-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoding_ex1_part1.py
256 lines (181 loc) · 10.1 KB
/
coding_ex1_part1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# version 0.0
# Jose Cuaran
import math
import numpy as np
import rclpy
from rclpy.node import Node
#from rclpy.clock import Clock
from geometry_msgs.msg import TransformStamped
from tf2_ros import TransformBroadcaster
from std_msgs.msg import String, Float32
from nav_msgs.msg import Odometry
from mobile_robotics.utils import quaternion_from_euler, lonlat2xyz #edit according to your package's name
class OdometryNode(Node):
# Initialize some variables
gyro_yaw = 0.0
# These are linear velocities, so I don't need to do r*theta to find
blspeed = 0.0 # back left wheel speed
flspeed = 0.0 # front left wheel speed
brspeed = 0.0
frspeed = 0.0
x = 0.0 # x robot's position
y = 0.0 # y robot's position
theta = np.pi/2 # heading angle, setting as pi/2 to start to line up with GPS measurements
l_wheels = 0.3 # Distance between right and left wheels
last_time = 0.0
current_time = 0.0
def __init__(self):
super().__init__('minimal_subscriber')
# Declare subscribers to all the topics in the rosbag file, like in the example below. Add the corresponding callback functions.
# your code here
self.subscription_Gyro_yaw = self.create_subscription(Float32, 'Gyro_yaw', self.callback_Gy, 10)
self.subscription_Gyro_roll = self.create_subscription(Float32, 'Gyro_roll', self.callback_Gr, 10)
self.subscription_Gyro_pitch = self.create_subscription(Float32, 'Gyro_pitch', self.callback_Gp, 10)
self.subsription_Accel_y = self.create_subscription(Float32, 'Accely', self.callback_Ay, 10)
self.subscription_Accel_x = self.create_subscription(Float32, 'Accelx', self.callback_Ax, 10)
self.subscription_Accel_z = self.create_subscription(Float32, 'Accelz', self.callback_Az, 10)
self.subscription_Bls = self.create_subscription(Float32, 'Blspeed', self.callback_Blspeed, 10)
self.subscription_Brs = self.create_subscription(Float32, 'Brspeed', self.callback_Brspeed, 10)
self.subscription_Fls = self.create_subscription(Float32, 'Flspeed', self.callback_Flspeed, 10)
self.subscription_Frs = self.create_subscription(Float32, 'Frspeed', self.callback_Frspeed, 10)
self.subscription_lat = self.create_subscription(Float32, 'latitude', self.callback_lat, 10)
self.subscription_long = self.create_subscription(Float32, 'longitude', self.callback_long, 10)
self.last_time = self.get_clock().now().nanoseconds/1e9
self.odom_pub = self.create_publisher(Odometry, 'odom', 10) #keep in mind how to declare publishers for next assignments
self.timer = self.create_timer(0.1, self.timer_callback_odom) #It creates a timer to periodically publish the odometry.
self.tf_broadcaster = TransformBroadcaster(self) # To broadcast the transformation between coordinate frames.
self.file_object_results = open("results_part1.txt", "w+")
self.timer2 = self.create_timer(0.1, self.callback_write_txt_file) #Another timer to record some results in a .txt file
def callback_Gy(self, msg):
self.gyro_yaw = msg.data
def callback_Gr(self, msg):
pass
def callback_Gp(self, msg):
pass
def callback_Ay(self, msg):
pass
def callback_Ax(self, msg):
pass
def callback_Az(self, msg):
pass
def callback_Blspeed(self, msg):
self.blspeed = msg.data
def callback_Brspeed(self, msg):
self.brspeed = msg.data
def callback_Flspeed(self, msg):
self.flspeed = msg.data
def callback_Frspeed(self, msg):
self.frspeed = msg.data
def callback_lat(self, msg):
pass
def callback_long(self, msg):
pass
def conjugate_quaternion(self, q):
# Returns the conjugate of a given quaternion
return [-q[0], -q[1], -q[2], q[3]]
def quat_rotation(self,q,v):
# returns the result of applying the L(v) = qvq* transformation. Uses matrix form to make it simpler.
# q should be a python list of length 4
q0,q1,q2,q3 = q
Q = np.array([[2*q0**2 - 1 + 2*q1**2, 2*q1*q2 - 2*q0*q3, 2*q1*q3 + 2*q0*q2],
[2*q1*q2 + 2*q0*q3, 2*q0**2 - 1 + 2*q2**2, 2*q2*q3 - 2*q0*q1],
[2*q1*q3 - 2*q0*q2, 2*q2*q3 + 2*q0*q1, 2*q0**2 - 1 + 2*q3**2]])
return Q@v
def timer_callback_odom(self):
'''
Compute the linear and angular velocity of the robot using the differential-drive robot kinematics
Perform Euler integration to find the position x and y of the robot
'''
self.current_time = self.get_clock().now().nanoseconds/1e9
dt = self.current_time - self.last_time # DeltaT
vl = (self.blspeed + self.flspeed)/2.0 # Average Left-wheels speed
vr = (self.brspeed + self.frspeed)/2.0 # Average right-wheels speed
v = (vl + vr) / 2.0 # ... Linear velocity of the robot -> can only move in the direction the robot is pointing (dubins car assumption)
# w = (vl - vr) / (self.l_wheels) # ... Angular velocity of the robot = angular velocity or right - angular velocity of left.
w = self.gyro_yaw
# Now time to do some Euler integration!
# ASSUMPTION: This x & y is in the global (inertial) frame . . .
# V vector is pointing in the heading direction, take sin and cos to get updates to x & y
self.x = self.x + dt*v*np.cos(self.theta) # Position is a function of linear velocity and time, difference in these velocities will contribute to ang. vel.
self.y = self.y + dt*v*np.sin(self.theta)
# ...Heading angle -> Feel like I could calculate this in two ways:
# 1. by integrating gyro data (gyrd acceleration) to theta
# 2. tracking with angular velocity of robot (comes from encoders on the wheel), integrating that -> will do this for now
self.theta = (self.theta + (dt*w)) # have to keep this in range of pi to -pi for quaternion transformation
if (self.theta > np.pi):
diff = self.theta - np.pi
self.theta = -np.pi + diff
elif(self.theta < -np.pi):
diff = -np.pi - self.theta # should always be positive
self.theta = np.pi - diff
position = [self.x, self.y, self.theta]
quater = quaternion_from_euler(0.0, 0.0, self.theta)
print("position: ", position)
print("orientation: ", quater)
# We need to set an odometry message and publish the transformation between two coordinate frames
# Further info about odometry message: https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html
# Further info about tf2: https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html
# Further info about coordinate frames in ROS: https://www.ros.org/reps/rep-0105.html
frame_id = 'odom'
child_frame_id = 'base_link'
self.broadcast_tf(position, quater, frame_id, child_frame_id) # Before creating the odometry message, go to the broadcast_tf function and complete it.
odom = Odometry()
odom.header.frame_id = frame_id
odom.header.stamp = self.get_clock().now().to_msg()
# let me actually calculate the global positon after the rotation now . . .
# qstar = self.conjugate_quaternion(quater)
# pose = self.quat_rotation(qstar, position) # passing qstar because I want to rotate coordinate frame
# print("transformation lead to pose: ", pose)
# set the pose. Uncomment next lines
odom.pose.pose.position.x = self.x # ...
odom.pose.pose.position.y = self.y # ...
odom.pose.pose.position.z = 0.0 # should always be zero
# This doesn't make sense to me ... how can we represent it's orientation with a quaternion? The transformation requires qvq* ...
odom.pose.pose.orientation.x = quater[0]
odom.pose.pose.orientation.y = quater[1]
odom.pose.pose.orientation.z = quater[2]
odom.pose.pose.orientation.w = quater[3]
# set the velocities. Uncomment next lines
odom.child_frame_id = child_frame_id
odom.twist.twist.linear.x = v*np.cos(self.theta) # v* cos of heading
odom.twist.twist.linear.y = v*np.sin(self.theta) # v* sin of heading
odom.twist.twist.linear.z = 0.0 # no vertical velocity
odom.twist.twist.angular.x = 0.0 # ... ASSUMING 0
odom.twist.twist.angular.y = 0.0 # ... ASSUMING 0
odom.twist.twist.angular.z = w # angular velocity for yaw
self.odom_pub.publish(odom)
self.last_time = self.current_time
def broadcast_tf(self, pos, quater, frame_id, child_frame_id):
'''
It continuously publishes the transformation between two reference frames.
Complete the translation and the rotation of this transformation
'''
t = TransformStamped()
t.header.stamp = self.get_clock().now().to_msg()
t.header.frame_id = frame_id
t.child_frame_id = child_frame_id
# Uncomment next lines and complete the code -> Don't think there is any translation
# the translation needed to reach robot coordinate frame from global
t.transform.translation.x = pos[0] # ...
t.transform.translation.y = pos[1] # ...
t.transform.translation.z = 0.0 # ...
# Think it wants quaternion
# the quat used to rotate to the robot coordinate frame from global
t.transform.rotation.x = quater[0]
t.transform.rotation.y = quater[1]
t.transform.rotation.z = quater[2]
t.transform.rotation.w = quater[3]
# Send the transformation
self.tf_broadcaster.sendTransform(t)
def callback_write_txt_file(self):
if (self.x != 0 or self.y != 0 or self.theta != 0):
self.file_object_results.write(str(self.current_time) + " " + str(self.x)+" "+str(self.y)+" "+str(self.theta)+"\n")
def main(args=None):
rclpy.init(args=args)
odom_node = OdometryNode()
rclpy.spin(odom_node)
odom_node.file_object_results.close()
odom_node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()