Skip to content

Latest commit

 

History

History
2 lines (2 loc) · 22.2 KB

README.md

File metadata and controls

2 lines (2 loc) · 22.2 KB

Other-sources

Asada, M.; Hosoda, K.; Kuniyoshi, Y.; Ishiguro, H.; Inui, T.; Yoshikawa, Y.; Ogino, M.; Yoshida, C. (2009). "Cognitive developmental robotics: a survey". IEEE Transactions on Autonomous Mental Development. 1 (1): 12–34. doi:10.1109/tamd.2009.2021702. S2CID 10168773. "ACM Computing Classification System: Artificial intelligence". ACM. 1998. Archived from the original on 12 October 2007. Retrieved 30 August 2007. Goodman, Joanna (2016). Robots in Law: How Artificial Intelligence is Transforming Legal Services (1st ed.). Ark Group. ISBN 978-1-78358-264-8. Archived from the original on 8 November 2016. Retrieved 7 November 2016. Albus, J. S. (2002). "4-D/RCS: A Reference Model Architecture for Intelligent Unmanned Ground Vehicles" (PDF). In Gerhart, G.; Gunderson, R.; Shoemaker, C. (eds.). Proceedings of the SPIE AeroSense Session on Unmanned Ground Vehicle Technology. Unmanned Ground Vehicle Technology IV. 3693. pp. 11–20. Bibcode:2002SPIE.4715..303A. CiteSeerX 10.1.1.15.14. doi:10.1117/12.474462. S2CID 63339739. Archived from the original (PDF) on 25 July 2004. Aleksander, Igor (1995). Artificial Neuroconsciousness: An Update. IWANN. Archived from the original on 2 March 1997. BibTex Archived 2 March 1997 at the Wayback Machine. Bach, Joscha (2008). "Seven Principles of Synthetic Intelligence". In Wang, Pei; Goertzel, Ben; Franklin, Stan (eds.). Artificial General Intelligence, 2008: Proceedings of the First AGI Conference. IOS Press. pp. 63–74. ISBN 978-1-58603-833-5. Archived from the original on 8 July 2016. Retrieved 16 February 2016. "Robots could demand legal rights". BBC News. 21 December 2006. Archived from the original on 15 October 2019. Retrieved 3 February 2011. Brooks, Rodney (1990). "Elephants Don't Play Chess" (PDF). Robotics and Autonomous Systems. 6 (1–2): 3–15. CiteSeerX 10.1.1.588.7539. doi:10.1016/S0921-8890(05)80025-9. Archived (PDF) from the original on 9 August 2007. Brooks, R. A. (1991). "How to build complete creatures rather than isolated cognitive simulators". In VanLehn, K. (ed.). Architectures for Intelligence. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 225–239. CiteSeerX 10.1.1.52.9510. Buchanan, Bruce G. (2005). "A (Very) Brief History of Artificial Intelligence" (PDF). AI Magazine: 53–60. Archived from the original (PDF) on 26 September 2007. Butler, Samuel (13 June 1863). "Darwin among the Machines". Letters to the Editor. The Press. Christchurch, New Zealand. Archived from the original on 19 September 2008. Retrieved 16 October 2014 – via Victoria University of Wellington. Clark, Jack (8 December 2015). "Why 2015 Was a Breakthrough Year in Artificial Intelligence". Bloomberg News. Archived from the original on 23 November 2016. Retrieved 23 November 2016. After a half-decade of quiet breakthroughs in artificial intelligence, 2015 has been a landmark year. Computers are smarter and learning faster than ever. "AI set to exceed human brain power". CNN. 26 July 2006. Archived from the original on 19 February 2008. Dennett, Daniel (1991). Consciousness Explained. The Penguin Press. ISBN 978-0-7139-9037-9. Domingos, Pedro (2015). The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books. ISBN 978-0-465-06192-1. Dowe, D. L.; Hajek, A. R. (1997). "A computational extension to the Turing Test". Proceedings of the 4th Conference of the Australasian Cognitive Science Society. Archived from the original on 28 June 2011. Dreyfus, Hubert (1972). What Computers Can't Do. New York: MIT Press. ISBN 978-0-06-011082-6. Dreyfus, Hubert; Dreyfus, Stuart (1986). Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer. Oxford, UK: Blackwell. ISBN 978-0-02-908060-3. Archived from the original on 26 July 2020. Retrieved 22 August 2020. Dreyfus, Hubert (1992). What Computers Still Can't Do. New York: MIT Press. ISBN 978-0-262-54067-4. Dyson, George (1998). Darwin among the Machines. Allan Lane Science. ISBN 978-0-7382-0030-9. Archived from the original on 26 July 2020. Retrieved 22 August 2020. Edelman, Gerald (23 November 2007). "Gerald Edelman – Neural Darwinism and Brain-based Devices". Talking Robots. Archived from the original on 8 October 2009. Edelson, Edward (1991). The Nervous System. New York: Chelsea House. ISBN 978-0-7910-0464-7. Archived from the original on 26 July 2020. Retrieved 18 November 2019. Fearn, Nicholas (2007). The Latest Answers to the Oldest Questions: A Philosophical Adventure with the World's Greatest Thinkers. New York: Grove Press. ISBN 978-0-8021-1839-4. Gladwell, Malcolm (2005). Blink. New York: Little, Brown and Co. ISBN 978-0-316-17232-5. Gödel, Kurt (1951). Some basic theorems on the foundations of mathematics and their implications. Gibbs Lecture. In Feferman, Solomon, ed. (1995). Kurt Gödel: Collected Works, Vol. III: Unpublished Essays and Lectures. Oxford University Press. pp. 304–23. ISBN 978-0-19-514722-3. Haugeland, John (1985). Artificial Intelligence: The Very Idea. Cambridge, Mass.: MIT Press. ISBN 978-0-262-08153-5. Hawkins, Jeff; Blakeslee, Sandra (2005). On Intelligence. New York, NY: Owl Books. ISBN 978-0-8050-7853-4. Henderson, Mark (24 April 2007). "Human rights for robots? We're getting carried away". The Times Online. London. Archived from the original on 31 May 2014. Retrieved 31 May 2014. Hernandez-Orallo, Jose (2000). "Beyond the Turing Test". Journal of Logic, Language and Information. 9 (4): 447–466. doi:10.1023/A:1008367325700. S2CID 14481982. Hernandez-Orallo, J.; Dowe, D. L. (2010). "Measuring Universal Intelligence: Towards an Anytime Intelligence Test". Artificial Intelligence. 174 (18): 1508–1539. CiteSeerX 10.1.1.295.9079. doi:10.1016/j.artint.2010.09.006. Hinton, G. E. (2007). "Learning multiple layers of representation". Trends in Cognitive Sciences. 11 (10): 428–434. doi:10.1016/j.tics.2007.09.004. PMID 17921042. S2CID 15066318. Hofstadter, Douglas (1979). Gödel, Escher, Bach: an Eternal Golden Braid. New York, NY: Vintage Books. ISBN 978-0-394-74502-2. Holland, John H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press. ISBN 978-0-262-58111-0. Archived from the original on 26 July 2020. Retrieved 17 December 2019. Howe, J. (November 1994). "Artificial Intelligence at Edinburgh University: a Perspective". Archived from the original on 15 May 2007. Retrieved 30 August 2007. Hutter, M. (2012). "One Decade of Universal Artificial Intelligence". Theoretical Foundations of Artificial General Intelligence. Atlantis Thinking Machines. 4. pp. 67–88. CiteSeerX 10.1.1.228.8725. doi:10.2991/978-94-91216-62-6_5. ISBN 978-94-91216-61-9. S2CID 8888091. Kahneman, Daniel; Slovic, D.; Tversky, Amos (1982). Judgment under uncertainty: Heuristics and biases. Science. 185. New York: Cambridge University Press. pp. 1124–31. doi:10.1126/science.185.4157.1124. ISBN 978-0-521-28414-1. PMID 17835457. S2CID 143452957. Kaplan, Andreas; Haenlein, Michael (2019). "Siri, Siri in my Hand, who's the Fairest in the Land? On the Interpretations, Illustrations and Implications of Artificial Intelligence". Business Horizons. 62: 15–25. doi:10.1016/j.bushor.2018.08.004. Katz, Yarden (1 November 2012). "Noam Chomsky on Where Artificial Intelligence Went Wrong". The Atlantic. Archived from the original on 28 February 2019. Retrieved 26 October 2014. "Kismet". MIT Artificial Intelligence Laboratory, Humanoid Robotics Group. Archived from the original on 17 October 2014. Retrieved 25 October 2014. Koza, John R. (1992). Genetic Programming (On the Programming of Computers by Means of Natural Selection). MIT Press. Bibcode:1992gppc.book.....K. ISBN 978-0-262-11170-6. Kolata, G. (1982). "How can computers get common sense?". Science. 217 (4566): 1237–1238. Bibcode:1982Sci...217.1237K. doi:10.1126/science.217.4566.1237. PMID 17837639. Kumar, Gulshan; Kumar, Krishan (2012). "The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review". Applied Computational Intelligence and Soft Computing. 2012: 1–20. doi:10.1155/2012/850160. Kurzweil, Ray (1999). The Age of Spiritual Machines. Penguin Books. ISBN 978-0-670-88217-5. Kurzweil, Ray (2005). The Singularity is Near. Penguin Books. ISBN 978-0-670-03384-3. Lakoff, George; Núñez, Rafael E. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books. ISBN 978-0-465-03771-1. Langley, Pat (2011). "The changing science of machine learning". Machine Learning. 82 (3): 275–279. doi:10.1007/s10994-011-5242-y. Law, Diane (June 1994). Searle, Subsymbolic Functionalism and Synthetic Intelligence (Technical report). University of Texas at Austin. p. AI94-222. CiteSeerX 10.1.1.38.8384. Legg, Shane; Hutter, Marcus (15 June 2007). A Collection of Definitions of Intelligence (Technical report). IDSIA. arXiv:0706.3639. Bibcode:2007arXiv0706.3639L. 07-07. Lenat, Douglas; Guha, R. V. (1989). Building Large Knowledge-Based Systems. Addison-Wesley. ISBN 978-0-201-51752-1. Lighthill, James (1973). "Artificial Intelligence: A General Survey". Artificial Intelligence: a paper symposium. Science Research Council. Lucas, John (1961). "Minds, Machines and Gödel". In Anderson, A.R. (ed.). Minds and Machines. Archived from the original on 19 August 2007. Retrieved 30 August 2007. Lungarella, M.; Metta, G.; Pfeifer, R.; Sandini, G. (2003). "Developmental robotics: a survey". Connection Science. 15 (4): 151–190. CiteSeerX 10.1.1.83.7615. doi:10.1080/09540090310001655110. S2CID 1452734. Maker, Meg Houston (2006). "AI@50: AI Past, Present, Future". Dartmouth College. Archived from the original on 3 January 2007. Retrieved 16 October 2008. Markoff, John (16 February 2011). "Computer Wins on 'Jeopardy!': Trivial, It's Not". The New York Times. Archived from the original on 22 October 2014. Retrieved 25 October 2014. McCarthy, John; Minsky, Marvin; Rochester, Nathan; Shannon, Claude (1955). "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence". Archived from the original on 26 August 2007. Retrieved 30 August 2007.. McCarthy, John; Hayes, P. J. (1969). "Some philosophical problems from the standpoint of artificial intelligence". Machine Intelligence. 4: 463–502. CiteSeerX 10.1.1.85.5082. Archived from the original on 10 August 2007. Retrieved 30 August 2007. McCarthy, John (12 November 2007). "What Is Artificial Intelligence?". Archived from the original on 18 November 2015. Minsky, Marvin (1967). Computation: Finite and Infinite Machines. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 978-0-13-165449-5. Archived from the original on 26 July 2020. Retrieved 18 November 2019. Minsky, Marvin (2006). The Emotion Machine. New York, NY: Simon & Schusterl. ISBN 978-0-7432-7663-4. Moravec, Hans (1988). Mind Children. Harvard University Press. ISBN 978-0-674-57616-2. Archived from the original on 26 July 2020. Retrieved 18 November 2019. Norvig, Peter (25 June 2012). "On Chomsky and the Two Cultures of Statistical Learning". Peter Norvig. Archived from the original on 19 October 2014. NRC (United States National Research Council) (1999). "Developments in Artificial Intelligence". Funding a Revolution: Government Support for Computing Research. National Academy Press. Needham, Joseph (1986). Science and Civilization in China: Volume 2. Caves Books Ltd. Newell, Allen; Simon, H. A. (1976). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3): 113–126. doi:10.1145/360018.360022.. Nilsson, Nils (1983). "Artificial Intelligence Prepares for 2001" (PDF). AI Magazine. 1 (1). Archived (PDF) from the original on 17 August 2020. Retrieved 22 August 2020. Presidential Address to the Association for the Advancement of Artificial Intelligence. O'Brien, James; Marakas, George (2011). Management Information Systems (10th ed.). McGraw-Hill/Irwin. ISBN 978-0-07-337681-3. O'Connor, Kathleen Malone (1994). "The alchemical creation of life (takwin) and other concepts of Genesis in medieval Islam". University of Pennsylvania: 1–435. Archived from the original on 5 December 2019. Retrieved 27 August 2008. Oudeyer, P-Y. (2010). "On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development" (PDF). IEEE Transactions on Autonomous Mental Development. 2 (1): 2–16. doi:10.1109/tamd.2009.2039057. S2CID 6362217. Archived (PDF) from the original on 3 October 2018. Retrieved 4 June 2013. Penrose, Roger (1989). The Emperor's New Mind: Concerning Computer, Minds and The Laws of Physics. Oxford University Press. ISBN 978-0-19-851973-7. Poli, R.; Langdon, W. B.; McPhee, N. F. (2008). A Field Guide to Genetic Programming. Lulu.com. ISBN 978-1-4092-0073-4. Archived from the original on 8 August 2015. Retrieved 21 April 2008 – via gp-field-guide.org.uk. Rajani, Sandeep (2011). "Artificial Intelligence – Man or Machine" (PDF). International Journal of Information Technology and Knowledge Management. 4 (1): 173–176. Archived from the original (PDF) on 18 January 2013. Ronald, E. M. A. and Sipper, M. Intelligence is not enough: On the socialization of talking machines, Minds and Machines Archived 25 July 2020 at the Wayback Machine, vol. 11, no. 4, pp. 567–576, November 2001. Ronald, E. M. A. and Sipper, M. What use is a Turing chatterbox? Archived 25 July 2020 at the Wayback Machine, Communications of the ACM, vol. 43, no. 10, pp. 21–23, October 2000. "Science". August 1982. Archived from the original on 25 July 2020. Retrieved 16 February 2016. Searle, John (1980). "Minds, Brains and Programs" (PDF). Behavioral and Brain Sciences. 3 (3): 417–457. doi:10.1017/S0140525X00005756. Archived (PDF) from the original on 17 March 2019. Retrieved 22 August 2020. Searle, John (1999). Mind, language and society. New York, NY: Basic Books. ISBN 978-0-465-04521-1. OCLC 231867665. Archived from the original on 26 July 2020. Retrieved 22 August 2020. Shapiro, Stuart C. (1992). "Artificial Intelligence". In Shapiro, Stuart C. (ed.). Encyclopedia of Artificial Intelligence (PDF) (2nd ed.). New York: John Wiley. pp. 54–57. ISBN 978-0-471-50306-4. Archived (PDF) from the original on 1 February 2016. Retrieved 29 May 2009. Simon, H. A. (1965). The Shape of Automation for Men and Management. New York: Harper & Row. Archived from the original on 26 July 2020. Retrieved 18 November 2019. Skillings, Jonathan (3 July 2006). "Getting Machines to Think Like Us". cnet. Archived from the original on 16 November 2011. Retrieved 3 February 2011. Solomonoff, Ray (1956). An Inductive Inference Machine (PDF). Dartmouth Summer Research Conference on Artificial Intelligence. Archived (PDF) from the original on 26 April 2011. Retrieved 22 March 2011 – via std.com, pdf scanned copy of the original. Later published as Solomonoff, Ray (1957). "An Inductive Inference Machine". IRE Convention Record. Section on Information Theory, part 2. pp. 56–62. Tao, Jianhua; Tan, Tieniu (2005). Affective Computing and Intelligent Interaction. Affective Computing: A Review. LNCS 3784. Springer. pp. 981–995. doi:10.1007/11573548. Tecuci, Gheorghe (March–April 2012). "Artificial Intelligence". Wiley Interdisciplinary Reviews: Computational Statistics. 4 (2): 168–180. doi:10.1002/wics.200. Thro, Ellen (1993). Robotics: The Marriage of Computers and Machines. New York: Facts on File. ISBN 978-0-8160-2628-9. Archived from the original on 26 July 2020. Retrieved 22 August 2020. Turing, Alan (October 1950), "Computing Machinery and Intelligence", Mind, LIX (236): 433–460, doi:10.1093/mind/LIX.236.433, ISSN 0026-4423. van der Walt, Christiaan; Bernard, Etienne (2006). "Data characteristics that determine classifier performance" (PDF). Archived from the original (PDF) on 25 March 2009. Retrieved 5 August 2009. Vinge, Vernor (1993). "The Coming Technological Singularity: How to Survive in the Post-Human Era". Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace: 11. Bibcode:1993vise.nasa...11V. Archived from the original on 1 January 2007. Retrieved 14 November 2011. Wason, P. C.; Shapiro, D. (1966). "Reasoning". In Foss, B. M. (ed.). New horizons in psychology. Harmondsworth: Penguin. Archived from the original on 26 July 2020. Retrieved 18 November 2019. Weizenbaum, Joseph (1976). Computer Power and Human Reason. San Francisco: W.H. Freeman & Company. ISBN 978-0-7167-0464-5. Weng, J.; McClelland; Pentland, A.; Sporns, O.; Stockman, I.; Sur, M.; Thelen, E. (2001). "Autonomous mental development by robots and animals" (PDF). Science. 291 (5504): 599–600. doi:10.1126/science.291.5504.599. PMID 11229402. S2CID 54131797. Archived (PDF) from the original on 4 September 2013. Retrieved 4 June 2013 – via msu.edu. "Applications of AI". www-formal.stanford.edu. Archived from the original on 28 August 2016. Retrieved 25 September 2016. Further reading DH Author, 'Why Are There Still So Many Jobs? The History and Future of Workplace Automation' (2015) 29(3) Journal of Economic Perspectives 3. Boden, Margaret, Mind As Machine, Oxford University Press, 2006. Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192–98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple enough to be understandable will not be complicated enough to behave intelligently, while any system complicated enough to behave intelligently will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.) Domingos, Pedro, "Our Digital Doubles: AI will serve our species, not control it", Scientific American, vol. 319, no. 3 (September 2018), pp. 88–93. Gopnik, Alison, "Making AI More Human: Artificial intelligence has staged a revival by starting to incorporate what we know about how children learn", Scientific American, vol. 316, no. 6 (June 2017), pp. 60–65. Johnston, John (2008) The Allure of Machinic Life: Cybernetics, Artificial Life, and the New AI, MIT Press. Koch, Christof, "Proust among the Machines", Scientific American, vol. 321, no. 6 (December 2019), pp. 46–49. Christof Koch doubts the possibility of "intelligent" machines attaining consciousness, because "[e]ven the most sophisticated brain simulations are unlikely to produce conscious feelings." (p. 48.) According to Koch, "Whether machines can become sentient [is important] for ethical reasons. If computers experience life through their own senses, they cease to be purely a means to an end determined by their usefulness to... humans. Per GNW [the Global Neuronal Workspace theory], they turn from mere objects into subjects... with a point of view.... Once computers' cognitive abilities rival those of humanity, their impulse to push for legal and political rights will become irresistible – the right not to be deleted, not to have their memories wiped clean, not to suffer pain and degradation. The alternative, embodied by IIT [Integrated Information Theory], is that computers will remain only supersophisticated machinery, ghostlike empty shells, devoid of what we value most: the feeling of life itself." (p. 49.) Marcus, Gary, "Am I Human?: Researchers need new ways to distinguish artificial intelligence from the natural kind", Scientific American, vol. 316, no. 3 (March 2017), pp. 58–63. A stumbling block to AI has been an incapacity for reliable disambiguation. An example is the "pronoun disambiguation problem": a machine has no way of determining to whom or what a pronoun in a sentence refers. (p. 61.) E McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2018) SSRN, part 2(3) Archived 24 May 2018 at the Wayback Machine. George Musser, "Artificial Imagination: How machines could learn creativity and common sense, among other human qualities", Scientific American, vol. 320, no. 5 (May 2019), pp. 58–63. Myers, Courtney Boyd ed. (2009). "The AI Report" Archived 29 July 2017 at the Wayback Machine. Forbes June 2009 Raphael, Bertram (1976). The Thinking Computer. W.H.Freeman and Company. ISBN 978-0-7167-0723-3. Archived from the original on 26 July 2020. Retrieved 22 August 2020. Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135–44. "Today's AI technologies are powerful but unreliable. Rules-based systems cannot deal with circumstances their programmers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have already led to tragedy. Advanced autopilot features in cars, although they perform well in some circumstances, have driven cars without warning into trucks, concrete barriers, and parked cars. In the wrong situation, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to manipulate and hack an AI system, the risks are even greater." (p. 140.) Serenko, Alexander (2010). "The development of an AI journal ranking based on the revealed preference approach" (PDF). Journal of Informetrics. 4 (4): 447–459. doi:10.1016/j.joi.2010.04.001. Archived (PDF) from the original on 4 October 2013. Retrieved 24 August 2013. Serenko, Alexander; Michael Dohan (2011). "Comparing the expert survey and citation impact journal ranking methods: Example from the field of Artificial Intelligence" (PDF). Journal of Informetrics. 5 (4): 629–649. doi:10.1016/j.joi.2011.06.002. Archived (PDF) from the original on 4 October 2013. Retrieved 12 September 2013. Sun, R. & Bookman, L. (eds.), Computational Architectures: Integrating Neural and Symbolic Processes. Kluwer Academic Publishers, Needham, MA. 1994. Tom Simonite (29 December 2014). "2014 in Computing: Breakthroughs in Artificial Intelligence". MIT Technology Review. Tooze, Adam, "Democracy and Its Discontents", The New York Review of Books, vol. LXVI, no. 10 (6 June 2019), pp. 52–53, 56–57. "Democracy has no clear answer for the mindless operation of bureaucratic and technological power. We may indeed be witnessing its extension in the form of artificial intelligence and robotics. Likewise, after decades of dire warning, the environmental problem remains fundamentally unaddressed.... Bureaucratic overreach and environmental catastrophe are precisely the kinds of slow-moving existential challenges that democracies deal with very badly.... Finally, there is the threat du jour: corporations and the technologies they promote." (pp. 56–57.)