-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathann_benchmark.yaml
82 lines (72 loc) · 2.1 KB
/
ann_benchmark.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
float:
- name: nmslib
library: nmslib
method: [hnsw]
space: [cosinesimil,l2,l1]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
- name: hnswlib
library: hnswlib
method: [hnswlib]
space: [cosine,l2,ip]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
ef_construction:
query_args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
- name: bruteforce blas
library: sklearn.neighbors
algorithm: [brute]
metric: [minkowski,euclidean,cosine,manhattan,cityblock]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
- name: balltree
library: sklearn.neighbors
metric: [minkowski,euclidean,l2,manhattan,cityblock]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
leaf_size:
query_args: [[10, 20, 40, 100, 200, 400, 1000]]
- name: kdtree
library: sklearn.neighbors
metric: [minkowski,euclidean,l2,manhattan,cityblock]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
leaf_size:
query_args: [[10, 20, 40, 100, 200, 400, 1000]]
- name: ckdtree
library: scipy.spatial
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
leaf_size:
query_args: [[10, 20, 40, 100, 200, 400, 1000]]
- name: annoy
library: annoy
metric: [euclidean,manhattan]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
n_trees:
query_args: [[10,100, 200, 400, 1000, 2000, 4000, 10000, 20000, 40000, 100000,200000, 400000]]
- name: faiss
library: annoy
metric: [l2]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
- name: rpforest
library: rpforest
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]
- name: nearpy
library: nearpy
metric: [euclidean]
run_groups:
K:
query_args: [[10,50,100,300,400,500,1000,2000,2500,3000]]