hf8NNV+M+~6nUTks$>44ejc7FgT0SUtP(yt$zV+<3OzB&8%X*j!` zJNNwk+D4yoVLOJoM$vx>?ac=0ZEJ)}?rrVldY#v+Ikr+r?jCn{;x(_6dAvU5UbzBo ztD#B81-Egdv~fEo4*)v`MJm@Qbd#i1lO#aePXdB+AdFAEL{^SjujMdbi2`qT3l)<9 zC{ywB<{+LVEBgbeu*#HC%2h#Yx?A*|?51dS@5GSW=%7mTO8I_}u6b=M&|dnHnrPr_ zo^k7-QIGS3GrXFyNlM8TTH%?Mb;r1EoglB78_um6Aoje@jj|>W%NF0P0*kT`ud5%J zs=I-TW$VDMM%0Ulhz+$Y5x-?GV4Vqjj&nO*AfOjCjk$zidNf7{QngM5ElzZeBIeIU(>q7uiLOzWE zt5!hfb%g`way*g>EIza{Yb#LgLBY$|H5P)g3(P<*r!{-5y9>BMRGl-e^N|`+t@c{^L` zjV)FfL8IrEHu_oMoWmO6n_zP}$-uec3__u}r$HU5mZxry&{r1lym7K0kn9_P0Q9(( z{Bx@)!im77>8?R-E7ihU<)9A?4g@#XU}8ys1?v4eLNc}_7&JHU|Ex{dE$gd$!MLN> zYg(Z?{EV6N+SFP5JfH?ne!;fW!vW~l&b)%9?w(Oh{<7Dkvl45o_do0Wvty_N^g8j* z-ggF;fwYy)gO++36Th+vF+XDQhLLO*{VRw4Pcr-jEIWczu{RgRL!2&zzB0T-0oW#n zl8u$-P&{m4f>WWBR`r3hlG(Lyix8MaLqT#ayK&1=&Rpp(2GYy(dCf#Is+&R1zEcK@Df0qoKBsO5_sz$Ww*_0sB^r@R$q#55 z4jDHtNj|#iKjn@vUjb=g_=$>WO74_NvdI07PZ?<^YP_@%`j>>OA7yM_CXA0g+*2{| zc7L&8d@^8sN=SW&cQiu2TyD_6oYCFHvLUkr;?{Dy0>Yt#o1>2TwL!zq0iHE?zv)Yh zWIL+m>tdEX&6Rl2**I?UI*TD}b0Aevc^@@#m8<^1<^(yCC}5jPK!ldk%k#X7sIQ~r z@=u(IXVmM=0xCn0JnFuaQd8cEsM+x((fGcrV8lDXoCAP>k$DliyRj;k2=pE1cfl)(8=Rz5~!net%rbdbrA=CQ=8$ zQk^XiO`CxnN@(1)KhA)~s%nALT=SOEv$`IY;|h2&ihRqcXc!`rhhFC(0ma6uc8)92 zV)k;)`H@hj;?BV>T0=RwQaaY=#Pp=c^;acA-oIk(J`zMQy)z&Ug#AYm;}egYuR6?+ z8M&7=G8_s0HG!7K{(+=U$B@U$mz z2yiijmfHWXi=v;i3_18!dWhWMJrwqb=)nDXTN^$9w7{PY?RH+BV+mT@N-f4HtU;x; z7a=*dp{>%B(a`}-Q_VnL;T|Aqa3lv{dMr-aa70NbT=o(a>5h!l1BWj-!4y3Ja1j#~ zc1Yt)Qd=(fT9WM~b0R~qhDFKc`&GLyds%{3l=s#|BCKK6eb7Li6s6SK&(T)twW~Ki zYeN2F_lXDQ0(;xuwzutVd)wZ&x9x3v+upXf?QMJ8-nPGKxkW*4eLm1cj$ixPcVDvdP!?&-ogC&Ea6u_YoJN6H1Z?vUq^EfFH%vl?E!}TBgp`dU#7+_VRss)h7~# z*ZddDM~8ZN&+}@}^FPk>sT|fc_m=A0dJ!RIe(rd^imLSk^#m8S>hxLeu@f2`tJl~fR9>!G#y=#&Yi0S&(8OQemmc7I7FJ>tzl?h?Yg^CX-14e6_mh~rT&Y@SAu{#@&O?3itu9PHPiN>8j zw-TY!=MiJ=znp7?3o>_V#F8YU-g=lHSOgv9K*53If;>&SW>m^EXHoKY!yqc{^CD{Q zi`JAkrSF)97OiydLRD9G0(mF(#zPRM&p3)AeAh`7I5rW>EQ-}MN6>KubCyz4({k?^ zaEZ|!65LVvw(L6`zPv}=5-$EMNvWto_MQG!Rgk6(46hh3f7N09@{Hkf!cOM|04z(u z%P$Vt{8^93|0^I zG_7dt92amzokRE50e!=p^FS8u1h#1R>V0LkDU+n6N}aDC=aIvl>o{;)inF}O<@Hr- zsPd%DJUAx;a7kGcB$4uBr!m9NI)^<0o^X1%M;ZvbkAV5oA?{?a>94uiXY7IP#|u9C z_Xixl7U8c(bX|gTa;+FWZf|<@A9d(o)SAzLq)eH390vj|jAbi=pxrGO=9iyqX|(e7 z)t(X!B8KG-7kiTHYXDX%?F1*;P)bWDdmiVaZ*5~$f2T$p1(3N__Mm1?SVaAy=AXCE z;k>->*>SH;1HA8gZCapTzrVrGU=-O;b8su+F zjkR@KQVN0VuR0vRl##DyxIV!-VJD^RFdqWKivT~W04@Lmm56!n7(9tR$GSzX?6Zvf zqt@q*@A(A9hAHrp?_z1aXAxSPO#Cf>kKHyEug+aAkj zp!~jTw z1cQNOd=%Ya?E6^%GlcSPc_9X}Jt?Lk6((swJ+i9BH{6ycx3}c+0Hrj`-A;aBKt!9B zBUG&N&1h~AktjhLbX2Mh=?jJF$1(nZFI1x>E_N$ZDc#&yD}%*@@bMg z$Ex;ET9(F~FPcN8&LH+Axm89b1VBmDNZo|8VNn83?=$$zCtU3&r0j4y_Q;cm8xpp= z8Jq2l!*+w8_zgby&t>;mt~@r+6UKJ}(jb&X7bR~u^$y)3NDb)T!H*e1Yd)8hkj_;{ zmUnPSa_f$OptSU6bK))lPWvuOy=-$pao;I5IIk#(RB91(UCWI6%Pinr!4EC5iklTs z^DyUvHOV3G6qwb1llKU;-NIe$fe@tD_Td0tBFJ}=vz`)onq=JeYJKDYj#2Vo2d&L~ zIDnT|0!rr@^ymt-8Nj!PlJib_EEJ$)oIt}M&wkQ-3m%vk_>-({og?(mN2wtmJmTem z@rhF%5}{C10>TNn_(??E$r$Z#GJg8+IiznK@#Nx!m>o{X0cmjveZqb>VfX%oSKA$4 z(hl$bo|U-*E`FS_Tn1I`6$5|S3rN~M-Xgp>0?uLh=z!c^08q!;acmq)B((LEB=5g* zBo%=+0JITpfP8yEe(@4CZ6%L9CAi0rL_;A)aZEL-99c`N`P~3!Mm`(?EqzCQ587>I z|91|2IO=n2K<0hG^r19I02HL(Q(}!m0ES-b*)LHXOlDtMdX1K?U6o9;HQt-hPOf5s z%s>~wofoHWak#r$t}{3LNpNsd)wu#*6JJ|cXyZx?j$4oEk*HRujT51^EOTP>B4NIg zjlz!^Klu*_jNcq_aWx_(hw<2h7YDzM*zG3lHZyLvTTFg~&BqOhnSk7@pq$!5xd$Rq zr3|xF3@Q2PT2~!tz_~f;S|DiP+~~<_Us7V-D+rX5*rAqMmbij-=(VjpUGO#c+(3&t zTs-8N*dDVAkkBs;ko>i8t$40Ir>3!2T_0D+X*sVH8Oikk03ZNKL_t(_IyEVRt%^H0 z`aH-i&P4*?3He+w5oh3>Y}`?KuLRB-GgX^2&b&l(sUh&dV^)A{y+C7`Y!l42L z0@VL2ld|N-*fU@tW(AJ=p5~($hk!-X&%Il1{!h6{e%Koffct6%ubP!m^9mkqakAI* zJ)q9|Ge}ee&Z*Im0Z3kS?z}j#to|iXqbHhTdOk-?$zAjet_PAhL;(RfZ-)$ ze22uVd@G;LUh198_Yoy{1LmalF(tarU=jxhYvh81Ta9fiBglgnAWsAum%7pS9k>@Y zap~LUnL0Dxq+C_W(=>6pR!hLSwF2`)FPFnv9H!iC$UyT`Mcq``jbfB2IFUrmLjcAR zoEgsh3hI)E2l@_lxd#Ui=N;0Em*5x$;9TyJHv`IQ~jR z_Xissu67vyomY5rb;Pr;dK`ZuPM-Zo3E`Bm`^e$=Ifonw-OU0QJ7smLz)lz7ZcYe? zt#oBnFsAoOA%Oc%^2uY=(p&0`Ql}sQ(8V6S-@+0TWotZ+>KoRv z?j+*D;{@~_oT}vW>9mTL6A=&sNHqX>!P_~}wq_pGm#8{yozyHZ;IZ8&OdF$#J{maZ zA%MM?TII%&@D6z+0NstTVP2ux&!PK?drSZ_BXzc+b?!FeQn0oqZ6h%zItV`S+IR_!aQ~8e}4-< z0jDoy^nV_(T=u}%Zn3`{aT6WfqNQ^bfV+jjzOmU_yUki-;}xN~_So08^Y=-_>jL3Ws;=N%EJJ|u2AMe3mnDBSM^*wyB`2;^a zy@&thcYg!jkG62Xc8zc~V|pwL`tVY{OjgxLOM{dW2_*Y;!9DG*I~36hn8(aKQ=|v$ z>*u07oMqCiN-8ML(S*Y8qruZz)V(Zj?Z0*bE%cSM^Bzj$TuW>j@VIjfOGIRWY|I)3 zkw>T?#*8kTJ7$b6Qs#?0y$&1j%vwL)uRP0U)U{FfGS;n5u{nsEF>mP=OhVT+6?UV& zy9MwgBW-Iro8^+Ry_mpEnEvDv_{xa?;#>a$Ul~5ZkH&ZLKYs7G5dPH#@U55VuO=M6 zBz@D}O0+zT3>OJ$BV)Wfay9r=%rQfwiPlxYm;mwxIFP6h2M6w?4|&O|(p|?ednd}o zC1t?Yl`J4wTX8V&D61P+S;a|7HwPH^Nv`|a8}#=NG?wSs9m3(yJv&fX>T?+kd4 zJjnA)y{i#O5d0X?9eemmoH?lj!jWAL5|K+#- zd6^Uc!|(qsjDPe9n{R)D-PMT0m&EXT^v4O)zxe{&%L&VsjF;|KY^QJ% z)oM7oemJT?R%-2;rmO6$=X;`a89>l`=f)Pg^Sm1S$f)a4%QLpm%${RR!ld$N&ot}a zV$s^hu`5B41ip_^@etd6c)}vDZS-7ik_r~r=an+FYVVdh=*%?;rOm2G+2^r>?@~IA z>UgqpB2cI(Wa`Kk(FI_UV{WgZ ztxQIs)_HEgH|+h!E~j!m1tIE@wffH%Ib=Hl0CyQ7BurC>?was-{-fW=fB*EK;){O9 zhx-A`Z#w*w-~KJkQ-`jPn09g#`Bo;o(@WW;HITzj4J5l=D>IY;O8Q<#VGl^2vVI?C z=?Ws4TVpk`G#YNliWfjZdt)3}l$AV5?rcjV0^Onia_i}|$c+@gzB6PVOw%$#yiudn z`XVYIH|krf%-hh?*?_}R=ME3Oc=6|Dtq5zW3MqqTX6t$+t}#M(`P@smJao4*%JI@_YDi9{)f1Vu<+hHemUV$N%+D z{{!59qeI_EoG#@%q@JYGL6k9>2KhUT6`23;3fN_X)zKRn|rD~&n? zp-W%v0RXJ@Xq-mLSso|kc>!2+%`=O-JH*l9E-ye`SAaQ%0QdAA@H8R6cmX;d%UM0Jny4j7Xtz+dc2IkPl4$Hkw{@Uy61&+qSX@!^Q+Ne_Rc4vcX|zT6`2)FG4@{m=u)Yx$c< zwHPEvKYI@fxq$Gphb~co_&kG1QVuXp$hQa3I7uqOZ@OF@MVyY>87Ijn#X-%POnLjMx+?i!?_jmE%KKZ}PK9Rpg_{YEdw{iMPkFJZD zHfqa60uL4RXN^pDTBglFNwKAj^-s26aIO7}x(^n`>ND*e>7$w=1qUEO*j3PdJZSo+ zr8~t`*8H+h7iUT1I4g8_bLff#7&(I`nTK~uv%cxAwdd6#zIwgbG!4V>oV}^*9TTkp zyQL0F087U5o%4Ye+pz>K$UwinR_BIA%5$j-g^Dc{$B3Q~YMC^?Yxl=3W7|iGp5GGw z)8F`)`0w8RC-}0T@Zo+y{x;!%|3|+ic%w_0I}5G|A}?y~`q@UIw@A6oz2Y#ipCyok z^0O_$dq+d*?09RIIzq~zWuQ94Z0=+djTpm)ufY@LqndKJzbriQW&?BpMmdq(5baRw zNPCz~-fLNq?z@ytC|J!-l+4kEl6CMnqyt{f2 zb%Cf~hp4_@m?3okcNCAg#Zt5QQ3T@6pwzq!DP2c|MH-4mTS(bFLU`Cut1%Lb3!2hkj9^Pa6FXB$CQ$7N}x45XG(Vw7H% z^)+{{FqqgwBJNqhdf7inoUT^0IrStZIF&fToqTFa4mV%Joqghi%_kV&W8}r7?_!xl zeqrREDy?0?ke^vZxS{|RapX4lV|!gjEknx?r?%lW>#wGn6QckP-Dlf;a_)od6Z%Xj zCUvf#G2lwg`i2qL@%dEo0l@zCZ3@R!3Ajcv;9I%nPIQ1Qe{0}I7&XxllAFpBy) z$hDML2`1`m#&R_~zOmVj?q0GfLSwUcSyf|kN-$@7NrtjP1R-M%Jt7#nB{3$`vd+egRex=A%C+j&UU*7 zmQ55JdK^U*KrRb^{oBnBS;2SzobbcbyZG>80C0;RryhSgK1DbItcty4k#{dQ%4gzr zHgVY;0q3&`4G1sj9M$_t!|75I;SB$ zl-3ydG%tl_SR&}>f{IF+E`RH$PD>P8wb6ZIf*UpGw%y!w1`>gC2BQHGrjTtPXAU4+ ztP35Gg({dDkvJx}nbl|k&@fK?Bs6reiUiFBr?=&1LS};Z85chU{&;*3Ki&lZ2mCk& z{AhfN&Bui08`c+c(WJ(di8I>VEw6h3;L2#RuC@)cVTLfFq5JChR`yNt2CGM%eU?-c z^XQuM(8R+ErMVgF=i|9N*Rv>>IYMk*1O)6nwE19-S(Lm_C!u!|)u>ZuVVt-Kjx2zD zUNj{@9h>t48b{D}D?lAUKAhlQ-H3o(j1^!eQN~8jB0ARvP~Rbs60s*^t`OJSZzqcSnK)jrn)Y(NzB5Ylk(0xq!(fIVvK5_Xc!0p$vm^q6& zpJu@I0?4C^l=`{aNe0d-vDSFj^CAn&%0M`ooh9?0vQ{@Sr%BOop`!XNLU6Q>-fFa) zoLdX!=H^*73>5(DRHz2P(-PPF#6x8t{=9g?&e3BFp1?W>ol;&ovhEnf4Y;l0Wvq>B zI(v=I&a>MouQ&Efb57N}s>~BoTPSo1bOQc#d|L3thiSl{j!!W>C(K{c0NWz-*I6-{ zT(3_SJ#QUTHf-&YBS+(!w#?jS+X`OGy2II!j^=}bRyx9P~ zojg`j>Wnths<4;*5%rRl*OQbISOLSVC6IiBKnpFqE}TFeAW~Awyh(=2l@`t@bQ2<$ zymGxH8URm58Hdt*JE&?QiqIMW_#@8#fA2f!zMJv&?Z^1h_!PhMgKvSZ z82e$tvV^k9*v(pw%8HJ~04Eem%xdD;cO-j5FNgI4(NcTLGXg}^f!gb!7;dgnbCoX+ znNa6qWo?wH0f=Rjw}?%RSXCKQWWZ& zsxotM#n>*>LxCq*Bp4_<4^n0=*9dx(k4F###?SIu>;Si9uowDb8idy9A~3wlm?u`s zInW(hj3fZvjl(<#Y=#9l9{~UJzx)k!|8Bwun`ij5=_&rfAN(fpg^a6V#`hsqRgyRM-36BhK@C>qXv)&??a=v1F&*Z93#^67jTDTEtRH?x*+sv1%^ot zTGw}Qn?Z7*4=1<~KwGU@nG*8zm!M9m^QzXKuWto7GQ;&fvWcW=D>>FNN%^;w1@x-| zw1HAgGs00L%$`7pQK-l%BV7&{-|<*3HhBEK7x3R0ka|MA=+PZB;#TH-cT1R~$9^;8 z#jgXu{e$nK`&OM3fBy&H1%3^9yqR&DJA_+xT5UYK6C?K?xf91&|H%nA-?&5?2*ZmW zew+a3;7&`q&oCy?X(|-*nl_`tc#AqeYG+9Q2QOlByDjMER&v7uQNiDCz=sp^%U1xu zs*m+z4_+4Jn_KyNyA@~25`iRt(|#{=Z<-3j0XMgjdXQBGUbP7xWK->hJNrb-HcV8F zRejwQ!YL+U0U2u|rlQ!+eOIbjP~u88HMeW=MjH^5 zjPA&o_fk!vJ6fd@z|9OFYF%Q9-S zoO8)d=UP&&b>JGKDykz<$ARUub4*xOI(R7UGw{R;O8{#;p_($~bsOt;=`5it+2il_ zYfD{UzfP-TRswSE`)2Oi)M)7M9I8DJ#@c~pk?@5Oqr)&PI9xG)=lkD=`!<&x^ndjK zeh2*p3*MLm!pWRZVp329xRW{OqJAy`F7uk^ZsttF+3Q^H-<(+YGLFwhkImLM)*_SG zr41M_n51Q*oMRLVhU99auJA-U!y><+_GSZg;O>NJ=?g>vx!U=whe=f+&IX8`r?k|n zl1QroWYMs5TbHz?m_)BCASN3;N}*^yN`U-c80JPhcR-kBGf2Ak`LSMhcuBau?h&3Q z+U zWL8$awfQLB9N`Sv#{V4QOfW(nMsSJ2d$Vh3>APkw|hvW0D+0p!`Je zLUkvS&oNIVpenQanmubL8D&v#X3%|%{1Ks%u-Zay&lS-^AL5Qc|b zDChex8Q=fafXy#v`2YMF{@>o>fBN744W9oxVe^fL+cUa<`3NG$>3P8BsTz2cfV80^ zn#fK{kPs_qkGh%ZrXeSyjP->mqS&7G8CbNajC-oDs~Rk49n+@H-BL;I9PQgeVa#f{ z5mhRC(i*w?OkdQtT{~;8ppheR<5A7yD5bb;PILjZ+ktjHT;GWp*)$0yz3V`mjYM`I zp1|WI^mhPsdkf+$CDL{q85Yi0prLEjq70HYW`-+j=W0+`DJxZwM^eE+00w5vAj^Z7 z`s8~;e6xWcf$0tK{GasL|9QrIE8lnjCGh@t8|;2DWAiT`F#ca}@ZbL*{~eCMi`e}s z!0j0QediMaYxv^m$Fyqw?frSn;<=^kvywM?MBUU?YlbO zZC%b>H87m3nhMq@7bv4dB*5J{IF`ETMc}II1$fU9ZodOb|qC8ReOIU-FX4^HL;EpB-D|HfO-=B5eCba8i*10L{8+Ht9a~ zKB`?}hBPxR)=xmd`MRz+17-a+r)M6ZVsQeJQU}mhoVm77bdQAN(}2zAGd6$ogz@k1 z@IU;Y{|2XDC+z>|vDpCmUq1l=&W{5=`?G%S$k;qE=AF>z`;#z6;#R*3>mHVc73e1m zv{*fIS~{q+MccCidu5>+7I3SG--5>LfKCNjTPnIydsD6sc53$bE|j|VrMxO2DK%)s z;hJ^qs@f0W2~rV5v_KrF!9HKtJJC_9j6z}7xh0-xBjruIRF?Tt`_bdnhBvJQrzwGw z+D9VJYv~&!VLbHc`-uLp4v7D7ga7&8{kQlZ-)3z8?64hx>2FW)Oqd^g>_6Dp25K6h z{7n(a8JcHJjB;jFk4q*27EBTuGlSY_;jCU#pollfdFJ_{g%Mu_ z6iRO3dPa&z$sBK%gD&NANFsRwaHo2TKQXp{3^@4>`nwVFZx1*fJ79K5?`9193EpQM zo;ING`{MPrsCe$y#A1Qsz?kmbCPk zsJ@E;&_Y~Ia}52I!9?(*h|h5cl$^hgFuo;hzpIP;-S20dzUcAPZ?V5Sga4Zc9F9GB z^ceq(3ESNS?=l{qcJN;f2s)ow7wUO0^9)B6hKZFrD|5s(Ip{X8i_^~fx>*-&thP$m zYM8mX=9~jrRC(LFw69U=?Af&A-@Lp{P4z`$1{dQv#<9etMF8_3Z|HJRv_k!lfj1YZJlLXfk4IqLh_ZPrXK;yMVM) zI(ip~stlFE^Vu4sK>V{Z)rN0PX`SO*cu@T;?Ss4Ze!R&1wUo(r+ndxLMb0 zZURU^-7{i_J4fk9i`1$LyXBlCrDg7H8?>+GrE=%RtPh_BvoQ z;kVS-rgpqFi{hHifa;V2bgZ`P67b{CfaO;EObL(&x6o6z!Uo^}iM6{Y9`3_=`KOK7N31o%qTI zTQ>Ld0@Y*NbL}BPjWH(4&(Z-{#h=W`h5$`!z>68_8GycrMD=&erKP$tWe@larNk0^ z25=N(OQ^IA$|Nd{BqconnPj(rVED1a;ddT*GsABZXe)?fo&v^0K)6>bua0oaQWl{^ z%(>n(wWSfzd@rC-VHRD2K=c)zo7h41NN^44gt%X%y&{wXt zrstZ%Q(l*xO==>nWTH&WVgwftaRcgrx;PmF#XD6yb*27sc^(!u1_T>fmzbgXjM&AlyyphX}Wwz)YCNfcem&`=-P2o{9nGW*`ru0x#1B-vQG2uz^T*b{+lzFVKtF6mlg;UCQqGsu|HJIrDCVc`t)BZV7JQWApFN;I2owKVkd*fboq0UKi!L z&NsmGZ#{P3%6*M*9Nzw2#y#)w{yz=a+>O|5CtwSi6H~y`(}2w%d%XR-jOkXsNB@-Z z{F{LJ7S#Y^M*qwRCq{T0mB#Eaz1v{Ev9ayN(a}))G0os{lv?L~5MeR^2p;4l{KyZF zqRu|gpv?ffxe>?R;Q)Sm640&Dks@B@eVuRPh@2TJ5+lHU7F~c6LASmo5_SYRaGW)w zexV%YwX`*D6sX|N^3$1R{jxsKwF-q?!<-)$p~_s{aVquQuj!MqEo5dz_jV6Ob2F*$O zMEjQ#3&q_)TWadZ6IIsR9AA`ITY@qj=dH+J*(=m(m68C$c8@W~7c0dbSH>#&2~Ai` zO=mk-_jT5ivkp2(bkI7jd<4bFuCWhX9rxnM!mC*3wN?b-AULJfyOD9)KoYg@|D|mF?(;BZ;twVJML|rOLm_ZY%U9KwAc9ywT~O1 zw;RN3o(*oOwC3GyX(l!>0IlZ?Q7>;diT3kaw^o*8%RtC-O^LD#uqWe<6QC~u)JzOD z-dzLg!>Lk7Tm;eyNE-q3772$^wr>BJvHuD<{AR%PhNaFS17Q~03P?T8CjP?$?g>gq zQJRUH@sei#6W0l@U*+YwE5N)^Q6!sS5T#u^EH~%A7N)-h&g~qdUtfwOUP~+K9lE&W zMtL`-YODeR5RF=DUiy{FYk6<|nl>qm=Uy6nWkIBp%Sh_Ym!?j!RIi%@A#NOcGg<)b zzdU1l+ry7pjG||c`4*UN>u0%{@%-B!pa0t#`!78n|9Xe%EsJVz65WQICvnE*4kecy zK-qBIM5RQCKQsJ{>QHl7s`Hk9sQpn@?^WTwQ6w&ciS|s)>1TcE92glOjYc|ND##jz zYcW5x4>RM{G9X?k@kA>Ab8YIpob@?$4amz2sxzkqJ|1l`0(FB@*|%`VlhoR_Xsv;A z@8O1>^sn`4-_^O)cT&>Lz-kk5Y#k?(f39LQUgs>T9s?ktWV-VhHUqd1$XmkA?+*yS z+JZ8pd(P;N9@8x_-4QnT_4?<}9B%%|*nHRH`0EabTLuTIUE4hp-hM45+Qv6jSS2|C z(;G4N!ddfc8Q6V2qk9--EOr6hdCYrXN+imcpk^J02vCueG=M(T5{^L4UG6*JbO!ak zq!f53>-R8#NXroFYpnU{n8le$A&7&+1LQlIM@hzcKB{xY`{H2X>_pMO3*fUuKA)Gg z_iJiK3B4G!Sc2}7N(21x{;T7^P)uF(w+G0^wr`G62dK5mK%&ZCDga)8Dp)t?6g$## zoLagpGW`XwhaS^ihx3jBC+q)kPq_Vk#^%F}(=R%7&(;qzw}^po z6epHHC+xlk{Mn+^^1V{uq-taZ=bDQznk>?X?0h2(d;uWjTy55-k43q==CPOc=h8E2 z^m^DL>KB@cXL2TWAYR)(vBDFVfU@F=MLv2v)?aJJz*-;Ij_G16ynO$~@2`CYhZ+>o zR_q)l>baSa2bnWu)e#}{ta~POPaV<_O4Wlf0sRAE|COXN%{yx55@Wt0)m;F>Su5^n zB)z4qbK~zRz&ux=ZlJx%4lV(m`USB7$t6hGwl-}U7v8_nUIpi6JfLXA{3YAR4bXv? z5s`HVHXDz4RJrEo{J=G`SgVDyVdyhH-VYKTBfXf(OjjCRnGQs+^Gt>m5?io4Rb z!kJ5Xk{e$K&x=ZnC3N3BwvShBGr)_4XKnu9q=jVvFs1XHG18=Jwp0pWHdn z@r>bK25Ig(G5!aS+=}{f7zhrb9R<-2BPm`L`aq2Tt$gzBc#bw4L6_KC}BX zfxZOH3SuX^3)3B;J21jo?(zJYSbF^fu=_S+_#gt2;V=u;JvemtXK?3KrCQGG-=F1s zSxGMazSMWfVKqLdx%O|$<=OB&1Lw0u&8?5T2f1zmREpT1_u^nrSmLN?hGlTs@MD}`Li$8sf9Lc462ec zq~P6x6BGdiv03^@`7i4*-9CfbJSi{N2Q%t=F_#Z4uK!HA72CQz>kCU^`(@V*Rn_CdUil_Y#Y|A`TkP&~!w?yj2jcV|%)BpagV} z5GIM@n)ZIny*Vy6m!G%-c#WF3n4*?xRG?lW>|AXrqsgb-{LSV3y8pC&!b>XqnrZq^ zY$shSnekKm)IPOO?Nj^IKDAHnQ~T6DwNLF+`_%rUY9D_D9cUs?EANND?Ck{iLEB6TpNIvJjl&Ra3ht-Ijr04)^h#ZWnR=_ z{~=+xl1IXgH>~Y%R4>@#JoRW@q^h*-hdf{F+Nzi5pZ zTxphDeXUV+6NBR{W8R{Lg?Z(K-pN@a5XvygMtQfkR=#GID6q{jOH-I*sXI)qQhBLC zOf{GH65W&;7itZ+;%_P_5 zK%gFQkr9r-_I(6J#?xO*j3-M%s7qI_}dph!Xo0;n<_UpWx5B224>D z?GwYrEb8|b=~GcTno~_Jvu;hRy|;Z9%o<^Tg(0Pkp2eEq>CoDU0Yz_ld?X zS(Hgzjn##XW6#06ACID2THE4ciVIj}mH*!`K-=K2MW!M8Qj7Q1Zl^5c-6ep|Y8!=m z%mNcYZKgm-gQP=+Gow4o0j5>LUiOLZn8l{@HO&vI-(?KfkkQ}?9sg=0)%L;JV^dfTb%jpUWr%mA-1yfPVV0mVy@ z&RRx8@;w>~aaM(L1L@2tO3pHS0dP?v1$47fY6&GB)1Cwruu!e$y+e1%*nS^z{!C`y zyd$LEqkopk;YX5utN}<-a%FQTAjAab0HyZMa!*!1sx5&~azYpjTDvJ-FBBC^pW5WQ z+?9)C*OZcX=!^@v21BLIkL#JhmHH zc`XYK_{D|>t)ZKjU`;HHS_Zj0kDci4U#@#gQI zaQ|Q40szLh4)aZi{)y2YGQydVdPeHhdF90jOM}oIZ5;?_5ns%KkT#NEMGaM}XfrV2 z8!(=FszN8S7d2%>xH_$@*;1vTrR1xVmKSnP#rrNiv-LW6={4Jw+B5}y-3&GIZb^f? zmZkuWGXps;4O7;^Oz!34wi1B@u$&|9yl}2iu34V}EBz5Ax4hmDrwpQ4KqiPveS7wV z^!BD0>EXi>UIhi+7!gh#;?^Pe4#Yw=OdFtoV(h-nc-FL&`Bntx!ci)J_!G)FlUgewVSQ&NW9ruJ|ZlhfzG4TW2PNCcdhbJjIeucei| z{HDa3wI6bV13wBR7CJr`@^lx}-i6bMUj;fjRKYkGrPQtIa=2MRxSADN1wH*J^jmY} zra^#(P9*eY_I<|f-#_8}>mAPTJh~&}=Kc)sJSZ{3^Hh}U zyW>>K%*8ibfK^!0XzV&CoPmXymVkWmrJIzDQbD3w``fj?spnio;1+<=obssW14~$4~_Sq2&~s*`-jH5TzB=a-9ij&HugOwfhuC#Fep)}drnzli3S9HEi58) zCCF=TGMpfD!H+^+rwqic!?dsSx;rq2hlF|O5Vw-<6h`?@tWLQWj9be=Y#y_dd;!jFGPNMA0UQR@%fAIsZq6an%}C!O>7O5sn77Rg z;ZQ{ItRCe>ltS{EIE-8!5jw z-pS490KlOL4Ot`|sJV#YsDMc8+2UNsKP44Av9Ci_MVOsD%&^wELt{k#++n^EnumMSWBBG&*5Bd%2zS?mNy-tr2uwZU z{Ek35WBZ+6-#NscXqd#EdXemF={j#r5di3f#DeX6#=Iw-K9_^LXK^THPY8zucZx{c z4sMFbn}G8#ckVh&_wnzW25s{d-`n%CD9V$tL&;M}2J zqa1YM_Xdm*3)u@mshUv~q_cnsD;y(g>B>mV5`2*A8~_~&-E%QQkUMqKdWg-YpXnlL zH5)D^r20oW@8%CDjKA99`L_WeV0g%&^9*(l-G>wCG=VprfOO|Dy^{?k4G#U|3_8y! z5m$2-O^w)|&h0kGpJJ+-NkJWXw)VH{j;&1%Gl*2Lq8y(Fjl4T?1W1$|4U5*kD;D5<;Wt-s zzGx-duK(KL$R&HIJWF1__F_)_yx8L72k7gF(jw}|OHmmsNZ$&?wY1YUrG=zK$YMik z0fvF}cCTu0!6@%)-y2Q`)hIe!iH*!c>&=XC%IXzn^bZkWk2DbC)?pY0Y486$A#Od= z#vyJ9^Oi(8TJ0T5fKPP-wvljF(C(s6k`h7J4T9pOL#;Og9dvUv$`gCC~Wn|9!&vuE%ua5VwT5BXwF;CzU@7)k>6gE6_55 zArnR^jFQAfp*ln^_-BBncy!tFe|T?cob zF}>Sp#7+g<9AW!DB6k6CN0@F1gMy0PHyLqjtPvFt4XBK*Nf;z)L5=*eOyXS zg_DfI+{^mz#gB{rQSC2htg1?L2LV1xC7p22=nfgfdl_$e@HoHolGgFW*nW8cnBm45 zm}aDRH{i}AeD{pJ3CO+9iNx^Fql|ekHXa9YevqcfaPSJoQ+0})tYAU`d^4R`JD#iE?pFT%p|ryu=fiN)Xz6iY3^&mux~b_Ov>wWNz4; z5L;m_5Vt6E{6m<(vBO;glCS5i>!4d1SkxbsN8Oa=gOLGr7@A&L65 z0{GNdZ&}%VJe386p_5VpdYKp&74oV=Z(cY{n^dYwp}3RbyhgRYbP#GJ(dM7kJ5{F! zoH;CX=XKQV39IXowd=%C=mgN0a(No{ zV^4*~OXq2sieP1@tlZ&Fj1Bj62AxL05&Xje-A0zHyzwA4vgf-Vsdw0Thw#kSvQYNV-Z-#+`e1Vj~ z&cJ;B;kj|Gx(q-CXFmkQn(}EF`Z_1Ps}aSN#P|h3yB%n^0S~>*4Vx1Rx^v%wh7J@w z_;5s9>X4i(Ko!9wzukj_gMXAc!NJ2njp%kVw$s*Wq}yS>@kl+Pe{krI5pm-|QIw^} zx1vWfX%4#6%#!ZF=$>^v4=5!&{ZySvOoX^G@FU~fz`2_R)P!@weA{7s4!5zjj4%6Ekq`MyO6cNso7_>ttk?#>w_74DZ0`0coyFK#IiP6Oj?mKZHHYqVB zlCF*uA}7G#oQS4c9i!|nb5l=oJq9kNFkD;vA;wi}OX->gKq6FtrY=zd?(Ds!I|L`` z5bdQk(7|4f>`Tj03lco7>=99c_LCfxx*A!_feJ;})@@1>=}UtEg{t~4z<@Fk6yO`H zDvXTosH{efFPyMa$bDL-62DFMZ0*e%;!!IoC{qsQL}gNhJj$*+4*fqMb-ncZhQQE+H&TO`G6NPJ zv*#92o?G4o%r_nUu1ELH6X5!*jL zA%3>StWm~!=MXo(M#E?G(gLX?q>auAotwpBHgjQ=Eb^haQsfck{$0bA^)uHE#uMh9 z1AB?w_;W54&le6X1zK&d+myi3HTNdy~-qqBNby|nDltGA+QZT<_J2j1%!7)o&wbrI`PRfyW z4(vTBUZ|z6&VK;N9hGtIÜjZ;+Z6WO8!#H3ysA7vt(%qjy#}PdApm72RkLm4zG&uNCm|+0WX}`MXvxrFo;J3FJ zf4xT@9J&XB2W0HcBDyfW5;6EWxFG-*y>M9>vPQj*9nY0wGE(9MLpzqj+Te4hMcS4%A$qg8Af zea+?%)w#h=glvUwu9w!7+Dg@jM$8H1q}-q%Wj~iYjvIi# ze*O+GgygQa8947N7+Fw2Im_5hl2TFTOG{l>W4Pq$wi~-G?$a#J%uNR#Ja`ULL%Q5Y z2F4ma1cb&O_a5LI^y4IeUe9r+jGZ(34vkn9KMs&aind zYVJ&gxFyW{0Hz%_UuIBBlFteOzQV8|bcc-8%Q`>bcy!N6A{1U6rs0eN=F>!o8_C1X zLH3Dc%Ym^-42Ya+jcKDFT8^Nxr{c~ddl6C$M~RpqWdv2MM$F>C?gGXywwUf*;SIq_yWuq}7vPE_{}LX(OE6kyI-)^qX%^iIYQ*Yj#rkQaJCsRP(K zFl7YwZxth70Sib#gE0kjpfY|9fcOMJolopo^m%koFuHHC?F_h&jNvh(dy;YGk2BmD zWlj=-&Lb!@;up8z;1Et3-NPvRVN5d4fx6%J9p*1~nBD{s1D)-$lT9E_m3Z-o7bxqH7On344&c{ zq$0v03e4Q(L2I+fRr|UP+{7~I+h(4it_nB_JzS{jX%H};29Ma%4Z8cn77w;wqIC|Et+H2Z9VAM-Yn*tJ96p$wiSaRzno~-(%L*@uk=sz=C&Ss zn-hH}Mr%rv!vtqWw-Nt!7}%GyLNj{;tQo_lWy| zuJ1tS5!i0z`m<423I3aVY;(r^W+P>$etir7Ji(pjr6CBwj|uMkjPB7PZ5`sqNi~Cj zh1Nrfy1dw|w2^p{K|%v|QA(>_s#IXqF$4eNU2f@9(kCuukVbyki(Ujxj8^-Cvx$@O z4~tgWv$S>0o)7SH6EVXpk%|pn>6}QZ2*j1V@z$6f$A$*y;dVRF(2EYk;ZOiOx^59k zH>U@6p=dfVGce{7Ae>y!&*EI-L!|*{U-tv25kzBOS!>sR*7OS=oYLGg!YLy> zDdNefl+D3|&I}$zHw7%9KOCbNM!IhBrU#uT@RO+0@z5g=0WL>fyIpZCk|PBixiWG9 zw7MD04Dt@t_p<&>v*-p`b5yAD)CIY|KKJV_Kd81(W}x#+r=I7srUQ^ZwLJ8et#c`w z&YJA!sir>xGJe&7XHVcrbxv5iPp)IQu%8AE2#{*^G*xg+-^VL;)<8uLnmX7zlx_RU zvaZWMz>9srSSI15z#`?B4u2v^_1gAGy+`gn!t;#qJi&ecs6vIQ_UF(8=Mmg@NSy?2 z{5gxNyXh-*oy>`87Ul?`DPL8C^at?UDl4sg_da z(AYb zJ@Vj@gA)-TFN2)sR4BOIkpOvffSwav6ay-ERBIS^R0LK40nTimva&lild*WBUQXmz z**Ziq>MWPbyl+e-c_zghrC!0N&)d9`_A@TkNw3d>m(R9suL1mPHN0918?%7!^4@xk zvnp8Ak`hX!-u1>aU%c^IA|iHOW3Jc&IM+yfzTG0;4)B{E{<{YO-tQkU1PA(JUlvSe z22@N6eFu7|D$xF`4{*ml=Fj&?yMQ!o;YZ19rMcF@6paQc$40DTi=*U)v!lZN$Xe;Z z#~%nmxTtKBv>daGO%vQ0lS0LGqikU8grW%t;4Es}fUO;k5sAa`!cLU}?SOaPBT#_~F4 zxQWp}ObFjSOJ8jU#LxH0gGcw_3_2Y3`!x=NpkidoPC(|;*K1{cxiKkED0S&oKrZD9 zI_w&`p~f3{(h`$b2}Vqd#7apu3g9KLvuP4oSSPO1>wTByKP$Z{IptM9}2_E7eOr11#(Dl zdgMWLSlpc9j}zR(QBt*ZFQX8^H(-{;K!ZE^+8R6js_x&SynnAk_(z`q4O+a`! z0nb`W!O9a_G?z1YS~=K(W&giO8ORmftl!Iwg(uk3e3(J4fZ#Q?c8$qq7_Y$G8Z#J< zXz@gIOkss^qfe!mHCtjCE!XCN+-W&71=}t$FaaeMMD6r;iikZf2ax({Om|18$|8+* z-6(5%V3g05pJHdFttiKtzJjHjEKGmmsE_NifWm$}`~3 zg9FL6rV{b1HVik6TzeKjKwDo#&KuFhS5@2Fn(FO2f5CPg0Nt8-F569{@c_#)`SL`1 z4a@~Eo04yiQzL{lhqP_tEp|fbwH(*ujDC_DvToMb%@ax}v{tCVfjds1*@K2qa#eE> zdZl@z+*vHCwDBc}5I~`uo7dVUR+U=4Kg$il%1hSJb{COC>n274*S_(r6?!n$&unMC zi=yaQlqJ39bb`Q%;UGDVFF=X?eTh~=jmM#VZw=yqh6(l0t?@M1Tr{9W{Dk`MWIoI* zdZ^`lrc@~IrG+37`OUB__r(l4oP|yGd@LIetJ4Yq+*1cklib6X-(d562i^`6Noy8K z9#maEMtPqIbpIsPKhjQ|SKcAt^a~HIKg>cE-g)GXs#B?qWdkY#yp7^65f?1Lxu3a? zZ=itlwiQQKW`q+jbRdX@a+!OJ#8aJ1bJjT|*W=D34@%ui40n#eoGv@8Y@?$}16!8b zS#3|k2iFCOnom=8KshHlqATxN=A>MStCffuA8@q=S0<-3II#F}q4iZ6}6Wrqg{PeUGe6w+_&!9M~m_c19 z)OBWgmd%*Y=doxG$aSt1j5Lj71g#w)=6G$^7u!qNUSB%~ZQUmlCHKx(yFik`; zbiN9{9ZqnjGs3KFG!djkOrq1El?+}qa@7fCYrds8MV6u1u3wG_LJiqQZV!h{f5l04OqC%kBff;o}DAmpodp z9fReBu=C90v!I~Z#O1(@d~xmI=!JxtZk28(4sE_IZah9`ZDy1du<2!9rK~FNdfxL1VU9xm8#<)DlxCZ6)euUIa8BqSGIH-UB2Fbm zPk_12ag8hj6@*wMB{gGRzfg(rQC;lKt8Jf+%w?mnc~by;Z01X5xJK+JcgmRQ9NcWe zCrwHLfTFEn{TMvB!(vX5U9(*eovX&!wMEXGW;L-(YbejixeAYk01A*fkTkEb?~22! zjl3IZr=bV$HpsUdDGzv#VzfUTU^G*9B;y|9NHV7ttK*diDIw^dPjF)pVJK#J-6wLd z#&yhM$QVc;v(gv^OsApIB!N-bGyL+X5ON01Gk{jx zf=i8bY&USjPz|u0MJVfZE+y8;DDw*1Tc_aFI<0J9xDfek?W}Jj<}@v zv9IgBF-E3FJpc+ zClDjp=6yrY<`vuO>h_EE-f7LP<^-D|usYVTfOVs*^T*OasOW#6W9O5UQg9a_zzvEVh!)1Jfdjx#XPZjm(MGG3&+% znqn1yQ^y!(sQq38j7TgtPNo9PZO;?Oh^x-tIaM6O8PwEEHK&%@PKX&q4MqT#k@HoG zbA6u6W8_OUPMV*oecS-uT061UVlVap+D!x~6Q&hgDztN3(4x}Ra|S0>C!C`g$Gv$+ zlX#v1&}jxuQ4~s|sRV1DhfWHsv71IrOW8D2e7v(kX`mf)g?KdDep)=gHO zRHD+Tf(;&3@XF{iEeHq7{FY<%m&U8y0{4Xie92j1(1=C|PEWIY(v6l<79WYzjWk}E z0G5XvR};pb@9T7MZRV2cpic9{W0YtYGh90-ZuZD;Z-B&bhf{HQ`R^X!4rlOgD2_zR zS;~tMiIAEaY&6O_E@oj^>7K=?(My*yGMoy0G60Y1M(Ok$!1oT}RL6IrI+D;QnMBn( z4z&~&B`G%*RN%+-TI61JyqiNR<|1@RDJ`md@J0c`BvC1v6T0t@pwlGz_tw{UH{kt7 zoD|VSkh|Yo!dEIAMr^oP_N|a|U;=q(ij1tdgRar8FCC-4%6fQf3i*R3TnK z$FhR*1hE-xTpL?ok4>G3B?3U~2+oU^f}blWH!(wk%#pYcNX?vZ6Qg^Y5$?}YWn_-^ z`^Q*ySDX{kQ`KnTS;uYBz}U)ucRma7K2Hc=KS-Xs0(bzRn;Y;>Z~DU{_~A*`m(*k zs^I)ZzB&=|;E}qjE8%9*PjSat0k_?}-dEBOWkRc!VEYa!XV7%>41?THhR8>@h z3#c!7`JRw_S3!J&c+m{}vn>Q%7c!u34($Z8#qnY;)rDt%#h}FKYpp6MfVw#YvKhC@ zOVd=xZB{X@7TiyBF?jj;AmbGP?Y79j{0#AK0~a&G93`R-fOZ4;dwBJ@E?>rWoAnmr`-9{GK^DHH;`VM*5gQke^c$V=605@u=X>^Yvn;-)fWNW$w zC4#pUl-PKxftTZ}bZRr^o3?OhHPrQmz!2B-@*uhL*8KAXf1Dc!lo_badKI*!r z&oJLf8b+Uz2q6OEtePX}`%!4|&H;0jQf$E$x;6KqMmTIN1yVMZ()u*g#~qM+aUzFf zD$_b{sIWmS-9u8Knms}1ic2WtHJmd1S;klnR4DVMHg%M+h_F4X4hwq^a;$*d*kMte zb6$XpvxuXY?+pO?Zj0$N>DS&lxPSZ>^wqZ@6}Mu0ewjf*))5T4KFv`?{+jyd3wokC zAvI;;MIQAvw=6<&W#>&7_Rh?ed1yh6%nKFwg(J}-Xj#}EUL8x^d8B=Zxb>h6gy*?b z8^|QU+odFPfD9<0I*nMThJBQ+$0TEvy$aIm8eFLAxu$#oK<-eg+qB^PQWJYc?y-B4 z{RRMd5K&diB)<=xf&-0Ek7Ko^biFXAHRmjO=Eep)3ecv$ld)=P1Yc}1|KbM3K=2Ou z^EcqHz7?l?W;OrxGptgJrgli_!DddZqvODWIb`V|_WI8ui1p8=SrEwk<=AiEhmNr| z)xE83&;t7m7#O9@QtDX+WOL_A+Ju{$wG>qCbrW0844E9|W-3URKcRUa)y4;^txfeh z&MG_sWuBChZDz+b0XS#`-z6@=vv8Q<4r9SaNapmUipN^Jy}?^0TCTxMG&T>-O*M$t zw&?@%PR6LiDT$yy7jt~rX9)uc6{IID^?B@G{)yWa&$3VLQ~T6DwNLF+`_w+Q zPwi9t)IPOO?Nj@Yr+w5B^j74eL|iY?Ioq6qR@B63js)au_MGYz#G{?m?sH>$27)~PaF$4NKdliIJ0WUZw6p%T=KS~tFA2k}_#WM{+ zJkSJWse2<%yu@%#Sslwgk?Vt5@w(*&S0uH5L1Mj(F_2b5h>KXlPtL+DnB> zDajy8?g@w&a?w{FxJq-ON_%PZOMv?OwMP((&8fhasU;v3#B+tQ3x#SZUJqMc;4w4^cbDsf>^MV#Hx##t{Eb^+1 z9fT%gzpiYtzUOOgw&pcdxH85yPnLnLXBMX+RPT5K7gGLonFL{gFuExA$_I<~~X}!UXC%2?lM3x-LAb)c<^;SQ|hgyz*U<;&P^LhY4Rr(A?#dTPa$hJ zGKW)Ta8Tqm4$u%0z?-lQtES~-?)OF7Ei&?rAmQO3D*lFpbi z^36_4BF+hTK7ry`#+hkOzoUs((_}Kzr6#++NW7OCPm{FqJ5I(PC(i z&sYjd10}l4PWJZ&H6AEY^}<56(}NSug;b-@3}vV|vsVC1Wi8js`k@XmF*%0F5+HMB z@Mj=2!fd620ULXTi;Y6F*mlC6LBTx~a}m)N)^7%e9=Q)Pey6yiklQ}N6;rir*#;+Z z-+>1a38k}@^vs39gEs2!ob11>>6!Qq>c8Rq@k2I<-S7WXKWu>MW#TbC* z0-I91zMffWY(i@*xx9^$uqdBUUThpGKlGd%afhp|aciwnZCy9!#wkK1paiHC_-R_^ zX<8W`@4%a07SsDP_~{vVc!VE%zGX%nQ5v{!0xs|>1&)j%E3@<%;i^44|ksKMrD zemUNuf3Ly0T~d$9D&FYKzyv^3MmJAY)Wqg=C#4l#%w zsjUasCj0}SWM5!arp*Ef+`4YP0^@K>NE=_&Zp8tVB$rTyKmh=W zkvoUnS7mB9b4e-UfU-x}I0qWzuxL3rR?=C{QRalBS~fE0n%5gbi)*h+$C|B)#Dp z=LAq~5@3>i z4brWYMRdA5{;*`iJKT>H?_mWsh}E(zyCifd~NHKcPFG!G}Z1HD6SW zFwG1An6tHW#CfZ{8R^q?%Ql&)baA%HXxW7?koVf z1VtJ#&oXuuxEqPBmo%?t^)IhvQDi- zxBa}fT?p*{Q|K^U2S9Ig8;FWnhy2-qrJ^`$PC!Gp#AwE^C~9f<4N*z?{0vY3JABc z@194=(ThoQ-de|%8rC65q;f6VIeyQbZP*TpdjwduC!(yEBCcvMo`l*9fiZGDV z=7cVutM0gYH7D$6YiOImUP|ECk}a>K5s{YU$`>Q(m}hZ*I#>3N;<&P7tj(&}JPWXN z-pL#|o+a{oyAz>Nt3;sB#2+K5_tnwUmIh^pb)rWHetV0&32+Zb@cpCo-xT2vr>dZD>%=q{Q7h8YkWzi3DJ$7H zunWc#001BWNklUF=ZLF|q&IpDw9c1Zx2(2LlUvKHXWAYMM`FuNQ4VJm zMur*h7L~R=+)r7AvTW;VqU$CYXVoy=iiyXBno}MH$h7PHLJSuu>ea;wYf(aFEU|+) zRRPf-N(Nd)z?051q_R#B$HUWEoN`Vo1=RfWX6^P~?4KfLsF6aoA!(e&bbEX*WgPkG z3G6-G7w>@00D5>rzJCzL9q(kqpk~K7l>M7>WyMlsmy}34 zDS$`a3reuA4YoCnow5dFGbftrOYkxWMO;v^4QB}=&Qbco3)7dzNgT2(#~+z7Wq{qB z6(+jZin+xM@GROxE&C}Fc<7M5m(Nk{2Lfb16{qXUF0#)pc%xbKn`2(!1|o%2e|g*K z;|Az0Ft_HKD034*Ez$Ls!t1M%gf3M1{g{-R$2ID!=X3DLJ1GO@4kPG16_Gf4J`1SM zGRSB);GdOt(hiQ5@sgMKL30G1L@~Zj{H&fW`9AJcOB590w;=8^43KP(*cN$isa7 z_tz$1+ppKyaxQeNLOE{*lniv6P>gNR+T7i3QB3CNgVb(i1`bCZM-H44+KGqe4}2RU;}Iv9?k`R%*lyLZGqvY}_vZKdVzO3n*&nz+j2=&$nGM zUj5h{KQ$D@(3InvlhU9YgN z(IpQe1s-qT$oK;!+NQ2q9 zb;@o1vU^62ZW#4lMdE18N}X(-PkP>z0S5de*K(=uJp_Of!IjdRxf+MIo-3WwO-6BK zVZ}It8oPTtBzK$yc%N&@I(U!##T$%YhydK?T)~8UR+f&jLH5c- z*bZ=~5&8b1KI2>syfy-|0Ox%t^ka)AUgMkq>Y8W$v@R#r{@(1*dUCl2Z@OxT$Go7w zI!ZDwnZcb$+y|kuAESU>bL5^;DgnqGsLLF!or<|GzzmeJUIgUw(y?m6gL3B?g-UE9 zaAb2XF))*ecSn|coU4<%tvch5qkxb(3Ol9?pu-6`pGzrG>60k?pV^A8qnmdX;_t%$NdAJDQ&?YKo$umvbxSNG+$ zO?54;#S^bZ&0B|*J*TW7xQPT?Dui6u>|3=VC|5k8C6qzxv`SpqNFE|kU0OmlIvkom zs(nvp+nXt3;%I9?-rDopC^0axvZk_@LR+S^(5xv)hNBEnvwpYp1QWjILBGBEzbT`PS{wjb_tTA}FnLSiD3~i&Cs+w)s&jm90zj`s%-hyFE`P2vwI4S? zZ(D9gn{SMFYigh_Xtb@@r0>96%^8}sCUXm9?3&XInw46cZD2HuztMnS1BvT}FGJO< zb#t`{JE`Zn)O0|jd?5gnOR}>+6Kv8283>E2hOq13ESAc zD*!ORy+OQHb7qO??zd8Y?fC@vb|-XMU{M~A&H_-&Gf%brW}yqO@*Ayw zZc(W19OA}nZf(-q&y8|#!>)8X=HcMCR+<+1y70zDpp%|>$9pHH>i*LI8an|E@`zC(BzLC2FlHq((5j1LyP*s_C;S!6x>4Pn99%S}=!c+q@ zdDDSH-6Vs-V1&E5nVnEab?Rilwe_(qRhivUYzE3!OC+z- zE8XkN?OrEg6{On+{{0)0&S$<{G}+Fe(*gL`zXAaA(}?tX1uj>=_uiQTVh8CkRfTd( zPU#w8Ys2H&Z?)XRz(Z${gn(TBunU8fF);-6vN;|AGyvWj+3Mk8IuY*kt6f({psyum3%fl~ zKO-_7Jt+m$V1E~MH}}?#UAeVG;hq!2k$SU79-QmCu@;3q_M-H@2H$gsm{UsP8$ZzE z;9ZROM~)vmK<6T9Q*V)@GzWX2ChDV(7R@bELV(kO(04BKMjfHM^?=cTvu-k72P`Yn z%UMN$^1aAG{*Ln;oNgql6EtUdVQdZ)P6G^g?$tqS&X={$h;8!_D`AV-W9)>Qb!Jvd zq@LE2)&;fJ))(A^z!m|GN==Dn^&#fv~2!3NC44GX0yD$dGFPI=A5S<+p{FC($Hae`y^`u zP{Ftk>GLP#-@hXL`+p#vo&;rIH?R5Rki7@c8bA|t8b>ka*3)%a#i=F&vrvT7(22;( z&{wD4+7;R}W(_nX!=Q)=lp03T{)r`^h;tYODD6|J3^U*Jc!s+|27LX+>q!UJ)SfeiRd1K0qX}Hr%#g< z71X?;vWLK>`OU`o)6W@lUfF^Ax35iQWDtRmgWFga11^koTR^u3JTJ2MEo-$QIeRkD zf*8(iB9_D7KGqdk5aCg8EKk8 zUp|Yio5M9)U~X%o>+ad9Kl;$J4{teV$ZP-(Tr9DaJ7l-9=_#QYV9^o!RfV9F`Y3?b zbQh%S2I`Z~Mfc4?KKChU+gPm&XQN#gu5CmiYr>PXyCD1#1J=cy3%6@wM{#fTMt1QH zA5_>htKUHywA;RCRQD~nWsJT0a^5O-w>KoEX6=l_KD@M8z)HbN$lnc55_kt`}swRWcygXq*= z;0_7*&jUKiP!XzSZ5L;BuJ$z!L9ndWa3xV31b}$~uWOwwvr^{mSThRaP{rziI;l&k z$a?Bf1{HJA;F_TuQj%*deRA4vLwUPRlj(v_jBr0x6hrR` z?dzryjY{}FLkBgX;?E{##X7BLx3Sfxe(t(#r@P-C{+P>(=y>pK)>pwL=HRUCOF`ndJyq&7GP z133d(cmBSw%%!21MDA^tdeU4pfhF~&Q61LTgq{Q2CM6ihNd%y-H*q3>yLwNkqVJs| zwhishVLppdZLKa;=1LXNvd#r=|24sxHnrJcM`B7}yNJ+M(5+#e>;Lni!*&uXJ8qI- zHN6nZ!Oj|@qJxiv3u!fjxvC!9TG;(|y4*nTSJ44@evQC2#-u@e-Sc*HOQ;6b72>R4}c zVF-1mYd~aW@J+B@Yj*(?#$t#aEh)LP;sJy`x($AAIX~Rj0qP@ef)V@49iixPQqHl} zQWLx0Lyzs#2u_6VLP!@yUMgV6Z5`yl+Vs-YiDMj4o@7m=3qY*wFqU<}MLjt%QuQ1P2LHk1#}CkB{g}~o?8a`J z0|x-=MCkjP<+Mq3x%pm!!j6id@8rQmCC+%Rm`x(8HM|y-tKsunpjGNBJU|}@(6YMX zCnxy#h!7WnSSj@>RaMS7>9pph3>u6OspAB%wX#jh)f}_X&Alaq-%tIwZ=&^{cpHcq zv?yvW*96Z%w?TS62Biq~jM)_+q0V1-)z)!|s`{h;+v*F+0&>lkd3}rBbFYQl?ic!!b*c-6zmRHl6;g z8UP(3U8*7~C#qt3n>f$3N`OzdrLDJ0$|B+iLVO=#B%S|;01maaAb>mO6>qA2@a3}v zDwnIEuZ5AmoiT+qLFcOk+MiCcM$T7Bx;_%ovN_PJLtrB&Z_K_cI?c)|Du-Tc|AKhd zrVJ_qD3O4bCV*u~sG)_W2Ipl;A{qxEQ4(QKOPJc{G=NX5Q0UXDr6EQ!R_dkH#&-=e zPFdUQd`}m_%2~?JKC6%AkvkShS7Bq&mRR>r&nJcs}w`U_o>_Z1{amj!*W zmuV4g5fksUvIl27#Wi6;Oh@$@*xsScCn$CZO|BMeQ5!&py%;V4MHnH3gxEo1yVtCt{z`$ti z0EE{5_6E)coeIaLB0+rrRrD^pu}Av$F2OzkI!w~qv=s2S7x9S~5t3tT(PqzBnQVNU zB}sZpJ%)V>jS%vsCkY#u#-s`p1 zf0kB*Ay9|48^&F$t%mzz&O)9nLj_aV~nPXK2X7frb`qD-{Z61}S;+Qx!3TcQaM zve>9$h)4^}JGFERq93s?_ha4Udzk_2m{JOGn~~mSZd2DGU2c^fLh1uB19_<|T$Z?x z1Ncf>CdnE2XK0oD_yM{NZHePb(Ey~*)+iQ|#i72J7EwblbqCj*pd^=oc0iprU3fg` zVzq1!hxT1@a(U*b+}ACP5{%HgN_O9ZnMsTyDZRo2Da(2S+Lld_$cE-l1go!wQpmY* z6I{sO>{+x9#cQ){WAhBN1;pm`F&fdJ+E>sP4nkn^*bp@6p*f4pZO`YFfwdr=m2PF3 zGdt(d3q{WQfo{2G^7cV^FQo{Sl292xVvuf|z+sYp!pu^W2B6F{Fwda#SptA%mAbYs zpTr41OrT$X2Vbwq|L?D$uiyN%oi3zK z3_Z!Y_<9AupZ$C2^dz;s>(FLc`zm5b%Zl{IpmC_wU;8{X`<;af><57cY6?mIxvB_`m6@5LOP`;c{4g0fB~@CWB~Uehp+ZP=0c|D>$4Gh|qU0{u)7>)CLXy;S=Q5xgs(ZqU z_;|1ARaDmjNcV<<+6e{l0GxZFlJ1!vMl9!#)o7B>uuXP^lTBp8~Ai=aE zOaShB17EJP=bcXCm)g87MOkH?(#li)T(lot#4e2^y1)Dx{8^GzI3B>i{SN%wzstW< zLRP6Sl6b_Bn`dn)yD(qAnZ8)h{;?))!K!fqpLs~bPH(K&T-}zY}orMKJ2x>_S<%xwkDn)FeoS<}Wek(5+g++uTXuJh00EN5{T$Y+V%=K4eO%9si% z$-0}ydY_jS^z~KFPgLWvL~`sn$a7p*)jBGz-y|Od`ccY3w=8RRpH%)&jvqTfw}(jD zW@YGQ0>l<(O3TG&$JPyjJEPkbnM8J4%Z!x*y3I5R^o74c5!r& z0IkJP3K&GV#>BJ?Wke}X&$sJ0nj|(2CRRmGf*~NKp;aLicGLwVwJqLChfGw?g7ZLK zGh3c&_BqmF8beTaB5^S|w`(tQzsRUSJ3*EvYagGt{oe&!`uaRHv&Sm>MCE1-5Z6>9XP$7&f4qj z*My>k;s}N{VZlfU&i&`^*d)z}w8v!M^ajb2>w4TZw?NTJc zHOVukdGVgQA8Moo8b=SzkTY;o^r*~$C9;-90{Kbm>bMh{uL-xAf;a%Vk6n@={d|@C zu37--J8@cKDO7OO_T@P7I(aZe1|IAtBJiX^4?}|p3nZX+-w?(6oizXwr>t8ae5W6b zDiR#`I9)TeR+@7eJ7J(`V%Vq0e(S(O;Q#kX%#JJ{C z*8!jbVh>=JGJ|OXo{kNI&eMqUG$D0K$`U?WfUbl3PVB>BL~I@F_t5rQ^Oq7TlOiMm zqu8H)p5_edH5sqnWn2Y4`U3HKLR%-|y7yZvE73lX???rrr(>)RhWZ)mhb4F*?yUuF zM8C!SmFTM|KoHA0XxJ*st51c#jvWd?kn8nu{=(n#()8uGkdU^u=`A?Ny@$D7-?FF0xK3~Bvub_Sq1RD~p#Ed`L z{`3e9C=5mhU$1(t+^ku?UWFww3i9jJC}T|kK+=SqC8H4MB4nfLNN9_MKG9t6GSr4_@u<%7bT_s>G3@RJ2Li{Ex zXA6mbN6G*JLy%hA2S^(685Z`B{#8c}0FdgTB51=L?G3H6%hh9zf5}6-()&=2h9u0M@-@Z z)dpGcodU}Tkf7as5oJlxbp}=q60>$<8hZCBXj9NImm2gMa29Pfk@rjoG+9OQIRnse zg8*O+??u1E)$BiF5KsU+) zQO(X64G*aA*(52s8ad4MnEg0a0)a^+e&zz|E~q+z=Po2 z4kZ%t87S(q)_X(y-xCEl!nv#ltvT;)Ztwj*q49%{s0PbdrL=Wj6;bL^4I-5O$+;rz zfNb~}dPgnv#Nfi{{`!m5imw~W%d61SbJhe_R~-sVOc|Tx0i%R(bEQS?HY#kJB*$hF z1Z*6HmZW73wCZ}%QWd*K0A97&oX_6#HCyX+0n`mFYBnSZU?Tl1j)$y~7;x;@Kz&I5 zUQ>=TbfPr@3CLizRn3=b63>KK{QEU4VXPq2oL~mMDU~}Ww?5b)?ZUxtZ=$6z40TQ_ zT4J;}wi?ZO0luneA5j$vjkR%wfj@r&KTTrC-Y(vzjiPf8RQtB;_u35A6Y%edHb1i{ z<)$ok-$O#_6G)LsXB=5M2G9l~yS}+Kp*c@xZMj4snV8Q{@f0ept~taz5mNw8$<%KXO4piOWtno&~eVfJa84}n$Ru3{w~L? zf_{<;RDP5p>cwg!Za2Wx$88v5-iaeiizbaCDz!rp^~ADQOuZx(v(%(ZJ-0ELs4|D# zUr@G%2k>o>F2S!BeDDtbD~9)GzYe|>3vO+|od=tWQF zdaHghD_UdEI@J9aD`(SnNd1o;KHQBG_DwDEi1yn{S#934_y!_+ywx?aAO0EcLjV9E z07*naR0h~-sipv9=F@URdnZ7Gbh)7RJ5`~b5}egiFHZj_0SLTn6VQmGd&1T}W`0pX z&VB6NghzgS(mw0P`YkMgqOJ+P&62Ro`99WSLsHP{7u5swI=&MWr|@jdr%e_MKJcA@ z>RZOw3g7KJ_Bvm$^_WEWzu`YQKAtD`bNn1X$ItO|{2V{W&+&8o96!g;@pJqf{{_d7 zp8`u=&3;?Ke;8b(Wd>WF&ooK4B`Y06Ge2~_RVtKcGPM^u0NRvF%OP`R8A+Gl-=XGq zjAt~3LcyETEp2q2WP^&-PjD`Zq^sCjDNf(6^|r}tZfVO-uctNih9(l42!%{p1T6?v z&;%i~W~llu+lExzvk98BLqH;JcmF!VIYV7=d$07~Emr?kYYV*%g4KL&)~<`OujQmJ z0YjY=A8pWK5;bE$=;-GlG?tRA5oV#d=Zx;lXA!!ZXHjFEgk=?koWlV9Je zxzmmw1h{xp`qMAcE^U>yfNcX`Zj$k~vXR^D+9W(^2L3SCXKpq+?@(k8HY?geEmJ6y z2p`f`ytW$vpe-^{1W}|?9Mv`?LukKzKi>g>Sg7!sD-gi&Ha`S*w1pDY`dh0h2fW>z z{XU+gRvs!OM*zw}h3+yVoo6YnFr>wQ|94Q4AOy+Aqr0$%E!6kvLv^~~_hnibcwZ22xp?-?C9E=(u0D#`mOcQrQWqwhx z*Rh41O+72Wh}7Mp*JAAhIq*(awZU3aWStmjUZm@Y2@9W|#J_YVO#(fiz*;VYmpAa` zqNqAK)qUU7+Gy-F^tBU8BGBPbdp|F|bZ}4xT!JvA?7P$HD7qO#4?bT}zJ3){&;`)+ zJFKL|L^QkfF?AU%p3qJOQAJCw}u%Heg6N%>CD#<3DiGQ9-ccO8gj9rjWo zKo#5TdnEHB(f9pyKY_eX&1==(H{WZ%yNNUJ*?-z$qp3d!K)NQpWwq*T@vI$VOfa~g zU`%2Etm+t{6k+kKn+Qu#YU3zX)o+HDc{#(N@2kca5SY^T+qn9BMrZGm_?>pG&H@W8 zAwcJZ#%_ObJn;bn^stGS1L!t`FDCwzE1kh;xF#lNMgJ@`Jl?j3S_CNdYgGzx5HQ#u z=l_q6J1ecps71t1r4&an90xU!od(z22CNIXXy9%WaZd%76XBZ*7<=P?fzAt5;RzqRz{5Wi&ka;(cQe}9J#Cs)Ad6M> zOln6yUVx6&xd;+{IU&71Nv$j(in1nNvu#43J4_OcXiF*1(hUIfSM2M5%C{HL`3zn+ zaSEI=C)6#kjk7fr>!gxUn#gElwsuw259Sb94OrjF@hQo3oEMoV)?Hywv)s{aDQkj` zsn$UHZ>ilENCitcY;4Jd3zH=2JaEzZ@1uj$<6RwC9ndB?4-TijP5?O9P0@tN0BENI zO`Pe!+j`xk^~fD42l2|i@Ypzr;`?!w7D3Af+}b3{hZtQ4K90zz3G~Yox=&9?-)v1> z#c93G;AN3LVj96u6EJtc<)*FJ7VygwsM7Mh==F?F6C}K@RfrML=wcU)nhLPBbuzI} zJFXY%dICVJC4&Qfy@Ql4ZPHo~Hn(ZF9&E(qY!nIg?j5^hfa-{n?g@o8VI`D*9@IfH z+WjLsVbqKu5~0Oit@_>CEet?w|16-kfZc4liNq~ywLd1ZrHaZ}H`xc51$b%Il#MDzoYo%J0#Y9P+D%3Ga=OlKO)3Cf7j%mq zQ~itRivXx}-biU@u4M_VNhLsOz~S=QO`-ZMAwl&&qoVEsg`Lmhuf^crZFF6)qK_lu zh4eH?BFcidSZW!>+B|SD@hmGpOQf~~_1{W~hbpskF2MWQ>E~Xerr(v9SNpL1e_~w| zy=o0~D9Z|ZeXTwvAj$I2&*0Nh%4TkB)79w14D(42+F$z?T8Cv7Aj`TYOdF@`z@+xd z_Jp;yZJbE7W6Wpupg*;=_T4%VYP&8O_aAf_L_z1^KMP> zkyxH(<-j2!7Rv)@IMmnI-I}m#P+wkRArhOuPvEAVU*i%cdOh>fD#cs7JfJ28EbvcV z)v&U?+^yEt=uvWy+ zm7UG`H-`?XUG#tpQ8d8@=_bgi%Idpu7nIwGsCf)X>~l?^vJ2iH1>=T30eZiSJX0dA zRWE3SRP1{UVb$!X3sZcs!M7XI`+(GU(z@$(M6xw;zBB?b)Ioxhl)$$e%54Vq1JdyT z-Zqr$wK;duzUOHi&^@2PEOk1(t$C!h(7*OQN8#JhxrTJYE)f3k}@_ zJqfjCfCR0Ghp!cz_Nm_3AAWi%yAH8Y1<^@9?yNd0ZS*0r=zw6bDM5+Ej9B7I(I21 zUI1y&1AvB3>l-6lkwri*2I6MxBl_5(T@!Zx@EU=DytBV?#DtQemKHem+8%Sx5}e2D zER1x~zqOv;6|Z9}HGTg+d7;5~T>CkPHaWF_JraSA&yv`FKZCDV&_&QMI$u$AEwLr8 ztVQFe0sJ(9hlDh5GA|;_=z|Pi7NqkPrBAX?90w!|7ME3?fwPjNewr3irR3}i$9E{S zCdawx^D|`25;h^RT1DanO^$P#Z332p#0<_!Y;fFLwjw=>!yrZl9byv5e>nU5j~Grq zpLaSDO-s#OypJ=6!Nol3w$ye^2HdO+{`vwWLQz!K)Tu$XwOX59V;}&Wm9=Ed1B;E!U+R+o zo67#%LL8PzleDE>JMsO#mtz$C#GJgPYE1~ZgDBr`>sr}FxXnKi^#9+3i}v)Z9pbN z{O%MoJOG-lrn5fneF%W{JZ31IeIGJmp2g-$IRjKA?%tXE?ud&yZi4%O-TuE9?=zz& z2Ymm#N)dWlOrqFG)F}T-;Ie4Y_yHBG_4(&te?xkENB1v(midwECPUU1N9S{Sc?I6j zFe*BA58A!3ILFj=60AI*K*IpqHk5T$1`4pJC#7kUb=h^m<*KdNbiSyAvVTsp`Eg~x z7>mS%_3F5V?M%N=*F$efH(`5lDc-x;ZA7zKaf<>b*&I>~VnVR}a2RrK8<|nsh@|yT z{OmqirAo)nFxgSbb~i|ZpLwYWPe=%mmC-r$7A28Ts%3f%JYx z`rBUwWewdQFi5*U&f4zf^$oaQLsq?ed|nM+Xc&Zcs-mJ)SQ1|WrSj)*2u(_0S}TRv z=GVH_@}BrT5H^UHVwvsUcQV+5uoVC#r~skP=`}a=#Z=*i8CB|eGSJv%Fa5~CR%%<( z{ap6%RrPLWPeiZ_2<1Dvqzw-YHQ`EzrstyKk)cFk<9*Yw!F z_k^AY<_#OfuGO6W9yIiF@2y|?GzqO*5xPAK&Hhhahjcsu;~?vE-CTsV>5`&|J#`6X zUQu2JRkt7?l;j%hH9*(I3cAfGzkicN{Rb2iMPW(SEi34B6nhop2@~|QdAF=Ux);EG znE3Q$SMp9pZaX8p&g?s=`Vf|gWvaHllso3PefK})k33?HIExnA$SuiSE~O&pwvSP; z+Z?(Pl*%9gASIM$hfV4Ik^f{d4uXR7#0j~c0xq=iA z)@T(tmU0$aR!MHHe|$XgV+ZJkrG~ZZz~>A2Cv0!Ur*0LB%SJ^kqypzlzA`-<}Ke@FWCjH0L?7e+cwAkw-uUIppM6%{Otw#tct z9Fb;#Gk9BNGam43=BilvdVQBhF&&K zeZ3i7l77*HWMgS9?x=I0P=*fDHcfky#$l+Tqd4qny!ADWJ<9!j5G2Qg7H-$q-LTiJ z{KY8lyw&fG$LZh34DwCIT2)17)a;$Tr)2?ryU8Z@mtQ_4oj3jMU!?Tqx3A!T`*);Y zzSJJTrGQQ+u_spIk&;szr3dPFTGSazn*~kAILPx^*XleN+7i+9ki0SG20QI8ImOqR z7`e_lOZpmm%_x8c;0(9V^~Vcko(FxOfV2wA!uC2K6n2|(O*@=`yz8F89Z9V`fOM-# zXC4Req}R7*LF2T3@s56<=Aie3CWs`VRd14e9An?M7kXFlz8wYI5A2bWIXQrjU&o#FkP^ za6B0w67;?%0PKSeO%ix{(!<0m#6DX9tok@e5>RlT0wS*8&N_d!1t%3LCsF56)|a)b zrLFoYR1>eR=w4WY^P=_V<3Vo02Aw8p zEq0ZT5zg)d)K6EtqAX4VDpM*cifdgsB8^)IW&PY;3*fLGe12E(%;&uUY;@m+rWxkP z0PvpXs7YP%`MF_|u*D6XAob?Qvvol*Ce*y{5@0bV(d%E<3Uun+=XvpxQ#wq5=_+V9 zAt?(fAA7}j_=Coe z9iRhRD|i46J^0&eL*JCv6kW|g8rl(1a6_vJ)F9|6#gRtNMJVb(gK&HMGMoJC7DOau zvYB&1rGQK4=k$pI$ZB8d}S2YoE}&z(`S`hik&GCv3{TLCWu>Ed+JnW3&)Cg_J!gOrTAZSDWZC z&@h1i@(aq-h_t7Cet=OvKVkcPK>sv>{_XE5zy0p-(LoU`MFXho#Ca&WZpg-@qL9or zVH{0Dp%kG<`thM>ZsZ)6B50&hWo<9Yr3%-n17GTBp-~NVtI-q;`cx4}$M)2t<@x;q(Th3$&R6yqRt_`gRm!_8#NAN*N(Pr1s ziTVvOm@fsa#KhgnG=L5*B<(XE$eYecIIjlGe3uE6_dPLcx+(EL^@03%HfzG-8J(jV zER)?Yi(8sD)yYwJnZvr5T3lpx?B5y9KCIa-9;9NgLT_@mX&S=_&8UsM% z3F>=EW*(IOxBf#adwkvgw#9Cnbto;k6IChUGyA~>%+%gX+w6y-BCP-D z+5D(OomQTDq+h;>u$$eRX_C!;T_lq}^tw?~t#h;2D0yN^m?K4NaStF;3RJ8u%2{gL za;?8(MHm27g<98G&_0>#)~-VpOhng-p}l<|k&4*uaV`&Gsc{V$)}_nwa8T;FDSmWN4eLX+BK-3LZN6ul&Co@^mHp%i1SBPpgpJvj-EJgnJ*M#{EJaxd+5fp2VC!Nn)e&+#bOhOV> z4G`O3VlZxEy!&Tu_1(=VwazpoC0)_I==*yXM)XhAW_!6uDZq-VN8)T03HlwFFs7g- zwYK`Ymzw|~$g)m00XQfHd|BZ%-_UEEmsOZKMrrR`reyS4o8&eV*mRHdoHP#72i+2i z-8=G2(3DYRoRo34Pr7psEJz~nfRq3rC8XyQ$~buWz(*P!Y&Z7`Tr5kSW8t}Z5AUdz ztXeCjx^eD{a)}K?qU4D*Rsfss+4@&u-%}cX5Bc5MgU<` z)1Ze~O8`(2Siot#A5IX98Tj^!&Z&w;=ym4QTAi)cqXBMYg%$^t>lL&tO$Od-d&=b^ z^!A~mDN?tan|0;ir>)r^Vg~Ay6K}XYBkenc}--mHuA@9@SA?soflX-Ij(n zTI;&>+(CyyT2+}19R2yG^G(kE_VJJr`uzn%Kzix)RPSx4n|{pjo88lTY0R4CkG1G( zgZOq6b=N)wB>R$_h?H1z(#x+(V;2pfYhF(Yd>m0mEvcBLj+#*G&%MMVB9Q86-<5Od z^%GLvA1%oQz;zi=n&2kx349owLhS9}Vw-C*~UL&|M?LKJ>LDN?- zUn2S@ao&dOK@O~_C~9h&A5Ypgbj!6(*(_xmH1xuT zS`ylNGJC`#&>FAN)`aiJ%vJGy4Yj;xp9WnMR*C~4ysKgi3P4T7 zME`SNVz+GockMj(_j0W<-@WfP|3UKUQ3AgCv}uJv*NU~{1gf?|_*8P;P|GLon95ZW3j*W6$e~Ucy_Id)2|B%Ndooxs`(E@oxpCe+kzV7I{)u5C!{cmS@Z zYOlqtwbguWfzrFrOn+~)-J>IBP-2}*+}z^g4~sCKmmrJ8v&|mJ=O&S1NfeGPN%jWx z1B~+a4!pd9x+JKdqUL}G!t?CZU0xRCb#rt(*29UxjG0I+(cmKL?)w1bkzxrcMNiR3 ztQ%nUcT`khOOtB$+>JVjN$SmylV*cM;H}OQfJ!YS>j!NCc(}H-+vIje-h_z!Z;}kP zoWJThq-CqOWp2E0#JHD4?!DDCIAjfmd(ZwaJy;WphJws<_MD3Sa#1agJJ zLyt1`;4Y!NuC0KMiI#4;Qrz`7H%W@`tOtt8yeMi&J36(OA0$WFrT%}Zw%^Kb))hqB z|Ge+SS$w~E;)OrrK5@Q)Za48eMrA65gdnzD1HNsOU^m(yKT!ypfd)aep5Xv$@`-kH zDva1C-I76fHMce$6zL}GwlOHEu(i*U`2N{4k@h=(WMAnqqG`TZ3}C`%X;h)eE{Q{L zV#J9+gZ6=5R-v@BQh6p4v!S?l;)v@d&YK7x6nMv& z_L@+A4EwzOpLS~r>bq%DXag}J~6 zP%W#pC;ndS_@5X*c7P7Jb8mDW8pk?`)(7f;K(j!|7h!UPD(#?(oD2FOEn5%N+9A)p zS_TF}8+LR{ja<~zfR3JhRcb`FB z==K?<^GcR^7bu$p8I&63JmDVf3;})55IA~efkp_XLpIkkX#O3fySHaBgQ{=pV0EKJ z0*T8a zj)JeHLNLSUhEv3b0c6Ujy6I6L0->VFz?PM2AB-w%8Ah!4^0l-Jx?^&x2}Wd% zG?{YCESqBqR0ZL!h!7SeBW=Gq3dcR#FdO>V?zU zQiYlNz6PL)Bw6zZ3!VH|A4DWw2l^i6tSz+?fr>f^^Q;QYrDpB{y}ubqy{w06lrn?R zvJlL&PiSk$C?eB15m757$*}}D1w77iuSJgmEi-6d(B&-k-*Fo-XFAS7bLuRhjX@9K z3c*P76aDr5)cnr8rJRuzOrYCZ-y1b3P-?K(BCGS`b1$-|_U8`?a_T#vpXB##xz(6C zOf{(7G?-t-Ue%yS1y_TEMbjky!uc!-!qce+Qy*y1;UMj|mIZv9wM&LRgKcwE*n^Ll zT-W+d9$K+6nw9M^Xks>^(9FONKxqDE26Y@Vt7z?MM%$eLVvo~Snig#UcKSJR`!Bx- zcc^0ZgXsSC{RpqemX;pa0p3CsfQw||D&07t$gw zQ>lKGU6!C^mua?*C@$b|Uuc&Z_FDZ%s5vu$6pZ&)>m$4BAUbNvSgFJZ|!hYu!*)D7zO|ilPEElB4r(hs4s@77}c?W4kuwFd_=|S z(-ZhGArYZ`{RUibwfjR9qnRe)%d^bS+bsRHm$e3qLl1ruhnoQJzwK0bN)q%GQ|sM1 z0ydbntrAsguO(>M1lw}e(&(y#LS?J}ws{ik93O~q-KqTAeThBHH3$MiAmpFtdL4a| z-*Y<550isJV)7Ny{Sw zJwFSQ$qc-_1M3A%mk95MP>{ZS27fwz%r$YCL`e0Lz~^)AY5+9;0rit2!<{5pOmUe= zg%AnQ)|?Cp(rK1XDmA!B)i3!@LRAv=8K6=Fl9(7M+S$e^v37mTO>04Vl=Nv5VAb9> z#{hMn$GNy4``3sBJzrK$+G#+cfjOn*LRfS<$$eiI;O)KfPfWJr#&-Tx48?XT`v|#f)CWq{GpT`V(siKPf+Gj{#+wnWvw2c#K{MQGI+T?rrkxsl6^*5H_&EY(r&%lIxwoHX+@B%TkcR>T17{1D>Znq zdh@NIQK$Znlh@Rond+;ybOdun%mZDEZbAG+?;Q_4cpStjy=h(7I9AH;BeeW`wCj&B zIM@muGLMtgAC3dc(**81VS!uS`nG{zUP1Fg)(iliMsdbW>Gya5PotDsTyA2=EpZuH zL3SPcWRaC;5dm5s>w9)3_TwypuxSxBrMl3i1+!+r{A04Fi=&WsG`7l+5em_1-Vq+Y@8W>{e<$l||9fv9w zx2(Im?gs&Sb8Xau1OQxf01&_=C6uuT4++E&ErdoGi>rUM7b%SQAbkH_3#BToQojl$AbuD zK?3vg_U3`ReU1(XNzUd1s9Jw|dh*{^u2k%65Mn~pu$Rsavw&0mhk?1UR7i5diF*DMUx0HU$4iQPJg z0Gj)e^4W%JzQ1j|H9|xJh)xs8g5M^wAcDfyMM&=J>MeNfS$NVa?Z8m2Q@3XlMZ24| z0@U@wfg0a+l8kX-IboB~IM&~?uJ>#I4<0{ufL@B+d{!EQ8BS9$emcs8S{Bb@@yddp zoj4$-lxl)F zd)j4OAPEqrVh9EzO+5A+eP955q1tEtzJ~L}y~vK)(-UJ5^e8JGKcA8W9$k_}7acSc zn25a+nO&imOHj2eSu=8DJ^!`Tz+~NOYp;(qN>LTdBFG*9ux#W2q(^$r!Vt*?$;5nK z-^7VHOh`|9%(oZt*RS%qFQ3J^=z9@4F`mBRNG~QN| zM12n&Cvo(*0W>ewcp7>Gv}kyNIFgYXZ0wQX_S=l^)`-^<^e3e@B_luv)TQz=p zuKV8C7ZLrt{F(H32mHeMHl3G(kuV8XhH3whW>otdT)l45lsB7PU6)vybY{ZBE3xa$~aC z>oFiFYStKq*QK2sJn`khc1(nA8+a~ai^tKC_eOAT=d+L{DiS$rOUI+A>ua!K^Ebb| zf`%U5U;ZrTQU*|YdzY=O>!j^w*9m(r*dPni`FfLb!GF-^>W3ULp0ExOrMMuj0eCL3 zYspBBFTB$X)Q44(z$REEs)=`I0J%-*8$kA8RB(;&*(d%MSHG&a62P4w;^zxKe6xp8 zO>&j$Q&UO+aZ|SFw%&Zd2oCO4(wiVY&UcM<$|CcUhF;tL<{Cr!wJSThBrw!R?0e9l zF_*Sk2BqqQszzC|e(c6}xZONX^R{f$3ft{ zK}Ps`YwCcoNzEUxTcx*?Ai!+0{`Q*I-ttyzmI;8>5!rEuh^MKqG<#-2{Vj88*;*5_ z+d^wBRkZc2oz;j$3QTO{v%hblf2p*lDsmqcapc&p4QK=`IAr6zJ(LT|q#ZqGPbHJA z<6Uix-DkT+N*ASN6_E+;|IDkl|1zPPD6F@x{u^Qj^rH=47GR!HqF|L}e-ERe-d!hk z=f4)IQMZ;X%t-(8XYg@CH%-|7pT7eD%FAoZR+wjC7{Tj;{C<|XKlCno!$lE@z;f7& z&UlTk(QcIzM#CWM_4Q2{6HkXqHMaRZjnb<$QYJNX%UUbkP{so#T*@;7^2mV}MpfOH zkbxO;yr~fz!$p38uDjCKZ&~f7F+zsET_X)!rD)yyR_l*rMm^j!{(M3?4kB3hei0F; zEd%o+6gw4~CcX|EoUC?zMv~G?P3ksz|m4+0@@&uzl#xfuKcMuBo8gyk=q{|J&jB*?V@iw$0 zQEdfiWft~bB)SRQb)xznG!j@l6rcdqtO;W~1$4bAh48k?8qwN(Yb)iSgCdW&#n%Me zy0Mm~x+bhVfa99l?7icAFVV9-_=#YN+qP}n`Q>}>+?hLn z!_13*_M5Km-L-4?)4i%{t-2h~b98qbRW`rhLV%a^?3irwf^n*eAfrchT_JKatVAsO zY`Nv1Hc92C*fNdp-o4-7v_nLBMq9Ojl0T<*i0^_DSGjc(7j#Gfp5M7R?ghCJULNtw z)ec5%Kx5*uCgN;5MDhKi{FT=j|LnYk$2{ilw^Ry%1+_hsDF<&s|Bn^1rH6gbjL}>EhnM< zRBW|du$*L>ICUjJZf<`;e|ZA`bZ2z`1F42_)o84cadexzrFbJ9LT$mtx%~`j<7NAc z890e&md3F!e|g_j8gr?lpe?)C49{ySt7|dYNJG_QYGm8`2ATUv?xSuD!BXhpK^B_K zfN9@}k{nfN57&>_`@G%k-FP3UsMLH+*}7w?lxOIy#!6v|azu4ZwD6<}W=;)*ImLDa zt1A#`!IGtGb)P;YfB`p)Pu3a zm+y>6_KUfm-~ZxyP=){2W%&DFf!;kIe7en%Bflwkhn09S%3QWL(6;qR_ZJ!bdi;V1 z8JZzgayW!f&O(!#6mA?Tz`l?aXr_%DPXABol82T%ZOfdh6+EoJrDJkA1+B$rT(kG7 zN2yzbI|H^BM{p(Kym-iHn%CaYQ63ma`BZ-8pEF`4SLEGaO!>Iy!+G=u)e3=8796E_rMhRncVcc)i2~A?}?zPbjX-VOw zo$PeZP_BK+S#mw}*#hHXcjwnRPC{;Yy-Lxjje>N`X(TMeSTO;Ki-%X&&17K*?aNJn zAWLNBC>e4Q@wjxce9nQ}HVRk{ekGt%J&rTH*J z;P$bWS=k&^GHltdT*Y{9jUT@3{f_ zq14|{JwpgT1qiMY@az58=yt|daizBf`vPRU?`k+2XqP4MID|5CIq{IDw}(`{9g6}G zj0odh0M`wZ%nEX&I~A2VblH0DW|H1wD=z2Dtu+#k+ooF}ZDK=K=PE}&So;m_gkGB{ zYc3F;5K|ms5m_8e&jQiUk|f5ZI?ze<1zdLQX^NcQ<2dThG=x3>phv;-~kx{|pb z=(E9Ey}iV~-X^EV#}$_cPn(xY;g^v;N>-n)I`^_24^gg%NMXb zjRA`FP%sxqA`3B(?I&%2L@wxjqfy3Iq%Pmv!gxnS&V(nk2A*PWpS=c<)&zh`h;mc~ ziYtEe!13N3qWn}+5$%JL(F3A#pZ&Np`h+Wcu1z4ifF$!g*- z9o@qsDH^z-hCNjz<8k6E&)`iJ_kN|s_GI{FUWTf z-{!f8u+BQL>3#n5C<*`3RaEa>L<;PROC2R9-2}!Sly)O8fnd+s8r2=HFp)E)P!YDS ztpC4A)iW1!U`cN6Tb1Q_QghBN2I5s(YTOji^TN-nbkod%u?9ZHUsq}I^%GW>9?j(G<0 zC+kGrVGlwk2rweT^!1 z0odwhuITs&v1y$F%9E-`H+Sq5@0*DNBgyeYqGKTShjUv*VmCrcO3Y#R%H;3|Qnp$V z00kA|;Ms}>VtFVYev_Hm&D1=AFUk*~ZM~g|fc%r(?6QvZ$!qRV9LS}-p7{s!Mu%y* zwlF*4Hu*?7nOJ<`ILH(3Yzr28v_lx@%yyD{IRz_JukD#VI?v#`Qr92iAJKwy zs^0e|hlLNnKd){4s4d~%*`!QOG!|5Kyn-_p`r?KQ&d6esM~z(e|GtQlopEBeOm@~S zWX9A5+oUL_i6ygVTmlS)rf*NyqtiDPPOmysa_6} zg@xe~Wb$=Df0+50pg_ftWca=C!*$VajXhKYRQ94<`h>5Zb;Q`$1J)0J|1e|rTD7;ve5>@eBDV%_M8?CG$@&H~OU63hgx&5aCe z_nJamSai{_P)t+n4TGi6ckCHPRwk8T*mAn-swI`#(C}LM>7aYv5J*XU{oF{hEu+B2 zMXn8HDQA?l)!3s zFWou+=u|@@(0s!L_PGj4&TKHw<|OS3Y>n-4(5K+8MZo%k{IOc(SuRnK#9Q9`<5{1X zdvUt2W}}suIe8{FOc}gFybQJ8Z6Xmb#-+{pkvf9rc+2G}-IGgat^2f)t#$7|y2aB4 zOBMj5blJ`thk(eU!E!FRhDU$jmT7DISn2o6 zAkVHhX1e9{iQ(KSgIqlH8I>Lzo1MO`vOx>iimiD%Bef5=nNxr~a@tlC(53=Y!%@jY zn=gEb$Sy(3A%LY3B{u3%{$h~mZJx$v+LLK zzcMRlO?KZBJt@e1zceiE>|p1vPOWn;+qgNfw0B8DHZjPOZW({~J?AZlipULeASR3O z-Z>&>y{L9(h!Kk^h7SN?k~L8VgCf?u8(Fb@up$zOAa?|g%v;SNLe1ik5dofm zIx)0Rl0c6$3J>>>O`s@{mIBDe-PQw)M!{Z}w_}Q+jMOq(G5tvaliP-CnD~rlU>xRG z9>%aceLEFRmg^s>{(s}HhVDQ%o*AsLHypPaJg_d9T__!?sGPE07xI{tg zwkZefnshQX(}4<8s*c4b33+T(kOWXpBsV5iez`NS+XtU=pe1@O&8E#2B zjl6#h@(f6^#W~?QI0ddMqKZ>m5F$hRO$O1{AsY-_C?u%`;?x}T8ZJ3Ma|V;%+PM=8-`}Nei)wJrJqW@)l-Po?=JBm- zjwARk?JIL;ZsFo3H#q{W35%yda`HeC6z+~d-4FB3(V=?^SvrLSVy72A>5OE-a_P4= zfs6Qv*ww40zs2}3mm=tK|HedN>Cz znKph|)f(%2B!xu<{i$U9?Y?XiAlAzP);+()FcN&G;05p78kp zU;%YRTE;i;txv4ltc>v{aB;;R>x(Xen^!1v)D4cgS15)Oq&cq@5C~6cQ_AWpwpamu z=e|!zKU`1qb)`lk?&JawO2BfNBo@a_=&FdG5*_x?Kux*(vAYKncAKiu?3Wy`j-dG9 zxjY)!4ShLkUDe|e4|Jmr2ovvk7~nUrehNh=bU#T+NrHYtNwY5RD>l#vq2M=~q0%jwOXk)!x>IIN@kaDRpb=&`k9|RP0hCteE%uWY6M$$qpiQwE@&I8bl4(XZ;wfmEdB89>8wPC8ui6f>c zYPdEueg33v8+l+I6XlFI5qf>Wa^V&(+!Zbby*t%4IMIw#35+*|;k&2EZ*9+Zc8x#M zltXN>MCDY)lW@QkW*uX$#t3xkDE6(C9x|u@(Ow&XgW$)DxH(2eh*9AoL@6JKDsq4>69UeRxA9@p(VH@oCG%HJG~x z4fPXU-BLkbN<=ANfdQUXrL3338w~VPyo^QV6QW_}e`*0NG!o6t^;y_RGD{Aj|1ut( z%jbs_ES52wFRi_2Jlh992cGjzlM{A4XLvnn zdt5(OJVs=jV9e{zy~j0(5NLyhfP2hK7$F2T{uVILcz>wxai!`;nI_t?7{cBb;@&q= zU%sgE(E&Zc^XIpW(_Y+U7zic&{?S-6M6#GZg3EM+B$!Yj{%rbuCWPagltdH}n<6f0 zWpB_>gX=Dwg>*K9TCK{=xdom4eAgot1S8Rw)`wWifv7hKh5K4;tT8JPmKln#fF%BX z$FuMbwF{w)hMycWsZgd1*h;D9fLq33Lk^2LxAkpOkXopMc{VsIX$u`Q+*6QC^%ZIu zcHOH;P*|}E6HRdj+A8@4j?=l0QQsl{9LiW+mtGfUkti%WIBx;RU)0Iz0nBSaI})0A z_=?pxUbt#;7#c-}1#$O1bJ@?$If`^o`eN^EJtP-G(nM4bckz}I`bN^P&$7oiI1clX zg-~IS89!0ZVy*{7wIbhaH0VI0Twn+r_mv`CAGvT@)Oe1}i|BT}gz0Y2cB*li1fC^c zK3~k$+O6`Sx%4koTT(RXgO2e=M(y@vg1Kc7s3e=vf?~-@1?}R@-L;D)3(%e<@QHWP z%jzBV$v6J;7P8tmOd7yoN+m^A&kz~PYqgtrls7z(Ulcms-A?c5#&iV0VU3o}Nn#|L znpp_B8UsOe%umvuW4Rc?O;*@0X`u;42j?kf8{+vVNNd53EGsg^C8S)>tYnyHMo`U2 zx|)FMtVBL*X8?>ZL498kk1kDwB8b}B!-T{{Y%(HDK`H$N!p4Oh*CDTcQdWwc(&!ZBnT)pa1@h&&p-0O7N|F)?bmHr8y0nyPJN|d(49ilX0aDOkI%Ixy zU?R2VA13w~bN_vnxo{JmFlRP-2(JKYrd%mAHzgF5+>q1K@((G*bbL#43!<96Xe=0K zwlCv}gXmDf0p~Jng;KH75eS4ba*bprrSs4`dMBUUQ#QmX1M8CCSzP@PKyEIB)PdIy zBmR1b_}0CDo^dR-S|wgGr@8raHO7& z5ecG%yN-JrEaD|#>T*WXk;R<3hE`x$AaPVfi9rPRnJo_WtjVIz(FrXpy%>nFAT~r^ zpE~ij0RELqdqf@FoQzxpbJQv|=&S1a?v|{MLFuV(a7m#a-`j zYF)ux4SZ5?4)Ywkia-OTiUjw_! z2cG|sALT4gKz6ZvX<%nA)Pf`xYo8Hf zFOQH&)#h^#HpK=(H4Z4igq>$BI3m1D`*CF1Qn@O22`{+|wvtd&Wo}3A|KMO3D7k}a z7bvBCyX&(>Z6R__$Jd>^EI2h&>WiFwRJ@nsF zn{fOoVY(7BTL)S-mMfm=>HW~(81}*!rsee=U`uHatV`e|D zKobQ3WH(%7x)It9Qb%9wV2{2&b30Nz!*`N*M{6&tHCoDt0S#y$Yo7Iyr``5 zV7gx&p?2nykvk%A<)D-|rs;9^BM)n0k|zQvPXz($tTxs>#%XvG`ORvE)Y9Z~Np`r_ z3Ih!qt09_-Qnc~fJd0}Rb7&f|Li@yFdHjWso_e<4eQUxk?OR--D>=MN1Tk9{=x-4~vKDr8k^P)8;|$E@fDr8&H(~efQ?k88cyfWo3yw09Yy?cJ3wgb|V`1#{3PV0-23R4d@c_Z=c_N$Ugg6gE!4t|g zmX1|Pt~3m_#|C|q@ie7!?x1vr+G1?I@_((hx0@@%TU5Z7AbA~H?KaXS%;?7xJOZe} zlWeMYmAT?)JwPg&;TiK=p}NvTVd`zp9{xCq!eL%+;#u!Y@;;SVbWS&0Zh#8gQJ#A> zG(8<85gJk$V4sNh4CZyWMQwyozuSbmc90O(i+HLfKl1O?wO(ngzj9AW_Vm&svx=Cp zUS+B`EsDq|-o4%QpSMmR?Y*V_#usRnG~u%9zKHjSA2b|cD3R1_7|r#+0zyVnKm!$- zx2+j3>QTa$LG}MI#)i5%s)y=vlwZY>oY7v7U@<5ZOTZfaj^=UG;ILA3MhQuTjc;ev z@wafWd8r-oWZP##L@shjkG{mnXceCQd7;3g;4~C%hM|NQDJkQIIvQo)*qdmgF=q)T z>CJByf0zLFm~UZc57vdCBC2~4EYF=LnM_)xQUB2GOTAyD_%j#nI_i@j`pbYc zU%i)+_r}YQpGzFNdaAK3mHMW)wEP->(I`~7Cr8nI3Ny=OJfuM)59iNY%j8Xbwy*&$ z0%x6RQjMF4DP3v_G00^Kttx)&0xfJy^$(K3lUXYzS|o2faPa<8Jk+Q!oC556mzD8< zVO!#bW{i7{nb>D%6>6=KfH2BaW@sy#Qw{`jU;~_slhUhc90H}rsFDJ zqbkvY#oPBh@V#`!Z(I5E+6iKx05Q)k0ojhlNaNYa+m<&_5HRw3y=CZEK%R5Skl8+8 zf`s)w`#Nusb5)APE)X3@<|N%-qtRe%NVYaQt>|SOC<#(Ep6X{vX{2RUpO>BW$e-9i z3M-c{bKLP*Gfnww9vgF?Qu(OPr2T!@tAImtN-f#&3mi4_vzr}Ni7^qNF1P$sc##AM zfUQ`>n~0{Q0k*T9H;_r#bmbE+)Q4C4r2z>YQ?O3@Xf85cuii|2oNHZTNqs^|8GLH@ zBV64SbwU1Y_a45;D!;GmLKnQPFiIkL!dOmIS?M5?*D*{KJ<+7-(9ndmehOqI2ISMD zCx1_b4SSzpTVCd~HjqG1Zua*p%Uy(o7&_KIEs6ljlPyeQe*Er7PwQoghajx2J`_ZeBUDb#8iLJJW= z3S)4u>WGEQwSF4AgQf_{R2a@_A${4Pk797OYTZ4K;}#>65ac(nKI~E+9YtU^<5LlI zIQ4ceV7Pa}%TA590dRQ|3~0(z#oxb6iy~d_4(#WQ_{U;;pf%N-X2S}`>+eZ|hgw&x za)t}C|ESa^HC5@UEE%9Gpo)jx8S`}ez25Snerg}cAoT;I{^;$PEVATY+m;WEUMEjD zDGtjb0kY|3U@pgwd5E3T*kx>`!O3;GE(;dO7Fneo6T~lRaGt5Ao+@ooT@Thb;2>^Y z_PN0MGYpDV$~}9hZSWHSJ(y@+fyOg%ZBeI=S7RGVSCCavn_!@QLW<1a!KaTeU%r3s z(U_n={wkrn5L}=j<1qFEP3#Fqlz{Ln_u_J3XdFnkb@8ay=-+!Vx%GCtpbj6wakmzwOaG;pCEO6d$J!7FvG-a2A?vwd-tc+pFsa1W!~fOZ zqn>m7R>^?^q&*E^)mO!Yj}o$n1?H1RHI|aE0>glp2KO$$((SqF8WTvel6Yl8n3qw} zT?0^#I^>)jvuH7h1BD``009(@t|TG73rosI>>4x16>MPLcf>{|Uo*A3%oioH8NKy@D&CF;N5D$=F# z=QWT~Za!Oylnb|6?soM}QD)!MG@NAH0-^3s6!&P+J+m8&i(ZFeN;F#6jdd?)*wu^21Pm2D=_3%kBO%Jlw#a5fJ!iO;uLC`FXzdz&&87HZ*aBh(b&miwM zk$jXys)7<}qXpt|mZmtH!anar7Jo@2Um(^b3mna8ACkX9L;`Z+)pz%gvg>hN64fM^cfAAnsvr5RWJVFl6~C^Swgf8M2}FFT zHV|`yiCl)({B^B82W9WC`dI~FP?0%Qp6AjEfU20vTi3$sn_>eKr5qwyTF9&X(Wcp9 zwwP2jz_s%Fkt2`KtQiCLvLD__yI&1m(^$d&59f62qi$9sxAvd^xrxRa4!sIL$PPqK95!myxr&7SyQHQv-wb^rKk4`0(?1s<-W5ljKTw& z?r%2)YrrfNJSeZy+Y$uvhRk?C3}>^f2q^KYXWXEYil@r#D`|bmKg7k@1ORsjdA4HK z$;%&=N>i`q#qEX8!q@jws~Li+<0Rh=&glwHA_cEsqoIsh4KHmMwmU|B+_iTZ(M}Rc zVFKJY(BBvJT?jNtF-9A&{s9GlA6VDxN(rVZNkviV;vH!%(oS`0^J2Gfr)&2D*k_6r zaoYa%V|Pj*@c2SW7i#r)Tt?=G>EvnQ0An<%dq~*aKV&fL6mib(jM`>L->Hf)VJ)G0(s$B0p4G= z0WKz_qsHocJHW*p(M6Pz?r@#S?!CcrA98TiA(dwg3_EO~1z)OZSPz!iS@9bJa7|~Kzv01xW02$*^Kkxd0Pn^NrlfvC#2)a{)#@1$+otPAW+oixxxihobPyaDOO&0eaOy$7F8ri_t+W4%2)xhQ z!^BdvLCrDU^3`&;3Pu+y8)rscImbuuMNcT1o#0e(-I_ReS@b)dyx`E_&PG@)OJYmI zHmO;0$|R>;$I$DDisAEQf<*sVHhEqkLs?N2NH{Q?f`g*}xYYL&S0z_kXbs$X%j2SB zcEIB~gIn~d;Y5n^*tdWk<(4NQB=`6?WbD+8BJCKcr~#S7{lxWLUvhyagRrrI8bo4Y zbl32bLW#Mq6I_*qVcz41r?5PZ+NR^#%@j8i63%UglQ^6{|U|8Qbsfzzc?pZe$6ahfsc6`8}Xn`_LTFA#_98YRdU`RIlYFI^D z`UE601%$o2U4SCcrNqzAa7=TEz7Wb+W#^LhlmI@*%=CwE_ zsbSP1?c;bd>? z#csF`W+nw?1YO}U!-OMkuy)1&uu}8y8u5zhUcw>9wLCb4qW+*<{2H={KkA*}iNbTd zNQwjm;|}!fbW6%XT=KuF(KuwuIIaL6IQ zwz-u=6d0C7RUV<5Q>2xiA}|(-sG;&%?qEk!Iqzw5_?q?RzRG9d?^K`u(-pbXg0tV#phs#7TW9Sek zB5aV#`5#{lRH$0=NH6|Ab?<+CUL9z(Qz%C5=M8miO)v3H7X0fw6Ap6jCz&1Ikyf>u z#ZfJ&^-rOXWJ{;ck!n87+|nTP^}dst8q`H+9p!`^sQ@8Pj4{Y$#8 zi(vlkS%e=s=1?|P2!s5iE8l#7Ox(7@(Sewm_T+U%^+)ht*@mnDp{2TpL(UEJxxESPYNX0}!K z(z=|Dw|>K*ExDJ)TY59$8Wq_LYCwlCZB|A@&cdZI3l}o>DJeqI{W?NAvj>1TCYZ*5 zGIBQ)3GL35I(1BGU`ee{@=S6rw*1aZ4teSV_>B!u`AgAk2?8S5!KAFUOQo~kEBx%=Tx3w{ zi!=@+gHz5+Wm@5w?DnuvDBEZzgi|D2v)(3Q`?X?_a|lyu(hG-y2|M$^4E9#;aM;EL zx!4z-DqPI4W=sc`6Vx9_&}`7>-NFy5taU4FFiA>j?leJr|4!%SxDP!se4#4-x=@-C zhfR^qlsa!70$!rd9o-YkY>2<%QOb*a*z#$z%i0o)b6&VK6BoWW%Wxr_9w7_B)UrEC zLhG4!s2{yAr;^`)#fgZ7DX(^d4l+&3VAuO?MR|7@6^1iJH{kZ;>3t(Y^w-m8H8qHp zzsb(#TCT_OrJ2`(>jO{=UT1`#1vvp$_uGSV5fwrW zz%!j_N%i9&|4MQl-dd;hCpyFg))!k080Lj}VZ zih6bAGCKmKyrAqL(^5v_M6aJ-_Gw=KW)2nd<>4%Il+GoAQ;+yAwU;%+Jv7u|V+=vc zfMHg2)0kenKE7A?zv}Hgt>+L+4_fW$2com9dUr_zJ!w0b;3>|lTDPB3$Huv=olM?e zD&0+)YV7QtjssJ-%xb|>= z;vn|jU78tZ=-She1qU}^26Ug+o3+2>gr{Gej>W(s?wDX`a-!}1)u%>TQLU*B9AN4( zDKwrWLnJZEOmh46e&0-Fy<=j-1XFJTG12Gq+Y)DaCvs>WTz1}P2t}vaP>{sWe5wqR z=4+`3Hsvsrw=L@3ZpkU4YV;Ku-LZ@+C6cku?vy=sCACMK1dX3y+l~%{dt*42y*7!E zd>BM}#|V~RLdM9|nsLqijd$iw@MWSRx@9vX;*bmOo;$bjv3 ziokozkP&98attu=wOQp*$ASSi+_?TF9`q=<)bhOtSftaSLrXW`^@85<(YKJq$3ML& zbv<@aK2S&?yUNYU_0hodIm1JqLJS5`B*7yPJ@+kT{z%qkSk6|!+(#oG3@wqNjhFUN z*E4bME>}ud?+0X7+#2^|@oJdt{UN^;M}~T7;CG#cQ){TPH;QV}Dw!?_OmR#eEsI=9 znUJ<(g=xy&o1{U9xBWRxWF5ti#MSyx-8{TjrOA-p80sHX&h@2uLK9q!`Y=*%oyt5hdp}3dt0x)J>#>Ll78lRv}^DQmY zU6)f<6sfLzVb#b4pHgl;!jG4spuJ5s(iSMBF1sK6oZ*elkc@|!s!0J8y{s*XiO!v_ zNp{s&L2j|Y#)ch%(}DSvhXQdFZYH!ape~f`b3A^Uuro5T2=B+l@K05_S)gH{WN?B| zvliy*FRTj>9tzonWRWmayN;h0IFQOEuhtM`@h%88NY~t2H=Mi(a!G?bK{4pysU-r& z6K}1ydZhbk$0$C!9a2()`_F%!RR&(iypBG-$#Bq&5;1PPw}KyAd@rB%l9KnCwKQxN ztDDWQM<)+{piE31(Yp&Pbf}niXTrUf*s*(beLmO+7Nh3#+lMi+n}Ap$T`-0c4t`>pjsm9X)8Ky*P(kEAc-h^)pD%}UNg9Z z3wj7tvr!FziKwhYg%e-4Sk)vqKaK&oRLI;(KL++BWdbh=;@`1Q>uyaSKsGT%mIwKM zb3%W%0udQ8>)i}VU^^AWE&it#fP;>MkTe1^Xf5J3cYvR*U=ri;7>EzfW~@Ag#*|RV z-_^RwT`p*z1STgtpEj^EN|=RgJjKrW8J?s1L`pI*mSuyaOhg8RIn`%ma0C;9O}k#z zRwK>#dX@&MzHEtzI5qD3ePOHzJ=40tZEBXUb^0gouANo8;n-2;3o4qBB00v3 z9IR{)$F_!@GqMZb8KbNl${`uw#5CcMBt+P5jzis6pLd8m?NPp{vMfa-DSD=vvfQ98 zpe$3E46@TGfogBhaA--c>qB8Cm_WgseGX1oJ#EY&1!K$oYZn~(&^jg&jiELdN4So< zq^h;LqvOW z6jU8Q2x*9+6dBVwIK4zI?u{3Aks3ocea`#{-4dwHAPVSN$`C+*f>NNumRlh;l&Irt zkxfvoQ?851obEz3q1wBKn;Ti_mMHMbLX3!=@-~ysSRbM;3(aLr)FQdqU8)hJzGjcS zFiMKNKLnGPbB|!}3g<`OKoqk8@sUgl_8Ib>HFiW#R#YOc(=raG~c2;9lsw#cY5PZibsx9x#cNL&@O z+CpYYRGkcfA=LfP`B!*`1UJ|mF8MeQr{NIOtYPJSsxbcHtv{TH1;CIoo&)M5MLXJ` zS3V99PZ!W~XV7ac6*SrvJckJ{wB#p?rS$ zN<8vDrY$Yd0O0zxY6xVVHUJXfEE%y2H%XFJ_Mo}TwFgO2?rc>}EKht{n6@N3+MSte z_##7NL;|O+cuX8+CK)DX0R*Hktdv0XttIbsurdmo>%8(CUsB^!9Kj^aOp8*;1E(j# zLjr7Q)>1$kA=^Z#z=%S2nl+vy^T2_5Tp-2R8DswHpOjXrt{RKk^ido)UPIoW&DS*! z#KE=>mC~?+FNtxS(qZB-%j3SJ^dfW^oWQTb*yuiPS7EY@a8kml+FW9%h|QA>8!Mu2 z7|}+Wt0;h!XT(Q)h3>NGtQjk1XD{JUP_or=Bw{s&G$wvMlUD`|wC>uwSN+36X`_ku z%p{&TkuNRFC|4?%Fg*D^zqx5~iXHAmiLi=$YK*h-rnr=N{KGx(A(nWCEb=8ATJb>> z(XPl;H=L+Iom{{zA|Py5d^k#Ro`WtI;F-Y4 z(O+7|Nif6Pg+1t}I=~DNpIa&R9$se3mta7TFyuheD??&r^$8ax;d1 zS!|IDIMF{^@0M6nuVVu{)=m?(Y@rK_(<}58PDxlSH z_f%w-<#S`Vy>nb9NQK#lieMirTvvFJ;R?Ee5ZPbI)}b@Ssh$J{py?Y|I#?Q#_Xhn? z7vlV@!y8ZW)y)T-Tqw}3@Dmb1a0Z$!UMQ&z@h+~jRZ8m?6I5#@->`sv{UL6@*i? zuRuhWK%MX?ETDH9Z>N@&#!^eg>Q;Rji~DJXFd_W3;RzixH@Ac_j0akiJR=hYL}JPQ z-lDPZRIB9X3Ob;P0fBG!TI0bY#GR-hJm>JI(0Vf|aF;DCe8+k?@Nxd*$znX0=2&II zMnOi4+C`gN00v>gUnkEVg_cn#NX`1&#N<~Yo-w7KnH^z@=?%FgY9X)d;S0^a`dtIK zN{FK|XEfHaQo0vb6$Zj7Y9n|<7reTfjQ0=0b|lC~0k4S(1}rn2g&4sEMd@jj@>lC? zEIG?SOUm92qBv+plwlGriKx4L6mE}I;+YCb3#pjX}cu* zT2UGNHSLp~PPq6_bkoh`bEQFaO)R-6)9Gx)YFGZ*isl*)xiX2>IKJ)R@APG;OFMk! z6`w*<&zL!ntmLiFsh6N1>Cm~sCVISW4wkkxsZ^YxF%0K&l(1w#OS%6rs91(tXzx!VjDY|h?w8~MLgg~l7A(*rt?k|L@P zW3o;Bc?Kh3<4z3*l1@0>iq_@^ui;WpoyanYBV*K~_Dq6z0FY0@>_T)I)Bor^)Y{}; zoWv&1znhCCiHDTW%4D}@)&u^QUgI>{U#R|Z zf50C>I~;yE$N$$PK>q(p{I>_A{=ei28|JOYDwo}h`spBtD}m_F)1q|SQPSj{P&rSc zusk2eqnfJQ*Xe(FLl_taH8$H_2Do=ZOjY6ZT^RIkqf$+t6=5h4!PMN_?_1A(Jn4_y zFxoeMw7AP)zcg(}&Nm&Vc>z9UWwuADCVOY))mwAt)TmmPWYqYdCt`M2t;hNd7&{H~ zvi*sw+M$h&jRtK?&0UYQJkPDugL8Ap&X;R};dE_~E}KrO=PBQx+utJ9%l$uRR2sA; z3EDNBj144rJroL6t#{vZcRT!9=3L;!e{LBL-2X#{x*n)@{vFKsK-h7YSUsR-k_l!( zJH@dd(a*KqxU3Ch0Gsrq@@FQks^i5<*LFhm@iG0)6T#TB;|BwO?qcJyzOEb5i;{H{ zuypKDDi^E2Zu`9HGQYP+bGuBN3`$UMd2 zFUx(&0?hwouw4uPPKddT>#`x>mNoyY>n4yEzk1IEUyO)*|2C!Tsj*t-^I7cQgBYk! zRqIh2E$+Hi^Cp{9CB5e^%pX)R-b*t%3tW%S$L0B}&33cxE-wu(@Ib+u)C$j+eta^( z!`pIq*4LrVSKyB|)>^9rIq$XGH20as=kmYLU$pe}^UT?=(r*_gzooKY2FOn`9Hw&T zWw|4-I-j?eYOB32El$;@-Io+}q;fgbC*nf=ArPiE$mv=Skb(J|H|)n1v@Di5tGnLJ zf%$E`&NVcK%cLoqu+l5Pr@gKmPNC#nfjf^_t8<6>o@yQ6PK$q^w0b|}J-<7il@`x&9%nE=es-KH zndjILZ`~y|&*bBOnwqB_)kMifx9^2f!;d3&{R}6n-iN9uRzJ(rgn6>gTJ@{*L}a*t zhDufwr}Sc??{_x z?x(ZOa;DSy3MsGF1L|mMU9Pn|er_7n82p@q@XXPx+I5HKxdVdV^ApP9G~-dmDZzo4 zSj&UIbRwqzeciX*PjN>(g@mC%iV<^bZMYq0zT72uMRjZ<^YR>@w9b@YEw_HLk`rx}D57m%va8xb**cd7Sxpov|f}{x2eDd6pB;LtKac{Sf{6_*%yLeFr%vb)mJ}*w!E2ZI&WkSRU9d|G2i?4GUNYuP%B!x0jmd@Hpb%Zeu(W)+QWlRp33u z5_tX{KdjO7yclk18kLVtSb4@FA537^3K8$Uv40g~Az(ru&V>oS`!Imc3)kB0r>>3g zY3Ctz6LzgOa2z23G`TKw3-;i-QhfE6xYIW+Bkr*i2&bJd{4}OG-0k~vCH!$KEaf8@ zx@YOo`Z5v-1$Q;3=!Y@my>)x#EDUniaeM3X1{p8c=y@D}GvK@RPDL0}H>x~~*?#HT z9srX;==R&@_GXk35qgeu>+8*g<8KMv-B2*&1rrM^K7W6AK;01^iuZpt0SgXz3N9VV z&;JrAU0S11fO!Ikf?L=3ezEm1O^1aLrNy)pb@{)`-tYx&O1TgXMaG(>=IYqB!MJbx za&LjUK}7d>5%A#uAT)7%eArL}+;A8`<^fN+t6!ypwtw3Gg$yw3S+n8alAmrYbGR2UTZ z8vC%OCQe<)A?!!60Q=^+tyziMGf!XuEHbNVYwZscbRPRq{Q}%O_la6hDk^7B@B8mh z+ryku;7|xNl9D}>NMZ}@F(1xWgTXx3-5m!Og{!B35NJYLEV}mDbX&J=J#SvWs*m@z zIq6`Z5y0$uo#=`A$1*&H&O*BTYd!uSMj(stlW=hoZeZoo-*B0ie~jIJjNP#k#MkxM z4SfXpe}Lcw?Jl>v{@#1FKJG-&jSTJxmC|_S3Yx!^5gY_{?eh zF!(S0_tk2>7SRn(C)sBP9e4)ayKi&LFTpRDJK({beFyJm?cVz_Y|fUrx1?h~RNb-_ z#ocu*pUr0wk7cH{NAkW);;`j;w7cOvvw6q!59YfLf1ZDUU6Ro2U8(TU%l3y~=f~S+ z{<9zGV)I{MV-$T)RCQQ4=r&xJ^}s0b*eBSI;O@STWv~4h=I*XveDTRUkV3w*4Ju~Z z1hY1yN^avc-)Y9o+Yqy#<4NObZ4WW`h69w)eYxT;m`U!?^KWW1uE zPm2a`Y62(9@%{J92HPhLSJ(0Wgg_v$^>1Nx+@rQ<-ac5c25E$!WI91zmqRx9`1La{Kmx8@lIEmnm25!LpT5)K@C}W_7mSf_mw-+=1emGah1G z>A>UsrsQ!zLBgwQ?+>Po;QvT|<4CBbI_wGzTmIYUf7FdaED&*8(_t6&%P#MZj&rsJ z0crH^yz-OvD!VfMV=7-h`9 z$KO028uMc-YuXY0A1wUcu-qF2_aOu9{a@Bsz&~6i-a|9gaguJ(|FrPqN%#Y<=KUj@hCsz+{#9_0;Ykm0W$r!6AhA^{|!MU=eK{_(fzV{3Atm~KRhfsyFMfIVguee zwu*-Y%YOgx4@FvO^1kk1U%B5f!88B{WB4-IjD{1gbN4(=6_`|4RRu)!-{(IslrI($0{c(5xsVFFLzI+5VTLJP$-Q3Iw-vk}&VF2b_$-*H=49}wtdfyGpJ?>R z0{#+RdW?|8uQytt{xiS)X}jp?znS0Wn16%sv*>i&S7Oklg-|k6=T*N+cb*vQr|_iI zc%K7`yJ8x_NUttp!JEYRV(!je&W@7b=D>gOJ7lNlfV1S(@9ChB!eY0|ObUeBJ$6u5HmkGuefxoRxU3YWx zwg19HbklN_?=O_=Jk87AlTG6*3!dkL|1dn>5cAJA3)+}?+-7gf#d}VgSaRTl-)4li z*Br;NPZtP3B@27Dh8Oan)ax}kgL4FQKsz{5YrgBu-i_nGAT>dHn-_kY|LP<-^t!8Q zb_jN23}6eozWx4?7I(S^to=DOB=L_&)ABTac(9bo(f)x!{h52+klq!Ocau_T^Ww@i z0CwMDw8uKdD=KK{d0@TT@4THJFnC)u5M(g%I8n`y+J2qd9<+a3vKM4n-bVVzL+@9p zA80MxelJ+JwPN6*-GbAOZ^y7xQ950{DQN+m)Ra1wVL6h1ypN}l6&QvUeQ6CMeFJgvLs zel^;3R%S{;y_Ytjr!| zXGkVU{}Lu!UeK-~@jYGa|EG?!^8@wx%l}hZ`H>Oy|67Zp;gH$5efdcLsDpKoDevM` z9m!&Vih+m#9L+LLahpGL*QNQJ*gocEh0Q?p9`Mdy4%~VB2%uZ~5^>}WZqqEYz3Ung z0?H~Z;#TpX=1(ECU@L&F_sBvvj(ywlFtIca`}MB{f)7mh0aK54YUsTd~HSqak5=yPUT-goq>12eaJpOxa7G3ZBWMo*9k5Y zxV~H-)BuE>asV~e1{5k_n4I5}+kk#T@gg;UHPW36;PEygPHlazmS2F7cK(D-4v_ z{^uxFfF4lyEt;jn9X3;Bv$v}1-|GJSwt5DB&uO+@5VeN-dso}BFABg0cAfrFkPDfl zXSLqXhBVyY?tS|XL__P6KkF+7isV|zQ}TxF{c5e4GYiWX(3%m@-_yY|9D*yYU(kQV zK4WzluAK2|jvC-^@9D_-Dfod}RlV0^4_9eDi&7j5h6*B;DuBTTIzXfN*|)p7r{)}6 z*(3H480j!R*vOWcEWd!Keg*(Tu%8XTPjet@&S7-F8kj)wo(=CX20M3JkH(EsQX#U7 zPL;fIZEl4VPFf3})vzbet0fLT`T3L4kwCS3xOm+`>-Wd@%Z(wJ7=}Nn4VKHUN^S?9 zp+~d?zInHfjY#M&rs63z47a!ZP_rTO13YjCyq1m;=3_H0!(;^MukIONk!JyQoptNv zM-rO`!`0OT)%Lv}5=^z;SLAUGeY23#* z7Z3#!ByfV!zF(*tA!k#9wJz=nQ<8F2XVvGQXT}n)RHyhogCW`(HDD~dfVL&2SRVpQ zQ2)~q+QwOqv4gg{ADN_)9^BXA1PCvfjX0Qv31#Xi$1!KCI>0==VFf;AREG)0z?mlE za>G)AmX^sA0a9TQ``=(3SW=)-c9^h%Hc}V|AR`eu3^|obIJ$egF^F~YC26xM`J;^m zx&q(MHP!4;xwQXWbLTXLQ)yA8HsBg$)g@-0mhKs!Dd+J%p>2aKmj`z^#(?zuOh4q* zI}>klluMI0WqTzLkAeYHlodG)tA7P5;!%4`tAE^f(P_NS$yPMgAU(>*`H3&_$4kfs zrjzz24W6}Pncy|r8YWG5U|z3j^L^bR6&gB{vJU#XTt>jdgf)IblX6Bxe{^XB27 zLbUX2wBRpK(YEScc8ko{DtU4LdMVrzmW=M}USFnX!P0)ib9$}HGWWWceMiZ2zar!| z`;4=7*J5V|qm@TCfWiwwKW3~{yd`s;g(GM<8{eRn*6X#0j00o7();L5UburiycX7z zw%=xf91#=ma2D_xMRcwL8uI_F1yCFM-PUjyPJN>eUUG(1L2ugOcCDEeRulp}buhM3 z()rBxX1b9H!zD?UCF*1!C$i5v`3*EM}g(Hcz82qvIyP3~x$(HFTT#w5;awyLVB z=jtk6Y^iS+lITa!XG1h`TlZe9Y@+(q)^RafQk`~cW*qNx$bvbwkv+L`0j_ajx7zyk zkVo)Sz95Rr`ve-cz*uxC*sgvo(+PCBKe2)0)U%gRnzstU$Z7O|lA2XRI;R51sJyicvL-?PyK ziw6_Y40_Mn$4Pq;Qnss%nkB zqhV$q7;|fDcRa|Y%4>T3o^$cT;O$bW@JA>Fafwt5xclorQ1!koV*+$BW=K=3{+K+oM$%Vrmi!Cp&2)s58+^D-vh4t%E3)LiliYu)ZBGdjx!U)@w7tpTM zk>PT6I~W|d?{CAQhl0>d`-i1jt6-vtW9qZ*#BTwaQdJ&EkAmrDk6QF2EL5ahxV2w7n+asZ(k z?ojXdNGJec5xcDB)dNuBshJ5@~r{7ASaW<8EX-M6zp z{T2F;xK#fE3gKzWZ5`9ur~oQ=Ap-8Jm+qI4-1J#lgd}Y~^eoA_!iGowC!`D<>$W%z z$gfjM$qN)z%OOodQL2rF^IES1_QjIGozy~s;PS3IL&+%f!a5mKD1cO|*j=eY=bT?- zhMXZpf+E#E2dOwjVyO5q9fEw7yJO(qwBjMSqi1h%2w~K&d&vV&=x zg6Z(1*P35^(HB?jlba3GepgRpo|h*I^dluG;uBc*mEC~Uv}-&~Es6b9&I*&P=HjyK zpAteN9x>)-Q_His=iUHAwz~T5(?FbXhhWGW3!_Rxt{EM=U&gOcX8;x$0&+rD_qq=E z0S2Uic8Ka1X|J1(Kiw~hypV28*UtBnA*1xERQVcnJTh~WT``aF?RuI!PkebHeBuk7 zmK?HqUEFoAf*oU~&JtggvC17;tcdD>fXPzP!hhz=kR0JV&A>ZEowB zZ@+Sfo$QI7S7`iq-i)!3P}vLrVY~rYwZ&=|98Y0~dHoi;%L9P{Uh3n&Owy4-Fn|(S zoGpg^XI0YT0f-3Vt!wBKOCBQn2}5@V=P0#J2XP~gC|MFT_`H6?2Rh&8ZBS3;?vmDV z8i)u9SIQRECan(%u1Y_>Fo6M6aX5+?y#gADbS=A%3m2A%xH5DMIDhhKdD{rDGp_qcxkQ@i344S*l} zr%QR$nKmnl)!I)tTk+D@JP@KnW+)=`w%SV?>zB^Itk@842eAY*4i5`L;7ysqAZE$) z7`gKr1^4r~^9B>3ww75?OFN2W+2=bbIz`zKGhEytvNb}1(fw=J#*$GTM5O>4zlPXg z9i8kN#-?1sS>6>H)CouR0CzUi(mY6Q!so7~Qh^uC_Ro)J0Tp76 z_9SN>NFA-SacCAW?){Me<9Z3 z)yIh@4|nX$NJx-2iczI!18B&GfXI> z(Kr=3*x|4wCvg*!DDTpW_TL~4Vu?C|H`&Z*iRMR^FL7&TV$E<+&6pYmA~zz(oz$r$ z7t3g2F6UlTzT0^s4AXa^p}ME_F)%|^0tJ@mzcZ0~%~x;#I>BFf#Gq{7{cKsZfu!kV4?nIT29M(?Bc znGHuEe=FqCJc7JgVAXaSg7OMmw7FSu?4nd2#!*@AA z$f9;}CK8@eQ{CaZU_)0l!Z3*2dTz zcSy5-(-s@uk37dzfUZ_@lr^NjyX^2iOd&m*7KT>sy~1&@Mbztk)hcInV- zdWmcZ2W&JB5VA8o>LX$VVrv4@Tu1yaCuGYzNyv!7+c~SbH1_zh2o4!T5a82gEL`%= zndlLkfL6qjcmCU}7PVDDPQ_B}d^sdj?KelGH`KFNj{~YJQG{V3ZjLIS4yWE8f}C~V zEIs7z_;M zMUP+fQ}7i*oFslmCyCc)|C3O5_j%H!j_Lu~;v5!CS%pX?kWilPo1v@g^EJ{7OLVl% zFNaBDlYQ^s4_>cG>dUk6k%=1wXx2#bc>_q#b(x2j3j4-_sm1n)$0$7HkO8V5m03mU zTi=Mhd{N+7iX5wyvmtJdha7#cm%%O|qx+J{Q$GC8+-`@$@;h0{4V5x^1u$f*pVF#A z$a+^5soc)EngC4&uKb~CcFxP(Rd6(E%p;!V(^rN3`(?J8qoOd_1BOyPMOlS>#%~Az zcu70r07y_I&36Pe_|21+DFCAL7t|zOScEiu_}c(U#54MP{2F@YL&SrcjL6*x!hFOj z25?9a5O0^Y3&6YMt@bs;o`QngXTN(%9FtPSONAme z$ma!XTRkXiI9dE|fG0B}MAak1mq%eE6OxRM+jS~RKdp}mS+uDK#318+EVe~OMet3m zjLfFEdgicItBL9sHlJ8rYe|+4BSBG^?RZ1(G`AuO7#>kF=9}bfC;-cgix*&JJIR*l zo<_7fDR5gwE0J??sM>r2dyq=VGveAg{bTh5uw(3HtO1d4d~)ZiRkFPAWxQ%5&MP;^ zG0-J_`gx#-``vFdB(qsQtuK})XRfssZTJ{m(2+nOyxW&dHT!YIINEX~y`0_<4N@mqT=viY-~J~WEcbGP>n#EL*T9iq8DNo*k*Ev1D1mR!3~EVboD z8?GCV$b)k{grv!Wa98~4jdy7JI;=RXC@ZyjLaB@xzPTXKU9G>miluGE5-Z{!@JI~G z8?>5MS=afWd=BzoO=|B)^S@p~L?SvO#gY_MTWB-0<}p5g%65w|krveVOHgM&R_iAP zjifMlcC7C-AckWRss?~yN=&@ntI5@w%mD- zLmd#q0EDN++xsL56xFn|ET+}Sy5K+KhoOFNFrN=Ikr z&L1lrEd1_(4!2%)PKWKcZiQT}!d-7Rr~tty%GN`Pxc+ZMJ{1|<@@0wgAb$40&fgmS zNFGuI3&@YUCML=fuznB2Uj#z!W=1punu4Jco+1P|nU+4=+4LekTe>kpQ@b{Hqwuvt zGB7>1%QBp_P8O(7lCc}St#5EEbyqhuXO9pEVjniG z!|Z-9oFmRq(%D=dNkTT_)K_-`&T#)*Gz*cNXcqE3;Ljs5w?#mC6)fj;UX`sgKNY?I zc2^A!V6WkL;C-DW%rZLXF8CIM)B*C9pe!nQw=YFC#rw!JB17DKW=eo8c8Gy;eF} znED(a6Zxh(h8Zu{hdw(KC;%mMl8_+jQKF6|7(f{FjZ2&Ilg?2Vnc8S+eAp#E`_KcA zJF!vE=iC0jh03J2bEW)!#rN9W?RL+_7hR5py8JAFKvnqqlCPO(3+w~AZV?BB0Mcx8;IOd32-KcTM7QRp;%eW|dz;hPswzUq1EABI~~eiXM>JTr5Fu+6q$>_T4< zT(k2RdS*-|SYwIhdrD#cv2o7Fx-UHdfp zlc=yb;A?S@6%Rghu{B`QwEv}#&KulUE{G90+oz^}bDM*Fd?>L}DAM>5Smt2%`7DmA zz-pFI7ojWXE3m3NJ@OuTYqj_Gj0`?X*or#_MycP8n2 zBb@w9ss2(Nh~3|yWch2ew}!MmG@4H1q7c4GV_G1*vDpL@iV+U(z@sHpwR8k)SW)5s zwQ>0WYN=$~g3$jZ4$(@QPzkX}X^>JP!&cS5k8w34aM&T5RDeH)_Quk(Urj2 z6TT|v-ePDqs!w^Ozs|2e6%~uO{#E`Ilv@%KSt_}f$ur__@mbM2nMKe`G^v^6N-lx6 za@GR(dte!=&Z9bkD>8*upwJ!^P~_B4^$gob@H#CLG+Eum{YL>gc7qw47wNueWNam5 zY7U@=;B1JkRSU3_RyYa@{*wkH_ik+JxJrlYh4q^8-WA?s*D3MG=$aPv?P3^=}bS< zHda}pg=Q&53XQ`;){#plvq?_*MANbVZDeJ`AJ81I8c-v`=5}J~B5Sd1z%kb?6l&e; z8ZwKR!~^nFkliGi>7rU8vj?W7YOs0hqJE1j@}>uZxt9hu=ThnuDI1i%P4AgD?ENQ0 zM|cWfN82QoO$SC}w@Zi>KUAJkTW9gUK?i^~VSfy@ja)!cCxFNLxNB;TiR#yvB+wVx zOn+*KrH1A1O6W-_N?Yb*5aEi`X?v>Ox1_bBc?bEt7x?r;&!q9e8w|^p@J+lQyseNO zCJ10tmiYE4bT_`qa!RoPx|C`LYP2@|oRQzs`|M9cJA-Ft5%5IL@FlcfW(D#x2h<=E20bfC4X$#-cFt#feqEBBk-`V!$)*QIqnQ=pNTin(HtX;lYI@omN{9x;5MhdzNT z&^Yk}dSgZp=;tSXog~Pm;Az#3E_9_USNrN^7K>*UYuX8KGh3}O*Wrd|j#kBi6jT&e zfQD0_Bu<)`rul~)L0P#nWa;_Qt^6%gy!I|P!pR$rMv42vD=?8asZFV`NR1vX9}UBX zda2Sn|E6$CN%+#| zK-Fpw%6}48*qM+(>1Y-e$P-DYH->irxksSFS^b6x&?NPYKzBLc&4J3TjTiv5^N&K5 zi*rkACY=N!;rzTY^36&9s>WUDaF#jt6MU?~LxchGZWjKGrr50B_Kb}iT(EU6TVn_j{ zT2>(dJ_BVn;yb5d7rwraD^?ij(T+|F4k$~;MHS?h&#$?D>dS3JSft?i6*vZU0A7!y zdpCtUzrNnV_y`4GxH-krfkqB%;9@B(I|A2j(G@L@mGze)Ef(;_ZisgeQyzZw@J9%p zJ}+RVL3*|loXMY{j+wjZoGP`?h&I?>VLSj+Qb!19Ntr8c!%ze6~6Z6|4U8U^1H{$ zQk)(kne{#MhZ%Y@MuUplPCI1ncSls&uq0@83RB>eT*hxhbiC4g6|(Wm&h)Y}+blM6 zj?D$R&)G(%4rpH|nrz8eSw(-zGlPix_M!dV(V7i8S1_tVOjN8(GE^S+bQ35y`W1A^ zRuBpLI3h7Dtv!1j0S31EQBy!TNj(IhWqAKpXhPL5WRDhDZ`6~py~Y6Xoqg~!Cl{1? zA1PSN8qJvVn@U#!doyuZ+CN<`FQ3JX-Ki!Jzw1BPSOE+=kS?vQ9dyWQ=+W#&N0LPn zFnpvVL>}$JTY)2yrl0J}kE85RIcRUI77|adHQ|oZ$2F4D?4ZG;s`$$fLIE)_(e0B0# z8O9mZ1vS_~)QHQgppn9*ra4+rJ2nQh+HBbuGSd^d)&b&Ozi3VV*`EqWnYlD{PC~Q? z9!(gbwZn{JfS_!Gt)C1jF_ZR|cpJ~yA!wslomR50lXgA0rF%XyobwT4bEc-ec3omN zzz}(4ua;o&(H=fNa&YcC0COt>7$jhJwZSk7wM$7orWUkPvG;s>ZGRD|fg| zjLK}mGm&tj0>RQBf*z_wd_kC@vl`H$U1E(8X2?{EnXpX%J8@N*B;pzup4VNbGZ?O{c@ z1}m_|F#j;X16aoPN}5TO$Iv>z4d>}9a$Aq#10i+cy|wH|WdWw=(l*6>=>$$_U$_*4 zs;ojhhcyL~@HrJuc*2ys(@|)qqv`@?(d4zp6l90@i99fPV#N2OfmjLLMqZ2B=qOHC z>wyd3J>$-Zej&?XkUAA?;%qDx*v+;vk{cfO;cKP{u>WPm_`tJ?-LKN8?pt4z{9~Tu zl=5cBO|ua(UdJzQg;HMQj8T6L8S6X8P|y%IE8(I_@ytSUUyn7G(+B7 z;sC%)rVG%OD*ISpQ$wh{EYlj4_v5D6w<0L7|FT=5P*h*#ZJl+HiG_kxHo%T_vw4qb z*P(FkqQZflGgkV`j%(3jjh%iB0rMxmaRv4}r+oPo4tiuEd#O@>dIh4-ifnF)kav*t zL$G)^H?aC=RzNua;5p(2Et+W@&Z>Li9pLJ~S>81wDby>N@n;oGIy$9j(K~?hW!QM3 z6lpUYE@S}zg01)M{!%2yVV$4#`ZPGRRI^z2P|Ln|H@?@xQ>RWnVk81-&FvbLV z27~B!I#<^rk3K1UC!2P5EP$lI5S~fN!8C2Y#ngTuZ^syr4oiY{GlZ)o5A_@=pf*MU zKa?`=IXr@A$fJ#J!l-_=N^;Qf6RY|BQy z5qxMVm(dZv-9M2tJj;$AuHn31pcttIe*akO7}`hw&h6mtJ;j3lmsyzXOv7OYHvyJu z#Tt__Vs-(NCe&17s?A&Ve~>r0Jo1kTLl}C6H~s@(HqW{#POKc9BRxUeDMV@X!Ow1L zB0<=AW1L5Lj*2a0l}1wk(ZmvRl`%c$#M!Y3RG*4+%suQWCzc8KahT?h%>~G9!|Aga zn9mTL^5~2c{))CDCw#0WPRx?AO>YSn#66I0%Ar5*6?~9o66TKZ85LbA=b^;~k&LAg zS@p7`-t$Y8<^(j)v-0~Up{Gl1qrfLvYI+`fTNY!9Hn5h_7c6Tl;od&4`a&o%AlPn| z1R0rIO+XxUnTFq(=dSR~i~j9e=oe-C{L30lUxtVU$qfu6@b2vg?**(;{WnbK2Hm=S z@iPv~OsscF?&Y=g!>rYfiGL^uBz0B*09$TjED1>;F9ptk=2FW>^q)Ld4}*Rd0iT)F z{?A$f&Tnxp1`83)BZDdQ(3BMn_N4yh56bKkVoGZGH3~bCw#k{LibpmcdUtxp(#{I5 zY75Z%hx~^E0EDo#!oOf$Sh7)Cwou8hkiDP2bApYB@>mSYM%2X)!$-*B;H5y+Qvg2T zd=m;tv8A8ktuz{b6Maxwj{aKJlFiEoF{0+w@v& zAJ9MXTU@Dk&K^N0Ead4`qjKGipHZQBd8FiP;1K`Rz(TfuvoqdTy)0Jz6IutB-W?Sr zvR=G)b#<(Y=rdSq!NYzs$Ejmf6Alf#S9E7uIzh!duih~YkrYZOxiA8eLH^fcOyR(f zS?TQ@|KeJr;q?@@zIsR2qn3h9NSmI41A512X;Q^w>hHVca3KwjVEx}n0`06p_% zm<(4-;J@3lg;5sjiO7!sZA^^Aat&a=LH|PDNj3wQ&)h$U7~olR;ISC7JHoJ<;)fPY z*2MSw$Sw;SA=v`|$a@c2Y{Q_BGdCFu5s?a6)G$044{+xcSX8?1ZAZWi=+|8w4j%2^R#q~TXu?a zef!~{ijCIbFSJm(1vT?=&N))xi|N&{5wwsmgrJq4qn1vq7RAMKL?ynE_|74`ds>#2 z7cUupRejAMI_p4Xj)`Fn^!5#DlC~Ydu?2P*;AIzZ`}x`_@Z&WE5uoQSrw8|8@D4No zhF_DvV?cSzDcDoo?(7s&UM5fTXE2438FvRHJhyr*+>M*r`jBL#p+a==yx}!|LNt}2 zQ`_eX69R!Zk`kF_D8^`ENQOyQWINqgft|T_IYig2u69Wrl43zsEa3LxaX$Fl5H?o3 zc71_V9g3r&t^*`kw+?XM(|zhrPjf-^upA5Q}3SS2uL{Lh)IEvZXz>OzX>BS?|+)Y+Czu- zGG6W^+UE!l9JH)k}6_gzo<%u;CUA_FFsgGXSa9Hz8j41^G7a zC$}O~73GIE=cLeMZ!i%#GDSPH^udA+>hCP&(vGjw8Q#p(GH_$+^g2xW%t^ca2EAnc z{;#A*g-xNSoL@01R`|==p;e}sbAr*KSGU;Nz5wAQ#OY4cNpm(y?^}czFGbaI$NnIx{B62?VhNbRt^Vn|>7DsiE^`)amIKx3`P3TA{95Fd z<{q7bPNfX>f`O?1Jf=y!m%H0N6LqS#6SrO_O4BM`O<1m~!?M7mICs8=xblUybM+G^uk~%4?UsxQaP7q1r-4VR?F{EX&EaJ6p=mg!B6IfV=mHTE3OoWt0N@sVsXQ{d z3AeN6j3}}9DU8xNt+*CLw%kc?km8^7U_EJ0{mbR%0!DG@e|<`%%KkyALP+i)5GjU8 z)|3a4U`_Gll*sTc$XBA^CZdDWaDlGFy5AQY1$AH+e=%Q>wmsg3rG; zgSfzFE%r}D=WNrgZrjmMi*&kOg%e%vOFiNRN@)SLs{@?FPc{PmUs9&oK6Z0+%#wSd zwAL}n>~@!dSGUo4pr4J1<)SUSQ{_DQqT=960lCJtmbRQ4tRvD~SSc=0Sl3&LM5K~>EM#34 zhyDEl?y=_$?j+wY!Mj@HN+E~ek4JjxFL$CAzGN#M9KW1J>p9NF`^9tXEN063-qNd^cPj>7=OsGj!%HD zSQp4zinu;)G)ww)yr!;D#RI|{e$bIC3bou95v!uL`#^?4*VK@a75N`pxp&1S#ja;&)HNp%9^#o zhH7(z8BO>sNLXiW@U^A;R#e>B#a2B@xpB1f^QUr{VQB4Yv~2u3+UIMATdO*-31bm_ zm}AD#V}{M@N0`r2(|;hB0x(SkRWtL3h9HW{ z)yYLjm}xa86n)7Y7HrIaGo=*8p>s_oaeb_!8msn(--6aLLL_h;C8qC}=! zL*Q$LJwx~sAGH~l>&JR005LLIo0AweFnG-`++2%U<7z+owFCp6+J0GV!?c00m^g(| z$AnTcfQKntEp5AnjpN&RM{JHDVjoHt0w@t%n-2hT-*JU{fQFN{{c{cP=aa%EQ<-X7 z3*m4`_0^s4+n?GRk@aexV+JkBFT0-RSD$U_()52_AJQs;K$pGY)xA_&YxBiirfdDw zdi1#y3|cZIzwG#XKl|WXkKT24>Nv@A7t(|&N32L|NJjduCZO|y6N*KW!RT|Md;gWjl+1F~gh!g1`(nK}^ z%?Jnf2pB(~`WK(Jy`j81h-}Dql~r~^!xQHx>!Ic4C5fJ*cwZTPYVTzHwfH}VFdLj0 zM+;xazD06V8%<~qv!&I?m@$}q{y)FI`aAn~Rm6 zLDzrML(9Nw6xZg!k4ATf zYYT(T2nyOUa8@0YXx$^kN>~*TS7Uf@beg55-;}TU@SoBoQ>sL=_S<=2z0M7)?!PU3 zTgM}N|9t3!f0!T5mI zRB@iWZXI!HQ_JY3PU@#%+%E@<*yri}6W{XEtsryx6Pyd?B_d|U0@lxWS_sM`n=iX_ z(1iSDCiflj`evBhj@%9w{BtX;)!iqQM{|Q7QeCrSt860*fbkw({pZbXLSBSFsj|%> zHryzxQ&Ozbp;QRyJePf#bZk4;ZP_^*(jV9kz8F0;t?6it4ziR?x|cIQJ;Au}(G)V+ zoeaL8cPff&VO8ix^E|t})2uioN*pMkGUV3Tf*)asjHo`>utWD9BYo_n-eeEpJeHCu zorAy?R`eMQt@Y+W6CA;9nJ%-(S1Jm4b^2ajvNC6sDy=$h?*DOq|HE><++bCm4C0FT@v5T{Uf$Pj}(8kM>eBI*a#K zxWtMZ&dCx{f&^8125wj)5H&a=7A$UY-jx>|3PSQ$UebfiU2&Ek$cA+_phhhY z`E{nE=(e2Vx+TMsQk=;wWmQZZGBTCao`alfp8sV2m*Gld9BGQQyTq_S*35^UoN^D&AzNBZfO*gGo@wq}^& zk1Bh6mQP)_LTBO&N+j>o{UI~ZN%D)E+d~GEL^yb%(Hfk4A3Xc6_=6{aQ{)xRf1|4g z)&5XspsTmcv6U{V3ocjwDq;J3Q4zXs6GD6GBhR<$CA|I~eFO~pJC2$wa(@04Ci+kb zx(d(jwJQyHe2lm{Zk*&Ny$?@?J8yQFj98|ByzDWJ_~04y0tP?^Ky#HKa3DqG_ej&X zUY{?nGyQuQ5}ij2E;%27G+!g_!4E~YQTP&~pJhU2iUa_~?=vSUQL!8*=x>eiF^jP) zv@k>O-V-Ml1md_{g4wo(Vk^nB7*jwp+wxe`T-96L=qV|Q zMrx*-O_`B5Yo!)H@b2GUfj@q4L(PKT6$|C5=p=YA4@F(+b(Ow0e!r1q`!0!kkFRpd z_7fkBdWKsywSx9k_`<0dubk*L{tWZdDXUPB#kbfzei_V z|1Y-QF}M;oTHB0m+qTi^*tTukcCur4Y}+Q>x zTFW-jCXb*6kO{#C@hm?B)%%gdSNfo}1;1A{xZ~TGw*XKSQzf@0Yn&==J)o|Y||53 ze**n-^w=udqXq%vB|O?>jJ%fES){_R*=VZtoT)KQfsqzd zw)aIFB9GU#g2Y)9kyKkYViP~3lOC0#xk(3z#kF?@>Q_wM@XZHM7Ko^GhOcZDt;<;I zJte*)W0GXf;8uHLyY!tQa_{;}WHk1=AT?g=T}puscFEnMIm5Lje=F$sDPk)+BTHxN z^LdW3KG`Bpds8lu%cq@g0S`|sQ`rd#W8Da5RzYt)t9u_j)@WL8Oe-WR8>yb{KCM51 zKS~$U+WROJ5GKcca7d=ovSO0`SkkoQz-L~89C~ENl6onH&h6Xg(W?OCU&kupp_J?- zveb&d21Pasuf=5HD=KB&<|Ghx__BBDXlk6z#o#a6ZF?%D9t{8nFsz_gi&RfO%7=Po zFzZrxDk53)KQrnNL$GMEhX$z>Ut5qpXo!X+CqaDKj;{9)AMSjP3tvygZ#sD_%a%%YE z9I%n2u(#@sHAfVYtA3x{*?*if-^k_(?4#}1wRB0*+&>svXh>Bu^9tIS+3NOaA)^)W z%PC1W74^(Q>iyZTjy{Tiuwj3u!h*zzd2>qFaCx5|CU_*7esK8;WL6e*Pp}o7kpl69 zEs8n%bpu$1`bS^hA`PRO)y^Z24RcQ?kLa>P%7UMbH^9n*uNT~ktW)bzZ8Kg88Brz@P5-C`K zB6^iFfdi7_madD&E0-x`f|?JD{Ao-`Mv|ulKG;!SO(243`j)*Y+3%?s`D$YVLxK-R zJgCsbF|Ku9-L-AtwIbnmep_-F-jCu+U-tL!H8gdhplfzvW6M@m zb>b4O;-1Ky_bLKcRDn=TlZrTI-v_;jB$m_a(h`yP;~Q3BDk+m3fUc@|Vd3?VUw9c7Otyy2lBT84Ds9=d_tyN9g2F`$& ziewFdG~VfsNIthWH;>DatwMly1xb?m#sz;g2FEE^@M0Vu73Ij92H_vJ@T{q0xrRDu z5HArdF8{ZN`TIq|@!RZ%0V>Y>8Gm2A+i`+mHcRvlxVN7x+qyXAq)g$((_wfby1N5y zUl&&|7YELxi#-FV3EV+0vrn>}>jRZWOU$1J~X}3N65L~qE z#vl!XigjjmT$-8VDOtPA>kmu0NOuI&XIcMIz3lMqUnR|h-`*l)iGJ>8CBtRS>_Lgk zvFu(U>_xl!*7z?Vck)e~O-WQ;jkws#bgr?)8iD2FgfOlqlw7KrWE5k%{UkWt1Ts8y z-Lom?yBVplO`js0IP63pLOFw$YOP4^>sfu#M__^Lm$Mxj3Pm~zi9n_++(6xqdWBa%pq;R4=iXpwoEgg8*RM2O(1 zofG`=hF2Pz@x>gXiD;~v;ZVL801m)`nAzIS3HDe8KEUXx3yFXMi3cuAX4jeEww?DU z#p~wVIv>rxZAiD*2xP*0G$syq5GFZ_RI0&^j8E|V>?RA&&d_@Ft9IByDsE1GDu=8U zNZ?6e4ZSX?7NngrgDY%8l6=tP6E^`46`&oOYoLNapZ5fdXC-TW&=>7?AYn7i7H^@e zz%oQ@2o5t$W``8$WLNO!&fHotAgPaegMNM|8*<<<3b}JX%|bE$VPVZOCQvsJhzgvg z%Lz6#&z-P-(>x*PQYhEkPY|`O8MbN?CM?nG{Kk9o31nv#Ut|1!iOAI0n(CGzg7Ilz9@ZgY%( zs-kWC)<`U{ko98$%M1?`?w#}&jgo%{mKl)O6?IJ^q2jl#y%|}!?V4IX60P$TF(HTo zR2XKTK*kU=@)xU!^*de6iXLEy^AYw$S%SBa-#;+wA9gsY{<)t+1(cEhnmk}1<$tgU zumRSt9++1j@%MV8w4`0OO5_Co1M6hm-N#1iNm34fi00XT@Q`5xVKYEIGWt;F)KT`r zu;ym?$T1;0f&`C?mR9` zoEoQU1R)7t$ve!*>r6wOed{#&c7#@EA6QN!h?2=^8b!ZTbD0_O=LW_-ZEUiO`9(AV zM#{0jww$Xg*(E*(!idBKje8IVzCYVT3@u|&Re5Mo1E@4jxFa|L*dE_hsc& zNWlcIYdv;v(mGM}|H09{_vJ9*!WFcULIvVxL`Xo!q-KWJ*o{uX+GC@M{sWh$XfT47 z;$XEn&Ksr(SC;bGtvHvR7L%t!YDOm5Z~APq9>6{*z6r!KM{Z^)b|}*!;!3}aGoo{@ zVnR6IHM5k#vXT7V9c6P{+00j@9CKyw`oDlZT`{me^yKg6#9E9%KYy_9-9mlc79vRj z1D558FKJM98E;(A;ce+oYcl$O7mIDe-oJW;k7;P zFqhF;9~ECK$C;|=<+x`d$(wUI5lxZJnSuV!3WEJvhSvty?k+O+;=CSnUl<3+m!te; zi{Qn9Wr;2BsejzBOS$Sef3A2yk~K|a3MU7*Bd~`n0GHQ-j(sZRHhFz5xDG!+n7i{C z=P&-2nwyCFX!gH`((-rtgyFx3`--~V8Z4)D7p_;(*0c??Dq0G;%rtq<`kgA%;npu8 zplJ{}D!u;>Lqy#^h_$23Y)+a1Vc&xUyl-70!-hggm`v4VTcrw-7^ZcD65)y>>b5Ll zgAbB1OFt5Ys9zGJh~Cf_lm!?eA};3Kt$LlO;`Zhy@HL~Z!2VqoM2j|Ra^M@}m4 z_`c1#3Wa$*hp@?f+mJlp&Pt5uUEYExhqbGqxKf)C#t^Uyk5k zlN4Hrn8wL;qb4h-JeXkcIve43p)#yoV+xImDEb>4xUR()o#~Dbsv(I`7re7lL)p{I z>AN>-5Y69kkzm_85eNDP6ENmFte&;7?KGZ6;X{xzQt;(WK?pO5FmOHT_=vEkvdCSq z1`9LYg9LRa@sRwf0%M9;yE-RiLeyyAAq^Pk7O)gjh@->^x;(1GPf2M+RVuq~shiy! zQzUX@MF-O0a@;Yu=%k;h*v<~*)uoXqthm}#0So)96Fnx%JHM(Imhj9>J}eoh@_fS} z6T7RM<^6wL5Uj(uRkI2zLG=~&vJU=&+VBdg2(!0tD`mZLdB3yvFCDyeb0FL%?b;@7 zBCvyUSbIyYz^SLji|z>Y{{rH>Fwyn@RK-iwF2i4#ZFVzsr4OrPNuVr^<9eck92)D= z36#nL{XRM;7D5sKp!R5cdcY!m`SOA9u~|arGG0Whi0h7RM)*d+2FEnY#Lm9q29Kb) zmZ!@T{{-kLRrY`WK0@1!S@mr3zbrsq`!<)pUE|mYk2y%|{mVx-7H6uQ!J$YH9nm+# z5fnv&czvu_;v3w*2t-!5-|y>ZOBv;BW9NpDDeS9m+zz#H(;3!l(@4#8KPP-)Q!7)=#R z4l`JnMqv1c1R^|tr?j;ZHbbT$DET>~!I0GgJGb0C#d?kR?&uM6F|imvZXgv?(BHs- zVOC0`giO$WUtN!tH8?8GAkmW*ofxMLffKs?m3&mZRIA+6R! zEf6u^%iAG%nk<~tLupn;9(YWg7aqK7aV&~#kzNhe;(lpiQa2?nS7R+D2reVYAgH{( zw6jG!lmd6zBjX}oEZuD42H$~vyEIUU+CyR{1G(Wk+8tKPwDnxkdol!Wfbiz3^FxGh zR$^!SGmSgqz<1iuz9}?SZ=TQ%BC;oHyqPwbC(6m zd|a`YDw<#OXA;qW{~!ZkjDKs{AQ?i`%FHl6=$3W$d0c!F(&6ch1~HUIp& z)*xUy6k|mERd5Khte3KyybMaSK*7cFn;FDdG2A$a&^ZKk9_)u)UJnLvmv3wANdZVtGSP!}z8C$yx-R3@{tS>V9&J8O?dXh@{rl1qXnKc}16V3Jug(wtuD9-rEwS z0aEEh!I22}?UD=lSn;(1WG`eP1<6FWHgTA#j5xlL%qc64_&MeB%eCJNALhy!DNkRa`kP z3#=u7-!PRF*^o)}A2cN%BtHG!4uY!&jJ759hCX{E8PpBa03Nrz)FiH$SLAB-ys7M} z^HfU5r*b#hR^%Dp&c+r>V^5Dlk=)fQbAfWS}#Mw=Xeji!{>}$7sp;#XH{k*18=5C|YZ>87P|p$`|qL3b<(-dcHMr zC{$iwfKi<7nxHS-cADa!H~wFbN%E~+^nDAZ+W*rKkh7-$HPY&ah}T32#M@K?PlTXG zD;i_B_^FYN2P%jzrFpFU?nc3-A6z<$dH5CgGMj7LwZ|m$X9q1tIZbojWDincE11Gz z^3uXAIu;zv3IkehWP8fj7PRCw=K1v_(qgenRpKS57385A2PMjk8}j)lVb#nCt!~sg z5YB;TS#Jaqj^%K*Ztep>W`ayDb>e-JsW zA(0i9Dd+qPJhC6jh*V>{K9!8)2a)r%Rba zjdodK-^Jdc{zmY z!aKHEv9}oduG(Hiq4blx=xFHH?OV$Uo6aF+N>K+Gd#CcY4|q2^A#XMj6qmP|jeqD5 zJzs^WM9HOY_))`nW>m$^q>Eh(79HCu?90u}J^uyaL})+E7^{BTnb9Xp>RIjkx>0=O z0P1l0HeCXdcKn}-Tq}N@tPPe|8FqtQJwmOc?+nK~GGdlBFw%zLo`u#O{G`Tw5fs~;Vi@{{kXXW z1tRL&21ULR>0|6A!Hes=O>5v+S&XR8tnpP;#um^qe0^ig)2B+o?D`M8_$ObO{X@)> z_X)pcG4h4~x10EXjK!XZ=Ni_Nh^9cQr_rX*&_gO~>|~4l5W}v>$aog=Frq*84WEU0 zpA<0f$A~}tF)AN`z_tu$RLm_%ALdHL3xvR(jbEy!iyt9?nre_5CDhKY)y1kNB$E1F z&?rDiIU3$J1f-RER{#r6Mvv`+%&01JTS@w&5#<`C3r_tx^<`tb9f{@$#KLYaIc77* zzOg!1L)WsgmMA03-vFyC=>xC)+EaV93k&Q|WC>*DjH2lnArWfyD)tJOjsON-k~~lJ zcGoPOD$FK3+3}`^-tLM)jb#`g0TYXp_Lt3PKVw5 z=nlrQ>Oe;{h@Cr8qUacw<2ClkC1JqrdBPD3uF4Bsy%dY8*w|*Y>7uWn)PY2~U1JtU z6c-`d2zN9Je9O!7qh5s0WDa4X?BOo_5;_PVHOeIC>p>ss$-4adv-gXF5XXm6qLX~$ zYR(J1RWJArcz2$1wk^rEDatCd`Se&nFgKyGMQbL9r9T5-qIn*sI5X+qBKP|k$E{;V zw(UGt z|7PxyZ|5o79&nh&F0J)Wh^DDR&-A~*H#iz*;>5`Y>h0n)d>0}8TEYE15D|f9D2Gy0 z)xlisjsB13D)B%4ruG}^c5`r!m@0JB*bZedgG_t}ZlH$AC|a%dDwc74PZIGou^o7q zDAl_pC&3Il9Mif8P_oMI(F@++up^KokO1C@J{1tx0>!f~B;z29_+~^Z4R}-=us+*d z-E|{Y4uv-c)}5%QN*HovY=>8w=@~!qzu`)O!qQD)Pjs$OLYq-_E|5~d5-e(1Gh z)}fc~8m(F^69kVsFL%9Q4U5taXHyyuQLx3=)?LYm zI4Z@YQoTYE+`F-aMU04CvlC&<=~BYa*(7tVlN$eO0tIB(eSiSDmM_IwRnx-(Zy@F& z37n(1RU@y9J*G4tw7WDMb5vu6e^5mhF;T2qZ)&Y76|uc{J(kzVE)`-auTg~7?Dcu9 zpASMc!S5Nyv{mfBLSLQ2{m@^;ZfCZr=9^g2-`~jdLk&JqDEUBe>=j#KD=R6mdvyZ$ z^@OO=J*&PXAn5zLCor7vBlK>Y0KdJ%Y$Has95zHkX>@-wg5qqxIFzPD5ZcBJ3zbG% zHPLXtYs^?vJL{rFgd^RXVBVbA+y+K;hw5bCk%a2zSewb}Y8o&2kjoq7?+ParbL^PLB#xWsaIZNR6oJyu*||o5B1CA= z+XO=-djEuUXqTuicJ|b3LPuIg*8w=pCwmqBSG+~s=S1c76;O`<)7A{FZxJ8=Ioc$o z%;RL*_YHVU;WKAU<0qJGd$*-mDGSwn5 zR@(31MEXD`NjNVg&hk_wf#ZV<%C?DWku?fr5DcaI)>wf&2U9Kyq|7AEh?FqsNE6dY zm_*U5-U&|46@bahyIDL7{&q~}r%C*E}= zWmu$2PZ83pbTp6?qp&@&HK<^A-R7&CE23ui3b@Tv5_b2qi<^$A?s7_7MPt`)6)u^j z)+WLsti{hBY7)L^l1^E8J6eOyqNhT;cu%{`^q(cS>~6Dvok{PZjnKZ^2~`A_g=qOm zBuq{03bS!u(ZFhY#nsYe&6;ZoE05CC^VPCzU#4Jr^R|64lfAWxRoH6LUOhosQ2!O^ zmvt^Q7UFbmh!7~NR&XLYQxER^*IUw(r-6d2UI|;bE}g`|bg|Xz6;I+)TpQVflT@rg z;vn|(3&N{I%FdX3uxoM4)ca?+EAKXU#J#dEy#8f5mWxjGGG*)I7b-b-)j%~`!$5sb zgW8dG*Z2UT?O>qQw}4UE=$%y5y<0Mw+e-8-mihfdD)UJ)aheZG+yF zNny+HfA;E%CM``h?lF)fpalAxbaThOQDaHQg19-&I$vf~A39gf@-MwEWTE9jDKUo8ZsAmKyvX+ zo(x(jbo?^>9!+bW<1wFjX@OWiAVeaBTfAM$Bmu^B90mGwC_)J%%-<*O_5#Gz!y90MgW2R8engf;C2X!mFTGT-n}%Yt)V0y18fgSutpLRw&!)DcG5ILWE!Z z#gZIgy6pUzjB1c-a$LDDy6zkvzJg}x4*Quq;L)4OT=Zhen)v$!CZrp}RU9KAx3`Z! zcQ+Q{{W5}EfgTp!c1|netD~nuSYGYl^6R#2Dc0%8vC=18ee(&DvAjSpsRO7|nnU83f zjv$$wN}IOv8oL3c%5ne=lf!A^t{u~|hX&~q!KWYO*D3bxDfd%=DlcGPa_i#?sAn4# z=-Cbuk%*5ExU}&;BL{7|a>zc2;3U+7Ve+YP3N;4R;Rk3h&od$4Xk+g5&9^}Go=SMw znIin~8~Oc7zqt1Ya>W~{1q_t@%+0sTN4OOX)RyXOmjIcik`M|L$nDdgQ_dd3kLQpi>$i; z<-p0}P^JrEAQ4p7;G_tEldp%;k~D*XR6%eoPS~S9n#wX@jh8K|W&;|{*QR3kpgGG2 z@{mB(du!!2CdM;;l*pMVpS5J8!MK*?y!Pawj7>5a!}Ey9L3iM+;T;e|&!AKZxYu%x zKhZH9b*y;%6HHqzJXx1rD_XQY8ef%-dYngyQiK{{vfh+iePMlCFSX1^D55pbaj6aW z2V~Y!(ks1;C zP$H+T5tOW$N&WRoK?C@tCkLe!oCc#RTwzzIU@a&8h__qBf^qiLrvyx@`mX9?*3O}+5 zu0lMu;4MD?0=VSn3VkzBHfA+uH-A52Av%&UP86)gM0Xh zvHf1;PQV6gswnRDxa<$7*Ev+Cr?A$hejy?D@eFC?o4&s4?}XQh2Fx(d6-Ze>U|S`} z7T&8|zp4Aq>h2e{zHjOoT$RF>==%k0H#Z<$U(NPnn#c13!#(SN0lD)Iq*Bh_DIQUQ zDd>`Nptm^{Y}xR*=)$-JWa+%M$Uov@{hJTW`1`HHd^`EWxf16$aZi*z{*WJwW+m#d zvVw-RoHwBhNwsJL>*p-N+0q}d$iaBC)$+LSs`s=XodK#RpQa#3-9IIFsBvCcKp-Qz z8$=RzJ05Mh|NAB{r4J4#=M-$pV7lV7g$s*L%F?~-en_P6r{MQa$&+O9 zXO{FzHq-FDpr1nNlnQ zgMbx|zK(QMAJK#6GH2f81&Ge}IXp^D$QZMk7`0WWV=>nfPI?y1ARL>_U#1fh8MV>J0uXm-zV(r7IG-=DbE@5{Wp96Z_DmP z4D~hrU&0cubJR-wCp~o;jwmQxYE%V{ZdNd3rq?^Qq*P4r?T~(-x_(OwLKhsdO0}QA z&D-SVKoA3vysDSWub6u94&9Xn7CBa_%4vrX5dobLfatS0%#d9F(9YgqQXvl?5FoDL zk~rffd>ZwL5J^xpqSWjJ%b>4kV4szIFFq04he2$<9Ay^X63>jEZHrQey@kedrnOO@<7?m?E9G z?3{S1hZ2OBi(k)f-V^aWH-OGd!g+%&@b^(`C-|Z76b-e(uUWuDrmtu9Nt530L7<zJ}l|WyW2R<>FhZ7_G z&<6v_y<(Q#%Tqz0g*9gNlU!tzXj9j zEKpN49e#t;x3_9n&s{Ajw?*dPGJdWL{i+jYm+iaG6}%=4P^Dc43z&(sxB@TWxeP&K zFlWd%`49#gCC-|5m~8iFKV(ff!}%WY=E?@IcrWD*@16fYLX8pM_iW5(FQ)$<;nhFT zgquzaYLb#0OreV#t@rWHZrmYG0WU)&Vijc)U>mxE7Fp4iV<)s!#)vm{CY}aWJCN8x zokmoLnFy7=&@dWSLTyHsN)5N^fKe^0K;bLbg43X-?Y<$PxuP6a3>Jn9Lc$ZEx}qBk zNO8{C3XF1ZkZ3fe5&~27oE>Fvr)XQ70M54_VLl4pr%7<+hdH>YEL5@j$xk-_iUE0; zIgz&xpp#nRu7+*s#t)&tv%WKOmL}8eIEKa1Ma3C`J7nRQlSEVVXcg9=7Pi<~hSXJ# zl35|v@T?YH7~IbD0xyS=McG9IMRZ67zVb-nU0QIe7Hn`S2S;ke`urwO5o^2SZDrR; z3T*@5Ks`1Ab6sVBwjW-&&!q~cQV|x>iu{7-?-C^ZW}N4o<-Z~1tcBZr^_x0a7Kd7J`MS7f6q&mx#vZgiM?cEiwLM_ z*sPl+GKaeTHk6re^T}iC0;*2`<^Q`z{NYL7VMc4v^C#&~-a(>!jam_coSfay)UQa( zYL}wFY;bQipge2F+4XR5gUB+ynw{Pc5))^4 z$eUu+-+I}$o)!?*Ry*DCV}FW4`S>G)g9w^d13v$v?sY)Gqi*a==6p}f#Ql*viZTZK z`pa{6r+PM(5)#g+uA$b2XV;D5Iq&6ZrR|tAqi&dOk85b!>ZVc2ar&$7Z`sx+>8HMb zXfIEI8f|>)q=%26;KQ|+kwa^0Rl(v7Z8>JVwZ;AmNY*6teATpB;lo!m7(xm2VA}TD zKTkJ6RDL7&e_*Gb|K8y1GQ|V}#SZ(=VIqWBJ=kS5Cy_A(u{kJ}%Y!UZ2<9CgVqphk z$9N$U_U|8uoe(K|%hlJ|-ZVfy4H-9=q#{-m3d7Fdcrp~I3^PnW`0uc4a9jD|r*g== z#oPrxKHETv5TQMq6gF9-uxO#jArCWDNZHK3K$5hxaNzC;9=aT4u#h7ZkUWXX>1x>X zq6Egd?AXyV*htS?^U1z8Zn07`H`Qw5L@#K23q+c^0v@?g#;Sd?K*+Ky$&Y-#JU@b+ zFzBn5sUF4GwVP4|2t&R)j5JF#VR%&pm|9sn?~|0`jEJZu6O|0>wZ5ey+b1z5g`$i+tCt74Qc%F9r zzcg76Uwyyi`M<*&>fqj~=2g8FxidH*Uq((#Am!4oLl5rMno?%rnDxJL_^xe9`FlC5 zj?*imB2J(k-T}W*%WZ&+j#^m;PR)7$cU`#;JlNe-UcmtTN;`ItRcwl$1$pI`*U9T} z+UNhq&QHrWo9`?nORDL3J$!mZb$O(Q+LL^0a+7FHuc0QE~Ely`RyGw}Lqz zx1yuoYVZo`H^f9fuW&$VeqUryukTc=3eJ=CJoeFhQVPEXm&TVk^%xu=R@pT6wT-Lv z{$mL+c$o?RA3GuL*A@F{fqcku4)wmekr;Y(L!`h$Xk+@QxP#6`s5P=h&jdAih{>R( zzG|1vZYs^w`Q2}kLF=6WDI&RDVl76bBVg#bssLh@m-+=Wh0rEL^10!GBC7+q=|eB1 zPT#|W*J#b^NYRnGMoqHWB(f|L7L%yMoO(B+-|0Vx^I|I&F8ok7Np}+s)JSQ>A^RVB zCeaCj+(akhYh(D|-n4OlsnS3qE7?n458qH10*2k&a>Nm-p%i5|pvWdfPiZA}<0=Tz zu9i!pp@BkVgX?NUpamZZc_4+5^EqFbgJ@W3F46%=*R5%8F(@xkipYd5MmHL=dt9a{ zDz>Di7yUYty|S1jW#-SukfrI!mOKRtM%CSWQxNmP_YjYpWbD!VWL3kJ8%lsMJZf`! z6y0Si?gXsx{0E}zof%=hj24u^s~@909PDl7NVJBoqEI;Oj0MjWs2o`|4pDXf)iXEM z%#Uh~BqLh37t^6S8i;m80W^VpgWfN(4oa|Rh)?_CJ8RI5+yOUrzuW8;2p0i$Hm%&^#AU`8W*2K1Sb*>0 z(vR&=^ucg=0QN&_V-wNaF(LA@tW~4f2hcGTIzhNyeFsNK0gCFtg*a#fNV|4 z71k`Z``HmbIdxN!cH9vA4q-kY+ymu$y#*EsHetS3_S)w}0m*-}wJ}CJ+Cb51`Nd&!KgPS!J+ic?1j^3GVTek`NoECN~JvSyAFJ z7O;%EA44OgRb4HI0M=))(-IlnKHw$DS%_@`)xP8%e3?h?ol+yGZVgl9|(v zAiAL~YLPbQkj{!*Ws#8!@BD|CKC{4H5ylYcX=ELwzu>4;6wD@<*Q`pAkW3RtnEA8> z^-fUdG*cKAD5s0tsR@v*(zAcv{Kh{>^y#c@*ygUY z1u|@MW0gOr(RNFyM)-i(*!Nn7JuHxDEpHD9*$2kywl7P`5Yg_L=<*_U-h4bD<*GVb z+y|wsus<|kA4e{6x+=c0$de)nkHbK&0e*b&Gm{~0W{_j(PoL1*E&+l}oUS;aYHFtg}n-VNba2SDr!q z4^lR4{i2-8L?a$HGt`$lHq{{)(J@dX=whx3V;Q2M+s`|eV31>BrM=+9BfxnM`Y6XU zSQ}%3XE06cFpX`dcd_P{;1B^}(0=i1773bAn|`l=&v5!SlBQn$K7E42PGX7f-8*o{ z43v8wJ)SWE>q<=b6=^ekpep?zKvwE~n*@%^!6ksRa?r02^)^C&l8YsWQrhQb{)5i- z7!z5)4=~K2zMD+3hCAK3*LuOr?uE=&dXHM(ty*3tmc4ME9Y4s|b^Dt*@sLe#nNFMw z{4*pVAN zO9{`S4&C&WQR5#KZ6rGAU*M9za$@{uqjvb^5IIb6Ip`#q3^=vI;I-q|dFwK55{W9K z*ta_du^-#QChvt!j4r3-7WZCf>xvH-#%Hur@ zDauE${mEJJZ!P4##kFSa4g4gzUfi`uNq?O@@lIIJS!ElWcPBRSSlSA}?Z;F^dSfD? zfa-t-5n{&ip}pwmF?r_6%N^VTHt+$;oyONd-6Tm2T%Z^v1l>5E@&wCJHYunQ+@2NP(6JZQ z{hCQBN-xJ@Zq<0zz$V_qJJ~Ds0EJ&tc}gOp*J4P+MWf0HOIUIloK=PJA=e31%3T&+ z^Dlp#8Tztmb6KYu<^9)TSZQuk(tF=>>KqrOFt9LkZQXF?5;cU%EY`L#1h)^6m zxWdmv=hv-Nq8m02`+uDS*<4pTD%N;KR^rcj`y?Av!-Q6(f?x62H+r)TtN*aCsLUCY z=Ns6tad^TQ?RI{rjH9kZ@#dJ9HK~pNTenF(LlX6ND#U3i3akqog?+RIzAFZA=j;{q z_D(H2Decagac6g>zaw49qKLI}zNI*?;{vLu%&y%zG}jucxVKT;s=9%E*9OEZrst0lo5K2HEq9n@ zrZ=W?B$r!U+Oy}*0d}L$FvRqP`W0l%)xcl;__>y^#?*miqkF5UbiNFa7;{~tq(8jI zaLvFtsl(xOk!6k-Z^;VN@p;WHfuY0Z-M7e} z*cJ>M*jVH+i`r7(@jGc95CgYo)ltaMASpjjP?2yJSrb&LS;S1EB(jA>w5;{vl5kFU_!o)fG|!FB<~kdl5{qrS9^-bxADJf*2P zKJm8NJpS<9lNRQWflyN<`G7ubWFMYl7>~2Nh_ovrB0CZ(o>I&#;5GAjTobDG)bdk8 zDk&Bkz)4+3JHr|`r{(@J+VYLXc90@f)H z@oRSQj+Toz|7{xgg5ad{MTw1OfA6U7+|{0qVIGb1t_Q8dasjoa&+m>sGS@FaQ*5P^ z`Q}A=5|vdXw_26Td-51Dw~9F7<`SpKJ>*3t*Lk_GoAuz6yFmw)p_X;9gKl{tmrC)M zr&o;kU$nO++~*fGOD&V;KXbOE8eS{x&r@RDKp4&`GbQ+c_bXv;3AWw92pfdOCeDVR zID?pO5I2V17Eu2^PrS>B@5q?4j@oLzRFA*@|MT%ZygZD}i(BVXH-U4Op!e!{%tM3- zBJ_ko)Wodbk&ddR>p_Z+s)Hw7@Fq2>MG2@S@saMk2YyWurxi4s+{ym)MVvs5Bu!KH z8&dQs9XU&Qlqt$-leVeI`7NGt_8bcoLS|lBFZh1=CK@%E(KMhw`jv5+JX)`1fqSnI zlJO};OgBida!n(q52=qM$TBJXhrn^8FaxtPg?&CSd5~lXvL%$baVoJ8DF9iZ@3LEX z+`oOoQ{^uSW8Kq^m~ZOq?+lqpRth2LP|+Xc(@>Clt}s!#zuG(_D&aVm(%3S8?OCyQ zguOy+7L@S(85M26sEhFmC6DJV6kMo0KW7tXw=&A`BO;DaObkG(0O6!|n5Rn3<}-F( zRpQgMtX{d#p;ppBOJD8q@ENw5|HB*okX-u9PccZ>AOkHO>t`Ld(`gV&t4h6&^0o00 zs6g10qzS{)kbCX@CaH713&J`=kxWGYN@{(}af|Y=1;u36#oNh!SA{{gRI<}OPh%zY zYx^XS%|i^3o=c|vpNC+Uwbn5zn8Q7vWl}{{j-0eIG_A=66nEUaTiBb!XzH|vvM;Z+ zA#wbq@1aN8JhN1cNL!xSNBMp=1hvq%mA%dQpJ!feZp+mDcsnykvlg}v(FP3D=mXuW zR%owV+*d|&?pnJPYK2FA2a@6sf1C#v*;!&dw{^vVM3H1DaZ;XF!?S+&ir*b^1AR=+ z<@^e{?v{0I9;|BRKIS0>66&kvOlyRFFCS0Tyu8Wvjh!r!(A>%WIsDTn&tboXTt+G* zoYlis?%@LMuD^7RUp{vb)zth+HPrXcbt71Lqo~gXy`^q+Dx+?FIOFl85inK`oc=t6 zb(z!wLCAE@?$)1ru1LD1R$T_R8!a&x{1=S80 zgjke-P70Hmh*?J;o52-#3g#F*0HgNzAob7Ai_lHV07($6cU+-DiqBi%iO8G?J_Vy7 zlt39=KGF7Xwm>7?UHtCfvM>W((Ng1<)5;2f^ja5UAf{<^HOlHXsj| z1mv+BY<)5hc&)!=e4T9p*n%1?*rDLJV$f88ZAl|Mc*R{YAxJ`&q(VFx!8OhpVhTJT zxv2f!cJFplcZ9O$uTM)93aH~1sz50J^YH7Ds3k7W@U~~3+7J!vezx)wija;;2fFzV z8JB{)*^7h%DlqC_p8yA5pFa8h0(*G3(z-r{kz<#P%40L|&8pd~s=VU-3iFQLB;D}N zwB3@@*Y%3wDqMO?W%afs9L~kp=HZ6?SB;o_C$;%(`IAy`Lq!u$DmDC)Q*@z}tqG_e zwSMU0{F82)&4}S9g2q#q8GArOS-jM|<^>H+P=!L6ey%}E#j^};!s?1?$!7Pbyv%q6 z*oi1o&EReC;B>`?h~%ylHGN_6(mQZxt43wmh+S<0j;e!_tYTZL53EEdgseHLS3r zmdP?{xA4{WJd0tdXw9$Zb6lW}u993$UC3ZNrS~bNh+P6cBD#{%!x)^xV^|;`T?0<| zd|Pyc>u#K5O4yC_Crd`FP+Ev7&RYK2zov%mBi(m2m#qXOz>%g=-D;%k@>Z{R&~|D> zSHz3+@DI6NkOID6Syzj!ubzVLPC+547t@NodMJFaGUsW_=yR?a+CQV}9xM8O`o_{7 zwS}9fWzv5R%A-LLTHn0R?O6A_r5uTY9BpxL@KXwx3is*QGg((6oh?H6Hzf=>li3*XCjyWJMiPl7B4hS))1! zgA9)->af40UHyUnn6w%zJBM&?UV?`qvMv3ZHgEHkbm!l{JI6!<_w7c;b&VZ*HKXi4VO+7kDwZI30k`)RyQS%5z8eNnOKRcJ{!f=hwD z6j1+nR55W>EW406I#$+Nr($*Up;elCGX+C(R|F*gDXl`K<$i@QUzR;9=7^mKvcJ;t z7&PBp3T#m^h~Jchu|ZB_YeDGBYJB`hIY}Q5#j%smiYkB-Jy%jJ14uo&4fn z@-M6CpSMYdItW@7&J5J0U4L|3h76`>nnbp&s$WiHmSR&21jf^@`O;5V?OL7}BX_RN z&_4b}*)mG8OAGn$a-nu5$DJJyOqhBp>J+9NBli?moX%vLG0HaQ&0*;js7V5=5AnGvBMq_)&7P5Nyxrfj*50 z=n!V)$+j5Gwp$3p`%XR5PYx2V_QtRd=C?ob7lQY#5ey_Dj$PbsiwGPh&|Ae@e~{A^ zw6+ts?2~^ExghhI!);m)U-?B;=B+@CYrK-zhaSEDsy|TWCtRtMJ*UD=&QWEIt$9yfzu_X8XTwaq;+m%Pded^bb}*G$WS$; zS%O40A>(zVZcR=%pD7+J{CkeC-KZh`sH{$g!bRUduW9VxXr@%?~f6eUb008wL`A(Lg3a!@+DAg>*E}8wdYOi7x^iBkdmHVy3ezS zv|KUH{!(8}f7ciFe5vzBp>xI?>T9~`-GlO3BlO{0uJAHS2f@n)Hjo+L1hSoak zNS8PKojT!euD%lR@G!_K8>qLR>JU6l-TX1Td1<8EiI&hhyojBpuSF*@&J|t>!vYqg zblQSc#UWl0sYa&co=E}SRm2KI{rUFTzmm0IQU1WKi8A(aNZmrd>mB0%BI_N4>uR9= z;WoBytFdj{wrwXa}7{&X@Lxr=92+Gm3HD~&+u@7%L6fTCBAXTncst*Me1 zMusqgpHYbVTFF}y_Y@ZxakAYEi!IN*aDvA>y$7P1Ujtqawtm9pRXFQ83VK{fgfXyz zI!Zu$`ccJ?y+eFrocP(Lwzl*5mz+~x{ffa@X=0h@n%;l4;Dxy*fznrD)=vmn4AsX; z!W=qzNu56%NO9AGgvpX*?Nb6?>(X{A30r|ad064*SF-O0%8@8j=+enYXQiOFuPP%^ zcO`+#BE+aQ8ay}0pEZ}G{aQYjcbc?Ui>%Mq>mJ~ISe^=_#=cGf9fWM=!8hdjJ1WuL z{)7^|7iQ6|^pJbbWC$l`tPjUA#lGjYe9+!ig*|ate!O1(1yj)wI+pqLTD%AQqqa9@59tsH?G!=y*0DyY&D{ zwx)gQaeR#(%3Z0VtU-e+7iasM_w)0Vr7wvwS+61Vs&dSB*8Mo8X#=v)h0Z`+&HA9l z#;W^;W?jPuit(eP_;s)}W0#k+RNT(iNWI}>h_CsH?!%TAbs)z0`@+g&^y?VQi*EL} z!Q4{d%dkQZ*2Ls*XJ2UnrOvtB zWmPeuuQ5GWKq$xH%sTfqPsM~L%~B*A#i~P@&Px>HKxDb%yFP}bl6CA$lEv4p$+}eM ziEI@zu!HlrpT6Z|y^@_am;WWaz^_VeBjGJP&9#R5<`0Cph-f#;i_;E#C~Ai6l#W`; zCn`3Xx43ZE3to+e9*y*P z%l1u}?`Maq?)d#T z(mBYWqmD9K)OSTiAtTDdI>u9dZ2;?u#J~%&*$~sgmjsZH|L8bch76B3i#c=;Ka(Ah zfBd+YSb#f(Hxlmk=9Ke`5Y0{N0OxmG?ch1q=Jhj;*Q1WW!fWvNKDD*Zn>sy3$t&lw z)!){>kEl_nu7$JH@YNWRRej$?jIPzuQ1kVi(3um z=;1b19aD;RM1#u8(I8r{9<*RX9MOMBa4f!gz{=D)twvQHQ=`fHG zWRkLp1f)%$6zdl)$I2hYY)9t)N5n?jOyroN<&-foz`Zw75Q0<@=6Rg@S^#cZ#v*) zqzm!D&EQ~1QOQ5D!PpZx!sQ9phoJFBj!OsEbr|V=Q{Q>F5RNM-WkY5}r&H|I!e!6v zsw7^2Rlr|b}4pzg-W$8^2-&Zf_cnWmHy))~3@WOUA zDM8!al$ZOP7IiVkhpn%Ii|{zgY0byn6e-W{Zn;SR%8~%AA2@j#{OIi1V<00X3e& zZ6dyp|Ee^V@4`ru)2{L_kM22c%sY8}Ve$U~O-?p5{tf@;p191BPhi-#_e1K5A#8g5 zE_N$8Qi{FcUlVKaxkT z%at%@q|T&662J;Y$*W_JTYuRV5>YCssX~;5*;hYt;G^+8=9x$tCP~o4dfuyI7cgE> zTRbLn}a8+T*kPr6ubN)Vbb439%b`aCcZu zt$*!g?6$Yo>{gzcPS!MiR1GQ7eQ2a4pUfES)SFib@hgdEbW-flQ?$)n@r<-Hyw&A+ z-Rv;@kQVYLalMONJ?1M}mP_8`KKpg#Hb|Y8tWq0z3L8_F2gb03k8}~uQ44Kyq$Ft( zu5W;yENgs`GBD?zZh>Vc=p{gsgMH|ZgIz$f@2=^5jKFT@EHFYWVA<PoH2pAbHH}-7Z_Y8jqMsm+vuBJqzWqtm5M(waaVNG?!>P zg{cfq5`k>)$C{vyn=pRLVr+z2iWdS>Y!}^Xx}(n4;ZOH*qR}BQ4*YbSn~_etAPD)|lO=`E=!Vmb5Uyy=XHN-AQ}%s(xO6j=5oL!wJQ@E(^XgR*DwU1$Uy!GwcsXwjEJW5vQycJibk?XGH$ z%iDjO;2iU)e^ZQfGu?>3>*Qm2=C6plM#R?EGgr%&6&kHjdI9BJtYKtu-j)>0!5ehJ zJ}v`lbhLF7MR5V{I~nNMC$@1;t}rOe4+q3`Z}3fFvw|*YEo6N^Z($A%2*vq7&b95o ztRTr(=<-@?!9WkSIlQ9cyw8d)_*z&kh`J14i!@3W)@b_eOL6ILh$W1D@)f1lMKc5; zK*)`LNyWXY3qYQjh}II?RrV=T9AM}G{yrc$GNqk?kD2oVhI0Xou1e8VtedT}P%TgG zizre?%Sghk-;$QQXjxzFSP{8X&Tq%bZP}ezkc@8CxbOhH_DxG!Cx13FVT~GyFWhnD z7+~J-eth`U|LR&kc^PDtAh=jE$*su)lnb;4j^qCPnU7qbi9YT?XF26|HBHD9`GakS z5E!&k6CSij?Z0u4>?o{|nOJr~iFEw!%T<;tG0sn`eJ-n|C-@ z9{Sj!(i+p{|Fi(c{tudkyXwh;Ubm2J8jB8_w36Af_ahdb@QTM5klnu>-rWAx@#b)u ziTfYO(zqM{zigQB_RQh%Z;07A`^!f)mJfmr8()Ca)M+Uv%|*(55Ma5v25KqY=5YT` zHW%Fa9)FT2m78QCvqzF$jam6AGd8deMQG(V*F@>1VsOqDsrS{WL{?4PMnNmjDZpO} za~OW`!dQKG$7Qq|QA~krsz<_0r|*)*;x*H1p%9YE?Tl3Lf>aYEMNC89R3!&&m(_qp zY%y)Z5qb@NYTNNPGbporwEE7L{19>;hIy$aL_9p|slb9^xxagUKB1d3;c5#d%uOoz zVKfp$MfOSxG7!uV88FHeH$Kp&1(+`a874#oQuls~hUd*P67c%4Y;K3j*+#qAy^<@w$no;cM(Rgeg|7b_+yJR>$Fk^TT1 zeJ2ZYtQ~WOL9QH$<7HPd zA+w+TbTRU=ssm1(P*kqkLJsf{=7n0-0S+9fYpsK#eW8Y-HopnR)D#t%scZ+u%?H_! z!Zm$M48=iEr3lITtQuKCxeRE$+r?7g-OD`7P*TVouYHP5%qFVSV~@d)eYCuLZ@kIS zJysd=k%hY)5=jlPe5xV@O77n3EnN929EurO zl}S4F$JK7uvhC+0?ee;m0B2`S!hC%vyt#Z%=@hlTn)P0VB#WoAk(2HLqb?Fnx0MDF ztsyE#520qS3nn_HktH)RN?#|a5@gjE6m02nl`Hige_A-$Z1|jx4^{_2O|Ip}?Fx=w z#PniLZa(Xby|p#fN&5HzsrJvkEAxJ2cA7Cy1qp%AVEKTXo0JCMtyL41e}(Jbj@m#$9?hKi^~ zm0~9T9fk_d6!(i!ltp~Zs^bMd0gB{UbX0Oo*+AlP@Io$>0Rs!WH~dOlhRbxwlEC7R z1$QV_?0Nw6YQ-B@EDbiXrp!UzY$^%f{%h+Ewod{|zO z%Y_LmnxH584lWlLPF;q#eG)_Jr<+~08-Lt>^mjOZP6=TRuGvmxoQm4`w&2^d zksw5gyL0O!%7=zc+U}cBxR=wIvWpE+>2{vqdzdgLd3{;eN>C5(MHMc*b=OhMQ8zl4 z+Qw=bpU$YQD zTNE@ur+(NHXxc(XDR5H|Zkn!cc6yGTH6?x}H>1~uyD>sPn4V*Q0Gm5vumW%k{J8r> z^L#*n%hGC*1cK?QPvNS6gl zU{S{&S0aVwI}ea0=y)v66j6mf1&Nsa^vNEf3ntw>z1+TFnYMXW+66H>TbSh+If zmAPz34jj6_fROfYxmU)x+B-cJtTlyMe9-Z=&?>Qso+x@z8SkD=3Ao{QA-U&XX+1JY zU@vOcYqx&KH|B$wi!SZQzJ10t&ACh ziS>K$-+s9cS{p;w_>D+Kgy&FSZs_A zsW2J2@=&Oo*^&-Yt&vcY$53)nTzuGhOL9RI7Pk8H^%j?XiWkOQ}`)``vZ{hAnKd&uh)D1H4R=59Heva}9qsPmaRl_~`U!;Hd z3_rA3RBri#^$aR-_`G@?U0n6w)fct-f$`6DywNn|`h@CDxm7u62gVmBwR?jnNjyR4 z3d}=!h2L#^2C9+re0fYXc<6LgM+_}$P&QjsK)w?UFDYbnk{ znSEX^Rk;)r75l*)e%B1uXoCk`dkgni61>{!?GM-N!y6v9d4rU!kGXlV0#qmAx&XiG ztzAEw6>;chUG#L_K|IZxVsYh{tnYor1P{7X=2@!gych9roX5}LlMOJ)N7P#uC@DS@ zMy#a1fUL*X=yY)x(TU4APpG%n7!O+J0x(nZuFFPIjmXGSJabsA-U;)%XzfhW>Q+3> zSKVc}%DfErSB zNk`btV)Q!B1$fuUt$z;?pNY!Ee>jZ3QXN0B)vqdN@J@9|YbDs2`?6M%WdRn52!@&KQmW*<%9j3Tu5En_)t%>Zn2Fan%Y`6gGsxv{ zCVI(v!XIVJ4y+4dWGKJ(brUBiSG-v$zc$YOGLrRE<6B*{!aSl zo{+qYNwEn+S(B_Y{ZLgLiZM~6JVJJFl#$GORTq}g+=^s2R=dhTHBRMO;W}t+X-n>( zpT51mzWpyg5&-yhxfmPxX7>q;FV+gj{z!$sg1WSO;ZC<|`4S_rMzu8^p$gMF#JP}7 z#FrRNZiLy?3j!)_wiN?RmXPztM$7{L{7DyLOLH)h=c}g(jLD&#e zVm0AW3sZ3YOdUYfKWLpR!tu!zB#)MjuK98SYl9SA1;U++hZqf`!4B>BR&#pW(#Dbe z-S0tdQ|5@}`O=Qfw=GU}4fgimPh!iZPJ z1R&{4K%-=9EZ>HFMu{stFRV1v=@d5!8nPWKB}7A~X1lu;XKzVJ_bnZGLEZh%pik^$ zGZ-|8a2&E&GUS$8;7n`Ia}=jtU81t}W>Iq!<6q5nGP(Zr_bCZ}@`I}yLgPGen+{Av z8w1cGd~-@ZVIj+}y+={{Z49Af4TXf1&n#e~1hk0vh&L*nTgsTu#idQKMCJVf{&Q5t z)FW`)wlR7==uNtE*-hlqMbT5ofe38E7-4Ex!{*%`ve%?Ug-(YuunvRp&EK}nhVGFE zik0_&aT}fgrJ(0>exAbLJ7u@&^ntCFyOW`rH!8;PY3=j=337P~=MyF&Mn)fFz^=Kt z99#D3^$;~ei2wq;M+ac%#C9W(TWMxG=bW9Ji>;&&N?|c_dIbpo^9CQVOVsj<_-l$(2TnBsHgMaHz3w4mK(b_cx}G&)?}B?pum# zo8yA7s_>r_IBeGwKc}bD>5V?vhTkRF+96f`c+|9VZeCy5jbBN7*nR;z!G|zys8C|6 z-}txMv2Jl=VAJWR=4FGKk+OpOEUO9sBnu;5z6$Ca_!v2}4*cbJs28?!+Xu(md!mj* z#b!4cI?%1|oLsi_c^Y~{ux}iq3yzm5EDk?ip+dD`HE5%8Q(12x>9NnNG|pgTyP}H9 zcjy$)GgU{PQh-`A9z%J0Nt#$ApqIZ%f?0QeK2G!6q6(~R(&U>s3SJWjZJyzMyj0Jq z{J!orG0A@H_NG0$GXObJqSlv7m*taZmNh4SGVgy+^TDG-kX^OPiar@PRi4&&hRc_f ztDwc7#RB{!f0|z6{q*WR_6MqcoARGEOoP8uD5>0H{Hsir3qaBs&gu^o4*ud+bhi{M zS(WW{71_N_T=jBgp&Fp)#P{21nG*;|T?4bS_Y_Lf`}X)hqa9s9r;G?UC^rO_O_p>_ zhi8E5@bR^)L}t(p*y3=0O%!DK2c1iKHDdu{K=6kJ0AAGF|BB2vtp5Ru8)tXhdH=F2 z^{&8&|F<8bx!KicL73u{Lfp(NP?>8%vx5&~bsm$~R#D} zXWwx>GhuGC&M*Q-3&g%X_2L1iV*PK|1@^K>Rkqgo4-7tE0EPnTD!%8xUyJf}PE@HJ zqV*dzgeD1UL5Z;h2+Lu`UAXbnas=qUg#noHDkuRdaL@zVQFX4;7$l>^-Hxcpp>=rG zlZ=?c3ws_)yTP;G!%$0fhqxrGXdgzkVG>7 z30+D#=GFD`!gbVc;|FZ{46j*Kc&X_AhzH(M0+Gja4H#c8r?s-|wYmz2MuG&aHGSWr z?{ceFH+k}N1AUzb4_+b?UD)VxRtaD-;h`NslvCFv_=y^zyJ%`>Z+0j{)|??BglkDn zkT%OgIO$pG>TPb)G`P&Z^<-t!P;Xer7*xlv%4UD-B^AF;xYRS}-eR8h7-s{#>F?g@ zRY2_NeO2G@|G(wotI)r!`H=r3TSPEQ6ftliGHL=s-Ok`j`R?edYYro$pamn$TtrbF_A*|a(T&b$wJvl5r1n(5KzFNQuvebTbZq7C5?Zv@AR zPWa*hkJR-$1(2ddp>p6rz~8^C&O%yoOp>S>gWd{MRn<;2r;A zDp9qsOD?6S_Q!^u2XxQhdQHx7Tz~{d{NRc~c&rSaHaCSn7A)n^Q@bAU!BseqrIau) zomyuvZZV$s-3Ps2;276efoIxLks3zW3YyxQd+aT>x&K0X< zU~kafuc^K%Otka(ga4na$8iC*^&jkXgT99PW$Ve=A$I=-TI}faJM;XAbngLH)l}rf3tlPm?jcCeb?x+XJ zW{cwQK5R$yDL?7SJnSQhlTn(_#TE!YD7#hRKHbXSo3$X-L9Q*g)W@ox^#>OHrdUY# zSc}Q8#9Fz9AZd}Iil2{#rXT7pmT?W9Y?u7T`mqPWgj|vChe!UB$es#KxR8`nP(jg) zKl*X@L#7r2Hzq@MPsWAAj8$HI`3In(ezJSe3AUI#*-+W^vD&T!1$m{2Le{2_mZET| zm0B;%L7QzVyFVw3=ngyoJQ=K7<1e>aM*iwI=Go@%|Li8 zXji@72Es3@ar)<=7r_cw?a}2cwt~L~Ra>CeBJ!9K%NcBEj?;{e<&=!P-z}U$uF(3a z*QVQFt%!;}A5h=fo=ozQ@61#64=l0-NU2L4D;E?Ui7=*;=%@ z3MX4k$Pqy$6(^?rhi1ih!Zmu_%ESZv4lBk2gplfCcc)6w6*)+=^32XZMLc!sVX$Wv z2u|uTVa+Paf5=+0&m!tCxPbFLkicjDT-j~VC0_T?ufMkeyz4n?=i`@5g(efnSVPMQ za$eo1H@{br(Mzdawc38*UoLFc6LgO`ntkGn5Yl#e^Omit-H7iZTy~+SRbGBRCpT(e z|@=4f7;jx*){7OG>UZx{jApRTK_-Ns-=5w!w zNkDOW`K=xD{XEx)&;=!3gU?RG(A`Q%92!MDu%Orp;Yc6l2>E<3hlpTm{<+KhBN_21 zbq`u;lnYuz2UK>S3}9DOJA4ML7PYKGZI{9W2^#BQqPNfzQ;6dP%VBe4h)IrozY=xqjlR8=SAXBNce>xkw~Kw24>$UNj|~2poDH^J1m-1IQ8F+@zO0>S7SSbWO1u_qxRp%@)N&N1uH`J+Eg2kZNn8Gkwo33 zm#k}044rVNuqzKCnW{cgiTxEE=CvEhB7_P=hzPurL?s0yMC_g-D-+2A}X3?Kw5e3eReHzksh60t3L<>pc6_Ch|cVZk7`C z#W4}JJ?Z=vaEk7>gV(UQ6H4JPb-8D!uxM>XsBz)bk7k5wjWvsPJN-X z`m$5wrL;HmDEsCkEI|e~$s4?F3h4@U<7`)_cYGpiSvF+b+qA?#FGeGdQd;PGAuo)p zX|IN;T>Md0aMlpiwF@SzT7tXUGtHKE{?kDU3lKgG%=`=9Uo`{&2%i2a>8(wtL;<*L z|Gy_>TH{+oKReVq!f2>R^;cYD;O23Af8P(gPCP$%$_yWG06(tV;ZP$$4rS1P&L`y4 z9*))OEU7+uN46}l69VNvA1ZQAk3+2yc3afJ3|sz`Y0PGxKLJd*Kc>`3YnDzj z9y<&nrCGWkpPw0SqBltdM`utU|7?cC&caf^D9TonXJAZ%D%|9F5MGry<-C%2dJ{_d zDGO*Pt^NtR*`Vn)uCiZfBe>Boj65m%MubMeGIBO#=L)#NlZrz<6!Qu9l=@D`(Ep7u z@)#is&<2O}e_DV)aKp$P`b}Lrtt4s9r=|blMO!>Cx|*HbMz47$uT?f{xmh@l{0QU3n<3^^i4?0a zfy2X+?$xDw%Ol3IvgX!Q{YbuaFs90+OFQ&6UpV@N#jnIF$WtlmYBW8L>t^i2`p zp`@qX7af%&L>>7qm(kZ@%=ahY6~O5(J7>@v+!-bPV+#En#~12BXqkI&p(4Mf==2x`@KmcGs?RB~g8=6#6?`AavsPPEe%By1YvkTpwPIB^jRf1g;M3YF>uEFiX;L+ZL|%U}gxG&S z{N3S{!3*0+sH&^ZB9Eyv@l>PfU@dI2`dMqnZ9^4(eEYQ!$Y}E3#aG~E`Lq($eBX&Tno z)8@g4D8LJp`Sz@B1R}9~Q8~M`2PsP&Qxz0VU0=5TQwRc-Sw|YLwI{Xmv7khHww~kcAQJnLjEc(ek6CEzUqjq?o?*sP zDt$xyUfP$AB@=UT`XizU1a!ev^o`KeVK>EfGfzL0>D(A9C`?VahdmMf*Zr)GdKnqT zPfUmsh2ZA$)ed7ON_?@)_=qDEcR8VUnsi=zsx(tT-A{CR128BNf|S#}&Vm+>G_&w& z>Ozm?1jkFEh9Nq9z&=xJtl>N68%gi#(3ltDD@w>v+^0Mj1#t(X2F)^^&urgyeG3_E z%MNed%irEHxHNwI9NPxS(#*uEqK}4~w1c0QzUmjf zF!^c7$TGY&kXHBuBZ{>&mS4W^K!3Uc#zY2qGAaU}(%DKUGE?49aR~7v%q3gT7ahk~ zT}a<|-|a6TS(Y{Lqgv<>3`-{R8iq#$4g$Ndq(9-pJO-(>raLf@v5F}P2Y5hzHL8+* zTt1No)deu2ZnAuD!8d9kcja3U0(N9XMoN8qP+v01?xltV zO~wE?i|6wm^x)aPhh^WAAen&(j>n&up0Q+J-kUpg4RW+PNS#I{$UgW`7!&k4n3x}@ z#{s7%GA>Fp)96EHJn5AoXVMN!3KD@>1;%%V+8(Z z%E3-k1#C|GVY^-N#FE4p3T5wnr!RA0b0gtjTgxT#x*k{5>$A{w@-tyS;3%dav`aA8 zRCf0)V&|XeI1F@Zc@Tq147u~$P_BG;sNG{XLqWw`%F#>hMzb%ry2@&)ehhpxVFz?Y zZaz-n3{Uc~tf}O;{`zzUu_U-?=>DK_`0V{XsX)p5_KD4LoTCU)gnlN|k1OCr>*v;g zN4RC;j1IqLCFP=UY+D!bI`#!@%Wqdu3;0zlsn|eaY8%rXa-lqTuX;BSY9-Qk0z4)r zHcduH4(Xd7nG3O}6p=!{LqmBX3!VU%V8Oq8ArT7|u?A`3@NMepxh-!PKMYRXJ5EgS z?U_F)CjVjTz=lvgoP&eH)h`qCXB^Gj@izjW#*2ZX>bfE~;)E z5)g7RTQY<(aVEK0uRxhF^;TXURN`>sBUnZZcC(H+{&QPR-qc$-XR>d8=d)g!{V<@V zaBws6FtD1-`G$J%ZCw>hlMly-? z8GU|95Eim2a8CXqKc$3Gs3G=^YIf8#z`R*(-ljMC#voc2RWdnWL#~zUsvY=x;Hk5!6wB(=NU`Mbj?!+L~Crn6SF24uYD^_E! z_5G11gi*9($+_HilRgiA&Qb?9i5kfO%xbudN%|>HjeEil*eOXAAxW494)&G0*W_Wl zU^fy1!$O(Y2O-2+d$lReS{hpz?)YcOV|2Bu*5HYM4e~kk4zIH(-6nc<-4hZJpz^LrMu##SHtR2hN z*X(Va^c2Sps{L*~fnI6Ak3LpJBKkKO-}E-TpL=}sc_!>q z3OmM7?|#yK&)p6}-q`k6c)lg~TU7jbXk61X1#^1Z*XLYXuZx2jaD!OZTpSGA-w z`Y6W;`QMzDP%ZcprgZqdue?B}KELAcx$qTrTJbJx*z^B=-tTa8Js^BhR;f&3O83#c zP)y39xdY2(rzvsdkU2x!z*yUoY{ZoH(B_Hail`Dy(?k4_ScXW&`fSrk_=Kd_gKk-c zjhNx(8GVbcdN`D=1%$~}GsCfoG^@tPnowq;daWmu*Chgj{4z*v3xcUjqV}68W-9Sc z#{^1ciw=oZimbJHgiS9VG77aEWup^GP3L=TBLnfp<`lM;llBqufR%5#$7L-{<*65@ z1kTL|MGk-NhuH!Y7RiJKjRW7wnDam~k{15-71_#2DM&}W%G+SLWD|cEuF8mi)n|z= zX=%F(lSB$1Vw?!}Ds=Pi*L4i*Icur)FV6jbp^uyDz}K)Y>20^#U5i(JTzvH-vab`v zfiEA~y@qXoZ=#Xk$-OjKlz)*$I{JBxtSoiRp%Y%reFCYent4EZn2d`Xcji$zs4EDM zj^9gytaYrL@@J|kNRmoxdXHk<(z8I*k}uXd%*#y3^}7nk=5V!gQM-$v%w2Gd%bR_dO2HU2{v{Q)(=%}_+((Qke;*zM0agS)*N z4_g0Y&-Vt{rEPWFE>EtjC&8wujjy%Ab#)!UmhEpd48bpNBT+!dxci(d1$~uH&tGi? zA4eeb;2|e1pm!XQ8^fw;{@#e&ei3-wd*(VvD1vR@aY5?mTcOwWw36!1+2-*{>KqC1nJ}I#;LL91Z&irh}wa#jT&W&i<#l;VRhMI0hS>~_9yhgpTg2L zir$KnsWrq4fpA`kUM$J#aK-jC0tKVC5u~hUmG}{;LOdBs&Vi$K3elvN>tH1yc(6OC zoLt)pjM=+a!#3D+IMD(yhqDi)xqg8A4h0`|Q&9d^^Ovgd6dZd`x|g-&r^`p;x(pZ! zQC)PH-B@gr{)riVoZn$Rg8;rv2b6>*>7TZE4eLF7ataSCLQHZm~Uf8W!TeYYvj|UngS%wd8Qv! z*yL13_D;3=)zJK*VmZ|~=cjWDWe1>!XsFYlNWHxYJoP8R>Jf$?j#|~-|L6>qiCp?R zP1U()nE*!V@&?vscjT7i!kRluIpNOYwF|2@L{I!bQRb-!Ha}nC*+pw1<`EZaj^Hp; z9l0bP`QFk}AEr}vJ8n8Y4YqEtw*8<5--Lg@Z8KzaBkF!whk3s-PC@^I`p{V30CN0z ztdUKKSREdz0KV`n0bgz0YiJkQo$ny_3WR)$+Sbo~uMqxv5bhRlSv=MFMGQ!OwDVMz zwuJsXaYg*OL9%7D?fk2Y!R^JIOXIjh#`c^^aPgN*IF{R(ik2`v3nP6~#uyvm|rD)%GLDLFM7-WeaN;?JZ-(X}N)g&abuK?4AT8JYM z7`MwJX%6y(zKrQ@N?7#xt+eWMev+oGvr=U}u-tZ}tf~>X1Rbhv)~bEppywknQ$rhu zNmEoGGm?kXa0bd;#*3SqQU9PHh`Pa#7NUBVUjQ>gO=_inU%V;p$1s>5WfHS{`aH11 zoe*~V_E8rO@E_uT)`F9&>Wn5*;&+;9Xb44~+yfy=BG}B6*LTJn=5{r!S9iB6eDnTO znA%2xAVOT2^a7W#@P{s!fh)T;mfM}LKAjXLelqs@fjo>M`DL^78T_u>TSC`?NZcHF zAbsfU_4e3**+1cR+K7_h+SD#{ts4Y=^1*4bm*kTB_5s_Gb&@Wjd z4Zhuf%7d^Zg3yT9JX{QEDP;ZE<-I?DHF&43^KlIVH>aLJf!O2Syj&>d(*%wfAMz3P zM#?b~f69^(R7)8!p$Ko;Ko@M3cPpA&JSKRID?uq(s$RLVZWXc>I1@0M$b!yrG)w8& zt~2p!SW?wQP0R=5ySTbWt8n&~hhLWHw`MxE?ULxmOanx9Io!QJ$zvVg8o!%5M^)m1 z4C6{-Mc~8OnsFmi!ukeVo!%$~qY$GR8U`b$NIJdpK0SjKj7swhj?hu=ah?jW%ZC8C zVywtI?%i^z(#pietTOj)jn?S+NWxT1)O&D@i!Yt)ZNHf?j1dbx_!Qlz@{$xOaZSQ? zqa+Rlhue|r`y$6&UxCkqhr*KQJL?!22Hqip&T@uwHU0>aDH7uF_sG*xgL5%T#|{M- z+fCO`k?xFLk%v}1YvMNl2r2AT{ad^)e$*0#qlIh=1t(Jxy6i=?R6>OfZHR~pl2<92 zFn7*@+Q1kLr>Mf|8a*(Ea+d4_zedP;)Rg=AF3y0MA+ z7`B)E|FQLs!I1`9w{Wb9HL*3x#F`l0vF&7H+n!`%dt%$RZJQI@_U$w8d+t~D)vfA! ze)O;Is$Kipd#$zCGVwM}4VrEorS++q<==dTWU+*cwp@P+dJtV1di^5hUDr#b*(&gf z=ZRD8`p^%DH3vqS&2Ag+}iC3Zo;s^0dwGH?i~PtPmd_Iq8I?KLCA)$KTDM(t@^Mq{F- z)_6F6b&9i{(}T#{MmR=wG2K?c$!o|NT!(43!&_+mqu(fh82p zd8sK@3qklY$}Vr7@RjX7N*ujAl!?$gGq+++1hPQx5N<5_dwx3{G-7OW9EZ}AM7fjS z3V#m}h?LnH9K)Yx^HQi5Xv|ZghY(2%Jtty?A0m6zKq~FwAX-*|dgn7D3KWtfiZfUaWH7~&iJkMhYw9q9(ONI97%rbF?@_x zlox_`=#W6x+7F$v65n%b@_t2FoQ!Wn{W!5cY(ZnL8IXdnOdb#D$d4r*Fi24!g zg_a4eKSFXc=5lxhc z+t$7`*0LT@N>DMpX8nyDhel~gs5a>(n8ZG_*_}wr8YW6U)KDwN9+DSZz@A<#-A^Gd zw-9@9Z|6{H%GH1L@dlfIxAR?7s+`W62PzdF(XUy`)7Au8Pp8b|A0*@Fd-nmO?NL(D#MB{}G9!NJME8lB<=L8N?|s-tmiCURaKpp6?>!nW z@5chAk4DXVRTo%xTm3RoDrY9BOsfUFNIIMSU5Rl&c1*3h%&T>bOq}0WJ0?MqSFx7@ zM|c;oJ6T?UM+d(Rl;vQtV!EAjq1H?s;S!KcX741<&QT&=EpHc%F1LZ)uvTr+6YQ9~ zf|4^A94qfK^z0X6sK^IOML15#cFMwP@4pf)I^EvWp7H=yXq^DF_m)7cz_mNiQPDK< z6Gfb}lNFpeF&aF%`v~TZBh)82g@~?~rnWhGq-OxU9No@=sYafD4~+$6{bI<}I4 z8Qm)CX!&}RGDNtn{O`+kJGz6+9L_*EM+3h)j+L$5>#sGBb%q^Ffb03u;qG9TK6PVc zbDzC36XOdheA#sk(9=2$;=m)JoW$W%Va)<)Df!Tya0C?=ry2(r=pXx+ZqFS7qgbu7 zVl=DZ(S9CVA7Y9-FeGv*F-yAoLj%Q7)IST=N1IAmuvM2eyu{TJSI$Zq9b#6b-rR(R z0ug8#8cC^)Z433KV5w9z7BUV;nM_mc$9F^%n_^-Z>BCqdBs#D;d}#sng8<1R21FOe zQkwFguiZPrN&3e)*eh4)ttukbSdCcK#!E!+#oyW)MR{!T%f#5_)Nj`5c(pYLjWfD^nQ4$HV;^EUw1Wku|RRl58{m zOgl&$PjeOOAEJ=a%3rv;7K#`^9Z{u(Tm7Ih8c;f3xpnd@9$F^?v-C|vV2YGR~c zWC~6GK4>2en{n!sUH{u$$@U&KasBKduDTfhLQzU|%U68qODGgQEZFxxV}R>^HKWOR zTI$ogR<8%()^ftEZAoqTA^VY}mBDpuyt(xiqQ#q}y?t=KO5^>N@SRa_u5+41*j0bI z!y=?oC`c-GsQV2N{QUQr(emP>jWO{`tlLTcJYL!gB78#d{nfKs4?|Cf{FJbq;fL4E zU;G}zyXT3A?lT>a1Xq-R4cV+)xla98JslRdpo2}OsuSS%C396Co|)|Ghp%d>Tw9OH z_o@;HFW|IAE1rK)5xg5k<9VI=jKsRmOchyc9Lwe>HZp(!PPDAT5hyOEm z{%6ysxxL+cf`1F0S`+d$*z>7dSmLZM78P!Pdg`HDdSNkRo4mp}c5HxNjG2A0-I zXQ&K{k4Thdza}Og$Pm2rL2_ze1E+r&o#Oo0j5L7xd5ek8U zsw)fzFX}cdlK%bq!-Tnqu{bq+%TYB^duIBlSuA6_^7ZZ8&YIQ;DMq@tU~^Iol>GQMZ~H62_X&**HESnUk?KdT27fgjUlm# z&1|$z+MH5a^0ZX$zQX9ipO4N?4RLpa{2v$;1w2lMfS3!Ok*%64f-VBZGtL^vm)8B( zfELEImo@Byp8-AvxR_*nE2=4kQA$u`O9jI`^2M%ZVk-uNl{aH98& z$S}k%6-QrrOvPwA>L&L0pPHa_rm}`~qU$S6W|bH(*XamJ2%Nx+$uH;4Cx;5oJk+ad zCeax2dTT{nq1Q`)#}M9DuO!`q-8ll9pqlk-cu+5h;fQU(nbPQSq|SIung~11;gBB$ zx{PXUW1EQCc{c8wyWR;G2GDUZwrcf%TEG-hL4$_Yj!o62 zeygl)n(4qv2zBXiD&%ql`WQetVwNzP~KV2Q4W$4gzsL4JJpYs;W8n`8hcJfN z(6gker+V%$jM)S!oj_UqmQ0EoA>6~pf@E_khK_Cs7ujmnpeY(D8_yQ8b0@-S+X!*GoP-+ z&9o|QO{m=U;aVXVnU zZniYW^x@=RvhNb@p#Ax!t_AnEUvnR-I>^lo-kPV80iBim)ERn^?02K>D_|We>;Av> zx%&_80dn=oUCMcVAah4xeBEVMK6MgSnwKif5&+l#289yZP0=(-!%lI$grfwc)!Q_m zm!P`GDnw}}9F`t!DcpnKeZJpv3Bf6o4(D=!_Rm1TriJR{2w8YRZMqy3ms?eS8{a-m zih;to>tur{dQ1()m##V#z{>w|at2Yv{2L+uxL!sayYMeM6je}-wRq6S-tA!do1@Vg z2$$dc5ebn645x-A@;z*cDj^6+#&pD!tJgpy4mkimrwez~mhWxBMjM?Dm&V2+RSOG4 zKD8JoYgt*^Tk7Q5%+25kRcb#YlVTTr6$7ADc`t1g94?6LM(=LcCl`tE*^i{X}y@Vo##H8y=^$=jKe zxJ4@x)6VP#R4rdpqRr3U@4#iX(nC=zM6UXC)D(XlB6zl`m#x^7BecnG(P?OBr8_99 zwpWs({TV@xwVBqm`03^?;j6OCU^*|TUB%q>?k93je{=6e(ZuZEH6z_zelTq7*+Fe+ z=ljZYrdGw}RR(3%iB|LG2rtg=tD8XtLeh*;~MhbCAt|(-x>LH0V%la z1-eIa1Y7m<2{~oz7$oEUs9i)HM=e?8yVxLafBiwlj_tVfhtY`$%v~J-*PJob=y%Wu z{Qc3EXKU3B&W*7FPKJrt~pG*HRo zFdCYZP4R2~kw4*0R@qH=0}LQ~(JGr7HZxvpD`2+#{#U_;qJk%bxxDbSpm zurJ19-l#YChqnS*Xs}Q;{G^uyAuCkB+)vzR@-HN#wa4rpRn8KIk??jv7ZP(Jtil1= zuReCYYzX*~2sHUws&I>DY;>B^VrZrExVdwuEex1RQ%8#POW?;~n9ku!?tsp$>vR`*Js5`0TCdX#R)>+9$e#CMuy;}YVIS6;a6fqbzlSCBKb0Nb# zTG|HLSOM3txJh_FoDQ_kV@LS9?j%l(!$6z(1+s6}{9#A;RBj^}$%NfdogMKj`wZS$ z>w>9cQuTb7RLDFE-vh(K=p^k+TFN3#7`O6*P4`8RfuLXI;}Om1biOo7M^UHPl0%$a zsATPqDV0c)nBmaHYaAs6oJ>K!r0iiYfydtTsV6+Or6=CP6wA+vC(j`E1N&6ManT`1 zyppCC;VdNmHo(K{js0Zps8=OlOmBH__ODEhN@YksRKSvAhCg`UL%?r+-^0R#ZR?w!U8%8&6A!u zyG$>-a$g++vowT_&GaVhZ^KR^A9y%FuL$oMJ99l7vb${H?!TT5=bm6L3dMzZ9%@;T8;ZM3YSw1U7I6Qk_ zQJ^eC`+l{kPwS|r2BvUX*;u;13MOjwh%o7OQhh({PXTyDcj%nDw|<0NiAB()eU#5Q zXDA?qLo1s5-ZpO$!b!@b{E@%~y@#K(l(wH%s}u?ePaav%b068q?>S z#RL%WNyU<&6lTzL0Lhrgl~CmAn$HCj>mdBdVf1;R#(m@+l16t9TQP%D0=1*#EIDQg zL{r9bTXT$rk{eZN(6m_*v@W`6e%rtle2@bx9KT_Z_K%_}zQSNcCBDv_h9U&_h4E*F z?!Knep3cFU^0rLf;w*g{k<-G6Od1*G(V@Z0Br1&ur7GnT3si;3lDfOBk+%7?Cq)DW z@jXEV&q^cpkD8HLt?47@A+C0q0Q^~BE`olIoKA_IRSIa%<;BNSc-usB% zZg=!D3vK)Nferq2g*}7S*|J}p?&<{l*<75Eo&ROIV~7ZbV&T;|M1zVOVi0e5vMd+< zn{T+vsC40$aR^+A4T~Ir^XHm<=T7b*Bb_nPg|Gr!zk0T%J93CZ7JZ+B(w#cIWsv=O z+DQ5|jMx!UoO0ovS-SSF= zTT8#*1bm{&{n;yQ@7kl`qAKEn;!>LTnH?_KQ9`wJ5}gr0_1gi@xI+%pU;XY)3v4d! zaW=@6`{dvTJPNX_KAzN9_Hn#kheWU|rT|*9kCBGXGvEE)6&7F|Uu~VoUa`pn!ALC!f1`RgqEz^ZjJ7 z0BPN*jYfAm*D!>Yp@8v!Uzus61(VNgO?7hqHPu}0E8NllEJ0It57hrb-EUo|ivaoa zYu(LY32c4QGwAPS44WfMW46yY#AyCxwC!dAW^hoZ3GL*>@!Lcdax?2A_vD7&;ug-R z#tyb(C`|fv5twAqp=ijl@>)U0{t~)oSu-bSXR>+4P)qsKvYUU3?^3rlDzK`y?!cRyuKgq-Kg#! zEuKTe5vLjjT$h2XUA3>RtNKoA=u9W@wVFZR=%8-?Myy*S=#*>2xq`ixhM>&n%>FSL ztx)|!|E6sQZ)6sRx@U_5U`$u$El#a){E`D$HGDEOqZKZ-tUtxBJFQ+M=@@V#s=FNe z=*7*o44_F(N$iQ9innkuRy6e1K1?z)NEPym3Q{8yMg8+)lBPVi+W6!{LZB%f4~Yo&=arG6IE=+|z-&-bp?O5-FhDmT-m(2{WJn?`S;%TpB%#n^9ffOAq_1~KFxF~jxE|~87e$Q4tKr}Sm#m|1JH?~E5T7OkFNbg&ZTo|KTMY| zoF=$}zgsL{Z0DI!_nCZAQ8}2>)-xY#J(tZoo}Tr(jJ=ngN?R;>U*Qa}bPm{iybRsy z8kn#&GOKQrO*wH56O9=Vj&{Uexx7Y+9^K?$;&wBb=YHrUueVmTS%7nel_rEcp9@-d z#QE1~P5G|nBI*P{L#mI#Kdpviz$wLvO6sN@8Ho}ZbR>3={cp*%6XoZ<3FUCs+}v%& zeoi*cH43z|&FI1Okltz-bh4AE0usGdsE=_fY`dKajwr%b(2=0(W2}n zqiAtGimh%@>CZyvpa-|f_J@WE4NP;-@mT+b-M99fHpON~`oH`(HLhA`K+-)LJ1U#7 z#D!;~gmGzP5ZtyKPV9@E*W*^tPzdwDia+BC#e+xCr!JMbW)s+`BE}FO?aUWPax~+4 zW)b-P>#jr-&-nlnCFI$_Pra_(&wb0*Q#@9niH_WO#F?J?0t5;6D4l-@}>L&bBz4z|&XI!w22BpCbcx|5m z;xbmu48L?g@zcWRWdo1`1l!Tg9;xXO4${H9z^psW&v)k1 ze=d7?zS|)@&X_bBmo*C4JBAg^=%i~pN#c8JxwG|wm*xiM&m8z|OWWcX1w#Wxj}xCy z-2kTQW2S$qxIo_HK3^!i>EZ8xOFZa-_ir|Ri+vBJw!=BJC;ESUu7`*~!VN+yRH#9_ ze)B!@C1>e8O)ihPPHJW%UwVV|>Y2g<<%DRYqnij${iq-<( zX+vqa)m1^ofG^qM;#s+E5QAdtc_st|n8HvUZsMr1^4Yi$2-gm~j$&vAd9fxH-+rry zv#<`Li8^{@wfO9XL{Ln*`xgNJtokE@9}kKrBkJ=$I@u^?4QPw03%sZ_ZW$i*5_psHFeDRdBR>k-2@M?np~GzY;vRQ4Gk|uUHD5bz2=Ho!oVQH z7<`JW5O87>?F5-q;-us9dvQC*l0sO&14|-yh7{E@GBpSorQ{4*d&x9O}+M2`ZwAO>L1igaXg+u2u~a>dCehEx0URtrH~^Gft0uL%_! z>NVc{^~lkTg45K(2rfXG(@axuIH;aq`cP^_13gr6AMTr{kqiCo{q8FqH#6?$K!Uyd zOJye6E7wRAZ(D2~7_%`%2Q`tfd2AAEUC0c!)mN#09P66K6^jhkh>mH;LKkt|M~&ZJ z&yq{pOXR`GCz7G*vph+SbnHhUQ1dt3fUpFv~YCR2YdK}Ir)n;JQnL4xe1s7S0+cgPC1d#T}zx$19 zo`e^ev2(b1jn|-PP4IsnPaRj8CQlk(x?W8myGN27ug@p;9x3@=S8t%T$$}z( zW)9!?r*L#Zffe-Ew!RgPX{*=6sIh(7;(m=vHyvaBM!v6tPi|!zue{|#2dosP!%B=E zbKlwOoNz`y41)BLX(Y)^m$R<_ZTKWzpNEyy|HCm+FZRlTf}B5)Uz7~FL*4BI4ap+& zULeG$gAqf;ee2S#T)>Ziqf^zxPofV-HVR52iW7gyGt>}=3FHiv&!!e6y=U4aCxx#* zYM_LYu8bYU2SZ2+O&nmBc-0JnP8h=#YLiSLZ+8XlLB!DR5Bw zzBQqe(9}fM8Y7_3UBI>4!1!ucC2fVm<+$KrFs)&)f;U~-J&q>P1!w+HGt;dGSyoyW zMbu@7Ra`os8$DaS3f}=D2AX5MqaokMzwwrp!~mi@HZb#QcvS^ZL5U#?5l2vM_?Qs9 zZWT=#OC`k4{RFKw4|avVoUcSHgm7hCJ{o8ucEO#)iL$>1vz8vz)zlB>ajcgT6M$y* zT~$uItDI?3EBfO7z|QWP-f=WMH46;C*hKCndE;USjzwV9mQ3arHBL&Psg+yL4*}dx z-G>Eu0uS!sMY1}o1;i7tpmW{G*AaIhF!I3ow=(w11^kw8f4lq8n?pgx_@-~SPfove zj>4d`YX@29E7%}OIP|tX;LP*9p%a>jGZ}Gc>Spb6c!PXWv!4@adBsUL?h^fW0OEOS znMMF{p;fxGTjNS&#o(?@gxO zedT+b8}YZtQm#9#8$Q-F^Bn@-g?{l7Uor<`iy04EenjHP#z3KQPvm^7z z|Lpm1z>of0hv`rG4QWLR=7kUfkxqyg^qa9!G+a4S(&@|K-d;HAT$z_SCm~NKlU!Kb zuQ?QJa;MA?ER?jrYLlcVPo%Rb1M>K5z-DlS&!biVfa%T%WdCJ}F=TBU6n>Jl4m{yRsrx|iChJ(8vZXO+@0BC{Ts9*XThT-vj^X^rWt^I} z%63R|o}+;3R5Xh}aKDgKMb02iKwJq0e%EscVZ|j|6hF#tTWY7N;a!*hlSIO}uL5~p zlh$vF!POtv5(Y~>eTF4M6F{L<9mG`UN#`t`XdIAP>T;WyPTu>ku8z5g>oQ9-&zrs0nomr=w8FbQ|QMxl~1(0*Y6+cdo3(8Twxq4;i^y7Agf`tgDE{ZI0~ zFzY!fi9H*8er3Wh#-(kOA+8!DDNgx{p3REu7QNSCE#v;r0nRJaEdv4Govv3R*5Vwq z3(luk*bt$VJHPQSB#T5%!>6q?Y-7l#h+@*`vuxt~*{Ao(hp7_(mj;UZUj)A9A9YEs zfcjUxm@0OiSrGzNEJTujeibc_?P&0upfp-a@|1qLs5!LssS?QCL7o&n*eNPIA~I!M zf3zkSztN`%I5115xG1BuC%ybdE>Myp;w-x(xDlW8*hjuLYtkO-_}A77DVVHf&Y+gA4+bbgC%MR%WS}S=k z?$x_Dg5x4d24f>RP5EzL#>;c;tiFe#evQO?;9-|%sVl`%=!@<@!6#P%C4iH?B3}>> zjc-oUjy<&FMmActf9+E`94SY^^M3HNYmo<7ZIR~$7ZUCF4%J{u1c?O#PvVSbjL4E~ z#w$sLn>D99(~p@qz}AXiCsAX(dH6jo09dC8#~$zB#m2Jy^A8>~gEL}s`3j0N`$E8L zl5mtL*72%U>_z)*)CgK|cA8D5$IHf36TZ17S9N{A1QIPip%90X?g(t^-)eiJaQ>;^ z(uR<)Iv94fU8oU_q-xU^T=T;TtW!&s$UjX?E<(*TN9|!l8pqrD$OaE$)GI09tP1V& z&8zk@y-!ADhK+#3`nxF0N_J_}@Q0gZQPG*Rc|bbjVQ69)6(s=Yz6H>~$xmCe@$u{J z4Zk4D;GrDtug}Ds2_+!xYrU@w{Ny{Y=I$+9#aX^rz;WvogIn( z@9YQyHKz>mI#NaJ3I&Q7|Ar2$Ta}xzi=$=h6fvUJAJDVfKM>7nMOujrhTul9V?Dq5 zM0kuyKo!>GqN+F)xE26jUqXKxC>Kt5U&CZ&0#=Kc`62PoQS%9%Z+-qtJFA6H4F&!lU()eM^yiJxMJQOuWs% zHQDF!{@|@8^DP7b6Yg0>y=|$CF@BZ2-DuWBGB1|DF&}@|G{FZvP1DS>QHhYMqTo%m_X*> ziL8Ceo|-9k3`FU_hgn=zWA|^yW%n@-7a(dTnxS&7eyLej~dbl`g2nK)RL#^y4)xgw&6u<=*<4XH&%wb&ws$> zZZoJBk;)}!wdurHYd0z%C7f}qJy^L^&QyGxTzilok?Gr#+cobZb72v6?)kO>Ipevr z{Y$%&DI9uz(@?MKO2!~Cb5Xd7zIMd|hI2teO8#JPx)EVJlUqKU{rszx&Tnhjv6RK% zTi@+253VlA^~uHxIzK+Z-QAS=4)_$g_~c4W4=;!=rW+L0_ESNM+_83T8pOA4P=2A$ zHB#TbFli9%xgpWv1Wj9-wSE6BA1dUvoqVI$;V5&VIgPyLWuhOq1?boNOk-Oo0*Dqp zWSNss>0SihCA(_vlu^En_vK{*5Sf8UgZZyDYJbF)PCL?vfs>7gE}m1?|1@x*2L?!P zNg!|tlADkGBfzu1-|bFNiA-4gpQ-1e6_>La_=iZRUW=5SBj0ot;7fi%y+)-68lqm- ztjXqez)LFpC2zUti8y@E*9pu|f}@1^N_sHCV!-X&&X~lsa_x?g)8hm#$GP^FLKsLr zB~xDB$P!v}hm(LRMJPe##HWsHsf28`A9eG^!(xtm1VQ z+VU+g7dG_!30-H7xoHYS%5_JogQ?q4>exaxO&paWgNN|8o!ct9EW**8q_vl*Ogr~r zFOEYqZM4?#tf^(PmHgB>_e)EUZ6riuNc%a`0_nO_MYl z-)k-Dbiha6bYT_3n^9v670oiH>`T5mTN`q~y{J}{hSVANSs%8Rmh+V<(!qXYV%i-|twM=8RNoKEzSzGqCHnu_ zCWGbl4)Rs=P}9`ILG6D8HLQDIH{*F(ZWJ*Nf{bc-0p3WYi^eb#EuuQCmQhwV6^)2& z*V&uEvNTS9Wn36%@De(WgmC|jv?ede9+}p)9B!59iX4L+H4U#z{wdKM_Wira{OAn^ zX&r0AL~lyo@Opy1!X>lVAU{^)Y}LFNpWMe<0O?IU+)90?6|FQgZLCz#JQ9H|tsMNT zBVI0_545s-ktU~PWL(@_e+s!rxV0zc&d4RHtt{07TGAt(*r{5mdqM>_xA6dd3PddV zlYD6Nf%F6$L`H5_jZ4htw>H(&OBQWQ*KT6~go;~D30xf>BEkmr9x3kad$yyz+VBFq zeadh}qvy_h9yjCruor%phsdWz4u$3#cpaaajG<3v!o++7M+AcBrrBZ@KEgl5J2pbCV$)Z>U4siGK(RF77))jY=>sr`!3?On>+e^7tpoz1NwN zB@)~UL@4HcL6_TH(5k|1^+BwVXM>5PvzmW#zco#>K;D~ zcnA0F5@oF-lYyu3z(blU+}NCN@(C*cuIXty1G)YU9Ht7(QBtD#|Hl9-n11!ZRF7*UlIJA z%bN44p_mUkQK)v+az5kK!hsPUC7N{&*r@!md9x!5-|7-<|IvY`$URm0M$c;#MfiZ? zI{f-;%c^F}r-JEi4fgHhm%F{plUv&6;obsO9y2*ger0Scm5s-qL1eY z`09?0O39rf7~`dB6@R4q{M`eVzxpn&@h7*iF=wn>uRJq#6qctfB|if z0Gk5r+CgP{$Jq}X{JE+tq1ZT5JPua{H1lT>B#1_oW#{nnCUQh307@htSB(QS3|>X?OoMH-v3F~aT;jWt<5UVE zFpG5wV=z1r9pX6~w+Q4oFJ@|Y>XN=&NVL`GF|D~_BM;rNVd?Ei^bMcN8q~XZ0j5Sr zp#YZYw7}j)rFY9a3+X+LQ158<@aLVxldxB@-afqcA#e4sunIw7O(?62r{QYJKHXif zV6LvlQ2??y!1yrDCR=j-1896iMsL-V$aAjW-bOP-yq3%6A`_`!U{9?Vj?2a;7yTSeFoAn(q-i`c7X21m-*cgCZA`K^N~-hkmT-6sn@9ZWnqW>B0gFnRqH?al=6c`{8Z zHJo5SwbuYufh=q&He39V3|>j+8@Ngz&|Za@vO5g|?i!#!mU-IADobsN;?-uZLMh zw+P?590cR7$!?iemZUAM`V1x4JbV+K=)~Rl4npL(>Lq0pmvjX%sl_?Bh;EyQ^0`HB z4(Ps(#j{u(=!eM)x?-F%$?Ua)irq)92t~x`jYKQbuO{I{ZAVkL3Tv)W4 zIC6|?fLP{c@hDj((rB$x;(Axxq}X=Gz;I9$?zeTzt=^ApAVXg^yG@GGfQEsRWn)1} zBHUSh<{d7g#MybRCh1s9FIRjW{-ULNRV)wt!MjPgw|%5<3)wjBS#D2%NSCLe&%4%H znmbq3)6M)L-Go6lJdGUXcmSE*$7X_ujCmqR8-oBBe}j)AV%7!`zT z4-qf>z?7+wHNrC#gjg$!iqi|vx8UgHjm(o91GZ%rDfgt<%ArbV$7+lGOC|homN90d zt02hmpDYtj& z3$5W_0Ya!?$v=Ht5aVRMDE z2USVQfui^qqjULCq}GUY6P~r%a<8hQvt*14%>>7iX;P&{p+R{_eB2e^X510;1PAVT z=VZtS<#ITcl1J~F=N_>z^aG=JVSZ2+q52h%N7%o}0;4vm4Wh_&XEap&<3iLj(|#kD z?qw+Lwv>FMAdVpb=cyz_V~@HKO&PI{z)eZXK@C7<1CTivSQ@LA*l#_2b4c4%ib^<` za5g~P^XxBdFtNxdj?%9gdFlzN+Gz-AjxoHWnF##?7}b%8{$iMmcE!NXDt<~Y4`lMDomO?!B*zVWMS7Pz zBGxRrvsUXwach2RjG_KfiwP|Q)Tz_&Cb>;Mf)_+sQMzjVV+C;%6`a*87Whp#-Bi20 zro=G5-!T?x%k5@<)g=SMKd%%7&`B$?Q%hXTGx#gvPa_xQIgw19g{*jXUZe9cSee~+ zY*2{f^%EIz^&#>QQ)ghs+4p-iohMIIlOa%QTYsr>KDie-N2T$tTUPf~aU!tl>6nSy zTv1|t?NC!MeoWQ)id$D2PnxLY-x^M-0M%y0K3%UwRs%z{{J*bga32vNDSJM+6kSeLuJt_(4A8l7)%rM zN$C}F+ZP!q9f)w-I|DRSu(JqWu0;?(+|YW91!W_{V=$F8fpePZ9-~~*WFn-W(e~H) zGvYH)o5}%|f(B86vguOq0@kI*H->E7Vo=n#IZIK7MokX1;&HhS9RjLJ8sI@AeCdeGeU5k)Lh%Me-gV&N+`5M%Kx#5B7e+)kSp52apecrx;LLe}TtZw| z91AV45{Q)SLvq1>L;F>#LaMwR5AbT_wC_v_@d0JPY#6pa z=dti;#A)*vizJl@;SU~G%{O>5QHLm=x_9B8KB)c1pP(faUx zSrf#yIMY1BT2nXb8iKRh#xxqbx%GGYNIabwGbfx`|Ni`_sP#jE+@8>~-gd5`7!+S8 z7Uj5SI{A%*e&*WifK21`X0KyJHfaBeL=5`39q4Kci6&GV4U1!yOa1TQjy1~u9H!yY z{grd3VWBiOE%IUl@h@kZ>bCLgIMObSCKJubC>6bZhW+i$q}o*>k)r|b%jmY3@GCu_ z&@jSBl-)xt|F_>qyXmP6xj_mY<-l~4=`@MqQ7o{sRGe@+Mv_-{}wDIwQ!$35hJI8SHx{a1Y{2f`+&1+v~l1;PZbHF%E1 zoUOgdm?iunFx>+2Ak6Lil^q2I5c*3<29?XE^IIviuyv!#_d=vKtd6IsnG%jsFLQi_ znPq&l5TcoZX}PXkw0u~9L${U4w76QW6_pvF*kNw9r88B6F!@;FU5pj01O*7hGDq)c z9Zf`T(c`WJeI`rLimVWNF#7&vg?&phlr6$Z4(9mE6>yzY}iV zua;7M@LSywky<+84+vBioy zt;bTavcTbWah>L${LSbs5IvYLG7-NEpBv9RHFqmw+F&vrhUb2Iu6~%*Wf6%7X&qd@ z`<#nnVU~3C40It{EP*|Zd8zYRwAdbrCB4|bhLY&_&W{anJ&yG3D2_8Zs z=hZna1O#>X_wIEJeSqM=ec{l0{&kECVntC-V;aK%CWQ-~s+3cPh5ZBL-Hydpf$|~4 zy4wrCbJ^|lZ0DM%<3JrI_Qqpm23l8tZ(J^z-orQk}?AY)) zH&zU^d*uLC-ha6-qY@Kcm-w_X&71CW+()6bP`5S=j8Fk5B#Dme#1T)dq;&pR1+}!O z*7BOh1|#)7+KLwG0$&eQ6XWjq_>){kQuS&?_Yp?#cc(FYKShh$PZIz?Yo6pZ#XvV% zr|^>=WE1<2OBny~MgqOtqDSg+0q^1ehsglQcHnJ(_ZG!ZL+dXe^dKuCDUGvF*x7*# zaX}-+=eq0AOtyJ{e=hsiqS(xDK=>$fQ#qhpeH23EcNq_(q+#u#@qBE;8EG<&IimcS zS{A&XaORW4if>mFp0%I)n(dTPq&@QwsIVujN1oE5>wSL=7hpZes@?*i% z#kP;s3`&QP8wE6h*POGFY5%2ej2RYRD|#tqI#$COYWGj)s+Tc025Sd8Kd8XSB8pL|@nDD}G{M(SR7IZ8m@Vb?r9KyBLbU~Ie$HOhh zccaX*RlS(?{i;S)%O*xfHp6zM2PZIL`Jnst+t+Oc{qsL`X7vYa zzgXffAH^)`Ps4tgWtps4F>@(xK9Xa0StouYbRv8t^l2L!Hx>7v9P3N9`xFd8t84An z^)6Tvzu(v)@Vbt3V_rHtZqw@3NwuU-y_Oz^3}qQLkq-I&>;(i<2c)wHh(N-eb@6AMClI?A+bqR|C!oLy~!zPZ3`Bqn1%s!MUV&~a@c)73r7bPy1t=Z*jG zu1)>#Fg#Qs_a8??+EF~7k3;ToB<2u>D*8jrqeQH_A~_=8ZhfsP0{-@>-c?s$fEO!W zNk7f!0C4hNBuVE>#!pcT1xbM;S^1orNynIUJbaG9G6F8Nh7l5B*PHy2xrR%D6V?n= z2OWGBO%(#Eo|oZy3+_(t?J2lZXp@Uhif{M=z^-v7<8su*tX2LtKkB;=;T9S?=>~1j zJr6gi%XmXMySo4arj-Lkp#QL*c@&C*n{E94?AuHWI7!vH@9XNwx;UTYYARu=A)~UO zu)wsUl4V0vhQb2Y2w9;!lfdnW6aGMl3dWU)p&>)?55d5KZ44h8Mx29|DAimb!eSwD&Tp(@VRI+RS>E4SFt zdS=%hHC_`HSH7D*)HVF@P-S70k=88mY{dcO?g^A|+Ah}Ei$Q7H`q}?PFWpby7ap=Z z;-l4Kf=?^P6JfzV`sur=>QBWNC^6~6SK6R`h}oPjjder=6q&r{Dk>Ol2*xja<6RhD zJX~zZ-cLU?R73U=*f%XVEm!7kM-E!s~G~+Tf zF-;*Sf~*s!9?B%6LBAR`oL4(T47i73lU*01H*RoZgUu)m-GT)Jzp7)nx8XSi5?NM) zB`DrD>ldZ9Vw>T+;SOLE32b}Q8NYOvpp1bJjF2!fe?9k{X6km;Ihhzk2Cu360)~%F z`?L@@b{r}w$AG$oPju*VnIPo@FoG4Cx@euu;)MR0aI@Q}Kcp?WmN7mcQ&mAb{i8q- zoXR9zOr@ansd>X5z9WH0PV+)f;kcoxky@)O2X`(loLz-igK))I$1+M|+B_iXrfVRv{1Y^Gz% z)2^9pHXZUTFaXscY#i+8VlR407RBbWk&PTztxD804mFi`OxE1zoM^joyu~Fj$LZ-Y z6Cd9{;?bV}(IbBe>z44oF7Zr=tZSc-DufB*Z)WO=cn`tj=20Al-_W*@(&p*)t0Ja6 z@>edz3|h~>RCxyEd}fIlK}w`NEmElD>s79T=V+}6_6sI1n;@>NJ!tqk8TZodZtw?- zXVu+8Nw3^Wr}xyLx(;hBCR%hjH^=O#sgl&4FJ_(yD^?qySIFDC5d;0F-%7qt%6%~l z7fQEda)#rZZsbRFN{L#eOQ%cdo-79b&FUYOZg%#+bR2_&ev!EY1j$oRmunpn1GIZ& zh;|rLKNrWdE%7^LJN^`IUoNfWQx?J}+nKc|?Yg!fD*W(>yv5DZUn4Zz>a)iGF;ZV! z^F1scZj|iwfVJQKx4P$(zP}c$`?LinMR9R8Kt~R$jx-0@~!mhwp6O*U&q@l8nE)>_=z00oEUyVHd{8KtnePE9}-CGTpE7vJg&mX~j zJn!Mq@h8@eoRfB|k8gT#S9MWS?>hvK*1wC(S9?pNTSa+&{oU+CEqY|*+BC_dFid$L z9jMrZe?4CD_tuJ(^Of>vdys*rwn5Edcv%)wgDjWjk_GfXfPSvsS#Ae}PCy82mv%Q{ zD#u;$W5@)!<(}n$U79~$CbU^s!Yp~?&0^p4jGclgXybDWNU8iB(KV#DJiQ`gZ9Zf= z^-%69*j`%2rJr(OyQ0wHV`BN}=@fE>OB4*oWTeA14Y*{VYz%Rhny~D z^ZK0t#gZ|uTps0F3Pi}=q@ECHV#I!!3UW(O6#IJ+0(xE1-7c=h6qo2U5Yd_0s~6iu znJn8ypd@pyh%^dSFo^;Z-UH%LEhw^1kY4SiuiA8X^2iNgA z?(limE^3Vb6&$D_%1NqMRCV)AN?~-oniwG#A(_;&8`40ddH6%J%ut7I)@w}q=R3n4 z-+Ds?Jl%>2ds}{2I4^a>=1seSZg?9k9<}u6qkw|mCam{Jn;UXzI*R^QA3Hry;%>l? zi0nUliRFyZFt;yO9a6HK&>UAfN`3ThjV`p{i_%OK;YBMh)s7bzS=YMv$k#Vvk5Ve& zNY{w>=MU4k_8;A7YR#nv{&k~}@u=$+MZnb{`@JPzFR)bCt3J5aX5jkS@<^t0ai(W? z)Z&i<#rx*9BCEC&K$m7MhHu9C`7b*6l2 zs;-baGE4}JrceSNu1|A>_Cn*8l9Pf~(e-mwJ$EQn(lbvkRsyvzUNTXA=Hio3g0C{Uc@?k>gM-K9ve;O-7VOK}bE7AO=>p7%Z9obUX~zszKE z&+cBb*Ro=KllvB)HI*_s^XB`p2NPZIKDCT2$&7ldGvo&^9)NkEBBX{2WyEFJ=eNtK zNy@D}tIMgNh9(<`79M@8@DGtWe8d<3!iMw=H{V>Q8Dg2Jj{1tYQycd>+=_i9e4BU0 zc1CHi-{>BIUsv>Rz*vvLJ`z2xP2H_?%}D;a#MnP>UFbO(=l46NSKI8ve9b6lC9+1z z7vlmQ_;`J`?*vYd#xU{$d0IQ;=Ia2;!}Dma0^8rP@@azr?Gg`Rvta@CxL4&zkwggPn}pI ziw}$3CDpDr`DwQmH^yBeueeXfYZ)&Myv%-j;_&ZVkOrK;drC#`kj0+`L2R5QVN|cH zBF1g8N+t(eU)QV%qt;o8Pk)ro=-*)RGy+flhA4eA7w_(ks3D%U8eMO4GCR#&At_Nzn zOdv!*!VpHkqI(H)6hu74LQ&z(s7~Yu2;zLbH@B+}QV}(T2#aquYOSU?@)j3BG-6W2 z-<0QzPv75I)YSx!&@a&^9~UW2FCARZk6kg(6F-;HqiH@qXk0git3|HT`J2o3LAFTp zu-x!4i{db&1^h4(U}Ga415udJ+VS)7n6Z!mMjVA~(W=9f5Hx-rUEk{( zd*6iD)WBAVAvOUVF}Z5sr2*R&bLrTy{)f*tRw2VbAp(<3$r|zELPz{sm9r_c^B;Ds zxILo)vq|?-d{NEHzsP-lH(Px!w^x^Ip@ID*5yK^FEXO`d##3IQ>VBbwMn(l_?AB2huySnW7VG;nzS6&=EXKa4z8&JD@J%1Q zda9uG8Mtmg>&88{f<^Rn6colTKH-YIx(-;+@`Tjs|Av+xAeN?VrlQSD0k?xVRecGj zcvrtjD+5I23UMVt+53>>>PKtH*XdnG*GDH{$l2u`L35|#D*Fo1tsMB>h{*xZN4`8G zL@Cqb(hjWOD_9Vz`a;&c9vro!rso{{Vd~rwGyu2hw8zk43U6fW27pOgFaed{=At2z zyR%P01Wrc0bUeN^1vTyQu3dVgxx?qhxt3y$5!lee|32J$O5)3(Mp>XkP{7 zqE){@u=@5yvUFK<SNKMT}NVDA^qoPjepmd6ESi=a_gy+B^Sy_M7kzseuog$eBdJjM$&PU@bTzo*Ttr z)6(L?acIB3t4r5u+stWH#mct4P?hN7oySr-Pv{dCFY*e%orf)8duh$(aR@0Y%U%ngL@txW_yc{E|1-gG|w!T`@F?&yck8T^QoD!S|;F}Ke(kbx;X(8#^J77^5Dnz1EK z_d#But^m=Hi{M4#kW$Yco=?Rpkgc?D%Z1z|iE9n>4@LR7et+~!2D&fdO9+r~e;iW( zQ9(&^%8!+*4>t+vYqQ(}@1XWZi+pzZiTtPhu$t&ApJ`ASFqdsA+|7rrB@i@$y_6=+ z?uBxm1zTLRQy3Ig%@eMsE8s>9E3^Sr{bD@Qaojn~rfQ6OzDXt?d}h$T%tbg)Aj_5- zOB2C^8I3%{y-2>i_Hzb6c}7J_Mk* zwqNGy_ImWY+^=JLN{)BEhugEtB{e_Vu>x2D(gEN+VHv}Iu<5Z%NzbE0rU)ld#@cJJ$Xdqh=Kni^ z~Zmf0rrm$bZq+>k^1NzrX4Nn&wnT#{lCPGSp3%3?Dzp^NfSz;SR7P zkx6=fP4>;(iP7NALIY_@=K#hJSy1EZJR*XE;~yD!0QNa4p#}Yg%aS;F_R_ic!2sWkh2UN3^vY?7ruaO zeETX(p1yI|+QX&~AU%_`?9c&+C{8udshhpmW+(d$D0f`ODC8OHlwXwxCP6HQrlKWO zb1zK!LaB%;{!vhS`A(#LMAks+R?9Ok7!V}s`jLQP{0`G|H#RlA#Wy)Km(hhV4=SvplPNu5}pR78L^F1^;3#%S<#mt9?>pJ zt&!irZtkfZ8`w908q#*Fhmq5J!31vP21eBA)S0zcp4s7w63GxNu?B8d%eb|AMYE^t z$P)pbSRBTe`YRm5yi0{1vNf0CE%r~&7+2H<(;-Mt^m<73!h1lY31I727wL#|;j_0c zV`@4s7MDRY3xQKa&%c!$U8?)=Yv(&UbnYy;6yQg)W&A#3o~tZ|lNezA&FRNkfmz*^ zmOR3ZDWi`l4FAUqaCw@;j7O7N3GV~YBsVu;KiaK87L~sAL&tIfCfj!yFOsc^I;&qQ z`}|8~Lrs2(4;iKx2UJgq*iyCM3CUt3{%Y3V#FW2U+N@ra8fykvh_%;iuVARg#zpRqM!a8&*l zrl!DWNI#B{R=F|{ul3Jdx+^ykc0k76X2LeTDpHbC_P-wP;TL9go#M_7ic=Ez6CcEW z+LLuw2JG(XcuxoBCJ*=DXPrDAWXqr0GYi?GxicllD_Jg&{VwmEY}st^MTkFl!O0cM zwV|Dd0~T;dgJYRZx~9Tiy^#OwVp#?J;s4XehM;}yq6n_)AX=92A52*!G{P{LA>B+X zq^z=xWiw^Pwkq9mc*mLJZI6P>P3hZ6@*GXt)d~Ze1`%~?$yg_2Y@8f+#ZnMBIM`ym z3{)5Hqw`)@m>Ry(m?Q_=-Cg-7jVHlb=#xKFn%#u(#}dQ3k`)74tEuDkt+uz?T;ue{ z-lHs2o?ijV_LV1pEmfM|8%RFGmiTXK_Ij@Dd~zd8Y+iS9V#=^_k~lcfHD^>dt8JP1 zve+opyy`05YV!w>nk;bAuUQ(rH%}=`VdkT_lJvLrxDTV#c4mKAj3u|7N$Zk>U z=*4kHUk-b5hK7W>OdOcJNtkVyU$60?;JR;Z*c`p@vy>iG)qLXS z*@DoM@@IG;dAB~q)B{?|)XZhj!d*!_E2?B?xx78I2edg0^tX z{W1N}P98A%5)uJp5Sqp1mG<&2pGY^|TGuHZj()W?$3v;x*o|&YVEB&SCg|mb{VSudA2>e;Fa^=%-oH+US!; zlcGuMb>$4-B;roE4XaO!?wtVk-Y5JN@pDYiVP-kvoQDiVrnA{ zJPuZv1!LZL^~_=3e@QPj+S#WsC2_GyTa!YO&v8m>FmuZufdv3-68A?7Zn%7wYz}FH zOiuKL(qZM6<|Jj3ei6?u(&jjP;{tuuj(0VUN8ArS3DrwW@^(L*ElHj_d2-kh1j^cY z(v_?BOJy_NvZLU~Bl4^(tYe0!SF6L*Hl*`u({*^Oqcqu>uo~esSNi!WL_2n_>dw;8 zOdl^q5)A}IU}l82VskHM7C@TCLWts}jW86tTxBu8zI^*!Sjiib#%H@q*WG}nlvvlb zb+BbVbNlHodh-OfIq$A^O9;WsH?%!(NDr?9|2>i$egp=RzjpFyiulvL3y!Lr*Df)@! z^0DY5gH#*f*l2R(lk~k8+b!NaL&&4Mi|v9p=MRC}tUOgJ6KWZw9()bY`c%UFr+z%4)77$0X0EAMCkTt~NVJGenU|NpTnD zEp6aRZY60csX$-Dua!}YdEQ`>hX$#Z;10bo4rTjVJ z6%ee9q@GZzZc1E9@}N-`8280c>8)!KDY1kG!KDDm9;?q+;^{Z1-tgfQR;jy5T5_JI z35}~ib*HZE@V&?fbILprOW7d9X+phE%3Gh=kXGCe7`@sF7aH}xuYO9+YBb@(vNC;6 zAAL|225w_JCwq7U*l?5(l}x|i<{HcO7kZ?DN@&V+Kwm!beVr{}5ln(yC$}%@`8~3+ zWgE&V-K|BSxm~2^gSe6Bti~*VXrDJ)gr5|%$woM?H(AX4s1pPmKQ>rdtIqz(q73aa ztaSaR6Z4(F(@*@Z6jN%(C$mYSY*ZO6kp_uyLq8DVKxKq0MeG*RhyCJ8UfTq=l@1`0 zSn#X0gCP~6ar1tzjgl|_7Bfk|8kwh*^=G#PbJq$jQFxwg!1Tbn0-+8RF2Q3L+#jGB zHJoj%QxP!F4K_@O*p}cI!O!1Ut|{saBL68oxbN1kAL%?Fv&U*p>i&rH2Orz5Ix3Q-AKsX(uJ)#i;dHkK{&G|nHF=K+}>D^qJDjf241&9;1S z`T6~uLNdQByA5C&xA9kqMad79o8?}}mLS(PczJG70U-U0lF9`gy!vG9?HQ|DoYCl` z!9<+u7ZlO3C5iQis6;aAONg@v8ap0hvjIh&V7s`p9=5WNvsixE?kSUXxg#S^j~0iB zsV^*thztCGWW6{2>wlAa;&3UYB)_3DE3x796E9I!HmvwYVg{ciGdS)=6bsPa3P!xj zzNhDem%UsscHIYb_+PiaAu$H|T=9*P9rzOQc6r5-X@KdU&NI>P$5z}`*-w(_x4i;+>ik-OX~2XU2=^FQLE!%O{4QC^N`>%}%^9rOS6 z(l|6gWtzR!;x&Xnt9Oq`fkz3-W+fuc{s;&5!KtD;&3Me2$;cWE@X()so{bMzC44_3 zAusD^LCyML0h{6zt)DY84@+bv1pW2v4b-KI5?J84TWlkQpbR@=-N!q&2hHSrx-R3m z$%lw3p~BR2=>FG7M^jFE6k9>hP#3waQ>`kNnw+(_V{! zzGKR(swq3;MbZ8dtjh_!RHI)R*H^w|QCK(Sdg3_(fh%`;A@;;cUQs~wB^_bA*GUP# zB3=~yWt-m}Tb6WK;^%(+7wN3g-T!@y&rt!r zXwj){PzUeX>)_q$3x3{UeXOyw^*+@+)Vm~z<$ z8j5un)^*&X?}jSu9{bKX0KDRqm!P5%@*<8LN6_GFwAY`)>%tdWgs=e<4g%Ew{n&C8 zUMF-HmqjR|z;fxR|5fdp8s6lW0sJh&9puWc^#PmCU=3oZNmEYaSdHB%A2V7ezhElO z93RX`%}T_}Rw{1n2a|1?;VG2xv&Df)%~jQS`y-?LwlyqVv}Z@>VV@dK14tzNJHH@G zjPRvY-&byK!M-$_6cLr80kAPUE2|Qg<8zj1}Jyolc)%xL<^KKTFA=Sy`rZrIcgl^f)pl>!gn2qxl(sMT#he9KwEW2ys~2 zD_RQexkSo9Q61c-*oPTntNK7NCt!kSVjK(c`i)6Z9fpRBA!CFkvC7(+z)hP+F+!p( z8sc;4)@2b|H+FQ*8LEqt(49}aDt;zPe5Ij8$#@oZ>4{J9V{FR|e z#b17Flmap1JX&aBY^X(}-pDu-8$0tjW!7H6Buay~nq0w(wxod1=&Ighv5xDAQwPdv z#whOtRzUoBrC@vP52EAeB0=P)%L7hwRz+m8bI0wOjb~pRafrFcBL3BZu|HG2vF)AD z8o@buMe7&>Wr;K}V$lP$c5;Z^1JLBKZf*rRL-gqBqpkv@8oq0QgofXr)BxiC&pK>J z=_y~t3hz3Y!X4`zpH{E@=F)%`b=5nEnwP9BN2*PhJn=I60$2LM+_}x0roK18pV8vh z%(M36#%>;HUcQ5%K%k0me;Zn60z1B8t1!nr(M8tW%S%D{Dj_-PkHq9RG zMWm2$#ZZ!%%ta})y7jbblPEM-lHLCE+5hL$gKRbR@E^GB7-uErnRxI%r1DH%b z0M?){+&657O}wmv|LW@=-E<*G&>rbMeSr;P{)AwHV(CY0c)2tTLRM~DgLbeXx)PgT zS)C=FW`1HdkgtWLl*Y?hrf}p2dSmp4qLd)vvkIMA5@eYbf^<zXMlNEK z!}_^Q2-_?hoLjd){zQQ#t+yg9OOG8@vE;PJ#12F`bHB0y`jPmPsQ_@Yq}yfxBE0M# z%GP<0GFCN^;#lDZ@YdP1qmB!(!Q{|o7k<4VLM`5oJ5$7l)INoo50J zi$aauB}rtTz@aaSky!Un$Q%5WY((mMLrUa2Oe)J^-hCjy)voDUrAXSZb(7~ExMpNQ zrE^dV;3e<50h^r%`tB?8YcHaNVpzU;sVyy7(N57)+h7od;zH_Qw%Hc3ZC=G0t}FZJ zGjSEPwpB_;sRDc^ksp_Dgqco?9YsVkxRPw?RC_D2EYHi>&^5(uIfTTT-09n%Z8!t7 zFI=%q8jH3+{v3!(p;B)Qy$HKO_5^3{JzRsPeTUC#APSWIn~l{nGDO_&8-0k*&&}h~ z=YB<38Y2Dx|9PqQ3$jJ)HT9o>2)M3px6rTOPu-f%sm)ol4oOEZ zIh-aIoXv68{(M?c#%3YeI-VLGY{ZSRgz*t?*JV{LF6Y+oSQ@ z`4~P@eK!+m-7VUK8q`BW8AAzS+2;M<=STIwh{YyoFB_^Akg!mw-_rqnJgv+!RnSDKSlQ=QOb@PeL?^xFhNCTktT(>#$2rd=T`?jHlCzwsC*6EjhfQNhrYWiQ zz7KR?Ql;(D;0(r>y40Z3;K8#%;=_hjq~fST`4Rj1 z%uO7(tz(bUybmDz`O^k-CQ{@m^7oH?8Wh$N{^@ccZ5_TeW_HByGy0<*0}ba!InizYR4&S~3-FQ`4GH*p| zKO=G_%W|Bo$tY%P#%aCfaw*HDoZFxoIC-l8X1}+h8Afg7)~(I~wdTNhLT}K$QTq&E zqRmyty$Nje;J&TkIvQ>n_@I_BC)=G@>_9%L_BKgFo}VyJ4-w3`5io&3B?}d0ZBK4> zH~Rn34ZN}%&Hp8y`o?9WapESUZ`QuXQiU?-`sbyXQBdN9WN-nnPb?2L0nUo2r5KT4 zoEJ#+<3HLc49`P4BalDITU~G_OS*7WaK-Eil^KRdVAbJejF}zMZHrCRlG6#?+!1cL zBDa&u1?oIc@MHD5Q{rn-;o$9rW+#s#N6G2`xb@@p2+mWDl=OuqsLo(pItMX@9Ds z#WoiTZ{Y4kAUm?pg93wvj=l#7ct%^14k8mXdx+h>QDU!}BiOVVHYiV;l7Id>TLSPA z8yyF08cjul9|YqwVf!sZ6$N#e1hPqEd-1bz5w={NKE?gvLA|DD-q~XGH!?S<2Nr*6 zfUB$p<7Ua*Pt8g*Nx(A;lCGqoDR;aPWUG8pZ2x(6M^L+IJRV84(N(bj@^yBn-m6IN z=$wV2F=qMh>B+f!}hjc?!ZftRtm&;Ud4N_&O8E@>xj}A@&%mZyUgfK4V6nu%@7+JngS)ViB2*hRY0u8g3W z^UPA7n!{Pz8`&3xakIiMc z<1?gfFdkY)n*v**+>>kR1dcM z4yApnW=R%swF`l>wj7;~Qw{)~v2wZWj0=zzW-6XvVgJVua)>0GzCk&{s|K+fd!gfx zC-oH3)ieYAm&J^V7xGg?<6!-?=v8$-#iXW)&4M7uT*HVxVU*Oz3_#>Qb~9?t)$`m1 ziCmEEHNspYfq~Ue#8RY`nrdwXnIQ@d?jVK+T#V6u8YxtOOlamdv!AnXyc=VR%Hps{ z%)#1tFES(%hu;#tWU#L#bVHeU#AVvd<4kB}9 ztY}EpM3t*&o-~i?B_Km|8D{Xo7uUShT`@FEQ%r5P=PR?8#~iW({xZa6 zE*?4Hqcb;ZP*%leg7vVFXIi%*G>?&GOG&IRcjk8E>xGB5)p;tOH3NuUd@<^DOGMh` zV6eop;`%vn1&<#fdT zbCoFQ3sjE(hLl3dz#pu(xLl!+niU?xr64_`iA$txM>(wczH0o@FN5J&G*e=%{UIN3`jBPm(ug z`frOgRQ5xnl501dI*bmM(dNYnlDU+@OP&8p#doTUN9Um^TW)Bh9Imk|&^ssjxqTN% z^7Kp}nvbo5l2_M`kr9O!M|D@Up947HQkrlqA8NbJ3;A==fqHX}>nJLGItCJw^H9c=4D3H#Y*+ts>J_wvSc> zS^`~Hf|yuBA3V^eiP;qT42Cwv;6B}HYm!AUKRpXWQrgg_B#kIV1+6RJEC!Cw1Sk!S zCqiYOQgPT&44u5gb7$KU((aRSQVP@b=ZrVx4L|i=VR;EHeY+)_JHdW)jlW))dKP-j zVg2yB&#X)pwB)AHYp0579Dw)mOmv_IP1huhTDC>z@i_el_29J|1H2Nz&r-_TBtxDETtKU+OnL29rkS3lq=Tsy{y8%NkJe&8 zN$HmrX=eWScZ7b$pDfgQbh;5nC~N0W!5Xmf#sqA%u_O5P-xQvcq+Gt2s8glOOPL~b6#LIS5NXCvvRF|Ghr=h+00jm|fejaj$R__)S)x~QqJgd6%7v^SO zfPA#Gz9O0%j*5PX*SV6}q({QvHAGsS_u!3gh3^`g2bGA~P9H;cm0V|@y>=lUE5OV? zfoi*5H(Ty;N4QrymSr6H!I|s<gYCRkS3 zTIkc6CB4RmfW;oYzZEVkQM9yb`gAs zvPHii?(O3t&jtC$K8PW;Rryj7kAAWo3q)8B9i#X9fA+cmn{?hE}{U>y^KDalzV(}`v<8fQV6h;^ijpC3fU zRtw;4g0sQ+|6*{!|2$Gv=q1Y5Ffwy4;ae&)QYOV=b!o(wgV3oE!%vggng|~@g)xWr zwvY#HXL}q4tx7iz0GJ&t9LSzVPlVA+gBcihlB+BxVcO&M1#e&Gj%;q??yuy5we*ztTjW890Iws73-9 zAqwh;TA_7Ais-fY+$&FlMY2{R0Xm#bk7EehW*gyRn4R~p9!?t)L$PJ&j})*!M}JHz zQsMw^i$zs!oNn9GUx|oh>4xU97fns%c7GgUseaX7kIr_lU&-@@bN|Iea9 zOs_FlU%CDO=bHwQA;`e8fz_8s01BK=T(&Fk?uvp4O%R`LRkXSY;?=RX9Fc)Q2FnMmcijF#M)cK~eoZJ{-zRsY2reEv}V z9QOi(&fe0Vq^Y$=-++{5|J;%>U&xjp5WaA_Inef8Tw0989fj<8iaMM0OjG0?lV87y8-b$tmTAiFgJ&MYAZQk|2mg}=GJiAL_na)`Z{%ZcAX8t6NVrdY z=da!R6~hStg=5>#IzATaQx?@}+*&{5cujt<*azp3ideZ?hf58YZ+6@*0`);xj$iHY|xr&KohCqNICs zqG+2-;=PB8R!F~jqlTZZ{l5st`9(Zsbm(f<@(5`H|LSHHVV#S$ImB~l=NcC>ZQ(XP$*p^uQf}Y)SQn~}R z>1vk-I4~?KDijQ6NHPt-k}Jx%E34*WoZx8;Wd)UCisO`D(dxwf;G%yPyYDz&OFPP! z?z|#l2>tmbG9}xCpaa9bXM)i4NUMrW1!vCPnX9rp4cWj6Q$bO;D`CY`6mB`s=0*zO z&~|N@KmU;MUsnNP? zbmvq=`!}{PbZMxnmJ)}hi~PlFmsn7nu{UC$AeeU*GHrl%P#ZNF-VJ4&oSWch1o>U& zJX!@MlQ?Yv7m%N9*&0ME#C&g7q~G<@tS6uMyr`{tmj@JQF+g3q5hehZHVH0p`n?u5 z$Z+KmUKz&>=^FPgihZWJCYAOA#p~n$dLP=MrWvTlg9vqFZA-8h$C9DYx@{z4!Df0K zOOiM8F`@J6>%b)N$GFY@^J7%xE-bG_QPHB3D8dZ+_m)HfBRRRpwTt1vN20F@!$w^o z&a}9HLnia7$YHgCLH3!3!AB8^5he9YKxMR2o%Wx^!@`U*3|vV%I$PrQIuQmemGd~? z9b7j7B~7FpIyM*wTbjd(y%+b3DW4=n5lTya8$vX6uEVnFjI?A>lQ6hW3S+-l?IRs0 zS0Xji%m8Km{2P49PyrdERLL1{HNHr7-3O@M@zdU0&xX)C!ZD>0s~ zLl$F#p$euNqA-k*95?EsC9gOM6*uUa-wao+8?ScB@`3(L8W>4wWWlw;Z+9|QJ-R+R z`bz=7Rsdx{<_Cfd5fho;NpusgOjVN(FFSP~eg(r->LfqjdFIXv1i23CvxyW^gUQ4J z&By@o9dpdkPG`c4ZX^~I9e?kZ<1P##%jf?3+||cGe7EjEl^dJOI#@dP`t17%I_j>3 zGCMZ{eMigm*VZ+8zt(F?DIhv}*Rdb)(Pbyyeyiyjn)&;rbNMhR_;?BpvjXpRK_V6b z2nSpStjX+_RHFx|9WJ57^x-IMQxA~YU?9%rhhbVhJf!umT#v{j52PyTO^`JU@EugC zURWnS6xF_NIph)(<#)oqWGw-oBl|QG>TzI@=jAag0^Atug?9c*7yVB1Ja%AP1wG(@ zP%~t}XbFdQx-ba@Wx6kJ|6{sE8c{QnOVKfjs73pzL_Q_o$Ho;8ez-*jR-TKiPDDJ}Nm(!mCn`Pg@R;>{MhJ zU3QQtoE24UI8~R5)H?m~_ZdcrA7A%TBgtC>O~R3vB5qt%sWH(r6IC)ImIQ6*cjDg1 z=oR*OR*e$e9ga0r5;ED5UEfM9^JGHz)#5A61)qlc_o8}9Ig=4O1;Bv10Wp;iotoq;1DK^eq62JtV+wJEy?e`r%4#lX zC%u^odrtS-XzHc+>h3|&3Q?TweSTtk*)@ZY0_bkn-fQieDcPzBmb6vg(m4iFOxl%2 zjM>tb&R9jM6_CVfxseL}aBNe`_GX1q29BQ*1@eWR84T0o7wL7VwfKU%I_fVKvoi$X zj+jpHNh%Ft6|mSicC&LmHeS#ugheB}Iu+Zn+Jx)MCL`E|i{`##6HGa&`4gl@bMR|W|G z__7MdA?S-ZUMf%^QC#ToCOx=*t|q*QE*MO*srf_wm2E&l`tZ9}d8GH(W_2-qli~}S z*oD?}-Sd55IZc9m4BT%Nd->&iVc`I0vqi#Q9E zIUfD_>Uq5s>Jh`)BlT$PnkR9#Z`8`j6W1xXneN`&c;A%71?R^75>C@WCOKJ1r8Z5P zv7GU?3TL&jRaXxk2dBaJ(h@h{61 zr2pnsMjwF+YIjtvoavQL_Hn_ztFA%Cl8=h3`v?^Aqs3>u#70Cjc&_Ac14C^E(FIVo zU~1zEhZ9pqGL0}-l_Z}(ZlduzRwhOw(3eI0CA?zOUl0f{D6|vNskZ;O4D?Uv1r$ z9^_|t_>p?x2`|!(31s5aVdZOs(P@!^l;~6@*cf;Wntctq1WHQg=xtbO|5xsr~t9pA13d~CHP2dR`|E-k_uW3S8t{uQu zPC}f__MvrO;8hhF|DjscUmA01(D&wlL^Vd_Yj@Fda6r zkwb#AmKYL{+ENptr;XZtu?=lwm66z(GW54y!WS)g6;9&xw09LsKpN0}9bdE~)i2S<{u?fW-fWJ) zZ+f@gK2gln#KX7c-MsGg5U?}8=#{e++7Vm5>*$_dkloxeS+inkR@?<=uj&~dzHGqF zxgva)d79#dLeZ#2=l05vGD<@LS2ipspCkR`xWSlHAh5I#5zv=+cNDj{+lxbc783`B zox6|Ifft|L3QU<+#f*SyIx4Osc4}toYqbk| z)Qd=7T0L2<6N6P#MxlVJIO;X`tmxPbf-`!rZ@-`Sb{OARwoKAW_lTE~P@u1fP(hWo zAUxX&bkids$iKjv@pJtBFKWx*Hd{Bwo9CF&g;(qKC2{crov#+=hMWCRtLnFVz@ow! zm&?2rf~kjS5*z{`C}aEb3;K~;Z`*^c)hz-*#|m%jVzK+=^gN9;DX`roqS7ygTh#d5 zUG2jN?B#v)s9<45=^4uehmyWr=#qN;x~qd-D}ybZN5zW(O}Tcox`BEttMIclt1Z+2KXw-7ZQ)DfjhsI>A55m3( zRdF>GsxZ#f3pxqibG&_L;0v28JDa@8aE`N3hKD}VxOu{{q1(cygPQ7{PQHl`Xw(hH zN{_bV+xlrZEhA=2`O6{e9dPZ)Tp>8@Vtw(dq?VabQ!xeu_0Y>~( z{|*l#u2-OBG(gC^((FoxUNk`}eOsC&bu)%r9`70Ff~*Gn_RV*U_m!h!L23 zexxBk(=C6_)G<=_UkRV#tWRq2GONOnnl~#v=FR}l z>b}!g`(zUhTY#07=_vMq&cGHkv-(b1g32LL8%C*7epf5)qmr?H>y)k7W1)X+=??S( z{a)A=^iSLW4d?$uP7Kuh{WqIKFM&lk?xig4wicw^K8VlfYS}Yf0nM2F{v`N{qx<=p zz2yh?1^W?rN6`CZqV_US!vNT_S*B2pjK~|9Gr%;TeGg$FJOZp?Yvk#$Td>=F+2h6j zJ(6;05=wK`!)sZ8%iL9zr0OkNP+2xkyudl({gKNK#D&K@&*cvR)a_HV9Tf5HQN!gf zh}`N2nA{|}4zlyJI@zkLFg5}J=R4G@mI`Ya+yA>*M_hk4q??vH8keDgE)fb|aspnE*mcKGu-}Vla^neih0UI(Ck3Qna=cYrw-yyB zExrN^QPZeW&ihstK;Y$P0#u?+e>(_Qaxg!bw_41S>%OpRGoaKpL^r_)-|Z7JdV(xpC6h-tEikV3pPS|C2*E zKK=*Jl2&?*-i9|_=6;|?1h0q&JL2T62mao+ftRBeEC(pyjnF5VR>~~5Tsu%vS2X4 zs*K5MA!Q4f5I7XoBPJ1kJyB->kVrpn_|J}(Y`r^<5hmP<$T*D;L}jc<`8+X7j5=r- z;|(??Ua(1KJ4Z?!ihtrN&ZZGKHnhM_GB-=xZz;tT7xJl>#Scr0^>()Ct5)CaLo{$L ztj~o#-otKY9JP)zD>6M0L7{ulkgT=%!aNZT5w5msf%o8QJ=%-mhDI_?ntZQNyJB~2 zyT(VWRvFSq%1@8|82G#VM!;E=Q>H5w&wsrsq+^}(^6@%{H2rOmM^UCp^}GRh{@Bc4 z0Tl*H_;_C$8+?5~h_OB=v(7)riyE;$@ml~Qjr_GksCCfV=Gn~nH;2?In|)QJ+^|0} zYns+^0De({ zbu^PoC^G<~Z;P&{wDX5wllg4>GJ2o~2ERV6(NyQrE4E9UoQLb6wEoUjqTX38F_gT# z`{cOjeD(J^)#Co?nI*YrKp?3><7E+Nt~-pJe$E%p-pj`DD-o1;x?O5v#HnF93+AWh zwsK1B5;IgeVM8MdrXyXyzVL;;y{O_Os!M9z7kbo}&pBMvdYs)Q@)w=4L>gMe3&w8S3}5{XO_01NmD+0<4+8 z?TH!tq_{%lq^9K+wm?j-2ekClG=1I04Ky25jW5R4NC*L8dECadv^TDRJK7D9wDS6@ zz8_?-5ilNbS6*RFvE&dbX}(=rk#6u$d};bRSt!%Gu=Y8g|A-1lau^QKd$v>P7j^wA zGTbpPEe7R%cI)czeE3uhKXqNLa%9uZE>wvk8=_yXe{>v>MPWUPazMkUe#J{Qdu|O8 z5}BBlh|{!U0YSAJP_~LF(?sr_b3zu@8xOJ6pDO`*4Ij^L;tXWH6-F&s`&Gil+X-V5 z55k8b+QHR{Qi|1~5famE%aT#XYEyCOtWG2AFm+(0fPo&Z{}SxeE?loom%}%c4A}x7 zeStUd9$uobUbAaR7MuFdv<4L)e{lrC9;zK1^g_oR;8l^GcI(qKfM{TTgw46Mn?68R z!>VN4C6|*zL{0Vcx;BCPjl9W$;3j|Q=+L&*q4g<3MY2Ah!m7uQcxHR3u#F>_^SU$(#s<5 z*^(8^b848buvtN@@`ZWV;SuPSb6SbQnhpANKO2z!boSsacO}%WH-v#bzsYUqw8rhb zLrYC;zmeHfv=>JqZFNpkwq%Se9z64?b%g z+I+-vTmhom)|+5mcy7@iQIBRd@vCyt*v#+(kvw%@m)V%Jdo1p|BNu^m*Z|f$)Xx@s z9@K3iSBx_+EQN9%hg+Nca91CX<>$#b1mK>hm!|74C3bk@c?v!x*t;u4#7PQU+~w0f z&5-r7TbOl)CBRTma?eQ&i(Ic8c`Amuqc8F|_F{Eh4~&4ZyZ(3EB zcFUD)z%fLKjv%ezb2V;V=cvF0c3D5KJ1%yw4zr<_^_q|~W;WJPm#A*4{^`m`Y!zC< zXO*`Ybh7ML*KuhO=VpO+gi4mbf@H@YM^mTsqf}H8F@C0dE+xJ{)#>VdOp9R`pAX;PoS8lI;UctI~@FCeDd00ZAb#2@-(=DsXUcenHXC$%)+=|`AWwI$<9E6|Z z3%7ij2Kc^o3DIJ?mGbv@nfAo8Q0RX6%KPNF(y85Kv`mEOJHg0HN83-&kr@FYmtXgw zsiY!D)nfR8W%4F^AK%Aqp5sk^ivI4px1k!d5N~z|^wFQV|3Enb=3j_H-)@n^HGj+J zk6lxFdK^DQ>3l+Yxmaiwf&PYspSQV2zVUy?DuP0d>9cwN*AY`zq}BhEaE%^P2-wRe z{a@+VZ~xBTb&|RK&z$T`*pwi<|DBy5eZS?`h!NXZ_a4{=SYRle|@V@qW}? zIR0kQ_SI*>&1XT!Q;+iHEY#rkQQ!06J)n~}>h4$N9jf=SF{PJW$GRbJzxB{C~s z#!<)15nKA$SvMNX2BGgJVU>PmM>gak+3%jv`?0}KK)n?IbhRZE^7;Z9C=_`<2wHf` zdcE|UtY?1NHF()Yd-xo*Iku%q|FUQQvIm?v$$DPQ@=;m8^vt?fGq_ee0Mg@yG@vzr zUOOIJI(}2$$5M7737^5ZL(bc8+aMS|^9;i0D7@e*?eg|)>xX{>!Xf{;RkF`wau;7H zmfu~E{k~7f#itHfFj@PJb;r%dt=n`aP0w-&p@Da7(#ZSgP0E)|QqO0_=UK%m4c}dj zX{_f-tSKI!8J;Op55a|ng)8WtqV?T35nx3t+aC@IJr^N^z-Ookk>-H%e)rI+CK*(2 z`iTfrE-pfDudrUvuy|e`^9>%}!-`VA-VLlzTSF!B*g(2|4Lvt`mJ`G0lE?3|%i0g@ z<{Nst-k}&xA>=7n*=4BInpF0*26?7{$x)*=_N(UT3nM-A-<5O$(9 zCcF6Xk&zLd>t4mDUPWxc!==dUCC{~9gU{Z8@C_TRXvfn?hxeIwJW7vF;UqP3A(y8ewu;K`g@($p$&Erc8mErR{ zq1UI&t3Oyi`_AoPgV$?=;v;^~g_gB1lusK-_D|0hiz<8B9g%l^22Wo+C%o1qsDpW~ z9xi|)x6UHBA!M6bk4;&*_IDxn*#`HC1|G{~R}Dwa?O?BVFd91n#>8h~gT*F{H|@0i zt2w#5yQ|}F+OX~B3wA>W_-x^2@!mo8`f8&K?xD`$v995n1l^@r3st2Xuv=w^&}bx~yOCvtCmHlW!vL zDE^Ne*NR@k*rwms@jvolky#+yrlq_`<^%7?XFct7LFDPt?YZ==E0ab1Zr%KDNu4G; zpkohhzxC=!_Pt>6yFhcD9D%%UAc@@ZkzYBI9lTl40od;ad>}#jFjk}@c~Yw36tc!Jsuz3_RsVs=Rhk8`R$vi$<^ z`7ZjE_XRow*sO=yLa51e3QD+hR69o~`W&jwZ&Q%BOZ)ou@ObS5{xBj^asP)f{7m-Q=TtQ_!3Y)?@MFpzXpli1!b|Atrh1nOXYun6C^%J*`&};aSgTdgtx7A+o9)k*RRLn2^O!4(f(f#R;?LULCy?Soy>?Kmf0PlC8}+<8|V^-#XBh9Un)6)^Qcn|^R>sEhZ|yVzpm`0kne z?lHGkFP{%7`r<;@^HszPLSe0?o*3!SPrBk{4ZK$r7}i-=4O06yLx$>H3}Dd0cXO?R!9B!ZhLitb9z=QUZ+Oi3fV{d_0;54IsoHPF^Qat|+6KOw;@8uh!85)B^l#PchW~GJOn|tk{ZIg<)c~fTRRND);-!eD2i3Oc4lQN4w8+C0w5W#26Bp5<{!7E4#2n}ck;4GF+Xi&l zu$k9o=Ahll`r-11HB`V|an?g|`TDZYG5B78Tw7r#(d)Dc3E(gz&tvpTUg#3a48dDbN01RYu#w? z9oq9<7QcHKJ#&_YdO_9I`%WZbf9Qb`_amM4hwOpQQKFDPcV!hk$s_F$$2YNjRrJKo zJdZH95n6zPjSS%5#ARDXQ%1oj`a4&P8YNx;(u!9) zclb?N9g0f~=M%3_6Ykfg29b+4_17tF3dg%;J1^tcBSY&?W9u725DzTjo4?UQc|Mz6 z!;q(O$i__83+LMNsoQ$xw%btVlKEt198;8mo`(MmmZ6#DrZiCvqnct>3vvYSxROx$NdXCm{ zhIaSnXqYrK*rJIl(K9eGnDgz3x1arF*@(3FrnPI@CHO`k@ABLZ!7=WI&V~ERB>Bob zORPiI>2i!G*H$MZBV*(2jMeAm&4v1z`(Q|8@E`I12OywW)ONnQO>xWX4fUc3p|-FS-fav0oo5Up@P_?b@!@ zztQ8h9-FcVT&H+Jr#*Xq3RU7SP}P517N=hL5Vo` zs9EKx3j(dPgA*-7+%vQD$>1J!4JyXXw{uOSpI5-bNPwTYwaIN6KcS|vekrsbWdBfL z-+j`suJ1zNJ|M6bu)S^EdIvqfbD`vjgvEOk?R?y=9naolM91Of$pa9Fa1SNsFoTDD zgQdH%w^;>akDK@{j_998XB6P+SM-uz81Ae>e0ko)@-%P%JZ~DkeAKHyE_*tm+mRu7 zs2sgy)zEQ2X5TOJ)FZO-hO=tG;H-;;LYuZ1YlBB^-Bx#;hE>;PM9bCBiz?6u7>q-2 za1NM0-Fsmi2aCMkC)Cx<8$+PO1puObj*ZWurd7_{ko-o90Dp6#Bdwp}(3h0mw@^oC zGfBs;3#!oe!eIhU{M)epZ=j{gM4%CQ;LGwVu-mmCH3WsxU-tJ&_FY&{omd&35!Bo- zZ$5`ul+sR=z^Ul^tw!08r$K4qz><zj%Y&F4SFD{p%sAz`u40wJU82D~zToTq!~oXI1{MLBnnn=JH}Uo8+VY}+2ih$Lddj(k$d$w$lugvi z)IYVJN80y}@vKKIw4DM;2mGKU(4~@j@ovR^I}+<&ABtIzv>Hny&|qQh<)&dfb;6sz zeOsV?d-ih00L0pKJ+H%-HF5stY9tHURpNQ^eQH|KeSIUKH*B@3D7FDnmAFo$q%tam-p8^S6H+(7mmTeo@{LB6H&wpv? z-ZV6j%*wqn;7;R>GtiZ8l`hV6wCS*@*dgE zJ)=*XSbixmXHZh_AE9uALdzuw6yHPH1&d#=swaAe)1 z_Amk$fKzF;w{knCi!#@wS#X1*M)u$h2HM&gHZH^q-MIYcs0cxL!qsO z#z0PFdjJ~R+*vAmEva>kTUJ}&ykl!=|Ki1`^21Ev<-Lq$(O*% zFQteQGn{Q}TmZ5n0QOpB)R1%2e?HXMo`Z5>YQ~Z5^sNxZZR5b^g73*fJN?4)h#i!k z6C2vE%gu!gppg3eET_Mso^ z-&7~JK?&=>FTKeJ7liX${;y;I>tk*cNH*mEocZ4`T>z=PkbM641^#=uI=K?Aso?8Y zCZ#Vr)i5P%@~fM;S|ZkObO*ub-ghe^C`F9eI4Q&q9dFOm3q(2o;sqstI`d=(BPT>J zyyD?t!(!)RYK?zYiGa8p>L}Z9Dn?}|h}x(~ zc2*$Co-bxcchcYElzQ~>MJyB%C}A|5_P_ELl+3p7vTbl|=QJ}rV;!tvCvKyRVuEz9 zVGMlgkWTENe1UwTa4sLbRn$*=89R4*KtZL0KwDa2IX>37G%Jm+m&7%}`wa9@IlHpM zkW&ESrI5Ndwh`R_{!5WiRm-7Od+*$}&mJQ7Qa@pfE;b&`2zUnQe-2Ozz%+YkJM8sr z10EAi5bEK{K#+O>r=c$7nZrU#3vfrSm&6|A(LKczB+UvAwESWc@aoo62j}h?3Wh{G zX`=HW+XR|=VT>SeO4j@IMbg*flmCkF0$J;1IfT7tD*Em*{cOwqTzj;r`P zXwsOspEKH$AAxeTQ)Q7MjM$|bK8q<{A;0atQf9Oo;P^QjNTZkD8Bc!z&%AJvdLW4} zT1sFckV?AkW%e1I;A3zEG=gu|ALmOqX|ofUY=)xglTfiR$HmnYOmJ2qq zM&%294cA)3T^9`tI6BKgOZqpb9|qI*U0_GE`%qgo3p_9i@q9l!tjvasGlZLDE~T|= zhUN9*WGUwXNzYjR6ZxcicfVe+mgj@}u4 zdjw9`9Kg@=E?d^&E-yk1_P|9#iTyApk1Oq$3zb0oBQHJ%0Q+-pc2>hOYd`D< zTdZXW{jPAAPlx4t^ljT;J=52+z&p*oEY=_mYvNaK9dsG6+$A(4fC7PkHM#21b>f2Q zIox_l3`vRChIEV4Zj;q5dEKO*dC7J7hs-)2;9FsJ5iGmMGNvPuDDXh$dsru6G3D?{ z+nrg8pTqPgJ6vw+yI~}tZ+x)tr9Lw@n`_018?apAj_UWQH$5soG7$|CfCRC)Cy~C5 zB&3%Kku-+;XRQYZoIEpT8lQ+BRur75kGfSu<3BSoNyFE{+()c|oeXd!N;YRAADaeP+)y|JFtBMYb*9TCEmfI6dB36P!bC^WsgmFQ7zW z9-hiR+dtEM^1h;wxWgC{Fowi!EVp73=r` z=tGvuwEihJKN|+#+bC`gtvVF5;@qR$=a{?HQ@(nRtHA$?G|*8;73gEv4~araojFw^TsWAj>-%s$(Olg>LRSzF z?G)*@{W`rFcNGO*+j6qhQr73tv#wmc9$b>`HNF30Yj0(hO&Lcqy$R#aop^Z_RB@1a zOh}*!@He9YpL!AMIz>hC>D3V5Ib`;KwMAl5=L>*wM0c)|oG;2#5j{vraY*o?+vhlZ zln?DCOU%O?J6%+e)XD5g5|zak2rWU){=nVkzK--O+hiJRHI&X@hEG!>Z@lOq1)#be z*ajcPykSwF1hSvbyH(^K@ZOS$9)Y1pRA$NI(qiDnEJXSn`eSAf;F5*y2Me$eCJg1@ z_r{|28b#s_gBEYyW7jm{W{^gdCz-TC{Kwm(K<0AUbF90ZaXB((u$mrkfO9Mq71t{4 z=z{+gZoMo?jK~lF8Cra_cJaz4ERaZMK>;J%aKL{cf?H^qnDfmJn(pATDKez)ZoqH;z6<;kutFe zrMU#kX78pEMh)>5HYbINWXPfi@eZd6v9SNNs~MVbm+^C42ogUE6f=ro<+!_pr&h%s z4B(|b-m{4X5zS^R_k8-Q6VN0#&Yk`jFLytfk1%a4yKbDtY|Mr?*P2@%lec`{kfNNJ zJ4&CYeMpkb*KE=XR1-{}v^neOkSn##Ke+dIEPCH-$fmxTuUvcRrDm0|aGN`4XzIX$ zq<$n=yCCT+#}n=Lw;E=f+olmCYkArueR0bB>$&+c6?VO!w7A5bR3$iw4wVWhN;X%m zx-`0saImwk)rFd_DK(hyrTwONZWpomMQApXeID0ba=tSF6G3{@=#8e6D)g z@ES5(f+So63c}WHcmU5ibY)7jyJ8-wWjol=ufVI z&v)Q8D|R@AFVsbuylX>H_pQhE zhui6fm0=GvN(1p!g%kYJ|FzBHc9}&`(JSYA_E4ejQuA=DkF4Ff8OO4XHKy#W^C6if z;II)vvp$MTOujZ}^{;S!v^$+LiObo$0Kr$&{bNgrm7)w@LVU~xSXp`W>s3ZIOHpx= z_V`4*Z_?~b!fMzoE@v->+r0}fziP0ufstueAN^5Z7GRo09t><^8j!spCm+S0pbSh$ z{jnMlg8V%wqb+v+sE$)bQV)yiVLFT>CD(w*#<|>d9EYRR3ci_d=oyf~l%eqNS;MK4 zVp^qQTG%cz|Y|=a`+HTx5YbFX;38(8e{x%>1U8%t5ghtw*T5%_#rXn@vcXc;rO3p zy>~iMAT{P98`gs_P!SxDkbU!QnnNI~p^xc92{QJDYa*(EPogBE`A#A=tCT0b7Xi%7 z*CxfQ&$$E2WcH$a(K*HNDDz*HT-!c#>}h-c5Q95K(sJf}obYLCpd)A9uSgU*)Hbq~ z@wImBCDJV>Lc*T;XjERP#&&`a z><4At19GJR`dy&T(iWK<`Q@v^%lOBr;)Y$C-v%4QU*MmMG8-lgt;1!+yX!$olKc0% z+c8`jkf#WBc`{!m?VzXBMSK!DeD6V3vNYpD6f*{%N%|R2~NROOVu@ zxXf+*0QRLo6*4~nHXq}Ym={%gG#_wFDG4>k3J9qBSm8D+q}!j6X&lIVTIH1qvP1O{ zw(DFwezmKa{6M2++1H3j7{lMx|78h?XAa4TxC(Eb+5h81LcCW2r(RmUwnREA&#c5m zePA}70)TNhS zvx&v%aCza3wvE!@+p^|2oEV@PVME<1^VcECSR(e*;Wnd*>kRW%>^um$s*rK<3LLwh z3B7_-pBh^*^+;x5o%)uRnpMxb;! zH(BHog?{R5D_;TYK2N2<*h}yK5Stl^LBv6E@-$jKK}6F><|@)Yr@gmq6F2eW7EvZO z{M^93XL{iy9EmE87HNrW2GSwNA+-?NDhDmNY{$~bbC5|vKOp2^Tc=v!aFi{Ap$V<+ z&>GBp#qLH5)djXwF5Zm!!w=SJi&zA;=%*`~%5g3oj7GG2lRcpvI@Mo!4)0qi98m|oxmu_fA2X)@e$?8iIFS<otnSZlT33{{y-(<9o5v@ z$s)_fV&;!F2w)F2SHZ^FGE&Y=&W+nZ53@xoVGMQ-txmaZ!=@wg2yGLf&2b(V#>w}D zwo;V&v(V?*-`RUe48tY+xe$`mGmDWOAZBZjWDg)EbqI9U?i{g#5g^PU#cQeq&2Ovk z@|`?rFX);G;}L7dZ$2ZI&x)pCPw;^pkO=^yir>@s2KuxsHZa&m3=8B%jx#vEx0?Hy zAFR`J^IU_RlR-jOhq@X(l6fBH{pt(5m+CMsr`RjA)fAQUxT+*az1-lHF@&J2{M(cD zbYe-d46IDft#`K)2PtqKk@KS{7&&;<>_wzwUta~{iE8kGtnt=taH}6Spb>Iik{3_W zW5^%Ui{b$PIG0;$Iv0~?K6_lkTflLV|)gmA5@Hf_6yZ>E@D3jqMd|e$m6F zBldZM2(2bu1n7SgeF}<$Cr@1|w>FQHw!VZMqDF-C zuUXMGM|iMDFfZF_o!6d+iw)cAkYLavg-I~A;P8w2K9IZU^Ik6O@2=Ur>_4426nSNsAwOMNT*W-+RI zWOZu6t#a`m+)AP-&cDWo^^xPxerPJIin9tF-Vm?KvZ*wAjPcRb{I`Ta!TmbA9fwS- zrJv!eVUtd2B)*|oA#K?#5Er_6%Qr*>xkfWsIW$*ohGE(NP@ z%aCtC+MERpB)r@Xg$(@{uL7vM z%t}@i)W~#te;5JHiV0`8F*ekEYx5te$6;%X`LmEAVtO#j;Mj`NFL6En9K73$G4!&A zeV47S-;t*(JR@VaeZ&fNweR6J37V_5Cb}R@A64`0L=} z_4!hKzZtj9OD281uCskt4m{OWKXJl8!EaF>@s1u~_)2`D$I{EXQ33$+PdA3+;CyRezzUr8DYPW7pwyp-fwQTC7O_W60ioH94D zn3(?eOy&{~!qRz>e`>_X1-0RMoTAL&(*8`@Al6{Vy6B<&1u7XC6VhX0RKWh*IBf4H zkZDfwinHFEHZ;t%8NOOr5FXE4`^6ABPb7E6+m&8QwF}#Mu*<*g*)3`}j%2z#4v8Pg z;}n*tliSLDQGex&S|Z#PWRtMV4XTdL7U|LDR9@USAJfxZXRJeQqHVI}8b15dFSc<9)HBY;24Qt2T;^;Wz9{)=| zZ)7hn>6S{L2xfJjJk*P?jpCn89RXB3j=k$3J{T=Jrm6ePk={8eZ;Mp6zm?EfB2QQl?o*s*Ewmm=K8TotLfVx$3j)=TtS<)yd6h3D-;*|7gzZHgwR-7*V0DgYG0z5&$$&h= zthC&R$QX{zGFvyEfiwXp;#cvMiB7%fMqSgELOVLNwOLq$TVk)KfaBMc=)KBZF9x;5 z?4W@vKjKj}u^s(OOwXx-&ra&B_!Jj3yNm63?}j8;M{#birAGld^|)chyD$xh@bE~M z0qLsh5Ds*iJSS21m|XS;CzIeFxcl*cML{}M1K3>{uGcBnD{bxwgG@7ngU!)ZBs=uaMp z2vbT>VKCa|>7e>3 zo_IFvgSG%$C9@oml;u~9f;lYW7q1tk?95Uw3uKMptisHO_K09(GmAPmlMpuPa?5o+ zP}MY%Wm`gv5#4t0{N=ohIFIji5=Z}zO&3k6{dK-%c6m6(&@}IUBN+Ng)Yg8*(YKIzoX&oqm!gJ+b4$b<&!r~2&|5XB*WA|4FcQfHQe|q* z!@?MT*D5V(+60CisInupjnGLS5X%8joj%?Qj2M1bgSkxQMfHv4!9|I}EnXJ4+61NN zybmXKoUN%-B|EAiZ&x+Ug}HzvOu@-Lk8X=OXF+1rhHv1&BH{surWYwzJ-PLj-oxhEf0 zmNfW-*0UY*`=iRS6S3%;HqPtR-Dx&9q;9g;X4naaRP0lCYA~Dem`n?_KY)c`N8pzc zAjfYWgXm3%z^X%~RiN_n9g$Jzocp3c^|wD>6LA=`<};R3Q|P>+M^d*@GMKfzNK<6> zUum`SfoAFQ%mPRtwE49W0sN$Z>M|sbPNRrk>9w#;!$7MkniZeFMIHsi)NE!dXI?eyqw3|F1G}f-Sq*(CkQY; zEI^F*O~I{JF-_O(-vhaIqX*_Hzqf@XQKT#jbRRO^JjiXW{wmve>#&CqKW|n0_mkoV z!lwkfGRjz&)1GR#08%9|FR;<_zK`?YI#nXojD}b12Wga&HP#zW<-vr6n+>)Ehg7RK zuiSR$pE0jTxUZ6JnnYR=1-AmjzI>{MMXAH60gbfY1|NJEd*LQe=J&Sh#w#R4q?$jHx zq&Cx+sQ19Nx1TunLn0C2&y46APiDMSCR2LXvDaE=3YW5`N82EP%0RZ476@8X#j!!pbw~J^D))b;9ahz0vV0 z|BEDNqD%}d>&`KCpxT@)Tokb@(7v+mVZufKn|{0bx^Uf1jb9l9C8J z%s(b;g0?g5{id`f*4QpoVhONHaYjVYx{R&tLG*U_`(D98#6`t8(Hz=8L&cV6IPu-- ztMVJQ%~#o_49tRq`0kzpOfm^aW(|@wj>a%-S9hz!q}GkU@Hqoaw!8WMNx}Cw* zptTd#wYxHj`$O4*VaPvKfLI14;gu+Uo_rz$(}h@BjGV>j4_aCq5T}vL(it?F><(l* zl1g=KWa5lGbim23&ONQ=tS-pNBKECDfi=4;1~C0S*W?U$=#iXAO%M8;J`(suV6#{T zPaxH~)YHEvWI716>_A9a5P@j*1dKV_KHFt+LhRM9aDWu7>?{Jc+f~)AcDPzgg(Pov zMIW|#viEOEKyh^KiC#P+XBJ8cx@fC=0QUwUF%4>r#W3zk7s(;es zr3N+Y6WXGZf}-`3l`SkYmO^GLeyn~ElVngYb+M4LFVVB=b=NQCov@|Nu6evzf6N2@ zD^_bC*lM%&sP`hcMWP=fZu;g`-fMP{QapeY%lYGkXNl1t@!*SsJoE4EKDq24qPh(m z*V>*^rF8u^9QsU`+zG6-T691*h}W58R)%v)AUra9J3I2D^C3iI_V>>mQ$_Yu8_YS_ zb(-;UyAn49_yXhY>!|3two0iwYJvb#4l#B7N!}FoFLs+oZ0!n3*}zYv`eaV?#TEJe zRY(3Ci$}2>MHH~KJh2c{vbhW3nOdS(5#(3IVoCsw10B!;UlwVNSkJ8LAVW?H4)A^6 z)k+}1M6nQ7tNDmRRS!$QjFl{ls%R62s%uwe-JFBSvm8YpxHtaqAYsv&h>nDek?N-D zSbQMi;pZdz-#HmI_%aY}1+kQ!)fh=%^{MVrNm#x#J5L%41c?n^tNOfFGZC}Fw$_Xc zb9$YFyNZoCB0XGQL};7aYr|L6(Vr2# zO=RyLv=a@Z%3egwJ_tO(sKO;tf6FSopdO<`JP?fy{76m*R{{C8%nf8mzSR|9&B9|a z{X5NV`(QWUTtV`{5Hs7kv}ARrKYUa~C8q8af$&93i9Cm=r$D8=TMeLyfFt^8%mJ>N z5^7&l8^vg-dCksL5|Kx;F5TBX`4vcd+Ko)Iqf&nm(3UX6IEZ_?R5fcbu8q8KFgE&7 zuUDmwipZHe^%yeHkJOc{FF#tO8hnH%*|Knsti_llBPI(~`>fr_0KRx}&4sU`YEkpi z#MOm3bL!0tAi!SpWJ>f?U;X+{^9do%f>maL<4UOeTzp;+EvEUwE=yM?fC^CjuG{?8 zJGFl@31;pGHhIyfyeLG=G3O%T^mTrSis;Y_Cs&G0?0d{{8*u$|amCJyZMmJ*P)f^1 za<8~8|HQPmYIPyT{+Z}J%2-CB2|7;5HlC_M8`8DSFZa!yT8;E?F6DdxatayCJmFW? zELb+03U*ipS)7p8Bsx;+gz-rI_*qxj6N+iNN4&LI7ycig`jU=o-zNb~ya0d{Ct^br z4?;5?<|LGEZuqpZx_a^QaIt>89*IQym+9E-BKBv+p0 z+joz2_`I6@rN~yfk`aaApS|Epi^hIS?6+&&a-nMlEe_UWZgoPR&+M!9*s0ZzHo0Bh z-qd*VxmFwQh(NUo*(0Ago&E^BPLCcJE?887 z98EYSz+7I7!3NPnxgxME%e4##UDJ;8N3eREP zrFTLTK2{;J9#+}>gWb3KuBq2cDgzW);6Ni8(Jp+1((VvF;ZL%c*VwQ%0a(>`H23%I)+2EG@7gk4={CZ8BDC}N7Ba9b<{<7=f z`iCoQ(E+sJKGeUM?B=BaNfgvGo48Ca=7kM3X(xez@BL%}onTCCtb(Gaw$#|t)Jku( z1UP26pdv!L@a^&s5zCGvEqXWuFfqO8PF#j6H!D#{JI@5(!k;&A=-|dL!{I+g*Cpyh zi$)Y(MuJt&HosLb_$LV8`7f3z_J&y6+6rj8lEv_)xpWIVBX%q#!$xkM1~rRaWuxM% zYS#S>I0XiAxmz<=GxNXPzmB?`hUYR)z~;(T6qQC%97BQowEr#|-Ah zQTyrO9k`k4b*+ro-Q;{>_kn7~p)Fy+H0Uyif51u@K1l+r} znal+#R1vAD&MesEzkrS7VidB&l6*GTh-Hd3>i98Y#gI5eF<6{?ZD!;qBWq(3Q_0sv zbEg7N`@hdZNWyVqhy&$upL98j>Jo_aNLV0}T#+`ciQQ3Zf2y}rXv4!D*F1k7wmJOs z27e)+{A`9ME%WJQ8T~v3^1%ED5)B}vCBpB*&j=MEPBhCG& zFz&41h*(7?o${4kPkUSp$n5irYhO~>8kP$XMBDP$qbLM>%xvg~qNm*=FNPAeR6xrF z&=KPKUf3ys#Ydl0@+_DRE+=-KCg>m=WQLwo(wXPL@$zZB!f{!;yvH~Uu_%&(2 z5NaNIIu;d1b|wTEMg8g_6Ki`)!YT+u!c$FKEfD^dYl4hNE)atJEqw*psktW)5iAqh zxu#IR)z^SMr!2_cCE1Ll(BYMPXwixX<{UW{{5=u{V@|ER11eytD}EDSGJZ6++mg-wZcgx}{hq6!3M4LSW7Vq_*~#JPzWiALA&qQf zQPuEx38qln#4Bj@lr2u-geqoUKb<4Y12f8&NFtDPnw<6^ncO&4O4P+*^VEPpiOSdveQs{^XTIH!o!Cv@NqAz|+3{&kqXnYN;T$;=i!!0*I#_@oHf}ONTAcflUnQ*|Vwi1UJZw5mkvse`n#q^fx4^c-2)=A61U_*hZ% zqe1CYA>PV`q9zq(idI#O>I5qmSljJHao^=f2l=@|w%?v=;jd)MuUq)MpXrNo& zwWrP&ihrumjQQxa*xPBR zF6iP5Dy+i-?Px)^bEvlLMk8&+0+K%tu8InSbo+;~_n|Up-lV6Xto-AUpmv<8=^?BB zq3o(jQQRM?V=@6{*_AqwWM7tRB27swJ)$hKwZ=|q&2l_BrfRzccTUQkWPmL%lIBt<$TvSxPT1@ z;4>bz50Tt8GD*)e7QewXF7d*mJ5vfGAce;tRFKn?gU{khX9vl!_L6-Q=s@5U^dPHh z6E;UO$+d=YdKddHYVa^vWmSgmWd){Wm!wAn61Ppy@v)=oConD&@Qq~hdLiJnNn@{d zzTBBbOVa8vfjr7Opj$;nZpZnfEo$);Kf}c4hE5G}@vl-It~iR4qXZAyXH0*aKoWD3oztxAl^HHJHPK9QTy&W!11dY^>R-vUpYDv0 zRMtZ)-rYp6wF&S#jo&Vqhm{6ePSZ&uDto3VB*x@x zX(?%=?Kam^V3)0Q%knTXzn}J375}X%Ivj<7TRrrGA-b1o*1TA~wYTzU5(J(;ub1}a z)dJfJ&}|LdTw@CJapteX@36QScj&Q^E(!%0okRUuf*w6@bs1_^1%B4_A}0NHdRwRKThoD&J0WiFc> zeDj;1t1IOyfMU%3pL?xMtU`(8uwjT}Lz5X3mP;75$Wq(Pk22(1!NYTFhu097YAGy0xd60!?23>!pX zR>MpOb9tV9FNT0RfjrUP-;i~hZ#XZ`u9YUlh;V6vTC;d5IMYXp6DqfIns$h z00K~{V^d3wUy-@jAQv~4K=c97x&>(q&ZK+e0Is0~h9RNP3}Iy?iPkccLI8I?szocA z{^c5ML|CB$oj(+$+tC8twL;K1sYUP7y##?7oAG8H7SvHIf`q#yE`yfDp3!V7YsZ2C zNbrN}O4b`YwrQmGpGVO}X#-d}v`2D&J+frEM(FyyCRzp&woYkKC34CrZUjuN?WL`8 zZm;J+VjI-jQD$3dqd6WS$XYvOy53Yao+w#9+${OcdGU=*wVIavHw zq_XKzT}u`{jnC}QCM9VAN!(b{kGmc*E|EGyuml8CK*U<00*F?61E&*qoxV@DQR<2S zfT&J$ofk`B5FQ6KHPHHf!ngulAjUi8SHYLKwjFe2hq++dv@F0xAWKqjt4g(6$%|7q zT$;~7=MGY&5)em%7Yo2GtR}25`NXj97-7S7D#nGibqiHyy7q>#V}-YVxt@?AEe=K$ zXJhx#Y9m6^8ajeFIox$fL~vIBI)btlBrHG){Q~kttU_XZE(}L`;Q2QJNkQdzqfDKR z$BZ)j{kly|uSL&8br>zu$89H3`ynQ@f;}gi_eELVA5pU;q(*R|bK%94zONA~Zg23Hlxf~n+6E!6o=V&?+V-&_Z9 z9Ryk893yUO`K=PAk=G>)^0@2*6DO#0V%QErAnE{8iHDX1BtklOKcX+1;c$%A05Y6d zO9{A(z`Yj`E>@e4%}mM%;=u&f5WyENBAhJ6skwOMoSPu;*zAI~1E07tjfs|aKsGvk z0NFqVa+|Ytn+VTnu|iO!0}m0nZi;v~1+{$+ocEm&!!6f&ZBK^33t-tiG5bx~u}OnK z>^lZ*4qpDQtK@)FhkPBoroTVG{@UNQ><2a$YF(L!25HH352tbvCN{ZT` zy2>o+eJ^&R1$~!GY-7*{WUj{6Y&ko`yUnlmqFP94J`YBQ15J`bZe9{+MeXt+MxjeK^%4-2B}M5PGhuV+*7p=pqNFGvke&g8Lq#LI|QtsGC9hcc@AQv`JP~Dbt-C zXcMh%Oz>L$En9R=4M!o0$aPyBq+jZ(o2EPf_guC_tnE44!lRi)(&x;YdEp_-`!vSX zDr9s6OXiS#tDP}PU5a#9JDEWzWx-FiKdujY;tl{rZzdDO<733*V==m$N!qk&-C@uL zjOqsAa1LvKXY-8P7IC@Cwd;`U7X4Y5OM$in31K4rjVT4Xifm!q=DMfIVo1165QEEB zTc*#%2cO)=Cx{RUCWvlOG5?Jrl?Kk6WFX1L1<5*+wa@W2O6=fl%o|yrty}=6m!^Y( zz>`T@V^UU0;mH6bIy?+u7M-9;BYjf=so|f^GBJ@keA}d{OT%zSL<|hd2pfkg;)*~B z*|?ZAh{q?OlSOJ9#R`L`wwJjJ$U0<3cq%mtnY44YE;D!T{nM&VL`_AO#Kz^mD>!bk%GIwsHhO>Jcq~Zq67+ z1~QPzS$9kWlsf1C4WOtkxA9tlE0x4lV*J+?Xi-aF^I^!D zS96LCvEk1hl{3WVbkVjq0?m`%hwQ0Tgkm(>8!~7f^+ASU1_h2hiFp^Fn^WXrPKgpld)<#!?ljmc8 z?w**IM*&l@$wzxRb4KV{5LYww=~zoPcpYa3;DTC~Ne5u<0}Fd;)XtabV~@ktCV4h@)&YS|`YDD_Ikl;h_0E_vRiHqGeEx zy3SB^E+-Fn+J3+w#U2hjnaJd80oIy{^gF9BolhmZ0)Q0W!~iJf44{Xh1Aw)tO10fS z61Vk%xy@~?+*ZffRKTiB=T75HW7g;7jV}+&Br28KUq@T8q(#HQ;SCDOn#D>m&bpS2 zr;jEtmx(aUvoYs;5hrHD2;2do=`?K!5_ON#O#ncc%@hLEB21?UkGKgK2E?Od>ECKF zpv4lyg^Ou^SC6<}BFH)?5^{qNK(i(IWT7?d>Im2-vRr}IPOpM8+=d|fSOrf?sqa0rOA8q@@_-PS!YjOxq1 z<2^>1Fqe8#oLrxg!k4+Kq^Go@RfvE_bzr#$T{;oAa3V1V0d<%rVwfH;B%<$(1NQY` z=EUqGq<1oj84HHSq2*MbciYJvzwvt6%#USGQ_}#eHLBGbxOkk;d0uPY9Jw3} zUbw3B`sCL}K(fPT2u-9vxMdT0(#U>ejJgFP37r-yUI z>kg7mq*ADmyFKvHF>ud)sFd9s$_YS|27FG~vgtk{vkdDFsMKIvt+I1In}W`rEA?bo zq?t(YiB=hoYtNzWWX&9u^W*$s4lE5rYAqI84brHvI)-WAuOv9cfMlu1NIVrXW84x2 z<^&MsmS;v>=ygH^L0r|+#t#725TprncGi8JxpPz!F9qQCfg#V)INB#Hkl_1b$~(t8ZqK338DHB= z0ca0-D?O0l4Lg#u#5dv-Vz$2arHx&P3rHn$#Hc!=fh4xI+v|k=rm2dKOV(1&+eKTi z>7m`WW+!KN1pBt6jFKQ0&VMa^&BcBv#Kj^9l@eK;p;nGvLk0^2f^sB_nT{b8nd0IXui(fA6z=>>YknPIUl^=&@H=`z_@$ z7Vz1P4K#g`KLa#k?iLGszRGgSZi5q4gSM&|vLds#G6Hn*FvyxRT<@IWrS-4Ezo0dq z6beRmkZeAwE~lDG0`1a~kS8t{DX3Llf1UiK3Ifert`bx|MM#yS0n8vOjjyDWie_MK z#}*C_a;=t*2?{wL_nS<0wh&z)Aa80!0LuC1YrTqER6mEeMXY^h!>%18LLVjJUR6MY z5(aF?`@opb^jKDXw1Lvd(4>Juz0~MiMvLnz*Fzo5q`vn=-=jK%0();ks#M{3FE?`!vpy}X*)C* z@D+V>}YLA^WPbYkq3`@rfb%UqnR z8-x@nh!M!MNe)C0*+63*GXa|cV}m+-@f{m1c(CrpIk&yQ&j{8Ly*S_nzAMnQa0{X+|{tMX3WOr=f+IGdZVaCv9E!bKW?1 z?BBpfYeF_em+4hg3+hYfZ0e{3B*S>!`Bch7mAuz@=_rjWs+|BxAe|29xjWIWh}roQWn1@7DUcCS zktK;`-B^ec+ArCx#sveoq=8QugpAe*PA9fG%^pDlAhnnUfX-|dhlCiD!;Q{cWZuV) zeSs>p5}4-|*~?z`vX{N=WiNZ# z%U<^K^(ohO27Q|tJPOFny;gr`%zj;);oDV(P~}V&0O?VwSr*c4BgQRewh?>;2M13z z4VAD?MCH(Qhk{JEK1g*h`{;U zE#J1yey344t~Bd0j$&_#&?Ryq5B(elr0Lq!z)WDDssG{tP^HY)tZ1+>HhF3Bis;AL1)b)Vd4p`R`5iK$sqdKv4G0hzNS|T4AHb}h7pfhQ0 zIy=OP$-tmxC-uL2Y*EWPjx1Y-XiUsF7N>{Q4;dzH`ZWkaQ98q<0arqFMXNT~KU&7i zm7{Ry;FqSqy{o&v+#1Xf3uZ$rvqVaBs^B8u3l1ZU5@3%ywG~!F~XB8BV`}1OYO+r~Q_cNY3;oM$n-5 zoPIxgW~Z#>)JIgu>k>g?x=WNf6l`q1uGb^7ynZ<5WM(1qp|%6}1K8lB!vM6c)Rsd~ zC4BvPK}Vb{v`4+v83sT(V-%fml3C#r5n9{srY@L_(Giu~FMBQ5v-j3^AS=bNESQxS z)_J}cd;x}_Sht&~B_P`$V{vO2*Ll9mHLLs?Yu|9SJ7^F)BoTcYB4nJM43O-(t=E2T z`gU&Vxwvs{gChsZgttSK`AWI&m;!-Yy@x?bJC&3X6k+|KISK;JT05l-yN)j&9}9}j zGL)f`YpvHA>2`Psdc;kj#Zp=WcdbxN7}I#)Cyu1(NRX*+1QBBdkN$b>u=wmPv`k14 zJ~6M|eV;S8+Ge>Zz3YdZjkURE<#yiQIAw3P)`4j)Rq|$XI#K?PGeX2OzZY5b(S6#q zwk&u+v0kTrq#~KGCXtZ{3#IcR)erZ>UahW6Z)XMu>MB*PGxqw?VmBuqlkb~$@* zUtiHQnH0b?#2OQN(;&4X@NlFUWrA;mPkG1&)QImoM1#wd!Yj;})}TQ+ zoTvXMcIz#MSDGLm%HoOAymM{N`Ixocl-(~31>-bMhd-M0QG6bfLt?P^0z%^rQ||~F zDMgIZgE2vehjd=zI<>m~>BRy$dP&Wi=m33(d@l7-4@cvf|) znc}v?aNh-;`&xQ2ogz%7mJUOP1Dj(X4h|%MWDJ+qO@KHNAo6&Jv)dpC-u&Ji79cw!qw{eHGUpXuh=H^52X%s~ zDm(Yy5cG!SxNZy1I5k+M+km+iST3!*#DdNC+{~G?HEB7BL&@6d!GeX>OI_C*)(!|1 zV`^KpOTs575_ny$WNyr7nZ#+mmXaD~3Etj!u`HRIYOqS*i@|^sspxE`-?4*fhrHK} z4SO@x>TIlVrO;sOR#Amq%L^p9AkVeckJW|;x~xIX6^SFR*OmWo*|!2V)@ri0H>P&3 zrWiraCvD<}LbuZV9g%CXk|@y-GtYv5F4lQK_j5MJX}=yV7GQ1tNPyPtS8|N4`}bWe zYTHe(Qd_<0G%+#9;}Znto#bUmOvVatr|C4W(S4uSiDAg4H8vm3IX5Rf5&!A?^xrvB zt8xG%XV`2B`!~s4rJ+xbLvqd`fg+F)dCHiDKk9k+tFtAK)&f&BVvWV)skBl}+Vg$%*xK;`;v z*XOd0r|%P?Xm$kjr(0w8EB}aKDe_W6UXMg{ae{5nB_` z;DFk+fDkKI!v4F54QpSe9cs1G%;xbg1J!=tG@M$|&%JKtrXD zMBHQ$wc3hp#)7f7Z_C;R>9Ne-Z~?SVy~@Tx*Oe1Y7i0i=p$??=xO2^dIb)&75^jmy z*km4kCdX?wV!SEZccwg}&$y{_ZC5wsD4qWumCBu*cOW?I5=4<#xr}}aTKn-Eil)!cA+?UXbS%cGyMokBMweAl#F~)=>U*FNfWt#U4qdod zUUNr;`(A=Dbq$(n04fDh1E|tkX`q;iE^+M zNC8(40X)q$>S5KVc1vLZ@lY4M<*$e zgaL`eh}90|L7$KIV@^&%*B1e9$s(3cJD8>Z+;{_YjRJt-!bMnn-!y*TQ6;sqmD==z z_a#&a2a@@Ws$07zX7flZWodz&+a7CorPN}KA%?O`2KbH_CKiy541n{o9#sWwqFha9 z3Z``@V|~%za3l5#k8St>An`zLx%VKQnhKvG5Wuv#m!%)YA}J`p4+))&=@is75_COT zq;5VO)Jd;GLXgP0g4Fk`A4Nftm!rD+q7#CNt@%`r*V;614c2+F+H~K2VHhM3=DK{H zrCi$%x)PlvHbsM)*kYy`RvIW}pb`vv?0k5~+Cfc)jh!-uzni2fisPa}>BW1dPIKJH zp99%pUkhY#?40}PtZWc=eP@6JTQlcdH%8k)Pn)c!SOL;w)a;`1COmeI(mSC|zc=sM}zdJhFr(FTd5yH|De0C9v88o{^7vGdHPfHE`hA`QuCq?K<5!7K7bW+SphQ;Twr!A zJ|kI&a^JIO>Ir>(W-DcsDzOKMQcwGoO|SVwlh>aB*%JVUnk0Q+15lO``i{t9sl2gNM?(q_0Jt&%XNcq1?Y}t zGKqT+M*Zs8x!}rw_OTb#`b`SGC*d3Cp(SH zU~?LWJ8pbkhYBkKnpFT0^n62lM%?$H^}4X@t=y8kzJ%E;iW!g~NxHkS9puFKNzWN| zpTKhg@h!pf6o5C#yS2kh!4`e*(}@tnGUq`38OgQnpaY=!9DM#jqPa&W8xSIdDlMY9 z$DP)a5ak*Z*ON~aP@R{lwnyv4sM}!PbOsiyAyItq+as8wkAeYG=jgKR7V%_O#zt-3 zG0J?UP17K+KypBM8=MBnQMZZ`WH)8|?7Y3Zjz+B+n;T?0`!)w@O8{V8_hP>x8p>8a zBf}G8L_vrEQ+~Eq#$arzlZj+sYsZMXD?$W1e-6V<=RoTLK^b3tTOnAT6m;{}HifJR zlmDN+H|=&KNv;I1xkm)H_ef@ys;f0UXa4`+>P>1@GLz(60L0>M^T8Ik2!N%TQEE<$ zpr4cZ2q5A(AZpm2QorI5*Y`%=#Wf zHibR&$W3l4ly%T$YIE);d%}tWKmrIG=RRv-$+LdyAeaO0{VMEd`w*$lwa&4s8BcRT zwsj&pE*7LP39Ichh%#I88qIKx&K`yGEFOdt;Bsls$k2Of0Z)^l7-GGkJ-1$@?7TF= z*!w?yK>2t;9WwejzdS-C0zaQnKb?T3B7c2z^&0>(9=!aoHsI1y*TmM-KIBojFwgnyncS7tn7H&xcd;iQEG*fDGv>ik37eZ~_t)k8Mq+^al;MK07 zR4_^_2?+r-3XIX{IuI7&KyazwvhJsb#@yJCR%)@Tw+#sQxLI#{VzaMJHTg0)lbzFR~S8=T(uiJV`h zwBHQ*P~gY3thpTr0MK=Uj_JFml=BC*AKF2W*$J9uf{aeAN3(#{g59#sD(6&g<)Hw` z%QOSGG?FWuC_Q3hhSI%@tRa$Vk^GdK?x<#XX}?={BFiY|)H+`5gi37Zn&NgX8u{iv z81x2L1l&1q*^!18SY=G&Pk*GicD-SHB`h zu|O2HNuBOYpfQk@4tvpD?K_9_8ljWPzyWAPD>^1ta4TcKN4rbT5yC08{+k8zSk2ik zRWk4lR0~WcfaZ!s#m~p;9CJ=c!GUKegpwo(;kEECqm_X^%XR6qpvVEy1&6NIbzn9G zv+X(h8Xn1d?B158X-XT>Dzi9Ap;Q4mi-V~1N~}9fA5UJw@~ACM3vjs#(#q^90LZ&l z|CDhN0#6p8ib2b;R@1n&{h}js53;*;%&k>4$6U**suyAa03ZNKL_t*Vyg$t{&bX8H zfEYTTqB-ZD99WMD3qUau(p)6yueO{Arse{=OzRQ~gW^NS>pUxzcTf_xBF^qKw|T;X zdwm7wX(b2MoaIm!xh$*ST%zokKB zp?>`adOCu4eY^e#X)AwXDK4GnO;IC)l(;ir#6YAu=U5zGTgJ}Qy7EHU_x^^liDp7&|0dN0oL`Hofi-wve;6s5*07SBQpTj5Lf$LwWcaY*rVfM&7AiLRg4+MtwAjtX|yvrBp85a%%e8n z3cl2b@295A?hq-fH3G2GsWo^R0B0rj!QKdgcvCCY?h#<5Tll&qi7MS}59nf77^_-z zofJe<731gqt<9(8uu&t4lZ~n{vzM}}QJ3v!@SA9BTb&yl1FhD7uCf7?q}ELx@T#oX zrlao6*miA@iIMjE=A2Kn^x*)rT-CNlC{tvrj-?X`;ACnBNr~B_At;$e&gw*1rU<&3 zEkO5_D^miaLh8-e5UU1>FCaUg{cg@V(46L_tV!eI*zsuhCL3Ef+m~jX(QYRJyYm(4 z^B2(c)R^BNsL{(Cx>A5I-@unE=;H^k8|P^T`nk=?k$BXavdx0Iab#Exx@N(mhVg37 z-L4g#W>PHsVrYnz#5vz}&0#Fz{r8;&SO8^u=amz(LOxlu%)Hm{#)o1-rf@HtfB~`g z|E>k17*!E03Fx$(!{C5a!O%>mIqld4A5@Wnu2Z`pJ4Oj}cCRHi(=1L;I1d2%e)WFz zpOf-6RGG)DgvRDTdOAs_@as3wfB#?T|NP5ij*0UXiCMJdmqh}iaSmQWdD$j7vT9rV zfs|;iE)BYCbJKR6k4}g=8$g@u%-QIY1epM-o3~S2kO`2rs^X?(XjO&;$XcLI{mT2+ z{?DGxBU$6(n2Dv4y%KOPi)N@Lz~tmtcAd*2+1H%F+%?iXJ+PH&GBfy$*8dHrZVnDt zq{BfRL{l2tybqqHM!2>8UQwddNu50N?2PW|bOh}N)YmuQpZ*1T{AC?HdyvM{1bV4n za*F6r0Jr@=GVMn@B(^xGY90EGg2DHo?AyL<-Gm2lFyKf`ZuRb7k3LV}uP>nac!PlXx3(YKK~E%X(Bml4nA5X#M2nCI$XkRu zJBg3htfA{<;);v3L*EIW0n{2rf5}@IV@g=TCiFNCS-09pU=78qRWkL~IXjKiSj0L7 zBg&dbsn^6&oCqkSa%pY*RgDTHs>YSp5Ewg-Ki}^>_mCyrX4-wf=#0e0S?h2llUcy# zki^E^GEA0D2^n9D)Nv%314M3TFA`z=egVI}-Yis)(D>U6YN??84*CE1t311xR{%i$ z@=faAY}--*VwaubX+qlVq~@j+XNLt>VRyIwY_Pj&Mm?XE)qR6-(EV2DDn*bacE0OX z)D?hW33I zz5>7gzRn0eNGrd80e=4?gq;87Kg)XYg`N+zYFwG)qr;?iy zjUep$ovfeZ*i>BRMV=8eaJ?$iuR3^7C)AH8(8nj>Z@;1b*Z*-N4fzO--`|CqcsBsQ zd<1tHbk@1}d`AJr5*r55wLlZ|n&i-s5c=0y((Sz&q;=a@fwg?pDic_drgi^xY1gIo zGl9UPWzzxAB*sRIA{472N?f6XT8R^uiY@ZR6$rwZpp;rUOq85*xbED7Ns-?uXF;o3 zK(-Vm7QQ_OYC+oXkv=?2f1hXY+j}cbtIbhNhl2zOrb)=;j7z2zA#vr}0_D0+q|*`n z@frEUGx+oGDF6H~P37WITJ$HnPI!EBYG|~1Znl54#Uocnx8bt#W2aWG6Q%vO|J0C~7wCt0OZZVUb+IRMw@WN(~}70f&| zwn>&XQWG;O+uFF5L#r@$tq&&4%Gg2{nIz+WTY08fzh@ai8_ZTGvUQ~6F=@^CON_OH zU}Si@U;^sg>!6Q@B8OvoM9veN+!pNb8J3$#$sNK{#9*`M4Yc>51Ce*ijC#KQ;iL}# z+qWcjYw7t3{B%U!bpkcC%(EH=)+lGGD?c2-OF{keMHy!KW@7YuIiL}97(70Vk!b9) z)rTsPj+AEf;?R#uI;V0L?H;V}Bw-h}Ou8W=OyVceZK;F>d@K+Yn5QYo@Bmn&QT&3} z3uYS+7T5~gWO%lPmL@OfEWy!u+@5E1E?TP84lm^vS+Z^B^ceHWOME!U|-E~M)X$EM{(nnJ>Fw)Zrd^$*9`tlVn-?%~f2zlrv zeL#(McQT_>zUgDMs1af{yCzAs6m@Vm4x?qbvqVTAnQ!gG2-@i|f&2oEkCc_nJwv zeRu*7J?Jt5Z*ReYsU8$WO5mYGdDj7bV7YPf_GWwpsNNk zlySV3*CkON*bhLd!rFf?n{Le=(QphP%CY6Xmhk7MWDf`Md9jx zy3N=v5?FO-r4vVk3IntD<$KvUz@hAMKJdAu=H{@t&rD9p#-s8mq-Lv`+#O1hjCM>a zn5Megg!TQ56+tTp=V#MIdN?6{c#;hL^@{rPrsF|N%xrDd`sn(!Lptn`zrLbA;5uO> zlYH1o@F^;6*qj~vu#o{We;;wM&462i!CF9>+_lfOd9Z4G+*rnv(^j7kArey+GT{(lk$Mrm+)kXFm^JJ> zxer~WJX6qhGV#aAlbJs-Pe^sYAaT9uneC#{>9u0Pi|A zy2d6`X5=u;GAZT^I;k@AcYmjn4V^qR;onKq4TbNh|}Bo1;&K zg*90B6G;<+^QNhUz*Tat29IP{bMl+R;$mB zF#t5pNS6+kv=;evK>C9hng0llPA4ZnqPc?3qZ2ws5*cH2<r-Ssh z!oqV9$!cvw3nJ|Y)cxR4RGOEDI*bAN%C31Y`?rj_BaAGN@BLBFWx*z!rz?Q0QkS|G zL}Iwr+-&wr^<=W0sipx&{Xr*K7=vV-oO98*V!OF(+haGrcRwQu%P%jr4>2W$7Ku4)5H)H}O zY5@fc%Zhq7EI>)A8}jKFpuk4VuZ-xhfE!ty)TwDAM99=n! z>DDQ~XR~a7Ba)Jjq=BuFsF2J%+FZ);GCix^rV6*)fnfC{_A)+4l8{OdS{ZGu^R`Sj zv#bYJ?;Qygt*_1VN-mf7DoeN&LGoy3TdD+Gf++e@@mh1j_2%B zv;?(djg&PsUW)n?@}4D|zJcQW8{3cVpaU9dk%fY%862bRM4+8I6Gr%;Stf^$+e=AJ zD_VYsbRg4C4fV{Px!nfL(iTUhH9wl!T}dzaJ~{wQU(q^SKR9!>X|X#Im+hzb=yhJk zj=dSstH|5NF^LZOwjK+2YGvFXPLf6O&tA8V8z;dRL(?el1e$4#tTY$UIJL!Evrx1Y zKLHhG!MB=QgOwVqB;e67nr0bLW~4n>V`k7e34-8qk;UKo&@f2!5CFfvHqCS+X-ni% z7&HvNDAkKV9@C#biCh_b1d`?j80S`AV{&%=&e145X>j-Xg!*)l-^W?siyb`#Rlef{3v0W6 zj)B(D*!py>NOQ=%_l@Ap(HapsQn|&bDHv~wKp9Av_rd4DNQSJ|8m>l>j24b0%( z06rMOXV63kMDh%{@0djAT)%hj5Odg90a-N>YRkT_NaI2vz@Wautw8H}Fzb9x%Gu-H zA!ObS`Qhgg!cCe52F=$|g4b668|}$)YMFOM&bS>(36wPOw?cgip_@pjiM>i1P{+q7 zLHfL%!B*Mqwo!|1_tWO8|ZQcy`7LwGMDk+L#+JB z%@kB3q#bA+IEh+7-GZ%~`F(|Ewbpmwp=C(b|@d%Dvm?S{2Ar3&4u&y#FppxQR`&ts@5eMD#Eaz%Z6U$JI7X;>mLSOMwN zudk?IzX2~VD+f6pkDw1ve#it!J^He^lgQ^wlTQn*v9uW%6vic^jT^pb)Km%SnharT zP@l^Y@?#XwebF07CHxXNg7f9Cb}fI`#n zj2ks3of*}#kAOJpRetxVI}0j>lNyhH_XrmXF;MP)v zQQC;lLJ7%t=bzZ;Aoe$F?R0wMX5`zs0GB#LCh)FD4Ow#|h^rdlapR=2%+cDXxfil6 zCLk5f!bg=4H!=asK2i~M6L$$U3pu3hSAcDjjk(Feg}&WxgxY`GXJbf`I2RCUa4PF> zqSXul_2Ws#1OWarDt!1VM=Gi9 zMAvDZF{ibh8V~|h%+5*TY6IVMJgm{yHqm3UpftAjmcZhn^B+)i3S@|(PxpC^va%X_ zb@n{~KvJrdW*N`4)HQ1}X}zsFaHM^VhhEBCwq%B0gI=VpC}dY-h7izTb>u3F_o<|n z;OdE7zBiiW}1QDzqa$}n4m${Q+_|M&Q)JtK(DVdCjQ`T;eUkY zgr7hQm{_xnd7>6xwG0_E%9^1~g@#LP_65+cTpt9e>_kcR$!JcX*A>k%$Zl$1W zuIDy%%N99H3nVzj5Qp57dr%u^TJ+y)Q`)t0D9u_HC-bF25M=&5@6E5{2p+L{# zPhPH`TTM4>r}!I^(4+9ZXYLPsU6-!n*Odw`jfV+2JC_Vu31?`+Z!$Grus^WfhT?y= zpY3P+*?zX4?PvShezu?OXZzWHwx8{1`~SWD*co(#1LY)HK_zwAYTSC%!=j-%3-e}# zGsI?*teb3msC!sNdSjGz6DgAuZjLX|_x5uJ?X~vBB*jeA-RgymL}(k-{2p9)6MZwt zBd70duMzE4d?@HO5~IN|0f(cI?GxG5nP4e=hqW_H=11!psc>N2)_w133|eN8l)c)> z9JZMmCz(?{u3Y~h&&*0_T2zXGm2&3SA-~%IV)ej z0bjo9SEN!=+$1jyx@t%dQaG@2HW;DsanM2p-T8Vg7!P4zy1Y$+=H$Y>c9Ld zKN`7>p?a+Bsq3W7X`Y3gX;^Nv!HK}HZ-Pz$z`C}`2U~ZtZ|nQrYxce?LyKa=4X|g< z%TAF}g{A&mVSC)&&n`$=M$ATRkWGYEi)%l4IY-FS&%*n`nZUaYuE}-PS1Fk;)CHR= zL3|fM@7%Lb73=zEdxrB2{Ovd8uF&}?K3~ha1Hxy~chb+VTH{-EeAwCnh^*D8k8+6j z3;6wg&7A!JO{CK*Fl5l_DCBSR0(xycAOLQO(sFjbAD0JQA6WjIW+@Y~ejmzx?(=}e zEZX)rtmp03`J_M9J~`?m%_0xzc8{4A5deA54%*xc6RiP+Bt($tJDKlikt`+a&%41( z#W)hUvFbDTT1GjJ4lVbVvt+eP0Vf?V1u9uuB=bE8%7?EbmbZTrc6QjByUCL3n9G0q z1lsMu@tmsP&P!7yqM;Xi0T5(dPkpu*85BY2CC#L( zgtQZA+k9fSr)9b0Z(d@UoiC}WUd3~Y(w37I8~1`;*LRdTNXfVbeH|4OHsya=Im@s? zR{VkO$9B*GcpdrB%OHuhAgmLS)pr}5-5B5JMHc8~V|Xdt+-pvZfKKb3c{3W;%z~-G zmz-fUNo__-aD8+Rop2ENxMqu;3 z8D<1Z+^$n0Ij)<#D2$3B244z`Cv($$HX@1*Y=?UYv~sB+(r0TB>F}3x5_of$1a@{A zfvUA6Th>e?88YqZIIthA(a?)ywi~2x7<_J7q|SDl97>l?2hcB{M569|MVcnm^I0IQ zW>hJmTt2D<+t3SC=%UP)3#}Y_cXBKMfZ4~5aWc?;59+jDX&hU<*U*EWPICQ8Wvk9w zM?dt=c#Ub6W5pWul)zA_o*9iG$Q*Wqw#T*6oN>80a0Z;sv;veA9-P;UogLeZLz;nv zjgzk9kB}OC)F5aEBUAlfgOg!V_%M?@H%UuvXer<>qaJst`wnSZkX~3>+~)>CjSHwr z9u+z6BSPE(I4M@$^+=@!r+Az|FKK?CwKc7U6DbD%-f{ldb0 z9U!?YGOR>OR;c7|6*8^?u+`jFXz5cpb}SuXmOz&|E3rH zTYT7wgLl#SMN5n5bP&7K;P7b7(G;B(yS5k{-|u9-v{J8m24AmQR}L@VFo$;@#ff{8=^l&d@g2I?^J_c(!DdT$<`*fVe zZnct3KPbt()+JXbi2O9)C9mDi9#g5UWc`$?9Ie$hs5M}lntIt634RR8UQddJ0}}4 zQndX}j25rOsLlB9@|xi{G}p%yK9jcSc`aIkJ0>*o zY9ewH6{`zlZUb~1x!Yv#g-r9RSu{0s zQ%?u*E{DElQC6)#?~}9qI?>z8an;M%@;VU7%*j!PM3y(H<0U%{Xi-Nhj4RjSwG7Vf z1JMmxohEVQxJ#%*24wU!HKQDRYX3n1768Ck=_m=MAnNM`4IQZNtDgsJ#~q%u)H zJIpiqo7AS$VXpzFW&NHkvpvmXBt!enGz&@GhXX)_^mc6oW!ns0Y?^hs$v{^5pVgEb zsgTU=$?MI{d9Q=Jhjz)>u2?>dJvf;Pz<2F0;wFODKmP zARvv4$esZ=PRLd^>PA&2&SN&GS|+gzS;~!bE_&(=N{pJbuu$72l-d#wkVJ+bN2NHE z)}S-FccagRLDSq6HgX0A$UHC>t!GuT&V$;HwTc7%_U>|~*aX1*`Q38>xVls+mPOXd z!(K?ON(E16CwAp&mS8$pu|<~xHV10}v_MP03brLH>dl@dGcZk{nbctkec@3WwP!)* zV4Iz7P0@)fCi9rdjtHg=c`auW5?InTd*K$OS_Q4(`>pJApPR{1f=)2I$*!9XLW-cO z78KAi!6|9RT<@W*{1i_fA|&}C6As->;J%+2p25j7y$9Z%mLrNZ*%tlVCNk8(H(R^ z7X(?5X)y=e{z9_Q7InOiGCA4=Ya~HA0mlQXIpd{(zP`e=DQPLxt3&qeiW}|P%!mSXk}#Q`?QO)x zk>LZ~_9I>N+_JUFgt3ZHOLkrjL_25-6M#k1H-U}1Z{0Orm!_d>L`)W}$jO5hG%ssL zO?_t$seZJk6B|zx`0F=uc4PU08V>Yy5(D+?3+nj{em{dQ3H9w=9QfT1=`Vjq{Uk(j zG%dh?{hz?)3c4PE>xlCCcX9N0yIW!#n>bA_u%vgd76vu?I zXlq8femG+Jv`5Ve`J!;Xvy3;UHYUnWso7t~001BWNklMVh|0|HHp0oE6Z%js5%@Zye*RrbC*s`D_hR&ZcoIkO_iy00cciy7 z@;M2FeVQfe{-6Gg`I7{a(p-`M``@ImUR6Ef%ZnVth{tLTPEYl}#Mw)CB7uFVD|F{fI3=X>RaG@+*S9yqsrqz4IqCdd7~R*ikgX{iC{0U4^lh_-{z3c34e_r0 zCM9;%ibp4H}K3vq}T-z%#$SYl%^C5G)f2sQm629KTQssToP0CgANI>BAF{WS!3+o`8S+ zPkOwB^z{|>x8EhZ{@WL%>jP)o+(#J`e7-tzgqek0mU-IwmS3U1l%ip$b<*@BseSIk!ewe;*PH09M&@-zC`N+XNgZ zLQUiZqe;1UlFcA_nu#liSDjKO|&R*_8*U@cuVQ$xPqv%*t1S9}pzXQ!8 z%}aChWqd4H5YN^EySEK_s%PbwMaG<#DbUb^pN{RgXGNPZgRY}oivtck8?FMk)vL}9Ai!iA}o)!`~xf@ZNYXMYh2U^l{NBg3uLSJ^@$+|N28+Er4xx>V&RtYge-o=WLfljlfsF};P1Yu zr8YrWCJ|7WdZd16 ze-h&&j|Kg=k0^ipjP&Iz>iY%h=>+=l1U_HE)3=pAx=pmqB4y#{w`LP>&SJnQe*}QW zA(2c1F^r{@!21E^I7mjXO11-lM1h0kRGO>zW6AXBxnns-yre{^JtRvQyNyPojWswr z>NSg#j=~L10$PI!tPe(pVW5rkE}>>>QEJ_%?mH}M_}XHbFB1TPy2la^gByDw#(q#E z!r=AatIPVKTL|z-ZRk6w>zc0ZZU=mL0-q$nk@{Zx?aP}6`?PjB@3DM5VERRznKV}H zzn*~4Uyz8v*Q?a?J{`qre>)2svav?5u4$8zw5CW1k=sk&4=ph3vVjivl73nHjAfru zds?p(g}vXUQo%Do9LC5J=FbX{%UVJ*ky)AF0q0+^tO}sPCe1nm5Y>cU1Ju*9zQ>T! zAZ27WN*OrSep$rMN(=p*PQEfh@!a^3!Re2VwmyXD`+)9=b zOMR}DqF6t+^2gxV^5xR{*XbyM@=|0yF2zxmY-KQt@-W^ZxdDdrxs-x**n^G-@cANA zfr<*H=V#2n9Q{4@%)pngKoO@Lql zDzTQDePeazEwNDpny}eYL^__87sxWyu1-^mpjSu~5Pben6$05_0=1MlZe2Gx1{71JR-$D1uEI=;2GpEfY zx|ZsoRVTo$u>`mi!F!D`FGZaGoj`VJoNwXTJ~(LY$XkTiI+Hb%w5V0!leUizTq*_W ztWh`X;1i-j{Wn0X45XlZW(oe4+F<*+ z^#O*CiQ8BDV>ec3IL@m;<3~tI46JF92)fpq^CZw;+U?-TgL@f1h(S)hMD3Xf>Fo?0 z_NX6E;;g)$*Zd)7z;KhkSszeq%+1lx7-F0)E9GHWfraEM7CPQZ|W3HO8EMl7m9DWud064mx4^Cva|WdfWi)&06Zu>IH$ zI&CJAL~EzJR$!_?DxO8M$!|q21%So{IY})oO$wWK(lIsUv{ThjPvAZyy^qq-VuvtC zKLKL(m?LTqivBf15L@VG7D$<~Gfy*U*2(hPh$`CPTX$a5z7+_2Y7WV!j>QO7>=?GV z)=rJI$diz$B{r<4F_CJYqh%C5YZ#n#*!99$R#U0S=S7aC6PCOOS@5zF4OJtQvHRRM z3%a1JpDoZLa0at^z{b%4R^3!@v((4pOkxyFQwV4gNHxh(3etH*uLf{BPeR6|O)>%% z{Q3$S2GsxSA5r%my5HV_FX_er7p6^(IBVZGG7)#oH8M@dqx8M=6|@^rpAX=ik*<@J zb}R*HDQ)c7*q~-;w|-CSC^N-{?*8*5T_#@-IxIve zyNt5WNV|;g+t}dkA+waG1^KLw&yZSH)K1_FK1tMC%W&iYgusB+bCt&>{^5CPuzwp9 z7GSxK;sm~DL074kw$HCQ30c&#Aiq!Om4GV0&!D%nz~yW5Kx=xH%=z?RenHu13||xS z>-nw|c*6*+^O&DNwK#ju8+lk{wa3jvMla?ik zLD~-BA)zJ$)hq!7JBI~3<^p1!f9kr=%f`XrvcQSHlltL^<>L-C9nk-e-+clbJr2DGwndrJb}Cd+6(Dx|k65hbONy|O1&K$i*{ zbsQ`k9r6%l%3}eab)6VXLjeI&md5~H7jR0LKkQJ4gzmB+FPph2I2M387n@0%Tc2)3 zaI66&%?vJ0i394GI}bxRzQN{&y34Bll?8aeEMx3dI0 z`rhHZJWhZH`{X`#kj8*vO0xFOOIt(w4)n`MlwVGu@fqpA{S)fTE7J3mko)O;#xJkv zzDfqYo_3(IX*nC;k~t$hO{g!gT1FWr3nS!$IPoi9nn!8sPk2&?HvP{s!x7CHw+Y)y zazKeQXYDuY8@R&7B93o4_NW~p&sA)Gw`XwQIk)i<|GIym7r=m(zj6Z7!VRSzoOQR0 zs@U#GZ7GnzF=;=kAlC7qgtKx0ZUI*diWLG6z0|Rrt#0dRTnDxa5y1U9Caxn&8eNY& zNnF01#fCIq0CU*qMal{QDe?+57rzqTLSL60pu=Vqjb ztQ`@pC!9@GhQ_JY|3&y=PL0fm8NA;~L^vKNw3Q^7{mx-TYzDKl`Nk~gG)rdQDUbo|gg{+V$9r>)>XfgTtV{UrPS%+dwMEV%Nd}=|fy;O{zv`f{`_v45 z%?Z>eH|(S)%?2Ulo&n_f*1>am2mgZCk-Ydml%4k>9rQ%v3~I)35jA7O9l3+yWN?}VG^gA9Q&?=BEtnxn1r@&7ZJX36 zHiATgE^>g95-Eum2t>S=Kht+rJAii?bPfv$wRtPQYVe}ljEQ@h`LJkuvxPA=sN_R7 zwN6O+5CAy2VeG3w8xsJWPXsK?yy@4k=-;%q^fI<`jGUw&&x=TW{q-ME_Ug2nBNB`R z&oYd&I0?4K6qYr|0bYL}JOcbz#wB2+7Ps_>e` zWb1)4|B5VTMZd6&EvqM2mS5V=wMoetifDZT}R|;1`oaTZL90I{^-wG zQG?FK>MT*ua5Es2v7cuz71OtOUkAXqp7+HcgwlDEpyPas7E7-3vHFai_mVB7se)dv`U--s$LP+;);adXA2GMtg?QhKc@;s#x7{l^8NONx23Y333cDGK;+k08?Ju zUYm3Jy1z{-8S2iG9RCi8k{{bakJ+r?Y)8lJ@3F0~zO#(1eWx$QYfj9Gt`+G#3-oK8 z*Mqe0!24d9%43JC)uG)0R&3}i24)t9P}C~ywJMQige=a42uMAa)^@F&5h8F$QhU`W za0h4Jjjge}qlL_%&UJu|wP-VAZG$x<&@wNQEtf?yTNL#=e;-*suynR1%Ql+ zy2~iLjH-}dlSJcAGAzqpLc~-c&~?N<1sE*MBFMs@fR*FE%EVM^{|4M)w^9;eW=~@1 z>3WeCL5nz4er~mHH3Ny+vrry1oZ$;se8=7_^B#hd+vf20M;jMLwq&v?mBFRS47!%8 zE!fdnvqfL`tzW-^UbVm3Jef1-`3d!D-^e@13B#AG7-~j1YH;4;9_8Z!R4THrA)Hd< zv<=!q} zlDb9-(pB)AY|F3m7w_+~^cZgj>%21zaH6@$b7Dr?G^uuUMB6>sn6O5n+>E(BuQ<1u zed7CUY^r%#CnVJHu7gOe8988DD!O-3=15anIV0T5yiF|q%S(EK1AbGQ6taM>O2BZt zM>NqnI52C6s;YyYW|IECu#6vFD*zykgiiZ;Ql@L4llxAfwxc3x3=sy1x`170)-tZF zUWTw$dk&se~j` z0CB2SX@|o4dh?9B=6{)NE>-r@8Cr_+Z}ozFRw+j+6*SH&lbSp`?=|E^O~Gj++q^oz z1>ON46EQ$XpWauS30eCcr%2gJSUB6=S zBdVOl_w4rc9qZ09hjVKl-*)CWZ1;~rIO-bo?hypvidLiDuI?kr>I6Nq0XDS4J;+8$6p@$RH0P_31 zh&0<%(?O?UKz(@yUS5Hr7l(YB!DlrXK0KkGb`6wa%+-ds;tEU(pR|ktHJmq3voLag zdPezp0285m5lwVH?WK0hUboc}X7=-0#M!emx+re-bXUP90Nep38?!HKkn47lObVg2 zg;k)D@a(#kk1!>1pzJitt04ceFWg>MVkC+lalQ>mu{jx*$()z_wZB_L(IYl>#=I6Y zIBrp5kovCmeXBcH2%TsUug3&bim;vzq7S_YD=dF~LHhP48tG3*c{ggX)aO0Qu}40K zK$M8NflWAGg42<*_LOFC;jxw2Bu&EBMPTcRWYX7ylJP|S}FttlCBF? zoO-G($36&>DPN1QyHAS*i$kVAU4-eI(|TRyoIMa&b`n@l-&(+s4?8jHUfz^@V(&G+ z>2wfs)_H0qO;Jj-R#~nz6PS`@IQe=N1(slZvne0g9QlYX1Sgo+gslKt_8jow;f>R7 z-*2JlEb|%fa#Ok>DbL7D6;jM0%RFrIfP*Luq`AtWzLUI-+R!WVEC9mV9vttb&A)C7 z0cgpH%^J`_AiuJR0)y<5|AK)xM>ET_9)ML2|B!u;;3J*KtF&~6$nH^U^q^i zr4BG#)5Y#G>b?i{8Ck~!1H#KNj^Gzze|J6>)#!HC>1f+-q`{hUP?mK($gZy7#aoW1 ztxfzO?O(m`komnS!-&5{WFM(*9@qG)$fK#scisBDRTT!P%C=@(13*N70ji3^PFAtAKV_sL67ZbfZ0N_ zZT9d(1O`CUQca}BQf><&C4BVzi$h| zI62>fF^Eg8E{WdjFCS5Vc|z?Hy3enGI_RiXB$v)tnRH1YeWJx4SoU|j25~P1JWIxt zOzLMR$dq)MKbUW@&rhv z3k@<)BuK5mChS=sf)XRL7>ZUB0?F_!Pd%7`?ply85`;@jl`$0|qF%3v1{X#%F1JR& z>fL^?FFe|~h!QCUg5KCVY{1&lP)NJ88Z(2sy%^p0Y_Fqd;Ymps$)sHNd(=606Ds~UC&($xBB zTq9h1Y6F9WWg`d4M&@flnk#B2Oz}(^ePLkM`60ExG;}JlW`Qb*k!GbV=MnkX%Q~XZ zkDrd1|MN$1N9bNBq;F@H^%_A%OJb}{!RCo!0MD~H?mB-l&}2%jZQzN{-XH7aA5oIi zn%3P~y|R24AnwsH<>m-S=2d9XJuX%K{qh`Ae`fEp2}G zQwC_e2lr#sK3zLY5WoYfQ9^UIJ=B5UymqRZAyh_pufx^fh&5S~Gt%o>GJCsDB(;bH zDHzC3<@u;Ht^vRdE9mSl6xEpgB%30Nj6 zsfa;Rx07{kY8vTnjBv)vA(v~=&k3vR^aO+2`i+}PKUX+|JKJ{1HMjljzOZ7-jB-Ek5DNUKFqh;{-)VM>17dXoCb<ou6U5o6U}AdI${ zQk8{}$?j9G(TTClfJ?xwzBvKL^hh?ymC__Nt?AgJPNPTRSez9KHRQ40N#8&%oVuvk7Ym?y2(aQ(PRLsv}_@zaIYF1xs z-9!6)QCP1z=xGM>Wc^T#I$`}q8ylEzS9{X6PyqQ1*mn*Vc*d%IM$37&EQtJXYju1$TNL>!VAn(>1svh=j$v&ssw+ zq*A zXdDD)96l&5!;P)xf6K;NKvDY9Ho53)`|YDVEB9nO^YN< zb_3|`jQkZ|+9;XAEZKF1og1O55p~jTC(P{EtJJZpbQ=B7zX|)habkRUa%5HNlJspW zISVB-)OD?19RS;s9$@V}1to-#VUO~w(uyRQ9K_7; zo4?$g!Mjf2d8J5=(6k^!2jEgynR1s1)6BcTmo}f#jCIZ#t|uPvN|mXe4tpaCZav`2;=;l0o?V1^E0Goz?uDuPstq8MNPlK0J$o{`M{eH>aZ*F#tg7 z_?sc#4-zb>Rh)Ix-&H9kstk-$%es8pV^R&?I;i6il?be9|FkhtJJCD`AY?)igRPAV zH5`kK0q17mun1ImO}h2K+K~_rsl(1WBP~+j$YEjc-c6Qj0hTJkjhtlLx!e+##J-#} zSd|Z)U=nD3A86kN##NUcd@zTEt4cp^niD8813ZZ%(r4*=MugaPGA7O!A#XaLo71im zoB%+F1Nh?;>Y)c+7tp`_hWzVS?CJ+`R^P8}T`I~kayZBwcp1T6mMnzA+mU5$F(fkQ ztR$f(IhjCQeXa+@xT<}^a!8nu!SE`Kw4l`&+TUdT8k$)FO5cn|szCo_001BWNkl}v)b`m*0&;}?R=#yOEQ`4L{$3Wbb`<)yCMk+J zN@3ntlY>DDJBA=t^mu97qyOz)P?Ki3Uq;aTWi2N<^sS%1yeUy9wZQj&C-d=A1cCN^ zl6l~KX$X&TLjL@UoD%5e4ScyG>6oB-5z^Kz8faNsJ^5gWvtvxeN2<4!5ZNZkeYlzOc{W~1P zn`hGH-&N;)yS}8PxI&^!GA=YgMw#Hy_bvq4axY1Uw^0%%0kZA{pdqp8kC?5*DtR)3 z`y|NS!jc4~PJAvUPPP5Ava|d7hF;dWrLGl>RxgX&btEWy$}Wc5b=&7{yO&-61KQ(- z!G5-%?PvShezu?OXZzWHwx8{1``LcBpY4Cc_Lv#;do5(oS5Wqlwe?ylgRLZCk>y=4 zI^MHJaTcws)#F-LoOeR>0cd7SqcWbc=vtJm=2nX#5RC%UA%xaC!Qkpchq~*8NmsLX z{hR8ICXrLK5Sv7VwI0i|fD2$*@2aqO({KjRVC>xf7{tYXaz<-=ZcZivxTHfT7my}K zRzfV_Pa%=)5<>07qRd&KeCW{;^6jE7!0SHTLVGtxUPemin8o}l)Y6`>&`C5@L z4ThEGrS+w|1RE2MT2SQG<=XVrb$+G&9{ha7@^O#4%Se4jH$H>Ez6xyB`nc9k*FS&2{L29# zp#O3Oy;mUj(wC+N=_6)T&4SgPzy;G>6{XeYcTUpZ%Pyhpq@O2Cn2oiuwp+3+Adw6{ zoF_&q?AgMag>VbVLX@>IDiV^j$&>Je%tZ;o6iPoOr1KM)`O`-FHaSfjz5 z6{0OuiCC5<&Gxgk7R#SDa9`)>N$c;W&bhWEcF0oIA*1fI+D@b>x*{1cogb|amt96t zg^e`URekJM*2)zM%(_)OWUCQv<$g6l-2v(Aj+UZu9J{L?BzHuvVb&rL05Cx!8z)uah9hx=z-w%SGlFMd$F)qx|UvrVr@8o`KK8RUrh2 zSG^w@6a4WBRXH9~&eFG+A}A3+&?ZEJQtLV`-Knj{JSpO5o?0mz03*a)NlgAbkYfFZ zYz~{=^!gpPVeGpqw#-c((xLCS&kyiTpJa+icdL6z^Ulu3@&`n&aYpk>q}56*q~ zd)N+wC`pk}Iya>cB!HO|K~<3Eg6hgSBx@7U$m7g^K^v=51{26cjjO`!)KKb5sNgQ4 z>^lHG@^t}STbZDhHUbd6^<7qkPt_XvvLf$x*+x=63PT-Q`Z~;GH~z$yyXOzKp?+)! z{d>-r8xb4GLU{O8sSU2+u&clJ9Q*Bi@$KTE`Dt)T zyF>QkHMZKwoD$P)br~w_6bVQbH_*>z0bM7g*NoIaiShBRyew ziHH2Bn-&XP$(X2C211Y^lfr^UA_!m*QV4R%GZfM}fubdWss*NYsY{odb1FdA@$v)ioW(%BTv3@D zq}n(fR8QD>8+`q_g5G*`Nw`VGNT|TmvB`v;uU>Cm57I}I&24Jr6K2%o9=z||ATi^o z_DOfD@c9i!&JP$lGv(VfjfGe&HvED(@p zM)wYMm!j}ak`k}Vs9NjJi9nYb=n|IW4(YNWe|v8-qDyrdt2FhGq*_sx**;AJQVje(9p&FvV|%_LjhdXejCYH61>g1l|X6G&d!&vi+ksY~sXM4h=$z6jA&h1FfJ!}M>Vq*zR{$gS8< zHL|u1JaCM<5!{)fLLqX^Yt82*MqJgJb})b$E@k4ixfCSQbTikao>&KwIQs6a>+!ud z*6txX=SDu{jE&(p+rA6iY;-;!s+n_Lv~D~)?6DS&D=_o=a|y?YI>D)pA$~stm!^-- zL{fu$+)KtQC6D~mta41(MTnm|k+G_O{(xDvp!(C7e6NwWoFlA(1d?s`k zV_FB&#KN}_C4H2&l@^^3j2Sfqt7yAOgy-+Fj#}q0!HnA8aWtIWF)AxUz=vyzfGU#= zb)96pyp}mc>-XTcG&GZbicmHbzdfQ zZv&QNCm9!e2OmyYJ{^$eiu~Iv_~muwT-2D|wYq@DMGam(YcJWS}`6_HVC8SBKqIZ8mn39a>R=*@9e_G4I8;sU0ED z02$IwW&Vss+8pk(&nSCw&hyA#yBganbDlM*l-I<#F=I$NA$4_0vh#hi~tag|}o75a#hOBb_`B)M7o--?#VZTBc)cg=D{(K zGRjdG-E0_h>@9IYH7MO!at-VRj!c4f@!J{~QIhI2D#_T!Aihf)73E75NF;4X61l}L zVL6G7+PyEU1f-mEon$rNiz5JLh2m;yCESZ^l{;=-?Y0bdIw?SLf#rbs*#`t05CQ1lu6dfuai- zu{io^DiU1^utYmocNQkxvP&q3tjyG5K*qTwMBAM4)W&|20ZIm?sgR90Ob+1~zWCXK z#u|NIWH7I8Z%bmK-;pM5K>`s*Sa>NK1oph+dx`Dddy5(Q2V^5PXM}7P?z;6@*k;9h zf!>LO9;U4Vj358ubN@jj7-%)LK+K(rK0A9auBkts9+!$3s*6S5+jB(p(4<( znoU1c49PsH(T0s=kG86g43j|3^Hs7&-L+`8C^+b33m+PyM&|(8E(A*a1h%4X&P_&m z83!G=c`y)@d4RG$*qDg@*;vuLZnajdAkSPS`#SXU-86~e6qu6%tTXK909sZ|S4W7!eiFV8)eg9LERnf4N;)D#M+ zFuEewP&>kWOiqeu8I-h0|6XO$f}@@$L0y%ds2_~Kbm-p_`j^Q|n3ADb0$Y6<5|%xI z^A5-Pg#7shbQ#h8%E-qZ=rTDOqR51r!>yUWoe^m*;y4%_(wTq(gJm--30%q!Z)eke z*7+)#gWiiI7EiPE4eCMZ0Ry?3IcMuQ(RPYPtBs2;J9+NCIq>%QfR_MzX1xW3naG## zv{c|?Yri_$yM*~k=I}hR%)uPaP0cyyBw6u>f@*1JE=2fov8l4jOt3GMjq3|dtmR~* zv!B98hNEa}MuXt@k^oE-N#=Z1#I@d^ar97+d z2sQT@UZ5&gf*58~MhFhNOWE3yy5@gjOE~Qtt^2(DQB3OuR(zMS#LYhc!3n<~-$4hO z(`^xydo2#25J_1%=kf3N2AnzT@i@7Cwn(kPUZpND>7t=J$8jMfpprPOWtUM7GHSYu z$c{+F*siTz7iYq9>ad(LmOVM_)(2(R9BPC5uJ0rKn;}km29SX?E5wDHQOUZGWg<-) zB4w!VdyDq1GVi{#p3^2jUb9>}g#OO+Zka{CKS1JfVjr-5AF(A8Cy)P?=$}naHAKzL z$=JRhg9&pLC(i-^iM%$NW~p6|OtdskZ6WJ2mggPHL14OhuC4CY9Q2%}Ubj}1zkb61 z&EA{;%9b2wVqawDS*q&Z`gFl^8>=u8=14Uny@ww4%2zSaAClp+@h&e8(4NT7L><&=!v1m5;<&9 z%JK|s-GO#{ zIiCpJ1kCGzxf7$x51gatH0az_x*q^c7Y)V-0Zc%%O+q=h(wfGK%0`_Sbn{9ghq6us z3k6%q`1J=VuLcNngorcP@neD?f$7X+S`%X90kr6z?uA`t>^?t5L?20 z*1|s{dGBVc`Q}`_9H)1q z=LU3QOL_jdY3YPLsp{?_x+8(IW7f@P_!B5O_>s|W6Pjxo8)1s2KT?9b+QHopz`N%d z9yXZQ8?2mz|LHSvUfWuH7yu&BI3a9j#NHvc4)LN#xY>cGN%l!CgO(lNRw=<8uH#(>4X9b-mq)svc@*X2|2$!Q{Pd}&%ajZN=g&7A`O5Q!JWCB1{G9K2cvy? z!6p)%n886D$gy(>y9j@Xg|%g$sr#9Wj091KkDZqYzK%n8TzV19^K<#Mg>zY*9QN7* z@2O38Tw-l8hwLV+i`E)Vzr=Pw0Q#{JTeqV~c&18dzQ_W^*#ruH88Nr_jHcx+|6J*= zc1?nK!m3)Zxjwk%r;<&cVn9(6Pgv9e?FTXRI7rs3i5kSt=bRJ~1tJylu?UC&XKH}i ziD;YE&aH*u7PJ}I!k`SjY&t+ zRkhH}Y<;Jc|D?2eDCH%kOi?>2=x~a9be~!}T69iPo5?Mr;Q&yVW6Qaob<`;fl%>+w zL}K7(L7YiMbL##NBD6@;oadV#65No`Jl#p8(K$d%C8e`ot~1S;9(0&j5^47@wlep+ zR_O9=!1S;$HJ^I{=CLzCEv3@{0okzwVhf~JMB&JS1yLd@StP|-4!Y()1~CBLB=g3c zVUEPZP0R>;l(JX3j{%jCThihq!|4m`9VoDZJnjDmGSr!YS)Yy7r`1hDqW)Z*UG`jn z<(yFZ`=V^yeayFwnhysB?hOO<$WQxVx;B#^pW8Q8SCuiz1Ye=VxR>8{6G>#+zU{*I_S-&m^au0^G{y5{rl_JMwt9 zlju50icNM3vX=fDCrMw>eoteaA^`9_N!0y5ra=J$-g1|5W+~)mLW#Al1ZcTGSDpt@ z1r9Xl^mzYua-QfJFlefbWNRd4*6L`R<%XN%NRE^LVnaC?5F66ctx!7%m53sg4W*a$ z$V@}9>=FK;dj%tx8;l)ca6Xr3YgP`;^^EXhFZf8y1vZ~M}TUOSABI;@^HA}*{s z=cKD`C#T!J=$rXVSsN114ukvYwvA&AqWYvpU(9(r8bOKIsmlQMf8s9B~g zWT#afc{j&YodS1XQ$9|$Q#r~O*vp_zu|drgsmH&GAu4Mm2dWHDSby^}t#n!U9QjXzz}gM4>bwFK0U+J4v6JU12bP{S;9Cv!A*vQhYf;SW*Ll}JD~qB4b7 zVvm7+*78Xe1K1pNZcOlXe!LS$I@Do-R4|0pQkQFGHjhTm>l}U5sRFfVuHg=|n=Dnf zb_`oPWl#N*+h-e~zs{R+lE1vtRadIv7d{JCZ4$Jk;*YN^$ zz)As5q?7K%#JP{)qi)uZucE2j>)vaQdX;lyH7rvC8_gULr&SYhoF0N8S_~2)&`2Tk zG78@W`B4Uh-%m0xZUnd>hzjTY<~aZ$t{XHjgdWHQ_#vUa93+o=-Ghb^>0*Wb`y0$F zmlt9`Fv32;q9&;&Olys-Ks>@UbFPJMb0P%-8X(OAUX0@IBEydYasXuKn&tEwYlKux zF6=nhozCq<_mk#LnOIV4eX$+^onHw&r&Fhk7*S;m(3~{lK9|ktnDTDF*2dXAYMdB| zM^STY6_t}h$O^~+RQ*`y#2ul<5P+`DhJt`|2LzAQ1~3uaFbOyxM_Aei02%WpvN%VC zn-OkK@Yf^U%`Wdx)59JBFt0tD>q!kE8OzOWf{O`rBZ71D%HiP{+5FU!HP}F0`=q?l7l#l`;93t8)0v`D6bV|WtdZ23atw;AH0^$=41#S1}o_653Rpc~yaNl5hEPuOoi{{Cdq;2gEXr3_qd9T2N zveOj-K&(1soJ1d?ZL-*8PRq18F-LKH8>m;7PY_P z+q|mP7{XY!M^WCw+^BGY+7JfXlUC#a6lfl$+h*}YyHrxAmHDuoIiTc#q^!YOV+zTR zvx~^wsiVv;%I|fsf}OIiMj-5y)M~f&+S{BU%&P`|6hTEWz@4V~4Mt-}rnB4JrN}uD z2>^bGnO2{xYmt6j9Yn2hifKD|c`pY+QquLM4pgE1UiYuDvu3>BQTrYr_ZUbmM~ zOR5J#mB$!>0CPuoHYcHEC7~Kc9gKBer-4gUfL)t;s;p$1lvL99Opu{*B76cHj3gwH zR45%1b&zAn3!$<5k&`!tl7ov=Ptkv?j!rMg`TW zlq2Q3(a8rgVo%^sBJ0goQ&p4>9}cC?leAap8oWx-@$#~=49u%WQ zVS(bXB9c71lt4E-@NO>vves;vqcBZo@qGFhTlg0;&y0bUHXWvORdEj_LR2h(IxwTT zoe?_^H#1`IuzSm6UJKKsyVQA`AbUeA4l84k7+`UuM9aNK*2CV$5ind3hKCZ3-#igV zbMg-D)d)WZ1zQQkz5-2zu>y%R8RE^z+;+<Fbu$7);L>_{&>x<3Q64cePtOJggs&G?b)-n>xA8mQ4z5Qp%t^mmakJ zT8~4F#h$XNAZGI>_xadA)oNha(+x#U*4DE36vlj zs{_eI-q@D94CpxrEG!Z)X?tb;2lO)o5CZ|7zNSmCn+SeSX!eY7kbS^}aMSECJPepN z9)9i6UdN1EOpC`#+)6Nl@&^iyKIQw&itoTGoqEcsI%bqb zA-NJ60H;7$zjPB6jcfGJJknSK@Z!RM0Z1p6w0&b zT&9P;E6UA{)OKd?5zo3jC;Xrl3mn1U96*N&yy?Nt!Nr9A2OA6*GAH`yTKgQp)mPRS zFJ!=F`jm}r+x$9Ut~MS(0J)ohxdGxz98t}dCC#3+1dn05RLb>OIUk!OOn^(!@vO(! z4^WE=RWCRcpZ8@1X=Bs&OAe*PT zc3g_r9dG zjMGx`WRAsQVq-D{QDeWk1$KTB$>W$*48h-_v6aI64B`xUbhk za{AsqbY77wl?pPg{KOhkF$^h}hjL4Ro%e|-$B^1eUVeA8E7W)9yYyN>oTfeeOFq&biV->>T2zfjhL~q-sKDldvNYTmb_1 z1IP{8T5p1sHm38MzqEx+V}v!$Bk#5K{=lgMBQMzt?kml`?tkFr{a}5bYii4LwCMQp z9!!QOTw%CkhNOH}IN=wzTdDjckEOk?ua`)AiNZ@tlO7uj2#wKhYc_N^!>x{~Y zSj~$?UmXGOqk89e1TV9lRDttf5uW($1N7r|Dtca18cu=nqw_Mgy~-0gKBtbH7ceU4 z2`!}(V={UR%&1?2>YNV+AZdQ78B?htxLGJBZe|?bkViUg2uMJ?RVs!iy<}9F z`k2q#-F93q&7xLyB(YkQSb^yxh2&TqE7Me2bI2*@#Vr=R?67j>oLP+x?|_)VeItTb zw*q{^%^*fx<3V#mx>#X8YY}coaNi&`gs^Ay&m+1gJ6wNFsPW^uXdtvVjIdYb>9*u2 zig=>Vkq+5-lTC%;50sr+Mion~yzhsitzb2#bKO!`=Buf*FPvD%#;>((WK~Wm966|t z8}kyF+jWlSMp17+5jnhXQIm=u$FUMovPLdDrg)wuqTzjZ_OaIGrnW(@i4F*GRHRGZ zgSt+0N#|1bORvMzw0u4sWqDrr@~p;b`ONwj#EkY*=0tOO08J684ePZ-Zl{7_h3qed*_%6oZCb@j+#4DS}dQNCx}MMZ4pm_ zN|`798w8<=L!$T1DEWi?$02)u!=BOJ$gG^!s#+bi)QAD{$|Gg~J+(4P4Wt7o9zBvx zkfY2NiO%TPpQ~fc+m-v~=;u{9TLJ#d{(fnr*Id|+F$&jx-&|~wsqx6`5Xn#dF{GB(OHjlz7ZX>#y_cc{tYo^v4wv6T$8H~gZ z*uCYjc@ojyAggKnAp!81S5iXM#R=2f8@Vq4;pf+|JbVxd{Wgn@sRNH0JjG?nr>eF& zYdtF3<8UNKFEe)w3C^PZ_(n#ps$>gsWda$Hn(|XsWb4#N^a`cQT*T|Q`R*8*}1%B!dK+Gk;^?x)@>2HUR=xPP_*dfl0) z=vGI^E)|xkOhTgNMA7KE(K22K&N(b6n+YQ1lMI|wMK!5J7Np#i9&VG+7cbk`JBgSR z(A>&*3wsd-nmfu0z#IuoN+$^#3DjJZMGkt$;6QL=nXH*!0+jo8glJxCFlema|3#ZF z_|{h^!MLNB=Zv88jA_L6rPLJrJfLh~_s#HH7+D?^yZ|$cE?Lyb92xnvYOI@acI==s zqq{a1s1jeSkF~N?N`2?XBefC{=UA?7(G^Sy@k|i&@L2xuo)<9h_jA4{znii9V2$0| z9w`9*bNRk!AMde$r^n%;e8;c@*fEku(b1|w*2=iIQfRS5&Q))3BwC)=e4|F{-&V>; zzNdhnJf!)q)&hW&ujPIs0wW3NxBAZdxSAxIc`b{ebx91pr|G?iwJVeF|&+UJ&L!;OwUntEUrEZ9HdS|XK20kJb|s>o#cR#hPr?kDHe%zLjpasU;6X|D0XItY z+%$Po18m<3=r0o!()f(Y=iTUXLL{Zh^q#e6Pnu@(>0s+O0I0+dZEd%GSNGWR%u?xRE#)YJa&r;7)qq-1_rCwYuxa%#sz3gwE}(KX16dhZQPDYo!CY+ zQ@%z{hmA5HD9U{EgE-4lARHcfVQTG?Udv&;kcuA7EmZ6pphTHnn1V1}Yum{Wj4&kR zvWC!_?iM{KyD3`SJ29j-I*i%Os>yQ#q}#evgZA8yRLz-}JmcCyqfEzN_MG@^1N2|C zEodXJm{|7kYQSzrw3S1k0-P7Gqw?M=YS&J9mU|5GvTB%W7xW%N|pX`Vcq-xH*BQ(*G}uq91#EIrs(bS8nhG zUGW|pT;xcmL`@MTLY?}-1*plvWd76-tzks7o#B>@DN2XJtCP8=S!xc$IkUIEQ5(7#Ce zycB@;S}42wcNxu_sTr025ZeZiH9|g}_h>IiG&ghJBiRA7 zmL8-O5Vj56IBWcGiMH4|z_aG=*G82_vK^K3b#oF;hlLpFQ3SBkiOG(2bKJ(_d_0xb zvB*`wZ?@B^c4Axtc>TD4-8GM}!}9&toqu!;6@Xp>gGcW>1Is{M2~MD?GSgKg(E@hk z0~R}nWS+EF4x3LB`~XaAf>ZqBX2AyWOwt3pOJsm;BD~46Azfv6F~O<8Zmmj9Ny+Tm zw^=aKSTi8Gmfg5%StKsl#6Ws}J}(L6S&F5l${qzla(fj+=x^EXS*Yam_IdlfecnEA zpSRE3=k4?MdHcM5-ac=ixBqXp&vpd8_Q)Q~=N}#SQaaYD>(%ruzkI*W->az?@;8|n zdTvtBTz{vM6LKe?M6bn8g{r)Gu3{&D8}-B@??UYYuD|H8`ye4*jBss)a}rI6$zj|E zgckw+ph6@NGKodZQ^VjvJXfrqEnf>5r`J34N6U%k&<@~;S7d1kdsg1|p!DEI=N=1~+hLJ?d^ZaFoAC<=H3Gjsdn=N8TSU&;AbBB2?^Q^t*JV@CCt4}99`FA^Pzcj;N z9MCio&dIgr+2i)6Mf;>d`+~C984yaBiN|pu(8QQlGH;q&&XF2FmeOd8G0pn7D!6Cy z7yUl9?nJFNN^r8qC@r1rdAw>)u&TdPmCFc-M>s2$7OG1wX?0)c1UXP};CVtC23<1> z<(ZQxdAqI?mG*HGHTOwt1)I|MoP-vwbnZ-5w>8c?sW%>ic;*iWQG{uXFr7KHHwoK!0_J{$i@&@C z2M0O~Xs=^FFRu?N0g!xr^1kHdcfyik6U0)skMuPI9Yj~raz$zCxG3mQAm6L>~p*WI_8&p=hxAik8blgp`DwG~TtrSiO)c)9M+ zu`m+YNm>o-K444+PYb(%q3fZRTQY_n6Us9>HUW~1Q<9+uW?=3ma_$GA+NM@cTG%xj z6&xNjrne_Fn+dJXiIg0s$>Yg~EzZ8z;GKVQ!0@Qht=bzFO7EGZc7%Px?yZ1n^U7ZHv0R^TFzmwF3rmHG1k0E%`D7y+4J}1MW09%UTrkXM~B)_$NCFI%P)ScLa?%h<-I< zziPoh@8EZ~a0`{H)JN2{*(=SxqP@7tB~2<-faI^!v=3-DgA7%z^-Amkm2szw1#~iU z(n(v_g0^SHoW*25Z`vFIP>_D2#2SSFbgk4Wp5|POc|nKM@*#_oX;uf<>OLD4*K)O* zAa!8pR4sh2lpWFe$BoxqJ;|piWpm`Reqy1GD+O#`c?=JvxtekfxpmZET4=zA`2fp3roOjY=p#U9+0n~NiR`SsS$UGb;c&#_vI70jU zAT`8;$9&%5@W^T2pro)+lsR$s$&7g|gRi|w`1!x%5Wlj+qq9Bc$eA7t=71tHQxMFD~AZ2{WM}a4_XC8*5hd-&b0Nz6~YUt<=j2lA~k0K6fo@$6;L3d zt;Z;N{}n*U0&M`O7j1xayG43&2^vzu3B|3=oZe7<*iovh2Ji53T|iZf}MOWRvCuUw6M_9U7ItwhqlU zz#kG)>!en6E8jm;eH&NVdkzj!Zru?Ol$KrvMYsuo)4rRd><8Lk+%}p*k{0O*Wc!4s z-iXtytas!bpiVNH<|2ZbonQA1lpnX_J+e-Z1&aM+eOv2!9D(vv*RHEbQIzyP0wWo& zICezooM0~N=_!z2mw}aEknMY;uh$}ME&-HE;EoBH&l2#~fc1Jrj1I%L1qKf^3C(%} zy*uG{-63`j`e%AxEBBkLLN)RMvDZB#X~|D2#{nqX5_VrE903NR;UmQh_I<4X8A5qC zyWeb0PwG=46~wJTJ(8-$SHP>%fXH|P$R&aAcJeQOZhZCudOewrRTt}AbEj^XgpyBt zB+hV0z`-_|{9Xo#dB5-sJdiG&PUJpSdCAolSx5B@}+DD&Crrha$0N& z`(K-|dbGzlG-&@~1wR1$_Y&Hl1We~G@TFU9&JVbm9o(c6rV7B_L}1Sa9oyHdyMXJ7 zUmf>48~^xy67f1h@oX&?Bb#tUcQ2wj>yl(fcg5tY$#q|IY+u^)7_0KZ&G6FlI2?Qd zk5)3rL}qGHA1>gWy8!lHYL#2$%R8iA0J=NORip&v84&>IkQ&KJG~Ey^s&Vb|@0BQG6)j4t=<5fF^0(GL z=OD}i03e=at+M|2q=uNx6K;Y`)pS%^%Bf1f2>{iiPxlm@gOeCITsioF#r&YQk^E)v zLGvt8a3YDAhX5Q7;KXp=7f=^9EY~)m^9?w7IPVZ&T!QCW9AW1hq`re2C!|{`y9DpW zv8awPjtR8tg;kOr$PS33C`3c_MBH}Bdl3g2_Y|Sk4g{QUKGE9bs*7;*VZii-1KzmU z;V=b^-+F*{N7((^jOH(UY%kX6{>~L1UF`7miypgAWS`hPi3t0M^%IBPI}Rxjnwtr3 zZZrxb5pFaA?q-j$T}fBY>a^4Qq!7SuBl+a>tR)&1WGL7J06N=%H!C>rk)A#ihXym; z#Rc&2Tnwk(LH9}>+fE`Ld>DYXfm4-y-tQODav}mk0I3E5Pq^#2yoc>nP5DK${lHgy z0#Hh;r4yje))-sMoKt|A03==iy#N!Y>|D=mEL-A^B8#TvUfU#6tC<(;v*e>z$BZ&B zYNhLG1H^X+JUZXuFgBRJbAfJ4IJ_OP`BsbRVg-ET2Imj}0dvxN$`V~?FvjT*^an=LN_Ufeuq~#eOj9Y@y}7eeL9sn4;`zk7_mCsFTGwhhpz`Wqw8&JP&JfcX70^gF_Ik+A+rz`SWO z{>Bdd!vppo68t14n(%d?$Y^*NWI%det+_5pg`jyulkTrI<=>XFG&!5>;NZnrc!XYY|xExpDO+?i*-l^%OG0RNNQFls54a z#saYO`30=kz&S@c%#gbSa@44>Xr9dx2QZvgHV{y5B8r(=;$(ozZ)L8YU~#C(923E@oqJ*|G8YDrQP*cJ zyH!6kdyaFI$cI0Arb)$vjMY;aVlt1S)SteGMi?g+M@EW(^Kh#^M+I|>QGi}z@OF!2 zbTUVGW zAo#h#e5F4(MO35L<#9V*ZX&Yu7e8 z1$48PQR`Z9CMk`aI|UX*%f2F#iVpfZ8RI5JVGSGxq?=o1H55=!T`P=-+bz&{BK)T1 zq<9>WZf+%Y!Kt$a$p2%Kl!tq_M*wA?0E&a^&M_?O&;)sw%Bmtj4HPa;+`K<1ke~D! zH+mg5;F+|3x?k92<|MA8?s=`XdiG}cR|dST$xM>gVJhrKdv_Dy4~)1f%77uNBzwg;Eo>)lLJv)?@(X_al0=fp&^mM$wO1DG?yzBlFsxC+BCJL3RyR ztsTF3@)%UMwta5-I2YAH5UQX-&*;{&XG}lcfZrSN_rLyU_^5w|@9p2h|MVxnh2{q< zxUXF!T#OhV%6RE66+>8+P%TNDOE}B2kL(|-Z(Xqm8vrJ#BVC<2IzfY{qo{kvi1klx)BcL_#Ah3z*PW~j)8h3E$SY6pv3G<>OPbLFu;==mNf%5y zaXzr{I_J%U4D{P;YIqqqcLK}-1?sl;D*c@_Wh<9S;{w)glbKhHRXa=c{Fd+^|JI-5 zzj^bY;zK{+<4uS34Z=V9N56| zp|g)u=|f-5o2cNt2^#${4mW{U9jsm})f<@t2Z~%#9&1lMi=kmg33RLnm&<`9Pgw~% z1)&bQiL=4uM=`*rH6iu_*i!?{YszDFI%8~_8Hb_4*~h?t`1k(=|MjDPj`zcipRNMZ z*9rglPyR0UUue-ZGlpKr=1kzOfc~TmmPX68ne)o#Ud~;wsA@K!7{~@wu556W!z6uF zD2;FcA|x6DHH3rG=!~8?M9Y+0fR!GN{Xue;4+GLT0j#;^iACKVV!*odGf>lHU``>xz3~`4 z3`j3tfOfmwx324uh5@|W%X6FWYCLe;2;+pPJQMGLLlg!0vvn?K7CVQuYT$2oK=5$4 zBf1wIx)%e+H&%$9D6zXSVp5qGzGshgrIU2;T#r~Pl zbtjLeiA5wXLaA2OXX)z(%uS>r)5@%?ZKFK$(A}Zim4A3zT!H1t_JZ7wtYY?JEji$~qaXQ{R?)s8uc1pvTzjz;ffU%Lb3s2FVeu z^Pa7QP8~s3LnAlRh(Ya@w$u-n`IH)$BM$6kjB*mNo&^<2jHIN3C$S|dnWF(QZsb#A zbh!Bv@KOH^?}r(0`wf6CKI)(0@D?LY9&IyAiU%a;J+)M5?dml1Ba2w$ESrcJUe*2R zShqRDpiHH-O)~da)$%yEK2z^*olnkfkm$QU6PlwM!$%RTT(iE4U{%^0Y*AWB#ERy7 zSo0Z>Ini~Xz6Vthz-0ODvS&!`^Yy3KXj*mLsj-?? zO$H-wf{r&V4g7kaWtMT;wjk407$;EM$g^-x)}>ieXzV?@IF~d6%`s2=gE$fU9?qOA z77Y$T#yXLRGsRfev$iQ?ASQ7D+_yPl`-BEJ?(7pum^^u(aPICt0Td^tjW?sVvy*ks z98*?~6O|*kigM*Lc{ao?YHn*RGc2dH7T7h%soVxaU0Wo%WOGc`cBYe*ojID?oZ&wZXeXa#(+ ze}?z{nDNAyS5NW3J{A^?bBxr=*pPHRwVPZ4={Y6Va1BE!@2=cKjdkqn5S7=n$xo-h zqcAl^Co8{i>`aC@y#T>=>Or`JC+fcaw}2-;`v6@Rc{74CEulW-IJc_uREYqCjFv^t zQ%nnha_50o;I@R9ff|?OziIjR9YCL7SCx0aJg4N7l!zkfW)+$U+5ZaO;ofX3?8m@VRQv#f?m?Q~q zsKmAEjme&eFU*ttc~qr+*jRRD0cMo6k324PaZf?Kv&jqny>?a!h?n!ME-po3Vl+)e z^C{s6hd1!kbpWu%Pv?Li9NxhB_kr6lC7Di>f{GDvtpM^_MTPuWyi*3wDT)d!DGR{O zEKv~y;iQ;E$0#LLBQ|3==UY;)4k1Etv}E~cw40n;3YMhmSyhoo088p(1>k9#i*Ib2 zC6ap|8?z{R@ApEHCMxWN#1ct#Gk9hJ5__PUdV~=J#gJRJ6 zp$hIsmz)U9gwRBs{T1+o!<+co+QVUspGA)!4R7GVcYy6zZQay0wXO{d*(1U}BAvCE zdyl3GpkdVaQeOMr#5vW1O)Sz3*?HC!j=~n;QLh072_Z=T4}(P0Rpgb20epP}>bjDC zpmT-iIX^3&6Vg`hpT`j(2dCNsHdpvCz-r|3;UMCF_jR9$66rQdZ(eVXg|d_~o&VM~ zhNf9))i&Pd2zO9zhT2(}5)cWL5;&u9WyqoGelzSXNRZQuSSahU5{YAi8(G(1pdcW? z4?;r+tLW%RaC%#ABqSzypK$g);Jb&n?(7r&r-bP%))#WosLojv-7|rvN?y0jOs#D5I&fxSpBa^-tAJ%Io&Y_L=3=9Z zO;i4MqeD{g-99ILZ~tb-6F-eDet38TVGpoYJ0Od^d%00Q60b8`jm;5o9PL8|!ZW@> zVIAg9D19qmgX=#ReJ_)dm#jtLbRK`j-1)bOCqCN%y`DT)Dx{*J*NTbq0vC^>=Jw>* zjcRI_PBIikjOXqHuBq$G*J*LgLO`y5-_~FQ92NbY1B%y(u>>X-37-h_?9g=+wik>) z{?<3(zQH*M{U80`-$Z-HXuAp17!dXbDs)kp0dB}LI30$k!H&E0TY#L?@V@87`5 zNsr#K_>65b<~?Q-qpbqt*~?W&7>^dhyeXwr0KP?R>^a-9_pxbCEtxQrwc6_&sVqV^ zCsZMv<|y;SqG5B)itXGsS#_3THFum-qr)wu#&vELRk`Qpn6eEk=LeO=-%>rMwdC-H zy+ufn1r#lM=nsT>_E>czuHR4iAO7OE;l9B+2mKGe^*d-j1p02mI0ZDf>f{<&=#Z0L zhtcd9<3?1no1G~O18!vaAonS>d%fq#ATUS;#0;Fv!VZbrRK`&@ysU4598sllF6Fkg zSNv1`cAg^^3fA|fY1u)ZXT;|(;I_L`Doq1$*)vk>ks1L!?Xx{@zH*M( z5xN&G{9yo`gWFH}KEok`_CuzS7do^G<4x-PD4ikwAH0aktyiF%TgeRvL`t^4lX-oGFDLFNfrqPa{jKASu1;bt?xk)ho~Rr zvt-RqU@z%Vv6D0@Hv`>O!Z@%}&SeevqgT z>rqM_FMwgvQhB~YpqZ9k9QHtk34~s#Y*$0&N(*P?bXX#mymGxHDgaML8Hc8WG|;L_ z$U7usMH-+i zFF9p*5!lOP-rms50ZX87SfGAJfQU{LmUBmKSXWgMk}nRKJIA7yHEXSMBS0-dli#T?){DRNywZ|!7u^d>Z z)GVP`Nqx;s%N+>Awnf{{Xg}Cu{{9*M$#;JbfBZ0E^@+o(1IDlK;h8X9x7fTWleEyW z=4gy5ojm?K2Mc8dTvx+r!+f0Q4bQup+QEEOvq8; z5=}fYk?w0ds^=@^CQ^!e)!0QrX6v*I2K^6c_x*JsVymB7} zgxey^ObaI%Ai(3et~dkPn`%Z%>Y!qA;t+@pKr1o6j7r#C6LvQp`Zp%@U%J8YuP^XN z-~N5<-;LOO?9ul?`pp{vz~Q>Xqfhi}&y4`W1%1e1Jdv^Zx+54`-}@9N^ZB_8S6vcQ+j#{7kMt zoq4oZGj2azVO|sZ=TaW)@KC6lu@BOt8pZab+@~8f$F*(Bnqy-;amj7gwWbDzY|g`) z$wnl=-8ndxy69O5v1tW(Pcz(R4eEQL=IXPf%^FzsS@?=4DRY<0?CHHp-SvA0(5X(6 z#hns%WNS>Qc&VvcZ@dWlVbT;1+aJtH7`#y3iR5!?o4}0V+6nK(X+={6SV4Vo#mPw| zDMUwQ*4)fX;$0)DPyGvqKL~i9dqQ`W@;_^;l=f9o9o^Pm1cZa<3X zf9~NnjON#`LB!bKcIa=4!#}2z}ROt z{wx4L ze%AfTTR_Hcs``ELB~SG~-#MmeTvhXEks>JlEbwEg;~_DVN3FOz;glj}>)79(k{ ziqT*eU-Flq+q#>KB3!>-M`M!yb3}Q+Gns&U z2Syg{)OXjsv|Nk0Zc(BfnbuzSxos>7YD96a{XdZY~VYi%f#JJ3fsy7e&-GDd~h@$kX3Z7(&V!i7#zkZGSEH-i|0wYyZ@i?9o zpd2Y#bBwumHffY3)2{8htmzUlf@1>T+(^Fqst51(NLSZzF$&$;|4ns$n&KtOy5nICU9f$7H=ee~0dBX089bR-156*W8 zUw?t^t^)DKZ*JC+(g*E=fqLP0?OH|<5(S2;Dog45LIoS zX3mZx?Km0dMtfHPPDBEXH5Z)65$pSwo~D3=avbrzNOx@xuxG zH(T7aD{L+f;NQB!cGrRjkKyl(Sgl8RmvD8nhW}ZIu-C3p@HK5@FTxHva%iQ_vQV(A za?s6&%wWv=8d*#@?+tZD1azB$V8mG?ax3DNHJ#DuaI6Vq`2f9P=<&_m&s+AdwG1qT`Y~ zsN+Sc?XxB*lT~u2fXut4VcaZ zRJ7MKZr^V)o!R_j_(MXoW%z;7Z09^iQ$soD-Ayu2T$O9(I@W8EKYPun>@f=XtDRH^Xjm!kxTn#Pm(@Y%1m5p62;pf4g+|2Q zrU}VFx&edjetAuKQ~v8axCa;Dz7-|+%PXX-YXPMeT_l%t)TNB4FS)?gI>+lC(?*`v zydt=1gZ_I5aML1O?y-8-VR#^b*UgfqF`WUo?|ZC2mHQeVI6VAL!X>Zq{0jm7#ejY_ z0xN)-FpdE?Hy!$qTRi+u!gwy>1%^&~z7v@o|soOuv8f z;^?R-{TL_kFi5TQHi&>F00a+m!bae$Yf)#PCQ#pj&dy|C*>1r%Hv+nqZIuPxY|R2h ztvxX`sZ)UaB)R}Of^L0FBe=^G58%S8axBB^JSmt2!3>EFDInNp}CpSzi^l~ z;&2UvoHwt4!()%LAInBDJ`8y8pC9lf_PG6WK)4vub~D^+lsPd3Oxp&{&l_~lDLZ7{ z1f)(>;Kk0-ePC2JmDOY?LTr!)9RD!Bp7#g^>rT_8>V2lBackhD7UR1&jmsKws%2+keu1ieq&nAvNYK7zk~yRS zvLX^_b`}I^Qsv|_XHEtK5ZlXsH_ZhbH;~A+Pf**M;1htIIBzB8LNG*9{hqMXap-~b zA2IyUVEds59!&6k1g*sLG>rknHXvMT%7+^Il%#BPj+k?~XR1p#qxxPzPSss>C2Jp6 z_F~Rmw^J(}ECc84DQo@I;QeH)uuE=LiO6F?-#h8Gue$c%pnbLh`hrG6rzaH)MQV{d zVsw;OHH(hFuDLAibMe!xa+=phV11C3+CFsu7H{kRlW#?)1E6)j6{p|r#^v%9HMhzBg zC1Oz3v_0~$8dx{b!H%?ij+W4v8GazlYaq3##OKG;II}CsT&F1CE@&s z3H^%+`?nf2x7H89cp*{!uoH0N4-xApfInE2TE16oD++E>aIU%dl0zwd$j(;+EhomI z)eAlnqLc~`C67JR+)q7|DsPG{qJE;8C>keHV0h1j;y4MorltaUX+d@77{R+8EGkY- zr&RV8+-@(mwk=v~pxk@7ZY@C3o>SWtns(brNjC$l6*Hwah$a7A#b~@bc5E(LfW0M* z7am>Tf!lzzBAoqji}210lo-uzLbLN2&t)w4m*x70M-FEnGy113cJDUWo-;TwXeKn* zgojV0MBDIya47B#M1brX$F&%G=Mgg z(p*5%xM&+-e*m?uq!f53hEvypNXtv2O%m-tSY(v|R<+wl)xnW20Vof-7U&_K~Bi5&6C2*R)BwBX`$%oE`C$ zwNXgfLDCfL#B$vf2y^eyniCYj<|hY?4_o*liIer#V>$=M^YU44V%)yp;*D=j*!;xf z`lB_*hb&bSB3Yg!bujw zvS;GUT(Z7pB!G0EaJ*C+*L|e0(5gO6{L*~_UMTTIDkgeQD;ofKIrEaMlnZ-iHErFT zNr3FPfT)+(!HN3wYLJlR*bE?(TvMX#0_@3n;{@mn09AoI9fPg{^LIP8 zf^t1OpgOkRTaM--C83}I64a`%lXJsO6NDvKBvd&Jf1mF1e$9|gm5h0X}jNiZ(0KyP(dsM@ESF*^Q=nwEd}a1!mgez1Lh2^?P-5= zKEF`Z>ptNnmHpV`e_sLk%bG@z04S*TcQ@K&dOM4#Os2MD>Frz`TF;r3Kohivs{)GG zO)0v2j8LILJL79*O6;y#m&sCUh@E_$zEDp}Gf$=JEh;oK`c?Ir01etIu42Uuqlt zzwEthljKN_Ep`BRk`a-aRW&_5v$NMsW|G}c`u{&g-*hFjyDQD^Jo-^pneia$?$8GS z?oMV@_w3yn*|o}Yv+k;j2r?L?!yN}WI4E(q?ksD&zq!ZaRnk9)$qnVdFU0 zc^!i8=eg)Hog+ojf-)gg#rVpk=rZbWZuD#t4_dvd{bXzyA~`pQ)tOkp7Nqw9Vf(MP z`-)+E{``7PQy*(bH5E}kAtHq9it&@xyK}4w17X4XZoqI(IQ;dd8VT1GAO3H~^ZydH z{NoSGl6d;>SCrv^^FQf%p8i!J|1VHRWk;0}$P-jVcWnT@j8L$0Aq;2KInUYfQy>IS zP)Gwm-rmgxv3g!()mdBo9wZ9+T z^H3(AG+mfqIA>$)x?c?QYti-)GC$nbX0^!H{Y8T}=#pY&)Ol1tUaz^MxLdhkyh&|$ zcKA`5RuWnn#`L+M45WGr1$g+kg43S~>7Y!NJn8%w2lYOOEpyH{0?(+rS-rq?yANok zfO+@6-1+?O*n6Y;Soe}3|B*p0pjPiU@ay>UKRMnaN#)!4Hon_sT&n;8AOJ~3K~#-z za3Z=prJel?5k^rFqlV4?&j zTks!=u=L4a&rCz>H#YBE1eOX^%pn7GQ%aY&lyZT$zD8AoekM;!UyL`waM2HVZJ`8U z{A{lilwMWq!Hh;@5u{ieO{J++W0NWGp8;j5nf2B(>kHX)f3N%8mI^Pgv*-SvzqY^c zr3=Ho)kv@il**|*|Y7991 zsJ3zaen40R@Bby?{7(VvgZ{Q_Bn;1j@uMI;v~CFXCt0R1o;4$M{Z4;l8FZgG{WXIZ z!TJ~x&lzA~eT<+a80`4*=LOO1g)TG7`v+|mxTZ!`Cu^r!Ru#h|>w)f6-;~iiHsj()wfWnAM<<`5WVsdNJW9SX$F)D*V*B_~VRObsY z0i|WpB^N+eyb=%V%clI?d#Z3LAXEAW-)~*3=b`Ew^}dBLfGGeOnErGI0L1G7Wnj>n zRYoWf*2jo&UO}l~{{D#J^Mc?0A2UAxZzrse`kkNt>j|g7taz9UuD^}CheWM4mtfRi z)8+x8mJXJn7k(~u#8Pxg=dd8De{_B1H z^~@pdj^B(<46Y8>;CQS1gpcZr?(V}L3;1V&CiV(c98w9i#h4TRch91OOqk3{5fZ}#`6?C7n8#bea0S*ABTxEO>xnUa&WKlF zePE=C%!leU7!m+$$y_>Q$un)Sh`ZqgR5^Kpws7wHu>X=UT-CXf_UGn)1Fvhz{k76z zjxUX0V&?8Y*RP9z=kav|^!?bYF8&g5{u_aHFMxLM->=WR`>)44J{LlJowC}i(kld% zsrC@0Vr3|1aG?nS*FMl;agh?GT!lq}PFU38N=L@>Ky}d=&VuPv#(H9;qtX-OtiMSN zZ1rH=M~PbN;r*cX{kF;1+H_ysDs>&N!TCMVanJC6$!PlH?w#+gk6Le8UOQC3c3*$R zE;jX4eNB4*KDGCK{F3dI*aYJ^Y0D9>qvO>;xGm_#1bD)%^VuD*JgIGIsRyikfI3>i zY=g4k_M3p^sa^N+r-G;d_Ke#fPPly+FkA$WA8(K$fU+RIELFLFxGc5JTzY>5#00aP z#%{tq?DI0^Eg;|g=#FYzmBBkoWAF4<%DXAFzpCMMCmQW|U>mgBwRm|`!vLBT0ZQ5i zFvOy}#CWB0xf6i{uqh?j(0iFH3#Gfw+ zCKSbULc9)0M@AVLBwD(Z55V{=IQ_NY#puNAlM2kmiz@YoD>i$Q?@{Tb!7hJq_$)a7 zP_R5O)_>CDA1}Gm)Z@)2S}JN2gMQ!gU*3a6F#Pr0+5wtP&~?_9gO^*o7k)3jZ+ZpI zR;wH%RG2c?y7CQ(+&|_JjIu3FOwOKzbfrETuu1?2J?1U;eFi$9c4tj+(LDgQbgGC_ z;diYB`#|r8Lft1$>T5;IMP4ORpaCl?+n^ULs2LggG}P9E@naKflsRKKMx;Z4FoBnZ z<=qjN-=A>&Yr^~g^BEui_a^|r{DHAP4j7*W!?_^d2zeCb!9YpSpl+VDe9Eb>@us3$ zB@*&Mb$zHS5v(=00)!5X=aHJgE}6;sR-2`P5g)zt6ROTFq?SaooCkXA76T{ z_tAEN6$j@Ocw2t?7Dhjh@A*P^Uh_ard*KVdliydo2I*3yicy>FnI2P2q1-{b2&#HJ z0bWbt-3$Orau{ZyY&o|;8axs$@mn7l!@1!2W5Vq>wojZ0c?=j|GbofPahhCGn8SGm$H(Y=Xt=&5!Y&t&Gd+NC1{;k}6_SHQ973|>exeuGSpSv5> z>Pw;i&c4&z0_gkUMq$pr{)3vM`fJDD%?7#w<8_9;1LRfUqyy_st-TWvu{q@vl9Tp} zb^$F;x=EA(1K)mrkB~tHXh}hi*H7`P-|gQsyy(3+{FIOnjO9^l4C7V6i!Cy115rLv z^VGzO*Z_`4d7EmZv_Ea(-x!^N^UbK)c8^f~3NWwFa%VvM=+;{VAN%o38KGhs#6H78 z?Z1tkeChO}wNVwEGuk=ohwl8{ZNV}H#WAVbXYDjlG}z<R2?p=!DSU8v4& z2w5Lo3xXBu?21fPRBEfi@v|QH_^(&Y|8&C3e~ADA)29Nutq^7mKVL!D1#%b^q%&jr zPBZU$VvL_x&}~J{d^-qOI?)lElYNapc|Yjj>b#}3zv-Ra8li6)U-EjXdm=vj`dWYO zEoKRQ7&xz))g2g9t;fTdJKxyr~?o*?FGO0G!8%_z2BatVGGJ+V@|wkG)(n* z-|NEn)sJ6lL7EHt&J%V0aNDp^0o~?UTdS&wCGbi}tDEa~qHV2he{E(PG_R1y5$kU> z?H5i1#=o9b6`ly=zkNo0r$JMGnGxm(%7}IN4u^YTCyT*ma-Q-b+vh6Wi$4oS*=ZN=hN(i9X&!}4IWBHt3$sx zIuI#=YunAu=%2%#@#fpB{nFTh^t()uzI7MwfpXM3^Zu9~qytc(?jYUfWt$_=?+{(* ze6BI6Kku#8I4OXqqP}|>0@9>e@^}**e=ye3cLD2(usjjg2Nk$2g9fUE%^oaxMFo}R z!fS^^;PV-EZ>iwir(o}fbUwcW_4?n&f9Z}PvVgC>MS6dJHDlfn53KL9;+2{E|09O@ z`T_brf^x65l)q;!)`acwaho;*zqGD(K%Fy?Lpx^Q2i@Co zpxHD^)X%zLNjzh79o2|fPs*zb{=`{ZM#Zc5x3$c9R^f>8*;@VBjv-OM*Lz&oNLf}P zpi0y7bxORo0pRWG_QpllB1c^0LIi}O>rA$1gVLO&{+Tk_xpkASedGTYBYLY~T}ng0 z_W-v$0fALfIfSjq$-X^{okv0dB5Qj!rus~4P|6q;B+?G`jjTF)s3LGxn9%3Eov1`I zAwqQYDyc0A<5m0NmQgp6pney|&lXK)&w@0XI|v9#6;0!NBJ!`$c@Tx%oictXxu%*t6n5b5Mwef7{#M`xrFJ^?KsIqqeXdFPtg968B z+hp8Tr~jT=QEl;F{}DM5#%t|XRn#FjBrg@ z-Wglt6fm3y@NLEN-NBe0CfLS=<4*}?h)5^G@<^C0_;mV9K{|Ri(8PWsT83rO%pfny zFo{<^t^`%S*3Jfk!^hk)S_+omOaKw4AB(oWI+#r)K|HUvR$CA2qXH_r-1NSVgWAlz zbdNyiF}-_&Je_pCPZ=~XdLO$$l^-Y9tJ>8NfzwfKBBf2|14&7#>_xUgs>(PqK>rpq z=y!ru+xN{+ic!~{7&_2hj2)DO3^L= zfkC$g;XEQes7>TUKp7)=S&_ec0IeC}$7jev*%%N1@`5rvVR>X+e>dRtC!Iqd{;wvh4e z!VE?McD^70lp(;oo{*JOp%fG75_lI8046%x?eEUcaledZv#)IKz5Bl&;C+iWvBwh| zcE}c6s1L+j->EN8*q7Xrwx-<#p!)gmAia0l`b%)iyWw-k>7bTH7jNxaM9V*lAYO~D z-GcE`0wf?$gmh#~vjU2Te_xP}x{jvb(1wv23j(x_e9Q_t)C8pa8r&t3b;>0oJ3NHp;vkb<%s;^S27j z_v4o`Bz+_}DCh>D&jK*2A=S-CLQooOWTma#$0KP|d<18317F{;R$NU@3PUcDH@#(J_$A3G6 zU# zs?^$bGN4VT6XLKML+y1~pL8l|+-2=)rXb@KfG7bt1JF0Wdq+8&Gh!yxdIP~rYDe0E8c73w;bKou8 z#IFqx>XmMNa+}Ch10Voe)^!-v76t|M)g~-sE`e&f2i=w}#nfB4c^j*f1~2(pZ30XP zpUxN#YJcSrK=!QHcO&x1I0Q!g%O}Xg5pzDwD)u=wN2O;{iHYA?c>$(eYy9Q9C&xE!wr^T z+`oUp!1)~oea9AL$JVW?=Gx6yhT{_R`^|P(N+oA0on7C{2WSb@r69~2VCAf(OX(Dl zM@`lN07so)@tn0wfdTkDHa2ffdIYM$2Z1FG4WQS=o%{V8KMyqt$5u*PDemO)z)rQk z-XJu_iMvqtgS|We>;Ve{8BCoYx;r0v4S)OhuTtXsKmU&7>jvoidMDt^pv0qwY&`?r z8SbeleFoh&CCZxFC3~o_2v{Ms2fL%a*hws6)LI#M#7OBT_L@h4EXpLL$8a(S#j%G` zRvHBvmN6#~Ya6LBi}fNDtS7Fu>|v2Az!h!+#mZ5khf73{88XW$=%a+edGc{ zQmW{BXS3N25`m6XkH*OVEHg1 zPmC~YCIZq=%&Eq~Q z?-_Jon@YQmjaZy#Jig>ydG!B{0udUbuHi{*oGEtHYVU6jK$aDFegWpWmVyY-$`AG< z7tp)_*V%$7N@=HQ0v=D0qXuD^2y$*Uvo*MA^!EHPV0ju4-i?_4asgdtAZ3g{=`rbX z)XW*wF49E6`=HFGB-Ng#j|JhV{h-Ulb zpam|ZD1$@_um%O<{T^ZKj+moD#_FL(*+;d-nurD#rx9|{UiDN2a2ACJ7$fTbUJeoK z=;Kx~gOHvM|*>a~&crSFoqcGG>1jDJt&@_& z>7W+f1?%P_MsWw!2;yu}v9mfgN{{M{sc6l4IRxFT=7Ml7;8lM+@8+Y{Rt2q17uW_M zbpzPff;bC76|D>UKAxKzbYPodtgn@3e6QZ?0O;l-yVu_$c<+K#o~f(%Xish1_vm)| zRizu+JVi&H11d0=Li&sX0VAUXLXdV`V~@zD?kW#}Fhi&y8g8kpCFMDuLZ-W zSsl)lK^Fr9?$nP1*6&YP-bauCgU`D~6|47iP^Lkh)GVOO4RV`n2CCM}>ci_CWvSn( zwA`JO^{T$s7KRG+4Y&+n4#0f%gHcISB>6nmHp3 z=Yl-y{9YdehL^02r=Si_yrF{myjU;WgW69XHPff}1GP79m_^G!<_1PQQ0p~;Bucd} zK?SnnMHyJg1<^ViAQg2uhlu(6BbImEIbjT1liH7$3K$5G#}mrqq`|%C3*`B^&S6O_ z#O~c@_%pKJ^EFfM!e^cKLaj9iDgy%Ztn-1aeCMqW2j^o8T5U=Nr08?aN|mkqZckme zph?wp=mUkmA1$lqw+;hj3XnB|`sZ2-FgKP7pfvXM5CD0^I4=t5?HKkB3Z-EDc}5FM=A%Goyohnm`I!=1^o%)foCIx#R%P>dvO@gr`nAFx_*djMnt7UZN+l&Ae zM!2MH&Gza(545b6LIw44$yHzxMG#U^&<-GujC71hC$$L=Pp?)44rRHQ>4*i4{eb?W*#d(Y~RveV^VWUZU0WZ8P3 z$P!VbX0CMDuFJk!JTlcbiW;fPs^T85Su=k3^7nvr=*NMX28+#CLf4*v|w%>^QQSZGu(Z4nqzSdDp^sfjogzY9A zWY-deS{-^HUB4F*79(8+YIH?F7eWj4NFYd}wq83u&*muvEn6|!!c0~()v1wsomH?B z3lBb(XcVsg`TGnhK6{9)2Gm=(eMzI^YacmRfw)>X-UmJAxveQ7fKMmTG-`eA`CI`zhGCO|a%Yx? zSZj4f1ei{i~ z3>rsW)0S0r1AH)5YCH{5&u`ED&9;^5>x_ey2{==yXB7CFF%BBs$XPWpd@bw);U#ze zkp--RGAAUjjlOO)_gdEWaMIET4_K}%!si>pyAkU{KzfK6#sPGjf#X5Xzj}!SA^hbd zj-_CIf6#V>e|SQ8S-{uzm5&$Z4F0iT_{_*hMmn&nR7Y%Tcq@zRRg%O8DT5KD`wk~< zt#(g=+DjH4{0H-$>S;~yh;sq04#>0)m=)h!A9F>tq?fw>>H?0oZhBF-c*WESEqDi@aI8$|KLVrpRSE_oR z)Tb&znR?`bGeG?-U;8hrSCA(aeanZ4a7*B|)Zjuzu?sM)3*woPCpLWt-!B01+H(W# zwd{ks*So)~FfU9z5p7TE@r&#~FDkUy+mD@>J$~+548SWJ+uZLj{o65!Yg^rWzaKSG zRd5$4{wK%R572v>dvTPy19N+0@ddkIxVz8PY@c-XA9h+dgl)Fm1}lA+q}7FU7GMD? z#n&cgADz^mfcgP4|J&=IKn~(t6ly=H7)>kb_v)W&)cL5&ab7p;G~zM@$jCLj&2w&s z>-U2Q(q-I~dZUX3uY_>R;3d~*AVYve(sM1P~x`>xQi(jCvZ=zbA7}gh6+xwpC z{V{KCckX7L;w2%>1@Y4r{NrcHvVu+rE^Qu<_iSzAXak1q9#9u=Z-i2K-9dfVT?111VKEXU)pS zs1B{QD(rzB0Mu4$03Zx1t5W2ds!$f-^Uu`U0i+KntnWs|%ZT{H3usN?k7pc)0Q&8; zv7c=9wj==G)|#Oio>%Z1u)K?wO{Xg4xo>Ba2ZB>1!z_r>^<0JmcF!UP!`$9JDo?yA z(Q?62zIE*b1EEYVfF~f&%3KS05saS}#2;StUL7W+-#(yB0mIKX(D`D&uL}@F6Rk9M z0*cgoy;s)P3)8k!+Lzu0rzpe9&+8dU-`m%gX)jMlq^AktFe3c$NrCrIpD;xReg9B>0TBUAbP(eJ z`qa7wgg^ZZzC2+4?E~^DB2PzzS@jQSEp@(Y?X9+BBQX)JS?j`usb=(wDOfw5-5Fl~ zI$%CtvMgbjd~rao_r(4ujhPZ|0-iN-BCI7}U;sDm$^f8Ibpd#%flbEnZ**^}A63f6 z9yZT;$Hc%Lg!Cn_AV%Z}V8biuje`^ZWuLf}g7oGug`fibJT{=*yr*#x* z;pjIwh)J`i%li7gaR3idv*ydvfCaPGl*g!4>Pr0;Rb!7)1 z!G$^l%EU-KAe_e4?-Btt-%tYk0?_?Cb*-v=V@_fjiA+_vuA`A)g(l+c%myyfAHxxMcMH2)~?FvmVQ zxF0bnC=cD|ET~DQHP8=VXEEoRfa1%FammWeTJ3db;1N*i-6p`ymj$#2&=jktL5W(f zpkJ-Q0aW&SG6J?D`n0T?K4eyd9N&!zl6FB&gszbj;ssht$5a2RNLx z<5aab!#My!vVftQDX)T86)(~2XG2}YVS^`j7~>y+FTQSozK>Y>*lfOjgX#5Wy%xmp zyBAzL5V!YLNz)ectXU|s%ps_KpDw)mRZXm*sV+)!q^aX)fTq=vAekZ=n$xbn46 zYFA#T)YT5AQfto3LFt0MBgJz9EvbpWd0mXtaikeAvZ!Kep}L3&8}Kd#5N^)dn(I9! zDWI;uk%N^o*ymFLQP~*ACUd@{5VhyI{fz#oE=cp%htHEc43W*f<<|55RojrB3QwdP zi#bwd43MY-gFGj#pP)9ETrJV*&Py5ohF9V4gh4)RVJx4 zD+!h%1ZoCx@Z_ii`&v6?_Oa?5Ne`xwJ$AtSylU&T>#P|b_Bz;91A1iOjxIM99V;2Q zsmd@toGb&Yh4q{Yuw>A6srOROXW)F+6@VD@{t4ybfO3rBC4+NTaJbK40x z%F{vHKHZWAcRrorTwT@4|e!d?(wwk0I))He}Ob+)o)(kn1e3fjZ0$ z^vWjadaEtg$SLy%+Iz6~=D~;$-!}@Hcp^mw0Db*=jA|n(RiR7(8f4@EiUBwtP)-LG zNn8@>(~EX9@D_IfFsM!NWkDEYV-*2vFEK)X`WYBT{d`KGXJuXBFzVisi>bWZaW7ZI zHEAi)G$21{Yqs^t0;^dNZyDpKf-&yT@hF#3-{gRrfoien;(Y&}?G+Z10So!TWa{UpGJp zUPrIIRY(86XcSTU+H-0^7r-W4QK`1lMIVJ~)W^j;YTGb>?rQ-R+GZAai?^`V=T-nK zRrr8*Yi+&E8m($hmi{RSxqz*ri=$>h z_Mp4_b0c0-W!9x;^=g~7+J;S?YZ9PjwGUbgWZ+73?KKaSDpj;K8+;MhE(m0q010S< zDCnLy>Ef&cj%t@xIMF_v2Nl5rfHV*|XpL-G8z^^?DuQk>=^-Ld%}#j{49_d#$D67G zuc`h1lvkmyXc=kLq0u& zhX~3e=(=cT$(>$r=@l5VDutRthNeTg)#kdWQ&pnvqTnP|#H?n<-s)gg1gD{?f@4jV zHGf^N>NNGf|2A0-EDcs4o|3X6MD#h{7Rcvk(BlKjhesd__|Bn<-)n3fK8A`00bqYu{7DWbZrmr0f3 z``*pNMd`n~uQe(s6?5VpXrxjFtSIM=8m}BIkhJK$q%~vs@uKtm)`C`e_Xv47sI&Rw zXUNBAglPn?5qw=$IBqt3tF`H@nbzyAt!qTBM%r5w+HLxdIv_@Y>skY# z?y<6(c0do#L(o7BN52Q`#UpzkbQ9n}U7M@#>pqtU4U^H-OMztTp0p+n zqKwYU%gT5JK-U$tB<+kNV&c^X(n;6d3g-7~nON{=pZH<|s2~_)cC~VmawKpH2v-yS zEVfP>iB`Kv*>_Irta1T06(yt2C3q+ojgfG( zi@OH1F?pSLL#0yP-m*+nW|Piu!+ZB%X9=CqP- zg2OWSoZIA#=e6~zWd^bvc8kWU_-dq%D(>SOd zc^Sd?N36el1PKrW1ONUP$e;dd{kBE@L;ns}RyNA6wv?J%9rQjs4s0^QPV@EG-=c70 zr87%`u0l5IJ z4=QD`0SM1na7J}V;ST;ZfI_ zt{V-27VLxBN3R#MENvYrCc4;z`(>@`kG!09KLwK$lJ24t9WkPUjaq1Y7*aC~~O})SOY=BBf1KtRhN;|GhS}X4(yetTpwF4HNpXa`7 zw0rFd4zFkLRjd1&>2HAi{^)(#essDQoBLj%39Zgw?gw>=5y=EvP<`-n9F*Z&R9W5I z1|nL^+O?zEuSLP8Wq>v5$E}yTw>7kYqzo!_M@!P{3sDnhYeqOPHSv;<(E?K*fPe<} z3oMBvK(h}!xAAR!8{fva@ojt?-^RD`ZG0R56O6AqgZ_%H z=@E{emf*FoRv)s7Y&i`i?4mvPcVV{vgu7^%v^E@`=>wqk)r8gtipipx8u3!f6)IJv zp0C)KGT>rz0xdU1k;XzQK$sxq~BR#GYzkyg!eY9tj(X9tuPV+8|)jW4|S zW?Sd@@ND6iSO#7b6+?{%(>@!!Q4vS8i7BY?k3}q<;nDX@_W7L;NzifHJ8EHHv*fxAR1&m4-LeZy(nvD1(#mo{ zc|2*Wt2F~JS5TT;Pi(6tMhHr!^@!{BrWx3S*22p52LAp#l=lyy%MAJVzt}Yw)2k?& zK@27!H%*m3jhC}hcl&Gyn?PJHD%ND#rP_NtrEU$hY@$EwZ$pRAyRNjRvJk9JoDPRt zUn}#{N^p!~+xkOmb{OLTe0Znp*=pJ1Au0`ZHQH**+LjMM`rSK#P!-(ebkH_=%L>q_ z_2+E&tdv&E+T>AnQ7DS(k%+2L2LdO-@Zw79v|(NO*idu@;JM3m!1jq~wS9}O z&3WLKrI*$z1VAf+Ap%^t1km4YG-t1WEl&@~?REd|+^ zrB#NOvUeyj=<%`I1iUMP>Eci-z`WGVyZr7urK$e;C&=Xretdu=Mmb+VC(D{ItL|Ao zA3}hXv(B$znaC-E4gXjRGKxiR3YODOGo(*6DhA2}5;>BDei_UN^LOwTbpzHhMmu z^+lJl-z%2yulWs)-e;`1;vW6E*F5UQbRAE0t@`ZD)y`yy8=u)(M#@Bz>Zb!hu?`-5 zU3DFep{}9*IcR9Dk_D_8_*4LUU4jY1nb0GcwM2Ez2%nYJ6)wgu3d)ECpv*@CiuTb| zQe_r!*QV38vA}41YroIPZm+4Y8*a(nze|6N`js-U;wdkGwDa{PS9+7QWwa`}XCU3F zMc*-mTNy63vfMr1@W20qY~ia0=s+{7yFmSKbxg(TLL7{;Y>({?E(`dk0Jv^Weg9_v zt1ZAzW*0HwA)ukY2zW{Az~=(Ka@}yM2$oS|IcmEM1&ket zH}(`~*$8hoY|$02B+T@hYGdHHaW11EaTm%T4cLj2c*5GH6~P zrvvhnw!7k&6?8S#Zx=Um3Yyiq`u&kLfrbbgM->xeR@&tlTfhncK0af(+_b;83(oaQ z;9d(20IRi)D!J9VcclkJ9nk1oB-R_!IcINmcs;%}>Yw&yzC(kq$52%V7ogqSj=sBT z)fEEDVFZN$dOiampAnwV2!{z0gDUesJ?LeOj1m~(G=V;-oK{XJE)-R50=J z26=t~K7B@*Mzxpc7x23$0I-q`Mm!z$bAXC3dg($45LtlpWlLAJKj}JyLjXio!!_`-4Y+Q+)5l1?d+zA z3h9|WR7!mk3-C#My@-`hlI}x3-#edovscv@J6!im&$$zy{(C3>zIuSZ8D9ctMF7}h zwyUwN?}tvT>YbadE$LlH>5N`rdy55=6#1b~WpWz0K`dY1t z5^R9Fe$Jw|sYR4}bwdQw$Z4v?i1xlR8q%=Ho6Mqjb+)wERoIVW(b!Id zVWZKo(PR*H{7V6rq#qa5Oq&OJJS*)Rd{~MKD!Nb5W!GIW&edyq7ZDXgt0_+k$ZJim zXDWIu%H9$Y)e&;#c70!Km>AGHu@ z%3$r%#9D)Tn>E(`tOTpUb=?NQG*4RQLWMh3^fBC$bvGdmRPO-*n-l6;y4{*WxoGy> zRNesq*BfYN$cHDCLj-@iKt6uf`?nmXkrKzCr@gZ7uR+EB_Um#gYGyn9p|F%a&y$1k&L zexz&~8a*Jf08EU^XxR&5g`jJ5N(e6zm`2DnXx2X$6{a0fGlOMP4WZf|%Kfz><}uS| zpXmX{2C&1}k_p!Ssoj@Nt!>%;yC0sn;gCN5>XY2)qi#%xz}{r2gUn(>~`YT%Fr|6%sN+ddr#a~ zUlJ&(4XO^7C$I#fDsJWn6}21xZa;s~j5%GPHWEW!e^C-df`WDcVC&3dU7ji%q=It& zO}zjppx9&6X^N~y-54f)OTt$fbfAIrK4|6pQ*l;R2fC$cd?6CB6tIJILhB>H$;fx} zeDgg!oA{NW)IS1GeBA)OH>59R&3mBX4pFg*(`AC4;;QF0r-RKwp;A99)}jDp3uu;_ zJqS<%h&nPFfM9h0Xp@>qDi8>_kMTHizEJv|cXj`f>twtI24Ycn^ngzHm zRainMrLobPDy3%M;;fHERqDD2HY@{FMK1i(j}!8v($a!cbBkU_72pE8#ljqezUS>1 zGUom00qL7=7t-AW@)8dpn>l5R*v9YbHm1YSY$BCSnFLeTK$Qq&2uKf6sqB}eVAmb5 z8>+&yQnH#k(%uOuEm$RJbG-`4m8~P>i+H_qqdvL%ySIgM1yro0O&*fyHLlI6?A1T{ zGHbAEO`7!_qV}=A-D>L}y(dYtc_J;UEk)JV9sHdyz^8JR*Kbw3OjBofB<39b8&9#A_1UG;Myvuv|zJmPpmwP z7cZF-&2}<@=d7!RW!v@M6%Fd{<{FjWz7_@Ex7M-_A)tK!9`pAq5O%mVpvW(lef9O{ z!I%ig34EPVK7MM?xU_(AZxb7EJ`QTf&N_K(;Cw%dF-tsn1#E@({C>LdqzC+L@Vlp~ ztS>KTh_7|$iv@lek~8?>g#5er01?8EBk;pd)qW@?@L_7~h} z=RxBQ;5WZ&EgC%Q%0?iX>0h6QYM){5KEHG&O|fg+xMnMt+4;tRF+1;MhP~U1X9?e; zP4sxe2X|TKE`wUL>wT$5XhByDvH8v^Td9w+t=j>@bG_5(#-yLGZXbOA25y759qY?5l`D32ndChxz5de___glH$<#{qo=w7b>p!Q)t4(s_v44K$pX4Fe|@q$=&;Caomdu)L%+Zj*+iTx z*Z>;X-+}JUz4gzovJHrI_nZVZQ}5Z@3eH6;9TdVSVVTt;6tpvF}D=H0+Fu1+)6m~ z9Mo7NwEg?$w?sl2G=qnvnZ3Ke8KONqr7iIKzS)f{PVXp9HPaV^0tb&|Kb@4eoU?A4 z9Mnd<)@oUrGJDND2~bj_s$I2LdaX0}d(Fx!;9G+H^bveKXol!=G3Qu74+r26zXJf| z(+K{21uoZm@2lcCbc3bC)H+$XgJtw?@iuI4v;>5R^!|FL;uy7d8PKu>|KOThrq%<6 zfhzzkA0CmOEZBHCAp9|_l6w)&=sp~^{o2bF{Nbc!6~LzL5#1D^!rSHK)-I=(mF)CV zG-J(m?#jSOhhQ2ES%G@#I)QZ6T5PS)^vk=O;s61S@?NQg)!~CWKW6u33R;JrS`DCt zmMtQ$FSg&J2kCsQ=d?O~gsz4&ms&>|ZW;9X3>*$xv-xsuZ6S|GgPW{gFZY#rUtyl*UvS9_MqI?=$s+f4hXqj1Xdcn>43;# zM1Gt=c>=%8$`bUoHgt@RHG^v{t=bj5tb|Re-E2noQ^RZ2rGXed2feC`ZM~bDJyE}R zb&fyvLAibyyM>pcy{>)DSlfC6W~6s||H~A#Q%~RPe1BdCX?@b8w0r$#eW!jDX%8@T zK^`9l);HxAy^lH$kfUkUED7{{dF?v^Y9FhWV7R}w$@1o328sJ;TVP!d^js2yCR)Zp znOt2!fxu1gDP^U@uWAbt&1UMFT@Z@dOSiw&3_BUFai_~zTy^dXHhYf;wl?J-z{YoD z2iiS=7dw%$#k>vC?M=V&iS4}qC^qib4bY9wTU!Zv zX0}_vs|Z#puQI!vtUEJ`ZybRTR})%bb6xxIRQE40?r3MuOv9<58x^QvY zb&=Ng2f8p!xaRiwJTYYWAUu zvJ?T|v|qE#i)KidRonXjdT$Nnd9X|J)^U>V?{%yz=zK*i1^D?BWLdy}_`ROS&kcYc z9Dn^eb9XkRz?lPOT=Weu55HJcEKV(&zMpHe>wx}it_z$^!it8 zV^8qCgzB;YxLN(!Qqp}{u zeHMvwsWsIwW#xW&k4&Y45XkyIYu{JHr%c<0mphOSY1wqKg_~*XBNZ25>A?9NU!kw_ z@Xs~X&=v%cf$D2on_f0`;@%rnn7|i+#IiY}lr|}9q}8eSdpQmbwC|l6i|V!r;P&lG zWz1QDwWv5obz1jXa5pkwQ~%@l3qz;|MLSAkJBKZ{Z*=&*s5W7Pm?5L}$BY`_pxlC5 zWE;f2i~xWN3bno|S8)znbL|%^M6KO)2iBX$1Kexu{TOlr=?ec?s}cl!;=O&ZnLpAO3S)- zHO$3qsi)hPkDq{#fGjKc!+YImKELR{AC4&J>+XT-?;;`;uWt`rH+f8^cJ2Mv%PwdI z)JQP((T=w;$eu|L2y+Iqtq(D_Ov4b>@w&~bJCKV36V)N;yG?lJz|Vn{lv;b7R4DLz zQwIsy259Wx68LrJ1RtiR>+8OkWVn6+FL@)h=!(>3FmX_GNI2O((d|VgHq~EB1!3*> zKKnBt0@8z0*>O{c$m{zkOIx$^c72iKPz4t^L!@<4ai?eZ+v#!xykFvTPq}3trc?rTYyM1Bzu9Y0aHY7(<2V zZP%Xz8wQ$4w_7@xivbXBnlV8G@wEg5c$EpS#{-rGLt`>5>o$4V`>`7ud*@%cUu7jE z7!2yo3uIkeGHW)VTGXE2U-DIkf%6z_q{+P^Liv`{N(2@_oC$!hsK$p;w?)#iYVgZ%z+Q2QCIYo4}F*SwVgJwdTYYT5TcK0d=^X zKVG#WsNt#HChKM}uuD> zVp)K4h^8gdi7Y0|co0BLN@{VTL}$#DW)lw1%fu=g2Y`uHh{qiqKhA8CSEbPNYLs6u zMJcd736Kyrc1YRUb$+Sd)oIFQ2QEw?3`A;!=c_)8?>?Z6gNgw?pD}*Y8uT(S;-{DbKbWJsn4Ze#7k!R?3DXFgCg5_>P6}_4RZ>a|Rt$sAr7A=&(jmAWR%Y@3d+5dpweu)?FoVPc>sXX>FamKsDS%=)AOE= z^;&S7TirUKHeJ*Y^kj_;0TN>i8W(Eaa7ik=Qt-pShR)WR`9gD zw}dT|rMCFofsy^#?{ysmg^~%wi73d947zBtBc4qIAQ1S{I`Ifo6U$2)jHgurKHZkB z&JVl)d`F1yt&HAh^ztx&CMi`S5`Z?3V{Gg?PjX#ub-JNQWmzExou7RNnEqV-dg(qm z(6EXH+^Yu7s=7}VppOG+S*uShjQTw)*hnBTN)r|c+D8#!(5Na|_5(oMh*L5# zG8f*l@`BR@nSutY&Nl_=ml^T43*f}idTS1yCtmt}! zT&`OG{qO)tX??Rxu`Ez9S~+(jM}4%sXtr-05q|p}K91oBme**sHkNR(BPHy=Cx1 z3Rc!`Uv!p~)hUWG$h><4t*W{XKvlU5nsPBv0k}jhP1|Si>b|nB3e3KLLU}ysZfq8b+f$~*(}3_73nc`d8zWW0aUV98+u{qPgydPV-r51^kv*3*{T41PH2x)TG! z;Q+Z@)y}$dn=0&Q*WfIaTBc?}Q99|l^BR?SA=pgrGIMLj=uH*(%G5H#@AwX6+~d z=w4k*K*@ZAsI3HtsJckko3gGh9eWBE1UA1}21_P(&pS;gNt+HGw>#QkjjN-&S=S zJa^RDOw$}f7r<(PtbS}*CLVkiX+Eg{;0&wV0&yTmUPUGX}sUFZ7m^Y zEsgp+gY>T(pjS{xt**AGC3se=k4W`&pX#(o%?bi&hCpI;C{xJw%%A(e9Z0tW>V)bi zGl4WP*EvmfA_mlG>!$vqALeAes>P75?!tkGQ}snEeUEyIyKIHo0O+P@ZB44slm#uk zPcw?u8(K8G0{U9V%a-BaUi)38bvr*TYpZkT7QJuE{2fi*0|8_u0x1C;K#{kABWV2@ z5vf!529xN31yKguJh~Ph3bJFJGqo0p(K2M+rrnD;`SCPoP_#wSR6eT;dT(p}^>pq3 zNZPvVEf2M()o8f|TG!;+I)N?5Mnz>boA4TQAH59~dA*?9LfzAJX-;(kuPm4~=|(&Z zDqiSns@J(vZDn3`o=p=d21x2JLt4~z_=SwMIRbQ0DlT1aYIl|`s(sRjsLnub@6v*T z6j(P>qh<5)sBMRQOrz>PFafvQ+suwIgT}D}GvuuI0szXa&sjvXcOj_wl+n;-2vxYv z6~qDPvkAKX(D|y)k=1x2hPJ-dYv>%WexKT1rwq>ULIt}_1eq*2Ca_>rsq;%Wel2GG)K;_vu6IiFKxE~_u`Bj$8bMX@Ee35C;>&c}) zM`8vYRY=gaIbgJ7jL`Knw0hy{?^vmYwh1)RQAYI-y>zh#gzb8Qx9cSREP0n7^X)XS z>_9}CB6bJP>(AX~2{)s^HQnB&jFqm$r59xES&YU`*$A?_eTZ0lNY?er{en`|Uzqe6 z)4Vj_@2w2KM`Udqhp2u}-@?qwH;@DyJmG$n2p~n1Tz*<-?v?_&%~pof(W?8k7U=4^ z&ENU|*n86+HVyg4RrTIqwl?vGLuUz?lvE6aq}Q`yD+5! zxqNnIf3X;el|+`-^@qdUf9?PsfWbc8SQ534PlU5;^@}buuxgN)mFaNkJ%FZ7jWU-S z^xDLXfd`RmrUM#;glK^hAid#gIBR$>SuMaw8`h$(aU}Gb<1voBd;~*6*&EV21n%_yQdbDNmIH0^tKHt-2700JAsBFM0 zSy_h_g$36U70^uyq3=`&Wk`=-Sm^6(1*D9j&f$by~=ZT9TFjZ_#lrzzR3H&y&}J#KwrKAr!&edq-RKkbUc7wUh1X}t%R+ctaEj1+$n<*h^@{WxK!;J-pywI%;RWSyAFEBgp24qga$l}9 za5}4Fr|VbX$7t5y9pa>(q`*~;F+DmdY1srmsg(jG0;kRsO~mR9d0OuP2?d| zzH<>`D-O{)v=Rt)tg=?oHGyRkZ^%j*H?K8Nu-{=2cT249kz99ldwnklXf|=Vf`0#kG);~=Nl#Cpzy76G&Az^ZzkU;U;B*0hdj<7_RInjQt%x8Z ztBc%27ZnC0gD)37S8n_UzFegGHA>~zTk@+}cH?O{~4#$%E_xxlpu4dT0>pg^rKD-=Q| zo)MvN1A8YxCcm6e`<=?rPTCjI2KV}h0Vt`QjYy8}4wik)oRm;G_pvWZ?1CZyRcGC@ zYK6sMI|Q11QCXs7=Fa(RN&5Z2y|u|kK$5lNAnV=rTJ0`pK_0lOOLf4?Z-2;pRzb;-5|2H~i0Tr2(H5Dm zt7Lm!s(ZAy32?3zc0kr;485<-dSGy2bpP^M*0Oa&`SvRC^qe&?>1u+~0uHMZ-l-Jw zb*}Ary8;QeO@f}81Sv5NV#f+srB!_gg&^BG0&o_T=6GJ&=87JP(0D7H#9rJaiLTgo z7{}deU<|@bcpvX=LLWw$@z6;RF(h$^`Ht^o!I=>N`}eC4XVqTw6_`P9+VT^FmPZ=q zGZIzwsO_&nea(tkCD-IS=K7xfP#8Ozl<}4&;S~#AVZE(=O$#ymPp|^~gsQUif~IpT4s<*<4JLgz{IF->2cxvbnl3h)bRC!M@sK|Jwp{;7)LE zZzU4aV?g%dwO$+A|DH$)9*$*uTXWp&++O>8@#4Q@JeY<38o$P`@oW4Vzs9feYy29& z#;@^f{2IT;|C!_GFO{TD`=*mHD#xr+7vRrE05FZp9L^495V&3FQ8I{w_2lYf+GjU) zc(I~LPBx}Rr2pJ9bEsLQn5gjsD9odI4le7~e6Ljkjr?GrVNyoirvDrOt@68F5<>e} zcvj|4BW~#@&&2s>wVw>7NVQ_!q+ys+o88OURo0=>CsYvzeP4TMfRKr_-^Or)H-ocx zNg$|puAa3I)n7p8guvhV9vuHCA2bZ2#hjA#-o*@i5_u42MUgOzO-w^=575`rIaEdr z)}5s9oQT0Cf$WyW-tdCj_Mz$rHx+hB70;xkV$U7`peMH#>9s|z)Ofa++qu2Vyf!T! zW-BHO#i4ehHbDvjG=^=O7hwrDf|utf$!dFrG=W~8!3u-Mw>R+ltd&!8_?nR7h3chc zc89()7bgN84${92081~-+*+|pkjjRAcX~cbKlIRpPZyLgUj#kkM49>>230n4v@Shl zzb!o-fxmo$_4)JbTa`Cf23`W3bS(Ylv&f~bn{W+HRRJZRME&u)BL0JWYFSZJ;%0fxI zT3yrWP4COP%6)x)cD@KYU%`KT6`qL8ER|hj1s|21^mqV0{Z+_?-tS1b{p5oVlQ5wJ z0!KduqOp|Zx-tvIJ!f>EJ_;e?Jd0AqCbmI28SC3N&k;ab_*9fe~1lO3i@EoZ}S{@<+(Mx>XiD?kw;rg*X{6kA(HY)^DF&Cn~# zL3{za%!1M}r4p|)YDIk*fESfvyFA`L;qe4e35mntB2ukv{4&!d)#MlCETD>i<(@DYw1K z{6j$d&{Os8hyb>pazmPgYeT3+y2c#@d_V5-eTx+xw%a3Pd&mBHgkuK&i1u3PwOdN{ z2laZpOtW#DY$og2`jmkB2Sc3`KXN=kfKHVRi&+*PgQ8|7Aj^6qtw*Wrz@!xWM*gz~ zLs4=A(ghzt2>MeCYmbm!Gd5|*u08EGFC$?>2p(kP2*=s$!+rjBih_1KkYMXXv*c^Be*t)Y?Y5+l(x$T_=fXjkz z+1j~giI>ou@jd(C05c@xEQq8dPUZVk)jlkLCss9z zUbzN3lw}3IzPb|(K%Co;FW~2+z@e{e!!G+UqwB!O5&3xneSSjs;R)&M8vqFW_HvPA z%(BQmm`3o^1k4?9zN!@40{*rHsI=}KuP1cs`0~0|f-OM3mfhNDsv^l8j5_ZC0KGuh z698Jxc?exQF^q-k*}J+4CZ6wXtUJ+qQP?7?d^e zVyc`f{#z=mHYriAZ*!~!a}I@1HNjQT`a~TZ9`9-+n$T{7^N_%{=LrDk>f<&0;FfDZ zr2lVHrjZqRez8;s->^+SFLTF9&;v;kORc0sNvTHB=8`?gAN{sDem!R^` z#A5?BA+hQ2ztdhrN~Fk2jw#$$zXJ4s`>+bH1$)+iWEy~$m9+_}Bx3|>gB)tPk!ggN5D5vn9{n*H~xchSXOK9`umS>{c&iL@2bvJZn8b@7kRz5npKIozvA zctvp6|Jz95WKB|Rn>hSdO}{Qxw$JA5%HS{GfJ7*Y-f_)dtFn)SR^8Wjt^?q8lb%m5 zLZn1gGxHGpa?&J9=w6;B5Pv_RoX<$c9)G!1k{Io|H0PE+yolq~Cy`e?T^cs)M;Uy+ z2&vo9p&SO3mjk+4*M^h!jYpQ}Wd&W5*vl;J_;fsqgSJa>@bwBTom41}DhXyh9^Oly z+BLWrhG~ipH6U`I0BGoxFD0U%vJl9{KwNFAL8)|TgOFHp(B}wJ&AX}E*@%IHp<67$ z)~lS&oFzDq=UEu(tdF&y-jxxel$ySNo4nBA+vGS+F34p!tA0HafsQY-UcH~dmka1D zXgWGwP_$yg7Ld424B)2;JS3!flX(%V#}6|2dPRC4kor#ciRUAd7B~2GZU`l*lYNC! z0$;Bv*BR6gNXG+s+fXj;no?BvJdFdomuD~wKMZecO}tZTNHNnmROO1of}&!UL_uMx zjPIn7cv*lJjGE;D03ZNKL_t(IS5)8FQG_Jur&#fBe5%MLWC4V`6}L%dxfoPYjm$xA zum*fNI>1UjR(dGSwOvS%L=3|yoc@vhLOj{ z6TP|m)vh*TXxG9Gxgz`CV+*+XTk112Nx~+qiS9e8owx#k#S@kwMrw;LfX6vaQi`3n7FdfH3_X<@P02C*Ce=HM@{}Nt0q-sZ)ga7?RyM~qv&iW&i;Yp z=MK;TnVhGSI8@I^k^iuZ9VV$|mc&TzNEY04R00&rm;ilJ#4M*lSwQY2kxgo*pz~L5 zkl*&*e_9v3R}J(m6;#MAN$^mDPHu7!tEm=x6}waf0RVxrnKNT-sP~*VBTWKiVPLN8 zmc$CH$v2;oOR7O(-&aVF8`^F`^WV>Pvxu(+A}l!ZCD6Sd0F;F-L z?mgaD0qnmWp`;{E)S8=(fV&PDP|*T*&TNu7`rf|xK+OYlYUi7rt0jke&>(Z#^fGCh z1TLpYj(ye0{!-V8#_%|Zov)jdCN*}X6?^Iu%DkeyN>$y0d{B~eu;&2LykAz(bw>H) zt2ow=M*af;IV1n`e#PRtzHJ#93vfUf+PrC7^V=`^QyVqG6Es1SJ6? zod*%k;I?6iuav;F)>ad9($}rR@#6PDs(ilR81!(@P`w2LL_qe4!6c_x7}-N$V65;` z$td+W831krd|ETGl_~?Yca;2lRpo)%6A|o$r1_@(%7(8|>L8I-({oW$u-$qBR@&^d$NPO|6SQQGYh_H)hD z8G!1m+jrYOrUZ0N+|hN_E>>=Wo@E6za7_hB<8RgW9UEvf3?>4=HO*0-FfJ{8#CwyH zX|z}PE*rbGRW9arH{pZP7=!h))`jGFknf%shjh?k0<2$FSzY0p%ppU^yUKlZP!R%p ztI&UEc-GPvNB!OAoHBz*9f+cavo0!Qp>X{VFOR3?34lI*5LnLZJMi0Aq^CpG@+=G- zMh!koU8Fpjqnmon?AwSzY$+8o=e7|RO0Pbkg$x34*+N_J?>a&dN67+U?NdUM#1r=^ zRK)e$nZZFahl;?2HSH{$TkpF^wP~u3lG{U3n<(0UKB`TeuV7Z2csfeO6cDt=^(u~J zmdrGT%~Yiv{4ptt#GvlwdFrGzLU!r$`iyTjvw8gNiQNFuNVol|>{%2bup1$3Cu z{a^pM>HmC$k^b>_v5DWmfdA`%NBaD!YQ>iVdVZF~g+X^y@>VG#lC|aD25nW^EY)O; zgUp?Et%)#0Z^deQaLTPB$KJ-1ycNXl&=PD4R|VkJYeoSq0B1BdVc%DJg{7-kmR3P+ zu{{q6gx!|pMqV>i-nAOS9Z9b|fOM@+B98-j((_xhpf;2bLyKGNM55qr*H%?5Gjt$uHOpFTF<$^AUr`=jmI-ej+7 zTL53L5)}UJ^W(LB6c(<7t^=RW;BT+MFg83)wY_O;E7~@;4V3A|w`KF)wTQ%~WZ!3ao^4RtYA^v>*OP}rP;H*ikb_S zRZv;a&p$j!|G5KnK(g%5N6^rNzrD8b!>Dby<(g>$YIex7tv8ZlHOL^XHhVus?8}Y8 zd@0}!cdFs60d$ajvCnuQZ+(H`xEe6?O@t$_yCY+Lj`5#mm+f~pSzjY-OETd!SSGt( z<`6Y95Xr0Ve4Q)FoCVC*$Nrr`6c#Oo*0|i0RSIL39lM3E6bX1N%OB-^3<03Y7V3Km zQjZhp{qY@pcEkj*1sp(4SOb+{PFuAat_4F>W)1fD2{c8O-3>zgd_pnE3p4UNX$yAry-FpK z?_=!A!vxwiDA}aHmWBcRx6dd~BT}@@M;X%yemY1z@%6QV`O94I>fUSUsZa&CYBhnH z3cCBRiNsH}BzdTCyL_1?JJ+oiKeQNT$x12(Tsl9d`^w-110eu(4e!{C;5R8${(u0TK-;@izZi}F zcvwVlART5n+N(}Ex7G4+Oxho}Kr&Ip%1F;Q6%}LAmWiH2_DG$kO^Gc+k05}`GHnO} z-CTH`Loay!?YwQkJXa=Mo7}n>?1%R@*?Zz^T_+jwK{D&coa{rZi=@5ge*Bn3@d|HE z!q}_cJEGU+;f8TAOdara1jU}?Y4mKSREISHjZOnmo%go!#9-V=QTCZi>l1B8seA;% zCY;f|=VkNBVv=YA+fHIOfJ;BMMmF4+GZC0xl zMCvT+8cjRRa!0vj_NpJJ1QZ}`Ye3GRqP5lxx~}R(a@&6%_n`gS0o3C$d*YlAqg23c zj|${VuG5{f2jgT3$FB1v8vwDL!y(-C1p4>^W&EjKq(2`ze|hSWK7SHoH(T$gN!FEh z5oFHLYm$R1Z-zZb$pa3l2o~jRIDkl7?;@v7&cc=9ewnV1hJLVpp6Z&$*IDdl=xfnM ziLlUh;-4(51X1Ds(~>;sY5KGQ&}9KFyY>?*KuPG#7A(mN04dl6Py+$o%WlXLJ&|3I zR<3)jp~?zwgOHp3a~Gf}_X{gDpRVfbh1a=D`dg)1@7HRFh6CWp1Apascvzc=NLlVX zQ3#0W5Nmte7!7P4T_xU&^V13wYw%zD9@L}WYxi+W8-#yv7$G5xy>QwpQVWoKY*2NB zz-u7@iNp?V?*VFD0D!iwQ3UYgk;VwdF28H>qm*PiHMXMrP`C_!JkyE?}niTH0DT3>AsHVRJw~wO z$J2y{^*UMRJ3KZyCInfhDlJ8xlzH>uVHA-}JZuq#|Z;+&|0K z`>}D?IUpc#GXQeeL-J_oPzK?BAS0uSncSR#VgXULC3(EFg*b;|A}gE^a;RcN!WHY$ zds3O7EmxVcS>U%c^pch4qU`H(?PxrzlPk_68{|=gFy~(&fpeyu{g`~YH0Q{Tt;pw` z@qG=P4`xe)RN|?tYg>9h1MdL8KVAi${`iI=RC?+8sm{qxlZX*9 z1lHP`0EYvc=dDjg+I1}XVSEh6ZvnVpA#FB5 zxm-ZYf~KEb*QRnl3%q@(=q%xPs6n|N%#Z0jHb6~s0&Stds#<_2HBFk5&R3Du!`2`t zZ{Xueq@dV{YomWh>ZAwzjR83m#3t+-+RreX7&_l$EeLVjO9(Ag;WKu8<~mp7ebT=| z+@*=<_13ohK87~5$|t19j{8L4)dXM~{r;xYRgV4kc>4sO&o#jhRI*~Awi?)asRV6J zB0dDgO(hzTguVsLWCgN656W-+ZNPnQM~>PW3Al7CO@_p~icbOr!np#*uJzN9v)cxg zRBgi0l(rY`WFL(~uaBmNdZ)dh(g(7>+Vkb*T z#+b~DDQYvs+5&)z)B(KR<44C6KX-txnN>E~sG+Y;5+FAt7r2gP$>6oXbT%n0YRyQy z;3G}~{YwST+}WNJDg??tZ-4i&59lP_08j_-$F7hU9@K*pkT*az z78}?(#Cf4jhn)a=n(G z@id>=9ED{SnV5Thiw`i$=?uDF<(`aMfr@i|%QfKJHVJm^{xrdL2%3QgX=0k;0BTSX z=k`7+L)2CcN`UKjVX+6i(oM#WJLuxRwRTFpvs?WhvZ|$>i=Lwpfb4=M`^%xyx!VkA zR06OrN#e&yVG@Ccsm{4&fwzhbgI2w%p39CQQi5mAZ09UJnpf3NB}qK_9Nx6*+I0YF zzas%cKO1@ds6da5qOvwD@t0xa0ZR9UsL0`W~#prMlghA*}P6v?V+ z*LLIW2g$4K(*LhK5Eh(hg`G(C&-+fC)c3O|UU=^VJisV#@4&Y=P?rQ9qE&N11L1l0 z77tz)3Nn3strGj+>jL(CL5;1D9WNV_eB4Lt# z^W&r_#1MFE@)ba}cMAH;fUs5Dxy7~d&OTQX5Bmi4z{h%Ep@+M9R*ZiJO7J0PH=Hs=CpV>j!36j*{ zy)Bj8Br+_CVhBm!Q-0w1xdU`a#t2;}&<&G3uqsD%rkVhv040eot3iC@#&4Mz>#L2K zu$b|2N6i-c8o>Bs-$0hQJr6x5<=kfNY;u*`iFvbO#0eRHs~?_g#x0H*+{C`aZId7Y zke*u0nvdGQXQVK3abT`JHI`9qq#a}dp=kIApufsiamSP|<|rJS$UwsYoC|=Y9rKFYxGT6!>V6q5`u76)MFN zNhzD8WbExr@?HWQ0^aN^){7nkT4vC^pvzhMzhjJJ&QWywEg&%4iODg*6-SWdC;Iby zv)J3RpJPVSVgg;)`kL+&)MoJ`F$$$hZ^DOXoOC$nb0jI759gkuc zi2x;B%&+hA`go9aY*{4n=>ALc;JuNC%5a~=TZM)JWQsfLP*WcgW<`-kTUMxj>-P{) z=TfY~?|h*q=xCBwVmGw20Y_DGMS@A8r3hgnWdHKLBoN2lE7UY?i{G)g_JnH-n#+RP z=sSnw`fI^=B0X=}qn1ka+V?e4nMeY=MLz1}w+%SRO*#41G|6Y@ zN>t}neyhB*z<=p5JtSi_9VQ{PI4AJwRN1P5X6{lyX=S*R%{Xc|_sWp3QaTI?(rFe( z%eoLJcfP;p0C~2a!rYIEfuanf1}(DlV{Rm)=$0B3d4a`LoSmq%;KiB#8_TJ1pBVKB&PEaQmLLO=GE3HzoR?O4Oi+t7~YqKO>cwKNcP80Cy zMQq|ai@vsMrc$rTt0%qxfa`BN6rPeK$BL=KJMm{op{Y72-t-nO=vTzlWTx;IhT z>i=!uh`cFx$Qo}{L+rXl4RcMF0U=@LpXYiWeUhN)veb3J_6Z_EaO46$jNq}Cwyn$D z>Ym%**zXr@)7qqRt^}_}%6B}Z|}f*M#KK?EY}6;(?{@! z=Z9o*r{fWrM#<59`PL-lZT$cM8jnaHKe$>>d3~4l=Q_(i`*d`o(GEcV_Ubz5CQnIy z@0E6rgqeMnYU7->YMyIy%ZTW#3b<|6C$T_YTZ_E{P(zhzz9`|_y6=S9fO>mcn%XO-*V!&I4<{ry=s=WzgQV2GiY&Bq9`#-WnME$gnY z`%Zw~oEx=^H309C1H?8{LK%DTkU$LSacu|`*%M}d-uuMXE*Q9xO1$H2HKXe!(J_qz zVK>P^+vql7H1@WTB-es-miep+FG8+*+IEGyPAao;?t8+kNX7hkkogV?%*)%G+ogSu z4hM0jasiaBKRrG9Z!4F}ZI=82A?`k`suf#zo{myAIiEq}fbukfyG~Hx*0;WG;BT*> z`2c=-l4DGx%mrg^KOVr-DDc_y)z>fp4Htl)$36%!I3*FFJPK}a%)rp2JdHyBSQzQL zw&aarIFjT$)dtGA?UN7h_oM9-xkM<39zgHh5Y5;!Xv^R(dF2qRI=L~aun*L2ows$t z*okwgiNkN2e6Mm@{Adwi064oC~q`Fekii~GbL$*6^!yMA3re%1f8e+QGO8gPdy zeHatRTd7GV>o?y@E!Nn*xZ}GtTt}uhq*7gAt`+mpCP>#nx~tcYhaNl*vR7V}PiP!# zYsbB6`S;p$e&%8EgpIhqSrKbd1&(R-Vg+@Z2h761&^u8p`X1?cs1lIFP?JoGRB1-q z%{xH-2lbDbsvf#ZwR$2(eQbJusug?tj(fhbxBo)?6>GUO+XHG0vnSIADgiLi03_vi zD6~DqXU&>ps9~$78-(1R+apTi`2f`>G$GND`$j~~rX->ci`U;66^%@#Dxhwg0G|-;O1{3F0FhP04!7A~H}k z^eVrSJs79~iDv&w0z;Xu`yMnHOh+BJs8g#wK*{vj4efBf!m5}q%Qj73x#u$+Dle?A z)WW|WVJO)ZG1qJ#7tiMM%ahC_)p(?J0~UeLT2C5}2bq7D8I+Z5Pb=-LPBafac+g4! z&@7s>R>kDfJ;!*%X(Ad+aN>3Z*?C?ba51y@nK? z7dbank`X(H7~pIhcrKD9A4jjeH+HiNX2=p1i5%TS$D^?8Yf{Q&BlEXc(9om%+h65a zTG=gc@8UOhoyg>Lom9Jmb7es~U#I=D9AD|%Ap63 z!qiN2U@DKtycdk@gMq@5eD2LA?gR|!9(s8k`|9`K=TJor zw$0fx$Yqy2nBbFEY5(yz`RM5)Yv23XkL40vpI+*k@a3BmCGzEZQJy;FSEQ?lZbR(gw6ikIZH(V z03ZNKL_t(C*ZtO%5RQlXJKj#-rr?#{M}xS>cw$-VI%Q1vPe-|z8b4s$z$*(H%jV(G zOF`{&ad}%hC`xhCNis?crzDAMaPBss6UUWbj9V$TnH0W@SY>T#pstgIrYZCo!REe= zE6(riy<>BxLE8p+$F?!CZ5tC!Y;AOIP<* z-CbAJd7KBpB~O%BDM@~9t{3(y=Rb%P`YhL3amm4_Y`U$t@cuDb6G({KI#Eu1sg_Yf zk9Mu|s>M?KMJ$0K*bcr_lZe60w|t;)Nf+W$g&Hqt&u0L8vGT(18>4^l{~A7L@C4l; zexx$f*!&*yOd2WpjngIzBVHLx;{^HxDRD0cZMC=~RXm~vJ~r8E$0q&^L}5=(2+VL@ z9r}l3`}G1l!a6|HlBGw;0N4X26`hg*U@c9~eklq-*Af@^in2(WL_Q&zebR{#u}rP| zea{7^p+I{_100}f`v&k?;tL!vZ?fT&vxPS_BDODZ0WEJ+(GPp#EU7CUER81@#rCNU z#R4W^T^%e#byX&P1SogC&=wi2ieMNt{D>l`5>k~xTI9`DVt|{wV8_#hP=bd?+1$R# z7E}=P62&WGi#XejAQPx+)$^=LtLl7-F|YXpJ@sPH3h66F8XwA(%N*Ax!cj@Zc9yWl zCuCCE!}@Uov{`BsKjpFX0SFn8JVqn5p0lG*kiGKxc5V!!|)8cjy{MiuuzZuW>cGr$|F0-8;Eef-+ z(sah>3c)$J!_0$s7hi^UHw4aGSo5#2MnAa`8_TdgX%ti3SzfAr(w>GKDP7UM^ffce z#7DWmea?7LD$m7Fo?Xzq*t*nTg}?Bd6Mc0zkJo6pDTLWhUFIfQ)M>2abk*0;E}cMP zcAt>}pGS;ijA-*77$!rFJZ8ZK8s@kdxQu!7X+f(_)UY3PFSaEQlmy*${d`4YMxvrW z2!2+0y5&6Ne5n;nY>^RUBz%6V-#CbH%C3Hn3W5NRHmtNmGR+LI2hIcEeL*G1wOiU! zRkbrj9xdgK{^=k>#;9);7$Os7uW(ib^Z&4viCkM`i!61q9++=ozk<5*gOF_Rw=I%Y zu#qUP#1t9phxh2K$a)y)Yw%%AOXVE%mfk>Gq%b#=aWss2s8^-W?q8tgFGIWN+X^6@Vs3`WL5(xqj^m0Zs)U2cNvxev32O$y`lubJ0m0 z>Dlm$R-%G(Se#gzR-he+p$$d9?r{AmRV29KsaD;6GCc>2vmMduu|I(WjxZ&QT+NRA z&^$x=Dc%)B*R*Ry^G9^5s${(rh(fT;P%?36t>qRNYTT(^IP@hUx9=Gs$EC<#ckpBC zLBK2vyh=zRR)TBewzTJ@fza|h5aJgNL<*}82b0`l*6uZ8^vzT8A7tyxE6F#n6TZHi&aSmFKN>mh|*41_N%fL)~uG-H6T35Ul4SOU3_bi1GCE zNM9%n=IER=xvkAp5L8TX@UY!JsoA4=PO^BIj7DMHLg5FSrw62fA2>bjx7@&g8R5tj zT%KR);*wYYtkf0;TWFc@z;5*#3>PrwR!85AR6bx%T|Xi~z+-^x{}+@;AHvc4sgz@+ z2%nXnxW9oYAAn6X;9ajf0Z*`Qg*=lns+iyZ7g9^JdAaRE4vSFY-wLN=b$-=lK;l}# zI=&#x!@OaeA+&_lk+D5awmqHS^6(s{q^Iz;r3d$_gp9=1T8G!VPpp-td`;FT)}$Ya$Cf>&-~o{u|UgVnV&w|Wznmu{5UcbiQ^O;L1}<&-G6 z5HtC{GvHq7Ak@@B-~T(K2f5vwOySoAtUfFkrF-8?FFg|(w#8|{5E;zzUx=7ZA_a1c zfK)8XH>0bC@E-{}_#RWRzP^Y$QgT6JY^JtwF%?x_2{}z4)BR~8I>Zmv_!8(*)DCi) zveqsiwT*LopAe>C8da-?j`K1yk_jKZRP?xhZtuXL5&7?utvt%r+Zt!wBY}tvH!FdL ze%^^;$+05y^|$zVOI$`diw3TFOS=rRc0e92Tj!}{kh$O{~CnNT!a z9M%H0m*8xgUmDjT$=5`vsI&|4Hkih6pDxC=I~4&TEYf#sT0e)$K-@LecDxtLHEnAY z6w~@G0T!8oDoZVp+a+AIb?SwPNhTC6e(NRG$0cfN%QZF4e5;UP`3!7NtEJIfl$Y#g zGV2e6(z>}w`zCpe`RCCla4>>m*&w zmGm|M{v_4?#kJIE(1U9&%@jxMRq*_M((_L^(U+xb)9>ccedOI61>z-?;fCzw1O?+b zoj{INV3pxb+Z1IrXB^w$w;NsJlMeVFgU&v-hyF4oD#EyY8Kk$wZ(Up`LqM%e3iXB8 z?01)cfwf&;(oTIgi_0Q*-H5!CE!9nES$~6eA9u-3#K`hIogdP_iag$=hZ1fUM8deE z)yck_JAw`$L`Y7Fe}yQJ!{sF=0N31xjC3Hu#vlFTib!w?HCOr5`gv9%enE!WSL@68ohCfur-(s~cJCxV>x<$!wEK>?N@ zbo@j+`B=K?xBYQ2LqHtb#H!3Su(LCjb4o^6wD3ax-6xLYN;T{<*Ex!ef3q#EnE%Hg z%0ZyiyBc{^O)na;tbD#1vDV?ec%a955F%M)C?bTtzFE$gDU$4+g13YCqi#}lp4erF zc43rA<0vcxAUbP=iY zt8Ls_cy26ZQb(^K2&#=*4ZQrZK=q`$xbn9edTVz>{Og(5>0pP~_X^O%#B{OhKu?OO zqEsR2oXvr;QeYhw6B zv0|9hgk`AK86 z)Y8%8gcYcTCZ90eXy`Q0gpW)dE08_E5Gz_2QbQ)MsK%*ybk`^PlAOPJ$ROQIBB)B8 zFt+01CGGAcGbo%TD*IT!VTh_94?JD=Q?K;Dh_C&4^1XP8zn*v}{#CF4TT?}RIfCJH zmef7LljhDDNRwG`1(lHti3xW~jZ9njrDhHM^bh9{8%f5@5f%S_{O6K#p> zQn4YyTC3;*?)l)dgCXgo5FkCR5mRs6O!&h(f@NzyzR^qngM9G?A+iyOHk8*Z{j0 z@jga#Cev=&4pROWfL>b!=2RI{n!t*H%d@YNH-=tJo6Pp<{U%%oYC&3DL)`dUxYG|3 zsoGO8IhZ3ZNu&63$kTh0^IyN98LDWN?3wcvkiX@|YiNVygY@*zVA1|hR*Gfi#dUM? zjEUI~KCZe0b{(k7U@U^NFd*d(VTe0Gb{y5?^~7Tk*9w8;gjq~_OU0Fe%3jk{pNTo@ z&THkHgek`8Klpx(mN#-kL>!&cO3@?}!x-G{Z-yupMi?F~5m}gj_@$W&M<41&WlGwA zbj`TeoJRu7{qy0IKJ}s~msOWpV5ufus)qY;Nm&3|=iA6pNlFj@db=3jzkYmU{kEdC zq`4TeAUfFDB}fu%)9l8QbWwSx+8{aT7yLilrR@+O3o>o2mvv!(`4cxe$tzLt2of9g zj_YW}qmZ*(@6}5gYf_(=MUG&C-HY{W?V0$>O1n~41TbfT*{$(kUn9cx{&wmZdsY^t zis~}yu)yx=LkpAg9eUja2kKxSISW6(>uAPRYQ_n{3AYn_gg^_AIzVdIZQBfSvHuU|J@Es|8q;brB%49)j@7-A*Q5J} z<;-Vdm9bfh1F%oJ2&7!9N(r3WF+JE+_k>P1>D=sI5y%VFdn;VBILa2EI6sIYBS69b z?PBY(LAEgk@gD|tDU7LRrLBWxC5Sme(xaH55tB&8)7HPtU8@4&L-@PuL>CK92vD2!giFie-(Z40%fs(X(_5v!N1>PSfFlL&FbGeOuN{f79+h9ZxlH9 zq()|75ItNIsE&%q^RCd|{oA+l?a(oeBS7yIm|34t5z+?f>j{ACdMI)l#b)%+nP_bP z`Z)vTpV<6ijW_!P0>?aJruR%{g(Ot1jI? z!gK6_!0rO0C}VAEnbpCg*MrxPH66RJ6`E5b$`HFX^KsC zb;A~Ncxo7sk-DNYZQpVRG16LoTRk`-sC;-SAOZV?`QDyBx+|nJPdS=5U#SYE56IwE&Iv3bs3E6YYIn07?6|j0y&m584O$& zzo_o%#AL`iHwpTY)(QK9rArehHt|x5N!0=gn1Db#99S3BSirJJy&8f?6$M6W?n?Yx zF+J&2mP!SKdKzJbTn`j@j8hrNAeUrHw&n$i{Z9o3L(=L9hOkQxd(n`^SkV?{JWI4q z7o|T;*!M0KC-tTkEW^JVbE7uixKzXfZrKk(ij zw0!IoKzT&Xuz7^XsWU>7rRT)iel6W*n$0$nQ;@oUxt*zz99lK9KWY?`Zg*`V3BZ5*9s9k0-j+p8t7$vEOs-Oq+QGPS26 zD|VxbhN;0<)qccbM3{Gl&cfVrzk7odLI&()!fP4M((SC6ev_KbR>1Cip+Z5tc}RP5 z0#wrj<1ZOGR>vYbJ68@EZ2zAFTQShrPH)Ly1ixrU*tqJEr}gl4T0z zXGz%j*)PGmYxBRYlJpyTdS!Mzlx&>uc>&0RoR@(rk=0Iw0sx;daLGVxcmXxBpJHUn zbm1B^Pp%1(j;I1T8b@TZ*)Xt5w6n|8tK=Eyuqiedt>>0=;N{>E_{pI*#XZ*AN=RXHrYo!U2)otkbB(`=pE!nAmYnX!nFMS zFp1EX#toTSP0j8A^F!F8Az%ae1AJ**S$(B`VtHVktQ_GgK7K;B^q8@QPxOSzO=~}oj4hjVE zIL9h`*v|T#-Zw!ye^-a&G%yZJ_`kiG#&ViKo!rC2MSbR=%t%5I1w^SWBPOY=AB)3V z5^9VZ6fQt`BcPG+j2ATS#X3_9A*P_8f4wBZBbI<~V^-V&qyuN!HFw^WQ!tjK`sfsB z^n~}Tak&0gAD^{j1f3QmKD^Vd-DC&Ad8BrC_pV%PV-+J23VqXl1!00IV-m^p%!*|g z@g{nqY&bLjgiYR_S&lG2xbWY_S9-WyWfiAzGXmi&VgNqR(n&Gde{MT1TZ$wVA}x~7 z>P7UZSro5n_V}Dx^p|C`k+Oi?L3E|?#axhvW%Mee5#4_E4Nf)a-gGYQxb2Rdy+<2d-T^m0JWPE^apoE4XB zpAf5rMVEwc8%&EARH4(W9bG%Zb3ei;VQl+)VJ_<7&bjmNb*u~de#EC@ICnNjX!1f? zmBB7qHxjI_cG;SfRUKb?$V^f+ibUxnO1GzLv*h0ZGrui<2&YMG}L*1~E_;{tAbII=e=P(q~IOrOH7jvq{Fa$I*5zSIoJx@oFkbiB}(ayAcVKb(&n@0Io+s!xopfklh3w)%B&Rlr(B_sL%wtqWbEzM z8990MmF5&pyR8<~w9K?7SU)tMIoOcIUzB9ZS7Ik>MuX0w%BS7e=@m2Kr3opD@`=e6 zFO-W~9Mniwf!)OF=}VV6qD>Yfg5gRV;}L8AZ_^8uo!!zkB+YGgjoXm_!$WX4ok%Zq zdmjR#q=3y4iIEN36njTf;*0fLZx=`z2~}{A2u4n+vCTqE-`{tkd|xO9uqS*Y(kL5$ z-15;~oectAi%|iyF*6~rk*1e;AIcTy4KhQJ+omz!qB^S`i}Q_ZkksM&uP|6XN|os% zLay&p?MHl6n1KSMa>IaDMwF_B7q#tS!q)1pAUT)u28HG-(#&_G)LFNLk{OaTm1va% zA-LSvESV>qbFI>Ur34b-FQA6a-^Aq(Ei7*M&jDVHx6xmSs9x>1&FO(~s-@C4K)YN{ z+dg+h*r1bQ&SX{#JxnU$cV5!!UB?a`qs!;bACda#5XdMxo2@NkQrqW2@P)-;qY z7g4jd{jp#e@C+=}LJp_uehg4k{;g4|F|XPtAvdticx5G#4uwDA_qPFH{C)~V zqq>*FV*~#2d->Uwz|u3BV9wC<{GD5)Ya~cu2wZeAN5}XCrkzf#!I&Z<|NfXSo&f-v^0BP znU?RD?{CEtAy`Bi`(~C)S4FRb?chDX1unin1s+a;;BO~NHbzST8a2os&>_7wljHRu z^EwBRd4NQKtCVKKR0I6;hhpeugBtsD%do*3?qLeDzd~Y5S+jX-qbL&$?ls+Wte6~) zEZS+`J8kQCl=^+7Z7u{tbCuei3udB>G8{L7*fgwt-Uymio`AH`U9RiCP6Bg&1*I_27EsCu0gM_P-Nt6i@B{cxyx*^*4o&xKsHhS|2@WCZT z=;WmVhD*L9K#~)v0IDPBzae^?y6oJj=UzQ5%FIMra+Qz|GJam3;|c>C-&_LotD0aueBnxayh2gS2|U?2egU@sNeIuN+;(^%_0lhHApM7Ks+3 zxV?RjtEO?d=={TG*@B#*gxlPmlOw^uI1gr6bDErukwv~s z*QTAfv_vebvX`_|y5!uj!;9L?)O+cRFt%VEUHH1?vQKYZG8_F%>1x{H=p&u>%Ybh0pi~@5v6&9 zPu739xX2vN0=dq4<>O_@qR1y$MTG}GwVPn&kaN6VMjjpfJGhk_6mV2~#wJ0v#A>)cZL!=-HxsjgIKNUXbs%>59B>ii1x7%=yT22zFsLb zH{wT8-<*Pub2ZLFB{B^Qg9_>7qAV~#MRLVq3}e2R#QY}&)P!c;Up37l8;zY^iVsh= z*gIeVY{J7?MXr^J15~$`Q5O0Sr2LaIEeLRb7xCA(8tIhum^GIWaO7^fv9HU#c{kg} z@Y3jbMXwoMe&H*$#~|-sdw$L>>kHn$d{H%j4EZhNGMhU&FL=O3n0bC>ZfL2W&e!<)>e&UksX1~R$8oF@krCtXwab!k)#fCsD^jP3d!i>2=q*ol)Z65*D7Vnc zNNO8_H0Iql27Zp(VV5>MachCX>S#V6v`lFBvL>c$+1tj8i(9+Mr-qnd0@VS|3xP&WWy1NHT zamiiu!uzOBFx6%~JEcg0u8V;Hu4T6t&6u*nhojG7tq+}0|EzyKaK?y|b8elzzuEe= zs^L(#vOne2%Tz5=rqd?#JCa_U7)l%Q_W6mI9p;Yk9}0JpvMTe3lFOq?4dl7?#;;8@ zf^J=QyLl{2$ZBl`)PQwvt#2as(xsiXsky&hGGF#$pYzPHPJF!~U_%B}I|+Z=&*Sgc z)FhfyM@mM_+9-+W9H>)WQx+T34{o8O)NpRS`{~M9sQ4Lf=?F{tA*Zh_V_g8XHmM-G z+q!gl>GLD1bvi1j$m`0pe0`EuNh<9?nC8cR{#2S7_o?u7Y&*eC zJb834=lBZxmahv6?I3AK1CT6b<5q)il(1;>!q2x0oeLVPD^0i3RAVa@(CWa)pe$8> zz)(!~M~O_(YeTH18>t#F?m6FYkofL2so)xfti#hUN%XUyee%!aMQq!Y+jT2fX)a zFL2tf1y!t}nB$Tb_pvQ0dSCxsbC9Yu1I^PduH1YkphVM2 zmc_?i8S`i0ol*|wwqZ2BzBTrvJXT^FOVT#xARWr6|onilF{6V6qCE5ua{s#Y>9yB5-BT-v@@&5lQ!AwhDgu(!R&Xt|Cn zC#@pT)`lcn>J7(crs`M|`)Ih_*|M{(l?lf5or%5ru|SgyA>E3dogKs^Qxi6WT4;@i_QS**9`=W>h*#h%=;VCg zOZfn_LJ(ANkNPu={A690(0oyL=7!jAM>t0TkaGmZ0$V|)G;svwUtM0wyxEP5PhShA z_H#VPzQ=(1Kx_Ns~F@%_&-P;nz8HG+&F>>bfKIix~`f+$m&zwh4E9 z5JU4}avc%L=l2`UrwrWV&m2f`C6{bm&4)mKp=7hs+KXI>6^oTHX$M5URPT*jWjGT1 zU@tZ43fb%I(1zf?PdI&LLp#bB1*l6(5Dcz+SsCT*ta^tqf2q(Z2;=Xyf7H0kL8d~e zU+2p&^Ck__Lo+2-htE$xfu2SY^cPLUt_h6L%#z`X#vWDzIyI5iqskB;9qTAm~5W;wNE zda9Qphv4n&p)Rdl#G+*?5gs{pYekMrC$A|=27epJ?pE0A>S5OOsz(S{Olkh?Tb3H(Aca>z(fzRlWGg_+6!^{v_`Afda6$4a6DOTrA z5XF^c*Te^L^;W0}wAq#^z7m$EDL=hp87#ll$eFQ=)+(MlI$1!8p4=r3$T>|z&KLfX z0E1_&ER%N8pC-^Rh#>IRHpCX*lx_38icyfc?!I>0R(v&xUJgWH1MW71Dlt;%}}fO2un>y_FN z#Cf!hnE=CjS5C?+2koU&etDdhh{%m^biB6>?~}}KI-LPKTeV8o-}ABWFFpp-Hyv!j zc`ti?e{1%*v~}1z=t-DB69KDLZ>H3@I1+~FTUwHoQPCyeWxJL`zHGFWgO{vKKPBS6 zeMwH{Aq_e49CPry={RR$_SHD1!sw@u#i%wDnAIeBQJq$A3^*P}UIW)u8_Qj6Vpe(u zT~v<&@eyW@{BtDU9m^7s)aF4(*`BW#y#01O+o#_*bXSF9nF3O z-0GFW?3u(50$PVCMv;QB)(UgQ%cd=vpAC;Qo3EdxE1v^2Ap#=EBApGq77-1m$Dk}@ zD*mB?I5EK?2r_&SBm})@Bk_q`Pq2h`m4AFBCoX~#k}I8)#%n=r`q!SNf0xLuHHL0i z>Js(ko%I7lqZ{T69!;FoyKRD0tSUmrjIV9}fi!+p0<$4?G{$t~l0n>bvK9#u ztMs5X@0QN5wH`|4mR~47jHUOEqEqbOsF6J_^;nQW@`ns?hIJdZo$^jb!M8d?z-%XN z(>l}I5CU_nkr24}EWbC7kdUrutehc%LDTjh3$%n&3%mooA)bmI0aiL%e~YJkq!rU} zKA?_i_0b_~<%oQD(tD( zA%kyhBoK_n2%~kaQ42%@Tm&`MKQK5voX*q<8jNEA+D9|6AKMoO9GOHY&>oyw6CTq_ zq@SzR%;S3ds`egObf%J1c?CS4n#A*BdG;pzd;jLDuI{!{(UjK&o%^}Is(lg)wwEiL z6tm3pr3PLDhNtO{R-%iyz{Vy!tVP3S5g6t?AIvv2HN}+H(!ylB0TKh9gm2wxaOCj6160LA3n(gtFvqU3b4k8`4fU2ZD%=@jMTHWT3yCJ;dDlh6-Xd-7 ziRuMTdFu6QQaKFTV~I;16-eo6njb-)ppisCUEN3t9{027KXR0^|3Xcz@M6JU zKT+jUk5jJyJ1s1b&lN1e1q}&8ll-~JJddTLj z%Px~(!-j_p8Zcn`pTT}*|L`eaU9zJ|*OVBdP+WYCwosgFO~Q({^Kd^AZaZi@2$}v4 z6}RLLe-N7)UWAT$UHQml60+ML7Ddr8=>o)cZIJrpG@i z)fgIT&la9E{%sL7B`jfBIn_U=i6Q(U3RUdrRmVmwFqgWW3}Orojgwua#c)!b74C9( zfNI%*7K@w6bI@RxFMG%Go6X~8OX}ifb+7tk<>`PjMBkbKs}eAS@1jmwybxAE$W7W#u!KU&hjUzdv%$?HvooM*_-Z$0^U^?GPe1r6EYN zhRY(Y9z2u0U5Px_;WFc$15uEy&(ISFeSj+Ev^RS^o@AKJwXx@N;^N?$d`XL48mgH9 z>CV~4;`db8kf#s{-t3h$cIis~^inirly^{zokSiv$Jk^3BEu!enRIozCY z9z_=z_wAAog-BjZY7J74J8H+dFk6suFkLJe<&Xx^fHQ`b!XZ9#qfxSpe-3u^7 z*^p}B3Rr^BpkmWV)ZjEH^Py=Q-mkNRBst1kyrCEK)|r2iPj6tE+Vu}1SQKrToF8q3 z6)jkxtq(g@A{_qC@*7%{Y{CVchEPT0L1zW145t(tMb7<0ZdVaP6uQa~pynh!oGmbg z^UJ?j`KrA?-i)L@F%Bng9;ae$6&62?%;HxfytkygdaJKJ+E|P%K&L~;73=803|SQ` zPf*b1wx}JXGqr&=8skkL;!*$OqvTM49(pQlgXGBY?l)JNoLb-jBSfWxzM$?tcf#}= zB2qlk+=oA`+{QL_?^3BlfPmCgVOL{Pk_Nv?It_(_2f8W=Ge`h;B)H?B-^!kWf92l+ zi!beQd}sP-M{zVo7>&sCV#X@%L0v*%-^fQb?9N}}Sne;mu$Q|rg3$%Y{FYy6o`PvK zbB$1E=*U|VJ=mlLyOQb4%VR_YC=x9%2P#5A zPjogbSD~c9p7E7GM#$5#A5J)|&18V};qFyA`c0M^NCf;go`~W@6DQS};4NE~g$gHr zlEWZTtuWV3n}-QqPQnhYezpA}r!N@iOV~2sS~(jFOVpb-G?ro<*(HP}6qIO}R-y>V za5EpI#NJMy!=?69zEF}FebL_C3aj`B^QY<x@uTed#cWSNwZUO$FC^aYh^6Zm6^~?M7Eu&d)XEm6Gjug$|8JP zH3?y}JQ#!cO+x)vYv-22T7h8y2Z_``yt^(94P7efL=GcF@qnp( zVo>3TxD<<_^n0Cu3hB}4MTt|*m;KE+bTx@qg~zng5dOv8GF8-(+&>01=7P8H=Dg@V zxDrPL#jDU?%CX7!TEn!p!Ezj>eaoN_F<;MJ_M#iIH9gW^jmzB#fr85uzP>XP=U1)B zo${{X67~%MS<0i4Vpsqse~@Yd0q%k5^og2;5j%ai9dn+;O05DPA~Zxf2Z!-ih~WTI zrm_jqgeN}d)nFxW2KdarGb(sxj7NS`1dTgJ)y5e|l(RY7)G-Owebzl4*%>I6SjXe8 z3FJD)-F{MA*x!k*#)A_JaRBRPdiF94?E%6Te>^}tZvC*xJ`@vPe!J?nLw5uR&!SOL}fAzl8+W$ z)b#SpUBt;fj-V5M>P<23HeFj342*HNw9na7PgTA#GdukFNPHrq}NL2$>q!{g)mrWTmAU_QyQXoO% zuNss3u8e9~mYgkwE}d4V7I5r$ zN+r(E&>4PdVNMM4a%|D+L!AdHtSV{Bc=t zrc)(|B*IP?N<7<1iwUZPa6snU^Rx3B@%WMm4jS?rOW{zWJptX&BlS{A$>C(fY;)xt zIsV3iT6Y355_4YZL&PZ|Y5eIr3R?b3IKPp8{gyHWbu!ncAXZ*LF3gIynBYbA6qR^G zEuk(cWb3Gp5B>|5-@^XVlR*&RmN@ z(TDDW>W_Me{L6$Dwcc1M%%Bl`1A+T{(H@KXh5o*UKE$w(CGu1${J-)0k?iL*PeRAn z_t~G7)G@k^P{dc7UQYlwK@5R!q2<0Yi^T;xl_lt{f-#P zx4q!Sky6PIg+}$%v|*-raK|G$!+%+^LTKaed=?@tr!<+27=)Nb=Cp?0mh$S)(C@WS zrD!jYnuV;R_=UaBQI+Fl=(~x9;XO#9_sn)47`K|uCe=k~;&QViA*u*2D-}OnigPYx zQ7iruR9MZav6P9`s?y&!9!v~eYK8Hd+Nrf}%-X88@nXK25SlZO-?n&TS;YTdK$c~R zu-U`BC*vh2r2yRN`1%nQ@2e%WU*MN#m>6RzV0v3;Y7ilMd@zx=1YqLW&51-JoJ%%N zYI|3w_7UK-8a3}z%?#VS)S%TjbLe1Nq)=o($0SFN!S6R3`ARb*ON=!}zK!}PX$xan z&!H0II~K5b3YWIwbJB*nyUFO?$BWXJ=D#*<(Hr7pORYj$JH5`915S&i5h-wPaO_cXr;qaV%e1BZ}o7YV?0=B65Pqsnawq3_;;I7BPJAv_`k1)Vixz2-@KM4LHfMnR7z4r=7V8`u47Ud z1SDArBW_fnRf=hTrJ^-_0E|YFOc6N+K|k7|L9l6~FJY%ltbncIBg;LbeGzn##3*h%Rzk{>9-ha>eRc$Nie$c^nYD_vO=&$P zE+x;0`f%*Muq|snzEjbCuq?^mhK1mf)H@J_Y9A-|ZTcCt8zR5g7s0U4 zRTyn;U%bLpiY-!H*AmRPP$=Hymn*_*(M$E3b`?c?t&)7tOkCkRQVZrqvmgh~&Pd2> zrm8>{dDe4QIqSayKaotM@UVI;@?OL64t$pj?)O8QXOR;+6kd?J&=9wjZQq4 zC{0GsRniOPRO`ynsH{H0!=iTPmwgw#6)!JYUiUmev@AiY_T$gDe@U%QTC$}BjXNZM znA734IGh{NJxnHJp`moNQp0jY+(@PQ@DJ>Y5x#bTg{G^IUb?Lq73bp#A{^R}n{*;^ zDezY}gIV06bjK^J%}hNp^~Tpy3wJVh1*R`T~rVFU>u^ z5br}btg$``sf|Uopmg>->|3~*z592@Z_15;IcKsTW$7N&99&--2^-$)DrQGcF@&2z z`^!-~I&~rhHoq}3c!@O}I>G)89{4kVy&{Zfq806*HfLg1Mn9 z>>to}V?P0TkwX8yOyp8=#l1T1!Tum#u}owucFH(%FMZGBKcYHz^`y^fm>hd??w=-! zaPU$Lnk=v}RDJtLY4_QTBKwJ9eY*aB)pz9Vmy{#QFfj~IS!(p{?$r!{!UnmiI^=wH zRpL6LpXI{SIYK1l#iLd|c{Jqw)c6F@m(QJpXgX9lx>$oMNcfYZGzVsT4GSSnV)3DO z48u$UcLc~KIxoSCzi0noj?OoY=qo5ZxbXfYYT*rP&Y3^>CyC%eISEkDl_t7=B?%|k z1R&zWpZvwX?Oq%~Dd*cc`fO-U{TZ!>M`P%gyZh(|Q^Zbf>06_VNJZvp;nS%j`2kw_~7qt|jRCD2J>GOa=r@3PAv3wxv5STzfH|H6Nx_E&Yp}TNp z#Qy#L43=pPIQ1lVDf)vzX+N@(m)=YX*BP|;4be;N$Jw3M&jlTck}{FGt@T&svBHgrUwB+;G@@^X^x7h&gSnmra|iSfWTGYOoaBBo74VVr3TW$@ z7>XfA=v$HU(2QDifzNtBWd4a|k$M+$gp$-U(#tR~W8VHGoL5Qps7*WSEMnn`4dA!T zv48Ct4I>FxpN9Yae?ln#gQN^aK*@0ZH?pz^?oWOC|KKbJOxXY?h^_w%b@|T_iUugn z$NO(62DBgD`TquHzNg3m(gSV(dk+|Z@+`uCt;q#q0NeS$NX~!Oqy+pD=KL>s=l}nR z|2@zDPo2b@!${Wl14XveG{Tq)#{Y5wxNo)zpEl2HyAad#JgEtu>cb3qastC!UE<_@ z?~;f}kWp+qj#74SoGl9JA~I+S+zdC`5d& zQZJt)TK$2f+y}CYtuCyx99LY1-WQ`y@B67g++VMGUlD88p>^Izw4=_9L3`$k3&Umt z_Zjrhm-=6i`ht}}Yxd)y?@gU^=Ysd#4XwZYp1XEpPWZ1q+-HLbz)$d}dCseCVjg4N zy1~SPd%T_r7P4!*@1%9SZ~weh)MmT#1lE#AtA1mZ9U%U~%o*l@Vn>sqi^qK09{j-agw$Y5KkN;xBi98Bg-Q-@?gC?^DaDtgxWoz31CPp6{>0 z!o9;k3G>s~-*+go-Q&f%;|sjx z8pf`1)*bzRCm%1=@*dI-S1l`ge*rIV=XHXWUi`qdnd1d{!Jhnz|GaR%9J$w}I$sxu ztF*p%Q^@|julJLASZn!H2bexm@wmM7{1PGT zZ?gmO{rSJB1EGi3!7EU9eSY|SCX$8F`3*}Y7ARY>yB{T9AN)SJ4PLjgu@8hnK^X$Y z_o^9$Fe&ev>J!I*u1i}wQ=XclYM|Crb`8O91=v zcv~tQlj+cf%j|m<6_>Fz|F_#uc>Ux3VF%RO9&qBvo^9?=e3?`<`WBr$fl?P)2=sf~ z%-=+en06ZdT7Pbgdew*SX=?6&*k=`3*X=;;}q&f zeTKKLu8tK)?ffRj!5cg?Gjs3?p1A{s_~UU{ODvr&3x@~oz0P4ni01$*w9>TqlLQF_ z+#P8zSTk5oF@DHSJ#HcUg@1CPgU9&SOMhqqqcDqRAMdvl!(rmL8R9MGk85U7MSYj- zbu#VYFzhFJ05)4_r)s?ZolHLnu0IZO6Qy0nVM(#ocx}9_w}6r-Zp!cd#;tDx;X})@ zvSIE)u)1|0PvEf^c?eYS@;5tch35Wj6&m1vBxlI?+%6DSC!#_3uzfJb3U8yv^)NQC1%5oneei6*fS4ob>^g4Mz8&$C5H3OB z!xer?5^gnp*Z=`ck^hWC;6!H%@9m#uU#;3-TEQJ|zZ>qWJZM3f?koK6I`la{GWUzC z#Iz0wY(sC>oco4S!uwZ^#8N7^I|xP1*CoF<>~NUUTwl-c9TzWsPRCjN+sg5N&!v8S zDOv^*O5WS(e;aLp(#UN(daUT_rc3Fyy2-{$r_bbt7~UJ-v>sZ0g@ zoO$s1Zp(&ipQgXGm0?re+j@`_B?Y3|LeqbsUV#FDRvrn5*>q7EPFm{zDH2F|+P!5O zytEZG_BwVr@?@asd7U->U0Yk5p{c-k=s-1mo=tOn+DkL_@$tDO_=K-keu0_xZLq{oBT`MS?{uST`=Y{%fB*jNap5D}H4?sxP#SRI zQ~2oIrDW#at{Ysr9gz}3YyS5G-@g5<2}9R?n9$AW0?({xYw4oCDA!Q9|(e$f%_19PMzsPswLeHbSOXgs{YBi z<7N+-p6}D%W7WnpV-`qGWb6$YumEDoqrE}UZcby6T{qbmn|C#Sg6o%|+(ulP#V>C9 z&=-QA%>c`;M0-nze&gA?ol_b%sp|p#OWn7r9GBOc_v0Eki91UML+*8Va{G=e$qo>P ziC=$w8i)hm^MlLJ6p-ThZ2VV;PS@2pT*Qh1)BJ2uE{3(7x1C&$cfXF0&U$jR92P`f zPJO&ig$X)rbor$Jv1r*%luONVKB;PE%C6~kWYCtRNA~*L4*(dxtSmWB@*WiJfY7i3 z0{GSIf$&H8g)8VsO_!?mA3+#IS@CA?Pu?HHdBedxr(Tyv0CU^*ud(9u;z6I>l zlBD4o#$iMaegOg7FX(1UnD`*uZGHA8nhJqG zd*kigZJ0gh3c>rapLjju2+8s054WkQDR_eR)@*$`{&2V^@9qaa7i99we;ca zr*svRO$LD^)s*OEF8BR*^Y4O|VT?_6E7WHkzJsv;5kA~OzrWy0*!A-7!k+$Opq7sZ zYsKT!4mH`O?FTtvKXe=jCJj5{`hq~Z2~xY^L2Sd0y;klGZ*~AiWMXeEIw(Nhm+;;G zpeOjYfDA~~K3o4I({f zP<#4$o5^1Xjs7BiMr`XilmJoaIw5W|^{ag^$cC0MPO*Q|U(@f!=02YbuML&fH%12! z`2Vo}4v0IyYXnd6Uv$j87=9nb{4^(5)oz_O$_@4@yR>T4ap<4?49NfY=LhV;>c;zz z>lK-kI%MxnaDe~sNj~^E?_Kh!I!=&FoB{xdUj7baLEQbE@`h4!??VRxvjfcUG0e{$ zL&?c|9}-~rcC7XNa5{fS^Jx9j4_!)}Kk!p>seQMpFQd92qvWO%!ec&-fD~`P|7W=M zmk7DSuA&TI$udfMKVR0gEw@)0#Gf1rLCsxvRiBu-AZQj@j?k_>X9yE3V*BPBmRkj+{$a&|_q@q0V@{(MxrlLA86=If_s z@?3P>IDXod^xOqdOp%6#xwyHnK#mJL&SS##5+t~0M?9;=u)SSAFSRyHOdXq$%zv*1 z{zFO?jqjk0BsBbZUIK&o)|W3Hmbm5%LjERbDA4=-{9Lx?d$*ufXqD0Hpk?U8`6>51 z`WK$q2Db&+cD&7>rbK3_Z6}t$XX5BR&U3!dasTJHZ4hVRcYauvW`|avNcw%H^*FA! z>h8jG2dT%flGn;ylh1qm`W+J#%kzeLntsz>ql0@t{{OgRx>LSl1(_kxBN;U98> zW)D{O?sM0g9gyeB=H}*(^Ry35LYI=|pP2acTDX92Py;ruJ3hZAemj&R9=}ch`Si{2 z{@YXK?@5!3x6}i{^Y3vxAXFZvUwmVUHm2A00AXqz+3&I6gDdk21TaJ2r*Xr{mxl}H z$z_oD0N?x^AFQ@*d|EnRkW!4ayIt(7DG8?JK23bP=I*+R>Gc5p^})Y(x0}`V`zCTf znxHM5T1scPSvlr^{}XT1WnJuLuhVYsjxEHmu^!9j zX;(RdUQojyw@M$$V3*WFR}uY_C-vh@Up+tEI#2Y!8hG_WVqb#9i2oUMuZ|ih-=#o6 zCf+Qudi>OLeXcOA&SQ;NkTLM*=Hfc9=Z(%k;S)Nk{QU@WXAc+0Yj*;z@CLQ+^Y>w|w2Rl>mr&H&N zyaLB6aeXzfV>O#ves@|Ii7(9koJ)E^8&BCAy$am_ILcmaSU|7#bR+!X{292%VZYa5 zLVRcXj>kdfp@*&q!B>#8c*}MY?mynrw%XIE@x=Tz|2rTxzli-)e!>UBC~wPY{rDxc z-z79ZS9NbKA&vr$CZtjLrMZu(8{&#~bSIq?%r z$Ai?GmN#{6w(PtcWXD6x{fdnOFL(5|`^+S0Y!N%o-0dwj#7EFp-M{=TH)i9dbK^e& zQve0*Kh7a`>Ijr~Oa>s^6}w-Ik1&ici5{xan_c`31=SZs;6!P4%|RN;r4vE_@3f3R z|3X4eOI#2N&3)EwN}FTxDa7_&Ghl8CeVWJ`ydPm2ORYAOoFW+ z%w<5OD~Kk&X0+M`G=UTBec#r$65=r7j_5`&zsaC_&BZ-zyL4zxBhPyf+0fbtr$a`=`s{;dL;NCH{F1^eHz#OT|K-wcN5saar)aeM z4|V|4aU=6BWdmhAXTb$76~>SP2kO!V$20{07gwLWC?4Mc^ONO-f(ZAsqJoHOldlD}S$6sJR0r?E(AONa1!JN5~55?=?z|EmO&b2#Z`Te~PEz9!vf6y5{E@(r^ zybQW|Cq13}sMcLMU>o1?qFfRU6Fd(f6&{_C9n1z45F-Rvo%( zxkwI`Q=J&_688AS>=wJiQ{kcr3Z(@vv)9f|k47O<8<(F#D%b_9vbiV>Gt@07V}ksD zM$Pq2=so<{MyC#OEwMMbj?q1{$A5bm&MsqJE9awMqxlvOL;q0ENaz%7;P?MabJSz5Vgcyf~o{vkRX+$q)<@3^D_E$Z+ZxA^={_ zMw7x)5apFcpGI=bypSL?+UdUN0>16{R5plhkk;s5txV3sS5~88~FJ_J0aj}_@#SMPWod@Xd zc2EYnp*sb)1%GU4h^El<8x{j<PIs51a% z-~7GvGKFrUw>zm!RV4VGx`zUmz8UG<*g+q^4Djv!!val2Ti8KvHTnn_{jO`Ql?Mn$ z)M4h*Oxk3Kpsy3>P&J@2vS~3Uff;u!V{{0?`@Kk`>!*2mD-=woco&p140G(|2#irj z+W4eS#Re;P{$s9dLyI+&`#$+u{F60{|8?GXrc*{wUc zbqE+y0E~5(*I+!YEJIaH-M`Q-4Yo|j9+CRyFpw4H0!Cgu2+-$_!C&M8C%o@sJeUh zoCm{6ts}0?T_$$4zxgy`-0tRAFpv^dMRS-8;=U-4>K+Axjw&_S)Wi9G2FNJX#@nW) z((?R$+h@z6Vm400zw34Pvkn6u=!Ko!m$^@Q@E`{xA52Ap59aUKjT$FlMYW@6B&LsT zHHM7MEM;C9m6@guppW+C`t@S5*SR*);97}7Cyn8pi!qY|_0ogTU@ZHw_F@#iOs8AW zLIQJ209l<#wcXv0^p_w%qRcXmE2T`3JeFOb1-#S5Ob}8+EP1Qww2b$dbB06I*chpA z1x6-b>mhUZX6AmGyaqwWY6t5AmVH_h(gQgC?INg_vZ2uuTpzI4eDpHw{57r^BPvj+ zVaaTQ`~n8}9hqamr=E66`?Y&I_#LV6L~j!p03O@R$*jU5nt5~G)vq2xY@>Ik1bFp)~)g#?$vEzykMh_&GB1?5y0n2U;V-#q$m~~U;y!AQLpT0A)oQ@ z88}x>tw!OLzwRmW<5)pdwLD#XP!a>$5g?{giHNlRwEj&zl}0{W6QbqOPELq)YVAc{ z&IBj*M#6V?dWh*DafuXHwRQLFn%8szVgmqRhc9s0IQu2SQIAO&k>uK3@20R`WzL`M zPi28=q2$>-y_teXF5Y+nGA9sQ1-sPwg{Z@F+@|qL`h?3^Oq5p(wIeJBOO|6RwA%(( z>Yce>nGH>2XLNm%z!hTbS!&5xXI|O~$%7bC*_s(koL!3iN$dzE3adk#hTQ$=bUAiO zkKd|Q>V2rNzT8QY2)Z&fFb5*U@(pjNb%Ms=76uHFVU&)-vL_u#@^eb8BzDrfs(%^XjtNJfQxRns zb31nU1mH$Cq=uq6RI-*h0>1yj?v(~lcH!FRoX!uIRiQhl-EoKV#>OqhbCVyzVjf#T zSVJkhkvWonn0_!-#M-9_w+fKk=h;Tw9SUH9?ZeZ`pGm0paIVG?Z!Edv`vFlv<&EzF z{roPn0)O0T#iH3E#WMTIvJZz>C0!7-dx66?+_((~5s=@dS2%Kfm7z=}Q5?#S2vn zxV4Va#nA8G5_{<+BY+t=&gvMl>{4$9Rs|Crpyl+70AFWI`K1S_df&yC%L`v1Yt4TA zk!NcHm&BHn@Z>`*YDIpYl-Z!^C=@%WOe!9WS0M~AJZ*FCbFGRXHar+aIqc5{lzk^o zK{#K%dRl1J6jK(%asBJ*2{o444I?}*z<%9KBhcqhF(n==bC}-oyP>sRbyE&sYS3kN zOZ7=w4TaAN59K8>Z{as)>IjN zq>;-=Hcn2eN3^T86dGS>pI(;HyWgBYHIl%0V-LPBSBZ$4@J=b**%b3jg==5QoXI&n za(r@eif~4M*Q(D%Rvx(+?tS0F$%i@evwft5qpk??dx zLLg>CPc}~T7kg52#!SMGc(K>RC8g`1(K*}kbf`v!bj;zpM28+Ga9?2~?}1UM ztp+27Yu`pE#mIH$`QA%UgO4`*q9&k$-$zMC66yvePL$SHv95*}y=2Opb=_I8b=Lpp z9`Qw)_78ZF?b~~z=t8j%!xbcBE+RsYc)uelJZ~Bz2j`!Wj}R)e?3iqBcjN>md3;Cl zpGpj0(LB4cb^=Qxe1qfe7Ca_NOIaj5WZZYt3&@5uEL+a{yW);0#;t-pBwJn6H|qp# zwS0MG>Nx(nBJdS;R?{XzP0)rEb>};!Mt5E4{y^JtC|rEfw9yaiwjrv+9C$3egOy51 zt!wnfJP=EgF~-5K?8h0*zd5_fqAeD+(D}8C4lXFYTitLjMMO`#x_TQ9&+Oy^T-J~Z z1QjbcBW%roNl=}4w$y4Opx#sLfb1(OnbQ-I7CX2NbmJAMxMY$g!a~780JJa`S&&|r zs2CG>QE=7u0Uy>HNa|o=bX*Q7UN)gU^P#$Gb3H)Yx`w@`5qb(da zp%C&rL3I{-(YQF--WcJl!T`a<3ILJ>laBTWvCaXo*xcay(xk;yccV_4j6IB{XoaO1 zH<~Gw{N!uRLLH|TJHCa#WCzV%tB4sA!gg1g0}GGgoa`%i#kMd4@->9WK5fIq&wV|K zD3MqZ)F7x|cd{eAQ|r)isvFSDG3K3V7Zh0+P6-&6y*+7=O}m`Y?uweY0$4g2tePFr zvGriiwlQ)!zmdJL{#cMsXa+y(rccXOaN$*4UaE+n{>@OLm6Z#QWfiY_aAbsb*kThk zxAko!NsWann|dIccS2&V9>&DOTmFzq7J?;?4e5t7ttb(GL-H4m<%px*obW&-D52{8 zWu*RNR@V8AC=-e!8?fsHrcGl?@zM|%KwxQ?`oMdk!Ae)WHXj*t31hdZYvC_z++)&V zJ;s56TN6rf;yprEPM&K06ZpZ82jPx(+=5ZA*@#+w(#L)>pJ75|f}&ENlm}a%hHj%Ka5NsCrT zk|4^*SIdM@dd?r8ok95=%=Y|c#M^}apU6ecI}56$=Z1W2jLf70^P$oW8!?&WO3NbL zREuvZN3acY{wz zyWSRTyCSL)I+3~GYYnjQ_t?~Pd@>a03Z^Bt`)Elo$XKapw~KR%AG=BRTanhqt9US+ zHL$Fo7->5f9{X@Kq>WU1q;$G*t-+O3Vs3a4_GQq1Ku1cO4Oj^jZ2R`PPd^lksp{lu z>EcFQkTE_)ZY9EKuZLZ_p%#UQCXk8L`D)KHl_b@sQYYm_%TtMJ&l&qEbjIqD%2Qh8 zS1kPs)P^l*^D3^LC*t#2dm%6xr*qSScM{>rDF8EZ|6bItUXF(|J3C;mB%52KbfGwt z%0!Y@IsW`lm4;_j1kIo^M6l{ceO!#zX>v~yEeaAUKc)?9h|ct9v-*9SwvGU1r%X5V z7JBvQqWfrWjD(YFJ~e8Q3!chZjFy=CArNH|Nr}B%#$!Wdl6`4tM|-f-w?y|RsEW$Y z$)hvN5I>ir24zPyYn%i$oC}q65qEub@^p~hN@Ud#?Qm4o+enh}?Y{eM6_i%E{WRDw z4VeB>2NmP#;MswxIf)*3s&Sk2o(+>ev>m#VPTE@2c)9}<{Mf0F(e-VPC3HlQHl*x$ zjcq?BjgywswIr#-AOL}!zKAuhgEc_(#x*HRjZv`kaW792_KWKV(9TGi`Y)JzNQU3t}|4kE$^p5vTmcjUNe$lIEX9DfvTg zdFf(AuQL-tQmT^-x~&s(g=NMeA(rk$ucVy54SZ{r1Lg&ux&E|h5*Nqqjt#qzh1YQj zY2)9I0>@aeigAzsRS9Fn6Htpsbjv7)am`D2A!R(@rY7E@9Tmcd)j?N|$AH2hIYXAp zkedS*iN!!H_+{m~qXD~=nbG_@i?;Ni`H2Qy4ws2Xg?N|^eJv8PoIx9>q7;K*}STAe8x+C?vaOW*0>?w+pW zL@{--NQUxm9l~>@yMMtTuGr+nb@yo^ht4v?IXloBCvA(jdF2lnUT?jOilkb>vYZ>O zleSCZ|62CKI9LR$Ldmz*7&|~m#M0nK7FTZ}E+AaQbhYSR5P3>YNnRHVgA-*?KBtAU zn=N{l%9qT04aiXJf3lN6=c})u6xO7H3)h^Y${Cmun%3~D)9A}1bpDsJBYlilu0Bn% zGxmsaQ@KDyKNCfJT=#2KSwvuY(wJjRbE*+06MM>wwzRfT4@S`}$DCGU{1)m-kdU}s zEqV7Uy&eqEg+FqHCYbItQ>vSLx%t#F4=pVv<3M`jaK|50lop-+JBX(h^OmpFxK@;3 zS|x$ZTa?R1vsIbzf=ZL0YVfr<(h82%>Z@Z^B2OwT@~O(MC3~93*WWl|B^A+3rs^5f zszQ<}7wXwHUYkfM#$&^-q}4cGDSa4fBlRXuPUm?o*qGhU*!{w#3NS|(ZSpX32-H@- zrlgK?y1j^=jMX$||Bl5xiZExprX-6aQR{;JB=>VP6$z23%W)E8w_pwnz$zxgR42r) z4U^X+7w5*?+h{H>r2 z*cC8ChoU63n@@gI1Yad!+|AJf>T^*r2UT}F;+^VOIKYf7&3;)0@`l}k700tZ=6VXkt-Z@E#gII5st*ssYte z4dvU}GMY0U3q6)}NdBs+kq4~tH_kgP>iFZ<&nWJbHd?qwgCcOOP+)WmVmDFN-sU)_ zoc3LtFv%?WtG7g8N3A)Jz$Nhb%k5d31l?SjD>@oesilxunplyOlP&%MPQmn(`aYL7 zMdTNeQl@KI^E}upE3Kt`usprr#~ZY^gj-&e%TmfX-|I;$9B0A$FNS=$$nJeMKdK9g z`(#wkLPjrxoc@$>Kou*^-=^e9&5dJ8wn)y5uoVXQ8l;qriJi<*6}vkwK?XU>PR)W# z7zi|Bv@Yo0ZTy z)Vt&DjaKPm{%>~_r5IY-$2mZySQOq87(mO-xiwTFoPJ2ppTm%ZZVv86C$kz2@>-Hn?hVJVwmF}8JG86rT{pe{7~7isc*qRA;@($~wn^nqV* z?PtopdVkYe&IBS8FoZacN_`O)7wv_fiKsXLv-Q;OE>%E_2@rEA~K zJ2|L?vd6i9iXj`FNGn<3A6{On%22MlyPnlfg?soODzk;&702L^ei67;P%{Xggu|&u zg|291V+G%fuWWFtX8nKEgdO%)LvtNKGA1&?G1_3_NS++gz?J)v+2lFd0%)@Ebqq!J z(SM1(inx_^o@7v^gOwdDCWI$YH6)QObWTGt(Nc6;Cg_^i(;b5@5qE1=3(!Bwd;0Ru zC4nxJb^}f+D3MI{lToreq7K+4gQ{U7u^kJ0WPYzK>;8<&L77(*X_j^PVT$nV9az~;)6>-B?|4i$K_x-W8=kd}dI-%$4S;P5pJa!971 z3fjt=aFVd@8%?IHO=Xx{rf!c6!>S5F$ko;I0Oqxhd3okr@~Z|Ms4(DtFKEFa!^OvI{CwZ8qv? zC$(8Fiu9C-@)$pNv(X?XyDqzzCe_{#!ewI6Vn@TdUg%aCQHMxZxwT?Dmk(GD6(RT+ z44}uS+^#(9W4o0P6^~L>egtYtMk9)pAY-C2Yz)GE0Lxs30V;oMM$@1YT&muiOJIrn zlryPtwN$5ErF8OtaID=(jHW9V1fH|&mu*Dxx|>bKu#wb8VeSkIY}NagD(pk+{%|lU zz7c}6_aq!|NuX-U|N933$r$@Xdis@emcoBC!mz=EP-{qll`OuXTs_zYElRg(p(_ub z#+rz%n_EGi{_8fOo~FR1*)W#zgsNHGOJuH`%GlUQvY%T(DxSta{l`f1%Yl$D?X&q7 zMTgW%c$X^-l@-4No$G#>f1LT?vQp+qbaN_D2$6E+KSG2<4WhV4j^@Sd*-hioFBW4U z0V1eiU`X2=dudC6C4or>8l{VaqOL#!$!I3F)K@0ZNpj`Trh}uJxTc}D`tA-BTct;0 zbHO*p9|_?GKG~JxBpB!VLp9V2hjL78(id{i3p-W@B0C53=bmG9RG8zO7 z_33_G!ktGY(i^cOJ$WVXbhoLR!4sBmzq+f63uGhX-jC#+(lGqT;7*7!BJB z!c9nriKw$~;XLhiFbsKYicNu{_~Z{x~VXIf~Ij}KBi&@sP|FG%lgVDvvj zo0dGJU{dm=IftiwNy+I3ZO{8Y^W_Ey>deF}$VMayYHiOg(E0|T+%!I;`CuNtxA5C z;b|B;H{_5TEwBz9Rnx^KEP{2-pUc?6rYUZO-43u6R~)Mg;ah?%A$K++@*Et-AxG(J zwwRlcZ_SX}2tu+8PJduVxlW|E_(D|%+(!@-~hWNsY4$5j#37{6M`b&h%7}Jj+LS% zFsV?`LL*6aX`A?Usu!GZaSZ%WaP2*&$Bzq}_aI9Hm?0}FeMZ<=yHcpmaU4H`2ORYJ zN?D|i!?>v#8p&F?NK&Maa0&n*(R#^@9IO%9n&#Z-y$CfkL4@8R0nc$&I3n+T%0uG{ zB6blj0T>(Q1mFQwWM>-d-|b=YWTGF-Fpz=EG9CowCpQAcUw+s@V0oq-e2aCOqi8ms z^X>z)#LnYK3U2JG13PcK6zW9o@aBS4x1x|QtgETUszJOf!WcEfD03hERRV;Kt3)Ia zF@_*6an+QhS0G-e41!@sS#LbVzmYhV-W{K(F`{AT8B_7gfSyNUEjLxoO)@KGn8K(B zsIWlrq|LE&P}Ma_^K^?#_=uk`G;M-I`^P}} znzEO$s3c}va>4(z-K{HfwJx``4bBH<6j?q4EO+jLxFvgPbtWoyr47P424A@z%Rg z*@ZgU0NVAzzwFpg`w%^t>kg!Ar^OSp&h=e`ntTGq0v4*4^PLe+q^u+~yR5rWix#Y8 z#yKgd#*fd0hwG3M#g~f#sIv5zcb+wZ*v|xUMz!clCE6t?&Ni$1;v_$I zI5g*ooDf$$5z8?5HXz*MB()%ylWgcUcPKIV%x zpObLF`$M$vz%T?ePo^c2UgjV3NNwYm3Y#5F*$J>I-<0+6f77}@c(xJSFZ9$xp}3@Wd-V97-b(hS*XGiME!IWOf^>b*=?9M3b% zI6W{k zQ8-~%t2A1Y;9IsCWXPbM{~g0^$eovDTZpb0`W%0m)ws*JfYmV4<1wya+c1k8`gunt z5ol6#R@N^gHy*o#D&PNQg}Jh4hYBhl8d2<((~!Yo&{pjs((|Ea2U=x??&9Tb!VB1i z-f7)7j^^#vvx}_2;Ikg)(ky?B3 zMLFBw@T>y7pioc1_kLq3u4VViROLB9({@uc@kB0&t7$7AV^@g<6NIo-Ei**dY42|1 zg^M}P0c>nYOSyFKqLh|?nESp^ggs(n$>TD=k}Kw|><-FS^!?GM|66Y;pHUedPR6y5 znBsM~-pYsI{PP;zAGPzP?hAQDnsk_Z`OEhmHgf6wuPVyfisFhH+NW^&>FjE#AyQqd z^^U;NBNHZ^jj>+naT?}T`B!O&Q6RdI4oB2BKC65(Wtg`R@}l?CKW8J5$0sH3)Ci@y z8f&y$8+b9RVoW|uh!IwDl12{^l|F}rupoIzo?hpbyuPMG78pdCP=qxIp(NNNNNQf7 zuJ|4ve&no}oZ(fVQ)(#|JSkm4F_z_QKGQ+L({`)a?*{)OCd-e*s>^r>Q;E_?)IMmS zOn(qb)ex3iv4SgL)$<#+$7YmAt&;wr=j3;M>AxX7d=cG?`9ay{N^9!q8Q>rM+wP=o z5uMR^%J>d^e-^l$77=vDKHVjOqVgkz9ap_uPrB&QnQ44T(HtPN*Xmvyx+xTk%6>p% ziK%oU$c1vK(=nrcsd~sOf%TSvvmX79r}H6G?xel^`t^(Et6uKggNh#;bPDlwwoJ|R>&7* z&q8>G35(vFzfY$vx)$yn6bQS+bQytorH6T*7lBk`<0_)m8arXZOj+>diodOBei2N` zHRkYONy$q}MC^jX83WA5Kw{5N;Pa8F#tawA&;3ffYaA=9Su-W^ zX3V%k(Oi#Is->Sl8;x1Bw;oi2K3%Q9wbqIhr{$R*MGIFA8|kCZqBA#;Jq>xht2G@p z=3QNjm70&J!fNmpUNf~x+;7u}#{sSXN29A$XqNmY=n#rQNo?3_k06D?YzhI5Fk66# z8Y@3&7b028^be8^di%qx0bAON&i;sLFn7u|Oj1K>2n+#c4ttzwQzo@!Go+lbC3>>r zj0m_J@-K@PynY7Qt7VJ}^1bZ**`dEmG>GKsTvYJ|HCby=M6O}zipI{->__VQ_<2Du zPKstG1brclGC6l<8*c?m(COX2D2kuCjDsc~tr|s(8r#lf`>WnSE!Ls&CqJIy6xsaY z<)b!BNFj@slzfqE-p^!k?S|Ac%Nrnqh)Kv~_uStMqKbK@P)1@wj>&+`^un@XW!^i6 zo#Kl@9TmgOl))Z~1D#-_6gjzeH^}GZtOMCmfD6noE{i%WJ}t!cg9kh@9d@Mdn1=*YsoX_YsluiG(XX?>YUsvacNsM2Utymbze~p+30BvhOF2NtKlqWH z-sIHxG4+wCaACk?$q_vz$K~|J_+U*+|Kv;lPAiyM@{`7>emte=?jnLJIMp@QZa1t$ zXnYDQgcl%@zhI34>eO z;Y${48$W|CzRPPslizyw%<_C2|5)gj>GN+N+k}ST) zcpYr1reIIvHB=~Gg!UjXA=isk^Y8P(`r*#3+L#VZV(v(n7VBBfd10NH-~_UgVL@du zD!*uc)sP>d<6TsAQj-moD^FZ|6c`ovfkSsBS@2~YjtrdP~~-c^))9Q zqF8`VldwBxSa=cz-9w`fGhAUASTc9%wQ3Qv{&IDPBw~#R=*df@QK?j?GmgRxLLgeavUMO>UejbbJ210@fdJ|6 zS}UDIT{Vivt9lsaj-z>Gymg(w_AhRPXuP_rW5DwgiRas}gaEsOxHK47$zN1Uy+;g` zFa$jMs0ExdMfz(0pH+|x>72(-{!*=$PNs^d{#dxn9g=~`f122?qv*pW=^dzRQ3sZ&?&h6)g8~z(6aIN3| zB`5+v+pxjdbj}#<${>KZwbHW5&dN9nfhM@O{Z*7+OvW-Je^9{#B5Eyh=EU?IHfLGBExH@Xa4rnYQ5q^wB zf)M3gD;m0iIwg)fpC(l@wC|NT@FbxX!F5`E1BBuE0>=)h9gB;7CG5H2K7TJCrzIbS z>}V!{rKgDN%Ulmxz|~OimY6>QU=jW;v4vqOch(AH9eoFpSs7k$jQ5=WF-p?69(KWLh+z3e1kO%AfxNzpItC7N--%FeH@RZ5hz4Kie9#j) z&WlqoIx^y5?+FGGRoXg+BE#{C=UA{^H5?9a^n{D%X^g(ms=(mkS*J0N_G5{0%|E?) zZJ5A3w|^x-dECq=HHy`KQXHxMK~!0d7GCwF2Um@0OxQ)b)3;*B z^K(we}L5k2YwSiPI z0(8tap{%5{kYla1SK(b_2XxblXnjTlNuD(`_ETbsnsiK>x*OfTe3VqW1*u(9n-DHN zZ%H2JkX$G9m*ON^vV~+kwV{)fU@CRO#AJ)2+|p6gS|a8@^zYrJm7DyOYOLZ}0eh|i zKZ5cjuL%U|4cM$m`qZSw)n6?tqeN!*+h(tRSwh_kzUGUU4@o5S@fL5UXFwK`@83*w z=3fLA%DP^o1u+ARf`W+B*RLk$21jf1_`gg;$oU{vAxOWAuI4+K;yBFh#?4er7nIO4 zM74?03|~gFc$dG*Nc4wy0C2L$`$eIY_SXlKV3JZH=eKd8epQ!D z9FkmRh$MhTEw_g z4%hM3D!<~;R$1pw^*ruXFgq9z9!(I9Tpj>XVnC3)tB|Cp$@VM+gB%NGBQO&@NjZzP zmGFgVmlw{HtRW7kZhM7*%|BlPlwtfK3r#x6GBGAg`m~Z(~4q=x4%!O}pB!gkJC8TJu6Z5Dsx4t4Dzs!0q1I4 z0rprY?D6oZD1GC{FEMxZhG0dLP$6K#{LoHOx?`?hTwH7lWzsFX5oymd3tjMe9H((J z!A@=FLcQWbDu(0@5EY_ElvFPMmqd1LV0fuq8V7_XLwn-g2I|>`)IfL>5@&W$`q{!3}QKc_Dmhn zssg!~3Oo3kIwln9 z+yJKk)&eZN?RA)Qfb9~Mvi=FV<-fjKKG^aK4-2J2XW`5HSwaIThRL{@UYVaO4n)XsuRYtgdMMrvnoif z;4Gw_u+-F*5ez%JRqv*5;{l?#d|dTIlt4KdrlZ$^j0ejUGJ)_g?sGR4;7DSA^1S^8h!Xaj{K(7pmfFmB9dfv zSzV($uaSIX#TVhE_DWQsH6ldLQHK>JUEzj!A&Rd7_V1`+416k~PNE9WsKqUcK)FbB zcRLJRh_qflXn?*i%gQpnCI;*|hh{IYSkkAnX6Zy?m-|3OdzUQ#NDxH~{}iWnTVIsD z5c6iQWz7U@$=Y^R-VQus9z!tx!1+-;%;ZWv0>?%~q4HUg$$ew+3GblCw0;h0ZUE$L z$l(lBEex;iccM~MUr%xE_X7_!Ans|rpR@rqA>1U|!!2h{2|v?o3Rj_Q;jaTIH^5-< zOKD!WED9rK#;jzKe=*EHJG9E<^q^Jfmb>Js1L4G?50vy^oMmA5F_W$vRmH@i!2P$z zvAASVRRsg@s2~6wF|uuJ!2?2x>55~=Ns)C$IS~XEr%K;Q@Qx1L6N9K`$!e9x!rlAc z2vtxo5x8xfVE6#G!C9P|Gq4R^SkT4sCncTWbW0xNCW6myuoqFZ2mq5?2uzJhc=zPU z$ISp_adgvzMaADMhedv}vf`(D@i@UIRC%Nd;loAOfRHw1@`rO1q>SlcEPK=DaI!)2 zd%1%~D~8l1K=`0_FqJB5ie-yVCMItbeUQv4OOFsOsZ1@OJ59);Fx_QQEfh z@Er+C{w6u)I0`_L8OD1EPo;SY#DESaJoD&lpK=$5o7Cu6{=JyE-k4@X2<81XE95wX z?gHuXS+cF%ZHY9!d!AgQ={@5?BbD`mO-*;~9gohbu~yYSHQD9rJLMu*a?d}sctfVt zu!PoAHy*xI`e}$kDm|teeij-ciOf+9(Ny^^&gi4gI47(W$R?E&IS4f|;|Ubk27`Z@ zLf+{zHd%Qk$HlB_Tz*nf+^)t<1I5R-(o&AAh7?iQATT3+RDyto_q%c~QMSiPCCW^R zDq;c|6B2KjfvS9wKP*#b!V81Sz}>q>*842IApoB%%ymCI_Y-ZpYy@c@d~)H(>}-o( z>fydqvqCh`OQX-p#N(sJsL0L~J_(GU#i|y;pbl=^XPGTx$dDaagCjUw9%Ssky1W0> z>PWT88o!g?>~E_wD>0@!kv{oTcd%q*U`8>yRDyaO-fwV=)tGkTy3Wx9q+Lt7#(x)z zMg{m|#Ec`4wOXzf{CP<`ga_2xV7oi#+=^N!J9Ras9&36KXEjG)smTULy)BfQBPJ8} zaB<4~_W+px9FsGQPTdHtFE#|<9zRKqKAskJAX8&k*W#|Yh~cAuoe>-bKc0RsU*w&_ zN?&2WT(a6H?S854u63b?%J<_}cHnC%qb;9HbAEn`f*11e{*sZU%%TAr$=-2EuB*G0 z?Gpbn=lm3~wV*Nhrl{-a`Q4yZ1|OP(J^sWg#k+>#8{dR>qgkG$PIdA0EF4+G9NOsnrc}#BcbG%e9qW=S&Kx4mr4388q zn6757t-v)+aQ46q*0!bvK}{3NGQ6z)D?weO!iK4!_Ko&pUY20P8N~H;M{TZ_h(bhx4vlM?v}TKN zME0ThUgJX8ue?i%f|4{1AXw9N?izCp`(3hEk42db|Uw3ySbcfWRT&oRMga7@$R!>LK(Tm_mwrN%W8kgAJ!O{!U_re5v$J znQtf0l(c(nnm`j>2WAgyW1WTGXOGIF&3r=MS8?kVq>DP=xluXEy$6tst)~1@-JwGw z3srA==r&PK(ggjWBS!jv?J=xrL})@qB8}1nbJ$Pym;;$8kDKc%073v^jpw~SOO_H% zf+Xt{U2)|8t%?Yg=SNs)q>sxSljpEPDvVXhXED012>oRag~}w-ZEX#-XAfvThmVD@ zM9vL7JJJOE5aupn?M1t_)x=;Ai1K}+3Fcg{0SL6vG$Exz>hkDlTOEZYdzgwK4eOAS zCq3O$-yg`lL}Z_)sv)(ECOn|)OQon1k@H7%kYdftdI!oh4;?N~l%Gw8ie7Z;Vni3?G;Me)jXu1|U&5F&nfqfe>KQX{D-5;vQI_UsBC_O{EvNo9Q> z>p(avWhbe_u&j&34&bC#&;i8K`Z32=h(kb>bC5lU4NE>Gkc+{^#iA<$0?33G3lc14 z;(8$olaqp3(IAk*@3q1%*AnGob!og2#x(Ig-jl5sBg8upw+O;eaWcMFe&Gai%MWt`lKkZ$10^gRK2bkL!57|z=WK3MaKhLr(wRBQ#4U4@DdUx^VjQM zXt<$lph#&Rl$nrMN-j3Ff=G*S1jVhi$!E!D@GH{K|zy3pw5LV z#}d-n^vd|>W6>WaK!|cK3WryGf+#4ALK9<($QWv)D^XCqxsM8a?w|nx)N`&80#phH zvauoEd*n4}<8lb%+E?2Qo$`Mk7q-(3Vj^QS=98N>bEp$?W3-D z5i8|W@4zt+kvDVg48(Sj06>j|oHl_M&pD@ztQt)K!RZj&FoL4&lzPSctSI(AqzC|N zpK3~)sO18ko+HqTNR5gXv=KHLtYlBuhMXpkSCsWmAeIzarkN_QyaQJ_@Lh$RUyes4BEAWl4~E(!Y>=Z+ISqwa!Na#U?Tnd_Sj zkdnlWkaoY_#^>cDXORmfi;HDTW&`_L!m_4yWwdS&BtIVjPZF|r68W9u<2&fFU4^|M z9h?#TySdJSr~i z9dqAi!kc>`91S@6sf>G(AU5ZP8MF;Os6A_bVE@I8y0t3-b{Uhd{&rOAAxee{H`ItU z3qO!ZICEyK+oI~^a2?UdBaKo}t3(9TX%?s2=S|BDijmS#CJimJwCvL8ga@Zx=6mas za5zYUEFBpZv)3#khx){*Am+(y53x}rLK#pYhe(k-^WKIKyTuJ?NEADjDH@eO%OcWR zdXl%`kWDihW&i3m)BLSW@}IAk*a;KRCa zc;}9|7PFE}nNw2W2A4RDLr+^B9pi5okivaK4EmiKYms%@i4O-7AOKDb=dxn`l%r!F z=d{a*`ox3N!e&t28Kf~{(FFi*Cg z=sep#>#AKk4+3k^cvG41;60IK_O+&v->;9UCye#jobBL@cy`yGeaF5YY?yJaiY?V_ z@~WJ4HMZlw8j$ZYfnjw0n{AM^O1mc$0Cs^`IWAsb_XBD2P2?grLFkYoHn&5t$!mM3 zgqpM1O-tZSi0iyLGhLuJ=`|TlLFf~j^HO`=5W5M=b`K-lj_T77H>J*m^9@)_V85ksUXGgj~w-oQSZ|AqoYm)_E0wmh;zS>XHkQbE(%%$C)Vz27YqR~pO7v| z-qqO4{s9I(Jt18#@`tik`|C4jxm18xUyxYmC0AD1l`1H6k_|-yh+*qcqAHm`;Ek$&(c6mgIVF9I_B~n4zuJt2ga3UI7f8M?V)-09-3iNnTU>c%%+dO z*{&C5p;OfD=E&f1BLvML)E%T=jRGWLbT74cL=c>p(~R`|B=7M(w4!>DK~ERZlQ2`(yo4!hsPUb**9@37Wav^f(AO4!NDz=69Tb_Y4i6|7{;)*={mHraw(&vO+b1okQ+0_Yj2G$wj!XZ;SUkX58bw zdr(W?RWOz%!=*A2+u_;0oKC>=v#7tfx8vvWfd^gAA`>a~rDOn{$kyJq2K{z@(}Cuc z1HF@xbMGhs{kmq!2mO3RS}S%49m)|?ux)I9nr$=eyPtDGJ|&7OfmRJfG2r$@msNMf zV7N>Yk~pqag0W^B27=u#_>`z6Ane}ax<1ZnyKQqA^*eLYJ63CZHr(5{j&@i#@TO~4 z2;7_9EZthZ%C<+7iIl{)IiF>oTfjE@35LE&kk7W(90XjtIcv^%U~u>0>)pXTPuQKS zOC}8KIOpE(850k3OgMksJeqDL$f}XdQ6H!kyDgvy?OwHGLu~20dnV>jB~oZRDMHQG ziUUVH$O*;Y7Ld-JE*M9Y2@8^2=`m4T$+o z?Qq{9wC;q*Ynnn+<<-^ICi*3m>=^EDH`yCdyX4n@cP zV7vY}xkfpb2{EwrZwq{>Lh-TGNXEeHOScZ{o{XW=lnB!E~vmRr{+^;i$jGUo5?%z2ub^>*t2W*re3%CWNY#C=D zS=KzZQJdr$bX*L^&0xA^geG>sVbC{#oO@CZnI-%Zr2(sj7Y5lPQDeK5qHlU?a*7^))9EZ{a85Lr1Ac_| zj&fykF*p}IaLWkl#Qx~d)35jAkEiZC3RAyvjBsE2MC3aWF|dXERD_hb;f!l@O47|{ z3|;{qjNK)T0M8-<=%+M^oRIQma7;p&?q+UfZX6?hdJ40hto^EWZh3ihO&JxI+C-Cd<4O)GC2i+EHtvTq(0j%#`96Y@E z%HpgaLhDMaW9Z=V)Mxp^LfqA#hid}0L5gC%Z6K3#$2|VFdl~X9-_oEv$lufbiJHd_nHu4UK9hq|5 zG@Ce2U4Z0ahRMV#P&Frp({Y#u)MqVqc*V;gVt|906{4gyo<^==#@b;WZgAR1v_q0@ zJWqR>NPS<~cJtKL9me15aP%pVsMIDe;s5|tgTrCJ%^VnYNDgH}o%AtlDfNi@eI$xA zg~}|aJ3^KxwAw5)ek0T?%0R5)YA;3qt?pPt9Tqu89r^23+DXmReocI!LF*=Umh0xv zfoKD#x!bQ9%xYZev!{{F5Rl-nmrAvDmJf_B`|hy5(5@BwjCYi`|{ z>5O@CYFa;B?vJzbjl!TBT6>ypX>zgkzfI27=4uxp&Pf3_Rp$H{xV7IK+HrN~HCd~} zd_U3$ntkM`PfVwm+Vn&zE)!m^@LqwJCqW54vP^7JU&*C*$%Te!>YZXAmaI_Zj_(Vo zgSho`-((>=e(q@W&d1nRQ0B1e5`Wj|?H#+Woj0|$n#QRUoEk@js2}Uwi_M|7U%Rg= z*>>;Eo-{aCg;aFpGs#)zzav4ovm;5LCs%5=X4FB<&AEt4q7m+E>wOh;n+F$k{o+6t z%FJ%xn%!Jqf&B6!sMJTZohaBlTj^T(0%(g|qG7=s2DiCn=LKY~WUBjPbL!`OJTB^o zV1pkfBkbDt{ZY^>oWD;{57(~dXa{|!>oTFX4uJ6*6F{p*Zvj{dS4%jILDxwVlS+8& zCso2YvYRC8%ktvfx4FIzYt1-}ODQHFIgtLDuT>?m)$O}1pzSPex_`5t_}C6Q5pcUH zliyV$!KYJu8Ktzk(4;VwQuc~|fHasw;$Y~~IN1;CAUa1SI+(USk_ipJ!<};u3;vO! zib9%4#mPaLX^%x_kZUsCON}o3H!3f2Y*cs;Virzvs`pApngTRu1SvdsZdpY8ZLwx7 zD%2yV-JV5^G{;|Tb!UL~rAz|r{`m@8*T*BoN(6p;2W=b5&sXrWAf3-GQf{?tW>{NI zdCY>_Fhf_*Ylg1XXgP^STjnQLOSZ1tA zT_Lymo`!piQ_1WgcjD12S(75haGxee1fVL^w}vc?%E?w+aVetFAlsdh>iX(D4_gx`MnDN{r4OKS_Je2S*anah+COS2fZf} zgDE)MqG!V82AwM8#OnMTNl=9cmccB>+^AQ9hCqmhn30Ia8pLRH#p~Ce)z_e^-Z%O* z11W>ASI~d{9qH>=H_9GnBm!S=^3JbU3EZ4dq2{~*$@oP`bwMZzu|Z*d((}4QQfiL| z9LMOC+>?pmoHHRn&ULli9*?B#)%r_ceFFf zY%;amqH}L`y6f7TU3MOIybb2grAmf;Nc4DMs&g!>piBHd6fw7LO(y0O=rp6gUs3+^ ze#^L!T>KzqU!A|PbNB_3Fcg>m`48~8d!rRrMb5ou{Da$hfm_jXj zd~PwzVv*)j+%WVSAu}qc2{@mCast14I+dn1bR=Bo{Kmuu{NOTBarL z7lS9IxS=fYN>yfF4x;jMI!U?5 z;k{OK9*hLn6F|=*9@gp@WIbHZIwNbC8*13gmy8qwI&vMA356U=Hhm1>hI7YJgI*d8 z6bsOfWgT6;xo($Qb2uWaW#Xw#&5)t*GUw5#3*X&Cgs`nKiKHw6IA+H-{cI3-b1D() zsjbYz)|Jx<{PKkK@&x|&1NHC!g-0C1V!VLn3H0@g$b_MZc`89KUTCNk2tD3)vg$*6VhysrD9Y`rFde z1@!d`=*tW0Kfa;-@4t71%a1a6Sp^Mcux4xF2()#7$1xS2liBY>!olT%sJHDs<83xa zlP{Bp5iPhUxgG4M5TJ_5xN)8z5-0+lKj7rJ+`hBmt6YnFgl^Jw!%{&&a6cF;{Z z&y&=}PFZTv$1H;_xI{vXF-@{KU4KC!7NRsf3S1;b*+J-Qi}sjNt&tk1@26hiY@25j zL#>xbmZJcp_kRI&HHhP|tl+(IRKLQowrP5Mk~UZJ6m@pM4Ys(;py(v`-`VOAJGgte z#}Rhi4KoB%k|=W&tQhIfQV&XIfIlEf9CAkfasj=($a7ma@HJ*b`f`nQKI=lnC_i5h zgIWL-3SYq`0km~e}nr*C*76M`1`Q0RcBVX*ARL38yu8WO0wRi*c(0U=kU}du=c03 zw3K{(6RwU28#GOz=O^%&XL%m$*00Bv0Tf@e>3ou4U)9z_N5NM>jdIN_-kZ-y_rsE* za9FKpiy`&_Fd4DZN+M7r{U6*_hoi4>i0-oTb-0imt^- zT1OBxIwgZ6a#%|S?2Q;e4SxL`oEECAHHj+tdT-uKG$mgFTv?H<3S7{l%|!m*P-}xs zT13vHWXVay2%EIs0>n^d@_XkhwV;FvJY}i5{mqb+e}|FIXD7A5rhS1e3QWPVtx}I> zY`(k|q-Bxl`pERHP*KaC$LOPH)JKvV9S(ty^H&#LKF`u=VJ8!*uR%ANh|c-wm>^gYX`B+d#JkjFTAQPnX}$MEY+rPBUN#tF3@;YeP)s+zc;6%FbzV^#!cNGPCla=Kw96fww~3H6i}3X9$e&8dg0$ADGB;k+Iln%-cGJMN7d zGDB=|)IC%&=> z=-_vW40S%@T#svFcVnT(*4FYlIohv72CDtj5nq|jliIV346OhFAOJ~3K~%c^PfT`S z?-^?2=sb@wU{pm=C2GsMCu2-5)agcP35TS7DhZ%1Ib^*fSB&IUzO9v=QHFePb2^FM z#zDyvTMJdLplMcS_E`e~@A};POb%afz|Mu#13B<*L>+=^Cle#NqLYi-2K{%(>p}j#%YdrK7>sRT zGxl|zk-R>ASI$}mOdd;)t(1#$0%2*yw(X{2?CQSB-iroLJg^18+eMCnE4OOkzq4o>T zjq#f`qDkkoMC73n%h+ST!Jb`9uOUSDRcs1B(fh6xj5P3w5cPdTqpA3MmCtWN zoY)z8k2EwROUnu#QEAiE+BI4bM4wZef7BV;K$x5J1U^me9a}JJ7<@4Qch0$f7PMXn z5Dm_`oNsV)bPn!h@W9rQ^;(~c)uo4dPKi4`W%orz5g|5}#~??kAR`B3?TK#Z>5zcb zN|kH`N7^}#tdmMkz}pqPeRtcHE@!cCuQyMU^YzvUkD0yR9HqEzP;WP2S&`l@62v`v zMjw1Mg1F6FamIFCeQ94H@*CGMqT>MVJc(^<+ic%aAH=o$o^!74)L3(2ygO$2aZ@@D z&JN`x9*`w?P}UGyR3O(I5K{<&WT`>djJgG(M%xNd9U0*7HaIx&H37-WCZn7rmxZog z+!CO-o0PYjOw5zq^R~4Bft4HEdo*OVaV$Y?-k-0M&^YxZvcGG5Xb0WdS>HpHOIt?y z_p>R(Nth)@7)GnXf-?y8$r|>%GZR;jU-w!cpD%N zI-O?F^K(1??M6U_fQ#fvi|!K*1D{cRRD%|J^DWjRE@A+iy)^_!Re_p zwalV@y>lwi|1sJlrYxhQt`4|-6pcp40BpzH3szY+hQsfVm#bB#Ymi?ynK;dXZFuwb z#G=Suxk1%*y6?&CcT~`@!SIq-ZtR1WuJB=N^>wDw@ugTK#-^oi?>q)!0Xn6>Gm!y$X~gDIT;F1hjdOrkVCg^LTgQG!6dTM zjR^Ji=O^%6UnA^dHb~PPW3bwgP=SAe7PFBiI3eOi?cA3aP_3x7g5L{xTfw2FB#6Xe zIh|T!%YQiB7I?(^a{z+EE&5EnD~&@TM8CR|DZyB(YnO1~DG&Pvop3Mc(Lvm8+u)q* z+8&XCJ0w(e&fTGh%LH)87hpk!SU?uGJ2Qw$Iujr`>BG+oEH#5dcMIs-sRWI=X)>MJ}}~8zf!7=;=weU9WBfa4c`OL~aO3`hBD%fvs)B zU8MAXWBek;`#C=sLmuc+eq0M;$5Bna=!pLIUuD!UeLdjV#Zem$huPIX|u^N0EL&GK=fh)_G&Gj`Mn`)7{Ozm_dwV$THTP z961v2-J!necwYPZpL%%^(bctnI855ELFRwVh8r@a0L%m;ZjfD*IY_1)o3W=KJU6RH z-`%Ui_L+sa?9IBe49Eog{gzoY*snsiGP@a zmDmW+q_H-qzQkipv|6Tb(@qot1|Rov8L-VM^>hEomeK7azYb4nkCZxC|Km9#0dD-> zTMb%SR^%dqLhP;8XHk8i**=D*77Iz{F!s%^5F0Ns$Ox^*k+YOej@zvccb?p4<$rwJ z+oC{Um&+CD`C0V3ktXUsQnJ}>DVipv=Vw^^J&s*19%-=DH`6?~?oOl5jA&gz-f!MR z*Sod9Ld!PM=6%!yF?(*dbD~}b4)}F;koJ%@@5rH9*Za{g@C>-3K?ane6_p^hgB&$$ z-&^Sw8@fv8VA3o)k#uW9?RXhPCXztew{2hIK_qjKDzNPph06pKVeB(8&yEe=tUsXz8;@ovB`iO6OEFF0n3MPTh+ zJ&-!_^Qk!Vd9gPwt#E3nWAxl&*F+8d1?XIkMqLlO8z z)TYsopY6mNbfHOz#%P*EUbd}g^fh^ibz64^D+~Ew+Q;6pC)#jKu>#spWGr`#IX{)V{ z*~)di9Z40Aipxpr+15!Mm|N-Ly>3M0UM7CkW0BBG*m0D`NlP=?r=i z#&=p);O$*%*v8I{M2#qDs7?3p2dKN(j7LXB|F-_NHexB$=$upK9@cBO#Ct=mTa$

z7BMDe90wM9ZczI3L=?8xB+0NTX_HZ*hrs zdm2adNQWfnf#*!yfjDr;I~;M?vH>;@W|vBjWk1cdr=u}gL#WGIi_)5%&;08*0CGxv zTk-zsL9AATcjaY}$T1LGYG4KI7%eL{*U2vFqNSi|!5j-T)!l}fjV)=Jal`%R3RqA5VbQAGujVHj99qcS;80l2b- zHjmUDc?`-*xzHNnD!yLX^qaK9<00#H2)rv1*hpL1&CZ)`@O+$9z36G>D8Ts?w%k)h zsW3j&I9La{jFEEX7#-uca>MmbFDFDsi$iW&GB3{F`s1C)QG0&}u(!imTY!~+Qlwqi z;LjH^0+FFZ0M=FKMODcTSt^u9|32$VTjodR$EvqG4FiZYXNaP%1VG290!a*Vo)DQo zLG#*`A)P1!^cOqR+Ws>JluBDxPUufiiXBii5D{U^d?RxS)G<(1tlGIX8iOqbt2(1s zacm6QxHMM=dQFndro0ACMYPNnjFq5G`HTc2k-o%HpL zT=e})rO5|*^^mQGCg+K_O!wJ$qkb~CN<^FHByOwcyObTUdYfZg1h#2YT>!|-q$vQE zaM(-G3ZU_T$r`?HQQhk!KAf~=R6z`KnRE=Hs_)P_^Yw1eL6;TZUv(V#2I4wIn9|KOIIV+j!1=oDrUhzJ!Mq^Cl@dXthM=PRe`ut1CB;O{zpr32-YGG z0#YPVRV4}t2Q0uSDcR;)gbHGGI$)Er?W@PjJtnc!1;dPB-jm=!ngXSWHSZ&*`X!e` z->cT_J4E{*6`{5AWAX6SLstKq{n#V|CZlIiZ^9T8Rl(+r1Ac5^_O>3Y({ymiGN#B- zCFW+bDEe6T&|=U&6PjNW1$MJO0P6w7Go0IV6VW}fK3?8_<$ITPGH5RLNXQ^2>%H6W zvMV42DC<1Ozf%|z-5x4Jmvf67#o;I_f6cHf{^Ci><0+ z%}-;dN=9A~(Q&Z6L#;Z{%hJa{&4f}(#CpUqB#eV@xk1#0KJUI`TQOe!)Je>`W%{ol zX&k%@-ksjmv)}#&t!Uj37&bP{6j*c7d2tGrO7A4J^%}c0Zo6ICwLU~>8fltPD`f6} z(KaXT@*zhB%McI)m8g#ej|DN{^`fbHV2YwsaP?5Kv#A$@7n9a)FSJ;wImpEMKmK&v z`yh6N;>&CP{C3CaKy{zKvr22Ir%l&&*Vkz%xQ1{zmP*?m(V~{)%5|3kwR!9&r>*l8jqR_3QWT(g(#r{# z6T0``yf!S>XRaStJ2)?bbt6p<@pgQL8BA(sG=}r{M!Vc#?|xn((iA;MZ`2=Zs;2%j zKZ>$1#3L%B>VT6f%^S=l+BP%eMj4V~W}!BgTgJpXjm^xRMN}M7w}qR=-Q6{~1a~L6 zrg0|_q=De>?u6hD!6kST+}+(RxVziq|Hp6kCU01)Cbd@8J-6=J`+QrjandJrwuo^3 zp;t5KWc}B{ZC+4xwn$-xuu{}>Wh2oPYq?oHmf7ujno+s!%}9}oS>{1&{H=D{VM^^&$0y&x5cxCaB7cfp)?piM2U^<{a1Q34w6Hd#scSS}<%AiV{%*#U?=lO8Tr-CS zeNN7WZUcacKTUI(DAt1yFxb!@z@?cZu}sj)In_}mIWSx`(E*%R?0*8zrcsg`RuE_L zR3imXTnk*;dn%r0oBm`SLIDa-0(yy19s3~xL1np-&w)f?l~uU723mFBj&B)HnJdxU z&%)a~K5}vH=)nW_Ug5%*e1=rZSKHf#h3d$3%^JahL4Q}H17p==Y{QM|xnthGG=_dp zY2FrN5LjNDkb7S7IVnZ5PpX@oK2ZCzgc4N($tp?T*}yjcAq#MJo`zu&Tygw#P^K;f z!;4nb-r>fToFBHoLY8hi;*;tHKZg$~wU_m|;%J=hpZ%g;j{W&%sh7sDe}!vRvn}k z+|pUg7m3!G>eL^4c<}=4_&>4jra2_!R?sR=g=R_6zc#s4g*gvMoKrTqQn!p;dQR&C z3LTr^kqQ+@J0e@Nx>Sv9UNb|m?QNss>(j1>YYJXU72C%fGgRe!3EpFI4mBDGcK$R* z->YC~tv~Ha$tGXfwzI=fF5_Cw@^VQqHj$^bUEl^ki&OxMMg zWG!1(*RY|MFDGvm_m{tl1x1UN2hJb%h2H*-_(mwI`0X$ej;`On1I}pHzWy&Lyw+jq)yr<_|Mz#Ki7$*A1Q-y5x6Hy z=1e=|#nIDx;=Tc(Y5EZmXC+EtX?3~gaOSdfZa;4fwC$h7h5vBlgxe#-++WApCi!-7 zc)03w7tz);c51Wq+3D^2#)uLo!6Nh?UoQN?9!k6N;Y64Q5PrjpO(_NhSV~vsQpjX~ zB8CUBZ~H)=p(WzkgLI$yVIor*0kcTP&#QOhk`f3db7!2vLQ1E<7r-M(8mf0}7R`Pj zEPxq|RT(`j%>bq((4TvyHkVN`4=z_Ygvh!<_x14ZQ|!-ujb}Yj%i1Z&c@8cx2vA)% z*u+vwq_|O)QQw%Br#UmBwY~wQfFz*?w9}t=pvv}#Q?LgS*87dpCETe522wmTGKmGm zb1ZsHk01c%BuZ1i_sU{2;etno34WTktkvq4(qNjcKyfU_Q|y2-KGR;q0#lKLRUHsH z!qf7|+TZzrVjpmD{-B**@C*W_ym=`C6lg^TDjp85Mtzy}@(W%7<0!k5EB|A$)7ak$ z_Bvgt9~%Rax?{ZLA7fcSc5?ttpcI2E4q1pq2XU$~(aQIhOi5z|rM)-0x;x2ARbeFi zl$ehbF^)9oI_yNn=6Lv-`OSiJ2Z*?OwykHl2xAQA56ZK)upI!fQ(K7}%V4HDjGcxS z*53zzz|SJTHVj0c+WYt@G-RqJ&3tgGhYO7jnfHC%8e_27X^Ot#utp^TK^+-s9969o z`kDaOoYT{>GP}>!x_L^v9ot7A%)^>Lx!RSJuVX0RqEAtaew;4xAcR3lJp6)wBWO{= z_9$k}G2jRURw}Ve$ogYgySA7a>gQYd{IY`+m&J@%HD9rtC;ze{Qi2=xGk9f1*FhVY zfY8f#aNVaKPh004Wn#?_EjC^fNq`BQkIuB!ag9-1aSciurfg!=W5{^$Sy*meO!w)l zU<^i?rU`~H(8j1XsJrrCwkcU7X_>&)R%RG6sP&SemnTv7LKv2Rk>mNK1fP^wN3h7& zEvyWLbrMu!6ms30MIxz+IdJnH@^U!wHyMN=l-15EnXjzq6L9!Tm7eiz*1mKjFUNyX z@OsPG!_TALo+&;MdUfZb%Gjn-l`BlP+~;noSI$?Jbt}=ja#V#uA)oYv0bx*fj0F5N z<;~>{eq9*GtM^a%*<}8uYAs~Er%N!$$?%J!hPcz21UH+n{ZIui?gv^fKBgxS;(pucZ&qq_XIf;IZ=!>INk98vOe^|3)gFqo=tjJ^O5!Vgeu$?&K z-IcU}1j~MVIltXP0tm>&QmFCh@-d3B_$66g2Kn>0=_o?o4?&}3htVJBs?*oa{C5O; zhR{_qK}&A(@d!d#TGEpCGzh65bTaS4j_*&7e(E7)Oy%kkbV{v1){k-8_80F82g}b) zVr;JX8Lm`GVL*%4$!5fsLBRneyZJgOm@qbOvY7s`CZLKYSY+FM?y({S zp$*^xQAIxi2J|S{aB~W(lR~x51y+nQ3~Hz4!rrN^O!ZeWGQe;=xvtH?)+?r2 z2rM%`0KzW{EQ2)hc3RVRQs4o3IK$ss$=J9q-4z=OKN|?$d^d!eNnT3r9?ii%fEs%4 z#3|HvU86~E9RjDsERpFubLe4|)Mls(#sK)La^RVL!%maN{yw748Ov-4=R6vot`8QR z`m19Af$_-wKWD-}Y>a1avSJ8|HER;V{27E^!E1qm9`h>pifZkza5jH(3=8+ibN2I! z##(LGB)EM>^@H^4im)KG!b(j4?mB0EHlW0!OMnyO`aDVs%|a0KvWDHD2I5PC)1JEQ z1fkEO2KU1BK*};oX~CG1VGjob6Og6d@~`|D=vODvk&-!KZ?B(a^te3P{tqPs?asA(ExHo^)026(FBDkVK8XiqMek}HpX^~0} z+NyX;89GXjA2tGqS=yqj^#sBi%M!hAYR(BWk;R$P>KCSKtC2`~$t5lYc)gjw($EUg z^$^jEl*uitEH8yhq8xk#H!Q!R8GmV7%&j1sWuX5|qip7N!A(9RUecHBjiBZgS@-30 zaJ95gJBc_EnR)YoJ?LjXY6M6JNnL`$u}uTFi6UhTD)&Z;`DRj~;qlX2N;XJs0gv@p z$=s^RS6ly79VZuS1Yn$wf;6jMMKn%K0W^R6$_t$xx~W(+3yBiuh^g*<;RbVcny`h4 z0a&p$v#H__?-<_CTTkSTSBzpcQQv9vE%p!esnE4!|Mu1~^+)$rU?FrVaawA(GyPab z;UT@WIG)mfdAoZ8BOMY{QHs{wxAKE#n2Z9!R@RkBm8l9=qBq>!yp+9e#xf;B8tURs z%oYQAzni;fG!!Pm#*PdjSC9SYok|M5uCEzKHF&M=BU+bA?H57)$SIJ1l zAx8`O=qaHh3d&V=!dPlW7X0i9jOAi2uQqiU>zf$b?rX#kKgx0C+r@9TdLiLF&EJDz zRVPA^kc-Bq^^1eg43pM&G>{9Q#^!&1b67Q}9PZAo@E9o!lro96Py~96l9)N5 zhBbR|FsYPq88X7Othi!-8)f5~#F9XifjGR^bJJ|}$CSp`_C|~V1x)ey5jz%P4xs8> zCCTXDZ;8tyw6p+v*uursgG-a~F}L}mkmn$D#6k*uxGpZ!G0%=Dw)JKRpbL7|3Y^@E z6AA!jrCeNnBhO}u)F-yIIbJs9jNDDKiXR!8uZa7i;H<9&KpI=`6DOT5opYrx6d#;d zwGM*GRBct4N14g^5&O%W^nuFbsE=C&lZrJM z!~n3nM~&(!n?7@Ix1T)L+I=| z)2)%r|FXR|!5PC<*8+tr5hWhBm@PuOa_%F=pd0PaB|xk;E+S0xbN{ZQsb!^^uz)umAO?wrb_xfCs#PJ=Z` zbn!IIQCI>Q`;rSyrsD<-A>xfp;?6G2f9gr*&8;j()Z3p?{T{4ToB@PzB1R`%wTvRZ zwT(-*X{c-W_w z^Bbj0T{b#az1_ttm2d%x!mGijbg@nR#3)0u^UEaP)Y4C7z$>V%oE;OG)9bBKe((!s z1F2@6TvTxDzuOEdHTxxVY5s8+-$kZ_`lhF|-VTvq%I93@y&sUQ#0-UpFX++yMaXI^ zQsD{)9V#~7H}eAYSs~1}ULk0#_Qc$MWJCo4+s2u%Uc4=>7G*l1e#;5`R0l(~@`2yA z79z=aw8eQ%Zrm^&n9!-n!lS}RGN-o!=oY%MSQ&t$uKqF!OUh*efH9QX7A@h%^T5df zvNZ81QuWuw<@i7)o_2o7YWJvV^>sLo-12e89SNT0R&vXZ5`l1?Rg#59jiCq9#Kg-{ zpZYh}RQwW-@Tvk|&&rKgndCl+P4@U5_KRIY@tc7-&la<>?CHbR1;Xh<~ zP@U^Tr)vWmiKUDq`6#5Zp@s$m)!l73J0#gKtXih;YvHy0@p&(IcR&9SVu2&2B0ajF zg{c;!w+xNlIbBFG_khO~G7N`0n~S9-JQdCTWccO=YTC27RNr~r!3au%l=GpK;0~0f zBU@05Cz>``Ri`1(!#I_t>(bNxy@NHQIQ=b}>wU z70PnwH!*zk*M2uN3NwWmiMxKo7Ov6eB%NYxspE)?1qg8Y!*%}95sgY`_O3xBY7id{ z>Kf}A2yK{Da7EIr6SG59Jy0%uB+ex>MyT6+j0>hp=ru% zlF{IAK3oLxdrOjPnw-;w6z6AkuSTd;GM-D_!NdnmKB)7k=axXbCAcADh{cY}b|JeA zQy7*hLUfjA^&est=-4x7nXqE+&q^e4<)HKXCr{fIGZM^?{ijIN@%0efs0sin%bJPc zizxveD^>AAsoDhZ>lB6mG~9K*gfS_h@B1~A6$-`m_LH>r58uz<_yG@Ow9C8|?k9jS zYtMQMDl{bl99t?Lo*WvdntXuJcOLwsJ<$Vy$~$5pg;KSgWpN64s_E!%_k_z-b}+=A zw`C0~m!~=XcfMv)*$=e%PfSgVp;F~gVOIfZtjKF2Zh>E39}uy4q`t$~5!Yt!aCP-z z_tFe5femhNkxXDHQtE__gwCW63+>%z8@ihmYBI#bavE`}{3`d-yuuaZCS$$4f9>9V z@(%$V3VPNFtBJ|0l}NaF1?8 zR|%6gwg7E)Mpt#RMnj9Tz}e+~W!1bYI{stAzIOOyo1XHZ_G1f|B^bzRwHzKv+wcY$ zFX+KoP2j)&5TClZY=-t=aPii~1e*H)LT=k*GtEmPBXO?Av6ZLL!6{595$e5EU(@EB z=M^av_or`H=Q3MYkm_H%PZb1O{)+9+cLvB=U5#^sxM$%uA|B52dU64#G?6UjqP26e zROp8W;$5&?@oRXzcURPsmL%xk(+Uv~xf%v4gu9&oASjZ4=j6`+l7Le*NU+BMbL1~c&RY__JBmQJCXG4(J(WDQ(CF+VXiIQ~u%A_F*&;T#R9 zcnhqgZVK_Pf9Ke~wJW@EwjL@C(mIpi)!%U^#m_1rs^&D(UCCrZRgr+y*#y4 zd&m6C>pBg6hTitC>Zm1f&w<)}i$$2~#2S!w)i1^-mbjPEgP99>nuwA+n~1B$6a&pm zHgHu3$gpnH%W!c6MMgk6iFQko`9x!4zk^z(-K2^cl-T}+s}}sE;|VQ7{%ujQw@U+@=Y5bW`kPW#g-IpvUuJS=I&}rvGwo5c>ey8dvC zNrIJuJ_}x{`wjuX009_uE=YK1U_E_jCZ>G`rkRh?8%Cq(=^ITW=WexN6a zmp{v0WF>Xgw|W6ycaV3&QGsY&K*~eFX$;k>zjnCRap)kgD^^mlR)^8aR^|gl|F7sc zCMGDWm9><(e2nq$Bcd}4e?J(A?S}hDMsNObzM^!QjLz9aa4i931&@wzOjVG^*pl1W znV!YHKMHHnRlD5!L$(sqf*F_GaG16ntEWM~OsMb{;X)1T-uLT6X!n#raBN$teVD#} zB-A~1y|;k(5<2(*fjaVEdrL6fr9vGXC&i^LMCmI76xZ(ER|ETdt68;)HAbKoMm^TJ z_b_CjHxqs$j|usGtIXbS+;xy6sr382I8_08NW3EA^GD{ zmEx8s^Bn2Wf$+OY%K48Gq&B<|?nW9vl2j_knz5V=c7$mFWpZD0$0hCsV^Bm;%wo7L z2_1lkZTHEhALd>~m@t=z$n;?kdSD8&;u-gw`a2+uhP)kUd>@u_B@n?YlL2=o{z= zbkStHEf*dk#z0tUT`MT_gLz|E(fx-Pz}yG$872AR{hE~hWjsyvrNCZGkCPl7@chav z-&_hhrO8m|t72c_mtU8|2C9P#>*ye8h;AZk(7pMy8bC?~@k7L6JdnN2Y@y@gtdEcI zY>`5Ko*?`ZfgE?F6#`wZpTt~fejvhYRb*}Y&TziWif9Yb!fH4=r7>VWx{wN{YSK%P z19a-ybK5^NG@O?uE0D9N@K#UlSa{*xZDlI2IX5pT7`~t@FQr}9gl)h%%SXd!HA}vV zay+a!vg8;bTlFW!v{CT7+Rqw+AR$Wz`{#4CKHvAf<;Yd>o5Qbch=B6GI5)hce0oNk z8Z(nU%LXEg7m+@W-!3sr#%t69oxbq-XnC=wfz<>6);-5sv6xvJF4-bx+z`|q*K|81 znPH-x<{vr^B_+%0HOz{LGYFjwp&wPTmh2GDE5z9lOPQ#iOrwAg>M+*Sy)CU2djeJ{;UW|r9*C{0&~=mGKx)pqU<7pzceO(g(>&{R^GYxWJaCllaScUK734X&K; zuweU5$n4smC#b?bWXwHpctbr(uUb|^&@d)%DOXzam@R$y0tqOayPK_54oZ&8G;j zn3K8+E6t`xP4LQ|P}VR_>2lTMZAas!u`=RS#b&{RBeL`lu+GnL_5zMTLIJ{yHqP3| z9i{WlO4he)7H0K0mYqIOU5Un_7|h?9ZS4JoglY**X#^trq8WxKIx0oIx*nMu!^Su@ zBy3T5%ZAy9GZBY<`i^nWUK;bwE9r5MBlT4q5aohz{L^T*&k%VQ7T};PgEHEgi+-~I zT1l7(`tMFk;}UZlvi(Lg?VXRBaaLZWLcUi~!d$w^EyWk&;mm7D;*KZsUK7>QM?cd3 zibNlZgy0e`Bd>XAjz)wDBVO@!TtT~znwQS!rAOSX)qNW_gh%b00Y94J&|cr86)~9^ z_U^8Z-*X$NFaGZz3yb67jTZogkU=#Bk#cX)@wCuClZD)Q)+<5+5XF1#ye&g1h<_nQ zVAHY}?{zK;p4I1}oum}_0k0m}uV(_%ImWBhL2^Oi+Ad=mIydEG<>k!~t0qEC@6G=t zHg7&7%`__uNcd=Qp+Mo4MgYE>o(BA6wMMS=-}rpIe%7pYIh3|K-O@!)J6E|>KOb@X_YbRpxN_Y$>mzWHrzq5n zvmwsjJ3e-q#=r<U;uRJcohRqsP@j2>w8XBmQ}Y)ETiVmxs6UhD8hxwAS^W zFN=xVF(4M0iX~gjVoZ<^8rHzil)ACHq$3ATzgyzo#mx7SU(!?bSg`zFn~g3qpZnW7 z>Tc%XbFFPMBx|iebykK{V$$3lLoJ=n29EJiy4NlIEHqqHxUIAY6kn+^3$qiXKfXly zRAc~xwkI1?gxG1DAl-@T*z+IiC8w-AX-FqJdw|URPGH#Ax}yixlzjXdaRiopwDF~Y z3XP{N2yXp@w!4?Hnc6)e#hvHvB`Yd#noNQwqY8F5n>VwoU%eIH2vNHqGL?7RvRQJK zA($xDYkip|Kx2!O7j$y zlavQIToK>8DVjpV+@g7k)dy5RK~YAjdtJC}QgZ?NI}-D{_=T5w0${Bdn{rGV;w#t6 z7)ppivNabaCZ*=q^-rEiFHa9bR{kcE9y$FaO#XdHt47JqP ziKD$Y&dvKB(|?R}kI-N3;R zL^ZN-TzL-~1;EbFzA=za6?YpIh$F2*tL1geR|mUS^{7ONW)-Ops19JeBoy|?x%qla zVi04OyD^{x;;HsRW-Qt8Mev?)n$_63Bhkd?#WSHel`{P$2vG90pa!Y6^|1&@Dg zK>u)tWxOq8>vxdm7v+zO{z_R0-g`d zK0T`#HW90qQY1BIfxNcuUn|c_fa%$qN!isQ>jJFbORKl+t~Y-~u+e*`t?7QN|4#aL z<*eKh#jSayz1v=NAttMLYm`-S3JjD_U|G9H)_9-|IVo@!taESFHo@>*{c{|6{wh4L z*h(l$e7JYe*?)`lnxwgNhY#KDm4?V1E|W)CcS-N4F3IH5v$;++em*^#e$c6_RDXb2 zns!t0CAX%yzw4JyCq``uA!UnoKHdD!C>Zpv8M$ej2vK2#MUNdHxsJBo5v^V3tCP0B8fu^Hc;7wMPx8;Ops%^gQ7r!0sb-8} zz7PX|`6HWUNy0Q`p%89!S#uTZCtK;uhmH(%bGw0#-v(uQvwX`~RxQPUCmNw#GGzPu z?3(rQUEC3Lke}jz0^kKHG59$FDfTIS?uRm_X58?yKYhW}>n00WCbt;FF_m3MXurH) zbpLM7B$LWCGf%WTrOCQC`S6_uojB*%Y5Q*1ypp&8N~hg{C$5;3O)SLy7ml$h7e)f= z5&t9F($uyLC$tW;yU?L?Q*U}Yg5<3r_1`0y=EdO4v8+mPa1D{A$wbm0KamQ!;rc1k#s zX$Ef=iatrc_*|EwM7)?|| z2Z%?~tQJF2?Np^p=G?cZ@xcao-!8<>*k2!u678W=y?^*mj4D0Jeh}{7ZlN>TAUcJ3 z^(rKIh?VYfvVfFiZ|+*N#7u1agbiI}GH(Mmh?PRt7fnxWR|hZ`vOoV*kjcOpsJ|Iu zxH$C!PeJKQEaUuhLu)=+H7NH7=kW_bPGDf{R5MOx&;i}cUGHySh)Qb;OE9WC%L{i; z=#ak#PFIJ`t)aFbOPq$Zsf4%{n3?h=ki+n%T)1H@JOSExBOwF+s0In zy*=Q_yqcb;2u~)|uAzYCwZ-AbG<>x^AhkT;eU8WY>Th=rHzJfR0n>$tei7c=)yu>( zk|*^h9pa~3lAnRUN7uzigkIcA^gK_|!!9Ozb}5nt7_>ZHC4q@ZrT)1^nvb*DE}rZx zgn;8T7k}8`z-oUaQq?cIA4?~|1!iz2&gCi3Icv`TsSloqJ2WbB? zU7gQD8@1j2%i8H?`lHnEu&{s|;sHi|Aem+X?r09?iH8u8$Tey{Nk#oTlKnu=(kcBi zX5nHVK%m=0R>b%W7(|MhgkkIk>R{Fm9Tmc_zR@d_-;4V{68}V=v&(PIXH-2#JVO(?AD4>Xm=516ZJuKVI<)_*7hnQEbEl#{F{k zs|FtR<|%!C;fncYhsN1>G8uD1c6U77q8n*!YWDD&nWZqIpM0YeW|V~*=$psx`GmY0 z1N2@;&4lpRO(t)}54^A+$uW*Mj>}cZH0q|!+P7(ipKtR?1YUC4m&r&ImkBEA_HJmg z^mdhqPvF(t|ify122QCV!3ccx;YoBVGslnD};IxkRJ4y$kI{Wxo41h%s(g*y(N!>Db(=$5$S* zV$hBKCC%~%Mb<~o@%|PD zl>k3${2V0m4|){Wl)Vmz3s!TjxL%;IG;I80p2aP3`FQnAchtDPQ(&5^8wjXK1nLk$ z#v%vUM&C{@9SzHdw?z)HzEu=o3uMi&SUt6{zfQe30|(hmo@&N7dIj>M6T7`lNNLtg zQ$g^Eb^YR-g$`oBoRiZL%F?h2dz-e$42lq-oTN+jI*Q1@Iep86I4FwT&5rB7$6K&e!wNFWmCt*?y@%Ysq_4r>8* z*K*H6ebv{n)1ycg!@CjN2V9NqXtyf##j)G(=I&)~ z`*xz|_#UzIK`n$pbomAKSWJJaI!8?#H8&B$|6#cg_{tdx%fX4)Kz|{kX_cFwQ$k6z zzxp|watUKA=6yw*!{N#7)=&}n<=ddJMvl!z6M5umCI$fKjx*{hCZ>r3+9zGB(PkxD z|NI;jKPWSeWlYRiRvEqVU9`TAyg8v^&h0?FscvDBAWY^LFs^rXUQQ;pGW$R=>jhj~ z+!sCaejV+{_nz|p;P)K1jqbHv-k!1WR~(l6*P_*vqX=R7DC{b+zz$V@@5EC+*PdjUmx@wzpls*Db%t8Es#m z$VXAM_wDza9D{c%R7npZCVv6;9ELvQ66)(T2fKe$QVd0MtM}CszhpJLquUPACMoif z0s`7Nr&~U)tP%o$aGp_XK-pn`&GOAqkgPHT1ZrpsD%1I+`yjDzua2)C3a02}FYu-wW!0B7v)=pOs1BE@I{_fNAw}_%$4ahih!ib66~WdpV0tfOBJW zU^M|m(pozb*Vf7^LwLcH6MYlnhbXMLL!*||q#cP$#RPg0iyF%=%TFkqmlB6e?E;#0 zIIodnwAv}*kuudZfAe1#?QWS^HDtysX-4Mc)~Lr&9?W!f8BK`3-|_<+jZz+XuN!CV z)84zugT=}{ct>Xe$5k)@3zM)EqO~u8HAMGQHzfD{M$%|K)nu|d7dq^PKtnMB^@kM@ z+5j+Qef%u&hIeP4Z9%ZEa#`qF7A#eD{};?ddb1_aa267ys|)2Ii`V!4sQz@f?Pxij zRL5s8SWa}%e>u`6SZ=;Lk}c+2gV>Pfm*fa_cHe0i4yD9EXWjvv>5K}S%>I`STx;$T!$^FiqrVG%3q%$CU5QO zNs^9I4=*!6a%hQO!E8Sqr%7o#x5dO+=VW%A5c zKkYh4Js6$FDb|IUZ8dLkLrD_+$;DsXZRu}>-b&@GG}#x`6ui`1)j-v4-QEgRxZ4+n zikJuXYY(PazZtMwcMa}wG)h!$B&|O}xz)d`fZ}t#@XM?By@83)#w}-$w9_2#<~4Y| z?kn;?#n(hqqHS3{8*x)#V3BeM@wH*j*r8y^o+06C&F2of$)_<`)#D0>!Sf>0J*^70 zA+?h}ML}&UYG|rUJcfCtKacjsT-aR5`R2d)mmm+xo1|F(_VUoAZ6nxpJA595(nSu$ z$w(S0?75m=*MVBdu$Dn+UgMnQnC%*YK`BQeucMQ*H-D15lBUtqM-k&Ud7~40ZNcq) zqI?^A7xL38KF%3Nn8OEfU5W@h#ggT69ln_o28qw`e zf_ye;JD|RX`Up)HtR|K++~W82J%0V)ZS2LSxbA6>OZperbWlr>OtKuDjosl@xyLJe zuyjwwA<-4*{JyK?kn8Kr)=I~4ic!ddQT775#gI1UnYSl3PI~$mC{=hse3CjqGL>b= zVt}I3(LsBx-Izt75U!SUa20bZ#b#TFZyX5wDi&}O_-qb6bXvzTaCJ! z4R{~l>(KPKMnlzN7r5BUb`JS;=>T)+Oj`q)e4Dbjp&k%M}afbjQzeq-^C#Lo9_A>^L)U)s4^h?eJ{_d`Be?(;-%5z9ZjH`?#N%D8;geb z@&G{aFY6F)$neHSP3J>^_uwcEIgtq@WjtX{d_}g8su%XM-L?|VIcXK;QR);~DKN-M z;_4t6y@T(4x_?6Q^LYF26|!1EiezR<+uh%A+utPI5AeLSxOQ|U2(;W|w{)vKchH|E zmM-0U4}+4k46m|j-Ag6ZM2=Ie6{1zbsv_KZ8cQ@>xOTJ2GWE?z(>I!as3{1WlN%;< z$w%X212S|2iJbjmEyeWX|5S$A9Lwf4@MT2))xMCy$?KSA&V&l4FK|wkB(|zuxtupd z>@1D;oT9bzjCx_><-xr*`PDt=ZuoWS5_9{Cjn? zo&=q*nOB+W>?_=0I~?&-h8JRNB>$LT9g=yzQZYJ%-m2 z35T|H2*5E5z>$TD5y(}ZL_iKl{MX1A<`=MbJ7e~F!xd< z>!0CQr0RAvJ?P+XcS3JRQ|DLxLR9w!W?ruK;i|0Ji5~(rk+IT9258`25EhtRS7@+` zKIxn3Cs;$QXs^P_gO@z?l0+}e2acReV`A4gb2WAaDe>2)uVerupyrA*On?m9O@K)#tNxcJ;j ze+UUfpgMN4YYe$N@-M|`I65-2*nuo|Fzltt9}W@I_29hD;Pe+5`6!$6rw979B1I*B z@HzEGtt<+j^si2A*UOsKY1iw1REtmXNY7P^@r^+UZkVNAH*ST6EsMB}wtH>pL~zoh$@z*1&@M(d) z8{V}e5%;@~Ml0JYIm0^1_TCf`YPK(52ecADYLvBg=-?&Sub49hyk6K03%-^by20c% zeCSP-Cy3O~J^fJAP#%%c#rqc6OAos7r8+UygCwCsa&u`~`7aW%?BXD78-}Bw8xD!6 z01CVBsJD^p{m^GZ3F@Ob{H?!rO1pGN@&=IgIa_l#hqNLI;4`pZ3dRb}iY&rev?m$% zigCszpT>yo(G%0#pJBvuR5I%%v0VOL)iLPfGnZ$5`LlatzcIW}{DK9wQPK6W5hsH~4s6A@g zAPYKSp`2pHbxye!WNUo!q`7PcLn8J0>%mFBXXE|l_Y+L72V0fpmMypGh>M9}lw|70 zQp+;!yCy^zq+Kjym7Wh@-DN7&V7l-lsju$QkLli*YlWw0-gW$sE?-q0Gp3k3(UpQW z+q5U)q)nV{4e|>WZ%Tx<4_k}~aIA5mCG@?%EJ*K2KO(po znAmC_rY0BS>{j1}SE^E1QK!31A9Kao+`pE*)5l_LV=L4iY@_-6x(?MTM$~O>au{DT z87K?#JR-9Esh_31E4Y*uxrNM?D`yG~@>%nD>#roG7W;a;=fXyRl2C6e`#wd{?91om zvz-W5ZM5|k!Eam02Fx!k&#e{H2Emcnj1kX@xERo(9wk#3Fo(K2+-7)874<=4|p-3WP9qR>U(&*KqxqZ=U zr`7HuJLada%#jt%P@FxYvG6egSGWjj0>}{-!)|HN5iNZ&mBy=VN^sW`yLTRUr%!X9 zENH0(nlt@YBMSYu76K~Qj2Nl@zJNWi%>h*7hoD)GGNd2hVO+?sJ+OXSe+wW5#`q}v zC`kH!-=QP@drSEq9Uf-LMs93`1i7^H{UeFOr{tN<46B1IYH;dm-+&0P0#Mv@KL{z> zdlSO-T8h2}a}oHfKe)pCTLG*h&CRBdV+%qF(?Nc>4n0>ZDTCN(bze za|QKB?q=C{HEil_QZ4w%%T{tHx3?_bC2$RRNw$oZ#wy08bg$k*O5y{PvPd5qoS|Qm zh>SK22cKR)bct*0`nYQ{&v%o!)#@+@+f{{M1>K{qRMkWMaYigh)XCoT5#(Yvh5uYr zbXlaw%iG#7y=zlGl|b^i0dH^5H=eaKgX(%>9B4vWCzls#cp~1|abY2Vyrk|kp0p?} z-ECb(*4-7DT(rDwn)Rf-{Om-aHm$X z_OSzv#}G_Kz}zr1#MTWIp7H`R$_(Bx$+(jBl%E%F9N;kQp~%kZE@5Ws9Dnm#>u9^C z_DWFaS3l*JC)e||@!J{I$qd!4-&>1uN96|%mWi;28#EpSxZFmRNI)mIE{UbuqEuvE zEp%r8`KjmY`IXv>yosA!V*~aS5<^Wz*!$E5Hn<-gqnx7PK}86R`xs2QJmijsmY8fT zZxw=`nU7`+%tB0RuaL)sXCR)HJL%M z>Ql?n!qk_95?;&;>ui0x?zTQCp|&Ox152^BmmLtilyY+5zIbmLLsddUmh{P`9u9-@ zj+N7FF8tSe_@~ol<9S=Yh6TNEHXWbW_~&tgeO)IVH1GsgeET{X8}kl=+@(nm9gIvAnWBZ zy^rXh`RT1}(Ts;+Ve~qJWBHg^ROmTkK~q=Wrs;w{DVb5r3(P6E5)B_4w2Q)>5&Fbc z8|!FruquZMv!tB%%Npz8hXS>0lpK`x8XaAO0uk?US2o-Vn7XEe{`BO*V&kpi&ZCx4 zHmHKp>9Q8@I$2lVBMops@Q-CA`5(#oCU{>d4N`-Bens}+J!9R3VSAx0xWx*$mtSSi z!-laeu3{U#`%xts3L3wE;q>{F*($U^?w4TX^C_in?JRj@KGk02FERZ0lI7S~0(AwK zg=hk~bdU(1T$dE{ZC=;<0Hf`erH`HeBZ?t`?Bx>0Y8O|2C>{EJe{9;*jm_j2J6GAn z*D4~(cMK=;AV*FeYeqVSys~U8=NwfthC~IJ+@R_bZ%q#kNfcKigGM49GTg#tnKKvF zfl)~KdKuQKwm3}9hv_Wydj@`}al>*ez&O(PYk(-fZ0ggc<(=#9Bh7Y+z5U;fm5ZWw z!IzhAy5isQfj@|R6x-L%cqYOzafB=wV%SgW1i^|cgfX_|Wm*lrq3hR`{ie45fmQt! z0+YdLLA3(ufn(mbzzcB{v|JxL;vPBI*or+2n@NEV!d=33}H!bZ}WTaLi*mqrh1^($R7UN(y zq+oajbuFd5N#3&zdvP_a=6qnJAHl*vGuZeI_U7s&!SaqCw%eHJoJC38%=r`eL$DeB z%vX^QGv3`_6=prd3EL^%!sH4{kxgpJOD9mKT3QsRLREieKsg$5a-=hDqAxQe%TUU=2kQ?ehQyq?VH{>Ze%>01 zLWwB;>H993QusD;ezO*n`E6~n0^Ss1rr z%$-AYCQz5P->{NYY}>YN+qPA)ZQHg{v2EL`*tR;~{||c7v!3)?cYY^#-F5akXFnSO z=bVdMhny_e52%U-*6(TZT2hG9b1Kf{TgBZGN#pDm;9VsPExo_aERo?C1nLU;*TlZq zcehUHeel_u;^ovGi9Wp`3IQrYS}NRkbHlaLs#La6Hr}C_hX}2E>I-9ufe8mmv54l( zJLD%ty$%yxnkf0KG%PKur?qe(j{j&66Cc>{o()9*4;;t&JC_WSVnHdD;b8k&JCF4K zBaQRJRhr=}gMz*?1A~@f$wZOq{+Z+x1_*orcnE|IjFtn2Wjo6VJUv0)K@ta!+_4t5V8!VG84=iTRj=Uc9=r)4&VSExSUB3DrPwjW01s%PH| z_;$!iu>zc~W#8la>fvun)Z$e{GnONV^1)U(5Ac~zb;nPVj~_GM=i*fAq^_|s~g7zFoS;MZ8TD(WIsvY zA9;Hyp-Ih&2A31D6eA*3cc?Jdzb@3#Mouh92r1gE8RFmrEEIciw#sZ{1FQGGkoc)PhYUTp+qE0mN7XdPYBLfA z0q>=~F=Vrtwbuv}{`GT;@l2_><|mi{U39A3Ab^G=Xq7FOY8Ef|;&YJ}89P^&O6uMs zpGV$Io(fn!_Qm6ZqtbsX%Wgl__=3R+S-#OPCB%eGHKrb)9WkY7^%EQl2(Q{nt-i+MN<->G?f zg5^(Lf?<}-hd0N3WJGM3j$GFtd-}YPq5iQ3e%7>&{(S=u(*HB#1Mp-0Lazr*g$)Rr zM1bmV`GMCB13(Q!!rj&v1J{^cC08Ix^Px}(cr2!X%`;|+LlK~q+n#1uqQT@y%x=WR z=VLyZUPad*{uVFtABQSl@1kg_HPyyKln+P#RtC{$8K7{+Opq>?VUHdLgx;X#)qmO%X5}4W?Eiza_4)B;t2j4J%Pv zmxP#1 z$YDi+pM_HEhJE@9NuaOmw8h;n^xRpj@&-sEf0F6hiK5JC&=*GWQhy0+Ez~pUDeNmi>g?A=7%8o=XuTOrG4lrLkZ$HdP1& z2%pt8uX*sXYX=8>-=Q#!wp`!o_1sQ0SaShT4ol<1j5YE#f)zfI5twG#C!!=&$~74; z*CugIHhTNA2x66Kib)S9$BUX2A(pS0`UBXIp=HD&Db_q*&`lz)v|Yar{GET`vceP{ z6BVK<$X+Q#xribb>!9nvYWU|e4~9d&D-KqfC^j%je4%iy6v$=k%r1dgF(giE!WQ+g zzZ&;(0GbqI_s9WLHf)jY zIDq0luR>#u@Ucp~!kmW;QnT!Qc1oq+LW4zv$m&LgC5vYpY~c3z@5$QmAcp)TSrKFv zXA9TfRI4^d$)-|a?-((x{V|Y#IR2i6e!B$l#5OJzHhBt78i9dg#ieq{vqqQ9P_z1}XIAN(om&2VMGb`&2qek%LYGYp+} z0165bP7MzuSW-a}mOtNnfhlXnReGLiimg5m(e8u*)5e&W{x!+7mgZbMYpWR<%GwOv zc+r^K&P5ClTf9I606<@7I^{)4s~!o9H=L^n-H$cBWTEXc4LfSm>`SCy-&XX_Y1m)k z6@{1aw1)$sl6{m<5C;}={7@2aQ8Q%0bV_Qh@>Di!P5KP|C)+7jk$q z!p)PrDZNRkzeUlWPJ=q9we6eUg;y$dMFGsU?UzCGfxSXO2BZoiJfeDgbDba>-V#at z*~^x8h#8PY#zG1wS`dS$Gs-sibx41(sku&-LWE3jIL4Ak%F4;x>SZt zqW}78n0D04=HGdMgS6|eHNlK|J?4Hz`Ii8A2t~T0iq6zQvOzfu-w~W^8ABUR=439FLE3oj z;hbFd#eV#%Q&N~yS(S44Ibuw_pe;`lEUVfd`!6ayTQG}7P8VTIB{^mo7S=I7@Kspb zcH|r{Wd%mujOtLRVE)wKGDvBY4%OXTd4dDN1Sj1S%}s2J z{Mk9QY+a0Gqs79q^(xhZ@g2J}Kpl@)VROLkF4AK2ZzN|>r8*Hh$X>t}7xo1y0Z8!` zs0M{wjkIPn$hfE__nZ}8o1Azn;WXZS9-t*mCZ9RBOGaASDwTOxy5Q*wv+e$n`{Ll? z^M?U{^z(eaDJITBT`WXq?DtmC2FoT0?bxQcmZJ@e&WGMAfXeuGs;>N%ji^?)=TSGw zOPU2y-fLi#{7f(kEZh8|YlX>b@DrRq8VGyHjAnH#0jWC_X;qy)Ivm4psSy9SnABs}r zucWxYDyk*59J{soiSMO_=8r2W6dh@S&Bq?!U3F1C+=2KPki(ocl#@ru+I9JfTRJvv zT|hia%(!}^T`Ld=Mp|G8khg4Tl81p(D`f+LnQPNlVnOP3+ymv}k3k?)WQhQt5Vl{I6@UYk-8@23g;*w=EKz3tt~lA~xZ;u_((5TueZ5uc@%`1Sr)z-? zPsA|CY#CwfqJ0U>k-gr1Vv*_1T?nPMk~dPXxM}swXbD9g-mK#Z+CuLwE)0_YM_g0% zSTrab^Xn#EZo=9sMe9&+1F-@)i10!ljG!)Y`S6>=Gi}LSnxU0}G=7LplNG*AZn?b> zSyNNO7Fa2DY-j0xtNOSly6X4a?bi3_3l$GxRn2BIhyfGtFta=@asX}Q2Q92qMFQpb zy;@h40rrINH#omf_Z8p+P^Gs z8ybwtKBWsq?Gao=f^(6zK@GSNZ}qcB3EJ?LfQ_o+0%hxtsXh6Jr!wCgo4_(p>yz%mYHAut$bZ7v^nI|)TFXCnF)s(j799^X-S+IIs z_d={yrsxBhBH>htW07mu-0=o`gu)maiWV{R9zmPtW?zHU>-dff5?R%bLL8#B zu`4;P_nagxuZD3`X-weDSAwpqf}plpAHkcqT-;x&Lo*^$#i?X6bMP}nzL0Q55-Kc; zdfdD7+fvQ2Q=NIPg&a34bZ>9M6#q8xJUSHgvsYxB_ULLK4pofuTC_gD26P2n@!Sew z8&va|9{t8j&$G6SKC2zXp^eBufU^!xc)riy~L)wCGiA7*2k+tz6_|9JhLXo}SQ zsPw@^!)4E>hJieM8vrTP{VYyqyYQ;q)yaGB4`gpFiOpy z>7$`0<@JWZ}0?j5(xnDxRU*(wEcI*OUrRab{#4D@*u0R-N=s9bQ2 zjo@-N;sP3VmxD;uxWJ?71-}#g!kevi=z>ZvI*)(d`P$@Dfb$uBXe&Q#1=jeUA!c*J zauQ#pr%cfzT&t2nRA-8<%gXJzwAV@tx3y{mn9`bPVvjDKQyLN9!;r{wK?!dl>#zP? z^e$IvE`r-W1xj^Jxdxpop0G}AbbQv){^sKgt<`hdI&0xuT@>-`FOihygn4+Y+9fvz_^htbfTK>sc-G&d5A z8oW>~(6&F?iWE&72(rltNp6}Un&xjHgN$1TYRm}>6nFHWY`4K**8ZtjcfOju+HSH2 zn#Z_Xs0itquXz(OV01`JebYYTy*ue@Aq1*LBN3#@!5HyD_i^&t(BHESEXY~B^REKa zCJH%hK`?>!Pk%J;Bs!+9h;7?F7y!Si=>pnfDUgL7_RcGw0^D>Oj3cv+ym~`yLF)bG z@#f$C`>>xt$A&azzb(E3Ps#p4W9db)gFyAKZpi$!#V7b*S`|j_%`!mM$%X+?Fd)E* z0Sp+gldz{3F6zRKR6hyOX;|+%`B+T%l3qhO~zG*BIAp z?>~jzqX ziFPwUqfdnex76B7a&6m<+fx>!`D#sGK{9YZGyBd$e8&gMHN_y5Ur4a}(FLyOlMYT| z$4)c2r_*h%-i)vxz6rT&E1D7vQ2y9(i~+D^3V*SD%t>xK5AObiU=Umy{_qZ#%)H|l3SZ?X zZJkbSra+Ji9}vnZKLar=J+vr|qzj~gf&9-2o-I4>!L$PY%sK4zMO=Al&XB-!>dT$L0k4zM1qJ z#h957<#1h<3jsIS)n0`guME1V_zwCJw7DT5$PiUvFNwD>KcCS*JoQu_tRi#>Nu7d_ ziQNZdjNBNm?2FV+3@RAU6bk0*U4TE~lBY$<e@f%iGkpnhTopE05zxdc{xW`&tfGpQtq5osNofxvX^rcD_0; zbAE-ArmTEB$EoRaF~)NuWXV%%tgX=HW!3q8q4DK4y7WG;w|#q6)3j>XiW=)+OnLfJ z$wHXSFT9o+xZkvTk(%{MJ-~dOoZRtl=m?-A;vzes#oX|%WdmYp%ibW zEz4Fv60FB@^;kkNf>sDWMZPSiF$m{1jw|DZE0o4)7+o&L|^rW@%$5X%E>FF&4)V#|S`eG9*OnjL7oxQa{u-JkeQYig)eKh#rB;wXx6 z^-WTO_-grdK^Mmis(r_89PuedjEJ6hm4fzWgof6(`ud2VET}%MF?~M3USj;#aOo|} zkrVLrhL%V#`>8irrv#y(Eerg;cQ<<7sNgsSl_KunaBVH`D>wnCPtACM$Nh#ztO7aH zUq%?Xl%l=y6+DcbF=87+l$Lp5JWu3JP+%pswNBZ9yohbv_9`(Susl^AHsD_4)4wVF zO`Pj}!b<%=bzfP4i3kNRi*3&aBgs_y5ldA^IE6<`z#3cDBW<*02BAt{&fM@|Qz!;Q_=Mm(-PMcI%c>7OJJHO)7d!?>`;yLJ!uFuDkpqlu@gi$jE6JqpXmTD@TiM^04}=e4zo;U)MR>yIZ4U0N27F92nIf z(*Oj|fb%ZbAC;(Aj8^0e^2RmZ!YiGV(n}Fflrvirvu3G)a{;Dj$AHVHyDFdDxRJCH*Kg= z+93$hsokA6xFpiA3%T_|mDBF7_1}WBj-$sb1P-$o16npFsD80{^0-Pj3;X*^-_r6N zJ^l;(-+)LOEz#NIv#z5N5xTxKpf!{dzeOPH8NZ^_xN0IIX=~lM-AZwIIzHD_=%B6o(3Xq4A zc#PTp!BW=S0qnCZWx7V>M(pB~9v;T`Wi+Db*cLf;kMsAvIHw@+Yg9Jx8#V#6=8IwhCh{g`K}Tx zP4B3ThE^vyqDcX_G*(~~XlwG4XIOF1i%z@=K>XKAY|sj}C|&y}fS0%NRIJG#lPOHw z3k$Zy6Rk5$_8hjK_9k0*C%(@ox3h2AGrUyHz6u+kaujF+sv%tY*w|8v1BNV7)bw`Gn4p=%QBhk3Jxb!v*Us^1|7-)J7hmhp_2E?C98es zmK|_%d-G0&ry_}zRO;nBLNEsQaDMR8gOXCPy@z8Dcx(?z!OeSp@goTEYPD!ns+zHT zJg5zsNGKZdU%rFAld8RseaOxI@hDdQ9-$x-PYT%ng9|7zmN49TdHgNe_ov_)n`9u$ zNf1$rAbdoq`qcXTB!x;E^f+8ofy&6*z)}>jIQ^xROZke9c92&O@8{v`k!^wc$8ARL zAFQS}Rm5C#3AXepqX%pcs&d$$i84LsUhhd6o*E$_x(C>D*N(WBGVJj zYIWGi?KvFyqrfRKhrUsph3>wnD{?Ti$X`;AQDhQBfK5uPMt z(qlbhD--arRvXZ^(%+CTcYBH0sBEpR#Zo*D`MwZJU&!Zop`)4xi)-_9i4Zcv)D&Rv z!vdIB z^TLF(B$;G2e(WvZkqk%<4-CQmT2|Dru6Edvr>d;8v$R1Gh(X3m4dqe^MY+=Imb1Eb zbZ-SU)9^sO`c{7UFq~9l+f0t-41IiaK$-3{CBVm-s>WjXnFaTOrkwA({_zP z2Lg}6wDs}jrr4Wg$xc={*ox93Ij^?MM(sBK4O#lR_u|b(xlE7r%eSh5j6IK}n0`J# zy(7*N$G?g&v<#(^g}Y;2ShY!i=O3lSsd6p@$`ojx>#RCsroi=l`1Tyat*BrmDC-(PWRd{&?h zLOG_Cf+M+Z%yg8!2p-XwWOtc9iGS|Xo`+)t0JGH|e1PATpINV+44_I|mvCRVO|d7= zfg-L1_0>TN$XhfV8^~^smbQ^l)bPe>ik(JYi2Htx-^kzNxO=1f_5Jg0P7xj*4a7dg zUI>ZcYX9NcHKl*Wj$N*2hmQCWNM1T$hb$wV}#QmkTV96$)sh zf^>17m`#{#KRlO@7SXXU}m?8G%hI;JL|s>R(e& zG&dsLdmkU;Bhmb0VqL_q)S#L}PTDI2(ZWDNB=-}?NG>msQWMS%5{tq>OlKRChJjJT1 zMLzwwq;B^Qc0RewB1(f4Mu5KiQ*ml*q0fowAimsQdR}RstH1AfAP^pH--lP!xN)H# zI#d9hTB|`GsZ>fnn8)XOmcJ`mBv2ZON5rdrW^~+e7oVu;V?%5fYzjNBvWp}YTswDw zZko>@htbg-sXO-BF`f_#>Aqs>jsrlkC{mMhrN(3c+FMnF%g#A<{ar;kUikQ%1Y*SG z$B-P7Kr)C?$YceF%|bQXmo9Vt^0e#IwWH@UvB&^9evX)HZHd)Q`e(6M{LjnsztU_eI}*p zxSnXp8F7#4iOdetnCSA&QlRujTxvRr2X&-865<{Dcyb3(bYm3F#j6LB>8YV3hrJiv z!DZ+}0^~lx{f3A`#_kS>w;$aG_lc`_p~CN*6QKhbnX4PtCZcz`3y`64KMMw;PqMXO z4vWtn{dpPaRn7HPk0H8dQ)x&~A(db50#dQ2OIn_l$FOsl=53STzkqD(J2cJ0h^!0L zNxu(F@RZmbUjQpwFgzBOQNQ=aA_)#UxBd5H@sTaT`1z|f7?73F<)Q52rtaV<@->ZW zsYU#7;qdXz{qDTPno`gd5sqFTD+`nvy!1_h-(g+nE;iJz|?iU3??RQ#Lw(tNSw*WAHGe_UhBakHQ zzat1|x7%b3wGu2%!!2B!&RHN(D&5_NI}cAWU%TB#mF%bw>Qp5RlLFUNMqS{?)xf(p zq0AH*Jh;riy>AXnQn5UapJ4%8&RJolu@GJ)!Bj#S?-;4X?tJ%~eTXu5%=!#~f{Eho z&*R+NCvfUMQ!1~vy+iQSE4VE@d$lYi>6y#n440=t)AXgHIn&i#MjQwlIdhpFubCMu zpx%@so=5}10gVTz8Gk-1&Rg%985FkgiiCJ70epiTR86NDB+}JPeV|Td^uj`JtV87@ zg)0o4f!V^V*Qc82XDWd2uKdw#d?i=A)zE_!&YG@XtIDH)9U4uAvt(7U)?*7>r~iQ; z+-PeI(1F7w3UPUZN>YGhUaI_VJQ0M};lyvhs`ZqBhWf|KAg>Lk<6nw-{BOl@V#-qc z*i5ZdfAtly9dgYQ)+M3AvS{L*2zz5yP<5IL=xdWE{!tm?w}dq4aMmQ#u`N^1?`;2- zwgqt#rfoZVRY1p)=+9Wg>%`A9@R zTP8P$A=_5XAQztV8n>!|t5~W(8us+N)T;kO@SYH7CycrHgFel(#FWmw1q~rKPcl zn}lyA`Xa6>MpDffQ9Wa$l<0xyyc%6hfBT$nWU`?Ur6p6b|A~w514St|th%R&%(t`M zphT8|svcEbuspYBe8wwZ?$=azi8qGJ*kMVE*Df3>rIlzipj3=8)F{sa1f?tko5N!> zaVK*N&7QPWQmmg(hH8~{%#WUwV)r_bDr|D}5MEesE zt<Kc921;w=e)N4AooACJKc|-zS*CC4JRRIhJ4PYU# z2J9_O2pgA%4Advzl8Q_@sSkHZ6g6i*PuDMiG(8CK)P`Hmv&A-MhX&EGlCN=VOO{{U zqJ#^iukP-0`;36jcyjOl9-XJX&ej$Aqm%vfy&9Z&lVWcdmqJYmYRT5?30kNC{OFAx zFM;!qLmSjVWh$cfut0mq>CooNa;O*ys@^ca2F%wFxX{TL;fdo4DdqGYlUe4BAOqtY zgq2XDSD1hpA-uInhh%gB#PK96@;JM%#BFeH`1;@hi|O?l**}LRNmHqY4T}d5gCiP% z#|&J1C5-Z9ArObRA(O-li<{V{Y3czNvRQwbXJ|xKfJL5ysb7&@!C8a zUZYEcg^D?wiXzu%vc@<(}KZE~9D_al&!~?VO2foRp$ME1EZ* z8PkZT#`F{TPPlKEa@;+_nv&eO9^CR&J>DYq7xLLfd+QSzEtQ9uVia^zPbQ2OU)Yc( zRGv?685aARWwbAR4@^-kxsQh; zwQM#h)n>_6kEK~e>PzBQyx5g2(oaZ*6E_W1ku6Y#uSNZ(Y_%2`7YKa#L06$|K~Ubk ziHuO&-U>_9Ccz}&dhpR@U?6(!Z(w3=*9dTbbD5!{5NC|ehz`4XFWn1RK<{##OhygB zQd+RAWDwmgy^FLfz&2pC4xe4O@KBg-weC!}+?z2tYV}wLRGl|=$Hi}elnh?F&N(h5 zsPL#wKjR)O(?O#BDG;%VG~s`N+Rp(gv9|!>74<>~1||D@lUuuZWGE;G)MrUJG;Qaa zl~54t*{&@;KH=_X$E@x4#sWDvB7%zOK${3%t6ig~iu$K%Df|vJV49u-;jg}DM_D^Q z|GjC3rM|yLkAumNhuX6eG`-Eo?BK?Wmw*D-FAC}fT`pj_>5-yg& zH}&-%9b8BtkHUvNUOMM8QndfGXJZKzp($o%E~9AtPYrg%;|?}nLMZay z7B^e7?Wq#rf$fH^5c>r}^5*HiX#ZB{;2bH#NnU@KJXnVMcG%HRijIrVxy-BY|2m^r zpGh?gczt~|Cp8ibWZh!{$Q$)yqQIB!o{mBYzd6=#MwwdbY#YcnoGj10;(9x6r#L*? zKL(T5CFr<}X-;pX%*~y6`1ZW1PlS$Og7q#lBP?t7(hhIHMDk6n4j8Vo*(9$-VUMgW zQ$2btsM@>m%DSwq(HbO_i9Durz9U=E+BK7lverMgW(tU6h|B_!?3J*ajSUOW`^~DV z$(LP7-2|2#kF8n^Z!KyfI|L|U*i^s(^;X&MDEy9L%H%IevNVw|Zsk-#A8ke@EQe|v zNQ{Wd%UhPO{7?O5pY`!obHCVz4}qV#9`Q#Rn8`=nFl+Cb2?8pK-_3kWByo~?s{MCPs+Ca`G^?3o4h{^V z8Cby9AJ)bcYGddp^V5i*kV*fG(>6`_UNu|;OEdzM^H-V8A0dg zwai}thG6j-Mz}6Z8?aNIkv=$XCz|z^$?JmS61^peF6*zq!HXB4K_FKT!Yz~_Hga1B z8~@&nIeD~?63i&l8>F)RqHG_g0IR0}DD1wu%&{^-$)9gs6mxHFy-X4G#=4WwK1(8b z*!<)NYCO}nPREubQY~`*Em8<0X>od@-9Fa;qPgE}l2B*&_C#`hGuv+Sc@FL;!_AdhIMh-yRmMDM zZ*Ijr56$W#!55Ty+&T}_UiTsd&?PD`pU+_w)IShH)N$d=)N{A`C!?nPU9iJVSRAxn z7=Z688ry3lma{-$qPMzk^wFlZjMG$r4qP!Z zMz$(iidkjC$k#v)`>uUx5JeLkJscw~WABsB>z@0 z$0pj&_b7lz47@vJUO=>ogR^WJ2?sd<$|w*UvnWHyW$7RJ{0mQv)i~6MT`L7u&E*fO zq8h2LAWa3y8WGb)h><+{#Cb2ZR?B2kI_jL~bhGwf3Bx#bQMU*6cfcwY0qTAw9S;4> z;_r@)LZXi-&k~$KZt%4pYh4Z5<5M)|mpm-pj2zWuIHKM%L5!;Cw(*72Wa%`*eaQY0 z+T=9G6J!y4mqCfO0Tc|0(kB@#A`D3%1E|mR1usGuHO~4p+YaBhde`^UOUorVmF%f) zIlx&Uq-RM0@$DaODn_fA!s#g!(t5}ztRNLoq@g#`dOMFMPeQrGYVbcTi2sjKsLgY}p_reZjURh=`_JJzUL92COylf-8-hSY# zBAs@Ye)Dk_tqXT2>7)u!O=U`C#EpPV>eT2#!MJ>YJ{p!Lu#pK-%%Dt_q6$jFT?Q{*WOHJPgGtjAX(TBL2r**_ zmn;8kt8>(Pw4td$l?&e1c z!-qPn5AKUsL&u8^VJPtDUSmE4P>4kN+OaGg3WeVN(%|^^nqxC=@tqIwsOMEC)LIUur%-?t&LB@Rvtqo|*F8Gv zbj?tTlilYv9c5FaGHtrlDk2=dv88EASyTgohAR_Rj zvQwJE*Ts$7zE*F072G-XctDN-A+(DNSBKqR$w>r?S;t#pBo6v=omKuV5i9gDFLCq{!>Fk zST56>tzF_pHLv?CkqhT@Mv>LS75_8cAaz3%fYyO>vFtamwPy1uew_Q)n_u*YiY^@Z z-yORc>lgA#-T~ODGMi>14)wDx?%dzNS!^8cA5=igm*R%hUUib#F~jQu!Kfh0o2gG> zs?9efHy0RJd;6-65KlbyvB{F3xd6te5S~*Yl~g{h9ZzId9y0HqBB<*13k#;UzTDrVM!5sb?K#%VYCX=*(G?dXw* z^nGXnNwj^utK9Z->22yvi|!fMb#wz2xQ_Oh%9>pKusx zNllrDCAoWNr5(NC7n%7@ADJo3g5p3!x#NF3B@BDsT5k6pj zIW_ChRE(Rb0u$Lwqb_7L9ejswQ@o`CukpQkvn@_@QHs`rJ`n2PcHX0*h9QDJ4;@>Y zRkczzAZA6+Ymmvp{05{&`!>1aOV-^$exu|}Dd@)O;O-L4@n&!RIPkg*ze=2Y4RoyQ zU@_jJ+2wb-xEa|)DITyk&Q)U+cQ`?}qH69S_(E<>z2zuU#ip5QV{v(zHc$z%(%riw zX%Ce(DnQ%N28PzWb|>PaYaC8;iVlx4T7^1Z(o()MLcs5chVQ*!SWTgXf!6)`t#Vu% zJgP;`^CtL<83cxJni%usP|gIm!FTphoK_LW!6`jR3~`QjCuLJyZLcd_lRH+PVS6)q zzFKqiq+Si*<+20pMAh0lq7)AAvyDJaSW;-Qybb2^#*={j$+f+*2;zq4uytPSrDqz$ zoLc*CTToqWsnMUL54@IPL|tp*>*(WAR^||_T1mcl{7y!4uC83M)yOsbQGjHzBm?hZ zcu>)<%fr7ISLea4^nc;ZEidT0`4H%DXaU{a*?D+B-%DAr1#J49?)g-QE2>f%qT~zi z05h8Q2t5_huK;&g%I1^ci6TXuwhQOdwUX>Dt|T-NMyk zlJl2iY0+u~j5Jmtq=F_Awkf;6 zws^l^9jl#lU6|s($+{#H1qGMIrV$5HE(D;QUxB9o7PO}nfHX-BxmzL)f3075Ic=0; z>mj-xQ`u!uN+&}rg-bzhe&zbR;+_j;^L=s@ zI1WWfD8sFfxM%RzDgX-kS;51oSz7XL%p*#!)w63~+QWzZVdfK;;sMN84hbXu2oAP* zwu_Lm;`BMhF1+>wJRM!er4JMSq7LMuuH+8T(RugvEY)S@=?Kuhd?Cuwvv~(wK0t9& z3>P~wZ}A$vllK;G7B-}q4iWvUg&xLD0B|>uF8?SaK=PB)3UvArYGev>_vlNZa?>{9 zQbr=l-#xpxdv_=*db!{0uM=vCq0=gADKkhb`90&VH@eve8G;*(& zd+}cX4oYR#(T~bY6r5OqyQlo~PeUyYnj&gX?$hVaM)y~;_p90&9iSKXoc;GhghMFH z1J;E9U0ALXA#)TqRj$Up^Itz@QF!2jhR1Mw$g+??`>|w^f$(m zg&F!L029VBVa`41Z8~)J$fz_>om6nprl`@zhqFiv%zXkJEj?6UIw&-}0vfCq{jY4O z7THF-7~h+hyTg+$+#OeLDAt|stPj^|z3$C78_!oQpjlan<-M_t%AQ`Ty}vnf=4)+n zD&YbcK=7PQPsZa+2T1BQdcZ0K*mEmx76>uCMuQ2rpi#gtRF1H|IO;}jW5jGDm!=z+ zWM9gnNt1C49)`M055<)dI;k*~?Xr>YeBQ~$#jxjD_M2=caj252+y? z>|4_vhIra+)~y(Sps*Z&+T4PohEybg-g4VYlk?o}-2HZB95|kQxEp=eFyTV|NX!Vo zTHC?p=#Lz_!RPZxZAde+>$H|88FrZj*lVP%o-E*4&v%K>>x0erwwdd39`g_;+ zMejTDGPh^l_eJTmaQ}7$toO1d$;5OY>!MQ4ytPgN=w*?S(+ zoqsaVFdn+%WW~53d{uDc<3PQYf{w6WLB3TpBEJ#g?~%^A$k4ip%aDd?#k{FWWJk$8 zE)h+3;2Z$Y zDfX{emJvzZ4FYMaX4PK6F=gasiJEV~Y3VW41uQo;sg4D15Ku)HDB12|t2qN8S z-1?lx2a_-xW*m=sE5JqFY~PpN%gpxoMQ!(%pWavd_4mrB+&NdHvuLHWI(XBxf&x&2 z(0*Mgg{{5m;2eZY*FfBU@YymOG5*8JzGm-YBI5wvj3_v-Hw#%{t7xr&_Uv1hx7(>H zB6J`k4uix2;<1ppNvGI4`*Bu(6wh4a-a?at0!)M=sfpwIg*;Yz^^8kDt1wnLOqANT z8?JLt_Oaaq-Z^D2g~BSVfv$s35J00kh``9>I^7k$pAhxA?Qz$GC37n3S0jAE&&)AKVcVqBw zN#z43Z8r5KLxk%NlG4gckUj04h{_c_VZ^zeXZ|BOTgq-4~q_n-7c98v&XaO_Y*DEZ{fPY`f!!+nMfA9(0 z8;JTdBaM2x>eFjfA~zPn^QJEx81O#s$JcZn5Wf@UqNH#&mzmym`R6YYQ;Whmc4H%d z9um{kJ_}`69{Va-J^PPqdjS(LhhdWch8hRj^NL0pd-D0{%I99;hvHG;3 zc?Ru_A1fIm#|yj+AY%d_%?V0w4H05cYm5rHt0O>EB-kKVevc*YR)j>Cn9v6C7=N8V zv}PQR{rzW-mF;h}LDXJ1eM&H8ZdnjZ{-3<45eGs8YJx#R1W0Ic`G>^<2rSL2>vUyJ zAzv|Hf3zT(ygn+Qd$q5}@4jbWHz`%+GP3bN{LX;60opP@zif_;4O#BjTsgaMVo2Ux zMxcIplVReR9ES$V*5W3ddO4O zMwTdal)}Iq+)Z&!miU`Q1&pi|s1#Bwk2Sl_x?iZrY-Pr4?@x*E!%vc&-Cs??tl%6Jf)q5&`_3Xy9o7;Kf#CnSZ` zTy~wpaOEct5gyN%ILBy_hEK0UwtSCoG53{CSSowTYw+`aDJli*7kw821He$+-^~gY z5{-8t@1yRzW4dzbyBr0Bd}OuvuMpaKdJIjF*or(08N7fXIO8a~^Xm`4W$l8w**I-b zWAWz@e9&af2sbOH>e(!5MO=T<-Wb8MSx)@N>|?c!?)USZ=Jy>sz%<>3=bG=_)6rpH z_k!&SO!pkyi%(OkFcUDeu2^M(XrhJi%ie-9!a%M%^jrU*j}tf95OB$_d|N_UI&W^Z z7YzlLa6DxxK1iO#TD&Km!L8iJ0J0MOIe5YqXcz{WW5oo1qu6m$lTcteEhXg4wL>in zwk*Bs?Z-DZ9Kd%`mY&;3$ngqcKN~q_hg2gyEex*N>c6-qvMRYP=sSCE*5Rnd!yc(H zrJ6nBA7i`kl3|_pzwUpWZ`Tp(zw3sR&_aPx-+C|l!5Xd~g!n92CXaH;WmhKK11ZMz z>hhBzwbQ|om+0FIP^!Ddw$$EtSjv8+L**7OOz(=Xd*jNyURBqPS21NF{#4Ao0&Xg^ zkeL9)8bdXiVoGCF)I6_8h;M0|wgb^7Vo-s}8vX3b=-sRudr`7XW-cJOw+?PV|jGEC$tw^ulu_bM$MJ; z9k+MIw;wSFP$%g)d)D1)-CEVHzUH8rFHBJy)_x5W^_jYyhLR!ZU_^q#t%XZe48vue zJBo8b%|%2)43o`H(+sl4>S^E4?Y$Y=_3jaX#a&(b0 z-BKoqI5f<2#DRk{Qnf%WbxkbX^mJm?BXkrgF13UGbNOE7!L_RKSB* zhmjOy&-Jabyz}k05YMen8{2~!omZ~l*DPmtYUKW|8vsR#AetdO9N!~CVCY0X|2j|0 z-73|WZ((oo88&6skjJCOVULmqjkvs{X=S}zeP`|2{GoW|#wem>j_kNk%3#lQD%oQ8 z<57Uh&3|RiyKHey^99}6gNK9%xI<|ITalO^xAG-QbZ!lzXZ#z3B`O>3I0rb@`z0}C z*pf4<`?{$^a-sqs9jG~y>fsbPFPbt%?ng{|^rS;|)q#dGA3bM)=5>x`JZmA$=~=e5 zXycRKSpt4F-$z){1O$Lpln~pmgdzUKfL=9zLKIS7l z`j=<=ny2M-`gB=_Eic6{FZswd_fSYkr}orJU!^ZqJx@v=TNp2&!7%3O0`D+pRn+ou z>3B7Kk~dVNW=|PZ6eo`3BlXQ*D14}P{EU96Y|V~W9Z6IEeyR!q9d1>osSQ1-R9|4T z%2&NI9Rfwlwb!LlPFl%Ct{KbBvU5SZHW(d{g7#uga9&yyRpP%@;kPwTpG~aP<9S~U zFtdjH_hzT;e!2~F7|KMoI%f=s7ZYYFemD{8yFJv9dvZVLd$MwSO3TJ9%TCKfhIZoe z!2D4e)W5MLxx4^e_yC{KlP(7cdgO8XLQAnBpC{ZXPJ~fJn&{i*qWsQe6GG&8BMyD3 zlvM7kXW9`;>0Qk>8?IzNJig@=)?`iLrvHN0>C}E&$PLuazptx=6&*A#s?5dOcs+T@ zUU&V=RfYSRo^Y6r_QWwBXI#Fi)j`!h!&7}__{Zzv21@Sy6izH zte2x6A~icfQQ|P_CZ>r<8&=5UTGCpMg3upx`c1$#ZMulUiy3pGK!Hm)rem=UZh?8s zjcaIZ2&NPnOH++JE6+N3p=0f64t+4!Jd3Wa9J}36r9pkw3E33#!GQ&Ed=BT=J*P=|omF*07ip>9uoDr*`LmAYUNyi$7O)BWc+li|gRt?fuga%sNuBmIQ#LXls<>6>y_`En=zgT* zqng&P&UaxDOum~RCNQ~4HZF|^R5|vSrwpWYDJ)0(#{>7NdEKb7JXjt1%9lxI^xHA1 zX6t%Z3uJ_ZT&*|{<`U#^OX6SK!#Ka`kZt|_y>BT$PR_z{w#5iT`^!3JT%{(RS5|8q z&6~a9ya(42yJ_!TEqr;=kz(-e?w_#-=o?1`s>>D&FA~M-ltlo)n1%8p}50-Li7D!f~{{(X?AOZ(P}b+ehK(G$mm}r56}QZoeIW!4 z935K3GY$1C)N9w&JkP5m=gcS9?M9U*9}`)mH}V&sLo1`|Tt4!lXYJoBC5V5>-q~$W zR!Qc;I1+K(p?R#1{ZNwHlmP^xSr!PhUUzvGrgcziaGqzT90J+8Z5Jo8%5d{dI3r*~ zxnowNd#@|IK1K;yT^Af|;B=Ch$t%PVb_S0vU1%dKT+z(WSkX4vLXuySW1agL>(uz< z{8|r(!(Kx@3UYPYPG9yXJozaZF~rMh@P_};E;5dQ|~^2*qn4b!nH) z@dP682XD1|)1{iVE2fodT6z3~=;jX+2buLk+h_nSH-oH&`mnc*IA#=Bq#aSbjInoY zY~2D@nb!=@w^SjuD?Hm*CS3+JyV@`t2wEkT=vAa$&VNQto&~eW3zet4ZaIu#P&KZO zB$56u6e;RADOLdtarL*QGr~pGJSt~_(kh>IT;8-P*$RHa3-P9Tn1FLhW(n#>`4xx? zr-;|lNwglxqh|~&CNtgH%Q9qf_k{e`lp{gicN40q-JeJDG-M`w-p~}Q+Op4V&Gf4D zST(9v>e^n^`SYx;jxF!Hghc(o+=O(3>o~lL+2-(Wx@_t08H_ot6eDgb(Tw{p*3Oo8 zpgs7)ak?i!YD5x1=CnF{Xz@*Kp@!fJhBsb)K*hmHDP5|m3xzO@kwa}@2M24lGgDwz zmzxbn7Y_S9M=yo2e1#fh0`ngYm-)tJ`LaKln4urz~Hego4J@)a2m zX3MIlEbm%>#ZpFtk}a-+uS^cDK2m_m zsw9TImDBO6UFI0smICacJ(cz<*Wv#JQuuFSOmzphvXtA> zgq9`2)6K6~r*_ith?F!txs)P&h1fKp$_-cyJ;HA`lADXGs^(Ar0mq8mj#5Fdp|t(0 zHCMYX0~Qeu_Jf%eFs0vdU}vKf|eoNj=&xdp}6DZ zXECus+qQjn#A8OvXNK5|J5d&r-0_6d;F66Ucpsoms>RzNrKAngZS0eL9fG`7Z=Xa$_TUPhmJ>nM(*%}v^Q z_Nr;i<#LGKu?FF=ecu&>;daBHTAPTgano`zF4>U0iONvcuoi?j#PfOGQ7+KE zv$3>Oq-f&je@+(K|Mn;F(=A;FyO^kg1G#?RDA7nPniNi1OQ&(?ARD3O=*dg~6W9#} zQWkyD$kQ+vhrk`CQKP9R)#_H&BKcmQOzne)*XtZiPW-d=L^GK}YjrOweESO7-)XL1 zPB%!ncg=GhamIU{W*U|dc{6}6JV0CMEPtl9$wqOzfcTxyzmP7rt8M1F7KA*q0qM8u z>^P32C8ZfYqG;6q$QcwEt+_lj(?B9a6fJ{JrkhlYhny|r`8gBC;mizY?{e(ZmB%fs zL(C0t^u^pn-Hz|!t9GSzwzo`AA^MZG;>vHZUY*JRgFF)Rz^NSUgT4QXP}s;aQ=*JL z*1asODAoz1{^FQkaSI-F;L|`G^fcwvy1Gm^)~{p%8B3U_e`)|T7@3vU8VwL~Xl!lM zEd+@kU(fIP{BCG}N8sBrnLtHM*=<`{& zWEj6%MNhv`=JTF#_1qFWs84DLE}7V8fWVk(7MViQQjdbMh%0_In^gR_k{VH!2^FDe zlY8@!ly15*7tm7fdXz3jx^HH+;=1t0@)nP%7sMn@h%IX>l7{?R*vjs$ySQvq9FN+; z#kB;u7i4^qXgki<_)Ivh0CF&;c?~pL7}`o6e98FZvHCjhndGo*wb-}rLs-6HtDABy zBxq$ftST-nXRU%!xi3;#A*G4T+FTkw9SS2R$swz;Z+x)#tKP}Olm?u5icRgT!!o22 zQO-&pI3X959&UYNIR=g?uf;+=s zV790%jYa!AUB@P7^AJf1j|bi3f39_W7u zi{d{%rOsDc|Q)u*KmT_7o>cK$o#J%#t zxtv;j<`vt9B|T^-=k0GucqHY5uGsC+S`8SLH-ip08gKrgHT1dKP&b;x`fKWtJUf!$ z2o-0GO|p3{Z=DAPsL3|#+Gx4vidKluXgT~X3L}XN5!G=S7h2bVP}tph`}0<@Xjx4^ zR#VH!2Hwrjf{DfB>Pn!Bd;y>^eG--$7go)Fd6d#L-Z%@Kj+%7f@lvQ_ZC-M(rXc}e zmEKh=A6Gf$OMDCVKgaM$|NiLc8H43CWh|&_1%6K!&U4N>9toypP;Ph~OdemcG~BVk z-Y>Bew>rJsYqtUEp|7^vU-De6z393+1h^mgahc=QUtSu_<0*uqBm!y3xFER zw9B4{cnqsE-g+F?=eZ^aq@=7|BMkdPZI7P>OCf@I!3%{&U0T2;pcp3ZTZfA&;im#T zyjTOhw7GYOJT7^*r5kfGY*vT3&WIHTJX!_k-2b`$m2Euw^V{Y4Nqa979{a_|0%>P3yDSSl!TjdC%G$+wb{^yY@Ka<(hn7hzJ~G#-J=3w5XZ< z=}*dMP*62&pSZMY{G(@|`8Dp^IE7x9JQFchFI~)b)EZ!A`Ww!rq0;v{kTCV9-gkcz0_LN9$K9XY)B)|3rQ%}*gyw%lz5~Vn*P!_h@l*!)t`Jd*sS1iVFf)z zsXGq88lofY)O2fNeq7jFIw9QnJNQGukm3=N4=&du{QoCLCs=hpc6Ar}%F=A$K~z z`6OQ8D@ZY;avs@@dT(bY;5Hjc&ZZDQ@MEaxEZV6dN*h-o9`XKpyO4Nw=nX40$QR1A z6QgPuPOb-^W&1OZ0J1*&3HiL;-r08FZ#r}kN=p{NrB)M7u$V>1=8s`l{+foqf)(*Y zJ&Q5+ISDVgQiO3CdbAK*Q8>=()OyLX9^2D}w+`lN6`Q3s>U9_aNSjmAh0S>Y77gHd zf3LZ~UCa)$GiSfEA>=zvBJ@?+{9HmXQC=mJnJLLP3l=cVXiuP9+0)QfRq)^9%| zTuv;c@8!(avF(iG<7-z=(#bxOcOybcTio*_(;J}E$AfODbp04*p3!=vNp^NH&-lys&k2Q!m+7LGYl<}V8UT7 znEN{P=pt}rcsk+w7f|Yhm&+Q7eJ0r*j{MQBwr_2E!RguX9)VH4vuHX|H?YG;Cz`NU z|L2cpTi?9H^{U$5%F;z%T}h(r*1?JjDm+>nnSDk((vnGTnoG&`?qQdiB*M zdz9RJ#f><3&AyCZ|KL)ku>u>}JW>8$RY}F$-o)yO+1V&Rn}t~EdKOjc=VYx%Yua@~ zM{&sxkYvPe9ch}@mi%^_d45!_L<9By~+e{SYOZ*fae z`aTuEJq`Y6zQ+4?ItIF!zO^0bdD!&}5>KHGQ1eGmq1@;7YBBYC;b~ThwUsSK=ucnPuOVqA)4dapPq;m<=+ zpxQySY-NFXN^;PkJosu0ivI?wN~?MFG_28e{L)KKt2fDqf#Urn@px900Ocu0jFOpD zP*V_J_cq)JS8!4oBRYr{bhFHQ@(zPx;IEjC_M<%*L1+A8C&rm5f(;KUpCe;NXdCs> z^zUWh`tmzu=LmD4Yi}0_V`X(KYB-(@x^ZkhS_CNkv$wfJO<_1)zUw~ZRCn1--#Z<^ zLOn@;Td?=Y@ErVU=~9MhiZs+i;c)-=|qn>E5q>m2dCfT}Xe&=5|lUPkEWPKaTAm>L=|6^$V-`f(z&B!??FH zQQmGG@}m-wM$vIT$=lAdp)Kv-#G+;MZ;Ocg8_rb$&>Br~SVQ1gMxk%z13Y5txikKu zteQja*=IhFD>9qygp#$O$#Fc3&=gikeW&*28_gvWGRr*7T{ALUrAx5yjLG@8ZZ1s)&)3k%8hUK`6DJ(_^J-P> zGEh+z2-P#`eO&$LO-1?rsFUa#S?Mv&K{5C#Pw1m^V%@qx#L%=oN~p4UK)$Na2h%n> z_vI%JcURA$qR`&imNHUCzXh01GBtsE+G>p%8T=lTu4Y~wBL8Wd>f|>b{ze(fG+r8` zuWq@t8~)52wog*cF^N6Spkymde-)>2;1Z)wUm-*$rfG0tLpS;Hn9}6dXeW=1q@P zVu5uXw?A(o(Tn-OXVu>YVv_$lu7}-YIV)-#{L)%f-JN2{Lew9gp1do8fg|qL<>}pl z=a_izUw}f-mE45KZ0Olj6V_nKGAOkXTb|8~aoL0`f9^BqN|m@2*V5Mh_ib9u#(f<_Vu-(hsdv4p7gJ`lG4(t^Zb*SGKiKjRr4JXL02-zRhdV>I7)82?%ylz zif?gr7p)*!idx&!k93y(HfYfrC@@VXU{MtKqfRIU{Ee(^J>V(ym%_xsm15@Mr*$vb zYAtGE{$f_`Kf&+Ttj#93Q-k^$_x;D* zsZk5ZJU2nNfBpQNx|*K!*dq&sW=?r!bF8ZPhOXDlW0!XD9gt+Ueb;sS$ja~KyZrvy zH-_`L$~e9c(Ztk<)Cv5_IXA2|@?#P&A;%K$(0jj(`ij{3NPyD0)aOm5ICl`w|1zzn zf6Dkn`Fww{N*6s0u@uJjraeOhPyACC4>wR&4cPFhW!@K@cz}d&tyf zW>b;u*KJs;&^t}z}TC|50eDd6A@$Ybq z--|LrYItzN&p%BDS~d;vSZggm!JMI=%mVL<@}&csncYek zj6aW1TuAqQhwtI@1@1BQu>JBHk})%)y9`1FXj4f_a$)`bc-d(K^vpI~pTTpQ-)>z5 zfU2?VUtHAP_?XeIX4xz^>3~PlkovB3Z&VYrh||Ag<3GXg;C$4t29-~NL%oGtkGK^U zxUIG;8|E5039%It=$$eI#^qeKZQmt)_BaYt5@xSnq4Zpgc7X&pnldLxtp7FskwuXn z%Jlmb{JhJdfh?OrT=;D}y4mKl~*s zAr{?lz<+tlGIA+tRQh+{Ns%$PqDpxD6yv<&NCNJvLOTly~{XRhv_iMw$30h7z%lm2dGq|Q_xH5l! z-@6=Qd`Wj69jMB+$M3~~?ynb2LFnK!c6;OM0VskGP>etLXjhj1c<}sSN{|0|c7L%Q z0O4Cg2t?aQMi=E5uI81xdVjtxS-d}temyj+qw{5Rz;ExTRC&jc3rw};qF84<@q+c& z6I)n#LZDSe0-QqMofXSiy*`t%5CWhMVfJzIo2ssdE>->>Z5yy1l^YBx3eoOWDS1|b z-ySc2xct67i-^cW5rf!M=*)K=hzjHOoH|LtM36hzdBGbhVzk^A&T(tEFU`v@4WI*b*?^z8V6*wQET*d8KAHPU{zCB` zzA&a#r_zDm)fsYCSLpT{!ddZ2OG(jNw0I=BWy+tXME;wqmxLrsWNOl-uISpf!2NsI z#-!2`Zq|{q;BJpCAGa_lZ@Tyg?c+3Vq*;TpS13NOaw)_H_Ib`>#@qNweZGgzfEAyXNP01 zhPW0#<#)BE3=r285MG$=idhwmwjY(?LqC}{n(BMaeJV8T7h~}&wY!%sn-C+L@lG8=X zb<>kY^2A~f7#Unz+@BQMj1d^?Jxm;`L7Vj>^LCNl_?F2Ug|8 z>9+;U`~0fnv*`(nbe8puZQJbD{zMGRk%C1)O8dR;DSQw^{=1eQ-x7B{|SB1T@m`!{)00RDM(g7B87HprPR=L)eQY>n`!jyc zPwJ+Tu48)^D|0txq zFYF@YnRzCVDnad*0yY2Du7uNvY^6d!1`TTCT(C_BkP$F6=kMO_H|(#|p<{pFN41q- z6aujZLNnGKM-1`Gl&6&-tkUk&Js<)?AoU`#fW$HZV)fUj=sZTKu>Dh%r6}^LqF7Dn zw*Ua-J#?;f`|19Wsy&XubJZ>(09Txk)|7qJ5E_mm7{`(vLSK*X{{A?1+!BsOON|C~ zT4ue7xV_(5bfkjY>TlY(CSt#L1G3y(sYjq36DH#9y7Ryv)J6(zVS%U}|727LkBOvl zk}e*$O+iL!hl2YEs9jyhfxod?_L3d#2o3sWN5Trw2VuEf`IvSZHFRgVmHz>=^t#fx zn{_lC4 zOBGjqNViewAB3%~AxD8z$iuv1ez*_5$D~u64o|#X>t9}e_L`bIJ?m>&DfEruM3WmcH~gJ@lrh= z^FAl7yRE%p>$E|`?=sIxouN81#pb*qHt@F0Yhb;%r@whOx!Pr7h(uj=WERV+w=I`D zS|{dY7Bgcwbw+wxP!e!5wO&S#PZd1v?X^NkDhmUrg>GEmkC-_`$#ChkDD0_=s|L$O z0@^?ujE~<|&6D2c0|L<6UdNj3+s z*%Bwb4#@T7kZ%qfLwPf&;-0_wS&$$^1R6CP@K1CS(s88kdn{->Mb9Ueu%1A~CUOdr z$TS0SkQR1FPFt2PG{pw+z{!q>Q>NQ!y{;^6V7cW;PXp3O#()++hV5SB5v*S?!CiUT zQ~SdV)z1jdsQ9m91K5%WjgXARkm7mq)e!!9pNW5B zi|ripIhV4{%$XoJ9ZaMJe}hfzdy{>sWP2yZZozd6oyP-n5o7=5kmej}Blxe>^~P)F zLl7o2VJl)jZ2isOUxI<$_}nBo{Sga&>wZ+;{ff29*5U&goY}X=em=1192n>9B5?wS zIt05MGdOg-?D6J0bX$MkKK%28WeL*XJ94qocW`P{h6w~xzy=ZSMg}G>2zN_`D_Czt zqjXAmh}ocJs7yrky|<L0Xy?9Q&J?k2=MqmQdrit>8Fh?J=zS*fj6*nAOyy z5;*Dl7m0b{NSd;_6s9^fo(fzWs~GgqhwuQ=E^9chjn)tzIiN~+)|EgzpYX)b#MWU= zaEe247y|OI?gyNbW>ADA44-Pzh~}< zymvb`(joE6+IEt~0L@1)BGbFeBrn7xC zCxDiwtg5*2WtWec^r7ZK0j4drgtu=l>x1-Uls2gXbc*OEbrem=`(J}G3ruowb=Xa9 zOLYO;_O|_Z=KlT(3gpiGM?X>)scQAHQS<^Yx&;ZM%?M|IZmoo*iCvIb9T_`aLTvum zf*=5f@}iontuaab4!F2)7c4e%ANndzIR zB?gTK>?Utz^;pxEZIn(nr2^A<%?FXe#yy|?*{>1xZ$Z6&Gh+c`bb$@B3j@E{C1ejY zVGRZ|k8^VwB(snQzzcNRUV4Gsomld(aDleuv^OPJH+-~f*fMf-2fkMheY71ozvv-J z9yuXUvpw6oi`>$melJ^&j_vHvg>uSF{IY2dZkji2%}u(blo5=6>B~cJ{w~LYjvd}# zzy|7c8YFl4J#xjOwTZsFk%PQnL{90U{Dia_rlqLJtlCQhjhT9GoL&15&Hp9%5M?cT z%Yu!Fb_7>!iw_CL%`h2996t&1_Sv|~Gypkyexi%p9{(i zCV4?mcT3J3+yN-4ry%n1+(MIyffesqKz=de;}o;gG;@VBrGbKRe5jWsAK_bfS6ITJ z)K-5ok6~Ujp`Mrmg@RUQ!L8hEW%uIfwBD*_YtOaMzHwm7`Dp_f< zj@SsUttQg2@}{waIHQD==s3^&L2}HJrsiTHT}VC3>lq9bvE^YB2$XJwh`E=a=llvO z$kHkyMdtQ3CIqgtoEIJ%7C%&Afp1tpLX+&kRcJ^#K zF+6k`NT!CrWPS$&u%+hr7U(b3D~iBS};%EG5Q7{H`Xg^%Pk5@f)y_;UahP7<%Qy zfB+=LjRV5-!CLz?@0-P?paFp#rKC01(T{bR^DYiNkBjr#?+%|{E}0!$qkMs@QkLNP z^~)LkE4uS&vkNxEpGA#7I^uVOZgf03XS13;1Gp-ccII<0)VXyOtItds{xW`mKtF&< zYyh^vk~2$WLtDC$VI!RTGHP9%_rcD3m!5URy`YLZYOw%tVEGp?(L#gBL>`9&*M(uM z;o|S}Tc|OU?7*_KxS?;QrF+F?hg{hHkpO8eEbBkO(brXq1IvT1;7{nqx<*v@YlWfL z6`h)O;gQPj6#PaBRcqTy+n%BSOT#R2Ji7QQAx4(01eQ7$w~< zZLec@Jy8PoIHT(IS*6!SNI7fR^2>9Xhg#E3)kSW(?`nm9F-47!!y_1%j_$A~vMziJ zO@BCB=!9(Ts3eD6vP+#gWfH9uXEwxWK7Py^w+{0tM4c4hxCxsnN|n;a5&jp>fX zh!Y@WyJ_61*43RtppsD!v?SG*x~w-#%d=L9e+NwCD}fg-B#J^3^H}CEz%-DsT+}`= zYupr&>wFbzt-!jW+N4`dy6YqI;R~E<-0C@XTT{k^X=q|iA<2hodf9Nm!3w4 zqYe>@<(j`XAWRaI>r+(fd?G$)--A{Q>WyctbIhh>`s%T6gFr>=u#t9&^V2Ct-$a$8 zb>Tv~%e3Sd0D*I=D)c+pVxTFol(ZO>Z`sGFVkZkN9u%_rD74oy^oOpC{W)P?T;Q-Q zsJ9m9sm4$ttC(PTYrkAVVRT>vZ;GbWFy4Fy4=}7`ef*>~Qp15i)heq(`q0Cf}3mx@wzj46HZ+yOerD#8{FN#;2wFXUu!iQx7nx81rh3=cY zTX(l~k<{5Wsoyo+!zUJZ0_gY^g##!VA)eb zVuun_C3ZoJCJpsn@~l+hS4!$<2f;KfWM4c5eIXnF zwkwJSwr3G{bfJWq8~RHy0o)zr#F0Z#D+~(Vh=Stq$4taIs}$KxT9cY*DOH;DOSoC= zZzFe8miJAOJ?Q}}-?IR^HE!p8q2ZhQC!R`X-5)Jk-)kPOe{RCR3)A3bBk+cdGwYcS z8?;vv>0~Qo1fjgXPnY<&0g2b1E@Thu()jG%5GiZ7EAEhN^02w@{}fk*(UVx+lqxr& z<_!T3UhNL1(ntrB;6Xh&N--z!;_)bSG>iPnZUMaTHrzU#BZ$~Z|JDN}KBlQcPG$uR zjDRrQBkXAsX4+1YNwqTlKWoZ-^w$2U0+up8_h)VX#45{38Kk7=D6cO*8xJs%99!%u zkKk$haTH~kx?qP``sgYDopih?8veOn+ZsqWDVPiVvn#;%3!ovmosBwm4UI+cP=$p( zdrA_>NPbOB5Rzc%flimxD=d7FqXwX=_B;uLKPB8Lv^g455#gd&!5l*eJ6^ciAb5g9 z+~dip`HE&5EsfJe-gH<|wk2VVp|g&4hju}9_W64Np+w|8LemILw@RzIvt6~SllQ$# z+{JKsp*@*!&qrN|pW$PYjidngMC1LDM2>$6SZ+GxN%e&Xj*Xv?r|l#TFSJ8{Xp0IW zmzF0qbD1n$!W{HL6r_sSlFk~fNU1=H(ajDyCEROfL{IOp@YV3H zy|Z@l{yO|t`}W}Tod8%>1#3n?u5<4fdU^^f)!(w=7`G1WB68^U6572cmpS!4@p*Y3 z5Dq)FPOQ~eDwP9J-!vPsv?za~NT_W9h6rQzKsSTBN6!x%NYCRp8?(ThpbA0jWu$$N^RQ)6z^!!a?c=!&Or4#2Ws8P^a&cT#|8_s!V)^Cl^WZXQY!BcR<~!q2G%#u@poBsJ2;PpHSSsTw9+(hf-^Pi!T2R)ZUOG&cOXovVQezAIr1Kb1y# zGi>Oc^sH+B&8Vit8iz(^aB#>J#@H9i;LvssE9;xs7wI-~@4akQWK1>^7vK?5!-$Wr z(B{WxnvhmqxE&c*_qt#UoyGwcu%FTk)ef?FIN#8(B70? zXw?mLAUk_k2d6z=ja^ufRzldCNJI1B9I%&A=qebw$+dd^a8i8>pNCr1F+=&q)MJg@ zuuD@-O&{>qta{$;df<$VZyC2TpdkiRxS8!oEeKRwc|v-SdDacQAnG`Hzp-;!q=SKi z%sLQ>xxlSo{vmrod9zUxFS(lA$vjU{_Z0peAO#&zT*qfvZ&}%duZxj^3v|nlBHu~s ziidx^2P#9m8_59}5cPqG9)p^*stn9qD|tHsthcUJa?snX&zoE&sE({|8v!*}hpRy9 zYTc-Mv>HUc=>buQm`jV)N<6gK{dCyi41&LbHY-fFG+D@&;n@%a$PK2)DRRQ&Uw5@C z96Mi;IF?;)kB04Yf~?#dgFt|#EoKKhLwBPorXx$^WzZV$fw@oqA;>PG-zNdA(MhvN z#=uw+bwg8-+$AurY z=-WLF-nG|48`~eX9LOz{Kcg)6?z;ectY7-#1QwCBC%{Y?EHlks9oqdSScnLiimX5g zEAv<-#Qx4G^<0!$knjIs=^HZuQ!U33mb;>Cal+&JhCzH7Y1ol%os7o83aTaJpkv)O zv0%MC9Ak7`0Vybmzjwfv_G4J!b?pJ2k);shWEu=)iMzy}$@LJ{hevZ&8OT2uDsw^+Z`J9-MH zn^@iGMAIbXJvs>voJAdr$y7^f?^~#GNFAOK3bvk11KFj5_~Y;XFs4ee^GY zqQ5u?w9Bgx*6izILND;`z+B3&g8J!r8?-B!cGYa}BwbK(k5w%M(gBw2yiD~hAkL5x zGv|aw5i~REdj&!TSE#gG&g4WAoF+>TXTF9 zyh*wHhFAC!LCo=mr{RIry8>~k%wYtRXwyZ`^V(BEX#1#3dQCa!u}R^=AU}moVbLG| zv2YP;Ya>$1(hb|czAtjFGSmy>@cV-oYqSeBQX=7V4zTwTdQFE3P(q<2rzm3b6=`S6 zgrESF)F=!X@~Gq`Ss#Tw1ne%l2?5>yxR0fe70$xpU`fjZ>x4WONuz8hp0{Z}$84nF&D?F#ZF zbpGa$!}4hQUC*6h6QxzuSrbLeQTc%b$QN?U8C!o~Ar8_&67#W}22X>SDZaD0bG>@W zmr-7FYsq~!IN919{;T1!^_-fLY6qDteV;*t(!E?86<>vu&iXZ=pv#Im%sh2eL+ zIPo8!$Y{PnK+6TUC@KE5XszY$G7v1ipEuOU zzV{&yiYL@6z2JH?e}3SpfS#U^;hfu7SFCQ9a@)kn>8a~(n&v%9?SIr%5)^USjH^J%o>W_!?Ly&HlX{$jOC!o*6E64Lj2HP~SK8o9PHO8d) z@=&@$Pv)z%UQ>WSj9#e0Qo`Mvg`*kQ6-$i4Ki*A644iI3aO9AF@}xjngLme}Z~ga| zj%VBVRcgbk~ac0Nxq2ZQR5`iqfFNhE1;~ng{+_}!Zle=y{^(sdJLZmF|a0W zLS;wbeetvi-Te7&+K#ip8nk{FDwAi2xa6!ny1V}Ss5!<)>&4gW^$sqE|32os{K~iO z$@k`QJjds|u>OJ?z&2w5;q{k1Mh#R4Ek4YJ?1ZcF_~3^Qr+dYfQeW)}5klp8qHerxNHyf4b7FQ%d}AKq%}MRbiX$^@L1V&!)s zIeB}>i3^LMJ+x4@+PfclrRM_tndAM`{r&Ohd-wb9`TBdB-}~dz_o4gi_%O#?_j`YP z)2AL+kIL`xxd=(f&~nZs@z}F|TMcH&`bUbXjpYTuP^yT?Kg-MkRuqV^h0$mwdol(q zf$>PvDgm!B!9KMy_C3ukc_b!WEeg*(G4;j+q!YK3PK%M%)eu3Sdi?e(8UDolEGIrx zJkO3I>Rqtyt+Cd$e2D(F{JqHkdi{O${qcNuJIzn~_3P62L;QQNiS~T$=@(Fs+6YRV z41woU9$hgRqF+2#3#4_^>m$ zGO`j>dePYB>W!szqfcWR@1nh(Hoqmi`_5&z^P|5);5&sQ#RNQ1`m$X%W_O{~rN^SXGx+?G6z4p=M*Hz-i_ z*Zt@l)yn=GX2_!=OuIXxR`ZuPqe!3LDsd&Q@lzuo7u$nr3-`ic z!8>d65Ht2`1{18(Z7G9zmKGSBE5NmP^q!n4q$e9NfX5T<(2l$PJ@6g+eTl#3d*u6d zoAUj9|L1f6`;)(M`{aJ@DSyq8Mi>W{ALO@=+}BLaME~NUo6d0p9nKo6nO>BxDxKvE zUS_A~C?By@Im>e-%mG_;PS3)&# zw%+o(nxVNg&m{cJ>~bE(zO$Fjkjk=If{#oyoh%<4Q&>m;OGRj{L9}26^d1Fp+CcBG z(@SKmo#7U7E^&9U>d*9RMBpZW$0tI2+6xAsb5OM`l?p$T6N>%FH}TOirY( zTpnasjs83I@#VYIefH_EUtK<*O@`EZ-(p(b7lkj&+uk(3wM*CjdV+b|gySL_M+rEY zizmW7UP&|6NYg2HVTdwmACWBYWt}l++u!XT zAv}s$@nk+n==t8ES@?c0I6xV5%GiY&2|?AUg8 z(8jin#*G>~|H;f;*PP7ZoXjV9j~=|wTI+Yq%R_RuTzn;X`L8$7EwqPBnxhKZ0j-ufVB)k_O_^;6zC zGr`MXkHQN3KbO8OO5H#RgMK1qk{NBo<+1X6 zb~Y#@(Qh(i1XssxjrGR`{e-A-P^XS?Z^nP<8Z zN6)e|#0_+!n4qKy7haB8TXRwlWa?}bdC2@$%O?19tF^KR6EH44kiyJN^jFf@#b4RB z(Le0+jCP^iC73+~6)Cbbshy#ptD@+9T~K)}c}IHALvm*ErpHj!dMD6x)`Q(C-~+NV z@fJz*zlZZ754><(`pB2@Y-zF&rkr$(qCJrb^g20ZDGy4OY80f`iRK?K)t};kkH`b0 z%!c3Ez`g^8uj$m7S51?B#`Wa%q73hR-+qM{Bv_pML1B`GO|e-b-c6@C{?k^AN!tx@wci z1BQ|KVcZZZLw2zjjT%<(W`&dbGw#EGjcH`ihl$co!w-?POjRJBpLJRi(F3eZiX?yx zL=#@j^?H>nI@JpT7pejA0v+I@KC4V(-{P=L^80GC#S=emIuNoMkw|E!`8ilebuQm| zs;k-rDpb;xb>xz^4HkdRH+2Q;_iviOa{HNCPW-7TKr83Ei>E#I1pY02GN((USfp!T zj#wj5m?MD)=vzYFbb*?=JH_argZ=wy*`K5=A;OcK!NVNdLOeWk$o?l|D`;52EZa(~ zVx0Ba!JRfhJYG)mXiq!~DHXr>S6Z}`=V%(RH2&J`Y?u`C>r&%=B?By9LzgT4tr=!m z3C-6RpN(K?sc%6B(VWB`t(KVvJcns!)vG4ZYM`-RuWTw`WbA1qB_!u#D1v=4nG^B$ zZ+6uU@cvji_j*`<6s;STp^Rv>u+qSeg0%7M{Gyu;cM|@LyE})ksg3Ej#~sWAWA>v} z>I8E!BWMNLY&-hbryB3ekZ-1Ir_X7B!JT|7XB~05X!{vaJXP!Y*B&l}@7(?{Pzuc} zHC{RAnZ9V>S5pE_^N~|^PS;NV@i5%7(P&Ynadws6KOS*&+x#I1u{Tu0$9J7OuA22I z2{4bR&Hy(7%DUu;24JFq#}*g z+5oq^%mb3}a)(tf7@`J?CUmpw%*ZV@m1+z;4_`Z0!Ga$$ww~*7J+PWHOKn6y<)1@% zCr=dn71vESD)6X06aUj<+^LcBSkHc#CZCZ6HW=G*QC1&77{=DYX)cm01D18Svq!d3 z8+QBskm<@xNM|8}7c8ZX2?QV-6)7MnU+tI}a#u$K9aq0U`dyOIOrk*5;(2qMVCrrZ zRk{iK@$-r~i#Kr~wHGLi^r(NIu(&a=k07g0Tf8#TJo!S&E^kMNn|sG##RAstDBCx? zpWoenivDoCt$!KMLfzjJ_ia00tmS{x3l)kC{%ekxVCCgGQ#VlFl2Gdm*-o-@=&{71 zkKHZ^5EROgeKl8Y63!fZHm|nS*$!}Yo70J-gmHr*K%8o{XDW*QO%gug1`x%I$fEqI z0%^M4(up2CKd#D0D*TuOR(#c=cp2XPZ63lKKuEi_ftJG_^xiey&lWJ>cQZx)C08m% zqJVYaA7T$TVD2VU!#-$<2m1n<+2 zA8nfgl>e&)Z1j>7>pn-0m&{hf9f}pieYd8N@h9OXb*LpkWu+tAF2udVR8V?2kf>Ii z#vTwSBDHlac5TxY*!`5mxc2b+3r{hx5(O=x#x#uQ4-gpJ}q= z{i@RQD8&pMl-Y#Aeix9G*rzv9crygFvPv&!?3Vb8awM5sY{pCcUOrGj*_G7sDOa1Q z?rD0E%&2+r`V`IO4XcP;aKGvgGxYi%(|vaeJ2xi6|T zSiyr4@RBF|Pl(qcdz0onzWev)64}By3~H@AgK;G-(i0G`{Y)gd5JY(17|zLjXi@Ld z`I_-*@*P;cn{-&@MDrBBaQ~fkY*8PVXtDSR{|i%O6--}pp_iRgcJV1$_9nF`~Q{2F6p6gJ^4a3wFk zT12JevWDa#_qr>d`C__o(c1;P_;9r-=(&3vsZiaLh6gzagN=m3%_(bZJ_F-c-1ITM zI?ZJ!T6Jf&N80r$Js8a|dLZiV2P`EXZXcZ`Xmf5A3+Kz^8?2|n6(YkDml_DN%;9|{ z1&SN^OTY8>_rh2Ooo0EoKG6x=$KxC*L7ZtF=c1*Nw5DcZ1EhoGc^Id z@EM`djCgzEIGo*rHr1wmD-7zFDbF15pex*G>dWqDal$XRN#RC5LDf9W#=jt=nUnmP zjpIYPZ5AuJiDB?Wzf*(gpC@3AaWL^%oFC* z)ck+ht!rKN1{8Lssy10l)l^$l)I4a|nNSIN813B*SoHt?Y^IL6D$nwFS-UVT>G`MX z?XVLc0~1v7j9gkV81raoht`@RjV_u5?agI9Rm|^^*Mb(jk_YI>Y#CTcMLY=+&`nH- zA7@Gi(KWE9O+p@k=r2HHT66#{Ym6_>aa?$*4nGur)YZ^a8F^$O|8~q)5j&$_?Y$oi zhQYR!9teyLx84P>GUMGErOtJ}<<8oEO?|<~d(kZ)ecxy;B+xG0;VP2Tme>m#fzDza zgKz1TL@8yZ8H48``_qF;FrvQ;G>WRf8(f9H67tpDpBvpR8U+;lKiS^BRM_u?g2;Hv z1GZ7r1hfw8UiaXd#XA0U#Ae0pK0y!*E5Gl}U(!_*b5S-sxyhu05Z&p+hzc|0OBt&q z;`o28I(V~w&oiKYfipq3z_zjec@p~-WAzj*3caujKR@!F3@WKNf(bl8%cODl1OY?7 zw%?S`D(hPi|0_rzU`zifbkPao7MC)oc+&TtMYP)G}iFmFl+Y*G=3W@nh?+H9B!=w)T2H?7s9-aUEIP zg7oDWI@2glGgtv#@`Z){8r}qOhmg^|+{fS;g=J%$d{)Ljf7_~YRE@PRPg2F}B1|V?!d~!1VeDA(bof6(KoRmNu8mWYo&1Ce z7uA-r>=H8kx4G6OzFnwbVU+FpS85E*3a*Zm{<@+pQ;X@PEM6?$8A*Wic%Gq(8>}|2mY6ZskB}jw=z*O3I@M_`fonKmsR6t2uVJsGAAsKam_>{C=bBo zAwce7cFnXH9h_~0d583u_&Dy>9j06?26BN#p0J9RL=|aZG;YM=F%#O_0=UCdq4P6L zYDxB-s@fvngGM4wf?MQx{Xb%f?y?p^D`4r{whK@4kMr2HxJ@EtuBS+m8L}SxV+4L- zM%KGQ_Vz-h%XvPbY#+xT?}c7d(upkv+)u`{ST4Vum}ow=nY&If?)*u83gw7#hnk%J zq~A=Z&Hp`NgJUd)3Y_Mo6`qm0qCf8Zo#6vX54FV1 zowN@mwb7h{{V6m{3Py!DW-PL9Q?p~wM*!4%X!fi#-c+XPVcv6@>g;YF|?$jTYR29#&D)YUh3e0rI8paCdZItnVMDe$rjVy1>#*iSd|FYrrcJ-eKw-A&;M6s_oHxFWi?sQpU{)5ez1A3B8W? z=8(^)t%2>VJlN|iexr<;4NGEv{h1*(@z1X+y5F^bHkq>FV{Gxnn)_mF`d)@A@S{=C z&i8`4_U;`LN>SRyaUolU+fN)Z$G{EI*+*H5kTrmPaTKM)BWDy*Y_z{_D5gz6GwtNg zm9&Y#Kqqf)WAuiaO>TzS{k-1 z->k6LsE}M?4>9Pg!sq*Q@eiE-{%eq;#hf!2Yy(+^ zJ|yd?0V~dVu>@)UX5zt^K2(68^XAQwM&g^lyZNF^Jy{@|QfC^&Q1;I@sVOcZ-U<~= z>5SMQNAL54@l~DQH<4q`+_Q!w=%Ba`oU%eM2SHyMIQjnOX568d6Iu71T)&hseB!7L zli4Zxzlz|7l~%O_P=O6ZC?a8nLOz6EyZ;XL1zZZ;^el!pX#9*XN0?-n>@RAe#LR4g zD&jBEe{T(jt87=Px{PD~s@JUQ{KlKBRL@>rC+i`i1F1E95L1>@Tfji%p||8=xgCJr zaC77H!;sHX>>D%c5KYwqpl=i99P{|iA=S0|`syHCYea~Tq))wdDL&N31a|%PO1omj zvU1L(l*37IQ4^0l!3Nb65s(;mwSk6vkf|bj;A!x2x1BMu`%!$7@tZkPpJnti{o*iv z7Su3GJ{Y9}Vtd*s5YqR%w~0-DHPf?19uiuK(LA5)_mF0mx{8R~5tBL3gT>+_NfIn4 zr_nVl4BnxNw5qF`7>#zbNzx}h6d1jsse4&GM~0dSlTl$ej36|0xJEplVlpT4kO9_e z{r*U}iu<^Yp3ct0wCi^mcAI3Yv>sxJ!Pruolmra`W)!DNM{P6$yUHHXwqIkaT`VEW z8zEZ11-DgOEk*87tR95WTBLsS+9UA``I>&gBsn)Hr5eaRxk(Gz{o{UC)!)gMev`at z*-IG#2obM}7|EN8?l%db9W9~s1j#{RZ>@m+lwtZBc2BPU7-nSBwr3DOYJJuf75IR^ zb{zK;ruomRkiZzapw50cPmV$LpJu*Sz9O?EkoriIn`ytr zLqf{oE0U49vDRY1V}{`%b|mbd2?BooK;|E@pFcoI=d|23(%Goi&;bs0GdZLz3cici zDv;ieI4ll=?IgpxjDOdni{J8W{|2KP{^kb|U5Eb(ACwK47PZjw&H9M~l1$npSZt3YkkNmiBelQ(DOVmj4i zdTG;xzmqcOl|#zn8Jkp~fZ`Fff%QieRhV>s7ZK3boRug!+CNVSMjLcJqZl%`*-9Hf zpgMArvN?tC@`5uzBu|Jp z<+dj;4vm90*oO@t1x@}#ZdDiD=51izKQG3x&NqGbIWB*Oh=quvcSdQtxvrJ*L+% z0V9-GV^$X<#1jBp#IB<}BCr1FQhM;UUsz2n=jS9Wc{+Iep40PzIgfU})r_Q2VcJsK0dqdSy9x z&JQEg@4>xD^;f4vNl+a)ePfuzRj@QxxOwOHE&_njrO4AU?%2O~*mM@m@9t>4aibb< z*?i;o8{x1Aci57J%{2nbb+MbUijWCUL;&K^AIv2LbuDYe+Tgp1S3_wIKRgh^G1z@u{#14vXipW4myaz&E`}TN`-8{e{5Br@L-_h<}SDEW<*GEH;}hML?LslgJa; z;PY7X#-nf+m%_Vc8(65vM40AIR?09aSChWA{)X(wYDr+yOy~GPI1(?;##$%&$j` z0O5{86|rUo^>AW zBkJ|B+$8*>K??!HfqQRQJ4Ym=DI;w5M(F9IMbVZ$<1jwyLuY<2T_$#Hps(3SCPvYq zJ=@n$)AO!6L~_(hZW2(286-3+*0lhAb8rv*)GJ|lMHE`G)lu{5&D@g=BOrI>)7rV8!ODGU6!W9OsCGn}aHtP}gOBP?cy(~A*5aVLKxu_d(eT|@W z&Li)Vt$C*MZD>O7IKH~WjXSJ9(Q=j0%r-41-ybF|5~Kmh<=CQ*0z|+}{C}ES8DPNF zQ$S|^>9W@Yf*@N_)7GT!N6EK-tJz~E0S026;43?nCfE^@emR*wB8L(yBYc#dB9Icz zypaRni#~QwB*8Q`Fh3LKJQWIm0TI5D%-50a?=SNzGiXhXJDP|P&(4g!$BW3wbh z9h<<)IgmLq1*Ae8B|#>A0T*vW`IY0mCP=E{KH62PbP#RE9c=NAapkbNl+W9YOESiV zDF$X4XP0G?#!$W%tnItNZpmx2j_0?#J8V`5JhxA0%W~kWw~csMd2_b7Cl9hlUWW^@ zn^BHHeyKT~sx=a#D@RNMab)toj-3saz-p$*?JK`XJ(J)4u{|cggbAQcq0zp3U+J)> z-F4S~LvEYvD|9#nD~uO)aI5_Q+9qtyoYXszSqWgUb%FM}dXAwLOkE-jb`;suzrEr& zXRC*#F#Wprc6{$F!M^bO3(b5Jsy3@sDhe`W5V<-fNve1ST^s4#*9X|p8{*w3e#6cE z&fT!zl(txZwp%IA0jDfk(>o>&mo(YB*ZPOy4ieAzB9&itG|t(Vk&exI#9 ze57Di6zo$gr~&`xm%*!g)kl=sigs$I=8)1Xw~5e&XPQt7PU@WS_yl9l{2 z=RC-cXBM~m!wv}Q-T9U*qL9k=0vEg3@}PrP?jH!crP-Uo12NskfK@kzRFtMs+0}!Xw*=~QNd8rv zqK3`LodbN47efa@G5KVe-ogJhxoWBX9mr|js<2`Q*{;Xt)_ulX;9)YQ7{t9mTz3Zk zT1gO`|M|r@NU}rr^g1lyO7Qd6^i(dJ$`HGfaBell&`Icb@l}Xn@rxT)hU-}?8@!Fb z=q1@4rem;Bd`Fk;rV^{t@`YWm-l4Z)pZ^jI@%w1-pP2VG*!xrw^%vV;R-Ll2ZM+_4 zn*45P$oAPM3~?`6Yi%i`cW%7D5s$(|j4TsAQ8g9ZC{ogTl090pfx9@WAry?s7a-w7J5x14kIln>`(7xKq9_{1bqnB(9q703OD%yZFFD#K_UcF zb)}=|r<=T6jy3}h$|QuD)d45b`QZB0`z?P_@7vP)0JLvwA|jNU62P^mJh9At!f%$U z*EgQ^NKWVRbXcqFRyVK2Pv&+g|GhReEkPF?Wb2_#-FW3}G}mEFP__JqLJ!iR+nde&hFObbSr;u#M*?hVZmKMk1B@LFvMkD zpG`uj@V~qVTzfD$L(!U;TM?yXw`uQql}+<}rg%8pZxv(F3SC&6PD?-L2P9#o&@~`c zwDlKBlA-yzFkws95yxalOX$Cxp#5^tlok~^JWyuPC)_Mu=us{kz=otE0;YTul5u3< z{ga3ul2C|1Yfd3WoMMOvsiPT7y6%qVwI^rUWFj}m4i&1zFP}T6gqL<((DYfc`To7S z9cqlSd~K3*t}&#?Zjy*o5sM10<+@l>S_@dm(e9~T4plMq<|zKDyG|uvX3KKi5h8CH zO$koF7#X8K%jndMouAuAZsq%4w>(m?AjDm=Opp|-rp3*>(zNV<&gWwJk)$ZYvjy$d z#uAVH5YwCSMW{HG0`vbtXRbBJ;T`fUVdV#;K2Z=BQLv=6FJ#aVeM~^pY_Fj3MM?A5 zJwBqbu_sHiIP*viP5$AVW?nvg1eWDtpy?NAz{PXbMZ)(ajSKV*-Z+$?hurUV*uOHb z{k5@IZ46c@P_7etjpG?d2%YfJq-B0yg?lJuGJAH_Ig=w;4I(#ZWDJ+1ftUH!OGQyh zdGD<+v>)4$ep@7ky|K~nbopBIl#$?+dt`Ct#hjf9iz`15r5Q0H?*8B5iAEArrMuZ9 z2s`x5Vp~H03-HAoohS#~LjI;F*!Rod-RX2D}i2`jum^t({4b4C8k z>JTE;MMO;WxHy>~zJhAUU#YP>z<%p+aJ}0{;mRVQslSd}pAHHoGbVx6>`71lHPE#|XDUj#3x2!6)ww=f?3X&O`4$ z!~Q*_svlx)5Ohb%h}uvY52mWZeP6fl>5PaL+FeA$i1*yx?SER3PdvDakQP`s{8#tZ zpXFACa*S$+zATp4avT_?DGMnDD`A}QOT!p%LJzei&;~d5m7!fJPaG6$id@a7RWr&? z9~`DZ{rx9e=y^FknW+#$Op?nchEf;U)~bigaMe6XJS(hP>P6>ODd>leh_x-NXKDbD zBN7Yh*|qkv1au|E+h>ca&scSTw0 z_FqMlq5ZOItRIOqEe^P6d8mPxpNjww5 ze*Ts_el^wIyMCO+Q&DtkeaYxz;*1a*m>WQvQ(8py)&*rhh){BPYB32&`jk82yRPo) ztLdree`uV{Q&b#I4`J;&!$ZYy+SZnq;kmi%O%|iVFRYROC5i*G2$sl)2E{Sy+2NOJ zwSg$V`D7u3;bqIC(cdl8ATbiDOhER85MnqcJNJ`1@C2dhh#IQ+&=hRYzkeM;YK)w& zh7(u}39-{`HV1wp%Rhf&0m4mJfp4#foU#Bh3IGtr`s2|Yy3fZNolz?@onkD?2BZSG zXy3TB2I~Sp^}_q`%~qVy0K-uc)D2P*RX!!Y@^uG<8fwa4c z3_t3M+MHBW!;(w0hb=7CYLW;wukjul;xXEaS9Tq;26-sRp=AMtn$z*s(epEIeuNN> zKXf?(s8C_LK-=KCDQfANmM@-Gr+0^Lz~$nA138NpX+R%hOvnuMs?z|0tsBOZ3=ajk zSd3<$xZ?yUmn>VaMo@&4{c6diMG7_KqfU!nc?}2f&3^c3O|!P3#bu9ktxxJzz>BR+ zcyyyN$DpG_D-{LYlR6y-j)_nOd?UewhX^iu&|A>=cgGtU!>-c=I3fd4_!pOQ^ns2^ zgBzbR1u((O6L}brQ(qB#58OlO{}x0W9Ywfbp)P*H{OIF)O|zNlEZ&Voo7jS9`_3r| zug%E93t(%rDw~T(78mJp2GwDI+%CI5K26(bl{42YV~PY0aTRm#Xm=ZWY`!xl&L4K} z%As%JdO_ahYPNVBd89A{_B`er8Up;6;dN(z4-)ODSaG(js79CXf-d$e=IkDdqD7!T zaibu_RsU{hZLrQq89-N$l8rt+%p%rl)}&L*CFxYQeLQort~!q85rk$JwGB$dr-&EE zZU7235$m|`m}saX#cIitOV5l+;Hs zBqk%o`B1ePU43kF(a|9lURFB%#S-_qBizGM;;-#htFu2A@BzB7nH10?&DEi?Mfuw|kr-8j**QKyRcNF*>-inx=dZ~K#$lEkkyQb>l$GM4s%0iCgX1A&` z`!=nHhF*=w(OKQfP$xzG4IX1I^_D=$R;bw_XhsR?a$Ud!8)ueo5<2;nm1~QO|uKl=OwBIDRB<=--=A=*HV}!FyB+&Z? zTghw3_8KwSOcFRbCCz@j8@mJBBzi1cT}Di@i7oH2Ohd%&QtuH&v%3<~L>qlUHgw|n zkU~G8`~xBT?hwj0HgnSvF_f_^`h;Bc>a_nE!65YI=r4jeG$~4>Bb>?Zpqyi#cjslY zOC$DZeYS!n`wS~ROI?C6%KB1vsi49jJbk6>9eyLX6!l?#rR?ICXH_u+%;l+8eZ6?X!Jt zwlc`NyiANAjs}ZX!<)G=fH{va`nkpd;*CldS;Z87H{#1P=vkXdyAGHGc<#tx3YQ$+ znqNjtcm@6KR)9`s#reRb z&m$tP(i?J{F{~NB80EFD>hi}FBLKAukEP8uhmZPncpgHZ6N3cOE|p^Y_i{)qgNmD< zh+KVV-Df?&=U4ZV;f1dxkQjCn%!yZ*O&A4%x(_&%FnhlG*_)@vV9eT8tEi^Tsh*0R z)SN;wcDAm+xQWsx;1IIHhFrMTMX6GY5}cyVNbHMG7rbER5oc2VLrtw#j!YWKP4(qPR zd>qn~*^6WN`Q*ty&FbC!O8iqsZzSK|hcmQ{L4L3t5t(@#d^34A2E2JH_?Wm&<;W04FYf^IuQaXT zFVjl+_+bD)&*Pyh>kb*fzUR737Id}q@^0BC0nMu7N$7*U%HB7H`u-rMl|=w-3)2w{ zg*!ubnw2fgSr=?9g5{DSysyFwOLxT{)LoeYql}MKx|Qa?c=k7&S0wN!JnqXCz~1;k z_wmP{<7^+s*LK*K9+Tlo*1GP7t(Ub z0DDq;$S)5q-rCwABlG0(rdG~dp*NlpW_nUlpC#|R^3Ubi&4rSHpWS}e&aOGpN%(W`Mrse0ZcTi0%d_~IT( z>)-HsEH~2R@~BqwU+!6x z?^ko>qP^01tP0t^(D-JkL(9wn!uAfgJE)i*7@>c`@~FG+T`n-KdAXH>PO+A?1;v-} zctg;3;|gV3?FzmLzB4W?h34#LetfB6stMzTy@`b=E7ZJ@>qJ|e!MySRvq)g~dIYo? zeBW20&4pd@bUwUjCB>k!SXkwa(j|^0l_MRHo%Q)z22HiX!;r|7vnu#--8+D_qm5}d zgT1L_tbY0{JU)QI~|;j*sQk@I{$opn|gqm5rUDQ(KN%@c~g3bj#Yd6>&V{%JS46g*P*sWF5YYzjq`7D{oB#yXp2o*Zz6g z?*85S2y_Lb6gpInEAd5pu{N~(C|qMLNzT+yw>R`#F3F)D;Z(Xt_g%im~* zd^`*Akr`L*xr{dS7FqX+WN;LN-zhGSCQ7`t%F9@JPDiKAwp(-<+EF z0&X>D9%&;k`6H4KgT^zbi34Do78>iFJ(tTw0f{?hGIkni$lS=|RJBy7iIPqQOR-jM z`Y1@5Fh9iV^34(YgS!O)&czzXpMh z8~e6UJ5z0299Q|cBv$(tr$L=}@7|mya?Bv0p_t^sw?60lkhd+?>voC9AlX0?%aM4{ zGxI^a{tUn@*i1+^@0F)d$Zp?ll z#~AY;+n;Y_Kj8O5#iWYgXd8%51DUw5C!exU-0JCD1uXvLYZ&0l{Droc1s(X226XSa zM$jrFhUZ}dqNrEu+nJzMfzZK*wc0~tT$GpFQ$EE|yZZBwRfjPCGrB148kK-NR~D-Z zAIPvQ0DR$q=L_+;ixje|B>gcANif&_z}yQvg=oOi-PFojPOnjL@3*@V^|RV;ER+DA zrN0fF;h@%}*iF4Kb+ngMG!zIwkgosmOEp&K_^^^i z^|{uhblRCooKljWU_3drqKL2iIBvL7Op8OV5sPXZ`t8d)Nbs)zV_aN-(FP|vMKZK{ z@$;iQDN;hiRx+MtMcg4Hj${KmYU2|SbvTS-5y{0S8+0rw$gTwFbTn+i3r7Cad#7yV z*Lz`cVKJYhlV_0d5{KcDbb z-n44#`|SCpwqj$B!KDKRO@8VbEDZ^I+v%?diBSlOLT!T%Wn|@&Je6pS^RLTnIXuKsl59+M_lgdOFnU>N@iXvr zI7w(jE?)Je)dIFT{LM25?$PG*BfULfaOwBjMg1g29lideUXa&6=Eb`7ufg?0M+rzH zM>*mMyH#XAao&V_(xMLV4vXr+9hQcah5>I4_$T|$41AH>CjG5@^P;7MBHzVcH1Owjv&~fG&h-I>;6(ayIx82+B$n{-;0mG|1y4(A%t)D_FJFbwurTXbBH4 z7fPbRn91g&^wle#`MSus5z>9VekRq-NFGwidEYY;Bp@p=*q!l_jWD8C&`W8FFu2Zc z+=%Uow>S-vt*q@)1l2~;(4oQi#(zQfuVcicJA_wV&ex&G3l(R4Ye$5iuQD%JQ1S_Y zi-*uvq;ibkpT?5tv;w;<+sf36^IcPec1L`VO?Qwh0Yb1|4pe$yXaCd%3*z3vhmZM1 z40K-x*s3x|G*YIgqsD?3WF16(&3cc}xtogswwjc7;`It})N|eEGu^)Ty|l25v}&_D z;*x+gr^cb#6wkPhI*Q-uq(U8$U2vxr@h2rFu*JjX!wAM#W$4(-|6xOZR@MdAu_JT| zv8(4ZtN!S|P?60_`*|Px`;$5JqV;{TDuC|{oknLXZvc_+@EbPho1ju9N<-#u(V4dN zj*;K>2S5I>1<^Qin~&lq$$+od!cV)7qxxx~-Ynj4jtVDa`J624%w}zWE*E~hpj(1! zxhKINd1%a{0WMO6g(zkEETx0P(R{9~Q)nPa3THwLNQJh%?r+n`WzHR=f|%=Q4XAfJ z=FdhP=Ydss<0DIID!@wELKTgLkvVfji&Rz}f1fyXbI`?)cI?t>rZO}~WaXGH?`7qm zAXx2mL;G!SgDZ+SuH`E+K#nI#GVlRSje4$Zu-a%!rC2*LtT&Gt=6Irm2(W}`BW3un zx3;|=UnUW1s%QN1DtkUt2#`Ml)7Ac1Z|c&=Pfh9{Kl<0K@dsesa4Nl;eZyyky@?CF zCFJqo?i&8nh4Zr;>~iOVe()I0=3S*^ z-y-qK7R|pcd0mdxx?L2~>QgIjt)-C#U7U+*wvoB(X3chM71{toh_Nn7OU}T>5aA_5 zG^#lKuJ3QHz${)gb;$vQmzcl0%g72&PyhLHx)VP92#?<4a61bqS%lWA2X~-!FjY?t=kbAL zR(j7}j4Zbgc{aBM0p0J8+jE4E7m!Kbcksd0oh<&{zIW4P%g6J|MkbV*I30*u86(zf z%?ic>J6K@Rg`4n4(-`%mOGLosPSbFgp2kSu2`y17#8xvilK#(3n_L-R-CfLqSao)4 zk^D=pYyWCYoE+g{AW7(rdGCYt9F-;7&@a{kThrd$I0z;w}+ zzL0=yyyyS|)xy~(&!0je7Cv+%%WHx~I#(ti7QU0)*sILs#O2d^W0Za zs1y#XlO-7FgjjLNC}}@wpKxbs@s*sT=D($#>`BNBy^e_HkF0w-J>s?1&ob1A4QOO| zzsdD&5q(yifH^2+ZBdqMXE3SnVW~_%AB3jy`^HmJO)}Y_ikNvpwV9p1QOGFGhwPlw zFzfCf+WTX+l3Kovy)6?V*pNfv0rTM#IiR+SR;`X`eAi(^FTn>om_iS`eI!>UWn$4@ zywiRqjm+4d(4X$ewM9Me$0dm$W}D01qbZEnc;O<0LA!d7V+o;V3eq$iH4)Wu(d<39 z+jzh@Drt3b0R8Rf>{~N^JpuDZvb$pZ0I#$|6iaRQH>yq2WV>_mftrngeWKM1C9iXN zl2xabiB$!g)^}WsKE5@db}=7=M#mlpGb|P&J4xi%o2p-mA|?yF{`=aUD5;FBym z(EHXwamIxJGVAchDbcHDEk3gVvQ7VZCRgJOagWUpOe<2rx9vGK^Qg0awqjca>&TQm zC_GXbu>VnRi~cDsfGRq1^CLCDtoqi0+*jXG5AWR@4PU(wzdF3bk`sq_V)UDh8fjd; z(MJk-OG^_@I4E3OFoEZ?i$H~fda9Q9h?H$pT&E_d1J`Z8*#mKpDtfKsa0vsEZo z#q{vGL{HqN_TNYsmM?pb-i3Z}e)(YtN&YkwiWaz`^6q4d2nWru&*cIAUI-$YdsFD| z;!xec<_(wW{B(8-v1EHYi7Xe!089uTR8^~pd{`p$q%LvGI!P^-hyoLcwPe18wdT5- z0H33CB6*Lib)aq~xF^yC!*RYMVz}@`ZWNxpr!Ii7X>ml?mG)*%jw-10>U`(+?EUw; z&;~jf_qg~V*k_N#{DOdHK2PLPJs=5}PHV-U;vYGuH2L?1Qm9<`t2C2}QLjcd1}*R$ z)ICXfGyrkgxrQA+xKXp-;JTqymUD+Ej^e*#Z~}*anS#{r%d})s2k#;w0Po~syxWpU z-4Dbh+v&)JlMAb}lKz)c0=CIRa=SmBcPxNkS;PCAm){Ab$p8jq9678Y3J<&ovcXMY zlE?8c4UTXAUW23|y%xuP)X|{PSE0uEv+JEsM|`-r5Iu^+uChr$VH+uq@8Z7qyS|Se z{voNR;mKiqF$vPiya&G#^!bPr%27Z>Pj_0B>5DH>24pb!-uZ&9mO;T`SGbM-8QU*Y zIm(h$PId^Ol|_66x&$O?nOV~>kasXS#leICv5Y{c2aY3O&nF1%&g&PK3mv0hf4Kfl zKBhl<>Hxk$V?ZeGofX~O{O^?;P1d`wg-JznSdJf02Wecbn`F^P={mLc&y*UMj zxwQZNyTb{df>Jm)O}|!%*7w7^q}$YxLf7t^6|xtc56RvkQ28apKX6 z%!ESSk@3rVTx)0LfLJi$QmE0+7Nu0$3}(qW{s99wMH2DWT5j{=0X zy`6=v3RGO=>hwuj4~t|yZiGP-c}8eVbdF6ks*11Ons~U$E|^lqdh}kncuV9KZ4z;M z$6<0Hz$pgZck|xVyoWjK@&2kqgjyISM@o|!w%%Zi!@P0v^b@);Kayv(k;e-gi{jpe z6XuCjAFum4`E1lJfY5g29JXbqz&C?I@DgKeftXz%89k+Zi>as1)nGq`A>kjiUUk0m zgGM-IZMuTlS08_eImEc39!@Zf`nGgbfi!hzEF>#nrhATEf`^6(#grfl)+VE zk+)aUpViG;$>`p!=ast59?Xn6{ID%z3PnmO*8BRMmcp|<(t3!jNPr;#^Zukk#Z-WZ z5wMem0`@SJ;$b^OKP>y#6yVU|Nc$qs9XBpMIL=F`Ru564*@{d)`hlM?94xQQbv}|C z_5LwVdC(R)8EHMGrHPuMb5y}}|U!P*Bbo0>q@BZlzP*1;>7aUREF zV?+R@s~*sPK_!bK0~QPr8vN)FxPNGb&wcIO_;Z4!cfIsk(_|u+pzyVwr$Km zAd0JmOn2f)%~PnNOnjOO^TR<8#A{W>!k(huyR~6YT>n1IgcidZtajGl-aPq5lvW{7 z^sTA|FqfrUu&A>7+(n3hQO}*>m(fNYVCfccLA8djI$kXxo%{1}!ojI5GsCzgWxtCZ zPf#TTQo+I}83)jtisNFq@dC*i>_zUmmlCy*{9ohc(C!^o;AWApI!?Y-rz|wNtW)QX zmW3!yN=?(^RAuyKl>u~pT5U%kUa|R8)SMOhk4JZofWb)$r-t3mBOUTKj=X#R+g;GQV zVFWn52QGe2%f0tYdq&yr$vaz&e|ciln)=*!ufcEzg2pg%X`B%>#waUcLt;krQx%<- zwa<`UkO_5W*}-JPc342Hxg`L&-c4u+s(U7J)n{$bv~JA_?I;O#EW}HBkJrB&jhfp@Bn(L%5s_$bn=P~ z*g*}RGziQ5L}W&ALy-jsK@8PsD8;lEK}nRe!@Lkx@wx#;uGFQF z19kdZC921{1*!4Yw@Z5|@*;@_0?R7#)~Dx`2G#lmY*wcFa@J{;7CzlI~VX#^3-Hyl!> zBqwc9s-_?M@U{T?ckp+-FjOU!8K@E8Fb6DP6xaDrC4qt1@gM2;&RSL9>}G-2DIwg7 zP`LpLB>y`|?Rq?4=fsEDn7qV|P$sEkCRAlLyKWad%uK<)3RzHa+hE&F+^Ig(ruf<3 zaUO5qTz~^Rin1{R={jK9mRkwL64yck@jL#$pWGZc@E|48;2W1wHE6RrDK6|I$Pn^g z!POJYJr7+LZ!I_@X$U(wCl=NMDwr%?03nRML@U>#K$BA>KMNXGGq?hS#liktZQt6? zP^QuunzJ4!D)e79rYU>PvQzUaI!BYuT2&zZbsIv~m|jr;OrO9i*SKuR&V7 zNchIS=5~Mtg11^`e#k&OKb9fQ2{H(C#XRrL7^UKT)-=*!p{CclS)dqbsY<-DYK4Ur z*?zu}T2y{uJ-dvuypjay4a^p58Fn@Ihw6TnCG7eWjeu0zYN%p1xZp~ths~`vN-0aN zR%aut44ziDa3?#OHEBR?8G4bnR|Tb#i90$jF`?=sj=@5qr%)AaGbF`aSITzU3~W$X z6BI=>t={V%NSP}%BA^4(jdPl;CLpX5?B35AzU$lJ1v%0r{mrErJ(dpFNXbVB6EjJ7 zb>emLodHz1AwH?*8(xy3@{?WxMG%i-OEofGv3zjwU5rLOXYQ4zF^~i=z-9i{22Li* z0dJz&AS-!0!?a=EU}LIi@whJAgbxDXYRol!gE};w6v-hy!maCq#?l|mEy)E3kYnw{ zP?xmd$Feawsf(K0fXOZ1x?ToYqQV)o8P(C*!`qJK9}M(*$?`;(L{_n;xa)8bviux& z=vdlu#MtLlTqoPo-@baeisj@r3gF>K1cEJgB3iIXfDA9Icvk@F89V|RHm%0E0L(&~ zM#1QC86izvTQ&{4{%GeBMosf^2!ibk@0ra=c^|Wy7E5UCfe5#8#+@Y9xL6r}Q-Cop zeSfq&wsFrNA9_jOUKvJK1%04`*t=UMfyySG>H(FQYj1-WpF75YTth44rBMhrZ2Xbg z+jSGvGd|nR-RbNMq9@S1eGq?v3zHAaE(sn2Ehz83Rlc&G6S%0Sm{vLRL=k!iO3>4? zU%3v{@XJs4zjBAWI9?(dB-uHFm@B25VpnOCuZ=xP;rDIg@^ijMRi_Gt>ZQaq{C5e+{h--75P6NtgaGpSH(kPR4q&iDqok(+~7e0 zGm2FeY;`S->mrb^=DapwxN*M@5{y5O;@tZt;|$g)c^hqs+@*MP*Eosp|J~(z9xhN# zcx9M;g%g$#Kv69t5&7a&)Joq-@8zQUK86qi6Wp4~W(DzyQuB#)*PoBoNw~5^zT$(Uu|*70%ELaRa^~%3i|x z={nE=FD39scfq#x{acS|Zh>w~;WKZx=baJxMWXoWP93kx)o5RXYWFCmZWb6f7Ieb+ zmKouIdyJpnVwCRu3Zhv&B&Fs`K$r?)Lw#(JE$TZ+8$T4XP@9sJ!h4hy>vO18{#o#S z4KU`f!WXHr8XVT*X}fnCZ_4qU&~+q|FC$qEo)2{pU4MobuyYz&0qyoOiH25dJWJsi zYKvI_z+~@cZDk^OlYGvX2(mYtC(W4fWJ36+^A{p%_|9PbqmV%8Y{>;l;lF)7kj575 zbYXHryenDrQ^?J@Y;UN2ODYvJ>l zQlM&Tu6&~PA$`ksL2S52VFk!awiwiefKAr(yg<~8$&6_we)r9xz{$_L2cFwnu1>Ab z-b*sz?R!dLK06{XPKlugfmGbemOfT1GhA(O^3FJWQJ zkX#ZE!dEwdRWPph9x3`^`+PqTl}~bheVOV;L=VI$ zIDuJFju&x+F%~&}#!ZlX(NNys$Qy-#xiepW21WcY9uPS|ys+ZqUSZ%hjDl}Fbm2W# z8pi*PYX6;RF3i8=@WKaoAK}5))jSJ_;{eGvNX{TrTzKTDcde&o{FpbKz$)ybrjbWA z2uFu1t#mDd$9rXRH$mCa=&&#DzSZ@MD?&g2N|15u&$|%jUDlAD!ildiQoshBGKh6C+l3bVf=*3jWzrLg-Zjw&k_0R<{x&C!DBf z{FGV*NF8*4zP{z-HX!cWW;FiQO^La-o|47udKWG~yADM^2~v&N_j_blAGP)^EaR`~ zmk{}**WfWLhB&Sf2=3zvQ~a-c*mJn2+V}KBq~&V^dl~r$1K-r`pC9{fpDFvV1HA9^ zH97kB0v}46J<))#w#nM_p3}2TN8;yH6eqrAZd^oKU(*Abz}khcGj#`!4)@P!tJ#E+;(H_tsU;S zB+_SL?(SyGi<%S^;*sg&ZMzG2URZq+-$iYoWK{gGTCEJ4RY0Y{%8MsN?Z-OS8&%8K zk;2!LK$_qC(>c=DN6#lyvj3aW>wJzp)A{Q;h~TUL4CT<^nyg%|RwtLs)sI2MPohtU z-WOU&`9REAGcqK}*AFs5ckUA4Rqt57&2L;Eo!>mCmGq1EfffAf-j}UcTZ*+-wT>sv z5bfxe26fHOn`=5@G^EIH^6=bL9Dg=?CWtDxZ4OyB-Pk<7Zfh}lxvUIj0J#zAa<~(d z4Z^r<069a5a1KFOKw|@9-Bz>9r}H;jaPRBcLExk2i@LEV{p{=iO{dwo&K^9R7=YhslW#w79}arL9I znoOUD`J0=#d`Ih0PPxSK0;NH^(MmlWx7!`KP$UQcdu{}d_LEQ)NVnc*-I>T0dO*Yp z@~Z0l6!?cbNbP)``?$*wLnM-`PxF-rmXAGt4Zfu`2y4Mo0;c;=VP-&4@O#*!#J)lg z)*8}oW$WkY{r+KGG=;24-3p8x!p|1wK=DG`r%HzzK_d7vckNquqPHp`gvlo@@V_R+ zKHx6UnB*RBXVq;RgR!K@>9npA2wlbKGJU9~4iiMe^bZf!n3BE<%pM*6YCIBP1!p88 zrZz^7B;@VDUU#4(F-l-9-|6a`;?1PWwP>rV!k{lb5Hwd+@oh$O-J31RT(%6sf5^Y* z^M)N{B3cS0 z_kwP!ul#og1mB*H!p+oqD`eHKB0rdS&#|Usw+s|gOcN7<{gdmbu!gm#&aWc4-nW0X z)$nJVQb+AN`kIO5d^-0(%;Urz&x!%>@hY*}EYZ~LJR0K5U;qc2e11u~ z`&RThUn`%({&&;!0(RNnpJCsvm#{}i`fv8t*&z@m1goTdge6U%`C?H1uCBnR+aO9Z!)r%DPWGfRg=M_cdFnKN$bALDdB>ds?WouUY z{at`B&jv9E`Cr5Q>)Kogdv#hhUoyjMR;|P>f16i9h&>d%`>ch96~XNym02FdH{^S+ z)9ZFm@c`MB*wFI{k8{wj(`%2HF00SHiLcS+_ZoqBg|Bu0hsU_}7lGjC=;s_?h@ZY0 zQv#230+mbR*1{`-Y|A}qD~^BWUg;e>fAaQki8VR2v0pgLycQ?%BO<43ZCk;g{LsPZ z&@6H9QEo){GMK9I`NDx)?dFdTEe?vFqe3%8ps4dU!&j`KJocx=jLI9C| zpWb+#dMYde1`m0MC;*756}F~wUC9NL?X^zV%#N@2{ZX7l|FwGK`J;=M;oo$(u0w&H z(aZFm&szS;@v_S6o#Q7D*p6@RKTtV|=rgR6KyzHg!_eu%E7Aph;j0+rdr+{?5ks|W z&bjEK2%X!yfwr(F`IUtwlw{h(O{X~Eqa*Y_&*ObU{v)Wg`^g2LN{u%jVJAXXs4(Q9ty*^#_kK<%}>X!M{rPAD14+|FsHMKHJF%wzjwH> z;rIRA2X@-dt1@G-+3Iw5#?0rG#C@rc%L0r<{EV`M&Q~cIDRD?LB-S`;5wg7vgBuBo z+Yp5<1J$2E{vD}9IE$P!z^Ar~-p6bZdxB0*;<>a zrI6}(MNHarGyk=!|M`7R+b?-2&;rtYYl04e`PSx#KOXtN%^yT@O+|D`7DF{!n=xrPh~us6!oBA}v}iMns@wh1%^j0M`ysz}eq;hD}+r zw9EVD=1)Pnk!kRspF9jy)!PxK?`H-}yUq^Ow%bVOCAB`oE)6bhfbl0#5wF4L)lg0d zWDVzF0u4>T;vOX6cFD7$3wDtI52EsZ)*;}TdweTrYmoWcWGxG2$As+R1PPz*vlj%Q z`qhK-DS-baKy=%^(Au?3KaKlHGp)-TiQXu^Hv z;=V;rV#{waiF+R_gP#t8fyJ~yOGa1$a%i_)9$kt(N|=3nEXrI_u`hq>^52QYb&#`5 zb0>NJvQJ!0CZCPZ`o!nqZSO+v*XyEvz*Dx_&RaH}o(6(}T>k3WR1uR}Hj zgo9pc{Jq_EIzkF9vx;K7#e4UfJPlku?ChLSYC@u&h90H%%%}a8Ky*Keli8N9$pw&X zMXm>EOJ|@7EJeN801EzUz7J;Lp|&W?T&~lq$=5(Eh0D}Zce|n@0`oo&dDFX zvlO6(#9NtWGp(sn9^)$CSR|3owRh(vb92K*FGR}37Hbg)Zxxg!0sd1Lf~Ed@I~y#S+_VFqzuwqzGv8-d;U!<4X`^(vizENbXaKur>nY|#rfB< zpA$T{sEn}?VjB5Lls66e*%a9bV!d7h8zdaOj)_vdV;R4oor_BtcZ7JfX!`<(q~^mZ z)4xZW=7jaIfNCnc5+?R;yX5}Y3N48t89aY)Fs+1A$~UMA zd?x%J9a_B~ujA2s<#t$~gxB52d1Yg^g6A!awaB*c>B4A`y&&B*APA>8Uy7^za$lhSXlK=a=zE%?U4DR+4$L17gEDkv{ehiTYpjDNd*< zDj}1ALa||{WP6NB7kDETw52p$ocj8-RPkva8x!`_CK~&ke9GdeV#M&bxgz~)h%;ol zk;>n6G93kHWDEo*hwG2Y9S6#-!hTSHF8VG<)fv0zjQ5j_=)A#jAgNNGJQ0*n# zG{DFc@sOVRIb1QO%5A;XQ@K%SMs{g!x!_IbC9w2rei{C?w)~#2x&x^atI!?FYlP3- zH!I)&??v?#rgo&{t$f+uitQ1|KTp&(6;&vu+wR2v;!-7Y&h001#;WWh`AReu^fI-l z;+%Qof#rVl2YeuFPoamM(W#w@MNq#D|JNfdTUO{Ju+j0F(L$~!qq8bGU+&F;n-02; zm|GI>FX+77K=G|MPxiekLt;5?{%lfLxXk&Dtf)jn{+0z>o;ZqH7#QVS_(e?WFt&5p z0)Ly0_b}$0#9^;Y7(5Eko0Kro!NRo>QAT>FMVMb;8%S<*wI_mcpnYMGy0!Cnx=ttD z;XAQN5hv^yu7{t$^sqz{-1Hg}R>M`D$2-U&?FnO-=Z*6K}9PI0Jb zU0h}7XW?i3={HeaQdMy^nJCIi>H~HJ5>A|?XLqNKG?+3rmo$>gq=|_5Q@a)8yCgd& z>~-8!1!>OT2eHi~7$?Yw=lJWEGGT8Hkuht2U+0w^d0#zQhaaUFGD>R-CXn^g`FM;N0DKtFf37w)U{- zT^@PgcwHy^*;xTra;3`Iae}I6RWe9$TuckC2>H1T=HkhZ&h@aSenl0NfrSrRce8ne zP3>pocekxiR?yNE#c9V^n@E3MJ)m`VXAec_qaEWm2&*ti-ijKOL{#p+Hhx67VK&&DzqFp^JCq;DT?I{M4~ z)5lTuldR^FDYD@k|<3`17z-A`t>ksS0XAkIwBC`11ajn<%?#uf7Ht- zNE3WcBLPI98_hC!A=EbO$9 z_El%OtJpz(BMnbdEh~246Q3e`T7Gl_5n}_Ge(~KY z$S#Zg#jZp)9OoysfL$E*-WJQNN|iQvkzZP=-_2^Ax4F9wgROj%YN2H$MK{`z-F7-< zj^N&%oLHH6yGUExauR{^L`d_5sH75E#ux-ch71F!Q~KKZLW$rn!$8Gz!#VWV%uM!U zItmvZ8jZqIkwVhjY^%{J9eYO6kOE0B!4`N_i%O+SA$EF3GSf)rf2^a(1MGM8N*dLB zub2`F)mLnbaVuxH&c^}*>g#}JH{`O|URhuIH$q&O?PCjG9T=8gP4<$}%ei&|xv~j< zT@A*vZaLz@>HeIGN$v1!<1k$BuBlE^F8)@sl3^N>e`RwrM`m|E88Ahl7=Q}O#Z=HL zi0hnctFGV~?&*SSGyi|>95DOsj@Juf`U>2l+H_KbKk)bCI;m@IG!*Y34vSuEpMBvD zFBAPU06(o->CzSdn9MYkeWvsBRILW(=4=e#$wBWXEROhjheHQ0%*kdT$8P>W?Q^{% z)R;yT?uq`$1O&5(2vigHx5ScI8EUf{K*}ZOa|5E6lyc@+){f&ZjuvQSI=)>a7)36Q zMV%vw==89D>tQW!-8Ans$B%}x_9ZHGoIHe{BLs*OwG~y(@1S}&nlX=$ZzzDd8dZQ^ z5AEb({M02|&2X}9K0sr%^~b2k4hSA;Ob$xg^6LPcILj`hI|(4XM*G^q0$}SvT0XC7 zN4e9xVPYtL-mB8iO76);#+oFq1F~Z=4(^pIge!Dmlu^nm2|hJ$jv!Q0$``DwRN=5Y zCF)Zv(rx1#xnVm>x|wtmnqrvg`V*mMrd zmMvW%cRX@UH7QioVf&t!4rN=z_iI5{))_Y7bNu?@>5pjS)6i2)J)UX9qIZ?pg=Ot+s$RIQ7=zSG_3HCT*+F(uPe)% zJsi|aOtF8}@8;jX50Hah*c%EPYO`4fS+*YaJy}N&HDKPj3h8prmV&ZTMZ8rr~*T+spSXpfe-4 z>Ap0wjpcB9cun#}N*e7oNV9b$B#>i+_gti^y3L;0F0$m-J>^aL==yBovJ-OplsG2X zXg%BUa9sxTd0}RZR1jH^tO}OZC+ApqtGrMNvm8_6{>OX&1Oldlrod9mRH=f7p(z`y zTX-CBIslg}h+ANPrjrU}V%r@|Qni}%P8u<~wtQDwUly=kab2SWT5e{QGyj;b*(!)2 zbTRbO4?7-R5OG+)9MY$N1jI)0U!QLKKj+;$pd2{;R@s}gn$+a9C#WL8jX@8J4ML0< z3gmYrdkEv7db0e z;T|4Vngj$~KCds=$-bw8#%*4VER%pu%Wr*x?=&f2Cem%J0yuuRsNQeFVH@k^6)8#s z5&gVXT_w4x!1LMjnk)%5LDt4nUV~{^hYX$DXf*tK?&1~koceelS{lH*mcK!D?eVG` z%VFRqZ=l_4-29boUF~z}FRj*Y@+k;9dDuY6n82e5=|ww{szlVuhK6{Mg~-fF^SK{8 zzzkjnJFS$-rtEpfqpN@5a?2P1y(zD3f?hqis?`A^(tE0TFWz?rYcP)k3yHFc{b%3b zVK(!b;s77LI{Wvw8Prk^^gjf+vZHG(?aHMb%$5w41vkK9uWwLJH8w*0B&q_68%Rg) zg@R9X?oA1L_(=;^8f1Cab;T&YPgu^EwK%*~Ng(LC z@2p+W=^7!N3$ZduX-K-MP*|?}PoI-b=GpWIKZ$4;uJa$c54E-{_37wyY}3YZj<@sY zo?Z(BdH)8y;({Ran`R!agvvhb4PimrX7pJ(55;<7J5I=abzx?ffZ%_h6(sM8UNJys zfT!m;qK)Pn+F$_1bJ$*V4koHB$OZG)j7E%5tb`53l}gOeB~j9NljvzQkdxJoOMm+m zu!)huMozV)qtWzE7rlfAnwUA@X>*<`*B-t_R@72?(M&zz*es*oTKaKkk#KvWv`D@u zB+917CI^Hi{wXWJ6QtmD!xUJ0tE#%k@Ax0_#utvK)nJxi&9KO3kO_39dO4|q`-Y?j zjhH@L@lh>g>4U77+m5~KaH*E7KD6P{Qt~i0Dy{OxX)(IB_M(N9#C+swkmf_`y1Sj~ zUiFYJI{oQ#e-1BNFJZpLMA5l8kynM4URg&~t#R%Fu2j`6LJhWigTDMvSEspx{Ju zy~O^$Srnu3jxQ)utXex1+O(Dn+>cx-0%4KTKs$2InCY9SVM-N0AZ_We*HW^Qe1DY| znOoAmZbfgRhXt@{9W_>th^fiqtO#U1Ir%}`+i5#n6B`+!k8EnOqcKgqKec%~PWhcAk-GP&CvZ{j2n&ehX zDf0D*sUCN$NdI^+woDOE~D z%dD|JehR!jH8}_+!$n$Rt+Co^sXbU0@?j453XU(@QVIX`qhb@TB|2+&Ja4bYhJ0_? zwj4*H^~zow#~woe{6P9>ea*OfW>ggv-4EZABS)8gEPgw7Emf3$L<=KM+YEQNX=v_k zpDp*(6eZCsDu9b9czb@pzGZZG$d+C+wJWFH`+e{FwouXcg^7$EeqUWs5K zi$Ihoq8f|Z&~8Eztg$nw$rL%BeErMFRQ5q~^MnY96*8ET$cimiVz}d!9mJEtqwn>g z)gr7!&w`w;HC=wN``A?iTz()|dAED&wS+Q|4Q*DS4Wayma6%?yMv!tI%CbtINhf@o z;QbkWqUSWLObyPOcB*Z*iP$0`D+$v@W^pgS4~@~axk&zn=${N{r-dNXghrX&_IBP| z`a1QjK|v}lRRXfVv$Utwf=HZSYAJUOGc)7YE;!=oJ{na+^^GH{%RB`XW=z7|1bhW^z-qPZkN8b15p_+`a)d0 zO>U&%SH*&==N%_9<-@!>cumxch4kmk?3zrO;mO`XM>Gw$Yzh%*(lqk z$62zxa*Xm%lx*zFMP)=np(e^4jWv#~8eWt#9QScTWf$FH#qk|5tVZ|xcEM;u9{gv* z>$AQ_4Q|`Q(RyWQ(ZZID>l07#o&Hm+++J(N&xuDW%c=46Dj3i=+i5X3s+T124;$_by6IW0BY+#$M8_mBQCir^@VTxI38)_ zEr`@TqB*RP7!B_?&NlhH`>7eKeApJE8BQtc-2+OHWvxgEy4|icM&H1NP>J?x9Lq!= zsfb3<_caJr^&$MWJs{#}wL4a%uI-1kH}|R4FKE5%=AC3+lWDTkhr(k|34|L{|JXdq zJJAU*1LT5i@sxer&8n|AC^@tVX!r<53#65!Rj}Z<^6@h_;$YvL=+u0{ClX+o7TJ=1 z{Gx_6{>{JQJ7~4nR-B;=h(`3@LIsl6u98Q2S+~n6m8E|q@ZD{`muL-(_hSsby8^ojJi zIZQp(pl6B%hcJ|is@fWB#7Vo?gn8J>rI?yrW|nn{{%N;$6_C6$Gp{^H!$%cx?=(xI z1U+Ud2m1z$E}8s+I#F}!wTAm}H9M=6H>xGGi+s;&70w$c3DYDTtX$~%s}xhf1s${~ zoJ8?jJ7XVWptl4qdfxdUlw^iE;4u(z(aQ6}u#r>geve3w=TUMVNiqxc1U)F(RZK8` z3k8xBpdQWEE15k;V&%5*{MdOi0GaXqF4NWqx`5G~jjzgG4XYvSud=d`r1+CAea$dM zp~G1(5lTYP1xd-|5#_X-sRfqC7JPmm!1hSKfhnLf=abU<;KUS>AWf$qhya$W zZ2#qZj%#CG{EHBIp2XxpP+(>g`pX?p)XAY}6U4XyH z1vZe$qCIn#+nTMXD6}oh+<0jzfla!|Y<}s$i*4A%sC*54YVBP`lt%nM)>Q-=7(=_K zJ^~Mh=Cq_utsr@-l*`sTsPF$$WFW3jyCtAhuHNt4_ah(Eqfr*%L0~wdHC6tLQ6A#< z{RBtwf`_D)gC=R3%GWzj`C*z!H6!zPY{D=|0At0{QN&p@K|olT(Hdc@&Q18aj3ZLV zaRmlczF&4kssC4>j{04uC{WIe3#50l><@2j_T3PmKtc1U!M)6i=JT}ZH-mkoi-Fl` z=+6T6V8Ncw)A-KJIy1o9TY?jAKt;I^*Lmtm_n3+U-k>OpwN1O7ek@mOBc_fXQj4Dx9Kn$3)Qcb1{7jZL$xKk~dt? z`E*|^<-&2TttrFeb!#Z_UL_k6xyL%=hi2XlMT2a0^-u6tMVmM(`*3kW-#jlime2N1ngByH_NH&PR!euQ0n^Mt4|+RTe|&_Q2no`ZIBVqz4LN^ zpJlU$6H0LAr}5GRFt&9uU5%j1g?wwOtm|E6yLNj-oQ_GCA?k?9I&wA^g{KxLM}d#HO-=ENxqLEVij9PL!lCoz^x#rh)K~ zV|WYVdiafqh`w{YD%Va11H3xWbmx!(UK&bU%d^v~`hSC|m(;SbmcDcDTz7}?#(Ek~ z{W@xD&8qH_-A%J2+yo>uz&y-0CgeO%R=2Q;2y2PRb~Bgwq{?beKc1%%L#Dr0Sfs9| zHDKG@ToiVj6(JJ~=|W0gqM?w~PX#TipYx_zl*GgrT2Jj|tAC9GO3VMrbIiLIC=Yba z{64&s-WL>2=e+zTz7KZY-%5k&GvR`jojnY_(TJDv-~41^nqwAJYl-d!B5HEBZN6M4 z9Z5AK0oqk@A=51iB}INuPa|t?33z0m`UqeDdntPwoS?~(UlY5I`iN+wAcO?xr_BJ& zh#}Ni%T-v@ysy`IWuJDRy@hGGJAw6rzP64ge^?KNBj39n$92qw{6mCCgkd4HmqH-e zZVCLgYdTCn*X1P&zr+XhpiOTRY2Xf~e(-yyd&|a@u=KCSc58QN-6HwLSig1RRNR6! zCieM^7$l7lg-&uxJjXJ74$;!_?%}R%bNibDAwqe?5IQHw6i94>*9JY@y@^G-p(#D6|v#i4%OuP#A%Agiq2SHE$>t$W+ z=r8HB>3#LN__hEbKC%+;>$5_h%wPAgdj=S&D@}Y7EEvQx2{~c zNyPcH8acW%U2%!`An@L}Y113hag3Bjq52EqTmrZE1I7_*jL1jg=+kx!ts5zok+1MM@Q!KVx zNNAs?^~kCK9i+^{?JW!jQ*H#Yc;qO42Ltyso9MyaP?Of>s)wU0-qJ?T7ohj}4~}dd z>$J-4$`UTg%uAt2|7HwSmU)HB3Qgg9Kh0Tve`GwS^?HTs6h^|R`gXwM($5}&1gv%r z1rGfDO)1t$g6HjoDyk))W)-I*BT-)3$GY%??f*rOyx#QU~vT8*_sX}4Uq>Gjq!jH$(^cgidl^}?@=83kg zus2%vN#3Mctf!v0zlQF>;Vj%Bg9#lAJY%*t!5)H^w}lQMtu{}v&F(wl{4FkmJ^Uk* zmaOota7m;bycveem3zr*d??YeBe=xdHg7$P&|j7f;`gRbQ6f?P){ax{nKf=PxbDou z1o&*7bOVSfS6Ksoa;Zck>*%Uecomnidh7Wx{aC{(H0o{GgSuV}`v|tSQw*#fjCZR$ zaZ=B4VH&$DEZ2^_o@C~Y;Fv>R;CvGbl&9KX z<2vtCSU z_cYkIzs4ShO8y*E&!4=|upr4|hN7G{Yjx)4lhOgo5xSxrSA@Sm0y5P;BdOCxD~SVe z#je)bLo6<>q$A?q0&dJ5<7R8Mdf-*mi!Ff)mA7bK_zQmwoZ12#*EC$pu664H+s8!I z*kf_Z11+u_mx}cYFsu;i>^*Je!eqKYPv?K>D)rT}d6*?uyyTvzpw!ydkr*y1)At~L zzgN^|H@_A;U2FyZ#~vX+dp>;5Gaq=;Jo<2!Bu6J$Iun25#L*nenBn77P8|YpsY;&2 zN3q@+$LaYhKaNPh8J7EeR?(h4799C(L8r(c$JrnGo8GWg+=UjE1+!Vjonuj|>9B0F z7)@*E=CElw4xDyLM*)*olkq5-?S2TPBc))ce07w`B+??XpU{6}#Z|b@34ai{A3ts@ zI|~A9p0A@8cYecsSR+!birZMUPo)hJ+&2`HWx#03Py)Q$A$es`ADpskrRYPuq@Ms! zEr7?BMZc4jQ%S7pOFnOASQZ{a&5 zM2DFbE^Ijp=8GQaDY5W|92gYg#yUAwO`?#ri~Zu%e7Tm>iT zZtL3`W^G)34ltZ2+xfouuvSXeXk2clOph&o@(VX9A!b%=VU24p#%J%ph~zpp4#%HQ zp1?f9{WT4Q>C%P&NyE-=OI>El8EKk)xBA;AnBT0B-_pWmgRN(m94-RZaMroTR+n_{$D%2ZGro4 zuy9)9C1pngXeuf?f}0|-(Fyg=Sr#QM-><|>&+N+!n=&VZ3obLQXTA{cIadssRAdj_ zu4kFbr;bN?CM-h8#^Q6@^C6aBs~d3&@RBIv9b6vGvTnGA?tZ?5*V{gXvvJd(AH!H^ z!ogc+Um_)irvoqR?22jyXF8rwGP;I97Bx1#+4da*J{yI|fH$Zgr!(3xi0)7CJmL)v zcNikdskdv_O>y~4{b|9jxvOXWBFK^SX8qivIh zk~?P<_eQq8kOtnv@2l3|!;5b0PLv7Df96}9lg?S?62k24IP6hPL}!2)W4hqGVvbXb zS>e7})zW(O(zRTbN<;%=b^xcQ8NT4U3e`qP>Om|G;VUrYk7s&0Up1SAO(?VgQ49mJ z&MxMnuhAJkeF>|-<){X$VQbtBcqxE@=KS@eIB#Yvz@^|6wZ1~b%qmT5(beH{k-u(} zdp6Yq>9K1*rW4n5U~#`_6DX1?%0m$wb>sjB{d8Ef2MzsGvc z?kfuvvuo4#O7MPA^uYCXE$Cm7Q{K^q%`Pul;*XBD>ysC!=DuY@%6L4*y`6@w(E)@pF)5ye( zm`T*k&C0|~Swa~0yJ_NJYNlx9Wamu$pRWH6b0%i{Z_Cxr-kF$%?Yp<4lbNZNiHn01 zF$*&>KR+y!xRtGonG-RSxUG?k+5Zee%p_@MWnt;^KRsm4>@8d@i8)xm*QHF%q~dDq z;`#G?ZYet>3o}?I)&D+dDi~XvnYa)$X;_(l2mfcP@4=m2oXm{uU_CM~y2h*NWquPh zPi*WHq_u4yZ%AyHSD#g5mJ5LfL!uK01_Kc9K^7EehOP2@kRhxn17eE*3cLP!=zPjv z_B)uG@CfTjgFH$*M$aIc37VSi<&cXNNw7pK1w&SM*`@1GJGda}y%Tg!_6XNlrz{)!@28)! z|1vuzq5-DZs)^&EQwf`-cdE-Hyhjv%UZlhCM}&aPdB5%)XfHkr5{CIX0P3Kn>;oyal|gEIg+AvUX%aIPL% zMJxWvupie&%TxXMNPAeVZzQ7~jI{a^G_E-ipqdTYK}4rv-ajv&00 zzE4z?8m>yl>J#A(z1=KvB;K!HGNJ>3tDzb!luu zrWZHf0{z#}h$mzK2i_Q4mPL4JX&13)O?i028Ld92vIl?{l2aCN!8(=J8D=7?B-aBi zxQ|r~FPM}%5$l>B_~1l4!i9X^PHq#$qLnEgNQ(h+*e1^gumt3ijQpr8WsItpX%Dk| zc=5wEY4^yUul*!irLTP^v;o4G!OueY60@deNk8+PjKW^ zM0Tb)&Ur%eAP;a=J7pc+d?3B+u3zp0RgT!j>2G~XL&nzRxvP%tAc2**OD?$``oj^d zHB$*stkcgwR=tXX&NDkYVjOCUZmJC|wU7(S&u|Y`KmdOj;g;Dwmipv46)QH<%kw|1(ZBPc2YiQZ)uT}9cstFr)ZDQ-CVi_~dd)Ceytc>*|7l1n;mjEw;z!JJQyLgDHQea^OZtVEf%z}v`)&4 zwaP~kl1Ez0g3Y<}nTQ?EG#r(E-G3^6|C23&8CJokT2Gx$sG%;k3zsaRA>?t2{daLk z267O9O*7q8RyaX!q0i^-U#GclvTi=siCEymr~3Sweuhe7y)CnBP#qmNEsx%TDSAUl zdw`!gZ$^@%qy-2_{~DclLv_{*(kj8x5;u!LcERu2z`M(2o&LIE)=~w_RT`ns#zqCX zHMj~aUX-$!PY#F@R&&k1#8yt8H#Zr2eu)nu9uOpv6j03W=+HsuVyYliV1>v1)diCT z!L?+y#GbnAtg=4-cK`&SK>--+Y)hPGiZ>Jet5kU2{ocmq4uI76KtxXq6H8Gm(B(LK z4<+3<#oXWGwNxpi6`Q4Yi!QAMG1S|iM^ixKe6YB~3ZXU2j>I2-U1hM?vg24-D3$(8 zt-$2OEkxe-!!6~wupAW4z%88MI8A)kRSAO!9#@?}91w4r;k8BR7Ee8JQ*vFPo7}jn z2oUU~2hY-XCyey@_E+3b=`&RA5ytzm~w!Es;kbv(eia##^S>?zz zB*csRx;7LLl}Q^)kZav1B?7zy2beom1`1A?fdt6&i4sf4?(!{S$YEZBNgH4@5VxbWKGzMeLS-1X#S zH3NM!>=AEkJah;I>dInh@npZ8k-HA~7(Wo} z2K76%LjzUL3bBYw_EUdBc>~(%+v!95ToAl?NyW=)#~Pl!X0Y36(Y8!L(MYMMxxTe~ z5z%iUk2rQie?TrvdkYd^FDwL^W_n?wAGDBGRUqdL+cmq5zO))yOe6qW)fJ)q6=zGd z4w#k?=*4X$qUTIB+NmJmKtLn_tX{8rkFnb05lAo(aM4Fq3l;Q6&u#4d7)HuzrQLMj z{(k_^Krp{zoWjRPZfeRijS&)62}qz>MRi_aj*cBUr|TleBjve{F} zKSmWL7K;s3mM-(s^)gKW$a@f{{AQYES;=RX(#t&48SiS0h;Z9hfAV!`3)jv3yC37} zluRZoY(Z(a#nqPAfX8R)I>6~PVO{0*0Dy0AWYf?zr|@XerDy&jHeYQ$(T%m7~e z^d$XY$(;6s*(K$f{MApEUG9hAMdalb>#EB_MPb+#7fYXJFd0jdz~?;cJR1;4mIJ^r zTmYB-*7@`h*~wBRGD~+1Uoo)^gRPE+)efCTfeKfR<;IvM-fgKY_37DgkuIw;OU_hf zt|)LiC72$gPP3}gris@z&5=(%x=uyq)Zt6GJk2=u8Y7p5E{jn<8l&a*YT*~4c?K~* z+{LSwm!OA}4kLMwrpBh>EQ>FDi_GL4Z(GC|4@X^B!;n~46gh~sAGoctCY&bAO0lzC zmC91vT0J|W@a}`5L0d$bXLolOa|b30f^o7Zq&#=mR~mw)#tDCim7D`R3mN1X>Oss+ zMNN~oWB8oI5|Jk4=3I&~b`sab7mz=53YLMYlK14jE-Q#p6m;QEHmz0#4`VzWdE3VQ z!M%ITmuu?B@ciPguI$U@aFk`G%)>b)ViBDt@)_lsj1w`D&j9GD!!YVNa#LH*#8rvR zW15JG+J-`q*xQ4-w$!SCBO2%U`~pCx*>76iG$7)B5VN+-Q&oY8`VsStx}v6z`-4;E zs*EqM?#x=rI9m2?z*mk(zPpklr)}f9R=VD}H2~~fe16G(tbASK({ntXxUOXwc+={( zrBiRK$87^3zP`da&Yf6jNMV~`uF_WWVx7kNgy3y?!CxeyW+3wdOMTBd3LqLI8N~oV zVv29hXq3hhky=^%; zrmC{1lzBEJoqWCbP}OOsqM$6(bLIhJ4T09c1N7;Iih}QMPNM=He+Vwime0zgD(?huM(7G%%&X|_a_5QnWw=8S^PWyR7j7C}fvf)06ihJ7$TOp> zbqzW%5F>SrJU-Lf<|}cvr4VVFbr?W|%uAU;Kq9o+;NgbWK!+0mEUSAt(%RTpQCYY= zM^ONf{a$}~&!?>(jsQ5%=;k_^;WQ`XJ$9DQ>$2DhcGo*x? z@I6hVl@(kf`W{4(Xz1fJ=XSO_qPhYgZG|<`AxGcKFu3Pe570P=X>vdLHe6La2Y2iM zgu~H74l#vuG$K_haw-ZL27G!nAn)#P)iI5;jw9z8vP`ErQHLssNR)n6Y330ZtgG29 z$XuU;DnuyHlcje(oI_b?p3!C_`#riI0N-3|=BX_7Oiju-@ur0;tr0O&o{@U0N{Gh8 zQRf+Lja>`C&2v1R0O+#F>)|so&uqyS<(b`Ghk<9MAsPJZE-$heMX-ZS`b^{R=A!ab^Jj?4ry6%!*CGK)raqQ%91VFoOIx)^s<}pE* zl@I}FpV(E6;_mO@z12}LFC+>Pb<9Np^KxYYW~h>5;|mO5P>5!1mZLxv&e61BS+yUm zxP|K-irhDKc=y3YF}qaf$Y%*qSe|aV&a!AfBzE|Vk4CWynSc8RWq~#5I6~C5jdnc% zId(j+s4~r*+inw-aL(P{*ah%T{|k1F$iSfoKutq+Nks8@gsOHO0B$N{_uRI{n|mjM z{Xxfx$`bwL`$<1O8PaffH(C`45hBWr%tIPiReCtexvXSw8xKdjyW4Had+mE7;;S9J zgB&o=$2c#r&X?w7$8+Wopis~5V$Pe{T%@Hj`~r%UZO zUnKlEbGKHemE%drk#BEw+aN?$CFc@g&9g*80|;kcWLe>&M$s7gtRPTT%=4L20yi~8 zbXlbzDD#$XCp=abkf>8i)FG-n7ILA=b#4CHw3?U{^bT|TV*E`BG z4FSul7tUNoMG?Y9N^xE_h7p(jfWtBNBNc_^g8<_5p7P9p^A%KO|0=JCM92alGEosB zOG|7&_a5GxLg=$QC4w)=I{+G@&KHhV03a(+6qIF%QO8kEosn2n7F^dl&(e=D+sZt= zCjcQxKkBlalY6Gjlihb&jC*$5ma0lal>I(FJp*unRt3DHwqaEnNB!}Aa?WQ0+maco zD-D5`MV?VS}KbabsaN1?R%MK%(Hr7q!Zx1 z6+=ytqw8ul5vW++K+dToQb(rQ^mWE|rxUPkq|RxL?&%OeezKoaRT;yt%OY#wm{IGg zD3E1ea>VKQUUU9baGT=@dSG zN~Df|`$lheN`z^~v{;yecU0t(-BzzQ%1pz=j&+=%n&hP+K!Po+oUwJ< zW9JM_!MUVz0w7U7d`jzB6kJv2vZ$)4u0X_^QVorfswzEdiaL?$>WYa2Hh- z@3zQ1xarvdxvUz(XCe>K7^Uk;1b~iHT3HkH#)ud%SDIBCxo5Rk0KD1I)mHP& zYTokkQB~dj9m)bB>M-cCkoQ!UV1@|1rxHlAp+?#g%rvi@Wf0M-kfv16Jg!Wn=2eOU znb$m{O~WST%{*^6@D9r=$CHecr77GtRM!yEY0_~@60pouo|6ebmeuNPN#UGlh*5_n zQGZ!xDOWmP0OnaGrdpyXRCJsWMW-_v8lyQ0BO@G>yK1Cx>e>B_e(CbU%|btXl+(%G z-Vzbzxflx@MW+d(SXV2X0tyA0RCTszB4Wn6>S#}cu4`JJfpVdO$%ns zv#x=&jJF%wwptab7!yUhj<*|X8>s53lT%M79wT60beym(06~?@LfcC7i~w2!Eh|J& zz zsQrL-qg?3`Cgb zxPP_NX1qu`kyg0?5JC!9#)}_LIGhlpoJ+Yn%{o1%TJO~^g|t&=OcX?|vZ+MG?8X`M zB3+-b_&BEQe!S5oSFeafB&hDbEuo`cgY43P27=>W8Grw9-q-I*z)o6a^w? zSU}oSdq;P5g_|p6o~K2RCmqHMbTZFRS*F7nPbV%4SV0+psG5??Bx%>Xc)Ow7Eq?eI zfA#m|GY^2sG7OY?Dhi9Dnpc4@3!O}<~jLW1&AODB9jnyl1`ZAO;CBwF*L%K}kFOj!;yL{ycFf;KI+ z4dz9TC)vM}2$cmylAd%~d6*b5CJ<-ghjm_9qMAHM2$cM!fSJ9gt8Kh$HDh<0sOybZ zr<*H;sK=AcGeoH$IYjD)IM43pnl>%g#Qn#o7doEun`_-RmVtQlwm2M35Cgz;q^@an zQv=|630)W8f4sO0a*l7Vb=QjVcdDTuu&g`!w40t7np!g&kYhpCRY`NcS^NWVSb?qMRwJsH)VUm|UVssC8+EmFwjWaukHJ~c7+r*}XBU%C<2R(HO z8rd3Mpl#PPK-&%Kii=#kUJpk-0B5oXA;fndKL@09P7UWQ!N9pZXbk}vM@wkPIrg5* zTs5P4)iu!l9e{Ydfxr>r{fBru;dDxc51&z8YhBX#nb#-v;m7y%p3L+A6D9hO`r`q} zFmPSF@4l5yMZ-+L{{cX1Mv0MJdmzEK~%SikwMS z@|>#@M0z^O(-T*fh_#&<;RMp;Nc?x-YLU}8>*-`f6io}(U~a>;4IXYCfI}z8qsC}d zqtK?6O%?0hhqDVFMtV75oMP7#6JKBJSGTdw-D&1wkmna(*3=5RER=b^xx%(Js+5LF zyB_mQXTP6>!RECmr0`}Ty=^YJp?x7=?Qp$|Z3Ra>u6WwZsiUSL?{r!8c>0qb5+X2T zS#jng6i}pKBdSRYXqP!hMb1|{%(EPiJkPY)JAl7Z8x#y#&aniGZ z2HvB{XmVjL;Y-L{pk$E9;ogq%}A$B~R@WikO# zxNQNrmtGG?>$0FrJt>h?3U*YLWZb?8R3L&y^wc3ncYOsw+ZvhYd8KL5{XyrMZ?2Jf zJ)U%&`0azVB~2>;98Q>Lcu!@iO=V?6S|g1M4U^6@0ZG1`XAse2C#R0vhRTw?*LlJ5 zgmtB+)~Zm`8mPukPi|je(_jss*-xfKexD&s;$9;#j0l06M%!AO5_yJY(XLN{Y8b_| z{7kgQRF5A=U4v^IjZx1Mc*IDZ#*RMZ+wA_>uCAHyarSjbi+NvW|J?qCiz5N2(~V zL60Y$X0A$pxHG{D)D+1LjbyK9U%KxbiJA@b`I8|po(eM zu1_Gs4yy@w*MP3aCw32a$b9U2cYhmy@&qc=P12AodZHXw%S{4FhAmgMMEEhDj?(DhEMg60)~zU*ZUlz9!oKz0&R z-QOP7y7K(`8NNa6@{;oU<$|?>4k)wHw0wkERR9&2GLe0jMJ=+=oY< z=J@hThm&>JQkF^X)iaxD!qV+|Q4@}rg|5M;I;nFB?O8*m`B_n(11-VW9i3(kE4MAy z6*21P&SL;jQF(dgs??hu0C{|NZyx0SiuwuPkExlhDwB9oMPp2LIXhU(O3Rw~Y$Cqe z>9QgU8;lN-=0zR5aiyrPpYiS!0LnAkY-nBO)Y0QJKe5%ytS`_L=j)~&_6#$!?TG!MBK?FK8Z)-?>*akX6aQAn*ZT;aCpZ9#V#npy~ zLB;l%97DJ>}LPX>}$!br`1v2sw=#IJX{TW-yad)i`0iT}f_8Mhj zeO`Fp=T|j=(B^JRWay>%4dU4KteToh3~N|lQB}sS$25bw*93=b>@{XpI1j&Qj;x%{9E&msB9IrX((k zR4K`mE}6zzmX)rr5X2ux{oy@TCGEC4OmaNIxpQSmsmySDjm*<9;d!sq49ry5^vzqT zGFk%fI{r0KYJ(6#q{C>3;}TK0Dp3@e=Oo5w(tfncjrNHwrm|2X z5Mt^4&6WK24{o=mvLx4OjB+^oKV|^jZbQo|XZ03{fz(DI{ebRsMov5)a~}6i8lphI1Gv?gs69`sQuCZE21?&E!4pwpwHW;9T64VUsJ9 z8%m#NJk6TwZtj?B9lO=S>1JprKSJvmm}7(0T-5nE~) z0ZPDHhJi05R#erR7j5mVgQ%7}Wm<<5(48-s*G@f&I9~pqg$n7t}mj0PfXOQAVy;10HS%RrfW~O8k>ohFa2RYec}m;R zrd6XdPrWIdX$fu#bnHcyuXg(Oetu}wQ}JogmpuTA(M^F5gM?u2LdGdg)rgU|8<=?E ztazfL#BL*XMnU}Rq(6S(H}|ovxEuAuBLHe@iozeBI7U>ZwJhm0XZt*JPWv83p_|6M zC03QY9j;pX;iKE1VtX6fOdV%28ed>-0#aoxEl!;-Yht5^f!c=hj9yRvs)DL@Qn$J+H=*9bxT z!Srcz>WophdVWd*s*;#7&fes~uLo46dgop{9Y*=e%&9xp+ zSXSO{;-@D+&r}rg*a6_%YspwVsb`E+e0sT*e*kb*UYx;Y$PkESS?TqVnt3lB14f$_ z1(;IvAu0Z0hXS4Tv1Hp2R=Aw25?M|~4(||!4##*p(dk5?0-zxp;^OT_9Tb!GIA zzUyHSX__fSZ7L$tX~xZtZm;On>;900!Kc1>m%$M~9pdAY`?GJPsc2rP8+85bqjZ{O z7%0!VZ9t^+k^)|ylZY&pFaP1KkjGr*XLT98d^wYO+$eoS64Qq z0M>$P0@^jmG-F+LnyhV=ng(~*>untx59b_tectQ)Px$n#$5VprKlyt8?j~*uH;X<# zbK4Lg`$Ljktt-E|r?%1iE3m_{1A(_&@*ZoTJj2~h{Q7o&y9ur5pd7V)TI&Dw$bbAm zL1r@v-QYInO%*k>rf+hJDUN#EcLiLQPGX*Lmivtv=jfx8c0d!;#8@ zvP@qOYmn8mMb?Glk1qi9)W@H`UH;;p6#lfh!-yEAEW%Y8Yfte$e;SIv`7MCr_G*2* z3yohl8`6!NV*c@@KYXAf*CMBNMHH!X0GfM#dZD(7_d7n0^8GuiD-cr<$yf?LWW7b5i z2RC{@M(PGG3aYE{-NSfSQq(F$%;!FkX@y0IaZ&&ex9h_;w3&F~RkP!g{qf1J48Qnh z*=8IydzsvaJ#4n*q074}JnX_IU+(HG{}zDzu+M-0=-yl{*JWs2EPX6?rE~h>k)kL& z?Rp+J0Ms*>w5i57m401SyUP9MM}&oreRisXX0)6Y!f)@^+lGQ;TY%D%s?LJFH=h;&1q-!rrFzGN#*Qqd4`xOx!X#ki}6kiH!l7`)+z-6IPFp9zKmtPrBq@aF`*?ug)e^e2&sS1{ALM191OB?D zVNRGf_v(oPFwMFwyxW2u*5z|wzX^2Cg)xnh3lHZg%TN}ytQsRBs&jl+--8KfjUzrI zHygRLET2iL^ZWv0(g;~rIyV|zgw82RvfM335lu=kQ#KVjRCx|G%og6{=~*9@&Jz1| zmxqc0xJjrRR8&p)YAW1yS$_U@d|N}I@mp(Z7800$^R zod*iH?21<@KaBwVr$ZXB79#)tL;c(gzqp@n+}f0lf0O;~Z>g>=h|0%DF!Qm``fVsF z6cnzC+v_1qc7rT4D52|$H6ZhR-^iwc zzzq}jhs!_(u4~$DQprTs&FW{Vemtc%)thSo@nOfOiTZK5&O=FgC;1OA@E%tiJiX$2 zw|sN8wjMyJd96rtK#_M^J%{YLNa4o2eBN@XC}wWiGyw89Rq?W9e|Q9-Z*J-Nwfg?J zY_Hdvrkgx(TdfM&)d1Y%L7raZ^-%q;1g>M5OfZS@(!f3jK&QdwUOnrkcHz#Z=J0L{ zqsFa$2e2*=a*o>aB1}&`Czr{6CKXQeSk?=Rmc~w8&dQ(6AXEX|MNtkSm_k|vA)rs0 zEwW6j0+&V($C^3G9EfOK@p909pfiO-WuZlmal$<3hs7oTdvLS&oKJPemLzYPD> z7%|Uh&dog7m$BrFk4C{IlVV3nlcqM>2!NXS{VdDVB1<)rH5z84s=`^npf)RES#=Hm z{oY5>t}~^)etkFJ=CJw|15vV5Ea&Kd^B&hbI`;9ayO)2yUAE*0-Trn0kpH+JesMoM zK&(BA_zsdgNAGXss zvGiD1C5j~jhz0v^?&$9a$}@RkXP0b?kb|JZ;((B+p|v5aZ{`(3=(^fZg)ff0oLxqcp$%glX1IgZ&Zr*P1!{@O=1J zf8KrVNU{5EsDFP1@c7?dFIyr7FCbB6Qe#5|U`Pff_{hT=bc&|!pQoBc;bx-8b8{JET=a*h)@c@Gthf_1ft zU7rOcUx-F7ofE0v=5EtttqAU@kh>?oI%6R}}i8hbG zdURmrvhI*nELI#l<9byk?|HX{b2y%mXGA2+%J*AREnZdt`44-2JyP4?@kPITyWG|J z(|~O&p0Zx+r`Z0#?;roiZviYjqKN8Aw!ay(53l%Qz;<}EJN&#J?|Hr=08js7`|y8$ zjMZKD)`f!P?ixhn*OlM?S@r7=Akuy;|Mrgn2rD`d2l8)U`p#2EF>b zZu?vJ^2-`PXz1~OcyssfU#kzVPGO>ICN+8cITYDCD6wJJqzo|g7g4>WnQ8FGc_`KS7^pxL{_{jIN)!1ldyyn^ zhcT>GiDix5IZ~ac5}ap-+Hg#lgm9PXR(Vc!MZ`AIP*uTfe*q!s)~b@W8}lJ?S+p)= zQ@C*@;4^PHjCkJb&%OoF|Fl)2wx7v4o@4ej;Ppgxng9Or@GrkPedE-jdQ<>+|M$Do zKYugaIk%#Hx0XK~E&fg4Zo99tr+=}jp5)E{@gBgZfBn^TNALgj_0@k~+rRlCesx2` zRKFkR+d>^_o{bNA%yR(s_UGmQ^P5zWGV&Ng%qVh*n2sztH!F!1Ih%EklT|XgC}4tY zi#?YU<2{vy{lx`27|KI=~6Z$YT6GV4d}jb;HpY7 zn*RUdOu$4%4pSi)IhZj{ay)5_RF(EOAt*RQ4It1ObzXS8Nj`d>si}vr8URbneoDh{ zvhSbZc>T+-v-hvvKYR1~a~En9uekoz5kUXTho$Aazddz7X+HeReEy$qG*?Imv8G|eQ>8niD+Jw5Gn#N-T3n1RzE#c zk*D!sQPc^Y9R{CglB96pGTk)DJWUIqdd%~AaG`vTE_Q~Z5I{waBIg*RsY)&cja_zb z%vaU(fVF@6{A2xi8*3ugd}N0s5qU^|-o?3#yzMd^S!1N4NGg*xoYPE!b6hK#By${1 zL!;-JF$sFEftN`AsDM@l#i;4vvJtf$kaa@)qeh{EkN@r0Yfab3dA{OUffU7y^0)#} zqMN^Y`Q5+0n|``f+rIUYNdYXu{rJlSN6!`q_Rhtqf2 zvi;`j|N1@JS`Vk<5JTw!kR(~QS|G6om_T|_ii>JoVYws|O*7}YdUtL|9WR*ebG%Ve z(bQJI2Fi1pXArx#!KJPSq{TdspCsoz0Av{hV(rME!JA7NzIQy%ay;p>81sfT$S{y| zHgyh}U|q z(0PIP>o+&U9g8O|y)sdNA93>^j>|&}p!vI}-~6v{^e?)*c8WsXP{h^wJht`JJS?wO z_1pjDtDpUE?*Yu;-Q4_Ym~Wd{AQl9|+EUD1`_ni6{T@wS{&0%r7630w-Kcp+M94hV zRdP7Y@Q#S|JmihHEmf5qj`H|K)5d0rxVu|q*}0?EmRxO?5w{Iul&-fi@my83X+gx! zefdWm(vI4od9}7!Bo^oMh%d)fdoonz+n9p8H~WJV5EERw}$kxh|OLqJPF zLjWcH0XCrjr-cAX3qf0{p#cKa5GZwv6pLMC4VhUPnGtWelh5vEcCKfP!#03B&eSf8)U*F95#( zPv5#9^sl#VH>TrX?6R7g-*Wli6!ojB`pNNj+kX6^z5h?%0@(e0H1$}0S2XX~CzKop z@|hU;!dfC(mwdd~rUJlTWSUg`rhR^7geO+39xPi3Z8u?Eur>bu2X*f@ceir813+z0 z!*VLCe@)j>lAtV^I5cex^$7uKqQXkO1uwfLNQl^+b~aoUO7@9=>I3y7LeP9DNT77a zXmvD8X{vLiNbT$gLxgpu{_na<5Cn{CS_bLQ6DyX<7-71K=;1t))aM3(Ph)FM*7D$! z7IqNK&Sx+^wtsaz|75@U*%?6lMZQ`00J^`~@sHa-`@KK^GJE{hKY#UK{q#Sm|7M^6 z!ToB}*FVSr-2M63{LXgwvv#;yy8`CnlpoeEBOX1N;e#3_0thUWBr?wkLS-IOYnWke z$gTP-#?K6hVX=I*U6ci3pr`E zI=2dm_3fD6{)PPMfA(+wZ2Nz{G2y%X8~;!EU;X$0QTsb-p15Wm0C3Zf+s*nf8=h7^ zr}1~*tiKw@yVRa~VWNHvx0`vz0N9CC1@1dYfT>{AU)4%tA|`fa{Y^6u3Hm_;xzP3D za-m@e(`5ELSnEGN=#`}HhPP{fI7Q>_vP5E~A41=g_mT1lP?1ZPQV3kP;dBnu9GN;A z`6Q)=(+B{X=P*ucKB5^YGSAYq;vA(3lH^K{rm767ICRHFdvA_i_sMMp2-8GN{E%XVN#@x;{ULpkJ-spE z&Qw7AMfUXg?~$Etna+|#?Mkpfny`m67dyPERt7+;qBfBdjeF15NZKoF-_901*0t`kty%mt?p!rYPWCm?kO;#mQl< zc+W{9iA9!1;n_6nSB<*+>z7wZYIbH8032|R{-tz3c0q`IRL7BrTKTjirVps#`*ae!s=ufV=zBQC(;ap4Khkj5caOgTdUZ}`pa+Wa&0jh3LSE#xn zW8##dC?baxpv6m+`Y{Y6Bv=K1!Z66Aqqd`KZWI%el&w|u5b5}~C@9aR>%zG<)<)OP zY4#rlbeW0zo&DQB=7?7k)&Xvwzr*HL=Ycqjo6uY zMR#kaRet+F|JwZci;z;-ud;Ips{%k$^Dx^gn;!mz{_DT~6Z8AwhuOo|-%M9_NPgT>8c4$S^{n z$z_Fl5x_M7T#_kf;@{y*GtGJ1ag6v zBtq!iK?TRoAq1Wr#)%B8dPXa^UhVu;8GWxZwP?f7VBR&=b!9-f#eBDY=1)_ zgxo|G(d^6=0GPpJo=_FBW(k4RH_(N+9bFqB5rk_%NB|RV-<{m6SQ0r+HR8lxJ#<1T_z_5z%|`k{5!Tc*X##(hGIXIzG_a;i{?yXaMWf_&F)OC0|vh#X?K}iwb(=^K>s-iBDVW2#h5GYMm)DTh%`wgFJ7&g5lkC0)$ z$;~VwrS?e*K3}O_%dz#(#fUm7`&KI#>3q{FDFT1Ayt> z4gvKS#ucD|P^QAfPI&Z+0*7~ZK4kzrF^s`D!8s%ejb76tg(BQVNdookZ99`D==w0t zT;$?hcslSrN3P-3i1Dg@2oinKoTD_Q*+0sPab}h zl$)Wj!oh0uM0#KHYuS%`l zD3~nIrR&895}{!XZO6C!kXv*H01`{K0uY{#^5I@)$5lbQEs4mb@yF9*^2YJ5Xwu|j zI2G-J`##JwrRg=*GG4yKMl<1QW^GHsL~Lm>@Vg>(;uiE;nL1TTRY^$`+1#3_22f(n zDv#K65U2w?k>n|DH#9ECBcAmL6hw6Du5uJLqX;585Kl2~O}Sl%JVTc5{`LFr_urb{ zm7~A>pqw@|?%_5$0G{RPpTGU=U$x!8%b$L-z3hS{LK9_2e)m(q`ucMC_M2a3$@>FT{kq@GD~>sbf~zK3J3j%WDne>_aWYlzKcz`%CQ1`33Z3y& zo-vc!K;jyeIL*;cT=9Fgiu7J)7wQ^7G#>(pN%_(+Mw%u}v%TKxXq|PPHQ5AA*ZFA} zM{bQ$Nn-lIb;S@Z>Iezrh;ig`M3F205gGW`&>3Y*hd|6?79V|p%0lj+^1}{5u$Bap zrIMNcZJ9k~E%G7eVaV~ z(Yk!})lcsMJpRX@3L!gS{ob$s@9)55|Mt7^=GL#XAsKEb_g*W6HE1fO?(KN^627o{9+UkA>m;9 zf6y=bQ~s9#7AIG}#(l=XscF^;>$61`mgfKEd82dOm*zr?88OtM@T%%EhSbwj={`g{ zk;Ki8`caWn|KrbnZnLkS!nUe^w5EXdPoKg%@86dB6 z=2CH$$WKl>S^sSxw~PBi=Zwn{#n0SrI9;VESQ?!9c+?xwO&4FDWY zcy&X=6z(6XEaP$g`c^FSq4p1tl%~-mZkm;OA>POQp*)k>srM!=JU18-)G1KH)-L$SGUWs9ISN8#ZY0tbQtuOauN$6YtSMN_Gbu7*su_X0ggh=sMj(j^P z4*%?L#%iTUMDypjJnaCOUwtq^V3=o@-W6_T!ls~p?r%-~S+)A$U;S?%@BhUc0OJjP z{12<*A#8uq*^eqej;-$ec6a*8y1!#F0FXb)-T(S+{l}klcP43N{{d2FtO)Rv| z2$H%PLh&?t=2At6KC)JPu+VyuiG+T`Bu>F?rbraN&PK7Q@t%(#4-aAzy<^6xZCdQV zriqH2$NaCVrbZZ+{SstGT3R2u2&s}_DtQa9oQuPPXZb1F%|lH?r| zJA5Ga(0E04RSu4{dD0H|?<@@BC`MDmuxD<=Z@$FMDlDb4K$gbpOHGQ~R;DQ~BWtNB zs47+X8c}o+a-N$m98ZdN#7CQmvn-4wG4X1xcB+(T;ZoarKkgF%^U9?AwHe0gw?8q1 zGk^OnUfsaj?O&gLvYXb_ev%~h4B*ZG_+9@yug0C7OPW{YN(2L*k+eu_v3*D{zWkd9 z0MomD`^G?!on`&=hLQx`h)d&s_nps7{cr}wrN2>Z z|M%RYh|$Ku4*uh0H^gTdeS6Dh$t+%>RBRL%GQR%@p|?sI!oTeTK{GzhVA`1 z+&_ZIynoEr830!r5G7|GY8ZKg!J(_fPJ3KWjhD%p|#C z1eiVmNa~rsdlY>TfAHyaTbkaP^95-l%3BX1dcJs1+fCSSq(~xKDv4Y}5`BnyKhqTY z0ZfQ~jUjpwI)~pF@BHQ+x+)YRw_zNw&e&M60|^rPfxM@#$3jnuVP;`53=4wUkqC)k zu_2^9ll>-?X|Njx!o#C3bB)r|Tkba5w6*3YFS1m=`xxpb`_%&g`)W(=01+W_1$Ce1 z+v96GoWt#oPxboGyZOsk<4p=+T5)%miOtAuvP&o)Cw}zvCO!VMH*-ZG@Pwon07(|M-JX+uz!_jI$FLNeb_2oT3-HPD@u6 zZnlyb>SwN7XDKt^*HxlP5O?k74|F>bI|sk3U^A7wy5sB2@btg=w0G?h50D#7St*M9|IE_kW{?8|Nl zr*m}JYFe<7dCCuy&$3|Af4(XEkv={lO=Ozw&wib(Dgf^Fc6eQkJN7A!Tb@=q34%qi zAc5_qc=Gv&762b>>4r#XeK;UVrXRcthU_5eagw&hH1px4*O82&^{Rch9ygJSM25qq zm97`9fb_NB`gKk|@TvA6AEGKjiN05R0xSj5G+o1lt`@#=>dFL@>TX0tk#%hhEfn~m z&@2}@mH9J;emRrKCOTJ_dDhS*&az0K1g=j(bY)J`7=7lP7!D~*63J}z*(XwF=GcV8 z5zg7uX!prf@m#TNDmq{2%_{(EyFrOffBuo&>+vRa1$V#uDtlU+`xAyiQCa}@{#srk@pIi$Wr1QnFu=>xoVa2km)+FpOaw zqaEQAWk6{HHl%@S-s7rJSQb#g%c_@1j3Ib&v*-xKd+{Oidzr3Sz*Sx((*(5oAgDXz6r}IZDgRVs-vBYzk_72{HOH z6p39`(sfeiWLUm_U--Avo3+nPNO-&}Y>{YR$v^)#{o?I(SI)aEq&N07U>ISH-xhA2 zB1nE5`Ku2Au&%~0ZswH*!Hgk2j^?{3sT-6{guAjzVOnfC;7@m005+9`W!P&y06(-M(<8F=I$w zpkd_201F`mH9uRWQA=~J+`2vlp=;v2NEpT#u&68KPx)WQRd&6@I;9v#O?B0fy9n4M ziAoYRt%o)0P2EqurzDY8DOt*G?|=Q?ym=k&w(!DFr|1V}4DGjJUD51tI8&ZUnNv3e zMM@TA@Txy~)`CkAA0o~ey!*W`+D|h8KBc6S^84O?f5bSccrRMXBzC?j$JVW7|#|o)`^J*w|@o+qN2>*w#Dw&Ba{J z-Q3Kdu%G>T)>?ag^{+}!w~W!aTJK7BfgTM8UCZU=hH+og=`vBLLZEGNPR71Pla8+| zD6wWBLHJ42vOVf5;pVNI)!_ylqg!j!@ymplWxt4e6X8JeiCDDc#Fj6-vRR{(hH*AV zfA$NFAjk`4HwW3wX8#>UjY5^#km|UKlm_IkcD85r_;X#Tc_u5nX;}7b%WaH#k-l8Q zE|0#5Q^>e4AzrkontIt3IhKvOc;RZnFy6HdyrHgE4>WT|Qojs6`8?tW+gRzUZjats z%3{hgMgcAGOljm)rgDGWRie@&Zhn0rbfSyq!PvDvzHeeeYY^9gaF$Kr5y8T138b^J86!W%p zPU3EQqy0Oj>6h6|lX<-?@Ol%i#&^%!P2-@k0;n6M!H=3yt$Z(eYw|^RKAs|;hh9(^ z2;(HjUHvxmYgl$B_p8g1$#u7*mU8TD8Q1SRA7lw7Ypml$43q$RqrQX9L1P3xaseg^ zjte$v15x9Q_HwyL?^ZidqtQt82xatu`No6nW%fnXD7KS|`EAxl;_dF+%Kq$)S=8rU z@EtRFEK5D|uBaZef*v4)iA32M$@b^M9OT^qq0XE0GBLBcHO^W1bwt1@q8~X8CojEg z**{Zti2MOQL1HQc;)BfSZ1+@|e9prvX!Y1MagEey{o^mHin)zEF6PHhBGu{6f`}UC zv7nhG$J^|q`*#GJhO|``ixfQDx9cs;pjH-cJDoF9lBqLofVic2zh_I@n>4GsZiGDL zoq`Pole5h;%-=YllKmk931Q5Ez@DS#(%K$MgmODPGA%Mt!{AnO}VcYDO1#*M0cJJ~^y~kj~9so0sQnsI;jVFKO7B_EC`f752DCmt?VCG}8^v9M!sv&lOLlgNDv&EQW?DvO>xv#j> zvV5ZuO=~ep2ShyTxhpqpcX@B6DC#Vg+&({wiM&o#LRS8jF9X7m=h8w|s!hLhp8Zln zz)5?)lgN(^NU(yYX|^b%1EIQPi7t+**ChP}`#~n{^v4m(@;{AD zD2(3av^V@GxD)=SUB!|vCb!9W=D7ah;G-mO1XC1T8-WwJ*Y^b#%cI4AYIeth!PYHj zAE`!e)hjP51AIZe!()n|y_TM1VM7R7zwf-h?e4p~vT>GE7bL+|47U7FH^0P1O{I1- zyv597Fr`9UPnZZnNM$= zsrK!vHbxiTOl`Y7e2>pKfpcE91vOKTjbbtvm9nUUl@}w>?9yx1IM{IdZGIcKH3&hw zK~;!M*^2+C48zRed_{;G`xI}kbJ%k*XMZUBREmX0>RxCz%ipx_=fw*-Ply2-n*u&1 zz~b@SD^4QWK>kbot2F;>Y=@Sqj4^CNLPF<;oau=H14VDg#rr@Dz~AP#+t?fw$c#!J z&DzsDE!r)~kwoN_YN6<2YOnlv>G9hvYW6BGb(!3lnvTSR{bioN;aP2bDNe&oHT$vz z2)DG$_xl9vo@L}p%kJ6J7)y7{2A3g$Nc_yNwCN$|X1hRTGP}^{K$4TZVal) zHm-7r-v{_Rm)NnvK!Qh^mGZ@`d8}<|Y*oK!eak-}0f^v$jy2uEcF^GRiN$1UsTpCxZqD*W0!L_&VzT2$@hVtQn9>Ns6AM z{9@BNki8O=YatzHD2))K0^WH)-LV(DrO*3<|jzYj$#RIe&=WDki21 zNC2tQr}zAM^|d#vB5ng-y~eUd8M{d|@n`5au)MuxWwOyuga;i`_x=41TjQ3;KV^}3 ze}BX9l;4P%W(=0whesU&I2U{x7yK=oPy!`rj5K>_K{u*xuz9MxIJhiO&(@hrtT`tY$x#(UZ zwnQxk`pCJPwIM>`-%^}xvR!{UGdkcDMY$Z=g1$U%!x#R`CC|Xqu7$zCgtnKUd3xU+ z9qio$^=~;7Z;x(u0*xe>c7|)kNODz=imq0xLOE?vO=SFraiNMf(>fQxX+oEJGvu!x zY9E&*Pni(OI`w`iK*#Y&k}z`bh)iZaEc}o`j6ZP3bg>Q zem3i2PU$q2*u*yTqs5YJk?Rx`kB`5fwY+)$e!+hbMaO}2Gs5w4`b8utQF&?Rc>6*p zsUoz$bLBKv^EV8tYtT7VBKSnO_--#(9cFc5;V)Hx5#@rlJ?+}oT$AKC{*Z>fAl$!< z&|JQnH$(#>wRn9mO4b$!L&;edl{1KueoNl=@HP7IxNwA_K7F-UdNzSfOJ@0Xr|-%z zF@d|@-_k)goS9aEWJ`n&_ zsU^tMF1mXcIU6{eGyWC*3%^F#7};t8t+dt+C>GOa2&AOq8|%+1STNP&D%fnYP-s_e zwE6i;rm66B3dwi~1s1Z6I13Abp6;Fb^oi8<<+O?_JSwTV&>7Ic+^)TM&0$otL>)Q~ zoq+*7j@~G9!yhz5RDH!L9);@8Mz!YI2fK6ym(k$LxHt7yM;gdMrGNb1%bUv#aq?Re zD-4?#0ZF}xJVHvifNn=xMH}JH{VU!#n+ zsAkA7I?O{X8M3;E(^AuD>zKc?)cTmedpMLu3)8!~nBI*2x^cXwj9?oDY1Uc6Uxj zfuWhOdlU7VdrM?P;Unic;=tm;^wC=x-9pF(9f7m=fmRt>k>WvD9uDteCW#5uov@e^ zMu8Y8OFH*&K<#KUkFcBpYoV0lO}NJG8VYLGJ`zG2_iB3K$a3?mA&L#F3b!)+j*E>t zb83lzFOBL6Vts=1Q!2iaSm?)V*fH+;Ws*Z2>87|~&wtd8>H!tUxiZB>lyK|*PcUY; z$|ht`E_eRCp#E*1Q6TjXC$i*?^{rSZPhJoKcQL+|U~c~jQKYDCIyz4D6K9N(dOWk> zwXk)Gy`a?>p0%#DRaH)3S7B|anl@g%e613^N}0ReIt%+bzm#`vcboJqUD+A{)=hR!cbZROv#D4*yUA8;RPC)WhEPEkN+2Nfh( zm0xgCGAmJ87aKhFHP+b&-YEOD;23mO+f)Nvxhiv6nJ;`wbL=$G5|2&ahV3(t+J)IO zf3ALh);D|#VOfPIERqHQ|LaM>y3n~>M&#Nuj0iugVwp83ni)CDF?GKC?^~)5F9f_|^Mggf5HPT2NOgBg-lZ$0AEm6QRLHugDsvxqu>{al1 zzaKBn^&EsXs9+22@1{spXjwBHW-a}f1J39T7AVb2f88Nb=jPY?Cm#m?beG`Kx8P(W zcYVq~;Gd4M-0OHFKrOsNX~SdRVr+nOyF4M~_CiInVA9}diV7&Ac|cJ5h@*ESZqt5? zA9Fx(vZU^)<(LM(FGKQHgB{Aw8$|{)`>R^AE7B8!Ill+5lM}^fgDrd1cM`0Vq^JgH zKSU=xbt{Jg@o1n?Wn$qGAcD*3nWM`LCe@(7DasppKQ3BFB(L-+EQFaz!Vgk218vf5 zexS)Qa*payJr*rPhLC+(`(;|<)0E}3b^}d`8lKcv*ke0)<}6|2+C*078`po03l?6K zIUb(S4#-G}4Ue)011B&}AW;ikc9TgAj@sDI2dPBXv3bZlW8iNeJ^@KA!aR17n zNo4NUJ?6h3;6UpBhr+4IsgweS7hd!TYmq<$7m)j;_2HS!qdDRKD2n2y_^ZVf>i+Y) zSy{zmk@PzAVv{(mPVMBnhJ&F!a5Md5{SGPs)A^$xRK79%Vm@&&&$UO&> zr4)5mm>N^E6_?w_)OF@TA5|=l=EIBOz|h$Rg2*vULR?bHn)IJbyTI1vqsH;p_FuPP zMo|xIBW}@$A-*8Dq1K$vPGd*G=RibWAm{H&4$@&ADH8nJrw%dEN$OSrl93AUtAW>+ zQWoDR?j@|(WmM%bq5s&Vxe*VAN5M3>=QKK`Fb_>f(9IM~eAbW5`@(z;i;cu~TzOX7 zCcqNSL^fK1^jn!*c0}0!0njk^?vVBNsVUG9HWdpGInWjH;r$(PTI(sz14oeN7WCV;sAd0UBT3BO`Q*~cvnlb%Ef+?*lFbxWr@Luj!DFC| zeE-g>2`Y7mVvf7wAA%~}Ig*#|v@A(pzf=ZVXX2x+4~PKug|Xe%eaft=g5CDDk6C^m9r?vQb$vaH|RegT7jGIid3j$S4sQ# zWkqk3Xyq?QUom2$Bb@gL3GemNj+KyJW>kU)RAwoq>IPnQ>lZqtm^JRZfA z5)G`zSt^N@%m)MwIY;vjQ*e>v-T*BINNbT=<_Vejh&gvQMTg#1F4-d1iE>~D@5B#Z zx~UlkCvV|P(W`A5%hw|IMq)+*QE|3}nYR!Y9WsBW}beD}I~fN&+nnk6+YhI7XAjeMVz%ll66k#!;Uc z0k1F@HC1c}>va^5d0q#fWjS3>I2x$%yT_YL8-Pv+H~001oc91JN?XWcTnQgDY1;;)=vWX00N#lH%H&{l^aZm-ES_C0rZGKV?2qC@Dg$}P6j;kf6i)@;{S1;)}R3Tva+=6 zcdm;KTj}Jze5SP6--M9fN}&!jcd(2tDM(hxl3m<)x_LH`x6UDCG&5S9ifqsZFTL1K zt_|KIOIu?bNhRG&5L*ii4$~# ztQv(pl=N?o7yq6&&eQ}&429krG=B*}>^CM@C0#Me2Jk>>(c+=xDYSi+sq+-(%TuC% zMF)yf<#PuJCY9E;EUg~DS65_Ytb9$jbVyLTm6ycz^aJ#iEbeuH$tfc{Bu}#$mzC%@o6~`unHy|J?Uz3yxU|{XmzE6S+SmXE$`e zytNfm(Cqe({=1g3u@!!U2297f6BExM1?yUEv~Hb^uqu4I!;*POERV8&{?Eel)dE6h z#V!>?mQ3?oZ#uqmJO+b@B1V7Pvgtt8%I-xqi@Lt~F8C)DJSnNQX1M_{1~O`?!B92y zxan`~bD54*z%~UECJ&2W{H`X<7agK~yX(L0=uuCYI0{X=Um)}5oLpLdyFV3@Np{9v z_d@ss9o1C~*8c_%{-`fb~EIVxujv#bWQpzJ&Ub>Gtdo8sh{td25 z>}gz}^*WzvXEKFq{q;Kpps1hXEAV=5bNk-|lSk;=DIrG>%y083_R^1C_;8`vn~^&Y z^ASym99E+stF$4)e8&=D3eu#jV+uZvXr#({JkOl~)(cn#Jv4Pq`cQoBZ_=9MoS08}b__cn=2Tb}yGdZc|QC0PXSrhWKc;X@C)^fPWqO zbnFJ8^blKQo4-RSv^X9aIqNyA zAj)Jsu7=anGm7xjm8{Vf*`pAyqt*^UJz;G~J~4_H)Lo{+O1=)(NV zGrZ`6w$9&=Qjx)9N|zwBg+9k--8!hMO+yc&yxSnPq9I0P@x~gBDoPD?f3<}E%N$pN z_a}v3!xpXDS8?%Ck~A*3psr$oY;{~xQIve1cQbY2b<2I*qECr}Y5mgr_d1Z$SP}UD zXPU$~7fdhvjRc5qZ9d7ht}4Qr5dSI*u+b-w4yv(;A8D$RZ1wSc z`6Ss~7llru6#pvZUqRj&U}I!#K76QwY;BzyF03onY)j1~)ZKZ!YOT1a)>`N#vhh@0 zZ$r>Y!Cv8z;wT;n`}x$T10rb=8JCYvY}W7apK9*eCq#IFht6Lk*_Frv*-d-Tj=$3o z&+Nr(>Z)NS5dKvpq^SN42(rEbvk&BmrN5FjN-}#sj4RX@0eiMSXd|g}aKEaGIr|j& zQ?SK3#{;*IGmJ5AGrOf*Ic*(>Ez03JubOY1xRK+2+gR1WJ>B%#YZ+tyD(~hI^X^$P zQy@j8NA$2`74_!NsO(!1-%GMt-eM%+dl1r%p%7abFaGm^WATSDK9AV|>qb)cw=;hO z*Y1t6R%(^}BnsS(oK;Hi8CQueh&wqq0$r?Z)C9?g1vu?G+e`j~o^18&H6mlO!^?HH9t{UDoq-m|eH(ZaP` z#?VZbEse~CNO8+lv!9@$VvtX-wrKQU`0L!0M7DRu8P656+wP!I6dbI{P8d<@5f?@ zh9FL@wHaG!5uPiQNERb9-DIEm6#yMx(uI=2b*zysk&N#0E(HJ<*@VhqX+H;3;7-8z z|4y&jXN<|8<~(z_CM8WdrUYQaV3OCl$RU!|k++n5;dsID$&wN1!Yauspx3*@XaQ$U zim?3f;3g2Zm<@dc#}?WpY2RRF9P{QZs_S9K$tJ&Ilj&f4vS4BRlE-jIH9Pu{L_}Y< zzAWQu8jyCTC?S`hte@9aB*p~c*Sw@O6}#f@2^k0t**I4d4((!4idOcaDA=vfFAc3& zsl7QQSXR>1<{HDIEzsTFkm#~zW#uIr8iFM$sJch)I7EpF+cnqnzv~oM8mXEp=etJ_ zh2krICR*{0uhr*wOEPFI7;Km-O;ZseBA<@v%&GyPg)^jGDk@&&xVfAXodVFC@FdE)1L!OFTfNZfU58^{zPEV+RW)cHZ zmsx3nuZSJGW1NxQD|$Z+R7ClVXwh9bDrY1MAv5yP2eYY7h(3zj5Wr#zL~{WKZt@<; zVnJ&SEj{3+XzkQiL862ec2GSQ;GwIAFZIXp@}SJ?GW79B9_!29@my zfkawRAM&NwM%<^QpWr|DeEAd_S`GV0eX0tqeIQO2Zd!t5-`i+z0NcktMNovK1kk1e zAqj#EK`*rTt9r=`0A`ZvYrG(Ba^xf#syc^s@aDnGBIC69wxTBK#4R|HAO9KGDKmj>{fK4ViOg1Qlm zlXc0+ktm_u8%Dl-6Fdb44rv#PZwG%O!M`uu?qFdZ>21KvK^pDIfbaIlf2_zLMTEXgSU$@Jtw| z1!wpaNd5-VxFFK0QN_Bz-v|~gGka-DIa_}*?849rhC&prZ=A52X|Ov&tcU7h%r`4Yfv%a`whHl!xm%6J+7m&EE4U##VO*1x^ZCA?gKln*joh=FvkITJ8op`gYLPDrs+&qXu3$>^m^1*l$h#x?`8 zfe~f8q9C@12p`jvf|reqzIjB0+J*6nhdADTdfHS$S48&rESe>?n-Lk2=|2vvF46_l zMiosT|L#h35<>!$g)j~Unl%>kXKTolyh1qC>R}nx+Gvu8IrGP4nH7^9wBG^UIQd92 zrKKH6am??Ep?L5mvJ|Sh%z1w*c0dHjtySfVTAA8p^uJ)VGp{d{d~3`>5|=_haD6P##6=`}A2~0!S28nRw zJJ(GN$>qO86HTu_o~p=|&>0YvVY@Hfk{5ITX?}_lGTKTKcfV~ zF(f6XPQ5Gca!U(Y?6HhRt+DKY`SxM_b0?gK#~1y4VW{grqX~p9nnaz@jqksmrSm$PhmjCter2SHp_mQM zBnH=CYgU|~;t&=RTcgP>gfH(~+;jvqoBA-1K?A;*Kl)5!)t=tYPOy#(miyT>`eOgb z_~<|EU&He=uh3#3pzV)g9+H$s9~Pgqu%O?dz{o{!A%y4vmc@T!lBNq#=q_P32|IG~ zVxpGP3$b5n0v}L0VIwwJ^ZS00jg>a?(4Djv{ zYcW>I9+?a2!h)(~r#6ltaPHv|D>7>nc`hXJAd{Sv1$eq6+x9MyZV&n!oT=Rv>K!Dc z{;*aoQY`ZJ7BuuvrFdX%NsF=au{*Ldf8$M8zTLlJ11=+B+&P zrzU~ds2og_lemWco2#Q+)ji)4cXVi;c;e2Z0D zcE~-vGLXUWG9^H?ck>iT^mxjjx%LDQqS!yT?SJ%3^X!i-n!-d+(nWB{V%06S#Mk4IDJULQ*|2F>(T^3h1ETxGy{ z^ZJEln~vS5Zdfm#$+8nFU??)2sx)b4h8r26lV#}W+0hp%6~;yZ4L=7;J+0jcq}hq5 zx2gWqGQTg-ezz;pAbY-3{q9h#>~NR4Ksa*RZclhz}plDV7G*n9MQGwF%u)c+ur? zj}BC(C^R%^#XkY}Bu+(5W#;Qbm#T_-EoIUv8puyj!1UMd<%;pJv+yQ zf%Q-6Jec66@oaR+$@t$74_t$2*YhHO9fi4Gq0WE9*z|I~rdUn47VJczj&H)V{@{>+ z*J5Di0kAe%6wk&Yi3xW)=T>8V+%CC3K22F^mM~Q=VF(8fau#rHYjqfSY`inX&mFYx z$f9lHctL)N;2S&+J(8FJ|2*buYXkh3;B}^Z1_-y6EjSvMRe&Wsx#zp3v$hX^fWpw9 zIFS%yDyLf+>nwAT`p^|4q$5ucGYHihm8n#+3EE{%AI}^tD~_Yt_#v5png+yUlf?3) z*8%w&2-RG7vcw_G3@cMCqiBp)hAnRr-^7v46LQkV$+qgC(SG5pCF7Z#LfknL zCXuMhaNMch28j)0Wae=mzi=5#ty zxr$GIj)Cnou=?8iIO>R`M!YD?i_1&P7tclkT|k1Lx$lpF`_0W1F0jDAOTcB;2cm|< zRtD%W1nuAuUqal$Q{P^<{X$5-BeLxb-hzmYYO!MF(Azj!tFrvT=IkfG@;u0KqeDfB zZHq=-UAI#6u)R;D<|?GS+$0jP`*!6G0vK<-=Bt=10cJtnU3FSY3rQPqSV$0b1zZQ7 zn;DasrQi00OS}UbJVHUJ`-OI{GGrHcvgl!=OJ3@oO^%B~l2Sp1e%908LC$!r@w1j4 z9c)s=@S5rueZDe6q8+u_N*Ofr=$1qn$_<8JHYEWRvgh9#pfcd2s|iC#pLSmKJ=@j~ z}b{Uf{vgciYD&e=*FABYzTL3rRJ-( z8H2QmlOZ-07K^?w^Rz};nMBRXaUiZ`M^7rUYID0_zd>eB)CC9urHcxe|N_8rCe|(~99i z3fe&V2SWDVeJfty$Vx>(SHd*w6?D<9*19%?`PK{4TgYYCATI)jJCoi)IY&M3%t>b! zh5w`R*$kHGH7N5eatT5&?oHaEgkBX1@!-;g`{k)S6*In{5187GODOL{L=UYg5;=C&r_(rB!}(0 zwLx|h^CB6^S&60iGgfpSHpf5BpCBP;4FBQ}(7_HRGYdYOxiLK2@F(Zvb$jMao~3(P(|S41$m3rMH3 z+mI1Audmqx(8{DR_xb!Zafg>iQQ@h-3S4d%X!n`)PeJhw7egwyvP-^OjP&ZzM(pr; zM8HveLuxXDHNg|5xYAKs`j}(@pp@e>H@Sj%sg8%{AoMuUi6L#1$+vozenrzOyZH&r z*0ffC*6?}q(*H3y_m!|Cf}LpNz^%?Ch=f4d1ssT*JYW9q%2uT}Vrj2ZP*vhkOU6p5 zPa+>ZS<_qCKyKo9__fT6l)u_epGo23{1h%3!`{BWQjiYY8`xve3Kb8Kuj&hm5{^4M^hTT#x7XJ5T(X&hhNZr3LSyyLa_5EG#Uq z{&9=lw%V>&?#kb$yjp*I!l(>xcJ$QG)_a`XEX~Jd+XpVIFsRl0m{&h~qKlNCOUWVu z>`CY#5p1PmEiLua(!q~6RkGglU9k)>Qxgh$%-KJbelJCD%ohgy?(n;RUxaWw&$aM1 zH@;+>o7A!8d5feGiZehAd`03K2I`&Y(tpnz=MQ^+H~(og2hw(?O|?tI^4}nIDxyC|*KO5aNgjRSd_#7VvFf5ACc5 z-glL0vS61zoe$0%Nzf_H=2v(kb%-KJWJ&sEW_-SWgSslAAxI>O8D%`Uj%~o|;rf)D z{=dmY%s#qHUGusP*P!U!Vk}!F+DN+y`jsh9`j{DI?galXy)o`MZpoOAZ?f@F5zxWS zcVD8v1-=?T1Sgef&exWwridU7D+aD z`r?eCh6jO9Q6_005Cq-p`bY~_@Nv38f&zH--nzSrNT}3A0 z`2_sFJh%CKhCE?vik$Wg0Hf zyBTZ1VsYlDH7p#pc+tHMA&DW^o%}_0l_SU5Tq?_q40;ovP(sS2&nuH#CDHHVQJ2O% zVF_z2AAYY0CRoHU@Xo)^ET=<($LY1iRZrC7 z#~&@BHJ)JSH)6#&V*FeGW>jUI@Z!GmG_p(NN6)?lk;r!>3<-8}_4+$|vFDeiW#pzh zy2k^!V2Qn#FarwN*w7s6iicO1TC}e60h@X9zNt6QrtDp8?^qIKM);LjkA`(Y9KOFM zNJldOAL%ib&I_P{xA2-z1ihmu{B}VJkXWH(r-cBee^`jxvt-0If=6}HoM<;}s{P>x zTkVn8(pJ7sEt5h+6(L_bDWU+Fy7|8~&YnxfB7peqVrg6T6eKRBG0G}Rlz0iJyv1mX zCOu@tbQl}a>KxN=eZd|40Otbrqp_<^S21;1-uvrZegM2`CvwAYZ}L@#n_g>x>G=yE zd^X+4C4<;&gAQ2zAJOL=E9ZkTz~Sh5YLdB0I(;Dwi!aX8P^CVT9ros2has%lY(@CF z*o|#Vu$i%{DTcFTOailclS9ASyX)Vq22#`jptgYc!M6tVW6;|g^L4AxV}P_jf%#A@ z=$UE1S#L}x$q1Fd0DIgk&)Culw`1#)ip|USzgAFXw)pWa0gFwzA<^#XH-Mr;%Z-T* zQj`(jk^R|v<^x_AR8+Fqjh4R1lpQ12)x=XK*sX@Hk>6}DM_nIB`V`t;CU@VDB%tG; zYdDP(LRdBiAd+girkN31#SS{yph|0Sl#}9OYtp9xYDaJGvHSqWe_98*S-lL9?aFLX z>H`^?0f5i%_k1B5bCE<+k)S(*Ar9ue@1K2PBNqu+yqjEJ1$7w)cTwLBtDRJJU?K-_ zFP_$Ngyl9SL~rPZs-eClqas8232&t6Xm%UD;%1r>?b@5$l?klzQdK6a02II=2{t5q@$8o|GqZ%Bt44GA8&~9JWas}@CKE}lO8LY5@NfIFy z3!fhy2@&Gz))KMI%VG{`F~sZ8k?Ws;$b%tdvj|RBnV=&H0X9WItD`{!ZZOhb*PW7~ zU)Q^(d)vXL8k;2l-Cje7}}r9 zi@~GFF=BI@{wrViH+{HW+4>vNi0~gb6FEG%(ydi2OHa`C?l(*S4k^H+e?^`WBa?qk zGh&J_^xZiIl&L6;?}QNf@LRq<1SEJ&2~);C^B{?-{loXKW3$jQCWN?~+Qbl9gm`h5`e4YteS3{CaVCbEdufY9D4h(n*h$+| z7;#8#7H-9b#XOcN{LM2v&f&(=Bb_~9V6kWQyk>&DnojRgH^}RnX`wnbrabw;Q5@3H zQI;s&b_K~#j3=&!T(OTmh%-~AZ2*|zw>Aa`NEoWTo|L5^ElJrQ6qitabqV2Ho^E7UId zeW(!ZO7!{kS#G4Lcf893pXFIQI+V@r2TFo0kW}$*8(M$%tyA+BerVNTu?u|}!?O#WUMz#qq+nujMj^;~GcvlYzK3}C@E}`V& z0Ot=OD~KiNJ)cGrXf*sg%v(xS3Ulp~1Ga~}k9BvD%K?J0UJjJHU%h|woEhQY{)dn0 zc@%VSTAM`~NF+kKv!&9ECf72E>Wbz5TkB5Nw>FCjDJLGU07qTdU0&m@d*2H)^9YM3 zi$hLvNK-28?;B!iSCNOY>#dY1!!q;kG{XKQMEKUYSiI=Lcq;TQn>jXCWGBV#a4p+{ z7Z5wTJ~L{M?(?OYEHt0@(LJ9`A?Jf~Z8@x&670(0p>~u9ljd+RuQ8c4?On{oFG%3;}svSte0)A<3Ny&>`iUvOB1!kcypKMg%a{P-{`{ zwoRW6+0O#Y@5Y7~Rh8|^VDpvL=Z9xa5zLZVwEcZz&`fjBZJM!)Dj17V9g&ox+P#;Q ze&@n!r5f08dFx-2$8auPiUL5M#EEtfsH#-6#RC#nNi8a(NEsL9T;$IHyQbU{GQFid;%V~w#(FCP_&f9%Mq$zL15n89Rf1>3sMGFu&I z+oqt$gS%_kZ$qxtsgs0e$LR`_j5UJh*uN9oU8gGhysLtzXi{+#wpb<3d3|l8-#6~c zBzhN!mN&m&Z_4SguT<|KlT;jAaA__M&+A~HSFjGxUe#+fTPo885I~H!OPF&6F8mT& zG(e?{!E67qXUt3_mKtqW=fDxHtgHmPQSUuax6*w1!|@gmof7l-w8-%Lg2PE$wEJP4 zGVzK&re7Pg*Z1ng0D=pQ?v7&8yyN3*Uk-PI2b(b9CcE27K;c)MT1{IEatmX{qd!`W zjY>G@f-@7|E$Pg(Wk~Rg3lhHx*x+8YJsZCpEBQtD1*qfmJ!xVKf2I@GOnhxZPZi(> z11m>5ayPmdC&Kj`7p-z@=jXxS5FotEx8eZmW@x2N=XI%o)iXk)9lXM&SJaf_oij>E z(Q1V;;ec76e_A((*rKRhmaKP5ybr2cT(8`6tosJ+!}InZV`*rkW)4rW|RW z+S)yH1>cNw8lM#)$K!{bCxHV{#mNw|>9)Cmn<1R4L{%i)Beou=9Qlme>!w5;djBg8 zh%O(WbnMSQ1d5rnRklC5d^CK>dWP3Hvs9LJ4lH~tmyu($V|Ga)svqN4J5-V0h3A>C zf?yFGW-D{BofAUo0fU77gnitdx!JtSKUM!ttwc`(Cg?Q;RDUF$h7gi8Y)T$t)pHpsRrmp8RNbw>$ zgKB5o-9x%;X3D7Kn%J7szXcnx%RgW|d?E!@wbQ6p6OQdTtn0@4KnIiSVl@wEDJP9D z*o(E=FQ+&vn@c#Y*R(Cas=bvhOjXe1#{u~HFI9{riQ z=W-hh7(*ecCntdT2FLWi0$W*a)@NE>Y%3FAW5`66YH;B57;GKIal;L zlOtYnS{`4Kw`zRHG3(`B^=TIM(f{k%>0pA%OlT{C^mB78ptN>ulQByoZ8);tDQTTE6cKc!9|J)7%Z#SGqE{gQX z*>YzrxeD^<0!QKvDmp4RNbTw!x}NbKqg)c&g`#ky0?s+b!{B<`1OjOO>~sZ|ZB4b> zZ`Q|!!a-$?JZ}AdGw?Tj@s%pSJ?wXoRJX@pC{w24ed)Mh;B_^z(-N2?`M?L%m29%d zFa4tPt%l-=`2|R?#vP+TE1xm@%mB#LU2{*Y#2DZlneH2xCbiu*gDU4xX8f#0H}lqz zD7cZiCDUO4qu3JJE6RiV19tNx(Z?vKZb9m;X{mwt?gGMB%*U<_Z8L*naKVN>tW=0& zYJYtskv26o;Dmz0v;^X~FWT{y$*Cr*cn(QeH^j6nK`l6LyY(Ij|2WeUC;`Ytx}BT( zqUDSapNn)vO{)J5w`2OUfppLHf^$j^ei7$PF(PZW)t23XHwm#(4SHQ3(C!5x61g@6 zPZtKOuj|)crgBo*$VC(FZN)QO7y>XLxKUIr!gF8=O%vM1%&R3dnZxsbLaZk8#;w*@ zR|fbTo)OA$uX~%*s**wO*cW-=4hp ztO>58wc#8U><9b&BQ`z9|2~&3{HPX?fJ3XfY)^ho#vw)aW4;I~3;r_YXX%L7UsZa| zwpplq;xHfpVad6Y4L7~ zo4^E*qi%I}YJaZ*l3!hBN4-?Q+>uwozp*D*+pUgxa52Ah$q(9#Cjj|PB-p+SyWa15 zKDu}ZBpL?bgV+LMMDUykpCRtE+%Y|~i{@C_QZgW}p=*2&8GQMO)Zx$~O;l;o;5UWKaba1>oUkAj}#myFz}RQSKx zI>+G5qGoMBv2EKEYhv5BZQBz&nTc)N=EQdL#I`2(m-jtionPnQ+PivT@2XYRt5^4R z`*vsK>Sj`X-P~aWPJ+pt8zx`NL}>e9T~e>Bh$5?Z%<$Us%mt-y;VAS-{P09}gXTlq zQgER)lK+7~-kQ>5KBl&{ypPWld&yg8ZHZ7MW(2Y581sOFnIRlf(N#sQmV4|@Slo2u z^1yhug)dqvq%am@ghK&o55e4YoiiRj25w}Rc>i|!s>q%x0cWbFzv5%&PDFOvkb*8* zz##)-Zfk8~sQ?xowlZ~G+{GYLgBhw*Pn_~AG9tsG0a3x*dQ~XIV7r}E!F=SNuV91! zAJPQu)Rx`EfS*GoviJJEp>Y>|+T;CID?d3OLWZa+J!Fl}28(gs!pSFiUUnGANF9d< zIvUBn6D!0Mp*B|MbHeF}iyyA#@Hu4Tbgp*_Ezc#&=sZ5NHav1-$;OYaYG<9@MB3OJ zaIK1L`3IE{(yC+`qwBFJ#RoPPdt3#hD6P2Pau^Cp~_ z$V(ht!RLQ_CHzy-pq7B_$#`C-N$*Bam%#x%LoVf3!vYf z&?%kt-ZKd}usc-0$a2MujtPwR;H}bv6>cyil8$)b!VPJc zmS;O3&J2J57$e%i3d(Co8Ysf5ga?hHPD6a@n$9o(KPYjtgW2)U3p zq`M9{#AYBcA*RS%_uKsnG||b{aHnh|CfPrHd2ULJO%rjggq!%1yh2OOg|6E36#ixt z&yN4=gA4e>sJd)ZSb_ z?!ikc<<6%pZv@PyY342{tUPz%!l2Z!r}(5allz&v_+5~#Vk?eSaEoRBIT*KdC{9h$ zZ%o|nV8-H6NCA~G@k+n|bpOV1(gnVNvIcq(yYD21&nJAilpH8=p17T``-%WqDwuf5-#9k)7tHR^^J_SGm!B|D zWHL^k+neSg)XUXR36T|J2kyGa_jb>&Cv~gTM9gVK4fTFFcO?I-L<{5&e@#NpF}+*c zEL22locbY!2MQ=3ukP>k@OKcd^&EEr4ZBw#SceTP4((#}=K9|3mZ;0fDWvCmlKVwc zM1$c3IJ^h0{?03X_se@mIUXrHTMU1B;?kS@-FL6Q6ZM0~G4g0!5H!Xqt6)Q8#|qLE zomaHakX?}pb>`T?WW#ruL9DqY0Jz_Ys71xyKZ%TahMc1?VMMx`cfUyzHN}41%`XsP zo@36NikYz@K7{M|<(S(oyNtb{lBM;&S!ei{Gy}v-d&Q&b>=4fcux{{xA5v8nG$-if zl^d`_8a(L`mIX=34B&<$i!{P~1;Q<~>1E^d9r_R0MBzP%$cPQMf&bz+HaWKzB&-cM z7nEL{XkQSqcv~D12lfM3WDwUGe2sE1xI^j|Z(2YM)o3Wiw3a|glykzp5moVe0L5<9 zWsrmQ`dX!`$9aWm3D&pEd#UmwNd^KdDhbx7=adFD`UI?4M+5Pt?(&C&=viIuN6&61 zc;hOIiFT-RvRH}L>2Ab=+n&Kp`C?;41>buZ~$k=itZ2;v(F ztyYqgHYiim4|{l9g#0`7J3$z#3d#)Bh;M`g7BGhE@~4WxK~8Z+@O12X++Y;{?+6Y~@?-r4Y+pi;2YV`1}5H^Wba;sYwQ)fxFd1Hk(u8!oGs^ zq3@Mky&>ES(B%o%g0qr_utW1=;jN&8Dbj@y!r05Sa;*w9xyABxpy9Pct1ws`?7!9a zt?dkDs$8Hs8*rk-{?%Zbve(Xd63>)8F>~#uXBp9n! zT3C_o7Z|BU7X&r1%P7k$Nr2wKY@wE8*KmKR?pIsFu0PQTNTsiZDdvC+u7-Kq+-jqg zG1qBzHL=LxY2^rav7=d&2G*6M7i)W0QYx8vpyLt~sy^ZvEEahQRl~MGQp|U!Zl}+} z28TC8QN+;dz3zdOyFnuYIw9RTXUJ*;!>hpV{axU@i7Dujqf9d1TwBoN=x~jce04A} zlXcf7UzgtLL4_L=l4~*55i(UAe<+{`;!$j=Mr9~g3=O@D(WvLnztS`Xk>CZoF5KF{ z$wWKgO|}?hr)+1MHZB-!OcyU5*XNk*y0xkheKhi8(bIHX6pbzRYz2ST_dx!?eD zEL|AtlJ@&pHYO+a(bF3+c_mxdD*#JWIAd0$dOCY}+wp>f!9H(Uo|w|8YL-+F9S%Zf z#}S9lp0%4ctlue|pJF8V39O^!TC>R;NRnpCIYqTlX#$KfG`!?|fxnEE3E?WE1Ghf}amoSBbc5;$g9>7N!JMughlc z@SuQM#p+7d`qrj(5y)3_UK=pn_+JN!#-B&=9{p4C20%*QCR-v8Dc(FFC(-@CyL_+1 zMXE{fOp~t&!cqbVEAqfL+Q2&8DW5*eKTSdT*n)5gwu70)Hl6Q<(0ROn5cVy2zTD(% z)6J-qgOgHsAAPJo1XiY8%v(!RI8&eSsSdn{>8HWftHgc1$o)d}=jz-CBkqLt!nxONBuGz(;Lq)mHP@`F zzIw)7D%!6qFbVhd6KunT0>rl15GGqcZ7b8v5DX?8FnZ)6HWmhso(z=K?RYoJK-c;O zhfLd+cUrwq!#syg(F|hrOn>`9vD#i3z}e))Hxxtyp}jc~cMKA3ITBIf47~_9(9;gt zTeu)Y2O8k51m5H!*uK7h>p8 zPMFX-D;#)_;pihq>A|lcn$1H}X0F5rQz>kyj}5X#eFtgdk3tq^Q<_?IkCJMA4zq@EP9rOz-BB*l*k+Aq zDI7~}F$Vyc?A-uYCqp*L=lzHv`(k*~jR{XCg>SlkA(BSy3?)1Y353m+UXT?1+t&kW zYQ@eFCMQIGyG4D9@9w+`b|A2t+QvW%3v691NZZauyS^~v+USH?k9FQ2hp+4NMg_PP zJ&!8|six)0Cs`ll1X;}ygPIhu$$nlCh<-7dHLb$$xj7U#ajbvfxvk^s z()#SXBxAdMPc14yh>0G0fR?r-10+%2mi(TIOT3|?6uO(X>D_PPgf9#H)9_#@F2=#XM}E?+2msNiOWKW)GujZwnlr@Cj7WZ`QNN`jB58&>@fN zff$7(GAYXOB91b|A!p3G3z9Dx$_E(vpb#*170Az`i2uc7Lk<)#s{FWD7<>(<;M)#c ze2QR;P9om7RGsl4 z9FBq{Vf{ZXY`^9%_r0oVC+uvs23Ds_FW)mSA9w=@k5U7m0Cu7s+Fk{Sv(PkUtZYo1 z)NwoH2ns2@`xHHiJcM|bs6>)ygM z|C)XYkw1D59kXDF;~IhBKAtcp{JMudhkL4f&p1R{xi+wuk$*7oOWSt**mwU--G3eA zeP5`})wdV;P}1y;0n9HMN@68hXp%3L)d6Dpx}{iYJbLhp`ghsW78 ztzSn9Urz$*{_jucNM9elpNuI1Z$_^Rx$=zXuje3wuK}}^!$Uw>xjd~dF4wD{Lx`V5 zpALO5v`+Ftm~m!gNRqD~WP%>trEFJy;{`UqaeZ}u^PE=wSh^3YV(sfBEQMQb5n8r+31}ls@k?WWZraV_58Z6!{p_%GL!-2MP|t1 zPEIun;{pM4h7b`Pg0O(5M#TE97S~Ug&y}yeuV)8=kJ>NlrrwON>wl%Y0iOn+6YB!< zCKatNPxb`J9Ci5!mSFn`xKDcA2wT>{e`JGH3wQa0x?t}0MJ3N40FSRp)k+vs$V0?6 zkH%^;{Tk+P?&9*DZNs@0632^_1{p@H4RGA*c6FTg6jBA*WMIwrc|y)+f)^X{C=>3=BX;a%}TEOuqKX=GU|xekzWZ==F!-l_j`{ zkpjuPpquWm_?-#Cx2L0UGkx9$S-q>s59ZT*tm)Jv1BDdZ%t&DWN*8&izmGcyXt*Vu2mRHa}fn({yaSDy()(G&MWV#)NVhz=0;8 zf3ohr)sNh-)z6WDyO{+6yBwd-@bA`3_@mPgo5B{t!!8Zroy!s)uewtg8yD@QLW z>S=hlKNr*pi=8b6U~`huY#0TX2n&Y7QRC`YFH+!BZH&mAR}@hr(+>%Nr;)oIoI$PBMpw34<0Y+eN+_E7Ndvlkav1-FY;=6Dd_ zkng!puRFZN17%a=!p&q2FSuRUM7tv>T7zs6SHYX#mFzSaXC9^=-Gs+PsAg;xbxS9;S|o&L=&Yj$X7zi^RxElK7_M9$FKwt_$T zse{p}S?bZN+=T9JFkS2Wg#)+VS=@VY9mneX(l>bihHl9DFb9TFSCKc68Fr;P^*2?8 z03zc)qv<;BR9FNI9`X)R01#UzY)$31ng=G^XPu#$lThRLvn2P&*V>KO&u(7&e=|M0 z4uy6`FEe+(z=D(G6_wXJr%xWR9lyMPpmGv1XIP~{=D3K5VKYTnq>K8(SFy2kN1fMkD$^XCl`DwwLW-+T?pA> z##qjpNrkv(Dq|R(B_rYxc7NDzK?ZgMf`ht3(IfSuIh{qE!Q{;Q zy~BkKzu)IRTbJ#EDia2)txi{0>_Tp7{FnNKEWk*_-zZz?e2s#E5{D#H0?1K^kmF+* z(nL_wjwoyyr2Yi*??@fOMdX|wKCMmkKB3d!r>x)sdaPu2Z=#|15)zunkfSH{7xcCf z{kGjd;tCUkNUv>=Q6wxfe7vNMhYn#Mi5&OC+%*)QS2_lZ%}C`~OOf0O@fZVk(}tj^ zwz@1Wg*5*wV$$B5g|9XJ&+l{Ee(6J@78}jCPtYl_(AM(s$FtzK`GY8~sfaGgQkX`o z9Mlio>m<~-ql%AQ0NcHBpn1!&GFjUohlBT{`E7mDmF2?eCRE4kEXBwn*86Escup$+ z?G>lInaK6xfKY9s>NjrEgKD3j2M`D>v%btn9qzmmY1L{qA_65V((a%ExOIX8&i*FQ zZ_1LTU*4~@dQjt6fs(;4!rcjMrTlcxd8 zLoO6ic<`neGy#=Oxq`-s)NRjEsbVSJY3W#C@L%v^B*4D+_uY2Osl_^f*kNa#f0otJ zq{r&TeXE?rmj6;R_dZr8KOF)+vuUB0jIaXa@NR`Xx)gh~F#Gm+w7H^Uf5G(SzY~k= zU>DbxF7kpE-}u-pJ{#Zl$vzQw$+*CqSFryR4Lw;Vb>4Fm(pk7?l%jIG|2#Mf-D z2T7hl3j(K0MBr?y<6p6EG8${J$4Q=Wi7)M4`%5?t38~6eRYZr%cXr`o_2(GM?{rURje%*k(>}Wr(fE4E)}fj zei@`hLu+g-=VMcl?&k2ou&4ANVHSNNSr!A%?uTTirP#WnBPh|(lZcTEek z%dca9XLxQ=8Dk;Dbn=sE9~$zrX|hqo2E9a9NH};M6Qu;Fa(+QOSJ!avNbwlajztbh z&4*LQe~&aRiRYVX(c%Y>tr#1}3r$$Z&Cv60*;U;Bq7{jY^o zXVg@c&?!KX*a%~aJ;szPypampayl+fLqmF+_>8ZO342;IjeTwbWl3}iV#M2gv3?E2 z8M54H)o(hP&cZV?dIFQf^~aRXgO=;|`&jQCeK|)Bz62`K~X z1tEV3qRt&5LsNR%K5RDdiqOK(`JRRqtzC{f`J&<7MrQ+GI@skr@J;6>sO)NC1^%_J;-0Uj6R8TT$OFoI zl+WBRyCC52Ma?v(c9i6;eEHt0?Gea7FI1q4DwNV~Ptrh1nG!kY_7gcnbxyH-6`Bfq zx!O}n?t<~)%7FO;J{wDKk*A%}shx>M@PG~f*CQ-zcGx3ZlhZYWgI8S1%Cpp&F2R> z#i5>cNwuB7g}?Eq|71yNb>-Dmk|+zQFW3=C1aY#S-JLelQ0n-6@@O8TCL*Gvb{ocT z#Jt?_*9lVlDo@b(KWRge(4iw79DnXdp@U z~3xiv{5F^iPD4NdyLfsm9Sc!x@tG-gZp!ziU z>^c#)rs$nxEa&_rM~xO1$3sQt(UD)CdG+yFZ&}_mUqWovRLjoP9?z^C)}+vfJGt_vA=5qPLj?T zRd^tf%dE7uH8YSF>!Inr+a@{Y${u$KRC&}U+*HM{(0Dqb0k%881X^OG(D0Bab&9L` zpHld%CY^6r*qE6Iy6cc^MK$qah#8|OFNl-FivIz-DsABH;w}wl0DIiUz4ZG;0e8dw zwxBflDfI6`ic3~i0qp?G)S?(g@+v;tSZT1G6G4qa{Ptryek7m|j@`5?Gl4t>HP-n$ zWHM$Pj74dG=X`WR+0;+(d!TD*MTw^@5(^8^g=8wVSl}|n`khqIBW9+58p|p>4(|y) zAT#wYpS*vfzKi|rtPm@uO6BZ0QPrzD1tcUswv|?d{9Fce>EvhEdU*4IqKe7j;s>pV z*@D65He#<~(Qm%Ycqe(IgV!$tTQ3$~a&D!W`A z_JLyZO}hE05ouVXQw)v0NzBHi2}gsCueHJ$sxefo>B4fq?0xiVDrW{G`Sd~(xZ0)r zak+o`IHrD*-BNl*#H+?1-?QmwVvF+?sre<+yYci4(Gcr5tw#_Qk>bevJO9||1mHH; z=Z%})u#OQVnUtxlLUahxf5-}l&qF!9ScuxCg zgM6Yi!RHJTKm@wUERz>PZL>kHHV9fKu19JE&ij;Ypfh2u@10tR;~r*%qpX4cz5{MLbg0XL+oZ#V*#FPmw*nASRKBp%F~K zw+{1?6R=!!a$TEte2W{AH zJA*P;aPLk|tlXzVq`iG5nLv3mv}ICMQi&{c9D+Vmh91;819-kzD)`GVNb%fo9{n{d zi~X36!c~Vxqo_=zi1aqcYHV7^o)w5fdV*vs6bwG)aZv?vPpTnZj$cfPWnvF#8=&*NbBM3f!XFbW%e<@%Q7qsOxMr6z?Doi(l)W z{ooESlL9gUj#h1S8H#^QW*f^tGkAHb*MjqMH%9K{pm!6OM*V#vpo13YWiyfEHh-e_ zyIm1#%peN)#(ZP}LfAtEY6u5f<4CLwwOI@x-di*06-nZ5@k;UnTDX?;A!~Lpv z)OGLwDqMuowqQF1kyC_=mCA9!4&5Cs`Tn-1P`+|ce2)42p=LC@7;lZ$zILzx*gB9_ zENI$M?(}V#7>b|wsdTWAdvTGmB#Y~Oiv~}Cd#4HE3SAgwma#~JPfwU52$h!ch3G0( zI_yr1`ql|~Ioy*7pEqH`kCk-4O7Uj&+orsNKodw3ynxfKYW|^Eh|8I47_!T)#MK-z zoyW3e%@D|&hyto6hlx6D-}BO;Y-{*^E$Yg;zy^L!Tt7Vh5si8peu{0tGi|(F1lZ}% zW=N#&aeITh)q1WOopqXL($c4=$X1_QHGpiL=!G8?O2+%Ry8@f^^2J2Mi~h)!0uz5- zS=R31pk88%{i}I5|4ttu2fMI06gJdmwGOsyJL=CDtQXqjj<1vY(pd|Rs69&FC>E#) zdGq5GoPmrvxB4sHbPemxDj^9dNxYbaM*$oqdao@1r10ZZuqd`s=yLS(#&Q<`t zS^-E@VOC^UI(0BK<`DA;enYV#Cm%(D&)g>SC%-(s9k7Fv0;AgTyR%Fq^5M2u?wLVn zM{hIyXk?oz;PmjC<%^XxI%<*T>Pbi-$A|8@NL6)Pys%wm$*p@UnhVhNStDd8<@70W zOt8^wE}0Rx!2Zl67s|wSIGChqwd9{PVRUc#t+u@^V!PqG#RRtA%zaZRO@X!w zA_(2|eLqH=jxLBetX~d)q=E#-Me<*tZU;Q)-#efjIR94Jo41*W_K zO0yyQ`>47}a#Mj9u;({h5^90~$5UTJXjp~~UD|0h{Cn>b6!Dz=@*N0HJ?b|TeDs8fxN2_TD6SySfo zKX=$NdFk!6Qm2}878s7M{(;M_U;y-{y>kfq^x&%328l@TsTRC>-xaLEJP#}+$|v`q z{eFkrEM$oTeD&(>-`i(V%Q(>g5a7y=0hv3L%Q%=U=_w0u*hakd>T7DS5fY|Q6;Rwk zI`b|Rd}H!%O3@=uTCvh0E3&UE$MAjAi%e6Wu&KiNXiUV*O+lgJ`OZ%^7u%`D;iXE0 zK+pZ=?1E2$gmA9J$|Pl>8Ky$vc^;0wC!0)j84vyvF|J(aKl2{yY*!mH(C1lajN_ed z7tX!B7YFnI4SL51Ll!j8K3oZvf7lzsg0#=-vv3}Y^~QCckooDt%r3Km|9w`FyeE3a z0GVYwJ;xDkGS|=s11O%u_MvkyQe{Ifn!jc?VT55NZXm8!VTLV>k|vnM%%FjstZiHd z*r$R`jt(_(swE$dWpugfB{tH;&a<7iq$|_QO$*vL zBsFNl^xaB`ZY9eYV!7OQ>RX3Pvt09~jfjzwhpAO*lP^h+)vdD^EutjmBTt7kA6D1h z?Naw{fOORv$dLQ9G*z#athe=0pYaI0OO0p^odH_;nwz%c3=b_ESo2-t4h@1Y_$_bs z+O8_guC6wh(ejw^)x6tGiiz7+o%<~yT6Sh9M9((kowG#EFmxElC(Xu{RQPeXitQT< zt(u)@RO&djJM50E_V-1-d0-=)cF53IuA+ZsIT>n<^O|?UYf-R^9Vi`AW}ogrNBYD( zYIZYfw~44xE*(~?RHI!vHl9vRR)>b&A}bn!vH-m)c2DTFX8+d&9L3tNY_$e2Q`+#F zfvKk8Tzmur#z+7-b*^f)B3w&2pagAAWJIHF!!Z7iZmATtlUH1T88QD2SL-KD)V-%p zd=Rcyf{QqBsM%YlKvQjz8U-3@_lBLQAvKa+_!(j|xhW>l75T^N$z{ znfWs*Me1VZs#6cVRO%-Z7-*PtsP&eNenLc?KDp3yfUC~bZYTL92m}3AyW&QSqZ6Ru zL~^^t{=Qihqwz^7ELN-r9tv$*%LVO6trmkYOKG4Txn$1vPu4P~i64-*cG_zxSxLUX zN{h@d>t45^H~)YIuxcGORgH?N$>OXEWIs9kL)+VFyKv?dgwxNgyDX9o3n45tX5O=R z-?^l)>RkuQ(7hq;j^T(>KeeHI_nxIJDFqvBC6M+6%zk~~8BFJ-xaZ%2lWwx8g3OuZ z)krDw^@^%>*u*2k=)D_5%w#=!|0N{2MO1-&5X@SmLkS$Q9W>;2>oD8oP%iNrW}0KO zn*Pibb>%)i7ds9DPKwOGff{qqcxQYQN2(;sbwXtI$9sl4gwgjUk8vh7)uB4&3v(z{ zN=3`9u|6CH-kzErgi_$5EU|zrc3Nr=mPLG+BYlDsOSV+Pj{a1v!gWMv9Zu&RHQ12v zt=pCpD74-=zzOVO^v@5ZkG9v$t7isPLDBt)Eje;@*~gN%W4AIz=|{A1;`Gf351Yo8 zzK*#He@#&mz2ZW+$hLzr7b;NMu`HZPHgd@oHy4z7Ct`EH8)%FO#m0pS;*#L^!&k9R z&>J?ONQIdaKn^XvLxCZ~gLr&)UANxeUD5sJK1!R&u$}A!MD(xiPwusDa9;z2ewHf{ zEMyUgiX>EHQ5)J#C;}imy_!t1)5+Jr%q(SJBzG@}z&Ig;X^HH(5+(XOPT3(m8N45T zp0rwoRp{A}Gj*mb4|X5BN`T7`{hj4KrB+1Zf-+0F^XVO!m>wihvI3*NM3U|-cCIoakefGlf(o+* zNgkhA(T}wK*?&fo9_#;zZ(&v4)<@BiBR9C8KJVl;y&d`-&+Q$9Ct~v0n_23LV@qKw z?!8ibO3tSyW8kBYYAu zF3a4H%L+OL@+C9NJT1C)k8aM;xh{HO;N!Z9pJ=pwfBs?Q!Z za*XJ9qaS+1+F`?-UUxdc-AHt-k1tyNyR0 zbqgYOk7y1nBu2wKR1TSP-t*J~RWV`<(E_Iw{q6}R$P6qNg6^;@i`6%9B~+rln!qxV zM=GWf^m`3PRegxK?FfuKTI-1usc-)&?ZbU)^$S|>x@9Lt*JOt5^r7h3O9J7>G$1Zt z@=kQp+W@&RM?7`kcC-5H4N4Ae5*j{|!2)UZXbmjntzzQLojAlVHzut>@QH*iT#Ia3 zKVeD38vo{B$sM%XYa7nDvOyDiUy%YyTX*TBysZ0awYoykgC$!FstAoc*3|I)1kTTe z4zDCL`BwF*P6;(ALOXNw1_oR9F$)%W@TvoPqss3q?bu}A#S5|&Su7sJ}3fGav^ zaRiCtwRYw{#9&`3TFipWK^Vy_Q{ZC|;G&J^g?=Nq%Htl99M7}#Jc?wF%?tFPbXPIa z_$`c$oB;J`u0hG{F$ycMmFMTqlL5%A-*=g|Hk&IL&Dq47+|`I0!u}cyGf8Ry>GIbs zV>CLP^%4Pe9kyR=hnZSXSzO`g_W^8=hARYYmT@8jG=pxI(+ z_tZz>!O)zSwW$>(PnGgm`-b!bUWyIG^=Y>Rlq%E*{Q7?uV0t#m0z3%}N42Iaelf^H z+`gaS2ww1zv~kcR&rtdK4>tl5rs>>7oXa>N zbskq@Ko$7sM3x17_3NnLWr?!Md2@mEO_l%Qjmx1^msHRYzc&%Vq;s}f>q-bS2!hso}Y{9TWFJgc$U85 zf-YqESt%DyXl+d!maJPtf%hrdkkAEzl_88dGkfV`ArcOS?T`o>a_1tGp^RPn^OE3r zw0h7F)%-k?+7?KFi!HRr6Nc{XK5ZDkoEC9L9sMqjaa&N1i7KkLDK{h?99RBDoqQG) z*70q|bbY8a!$t~uR&Z{80y)))3nCycJ+>xaDmB9j&~5>u^a5lKXmxyA8=r3BqlPk0<)pan1d7lG8S*__p32gF!Raj#-^ciNv^7T2y zUcWq&FpY=r-karaW|#mCE}6VaCfyFecMu!ganT$BVHQ@UProEMFA3BCdfEmV_1ZhH z2=HAodpMy4XL_0_O9W$G7t_@Uu39XxrpmtFRkrJ}N5tuzavi3QoT@h$j&a>Nm=P>R z2t4`qHqd_3QcjCgg9aKq*RmivrW?wCJ&&7hj!kST8^qkcRnKgjcH&G)`qE`>^K*s` z9&#LSQCttd2@%n6o>%4C*1DHbI$@rBk?NBP=cqrkF?fASm)ZiUK& z-LtT95!8s<@CD7DbXGzh`EUHMayjb54DQum8Q2KMhUN8XnGIeW0&xV<{ij!x6~$?#J<+^P&F`;Sph&3GJm2 z2)0{;e(jo${Fv|d7KLBtWAmiVXcuYZ4xxVVf2MoO!IZEJsKIvcaA?~i`Nhz%b>dvo ziZw3w`HUDWjS!7aa!NeUJa-P!+WGG3p=@*en*t$HgsCoFSrsEG%Bjd|(QRn~9ud)X zS)4=@Qsj<2;C=0Lzm_=e>y?o^zR4W6pD*fgsM*rSm)onn(*sPr8urSd4qXR9PyOp< zUF_&D>9gs5&AIrt03ac%3h(Q)Ql2b8_poP{ElA4&u2i!9WQ*!P?Le4g%g3WzR1$1x zM?2^}NxQs{iL?3YT7vUazfvP~TxA2JiM@JSOniDIU|v~D^r?efuJHZb;Po6iWmsqV z9Knb)leEL$*C5tcwDgaDEfSNRB;c8`*DC7$LyzBq4IaHPMVOS0ynXZDy|jDL^rm3z z%9Wc$oIksXqbJJ^mv|2X?~R)_qcH==NLeHX@a>%LIykuUukrnfrz^I6&{ZqG!#O~^ zR0}a)+~TtXoE**v_$8~r(#*Gzg1fHj7y0W-4Ep(aI`awxqy14WVkWSEw0ORkpYv$j*(KBTAKzzd=34 zVXK9P^=n#>t_jdV$}HaA!eB7wMG}igjp29FbI-7f9^4H#YhA8+I;r9=j7F z>flh|z%SU8Vu>Pn-cGEhTJ~M}^f<=V6isX#(lBiotByM0Ap+&w*Q-ufd~!+>CdVFV=T&>Kupfd9mKIZI7dMoq*IU|eGL7qSc+ zIC}iYz5fAtDXrz!?opL_P*oh_u-(O-z?zv|ClW>#27@MDyi6Z)Jdv)?pvkEOLCm#4 zv~7jG(YjCaCe3U;{k;7(d=v3$xyR`}S5WKQ2bO33!d4g?r-vt+7aS`Gf z5ShGeg>QvRBIV#iKT@IGM^@`giH;q~CEmVy>s5^YvSN_1H+_l{h4Qy6b?hDrGop28Ri}?urhiAh z7}f4+uy22jKMa@tIi_AXd7)uOlEn-|Ic?GE$}1qH15_Y%M?0+we}4pIntf(+m#bDX z2jGfbt*e($n^bnypWz@?kiSL^0swphusN4|nmTYG0xgrrRW zgZTYkal73DFm9&A3jB{fLP5?##JpDl+eypV!&$N%onYB)!ih6SOBh3@uWto)D8RKk zWeOj~dS?Qs_p9PKGUH}M?(Lf!gX%MgTVd7 zaeMh$Fj&h%J+-*Y8|DL$NU=J8W63^^HdJumP)wE{qcu|r@NS3Xok@Lg%A%F35AB+9 z!ggxGc3f5bJ6So6#QI0+x45mWFTW7D79m66XmI^^Y?S^FQY(SIAvZ(9os@TK78iI1 zRRC19su*9iY+^~GJ7i@i=A*(~Dd_KdMK?V&t@o`b`Gp9lBINrX-&-uM^MwQ$wc`CP zd>4e6aI>PtEhoVO(E~jtX5P>PgJRq`XXonaD_?OO?S-rMiclR>xZ}Eg`P9?RfMc4g zkYwF$eOtrqjjPW=`tuY!zZYMYD#==n%gxl8@ug3G;btYotjaB{3C*R1oc$M(Jg26S zg!8Erm`Aw3ra>^>y6|5q=W;UaacA|-$oWP$ynYjZWe4jtZs519D+i~4a)A_#^ z1ablvkm@JGc_aTk#3@S>G5@-{HwzIY1-eJE-YjfcUUyvC3Vh*Kz)!FaFmB`jwbR=c zxbFdrpe0^bb~1pbqM{?XDHa=>RPUN&R>Jc8O3L!exxBC`cQ&}-GShnI3-y_I!;ncs z_QdUemZ^H`e3WOzB7|%zIj21zX8yId5w8F*i6Y*~<=GBV4?MpZpKlAx9 zf`uj=vSs!qQd)F6__EHfs8)EUry6g_PXPbYi`er`}V{K@( zZ_-e5=Z@jt$aWObzxNlZJ9rfK$^VEriGhsg?XDL757uh2NVM$=Y&b+}R- zpxf+`L$yfy?I^hUWjS5!ev^F@uGq5o06iCCu-c8w)=MB4mobJ2*Ma?55Usk0|Fh4f*L;0{CY?%V>dzUTQ=W1B4*6U-+LZ+XnYk)qlT?HSVw9 zb&@94tkR+cUC$HqGJ$xG7m-m)NNJfGsna5g}s-@K0cY_}jUlx2pBhHt#Ur-Xm`CI=7 z0{TBt<^Lj}Sva{^{ucqw@&DiQ@)9!&Te-R@nmLO&*f~1bo7uY(|0HG|oKYGvZ; z;7rWSM9j|*%P4MT>uTmq%qVVatGlksYjO)?z|AjD31P{1NOJ$;&~0RgcR(LBi7AOrgR5WtHJ`%)RQ^{`cpj&qaiWBxmgkz3*bI2Q0MNoHZqCJ=T9P053okPVnR^ZqPIV=2dw1PWtM6X|Bg>~`!lsxPsS-Tdz^JOwuJEoeWjk=Bfr z>h)0L*ifEis8z*(#po%kfn^cP2tBhmvQ)CbwPGN?p}mW+d*X)~nb>|4(eq=riF;YI zO2J(>d1_SJG(Z~+p{8pMA~H}qQM9nbWPN|B+?pgZJ{~#v`)^&RdBgAIJ&JU%k3glU zU9EcXwfYX3J!{e}hcciK`iDf_0Y^su=(yUg?58)*5}2P6$T>*gxgTPG%61CF7)^t6T#y%eUgfUtZ=UPM#!S_#N~LanP#=^#um!xixLyMzVi{bUZK5;nFNZ@ z*cxiXY`ra#>)Gj4o?lr0iviGM2YKR-#}UxBl%{$6Xc-`dgdQ+*@l9i<)q~yD8}`st z>h&GQU-eHOI^4`s#R^jy5gf1YB1IeK9{%dji$`#Aue1 zQ*5G+Qcx_L8(?7ohnQ$w7v63#W3A{NOUJRt^pwP6=*pInECw3-0W*I32#wM6iG2?r ztM1T_T3HHeMa%$zb%`;ZpZMd+==^c`evCm`bN=?(VG47`v3bH z!Z+iaAH#5cG~g7kr0`{!w$(_7VnW6Iiclc5n}%A^Ukt7$#BjyKdAsp;OLyISG)d@b z;sO%}OhASEsT+j~Rgk0(m8FCS_h+lHdIz!4a-iMP*@>|L#q zJU_wEhl^*bIXV-G4GW7>5OecKB;9)=LJM2$`S%==rSeaHqx;IohTr{?+JH;&wJyBh z(Hfr5oWkAJckKs4lkRsN2i_tr_Yi=N0UXMq)>w*t`HWJ+mqcsnuGaM26pakkG3scX z0ahTf-cc(*?%_yu{7$V=!x$_TwbF%cn*n123OP!_-})Q=>Bi@QfAv?`4=6y8VM5Ss zyyh^HR4M7L12s%}&%gsfLIblzkN}jbKqFZB_Ku-335etA6xNI<&ZdxB3i^To2=fY{ zb-U@~##V70VfU`#ApjjmJ}qW9$zlo(D1{tqCkJ3(KJ)YEn9FJnG+S3J70*rErX#z< zbw$XmJ8O-Z%UTh`eY6u#`l)(@Pcj)1(c5*zZxyvDTth&N;DMGEa(c{_%Ot)$Hr+un zOmd|2iV5LfbHt61opDLLyAZTss^&vc3gn2OI-?nIS+FkZ9j&2Ow5DIanLD;!$NoYG z0HA>!urjqUCqW?Z))4b(Spd)-%YssHG;jbyIRLqW?|~Wi!-LJ!A>C|QK&mw&Jql}u zQQsWBV_mQ;scNBi{`Do;oQm5T04`ELv|N57*F8cmN?zzr>6Yw998?`*K|^tP$&?+sf9}T2cV5>6fo? z@qWjrj|`H(eoG0p#%;&8qj%hH0O;Ek59I2e11eXy^j;E+C63Ql6Rrqp{rh*8Vjp*Z zJhkuo^pTS+t}w`T;ku|bx>!s{VEv-rPq-Z6jtjRNi|P5)bBk~%2|bcazyoNiT9j7@)L~J zs-^0_K*D|?ScB+cF?`(haYF^Z~ug!J}BwArM;485S;vBYr(ppJC0qC=+POQ z$C%Je&p}B5=+4`!FCQv}&wYH@Atg==4O#2Sh-%TC^YNU6Yy|O!L5LExkqS%+?zA14hiBq?IOGgB%jn z;mGN@*6dnF#2yAF=f{`Nx-ER}YHbWVPbKMsnIy^q)cnVA_>vH8`RxXGJvW%ch+M%l5>!P>U>o-J^Kw@1W;W*G7 zEAvE&Qo?h?wln6vMoZQek>6_#I8JdGYr-~K@}V7H%3?Z>eb%8rulaN)`dVCgJEo$WX#J93vxO!)HU1&*gDY9@V3@4S+pCr zeNTm2+m(Y^eW}h9IeGIVhnn_Dz3t*}E^ueRyIMiKm9*qFp70;On zJBjlXtkrB~V0mM5P=Jb`spU}2OlKKtMMTk8__Qo%SfG(`yNYCX_=V*Z+K%37HX<#^ z9Y)?h5({`@mK;YPl@amxWUgj~&~+$naD%Rs&@|4kG5~N-w+ci`e&jnwHNmxOZ^aig z=@|lxbfpW&aZ0Eb6oV?!)Lq-2U-6!x9N9G@(1TzIm>@P0y zCo_e-0Hm`hB6@q?7EO-~N4(S%_+vgfMsQkZcMWDN2@7-dvq>k&KHGUw))*;VSoUa- zF}eBsErIA`OOD(fk)F6p;u@3opCvdZRGA|)C+Jm9;mfC64QM{i2AMTUt!dj4wFX>Q zM6}rYS>O@SQxcSO(>?qo=QNpDc4c;l23^;oiHDDLU#6XAn=KE}=$bfA7GQ zSK5b*sh!QLCA;UE_=hBFq!Nf)I3v>$f+Rr@e4vK;TI!f6$u?&7+9*&#fO{EQ<3lgw zH~`x@zEeV1d8C;6GUrGcS%ls(GbA&L2%2$FI0MVOlvkyxBN-9@uO+d2K-+$R#BEJFCvKB)uaIAYK;KQxGWJeCy^Wtz8GX#c7c9M zLbaSG7s63q60OpZ1S0J{AW)Q-K(6O=E;q;(3gr?l&032&pI*mW6J8FuEW?R5 zhs;i~&Bw;Pd@F2!b6QJPEj${cj^k>9f=j$DSQmbKD51f!=(eg9c45!t{{^%-NUaOj zMed9l_fo1kAAPM^9VkwE?>{c4TvA|)LbM_KP|z|GT&=^$CsSoPcux`rux8+C$aDaP z-?qziv3GeWK&>%f1gMy9E2_brTYIrWKi~yf{*yfohKwjl8Rt#qf@Xsut3`2xoy%qb zpmpwtY*97bR<>TJCE>kg6rSd^!dUG!^k_ z>zHH-hS?bf9@-CfhYMW{gYc%#R~Y(!#pD=kPJVz)T9;F4dJ9CCr~$yy$d(-Nx}5Ou zXbDoM%d7*k&nIV1!HABp?HsBA<7=DwBAz!t6e?ndl6_Gv0CZmf;IVUeNM|a*EFsLb zNXZP_&TS8=|B({?gT5-K&VJmrR7UhOuM-^*X459TF*-7$cSar7o3kxr?c7hV`FZLt z0Kk#2TXMAqx5k{91MFQ`%Ye%O=t>_x<5P}+I{qm6ZQ8V25T*3jAS`-RBhgz&;9WR(aI+K-d5u2t(Y*5qZR#{IZN_(dN#Rm0Kw z+}T|d!VRmarG^`1*KE+WSJ|a&RA84VJ!~VOLKLbRNFJR>hkFbOo)=oET_HBKY~;l!sue}qo&0H@Ua76ch#bg zRZHQ~@qG){>O>G2@QP%NUKUbGaOcrp@CJ}EL74svXpxaVtmm8^wdh{cE9yd90h(%& zvE&fykX({o21PBaS=`T~vt2@;qbUk7qhJBx#F<8xq6qi{P=pJ#)Sm42g#Hs`N^qu- z0&z4)b9N~U(#DM-%mTlJbU2?Nu|ot3wG5kFK?!{S>DE8r0F>{0b|&=OOdmJD2bbFM*m(#xPz<2^qEgsH7nL=5Q?1 zig7HH(7NcBC0m?<{jjQjU)pb00M?v)Q*2^r5@Vsj&x|JBp7d6VihrS2B!hw1L6pEqs3M@d+xlC7iHtxAtC&K$k@{c%t z7WQR3(~Rs#>K_><$d>}ZjvjAG6O#CX*S6(6n12oekdn+$ExjX&rEnMYx{QP;Oi&?b zcFm>M8O44PK`M&fPrjzUEdRNJE_WVHy}!_cm#h?zUY>^OA>y|&7n;MYe_4I8@@#f} z{^kEy|9U=u%m8byg<6UT+dJc>dwW4sv+*_@WVyuQ5jbDLA#nMYs&vBkK74!RA;)yN z%-XZ9Q>y?K`dYObTPfdmx+`q}Vi3x+0r16M=J)j668Fot2(w4P)Uf*U#i%sTPkN_c z!uZ$Ao-Hj*AE+@30VGI%tG*7ObKwY7sBqE7>4Ze$`uK>$2~`upF1lj)l9C8a9Nn1I z+|dHv1W|-5uk1{l?16hKiZ&kmOzCr#^% zX|Z9xA!E$NpGHLyd9aI;uO-SNP2yQ32mlJO1aPai9cUfJ{J#39MMgHaXTywCNEoz~ z5x!jb&8cHC!$=Xcd0B^FsKwYUI>jzKJdI~ennKYCs5$3LcYo6lQIP0kz^4MenHjw9 z3Np3+dIu&Mb>(J;NY39@(_*TIKm_jgbeM&S&wysJzL<5fr?3TGUvz27_)PF>UJXL& z4$@bHkz;_^m9;IB%vg~&R$`OwEyhTe%-)o}uLfaywX|>X(y#}G@~Ae6=}Z**Vzj}{ zd#<-iF;`PHkrpOlw$ITy zBW2OUpON~fc;3|FDzE?;6LC$zHVt%Gg>ZC7&p{u?&?`ZzX?ROnWX$Tsfv4A*9!MYv zonOFQ@VGgVSpTvD=r;>1YR@A<`EWL><{wM@y!c`O%GS%HQSc=qf3OY0k?>;F7-+{h2Z>^u zHC7QhP7fK8d9`#Bu7Gp(36boY89CK64IyK0`Q*4l1KF9#N*o2EB2~)R?@PZ0zd$>@ zWDiq38dF3@U##E5?NyPsce+I8wCpj-@G=|X6C(r}1kypti=iUJ)nPWu7UYGq%a;Oz zE;L6MX2h)##&LMFnQJg`TD&W$LuO|G$XNeDUsquLLwpbyUz5HD`S|XN+zNduz80^v zE(74=?&Rsfe6_wB2x~$cS`x<71~?4u2^Uoupq8;;felN-)cxgKE04ybrz^^}I}Fy& zwzm8ZY&BnfH(v%ZG5VYFO$3Hv&K;b)=C}|l-l0NY2%&7WJp))A9!eXaG)#p7glD`F zBRU3b_@Wbh34JyxBi46la838lE5N0V#3cm8QrjOe+ql@>4ziC;4TE@|j3?lgzLF00 z^8uY!@Y+B+3Of z5nhLv5_rJ6LXiDdWwb8a-R2s+?zRU`v$hnb8vtGOfaw6~RTh{fG;)qxEMzD9odC;I zb~uex_^JUJ0{bkqCW|5vS31jqn}*6{1UiU$OOkN1bH?<&yp)&$ct>upw9Wa|jAnlY z|D~t`B^JA|xZ!4zmA?_k3A1mvu%6tw|2Hq^YA0M03NASsfSP&J?sS zUo|7A@-OSk9q| zu)VUc0AR-`CM=LK5Ky$Jebg9e0M@{+5Gn|El|x~vGKwnc-q?l0b|Y7oP31TxL}}nj z0rU!A$j;CVHotb~f`jLZjH~B<8OgBBd@F&wK4)eQ#}i&zgYZt5pegUW(gb!2EL#}~ z<`GmPut24kWXzyB?$FFe4?k=!3k$=vU@F8B#R?5ZKci zs3U=O6tg-hoe2A)3@^2t0M5AQ2WsI(HjzWiU}A(m7?~T3y1g-Eg;7?h%LK~5ZIA`Q zJUGfOI)axJ5lY|%*5i*f4qozpuk0&ju&7JiwLE0Im)+UaZ?^wQwWj*5*N6Aj`Yjc! z-y$&q3q=V-*E9ACtLPaFu^fUEf;E7GAP$6M3<)7!sWe#82y7|AqquDPvvYevnW4l2 zd1rID-ben`hP|$+241|&WO^t9a>8`xK#}N{21r@v%x@zK~RG16z7<2!TJC})z2+Gkh3;^692v7u}h$O#-4grj~DXn3Ju=i-J3|G zW=s^ES3?J+Gh~Jcbf5uc7__u|7kOX2%an~Q{BRDz9I}uN!dl$WJ_w;aQn{ahlYJ#S z!pGP?lmloVL(dKYSiXZDDrgHql`Wb?>!G`t11-WUsKI7A(;FoXhzR{dW(*hgqBJ@o zTwD<;PAKq(0q6PHpMKBiopO@fgSa!^{eW`1G9y(Y9F?L!SRLdGXbcgJY>7V+$Eh; zpbk4iuT#%BQCWDJkPxy-5wYgb8|A_!uuI`F3W~*FneFe_58&$+SYN)-TNw1?75?UG z34faR4E;C}_7wAQ&Zm`2N#q;^ROk~}*I`%)O56e9_`>iLc3}A?YdAh}|6Hsml@~v^ zhUKe{FX4OOg=JIO713o?g7jPi4v= zbV%!TIWwRM8yFpxC3x`-dV_;f$# z=uKMs2MJwZ!XFvyKj`a>d+5pvl&fF4Cg^|@7hqtA_)}6EfSd&~F+65CFiyhR2`r`F9$>G^=iui_gyQzbyB^sO#_HOSU|ao8ROct-~vH zuxyeABX?ThTs6yK$9O@{)35yWn&kt(cF$|Yc60&#g(1;QxtnpZKElBAO5)(ljT`GveO)?^kVbj9v zM1(h~2Nlw#IhB173M8XMd*-#x67@~K;57iMr?@7hzKVC2Pgt_8XH3c;DiMRQnaow- zK>O9{rWa`U`pbHqdKQoJAP71dYauxxHN ziL3y+Acb?$+1c@vWU6P3`eUGj(7W+&a+c#oI$%asQPYXJW_%*=A4M_(otJBX>`Be> z@;Mz05M0L8uGzuki|$``0{x$T_P_u9Z~x){^7rrm&p&#%zxgDO?(S4%Deq5kJv0I0dGI5Z)NIYfk9O3`iLD zB)LcqQOq~a+{*vYGfCz~L$5^+GtAEVJON#i;F>KMoxZe+FPP{0`ALcPGxtwN#;4Oa z6h(cc-+fuyw%6qs{@4H2Kl$(f=KuWn>haG%E&dPffBZ-P#kMW$+V&3tz*oo=kxd|b z_MtAPCJ}&=8n_5-w)xEtX!LPB({!L&ldpIq={jqQh{Fl z!pU2njfi4ARYNV|$WwdhQ0t7|xY> zoz3MLkp9pa1+942no&dxiJdSd^9pC@N|A+tWAKHKBfBx~8 z|M&B6{p0`rKegZJ^V;^K+H)*J91K4LN?lL>(6G$I)#Z3y=aViR+7)MCj9ykQYWN{z`H%m7|M-`-eun;&uL7Q5 z*V|WOXiPlK4$#rpp(x{Zd~L>6*JqP{O}8#iJ~lFlyu&>rm&V{jlqqUK-(q&uac$qVzpR>ju zD3C{%K647w!N$=J!+Z?@sxz0$>}Mn(hIGRnM!mpBU$VZ5f~o-8kxlyeOYYn4``;<{ zo1@-3@6E+ytNYh_|BJf(f?Q$d@C9ClIL)BL4zOk22q$|zA+9nXc*dJALzvGz(es4k zxlvL`LRaZ>?P7vm>jee5~EVhE~5b^OZ_3;;F`x~`=mMY4D`!}wCEl}-a2vX=b&|y36fOVj! zY~t;Dv$49gDn90zN&nU>BB7aLcvB`j(aO)s0#fiOmU}U7KS`K|wBNQ8h}9Z?DMcGM z6I7SMrE9st*?S@uRt+Z=F-D9O)>}d`@Vve1q-jC(@>I zfH8p%3x=eRwkp9ir=jcFJ5I=u-bK)LL(bFjyj(wK-hOt^bun*!{Q|g-@(Wb|_3OlS z7lalmhWW{vMIZevnw4Xr;6BO_tw~Nqbs|ry4Ga3pvT6CM{y_l!hT{vDufJAnz~f6Y zY~_jiRA1pM*^rf?mUx|d!Apq?1{IydJsr~9K+hXquW99`tpo5*yIsdQel=w?8S9@6 zH2$4sGnyjL#qK9>n$wDM&5BV?_#VP>Dr$ZmD6_CFi#J@W_@bSR4G%dYkJ0&skS zFKi!F!T#mk0s(+3`a%fxy8zVh=qvh-AWBy#3i=3yT~MadLGT#C=|tZB6w+(u)F@m5 ziJbU9QJpCj8!IEHNOb=5txN|mr64o67C`<&spaknugERY0e~`CQOgX%T!t8fH33h= zYKrWzQ)T>Npvzj$bj9jkB}Wj&8$z7@(4BD1x~g9TfN81e{^GjXs$hH}7~K(K2)GL1HC zdZQ$<><*XT%qwkI6uy5Yg?1n+bz%f#L4=pYY?CXrp2a$0nPoty$uIbAbSHg5 zj7d!8;6a!Rk{G?dl!!!j$CPWNjPGIT#U27P?wNS*M{B0o5J{xJRD)co1USHqnF(ZM zT4NspvX3>0QJ0i!>jkneS*jUTuO(*LsIjKgE4;8C8X!0-p$7S1&^~y4vT|5`c>UJv zclFiwKdr|{B89MHWm6P~0%vx(RRXYF-i_kPbZ~^&QOH=fi{sI2iQ$M(tvj0%g(o{O zXt%-H%&_#O4DrpZ&Fd$=2j?cHFUE1~wUdRS%&d0mYzKij>ultHL=Sh8j82;PDWTzd zR6-9__A^k>SZZ4Kqt_ImRa^z-uA=2ur8Lrh|FgQ}43w zcNBhHr8+e4iu%qJLmFQS7m-Wp{SYt-_|WjjV72wjI{wb<{Fi6t+76J3N+1 z`eIPAJ(tM%Vya|U-Fu6&ZLAp%FDM_~pceBIOHK9TLaI#76v9Cp9%yc& zaHgQtelbnd}}Tz5u^yYuJ<(8xYEaG4{+JT!qAn+$5Ki~BX-GtAup))xgjcS;)n zJU4Bb+a*RAbVjnHNT7=mBvtcU$xT%r=bkrg&W5?5o*L`0gflJVW3F+y`j-A*Mr*3y zkL00mCHI8V^hPhp(^?iA#kMyp7S01CYEG{i$BZ#LgV2*K0N6G5`pAd-YW-dyRfn~) zW&8^v9jJsXgvXYcBReOZUguXV8~(^x|AAi@U_BNczQ`~uJzqDUav-Aa(+(&!W&$=K zck`mo6|KG&5VkwII2KhQDK)*YBMx(q#ltchfL%O&ss8S77eB*;o3a5=hS&9`Eqd+&1R6EU{~M7%Kx0T{pao zGH`Q$+fmJWr(3SoBI$1P1gCV)uBG(P6@=~G9tXz$o~kx2UcLf|EsuOHUW|e@XVa)P z90eCYMkJmnNoF%E4*<<;bGw`wA!F=lmn821-6x8hwAmyJehio*NB0u<%+dduwAi|? zTOn$sP-mD;sw3PZBsLEemjjKQ5w^Q36DjcG+mgs~PR}{IW^pXkS$vXN-Z32JYmHDB zU2(J#E1V@K#MrThUF@+tY+^`uPh#{8*niS@kisY*XeurqK6V-j5MN-$_Rgcj5K|M) zUxD>&5cz9fClCN9FNt~;=8J@+S2+V1hwjApr67i&Io*lep)o6atn_;Y5nJ6vS)RER z2idv^PtJI>hf*}_+;lIt?#sruv$OyB&Lk*-a zCCCUiAL6_Y8OB=QYh8z~^TXE!?mT)_;n2t5p~nECeD`Sc`KN5&f}S5XrhVNFQ94!R zt@_{xvOu@uw~CmF-}eC=Jx=`K(d{Uz95f=bZ*xbIo(gm+gBzfhN~9~PLW?v_DFU%Er$tqd`(Bu7A6s8VQB@3A#?jL6ygt5=JZXlz+|F?uP7i?^8FJ1M3SSIrG? z&J%sQN}!;@Q+OE%oI_7{?1NX0%4|F5OUUL-=*9m#0HF-W7H4mdYD&sqG$Y(zNYo4n zCeXChINt++Jq_K_`Xmt&r!=?c!L6Z~U}MeHm^TwQ&O-oj$)wEISuxjVa~d7kt#PZo*I!^ZJ%!}r7yrSmkh5K{L%l1D-*x-VJ^ zw~psVm$u#FjF`BgmMoBW;z9^=3JGV3bKQC=#)Zwfb<~&#ro!00_Hxh#(Vbi4cBt6t zCt}7K*g76NHw&nFp43bSz{g&Xj_!FLYbf+M<1cYR(z1Q};9RefFyxhuobxOuXq*5r z>?cSZ&3^xw5>45xi`L4c$GN%u{(Rf@2&JkPmOMlDk}ZwX$TZG~2~NTVoCyNp61vW_ zUE}H9xi`dG)HpKqQf_sLWE-cHxeql8qR3w-te*$u=sfG`5+p-0nyIXz zH{-AyGa2#>j9TJAj&w+4f7ZE0^0n-CApPr#l#AON3^ezKKF%M!Y~~3$Ju5Hs!!fp? zP3_S*JehfJY5bsf%tel~pEdVh&l7RJZ!9JLRxP^c5%YW=d7w!g7R0e{;+65uktI9> zf-}o-jFZggJax>aB>4m%XTk7tniXC^4r|RbCq2$Y?kVQDzm|CdDFf6kHILzI9%od{ z29rF`9=Q$(UMrzyurh?l6^!COPr@)<(eLhgVE;! z?m^_3A&%`+oOXA->=A#ewsfmnE4t!Pr*qa!Uf^U-U*cr;jJ|znSH$E zWalaC98q(u8tj03o@H6tDw<%b!krNHnKT95Om**etDqh827w0-&;7vz%A8a8`7l3qTnXp;GkQu5f> z?Z^{z=V92x7^u_)%9rCuU%GSs=T)1{2Fi#!HwTdCUZpiF0f4z3af0uNcrr?zC#wdy zsN>+kqWdC=&x4OG`jeJK%J6%sh{1Bf&yXUo{m9ejW;N{G&Gbhje*LgJYI^J>tn>T= z158D6Zqk`gHG4q{np<-UaCt~^4!0{$v2hq#D~iFLv2Aalp>b&9nUspfvt4IIb&Ukx z#1jibCkWcI3+E>@RLY^YJi`(|YcG8<)5i_Bb(+TtK*zzY#EG?9mz3x8avrf6TUVUe z+Q;!ZudzttJ+t$WoAVT|OMlWK`L(xvDs^RsTt~|z4<|IbfVA`SQIr&N0^kM%ddpL^ z&#F96Tt9(qfCULhd(S<0$2>`(yd0i=HYs|O)8YqO;rf3}W6*Fk2CpBdS^_V}TQ3#s zqCy^>+m7SNS_6H1aNF_aQ;z$5bYjzSt{;9dO}LaQ#F>+|M9efBH>Xb$MV5+xZg}hC z$=6rE@rKB7HP2ke5T1*-6{VneZ995L2TH-RvKGYo=SXy#n|qOi7#xS%U(d`+>P)$> z*0fRMo}Xs{f(ja^OPv8(wtU_s><5tt&Cd~5p2_JrnmrxgALBlvf^=h=Zj!jh{v0nB8~+-rUe#QTuNN!|cz#j>#Y^~8D9 ziu)}N#3iZY0KnS~>k{VsZIW`T@9yK7RmMCx9l%nw)Qo~>Uk2Iw?pCM9WT?Z zhGng(%EyRvXOCJQ>kI?VgGWy>T!k83ZSM-^%q(IXbw_KgRlog>?u-5M zh|QUt5^BM1#dFIrsAj|}i4ojQ%R`>R0M1Ozq{nAde!8Xh58e8Ss&Qlirmz9DCV;i7 zWz>e=A=l%9Cu5Q(ciUQj=kN?s`7Y9RgYl%ci+%+@*fJ@1K4&pebfv8E4IV)8rZ=#qJ%( z(8#o+0QQz#!xV-F;>sC0T7E5QivDSy3+pE}B}JJIW(0k0tx-wFV=vY3uT$HCDWxevo~=^?~oXWW#@<0Iv7L}%s# zrjXwJp>&l*Ui1D@Wv^|=aYRx_F(TvG;*?GF$B2GOK!m`I`S}&m#7Y_$%yZyMK?D^K z!@v{>hXf!dL|D9Nzyz*SEpTCPM}Rn;0>%;R`4A(zqcvTk5xCI1M&oG)DO*x&FxJj> z!BPom+vmCM6Z@l(_Z!S`G#!V!6AdxDmywSMzV13xfOoK$kG=SkDH3K3pAe{~HJWK%U`Bww z3$E_y8;=9G6~M?6#i<4*Wfq+4Y;igO$JB=C$Tf=U^Asp!E&Oy3H;czp`^hM;Kx6&%6#JG$gSU)xz#jO#>c{+;$lG`4a$aySj7R(+QeKx0hF--w>5o#Oh+dx`22x&VJ-UQD*!#Wpie-u z6%<4FoH99oPc2DC`P@t9H3MV?0IR7rJst=L&>G@!FaYa>?q~5FoR_fMu<}ll3LHfaaTJbS$3^;w#HJfiZvZM zKY!AF#eU%X6W-+=$C1V`Y+VqQ$DxR1yvYT5mBi_Lak^h>FrK}mcPuMEf8c2P{$T66 ztqLFxs5Kp)mSF+}4ioP>DYAgP2+aB#gr|oOqGjc>=<(3^M&eTQuHp`nb^y-yhg^ zk~rE_0^V-=bO*_8*Y_thqb1L=(~$J!kJA~H03b;)hvj`fxhy&2v9u}$xg^YMEji7l z`r{dYXg^@IkGu9m`@v<;=1n>(92J1>Y7Mal#vQ>)N5C6xqh(zf4c?)iO(oG?Z8-T_ z6ugER%@k{$mj&yR0~pc@2(TY|ZZPV;VyO(SwgcU&s~ql6az@CtM03+@jGX)aU8G`#5|8CAWH;XFxQ@m%^cndYdN>uqmfb+8D(&O zEsl|%PaKCrA4Tj3jAtUNJG$6A9#3?~x};6xh+#E=WBd{BZQInHH?kHT$TSi_xh}~u zNGwGWPVYOc!0Z&WoV8|*IcoFdvQhx}w#}JHG8j^|#&uIuS6sp5VH?<^)S%afMsnOfi)v`WUjAQh|{y zzVCQ${J5hO?0f12E%Aa;&rPI1o?I$E?&uwlr~01nU03w3eP=0L7xa!M7Mn&jui>$j z)2{Q=M+AuqucMKH?w->zw`DUFV%zxrIXz8|7>VXNUylZio@z88bBWhDcxCkrSt% z;Ur5@YwDe)2vB#fg{5dexKxsw9wpM6B-hoye(hg7fb!)}xUSlF7;~B1WIMic@3#H(G)4DL61c27`^;-^NYy9}YZPm92jy4aHJ_!rrE9h;&?(LtOI(^9m0?AVcQhyXU%(E8iE1$mkC`O2ME0rhoac=Z@B~ zZKr<*;7ymbg|;!f2P0sS9{l!A&+)_KKv=MS*Kv`f}%0=8K&bGzv`pLJi%On)`f9IffOT^J1k zGyi*uZ9_2vyuEGG7D72UtGuYyU`HHs9W&gqi6}x^x;Upm6FEU#sDxQ&PFwrQ`B{%= z5s@^GQG11hTMi{^)822sVQ!&6$3R=^)`PXll6lZt!&ar#( zB_H82%3K!hFRW-Hh~DvdCLG5Fg~rty_am{N@k}Bob|3a;FuA%issT)*geagOId+#0 zknOLllIw;w)s;mhL8I>^w;y;xHa72J|ZpG|J&Xb zWVsE(Pzh|DnfA4(>Lq&rBTOc-0jY~G1lXCbyC|!%Lp&gX^z|hig-|Gh;L#Y#KcZ^t z#O1!*dO}*S+Va&9?D)1NhzqTW*VWH?>GRo1Sg4cQif4l`69?=B$4r5%DvOx!>B|96 zIr;p3?{zA011Dc%WgC&1wN~DDrOh_}k#%rv+@cdFJnUv*%|-T|eUB57D6b2rwZWl7 z9}jzREEGen9Eq8TLR$If558?wML#~|<4!7C8r!7OyiTRU6apg~Ymp{AM{X)N;*Jo3 zji3o9Vj)Bvkz5x7S5%4~*>n$g;7Me$UrEq01Awsuyg1E<9MZbAN7*&|A&XfEcrfl6eEBDt09 z#>gq@mbg@k(a_xtv^Yks)yALFJT;@$8IOulRW&!(vDJL*IB{hCk4#54+yr;EE{qiQ ziM^I~_zP{MYn|`}m)Nq47vwh76P|gL!b-mTq&)t1p_u|2mWpNe)oJOwV?mv0r%Dbco>hlW?K)aj{Us1mckl!C|joxTr_6=SJNo%Ek_kONK) zHw83+OqtP!$4UTqz}@5+yPnzGTRowO@x@#nn)ggRy){L$fq4%Ho)>ae4$x<`*8W0m zm{^!k^W)h;ORyH~rHb2q^mo?#*V{e#4m2D}8mp+)$vFXk*dH50$xU{X+$6~~XFv6$ zR;~9{@K&m#m0ErG;Bf!cKy`O#wm7B~f|=;3YNOVO6R72^u}Rqdc4X*^bXI>zvHI{Y z>jhfr&$-8;gsmx!Y9%Z~{aCf?XbBGE+Mb6)h;rH9?tPw-=R zIfAu-U*yZGKk^Ax5(5?j6VQq7Qq(~kQ-`hhF-47dqiB-O;?IfDgDz)Nt{A2#_X|`c z5=n#$I4>c`)#HK)kF{S%kZx-=Gwxv0S~iH~PYWy;dR2Xs_BB`KF)^ccN$|F02toSw z;!t^6m~$n>+G7T*L0R^2xOyob33;k;c)ZlN&3_)4|Ex9itZdBm|HoRx`v0l5hWY==S~FckEt&W~)|yMl zt4`ha&CQhB{NP)VS%D9DL6a~D$D@z%s5q(+@FP4T50fa(2KuX}ZlCK-$EWJCs6jk} zdWT%c?coPZuj0Rd9iOYqwNc^`>I{U9NWLw`=eK%7(eIU9oMkU7zW*ijAO&$0tg8p2OCLPN+)PHy{(hi1ULyQs0MIlXaC?G%tr8P z_E(v5CiY5h!?lX|Qkisj0&S`bUBw_klr;%CeanAMKb3V9CoNi`vpl1I-~Q4pKFgc-EQoxoy4xq$H++h3V5lW)hzTg>) zxIfBC08tV@d|0sR)av{sg;EOSI9x-X($GrZLIkid^`)3g@rsUikXHxq=i%#-ZH{X1 zHZ8jctD!|1F%+nMmT!;Zp|+hkD76_h9S$C^iy;Zo8>}fgD7B5^&|vz$UkgTQSC&g? za>7xi1{=9Giw%DiI4SDTJ7PWG)f;t125K7lTkzrLlJ6wp(th~) zMa64bu7-3gYE%HxUb!wWXz4lG`EQ7hLfR`TQ<)L_>dJb#68hTv~{V z9Q1uiV-~xLJGcV<3&HuASJIy{my>Yvo{w=3x@cyGyC&NJ(y@r&fNPHZW6>dzUP5bA z|DcOeU~_LnO=5(9c(=2D>6}L^q(n=4*}I?G7IWj#C)5>g`OQibA>C=uV_t6M;Xq8c zv%HE2CX_kJIIH1fcj=C}Ut*|#5bpPqf?idX!@3-0MXjxcH41+WGG=Nhr*bIDm1dW$ z<*lQ83y7&+ANj-iB(+HL6l3UehZljkmJZEUSYv@J_VMA~!46oDi)5n3$&i)S%g~=jjTnM zj^|Nx1uC%C7{%fExJ5G7MkD~0wZQN#P`ObFqB)XY4J}7z_x8^NwVWW={VJcKzsGUcde`gw=i96TJUZGh zyAV4;B>b!WhiBK6zGYiB+3syxqDLS(seEnHphTuaGs@R|-c^xK9X64QTZww_a3vF@ zKSvd7&V*oH8BeNF+g)c(_iT^j>lUf`C`%Dl3Vrrt+4jdNVoB>ERRlb_!x^5y;hFmo z;#)R&jAvnZ>Ou9pR<8|=@|T|x+4>uug~(l98svbtZtIMlfFXqz+mp@f=kWGEc)@>% zxF6|0_sQ3ApWWXY!$6P@Y7w69JA*cTYM#H}pan)Q$_;N#nce--$Hx))bxg|g;}#4A z86$$dI z(1r!+V%#wujHBMF*A_5{<90ckKz{cN?mC9E?IwLK%3T|Le|DZd$2g?4U!)Q`tD1`uBm}OC!z)aa(n51rGBpZzT*Z*c(i#RT2|%4 zfqZCJ25@Mu1bL)VD*F66KG(H?s$dpJX&@RFtMZxFcEeeCqNIxrv7WasY`@Abl8|@p z*ao_3I)5BOM{}fV-)F;kLMWvDim5#g0Kp_rP0E!Vl?G^SRt_vV=hXIf7GZng;ceiH z5|JH4uuA|*BSs;U792JSR&QOp1g3X)zOH8u{-RSGK%DU_KKZ)I^@WADZq`g=?)KU3 zDs0XmyIaogn__JEj~>7Tme)^{^Y`+q0y%_Xez*kgP^khu##iP6MbC-b(eE zkfP;$q9$X&Ii@2tJxF7u%{NVf)Dw28?jRb_mh?!7cj)EL9YE2EQ7{v$>QAPlf{q;W z{y_kx=|TczKfwG3i9$y24u`fL-3IoFs&*j5@0${#0~na9>Q~33x4R0Ep>aM7`lC;> zHDL~m&mH}F=;>6<^i+<)J7-d}Y)7NC55RqFJ}is*8XwsDhpaOC+K zhBZ{eemHP=cxHZgUZRaDXbK2Nua6Z4O7vcOCcy8ouCo{Gs$Cr?KDrAjhDlc$af*GQ zm1t>9=r7pdg*OZ2xV8>O! zJJz90>qHfKBJDv`X0x4-0TUS>2>+@n7ndL{|kk$@==}K(qx9 zMHffSWio;4MbZ&eRZB{NQ$qb27_ow|k(IIFUc|waf*J1^sYLF)_Zz*4(sxXH^nil# z;;ql)+}kHGs$LUHuh!i|u+%HKO29y- zX-lAgQ)lfbWjn(MQ|FSP|s4&UpM=A&>8^7*144 zavzJah4P=C0+vIrX~LQWG-wueoD)G$tTL*0V*y=F()b>w0bX-Ry*5X6GA-*8#oYGR zKPj7EPC_)TN3Zhe*y3GU^%4W?KR+?UNk#lODAD|9ey*>G<>@d1NoQBw!g_m*;ATD& z;X2Ib&0)xvWz(+<&pGv56~I+2rTw}E!S#KRWGtbt&-xJfC3-+%?26%2U`v30USgCu zD3#QJ(Ync@p#t0dl#1|_Zn*qjH9Nxy=~A;RC>O*5cl?2hd;4KamQYMQC_0cyoH$G5 z(f}i#jr1&J{3WzzK|+o2b7*&`y%0}F*U!g!C=z3bg{_TNU5~rYxxRbUzIAXP`@3s= zLU#P3;|d@38tBUXF{<}|UXA?WW!TkCM86As{J||s(!_@JYM>k;`2}=)n~d^i1Mg)P8ZDBT?l{QP?XX3%4R9(iG^c!R`MJ4fMcW(6?FSV)he;z6R*&h>LB zz=q9-ihCAEOesk{Ggs*dO#z`X&tj47L;;p)mUO!9pQa3_95^MKQ=i=6%P2#_b}8Wu zZm8!%!TGZinzxuZ^c&s+`L2%sQU&(&Ly;bZviVFPimX{NmMwd*zjKKyuW*|r+w73TWGeV#gbyZd{R`)tYgL;VP}f`waX!E!|S)N6wqM377|yyP|PMoWjGCA10b3& zpC!dM6#{x_N{x3^@5(vDDhTiY+#u0Mosf)MPdz5HI|+~UjHpO}>smzNyh?!nfIciZ zX1|?ZS~H%YcOF-g>vpyq7d?x6W{z|Xv~ z?ZtooacGS?phQX778YpdI2GDdQ3e?!PT3RYSO4er11@ypMQHrETv92$+jxd4BS_!q z24Ojr@D(N?Mi6&3(jgfg0De5df;`6ND}EcC8@@Jhz-)4TM!M&)C}AR5zi$5UOaF)( z;4uwX|7@Uf#NbxAQAN)}#5E?5XI6dwk$e2am39gEF!tVmNOr z4xCeLn@ZR89~_f16MglZpd4gBB~)i07vtd6fc-?dehJB8^K=&NzxF(_{5&nzjPY9B z>s}*^1BD7X8w$eLXEH|E++~AY@*wh%(F}%3>XR+DD=s6d<8eZ={cRkHsvHy|g3B5= z9T`)Ir$%(+cuqKPm$F>lLK+fWI38Sbl-=IKbr*8kMZ0U`7|j)je?-Y?C7+BL%)hW8 zN+>;_+%nAfHA-m+ZIkt8O1H+@!&O&=u@UufaeS8&#d0nq6r@B*>&F$qjjs2j>MU21rr=rSqKq zLYxwp%H%Wd!6N-vv_Cl_7NG|GZxFj#AVs!jAl#xJ=)j<4e{V7?7mo~ig@C#&afimO zT+sd{_H;C*#k)Saa&fOMesvXx<{WmPJ%+k z;&>*$-XjC^31m@tu*Zw%oQ4W^_Pf>=KoJ_EmS)llMtiET>mGNo@xsDztViIQ9&-Y? zd`-WtF?DPxhTij^p9i$oQ;O5=sMV7!eddXBg< z08KHc0><*&ik1$hL2m}HSGaul`}x0fxaN?j&PKgYL->S5kCmuJ^zR=*5x0Lvr>nET z(^#Brjn=0MfCrWvmVE5jFXA^(?*+TJS_kJyX%4cwyX1jV)VIU-J`!{sJdPzEJ^$Bf z-MUQ5A;9bFqZx^zKp@L5GeFL;=MM^e>CWj0xX_zp-A0s&h4z-dO#R8y^ec|H(^iVZ zqupaLNo|6*%c#cGddlqViHC3Zo7#Bj@E_2gB_@O=jUJkzb(l!r@s)mq6;|uy7{*M#k|Yabx#AWMW%Q9IRDv?d z*8aqZn7q6txr+bJUv^m^U)A>ut$5&gnQIaDO2CXhVg_OBXhs_vPv6|CJx-0wQD+!= z0+-4l?S-cd8BBR`oXmn&AJy~>z9JFzX-VLaNqlZ*o5G0`Op|R;IjNS0QP3==jyc#c z1g4+?oAxXXDO5(#PiChP<$A0B7pJWn?n|qt@vqS!ujC9wuvBfjOO~whewr@|w*EcT9pZMX=q7T$% zoR)**Fn}pbp2PyrSM$3)r}%j4Q0avNYD_O+&3aQ_rJI>H>(8I+6=^Qc%)-IulF3r0 z0Xs8Gra5R97jfR8%;T0hn6}y%L4Xcnf!SORgMi+FAfmPlN2ad3<({;v(s#i&7eR5* zR$&01t4M5*wP?;fzOnAgn&C&Q<`Q;e0XlHyFhuia_a>lJ4ahAkg5v#?UV=rK*_;pd z^%&W*XfbAm5hGt6IqbXUpqEBoYpyAB2HFHfBMZmeayN^7%KeD2q|3A)96js;Y}U zs)8zsjsSHz@hTzXMTnss`uKSdm1grqQab9a=Twu{KXHRNH4(Q5wRgY@B|hqY1uZt+ z^a51-dLiLQlxGQcAQ#wbx0Q~%%<(B2(@P$vPDYMOG8|z~sQ^Z0bnDpsX|hxr!9GM^ z2u*St!wIsmoy&muYCj5w_}?dKOhOC^AAQKr^m#7=7gdhBG@Ewc);ibs(@Tp*IOXig zEm^=>AcSX00MV^I7bSybOySg|vB?t_Em}6S$%hvJlnBtyIz_{cOXk>-V0+{ohbvht zpHFr4BFD1($W+Nj{f&DJ;+z%%mmxo~#w5x=VoZ`1!v|yH!wBHoi~$4uHA=LSGg;L% zem<{a6zy8+t0*VoSD>ad)O?I<&icufxT5HDQv z#>7-&b7Li*`%TxEJN75;tLyVNQpmQkZ(9YrKrZqT3&c1z~kg$r28 zj-78SR7=wvN(j?5EO{T^>R3fOiDA#?&C7cTnp#>3#KlQ;*3n!z4n0)JEGR-vV-(Bi zryodCpm~tsh|@94fX(sJ_V{TQUj7*1P*QN$SBN4|f(~;VVSpFSkm+7o*I)wXd7A9r zz`HeL!)&)~vH+VzHxDFoGvIYidzCbHdhbUxFq)N~{t|Xfj z_X=14$wip~ioH;VjCNJKcDlW|NY5J0PS9a_82d?08&xlZ7ca6oFvUQnsEgE-6!`_2 zFoepK_F8KlH6LwhDH=TY_oLW484@Ke8+3zX;f9sgKaK+yDA2-npQ8=cptUou+;06< z(S8GdXFB4U3uP#X1YkU0G2o76iX@W4p`o40czSrmR~+{5)X_=cV=o!~Jpr8BDF(p! zZhB28$hg}+USC;NSM^X%nZzoVvmXHu3VXmIVQ`<8hp3r=@KM_}KUW-!6bq3H1&=xl zdz&f!WA;cWr5`1bw3E$#l#LKlArYjNJm*NkSvw}=%r~W6>w(1`!Bl7BLx6QLRdjdr zqk!Q>ozVmH#jU30!2&nnx4&1P3jq`&QM|S<357!9^$8V1Q%Sk1V({kwt8;%n>@AcY zMv);O-Y^rws2vOtSTM0GfLa_F+gf#O!YRJ<0Uq(Z%7k3aq3{$8ki;I~PG(Ywm;Aa% zCwcrm^!EJrvN8b0H7(vx*E!8M70*6$6H$KD?#_kzhONO7?~$d~Bjttc)0Rb_JrNiyC;!v^`QethRlNa#xf zLrJKry#CVAf;qJjl~Y)g@k`5brqhX;PmL^Fs_~6 zB|u&FrBby7B)?8f1^wA?A-;HuuK=YL1Ldd@-`cXRT{33IfdQ0LAI51X`Dt=2|Ly3J zo8*0P9!aEath3DKa`A2QOq2E*$8}^K6}Xn>xALlOF*IaPz%Yd@ZAD+ulp-<29O^7F zKXG-bhXt8?M};k&z!$06O)sel^SnZTeVOB;sNSKv1!hp66lu+h;~|GR7X1@rQ7j!} zJ#ozqB8WCfJ$?+a;21BK%ZN;p;1Z+1HLFLR&pIF}bgXk7VF7B^ICOt;4JyA6N0=8_ zPgd0`G!^3}s=!$0(y$X5O&ial%LI3^-)n4l&UBN*OoY6pp!XLQl&$wjs6mK;&qMpB zMrDm;^)J(+=T(SgAwGSQqJ8UJu|=ycAiohZ#uRj;bTD^urg+o0K5Td$`rjqaJ^I>K zwXhg((QIoTq2v#k>*p#l3fmkYn^Dzw;JhI>Cf>5-siIR%G_g25jO(ZbnCb3a zku--&>g6Doe7x~SDWi{*W~u)XV{)h z?yr^{UCCF2ciHR!TM^aP_9*$o`)orHW9AeZOmF?!ys;!8e=;qvEd02kSuE`rJE`f0 zFsGK@+h$Z38!GfCsROSi7!lX%_*%Mnl;v3j%NFAAZNHP@oU1EWELAd%J`^AsOo_mI z7;aRw>$31KhLt%mOTFLNvrF?jZa(;W>zY6}ceWnh&-aq%tN|N7r@KB?;R-601}OOg z+rSJa-GWaAbj!f)7Bcz7xFSdqr)@&Hv@K+MqYgPskm#R2sUb9vA8HnXr8>5^Ubk>H zf5`aCFg0n^1BM&Q5mH1v*nS8-31hw1Ud>-8`ZOqZNk}Q*Wmsfz!XOr`oL#pssI5xw zug%`?SI4U7oEIi|Z!#{)gh9cjv1vqs6!QTn=T{)eA$N-;;jeY`FQ*NX ztlfmyqslwBpD*9yGQo*CPeK0L&W$F!VNizj}-r#zg^KCSR*Gvu<~_+v?-q0V9KPTzjIDCk!wG2QVTOE{#?0 z2*sfY3TC+V5_J#US_VKOKg)X~#OL_Q^JxqV%kUxO>$|7N;AHl&E z&vX({l%GC_*oN19fTg2LyY&8nzo`9nQCo5cXz#fDdY0_8^mGL1T)q(I=vu#nE*+pa zDTIrjm^FKi+{t+hH3=DzPlbs5(?k#B!UwqPOO<_;;v@M&~iJ?=LB;Utjvqyygk=_x)V5Jj z`WEEIF4bXx0^4<^D{-X^M)m)93J67f2K*72ZzS{f>Q=IeD56^r<1SqvllTY%BNDk= z!?kd)_k)nmIQmg~iGUIDb9I+}+Sk`mqbZ3(NJ zHp?{F#`xa6+#Q~5;%vKeL9%RjWqr6#>2__rS$n=}0?o*PFYS(IRCM=H?*7Y>HCt_s zQx50H0D|XWd@>qiJU~*b)&*9^$C_PsGe?NwF&s#^1&IQFp>%}x#a1(P8zo{LzBF0C zB>hqnNt%e8_b|{|d?>CE*G`40Xp@P2=k-o5E`~kNvfE%ik&U(OZp9V7{620@WzF$D z(EYkz>$)2DeR#SXetzaPWv2vi0{O!*y?}YZW65DBUZcH|txW=#Ssdu+qad=VaFZC& z!oD@$VTh&8WZjDL1q#XXrOnPOs7poy=q$D@H8{>~&)si_$AII>hPu#a3=%HXjzkUd zs6+|`E>eSi14|NVOF(wPPL?^NcH5TpMUZuEiYq-n?47=&$>T&zuI{}b-(1V?nYBivEs%t%XL_bnVa+?RNj+3ixrEf&fwKTy zr`Ug@S%$=MHyBhxm^RdqPLh&+i`(J?1dgeJ@>&c>i1D*JT*arUn?Ef-agSsWnr39| zn}gsE)%>uDe`}`)g_dZ}4mE;3R%#?q{LpbD5>}?>bZ)P^KQ4JGhIuQuzdE?SM$fmo zzKD*<#$2B_I|<$op(*4#Ka}T?jFCUB209QvYQJs?g%Y#r?i~%CjQT{Xk+7$iM~;IHLpI;v zvmaYmKlquqj!U%m%aL(Yr~lcS{tX>Q91GE+AXqOwh_HxALLcGLBlDov`If`l@|n{8 z(Xh;W`4zjZ`+Yb5{gC=S$ouK){XRN|mi)bg28eC0+7JxOLjt3vpogjT@-uSd;8`EI zTU7plNt;Q1$q?qegP^eV5`L~3GVl#r3Xl>BY0q8VVjB%J>f?dug5rq8#p=wTA{nm_P_ z>6-ron8h&8e?yG}>3&6{h`oHzMf>Qi?{Mm30UXQYZd-m@ zQ$K@r#E+H?lHmqk29Pp>jpPI+w}c4Nt2RW1+|}YED&Vh^DZR%Mbtyogi;rvl@)&!a zJG5dLiiNVDWnukSr60B1MVAsxky{$XoNu2OHS9p3PlZ1~fB*q4Cik#V0FJ3qd7ZAL zA?PdW>yH*Bo!3k0bFcdK_}%;L>n5q9R7yG)h}RJ?+fP&K=a3xM7D%a!M$ZiEVi=;*F~PR zGPFRUr4RyU=W2{=w7}aSEMQZeSb=PA9|AD==y5(eO0xh zJz;&q^a_z<~fppslWTwy8QTM z`042lZ59VTQ1E)JQjLY|$Xz?*?zJz(=Woszj~K~-sDul?Arb&%EFZbLjKNy*d_r7E z#cA6i1Xp(Q5aIEBiG7R~Y4G$qXv6#X7IRwUysXH-WveTThZfS0u9{uNv+PnW(C0!x8=K7$7k1ZNaQdw%`lx1?1tI}@h` zVkGt)f(MfPC&JB=v1%quN&&~8q$ft8bcO@(G5c6`z3csayXk$K7BEG7;koKN`*d{J z+cj@<0@F3i`r^}=D#Qp3ts`1dAd+Y<^s+l|gwUU>2L0A&|8e3b69Ojjm2X2JL+j0@ z`l2q+9FD6b$qT`qScCh7J+PVE5I|a@Hw#a&3=KmseXNkcXBaz1VjK!AtEq^bxq7H+ z&YGoLwe|SMiVgTK%F=cF2svIR=wl`O(=ORSM+1Xny0RD7NLneo34LeB#WEDNaM&#w zrdYj8sqAjoUZJaLp$CbK-z7Dzs- zTbrK@p_LAXyhztp@MBdF-Bf+wW-k319V#|)V0xB)-5ZwYbSpb=yoxCb@g`&D;YAO;l}uhPvdkNgXLkbIC;o9pDgU{g!Ye>day z$jSc$nTEXeU_Q;w|JuLEv!Fcep{!c7B_>hWZ&0aDmuYgiY9xn_`-Jvl<8^;`!l1Ey zzU}s|@b)vz0n~`w&z^O*TQ*m8s;=3o=L%C4hqPY9M0_SMry!;A+kZ+6aBAQZ6~b^> zW{=`rP;(KH5W{4$(=>vtFuU9Kb9-(Ecf5N>aT{oWN|&9sb?e7Yn2RfTDIrw(fgD{V zO*WPABMuGn9I@db4OPrh|GFj?Zg@Je=n^;z7yrFJVNKz@n3W$6_YuELyp{(QWwh-5?Rtw9637to_;P(tic53AQjvD|)5kHzfJRHv>f`9NtF8?}D z)7>)Fmv?@5;Tbk%#(>+S+F_T18jYx|y>WT1OKp4g+3cZs`NlA!WR~=}S5kl1WHQ-& z=Hro{(#?N)*1L3JRpSNS*@K&y8@OF@97}rr>8Fw`DE>qHu8p^tS zEQEjbugLN>OV91}>9Po0UP@SA@{w)sArq5I>#38v%2=v?o)kYeH(EY}qR-a>-l5N~ ztmER)_G3D#*f)D2|Dn?H6a7%wm>#b>5~oIgst5obZdIkL4m~K> zTwpTGRlhPE0!7NU|4S#Iw3LoqGm@TV<$!c;Fgzdz>BX2}zqBH#!hNg8ZEKu9n^>vG z@xB;fWDfW5%}L$;bQ@+fkdA6~&KwZ^i=VCV;e@Z}_E1ae$@yI9$;{~~B@??WGc5-m z+KJ5tWve`>cVj_xc>%ca0Y0H6UJl^*$Y=M3lw?6VPrOl>2qTL$*0ak)mdIieKwx_# z41K8*SL&;0*bzwWUCl8au3|hqzGWBGU{2+v{esl))OuRT3;Zcr{8t4nJZMx>mG@`k z_2eOE-8Gt{8v8RN@h}JViETXIsA5yIgQ9(gtLDnU*6ZQq=Be|gswq|NSj6S&ZPS~w z{6QeBm#zMHT27*Z*kRO7Y!iVNw1CI8xRop!zCXtF8=p=3bP1UkBgRCLJcmwf$6_1I z0^^t)$I#diR2kAA4OPGvjHY?`(T%yt9i2DMd>tKRJMF2atff6vu&d8|*>?=l z{D{X#HLP5n@4|jF_-=j}L**q~yEGn9AyXvKOk6C;IL68+j9#*&~xvhnx#z9s)SISa?y7QqkgFYlOfm7H{5 zS*>f3tCIF!E*HktTPHq~HAubrFUtHVT`vDH$IXRCYGDx_fv8|FvpC^R{TD%P>JWv# zI(T)F!CC$;395HZsv&CC?$zWD!5ShBKD0E8rCIr)M?}3e%dE(p)A{iLklT_0P%NO< z9~uQ6?{(;Ky89lOP~JLTty%h(tyvw>$ZN|$SN-k6av3n77wAb$21hr@ za@sh%6$o1_uqVbgNo)j|*9A2>AT;vmt!vdcpYP{=XC=y*)2^3Kb{wxknb72>Juy9@ zjlEA{#!pXVPFo)uf+}t{ZOnmyi%u2RsVmtT!V$DFl(akimeC>%tK+y||7T|H>XtZU z((sd`t~rP>dnd&g`9-2VSjeWEBU*kI@aI&uhdNm)WYP2^BwDLWb&uVPPr*fsVP6N$W}^Fa2<68rWXm+5|#7m zkzY+#CY&Tq-RjFAp;`4t_lDSe$uc$|W+->N+WPO_-Tp!Ap$WTWaA2L%)0niEn~Gi~ z3{6V~YNyo-YZvbk{OA-2penOyK7oOjMU9gdC-N;i>eA4jMWbKThhx@7W3DzC$^t4N zc;@dKk)NHqqEv${gxSV-6VT1%#q33@7T%NMa<%py2E-`{2=nt{!$vO6%aPLDid$Cf zz5qNrmNqrQnY!8)%C&1+zUS4EbJmmVcB68WkFgBm8|jPBp`~F>9uMizvzEk4DS|D@ zJFCsfD$zVBTN0K#B$wr}A98Y=5&$nW+Z=w@>n`8i$o63l!P z)(GfO-k9a+-s{S)k6~hV*99937>zha$_n9cJN?I&F4U0~ju^)0KQY#r0^(odW1aix z>y)^pyqXV(!(Kx@^0NQ5oWAT&xC&DrgM7;qXP?58i6^W=J+`RZc6`wsQFg(aawt4KnJ6wow6EZU&i)^`LL*u}sPS5O+jz z)5qPhuypfTW?j=g-%^Cst#EB$8F%SZ?P@`7z-yLPp;Z%iIopmJKl5jk7AsA6-Le@% zp{QRSi6cfYlql#mDO3Xtu=Td3GQ)*bJ*sAb(yN}eUEZ|FS&HCb1-R2ajKMg>v-x$R z{ECDHQ$_#Lh_xQcp=Ay$q%hps%g|+W_Jl}i$P%IKy9w0R?aw268ZeSPZ)k{AZ`o(H zW_eY4tQyuRc5N?e+dgZlVamBKAyPgtHX)v1I}UGRv^l(+EL*sH24hSs#)_JVHDkYv zw6mliXbrxwo$m1w8xjSOIIYeentv0TtHQg2;*8fEP_VI+OOxp;tQ!eDC5^=x?5JpcV2VG2B>eZ2CkV`+x?r$wxa-@pqU zW3K4kpm!Zig3GagUM(YBz9IX>@?wW?yo2F^$%&C`n(T+2GNSe~*su@?EX!n<+raPy ze?`K9+Oq5^&%f4Nv5;0LXUQ)GamyjRj?b%RDV!Sdw1}qWT-2_*f9J#@)ljqwymNrc zzO_HO^~>zo=Q31%+xUBvfe^1uIb^~DWi`J~kDP9iNZAA%A#JZ7nPqp%rY?E)Sf_A- z^rM$FH$9HiE?B2D9LEZq2%knUS(+lz2g@8B=;YwfS zVkB-CqwlD*q6gwF32|{wd68F79~lll+Uu*B9${a_O0xN?x$HfEfZx+hSf@={?ufFP zQ#Ywcc3RAOUUZi&z4%N!XxWsDqY(C(w5Co|1&LaK0wQPi=)~*hDaw}USuH3*Rd%qe z$~Y~IshJWz-TeM)*G(E65fkU6l#zw65Sj#3y8(-!MflA|a&mA~*V+~yu&v1MC>He^ zNZG$yakT5u{UN}jUp5?d?hC|snSFqgCA6DKIYS?pIVkC(?chaT&j>Pu*EE3H;oIZF z7j>Nc{7b0cwr!si@tB$VnJMz(PLPc#dpzMZxMVHVWH*3?gepiMZw7OWPwN=iAB)Ki zZ3YEFl0ro=Xz`BmGz2RcM&xpFYBzbJ8PE+pNc{m*L>kI6jj28+TnS^Zo7rd9I*O%W zeUpBkvue_Exg275td2iy-*-i4u-#x=XB}}hZc+itArq26Q5DJ@)&l>Aa9%m2io3fi z%mK1@HkN*h7(@76;AE~ zXEzi`Uh+jHN5%Lz1m-ZE5>+j^PN%vK(f9gfY9A!LUi)BjqQJ%z)p!cE)xD(n?JHz| zr@3Z1LqGA}HQ#l_8RvDHVOUJ)O&_xO0Cl0W;+fJq2ifi7w?rZD4@$hNW$L*Wgfy}N z?zigfIF6+$sS!S+VA%f19uyd(u{<=>KqO5NBaKF)lU#>`lq2o=ITOX^%m`!ea_rNU z&ncr#$O&us#n?pIj_cv8dZl@`w@gbWyuJP4%B#O#lf_G~+b-gPRW;ZLeg739zmaXK zNd6-rx-72zs~tx9#Wua-7Ch*{qmDZ0X~M2~b(vwLSH<*eEODOpsR2}fWL8RZG(f1zRVK);BlR-@#WD)P!rNMq34E+utJdD z=d*mtAYrwdmUg4u=RNW2xg~B;kJtcAJgH9~o<7SoGL@*M9vOWRTl8u+`EPU;C4veA z3Vg{X=jI_X&2&{B;0HuM%8(@9H?>@GU3g=9OF+;KVvxeelra%XM|v%8W%brsT(`p1r+*P^JI+!6OgyawaxkHK4K!RB+DaLG$+Y!YeI55qcG$IC>|6K2uh_8B zNxc@}x3n8p5fzlRQbw=Z7pkh1)IefxE(@Oyg%S~GlTqI{I@p7&ck(cy0wbJaQ9bLh z2&qDlwGv4aSy;+J#5Rp!c)EH)shWTRVb%|hZc7jP z!Ro5+T=uPh=e=tWmq97E*ztc?!Zd;5T8<59p*@qv<9kMx&R$Gg^+Fw|v_C?#zAPBs ztCv)i!#B0Ct=rXJp_L&;sEdgaaJx`s8jKXhbnb28-d>?xwedRn9;gf&pT31<5emKf z6aPYe{x@OICi~4S2$8HghYoT8N6t`vj1ZaTPk3Xi>*3ENyKR=8{5raQ! z%Z94te&I8|B_*VD$K@Aa&-S$kml%acX~f`AX$DhoT#3hY8m|_adOt=vyJeCt6y#3) zD-VpzsrhIAUz@Px2d$L+{S7gX@iv%5o7Zwy`4E8G9Mi6imTQg}`IyX>LkVFhaqQnw9hdQ;{~F+nyE|`x?kW~7 zYG}u5>*!g)x_Ox}{&2av;;A5A0LV<91SQ7>RdQY)B{hsT&H|^SCLOrEh0J-%|whowJWef~o108eRue##by1 zcFZyNOYKB0Pw)2Ht$+2<*4XW`F@R_Hy=!-hatNeuZ9jg(0Ca80f?0q0c^g)tHD_n= zffz`)%bbUJ46D)KdK}j0yQT!BrmkGW5Bo!GkDmlfBK-1#6$p#EG>1t9rQE`kI#oJop@EEzkUkIJG)mHDg*Pnm4P& z1Tc3aQnl`-rsqxBFn|6XpshiVVw-?3Eo!7Jil=fpELZ)qPi{TRHz*V$>J1bhQ+Ic? z9&H%c0}T$-I`;`h7-ly~o3YXTp+P4ep02vRR9jRZpt*{J9=#@V#ZnUT z@KlKg@AhUyDmGC)8n{Ff7?!BIG!u)-%f1xcq~kEY(pXM<$afc zJB{CbGB@xQxQJl|m&``Jw=)B9o3%K5Q-~kfF+@x@_0$l#wJQ*pX#c!jNP-&Vh9xTa z3wip9VT}tr$AizZ{TW*TNuT|MT>ftFY`gC_4caeq3nsv&W)oGghFL7#59(?alc_c8br>E#d!c4 z72tS(ud%@Sm-W}qoc+#*fbTSsz*klCb1B|LMYVKRp%e-cX}IN{mx6=6f|yZIFZzjT zzx{|{1)+eRmorPpwlkKGuU!REC+kT55x?eO)3b;h?+98wnidbduQqQ+Gz3}j8@E^Hp zy^CZzWhcn-r5#sXxA*m9XWPi4&F!q!`?-AkCdXGPo!sOjapUL8$!LlX@!MPWGP#W*X-d>-iz*3xyuga!bUr%8jY1iSQd#Y*P7}Y-VSEgckC{v1=$=_ z>gUrq@*g*AB}V6GCt?(z(m+9Rj$!e!$*R{haJ2Lg)mq(kiH1Yw&P?L!n0W^4tcCoF z?(gnK`}XTv0pdEpJiYH-$&%|ISKYR#ev^;Vw9>1rBjlF`c+_;{$l&D(r7eW#7rWap2tHTa+l{m9a zMUk(1eD>M<&W32KHJtvw0IILJ!g7hQ0G@lh!hQd$WzB#hkik4kWXOb$Kz8&rv#TSH zVjy(hgO&PADbx2#A23%>-P;oEJv2CjdRPX@kW5iPxG5U!eZSo>T6uXTarE@g(vO4p zI$0x&l^hJ#4Q7kWd%s#UkRCjk9hiywGhgu;<7Iuxx$!pLc>d%ffN+)_V?2*>3%gkY};{3jL9M(E=}gCM=)jI63uim1X|m5>gBR)8<_6>*i-fN?A?JGJueyfnV82KDUdCYpoQrB)%ibIc=KfORR#Z6Q3uF@a2zH7Z8$7 z3=RDk!tto8(o&AuVG+b!5!>yoN>+Og9V%9vN@Wxm1lT*K6xYij$j@xa1()uw;KKWJ zL@aGXu7a@x9f20$uA zrY?0HB~qZT=Kap3t^Rezf#cQLeW)a&cea(Hys4bXmxD|lU{_1+cQ#hP+oZFp2gk^K zJ#+nn#$7q=fz0oa5tiz|r#}Z@^9CJ~G;_@2_A}_YiqapY=^Xi_7}6Ihu&5XtT)8lg zcue;abTTgK1KJ?S+;kNLp>;nE*vWm_Mr;JKR*<$|Nl2G_}0F%^6|{>r^D=cURF{Ikz9b3epELv8C!f10tA9 zXZWh}SmuX6*{%3@E4Yza?p?*G%9i2O{_Vv)%6{s%Yz`Eeq!qC&4*b|oC;~)BRyFSk z6#2^&5R=HW3kWm)DqL?a{>%QxuGxD))~QpSrIEIu2+!f!4l@kf?CXoBo3Fn4O#qOi}5F>jyW-={96C*5`_0dXzp&usTK)t>MSn*@HQ?Ysvh z{n)tbxV+^Q_VQhLe(f0{zFlG)-G&2yX~b*?z4Fcs>JELF#7jRBO1Bw4pGLh!Y`!EQ z=${%1rqUfdN*BDDSF_w@*wf!%?<_IL48lRe_@4BpC{d|C`r_^?jvEPD=BEM;Iy}R; z8frGUKVRU;*^@mK>oT)H)7qQxkT`6x)JB+e%A=^@c%Rn9IVtw=-}o*b1ui0BeD76;;bw$nxNJ5ZD1k;8+obA(ZLXyrboBkw&s!f|%QB{C--lA}A z3%wlUA&;6oGh8AUjxRT_DE5sMW$^yvk%61d2pVaw6(*lC@l$*Odc2jz{0|tJ|A1Nk zKSqX|gY~~LGCcoBF*02LD~ycd2Sz5IrXji6Q{tq3lJ~sh{!6`3`jL_b4m{^n>AXo- zoG4maZ|rvf6!ic+!kkzs42=%QJobE+_U)IA!S?-=*sz~&?67;J82jtk+r-}w4i8to z@50-A$4{-7zBs*I-xyLr$D4=T$W%e8A>dUHBjf77dj&KGhhzU=y~-{R9pzlV8Lb-QC;PZ#k|E=0~25h zZCOqSLp_Kg4)Wt%smuMWkO!M97))r@sPlSw_bKN0zWTGSM(f%s+j$NSC=gInKGe)q zMyRk+ozc*gmZv#8`E7jzL=H|u@$aBJ??jOq2qR|=Bxvv*qm92)4hSHB{>&iaAIG-% zYi1N4FfUe?`lC+fDM-Zufh{a8 zkF?{R2P6_fhr=7VvuiU8Pa$Vk1`pI&kpjlS!q%!SGha&M`hOl{RdnTjEO8qDJIPwF z^8v{jjL;e9CIig6fmqD|)BzIouGpl(Vx2^(MuaOrS~JCs;1&1YXzTC9t5gIL?Ng%d z(N(b}HLgQXl&z0Po*CcF*>^w)t7qG~28+-}uznhOR_3;Y09GnXQ6njgREP1?kfMhB zpe|#Ph_8)Ve6_g4Cz(-NYN^iDEh$k%L!z--YG#R6*b{ZGW829 zgP~pcRp><=_ofkuDk2V?+=tw3PQ1Vy&ym+(C#xnFLgyr zMWb&wy3y+W6J9o{UzutvDfj6T^l>uWqObwZOeX%#=Ia2ka0&6Wc$kFVPlv*PHVj*p z0b)~Rr!4k+Jd7Lo*L2pdK+Iy}`!j0B0QD2$X{XqRxVc?U8bbx!!k&Ek@X@)0_^GZ> z`X+d8>>g2;x{1d89u5*k(e5N{CF3uOTr=JU&l^Jw8xyDzT+WO%o*sVP$O+ShE!tB> z1BjH%=`#3ZS3#xYC~?Ga8L)kTXqn$d zlz1!P8S|`{{Y~>Ku|6f!NFK;4R|Jc7S(t^@oU5OaI*Xx+pS*clYql|3+-As74ln#5 z2E7>0=yHCCxflqLi78+EtJ~W!+B`wLrX2j|ZPQVRY5deF|i3q8I+Ir^;&pD~@Qi{B-&{@5_iZaYx2D;Oj8VSf_O6sJcHH(0)9c1?G;ozUSX~Oz(%4={L|k0?0A7M z!ut1ubRddy3Q7Lx(ve>d`oKS+dO~k;9$+xeDN{+f> zRUVxM<%1u$9C4MxmWUCWJy>%VQEgz_t){A3dW9#fgrF8t1MAZMT(poxo#51CKTpOc z{RdzWDEhY&BL0Pn6Xq)tn^B;YOzAK5%96hPF?|d)$YfAuqa+-vR@`{ZBf}!4ERj8PMv`=SlTnlwRkA$=Q# zw#??rKiuQEzi&N|HeS(7RE2$J%(hq;TO0+h9S63zj;Ts8%J~*TmJ(+^#ysiAQt}V! zWhHSGe#_fElj!N-z{)bzmj0EW)FY(i@U}9pgenZxFk*dSW@crq^|KZ!;gZ0MI}uxS zr2QVw-mwtqcxyXS_*`Aq-*?I>bUHq!Y&ABJy7mdZ=1O=I@qcY+9yLI8^RMC&3d4@( za#7O)#pD#LY6LM<3QTy}ljzGO-#pvZpsjAAX?m^^0Ag{+Rc{vsEDZvJd71@7q17h> zkKl`@=Jkt%FZ5GZcGTbt@1~Z2zVn#1r)=)dZE)x*^b}HwbwGUG&*B)0swH$>4hFS* zu+XU#uo+TkXb45*c(C0ZCgUERku2*iU_dw2oTW{28+Hgl zBP-?N>N{CBQ-mIoh4t~W346qDl4acJFr+e8THaaj8vt>9yQq78{iqkc31 zt7puxfui{f=cWr(ynaFt1wh z^R!6e0mf$PPxf(RHxnxiquV<>a(CGbmA6~ex4HZ7%Y6U+>^dY!Ezc!Vk~cbR+F@mH z5}1KkdMZU3_WZM5aBicXQ86ENGL;f~hp{QGXnA|OQk!shH+X+os2$?c&jDW6Xsy0* zrX%N^6Jf%G4JXQSL1_n{rnt z=ZDuoipe^WKJuyY^^nKB4`0D6_p4$E@4ml24K-922p1h#y<_j5Hm~jQMHa|6yFC+WoG~ZtdQXeN8M*3pSmUn zr|H-n;v#c+PjCD2zZB zAv1OUO+*q#5j^CQSis@I05x~p%}#L^bj#M6`#QL9et6uMySrb03NXQvP?8+o&q3FS z&{>4U?3^y7nEiso5HJV>p3TS55S$9<5A!CnOw<(UUC6h#ItfJ zm7L>K6JY#)vCZ9<7(1qlHbhM)uU>PV^f|r7Mh}x2=e~U(Cm!@K{>Yo*)72i8-dMtT(*l?r5Hjn zP2i)lJZkZSu9y;IeDt4UO~=I5xIAk%oF}?e z<5;np8>nI(w69$p_S<0B`4ZZ=l&(KvHY)_k@%Edf?GMlI0zCf*QkrG%O7{~$sFg>9 zIVGwhAGR$e7gr9oQ*Ay#;0G7p(Vp;uAH^LJh+MHo)}kcEX1e+4Zuf-4L}n=1p1XAo zn9J3YUXZVuRQ?k+?h`}vVu(ZqF!ahljTvbz*eyW%^#K8sOX3GyJyBie4o7!CRv-1y zl8yfDEut|rc}l&Yp}?8MVUfMtTw_nOd~JqkXigJ$wQtp4nrE0o>{N`WSHkYyC%<68 zA-_lcM?{63YN?ouXJFpi)MqY)_STX!*U3@7)r)c_;%XAw(s_u&%pww z7wv}Gid)0wzPq9lw;)FQkyZqcz|lBZDcJ4&2VQ~X2RmoJbUb$P5c!_ycAei2&(Y{o z2pwDBDbbM5Me2C1SZH?7gI)c?9}O$NGZDv?=aHfYH@hX11G6OXC~AP^j2M;zBJN`H zmv3>n{XrbxmY6e&33`gXByuI$)EtBVg2P9nny+flboPqpXR9+YKm+~&xkfWf8Rku5 z32Ivea~4BKZoB4s+aP)_uFba8va)FuQ-)p!u#CRTC&nj+M#q8_0aAeTIQG$?vKQY< z>ZSnq`VY44Tf3qQXRG0|z;9<_+L5&c8t=C#4Rr2rmk zrG&I45~ctb&)ri0vP>mv+wm60!Nxk5+pl+P4A`k(Xm?DK1%nbs)3$T%zr8%Q)_6t# z%j-T3d4}5dtM07Bch3QCzQw>#cVQ07xayT)5sBSP=|a!@KTSr;o=wKqVTfoz#2Yzk z{H2(;>7+O~K|-S%+KF~c5&4AUA_akMl5P?u^olHh!c+=>({hCrBNdoeE_p$vbt71! za(O&uUT2qbT^pFC@9Yw==}fq`FQvN$Fw>V{nKro0n_V6dG^QgexM=6@`3LGv+|4_= z{{o-;R{GwPm`0(CMtQXy%q|Ud)jo#YM=;)9HI77SkT zfxH(yQ}-SGLH>NuXdK|Mu7C!*u1pO33=C6m!#DJ%5C0Q&bgu76$bk(RVV_17LYZb^ z5CulpYB?0Ve@X(%uqT<0Zy0*xk*QrqiLo7IH8y?TYJq{yF}-KhqWJ*m2^s7SK1j|jW=mAZ$S>qi2e zQ`dWQI8T9tJc%kt-fJ&0`ny!%!EsV-+CrqB5jdKrO z3TiX{H`2I(@Asifx{+E*{3Tr`=L#ZAbQ45~$l^uWSPvU}}#bAOI$EYLa z{tP8a-p>Ty8|?PzwGrBi=fk(Zj%?lSd6x4^l|^ILZ`Itu!V&X8vUlBM2tZ$N;izW2r8o_M`O6?LpTjbRN{`EB97=?zx3;9qqgeZ)kA`=eIbAE-4fjj$q55 z?of*ld~oN40sVk^w=mR}Yr}eXJ?g&X6r1wx^;;wcxUNO(hx0BNEp$Z?2zFTRxJ^Z!QB3rxP**K0vm&+E7 zx7%~!;G^{g71zH7X4+=k8dUcD;RZ1F1H8wGrM+I0vZW`|gkK8nzv;4*p#h#>x#e2Q zG)}2A)Oe~{S9s;tWwAhNHbwQcU{nM*Ayufp{5f?Hg}mq?!U(R0z0_Qhd|{UFgrYwmnFlOvnT)7K;>9;;niblBBwbI;pY!q(2ZHLm*<@8!c1%z4nF8Yv1Y!^fIp$w&fnqK$X8iW@y;Gc=YTt!uYFXesPDIa(3BGcpq$!D8ZsB*L652SBiS z^W?bO%^&pq)Nc`iB1|v4H_8;NT{J-eCrd&>oLkB%+)$e}VfuhXn=RGef)wt2^03Nz ziL21EY$}v^&+JJhb(55CS6%K7RBmcZLv9r;CQMjD3qOCW{0wJL&?qAltabdc z8QY?0b-QM6+JJ4*4`pqlhSB4?eI7AcYLl@&3TZgR`;1i0Aq8k0EV2))*Xzv-bJX?;bc z3qgc;36ql3JTyZk#DEs9{5m18RZqoD>;2LzYTD+$4HL|z`dyzFRbhCq|Iw0&)D&xX zSKIfwU86tl?;msXJoN4&ngol}%J42*~5GB1Y|C0#B zY*vzCP6iPFG2lW5;+BO2z8iBuk@&dS z07M5XMkUG->WfUHH-@2dyjd13Nz+8Pq2}l3G?0G!Wqv~RSP{&4*CLj*pTPdb5|Td6O?m6zuVim~Z}lYQwfZpZGT5}J zm4Av084$DC{gN_LyNzdbKG85|+O`}*QT(}4E_!5{HL=u>A!s$Cx5CK?yf*-+cod!-i> zwW2kcpevVbF-kBryiqX+f2Y)s*C!o0u>0N;^(|(;k0wY?(_zB!dTutkNPQV-@2tO> zhs(9H&JeG&)Tp;KpcIkh>>O_GYSDL$1L|D2@-k6#P~x=F9FTvd!YIm)m;5-1a;ZoF zcr6bWhH#P7c7ECumGS34R7*}-caq>PG**8p$WB1$*ZQLem6UwESy6bVeAJ00|4Q|z zEig{QgOW^H6 zRL}KgCV%xkd@*bB($G7*8C2~FJHRuVuSlhDbu~*v$pY`XhDBzVt4%bA_`D*7oMMXN z0GlKHdk=YYNT^#BSBcu7$|oR2q?+f2%O({EV4yQGubWqJnadx>YOy)TxG}D3t(?A; zNJFOfqSUy|%&OtZ1M%gF*p4B^W_`0XBC*uUdXK}y8h?NO4|g9t!bh=>$tg!E^KoM9 z=!FyF%&#RPpb&>8?-4(#{~=pQ-{pKf127erSAG2P_?nqFg|e9 zyeTR`RN26G@${|>$eLcABo+F5d#yoRKccrrF>BgPPP+q%AuNM3j)P(PRSC)LMCy%f zVq&}U8Zz{Ufy}+plT4TN7#4~mu0g5h^~lu(xmWipM+#>Zs|>0PV!6Z@4aBS^^#(QYJNFc%p zHF+s5Ogz&B;kkxm2GArZb=U=AfhJSUoA8MD=pueX{NZgLDrn$Fd73JVPmUKZQdwQ~ z?O_ssJWuYsTeQhs+BwzAtTFGP_>9;X#J)UA89sZGJoH+f{S2 zN94C=5%z9-QAHTcUTu+Q8n1G_yDxVheI}#eLdscSFI$T%~e(~3iw`^zo?&!B&#^Z(U!{_hx zE$6?R;F58QiZ=|p_xZp+C|VM65UfL2Av|Ub|Gn>nb6i;Wyu$R?$msaX1ovq z*ziWQ$PkBW$^hYSbD47$8m8LlDu$2rb#i+^j^Br5xU+o9nN}@C3la^HFX^*=ymw9e zc`okoJIPM*J^^q873qDQK;-)r-uJ^9)3a{4*`K5_bbCnsm&we>u}x&w;X5wx7u|oD zF-WB{%t8ovr!|@PrXGGUp%LXAJ8j?XnpF`M0<}9FxME94SVV%|6R?d;IMCx!j(8tY zm!`L+*rBu;-31PvoBPt!;l*$Hss0{8w=9kXy98km6$JAUA{>6kF$UrG@%FX$g`#{T z@zn!b#6Odv-3v$TUR}NTc3yTY{)*V>%qrKp8seX01C$01c_ENhCkHhTl{|NFzLs&{ zSCVECso6C9b5ro^7IR~POQW3QE$fM6Lb;g#dKr+Pe~VnbD_b}~wPn{_iUM*scy@EM$NACoh$OKG<+GN`G9y72=L}qpJs`Eh|9zgz=<07z4krT87N6nbmtHaM+tthDGNK37 zCN09JTjJjV1!L=?qXI8(rMe!cXrULAy}RVeeDvQuT*X0&h-H4c#hQ$H3a5ZMQloSmBme29&3wH+4cWRF+eeBPDUq2wDefC=B6{p!I- zT?mDD0*;7Jc1WzX2ZIqicz5TQTT~OZb?qK*3!?;j)RRwC{H&5dBVEh*J&%BAlfUlk zn5h8Xy7APl=z%BJBN_Vf#&Lx*se1j4X~#B=;PY)hG2crr>oO@x;xc{}?cNOyrtYpH z(J5p~ui~p|MVjlRGeBWP8SU$`W}}H5x??N7Rki zrHdQ;8M4>NUym)(?L_M~-o`#XS1wU#?e7A6k(uv4jUu17EA4c)hPAD4)#9oSnbB#- z|B_^RX+$(cKyYan@s#qEBNw}n9_W5_CGvOnVw-(y<$_s*3XF%F zGkOjb`Uf?JW5QaG%>kpiR?@)NUluxX0bz1WTs~es(-|{r=;E89>;VBP6G7U9;PHq- zma(^!OGkt9k!_&^%Bz>2Vit2 zxM6rR*Jv4bY8XmrsH=F6f0|v@KbwOSL}>mw86=U)5CKBOxb?BNW?E1T$7U|1>R#?W z7|3KcYQ$a7HHJI=#_+F~zaBttsPgXq`1B}LP5*AlvK@WRaouCbN2|$=_&oY=J z51-J>?a4pp0O}NKP)5)IEtfvQaxB=2Dijjk#gKSLP30_SHqDbmEd_3Q@Jx>U2*1OK zU-?>@ogC6-Y_TiG(vh?*^JxVi-NvX~3mKh~JJNDnMB~pdvVn8)&hokuq4Wa&yy)$% z7dL#Bxp)gWd*XardYH?tO%w%k7&X-}h!MLs@{?A`^~SL9JImXy@9UQDihQlO^*IMC5rej0R}%l)*SkNqf)BtGzYtX(-QQ>va9zsVhJ*uJyGq4s8i(mi2nZV z>@%&OR#pi>KiSWy)PZ(bU$cBN*r8TUYSxNCp=8i_5s4hnF3*oIhe(Kmr*{D@+U(be z(cd~K;1DxaH4AvJi+8t-EgLiA6g4Aqa%R4A68Q(!C1(Hq-8kJQp_$` zhp%Q&P8_L$JaL&CZw&`wLE*TbPcqkAB6Ppd8-8^&7~feNx1L&@<0$0Fx(FIS_zKH^SNKGxjqNRPA3W2>9}qn7@JIaN?_Iw7x4|6vKL4+i>y- z7C)mQHOP6S$eZ?m9mbjWvcgLAaVLq9tI?6`&sk7*mB3juF7>LLs=_iIL3( zZu>XXQXQen*ryj?*ny%3rD3vS=Yi)OURq^YUHAu3z z@{sU~9kTB#KJ5BByS36el42OVV3@stWx#3iW##8a7e%m>M< z938aAJB*n4ieT&5hgLDBQ>?eOc_u(GuOdNq8#+7VQl_T9-v#lzP7#5W-)q%Wt!?)4 zK7h;x>W$Tl-8Lnbw)04*O9vRkXIkn=WZM*drRV0=bvmQAtz+$Ts#8)Ky$Ob`A+igqXoRc&lY@2|HXp24e?B#5RKG(7{2w*$?B0|1W?X1${;et^XutA$(Dxr5#ek!0E4 zdni!WBCOiFZ7-ET6Dd}qPJl)cvzlP%X*|(j;o8kQ%fu%iRnKtdp|&t|UUr1QB_EZ8 z1w`KiB6RkHu@KRV`%@KaeJqpL$deKASL;FwJFjzwF%uX>SLmE7PGniPatSd&=qiiz zjyr8_++$0UK*KIVLti$yxATVD?6*0d?zxN+^CQVSPVLlYS+m1A$gVis`1k5&HKlRB zW>#&Yy)S=*<#5DH5mto0k^FO#aimg4G%%=Ht}IqKjkFWL^y;Rm>9&^~<`_;}C=ANN z!5`byA6o_(&6le*1&A)%Qsp^o%GKR z;IE->0tH(4;!iDy3}XR3yeOURytTd$x7J>~-H%P9X1@@cgu{)qvfs^NbA25~l=Xyu z{_-#2jKigC9RO5eVw{`%-$DaYxzmXY@8nRn910M&ZTQRgHokEOT>d69eWseK3<%X& zuZHToI0FFNnnZXyR&h&+xNT)dpWop@Y+s7FmdkTur_?eP6HNMe7I}<_S!t1nf6Pxk z`7^rzST&O3D6b`(AJs$8k0q$3HvXgM^tu;7w>4OyT(00Yf1Ml7C)dIdRC4a5H;jnR zR}(YUJ&x29@t1ro3=IiMiy(*s>vv4SG6%{kRY zoeVOrWI`8~>t*fgjO+CPiutEF#OLb8xTZjOH;l6G8@HmO)#H)>A^R^Xemv!rm<_#k0vA5-J4u6Zlhs(fxDI6~{EjABh(wd^*E5V)+ ze;OyUM@vlac!n0qQO>Lv$8`C3RZp*n$5@di{b%>aeq&^zfCFDt58 ziFGvP=H19Vv}ZYGMKF$^4=}IGD$BaJBzu54Nf*ELv~V5f&3|kdvvJ$}GyY z?wS!?5O*<+lzTt+>Mm1(L+OH#BtAMvKWF-0uH~Pex!3VNrhL`)j2I&Bgje!fEHfSi zQvz`?GhH_E8ICpI-rKx`A&X^7y3V?vyp@!7{ld*CtDeaM+uWFh9Ad2UzV1Q&kVBJ3 z2edvOecHQix?LEi!W>s?6a7;FYxQh-BGd})&W)s{bFR;yJkLMET{X9kviseLtW|#n zp?YskVcph~cO}(5$JQX#$vvxgG>#=t&x8pHMYgs{iT_%N<^DnLfV zeYN4EwYy4sgulHd{lCTe9!Nm_emW*_Qm$qVxOLYd@pw4&M zvy_+9qHI$VWn+RJ)l^+64LJG|BeC@U&}Fem);!oB?~XYyd(g2;3&mm)yk*7=2zE}% z#5eIaYK&vFksh(WBru>c`1O+o|6lN`{FE2(P{e;vnhNu^Ys4*nc1dNO-uX}_DHj}f z+Ii~*=6-gxbPDn;*;$X?{}v^LX^TcS?w)~g;c@PCBM}M^S;u@qo-%wjZ|PXH+-b9W z$d3N)BXwj+JsfL~U?g~q&k-hs60hM1gKoDp+vl_AwmtwheF&Nr$isSZokm5xT7&DS4YvRiP_(y_x4gLT zj~!Z)zqb_cQDLD5EM!K8h~P^*pFiTrJc=IKj4;|r!uqGK_KgStO91&j=YxQPy%zy& zpM~&S5C^`W+J7QhECH4pk6O$8)v>8aY7K1jqbkg7!qR|B+$MWlPzU+gm2DQrJe^B-_sxM#@HIw69(QilT#4GKe1h+}l!qkEFWeY!1tm7$hz-g~|%K$OaSYr~o?DIau!ITGTlpE~Z#N@xgi2 zS}S?PuI=5*1_C)Zc!nt{vJnG%%L0kl7S}e__80zfvC_v8#Ujxu>O_TtEL!X#eb>Vi z2{4WmdYZ_xlTZtohCgn#$&`&;KykNE$jcG4t$RA3QasbMC~lS-MSWkbT8hA1Fe|Gw zC{Hu0BW03$TP-1;>t1Nw(3m18gW09|E~WQ9lY8zR3f_PhVC|b==hL0NdOvb$Rc#&| zoavRUeXIbZ zad;CU8&2q1BCAGn4>>+5C3-LDWE}AZiZ2T{4zTF_qp2tf`kvZt^zVnpDW=J}P~Zb%Ka44thn!JRVpB~OZ30kJ zY+7;dLQ5++fWhwM{(8E4oF@KQ+fU|RjF=#s269(I_l#Yxl|&n&RP8FI+RQ*0wdv(3 zL8?mvF;B*Yb(Ve|cUy1d5L;uh!KIkG%T6$EN(C8cU$n2BzB;}!OY-DW7n@#b$I@vo z7w&5V+|%i@5yY0KaY6UHb?28gUI=!OkL#3!+=i*ow}q99)|Tr=F9lZF#PWN%!QU*( zbn`S@9<&Sn0|&^a4DEt#Rv8T~mFJYV=r-Caa)0^O)4f0pDFM*u3-hW+bhcVWlQ`Z&r8eD?A zySuwXK>@+tgL`mycc{YM-5mn?3GN;skjw47*6Y2_8{@RkZtb<#T=GqwN8b-NrZIbf zyua_#F;Yk#{YTA)6))lX%zX^U);Woo@LSBfuA!o1=M6)829ut@6PLnvJVIjlAu3O9 z9{f4Z1o~wk=p6EbYDy@7yGgk-$Xyaihw(g?nEm?TxFF~3 zC7<@*NG$aa)14yRjmrSYM5k0-Q-JMJsBXoWrUY9Q-c%K!>#HS&>P2kQPHaGqSH2~C z<*7bC1Bw1wgMFzl0o(jJbe3nAOAu)e-s%CE#|CMKiV4VPz24eCc^$sc9#pxwbnI<^ zQox1&{vD#LEKLq`B@R^X+r8qQkH*3kwq;ECdeJK6q`Xa(0IIFg1CK=hyssa#1cih( zj!_COM4*Sa2I;r7mj ze5Y&aPaddrEoz;!s76j=x8YemYB7NIGJfZY3`|&xDbp78hkl*n~r8W2Nmb6 zqEVuED?eocnLQt!V2yfpMUonI+m#8`Ow7fZ!IFis?6N##HPaDXh!Y7U;mRBHwBUvF z*K{0eOl3;YKdH>}kNN9|-Gn^r-Hkc~OT^`}`;zSn71-hYVnB{8;o2r84t2?SdWA;j zC>Ghdkgy2@ec>nKng>1PY35o{O3;5c+2)^)uRD&x*)1TjP8C)8V2fKJCnN&a8>z*{ zwLEygN$PFn*@^MbsV~mg?2>pap zln)+RJs+;JEEhO5%(Xc-nMagsjN? zSmU@YF{>J?k+4>E;UlZrqWUdb?2+VxES33XADT}Y%AgILbJ4>|)asSA{zTG2>y)uU z@1$8!HvJBymOUvtHiVY~*V)bG;jc8u8RWe0yk)8V+G$Q@du*Ng{WWeKU+m|@xLW3WIR5u9p=1xH92DzlLN{D_-9=DM1{8Lb2V(n34aa ze18<^r$wN&DEqydhNm1GtG-)@v-xGYi7jrX)u3u*4W%4Zb}K~GGw`>So^M14Q@XyoAH+bRFRGQGcy@NXX3+Q%wEIm z6S{cjDjK(9F{VB7BPVw2T-=uVqU0!p{0C9{5VSUdLPe758Rl9SUnbpq77rtGtB5ooT^%C3jgK5-p_GNfQeq; zmqdvQ1~mf6?bsVjy@?7`*Y!xu!uhjPCpfjY%zscL<*hhs#_Cjgf5QG8!lQC=}0Zy+%eOF#%RVL)J9$lfb zEY!Z%!_32^wBGdnouq$nNGy02SEQeFGnj6r20S&-w{wM`!w{fd2|z#&jg+2OOT$j5 z7I0*w%)@K+Aw7LTqB1x2*cI-#Ufab<4?;^IDGPbo0($}z4D;sPhW%&Os+n|ju(Bxh z*N0laj39AXMKX9h&lYO(EIuXtK}^e`%oRnY&wnEAR_Qp*E@X_9W=MzZ8Z3h*XG@^~ zF$<>l4G%#sUGRW^cX%8V?bml^{kPMtPC@{@!^)IsYlC8g?;7v8SX>MI)A0&A)rOpx zn=|A#+XI7nR7u*b<#fMirpmyYh-+6|Lt%Wls4DVEjGKOc2yJ4ojJ-d8hkBysKua@r zPuIw1;09#S6k^LbY{70p>rtMoJXnqfue&+s;(^f8#G)`d7;&q%xV^$j62ExpNjo&7 zBeWfm0sP&zt7Bmd|NS|$OA@Frd`hAZD_bqO{;4ht4j)n4d`tMQWsM1Xtgxv|{CKn-AWV@-5vM6UI{fOI|E} z&DrvGAoB*uD&1Bo`i&@&m*JOhgngsJ8>hNX)KDVQH-VP3s1LLSxgr)q*dkq~yO$8* zplLrefghE;s7m>66=@F?W`}}JNgp}k1B5T<1TVMC=fA&|4di(9kh;rHSU**Lm{~^6 zxj{ulN@vDIQ?2UYNUNX!`h!;0L9X>Y4Nj^*k2LN4bIWc^^6;30zQ*M|1sHuCiQGsE*w&Pp<>vUv*ZAcs8$A?Y=;cOBA;KNr7j>`0v3V9g$tMl`@Zu=+%k>J0b_C#30N% zlAkUNGBaGc>^PFi+a|}^+1k*6)?jT7PV$`kDCFvC0UKX0C;ddZv}&_Xy<|%F{ybFo<5lz`beEU1+|uipGvrE>SQFd;Xom~el8i8% zlp1`C(%m*TyLnu4{EBkDkP^1HS z_?V@`uy5u?LH`)1&!W5>WaeFetrLt?O;fw@%?hn0SeBiSzSclhiS5;0g=$+dZ~R=s z-(jeLNaDRUplOBJ5S0KsLlPRL>5pp3ghPTlr~^npFbKwVUz;#g<8CQ0fI2k`x87*j2_VF#(;+KjPkGE@oBRAWz7$@(s)dKL z%#BYFpE-fZ3^5QBf7te~f%4KY#oy!& zWshYe@`*ogvel-Y95aj#&9<>?pd+X+)ZwU_eykn-6Y$SkwO8io;Gjzx{MIp zD#bN4RB(pY%ADL=ecP=+ZcnH~dA;5J_x^`jgu1R_2LfZkB|65f&W0Pt7WbD8-J>Rz z>EFFxZ@dNRbnriT@u0rNuYb-#BuhoUjqO6wj55O!+J=@QsQlm6^+#$8BDXfB7#$d2 zpHyo)RC&8D+qe1cQCB2nIiII1dR8YDsXBz5Kpw1IGmu}_SlU$DPDj&mI-nV%Ed9>&i>Cow{d#sXshb1>bY4@Sm@Mb zG+C2ZYDRAbX+{C9Q?|;)(3dY%y;mg>oeM#dH?M`{2$`evGD_u{^eT&(^EAOo7-b4N zJep?0`%6ESAn3C_Mc$W$QK$jqrTO> zEzI)2V|vs{;$NKemSnf8GkJ75vNL7Vio^RZ<^?HgRS{pIrQrOZ)Y#nOW5DtFwada z9-KQk4zT80@U)UL5AP;2FMi*#(5%Y74e)QEq|E-nUR;K?%(hDlb1hEm!H=Us^}~i^ zGVGr_8U<@_wT7>4x+q77B%R^e3)14xDp|q#-kSgTzH~lfm7?7XUo(G4I=d7g&=i8vn61eiLnN?4!X- zRMXto|BnKkSA#1fOB& z3!)3sUSwy?vSD58(j(UA%5ABt?Rj-IDob~E7z4Pnz^q9}7ta}O*l*D|^o6k0H%QG_ z-!2B$>I_%lou9&$dS<;NPBl+>r??1tsSC2(p(wz&vK}GLxs%0jA zH69~h-p)tG7!Uv3EuAi6B&9Ac&lzTfnviMyl%l?)kZ$&iE*jXa*5_ze_7hZ;@=|*% z$@q~A-4bKhqun^!tlLh&2w{T$K2`s(} z&zde3aE2jG=1EavwtdrbCiS;q zr&(uL8<)TAQY>yg=G7KBo|=f%>67AEJR?r__N$L~hT(hPJ0geV>e%1F?~1v1;!-gi z;&dHznGi-SrI=xG& zLsp4)_M-(tSJhI`tuBpMG1luNUOK@eAyl0{SXe4FHKeQZ?cC32Umu?OYkzNGbxSFo z!qCgzeu%0iKEHt}-eL>!n``}-QUPQczG{aJ*%_$xV& zHAk^@;yQg60}u}fGFB;uN;p+_>g_^Gz{R!4DdPk3r|N_4zc-$k4ShY1$_j;?OeFR` zx-Sb5qUbW#|9K|snG12I2x8@_GZ}2Ivlrzxg?tc*6}5Q{Ja2XW3#e!9FmRT&HX)kz z4`x=kR?2~81eg*R3^ z6ZVJS*kqfo(>6@ZfZz^7@;o$? z<-_R-&MDqd&izZamH7j$I>7nz?~_$hH56)a=|?}rjWs~1yyCz6li)c+1D*PZW~Lc3 zO&OuV877!uqo7{Y^28Cnf63cNVp_4|vgf^(umd?!QH>qJK{9yDx=)*2?+@sgL?{Mc z162iT5}$5<3fWbk`3CQ-Br+WxgfYAT@ya&0qfJ2 z3~{jF)}XZ3&}ZIP6=oyDD9Yp9zs>n&Hv5RDt~-X&uRUy&FYl2p0hmLrGgz=VHUh3h zMaz!N=;M7inu81O^i%aPd+>4*zHp{!RILnDh9YmF!a}f_p}PvONWkAf?{xk)7^26E zM(0{VSuTGi(o&eqcLH+gj;12*Nz_bKJUK<`?}>ffe2NFr70VrNv0YVwQ7PSu%Ba#_Jsl3P*cyuzR^}%r{Wm354|6_~N z$~uIhId!=+hF8QvxKP_F)j93!-9nL6b)Pt1r*d1k7&Zdg;D;npsFQ2mEFT=K{!>;L z=nq{!_y>q%HKO~!KsWyvWBI?(O->FD4(|U0-4yu$6uQax{{-DsXrxt0rF#l2sj)qp z_GhQ&ay%{1f#Ka4KK*4OZtAli0~q9D@42D46StfbzE#Gg9JJ}mHMi=j>8fqvr1_8a z3Q}Ezh*4sD#a`pvC`E)FIzjNUv#YIb^U|j_^2ZGAADKe5I9^bUdB1$cC)Y93uzu}r zJ$dINvxpK=vIr5NB~uUBc=jT#y9O-8uTM7MM9|Kn0x>mVsVEU^pl{5i5pSLe!rIuV z5ET#GLfQ@h015s^eXg0GfgrA|-tK%taY?++khWr}On~{UF{ff@Z-F%8*H+DmVKxmbXD`n}}=YW*9#CakS4p5b;v)#k@h-vl)(w4%|{yV*0rpLN{?5S7<`glo4{ zutt3RBGBln@lzGaA}Si482&0$lpIM66!8R9;kykUDk?;$2$00n&R~uN^aAFX-QYLZ zaGP-JlPFKm5C5I(VZJU^LCiR$dN;>jfA@#gelVy!6Z zggeu1^J>NViRx1TCX73dwgvxO#_iyrJ+os~rAo&a0eqe<_lP{XAQN6coO9C%OVi!n zz=qAXt(PY|L`Pm8D^T($x%bH4NK! zFY|$?;o|A;Mg&LDd``ZoL09)@9Zcx7WE&LYERp)J1md?%v4I#G}5z zrY&-+#fH}2KGhoSi@5?V^TJ`#NQyI7ZS_EXm#C}h?VIF&d(UMWzP`-CR7PAq+VOaE z7h5P_!if5(m%e;=g_7)b@_1UMV9i*v#bSup2{4!Csz+R(G0w5Lav5={*H&881PIoY zq~*Go>VMi0^?jZ$FCU`&Jn(@PpRXgs_$Kn|wh4)MrqaGZw{1u0k}mFibEq5-9>3ms zIQn>Uyw95D<)B9NTEEz%lpV1Ltf6A#+Vg0sQx2XTeF+PZuIJ;53ZZ1dQ|cqCFfhS{ zk!+%zfh!M_#zf4eQa~(@q~xW&45PDH+-7|Kvi*;3`z@xud8 zzadKN_yy3k5@119EuNOuE+Qmt!t#v`fl?Y#JISuUy~qA`Xr{_rNS5d4Tqx1br|--` zbFUJBrTy6^meem=U&lP|7uay_k}T{dpas`}>1b5(dvz4|*dH*+QaV`r)d#wN^X~sC z85fK;a2?kywPz4p68YNz%R^x65Z$8r^-uM=Yl zkYH(?B*=v9T-wRQlrmR@nV8a>rIqj zNfY&Bbe{x`nr>*=9LP|9DQ`xxcj&w|YmPc(0SNJhi1e%XzKg&DuHBo&OoPqWkCcTA zb$da4KKpmv%G+X{?l;^k2eD@4P76C6$KMZ7orD^c`UYp?0n&y$ypF%5@uCLN$=u<# zEPyu2-GenpW;5-r(Y}XRFp7sc7G5Y+Z+Kyk)w`-}EO;Ss4yKN3+adm$GGZ098IKtU zU77cdHDk+AA!L5Pht7ZZg$70uZg|7DJxtA)6Gwm+pCTsyF~UXwGIF_Y2>xhjCD_WQ zmUZ5H79xgNo&(R3wJ4PK(+3HP6_QnWkcFK^SWK<{`X^t(sqYZM))Nua&%ZG4YSxT7p4$`G!L(CYGf z#(yp4s7jD?M63Xx{hUid$UYGHP4Hto!_}YH8f;mB6;@9~?NNBG@xtc4p_+v0`Q{Vs zkV!a_u`0~rsdjc)P#NzJWyH)7-Mso!chmEAIq7lZ`?quoGq2z&%1fHapNTNqzS#k# z&Dz^;I3$AST0#o#Wf|>Xo;*;#>SQ2eiJ&7|H;i?^o1O&~Y=m_-pVddwvm(|~!;5&u zLyH$MXYK%5usPabuLXA%(fdmc88!c1bh}**WgWQ8R3PE5fY6@T{l(q>Nl?r9LDEsA zH@ra{nT-j=?J=>j~oM}^ta*j^5_@@*4jF?N$1m;A9ek6hon``NT zF4NS7rd9&(2B18Fhgsq2&*5%KYw^d=`?$#QJ;}be>vqE0-}H( zn<=4vE%W5=8S8HVD_p{$|7`-jo5)!GwZ5QG zi89ux^#XsNJ*#+UA_+F_R?%$4cW!`bbP)qe5pdiz$>i&BjzOA?#hP1>p$1-H3tRI_ z28UmC*RUFtKI%;}ez+$V__%F?8F0aG>VKF_T(WN-nteEPUmYN9h)F~;w9UyV_QlaQ z(}!Pwj*z~}ka5Q?VXvQhC+ZA-vxd4H5(5btBfRxkTOM#2tz-u*$fZHU0xnYb3Lgi_ zRegFdV#3ph%H@$cZ20|jfBo{*W?53e+#bhHCUrPy*;@hBYtY0JuJ`mXSXpP z_n09yDJS8F6UNF{X9%5xAuQl`t?F3}|I`GuXC@ML70%2fb72mY!8tjVVo(SE4S_oU zgDz9VpQCVcf8X3DmZJ{pN!IixvKThF3L{Z(JC5gcVe+C_O(&4^co!lU^o8KtO^Bw^ zw^F7?tGaq|2Z3%WiTj~-CH=LdM9HS&sAO=7Jq+J7Wltx~c`BJ813&wflEG@kNosir z@H&Ly)0Yq5qTxR{^<)uU&=D;qA~)41i`(T`bL7>Ukso=^rW{+Gx$-Rk^1Wz1);Bc# z5S&94o<*e1VA&b*%|=5tPJn?v6oZ~burDD)?_B7-I@3TI%xR~O6P9$Hk z@Oy7@IrIxzVwJO(TdbTnIuBSa_xb|*tcIT6w$%B_RWtrW>$y=!`y}`=Ui>JZu=tvU z4w$F+p(6|5ZJj51i1+e)Es#o@Uadf?;hhKYKNfsKTW@Y-Y{#0DWdA zePJ-wOcrzXweppMTtoX!gKem1bdDsYP2Qe`B$`b#iTIV!QGr$i7!HG{0R7dc4Ks_m zH^}t^wW%FNG!SX7)niiFurLYpZo1Y~&VW-A&isDIiR(eQko6c*3^S^rW_IhK?eg3l ztSD^1H%K zzI^HKzu@ugn0BAhhpdlu_XOqW7&nU+bpU ziKzNIrrg!Qi2Ro`{6LhPsqEVwDuAQqTIAlg-ec(g@=Ty9LCdN;YETtn&a4{#!{$d2AOu)GOy;HR^y#d-6N^Ki-lZu;2Y&&=oo!N4B8C@Vp5N|fp~;}XN5kEjgaRgXs{vn287FMN9{0;ohE$UK|90Pz ze-thEY71*H?&znn3v~q7RH*PD)libibtm>k)hQu{23|jc1ARN8zRh9#a4bLTA}cOV z>&(=p+1q9j)Ma!0=V7@HW?-_Uay6LgUuK(KI_n&srRheWok!b8PR{-AHC&XAUT}Ah z4gXU zW>}z;G1Q)X;3s+b6evO{l_wP?*e<%@segl0?iqQ}Nk|B=C$1KxiAnU8`l6VhV7Ht- zx;nEiO*PY~0R|{>f*swZ)A+{K_oCnI6*6}JU3U}wF?+9LI3b@&IY=+#@(=4_eeEro z59}kdMuGbC`mR8&=zeN@`Q$yi)Ij(xl?4_ZMxLDkizceCKDGPd9&1l{P}!6nD?~&j z%|$Jh=WiA$kGS|NsyxzCnN9t`gJ6-8a`i8hkZP!@Ve|3gK}9a#%EJ!twTUrJ@0;02 zEp0A`)O_1<2aqmWeO+;Oj6NbJrZ)t&ZKFd*(tK@ZfuYdEQalbFm$AiagEpcwvIQ>P z>*Q1hdXGTlkBCR<%NZqKOYR^Ft)4^iM{RkuJ@wCW9 zo?|D1$T+UI4@`M2hQun*O`%>2hI7OB9g|h)sW@R~|hZr%Jf(apRz&T9Iq}D^u`C!X|8aVOZg4 zs<)`~lq4j@k?U;BOV;q`<)xb`J!XQv{faM9`_C)%cE6Xb{dV=xJBpR%`W??|-4Q$A z3X@B+N25l6873o#X3E~I8{pgQaI{QgSf88XHeBZ3Z0Ir*#)#RJlFRy(7N&_Qsbs6o zcO68~knf91LVMw(7rQ1G=R5)O=cOv5_go7ghHSa_|NZMr*@=RKkLYZ6;mo{X4qL*n z4pNUWr;e88dPXZF9+6Kf^6HQ3g7q8=Gz#QdSqf88#I&4+ux$K91FWgkfjM>{wv>Dy zb-1->k-uI>`qqyLKF-=tx08(BVb#Tg2anm^gzx5q5^-M+!3J(L*LAvC+!uDU$|7nA zYN}iLogt*Anhvy>NOwCBzkk=JHoaZXv>js_KcoVzv!Damj5#^z=cs@%B_5ZpB{|%iIwX5_Ys)yB%^h zV)df*b(z5ma{XPx_d&wB)2eI)My;!U%zQF+agRIGRNvKHUQd-^2bL8mlGbEw4?8-3 zwm&8SbeY39PR);D+ztbp&g~mBbCVSj>!X`3+JzEHe(SV0(}Vkjs%r=jO&WGOP5#E@fn#La zD8sjwYU!UMaF%fde~V0JY`#ubVip4+zF+I651UK51X}A}&*<736a=_DF1#j|j_9YZCTzXGDQH8zJkK&f-;9c?vTcFRwsyv_)CHMK;y=}FZDOj`w9w#2{5~^f_)YG7psxJUKL%oC*$BK=F+CGn^@(lTH*}4Pe>{cdg1VTt zoCYqVVrj`BUI?8FL3?#NU)wz$&;#U=z#mxH@8Nyad2Zx>FPmx?{H~^tZxkW9Y)dnS zP`@8RbADu-z1L4TTibA%%z*7zg7%4v|CWQ{IUL1`TTT7m^tiH)UfVH`lWs#kB05FbGGt9@Y^#1_Lyx6jlN zU+pensGZ`BYSPAHPIZUpB}rG_e2+&{7f;FAIB#N>z9^k>2eDy|XlZ;50K)4lFA7{? zqf8#Pu2+97NmZ@w8LyY1cVYSctb+vwBOJD~AeNK7nzwV`4rWjuD~C@0LgEnEBA%U3 z)^C^82i$Rr#XZ+tUQC~|0sDq7ve5v(N$>l~?43usi+EW~-O)T8t{xr2??E9BT8bk+ z5PKQq_&OCF3M%NZIli$8Y%9qs3ZwF}GhBaD*p1d6h|uRESAF#XFlKg+_U?%>Z`|zr zKi31=R-a5f?tKFL;)>hiHZE!cS7;0T_?69Jp?RWZhzEh%@~iNve%TlHxrNxpvKDZw z`Xpu68pK?VV_&SGH2)A=-0xO+_r`pL>4^M-6t_}Q!Dj#+pK1oycDlSGRP)7GGgiOb zR;^A&Hm^-Nghs3UsAo1jZ(KN%3I02Cu=qsF{)HUFN0S64(~ zP_7s$Kz{9}cF)4#w7$vA6bnX6vOeJ_yw@Q-YZi{oR&s;vKEmR#Y%6psAHMOTA_WiN z5%ZqWP+T8XJa48ZbcGU3aET}$J6TdeJ2ML}jw7L{Yfyvh30q7S4b)tz5mYUf!VPh> zX!x19sJcC7*SgZ!5>B_QuWKwTKt^dfJ+$2XaS=|U(`S5hO0*oWHvdgfTxUF`5=T@N zI{Ey!J&7_XZ)Q~k2%uge{?cc=kJhnW~aiJcbHU(V(CQ63y zk;H$mW1Vq|3I}RlM|2nwNjrL_LZ?lk$t}jOm)2sgYFH@X*xd@ygP@Ta|U=4hir+i9>Ys?KWe^C zq$|Qx=KHMspGyLOn_!cLBfOkgJFl;io}OGYhZNZ>IinjMGaQw)i$i!)n0jm1mMqRr z1z|+)f4IO8%fO&tMjP#4CHIF7=A}pwo9lKn4UUG6+eIXr4%7?L>xeT@TTW4~A$CT4 zvSndFPQ9E}sx>Ng6NMa|EKTK>#nr!Lj>nw?y2$m4pi12zUsFdQ=EAnyn?whf?NyUq}QHi6%XmF0KyWci{rI4`nXbR^1%Z zD~JvT4i-|6d~adKjft17#w->vFkZI9;ZH@??uNO9D-CPoRp$1w?~cCaCn|djN*?11 zR_6~;)+#RMNYhkzj53A$RFC2NR2@0AD=Cur7$(49j!+L7f2kcSiWy6;p=xhE32uo) zPrus2xaKlnvOQ+XRm91l(G6@=AD1IV>l1wacbq;GTkTt zZ8+Bx)w@>QWL9A<4K&CD-4{ERj^}4IX*RJCzRH$&9OTgXETryFRF|v&*uh6kK91|b ztU2mkEay#_D?m?QOSKP0i)g^lxQrSyVbxKE5*I-1Szv5$8r-@I6Kr}YaH5&ZU`y~> zooKSpTBYt}_KEewNo`f9tOha`Dd}@5f^h{{Px(f}xXDh6+vQa(H9Bm&jkkBm23AAb zsn8QOyA|AcU63?-XMf*$b+_37mxuu+)whAMJ0q^PO?aQ?W+p(7#3U9XdL#UJtJVx> zDKT^ef5CIAZ)|@*wEq0+T$fAkne+b!l(LJ0sr_ci5?Qg&8Yzwo0=-h{C!^6}=Hze( z=HM>V9#X!@^9k1~I85a}Rr2Gb)36j(Tq-jxf!%bND3j}qQMw zBaJT>Hk*$-d@L|R?sI|&u^8qFx{Y5RP87`(-MJ#iK3E~_2bPs{K0!w#+P!7v14@DDl= z`)IJiWQ1C9p|~H1iGHv-(!s*6SuB48%(f}rbd4*w7#7iF-O#csT$Vqr$ba+hwx3=z z*0N?L^NzyT{Q(5y0EpFvps84xMscZG#mXeIYGs;D0TWD|4Qz0~T9zPQlel-wAui~r z)1*NGQ050C(}>SvNf?i(Wm0Ki#K~`va-MuXy!v)HznuLXRqw!Mr_YVZLm%&*UCL@! zcgNW~*rEpF%_SSI1MXUoATpM-Ayqeh4aa?IN%ZnkUF?1Hmz;x(IYW$U(y$dYetpiA zNB#{=flOOM@gEbK7Ph!Fd2Vb`>gXla#X$1EP%8yISg_0^wO@vyc|xX|3`xl-UtEE1`8H+4 zIq3P9QZgH!McjYP@Io5K8oE{fbez+5Bl#IxvPK}Q6VYf|-e-|q_BRAImxfTxn?siPMKQ!x#b5R;8ZO&wrfRl@vMN6F zgp1rh3d_I0(selMZzVA(WA5NR#44ft0xP*L|jY= zT6Wrcvk}Vi8j^OOkeV2U;ygDHVWE!4_3a9&jq;ExJv?h+{W;RIldl$^S=`=QH1-t( zPg4bX=rcaH%*waqz^xU45AHZB;>y<3f$9?{`r_MO;2)d|lEE{THwVm>Up~x#ZMYk% zv{xuRb95HrK8PqVe=p~@NbW~?q?od=gua2T?M1M9gi2@-Xc%|jE{m&hq~wODPUE|d~&sQ`GqC*hPq zA><)z3mo#VZH;a<=XKx2s2^^pXJQ#GPL%w&o4oWnvcL-rp>k!BF{qpuY7er8q#P-*V;GR3-y#a_{^qs=+uQd|n6ikFB*UJDWU$+{>g zWkawz>O!9=-XbKx&=9|4o_Nl>$f>3yfzo_H>J=B2CI&R6sjg}|55`_no7JW9o7AVK z64;{?N^F%5jYbopn1isGr%7$V?|_NIcoS7s?_BrSI3^51vl(&z>?YoJ=**klM+