From e6536ade5392745e19ea0db09c48761e4c22f3de Mon Sep 17 00:00:00 2001 From: Anton Date: Thu, 30 Sep 2021 09:22:09 +0200 Subject: [PATCH 1/2] unlfs --- .gitattributes | 2 - LICENSE.md | 21 - README.md | 69 - assets/AudioCLIP-Full-Training.pt | 3 - assets/AudioCLIP-Partial-Training.pt | 3 - assets/CLIP.pt | 3 - assets/ESRNXFBSP.pt | 3 - assets/README.md | 1 - assets/bpe_simple_vocab_16e6.txt.gz | 3 - demo/AudioCLIP.ipynb | 11486 --------------------- demo/audio/alarm_clock_3-120526-B-37.wav | Bin 441044 -> 0 bytes demo/audio/car_horn_1-24074-A-43.wav | Bin 441044 -> 0 bytes demo/audio/cat_3-95694-A-5.wav | Bin 441044 -> 0 bytes demo/audio/coughing_1-58792-A-24.wav | Bin 441044 -> 0 bytes demo/audio/thunder_3-144891-B-19.wav | Bin 441044 -> 0 bytes demo/images/cars_1.jpg | Bin 788346 -> 0 bytes demo/images/cars_2.jpg | Bin 303054 -> 0 bytes demo/images/cat_1.jpg | Bin 179723 -> 0 bytes demo/images/cat_2.jpg | Bin 326604 -> 0 bytes demo/images/clock_1.jpg | Bin 81111 -> 0 bytes demo/images/clock_2.jpg | Bin 132391 -> 0 bytes demo/images/coughing_1.jpg | Bin 150803 -> 0 bytes demo/images/coughing_2.jpg | Bin 495523 -> 0 bytes demo/images/lightning_1.jpg | Bin 460535 -> 0 bytes demo/images/lightning_2.jpg | Bin 533111 -> 0 bytes ignite_trainer/README.md | 3 - ignite_trainer/__init__.py | 16 - ignite_trainer/_interfaces.py | 37 - ignite_trainer/_trainer.py | 763 -- ignite_trainer/_utils.py | 221 - ignite_trainer/_visdom.py | 191 - ignite_trainer/version.py | 1 - images/AudioCLIP-Structure.png | Bin 615806 -> 0 bytes images/AudioCLIP-Workflow.png | Bin 2497727 -> 0 bytes main.py | 11 - model/__init__.py | 3 - model/audioclip.py | 255 - model/clip/__init__.py | 5 - model/clip/clip.py | 193 - model/clip/model.py | 433 - model/esresnet/__init__.py | 8 - model/esresnet/attention.py | 40 - model/esresnet/base.py | 708 -- model/esresnet/fbsp.py | 247 - protocols/README.md | 3 - protocols/audioclip-esc50.json | 108 - protocols/audioclip-us8k.json | 108 - requirements.txt | 11 - utils/__init__.py | 7 - utils/datasets/__init__.py | 4 - utils/datasets/esc50.py | 128 - utils/datasets/us8k.py | 167 - utils/simple_tokenizer.py | 134 - utils/transforms.py | 199 - 54 files changed, 15598 deletions(-) delete mode 100644 .gitattributes delete mode 100644 LICENSE.md delete mode 100644 README.md delete mode 100644 assets/AudioCLIP-Full-Training.pt delete mode 100644 assets/AudioCLIP-Partial-Training.pt delete mode 100644 assets/CLIP.pt delete mode 100644 assets/ESRNXFBSP.pt delete mode 100644 assets/README.md delete mode 100644 assets/bpe_simple_vocab_16e6.txt.gz delete mode 100644 demo/AudioCLIP.ipynb delete mode 100644 demo/audio/alarm_clock_3-120526-B-37.wav delete mode 100644 demo/audio/car_horn_1-24074-A-43.wav delete mode 100644 demo/audio/cat_3-95694-A-5.wav delete mode 100644 demo/audio/coughing_1-58792-A-24.wav delete mode 100644 demo/audio/thunder_3-144891-B-19.wav delete mode 100644 demo/images/cars_1.jpg delete mode 100644 demo/images/cars_2.jpg delete mode 100644 demo/images/cat_1.jpg delete mode 100644 demo/images/cat_2.jpg delete mode 100644 demo/images/clock_1.jpg delete mode 100644 demo/images/clock_2.jpg delete mode 100644 demo/images/coughing_1.jpg delete mode 100644 demo/images/coughing_2.jpg delete mode 100644 demo/images/lightning_1.jpg delete mode 100644 demo/images/lightning_2.jpg delete mode 100644 ignite_trainer/README.md delete mode 100644 ignite_trainer/__init__.py delete mode 100644 ignite_trainer/_interfaces.py delete mode 100644 ignite_trainer/_trainer.py delete mode 100644 ignite_trainer/_utils.py delete mode 100644 ignite_trainer/_visdom.py delete mode 100644 ignite_trainer/version.py delete mode 100644 images/AudioCLIP-Structure.png delete mode 100644 images/AudioCLIP-Workflow.png delete mode 100644 main.py delete mode 100644 model/__init__.py delete mode 100644 model/audioclip.py delete mode 100644 model/clip/__init__.py delete mode 100644 model/clip/clip.py delete mode 100644 model/clip/model.py delete mode 100644 model/esresnet/__init__.py delete mode 100644 model/esresnet/attention.py delete mode 100644 model/esresnet/base.py delete mode 100644 model/esresnet/fbsp.py delete mode 100644 protocols/README.md delete mode 100644 protocols/audioclip-esc50.json delete mode 100644 protocols/audioclip-us8k.json delete mode 100644 requirements.txt delete mode 100644 utils/__init__.py delete mode 100644 utils/datasets/__init__.py delete mode 100644 utils/datasets/esc50.py delete mode 100644 utils/datasets/us8k.py delete mode 100644 utils/simple_tokenizer.py delete mode 100644 utils/transforms.py diff --git a/.gitattributes b/.gitattributes deleted file mode 100644 index bb29d8c..0000000 --- a/.gitattributes +++ /dev/null @@ -1,2 +0,0 @@ -*.pt filter=lfs diff=lfs merge=lfs -text -*.gz filter=lfs diff=lfs merge=lfs -text diff --git a/LICENSE.md b/LICENSE.md deleted file mode 100644 index 3d555f6..0000000 --- a/LICENSE.md +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2021 Andrey Guzhov - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/README.md b/README.md deleted file mode 100644 index 07b1cb2..0000000 --- a/README.md +++ /dev/null @@ -1,69 +0,0 @@ -# AudioCLIP -## Extending [CLIP](https://github.com/openai/CLIP) to Image, Text and Audio - -![Overview of AudioCLIP](images/AudioCLIP-Structure.png) - -This repository contains implementation of the models described in the paper [arXiv:2106.13043](https://arxiv.org/abs/2106.13043). -This work is based on our previous works: -* [ESResNe(X)t-fbsp: Learning Robust Time-Frequency Transformation of Audio (2021)](https://github.com/AndreyGuzhov/ESResNeXt-fbsp). -* [ESResNet: Environmental Sound Classification Based on Visual Domain Models (2020)](https://github.com/AndreyGuzhov/ESResNet). - -### Abstract - -In the past, the rapidly evolving field of sound classification greatly benefited from the application of methods from other domains. -Today, we observe the trend to fuse domain-specific tasks and approaches together, which provides the community with new outstanding models. - -In this work, we present an extension of the CLIP model that handles audio in addition to text and images. -Our proposed model incorporates the ESResNeXt audio-model into the CLIP framework using the AudioSet dataset. -Such a combination enables the proposed model to perform bimodal and unimodal classification and querying, while keeping CLIP's ability to generalize to unseen datasets in a zero-shot inference fashion. - -AudioCLIP achieves new state-of-the-art results in the Environmental Sound Classification (ESC) task, out-performing other approaches by reaching accuracies of 90.07% on the UrbanSound8K and 97.15% on the ESC-50 datasets. -Further it sets new baselines in the zero-shot ESC-task on the same datasets (68.78% and 69.40%, respectively). - -Finally, we also assess the cross-modal querying performance of the proposed model as well as the influence of full and partial training on the results. -For the sake of reproducibility, our code is published. - -### Downloading Pre-Trained Weights - -The pre-trained model can be downloaded from the [releases](https://github.com/AndreyGuzhov/AudioCLIP/releases). - - # AudioCLIP trained on AudioSet (text-, image- and audio-head simultaneously) - wget https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/AudioCLIP-Full-Training.pt - -#### Important Note -If you use AudioCLIP as a part of GAN-based image generation, please consider downloading the [partially](https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/AudioCLIP-Partial-Training.pt) trained model, as its audio embeddings are compatible with the vanilla [CLIP](https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt) (based on ResNet-50). - -### Demo on Use Cases - -Jupyter Notebook with sample use cases is available under the [link](demo/AudioCLIP.ipynb). - -![Overview of AudioCLIP](images/AudioCLIP-Workflow.png) - -### How to Run the Model - -The required Python version is >= 3.7. - -#### AudioCLIP - -##### On the [ESC-50](https://github.com/karolpiczak/ESC-50) dataset - python main.py --config protocols/audioclip-esc50.json --Dataset.args.root /path/to/ESC50 - -##### On the [UrbanSound8K](https://urbansounddataset.weebly.com/) dataset - python main.py --config protocols/audioclip-us8k.json --Dataset.args.root /path/to/UrbanSound8K - -### More About AudioCLIP - -[The AI Epiphany](https://www.youtube.com/channel/UCj8shE7aIn4Yawwbo2FceCQ) channel made a great video about AudioCLIP. Learn more [here](https://www.youtube.com/watch?v=3SLQVh9ABDM). - -### Cite Us - -``` -@misc{guzhov2021audioclip, - title={AudioCLIP: Extending CLIP to Image, Text and Audio}, - author={Andrey Guzhov and Federico Raue and Jörn Hees and Andreas Dengel}, - year={2021}, - eprint={2106.13043}, - archivePrefix={arXiv}, - primaryClass={cs.SD} -} -``` diff --git a/assets/AudioCLIP-Full-Training.pt b/assets/AudioCLIP-Full-Training.pt deleted file mode 100644 index 3d85a17..0000000 --- a/assets/AudioCLIP-Full-Training.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2441d35b353352c8b1bbfb8f7c687f46314c3d2909e940eaf763b8c17f632c44 -size 537302068 diff --git a/assets/AudioCLIP-Partial-Training.pt b/assets/AudioCLIP-Partial-Training.pt deleted file mode 100644 index fc67480..0000000 --- a/assets/AudioCLIP-Partial-Training.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1921885b6c3b5de0619f2ef4a9700ecbade758a398b34eb064230c30baef0c75 -size 537302068 diff --git a/assets/CLIP.pt b/assets/CLIP.pt deleted file mode 100644 index f5823d4..0000000 --- a/assets/CLIP.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:124e6d59d54c0837c456c953b3147adf438a21570d5c5b01ad83f6ad3e78d15e -size 408415159 diff --git a/assets/ESRNXFBSP.pt b/assets/ESRNXFBSP.pt deleted file mode 100644 index ec3bb0a..0000000 --- a/assets/ESRNXFBSP.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:acfcc6b0a0f07025cc660ed6dcf9b5a05fbd7c8ebf65edaa0a81d88a92ff6834 -size 124795647 diff --git a/assets/README.md b/assets/README.md deleted file mode 100644 index a84a522..0000000 --- a/assets/README.md +++ /dev/null @@ -1 +0,0 @@ -This folder contains snapshots of the pre-trained models. diff --git a/assets/bpe_simple_vocab_16e6.txt.gz b/assets/bpe_simple_vocab_16e6.txt.gz deleted file mode 100644 index 36a1585..0000000 --- a/assets/bpe_simple_vocab_16e6.txt.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a -size 1356917 diff --git a/demo/AudioCLIP.ipynb b/demo/AudioCLIP.ipynb deleted file mode 100644 index f3f0713..0000000 --- a/demo/AudioCLIP.ipynb +++ /dev/null @@ -1,11486 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "11bbf255", - "metadata": {}, - "source": [ - "# AudioCLIP Demo\n", - "\n", - "Authored by [Andrey Guzhov](https://github.com/AndreyGuzhov)\n", - "\n", - "This notebook covers common use cases of AudioCLIP and provides the typical workflow.\n", - "Below, you will find information on:\n", - "\n", - "0. [Binary Assets](#Downloading-Binary-Assets)\n", - "1. [Required imports](#Imports-&-Constants)\n", - "2. [Model Instantiation](#Model-Instantiation)\n", - "3. [Data Transformation](#Audio-&-Image-Transforms)\n", - "4. Data Loading\n", - " * [Audio](#Audio-Loading)\n", - " * [Images](#Image-Loading)\n", - "5. [Preparation of the Input](#Input-Preparation)\n", - "6. [Acquisition of the Output](#Obtaining-Embeddings)\n", - "7. [Normalization of Embeddings](#Normalization-of-Embeddings)\n", - "8. [Calculation of Logit Scales](#Obtaining-Logit-Scales)\n", - "9. [Computation of Similarities](#Computing-Similarities)\n", - "10. Performing Tasks\n", - " 1. [Classification](#Classification)\n", - " 1. [Audio](#Audio)\n", - " 2. [Images](#Images)\n", - " 2. [Querying](#Querying)\n", - " 1. [Audio by Text](#Audio-by-Text)\n", - " 2. [Images by Text](#Images-by-Text)\n", - " 3. [Audio by Images](#Audio-by-Images)\n", - " 4. [Images by Audio](#Images-by-Audio)" - ] - }, - { - "cell_type": "markdown", - "id": "e6a262a9", - "metadata": {}, - "source": [ - "## Downloading Binary Assets" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "86673fce", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/bpe_simple_vocab_16e6.txt.gz\n", - "Resolving github.com (github.com)... 140.82.121.4\n", - "Connecting to github.com (github.com)|140.82.121.4|:443... connected.\n", - "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://github-releases.githubusercontent.com/379928229/537c6c80-d8dc-11eb-8609-8a37715fa2f0?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20210705%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210705T112726Z&X-Amz-Expires=300&X-Amz-Signature=60cbfe9d6a61c553724a3dd7e1d4afeaaf9e4559e06aa2b9444ae2d5ccc2d66a&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=379928229&response-content-disposition=attachment%3B%20filename%3Dbpe_simple_vocab_16e6.txt.gz&response-content-type=application%2Foctet-stream [following]\n", - "https://github-releases.githubusercontent.com/379928229/537c6c80-d8dc-11eb-8609-8a37715fa2f0?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20210705%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210705T112726Z&X-Amz-Expires=300&X-Amz-Signature=60cbfe9d6a61c553724a3dd7e1d4afeaaf9e4559e06aa2b9444ae2d5ccc2d66a&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=379928229&response-content-disposition=attachment%3B%20filename%3Dbpe_simple_vocab_16e6.txt.gz&response-content-type=application%2Foctet-stream\n", - "Resolving github-releases.githubusercontent.com (github-releases.githubusercontent.com)... 185.199.108.154, 185.199.110.154, 185.199.111.154, ...\n", - "Connecting to github-releases.githubusercontent.com (github-releases.githubusercontent.com)|185.199.108.154|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 1356917 (1.3M) [application/octet-stream]\n", - "Saving to: '../assets/bpe_simple_vocab_16e6.txt.gz'\n", - "\n", - " 0K .......... .......... .......... .......... .......... 3% 1.80M 1s\n", - " 50K .......... .......... .......... .......... .......... 7% 3.54M 1s\n", - " 100K .......... .......... .......... .......... .......... 11% 6.38M 0s\n", - " 150K .......... .......... .......... .......... .......... 15% 4.37M 0s\n", - " 200K .......... .......... .......... .......... .......... 18% 6.32M 0s\n", - " 250K .......... .......... .......... .......... .......... 22% 4.12M 0s\n", - " 300K .......... .......... .......... .......... .......... 26% 10.5M 0s\n", - " 350K .......... .......... .......... .......... .......... 30% 10.2M 0s\n", - " 400K .......... .......... .......... .......... .......... 33% 11.0M 0s\n", - " 450K .......... .......... .......... .......... .......... 37% 12.1M 0s\n", - " 500K .......... .......... .......... .......... .......... 41% 8.48M 0s\n", - " 550K .......... .......... .......... .......... .......... 45% 14.2M 0s\n", - " 600K .......... .......... .......... .......... .......... 49% 11.0M 0s\n", - " 650K .......... .......... .......... .......... .......... 52% 8.81M 0s\n", - " 700K .......... .......... .......... .......... .......... 56% 10.7M 0s\n", - " 750K .......... .......... .......... .......... .......... 60% 1.28M 0s\n", - " 800K .......... .......... .......... .......... .......... 64% 25.7M 0s\n", - " 850K .......... .......... .......... .......... .......... 67% 88.6M 0s\n", - " 900K .......... .......... .......... .......... .......... 71% 14.5M 0s\n", - " 950K .......... .......... .......... .......... .......... 75% 19.5M 0s\n", - " 1000K .......... .......... .......... .......... .......... 79% 14.1M 0s\n", - " 1050K .......... .......... .......... .......... .......... 83% 125M 0s\n", - " 1100K .......... .......... .......... .......... .......... 86% 123M 0s\n", - " 1150K .......... .......... .......... .......... .......... 90% 137M 0s\n", - " 1200K .......... .......... .......... .......... .......... 94% 150M 0s\n", - " 1250K .......... .......... .......... .......... .......... 98% 10.8M 0s\n", - " 1300K .......... .......... ..... 100% 143M=0.2s\n", - "\n", - "(7.31 MB/s) - '../assets/bpe_simple_vocab_16e6.txt.gz' saved [1356917/1356917]\n", - "\n", - "https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/AudioCLIP-Full-Training.pt\n", - "Resolving github.com (github.com)... 140.82.121.4\n", - "Connecting to github.com (github.com)|140.82.121.4|:443... connected.\n", - "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://github-releases.githubusercontent.com/379928229/4d3ac000-d8dd-11eb-881f-149b9253d1ff?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20210705%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210705T112836Z&X-Amz-Expires=300&X-Amz-Signature=b3390ee6b690672e0d9f62b8cb55ca67ad7b9487ad2bfb54d52bc41f5c00ba5b&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=379928229&response-content-disposition=attachment%3B%20filename%3DAudioCLIP-Full-Training.pt&response-content-type=application%2Foctet-stream [following]\n", - "https://github-releases.githubusercontent.com/379928229/4d3ac000-d8dd-11eb-881f-149b9253d1ff?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20210705%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210705T112836Z&X-Amz-Expires=300&X-Amz-Signature=b3390ee6b690672e0d9f62b8cb55ca67ad7b9487ad2bfb54d52bc41f5c00ba5b&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=379928229&response-content-disposition=attachment%3B%20filename%3DAudioCLIP-Full-Training.pt&response-content-type=application%2Foctet-stream\n", - "Resolving github-releases.githubusercontent.com (github-releases.githubusercontent.com)... 185.199.108.154, 185.199.110.154, 185.199.111.154, ...\n", - "Connecting to github-releases.githubusercontent.com (github-releases.githubusercontent.com)|185.199.108.154|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 537302068 (512M) [application/octet-stream]\n", - "Saving to: '../assets/AudioCLIP-Full-Training.pt'\n", - "\n", - " 0K .......... .......... .......... .......... .......... 0% 1.85M 4m37s\n", - " 50K .......... .......... .......... .......... .......... 0% 14.4M 2m36s\n", - " 100K .......... .......... .......... .......... .......... 0% 14.6M 1m56s\n", - " 150K .......... .......... .......... .......... .......... 0% 2.27M 2m23s\n", - " 200K .......... .......... .......... .......... .......... 0% 7.15M 2m9s\n", - " 250K .......... .......... .......... .......... .......... 0% 7.32M 1m59s\n", - " 300K .......... .......... .......... .......... .......... 0% 3.03M 2m6s\n", - " 350K .......... .......... .......... .......... .......... 0% 4.89M 2m4s\n", - " 400K .......... .......... .......... .......... .......... 0% 7.04M 1m58s\n", - " 450K .......... .......... .......... .......... .......... 0% 4.65M 1m57s\n", - " 500K .......... .......... .......... .......... .......... 0% 6.28M 1m54s\n", - " 550K .......... .......... .......... .......... .......... 0% 8.61M 1m49s\n", - " 600K .......... .......... .......... .......... .......... 0% 4.19M 1m50s\n", - " 650K .......... .......... .......... .......... .......... 0% 6.57M 1m48s\n", - " 700K .......... .......... .......... .......... .......... 0% 6.84M 1m46s\n", - " 750K .......... .......... .......... .......... .......... 0% 6.17M 1m44s\n", - " 800K .......... .......... .......... .......... .......... 0% 6.98M 1m42s\n", - " 850K .......... .......... .......... .......... .......... 0% 6.19M 1m41s\n", - " 900K .......... .......... .......... .......... .......... 0% 5.89M 1m41s\n", - " 950K .......... .......... .......... .......... .......... 0% 8.83M 98s\n", - " 1000K .......... .......... .......... .......... .......... 0% 5.80M 98s\n", - " 1050K .......... .......... .......... .......... .......... 0% 7.00M 97s\n", - " 1100K .......... .......... .......... .......... .......... 0% 5.25M 97s\n", - " 1150K .......... .......... .......... .......... .......... 0% 6.29M 96s\n", - " 1200K .......... .......... .......... .......... .......... 0% 9.85M 94s\n", - " 1250K .......... .......... .......... .......... .......... 0% 9.05M 93s\n", - " 1300K .......... .......... .......... .......... .......... 0% 6.32M 92s\n", - " 1350K .......... .......... .......... .......... .......... 0% 5.69M 92s\n", - " 1400K .......... .......... .......... .......... .......... 0% 7.23M 92s\n", - " 1450K .......... .......... .......... .......... .......... 0% 9.19M 90s\n", - " 1500K .......... .......... .......... .......... .......... 0% 8.14M 89s\n", - " 1550K .......... .......... .......... .......... .......... 0% 6.56M 89s\n", - " 1600K .......... .......... .......... .......... .......... 0% 7.57M 88s\n", - " 1650K .......... .......... .......... .......... .......... 0% 10.2M 87s\n", - " 1700K .......... .......... .......... .......... .......... 0% 9.12M 86s\n", - " 1750K .......... .......... .......... .......... .......... 0% 8.55M 86s\n", - " 1800K .......... .......... .......... .......... .......... 0% 6.36M 86s\n", - " 1850K .......... .......... .......... .......... .......... 0% 7.26M 85s\n", - " 1900K .......... .......... .......... .......... .......... 0% 9.87M 84s\n", - " 1950K .......... .......... .......... .......... .......... 0% 9.34M 83s\n", - " 2000K .......... .......... .......... .......... .......... 0% 7.89M 83s\n", - " 2050K .......... .......... .......... .......... .......... 0% 8.89M 82s\n", - " 2100K .......... .......... .......... .......... .......... 0% 8.37M 82s\n", - " 2150K .......... .......... .......... .......... .......... 0% 9.39M 81s\n", - " 2200K .......... .......... .......... .......... .......... 0% 7.03M 81s\n", - " 2250K .......... .......... .......... .......... .......... 0% 8.09M 81s\n", - " 2300K .......... .......... .......... .......... .......... 0% 10.0M 80s\n", - " 2350K .......... .......... .......... .......... .......... 0% 9.15M 80s\n", - " 2400K .......... .......... .......... .......... .......... 0% 10.7M 79s\n", - " 2450K .......... .......... .......... .......... .......... 0% 8.98M 78s\n", - " 2500K .......... .......... .......... .......... .......... 0% 9.19M 78s\n", - " 2550K .......... .......... .......... .......... .......... 0% 9.94M 77s\n", - " 2600K .......... .......... .......... .......... .......... 0% 8.35M 77s\n", - " 2650K .......... .......... .......... .......... .......... 0% 8.72M 77s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 2700K .......... .......... .......... .......... .......... 0% 11.7M 76s\n", - " 2750K .......... .......... .......... .......... .......... 0% 9.88M 76s\n", - " 2800K .......... .......... .......... .......... .......... 0% 9.96M 75s\n", - " 2850K .......... .......... .......... .......... .......... 0% 9.00M 75s\n", - " 2900K .......... .......... .......... .......... .......... 0% 12.2M 74s\n", - " 2950K .......... .......... .......... .......... .......... 0% 10.0M 74s\n", - " 3000K .......... .......... .......... .......... .......... 0% 7.81M 74s\n", - " 3050K .......... .......... .......... .......... .......... 0% 10.8M 73s\n", - " 3100K .......... .......... .......... .......... .......... 0% 11.3M 73s\n", - " 3150K .......... .......... .......... .......... .......... 0% 8.18M 73s\n", - " 3200K .......... .......... .......... .......... .......... 0% 11.6M 72s\n", - " 3250K .......... .......... .......... .......... .......... 0% 11.7M 72s\n", - " 3300K .......... .......... .......... .......... .......... 0% 11.3M 71s\n", - " 3350K .......... .......... .......... .......... .......... 0% 10.7M 71s\n", - " 3400K .......... .......... .......... .......... .......... 0% 8.89M 71s\n", - " 3450K .......... .......... .......... .......... .......... 0% 9.88M 71s\n", - " 3500K .......... .......... .......... .......... .......... 0% 12.4M 70s\n", - " 3550K .......... .......... .......... .......... .......... 0% 10.7M 70s\n", - " 3600K .......... .......... .......... .......... .......... 0% 11.8M 69s\n", - " 3650K .......... .......... .......... .......... .......... 0% 11.4M 69s\n", - " 3700K .......... .......... .......... .......... .......... 0% 11.4M 69s\n", - " 3750K .......... .......... .......... .......... .......... 0% 11.3M 68s\n", - " 3800K .......... .......... .......... .......... .......... 0% 7.46M 68s\n", - " 3850K .......... .......... .......... .......... .......... 0% 13.6M 68s\n", - " 3900K .......... .......... .......... .......... .......... 0% 11.3M 68s\n", - " 3950K .......... .......... .......... .......... .......... 0% 10.9M 68s\n", - " 4000K .......... .......... .......... .......... .......... 0% 12.3M 67s\n", - " 4050K .......... .......... .......... .......... .......... 0% 10.1M 67s\n", - " 4100K .......... .......... .......... .......... .......... 0% 12.6M 67s\n", - " 4150K .......... .......... .......... .......... .......... 0% 12.0M 66s\n", - " 4200K .......... .......... .......... .......... .......... 0% 8.35M 66s\n", - " 4250K .......... .......... .......... .......... .......... 0% 11.5M 66s\n", - " 4300K .......... .......... .......... .......... .......... 0% 10.4M 66s\n", - " 4350K .......... .......... .......... .......... .......... 0% 11.5M 66s\n", - " 4400K .......... .......... .......... .......... .......... 0% 12.2M 65s\n", - " 4450K .......... .......... .......... .......... .......... 0% 12.2M 65s\n", - " 4500K .......... .......... .......... .......... .......... 0% 8.82M 65s\n", - " 4550K .......... .......... .......... .......... .......... 0% 14.6M 65s\n", - " 4600K .......... .......... .......... .......... .......... 0% 8.96M 64s\n", - " 4650K .......... .......... .......... .......... .......... 0% 8.92M 64s\n", - " 4700K .......... .......... .......... .......... .......... 0% 13.7M 64s\n", - " 4750K .......... .......... .......... .......... .......... 0% 12.2M 64s\n", - " 4800K .......... .......... .......... .......... .......... 0% 11.1M 64s\n", - " 4850K .......... .......... .......... .......... .......... 0% 11.5M 63s\n", - " 4900K .......... .......... .......... .......... .......... 0% 10.4M 63s\n", - " 4950K .......... .......... .......... .......... .......... 0% 13.4M 63s\n", - " 5000K .......... .......... .......... .......... .......... 0% 8.47M 63s\n", - " 5050K .......... .......... .......... .......... .......... 0% 11.6M 63s\n", - " 5100K .......... .......... .......... .......... .......... 0% 11.7M 63s\n", - " 5150K .......... .......... .......... .......... .......... 0% 11.0M 62s\n", - " 5200K .......... .......... .......... .......... .......... 1% 10.9M 62s\n", - " 5250K .......... .......... .......... .......... .......... 1% 12.1M 62s\n", - " 5300K .......... .......... .......... .......... .......... 1% 11.3M 62s\n", - " 5350K .......... .......... .......... .......... .......... 1% 11.2M 62s\n", - " 5400K .......... .......... .......... .......... .......... 1% 8.93M 62s\n", - " 5450K .......... .......... .......... .......... .......... 1% 10.8M 62s\n", - " 5500K .......... .......... .......... .......... .......... 1% 12.3M 61s\n", - " 5550K .......... .......... .......... .......... .......... 1% 11.0M 61s\n", - " 5600K .......... .......... .......... .......... .......... 1% 11.3M 61s\n", - " 5650K .......... .......... .......... .......... .......... 1% 8.95M 61s\n", - " 5700K .......... .......... .......... .......... .......... 1% 13.3M 61s\n", - " 5750K .......... .......... .......... .......... .......... 1% 13.1M 61s\n", - " 5800K .......... .......... .......... .......... .......... 1% 4.84M 61s\n", - " 5850K .......... .......... .......... .......... .......... 1% 193M 61s\n", - " 5900K .......... .......... .......... .......... .......... 1% 12.3M 60s\n", - " 5950K .......... .......... .......... .......... .......... 1% 11.5M 60s\n", - " 6000K .......... .......... .......... .......... .......... 1% 11.2M 60s\n", - " 6050K .......... .......... .......... .......... .......... 1% 12.0M 60s\n", - " 6100K .......... .......... .......... .......... .......... 1% 11.1M 60s\n", - " 6150K .......... .......... .......... .......... .......... 1% 12.3M 60s\n", - " 6200K .......... .......... .......... .......... .......... 1% 7.85M 60s\n", - " 6250K .......... .......... .......... .......... .......... 1% 12.0M 60s\n", - " 6300K .......... .......... .......... .......... .......... 1% 11.5M 59s\n", - " 6350K .......... .......... .......... .......... .......... 1% 12.3M 59s\n", - " 6400K .......... .......... .......... .......... .......... 1% 11.0M 59s\n", - " 6450K .......... .......... .......... .......... .......... 1% 11.0M 59s\n", - " 6500K .......... .......... .......... .......... .......... 1% 11.7M 59s\n", - " 6550K .......... .......... .......... .......... .......... 1% 11.5M 59s\n", - " 6600K .......... .......... .......... .......... .......... 1% 8.43M 59s\n", - " 6650K .......... .......... .......... .......... .......... 1% 11.9M 59s\n", - " 6700K .......... .......... .......... .......... .......... 1% 10.7M 59s\n", - " 6750K .......... .......... .......... .......... .......... 1% 11.2M 58s\n", - " 6800K .......... .......... .......... .......... .......... 1% 9.96M 58s\n", - " 6850K .......... .......... .......... .......... .......... 1% 12.5M 58s\n", - " 6900K .......... .......... .......... .......... .......... 1% 11.0M 58s\n", - " 6950K .......... .......... .......... .......... .......... 1% 13.5M 58s\n", - " 7000K .......... .......... .......... .......... .......... 1% 8.82M 58s\n", - " 7050K .......... .......... .......... .......... .......... 1% 10.4M 58s\n", - " 7100K .......... .......... .......... .......... .......... 1% 11.9M 58s\n", - " 7150K .......... .......... .......... .......... .......... 1% 1.04M 61s\n", - " 7200K .......... .......... .......... .......... .......... 1% 76.2M 60s\n", - " 7250K .......... .......... .......... .......... .......... 1% 230M 60s\n", - " 7300K .......... .......... .......... .......... .......... 1% 263M 60s\n", - " 7350K .......... .......... .......... .......... .......... 1% 122M 59s\n", - " 7400K .......... .......... .......... .......... .......... 1% 183M 59s\n", - " 7450K .......... .......... .......... .......... .......... 1% 2.93M 60s\n", - " 7500K .......... .......... .......... .......... .......... 1% 22.4M 59s\n", - " 7550K .......... .......... .......... .......... .......... 1% 295M 59s\n", - " 7600K .......... .......... .......... .......... .......... 1% 332M 59s\n", - " 7650K .......... .......... .......... .......... .......... 1% 132M 58s\n", - " 7700K .......... .......... .......... .......... .......... 1% 333M 58s\n", - " 7750K .......... .......... .......... .......... .......... 1% 432M 57s\n", - " 7800K .......... .......... .......... .......... .......... 1% 239M 57s\n", - " 7850K .......... .......... .......... .......... .......... 1% 288M 57s\n", - " 7900K .......... .......... .......... .......... .......... 1% 15.9M 57s\n", - " 7950K .......... .......... .......... .......... .......... 1% 10.2M 57s\n", - " 8000K .......... .......... .......... .......... .......... 1% 14.5M 56s\n", - " 8050K .......... .......... .......... .......... .......... 1% 12.1M 56s\n", - " 8100K .......... .......... .......... .......... .......... 1% 11.3M 56s\n", - " 8150K .......... .......... .......... .......... .......... 1% 9.10M 56s\n", - " 8200K .......... .......... .......... .......... .......... 1% 11.3M 56s\n", - " 8250K .......... .......... .......... .......... .......... 1% 10.7M 56s\n", - " 8300K .......... .......... .......... .......... .......... 1% 12.2M 56s\n", - " 8350K .......... .......... .......... .......... .......... 1% 11.3M 56s\n", - " 8400K .......... .......... .......... .......... .......... 1% 11.2M 56s\n", - " 8450K .......... .......... .......... .......... .......... 1% 11.8M 56s\n", - " 8500K .......... .......... .......... .......... .......... 1% 10.8M 56s\n", - " 8550K .......... .......... .......... .......... .......... 1% 11.8M 56s\n", - " 8600K .......... .......... .......... .......... .......... 1% 8.99M 56s\n", - " 8650K .......... .......... .......... .......... .......... 1% 10.6M 56s\n", - " 8700K .......... .......... .......... .......... .......... 1% 11.0M 56s\n", - " 8750K .......... .......... .......... .......... .......... 1% 12.0M 55s\n", - " 8800K .......... .......... .......... .......... .......... 1% 12.1M 55s\n", - " 8850K .......... .......... .......... .......... .......... 1% 10.5M 55s\n", - " 8900K .......... .......... .......... .......... .......... 1% 10.7M 55s\n", - " 8950K .......... .......... .......... .......... .......... 1% 12.2M 55s\n", - " 9000K .......... .......... .......... .......... .......... 1% 8.43M 55s\n", - " 9050K .......... .......... .......... .......... .......... 1% 12.2M 55s\n", - " 9100K .......... .......... .......... .......... .......... 1% 10.7M 55s\n", - " 9150K .......... .......... .......... .......... .......... 1% 11.1M 55s\n", - " 9200K .......... .......... .......... .......... .......... 1% 9.86M 55s\n", - " 9250K .......... .......... .......... .......... .......... 1% 14.5M 55s\n", - " 9300K .......... .......... .......... .......... .......... 1% 11.6M 55s\n", - " 9350K .......... .......... .......... .......... .......... 1% 12.4M 55s\n", - " 9400K .......... .......... .......... .......... .......... 1% 6.84M 55s\n", - " 9450K .......... .......... .......... .......... .......... 1% 17.5M 55s\n", - " 9500K .......... .......... .......... .......... .......... 1% 11.0M 55s\n", - " 9550K .......... .......... .......... .......... .......... 1% 11.1M 55s\n", - " 9600K .......... .......... .......... .......... .......... 1% 12.0M 55s\n", - " 9650K .......... .......... .......... .......... .......... 1% 11.8M 54s\n", - " 9700K .......... .......... .......... .......... .......... 1% 10.8M 54s\n", - " 9750K .......... .......... .......... .......... .......... 1% 11.5M 54s\n", - " 9800K .......... .......... .......... .......... .......... 1% 8.36M 54s\n", - " 9850K .......... .......... .......... .......... .......... 1% 12.0M 54s\n", - " 9900K .......... .......... .......... .......... .......... 1% 9.83M 54s\n", - " 9950K .......... .......... .......... .......... .......... 1% 12.9M 54s\n", - " 10000K .......... .......... .......... .......... .......... 1% 10.9M 54s\n", - " 10050K .......... .......... .......... .......... .......... 1% 11.6M 54s\n", - " 10100K .......... .......... .......... .......... .......... 1% 12.1M 54s\n", - " 10150K .......... .......... .......... .......... .......... 1% 11.5M 54s\n", - " 10200K .......... .......... .......... .......... .......... 1% 8.91M 54s\n", - " 10250K .......... .......... .......... .......... .......... 1% 11.4M 54s\n", - " 10300K .......... .......... .......... .......... .......... 1% 10.2M 54s\n", - " 10350K .......... .......... .......... .......... .......... 1% 11.6M 54s\n", - " 10400K .......... .......... .......... .......... .......... 1% 11.7M 54s\n", - " 10450K .......... .......... .......... .......... .......... 2% 12.1M 54s\n", - " 10500K .......... .......... .......... .......... .......... 2% 10.9M 54s\n", - " 10550K .......... .......... .......... .......... .......... 2% 11.5M 54s\n", - " 10600K .......... .......... .......... .......... .......... 2% 9.27M 54s\n", - " 10650K .......... .......... .......... .......... .......... 2% 10.0M 54s\n", - " 10700K .......... .......... .......... .......... .......... 2% 12.8M 54s\n", - " 10750K .......... .......... .......... .......... .......... 2% 11.1M 53s\n", - " 10800K .......... .......... .......... .......... .......... 2% 11.8M 53s\n", - " 10850K .......... .......... .......... .......... .......... 2% 11.8M 53s\n", - " 10900K .......... .......... .......... .......... .......... 2% 6.23M 53s\n", - " 10950K .......... .......... .......... .......... .......... 2% 8.29M 54s\n", - " 11000K .......... .......... .......... .......... .......... 2% 33.2M 53s\n", - " 11050K .......... .......... .......... .......... .......... 2% 12.6M 53s\n", - " 11100K .......... .......... .......... .......... .......... 2% 11.0M 53s\n", - " 11150K .......... .......... .......... .......... .......... 2% 11.8M 53s\n", - " 11200K .......... .......... .......... .......... .......... 2% 13.0M 53s\n", - " 11250K .......... .......... .......... .......... .......... 2% 9.80M 53s\n", - " 11300K .......... .......... .......... .......... .......... 2% 4.70M 53s\n", - " 11350K .......... .......... .......... .......... .......... 2% 90.4M 53s\n", - " 11400K .......... .......... .......... .......... .......... 2% 9.40M 53s\n", - " 11450K .......... .......... .......... .......... .......... 2% 26.4M 53s\n", - " 11500K .......... .......... .......... .......... .......... 2% 6.91M 53s\n", - " 11550K .......... .......... .......... .......... .......... 2% 24.2M 53s\n", - " 11600K .......... .......... .......... .......... .......... 2% 11.8M 53s\n", - " 11650K .......... .......... .......... .......... .......... 2% 12.1M 53s\n", - " 11700K .......... .......... .......... .......... .......... 2% 11.4M 53s\n", - " 11750K .......... .......... .......... .......... .......... 2% 11.4M 53s\n", - " 11800K .......... .......... .......... .......... .......... 2% 8.76M 53s\n", - " 11850K .......... .......... .......... .......... .......... 2% 10.1M 53s\n", - " 11900K .......... .......... .......... .......... .......... 2% 13.0M 53s\n", - " 11950K .......... .......... .......... .......... .......... 2% 11.1M 53s\n", - " 12000K .......... .......... .......... .......... .......... 2% 10.6M 53s\n", - " 12050K .......... .......... .......... .......... .......... 2% 12.0M 53s\n", - " 12100K .......... .......... .......... .......... .......... 2% 11.4M 52s\n", - " 12150K .......... .......... .......... .......... .......... 2% 8.97M 52s\n", - " 12200K .......... .......... .......... .......... .......... 2% 11.4M 52s\n", - " 12250K .......... .......... .......... .......... .......... 2% 10.9M 52s\n", - " 12300K .......... .......... .......... .......... .......... 2% 12.2M 52s\n", - " 12350K .......... .......... .......... .......... .......... 2% 10.5M 52s\n", - " 12400K .......... .......... .......... .......... .......... 2% 13.2M 52s\n", - " 12450K .......... .......... .......... .......... .......... 2% 10.2M 52s\n", - " 12500K .......... .......... .......... .......... .......... 2% 11.1M 52s\n", - " 12550K .......... .......... .......... .......... .......... 2% 6.62M 52s\n", - " 12600K .......... .......... .......... .......... .......... 2% 21.7M 52s\n", - " 12650K .......... .......... .......... .......... .......... 2% 11.0M 52s\n", - " 12700K .......... .......... .......... .......... .......... 2% 12.7M 52s\n", - " 12750K .......... .......... .......... .......... .......... 2% 9.85M 52s\n", - " 12800K .......... .......... .......... .......... .......... 2% 11.9M 52s\n", - " 12850K .......... .......... .......... .......... .......... 2% 12.7M 52s\n", - " 12900K .......... .......... .......... .......... .......... 2% 11.0M 52s\n", - " 12950K .......... .......... .......... .......... .......... 2% 7.03M 52s\n", - " 13000K .......... .......... .......... .......... .......... 2% 13.5M 52s\n", - " 13050K .......... .......... .......... .......... .......... 2% 12.9M 52s\n", - " 13100K .......... .......... .......... .......... .......... 2% 12.2M 52s\n", - " 13150K .......... .......... .......... .......... .......... 2% 8.25M 52s\n", - " 13200K .......... .......... .......... .......... .......... 2% 15.7M 52s\n", - " 13250K .......... .......... .......... .......... .......... 2% 8.79M 52s\n", - " 13300K .......... .......... .......... .......... .......... 2% 17.3M 52s\n", - " 13350K .......... .......... .......... .......... .......... 2% 10.9M 52s\n", - " 13400K .......... .......... .......... .......... .......... 2% 9.56M 52s\n", - " 13450K .......... .......... .......... .......... .......... 2% 8.79M 52s\n", - " 13500K .......... .......... .......... .......... .......... 2% 14.6M 52s\n", - " 13550K .......... .......... .......... .......... .......... 2% 9.22M 52s\n", - " 13600K .......... .......... .......... .......... .......... 2% 13.5M 52s\n", - " 13650K .......... .......... .......... .......... .......... 2% 13.2M 52s\n", - " 13700K .......... .......... .......... .......... .......... 2% 7.64M 52s\n", - " 13750K .......... .......... .......... .......... .......... 2% 22.8M 51s\n", - " 13800K .......... .......... .......... .......... .......... 2% 7.38M 52s\n", - " 13850K .......... .......... .......... .......... .......... 2% 14.3M 51s\n", - " 13900K .......... .......... .......... .......... .......... 2% 8.17M 51s\n", - " 13950K .......... .......... .......... .......... .......... 2% 19.3M 51s\n", - " 14000K .......... .......... .......... .......... .......... 2% 11.3M 51s\n", - " 14050K .......... .......... .......... .......... .......... 2% 10.7M 51s\n", - " 14100K .......... .......... .......... .......... .......... 2% 11.0M 51s\n", - " 14150K .......... .......... .......... .......... .......... 2% 12.4M 51s\n", - " 14200K .......... .......... .......... .......... .......... 2% 8.91M 51s\n", - " 14250K .......... .......... .......... .......... .......... 2% 8.88M 51s\n", - " 14300K .......... .......... .......... .......... .......... 2% 15.2M 51s\n", - " 14350K .......... .......... .......... .......... .......... 2% 11.9M 51s\n", - " 14400K .......... .......... .......... .......... .......... 2% 11.0M 51s\n", - " 14450K .......... .......... .......... .......... .......... 2% 8.53M 51s\n", - " 14500K .......... .......... .......... .......... .......... 2% 16.5M 51s\n", - " 14550K .......... .......... .......... .......... .......... 2% 11.4M 51s\n", - " 14600K .......... .......... .......... .......... .......... 2% 7.81M 51s\n", - " 14650K .......... .......... .......... .......... .......... 2% 12.3M 51s\n", - " 14700K .......... .......... .......... .......... .......... 2% 12.8M 51s\n", - " 14750K .......... .......... .......... .......... .......... 2% 11.7M 51s\n", - " 14800K .......... .......... .......... .......... .......... 2% 11.3M 51s\n", - " 14850K .......... .......... .......... .......... .......... 2% 11.1M 51s\n", - " 14900K .......... .......... .......... .......... .......... 2% 10.5M 51s\n", - " 14950K .......... .......... .......... .......... .......... 2% 12.2M 51s\n", - " 15000K .......... .......... .......... .......... .......... 2% 7.79M 51s\n", - " 15050K .......... .......... .......... .......... .......... 2% 14.4M 51s\n", - " 15100K .......... .......... .......... .......... .......... 2% 11.3M 51s\n", - " 15150K .......... .......... .......... .......... .......... 2% 11.4M 51s\n", - " 15200K .......... .......... .......... .......... .......... 2% 7.56M 51s\n", - " 15250K .......... .......... .......... .......... .......... 2% 21.0M 51s\n", - " 15300K .......... .......... .......... .......... .......... 2% 12.0M 51s\n", - " 15350K .......... .......... .......... .......... .......... 2% 10.9M 51s\n", - " 15400K .......... .......... .......... .......... .......... 2% 8.55M 51s\n", - " 15450K .......... .......... .......... .......... .......... 2% 12.5M 51s\n", - " 15500K .......... .......... .......... .......... .......... 2% 11.4M 51s\n", - " 15550K .......... .......... .......... .......... .......... 2% 11.2M 51s\n", - " 15600K .......... .......... .......... .......... .......... 2% 10.9M 51s\n", - " 15650K .......... .......... .......... .......... .......... 2% 11.0M 51s\n", - " 15700K .......... .......... .......... .......... .......... 3% 11.5M 51s\n", - " 15750K .......... .......... .......... .......... .......... 3% 12.0M 51s\n", - " 15800K .......... .......... .......... .......... .......... 3% 8.51M 51s\n", - " 15850K .......... .......... .......... .......... .......... 3% 11.1M 51s\n", - " 15900K .......... .......... .......... .......... .......... 3% 12.4M 50s\n", - " 15950K .......... .......... .......... .......... .......... 3% 9.25M 50s\n", - " 16000K .......... .......... .......... .......... .......... 3% 13.0M 50s\n", - " 16050K .......... .......... .......... .......... .......... 3% 12.3M 50s\n", - " 16100K .......... .......... .......... .......... .......... 3% 11.9M 50s\n", - " 16150K .......... .......... .......... .......... .......... 3% 10.6M 50s\n", - " 16200K .......... .......... .......... .......... .......... 3% 9.04M 50s\n", - " 16250K .......... .......... .......... .......... .......... 3% 11.3M 50s\n", - " 16300K .......... .......... .......... .......... .......... 3% 11.8M 50s\n", - " 16350K .......... .......... .......... .......... .......... 3% 11.2M 50s\n", - " 16400K .......... .......... .......... .......... .......... 3% 10.6M 50s\n", - " 16450K .......... .......... .......... .......... .......... 3% 12.9M 50s\n", - " 16500K .......... .......... .......... .......... .......... 3% 12.0M 50s\n", - " 16550K .......... .......... .......... .......... .......... 3% 10.5M 50s\n", - " 16600K .......... .......... .......... .......... .......... 3% 8.41M 50s\n", - " 16650K .......... .......... .......... .......... .......... 3% 12.3M 50s\n", - " 16700K .......... .......... .......... .......... .......... 3% 11.2M 50s\n", - " 16750K .......... .......... .......... .......... .......... 3% 10.7M 50s\n", - " 16800K .......... .......... .......... .......... .......... 3% 11.4M 50s\n", - " 16850K .......... .......... .......... .......... .......... 3% 11.6M 50s\n", - " 16900K .......... .......... .......... .......... .......... 3% 9.16M 50s\n", - " 16950K .......... .......... .......... .......... .......... 3% 16.1M 50s\n", - " 17000K .......... .......... .......... .......... .......... 3% 8.68M 50s\n", - " 17050K .......... .......... .......... .......... .......... 3% 10.6M 50s\n", - " 17100K .......... .......... .......... .......... .......... 3% 11.3M 50s\n", - " 17150K .......... .......... .......... .......... .......... 3% 10.2M 50s\n", - " 17200K .......... .......... .......... .......... .......... 3% 12.9M 50s\n", - " 17250K .......... .......... .......... .......... .......... 3% 11.3M 50s\n", - " 17300K .......... .......... .......... .......... .......... 3% 12.6M 50s\n", - " 17350K .......... .......... .......... .......... .......... 3% 11.7M 50s\n", - " 17400K .......... .......... .......... .......... .......... 3% 8.14M 50s\n", - " 17450K .......... .......... .......... .......... .......... 3% 12.1M 50s\n", - " 17500K .......... .......... .......... .......... .......... 3% 11.3M 50s\n", - " 17550K .......... .......... .......... .......... .......... 3% 11.0M 50s\n", - " 17600K .......... .......... .......... .......... .......... 3% 11.4M 50s\n", - " 17650K .......... .......... .......... .......... .......... 3% 10.6M 50s\n", - " 17700K .......... .......... .......... .......... .......... 3% 13.6M 50s\n", - " 17750K .......... .......... .......... .......... .......... 3% 10.2M 50s\n", - " 17800K .......... .......... .......... .......... .......... 3% 6.60M 50s\n", - " 17850K .......... .......... .......... .......... .......... 3% 23.3M 50s\n", - " 17900K .......... .......... .......... .......... .......... 3% 10.8M 50s\n", - " 17950K .......... .......... .......... .......... .......... 3% 11.8M 50s\n", - " 18000K .......... .......... .......... .......... .......... 3% 7.85M 50s\n", - " 18050K .......... .......... .......... .......... .......... 3% 16.1M 50s\n", - " 18100K .......... .......... .......... .......... .......... 3% 12.6M 50s\n", - " 18150K .......... .......... .......... .......... .......... 3% 12.5M 50s\n", - " 18200K .......... .......... .......... .......... .......... 3% 8.33M 50s\n", - " 18250K .......... .......... .......... .......... .......... 3% 10.4M 50s\n", - " 18300K .......... .......... .......... .......... .......... 3% 13.1M 50s\n", - " 18350K .......... .......... .......... .......... .......... 3% 10.5M 50s\n", - " 18400K .......... .......... .......... .......... .......... 3% 12.2M 50s\n", - " 18450K .......... .......... .......... .......... .......... 3% 9.38M 50s\n", - " 18500K .......... .......... .......... .......... .......... 3% 15.0M 49s\n", - " 18550K .......... .......... .......... .......... .......... 3% 11.5M 49s\n", - " 18600K .......... .......... .......... .......... .......... 3% 8.00M 49s\n", - " 18650K .......... .......... .......... .......... .......... 3% 12.6M 49s\n", - " 18700K .......... .......... .......... .......... .......... 3% 11.1M 49s\n", - " 18750K .......... .......... .......... .......... .......... 3% 9.27M 49s\n", - " 18800K .......... .......... .......... .......... .......... 3% 14.9M 49s\n", - " 18850K .......... .......... .......... .......... .......... 3% 11.7M 49s\n", - " 18900K .......... .......... .......... .......... .......... 3% 7.05M 49s\n", - " 18950K .......... .......... .......... .......... .......... 3% 14.3M 49s\n", - " 19000K .......... .......... .......... .......... .......... 3% 12.8M 49s\n", - " 19050K .......... .......... .......... .......... .......... 3% 11.4M 49s\n", - " 19100K .......... .......... .......... .......... .......... 3% 10.8M 49s\n", - " 19150K .......... .......... .......... .......... .......... 3% 11.6M 49s\n", - " 19200K .......... .......... .......... .......... .......... 3% 11.0M 49s\n", - " 19250K .......... .......... .......... .......... .......... 3% 12.2M 49s\n", - " 19300K .......... .......... .......... .......... .......... 3% 11.7M 49s\n", - " 19350K .......... .......... .......... .......... .......... 3% 8.89M 49s\n", - " 19400K .......... .......... .......... .......... .......... 3% 9.87M 49s\n", - " 19450K .......... .......... .......... .......... .......... 3% 10.9M 49s\n", - " 19500K .......... .......... .......... .......... .......... 3% 12.3M 49s\n", - " 19550K .......... .......... .......... .......... .......... 3% 11.1M 49s\n", - " 19600K .......... .......... .......... .......... .......... 3% 12.3M 49s\n", - " 19650K .......... .......... .......... .......... .......... 3% 11.1M 49s\n", - " 19700K .......... .......... .......... .......... .......... 3% 10.7M 49s\n", - " 19750K .......... .......... .......... .......... .......... 3% 12.7M 49s\n", - " 19800K .......... .......... .......... .......... .......... 3% 9.12M 49s\n", - " 19850K .......... .......... .......... .......... .......... 3% 10.6M 49s\n", - " 19900K .......... .......... .......... .......... .......... 3% 11.3M 49s\n", - " 19950K .......... .......... .......... .......... .......... 3% 11.4M 49s\n", - " 20000K .......... .......... .......... .......... .......... 3% 12.3M 49s\n", - " 20050K .......... .......... .......... .......... .......... 3% 10.8M 49s\n", - " 20100K .......... .......... .......... .......... .......... 3% 11.7M 49s\n", - " 20150K .......... .......... .......... .......... .......... 3% 11.4M 49s\n", - " 20200K .......... .......... .......... .......... .......... 3% 8.33M 49s\n", - " 20250K .......... .......... .......... .......... .......... 3% 11.7M 49s\n", - " 20300K .......... .......... .......... .......... .......... 3% 12.6M 49s\n", - " 20350K .......... .......... .......... .......... .......... 3% 10.6M 49s\n", - " 20400K .......... .......... .......... .......... .......... 3% 11.2M 49s\n", - " 20450K .......... .......... .......... .......... .......... 3% 2.46M 49s\n", - " 20500K .......... .......... .......... .......... .......... 3% 85.2M 49s\n", - " 20550K .......... .......... .......... .......... .......... 3% 71.0M 49s\n", - " 20600K .......... .......... .......... .......... .......... 3% 55.0M 49s\n", - " 20650K .......... .......... .......... .......... .......... 3% 9.31M 49s\n", - " 20700K .......... .......... .......... .......... .......... 3% 52.5M 49s\n", - " 20750K .......... .......... .......... .......... .......... 3% 12.8M 49s\n", - " 20800K .......... .......... .......... .......... .......... 3% 13.6M 49s\n", - " 20850K .......... .......... .......... .......... .......... 3% 4.68M 49s\n", - " 20900K .......... .......... .......... .......... .......... 3% 12.1M 49s\n", - " 20950K .......... .......... .......... .......... .......... 4% 10.3M 49s\n", - " 21000K .......... .......... .......... .......... .......... 4% 8.80M 49s\n", - " 21050K .......... .......... .......... .......... .......... 4% 10.5M 49s\n", - " 21100K .......... .......... .......... .......... .......... 4% 13.5M 49s\n", - " 21150K .......... .......... .......... .......... .......... 4% 11.1M 49s\n", - " 21200K .......... .......... .......... .......... .......... 4% 11.2M 49s\n", - " 21250K .......... .......... .......... .......... .......... 4% 12.0M 49s\n", - " 21300K .......... .......... .......... .......... .......... 4% 10.9M 49s\n", - " 21350K .......... .......... .......... .......... .......... 4% 10.7M 49s\n", - " 21400K .......... .......... .......... .......... .......... 4% 9.18M 49s\n", - " 21450K .......... .......... .......... .......... .......... 4% 11.3M 49s\n", - " 21500K .......... .......... .......... .......... .......... 4% 12.1M 49s\n", - " 21550K .......... .......... .......... .......... .......... 4% 10.9M 49s\n", - " 21600K .......... .......... .......... .......... .......... 4% 11.0M 49s\n", - " 21650K .......... .......... .......... .......... .......... 4% 11.1M 49s\n", - " 21700K .......... .......... .......... .......... .......... 4% 12.6M 49s\n", - " 21750K .......... .......... .......... .......... .......... 4% 12.1M 49s\n", - " 21800K .......... .......... .......... .......... .......... 4% 8.19M 49s\n", - " 21850K .......... .......... .......... .......... .......... 4% 9.51M 49s\n", - " 21900K .......... .......... .......... .......... .......... 4% 11.1M 49s\n", - " 21950K .......... .......... .......... .......... .......... 4% 11.6M 49s\n", - " 22000K .......... .......... .......... .......... .......... 4% 12.0M 49s\n", - " 22050K .......... .......... .......... .......... .......... 4% 11.5M 49s\n", - " 22100K .......... .......... .......... .......... .......... 4% 10.1M 49s\n", - " 22150K .......... .......... .......... .......... .......... 4% 11.8M 49s\n", - " 22200K .......... .......... .......... .......... .......... 4% 8.62M 49s\n", - " 22250K .......... .......... .......... .......... .......... 4% 12.6M 49s\n", - " 22300K .......... .......... .......... .......... .......... 4% 11.6M 49s\n", - " 22350K .......... .......... .......... .......... .......... 4% 11.1M 49s\n", - " 22400K .......... .......... .......... .......... .......... 4% 11.9M 48s\n", - " 22450K .......... .......... .......... .......... .......... 4% 10.5M 48s\n", - " 22500K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 22550K .......... .......... .......... .......... .......... 4% 11.8M 48s\n", - " 22600K .......... .......... .......... .......... .......... 4% 8.27M 48s\n", - " 22650K .......... .......... .......... .......... .......... 4% 12.1M 48s\n", - " 22700K .......... .......... .......... .......... .......... 4% 10.7M 48s\n", - " 22750K .......... .......... .......... .......... .......... 4% 13.0M 48s\n", - " 22800K .......... .......... .......... .......... .......... 4% 10.9M 48s\n", - " 22850K .......... .......... .......... .......... .......... 4% 11.8M 48s\n", - " 22900K .......... .......... .......... .......... .......... 4% 11.1M 48s\n", - " 22950K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 23000K .......... .......... .......... .......... .......... 4% 8.84M 48s\n", - " 23050K .......... .......... .......... .......... .......... 4% 10.5M 48s\n", - " 23100K .......... .......... .......... .......... .......... 4% 6.28M 48s\n", - " 23150K .......... .......... .......... .......... .......... 4% 35.7M 48s\n", - " 23200K .......... .......... .......... .......... .......... 4% 12.7M 48s\n", - " 23250K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 23300K .......... .......... .......... .......... .......... 4% 11.3M 48s\n", - " 23350K .......... .......... .......... .......... .......... 4% 12.6M 48s\n", - " 23400K .......... .......... .......... .......... .......... 4% 8.63M 48s\n", - " 23450K .......... .......... .......... .......... .......... 4% 10.9M 48s\n", - " 23500K .......... .......... .......... .......... .......... 4% 12.2M 48s\n", - " 23550K .......... .......... .......... .......... .......... 4% 11.0M 48s\n", - " 23600K .......... .......... .......... .......... .......... 4% 11.8M 48s\n", - " 23650K .......... .......... .......... .......... .......... 4% 11.3M 48s\n", - " 23700K .......... .......... .......... .......... .......... 4% 11.0M 48s\n", - " 23750K .......... .......... .......... .......... .......... 4% 4.95M 48s\n", - " 23800K .......... .......... .......... .......... .......... 4% 63.5M 48s\n", - " 23850K .......... .......... .......... .......... .......... 4% 11.2M 48s\n", - " 23900K .......... .......... .......... .......... .......... 4% 13.1M 48s\n", - " 23950K .......... .......... .......... .......... .......... 4% 9.07M 48s\n", - " 24000K .......... .......... .......... .......... .......... 4% 14.1M 48s\n", - " 24050K .......... .......... .......... .......... .......... 4% 12.8M 48s\n", - " 24100K .......... .......... .......... .......... .......... 4% 12.5M 48s\n", - " 24150K .......... .......... .......... .......... .......... 4% 10.6M 48s\n", - " 24200K .......... .......... .......... .......... .......... 4% 8.84M 48s\n", - " 24250K .......... .......... .......... .......... .......... 4% 10.6M 48s\n", - " 24300K .......... .......... .......... .......... .......... 4% 11.5M 48s\n", - " 24350K .......... .......... .......... .......... .......... 4% 12.2M 48s\n", - " 24400K .......... .......... .......... .......... .......... 4% 11.2M 48s\n", - " 24450K .......... .......... .......... .......... .......... 4% 11.0M 48s\n", - " 24500K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 24550K .......... .......... .......... .......... .......... 4% 11.2M 48s\n", - " 24600K .......... .......... .......... .......... .......... 4% 9.04M 48s\n", - " 24650K .......... .......... .......... .......... .......... 4% 10.9M 48s\n", - " 24700K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 24750K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 24800K .......... .......... .......... .......... .......... 4% 11.1M 48s\n", - " 24850K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 24900K .......... .......... .......... .......... .......... 4% 11.7M 48s\n", - " 24950K .......... .......... .......... .......... .......... 4% 11.3M 48s\n", - " 25000K .......... .......... .......... .......... .......... 4% 8.26M 48s\n", - " 25050K .......... .......... .......... .......... .......... 4% 12.4M 48s\n", - " 25100K .......... .......... .......... .......... .......... 4% 9.00M 48s\n", - " 25150K .......... .......... .......... .......... .......... 4% 15.0M 48s\n", - " 25200K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 25250K .......... .......... .......... .......... .......... 4% 11.7M 48s\n", - " 25300K .......... .......... .......... .......... .......... 4% 10.4M 48s\n", - " 25350K .......... .......... .......... .......... .......... 4% 12.4M 48s\n", - " 25400K .......... .......... .......... .......... .......... 4% 8.56M 48s\n", - " 25450K .......... .......... .......... .......... .......... 4% 10.9M 48s\n", - " 25500K .......... .......... .......... .......... .......... 4% 12.2M 48s\n", - " 25550K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 25600K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 25650K .......... .......... .......... .......... .......... 4% 9.89M 48s\n", - " 25700K .......... .......... .......... .......... .......... 4% 12.7M 48s\n", - " 25750K .......... .......... .......... .......... .......... 4% 10.9M 48s\n", - " 25800K .......... .......... .......... .......... .......... 4% 9.00M 48s\n", - " 25850K .......... .......... .......... .......... .......... 4% 11.6M 48s\n", - " 25900K .......... .......... .......... .......... .......... 4% 11.4M 48s\n", - " 25950K .......... .......... .......... .......... .......... 4% 11.5M 48s\n", - " 26000K .......... .......... .......... .......... .......... 4% 11.9M 48s\n", - " 26050K .......... .......... .......... .......... .......... 4% 11.1M 48s\n", - " 26100K .......... .......... .......... .......... .......... 4% 12.0M 48s\n", - " 26150K .......... .......... .......... .......... .......... 4% 10.6M 48s\n", - " 26200K .......... .......... .......... .......... .......... 5% 8.47M 48s\n", - " 26250K .......... .......... .......... .......... .......... 5% 10.7M 48s\n", - " 26300K .......... .......... .......... .......... .......... 5% 12.5M 48s\n", - " 26350K .......... .......... .......... .......... .......... 5% 11.2M 48s\n", - " 26400K .......... .......... .......... .......... .......... 5% 11.4M 48s\n", - " 26450K .......... .......... .......... .......... .......... 5% 11.7M 48s\n", - " 26500K .......... .......... .......... .......... .......... 5% 12.3M 48s\n", - " 26550K .......... .......... .......... .......... .......... 5% 10.9M 48s\n", - " 26600K .......... .......... .......... .......... .......... 5% 8.94M 48s\n", - " 26650K .......... .......... .......... .......... .......... 5% 10.6M 48s\n", - " 26700K .......... .......... .......... .......... .......... 5% 12.1M 47s\n", - " 26750K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 26800K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 26850K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 26900K .......... .......... .......... .......... .......... 5% 12.2M 47s\n", - " 26950K .......... .......... .......... .......... .......... 5% 8.97M 47s\n", - " 27000K .......... .......... .......... .......... .......... 5% 9.62M 47s\n", - " 27050K .......... .......... .......... .......... .......... 5% 12.5M 47s\n", - " 27100K .......... .......... .......... .......... .......... 5% 3.19M 48s\n", - " 27150K .......... .......... .......... .......... .......... 5% 384M 48s\n", - " 27200K .......... .......... .......... .......... .......... 5% 276M 47s\n", - " 27250K .......... .......... .......... .......... .......... 5% 34.8M 47s\n", - " 27300K .......... .......... .......... .......... .......... 5% 10.6M 47s\n", - " 27350K .......... .......... .......... .......... .......... 5% 12.4M 47s\n", - " 27400K .......... .......... .......... .......... .......... 5% 7.91M 47s\n", - " 27450K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 27500K .......... .......... .......... .......... .......... 5% 12.1M 47s\n", - " 27550K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 27600K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 27650K .......... .......... .......... .......... .......... 5% 9.96M 47s\n", - " 27700K .......... .......... .......... .......... .......... 5% 15.1M 47s\n", - " 27750K .......... .......... .......... .......... .......... 5% 10.6M 47s\n", - " 27800K .......... .......... .......... .......... .......... 5% 8.86M 47s\n", - " 27850K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 27900K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 27950K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 28000K .......... .......... .......... .......... .......... 5% 11.6M 47s\n", - " 28050K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 28100K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 28150K .......... .......... .......... .......... .......... 5% 11.3M 47s\n", - " 28200K .......... .......... .......... .......... .......... 5% 8.86M 47s\n", - " 28250K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 28300K .......... .......... .......... .......... .......... 5% 11.1M 47s\n", - " 28350K .......... .......... .......... .......... .......... 5% 11.2M 47s\n", - " 28400K .......... .......... .......... .......... .......... 5% 11.8M 47s\n", - " 28450K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 28500K .......... .......... .......... .......... .......... 5% 11.2M 47s\n", - " 28550K .......... .......... .......... .......... .......... 5% 11.3M 47s\n", - " 28600K .......... .......... .......... .......... .......... 5% 8.63M 47s\n", - " 28650K .......... .......... .......... .......... .......... 5% 12.3M 47s\n", - " 28700K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 28750K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 28800K .......... .......... .......... .......... .......... 5% 11.3M 47s\n", - " 28850K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 28900K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 28950K .......... .......... .......... .......... .......... 5% 10.6M 47s\n", - " 29000K .......... .......... .......... .......... .......... 5% 8.82M 47s\n", - " 29050K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 29100K .......... .......... .......... .......... .......... 5% 11.2M 47s\n", - " 29150K .......... .......... .......... .......... .......... 5% 11.3M 47s\n", - " 29200K .......... .......... .......... .......... .......... 5% 10.9M 47s\n", - " 29250K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 29300K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 29350K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 29400K .......... .......... .......... .......... .......... 5% 8.48M 47s\n", - " 29450K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 29500K .......... .......... .......... .......... .......... 5% 11.8M 47s\n", - " 29550K .......... .......... .......... .......... .......... 5% 10.7M 47s\n", - " 29600K .......... .......... .......... .......... .......... 5% 11.1M 47s\n", - " 29650K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 29700K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 29750K .......... .......... .......... .......... .......... 5% 12.2M 47s\n", - " 29800K .......... .......... .......... .......... .......... 5% 8.26M 47s\n", - " 29850K .......... .......... .......... .......... .......... 5% 12.6M 47s\n", - " 29900K .......... .......... .......... .......... .......... 5% 10.3M 47s\n", - " 29950K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 30000K .......... .......... .......... .......... .......... 5% 11.6M 47s\n", - " 30050K .......... .......... .......... .......... .......... 5% 11.6M 47s\n", - " 30100K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 30150K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 30200K .......... .......... .......... .......... .......... 5% 8.55M 47s\n", - " 30250K .......... .......... .......... .......... .......... 5% 11.2M 47s\n", - " 30300K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 30350K .......... .......... .......... .......... .......... 5% 12.8M 47s\n", - " 30400K .......... .......... .......... .......... .......... 5% 10.7M 47s\n", - " 30450K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 30500K .......... .......... .......... .......... .......... 5% 11.8M 47s\n", - " 30550K .......... .......... .......... .......... .......... 5% 11.2M 47s\n", - " 30600K .......... .......... .......... .......... .......... 5% 8.51M 47s\n", - " 30650K .......... .......... .......... .......... .......... 5% 11.9M 47s\n", - " 30700K .......... .......... .......... .......... .......... 5% 11.0M 47s\n", - " 30750K .......... .......... .......... .......... .......... 5% 10.5M 47s\n", - " 30800K .......... .......... .......... .......... .......... 5% 11.9M 47s\n", - " 30850K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 30900K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 30950K .......... .......... .......... .......... .......... 5% 11.7M 47s\n", - " 31000K .......... .......... .......... .......... .......... 5% 8.49M 47s\n", - " 31050K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 31100K .......... .......... .......... .......... .......... 5% 11.4M 47s\n", - " 31150K .......... .......... .......... .......... .......... 5% 11.6M 47s\n", - " 31200K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 31250K .......... .......... .......... .......... .......... 5% 10.5M 47s\n", - " 31300K .......... .......... .......... .......... .......... 5% 11.5M 47s\n", - " 31350K .......... .......... .......... .......... .......... 5% 12.0M 47s\n", - " 31400K .......... .......... .......... .......... .......... 5% 8.21M 47s\n", - " 31450K .......... .......... .......... .......... .......... 6% 11.7M 47s\n", - " 31500K .......... .......... .......... .......... .......... 6% 11.6M 47s\n", - " 31550K .......... .......... .......... .......... .......... 6% 9.21M 47s\n", - " 31600K .......... .......... .......... .......... .......... 6% 14.3M 47s\n", - " 31650K .......... .......... .......... .......... .......... 6% 12.4M 47s\n", - " 31700K .......... .......... .......... .......... .......... 6% 9.15M 47s\n", - " 31750K .......... .......... .......... .......... .......... 6% 1.33M 47s\n", - " 31800K .......... .......... .......... .......... .......... 6% 23.0M 47s\n", - " 31850K .......... .......... .......... .......... .......... 6% 80.2M 47s\n", - " 31900K .......... .......... .......... .......... .......... 6% 35.4M 47s\n", - " 31950K .......... .......... .......... .......... .......... 6% 379M 47s\n", - " 32000K .......... .......... .......... .......... .......... 6% 282M 47s\n", - " 32050K .......... .......... .......... .......... .......... 6% 396M 47s\n", - " 32100K .......... .......... .......... .......... .......... 6% 355M 47s\n", - " 32150K .......... .......... .......... .......... .......... 6% 290M 46s\n", - " 32200K .......... .......... .......... .......... .......... 6% 1.51M 47s\n", - " 32250K .......... .......... .......... .......... .......... 6% 1.46M 47s\n", - " 32300K .......... .......... .......... .......... .......... 6% 314M 47s\n", - " 32350K .......... .......... .......... .......... .......... 6% 384M 47s\n", - " 32400K .......... .......... .......... .......... .......... 6% 357M 47s\n", - " 32450K .......... .......... .......... .......... .......... 6% 489M 47s\n", - " 32500K .......... .......... .......... .......... .......... 6% 314M 47s\n", - " 32550K .......... .......... .......... .......... .......... 6% 1.57M 47s\n", - " 32600K .......... .......... .......... .......... .......... 6% 215M 47s\n", - " 32650K .......... .......... .......... .......... .......... 6% 284M 47s\n", - " 32700K .......... .......... .......... .......... .......... 6% 259M 47s\n", - " 32750K .......... .......... .......... .......... .......... 6% 1.37M 48s\n", - " 32800K .......... .......... .......... .......... .......... 6% 279M 47s\n", - " 32850K .......... .......... .......... .......... .......... 6% 404M 47s\n", - " 32900K .......... .......... .......... .......... .......... 6% 513M 47s\n", - " 32950K .......... .......... .......... .......... .......... 6% 19.4M 47s\n", - " 33000K .......... .......... .......... .......... .......... 6% 272M 47s\n", - " 33050K .......... .......... .......... .......... .......... 6% 414M 47s\n", - " 33100K .......... .......... .......... .......... .......... 6% 1.29M 48s\n", - " 33150K .......... .......... .......... .......... .......... 6% 77.1M 48s\n", - " 33200K .......... .......... .......... .......... .......... 6% 2.98M 48s\n", - " 33250K .......... .......... .......... .......... .......... 6% 1.40M 48s\n", - " 33300K .......... .......... .......... .......... .......... 6% 254M 48s\n", - " 33350K .......... .......... .......... .......... .......... 6% 4.11M 48s\n", - " 33400K .......... .......... .......... .......... .......... 6% 3.27M 48s\n", - " 33450K .......... .......... .......... .......... .......... 6% 2.17M 49s\n", - " 33500K .......... .......... .......... .......... .......... 6% 3.54M 49s\n", - " 33550K .......... .......... .......... .......... .......... 6% 2.46M 49s\n", - " 33600K .......... .......... .......... .......... .......... 6% 2.32M 49s\n", - " 33650K .......... .......... .......... .......... .......... 6% 3.27M 49s\n", - " 33700K .......... .......... .......... .......... .......... 6% 2.76M 49s\n", - " 33750K .......... .......... .......... .......... .......... 6% 3.54M 50s\n", - " 33800K .......... .......... .......... .......... .......... 6% 2.19M 50s\n", - " 33850K .......... .......... .......... .......... .......... 6% 2.54M 50s\n", - " 33900K .......... .......... .......... .......... .......... 6% 1.02M 51s\n", - " 33950K .......... .......... .......... .......... .......... 6% 265M 51s\n", - " 34000K .......... .......... .......... .......... .......... 6% 8.88M 51s\n", - " 34050K .......... .......... .......... .......... .......... 6% 2.01M 51s\n", - " 34100K .......... .......... .......... .......... .......... 6% 1.86M 51s\n", - " 34150K .......... .......... .......... .......... .......... 6% 1.95M 51s\n", - " 34200K .......... .......... .......... .......... .......... 6% 1.61M 52s\n", - " 34250K .......... .......... .......... .......... .......... 6% 2.07M 52s\n", - " 34300K .......... .......... .......... .......... .......... 6% 1.94M 52s\n", - " 34350K .......... .......... .......... .......... .......... 6% 2.51M 53s\n", - " 34400K .......... .......... .......... .......... .......... 6% 2.15M 53s\n", - " 34450K .......... .......... .......... .......... .......... 6% 2.31M 53s\n", - " 34500K .......... .......... .......... .......... .......... 6% 2.14M 53s\n", - " 34550K .......... .......... .......... .......... .......... 6% 2.31M 53s\n", - " 34600K .......... .......... .......... .......... .......... 6% 1.77M 54s\n", - " 34650K .......... .......... .......... .......... .......... 6% 2.01M 54s\n", - " 34700K .......... .......... .......... .......... .......... 6% 2.37M 54s\n", - " 34750K .......... .......... .......... .......... .......... 6% 2.24M 54s\n", - " 34800K .......... .......... .......... .......... .......... 6% 2.49M 55s\n", - " 34850K .......... .......... .......... .......... .......... 6% 2.35M 55s\n", - " 34900K .......... .......... .......... .......... .......... 6% 2.07M 55s\n", - " 34950K .......... .......... .......... .......... .......... 6% 2.53M 55s\n", - " 35000K .......... .......... .......... .......... .......... 6% 1.77M 56s\n", - " 35050K .......... .......... .......... .......... .......... 6% 2.84M 56s\n", - " 35100K .......... .......... .......... .......... .......... 6% 2.45M 56s\n", - " 35150K .......... .......... .......... .......... .......... 6% 1.37M 56s\n", - " 35200K .......... .......... .......... .......... .......... 6% 4.17M 56s\n", - " 35250K .......... .......... .......... .......... .......... 6% 1.90M 57s\n", - " 35300K .......... .......... .......... .......... .......... 6% 1.71M 57s\n", - " 35350K .......... .......... .......... .......... .......... 6% 1.80M 57s\n", - " 35400K .......... .......... .......... .......... .......... 6% 1.37M 58s\n", - " 35450K .......... .......... .......... .......... .......... 6% 966K 58s\n", - " 35500K .......... .......... .......... .......... .......... 6% 7.10M 58s\n", - " 35550K .......... .......... .......... .......... .......... 6% 1.19M 59s\n", - " 35600K .......... .......... .......... .......... .......... 6% 1.26M 59s\n", - " 35650K .......... .......... .......... .......... .......... 6% 1.26M 60s\n", - " 35700K .......... .......... .......... .......... .......... 6% 1.28M 60s\n", - " 35750K .......... .......... .......... .......... .......... 6% 1.32M 61s\n", - " 35800K .......... .......... .......... .......... .......... 6% 1.05M 61s\n", - " 35850K .......... .......... .......... .......... .......... 6% 1.41M 61s\n", - " 35900K .......... .......... .......... .......... .......... 6% 1.63M 62s\n", - " 35950K .......... .......... .......... .......... .......... 6% 1.61M 62s\n", - " 36000K .......... .......... .......... .......... .......... 6% 1.65M 62s\n", - " 36050K .......... .......... .......... .......... .......... 6% 1.66M 63s\n", - " 36100K .......... .......... .......... .......... .......... 6% 1.74M 63s\n", - " 36150K .......... .......... .......... .......... .......... 6% 1.50M 63s\n", - " 36200K .......... .......... .......... .......... .......... 6% 1.41M 64s\n", - " 36250K .......... .......... .......... .......... .......... 6% 1.72M 64s\n", - " 36300K .......... .......... .......... .......... .......... 6% 1.84M 64s\n", - " 36350K .......... .......... .......... .......... .......... 6% 1.84M 64s\n", - " 36400K .......... .......... .......... .......... .......... 6% 1.88M 65s\n", - " 36450K .......... .......... .......... .......... .......... 6% 1.97M 65s\n", - " 36500K .......... .......... .......... .......... .......... 6% 2.00M 65s\n", - " 36550K .......... .......... .......... .......... .......... 6% 1.96M 65s\n", - " 36600K .......... .......... .......... .......... .......... 6% 1.40M 66s\n", - " 36650K .......... .......... .......... .......... .......... 6% 1.94M 66s\n", - " 36700K .......... .......... .......... .......... .......... 7% 2.26M 66s\n", - " 36750K .......... .......... .......... .......... .......... 7% 2.09M 66s\n", - " 36800K .......... .......... .......... .......... .......... 7% 1.95M 67s\n", - " 36850K .......... .......... .......... .......... .......... 7% 2.38M 67s\n", - " 36900K .......... .......... .......... .......... .......... 7% 2.01M 67s\n", - " 36950K .......... .......... .......... .......... .......... 7% 2.16M 67s\n", - " 37000K .......... .......... .......... .......... .......... 7% 1.65M 68s\n", - " 37050K .......... .......... .......... .......... .......... 7% 2.30M 68s\n", - " 37100K .......... .......... .......... .......... .......... 7% 2.27M 68s\n", - " 37150K .......... .......... .......... .......... .......... 7% 2.16M 68s\n", - " 37200K .......... .......... .......... .......... .......... 7% 2.55M 68s\n", - " 37250K .......... .......... .......... .......... .......... 7% 2.32M 68s\n", - " 37300K .......... .......... .......... .......... .......... 7% 2.20M 69s\n", - " 37350K .......... .......... .......... .......... .......... 7% 2.57M 69s\n", - " 37400K .......... .......... .......... .......... .......... 7% 1.76M 69s\n", - " 37450K .......... .......... .......... .......... .......... 7% 2.34M 69s\n", - " 37500K .......... .......... .......... .......... .......... 7% 2.48M 69s\n", - " 37550K .......... .......... .......... .......... .......... 7% 2.49M 70s\n", - " 37600K .......... .......... .......... .......... .......... 7% 2.40M 70s\n", - " 37650K .......... .......... .......... .......... .......... 7% 2.43M 70s\n", - " 37700K .......... .......... .......... .......... .......... 7% 2.42M 70s\n", - " 37750K .......... .......... .......... .......... .......... 7% 2.99M 70s\n", - " 37800K .......... .......... .......... .......... .......... 7% 1.94M 70s\n", - " 37850K .......... .......... .......... .......... .......... 7% 1.94M 71s\n", - " 37900K .......... .......... .......... .......... .......... 7% 3.28M 71s\n", - " 37950K .......... .......... .......... .......... .......... 7% 2.37M 71s\n", - " 38000K .......... .......... .......... .......... .......... 7% 2.48M 71s\n", - " 38050K .......... .......... .......... .......... .......... 7% 3.20M 71s\n", - " 38100K .......... .......... .......... .......... .......... 7% 2.53M 71s\n", - " 38150K .......... .......... .......... .......... .......... 7% 2.42M 71s\n", - " 38200K .......... .......... .......... .......... .......... 7% 2.15M 72s\n", - " 38250K .......... .......... .......... .......... .......... 7% 2.80M 72s\n", - " 38300K .......... .......... .......... .......... .......... 7% 2.69M 72s\n", - " 38350K .......... .......... .......... .......... .......... 7% 2.71M 72s\n", - " 38400K .......... .......... .......... .......... .......... 7% 3.01M 72s\n", - " 38450K .......... .......... .......... .......... .......... 7% 2.95M 72s\n", - " 38500K .......... .......... .......... .......... .......... 7% 2.75M 72s\n", - " 38550K .......... .......... .......... .......... .......... 7% 3.21M 72s\n", - " 38600K .......... .......... .......... .......... .......... 7% 2.15M 73s\n", - " 38650K .......... .......... .......... .......... .......... 7% 2.75M 73s\n", - " 38700K .......... .......... .......... .......... .......... 7% 3.11M 73s\n", - " 38750K .......... .......... .......... .......... .......... 7% 3.09M 73s\n", - " 38800K .......... .......... .......... .......... .......... 7% 2.66M 73s\n", - " 38850K .......... .......... .......... .......... .......... 7% 2.20M 73s\n", - " 38900K .......... .......... .......... .......... .......... 7% 3.54M 73s\n", - " 38950K .......... .......... .......... .......... .......... 7% 2.73M 73s\n", - " 39000K .......... .......... .......... .......... .......... 7% 2.30M 74s\n", - " 39050K .......... .......... .......... .......... .......... 7% 3.10M 74s\n", - " 39100K .......... .......... .......... .......... .......... 7% 2.79M 74s\n", - " 39150K .......... .......... .......... .......... .......... 7% 3.44M 74s\n", - " 39200K .......... .......... .......... .......... .......... 7% 3.10M 74s\n", - " 39250K .......... .......... .......... .......... .......... 7% 2.72M 74s\n", - " 39300K .......... .......... .......... .......... .......... 7% 3.96M 74s\n", - " 39350K .......... .......... .......... .......... .......... 7% 2.85M 74s\n", - " 39400K .......... .......... .......... .......... .......... 7% 2.30M 74s\n", - " 39450K .......... .......... .......... .......... .......... 7% 2.52M 75s\n", - " 39500K .......... .......... .......... .......... .......... 7% 4.24M 75s\n", - " 39550K .......... .......... .......... .......... .......... 7% 2.60M 75s\n", - " 39600K .......... .......... .......... .......... .......... 7% 3.15M 75s\n", - " 39650K .......... .......... .......... .......... .......... 7% 3.25M 75s\n", - " 39700K .......... .......... .......... .......... .......... 7% 3.25M 75s\n", - " 39750K .......... .......... .......... .......... .......... 7% 3.28M 75s\n", - " 39800K .......... .......... .......... .......... .......... 7% 2.47M 75s\n", - " 39850K .......... .......... .......... .......... .......... 7% 3.12M 75s\n", - " 39900K .......... .......... .......... .......... .......... 7% 4.03M 75s\n", - " 39950K .......... .......... .......... .......... .......... 7% 3.01M 75s\n", - " 40000K .......... .......... .......... .......... .......... 7% 3.55M 75s\n", - " 40050K .......... .......... .......... .......... .......... 7% 3.38M 76s\n", - " 40100K .......... .......... .......... .......... .......... 7% 3.13M 76s\n", - " 40150K .......... .......... .......... .......... .......... 7% 3.51M 76s\n", - " 40200K .......... .......... .......... .......... .......... 7% 2.57M 76s\n", - " 40250K .......... .......... .......... .......... .......... 7% 3.97M 76s\n", - " 40300K .......... .......... .......... .......... .......... 7% 3.19M 76s\n", - " 40350K .......... .......... .......... .......... .......... 7% 2.77M 76s\n", - " 40400K .......... .......... .......... .......... .......... 7% 4.05M 76s\n", - " 40450K .......... .......... .......... .......... .......... 7% 3.05M 76s\n", - " 40500K .......... .......... .......... .......... .......... 7% 4.26M 76s\n", - " 40550K .......... .......... .......... .......... .......... 7% 2.99M 76s\n", - " 40600K .......... .......... .......... .......... .......... 7% 2.85M 76s\n", - " 40650K .......... .......... .......... .......... .......... 7% 3.37M 76s\n", - " 40700K .......... .......... .......... .......... .......... 7% 3.87M 77s\n", - " 40750K .......... .......... .......... .......... .......... 7% 3.53M 77s\n", - " 40800K .......... .......... .......... .......... .......... 7% 3.55M 77s\n", - " 40850K .......... .......... .......... .......... .......... 7% 2.92M 77s\n", - " 40900K .......... .......... .......... .......... .......... 7% 4.71M 77s\n", - " 40950K .......... .......... .......... .......... .......... 7% 3.20M 77s\n", - " 41000K .......... .......... .......... .......... .......... 7% 2.60M 77s\n", - " 41050K .......... .......... .......... .......... .......... 7% 2.73M 77s\n", - " 41100K .......... .......... .......... .......... .......... 7% 4.46M 77s\n", - " 41150K .......... .......... .......... .......... .......... 7% 3.32M 77s\n", - " 41200K .......... .......... .......... .......... .......... 7% 3.96M 77s\n", - " 41250K .......... .......... .......... .......... .......... 7% 3.03M 77s\n", - " 41300K .......... .......... .......... .......... .......... 7% 4.61M 77s\n", - " 41350K .......... .......... .......... .......... .......... 7% 2.96M 77s\n", - " 41400K .......... .......... .......... .......... .......... 7% 3.58M 77s\n", - " 41450K .......... .......... .......... .......... .......... 7% 3.15M 78s\n", - " 41500K .......... .......... .......... .......... .......... 7% 4.44M 78s\n", - " 41550K .......... .......... .......... .......... .......... 7% 2.93M 78s\n", - " 41600K .......... .......... .......... .......... .......... 7% 4.95M 78s\n", - " 41650K .......... .......... .......... .......... .......... 7% 3.15M 78s\n", - " 41700K .......... .......... .......... .......... .......... 7% 4.88M 78s\n", - " 41750K .......... .......... .......... .......... .......... 7% 3.14M 78s\n", - " 41800K .......... .......... .......... .......... .......... 7% 3.26M 78s\n", - " 41850K .......... .......... .......... .......... .......... 7% 3.08M 78s\n", - " 41900K .......... .......... .......... .......... .......... 7% 5.18M 78s\n", - " 41950K .......... .......... .......... .......... .......... 8% 2.84M 78s\n", - " 42000K .......... .......... .......... .......... .......... 8% 4.85M 78s\n", - " 42050K .......... .......... .......... .......... .......... 8% 4.32M 78s\n", - " 42100K .......... .......... .......... .......... .......... 8% 3.15M 78s\n", - " 42150K .......... .......... .......... .......... .......... 8% 5.04M 78s\n", - " 42200K .......... .......... .......... .......... .......... 8% 2.81M 78s\n", - " 42250K .......... .......... .......... .......... .......... 8% 3.46M 78s\n", - " 42300K .......... .......... .......... .......... .......... 8% 4.67M 78s\n", - " 42350K .......... .......... .......... .......... .......... 8% 4.26M 78s\n", - " 42400K .......... .......... .......... .......... .......... 8% 3.82M 78s\n", - " 42450K .......... .......... .......... .......... .......... 8% 4.58M 78s\n", - " 42500K .......... .......... .......... .......... .......... 8% 3.59M 79s\n", - " 42550K .......... .......... .......... .......... .......... 8% 3.79M 79s\n", - " 42600K .......... .......... .......... .......... .......... 8% 2.83M 79s\n", - " 42650K .......... .......... .......... .......... .......... 8% 5.00M 79s\n", - " 42700K .......... .......... .......... .......... .......... 8% 3.25M 79s\n", - " 42750K .......... .......... .......... .......... .......... 8% 4.93M 79s\n", - " 42800K .......... .......... .......... .......... .......... 8% 5.05M 79s\n", - " 42850K .......... .......... .......... .......... .......... 8% 3.42M 79s\n", - " 42900K .......... .......... .......... .......... .......... 8% 5.24M 79s\n", - " 42950K .......... .......... .......... .......... .......... 8% 3.57M 79s\n", - " 43000K .......... .......... .......... .......... .......... 8% 3.51M 79s\n", - " 43050K .......... .......... .......... .......... .......... 8% 3.78M 79s\n", - " 43100K .......... .......... .......... .......... .......... 8% 4.56M 79s\n", - " 43150K .......... .......... .......... .......... .......... 8% 3.71M 79s\n", - " 43200K .......... .......... .......... .......... .......... 8% 4.91M 79s\n", - " 43250K .......... .......... .......... .......... .......... 8% 3.86M 79s\n", - " 43300K .......... .......... .......... .......... .......... 8% 4.54M 79s\n", - " 43350K .......... .......... .......... .......... .......... 8% 4.59M 79s\n", - " 43400K .......... .......... .......... .......... .......... 8% 3.32M 79s\n", - " 43450K .......... .......... .......... .......... .......... 8% 4.44M 79s\n", - " 43500K .......... .......... .......... .......... .......... 8% 3.92M 79s\n", - " 43550K .......... .......... .......... .......... .......... 8% 5.08M 79s\n", - " 43600K .......... .......... .......... .......... .......... 8% 4.11M 79s\n", - " 43650K .......... .......... .......... .......... .......... 8% 4.80M 79s\n", - " 43700K .......... .......... .......... .......... .......... 8% 3.93M 79s\n", - " 43750K .......... .......... .......... .......... .......... 8% 4.87M 79s\n", - " 43800K .......... .......... .......... .......... .......... 8% 2.65M 79s\n", - " 43850K .......... .......... .......... .......... .......... 8% 5.26M 79s\n", - " 43900K .......... .......... .......... .......... .......... 8% 4.45M 80s\n", - " 43950K .......... .......... .......... .......... .......... 8% 4.12M 80s\n", - " 44000K .......... .......... .......... .......... .......... 8% 5.00M 80s\n", - " 44050K .......... .......... .......... .......... .......... 8% 3.65M 80s\n", - " 44100K .......... .......... .......... .......... .......... 8% 5.60M 80s\n", - " 44150K .......... .......... .......... .......... .......... 8% 3.42M 80s\n", - " 44200K .......... .......... .......... .......... .......... 8% 3.93M 80s\n", - " 44250K .......... .......... .......... .......... .......... 8% 4.04M 80s\n", - " 44300K .......... .......... .......... .......... .......... 8% 4.30M 80s\n", - " 44350K .......... .......... .......... .......... .......... 8% 5.69M 80s\n", - " 44400K .......... .......... .......... .......... .......... 8% 3.19M 80s\n", - " 44450K .......... .......... .......... .......... .......... 8% 5.73M 80s\n", - " 44500K .......... .......... .......... .......... .......... 8% 4.31M 80s\n", - " 44550K .......... .......... .......... .......... .......... 8% 4.46M 80s\n", - " 44600K .......... .......... .......... .......... .......... 8% 3.51M 80s\n", - " 44650K .......... .......... .......... .......... .......... 8% 3.67M 80s\n", - " 44700K .......... .......... .......... .......... .......... 8% 5.34M 80s\n", - " 44750K .......... .......... .......... .......... .......... 8% 4.04M 80s\n", - " 44800K .......... .......... .......... .......... .......... 8% 5.43M 80s\n", - " 44850K .......... .......... .......... .......... .......... 8% 4.04M 80s\n", - " 44900K .......... .......... .......... .......... .......... 8% 5.08M 80s\n", - " 44950K .......... .......... .......... .......... .......... 8% 4.04M 80s\n", - " 45000K .......... .......... .......... .......... .......... 8% 3.98M 80s\n", - " 45050K .......... .......... .......... .......... .......... 8% 3.80M 80s\n", - " 45100K .......... .......... .......... .......... .......... 8% 6.21M 80s\n", - " 45150K .......... .......... .......... .......... .......... 8% 4.10M 80s\n", - " 45200K .......... .......... .......... .......... .......... 8% 3.43M 80s\n", - " 45250K .......... .......... .......... .......... .......... 8% 5.80M 80s\n", - " 45300K .......... .......... .......... .......... .......... 8% 3.76M 80s\n", - " 45350K .......... .......... .......... .......... .......... 8% 5.64M 80s\n", - " 45400K .......... .......... .......... .......... .......... 8% 2.86M 80s\n", - " 45450K .......... .......... .......... .......... .......... 8% 6.19M 80s\n", - " 45500K .......... .......... .......... .......... .......... 8% 5.73M 80s\n", - " 45550K .......... .......... .......... .......... .......... 8% 3.83M 80s\n", - " 45600K .......... .......... .......... .......... .......... 8% 4.44M 80s\n", - " 45650K .......... .......... .......... .......... .......... 8% 4.57M 80s\n", - " 45700K .......... .......... .......... .......... .......... 8% 4.79M 80s\n", - " 45750K .......... .......... .......... .......... .......... 8% 4.69M 80s\n", - " 45800K .......... .......... .......... .......... .......... 8% 3.51M 80s\n", - " 45850K .......... .......... .......... .......... .......... 8% 4.49M 80s\n", - " 45900K .......... .......... .......... .......... .......... 8% 4.95M 80s\n", - " 45950K .......... .......... .......... .......... .......... 8% 4.71M 80s\n", - " 46000K .......... .......... .......... .......... .......... 8% 5.43M 80s\n", - " 46050K .......... .......... .......... .......... .......... 8% 4.53M 80s\n", - " 46100K .......... .......... .......... .......... .......... 8% 4.63M 80s\n", - " 46150K .......... .......... .......... .......... .......... 8% 5.86M 80s\n", - " 46200K .......... .......... .......... .......... .......... 8% 3.27M 81s\n", - " 46250K .......... .......... .......... .......... .......... 8% 5.43M 81s\n", - " 46300K .......... .......... .......... .......... .......... 8% 4.49M 81s\n", - " 46350K .......... .......... .......... .......... .......... 8% 5.63M 81s\n", - " 46400K .......... .......... .......... .......... .......... 8% 4.58M 81s\n", - " 46450K .......... .......... .......... .......... .......... 8% 4.05M 81s\n", - " 46500K .......... .......... .......... .......... .......... 8% 7.04M 81s\n", - " 46550K .......... .......... .......... .......... .......... 8% 3.89M 81s\n", - " 46600K .......... .......... .......... .......... .......... 8% 4.22M 81s\n", - " 46650K .......... .......... .......... .......... .......... 8% 5.18M 81s\n", - " 46700K .......... .......... .......... .......... .......... 8% 4.46M 81s\n", - " 46750K .......... .......... .......... .......... .......... 8% 6.36M 81s\n", - " 46800K .......... .......... .......... .......... .......... 8% 3.90M 81s\n", - " 46850K .......... .......... .......... .......... .......... 8% 5.55M 81s\n", - " 46900K .......... .......... .......... .......... .......... 8% 5.73M 81s\n", - " 46950K .......... .......... .......... .......... .......... 8% 4.25M 81s\n", - " 47000K .......... .......... .......... .......... .......... 8% 4.55M 81s\n", - " 47050K .......... .......... .......... .......... .......... 8% 4.58M 81s\n", - " 47100K .......... .......... .......... .......... .......... 8% 4.72M 81s\n", - " 47150K .......... .......... .......... .......... .......... 8% 6.23M 81s\n", - " 47200K .......... .......... .......... .......... .......... 9% 4.64M 81s\n", - " 47250K .......... .......... .......... .......... .......... 9% 5.39M 81s\n", - " 47300K .......... .......... .......... .......... .......... 9% 5.01M 81s\n", - " 47350K .......... .......... .......... .......... .......... 9% 5.06M 81s\n", - " 47400K .......... .......... .......... .......... .......... 9% 3.72M 81s\n", - " 47450K .......... .......... .......... .......... .......... 9% 5.75M 81s\n", - " 47500K .......... .......... .......... .......... .......... 9% 4.86M 81s\n", - " 47550K .......... .......... .......... .......... .......... 9% 6.18M 81s\n", - " 47600K .......... .......... .......... .......... .......... 9% 4.23M 81s\n", - " 47650K .......... .......... .......... .......... .......... 9% 5.69M 81s\n", - " 47700K .......... .......... .......... .......... .......... 9% 4.29M 81s\n", - " 47750K .......... .......... .......... .......... .......... 9% 6.18M 81s\n", - " 47800K .......... .......... .......... .......... .......... 9% 3.81M 81s\n", - " 47850K .......... .......... .......... .......... .......... 9% 5.40M 81s\n", - " 47900K .......... .......... .......... .......... .......... 9% 4.45M 81s\n", - " 47950K .......... .......... .......... .......... .......... 9% 7.16M 81s\n", - " 48000K .......... .......... .......... .......... .......... 9% 5.20M 81s\n", - " 48050K .......... .......... .......... .......... .......... 9% 4.49M 81s\n", - " 48100K .......... .......... .......... .......... .......... 9% 6.93M 81s\n", - " 48150K .......... .......... .......... .......... .......... 9% 4.19M 81s\n", - " 48200K .......... .......... .......... .......... .......... 9% 4.23M 81s\n", - " 48250K .......... .......... .......... .......... .......... 9% 4.98M 81s\n", - " 48300K .......... .......... .......... .......... .......... 9% 5.74M 81s\n", - " 48350K .......... .......... .......... .......... .......... 9% 5.29M 81s\n", - " 48400K .......... .......... .......... .......... .......... 9% 5.37M 81s\n", - " 48450K .......... .......... .......... .......... .......... 9% 5.23M 81s\n", - " 48500K .......... .......... .......... .......... .......... 9% 6.22M 81s\n", - " 48550K .......... .......... .......... .......... .......... 9% 4.84M 81s\n", - " 48600K .......... .......... .......... .......... .......... 9% 4.03M 81s\n", - " 48650K .......... .......... .......... .......... .......... 9% 6.17M 81s\n", - " 48700K .......... .......... .......... .......... .......... 9% 4.72M 81s\n", - " 48750K .......... .......... .......... .......... .......... 9% 5.74M 81s\n", - " 48800K .......... .......... .......... .......... .......... 9% 5.63M 81s\n", - " 48850K .......... .......... .......... .......... .......... 9% 5.43M 81s\n", - " 48900K .......... .......... .......... .......... .......... 9% 5.28M 81s\n", - " 48950K .......... .......... .......... .......... .......... 9% 4.53M 81s\n", - " 49000K .......... .......... .......... .......... .......... 9% 3.82M 81s\n", - " 49050K .......... .......... .......... .......... .......... 9% 7.34M 81s\n", - " 49100K .......... .......... .......... .......... .......... 9% 6.00M 81s\n", - " 49150K .......... .......... .......... .......... .......... 9% 3.79M 81s\n", - " 49200K .......... .......... .......... .......... .......... 9% 6.60M 81s\n", - " 49250K .......... .......... .......... .......... .......... 9% 6.81M 81s\n", - " 49300K .......... .......... .......... .......... .......... 9% 3.85M 81s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 49350K .......... .......... .......... .......... .......... 9% 6.25M 81s\n", - " 49400K .......... .......... .......... .......... .......... 9% 3.86M 81s\n", - " 49450K .......... .......... .......... .......... .......... 9% 5.06M 81s\n", - " 49500K .......... .......... .......... .......... .......... 9% 7.61M 81s\n", - " 49550K .......... .......... .......... .......... .......... 9% 5.16M 81s\n", - " 49600K .......... .......... .......... .......... .......... 9% 4.83M 81s\n", - " 49650K .......... .......... .......... .......... .......... 9% 6.08M 81s\n", - " 49700K .......... .......... .......... .......... .......... 9% 4.87M 81s\n", - " 49750K .......... .......... .......... .......... .......... 9% 4.96M 81s\n", - " 49800K .......... .......... .......... .......... .......... 9% 4.95M 81s\n", - " 49850K .......... .......... .......... .......... .......... 9% 6.62M 81s\n", - " 49900K .......... .......... .......... .......... .......... 9% 4.78M 81s\n", - " 49950K .......... .......... .......... .......... .......... 9% 6.14M 81s\n", - " 50000K .......... .......... .......... .......... .......... 9% 5.50M 81s\n", - " 50050K .......... .......... .......... .......... .......... 9% 5.45M 81s\n", - " 50100K .......... .......... .......... .......... .......... 9% 6.09M 81s\n", - " 50150K .......... .......... .......... .......... .......... 9% 5.78M 81s\n", - " 50200K .......... .......... .......... .......... .......... 9% 3.71M 81s\n", - " 50250K .......... .......... .......... .......... .......... 9% 6.75M 81s\n", - " 50300K .......... .......... .......... .......... .......... 9% 5.89M 81s\n", - " 50350K .......... .......... .......... .......... .......... 9% 5.06M 81s\n", - " 50400K .......... .......... .......... .......... .......... 9% 6.22M 81s\n", - " 50450K .......... .......... .......... .......... .......... 9% 6.51M 81s\n", - " 50500K .......... .......... .......... .......... .......... 9% 4.66M 81s\n", - " 50550K .......... .......... .......... .......... .......... 9% 4.86M 81s\n", - " 50600K .......... .......... .......... .......... .......... 9% 5.29M 81s\n", - " 50650K .......... .......... .......... .......... .......... 9% 2.32M 81s\n", - " 50700K .......... .......... .......... .......... .......... 9% 63.6M 81s\n", - " 50750K .......... .......... .......... .......... .......... 9% 9.96M 81s\n", - " 50800K .......... .......... .......... .......... .......... 9% 1.77M 81s\n", - " 50850K .......... .......... .......... .......... .......... 9% 15.5M 81s\n", - " 50900K .......... .......... .......... .......... .......... 9% 8.47M 81s\n", - " 50950K .......... .......... .......... .......... .......... 9% 3.05M 81s\n", - " 51000K .......... .......... .......... .......... .......... 9% 5.11M 81s\n", - " 51050K .......... .......... .......... .......... .......... 9% 6.89M 81s\n", - " 51100K .......... .......... .......... .......... .......... 9% 4.12M 81s\n", - " 51150K .......... .......... .......... .......... .......... 9% 5.80M 81s\n", - " 51200K .......... .......... .......... .......... .......... 9% 6.23M 81s\n", - " 51250K .......... .......... .......... .......... .......... 9% 4.52M 81s\n", - " 51300K .......... .......... .......... .......... .......... 9% 5.26M 81s\n", - " 51350K .......... .......... .......... .......... .......... 9% 9.08M 81s\n", - " 51400K .......... .......... .......... .......... .......... 9% 3.73M 81s\n", - " 51450K .......... .......... .......... .......... .......... 9% 5.00M 81s\n", - " 51500K .......... .......... .......... .......... .......... 9% 7.14M 81s\n", - " 51550K .......... .......... .......... .......... .......... 9% 6.36M 81s\n", - " 51600K .......... .......... .......... .......... .......... 9% 4.88M 81s\n", - " 51650K .......... .......... .......... .......... .......... 9% 4.84M 81s\n", - " 51700K .......... .......... .......... .......... .......... 9% 11.4M 81s\n", - " 51750K .......... .......... .......... .......... .......... 9% 4.83M 81s\n", - " 51800K .......... .......... .......... .......... .......... 9% 3.73M 81s\n", - " 51850K .......... .......... .......... .......... .......... 9% 7.27M 81s\n", - " 51900K .......... .......... .......... .......... .......... 9% 6.96M 81s\n", - " 51950K .......... .......... .......... .......... .......... 9% 4.18M 81s\n", - " 52000K .......... .......... .......... .......... .......... 9% 7.80M 81s\n", - " 52050K .......... .......... .......... .......... .......... 9% 6.60M 81s\n", - " 52100K .......... .......... .......... .......... .......... 9% 5.62M 81s\n", - " 52150K .......... .......... .......... .......... .......... 9% 3.97M 81s\n", - " 52200K .......... .......... .......... .......... .......... 9% 7.02M 81s\n", - " 52250K .......... .......... .......... .......... .......... 9% 6.73M 81s\n", - " 52300K .......... .......... .......... .......... .......... 9% 3.49M 81s\n", - " 52350K .......... .......... .......... .......... .......... 9% 7.65M 81s\n", - " 52400K .......... .......... .......... .......... .......... 9% 6.26M 81s\n", - " 52450K .......... .......... .......... .......... .......... 10% 5.24M 81s\n", - " 52500K .......... .......... .......... .......... .......... 10% 6.51M 81s\n", - " 52550K .......... .......... .......... .......... .......... 10% 4.15M 81s\n", - " 52600K .......... .......... .......... .......... .......... 10% 5.75M 81s\n", - " 52650K .......... .......... .......... .......... .......... 10% 6.71M 81s\n", - " 52700K .......... .......... .......... .......... .......... 10% 5.26M 81s\n", - " 52750K .......... .......... .......... .......... .......... 10% 6.88M 81s\n", - " 52800K .......... .......... .......... .......... .......... 10% 4.72M 81s\n", - " 52850K .......... .......... .......... .......... .......... 10% 6.24M 81s\n", - " 52900K .......... .......... .......... .......... .......... 10% 5.75M 81s\n", - " 52950K .......... .......... .......... .......... .......... 10% 7.04M 81s\n", - " 53000K .......... .......... .......... .......... .......... 10% 4.59M 81s\n", - " 53050K .......... .......... .......... .......... .......... 10% 4.42M 81s\n", - " 53100K .......... .......... .......... .......... .......... 10% 7.60M 81s\n", - " 53150K .......... .......... .......... .......... .......... 10% 7.49M 81s\n", - " 53200K .......... .......... .......... .......... .......... 10% 4.38M 81s\n", - " 53250K .......... .......... .......... .......... .......... 10% 8.52M 81s\n", - " 53300K .......... .......... .......... .......... .......... 10% 7.22M 81s\n", - " 53350K .......... .......... .......... .......... .......... 10% 5.17M 81s\n", - " 53400K .......... .......... .......... .......... .......... 10% 4.76M 81s\n", - " 53450K .......... .......... .......... .......... .......... 10% 6.84M 81s\n", - " 53500K .......... .......... .......... .......... .......... 10% 5.93M 81s\n", - " 53550K .......... .......... .......... .......... .......... 10% 5.58M 81s\n", - " 53600K .......... .......... .......... .......... .......... 10% 6.39M 81s\n", - " 53650K .......... .......... .......... .......... .......... 10% 7.55M 80s\n", - " 53700K .......... .......... .......... .......... .......... 10% 6.05M 80s\n", - " 53750K .......... .......... .......... .......... .......... 10% 5.94M 80s\n", - " 53800K .......... .......... .......... .......... .......... 10% 5.18M 80s\n", - " 53850K .......... .......... .......... .......... .......... 10% 6.19M 80s\n", - " 53900K .......... .......... .......... .......... .......... 10% 5.68M 80s\n", - " 53950K .......... .......... .......... .......... .......... 10% 7.75M 80s\n", - " 54000K .......... .......... .......... .......... .......... 10% 5.85M 80s\n", - " 54050K .......... .......... .......... .......... .......... 10% 5.32M 80s\n", - " 54100K .......... .......... .......... .......... .......... 10% 7.84M 80s\n", - " 54150K .......... .......... .......... .......... .......... 10% 7.94M 80s\n", - " 54200K .......... .......... .......... .......... .......... 10% 3.95M 80s\n", - " 54250K .......... .......... .......... .......... .......... 10% 7.44M 80s\n", - " 54300K .......... .......... .......... .......... .......... 10% 8.09M 80s\n", - " 54350K .......... .......... .......... .......... .......... 10% 5.60M 80s\n", - " 54400K .......... .......... .......... .......... .......... 10% 5.07M 80s\n", - " 54450K .......... .......... .......... .......... .......... 10% 7.76M 80s\n", - " 54500K .......... .......... .......... .......... .......... 10% 7.91M 80s\n", - " 54550K .......... .......... .......... .......... .......... 10% 4.19M 80s\n", - " 54600K .......... .......... .......... .......... .......... 10% 6.09M 80s\n", - " 54650K .......... .......... .......... .......... .......... 10% 7.81M 80s\n", - " 54700K .......... .......... .......... .......... .......... 10% 4.52M 80s\n", - " 54750K .......... .......... .......... .......... .......... 10% 7.25M 80s\n", - " 54800K .......... .......... .......... .......... .......... 10% 7.16M 80s\n", - " 54850K .......... .......... .......... .......... .......... 10% 7.44M 80s\n", - " 54900K .......... .......... .......... .......... .......... 10% 5.47M 80s\n", - " 54950K .......... .......... .......... .......... .......... 10% 7.05M 80s\n", - " 55000K .......... .......... .......... .......... .......... 10% 5.72M 80s\n", - " 55050K .......... .......... .......... .......... .......... 10% 5.16M 80s\n", - " 55100K .......... .......... .......... .......... .......... 10% 7.58M 80s\n", - " 55150K .......... .......... .......... .......... .......... 10% 6.99M 80s\n", - " 55200K .......... .......... .......... .......... .......... 10% 8.22M 80s\n", - " 55250K .......... .......... .......... .......... .......... 10% 4.40M 80s\n", - " 55300K .......... .......... .......... .......... .......... 10% 7.78M 80s\n", - " 55350K .......... .......... .......... .......... .......... 10% 7.53M 80s\n", - " 55400K .......... .......... .......... .......... .......... 10% 4.15M 80s\n", - " 55450K .......... .......... .......... .......... .......... 10% 8.94M 80s\n", - " 55500K .......... .......... .......... .......... .......... 10% 7.37M 80s\n", - " 55550K .......... .......... .......... .......... .......... 10% 5.88M 80s\n", - " 55600K .......... .......... .......... .......... .......... 10% 6.47M 80s\n", - " 55650K .......... .......... .......... .......... .......... 10% 6.22M 80s\n", - " 55700K .......... .......... .......... .......... .......... 10% 7.76M 80s\n", - " 55750K .......... .......... .......... .......... .......... 10% 6.35M 80s\n", - " 55800K .......... .......... .......... .......... .......... 10% 4.63M 80s\n", - " 55850K .......... .......... .......... .......... .......... 10% 7.87M 80s\n", - " 55900K .......... .......... .......... .......... .......... 10% 6.37M 80s\n", - " 55950K .......... .......... .......... .......... .......... 10% 5.32M 80s\n", - " 56000K .......... .......... .......... .......... .......... 10% 7.47M 80s\n", - " 56050K .......... .......... .......... .......... .......... 10% 7.59M 80s\n", - " 56100K .......... .......... .......... .......... .......... 10% 6.47M 80s\n", - " 56150K .......... .......... .......... .......... .......... 10% 6.23M 80s\n", - " 56200K .......... .......... .......... .......... .......... 10% 5.26M 80s\n", - " 56250K .......... .......... .......... .......... .......... 10% 8.82M 80s\n", - " 56300K .......... .......... .......... .......... .......... 10% 5.29M 80s\n", - " 56350K .......... .......... .......... .......... .......... 10% 7.42M 80s\n", - " 56400K .......... .......... .......... .......... .......... 10% 6.99M 80s\n", - " 56450K .......... .......... .......... .......... .......... 10% 5.75M 80s\n", - " 56500K .......... .......... .......... .......... .......... 10% 8.41M 80s\n", - " 56550K .......... .......... .......... .......... .......... 10% 5.64M 80s\n", - " 56600K .......... .......... .......... .......... .......... 10% 6.15M 80s\n", - " 56650K .......... .......... .......... .......... .......... 10% 5.13M 80s\n", - " 56700K .......... .......... .......... .......... .......... 10% 8.50M 80s\n", - " 56750K .......... .......... .......... .......... .......... 10% 7.78M 80s\n", - " 56800K .......... .......... .......... .......... .......... 10% 6.21M 80s\n", - " 56850K .......... .......... .......... .......... .......... 10% 5.67M 80s\n", - " 56900K .......... .......... .......... .......... .......... 10% 7.25M 80s\n", - " 56950K .......... .......... .......... .......... .......... 10% 8.89M 79s\n", - " 57000K .......... .......... .......... .......... .......... 10% 4.53M 80s\n", - " 57050K .......... .......... .......... .......... .......... 10% 4.94M 80s\n", - " 57100K .......... .......... .......... .......... .......... 10% 8.62M 79s\n", - " 57150K .......... .......... .......... .......... .......... 10% 7.25M 79s\n", - " 57200K .......... .......... .......... .......... .......... 10% 7.42M 79s\n", - " 57250K .......... .......... .......... .......... .......... 10% 5.00M 79s\n", - " 57300K .......... .......... .......... .......... .......... 10% 7.98M 79s\n", - " 57350K .......... .......... .......... .......... .......... 10% 7.26M 79s\n", - " 57400K .......... .......... .......... .......... .......... 10% 5.61M 79s\n", - " 57450K .......... .......... .......... .......... .......... 10% 4.91M 79s\n", - " 57500K .......... .......... .......... .......... .......... 10% 8.93M 79s\n", - " 57550K .......... .......... .......... .......... .......... 10% 7.92M 79s\n", - " 57600K .......... .......... .......... .......... .......... 10% 6.14M 79s\n", - " 57650K .......... .......... .......... .......... .......... 10% 6.48M 79s\n", - " 57700K .......... .......... .......... .......... .......... 11% 8.59M 79s\n", - " 57750K .......... .......... .......... .......... .......... 11% 6.84M 79s\n", - " 57800K .......... .......... .......... .......... .......... 11% 4.53M 79s\n", - " 57850K .......... .......... .......... .......... .......... 11% 7.68M 79s\n", - " 57900K .......... .......... .......... .......... .......... 11% 7.18M 79s\n", - " 57950K .......... .......... .......... .......... .......... 11% 8.08M 79s\n", - " 58000K .......... .......... .......... .......... .......... 11% 5.98M 79s\n", - " 58050K .......... .......... .......... .......... .......... 11% 8.13M 79s\n", - " 58100K .......... .......... .......... .......... .......... 11% 6.80M 79s\n", - " 58150K .......... .......... .......... .......... .......... 11% 6.88M 79s\n", - " 58200K .......... .......... .......... .......... .......... 11% 5.02M 79s\n", - " 58250K .......... .......... .......... .......... .......... 11% 9.02M 79s\n", - " 58300K .......... .......... .......... .......... .......... 11% 6.98M 79s\n", - " 58350K .......... .......... .......... .......... .......... 11% 5.15M 79s\n", - " 58400K .......... .......... .......... .......... .......... 11% 8.42M 79s\n", - " 58450K .......... .......... .......... .......... .......... 11% 8.88M 79s\n", - " 58500K .......... .......... .......... .......... .......... 11% 4.66M 79s\n", - " 58550K .......... .......... .......... .......... .......... 11% 9.21M 79s\n", - " 58600K .......... .......... .......... .......... .......... 11% 5.34M 79s\n", - " 58650K .......... .......... .......... .......... .......... 11% 8.44M 79s\n", - " 58700K .......... .......... .......... .......... .......... 11% 6.11M 79s\n", - " 58750K .......... .......... .......... .......... .......... 11% 5.54M 79s\n", - " 58800K .......... .......... .......... .......... .......... 11% 6.86M 79s\n", - " 58850K .......... .......... .......... .......... .......... 11% 12.1M 79s\n", - " 58900K .......... .......... .......... .......... .......... 11% 6.63M 79s\n", - " 58950K .......... .......... .......... .......... .......... 11% 5.80M 79s\n", - " 59000K .......... .......... .......... .......... .......... 11% 5.45M 79s\n", - " 59050K .......... .......... .......... .......... .......... 11% 8.73M 79s\n", - " 59100K .......... .......... .......... .......... .......... 11% 6.85M 79s\n", - " 59150K .......... .......... .......... .......... .......... 11% 5.36M 79s\n", - " 59200K .......... .......... .......... .......... .......... 11% 9.07M 79s\n", - " 59250K .......... .......... .......... .......... .......... 11% 8.95M 79s\n", - " 59300K .......... .......... .......... .......... .......... 11% 5.37M 79s\n", - " 59350K .......... .......... .......... .......... .......... 11% 6.64M 79s\n", - " 59400K .......... .......... .......... .......... .......... 11% 6.26M 79s\n", - " 59450K .......... .......... .......... .......... .......... 11% 9.28M 79s\n", - " 59500K .......... .......... .......... .......... .......... 11% 4.72M 79s\n", - " 59550K .......... .......... .......... .......... .......... 11% 8.32M 79s\n", - " 59600K .......... .......... .......... .......... .......... 11% 7.78M 79s\n", - " 59650K .......... .......... .......... .......... .......... 11% 8.65M 79s\n", - " 59700K .......... .......... .......... .......... .......... 11% 5.70M 79s\n", - " 59750K .......... .......... .......... .......... .......... 11% 7.29M 79s\n", - " 59800K .......... .......... .......... .......... .......... 11% 6.07M 79s\n", - " 59850K .......... .......... .......... .......... .......... 11% 6.66M 78s\n", - " 59900K .......... .......... .......... .......... .......... 11% 5.98M 78s\n", - " 59950K .......... .......... .......... .......... .......... 11% 9.06M 78s\n", - " 60000K .......... .......... .......... .......... .......... 11% 7.34M 78s\n", - " 60050K .......... .......... .......... .......... .......... 11% 9.37M 78s\n", - " 60100K .......... .......... .......... .......... .......... 11% 4.54M 78s\n", - " 60150K .......... .......... .......... .......... .......... 11% 9.21M 78s\n", - " 60200K .......... .......... .......... .......... .......... 11% 6.52M 78s\n", - " 60250K .......... .......... .......... .......... .......... 11% 7.14M 78s\n", - " 60300K .......... .......... .......... .......... .......... 11% 5.79M 78s\n", - " 60350K .......... .......... .......... .......... .......... 11% 8.43M 78s\n", - " 60400K .......... .......... .......... .......... .......... 11% 8.00M 78s\n", - " 60450K .......... .......... .......... .......... .......... 11% 6.38M 78s\n", - " 60500K .......... .......... .......... .......... .......... 11% 6.97M 78s\n", - " 60550K .......... .......... .......... .......... .......... 11% 8.68M 78s\n", - " 60600K .......... .......... .......... .......... .......... 11% 4.08M 78s\n", - " 60650K .......... .......... .......... .......... .......... 11% 9.21M 78s\n", - " 60700K .......... .......... .......... .......... .......... 11% 8.60M 78s\n", - " 60750K .......... .......... .......... .......... .......... 11% 5.11M 78s\n", - " 60800K .......... .......... .......... .......... .......... 11% 10.0M 78s\n", - " 60850K .......... .......... .......... .......... .......... 11% 6.71M 78s\n", - " 60900K .......... .......... .......... .......... .......... 11% 9.28M 78s\n", - " 60950K .......... .......... .......... .......... .......... 11% 4.83M 78s\n", - " 61000K .......... .......... .......... .......... .......... 11% 7.04M 78s\n", - " 61050K .......... .......... .......... .......... .......... 11% 8.42M 78s\n", - " 61100K .......... .......... .......... .......... .......... 11% 9.57M 78s\n", - " 61150K .......... .......... .......... .......... .......... 11% 4.72M 78s\n", - " 61200K .......... .......... .......... .......... .......... 11% 9.46M 78s\n", - " 61250K .......... .......... .......... .......... .......... 11% 7.66M 78s\n", - " 61300K .......... .......... .......... .......... .......... 11% 9.76M 78s\n", - " 61350K .......... .......... .......... .......... .......... 11% 4.51M 78s\n", - " 61400K .......... .......... .......... .......... .......... 11% 6.84M 78s\n", - " 61450K .......... .......... .......... .......... .......... 11% 10.1M 78s\n", - " 61500K .......... .......... .......... .......... .......... 11% 5.12M 78s\n", - " 61550K .......... .......... .......... .......... .......... 11% 8.87M 78s\n", - " 61600K .......... .......... .......... .......... .......... 11% 6.80M 78s\n", - " 61650K .......... .......... .......... .......... .......... 11% 10.0M 78s\n", - " 61700K .......... .......... .......... .......... .......... 11% 5.66M 78s\n", - " 61750K .......... .......... .......... .......... .......... 11% 8.57M 78s\n", - " 61800K .......... .......... .......... .......... .......... 11% 5.61M 78s\n", - " 61850K .......... .......... .......... .......... .......... 11% 8.43M 78s\n", - " 61900K .......... .......... .......... .......... .......... 11% 7.05M 78s\n", - " 61950K .......... .......... .......... .......... .......... 11% 8.50M 78s\n", - " 62000K .......... .......... .......... .......... .......... 11% 7.10M 78s\n", - " 62050K .......... .......... .......... .......... .......... 11% 5.63M 78s\n", - " 62100K .......... .......... .......... .......... .......... 11% 8.11M 78s\n", - " 62150K .......... .......... .......... .......... .......... 11% 10.4M 78s\n", - " 62200K .......... .......... .......... .......... .......... 11% 5.49M 78s\n", - " 62250K .......... .......... .......... .......... .......... 11% 5.94M 78s\n", - " 62300K .......... .......... .......... .......... .......... 11% 10.1M 78s\n", - " 62350K .......... .......... .......... .......... .......... 11% 8.21M 78s\n", - " 62400K .......... .......... .......... .......... .......... 11% 7.76M 77s\n", - " 62450K .......... .......... .......... .......... .......... 11% 5.60M 77s\n", - " 62500K .......... .......... .......... .......... .......... 11% 9.06M 77s\n", - " 62550K .......... .......... .......... .......... .......... 11% 8.93M 77s\n", - " 62600K .......... .......... .......... .......... .......... 11% 6.00M 77s\n", - " 62650K .......... .......... .......... .......... .......... 11% 6.02M 77s\n", - " 62700K .......... .......... .......... .......... .......... 11% 8.51M 77s\n", - " 62750K .......... .......... .......... .......... .......... 11% 9.95M 77s\n", - " 62800K .......... .......... .......... .......... .......... 11% 8.62M 77s\n", - " 62850K .......... .......... .......... .......... .......... 11% 5.25M 77s\n", - " 62900K .......... .......... .......... .......... .......... 11% 9.03M 77s\n", - " 62950K .......... .......... .......... .......... .......... 12% 8.64M 77s\n", - " 63000K .......... .......... .......... .......... .......... 12% 6.83M 77s\n", - " 63050K .......... .......... .......... .......... .......... 12% 5.68M 77s\n", - " 63100K .......... .......... .......... .......... .......... 12% 8.74M 77s\n", - " 63150K .......... .......... .......... .......... .......... 12% 8.46M 77s\n", - " 63200K .......... .......... .......... .......... .......... 12% 7.78M 77s\n", - " 63250K .......... .......... .......... .......... .......... 12% 6.34M 77s\n", - " 63300K .......... .......... .......... .......... .......... 12% 9.33M 77s\n", - " 63350K .......... .......... .......... .......... .......... 12% 7.50M 77s\n", - " 63400K .......... .......... .......... .......... .......... 12% 5.40M 77s\n", - " 63450K .......... .......... .......... .......... .......... 12% 8.44M 77s\n", - " 63500K .......... .......... .......... .......... .......... 12% 7.91M 77s\n", - " 63550K .......... .......... .......... .......... .......... 12% 8.24M 77s\n", - " 63600K .......... .......... .......... .......... .......... 12% 7.94M 77s\n", - " 63650K .......... .......... .......... .......... .......... 12% 7.08M 77s\n", - " 63700K .......... .......... .......... .......... .......... 12% 8.86M 77s\n", - " 63750K .......... .......... .......... .......... .......... 12% 7.63M 77s\n", - " 63800K .......... .......... .......... .......... .......... 12% 6.11M 77s\n", - " 63850K .......... .......... .......... .......... .......... 12% 7.02M 77s\n", - " 63900K .......... .......... .......... .......... .......... 12% 6.87M 77s\n", - " 63950K .......... .......... .......... .......... .......... 12% 10.1M 77s\n", - " 64000K .......... .......... .......... .......... .......... 12% 8.14M 77s\n", - " 64050K .......... .......... .......... .......... .......... 12% 8.98M 77s\n", - " 64100K .......... .......... .......... .......... .......... 12% 5.58M 77s\n", - " 64150K .......... .......... .......... .......... .......... 12% 9.20M 77s\n", - " 64200K .......... .......... .......... .......... .......... 12% 6.87M 77s\n", - " 64250K .......... .......... .......... .......... .......... 12% 8.31M 77s\n", - " 64300K .......... .......... .......... .......... .......... 12% 6.35M 77s\n", - " 64350K .......... .......... .......... .......... .......... 12% 8.84M 77s\n", - " 64400K .......... .......... .......... .......... .......... 12% 7.65M 77s\n", - " 64450K .......... .......... .......... .......... .......... 12% 8.30M 77s\n", - " 64500K .......... .......... .......... .......... .......... 12% 6.74M 77s\n", - " 64550K .......... .......... .......... .......... .......... 12% 9.59M 77s\n", - " 64600K .......... .......... .......... .......... .......... 12% 5.93M 77s\n", - " 64650K .......... .......... .......... .......... .......... 12% 6.52M 77s\n", - " 64700K .......... .......... .......... .......... .......... 12% 8.30M 77s\n", - " 64750K .......... .......... .......... .......... .......... 12% 8.98M 76s\n", - " 64800K .......... .......... .......... .......... .......... 12% 8.53M 76s\n", - " 64850K .......... .......... .......... .......... .......... 12% 6.44M 76s\n", - " 64900K .......... .......... .......... .......... .......... 12% 7.53M 76s\n", - " 64950K .......... .......... .......... .......... .......... 12% 9.30M 76s\n", - " 65000K .......... .......... .......... .......... .......... 12% 6.42M 76s\n", - " 65050K .......... .......... .......... .......... .......... 12% 7.35M 76s\n", - " 65100K .......... .......... .......... .......... .......... 12% 7.42M 76s\n", - " 65150K .......... .......... .......... .......... .......... 12% 8.47M 76s\n", - " 65200K .......... .......... .......... .......... .......... 12% 7.18M 76s\n", - " 65250K .......... .......... .......... .......... .......... 12% 10.1M 76s\n", - " 65300K .......... .......... .......... .......... .......... 12% 6.63M 76s\n", - " 65350K .......... .......... .......... .......... .......... 12% 9.21M 76s\n", - " 65400K .......... .......... .......... .......... .......... 12% 4.70M 76s\n", - " 65450K .......... .......... .......... .......... .......... 12% 5.66M 76s\n", - " 65500K .......... .......... .......... .......... .......... 12% 7.05M 76s\n", - " 65550K .......... .......... .......... .......... .......... 12% 5.78M 76s\n", - " 65600K .......... .......... .......... .......... .......... 12% 6.04M 76s\n", - " 65650K .......... .......... .......... .......... .......... 12% 9.14M 76s\n", - " 65700K .......... .......... .......... .......... .......... 12% 7.52M 76s\n", - " 65750K .......... .......... .......... .......... .......... 12% 11.7M 76s\n", - " 65800K .......... .......... .......... .......... .......... 12% 5.06M 76s\n", - " 65850K .......... .......... .......... .......... .......... 12% 7.47M 76s\n", - " 65900K .......... .......... .......... .......... .......... 12% 8.42M 76s\n", - " 65950K .......... .......... .......... .......... .......... 12% 8.36M 76s\n", - " 66000K .......... .......... .......... .......... .......... 12% 9.69M 76s\n", - " 66050K .......... .......... .......... .......... .......... 12% 7.96M 76s\n", - " 66100K .......... .......... .......... .......... .......... 12% 6.53M 76s\n", - " 66150K .......... .......... .......... .......... .......... 12% 8.62M 76s\n", - " 66200K .......... .......... .......... .......... .......... 12% 7.71M 76s\n", - " 66250K .......... .......... .......... .......... .......... 12% 8.46M 76s\n", - " 66300K .......... .......... .......... .......... .......... 12% 5.39M 76s\n", - " 66350K .......... .......... .......... .......... .......... 12% 10.4M 76s\n", - " 66400K .......... .......... .......... .......... .......... 12% 10.2M 76s\n", - " 66450K .......... .......... .......... .......... .......... 12% 9.01M 76s\n", - " 66500K .......... .......... .......... .......... .......... 12% 8.41M 76s\n", - " 66550K .......... .......... .......... .......... .......... 12% 5.65M 76s\n", - " 66600K .......... .......... .......... .......... .......... 12% 7.66M 76s\n", - " 66650K .......... .......... .......... .......... .......... 12% 9.68M 76s\n", - " 66700K .......... .......... .......... .......... .......... 12% 8.98M 76s\n", - " 66750K .......... .......... .......... .......... .......... 12% 4.43M 76s\n", - " 66800K .......... .......... .......... .......... .......... 12% 10.9M 76s\n", - " 66850K .......... .......... .......... .......... .......... 12% 10.0M 76s\n", - " 66900K .......... .......... .......... .......... .......... 12% 10.4M 76s\n", - " 66950K .......... .......... .......... .......... .......... 12% 4.09M 76s\n", - " 67000K .......... .......... .......... .......... .......... 12% 7.73M 76s\n", - " 67050K .......... .......... .......... .......... .......... 12% 9.31M 76s\n", - " 67100K .......... .......... .......... .......... .......... 12% 12.0M 76s\n", - " 67150K .......... .......... .......... .......... .......... 12% 4.97M 76s\n", - " 67200K .......... .......... .......... .......... .......... 12% 10.9M 75s\n", - " 67250K .......... .......... .......... .......... .......... 12% 9.09M 75s\n", - " 67300K .......... .......... .......... .......... .......... 12% 10.0M 75s\n", - " 67350K .......... .......... .......... .......... .......... 12% 5.81M 75s\n", - " 67400K .......... .......... .......... .......... .......... 12% 6.57M 75s\n", - " 67450K .......... .......... .......... .......... .......... 12% 9.44M 75s\n", - " 67500K .......... .......... .......... .......... .......... 12% 9.44M 75s\n", - " 67550K .......... .......... .......... .......... .......... 12% 6.09M 75s\n", - " 67600K .......... .......... .......... .......... .......... 12% 6.90M 75s\n", - " 67650K .......... .......... .......... .......... .......... 12% 10.3M 75s\n", - " 67700K .......... .......... .......... .......... .......... 12% 9.08M 75s\n", - " 67750K .......... .......... .......... .......... .......... 12% 9.61M 75s\n", - " 67800K .......... .......... .......... .......... .......... 12% 5.47M 75s\n", - " 67850K .......... .......... .......... .......... .......... 12% 8.91M 75s\n", - " 67900K .......... .......... .......... .......... .......... 12% 7.74M 75s\n", - " 67950K .......... .......... .......... .......... .......... 12% 9.98M 75s\n", - " 68000K .......... .......... .......... .......... .......... 12% 5.89M 75s\n", - " 68050K .......... .......... .......... .......... .......... 12% 10.8M 75s\n", - " 68100K .......... .......... .......... .......... .......... 12% 7.84M 75s\n", - " 68150K .......... .......... .......... .......... .......... 12% 9.76M 75s\n", - " 68200K .......... .......... .......... .......... .......... 13% 6.99M 75s\n", - " 68250K .......... .......... .......... .......... .......... 13% 6.06M 75s\n", - " 68300K .......... .......... .......... .......... .......... 13% 10.7M 75s\n", - " 68350K .......... .......... .......... .......... .......... 13% 8.52M 75s\n", - " 68400K .......... .......... .......... .......... .......... 13% 9.27M 75s\n", - " 68450K .......... .......... .......... .......... .......... 13% 6.53M 75s\n", - " 68500K .......... .......... .......... .......... .......... 13% 9.02M 75s\n", - " 68550K .......... .......... .......... .......... .......... 13% 8.07M 75s\n", - " 68600K .......... .......... .......... .......... .......... 13% 8.06M 75s\n", - " 68650K .......... .......... .......... .......... .......... 13% 7.61M 75s\n", - " 68700K .......... .......... .......... .......... .......... 13% 6.71M 75s\n", - " 68750K .......... .......... .......... .......... .......... 13% 6.84M 75s\n", - " 68800K .......... .......... .......... .......... .......... 13% 10.9M 75s\n", - " 68850K .......... .......... .......... .......... .......... 13% 10.3M 75s\n", - " 68900K .......... .......... .......... .......... .......... 13% 8.07M 75s\n", - " 68950K .......... .......... .......... .......... .......... 13% 8.53M 75s\n", - " 69000K .......... .......... .......... .......... .......... 13% 5.54M 75s\n", - " 69050K .......... .......... .......... .......... .......... 13% 10.2M 75s\n", - " 69100K .......... .......... .......... .......... .......... 13% 9.40M 75s\n", - " 69150K .......... .......... .......... .......... .......... 13% 7.43M 75s\n", - " 69200K .......... .......... .......... .......... .......... 13% 7.29M 75s\n", - " 69250K .......... .......... .......... .......... .......... 13% 8.71M 75s\n", - " 69300K .......... .......... .......... .......... .......... 13% 8.68M 75s\n", - " 69350K .......... .......... .......... .......... .......... 13% 8.56M 75s\n", - " 69400K .......... .......... .......... .......... .......... 13% 6.24M 75s\n", - " 69450K .......... .......... .......... .......... .......... 13% 7.95M 74s\n", - " 69500K .......... .......... .......... .......... .......... 13% 9.16M 74s\n", - " 69550K .......... .......... .......... .......... .......... 13% 11.0M 74s\n", - " 69600K .......... .......... .......... .......... .......... 13% 7.55M 74s\n", - " 69650K .......... .......... .......... .......... .......... 13% 7.75M 74s\n", - " 69700K .......... .......... .......... .......... .......... 13% 7.50M 74s\n", - " 69750K .......... .......... .......... .......... .......... 13% 9.68M 74s\n", - " 69800K .......... .......... .......... .......... .......... 13% 6.49M 74s\n", - " 69850K .......... .......... .......... .......... .......... 13% 7.69M 74s\n", - " 69900K .......... .......... .......... .......... .......... 13% 9.56M 74s\n", - " 69950K .......... .......... .......... .......... .......... 13% 8.69M 74s\n", - " 70000K .......... .......... .......... .......... .......... 13% 6.70M 74s\n", - " 70050K .......... .......... .......... .......... .......... 13% 11.7M 74s\n", - " 70100K .......... .......... .......... .......... .......... 13% 7.10M 74s\n", - " 70150K .......... .......... .......... .......... .......... 13% 10.4M 74s\n", - " 70200K .......... .......... .......... .......... .......... 13% 6.78M 74s\n", - " 70250K .......... .......... .......... .......... .......... 13% 5.06M 74s\n", - " 70300K .......... .......... .......... .......... .......... 13% 11.3M 74s\n", - " 70350K .......... .......... .......... .......... .......... 13% 10.2M 74s\n", - " 70400K .......... .......... .......... .......... .......... 13% 10.4M 74s\n", - " 70450K .......... .......... .......... .......... .......... 13% 6.75M 74s\n", - " 70500K .......... .......... .......... .......... .......... 13% 7.22M 74s\n", - " 70550K .......... .......... .......... .......... .......... 13% 8.54M 74s\n", - " 70600K .......... .......... .......... .......... .......... 13% 8.49M 74s\n", - " 70650K .......... .......... .......... .......... .......... 13% 9.90M 74s\n", - " 70700K .......... .......... .......... .......... .......... 13% 5.89M 74s\n", - " 70750K .......... .......... .......... .......... .......... 13% 9.84M 74s\n", - " 70800K .......... .......... .......... .......... .......... 13% 8.11M 74s\n", - " 70850K .......... .......... .......... .......... .......... 13% 11.9M 74s\n", - " 70900K .......... .......... .......... .......... .......... 13% 10.6M 74s\n", - " 70950K .......... .......... .......... .......... .......... 13% 5.71M 74s\n", - " 71000K .......... .......... .......... .......... .......... 13% 6.66M 74s\n", - " 71050K .......... .......... .......... .......... .......... 13% 10.4M 74s\n", - " 71100K .......... .......... .......... .......... .......... 13% 11.1M 74s\n", - " 71150K .......... .......... .......... .......... .......... 13% 5.34M 74s\n", - " 71200K .......... .......... .......... .......... .......... 13% 11.3M 74s\n", - " 71250K .......... .......... .......... .......... .......... 13% 8.08M 74s\n", - " 71300K .......... .......... .......... .......... .......... 13% 11.5M 74s\n", - " 71350K .......... .......... .......... .......... .......... 13% 9.86M 74s\n", - " 71400K .......... .......... .......... .......... .......... 13% 5.21M 74s\n", - " 71450K .......... .......... .......... .......... .......... 13% 8.96M 74s\n", - " 71500K .......... .......... .......... .......... .......... 13% 10.1M 74s\n", - " 71550K .......... .......... .......... .......... .......... 13% 9.92M 74s\n", - " 71600K .......... .......... .......... .......... .......... 13% 7.10M 74s\n", - " 71650K .......... .......... .......... .......... .......... 13% 8.95M 74s\n", - " 71700K .......... .......... .......... .......... .......... 13% 7.65M 73s\n", - " 71750K .......... .......... .......... .......... .......... 13% 12.3M 73s\n", - " 71800K .......... .......... .......... .......... .......... 13% 7.23M 73s\n", - " 71850K .......... .......... .......... .......... .......... 13% 6.65M 73s\n", - " 71900K .......... .......... .......... .......... .......... 13% 8.59M 73s\n", - " 71950K .......... .......... .......... .......... .......... 13% 10.8M 73s\n", - " 72000K .......... .......... .......... .......... .......... 13% 7.67M 73s\n", - " 72050K .......... .......... .......... .......... .......... 13% 10.3M 73s\n", - " 72100K .......... .......... .......... .......... .......... 13% 8.45M 73s\n", - " 72150K .......... .......... .......... .......... .......... 13% 7.60M 73s\n", - " 72200K .......... .......... .......... .......... .......... 13% 7.02M 73s\n", - " 72250K .......... .......... .......... .......... .......... 13% 10.1M 73s\n", - " 72300K .......... .......... .......... .......... .......... 13% 8.14M 73s\n", - " 72350K .......... .......... .......... .......... .......... 13% 7.52M 73s\n", - " 72400K .......... .......... .......... .......... .......... 13% 7.53M 73s\n", - " 72450K .......... .......... .......... .......... .......... 13% 12.2M 73s\n", - " 72500K .......... .......... .......... .......... .......... 13% 8.66M 73s\n", - " 72550K .......... .......... .......... .......... .......... 13% 8.65M 73s\n", - " 72600K .......... .......... .......... .......... .......... 13% 5.99M 73s\n", - " 72650K .......... .......... .......... .......... .......... 13% 11.3M 73s\n", - " 72700K .......... .......... .......... .......... .......... 13% 7.38M 73s\n", - " 72750K .......... .......... .......... .......... .......... 13% 10.0M 73s\n", - " 72800K .......... .......... .......... .......... .......... 13% 8.70M 73s\n", - " 72850K .......... .......... .......... .......... .......... 13% 9.10M 73s\n", - " 72900K .......... .......... .......... .......... .......... 13% 8.84M 73s\n", - " 72950K .......... .......... .......... .......... .......... 13% 8.28M 73s\n", - " 73000K .......... .......... .......... .......... .......... 13% 8.32M 73s\n", - " 73050K .......... .......... .......... .......... .......... 13% 8.49M 73s\n", - " 73100K .......... .......... .......... .......... .......... 13% 8.67M 73s\n", - " 73150K .......... .......... .......... .......... .......... 13% 7.48M 73s\n", - " 73200K .......... .......... .......... .......... .......... 13% 8.85M 73s\n", - " 73250K .......... .......... .......... .......... .......... 13% 11.4M 73s\n", - " 73300K .......... .......... .......... .......... .......... 13% 8.59M 73s\n", - " 73350K .......... .......... .......... .......... .......... 13% 9.94M 73s\n", - " 73400K .......... .......... .......... .......... .......... 13% 5.97M 73s\n", - " 73450K .......... .......... .......... .......... .......... 14% 8.06M 73s\n", - " 73500K .......... .......... .......... .......... .......... 14% 11.3M 73s\n", - " 73550K .......... .......... .......... .......... .......... 14% 9.82M 73s\n", - " 73600K .......... .......... .......... .......... .......... 14% 7.09M 73s\n", - " 73650K .......... .......... .......... .......... .......... 14% 9.65M 73s\n", - " 73700K .......... .......... .......... .......... .......... 14% 8.89M 73s\n", - " 73750K .......... .......... .......... .......... .......... 14% 10.2M 73s\n", - " 73800K .......... .......... .......... .......... .......... 14% 6.00M 73s\n", - " 73850K .......... .......... .......... .......... .......... 14% 8.99M 73s\n", - " 73900K .......... .......... .......... .......... .......... 14% 8.47M 72s\n", - " 73950K .......... .......... .......... .......... .......... 14% 10.5M 72s\n", - " 74000K .......... .......... .......... .......... .......... 14% 9.48M 72s\n", - " 74050K .......... .......... .......... .......... .......... 14% 8.51M 72s\n", - " 74100K .......... .......... .......... .......... .......... 14% 9.88M 72s\n", - " 74150K .......... .......... .......... .......... .......... 14% 7.05M 72s\n", - " 74200K .......... .......... .......... .......... .......... 14% 7.49M 72s\n", - " 74250K .......... .......... .......... .......... .......... 14% 1.33M 73s\n", - " 74300K .......... .......... .......... .......... .......... 14% 10.3M 72s\n", - " 74350K .......... .......... .......... .......... .......... 14% 10.5M 72s\n", - " 74400K .......... .......... .......... .......... .......... 14% 11.7M 72s\n", - " 74450K .......... .......... .......... .......... .......... 14% 265M 72s\n", - " 74500K .......... .......... .......... .......... .......... 14% 497M 72s\n", - " 74550K .......... .......... .......... .......... .......... 14% 14.5M 72s\n", - " 74600K .......... .......... .......... .......... .......... 14% 5.60M 72s\n", - " 74650K .......... .......... .......... .......... .......... 14% 7.42M 72s\n", - " 74700K .......... .......... .......... .......... .......... 14% 1.10M 72s\n", - " 74750K .......... .......... .......... .......... .......... 14% 36.1M 72s\n", - " 74800K .......... .......... .......... .......... .......... 14% 214M 72s\n", - " 74850K .......... .......... .......... .......... .......... 14% 9.74M 72s\n", - " 74900K .......... .......... .......... .......... .......... 14% 780K 73s\n", - " 74950K .......... .......... .......... .......... .......... 14% 389M 73s\n", - " 75000K .......... .......... .......... .......... .......... 14% 234M 73s\n", - " 75050K .......... .......... .......... .......... .......... 14% 352M 73s\n", - " 75100K .......... .......... .......... .......... .......... 14% 3.09M 73s\n", - " 75150K .......... .......... .......... .......... .......... 14% 3.00M 73s\n", - " 75200K .......... .......... .......... .......... .......... 14% 2.47M 73s\n", - " 75250K .......... .......... .......... .......... .......... 14% 2.84M 73s\n", - " 75300K .......... .......... .......... .......... .......... 14% 3.78M 73s\n", - " 75350K .......... .......... .......... .......... .......... 14% 2.79M 73s\n", - " 75400K .......... .......... .......... .......... .......... 14% 2.28M 73s\n", - " 75450K .......... .......... .......... .......... .......... 14% 3.48M 73s\n", - " 75500K .......... .......... .......... .......... .......... 14% 1.09M 73s\n", - " 75550K .......... .......... .......... .......... .......... 14% 253M 73s\n", - " 75600K .......... .......... .......... .......... .......... 14% 5.38M 73s\n", - " 75650K .......... .......... .......... .......... .......... 14% 1.95M 73s\n", - " 75700K .......... .......... .......... .......... .......... 14% 2.14M 73s\n", - " 75750K .......... .......... .......... .......... .......... 14% 2.01M 73s\n", - " 75800K .......... .......... .......... .......... .......... 14% 1.66M 73s\n", - " 75850K .......... .......... .......... .......... .......... 14% 2.18M 73s\n", - " 75900K .......... .......... .......... .......... .......... 14% 2.45M 74s\n", - " 75950K .......... .......... .......... .......... .......... 14% 2.34M 74s\n", - " 76000K .......... .......... .......... .......... .......... 14% 2.26M 74s\n", - " 76050K .......... .......... .......... .......... .......... 14% 2.31M 74s\n", - " 76100K .......... .......... .......... .......... .......... 14% 2.39M 74s\n", - " 76150K .......... .......... .......... .......... .......... 14% 2.51M 74s\n", - " 76200K .......... .......... .......... .......... .......... 14% 1.95M 74s\n", - " 76250K .......... .......... .......... .......... .......... 14% 2.42M 74s\n", - " 76300K .......... .......... .......... .......... .......... 14% 2.26M 74s\n", - " 76350K .......... .......... .......... .......... .......... 14% 2.31M 74s\n", - " 76400K .......... .......... .......... .......... .......... 14% 1.58M 74s\n", - " 76450K .......... .......... .......... .......... .......... 14% 3.12M 74s\n", - " 76500K .......... .......... .......... .......... .......... 14% 1.66M 74s\n", - " 76550K .......... .......... .......... .......... .......... 14% 1.80M 75s\n", - " 76600K .......... .......... .......... .......... .......... 14% 1.26M 75s\n", - " 76650K .......... .......... .......... .......... .......... 14% 1.69M 75s\n", - " 76700K .......... .......... .......... .......... .......... 14% 1.88M 75s\n", - " 76750K .......... .......... .......... .......... .......... 14% 1.84M 75s\n", - " 76800K .......... .......... .......... .......... .......... 14% 1.70M 75s\n", - " 76850K .......... .......... .......... .......... .......... 14% 1.72M 75s\n", - " 76900K .......... .......... .......... .......... .......... 14% 1.86M 75s\n", - " 76950K .......... .......... .......... .......... .......... 14% 1.85M 75s\n", - " 77000K .......... .......... .......... .......... .......... 14% 1.50M 76s\n", - " 77050K .......... .......... .......... .......... .......... 14% 1.79M 76s\n", - " 77100K .......... .......... .......... .......... .......... 14% 2.23M 76s\n", - " 77150K .......... .......... .......... .......... .......... 14% 2.13M 76s\n", - " 77200K .......... .......... .......... .......... .......... 14% 997K 76s\n", - " 77250K .......... .......... .......... .......... .......... 14% 9.67M 76s\n", - " 77300K .......... .......... .......... .......... .......... 14% 1.20M 76s\n", - " 77350K .......... .......... .......... .......... .......... 14% 1.44M 76s\n", - " 77400K .......... .......... .......... .......... .......... 14% 1.23M 76s\n", - " 77450K .......... .......... .......... .......... .......... 14% 1.36M 77s\n", - " 77500K .......... .......... .......... .......... .......... 14% 1.59M 77s\n", - " 77550K .......... .......... .......... .......... .......... 14% 1.58M 77s\n", - " 77600K .......... .......... .......... .......... .......... 14% 1.49M 77s\n", - " 77650K .......... .......... .......... .......... .......... 14% 1.69M 77s\n", - " 77700K .......... .......... .......... .......... .......... 14% 1.74M 77s\n", - " 77750K .......... .......... .......... .......... .......... 14% 1.67M 77s\n", - " 77800K .......... .......... .......... .......... .......... 14% 1.29M 77s\n", - " 77850K .......... .......... .......... .......... .......... 14% 1.71M 78s\n", - " 77900K .......... .......... .......... .......... .......... 14% 1.94M 78s\n", - " 77950K .......... .......... .......... .......... .......... 14% 1.78M 78s\n", - " 78000K .......... .......... .......... .......... .......... 14% 1.90M 78s\n", - " 78050K .......... .......... .......... .......... .......... 14% 1.68M 78s\n", - " 78100K .......... .......... .......... .......... .......... 14% 1.90M 78s\n", - " 78150K .......... .......... .......... .......... .......... 14% 1.84M 78s\n", - " 78200K .......... .......... .......... .......... .......... 14% 1.49M 78s\n", - " 78250K .......... .......... .......... .......... .......... 14% 1.48M 78s\n", - " 78300K .......... .......... .......... .......... .......... 14% 2.06M 78s\n", - " 78350K .......... .......... .......... .......... .......... 14% 1.95M 79s\n", - " 78400K .......... .......... .......... .......... .......... 14% 1.74M 79s\n", - " 78450K .......... .......... .......... .......... .......... 14% 1.48M 79s\n", - " 78500K .......... .......... .......... .......... .......... 14% 1.58M 79s\n", - " 78550K .......... .......... .......... .......... .......... 14% 1.88M 79s\n", - " 78600K .......... .......... .......... .......... .......... 14% 1.61M 79s\n", - " 78650K .......... .......... .......... .......... .......... 14% 2.10M 79s\n", - " 78700K .......... .......... .......... .......... .......... 15% 2.12M 79s\n", - " 78750K .......... .......... .......... .......... .......... 15% 2.08M 79s\n", - " 78800K .......... .......... .......... .......... .......... 15% 2.22M 79s\n", - " 78850K .......... .......... .......... .......... .......... 15% 2.22M 79s\n", - " 78900K .......... .......... .......... .......... .......... 15% 2.14M 80s\n", - " 78950K .......... .......... .......... .......... .......... 15% 2.19M 80s\n", - " 79000K .......... .......... .......... .......... .......... 15% 1.72M 80s\n", - " 79050K .......... .......... .......... .......... .......... 15% 2.27M 80s\n", - " 79100K .......... .......... .......... .......... .......... 15% 2.42M 80s\n", - " 79150K .......... .......... .......... .......... .......... 15% 2.41M 80s\n", - " 79200K .......... .......... .......... .......... .......... 15% 2.44M 80s\n", - " 79250K .......... .......... .......... .......... .......... 15% 2.11M 80s\n", - " 79300K .......... .......... .......... .......... .......... 15% 3.02M 80s\n", - " 79350K .......... .......... .......... .......... .......... 15% 2.18M 80s\n", - " 79400K .......... .......... .......... .......... .......... 15% 1.90M 80s\n", - " 79450K .......... .......... .......... .......... .......... 15% 2.62M 80s\n", - " 79500K .......... .......... .......... .......... .......... 15% 2.57M 80s\n", - " 79550K .......... .......... .......... .......... .......... 15% 2.59M 80s\n", - " 79600K .......... .......... .......... .......... .......... 15% 2.57M 80s\n", - " 79650K .......... .......... .......... .......... .......... 15% 2.74M 80s\n", - " 79700K .......... .......... .......... .......... .......... 15% 2.67M 80s\n", - " 79750K .......... .......... .......... .......... .......... 15% 2.56M 80s\n", - " 79800K .......... .......... .......... .......... .......... 15% 2.33M 81s\n", - " 79850K .......... .......... .......... .......... .......... 15% 2.50M 81s\n", - " 79900K .......... .......... .......... .......... .......... 15% 2.94M 81s\n", - " 79950K .......... .......... .......... .......... .......... 15% 2.59M 81s\n", - " 80000K .......... .......... .......... .......... .......... 15% 3.14M 81s\n", - " 80050K .......... .......... .......... .......... .......... 15% 2.50M 81s\n", - " 80100K .......... .......... .......... .......... .......... 15% 3.07M 81s\n", - " 80150K .......... .......... .......... .......... .......... 15% 2.55M 81s\n", - " 80200K .......... .......... .......... .......... .......... 15% 2.16M 81s\n", - " 80250K .......... .......... .......... .......... .......... 15% 2.93M 81s\n", - " 80300K .......... .......... .......... .......... .......... 15% 2.86M 81s\n", - " 80350K .......... .......... .......... .......... .......... 15% 2.48M 81s\n", - " 80400K .......... .......... .......... .......... .......... 15% 3.51M 81s\n", - " 80450K .......... .......... .......... .......... .......... 15% 2.23M 81s\n", - " 80500K .......... .......... .......... .......... .......... 15% 3.20M 81s\n", - " 80550K .......... .......... .......... .......... .......... 15% 2.98M 81s\n", - " 80600K .......... .......... .......... .......... .......... 15% 2.33M 81s\n", - " 80650K .......... .......... .......... .......... .......... 15% 3.35M 81s\n", - " 80700K .......... .......... .......... .......... .......... 15% 2.83M 81s\n", - " 80750K .......... .......... .......... .......... .......... 15% 3.16M 81s\n", - " 80800K .......... .......... .......... .......... .......... 15% 2.31M 81s\n", - " 80850K .......... .......... .......... .......... .......... 15% 4.01M 81s\n", - " 80900K .......... .......... .......... .......... .......... 15% 2.33M 81s\n", - " 80950K .......... .......... .......... .......... .......... 15% 3.02M 81s\n", - " 81000K .......... .......... .......... .......... .......... 15% 2.72M 81s\n", - " 81050K .......... .......... .......... .......... .......... 15% 2.48M 82s\n", - " 81100K .......... .......... .......... .......... .......... 15% 3.80M 82s\n", - " 81150K .......... .......... .......... .......... .......... 15% 2.97M 82s\n", - " 81200K .......... .......... .......... .......... .......... 15% 3.58M 82s\n", - " 81250K .......... .......... .......... .......... .......... 15% 2.78M 82s\n", - " 81300K .......... .......... .......... .......... .......... 15% 3.62M 82s\n", - " 81350K .......... .......... .......... .......... .......... 15% 3.01M 82s\n", - " 81400K .......... .......... .......... .......... .......... 15% 2.58M 82s\n", - " 81450K .......... .......... .......... .......... .......... 15% 3.51M 82s\n", - " 81500K .......... .......... .......... .......... .......... 15% 3.11M 82s\n", - " 81550K .......... .......... .......... .......... .......... 15% 3.22M 82s\n", - " 81600K .......... .......... .......... .......... .......... 15% 2.60M 82s\n", - " 81650K .......... .......... .......... .......... .......... 15% 5.17M 82s\n", - " 81700K .......... .......... .......... .......... .......... 15% 2.12M 82s\n", - " 81750K .......... .......... .......... .......... .......... 15% 3.84M 82s\n", - " 81800K .......... .......... .......... .......... .......... 15% 2.42M 82s\n", - " 81850K .......... .......... .......... .......... .......... 15% 3.41M 82s\n", - " 81900K .......... .......... .......... .......... .......... 15% 3.37M 82s\n", - " 81950K .......... .......... .......... .......... .......... 15% 3.11M 82s\n", - " 82000K .......... .......... .......... .......... .......... 15% 4.51M 82s\n", - " 82050K .......... .......... .......... .......... .......... 15% 3.04M 82s\n", - " 82100K .......... .......... .......... .......... .......... 15% 3.27M 82s\n", - " 82150K .......... .......... .......... .......... .......... 15% 4.11M 82s\n", - " 82200K .......... .......... .......... .......... .......... 15% 2.55M 82s\n", - " 82250K .......... .......... .......... .......... .......... 15% 4.11M 82s\n", - " 82300K .......... .......... .......... .......... .......... 15% 3.21M 82s\n", - " 82350K .......... .......... .......... .......... .......... 15% 4.16M 82s\n", - " 82400K .......... .......... .......... .......... .......... 15% 3.20M 82s\n", - " 82450K .......... .......... .......... .......... .......... 15% 4.05M 82s\n", - " 82500K .......... .......... .......... .......... .......... 15% 3.19M 82s\n", - " 82550K .......... .......... .......... .......... .......... 15% 3.71M 82s\n", - " 82600K .......... .......... .......... .......... .......... 15% 2.79M 82s\n", - " 82650K .......... .......... .......... .......... .......... 15% 3.31M 82s\n", - " 82700K .......... .......... .......... .......... .......... 15% 4.48M 82s\n", - " 82750K .......... .......... .......... .......... .......... 15% 3.29M 82s\n", - " 82800K .......... .......... .......... .......... .......... 15% 4.57M 82s\n", - " 82850K .......... .......... .......... .......... .......... 15% 3.00M 82s\n", - " 82900K .......... .......... .......... .......... .......... 15% 4.01M 82s\n", - " 82950K .......... .......... .......... .......... .......... 15% 3.72M 82s\n", - " 83000K .......... .......... .......... .......... .......... 15% 2.86M 82s\n", - " 83050K .......... .......... .......... .......... .......... 15% 3.18M 82s\n", - " 83100K .......... .......... .......... .......... .......... 15% 4.45M 82s\n", - " 83150K .......... .......... .......... .......... .......... 15% 3.29M 82s\n", - " 83200K .......... .......... .......... .......... .......... 15% 4.29M 82s\n", - " 83250K .......... .......... .......... .......... .......... 15% 3.63M 82s\n", - " 83300K .......... .......... .......... .......... .......... 15% 3.76M 82s\n", - " 83350K .......... .......... .......... .......... .......... 15% 4.14M 82s\n", - " 83400K .......... .......... .......... .......... .......... 15% 2.96M 82s\n", - " 83450K .......... .......... .......... .......... .......... 15% 3.74M 82s\n", - " 83500K .......... .......... .......... .......... .......... 15% 3.31M 82s\n", - " 83550K .......... .......... .......... .......... .......... 15% 4.62M 82s\n", - " 83600K .......... .......... .......... .......... .......... 15% 3.28M 82s\n", - " 83650K .......... .......... .......... .......... .......... 15% 4.30M 82s\n", - " 83700K .......... .......... .......... .......... .......... 15% 3.40M 82s\n", - " 83750K .......... .......... .......... .......... .......... 15% 4.17M 82s\n", - " 83800K .......... .......... .......... .......... .......... 15% 3.19M 83s\n", - " 83850K .......... .......... .......... .......... .......... 15% 3.80M 83s\n", - " 83900K .......... .......... .......... .......... .......... 15% 4.07M 83s\n", - " 83950K .......... .......... .......... .......... .......... 16% 4.23M 83s\n", - " 84000K .......... .......... .......... .......... .......... 16% 3.95M 83s\n", - " 84050K .......... .......... .......... .......... .......... 16% 3.79M 83s\n", - " 84100K .......... .......... .......... .......... .......... 16% 3.59M 83s\n", - " 84150K .......... .......... .......... .......... .......... 16% 4.65M 83s\n", - " 84200K .......... .......... .......... .......... .......... 16% 2.22M 83s\n", - " 84250K .......... .......... .......... .......... .......... 16% 5.07M 83s\n", - " 84300K .......... .......... .......... .......... .......... 16% 2.92M 83s\n", - " 84350K .......... .......... .......... .......... .......... 16% 4.85M 83s\n", - " 84400K .......... .......... .......... .......... .......... 16% 3.35M 83s\n", - " 84450K .......... .......... .......... .......... .......... 16% 4.72M 83s\n", - " 84500K .......... .......... .......... .......... .......... 16% 3.86M 83s\n", - " 84550K .......... .......... .......... .......... .......... 16% 4.03M 83s\n", - " 84600K .......... .......... .......... .......... .......... 16% 3.50M 83s\n", - " 84650K .......... .......... .......... .......... .......... 16% 3.87M 83s\n", - " 84700K .......... .......... .......... .......... .......... 16% 4.63M 83s\n", - " 84750K .......... .......... .......... .......... .......... 16% 3.81M 83s\n", - " 84800K .......... .......... .......... .......... .......... 16% 4.88M 83s\n", - " 84850K .......... .......... .......... .......... .......... 16% 3.78M 83s\n", - " 84900K .......... .......... .......... .......... .......... 16% 5.16M 83s\n", - " 84950K .......... .......... .......... .......... .......... 16% 3.66M 83s\n", - " 85000K .......... .......... .......... .......... .......... 16% 3.92M 83s\n", - " 85050K .......... .......... .......... .......... .......... 16% 3.90M 83s\n", - " 85100K .......... .......... .......... .......... .......... 16% 4.78M 83s\n", - " 85150K .......... .......... .......... .......... .......... 16% 3.37M 83s\n", - " 85200K .......... .......... .......... .......... .......... 16% 5.29M 83s\n", - " 85250K .......... .......... .......... .......... .......... 16% 3.89M 83s\n", - " 85300K .......... .......... .......... .......... .......... 16% 4.88M 83s\n", - " 85350K .......... .......... .......... .......... .......... 16% 5.46M 83s\n", - " 85400K .......... .......... .......... .......... .......... 16% 2.96M 83s\n", - " 85450K .......... .......... .......... .......... .......... 16% 4.77M 83s\n", - " 85500K .......... .......... .......... .......... .......... 16% 3.99M 83s\n", - " 85550K .......... .......... .......... .......... .......... 16% 4.53M 83s\n", - " 85600K .......... .......... .......... .......... .......... 16% 4.17M 83s\n", - " 85650K .......... .......... .......... .......... .......... 16% 5.12M 83s\n", - " 85700K .......... .......... .......... .......... .......... 16% 4.64M 83s\n", - " 85750K .......... .......... .......... .......... .......... 16% 4.19M 83s\n", - " 85800K .......... .......... .......... .......... .......... 16% 3.62M 83s\n", - " 85850K .......... .......... .......... .......... .......... 16% 4.11M 83s\n", - " 85900K .......... .......... .......... .......... .......... 16% 4.46M 83s\n", - " 85950K .......... .......... .......... .......... .......... 16% 4.56M 83s\n", - " 86000K .......... .......... .......... .......... .......... 16% 4.35M 83s\n", - " 86050K .......... .......... .......... .......... .......... 16% 4.72M 83s\n", - " 86100K .......... .......... .......... .......... .......... 16% 3.85M 83s\n", - " 86150K .......... .......... .......... .......... .......... 16% 5.12M 83s\n", - " 86200K .......... .......... .......... .......... .......... 16% 2.98M 83s\n", - " 86250K .......... .......... .......... .......... .......... 16% 5.99M 83s\n", - " 86300K .......... .......... .......... .......... .......... 16% 3.64M 83s\n", - " 86350K .......... .......... .......... .......... .......... 16% 5.85M 83s\n", - " 86400K .......... .......... .......... .......... .......... 16% 4.40M 83s\n", - " 86450K .......... .......... .......... .......... .......... 16% 4.37M 83s\n", - " 86500K .......... .......... .......... .......... .......... 16% 5.72M 83s\n", - " 86550K .......... .......... .......... .......... .......... 16% 4.02M 83s\n", - " 86600K .......... .......... .......... .......... .......... 16% 3.77M 83s\n", - " 86650K .......... .......... .......... .......... .......... 16% 4.12M 83s\n", - " 86700K .......... .......... .......... .......... .......... 16% 3.85M 83s\n", - " 86750K .......... .......... .......... .......... .......... 16% 5.67M 83s\n", - " 86800K .......... .......... .......... .......... .......... 16% 4.76M 83s\n", - " 86850K .......... .......... .......... .......... .......... 16% 4.29M 83s\n", - " 86900K .......... .......... .......... .......... .......... 16% 5.88M 83s\n", - " 86950K .......... .......... .......... .......... .......... 16% 3.89M 83s\n", - " 87000K .......... .......... .......... .......... .......... 16% 3.60M 83s\n", - " 87050K .......... .......... .......... .......... .......... 16% 3.27M 83s\n", - " 87100K .......... .......... .......... .......... .......... 16% 8.79M 83s\n", - " 87150K .......... .......... .......... .......... .......... 16% 3.66M 83s\n", - " 87200K .......... .......... .......... .......... .......... 16% 4.11M 83s\n", - " 87250K .......... .......... .......... .......... .......... 16% 5.59M 83s\n", - " 87300K .......... .......... .......... .......... .......... 16% 4.29M 83s\n", - " 87350K .......... .......... .......... .......... .......... 16% 5.07M 83s\n", - " 87400K .......... .......... .......... .......... .......... 16% 3.35M 83s\n", - " 87450K .......... .......... .......... .......... .......... 16% 6.09M 83s\n", - " 87500K .......... .......... .......... .......... .......... 16% 4.42M 83s\n", - " 87550K .......... .......... .......... .......... .......... 16% 4.47M 83s\n", - " 87600K .......... .......... .......... .......... .......... 16% 6.12M 83s\n", - " 87650K .......... .......... .......... .......... .......... 16% 4.29M 83s\n", - " 87700K .......... .......... .......... .......... .......... 16% 5.11M 83s\n", - " 87750K .......... .......... .......... .......... .......... 16% 4.04M 83s\n", - " 87800K .......... .......... .......... .......... .......... 16% 3.91M 83s\n", - " 87850K .......... .......... .......... .......... .......... 16% 5.84M 83s\n", - " 87900K .......... .......... .......... .......... .......... 16% 3.76M 83s\n", - " 87950K .......... .......... .......... .......... .......... 16% 4.64M 83s\n", - " 88000K .......... .......... .......... .......... .......... 16% 6.23M 83s\n", - " 88050K .......... .......... .......... .......... .......... 16% 4.06M 83s\n", - " 88100K .......... .......... .......... .......... .......... 16% 6.28M 83s\n", - " 88150K .......... .......... .......... .......... .......... 16% 3.94M 83s\n", - " 88200K .......... .......... .......... .......... .......... 16% 4.47M 83s\n", - " 88250K .......... .......... .......... .......... .......... 16% 5.16M 83s\n", - " 88300K .......... .......... .......... .......... .......... 16% 4.56M 83s\n", - " 88350K .......... .......... .......... .......... .......... 16% 3.83M 83s\n", - " 88400K .......... .......... .......... .......... .......... 16% 5.30M 83s\n", - " 88450K .......... .......... .......... .......... .......... 16% 5.12M 83s\n", - " 88500K .......... .......... .......... .......... .......... 16% 5.44M 83s\n", - " 88550K .......... .......... .......... .......... .......... 16% 5.85M 83s\n", - " 88600K .......... .......... .......... .......... .......... 16% 2.53M 83s\n", - " 88650K .......... .......... .......... .......... .......... 16% 9.75M 83s\n", - " 88700K .......... .......... .......... .......... .......... 16% 2.50M 83s\n", - " 88750K .......... .......... .......... .......... .......... 16% 5.59M 83s\n", - " 88800K .......... .......... .......... .......... .......... 16% 6.40M 83s\n", - " 88850K .......... .......... .......... .......... .......... 16% 4.23M 83s\n", - " 88900K .......... .......... .......... .......... .......... 16% 6.19M 83s\n", - " 88950K .......... .......... .......... .......... .......... 16% 5.21M 83s\n", - " 89000K .......... .......... .......... .......... .......... 16% 3.13M 83s\n", - " 89050K .......... .......... .......... .......... .......... 16% 6.58M 83s\n", - " 89100K .......... .......... .......... .......... .......... 16% 5.83M 83s\n", - " 89150K .......... .......... .......... .......... .......... 16% 4.47M 83s\n", - " 89200K .......... .......... .......... .......... .......... 17% 4.01M 83s\n", - " 89250K .......... .......... .......... .......... .......... 17% 6.10M 83s\n", - " 89300K .......... .......... .......... .......... .......... 17% 3.56M 83s\n", - " 89350K .......... .......... .......... .......... .......... 17% 6.92M 83s\n", - " 89400K .......... .......... .......... .......... .......... 17% 4.79M 83s\n", - " 89450K .......... .......... .......... .......... .......... 17% 3.39M 83s\n", - " 89500K .......... .......... .......... .......... .......... 17% 9.22M 82s\n", - " 89550K .......... .......... .......... .......... .......... 17% 6.29M 82s\n", - " 89600K .......... .......... .......... .......... .......... 17% 3.13M 82s\n", - " 89650K .......... .......... .......... .......... .......... 17% 6.27M 82s\n", - " 89700K .......... .......... .......... .......... .......... 17% 6.69M 82s\n", - " 89750K .......... .......... .......... .......... .......... 17% 4.08M 82s\n", - " 89800K .......... .......... .......... .......... .......... 17% 4.92M 82s\n", - " 89850K .......... .......... .......... .......... .......... 17% 3.95M 82s\n", - " 89900K .......... .......... .......... .......... .......... 17% 6.66M 82s\n", - " 89950K .......... .......... .......... .......... .......... 17% 6.65M 82s\n", - " 90000K .......... .......... .......... .......... .......... 17% 3.47M 82s\n", - " 90050K .......... .......... .......... .......... .......... 17% 6.98M 82s\n", - " 90100K .......... .......... .......... .......... .......... 17% 6.80M 82s\n", - " 90150K .......... .......... .......... .......... .......... 17% 4.15M 82s\n", - " 90200K .......... .......... .......... .......... .......... 17% 4.55M 82s\n", - " 90250K .......... .......... .......... .......... .......... 17% 4.35M 82s\n", - " 90300K .......... .......... .......... .......... .......... 17% 5.74M 82s\n", - " 90350K .......... .......... .......... .......... .......... 17% 7.06M 82s\n", - " 90400K .......... .......... .......... .......... .......... 17% 4.17M 82s\n", - " 90450K .......... .......... .......... .......... .......... 17% 6.37M 82s\n", - " 90500K .......... .......... .......... .......... .......... 17% 6.68M 82s\n", - " 90550K .......... .......... .......... .......... .......... 17% 3.95M 82s\n", - " 90600K .......... .......... .......... .......... .......... 17% 5.15M 82s\n", - " 90650K .......... .......... .......... .......... .......... 17% 6.65M 82s\n", - " 90700K .......... .......... .......... .......... .......... 17% 4.31M 82s\n", - " 90750K .......... .......... .......... .......... .......... 17% 6.59M 82s\n", - " 90800K .......... .......... .......... .......... .......... 17% 4.82M 82s\n", - " 90850K .......... .......... .......... .......... .......... 17% 5.32M 82s\n", - " 90900K .......... .......... .......... .......... .......... 17% 7.39M 82s\n", - " 90950K .......... .......... .......... .......... .......... 17% 4.42M 82s\n", - " 91000K .......... .......... .......... .......... .......... 17% 4.45M 82s\n", - " 91050K .......... .......... .......... .......... .......... 17% 6.28M 82s\n", - " 91100K .......... .......... .......... .......... .......... 17% 4.44M 82s\n", - " 91150K .......... .......... .......... .......... .......... 17% 5.84M 82s\n", - " 91200K .......... .......... .......... .......... .......... 17% 6.46M 82s\n", - " 91250K .......... .......... .......... .......... .......... 17% 5.22M 82s\n", - " 91300K .......... .......... .......... .......... .......... 17% 4.72M 82s\n", - " 91350K .......... .......... .......... .......... .......... 17% 5.96M 82s\n", - " 91400K .......... .......... .......... .......... .......... 17% 3.88M 82s\n", - " 91450K .......... .......... .......... .......... .......... 17% 6.49M 82s\n", - " 91500K .......... .......... .......... .......... .......... 17% 5.82M 82s\n", - " 91550K .......... .......... .......... .......... .......... 17% 5.34M 82s\n", - " 91600K .......... .......... .......... .......... .......... 17% 6.27M 82s\n", - " 91650K .......... .......... .......... .......... .......... 17% 6.35M 82s\n", - " 91700K .......... .......... .......... .......... .......... 17% 4.68M 82s\n", - " 91750K .......... .......... .......... .......... .......... 17% 6.19M 82s\n", - " 91800K .......... .......... .......... .......... .......... 17% 4.63M 82s\n", - " 91850K .......... .......... .......... .......... .......... 17% 4.81M 82s\n", - " 91900K .......... .......... .......... .......... .......... 17% 6.54M 82s\n", - " 91950K .......... .......... .......... .......... .......... 17% 5.65M 82s\n", - " 92000K .......... .......... .......... .......... .......... 17% 5.44M 82s\n", - " 92050K .......... .......... .......... .......... .......... 17% 6.16M 82s\n", - " 92100K .......... .......... .......... .......... .......... 17% 7.61M 82s\n", - " 92150K .......... .......... .......... .......... .......... 17% 4.56M 82s\n", - " 92200K .......... .......... .......... .......... .......... 17% 4.67M 82s\n", - " 92250K .......... .......... .......... .......... .......... 17% 5.88M 82s\n", - " 92300K .......... .......... .......... .......... .......... 17% 5.83M 82s\n", - " 92350K .......... .......... .......... .......... .......... 17% 5.70M 82s\n", - " 92400K .......... .......... .......... .......... .......... 17% 6.28M 82s\n", - " 92450K .......... .......... .......... .......... .......... 17% 4.48M 82s\n", - " 92500K .......... .......... .......... .......... .......... 17% 7.59M 82s\n", - " 92550K .......... .......... .......... .......... .......... 17% 5.71M 82s\n", - " 92600K .......... .......... .......... .......... .......... 17% 4.11M 82s\n", - " 92650K .......... .......... .......... .......... .......... 17% 5.20M 82s\n", - " 92700K .......... .......... .......... .......... .......... 17% 7.09M 82s\n", - " 92750K .......... .......... .......... .......... .......... 17% 4.98M 82s\n", - " 92800K .......... .......... .......... .......... .......... 17% 7.15M 82s\n", - " 92850K .......... .......... .......... .......... .......... 17% 5.30M 82s\n", - " 92900K .......... .......... .......... .......... .......... 17% 5.01M 82s\n", - " 92950K .......... .......... .......... .......... .......... 17% 8.02M 82s\n", - " 93000K .......... .......... .......... .......... .......... 17% 4.22M 82s\n", - " 93050K .......... .......... .......... .......... .......... 17% 5.55M 82s\n", - " 93100K .......... .......... .......... .......... .......... 17% 7.50M 82s\n", - " 93150K .......... .......... .......... .......... .......... 17% 5.65M 82s\n", - " 93200K .......... .......... .......... .......... .......... 17% 5.06M 82s\n", - " 93250K .......... .......... .......... .......... .......... 17% 7.33M 82s\n", - " 93300K .......... .......... .......... .......... .......... 17% 5.90M 82s\n", - " 93350K .......... .......... .......... .......... .......... 17% 6.45M 82s\n", - " 93400K .......... .......... .......... .......... .......... 17% 4.41M 82s\n", - " 93450K .......... .......... .......... .......... .......... 17% 5.66M 82s\n", - " 93500K .......... .......... .......... .......... .......... 17% 5.62M 82s\n", - " 93550K .......... .......... .......... .......... .......... 17% 6.00M 82s\n", - " 93600K .......... .......... .......... .......... .......... 17% 4.70M 82s\n", - " 93650K .......... .......... .......... .......... .......... 17% 10.1M 82s\n", - " 93700K .......... .......... .......... .......... .......... 17% 6.54M 82s\n", - " 93750K .......... .......... .......... .......... .......... 17% 3.58M 82s\n", - " 93800K .......... .......... .......... .......... .......... 17% 5.71M 82s\n", - " 93850K .......... .......... .......... .......... .......... 17% 7.35M 81s\n", - " 93900K .......... .......... .......... .......... .......... 17% 4.30M 81s\n", - " 93950K .......... .......... .......... .......... .......... 17% 8.19M 81s\n", - " 94000K .......... .......... .......... .......... .......... 17% 5.72M 81s\n", - " 94050K .......... .......... .......... .......... .......... 17% 4.73M 81s\n", - " 94100K .......... .......... .......... .......... .......... 17% 7.21M 81s\n", - " 94150K .......... .......... .......... .......... .......... 17% 6.65M 81s\n", - " 94200K .......... .......... .......... .......... .......... 17% 3.61M 81s\n", - " 94250K .......... .......... .......... .......... .......... 17% 10.2M 81s\n", - " 94300K .......... .......... .......... .......... .......... 17% 4.94M 81s\n", - " 94350K .......... .......... .......... .......... .......... 17% 4.79M 81s\n", - " 94400K .......... .......... .......... .......... .......... 18% 7.47M 81s\n", - " 94450K .......... .......... .......... .......... .......... 18% 6.96M 81s\n", - " 94500K .......... .......... .......... .......... .......... 18% 7.16M 81s\n", - " 94550K .......... .......... .......... .......... .......... 18% 4.86M 81s\n", - " 94600K .......... .......... .......... .......... .......... 18% 5.22M 81s\n", - " 94650K .......... .......... .......... .......... .......... 18% 7.35M 81s\n", - " 94700K .......... .......... .......... .......... .......... 18% 4.84M 81s\n", - " 94750K .......... .......... .......... .......... .......... 18% 5.64M 81s\n", - " 94800K .......... .......... .......... .......... .......... 18% 7.44M 81s\n", - " 94850K .......... .......... .......... .......... .......... 18% 5.67M 81s\n", - " 94900K .......... .......... .......... .......... .......... 18% 8.20M 81s\n", - " 94950K .......... .......... .......... .......... .......... 18% 5.61M 81s\n", - " 95000K .......... .......... .......... .......... .......... 18% 4.45M 81s\n", - " 95050K .......... .......... .......... .......... .......... 18% 5.91M 81s\n", - " 95100K .......... .......... .......... .......... .......... 18% 7.16M 81s\n", - " 95150K .......... .......... .......... .......... .......... 18% 6.06M 81s\n", - " 95200K .......... .......... .......... .......... .......... 18% 7.41M 81s\n", - " 95250K .......... .......... .......... .......... .......... 18% 5.27M 81s\n", - " 95300K .......... .......... .......... .......... .......... 18% 6.08M 81s\n", - " 95350K .......... .......... .......... .......... .......... 18% 7.68M 81s\n", - " 95400K .......... .......... .......... .......... .......... 18% 4.44M 81s\n", - " 95450K .......... .......... .......... .......... .......... 18% 6.09M 81s\n", - " 95500K .......... .......... .......... .......... .......... 18% 7.04M 81s\n", - " 95550K .......... .......... .......... .......... .......... 18% 7.18M 81s\n", - " 95600K .......... .......... .......... .......... .......... 18% 5.54M 81s\n", - " 95650K .......... .......... .......... .......... .......... 18% 7.02M 81s\n", - " 95700K .......... .......... .......... .......... .......... 18% 5.93M 81s\n", - " 95750K .......... .......... .......... .......... .......... 18% 5.60M 81s\n", - " 95800K .......... .......... .......... .......... .......... 18% 5.59M 81s\n", - " 95850K .......... .......... .......... .......... .......... 18% 6.56M 81s\n", - " 95900K .......... .......... .......... .......... .......... 18% 5.41M 81s\n", - " 95950K .......... .......... .......... .......... .......... 18% 5.72M 81s\n", - " 96000K .......... .......... .......... .......... .......... 18% 7.39M 81s\n", - " 96050K .......... .......... .......... .......... .......... 18% 5.59M 81s\n", - " 96100K .......... .......... .......... .......... .......... 18% 5.54M 81s\n", - " 96150K .......... .......... .......... .......... .......... 18% 8.24M 81s\n", - " 96200K .......... .......... .......... .......... .......... 18% 5.41M 81s\n", - " 96250K .......... .......... .......... .......... .......... 18% 4.89M 81s\n", - " 96300K .......... .......... .......... .......... .......... 18% 5.61M 81s\n", - " 96350K .......... .......... .......... .......... .......... 18% 10.5M 81s\n", - " 96400K .......... .......... .......... .......... .......... 18% 7.60M 81s\n", - " 96450K .......... .......... .......... .......... .......... 18% 5.22M 81s\n", - " 96500K .......... .......... .......... .......... .......... 18% 6.77M 81s\n", - " 96550K .......... .......... .......... .......... .......... 18% 3.61M 81s\n", - " 96600K .......... .......... .......... .......... .......... 18% 12.5M 81s\n", - " 96650K .......... .......... .......... .......... .......... 18% 6.14M 81s\n", - " 96700K .......... .......... .......... .......... .......... 18% 7.59M 81s\n", - " 96750K .......... .......... .......... .......... .......... 18% 3.97M 81s\n", - " 96800K .......... .......... .......... .......... .......... 18% 7.42M 81s\n", - " 96850K .......... .......... .......... .......... .......... 18% 6.90M 81s\n", - " 96900K .......... .......... .......... .......... .......... 18% 5.92M 81s\n", - " 96950K .......... .......... .......... .......... .......... 18% 4.44M 81s\n", - " 97000K .......... .......... .......... .......... .......... 18% 7.89M 81s\n", - " 97050K .......... .......... .......... .......... .......... 18% 6.60M 81s\n", - " 97100K .......... .......... .......... .......... .......... 18% 5.68M 81s\n", - " 97150K .......... .......... .......... .......... .......... 18% 6.58M 80s\n", - " 97200K .......... .......... .......... .......... .......... 18% 4.94M 80s\n", - " 97250K .......... .......... .......... .......... .......... 18% 7.58M 80s\n", - " 97300K .......... .......... .......... .......... .......... 18% 6.55M 80s\n", - " 97350K .......... .......... .......... .......... .......... 18% 6.14M 80s\n", - " 97400K .......... .......... .......... .......... .......... 18% 5.81M 80s\n", - " 97450K .......... .......... .......... .......... .......... 18% 5.60M 80s\n", - " 97500K .......... .......... .......... .......... .......... 18% 5.68M 80s\n", - " 97550K .......... .......... .......... .......... .......... 18% 7.95M 80s\n", - " 97600K .......... .......... .......... .......... .......... 18% 8.02M 80s\n", - " 97650K .......... .......... .......... .......... .......... 18% 6.60M 80s\n", - " 97700K .......... .......... .......... .......... .......... 18% 6.09M 80s\n", - " 97750K .......... .......... .......... .......... .......... 18% 6.85M 80s\n", - " 97800K .......... .......... .......... .......... .......... 18% 5.76M 80s\n", - " 97850K .......... .......... .......... .......... .......... 18% 4.92M 80s\n", - " 97900K .......... .......... .......... .......... .......... 18% 9.12M 80s\n", - " 97950K .......... .......... .......... .......... .......... 18% 8.10M 80s\n", - " 98000K .......... .......... .......... .......... .......... 18% 6.87M 80s\n", - " 98050K .......... .......... .......... .......... .......... 18% 5.09M 80s\n", - " 98100K .......... .......... .......... .......... .......... 18% 8.60M 80s\n", - " 98150K .......... .......... .......... .......... .......... 18% 6.86M 80s\n", - " 98200K .......... .......... .......... .......... .......... 18% 4.41M 80s\n", - " 98250K .......... .......... .......... .......... .......... 18% 6.66M 80s\n", - " 98300K .......... .......... .......... .......... .......... 18% 8.39M 80s\n", - " 98350K .......... .......... .......... .......... .......... 18% 5.64M 80s\n", - " 98400K .......... .......... .......... .......... .......... 18% 6.45M 80s\n", - " 98450K .......... .......... .......... .......... .......... 18% 7.41M 80s\n", - " 98500K .......... .......... .......... .......... .......... 18% 9.08M 80s\n", - " 98550K .......... .......... .......... .......... .......... 18% 5.42M 80s\n", - " 98600K .......... .......... .......... .......... .......... 18% 4.56M 80s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 98650K .......... .......... .......... .......... .......... 18% 8.42M 80s\n", - " 98700K .......... .......... .......... .......... .......... 18% 5.89M 80s\n", - " 98750K .......... .......... .......... .......... .......... 18% 8.73M 80s\n", - " 98800K .......... .......... .......... .......... .......... 18% 6.44M 80s\n", - " 98850K .......... .......... .......... .......... .......... 18% 6.61M 80s\n", - " 98900K .......... .......... .......... .......... .......... 18% 6.09M 80s\n", - " 98950K .......... .......... .......... .......... .......... 18% 7.37M 80s\n", - " 99000K .......... .......... .......... .......... .......... 18% 5.30M 80s\n", - " 99050K .......... .......... .......... .......... .......... 18% 5.80M 80s\n", - " 99100K .......... .......... .......... .......... .......... 18% 8.81M 80s\n", - " 99150K .......... .......... .......... .......... .......... 18% 6.24M 80s\n", - " 99200K .......... .......... .......... .......... .......... 18% 8.36M 80s\n", - " 99250K .......... .......... .......... .......... .......... 18% 5.15M 80s\n", - " 99300K .......... .......... .......... .......... .......... 18% 7.09M 80s\n", - " 99350K .......... .......... .......... .......... .......... 18% 8.62M 80s\n", - " 99400K .......... .......... .......... .......... .......... 18% 4.72M 80s\n", - " 99450K .......... .......... .......... .......... .......... 18% 6.45M 80s\n", - " 99500K .......... .......... .......... .......... .......... 18% 8.38M 80s\n", - " 99550K .......... .......... .......... .......... .......... 18% 7.87M 80s\n", - " 99600K .......... .......... .......... .......... .......... 18% 5.76M 80s\n", - " 99650K .......... .......... .......... .......... .......... 19% 7.18M 80s\n", - " 99700K .......... .......... .......... .......... .......... 19% 8.40M 80s\n", - " 99750K .......... .......... .......... .......... .......... 19% 7.86M 80s\n", - " 99800K .......... .......... .......... .......... .......... 19% 3.87M 80s\n", - " 99850K .......... .......... .......... .......... .......... 19% 9.96M 80s\n", - " 99900K .......... .......... .......... .......... .......... 19% 8.00M 80s\n", - " 99950K .......... .......... .......... .......... .......... 19% 6.67M 80s\n", - "100000K .......... .......... .......... .......... .......... 19% 5.93M 79s\n", - "100050K .......... .......... .......... .......... .......... 19% 7.32M 79s\n", - "100100K .......... .......... .......... .......... .......... 19% 8.05M 79s\n", - "100150K .......... .......... .......... .......... .......... 19% 6.95M 79s\n", - "100200K .......... .......... .......... .......... .......... 19% 4.68M 79s\n", - "100250K .......... .......... .......... .......... .......... 19% 10.3M 79s\n", - "100300K .......... .......... .......... .......... .......... 19% 7.80M 79s\n", - "100350K .......... .......... .......... .......... .......... 19% 4.53M 79s\n", - "100400K .......... .......... .......... .......... .......... 19% 9.44M 79s\n", - "100450K .......... .......... .......... .......... .......... 19% 8.72M 79s\n", - "100500K .......... .......... .......... .......... .......... 19% 6.09M 79s\n", - "100550K .......... .......... .......... .......... .......... 19% 5.73M 79s\n", - "100600K .......... .......... .......... .......... .......... 19% 6.37M 79s\n", - "100650K .......... .......... .......... .......... .......... 19% 8.02M 79s\n", - "100700K .......... .......... .......... .......... .......... 19% 5.65M 79s\n", - "100750K .......... .......... .......... .......... .......... 19% 6.99M 79s\n", - "100800K .......... .......... .......... .......... .......... 19% 7.57M 79s\n", - "100850K .......... .......... .......... .......... .......... 19% 9.45M 79s\n", - "100900K .......... .......... .......... .......... .......... 19% 2.95M 79s\n", - "100950K .......... .......... .......... .......... .......... 19% 19.5M 79s\n", - "101000K .......... .......... .......... .......... .......... 19% 11.2M 79s\n", - "101050K .......... .......... .......... .......... .......... 19% 9.35M 79s\n", - "101100K .......... .......... .......... .......... .......... 19% 2.67M 79s\n", - "101150K .......... .......... .......... .......... .......... 19% 8.68M 79s\n", - "101200K .......... .......... .......... .......... .......... 19% 8.70M 79s\n", - "101250K .......... .......... .......... .......... .......... 19% 8.54M 79s\n", - "101300K .......... .......... .......... .......... .......... 19% 4.96M 79s\n", - "101350K .......... .......... .......... .......... .......... 19% 8.57M 79s\n", - "101400K .......... .......... .......... .......... .......... 19% 5.52M 79s\n", - "101450K .......... .......... .......... .......... .......... 19% 5.24M 79s\n", - "101500K .......... .......... .......... .......... .......... 19% 8.74M 79s\n", - "101550K .......... .......... .......... .......... .......... 19% 8.14M 79s\n", - "101600K .......... .......... .......... .......... .......... 19% 8.78M 79s\n", - "101650K .......... .......... .......... .......... .......... 19% 5.05M 79s\n", - "101700K .......... .......... .......... .......... .......... 19% 9.02M 79s\n", - "101750K .......... .......... .......... .......... .......... 19% 8.78M 79s\n", - "101800K .......... .......... .......... .......... .......... 19% 6.10M 79s\n", - "101850K .......... .......... .......... .......... .......... 19% 5.73M 79s\n", - "101900K .......... .......... .......... .......... .......... 19% 7.09M 79s\n", - "101950K .......... .......... .......... .......... .......... 19% 8.97M 79s\n", - "102000K .......... .......... .......... .......... .......... 19% 9.27M 79s\n", - "102050K .......... .......... .......... .......... .......... 19% 4.67M 79s\n", - "102100K .......... .......... .......... .......... .......... 19% 9.37M 79s\n", - "102150K .......... .......... .......... .......... .......... 19% 8.71M 79s\n", - "102200K .......... .......... .......... .......... .......... 19% 3.97M 79s\n", - "102250K .......... .......... .......... .......... .......... 19% 9.23M 79s\n", - "102300K .......... .......... .......... .......... .......... 19% 9.32M 79s\n", - "102350K .......... .......... .......... .......... .......... 19% 8.97M 79s\n", - "102400K .......... .......... .......... .......... .......... 19% 4.84M 79s\n", - "102450K .......... .......... .......... .......... .......... 19% 9.61M 79s\n", - "102500K .......... .......... .......... .......... .......... 19% 8.84M 79s\n", - "102550K .......... .......... .......... .......... .......... 19% 9.26M 79s\n", - "102600K .......... .......... .......... .......... .......... 19% 4.08M 79s\n", - "102650K .......... .......... .......... .......... .......... 19% 7.43M 79s\n", - "102700K .......... .......... .......... .......... .......... 19% 9.68M 79s\n", - "102750K .......... .......... .......... .......... .......... 19% 6.73M 78s\n", - "102800K .......... .......... .......... .......... .......... 19% 6.68M 78s\n", - "102850K .......... .......... .......... .......... .......... 19% 7.34M 78s\n", - "102900K .......... .......... .......... .......... .......... 19% 9.30M 78s\n", - "102950K .......... .......... .......... .......... .......... 19% 8.02M 78s\n", - "103000K .......... .......... .......... .......... .......... 19% 5.39M 78s\n", - "103050K .......... .......... .......... .......... .......... 19% 6.92M 78s\n", - "103100K .......... .......... .......... .......... .......... 19% 7.52M 78s\n", - "103150K .......... .......... .......... .......... .......... 19% 6.55M 78s\n", - "103200K .......... .......... .......... .......... .......... 19% 6.39M 78s\n", - "103250K .......... .......... .......... .......... .......... 19% 9.83M 78s\n", - "103300K .......... .......... .......... .......... .......... 19% 8.18M 78s\n", - "103350K .......... .......... .......... .......... .......... 19% 6.70M 78s\n", - "103400K .......... .......... .......... .......... .......... 19% 5.35M 78s\n", - "103450K .......... .......... .......... .......... .......... 19% 9.17M 78s\n", - "103500K .......... .......... .......... .......... .......... 19% 6.45M 78s\n", - "103550K .......... .......... .......... .......... .......... 19% 8.31M 78s\n", - "103600K .......... .......... .......... .......... .......... 19% 7.38M 78s\n", - "103650K .......... .......... .......... .......... .......... 19% 7.90M 78s\n", - "103700K .......... .......... .......... .......... .......... 19% 5.98M 78s\n", - "103750K .......... .......... .......... .......... .......... 19% 9.81M 78s\n", - "103800K .......... .......... .......... .......... .......... 19% 6.34M 78s\n", - "103850K .......... .......... .......... .......... .......... 19% 7.24M 78s\n", - "103900K .......... .......... .......... .......... .......... 19% 6.77M 78s\n", - "103950K .......... .......... .......... .......... .......... 19% 7.93M 78s\n", - "104000K .......... .......... .......... .......... .......... 19% 10.3M 78s\n", - "104050K .......... .......... .......... .......... .......... 19% 6.22M 78s\n", - "104100K .......... .......... .......... .......... .......... 19% 7.88M 78s\n", - "104150K .......... .......... .......... .......... .......... 19% 5.80M 78s\n", - "104200K .......... .......... .......... .......... .......... 19% 6.49M 78s\n", - "104250K .......... .......... .......... .......... .......... 19% 8.41M 78s\n", - "104300K .......... .......... .......... .......... .......... 19% 9.21M 78s\n", - "104350K .......... .......... .......... .......... .......... 19% 5.49M 78s\n", - "104400K .......... .......... .......... .......... .......... 19% 8.91M 78s\n", - "104450K .......... .......... .......... .......... .......... 19% 9.65M 78s\n", - "104500K .......... .......... .......... .......... .......... 19% 7.44M 78s\n", - "104550K .......... .......... .......... .......... .......... 19% 6.18M 78s\n", - "104600K .......... .......... .......... .......... .......... 19% 6.59M 78s\n", - "104650K .......... .......... .......... .......... .......... 19% 9.35M 78s\n", - "104700K .......... .......... .......... .......... .......... 19% 7.19M 78s\n", - "104750K .......... .......... .......... .......... .......... 19% 7.47M 78s\n", - "104800K .......... .......... .......... .......... .......... 19% 8.05M 78s\n", - "104850K .......... .......... .......... .......... .......... 19% 6.46M 78s\n", - "104900K .......... .......... .......... .......... .......... 20% 9.68M 78s\n", - "104950K .......... .......... .......... .......... .......... 20% 7.13M 78s\n", - "105000K .......... .......... .......... .......... .......... 20% 5.37M 78s\n", - "105050K .......... .......... .......... .......... .......... 20% 9.00M 78s\n", - "105100K .......... .......... .......... .......... .......... 20% 7.20M 78s\n", - "105150K .......... .......... .......... .......... .......... 20% 8.08M 78s\n", - "105200K .......... .......... .......... .......... .......... 20% 7.52M 78s\n", - "105250K .......... .......... .......... .......... .......... 20% 7.66M 78s\n", - "105300K .......... .......... .......... .......... .......... 20% 8.91M 77s\n", - "105350K .......... .......... .......... .......... .......... 20% 7.16M 77s\n", - "105400K .......... .......... .......... .......... .......... 20% 5.75M 77s\n", - "105450K .......... .......... .......... .......... .......... 20% 6.66M 77s\n", - "105500K .......... .......... .......... .......... .......... 20% 9.96M 77s\n", - "105550K .......... .......... .......... .......... .......... 20% 9.13M 77s\n", - "105600K .......... .......... .......... .......... .......... 20% 5.85M 77s\n", - "105650K .......... .......... .......... .......... .......... 20% 6.54M 77s\n", - "105700K .......... .......... .......... .......... .......... 20% 11.0M 77s\n", - "105750K .......... .......... .......... .......... .......... 20% 6.99M 77s\n", - "105800K .......... .......... .......... .......... .......... 20% 6.56M 77s\n", - "105850K .......... .......... .......... .......... .......... 20% 6.62M 77s\n", - "105900K .......... .......... .......... .......... .......... 20% 6.95M 77s\n", - "105950K .......... .......... .......... .......... .......... 20% 8.25M 77s\n", - "106000K .......... .......... .......... .......... .......... 20% 9.95M 77s\n", - "106050K .......... .......... .......... .......... .......... 20% 6.97M 77s\n", - "106100K .......... .......... .......... .......... .......... 20% 7.54M 77s\n", - "106150K .......... .......... .......... .......... .......... 20% 9.16M 77s\n", - "106200K .......... .......... .......... .......... .......... 20% 5.80M 77s\n", - "106250K .......... .......... .......... .......... .......... 20% 7.92M 77s\n", - "106300K .......... .......... .......... .......... .......... 20% 9.29M 77s\n", - "106350K .......... .......... .......... .......... .......... 20% 6.50M 77s\n", - "106400K .......... .......... .......... .......... .......... 20% 6.34M 77s\n", - "106450K .......... .......... .......... .......... .......... 20% 12.2M 77s\n", - "106500K .......... .......... .......... .......... .......... 20% 9.39M 77s\n", - "106550K .......... .......... .......... .......... .......... 20% 7.12M 77s\n", - "106600K .......... .......... .......... .......... .......... 20% 4.42M 77s\n", - "106650K .......... .......... .......... .......... .......... 20% 9.92M 77s\n", - "106700K .......... .......... .......... .......... .......... 20% 10.2M 77s\n", - "106750K .......... .......... .......... .......... .......... 20% 8.93M 77s\n", - "106800K .......... .......... .......... .......... .......... 20% 5.69M 77s\n", - "106850K .......... .......... .......... .......... .......... 20% 8.09M 77s\n", - "106900K .......... .......... .......... .......... .......... 20% 10.3M 77s\n", - "106950K .......... .......... .......... .......... .......... 20% 9.68M 77s\n", - "107000K .......... .......... .......... .......... .......... 20% 4.46M 77s\n", - "107050K .......... .......... .......... .......... .......... 20% 8.12M 77s\n", - "107100K .......... .......... .......... .......... .......... 20% 10.6M 77s\n", - "107150K .......... .......... .......... .......... .......... 20% 9.89M 77s\n", - "107200K .......... .......... .......... .......... .......... 20% 5.46M 77s\n", - "107250K .......... .......... .......... .......... .......... 20% 8.56M 77s\n", - "107300K .......... .......... .......... .......... .......... 20% 8.56M 77s\n", - "107350K .......... .......... .......... .......... .......... 20% 7.73M 77s\n", - "107400K .......... .......... .......... .......... .......... 20% 5.75M 77s\n", - "107450K .......... .......... .......... .......... .......... 20% 5.71M 77s\n", - "107500K .......... .......... .......... .......... .......... 20% 18.0M 77s\n", - "107550K .......... .......... .......... .......... .......... 20% 5.68M 77s\n", - "107600K .......... .......... .......... .......... .......... 20% 9.30M 77s\n", - "107650K .......... .......... .......... .......... .......... 20% 10.7M 77s\n", - "107700K .......... .......... .......... .......... .......... 20% 6.32M 77s\n", - "107750K .......... .......... .......... .......... .......... 20% 7.52M 77s\n", - "107800K .......... .......... .......... .......... .......... 20% 6.76M 76s\n", - "107850K .......... .......... .......... .......... .......... 20% 10.9M 76s\n", - "107900K .......... .......... .......... .......... .......... 20% 5.98M 76s\n", - "107950K .......... .......... .......... .......... .......... 20% 8.73M 76s\n", - "108000K .......... .......... .......... .......... .......... 20% 6.09M 76s\n", - "108050K .......... .......... .......... .......... .......... 20% 14.5M 76s\n", - "108100K .......... .......... .......... .......... .......... 20% 7.38M 76s\n", - "108150K .......... .......... .......... .......... .......... 20% 6.90M 76s\n", - "108200K .......... .......... .......... .......... .......... 20% 5.79M 76s\n", - "108250K .......... .......... .......... .......... .......... 20% 9.62M 76s\n", - "108300K .......... .......... .......... .......... .......... 20% 8.64M 76s\n", - "108350K .......... .......... .......... .......... .......... 20% 8.09M 76s\n", - "108400K .......... .......... .......... .......... .......... 20% 6.54M 76s\n", - "108450K .......... .......... .......... .......... .......... 20% 9.18M 76s\n", - "108500K .......... .......... .......... .......... .......... 20% 10.8M 76s\n", - "108550K .......... .......... .......... .......... .......... 20% 8.23M 76s\n", - "108600K .......... .......... .......... .......... .......... 20% 5.70M 76s\n", - "108650K .......... .......... .......... .......... .......... 20% 6.33M 76s\n", - "108700K .......... .......... .......... .......... .......... 20% 10.5M 76s\n", - "108750K .......... .......... .......... .......... .......... 20% 10.4M 76s\n", - "108800K .......... .......... .......... .......... .......... 20% 5.95M 76s\n", - "108850K .......... .......... .......... .......... .......... 20% 10.4M 76s\n", - "108900K .......... .......... .......... .......... .......... 20% 7.25M 76s\n", - "108950K .......... .......... .......... .......... .......... 20% 10.7M 76s\n", - "109000K .......... .......... .......... .......... .......... 20% 5.68M 76s\n", - "109050K .......... .......... .......... .......... .......... 20% 7.94M 76s\n", - "109100K .......... .......... .......... .......... .......... 20% 8.30M 76s\n", - "109150K .......... .......... .......... .......... .......... 20% 9.99M 76s\n", - "109200K .......... .......... .......... .......... .......... 20% 8.01M 76s\n", - "109250K .......... .......... .......... .......... .......... 20% 4.97M 76s\n", - "109300K .......... .......... .......... .......... .......... 20% 14.9M 76s\n", - "109350K .......... .......... .......... .......... .......... 20% 9.63M 76s\n", - "109400K .......... .......... .......... .......... .......... 20% 6.40M 76s\n", - "109450K .......... .......... .......... .......... .......... 20% 4.76M 76s\n", - "109500K .......... .......... .......... .......... .......... 20% 9.59M 76s\n", - "109550K .......... .......... .......... .......... .......... 20% 10.3M 76s\n", - "109600K .......... .......... .......... .......... .......... 20% 9.49M 76s\n", - "109650K .......... .......... .......... .......... .......... 20% 5.81M 76s\n", - "109700K .......... .......... .......... .......... .......... 20% 8.62M 76s\n", - "109750K .......... .......... .......... .......... .......... 20% 8.84M 76s\n", - "109800K .......... .......... .......... .......... .......... 20% 8.18M 76s\n", - "109850K .......... .......... .......... .......... .......... 20% 11.0M 76s\n", - "109900K .......... .......... .......... .......... .......... 20% 5.39M 76s\n", - "109950K .......... .......... .......... .......... .......... 20% 7.91M 76s\n", - "110000K .......... .......... .......... .......... .......... 20% 11.1M 76s\n", - "110050K .......... .......... .......... .......... .......... 20% 10.4M 76s\n", - "110100K .......... .......... .......... .......... .......... 20% 2.98M 76s\n", - "110150K .......... .......... .......... .......... .......... 21% 102M 76s\n", - "110200K .......... .......... .......... .......... .......... 21% 8.79M 76s\n", - "110250K .......... .......... .......... .......... .......... 21% 10.3M 76s\n", - "110300K .......... .......... .......... .......... .......... 21% 3.51M 76s\n", - "110350K .......... .......... .......... .......... .......... 21% 7.97M 75s\n", - "110400K .......... .......... .......... .......... .......... 21% 12.0M 75s\n", - "110450K .......... .......... .......... .......... .......... 21% 11.2M 75s\n", - "110500K .......... .......... .......... .......... .......... 21% 10.4M 75s\n", - "110550K .......... .......... .......... .......... .......... 21% 4.56M 75s\n", - "110600K .......... .......... .......... .......... .......... 21% 7.63M 75s\n", - "110650K .......... .......... .......... .......... .......... 21% 7.37M 75s\n", - "110700K .......... .......... .......... .......... .......... 21% 10.8M 75s\n", - "110750K .......... .......... .......... .......... .......... 21% 5.22M 75s\n", - "110800K .......... .......... .......... .......... .......... 21% 8.72M 75s\n", - "110850K .......... .......... .......... .......... .......... 21% 7.01M 75s\n", - "110900K .......... .......... .......... .......... .......... 21% 20.2M 75s\n", - "110950K .......... .......... .......... .......... .......... 21% 10.6M 75s\n", - "111000K .......... .......... .......... .......... .......... 21% 4.02M 75s\n", - "111050K .......... .......... .......... .......... .......... 21% 13.0M 75s\n", - "111100K .......... .......... .......... .......... .......... 21% 6.65M 75s\n", - "111150K .......... .......... .......... .......... .......... 21% 10.4M 75s\n", - "111200K .......... .......... .......... .......... .......... 21% 8.39M 75s\n", - "111250K .......... .......... .......... .......... .......... 21% 7.50M 75s\n", - "111300K .......... .......... .......... .......... .......... 21% 7.58M 75s\n", - "111350K .......... .......... .......... .......... .......... 21% 9.07M 75s\n", - "111400K .......... .......... .......... .......... .......... 21% 7.18M 75s\n", - "111450K .......... .......... .......... .......... .......... 21% 5.58M 75s\n", - "111500K .......... .......... .......... .......... .......... 21% 9.99M 75s\n", - "111550K .......... .......... .......... .......... .......... 21% 11.0M 75s\n", - "111600K .......... .......... .......... .......... .......... 21% 9.90M 75s\n", - "111650K .......... .......... .......... .......... .......... 21% 5.49M 75s\n", - "111700K .......... .......... .......... .......... .......... 21% 8.86M 75s\n", - "111750K .......... .......... .......... .......... .......... 21% 11.0M 75s\n", - "111800K .......... .......... .......... .......... .......... 21% 7.66M 75s\n", - "111850K .......... .......... .......... .......... .......... 21% 5.61M 75s\n", - "111900K .......... .......... .......... .......... .......... 21% 8.19M 75s\n", - "111950K .......... .......... .......... .......... .......... 21% 10.9M 75s\n", - "112000K .......... .......... .......... .......... .......... 21% 11.2M 75s\n", - "112050K .......... .......... .......... .......... .......... 21% 10.2M 75s\n", - "112100K .......... .......... .......... .......... .......... 21% 6.77M 75s\n", - "112150K .......... .......... .......... .......... .......... 21% 7.56M 75s\n", - "112200K .......... .......... .......... .......... .......... 21% 6.88M 75s\n", - "112250K .......... .......... .......... .......... .......... 21% 11.8M 75s\n", - "112300K .......... .......... .......... .......... .......... 21% 6.91M 75s\n", - "112350K .......... .......... .......... .......... .......... 21% 8.85M 75s\n", - "112400K .......... .......... .......... .......... .......... 21% 8.01M 75s\n", - "112450K .......... .......... .......... .......... .......... 21% 9.36M 75s\n", - "112500K .......... .......... .......... .......... .......... 21% 12.1M 75s\n", - "112550K .......... .......... .......... .......... .......... 21% 7.89M 75s\n", - "112600K .......... .......... .......... .......... .......... 21% 5.37M 75s\n", - "112650K .......... .......... .......... .......... .......... 21% 7.18M 75s\n", - "112700K .......... .......... .......... .......... .......... 21% 11.4M 75s\n", - "112750K .......... .......... .......... .......... .......... 21% 10.9M 75s\n", - "112800K .......... .......... .......... .......... .......... 21% 6.34M 75s\n", - "112850K .......... .......... .......... .......... .......... 21% 7.89M 74s\n", - "112900K .......... .......... .......... .......... .......... 21% 11.1M 74s\n", - "112950K .......... .......... .......... .......... .......... 21% 9.63M 74s\n", - "113000K .......... .......... .......... .......... .......... 21% 8.33M 74s\n", - "113050K .......... .......... .......... .......... .......... 21% 6.82M 74s\n", - "113100K .......... .......... .......... .......... .......... 21% 6.74M 74s\n", - "113150K .......... .......... .......... .......... .......... 21% 11.6M 74s\n", - "113200K .......... .......... .......... .......... .......... 21% 9.86M 74s\n", - "113250K .......... .......... .......... .......... .......... 21% 9.57M 74s\n", - "113300K .......... .......... .......... .......... .......... 21% 7.18M 74s\n", - "113350K .......... .......... .......... .......... .......... 21% 7.35M 74s\n", - "113400K .......... .......... .......... .......... .......... 21% 9.08M 74s\n", - "113450K .......... .......... .......... .......... .......... 21% 9.61M 74s\n", - "113500K .......... .......... .......... .......... .......... 21% 8.80M 74s\n", - "113550K .......... .......... .......... .......... .......... 21% 7.08M 74s\n", - "113600K .......... .......... .......... .......... .......... 21% 8.60M 74s\n", - "113650K .......... .......... .......... .......... .......... 21% 10.9M 74s\n", - "113700K .......... .......... .......... .......... .......... 21% 11.1M 74s\n", - "113750K .......... .......... .......... .......... .......... 21% 8.13M 74s\n", - "113800K .......... .......... .......... .......... .......... 21% 5.69M 74s\n", - "113850K .......... .......... .......... .......... .......... 21% 8.58M 74s\n", - "113900K .......... .......... .......... .......... .......... 21% 10.5M 74s\n", - "113950K .......... .......... .......... .......... .......... 21% 7.76M 74s\n", - "114000K .......... .......... .......... .......... .......... 21% 9.86M 74s\n", - "114050K .......... .......... .......... .......... .......... 21% 9.40M 74s\n", - "114100K .......... .......... .......... .......... .......... 21% 7.63M 74s\n", - "114150K .......... .......... .......... .......... .......... 21% 11.1M 74s\n", - "114200K .......... .......... .......... .......... .......... 21% 6.09M 74s\n", - "114250K .......... .......... .......... .......... .......... 21% 9.73M 74s\n", - "114300K .......... .......... .......... .......... .......... 21% 7.35M 74s\n", - "114350K .......... .......... .......... .......... .......... 21% 10.7M 74s\n", - "114400K .......... .......... .......... .......... .......... 21% 8.44M 74s\n", - "114450K .......... .......... .......... .......... .......... 21% 9.51M 74s\n", - "114500K .......... .......... .......... .......... .......... 21% 8.38M 74s\n", - "114550K .......... .......... .......... .......... .......... 21% 8.53M 74s\n", - "114600K .......... .......... .......... .......... .......... 21% 6.55M 74s\n", - "114650K .......... .......... .......... .......... .......... 21% 10.8M 74s\n", - "114700K .......... .......... .......... .......... .......... 21% 9.01M 74s\n", - "114750K .......... .......... .......... .......... .......... 21% 7.69M 74s\n", - "114800K .......... .......... .......... .......... .......... 21% 10.1M 74s\n", - "114850K .......... .......... .......... .......... .......... 21% 8.31M 74s\n", - "114900K .......... .......... .......... .......... .......... 21% 11.5M 74s\n", - "114950K .......... .......... .......... .......... .......... 21% 9.63M 74s\n", - "115000K .......... .......... .......... .......... .......... 21% 5.55M 74s\n", - "115050K .......... .......... .......... .......... .......... 21% 10.0M 74s\n", - "115100K .......... .......... .......... .......... .......... 21% 9.42M 74s\n", - "115150K .......... .......... .......... .......... .......... 21% 8.36M 74s\n", - "115200K .......... .......... .......... .......... .......... 21% 11.8M 73s\n", - "115250K .......... .......... .......... .......... .......... 21% 5.87M 73s\n", - "115300K .......... .......... .......... .......... .......... 21% 8.87M 73s\n", - "115350K .......... .......... .......... .......... .......... 21% 11.1M 73s\n", - "115400K .......... .......... .......... .......... .......... 22% 8.04M 73s\n", - "115450K .......... .......... .......... .......... .......... 22% 9.43M 73s\n", - "115500K .......... .......... .......... .......... .......... 22% 6.91M 73s\n", - "115550K .......... .......... .......... .......... .......... 22% 7.35M 73s\n", - "115600K .......... .......... .......... .......... .......... 22% 12.1M 73s\n", - "115650K .......... .......... .......... .......... .......... 22% 11.3M 73s\n", - "115700K .......... .......... .......... .......... .......... 22% 11.3M 73s\n", - "115750K .......... .......... .......... .......... .......... 22% 5.61M 73s\n", - "115800K .......... .......... .......... .......... .......... 22% 6.47M 73s\n", - "115850K .......... .......... .......... .......... .......... 22% 5.57M 73s\n", - "115900K .......... .......... .......... .......... .......... 22% 79.0M 73s\n", - "115950K .......... .......... .......... .......... .......... 22% 6.37M 73s\n", - "116000K .......... .......... .......... .......... .......... 22% 10.9M 73s\n", - "116050K .......... .......... .......... .......... .......... 22% 9.87M 73s\n", - "116100K .......... .......... .......... .......... .......... 22% 5.15M 73s\n", - "116150K .......... .......... .......... .......... .......... 22% 8.64M 73s\n", - "116200K .......... .......... .......... .......... .......... 22% 7.12M 73s\n", - "116250K .......... .......... .......... .......... .......... 22% 9.40M 73s\n", - "116300K .......... .......... .......... .......... .......... 22% 9.51M 73s\n", - "116350K .......... .......... .......... .......... .......... 22% 7.33M 73s\n", - "116400K .......... .......... .......... .......... .......... 22% 11.4M 73s\n", - "116450K .......... .......... .......... .......... .......... 22% 10.2M 73s\n", - "116500K .......... .......... .......... .......... .......... 22% 8.59M 73s\n", - "116550K .......... .......... .......... .......... .......... 22% 9.15M 73s\n", - "116600K .......... .......... .......... .......... .......... 22% 5.53M 73s\n", - "116650K .......... .......... .......... .......... .......... 22% 10.4M 73s\n", - "116700K .......... .......... .......... .......... .......... 22% 11.6M 73s\n", - "116750K .......... .......... .......... .......... .......... 22% 9.26M 73s\n", - "116800K .......... .......... .......... .......... .......... 22% 6.60M 73s\n", - "116850K .......... .......... .......... .......... .......... 22% 9.40M 73s\n", - "116900K .......... .......... .......... .......... .......... 22% 10.3M 73s\n", - "116950K .......... .......... .......... .......... .......... 22% 9.99M 73s\n", - "117000K .......... .......... .......... .......... .......... 22% 8.61M 73s\n", - "117050K .......... .......... .......... .......... .......... 22% 6.49M 73s\n", - "117100K .......... .......... .......... .......... .......... 22% 8.59M 73s\n", - "117150K .......... .......... .......... .......... .......... 22% 9.88M 73s\n", - "117200K .......... .......... .......... .......... .......... 22% 9.09M 73s\n", - "117250K .......... .......... .......... .......... .......... 22% 10.9M 73s\n", - "117300K .......... .......... .......... .......... .......... 22% 8.73M 73s\n", - "117350K .......... .......... .......... .......... .......... 22% 8.27M 73s\n", - "117400K .......... .......... .......... .......... .......... 22% 5.78M 73s\n", - "117450K .......... .......... .......... .......... .......... 22% 11.2M 73s\n", - "117500K .......... .......... .......... .......... .......... 22% 732K 73s\n", - "117550K .......... .......... .......... .......... .......... 22% 10.2M 73s\n", - "117600K .......... .......... .......... .......... .......... 22% 222M 73s\n", - "117650K .......... .......... .......... .......... .......... 22% 197M 73s\n", - "117700K .......... .......... .......... .......... .......... 22% 312M 73s\n", - "117750K .......... .......... .......... .......... .......... 22% 228M 73s\n", - "117800K .......... .......... .......... .......... .......... 22% 303M 73s\n", - "117850K .......... .......... .......... .......... .......... 22% 6.76M 73s\n", - "117900K .......... .......... .......... .......... .......... 22% 1.62M 73s\n", - "117950K .......... .......... .......... .......... .......... 22% 7.29M 73s\n", - "118000K .......... .......... .......... .......... .......... 22% 9.60M 73s\n", - "118050K .......... .......... .......... .......... .......... 22% 286M 73s\n", - "118100K .......... .......... .......... .......... .......... 22% 30.8M 73s\n", - "118150K .......... .......... .......... .......... .......... 22% 3.36M 73s\n", - "118200K .......... .......... .......... .......... .......... 22% 4.94M 73s\n", - "118250K .......... .......... .......... .......... .......... 22% 2.93M 73s\n", - "118300K .......... .......... .......... .......... .......... 22% 5.83M 73s\n", - "118350K .......... .......... .......... .......... .......... 22% 4.17M 73s\n", - "118400K .......... .......... .......... .......... .......... 22% 3.63M 73s\n", - "118450K .......... .......... .......... .......... .......... 22% 5.08M 73s\n", - "118500K .......... .......... .......... .......... .......... 22% 4.30M 73s\n", - "118550K .......... .......... .......... .......... .......... 22% 4.05M 73s\n", - "118600K .......... .......... .......... .......... .......... 22% 3.75M 73s\n", - "118650K .......... .......... .......... .......... .......... 22% 4.06M 73s\n", - "118700K .......... .......... .......... .......... .......... 22% 4.51M 73s\n", - "118750K .......... .......... .......... .......... .......... 22% 4.15M 73s\n", - "118800K .......... .......... .......... .......... .......... 22% 3.92M 73s\n", - "118850K .......... .......... .......... .......... .......... 22% 4.15M 73s\n", - "118900K .......... .......... .......... .......... .......... 22% 1.73M 73s\n", - "118950K .......... .......... .......... .......... .......... 22% 276M 73s\n", - "119000K .......... .......... .......... .......... .......... 22% 4.29M 73s\n", - "119050K .......... .......... .......... .......... .......... 22% 3.40M 73s\n", - "119100K .......... .......... .......... .......... .......... 22% 2.82M 73s\n", - "119150K .......... .......... .......... .......... .......... 22% 3.67M 73s\n", - "119200K .......... .......... .......... .......... .......... 22% 3.03M 73s\n", - "119250K .......... .......... .......... .......... .......... 22% 3.17M 73s\n", - "119300K .......... .......... .......... .......... .......... 22% 2.84M 73s\n", - "119350K .......... .......... .......... .......... .......... 22% 3.50M 73s\n", - "119400K .......... .......... .......... .......... .......... 22% 2.36M 73s\n", - "119450K .......... .......... .......... .......... .......... 22% 3.44M 73s\n", - "119500K .......... .......... .......... .......... .......... 22% 2.79M 73s\n", - "119550K .......... .......... .......... .......... .......... 22% 3.78M 73s\n", - "119600K .......... .......... .......... .......... .......... 22% 3.05M 73s\n", - "119650K .......... .......... .......... .......... .......... 22% 3.74M 73s\n", - "119700K .......... .......... .......... .......... .......... 22% 3.12M 73s\n", - "119750K .......... .......... .......... .......... .......... 22% 3.86M 73s\n", - "119800K .......... .......... .......... .......... .......... 22% 2.03M 73s\n", - "119850K .......... .......... .......... .......... .......... 22% 3.89M 73s\n", - "119900K .......... .......... .......... .......... .......... 22% 2.58M 73s\n", - "119950K .......... .......... .......... .......... .......... 22% 3.52M 73s\n", - "120000K .......... .......... .......... .......... .......... 22% 3.59M 73s\n", - "120050K .......... .......... .......... .......... .......... 22% 3.06M 73s\n", - "120100K .......... .......... .......... .......... .......... 22% 3.29M 73s\n", - "120150K .......... .......... .......... .......... .......... 22% 1.59M 73s\n", - "120200K .......... .......... .......... .......... .......... 22% 10.2M 73s\n", - "120250K .......... .......... .......... .......... .......... 22% 2.56M 73s\n", - "120300K .......... .......... .......... .......... .......... 22% 2.07M 73s\n", - "120350K .......... .......... .......... .......... .......... 22% 2.70M 73s\n", - "120400K .......... .......... .......... .......... .......... 22% 2.36M 73s\n", - "120450K .......... .......... .......... .......... .......... 22% 2.43M 73s\n", - "120500K .......... .......... .......... .......... .......... 22% 2.38M 73s\n", - "120550K .......... .......... .......... .......... .......... 22% 2.77M 73s\n", - "120600K .......... .......... .......... .......... .......... 22% 2.04M 73s\n", - "120650K .......... .......... .......... .......... .......... 23% 2.30M 73s\n", - "120700K .......... .......... .......... .......... .......... 23% 2.48M 73s\n", - "120750K .......... .......... .......... .......... .......... 23% 2.40M 73s\n", - "120800K .......... .......... .......... .......... .......... 23% 2.96M 73s\n", - "120850K .......... .......... .......... .......... .......... 23% 2.09M 73s\n", - "120900K .......... .......... .......... .......... .......... 23% 2.90M 73s\n", - "120950K .......... .......... .......... .......... .......... 23% 2.80M 73s\n", - "121000K .......... .......... .......... .......... .......... 23% 2.04M 73s\n", - "121050K .......... .......... .......... .......... .......... 23% 2.51M 73s\n", - "121100K .......... .......... .......... .......... .......... 23% 2.41M 73s\n", - "121150K .......... .......... .......... .......... .......... 23% 3.00M 73s\n", - "121200K .......... .......... .......... .......... .......... 23% 2.62M 73s\n", - "121250K .......... .......... .......... .......... .......... 23% 2.81M 73s\n", - "121300K .......... .......... .......... .......... .......... 23% 2.73M 73s\n", - "121350K .......... .......... .......... .......... .......... 23% 2.38M 74s\n", - "121400K .......... .......... .......... .......... .......... 23% 2.20M 74s\n", - "121450K .......... .......... .......... .......... .......... 23% 3.04M 74s\n", - "121500K .......... .......... .......... .......... .......... 23% 2.74M 74s\n", - "121550K .......... .......... .......... .......... .......... 23% 2.47M 74s\n", - "121600K .......... .......... .......... .......... .......... 23% 3.26M 74s\n", - "121650K .......... .......... .......... .......... .......... 23% 1.06M 74s\n", - "121700K .......... .......... .......... .......... .......... 23% 192M 74s\n", - "121750K .......... .......... .......... .......... .......... 23% 5.21M 74s\n", - "121800K .......... .......... .......... .......... .......... 23% 1.34M 74s\n", - "121850K .......... .......... .......... .......... .......... 23% 2.05M 74s\n", - "121900K .......... .......... .......... .......... .......... 23% 2.85M 74s\n", - "121950K .......... .......... .......... .......... .......... 23% 2.09M 74s\n", - "122000K .......... .......... .......... .......... .......... 23% 2.07M 74s\n", - "122050K .......... .......... .......... .......... .......... 23% 2.04M 74s\n", - "122100K .......... .......... .......... .......... .......... 23% 2.23M 74s\n", - "122150K .......... .......... .......... .......... .......... 23% 2.17M 74s\n", - "122200K .......... .......... .......... .......... .......... 23% 1.75M 74s\n", - "122250K .......... .......... .......... .......... .......... 23% 2.29M 74s\n", - "122300K .......... .......... .......... .......... .......... 23% 2.16M 74s\n", - "122350K .......... .......... .......... .......... .......... 23% 2.44M 74s\n", - "122400K .......... .......... .......... .......... .......... 23% 2.35M 74s\n", - "122450K .......... .......... .......... .......... .......... 23% 2.42M 74s\n", - "122500K .......... .......... .......... .......... .......... 23% 2.11M 74s\n", - "122550K .......... .......... .......... .......... .......... 23% 2.68M 74s\n", - "122600K .......... .......... .......... .......... .......... 23% 1.88M 74s\n", - "122650K .......... .......... .......... .......... .......... 23% 2.21M 74s\n", - "122700K .......... .......... .......... .......... .......... 23% 2.58M 74s\n", - "122750K .......... .......... .......... .......... .......... 23% 2.36M 74s\n", - "122800K .......... .......... .......... .......... .......... 23% 2.69M 74s\n", - "122850K .......... .......... .......... .......... .......... 23% 2.33M 74s\n", - "122900K .......... .......... .......... .......... .......... 23% 2.61M 74s\n", - "122950K .......... .......... .......... .......... .......... 23% 2.54M 74s\n", - "123000K .......... .......... .......... .......... .......... 23% 1.89M 75s\n", - "123050K .......... .......... .......... .......... .......... 23% 2.37M 75s\n", - "123100K .......... .......... .......... .......... .......... 23% 3.17M 75s\n", - "123150K .......... .......... .......... .......... .......... 23% 2.62M 75s\n", - "123200K .......... .......... .......... .......... .......... 23% 2.71M 75s\n", - "123250K .......... .......... .......... .......... .......... 23% 2.64M 75s\n", - "123300K .......... .......... .......... .......... .......... 23% 2.79M 75s\n", - "123350K .......... .......... .......... .......... .......... 23% 2.50M 75s\n", - "123400K .......... .......... .......... .......... .......... 23% 2.09M 75s\n", - "123450K .......... .......... .......... .......... .......... 23% 2.48M 75s\n", - "123500K .......... .......... .......... .......... .......... 23% 2.45M 75s\n", - "123550K .......... .......... .......... .......... .......... 23% 3.64M 75s\n", - "123600K .......... .......... .......... .......... .......... 23% 2.60M 75s\n", - "123650K .......... .......... .......... .......... .......... 23% 2.43M 75s\n", - "123700K .......... .......... .......... .......... .......... 23% 3.49M 75s\n", - "123750K .......... .......... .......... .......... .......... 23% 2.85M 75s\n", - "123800K .......... .......... .......... .......... .......... 23% 1.98M 75s\n", - "123850K .......... .......... .......... .......... .......... 23% 2.70M 75s\n", - "123900K .......... .......... .......... .......... .......... 23% 3.50M 75s\n", - "123950K .......... .......... .......... .......... .......... 23% 2.76M 75s\n", - "124000K .......... .......... .......... .......... .......... 23% 3.22M 75s\n", - "124050K .......... .......... .......... .......... .......... 23% 2.90M 75s\n", - "124100K .......... .......... .......... .......... .......... 23% 2.84M 75s\n", - "124150K .......... .......... .......... .......... .......... 23% 3.42M 75s\n", - "124200K .......... .......... .......... .......... .......... 23% 2.34M 75s\n", - "124250K .......... .......... .......... .......... .......... 23% 2.76M 75s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "124300K .......... .......... .......... .......... .......... 23% 3.55M 75s\n", - "124350K .......... .......... .......... .......... .......... 23% 2.74M 75s\n", - "124400K .......... .......... .......... .......... .......... 23% 3.38M 75s\n", - "124450K .......... .......... .......... .......... .......... 23% 3.07M 75s\n", - "124500K .......... .......... .......... .......... .......... 23% 3.36M 75s\n", - "124550K .......... .......... .......... .......... .......... 23% 2.91M 75s\n", - "124600K .......... .......... .......... .......... .......... 23% 2.58M 75s\n", - "124650K .......... .......... .......... .......... .......... 23% 3.37M 75s\n", - "124700K .......... .......... .......... .......... .......... 23% 3.01M 75s\n", - "124750K .......... .......... .......... .......... .......... 23% 3.55M 75s\n", - "124800K .......... .......... .......... .......... .......... 23% 3.03M 75s\n", - "124850K .......... .......... .......... .......... .......... 23% 3.80M 75s\n", - "124900K .......... .......... .......... .......... .......... 23% 3.14M 75s\n", - "124950K .......... .......... .......... .......... .......... 23% 3.17M 75s\n", - "125000K .......... .......... .......... .......... .......... 23% 2.67M 75s\n", - "125050K .......... .......... .......... .......... .......... 23% 3.04M 75s\n", - "125100K .......... .......... .......... .......... .......... 23% 3.53M 75s\n", - "125150K .......... .......... .......... .......... .......... 23% 3.44M 75s\n", - "125200K .......... .......... .......... .......... .......... 23% 3.46M 75s\n", - "125250K .......... .......... .......... .......... .......... 23% 2.83M 75s\n", - "125300K .......... .......... .......... .......... .......... 23% 3.71M 75s\n", - "125350K .......... .......... .......... .......... .......... 23% 3.36M 75s\n", - "125400K .......... .......... .......... .......... .......... 23% 2.65M 75s\n", - "125450K .......... .......... .......... .......... .......... 23% 3.70M 75s\n", - "125500K .......... .......... .......... .......... .......... 23% 3.20M 75s\n", - "125550K .......... .......... .......... .......... .......... 23% 3.71M 75s\n", - "125600K .......... .......... .......... .......... .......... 23% 3.20M 75s\n", - "125650K .......... .......... .......... .......... .......... 23% 3.40M 75s\n", - "125700K .......... .......... .......... .......... .......... 23% 3.83M 75s\n", - "125750K .......... .......... .......... .......... .......... 23% 3.31M 75s\n", - "125800K .......... .......... .......... .......... .......... 23% 3.11M 75s\n", - "125850K .......... .......... .......... .......... .......... 23% 3.29M 75s\n", - "125900K .......... .......... .......... .......... .......... 24% 3.61M 75s\n", - "125950K .......... .......... .......... .......... .......... 24% 3.59M 75s\n", - "126000K .......... .......... .......... .......... .......... 24% 3.41M 75s\n", - "126050K .......... .......... .......... .......... .......... 24% 3.44M 75s\n", - "126100K .......... .......... .......... .......... .......... 24% 3.36M 75s\n", - "126150K .......... .......... .......... .......... .......... 24% 3.99M 75s\n", - "126200K .......... .......... .......... .......... .......... 24% 1.90M 75s\n", - "126250K .......... .......... .......... .......... .......... 24% 12.4M 75s\n", - "126300K .......... .......... .......... .......... .......... 24% 2.03M 75s\n", - "126350K .......... .......... .......... .......... .......... 24% 4.14M 75s\n", - "126400K .......... .......... .......... .......... .......... 24% 3.59M 75s\n", - "126450K .......... .......... .......... .......... .......... 24% 3.90M 75s\n", - "126500K .......... .......... .......... .......... .......... 24% 3.33M 75s\n", - "126550K .......... .......... .......... .......... .......... 24% 4.11M 75s\n", - "126600K .......... .......... .......... .......... .......... 24% 2.66M 75s\n", - "126650K .......... .......... .......... .......... .......... 24% 4.83M 75s\n", - "126700K .......... .......... .......... .......... .......... 24% 3.29M 75s\n", - "126750K .......... .......... .......... .......... .......... 24% 4.25M 75s\n", - "126800K .......... .......... .......... .......... .......... 24% 3.12M 75s\n", - "126850K .......... .......... .......... .......... .......... 24% 4.57M 75s\n", - "126900K .......... .......... .......... .......... .......... 24% 2.90M 75s\n", - "126950K .......... .......... .......... .......... .......... 24% 4.80M 75s\n", - "127000K .......... .......... .......... .......... .......... 24% 1.79M 75s\n", - "127050K .......... .......... .......... .......... .......... 24% 3.48M 75s\n", - "127100K .......... .......... .......... .......... .......... 24% 1.76M 75s\n", - "127150K .......... .......... .......... .......... .......... 24% 6.14M 75s\n", - "127200K .......... .......... .......... .......... .......... 24% 2.43M 76s\n", - "127250K .......... .......... .......... .......... .......... 24% 4.52M 75s\n", - "127300K .......... .......... .......... .......... .......... 24% 3.75M 75s\n", - "127350K .......... .......... .......... .......... .......... 24% 3.90M 75s\n", - "127400K .......... .......... .......... .......... .......... 24% 2.60M 76s\n", - "127450K .......... .......... .......... .......... .......... 24% 5.16M 76s\n", - "127500K .......... .......... .......... .......... .......... 24% 3.41M 76s\n", - "127550K .......... .......... .......... .......... .......... 24% 4.20M 76s\n", - "127600K .......... .......... .......... .......... .......... 24% 4.40M 76s\n", - "127650K .......... .......... .......... .......... .......... 24% 3.65M 76s\n", - "127700K .......... .......... .......... .......... .......... 24% 4.43M 76s\n", - "127750K .......... .......... .......... .......... .......... 24% 3.84M 76s\n", - "127800K .......... .......... .......... .......... .......... 24% 3.38M 76s\n", - "127850K .......... .......... .......... .......... .......... 24% 3.48M 76s\n", - "127900K .......... .......... .......... .......... .......... 24% 4.78M 76s\n", - "127950K .......... .......... .......... .......... .......... 24% 3.73M 76s\n", - "128000K .......... .......... .......... .......... .......... 24% 5.03M 75s\n", - "128050K .......... .......... .......... .......... .......... 24% 4.22M 75s\n", - "128100K .......... .......... .......... .......... .......... 24% 3.71M 75s\n", - "128150K .......... .......... .......... .......... .......... 24% 5.06M 75s\n", - "128200K .......... .......... .......... .......... .......... 24% 2.85M 76s\n", - "128250K .......... .......... .......... .......... .......... 24% 4.94M 75s\n", - "128300K .......... .......... .......... .......... .......... 24% 3.78M 75s\n", - "128350K .......... .......... .......... .......... .......... 24% 3.80M 75s\n", - "128400K .......... .......... .......... .......... .......... 24% 4.85M 75s\n", - "128450K .......... .......... .......... .......... .......... 24% 3.26M 75s\n", - "128500K .......... .......... .......... .......... .......... 24% 5.27M 75s\n", - "128550K .......... .......... .......... .......... .......... 24% 3.62M 75s\n", - "128600K .......... .......... .......... .......... .......... 24% 3.64M 75s\n", - "128650K .......... .......... .......... .......... .......... 24% 4.05M 75s\n", - "128700K .......... .......... .......... .......... .......... 24% 4.84M 75s\n", - "128750K .......... .......... .......... .......... .......... 24% 3.97M 75s\n", - "128800K .......... .......... .......... .......... .......... 24% 4.84M 75s\n", - "128850K .......... .......... .......... .......... .......... 24% 5.09M 75s\n", - "128900K .......... .......... .......... .......... .......... 24% 3.12M 75s\n", - "128950K .......... .......... .......... .......... .......... 24% 5.60M 75s\n", - "129000K .......... .......... .......... .......... .......... 24% 2.65M 75s\n", - "129050K .......... .......... .......... .......... .......... 24% 5.59M 75s\n", - "129100K .......... .......... .......... .......... .......... 24% 3.73M 75s\n", - "129150K .......... .......... .......... .......... .......... 24% 5.32M 75s\n", - "129200K .......... .......... .......... .......... .......... 24% 4.73M 75s\n", - "129250K .......... .......... .......... .......... .......... 24% 3.90M 75s\n", - "129300K .......... .......... .......... .......... .......... 24% 5.18M 75s\n", - "129350K .......... .......... .......... .......... .......... 24% 4.30M 75s\n", - "129400K .......... .......... .......... .......... .......... 24% 3.71M 75s\n", - "129450K .......... .......... .......... .......... .......... 24% 3.43M 75s\n", - "129500K .......... .......... .......... .......... .......... 24% 5.72M 75s\n", - "129550K .......... .......... .......... .......... .......... 24% 4.37M 75s\n", - "129600K .......... .......... .......... .......... .......... 24% 4.52M 75s\n", - "129650K .......... .......... .......... .......... .......... 24% 4.29M 75s\n", - "129700K .......... .......... .......... .......... .......... 24% 4.50M 75s\n", - "129750K .......... .......... .......... .......... .......... 24% 4.59M 75s\n", - "129800K .......... .......... .......... .......... .......... 24% 3.39M 75s\n", - "129850K .......... .......... .......... .......... .......... 24% 4.86M 75s\n", - "129900K .......... .......... .......... .......... .......... 24% 4.45M 75s\n", - "129950K .......... .......... .......... .......... .......... 24% 4.52M 75s\n", - "130000K .......... .......... .......... .......... .......... 24% 5.31M 75s\n", - "130050K .......... .......... .......... .......... .......... 24% 4.27M 75s\n", - "130100K .......... .......... .......... .......... .......... 24% 4.90M 75s\n", - "130150K .......... .......... .......... .......... .......... 24% 4.21M 75s\n", - "130200K .......... .......... .......... .......... .......... 24% 3.76M 75s\n", - "130250K .......... .......... .......... .......... .......... 24% 4.49M 75s\n", - "130300K .......... .......... .......... .......... .......... 24% 5.20M 75s\n", - "130350K .......... .......... .......... .......... .......... 24% 5.06M 75s\n", - "130400K .......... .......... .......... .......... .......... 24% 4.50M 75s\n", - "130450K .......... .......... .......... .......... .......... 24% 4.03M 75s\n", - "130500K .......... .......... .......... .......... .......... 24% 5.51M 75s\n", - "130550K .......... .......... .......... .......... .......... 24% 5.70M 75s\n", - "130600K .......... .......... .......... .......... .......... 24% 3.34M 75s\n", - "130650K .......... .......... .......... .......... .......... 24% 5.23M 75s\n", - "130700K .......... .......... .......... .......... .......... 24% 4.03M 75s\n", - "130750K .......... .......... .......... .......... .......... 24% 5.06M 75s\n", - "130800K .......... .......... .......... .......... .......... 24% 3.98M 75s\n", - "130850K .......... .......... .......... .......... .......... 24% 5.87M 75s\n", - "130900K .......... .......... .......... .......... .......... 24% 5.11M 75s\n", - "130950K .......... .......... .......... .......... .......... 24% 4.40M 75s\n", - "131000K .......... .......... .......... .......... .......... 24% 4.25M 75s\n", - "131050K .......... .......... .......... .......... .......... 24% 3.85M 75s\n", - "131100K .......... .......... .......... .......... .......... 24% 5.09M 75s\n", - "131150K .......... .......... .......... .......... .......... 25% 5.82M 75s\n", - "131200K .......... .......... .......... .......... .......... 25% 4.50M 75s\n", - "131250K .......... .......... .......... .......... .......... 25% 4.44M 75s\n", - "131300K .......... .......... .......... .......... .......... 25% 5.77M 75s\n", - "131350K .......... .......... .......... .......... .......... 25% 4.30M 75s\n", - "131400K .......... .......... .......... .......... .......... 25% 3.84M 75s\n", - "131450K .......... .......... .......... .......... .......... 25% 4.72M 75s\n", - "131500K .......... .......... .......... .......... .......... 25% 5.60M 75s\n", - "131550K .......... .......... .......... .......... .......... 25% 4.20M 75s\n", - "131600K .......... .......... .......... .......... .......... 25% 5.78M 75s\n", - "131650K .......... .......... .......... .......... .......... 25% 5.07M 75s\n", - "131700K .......... .......... .......... .......... .......... 25% 5.07M 75s\n", - "131750K .......... .......... .......... .......... .......... 25% 4.68M 75s\n", - "131800K .......... .......... .......... .......... .......... 25% 3.50M 75s\n", - "131850K .......... .......... .......... .......... .......... 25% 4.70M 75s\n", - "131900K .......... .......... .......... .......... .......... 25% 6.00M 75s\n", - "131950K .......... .......... .......... .......... .......... 25% 5.07M 75s\n", - "132000K .......... .......... .......... .......... .......... 25% 4.51M 75s\n", - "132050K .......... .......... .......... .......... .......... 25% 4.82M 75s\n", - "132100K .......... .......... .......... .......... .......... 25% 6.20M 75s\n", - "132150K .......... .......... .......... .......... .......... 25% 4.46M 75s\n", - "132200K .......... .......... .......... .......... .......... 25% 4.15M 75s\n", - "132250K .......... .......... .......... .......... .......... 25% 5.19M 75s\n", - "132300K .......... .......... .......... .......... .......... 25% 4.45M 75s\n", - "132350K .......... .......... .......... .......... .......... 25% 6.47M 75s\n", - "132400K .......... .......... .......... .......... .......... 25% 4.74M 75s\n", - "132450K .......... .......... .......... .......... .......... 25% 4.99M 75s\n", - "132500K .......... .......... .......... .......... .......... 25% 6.68M 75s\n", - "132550K .......... .......... .......... .......... .......... 25% 4.01M 75s\n", - "132600K .......... .......... .......... .......... .......... 25% 4.64M 75s\n", - "132650K .......... .......... .......... .......... .......... 25% 5.84M 75s\n", - "132700K .......... .......... .......... .......... .......... 25% 4.12M 75s\n", - "132750K .......... .......... .......... .......... .......... 25% 6.10M 75s\n", - "132800K .......... .......... .......... .......... .......... 25% 5.99M 75s\n", - "132850K .......... .......... .......... .......... .......... 25% 4.67M 75s\n", - "132900K .......... .......... .......... .......... .......... 25% 6.06M 75s\n", - "132950K .......... .......... .......... .......... .......... 25% 3.46M 75s\n", - "133000K .......... .......... .......... .......... .......... 25% 5.24M 75s\n", - "133050K .......... .......... .......... .......... .......... 25% 5.63M 75s\n", - "133100K .......... .......... .......... .......... .......... 25% 4.02M 75s\n", - "133150K .......... .......... .......... .......... .......... 25% 6.43M 75s\n", - "133200K .......... .......... .......... .......... .......... 25% 5.80M 75s\n", - "133250K .......... .......... .......... .......... .......... 25% 4.37M 75s\n", - "133300K .......... .......... .......... .......... .......... 25% 5.43M 75s\n", - "133350K .......... .......... .......... .......... .......... 25% 6.38M 75s\n", - "133400K .......... .......... .......... .......... .......... 25% 3.21M 75s\n", - "133450K .......... .......... .......... .......... .......... 25% 5.88M 75s\n", - "133500K .......... .......... .......... .......... .......... 25% 6.07M 75s\n", - "133550K .......... .......... .......... .......... .......... 25% 4.29M 75s\n", - "133600K .......... .......... .......... .......... .......... 25% 5.10M 75s\n", - "133650K .......... .......... .......... .......... .......... 25% 7.79M 75s\n", - "133700K .......... .......... .......... .......... .......... 25% 4.05M 75s\n", - "133750K .......... .......... .......... .......... .......... 25% 5.94M 75s\n", - "133800K .......... .......... .......... .......... .......... 25% 4.37M 75s\n", - "133850K .......... .......... .......... .......... .......... 25% 5.52M 75s\n", - "133900K .......... .......... .......... .......... .......... 25% 5.25M 75s\n", - "133950K .......... .......... .......... .......... .......... 25% 5.94M 75s\n", - "134000K .......... .......... .......... .......... .......... 25% 4.43M 75s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "134050K .......... .......... .......... .......... .......... 25% 5.61M 75s\n", - "134100K .......... .......... .......... .......... .......... 25% 4.39M 75s\n", - "134150K .......... .......... .......... .......... .......... 25% 6.88M 75s\n", - "134200K .......... .......... .......... .......... .......... 25% 4.55M 75s\n", - "134250K .......... .......... .......... .......... .......... 25% 4.35M 75s\n", - "134300K .......... .......... .......... .......... .......... 25% 7.06M 75s\n", - "134350K .......... .......... .......... .......... .......... 25% 6.39M 75s\n", - "134400K .......... .......... .......... .......... .......... 25% 4.17M 75s\n", - "134450K .......... .......... .......... .......... .......... 25% 6.50M 75s\n", - "134500K .......... .......... .......... .......... .......... 25% 5.60M 75s\n", - "134550K .......... .......... .......... .......... .......... 25% 4.63M 75s\n", - "134600K .......... .......... .......... .......... .......... 25% 4.62M 75s\n", - "134650K .......... .......... .......... .......... .......... 25% 7.26M 75s\n", - "134700K .......... .......... .......... .......... .......... 25% 3.76M 75s\n", - "134750K .......... .......... .......... .......... .......... 25% 7.55M 75s\n", - "134800K .......... .......... .......... .......... .......... 25% 6.80M 75s\n", - "134850K .......... .......... .......... .......... .......... 25% 3.98M 75s\n", - "134900K .......... .......... .......... .......... .......... 25% 5.48M 75s\n", - "134950K .......... .......... .......... .......... .......... 25% 5.97M 75s\n", - "135000K .......... .......... .......... .......... .......... 25% 4.53M 75s\n", - "135050K .......... .......... .......... .......... .......... 25% 5.07M 75s\n", - "135100K .......... .......... .......... .......... .......... 25% 6.55M 75s\n", - "135150K .......... .......... .......... .......... .......... 25% 5.18M 75s\n", - "135200K .......... .......... .......... .......... .......... 25% 5.51M 74s\n", - "135250K .......... .......... .......... .......... .......... 25% 3.69M 74s\n", - "135300K .......... .......... .......... .......... .......... 25% 14.6M 74s\n", - "135350K .......... .......... .......... .......... .......... 25% 2.70M 74s\n", - "135400K .......... .......... .......... .......... .......... 25% 4.57M 74s\n", - "135450K .......... .......... .......... .......... .......... 25% 6.81M 74s\n", - "135500K .......... .......... .......... .......... .......... 25% 4.35M 74s\n", - "135550K .......... .......... .......... .......... .......... 25% 6.84M 74s\n", - "135600K .......... .......... .......... .......... .......... 25% 6.15M 74s\n", - "135650K .......... .......... .......... .......... .......... 25% 4.72M 74s\n", - "135700K .......... .......... .......... .......... .......... 25% 7.08M 74s\n", - "135750K .......... .......... .......... .......... .......... 25% 5.62M 74s\n", - "135800K .......... .......... .......... .......... .......... 25% 3.51M 74s\n", - "135850K .......... .......... .......... .......... .......... 25% 8.26M 74s\n", - "135900K .......... .......... .......... .......... .......... 25% 6.46M 74s\n", - "135950K .......... .......... .......... .......... .......... 25% 4.10M 74s\n", - "136000K .......... .......... .......... .......... .......... 25% 6.76M 74s\n", - "136050K .......... .......... .......... .......... .......... 25% 6.88M 74s\n", - "136100K .......... .......... .......... .......... .......... 25% 4.44M 74s\n", - "136150K .......... .......... .......... .......... .......... 25% 7.12M 74s\n", - "136200K .......... .......... .......... .......... .......... 25% 5.00M 74s\n", - "136250K .......... .......... .......... .......... .......... 25% 4.44M 74s\n", - "136300K .......... .......... .......... .......... .......... 25% 6.34M 74s\n", - "136350K .......... .......... .......... .......... .......... 25% 8.69M 74s\n", - "136400K .......... .......... .......... .......... .......... 26% 4.23M 74s\n", - "136450K .......... .......... .......... .......... .......... 26% 6.13M 74s\n", - "136500K .......... .......... .......... .......... .......... 26% 6.98M 74s\n", - "136550K .......... .......... .......... .......... .......... 26% 5.20M 74s\n", - "136600K .......... .......... .......... .......... .......... 26% 4.20M 74s\n", - "136650K .......... .......... .......... .......... .......... 26% 7.43M 74s\n", - "136700K .......... .......... .......... .......... .......... 26% 4.45M 74s\n", - "136750K .......... .......... .......... .......... .......... 26% 6.23M 74s\n", - "136800K .......... .......... .......... .......... .......... 26% 8.54M 74s\n", - "136850K .......... .......... .......... .......... .......... 26% 6.06M 74s\n", - "136900K .......... .......... .......... .......... .......... 26% 5.16M 74s\n", - "136950K .......... .......... .......... .......... .......... 26% 7.13M 74s\n", - "137000K .......... .......... .......... .......... .......... 26% 4.23M 74s\n", - "137050K .......... .......... .......... .......... .......... 26% 5.99M 74s\n", - "137100K .......... .......... .......... .......... .......... 26% 6.51M 74s\n", - "137150K .......... .......... .......... .......... .......... 26% 5.93M 74s\n", - "137200K .......... .......... .......... .......... .......... 26% 5.64M 74s\n", - "137250K .......... .......... .......... .......... .......... 26% 6.92M 74s\n", - "137300K .......... .......... .......... .......... .......... 26% 5.20M 74s\n", - "137350K .......... .......... .......... .......... .......... 26% 6.91M 74s\n", - "137400K .......... .......... .......... .......... .......... 26% 4.71M 74s\n", - "137450K .......... .......... .......... .......... .......... 26% 5.65M 74s\n", - "137500K .......... .......... .......... .......... .......... 26% 6.86M 74s\n", - "137550K .......... .......... .......... .......... .......... 26% 5.44M 74s\n", - "137600K .......... .......... .......... .......... .......... 26% 5.08M 74s\n", - "137650K .......... .......... .......... .......... .......... 26% 7.47M 74s\n", - "137700K .......... .......... .......... .......... .......... 26% 6.67M 74s\n", - "137750K .......... .......... .......... .......... .......... 26% 5.96M 74s\n", - "137800K .......... .......... .......... .......... .......... 26% 4.44M 74s\n", - "137850K .......... .......... .......... .......... .......... 26% 6.62M 74s\n", - "137900K .......... .......... .......... .......... .......... 26% 4.90M 74s\n", - "137950K .......... .......... .......... .......... .......... 26% 7.84M 74s\n", - "138000K .......... .......... .......... .......... .......... 26% 8.01M 74s\n", - "138050K .......... .......... .......... .......... .......... 26% 5.40M 74s\n", - "138100K .......... .......... .......... .......... .......... 26% 5.24M 74s\n", - "138150K .......... .......... .......... .......... .......... 26% 7.73M 74s\n", - "138200K .......... .......... .......... .......... .......... 26% 5.08M 74s\n", - "138250K .......... .......... .......... .......... .......... 26% 4.50M 74s\n", - "138300K .......... .......... .......... .......... .......... 26% 8.14M 74s\n", - "138350K .......... .......... .......... .......... .......... 26% 6.95M 74s\n", - "138400K .......... .......... .......... .......... .......... 26% 4.82M 74s\n", - "138450K .......... .......... .......... .......... .......... 26% 8.01M 74s\n", - "138500K .......... .......... .......... .......... .......... 26% 7.66M 74s\n", - "138550K .......... .......... .......... .......... .......... 26% 3.67M 74s\n", - "138600K .......... .......... .......... .......... .......... 26% 6.46M 74s\n", - "138650K .......... .......... .......... .......... .......... 26% 7.64M 74s\n", - "138700K .......... .......... .......... .......... .......... 26% 4.95M 74s\n", - "138750K .......... .......... .......... .......... .......... 26% 6.41M 74s\n", - "138800K .......... .......... .......... .......... .......... 26% 7.63M 74s\n", - "138850K .......... .......... .......... .......... .......... 26% 5.93M 74s\n", - "138900K .......... .......... .......... .......... .......... 26% 5.24M 74s\n", - "138950K .......... .......... .......... .......... .......... 26% 6.87M 74s\n", - "139000K .......... .......... .......... .......... .......... 26% 4.91M 74s\n", - "139050K .......... .......... .......... .......... .......... 26% 6.25M 74s\n", - "139100K .......... .......... .......... .......... .......... 26% 6.16M 74s\n", - "139150K .......... .......... .......... .......... .......... 26% 6.74M 74s\n", - "139200K .......... .......... .......... .......... .......... 26% 6.94M 74s\n", - "139250K .......... .......... .......... .......... .......... 26% 5.59M 73s\n", - "139300K .......... .......... .......... .......... .......... 26% 5.44M 73s\n", - "139350K .......... .......... .......... .......... .......... 26% 8.15M 73s\n", - "139400K .......... .......... .......... .......... .......... 26% 4.72M 73s\n", - "139450K .......... .......... .......... .......... .......... 26% 6.07M 73s\n", - "139500K .......... .......... .......... .......... .......... 26% 6.92M 73s\n", - "139550K .......... .......... .......... .......... .......... 26% 8.12M 73s\n", - "139600K .......... .......... .......... .......... .......... 26% 5.25M 73s\n", - "139650K .......... .......... .......... .......... .......... 26% 6.08M 73s\n", - "139700K .......... .......... .......... .......... .......... 26% 7.79M 73s\n", - "139750K .......... .......... .......... .......... .......... 26% 7.41M 73s\n", - "139800K .......... .......... .......... .......... .......... 26% 3.68M 73s\n", - "139850K .......... .......... .......... .......... .......... 26% 7.35M 73s\n", - "139900K .......... .......... .......... .......... .......... 26% 6.99M 73s\n", - "139950K .......... .......... .......... .......... .......... 26% 4.63M 73s\n", - "140000K .......... .......... .......... .......... .......... 26% 7.44M 73s\n", - "140050K .......... .......... .......... .......... .......... 26% 6.39M 73s\n", - "140100K .......... .......... .......... .......... .......... 26% 7.96M 73s\n", - "140150K .......... .......... .......... .......... .......... 26% 4.85M 73s\n", - "140200K .......... .......... .......... .......... .......... 26% 5.28M 73s\n", - "140250K .......... .......... .......... .......... .......... 26% 7.83M 73s\n", - "140300K .......... .......... .......... .......... .......... 26% 5.22M 73s\n", - "140350K .......... .......... .......... .......... .......... 26% 8.55M 73s\n", - "140400K .......... .......... .......... .......... .......... 26% 6.48M 73s\n", - "140450K .......... .......... .......... .......... .......... 26% 5.47M 73s\n", - "140500K .......... .......... .......... .......... .......... 26% 6.92M 73s\n", - "140550K .......... .......... .......... .......... .......... 26% 6.94M 73s\n", - "140600K .......... .......... .......... .......... .......... 26% 4.73M 73s\n", - "140650K .......... .......... .......... .......... .......... 26% 6.87M 73s\n", - "140700K .......... .......... .......... .......... .......... 26% 4.70M 73s\n", - "140750K .......... .......... .......... .......... .......... 26% 14.9M 73s\n", - "140800K .......... .......... .......... .......... .......... 26% 4.87M 73s\n", - "140850K .......... .......... .......... .......... .......... 26% 7.93M 73s\n", - "140900K .......... .......... .......... .......... .......... 26% 5.61M 73s\n", - "140950K .......... .......... .......... .......... .......... 26% 8.45M 73s\n", - "141000K .......... .......... .......... .......... .......... 26% 4.87M 73s\n", - "141050K .......... .......... .......... .......... .......... 26% 5.83M 73s\n", - "141100K .......... .......... .......... .......... .......... 26% 7.08M 73s\n", - "141150K .......... .......... .......... .......... .......... 26% 7.78M 73s\n", - "141200K .......... .......... .......... .......... .......... 26% 5.30M 73s\n", - "141250K .......... .......... .......... .......... .......... 26% 8.12M 73s\n", - "141300K .......... .......... .......... .......... .......... 26% 7.21M 73s\n", - "141350K .......... .......... .......... .......... .......... 26% 6.39M 73s\n", - "141400K .......... .......... .......... .......... .......... 26% 4.95M 73s\n", - "141450K .......... .......... .......... .......... .......... 26% 7.29M 73s\n", - "141500K .......... .......... .......... .......... .......... 26% 7.65M 73s\n", - "141550K .......... .......... .......... .......... .......... 26% 5.74M 73s\n", - "141600K .......... .......... .......... .......... .......... 26% 7.11M 73s\n", - "141650K .......... .......... .......... .......... .......... 27% 7.42M 73s\n", - "141700K .......... .......... .......... .......... .......... 27% 6.77M 73s\n", - "141750K .......... .......... .......... .......... .......... 27% 4.82M 73s\n", - "141800K .......... .......... .......... .......... .......... 27% 6.57M 73s\n", - "141850K .......... .......... .......... .......... .......... 27% 8.62M 73s\n", - "141900K .......... .......... .......... .......... .......... 27% 6.93M 73s\n", - "141950K .......... .......... .......... .......... .......... 27% 4.56M 73s\n", - "142000K .......... .......... .......... .......... .......... 27% 9.32M 73s\n", - "142050K .......... .......... .......... .......... .......... 27% 8.77M 73s\n", - "142100K .......... .......... .......... .......... .......... 27% 3.90M 73s\n", - "142150K .......... .......... .......... .......... .......... 27% 8.09M 73s\n", - "142200K .......... .......... .......... .......... .......... 27% 6.82M 73s\n", - "142250K .......... .......... .......... .......... .......... 27% 6.88M 73s\n", - "142300K .......... .......... .......... .......... .......... 27% 5.22M 73s\n", - "142350K .......... .......... .......... .......... .......... 27% 7.78M 73s\n", - "142400K .......... .......... .......... .......... .......... 27% 9.47M 73s\n", - "142450K .......... .......... .......... .......... .......... 27% 5.17M 73s\n", - "142500K .......... .......... .......... .......... .......... 27% 6.76M 73s\n", - "142550K .......... .......... .......... .......... .......... 27% 8.47M 73s\n", - "142600K .......... .......... .......... .......... .......... 27% 6.10M 73s\n", - "142650K .......... .......... .......... .......... .......... 27% 4.64M 73s\n", - "142700K .......... .......... .......... .......... .......... 27% 8.71M 73s\n", - "142750K .......... .......... .......... .......... .......... 27% 8.77M 72s\n", - "142800K .......... .......... .......... .......... .......... 27% 4.41M 72s\n", - "142850K .......... .......... .......... .......... .......... 27% 8.09M 72s\n", - "142900K .......... .......... .......... .......... .......... 27% 6.54M 72s\n", - "142950K .......... .......... .......... .......... .......... 27% 9.58M 72s\n", - "143000K .......... .......... .......... .......... .......... 27% 5.18M 72s\n", - "143050K .......... .......... .......... .......... .......... 27% 5.45M 72s\n", - "143100K .......... .......... .......... .......... .......... 27% 9.62M 72s\n", - "143150K .......... .......... .......... .......... .......... 27% 7.44M 72s\n", - "143200K .......... .......... .......... .......... .......... 27% 5.47M 72s\n", - "143250K .......... .......... .......... .......... .......... 27% 8.15M 72s\n", - "143300K .......... .......... .......... .......... .......... 27% 7.15M 72s\n", - "143350K .......... .......... .......... .......... .......... 27% 7.98M 72s\n", - "143400K .......... .......... .......... .......... .......... 27% 4.78M 72s\n", - "143450K .......... .......... .......... .......... .......... 27% 8.55M 72s\n", - "143500K .......... .......... .......... .......... .......... 27% 7.34M 72s\n", - "143550K .......... .......... .......... .......... .......... 27% 6.29M 72s\n", - "143600K .......... .......... .......... .......... .......... 27% 5.85M 72s\n", - "143650K .......... .......... .......... .......... .......... 27% 8.38M 72s\n", - "143700K .......... .......... .......... .......... .......... 27% 8.24M 72s\n", - "143750K .......... .......... .......... .......... .......... 27% 7.37M 72s\n", - "143800K .......... .......... .......... .......... .......... 27% 4.58M 72s\n", - "143850K .......... .......... .......... .......... .......... 27% 7.29M 72s\n", - "143900K .......... .......... .......... .......... .......... 27% 7.33M 72s\n", - "143950K .......... .......... .......... .......... .......... 27% 6.46M 72s\n", - "144000K .......... .......... .......... .......... .......... 27% 9.02M 72s\n", - "144050K .......... .......... .......... .......... .......... 27% 7.28M 72s\n", - "144100K .......... .......... .......... .......... .......... 27% 7.33M 72s\n", - "144150K .......... .......... .......... .......... .......... 27% 5.34M 72s\n", - "144200K .......... .......... .......... .......... .......... 27% 6.77M 72s\n", - "144250K .......... .......... .......... .......... .......... 27% 6.99M 72s\n", - "144300K .......... .......... .......... .......... .......... 27% 6.42M 72s\n", - "144350K .......... .......... .......... .......... .......... 27% 8.18M 72s\n", - "144400K .......... .......... .......... .......... .......... 27% 7.81M 72s\n", - "144450K .......... .......... .......... .......... .......... 27% 7.55M 72s\n", - "144500K .......... .......... .......... .......... .......... 27% 6.03M 72s\n", - "144550K .......... .......... .......... .......... .......... 27% 7.19M 72s\n", - "144600K .......... .......... .......... .......... .......... 27% 5.69M 72s\n", - "144650K .......... .......... .......... .......... .......... 27% 5.80M 72s\n", - "144700K .......... .......... .......... .......... .......... 27% 8.08M 72s\n", - "144750K .......... .......... .......... .......... .......... 27% 7.67M 72s\n", - "144800K .......... .......... .......... .......... .......... 27% 8.81M 72s\n", - "144850K .......... .......... .......... .......... .......... 27% 5.83M 72s\n", - "144900K .......... .......... .......... .......... .......... 27% 7.71M 72s\n", - "144950K .......... .......... .......... .......... .......... 27% 6.25M 72s\n", - "145000K .......... .......... .......... .......... .......... 27% 6.75M 72s\n", - "145050K .......... .......... .......... .......... .......... 27% 7.00M 72s\n", - "145100K .......... .......... .......... .......... .......... 27% 5.67M 72s\n", - "145150K .......... .......... .......... .......... .......... 27% 9.20M 72s\n", - "145200K .......... .......... .......... .......... .......... 27% 7.93M 72s\n", - "145250K .......... .......... .......... .......... .......... 27% 8.49M 72s\n", - "145300K .......... .......... .......... .......... .......... 27% 5.68M 72s\n", - "145350K .......... .......... .......... .......... .......... 27% 8.45M 72s\n", - "145400K .......... .......... .......... .......... .......... 27% 5.71M 72s\n", - "145450K .......... .......... .......... .......... .......... 27% 7.97M 72s\n", - "145500K .......... .......... .......... .......... .......... 27% 5.87M 72s\n", - "145550K .......... .......... .......... .......... .......... 27% 6.94M 72s\n", - "145600K .......... .......... .......... .......... .......... 27% 8.90M 72s\n", - "145650K .......... .......... .......... .......... .......... 27% 6.31M 72s\n", - "145700K .......... .......... .......... .......... .......... 27% 6.23M 72s\n", - "145750K .......... .......... .......... .......... .......... 27% 8.98M 72s\n", - "145800K .......... .......... .......... .......... .......... 27% 7.75M 72s\n", - "145850K .......... .......... .......... .......... .......... 27% 4.47M 72s\n", - "145900K .......... .......... .......... .......... .......... 27% 7.92M 72s\n", - "145950K .......... .......... .......... .......... .......... 27% 9.34M 71s\n", - "146000K .......... .......... .......... .......... .......... 27% 9.13M 71s\n", - "146050K .......... .......... .......... .......... .......... 27% 5.99M 71s\n", - "146100K .......... .......... .......... .......... .......... 27% 5.71M 71s\n", - "146150K .......... .......... .......... .......... .......... 27% 9.54M 71s\n", - "146200K .......... .......... .......... .......... .......... 27% 6.41M 71s\n", - "146250K .......... .......... .......... .......... .......... 27% 6.01M 71s\n", - "146300K .......... .......... .......... .......... .......... 27% 7.75M 71s\n", - "146350K .......... .......... .......... .......... .......... 27% 4.45M 71s\n", - "146400K .......... .......... .......... .......... .......... 27% 11.6M 71s\n", - "146450K .......... .......... .......... .......... .......... 27% 8.80M 71s\n", - "146500K .......... .......... .......... .......... .......... 27% 6.26M 71s\n", - "146550K .......... .......... .......... .......... .......... 27% 5.76M 71s\n", - "146600K .......... .......... .......... .......... .......... 27% 7.03M 71s\n", - "146650K .......... .......... .......... .......... .......... 27% 7.26M 71s\n", - "146700K .......... .......... .......... .......... .......... 27% 7.97M 71s\n", - "146750K .......... .......... .......... .......... .......... 27% 5.99M 71s\n", - "146800K .......... .......... .......... .......... .......... 27% 9.18M 71s\n", - "146850K .......... .......... .......... .......... .......... 27% 8.03M 71s\n", - "146900K .......... .......... .......... .......... .......... 28% 7.78M 71s\n", - "146950K .......... .......... .......... .......... .......... 28% 5.37M 71s\n", - "147000K .......... .......... .......... .......... .......... 28% 7.34M 71s\n", - "147050K .......... .......... .......... .......... .......... 28% 8.33M 71s\n", - "147100K .......... .......... .......... .......... .......... 28% 8.36M 71s\n", - "147150K .......... .......... .......... .......... .......... 28% 4.34M 71s\n", - "147200K .......... .......... .......... .......... .......... 28% 9.37M 71s\n", - "147250K .......... .......... .......... .......... .......... 28% 9.81M 71s\n", - "147300K .......... .......... .......... .......... .......... 28% 9.19M 71s\n", - "147350K .......... .......... .......... .......... .......... 28% 4.78M 71s\n", - "147400K .......... .......... .......... .......... .......... 28% 5.89M 71s\n", - "147450K .......... .......... .......... .......... .......... 28% 8.56M 71s\n", - "147500K .......... .......... .......... .......... .......... 28% 10.4M 71s\n", - "147550K .......... .......... .......... .......... .......... 28% 6.04M 71s\n", - "147600K .......... .......... .......... .......... .......... 28% 7.10M 71s\n", - "147650K .......... .......... .......... .......... .......... 28% 8.09M 71s\n", - "147700K .......... .......... .......... .......... .......... 28% 10.4M 71s\n", - "147750K .......... .......... .......... .......... .......... 28% 6.27M 71s\n", - "147800K .......... .......... .......... .......... .......... 28% 5.30M 71s\n", - "147850K .......... .......... .......... .......... .......... 28% 7.02M 71s\n", - "147900K .......... .......... .......... .......... .......... 28% 9.93M 71s\n", - "147950K .......... .......... .......... .......... .......... 28% 7.87M 71s\n", - "148000K .......... .......... .......... .......... .......... 28% 5.69M 71s\n", - "148050K .......... .......... .......... .......... .......... 28% 7.01M 71s\n", - "148100K .......... .......... .......... .......... .......... 28% 9.62M 71s\n", - "148150K .......... .......... .......... .......... .......... 28% 8.42M 71s\n", - "148200K .......... .......... .......... .......... .......... 28% 4.84M 71s\n", - "148250K .......... .......... .......... .......... .......... 28% 6.52M 71s\n", - "148300K .......... .......... .......... .......... .......... 28% 10.3M 71s\n", - "148350K .......... .......... .......... .......... .......... 28% 11.1M 71s\n", - "148400K .......... .......... .......... .......... .......... 28% 5.77M 71s\n", - "148450K .......... .......... .......... .......... .......... 28% 5.76M 71s\n", - "148500K .......... .......... .......... .......... .......... 28% 9.30M 71s\n", - "148550K .......... .......... .......... .......... .......... 28% 9.28M 71s\n", - "148600K .......... .......... .......... .......... .......... 28% 6.18M 71s\n", - "148650K .......... .......... .......... .......... .......... 28% 5.27M 71s\n", - "148700K .......... .......... .......... .......... .......... 28% 8.98M 71s\n", - "148750K .......... .......... .......... .......... .......... 28% 11.3M 71s\n", - "148800K .......... .......... .......... .......... .......... 28% 7.93M 71s\n", - "148850K .......... .......... .......... .......... .......... 28% 5.47M 71s\n", - "148900K .......... .......... .......... .......... .......... 28% 8.43M 71s\n", - "148950K .......... .......... .......... .......... .......... 28% 9.79M 71s\n", - "149000K .......... .......... .......... .......... .......... 28% 6.80M 71s\n", - "149050K .......... .......... .......... .......... .......... 28% 4.92M 70s\n", - "149100K .......... .......... .......... .......... .......... 28% 9.07M 70s\n", - "149150K .......... .......... .......... .......... .......... 28% 9.14M 70s\n", - "149200K .......... .......... .......... .......... .......... 28% 10.6M 70s\n", - "149250K .......... .......... .......... .......... .......... 28% 4.59M 70s\n", - "149300K .......... .......... .......... .......... .......... 28% 10.7M 70s\n", - "149350K .......... .......... .......... .......... .......... 28% 8.79M 70s\n", - "149400K .......... .......... .......... .......... .......... 28% 6.53M 70s\n", - "149450K .......... .......... .......... .......... .......... 28% 5.79M 70s\n", - "149500K .......... .......... .......... .......... .......... 28% 9.51M 70s\n", - "149550K .......... .......... .......... .......... .......... 28% 7.83M 70s\n", - "149600K .......... .......... .......... .......... .......... 28% 9.99M 70s\n", - "149650K .......... .......... .......... .......... .......... 28% 6.92M 70s\n", - "149700K .......... .......... .......... .......... .......... 28% 7.82M 70s\n", - "149750K .......... .......... .......... .......... .......... 28% 8.39M 70s\n", - "149800K .......... .......... .......... .......... .......... 28% 6.26M 70s\n", - "149850K .......... .......... .......... .......... .......... 28% 6.76M 70s\n", - "149900K .......... .......... .......... .......... .......... 28% 8.02M 70s\n", - "149950K .......... .......... .......... .......... .......... 28% 8.75M 70s\n", - "150000K .......... .......... .......... .......... .......... 28% 8.48M 70s\n", - "150050K .......... .......... .......... .......... .......... 28% 6.57M 70s\n", - "150100K .......... .......... .......... .......... .......... 28% 7.91M 70s\n", - "150150K .......... .......... .......... .......... .......... 28% 8.45M 70s\n", - "150200K .......... .......... .......... .......... .......... 28% 6.87M 70s\n", - "150250K .......... .......... .......... .......... .......... 28% 7.77M 70s\n", - "150300K .......... .......... .......... .......... .......... 28% 6.80M 70s\n", - "150350K .......... .......... .......... .......... .......... 28% 10.8M 70s\n", - "150400K .......... .......... .......... .......... .......... 28% 6.95M 70s\n", - "150450K .......... .......... .......... .......... .......... 28% 9.86M 70s\n", - "150500K .......... .......... .......... .......... .......... 28% 5.92M 70s\n", - "150550K .......... .......... .......... .......... .......... 28% 11.2M 70s\n", - "150600K .......... .......... .......... .......... .......... 28% 5.15M 70s\n", - "150650K .......... .......... .......... .......... .......... 28% 8.10M 70s\n", - "150700K .......... .......... .......... .......... .......... 28% 8.10M 70s\n", - "150750K .......... .......... .......... .......... .......... 28% 10.1M 70s\n", - "150800K .......... .......... .......... .......... .......... 28% 6.40M 70s\n", - "150850K .......... .......... .......... .......... .......... 28% 8.42M 70s\n", - "150900K .......... .......... .......... .......... .......... 28% 5.77M 70s\n", - "150950K .......... .......... .......... .......... .......... 28% 15.4M 70s\n", - "151000K .......... .......... .......... .......... .......... 28% 5.30M 70s\n", - "151050K .......... .......... .......... .......... .......... 28% 10.3M 70s\n", - "151100K .......... .......... .......... .......... .......... 28% 5.12M 70s\n", - "151150K .......... .......... .......... .......... .......... 28% 7.78M 70s\n", - "151200K .......... .......... .......... .......... .......... 28% 11.2M 70s\n", - "151250K .......... .......... .......... .......... .......... 28% 10.9M 70s\n", - "151300K .......... .......... .......... .......... .......... 28% 4.81M 70s\n", - "151350K .......... .......... .......... .......... .......... 28% 8.70M 70s\n", - "151400K .......... .......... .......... .......... .......... 28% 7.82M 70s\n", - "151450K .......... .......... .......... .......... .......... 28% 9.23M 70s\n", - "151500K .......... .......... .......... .......... .......... 28% 6.00M 70s\n", - "151550K .......... .......... .......... .......... .......... 28% 8.02M 70s\n", - "151600K .......... .......... .......... .......... .......... 28% 9.70M 70s\n", - "151650K .......... .......... .......... .......... .......... 28% 8.88M 70s\n", - "151700K .......... .......... .......... .......... .......... 28% 6.32M 70s\n", - "151750K .......... .......... .......... .......... .......... 28% 8.78M 70s\n", - "151800K .......... .......... .......... .......... .......... 28% 5.80M 70s\n", - "151850K .......... .......... .......... .......... .......... 28% 9.88M 70s\n", - "151900K .......... .......... .......... .......... .......... 28% 8.17M 70s\n", - "151950K .......... .......... .......... .......... .......... 28% 7.14M 70s\n", - "152000K .......... .......... .......... .......... .......... 28% 9.81M 70s\n", - "152050K .......... .......... .......... .......... .......... 28% 5.42M 69s\n", - "152100K .......... .......... .......... .......... .......... 28% 9.94M 69s\n", - "152150K .......... .......... .......... .......... .......... 29% 10.4M 69s\n", - "152200K .......... .......... .......... .......... .......... 29% 7.48M 69s\n", - "152250K .......... .......... .......... .......... .......... 29% 4.91M 69s\n", - "152300K .......... .......... .......... .......... .......... 29% 9.98M 69s\n", - "152350K .......... .......... .......... .......... .......... 29% 9.30M 69s\n", - "152400K .......... .......... .......... .......... .......... 29% 10.4M 69s\n", - "152450K .......... .......... .......... .......... .......... 29% 6.28M 69s\n", - "152500K .......... .......... .......... .......... .......... 29% 8.10M 69s\n", - "152550K .......... .......... .......... .......... .......... 29% 10.2M 69s\n", - "152600K .......... .......... .......... .......... .......... 29% 6.06M 69s\n", - "152650K .......... .......... .......... .......... .......... 29% 7.85M 69s\n", - "152700K .......... .......... .......... .......... .......... 29% 6.93M 69s\n", - "152750K .......... .......... .......... .......... .......... 29% 10.8M 69s\n", - "152800K .......... .......... .......... .......... .......... 29% 9.51M 69s\n", - "152850K .......... .......... .......... .......... .......... 29% 6.85M 69s\n", - "152900K .......... .......... .......... .......... .......... 29% 9.60M 69s\n", - "152950K .......... .......... .......... .......... .......... 29% 6.99M 69s\n", - "153000K .......... .......... .......... .......... .......... 29% 7.07M 69s\n", - "153050K .......... .......... .......... .......... .......... 29% 7.14M 69s\n", - "153100K .......... .......... .......... .......... .......... 29% 9.20M 69s\n", - "153150K .......... .......... .......... .......... .......... 29% 7.62M 69s\n", - "153200K .......... .......... .......... .......... .......... 29% 8.57M 69s\n", - "153250K .......... .......... .......... .......... .......... 29% 11.5M 69s\n", - "153300K .......... .......... .......... .......... .......... 29% 6.20M 69s\n", - "153350K .......... .......... .......... .......... .......... 29% 11.3M 69s\n", - "153400K .......... .......... .......... .......... .......... 29% 5.43M 69s\n", - "153450K .......... .......... .......... .......... .......... 29% 10.8M 69s\n", - "153500K .......... .......... .......... .......... .......... 29% 6.66M 69s\n", - "153550K .......... .......... .......... .......... .......... 29% 9.98M 69s\n", - "153600K .......... .......... .......... .......... .......... 29% 7.67M 69s\n", - "153650K .......... .......... .......... .......... .......... 29% 9.10M 69s\n", - "153700K .......... .......... .......... .......... .......... 29% 10.1M 69s\n", - "153750K .......... .......... .......... .......... .......... 29% 7.06M 69s\n", - "153800K .......... .......... .......... .......... .......... 29% 6.20M 69s\n", - "153850K .......... .......... .......... .......... .......... 29% 8.97M 69s\n", - "153900K .......... .......... .......... .......... .......... 29% 10.5M 69s\n", - "153950K .......... .......... .......... .......... .......... 29% 6.79M 69s\n", - "154000K .......... .......... .......... .......... .......... 29% 10.4M 69s\n", - "154050K .......... .......... .......... .......... .......... 29% 7.26M 69s\n", - "154100K .......... .......... .......... .......... .......... 29% 8.88M 69s\n", - "154150K .......... .......... .......... .......... .......... 29% 9.36M 69s\n", - "154200K .......... .......... .......... .......... .......... 29% 6.30M 69s\n", - "154250K .......... .......... .......... .......... .......... 29% 8.61M 69s\n", - "154300K .......... .......... .......... .......... .......... 29% 9.14M 69s\n", - "154350K .......... .......... .......... .......... .......... 29% 8.14M 69s\n", - "154400K .......... .......... .......... .......... .......... 29% 8.12M 69s\n", - "154450K .......... .......... .......... .......... .......... 29% 9.35M 69s\n", - "154500K .......... .......... .......... .......... .......... 29% 6.97M 69s\n", - "154550K .......... .......... .......... .......... .......... 29% 10.3M 69s\n", - "154600K .......... .......... .......... .......... .......... 29% 6.06M 69s\n", - "154650K .......... .......... .......... .......... .......... 29% 9.49M 69s\n", - "154700K .......... .......... .......... .......... .......... 29% 7.80M 69s\n", - "154750K .......... .......... .......... .......... .......... 29% 9.78M 69s\n", - "154800K .......... .......... .......... .......... .......... 29% 9.73M 69s\n", - "154850K .......... .......... .......... .......... .......... 29% 7.32M 69s\n", - "154900K .......... .......... .......... .......... .......... 29% 10.6M 69s\n", - "154950K .......... .......... .......... .......... .......... 29% 5.97M 69s\n", - "155000K .......... .......... .......... .......... .......... 29% 6.88M 68s\n", - "155050K .......... .......... .......... .......... .......... 29% 7.80M 68s\n", - "155100K .......... .......... .......... .......... .......... 29% 12.2M 68s\n", - "155150K .......... .......... .......... .......... .......... 29% 6.05M 68s\n", - "155200K .......... .......... .......... .......... .......... 29% 11.9M 68s\n", - "155250K .......... .......... .......... .......... .......... 29% 6.15M 68s\n", - "155300K .......... .......... .......... .......... .......... 29% 11.5M 68s\n", - "155350K .......... .......... .......... .......... .......... 29% 7.58M 68s\n", - "155400K .......... .......... .......... .......... .......... 29% 6.86M 68s\n", - "155450K .......... .......... .......... .......... .......... 29% 6.99M 68s\n", - "155500K .......... .......... .......... .......... .......... 29% 10.6M 68s\n", - "155550K .......... .......... .......... .......... .......... 29% 10.6M 68s\n", - "155600K .......... .......... .......... .......... .......... 29% 6.38M 68s\n", - "155650K .......... .......... .......... .......... .......... 29% 11.0M 68s\n", - "155700K .......... .......... .......... .......... .......... 29% 7.99M 68s\n", - "155750K .......... .......... .......... .......... .......... 29% 9.09M 68s\n", - "155800K .......... .......... .......... .......... .......... 29% 5.04M 68s\n", - "155850K .......... .......... .......... .......... .......... 29% 10.4M 68s\n", - "155900K .......... .......... .......... .......... .......... 29% 10.8M 68s\n", - "155950K .......... .......... .......... .......... .......... 29% 9.98M 68s\n", - "156000K .......... .......... .......... .......... .......... 29% 8.59M 68s\n", - "156050K .......... .......... .......... .......... .......... 29% 6.13M 68s\n", - "156100K .......... .......... .......... .......... .......... 29% 10.7M 68s\n", - "156150K .......... .......... .......... .......... .......... 29% 9.90M 68s\n", - "156200K .......... .......... .......... .......... .......... 29% 6.75M 68s\n", - "156250K .......... .......... .......... .......... .......... 29% 6.93M 68s\n", - "156300K .......... .......... .......... .......... .......... 29% 9.02M 68s\n", - "156350K .......... .......... .......... .......... .......... 29% 8.44M 68s\n", - "156400K .......... .......... .......... .......... .......... 29% 12.0M 68s\n", - "156450K .......... .......... .......... .......... .......... 29% 7.24M 68s\n", - "156500K .......... .......... .......... .......... .......... 29% 8.13M 68s\n", - "156550K .......... .......... .......... .......... .......... 29% 9.92M 68s\n", - "156600K .......... .......... .......... .......... .......... 29% 6.31M 68s\n", - "156650K .......... .......... .......... .......... .......... 29% 11.3M 68s\n", - "156700K .......... .......... .......... .......... .......... 29% 6.52M 68s\n", - "156750K .......... .......... .......... .......... .......... 29% 9.30M 68s\n", - "156800K .......... .......... .......... .......... .......... 29% 8.49M 68s\n", - "156850K .......... .......... .......... .......... .......... 29% 8.25M 68s\n", - "156900K .......... .......... .......... .......... .......... 29% 10.6M 68s\n", - "156950K .......... .......... .......... .......... .......... 29% 7.80M 68s\n", - "157000K .......... .......... .......... .......... .......... 29% 7.75M 68s\n", - "157050K .......... .......... .......... .......... .......... 29% 6.76M 68s\n", - "157100K .......... .......... .......... .......... .......... 29% 10.7M 68s\n", - "157150K .......... .......... .......... .......... .......... 29% 11.1M 68s\n", - "157200K .......... .......... .......... .......... .......... 29% 7.10M 68s\n", - "157250K .......... .......... .......... .......... .......... 29% 9.46M 68s\n", - "157300K .......... .......... .......... .......... .......... 29% 6.15M 68s\n", - "157350K .......... .......... .......... .......... .......... 29% 11.2M 68s\n", - "157400K .......... .......... .......... .......... .......... 30% 5.83M 68s\n", - "157450K .......... .......... .......... .......... .......... 30% 10.4M 68s\n", - "157500K .......... .......... .......... .......... .......... 30% 6.78M 68s\n", - "157550K .......... .......... .......... .......... .......... 30% 10.5M 68s\n", - "157600K .......... .......... .......... .......... .......... 30% 10.5M 68s\n", - "157650K .......... .......... .......... .......... .......... 30% 7.89M 68s\n", - "157700K .......... .......... .......... .......... .......... 30% 10.5M 68s\n", - "157750K .......... .......... .......... .......... .......... 30% 6.73M 68s\n", - "157800K .......... .......... .......... .......... .......... 30% 7.52M 68s\n", - "157850K .......... .......... .......... .......... .......... 30% 10.1M 68s\n", - "157900K .......... .......... .......... .......... .......... 30% 8.24M 67s\n", - "157950K .......... .......... .......... .......... .......... 30% 7.54M 67s\n", - "158000K .......... .......... .......... .......... .......... 30% 9.58M 67s\n", - "158050K .......... .......... .......... .......... .......... 30% 10.7M 67s\n", - "158100K .......... .......... .......... .......... .......... 30% 9.47M 67s\n", - "158150K .......... .......... .......... .......... .......... 30% 7.25M 67s\n", - "158200K .......... .......... .......... .......... .......... 30% 6.53M 67s\n", - "158250K .......... .......... .......... .......... .......... 30% 9.54M 67s\n", - "158300K .......... .......... .......... .......... .......... 30% 9.62M 67s\n", - "158350K .......... .......... .......... .......... .......... 30% 11.1M 67s\n", - "158400K .......... .......... .......... .......... .......... 30% 8.49M 67s\n", - "158450K .......... .......... .......... .......... .......... 30% 7.51M 67s\n", - "158500K .......... .......... .......... .......... .......... 30% 5.07M 67s\n", - "158550K .......... .......... .......... .......... .......... 30% 59.5M 67s\n", - "158600K .......... .......... .......... .......... .......... 30% 6.76M 67s\n", - "158650K .......... .......... .......... .......... .......... 30% 8.53M 67s\n", - "158700K .......... .......... .......... .......... .......... 30% 4.67M 67s\n", - "158750K .......... .......... .......... .......... .......... 30% 10.1M 67s\n", - "158800K .......... .......... .......... .......... .......... 30% 10.8M 67s\n", - "158850K .......... .......... .......... .......... .......... 30% 10.8M 67s\n", - "158900K .......... .......... .......... .......... .......... 30% 11.2M 67s\n", - "158950K .......... .......... .......... .......... .......... 30% 5.28M 67s\n", - "159000K .......... .......... .......... .......... .......... 30% 8.12M 67s\n", - "159050K .......... .......... .......... .......... .......... 30% 11.6M 67s\n", - "159100K .......... .......... .......... .......... .......... 30% 9.87M 67s\n", - "159150K .......... .......... .......... .......... .......... 30% 11.2M 67s\n", - "159200K .......... .......... .......... .......... .......... 30% 5.31M 67s\n", - "159250K .......... .......... .......... .......... .......... 30% 10.3M 67s\n", - "159300K .......... .......... .......... .......... .......... 30% 10.4M 67s\n", - "159350K .......... .......... .......... .......... .......... 30% 10.8M 67s\n", - "159400K .......... .......... .......... .......... .......... 30% 5.03M 67s\n", - "159450K .......... .......... .......... .......... .......... 30% 10.5M 67s\n", - "159500K .......... .......... .......... .......... .......... 30% 9.33M 67s\n", - "159550K .......... .......... .......... .......... .......... 30% 10.9M 67s\n", - "159600K .......... .......... .......... .......... .......... 30% 11.2M 67s\n", - "159650K .......... .......... .......... .......... .......... 30% 6.92M 67s\n", - "159700K .......... .......... .......... .......... .......... 30% 7.15M 67s\n", - "159750K .......... .......... .......... .......... .......... 30% 9.80M 67s\n", - "159800K .......... .......... .......... .......... .......... 30% 8.27M 67s\n", - "159850K .......... .......... .......... .......... .......... 30% 11.1M 67s\n", - "159900K .......... .......... .......... .......... .......... 30% 6.74M 67s\n", - "159950K .......... .......... .......... .......... .......... 30% 6.99M 67s\n", - "160000K .......... .......... .......... .......... .......... 30% 8.56M 67s\n", - "160050K .......... .......... .......... .......... .......... 30% 15.1M 67s\n", - "160100K .......... .......... .......... .......... .......... 30% 8.47M 67s\n", - "160150K .......... .......... .......... .......... .......... 30% 8.37M 67s\n", - "160200K .......... .......... .......... .......... .......... 30% 6.08M 67s\n", - "160250K .......... .......... .......... .......... .......... 30% 10.3M 67s\n", - "160300K .......... .......... .......... .......... .......... 30% 7.30M 67s\n", - "160350K .......... .......... .......... .......... .......... 30% 13.0M 67s\n", - "160400K .......... .......... .......... .......... .......... 30% 6.30M 67s\n", - "160450K .......... .......... .......... .......... .......... 30% 11.8M 67s\n", - "160500K .......... .......... .......... .......... .......... 30% 11.4M 67s\n", - "160550K .......... .......... .......... .......... .......... 30% 7.91M 67s\n", - "160600K .......... .......... .......... .......... .......... 30% 4.25M 67s\n", - "160650K .......... .......... .......... .......... .......... 30% 11.3M 67s\n", - "160700K .......... .......... .......... .......... .......... 30% 12.0M 67s\n", - "160750K .......... .......... .......... .......... .......... 30% 10.9M 67s\n", - "160800K .......... .......... .......... .......... .......... 30% 11.9M 67s\n", - "160850K .......... .......... .......... .......... .......... 30% 4.27M 67s\n", - "160900K .......... .......... .......... .......... .......... 30% 11.6M 66s\n", - "160950K .......... .......... .......... .......... .......... 30% 11.5M 66s\n", - "161000K .......... .......... .......... .......... .......... 30% 8.33M 66s\n", - "161050K .......... .......... .......... .......... .......... 30% 11.1M 66s\n", - "161100K .......... .......... .......... .......... .......... 30% 5.56M 66s\n", - "161150K .......... .......... .......... .......... .......... 30% 9.63M 66s\n", - "161200K .......... .......... .......... .......... .......... 30% 11.5M 66s\n", - "161250K .......... .......... .......... .......... .......... 30% 10.3M 66s\n", - "161300K .......... .......... .......... .......... .......... 30% 13.9M 66s\n", - "161350K .......... .......... .......... .......... .......... 30% 4.71M 66s\n", - "161400K .......... .......... .......... .......... .......... 30% 7.84M 66s\n", - "161450K .......... .......... .......... .......... .......... 30% 11.5M 66s\n", - "161500K .......... .......... .......... .......... .......... 30% 11.8M 66s\n", - "161550K .......... .......... .......... .......... .......... 30% 7.50M 66s\n", - "161600K .......... .......... .......... .......... .......... 30% 7.06M 66s\n", - "161650K .......... .......... .......... .......... .......... 30% 11.9M 66s\n", - "161700K .......... .......... .......... .......... .......... 30% 8.93M 66s\n", - "161750K .......... .......... .......... .......... .......... 30% 11.3M 66s\n", - "161800K .......... .......... .......... .......... .......... 30% 6.83M 66s\n", - "161850K .......... .......... .......... .......... .......... 30% 7.00M 66s\n", - "161900K .......... .......... .......... .......... .......... 30% 11.1M 66s\n", - "161950K .......... .......... .......... .......... .......... 30% 10.5M 66s\n", - "162000K .......... .......... .......... .......... .......... 30% 9.24M 66s\n", - "162050K .......... .......... .......... .......... .......... 30% 7.79M 66s\n", - "162100K .......... .......... .......... .......... .......... 30% 8.93M 66s\n", - "162150K .......... .......... .......... .......... .......... 30% 11.1M 66s\n", - "162200K .......... .......... .......... .......... .......... 30% 6.96M 66s\n", - "162250K .......... .......... .......... .......... .......... 30% 11.2M 66s\n", - "162300K .......... .......... .......... .......... .......... 30% 8.30M 66s\n", - "162350K .......... .......... .......... .......... .......... 30% 8.16M 66s\n", - "162400K .......... .......... .......... .......... .......... 30% 10.3M 66s\n", - "162450K .......... .......... .......... .......... .......... 30% 9.86M 66s\n", - "162500K .......... .......... .......... .......... .......... 30% 11.9M 66s\n", - "162550K .......... .......... .......... .......... .......... 30% 8.28M 66s\n", - "162600K .......... .......... .......... .......... .......... 30% 6.76M 66s\n", - "162650K .......... .......... .......... .......... .......... 31% 9.26M 66s\n", - "162700K .......... .......... .......... .......... .......... 31% 11.8M 66s\n", - "162750K .......... .......... .......... .......... .......... 31% 9.02M 66s\n", - "162800K .......... .......... .......... .......... .......... 31% 7.70M 66s\n", - "162850K .......... .......... .......... .......... .......... 31% 9.83M 66s\n", - "162900K .......... .......... .......... .......... .......... 31% 10.3M 66s\n", - "162950K .......... .......... .......... .......... .......... 31% 8.81M 66s\n", - "163000K .......... .......... .......... .......... .......... 31% 5.75M 66s\n", - "163050K .......... .......... .......... .......... .......... 31% 11.7M 66s\n", - "163100K .......... .......... .......... .......... .......... 31% 10.8M 66s\n", - "163150K .......... .......... .......... .......... .......... 31% 9.10M 66s\n", - "163200K .......... .......... .......... .......... .......... 31% 9.23M 66s\n", - "163250K .......... .......... .......... .......... .......... 31% 6.47M 66s\n", - "163300K .......... .......... .......... .......... .......... 31% 10.6M 66s\n", - "163350K .......... .......... .......... .......... .......... 31% 12.3M 66s\n", - "163400K .......... .......... .......... .......... .......... 31% 7.33M 66s\n", - "163450K .......... .......... .......... .......... .......... 31% 11.6M 66s\n", - "163500K .......... .......... .......... .......... .......... 31% 6.12M 66s\n", - "163550K .......... .......... .......... .......... .......... 31% 11.5M 66s\n", - "163600K .......... .......... .......... .......... .......... 31% 11.2M 66s\n", - "163650K .......... .......... .......... .......... .......... 31% 9.93M 66s\n", - "163700K .......... .......... .......... .......... .......... 31% 10.9M 66s\n", - "163750K .......... .......... .......... .......... .......... 31% 6.36M 66s\n", - "163800K .......... .......... .......... .......... .......... 31% 7.77M 65s\n", - "163850K .......... .......... .......... .......... .......... 31% 11.7M 65s\n", - "163900K .......... .......... .......... .......... .......... 31% 11.3M 65s\n", - "163950K .......... .......... .......... .......... .......... 31% 9.04M 65s\n", - "164000K .......... .......... .......... .......... .......... 31% 6.36M 65s\n", - "164050K .......... .......... .......... .......... .......... 31% 11.1M 65s\n", - "164100K .......... .......... .......... .......... .......... 31% 11.3M 65s\n", - "164150K .......... .......... .......... .......... .......... 31% 10.4M 65s\n", - "164200K .......... .......... .......... .......... .......... 31% 6.03M 65s\n", - "164250K .......... .......... .......... .......... .......... 31% 9.06M 65s\n", - "164300K .......... .......... .......... .......... .......... 31% 10.4M 65s\n", - "164350K .......... .......... .......... .......... .......... 31% 9.59M 65s\n", - "164400K .......... .......... .......... .......... .......... 31% 13.1M 65s\n", - "164450K .......... .......... .......... .......... .......... 31% 11.6M 65s\n", - "164500K .......... .......... .......... .......... .......... 31% 6.87M 65s\n", - "164550K .......... .......... .......... .......... .......... 31% 8.70M 65s\n", - "164600K .......... .......... .......... .......... .......... 31% 5.63M 65s\n", - "164650K .......... .......... .......... .......... .......... 31% 13.5M 65s\n", - "164700K .......... .......... .......... .......... .......... 31% 6.15M 65s\n", - "164750K .......... .......... .......... .......... .......... 31% 10.8M 65s\n", - "164800K .......... .......... .......... .......... .......... 31% 26.1M 65s\n", - "164850K .......... .......... .......... .......... .......... 31% 6.26M 65s\n", - "164900K .......... .......... .......... .......... .......... 31% 10.5M 65s\n", - "164950K .......... .......... .......... .......... .......... 31% 7.39M 65s\n", - "165000K .......... .......... .......... .......... .......... 31% 5.09M 65s\n", - "165050K .......... .......... .......... .......... .......... 31% 11.5M 65s\n", - "165100K .......... .......... .......... .......... .......... 31% 11.4M 65s\n", - "165150K .......... .......... .......... .......... .......... 31% 10.8M 65s\n", - "165200K .......... .......... .......... .......... .......... 31% 6.36M 65s\n", - "165250K .......... .......... .......... .......... .......... 31% 10.4M 65s\n", - "165300K .......... .......... .......... .......... .......... 31% 10.5M 65s\n", - "165350K .......... .......... .......... .......... .......... 31% 9.98M 65s\n", - "165400K .......... .......... .......... .......... .......... 31% 8.78M 65s\n", - "165450K .......... .......... .......... .......... .......... 31% 8.70M 65s\n", - "165500K .......... .......... .......... .......... .......... 31% 7.80M 65s\n", - "165550K .......... .......... .......... .......... .......... 31% 11.2M 65s\n", - "165600K .......... .......... .......... .......... .......... 31% 8.38M 65s\n", - "165650K .......... .......... .......... .......... .......... 31% 12.1M 65s\n", - "165700K .......... .......... .......... .......... .......... 31% 11.8M 65s\n", - "165750K .......... .......... .......... .......... .......... 31% 8.10M 65s\n", - "165800K .......... .......... .......... .......... .......... 31% 7.42M 65s\n", - "165850K .......... .......... .......... .......... .......... 31% 9.18M 65s\n", - "165900K .......... .......... .......... .......... .......... 31% 10.4M 65s\n", - "165950K .......... .......... .......... .......... .......... 31% 11.1M 65s\n", - "166000K .......... .......... .......... .......... .......... 31% 8.06M 65s\n", - "166050K .......... .......... .......... .......... .......... 31% 9.99M 65s\n", - "166100K .......... .......... .......... .......... .......... 31% 8.21M 65s\n", - "166150K .......... .......... .......... .......... .......... 31% 11.9M 65s\n", - "166200K .......... .......... .......... .......... .......... 31% 8.52M 65s\n", - "166250K .......... .......... .......... .......... .......... 31% 8.75M 65s\n", - "166300K .......... .......... .......... .......... .......... 31% 9.76M 65s\n", - "166350K .......... .......... .......... .......... .......... 31% 8.59M 65s\n", - "166400K .......... .......... .......... .......... .......... 31% 9.84M 65s\n", - "166450K .......... .......... .......... .......... .......... 31% 9.94M 65s\n", - "166500K .......... .......... .......... .......... .......... 31% 7.57M 65s\n", - "166550K .......... .......... .......... .......... .......... 31% 11.7M 65s\n", - "166600K .......... .......... .......... .......... .......... 31% 8.28M 65s\n", - "166650K .......... .......... .......... .......... .......... 31% 8.42M 65s\n", - "166700K .......... .......... .......... .......... .......... 31% 6.89M 65s\n", - "166750K .......... .......... .......... .......... .......... 31% 11.3M 64s\n", - "166800K .......... .......... .......... .......... .......... 31% 9.47M 64s\n", - "166850K .......... .......... .......... .......... .......... 31% 10.8M 64s\n", - "166900K .......... .......... .......... .......... .......... 31% 14.4M 64s\n", - "166950K .......... .......... .......... .......... .......... 31% 11.8M 64s\n", - "167000K .......... .......... .......... .......... .......... 31% 5.12M 64s\n", - "167050K .......... .......... .......... .......... .......... 31% 9.93M 64s\n", - "167100K .......... .......... .......... .......... .......... 31% 11.0M 64s\n", - "167150K .......... .......... .......... .......... .......... 31% 10.7M 64s\n", - "167200K .......... .......... .......... .......... .......... 31% 4.43M 64s\n", - "167250K .......... .......... .......... .......... .......... 31% 63.8M 64s\n", - "167300K .......... .......... .......... .......... .......... 31% 11.3M 64s\n", - "167350K .......... .......... .......... .......... .......... 31% 10.5M 64s\n", - "167400K .......... .......... .......... .......... .......... 31% 6.05M 64s\n", - "167450K .......... .......... .......... .......... .......... 31% 4.70M 64s\n", - "167500K .......... .......... .......... .......... .......... 31% 14.0M 64s\n", - "167550K .......... .......... .......... .......... .......... 31% 11.5M 64s\n", - "167600K .......... .......... .......... .......... .......... 31% 10.7M 64s\n", - "167650K .......... .......... .......... .......... .......... 31% 11.8M 64s\n", - "167700K .......... .......... .......... .......... .......... 31% 10.7M 64s\n", - "167750K .......... .......... .......... .......... .......... 31% 6.06M 64s\n", - "167800K .......... .......... .......... .......... .......... 31% 9.88M 64s\n", - "167850K .......... .......... .......... .......... .......... 31% 11.2M 64s\n", - "167900K .......... .......... .......... .......... .......... 32% 11.0M 64s\n", - "167950K .......... .......... .......... .......... .......... 32% 11.5M 64s\n", - "168000K .......... .......... .......... .......... .......... 32% 6.19M 64s\n", - "168050K .......... .......... .......... .......... .......... 32% 10.6M 64s\n", - "168100K .......... .......... .......... .......... .......... 32% 11.1M 64s\n", - "168150K .......... .......... .......... .......... .......... 32% 12.3M 64s\n", - "168200K .......... .......... .......... .......... .......... 32% 6.09M 64s\n", - "168250K .......... .......... .......... .......... .......... 32% 9.79M 64s\n", - "168300K .......... .......... .......... .......... .......... 32% 10.6M 64s\n", - "168350K .......... .......... .......... .......... .......... 32% 11.6M 64s\n", - "168400K .......... .......... .......... .......... .......... 32% 9.61M 64s\n", - "168450K .......... .......... .......... .......... .......... 32% 11.7M 64s\n", - "168500K .......... .......... .......... .......... .......... 32% 8.59M 64s\n", - "168550K .......... .......... .......... .......... .......... 32% 6.77M 64s\n", - "168600K .......... .......... .......... .......... .......... 32% 8.84M 64s\n", - "168650K .......... .......... .......... .......... .......... 32% 10.8M 64s\n", - "168700K .......... .......... .......... .......... .......... 32% 10.3M 64s\n", - "168750K .......... .......... .......... .......... .......... 32% 13.2M 64s\n", - "168800K .......... .......... .......... .......... .......... 32% 6.81M 64s\n", - "168850K .......... .......... .......... .......... .......... 32% 9.11M 64s\n", - "168900K .......... .......... .......... .......... .......... 32% 10.5M 64s\n", - "168950K .......... .......... .......... .......... .......... 32% 11.7M 64s\n", - "169000K .......... .......... .......... .......... .......... 32% 8.97M 64s\n", - "169050K .......... .......... .......... .......... .......... 32% 7.33M 64s\n", - "169100K .......... .......... .......... .......... .......... 32% 6.34M 64s\n", - "169150K .......... .......... .......... .......... .......... 32% 11.1M 64s\n", - "169200K .......... .......... .......... .......... .......... 32% 12.7M 64s\n", - "169250K .......... .......... .......... .......... .......... 32% 11.2M 64s\n", - "169300K .......... .......... .......... .......... .......... 32% 10.6M 64s\n", - "169350K .......... .......... .......... .......... .......... 32% 8.15M 64s\n", - "169400K .......... .......... .......... .......... .......... 32% 5.46M 64s\n", - "169450K .......... .......... .......... .......... .......... 32% 10.6M 64s\n", - "169500K .......... .......... .......... .......... .......... 32% 11.6M 64s\n", - "169550K .......... .......... .......... .......... .......... 32% 11.4M 64s\n", - "169600K .......... .......... .......... .......... .......... 32% 10.3M 64s\n", - "169650K .......... .......... .......... .......... .......... 32% 11.7M 64s\n", - "169700K .......... .......... .......... .......... .......... 32% 7.21M 63s\n", - "169750K .......... .......... .......... .......... .......... 32% 11.4M 63s\n", - "169800K .......... .......... .......... .......... .......... 32% 7.86M 63s\n", - "169850K .......... .......... .......... .......... .......... 32% 10.9M 63s\n", - "169900K .......... .......... .......... .......... .......... 32% 12.2M 63s\n", - "169950K .......... .......... .......... .......... .......... 32% 6.60M 63s\n", - "170000K .......... .......... .......... .......... .......... 32% 11.5M 63s\n", - "170050K .......... .......... .......... .......... .......... 32% 11.2M 63s\n", - "170100K .......... .......... .......... .......... .......... 32% 10.3M 63s\n", - "170150K .......... .......... .......... .......... .......... 32% 11.7M 63s\n", - "170200K .......... .......... .......... .......... .......... 32% 6.27M 63s\n", - "170250K .......... .......... .......... .......... .......... 32% 10.2M 63s\n", - "170300K .......... .......... .......... .......... .......... 32% 9.60M 63s\n", - "170350K .......... .......... .......... .......... .......... 32% 10.7M 63s\n", - "170400K .......... .......... .......... .......... .......... 32% 10.9M 63s\n", - "170450K .......... .......... .......... .......... .......... 32% 11.6M 63s\n", - "170500K .......... .......... .......... .......... .......... 32% 8.65M 63s\n", - "170550K .......... .......... .......... .......... .......... 32% 10.6M 63s\n", - "170600K .......... .......... .......... .......... .......... 32% 7.33M 63s\n", - "170650K .......... .......... .......... .......... .......... 32% 10.7M 63s\n", - "170700K .......... .......... .......... .......... .......... 32% 9.11M 63s\n", - "170750K .......... .......... .......... .......... .......... 32% 12.2M 63s\n", - "170800K .......... .......... .......... .......... .......... 32% 9.21M 63s\n", - "170850K .......... .......... .......... .......... .......... 32% 10.9M 63s\n", - "170900K .......... .......... .......... .......... .......... 32% 7.51M 63s\n", - "170950K .......... .......... .......... .......... .......... 32% 10.3M 63s\n", - "171000K .......... .......... .......... .......... .......... 32% 9.51M 63s\n", - "171050K .......... .......... .......... .......... .......... 32% 11.2M 63s\n", - "171100K .......... .......... .......... .......... .......... 32% 11.9M 63s\n", - "171150K .......... .......... .......... .......... .......... 32% 7.91M 63s\n", - "171200K .......... .......... .......... .......... .......... 32% 7.78M 63s\n", - "171250K .......... .......... .......... .......... .......... 32% 11.2M 63s\n", - "171300K .......... .......... .......... .......... .......... 32% 11.9M 63s\n", - "171350K .......... .......... .......... .......... .......... 32% 11.3M 63s\n", - "171400K .......... .......... .......... .......... .......... 32% 8.14M 63s\n", - "171450K .......... .......... .......... .......... .......... 32% 7.05M 63s\n", - "171500K .......... .......... .......... .......... .......... 32% 9.76M 63s\n", - "171550K .......... .......... .......... .......... .......... 32% 11.4M 63s\n", - "171600K .......... .......... .......... .......... .......... 32% 9.39M 63s\n", - "171650K .......... .......... .......... .......... .......... 32% 14.2M 63s\n", - "171700K .......... .......... .......... .......... .......... 32% 9.76M 63s\n", - "171750K .......... .......... .......... .......... .......... 32% 860K 63s\n", - "171800K .......... .......... .......... .......... .......... 32% 153M 63s\n", - "171850K .......... .......... .......... .......... .......... 32% 241M 63s\n", - "171900K .......... .......... .......... .......... .......... 32% 255M 63s\n", - "171950K .......... .......... .......... .......... .......... 32% 138M 63s\n", - "172000K .......... .......... .......... .......... .......... 32% 91.4M 63s\n", - "172050K .......... .......... .......... .......... .......... 32% 178M 63s\n", - "172100K .......... .......... .......... .......... .......... 32% 178M 63s\n", - "172150K .......... .......... .......... .......... .......... 32% 224M 63s\n", - "172200K .......... .......... .......... .......... .......... 32% 117M 63s\n", - "172250K .......... .......... .......... .......... .......... 32% 125M 63s\n", - "172300K .......... .......... .......... .......... .......... 32% 54.3M 63s\n", - "172350K .......... .......... .......... .......... .......... 32% 9.72M 63s\n", - "172400K .......... .......... .......... .......... .......... 32% 13.2M 63s\n", - "172450K .......... .......... .......... .......... .......... 32% 11.7M 63s\n", - "172500K .......... .......... .......... .......... .......... 32% 11.2M 63s\n", - "172550K .......... .......... .......... .......... .......... 32% 9.38M 63s\n", - "172600K .......... .......... .......... .......... .......... 32% 5.26M 63s\n", - "172650K .......... .......... .......... .......... .......... 32% 15.8M 63s\n", - "172700K .......... .......... .......... .......... .......... 32% 11.7M 62s\n", - "172750K .......... .......... .......... .......... .......... 32% 11.7M 62s\n", - "172800K .......... .......... .......... .......... .......... 32% 10.1M 62s\n", - "172850K .......... .......... .......... .......... .......... 32% 8.14M 62s\n", - "172900K .......... .......... .......... .......... .......... 32% 11.2M 62s\n", - "172950K .......... .......... .......... .......... .......... 32% 9.09M 62s\n", - "173000K .......... .......... .......... .......... .......... 32% 9.78M 62s\n", - "173050K .......... .......... .......... .......... .......... 32% 9.63M 62s\n", - "173100K .......... .......... .......... .......... .......... 32% 11.7M 62s\n", - "173150K .......... .......... .......... .......... .......... 33% 7.56M 62s\n", - "173200K .......... .......... .......... .......... .......... 33% 10.2M 62s\n", - "173250K .......... .......... .......... .......... .......... 33% 13.2M 62s\n", - "173300K .......... .......... .......... .......... .......... 33% 10.5M 62s\n", - "173350K .......... .......... .......... .......... .......... 33% 10.7M 62s\n", - "173400K .......... .......... .......... .......... .......... 33% 7.31M 62s\n", - "173450K .......... .......... .......... .......... .......... 33% 9.65M 62s\n", - "173500K .......... .......... .......... .......... .......... 33% 12.7M 62s\n", - "173550K .......... .......... .......... .......... .......... 33% 9.95M 62s\n", - "173600K .......... .......... .......... .......... .......... 33% 9.05M 62s\n", - "173650K .......... .......... .......... .......... .......... 33% 8.61M 62s\n", - "173700K .......... .......... .......... .......... .......... 33% 11.2M 62s\n", - "173750K .......... .......... .......... .......... .......... 33% 12.6M 62s\n", - "173800K .......... .......... .......... .......... .......... 33% 8.29M 62s\n", - "173850K .......... .......... .......... .......... .......... 33% 6.81M 62s\n", - "173900K .......... .......... .......... .......... .......... 33% 15.9M 62s\n", - "173950K .......... .......... .......... .......... .......... 33% 9.07M 62s\n", - "174000K .......... .......... .......... .......... .......... 33% 10.0M 62s\n", - "174050K .......... .......... .......... .......... .......... 33% 12.2M 62s\n", - "174100K .......... .......... .......... .......... .......... 33% 10.2M 62s\n", - "174150K .......... .......... .......... .......... .......... 33% 10.4M 62s\n", - "174200K .......... .......... .......... .......... .......... 33% 6.93M 62s\n", - "174250K .......... .......... .......... .......... .......... 33% 12.1M 62s\n", - "174300K .......... .......... .......... .......... .......... 33% 8.45M 62s\n", - "174350K .......... .......... .......... .......... .......... 33% 17.1M 62s\n", - "174400K .......... .......... .......... .......... .......... 33% 10.9M 62s\n", - "174450K .......... .......... .......... .......... .......... 33% 6.58M 62s\n", - "174500K .......... .......... .......... .......... .......... 33% 16.2M 62s\n", - "174550K .......... .......... .......... .......... .......... 33% 10.4M 62s\n", - "174600K .......... .......... .......... .......... .......... 33% 6.45M 62s\n", - "174650K .......... .......... .......... .......... .......... 33% 10.9M 62s\n", - "174700K .......... .......... .......... .......... .......... 33% 11.0M 62s\n", - "174750K .......... .......... .......... .......... .......... 33% 14.0M 62s\n", - "174800K .......... .......... .......... .......... .......... 33% 9.89M 62s\n", - "174850K .......... .......... .......... .......... .......... 33% 11.6M 62s\n", - "174900K .......... .......... .......... .......... .......... 33% 9.53M 62s\n", - "174950K .......... .......... .......... .......... .......... 33% 9.09M 62s\n", - "175000K .......... .......... .......... .......... .......... 33% 8.97M 62s\n", - "175050K .......... .......... .......... .......... .......... 33% 11.4M 62s\n", - "175100K .......... .......... .......... .......... .......... 33% 9.50M 62s\n", - "175150K .......... .......... .......... .......... .......... 33% 10.2M 62s\n", - "175200K .......... .......... .......... .......... .......... 33% 11.0M 62s\n", - "175250K .......... .......... .......... .......... .......... 33% 10.5M 62s\n", - "175300K .......... .......... .......... .......... .......... 33% 10.6M 62s\n", - "175350K .......... .......... .......... .......... .......... 33% 8.30M 62s\n", - "175400K .......... .......... .......... .......... .......... 33% 9.68M 62s\n", - "175450K .......... .......... .......... .......... .......... 33% 10.2M 62s\n", - "175500K .......... .......... .......... .......... .......... 33% 8.49M 62s\n", - "175550K .......... .......... .......... .......... .......... 33% 11.2M 62s\n", - "175600K .......... .......... .......... .......... .......... 33% 8.81M 62s\n", - "175650K .......... .......... .......... .......... .......... 33% 9.80M 62s\n", - "175700K .......... .......... .......... .......... .......... 33% 12.0M 61s\n", - "175750K .......... .......... .......... .......... .......... 33% 10.9M 61s\n", - "175800K .......... .......... .......... .......... .......... 33% 8.56M 61s\n", - "175850K .......... .......... .......... .......... .......... 33% 9.38M 61s\n", - "175900K .......... .......... .......... .......... .......... 33% 12.1M 61s\n", - "175950K .......... .......... .......... .......... .......... 33% 11.5M 61s\n", - "176000K .......... .......... .......... .......... .......... 33% 6.87M 61s\n", - "176050K .......... .......... .......... .......... .......... 33% 15.2M 61s\n", - "176100K .......... .......... .......... .......... .......... 33% 10.5M 61s\n", - "176150K .......... .......... .......... .......... .......... 33% 9.85M 61s\n", - "176200K .......... .......... .......... .......... .......... 33% 3.66M 61s\n", - "176250K .......... .......... .......... .......... .......... 33% 70.0M 61s\n", - "176300K .......... .......... .......... .......... .......... 33% 16.6M 61s\n", - "176350K .......... .......... .......... .......... .......... 33% 16.2M 61s\n", - "176400K .......... .......... .......... .......... .......... 33% 10.5M 61s\n", - "176450K .......... .......... .......... .......... .......... 33% 10.5M 61s\n", - "176500K .......... .......... .......... .......... .......... 33% 3.89M 61s\n", - "176550K .......... .......... .......... .......... .......... 33% 7.00M 61s\n", - "176600K .......... .......... .......... .......... .......... 33% 15.5M 61s\n", - "176650K .......... .......... .......... .......... .......... 33% 11.9M 61s\n", - "176700K .......... .......... .......... .......... .......... 33% 11.8M 61s\n", - "176750K .......... .......... .......... .......... .......... 33% 3.04M 61s\n", - "176800K .......... .......... .......... .......... .......... 33% 101M 61s\n", - "176850K .......... .......... .......... .......... .......... 33% 5.37M 61s\n", - "176900K .......... .......... .......... .......... .......... 33% 70.0M 61s\n", - "176950K .......... .......... .......... .......... .......... 33% 61.4M 61s\n", - "177000K .......... .......... .......... .......... .......... 33% 8.85M 61s\n", - "177050K .......... .......... .......... .......... .......... 33% 2.05M 61s\n", - "177100K .......... .......... .......... .......... .......... 33% 57.1M 61s\n", - "177150K .......... .......... .......... .......... .......... 33% 82.7M 61s\n", - "177200K .......... .......... .......... .......... .......... 33% 3.11M 61s\n", - "177250K .......... .......... .......... .......... .......... 33% 172M 61s\n", - "177300K .......... .......... .......... .......... .......... 33% 138M 61s\n", - "177350K .......... .......... .......... .......... .......... 33% 5.25M 61s\n", - "177400K .......... .......... .......... .......... .......... 33% 3.72M 61s\n", - "177450K .......... .......... .......... .......... .......... 33% 10.0M 61s\n", - "177500K .......... .......... .......... .......... .......... 33% 9.90M 61s\n", - "177550K .......... .......... .......... .......... .......... 33% 11.5M 61s\n", - "177600K .......... .......... .......... .......... .......... 33% 12.0M 61s\n", - "177650K .......... .......... .......... .......... .......... 33% 11.5M 61s\n", - "177700K .......... .......... .......... .......... .......... 33% 11.2M 61s\n", - "177750K .......... .......... .......... .......... .......... 33% 8.83M 61s\n", - "177800K .......... .......... .......... .......... .......... 33% 8.02M 61s\n", - "177850K .......... .......... .......... .......... .......... 33% 12.0M 61s\n", - "177900K .......... .......... .......... .......... .......... 33% 10.8M 61s\n", - "177950K .......... .......... .......... .......... .......... 33% 9.88M 61s\n", - "178000K .......... .......... .......... .......... .......... 33% 10.2M 61s\n", - "178050K .......... .......... .......... .......... .......... 33% 11.5M 61s\n", - "178100K .......... .......... .......... .......... .......... 33% 10.5M 61s\n", - "178150K .......... .......... .......... .......... .......... 33% 11.2M 61s\n", - "178200K .......... .......... .......... .......... .......... 33% 7.15M 61s\n", - "178250K .......... .......... .......... .......... .......... 33% 12.3M 61s\n", - "178300K .......... .......... .......... .......... .......... 33% 11.0M 61s\n", - "178350K .......... .......... .......... .......... .......... 33% 9.01M 61s\n", - "178400K .......... .......... .......... .......... .......... 34% 12.3M 61s\n", - "178450K .......... .......... .......... .......... .......... 34% 11.3M 61s\n", - "178500K .......... .......... .......... .......... .......... 34% 10.3M 61s\n", - "178550K .......... .......... .......... .......... .......... 34% 11.4M 61s\n", - "178600K .......... .......... .......... .......... .......... 34% 7.22M 61s\n", - "178650K .......... .......... .......... .......... .......... 34% 11.4M 61s\n", - "178700K .......... .......... .......... .......... .......... 34% 10.3M 61s\n", - "178750K .......... .......... .......... .......... .......... 34% 12.5M 61s\n", - "178800K .......... .......... .......... .......... .......... 34% 11.0M 61s\n", - "178850K .......... .......... .......... .......... .......... 34% 12.3M 61s\n", - "178900K .......... .......... .......... .......... .......... 34% 9.00M 60s\n", - "178950K .......... .......... .......... .......... .......... 34% 11.0M 60s\n", - "179000K .......... .......... .......... .......... .......... 34% 7.92M 60s\n", - "179050K .......... .......... .......... .......... .......... 34% 12.3M 60s\n", - "179100K .......... .......... .......... .......... .......... 34% 11.5M 60s\n", - "179150K .......... .......... .......... .......... .......... 34% 11.2M 60s\n", - "179200K .......... .......... .......... .......... .......... 34% 10.9M 60s\n", - "179250K .......... .......... .......... .......... .......... 34% 7.40M 60s\n", - "179300K .......... .......... .......... .......... .......... 34% 11.1M 60s\n", - "179350K .......... .......... .......... .......... .......... 34% 11.2M 60s\n", - "179400K .......... .......... .......... .......... .......... 34% 8.27M 60s\n", - "179450K .......... .......... .......... .......... .......... 34% 12.0M 60s\n", - "179500K .......... .......... .......... .......... .......... 34% 7.39M 60s\n", - "179550K .......... .......... .......... .......... .......... 34% 12.6M 60s\n", - "179600K .......... .......... .......... .......... .......... 34% 10.5M 60s\n", - "179650K .......... .......... .......... .......... .......... 34% 12.7M 60s\n", - "179700K .......... .......... .......... .......... .......... 34% 11.3M 60s\n", - "179750K .......... .......... .......... .......... .......... 34% 11.8M 60s\n", - "179800K .......... .......... .......... .......... .......... 34% 7.00M 60s\n", - "179850K .......... .......... .......... .......... .......... 34% 11.8M 60s\n", - "179900K .......... .......... .......... .......... .......... 34% 11.9M 60s\n", - "179950K .......... .......... .......... .......... .......... 34% 11.1M 60s\n", - "180000K .......... .......... .......... .......... .......... 34% 8.20M 60s\n", - "180050K .......... .......... .......... .......... .......... 34% 11.1M 60s\n", - "180100K .......... .......... .......... .......... .......... 34% 11.9M 60s\n", - "180150K .......... .......... .......... .......... .......... 34% 10.4M 60s\n", - "180200K .......... .......... .......... .......... .......... 34% 8.94M 60s\n", - "180250K .......... .......... .......... .......... .......... 34% 12.3M 60s\n", - "180300K .......... .......... .......... .......... .......... 34% 9.87M 60s\n", - "180350K .......... .......... .......... .......... .......... 34% 9.14M 60s\n", - "180400K .......... .......... .......... .......... .......... 34% 11.0M 60s\n", - "180450K .......... .......... .......... .......... .......... 34% 12.5M 60s\n", - "180500K .......... .......... .......... .......... .......... 34% 10.9M 60s\n", - "180550K .......... .......... .......... .......... .......... 34% 11.4M 60s\n", - "180600K .......... .......... .......... .......... .......... 34% 8.55M 60s\n", - "180650K .......... .......... .......... .......... .......... 34% 9.95M 60s\n", - "180700K .......... .......... .......... .......... .......... 34% 10.5M 60s\n", - "180750K .......... .......... .......... .......... .......... 34% 11.4M 60s\n", - "180800K .......... .......... .......... .......... .......... 34% 12.1M 60s\n", - "180850K .......... .......... .......... .......... .......... 34% 9.04M 60s\n", - "180900K .......... .......... .......... .......... .......... 34% 11.4M 60s\n", - "180950K .......... .......... .......... .......... .......... 34% 11.2M 60s\n", - "181000K .......... .......... .......... .......... .......... 34% 8.09M 60s\n", - "181050K .......... .......... .......... .......... .......... 34% 11.7M 60s\n", - "181100K .......... .......... .......... .......... .......... 34% 11.3M 60s\n", - "181150K .......... .......... .......... .......... .......... 34% 10.9M 60s\n", - "181200K .......... .......... .......... .......... .......... 34% 11.6M 60s\n", - "181250K .......... .......... .......... .......... .......... 34% 9.74M 60s\n", - "181300K .......... .......... .......... .......... .......... 34% 11.3M 60s\n", - "181350K .......... .......... .......... .......... .......... 34% 11.6M 60s\n", - "181400K .......... .......... .......... .......... .......... 34% 8.56M 60s\n", - "181450K .......... .......... .......... .......... .......... 34% 11.6M 60s\n", - "181500K .......... .......... .......... .......... .......... 34% 10.4M 60s\n", - "181550K .......... .......... .......... .......... .......... 34% 9.71M 60s\n", - "181600K .......... .......... .......... .......... .......... 34% 10.4M 60s\n", - "181650K .......... .......... .......... .......... .......... 34% 11.3M 60s\n", - "181700K .......... .......... .......... .......... .......... 34% 12.8M 60s\n", - "181750K .......... .......... .......... .......... .......... 34% 11.4M 60s\n", - "181800K .......... .......... .......... .......... .......... 34% 8.64M 60s\n", - "181850K .......... .......... .......... .......... .......... 34% 11.0M 60s\n", - "181900K .......... .......... .......... .......... .......... 34% 11.0M 60s\n", - "181950K .......... .......... .......... .......... .......... 34% 9.74M 59s\n", - "182000K .......... .......... .......... .......... .......... 34% 12.1M 59s\n", - "182050K .......... .......... .......... .......... .......... 34% 11.3M 59s\n", - "182100K .......... .......... .......... .......... .......... 34% 11.5M 59s\n", - "182150K .......... .......... .......... .......... .......... 34% 11.5M 59s\n", - "182200K .......... .......... .......... .......... .......... 34% 8.91M 59s\n", - "182250K .......... .......... .......... .......... .......... 34% 9.35M 59s\n", - "182300K .......... .......... .......... .......... .......... 34% 11.0M 59s\n", - "182350K .......... .......... .......... .......... .......... 34% 11.7M 59s\n", - "182400K .......... .......... .......... .......... .......... 34% 10.5M 59s\n", - "182450K .......... .......... .......... .......... .......... 34% 11.6M 59s\n", - "182500K .......... .......... .......... .......... .......... 34% 12.1M 59s\n", - "182550K .......... .......... .......... .......... .......... 34% 10.0M 59s\n", - "182600K .......... .......... .......... .......... .......... 34% 8.78M 59s\n", - "182650K .......... .......... .......... .......... .......... 34% 11.1M 59s\n", - "182700K .......... .......... .......... .......... .......... 34% 9.73M 59s\n", - "182750K .......... .......... .......... .......... .......... 34% 10.6M 59s\n", - "182800K .......... .......... .......... .......... .......... 34% 11.3M 59s\n", - "182850K .......... .......... .......... .......... .......... 34% 12.3M 59s\n", - "182900K .......... .......... .......... .......... .......... 34% 10.3M 59s\n", - "182950K .......... .......... .......... .......... .......... 34% 12.1M 59s\n", - "183000K .......... .......... .......... .......... .......... 34% 8.26M 59s\n", - "183050K .......... .......... .......... .......... .......... 34% 9.29M 59s\n", - "183100K .......... .......... .......... .......... .......... 34% 14.2M 59s\n", - "183150K .......... .......... .......... .......... .......... 34% 11.2M 59s\n", - "183200K .......... .......... .......... .......... .......... 34% 12.5M 59s\n", - "183250K .......... .......... .......... .......... .......... 34% 10.4M 59s\n", - "183300K .......... .......... .......... .......... .......... 34% 10.3M 59s\n", - "183350K .......... .......... .......... .......... .......... 34% 11.4M 59s\n", - "183400K .......... .......... .......... .......... .......... 34% 7.24M 59s\n", - "183450K .......... .......... .......... .......... .......... 34% 12.3M 59s\n", - "183500K .......... .......... .......... .......... .......... 34% 11.3M 59s\n", - "183550K .......... .......... .......... .......... .......... 34% 10.5M 59s\n", - "183600K .......... .......... .......... .......... .......... 35% 11.1M 59s\n", - "183650K .......... .......... .......... .......... .......... 35% 7.84M 59s\n", - "183700K .......... .......... .......... .......... .......... 35% 7.54M 59s\n", - "183750K .......... .......... .......... .......... .......... 35% 7.55M 59s\n", - "183800K .......... .......... .......... .......... .......... 35% 7.18M 59s\n", - "183850K .......... .......... .......... .......... .......... 35% 11.1M 59s\n", - "183900K .......... .......... .......... .......... .......... 35% 11.4M 59s\n", - "183950K .......... .......... .......... .......... .......... 35% 11.4M 59s\n", - "184000K .......... .......... .......... .......... .......... 35% 11.5M 59s\n", - "184050K .......... .......... .......... .......... .......... 35% 10.5M 59s\n", - "184100K .......... .......... .......... .......... .......... 35% 9.29M 59s\n", - "184150K .......... .......... .......... .......... .......... 35% 13.5M 59s\n", - "184200K .......... .......... .......... .......... .......... 35% 8.99M 59s\n", - "184250K .......... .......... .......... .......... .......... 35% 11.2M 59s\n", - "184300K .......... .......... .......... .......... .......... 35% 11.4M 59s\n", - "184350K .......... .......... .......... .......... .......... 35% 11.3M 59s\n", - "184400K .......... .......... .......... .......... .......... 35% 8.81M 59s\n", - "184450K .......... .......... .......... .......... .......... 35% 13.1M 59s\n", - "184500K .......... .......... .......... .......... .......... 35% 11.1M 59s\n", - "184550K .......... .......... .......... .......... .......... 35% 11.4M 59s\n", - "184600K .......... .......... .......... .......... .......... 35% 8.46M 59s\n", - "184650K .......... .......... .......... .......... .......... 35% 12.2M 59s\n", - "184700K .......... .......... .......... .......... .......... 35% 11.0M 59s\n", - "184750K .......... .......... .......... .......... .......... 35% 10.6M 59s\n", - "184800K .......... .......... .......... .......... .......... 35% 11.1M 59s\n", - "184850K .......... .......... .......... .......... .......... 35% 11.8M 59s\n", - "184900K .......... .......... .......... .......... .......... 35% 11.3M 59s\n", - "184950K .......... .......... .......... .......... .......... 35% 9.03M 59s\n", - "185000K .......... .......... .......... .......... .......... 35% 9.71M 59s\n", - "185050K .......... .......... .......... .......... .......... 35% 3.74M 59s\n", - "185100K .......... .......... .......... .......... .......... 35% 35.1M 58s\n", - "185150K .......... .......... .......... .......... .......... 35% 15.4M 58s\n", - "185200K .......... .......... .......... .......... .......... 35% 27.5M 58s\n", - "185250K .......... .......... .......... .......... .......... 35% 11.0M 58s\n", - "185300K .......... .......... .......... .......... .......... 35% 3.65M 58s\n", - "185350K .......... .......... .......... .......... .......... 35% 6.48M 58s\n", - "185400K .......... .......... .......... .......... .......... 35% 8.03M 58s\n", - "185450K .......... .......... .......... .......... .......... 35% 10.8M 58s\n", - "185500K .......... .......... .......... .......... .......... 35% 10.7M 58s\n", - "185550K .......... .......... .......... .......... .......... 35% 11.5M 58s\n", - "185600K .......... .......... .......... .......... .......... 35% 12.4M 58s\n", - "185650K .......... .......... .......... .......... .......... 35% 10.9M 58s\n", - "185700K .......... .......... .......... .......... .......... 35% 11.6M 58s\n", - "185750K .......... .......... .......... .......... .......... 35% 10.4M 58s\n", - "185800K .......... .......... .......... .......... .......... 35% 7.87M 58s\n", - "185850K .......... .......... .......... .......... .......... 35% 10.7M 58s\n", - "185900K .......... .......... .......... .......... .......... 35% 10.6M 58s\n", - "185950K .......... .......... .......... .......... .......... 35% 11.0M 58s\n", - "186000K .......... .......... .......... .......... .......... 35% 12.7M 58s\n", - "186050K .......... .......... .......... .......... .......... 35% 11.7M 58s\n", - "186100K .......... .......... .......... .......... .......... 35% 10.8M 58s\n", - "186150K .......... .......... .......... .......... .......... 35% 11.1M 58s\n", - "186200K .......... .......... .......... .......... .......... 35% 7.92M 58s\n", - "186250K .......... .......... .......... .......... .......... 35% 11.4M 58s\n", - "186300K .......... .......... .......... .......... .......... 35% 11.3M 58s\n", - "186350K .......... .......... .......... .......... .......... 35% 11.0M 58s\n", - "186400K .......... .......... .......... .......... .......... 35% 12.0M 58s\n", - "186450K .......... .......... .......... .......... .......... 35% 10.5M 58s\n", - "186500K .......... .......... .......... .......... .......... 35% 11.7M 58s\n", - "186550K .......... .......... .......... .......... .......... 35% 11.5M 58s\n", - "186600K .......... .......... .......... .......... .......... 35% 8.26M 58s\n", - "186650K .......... .......... .......... .......... .......... 35% 11.5M 58s\n", - "186700K .......... .......... .......... .......... .......... 35% 11.6M 58s\n", - "186750K .......... .......... .......... .......... .......... 35% 10.8M 58s\n", - "186800K .......... .......... .......... .......... .......... 35% 10.5M 58s\n", - "186850K .......... .......... .......... .......... .......... 35% 11.5M 58s\n", - "186900K .......... .......... .......... .......... .......... 35% 10.6M 58s\n", - "186950K .......... .......... .......... .......... .......... 35% 12.4M 58s\n", - "187000K .......... .......... .......... .......... .......... 35% 8.56M 58s\n", - "187050K .......... .......... .......... .......... .......... 35% 11.3M 58s\n", - "187100K .......... .......... .......... .......... .......... 35% 9.41M 58s\n", - "187150K .......... .......... .......... .......... .......... 35% 12.3M 58s\n", - "187200K .......... .......... .......... .......... .......... 35% 11.3M 58s\n", - "187250K .......... .......... .......... .......... .......... 35% 10.7M 58s\n", - "187300K .......... .......... .......... .......... .......... 35% 12.5M 58s\n", - "187350K .......... .......... .......... .......... .......... 35% 11.0M 58s\n", - "187400K .......... .......... .......... .......... .......... 35% 8.58M 58s\n", - "187450K .......... .......... .......... .......... .......... 35% 9.69M 58s\n", - "187500K .......... .......... .......... .......... .......... 35% 11.1M 58s\n", - "187550K .......... .......... .......... .......... .......... 35% 12.5M 58s\n", - "187600K .......... .......... .......... .......... .......... 35% 10.8M 58s\n", - "187650K .......... .......... .......... .......... .......... 35% 11.9M 58s\n", - "187700K .......... .......... .......... .......... .......... 35% 11.6M 58s\n", - "187750K .......... .......... .......... .......... .......... 35% 11.2M 58s\n", - "187800K .......... .......... .......... .......... .......... 35% 8.76M 58s\n", - "187850K .......... .......... .......... .......... .......... 35% 9.82M 58s\n", - "187900K .......... .......... .......... .......... .......... 35% 10.7M 58s\n", - "187950K .......... .......... .......... .......... .......... 35% 8.08M 58s\n", - "188000K .......... .......... .......... .......... .......... 35% 11.0M 58s\n", - "188050K .......... .......... .......... .......... .......... 35% 11.6M 58s\n", - "188100K .......... .......... .......... .......... .......... 35% 11.5M 58s\n", - "188150K .......... .......... .......... .......... .......... 35% 10.8M 58s\n", - "188200K .......... .......... .......... .......... .......... 35% 8.97M 58s\n", - "188250K .......... .......... .......... .......... .......... 35% 9.77M 58s\n", - "188300K .......... .......... .......... .......... .......... 35% 10.2M 57s\n", - "188350K .......... .......... .......... .......... .......... 35% 12.2M 57s\n", - "188400K .......... .......... .......... .......... .......... 35% 11.5M 57s\n", - "188450K .......... .......... .......... .......... .......... 35% 12.0M 57s\n", - "188500K .......... .......... .......... .......... .......... 35% 11.4M 57s\n", - "188550K .......... .......... .......... .......... .......... 35% 10.9M 57s\n", - "188600K .......... .......... .......... .......... .......... 35% 8.79M 57s\n", - "188650K .......... .......... .......... .......... .......... 35% 10.4M 57s\n", - "188700K .......... .......... .......... .......... .......... 35% 12.8M 57s\n", - "188750K .......... .......... .......... .......... .......... 35% 10.5M 57s\n", - "188800K .......... .......... .......... .......... .......... 35% 12.1M 57s\n", - "188850K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "188900K .......... .......... .......... .......... .......... 36% 11.7M 57s\n", - "188950K .......... .......... .......... .......... .......... 36% 11.1M 57s\n", - "189000K .......... .......... .......... .......... .......... 36% 8.21M 57s\n", - "189050K .......... .......... .......... .......... .......... 36% 11.7M 57s\n", - "189100K .......... .......... .......... .......... .......... 36% 11.2M 57s\n", - "189150K .......... .......... .......... .......... .......... 36% 11.2M 57s\n", - "189200K .......... .......... .......... .......... .......... 36% 11.3M 57s\n", - "189250K .......... .......... .......... .......... .......... 36% 10.4M 57s\n", - "189300K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "189350K .......... .......... .......... .......... .......... 36% 12.0M 57s\n", - "189400K .......... .......... .......... .......... .......... 36% 6.96M 57s\n", - "189450K .......... .......... .......... .......... .......... 36% 12.5M 57s\n", - "189500K .......... .......... .......... .......... .......... 36% 10.3M 57s\n", - "189550K .......... .......... .......... .......... .......... 36% 9.14M 57s\n", - "189600K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "189650K .......... .......... .......... .......... .......... 36% 12.8M 57s\n", - "189700K .......... .......... .......... .......... .......... 36% 15.1M 57s\n", - "189750K .......... .......... .......... .......... .......... 36% 3.11M 57s\n", - "189800K .......... .......... .......... .......... .......... 36% 8.76M 57s\n", - "189850K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "189900K .......... .......... .......... .......... .......... 36% 12.1M 57s\n", - "189950K .......... .......... .......... .......... .......... 36% 10.6M 57s\n", - "190000K .......... .......... .......... .......... .......... 36% 12.4M 57s\n", - "190050K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "190100K .......... .......... .......... .......... .......... 36% 9.87M 57s\n", - "190150K .......... .......... .......... .......... .......... 36% 11.4M 57s\n", - "190200K .......... .......... .......... .......... .......... 36% 8.50M 57s\n", - "190250K .......... .......... .......... .......... .......... 36% 11.9M 57s\n", - "190300K .......... .......... .......... .......... .......... 36% 11.6M 57s\n", - "190350K .......... .......... .......... .......... .......... 36% 9.93M 57s\n", - "190400K .......... .......... .......... .......... .......... 36% 10.7M 57s\n", - "190450K .......... .......... .......... .......... .......... 36% 9.50M 57s\n", - "190500K .......... .......... .......... .......... .......... 36% 13.1M 57s\n", - "190550K .......... .......... .......... .......... .......... 36% 9.11M 57s\n", - "190600K .......... .......... .......... .......... .......... 36% 10.9M 57s\n", - "190650K .......... .......... .......... .......... .......... 36% 10.8M 57s\n", - "190700K .......... .......... .......... .......... .......... 36% 10.7M 57s\n", - "190750K .......... .......... .......... .......... .......... 36% 11.2M 57s\n", - "190800K .......... .......... .......... .......... .......... 36% 11.1M 57s\n", - "190850K .......... .......... .......... .......... .......... 36% 11.9M 57s\n", - "190900K .......... .......... .......... .......... .......... 36% 11.1M 57s\n", - "190950K .......... .......... .......... .......... .......... 36% 11.3M 57s\n", - "191000K .......... .......... .......... .......... .......... 36% 7.71M 57s\n", - "191050K .......... .......... .......... .......... .......... 36% 13.7M 57s\n", - "191100K .......... .......... .......... .......... .......... 36% 10.3M 57s\n", - "191150K .......... .......... .......... .......... .......... 36% 10.5M 57s\n", - "191200K .......... .......... .......... .......... .......... 36% 11.5M 57s\n", - "191250K .......... .......... .......... .......... .......... 36% 11.8M 57s\n", - "191300K .......... .......... .......... .......... .......... 36% 9.36M 57s\n", - "191350K .......... .......... .......... .......... .......... 36% 10.7M 57s\n", - "191400K .......... .......... .......... .......... .......... 36% 9.12M 57s\n", - "191450K .......... .......... .......... .......... .......... 36% 11.5M 57s\n", - "191500K .......... .......... .......... .......... .......... 36% 10.6M 57s\n", - "191550K .......... .......... .......... .......... .......... 36% 12.7M 57s\n", - "191600K .......... .......... .......... .......... .......... 36% 9.65M 56s\n", - "191650K .......... .......... .......... .......... .......... 36% 12.7M 56s\n", - "191700K .......... .......... .......... .......... .......... 36% 9.56M 56s\n", - "191750K .......... .......... .......... .......... .......... 36% 14.1M 56s\n", - "191800K .......... .......... .......... .......... .......... 36% 8.58M 56s\n", - "191850K .......... .......... .......... .......... .......... 36% 10.4M 56s\n", - "191900K .......... .......... .......... .......... .......... 36% 9.82M 56s\n", - "191950K .......... .......... .......... .......... .......... 36% 8.53M 56s\n", - "192000K .......... .......... .......... .......... .......... 36% 11.0M 56s\n", - "192050K .......... .......... .......... .......... .......... 36% 11.2M 56s\n", - "192100K .......... .......... .......... .......... .......... 36% 12.7M 56s\n", - "192150K .......... .......... .......... .......... .......... 36% 6.88M 56s\n", - "192200K .......... .......... .......... .......... .......... 36% 15.0M 56s\n", - "192250K .......... .......... .......... .......... .......... 36% 11.8M 56s\n", - "192300K .......... .......... .......... .......... .......... 36% 10.1M 56s\n", - "192350K .......... .......... .......... .......... .......... 36% 10.8M 56s\n", - "192400K .......... .......... .......... .......... .......... 36% 11.0M 56s\n", - "192450K .......... .......... .......... .......... .......... 36% 9.15M 56s\n", - "192500K .......... .......... .......... .......... .......... 36% 14.1M 56s\n", - "192550K .......... .......... .......... .......... .......... 36% 10.2M 56s\n", - "192600K .......... .......... .......... .......... .......... 36% 7.64M 56s\n", - "192650K .......... .......... .......... .......... .......... 36% 11.0M 56s\n", - "192700K .......... .......... .......... .......... .......... 36% 11.2M 56s\n", - "192750K .......... .......... .......... .......... .......... 36% 12.4M 56s\n", - "192800K .......... .......... .......... .......... .......... 36% 9.54M 56s\n", - "192850K .......... .......... .......... .......... .......... 36% 14.6M 56s\n", - "192900K .......... .......... .......... .......... .......... 36% 11.4M 56s\n", - "192950K .......... .......... .......... .......... .......... 36% 11.2M 56s\n", - "193000K .......... .......... .......... .......... .......... 36% 8.52M 56s\n", - "193050K .......... .......... .......... .......... .......... 36% 11.1M 56s\n", - "193100K .......... .......... .......... .......... .......... 36% 12.2M 56s\n", - "193150K .......... .......... .......... .......... .......... 36% 11.1M 56s\n", - "193200K .......... .......... .......... .......... .......... 36% 11.3M 56s\n", - "193250K .......... .......... .......... .......... .......... 36% 10.7M 56s\n", - "193300K .......... .......... .......... .......... .......... 36% 10.1M 56s\n", - "193350K .......... .......... .......... .......... .......... 36% 11.6M 56s\n", - "193400K .......... .......... .......... .......... .......... 36% 8.81M 56s\n", - "193450K .......... .......... .......... .......... .......... 36% 11.5M 56s\n", - "193500K .......... .......... .......... .......... .......... 36% 9.43M 56s\n", - "193550K .......... .......... .......... .......... .......... 36% 11.5M 56s\n", - "193600K .......... .......... .......... .......... .......... 36% 12.4M 56s\n", - "193650K .......... .......... .......... .......... .......... 36% 11.1M 56s\n", - "193700K .......... .......... .......... .......... .......... 36% 11.2M 56s\n", - "193750K .......... .......... .......... .......... .......... 36% 10.4M 56s\n", - "193800K .......... .......... .......... .......... .......... 36% 8.50M 56s\n", - "193850K .......... .......... .......... .......... .......... 36% 12.2M 56s\n", - "193900K .......... .......... .......... .......... .......... 36% 10.1M 56s\n", - "193950K .......... .......... .......... .......... .......... 36% 13.3M 56s\n", - "194000K .......... .......... .......... .......... .......... 36% 10.5M 56s\n", - "194050K .......... .......... .......... .......... .......... 36% 11.9M 56s\n", - "194100K .......... .......... .......... .......... .......... 37% 11.2M 56s\n", - "194150K .......... .......... .......... .......... .......... 37% 11.6M 56s\n", - "194200K .......... .......... .......... .......... .......... 37% 8.35M 56s\n", - "194250K .......... .......... .......... .......... .......... 37% 11.4M 56s\n", - "194300K .......... .......... .......... .......... .......... 37% 9.10M 56s\n", - "194350K .......... .......... .......... .......... .......... 37% 11.6M 56s\n", - "194400K .......... .......... .......... .......... .......... 37% 11.7M 56s\n", - "194450K .......... .......... .......... .......... .......... 37% 11.4M 56s\n", - "194500K .......... .......... .......... .......... .......... 37% 11.0M 56s\n", - "194550K .......... .......... .......... .......... .......... 37% 11.1M 56s\n", - "194600K .......... .......... .......... .......... .......... 37% 8.57M 56s\n", - "194650K .......... .......... .......... .......... .......... 37% 10.3M 56s\n", - "194700K .......... .......... .......... .......... .......... 37% 11.3M 56s\n", - "194750K .......... .......... .......... .......... .......... 37% 10.7M 56s\n", - "194800K .......... .......... .......... .......... .......... 37% 11.2M 56s\n", - "194850K .......... .......... .......... .......... .......... 37% 11.5M 56s\n", - "194900K .......... .......... .......... .......... .......... 37% 11.9M 55s\n", - "194950K .......... .......... .......... .......... .......... 37% 10.2M 55s\n", - "195000K .......... .......... .......... .......... .......... 37% 8.15M 55s\n", - "195050K .......... .......... .......... .......... .......... 37% 12.0M 55s\n", - "195100K .......... .......... .......... .......... .......... 37% 10.5M 55s\n", - "195150K .......... .......... .......... .......... .......... 37% 11.8M 55s\n", - "195200K .......... .......... .......... .......... .......... 37% 11.1M 55s\n", - "195250K .......... .......... .......... .......... .......... 37% 11.8M 55s\n", - "195300K .......... .......... .......... .......... .......... 37% 11.2M 55s\n", - "195350K .......... .......... .......... .......... .......... 37% 11.0M 55s\n", - "195400K .......... .......... .......... .......... .......... 37% 8.50M 55s\n", - "195450K .......... .......... .......... .......... .......... 37% 9.77M 55s\n", - "195500K .......... .......... .......... .......... .......... 37% 11.4M 55s\n", - "195550K .......... .......... .......... .......... .......... 37% 11.8M 55s\n", - "195600K .......... .......... .......... .......... .......... 37% 10.9M 55s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "195650K .......... .......... .......... .......... .......... 37% 11.5M 55s\n", - "195700K .......... .......... .......... .......... .......... 37% 10.9M 55s\n", - "195750K .......... .......... .......... .......... .......... 37% 10.7M 55s\n", - "195800K .......... .......... .......... .......... .......... 37% 8.57M 55s\n", - "195850K .......... .......... .......... .......... .......... 37% 12.2M 55s\n", - "195900K .......... .......... .......... .......... .......... 37% 11.3M 55s\n", - "195950K .......... .......... .......... .......... .......... 37% 9.46M 55s\n", - "196000K .......... .......... .......... .......... .......... 37% 11.8M 55s\n", - "196050K .......... .......... .......... .......... .......... 37% 10.7M 55s\n", - "196100K .......... .......... .......... .......... .......... 37% 11.7M 55s\n", - "196150K .......... .......... .......... .......... .......... 37% 11.3M 55s\n", - "196200K .......... .......... .......... .......... .......... 37% 8.98M 55s\n", - "196250K .......... .......... .......... .......... .......... 37% 11.3M 55s\n", - "196300K .......... .......... .......... .......... .......... 37% 10.6M 55s\n", - "196350K .......... .......... .......... .......... .......... 37% 8.99M 55s\n", - "196400K .......... .......... .......... .......... .......... 37% 11.5M 55s\n", - "196450K .......... .......... .......... .......... .......... 37% 11.0M 55s\n", - "196500K .......... .......... .......... .......... .......... 37% 11.6M 55s\n", - "196550K .......... .......... .......... .......... .......... 37% 11.4M 55s\n", - "196600K .......... .......... .......... .......... .......... 37% 7.94M 55s\n", - "196650K .......... .......... .......... .......... .......... 37% 10.9M 55s\n", - "196700K .......... .......... .......... .......... .......... 37% 10.8M 55s\n", - "196750K .......... .......... .......... .......... .......... 37% 12.0M 55s\n", - "196800K .......... .......... .......... .......... .......... 37% 11.5M 55s\n", - "196850K .......... .......... .......... .......... .......... 37% 10.6M 55s\n", - "196900K .......... .......... .......... .......... .......... 37% 12.7M 55s\n", - "196950K .......... .......... .......... .......... .......... 37% 7.94M 55s\n", - "197000K .......... .......... .......... .......... .......... 37% 9.09M 55s\n", - "197050K .......... .......... .......... .......... .......... 37% 11.0M 55s\n", - "197100K .......... .......... .......... .......... .......... 37% 11.7M 55s\n", - "197150K .......... .......... .......... .......... .......... 37% 9.25M 55s\n", - "197200K .......... .......... .......... .......... .......... 37% 14.0M 55s\n", - "197250K .......... .......... .......... .......... .......... 37% 10.9M 55s\n", - "197300K .......... .......... .......... .......... .......... 37% 10.6M 55s\n", - "197350K .......... .......... .......... .......... .......... 37% 12.4M 55s\n", - "197400K .......... .......... .......... .......... .......... 37% 8.63M 55s\n", - "197450K .......... .......... .......... .......... .......... 37% 10.3M 55s\n", - "197500K .......... .......... .......... .......... .......... 37% 12.1M 55s\n", - "197550K .......... .......... .......... .......... .......... 37% 10.2M 55s\n", - "197600K .......... .......... .......... .......... .......... 37% 12.4M 55s\n", - "197650K .......... .......... .......... .......... .......... 37% 10.3M 55s\n", - "197700K .......... .......... .......... .......... .......... 37% 11.8M 55s\n", - "197750K .......... .......... .......... .......... .......... 37% 11.1M 55s\n", - "197800K .......... .......... .......... .......... .......... 37% 8.59M 55s\n", - "197850K .......... .......... .......... .......... .......... 37% 12.0M 55s\n", - "197900K .......... .......... .......... .......... .......... 37% 9.61M 55s\n", - "197950K .......... .......... .......... .......... .......... 37% 10.4M 55s\n", - "198000K .......... .......... .......... .......... .......... 37% 11.5M 55s\n", - "198050K .......... .......... .......... .......... .......... 37% 10.5M 55s\n", - "198100K .......... .......... .......... .......... .......... 37% 9.59M 55s\n", - "198150K .......... .......... .......... .......... .......... 37% 14.3M 55s\n", - "198200K .......... .......... .......... .......... .......... 37% 8.55M 55s\n", - "198250K .......... .......... .......... .......... .......... 37% 9.68M 55s\n", - "198300K .......... .......... .......... .......... .......... 37% 12.3M 55s\n", - "198350K .......... .......... .......... .......... .......... 37% 12.2M 54s\n", - "198400K .......... .......... .......... .......... .......... 37% 10.9M 54s\n", - "198450K .......... .......... .......... .......... .......... 37% 11.5M 54s\n", - "198500K .......... .......... .......... .......... .......... 37% 11.1M 54s\n", - "198550K .......... .......... .......... .......... .......... 37% 10.6M 54s\n", - "198600K .......... .......... .......... .......... .......... 37% 8.59M 54s\n", - "198650K .......... .......... .......... .......... .......... 37% 8.72M 54s\n", - "198700K .......... .......... .......... .......... .......... 37% 11.1M 54s\n", - "198750K .......... .......... .......... .......... .......... 37% 12.0M 54s\n", - "198800K .......... .......... .......... .......... .......... 37% 10.7M 54s\n", - "198850K .......... .......... .......... .......... .......... 37% 12.5M 54s\n", - "198900K .......... .......... .......... .......... .......... 37% 10.7M 54s\n", - "198950K .......... .......... .......... .......... .......... 37% 12.1M 54s\n", - "199000K .......... .......... .......... .......... .......... 37% 7.57M 54s\n", - "199050K .......... .......... .......... .......... .......... 37% 11.1M 54s\n", - "199100K .......... .......... .......... .......... .......... 37% 11.9M 54s\n", - "199150K .......... .......... .......... .......... .......... 37% 11.4M 54s\n", - "199200K .......... .......... .......... .......... .......... 37% 11.2M 54s\n", - "199250K .......... .......... .......... .......... .......... 37% 10.2M 54s\n", - "199300K .......... .......... .......... .......... .......... 37% 10.8M 54s\n", - "199350K .......... .......... .......... .......... .......... 38% 11.4M 54s\n", - "199400K .......... .......... .......... .......... .......... 38% 8.90M 54s\n", - "199450K .......... .......... .......... .......... .......... 38% 10.6M 54s\n", - "199500K .......... .......... .......... .......... .......... 38% 10.7M 54s\n", - "199550K .......... .......... .......... .......... .......... 38% 10.3M 54s\n", - "199600K .......... .......... .......... .......... .......... 38% 12.8M 54s\n", - "199650K .......... .......... .......... .......... .......... 38% 11.1M 54s\n", - "199700K .......... .......... .......... .......... .......... 38% 10.3M 54s\n", - "199750K .......... .......... .......... .......... .......... 38% 10.0M 54s\n", - "199800K .......... .......... .......... .......... .......... 38% 8.08M 54s\n", - "199850K .......... .......... .......... .......... .......... 38% 10.1M 54s\n", - "199900K .......... .......... .......... .......... .......... 38% 12.0M 54s\n", - "199950K .......... .......... .......... .......... .......... 38% 10.9M 54s\n", - "200000K .......... .......... .......... .......... .......... 38% 11.6M 54s\n", - "200050K .......... .......... .......... .......... .......... 38% 11.0M 54s\n", - "200100K .......... .......... .......... .......... .......... 38% 11.3M 54s\n", - "200150K .......... .......... .......... .......... .......... 38% 11.6M 54s\n", - "200200K .......... .......... .......... .......... .......... 38% 8.56M 54s\n", - "200250K .......... .......... .......... .......... .......... 38% 11.4M 54s\n", - "200300K .......... .......... .......... .......... .......... 38% 11.3M 54s\n", - "200350K .......... .......... .......... .......... .......... 38% 3.76M 54s\n", - "200400K .......... .......... .......... .......... .......... 38% 61.2M 54s\n", - "200450K .......... .......... .......... .......... .......... 38% 82.7M 54s\n", - "200500K .......... .......... .......... .......... .......... 38% 12.9M 54s\n", - "200550K .......... .......... .......... .......... .......... 38% 12.8M 54s\n", - "200600K .......... .......... .......... .......... .......... 38% 3.16M 54s\n", - "200650K .......... .......... .......... .......... .......... 38% 4.48M 54s\n", - "200700K .......... .......... .......... .......... .......... 38% 144M 54s\n", - "200750K .......... .......... .......... .......... .......... 38% 9.98M 54s\n", - "200800K .......... .......... .......... .......... .......... 38% 28.5M 54s\n", - "200850K .......... .......... .......... .......... .......... 38% 10.5M 54s\n", - "200900K .......... .......... .......... .......... .......... 38% 6.06M 54s\n", - "200950K .......... .......... .......... .......... .......... 38% 4.97M 54s\n", - "201000K .......... .......... .......... .......... .......... 38% 17.8M 54s\n", - "201050K .......... .......... .......... .......... .......... 38% 12.3M 54s\n", - "201100K .......... .......... .......... .......... .......... 38% 10.3M 54s\n", - "201150K .......... .......... .......... .......... .......... 38% 13.1M 54s\n", - "201200K .......... .......... .......... .......... .......... 38% 11.6M 54s\n", - "201250K .......... .......... .......... .......... .......... 38% 6.68M 54s\n", - "201300K .......... .......... .......... .......... .......... 38% 11.3M 54s\n", - "201350K .......... .......... .......... .......... .......... 38% 11.2M 54s\n", - "201400K .......... .......... .......... .......... .......... 38% 8.82M 54s\n", - "201450K .......... .......... .......... .......... .......... 38% 11.6M 54s\n", - "201500K .......... .......... .......... .......... .......... 38% 10.3M 54s\n", - "201550K .......... .......... .......... .......... .......... 38% 11.7M 54s\n", - "201600K .......... .......... .......... .......... .......... 38% 12.0M 54s\n", - "201650K .......... .......... .......... .......... .......... 38% 10.4M 54s\n", - "201700K .......... .......... .......... .......... .......... 38% 10.8M 54s\n", - "201750K .......... .......... .......... .......... .......... 38% 11.8M 54s\n", - "201800K .......... .......... .......... .......... .......... 38% 8.87M 54s\n", - "201850K .......... .......... .......... .......... .......... 38% 11.3M 54s\n", - "201900K .......... .......... .......... .......... .......... 38% 11.8M 53s\n", - "201950K .......... .......... .......... .......... .......... 38% 9.75M 53s\n", - "202000K .......... .......... .......... .......... .......... 38% 10.7M 53s\n", - "202050K .......... .......... .......... .......... .......... 38% 11.6M 53s\n", - "202100K .......... .......... .......... .......... .......... 38% 11.3M 53s\n", - "202150K .......... .......... .......... .......... .......... 38% 12.8M 53s\n", - "202200K .......... .......... .......... .......... .......... 38% 7.27M 53s\n", - "202250K .......... .......... .......... .......... .......... 38% 11.1M 53s\n", - "202300K .......... .......... .......... .......... .......... 38% 11.1M 53s\n", - "202350K .......... .......... .......... .......... .......... 38% 11.1M 53s\n", - "202400K .......... .......... .......... .......... .......... 38% 11.0M 53s\n", - "202450K .......... .......... .......... .......... .......... 38% 10.6M 53s\n", - "202500K .......... .......... .......... .......... .......... 38% 11.1M 53s\n", - "202550K .......... .......... .......... .......... .......... 38% 11.5M 53s\n", - "202600K .......... .......... .......... .......... .......... 38% 8.84M 53s\n", - "202650K .......... .......... .......... .......... .......... 38% 9.72M 53s\n", - "202700K .......... .......... .......... .......... .......... 38% 11.9M 53s\n", - "202750K .......... .......... .......... .......... .......... 38% 10.1M 53s\n", - "202800K .......... .......... .......... .......... .......... 38% 10.9M 53s\n", - "202850K .......... .......... .......... .......... .......... 38% 12.4M 53s\n", - "202900K .......... .......... .......... .......... .......... 38% 10.7M 53s\n", - "202950K .......... .......... .......... .......... .......... 38% 9.51M 53s\n", - "203000K .......... .......... .......... .......... .......... 38% 8.67M 53s\n", - "203050K .......... .......... .......... .......... .......... 38% 11.8M 53s\n", - "203100K .......... .......... .......... .......... .......... 38% 11.8M 53s\n", - "203150K .......... .......... .......... .......... .......... 38% 11.5M 53s\n", - "203200K .......... .......... .......... .......... .......... 38% 9.52M 53s\n", - "203250K .......... .......... .......... .......... .......... 38% 13.7M 53s\n", - "203300K .......... .......... .......... .......... .......... 38% 10.7M 53s\n", - "203350K .......... .......... .......... .......... .......... 38% 11.4M 53s\n", - "203400K .......... .......... .......... .......... .......... 38% 8.62M 53s\n", - "203450K .......... .......... .......... .......... .......... 38% 12.2M 53s\n", - "203500K .......... .......... .......... .......... .......... 38% 11.5M 53s\n", - "203550K .......... .......... .......... .......... .......... 38% 11.2M 53s\n", - "203600K .......... .......... .......... .......... .......... 38% 10.6M 53s\n", - "203650K .......... .......... .......... .......... .......... 38% 9.02M 53s\n", - "203700K .......... .......... .......... .......... .......... 38% 11.5M 53s\n", - "203750K .......... .......... .......... .......... .......... 38% 9.62M 53s\n", - "203800K .......... .......... .......... .......... .......... 38% 9.79M 53s\n", - "203850K .......... .......... .......... .......... .......... 38% 10.9M 53s\n", - "203900K .......... .......... .......... .......... .......... 38% 12.7M 53s\n", - "203950K .......... .......... .......... .......... .......... 38% 10.1M 53s\n", - "204000K .......... .......... .......... .......... .......... 38% 12.6M 53s\n", - "204050K .......... .......... .......... .......... .......... 38% 8.15M 53s\n", - "204100K .......... .......... .......... .......... .......... 38% 12.1M 53s\n", - "204150K .......... .......... .......... .......... .......... 38% 11.1M 53s\n", - "204200K .......... .......... .......... .......... .......... 38% 9.03M 53s\n", - "204250K .......... .......... .......... .......... .......... 38% 11.6M 53s\n", - "204300K .......... .......... .......... .......... .......... 38% 9.27M 53s\n", - "204350K .......... .......... .......... .......... .......... 38% 11.6M 53s\n", - "204400K .......... .......... .......... .......... .......... 38% 11.3M 53s\n", - "204450K .......... .......... .......... .......... .......... 38% 11.7M 53s\n", - "204500K .......... .......... .......... .......... .......... 38% 10.9M 53s\n", - "204550K .......... .......... .......... .......... .......... 38% 11.8M 53s\n", - "204600K .......... .......... .......... .......... .......... 39% 8.54M 53s\n", - "204650K .......... .......... .......... .......... .......... 39% 10.8M 53s\n", - "204700K .......... .......... .......... .......... .......... 39% 11.0M 53s\n", - "204750K .......... .......... .......... .......... .......... 39% 12.8M 53s\n", - "204800K .......... .......... .......... .......... .......... 39% 9.88M 53s\n", - "204850K .......... .......... .......... .......... .......... 39% 11.9M 53s\n", - "204900K .......... .......... .......... .......... .......... 39% 11.3M 53s\n", - "204950K .......... .......... .......... .......... .......... 39% 11.2M 53s\n", - "205000K .......... .......... .......... .......... .......... 39% 8.38M 53s\n", - "205050K .......... .......... .......... .......... .......... 39% 11.6M 53s\n", - "205100K .......... .......... .......... .......... .......... 39% 10.4M 53s\n", - "205150K .......... .......... .......... .......... .......... 39% 7.83M 53s\n", - "205200K .......... .......... .......... .......... .......... 39% 9.96M 53s\n", - "205250K .......... .......... .......... .......... .......... 39% 12.9M 53s\n", - "205300K .......... .......... .......... .......... .......... 39% 10.8M 53s\n", - "205350K .......... .......... .......... .......... .......... 39% 12.8M 53s\n", - "205400K .......... .......... .......... .......... .......... 39% 8.43M 53s\n", - "205450K .......... .......... .......... .......... .......... 39% 11.1M 52s\n", - "205500K .......... .......... .......... .......... .......... 39% 11.4M 52s\n", - "205550K .......... .......... .......... .......... .......... 39% 11.2M 52s\n", - "205600K .......... .......... .......... .......... .......... 39% 11.3M 52s\n", - "205650K .......... .......... .......... .......... .......... 39% 11.0M 52s\n", - "205700K .......... .......... .......... .......... .......... 39% 11.0M 52s\n", - "205750K .......... .......... .......... .......... .......... 39% 9.84M 52s\n", - "205800K .......... .......... .......... .......... .......... 39% 8.06M 52s\n", - "205850K .......... .......... .......... .......... .......... 39% 12.4M 52s\n", - "205900K .......... .......... .......... .......... .......... 39% 11.1M 52s\n", - "205950K .......... .......... .......... .......... .......... 39% 11.7M 52s\n", - "206000K .......... .......... .......... .......... .......... 39% 8.32M 52s\n", - "206050K .......... .......... .......... .......... .......... 39% 12.8M 52s\n", - "206100K .......... .......... .......... .......... .......... 39% 12.5M 52s\n", - "206150K .......... .......... .......... .......... .......... 39% 11.6M 52s\n", - "206200K .......... .......... .......... .......... .......... 39% 8.69M 52s\n", - "206250K .......... .......... .......... .......... .......... 39% 11.4M 52s\n", - "206300K .......... .......... .......... .......... .......... 39% 7.39M 52s\n", - "206350K .......... .......... .......... .......... .......... 39% 12.7M 52s\n", - "206400K .......... .......... .......... .......... .......... 39% 12.5M 52s\n", - "206450K .......... .......... .......... .......... .......... 39% 11.6M 52s\n", - "206500K .......... .......... .......... .......... .......... 39% 9.25M 52s\n", - "206550K .......... .......... .......... .......... .......... 39% 13.1M 52s\n", - "206600K .......... .......... .......... .......... .......... 39% 7.65M 52s\n", - "206650K .......... .......... .......... .......... .......... 39% 12.0M 52s\n", - "206700K .......... .......... .......... .......... .......... 39% 10.9M 52s\n", - "206750K .......... .......... .......... .......... .......... 39% 11.7M 52s\n", - "206800K .......... .......... .......... .......... .......... 39% 9.70M 52s\n", - "206850K .......... .......... .......... .......... .......... 39% 10.6M 52s\n", - "206900K .......... .......... .......... .......... .......... 39% 14.1M 52s\n", - "206950K .......... .......... .......... .......... .......... 39% 10.2M 52s\n", - "207000K .......... .......... .......... .......... .......... 39% 8.55M 52s\n", - "207050K .......... .......... .......... .......... .......... 39% 12.3M 52s\n", - "207100K .......... .......... .......... .......... .......... 39% 11.1M 52s\n", - "207150K .......... .......... .......... .......... .......... 39% 5.83M 52s\n", - "207200K .......... .......... .......... .......... .......... 39% 42.5M 52s\n", - "207250K .......... .......... .......... .......... .......... 39% 13.4M 52s\n", - "207300K .......... .......... .......... .......... .......... 39% 9.60M 52s\n", - "207350K .......... .......... .......... .......... .......... 39% 10.5M 52s\n", - "207400K .......... .......... .......... .......... .......... 39% 9.10M 52s\n", - "207450K .......... .......... .......... .......... .......... 39% 8.39M 52s\n", - "207500K .......... .......... .......... .......... .......... 39% 10.4M 52s\n", - "207550K .......... .......... .......... .......... .......... 39% 12.5M 52s\n", - "207600K .......... .......... .......... .......... .......... 39% 11.0M 52s\n", - "207650K .......... .......... .......... .......... .......... 39% 11.4M 52s\n", - "207700K .......... .......... .......... .......... .......... 39% 10.9M 52s\n", - "207750K .......... .......... .......... .......... .......... 39% 12.5M 52s\n", - "207800K .......... .......... .......... .......... .......... 39% 7.70M 52s\n", - "207850K .......... .......... .......... .......... .......... 39% 12.0M 52s\n", - "207900K .......... .......... .......... .......... .......... 39% 10.7M 52s\n", - "207950K .......... .......... .......... .......... .......... 39% 11.9M 52s\n", - "208000K .......... .......... .......... .......... .......... 39% 11.0M 52s\n", - "208050K .......... .......... .......... .......... .......... 39% 12.0M 52s\n", - "208100K .......... .......... .......... .......... .......... 39% 10.5M 52s\n", - "208150K .......... .......... .......... .......... .......... 39% 11.7M 52s\n", - "208200K .......... .......... .......... .......... .......... 39% 8.37M 52s\n", - "208250K .......... .......... .......... .......... .......... 39% 9.32M 52s\n", - "208300K .......... .......... .......... .......... .......... 39% 10.4M 52s\n", - "208350K .......... .......... .......... .......... .......... 39% 12.6M 52s\n", - "208400K .......... .......... .......... .......... .......... 39% 11.2M 52s\n", - "208450K .......... .......... .......... .......... .......... 39% 11.1M 52s\n", - "208500K .......... .......... .......... .......... .......... 39% 10.6M 52s\n", - "208550K .......... .......... .......... .......... .......... 39% 12.7M 52s\n", - "208600K .......... .......... .......... .......... .......... 39% 7.40M 52s\n", - "208650K .......... .......... .......... .......... .......... 39% 11.6M 52s\n", - "208700K .......... .......... .......... .......... .......... 39% 11.2M 52s\n", - "208750K .......... .......... .......... .......... .......... 39% 10.7M 52s\n", - "208800K .......... .......... .......... .......... .......... 39% 11.8M 52s\n", - "208850K .......... .......... .......... .......... .......... 39% 10.7M 52s\n", - "208900K .......... .......... .......... .......... .......... 39% 9.55M 52s\n", - "208950K .......... .......... .......... .......... .......... 39% 10.8M 52s\n", - "209000K .......... .......... .......... .......... .......... 39% 9.02M 52s\n", - "209050K .......... .......... .......... .......... .......... 39% 10.7M 52s\n", - "209100K .......... .......... .......... .......... .......... 39% 11.2M 52s\n", - "209150K .......... .......... .......... .......... .......... 39% 12.7M 51s\n", - "209200K .......... .......... .......... .......... .......... 39% 10.6M 51s\n", - "209250K .......... .......... .......... .......... .......... 39% 10.2M 51s\n", - "209300K .......... .......... .......... .......... .......... 39% 10.8M 51s\n", - "209350K .......... .......... .......... .......... .......... 39% 12.6M 51s\n", - "209400K .......... .......... .......... .......... .......... 39% 7.65M 51s\n", - "209450K .......... .......... .......... .......... .......... 39% 12.8M 51s\n", - "209500K .......... .......... .......... .......... .......... 39% 9.65M 51s\n", - "209550K .......... .......... .......... .......... .......... 39% 15.3M 51s\n", - "209600K .......... .......... .......... .......... .......... 39% 10.3M 51s\n", - "209650K .......... .......... .......... .......... .......... 39% 10.0M 51s\n", - "209700K .......... .......... .......... .......... .......... 39% 8.83M 51s\n", - "209750K .......... .......... .......... .......... .......... 39% 11.3M 51s\n", - "209800K .......... .......... .......... .......... .......... 39% 8.96M 51s\n", - "209850K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "209900K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "209950K .......... .......... .......... .......... .......... 40% 10.6M 51s\n", - "210000K .......... .......... .......... .......... .......... 40% 9.53M 51s\n", - "210050K .......... .......... .......... .......... .......... 40% 11.2M 51s\n", - "210100K .......... .......... .......... .......... .......... 40% 10.4M 51s\n", - "210150K .......... .......... .......... .......... .......... 40% 12.6M 51s\n", - "210200K .......... .......... .......... .......... .......... 40% 8.73M 51s\n", - "210250K .......... .......... .......... .......... .......... 40% 11.3M 51s\n", - "210300K .......... .......... .......... .......... .......... 40% 10.6M 51s\n", - "210350K .......... .......... .......... .......... .......... 40% 12.0M 51s\n", - "210400K .......... .......... .......... .......... .......... 40% 9.57M 51s\n", - "210450K .......... .......... .......... .......... .......... 40% 9.05M 51s\n", - "210500K .......... .......... .......... .......... .......... 40% 12.0M 51s\n", - "210550K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "210600K .......... .......... .......... .......... .......... 40% 8.43M 51s\n", - "210650K .......... .......... .......... .......... .......... 40% 11.2M 51s\n", - "210700K .......... .......... .......... .......... .......... 40% 11.6M 51s\n", - "210750K .......... .......... .......... .......... .......... 40% 12.1M 51s\n", - "210800K .......... .......... .......... .......... .......... 40% 10.4M 51s\n", - "210850K .......... .......... .......... .......... .......... 40% 11.5M 51s\n", - "210900K .......... .......... .......... .......... .......... 40% 10.5M 51s\n", - "210950K .......... .......... .......... .......... .......... 40% 11.6M 51s\n", - "211000K .......... .......... .......... .......... .......... 40% 8.74M 51s\n", - "211050K .......... .......... .......... .......... .......... 40% 10.7M 51s\n", - "211100K .......... .......... .......... .......... .......... 40% 10.2M 51s\n", - "211150K .......... .......... .......... .......... .......... 40% 11.1M 51s\n", - "211200K .......... .......... .......... .......... .......... 40% 12.1M 51s\n", - "211250K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "211300K .......... .......... .......... .......... .......... 40% 12.5M 51s\n", - "211350K .......... .......... .......... .......... .......... 40% 10.6M 51s\n", - "211400K .......... .......... .......... .......... .......... 40% 8.91M 51s\n", - "211450K .......... .......... .......... .......... .......... 40% 8.18M 51s\n", - "211500K .......... .......... .......... .......... .......... 40% 10.3M 51s\n", - "211550K .......... .......... .......... .......... .......... 40% 13.1M 51s\n", - "211600K .......... .......... .......... .......... .......... 40% 11.5M 51s\n", - "211650K .......... .......... .......... .......... .......... 40% 10.5M 51s\n", - "211700K .......... .......... .......... .......... .......... 40% 11.5M 51s\n", - "211750K .......... .......... .......... .......... .......... 40% 11.4M 51s\n", - "211800K .......... .......... .......... .......... .......... 40% 7.64M 51s\n", - "211850K .......... .......... .......... .......... .......... 40% 11.3M 51s\n", - "211900K .......... .......... .......... .......... .......... 40% 10.4M 51s\n", - "211950K .......... .......... .......... .......... .......... 40% 12.9M 51s\n", - "212000K .......... .......... .......... .......... .......... 40% 10.8M 51s\n", - "212050K .......... .......... .......... .......... .......... 40% 8.82M 51s\n", - "212100K .......... .......... .......... .......... .......... 40% 14.7M 51s\n", - "212150K .......... .......... .......... .......... .......... 40% 11.6M 51s\n", - "212200K .......... .......... .......... .......... .......... 40% 8.76M 51s\n", - "212250K .......... .......... .......... .......... .......... 40% 11.2M 51s\n", - "212300K .......... .......... .......... .......... .......... 40% 10.2M 51s\n", - "212350K .......... .......... .......... .......... .......... 40% 12.3M 51s\n", - "212400K .......... .......... .......... .......... .......... 40% 10.1M 51s\n", - "212450K .......... .......... .......... .......... .......... 40% 12.1M 51s\n", - "212500K .......... .......... .......... .......... .......... 40% 11.8M 51s\n", - "212550K .......... .......... .......... .......... .......... 40% 10.1M 51s\n", - "212600K .......... .......... .......... .......... .......... 40% 8.09M 51s\n", - "212650K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "212700K .......... .......... .......... .......... .......... 40% 11.5M 51s\n", - "212750K .......... .......... .......... .......... .......... 40% 11.5M 51s\n", - "212800K .......... .......... .......... .......... .......... 40% 10.9M 51s\n", - "212850K .......... .......... .......... .......... .......... 40% 10.9M 50s\n", - "212900K .......... .......... .......... .......... .......... 40% 11.3M 50s\n", - "212950K .......... .......... .......... .......... .......... 40% 12.2M 50s\n", - "213000K .......... .......... .......... .......... .......... 40% 8.00M 50s\n", - "213050K .......... .......... .......... .......... .......... 40% 10.5M 50s\n", - "213100K .......... .......... .......... .......... .......... 40% 11.5M 50s\n", - "213150K .......... .......... .......... .......... .......... 40% 11.5M 50s\n", - "213200K .......... .......... .......... .......... .......... 40% 11.6M 50s\n", - "213250K .......... .......... .......... .......... .......... 40% 10.2M 50s\n", - "213300K .......... .......... .......... .......... .......... 40% 11.4M 50s\n", - "213350K .......... .......... .......... .......... .......... 40% 11.2M 50s\n", - "213400K .......... .......... .......... .......... .......... 40% 8.57M 50s\n", - "213450K .......... .......... .......... .......... .......... 40% 11.1M 50s\n", - "213500K .......... .......... .......... .......... .......... 40% 12.1M 50s\n", - "213550K .......... .......... .......... .......... .......... 40% 11.1M 50s\n", - "213600K .......... .......... .......... .......... .......... 40% 10.9M 50s\n", - "213650K .......... .......... .......... .......... .......... 40% 10.8M 50s\n", - "213700K .......... .......... .......... .......... .......... 40% 10.5M 50s\n", - "213750K .......... .......... .......... .......... .......... 40% 11.0M 50s\n", - "213800K .......... .......... .......... .......... .......... 40% 8.21M 50s\n", - "213850K .......... .......... .......... .......... .......... 40% 14.1M 50s\n", - "213900K .......... .......... .......... .......... .......... 40% 11.0M 50s\n", - "213950K .......... .......... .......... .......... .......... 40% 12.1M 50s\n", - "214000K .......... .......... .......... .......... .......... 40% 12.0M 50s\n", - "214050K .......... .......... .......... .......... .......... 40% 9.95M 50s\n", - "214100K .......... .......... .......... .......... .......... 40% 11.2M 50s\n", - "214150K .......... .......... .......... .......... .......... 40% 11.8M 50s\n", - "214200K .......... .......... .......... .......... .......... 40% 8.19M 50s\n", - "214250K .......... .......... .......... .......... .......... 40% 12.2M 50s\n", - "214300K .......... .......... .......... .......... .......... 40% 11.6M 50s\n", - "214350K .......... .......... .......... .......... .......... 40% 10.4M 50s\n", - "214400K .......... .......... .......... .......... .......... 40% 10.5M 50s\n", - "214450K .......... .......... .......... .......... .......... 40% 11.0M 50s\n", - "214500K .......... .......... .......... .......... .......... 40% 12.9M 50s\n", - "214550K .......... .......... .......... .......... .......... 40% 11.4M 50s\n", - "214600K .......... .......... .......... .......... .......... 40% 8.69M 50s\n", - "214650K .......... .......... .......... .......... .......... 40% 11.5M 50s\n", - "214700K .......... .......... .......... .......... .......... 40% 10.6M 50s\n", - "214750K .......... .......... .......... .......... .......... 40% 10.8M 50s\n", - "214800K .......... .......... .......... .......... .......... 40% 12.4M 50s\n", - "214850K .......... .......... .......... .......... .......... 40% 11.4M 50s\n", - "214900K .......... .......... .......... .......... .......... 40% 8.19M 50s\n", - "214950K .......... .......... .......... .......... .......... 40% 10.8M 50s\n", - "215000K .......... .......... .......... .......... .......... 40% 7.72M 50s\n", - "215050K .......... .......... .......... .......... .......... 40% 15.2M 50s\n", - "215100K .......... .......... .......... .......... .......... 41% 10.9M 50s\n", - "215150K .......... .......... .......... .......... .......... 41% 12.3M 50s\n", - "215200K .......... .......... .......... .......... .......... 41% 10.6M 50s\n", - "215250K .......... .......... .......... .......... .......... 41% 11.5M 50s\n", - "215300K .......... .......... .......... .......... .......... 41% 11.9M 50s\n", - "215350K .......... .......... .......... .......... .......... 41% 11.1M 50s\n", - "215400K .......... .......... .......... .......... .......... 41% 7.91M 50s\n", - "215450K .......... .......... .......... .......... .......... 41% 10.4M 50s\n", - "215500K .......... .......... .......... .......... .......... 41% 11.8M 50s\n", - "215550K .......... .......... .......... .......... .......... 41% 11.0M 50s\n", - "215600K .......... .......... .......... .......... .......... 41% 10.4M 50s\n", - "215650K .......... .......... .......... .......... .......... 41% 13.3M 50s\n", - "215700K .......... .......... .......... .......... .......... 41% 9.65M 50s\n", - "215750K .......... .......... .......... .......... .......... 41% 11.0M 50s\n", - "215800K .......... .......... .......... .......... .......... 41% 8.82M 50s\n", - "215850K .......... .......... .......... .......... .......... 41% 11.8M 50s\n", - "215900K .......... .......... .......... .......... .......... 41% 10.3M 50s\n", - "215950K .......... .......... .......... .......... .......... 41% 11.8M 50s\n", - "216000K .......... .......... .......... .......... .......... 41% 10.6M 50s\n", - "216050K .......... .......... .......... .......... .......... 41% 13.5M 50s\n", - "216100K .......... .......... .......... .......... .......... 41% 11.2M 50s\n", - "216150K .......... .......... .......... .......... .......... 41% 11.8M 50s\n", - "216200K .......... .......... .......... .......... .......... 41% 8.20M 50s\n", - "216250K .......... .......... .......... .......... .......... 41% 10.7M 50s\n", - "216300K .......... .......... .......... .......... .......... 41% 9.46M 50s\n", - "216350K .......... .......... .......... .......... .......... 41% 11.5M 50s\n", - "216400K .......... .......... .......... .......... .......... 41% 11.1M 50s\n", - "216450K .......... .......... .......... .......... .......... 41% 10.9M 50s\n", - "216500K .......... .......... .......... .......... .......... 41% 10.4M 50s\n", - "216550K .......... .......... .......... .......... .......... 41% 13.4M 50s\n", - "216600K .......... .......... .......... .......... .......... 41% 8.41M 50s\n", - "216650K .......... .......... .......... .......... .......... 41% 9.84M 50s\n", - "216700K .......... .......... .......... .......... .......... 41% 11.3M 49s\n", - "216750K .......... .......... .......... .......... .......... 41% 8.20M 49s\n", - "216800K .......... .......... .......... .......... .......... 41% 12.9M 49s\n", - "216850K .......... .......... .......... .......... .......... 41% 12.7M 49s\n", - "216900K .......... .......... .......... .......... .......... 41% 12.9M 49s\n", - "216950K .......... .......... .......... .......... .......... 41% 10.6M 49s\n", - "217000K .......... .......... .......... .......... .......... 41% 7.94M 49s\n", - "217050K .......... .......... .......... .......... .......... 41% 9.39M 49s\n", - "217100K .......... .......... .......... .......... .......... 41% 13.3M 49s\n", - "217150K .......... .......... .......... .......... .......... 41% 7.29M 49s\n", - "217200K .......... .......... .......... .......... .......... 41% 23.7M 49s\n", - "217250K .......... .......... .......... .......... .......... 41% 6.93M 49s\n", - "217300K .......... .......... .......... .......... .......... 41% 3.21M 49s\n", - "217350K .......... .......... .......... .......... .......... 41% 25.7M 49s\n", - "217400K .......... .......... .......... .......... .......... 41% 16.2M 49s\n", - "217450K .......... .......... .......... .......... .......... 41% 13.1M 49s\n", - "217500K .......... .......... .......... .......... .......... 41% 9.89M 49s\n", - "217550K .......... .......... .......... .......... .......... 41% 4.15M 49s\n", - "217600K .......... .......... .......... .......... .......... 41% 10.1M 49s\n", - "217650K .......... .......... .......... .......... .......... 41% 12.6M 49s\n", - "217700K .......... .......... .......... .......... .......... 41% 10.5M 49s\n", - "217750K .......... .......... .......... .......... .......... 41% 12.0M 49s\n", - "217800K .......... .......... .......... .......... .......... 41% 8.26M 49s\n", - "217850K .......... .......... .......... .......... .......... 41% 12.7M 49s\n", - "217900K .......... .......... .......... .......... .......... 41% 8.83M 49s\n", - "217950K .......... .......... .......... .......... .......... 41% 11.1M 49s\n", - "218000K .......... .......... .......... .......... .......... 41% 12.8M 49s\n", - "218050K .......... .......... .......... .......... .......... 41% 10.7M 49s\n", - "218100K .......... .......... .......... .......... .......... 41% 11.1M 49s\n", - "218150K .......... .......... .......... .......... .......... 41% 11.8M 49s\n", - "218200K .......... .......... .......... .......... .......... 41% 7.76M 49s\n", - "218250K .......... .......... .......... .......... .......... 41% 12.2M 49s\n", - "218300K .......... .......... .......... .......... .......... 41% 11.1M 49s\n", - "218350K .......... .......... .......... .......... .......... 41% 10.4M 49s\n", - "218400K .......... .......... .......... .......... .......... 41% 11.5M 49s\n", - "218450K .......... .......... .......... .......... .......... 41% 11.4M 49s\n", - "218500K .......... .......... .......... .......... .......... 41% 11.7M 49s\n", - "218550K .......... .......... .......... .......... .......... 41% 11.4M 49s\n", - "218600K .......... .......... .......... .......... .......... 41% 8.19M 49s\n", - "218650K .......... .......... .......... .......... .......... 41% 12.2M 49s\n", - "218700K .......... .......... .......... .......... .......... 41% 10.3M 49s\n", - "218750K .......... .......... .......... .......... .......... 41% 10.1M 49s\n", - "218800K .......... .......... .......... .......... .......... 41% 11.1M 49s\n", - "218850K .......... .......... .......... .......... .......... 41% 11.8M 49s\n", - "218900K .......... .......... .......... .......... .......... 41% 10.8M 49s\n", - "218950K .......... .......... .......... .......... .......... 41% 12.0M 49s\n", - "219000K .......... .......... .......... .......... .......... 41% 8.41M 49s\n", - "219050K .......... .......... .......... .......... .......... 41% 11.2M 49s\n", - "219100K .......... .......... .......... .......... .......... 41% 11.3M 49s\n", - "219150K .......... .......... .......... .......... .......... 41% 12.2M 49s\n", - "219200K .......... .......... .......... .......... .......... 41% 10.5M 49s\n", - "219250K .......... .......... .......... .......... .......... 41% 10.1M 49s\n", - "219300K .......... .......... .......... .......... .......... 41% 12.5M 49s\n", - "219350K .......... .......... .......... .......... .......... 41% 10.7M 49s\n", - "219400K .......... .......... .......... .......... .......... 41% 7.58M 49s\n", - "219450K .......... .......... .......... .......... .......... 41% 11.1M 49s\n", - "219500K .......... .......... .......... .......... .......... 41% 11.2M 49s\n", - "219550K .......... .......... .......... .......... .......... 41% 11.2M 49s\n", - "219600K .......... .......... .......... .......... .......... 41% 11.7M 49s\n", - "219650K .......... .......... .......... .......... .......... 41% 11.2M 49s\n", - "219700K .......... .......... .......... .......... .......... 41% 11.9M 49s\n", - "219750K .......... .......... .......... .......... .......... 41% 11.0M 49s\n", - "219800K .......... .......... .......... .......... .......... 41% 8.68M 49s\n", - "219850K .......... .......... .......... .......... .......... 41% 11.4M 49s\n", - "219900K .......... .......... .......... .......... .......... 41% 11.5M 49s\n", - "219950K .......... .......... .......... .......... .......... 41% 10.1M 49s\n", - "220000K .......... .......... .......... .......... .......... 41% 10.8M 49s\n", - "220050K .......... .......... .......... .......... .......... 41% 11.4M 49s\n", - "220100K .......... .......... .......... .......... .......... 41% 11.8M 49s\n", - "220150K .......... .......... .......... .......... .......... 41% 11.6M 49s\n", - "220200K .......... .......... .......... .......... .......... 41% 8.84M 49s\n", - "220250K .......... .......... .......... .......... .......... 41% 11.2M 49s\n", - "220300K .......... .......... .......... .......... .......... 41% 9.12M 49s\n", - "220350K .......... .......... .......... .......... .......... 42% 13.1M 49s\n", - "220400K .......... .......... .......... .......... .......... 42% 12.7M 49s\n", - "220450K .......... .......... .......... .......... .......... 42% 11.6M 49s\n", - "220500K .......... .......... .......... .......... .......... 42% 10.3M 49s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "220550K .......... .......... .......... .......... .......... 42% 11.0M 49s\n", - "220600K .......... .......... .......... .......... .......... 42% 8.14M 49s\n", - "220650K .......... .......... .......... .......... .......... 42% 12.3M 48s\n", - "220700K .......... .......... .......... .......... .......... 42% 11.6M 48s\n", - "220750K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "220800K .......... .......... .......... .......... .......... 42% 11.9M 48s\n", - "220850K .......... .......... .......... .......... .......... 42% 9.29M 48s\n", - "220900K .......... .......... .......... .......... .......... 42% 11.4M 48s\n", - "220950K .......... .......... .......... .......... .......... 42% 11.8M 48s\n", - "221000K .......... .......... .......... .......... .......... 42% 8.77M 48s\n", - "221050K .......... .......... .......... .......... .......... 42% 12.0M 48s\n", - "221100K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "221150K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "221200K .......... .......... .......... .......... .......... 42% 10.6M 48s\n", - "221250K .......... .......... .......... .......... .......... 42% 10.2M 48s\n", - "221300K .......... .......... .......... .......... .......... 42% 11.9M 48s\n", - "221350K .......... .......... .......... .......... .......... 42% 11.0M 48s\n", - "221400K .......... .......... .......... .......... .......... 42% 8.38M 48s\n", - "221450K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "221500K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "221550K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "221600K .......... .......... .......... .......... .......... 42% 11.3M 48s\n", - "221650K .......... .......... .......... .......... .......... 42% 9.39M 48s\n", - "221700K .......... .......... .......... .......... .......... 42% 11.3M 48s\n", - "221750K .......... .......... .......... .......... .......... 42% 11.4M 48s\n", - "221800K .......... .......... .......... .......... .......... 42% 8.16M 48s\n", - "221850K .......... .......... .......... .......... .......... 42% 10.1M 48s\n", - "221900K .......... .......... .......... .......... .......... 42% 11.9M 48s\n", - "221950K .......... .......... .......... .......... .......... 42% 12.0M 48s\n", - "222000K .......... .......... .......... .......... .......... 42% 10.3M 48s\n", - "222050K .......... .......... .......... .......... .......... 42% 8.82M 48s\n", - "222100K .......... .......... .......... .......... .......... 42% 11.9M 48s\n", - "222150K .......... .......... .......... .......... .......... 42% 11.4M 48s\n", - "222200K .......... .......... .......... .......... .......... 42% 8.85M 48s\n", - "222250K .......... .......... .......... .......... .......... 42% 10.1M 48s\n", - "222300K .......... .......... .......... .......... .......... 42% 11.8M 48s\n", - "222350K .......... .......... .......... .......... .......... 42% 10.1M 48s\n", - "222400K .......... .......... .......... .......... .......... 42% 11.7M 48s\n", - "222450K .......... .......... .......... .......... .......... 42% 11.9M 48s\n", - "222500K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "222550K .......... .......... .......... .......... .......... 42% 9.99M 48s\n", - "222600K .......... .......... .......... .......... .......... 42% 9.71M 48s\n", - "222650K .......... .......... .......... .......... .......... 42% 10.8M 48s\n", - "222700K .......... .......... .......... .......... .......... 42% 10.4M 48s\n", - "222750K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "222800K .......... .......... .......... .......... .......... 42% 10.8M 48s\n", - "222850K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "222900K .......... .......... .......... .......... .......... 42% 11.1M 48s\n", - "222950K .......... .......... .......... .......... .......... 42% 12.1M 48s\n", - "223000K .......... .......... .......... .......... .......... 42% 8.75M 48s\n", - "223050K .......... .......... .......... .......... .......... 42% 11.3M 48s\n", - "223100K .......... .......... .......... .......... .......... 42% 11.4M 48s\n", - "223150K .......... .......... .......... .......... .......... 42% 11.1M 48s\n", - "223200K .......... .......... .......... .......... .......... 42% 11.2M 48s\n", - "223250K .......... .......... .......... .......... .......... 42% 11.0M 48s\n", - "223300K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "223350K .......... .......... .......... .......... .......... 42% 12.3M 48s\n", - "223400K .......... .......... .......... .......... .......... 42% 8.08M 48s\n", - "223450K .......... .......... .......... .......... .......... 42% 12.2M 48s\n", - "223500K .......... .......... .......... .......... .......... 42% 10.3M 48s\n", - "223550K .......... .......... .......... .......... .......... 42% 11.3M 48s\n", - "223600K .......... .......... .......... .......... .......... 42% 10.4M 48s\n", - "223650K .......... .......... .......... .......... .......... 42% 12.5M 48s\n", - "223700K .......... .......... .......... .......... .......... 42% 9.38M 48s\n", - "223750K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "223800K .......... .......... .......... .......... .......... 42% 9.17M 48s\n", - "223850K .......... .......... .......... .......... .......... 42% 10.6M 48s\n", - "223900K .......... .......... .......... .......... .......... 42% 11.7M 48s\n", - "223950K .......... .......... .......... .......... .......... 42% 11.0M 48s\n", - "224000K .......... .......... .......... .......... .......... 42% 11.2M 48s\n", - "224050K .......... .......... .......... .......... .......... 42% 11.8M 48s\n", - "224100K .......... .......... .......... .......... .......... 42% 11.2M 48s\n", - "224150K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "224200K .......... .......... .......... .......... .......... 42% 8.91M 48s\n", - "224250K .......... .......... .......... .......... .......... 42% 10.3M 48s\n", - "224300K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "224350K .......... .......... .......... .......... .......... 42% 11.2M 48s\n", - "224400K .......... .......... .......... .......... .......... 42% 11.5M 48s\n", - "224450K .......... .......... .......... .......... .......... 42% 11.6M 48s\n", - "224500K .......... .......... .......... .......... .......... 42% 10.9M 48s\n", - "224550K .......... .......... .......... .......... .......... 42% 11.7M 48s\n", - "224600K .......... .......... .......... .......... .......... 42% 8.41M 48s\n", - "224650K .......... .......... .......... .......... .......... 42% 11.8M 47s\n", - "224700K .......... .......... .......... .......... .......... 42% 11.6M 47s\n", - "224750K .......... .......... .......... .......... .......... 42% 10.7M 47s\n", - "224800K .......... .......... .......... .......... .......... 42% 9.50M 47s\n", - "224850K .......... .......... .......... .......... .......... 42% 14.1M 47s\n", - "224900K .......... .......... .......... .......... .......... 42% 11.9M 47s\n", - "224950K .......... .......... .......... .......... .......... 42% 10.0M 47s\n", - "225000K .......... .......... .......... .......... .......... 42% 8.33M 47s\n", - "225050K .......... .......... .......... .......... .......... 42% 11.7M 47s\n", - "225100K .......... .......... .......... .......... .......... 42% 10.8M 47s\n", - "225150K .......... .......... .......... .......... .......... 42% 12.2M 47s\n", - "225200K .......... .......... .......... .......... .......... 42% 11.2M 47s\n", - "225250K .......... .......... .......... .......... .......... 42% 8.14M 47s\n", - "225300K .......... .......... .......... .......... .......... 42% 10.7M 47s\n", - "225350K .......... .......... .......... .......... .......... 42% 13.4M 47s\n", - "225400K .......... .......... .......... .......... .......... 42% 7.70M 47s\n", - "225450K .......... .......... .......... .......... .......... 42% 12.8M 47s\n", - "225500K .......... .......... .......... .......... .......... 42% 11.0M 47s\n", - "225550K .......... .......... .......... .......... .......... 42% 11.5M 47s\n", - "225600K .......... .......... .......... .......... .......... 43% 10.4M 47s\n", - "225650K .......... .......... .......... .......... .......... 43% 12.8M 47s\n", - "225700K .......... .......... .......... .......... .......... 43% 10.3M 47s\n", - "225750K .......... .......... .......... .......... .......... 43% 12.5M 47s\n", - "225800K .......... .......... .......... .......... .......... 43% 8.20M 47s\n", - "225850K .......... .......... .......... .......... .......... 43% 11.6M 47s\n", - "225900K .......... .......... .......... .......... .......... 43% 12.2M 47s\n", - "225950K .......... .......... .......... .......... .......... 43% 8.03M 47s\n", - "226000K .......... .......... .......... .......... .......... 43% 15.4M 47s\n", - "226050K .......... .......... .......... .......... .......... 43% 10.9M 47s\n", - "226100K .......... .......... .......... .......... .......... 43% 11.8M 47s\n", - "226150K .......... .......... .......... .......... .......... 43% 11.9M 47s\n", - "226200K .......... .......... .......... .......... .......... 43% 9.02M 47s\n", - "226250K .......... .......... .......... .......... .......... 43% 9.90M 47s\n", - "226300K .......... .......... .......... .......... .......... 43% 11.2M 47s\n", - "226350K .......... .......... .......... .......... .......... 43% 11.6M 47s\n", - "226400K .......... .......... .......... .......... .......... 43% 12.3M 47s\n", - "226450K .......... .......... .......... .......... .......... 43% 10.6M 47s\n", - "226500K .......... .......... .......... .......... .......... 43% 9.97M 47s\n", - "226550K .......... .......... .......... .......... .......... 43% 13.4M 47s\n", - "226600K .......... .......... .......... .......... .......... 43% 8.46M 47s\n", - "226650K .......... .......... .......... .......... .......... 43% 11.3M 47s\n", - "226700K .......... .......... .......... .......... .......... 43% 11.6M 47s\n", - "226750K .......... .......... .......... .......... .......... 43% 9.20M 47s\n", - "226800K .......... .......... .......... .......... .......... 43% 11.3M 47s\n", - "226850K .......... .......... .......... .......... .......... 43% 10.4M 47s\n", - "226900K .......... .......... .......... .......... .......... 43% 12.2M 47s\n", - "226950K .......... .......... .......... .......... .......... 43% 11.5M 47s\n", - "227000K .......... .......... .......... .......... .......... 43% 8.67M 47s\n", - "227050K .......... .......... .......... .......... .......... 43% 11.4M 47s\n", - "227100K .......... .......... .......... .......... .......... 43% 10.8M 47s\n", - "227150K .......... .......... .......... .......... .......... 43% 10.8M 47s\n", - "227200K .......... .......... .......... .......... .......... 43% 10.7M 47s\n", - "227250K .......... .......... .......... .......... .......... 43% 13.1M 47s\n", - "227300K .......... .......... .......... .......... .......... 43% 10.6M 47s\n", - "227350K .......... .......... .......... .......... .......... 43% 11.8M 47s\n", - "227400K .......... .......... .......... .......... .......... 43% 8.21M 47s\n", - "227450K .......... .......... .......... .......... .......... 43% 12.6M 47s\n", - "227500K .......... .......... .......... .......... .......... 43% 12.1M 47s\n", - "227550K .......... .......... .......... .......... .......... 43% 10.6M 47s\n", - "227600K .......... .......... .......... .......... .......... 43% 11.3M 47s\n", - "227650K .......... .......... .......... .......... .......... 43% 11.0M 47s\n", - "227700K .......... .......... .......... .......... .......... 43% 9.50M 47s\n", - "227750K .......... .......... .......... .......... .......... 43% 11.6M 47s\n", - "227800K .......... .......... .......... .......... .......... 43% 8.80M 47s\n", - "227850K .......... .......... .......... .......... .......... 43% 11.7M 47s\n", - "227900K .......... .......... .......... .......... .......... 43% 11.6M 47s\n", - "227950K .......... .......... .......... .......... .......... 43% 10.4M 47s\n", - "228000K .......... .......... .......... .......... .......... 43% 7.50M 47s\n", - "228050K .......... .......... .......... .......... .......... 43% 23.1M 47s\n", - "228100K .......... .......... .......... .......... .......... 43% 11.9M 47s\n", - "228150K .......... .......... .......... .......... .......... 43% 11.9M 47s\n", - "228200K .......... .......... .......... .......... .......... 43% 8.44M 47s\n", - "228250K .......... .......... .......... .......... .......... 43% 11.7M 47s\n", - "228300K .......... .......... .......... .......... .......... 43% 7.55M 47s\n", - "228350K .......... .......... .......... .......... .......... 43% 11.8M 47s\n", - "228400K .......... .......... .......... .......... .......... 43% 12.0M 47s\n", - "228450K .......... .......... .......... .......... .......... 43% 10.1M 47s\n", - "228500K .......... .......... .......... .......... .......... 43% 9.06M 47s\n", - "228550K .......... .......... .......... .......... .......... 43% 12.9M 47s\n", - "228600K .......... .......... .......... .......... .......... 43% 8.44M 47s\n", - "228650K .......... .......... .......... .......... .......... 43% 10.4M 47s\n", - "228700K .......... .......... .......... .......... .......... 43% 9.93M 47s\n", - "228750K .......... .......... .......... .......... .......... 43% 16.2M 46s\n", - "228800K .......... .......... .......... .......... .......... 43% 10.7M 46s\n", - "228850K .......... .......... .......... .......... .......... 43% 11.5M 46s\n", - "228900K .......... .......... .......... .......... .......... 43% 10.5M 46s\n", - "228950K .......... .......... .......... .......... .......... 43% 10.9M 46s\n", - "229000K .......... .......... .......... .......... .......... 43% 8.38M 46s\n", - "229050K .......... .......... .......... .......... .......... 43% 13.0M 46s\n", - "229100K .......... .......... .......... .......... .......... 43% 11.5M 46s\n", - "229150K .......... .......... .......... .......... .......... 43% 10.7M 46s\n", - "229200K .......... .......... .......... .......... .......... 43% 12.3M 46s\n", - "229250K .......... .......... .......... .......... .......... 43% 9.43M 46s\n", - "229300K .......... .......... .......... .......... .......... 43% 11.1M 46s\n", - "229350K .......... .......... .......... .......... .......... 43% 13.9M 46s\n", - "229400K .......... .......... .......... .......... .......... 43% 8.94M 46s\n", - "229450K .......... .......... .......... .......... .......... 43% 11.0M 46s\n", - "229500K .......... .......... .......... .......... .......... 43% 9.84M 46s\n", - "229550K .......... .......... .......... .......... .......... 43% 13.9M 46s\n", - "229600K .......... .......... .......... .......... .......... 43% 10.9M 46s\n", - "229650K .......... .......... .......... .......... .......... 43% 12.0M 46s\n", - "229700K .......... .......... .......... .......... .......... 43% 11.3M 46s\n", - "229750K .......... .......... .......... .......... .......... 43% 11.7M 46s\n", - "229800K .......... .......... .......... .......... .......... 43% 8.72M 46s\n", - "229850K .......... .......... .......... .......... .......... 43% 10.9M 46s\n", - "229900K .......... .......... .......... .......... .......... 43% 11.0M 46s\n", - "229950K .......... .......... .......... .......... .......... 43% 12.7M 46s\n", - "230000K .......... .......... .......... .......... .......... 43% 11.1M 46s\n", - "230050K .......... .......... .......... .......... .......... 43% 10.7M 46s\n", - "230100K .......... .......... .......... .......... .......... 43% 12.2M 46s\n", - "230150K .......... .......... .......... .......... .......... 43% 11.2M 46s\n", - "230200K .......... .......... .......... .......... .......... 43% 8.45M 46s\n", - "230250K .......... .......... .......... .......... .......... 43% 11.8M 46s\n", - "230300K .......... .......... .......... .......... .......... 43% 11.5M 46s\n", - "230350K .......... .......... .......... .......... .......... 43% 10.6M 46s\n", - "230400K .......... .......... .......... .......... .......... 43% 12.3M 46s\n", - "230450K .......... .......... .......... .......... .......... 43% 11.4M 46s\n", - "230500K .......... .......... .......... .......... .......... 43% 11.1M 46s\n", - "230550K .......... .......... .......... .......... .......... 43% 11.2M 46s\n", - "230600K .......... .......... .......... .......... .......... 43% 8.97M 46s\n", - "230650K .......... .......... .......... .......... .......... 43% 11.7M 46s\n", - "230700K .......... .......... .......... .......... .......... 43% 10.9M 46s\n", - "230750K .......... .......... .......... .......... .......... 43% 12.1M 46s\n", - "230800K .......... .......... .......... .......... .......... 43% 11.0M 46s\n", - "230850K .......... .......... .......... .......... .......... 44% 8.62M 46s\n", - "230900K .......... .......... .......... .......... .......... 44% 15.8M 46s\n", - "230950K .......... .......... .......... .......... .......... 44% 9.49M 46s\n", - "231000K .......... .......... .......... .......... .......... 44% 8.51M 46s\n", - "231050K .......... .......... .......... .......... .......... 44% 2.73M 46s\n", - "231100K .......... .......... .......... .......... .......... 44% 79.1M 46s\n", - "231150K .......... .......... .......... .......... .......... 44% 84.6M 46s\n", - "231200K .......... .......... .......... .......... .......... 44% 76.3M 46s\n", - "231250K .......... .......... .......... .......... .......... 44% 15.6M 46s\n", - "231300K .......... .......... .......... .......... .......... 44% 6.57M 46s\n", - "231350K .......... .......... .......... .......... .......... 44% 127M 46s\n", - "231400K .......... .......... .......... .......... .......... 44% 3.18M 46s\n", - "231450K .......... .......... .......... .......... .......... 44% 11.6M 46s\n", - "231500K .......... .......... .......... .......... .......... 44% 9.02M 46s\n", - "231550K .......... .......... .......... .......... .......... 44% 11.4M 46s\n", - "231600K .......... .......... .......... .......... .......... 44% 1.19M 46s\n", - "231650K .......... .......... .......... .......... .......... 44% 173M 46s\n", - "231700K .......... .......... .......... .......... .......... 44% 370M 46s\n", - "231750K .......... .......... .......... .......... .......... 44% 316M 46s\n", - "231800K .......... .......... .......... .......... .......... 44% 327M 46s\n", - "231850K .......... .......... .......... .......... .......... 44% 314M 46s\n", - "231900K .......... .......... .......... .......... .......... 44% 289M 46s\n", - "231950K .......... .......... .......... .......... .......... 44% 274M 46s\n", - "232000K .......... .......... .......... .......... .......... 44% 345M 46s\n", - "232050K .......... .......... .......... .......... .......... 44% 34.1M 46s\n", - "232100K .......... .......... .......... .......... .......... 44% 9.22M 46s\n", - "232150K .......... .......... .......... .......... .......... 44% 9.02M 46s\n", - "232200K .......... .......... .......... .......... .......... 44% 5.31M 46s\n", - "232250K .......... .......... .......... .......... .......... 44% 9.26M 46s\n", - "232300K .......... .......... .......... .......... .......... 44% 10.4M 46s\n", - "232350K .......... .......... .......... .......... .......... 44% 10.5M 46s\n", - "232400K .......... .......... .......... .......... .......... 44% 7.00M 46s\n", - "232450K .......... .......... .......... .......... .......... 44% 6.87M 46s\n", - "232500K .......... .......... .......... .......... .......... 44% 6.51M 46s\n", - "232550K .......... .......... .......... .......... .......... 44% 14.8M 46s\n", - "232600K .......... .......... .......... .......... .......... 44% 8.47M 46s\n", - "232650K .......... .......... .......... .......... .......... 44% 6.65M 46s\n", - "232700K .......... .......... .......... .......... .......... 44% 5.68M 46s\n", - "232750K .......... .......... .......... .......... .......... 44% 11.6M 46s\n", - "232800K .......... .......... .......... .......... .......... 44% 8.34M 46s\n", - "232850K .......... .......... .......... .......... .......... 44% 11.8M 46s\n", - "232900K .......... .......... .......... .......... .......... 44% 7.24M 46s\n", - "232950K .......... .......... .......... .......... .......... 44% 7.71M 46s\n", - "233000K .......... .......... .......... .......... .......... 44% 7.89M 46s\n", - "233050K .......... .......... .......... .......... .......... 44% 8.90M 46s\n", - "233100K .......... .......... .......... .......... .......... 44% 10.4M 45s\n", - "233150K .......... .......... .......... .......... .......... 44% 6.29M 45s\n", - "233200K .......... .......... .......... .......... .......... 44% 10.7M 45s\n", - "233250K .......... .......... .......... .......... .......... 44% 8.30M 45s\n", - "233300K .......... .......... .......... .......... .......... 44% 8.34M 45s\n", - "233350K .......... .......... .......... .......... .......... 44% 10.4M 45s\n", - "233400K .......... .......... .......... .......... .......... 44% 5.96M 45s\n", - "233450K .......... .......... .......... .......... .......... 44% 10.3M 45s\n", - "233500K .......... .......... .......... .......... .......... 44% 8.87M 45s\n", - "233550K .......... .......... .......... .......... .......... 44% 8.93M 45s\n", - "233600K .......... .......... .......... .......... .......... 44% 7.25M 45s\n", - "233650K .......... .......... .......... .......... .......... 44% 10.3M 45s\n", - "233700K .......... .......... .......... .......... .......... 44% 9.05M 45s\n", - "233750K .......... .......... .......... .......... .......... 44% 11.0M 45s\n", - "233800K .......... .......... .......... .......... .......... 44% 5.92M 45s\n", - "233850K .......... .......... .......... .......... .......... 44% 9.02M 45s\n", - "233900K .......... .......... .......... .......... .......... 44% 7.70M 45s\n", - "233950K .......... .......... .......... .......... .......... 44% 11.6M 45s\n", - "234000K .......... .......... .......... .......... .......... 44% 7.57M 45s\n", - "234050K .......... .......... .......... .......... .......... 44% 9.37M 45s\n", - "234100K .......... .......... .......... .......... .......... 44% 10.3M 45s\n", - "234150K .......... .......... .......... .......... .......... 44% 7.06M 45s\n", - "234200K .......... .......... .......... .......... .......... 44% 9.41M 45s\n", - "234250K .......... .......... .......... .......... .......... 44% 7.55M 45s\n", - "234300K .......... .......... .......... .......... .......... 44% 9.54M 45s\n", - "234350K .......... .......... .......... .......... .......... 44% 7.59M 45s\n", - "234400K .......... .......... .......... .......... .......... 44% 10.5M 45s\n", - "234450K .......... .......... .......... .......... .......... 44% 11.5M 45s\n", - "234500K .......... .......... .......... .......... .......... 44% 6.66M 45s\n", - "234550K .......... .......... .......... .......... .......... 44% 10.9M 45s\n", - "234600K .......... .......... .......... .......... .......... 44% 6.42M 45s\n", - "234650K .......... .......... .......... .......... .......... 44% 11.3M 45s\n", - "234700K .......... .......... .......... .......... .......... 44% 7.30M 45s\n", - "234750K .......... .......... .......... .......... .......... 44% 10.6M 45s\n", - "234800K .......... .......... .......... .......... .......... 44% 8.34M 45s\n", - "234850K .......... .......... .......... .......... .......... 44% 10.1M 45s\n", - "234900K .......... .......... .......... .......... .......... 44% 11.3M 45s\n", - "234950K .......... .......... .......... .......... .......... 44% 6.04M 45s\n", - "235000K .......... .......... .......... .......... .......... 44% 8.85M 45s\n", - "235050K .......... .......... .......... .......... .......... 44% 9.09M 45s\n", - "235100K .......... .......... .......... .......... .......... 44% 8.57M 45s\n", - "235150K .......... .......... .......... .......... .......... 44% 9.43M 45s\n", - "235200K .......... .......... .......... .......... .......... 44% 7.34M 45s\n", - "235250K .......... .......... .......... .......... .......... 44% 11.2M 45s\n", - "235300K .......... .......... .......... .......... .......... 44% 7.84M 45s\n", - "235350K .......... .......... .......... .......... .......... 44% 9.18M 45s\n", - "235400K .......... .......... .......... .......... .......... 44% 6.95M 45s\n", - "235450K .......... .......... .......... .......... .......... 44% 9.86M 45s\n", - "235500K .......... .......... .......... .......... .......... 44% 8.34M 45s\n", - "235550K .......... .......... .......... .......... .......... 44% 9.75M 45s\n", - "235600K .......... .......... .......... .......... .......... 44% 10.1M 45s\n", - "235650K .......... .......... .......... .......... .......... 44% 10.1M 45s\n", - "235700K .......... .......... .......... .......... .......... 44% 9.41M 45s\n", - "235750K .......... .......... .......... .......... .......... 44% 8.25M 45s\n", - "235800K .......... .......... .......... .......... .......... 44% 6.59M 45s\n", - "235850K .......... .......... .......... .......... .......... 44% 10.2M 45s\n", - "235900K .......... .......... .......... .......... .......... 44% 9.86M 45s\n", - "235950K .......... .......... .......... .......... .......... 44% 9.36M 45s\n", - "236000K .......... .......... .......... .......... .......... 44% 9.24M 45s\n", - "236050K .......... .......... .......... .......... .......... 44% 7.35M 45s\n", - "236100K .......... .......... .......... .......... .......... 45% 10.7M 45s\n", - "236150K .......... .......... .......... .......... .......... 45% 10.2M 45s\n", - "236200K .......... .......... .......... .......... .......... 45% 8.11M 45s\n", - "236250K .......... .......... .......... .......... .......... 45% 8.89M 45s\n", - "236300K .......... .......... .......... .......... .......... 45% 6.81M 45s\n", - "236350K .......... .......... .......... .......... .......... 45% 7.78M 45s\n", - "236400K .......... .......... .......... .......... .......... 45% 10.0M 45s\n", - "236450K .......... .......... .......... .......... .......... 45% 9.41M 45s\n", - "236500K .......... .......... .......... .......... .......... 45% 11.6M 45s\n", - "236550K .......... .......... .......... .......... .......... 45% 10.2M 45s\n", - "236600K .......... .......... .......... .......... .......... 45% 6.41M 45s\n", - "236650K .......... .......... .......... .......... .......... 45% 9.10M 45s\n", - "236700K .......... .......... .......... .......... .......... 45% 9.95M 45s\n", - "236750K .......... .......... .......... .......... .......... 45% 10.9M 45s\n", - "236800K .......... .......... .......... .......... .......... 45% 9.75M 45s\n", - "236850K .......... .......... .......... .......... .......... 45% 7.81M 45s\n", - "236900K .......... .......... .......... .......... .......... 45% 9.99M 45s\n", - "236950K .......... .......... .......... .......... .......... 45% 9.04M 45s\n", - "237000K .......... .......... .......... .......... .......... 45% 7.55M 45s\n", - "237050K .......... .......... .......... .......... .......... 45% 14.2M 45s\n", - "237100K .......... .......... .......... .......... .......... 45% 7.36M 45s\n", - "237150K .......... .......... .......... .......... .......... 45% 9.15M 45s\n", - "237200K .......... .......... .......... .......... .......... 45% 10.6M 45s\n", - "237250K .......... .......... .......... .......... .......... 45% 10.4M 45s\n", - "237300K .......... .......... .......... .......... .......... 45% 7.95M 45s\n", - "237350K .......... .......... .......... .......... .......... 45% 6.71M 45s\n", - "237400K .......... .......... .......... .......... .......... 45% 11.6M 45s\n", - "237450K .......... .......... .......... .......... .......... 45% 10.1M 45s\n", - "237500K .......... .......... .......... .......... .......... 45% 8.56M 45s\n", - "237550K .......... .......... .......... .......... .......... 45% 11.8M 45s\n", - "237600K .......... .......... .......... .......... .......... 45% 7.94M 45s\n", - "237650K .......... .......... .......... .......... .......... 45% 10.1M 45s\n", - "237700K .......... .......... .......... .......... .......... 45% 9.57M 45s\n", - "237750K .......... .......... .......... .......... .......... 45% 11.1M 45s\n", - "237800K .......... .......... .......... .......... .......... 45% 6.81M 45s\n", - "237850K .......... .......... .......... .......... .......... 45% 8.78M 44s\n", - "237900K .......... .......... .......... .......... .......... 45% 10.3M 44s\n", - "237950K .......... .......... .......... .......... .......... 45% 10.9M 44s\n", - "238000K .......... .......... .......... .......... .......... 45% 7.01M 44s\n", - "238050K .......... .......... .......... .......... .......... 45% 12.5M 44s\n", - "238100K .......... .......... .......... .......... .......... 45% 11.2M 44s\n", - "238150K .......... .......... .......... .......... .......... 45% 8.51M 44s\n", - "238200K .......... .......... .......... .......... .......... 45% 8.71M 44s\n", - "238250K .......... .......... .......... .......... .......... 45% 8.41M 44s\n", - "238300K .......... .......... .......... .......... .......... 45% 8.97M 44s\n", - "238350K .......... .......... .......... .......... .......... 45% 12.1M 44s\n", - "238400K .......... .......... .......... .......... .......... 45% 8.39M 44s\n", - "238450K .......... .......... .......... .......... .......... 45% 10.7M 44s\n", - "238500K .......... .......... .......... .......... .......... 45% 10.3M 44s\n", - "238550K .......... .......... .......... .......... .......... 45% 8.21M 44s\n", - "238600K .......... .......... .......... .......... .......... 45% 7.24M 44s\n", - "238650K .......... .......... .......... .......... .......... 45% 9.79M 44s\n", - "238700K .......... .......... .......... .......... .......... 45% 11.6M 44s\n", - "238750K .......... .......... .......... .......... .......... 45% 9.29M 44s\n", - "238800K .......... .......... .......... .......... .......... 45% 7.99M 44s\n", - "238850K .......... .......... .......... .......... .......... 45% 10.5M 44s\n", - "238900K .......... .......... .......... .......... .......... 45% 11.3M 44s\n", - "238950K .......... .......... .......... .......... .......... 45% 10.7M 44s\n", - "239000K .......... .......... .......... .......... .......... 45% 7.21M 44s\n", - "239050K .......... .......... .......... .......... .......... 45% 8.04M 44s\n", - "239100K .......... .......... .......... .......... .......... 45% 11.4M 44s\n", - "239150K .......... .......... .......... .......... .......... 45% 7.28M 44s\n", - "239200K .......... .......... .......... .......... .......... 45% 15.0M 44s\n", - "239250K .......... .......... .......... .......... .......... 45% 10.1M 44s\n", - "239300K .......... .......... .......... .......... .......... 45% 10.5M 44s\n", - "239350K .......... .......... .......... .......... .......... 45% 6.61M 44s\n", - "239400K .......... .......... .......... .......... .......... 45% 7.02M 44s\n", - "239450K .......... .......... .......... .......... .......... 45% 14.0M 44s\n", - "239500K .......... .......... .......... .......... .......... 45% 10.3M 44s\n", - "239550K .......... .......... .......... .......... .......... 45% 11.1M 44s\n", - "239600K .......... .......... .......... .......... .......... 45% 6.66M 44s\n", - "239650K .......... .......... .......... .......... .......... 45% 12.7M 44s\n", - "239700K .......... .......... .......... .......... .......... 45% 10.0M 44s\n", - "239750K .......... .......... .......... .......... .......... 45% 10.9M 44s\n", - "239800K .......... .......... .......... .......... .......... 45% 6.00M 44s\n", - "239850K .......... .......... .......... .......... .......... 45% 10.3M 44s\n", - "239900K .......... .......... .......... .......... .......... 45% 11.9M 44s\n", - "239950K .......... .......... .......... .......... .......... 45% 9.92M 44s\n", - "240000K .......... .......... .......... .......... .......... 45% 12.0M 44s\n", - "240050K .......... .......... .......... .......... .......... 45% 8.32M 44s\n", - "240100K .......... .......... .......... .......... .......... 45% 9.22M 44s\n", - "240150K .......... .......... .......... .......... .......... 45% 10.5M 44s\n", - "240200K .......... .......... .......... .......... .......... 45% 5.99M 44s\n", - "240250K .......... .......... .......... .......... .......... 45% 9.37M 44s\n", - "240300K .......... .......... .......... .......... .......... 45% 13.0M 44s\n", - "240350K .......... .......... .......... .......... .......... 45% 10.7M 44s\n", - "240400K .......... .......... .......... .......... .......... 45% 12.1M 44s\n", - "240450K .......... .......... .......... .......... .......... 45% 7.19M 44s\n", - "240500K .......... .......... .......... .......... .......... 45% 10.1M 44s\n", - "240550K .......... .......... .......... .......... .......... 45% 10.5M 44s\n", - "240600K .......... .......... .......... .......... .......... 45% 8.05M 44s\n", - "240650K .......... .......... .......... .......... .......... 45% 12.0M 44s\n", - "240700K .......... .......... .......... .......... .......... 45% 7.62M 44s\n", - "240750K .......... .......... .......... .......... .......... 45% 10.3M 44s\n", - "240800K .......... .......... .......... .......... .......... 45% 11.3M 44s\n", - "240850K .......... .......... .......... .......... .......... 45% 10.2M 44s\n", - "240900K .......... .......... .......... .......... .......... 45% 11.5M 44s\n", - "240950K .......... .......... .......... .......... .......... 45% 6.59M 44s\n", - "241000K .......... .......... .......... .......... .......... 45% 8.32M 44s\n", - "241050K .......... .......... .......... .......... .......... 45% 11.8M 44s\n", - "241100K .......... .......... .......... .......... .......... 45% 11.0M 44s\n", - "241150K .......... .......... .......... .......... .......... 45% 12.1M 44s\n", - "241200K .......... .......... .......... .......... .......... 45% 7.46M 44s\n", - "241250K .......... .......... .......... .......... .......... 45% 9.76M 44s\n", - "241300K .......... .......... .......... .......... .......... 45% 11.5M 44s\n", - "241350K .......... .......... .......... .......... .......... 46% 10.5M 44s\n", - "241400K .......... .......... .......... .......... .......... 46% 5.55M 44s\n", - "241450K .......... .......... .......... .......... .......... 46% 13.8M 44s\n", - "241500K .......... .......... .......... .......... .......... 46% 9.06M 44s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "241550K .......... .......... .......... .......... .......... 46% 12.2M 44s\n", - "241600K .......... .......... .......... .......... .......... 46% 12.2M 44s\n", - "241650K .......... .......... .......... .......... .......... 46% 4.23M 44s\n", - "241700K .......... .......... .......... .......... .......... 46% 11.4M 44s\n", - "241750K .......... .......... .......... .......... .......... 46% 11.7M 44s\n", - "241800K .......... .......... .......... .......... .......... 46% 8.96M 44s\n", - "241850K .......... .......... .......... .......... .......... 46% 10.3M 44s\n", - "241900K .......... .......... .......... .......... .......... 46% 6.46M 44s\n", - "241950K .......... .......... .......... .......... .......... 46% 10.8M 44s\n", - "242000K .......... .......... .......... .......... .......... 46% 11.3M 44s\n", - "242050K .......... .......... .......... .......... .......... 46% 11.4M 44s\n", - "242100K .......... .......... .......... .......... .......... 46% 10.5M 44s\n", - "242150K .......... .......... .......... .......... .......... 46% 13.1M 44s\n", - "242200K .......... .......... .......... .......... .......... 46% 4.67M 44s\n", - "242250K .......... .......... .......... .......... .......... 46% 12.5M 44s\n", - "242300K .......... .......... .......... .......... .......... 46% 14.3M 44s\n", - "242350K .......... .......... .......... .......... .......... 46% 10.5M 44s\n", - "242400K .......... .......... .......... .......... .......... 46% 11.2M 44s\n", - "242450K .......... .......... .......... .......... .......... 46% 5.54M 44s\n", - "242500K .......... .......... .......... .......... .......... 46% 9.63M 43s\n", - "242550K .......... .......... .......... .......... .......... 46% 12.5M 43s\n", - "242600K .......... .......... .......... .......... .......... 46% 9.64M 43s\n", - "242650K .......... .......... .......... .......... .......... 46% 6.98M 43s\n", - "242700K .......... .......... .......... .......... .......... 46% 14.7M 43s\n", - "242750K .......... .......... .......... .......... .......... 46% 6.86M 43s\n", - "242800K .......... .......... .......... .......... .......... 46% 11.2M 43s\n", - "242850K .......... .......... .......... .......... .......... 46% 11.9M 43s\n", - "242900K .......... .......... .......... .......... .......... 46% 9.78M 43s\n", - "242950K .......... .......... .......... .......... .......... 46% 15.0M 43s\n", - "243000K .......... .......... .......... .......... .......... 46% 5.48M 43s\n", - "243050K .......... .......... .......... .......... .......... 46% 9.50M 43s\n", - "243100K .......... .......... .......... .......... .......... 46% 8.81M 43s\n", - "243150K .......... .......... .......... .......... .......... 46% 8.53M 43s\n", - "243200K .......... .......... .......... .......... .......... 46% 11.3M 43s\n", - "243250K .......... .......... .......... .......... .......... 46% 11.7M 43s\n", - "243300K .......... .......... .......... .......... .......... 46% 10.7M 43s\n", - "243350K .......... .......... .......... .......... .......... 46% 12.0M 43s\n", - "243400K .......... .......... .......... .......... .......... 46% 6.01M 43s\n", - "243450K .......... .......... .......... .......... .......... 46% 11.7M 43s\n", - "243500K .......... .......... .......... .......... .......... 46% 11.1M 43s\n", - "243550K .......... .......... .......... .......... .......... 46% 10.8M 43s\n", - "243600K .......... .......... .......... .......... .......... 46% 7.60M 43s\n", - "243650K .......... .......... .......... .......... .......... 46% 11.9M 43s\n", - "243700K .......... .......... .......... .......... .......... 46% 11.9M 43s\n", - "243750K .......... .......... .......... .......... .......... 46% 10.8M 43s\n", - "243800K .......... .......... .......... .......... .......... 46% 8.12M 43s\n", - "243850K .......... .......... .......... .......... .......... 46% 8.73M 43s\n", - "243900K .......... .......... .......... .......... .......... 46% 9.11M 43s\n", - "243950K .......... .......... .......... .......... .......... 46% 9.72M 43s\n", - "244000K .......... .......... .......... .......... .......... 46% 16.7M 43s\n", - "244050K .......... .......... .......... .......... .......... 46% 8.81M 43s\n", - "244100K .......... .......... .......... .......... .......... 46% 10.2M 43s\n", - "244150K .......... .......... .......... .......... .......... 46% 6.42M 43s\n", - "244200K .......... .......... .......... .......... .......... 46% 8.11M 43s\n", - "244250K .......... .......... .......... .......... .......... 46% 8.51M 43s\n", - "244300K .......... .......... .......... .......... .......... 46% 18.1M 43s\n", - "244350K .......... .......... .......... .......... .......... 46% 11.5M 43s\n", - "244400K .......... .......... .......... .......... .......... 46% 8.77M 43s\n", - "244450K .......... .......... .......... .......... .......... 46% 7.51M 43s\n", - "244500K .......... .......... .......... .......... .......... 46% 11.3M 43s\n", - "244550K .......... .......... .......... .......... .......... 46% 10.1M 43s\n", - "244600K .......... .......... .......... .......... .......... 46% 7.68M 43s\n", - "244650K .......... .......... .......... .......... .......... 46% 15.2M 43s\n", - "244700K .......... .......... .......... .......... .......... 46% 12.1M 43s\n", - "244750K .......... .......... .......... .......... .......... 46% 7.73M 43s\n", - "244800K .......... .......... .......... .......... .......... 46% 7.95M 43s\n", - "244850K .......... .......... .......... .......... .......... 46% 12.2M 43s\n", - "244900K .......... .......... .......... .......... .......... 46% 11.5M 43s\n", - "244950K .......... .......... .......... .......... .......... 46% 11.3M 43s\n", - "245000K .......... .......... .......... .......... .......... 46% 9.11M 43s\n", - "245050K .......... .......... .......... .......... .......... 46% 8.27M 43s\n", - "245100K .......... .......... .......... .......... .......... 46% 8.30M 43s\n", - "245150K .......... .......... .......... .......... .......... 46% 10.9M 43s\n", - "245200K .......... .......... .......... .......... .......... 46% 10.1M 43s\n", - "245250K .......... .......... .......... .......... .......... 46% 6.68M 43s\n", - "245300K .......... .......... .......... .......... .......... 46% 5.25M 43s\n", - "245350K .......... .......... .......... .......... .......... 46% 44.2M 43s\n", - "245400K .......... .......... .......... .......... .......... 46% 21.2M 43s\n", - "245450K .......... .......... .......... .......... .......... 46% 6.13M 43s\n", - "245500K .......... .......... .......... .......... .......... 46% 15.3M 43s\n", - "245550K .......... .......... .......... .......... .......... 46% 3.95M 43s\n", - "245600K .......... .......... .......... .......... .......... 46% 30.2M 43s\n", - "245650K .......... .......... .......... .......... .......... 46% 9.70M 43s\n", - "245700K .......... .......... .......... .......... .......... 46% 9.75M 43s\n", - "245750K .......... .......... .......... .......... .......... 46% 7.02M 43s\n", - "245800K .......... .......... .......... .......... .......... 46% 16.1M 43s\n", - "245850K .......... .......... .......... .......... .......... 46% 8.53M 43s\n", - "245900K .......... .......... .......... .......... .......... 46% 12.8M 43s\n", - "245950K .......... .......... .......... .......... .......... 46% 9.07M 43s\n", - "246000K .......... .......... .......... .......... .......... 46% 3.78M 43s\n", - "246050K .......... .......... .......... .......... .......... 46% 122M 43s\n", - "246100K .......... .......... .......... .......... .......... 46% 3.25M 43s\n", - "246150K .......... .......... .......... .......... .......... 46% 36.6M 43s\n", - "246200K .......... .......... .......... .......... .......... 46% 108M 43s\n", - "246250K .......... .......... .......... .......... .......... 46% 13.8M 43s\n", - "246300K .......... .......... .......... .......... .......... 46% 6.83M 43s\n", - "246350K .......... .......... .......... .......... .......... 46% 3.69M 43s\n", - "246400K .......... .......... .......... .......... .......... 46% 17.2M 43s\n", - "246450K .......... .......... .......... .......... .......... 46% 5.82M 43s\n", - "246500K .......... .......... .......... .......... .......... 46% 40.5M 43s\n", - "246550K .......... .......... .......... .......... .......... 46% 6.30M 43s\n", - "246600K .......... .......... .......... .......... .......... 47% 10.1M 43s\n", - "246650K .......... .......... .......... .......... .......... 47% 17.8M 43s\n", - "246700K .......... .......... .......... .......... .......... 47% 10.4M 43s\n", - "246750K .......... .......... .......... .......... .......... 47% 5.31M 43s\n", - "246800K .......... .......... .......... .......... .......... 47% 9.27M 43s\n", - "246850K .......... .......... .......... .......... .......... 47% 10.7M 43s\n", - "246900K .......... .......... .......... .......... .......... 47% 6.66M 43s\n", - "246950K .......... .......... .......... .......... .......... 47% 31.8M 43s\n", - "247000K .......... .......... .......... .......... .......... 47% 8.27M 43s\n", - "247050K .......... .......... .......... .......... .......... 47% 11.1M 43s\n", - "247100K .......... .......... .......... .......... .......... 47% 4.88M 43s\n", - "247150K .......... .......... .......... .......... .......... 47% 11.4M 43s\n", - "247200K .......... .......... .......... .......... .......... 47% 3.98M 43s\n", - "247250K .......... .......... .......... .......... .......... 47% 149M 43s\n", - "247300K .......... .......... .......... .......... .......... 47% 23.3M 42s\n", - "247350K .......... .......... .......... .......... .......... 47% 10.7M 42s\n", - "247400K .......... .......... .......... .......... .......... 47% 6.89M 42s\n", - "247450K .......... .......... .......... .......... .......... 47% 5.15M 42s\n", - "247500K .......... .......... .......... .......... .......... 47% 9.95M 42s\n", - "247550K .......... .......... .......... .......... .......... 47% 9.86M 42s\n", - "247600K .......... .......... .......... .......... .......... 47% 12.4M 42s\n", - "247650K .......... .......... .......... .......... .......... 47% 8.71M 42s\n", - "247700K .......... .......... .......... .......... .......... 47% 11.3M 42s\n", - "247750K .......... .......... .......... .......... .......... 47% 15.1M 42s\n", - "247800K .......... .......... .......... .......... .......... 47% 7.21M 42s\n", - "247850K .......... .......... .......... .......... .......... 47% 8.36M 42s\n", - "247900K .......... .......... .......... .......... .......... 47% 10.2M 42s\n", - "247950K .......... .......... .......... .......... .......... 47% 12.2M 42s\n", - "248000K .......... .......... .......... .......... .......... 47% 8.85M 42s\n", - "248050K .......... .......... .......... .......... .......... 47% 14.9M 42s\n", - "248100K .......... .......... .......... .......... .......... 47% 10.5M 42s\n", - "248150K .......... .......... .......... .......... .......... 47% 10.9M 42s\n", - "248200K .......... .......... .......... .......... .......... 47% 7.54M 42s\n", - "248250K .......... .......... .......... .......... .......... 47% 11.0M 42s\n", - "248300K .......... .......... .......... .......... .......... 47% 5.32M 42s\n", - "248350K .......... .......... .......... .......... .......... 47% 24.1M 42s\n", - "248400K .......... .......... .......... .......... .......... 47% 12.4M 42s\n", - "248450K .......... .......... .......... .......... .......... 47% 15.8M 42s\n", - "248500K .......... .......... .......... .......... .......... 47% 9.97M 42s\n", - "248550K .......... .......... .......... .......... .......... 47% 8.68M 42s\n", - "248600K .......... .......... .......... .......... .......... 47% 4.84M 42s\n", - "248650K .......... .......... .......... .......... .......... 47% 12.4M 42s\n", - "248700K .......... .......... .......... .......... .......... 47% 10.8M 42s\n", - "248750K .......... .......... .......... .......... .......... 47% 11.5M 42s\n", - "248800K .......... .......... .......... .......... .......... 47% 11.3M 42s\n", - "248850K .......... .......... .......... .......... .......... 47% 11.6M 42s\n", - "248900K .......... .......... .......... .......... .......... 47% 9.45M 42s\n", - "248950K .......... .......... .......... .......... .......... 47% 11.0M 42s\n", - "249000K .......... .......... .......... .......... .......... 47% 7.38M 42s\n", - "249050K .......... .......... .......... .......... .......... 47% 13.1M 42s\n", - "249100K .......... .......... .......... .......... .......... 47% 9.80M 42s\n", - "249150K .......... .......... .......... .......... .......... 47% 12.1M 42s\n", - "249200K .......... .......... .......... .......... .......... 47% 10.7M 42s\n", - "249250K .......... .......... .......... .......... .......... 47% 7.46M 42s\n", - "249300K .......... .......... .......... .......... .......... 47% 15.6M 42s\n", - "249350K .......... .......... .......... .......... .......... 47% 9.24M 42s\n", - "249400K .......... .......... .......... .......... .......... 47% 9.03M 42s\n", - "249450K .......... .......... .......... .......... .......... 47% 11.8M 42s\n", - "249500K .......... .......... .......... .......... .......... 47% 6.50M 42s\n", - "249550K .......... .......... .......... .......... .......... 47% 12.9M 42s\n", - "249600K .......... .......... .......... .......... .......... 47% 11.1M 42s\n", - "249650K .......... .......... .......... .......... .......... 47% 11.1M 42s\n", - "249700K .......... .......... .......... .......... .......... 47% 11.0M 42s\n", - "249750K .......... .......... .......... .......... .......... 47% 6.86M 42s\n", - "249800K .......... .......... .......... .......... .......... 47% 12.7M 42s\n", - "249850K .......... .......... .......... .......... .......... 47% 10.8M 42s\n", - "249900K .......... .......... .......... .......... .......... 47% 13.4M 42s\n", - "249950K .......... .......... .......... .......... .......... 47% 10.7M 42s\n", - "250000K .......... .......... .......... .......... .......... 47% 8.95M 42s\n", - "250050K .......... .......... .......... .......... .......... 47% 8.87M 42s\n", - "250100K .......... .......... .......... .......... .......... 47% 10.3M 42s\n", - "250150K .......... .......... .......... .......... .......... 47% 9.68M 42s\n", - "250200K .......... .......... .......... .......... .......... 47% 9.38M 42s\n", - "250250K .......... .......... .......... .......... .......... 47% 11.3M 42s\n", - "250300K .......... .......... .......... .......... .......... 47% 11.9M 42s\n", - "250350K .......... .......... .......... .......... .......... 47% 10.5M 42s\n", - "250400K .......... .......... .......... .......... .......... 47% 9.21M 42s\n", - "250450K .......... .......... .......... .......... .......... 47% 13.0M 42s\n", - "250500K .......... .......... .......... .......... .......... 47% 9.08M 42s\n", - "250550K .......... .......... .......... .......... .......... 47% 10.8M 42s\n", - "250600K .......... .......... .......... .......... .......... 47% 8.94M 42s\n", - "250650K .......... .......... .......... .......... .......... 47% 10.6M 42s\n", - "250700K .......... .......... .......... .......... .......... 47% 10.5M 42s\n", - "250750K .......... .......... .......... .......... .......... 47% 10.7M 42s\n", - "250800K .......... .......... .......... .......... .......... 47% 8.74M 42s\n", - "250850K .......... .......... .......... .......... .......... 47% 15.7M 42s\n", - "250900K .......... .......... .......... .......... .......... 47% 6.30M 42s\n", - "250950K .......... .......... .......... .......... .......... 47% 95.0M 42s\n", - "251000K .......... .......... .......... .......... .......... 47% 6.32M 42s\n", - "251050K .......... .......... .......... .......... .......... 47% 11.7M 42s\n", - "251100K .......... .......... .......... .......... .......... 47% 11.0M 42s\n", - "251150K .......... .......... .......... .......... .......... 47% 10.5M 42s\n", - "251200K .......... .......... .......... .......... .......... 47% 8.67M 42s\n", - "251250K .......... .......... .......... .......... .......... 47% 13.1M 42s\n", - "251300K .......... .......... .......... .......... .......... 47% 11.3M 42s\n", - "251350K .......... .......... .......... .......... .......... 47% 11.1M 42s\n", - "251400K .......... .......... .......... .......... .......... 47% 8.97M 42s\n", - "251450K .......... .......... .......... .......... .......... 47% 9.46M 42s\n", - "251500K .......... .......... .......... .......... .......... 47% 11.3M 42s\n", - "251550K .......... .......... .......... .......... .......... 47% 10.7M 42s\n", - "251600K .......... .......... .......... .......... .......... 47% 8.20M 42s\n", - "251650K .......... .......... .......... .......... .......... 47% 18.8M 42s\n", - "251700K .......... .......... .......... .......... .......... 47% 11.1M 42s\n", - "251750K .......... .......... .......... .......... .......... 47% 11.4M 42s\n", - "251800K .......... .......... .......... .......... .......... 47% 8.71M 42s\n", - "251850K .......... .......... .......... .......... .......... 48% 9.18M 42s\n", - "251900K .......... .......... .......... .......... .......... 48% 7.18M 42s\n", - "251950K .......... .......... .......... .......... .......... 48% 13.6M 42s\n", - "252000K .......... .......... .......... .......... .......... 48% 10.9M 41s\n", - "252050K .......... .......... .......... .......... .......... 48% 10.8M 41s\n", - "252100K .......... .......... .......... .......... .......... 48% 14.2M 41s\n", - "252150K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "252200K .......... .......... .......... .......... .......... 48% 7.32M 41s\n", - "252250K .......... .......... .......... .......... .......... 48% 11.2M 41s\n", - "252300K .......... .......... .......... .......... .......... 48% 12.1M 41s\n", - "252350K .......... .......... .......... .......... .......... 48% 9.82M 41s\n", - "252400K .......... .......... .......... .......... .......... 48% 12.6M 41s\n", - "252450K .......... .......... .......... .......... .......... 48% 11.4M 41s\n", - "252500K .......... .......... .......... .......... .......... 48% 10.8M 41s\n", - "252550K .......... .......... .......... .......... .......... 48% 12.3M 41s\n", - "252600K .......... .......... .......... .......... .......... 48% 7.92M 41s\n", - "252650K .......... .......... .......... .......... .......... 48% 10.3M 41s\n", - "252700K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "252750K .......... .......... .......... .......... .......... 48% 12.2M 41s\n", - "252800K .......... .......... .......... .......... .......... 48% 11.3M 41s\n", - "252850K .......... .......... .......... .......... .......... 48% 11.6M 41s\n", - "252900K .......... .......... .......... .......... .......... 48% 11.3M 41s\n", - "252950K .......... .......... .......... .......... .......... 48% 10.7M 41s\n", - "253000K .......... .......... .......... .......... .......... 48% 9.57M 41s\n", - "253050K .......... .......... .......... .......... .......... 48% 9.43M 41s\n", - "253100K .......... .......... .......... .......... .......... 48% 11.6M 41s\n", - "253150K .......... .......... .......... .......... .......... 48% 10.9M 41s\n", - "253200K .......... .......... .......... .......... .......... 48% 12.0M 41s\n", - "253250K .......... .......... .......... .......... .......... 48% 10.1M 41s\n", - "253300K .......... .......... .......... .......... .......... 48% 10.5M 41s\n", - "253350K .......... .......... .......... .......... .......... 48% 11.9M 41s\n", - "253400K .......... .......... .......... .......... .......... 48% 7.76M 41s\n", - "253450K .......... .......... .......... .......... .......... 48% 12.4M 41s\n", - "253500K .......... .......... .......... .......... .......... 48% 11.0M 41s\n", - "253550K .......... .......... .......... .......... .......... 48% 12.0M 41s\n", - "253600K .......... .......... .......... .......... .......... 48% 11.4M 41s\n", - "253650K .......... .......... .......... .......... .......... 48% 10.5M 41s\n", - "253700K .......... .......... .......... .......... .......... 48% 12.2M 41s\n", - "253750K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "253800K .......... .......... .......... .......... .......... 48% 8.78M 41s\n", - "253850K .......... .......... .......... .......... .......... 48% 11.3M 41s\n", - "253900K .......... .......... .......... .......... .......... 48% 10.5M 41s\n", - "253950K .......... .......... .......... .......... .......... 48% 12.3M 41s\n", - "254000K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "254050K .......... .......... .......... .......... .......... 48% 11.7M 41s\n", - "254100K .......... .......... .......... .......... .......... 48% 10.4M 41s\n", - "254150K .......... .......... .......... .......... .......... 48% 9.99M 41s\n", - "254200K .......... .......... .......... .......... .......... 48% 9.17M 41s\n", - "254250K .......... .......... .......... .......... .......... 48% 12.9M 41s\n", - "254300K .......... .......... .......... .......... .......... 48% 10.3M 41s\n", - "254350K .......... .......... .......... .......... .......... 48% 11.5M 41s\n", - "254400K .......... .......... .......... .......... .......... 48% 10.7M 41s\n", - "254450K .......... .......... .......... .......... .......... 48% 9.99M 41s\n", - "254500K .......... .......... .......... .......... .......... 48% 11.0M 41s\n", - "254550K .......... .......... .......... .......... .......... 48% 10.9M 41s\n", - "254600K .......... .......... .......... .......... .......... 48% 9.42M 41s\n", - "254650K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "254700K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "254750K .......... .......... .......... .......... .......... 48% 12.1M 41s\n", - "254800K .......... .......... .......... .......... .......... 48% 9.96M 41s\n", - "254850K .......... .......... .......... .......... .......... 48% 11.6M 41s\n", - "254900K .......... .......... .......... .......... .......... 48% 10.4M 41s\n", - "254950K .......... .......... .......... .......... .......... 48% 11.6M 41s\n", - "255000K .......... .......... .......... .......... .......... 48% 8.81M 41s\n", - "255050K .......... .......... .......... .......... .......... 48% 10.7M 41s\n", - "255100K .......... .......... .......... .......... .......... 48% 11.5M 41s\n", - "255150K .......... .......... .......... .......... .......... 48% 10.7M 41s\n", - "255200K .......... .......... .......... .......... .......... 48% 8.58M 41s\n", - "255250K .......... .......... .......... .......... .......... 48% 8.07M 41s\n", - "255300K .......... .......... .......... .......... .......... 48% 20.2M 41s\n", - "255350K .......... .......... .......... .......... .......... 48% 11.2M 41s\n", - "255400K .......... .......... .......... .......... .......... 48% 8.83M 41s\n", - "255450K .......... .......... .......... .......... .......... 48% 11.1M 41s\n", - "255500K .......... .......... .......... .......... .......... 48% 11.8M 41s\n", - "255550K .......... .......... .......... .......... .......... 48% 7.37M 41s\n", - "255600K .......... .......... .......... .......... .......... 48% 11.2M 41s\n", - "255650K .......... .......... .......... .......... .......... 48% 10.7M 41s\n", - "255700K .......... .......... .......... .......... .......... 48% 11.9M 41s\n", - "255750K .......... .......... .......... .......... .......... 48% 11.9M 41s\n", - "255800K .......... .......... .......... .......... .......... 48% 8.54M 41s\n", - "255850K .......... .......... .......... .......... .......... 48% 11.8M 41s\n", - "255900K .......... .......... .......... .......... .......... 48% 11.2M 41s\n", - "255950K .......... .......... .......... .......... .......... 48% 11.3M 41s\n", - "256000K .......... .......... .......... .......... .......... 48% 12.0M 41s\n", - "256050K .......... .......... .......... .......... .......... 48% 10.8M 41s\n", - "256100K .......... .......... .......... .......... .......... 48% 9.70M 41s\n", - "256150K .......... .......... .......... .......... .......... 48% 10.6M 41s\n", - "256200K .......... .......... .......... .......... .......... 48% 9.88M 41s\n", - "256250K .......... .......... .......... .......... .......... 48% 11.9M 41s\n", - "256300K .......... .......... .......... .......... .......... 48% 9.81M 41s\n", - "256350K .......... .......... .......... .......... .......... 48% 13.1M 41s\n", - "256400K .......... .......... .......... .......... .......... 48% 9.92M 41s\n", - "256450K .......... .......... .......... .......... .......... 48% 12.9M 41s\n", - "256500K .......... .......... .......... .......... .......... 48% 10.4M 41s\n", - "256550K .......... .......... .......... .......... .......... 48% 12.3M 41s\n", - "256600K .......... .......... .......... .......... .......... 48% 8.35M 41s\n", - "256650K .......... .......... .......... .......... .......... 48% 10.3M 40s\n", - "256700K .......... .......... .......... .......... .......... 48% 10.8M 40s\n", - "256750K .......... .......... .......... .......... .......... 48% 12.0M 40s\n", - "256800K .......... .......... .......... .......... .......... 48% 11.5M 40s\n", - "256850K .......... .......... .......... .......... .......... 48% 9.43M 40s\n", - "256900K .......... .......... .......... .......... .......... 48% 10.4M 40s\n", - "256950K .......... .......... .......... .......... .......... 48% 13.0M 40s\n", - "257000K .......... .......... .......... .......... .......... 48% 6.75M 40s\n", - "257050K .......... .......... .......... .......... .......... 48% 12.9M 40s\n", - "257100K .......... .......... .......... .......... .......... 49% 13.5M 40s\n", - "257150K .......... .......... .......... .......... .......... 49% 12.4M 40s\n", - "257200K .......... .......... .......... .......... .......... 49% 9.19M 40s\n", - "257250K .......... .......... .......... .......... .......... 49% 11.2M 40s\n", - "257300K .......... .......... .......... .......... .......... 49% 10.9M 40s\n", - "257350K .......... .......... .......... .......... .......... 49% 11.6M 40s\n", - "257400K .......... .......... .......... .......... .......... 49% 8.96M 40s\n", - "257450K .......... .......... .......... .......... .......... 49% 11.1M 40s\n", - "257500K .......... .......... .......... .......... .......... 49% 9.76M 40s\n", - "257550K .......... .......... .......... .......... .......... 49% 10.5M 40s\n", - "257600K .......... .......... .......... .......... .......... 49% 10.4M 40s\n", - "257650K .......... .......... .......... .......... .......... 49% 16.7M 40s\n", - "257700K .......... .......... .......... .......... .......... 49% 11.6M 40s\n", - "257750K .......... .......... .......... .......... .......... 49% 9.65M 40s\n", - "257800K .......... .......... .......... .......... .......... 49% 9.41M 40s\n", - "257850K .......... .......... .......... .......... .......... 49% 6.96M 40s\n", - "257900K .......... .......... .......... .......... .......... 49% 11.7M 40s\n", - "257950K .......... .......... .......... .......... .......... 49% 11.0M 40s\n", - "258000K .......... .......... .......... .......... .......... 49% 10.1M 40s\n", - "258050K .......... .......... .......... .......... .......... 49% 12.3M 40s\n", - "258100K .......... .......... .......... .......... .......... 49% 13.1M 40s\n", - "258150K .......... .......... .......... .......... .......... 49% 9.04M 40s\n", - "258200K .......... .......... .......... .......... .......... 49% 10.4M 40s\n", - "258250K .......... .......... .......... .......... .......... 49% 12.0M 40s\n", - "258300K .......... .......... .......... .......... .......... 49% 9.82M 40s\n", - "258350K .......... .......... .......... .......... .......... 49% 12.4M 40s\n", - "258400K .......... .......... .......... .......... .......... 49% 12.0M 40s\n", - "258450K .......... .......... .......... .......... .......... 49% 10.4M 40s\n", - "258500K .......... .......... .......... .......... .......... 49% 12.6M 40s\n", - "258550K .......... .......... .......... .......... .......... 49% 10.9M 40s\n", - "258600K .......... .......... .......... .......... .......... 49% 7.77M 40s\n", - "258650K .......... .......... .......... .......... .......... 49% 13.9M 40s\n", - "258700K .......... .......... .......... .......... .......... 49% 11.3M 40s\n", - "258750K .......... .......... .......... .......... .......... 49% 12.1M 40s\n", - "258800K .......... .......... .......... .......... .......... 49% 10.9M 40s\n", - "258850K .......... .......... .......... .......... .......... 49% 11.1M 40s\n", - "258900K .......... .......... .......... .......... .......... 49% 9.47M 40s\n", - "258950K .......... .......... .......... .......... .......... 49% 14.3M 40s\n", - "259000K .......... .......... .......... .......... .......... 49% 8.46M 40s\n", - "259050K .......... .......... .......... .......... .......... 49% 11.7M 40s\n", - "259100K .......... .......... .......... .......... .......... 49% 11.3M 40s\n", - "259150K .......... .......... .......... .......... .......... 49% 11.2M 40s\n", - "259200K .......... .......... .......... .......... .......... 49% 11.0M 40s\n", - "259250K .......... .......... .......... .......... .......... 49% 10.9M 40s\n", - "259300K .......... .......... .......... .......... .......... 49% 12.4M 40s\n", - "259350K .......... .......... .......... .......... .......... 49% 11.1M 40s\n", - "259400K .......... .......... .......... .......... .......... 49% 8.67M 40s\n", - "259450K .......... .......... .......... .......... .......... 49% 10.4M 40s\n", - "259500K .......... .......... .......... .......... .......... 49% 10.5M 40s\n", - "259550K .......... .......... .......... .......... .......... 49% 12.8M 40s\n", - "259600K .......... .......... .......... .......... .......... 49% 10.6M 40s\n", - "259650K .......... .......... .......... .......... .......... 49% 11.7M 40s\n", - "259700K .......... .......... .......... .......... .......... 49% 11.8M 40s\n", - "259750K .......... .......... .......... .......... .......... 49% 9.09M 40s\n", - "259800K .......... .......... .......... .......... .......... 49% 9.42M 40s\n", - "259850K .......... .......... .......... .......... .......... 49% 12.3M 40s\n", - "259900K .......... .......... .......... .......... .......... 49% 11.9M 40s\n", - "259950K .......... .......... .......... .......... .......... 49% 11.7M 40s\n", - "260000K .......... .......... .......... .......... .......... 49% 11.0M 40s\n", - "260050K .......... .......... .......... .......... .......... 49% 10.1M 40s\n", - "260100K .......... .......... .......... .......... .......... 49% 10.6M 40s\n", - "260150K .......... .......... .......... .......... .......... 49% 11.7M 40s\n", - "260200K .......... .......... .......... .......... .......... 49% 7.83M 40s\n", - "260250K .......... .......... .......... .......... .......... 49% 11.9M 40s\n", - "260300K .......... .......... .......... .......... .......... 49% 11.8M 40s\n", - "260350K .......... .......... .......... .......... .......... 49% 10.6M 40s\n", - "260400K .......... .......... .......... .......... .......... 49% 12.1M 40s\n", - "260450K .......... .......... .......... .......... .......... 49% 10.1M 40s\n", - "260500K .......... .......... .......... .......... .......... 49% 11.3M 40s\n", - "260550K .......... .......... .......... .......... .......... 49% 11.4M 40s\n", - "260600K .......... .......... .......... .......... .......... 49% 8.78M 40s\n", - "260650K .......... .......... .......... .......... .......... 49% 10.9M 40s\n", - "260700K .......... .......... .......... .......... .......... 49% 12.3M 40s\n", - "260750K .......... .......... .......... .......... .......... 49% 10.2M 40s\n", - "260800K .......... .......... .......... .......... .......... 49% 10.5M 40s\n", - "260850K .......... .......... .......... .......... .......... 49% 14.1M 40s\n", - "260900K .......... .......... .......... .......... .......... 49% 10.1M 40s\n", - "260950K .......... .......... .......... .......... .......... 49% 12.3M 40s\n", - "261000K .......... .......... .......... .......... .......... 49% 8.44M 40s\n", - "261050K .......... .......... .......... .......... .......... 49% 1.01M 40s\n", - "261100K .......... .......... .......... .......... .......... 49% 48.6M 40s\n", - "261150K .......... .......... .......... .......... .......... 49% 24.5M 40s\n", - "261200K .......... .......... .......... .......... .......... 49% 322M 40s\n", - "261250K .......... .......... .......... .......... .......... 49% 498M 40s\n", - "261300K .......... .......... .......... .......... .......... 49% 391M 40s\n", - "261350K .......... .......... .......... .......... .......... 49% 303M 40s\n", - "261400K .......... .......... .......... .......... .......... 49% 2.01M 40s\n", - "261450K .......... .......... .......... .......... .......... 49% 68.6M 40s\n", - "261500K .......... .......... .......... .......... .......... 49% 311M 40s\n", - "261550K .......... .......... .......... .......... .......... 49% 376M 39s\n", - "261600K .......... .......... .......... .......... .......... 49% 292M 39s\n", - "261650K .......... .......... .......... .......... .......... 49% 333M 39s\n", - "261700K .......... .......... .......... .......... .......... 49% 441M 39s\n", - "261750K .......... .......... .......... .......... .......... 49% 21.3M 39s\n", - "261800K .......... .......... .......... .......... .......... 49% 7.40M 39s\n", - "261850K .......... .......... .......... .......... .......... 49% 5.36M 39s\n", - "261900K .......... .......... .......... .......... .......... 49% 10.4M 39s\n", - "261950K .......... .......... .......... .......... .......... 49% 9.82M 39s\n", - "262000K .......... .......... .......... .......... .......... 49% 7.49M 39s\n", - "262050K .......... .......... .......... .......... .......... 49% 7.36M 39s\n", - "262100K .......... .......... .......... .......... .......... 49% 7.80M 39s\n", - "262150K .......... .......... .......... .......... .......... 49% 8.34M 39s\n", - "262200K .......... .......... .......... .......... .......... 49% 6.77M 39s\n", - "262250K .......... .......... .......... .......... .......... 49% 7.70M 39s\n", - "262300K .......... .......... .......... .......... .......... 49% 8.50M 39s\n", - "262350K .......... .......... .......... .......... .......... 50% 10.4M 39s\n", - "262400K .......... .......... .......... .......... .......... 50% 8.55M 39s\n", - "262450K .......... .......... .......... .......... .......... 50% 5.99M 39s\n", - "262500K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "262550K .......... .......... .......... .......... .......... 50% 9.78M 39s\n", - "262600K .......... .......... .......... .......... .......... 50% 7.00M 39s\n", - "262650K .......... .......... .......... .......... .......... 50% 5.03M 39s\n", - "262700K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "262750K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "262800K .......... .......... .......... .......... .......... 50% 8.87M 39s\n", - "262850K .......... .......... .......... .......... .......... 50% 6.30M 39s\n", - "262900K .......... .......... .......... .......... .......... 50% 10.1M 39s\n", - "262950K .......... .......... .......... .......... .......... 50% 8.73M 39s\n", - "263000K .......... .......... .......... .......... .......... 50% 6.69M 39s\n", - "263050K .......... .......... .......... .......... .......... 50% 10.5M 39s\n", - "263100K .......... .......... .......... .......... .......... 50% 6.80M 39s\n", - "263150K .......... .......... .......... .......... .......... 50% 8.46M 39s\n", - "263200K .......... .......... .......... .......... .......... 50% 9.64M 39s\n", - "263250K .......... .......... .......... .......... .......... 50% 9.18M 39s\n", - "263300K .......... .......... .......... .......... .......... 50% 6.66M 39s\n", - "263350K .......... .......... .......... .......... .......... 50% 8.97M 39s\n", - "263400K .......... .......... .......... .......... .......... 50% 6.88M 39s\n", - "263450K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "263500K .......... .......... .......... .......... .......... 50% 8.86M 39s\n", - "263550K .......... .......... .......... .......... .......... 50% 7.43M 39s\n", - "263600K .......... .......... .......... .......... .......... 50% 7.10M 39s\n", - "263650K .......... .......... .......... .......... .......... 50% 11.2M 39s\n", - "263700K .......... .......... .......... .......... .......... 50% 8.23M 39s\n", - "263750K .......... .......... .......... .......... .......... 50% 6.26M 39s\n", - "263800K .......... .......... .......... .......... .......... 50% 8.56M 39s\n", - "263850K .......... .......... .......... .......... .......... 50% 8.65M 39s\n", - "263900K .......... .......... .......... .......... .......... 50% 7.47M 39s\n", - "263950K .......... .......... .......... .......... .......... 50% 8.47M 39s\n", - "264000K .......... .......... .......... .......... .......... 50% 9.01M 39s\n", - "264050K .......... .......... .......... .......... .......... 50% 4.46M 39s\n", - "264100K .......... .......... .......... .......... .......... 50% 14.3M 39s\n", - "264150K .......... .......... .......... .......... .......... 50% 10.4M 39s\n", - "264200K .......... .......... .......... .......... .......... 50% 6.24M 39s\n", - "264250K .......... .......... .......... .......... .......... 50% 6.03M 39s\n", - "264300K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "264350K .......... .......... .......... .......... .......... 50% 10.2M 39s\n", - "264400K .......... .......... .......... .......... .......... 50% 11.0M 39s\n", - "264450K .......... .......... .......... .......... .......... 50% 7.66M 39s\n", - "264500K .......... .......... .......... .......... .......... 50% 6.85M 39s\n", - "264550K .......... .......... .......... .......... .......... 50% 9.68M 39s\n", - "264600K .......... .......... .......... .......... .......... 50% 7.93M 39s\n", - "264650K .......... .......... .......... .......... .......... 50% 9.26M 39s\n", - "264700K .......... .......... .......... .......... .......... 50% 5.88M 39s\n", - "264750K .......... .......... .......... .......... .......... 50% 8.40M 39s\n", - "264800K .......... .......... .......... .......... .......... 50% 10.4M 39s\n", - "264850K .......... .......... .......... .......... .......... 50% 10.4M 39s\n", - "264900K .......... .......... .......... .......... .......... 50% 11.7M 39s\n", - "264950K .......... .......... .......... .......... .......... 50% 5.71M 39s\n", - "265000K .......... .......... .......... .......... .......... 50% 6.89M 39s\n", - "265050K .......... .......... .......... .......... .......... 50% 9.74M 39s\n", - "265100K .......... .......... .......... .......... .......... 50% 11.6M 39s\n", - "265150K .......... .......... .......... .......... .......... 50% 5.58M 39s\n", - "265200K .......... .......... .......... .......... .......... 50% 10.5M 39s\n", - "265250K .......... .......... .......... .......... .......... 50% 8.68M 39s\n", - "265300K .......... .......... .......... .......... .......... 50% 9.48M 39s\n", - "265350K .......... .......... .......... .......... .......... 50% 9.75M 39s\n", - "265400K .......... .......... .......... .......... .......... 50% 5.83M 39s\n", - "265450K .......... .......... .......... .......... .......... 50% 6.00M 39s\n", - "265500K .......... .......... .......... .......... .......... 50% 13.8M 39s\n", - "265550K .......... .......... .......... .......... .......... 50% 7.97M 39s\n", - "265600K .......... .......... .......... .......... .......... 50% 12.0M 39s\n", - "265650K .......... .......... .......... .......... .......... 50% 6.20M 39s\n", - "265700K .......... .......... .......... .......... .......... 50% 8.56M 39s\n", - "265750K .......... .......... .......... .......... .......... 50% 8.45M 39s\n", - "265800K .......... .......... .......... .......... .......... 50% 6.32M 39s\n", - "265850K .......... .......... .......... .......... .......... 50% 10.6M 39s\n", - "265900K .......... .......... .......... .......... .......... 50% 9.66M 39s\n", - "265950K .......... .......... .......... .......... .......... 50% 11.0M 39s\n", - "266000K .......... .......... .......... .......... .......... 50% 5.82M 39s\n", - "266050K .......... .......... .......... .......... .......... 50% 10.1M 39s\n", - "266100K .......... .......... .......... .......... .......... 50% 8.84M 39s\n", - "266150K .......... .......... .......... .......... .......... 50% 10.1M 39s\n", - "266200K .......... .......... .......... .......... .......... 50% 5.14M 39s\n", - "266250K .......... .......... .......... .......... .......... 50% 11.0M 39s\n", - "266300K .......... .......... .......... .......... .......... 50% 10.0M 39s\n", - "266350K .......... .......... .......... .......... .......... 50% 9.00M 39s\n", - "266400K .......... .......... .......... .......... .......... 50% 10.5M 39s\n", - "266450K .......... .......... .......... .......... .......... 50% 6.04M 39s\n", - "266500K .......... .......... .......... .......... .......... 50% 10.7M 39s\n", - "266550K .......... .......... .......... .......... .......... 50% 7.37M 39s\n", - "266600K .......... .......... .......... .......... .......... 50% 8.72M 39s\n", - "266650K .......... .......... .......... .......... .......... 50% 6.29M 39s\n", - "266700K .......... .......... .......... .......... .......... 50% 11.7M 39s\n", - "266750K .......... .......... .......... .......... .......... 50% 11.6M 39s\n", - "266800K .......... .......... .......... .......... .......... 50% 7.77M 39s\n", - "266850K .......... .......... .......... .......... .......... 50% 8.41M 39s\n", - "266900K .......... .......... .......... .......... .......... 50% 5.51M 39s\n", - "266950K .......... .......... .......... .......... .......... 50% 11.1M 38s\n", - "267000K .......... .......... .......... .......... .......... 50% 9.60M 38s\n", - "267050K .......... .......... .......... .......... .......... 50% 10.5M 38s\n", - "267100K .......... .......... .......... .......... .......... 50% 7.20M 38s\n", - "267150K .......... .......... .......... .......... .......... 50% 5.81M 38s\n", - "267200K .......... .......... .......... .......... .......... 50% 9.01M 38s\n", - "267250K .......... .......... .......... .......... .......... 50% 11.2M 38s\n", - "267300K .......... .......... .......... .......... .......... 50% 9.77M 38s\n", - "267350K .......... .......... .......... .......... .......... 50% 8.33M 38s\n", - "267400K .......... .......... .......... .......... .......... 50% 5.70M 38s\n", - "267450K .......... .......... .......... .......... .......... 50% 10.8M 38s\n", - "267500K .......... .......... .......... .......... .......... 50% 9.82M 38s\n", - "267550K .......... .......... .......... .......... .......... 50% 11.2M 38s\n", - "267600K .......... .......... .......... .......... .......... 51% 7.29M 38s\n", - "267650K .......... .......... .......... .......... .......... 51% 6.86M 38s\n", - "267700K .......... .......... .......... .......... .......... 51% 10.3M 38s\n", - "267750K .......... .......... .......... .......... .......... 51% 12.4M 38s\n", - "267800K .......... .......... .......... .......... .......... 51% 7.21M 38s\n", - "267850K .......... .......... .......... .......... .......... 51% 8.68M 38s\n", - "267900K .......... .......... .......... .......... .......... 51% 1.02M 38s\n", - "267950K .......... .......... .......... .......... .......... 51% 97.4M 38s\n", - "268000K .......... .......... .......... .......... .......... 51% 147M 38s\n", - "268050K .......... .......... .......... .......... .......... 51% 136M 38s\n", - "268100K .......... .......... .......... .......... .......... 51% 104M 38s\n", - "268150K .......... .......... .......... .......... .......... 51% 69.2M 38s\n", - "268200K .......... .......... .......... .......... .......... 51% 126M 38s\n", - "268250K .......... .......... .......... .......... .......... 51% 155M 38s\n", - "268300K .......... .......... .......... .......... .......... 51% 12.5M 38s\n", - "268350K .......... .......... .......... .......... .......... 51% 2.61M 38s\n", - "268400K .......... .......... .......... .......... .......... 51% 8.20M 38s\n", - "268450K .......... .......... .......... .......... .......... 51% 11.4M 38s\n", - "268500K .......... .......... .......... .......... .......... 51% 4.89M 38s\n", - "268550K .......... .......... .......... .......... .......... 51% 4.89M 38s\n", - "268600K .......... .......... .......... .......... .......... 51% 6.49M 38s\n", - "268650K .......... .......... .......... .......... .......... 51% 3.08M 38s\n", - "268700K .......... .......... .......... .......... .......... 51% 13.1M 38s\n", - "268750K .......... .......... .......... .......... .......... 51% 2.41M 38s\n", - "268800K .......... .......... .......... .......... .......... 51% 77.2M 38s\n", - "268850K .......... .......... .......... .......... .......... 51% 12.8M 38s\n", - "268900K .......... .......... .......... .......... .......... 51% 5.78M 38s\n", - "268950K .......... .......... .......... .......... .......... 51% 2.97M 38s\n", - "269000K .......... .......... .......... .......... .......... 51% 5.73M 38s\n", - "269050K .......... .......... .......... .......... .......... 51% 7.41M 38s\n", - "269100K .......... .......... .......... .......... .......... 51% 5.17M 38s\n", - "269150K .......... .......... .......... .......... .......... 51% 6.81M 38s\n", - "269200K .......... .......... .......... .......... .......... 51% 5.58M 38s\n", - "269250K .......... .......... .......... .......... .......... 51% 7.53M 38s\n", - "269300K .......... .......... .......... .......... .......... 51% 6.37M 38s\n", - "269350K .......... .......... .......... .......... .......... 51% 6.21M 38s\n", - "269400K .......... .......... .......... .......... .......... 51% 5.11M 38s\n", - "269450K .......... .......... .......... .......... .......... 51% 4.98M 38s\n", - "269500K .......... .......... .......... .......... .......... 51% 5.00M 38s\n", - "269550K .......... .......... .......... .......... .......... 51% 8.96M 38s\n", - "269600K .......... .......... .......... .......... .......... 51% 5.91M 38s\n", - "269650K .......... .......... .......... .......... .......... 51% 9.23M 38s\n", - "269700K .......... .......... .......... .......... .......... 51% 4.18M 38s\n", - "269750K .......... .......... .......... .......... .......... 51% 10.6M 38s\n", - "269800K .......... .......... .......... .......... .......... 51% 4.27M 38s\n", - "269850K .......... .......... .......... .......... .......... 51% 3.45M 38s\n", - "269900K .......... .......... .......... .......... .......... 51% 27.0M 38s\n", - "269950K .......... .......... .......... .......... .......... 51% 6.99M 38s\n", - "270000K .......... .......... .......... .......... .......... 51% 5.69M 38s\n", - "270050K .......... .......... .......... .......... .......... 51% 4.80M 38s\n", - "270100K .......... .......... .......... .......... .......... 51% 6.89M 38s\n", - "270150K .......... .......... .......... .......... .......... 51% 1.04M 38s\n", - "270200K .......... .......... .......... .......... .......... 51% 149M 38s\n", - "270250K .......... .......... .......... .......... .......... 51% 191M 38s\n", - "270300K .......... .......... .......... .......... .......... 51% 136M 38s\n", - "270350K .......... .......... .......... .......... .......... 51% 123M 38s\n", - "270400K .......... .......... .......... .......... .......... 51% 3.81M 38s\n", - "270450K .......... .......... .......... .......... .......... 51% 4.51M 38s\n", - "270500K .......... .......... .......... .......... .......... 51% 6.23M 38s\n", - "270550K .......... .......... .......... .......... .......... 51% 3.62M 38s\n", - "270600K .......... .......... .......... .......... .......... 51% 3.76M 38s\n", - "270650K .......... .......... .......... .......... .......... 51% 3.11M 38s\n", - "270700K .......... .......... .......... .......... .......... 51% 5.06M 38s\n", - "270750K .......... .......... .......... .......... .......... 51% 8.79M 38s\n", - "270800K .......... .......... .......... .......... .......... 51% 3.60M 38s\n", - "270850K .......... .......... .......... .......... .......... 51% 4.17M 38s\n", - "270900K .......... .......... .......... .......... .......... 51% 5.38M 38s\n", - "270950K .......... .......... .......... .......... .......... 51% 4.23M 38s\n", - "271000K .......... .......... .......... .......... .......... 51% 3.80M 38s\n", - "271050K .......... .......... .......... .......... .......... 51% 4.52M 38s\n", - "271100K .......... .......... .......... .......... .......... 51% 5.24M 38s\n", - "271150K .......... .......... .......... .......... .......... 51% 5.36M 38s\n", - "271200K .......... .......... .......... .......... .......... 51% 4.16M 38s\n", - "271250K .......... .......... .......... .......... .......... 51% 5.63M 38s\n", - "271300K .......... .......... .......... .......... .......... 51% 6.05M 38s\n", - "271350K .......... .......... .......... .......... .......... 51% 3.94M 38s\n", - "271400K .......... .......... .......... .......... .......... 51% 4.17M 38s\n", - "271450K .......... .......... .......... .......... .......... 51% 4.58M 38s\n", - "271500K .......... .......... .......... .......... .......... 51% 5.31M 38s\n", - "271550K .......... .......... .......... .......... .......... 51% 4.98M 38s\n", - "271600K .......... .......... .......... .......... .......... 51% 4.69M 38s\n", - "271650K .......... .......... .......... .......... .......... 51% 6.18M 38s\n", - "271700K .......... .......... .......... .......... .......... 51% 4.38M 38s\n", - "271750K .......... .......... .......... .......... .......... 51% 4.80M 38s\n", - "271800K .......... .......... .......... .......... .......... 51% 4.42M 38s\n", - "271850K .......... .......... .......... .......... .......... 51% 4.24M 38s\n", - "271900K .......... .......... .......... .......... .......... 51% 4.82M 38s\n", - "271950K .......... .......... .......... .......... .......... 51% 5.21M 38s\n", - "272000K .......... .......... .......... .......... .......... 51% 4.37M 38s\n", - "272050K .......... .......... .......... .......... .......... 51% 6.04M 38s\n", - "272100K .......... .......... .......... .......... .......... 51% 5.17M 38s\n", - "272150K .......... .......... .......... .......... .......... 51% 4.29M 38s\n", - "272200K .......... .......... .......... .......... .......... 51% 4.61M 38s\n", - "272250K .......... .......... .......... .......... .......... 51% 4.55M 38s\n", - "272300K .......... .......... .......... .......... .......... 51% 5.33M 38s\n", - "272350K .......... .......... .......... .......... .......... 51% 5.87M 38s\n", - "272400K .......... .......... .......... .......... .......... 51% 4.08M 38s\n", - "272450K .......... .......... .......... .......... .......... 51% 6.58M 38s\n", - "272500K .......... .......... .......... .......... .......... 51% 4.53M 38s\n", - "272550K .......... .......... .......... .......... .......... 51% 5.16M 38s\n", - "272600K .......... .......... .......... .......... .......... 51% 4.61M 38s\n", - "272650K .......... .......... .......... .......... .......... 51% 4.05M 38s\n", - "272700K .......... .......... .......... .......... .......... 51% 6.43M 38s\n", - "272750K .......... .......... .......... .......... .......... 51% 6.43M 38s\n", - "272800K .......... .......... .......... .......... .......... 52% 3.56M 38s\n", - "272850K .......... .......... .......... .......... .......... 52% 5.74M 38s\n", - "272900K .......... .......... .......... .......... .......... 52% 4.05M 38s\n", - "272950K .......... .......... .......... .......... .......... 52% 6.92M 38s\n", - "273000K .......... .......... .......... .......... .......... 52% 4.23M 38s\n", - "273050K .......... .......... .......... .......... .......... 52% 4.11M 38s\n", - "273100K .......... .......... .......... .......... .......... 52% 7.42M 38s\n", - "273150K .......... .......... .......... .......... .......... 52% 4.07M 38s\n", - "273200K .......... .......... .......... .......... .......... 52% 5.60M 38s\n", - "273250K .......... .......... .......... .......... .......... 52% 6.62M 38s\n", - "273300K .......... .......... .......... .......... .......... 52% 3.54M 38s\n", - "273350K .......... .......... .......... .......... .......... 52% 8.35M 38s\n", - "273400K .......... .......... .......... .......... .......... 52% 3.39M 38s\n", - "273450K .......... .......... .......... .......... .......... 52% 5.61M 38s\n", - "273500K .......... .......... .......... .......... .......... 52% 6.55M 38s\n", - "273550K .......... .......... .......... .......... .......... 52% 4.20M 38s\n", - "273600K .......... .......... .......... .......... .......... 52% 6.03M 38s\n", - "273650K .......... .......... .......... .......... .......... 52% 7.17M 38s\n", - "273700K .......... .......... .......... .......... .......... 52% 4.07M 38s\n", - "273750K .......... .......... .......... .......... .......... 52% 5.20M 38s\n", - "273800K .......... .......... .......... .......... .......... 52% 4.62M 38s\n", - "273850K .......... .......... .......... .......... .......... 52% 4.51M 38s\n", - "273900K .......... .......... .......... .......... .......... 52% 6.20M 38s\n", - "273950K .......... .......... .......... .......... .......... 52% 3.82M 38s\n", - "274000K .......... .......... .......... .......... .......... 52% 7.80M 38s\n", - "274050K .......... .......... .......... .......... .......... 52% 7.00M 38s\n", - "274100K .......... .......... .......... .......... .......... 52% 4.07M 38s\n", - "274150K .......... .......... .......... .......... .......... 52% 5.80M 38s\n", - "274200K .......... .......... .......... .......... .......... 52% 4.96M 38s\n", - "274250K .......... .......... .......... .......... .......... 52% 4.46M 38s\n", - "274300K .......... .......... .......... .......... .......... 52% 6.06M 38s\n", - "274350K .......... .......... .......... .......... .......... 52% 6.55M 38s\n", - "274400K .......... .......... .......... .......... .......... 52% 4.27M 38s\n", - "274450K .......... .......... .......... .......... .......... 52% 5.90M 38s\n", - "274500K .......... .......... .......... .......... .......... 52% 5.58M 38s\n", - "274550K .......... .......... .......... .......... .......... 52% 5.50M 38s\n", - "274600K .......... .......... .......... .......... .......... 52% 4.54M 38s\n", - "274650K .......... .......... .......... .......... .......... 52% 5.92M 38s\n", - "274700K .......... .......... .......... .......... .......... 52% 4.84M 38s\n", - "274750K .......... .......... .......... .......... .......... 52% 5.19M 38s\n", - "274800K .......... .......... .......... .......... .......... 52% 5.86M 38s\n", - "274850K .......... .......... .......... .......... .......... 52% 5.62M 38s\n", - "274900K .......... .......... .......... .......... .......... 52% 5.75M 38s\n", - "274950K .......... .......... .......... .......... .......... 52% 5.70M 38s\n", - "275000K .......... .......... .......... .......... .......... 52% 4.52M 38s\n", - "275050K .......... .......... .......... .......... .......... 52% 4.73M 38s\n", - "275100K .......... .......... .......... .......... .......... 52% 6.34M 38s\n", - "275150K .......... .......... .......... .......... .......... 52% 6.52M 37s\n", - "275200K .......... .......... .......... .......... .......... 52% 4.77M 37s\n", - "275250K .......... .......... .......... .......... .......... 52% 6.00M 37s\n", - "275300K .......... .......... .......... .......... .......... 52% 5.92M 37s\n", - "275350K .......... .......... .......... .......... .......... 52% 5.30M 37s\n", - "275400K .......... .......... .......... .......... .......... 52% 5.19M 37s\n", - "275450K .......... .......... .......... .......... .......... 52% 4.65M 37s\n", - "275500K .......... .......... .......... .......... .......... 52% 5.26M 37s\n", - "275550K .......... .......... .......... .......... .......... 52% 6.60M 37s\n", - "275600K .......... .......... .......... .......... .......... 52% 5.93M 37s\n", - "275650K .......... .......... .......... .......... .......... 52% 4.90M 37s\n", - "275700K .......... .......... .......... .......... .......... 52% 6.75M 37s\n", - "275750K .......... .......... .......... .......... .......... 52% 6.91M 37s\n", - "275800K .......... .......... .......... .......... .......... 52% 3.76M 37s\n", - "275850K .......... .......... .......... .......... .......... 52% 6.69M 37s\n", - "275900K .......... .......... .......... .......... .......... 52% 5.97M 37s\n", - "275950K .......... .......... .......... .......... .......... 52% 5.35M 37s\n", - "276000K .......... .......... .......... .......... .......... 52% 5.91M 37s\n", - "276050K .......... .......... .......... .......... .......... 52% 7.39M 37s\n", - "276100K .......... .......... .......... .......... .......... 52% 4.95M 37s\n", - "276150K .......... .......... .......... .......... .......... 52% 5.08M 37s\n", - "276200K .......... .......... .......... .......... .......... 52% 5.34M 37s\n", - "276250K .......... .......... .......... .......... .......... 52% 5.17M 37s\n", - "276300K .......... .......... .......... .......... .......... 52% 5.31M 37s\n", - "276350K .......... .......... .......... .......... .......... 52% 7.79M 37s\n", - "276400K .......... .......... .......... .......... .......... 52% 5.23M 37s\n", - "276450K .......... .......... .......... .......... .......... 52% 4.89M 37s\n", - "276500K .......... .......... .......... .......... .......... 52% 7.01M 37s\n", - "276550K .......... .......... .......... .......... .......... 52% 6.35M 37s\n", - "276600K .......... .......... .......... .......... .......... 52% 3.68M 37s\n", - "276650K .......... .......... .......... .......... .......... 52% 7.91M 37s\n", - "276700K .......... .......... .......... .......... .......... 52% 6.32M 37s\n", - "276750K .......... .......... .......... .......... .......... 52% 4.15M 37s\n", - "276800K .......... .......... .......... .......... .......... 52% 7.13M 37s\n", - "276850K .......... .......... .......... .......... .......... 52% 7.57M 37s\n", - "276900K .......... .......... .......... .......... .......... 52% 4.54M 37s\n", - "276950K .......... .......... .......... .......... .......... 52% 7.10M 37s\n", - "277000K .......... .......... .......... .......... .......... 52% 4.59M 37s\n", - "277050K .......... .......... .......... .......... .......... 52% 4.36M 37s\n", - "277100K .......... .......... .......... .......... .......... 52% 7.08M 37s\n", - "277150K .......... .......... .......... .......... .......... 52% 5.98M 37s\n", - "277200K .......... .......... .......... .......... .......... 52% 5.16M 37s\n", - "277250K .......... .......... .......... .......... .......... 52% 7.77M 37s\n", - "277300K .......... .......... .......... .......... .......... 52% 5.99M 37s\n", - "277350K .......... .......... .......... .......... .......... 52% 7.23M 37s\n", - "277400K .......... .......... .......... .......... .......... 52% 4.03M 37s\n", - "277450K .......... .......... .......... .......... .......... 52% 6.25M 37s\n", - "277500K .......... .......... .......... .......... .......... 52% 7.88M 37s\n", - "277550K .......... .......... .......... .......... .......... 52% 4.93M 37s\n", - "277600K .......... .......... .......... .......... .......... 52% 5.77M 37s\n", - "277650K .......... .......... .......... .......... .......... 52% 7.41M 37s\n", - "277700K .......... .......... .......... .......... .......... 52% 5.25M 37s\n", - "277750K .......... .......... .......... .......... .......... 52% 6.27M 37s\n", - "277800K .......... .......... .......... .......... .......... 52% 5.40M 37s\n", - "277850K .......... .......... .......... .......... .......... 52% 5.32M 37s\n", - "277900K .......... .......... .......... .......... .......... 52% 5.05M 37s\n", - "277950K .......... .......... .......... .......... .......... 52% 8.38M 37s\n", - "278000K .......... .......... .......... .......... .......... 52% 5.56M 37s\n", - "278050K .......... .......... .......... .......... .......... 53% 5.61M 37s\n", - "278100K .......... .......... .......... .......... .......... 53% 6.42M 37s\n", - "278150K .......... .......... .......... .......... .......... 53% 7.49M 37s\n", - "278200K .......... .......... .......... .......... .......... 53% 4.19M 37s\n", - "278250K .......... .......... .......... .......... .......... 53% 5.34M 37s\n", - "278300K .......... .......... .......... .......... .......... 53% 3.52M 37s\n", - "278350K .......... .......... .......... .......... .......... 53% 39.2M 37s\n", - "278400K .......... .......... .......... .......... .......... 53% 5.10M 37s\n", - "278450K .......... .......... .......... .......... .......... 53% 2.67M 37s\n", - "278500K .......... .......... .......... .......... .......... 53% 7.58M 37s\n", - "278550K .......... .......... .......... .......... .......... 53% 7.20M 37s\n", - "278600K .......... .......... .......... .......... .......... 53% 4.12M 37s\n", - "278650K .......... .......... .......... .......... .......... 53% 7.02M 37s\n", - "278700K .......... .......... .......... .......... .......... 53% 7.18M 37s\n", - "278750K .......... .......... .......... .......... .......... 53% 4.80M 37s\n", - "278800K .......... .......... .......... .......... .......... 53% 6.59M 37s\n", - "278850K .......... .......... .......... .......... .......... 53% 6.37M 37s\n", - "278900K .......... .......... .......... .......... .......... 53% 6.04M 37s\n", - "278950K .......... .......... .......... .......... .......... 53% 5.84M 37s\n", - "279000K .......... .......... .......... .......... .......... 53% 4.37M 37s\n", - "279050K .......... .......... .......... .......... .......... 53% 8.26M 37s\n", - "279100K .......... .......... .......... .......... .......... 53% 6.24M 37s\n", - "279150K .......... .......... .......... .......... .......... 53% 5.92M 37s\n", - "279200K .......... .......... .......... .......... .......... 53% 5.28M 37s\n", - "279250K .......... .......... .......... .......... .......... 53% 7.45M 37s\n", - "279300K .......... .......... .......... .......... .......... 53% 5.05M 37s\n", - "279350K .......... .......... .......... .......... .......... 53% 5.30M 37s\n", - "279400K .......... .......... .......... .......... .......... 53% 5.92M 37s\n", - "279450K .......... .......... .......... .......... .......... 53% 6.43M 37s\n", - "279500K .......... .......... .......... .......... .......... 53% 5.03M 37s\n", - "279550K .......... .......... .......... .......... .......... 53% 7.55M 37s\n", - "279600K .......... .......... .......... .......... .......... 53% 9.06M 37s\n", - "279650K .......... .......... .......... .......... .......... 53% 7.21M 37s\n", - "279700K .......... .......... .......... .......... .......... 53% 4.03M 37s\n", - "279750K .......... .......... .......... .......... .......... 53% 7.71M 37s\n", - "279800K .......... .......... .......... .......... .......... 53% 6.49M 37s\n", - "279850K .......... .......... .......... .......... .......... 53% 4.14M 37s\n", - "279900K .......... .......... .......... .......... .......... 53% 7.52M 37s\n", - "279950K .......... .......... .......... .......... .......... 53% 8.35M 37s\n", - "280000K .......... .......... .......... .......... .......... 53% 4.49M 37s\n", - "280050K .......... .......... .......... .......... .......... 53% 7.01M 37s\n", - "280100K .......... .......... .......... .......... .......... 53% 7.01M 37s\n", - "280150K .......... .......... .......... .......... .......... 53% 8.38M 37s\n", - "280200K .......... .......... .......... .......... .......... 53% 4.32M 37s\n", - "280250K .......... .......... .......... .......... .......... 53% 6.68M 37s\n", - "280300K .......... .......... .......... .......... .......... 53% 7.13M 37s\n", - "280350K .......... .......... .......... .......... .......... 53% 5.40M 37s\n", - "280400K .......... .......... .......... .......... .......... 53% 8.26M 37s\n", - "280450K .......... .......... .......... .......... .......... 53% 5.30M 37s\n", - "280500K .......... .......... .......... .......... .......... 53% 6.23M 37s\n", - "280550K .......... .......... .......... .......... .......... 53% 8.45M 37s\n", - "280600K .......... .......... .......... .......... .......... 53% 5.31M 37s\n", - "280650K .......... .......... .......... .......... .......... 53% 5.01M 37s\n", - "280700K .......... .......... .......... .......... .......... 53% 5.36M 37s\n", - "280750K .......... .......... .......... .......... .......... 53% 8.88M 37s\n", - "280800K .......... .......... .......... .......... .......... 53% 7.48M 37s\n", - "280850K .......... .......... .......... .......... .......... 53% 6.46M 37s\n", - "280900K .......... .......... .......... .......... .......... 53% 5.55M 37s\n", - "280950K .......... .......... .......... .......... .......... 53% 6.70M 37s\n", - "281000K .......... .......... .......... .......... .......... 53% 5.76M 37s\n", - "281050K .......... .......... .......... .......... .......... 53% 5.21M 37s\n", - "281100K .......... .......... .......... .......... .......... 53% 8.14M 37s\n", - "281150K .......... .......... .......... .......... .......... 53% 4.65M 37s\n", - "281200K .......... .......... .......... .......... .......... 53% 7.70M 37s\n", - "281250K .......... .......... .......... .......... .......... 53% 8.76M 37s\n", - "281300K .......... .......... .......... .......... .......... 53% 4.60M 37s\n", - "281350K .......... .......... .......... .......... .......... 53% 7.73M 37s\n", - "281400K .......... .......... .......... .......... .......... 53% 6.11M 37s\n", - "281450K .......... .......... .......... .......... .......... 53% 7.40M 37s\n", - "281500K .......... .......... .......... .......... .......... 53% 5.69M 37s\n", - "281550K .......... .......... .......... .......... .......... 53% 6.07M 37s\n", - "281600K .......... .......... .......... .......... .......... 53% 8.62M 37s\n", - "281650K .......... .......... .......... .......... .......... 53% 5.10M 37s\n", - "281700K .......... .......... .......... .......... .......... 53% 7.28M 37s\n", - "281750K .......... .......... .......... .......... .......... 53% 8.74M 37s\n", - "281800K .......... .......... .......... .......... .......... 53% 3.94M 37s\n", - "281850K .......... .......... .......... .......... .......... 53% 8.14M 37s\n", - "281900K .......... .......... .......... .......... .......... 53% 8.70M 37s\n", - "281950K .......... .......... .......... .......... .......... 53% 7.78M 37s\n", - "282000K .......... .......... .......... .......... .......... 53% 4.62M 37s\n", - "282050K .......... .......... .......... .......... .......... 53% 8.97M 37s\n", - "282100K .......... .......... .......... .......... .......... 53% 7.21M 37s\n", - "282150K .......... .......... .......... .......... .......... 53% 8.89M 37s\n", - "282200K .......... .......... .......... .......... .......... 53% 3.84M 37s\n", - "282250K .......... .......... .......... .......... .......... 53% 7.72M 37s\n", - "282300K .......... .......... .......... .......... .......... 53% 9.01M 37s\n", - "282350K .......... .......... .......... .......... .......... 53% 4.74M 37s\n", - "282400K .......... .......... .......... .......... .......... 53% 7.27M 37s\n", - "282450K .......... .......... .......... .......... .......... 53% 9.17M 36s\n", - "282500K .......... .......... .......... .......... .......... 53% 4.74M 36s\n", - "282550K .......... .......... .......... .......... .......... 53% 8.61M 36s\n", - "282600K .......... .......... .......... .......... .......... 53% 5.76M 36s\n", - "282650K .......... .......... .......... .......... .......... 53% 6.67M 36s\n", - "282700K .......... .......... .......... .......... .......... 53% 5.07M 36s\n", - "282750K .......... .......... .......... .......... .......... 53% 8.27M 36s\n", - "282800K .......... .......... .......... .......... .......... 53% 7.21M 36s\n", - "282850K .......... .......... .......... .......... .......... 53% 5.31M 36s\n", - "282900K .......... .......... .......... .......... .......... 53% 7.56M 36s\n", - "282950K .......... .......... .......... .......... .......... 53% 9.03M 36s\n", - "283000K .......... .......... .......... .......... .......... 53% 6.36M 36s\n", - "283050K .......... .......... .......... .......... .......... 53% 5.33M 36s\n", - "283100K .......... .......... .......... .......... .......... 53% 5.90M 36s\n", - "283150K .......... .......... .......... .......... .......... 53% 9.30M 36s\n", - "283200K .......... .......... .......... .......... .......... 53% 5.92M 36s\n", - "283250K .......... .......... .......... .......... .......... 53% 7.35M 36s\n", - "283300K .......... .......... .......... .......... .......... 54% 6.72M 36s\n", - "283350K .......... .......... .......... .......... .......... 54% 8.82M 36s\n", - "283400K .......... .......... .......... .......... .......... 54% 4.54M 36s\n", - "283450K .......... .......... .......... .......... .......... 54% 6.86M 36s\n", - "283500K .......... .......... .......... .......... .......... 54% 7.88M 36s\n", - "283550K .......... .......... .......... .......... .......... 54% 9.49M 36s\n", - "283600K .......... .......... .......... .......... .......... 54% 5.31M 36s\n", - "283650K .......... .......... .......... .......... .......... 54% 6.62M 36s\n", - "283700K .......... .......... .......... .......... .......... 54% 8.79M 36s\n", - "283750K .......... .......... .......... .......... .......... 54% 5.79M 36s\n", - "283800K .......... .......... .......... .......... .......... 54% 4.68M 36s\n", - "283850K .......... .......... .......... .......... .......... 54% 9.43M 36s\n", - "283900K .......... .......... .......... .......... .......... 54% 6.86M 36s\n", - "283950K .......... .......... .......... .......... .......... 54% 6.19M 36s\n", - "284000K .......... .......... .......... .......... .......... 54% 6.11M 36s\n", - "284050K .......... .......... .......... .......... .......... 54% 8.45M 36s\n", - "284100K .......... .......... .......... .......... .......... 54% 7.99M 36s\n", - "284150K .......... .......... .......... .......... .......... 54% 7.02M 36s\n", - "284200K .......... .......... .......... .......... .......... 54% 4.93M 36s\n", - "284250K .......... .......... .......... .......... .......... 54% 4.94M 36s\n", - "284300K .......... .......... .......... .......... .......... 54% 8.65M 36s\n", - "284350K .......... .......... .......... .......... .......... 54% 6.75M 36s\n", - "284400K .......... .......... .......... .......... .......... 54% 5.31M 36s\n", - "284450K .......... .......... .......... .......... .......... 54% 10.4M 36s\n", - "284500K .......... .......... .......... .......... .......... 54% 6.37M 36s\n", - "284550K .......... .......... .......... .......... .......... 54% 9.39M 36s\n", - "284600K .......... .......... .......... .......... .......... 54% 3.65M 36s\n", - "284650K .......... .......... .......... .......... .......... 54% 9.91M 36s\n", - "284700K .......... .......... .......... .......... .......... 54% 8.63M 36s\n", - "284750K .......... .......... .......... .......... .......... 54% 8.35M 36s\n", - "284800K .......... .......... .......... .......... .......... 54% 2.84M 36s\n", - "284850K .......... .......... .......... .......... .......... 54% 132M 36s\n", - "284900K .......... .......... .......... .......... .......... 54% 11.7M 36s\n", - "284950K .......... .......... .......... .......... .......... 54% 5.45M 36s\n", - "285000K .......... .......... .......... .......... .......... 54% 3.61M 36s\n", - "285050K .......... .......... .......... .......... .......... 54% 9.22M 36s\n", - "285100K .......... .......... .......... .......... .......... 54% 8.44M 36s\n", - "285150K .......... .......... .......... .......... .......... 54% 9.17M 36s\n", - "285200K .......... .......... .......... .......... .......... 54% 4.68M 36s\n", - "285250K .......... .......... .......... .......... .......... 54% 6.83M 36s\n", - "285300K .......... .......... .......... .......... .......... 54% 11.4M 36s\n", - "285350K .......... .......... .......... .......... .......... 54% 9.20M 36s\n", - "285400K .......... .......... .......... .......... .......... 54% 3.08M 36s\n", - "285450K .......... .......... .......... .......... .......... 54% 10.2M 36s\n", - "285500K .......... .......... .......... .......... .......... 54% 8.79M 36s\n", - "285550K .......... .......... .......... .......... .......... 54% 7.58M 36s\n", - "285600K .......... .......... .......... .......... .......... 54% 5.21M 36s\n", - "285650K .......... .......... .......... .......... .......... 54% 9.73M 36s\n", - "285700K .......... .......... .......... .......... .......... 54% 8.68M 36s\n", - "285750K .......... .......... .......... .......... .......... 54% 8.12M 36s\n", - "285800K .......... .......... .......... .......... .......... 54% 4.21M 36s\n", - "285850K .......... .......... .......... .......... .......... 54% 7.79M 36s\n", - "285900K .......... .......... .......... .......... .......... 54% 9.64M 36s\n", - "285950K .......... .......... .......... .......... .......... 54% 7.18M 36s\n", - "286000K .......... .......... .......... .......... .......... 54% 5.46M 36s\n", - "286050K .......... .......... .......... .......... .......... 54% 6.56M 36s\n", - "286100K .......... .......... .......... .......... .......... 54% 5.27M 36s\n", - "286150K .......... .......... .......... .......... .......... 54% 12.2M 36s\n", - "286200K .......... .......... .......... .......... .......... 54% 7.43M 36s\n", - "286250K .......... .......... .......... .......... .......... 54% 3.69M 36s\n", - "286300K .......... .......... .......... .......... .......... 54% 7.83M 36s\n", - "286350K .......... .......... .......... .......... .......... 54% 9.30M 36s\n", - "286400K .......... .......... .......... .......... .......... 54% 8.81M 36s\n", - "286450K .......... .......... .......... .......... .......... 54% 4.74M 36s\n", - "286500K .......... .......... .......... .......... .......... 54% 11.1M 36s\n", - "286550K .......... .......... .......... .......... .......... 54% 8.56M 36s\n", - "286600K .......... .......... .......... .......... .......... 54% 6.86M 36s\n", - "286650K .......... .......... .......... .......... .......... 54% 4.78M 36s\n", - "286700K .......... .......... .......... .......... .......... 54% 8.27M 36s\n", - "286750K .......... .......... .......... .......... .......... 54% 9.43M 36s\n", - "286800K .......... .......... .......... .......... .......... 54% 8.77M 36s\n", - "286850K .......... .......... .......... .......... .......... 54% 5.04M 36s\n", - "286900K .......... .......... .......... .......... .......... 54% 9.73M 36s\n", - "286950K .......... .......... .......... .......... .......... 54% 9.36M 36s\n", - "287000K .......... .......... .......... .......... .......... 54% 5.10M 36s\n", - "287050K .......... .......... .......... .......... .......... 54% 5.39M 36s\n", - "287100K .......... .......... .......... .......... .......... 54% 10.5M 36s\n", - "287150K .......... .......... .......... .......... .......... 54% 9.88M 36s\n", - "287200K .......... .......... .......... .......... .......... 54% 7.31M 36s\n", - "287250K .......... .......... .......... .......... .......... 54% 5.01M 36s\n", - "287300K .......... .......... .......... .......... .......... 54% 9.48M 36s\n", - "287350K .......... .......... .......... .......... .......... 54% 9.19M 36s\n", - "287400K .......... .......... .......... .......... .......... 54% 6.07M 36s\n", - "287450K .......... .......... .......... .......... .......... 54% 5.74M 36s\n", - "287500K .......... .......... .......... .......... .......... 54% 8.99M 36s\n", - "287550K .......... .......... .......... .......... .......... 54% 8.85M 36s\n", - "287600K .......... .......... .......... .......... .......... 54% 7.54M 36s\n", - "287650K .......... .......... .......... .......... .......... 54% 5.48M 36s\n", - "287700K .......... .......... .......... .......... .......... 54% 8.77M 36s\n", - "287750K .......... .......... .......... .......... .......... 54% 9.16M 36s\n", - "287800K .......... .......... .......... .......... .......... 54% 5.54M 36s\n", - "287850K .......... .......... .......... .......... .......... 54% 6.33M 36s\n", - "287900K .......... .......... .......... .......... .......... 54% 9.34M 36s\n", - "287950K .......... .......... .......... .......... .......... 54% 6.54M 36s\n", - "288000K .......... .......... .......... .......... .......... 54% 9.61M 36s\n", - "288050K .......... .......... .......... .......... .......... 54% 6.85M 36s\n", - "288100K .......... .......... .......... .......... .......... 54% 8.42M 36s\n", - "288150K .......... .......... .......... .......... .......... 54% 6.85M 36s\n", - "288200K .......... .......... .......... .......... .......... 54% 5.94M 36s\n", - "288250K .......... .......... .......... .......... .......... 54% 8.98M 36s\n", - "288300K .......... .......... .......... .......... .......... 54% 7.70M 36s\n", - "288350K .......... .......... .......... .......... .......... 54% 6.72M 36s\n", - "288400K .......... .......... .......... .......... .......... 54% 7.63M 36s\n", - "288450K .......... .......... .......... .......... .......... 54% 10.0M 36s\n", - "288500K .......... .......... .......... .......... .......... 54% 7.35M 36s\n", - "288550K .......... .......... .......... .......... .......... 55% 6.71M 36s\n", - "288600K .......... .......... .......... .......... .......... 55% 6.20M 36s\n", - "288650K .......... .......... .......... .......... .......... 55% 10.1M 36s\n", - "288700K .......... .......... .......... .......... .......... 55% 6.17M 36s\n", - "288750K .......... .......... .......... .......... .......... 55% 6.47M 36s\n", - "288800K .......... .......... .......... .......... .......... 55% 8.29M 35s\n", - "288850K .......... .......... .......... .......... .......... 55% 11.1M 35s\n", - "288900K .......... .......... .......... .......... .......... 55% 7.31M 35s\n", - "288950K .......... .......... .......... .......... .......... 55% 8.74M 35s\n", - "289000K .......... .......... .......... .......... .......... 55% 4.99M 35s\n", - "289050K .......... .......... .......... .......... .......... 55% 9.21M 35s\n", - "289100K .......... .......... .......... .......... .......... 55% 8.09M 35s\n", - "289150K .......... .......... .......... .......... .......... 55% 6.65M 35s\n", - "289200K .......... .......... .......... .......... .......... 55% 7.51M 35s\n", - "289250K .......... .......... .......... .......... .......... 55% 9.63M 35s\n", - "289300K .......... .......... .......... .......... .......... 55% 7.83M 35s\n", - "289350K .......... .......... .......... .......... .......... 55% 7.97M 35s\n", - "289400K .......... .......... .......... .......... .......... 55% 4.92M 35s\n", - "289450K .......... .......... .......... .......... .......... 55% 9.39M 35s\n", - "289500K .......... .......... .......... .......... .......... 55% 9.31M 35s\n", - "289550K .......... .......... .......... .......... .......... 55% 8.34M 35s\n", - "289600K .......... .......... .......... .......... .......... 55% 5.20M 35s\n", - "289650K .......... .......... .......... .......... .......... 55% 9.13M 35s\n", - "289700K .......... .......... .......... .......... .......... 55% 8.42M 35s\n", - "289750K .......... .......... .......... .......... .......... 55% 8.94M 35s\n", - "289800K .......... .......... .......... .......... .......... 55% 4.40M 35s\n", - "289850K .......... .......... .......... .......... .......... 55% 8.53M 35s\n", - "289900K .......... .......... .......... .......... .......... 55% 10.2M 35s\n", - "289950K .......... .......... .......... .......... .......... 55% 11.7M 35s\n", - "290000K .......... .......... .......... .......... .......... 55% 4.38M 35s\n", - "290050K .......... .......... .......... .......... .......... 55% 7.21M 35s\n", - "290100K .......... .......... .......... .......... .......... 55% 10.3M 35s\n", - "290150K .......... .......... .......... .......... .......... 55% 10.1M 35s\n", - "290200K .......... .......... .......... .......... .......... 55% 5.21M 35s\n", - "290250K .......... .......... .......... .......... .......... 55% 6.29M 35s\n", - "290300K .......... .......... .......... .......... .......... 55% 10.4M 35s\n", - "290350K .......... .......... .......... .......... .......... 55% 4.81M 35s\n", - "290400K .......... .......... .......... .......... .......... 55% 14.0M 35s\n", - "290450K .......... .......... .......... .......... .......... 55% 8.98M 35s\n", - "290500K .......... .......... .......... .......... .......... 55% 2.25M 35s\n", - "290550K .......... .......... .......... .......... .......... 55% 8.52M 35s\n", - "290600K .......... .......... .......... .......... .......... 55% 7.20M 35s\n", - "290650K .......... .......... .......... .......... .......... 55% 7.77M 35s\n", - "290700K .......... .......... .......... .......... .......... 55% 6.71M 35s\n", - "290750K .......... .......... .......... .......... .......... 55% 8.63M 35s\n", - "290800K .......... .......... .......... .......... .......... 55% 8.37M 35s\n", - "290850K .......... .......... .......... .......... .......... 55% 8.07M 35s\n", - "290900K .......... .......... .......... .......... .......... 55% 10.0M 35s\n", - "290950K .......... .......... .......... .......... .......... 55% 6.34M 35s\n", - "291000K .......... .......... .......... .......... .......... 55% 6.07M 35s\n", - "291050K .......... .......... .......... .......... .......... 55% 9.04M 35s\n", - "291100K .......... .......... .......... .......... .......... 55% 7.56M 35s\n", - "291150K .......... .......... .......... .......... .......... 55% 8.87M 35s\n", - "291200K .......... .......... .......... .......... .......... 55% 6.43M 35s\n", - "291250K .......... .......... .......... .......... .......... 55% 7.72M 35s\n", - "291300K .......... .......... .......... .......... .......... 55% 10.1M 35s\n", - "291350K .......... .......... .......... .......... .......... 55% 7.90M 35s\n", - "291400K .......... .......... .......... .......... .......... 55% 5.97M 35s\n", - "291450K .......... .......... .......... .......... .......... 55% 7.34M 35s\n", - "291500K .......... .......... .......... .......... .......... 55% 9.53M 35s\n", - "291550K .......... .......... .......... .......... .......... 55% 8.75M 35s\n", - "291600K .......... .......... .......... .......... .......... 55% 9.42M 35s\n", - "291650K .......... .......... .......... .......... .......... 55% 5.59M 35s\n", - "291700K .......... .......... .......... .......... .......... 55% 8.93M 35s\n", - "291750K .......... .......... .......... .......... .......... 55% 9.83M 35s\n", - "291800K .......... .......... .......... .......... .......... 55% 4.97M 35s\n", - "291850K .......... .......... .......... .......... .......... 55% 8.23M 35s\n", - "291900K .......... .......... .......... .......... .......... 55% 9.00M 35s\n", - "291950K .......... .......... .......... .......... .......... 55% 9.09M 35s\n", - "292000K .......... .......... .......... .......... .......... 55% 5.84M 35s\n", - "292050K .......... .......... .......... .......... .......... 55% 10.6M 35s\n", - "292100K .......... .......... .......... .......... .......... 55% 8.32M 35s\n", - "292150K .......... .......... .......... .......... .......... 55% 10.7M 35s\n", - "292200K .......... .......... .......... .......... .......... 55% 4.65M 35s\n", - "292250K .......... .......... .......... .......... .......... 55% 7.08M 35s\n", - "292300K .......... .......... .......... .......... .......... 55% 13.0M 35s\n", - "292350K .......... .......... .......... .......... .......... 55% 9.21M 35s\n", - "292400K .......... .......... .......... .......... .......... 55% 6.09M 35s\n", - "292450K .......... .......... .......... .......... .......... 55% 3.48M 35s\n", - "292500K .......... .......... .......... .......... .......... 55% 8.99M 35s\n", - "292550K .......... .......... .......... .......... .......... 55% 10.3M 35s\n", - "292600K .......... .......... .......... .......... .......... 55% 7.82M 35s\n", - "292650K .......... .......... .......... .......... .......... 55% 5.60M 35s\n", - "292700K .......... .......... .......... .......... .......... 55% 8.27M 35s\n", - "292750K .......... .......... .......... .......... .......... 55% 10.2M 35s\n", - "292800K .......... .......... .......... .......... .......... 55% 10.6M 35s\n", - "292850K .......... .......... .......... .......... .......... 55% 7.05M 35s\n", - "292900K .......... .......... .......... .......... .......... 55% 6.64M 35s\n", - "292950K .......... .......... .......... .......... .......... 55% 8.30M 35s\n", - "293000K .......... .......... .......... .......... .......... 55% 7.89M 35s\n", - "293050K .......... .......... .......... .......... .......... 55% 10.0M 35s\n", - "293100K .......... .......... .......... .......... .......... 55% 5.81M 35s\n", - "293150K .......... .......... .......... .......... .......... 55% 8.33M 35s\n", - "293200K .......... .......... .......... .......... .......... 55% 7.98M 35s\n", - "293250K .......... .......... .......... .......... .......... 55% 12.8M 35s\n", - "293300K .......... .......... .......... .......... .......... 55% 4.58M 35s\n", - "293350K .......... .......... .......... .......... .......... 55% 10.2M 35s\n", - "293400K .......... .......... .......... .......... .......... 55% 6.96M 35s\n", - "293450K .......... .......... .......... .......... .......... 55% 11.2M 35s\n", - "293500K .......... .......... .......... .......... .......... 55% 5.97M 35s\n", - "293550K .......... .......... .......... .......... .......... 55% 7.29M 35s\n", - "293600K .......... .......... .......... .......... .......... 55% 8.73M 35s\n", - "293650K .......... .......... .......... .......... .......... 55% 10.2M 35s\n", - "293700K .......... .......... .......... .......... .......... 55% 9.47M 35s\n", - "293750K .......... .......... .......... .......... .......... 55% 5.56M 35s\n", - "293800K .......... .......... .......... .......... .......... 56% 7.10M 35s\n", - "293850K .......... .......... .......... .......... .......... 56% 9.57M 35s\n", - "293900K .......... .......... .......... .......... .......... 56% 10.8M 35s\n", - "293950K .......... .......... .......... .......... .......... 56% 6.00M 35s\n", - "294000K .......... .......... .......... .......... .......... 56% 6.27M 35s\n", - "294050K .......... .......... .......... .......... .......... 56% 11.6M 35s\n", - "294100K .......... .......... .......... .......... .......... 56% 11.5M 35s\n", - "294150K .......... .......... .......... .......... .......... 56% 11.3M 35s\n", - "294200K .......... .......... .......... .......... .......... 56% 3.68M 35s\n", - "294250K .......... .......... .......... .......... .......... 56% 7.80M 35s\n", - "294300K .......... .......... .......... .......... .......... 56% 11.8M 35s\n", - "294350K .......... .......... .......... .......... .......... 56% 10.9M 35s\n", - "294400K .......... .......... .......... .......... .......... 56% 5.45M 35s\n", - "294450K .......... .......... .......... .......... .......... 56% 8.20M 35s\n", - "294500K .......... .......... .......... .......... .......... 56% 10.3M 35s\n", - "294550K .......... .......... .......... .......... .......... 56% 11.5M 35s\n", - "294600K .......... .......... .......... .......... .......... 56% 5.20M 35s\n", - "294650K .......... .......... .......... .......... .......... 56% 6.68M 35s\n", - "294700K .......... .......... .......... .......... .......... 56% 12.8M 35s\n", - "294750K .......... .......... .......... .......... .......... 56% 8.13M 35s\n", - "294800K .......... .......... .......... .......... .......... 56% 9.21M 35s\n", - "294850K .......... .......... .......... .......... .......... 56% 8.79M 34s\n", - "294900K .......... .......... .......... .......... .......... 56% 7.00M 34s\n", - "294950K .......... .......... .......... .......... .......... 56% 9.66M 34s\n", - "295000K .......... .......... .......... .......... .......... 56% 6.76M 34s\n", - "295050K .......... .......... .......... .......... .......... 56% 9.53M 34s\n", - "295100K .......... .......... .......... .......... .......... 56% 6.26M 34s\n", - "295150K .......... .......... .......... .......... .......... 56% 9.82M 34s\n", - "295200K .......... .......... .......... .......... .......... 56% 6.76M 34s\n", - "295250K .......... .......... .......... .......... .......... 56% 13.1M 34s\n", - "295300K .......... .......... .......... .......... .......... 56% 9.83M 34s\n", - "295350K .......... .......... .......... .......... .......... 56% 6.11M 34s\n", - "295400K .......... .......... .......... .......... .......... 56% 7.11M 34s\n", - "295450K .......... .......... .......... .......... .......... 56% 8.62M 34s\n", - "295500K .......... .......... .......... .......... .......... 56% 10.4M 34s\n", - "295550K .......... .......... .......... .......... .......... 56% 5.88M 34s\n", - "295600K .......... .......... .......... .......... .......... 56% 10.3M 34s\n", - "295650K .......... .......... .......... .......... .......... 56% 9.97M 34s\n", - "295700K .......... .......... .......... .......... .......... 56% 9.87M 34s\n", - "295750K .......... .......... .......... .......... .......... 56% 6.70M 34s\n", - "295800K .......... .......... .......... .......... .......... 56% 5.67M 34s\n", - "295850K .......... .......... .......... .......... .......... 56% 11.2M 34s\n", - "295900K .......... .......... .......... .......... .......... 56% 10.2M 34s\n", - "295950K .......... .......... .......... .......... .......... 56% 7.25M 34s\n", - "296000K .......... .......... .......... .......... .......... 56% 7.57M 34s\n", - "296050K .......... .......... .......... .......... .......... 56% 7.05M 34s\n", - "296100K .......... .......... .......... .......... .......... 56% 12.1M 34s\n", - "296150K .......... .......... .......... .......... .......... 56% 9.62M 34s\n", - "296200K .......... .......... .......... .......... .......... 56% 6.39M 34s\n", - "296250K .......... .......... .......... .......... .......... 56% 6.68M 34s\n", - "296300K .......... .......... .......... .......... .......... 56% 8.66M 34s\n", - "296350K .......... .......... .......... .......... .......... 56% 8.93M 34s\n", - "296400K .......... .......... .......... .......... .......... 56% 8.93M 34s\n", - "296450K .......... .......... .......... .......... .......... 56% 9.39M 34s\n", - "296500K .......... .......... .......... .......... .......... 56% 6.94M 34s\n", - "296550K .......... .......... .......... .......... .......... 56% 9.40M 34s\n", - "296600K .......... .......... .......... .......... .......... 56% 6.07M 34s\n", - "296650K .......... .......... .......... .......... .......... 56% 10.4M 34s\n", - "296700K .......... .......... .......... .......... .......... 56% 7.01M 34s\n", - "296750K .......... .......... .......... .......... .......... 56% 9.39M 34s\n", - "296800K .......... .......... .......... .......... .......... 56% 10.8M 34s\n", - "296850K .......... .......... .......... .......... .......... 56% 7.08M 34s\n", - "296900K .......... .......... .......... .......... .......... 56% 10.0M 34s\n", - "296950K .......... .......... .......... .......... .......... 56% 7.67M 34s\n", - "297000K .......... .......... .......... .......... .......... 56% 6.00M 34s\n", - "297050K .......... .......... .......... .......... .......... 56% 8.34M 34s\n", - "297100K .......... .......... .......... .......... .......... 56% 10.8M 34s\n", - "297150K .......... .......... .......... .......... .......... 56% 10.5M 34s\n", - "297200K .......... .......... .......... .......... .......... 56% 7.16M 34s\n", - "297250K .......... .......... .......... .......... .......... 56% 7.97M 34s\n", - "297300K .......... .......... .......... .......... .......... 56% 9.44M 34s\n", - "297350K .......... .......... .......... .......... .......... 56% 9.96M 34s\n", - "297400K .......... .......... .......... .......... .......... 56% 6.57M 34s\n", - "297450K .......... .......... .......... .......... .......... 56% 8.00M 34s\n", - "297500K .......... .......... .......... .......... .......... 56% 9.10M 34s\n", - "297550K .......... .......... .......... .......... .......... 56% 8.20M 34s\n", - "297600K .......... .......... .......... .......... .......... 56% 9.35M 34s\n", - "297650K .......... .......... .......... .......... .......... 56% 9.43M 34s\n", - "297700K .......... .......... .......... .......... .......... 56% 8.94M 34s\n", - "297750K .......... .......... .......... .......... .......... 56% 7.01M 34s\n", - "297800K .......... .......... .......... .......... .......... 56% 7.83M 34s\n", - "297850K .......... .......... .......... .......... .......... 56% 9.36M 34s\n", - "297900K .......... .......... .......... .......... .......... 56% 8.54M 34s\n", - "297950K .......... .......... .......... .......... .......... 56% 9.28M 34s\n", - "298000K .......... .......... .......... .......... .......... 56% 8.55M 34s\n", - "298050K .......... .......... .......... .......... .......... 56% 8.11M 34s\n", - "298100K .......... .......... .......... .......... .......... 56% 9.83M 34s\n", - "298150K .......... .......... .......... .......... .......... 56% 7.83M 34s\n", - "298200K .......... .......... .......... .......... .......... 56% 7.32M 34s\n", - "298250K .......... .......... .......... .......... .......... 56% 7.80M 34s\n", - "298300K .......... .......... .......... .......... .......... 56% 11.4M 34s\n", - "298350K .......... .......... .......... .......... .......... 56% 9.87M 34s\n", - "298400K .......... .......... .......... .......... .......... 56% 6.65M 34s\n", - "298450K .......... .......... .......... .......... .......... 56% 10.7M 34s\n", - "298500K .......... .......... .......... .......... .......... 56% 8.93M 34s\n", - "298550K .......... .......... .......... .......... .......... 56% 9.86M 34s\n", - "298600K .......... .......... .......... .......... .......... 56% 5.82M 34s\n", - "298650K .......... .......... .......... .......... .......... 56% 9.84M 34s\n", - "298700K .......... .......... .......... .......... .......... 56% 9.60M 34s\n", - "298750K .......... .......... .......... .......... .......... 56% 7.23M 34s\n", - "298800K .......... .......... .......... .......... .......... 56% 11.7M 34s\n", - "298850K .......... .......... .......... .......... .......... 56% 9.14M 34s\n", - "298900K .......... .......... .......... .......... .......... 56% 8.99M 34s\n", - "298950K .......... .......... .......... .......... .......... 56% 9.81M 34s\n", - "299000K .......... .......... .......... .......... .......... 56% 6.36M 34s\n", - "299050K .......... .......... .......... .......... .......... 57% 7.14M 34s\n", - "299100K .......... .......... .......... .......... .......... 57% 9.41M 34s\n", - "299150K .......... .......... .......... .......... .......... 57% 8.36M 34s\n", - "299200K .......... .......... .......... .......... .......... 57% 6.42M 34s\n", - "299250K .......... .......... .......... .......... .......... 57% 15.0M 34s\n", - "299300K .......... .......... .......... .......... .......... 57% 8.40M 34s\n", - "299350K .......... .......... .......... .......... .......... 57% 8.96M 34s\n", - "299400K .......... .......... .......... .......... .......... 57% 5.75M 34s\n", - "299450K .......... .......... .......... .......... .......... 57% 9.55M 34s\n", - "299500K .......... .......... .......... .......... .......... 57% 5.70M 34s\n", - "299550K .......... .......... .......... .......... .......... 57% 38.4M 34s\n", - "299600K .......... .......... .......... .......... .......... 57% 10.1M 34s\n", - "299650K .......... .......... .......... .......... .......... 57% 7.65M 34s\n", - "299700K .......... .......... .......... .......... .......... 57% 7.51M 34s\n", - "299750K .......... .......... .......... .......... .......... 57% 4.79M 34s\n", - "299800K .......... .......... .......... .......... .......... 57% 6.12M 34s\n", - "299850K .......... .......... .......... .......... .......... 57% 70.5M 34s\n", - "299900K .......... .......... .......... .......... .......... 57% 8.18M 34s\n", - "299950K .......... .......... .......... .......... .......... 57% 8.23M 34s\n", - "300000K .......... .......... .......... .......... .......... 57% 5.50M 34s\n", - "300050K .......... .......... .......... .......... .......... 57% 11.1M 34s\n", - "300100K .......... .......... .......... .......... .......... 57% 12.1M 34s\n", - "300150K .......... .......... .......... .......... .......... 57% 6.78M 34s\n", - "300200K .......... .......... .......... .......... .......... 57% 7.96M 34s\n", - "300250K .......... .......... .......... .......... .......... 57% 5.99M 34s\n", - "300300K .......... .......... .......... .......... .......... 57% 7.62M 34s\n", - "300350K .......... .......... .......... .......... .......... 57% 12.6M 34s\n", - "300400K .......... .......... .......... .......... .......... 57% 7.19M 34s\n", - "300450K .......... .......... .......... .......... .......... 57% 4.68M 34s\n", - "300500K .......... .......... .......... .......... .......... 57% 43.8M 34s\n", - "300550K .......... .......... .......... .......... .......... 57% 6.62M 34s\n", - "300600K .......... .......... .......... .......... .......... 57% 5.76M 33s\n", - "300650K .......... .......... .......... .......... .......... 57% 11.2M 33s\n", - "300700K .......... .......... .......... .......... .......... 57% 5.32M 33s\n", - "300750K .......... .......... .......... .......... .......... 57% 10.5M 33s\n", - "300800K .......... .......... .......... .......... .......... 57% 9.94M 33s\n", - "300850K .......... .......... .......... .......... .......... 57% 8.12M 33s\n", - "300900K .......... .......... .......... .......... .......... 57% 11.5M 33s\n", - "300950K .......... .......... .......... .......... .......... 57% 5.76M 33s\n", - "301000K .......... .......... .......... .......... .......... 57% 6.28M 33s\n", - "301050K .......... .......... .......... .......... .......... 57% 12.9M 33s\n", - "301100K .......... .......... .......... .......... .......... 57% 13.0M 33s\n", - "301150K .......... .......... .......... .......... .......... 57% 5.34M 33s\n", - "301200K .......... .......... .......... .......... .......... 57% 7.62M 33s\n", - "301250K .......... .......... .......... .......... .......... 57% 9.17M 33s\n", - "301300K .......... .......... .......... .......... .......... 57% 7.07M 33s\n", - "301350K .......... .......... .......... .......... .......... 57% 24.3M 33s\n", - "301400K .......... .......... .......... .......... .......... 57% 5.45M 33s\n", - "301450K .......... .......... .......... .......... .......... 57% 8.43M 33s\n", - "301500K .......... .......... .......... .......... .......... 57% 7.82M 33s\n", - "301550K .......... .......... .......... .......... .......... 57% 4.69M 33s\n", - "301600K .......... .......... .......... .......... .......... 57% 42.7M 33s\n", - "301650K .......... .......... .......... .......... .......... 57% 17.3M 33s\n", - "301700K .......... .......... .......... .......... .......... 57% 6.64M 33s\n", - "301750K .......... .......... .......... .......... .......... 57% 6.60M 33s\n", - "301800K .......... .......... .......... .......... .......... 57% 5.22M 33s\n", - "301850K .......... .......... .......... .......... .......... 57% 13.2M 33s\n", - "301900K .......... .......... .......... .......... .......... 57% 11.5M 33s\n", - "301950K .......... .......... .......... .......... .......... 57% 6.66M 33s\n", - "302000K .......... .......... .......... .......... .......... 57% 8.18M 33s\n", - "302050K .......... .......... .......... .......... .......... 57% 5.40M 33s\n", - "302100K .......... .......... .......... .......... .......... 57% 24.1M 33s\n", - "302150K .......... .......... .......... .......... .......... 57% 11.8M 33s\n", - "302200K .......... .......... .......... .......... .......... 57% 6.67M 33s\n", - "302250K .......... .......... .......... .......... .......... 57% 9.10M 33s\n", - "302300K .......... .......... .......... .......... .......... 57% 5.92M 33s\n", - "302350K .......... .......... .......... .......... .......... 57% 12.0M 33s\n", - "302400K .......... .......... .......... .......... .......... 57% 8.63M 33s\n", - "302450K .......... .......... .......... .......... .......... 57% 10.2M 33s\n", - "302500K .......... .......... .......... .......... .......... 57% 10.4M 33s\n", - "302550K .......... .......... .......... .......... .......... 57% 4.80M 33s\n", - "302600K .......... .......... .......... .......... .......... 57% 3.04M 33s\n", - "302650K .......... .......... .......... .......... .......... 57% 107M 33s\n", - "302700K .......... .......... .......... .......... .......... 57% 133M 33s\n", - "302750K .......... .......... .......... .......... .......... 57% 15.3M 33s\n", - "302800K .......... .......... .......... .......... .......... 57% 8.03M 33s\n", - "302850K .......... .......... .......... .......... .......... 57% 2.28M 33s\n", - "302900K .......... .......... .......... .......... .......... 57% 82.3M 33s\n", - "302950K .......... .......... .......... .......... .......... 57% 12.0M 33s\n", - "303000K .......... .......... .......... .......... .......... 57% 7.94M 33s\n", - "303050K .......... .......... .......... .......... .......... 57% 8.83M 33s\n", - "303100K .......... .......... .......... .......... .......... 57% 3.55M 33s\n", - "303150K .......... .......... .......... .......... .......... 57% 33.1M 33s\n", - "303200K .......... .......... .......... .......... .......... 57% 10.9M 33s\n", - "303250K .......... .......... .......... .......... .......... 57% 11.5M 33s\n", - "303300K .......... .......... .......... .......... .......... 57% 10.7M 33s\n", - "303350K .......... .......... .......... .......... .......... 57% 3.89M 33s\n", - "303400K .......... .......... .......... .......... .......... 57% 13.8M 33s\n", - "303450K .......... .......... .......... .......... .......... 57% 11.9M 33s\n", - "303500K .......... .......... .......... .......... .......... 57% 9.24M 33s\n", - "303550K .......... .......... .......... .......... .......... 57% 12.4M 33s\n", - "303600K .......... .......... .......... .......... .......... 57% 4.62M 33s\n", - "303650K .......... .......... .......... .......... .......... 57% 8.82M 33s\n", - "303700K .......... .......... .......... .......... .......... 57% 15.6M 33s\n", - "303750K .......... .......... .......... .......... .......... 57% 9.22M 33s\n", - "303800K .......... .......... .......... .......... .......... 57% 9.78M 33s\n", - "303850K .......... .......... .......... .......... .......... 57% 5.26M 33s\n", - "303900K .......... .......... .......... .......... .......... 57% 7.09M 33s\n", - "303950K .......... .......... .......... .......... .......... 57% 14.7M 33s\n", - "304000K .......... .......... .......... .......... .......... 57% 15.4M 33s\n", - "304050K .......... .......... .......... .......... .......... 57% 10.4M 33s\n", - "304100K .......... .......... .......... .......... .......... 57% 5.65M 33s\n", - "304150K .......... .......... .......... .......... .......... 57% 5.82M 33s\n", - "304200K .......... .......... .......... .......... .......... 57% 10.3M 33s\n", - "304250K .......... .......... .......... .......... .......... 57% 11.1M 33s\n", - "304300K .......... .......... .......... .......... .......... 58% 11.7M 33s\n", - "304350K .......... .......... .......... .......... .......... 58% 10.0M 33s\n", - "304400K .......... .......... .......... .......... .......... 58% 5.89M 33s\n", - "304450K .......... .......... .......... .......... .......... 58% 10.4M 33s\n", - "304500K .......... .......... .......... .......... .......... 58% 10.5M 33s\n", - "304550K .......... .......... .......... .......... .......... 58% 12.7M 33s\n", - "304600K .......... .......... .......... .......... .......... 58% 5.49M 33s\n", - "304650K .......... .......... .......... .......... .......... 58% 11.4M 33s\n", - "304700K .......... .......... .......... .......... .......... 58% 10.4M 33s\n", - "304750K .......... .......... .......... .......... .......... 58% 9.02M 33s\n", - "304800K .......... .......... .......... .......... .......... 58% 11.5M 33s\n", - "304850K .......... .......... .......... .......... .......... 58% 8.87M 33s\n", - "304900K .......... .......... .......... .......... .......... 58% 7.69M 33s\n", - "304950K .......... .......... .......... .......... .......... 58% 10.8M 33s\n", - "305000K .......... .......... .......... .......... .......... 58% 8.13M 33s\n", - "305050K .......... .......... .......... .......... .......... 58% 11.5M 33s\n", - "305100K .......... .......... .......... .......... .......... 58% 8.28M 33s\n", - "305150K .......... .......... .......... .......... .......... 58% 8.62M 33s\n", - "305200K .......... .......... .......... .......... .......... 58% 9.57M 33s\n", - "305250K .......... .......... .......... .......... .......... 58% 9.00M 33s\n", - "305300K .......... .......... .......... .......... .......... 58% 12.5M 33s\n", - "305350K .......... .......... .......... .......... .......... 58% 9.71M 33s\n", - "305400K .......... .......... .......... .......... .......... 58% 6.83M 33s\n", - "305450K .......... .......... .......... .......... .......... 58% 8.91M 33s\n", - "305500K .......... .......... .......... .......... .......... 58% 10.1M 33s\n", - "305550K .......... .......... .......... .......... .......... 58% 8.37M 33s\n", - "305600K .......... .......... .......... .......... .......... 58% 11.7M 33s\n", - "305650K .......... .......... .......... .......... .......... 58% 9.57M 33s\n", - "305700K .......... .......... .......... .......... .......... 58% 11.8M 33s\n", - "305750K .......... .......... .......... .......... .......... 58% 8.53M 33s\n", - "305800K .......... .......... .......... .......... .......... 58% 6.92M 33s\n", - "305850K .......... .......... .......... .......... .......... 58% 9.83M 33s\n", - "305900K .......... .......... .......... .......... .......... 58% 9.78M 33s\n", - "305950K .......... .......... .......... .......... .......... 58% 11.9M 33s\n", - "306000K .......... .......... .......... .......... .......... 58% 9.23M 33s\n", - "306050K .......... .......... .......... .......... .......... 58% 9.74M 33s\n", - "306100K .......... .......... .......... .......... .......... 58% 8.22M 33s\n", - "306150K .......... .......... .......... .......... .......... 58% 10.6M 33s\n", - "306200K .......... .......... .......... .......... .......... 58% 7.02M 33s\n", - "306250K .......... .......... .......... .......... .......... 58% 11.6M 33s\n", - "306300K .......... .......... .......... .......... .......... 58% 11.3M 33s\n", - "306350K .......... .......... .......... .......... .......... 58% 6.75M 32s\n", - "306400K .......... .......... .......... .......... .......... 58% 11.2M 32s\n", - "306450K .......... .......... .......... .......... .......... 58% 11.3M 32s\n", - "306500K .......... .......... .......... .......... .......... 58% 10.3M 32s\n", - "306550K .......... .......... .......... .......... .......... 58% 8.50M 32s\n", - "306600K .......... .......... .......... .......... .......... 58% 6.39M 32s\n", - "306650K .......... .......... .......... .......... .......... 58% 5.12M 32s\n", - "306700K .......... .......... .......... .......... .......... 58% 81.1M 32s\n", - "306750K .......... .......... .......... .......... .......... 58% 8.76M 32s\n", - "306800K .......... .......... .......... .......... .......... 58% 7.57M 32s\n", - "306850K .......... .......... .......... .......... .......... 58% 4.38M 32s\n", - "306900K .......... .......... .......... .......... .......... 58% 22.2M 32s\n", - "306950K .......... .......... .......... .......... .......... 58% 8.83M 32s\n", - "307000K .......... .......... .......... .......... .......... 58% 11.5M 32s\n", - "307050K .......... .......... .......... .......... .......... 58% 9.74M 32s\n", - "307100K .......... .......... .......... .......... .......... 58% 6.60M 32s\n", - "307150K .......... .......... .......... .......... .......... 58% 11.4M 32s\n", - "307200K .......... .......... .......... .......... .......... 58% 10.5M 32s\n", - "307250K .......... .......... .......... .......... .......... 58% 11.7M 32s\n", - "307300K .......... .......... .......... .......... .......... 58% 7.02M 32s\n", - "307350K .......... .......... .......... .......... .......... 58% 11.2M 32s\n", - "307400K .......... .......... .......... .......... .......... 58% 7.96M 32s\n", - "307450K .......... .......... .......... .......... .......... 58% 10.1M 32s\n", - "307500K .......... .......... .......... .......... .......... 58% 10.1M 32s\n", - "307550K .......... .......... .......... .......... .......... 58% 7.61M 32s\n", - "307600K .......... .......... .......... .......... .......... 58% 10.1M 32s\n", - "307650K .......... .......... .......... .......... .......... 58% 12.3M 32s\n", - "307700K .......... .......... .......... .......... .......... 58% 9.94M 32s\n", - "307750K .......... .......... .......... .......... .......... 58% 9.48M 32s\n", - "307800K .......... .......... .......... .......... .......... 58% 6.76M 32s\n", - "307850K .......... .......... .......... .......... .......... 58% 9.58M 32s\n", - "307900K .......... .......... .......... .......... .......... 58% 11.0M 32s\n", - "307950K .......... .......... .......... .......... .......... 58% 12.2M 32s\n", - "308000K .......... .......... .......... .......... .......... 58% 9.87M 32s\n", - "308050K .......... .......... .......... .......... .......... 58% 8.23M 32s\n", - "308100K .......... .......... .......... .......... .......... 58% 8.06M 32s\n", - "308150K .......... .......... .......... .......... .......... 58% 11.1M 32s\n", - "308200K .......... .......... .......... .......... .......... 58% 6.69M 32s\n", - "308250K .......... .......... .......... .......... .......... 58% 14.5M 32s\n", - "308300K .......... .......... .......... .......... .......... 58% 10.8M 32s\n", - "308350K .......... .......... .......... .......... .......... 58% 6.39M 32s\n", - "308400K .......... .......... .......... .......... .......... 58% 13.2M 32s\n", - "308450K .......... .......... .......... .......... .......... 58% 7.64M 32s\n", - "308500K .......... .......... .......... .......... .......... 58% 16.3M 32s\n", - "308550K .......... .......... .......... .......... .......... 58% 7.91M 32s\n", - "308600K .......... .......... .......... .......... .......... 58% 7.30M 32s\n", - "308650K .......... .......... .......... .......... .......... 58% 11.9M 32s\n", - "308700K .......... .......... .......... .......... .......... 58% 5.76M 32s\n", - "308750K .......... .......... .......... .......... .......... 58% 11.8M 32s\n", - "308800K .......... .......... .......... .......... .......... 58% 11.5M 32s\n", - "308850K .......... .......... .......... .......... .......... 58% 11.4M 32s\n", - "308900K .......... .......... .......... .......... .......... 58% 11.2M 32s\n", - "308950K .......... .......... .......... .......... .......... 58% 6.61M 32s\n", - "309000K .......... .......... .......... .......... .......... 58% 8.44M 32s\n", - "309050K .......... .......... .......... .......... .......... 58% 11.0M 32s\n", - "309100K .......... .......... .......... .......... .......... 58% 11.3M 32s\n", - "309150K .......... .......... .......... .......... .......... 58% 11.9M 32s\n", - "309200K .......... .......... .......... .......... .......... 58% 6.70M 32s\n", - "309250K .......... .......... .......... .......... .......... 58% 8.17M 32s\n", - "309300K .......... .......... .......... .......... .......... 58% 11.5M 32s\n", - "309350K .......... .......... .......... .......... .......... 58% 11.6M 32s\n", - "309400K .......... .......... .......... .......... .......... 58% 3.44M 32s\n", - "309450K .......... .......... .......... .......... .......... 58% 198M 32s\n", - "309500K .......... .......... .......... .......... .......... 58% 10.8M 32s\n", - "309550K .......... .......... .......... .......... .......... 59% 16.2M 32s\n", - "309600K .......... .......... .......... .......... .......... 59% 12.9M 32s\n", - "309650K .......... .......... .......... .......... .......... 59% 3.52M 32s\n", - "309700K .......... .......... .......... .......... .......... 59% 11.4M 32s\n", - "309750K .......... .......... .......... .......... .......... 59% 9.82M 32s\n", - "309800K .......... .......... .......... .......... .......... 59% 9.30M 32s\n", - "309850K .......... .......... .......... .......... .......... 59% 11.8M 32s\n", - "309900K .......... .......... .......... .......... .......... 59% 6.33M 32s\n", - "309950K .......... .......... .......... .......... .......... 59% 13.5M 32s\n", - "310000K .......... .......... .......... .......... .......... 59% 10.6M 32s\n", - "310050K .......... .......... .......... .......... .......... 59% 11.7M 32s\n", - "310100K .......... .......... .......... .......... .......... 59% 10.9M 32s\n", - "310150K .......... .......... .......... .......... .......... 59% 12.3M 32s\n", - "310200K .......... .......... .......... .......... .......... 59% 4.77M 32s\n", - "310250K .......... .......... .......... .......... .......... 59% 10.6M 32s\n", - "310300K .......... .......... .......... .......... .......... 59% 10.8M 32s\n", - "310350K .......... .......... .......... .......... .......... 59% 11.9M 32s\n", - "310400K .......... .......... .......... .......... .......... 59% 11.4M 32s\n", - "310450K .......... .......... .......... .......... .......... 59% 6.45M 32s\n", - "310500K .......... .......... .......... .......... .......... 59% 11.1M 32s\n", - "310550K .......... .......... .......... .......... .......... 59% 10.6M 32s\n", - "310600K .......... .......... .......... .......... .......... 59% 8.46M 32s\n", - "310650K .......... .......... .......... .......... .......... 59% 11.2M 32s\n", - "310700K .......... .......... .......... .......... .......... 59% 7.80M 32s\n", - "310750K .......... .......... .......... .......... .......... 59% 11.1M 32s\n", - "310800K .......... .......... .......... .......... .......... 59% 9.15M 32s\n", - "310850K .......... .......... .......... .......... .......... 59% 12.6M 32s\n", - "310900K .......... .......... .......... .......... .......... 59% 11.2M 32s\n", - "310950K .......... .......... .......... .......... .......... 59% 11.0M 32s\n", - "311000K .......... .......... .......... .......... .......... 59% 6.03M 32s\n", - "311050K .......... .......... .......... .......... .......... 59% 11.9M 32s\n", - "311100K .......... .......... .......... .......... .......... 59% 10.9M 32s\n", - "311150K .......... .......... .......... .......... .......... 59% 10.2M 32s\n", - "311200K .......... .......... .......... .......... .......... 59% 11.8M 32s\n", - "311250K .......... .......... .......... .......... .......... 59% 7.27M 32s\n", - "311300K .......... .......... .......... .......... .......... 59% 11.7M 32s\n", - "311350K .......... .......... .......... .......... .......... 59% 10.6M 32s\n", - "311400K .......... .......... .......... .......... .......... 59% 8.86M 32s\n", - "311450K .......... .......... .......... .......... .......... 59% 10.1M 32s\n", - "311500K .......... .......... .......... .......... .......... 59% 7.68M 32s\n", - "311550K .......... .......... .......... .......... .......... 59% 11.3M 32s\n", - "311600K .......... .......... .......... .......... .......... 59% 10.6M 32s\n", - "311650K .......... .......... .......... .......... .......... 59% 10.8M 32s\n", - "311700K .......... .......... .......... .......... .......... 59% 11.5M 32s\n", - "311750K .......... .......... .......... .......... .......... 59% 11.5M 32s\n", - "311800K .......... .......... .......... .......... .......... 59% 5.62M 32s\n", - "311850K .......... .......... .......... .......... .......... 59% 11.5M 32s\n", - "311900K .......... .......... .......... .......... .......... 59% 10.8M 32s\n", - "311950K .......... .......... .......... .......... .......... 59% 12.0M 31s\n", - "312000K .......... .......... .......... .......... .......... 59% 11.7M 31s\n", - "312050K .......... .......... .......... .......... .......... 59% 11.2M 31s\n", - "312100K .......... .......... .......... .......... .......... 59% 6.86M 31s\n", - "312150K .......... .......... .......... .......... .......... 59% 12.2M 31s\n", - "312200K .......... .......... .......... .......... .......... 59% 8.18M 31s\n", - "312250K .......... .......... .......... .......... .......... 59% 11.8M 31s\n", - "312300K .......... .......... .......... .......... .......... 59% 9.64M 31s\n", - "312350K .......... .......... .......... .......... .......... 59% 8.72M 31s\n", - "312400K .......... .......... .......... .......... .......... 59% 9.90M 31s\n", - "312450K .......... .......... .......... .......... .......... 59% 9.22M 31s\n", - "312500K .......... .......... .......... .......... .......... 59% 12.3M 31s\n", - "312550K .......... .......... .......... .......... .......... 59% 10.5M 31s\n", - "312600K .......... .......... .......... .......... .......... 59% 6.47M 31s\n", - "312650K .......... .......... .......... .......... .......... 59% 9.82M 31s\n", - "312700K .......... .......... .......... .......... .......... 59% 13.1M 31s\n", - "312750K .......... .......... .......... .......... .......... 59% 8.74M 31s\n", - "312800K .......... .......... .......... .......... .......... 59% 10.4M 31s\n", - "312850K .......... .......... .......... .......... .......... 59% 11.4M 31s\n", - "312900K .......... .......... .......... .......... .......... 59% 9.39M 31s\n", - "312950K .......... .......... .......... .......... .......... 59% 7.09M 31s\n", - "313000K .......... .......... .......... .......... .......... 59% 14.2M 31s\n", - "313050K .......... .......... .......... .......... .......... 59% 11.1M 31s\n", - "313100K .......... .......... .......... .......... .......... 59% 9.16M 31s\n", - "313150K .......... .......... .......... .......... .......... 59% 9.43M 31s\n", - "313200K .......... .......... .......... .......... .......... 59% 11.9M 31s\n", - "313250K .......... .......... .......... .......... .......... 59% 9.57M 31s\n", - "313300K .......... .......... .......... .......... .......... 59% 10.3M 31s\n", - "313350K .......... .......... .......... .......... .......... 59% 10.8M 31s\n", - "313400K .......... .......... .......... .......... .......... 59% 8.16M 31s\n", - "313450K .......... .......... .......... .......... .......... 59% 11.4M 31s\n", - "313500K .......... .......... .......... .......... .......... 59% 9.55M 31s\n", - "313550K .......... .......... .......... .......... .......... 59% 8.43M 31s\n", - "313600K .......... .......... .......... .......... .......... 59% 10.4M 31s\n", - "313650K .......... .......... .......... .......... .......... 59% 11.0M 31s\n", - "313700K .......... .......... .......... .......... .......... 59% 10.9M 31s\n", - "313750K .......... .......... .......... .......... .......... 59% 11.8M 31s\n", - "313800K .......... .......... .......... .......... .......... 59% 7.68M 31s\n", - "313850K .......... .......... .......... .......... .......... 59% 9.16M 31s\n", - "313900K .......... .......... .......... .......... .......... 59% 9.45M 31s\n", - "313950K .......... .......... .......... .......... .......... 59% 11.2M 31s\n", - "314000K .......... .......... .......... .......... .......... 59% 10.4M 31s\n", - "314050K .......... .......... .......... .......... .......... 59% 11.4M 31s\n", - "314100K .......... .......... .......... .......... .......... 59% 11.0M 31s\n", - "314150K .......... .......... .......... .......... .......... 59% 8.48M 31s\n", - "314200K .......... .......... .......... .......... .......... 59% 8.05M 31s\n", - "314250K .......... .......... .......... .......... .......... 59% 9.88M 31s\n", - "314300K .......... .......... .......... .......... .......... 59% 13.0M 31s\n", - "314350K .......... .......... .......... .......... .......... 59% 10.3M 31s\n", - "314400K .......... .......... .......... .......... .......... 59% 11.8M 31s\n", - "314450K .......... .......... .......... .......... .......... 59% 8.12M 31s\n", - "314500K .......... .......... .......... .......... .......... 59% 10.1M 31s\n", - "314550K .......... .......... .......... .......... .......... 59% 13.3M 31s\n", - "314600K .......... .......... .......... .......... .......... 59% 8.02M 31s\n", - "314650K .......... .......... .......... .......... .......... 59% 11.6M 31s\n", - "314700K .......... .......... .......... .......... .......... 59% 6.13M 31s\n", - "314750K .......... .......... .......... .......... .......... 59% 15.4M 31s\n", - "314800K .......... .......... .......... .......... .......... 60% 12.6M 31s\n", - "314850K .......... .......... .......... .......... .......... 60% 10.3M 31s\n", - "314900K .......... .......... .......... .......... .......... 60% 11.4M 31s\n", - "314950K .......... .......... .......... .......... .......... 60% 9.39M 31s\n", - "315000K .......... .......... .......... .......... .......... 60% 7.14M 31s\n", - "315050K .......... .......... .......... .......... .......... 60% 8.39M 31s\n", - "315100K .......... .......... .......... .......... .......... 60% 12.7M 31s\n", - "315150K .......... .......... .......... .......... .......... 60% 10.6M 31s\n", - "315200K .......... .......... .......... .......... .......... 60% 12.3M 31s\n", - "315250K .......... .......... .......... .......... .......... 60% 11.0M 31s\n", - "315300K .......... .......... .......... .......... .......... 60% 11.4M 31s\n", - "315350K .......... .......... .......... .......... .......... 60% 8.34M 31s\n", - "315400K .......... .......... .......... .......... .......... 60% 5.12M 31s\n", - "315450K .......... .......... .......... .......... .......... 60% 13.0M 31s\n", - "315500K .......... .......... .......... .......... .......... 60% 10.6M 31s\n", - "315550K .......... .......... .......... .......... .......... 60% 11.9M 31s\n", - "315600K .......... .......... .......... .......... .......... 60% 11.3M 31s\n", - "315650K .......... .......... .......... .......... .......... 60% 6.28M 31s\n", - "315700K .......... .......... .......... .......... .......... 60% 10.5M 31s\n", - "315750K .......... .......... .......... .......... .......... 60% 9.83M 31s\n", - "315800K .......... .......... .......... .......... .......... 60% 9.94M 31s\n", - "315850K .......... .......... .......... .......... .......... 60% 10.9M 31s\n", - "315900K .......... .......... .......... .......... .......... 60% 7.69M 31s\n", - "315950K .......... .......... .......... .......... .......... 60% 9.82M 31s\n", - "316000K .......... .......... .......... .......... .......... 60% 11.2M 31s\n", - "316050K .......... .......... .......... .......... .......... 60% 10.5M 31s\n", - "316100K .......... .......... .......... .......... .......... 60% 13.6M 31s\n", - "316150K .......... .......... .......... .......... .......... 60% 11.3M 31s\n", - "316200K .......... .......... .......... .......... .......... 60% 6.99M 31s\n", - "316250K .......... .......... .......... .......... .......... 60% 8.96M 31s\n", - "316300K .......... .......... .......... .......... .......... 60% 11.2M 31s\n", - "316350K .......... .......... .......... .......... .......... 60% 9.56M 31s\n", - "316400K .......... .......... .......... .......... .......... 60% 9.50M 31s\n", - "316450K .......... .......... .......... .......... .......... 60% 13.7M 31s\n", - "316500K .......... .......... .......... .......... .......... 60% 8.40M 31s\n", - "316550K .......... .......... .......... .......... .......... 60% 16.3M 31s\n", - "316600K .......... .......... .......... .......... .......... 60% 8.63M 31s\n", - "316650K .......... .......... .......... .......... .......... 60% 7.42M 31s\n", - "316700K .......... .......... .......... .......... .......... 60% 11.9M 31s\n", - "316750K .......... .......... .......... .......... .......... 60% 9.60M 31s\n", - "316800K .......... .......... .......... .......... .......... 60% 12.0M 31s\n", - "316850K .......... .......... .......... .......... .......... 60% 11.6M 31s\n", - "316900K .......... .......... .......... .......... .......... 60% 11.5M 31s\n", - "316950K .......... .......... .......... .......... .......... 60% 8.18M 31s\n", - "317000K .......... .......... .......... .......... .......... 60% 6.95M 31s\n", - "317050K .......... .......... .......... .......... .......... 60% 8.18M 31s\n", - "317100K .......... .......... .......... .......... .......... 60% 1.29M 31s\n", - "317150K .......... .......... .......... .......... .......... 60% 184M 31s\n", - "317200K .......... .......... .......... .......... .......... 60% 349M 31s\n", - "317250K .......... .......... .......... .......... .......... 60% 490M 31s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "317300K .......... .......... .......... .......... .......... 60% 391M 31s\n", - "317350K .......... .......... .......... .......... .......... 60% 394M 31s\n", - "317400K .......... .......... .......... .......... .......... 60% 207M 31s\n", - "317450K .......... .......... .......... .......... .......... 60% 501M 31s\n", - "317500K .......... .......... .......... .......... .......... 60% 9.26M 30s\n", - "317550K .......... .......... .......... .......... .......... 60% 6.84M 30s\n", - "317600K .......... .......... .......... .......... .......... 60% 8.46M 30s\n", - "317650K .......... .......... .......... .......... .......... 60% 7.98M 30s\n", - "317700K .......... .......... .......... .......... .......... 60% 7.62M 30s\n", - "317750K .......... .......... .......... .......... .......... 60% 6.60M 30s\n", - "317800K .......... .......... .......... .......... .......... 60% 7.07M 30s\n", - "317850K .......... .......... .......... .......... .......... 60% 6.71M 30s\n", - "317900K .......... .......... .......... .......... .......... 60% 7.81M 30s\n", - "317950K .......... .......... .......... .......... .......... 60% 7.03M 30s\n", - "318000K .......... .......... .......... .......... .......... 60% 6.91M 30s\n", - "318050K .......... .......... .......... .......... .......... 60% 10.0M 30s\n", - "318100K .......... .......... .......... .......... .......... 60% 7.92M 30s\n", - "318150K .......... .......... .......... .......... .......... 60% 6.44M 30s\n", - "318200K .......... .......... .......... .......... .......... 60% 5.49M 30s\n", - "318250K .......... .......... .......... .......... .......... 60% 9.63M 30s\n", - "318300K .......... .......... .......... .......... .......... 60% 7.58M 30s\n", - "318350K .......... .......... .......... .......... .......... 60% 8.42M 30s\n", - "318400K .......... .......... .......... .......... .......... 60% 5.43M 30s\n", - "318450K .......... .......... .......... .......... .......... 60% 8.87M 30s\n", - "318500K .......... .......... .......... .......... .......... 60% 9.43M 30s\n", - "318550K .......... .......... .......... .......... .......... 60% 8.98M 30s\n", - "318600K .......... .......... .......... .......... .......... 60% 4.31M 30s\n", - "318650K .......... .......... .......... .......... .......... 60% 10.1M 30s\n", - "318700K .......... .......... .......... .......... .......... 60% 9.56M 30s\n", - "318750K .......... .......... .......... .......... .......... 60% 9.91M 30s\n", - "318800K .......... .......... .......... .......... .......... 60% 5.02M 30s\n", - "318850K .......... .......... .......... .......... .......... 60% 7.83M 30s\n", - "318900K .......... .......... .......... .......... .......... 60% 7.94M 30s\n", - "318950K .......... .......... .......... .......... .......... 60% 9.28M 30s\n", - "319000K .......... .......... .......... .......... .......... 60% 5.83M 30s\n", - "319050K .......... .......... .......... .......... .......... 60% 5.84M 30s\n", - "319100K .......... .......... .......... .......... .......... 60% 8.46M 30s\n", - "319150K .......... .......... .......... .......... .......... 60% 9.61M 30s\n", - "319200K .......... .......... .......... .......... .......... 60% 8.90M 30s\n", - "319250K .......... .......... .......... .......... .......... 60% 5.11M 30s\n", - "319300K .......... .......... .......... .......... .......... 60% 11.0M 30s\n", - "319350K .......... .......... .......... .......... .......... 60% 8.93M 30s\n", - "319400K .......... .......... .......... .......... .......... 60% 7.58M 30s\n", - "319450K .......... .......... .......... .......... .......... 60% 4.84M 30s\n", - "319500K .......... .......... .......... .......... .......... 60% 10.1M 30s\n", - "319550K .......... .......... .......... .......... .......... 60% 10.7M 30s\n", - "319600K .......... .......... .......... .......... .......... 60% 8.14M 30s\n", - "319650K .......... .......... .......... .......... .......... 60% 5.80M 30s\n", - "319700K .......... .......... .......... .......... .......... 60% 7.04M 30s\n", - "319750K .......... .......... .......... .......... .......... 60% 14.4M 30s\n", - "319800K .......... .......... .......... .......... .......... 60% 7.16M 30s\n", - "319850K .......... .......... .......... .......... .......... 60% 6.01M 30s\n", - "319900K .......... .......... .......... .......... .......... 60% 5.08M 30s\n", - "319950K .......... .......... .......... .......... .......... 60% 9.39M 30s\n", - "320000K .......... .......... .......... .......... .......... 60% 9.69M 30s\n", - "320050K .......... .......... .......... .......... .......... 61% 10.3M 30s\n", - "320100K .......... .......... .......... .......... .......... 61% 5.67M 30s\n", - "320150K .......... .......... .......... .......... .......... 61% 7.97M 30s\n", - "320200K .......... .......... .......... .......... .......... 61% 5.90M 30s\n", - "320250K .......... .......... .......... .......... .......... 61% 12.7M 30s\n", - "320300K .......... .......... .......... .......... .......... 61% 7.46M 30s\n", - "320350K .......... .......... .......... .......... .......... 61% 7.49M 30s\n", - "320400K .......... .......... .......... .......... .......... 61% 7.98M 30s\n", - "320450K .......... .......... .......... .......... .......... 61% 8.63M 30s\n", - "320500K .......... .......... .......... .......... .......... 61% 9.85M 30s\n", - "320550K .......... .......... .......... .......... .......... 61% 7.28M 30s\n", - "320600K .......... .......... .......... .......... .......... 61% 6.29M 30s\n", - "320650K .......... .......... .......... .......... .......... 61% 6.70M 30s\n", - "320700K .......... .......... .......... .......... .......... 61% 9.60M 30s\n", - "320750K .......... .......... .......... .......... .......... 61% 10.6M 30s\n", - "320800K .......... .......... .......... .......... .......... 61% 9.16M 30s\n", - "320850K .......... .......... .......... .......... .......... 61% 5.60M 30s\n", - "320900K .......... .......... .......... .......... .......... 61% 9.89M 30s\n", - "320950K .......... .......... .......... .......... .......... 61% 9.95M 30s\n", - "321000K .......... .......... .......... .......... .......... 61% 7.02M 30s\n", - "321050K .......... .......... .......... .......... .......... 61% 5.92M 30s\n", - "321100K .......... .......... .......... .......... .......... 61% 8.12M 30s\n", - "321150K .......... .......... .......... .......... .......... 61% 10.5M 30s\n", - "321200K .......... .......... .......... .......... .......... 61% 9.15M 30s\n", - "321250K .......... .......... .......... .......... .......... 61% 7.04M 30s\n", - "321300K .......... .......... .......... .......... .......... 61% 7.79M 30s\n", - "321350K .......... .......... .......... .......... .......... 61% 7.26M 30s\n", - "321400K .......... .......... .......... .......... .......... 61% 7.96M 30s\n", - "321450K .......... .......... .......... .......... .......... 61% 5.95M 30s\n", - "321500K .......... .......... .......... .......... .......... 61% 13.3M 30s\n", - "321550K .......... .......... .......... .......... .......... 61% 5.89M 30s\n", - "321600K .......... .......... .......... .......... .......... 61% 14.7M 30s\n", - "321650K .......... .......... .......... .......... .......... 61% 8.26M 30s\n", - "321700K .......... .......... .......... .......... .......... 61% 6.40M 30s\n", - "321750K .......... .......... .......... .......... .......... 61% 9.65M 30s\n", - "321800K .......... .......... .......... .......... .......... 61% 4.93M 30s\n", - "321850K .......... .......... .......... .......... .......... 61% 9.92M 30s\n", - "321900K .......... .......... .......... .......... .......... 61% 7.10M 30s\n", - "321950K .......... .......... .......... .......... .......... 61% 16.8M 30s\n", - "322000K .......... .......... .......... .......... .......... 61% 4.32M 30s\n", - "322050K .......... .......... .......... .......... .......... 61% 10.2M 30s\n", - "322100K .......... .......... .......... .......... .......... 61% 2.75M 30s\n", - "322150K .......... .......... .......... .......... .......... 61% 95.9M 30s\n", - "322200K .......... .......... .......... .......... .......... 61% 12.8M 30s\n", - "322250K .......... .......... .......... .......... .......... 61% 8.73M 30s\n", - "322300K .......... .......... .......... .......... .......... 61% 3.76M 30s\n", - "322350K .......... .......... .......... .......... .......... 61% 6.33M 30s\n", - "322400K .......... .......... .......... .......... .......... 61% 15.2M 30s\n", - "322450K .......... .......... .......... .......... .......... 61% 6.46M 30s\n", - "322500K .......... .......... .......... .......... .......... 61% 19.2M 30s\n", - "322550K .......... .......... .......... .......... .......... 61% 7.19M 30s\n", - "322600K .......... .......... .......... .......... .......... 61% 5.65M 30s\n", - "322650K .......... .......... .......... .......... .......... 61% 12.2M 30s\n", - "322700K .......... .......... .......... .......... .......... 61% 7.45M 30s\n", - "322750K .......... .......... .......... .......... .......... 61% 10.6M 30s\n", - "322800K .......... .......... .......... .......... .......... 61% 6.42M 30s\n", - "322850K .......... .......... .......... .......... .......... 61% 11.3M 30s\n", - "322900K .......... .......... .......... .......... .......... 61% 9.14M 30s\n", - "322950K .......... .......... .......... .......... .......... 61% 8.73M 30s\n", - "323000K .......... .......... .......... .......... .......... 61% 6.05M 30s\n", - "323050K .......... .......... .......... .......... .......... 61% 9.20M 30s\n", - "323100K .......... .......... .......... .......... .......... 61% 10.3M 30s\n", - "323150K .......... .......... .......... .......... .......... 61% 9.64M 30s\n", - "323200K .......... .......... .......... .......... .......... 61% 7.17M 30s\n", - "323250K .......... .......... .......... .......... .......... 61% 8.28M 30s\n", - "323300K .......... .......... .......... .......... .......... 61% 10.6M 30s\n", - "323350K .......... .......... .......... .......... .......... 61% 9.39M 30s\n", - "323400K .......... .......... .......... .......... .......... 61% 5.69M 30s\n", - "323450K .......... .......... .......... .......... .......... 61% 9.47M 30s\n", - "323500K .......... .......... .......... .......... .......... 61% 9.18M 30s\n", - "323550K .......... .......... .......... .......... .......... 61% 10.3M 30s\n", - "323600K .......... .......... .......... .......... .......... 61% 6.03M 30s\n", - "323650K .......... .......... .......... .......... .......... 61% 9.07M 30s\n", - "323700K .......... .......... .......... .......... .......... 61% 9.66M 30s\n", - "323750K .......... .......... .......... .......... .......... 61% 11.2M 29s\n", - "323800K .......... .......... .......... .......... .......... 61% 5.12M 29s\n", - "323850K .......... .......... .......... .......... .......... 61% 9.61M 29s\n", - "323900K .......... .......... .......... .......... .......... 61% 7.06M 29s\n", - "323950K .......... .......... .......... .......... .......... 61% 14.5M 29s\n", - "324000K .......... .......... .......... .......... .......... 61% 9.59M 29s\n", - "324050K .......... .......... .......... .......... .......... 61% 7.23M 29s\n", - "324100K .......... .......... .......... .......... .......... 61% 10.7M 29s\n", - "324150K .......... .......... .......... .......... .......... 61% 5.48M 29s\n", - "324200K .......... .......... .......... .......... .......... 61% 8.98M 29s\n", - "324250K .......... .......... .......... .......... .......... 61% 9.67M 29s\n", - "324300K .......... .......... .......... .......... .......... 61% 9.81M 29s\n", - "324350K .......... .......... .......... .......... .......... 61% 5.82M 29s\n", - "324400K .......... .......... .......... .......... .......... 61% 11.6M 29s\n", - "324450K .......... .......... .......... .......... .......... 61% 12.0M 29s\n", - "324500K .......... .......... .......... .......... .......... 61% 9.38M 29s\n", - "324550K .......... .......... .......... .......... .......... 61% 10.2M 29s\n", - "324600K .......... .......... .......... .......... .......... 61% 4.76M 29s\n", - "324650K .......... .......... .......... .......... .......... 61% 10.2M 29s\n", - "324700K .......... .......... .......... .......... .......... 61% 9.97M 29s\n", - "324750K .......... .......... .......... .......... .......... 61% 11.4M 29s\n", - "324800K .......... .......... .......... .......... .......... 61% 5.26M 29s\n", - "324850K .......... .......... .......... .......... .......... 61% 9.34M 29s\n", - "324900K .......... .......... .......... .......... .......... 61% 14.8M 29s\n", - "324950K .......... .......... .......... .......... .......... 61% 7.69M 29s\n", - "325000K .......... .......... .......... .......... .......... 61% 8.77M 29s\n", - "325050K .......... .......... .......... .......... .......... 61% 5.31M 29s\n", - "325100K .......... .......... .......... .......... .......... 61% 11.1M 29s\n", - "325150K .......... .......... .......... .......... .......... 61% 11.4M 29s\n", - "325200K .......... .......... .......... .......... .......... 61% 10.6M 29s\n", - "325250K .......... .......... .......... .......... .......... 61% 10.6M 29s\n", - "325300K .......... .......... .......... .......... .......... 62% 5.11M 29s\n", - "325350K .......... .......... .......... .......... .......... 62% 11.0M 29s\n", - "325400K .......... .......... .......... .......... .......... 62% 9.36M 29s\n", - "325450K .......... .......... .......... .......... .......... 62% 12.1M 29s\n", - "325500K .......... .......... .......... .......... .......... 62% 5.47M 29s\n", - "325550K .......... .......... .......... .......... .......... 62% 9.30M 29s\n", - "325600K .......... .......... .......... .......... .......... 62% 11.8M 29s\n", - "325650K .......... .......... .......... .......... .......... 62% 10.4M 29s\n", - "325700K .......... .......... .......... .......... .......... 62% 1.18M 29s\n", - "325750K .......... .......... .......... .......... .......... 62% 203M 29s\n", - "325800K .......... .......... .......... .......... .......... 62% 195M 29s\n", - "325850K .......... .......... .......... .......... .......... 62% 196M 29s\n", - "325900K .......... .......... .......... .......... .......... 62% 347M 29s\n", - "325950K .......... .......... .......... .......... .......... 62% 265M 29s\n", - "326000K .......... .......... .......... .......... .......... 62% 21.4M 29s\n", - "326050K .......... .......... .......... .......... .......... 62% 5.63M 29s\n", - "326100K .......... .......... .......... .......... .......... 62% 6.32M 29s\n", - "326150K .......... .......... .......... .......... .......... 62% 12.0M 29s\n", - "326200K .......... .......... .......... .......... .......... 62% 3.61M 29s\n", - "326250K .......... .......... .......... .......... .......... 62% 4.91M 29s\n", - "326300K .......... .......... .......... .......... .......... 62% 8.06M 29s\n", - "326350K .......... .......... .......... .......... .......... 62% 5.60M 29s\n", - "326400K .......... .......... .......... .......... .......... 62% 6.79M 29s\n", - "326450K .......... .......... .......... .......... .......... 62% 5.52M 29s\n", - "326500K .......... .......... .......... .......... .......... 62% 7.49M 29s\n", - "326550K .......... .......... .......... .......... .......... 62% 7.63M 29s\n", - "326600K .......... .......... .......... .......... .......... 62% 4.09M 29s\n", - "326650K .......... .......... .......... .......... .......... 62% 7.71M 29s\n", - "326700K .......... .......... .......... .......... .......... 62% 7.01M 29s\n", - "326750K .......... .......... .......... .......... .......... 62% 5.05M 29s\n", - "326800K .......... .......... .......... .......... .......... 62% 8.31M 29s\n", - "326850K .......... .......... .......... .......... .......... 62% 7.21M 29s\n", - "326900K .......... .......... .......... .......... .......... 62% 7.25M 29s\n", - "326950K .......... .......... .......... .......... .......... 62% 5.68M 29s\n", - "327000K .......... .......... .......... .......... .......... 62% 5.15M 29s\n", - "327050K .......... .......... .......... .......... .......... 62% 7.34M 29s\n", - "327100K .......... .......... .......... .......... .......... 62% 5.61M 29s\n", - "327150K .......... .......... .......... .......... .......... 62% 7.14M 29s\n", - "327200K .......... .......... .......... .......... .......... 62% 7.71M 29s\n", - "327250K .......... .......... .......... .......... .......... 62% 5.68M 29s\n", - "327300K .......... .......... .......... .......... .......... 62% 6.75M 29s\n", - "327350K .......... .......... .......... .......... .......... 62% 6.35M 29s\n", - "327400K .......... .......... .......... .......... .......... 62% 5.43M 29s\n", - "327450K .......... .......... .......... .......... .......... 62% 7.34M 29s\n", - "327500K .......... .......... .......... .......... .......... 62% 7.02M 29s\n", - "327550K .......... .......... .......... .......... .......... 62% 6.63M 29s\n", - "327600K .......... .......... .......... .......... .......... 62% 6.11M 29s\n", - "327650K .......... .......... .......... .......... .......... 62% 7.50M 29s\n", - "327700K .......... .......... .......... .......... .......... 62% 5.13M 29s\n", - "327750K .......... .......... .......... .......... .......... 62% 8.10M 29s\n", - "327800K .......... .......... .......... .......... .......... 62% 5.86M 29s\n", - "327850K .......... .......... .......... .......... .......... 62% 5.25M 29s\n", - "327900K .......... .......... .......... .......... .......... 62% 8.67M 29s\n", - "327950K .......... .......... .......... .......... .......... 62% 6.44M 29s\n", - "328000K .......... .......... .......... .......... .......... 62% 7.53M 29s\n", - "328050K .......... .......... .......... .......... .......... 62% 6.06M 29s\n", - "328100K .......... .......... .......... .......... .......... 62% 4.94M 29s\n", - "328150K .......... .......... .......... .......... .......... 62% 8.24M 29s\n", - "328200K .......... .......... .......... .......... .......... 62% 5.69M 29s\n", - "328250K .......... .......... .......... .......... .......... 62% 7.41M 29s\n", - "328300K .......... .......... .......... .......... .......... 62% 4.95M 29s\n", - "328350K .......... .......... .......... .......... .......... 62% 8.36M 29s\n", - "328400K .......... .......... .......... .......... .......... 62% 5.96M 29s\n", - "328450K .......... .......... .......... .......... .......... 62% 6.39M 29s\n", - "328500K .......... .......... .......... .......... .......... 62% 7.50M 29s\n", - "328550K .......... .......... .......... .......... .......... 62% 8.35M 29s\n", - "328600K .......... .......... .......... .......... .......... 62% 4.49M 29s\n", - "328650K .......... .......... .......... .......... .......... 62% 6.64M 29s\n", - "328700K .......... .......... .......... .......... .......... 62% 6.65M 29s\n", - "328750K .......... .......... .......... .......... .......... 62% 7.10M 29s\n", - "328800K .......... .......... .......... .......... .......... 62% 5.65M 29s\n", - "328850K .......... .......... .......... .......... .......... 62% 8.88M 29s\n", - "328900K .......... .......... .......... .......... .......... 62% 6.32M 29s\n", - "328950K .......... .......... .......... .......... .......... 62% 7.64M 29s\n", - "329000K .......... .......... .......... .......... .......... 62% 5.05M 29s\n", - "329050K .......... .......... .......... .......... .......... 62% 5.68M 29s\n", - "329100K .......... .......... .......... .......... .......... 62% 9.04M 29s\n", - "329150K .......... .......... .......... .......... .......... 62% 7.31M 29s\n", - "329200K .......... .......... .......... .......... .......... 62% 7.13M 29s\n", - "329250K .......... .......... .......... .......... .......... 62% 5.59M 29s\n", - "329300K .......... .......... .......... .......... .......... 62% 8.08M 29s\n", - "329350K .......... .......... .......... .......... .......... 62% 7.65M 29s\n", - "329400K .......... .......... .......... .......... .......... 62% 4.86M 29s\n", - "329450K .......... .......... .......... .......... .......... 62% 7.45M 29s\n", - "329500K .......... .......... .......... .......... .......... 62% 7.79M 29s\n", - "329550K .......... .......... .......... .......... .......... 62% 6.38M 29s\n", - "329600K .......... .......... .......... .......... .......... 62% 5.86M 29s\n", - "329650K .......... .......... .......... .......... .......... 62% 9.84M 29s\n", - "329700K .......... .......... .......... .......... .......... 62% 7.79M 29s\n", - "329750K .......... .......... .......... .......... .......... 62% 6.46M 29s\n", - "329800K .......... .......... .......... .......... .......... 62% 3.94M 29s\n", - "329850K .......... .......... .......... .......... .......... 62% 11.5M 29s\n", - "329900K .......... .......... .......... .......... .......... 62% 7.25M 29s\n", - "329950K .......... .......... .......... .......... .......... 62% 4.66M 29s\n", - "330000K .......... .......... .......... .......... .......... 62% 9.92M 29s\n", - "330050K .......... .......... .......... .......... .......... 62% 8.57M 29s\n", - "330100K .......... .......... .......... .......... .......... 62% 7.62M 29s\n", - "330150K .......... .......... .......... .......... .......... 62% 4.75M 29s\n", - "330200K .......... .......... .......... .......... .......... 62% 6.57M 29s\n", - "330250K .......... .......... .......... .......... .......... 62% 9.56M 29s\n", - "330300K .......... .......... .......... .......... .......... 62% 4.09M 29s\n", - "330350K .......... .......... .......... .......... .......... 62% 9.02M 29s\n", - "330400K .......... .......... .......... .......... .......... 62% 7.57M 28s\n", - "330450K .......... .......... .......... .......... .......... 62% 8.22M 28s\n", - "330500K .......... .......... .......... .......... .......... 62% 5.45M 28s\n", - "330550K .......... .......... .......... .......... .......... 63% 7.95M 28s\n", - "330600K .......... .......... .......... .......... .......... 63% 5.14M 28s\n", - "330650K .......... .......... .......... .......... .......... 63% 8.58M 28s\n", - "330700K .......... .......... .......... .......... .......... 63% 5.73M 28s\n", - "330750K .......... .......... .......... .......... .......... 63% 6.73M 28s\n", - "330800K .......... .......... .......... .......... .......... 63% 8.31M 28s\n", - "330850K .......... .......... .......... .......... .......... 63% 8.29M 28s\n", - "330900K .......... .......... .......... .......... .......... 63% 7.06M 28s\n", - "330950K .......... .......... .......... .......... .......... 63% 5.06M 28s\n", - "331000K .......... .......... .......... .......... .......... 63% 6.12M 28s\n", - "331050K .......... .......... .......... .......... .......... 63% 9.23M 28s\n", - "331100K .......... .......... .......... .......... .......... 63% 5.82M 28s\n", - "331150K .......... .......... .......... .......... .......... 63% 7.76M 28s\n", - "331200K .......... .......... .......... .......... .......... 63% 7.63M 28s\n", - "331250K .......... .......... .......... .......... .......... 63% 7.65M 28s\n", - "331300K .......... .......... .......... .......... .......... 63% 6.64M 28s\n", - "331350K .......... .......... .......... .......... .......... 63% 6.15M 28s\n", - "331400K .......... .......... .......... .......... .......... 63% 6.15M 28s\n", - "331450K .......... .......... .......... .......... .......... 63% 9.08M 28s\n", - "331500K .......... .......... .......... .......... .......... 63% 5.43M 28s\n", - "331550K .......... .......... .......... .......... .......... 63% 7.81M 28s\n", - "331600K .......... .......... .......... .......... .......... 63% 8.89M 28s\n", - "331650K .......... .......... .......... .......... .......... 63% 8.44M 28s\n", - "331700K .......... .......... .......... .......... .......... 63% 5.13M 28s\n", - "331750K .......... .......... .......... .......... .......... 63% 8.71M 28s\n", - "331800K .......... .......... .......... .......... .......... 63% 6.13M 28s\n", - "331850K .......... .......... .......... .......... .......... 63% 7.37M 28s\n", - "331900K .......... .......... .......... .......... .......... 63% 5.69M 28s\n", - "331950K .......... .......... .......... .......... .......... 63% 9.39M 28s\n", - "332000K .......... .......... .......... .......... .......... 63% 9.36M 28s\n", - "332050K .......... .......... .......... .......... .......... 63% 5.52M 28s\n", - "332100K .......... .......... .......... .......... .......... 63% 6.38M 28s\n", - "332150K .......... .......... .......... .......... .......... 63% 8.22M 28s\n", - "332200K .......... .......... .......... .......... .......... 63% 6.59M 28s\n", - "332250K .......... .......... .......... .......... .......... 63% 5.86M 28s\n", - "332300K .......... .......... .......... .......... .......... 63% 8.58M 28s\n", - "332350K .......... .......... .......... .......... .......... 63% 5.35M 28s\n", - "332400K .......... .......... .......... .......... .......... 63% 9.47M 28s\n", - "332450K .......... .......... .......... .......... .......... 63% 8.17M 28s\n", - "332500K .......... .......... .......... .......... .......... 63% 7.31M 28s\n", - "332550K .......... .......... .......... .......... .......... 63% 4.67M 28s\n", - "332600K .......... .......... .......... .......... .......... 63% 6.37M 28s\n", - "332650K .......... .......... .......... .......... .......... 63% 9.81M 28s\n", - "332700K .......... .......... .......... .......... .......... 63% 5.04M 28s\n", - "332750K .......... .......... .......... .......... .......... 63% 6.24M 28s\n", - "332800K .......... .......... .......... .......... .......... 63% 8.68M 28s\n", - "332850K .......... .......... .......... .......... .......... 63% 8.27M 28s\n", - "332900K .......... .......... .......... .......... .......... 63% 7.18M 28s\n", - "332950K .......... .......... .......... .......... .......... 63% 6.62M 28s\n", - "333000K .......... .......... .......... .......... .......... 63% 5.76M 28s\n", - "333050K .......... .......... .......... .......... .......... 63% 10.9M 28s\n", - "333100K .......... .......... .......... .......... .......... 63% 6.40M 28s\n", - "333150K .......... .......... .......... .......... .......... 63% 5.71M 28s\n", - "333200K .......... .......... .......... .......... .......... 63% 7.54M 28s\n", - "333250K .......... .......... .......... .......... .......... 63% 10.6M 28s\n", - "333300K .......... .......... .......... .......... .......... 63% 5.16M 28s\n", - "333350K .......... .......... .......... .......... .......... 63% 8.44M 28s\n", - "333400K .......... .......... .......... .......... .......... 63% 5.65M 28s\n", - "333450K .......... .......... .......... .......... .......... 63% 12.1M 28s\n", - "333500K .......... .......... .......... .......... .......... 63% 5.37M 28s\n", - "333550K .......... .......... .......... .......... .......... 63% 8.72M 28s\n", - "333600K .......... .......... .......... .......... .......... 63% 7.24M 28s\n", - "333650K .......... .......... .......... .......... .......... 63% 9.88M 28s\n", - "333700K .......... .......... .......... .......... .......... 63% 5.43M 28s\n", - "333750K .......... .......... .......... .......... .......... 63% 9.47M 28s\n", - "333800K .......... .......... .......... .......... .......... 63% 5.97M 28s\n", - "333850K .......... .......... .......... .......... .......... 63% 9.76M 28s\n", - "333900K .......... .......... .......... .......... .......... 63% 5.33M 28s\n", - "333950K .......... .......... .......... .......... .......... 63% 7.33M 28s\n", - "334000K .......... .......... .......... .......... .......... 63% 9.10M 28s\n", - "334050K .......... .......... .......... .......... .......... 63% 10.8M 28s\n", - "334100K .......... .......... .......... .......... .......... 63% 5.58M 28s\n", - "334150K .......... .......... .......... .......... .......... 63% 7.13M 28s\n", - "334200K .......... .......... .......... .......... .......... 63% 6.93M 28s\n", - "334250K .......... .......... .......... .......... .......... 63% 9.13M 28s\n", - "334300K .......... .......... .......... .......... .......... 63% 5.40M 28s\n", - "334350K .......... .......... .......... .......... .......... 63% 7.59M 28s\n", - "334400K .......... .......... .......... .......... .......... 63% 9.23M 28s\n", - "334450K .......... .......... .......... .......... .......... 63% 8.96M 28s\n", - "334500K .......... .......... .......... .......... .......... 63% 5.70M 28s\n", - "334550K .......... .......... .......... .......... .......... 63% 8.28M 28s\n", - "334600K .......... .......... .......... .......... .......... 63% 6.71M 28s\n", - "334650K .......... .......... .......... .......... .......... 63% 5.52M 28s\n", - "334700K .......... .......... .......... .......... .......... 63% 11.0M 28s\n", - "334750K .......... .......... .......... .......... .......... 63% 7.38M 28s\n", - "334800K .......... .......... .......... .......... .......... 63% 9.53M 28s\n", - "334850K .......... .......... .......... .......... .......... 63% 2.78M 28s\n", - "334900K .......... .......... .......... .......... .......... 63% 87.1M 28s\n", - "334950K .......... .......... .......... .......... .......... 63% 15.4M 28s\n", - "335000K .......... .......... .......... .......... .......... 63% 2.07M 28s\n", - "335050K .......... .......... .......... .......... .......... 63% 20.2M 28s\n", - "335100K .......... .......... .......... .......... .......... 63% 9.19M 28s\n", - "335150K .......... .......... .......... .......... .......... 63% 2.53M 28s\n", - "335200K .......... .......... .......... .......... .......... 63% 7.80M 28s\n", - "335250K .......... .......... .......... .......... .......... 63% 9.19M 28s\n", - "335300K .......... .......... .......... .......... .......... 63% 9.91M 28s\n", - "335350K .......... .......... .......... .......... .......... 63% 5.22M 28s\n", - "335400K .......... .......... .......... .......... .......... 63% 6.51M 28s\n", - "335450K .......... .......... .......... .......... .......... 63% 9.89M 28s\n", - "335500K .......... .......... .......... .......... .......... 63% 7.24M 28s\n", - "335550K .......... .......... .......... .......... .......... 63% 6.00M 28s\n", - "335600K .......... .......... .......... .......... .......... 63% 7.75M 28s\n", - "335650K .......... .......... .......... .......... .......... 63% 8.91M 28s\n", - "335700K .......... .......... .......... .......... .......... 63% 9.77M 28s\n", - "335750K .......... .......... .......... .......... .......... 63% 5.64M 28s\n", - "335800K .......... .......... .......... .......... .......... 64% 7.10M 28s\n", - "335850K .......... .......... .......... .......... .......... 64% 7.98M 28s\n", - "335900K .......... .......... .......... .......... .......... 64% 7.73M 28s\n", - "335950K .......... .......... .......... .......... .......... 64% 7.16M 28s\n", - "336000K .......... .......... .......... .......... .......... 64% 6.71M 28s\n", - "336050K .......... .......... .......... .......... .......... 64% 9.70M 28s\n", - "336100K .......... .......... .......... .......... .......... 64% 6.92M 28s\n", - "336150K .......... .......... .......... .......... .......... 64% 10.2M 28s\n", - "336200K .......... .......... .......... .......... .......... 64% 5.02M 28s\n", - "336250K .......... .......... .......... .......... .......... 64% 8.58M 28s\n", - "336300K .......... .......... .......... .......... .......... 64% 7.88M 28s\n", - "336350K .......... .......... .......... .......... .......... 64% 6.94M 28s\n", - "336400K .......... .......... .......... .......... .......... 64% 8.56M 28s\n", - "336450K .......... .......... .......... .......... .......... 64% 7.54M 28s\n", - "336500K .......... .......... .......... .......... .......... 64% 7.97M 28s\n", - "336550K .......... .......... .......... .......... .......... 64% 10.2M 28s\n", - "336600K .......... .......... .......... .......... .......... 64% 5.27M 28s\n", - "336650K .......... .......... .......... .......... .......... 64% 8.12M 28s\n", - "336700K .......... .......... .......... .......... .......... 64% 8.50M 28s\n", - "336750K .......... .......... .......... .......... .......... 64% 9.41M 28s\n", - "336800K .......... .......... .......... .......... .......... 64% 8.00M 28s\n", - "336850K .......... .......... .......... .......... .......... 64% 6.37M 28s\n", - "336900K .......... .......... .......... .......... .......... 64% 9.15M 28s\n", - "336950K .......... .......... .......... .......... .......... 64% 8.65M 28s\n", - "337000K .......... .......... .......... .......... .......... 64% 5.08M 28s\n", - "337050K .......... .......... .......... .......... .......... 64% 8.54M 27s\n", - "337100K .......... .......... .......... .......... .......... 64% 9.96M 27s\n", - "337150K .......... .......... .......... .......... .......... 64% 7.02M 27s\n", - "337200K .......... .......... .......... .......... .......... 64% 6.12M 27s\n", - "337250K .......... .......... .......... .......... .......... 64% 10.1M 27s\n", - "337300K .......... .......... .......... .......... .......... 64% 7.55M 27s\n", - "337350K .......... .......... .......... .......... .......... 64% 8.74M 27s\n", - "337400K .......... .......... .......... .......... .......... 64% 5.80M 27s\n", - "337450K .......... .......... .......... .......... .......... 64% 8.73M 27s\n", - "337500K .......... .......... .......... .......... .......... 64% 7.37M 27s\n", - "337550K .......... .......... .......... .......... .......... 64% 9.20M 27s\n", - "337600K .......... .......... .......... .......... .......... 64% 8.17M 27s\n", - "337650K .......... .......... .......... .......... .......... 64% 8.13M 27s\n", - "337700K .......... .......... .......... .......... .......... 64% 7.44M 27s\n", - "337750K .......... .......... .......... .......... .......... 64% 7.08M 27s\n", - "337800K .......... .......... .......... .......... .......... 64% 7.83M 27s\n", - "337850K .......... .......... .......... .......... .......... 64% 6.01M 27s\n", - "337900K .......... .......... .......... .......... .......... 64% 9.88M 27s\n", - "337950K .......... .......... .......... .......... .......... 64% 8.33M 27s\n", - "338000K .......... .......... .......... .......... .......... 64% 8.43M 27s\n", - "338050K .......... .......... .......... .......... .......... 64% 8.01M 27s\n", - "338100K .......... .......... .......... .......... .......... 64% 7.19M 27s\n", - "338150K .......... .......... .......... .......... .......... 64% 8.78M 27s\n", - "338200K .......... .......... .......... .......... .......... 64% 6.19M 27s\n", - "338250K .......... .......... .......... .......... .......... 64% 8.74M 27s\n", - "338300K .......... .......... .......... .......... .......... 64% 6.99M 27s\n", - "338350K .......... .......... .......... .......... .......... 64% 7.03M 27s\n", - "338400K .......... .......... .......... .......... .......... 64% 9.61M 27s\n", - "338450K .......... .......... .......... .......... .......... 64% 10.3M 27s\n", - "338500K .......... .......... .......... .......... .......... 64% 6.91M 27s\n", - "338550K .......... .......... .......... .......... .......... 64% 8.73M 27s\n", - "338600K .......... .......... .......... .......... .......... 64% 5.96M 27s\n", - "338650K .......... .......... .......... .......... .......... 64% 7.23M 27s\n", - "338700K .......... .......... .......... .......... .......... 64% 9.60M 27s\n", - "338750K .......... .......... .......... .......... .......... 64% 9.47M 27s\n", - "338800K .......... .......... .......... .......... .......... 64% 6.62M 27s\n", - "338850K .......... .......... .......... .......... .......... 64% 8.86M 27s\n", - "338900K .......... .......... .......... .......... .......... 64% 6.43M 27s\n", - "338950K .......... .......... .......... .......... .......... 64% 11.6M 27s\n", - "339000K .......... .......... .......... .......... .......... 64% 5.60M 27s\n", - "339050K .......... .......... .......... .......... .......... 64% 7.70M 27s\n", - "339100K .......... .......... .......... .......... .......... 64% 8.28M 27s\n", - "339150K .......... .......... .......... .......... .......... 64% 9.55M 27s\n", - "339200K .......... .......... .......... .......... .......... 64% 7.94M 27s\n", - "339250K .......... .......... .......... .......... .......... 64% 7.67M 27s\n", - "339300K .......... .......... .......... .......... .......... 64% 9.31M 27s\n", - "339350K .......... .......... .......... .......... .......... 64% 7.83M 27s\n", - "339400K .......... .......... .......... .......... .......... 64% 7.09M 27s\n", - "339450K .......... .......... .......... .......... .......... 64% 6.69M 27s\n", - "339500K .......... .......... .......... .......... .......... 64% 8.46M 27s\n", - "339550K .......... .......... .......... .......... .......... 64% 6.39M 27s\n", - "339600K .......... .......... .......... .......... .......... 64% 9.16M 27s\n", - "339650K .......... .......... .......... .......... .......... 64% 10.4M 27s\n", - "339700K .......... .......... .......... .......... .......... 64% 5.92M 27s\n", - "339750K .......... .......... .......... .......... .......... 64% 9.09M 27s\n", - "339800K .......... .......... .......... .......... .......... 64% 7.38M 27s\n", - "339850K .......... .......... .......... .......... .......... 64% 7.59M 27s\n", - "339900K .......... .......... .......... .......... .......... 64% 6.86M 27s\n", - "339950K .......... .......... .......... .......... .......... 64% 9.88M 27s\n", - "340000K .......... .......... .......... .......... .......... 64% 7.99M 27s\n", - "340050K .......... .......... .......... .......... .......... 64% 10.0M 27s\n", - "340100K .......... .......... .......... .......... .......... 64% 8.97M 27s\n", - "340150K .......... .......... .......... .......... .......... 64% 6.94M 27s\n", - "340200K .......... .......... .......... .......... .......... 64% 5.28M 27s\n", - "340250K .......... .......... .......... .......... .......... 64% 13.3M 27s\n", - "340300K .......... .......... .......... .......... .......... 64% 10.9M 27s\n", - "340350K .......... .......... .......... .......... .......... 64% 6.62M 27s\n", - "340400K .......... .......... .......... .......... .......... 64% 7.36M 27s\n", - "340450K .......... .......... .......... .......... .......... 64% 9.12M 27s\n", - "340500K .......... .......... .......... .......... .......... 64% 8.91M 27s\n", - "340550K .......... .......... .......... .......... .......... 64% 9.92M 27s\n", - "340600K .......... .......... .......... .......... .......... 64% 4.68M 27s\n", - "340650K .......... .......... .......... .......... .......... 64% 10.3M 27s\n", - "340700K .......... .......... .......... .......... .......... 64% 10.3M 27s\n", - "340750K .......... .......... .......... .......... .......... 64% 7.76M 27s\n", - "340800K .......... .......... .......... .......... .......... 64% 6.41M 27s\n", - "340850K .......... .......... .......... .......... .......... 64% 10.7M 27s\n", - "340900K .......... .......... .......... .......... .......... 64% 6.20M 27s\n", - "340950K .......... .......... .......... .......... .......... 64% 10.7M 27s\n", - "341000K .......... .......... .......... .......... .......... 64% 6.64M 27s\n", - "341050K .......... .......... .......... .......... .......... 65% 8.94M 27s\n", - "341100K .......... .......... .......... .......... .......... 65% 6.95M 27s\n", - "341150K .......... .......... .......... .......... .......... 65% 8.53M 27s\n", - "341200K .......... .......... .......... .......... .......... 65% 9.39M 27s\n", - "341250K .......... .......... .......... .......... .......... 65% 6.18M 27s\n", - "341300K .......... .......... .......... .......... .......... 65% 12.4M 27s\n", - "341350K .......... .......... .......... .......... .......... 65% 7.63M 27s\n", - "341400K .......... .......... .......... .......... .......... 65% 7.59M 27s\n", - "341450K .......... .......... .......... .......... .......... 65% 7.65M 27s\n", - "341500K .......... .......... .......... .......... .......... 65% 8.38M 27s\n", - "341550K .......... .......... .......... .......... .......... 65% 9.64M 27s\n", - "341600K .......... .......... .......... .......... .......... 65% 7.19M 27s\n", - "341650K .......... .......... .......... .......... .......... 65% 10.2M 27s\n", - "341700K .......... .......... .......... .......... .......... 65% 6.94M 27s\n", - "341750K .......... .......... .......... .......... .......... 65% 10.6M 27s\n", - "341800K .......... .......... .......... .......... .......... 65% 4.81M 27s\n", - "341850K .......... .......... .......... .......... .......... 65% 14.2M 27s\n", - "341900K .......... .......... .......... .......... .......... 65% 7.32M 27s\n", - "341950K .......... .......... .......... .......... .......... 65% 9.57M 27s\n", - "342000K .......... .......... .......... .......... .......... 65% 10.8M 27s\n", - "342050K .......... .......... .......... .......... .......... 65% 6.78M 27s\n", - "342100K .......... .......... .......... .......... .......... 65% 8.45M 27s\n", - "342150K .......... .......... .......... .......... .......... 65% 9.91M 27s\n", - "342200K .......... .......... .......... .......... .......... 65% 6.72M 27s\n", - "342250K .......... .......... .......... .......... .......... 65% 6.94M 27s\n", - "342300K .......... .......... .......... .......... .......... 65% 11.1M 27s\n", - "342350K .......... .......... .......... .......... .......... 65% 9.30M 27s\n", - "342400K .......... .......... .......... .......... .......... 65% 7.55M 27s\n", - "342450K .......... .......... .......... .......... .......... 65% 10.5M 27s\n", - "342500K .......... .......... .......... .......... .......... 65% 7.51M 27s\n", - "342550K .......... .......... .......... .......... .......... 65% 10.3M 27s\n", - "342600K .......... .......... .......... .......... .......... 65% 5.96M 27s\n", - "342650K .......... .......... .......... .......... .......... 65% 6.84M 27s\n", - "342700K .......... .......... .......... .......... .......... 65% 9.80M 27s\n", - "342750K .......... .......... .......... .......... .......... 65% 11.0M 27s\n", - "342800K .......... .......... .......... .......... .......... 65% 7.63M 27s\n", - "342850K .......... .......... .......... .......... .......... 65% 9.30M 27s\n", - "342900K .......... .......... .......... .......... .......... 65% 7.29M 27s\n", - "342950K .......... .......... .......... .......... .......... 65% 8.57M 27s\n", - "343000K .......... .......... .......... .......... .......... 65% 7.64M 27s\n", - "343050K .......... .......... .......... .......... .......... 65% 6.86M 27s\n", - "343100K .......... .......... .......... .......... .......... 65% 8.86M 27s\n", - "343150K .......... .......... .......... .......... .......... 65% 6.24M 27s\n", - "343200K .......... .......... .......... .......... .......... 65% 10.7M 27s\n", - "343250K .......... .......... .......... .......... .......... 65% 10.8M 27s\n", - "343300K .......... .......... .......... .......... .......... 65% 7.20M 26s\n", - "343350K .......... .......... .......... .......... .......... 65% 11.1M 26s\n", - "343400K .......... .......... .......... .......... .......... 65% 4.94M 26s\n", - "343450K .......... .......... .......... .......... .......... 65% 10.6M 26s\n", - "343500K .......... .......... .......... .......... .......... 65% 9.53M 26s\n", - "343550K .......... .......... .......... .......... .......... 65% 8.97M 26s\n", - "343600K .......... .......... .......... .......... .......... 65% 7.61M 26s\n", - "343650K .......... .......... .......... .......... .......... 65% 9.14M 26s\n", - "343700K .......... .......... .......... .......... .......... 65% 9.62M 26s\n", - "343750K .......... .......... .......... .......... .......... 65% 7.64M 26s\n", - "343800K .......... .......... .......... .......... .......... 65% 6.90M 26s\n", - "343850K .......... .......... .......... .......... .......... 65% 8.22M 26s\n", - "343900K .......... .......... .......... .......... .......... 65% 9.67M 26s\n", - "343950K .......... .......... .......... .......... .......... 65% 11.0M 26s\n", - "344000K .......... .......... .......... .......... .......... 65% 6.39M 26s\n", - "344050K .......... .......... .......... .......... .......... 65% 8.59M 26s\n", - "344100K .......... .......... .......... .......... .......... 65% 8.20M 26s\n", - "344150K .......... .......... .......... .......... .......... 65% 11.8M 26s\n", - "344200K .......... .......... .......... .......... .......... 65% 5.62M 26s\n", - "344250K .......... .......... .......... .......... .......... 65% 9.48M 26s\n", - "344300K .......... .......... .......... .......... .......... 65% 7.83M 26s\n", - "344350K .......... .......... .......... .......... .......... 65% 11.7M 26s\n", - "344400K .......... .......... .......... .......... .......... 65% 10.1M 26s\n", - "344450K .......... .......... .......... .......... .......... 65% 6.42M 26s\n", - "344500K .......... .......... .......... .......... .......... 65% 11.0M 26s\n", - "344550K .......... .......... .......... .......... .......... 65% 8.22M 26s\n", - "344600K .......... .......... .......... .......... .......... 65% 7.56M 26s\n", - "344650K .......... .......... .......... .......... .......... 65% 7.96M 26s\n", - "344700K .......... .......... .......... .......... .......... 65% 7.87M 26s\n", - "344750K .......... .......... .......... .......... .......... 65% 9.24M 26s\n", - "344800K .......... .......... .......... .......... .......... 65% 11.1M 26s\n", - "344850K .......... .......... .......... .......... .......... 65% 10.0M 26s\n", - "344900K .......... .......... .......... .......... .......... 65% 6.15M 26s\n", - "344950K .......... .......... .......... .......... .......... 65% 12.1M 26s\n", - "345000K .......... .......... .......... .......... .......... 65% 6.27M 26s\n", - "345050K .......... .......... .......... .......... .......... 65% 10.5M 26s\n", - "345100K .......... .......... .......... .......... .......... 65% 6.99M 26s\n", - "345150K .......... .......... .......... .......... .......... 65% 9.69M 26s\n", - "345200K .......... .......... .......... .......... .......... 65% 7.06M 26s\n", - "345250K .......... .......... .......... .......... .......... 65% 10.7M 26s\n", - "345300K .......... .......... .......... .......... .......... 65% 11.2M 26s\n", - "345350K .......... .......... .......... .......... .......... 65% 8.87M 26s\n", - "345400K .......... .......... .......... .......... .......... 65% 6.80M 26s\n", - "345450K .......... .......... .......... .......... .......... 65% 7.64M 26s\n", - "345500K .......... .......... .......... .......... .......... 65% 9.47M 26s\n", - "345550K .......... .......... .......... .......... .......... 65% 11.8M 26s\n", - "345600K .......... .......... .......... .......... .......... 65% 7.33M 26s\n", - "345650K .......... .......... .......... .......... .......... 65% 8.44M 26s\n", - "345700K .......... .......... .......... .......... .......... 65% 9.64M 26s\n", - "345750K .......... .......... .......... .......... .......... 65% 9.37M 26s\n", - "345800K .......... .......... .......... .......... .......... 65% 6.10M 26s\n", - "345850K .......... .......... .......... .......... .......... 65% 8.74M 26s\n", - "345900K .......... .......... .......... .......... .......... 65% 9.94M 26s\n", - "345950K .......... .......... .......... .......... .......... 65% 9.38M 26s\n", - "346000K .......... .......... .......... .......... .......... 65% 9.75M 26s\n", - "346050K .......... .......... .......... .......... .......... 65% 8.11M 26s\n", - "346100K .......... .......... .......... .......... .......... 65% 7.18M 26s\n", - "346150K .......... .......... .......... .......... .......... 65% 12.1M 26s\n", - "346200K .......... .......... .......... .......... .......... 65% 6.74M 26s\n", - "346250K .......... .......... .......... .......... .......... 65% 11.0M 26s\n", - "346300K .......... .......... .......... .......... .......... 66% 6.43M 26s\n", - "346350K .......... .......... .......... .......... .......... 66% 10.6M 26s\n", - "346400K .......... .......... .......... .......... .......... 66% 10.0M 26s\n", - "346450K .......... .......... .......... .......... .......... 66% 9.81M 26s\n", - "346500K .......... .......... .......... .......... .......... 66% 8.48M 26s\n", - "346550K .......... .......... .......... .......... .......... 66% 7.22M 26s\n", - "346600K .......... .......... .......... .......... .......... 66% 8.01M 26s\n", - "346650K .......... .......... .......... .......... .......... 66% 10.2M 26s\n", - "346700K .......... .......... .......... .......... .......... 66% 8.32M 26s\n", - "346750K .......... .......... .......... .......... .......... 66% 8.64M 26s\n", - "346800K .......... .......... .......... .......... .......... 66% 7.20M 26s\n", - "346850K .......... .......... .......... .......... .......... 66% 3.34M 26s\n", - "346900K .......... .......... .......... .......... .......... 66% 10.5M 26s\n", - "346950K .......... .......... .......... .......... .......... 66% 10.8M 26s\n", - "347000K .......... .......... .......... .......... .......... 66% 8.74M 26s\n", - "347050K .......... .......... .......... .......... .......... 66% 4.81M 26s\n", - "347100K .......... .......... .......... .......... .......... 66% 11.5M 26s\n", - "347150K .......... .......... .......... .......... .......... 66% 11.4M 26s\n", - "347200K .......... .......... .......... .......... .......... 66% 10.4M 26s\n", - "347250K .......... .......... .......... .......... .......... 66% 11.1M 26s\n", - "347300K .......... .......... .......... .......... .......... 66% 4.34M 26s\n", - "347350K .......... .......... .......... .......... .......... 66% 13.7M 26s\n", - "347400K .......... .......... .......... .......... .......... 66% 9.59M 26s\n", - "347450K .......... .......... .......... .......... .......... 66% 10.9M 26s\n", - "347500K .......... .......... .......... .......... .......... 66% 6.44M 26s\n", - "347550K .......... .......... .......... .......... .......... 66% 6.12M 26s\n", - "347600K .......... .......... .......... .......... .......... 66% 9.88M 26s\n", - "347650K .......... .......... .......... .......... .......... 66% 11.4M 26s\n", - "347700K .......... .......... .......... .......... .......... 66% 10.9M 26s\n", - "347750K .......... .......... .......... .......... .......... 66% 12.3M 26s\n", - "347800K .......... .......... .......... .......... .......... 66% 5.06M 26s\n", - "347850K .......... .......... .......... .......... .......... 66% 9.22M 26s\n", - "347900K .......... .......... .......... .......... .......... 66% 9.30M 26s\n", - "347950K .......... .......... .......... .......... .......... 66% 10.2M 26s\n", - "348000K .......... .......... .......... .......... .......... 66% 9.38M 26s\n", - "348050K .......... .......... .......... .......... .......... 66% 7.95M 26s\n", - "348100K .......... .......... .......... .......... .......... 66% 10.0M 26s\n", - "348150K .......... .......... .......... .......... .......... 66% 8.65M 26s\n", - "348200K .......... .......... .......... .......... .......... 66% 7.02M 26s\n", - "348250K .......... .......... .......... .......... .......... 66% 6.01M 26s\n", - "348300K .......... .......... .......... .......... .......... 66% 12.1M 26s\n", - "348350K .......... .......... .......... .......... .......... 66% 11.1M 26s\n", - "348400K .......... .......... .......... .......... .......... 66% 10.2M 26s\n", - "348450K .......... .......... .......... .......... .......... 66% 6.85M 26s\n", - "348500K .......... .......... .......... .......... .......... 66% 7.80M 26s\n", - "348550K .......... .......... .......... .......... .......... 66% 10.1M 26s\n", - "348600K .......... .......... .......... .......... .......... 66% 8.63M 26s\n", - "348650K .......... .......... .......... .......... .......... 66% 9.92M 26s\n", - "348700K .......... .......... .......... .......... .......... 66% 9.03M 26s\n", - "348750K .......... .......... .......... .......... .......... 66% 6.93M 26s\n", - "348800K .......... .......... .......... .......... .......... 66% 9.94M 26s\n", - "348850K .......... .......... .......... .......... .......... 66% 10.7M 26s\n", - "348900K .......... .......... .......... .......... .......... 66% 12.2M 26s\n", - "348950K .......... .......... .......... .......... .......... 66% 7.39M 26s\n", - "349000K .......... .......... .......... .......... .......... 66% 6.25M 26s\n", - "349050K .......... .......... .......... .......... .......... 66% 10.6M 26s\n", - "349100K .......... .......... .......... .......... .......... 66% 11.8M 26s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "349150K .......... .......... .......... .......... .......... 66% 8.53M 26s\n", - "349200K .......... .......... .......... .......... .......... 66% 7.71M 26s\n", - "349250K .......... .......... .......... .......... .......... 66% 10.2M 26s\n", - "349300K .......... .......... .......... .......... .......... 66% 8.44M 26s\n", - "349350K .......... .......... .......... .......... .......... 66% 12.5M 26s\n", - "349400K .......... .......... .......... .......... .......... 66% 7.47M 26s\n", - "349450K .......... .......... .......... .......... .......... 66% 6.99M 26s\n", - "349500K .......... .......... .......... .......... .......... 66% 10.6M 25s\n", - "349550K .......... .......... .......... .......... .......... 66% 9.43M 25s\n", - "349600K .......... .......... .......... .......... .......... 66% 10.3M 25s\n", - "349650K .......... .......... .......... .......... .......... 66% 10.3M 25s\n", - "349700K .......... .......... .......... .......... .......... 66% 7.86M 25s\n", - "349750K .......... .......... .......... .......... .......... 66% 9.83M 25s\n", - "349800K .......... .......... .......... .......... .......... 66% 7.20M 25s\n", - "349850K .......... .......... .......... .......... .......... 66% 10.7M 25s\n", - "349900K .......... .......... .......... .......... .......... 66% 10.2M 25s\n", - "349950K .......... .......... .......... .......... .......... 66% 8.89M 25s\n", - "350000K .......... .......... .......... .......... .......... 66% 8.35M 25s\n", - "350050K .......... .......... .......... .......... .......... 66% 9.36M 25s\n", - "350100K .......... .......... .......... .......... .......... 66% 9.46M 25s\n", - "350150K .......... .......... .......... .......... .......... 66% 11.5M 25s\n", - "350200K .......... .......... .......... .......... .......... 66% 7.53M 25s\n", - "350250K .......... .......... .......... .......... .......... 66% 7.80M 25s\n", - "350300K .......... .......... .......... .......... .......... 66% 10.9M 25s\n", - "350350K .......... .......... .......... .......... .......... 66% 6.12M 25s\n", - "350400K .......... .......... .......... .......... .......... 66% 19.5M 25s\n", - "350450K .......... .......... .......... .......... .......... 66% 8.77M 25s\n", - "350500K .......... .......... .......... .......... .......... 66% 9.46M 25s\n", - "350550K .......... .......... .......... .......... .......... 66% 8.66M 25s\n", - "350600K .......... .......... .......... .......... .......... 66% 6.36M 25s\n", - "350650K .......... .......... .......... .......... .......... 66% 11.2M 25s\n", - "350700K .......... .......... .......... .......... .......... 66% 11.2M 25s\n", - "350750K .......... .......... .......... .......... .......... 66% 10.3M 25s\n", - "350800K .......... .......... .......... .......... .......... 66% 7.66M 25s\n", - "350850K .......... .......... .......... .......... .......... 66% 9.18M 25s\n", - "350900K .......... .......... .......... .......... .......... 66% 10.0M 25s\n", - "350950K .......... .......... .......... .......... .......... 66% 11.4M 25s\n", - "351000K .......... .......... .......... .......... .......... 66% 6.44M 25s\n", - "351050K .......... .......... .......... .......... .......... 66% 9.93M 25s\n", - "351100K .......... .......... .......... .......... .......... 66% 9.97M 25s\n", - "351150K .......... .......... .......... .......... .......... 66% 7.96M 25s\n", - "351200K .......... .......... .......... .......... .......... 66% 10.8M 25s\n", - "351250K .......... .......... .......... .......... .......... 66% 12.1M 25s\n", - "351300K .......... .......... .......... .......... .......... 66% 6.94M 25s\n", - "351350K .......... .......... .......... .......... .......... 66% 10.5M 25s\n", - "351400K .......... .......... .......... .......... .......... 66% 7.35M 25s\n", - "351450K .......... .......... .......... .......... .......... 66% 11.6M 25s\n", - "351500K .......... .......... .......... .......... .......... 66% 11.1M 25s\n", - "351550K .......... .......... .......... .......... .......... 67% 7.20M 25s\n", - "351600K .......... .......... .......... .......... .......... 67% 8.86M 25s\n", - "351650K .......... .......... .......... .......... .......... 67% 11.2M 25s\n", - "351700K .......... .......... .......... .......... .......... 67% 10.5M 25s\n", - "351750K .......... .......... .......... .......... .......... 67% 11.2M 25s\n", - "351800K .......... .......... .......... .......... .......... 67% 5.95M 25s\n", - "351850K .......... .......... .......... .......... .......... 67% 8.48M 25s\n", - "351900K .......... .......... .......... .......... .......... 67% 10.8M 25s\n", - "351950K .......... .......... .......... .......... .......... 67% 12.0M 25s\n", - "352000K .......... .......... .......... .......... .......... 67% 7.89M 25s\n", - "352050K .......... .......... .......... .......... .......... 67% 8.93M 25s\n", - "352100K .......... .......... .......... .......... .......... 67% 11.2M 25s\n", - "352150K .......... .......... .......... .......... .......... 67% 8.02M 25s\n", - "352200K .......... .......... .......... .......... .......... 67% 9.28M 25s\n", - "352250K .......... .......... .......... .......... .......... 67% 10.8M 25s\n", - "352300K .......... .......... .......... .......... .......... 67% 8.17M 25s\n", - "352350K .......... .......... .......... .......... .......... 67% 10.3M 25s\n", - "352400K .......... .......... .......... .......... .......... 67% 7.27M 25s\n", - "352450K .......... .......... .......... .......... .......... 67% 12.1M 25s\n", - "352500K .......... .......... .......... .......... .......... 67% 11.7M 25s\n", - "352550K .......... .......... .......... .......... .......... 67% 8.85M 25s\n", - "352600K .......... .......... .......... .......... .......... 67% 6.67M 25s\n", - "352650K .......... .......... .......... .......... .......... 67% 8.75M 25s\n", - "352700K .......... .......... .......... .......... .......... 67% 10.1M 25s\n", - "352750K .......... .......... .......... .......... .......... 67% 12.0M 25s\n", - "352800K .......... .......... .......... .......... .......... 67% 11.1M 25s\n", - "352850K .......... .......... .......... .......... .......... 67% 8.52M 25s\n", - "352900K .......... .......... .......... .......... .......... 67% 6.90M 25s\n", - "352950K .......... .......... .......... .......... .......... 67% 13.2M 25s\n", - "353000K .......... .......... .......... .......... .......... 67% 8.29M 25s\n", - "353050K .......... .......... .......... .......... .......... 67% 10.9M 25s\n", - "353100K .......... .......... .......... .......... .......... 67% 9.26M 25s\n", - "353150K .......... .......... .......... .......... .......... 67% 7.51M 25s\n", - "353200K .......... .......... .......... .......... .......... 67% 9.54M 25s\n", - "353250K .......... .......... .......... .......... .......... 67% 11.6M 25s\n", - "353300K .......... .......... .......... .......... .......... 67% 10.9M 25s\n", - "353350K .......... .......... .......... .......... .......... 67% 9.55M 25s\n", - "353400K .......... .......... .......... .......... .......... 67% 6.05M 25s\n", - "353450K .......... .......... .......... .......... .......... 67% 12.0M 25s\n", - "353500K .......... .......... .......... .......... .......... 67% 9.40M 25s\n", - "353550K .......... .......... .......... .......... .......... 67% 11.8M 25s\n", - "353600K .......... .......... .......... .......... .......... 67% 10.2M 25s\n", - "353650K .......... .......... .......... .......... .......... 67% 7.74M 25s\n", - "353700K .......... .......... .......... .......... .......... 67% 9.64M 25s\n", - "353750K .......... .......... .......... .......... .......... 67% 8.99M 25s\n", - "353800K .......... .......... .......... .......... .......... 67% 8.81M 25s\n", - "353850K .......... .......... .......... .......... .......... 67% 11.1M 25s\n", - "353900K .......... .......... .......... .......... .......... 67% 7.79M 25s\n", - "353950K .......... .......... .......... .......... .......... 67% 10.9M 25s\n", - "354000K .......... .......... .......... .......... .......... 67% 10.0M 25s\n", - "354050K .......... .......... .......... .......... .......... 67% 10.7M 25s\n", - "354100K .......... .......... .......... .......... .......... 67% 10.3M 25s\n", - "354150K .......... .......... .......... .......... .......... 67% 9.37M 25s\n", - "354200K .......... .......... .......... .......... .......... 67% 6.04M 25s\n", - "354250K .......... .......... .......... .......... .......... 67% 11.6M 25s\n", - "354300K .......... .......... .......... .......... .......... 67% 11.7M 25s\n", - "354350K .......... .......... .......... .......... .......... 67% 9.42M 25s\n", - "354400K .......... .......... .......... .......... .......... 67% 11.9M 25s\n", - "354450K .......... .......... .......... .......... .......... 67% 6.37M 25s\n", - "354500K .......... .......... .......... .......... .......... 67% 10.3M 25s\n", - "354550K .......... .......... .......... .......... .......... 67% 12.0M 25s\n", - "354600K .......... .......... .......... .......... .......... 67% 8.53M 25s\n", - "354650K .......... .......... .......... .......... .......... 67% 11.3M 25s\n", - "354700K .......... .......... .......... .......... .......... 67% 6.63M 25s\n", - "354750K .......... .......... .......... .......... .......... 67% 9.07M 25s\n", - "354800K .......... .......... .......... .......... .......... 67% 10.5M 25s\n", - "354850K .......... .......... .......... .......... .......... 67% 11.4M 25s\n", - "354900K .......... .......... .......... .......... .......... 67% 12.7M 25s\n", - "354950K .......... .......... .......... .......... .......... 67% 7.48M 25s\n", - "355000K .......... .......... .......... .......... .......... 67% 8.02M 25s\n", - "355050K .......... .......... .......... .......... .......... 67% 8.94M 25s\n", - "355100K .......... .......... .......... .......... .......... 67% 12.0M 25s\n", - "355150K .......... .......... .......... .......... .......... 67% 9.70M 25s\n", - "355200K .......... .......... .......... .......... .......... 67% 9.80M 25s\n", - "355250K .......... .......... .......... .......... .......... 67% 10.4M 25s\n", - "355300K .......... .......... .......... .......... .......... 67% 9.34M 25s\n", - "355350K .......... .......... .......... .......... .......... 67% 9.52M 25s\n", - "355400K .......... .......... .......... .......... .......... 67% 7.89M 25s\n", - "355450K .......... .......... .......... .......... .......... 67% 11.4M 25s\n", - "355500K .......... .......... .......... .......... .......... 67% 9.18M 25s\n", - "355550K .......... .......... .......... .......... .......... 67% 9.37M 25s\n", - "355600K .......... .......... .......... .......... .......... 67% 8.31M 24s\n", - "355650K .......... .......... .......... .......... .......... 67% 13.0M 24s\n", - "355700K .......... .......... .......... .......... .......... 67% 10.6M 24s\n", - "355750K .......... .......... .......... .......... .......... 67% 10.1M 24s\n", - "355800K .......... .......... .......... .......... .......... 67% 7.52M 24s\n", - "355850K .......... .......... .......... .......... .......... 67% 8.46M 24s\n", - "355900K .......... .......... .......... .......... .......... 67% 11.1M 24s\n", - "355950K .......... .......... .......... .......... .......... 67% 9.76M 24s\n", - "356000K .......... .......... .......... .......... .......... 67% 12.9M 24s\n", - "356050K .......... .......... .......... .......... .......... 67% 10.5M 24s\n", - "356100K .......... .......... .......... .......... .......... 67% 6.73M 24s\n", - "356150K .......... .......... .......... .......... .......... 67% 11.0M 24s\n", - "356200K .......... .......... .......... .......... .......... 67% 8.85M 24s\n", - "356250K .......... .......... .......... .......... .......... 67% 11.5M 24s\n", - "356300K .......... .......... .......... .......... .......... 67% 10.8M 24s\n", - "356350K .......... .......... .......... .......... .......... 67% 6.41M 24s\n", - "356400K .......... .......... .......... .......... .......... 67% 9.48M 24s\n", - "356450K .......... .......... .......... .......... .......... 67% 11.6M 24s\n", - "356500K .......... .......... .......... .......... .......... 67% 11.7M 24s\n", - "356550K .......... .......... .......... .......... .......... 67% 11.4M 24s\n", - "356600K .......... .......... .......... .......... .......... 67% 6.24M 24s\n", - "356650K .......... .......... .......... .......... .......... 67% 11.1M 24s\n", - "356700K .......... .......... .......... .......... .......... 67% 9.43M 24s\n", - "356750K .......... .......... .......... .......... .......... 67% 11.5M 24s\n", - "356800K .......... .......... .......... .......... .......... 68% 10.7M 24s\n", - "356850K .......... .......... .......... .......... .......... 68% 12.1M 24s\n", - "356900K .......... .......... .......... .......... .......... 68% 6.31M 24s\n", - "356950K .......... .......... .......... .......... .......... 68% 10.5M 24s\n", - "357000K .......... .......... .......... .......... .......... 68% 8.50M 24s\n", - "357050K .......... .......... .......... .......... .......... 68% 12.3M 24s\n", - "357100K .......... .......... .......... .......... .......... 68% 11.1M 24s\n", - "357150K .......... .......... .......... .......... .......... 68% 10.3M 24s\n", - "357200K .......... .......... .......... .......... .......... 68% 6.45M 24s\n", - "357250K .......... .......... .......... .......... .......... 68% 12.7M 24s\n", - "357300K .......... .......... .......... .......... .......... 68% 10.9M 24s\n", - "357350K .......... .......... .......... .......... .......... 68% 11.4M 24s\n", - "357400K .......... .......... .......... .......... .......... 68% 8.70M 24s\n", - "357450K .......... .......... .......... .......... .......... 68% 7.59M 24s\n", - "357500K .......... .......... .......... .......... .......... 68% 9.29M 24s\n", - "357550K .......... .......... .......... .......... .......... 68% 11.7M 24s\n", - "357600K .......... .......... .......... .......... .......... 68% 10.7M 24s\n", - "357650K .......... .......... .......... .......... .......... 68% 9.02M 24s\n", - "357700K .......... .......... .......... .......... .......... 68% 13.6M 24s\n", - "357750K .......... .......... .......... .......... .......... 68% 7.69M 24s\n", - "357800K .......... .......... .......... .......... .......... 68% 8.77M 24s\n", - "357850K .......... .......... .......... .......... .......... 68% 10.8M 24s\n", - "357900K .......... .......... .......... .......... .......... 68% 12.0M 24s\n", - "357950K .......... .......... .......... .......... .......... 68% 10.8M 24s\n", - "358000K .......... .......... .......... .......... .......... 68% 8.47M 24s\n", - "358050K .......... .......... .......... .......... .......... 68% 9.91M 24s\n", - "358100K .......... .......... .......... .......... .......... 68% 8.64M 24s\n", - "358150K .......... .......... .......... .......... .......... 68% 11.0M 24s\n", - "358200K .......... .......... .......... .......... .......... 68% 8.89M 24s\n", - "358250K .......... .......... .......... .......... .......... 68% 10.0M 24s\n", - "358300K .......... .......... .......... .......... .......... 68% 8.74M 24s\n", - "358350K .......... .......... .......... .......... .......... 68% 11.4M 24s\n", - "358400K .......... .......... .......... .......... .......... 68% 8.63M 24s\n", - "358450K .......... .......... .......... .......... .......... 68% 12.0M 24s\n", - "358500K .......... .......... .......... .......... .......... 68% 11.0M 24s\n", - "358550K .......... .......... .......... .......... .......... 68% 9.48M 24s\n", - "358600K .......... .......... .......... .......... .......... 68% 8.26M 24s\n", - "358650K .......... .......... .......... .......... .......... 68% 8.44M 24s\n", - "358700K .......... .......... .......... .......... .......... 68% 12.2M 24s\n", - "358750K .......... .......... .......... .......... .......... 68% 8.88M 24s\n", - "358800K .......... .......... .......... .......... .......... 68% 11.5M 24s\n", - "358850K .......... .......... .......... .......... .......... 68% 11.7M 24s\n", - "358900K .......... .......... .......... .......... .......... 68% 11.3M 24s\n", - "358950K .......... .......... .......... .......... .......... 68% 8.90M 24s\n", - "359000K .......... .......... .......... .......... .......... 68% 6.89M 24s\n", - "359050K .......... .......... .......... .......... .......... 68% 9.46M 24s\n", - "359100K .......... .......... .......... .......... .......... 68% 13.5M 24s\n", - "359150K .......... .......... .......... .......... .......... 68% 10.6M 24s\n", - "359200K .......... .......... .......... .......... .......... 68% 8.25M 24s\n", - "359250K .......... .......... .......... .......... .......... 68% 8.01M 24s\n", - "359300K .......... .......... .......... .......... .......... 68% 10.5M 24s\n", - "359350K .......... .......... .......... .......... .......... 68% 3.31M 24s\n", - "359400K .......... .......... .......... .......... .......... 68% 15.2M 24s\n", - "359450K .......... .......... .......... .......... .......... 68% 31.1M 24s\n", - "359500K .......... .......... .......... .......... .......... 68% 22.1M 24s\n", - "359550K .......... .......... .......... .......... .......... 68% 13.8M 24s\n", - "359600K .......... .......... .......... .......... .......... 68% 3.98M 24s\n", - "359650K .......... .......... .......... .......... .......... 68% 5.40M 24s\n", - "359700K .......... .......... .......... .......... .......... 68% 10.6M 24s\n", - "359750K .......... .......... .......... .......... .......... 68% 10.4M 24s\n", - "359800K .......... .......... .......... .......... .......... 68% 9.28M 24s\n", - "359850K .......... .......... .......... .......... .......... 68% 10.4M 24s\n", - "359900K .......... .......... .......... .......... .......... 68% 10.2M 24s\n", - "359950K .......... .......... .......... .......... .......... 68% 8.48M 24s\n", - "360000K .......... .......... .......... .......... .......... 68% 10.7M 24s\n", - "360050K .......... .......... .......... .......... .......... 68% 11.9M 24s\n", - "360100K .......... .......... .......... .......... .......... 68% 11.8M 24s\n", - "360150K .......... .......... .......... .......... .......... 68% 9.55M 24s\n", - "360200K .......... .......... .......... .......... .......... 68% 6.81M 24s\n", - "360250K .......... .......... .......... .......... .......... 68% 10.8M 24s\n", - "360300K .......... .......... .......... .......... .......... 68% 11.5M 24s\n", - "360350K .......... .......... .......... .......... .......... 68% 8.93M 24s\n", - "360400K .......... .......... .......... .......... .......... 68% 11.3M 24s\n", - "360450K .......... .......... .......... .......... .......... 68% 11.1M 24s\n", - "360500K .......... .......... .......... .......... .......... 68% 9.74M 24s\n", - "360550K .......... .......... .......... .......... .......... 68% 11.4M 24s\n", - "360600K .......... .......... .......... .......... .......... 68% 7.05M 24s\n", - "360650K .......... .......... .......... .......... .......... 68% 10.7M 24s\n", - "360700K .......... .......... .......... .......... .......... 68% 12.3M 24s\n", - "360750K .......... .......... .......... .......... .......... 68% 11.0M 24s\n", - "360800K .......... .......... .......... .......... .......... 68% 9.40M 24s\n", - "360850K .......... .......... .......... .......... .......... 68% 11.0M 24s\n", - "360900K .......... .......... .......... .......... .......... 68% 9.90M 24s\n", - "360950K .......... .......... .......... .......... .......... 68% 8.85M 24s\n", - "361000K .......... .......... .......... .......... .......... 68% 9.78M 24s\n", - "361050K .......... .......... .......... .......... .......... 68% 10.9M 24s\n", - "361100K .......... .......... .......... .......... .......... 68% 8.93M 24s\n", - "361150K .......... .......... .......... .......... .......... 68% 12.0M 24s\n", - "361200K .......... .......... .......... .......... .......... 68% 10.2M 24s\n", - "361250K .......... .......... .......... .......... .......... 68% 9.40M 24s\n", - "361300K .......... .......... .......... .......... .......... 68% 12.3M 24s\n", - "361350K .......... .......... .......... .......... .......... 68% 10.8M 24s\n", - "361400K .......... .......... .......... .......... .......... 68% 7.53M 24s\n", - "361450K .......... .......... .......... .......... .......... 68% 10.5M 24s\n", - "361500K .......... .......... .......... .......... .......... 68% 11.9M 24s\n", - "361550K .......... .......... .......... .......... .......... 68% 9.97M 24s\n", - "361600K .......... .......... .......... .......... .......... 68% 10.4M 24s\n", - "361650K .......... .......... .......... .......... .......... 68% 11.7M 23s\n", - "361700K .......... .......... .......... .......... .......... 68% 8.97M 23s\n", - "361750K .......... .......... .......... .......... .......... 68% 12.2M 23s\n", - "361800K .......... .......... .......... .......... .......... 68% 7.99M 23s\n", - "361850K .......... .......... .......... .......... .......... 68% 11.1M 23s\n", - "361900K .......... .......... .......... .......... .......... 68% 8.85M 23s\n", - "361950K .......... .......... .......... .......... .......... 68% 10.8M 23s\n", - "362000K .......... .......... .......... .......... .......... 69% 8.18M 23s\n", - "362050K .......... .......... .......... .......... .......... 69% 11.8M 23s\n", - "362100K .......... .......... .......... .......... .......... 69% 12.2M 23s\n", - "362150K .......... .......... .......... .......... .......... 69% 11.3M 23s\n", - "362200K .......... .......... .......... .......... .......... 69% 6.99M 23s\n", - "362250K .......... .......... .......... .......... .......... 69% 12.8M 23s\n", - "362300K .......... .......... .......... .......... .......... 69% 8.74M 23s\n", - "362350K .......... .......... .......... .......... .......... 69% 9.75M 23s\n", - "362400K .......... .......... .......... .......... .......... 69% 10.5M 23s\n", - "362450K .......... .......... .......... .......... .......... 69% 11.5M 23s\n", - "362500K .......... .......... .......... .......... .......... 69% 12.0M 23s\n", - "362550K .......... .......... .......... .......... .......... 69% 11.2M 23s\n", - "362600K .......... .......... .......... .......... .......... 69% 7.03M 23s\n", - "362650K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "362700K .......... .......... .......... .......... .......... 69% 9.74M 23s\n", - "362750K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "362800K .......... .......... .......... .......... .......... 69% 11.7M 23s\n", - "362850K .......... .......... .......... .......... .......... 69% 10.2M 23s\n", - "362900K .......... .......... .......... .......... .......... 69% 9.15M 23s\n", - "362950K .......... .......... .......... .......... .......... 69% 10.5M 23s\n", - "363000K .......... .......... .......... .......... .......... 69% 9.25M 23s\n", - "363050K .......... .......... .......... .......... .......... 69% 10.4M 23s\n", - "363100K .......... .......... .......... .......... .......... 69% 9.16M 23s\n", - "363150K .......... .......... .......... .......... .......... 69% 11.2M 23s\n", - "363200K .......... .......... .......... .......... .......... 69% 10.8M 23s\n", - "363250K .......... .......... .......... .......... .......... 69% 10.0M 23s\n", - "363300K .......... .......... .......... .......... .......... 69% 12.4M 23s\n", - "363350K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "363400K .......... .......... .......... .......... .......... 69% 7.94M 23s\n", - "363450K .......... .......... .......... .......... .......... 69% 10.3M 23s\n", - "363500K .......... .......... .......... .......... .......... 69% 7.26M 23s\n", - "363550K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "363600K .......... .......... .......... .......... .......... 69% 11.5M 23s\n", - "363650K .......... .......... .......... .......... .......... 69% 11.4M 23s\n", - "363700K .......... .......... .......... .......... .......... 69% 11.3M 23s\n", - "363750K .......... .......... .......... .......... .......... 69% 8.96M 23s\n", - "363800K .......... .......... .......... .......... .......... 69% 7.59M 23s\n", - "363850K .......... .......... .......... .......... .......... 69% 11.3M 23s\n", - "363900K .......... .......... .......... .......... .......... 69% 11.7M 23s\n", - "363950K .......... .......... .......... .......... .......... 69% 11.4M 23s\n", - "364000K .......... .......... .......... .......... .......... 69% 11.2M 23s\n", - "364050K .......... .......... .......... .......... .......... 69% 9.80M 23s\n", - "364100K .......... .......... .......... .......... .......... 69% 9.50M 23s\n", - "364150K .......... .......... .......... .......... .......... 69% 984K 23s\n", - "364200K .......... .......... .......... .......... .......... 69% 257M 23s\n", - "364250K .......... .......... .......... .......... .......... 69% 251M 23s\n", - "364300K .......... .......... .......... .......... .......... 69% 477M 23s\n", - "364350K .......... .......... .......... .......... .......... 69% 326M 23s\n", - "364400K .......... .......... .......... .......... .......... 69% 349M 23s\n", - "364450K .......... .......... .......... .......... .......... 69% 375M 23s\n", - "364500K .......... .......... .......... .......... .......... 69% 233M 23s\n", - "364550K .......... .......... .......... .......... .......... 69% 456M 23s\n", - "364600K .......... .......... .......... .......... .......... 69% 280M 23s\n", - "364650K .......... .......... .......... .......... .......... 69% 16.2M 23s\n", - "364700K .......... .......... .......... .......... .......... 69% 10.2M 23s\n", - "364750K .......... .......... .......... .......... .......... 69% 8.77M 23s\n", - "364800K .......... .......... .......... .......... .......... 69% 15.7M 23s\n", - "364850K .......... .......... .......... .......... .......... 69% 9.89M 23s\n", - "364900K .......... .......... .......... .......... .......... 69% 11.6M 23s\n", - "364950K .......... .......... .......... .......... .......... 69% 10.1M 23s\n", - "365000K .......... .......... .......... .......... .......... 69% 8.04M 23s\n", - "365050K .......... .......... .......... .......... .......... 69% 12.6M 23s\n", - "365100K .......... .......... .......... .......... .......... 69% 11.0M 23s\n", - "365150K .......... .......... .......... .......... .......... 69% 10.3M 23s\n", - "365200K .......... .......... .......... .......... .......... 69% 10.1M 23s\n", - "365250K .......... .......... .......... .......... .......... 69% 12.7M 23s\n", - "365300K .......... .......... .......... .......... .......... 69% 10.4M 23s\n", - "365350K .......... .......... .......... .......... .......... 69% 12.2M 23s\n", - "365400K .......... .......... .......... .......... .......... 69% 7.29M 23s\n", - "365450K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "365500K .......... .......... .......... .......... .......... 69% 10.9M 23s\n", - "365550K .......... .......... .......... .......... .......... 69% 11.0M 23s\n", - "365600K .......... .......... .......... .......... .......... 69% 10.7M 23s\n", - "365650K .......... .......... .......... .......... .......... 69% 12.4M 23s\n", - "365700K .......... .......... .......... .......... .......... 69% 9.54M 23s\n", - "365750K .......... .......... .......... .......... .......... 69% 10.7M 23s\n", - "365800K .......... .......... .......... .......... .......... 69% 7.95M 23s\n", - "365850K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "365900K .......... .......... .......... .......... .......... 69% 12.5M 23s\n", - "365950K .......... .......... .......... .......... .......... 69% 11.4M 23s\n", - "366000K .......... .......... .......... .......... .......... 69% 10.6M 23s\n", - "366050K .......... .......... .......... .......... .......... 69% 9.48M 23s\n", - "366100K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "366150K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "366200K .......... .......... .......... .......... .......... 69% 8.49M 23s\n", - "366250K .......... .......... .......... .......... .......... 69% 12.0M 23s\n", - "366300K .......... .......... .......... .......... .......... 69% 10.8M 23s\n", - "366350K .......... .......... .......... .......... .......... 69% 11.3M 23s\n", - "366400K .......... .......... .......... .......... .......... 69% 9.91M 23s\n", - "366450K .......... .......... .......... .......... .......... 69% 1.22M 23s\n", - "366500K .......... .......... .......... .......... .......... 69% 359M 23s\n", - "366550K .......... .......... .......... .......... .......... 69% 258M 23s\n", - "366600K .......... .......... .......... .......... .......... 69% 407M 23s\n", - "366650K .......... .......... .......... .......... .......... 69% 391M 23s\n", - "366700K .......... .......... .......... .......... .......... 69% 397M 23s\n", - "366750K .......... .......... .......... .......... .......... 69% 405M 23s\n", - "366800K .......... .......... .......... .......... .......... 69% 326M 23s\n", - "366850K .......... .......... .......... .......... .......... 69% 27.9M 23s\n", - "366900K .......... .......... .......... .......... .......... 69% 7.85M 23s\n", - "366950K .......... .......... .......... .......... .......... 69% 8.62M 23s\n", - "367000K .......... .......... .......... .......... .......... 69% 4.49M 23s\n", - "367050K .......... .......... .......... .......... .......... 69% 11.1M 23s\n", - "367100K .......... .......... .......... .......... .......... 69% 8.35M 23s\n", - "367150K .......... .......... .......... .......... .......... 69% 9.05M 23s\n", - "367200K .......... .......... .......... .......... .......... 69% 5.56M 23s\n", - "367250K .......... .......... .......... .......... .......... 70% 9.27M 23s\n", - "367300K .......... .......... .......... .......... .......... 70% 8.91M 23s\n", - "367350K .......... .......... .......... .......... .......... 70% 9.44M 23s\n", - "367400K .......... .......... .......... .......... .......... 70% 4.18M 23s\n", - "367450K .......... .......... .......... .......... .......... 70% 12.5M 23s\n", - "367500K .......... .......... .......... .......... .......... 70% 8.70M 23s\n", - "367550K .......... .......... .......... .......... .......... 70% 9.29M 23s\n", - "367600K .......... .......... .......... .......... .......... 70% 5.96M 23s\n", - "367650K .......... .......... .......... .......... .......... 70% 7.93M 23s\n", - "367700K .......... .......... .......... .......... .......... 70% 9.19M 23s\n", - "367750K .......... .......... .......... .......... .......... 70% 9.46M 23s\n", - "367800K .......... .......... .......... .......... .......... 70% 4.86M 22s\n", - "367850K .......... .......... .......... .......... .......... 70% 7.81M 22s\n", - "367900K .......... .......... .......... .......... .......... 70% 10.8M 22s\n", - "367950K .......... .......... .......... .......... .......... 70% 9.05M 22s\n", - "368000K .......... .......... .......... .......... .......... 70% 6.45M 22s\n", - "368050K .......... .......... .......... .......... .......... 70% 6.48M 22s\n", - "368100K .......... .......... .......... .......... .......... 70% 9.99M 22s\n", - "368150K .......... .......... .......... .......... .......... 70% 10.5M 22s\n", - "368200K .......... .......... .......... .......... .......... 70% 5.67M 22s\n", - "368250K .......... .......... .......... .......... .......... 70% 5.69M 22s\n", - "368300K .......... .......... .......... .......... .......... 70% 10.7M 22s\n", - "368350K .......... .......... .......... .......... .......... 70% 10.6M 22s\n", - "368400K .......... .......... .......... .......... .......... 70% 9.47M 22s\n", - "368450K .......... .......... .......... .......... .......... 70% 5.41M 22s\n", - "368500K .......... .......... .......... .......... .......... 70% 8.84M 22s\n", - "368550K .......... .......... .......... .......... .......... 70% 9.30M 22s\n", - "368600K .......... .......... .......... .......... .......... 70% 7.44M 22s\n", - "368650K .......... .......... .......... .......... .......... 70% 6.64M 22s\n", - "368700K .......... .......... .......... .......... .......... 70% 7.49M 22s\n", - "368750K .......... .......... .......... .......... .......... 70% 9.37M 22s\n", - "368800K .......... .......... .......... .......... .......... 70% 9.53M 22s\n", - "368850K .......... .......... .......... .......... .......... 70% 7.84M 22s\n", - "368900K .......... .......... .......... .......... .......... 70% 7.92M 22s\n", - "368950K .......... .......... .......... .......... .......... 70% 7.91M 22s\n", - "369000K .......... .......... .......... .......... .......... 70% 7.16M 22s\n", - "369050K .......... .......... .......... .......... .......... 70% 6.10M 22s\n", - "369100K .......... .......... .......... .......... .......... 70% 10.6M 22s\n", - "369150K .......... .......... .......... .......... .......... 70% 7.92M 22s\n", - "369200K .......... .......... .......... .......... .......... 70% 11.0M 22s\n", - "369250K .......... .......... .......... .......... .......... 70% 5.11M 22s\n", - "369300K .......... .......... .......... .......... .......... 70% 10.5M 22s\n", - "369350K .......... .......... .......... .......... .......... 70% 10.6M 22s\n", - "369400K .......... .......... .......... .......... .......... 70% 7.32M 22s\n", - "369450K .......... .......... .......... .......... .......... 70% 5.26M 22s\n", - "369500K .......... .......... .......... .......... .......... 70% 8.64M 22s\n", - "369550K .......... .......... .......... .......... .......... 70% 11.4M 22s\n", - "369600K .......... .......... .......... .......... .......... 70% 9.95M 22s\n", - "369650K .......... .......... .......... .......... .......... 70% 10.4M 22s\n", - "369700K .......... .......... .......... .......... .......... 70% 5.08M 22s\n", - "369750K .......... .......... .......... .......... .......... 70% 9.73M 22s\n", - "369800K .......... .......... .......... .......... .......... 70% 5.77M 22s\n", - "369850K .......... .......... .......... .......... .......... 70% 19.9M 22s\n", - "369900K .......... .......... .......... .......... .......... 70% 7.09M 22s\n", - "369950K .......... .......... .......... .......... .......... 70% 6.83M 22s\n", - "370000K .......... .......... .......... .......... .......... 70% 10.3M 22s\n", - "370050K .......... .......... .......... .......... .......... 70% 6.97M 22s\n", - "370100K .......... .......... .......... .......... .......... 70% 10.1M 22s\n", - "370150K .......... .......... .......... .......... .......... 70% 8.27M 22s\n", - "370200K .......... .......... .......... .......... .......... 70% 5.62M 22s\n", - "370250K .......... .......... .......... .......... .......... 70% 8.22M 22s\n", - "370300K .......... .......... .......... .......... .......... 70% 9.99M 22s\n", - "370350K .......... .......... .......... .......... .......... 70% 10.5M 22s\n", - "370400K .......... .......... .......... .......... .......... 70% 6.24M 22s\n", - "370450K .......... .......... .......... .......... .......... 70% 8.17M 22s\n", - "370500K .......... .......... .......... .......... .......... 70% 11.6M 22s\n", - "370550K .......... .......... .......... .......... .......... 70% 9.14M 22s\n", - "370600K .......... .......... .......... .......... .......... 70% 5.06M 22s\n", - "370650K .......... .......... .......... .......... .......... 70% 9.24M 22s\n", - "370700K .......... .......... .......... .......... .......... 70% 9.74M 22s\n", - "370750K .......... .......... .......... .......... .......... 70% 9.68M 22s\n", - "370800K .......... .......... .......... .......... .......... 70% 10.4M 22s\n", - "370850K .......... .......... .......... .......... .......... 70% 5.55M 22s\n", - "370900K .......... .......... .......... .......... .......... 70% 10.3M 22s\n", - "370950K .......... .......... .......... .......... .......... 70% 9.79M 22s\n", - "371000K .......... .......... .......... .......... .......... 70% 8.58M 22s\n", - "371050K .......... .......... .......... .......... .......... 70% 5.82M 22s\n", - "371100K .......... .......... .......... .......... .......... 70% 9.73M 22s\n", - "371150K .......... .......... .......... .......... .......... 70% 9.18M 22s\n", - "371200K .......... .......... .......... .......... .......... 70% 8.42M 22s\n", - "371250K .......... .......... .......... .......... .......... 70% 10.0M 22s\n", - "371300K .......... .......... .......... .......... .......... 70% 7.63M 22s\n", - "371350K .......... .......... .......... .......... .......... 70% 6.37M 22s\n", - "371400K .......... .......... .......... .......... .......... 70% 8.82M 22s\n", - "371450K .......... .......... .......... .......... .......... 70% 9.97M 22s\n", - "371500K .......... .......... .......... .......... .......... 70% 6.81M 22s\n", - "371550K .......... .......... .......... .......... .......... 70% 7.31M 22s\n", - "371600K .......... .......... .......... .......... .......... 70% 8.05M 22s\n", - "371650K .......... .......... .......... .......... .......... 70% 12.4M 22s\n", - "371700K .......... .......... .......... .......... .......... 70% 10.1M 22s\n", - "371750K .......... .......... .......... .......... .......... 70% 7.44M 22s\n", - "371800K .......... .......... .......... .......... .......... 70% 5.53M 22s\n", - "371850K .......... .......... .......... .......... .......... 70% 9.62M 22s\n", - "371900K .......... .......... .......... .......... .......... 70% 10.7M 22s\n", - "371950K .......... .......... .......... .......... .......... 70% 8.68M 22s\n", - "372000K .......... .......... .......... .......... .......... 70% 6.52M 22s\n", - "372050K .......... .......... .......... .......... .......... 70% 7.95M 22s\n", - "372100K .......... .......... .......... .......... .......... 70% 11.0M 22s\n", - "372150K .......... .......... .......... .......... .......... 70% 11.0M 22s\n", - "372200K .......... .......... .......... .......... .......... 70% 7.55M 22s\n", - "372250K .......... .......... .......... .......... .......... 70% 5.50M 22s\n", - "372300K .......... .......... .......... .......... .......... 70% 9.93M 22s\n", - "372350K .......... .......... .......... .......... .......... 70% 10.4M 22s\n", - "372400K .......... .......... .......... .......... .......... 70% 10.5M 22s\n", - "372450K .......... .......... .......... .......... .......... 70% 8.04M 22s\n", - "372500K .......... .......... .......... .......... .......... 71% 6.66M 22s\n", - "372550K .......... .......... .......... .......... .......... 71% 11.0M 22s\n", - "372600K .......... .......... .......... .......... .......... 71% 7.30M 22s\n", - "372650K .......... .......... .......... .......... .......... 71% 10.5M 22s\n", - "372700K .......... .......... .......... .......... .......... 71% 6.19M 22s\n", - "372750K .......... .......... .......... .......... .......... 71% 9.51M 22s\n", - "372800K .......... .......... .......... .......... .......... 71% 11.9M 22s\n", - "372850K .......... .......... .......... .......... .......... 71% 9.46M 22s\n", - "372900K .......... .......... .......... .......... .......... 71% 8.18M 22s\n", - "372950K .......... .......... .......... .......... .......... 71% 8.06M 22s\n", - "373000K .......... .......... .......... .......... .......... 71% 7.28M 22s\n", - "373050K .......... .......... .......... .......... .......... 71% 8.57M 22s\n", - "373100K .......... .......... .......... .......... .......... 71% 8.66M 22s\n", - "373150K .......... .......... .......... .......... .......... 71% 7.51M 22s\n", - "373200K .......... .......... .......... .......... .......... 71% 9.52M 22s\n", - "373250K .......... .......... .......... .......... .......... 71% 11.4M 22s\n", - "373300K .......... .......... .......... .......... .......... 71% 9.40M 22s\n", - "373350K .......... .......... .......... .......... .......... 71% 4.46M 22s\n", - "373400K .......... .......... .......... .......... .......... 71% 7.51M 22s\n", - "373450K .......... .......... .......... .......... .......... 71% 11.5M 22s\n", - "373500K .......... .......... .......... .......... .......... 71% 11.1M 22s\n", - "373550K .......... .......... .......... .......... .......... 71% 11.0M 22s\n", - "373600K .......... .......... .......... .......... .......... 71% 4.81M 22s\n", - "373650K .......... .......... .......... .......... .......... 71% 10.8M 22s\n", - "373700K .......... .......... .......... .......... .......... 71% 12.0M 22s\n", - "373750K .......... .......... .......... .......... .......... 71% 11.9M 22s\n", - "373800K .......... .......... .......... .......... .......... 71% 5.12M 22s\n", - "373850K .......... .......... .......... .......... .......... 71% 8.25M 22s\n", - "373900K .......... .......... .......... .......... .......... 71% 12.1M 22s\n", - "373950K .......... .......... .......... .......... .......... 71% 10.3M 22s\n", - "374000K .......... .......... .......... .......... .......... 71% 12.1M 22s\n", - "374050K .......... .......... .......... .......... .......... 71% 7.40M 22s\n", - "374100K .......... .......... .......... .......... .......... 71% 6.83M 22s\n", - "374150K .......... .......... .......... .......... .......... 71% 11.6M 22s\n", - "374200K .......... .......... .......... .......... .......... 71% 8.11M 22s\n", - "374250K .......... .......... .......... .......... .......... 71% 9.58M 22s\n", - "374300K .......... .......... .......... .......... .......... 71% 7.28M 22s\n", - "374350K .......... .......... .......... .......... .......... 71% 8.48M 21s\n", - "374400K .......... .......... .......... .......... .......... 71% 10.9M 21s\n", - "374450K .......... .......... .......... .......... .......... 71% 11.3M 21s\n", - "374500K .......... .......... .......... .......... .......... 71% 8.01M 21s\n", - "374550K .......... .......... .......... .......... .......... 71% 9.45M 21s\n", - "374600K .......... .......... .......... .......... .......... 71% 5.40M 21s\n", - "374650K .......... .......... .......... .......... .......... 71% 12.1M 21s\n", - "374700K .......... .......... .......... .......... .......... 71% 10.9M 21s\n", - "374750K .......... .......... .......... .......... .......... 71% 10.1M 21s\n", - "374800K .......... .......... .......... .......... .......... 71% 6.52M 21s\n", - "374850K .......... .......... .......... .......... .......... 71% 8.49M 21s\n", - "374900K .......... .......... .......... .......... .......... 71% 11.0M 21s\n", - "374950K .......... .......... .......... .......... .......... 71% 10.6M 21s\n", - "375000K .......... .......... .......... .......... .......... 71% 8.87M 21s\n", - "375050K .......... .......... .......... .......... .......... 71% 5.24M 21s\n", - "375100K .......... .......... .......... .......... .......... 71% 10.5M 21s\n", - "375150K .......... .......... .......... .......... .......... 71% 12.0M 21s\n", - "375200K .......... .......... .......... .......... .......... 71% 10.9M 21s\n", - "375250K .......... .......... .......... .......... .......... 71% 9.14M 21s\n", - "375300K .......... .......... .......... .......... .......... 71% 5.86M 21s\n", - "375350K .......... .......... .......... .......... .......... 71% 12.2M 21s\n", - "375400K .......... .......... .......... .......... .......... 71% 8.67M 21s\n", - "375450K .......... .......... .......... .......... .......... 71% 10.8M 21s\n", - "375500K .......... .......... .......... .......... .......... 71% 12.0M 21s\n", - "375550K .......... .......... .......... .......... .......... 71% 5.66M 21s\n", - "375600K .......... .......... .......... .......... .......... 71% 11.5M 21s\n", - "375650K .......... .......... .......... .......... .......... 71% 10.7M 21s\n", - "375700K .......... .......... .......... .......... .......... 71% 11.8M 21s\n", - "375750K .......... .......... .......... .......... .......... 71% 11.4M 21s\n", - "375800K .......... .......... .......... .......... .......... 71% 4.79M 21s\n", - "375850K .......... .......... .......... .......... .......... 71% 11.0M 21s\n", - "375900K .......... .......... .......... .......... .......... 71% 11.2M 21s\n", - "375950K .......... .......... .......... .......... .......... 71% 10.6M 21s\n", - "376000K .......... .......... .......... .......... .......... 71% 12.3M 21s\n", - "376050K .......... .......... .......... .......... .......... 71% 5.66M 21s\n", - "376100K .......... .......... .......... .......... .......... 71% 9.40M 21s\n", - "376150K .......... .......... .......... .......... .......... 71% 12.1M 21s\n", - "376200K .......... .......... .......... .......... .......... 71% 8.36M 21s\n", - "376250K .......... .......... .......... .......... .......... 71% 11.5M 21s\n", - "376300K .......... .......... .......... .......... .......... 71% 6.20M 21s\n", - "376350K .......... .......... .......... .......... .......... 71% 9.98M 21s\n", - "376400K .......... .......... .......... .......... .......... 71% 9.28M 21s\n", - "376450K .......... .......... .......... .......... .......... 71% 11.8M 21s\n", - "376500K .......... .......... .......... .......... .......... 71% 10.9M 21s\n", - "376550K .......... .......... .......... .......... .......... 71% 6.84M 21s\n", - "376600K .......... .......... .......... .......... .......... 71% 8.18M 21s\n", - "376650K .......... .......... .......... .......... .......... 71% 8.32M 21s\n", - "376700K .......... .......... .......... .......... .......... 71% 11.0M 21s\n", - "376750K .......... .......... .......... .......... .......... 71% 10.5M 21s\n", - "376800K .......... .......... .......... .......... .......... 71% 8.03M 21s\n", - "376850K .......... .......... .......... .......... .......... 71% 9.65M 21s\n", - "376900K .......... .......... .......... .......... .......... 71% 9.98M 21s\n", - "376950K .......... .......... .......... .......... .......... 71% 9.82M 21s\n", - "377000K .......... .......... .......... .......... .......... 71% 8.62M 21s\n", - "377050K .......... .......... .......... .......... .......... 71% 6.32M 21s\n", - "377100K .......... .......... .......... .......... .......... 71% 9.74M 21s\n", - "377150K .......... .......... .......... .......... .......... 71% 12.4M 21s\n", - "377200K .......... .......... .......... .......... .......... 71% 10.6M 21s\n", - "377250K .......... .......... .......... .......... .......... 71% 11.2M 21s\n", - "377300K .......... .......... .......... .......... .......... 71% 6.99M 21s\n", - "377350K .......... .......... .......... .......... .......... 71% 9.20M 21s\n", - "377400K .......... .......... .......... .......... .......... 71% 8.01M 21s\n", - "377450K .......... .......... .......... .......... .......... 71% 11.7M 21s\n", - "377500K .......... .......... .......... .......... .......... 71% 10.6M 21s\n", - "377550K .......... .......... .......... .......... .......... 71% 6.89M 21s\n", - "377600K .......... .......... .......... .......... .......... 71% 11.4M 21s\n", - "377650K .......... .......... .......... .......... .......... 71% 8.91M 21s\n", - "377700K .......... .......... .......... .......... .......... 71% 11.7M 21s\n", - "377750K .......... .......... .......... .......... .......... 72% 10.5M 21s\n", - "377800K .......... .......... .......... .......... .......... 72% 6.09M 21s\n", - "377850K .......... .......... .......... .......... .......... 72% 9.69M 21s\n", - "377900K .......... .......... .......... .......... .......... 72% 10.4M 21s\n", - "377950K .......... .......... .......... .......... .......... 72% 10.2M 21s\n", - "378000K .......... .......... .......... .......... .......... 72% 10.7M 21s\n", - "378050K .......... .......... .......... .......... .......... 72% 7.61M 21s\n", - "378100K .......... .......... .......... .......... .......... 72% 11.7M 21s\n", - "378150K .......... .......... .......... .......... .......... 72% 9.33M 21s\n", - "378200K .......... .......... .......... .......... .......... 72% 7.20M 21s\n", - "378250K .......... .......... .......... .......... .......... 72% 10.3M 21s\n", - "378300K .......... .......... .......... .......... .......... 72% 9.64M 21s\n", - "378350K .......... .......... .......... .......... .......... 72% 7.53M 21s\n", - "378400K .......... .......... .......... .......... .......... 72% 13.8M 21s\n", - "378450K .......... .......... .......... .......... .......... 72% 9.19M 21s\n", - "378500K .......... .......... .......... .......... .......... 72% 10.0M 21s\n", - "378550K .......... .......... .......... .......... .......... 72% 6.04M 21s\n", - "378600K .......... .......... .......... .......... .......... 72% 8.19M 21s\n", - "378650K .......... .......... .......... .......... .......... 72% 11.0M 21s\n", - "378700K .......... .......... .......... .......... .......... 72% 9.33M 21s\n", - "378750K .......... .......... .......... .......... .......... 72% 15.4M 21s\n", - "378800K .......... .......... .......... .......... .......... 72% 4.72M 21s\n", - "378850K .......... .......... .......... .......... .......... 72% 9.95M 21s\n", - "378900K .......... .......... .......... .......... .......... 72% 21.3M 21s\n", - "378950K .......... .......... .......... .......... .......... 72% 11.9M 21s\n", - "379000K .......... .......... .......... .......... .......... 72% 7.14M 21s\n", - "379050K .......... .......... .......... .......... .......... 72% 5.32M 21s\n", - "379100K .......... .......... .......... .......... .......... 72% 12.5M 21s\n", - "379150K .......... .......... .......... .......... .......... 72% 11.2M 21s\n", - "379200K .......... .......... .......... .......... .......... 72% 12.0M 21s\n", - "379250K .......... .......... .......... .......... .......... 72% 11.4M 21s\n", - "379300K .......... .......... .......... .......... .......... 72% 6.34M 21s\n", - "379350K .......... .......... .......... .......... .......... 72% 9.76M 21s\n", - "379400K .......... .......... .......... .......... .......... 72% 9.10M 21s\n", - "379450K .......... .......... .......... .......... .......... 72% 9.69M 21s\n", - "379500K .......... .......... .......... .......... .......... 72% 14.0M 21s\n", - "379550K .......... .......... .......... .......... .......... 72% 6.83M 21s\n", - "379600K .......... .......... .......... .......... .......... 72% 9.36M 21s\n", - "379650K .......... .......... .......... .......... .......... 72% 11.3M 21s\n", - "379700K .......... .......... .......... .......... .......... 72% 7.51M 21s\n", - "379750K .......... .......... .......... .......... .......... 72% 15.9M 21s\n", - "379800K .......... .......... .......... .......... .......... 72% 7.18M 21s\n", - "379850K .......... .......... .......... .......... .......... 72% 8.66M 21s\n", - "379900K .......... .......... .......... .......... .......... 72% 8.77M 21s\n", - "379950K .......... .......... .......... .......... .......... 72% 9.48M 21s\n", - "380000K .......... .......... .......... .......... .......... 72% 10.3M 21s\n", - "380050K .......... .......... .......... .......... .......... 72% 12.8M 21s\n", - "380100K .......... .......... .......... .......... .......... 72% 7.94M 21s\n", - "380150K .......... .......... .......... .......... .......... 72% 8.91M 21s\n", - "380200K .......... .......... .......... .......... .......... 72% 6.98M 21s\n", - "380250K .......... .......... .......... .......... .......... 72% 11.9M 21s\n", - "380300K .......... .......... .......... .......... .......... 72% 11.3M 21s\n", - "380350K .......... .......... .......... .......... .......... 72% 10.0M 21s\n", - "380400K .......... .......... .......... .......... .......... 72% 8.49M 21s\n", - "380450K .......... .......... .......... .......... .......... 72% 8.34M 21s\n", - "380500K .......... .......... .......... .......... .......... 72% 11.4M 21s\n", - "380550K .......... .......... .......... .......... .......... 72% 11.4M 21s\n", - "380600K .......... .......... .......... .......... .......... 72% 8.46M 21s\n", - "380650K .......... .......... .......... .......... .......... 72% 9.18M 21s\n", - "380700K .......... .......... .......... .......... .......... 72% 7.00M 21s\n", - "380750K .......... .......... .......... .......... .......... 72% 10.1M 20s\n", - "380800K .......... .......... .......... .......... .......... 72% 9.94M 20s\n", - "380850K .......... .......... .......... .......... .......... 72% 11.1M 20s\n", - "380900K .......... .......... .......... .......... .......... 72% 10.9M 20s\n", - "380950K .......... .......... .......... .......... .......... 72% 11.4M 20s\n", - "381000K .......... .......... .......... .......... .......... 72% 6.08M 20s\n", - "381050K .......... .......... .......... .......... .......... 72% 11.2M 20s\n", - "381100K .......... .......... .......... .......... .......... 72% 9.80M 20s\n", - "381150K .......... .......... .......... .......... .......... 72% 10.7M 20s\n", - "381200K .......... .......... .......... .......... .......... 72% 11.2M 20s\n", - "381250K .......... .......... .......... .......... .......... 72% 7.79M 20s\n", - "381300K .......... .......... .......... .......... .......... 72% 10.5M 20s\n", - "381350K .......... .......... .......... .......... .......... 72% 11.7M 20s\n", - "381400K .......... .......... .......... .......... .......... 72% 7.08M 20s\n", - "381450K .......... .......... .......... .......... .......... 72% 11.6M 20s\n", - "381500K .......... .......... .......... .......... .......... 72% 11.0M 20s\n", - "381550K .......... .......... .......... .......... .......... 72% 8.38M 20s\n", - "381600K .......... .......... .......... .......... .......... 72% 10.0M 20s\n", - "381650K .......... .......... .......... .......... .......... 72% 10.1M 20s\n", - "381700K .......... .......... .......... .......... .......... 72% 7.56M 20s\n", - "381750K .......... .......... .......... .......... .......... 72% 15.1M 20s\n", - "381800K .......... .......... .......... .......... .......... 72% 8.89M 20s\n", - "381850K .......... .......... .......... .......... .......... 72% 8.13M 20s\n", - "381900K .......... .......... .......... .......... .......... 72% 10.5M 20s\n", - "381950K .......... .......... .......... .......... .......... 72% 5.55M 20s\n", - "382000K .......... .......... .......... .......... .......... 72% 11.0M 20s\n", - "382050K .......... .......... .......... .......... .......... 72% 11.5M 20s\n", - "382100K .......... .......... .......... .......... .......... 72% 11.3M 20s\n", - "382150K .......... .......... .......... .......... .......... 72% 12.3M 20s\n", - "382200K .......... .......... .......... .......... .......... 72% 6.45M 20s\n", - "382250K .......... .......... .......... .......... .......... 72% 8.25M 20s\n", - "382300K .......... .......... .......... .......... .......... 72% 12.1M 20s\n", - "382350K .......... .......... .......... .......... .......... 72% 11.8M 20s\n", - "382400K .......... .......... .......... .......... .......... 72% 10.1M 20s\n", - "382450K .......... .......... .......... .......... .......... 72% 12.1M 20s\n", - "382500K .......... .......... .......... .......... .......... 72% 7.52M 20s\n", - "382550K .......... .......... .......... .......... .......... 72% 9.50M 20s\n", - "382600K .......... .......... .......... .......... .......... 72% 8.05M 20s\n", - "382650K .......... .......... .......... .......... .......... 72% 12.0M 20s\n", - "382700K .......... .......... .......... .......... .......... 72% 10.9M 20s\n", - "382750K .......... .......... .......... .......... .......... 72% 11.0M 20s\n", - "382800K .......... .......... .......... .......... .......... 72% 7.78M 20s\n", - "382850K .......... .......... .......... .......... .......... 72% 9.36M 20s\n", - "382900K .......... .......... .......... .......... .......... 72% 12.1M 20s\n", - "382950K .......... .......... .......... .......... .......... 72% 9.57M 20s\n", - "383000K .......... .......... .......... .......... .......... 73% 8.60M 20s\n", - "383050K .......... .......... .......... .......... .......... 73% 10.0M 20s\n", - "383100K .......... .......... .......... .......... .......... 73% 8.52M 20s\n", - "383150K .......... .......... .......... .......... .......... 73% 10.9M 20s\n", - "383200K .......... .......... .......... .......... .......... 73% 10.7M 20s\n", - "383250K .......... .......... .......... .......... .......... 73% 9.82M 20s\n", - "383300K .......... .......... .......... .......... .......... 73% 11.6M 20s\n", - "383350K .......... .......... .......... .......... .......... 73% 8.88M 20s\n", - "383400K .......... .......... .......... .......... .......... 73% 6.65M 20s\n", - "383450K .......... .......... .......... .......... .......... 73% 10.3M 20s\n", - "383500K .......... .......... .......... .......... .......... 73% 11.5M 20s\n", - "383550K .......... .......... .......... .......... .......... 73% 12.1M 20s\n", - "383600K .......... .......... .......... .......... .......... 73% 10.2M 20s\n", - "383650K .......... .......... .......... .......... .......... 73% 9.85M 20s\n", - "383700K .......... .......... .......... .......... .......... 73% 6.70M 20s\n", - "383750K .......... .......... .......... .......... .......... 73% 16.8M 20s\n", - "383800K .......... .......... .......... .......... .......... 73% 8.18M 20s\n", - "383850K .......... .......... .......... .......... .......... 73% 11.3M 20s\n", - "383900K .......... .......... .......... .......... .......... 73% 10.3M 20s\n", - "383950K .......... .......... .......... .......... .......... 73% 8.10M 20s\n", - "384000K .......... .......... .......... .......... .......... 73% 7.47M 20s\n", - "384050K .......... .......... .......... .......... .......... 73% 10.9M 20s\n", - "384100K .......... .......... .......... .......... .......... 73% 11.5M 20s\n", - "384150K .......... .......... .......... .......... .......... 73% 12.5M 20s\n", - "384200K .......... .......... .......... .......... .......... 73% 8.23M 20s\n", - "384250K .......... .......... .......... .......... .......... 73% 7.15M 20s\n", - "384300K .......... .......... .......... .......... .......... 73% 11.5M 20s\n", - "384350K .......... .......... .......... .......... .......... 73% 10.1M 20s\n", - "384400K .......... .......... .......... .......... .......... 73% 10.7M 20s\n", - "384450K .......... .......... .......... .......... .......... 73% 11.8M 20s\n", - "384500K .......... .......... .......... .......... .......... 73% 10.1M 20s\n", - "384550K .......... .......... .......... .......... .......... 73% 9.10M 20s\n", - "384600K .......... .......... .......... .......... .......... 73% 7.93M 20s\n", - "384650K .......... .......... .......... .......... .......... 73% 9.84M 20s\n", - "384700K .......... .......... .......... .......... .......... 73% 11.1M 20s\n", - "384750K .......... .......... .......... .......... .......... 73% 10.1M 20s\n", - "384800K .......... .......... .......... .......... .......... 73% 10.6M 20s\n", - "384850K .......... .......... .......... .......... .......... 73% 9.68M 20s\n", - "384900K .......... .......... .......... .......... .......... 73% 9.61M 20s\n", - "384950K .......... .......... .......... .......... .......... 73% 11.2M 20s\n", - "385000K .......... .......... .......... .......... .......... 73% 7.38M 20s\n", - "385050K .......... .......... .......... .......... .......... 73% 12.0M 20s\n", - "385100K .......... .......... .......... .......... .......... 73% 10.8M 20s\n", - "385150K .......... .......... .......... .......... .......... 73% 8.44M 20s\n", - "385200K .......... .......... .......... .......... .......... 73% 8.95M 20s\n", - "385250K .......... .......... .......... .......... .......... 73% 11.5M 20s\n", - "385300K .......... .......... .......... .......... .......... 73% 9.71M 20s\n", - "385350K .......... .......... .......... .......... .......... 73% 10.9M 20s\n", - "385400K .......... .......... .......... .......... .......... 73% 9.58M 20s\n", - "385450K .......... .......... .......... .......... .......... 73% 8.00M 20s\n", - "385500K .......... .......... .......... .......... .......... 73% 10.2M 20s\n", - "385550K .......... .......... .......... .......... .......... 73% 9.15M 20s\n", - "385600K .......... .......... .......... .......... .......... 73% 12.6M 20s\n", - "385650K .......... .......... .......... .......... .......... 73% 11.0M 20s\n", - "385700K .......... .......... .......... .......... .......... 73% 10.8M 20s\n", - "385750K .......... .......... .......... .......... .......... 73% 7.54M 20s\n", - "385800K .......... .......... .......... .......... .......... 73% 9.80M 20s\n", - "385850K .......... .......... .......... .......... .......... 73% 10.5M 20s\n", - "385900K .......... .......... .......... .......... .......... 73% 9.62M 20s\n", - "385950K .......... .......... .......... .......... .......... 73% 11.1M 20s\n", - "386000K .......... .......... .......... .......... .......... 73% 9.24M 20s\n", - "386050K .......... .......... .......... .......... .......... 73% 9.90M 20s\n", - "386100K .......... .......... .......... .......... .......... 73% 12.1M 20s\n", - "386150K .......... .......... .......... .......... .......... 73% 11.7M 20s\n", - "386200K .......... .......... .......... .......... .......... 73% 7.28M 20s\n", - "386250K .......... .......... .......... .......... .......... 73% 9.28M 20s\n", - "386300K .......... .......... .......... .......... .......... 73% 11.4M 20s\n", - "386350K .......... .......... .......... .......... .......... 73% 9.77M 20s\n", - "386400K .......... .......... .......... .......... .......... 73% 10.9M 20s\n", - "386450K .......... .......... .......... .......... .......... 73% 10.4M 20s\n", - "386500K .......... .......... .......... .......... .......... 73% 11.5M 20s\n", - "386550K .......... .......... .......... .......... .......... 73% 9.48M 20s\n", - "386600K .......... .......... .......... .......... .......... 73% 7.47M 20s\n", - "386650K .......... .......... .......... .......... .......... 73% 8.54M 20s\n", - "386700K .......... .......... .......... .......... .......... 73% 9.92M 20s\n", - "386750K .......... .......... .......... .......... .......... 73% 13.2M 20s\n", - "386800K .......... .......... .......... .......... .......... 73% 10.7M 20s\n", - "386850K .......... .......... .......... .......... .......... 73% 12.7M 20s\n", - "386900K .......... .......... .......... .......... .......... 73% 8.58M 20s\n", - "386950K .......... .......... .......... .......... .......... 73% 8.23M 20s\n", - "387000K .......... .......... .......... .......... .......... 73% 8.65M 20s\n", - "387050K .......... .......... .......... .......... .......... 73% 11.1M 20s\n", - "387100K .......... .......... .......... .......... .......... 73% 12.1M 19s\n", - "387150K .......... .......... .......... .......... .......... 73% 9.76M 19s\n", - "387200K .......... .......... .......... .......... .......... 73% 8.88M 19s\n", - "387250K .......... .......... .......... .......... .......... 73% 10.1M 19s\n", - "387300K .......... .......... .......... .......... .......... 73% 10.8M 19s\n", - "387350K .......... .......... .......... .......... .......... 73% 11.4M 19s\n", - "387400K .......... .......... .......... .......... .......... 73% 8.29M 19s\n", - "387450K .......... .......... .......... .......... .......... 73% 10.0M 19s\n", - "387500K .......... .......... .......... .......... .......... 73% 8.33M 19s\n", - "387550K .......... .......... .......... .......... .......... 73% 11.5M 19s\n", - "387600K .......... .......... .......... .......... .......... 73% 10.6M 19s\n", - "387650K .......... .......... .......... .......... .......... 73% 12.2M 19s\n", - "387700K .......... .......... .......... .......... .......... 73% 8.56M 19s\n", - "387750K .......... .......... .......... .......... .......... 73% 10.5M 19s\n", - "387800K .......... .......... .......... .......... .......... 73% 8.54M 19s\n", - "387850K .......... .......... .......... .......... .......... 73% 11.2M 19s\n", - "387900K .......... .......... .......... .......... .......... 73% 10.1M 19s\n", - "387950K .......... .......... .......... .......... .......... 73% 7.22M 19s\n", - "388000K .......... .......... .......... .......... .......... 73% 10.8M 19s\n", - "388050K .......... .......... .......... .......... .......... 73% 11.6M 19s\n", - "388100K .......... .......... .......... .......... .......... 73% 11.1M 19s\n", - "388150K .......... .......... .......... .......... .......... 73% 11.2M 19s\n", - "388200K .......... .......... .......... .......... .......... 73% 9.00M 19s\n", - "388250K .......... .......... .......... .......... .......... 74% 8.07M 19s\n", - "388300K .......... .......... .......... .......... .......... 74% 11.2M 19s\n", - "388350K .......... .......... .......... .......... .......... 74% 9.44M 19s\n", - "388400K .......... .......... .......... .......... .......... 74% 11.4M 19s\n", - "388450K .......... .......... .......... .......... .......... 74% 12.3M 19s\n", - "388500K .......... .......... .......... .......... .......... 74% 10.9M 19s\n", - "388550K .......... .......... .......... .......... .......... 74% 9.63M 19s\n", - "388600K .......... .......... .......... .......... .......... 74% 7.19M 19s\n", - "388650K .......... .......... .......... .......... .......... 74% 11.8M 19s\n", - "388700K .......... .......... .......... .......... .......... 74% 10.5M 19s\n", - "388750K .......... .......... .......... .......... .......... 74% 10.4M 19s\n", - "388800K .......... .......... .......... .......... .......... 74% 11.1M 19s\n", - "388850K .......... .......... .......... .......... .......... 74% 4.13M 19s\n", - "388900K .......... .......... .......... .......... .......... 74% 78.0M 19s\n", - "388950K .......... .......... .......... .......... .......... 74% 14.2M 19s\n", - "389000K .......... .......... .......... .......... .......... 74% 8.89M 19s\n", - "389050K .......... .......... .......... .......... .......... 74% 12.2M 19s\n", - "389100K .......... .......... .......... .......... .......... 74% 4.26M 19s\n", - "389150K .......... .......... .......... .......... .......... 74% 11.4M 19s\n", - "389200K .......... .......... .......... .......... .......... 74% 11.3M 19s\n", - "389250K .......... .......... .......... .......... .......... 74% 11.6M 19s\n", - "389300K .......... .......... .......... .......... .......... 74% 11.5M 19s\n", - "389350K .......... .......... .......... .......... .......... 74% 11.2M 19s\n", - "389400K .......... .......... .......... .......... .......... 74% 6.30M 19s\n", - "389450K .......... .......... .......... .......... .......... 74% 12.1M 19s\n", - "389500K .......... .......... .......... .......... .......... 74% 10.4M 19s\n", - "389550K .......... .......... .......... .......... .......... 74% 11.9M 19s\n", - "389600K .......... .......... .......... .......... .......... 74% 12.0M 19s\n", - "389650K .......... .......... .......... .......... .......... 74% 10.3M 19s\n", - "389700K .......... .......... .......... .......... .......... 74% 7.08M 19s\n", - "389750K .......... .......... .......... .......... .......... 74% 10.8M 19s\n", - "389800K .......... .......... .......... .......... .......... 74% 9.13M 19s\n", - "389850K .......... .......... .......... .......... .......... 74% 10.1M 19s\n", - "389900K .......... .......... .......... .......... .......... 74% 13.6M 19s\n", - "389950K .......... .......... .......... .......... .......... 74% 9.72M 19s\n", - "390000K .......... .......... .......... .......... .......... 74% 8.49M 19s\n", - "390050K .......... .......... .......... .......... .......... 74% 10.3M 19s\n", - "390100K .......... .......... .......... .......... .......... 74% 11.4M 19s\n", - "390150K .......... .......... .......... .......... .......... 74% 10.9M 19s\n", - "390200K .......... .......... .......... .......... .......... 74% 7.34M 19s\n", - "390250K .......... .......... .......... .......... .......... 74% 12.6M 19s\n", - "390300K .......... .......... .......... .......... .......... 74% 10.0M 19s\n", - "390350K .......... .......... .......... .......... .......... 74% 9.23M 19s\n", - "390400K .......... .......... .......... .......... .......... 74% 12.6M 19s\n", - "390450K .......... .......... .......... .......... .......... 74% 11.8M 19s\n", - "390500K .......... .......... .......... .......... .......... 74% 10.9M 19s\n", - "390550K .......... .......... .......... .......... .......... 74% 9.92M 19s\n", - "390600K .......... .......... .......... .......... .......... 74% 5.40M 19s\n", - "390650K .......... .......... .......... .......... .......... 74% 11.7M 19s\n", - "390700K .......... .......... .......... .......... .......... 74% 12.2M 19s\n", - "390750K .......... .......... .......... .......... .......... 74% 11.7M 19s\n", - "390800K .......... .......... .......... .......... .......... 74% 10.9M 19s\n", - "390850K .......... .......... .......... .......... .......... 74% 7.07M 19s\n", - "390900K .......... .......... .......... .......... .......... 74% 8.40M 19s\n", - "390950K .......... .......... .......... .......... .......... 74% 12.3M 19s\n", - "391000K .......... .......... .......... .......... .......... 74% 8.83M 19s\n", - "391050K .......... .......... .......... .......... .......... 74% 11.0M 19s\n", - "391100K .......... .......... .......... .......... .......... 74% 9.83M 19s\n", - "391150K .......... .......... .......... .......... .......... 74% 9.36M 19s\n", - "391200K .......... .......... .......... .......... .......... 74% 10.7M 19s\n", - "391250K .......... .......... .......... .......... .......... 74% 12.1M 19s\n", - "391300K .......... .......... .......... .......... .......... 74% 10.2M 19s\n", - "391350K .......... .......... .......... .......... .......... 74% 12.5M 19s\n", - "391400K .......... .......... .......... .......... .......... 74% 7.93M 19s\n", - "391450K .......... .......... .......... .......... .......... 74% 10.6M 19s\n", - "391500K .......... .......... .......... .......... .......... 74% 10.6M 19s\n", - "391550K .......... .......... .......... .......... .......... 74% 8.86M 19s\n", - "391600K .......... .......... .......... .......... .......... 74% 11.1M 19s\n", - "391650K .......... .......... .......... .......... .......... 74% 10.9M 19s\n", - "391700K .......... .......... .......... .......... .......... 74% 11.8M 19s\n", - "391750K .......... .......... .......... .......... .......... 74% 11.4M 19s\n", - "391800K .......... .......... .......... .......... .......... 74% 7.64M 19s\n", - "391850K .......... .......... .......... .......... .......... 74% 9.03M 19s\n", - "391900K .......... .......... .......... .......... .......... 74% 11.8M 19s\n", - "391950K .......... .......... .......... .......... .......... 74% 9.97M 19s\n", - "392000K .......... .......... .......... .......... .......... 74% 13.1M 19s\n", - "392050K .......... .......... .......... .......... .......... 74% 10.0M 19s\n", - "392100K .......... .......... .......... .......... .......... 74% 8.85M 19s\n", - "392150K .......... .......... .......... .......... .......... 74% 10.7M 19s\n", - "392200K .......... .......... .......... .......... .......... 74% 8.55M 19s\n", - "392250K .......... .......... .......... .......... .......... 74% 10.7M 19s\n", - "392300K .......... .......... .......... .......... .......... 74% 11.9M 19s\n", - "392350K .......... .......... .......... .......... .......... 74% 9.28M 19s\n", - "392400K .......... .......... .......... .......... .......... 74% 10.8M 19s\n", - "392450K .......... .......... .......... .......... .......... 74% 10.6M 19s\n", - "392500K .......... .......... .......... .......... .......... 74% 10.4M 19s\n", - "392550K .......... .......... .......... .......... .......... 74% 9.99M 19s\n", - "392600K .......... .......... .......... .......... .......... 74% 8.26M 19s\n", - "392650K .......... .......... .......... .......... .......... 74% 8.46M 19s\n", - "392700K .......... .......... .......... .......... .......... 74% 12.1M 19s\n", - "392750K .......... .......... .......... .......... .......... 74% 11.0M 19s\n", - "392800K .......... .......... .......... .......... .......... 74% 10.6M 19s\n", - "392850K .......... .......... .......... .......... .......... 74% 12.2M 19s\n", - "392900K .......... .......... .......... .......... .......... 74% 11.3M 19s\n", - "392950K .......... .......... .......... .......... .......... 74% 7.64M 19s\n", - "393000K .......... .......... .......... .......... .......... 74% 7.82M 19s\n", - "393050K .......... .......... .......... .......... .......... 74% 12.0M 19s\n", - "393100K .......... .......... .......... .......... .......... 74% 13.1M 19s\n", - "393150K .......... .......... .......... .......... .......... 74% 10.5M 19s\n", - "393200K .......... .......... .......... .......... .......... 74% 11.1M 19s\n", - "393250K .......... .......... .......... .......... .......... 74% 10.3M 19s\n", - "393300K .......... .......... .......... .......... .......... 74% 8.17M 19s\n", - "393350K .......... .......... .......... .......... .......... 74% 9.03M 19s\n", - "393400K .......... .......... .......... .......... .......... 74% 10.4M 19s\n", - "393450K .......... .......... .......... .......... .......... 74% 10.7M 19s\n", - "393500K .......... .......... .......... .......... .......... 75% 12.5M 18s\n", - "393550K .......... .......... .......... .......... .......... 75% 8.23M 18s\n", - "393600K .......... .......... .......... .......... .......... 75% 9.63M 18s\n", - "393650K .......... .......... .......... .......... .......... 75% 11.5M 18s\n", - "393700K .......... .......... .......... .......... .......... 75% 10.8M 18s\n", - "393750K .......... .......... .......... .......... .......... 75% 11.8M 18s\n", - "393800K .......... .......... .......... .......... .......... 75% 8.26M 18s\n", - "393850K .......... .......... .......... .......... .......... 75% 9.91M 18s\n", - "393900K .......... .......... .......... .......... .......... 75% 9.43M 18s\n", - "393950K .......... .......... .......... .......... .......... 75% 9.39M 18s\n", - "394000K .......... .......... .......... .......... .......... 75% 11.9M 18s\n", - "394050K .......... .......... .......... .......... .......... 75% 10.7M 18s\n", - "394100K .......... .......... .......... .......... .......... 75% 8.32M 18s\n", - "394150K .......... .......... .......... .......... .......... 75% 13.4M 18s\n", - "394200K .......... .......... .......... .......... .......... 75% 7.87M 18s\n", - "394250K .......... .......... .......... .......... .......... 75% 11.9M 18s\n", - "394300K .......... .......... .......... .......... .......... 75% 9.16M 18s\n", - "394350K .......... .......... .......... .......... .......... 75% 10.2M 18s\n", - "394400K .......... .......... .......... .......... .......... 75% 9.55M 18s\n", - "394450K .......... .......... .......... .......... .......... 75% 12.7M 18s\n", - "394500K .......... .......... .......... .......... .......... 75% 11.7M 18s\n", - "394550K .......... .......... .......... .......... .......... 75% 10.1M 18s\n", - "394600K .......... .......... .......... .......... .......... 75% 8.20M 18s\n", - "394650K .......... .......... .......... .......... .......... 75% 7.17M 18s\n", - "394700K .......... .......... .......... .......... .......... 75% 11.2M 18s\n", - "394750K .......... .......... .......... .......... .......... 75% 12.3M 18s\n", - "394800K .......... .......... .......... .......... .......... 75% 10.8M 18s\n", - "394850K .......... .......... .......... .......... .......... 75% 11.8M 18s\n", - "394900K .......... .......... .......... .......... .......... 75% 9.49M 18s\n", - "394950K .......... .......... .......... .......... .......... 75% 9.53M 18s\n", - "395000K .......... .......... .......... .......... .......... 75% 8.45M 18s\n", - "395050K .......... .......... .......... .......... .......... 75% 11.9M 18s\n", - "395100K .......... .......... .......... .......... .......... 75% 11.0M 18s\n", - "395150K .......... .......... .......... .......... .......... 75% 10.7M 18s\n", - "395200K .......... .......... .......... .......... .......... 75% 9.60M 18s\n", - "395250K .......... .......... .......... .......... .......... 75% 10.7M 18s\n", - "395300K .......... .......... .......... .......... .......... 75% 11.7M 18s\n", - "395350K .......... .......... .......... .......... .......... 75% 10.8M 18s\n", - "395400K .......... .......... .......... .......... .......... 75% 6.35M 18s\n", - "395450K .......... .......... .......... .......... .......... 75% 10.9M 18s\n", - "395500K .......... .......... .......... .......... .......... 75% 10.5M 18s\n", - "395550K .......... .......... .......... .......... .......... 75% 12.5M 18s\n", - "395600K .......... .......... .......... .......... .......... 75% 10.8M 18s\n", - "395650K .......... .......... .......... .......... .......... 75% 11.2M 18s\n", - "395700K .......... .......... .......... .......... .......... 75% 9.60M 18s\n", - "395750K .......... .......... .......... .......... .......... 75% 8.47M 18s\n", - "395800K .......... .......... .......... .......... .......... 75% 8.54M 18s\n", - "395850K .......... .......... .......... .......... .......... 75% 10.1M 18s\n", - "395900K .......... .......... .......... .......... .......... 75% 13.1M 18s\n", - "395950K .......... .......... .......... .......... .......... 75% 10.6M 18s\n", - "396000K .......... .......... .......... .......... .......... 75% 12.6M 18s\n", - "396050K .......... .......... .......... .......... .......... 75% 9.03M 18s\n", - "396100K .......... .......... .......... .......... .......... 75% 9.93M 18s\n", - "396150K .......... .......... .......... .......... .......... 75% 9.26M 18s\n", - "396200K .......... .......... .......... .......... .......... 75% 7.99M 18s\n", - "396250K .......... .......... .......... .......... .......... 75% 13.6M 18s\n", - "396300K .......... .......... .......... .......... .......... 75% 11.3M 18s\n", - "396350K .......... .......... .......... .......... .......... 75% 9.15M 18s\n", - "396400K .......... .......... .......... .......... .......... 75% 11.1M 18s\n", - "396450K .......... .......... .......... .......... .......... 75% 6.47M 18s\n", - "396500K .......... .......... .......... .......... .......... 75% 13.9M 18s\n", - "396550K .......... .......... .......... .......... .......... 75% 13.1M 18s\n", - "396600K .......... .......... .......... .......... .......... 75% 8.51M 18s\n", - "396650K .......... .......... .......... .......... .......... 75% 10.9M 18s\n", - "396700K .......... .......... .......... .......... .......... 75% 11.5M 18s\n", - "396750K .......... .......... .......... .......... .......... 75% 7.49M 18s\n", - "396800K .......... .......... .......... .......... .......... 75% 12.1M 18s\n", - "396850K .......... .......... .......... .......... .......... 75% 10.7M 18s\n", - "396900K .......... .......... .......... .......... .......... 75% 11.6M 18s\n", - "396950K .......... .......... .......... .......... .......... 75% 10.6M 18s\n", - "397000K .......... .......... .......... .......... .......... 75% 8.33M 18s\n", - "397050K .......... .......... .......... .......... .......... 75% 9.95M 18s\n", - "397100K .......... .......... .......... .......... .......... 75% 10.6M 18s\n", - "397150K .......... .......... .......... .......... .......... 75% 12.1M 18s\n", - "397200K .......... .......... .......... .......... .......... 75% 10.9M 18s\n", - "397250K .......... .......... .......... .......... .......... 75% 11.0M 18s\n", - "397300K .......... .......... .......... .......... .......... 75% 12.4M 18s\n", - "397350K .......... .......... .......... .......... .......... 75% 10.1M 18s\n", - "397400K .......... .......... .......... .......... .......... 75% 7.90M 18s\n", - "397450K .......... .......... .......... .......... .......... 75% 9.79M 18s\n", - "397500K .......... .......... .......... .......... .......... 75% 10.0M 18s\n", - "397550K .......... .......... .......... .......... .......... 75% 10.8M 18s\n", - "397600K .......... .......... .......... .......... .......... 75% 11.1M 18s\n", - "397650K .......... .......... .......... .......... .......... 75% 11.0M 18s\n", - "397700K .......... .......... .......... .......... .......... 75% 11.9M 18s\n", - "397750K .......... .......... .......... .......... .......... 75% 8.84M 18s\n", - "397800K .......... .......... .......... .......... .......... 75% 8.49M 18s\n", - "397850K .......... .......... .......... .......... .......... 75% 10.3M 18s\n", - "397900K .......... .......... .......... .......... .......... 75% 12.8M 18s\n", - "397950K .......... .......... .......... .......... .......... 75% 10.9M 18s\n", - "398000K .......... .......... .......... .......... .......... 75% 8.77M 18s\n", - "398050K .......... .......... .......... .......... .......... 75% 11.7M 18s\n", - "398100K .......... .......... .......... .......... .......... 75% 8.22M 18s\n", - "398150K .......... .......... .......... .......... .......... 75% 11.7M 18s\n", - "398200K .......... .......... .......... .......... .......... 75% 8.68M 18s\n", - "398250K .......... .......... .......... .......... .......... 75% 10.9M 18s\n", - "398300K .......... .......... .......... .......... .......... 75% 11.6M 18s\n", - "398350K .......... .......... .......... .......... .......... 75% 11.1M 18s\n", - "398400K .......... .......... .......... .......... .......... 75% 8.04M 18s\n", - "398450K .......... .......... .......... .......... .......... 75% 11.4M 18s\n", - "398500K .......... .......... .......... .......... .......... 75% 12.2M 18s\n", - "398550K .......... .......... .......... .......... .......... 75% 10.5M 18s\n", - "398600K .......... .......... .......... .......... .......... 75% 9.04M 18s\n", - "398650K .......... .......... .......... .......... .......... 75% 10.7M 18s\n", - "398700K .......... .......... .......... .......... .......... 75% 9.69M 18s\n", - "398750K .......... .......... .......... .......... .......... 76% 10.9M 18s\n", - "398800K .......... .......... .......... .......... .......... 76% 11.8M 18s\n", - "398850K .......... .......... .......... .......... .......... 76% 10.2M 18s\n", - "398900K .......... .......... .......... .......... .......... 76% 10.8M 18s\n", - "398950K .......... .......... .......... .......... .......... 76% 11.8M 18s\n", - "399000K .......... .......... .......... .......... .......... 76% 8.98M 18s\n", - "399050K .......... .......... .......... .......... .......... 76% 8.33M 18s\n", - "399100K .......... .......... .......... .......... .......... 76% 11.4M 18s\n", - "399150K .......... .......... .......... .......... .......... 76% 10.8M 18s\n", - "399200K .......... .......... .......... .......... .......... 76% 11.3M 18s\n", - "399250K .......... .......... .......... .......... .......... 76% 7.97M 18s\n", - "399300K .......... .......... .......... .......... .......... 76% 18.5M 18s\n", - "399350K .......... .......... .......... .......... .......... 76% 10.0M 18s\n", - "399400K .......... .......... .......... .......... .......... 76% 7.71M 18s\n", - "399450K .......... .......... .......... .......... .......... 76% 12.7M 18s\n", - "399500K .......... .......... .......... .......... .......... 76% 9.02M 18s\n", - "399550K .......... .......... .......... .......... .......... 76% 10.4M 18s\n", - "399600K .......... .......... .......... .......... .......... 76% 10.1M 18s\n", - "399650K .......... .......... .......... .......... .......... 76% 12.9M 18s\n", - "399700K .......... .......... .......... .......... .......... 76% 11.0M 18s\n", - "399750K .......... .......... .......... .......... .......... 76% 10.6M 18s\n", - "399800K .......... .......... .......... .......... .......... 76% 7.42M 18s\n", - "399850K .......... .......... .......... .......... .......... 76% 8.69M 18s\n", - "399900K .......... .......... .......... .......... .......... 76% 12.0M 18s\n", - "399950K .......... .......... .......... .......... .......... 76% 11.4M 17s\n", - "400000K .......... .......... .......... .......... .......... 76% 11.5M 17s\n", - "400050K .......... .......... .......... .......... .......... 76% 10.3M 17s\n", - "400100K .......... .......... .......... .......... .......... 76% 12.7M 17s\n", - "400150K .......... .......... .......... .......... .......... 76% 9.20M 17s\n", - "400200K .......... .......... .......... .......... .......... 76% 8.15M 17s\n", - "400250K .......... .......... .......... .......... .......... 76% 9.37M 17s\n", - "400300K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "400350K .......... .......... .......... .......... .......... 76% 11.0M 17s\n", - "400400K .......... .......... .......... .......... .......... 76% 10.6M 17s\n", - "400450K .......... .......... .......... .......... .......... 76% 12.1M 17s\n", - "400500K .......... .......... .......... .......... .......... 76% 11.2M 17s\n", - "400550K .......... .......... .......... .......... .......... 76% 10.9M 17s\n", - "400600K .......... .......... .......... .......... .......... 76% 8.46M 17s\n", - "400650K .......... .......... .......... .......... .......... 76% 10.1M 17s\n", - "400700K .......... .......... .......... .......... .......... 76% 11.3M 17s\n", - "400750K .......... .......... .......... .......... .......... 76% 11.4M 17s\n", - "400800K .......... .......... .......... .......... .......... 76% 10.7M 17s\n", - "400850K .......... .......... .......... .......... .......... 76% 12.4M 17s\n", - "400900K .......... .......... .......... .......... .......... 76% 10.2M 17s\n", - "400950K .......... .......... .......... .......... .......... 76% 11.0M 17s\n", - "401000K .......... .......... .......... .......... .......... 76% 8.96M 17s\n", - "401050K .......... .......... .......... .......... .......... 76% 10.0M 17s\n", - "401100K .......... .......... .......... .......... .......... 76% 12.1M 17s\n", - "401150K .......... .......... .......... .......... .......... 76% 11.0M 17s\n", - "401200K .......... .......... .......... .......... .......... 76% 12.0M 17s\n", - "401250K .......... .......... .......... .......... .......... 76% 11.2M 17s\n", - "401300K .......... .......... .......... .......... .......... 76% 11.2M 17s\n", - "401350K .......... .......... .......... .......... .......... 76% 11.4M 17s\n", - "401400K .......... .......... .......... .......... .......... 76% 8.25M 17s\n", - "401450K .......... .......... .......... .......... .......... 76% 10.8M 17s\n", - "401500K .......... .......... .......... .......... .......... 76% 12.0M 17s\n", - "401550K .......... .......... .......... .......... .......... 76% 11.3M 17s\n", - "401600K .......... .......... .......... .......... .......... 76% 9.20M 17s\n", - "401650K .......... .......... .......... .......... .......... 76% 9.44M 17s\n", - "401700K .......... .......... .......... .......... .......... 76% 8.76M 17s\n", - "401750K .......... .......... .......... .......... .......... 76% 16.9M 17s\n", - "401800K .......... .......... .......... .......... .......... 76% 7.70M 17s\n", - "401850K .......... .......... .......... .......... .......... 76% 12.0M 17s\n", - "401900K .......... .......... .......... .......... .......... 76% 11.6M 17s\n", - "401950K .......... .......... .......... .......... .......... 76% 12.2M 17s\n", - "402000K .......... .......... .......... .......... .......... 76% 9.85M 17s\n", - "402050K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "402100K .......... .......... .......... .......... .......... 76% 7.27M 17s\n", - "402150K .......... .......... .......... .......... .......... 76% 11.0M 17s\n", - "402200K .......... .......... .......... .......... .......... 76% 8.27M 17s\n", - "402250K .......... .......... .......... .......... .......... 76% 6.23M 17s\n", - "402300K .......... .......... .......... .......... .......... 76% 58.1M 17s\n", - "402350K .......... .......... .......... .......... .......... 76% 12.3M 17s\n", - "402400K .......... .......... .......... .......... .......... 76% 9.17M 17s\n", - "402450K .......... .......... .......... .......... .......... 76% 12.5M 17s\n", - "402500K .......... .......... .......... .......... .......... 76% 13.0M 17s\n", - "402550K .......... .......... .......... .......... .......... 76% 6.48M 17s\n", - "402600K .......... .......... .......... .......... .......... 76% 8.88M 17s\n", - "402650K .......... .......... .......... .......... .......... 76% 8.53M 17s\n", - "402700K .......... .......... .......... .......... .......... 76% 16.2M 17s\n", - "402750K .......... .......... .......... .......... .......... 76% 12.1M 17s\n", - "402800K .......... .......... .......... .......... .......... 76% 11.5M 17s\n", - "402850K .......... .......... .......... .......... .......... 76% 11.3M 17s\n", - "402900K .......... .......... .......... .......... .......... 76% 10.1M 17s\n", - "402950K .......... .......... .......... .......... .......... 76% 10.4M 17s\n", - "403000K .......... .......... .......... .......... .......... 76% 9.25M 17s\n", - "403050K .......... .......... .......... .......... .......... 76% 11.2M 17s\n", - "403100K .......... .......... .......... .......... .......... 76% 11.3M 17s\n", - "403150K .......... .......... .......... .......... .......... 76% 10.5M 17s\n", - "403200K .......... .......... .......... .......... .......... 76% 12.6M 17s\n", - "403250K .......... .......... .......... .......... .......... 76% 10.1M 17s\n", - "403300K .......... .......... .......... .......... .......... 76% 12.1M 17s\n", - "403350K .......... .......... .......... .......... .......... 76% 10.1M 17s\n", - "403400K .......... .......... .......... .......... .......... 76% 9.19M 17s\n", - "403450K .......... .......... .......... .......... .......... 76% 11.2M 17s\n", - "403500K .......... .......... .......... .......... .......... 76% 9.52M 17s\n", - "403550K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "403600K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "403650K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "403700K .......... .......... .......... .......... .......... 76% 11.3M 17s\n", - "403750K .......... .......... .......... .......... .......... 76% 11.1M 17s\n", - "403800K .......... .......... .......... .......... .......... 76% 9.18M 17s\n", - "403850K .......... .......... .......... .......... .......... 76% 10.9M 17s\n", - "403900K .......... .......... .......... .......... .......... 76% 8.52M 17s\n", - "403950K .......... .......... .......... .......... .......... 76% 11.8M 17s\n", - "404000K .......... .......... .......... .......... .......... 77% 11.3M 17s\n", - "404050K .......... .......... .......... .......... .......... 77% 11.8M 17s\n", - "404100K .......... .......... .......... .......... .......... 77% 10.9M 17s\n", - "404150K .......... .......... .......... .......... .......... 77% 10.1M 17s\n", - "404200K .......... .......... .......... .......... .......... 77% 8.00M 17s\n", - "404250K .......... .......... .......... .......... .......... 77% 12.4M 17s\n", - "404300K .......... .......... .......... .......... .......... 77% 11.0M 17s\n", - "404350K .......... .......... .......... .......... .......... 77% 11.5M 17s\n", - "404400K .......... .......... .......... .......... .......... 77% 12.0M 17s\n", - "404450K .......... .......... .......... .......... .......... 77% 10.6M 17s\n", - "404500K .......... .......... .......... .......... .......... 77% 8.96M 17s\n", - "404550K .......... .......... .......... .......... .......... 77% 12.5M 17s\n", - "404600K .......... .......... .......... .......... .......... 77% 8.18M 17s\n", - "404650K .......... .......... .......... .......... .......... 77% 11.8M 17s\n", - "404700K .......... .......... .......... .......... .......... 77% 11.4M 17s\n", - "404750K .......... .......... .......... .......... .......... 77% 11.4M 17s\n", - "404800K .......... .......... .......... .......... .......... 77% 11.9M 17s\n", - "404850K .......... .......... .......... .......... .......... 77% 10.3M 17s\n", - "404900K .......... .......... .......... .......... .......... 77% 11.6M 17s\n", - "404950K .......... .......... .......... .......... .......... 77% 10.3M 17s\n", - "405000K .......... .......... .......... .......... .......... 77% 9.33M 17s\n", - "405050K .......... .......... .......... .......... .......... 77% 11.3M 17s\n", - "405100K .......... .......... .......... .......... .......... 77% 11.5M 17s\n", - "405150K .......... .......... .......... .......... .......... 77% 8.65M 17s\n", - "405200K .......... .......... .......... .......... .......... 77% 10.7M 17s\n", - "405250K .......... .......... .......... .......... .......... 77% 10.7M 17s\n", - "405300K .......... .......... .......... .......... .......... 77% 12.6M 17s\n", - "405350K .......... .......... .......... .......... .......... 77% 10.4M 17s\n", - "405400K .......... .......... .......... .......... .......... 77% 8.83M 17s\n", - "405450K .......... .......... .......... .......... .......... 77% 12.0M 17s\n", - "405500K .......... .......... .......... .......... .......... 77% 11.9M 17s\n", - "405550K .......... .......... .......... .......... .......... 77% 11.1M 17s\n", - "405600K .......... .......... .......... .......... .......... 77% 11.5M 17s\n", - "405650K .......... .......... .......... .......... .......... 77% 11.4M 17s\n", - "405700K .......... .......... .......... .......... .......... 77% 11.4M 17s\n", - "405750K .......... .......... .......... .......... .......... 77% 10.7M 17s\n", - "405800K .......... .......... .......... .......... .......... 77% 8.32M 17s\n", - "405850K .......... .......... .......... .......... .......... 77% 11.9M 17s\n", - "405900K .......... .......... .......... .......... .......... 77% 10.9M 17s\n", - "405950K .......... .......... .......... .......... .......... 77% 10.9M 17s\n", - "406000K .......... .......... .......... .......... .......... 77% 12.0M 17s\n", - "406050K .......... .......... .......... .......... .......... 77% 8.60M 17s\n", - "406100K .......... .......... .......... .......... .......... 77% 9.11M 17s\n", - "406150K .......... .......... .......... .......... .......... 77% 17.5M 17s\n", - "406200K .......... .......... .......... .......... .......... 77% 7.20M 17s\n", - "406250K .......... .......... .......... .......... .......... 77% 11.6M 17s\n", - "406300K .......... .......... .......... .......... .......... 77% 11.3M 17s\n", - "406350K .......... .......... .......... .......... .......... 77% 1.08M 17s\n", - "406400K .......... .......... .......... .......... .......... 77% 203M 17s\n", - "406450K .......... .......... .......... .......... .......... 77% 368M 17s\n", - "406500K .......... .......... .......... .......... .......... 77% 243M 16s\n", - "406550K .......... .......... .......... .......... .......... 77% 386M 16s\n", - "406600K .......... .......... .......... .......... .......... 77% 411M 16s\n", - "406650K .......... .......... .......... .......... .......... 77% 389M 16s\n", - "406700K .......... .......... .......... .......... .......... 77% 394M 16s\n", - "406750K .......... .......... .......... .......... .......... 77% 272M 16s\n", - "406800K .......... .......... .......... .......... .......... 77% 30.7M 16s\n", - "406850K .......... .......... .......... .......... .......... 77% 9.85M 16s\n", - "406900K .......... .......... .......... .......... .......... 77% 7.13M 16s\n", - "406950K .......... .......... .......... .......... .......... 77% 9.10M 16s\n", - "407000K .......... .......... .......... .......... .......... 77% 5.25M 16s\n", - "407050K .......... .......... .......... .......... .......... 77% 10.4M 16s\n", - "407100K .......... .......... .......... .......... .......... 77% 6.91M 16s\n", - "407150K .......... .......... .......... .......... .......... 77% 8.85M 16s\n", - "407200K .......... .......... .......... .......... .......... 77% 6.29M 16s\n", - "407250K .......... .......... .......... .......... .......... 77% 11.6M 16s\n", - "407300K .......... .......... .......... .......... .......... 77% 6.60M 16s\n", - "407350K .......... .......... .......... .......... .......... 77% 10.2M 16s\n", - "407400K .......... .......... .......... .......... .......... 77% 5.85M 16s\n", - "407450K .......... .......... .......... .......... .......... 77% 10.6M 16s\n", - "407500K .......... .......... .......... .......... .......... 77% 6.54M 16s\n", - "407550K .......... .......... .......... .......... .......... 77% 11.1M 16s\n", - "407600K .......... .......... .......... .......... .......... 77% 9.23M 16s\n", - "407650K .......... .......... .......... .......... .......... 77% 7.90M 16s\n", - "407700K .......... .......... .......... .......... .......... 77% 11.2M 16s\n", - "407750K .......... .......... .......... .......... .......... 77% 6.24M 16s\n", - "407800K .......... .......... .......... .......... .......... 77% 6.99M 16s\n", - "407850K .......... .......... .......... .......... .......... 77% 9.20M 16s\n", - "407900K .......... .......... .......... .......... .......... 77% 9.66M 16s\n", - "407950K .......... .......... .......... .......... .......... 77% 6.52M 16s\n", - "408000K .......... .......... .......... .......... .......... 77% 8.93M 16s\n", - "408050K .......... .......... .......... .......... .......... 77% 9.85M 16s\n", - "408100K .......... .......... .......... .......... .......... 77% 10.3M 16s\n", - "408150K .......... .......... .......... .......... .......... 77% 9.62M 16s\n", - "408200K .......... .......... .......... .......... .......... 77% 4.94M 16s\n", - "408250K .......... .......... .......... .......... .......... 77% 10.2M 16s\n", - "408300K .......... .......... .......... .......... .......... 77% 9.10M 16s\n", - "408350K .......... .......... .......... .......... .......... 77% 9.41M 16s\n", - "408400K .......... .......... .......... .......... .......... 77% 3.90M 16s\n", - "408450K .......... .......... .......... .......... .......... 77% 54.3M 16s\n", - "408500K .......... .......... .......... .......... .......... 77% 11.7M 16s\n", - "408550K .......... .......... .......... .......... .......... 77% 8.35M 16s\n", - "408600K .......... .......... .......... .......... .......... 77% 5.75M 16s\n", - "408650K .......... .......... .......... .......... .......... 77% 5.84M 16s\n", - "408700K .......... .......... .......... .......... .......... 77% 9.35M 16s\n", - "408750K .......... .......... .......... .......... .......... 77% 10.8M 16s\n", - "408800K .......... .......... .......... .......... .......... 77% 10.2M 16s\n", - "408850K .......... .......... .......... .......... .......... 77% 5.13M 16s\n", - "408900K .......... .......... .......... .......... .......... 77% 11.6M 16s\n", - "408950K .......... .......... .......... .......... .......... 77% 10.9M 16s\n", - "409000K .......... .......... .......... .......... .......... 77% 6.89M 16s\n", - "409050K .......... .......... .......... .......... .......... 77% 13.6M 16s\n", - "409100K .......... .......... .......... .......... .......... 77% 4.75M 16s\n", - "409150K .......... .......... .......... .......... .......... 77% 13.8M 16s\n", - "409200K .......... .......... .......... .......... .......... 77% 11.2M 16s\n", - "409250K .......... .......... .......... .......... .......... 78% 10.4M 16s\n", - "409300K .......... .......... .......... .......... .......... 78% 5.60M 16s\n", - "409350K .......... .......... .......... .......... .......... 78% 6.02M 16s\n", - "409400K .......... .......... .......... .......... .......... 78% 11.0M 16s\n", - "409450K .......... .......... .......... .......... .......... 78% 11.0M 16s\n", - "409500K .......... .......... .......... .......... .......... 78% 10.1M 16s\n", - "409550K .......... .......... .......... .......... .......... 78% 3.38M 16s\n", - "409600K .......... .......... .......... .......... .......... 78% 11.0M 16s\n", - "409650K .......... .......... .......... .......... .......... 78% 12.6M 16s\n", - "409700K .......... .......... .......... .......... .......... 78% 11.4M 16s\n", - "409750K .......... .......... .......... .......... .......... 78% 10.2M 16s\n", - "409800K .......... .......... .......... .......... .......... 78% 4.14M 16s\n", - "409850K .......... .......... .......... .......... .......... 78% 10.3M 16s\n", - "409900K .......... .......... .......... .......... .......... 78% 10.0M 16s\n", - "409950K .......... .......... .......... .......... .......... 78% 12.5M 16s\n", - "410000K .......... .......... .......... .......... .......... 78% 5.73M 16s\n", - "410050K .......... .......... .......... .......... .......... 78% 9.79M 16s\n", - "410100K .......... .......... .......... .......... .......... 78% 11.2M 16s\n", - "410150K .......... .......... .......... .......... .......... 78% 9.06M 16s\n", - "410200K .......... .......... .......... .......... .......... 78% 7.93M 16s\n", - "410250K .......... .......... .......... .......... .......... 78% 6.24M 16s\n", - "410300K .......... .......... .......... .......... .......... 78% 10.8M 16s\n", - "410350K .......... .......... .......... .......... .......... 78% 10.1M 16s\n", - "410400K .......... .......... .......... .......... .......... 78% 8.59M 16s\n", - "410450K .......... .......... .......... .......... .......... 78% 10.8M 16s\n", - "410500K .......... .......... .......... .......... .......... 78% 7.17M 16s\n", - "410550K .......... .......... .......... .......... .......... 78% 8.03M 16s\n", - "410600K .......... .......... .......... .......... .......... 78% 8.47M 16s\n", - "410650K .......... .......... .......... .......... .......... 78% 8.76M 16s\n", - "410700K .......... .......... .......... .......... .......... 78% 7.82M 16s\n", - "410750K .......... .......... .......... .......... .......... 78% 8.21M 16s\n", - "410800K .......... .......... .......... .......... .......... 78% 9.49M 16s\n", - "410850K .......... .......... .......... .......... .......... 78% 12.0M 16s\n", - "410900K .......... .......... .......... .......... .......... 78% 7.83M 16s\n", - "410950K .......... .......... .......... .......... .......... 78% 10.9M 16s\n", - "411000K .......... .......... .......... .......... .......... 78% 5.85M 16s\n", - "411050K .......... .......... .......... .......... .......... 78% 9.41M 16s\n", - "411100K .......... .......... .......... .......... .......... 78% 9.38M 16s\n", - "411150K .......... .......... .......... .......... .......... 78% 10.6M 16s\n", - "411200K .......... .......... .......... .......... .......... 78% 11.6M 16s\n", - "411250K .......... .......... .......... .......... .......... 78% 7.06M 16s\n", - "411300K .......... .......... .......... .......... .......... 78% 8.93M 16s\n", - "411350K .......... .......... .......... .......... .......... 78% 8.46M 16s\n", - "411400K .......... .......... .......... .......... .......... 78% 8.28M 16s\n", - "411450K .......... .......... .......... .......... .......... 78% 10.2M 16s\n", - "411500K .......... .......... .......... .......... .......... 78% 7.57M 16s\n", - "411550K .......... .......... .......... .......... .......... 78% 9.26M 16s\n", - "411600K .......... .......... .......... .......... .......... 78% 8.87M 16s\n", - "411650K .......... .......... .......... .......... .......... 78% 11.3M 16s\n", - "411700K .......... .......... .......... .......... .......... 78% 9.03M 16s\n", - "411750K .......... .......... .......... .......... .......... 78% 9.58M 16s\n", - "411800K .......... .......... .......... .......... .......... 78% 7.13M 16s\n", - "411850K .......... .......... .......... .......... .......... 78% 9.99M 16s\n", - "411900K .......... .......... .......... .......... .......... 78% 9.08M 16s\n", - "411950K .......... .......... .......... .......... .......... 78% 8.53M 16s\n", - "412000K .......... .......... .......... .......... .......... 78% 8.81M 16s\n", - "412050K .......... .......... .......... .......... .......... 78% 10.2M 16s\n", - "412100K .......... .......... .......... .......... .......... 78% 10.0M 16s\n", - "412150K .......... .......... .......... .......... .......... 78% 7.12M 16s\n", - "412200K .......... .......... .......... .......... .......... 78% 8.84M 16s\n", - "412250K .......... .......... .......... .......... .......... 78% 7.58M 16s\n", - "412300K .......... .......... .......... .......... .......... 78% 8.12M 16s\n", - "412350K .......... .......... .......... .......... .......... 78% 9.32M 16s\n", - "412400K .......... .......... .......... .......... .......... 78% 11.4M 16s\n", - "412450K .......... .......... .......... .......... .......... 78% 10.3M 16s\n", - "412500K .......... .......... .......... .......... .......... 78% 8.79M 16s\n", - "412550K .......... .......... .......... .......... .......... 78% 7.76M 16s\n", - "412600K .......... .......... .......... .......... .......... 78% 7.52M 16s\n", - "412650K .......... .......... .......... .......... .......... 78% 11.9M 16s\n", - "412700K .......... .......... .......... .......... .......... 78% 11.1M 16s\n", - "412750K .......... .......... .......... .......... .......... 78% 7.43M 16s\n", - "412800K .......... .......... .......... .......... .......... 78% 8.65M 16s\n", - "412850K .......... .......... .......... .......... .......... 78% 9.33M 16s\n", - "412900K .......... .......... .......... .......... .......... 78% 11.3M 16s\n", - "412950K .......... .......... .......... .......... .......... 78% 10.2M 16s\n", - "413000K .......... .......... .......... .......... .......... 78% 7.12M 16s\n", - "413050K .......... .......... .......... .......... .......... 78% 8.12M 16s\n", - "413100K .......... .......... .......... .......... .......... 78% 9.71M 16s\n", - "413150K .......... .......... .......... .......... .......... 78% 11.4M 16s\n", - "413200K .......... .......... .......... .......... .......... 78% 7.88M 16s\n", - "413250K .......... .......... .......... .......... .......... 78% 12.0M 16s\n", - "413300K .......... .......... .......... .......... .......... 78% 8.78M 15s\n", - "413350K .......... .......... .......... .......... .......... 78% 8.86M 15s\n", - "413400K .......... .......... .......... .......... .......... 78% 7.49M 15s\n", - "413450K .......... .......... .......... .......... .......... 78% 9.72M 15s\n", - "413500K .......... .......... .......... .......... .......... 78% 9.08M 15s\n", - "413550K .......... .......... .......... .......... .......... 78% 10.3M 15s\n", - "413600K .......... .......... .......... .......... .......... 78% 5.99M 15s\n", - "413650K .......... .......... .......... .......... .......... 78% 10.7M 15s\n", - "413700K .......... .......... .......... .......... .......... 78% 12.4M 15s\n", - "413750K .......... .......... .......... .......... .......... 78% 10.5M 15s\n", - "413800K .......... .......... .......... .......... .......... 78% 7.66M 15s\n", - "413850K .......... .......... .......... .......... .......... 78% 6.44M 15s\n", - "413900K .......... .......... .......... .......... .......... 78% 11.1M 15s\n", - "413950K .......... .......... .......... .......... .......... 78% 8.81M 15s\n", - "414000K .......... .......... .......... .......... .......... 78% 12.4M 15s\n", - "414050K .......... .......... .......... .......... .......... 78% 10.9M 15s\n", - "414100K .......... .......... .......... .......... .......... 78% 6.84M 15s\n", - "414150K .......... .......... .......... .......... .......... 78% 11.6M 15s\n", - "414200K .......... .......... .......... .......... .......... 78% 7.55M 15s\n", - "414250K .......... .......... .......... .......... .......... 78% 9.79M 15s\n", - "414300K .......... .......... .......... .......... .......... 78% 11.4M 15s\n", - "414350K .......... .......... .......... .......... .......... 78% 7.19M 15s\n", - "414400K .......... .......... .......... .......... .......... 78% 7.88M 15s\n", - "414450K .......... .......... .......... .......... .......... 78% 11.5M 15s\n", - "414500K .......... .......... .......... .......... .......... 79% 11.7M 15s\n", - "414550K .......... .......... .......... .......... .......... 79% 10.5M 15s\n", - "414600K .......... .......... .......... .......... .......... 79% 5.97M 15s\n", - "414650K .......... .......... .......... .......... .......... 79% 9.42M 15s\n", - "414700K .......... .......... .......... .......... .......... 79% 11.4M 15s\n", - "414750K .......... .......... .......... .......... .......... 79% 10.5M 15s\n", - "414800K .......... .......... .......... .......... .......... 79% 9.49M 15s\n", - "414850K .......... .......... .......... .......... .......... 79% 9.60M 15s\n", - "414900K .......... .......... .......... .......... .......... 79% 8.15M 15s\n", - "414950K .......... .......... .......... .......... .......... 79% 10.9M 15s\n", - "415000K .......... .......... .......... .......... .......... 79% 8.41M 15s\n", - "415050K .......... .......... .......... .......... .......... 79% 9.74M 15s\n", - "415100K .......... .......... .......... .......... .......... 79% 9.23M 15s\n", - "415150K .......... .......... .......... .......... .......... 79% 7.65M 15s\n", - "415200K .......... .......... .......... .......... .......... 79% 11.1M 15s\n", - "415250K .......... .......... .......... .......... .......... 79% 10.6M 15s\n", - "415300K .......... .......... .......... .......... .......... 79% 7.63M 15s\n", - "415350K .......... .......... .......... .......... .......... 79% 12.5M 15s\n", - "415400K .......... .......... .......... .......... .......... 79% 6.53M 15s\n", - "415450K .......... .......... .......... .......... .......... 79% 9.36M 15s\n", - "415500K .......... .......... .......... .......... .......... 79% 12.5M 15s\n", - "415550K .......... .......... .......... .......... .......... 79% 9.40M 15s\n", - "415600K .......... .......... .......... .......... .......... 79% 9.83M 15s\n", - "415650K .......... .......... .......... .......... .......... 79% 9.62M 15s\n", - "415700K .......... .......... .......... .......... .......... 79% 9.26M 15s\n", - "415750K .......... .......... .......... .......... .......... 79% 9.97M 15s\n", - "415800K .......... .......... .......... .......... .......... 79% 8.65M 15s\n", - "415850K .......... .......... .......... .......... .......... 79% 8.64M 15s\n", - "415900K .......... .......... .......... .......... .......... 79% 11.1M 15s\n", - "415950K .......... .......... .......... .......... .......... 79% 6.10M 15s\n", - "416000K .......... .......... .......... .......... .......... 79% 16.0M 15s\n", - "416050K .......... .......... .......... .......... .......... 79% 11.8M 15s\n", - "416100K .......... .......... .......... .......... .......... 79% 9.66M 15s\n", - "416150K .......... .......... .......... .......... .......... 79% 9.25M 15s\n", - "416200K .......... .......... .......... .......... .......... 79% 6.22M 15s\n", - "416250K .......... .......... .......... .......... .......... 79% 10.5M 15s\n", - "416300K .......... .......... .......... .......... .......... 79% 10.8M 15s\n", - "416350K .......... .......... .......... .......... .......... 79% 5.77M 15s\n", - "416400K .......... .......... .......... .......... .......... 79% 11.9M 15s\n", - "416450K .......... .......... .......... .......... .......... 79% 10.9M 15s\n", - "416500K .......... .......... .......... .......... .......... 79% 10.8M 15s\n", - "416550K .......... .......... .......... .......... .......... 79% 12.6M 15s\n", - "416600K .......... .......... .......... .......... .......... 79% 5.81M 15s\n", - "416650K .......... .......... .......... .......... .......... 79% 10.2M 15s\n", - "416700K .......... .......... .......... .......... .......... 79% 10.7M 15s\n", - "416750K .......... .......... .......... .......... .......... 79% 11.2M 15s\n", - "416800K .......... .......... .......... .......... .......... 79% 11.4M 15s\n", - "416850K .......... .......... .......... .......... .......... 79% 11.6M 15s\n", - "416900K .......... .......... .......... .......... .......... 79% 7.15M 15s\n", - "416950K .......... .......... .......... .......... .......... 79% 11.0M 15s\n", - "417000K .......... .......... .......... .......... .......... 79% 6.60M 15s\n", - "417050K .......... .......... .......... .......... .......... 79% 10.8M 15s\n", - "417100K .......... .......... .......... .......... .......... 79% 12.2M 15s\n", - "417150K .......... .......... .......... .......... .......... 79% 8.85M 15s\n", - "417200K .......... .......... .......... .......... .......... 79% 11.3M 15s\n", - "417250K .......... .......... .......... .......... .......... 79% 8.13M 15s\n", - "417300K .......... .......... .......... .......... .......... 79% 3.79M 15s\n", - "417350K .......... .......... .......... .......... .......... 79% 11.2M 15s\n", - "417400K .......... .......... .......... .......... .......... 79% 9.41M 15s\n", - "417450K .......... .......... .......... .......... .......... 79% 11.1M 15s\n", - "417500K .......... .......... .......... .......... .......... 79% 11.6M 15s\n", - "417550K .......... .......... .......... .......... .......... 79% 6.46M 15s\n", - "417600K .......... .......... .......... .......... .......... 79% 9.48M 15s\n", - "417650K .......... .......... .......... .......... .......... 79% 14.4M 15s\n", - "417700K .......... .......... .......... .......... .......... 79% 11.9M 15s\n", - "417750K .......... .......... .......... .......... .......... 79% 11.3M 15s\n", - "417800K .......... .......... .......... .......... .......... 79% 5.73M 15s\n", - "417850K .......... .......... .......... .......... .......... 79% 8.04M 15s\n", - "417900K .......... .......... .......... .......... .......... 79% 11.5M 15s\n", - "417950K .......... .......... .......... .......... .......... 79% 11.7M 15s\n", - "418000K .......... .......... .......... .......... .......... 79% 10.9M 15s\n", - "418050K .......... .......... .......... .......... .......... 79% 8.65M 15s\n", - "418100K .......... .......... .......... .......... .......... 79% 10.3M 15s\n", - "418150K .......... .......... .......... .......... .......... 79% 9.53M 15s\n", - "418200K .......... .......... .......... .......... .......... 79% 7.89M 15s\n", - "418250K .......... .......... .......... .......... .......... 79% 11.7M 15s\n", - "418300K .......... .......... .......... .......... .......... 79% 11.0M 15s\n", - "418350K .......... .......... .......... .......... .......... 79% 8.32M 15s\n", - "418400K .......... .......... .......... .......... .......... 79% 11.5M 15s\n", - "418450K .......... .......... .......... .......... .......... 79% 10.0M 15s\n", - "418500K .......... .......... .......... .......... .......... 79% 10.0M 15s\n", - "418550K .......... .......... .......... .......... .......... 79% 10.3M 15s\n", - "418600K .......... .......... .......... .......... .......... 79% 6.01M 15s\n", - "418650K .......... .......... .......... .......... .......... 79% 15.5M 15s\n", - "418700K .......... .......... .......... .......... .......... 79% 6.00M 15s\n", - "418750K .......... .......... .......... .......... .......... 79% 7.52M 15s\n", - "418800K .......... .......... .......... .......... .......... 79% 22.2M 15s\n", - "418850K .......... .......... .......... .......... .......... 79% 13.0M 15s\n", - "418900K .......... .......... .......... .......... .......... 79% 10.8M 15s\n", - "418950K .......... .......... .......... .......... .......... 79% 10.8M 15s\n", - "419000K .......... .......... .......... .......... .......... 79% 4.49M 15s\n", - "419050K .......... .......... .......... .......... .......... 79% 11.4M 15s\n", - "419100K .......... .......... .......... .......... .......... 79% 11.8M 15s\n", - "419150K .......... .......... .......... .......... .......... 79% 10.9M 15s\n", - "419200K .......... .......... .......... .......... .......... 79% 11.3M 15s\n", - "419250K .......... .......... .......... .......... .......... 79% 12.3M 15s\n", - "419300K .......... .......... .......... .......... .......... 79% 6.92M 15s\n", - "419350K .......... .......... .......... .......... .......... 79% 10.3M 15s\n", - "419400K .......... .......... .......... .......... .......... 79% 8.17M 15s\n", - "419450K .......... .......... .......... .......... .......... 79% 13.1M 15s\n", - "419500K .......... .......... .......... .......... .......... 79% 11.2M 15s\n", - "419550K .......... .......... .......... .......... .......... 79% 7.45M 15s\n", - "419600K .......... .......... .......... .......... .......... 79% 10.4M 15s\n", - "419650K .......... .......... .......... .......... .......... 79% 10.2M 15s\n", - "419700K .......... .......... .......... .......... .......... 79% 11.1M 15s\n", - "419750K .......... .......... .......... .......... .......... 80% 11.1M 15s\n", - "419800K .......... .......... .......... .......... .......... 80% 7.05M 15s\n", - "419850K .......... .......... .......... .......... .......... 80% 7.97M 15s\n", - "419900K .......... .......... .......... .......... .......... 80% 10.5M 15s\n", - "419950K .......... .......... .......... .......... .......... 80% 12.2M 15s\n", - "420000K .......... .......... .......... .......... .......... 80% 11.5M 15s\n", - "420050K .......... .......... .......... .......... .......... 80% 11.0M 14s\n", - "420100K .......... .......... .......... .......... .......... 80% 8.37M 14s\n", - "420150K .......... .......... .......... .......... .......... 80% 7.34M 14s\n", - "420200K .......... .......... .......... .......... .......... 80% 8.31M 14s\n", - "420250K .......... .......... .......... .......... .......... 80% 12.4M 14s\n", - "420300K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "420350K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "420400K .......... .......... .......... .......... .......... 80% 7.05M 14s\n", - "420450K .......... .......... .......... .......... .......... 80% 8.43M 14s\n", - "420500K .......... .......... .......... .......... .......... 80% 11.9M 14s\n", - "420550K .......... .......... .......... .......... .......... 80% 11.3M 14s\n", - "420600K .......... .......... .......... .......... .......... 80% 8.91M 14s\n", - "420650K .......... .......... .......... .......... .......... 80% 11.2M 14s\n", - "420700K .......... .......... .......... .......... .......... 80% 9.03M 14s\n", - "420750K .......... .......... .......... .......... .......... 80% 8.82M 14s\n", - "420800K .......... .......... .......... .......... .......... 80% 11.3M 14s\n", - "420850K .......... .......... .......... .......... .......... 80% 12.0M 14s\n", - "420900K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "420950K .......... .......... .......... .......... .......... 80% 9.99M 14s\n", - "421000K .......... .......... .......... .......... .......... 80% 6.72M 14s\n", - "421050K .......... .......... .......... .......... .......... 80% 11.1M 14s\n", - "421100K .......... .......... .......... .......... .......... 80% 12.7M 14s\n", - "421150K .......... .......... .......... .......... .......... 80% 9.56M 14s\n", - "421200K .......... .......... .......... .......... .......... 80% 10.8M 14s\n", - "421250K .......... .......... .......... .......... .......... 80% 12.2M 14s\n", - "421300K .......... .......... .......... .......... .......... 80% 8.38M 14s\n", - "421350K .......... .......... .......... .......... .......... 80% 9.90M 14s\n", - "421400K .......... .......... .......... .......... .......... 80% 6.57M 14s\n", - "421450K .......... .......... .......... .......... .......... 80% 12.2M 14s\n", - "421500K .......... .......... .......... .......... .......... 80% 10.9M 14s\n", - "421550K .......... .......... .......... .......... .......... 80% 10.0M 14s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "421600K .......... .......... .......... .......... .......... 80% 10.4M 14s\n", - "421650K .......... .......... .......... .......... .......... 80% 10.7M 14s\n", - "421700K .......... .......... .......... .......... .......... 80% 8.88M 14s\n", - "421750K .......... .......... .......... .......... .......... 80% 11.1M 14s\n", - "421800K .......... .......... .......... .......... .......... 80% 8.32M 14s\n", - "421850K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "421900K .......... .......... .......... .......... .......... 80% 10.5M 14s\n", - "421950K .......... .......... .......... .......... .......... 80% 9.26M 14s\n", - "422000K .......... .......... .......... .......... .......... 80% 8.26M 14s\n", - "422050K .......... .......... .......... .......... .......... 80% 12.2M 14s\n", - "422100K .......... .......... .......... .......... .......... 80% 10.3M 14s\n", - "422150K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "422200K .......... .......... .......... .......... .......... 80% 9.40M 14s\n", - "422250K .......... .......... .......... .......... .......... 80% 10.6M 14s\n", - "422300K .......... .......... .......... .......... .......... 80% 8.23M 14s\n", - "422350K .......... .......... .......... .......... .......... 80% 8.23M 14s\n", - "422400K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "422450K .......... .......... .......... .......... .......... 80% 11.8M 14s\n", - "422500K .......... .......... .......... .......... .......... 80% 11.7M 14s\n", - "422550K .......... .......... .......... .......... .......... 80% 11.2M 14s\n", - "422600K .......... .......... .......... .......... .......... 80% 7.68M 14s\n", - "422650K .......... .......... .......... .......... .......... 80% 8.92M 14s\n", - "422700K .......... .......... .......... .......... .......... 80% 12.0M 14s\n", - "422750K .......... .......... .......... .......... .......... 80% 11.4M 14s\n", - "422800K .......... .......... .......... .......... .......... 80% 10.5M 14s\n", - "422850K .......... .......... .......... .......... .......... 80% 8.56M 14s\n", - "422900K .......... .......... .......... .......... .......... 80% 10.2M 14s\n", - "422950K .......... .......... .......... .......... .......... 80% 12.3M 14s\n", - "423000K .......... .......... .......... .......... .......... 80% 7.99M 14s\n", - "423050K .......... .......... .......... .......... .......... 80% 9.45M 14s\n", - "423100K .......... .......... .......... .......... .......... 80% 14.4M 14s\n", - "423150K .......... .......... .......... .......... .......... 80% 8.48M 14s\n", - "423200K .......... .......... .......... .......... .......... 80% 11.7M 14s\n", - "423250K .......... .......... .......... .......... .......... 80% 12.4M 14s\n", - "423300K .......... .......... .......... .......... .......... 80% 7.06M 14s\n", - "423350K .......... .......... .......... .......... .......... 80% 11.3M 14s\n", - "423400K .......... .......... .......... .......... .......... 80% 8.18M 14s\n", - "423450K .......... .......... .......... .......... .......... 80% 11.8M 14s\n", - "423500K .......... .......... .......... .......... .......... 80% 11.2M 14s\n", - "423550K .......... .......... .......... .......... .......... 80% 12.0M 14s\n", - "423600K .......... .......... .......... .......... .......... 80% 7.76M 14s\n", - "423650K .......... .......... .......... .......... .......... 80% 11.0M 14s\n", - "423700K .......... .......... .......... .......... .......... 80% 11.4M 14s\n", - "423750K .......... .......... .......... .......... .......... 80% 10.5M 14s\n", - "423800K .......... .......... .......... .......... .......... 80% 8.74M 14s\n", - "423850K .......... .......... .......... .......... .......... 80% 8.08M 14s\n", - "423900K .......... .......... .......... .......... .......... 80% 10.5M 14s\n", - "423950K .......... .......... .......... .......... .......... 80% 11.9M 14s\n", - "424000K .......... .......... .......... .......... .......... 80% 11.2M 14s\n", - "424050K .......... .......... .......... .......... .......... 80% 11.0M 14s\n", - "424100K .......... .......... .......... .......... .......... 80% 11.6M 14s\n", - "424150K .......... .......... .......... .......... .......... 80% 9.75M 14s\n", - "424200K .......... .......... .......... .......... .......... 80% 7.19M 14s\n", - "424250K .......... .......... .......... .......... .......... 80% 11.2M 14s\n", - "424300K .......... .......... .......... .......... .......... 80% 12.8M 14s\n", - "424350K .......... .......... .......... .......... .......... 80% 10.6M 14s\n", - "424400K .......... .......... .......... .......... .......... 80% 9.42M 14s\n", - "424450K .......... .......... .......... .......... .......... 80% 12.0M 14s\n", - "424500K .......... .......... .......... .......... .......... 80% 10.1M 14s\n", - "424550K .......... .......... .......... .......... .......... 80% 11.0M 14s\n", - "424600K .......... .......... .......... .......... .......... 80% 8.30M 14s\n", - "424650K .......... .......... .......... .......... .......... 80% 11.8M 14s\n", - "424700K .......... .......... .......... .......... .......... 80% 8.45M 14s\n", - "424750K .......... .......... .......... .......... .......... 80% 12.4M 14s\n", - "424800K .......... .......... .......... .......... .......... 80% 7.82M 14s\n", - "424850K .......... .......... .......... .......... .......... 80% 10.5M 14s\n", - "424900K .......... .......... .......... .......... .......... 80% 12.5M 14s\n", - "424950K .......... .......... .......... .......... .......... 80% 11.1M 14s\n", - "425000K .......... .......... .......... .......... .......... 81% 8.67M 14s\n", - "425050K .......... .......... .......... .......... .......... 81% 9.50M 14s\n", - "425100K .......... .......... .......... .......... .......... 81% 11.5M 14s\n", - "425150K .......... .......... .......... .......... .......... 81% 11.3M 14s\n", - "425200K .......... .......... .......... .......... .......... 81% 10.8M 14s\n", - "425250K .......... .......... .......... .......... .......... 81% 11.0M 14s\n", - "425300K .......... .......... .......... .......... .......... 81% 10.7M 14s\n", - "425350K .......... .......... .......... .......... .......... 81% 10.3M 14s\n", - "425400K .......... .......... .......... .......... .......... 81% 8.38M 14s\n", - "425450K .......... .......... .......... .......... .......... 81% 11.3M 14s\n", - "425500K .......... .......... .......... .......... .......... 81% 11.3M 14s\n", - "425550K .......... .......... .......... .......... .......... 81% 10.6M 14s\n", - "425600K .......... .......... .......... .......... .......... 81% 11.9M 14s\n", - "425650K .......... .......... .......... .......... .......... 81% 10.9M 14s\n", - "425700K .......... .......... .......... .......... .......... 81% 9.53M 14s\n", - "425750K .......... .......... .......... .......... .......... 81% 11.3M 14s\n", - "425800K .......... .......... .......... .......... .......... 81% 8.31M 14s\n", - "425850K .......... .......... .......... .......... .......... 81% 9.63M 14s\n", - "425900K .......... .......... .......... .......... .......... 81% 10.9M 14s\n", - "425950K .......... .......... .......... .......... .......... 81% 7.45M 14s\n", - "426000K .......... .......... .......... .......... .......... 81% 16.7M 14s\n", - "426050K .......... .......... .......... .......... .......... 81% 12.0M 14s\n", - "426100K .......... .......... .......... .......... .......... 81% 11.2M 14s\n", - "426150K .......... .......... .......... .......... .......... 81% 7.09M 14s\n", - "426200K .......... .......... .......... .......... .......... 81% 8.62M 14s\n", - "426250K .......... .......... .......... .......... .......... 81% 11.1M 14s\n", - "426300K .......... .......... .......... .......... .......... 81% 11.3M 14s\n", - "426350K .......... .......... .......... .......... .......... 81% 9.46M 14s\n", - "426400K .......... .......... .......... .......... .......... 81% 14.8M 14s\n", - "426450K .......... .......... .......... .......... .......... 81% 8.52M 14s\n", - "426500K .......... .......... .......... .......... .......... 81% 10.1M 14s\n", - "426550K .......... .......... .......... .......... .......... 81% 12.2M 14s\n", - "426600K .......... .......... .......... .......... .......... 81% 7.87M 14s\n", - "426650K .......... .......... .......... .......... .......... 81% 11.1M 14s\n", - "426700K .......... .......... .......... .......... .......... 81% 10.9M 14s\n", - "426750K .......... .......... .......... .......... .......... 81% 7.86M 14s\n", - "426800K .......... .......... .......... .......... .......... 81% 17.2M 13s\n", - "426850K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "426900K .......... .......... .......... .......... .......... 81% 5.86M 13s\n", - "426950K .......... .......... .......... .......... .......... 81% 23.6M 13s\n", - "427000K .......... .......... .......... .......... .......... 81% 6.01M 13s\n", - "427050K .......... .......... .......... .......... .......... 81% 11.2M 13s\n", - "427100K .......... .......... .......... .......... .......... 81% 8.92M 13s\n", - "427150K .......... .......... .......... .......... .......... 81% 17.0M 13s\n", - "427200K .......... .......... .......... .......... .......... 81% 10.5M 13s\n", - "427250K .......... .......... .......... .......... .......... 81% 12.6M 13s\n", - "427300K .......... .......... .......... .......... .......... 81% 10.9M 13s\n", - "427350K .......... .......... .......... .......... .......... 81% 10.2M 13s\n", - "427400K .......... .......... .......... .......... .......... 81% 7.43M 13s\n", - "427450K .......... .......... .......... .......... .......... 81% 10.1M 13s\n", - "427500K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "427550K .......... .......... .......... .......... .......... 81% 11.8M 13s\n", - "427600K .......... .......... .......... .......... .......... 81% 11.1M 13s\n", - "427650K .......... .......... .......... .......... .......... 81% 12.6M 13s\n", - "427700K .......... .......... .......... .......... .......... 81% 9.26M 13s\n", - "427750K .......... .......... .......... .......... .......... 81% 11.3M 13s\n", - "427800K .......... .......... .......... .......... .......... 81% 8.05M 13s\n", - "427850K .......... .......... .......... .......... .......... 81% 11.7M 13s\n", - "427900K .......... .......... .......... .......... .......... 81% 9.76M 13s\n", - "427950K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "428000K .......... .......... .......... .......... .......... 81% 11.8M 13s\n", - "428050K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "428100K .......... .......... .......... .......... .......... 81% 9.78M 13s\n", - "428150K .......... .......... .......... .......... .......... 81% 11.2M 13s\n", - "428200K .......... .......... .......... .......... .......... 81% 7.30M 13s\n", - "428250K .......... .......... .......... .......... .......... 81% 11.6M 13s\n", - "428300K .......... .......... .......... .......... .......... 81% 11.7M 13s\n", - "428350K .......... .......... .......... .......... .......... 81% 12.2M 13s\n", - "428400K .......... .......... .......... .......... .......... 81% 11.2M 13s\n", - "428450K .......... .......... .......... .......... .......... 81% 11.4M 13s\n", - "428500K .......... .......... .......... .......... .......... 81% 7.93M 13s\n", - "428550K .......... .......... .......... .......... .......... 81% 11.6M 13s\n", - "428600K .......... .......... .......... .......... .......... 81% 8.86M 13s\n", - "428650K .......... .......... .......... .......... .......... 81% 10.7M 13s\n", - "428700K .......... .......... .......... .......... .......... 81% 12.1M 13s\n", - "428750K .......... .......... .......... .......... .......... 81% 9.15M 13s\n", - "428800K .......... .......... .......... .......... .......... 81% 10.4M 13s\n", - "428850K .......... .......... .......... .......... .......... 81% 12.4M 13s\n", - "428900K .......... .......... .......... .......... .......... 81% 11.4M 13s\n", - "428950K .......... .......... .......... .......... .......... 81% 8.18M 13s\n", - "429000K .......... .......... .......... .......... .......... 81% 10.1M 13s\n", - "429050K .......... .......... .......... .......... .......... 81% 12.0M 13s\n", - "429100K .......... .......... .......... .......... .......... 81% 10.6M 13s\n", - "429150K .......... .......... .......... .......... .......... 81% 8.29M 13s\n", - "429200K .......... .......... .......... .......... .......... 81% 14.2M 13s\n", - "429250K .......... .......... .......... .......... .......... 81% 11.4M 13s\n", - "429300K .......... .......... .......... .......... .......... 81% 11.9M 13s\n", - "429350K .......... .......... .......... .......... .......... 81% 9.49M 13s\n", - "429400K .......... .......... .......... .......... .......... 81% 6.36M 13s\n", - "429450K .......... .......... .......... .......... .......... 81% 11.7M 13s\n", - "429500K .......... .......... .......... .......... .......... 81% 10.6M 13s\n", - "429550K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "429600K .......... .......... .......... .......... .......... 81% 9.78M 13s\n", - "429650K .......... .......... .......... .......... .......... 81% 14.9M 13s\n", - "429700K .......... .......... .......... .......... .......... 81% 9.08M 13s\n", - "429750K .......... .......... .......... .......... .......... 81% 10.0M 13s\n", - "429800K .......... .......... .......... .......... .......... 81% 8.39M 13s\n", - "429850K .......... .......... .......... .......... .......... 81% 9.12M 13s\n", - "429900K .......... .......... .......... .......... .......... 81% 10.6M 13s\n", - "429950K .......... .......... .......... .......... .......... 81% 11.3M 13s\n", - "430000K .......... .......... .......... .......... .......... 81% 11.0M 13s\n", - "430050K .......... .......... .......... .......... .......... 81% 11.7M 13s\n", - "430100K .......... .......... .......... .......... .......... 81% 12.1M 13s\n", - "430150K .......... .......... .......... .......... .......... 81% 10.0M 13s\n", - "430200K .......... .......... .......... .......... .......... 81% 7.46M 13s\n", - "430250K .......... .......... .......... .......... .......... 82% 9.25M 13s\n", - "430300K .......... .......... .......... .......... .......... 82% 11.7M 13s\n", - "430350K .......... .......... .......... .......... .......... 82% 12.1M 13s\n", - "430400K .......... .......... .......... .......... .......... 82% 11.4M 13s\n", - "430450K .......... .......... .......... .......... .......... 82% 11.3M 13s\n", - "430500K .......... .......... .......... .......... .......... 82% 10.7M 13s\n", - "430550K .......... .......... .......... .......... .......... 82% 11.0M 13s\n", - "430600K .......... .......... .......... .......... .......... 82% 7.24M 13s\n", - "430650K .......... .......... .......... .......... .......... 82% 11.5M 13s\n", - "430700K .......... .......... .......... .......... .......... 82% 10.1M 13s\n", - "430750K .......... .......... .......... .......... .......... 82% 14.4M 13s\n", - "430800K .......... .......... .......... .......... .......... 82% 7.91M 13s\n", - "430850K .......... .......... .......... .......... .......... 82% 11.7M 13s\n", - "430900K .......... .......... .......... .......... .......... 82% 11.9M 13s\n", - "430950K .......... .......... .......... .......... .......... 82% 11.3M 13s\n", - "431000K .......... .......... .......... .......... .......... 82% 8.24M 13s\n", - "431050K .......... .......... .......... .......... .......... 82% 11.8M 13s\n", - "431100K .......... .......... .......... .......... .......... 82% 10.4M 13s\n", - "431150K .......... .......... .......... .......... .......... 82% 11.0M 13s\n", - "431200K .......... .......... .......... .......... .......... 82% 11.4M 13s\n", - "431250K .......... .......... .......... .......... .......... 82% 10.8M 13s\n", - "431300K .......... .......... .......... .......... .......... 82% 11.2M 13s\n", - "431350K .......... .......... .......... .......... .......... 82% 11.2M 13s\n", - "431400K .......... .......... .......... .......... .......... 82% 8.68M 13s\n", - "431450K .......... .......... .......... .......... .......... 82% 10.5M 13s\n", - "431500K .......... .......... .......... .......... .......... 82% 10.8M 13s\n", - "431550K .......... .......... .......... .......... .......... 82% 11.4M 13s\n", - "431600K .......... .......... .......... .......... .......... 82% 9.54M 13s\n", - "431650K .......... .......... .......... .......... .......... 82% 10.6M 13s\n", - "431700K .......... .......... .......... .......... .......... 82% 12.4M 13s\n", - "431750K .......... .......... .......... .......... .......... 82% 1.07M 13s\n", - "431800K .......... .......... .......... .......... .......... 82% 135M 13s\n", - "431850K .......... .......... .......... .......... .......... 82% 244M 13s\n", - "431900K .......... .......... .......... .......... .......... 82% 373M 13s\n", - "431950K .......... .......... .......... .......... .......... 82% 439M 13s\n", - "432000K .......... .......... .......... .......... .......... 82% 303M 13s\n", - "432050K .......... .......... .......... .......... .......... 82% 362M 13s\n", - "432100K .......... .......... .......... .......... .......... 82% 165M 13s\n", - "432150K .......... .......... .......... .......... .......... 82% 295M 13s\n", - "432200K .......... .......... .......... .......... .......... 82% 16.4M 13s\n", - "432250K .......... .......... .......... .......... .......... 82% 6.60M 13s\n", - "432300K .......... .......... .......... .......... .......... 82% 9.70M 13s\n", - "432350K .......... .......... .......... .......... .......... 82% 6.95M 13s\n", - "432400K .......... .......... .......... .......... .......... 82% 9.64M 13s\n", - "432450K .......... .......... .......... .......... .......... 82% 5.66M 13s\n", - "432500K .......... .......... .......... .......... .......... 82% 10.6M 13s\n", - "432550K .......... .......... .......... .......... .......... 82% 7.83M 13s\n", - "432600K .......... .......... .......... .......... .......... 82% 7.00M 13s\n", - "432650K .......... .......... .......... .......... .......... 82% 5.70M 13s\n", - "432700K .......... .......... .......... .......... .......... 82% 10.1M 13s\n", - "432750K .......... .......... .......... .......... .......... 82% 10.0M 13s\n", - "432800K .......... .......... .......... .......... .......... 82% 8.21M 13s\n", - "432850K .......... .......... .......... .......... .......... 82% 6.12M 13s\n", - "432900K .......... .......... .......... .......... .......... 82% 7.76M 13s\n", - "432950K .......... .......... .......... .......... .......... 82% 9.32M 13s\n", - "433000K .......... .......... .......... .......... .......... 82% 7.52M 13s\n", - "433050K .......... .......... .......... .......... .......... 82% 7.18M 13s\n", - "433100K .......... .......... .......... .......... .......... 82% 5.39M 13s\n", - "433150K .......... .......... .......... .......... .......... 82% 10.9M 13s\n", - "433200K .......... .......... .......... .......... .......... 82% 10.1M 13s\n", - "433250K .......... .......... .......... .......... .......... 82% 10.2M 13s\n", - "433300K .......... .......... .......... .......... .......... 82% 4.44M 13s\n", - "433350K .......... .......... .......... .......... .......... 82% 11.9M 13s\n", - "433400K .......... .......... .......... .......... .......... 82% 5.40M 13s\n", - "433450K .......... .......... .......... .......... .......... 82% 21.0M 13s\n", - "433500K .......... .......... .......... .......... .......... 82% 4.39M 13s\n", - "433550K .......... .......... .......... .......... .......... 82% 11.1M 13s\n", - "433600K .......... .......... .......... .......... .......... 82% 7.15M 13s\n", - "433650K .......... .......... .......... .......... .......... 82% 9.62M 13s\n", - "433700K .......... .......... .......... .......... .......... 82% 8.87M 12s\n", - "433750K .......... .......... .......... .......... .......... 82% 6.85M 12s\n", - "433800K .......... .......... .......... .......... .......... 82% 6.18M 12s\n", - "433850K .......... .......... .......... .......... .......... 82% 11.2M 12s\n", - "433900K .......... .......... .......... .......... .......... 82% 7.83M 12s\n", - "433950K .......... .......... .......... .......... .......... 82% 7.58M 12s\n", - "434000K .......... .......... .......... .......... .......... 82% 8.89M 12s\n", - "434050K .......... .......... .......... .......... .......... 82% 6.72M 12s\n", - "434100K .......... .......... .......... .......... .......... 82% 8.46M 12s\n", - "434150K .......... .......... .......... .......... .......... 82% 8.94M 12s\n", - "434200K .......... .......... .......... .......... .......... 82% 6.94M 12s\n", - "434250K .......... .......... .......... .......... .......... 82% 5.75M 12s\n", - "434300K .......... .......... .......... .......... .......... 82% 12.3M 12s\n", - "434350K .......... .......... .......... .......... .......... 82% 8.87M 12s\n", - "434400K .......... .......... .......... .......... .......... 82% 8.80M 12s\n", - "434450K .......... .......... .......... .......... .......... 82% 6.77M 12s\n", - "434500K .......... .......... .......... .......... .......... 82% 7.96M 12s\n", - "434550K .......... .......... .......... .......... .......... 82% 7.97M 12s\n", - "434600K .......... .......... .......... .......... .......... 82% 7.74M 12s\n", - "434650K .......... .......... .......... .......... .......... 82% 9.09M 12s\n", - "434700K .......... .......... .......... .......... .......... 82% 5.86M 12s\n", - "434750K .......... .......... .......... .......... .......... 82% 7.52M 12s\n", - "434800K .......... .......... .......... .......... .......... 82% 11.5M 12s\n", - "434850K .......... .......... .......... .......... .......... 82% 9.30M 12s\n", - "434900K .......... .......... .......... .......... .......... 82% 8.25M 12s\n", - "434950K .......... .......... .......... .......... .......... 82% 8.18M 12s\n", - "435000K .......... .......... .......... .......... .......... 82% 5.23M 12s\n", - "435050K .......... .......... .......... .......... .......... 82% 11.8M 12s\n", - "435100K .......... .......... .......... .......... .......... 82% 8.19M 12s\n", - "435150K .......... .......... .......... .......... .......... 82% 8.40M 12s\n", - "435200K .......... .......... .......... .......... .......... 82% 6.18M 12s\n", - "435250K .......... .......... .......... .......... .......... 82% 8.96M 12s\n", - "435300K .......... .......... .......... .......... .......... 82% 12.0M 12s\n", - "435350K .......... .......... .......... .......... .......... 82% 8.29M 12s\n", - "435400K .......... .......... .......... .......... .......... 82% 5.17M 12s\n", - "435450K .......... .......... .......... .......... .......... 82% 8.91M 12s\n", - "435500K .......... .......... .......... .......... .......... 83% 11.4M 12s\n", - "435550K .......... .......... .......... .......... .......... 83% 8.96M 12s\n", - "435600K .......... .......... .......... .......... .......... 83% 6.50M 12s\n", - "435650K .......... .......... .......... .......... .......... 83% 7.89M 12s\n", - "435700K .......... .......... .......... .......... .......... 83% 10.8M 12s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "435750K .......... .......... .......... .......... .......... 83% 9.00M 12s\n", - "435800K .......... .......... .......... .......... .......... 83% 6.05M 12s\n", - "435850K .......... .......... .......... .......... .......... 83% 6.78M 12s\n", - "435900K .......... .......... .......... .......... .......... 83% 9.45M 12s\n", - "435950K .......... .......... .......... .......... .......... 83% 10.1M 12s\n", - "436000K .......... .......... .......... .......... .......... 83% 10.9M 12s\n", - "436050K .......... .......... .......... .......... .......... 83% 6.65M 12s\n", - "436100K .......... .......... .......... .......... .......... 83% 6.22M 12s\n", - "436150K .......... .......... .......... .......... .......... 83% 9.56M 12s\n", - "436200K .......... .......... .......... .......... .......... 83% 7.93M 12s\n", - "436250K .......... .......... .......... .......... .......... 83% 8.90M 12s\n", - "436300K .......... .......... .......... .......... .......... 83% 5.82M 12s\n", - "436350K .......... .......... .......... .......... .......... 83% 8.32M 12s\n", - "436400K .......... .......... .......... .......... .......... 83% 11.5M 12s\n", - "436450K .......... .......... .......... .......... .......... 83% 11.8M 12s\n", - "436500K .......... .......... .......... .......... .......... 83% 5.66M 12s\n", - "436550K .......... .......... .......... .......... .......... 83% 7.57M 12s\n", - "436600K .......... .......... .......... .......... .......... 83% 8.22M 12s\n", - "436650K .......... .......... .......... .......... .......... 83% 10.6M 12s\n", - "436700K .......... .......... .......... .......... .......... 83% 11.4M 12s\n", - "436750K .......... .......... .......... .......... .......... 83% 5.07M 12s\n", - "436800K .......... .......... .......... .......... .......... 83% 9.85M 12s\n", - "436850K .......... .......... .......... .......... .......... 83% 9.34M 12s\n", - "436900K .......... .......... .......... .......... .......... 83% 10.8M 12s\n", - "436950K .......... .......... .......... .......... .......... 83% 8.48M 12s\n", - "437000K .......... .......... .......... .......... .......... 83% 4.70M 12s\n", - "437050K .......... .......... .......... .......... .......... 83% 10.4M 12s\n", - "437100K .......... .......... .......... .......... .......... 83% 9.75M 12s\n", - "437150K .......... .......... .......... .......... .......... 83% 7.59M 12s\n", - "437200K .......... .......... .......... .......... .......... 83% 6.16M 12s\n", - "437250K .......... .......... .......... .......... .......... 83% 10.7M 12s\n", - "437300K .......... .......... .......... .......... .......... 83% 10.9M 12s\n", - "437350K .......... .......... .......... .......... .......... 83% 10.9M 12s\n", - "437400K .......... .......... .......... .......... .......... 83% 4.97M 12s\n", - "437450K .......... .......... .......... .......... .......... 83% 8.75M 12s\n", - "437500K .......... .......... .......... .......... .......... 83% 9.68M 12s\n", - "437550K .......... .......... .......... .......... .......... 83% 10.6M 12s\n", - "437600K .......... .......... .......... .......... .......... 83% 7.65M 12s\n", - "437650K .......... .......... .......... .......... .......... 83% 6.39M 12s\n", - "437700K .......... .......... .......... .......... .......... 83% 9.42M 12s\n", - "437750K .......... .......... .......... .......... .......... 83% 10.5M 12s\n", - "437800K .......... .......... .......... .......... .......... 83% 7.38M 12s\n", - "437850K .......... .......... .......... .......... .......... 83% 5.83M 12s\n", - "437900K .......... .......... .......... .......... .......... 83% 9.81M 12s\n", - "437950K .......... .......... .......... .......... .......... 83% 8.65M 12s\n", - "438000K .......... .......... .......... .......... .......... 83% 9.24M 12s\n", - "438050K .......... .......... .......... .......... .......... 83% 9.82M 12s\n", - "438100K .......... .......... .......... .......... .......... 83% 5.54M 12s\n", - "438150K .......... .......... .......... .......... .......... 83% 10.6M 12s\n", - "438200K .......... .......... .......... .......... .......... 83% 7.79M 12s\n", - "438250K .......... .......... .......... .......... .......... 83% 9.60M 12s\n", - "438300K .......... .......... .......... .......... .......... 83% 6.24M 12s\n", - "438350K .......... .......... .......... .......... .......... 83% 8.90M 12s\n", - "438400K .......... .......... .......... .......... .......... 83% 10.0M 12s\n", - "438450K .......... .......... .......... .......... .......... 83% 11.2M 12s\n", - "438500K .......... .......... .......... .......... .......... 83% 9.81M 12s\n", - "438550K .......... .......... .......... .......... .......... 83% 5.33M 12s\n", - "438600K .......... .......... .......... .......... .......... 83% 7.30M 12s\n", - "438650K .......... .......... .......... .......... .......... 83% 11.2M 12s\n", - "438700K .......... .......... .......... .......... .......... 83% 9.53M 12s\n", - "438750K .......... .......... .......... .......... .......... 83% 9.57M 12s\n", - "438800K .......... .......... .......... .......... .......... 83% 7.49M 12s\n", - "438850K .......... .......... .......... .......... .......... 83% 8.26M 12s\n", - "438900K .......... .......... .......... .......... .......... 83% 10.6M 12s\n", - "438950K .......... .......... .......... .......... .......... 83% 9.38M 12s\n", - "439000K .......... .......... .......... .......... .......... 83% 5.55M 12s\n", - "439050K .......... .......... .......... .......... .......... 83% 9.79M 12s\n", - "439100K .......... .......... .......... .......... .......... 83% 9.43M 12s\n", - "439150K .......... .......... .......... .......... .......... 83% 8.40M 12s\n", - "439200K .......... .......... .......... .......... .......... 83% 9.54M 12s\n", - "439250K .......... .......... .......... .......... .......... 83% 6.00M 12s\n", - "439300K .......... .......... .......... .......... .......... 83% 12.3M 12s\n", - "439350K .......... .......... .......... .......... .......... 83% 8.70M 12s\n", - "439400K .......... .......... .......... .......... .......... 83% 8.09M 12s\n", - "439450K .......... .......... .......... .......... .......... 83% 8.24M 12s\n", - "439500K .......... .......... .......... .......... .......... 83% 6.76M 12s\n", - "439550K .......... .......... .......... .......... .......... 83% 10.6M 12s\n", - "439600K .......... .......... .......... .......... .......... 83% 11.7M 12s\n", - "439650K .......... .......... .......... .......... .......... 83% 6.88M 12s\n", - "439700K .......... .......... .......... .......... .......... 83% 11.2M 12s\n", - "439750K .......... .......... .......... .......... .......... 83% 7.18M 12s\n", - "439800K .......... .......... .......... .......... .......... 83% 7.57M 12s\n", - "439850K .......... .......... .......... .......... .......... 83% 8.66M 12s\n", - "439900K .......... .......... .......... .......... .......... 83% 9.99M 12s\n", - "439950K .......... .......... .......... .......... .......... 83% 6.59M 12s\n", - "440000K .......... .......... .......... .......... .......... 83% 11.3M 12s\n", - "440050K .......... .......... .......... .......... .......... 83% 9.65M 12s\n", - "440100K .......... .......... .......... .......... .......... 83% 7.73M 12s\n", - "440150K .......... .......... .......... .......... .......... 83% 11.2M 12s\n", - "440200K .......... .......... .......... .......... .......... 83% 5.56M 12s\n", - "440250K .......... .......... .......... .......... .......... 83% 11.1M 12s\n", - "440300K .......... .......... .......... .......... .......... 83% 8.56M 12s\n", - "440350K .......... .......... .......... .......... .......... 83% 9.91M 12s\n", - "440400K .......... .......... .......... .......... .......... 83% 6.21M 12s\n", - "440450K .......... .......... .......... .......... .......... 83% 10.9M 12s\n", - "440500K .......... .......... .......... .......... .......... 83% 7.92M 12s\n", - "440550K .......... .......... .......... .......... .......... 83% 10.9M 12s\n", - "440600K .......... .......... .......... .......... .......... 83% 8.54M 12s\n", - "440650K .......... .......... .......... .......... .......... 83% 6.32M 12s\n", - "440700K .......... .......... .......... .......... .......... 83% 11.2M 12s\n", - "440750K .......... .......... .......... .......... .......... 84% 7.11M 12s\n", - "440800K .......... .......... .......... .......... .......... 84% 12.4M 11s\n", - "440850K .......... .......... .......... .......... .......... 84% 8.28M 11s\n", - "440900K .......... .......... .......... .......... .......... 84% 7.91M 11s\n", - "440950K .......... .......... .......... .......... .......... 84% 8.55M 11s\n", - "441000K .......... .......... .......... .......... .......... 84% 7.48M 11s\n", - "441050K .......... .......... .......... .......... .......... 84% 9.37M 11s\n", - "441100K .......... .......... .......... .......... .......... 84% 9.40M 11s\n", - "441150K .......... .......... .......... .......... .......... 84% 9.04M 11s\n", - "441200K .......... .......... .......... .......... .......... 84% 4.15M 11s\n", - "441250K .......... .......... .......... .......... .......... 84% 27.1M 11s\n", - "441300K .......... .......... .......... .......... .......... 84% 11.5M 11s\n", - "441350K .......... .......... .......... .......... .......... 84% 11.3M 11s\n", - "441400K .......... .......... .......... .......... .......... 84% 4.97M 11s\n", - "441450K .......... .......... .......... .......... .......... 84% 5.67M 11s\n", - "441500K .......... .......... .......... .......... .......... 84% 10.3M 11s\n", - "441550K .......... .......... .......... .......... .......... 84% 10.8M 11s\n", - "441600K .......... .......... .......... .......... .......... 84% 10.6M 11s\n", - "441650K .......... .......... .......... .......... .......... 84% 6.16M 11s\n", - "441700K .......... .......... .......... .......... .......... 84% 8.80M 11s\n", - "441750K .......... .......... .......... .......... .......... 84% 11.1M 11s\n", - "441800K .......... .......... .......... .......... .......... 84% 8.82M 11s\n", - "441850K .......... .......... .......... .......... .......... 84% 9.10M 11s\n", - "441900K .......... .......... .......... .......... .......... 84% 6.23M 11s\n", - "441950K .......... .......... .......... .......... .......... 84% 8.13M 11s\n", - "442000K .......... .......... .......... .......... .......... 84% 10.5M 11s\n", - "442050K .......... .......... .......... .......... .......... 84% 12.3M 11s\n", - "442100K .......... .......... .......... .......... .......... 84% 10.4M 11s\n", - "442150K .......... .......... .......... .......... .......... 84% 6.10M 11s\n", - "442200K .......... .......... .......... .......... .......... 84% 7.13M 11s\n", - "442250K .......... .......... .......... .......... .......... 84% 10.1M 11s\n", - "442300K .......... .......... .......... .......... .......... 84% 11.2M 11s\n", - "442350K .......... .......... .......... .......... .......... 84% 10.5M 11s\n", - "442400K .......... .......... .......... .......... .......... 84% 5.34M 11s\n", - "442450K .......... .......... .......... .......... .......... 84% 11.9M 11s\n", - "442500K .......... .......... .......... .......... .......... 84% 9.89M 11s\n", - "442550K .......... .......... .......... .......... .......... 84% 12.6M 11s\n", - "442600K .......... .......... .......... .......... .......... 84% 4.41M 11s\n", - "442650K .......... .......... .......... .......... .......... 84% 9.26M 11s\n", - "442700K .......... .......... .......... .......... .......... 84% 11.4M 11s\n", - "442750K .......... .......... .......... .......... .......... 84% 11.2M 11s\n", - "442800K .......... .......... .......... .......... .......... 84% 11.4M 11s\n", - "442850K .......... .......... .......... .......... .......... 84% 6.33M 11s\n", - "442900K .......... .......... .......... .......... .......... 84% 8.62M 11s\n", - "442950K .......... .......... .......... .......... .......... 84% 9.01M 11s\n", - "443000K .......... .......... .......... .......... .......... 84% 8.89M 11s\n", - "443050K .......... .......... .......... .......... .......... 84% 11.8M 11s\n", - "443100K .......... .......... .......... .......... .......... 84% 7.30M 11s\n", - "443150K .......... .......... .......... .......... .......... 84% 7.52M 11s\n", - "443200K .......... .......... .......... .......... .......... 84% 8.45M 11s\n", - "443250K .......... .......... .......... .......... .......... 84% 11.7M 11s\n", - "443300K .......... .......... .......... .......... .......... 84% 10.8M 11s\n", - "443350K .......... .......... .......... .......... .......... 84% 9.04M 11s\n", - "443400K .......... .......... .......... .......... .......... 84% 6.43M 11s\n", - "443450K .......... .......... .......... .......... .......... 84% 7.40M 11s\n", - "443500K .......... .......... .......... .......... .......... 84% 8.84M 11s\n", - "443550K .......... .......... .......... .......... .......... 84% 12.9M 11s\n", - "443600K .......... .......... .......... .......... .......... 84% 8.15M 11s\n", - "443650K .......... .......... .......... .......... .......... 84% 10.1M 11s\n", - "443700K .......... .......... .......... .......... .......... 84% 9.48M 11s\n", - "443750K .......... .......... .......... .......... .......... 84% 7.72M 11s\n", - "443800K .......... .......... .......... .......... .......... 84% 6.88M 11s\n", - "443850K .......... .......... .......... .......... .......... 84% 10.5M 11s\n", - "443900K .......... .......... .......... .......... .......... 84% 8.24M 11s\n", - "443950K .......... .......... .......... .......... .......... 84% 8.96M 11s\n", - "444000K .......... .......... .......... .......... .......... 84% 13.3M 11s\n", - "444050K .......... .......... .......... .......... .......... 84% 7.85M 11s\n", - "444100K .......... .......... .......... .......... .......... 84% 8.50M 11s\n", - "444150K .......... .......... .......... .......... .......... 84% 7.08M 11s\n", - "444200K .......... .......... .......... .......... .......... 84% 8.26M 11s\n", - "444250K .......... .......... .......... .......... .......... 84% 11.4M 11s\n", - "444300K .......... .......... .......... .......... .......... 84% 8.74M 11s\n", - "444350K .......... .......... .......... .......... .......... 84% 10.6M 11s\n", - "444400K .......... .......... .......... .......... .......... 84% 7.13M 11s\n", - "444450K .......... .......... .......... .......... .......... 84% 7.07M 11s\n", - "444500K .......... .......... .......... .......... .......... 84% 10.8M 11s\n", - "444550K .......... .......... .......... .......... .......... 84% 12.0M 11s\n", - "444600K .......... .......... .......... .......... .......... 84% 6.60M 11s\n", - "444650K .......... .......... .......... .......... .......... 84% 8.99M 11s\n", - "444700K .......... .......... .......... .......... .......... 84% 9.22M 11s\n", - "444750K .......... .......... .......... .......... .......... 84% 9.84M 11s\n", - "444800K .......... .......... .......... .......... .......... 84% 10.3M 11s\n", - "444850K .......... .......... .......... .......... .......... 84% 7.01M 11s\n", - "444900K .......... .......... .......... .......... .......... 84% 10.8M 11s\n", - "444950K .......... .......... .......... .......... .......... 84% 10.3M 11s\n", - "445000K .......... .......... .......... .......... .......... 84% 8.13M 11s\n", - "445050K .......... .......... .......... .......... .......... 84% 8.15M 11s\n", - "445100K .......... .......... .......... .......... .......... 84% 3.32M 11s\n", - "445150K .......... .......... .......... .......... .......... 84% 20.2M 11s\n", - "445200K .......... .......... .......... .......... .......... 84% 20.0M 11s\n", - "445250K .......... .......... .......... .......... .......... 84% 19.2M 11s\n", - "445300K .......... .......... .......... .......... .......... 84% 13.6M 11s\n", - "445350K .......... .......... .......... .......... .......... 84% 2.97M 11s\n", - "445400K .......... .......... .......... .......... .......... 84% 7.21M 11s\n", - "445450K .......... .......... .......... .......... .......... 84% 11.6M 11s\n", - "445500K .......... .......... .......... .......... .......... 84% 11.9M 11s\n", - "445550K .......... .......... .......... .......... .......... 84% 9.23M 11s\n", - "445600K .......... .......... .......... .......... .......... 84% 6.50M 11s\n", - "445650K .......... .......... .......... .......... .......... 84% 9.41M 11s\n", - "445700K .......... .......... .......... .......... .......... 84% 11.3M 11s\n", - "445750K .......... .......... .......... .......... .......... 84% 11.1M 11s\n", - "445800K .......... .......... .......... .......... .......... 84% 6.02M 11s\n", - "445850K .......... .......... .......... .......... .......... 84% 9.74M 11s\n", - "445900K .......... .......... .......... .......... .......... 84% 9.74M 11s\n", - "445950K .......... .......... .......... .......... .......... 84% 10.6M 11s\n", - "446000K .......... .......... .......... .......... .......... 85% 11.7M 11s\n", - "446050K .......... .......... .......... .......... .......... 85% 6.73M 11s\n", - "446100K .......... .......... .......... .......... .......... 85% 11.4M 11s\n", - "446150K .......... .......... .......... .......... .......... 85% 8.95M 11s\n", - "446200K .......... .......... .......... .......... .......... 85% 7.36M 11s\n", - "446250K .......... .......... .......... .......... .......... 85% 11.9M 11s\n", - "446300K .......... .......... .......... .......... .......... 85% 5.63M 11s\n", - "446350K .......... .......... .......... .......... .......... 85% 10.9M 11s\n", - "446400K .......... .......... .......... .......... .......... 85% 9.58M 11s\n", - "446450K .......... .......... .......... .......... .......... 85% 11.6M 11s\n", - "446500K .......... .......... .......... .......... .......... 85% 11.3M 11s\n", - "446550K .......... .......... .......... .......... .......... 85% 8.71M 11s\n", - "446600K .......... .......... .......... .......... .......... 85% 6.34M 11s\n", - "446650K .......... .......... .......... .......... .......... 85% 8.80M 11s\n", - "446700K .......... .......... .......... .......... .......... 85% 12.2M 11s\n", - "446750K .......... .......... .......... .......... .......... 85% 8.86M 11s\n", - "446800K .......... .......... .......... .......... .......... 85% 8.63M 11s\n", - "446850K .......... .......... .......... .......... .......... 85% 9.24M 11s\n", - "446900K .......... .......... .......... .......... .......... 85% 6.56M 11s\n", - "446950K .......... .......... .......... .......... .......... 85% 19.1M 11s\n", - "447000K .......... .......... .......... .......... .......... 85% 5.74M 11s\n", - "447050K .......... .......... .......... .......... .......... 85% 13.4M 11s\n", - "447100K .......... .......... .......... .......... .......... 85% 10.0M 11s\n", - "447150K .......... .......... .......... .......... .......... 85% 6.40M 11s\n", - "447200K .......... .......... .......... .......... .......... 85% 11.6M 11s\n", - "447250K .......... .......... .......... .......... .......... 85% 9.32M 11s\n", - "447300K .......... .......... .......... .......... .......... 85% 11.9M 11s\n", - "447350K .......... .......... .......... .......... .......... 85% 11.1M 11s\n", - "447400K .......... .......... .......... .......... .......... 85% 5.48M 11s\n", - "447450K .......... .......... .......... .......... .......... 85% 8.54M 11s\n", - "447500K .......... .......... .......... .......... .......... 85% 12.3M 11s\n", - "447550K .......... .......... .......... .......... .......... 85% 11.8M 11s\n", - "447600K .......... .......... .......... .......... .......... 85% 12.1M 11s\n", - "447650K .......... .......... .......... .......... .......... 85% 6.34M 11s\n", - "447700K .......... .......... .......... .......... .......... 85% 9.19M 11s\n", - "447750K .......... .......... .......... .......... .......... 85% 8.73M 11s\n", - "447800K .......... .......... .......... .......... .......... 85% 9.24M 11s\n", - "447850K .......... .......... .......... .......... .......... 85% 12.8M 10s\n", - "447900K .......... .......... .......... .......... .......... 85% 7.40M 10s\n", - "447950K .......... .......... .......... .......... .......... 85% 9.59M 10s\n", - "448000K .......... .......... .......... .......... .......... 85% 8.63M 10s\n", - "448050K .......... .......... .......... .......... .......... 85% 11.1M 10s\n", - "448100K .......... .......... .......... .......... .......... 85% 11.9M 10s\n", - "448150K .......... .......... .......... .......... .......... 85% 7.99M 10s\n", - "448200K .......... .......... .......... .......... .......... 85% 8.18M 10s\n", - "448250K .......... .......... .......... .......... .......... 85% 7.83M 10s\n", - "448300K .......... .......... .......... .......... .......... 85% 11.5M 10s\n", - "448350K .......... .......... .......... .......... .......... 85% 11.2M 10s\n", - "448400K .......... .......... .......... .......... .......... 85% 8.70M 10s\n", - "448450K .......... .......... .......... .......... .......... 85% 8.88M 10s\n", - "448500K .......... .......... .......... .......... .......... 85% 9.68M 10s\n", - "448550K .......... .......... .......... .......... .......... 85% 9.81M 10s\n", - "448600K .......... .......... .......... .......... .......... 85% 6.62M 10s\n", - "448650K .......... .......... .......... .......... .......... 85% 15.1M 10s\n", - "448700K .......... .......... .......... .......... .......... 85% 7.03M 10s\n", - "448750K .......... .......... .......... .......... .......... 85% 12.2M 10s\n", - "448800K .......... .......... .......... .......... .......... 85% 11.7M 10s\n", - "448850K .......... .......... .......... .......... .......... 85% 8.62M 10s\n", - "448900K .......... .......... .......... .......... .......... 85% 11.0M 10s\n", - "448950K .......... .......... .......... .......... .......... 85% 9.22M 10s\n", - "449000K .......... .......... .......... .......... .......... 85% 6.78M 10s\n", - "449050K .......... .......... .......... .......... .......... 85% 10.9M 10s\n", - "449100K .......... .......... .......... .......... .......... 85% 12.1M 10s\n", - "449150K .......... .......... .......... .......... .......... 85% 9.45M 10s\n", - "449200K .......... .......... .......... .......... .......... 85% 7.87M 10s\n", - "449250K .......... .......... .......... .......... .......... 85% 9.37M 10s\n", - "449300K .......... .......... .......... .......... .......... 85% 11.3M 10s\n", - "449350K .......... .......... .......... .......... .......... 85% 10.5M 10s\n", - "449400K .......... .......... .......... .......... .......... 85% 4.99M 10s\n", - "449450K .......... .......... .......... .......... .......... 85% 17.0M 10s\n", - "449500K .......... .......... .......... .......... .......... 85% 8.79M 10s\n", - "449550K .......... .......... .......... .......... .......... 85% 11.1M 10s\n", - "449600K .......... .......... .......... .......... .......... 85% 4.35M 10s\n", - "449650K .......... .......... .......... .......... .......... 85% 10.2M 10s\n", - "449700K .......... .......... .......... .......... .......... 85% 11.0M 10s\n", - "449750K .......... .......... .......... .......... .......... 85% 10.8M 10s\n", - "449800K .......... .......... .......... .......... .......... 85% 9.02M 10s\n", - "449850K .......... .......... .......... .......... .......... 85% 7.91M 10s\n", - "449900K .......... .......... .......... .......... .......... 85% 9.41M 10s\n", - "449950K .......... .......... .......... .......... .......... 85% 10.1M 10s\n", - "450000K .......... .......... .......... .......... .......... 85% 9.92M 10s\n", - "450050K .......... .......... .......... .......... .......... 85% 10.7M 10s\n", - "450100K .......... .......... .......... .......... .......... 85% 12.2M 10s\n", - "450150K .......... .......... .......... .......... .......... 85% 8.26M 10s\n", - "450200K .......... .......... .......... .......... .......... 85% 5.94M 10s\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "450250K .......... .......... .......... .......... .......... 85% 11.3M 10s\n", - "450300K .......... .......... .......... .......... .......... 85% 11.3M 10s\n", - "450350K .......... .......... .......... .......... .......... 85% 12.0M 10s\n", - "450400K .......... .......... .......... .......... .......... 85% 10.3M 10s\n", - "450450K .......... .......... .......... .......... .......... 85% 7.15M 10s\n", - "450500K .......... .......... .......... .......... .......... 85% 10.7M 10s\n", - "450550K .......... .......... .......... .......... .......... 85% 10.7M 10s\n", - "450600K .......... .......... .......... .......... .......... 85% 7.87M 10s\n", - "450650K .......... .......... .......... .......... .......... 85% 12.6M 10s\n", - "450700K .......... .......... .......... .......... .......... 85% 7.44M 10s\n", - "450750K .......... .......... .......... .......... .......... 85% 10.4M 10s\n", - "450800K .......... .......... .......... .......... .......... 85% 9.77M 10s\n", - "450850K .......... .......... .......... .......... .......... 85% 10.6M 10s\n", - "450900K .......... .......... .......... .......... .......... 85% 11.8M 10s\n", - "450950K .......... .......... .......... .......... .......... 85% 10.3M 10s\n", - "451000K .......... .......... .......... .......... .......... 85% 6.53M 10s\n", - "451050K .......... .......... .......... .......... .......... 85% 12.5M 10s\n", - "451100K .......... .......... .......... .......... .......... 85% 9.29M 10s\n", - "451150K .......... .......... .......... .......... .......... 85% 7.53M 10s\n", - "451200K .......... .......... .......... .......... .......... 86% 12.4M 10s\n", - "451250K .......... .......... .......... .......... .......... 86% 11.2M 10s\n", - "451300K .......... .......... .......... .......... .......... 86% 9.91M 10s\n", - "451350K .......... .......... .......... .......... .......... 86% 11.1M 10s\n", - "451400K .......... .......... .......... .......... .......... 86% 6.81M 10s\n", - "451450K .......... .......... .......... .......... .......... 86% 8.57M 10s\n", - "451500K .......... .......... .......... .......... .......... 86% 10.7M 10s\n", - "451550K .......... .......... .......... .......... .......... 86% 11.3M 10s\n", - "451600K .......... .......... .......... .......... .......... 86% 9.75M 10s\n", - "451650K .......... .......... .......... .......... .......... 86% 11.5M 10s\n", - "451700K .......... .......... .......... .......... .......... 86% 6.16M 10s\n", - "451750K .......... .......... .......... .......... .......... 86% 10.3M 10s\n", - "451800K .......... .......... .......... .......... .......... 86% 9.30M 10s\n", - "451850K .......... .......... .......... .......... .......... 86% 11.5M 10s\n", - "451900K .......... .......... .......... .......... .......... 86% 10.7M 10s\n", - "451950K .......... .......... .......... .......... .......... 86% 6.17M 10s\n", - "452000K .......... .......... .......... .......... .......... 86% 10.7M 10s\n", - "452050K .......... .......... .......... .......... .......... 86% 10.9M 10s\n", - "452100K .......... .......... .......... .......... .......... 86% 11.5M 10s\n", - "452150K .......... .......... .......... .......... .......... 86% 12.0M 10s\n", - "452200K .......... .......... .......... .......... .......... 86% 6.61M 10s\n", - "452250K .......... .......... .......... .......... .......... 86% 9.41M 10s\n", - "452300K .......... .......... .......... .......... .......... 86% 11.5M 10s\n", - "452350K .......... .......... .......... .......... .......... 86% 9.49M 10s\n", - "452400K .......... .......... .......... .......... .......... 86% 12.4M 10s\n", - "452450K .......... .......... .......... .......... .......... 86% 9.53M 10s\n", - "452500K .......... .......... .......... .......... .......... 86% 6.43M 10s\n", - "452550K .......... .......... .......... .......... .......... 86% 11.5M 10s\n", - "452600K .......... .......... .......... .......... .......... 86% 8.84M 10s\n", - "452650K .......... .......... .......... .......... .......... 86% 10.4M 10s\n", - "452700K .......... .......... .......... .......... .......... 86% 12.3M 10s\n", - "452750K .......... .......... .......... .......... .......... 86% 7.11M 10s\n", - "452800K .......... .......... .......... .......... .......... 86% 9.96M 10s\n", - "452850K .......... .......... .......... .......... .......... 86% 11.0M 10s\n", - "452900K .......... .......... .......... .......... .......... 86% 11.9M 10s\n", - "452950K .......... .......... .......... .......... .......... 86% 11.4M 10s\n", - "453000K .......... .......... .......... .......... .......... 86% 6.51M 10s\n", - "453050K .......... .......... .......... .......... .......... 86% 10.7M 10s\n", - "453100K .......... .......... .......... .......... .......... 86% 8.58M 10s\n", - "453150K .......... .......... .......... .......... .......... 86% 12.3M 10s\n", - "453200K .......... .......... .......... .......... .......... 86% 11.6M 10s\n", - "453250K .......... .......... .......... .......... .......... 86% 10.8M 10s\n", - "453300K .......... .......... .......... .......... .......... 86% 8.50M 10s\n", - "453350K .......... .......... .......... .......... .......... 86% 9.60M 10s\n", - "453400K .......... .......... .......... .......... .......... 86% 7.59M 10s\n", - "453450K .......... .......... .......... .......... .......... 86% 11.3M 10s\n", - "453500K .......... .......... .......... .......... .......... 86% 11.2M 10s\n", - "453550K .......... .......... .......... .......... .......... 86% 10.8M 10s\n", - "453600K .......... .......... .......... .......... .......... 86% 11.2M 10s\n", - "453650K .......... .......... .......... .......... .......... 86% 6.71M 10s\n", - "453700K .......... .......... .......... .......... .......... 86% 11.9M 10s\n", - "453750K .......... .......... .......... .......... .......... 86% 10.9M 10s\n", - "453800K .......... .......... .......... .......... .......... 86% 8.37M 10s\n", - "453850K .......... .......... .......... .......... .......... 86% 12.9M 10s\n", - "453900K .......... .......... .......... .......... .......... 86% 6.85M 10s\n", - "453950K .......... .......... .......... .......... .......... 86% 10.2M 10s\n", - "454000K .......... .......... .......... .......... .......... 86% 11.4M 10s\n", - "454050K .......... .......... .......... .......... .......... 86% 11.1M 10s\n", - "454100K .......... .......... .......... .......... .......... 86% 11.1M 10s\n", - "454150K .......... .......... .......... .......... .......... 86% 8.68M 10s\n", - "454200K .......... .......... .......... .......... .......... 86% 7.45M 10s\n", - "454250K .......... .......... .......... .......... .......... 86% 7.70M 10s\n", - "454300K .......... .......... .......... .......... .......... 86% 11.2M 10s\n", - "454350K .......... .......... .......... .......... .......... 86% 11.8M 10s\n", - "454400K .......... .......... .......... .......... .......... 86% 11.3M 10s\n", - "454450K .......... .......... .......... .......... .......... 86% 10.1M 10s\n", - "454500K .......... .......... .......... .......... .......... 86% 9.91M 10s\n", - "454550K .......... .......... .......... .......... .......... 86% 8.51M 10s\n", - "454600K .......... .......... .......... .......... .......... 86% 2.85M 10s\n", - "454650K .......... .......... .......... .......... .......... 86% 28.0M 10s\n", - "454700K .......... .......... .......... .......... .......... 86% 16.7M 10s\n", - "454750K .......... .......... .......... .......... .......... 86% 23.3M 10s\n", - "454800K .......... .......... .......... .......... .......... 86% 17.9M 10s\n", - "454850K .......... .......... .......... .......... .......... 86% 11.8M 10s\n", - "454900K .......... .......... .......... .......... .......... 86% 3.15M 10s\n", - "454950K .......... .......... .......... .......... .......... 86% 9.89M 9s\n", - "455000K .......... .......... .......... .......... .......... 86% 8.27M 9s\n", - "455050K .......... .......... .......... .......... .......... 86% 11.0M 9s\n", - "455100K .......... .......... .......... .......... .......... 86% 11.9M 9s\n", - "455150K .......... .......... .......... .......... .......... 86% 10.1M 9s\n", - "455200K .......... .......... .......... .......... .......... 86% 7.76M 9s\n", - "455250K .......... .......... .......... .......... .......... 86% 11.1M 9s\n", - "455300K .......... .......... .......... .......... .......... 86% 9.09M 9s\n", - "455350K .......... .......... .......... .......... .......... 86% 13.2M 9s\n", - "455400K .......... .......... .......... .......... .......... 86% 8.48M 9s\n", - "455450K .......... .......... .......... .......... .......... 86% 8.88M 9s\n", - "455500K .......... .......... .......... .......... .......... 86% 11.7M 9s\n", - "455550K .......... .......... .......... .......... .......... 86% 8.05M 9s\n", - "455600K .......... .......... .......... .......... .......... 86% 12.0M 9s\n", - "455650K .......... .......... .......... .......... .......... 86% 11.1M 9s\n", - "455700K .......... .......... .......... .......... .......... 86% 12.1M 9s\n", - "455750K .......... .......... .......... .......... .......... 86% 9.73M 9s\n", - "455800K .......... .......... .......... .......... .......... 86% 8.52M 9s\n", - "455850K .......... .......... .......... .......... .......... 86% 7.52M 9s\n", - "455900K .......... .......... .......... .......... .......... 86% 11.3M 9s\n", - "455950K .......... .......... .......... .......... .......... 86% 11.1M 9s\n", - "456000K .......... .......... .......... .......... .......... 86% 11.7M 9s\n", - "456050K .......... .......... .......... .......... .......... 86% 10.5M 9s\n", - "456100K .......... .......... .......... .......... .......... 86% 12.5M 9s\n", - "456150K .......... .......... .......... .......... .......... 86% 8.96M 9s\n", - "456200K .......... .......... .......... .......... .......... 86% 7.66M 9s\n", - "456250K .......... .......... .......... .......... .......... 86% 11.6M 9s\n", - "456300K .......... .......... .......... .......... .......... 86% 11.2M 9s\n", - "456350K .......... .......... .......... .......... .......... 86% 9.94M 9s\n", - "456400K .......... .......... .......... .......... .......... 86% 11.8M 9s\n", - "456450K .......... .......... .......... .......... .......... 87% 9.07M 9s\n", - "456500K .......... .......... .......... .......... .......... 87% 8.45M 9s\n", - "456550K .......... .......... .......... .......... .......... 87% 14.7M 9s\n", - "456600K .......... .......... .......... .......... .......... 87% 7.83M 9s\n", - "456650K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "456700K .......... .......... .......... .......... .......... 87% 9.12M 9s\n", - "456750K .......... .......... .......... .......... .......... 87% 10.4M 9s\n", - "456800K .......... .......... .......... .......... .......... 87% 10.3M 9s\n", - "456850K .......... .......... .......... .......... .......... 87% 12.9M 9s\n", - "456900K .......... .......... .......... .......... .......... 87% 10.8M 9s\n", - "456950K .......... .......... .......... .......... .......... 87% 9.42M 9s\n", - "457000K .......... .......... .......... .......... .......... 87% 6.51M 9s\n", - "457050K .......... .......... .......... .......... .......... 87% 11.3M 9s\n", - "457100K .......... .......... .......... .......... .......... 87% 11.4M 9s\n", - "457150K .......... .......... .......... .......... .......... 87% 11.0M 9s\n", - "457200K .......... .......... .......... .......... .......... 87% 11.9M 9s\n", - "457250K .......... .......... .......... .......... .......... 87% 10.0M 9s\n", - "457300K .......... .......... .......... .......... .......... 87% 9.14M 9s\n", - "457350K .......... .......... .......... .......... .......... 87% 10.7M 9s\n", - "457400K .......... .......... .......... .......... .......... 87% 8.40M 9s\n", - "457450K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "457500K .......... .......... .......... .......... .......... 87% 10.9M 9s\n", - "457550K .......... .......... .......... .......... .......... 87% 8.30M 9s\n", - "457600K .......... .......... .......... .......... .......... 87% 10.3M 9s\n", - "457650K .......... .......... .......... .......... .......... 87% 11.1M 9s\n", - "457700K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "457750K .......... .......... .......... .......... .......... 87% 11.1M 9s\n", - "457800K .......... .......... .......... .......... .......... 87% 7.67M 9s\n", - "457850K .......... .......... .......... .......... .......... 87% 10.3M 9s\n", - "457900K .......... .......... .......... .......... .......... 87% 8.80M 9s\n", - "457950K .......... .......... .......... .......... .......... 87% 10.2M 9s\n", - "458000K .......... .......... .......... .......... .......... 87% 12.6M 9s\n", - "458050K .......... .......... .......... .......... .......... 87% 11.4M 9s\n", - "458100K .......... .......... .......... .......... .......... 87% 11.1M 9s\n", - "458150K .......... .......... .......... .......... .......... 87% 7.75M 9s\n", - "458200K .......... .......... .......... .......... .......... 87% 8.02M 9s\n", - "458250K .......... .......... .......... .......... .......... 87% 11.7M 9s\n", - "458300K .......... .......... .......... .......... .......... 87% 11.8M 9s\n", - "458350K .......... .......... .......... .......... .......... 87% 10.5M 9s\n", - "458400K .......... .......... .......... .......... .......... 87% 11.3M 9s\n", - "458450K .......... .......... .......... .......... .......... 87% 8.70M 9s\n", - "458500K .......... .......... .......... .......... .......... 87% 12.3M 9s\n", - "458550K .......... .......... .......... .......... .......... 87% 10.9M 9s\n", - "458600K .......... .......... .......... .......... .......... 87% 8.80M 9s\n", - "458650K .......... .......... .......... .......... .......... 87% 9.18M 9s\n", - "458700K .......... .......... .......... .......... .......... 87% 9.82M 9s\n", - "458750K .......... .......... .......... .......... .......... 87% 12.8M 9s\n", - "458800K .......... .......... .......... .......... .......... 87% 8.60M 9s\n", - "458850K .......... .......... .......... .......... .......... 87% 11.6M 9s\n", - "458900K .......... .......... .......... .......... .......... 87% 11.3M 9s\n", - "458950K .......... .......... .......... .......... .......... 87% 10.7M 9s\n", - "459000K .......... .......... .......... .......... .......... 87% 8.06M 9s\n", - "459050K .......... .......... .......... .......... .......... 87% 9.31M 9s\n", - "459100K .......... .......... .......... .......... .......... 87% 10.4M 9s\n", - "459150K .......... .......... .......... .......... .......... 87% 11.9M 9s\n", - "459200K .......... .......... .......... .......... .......... 87% 11.7M 9s\n", - "459250K .......... .......... .......... .......... .......... 87% 11.2M 9s\n", - "459300K .......... .......... .......... .......... .......... 87% 9.41M 9s\n", - "459350K .......... .......... .......... .......... .......... 87% 10.5M 9s\n", - "459400K .......... .......... .......... .......... .......... 87% 8.31M 9s\n", - "459450K .......... .......... .......... .......... .......... 87% 10.1M 9s\n", - "459500K .......... .......... .......... .......... .......... 87% 11.6M 9s\n", - "459550K .......... .......... .......... .......... .......... 87% 10.8M 9s\n", - "459600K .......... .......... .......... .......... .......... 87% 10.1M 9s\n", - "459650K .......... .......... .......... .......... .......... 87% 12.5M 9s\n", - "459700K .......... .......... .......... .......... .......... 87% 9.50M 9s\n", - "459750K .......... .......... .......... .......... .......... 87% 9.89M 9s\n", - "459800K .......... .......... .......... .......... .......... 87% 8.20M 9s\n", - "459850K .......... .......... .......... .......... .......... 87% 10.9M 9s\n", - "459900K .......... .......... .......... .......... .......... 87% 11.7M 9s\n", - "459950K .......... .......... .......... .......... .......... 87% 11.3M 9s\n", - "460000K .......... .......... .......... .......... .......... 87% 9.54M 9s\n", - "460050K .......... .......... .......... .......... .......... 87% 10.1M 9s\n", - "460100K .......... .......... .......... .......... .......... 87% 12.6M 9s\n", - "460150K .......... .......... .......... .......... .......... 87% 5.89M 9s\n", - "460200K .......... .......... .......... .......... .......... 87% 9.65M 9s\n", - "460250K .......... .......... .......... .......... .......... 87% 12.1M 9s\n", - "460300K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "460350K .......... .......... .......... .......... .......... 87% 10.3M 9s\n", - "460400K .......... .......... .......... .......... .......... 87% 12.2M 9s\n", - "460450K .......... .......... .......... .......... .......... 87% 8.02M 9s\n", - "460500K .......... .......... .......... .......... .......... 87% 10.7M 9s\n", - "460550K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "460600K .......... .......... .......... .......... .......... 87% 8.58M 9s\n", - "460650K .......... .......... .......... .......... .......... 87% 10.1M 9s\n", - "460700K .......... .......... .......... .......... .......... 87% 11.1M 9s\n", - "460750K .......... .......... .......... .......... .......... 87% 9.32M 9s\n", - "460800K .......... .......... .......... .......... .......... 87% 10.8M 9s\n", - "460850K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "460900K .......... .......... .......... .......... .......... 87% 11.2M 9s\n", - "460950K .......... .......... .......... .......... .......... 87% 12.2M 9s\n", - "461000K .......... .......... .......... .......... .......... 87% 7.97M 9s\n", - "461050K .......... .......... .......... .......... .......... 87% 8.58M 9s\n", - "461100K .......... .......... .......... .......... .......... 87% 12.2M 9s\n", - "461150K .......... .......... .......... .......... .......... 87% 10.1M 9s\n", - "461200K .......... .......... .......... .......... .......... 87% 12.4M 9s\n", - "461250K .......... .......... .......... .......... .......... 87% 11.5M 9s\n", - "461300K .......... .......... .......... .......... .......... 87% 11.3M 9s\n", - "461350K .......... .......... .......... .......... .......... 87% 8.73M 9s\n", - "461400K .......... .......... .......... .......... .......... 87% 8.67M 9s\n", - "461450K .......... .......... .......... .......... .......... 87% 11.8M 9s\n", - "461500K .......... .......... .......... .......... .......... 87% 11.1M 9s\n", - "461550K .......... .......... .......... .......... .......... 87% 11.8M 9s\n", - "461600K .......... .......... .......... .......... .......... 87% 10.6M 9s\n", - "461650K .......... .......... .......... .......... .......... 87% 9.05M 9s\n", - "461700K .......... .......... .......... .......... .......... 88% 10.8M 9s\n", - "461750K .......... .......... .......... .......... .......... 88% 11.2M 9s\n", - "461800K .......... .......... .......... .......... .......... 88% 9.55M 9s\n", - "461850K .......... .......... .......... .......... .......... 88% 10.9M 9s\n", - "461900K .......... .......... .......... .......... .......... 88% 11.0M 9s\n", - "461950K .......... .......... .......... .......... .......... 88% 11.7M 9s\n", - "462000K .......... .......... .......... .......... .......... 88% 7.79M 8s\n", - "462050K .......... .......... .......... .......... .......... 88% 11.0M 8s\n", - "462100K .......... .......... .......... .......... .......... 88% 9.44M 8s\n", - "462150K .......... .......... .......... .......... .......... 88% 14.2M 8s\n", - "462200K .......... .......... .......... .......... .......... 88% 7.76M 8s\n", - "462250K .......... .......... .......... .......... .......... 88% 6.88M 8s\n", - "462300K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "462350K .......... .......... .......... .......... .......... 88% 11.7M 8s\n", - "462400K .......... .......... .......... .......... .......... 88% 10.3M 8s\n", - "462450K .......... .......... .......... .......... .......... 88% 12.3M 8s\n", - "462500K .......... .......... .......... .......... .......... 88% 11.0M 8s\n", - "462550K .......... .......... .......... .......... .......... 88% 12.2M 8s\n", - "462600K .......... .......... .......... .......... .......... 88% 7.24M 8s\n", - "462650K .......... .......... .......... .......... .......... 88% 10.5M 8s\n", - "462700K .......... .......... .......... .......... .......... 88% 12.7M 8s\n", - "462750K .......... .......... .......... .......... .......... 88% 8.53M 8s\n", - "462800K .......... .......... .......... .......... .......... 88% 10.7M 8s\n", - "462850K .......... .......... .......... .......... .......... 88% 11.9M 8s\n", - "462900K .......... .......... .......... .......... .......... 88% 9.47M 8s\n", - "462950K .......... .......... .......... .......... .......... 88% 10.9M 8s\n", - "463000K .......... .......... .......... .......... .......... 88% 8.74M 8s\n", - "463050K .......... .......... .......... .......... .......... 88% 8.63M 8s\n", - "463100K .......... .......... .......... .......... .......... 88% 11.0M 8s\n", - "463150K .......... .......... .......... .......... .......... 88% 11.8M 8s\n", - "463200K .......... .......... .......... .......... .......... 88% 9.84M 8s\n", - "463250K .......... .......... .......... .......... .......... 88% 13.4M 8s\n", - "463300K .......... .......... .......... .......... .......... 88% 11.4M 8s\n", - "463350K .......... .......... .......... .......... .......... 88% 11.3M 8s\n", - "463400K .......... .......... .......... .......... .......... 88% 7.22M 8s\n", - "463450K .......... .......... .......... .......... .......... 88% 11.9M 8s\n", - "463500K .......... .......... .......... .......... .......... 88% 10.6M 8s\n", - "463550K .......... .......... .......... .......... .......... 88% 12.7M 8s\n", - "463600K .......... .......... .......... .......... .......... 88% 11.1M 8s\n", - "463650K .......... .......... .......... .......... .......... 88% 9.98M 8s\n", - "463700K .......... .......... .......... .......... .......... 88% 12.7M 8s\n", - "463750K .......... .......... .......... .......... .......... 88% 10.3M 8s\n", - "463800K .......... .......... .......... .......... .......... 88% 6.59M 8s\n", - "463850K .......... .......... .......... .......... .......... 88% 12.1M 8s\n", - "463900K .......... .......... .......... .......... .......... 88% 13.6M 8s\n", - "463950K .......... .......... .......... .......... .......... 88% 11.7M 8s\n", - "464000K .......... .......... .......... .......... .......... 88% 11.4M 8s\n", - "464050K .......... .......... .......... .......... .......... 88% 12.3M 8s\n", - "464100K .......... .......... .......... .......... .......... 88% 9.19M 8s\n", - "464150K .......... .......... .......... .......... .......... 88% 10.2M 8s\n", - "464200K .......... .......... .......... .......... .......... 88% 8.41M 8s\n", - "464250K .......... .......... .......... .......... .......... 88% 11.7M 8s\n", - "464300K .......... .......... .......... .......... .......... 88% 11.9M 8s\n", - "464350K .......... .......... .......... .......... .......... 88% 10.8M 8s\n", - "464400K .......... .......... .......... .......... .......... 88% 12.2M 8s\n", - "464450K .......... .......... .......... .......... .......... 88% 9.62M 8s\n", - "464500K .......... .......... .......... .......... .......... 88% 12.5M 8s\n", - "464550K .......... .......... .......... .......... .......... 88% 9.48M 8s\n", - "464600K .......... .......... .......... .......... .......... 88% 9.61M 8s\n", - "464650K .......... .......... .......... .......... .......... 88% 10.9M 8s\n", - "464700K .......... .......... .......... .......... .......... 88% 11.8M 8s\n", - "464750K .......... .......... .......... .......... .......... 88% 11.2M 8s\n", - "464800K .......... .......... .......... .......... .......... 88% 10.4M 8s\n", - "464850K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "464900K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "464950K .......... .......... .......... .......... .......... 88% 11.3M 8s\n", - "465000K .......... .......... .......... .......... .......... 88% 8.07M 8s\n", - "465050K .......... .......... .......... .......... .......... 88% 12.0M 8s\n", - "465100K .......... .......... .......... .......... .......... 88% 10.1M 8s\n", - "465150K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "465200K .......... .......... .......... .......... .......... 88% 10.7M 8s\n", - "465250K .......... .......... .......... .......... .......... 88% 10.6M 8s\n", - "465300K .......... .......... .......... .......... .......... 88% 11.6M 8s\n", - "465350K .......... .......... .......... .......... .......... 88% 11.1M 8s\n", - "465400K .......... .......... .......... .......... .......... 88% 8.40M 8s\n", - "465450K .......... .......... .......... .......... .......... 88% 11.8M 8s\n", - "465500K .......... .......... .......... .......... .......... 88% 11.6M 8s\n", - "465550K .......... .......... .......... .......... .......... 88% 9.91M 8s\n", - "465600K .......... .......... .......... .......... .......... 88% 11.6M 8s\n", - "465650K .......... .......... .......... .......... .......... 88% 10.8M 8s\n", - "465700K .......... .......... .......... .......... .......... 88% 12.9M 8s\n", - "465750K .......... .......... .......... .......... .......... 88% 11.7M 8s\n", - "465800K .......... .......... .......... .......... .......... 88% 8.24M 8s\n", - "465850K .......... .......... .......... .......... .......... 88% 9.76M 8s\n", - "465900K .......... .......... .......... .......... .......... 88% 9.31M 8s\n", - "465950K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "466000K .......... .......... .......... .......... .......... 88% 11.2M 8s\n", - "466050K .......... .......... .......... .......... .......... 88% 11.9M 8s\n", - "466100K .......... .......... .......... .......... .......... 88% 10.6M 8s\n", - "466150K .......... .......... .......... .......... .......... 88% 12.4M 8s\n", - "466200K .......... .......... .......... .......... .......... 88% 5.92M 8s\n", - "466250K .......... .......... .......... .......... .......... 88% 25.4M 8s\n", - "466300K .......... .......... .......... .......... .......... 88% 10.1M 8s\n", - "466350K .......... .......... .......... .......... .......... 88% 11.4M 8s\n", - "466400K .......... .......... .......... .......... .......... 88% 8.74M 8s\n", - "466450K .......... .......... .......... .......... .......... 88% 4.59M 8s\n", - "466500K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "466550K .......... .......... .......... .......... .......... 88% 12.5M 8s\n", - "466600K .......... .......... .......... .......... .......... 88% 8.26M 8s\n", - "466650K .......... .......... .......... .......... .......... 88% 11.1M 8s\n", - "466700K .......... .......... .......... .......... .......... 88% 12.3M 8s\n", - "466750K .......... .......... .......... .......... .......... 88% 11.3M 8s\n", - "466800K .......... .......... .......... .......... .......... 88% 9.62M 8s\n", - "466850K .......... .......... .......... .......... .......... 88% 10.4M 8s\n", - "466900K .......... .......... .......... .......... .......... 88% 11.5M 8s\n", - "466950K .......... .......... .......... .......... .......... 89% 11.9M 8s\n", - "467000K .......... .......... .......... .......... .......... 89% 8.49M 8s\n", - "467050K .......... .......... .......... .......... .......... 89% 10.1M 8s\n", - "467100K .......... .......... .......... .......... .......... 89% 12.1M 8s\n", - "467150K .......... .......... .......... .......... .......... 89% 12.1M 8s\n", - "467200K .......... .......... .......... .......... .......... 89% 10.7M 8s\n", - "467250K .......... .......... .......... .......... .......... 89% 12.1M 8s\n", - "467300K .......... .......... .......... .......... .......... 89% 8.89M 8s\n", - "467350K .......... .......... .......... .......... .......... 89% 9.42M 8s\n", - "467400K .......... .......... .......... .......... .......... 89% 8.78M 8s\n", - "467450K .......... .......... .......... .......... .......... 89% 11.4M 8s\n", - "467500K .......... .......... .......... .......... .......... 89% 11.5M 8s\n", - "467550K .......... .......... .......... .......... .......... 89% 11.7M 8s\n", - "467600K .......... .......... .......... .......... .......... 89% 11.2M 8s\n", - "467650K .......... .......... .......... .......... .......... 89% 11.2M 8s\n", - "467700K .......... .......... .......... .......... .......... 89% 11.3M 8s\n", - "467750K .......... .......... .......... .......... .......... 89% 11.6M 8s\n", - "467800K .......... .......... .......... .......... .......... 89% 8.29M 8s\n", - "467850K .......... .......... .......... .......... .......... 89% 11.7M 8s\n", - "467900K .......... .......... .......... .......... .......... 89% 11.1M 8s\n", - "467950K .......... .......... .......... .......... .......... 89% 9.49M 8s\n", - "468000K .......... .......... .......... .......... .......... 89% 13.4M 8s\n", - "468050K .......... .......... .......... .......... .......... 89% 11.1M 8s\n", - "468100K .......... .......... .......... .......... .......... 89% 12.8M 8s\n", - "468150K .......... .......... .......... .......... .......... 89% 11.5M 8s\n", - "468200K .......... .......... .......... .......... .......... 89% 8.19M 8s\n", - "468250K .......... .......... .......... .......... .......... 89% 10.9M 8s\n", - "468300K .......... .......... .......... .......... .......... 89% 8.99M 8s\n", - "468350K .......... .......... .......... .......... .......... 89% 16.7M 8s\n", - "468400K .......... .......... .......... .......... .......... 89% 11.6M 8s\n", - "468450K .......... .......... .......... .......... .......... 89% 10.5M 8s\n", - "468500K .......... .......... .......... .......... .......... 89% 10.8M 8s\n", - "468550K .......... .......... .......... .......... .......... 89% 11.8M 8s\n", - "468600K .......... .......... .......... .......... .......... 89% 7.10M 8s\n", - "468650K .......... .......... .......... .......... .......... 89% 11.2M 8s\n", - "468700K .......... .......... .......... .......... .......... 89% 12.0M 8s\n", - "468750K .......... .......... .......... .......... .......... 89% 10.7M 8s\n", - "468800K .......... .......... .......... .......... .......... 89% 12.3M 8s\n", - "468850K .......... .......... .......... .......... .......... 89% 11.0M 8s\n", - "468900K .......... .......... .......... .......... .......... 89% 12.3M 8s\n", - "468950K .......... .......... .......... .......... .......... 89% 10.9M 8s\n", - "469000K .......... .......... .......... .......... .......... 89% 7.96M 8s\n", - "469050K .......... .......... .......... .......... .......... 89% 12.4M 8s\n", - "469100K .......... .......... .......... .......... .......... 89% 10.5M 7s\n", - "469150K .......... .......... .......... .......... .......... 89% 10.6M 7s\n", - "469200K .......... .......... .......... .......... .......... 89% 11.5M 7s\n", - "469250K .......... .......... .......... .......... .......... 89% 11.3M 7s\n", - "469300K .......... .......... .......... .......... .......... 89% 11.6M 7s\n", - "469350K .......... .......... .......... .......... .......... 89% 11.2M 7s\n", - "469400K .......... .......... .......... .......... .......... 89% 7.36M 7s\n", - "469450K .......... .......... .......... .......... .......... 89% 12.9M 7s\n", - "469500K .......... .......... .......... .......... .......... 89% 10.9M 7s\n", - "469550K .......... .......... .......... .......... .......... 89% 10.5M 7s\n", - "469600K .......... .......... .......... .......... .......... 89% 13.6M 7s\n", - "469650K .......... .......... .......... .......... .......... 89% 10.3M 7s\n", - "469700K .......... .......... .......... .......... .......... 89% 11.7M 7s\n", - "469750K .......... .......... .......... .......... .......... 89% 11.3M 7s\n", - "469800K .......... .......... .......... .......... .......... 89% 8.83M 7s\n", - "469850K .......... .......... .......... .......... .......... 89% 11.5M 7s\n", - "469900K .......... .......... .......... .......... .......... 89% 11.4M 7s\n", - "469950K .......... .......... .......... .......... .......... 89% 11.8M 7s\n", - "470000K .......... .......... .......... .......... .......... 89% 8.57M 7s\n", - "470050K .......... .......... .......... .......... .......... 89% 11.5M 7s\n", - "470100K .......... .......... .......... .......... .......... 89% 16.6M 7s\n", - "470150K .......... .......... .......... .......... .......... 89% 10.7M 7s\n", - "470200K .......... .......... .......... .......... .......... 89% 8.83M 7s\n", - "470250K .......... .......... .......... .......... .......... 89% 9.59M 7s\n", - "470300K .......... .......... .......... .......... .......... 89% 12.0M 7s\n", - "470350K .......... .......... .......... .......... .......... 89% 11.0M 7s\n", - "470400K .......... .......... .......... .......... .......... 89% 11.6M 7s\n", - "470450K .......... .......... .......... .......... .......... 89% 11.2M 7s\n", - "470500K .......... .......... .......... .......... .......... 89% 7.75M 7s\n", - "470550K .......... .......... .......... .......... .......... 89% 15.6M 7s\n", - "470600K .......... .......... .......... .......... .......... 89% 10.3M 7s\n", - "470650K .......... .......... .......... .......... .......... 89% 10.4M 7s\n", - "470700K .......... .......... .......... .......... .......... 89% 12.3M 7s\n", - "470750K .......... .......... .......... .......... .......... 89% 10.6M 7s\n", - "470800K .......... .......... .......... .......... .......... 89% 6.17M 7s\n", - "470850K .......... .......... .......... .......... .......... 89% 12.4M 7s\n", - "470900K .......... .......... .......... .......... .......... 89% 11.9M 7s\n", - "470950K .......... .......... .......... .......... .......... 89% 12.3M 7s\n", - "471000K .......... .......... .......... .......... .......... 89% 8.69M 7s\n", - "471050K .......... .......... .......... .......... .......... 89% 11.1M 7s\n", - "471100K .......... .......... .......... .......... .......... 89% 11.1M 7s\n", - "471150K .......... .......... .......... .......... .......... 89% 10.7M 7s\n", - "471200K .......... .......... .......... .......... .......... 89% 12.0M 7s\n", - "471250K .......... .......... .......... .......... .......... 89% 10.5M 7s\n", - "471300K .......... .......... .......... .......... .......... 89% 12.9M 7s\n", - "471350K .......... .......... .......... .......... .......... 89% 10.9M 7s\n", - "471400K .......... .......... .......... .......... .......... 89% 8.66M 7s\n", - "471450K .......... .......... .......... .......... .......... 89% 11.5M 7s\n", - "471500K .......... .......... .......... .......... .......... 89% 11.3M 7s\n", - "471550K .......... .......... .......... .......... .......... 89% 11.6M 7s\n", - "471600K .......... .......... .......... .......... .......... 89% 10.4M 7s\n", - "471650K .......... .......... .......... .......... .......... 89% 9.98M 7s\n", - "471700K .......... .......... .......... .......... .......... 89% 15.7M 7s\n", - "471750K .......... .......... .......... .......... .......... 89% 10.8M 7s\n", - "471800K .......... .......... .......... .......... .......... 89% 8.99M 7s\n", - "471850K .......... .......... .......... .......... .......... 89% 11.3M 7s\n", - "471900K .......... .......... .......... .......... .......... 89% 11.2M 7s\n", - "471950K .......... .......... .......... .......... .......... 89% 11.0M 7s\n", - "472000K .......... .......... .......... .......... .......... 89% 11.1M 7s\n", - "472050K .......... .......... .......... .......... .......... 89% 12.1M 7s\n", - "472100K .......... .......... .......... .......... .......... 89% 11.3M 7s\n", - "472150K .......... .......... .......... .......... .......... 89% 11.7M 7s\n", - "472200K .......... .......... .......... .......... .......... 90% 8.26M 7s\n", - "472250K .......... .......... .......... .......... .......... 90% 8.73M 7s\n", - "472300K .......... .......... .......... .......... .......... 90% 10.6M 7s\n", - "472350K .......... .......... .......... .......... .......... 90% 12.7M 7s\n", - "472400K .......... .......... .......... .......... .......... 90% 11.3M 7s\n", - "472450K .......... .......... .......... .......... .......... 90% 11.7M 7s\n", - "472500K .......... .......... .......... .......... .......... 90% 11.5M 7s\n", - "472550K .......... .......... .......... .......... .......... 90% 10.9M 7s\n", - "472600K .......... .......... .......... .......... .......... 90% 8.70M 7s\n", - "472650K .......... .......... .......... .......... .......... 90% 10.9M 7s\n", - "472700K .......... .......... .......... .......... .......... 90% 12.3M 7s\n", - "472750K .......... .......... .......... .......... .......... 90% 10.9M 7s\n", - "472800K .......... .......... .......... .......... .......... 90% 10.8M 7s\n", - "472850K .......... .......... .......... .......... .......... 90% 13.3M 7s\n", - "472900K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "472950K .......... .......... .......... .......... .......... 90% 10.6M 7s\n", - "473000K .......... .......... .......... .......... .......... 90% 8.89M 7s\n", - "473050K .......... .......... .......... .......... .......... 90% 11.7M 7s\n", - "473100K .......... .......... .......... .......... .......... 90% 11.2M 7s\n", - "473150K .......... .......... .......... .......... .......... 90% 11.7M 7s\n", - "473200K .......... .......... .......... .......... .......... 90% 11.3M 7s\n", - "473250K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "473300K .......... .......... .......... .......... .......... 90% 11.3M 7s\n", - "473350K .......... .......... .......... .......... .......... 90% 12.1M 7s\n", - "473400K .......... .......... .......... .......... .......... 90% 8.40M 7s\n", - "473450K .......... .......... .......... .......... .......... 90% 9.68M 7s\n", - "473500K .......... .......... .......... .......... .......... 90% 14.5M 7s\n", - "473550K .......... .......... .......... .......... .......... 90% 10.7M 7s\n", - "473600K .......... .......... .......... .......... .......... 90% 12.1M 7s\n", - "473650K .......... .......... .......... .......... .......... 90% 11.7M 7s\n", - "473700K .......... .......... .......... .......... .......... 90% 10.6M 7s\n", - "473750K .......... .......... .......... .......... .......... 90% 10.5M 7s\n", - "473800K .......... .......... .......... .......... .......... 90% 8.66M 7s\n", - "473850K .......... .......... .......... .......... .......... 90% 9.78M 7s\n", - "473900K .......... .......... .......... .......... .......... 90% 12.3M 7s\n", - "473950K .......... .......... .......... .......... .......... 90% 12.3M 7s\n", - "474000K .......... .......... .......... .......... .......... 90% 11.3M 7s\n", - "474050K .......... .......... .......... .......... .......... 90% 12.3M 7s\n", - "474100K .......... .......... .......... .......... .......... 90% 11.4M 7s\n", - "474150K .......... .......... .......... .......... .......... 90% 11.3M 7s\n", - "474200K .......... .......... .......... .......... .......... 90% 8.34M 7s\n", - "474250K .......... .......... .......... .......... .......... 90% 11.8M 7s\n", - "474300K .......... .......... .......... .......... .......... 90% 10.8M 7s\n", - "474350K .......... .......... .......... .......... .......... 90% 9.24M 7s\n", - "474400K .......... .......... .......... .......... .......... 90% 12.0M 7s\n", - "474450K .......... .......... .......... .......... .......... 90% 11.6M 7s\n", - "474500K .......... .......... .......... .......... .......... 90% 12.6M 7s\n", - "474550K .......... .......... .......... .......... .......... 90% 10.1M 7s\n", - "474600K .......... .......... .......... .......... .......... 90% 8.91M 7s\n", - "474650K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "474700K .......... .......... .......... .......... .......... 90% 11.7M 7s\n", - "474750K .......... .......... .......... .......... .......... 90% 11.9M 7s\n", - "474800K .......... .......... .......... .......... .......... 90% 10.6M 7s\n", - "474850K .......... .......... .......... .......... .......... 90% 11.4M 7s\n", - "474900K .......... .......... .......... .......... .......... 90% 11.8M 7s\n", - "474950K .......... .......... .......... .......... .......... 90% 11.5M 7s\n", - "475000K .......... .......... .......... .......... .......... 90% 8.35M 7s\n", - "475050K .......... .......... .......... .......... .......... 90% 11.9M 7s\n", - "475100K .......... .......... .......... .......... .......... 90% 11.4M 7s\n", - "475150K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "475200K .......... .......... .......... .......... .......... 90% 12.5M 7s\n", - "475250K .......... .......... .......... .......... .......... 90% 11.9M 7s\n", - "475300K .......... .......... .......... .......... .......... 90% 10.9M 7s\n", - "475350K .......... .......... .......... .......... .......... 90% 11.1M 7s\n", - "475400K .......... .......... .......... .......... .......... 90% 8.98M 7s\n", - "475450K .......... .......... .......... .......... .......... 90% 10.0M 7s\n", - "475500K .......... .......... .......... .......... .......... 90% 13.0M 7s\n", - "475550K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "475600K .......... .......... .......... .......... .......... 90% 11.5M 7s\n", - "475650K .......... .......... .......... .......... .......... 90% 11.4M 7s\n", - "475700K .......... .......... .......... .......... .......... 90% 10.4M 7s\n", - "475750K .......... .......... .......... .......... .......... 90% 12.6M 7s\n", - "475800K .......... .......... .......... .......... .......... 90% 8.85M 7s\n", - "475850K .......... .......... .......... .......... .......... 90% 11.4M 7s\n", - "475900K .......... .......... .......... .......... .......... 90% 9.89M 7s\n", - "475950K .......... .......... .......... .......... .......... 90% 13.5M 7s\n", - "476000K .......... .......... .......... .......... .......... 90% 11.5M 7s\n", - "476050K .......... .......... .......... .......... .......... 90% 10.5M 7s\n", - "476100K .......... .......... .......... .......... .......... 90% 11.0M 7s\n", - "476150K .......... .......... .......... .......... .......... 90% 13.0M 7s\n", - "476200K .......... .......... .......... .......... .......... 90% 8.65M 7s\n", - "476250K .......... .......... .......... .......... .......... 90% 11.3M 6s\n", - "476300K .......... .......... .......... .......... .......... 90% 11.5M 6s\n", - "476350K .......... .......... .......... .......... .......... 90% 11.5M 6s\n", - "476400K .......... .......... .......... .......... .......... 90% 11.1M 6s\n", - "476450K .......... .......... .......... .......... .......... 90% 11.8M 6s\n", - "476500K .......... .......... .......... .......... .......... 90% 11.0M 6s\n", - "476550K .......... .......... .......... .......... .......... 90% 11.6M 6s\n", - "476600K .......... .......... .......... .......... .......... 90% 8.65M 6s\n", - "476650K .......... .......... .......... .......... .......... 90% 11.2M 6s\n", - "476700K .......... .......... .......... .......... .......... 90% 11.8M 6s\n", - "476750K .......... .......... .......... .......... .......... 90% 11.9M 6s\n", - "476800K .......... .......... .......... .......... .......... 90% 10.3M 6s\n", - "476850K .......... .......... .......... .......... .......... 90% 11.6M 6s\n", - "476900K .......... .......... .......... .......... .......... 90% 11.4M 6s\n", - "476950K .......... .......... .......... .......... .......... 90% 12.5M 6s\n", - "477000K .......... .......... .......... .......... .......... 90% 8.41M 6s\n", - "477050K .......... .......... .......... .......... .......... 90% 11.5M 6s\n", - "477100K .......... .......... .......... .......... .......... 90% 11.3M 6s\n", - "477150K .......... .......... .......... .......... .......... 90% 10.6M 6s\n", - "477200K .......... .......... .......... .......... .......... 90% 12.3M 6s\n", - "477250K .......... .......... .......... .......... .......... 90% 10.9M 6s\n", - "477300K .......... .......... .......... .......... .......... 90% 11.8M 6s\n", - "477350K .......... .......... .......... .......... .......... 90% 10.9M 6s\n", - "477400K .......... .......... .......... .......... .......... 90% 8.65M 6s\n", - "477450K .......... .......... .......... .......... .......... 91% 9.75M 6s\n", - "477500K .......... .......... .......... .......... .......... 91% 14.6M 6s\n", - "477550K .......... .......... .......... .......... .......... 91% 10.7M 6s\n", - "477600K .......... .......... .......... .......... .......... 91% 12.5M 6s\n", - "477650K .......... .......... .......... .......... .......... 91% 10.6M 6s\n", - "477700K .......... .......... .......... .......... .......... 91% 11.7M 6s\n", - "477750K .......... .......... .......... .......... .......... 91% 10.8M 6s\n", - "477800K .......... .......... .......... .......... .......... 91% 8.73M 6s\n", - "477850K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "477900K .......... .......... .......... .......... .......... 91% 11.2M 6s\n", - "477950K .......... .......... .......... .......... .......... 91% 12.3M 6s\n", - "478000K .......... .......... .......... .......... .......... 91% 11.2M 6s\n", - "478050K .......... .......... .......... .......... .......... 91% 10.7M 6s\n", - "478100K .......... .......... .......... .......... .......... 91% 12.1M 6s\n", - "478150K .......... .......... .......... .......... .......... 91% 10.9M 6s\n", - "478200K .......... .......... .......... .......... .......... 91% 9.00M 6s\n", - "478250K .......... .......... .......... .......... .......... 91% 11.2M 6s\n", - "478300K .......... .......... .......... .......... .......... 91% 9.47M 6s\n", - "478350K .......... .......... .......... .......... .......... 91% 12.3M 6s\n", - "478400K .......... .......... .......... .......... .......... 91% 12.9M 6s\n", - "478450K .......... .......... .......... .......... .......... 91% 10.3M 6s\n", - "478500K .......... .......... .......... .......... .......... 91% 12.4M 6s\n", - "478550K .......... .......... .......... .......... .......... 91% 8.76M 6s\n", - "478600K .......... .......... .......... .......... .......... 91% 12.1M 6s\n", - "478650K .......... .......... .......... .......... .......... 91% 10.5M 6s\n", - "478700K .......... .......... .......... .......... .......... 91% 11.5M 6s\n", - "478750K .......... .......... .......... .......... .......... 91% 11.9M 6s\n", - "478800K .......... .......... .......... .......... .......... 91% 11.9M 6s\n", - "478850K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "478900K .......... .......... .......... .......... .......... 91% 11.7M 6s\n", - "478950K .......... .......... .......... .......... .......... 91% 10.8M 6s\n", - "479000K .......... .......... .......... .......... .......... 91% 8.87M 6s\n", - "479050K .......... .......... .......... .......... .......... 91% 11.3M 6s\n", - "479100K .......... .......... .......... .......... .......... 91% 11.7M 6s\n", - "479150K .......... .......... .......... .......... .......... 91% 11.1M 6s\n", - "479200K .......... .......... .......... .......... .......... 91% 10.9M 6s\n", - "479250K .......... .......... .......... .......... .......... 91% 11.8M 6s\n", - "479300K .......... .......... .......... .......... .......... 91% 11.8M 6s\n", - "479350K .......... .......... .......... .......... .......... 91% 11.0M 6s\n", - "479400K .......... .......... .......... .......... .......... 91% 9.04M 6s\n", - "479450K .......... .......... .......... .......... .......... 91% 11.1M 6s\n", - "479500K .......... .......... .......... .......... .......... 91% 11.3M 6s\n", - "479550K .......... .......... .......... .......... .......... 91% 11.5M 6s\n", - "479600K .......... .......... .......... .......... .......... 91% 10.5M 6s\n", - "479650K .......... .......... .......... .......... .......... 91% 12.0M 6s\n", - "479700K .......... .......... .......... .......... .......... 91% 9.87M 6s\n", - "479750K .......... .......... .......... .......... .......... 91% 12.5M 6s\n", - "479800K .......... .......... .......... .......... .......... 91% 9.65M 6s\n", - "479850K .......... .......... .......... .......... .......... 91% 11.0M 6s\n", - "479900K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "479950K .......... .......... .......... .......... .......... 91% 11.9M 6s\n", - "480000K .......... .......... .......... .......... .......... 91% 11.7M 6s\n", - "480050K .......... .......... .......... .......... .......... 91% 10.9M 6s\n", - "480100K .......... .......... .......... .......... .......... 91% 10.7M 6s\n", - "480150K .......... .......... .......... .......... .......... 91% 11.2M 6s\n", - "480200K .......... .......... .......... .......... .......... 91% 8.96M 6s\n", - "480250K .......... .......... .......... .......... .......... 91% 11.5M 6s\n", - "480300K .......... .......... .......... .......... .......... 91% 9.74M 6s\n", - "480350K .......... .......... .......... .......... .......... 91% 14.2M 6s\n", - "480400K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "480450K .......... .......... .......... .......... .......... 91% 10.4M 6s\n", - "480500K .......... .......... .......... .......... .......... 91% 12.2M 6s\n", - "480550K .......... .......... .......... .......... .......... 91% 8.74M 6s\n", - "480600K .......... .......... .......... .......... .......... 91% 9.51M 6s\n", - "480650K .......... .......... .......... .......... .......... 91% 14.4M 6s\n", - "480700K .......... .......... .......... .......... .......... 91% 11.1M 6s\n", - "480750K .......... .......... .......... .......... .......... 91% 10.4M 6s\n", - "480800K .......... .......... .......... .......... .......... 91% 13.1M 6s\n", - "480850K .......... .......... .......... .......... .......... 91% 6.22M 6s\n", - "480900K .......... .......... .......... .......... .......... 91% 11.6M 6s\n", - "480950K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "481000K .......... .......... .......... .......... .......... 91% 8.51M 6s\n", - "481050K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "481100K .......... .......... .......... .......... .......... 91% 11.8M 6s\n", - "481150K .......... .......... .......... .......... .......... 91% 10.8M 6s\n", - "481200K .......... .......... .......... .......... .......... 91% 12.1M 6s\n", - "481250K .......... .......... .......... .......... .......... 91% 10.8M 6s\n", - "481300K .......... .......... .......... .......... .......... 91% 11.4M 6s\n", - "481350K .......... .......... .......... .......... .......... 91% 12.0M 6s\n", - "481400K .......... .......... .......... .......... .......... 91% 7.94M 6s\n", - "481450K .......... .......... .......... .......... .......... 91% 12.9M 6s\n", - "481500K .......... .......... .......... .......... .......... 91% 11.5M 6s\n", - "481550K .......... .......... .......... .......... .......... 91% 11.0M 6s\n", - "481600K .......... .......... .......... .......... .......... 91% 11.8M 6s\n", - "481650K .......... .......... .......... .......... .......... 91% 11.7M 6s\n", - "481700K .......... .......... .......... .......... .......... 91% 9.34M 6s\n", - "481750K .......... .......... .......... .......... .......... 91% 11.8M 6s\n", - "481800K .......... .......... .......... .......... .......... 91% 8.17M 6s\n", - "481850K .......... .......... .......... .......... .......... 91% 11.3M 6s\n", - "481900K .......... .......... .......... .......... .......... 91% 11.6M 6s\n", - "481950K .......... .......... .......... .......... .......... 91% 8.17M 6s\n", - "482000K .......... .......... .......... .......... .......... 91% 20.0M 6s\n", - "482050K .......... .......... .......... .......... .......... 91% 11.1M 6s\n", - "482100K .......... .......... .......... .......... .......... 91% 11.5M 6s\n", - "482150K .......... .......... .......... .......... .......... 91% 11.6M 6s\n", - "482200K .......... .......... .......... .......... .......... 91% 7.89M 6s\n", - "482250K .......... .......... .......... .......... .......... 91% 12.5M 6s\n", - "482300K .......... .......... .......... .......... .......... 91% 12.3M 6s\n", - "482350K .......... .......... .......... .......... .......... 91% 11.3M 6s\n", - "482400K .......... .......... .......... .......... .......... 91% 9.71M 6s\n", - "482450K .......... .......... .......... .......... .......... 91% 13.8M 6s\n", - "482500K .......... .......... .......... .......... .......... 91% 11.3M 6s\n", - "482550K .......... .......... .......... .......... .......... 91% 11.1M 6s\n", - "482600K .......... .......... .......... .......... .......... 91% 8.58M 6s\n", - "482650K .......... .......... .......... .......... .......... 91% 11.9M 6s\n", - "482700K .......... .......... .......... .......... .......... 92% 10.5M 6s\n", - "482750K .......... .......... .......... .......... .......... 92% 12.3M 6s\n", - "482800K .......... .......... .......... .......... .......... 92% 11.1M 6s\n", - "482850K .......... .......... .......... .......... .......... 92% 12.2M 6s\n", - "482900K .......... .......... .......... .......... .......... 92% 9.54M 6s\n", - "482950K .......... .......... .......... .......... .......... 92% 13.0M 6s\n", - "483000K .......... .......... .......... .......... .......... 92% 8.74M 6s\n", - "483050K .......... .......... .......... .......... .......... 92% 11.9M 6s\n", - "483100K .......... .......... .......... .......... .......... 92% 11.4M 6s\n", - "483150K .......... .......... .......... .......... .......... 92% 11.5M 6s\n", - "483200K .......... .......... .......... .......... .......... 92% 11.0M 6s\n", - "483250K .......... .......... .......... .......... .......... 92% 11.2M 6s\n", - "483300K .......... .......... .......... .......... .......... 92% 11.6M 6s\n", - "483350K .......... .......... .......... .......... .......... 92% 11.1M 6s\n", - "483400K .......... .......... .......... .......... .......... 92% 9.31M 6s\n", - "483450K .......... .......... .......... .......... .......... 92% 10.4M 6s\n", - "483500K .......... .......... .......... .......... .......... 92% 11.2M 5s\n", - "483550K .......... .......... .......... .......... .......... 92% 12.1M 5s\n", - "483600K .......... .......... .......... .......... .......... 92% 11.2M 5s\n", - "483650K .......... .......... .......... .......... .......... 92% 10.5M 5s\n", - "483700K .......... .......... .......... .......... .......... 92% 12.1M 5s\n", - "483750K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "483800K .......... .......... .......... .......... .......... 92% 8.51M 5s\n", - "483850K .......... .......... .......... .......... .......... 92% 11.9M 5s\n", - "483900K .......... .......... .......... .......... .......... 92% 11.6M 5s\n", - "483950K .......... .......... .......... .......... .......... 92% 10.6M 5s\n", - "484000K .......... .......... .......... .......... .......... 92% 11.9M 5s\n", - "484050K .......... .......... .......... .......... .......... 92% 11.7M 5s\n", - "484100K .......... .......... .......... .......... .......... 92% 10.6M 5s\n", - "484150K .......... .......... .......... .......... .......... 92% 12.5M 5s\n", - "484200K .......... .......... .......... .......... .......... 92% 8.68M 5s\n", - "484250K .......... .......... .......... .......... .......... 92% 10.4M 5s\n", - "484300K .......... .......... .......... .......... .......... 92% 7.55M 5s\n", - "484350K .......... .......... .......... .......... .......... 92% 20.5M 5s\n", - "484400K .......... .......... .......... .......... .......... 92% 6.84M 5s\n", - "484450K .......... .......... .......... .......... .......... 92% 51.0M 5s\n", - "484500K .......... .......... .......... .......... .......... 92% 10.5M 5s\n", - "484550K .......... .......... .......... .......... .......... 92% 13.1M 5s\n", - "484600K .......... .......... .......... .......... .......... 92% 7.48M 5s\n", - "484650K .......... .......... .......... .......... .......... 92% 10.8M 5s\n", - "484700K .......... .......... .......... .......... .......... 92% 4.95M 5s\n", - "484750K .......... .......... .......... .......... .......... 92% 9.43M 5s\n", - "484800K .......... .......... .......... .......... .......... 92% 13.2M 5s\n", - "484850K .......... .......... .......... .......... .......... 92% 10.9M 5s\n", - "484900K .......... .......... .......... .......... .......... 92% 11.3M 5s\n", - "484950K .......... .......... .......... .......... .......... 92% 11.7M 5s\n", - "485000K .......... .......... .......... .......... .......... 92% 8.47M 5s\n", - "485050K .......... .......... .......... .......... .......... 92% 11.1M 5s\n", - "485100K .......... .......... .......... .......... .......... 92% 12.1M 5s\n", - "485150K .......... .......... .......... .......... .......... 92% 11.0M 5s\n", - "485200K .......... .......... .......... .......... .......... 92% 11.6M 5s\n", - "485250K .......... .......... .......... .......... .......... 92% 10.9M 5s\n", - "485300K .......... .......... .......... .......... .......... 92% 8.56M 5s\n", - "485350K .......... .......... .......... .......... .......... 92% 16.7M 5s\n", - "485400K .......... .......... .......... .......... .......... 92% 9.13M 5s\n", - "485450K .......... .......... .......... .......... .......... 92% 11.7M 5s\n", - "485500K .......... .......... .......... .......... .......... 92% 11.6M 5s\n", - "485550K .......... .......... .......... .......... .......... 92% 10.4M 5s\n", - "485600K .......... .......... .......... .......... .......... 92% 12.0M 5s\n", - "485650K .......... .......... .......... .......... .......... 92% 11.2M 5s\n", - "485700K .......... .......... .......... .......... .......... 92% 11.6M 5s\n", - "485750K .......... .......... .......... .......... .......... 92% 10.8M 5s\n", - "485800K .......... .......... .......... .......... .......... 92% 9.31M 5s\n", - "485850K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "485900K .......... .......... .......... .......... .......... 92% 10.7M 5s\n", - "485950K .......... .......... .......... .......... .......... 92% 12.3M 5s\n", - "486000K .......... .......... .......... .......... .......... 92% 11.0M 5s\n", - "486050K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "486100K .......... .......... .......... .......... .......... 92% 10.5M 5s\n", - "486150K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "486200K .......... .......... .......... .......... .......... 92% 8.65M 5s\n", - "486250K .......... .......... .......... .......... .......... 92% 12.5M 5s\n", - "486300K .......... .......... .......... .......... .......... 92% 11.3M 5s\n", - "486350K .......... .......... .......... .......... .......... 92% 11.9M 5s\n", - "486400K .......... .......... .......... .......... .......... 92% 11.3M 5s\n", - "486450K .......... .......... .......... .......... .......... 92% 10.5M 5s\n", - "486500K .......... .......... .......... .......... .......... 92% 12.1M 5s\n", - "486550K .......... .......... .......... .......... .......... 92% 10.9M 5s\n", - "486600K .......... .......... .......... .......... .......... 92% 8.81M 5s\n", - "486650K .......... .......... .......... .......... .......... 92% 10.5M 5s\n", - "486700K .......... .......... .......... .......... .......... 92% 12.9M 5s\n", - "486750K .......... .......... .......... .......... .......... 92% 11.7M 5s\n", - "486800K .......... .......... .......... .......... .......... 92% 11.1M 5s\n", - "486850K .......... .......... .......... .......... .......... 92% 11.9M 5s\n", - "486900K .......... .......... .......... .......... .......... 92% 11.2M 5s\n", - "486950K .......... .......... .......... .......... .......... 92% 11.5M 5s\n", - "487000K .......... .......... .......... .......... .......... 92% 8.41M 5s\n", - "487050K .......... .......... .......... .......... .......... 92% 11.8M 5s\n", - "487100K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "487150K .......... .......... .......... .......... .......... 92% 10.3M 5s\n", - "487200K .......... .......... .......... .......... .......... 92% 11.5M 5s\n", - "487250K .......... .......... .......... .......... .......... 92% 12.0M 5s\n", - "487300K .......... .......... .......... .......... .......... 92% 11.1M 5s\n", - "487350K .......... .......... .......... .......... .......... 92% 12.3M 5s\n", - "487400K .......... .......... .......... .......... .......... 92% 8.23M 5s\n", - "487450K .......... .......... .......... .......... .......... 92% 12.2M 5s\n", - "487500K .......... .......... .......... .......... .......... 92% 12.0M 5s\n", - "487550K .......... .......... .......... .......... .......... 92% 10.9M 5s\n", - "487600K .......... .......... .......... .......... .......... 92% 7.74M 5s\n", - "487650K .......... .......... .......... .......... .......... 92% 19.3M 5s\n", - "487700K .......... .......... .......... .......... .......... 92% 10.7M 5s\n", - "487750K .......... .......... .......... .......... .......... 92% 12.1M 5s\n", - "487800K .......... .......... .......... .......... .......... 92% 8.93M 5s\n", - "487850K .......... .......... .......... .......... .......... 92% 11.4M 5s\n", - "487900K .......... .......... .......... .......... .......... 92% 12.0M 5s\n", - "487950K .......... .......... .......... .......... .......... 93% 9.33M 5s\n", - "488000K .......... .......... .......... .......... .......... 93% 14.3M 5s\n", - "488050K .......... .......... .......... .......... .......... 93% 11.7M 5s\n", - "488100K .......... .......... .......... .......... .......... 93% 11.2M 5s\n", - "488150K .......... .......... .......... .......... .......... 93% 11.4M 5s\n", - "488200K .......... .......... .......... .......... .......... 93% 8.55M 5s\n", - "488250K .......... .......... .......... .......... .......... 93% 12.1M 5s\n", - "488300K .......... .......... .......... .......... .......... 93% 11.7M 5s\n", - "488350K .......... .......... .......... .......... .......... 93% 10.8M 5s\n", - "488400K .......... .......... .......... .......... .......... 93% 11.5M 5s\n", - "488450K .......... .......... .......... .......... .......... 93% 11.6M 5s\n", - "488500K .......... .......... .......... .......... .......... 93% 11.1M 5s\n", - "488550K .......... .......... .......... .......... .......... 93% 11.0M 5s\n", - "488600K .......... .......... .......... .......... .......... 93% 8.83M 5s\n", - "488650K .......... .......... .......... .......... .......... 93% 11.6M 5s\n", - "488700K .......... .......... .......... .......... .......... 93% 10.0M 5s\n", - "488750K .......... .......... .......... .......... .......... 93% 12.5M 5s\n", - "488800K .......... .......... .......... .......... .......... 93% 11.4M 5s\n", - "488850K .......... .......... .......... .......... .......... 93% 11.8M 5s\n", - "488900K .......... .......... .......... .......... .......... 93% 12.0M 5s\n", - "488950K .......... .......... .......... .......... .......... 93% 10.7M 5s\n", - "489000K .......... .......... .......... .......... .......... 93% 9.11M 5s\n", - "489050K .......... .......... .......... .......... .......... 93% 10.8M 5s\n", - "489100K .......... .......... .......... .......... .......... 93% 11.7M 5s\n", - "489150K .......... .......... .......... .......... .......... 93% 11.6M 5s\n", - "489200K .......... .......... .......... .......... .......... 93% 10.8M 5s\n", - "489250K .......... .......... .......... .......... .......... 93% 10.4M 5s\n", - "489300K .......... .......... .......... .......... .......... 93% 13.2M 5s\n", - "489350K .......... .......... .......... .......... .......... 93% 11.2M 5s\n", - "489400K .......... .......... .......... .......... .......... 93% 8.69M 5s\n", - "489450K .......... .......... .......... .......... .......... 93% 11.5M 5s\n", - "489500K .......... .......... .......... .......... .......... 93% 11.7M 5s\n", - "489550K .......... .......... .......... .......... .......... 93% 11.0M 5s\n", - "489600K .......... .......... .......... .......... .......... 93% 10.9M 5s\n", - "489650K .......... .......... .......... .......... .......... 93% 8.64M 5s\n", - "489700K .......... .......... .......... .......... .......... 93% 16.6M 5s\n", - "489750K .......... .......... .......... .......... .......... 93% 6.72M 5s\n", - "489800K .......... .......... .......... .......... .......... 93% 19.3M 5s\n", - "489850K .......... .......... .......... .......... .......... 93% 10.3M 5s\n", - "489900K .......... .......... .......... .......... .......... 93% 11.6M 5s\n", - "489950K .......... .......... .......... .......... .......... 93% 12.0M 5s\n", - "490000K .......... .......... .......... .......... .......... 93% 12.3M 5s\n", - "490050K .......... .......... .......... .......... .......... 93% 12.2M 5s\n", - "490100K .......... .......... .......... .......... .......... 93% 10.0M 5s\n", - "490150K .......... .......... .......... .......... .......... 93% 13.0M 5s\n", - "490200K .......... .......... .......... .......... .......... 93% 8.34M 5s\n", - "490250K .......... .......... .......... .......... .......... 93% 12.2M 5s\n", - "490300K .......... .......... .......... .......... .......... 93% 11.0M 5s\n", - "490350K .......... .......... .......... .......... .......... 93% 10.4M 5s\n", - "490400K .......... .......... .......... .......... .......... 93% 12.0M 5s\n", - "490450K .......... .......... .......... .......... .......... 93% 11.1M 5s\n", - "490500K .......... .......... .......... .......... .......... 93% 12.2M 5s\n", - "490550K .......... .......... .......... .......... .......... 93% 11.0M 5s\n", - "490600K .......... .......... .......... .......... .......... 93% 8.93M 5s\n", - "490650K .......... .......... .......... .......... .......... 93% 11.0M 5s\n", - "490700K .......... .......... .......... .......... .......... 93% 11.4M 5s\n", - "490750K .......... .......... .......... .......... .......... 93% 12.2M 5s\n", - "490800K .......... .......... .......... .......... .......... 93% 11.4M 5s\n", - "490850K .......... .......... .......... .......... .......... 93% 11.2M 4s\n", - "490900K .......... .......... .......... .......... .......... 93% 11.8M 4s\n", - "490950K .......... .......... .......... .......... .......... 93% 11.1M 4s\n", - "491000K .......... .......... .......... .......... .......... 93% 8.69M 4s\n", - "491050K .......... .......... .......... .......... .......... 93% 9.36M 4s\n", - "491100K .......... .......... .......... .......... .......... 93% 11.9M 4s\n", - "491150K .......... .......... .......... .......... .......... 93% 14.0M 4s\n", - "491200K .......... .......... .......... .......... .......... 93% 11.4M 4s\n", - "491250K .......... .......... .......... .......... .......... 93% 10.7M 4s\n", - "491300K .......... .......... .......... .......... .......... 93% 12.5M 4s\n", - "491350K .......... .......... .......... .......... .......... 93% 10.6M 4s\n", - "491400K .......... .......... .......... .......... .......... 93% 8.88M 4s\n", - "491450K .......... .......... .......... .......... .......... 93% 11.0M 4s\n", - "491500K .......... .......... .......... .......... .......... 93% 11.9M 4s\n", - "491550K .......... .......... .......... .......... .......... 93% 11.3M 4s\n", - "491600K .......... .......... .......... .......... .......... 93% 11.3M 4s\n", - "491650K .......... .......... .......... .......... .......... 93% 11.9M 4s\n", - "491700K .......... .......... .......... .......... .......... 93% 11.6M 4s\n", - "491750K .......... .......... .......... .......... .......... 93% 11.2M 4s\n", - "491800K .......... .......... .......... .......... .......... 93% 8.72M 4s\n", - "491850K .......... .......... .......... .......... .......... 93% 11.7M 4s\n", - "491900K .......... .......... .......... .......... .......... 93% 11.0M 4s\n", - "491950K .......... .......... .......... .......... .......... 93% 11.7M 4s\n", - "492000K .......... .......... .......... .......... .......... 93% 11.2M 4s\n", - "492050K .......... .......... .......... .......... .......... 93% 11.8M 4s\n", - "492100K .......... .......... .......... .......... .......... 93% 10.5M 4s\n", - "492150K .......... .......... .......... .......... .......... 93% 11.2M 4s\n", - "492200K .......... .......... .......... .......... .......... 93% 8.41M 4s\n", - "492250K .......... .......... .......... .......... .......... 93% 12.3M 4s\n", - "492300K .......... .......... .......... .......... .......... 93% 11.9M 4s\n", - "492350K .......... .......... .......... .......... .......... 93% 11.9M 4s\n", - "492400K .......... .......... .......... .......... .......... 93% 10.4M 4s\n", - "492450K .......... .......... .......... .......... .......... 93% 11.4M 4s\n", - "492500K .......... .......... .......... .......... .......... 93% 11.4M 4s\n", - "492550K .......... .......... .......... .......... .......... 93% 11.6M 4s\n", - "492600K .......... .......... .......... .......... .......... 93% 8.59M 4s\n", - "492650K .......... .......... .......... .......... .......... 93% 11.7M 4s\n", - "492700K .......... .......... .......... .......... .......... 93% 10.5M 4s\n", - "492750K .......... .......... .......... .......... .......... 93% 12.0M 4s\n", - "492800K .......... .......... .......... .......... .......... 93% 11.6M 4s\n", - "492850K .......... .......... .......... .......... .......... 93% 11.3M 4s\n", - "492900K .......... .......... .......... .......... .......... 93% 11.2M 4s\n", - "492950K .......... .......... .......... .......... .......... 93% 11.0M 4s\n", - "493000K .......... .......... .......... .......... .......... 93% 9.24M 4s\n", - "493050K .......... .......... .......... .......... .......... 93% 11.7M 4s\n", - "493100K .......... .......... .......... .......... .......... 93% 11.5M 4s\n", - "493150K .......... .......... .......... .......... .......... 93% 10.5M 4s\n", - "493200K .......... .......... .......... .......... .......... 94% 12.2M 4s\n", - "493250K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "493300K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "493350K .......... .......... .......... .......... .......... 94% 8.66M 4s\n", - "493400K .......... .......... .......... .......... .......... 94% 10.3M 4s\n", - "493450K .......... .......... .......... .......... .......... 94% 13.4M 4s\n", - "493500K .......... .......... .......... .......... .......... 94% 10.8M 4s\n", - "493550K .......... .......... .......... .......... .......... 94% 12.1M 4s\n", - "493600K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "493650K .......... .......... .......... .......... .......... 94% 10.7M 4s\n", - "493700K .......... .......... .......... .......... .......... 94% 11.3M 4s\n", - "493750K .......... .......... .......... .......... .......... 94% 12.4M 4s\n", - "493800K .......... .......... .......... .......... .......... 94% 8.48M 4s\n", - "493850K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "493900K .......... .......... .......... .......... .......... 94% 10.7M 4s\n", - "493950K .......... .......... .......... .......... .......... 94% 12.0M 4s\n", - "494000K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "494050K .......... .......... .......... .......... .......... 94% 11.4M 4s\n", - "494100K .......... .......... .......... .......... .......... 94% 11.3M 4s\n", - "494150K .......... .......... .......... .......... .......... 94% 11.4M 4s\n", - "494200K .......... .......... .......... .......... .......... 94% 8.25M 4s\n", - "494250K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "494300K .......... .......... .......... .......... .......... 94% 12.1M 4s\n", - "494350K .......... .......... .......... .......... .......... 94% 11.3M 4s\n", - "494400K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "494450K .......... .......... .......... .......... .......... 94% 11.7M 4s\n", - "494500K .......... .......... .......... .......... .......... 94% 7.93M 4s\n", - "494550K .......... .......... .......... .......... .......... 94% 17.2M 4s\n", - "494600K .......... .......... .......... .......... .......... 94% 9.06M 4s\n", - "494650K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "494700K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "494750K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "494800K .......... .......... .......... .......... .......... 94% 12.1M 4s\n", - "494850K .......... .......... .......... .......... .......... 94% 11.0M 4s\n", - "494900K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "494950K .......... .......... .......... .......... .......... 94% 11.2M 4s\n", - "495000K .......... .......... .......... .......... .......... 94% 8.98M 4s\n", - "495050K .......... .......... .......... .......... .......... 94% 10.9M 4s\n", - "495100K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "495150K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "495200K .......... .......... .......... .......... .......... 94% 11.2M 4s\n", - "495250K .......... .......... .......... .......... .......... 94% 11.2M 4s\n", - "495300K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "495350K .......... .......... .......... .......... .......... 94% 10.5M 4s\n", - "495400K .......... .......... .......... .......... .......... 94% 8.84M 4s\n", - "495450K .......... .......... .......... .......... .......... 94% 11.0M 4s\n", - "495500K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "495550K .......... .......... .......... .......... .......... 94% 11.4M 4s\n", - "495600K .......... .......... .......... .......... .......... 94% 11.3M 4s\n", - "495650K .......... .......... .......... .......... .......... 94% 10.7M 4s\n", - "495700K .......... .......... .......... .......... .......... 94% 12.2M 4s\n", - "495750K .......... .......... .......... .......... .......... 94% 12.8M 4s\n", - "495800K .......... .......... .......... .......... .......... 94% 8.23M 4s\n", - "495850K .......... .......... .......... .......... .......... 94% 11.2M 4s\n", - "495900K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "495950K .......... .......... .......... .......... .......... 94% 11.2M 4s\n", - "496000K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "496050K .......... .......... .......... .......... .......... 94% 10.6M 4s\n", - "496100K .......... .......... .......... .......... .......... 94% 8.05M 4s\n", - "496150K .......... .......... .......... .......... .......... 94% 14.8M 4s\n", - "496200K .......... .......... .......... .......... .......... 94% 8.72M 4s\n", - "496250K .......... .......... .......... .......... .......... 94% 12.3M 4s\n", - "496300K .......... .......... .......... .......... .......... 94% 15.1M 4s\n", - "496350K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "496400K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "496450K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "496500K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "496550K .......... .......... .......... .......... .......... 94% 7.41M 4s\n", - "496600K .......... .......... .......... .......... .......... 94% 14.7M 4s\n", - "496650K .......... .......... .......... .......... .......... 94% 10.8M 4s\n", - "496700K .......... .......... .......... .......... .......... 94% 11.3M 4s\n", - "496750K .......... .......... .......... .......... .......... 94% 11.7M 4s\n", - "496800K .......... .......... .......... .......... .......... 94% 10.0M 4s\n", - "496850K .......... .......... .......... .......... .......... 94% 12.7M 4s\n", - "496900K .......... .......... .......... .......... .......... 94% 11.9M 4s\n", - "496950K .......... .......... .......... .......... .......... 94% 11.7M 4s\n", - "497000K .......... .......... .......... .......... .......... 94% 8.06M 4s\n", - "497050K .......... .......... .......... .......... .......... 94% 12.0M 4s\n", - "497100K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "497150K .......... .......... .......... .......... .......... 94% 12.4M 4s\n", - "497200K .......... .......... .......... .......... .......... 94% 10.4M 4s\n", - "497250K .......... .......... .......... .......... .......... 94% 12.3M 4s\n", - "497300K .......... .......... .......... .......... .......... 94% 10.6M 4s\n", - "497350K .......... .......... .......... .......... .......... 94% 10.8M 4s\n", - "497400K .......... .......... .......... .......... .......... 94% 9.13M 4s\n", - "497450K .......... .......... .......... .......... .......... 94% 12.1M 4s\n", - "497500K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "497550K .......... .......... .......... .......... .......... 94% 11.1M 4s\n", - "497600K .......... .......... .......... .......... .......... 94% 11.0M 4s\n", - "497650K .......... .......... .......... .......... .......... 94% 11.4M 4s\n", - "497700K .......... .......... .......... .......... .......... 94% 10.8M 4s\n", - "497750K .......... .......... .......... .......... .......... 94% 12.4M 4s\n", - "497800K .......... .......... .......... .......... .......... 94% 8.67M 4s\n", - "497850K .......... .......... .......... .......... .......... 94% 11.5M 4s\n", - "497900K .......... .......... .......... .......... .......... 94% 10.8M 4s\n", - "497950K .......... .......... .......... .......... .......... 94% 9.60M 4s\n", - "498000K .......... .......... .......... .......... .......... 94% 13.4M 4s\n", - "498050K .......... .......... .......... .......... .......... 94% 11.6M 4s\n", - "498100K .......... .......... .......... .......... .......... 94% 12.3M 4s\n", - "498150K .......... .......... .......... .......... .......... 94% 10.5M 4s\n", - "498200K .......... .......... .......... .......... .......... 94% 8.74M 4s\n", - "498250K .......... .......... .......... .......... .......... 94% 12.8M 3s\n", - "498300K .......... .......... .......... .......... .......... 94% 10.7M 3s\n", - "498350K .......... .......... .......... .......... .......... 94% 12.4M 3s\n", - "498400K .......... .......... .......... .......... .......... 94% 10.6M 3s\n", - "498450K .......... .......... .......... .......... .......... 95% 11.6M 3s\n", - "498500K .......... .......... .......... .......... .......... 95% 10.5M 3s\n", - "498550K .......... .......... .......... .......... .......... 95% 12.5M 3s\n", - "498600K .......... .......... .......... .......... .......... 95% 8.70M 3s\n", - "498650K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "498700K .......... .......... .......... .......... .......... 95% 10.9M 3s\n", - "498750K .......... .......... .......... .......... .......... 95% 11.1M 3s\n", - "498800K .......... .......... .......... .......... .......... 95% 8.02M 3s\n", - "498850K .......... .......... .......... .......... .......... 95% 20.8M 3s\n", - "498900K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "498950K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "499000K .......... .......... .......... .......... .......... 95% 8.94M 3s\n", - "499050K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "499100K .......... .......... .......... .......... .......... 95% 9.11M 3s\n", - "499150K .......... .......... .......... .......... .......... 95% 15.2M 3s\n", - "499200K .......... .......... .......... .......... .......... 95% 10.8M 3s\n", - "499250K .......... .......... .......... .......... .......... 95% 12.4M 3s\n", - "499300K .......... .......... .......... .......... .......... 95% 11.1M 3s\n", - "499350K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "499400K .......... .......... .......... .......... .......... 95% 8.89M 3s\n", - "499450K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "499500K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "499550K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "499600K .......... .......... .......... .......... .......... 95% 11.9M 3s\n", - "499650K .......... .......... .......... .......... .......... 95% 11.5M 3s\n", - "499700K .......... .......... .......... .......... .......... 95% 11.6M 3s\n", - "499750K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "499800K .......... .......... .......... .......... .......... 95% 8.46M 3s\n", - "499850K .......... .......... .......... .......... .......... 95% 11.1M 3s\n", - "499900K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "499950K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "500000K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "500050K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "500100K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "500150K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "500200K .......... .......... .......... .......... .......... 95% 8.59M 3s\n", - "500250K .......... .......... .......... .......... .......... 95% 9.02M 3s\n", - "500300K .......... .......... .......... .......... .......... 95% 13.8M 3s\n", - "500350K .......... .......... .......... .......... .......... 95% 11.7M 3s\n", - "500400K .......... .......... .......... .......... .......... 95% 11.1M 3s\n", - "500450K .......... .......... .......... .......... .......... 95% 12.0M 3s\n", - "500500K .......... .......... .......... .......... .......... 95% 11.5M 3s\n", - "500550K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "500600K .......... .......... .......... .......... .......... 95% 8.34M 3s\n", - "500650K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "500700K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "500750K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "500800K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "500850K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "500900K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "500950K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "501000K .......... .......... .......... .......... .......... 95% 8.70M 3s\n", - "501050K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "501100K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "501150K .......... .......... .......... .......... .......... 95% 11.7M 3s\n", - "501200K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "501250K .......... .......... .......... .......... .......... 95% 11.6M 3s\n", - "501300K .......... .......... .......... .......... .......... 95% 10.9M 3s\n", - "501350K .......... .......... .......... .......... .......... 95% 11.5M 3s\n", - "501400K .......... .......... .......... .......... .......... 95% 6.74M 3s\n", - "501450K .......... .......... .......... .......... .......... 95% 19.7M 3s\n", - "501500K .......... .......... .......... .......... .......... 95% 10.5M 3s\n", - "501550K .......... .......... .......... .......... .......... 95% 10.6M 3s\n", - "501600K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "501650K .......... .......... .......... .......... .......... 95% 11.9M 3s\n", - "501700K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "501750K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "501800K .......... .......... .......... .......... .......... 95% 8.00M 3s\n", - "501850K .......... .......... .......... .......... .......... 95% 12.5M 3s\n", - "501900K .......... .......... .......... .......... .......... 95% 11.5M 3s\n", - "501950K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "502000K .......... .......... .......... .......... .......... 95% 10.6M 3s\n", - "502050K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "502100K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "502150K .......... .......... .......... .......... .......... 95% 11.6M 3s\n", - "502200K .......... .......... .......... .......... .......... 95% 8.46M 3s\n", - "502250K .......... .......... .......... .......... .......... 95% 12.1M 3s\n", - "502300K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "502350K .......... .......... .......... .......... .......... 95% 10.9M 3s\n", - "502400K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "502450K .......... .......... .......... .......... .......... 95% 11.9M 3s\n", - "502500K .......... .......... .......... .......... .......... 95% 11.1M 3s\n", - "502550K .......... .......... .......... .......... .......... 95% 12.3M 3s\n", - "502600K .......... .......... .......... .......... .......... 95% 7.47M 3s\n", - "502650K .......... .......... .......... .......... .......... 95% 13.3M 3s\n", - "502700K .......... .......... .......... .......... .......... 95% 11.6M 3s\n", - "502750K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "502800K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "502850K .......... .......... .......... .......... .......... 95% 10.7M 3s\n", - "502900K .......... .......... .......... .......... .......... 95% 12.0M 3s\n", - "502950K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "503000K .......... .......... .......... .......... .......... 95% 8.81M 3s\n", - "503050K .......... .......... .......... .......... .......... 95% 11.7M 3s\n", - "503100K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "503150K .......... .......... .......... .......... .......... 95% 11.0M 3s\n", - "503200K .......... .......... .......... .......... .......... 95% 12.3M 3s\n", - "503250K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "503300K .......... .......... .......... .......... .......... 95% 10.7M 3s\n", - "503350K .......... .......... .......... .......... .......... 95% 12.6M 3s\n", - "503400K .......... .......... .......... .......... .......... 95% 8.56M 3s\n", - "503450K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "503500K .......... .......... .......... .......... .......... 95% 11.2M 3s\n", - "503550K .......... .......... .......... .......... .......... 95% 11.3M 3s\n", - "503600K .......... .......... .......... .......... .......... 95% 11.4M 3s\n", - "503650K .......... .......... .......... .......... .......... 95% 11.8M 3s\n", - "503700K .......... .......... .......... .......... .......... 96% 7.25M 3s\n", - "503750K .......... .......... .......... .......... .......... 96% 22.1M 3s\n", - "503800K .......... .......... .......... .......... .......... 96% 9.07M 3s\n", - "503850K .......... .......... .......... .......... .......... 96% 10.7M 3s\n", - "503900K .......... .......... .......... .......... .......... 96% 12.5M 3s\n", - "503950K .......... .......... .......... .......... .......... 96% 11.3M 3s\n", - "504000K .......... .......... .......... .......... .......... 96% 11.6M 3s\n", - "504050K .......... .......... .......... .......... .......... 96% 11.4M 3s\n", - "504100K .......... .......... .......... .......... .......... 96% 11.3M 3s\n", - "504150K .......... .......... .......... .......... .......... 96% 11.7M 3s\n", - "504200K .......... .......... .......... .......... .......... 96% 8.16M 3s\n", - "504250K .......... .......... .......... .......... .......... 96% 12.0M 3s\n", - "504300K .......... .......... .......... .......... .......... 96% 11.3M 3s\n", - "504350K .......... .......... .......... .......... .......... 96% 11.3M 3s\n", - "504400K .......... .......... .......... .......... .......... 96% 12.0M 3s\n", - "504450K .......... .......... .......... .......... .......... 96% 11.5M 3s\n", - "504500K .......... .......... .......... .......... .......... 96% 11.8M 3s\n", - "504550K .......... .......... .......... .......... .......... 96% 10.7M 3s\n", - "504600K .......... .......... .......... .......... .......... 96% 6.03M 3s\n", - "504650K .......... .......... .......... .......... .......... 96% 23.5M 3s\n", - "504700K .......... .......... .......... .......... .......... 96% 8.71M 3s\n", - "504750K .......... .......... .......... .......... .......... 96% 16.4M 3s\n", - "504800K .......... .......... .......... .......... .......... 96% 12.0M 3s\n", - "504850K .......... .......... .......... .......... .......... 96% 9.45M 3s\n", - "504900K .......... .......... .......... .......... .......... 96% 13.5M 3s\n", - "504950K .......... .......... .......... .......... .......... 96% 7.99M 3s\n", - "505000K .......... .......... .......... .......... .......... 96% 8.26M 3s\n", - "505050K .......... .......... .......... .......... .......... 96% 11.6M 3s\n", - "505100K .......... .......... .......... .......... .......... 96% 12.0M 3s\n", - "505150K .......... .......... .......... .......... .......... 96% 10.7M 3s\n", - "505200K .......... .......... .......... .......... .......... 96% 10.5M 3s\n", - "505250K .......... .......... .......... .......... .......... 96% 13.4M 3s\n", - "505300K .......... .......... .......... .......... .......... 96% 10.4M 3s\n", - "505350K .......... .......... .......... .......... .......... 96% 11.7M 3s\n", - "505400K .......... .......... .......... .......... .......... 96% 8.46M 3s\n", - "505450K .......... .......... .......... .......... .......... 96% 11.7M 3s\n", - "505500K .......... .......... .......... .......... .......... 96% 12.4M 3s\n", - "505550K .......... .......... .......... .......... .......... 96% 11.4M 3s\n", - "505600K .......... .......... .......... .......... .......... 96% 11.3M 3s\n", - "505650K .......... .......... .......... .......... .......... 96% 10.6M 3s\n", - "505700K .......... .......... .......... .......... .......... 96% 11.5M 2s\n", - "505750K .......... .......... .......... .......... .......... 96% 10.2M 2s\n", - "505800K .......... .......... .......... .......... .......... 96% 9.65M 2s\n", - "505850K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "505900K .......... .......... .......... .......... .......... 96% 10.3M 2s\n", - "505950K .......... .......... .......... .......... .......... 96% 13.2M 2s\n", - "506000K .......... .......... .......... .......... .......... 96% 8.68M 2s\n", - "506050K .......... .......... .......... .......... .......... 96% 13.5M 2s\n", - "506100K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "506150K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "506200K .......... .......... .......... .......... .......... 96% 8.81M 2s\n", - "506250K .......... .......... .......... .......... .......... 96% 11.3M 2s\n", - "506300K .......... .......... .......... .......... .......... 96% 12.2M 2s\n", - "506350K .......... .......... .......... .......... .......... 96% 11.0M 2s\n", - "506400K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "506450K .......... .......... .......... .......... .......... 96% 10.9M 2s\n", - "506500K .......... .......... .......... .......... .......... 96% 12.1M 2s\n", - "506550K .......... .......... .......... .......... .......... 96% 10.6M 2s\n", - "506600K .......... .......... .......... .......... .......... 96% 9.30M 2s\n", - "506650K .......... .......... .......... .......... .......... 96% 10.8M 2s\n", - "506700K .......... .......... .......... .......... .......... 96% 11.1M 2s\n", - "506750K .......... .......... .......... .......... .......... 96% 11.4M 2s\n", - "506800K .......... .......... .......... .......... .......... 96% 11.9M 2s\n", - "506850K .......... .......... .......... .......... .......... 96% 12.2M 2s\n", - "506900K .......... .......... .......... .......... .......... 96% 10.4M 2s\n", - "506950K .......... .......... .......... .......... .......... 96% 10.8M 2s\n", - "507000K .......... .......... .......... .......... .......... 96% 9.32M 2s\n", - "507050K .......... .......... .......... .......... .......... 96% 6.35M 2s\n", - "507100K .......... .......... .......... .......... .......... 96% 23.2M 2s\n", - "507150K .......... .......... .......... .......... .......... 96% 14.1M 2s\n", - "507200K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "507250K .......... .......... .......... .......... .......... 96% 10.9M 2s\n", - "507300K .......... .......... .......... .......... .......... 96% 12.2M 2s\n", - "507350K .......... .......... .......... .......... .......... 96% 11.4M 2s\n", - "507400K .......... .......... .......... .......... .......... 96% 9.11M 2s\n", - "507450K .......... .......... .......... .......... .......... 96% 11.7M 2s\n", - "507500K .......... .......... .......... .......... .......... 96% 11.0M 2s\n", - "507550K .......... .......... .......... .......... .......... 96% 11.7M 2s\n", - "507600K .......... .......... .......... .......... .......... 96% 10.3M 2s\n", - "507650K .......... .......... .......... .......... .......... 96% 11.8M 2s\n", - "507700K .......... .......... .......... .......... .......... 96% 11.2M 2s\n", - "507750K .......... .......... .......... .......... .......... 96% 11.6M 2s\n", - "507800K .......... .......... .......... .......... .......... 96% 9.10M 2s\n", - "507850K .......... .......... .......... .......... .......... 96% 10.8M 2s\n", - "507900K .......... .......... .......... .......... .......... 96% 11.1M 2s\n", - "507950K .......... .......... .......... .......... .......... 96% 12.1M 2s\n", - "508000K .......... .......... .......... .......... .......... 96% 10.5M 2s\n", - "508050K .......... .......... .......... .......... .......... 96% 12.6M 2s\n", - "508100K .......... .......... .......... .......... .......... 96% 11.5M 2s\n", - "508150K .......... .......... .......... .......... .......... 96% 10.8M 2s\n", - "508200K .......... .......... .......... .......... .......... 96% 8.31M 2s\n", - "508250K .......... .......... .......... .......... .......... 96% 11.9M 2s\n", - "508300K .......... .......... .......... .......... .......... 96% 12.3M 2s\n", - "508350K .......... .......... .......... .......... .......... 96% 11.2M 2s\n", - "508400K .......... .......... .......... .......... .......... 96% 11.0M 2s\n", - "508450K .......... .......... .......... .......... .......... 96% 11.9M 2s\n", - "508500K .......... .......... .......... .......... .......... 96% 10.6M 2s\n", - "508550K .......... .......... .......... .......... .......... 96% 11.9M 2s\n", - "508600K .......... .......... .......... .......... .......... 96% 8.99M 2s\n", - "508650K .......... .......... .......... .......... .......... 96% 11.0M 2s\n", - "508700K .......... .......... .......... .......... .......... 96% 11.6M 2s\n", - "508750K .......... .......... .......... .......... .......... 96% 11.5M 2s\n", - "508800K .......... .......... .......... .......... .......... 96% 10.5M 2s\n", - "508850K .......... .......... .......... .......... .......... 96% 12.8M 2s\n", - "508900K .......... .......... .......... .......... .......... 96% 11.5M 2s\n", - "508950K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "509000K .......... .......... .......... .......... .......... 97% 8.61M 2s\n", - "509050K .......... .......... .......... .......... .......... 97% 11.2M 2s\n", - "509100K .......... .......... .......... .......... .......... 97% 11.8M 2s\n", - "509150K .......... .......... .......... .......... .......... 97% 11.6M 2s\n", - "509200K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "509250K .......... .......... .......... .......... .......... 97% 11.9M 2s\n", - "509300K .......... .......... .......... .......... .......... 97% 10.7M 2s\n", - "509350K .......... .......... .......... .......... .......... 97% 11.2M 2s\n", - "509400K .......... .......... .......... .......... .......... 97% 9.14M 2s\n", - "509450K .......... .......... .......... .......... .......... 97% 9.20M 2s\n", - "509500K .......... .......... .......... .......... .......... 97% 13.6M 2s\n", - "509550K .......... .......... .......... .......... .......... 97% 12.4M 2s\n", - "509600K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "509650K .......... .......... .......... .......... .......... 97% 9.47M 2s\n", - "509700K .......... .......... .......... .......... .......... 97% 15.2M 2s\n", - "509750K .......... .......... .......... .......... .......... 97% 11.3M 2s\n", - "509800K .......... .......... .......... .......... .......... 97% 6.49M 2s\n", - "509850K .......... .......... .......... .......... .......... 97% 17.5M 2s\n", - "509900K .......... .......... .......... .......... .......... 97% 13.0M 2s\n", - "509950K .......... .......... .......... .......... .......... 97% 10.7M 2s\n", - "510000K .......... .......... .......... .......... .......... 97% 11.8M 2s\n", - "510050K .......... .......... .......... .......... .......... 97% 10.2M 2s\n", - "510100K .......... .......... .......... .......... .......... 97% 12.5M 2s\n", - "510150K .......... .......... .......... .......... .......... 97% 12.2M 2s\n", - "510200K .......... .......... .......... .......... .......... 97% 8.27M 2s\n", - "510250K .......... .......... .......... .......... .......... 97% 9.49M 2s\n", - "510300K .......... .......... .......... .......... .......... 97% 14.7M 2s\n", - "510350K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "510400K .......... .......... .......... .......... .......... 97% 10.6M 2s\n", - "510450K .......... .......... .......... .......... .......... 97% 12.6M 2s\n", - "510500K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "510550K .......... .......... .......... .......... .......... 97% 11.4M 2s\n", - "510600K .......... .......... .......... .......... .......... 97% 8.46M 2s\n", - "510650K .......... .......... .......... .......... .......... 97% 11.9M 2s\n", - "510700K .......... .......... .......... .......... .......... 97% 11.1M 2s\n", - "510750K .......... .......... .......... .......... .......... 97% 12.3M 2s\n", - "510800K .......... .......... .......... .......... .......... 97% 10.7M 2s\n", - "510850K .......... .......... .......... .......... .......... 97% 11.6M 2s\n", - "510900K .......... .......... .......... .......... .......... 97% 12.1M 2s\n", - "510950K .......... .......... .......... .......... .......... 97% 10.9M 2s\n", - "511000K .......... .......... .......... .......... .......... 97% 8.89M 2s\n", - "511050K .......... .......... .......... .......... .......... 97% 10.6M 2s\n", - "511100K .......... .......... .......... .......... .......... 97% 11.7M 2s\n", - "511150K .......... .......... .......... .......... .......... 97% 11.2M 2s\n", - "511200K .......... .......... .......... .......... .......... 97% 11.4M 2s\n", - "511250K .......... .......... .......... .......... .......... 97% 11.7M 2s\n", - "511300K .......... .......... .......... .......... .......... 97% 10.7M 2s\n", - "511350K .......... .......... .......... .......... .......... 97% 12.5M 2s\n", - "511400K .......... .......... .......... .......... .......... 97% 8.50M 2s\n", - "511450K .......... .......... .......... .......... .......... 97% 10.6M 2s\n", - "511500K .......... .......... .......... .......... .......... 97% 11.8M 2s\n", - "511550K .......... .......... .......... .......... .......... 97% 12.3M 2s\n", - "511600K .......... .......... .......... .......... .......... 97% 11.1M 2s\n", - "511650K .......... .......... .......... .......... .......... 97% 10.3M 2s\n", - "511700K .......... .......... .......... .......... .......... 97% 11.9M 2s\n", - "511750K .......... .......... .......... .......... .......... 97% 12.3M 2s\n", - "511800K .......... .......... .......... .......... .......... 97% 7.83M 2s\n", - "511850K .......... .......... .......... .......... .......... 97% 13.3M 2s\n", - "511900K .......... .......... .......... .......... .......... 97% 11.1M 2s\n", - "511950K .......... .......... .......... .......... .......... 97% 10.9M 2s\n", - "512000K .......... .......... .......... .......... .......... 97% 11.6M 2s\n", - "512050K .......... .......... .......... .......... .......... 97% 9.87M 2s\n", - "512100K .......... .......... .......... .......... .......... 97% 10.7M 2s\n", - "512150K .......... .......... .......... .......... .......... 97% 14.2M 2s\n", - "512200K .......... .......... .......... .......... .......... 97% 8.57M 2s\n", - "512250K .......... .......... .......... .......... .......... 97% 10.2M 2s\n", - "512300K .......... .......... .......... .......... .......... 97% 11.7M 2s\n", - "512350K .......... .......... .......... .......... .......... 97% 10.5M 2s\n", - "512400K .......... .......... .......... .......... .......... 97% 9.51M 2s\n", - "512450K .......... .......... .......... .......... .......... 97% 19.6M 2s\n", - "512500K .......... .......... .......... .......... .......... 97% 11.4M 2s\n", - "512550K .......... .......... .......... .......... .......... 97% 3.64M 2s\n", - "512600K .......... .......... .......... .......... .......... 97% 59.9M 2s\n", - "512650K .......... .......... .......... .......... .......... 97% 70.8M 2s\n", - "512700K .......... .......... .......... .......... .......... 97% 9.82M 2s\n", - "512750K .......... .......... .......... .......... .......... 97% 11.1M 2s\n", - "512800K .......... .......... .......... .......... .......... 97% 16.2M 2s\n", - "512850K .......... .......... .......... .......... .......... 97% 11.0M 2s\n", - "512900K .......... .......... .......... .......... .......... 97% 11.2M 2s\n", - "512950K .......... .......... .......... .......... .......... 97% 12.9M 2s\n", - "513000K .......... .......... .......... .......... .......... 97% 8.58M 2s\n", - "513050K .......... .......... .......... .......... .......... 97% 12.7M 2s\n", - "513100K .......... .......... .......... .......... .......... 97% 8.73M 2s\n", - "513150K .......... .......... .......... .......... .......... 97% 14.6M 2s\n", - "513200K .......... .......... .......... .......... .......... 97% 12.2M 2s\n", - "513250K .......... .......... .......... .......... .......... 97% 11.1M 1s\n", - "513300K .......... .......... .......... .......... .......... 97% 9.54M 1s\n", - "513350K .......... .......... .......... .......... .......... 97% 14.7M 1s\n", - "513400K .......... .......... .......... .......... .......... 97% 8.68M 1s\n", - "513450K .......... .......... .......... .......... .......... 97% 10.2M 1s\n", - "513500K .......... .......... .......... .......... .......... 97% 10.9M 1s\n", - "513550K .......... .......... .......... .......... .......... 97% 11.2M 1s\n", - "513600K .......... .......... .......... .......... .......... 97% 13.1M 1s\n", - "513650K .......... .......... .......... .......... .......... 97% 12.2M 1s\n", - "513700K .......... .......... .......... .......... .......... 97% 10.4M 1s\n", - "513750K .......... .......... .......... .......... .......... 97% 10.4M 1s\n", - "513800K .......... .......... .......... .......... .......... 97% 9.43M 1s\n", - "513850K .......... .......... .......... .......... .......... 97% 10.5M 1s\n", - "513900K .......... .......... .......... .......... .......... 97% 13.1M 1s\n", - "513950K .......... .......... .......... .......... .......... 97% 9.30M 1s\n", - "514000K .......... .......... .......... .......... .......... 97% 13.2M 1s\n", - "514050K .......... .......... .......... .......... .......... 97% 11.1M 1s\n", - "514100K .......... .......... .......... .......... .......... 97% 12.3M 1s\n", - "514150K .......... .......... .......... .......... .......... 97% 12.5M 1s\n", - "514200K .......... .......... .......... .......... .......... 98% 7.81M 1s\n", - "514250K .......... .......... .......... .......... .......... 98% 11.9M 1s\n", - "514300K .......... .......... .......... .......... .......... 98% 11.3M 1s\n", - "514350K .......... .......... .......... .......... .......... 98% 12.6M 1s\n", - "514400K .......... .......... .......... .......... .......... 98% 7.47M 1s\n", - "514450K .......... .......... .......... .......... .......... 98% 23.2M 1s\n", - "514500K .......... .......... .......... .......... .......... 98% 11.1M 1s\n", - "514550K .......... .......... .......... .......... .......... 98% 10.9M 1s\n", - "514600K .......... .......... .......... .......... .......... 98% 8.00M 1s\n", - "514650K .......... .......... .......... .......... .......... 98% 14.0M 1s\n", - "514700K .......... .......... .......... .......... .......... 98% 11.0M 1s\n", - "514750K .......... .......... .......... .......... .......... 98% 11.1M 1s\n", - "514800K .......... .......... .......... .......... .......... 98% 11.1M 1s\n", - "514850K .......... .......... .......... .......... .......... 98% 11.8M 1s\n", - "514900K .......... .......... .......... .......... .......... 98% 12.1M 1s\n", - "514950K .......... .......... .......... .......... .......... 98% 10.2M 1s\n", - "515000K .......... .......... .......... .......... .......... 98% 8.36M 1s\n", - "515050K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "515100K .......... .......... .......... .......... .......... 98% 11.7M 1s\n", - "515150K .......... .......... .......... .......... .......... 98% 12.7M 1s\n", - "515200K .......... .......... .......... .......... .......... 98% 9.99M 1s\n", - "515250K .......... .......... .......... .......... .......... 98% 13.4M 1s\n", - "515300K .......... .......... .......... .......... .......... 98% 11.7M 1s\n", - "515350K .......... .......... .......... .......... .......... 98% 8.54M 1s\n", - "515400K .......... .......... .......... .......... .......... 98% 10.9M 1s\n", - "515450K .......... .......... .......... .......... .......... 98% 12.0M 1s\n", - "515500K .......... .......... .......... .......... .......... 98% 10.6M 1s\n", - "515550K .......... .......... .......... .......... .......... 98% 11.4M 1s\n", - "515600K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "515650K .......... .......... .......... .......... .......... 98% 13.2M 1s\n", - "515700K .......... .......... .......... .......... .......... 98% 10.8M 1s\n", - "515750K .......... .......... .......... .......... .......... 98% 10.1M 1s\n", - "515800K .......... .......... .......... .......... .......... 98% 9.60M 1s\n", - "515850K .......... .......... .......... .......... .......... 98% 11.0M 1s\n", - "515900K .......... .......... .......... .......... .......... 98% 10.7M 1s\n", - "515950K .......... .......... .......... .......... .......... 98% 13.5M 1s\n", - "516000K .......... .......... .......... .......... .......... 98% 10.2M 1s\n", - "516050K .......... .......... .......... .......... .......... 98% 11.6M 1s\n", - "516100K .......... .......... .......... .......... .......... 98% 9.21M 1s\n", - "516150K .......... .......... .......... .......... .......... 98% 16.4M 1s\n", - "516200K .......... .......... .......... .......... .......... 98% 8.13M 1s\n", - "516250K .......... .......... .......... .......... .......... 98% 10.6M 1s\n", - "516300K .......... .......... .......... .......... .......... 98% 13.5M 1s\n", - "516350K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "516400K .......... .......... .......... .......... .......... 98% 11.8M 1s\n", - "516450K .......... .......... .......... .......... .......... 98% 10.8M 1s\n", - "516500K .......... .......... .......... .......... .......... 98% 10.8M 1s\n", - "516550K .......... .......... .......... .......... .......... 98% 12.5M 1s\n", - "516600K .......... .......... .......... .......... .......... 98% 8.48M 1s\n", - "516650K .......... .......... .......... .......... .......... 98% 8.78M 1s\n", - "516700K .......... .......... .......... .......... .......... 98% 16.0M 1s\n", - "516750K .......... .......... .......... .......... .......... 98% 12.3M 1s\n", - "516800K .......... .......... .......... .......... .......... 98% 10.7M 1s\n", - "516850K .......... .......... .......... .......... .......... 98% 9.86M 1s\n", - "516900K .......... .......... .......... .......... .......... 98% 12.5M 1s\n", - "516950K .......... .......... .......... .......... .......... 98% 11.7M 1s\n", - "517000K .......... .......... .......... .......... .......... 98% 9.05M 1s\n", - "517050K .......... .......... .......... .......... .......... 98% 11.8M 1s\n", - "517100K .......... .......... .......... .......... .......... 98% 10.8M 1s\n", - "517150K .......... .......... .......... .......... .......... 98% 11.9M 1s\n", - "517200K .......... .......... .......... .......... .......... 98% 11.4M 1s\n", - "517250K .......... .......... .......... .......... .......... 98% 11.7M 1s\n", - "517300K .......... .......... .......... .......... .......... 98% 10.6M 1s\n", - "517350K .......... .......... .......... .......... .......... 98% 11.4M 1s\n", - "517400K .......... .......... .......... .......... .......... 98% 7.75M 1s\n", - "517450K .......... .......... .......... .......... .......... 98% 13.1M 1s\n", - "517500K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "517550K .......... .......... .......... .......... .......... 98% 11.3M 1s\n", - "517600K .......... .......... .......... .......... .......... 98% 11.0M 1s\n", - "517650K .......... .......... .......... .......... .......... 98% 12.5M 1s\n", - "517700K .......... .......... .......... .......... .......... 98% 11.3M 1s\n", - "517750K .......... .......... .......... .......... .......... 98% 12.7M 1s\n", - "517800K .......... .......... .......... .......... .......... 98% 7.83M 1s\n", - "517850K .......... .......... .......... .......... .......... 98% 12.6M 1s\n", - "517900K .......... .......... .......... .......... .......... 98% 6.24M 1s\n", - "517950K .......... .......... .......... .......... .......... 98% 29.0M 1s\n", - "518000K .......... .......... .......... .......... .......... 98% 13.4M 1s\n", - "518050K .......... .......... .......... .......... .......... 98% 10.6M 1s\n", - "518100K .......... .......... .......... .......... .......... 98% 12.5M 1s\n", - "518150K .......... .......... .......... .......... .......... 98% 11.6M 1s\n", - "518200K .......... .......... .......... .......... .......... 98% 8.38M 1s\n", - "518250K .......... .......... .......... .......... .......... 98% 11.8M 1s\n", - "518300K .......... .......... .......... .......... .......... 98% 10.9M 1s\n", - "518350K .......... .......... .......... .......... .......... 98% 12.6M 1s\n", - "518400K .......... .......... .......... .......... .......... 98% 10.0M 1s\n", - "518450K .......... .......... .......... .......... .......... 98% 12.0M 1s\n", - "518500K .......... .......... .......... .......... .......... 98% 12.0M 1s\n", - "518550K .......... .......... .......... .......... .......... 98% 10.6M 1s\n", - "518600K .......... .......... .......... .......... .......... 98% 8.49M 1s\n", - "518650K .......... .......... .......... .......... .......... 98% 12.1M 1s\n", - "518700K .......... .......... .......... .......... .......... 98% 11.1M 1s\n", - "518750K .......... .......... .......... .......... .......... 98% 12.8M 1s\n", - "518800K .......... .......... .......... .......... .......... 98% 10.7M 1s\n", - "518850K .......... .......... .......... .......... .......... 98% 11.4M 1s\n", - "518900K .......... .......... .......... .......... .......... 98% 10.5M 1s\n", - "518950K .......... .......... .......... .......... .......... 98% 12.7M 1s\n", - "519000K .......... .......... .......... .......... .......... 98% 8.85M 1s\n", - "519050K .......... .......... .......... .......... .......... 98% 10.8M 1s\n", - "519100K .......... .......... .......... .......... .......... 98% 9.73M 1s\n", - "519150K .......... .......... .......... .......... .......... 98% 14.2M 1s\n", - "519200K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "519250K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "519300K .......... .......... .......... .......... .......... 98% 11.4M 1s\n", - "519350K .......... .......... .......... .......... .......... 98% 11.2M 1s\n", - "519400K .......... .......... .......... .......... .......... 98% 9.10M 1s\n", - "519450K .......... .......... .......... .......... .......... 99% 9.80M 1s\n", - "519500K .......... .......... .......... .......... .......... 99% 13.9M 1s\n", - "519550K .......... .......... .......... .......... .......... 99% 10.6M 1s\n", - "519600K .......... .......... .......... .......... .......... 99% 11.8M 1s\n", - "519650K .......... .......... .......... .......... .......... 99% 10.7M 1s\n", - "519700K .......... .......... .......... .......... .......... 99% 12.7M 1s\n", - "519750K .......... .......... .......... .......... .......... 99% 11.4M 1s\n", - "519800K .......... .......... .......... .......... .......... 99% 8.40M 1s\n", - "519850K .......... .......... .......... .......... .......... 99% 11.3M 1s\n", - "519900K .......... .......... .......... .......... .......... 99% 11.3M 1s\n", - "519950K .......... .......... .......... .......... .......... 99% 12.3M 1s\n", - "520000K .......... .......... .......... .......... .......... 99% 11.2M 1s\n", - "520050K .......... .......... .......... .......... .......... 99% 11.0M 1s\n", - "520100K .......... .......... .......... .......... .......... 99% 10.9M 1s\n", - "520150K .......... .......... .......... .......... .......... 99% 11.6M 1s\n", - "520200K .......... .......... .......... .......... .......... 99% 8.97M 1s\n", - "520250K .......... .......... .......... .......... .......... 99% 11.2M 1s\n", - "520300K .......... .......... .......... .......... .......... 99% 11.2M 1s\n", - "520350K .......... .......... .......... .......... .......... 99% 11.5M 1s\n", - "520400K .......... .......... .......... .......... .......... 99% 10.8M 1s\n", - "520450K .......... .......... .......... .......... .......... 99% 11.9M 1s\n", - "520500K .......... .......... .......... .......... .......... 99% 11.4M 1s\n", - "520550K .......... .......... .......... .......... .......... 99% 11.7M 1s\n", - "520600K .......... .......... .......... .......... .......... 99% 8.40M 1s\n", - "520650K .......... .......... .......... .......... .......... 99% 11.7M 1s\n", - "520700K .......... .......... .......... .......... .......... 99% 11.6M 1s\n", - "520750K .......... .......... .......... .......... .......... 99% 10.3M 1s\n", - "520800K .......... .......... .......... .......... .......... 99% 12.3M 1s\n", - "520850K .......... .......... .......... .......... .......... 99% 9.47M 0s\n", - "520900K .......... .......... .......... .......... .......... 99% 13.9M 0s\n", - "520950K .......... .......... .......... .......... .......... 99% 8.68M 0s\n", - "521000K .......... .......... .......... .......... .......... 99% 11.2M 0s\n", - "521050K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "521100K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "521150K .......... .......... .......... .......... .......... 99% 11.1M 0s\n", - "521200K .......... .......... .......... .......... .......... 99% 11.2M 0s\n", - "521250K .......... .......... .......... .......... .......... 99% 12.4M 0s\n", - "521300K .......... .......... .......... .......... .......... 99% 11.1M 0s\n", - "521350K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "521400K .......... .......... .......... .......... .......... 99% 8.47M 0s\n", - "521450K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "521500K .......... .......... .......... .......... .......... 99% 10.9M 0s\n", - "521550K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "521600K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "521650K .......... .......... .......... .......... .......... 99% 11.9M 0s\n", - "521700K .......... .......... .......... .......... .......... 99% 11.6M 0s\n", - "521750K .......... .......... .......... .......... .......... 99% 9.84M 0s\n", - "521800K .......... .......... .......... .......... .......... 99% 9.66M 0s\n", - "521850K .......... .......... .......... .......... .......... 99% 11.6M 0s\n", - "521900K .......... .......... .......... .......... .......... 99% 11.2M 0s\n", - "521950K .......... .......... .......... .......... .......... 99% 10.5M 0s\n", - "522000K .......... .......... .......... .......... .......... 99% 10.7M 0s\n", - "522050K .......... .......... .......... .......... .......... 99% 12.8M 0s\n", - "522100K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "522150K .......... .......... .......... .......... .......... 99% 11.4M 0s\n", - "522200K .......... .......... .......... .......... .......... 99% 8.74M 0s\n", - "522250K .......... .......... .......... .......... .......... 99% 11.9M 0s\n", - "522300K .......... .......... .......... .......... .......... 99% 10.7M 0s\n", - "522350K .......... .......... .......... .......... .......... 99% 11.9M 0s\n", - "522400K .......... .......... .......... .......... .......... 99% 10.7M 0s\n", - "522450K .......... .......... .......... .......... .......... 99% 12.1M 0s\n", - "522500K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "522550K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "522600K .......... .......... .......... .......... .......... 99% 7.55M 0s\n", - "522650K .......... .......... .......... .......... .......... 99% 12.6M 0s\n", - "522700K .......... .......... .......... .......... .......... 99% 12.9M 0s\n", - "522750K .......... .......... .......... .......... .......... 99% 10.7M 0s\n", - "522800K .......... .......... .......... .......... .......... 99% 7.95M 0s\n", - "522850K .......... .......... .......... .......... .......... 99% 17.6M 0s\n", - "522900K .......... .......... .......... .......... .......... 99% 12.6M 0s\n", - "522950K .......... .......... .......... .......... .......... 99% 10.5M 0s\n", - "523000K .......... .......... .......... .......... .......... 99% 9.00M 0s\n", - "523050K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "523100K .......... .......... .......... .......... .......... 99% 12.0M 0s\n", - "523150K .......... .......... .......... .......... .......... 99% 10.4M 0s\n", - "523200K .......... .......... .......... .......... .......... 99% 11.5M 0s\n", - "523250K .......... .......... .......... .......... .......... 99% 12.2M 0s\n", - "523300K .......... .......... .......... .......... .......... 99% 11.3M 0s\n", - "523350K .......... .......... .......... .......... .......... 99% 11.4M 0s\n", - "523400K .......... .......... .......... .......... .......... 99% 8.70M 0s\n", - "523450K .......... .......... .......... .......... .......... 99% 11.9M 0s\n", - "523500K .......... .......... .......... .......... .......... 99% 11.2M 0s\n", - "523550K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "523600K .......... .......... .......... .......... .......... 99% 10.4M 0s\n", - "523650K .......... .......... .......... .......... .......... 99% 12.3M 0s\n", - "523700K .......... .......... .......... .......... .......... 99% 11.6M 0s\n", - "523750K .......... .......... .......... .......... .......... 99% 10.8M 0s\n", - "523800K .......... .......... .......... .......... .......... 99% 8.45M 0s\n", - "523850K .......... .......... .......... .......... .......... 99% 11.2M 0s\n", - "523900K .......... .......... .......... .......... .......... 99% 11.6M 0s\n", - "523950K .......... .......... .......... .......... .......... 99% 11.4M 0s\n", - "524000K .......... .......... .......... .......... .......... 99% 10.1M 0s\n", - "524050K .......... .......... .......... .......... .......... 99% 13.7M 0s\n", - "524100K .......... .......... .......... .......... .......... 99% 11.0M 0s\n", - "524150K .......... .......... .......... .......... .......... 99% 10.8M 0s\n", - "524200K .......... .......... .......... .......... .......... 99% 9.30M 0s\n", - "524250K .......... .......... .......... .......... .......... 99% 11.7M 0s\n", - "524300K .......... .......... .......... .......... .......... 99% 10.5M 0s\n", - "524350K .......... .......... .......... .......... .......... 99% 12.2M 0s\n", - "524400K .......... .......... .......... .......... .......... 99% 11.9M 0s\n", - "524450K .......... .......... .......... .......... .......... 99% 10.5M 0s\n", - "524500K .......... .......... .......... .......... .......... 99% 12.1M 0s\n", - "524550K .......... .......... .......... .......... .......... 99% 11.3M 0s\n", - "524600K .......... .......... .......... .......... .......... 99% 8.25M 0s\n", - "524650K .......... .......... .......... .......... .......... 99% 13.9M 0s\n", - "524700K ......... 100% 440M=68s\n", - "\n", - "(7.50 MB/s) - '../assets/AudioCLIP-Full-Training.pt' saved [537302068/537302068]\n", - "\n" - ] - } - ], - "source": [ - "! wget -P ../assets/ https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/bpe_simple_vocab_16e6.txt.gz\n", - "! wget -P ../assets/ https://github.com/AndreyGuzhov/AudioCLIP/releases/download/v0.1/AudioCLIP-Full-Training.pt" - ] - }, - { - "cell_type": "markdown", - "id": "b7262c7e", - "metadata": {}, - "source": [ - "## Imports & Constants" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "70dbdf30", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "import glob\n", - "\n", - "import librosa\n", - "import librosa.display\n", - "\n", - "import simplejpeg\n", - "import numpy as np\n", - "\n", - "import torch\n", - "import torchvision as tv\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from PIL import Image\n", - "from IPython.display import Audio, display\n", - "\n", - "sys.path.append(os.path.abspath(f'{os.getcwd()}/..'))\n", - "\n", - "from model import AudioCLIP\n", - "from utils.transforms import ToTensor1D\n", - "\n", - "\n", - "torch.set_grad_enabled(False)\n", - "\n", - "MODEL_FILENAME = 'AudioCLIP-Full-Training.pt'\n", - "# derived from ESResNeXt\n", - "SAMPLE_RATE = 44100\n", - "# derived from CLIP\n", - "IMAGE_SIZE = 224\n", - "IMAGE_MEAN = 0.48145466, 0.4578275, 0.40821073\n", - "IMAGE_STD = 0.26862954, 0.26130258, 0.27577711\n", - "\n", - "LABELS = ['cat', 'thunderstorm', 'coughing', 'alarm clock', 'car horn']" - ] - }, - { - "cell_type": "markdown", - "id": "6a327cc6", - "metadata": {}, - "source": [ - "## Model Instantiation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f398f22f", - "metadata": {}, - "outputs": [], - "source": [ - "aclp = AudioCLIP(pretrained=f'../assets/{MODEL_FILENAME}')" - ] - }, - { - "cell_type": "markdown", - "id": "39421f88", - "metadata": {}, - "source": [ - "## Audio & Image Transforms" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "dd4d76b0", - "metadata": {}, - "outputs": [], - "source": [ - "audio_transforms = ToTensor1D()\n", - "\n", - "image_transforms = tv.transforms.Compose([\n", - " tv.transforms.ToTensor(),\n", - " tv.transforms.Resize(IMAGE_SIZE, interpolation=Image.BICUBIC),\n", - " tv.transforms.CenterCrop(IMAGE_SIZE),\n", - " tv.transforms.Normalize(IMAGE_MEAN, IMAGE_STD)\n", - "])" - ] - }, - { - "cell_type": "markdown", - "id": "1e5beab9", - "metadata": {}, - "source": [ - "## Audio Loading\n", - "Audio samples are drawn from the [ESC-50](https://github.com/karolpiczak/ESC-50) dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "5aaa79b8", - "metadata": {}, - "outputs": [], - "source": [ - "paths_to_audio = glob.glob('audio/*.wav')\n", - "\n", - "audio = list()\n", - "for path_to_audio in paths_to_audio:\n", - " track, _ = librosa.load(path_to_audio, sr=SAMPLE_RATE, dtype=np.float32)\n", - "\n", - " # compute spectrograms using trained audio-head (fbsp-layer of ESResNeXt)\n", - " # thus, the actual time-frequency representation will be visualized\n", - " spec = aclp.audio.spectrogram(torch.from_numpy(track.reshape(1, 1, -1)))\n", - " spec = np.ascontiguousarray(spec.numpy()).view(np.complex64)\n", - " pow_spec = 10 * np.log10(np.abs(spec) ** 2 + 1e-18).squeeze()\n", - "\n", - " audio.append((track, pow_spec))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "1b239d3f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABm0AAAHNCAYAAAD8Jj9PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd5hWxdXAfwd2QbC32BW7iSQxEXtU7CX2rpGIJYn5NH6aGHsUez6MLUYTNSIaS4xR7AVRsSuiRqOgKApIEQXp7MLuMt8fZ+5y37v3vm3fct93z+957rP7zp1y5pZzZ+bMnBHnHIZhGIZhGIZhGIZhGIZhGIZhGEZ16VZtAQzDMAzDMAzDMAzDMAzDMAzDMAwz2hiGYRiGYRiGYRiGYRiGYRiGYaQCM9oYhmEYhmEYhmEYhmEYhmEYhmGkADPaGIZhGIZhGIZhGIZhGIZhGIZhpAAz2hiGYRiGYRiGYRiGYRiGYRiGYaQAM9oYhmEYhmEYhmEYhmEYhmEYhmGkADPaGIZhGIZhGIZhGIZhGIZhGIZhpAAz2hiGYRiGYRiGYRiGYRiGYRiGYaQAM9oYhmEYhmEYhmEYhmEYhmEYhmGkADPalBAR6SMiTkQGVluWciAig0TElTH/oSIyvwT5bCUiT4rIJBFpEpFvReQNETm+gDy2FJFbfLoF/r72j4m3lohc4ePNEJG5IvKOiPxSRLrHxF9ORG4Qkaki0iwi/xGRY2LiDfVlRo+PI/E2E5E/+TJn+7q+JiJHZKnbwSLykpd1gYh8JCK/zPO6jIzI0yIiE0TkDhHZIM881hORYSLyuS9/joi8JyKni0hDJO6EhOvgRKQ5n/IMIwn/fD1RbTkKRUSWF5HBIjJcRL7x78OgAvM4RUQe8degSUQ+E5G/ishaOdKtISIzfZkd9EwBOi7pve6g5yLpvicii3y8foXU2ac/w6f9sNC0kXx6icg4n9fZkXN56zjDqCVEpLdoW7B/ken/LiIf+vZKk3+HrhGR1QrIYzMReUhEZonIQhF5S0QOiok3qJC2g4isJiI3ep24SESmi8jTIrJKJN62IvKsiMwTkfki8qKI7JRDZhGRl335f8m3rhHZitJ7IjIwi65ds1BZDKMeEZH+Se2amLhDRWRCBcTKJce6vr31ktepBY9BSJ79TR93TRH5i2/bNInIRNH+3/qReNG+YqLeEZEeInKZiHwhIot9nleLSK9InluLyM0i8l+ve6eLyAgR2b3Ayxbkd52XpaA+gBTY74+kPcWX2emxDqP2EJEdfbtkpUh46vqioXZDnwqX2+n+U7F6UbL062Li7hnSZx3aryJyuOh43LdehlEiMiAm3vIi8mcRmeLbeONE5JyoLpHS9Pujur5NRCaLyL9EpG8B+ZwpIg97ne1EZGSWuPv469Dk7+XjIrJlIXIbig0eGPXISsCXwP3AFGBZ4GfAP0Skj3Puijzy6AccArwHPA8cmBBva+DnwN3A5UALsB/wV2B74KRI/IeBbYDzgHHAccD9ItLNOXdfJG4TEG2MNkV+7w38FPgH8Db6Th8NPCgilzjnLgtHFpHzgCuBvwFXe3m3AHok1C+Oz9HriU/XF7gE2EtEtnDOLcyRfllgLnq9Jvk89gduArYCTgnFPRToGUm/PvAAMKwAmQ2jnlgV+CXwPvAIme9MvlwKvAhcgOrJzYE/AAeLyI+cc9MT0t0MZDOY5qvjdohJux1wAwnvtm/EDgFmAGtnkSEbgU7eUkS2c869VWQ+l6O6LI5CdJxh1BK90e89wMgi0i8L3AZ8huqRfsCFwP5e7yzOltgPILwBTANOBeYDvwYeEZEjnXMPxSTbF5gT+r0kJt+1gVeAVvS9/RRYDdiNUPtIRLYBXgZGAQMAAc4BnheR3ZxzbySIfhqwSba65WBASI6TgdFF5HEiEB2IndkJmQyjq3I5cGO1hUB1ys+A/wBPAccWmU/O/qaI9ER138roN2AM2m68FNhHRL7rnJvno/8PsEIkv97AM8A7zrmvQuH3o+2jy9B+7A7ARcCWQNgYfyywLdoGfB/9lpyK6t4TnHN351tZEWkEgomc+4rIOs65KXkmL7TfH5S5DvAnYCqwYr6yGnXFjui7MxSYXV1RUksp+k/F6sVs/bp2RGQ54Hb0Xe7QFxWRk4A7gIeAKwAHnADcLSKrOeeu9/EagOeAzdD+9zi0vfpHYF3gjFC2pej3Q6aub0Cv1UXA616H56MHTwUWAC+QPD6KiByM9ucfBQ5H9d4lwCsiso1zbnyRdeiaOOfsKNEB9EFfzIElyq8RaKh2vULyDNJHpmz5DwXmlzH/N4FJecbtFvr/CH9f+8fEWxlojAn/i0+zXihsfx92bCTucHTQtHuh1wIdVJCY8CdQhdozFLY10Aac04lrOBL4MCb8JF+3vTuR9wNo47dnjniX+LL2KNezYkftHkD3XM9QKO4E4Ikyy1NyPY4OFIr/fzX/PgwqMI/vxIT183ldlJDmcGAe2mF1wBGR83nruIT870QHVDdJOH82MBltyDqgX4F1Dur3hP97W5HXf1tgUejbcHae6fLScXbYkdajWH2TI89f+zx3zyPu39BO5zqhsO7oAOIkMttug3y+q+WR7yNet6ycI94zwFdA71DY8sA3wGsJafp4vXmol+cvRVyj/wLTUWPRbKBXAWkHFqMv7bCjKx1A/7h2TZqPiL4L2jcDC8xjKPn1N/f0+Z8cCT/Whx+aI/0J0fSokcMBv43EPd+H7xUKi2uzdkcHMT8rsM5B2y1oC15QQNq8+/2R848Dj+V7ve2ovwPtwzigTyR8AmXuixYh68A4WTuRX+9Ops+7/1SMXqSAfp1/199FjTwd2pjAq/6ehuUQYCzwfijsGJ/+sEj6W9Hxus0j6Tvb74/VPagRxwG/zDOfcL0+BEYmxPvY62cJhW3gr/O9lXye6+Ew92h5ICKbiMidIvKpqCuGKX551/dLlVaWLsseICLXisgU9KHeJLREcXcRuV3UNc1cEblbRJYVXa78L7/8bpqou6zGIuq5r4g875evLRSRsSJyfo403fwyvo/9sr6vvVzrlij/nUSXHz8hIjmt3zmYgc6izIlzrsNMzIR4s5xzLTGnRvm/4etwKDor9MFI3DtRS/12+ZQZKX+G81owpvzeQNitx+noM3VToeXkQTCLNe5a5Ms36IBtW1IEERF0tujnqIU/EVGXK3PCS0xF5Cb/Lv0+FLaqiCwRkd/438v4d/A/Pn3gXu/gSP7vicgrMeV29+/5w3nWu0siIluIyP2iLg4WibozvFtEeorI6qLuCceIup/5WkReEJGdI3kELinPEZGLROQL9BnfrUBZ9hWRd0WX737sZ8lE4/QVkUdFXfIEbr9OiMTJR4/vJuqGbIbX5Q+LzvLOG+cpJE1MHl/HBL+Dvn/rRU+Iugi6GZ0VPykh26J1nIgsDxwJvOSc+yzm/KboTMz/QWdhFcPJ/u95wOvAMSLSu5AMRKQHOtPzZgqf7Z6PjtvSPydHhsK29mEfReI+JiLvhH4fLbp0fpp/lseKyB/D307RZe1ORDrM+heR/xN1T5K3qyqjduiszhVd5fKN/3mJLHWxMLSTogV55tM+2wnt9LbPBnTOtQFPo3pr20IL9/U6CLjdOTcrj/JHutCKYqezy18GdpR495K3Ac8554paHSwi26Ermv+Bzu5cETWglx0ROc23j74TCvudv+83h8K6+W/jtaGwS0Rd130r2md5V0ROFhEJxXlE1B1Sh/6oT/tuOetnVJ5sesifz6etFeu6J9QG6x8KExG5wD9nzSIyWkT2EnXhNTJGxEYRuVLUxetcURdcm0fK6eAezZf7F9/+Gyvaz31fRA6IuQYHi8gHvv6fi8j/ShEuyPPtq5aIoH83JxIerBjI5bL6ZLR9+EAoLHAr+VQkbuAqql3PxbVZve5/h5g2ax6yLEb7k18CJ4b1UjYK7PcDIOqefVe0/ZoXIvJT/0xtEwo73Ic9GYn7gYg8FPp9mqg7zq9FXUz9V7Sf1BiKc4M/F10RhYg84N/PgseSjHhEXVld438GbqWiuiprXzRJR8TpQ/Eu13Ll6eNuL+rCqtnrvavRCYdx9Thalm4dMF/UVeyPInGG+nPfF+2TzEO91nSGnP2ngEL1ohTQrxNtE/8SXemSJEsLahxpl8P32eeSqSd3Qo0lT0fSP4FuYXJoOH1n+/1ZKGgML5/rKyKroisxnw7L7ZybiBp6DpEs7iTF2p4dMKNNfqyNuhA4D122dhrauXwr2pArQdqrUfdPp6JLzsKNlL+jL9Yx6HK749AO3JOoJfMI4C7gd8BvCqmgiJyMNpq6hcr+MzGNjwh/Bf4PXd53ELq8b190mV37wE8x+YvIUaiS/xdwsHNuQYF16iYiDaKDEf8D7ONlrQS7o/d5XCisLzDWORcdmPggdD5MLxH5Spb6nPyLRHyrZ2E39AMXfn52Qa38h4vIJ6F8/+g/WHnjr2uDqH/7bYGLUUPK6wXkIT6PlUXkaHRWx7Ux1yfMnqiVfkgeH68R6PL88CDOnugs3b1CYXugMxhG+N89UWPXn1AXeceisyYeFpGfh9LdCfxEdDA5zN7oe39nDvm6LCLyQ9QNwvbos7MfOrOuJ7oUOnjOL0Xd/wWGupESv5fCGeg7d7bPK3FPlBh+CFwLXA8cjL6Pd4jILiF5N0ef7S19WYehM7uHisg5MXnm0uMtqP4+B53deU8B8paTXdGZix/FnPsz8AU6wyiJQnVcmGPQZel/j57wDa2/ozPRHsuSRyKi/tGPBd52zn2INtADQ1EhXOzl/EMeZRas45xzH6Gun/YMBQd663viDXyiy+p3ZaneAtgU/c6ejH6HbwCOQmd4BtyDDlYMjMjaHXUX8rhzbkauuhm1RYl07jT0uQJ1/bCDPy4vQp4G0UlHO/n0rwKv5ZG0B2oIjxKE/SDm3H99e2e66ODw+pHzO6NtgKmig8nz/eDFSBGJunHMVX50QtYpaBvk9Cx1ykVgbB4C/BNYGAorhCf8dfhWdLJAPj7MR6DXZo9QWFw7qh/qmjisj/qgM0aPQr+ZD6OThsK6cwj6rcxwzSQiW6DXzdpRdUQuPVREWysfrvTHM2gb729oe2KzhPhXof2MU9DBuU2Bx7MNMIX4KfquX4waHL4FhonIRkEEEdkXfRdmou6sz0HbJid0yK1y5NPffA01kAwSkW1E9y/8MXq93iXz3c/A95N2Bv7pnAvv5xL0PaM6NZs+D+fb4PONa7MmpVkX7ac96pz7Bh032QTtI3eGuH4/ftDxBuA859zkAvJ7Ce0rxLUFdxVvUPH59yXz+m8M3Ie61TwA/V7/HtXHAUPQyZ1HReRdCX1P7kkwThnF8XeWTpo9jKXtp2BwOGdftAjy6d9+Dx1rWwntF5wK/Ah1mZWBiFyAujMcgz43A9B+1Cs+nzA90JVlL/iyLylE8CLHiIolr36d70feAdzgnMs2qH8T8F0RudCPQa4mukfO1ujYUkAP1BAVfc/y0n/FEhrDW8a3A68BZqHjyaUiSbcHYb1RPZWEtT2jVHupTy0e6KBWI/phvi4U3occS/CypO3v074Uk2agP/fnSPgwH35WJPw91GdsvvVZDjUGvUKMq61QvEGE3KOhe6E44OZIvG19+JUF5j8Uv2wPOBdt/HTGldffvBwOVRC/LjKfRPdoCfH3Rq3v10XCxwHPxMRfy+d/fijsLH/s5Y8rUHdnY4HlcpR/is/vjEh4M2rl/xY1Hu7m820lz2WKqHs0F3N8AmxR4HU9L5R+CXBFHmn+6eVdJ4+4vf19/4P/vY4v64/ooEdPH34bMCVLPt1Rv59/B94Nha/q878yEv8B1H1Kalwbpu1AG4izgNXzjB/cgxHAw6HwPv6efkaMu4I88p2ANgDWD4Utg3am/xYKu9+/P+tF0j/l38sV/e/+5NbjUX35ex++ZpHXsiTuitCGd+BiaLnIuZ+iA/19I/WMukfLW8fFxHnTPxPLxJw7HdVba0SuZd7uftDOhQN+5X8vh7osermAPLby12GfyPMXu4yeInScT/cPYHzo93NeT30L/NyH7UjEfUgkD/HvzC4+3g9C5x5CZ5eGl7jv5+Md0JnnyI50HpRO53Za37DUJU5wPAksn2faYb4eUR31clTH+Hf+Av9s74a2K2ei3+ewe7XgPZ2DuknbB+3ovY9+H8Lvzntoeyf87jQA44m4hkTbHLMJuZygQPdoaDtmDvBGKGyo1ycb55nHvmhb7wCvD07z7/984Id5pP8SuMP/38On+6Ovy/o+/AJUNy6bkEc3f53+gK56D9x8NPj7cW8k/v+h7atVq/3u2FG6I5ceIv+21kDi3Qz1J9RfQ11ZNaPGgnC8QAeNjEn7ZCTukT58+1DYUGBCJJ7zz/LyobA10P7geaGwUfi9GkJhy/n3wnXi2hbrHi3v/ibaTnyMTP39IrBKjjICfbF9JPxgH358JDxwuf1JjnyD/SIOLqC+f/Bpgnbchqg+vbsT1z623+/P/Rs1eAU6byh5ukdDx02eD/3+FBjsy9rFhx3n67NpQh6B7h2A9p9XDp17h4hbT5a6K+1b7PWwI/F+ZnOPlk9fdFCcjiBGHxaQZzARZI1QWHf//rfnia5ma6HjWORy6ISeB0JhQ33aEztxrYrqP8Xkk1UvUkC/DjW4jMe7pyWLC15Ut80O1WEh8LNInP/1534SCb/Mhz+bIHNn3KO5mGMqsFOR1zfWPZrXOzOBEZHwldCxSAfskCNva3uGZau2ALVw+Bt7ATqgtTjyoD8dihe86AOLSNufmIF2f26gP7d3JPwqH75ZJPw+YEYB9dubSGczId4gMo02wYd9m5i4Y4A3C8x/KNpQvBVtZB/Vyfu2Pqqs90dXBLURUsKhFzk4YvdboACjDfBjVEm/RsTvJjqg+XRMmmBA87wceR9OjJEuEmc/r2weJGIgCz1/x0TCr/fhm+S6LqjR5jN/XfuhHZ9j0c3ephBqNEbyaIiRZ02fx96oEl4E3JSlbqv45yJvv69e3pdC79Es1NjSit8TB51NfFck3ZH+Hs4n851tisT7N+oHv5v/HXQQB3fm2a3nAx2EagVuzRHvVHQGUnPkHowNxenjwzp0lPKUZQKhwbBQ+Btk6ufpRDryPvwoX/6+/nd/cuvxfSLh+/jw7YqsQ2LjLdu7HIm3DGoYWBCVA3XFMxm4PBQW1DPOaFOwjkNn1TpiBjPRGa/zyPSDHlzLfqGwwEjRfkTyGYk2mlcMhQ0h0tll6WB1cATvdoN/Hv8R8/wlGW0K0nEx9dvQ35smdBD5oaB8dGZYM6G9LYCN0O//V2gnJ/zeHB2KdwCRNgW6onVa0jNiR+0elFbnlsJos6x/L3ZBZ9NPRY224X1iYtsP6Ky7JejMuY3QQdHLff0ccG6OsrdF24I3hsIu8Gk/IrO9sxaqE+8JhQWDibegRpn10AkdQfnh9+xxdLZ02J93Bz2XpHP8uUAX/CIUFhhirwiFZdV/MdehD6pXH83jfg0FJvr/+/vr/x10NffJPvwFIpMV0BmMI1Cjk4sc4QGiP6E6bsXQ9ZgK/Kva744dpTvy0UPk39YK3os+kXj9yTTaBJMRDovJ8wvijTa/isTbPObdHkq80eb+mHKmAX/1/y/r358/x8S7kzIZbcizLRiK36G/iU44fQo1OJ2CrnD5Odrue4dQ2yqSV4O/BnH7ofZADRFTUIPRSqiR+Sv/rIzNImMwQfFPkfBEXejPfU7H/c9eQHX9CqGwRL0cKS9bv/9wtN33vcizk6/RZhC+nYe2hZ0v7x18mxxtx06MpPsRalybSUfdu10o3uk+LLx3xihgVLHPoR1Z72c2o00+fdFBcTqCZKNNvv3bxxOevfY8Q+9bv+j7hRp+pofSDvVxV4jmW8C1ytp/yvaeR/LJphfz7tehbcdWYM+YaxTd02ZftH01xP+/J+qtooWQIQttT89Ex0y3Q/XfsSw19nToT4fSxbbDyT6GNxTtBwdjeNuiLthGou20HSLXJnEMLxQv2542gfHpD2ibcRPU9VvQXs467oG1PTMOc4+WH9ehncJHUFc32wHboLPwepU47bQseX0b+b04S/gyOeQKs7r/W8iyXdDBb4iXeWrofCH590CXi39ERx+PBeGcm+ScG+2ce8o592t0pvLVIhLIczGqQINjfGfKE/Xp+RzaAN3fORddEjiTpdckTLAEPXofowxDG5XbJ5S/DzqQ8RxqzXcx5QM8GwkPrvOP/d8hZF6XqB/SZn9dRzvn3nTO3Y92jNZCFXTgI74lcuwazsQ595XPY7hz7jz0fpwuEd+oIY5HXSh0cJ+UhRHA9qJ7OuwJvOCcm4k2ePcUkQ3RgdH2ZZUichg6gDnFl7kD+s4OoeN7NQQduAmWah7rZRxagIxdjZXRD2OiPhCR36KG1rfQTs/26D14hsL1Zi5mxoQtipSzakIZU0Pn85UnWl6gJ3J9S4ohp44T9SM/DPgJcJBz7q1IlCt92r+IyEredcJy/lxvHxb4iS1WxwWufuLe7ZvRRuFDofKDfWiWE5EV/f+7Rura4vUQovu37ILO6JdQPv/2acM+np+P5DPEh5+JDhJfGkof+AJfxodluE8pQscFBPpoT/S+NKIN0xEsXSq+JzpDssnXcTl0VuZ2qFuD/ug7c5iPH36+nkaf0RN92pVR96Z3O/URb9QX5dC5ReOcW+Dfi5edc39GO43bAb/ysvQhof3gnHsefW53QfXZV+gzHrg9aN/rJqHsUeggY7gdFejkEeHn3zk3DW2r/zgUNgSdAToAvZ6TgO+x1OXFFF+HI9DO+jnAiiGdAeoGaiVZul/A+EhdLw7JdjI6aPdMKI8P0AGZgSGdc0LMNct2HSagLuli25MRRgDrexdHewLvOd1f4gW0HdULXfkXbkdtCwz3P3+B+m7fBv2eQOYzFbStjvG/90Hbk3fmIZtRO+TUQxTe1spFEH96zLm4MOhcGy1Xe3JldLCxEHlKQa5+XZS4/ubJaF/vMOfc351zrzjn7kb13I/RNlIc+6MDsB3ad865xT7PSai+mIW2y67y/8fqcxE5EZ3geRu6Wj1MNl24O9rnexBYIaRT/4W2K48Nxc2mlwM5Evv9vk12M+qWZ2qorB7+/EqSe6/eEWif8idoP3MGutpzBEvdpu1Bpu5dH20LroPO5N8Z1b2n+Sjh5/he9Pkc6NN+z8c13Vt58umLliPPVdF2VJRo2Br+79t0fL+ORg0JYRY654rdfzSf/lNBbZ4ECunXDUHH2EaH4gZjQiuI7ssauPMegnpxOMk594xzboRz7gx0Ut1NwXvv1BV14HI48DZxE/BbH5a1PZtArn7/ktAY3iiney3ujxpSrgvFi17bE4qQ5TJ0YvhF6PftUx8e6Jdc9bO2Z4iGagtQIxyPDmZcEA4U3bNldnySotNGB9orQbAJbK79a6IEH4O16NgIXxttXBSaf7CJ+LPACBHZ1+XeGDZfRqEzSTfyMt3G0s0Og7KLwn9ERgAT0dnL0Y0aAf4LHCsiDS7TJ2fgA/3DfIpCLc3R8vdBDYMvAYf7hnCUD9CGc1yehPIdROa+FfNyCeWcmyYiM1D/qaAdrG0i0T7JkU2wieNmaKM0ysmo0n8i5lwSz6NG013Qhu2lofC90Zl2we+A43340WHDlx/cjvIsWtcT/f8nAm8558YUIGNX41t0pnM2fXA8OnPj1+HAoFEUQ7n15kxUz0VZ2/+N7gFSDT0eR1Yd55/pR1Cde7AfEI3SF515FNeov8v/XRn9nhWs40T30xqAuvT8T0L5G6CN2SgvojNpVkINsVGdEwz0nITquSP8EeUEEbnID9j+CnUBEhDc277oqqNPo4lRHXM5Orsxrg4BuXQcAM65ySIyDm2kTgBGO+dmi8jzwC2iG5NvT6aP6N3R57G/c+6lIDA0UBzOv01E/gGc4c8fhw4MpLKhanSacujcUjIabX8Ee0xkbT845+4SkXvRvSZanHOficj5qN59JY/you2oD5IixsTFOfd/InKDL3+ec26iiNyKDnK+46P1RftYb8bk+Qt/HMrSCV3h9sVUABHZDB2sAx3UjGMfdPb743S8ZrmIbU/GEHwX9kQHDp8LhV+Btq96kulT/Bi0o3+Ac659410ROSSauXNujIiMQttPt/q/U1na8Tbqg3z0UL5treCZirbLowOHQT91DTqyJvp9rSSz8LN9Y87F9c9KxSAK7NfRUT9shd6/jL0cnHOfi8hMkvcsPBmdTPqPuJPOuc+AHURkHXSCz3i0rXUj6vYyUyg12PwdbX+eGjNBMZsuDCYI/ZalA6PR88G+L7F6OSRHrn7/auh9/p0/oswCHkX3Tk3iLdTjw55oO/x555zzbcHficg2qFeRsO49BF3RdZjTTb8DebeKZu6cmyUijwI/F5GLUN3bjLopNNJHM2jfLTIxOKr3CmEm8bonGhbo3iPQZz4Xpe4HR/tPxbR5ohTSr9vSH3H7oI5HJ/hshb7za5G5f1TA2+jqxD74fbicc2+j+5X2Qd/bT9G9byBG/+VBwWObzrmFIjKepWN40PHafkGB+HGA34rIxaixfIYfL3wW+MLl3uPL2p4hzGiTH46Og10/RWcxfFbGtJXidXTg61QR+WdMAyiJF/zf41FFBIBvRHyXpVbNgvJ3zr0nIruiL+FIEdnLW1Y7y25oA/RzX85UIo2wYvANoRGo4WqvLEamYWhH/XB035OAE7wc0RnuUY5AZwJlDAKIyN5ox/9V4JCYFT4BD6GGiv1Qa3/A/uh1eRvaZ2BOyCFLBqIbO66GLvEMZk+NLiQP9P5AzHshIv3QDdkGu8I2oRuF+s48E22ABAp/BOrf/ihgjH8WAhywOGKwWRP1T5pBaPDzTBHZGV1u+qsC5OtyOOeaROQl4EgRudDFb3oepzd/gK56+rICYkZ5HjhURNaOPCs/R5caxw3MVZ1sOi60wmZ3tHMXXYEXcCZqFAmzFTp7ZhBqKA42li1Gxx2E6o4Osxg9x9Bxhdu+6Pt7KksbvvOI0Tl+ltQJaKP6lJj8D0A71PuhrheTjMt/pOMKujXRzu3f0Prm+qYn6rgYRqD66Uv85pDOuXEiMgmdvdRIZkM10FdR/Z+kj3KXUpEAACAASURBVO5k6QbIA1E3Ch/nIZdRY5RY55ZjZeCuqEuHz7y8OdsPvh0w1su5Irph+KPhQao4RGR71Njy51DwW2j7bW8R6R6sthGRtdFO7H3RfHw760Mfb310puntwco3VFeMjBHhRbS9dmOQ3jn33wRxgwHGX9BRZ/RCB/xOAp7yK4jjZtXGIrrKeCeybB4e4DvZY1C9vjXqTg60PXUrOvg5l1A/AH2eWtFB3qDMXqiBPo47gb+KyE/QwdLrbNVffZGnHsq3rTXB//0BmRPCDork9xaqs45GZ0kD7XpgAypstHHOLRCR0cAhInJ2MMHOr8o4oIzlTqCwusb1N6eiK6W2IdSW88blVYlZQeX7Tvuj+6Jl1U/OuSksXakY7KtzRyS/gajB5h7glLjxhCRdKLqi+FDUjVmHTdbR9uHPRKSvc+7DLHo5337/Vyxt84U5D/3m7UfHCV/RurSIyMvogOV6Pi3o5IRWlu7pE55w1aEt6Gf//yKhmDvRtub+6HjOMOdcrgnJRnF0tv00wf/9AZnf2wOLFQhtkxwkIms456ZDe7/p6Ei8Z9FnbmPn3EOdKK9YMvpPhbZ5EiikXxf3Lg9E+5eHsHTVyCzUuBa3inkHdLytw2pSr6ODd/V3qL59MM96hPMpeGzTf382AdrHWp1zhY7hZZNpPjqpExH5MTqJOs6QHU1nbc8QZrTJjydQNwQfozPytkaX4+bj7qszaSuCc26+iPwObQiNEJHb0RUNm6CblJ6ekO4TEbkN+I2ILEFdrvRBLdNfooN6ReXvnBvrB8FHAC+LyJ55WGQB8DLNRQfsp6MDgkeiH6BrnHPfZEke5NEbbcDAUsW7q18htcA597SPtzlLO70XApv6ZXwB44PynHNPi8hzqHJYAf0QHIsOQB4fGijYAB0k+KeP49AG3pnoAGX7EnOvZB5BG4dXAVtJu6ciQA0SwfLUO9EBvFt8Pcag1uvTgFtyDXaE6OU7PKAN+A3RwT+AG3IlFpFL0ZkIL6MfucCH8S+AB51z78QkCwYv7og5F+QbfMg3CcK8UeUlVBF/4ZwLlom+hjae9iBz8Ab0nT1MRG5Bl+mvh7pemYYO9kQZgg4g34f6xnwgJo6RyW9RI+NbIvJH9DlfA+1w/wq9B3/wz8pLqE/xi9GZHtX4bl2KdqhfFJHL0BmjPwN+CpyTsLKurIjIfuisnGAm/PdEXfKADuItzJHFv9FO45XAzNA7DTA3WC0Wt/olpGM+cs6NDH7kq+MinIy+Nx0GRn2eHQxifkYS6OqcXA3L/dBZuueGZQ3l9SHq1/tksqzi8waNDKNGSI7x4bwL0XF+BtLF6B5b7Stk0E74/6DfrzMj4SeiHYOwrnzdh/3Nl9+CPqPhmVMZ9RGRN4DzUR33y6S6G3VBSXSuc26eiEwEDvazfb9FZ89NyCWAiByAvgOPoTM1G9GJDmd6eXK6PhWR76CdvdfQ2eJboO2PJSx1/xLEfR8d3BuLdqK3RdvfX6GbOQd1WiIiZ6Euch4Vkb+iuvUP6Azxq0N59kU7kKPRNsQP0YG0T1nqoi1xkNTrzilxuigSrwEdqB7rnIu9LiLyODrYsnq2dq2IjEB10Qdo2/j76DULfI2H4z4P7Oqci35nnwd+g+rq13wdvxCRL9DJQI9FJtQ8iT5z9/k2+aqoP/+kSUX3o6457sdczNYzufRQvm2tt1FjzZ/8uzILHZD/SagsnHPfish1wPkiMgudWLIuukp1GvmtNCs1F6Pvx7MiciPaj/o9OvlllWwJ4wi1+zbyf/uJyHwA59y/41O1p827v4n2Ic9CXdVegV7/jdCBtAXoIGeUE9DvR6JuF5FzUJ08CX0WjkIHQQd4Q04Q70i0D/gfdMBu20h/970skxZBn6Nl0P2ERsbIMdPHOdnXM0nevPr9fpZ3XDkDgbaoDCJyB3q9No70x58HrvX/j4B2A+jrqO79IDKx9Tn0u3W/iAz2df41uiI+juHomNQt6IC1rbguH4Eh8H9F5C60nZ7LC0mYp1CdeIfvO7SihoP1OiHTFaj+fcHr3IVoWyrDdZ9zboIv80oR2Qh1nTsLfWe3RcfGLqGTFDlGFJdPTr1YSL8uQWf09/++FkxCcM4t8uNHvxWRu9ExoTZUpx0H3OGc+zaUx5XoczENXTV3Euou+KehSUBB3M72+wG6hfr73dBFBGeg+mFQHumDidR9/M8VNKhdjrcD/eWvzzZo21PQ5+Rc9NkJr/y0tmc+uBRsrJP2A1UYf0cNAAvQGQ4/QT/GI0Px+hDZ7KqAtP192iNiyh/oz/WLhA8ifgOsoeS5yV0k3X5ervle1o/QRnJGeZE03dDO3ydoI+EbdAn0ukXk30FuVJmMRQcONsqzHieiyv4b9IM4y5d7fAHXIriXcceEmHuTdAyM5LscOsNyGqpA3geOicRZGZ0R9gX68VyE+mD/PyIbPYaegaSjfyT+KmjD+it/vz5BlVnsBosx12VkJP829KP6FKps88njQLRR+ZW/P/PQWVu/IWYjOXRGymwiG43FxJtAZGNQH36Gl/W2SPhwH35gTJpz/fVvRo1bpxDz/Ifiv+bzuiebjHZkXLPvooNkM/wzPhHtLPREfT5fg3YkmtDB6YOJbP5Kjo3g85BhArq6Iu45HxkJ64sONs728v4n5v3uT+F6PEjTvwjZk977Pnmkz6Y3RuZIm62eOXVcKO56XofcVWDdY69lQtxhXo7Vs8S5H9VFaxQoR+zzRwE6jqU6vH8kfCV/beYDjaHw43z8h2Lk2QE13ixAZ0zdji7t7/At8vF/4c8tpBMbhtpRGwcl0Lk+nz1QFznN/vkZmmf5W6AzByf4MprQ9t1gYJU881gFnfH5NdqGmYhOvFgtJu79qDFlvo87Ad23Z62EvA9GJ/s0oXr+UUIbSPs4m6FGrZn+Gn6KTlRaNk/5HfCXPOId7OP+b5Y4+/g4v82R1/Voe3uu10dT0Hb6ZjFxRxLTzkEHdRwwPBJ+mw//TUyaE9EBkWZ0peN56IBE7DcK3V/BAa9W+12xo3xHNj3kz+dsa/l4m3pdMMfrgz+jk+0yvqfoYNGF6GTCoE3yU5/vw6F4/Ylp1xDftx9KR70Y+257vTM0EnYIOpAV1P9ctN30bRHXM7Etl0favPubPv4mwN0s7R9NRA0+30vI/xMfN3YTax/nYtRg1Iz2158Gdo6JNzRbXeN0SiT9e+hYTI8scd5Axw6yxRmYQ44Oz2pMPTqM0YTq1ycS/gMfPi4SfoEPvzYmrwP8892EftMHowPfsX0NdPKWQw1neY0H2FHcgU6wnYK27x2qdyaQf190G3TMYb6/t4NQQ2PGs1Ngnjv6Z78Z7bsNZmn/IPo8Hox62pnj409A23V75HrG87w+BY0RZcmnKL1IAeMKJI/DdkPHjd5GddoctM18GqH+nI97C6pHF6G659/A9xPKm5ClXn3ykHdoTLrp/pk4pIBrG5dPB/3nn6s3Q8/Kf9FJV40xeY6MuzdY27P9EC+sYRiGYRiGYRiGYRhGXSLqHvBj4FLn3FUpkKcRHWSf4pzbu9ryGIZhGIaRHsw9mmEYhmEYhmEYhmEYdYOI/BB10/o6utpsc9RDxFyyuFwus0x3oLPJp6EuqU5FVyD9bzXkMQzDMAwjvZjRps7xm4lJlijOpXTDpSgi0g1dcpiIK2yTesMw6pBa1Xum4wzDqEX8vhLZWOKcq8b+EYZhdG0WoHtnnYy6HZ2DumK50PmNt6vA8sCfgNVRF0DvAvs750aAtQUNw6gvRDeg6p4jWpszF1CGEUvWBoFRFzyPNgiTjvHJSVPHxWSvS0toAzHDMLou48muK56vnmhZMR1nGEZN4XVSVr2F6jbDMIyK4pz7zDm3p3Nudedco3NuNefcEc65QjYAL7VMRznn1nXO9XTOLeec28U590woyhBy61TDMIxa4QRy67RdqyadYaScmtvTRkR2AX4PbA2sBRzqnHskR5pdgeuALYGpwGDn3N/KLWsaEJHN0Rk9SSxyzv23UvJ0BhFZG1g7R7QPnHOLKyGPYVQD04G5EZHvo5trJzGvmh32JEzHGUZuTAemCxHpgW6WnI2pzrmplZDHMOod04H1jTeEr5YtjnNudEWEMYyUYfqv9hCRVYENc0T7xDk3rxLyGEatUYvu0ZYF3gfuBB7KFdlvNvgUcDtwPLATcIuIfOOcy5m+1knjwGSx+A6/dfqNro7pwBzUiiE6iuk4w8gL04EpwhuRbQDRMCqH6cA6xjk3AZhQZTEMI62Y/qsxnHMzgZnVlsMwapWaW2kTRkQcOazrIvJ/wEHOue+Gwv4G/NA5t0MFxDQMwygLpgMNw+jKmA40DKMrYzrQMIyuiuk/wzC6ArW40qZQdgCGR8KeBU4WkUbnXKxfWBHpSUf3OqsA35ZeRMMw6ozlUXcwabCKF6wDTf8ZhtFJTAcahtFVSZP+A9OBhmFUljTpQBsLNAyj0pRUB3YFo82awPRI2HS07qsB0xLSnQ9cUka5DMOob9YFplRbCIrTgab/DMPoLKYDDcPoqqRF/4HpQMMwKk9adKCNBRqGUQ1KpgO7gtEGIGrhkoTwMFejG5YFLA9MHjduHKusskopZetAS0sLL774IrvtthuNjY01X069llWPdarXsipZp3nz5rHhhhsCpGkzvUJ1YN3rv3otqx7rVK9l1WOdwHRgZ6nH56Ie61SvZdVjnSpZVkr1H5RIB6600ko0Nze3B15yySVceumlOQt/5pln6Nu3b0bYAw88wO9+97sOcXv16sXNN9/MaaedRlNTU868J0+enDNOHJV8/jbddNOC6tQZwtfv6quv5sknn+S5557jvffeY/XVV2+Pt+666xaUb9x1Nr1UG2VZG7B2xgLLca+Cd/3ll19ml112aQ+P6troOx6kK1bHhqnHZ93Kqo1yKl1WOXRgVzDafIVa2MN8B2gly4ZYzrlFwKLgt4jq9lVWWYVVV1219FKGaGlpoXfv3qy66qplf1EqUU69llWPdarXsipZp3LnXwQF68CuoP/qtax6rFO9llWPdQLTgZ2lHp+LeqxTvZZVj3WqZFkp1H9QQh3Y3NycYbRpaGjI+J3ECius0EF3LrPMMrFpRYTevXt3KCsOESlaJ1fy+Wtubs67Tp0lfP2WX3759vKj369C5Yi7zqaXaqMsawPWzlhgOe5V8K6PHTs2472P6tpovYK4pahvPT7rVlZtlFPpssqRf7eS55g+3gD2ioTtDYxO8mFpGIZRR5gONAyjK2M60DCMrkzZdOCSJUuKTlsKV+/p2DIjvXTrVrqhHrvWRo1ibUDPhx9+mPV8uVcBGoZRHDVntBGR5URkKxHZygdt6H+v789fLSJ3h5L8DdhARK4Tke+KyEnAycCfKiy6YRhGpzEdaBhGV8Z0oGEYXZlq6sDDDjss43e+RptglnqYUhkBxo4dW5J86pVSXWcz2hhpwNqAxXPNNddkPX/RRRdVSBLDMAqhFt2j9QNeDP0OfE3eBQwE1gLWD046574Qkf2B64HTgKnAGc65hyoirWEYRmkxHWgYRlfGdKBhGF2ZqunAtra2rL8LoVRGgO9973tmUEggfF3iDGfF5mUYVcTagGVi5sxEb3GGYVSRmjPaOOdGsnTzsLjzA2PCXgJ+XD6pDMMwKoPpQMMwujKmAw3D6MpUUwdGV9bkOzO7swYDo3jM2GLUE9YGLB9JKycXLlxI7969KyyNYRgBNecezTAMwzAMwzAMwzCMytGZlTVRzJhQfmyljWEY+dLW1sZnn33WIbylpePWP4sXL+b++++vhFiG0eUxo41hGIZhGIZhGIZhGIm0trYWlS7OYJDvfjhGOjCjjWHUN/fddx+bbropH3/8cUZ4nN4fPHgwxx13HO+9916lxDOMLosZbQzDMAzDMAzDMAzDSMRW2tQWzrmSXWe7X4bRNZg+fXrG7zi9P2vWLACampoywt955x3mzp1bPuEMowtiRhvDMAzDMAzDMAzDMBL54IMPSpaXGQHKz0MPLd1r3dyjGYZRKpL0Sb9+/Tj88MMrLI1h1DdmtDEMwzAMwzAMwzAMI5FvvvmmqHSdNRgYxTFs2LB2Y4vdA8MwiiHQISNHjmTYsGE543/00UflFskwuhQN1RbAMAzDMAzDMAzDMIyuga3cqC3sfhlG12a33XYDMnVBnF6w/coMo7TYShvDMAzDMIw65cILL+TQQw8FYIMNNih6I2nDMAzDKIZgsK8rUm1jx9NPP12SfKpdD8MwqsMXX3zB+++/3/573rx5tnLPMCqIGW0MwzAMwzDqlKuuuooXXngBgNmzZ7NgwYIqS2QYhmF0JWbOnFltEapGWowdra2tXHjhhSxcuLCo9Gmph2EY5SVqkNlhhx3Yaqut2n+fcsopWdObrjCM0mJGG8MwDMMwjC5Cc3Mz6623HqNGjaq2KIZhGEYXpasM7KWlnk8++SRXXXUVf/3rX4tKn5Z6GIZRfr766qvEcxMnTmz/P04vmK4wjNJiRhvDMAzDMIwuwpQpU5g8eTLXX399tUUxDKMOmD17NiJS9Cb1hlHPpGV/h7a2NsAGVA3DyM1aa62VeC6XazTTMYZRWsxoYxiGYRiG0UUIOlP//Oc/+fbbb5k8eTJjxoxhzpw5VZbMMIxa5LTTTgNgp512qrIkRi3RVQb2vvzyy2qLACw1HhW7F0VXuV+GYWRn/vz5fPjhh4nnTVcYRmkxo41hGIZhGEYXYcqUKe3/b7jhhqy33npsueWW7LvvvlWUyjCMWmWllVYCoGfPnlWWxEgzIsLXX39dbTGMIjn66KOrLYJhGCngww8/5JlnngHMPZphVAIz2qSIpOXT7777LpdccknsudbW1tgZPAsWLGCbbbbhD3/4A3feeWdJ5SwVBx54ICJCa2trRviiRYuYPn16Yrqnn36aTz75pNziJeKcy/oxampq4ttvv+0Q/u6773aoK0BLSwuvvvoqr776Ko899lhJZS0VLS0tTJ48udpiVJ25c+fy6KOP8vHHH1dbFMMwjKI4+OCD2/+fO3du+//vvvtuNcQxDKPGCWbc7rHHHlWWxEg7U6dObf//3nvvraIklaNXr17VFgFYOpBa7Eqbp556qpTiGIZRB5iBxjDKjxltUsK5555L9+7dERFef/319vC77rqLrbfemssuuwwRYfz48e3nLrjgAhobG1l//fVpaGjIyG+55ZZj9OjRXHHFFZx00kkVq0eYt956CxFBRFhxxRUzzokITzzxBACNjY3t4U1NTSyzzDKsueaaiEhG4/72229HRNh///3ZYostKlOJGJZddlm6devWoU6ff/45IkLv3r1ZddVVM4wcu+66K1tvvTWNjY2ccsop7eFLliyhR48e7Lzzzuy8884Zg2mVpKWlpf1ejRkzJuPcYYcdRo8ePVhvvfV47rnnMs4NGDAAEaFXr14sWLCgPXzatGnt+a2++upV+6DvvPPOiAgbbrhhRnhwr4L7NWHChPZzO+64Y/u5Qw45pD3cOceKK67IIYccwne/+1322muvSlXDMAyjKNLiS98wjPrlgw8+AHRvG8PIRthg8NZbb1VRksqRlkHNaHvgwAMPrJIkhmGkmZaWlk6lT4vOM4x6wYw2KaC1tZXBgwe3/95vv/3a/3/wwQcz4m699dbt/1999dXt/7e1tbUbCd5+++1yiVoQ22+/fWz4jBkzEtPcddddGb/XWWed9v9/+ctfZpz74osvOiFdccyfP5+mpqbYcxtvvHHG7/D9efnll9v/v+OOO2hubgbSM7O5R48e7f/vsMMO7f8vWbKEYcOGtf/ee++92/9/7rnnuOeeewBobm5mvfXWaz+39tprt/8/Y8YM3nzzzbLInY3Ro0fz6quvAnRY+bT77ru3/9/U1MTFF18MaCPjjTfeaD/36KOPtm/cGb4OACNGjCiL3IZhGKXilVdeyTuudbIMwyiGwFizePHiKktipJ1iV3nUMmn5tkZX2qRlBZBhGOniN7/5TafS24QxwygtZrRJAeHVM1FWWWWVjN/HHXccEN8xCjpN4dUp1aRbt/jH69NPP01M88ADD+Sd/zvvvFOwTJ2lEFdzq622GpDpfiZg/vz5ALz44oulEaxMjBw5MvHctddem/E7bGCLEucWrty8//77iefWX3/9jN/bbbcdQKwLuMBoY0YawzBqjWroXsMwugaLFy/O0DFpGZw20ktXNNqkZQDT3k/DMPJh7NixecedNGmSjZEYRpkxo00KGDduXMbv73//++3/T5w4sf3/hoYGNthgAyDeMBM0CgPXVAHhFRCVZPXVV48Nj+5Xs8wyy7T/HwyQA3Tv3p0BAwYk5h9OVymSVtlA5nUWEdZYYw0gc9PngKDhHM0vfO8rSdQ4GBB+/qKstdZadO/eHVAXd7vuuisQ3zmpRkdh/Pjx7YbDqAExukor2ER3zpw5HfIJZG9oaMhw5RdeEWcYhmEYhtGV6NmzZ8bqbBsUNoyOpPW9GD58eLVFMAyjxhkwYIC5jDeMMmNGmxTw5ZdfZhhZwoPe0VUaQcMvvH9IlNmzZ7cPpleTWbNmxYYvXLgw43e4MbvBBhtkyB6cS4shYO7cuRkD92ECl2cBgXzR+kbPhfOrRp1aWloS/ZA3NTVlPJvrrrtu+//ffPNNhpEtn/pWkkmTJrXLHp3Zl+SiL+mZBb0Wae14GYZhhBkwYAA/+9nPmDRpUrVFMQyjDgkmKo0ePbo9LC0rCoz00hVX2qSl7xDuU99www22B5VhGGUhLTrPMOqFhtxRjHIzf/58unXr1j4AHlZ00ZUYSSs0wucWLlyY0SiuhuJcsmRJom/rwDVYHAsXLszo9AWyx+VVjXrFGSQCojLmc6/S4P97xowZiR3tpqamxGczzu0bZL9GlaS1tbVd3rDcixcvTjSwxRlDg3PNzc0Z+ViDxDCMtBLsN3bfffflnaazG48ahtF1iHMna0YbIxddse08b968aosALN2n4uyzz66yJIZh1DNdUc8bRjmxlTYpYMGCBRnum8KKLmrgCM4tWrQoMb+kAelKkk2+hQsXxq6mAb0WcQPjcX7502a0CddZRLLeqySjTTXqlM3lW3SlTT7PZvT5i6arFGGjTZg4+QKyrWBbtGiRNUIMwzAMw+hyTJw4kZkzZ1ZbDKPGCQx7p59+epUlqRwPPvhgtUUwDMMwDKNGMaNNCojuo5HPwHi2lSdpMARkGxhftGhR4vL48KC5cy51RpumpqbEmYTRWcr53KuFCxdW3RBQrNEm6R5nM9hVkpaWlthrm82Ils212+LFi2NXgRmGYRiGYdQzffr0YYsttsgax9pFRr7cfPPN1RahYvTo0aPaIhiGYVSM+fPnIyK88MIL1RbFMOoCM9qkgOjAffj/JENAnBEjV5pKkm3gfvHixYmGgGi6tBltklZbOOcy9ncJwiDe5Ux4FU61XW5lM7BlMwAmnctW30qS5I4g27NU7LUwDMOoB959991qi2AYRkpJ2g8wwNpFhtGR3XffvdoilBQR4aabbqq2GIZhpJSgLTB06NDqCmIYdYIZbVLA4sWLEwfuowPM+QyMR91Cpc1ok81vfpLRJi172iSt3shmCMh2Lim/SpJtX51shoqk+5jNoFhJwgaYbO9UmKhBMZw2ei3Md7thGPXGlVdeWW0RDMOoUardnjXST1ecGBB2gV7rBH2fIUOGVFkSwzDSxH/+85/Ec6effjr3338/AMcee2ylRDKMuqF+WhE1TLaB8fDqjfA+KdkGnpNWfFSSbIaAbEabpGuRln1Soga2gOj9yHWvwkabarvcynavkoyG2c6lZVVUUr2yGTzb2toSjTZpWMFmGIZhGIZRLV5//fXEc9YuMnJx0kknVVuEilNPk7xsYodhGHF89dVXseFvv/02N998M6eeeioATz31VCXFMoy6wIw2KaC1tTVx4D7a0MtnYDzbQHulyGaYyWZUCqdL4542SSuIonWC7PcquK9puFfFGgDj6pwrv0qS9AwmyQ0qe9J+S2a0MQzDMAyjq3HPPfe0///KK68kxrN2kZEP48aNq7YIFaWejDZ//vOfARL7SoZhGAHOOZ5++ulqi2EYNY8ZbVJA1J1Z0LhbsmRJhw5QeEVAEm1tbVV3j1aI0SZbuuBaZDOKVJJSGW3yWTFVKXIZbUqx31KajFG57lXSSps0rGAzDMMoJ9lWXhqG0TUZNGhQ+//OOebOnZtxfs899wSgb9++AAwbNozNNtusYvIZtcXmm29ebREqSj0ZbYJ9rcxoYxhGmCSdUE/uIQ2jWthblAKig8v5GCoKOZemAfO4c/msLEqL0aaQfVzykb1eVtrkWoFT7XrlK1+uVThh6qkTZhhG7TJr1izmz5/f/rszGwTH6cCWlhZGjRpVdJ6GYdQ23bt3z/g9e/bsjN8/+tGPAFhhhRUAOOyww/j000+ztqkMo5Q0NTUhIgwfPrzaonTA3gPDMLoizjkz2hhGCbC3KAUkrViIGxQuZqVNNSh2pU2SkSCNhoAwxRrY0rDSpthVW0np0tI5KeRehc8lrbRJg4HNMAwjyiqrrMJGG23EG2+8wbXXXssZZ5xRdF5jxozhoIMOytCTl156Kdtttx3Tp08vhbiGYdQYDQ0NGb+j7Z9rrrkGSJ54ZRjl5sYbbwRgn332qbIkHUlLv8gwjK7JLrvsUpVynXO2Ks8wSkBD7ihGuUkaXC7UaBM+V+2OUjZjRLZOXdpXbxSyT0q+Bra4NJWk2JU24XQiUjMGts4YQ+PSGIZhVJtvvvmGHXfcsdP5TJw4kYkTJzJjxgzWWGMNAD777DMAFi5c2On8DcOoPcaMGZPxO2mlcTT8/fffZ+utt46Ne80113DyySeXRkCjy3P++edXW4RE6tFoM3/+/FRMPDQMIzff+c53qla2jZcYRuexlTYpIGkwOJv7pWwKMLoXTpoGzCG7PIVci2rUK9/VJeFZBdlWb6ShHNyUJgAAIABJREFUIZ9Nhrh9leLS5bMCp9LkO6gQpljjm2EYRr0SuDawjpdhGJB/+2rKlCmx8W699VbOOecc1l133ZLLZhhpox77D+PGjeOUU06pthiGYaSEZ599Njbc3MkbRucxo00KKGZFQLGrBSpFNhlyGZwKCa80SXLkGuxPWhqahtUbuYw2SURlTdtKm0KepXwMpWm4V4ZhGC0tLRX9zgffL9N5hmFAsi5obm7O+J3Upjr11FNLLpNhpJVsLsNrmYcffrjaIhiGkQeVaL9ff/31seVa38EwOo8ZbVJAOVba5Bu3XGSTPdvqjbQbAorZx2XJkiWJK23SYIwqdk+bejKwZUtje9oYhpEmevToUTG//TNmzOC+++4DTOcZhqEkta8WLVqU8fuVV17J+P3555/z5JNPlk0uw0gjCxYsqLYIZcH2qjAMI0zc3pfmWtkwOk/NGm1E5H9E5AsRaRaRd0Rk5yxx+4uIizm2qKTMSRRiCKjHlTa1ZAhIGrSq5X1SchnY8j1XK67sil1pkwZjaEA96T/DMArn+eefB9SvfDm48sorAd2TIiBNRhvTgYZRHZxzvPXWW4nnwrz00ksZvzfeeGMOOOCAssnWlTAdWDvU694vc+fOrbYIRhfGdGD62GyzzTqE/fGPf6yCJIZRX9Sk0UZEjgZuAK4EfgS8AjwtIuvnSLo5sFbo+LSccuZLMYaKYvaFqSSldo+WlpU2xe6TkuY9bQpZFRX8X+g9TPu9ymdFV1qMNvWm/wzDKJ599923LPnedNNNHcKampp48MEHy1JeIZgONIzqMXPmTG6//fbYc9F20UknnZRXnvXqPqpcmA7MThr6VmHq1WhjGNXCdGBhVGrMImrIvf/++2PjpWkSmGHUAjVptAF+C9zhnPu7c26sc+5M4Evg1znSfe2c+yp0pKJVV6oVAbViCMi20ibpXC0bAtK+eqOYPW3S/vxBcQa2Qva0qSJ1pf8Mw8jOkiVLmDhxYvv/YV577bWylhv+Jl1yySUcddRRjBs3rmxl5onpQMOoEtdee23iuah+WnvttRk/fjzOuawD148//njJ5OsimA6sIVLUfzCMesF0oGEYXYaGagtQKCLSA9gaiK61Gw7smCP5eyKyDDAGuMI592KWcnoCPUNBy4POBiv1jLDGxkZ69erV/rtHjx6AzswJhzc2NtKtW7f28nv37t3BtVhLSwvdu3fPSLfMMsvEyhyElWOG25IlSzJkCP5vaWmhW7du9OrVK6MDF8jQs2fPjE5fY2MjLS0tHfKLposLK0e9wvcqXKeWlpYM+RoaGjLuVbS+ra2ttLS0dLj3PXv2rHidnHOJ9yr6LAXyxdW3oaEh8V4Fz2aUctarZ8+esfeqra0t8VkSEXr16kVDQ0NGeEtLS0Z+sPTZjMunXNSj/otSzmeiK5RVj3Wq17LyLeemm27ioosuYsKECdx7770Z+ixOl8UR1YX58Oabb2Z8H5599ll69epFU1NTVplNB3aOrvysW1nVLyuunKje2H777Rk9enSHtEG7N4h/3HHHATB48GDWXnvtDvkEv2fNmlU3z2C586+2DuzVq1fZ9zIp5nsVZvHixRnt+CQq9UyE+0XF1qkQKlmWfUNqo6xq1KlcVFsHlrsdWI571dDQEKsPqqWXFi9eTLdu5Vk7UI/vb72WVY91KlcZUmvL00RkbWAKsJNz7vVQ+AXACc65zWPSbA7sAryDKt8BwKlAf+fcywnlDAIuiYbfd9999O7duwQ1MQyjHlm4cGEwULGic66kDp9N/xmGkXZMBxqG0VUpp/4D04GGYaQb04GGYXRlyqEDa9los6Nz7o1Q+IXAAOdcXhuKicjjgHPOHZRwPs66PnnatGmsuuqqRcsfx/bbb8/YsWPbf2+00UZceeWVfP/736dv377t4Y2NjZx++ukMGjSI22+/nXPOOSdjVcqIESPYZptt2GeffXjzzTfbw1dccUUmTZrUodyWlhaee+459tprLxobG0tap8cee4wBAwa0/+7VqxdDhgxhr7324je/+Q3/+te/MpaLz5kzB4DVV1+dxYsXt4fvt99+/POf/+TFF1/kkEMOySjj1ltv5Zhjjqlovfr27cuXX37ZoU7jxo1jxx2XTu5oaGjg/PPP5+yzz2bw4MEMHjw4w+r6zjvvsMkmm9CvXz8+/XSpO9U+ffpkbPxciToNGTKEs846q/13uF7HHHMMI0aMaD+33HLLMWXKFJqbm1ljjTUy6nvMMcdw880389BDD3XwY/7ggw+y9957V7Re66yzTvsm3eE6vf766xx0UOZrf8MNN3DiiSfy+9//njvvvDPjXk2YMIGVV16ZjTbaiJkzZ7aH9+vXr30z8DBz585ltdVWg/IOWNaN/otSzmeiK5RVj3Wq17LyKaelpSXQJx249NJLueSSDv3JWAIdeNJJJ9HU1FS0zAHBNzsO04Gdo6s+61ZWOsqKK2fFFVfMiPPjH/+Yd999t0PaX/ziF5x00knssMMOHc4NHz68Qzsw0EuzZ89uX5VTLip1/cqp/6D6OnDllVemubm5aPnzobPfq2+++abda0U2KvVM3HTTTVx55ZUl/QZno9Tf+yQ22WQT3nzzTfuG1EBZlaxTvevAcrcDy3Gvjj/++Fg3pJXSFdGyJk+enNdqyGKox/e3XsuqxzpBeXRgzblHA2YAbcCakfDvANMLyOdN4Pikk865RcCi4HewFLyxsbHkN3rhwoUZinLRokXtZYbDW1tbaWtro7Gxkba2NpqamjKMNiJCY2Mjzc3NGel69uyZVeZy1GnJkiWxyr+xsZHFixfT1NSUYbRpaGhARFiwYEGGG7HFixfT2NiIc65Dfs65itcreq+CcoCM8IaGBpYsWUJjYyOtra0d3Ml0796dxsZGmpqaOtz7Stepra2N5ubmDvvpxD1LDQ0NGfcwHB64e4u798GzmUQ56hW9tkE5wbmwbMGz1NLSknivovc+eDbj6lJG6k7/JWFl1UY5Vlb5ylm0aBFffPFFYkfqnHPOKbisOL1YDLn0eRkxHVjDZdVjneq1rKCcoF0UJmkvrdbW1kSdtfPOOyeWdeedd3LCCSd0TuA8Kff1q8C9qaoObGpqKrvRJqDY71XQbs+Xcj8TLS0t7desVN/gfCh3WeE+q31DaqOsSpRT7zqwFu9VdNwmSqX1UjCeVE7q8f2t17LqrU7lyL88zgTLiHNuMbq0ca/Iqb2A1zumSORHwLRSydUZooPl2TawD85lWyGVbTP1SpFLvqTzSeFpqBMUtrl9Pvcxeq4aK9+WLFmS6J86Sb5s9yNbfStJqe5VNE7S70pQj/rPMIx4lllmmYzVtobpQMOoNIVsou6cY9iwYQWXMWrUKObOLfmE7LrEdGBu0uZFpK2trez7AFWDb7/9ttoiGF0Q04G1T6CjW1tb7dtvGHlQiyttAK4D/iEio4E3gF8C6wN/AxCRq4F1nHM/97/PBCYAHwE9UKv64f6oOsUOLkcbgGkzBBRyzjnXvuIhGp4tTaUpxqhU7LlKUYx8xRqpKkkxssfJmXSuip3CutJ/hmF0JLzi1OiA6UDDqBCFtFNfffXVogdyx4wZw/bbb19U2i6I6cAspM1ok21yXC0zY8aMaotgdF1MB9YBJ598MnfffXfqdLZhpI2aNNo45x4QkVWBi4G1gA+B/Z1zE32UtVDFHdAD+BOwDtCEKuyfOueeqpzUyZRqNUNAIbPiykUu2fM1zuRzLSpJV1tpk/Qspf35g+INbEnPZloaFPWm/wzD6Ej//v2rLUJqMR1oGOXn/fffZ+utt2bhwoV5p1l22WX573//W1R5aWnn1wKmA7OTlvZ6QFr6RYZRL5gOrG0CHf3www9XWRLDqA1q0mgD4Jy7Bbgl4dzAyO/BwOAKiFUUpV4RkAZDQLYGatK5QuqUFL/c5HuvwkaQQoxvaVo9BMmyx93DWrlXhcqelF81O4X1pP8Mw+hI0p4RaeKxxx5jzz33pHfv3oB+984//3zOO++8spdtOtAwyssuu+zCVVddxVlnnZV3mg022IA333yzqPLCewkauTEdmEwajTb1uNLGMKqJ6cDaJdDRldofzTBqnZrb06YeKcRok+1cmlalFLOaIe379EBxBrZijQSVopBVM/kYBtNitClkpU0x+0ilrVNoGIZRKWbMmMHBBx/Mb3/724zwq6++ukoSGYZRagox2EDn2rT9+/enpaWF4cOHmx4xOkXa2ufm7tQwjGqSNp3Yq1cvdt111wzdKCIceeSRzJw5s4qSGUY6MaNNCkhSpLlWnqR5T5tsK22SBsbrbZ+UfM6lwRDQ1fa0iT6b4b2UCl3dZhiG0RUJZsVPnz69ypIYhpEWOttO2nHHHdlnn3244IILCnLLZhhhWlpamDdvXrXFaKelpaVuV9rstVd0L3jDMNJGGscwXn755Q5h//73v9l0000zwt5++21uvPHGSollGKnEjDYpIMnIkk3BFnuuUhSzSqjYlUVpoFQrbdK2p02SfLnqlIbOSTF72sSt+LKVNoZhZOPxxx9HRJg6dWq1RakY55xzDrBUD3aluhuGEU9nV4+PHj26/f85c+Z0Vhyji3LYYYexwgorVFuMdurZ9d+oUaOqLYJhGDXON9980/7/rFmzMs5tu+22nHnmmZUWifHjx2fIZRjVpFNGGxFZSUROEZGrRWQVH/ZjEVmnNOJ1Depxc/tsK21K5baqGpR6pU0a7lW2MpPuY7H7LVWKbO72in3OzGhjGAbA7NmzOeKII/j8888BuOyyywBYZ511OPDAA4vK85FHHqFv374lk7Hc3HPPPQA8+uijtLW18cADD1RZIsMwqk0pN1xftGhRyfIyuhYvvfRStUXIoJTvhWEYRr3xne98p9oidGCTTTZhk002qbYYhgF0wmgjIj8AxgHnAmcDK/lThwLmjLgTFGOYyXWu0mRbbZG0SqPQPW3SZODIZqjI5eau2hSzp02h+/RUw2iTRLEGJzPSGIYBMGjQIB566CE23nhjIHN2+BNPPFFwfs3NzRx66KF89NFHJZOxksTtbWMYM2bMQERsJnYXYsGCBSXL6/HHHy9ZXoZRTdLQ1zMMw6glnHOJY4l33XUX06ZNK7sMc+fOLXsZhpEPnVlpcx0w1Dm3KdAcCn8a2KVTUnUxilm9EafI0mQIKNR9W649bdIyYF7MqqhCrkW1DFFJH8VijVRJz2alKNZ94JIlS8w9mmEYWSm1q5M77rijpPlVmieffLLaIhgpY7311mP11VcH4KabbqqyNEalWLx4ccnysufGqBdspY1hGNXkww8/rLYIBTNlypTEcwMHDuSoo44qSTlTp07lhBNOqGs3lkbt0xmjzTbArTHhU4A1O5FvlyPfQeJwWLHuuCpFoS63klbapMnlVrYyC3GrFQ5LgyGgGJdg2eRO+/NX6HtViOHKMECfjddff70qZd93331VKbeeeeSRRxARLr/8ciD3uz9//vyC8v/kk0+Kls0w0oZzjsmTJ7f/fuONN6oojVFJSunSLPwMGUYt09bWZn0GwzCqRuDOuVYYN24c119/fUbYxx9/jIgwYcIEIHllb3A+Xy6//HLuvvvumjRsGV2HzhhtmoG4Xf42B2zXpgJIGuQupYunSlOo7EnhaaoTlM49Wq78KkmpjCy1utJGRGrmXhm1wZAhQ9hpp50YPXo0xxxzTMX8qy9atIhf//rXFSmrHvjyyy/zWuVyxhlnAHDFFVcAuXXBm2++WZAcd911V8Zv0zVGLfPyyy9n/LbnuetQSqNNU1NTyfIyjGqShslshmEYtcLee+/NddddlxH27LPPAvDKK68A0NDQwKJFi7j11lsz2pk//OEPAfj6668rJG3+jBs3rmCjkmFA54w2jwIXi0ij/+1EZH3gj8BDnZasC5G0GX2xKwLSsLk9UJDLrST3aLnSVJpiXdnlE1YtijFUlGq1SrnozEobc49mdJZJkyYB8MEHH/DAAw/Qv3//ipTb3NycO1IX44UXXki8LoceeiinnHJKRtiDDz7IiiuumBHW0NAAqOufXPuvdZazzjqr5mbERQmef6NrsnDhwozf9q3sOph7EcPoSEtLi+lBwzCMPIlrSwQ6dN68eYCOM95www2ceuqpvPrqqx3in3/++YgIX375ZXmFzZNnnnmGzTffnA033LDaohg1SGeMNmcDqwNfA72Al4DPgHnAhZ0XretQSEOuVjZMr4R7tDRRy3vaFGpwSgpPkyu7YstLg+xG/TBjxowOYcOHDy9qs/p8sNmcmcycOZM99tiD8847j3/84x8ZruOcc7zzzjsd0tx5550dwr744ov2/7fccktuvTXOM2wmra2tOOcYMmQIn3/+ed7u8m644QZaW1vziptWDjzwwGqLYFSRaGfbvqFdh1LuaWMY9UJzc7PpQcMwjE4wevRoAK688kpAjTZz5swB4lf5Dh8+HICHHnqIe++9NzHfSk02ueaaaypSTldizpw5iAiPPvpotUUpOw3FJnTOzQV+IiK7Az9GDUDvOudGlEq4rkKp97RJgyGgmJUOtbBapRhXdmnf06YYo1K9rrRJ+70yaoPLLrsMgHPPPbfDuSOPPJKmpiZeeOEF+vbt275Zd6V49dVXaWtrY9ddd61oudUgcK9z4403tocdd9xxgDbio8yfP5+nn36aXr16AbD99tszd+7cjDhjx47N+B23onTq1Kk0NjZy4oknZhiBAp2x1lprccABB3DLLbfEyl3rmxbPnDmz2iIYVeTggw/O+L3SSitVSRKjGGbPnl102k8//bSEkhhGfRBM4jAMwzByM3Xq1A5hgWEm7D3h6quvBmDatGnceuut/OpXv+qQ7qyzzgLgZz/7WWxZ+bjJNtJJMDn2wQcf7ND3qDc6s9IGAOfcC865PznnBpvBpjQUu5omTatSSr03SFqMNsWsisp2Lg33KhvFuApLQ51KabRJSpeGetYzt912G7179662GGVj9913Z8cddyw6/ahRozoM7ufzTO68884Vc9dWTv7zn/8gIvTr149///v/2Tvv8CiqLg7/bhrZhCSEEgmEUIXQkd4kVKUKCFKUjyZIEwi9Cop0KQEEQREFpClSAkRaKEoJvUgLTQglQSAQEhJCynx/hBm3zGzfndnd8z7PPpm59Uxm9u6de+45Z7NomT59+kjWV/cp/PTpU2zevBljx47VKHP16lXcvHnTZNl69eoFANi6datO3unTp5GYmIiVK1dK1nd0i6nU1FS5RSBkYuPGjTppUi/KhDIZOHCg3CIQhFORnZ3t9O8MAQEBiIyMlFsMgiCcFP7dSGyzXM+ePTFw4ECLxlmpsA6EcuHdl7uCa16TLG0YY8OMLctx3GLTxSEAy5U2xqbbEnMWzZXucksfhmRXcpwUa1vaALo/fI5kaaPke+VKTJkyBenp6UhPTxcsH5RMRkYGtm/fji5duojmiwUevHnzJn744Qf079/fpL7u3r2LOnXqYNasWRg/fryQ7krPZExMDADgzJkz+Oijj3Do0CF4enpqKML275feR6KuGOnZsyeio6MRHBxsVRnFXgBq1aolHO/YsQPu7u46ZYYNM3qqpUhc6TkkNDl37pxO2pgxYxASEuIQ4zihzOC9BOHIOLr1rLGMGDECERERcotBEIQTwr+38db8J06c0Clz9OhR4VjbXev+/fvRvHlzg/20b99eJ7apNVDSu9GZM2fw8OFDh3dn7UqKNlMtbUZofWYCiATw5ZtP5Js0+sU2Ae0vMT8oOboSQ+qLZI7s2vmMMcVdr1Sa0l1uWcu6xJGeTWuUd/Td8EqHd201ffp0mSXRD8dxGDVqFAYNGoSuXbvi8OHDouXu3r0rmv7ZZ58ZDJK4ZMkSeHt7C+cXLlwAANy6dUtI27NnD549eyac79692+hrcES0f18aN26MBg0aGKyXkZGBv//+W8N1HW+Gn5CQYFUZ1e+Hej88PXr0EK138OBBq8pBEPZi27Ztoul9+/a1sySEuSjpJdjR43sR8iIW50AOXEVpQxAEYSuaNm1qsMy7774rHKu7UQOAFi1a4MqVK8L5/fv3sXr1auGcX++JiorC2rVrNepu374dtWvXNktuJVKzZk188MEHcotBmIBJShuO40ryHwCTAJwHUJ7juPwcx+UHUB7AWQBfWF9U18ORFQH6kIp5IiYnP9FViiLAHPdoYnXMiY2jBMxVzCjJ0kYbdQWgI3+vnJWZM2eaXCczM1PnJTk2NhYvX75EZGSkRT77tXn48CEWLFggxC55+fKlaDl9kyNDL/TTpk3TWHzg/bampaUJaS1btkRYWJhw3rVrV71t7tu3T2++s9KpUye0adNGI+38+fN26bto0aJ26Ycg5OD169e4fv263GIQFqIkpQ1tjiEsYdKkSXKLAICUjwRBEJZiDSs+dffN7dq1Q+/evYXznTt3Ss5/hg0bhlOnTlnUt5LmVoTjYUlMm68BDOU4Lo5PeHM8AoCyt0YrDHNcUCl9wdhaC/hKs94wxQWdo9xHa7tHc8RrMkZmUtpYhydPnuD3339Hu3btBEXEkiVL9E5mkpOTTerDy8sLHh4e2Lt3r5BWr1495M2bFyNGjMCoUaPME/4NJ0+eBGMMSUlJmDJlikaetkLAGAw9S3ygvc8++0xjUXT9+vVISkoSFra0lT/6Frz0uQ5TMklJSXjw4IFk/p07d3D79m3J/F27dhm0bCIIwnRoN7lz4OZmcbhTq0FKQMISDhw4ILcIAP6zHCcIgiDMwxqbONavX49Dhw6hbt26Ohv21q1bJ1nPGms+6m08fvzY4vZMIT4+3q792QtXWouzZGYeDMBTJN0dwFsWtOvyGOMeTQwlWQTYOqYNY0yWHXjWVjgp4V7pw1gllSHFh73vlSnPnyFLG0e1ilIqhQoVQufOnbFz505MmzYNwH8xPCZNmiT4qlVn9OjRZvX1/vvvi6Zrm0ybCh9s++rVq1i1apVFbQFAqVKlsH37doPlfvjhB4wcOVIjrUCBAqJxUYBcBQdP27ZtBWsgwPjn99WrV9i6datRZe1B48aNERISIrlztWTJkihdurSdpSIIgn4TnQMlKW2s7bKScC3EYmzJgaVzToIgCMJyFi1ahCZNmojGwzFnDsu3s3PnTrx48UJv2czMTOG4UqVKJvdlLnFxcShevDg2bNhgtz7tBX/PXMGKyZKZeQyAHxhjNdmb/xRjrCaAFQAccwuvTJgS+NwchY7SlBumyK40SxsprGVpo7R7pS2Po8RbMvf5U/r3SsnMmDEDISEhyMzMNPp+awc8njlzJurWratTbuXKlRpWM9rcv38fU6dORWJiok5ck8TERMTGxmqkiU3WTMHTM3e/gjVdXnTo0EEnLTExUSdGzq5du4xuU/0+7Nq1SyOuxDfffGOw/uLFi6FSqfDhhx/Kbp3SvXt3AP/FBhJT7hEEIR87d+40qtzjx49x9uxZG0tDmAsfM40gnIF//vlHbhHIPRpBEITCkbLsHT16tOQ7cFxcrsOpTz75BFWrVpVsOzk5GUeOHBHOtdc/bAnvneLvv/+2W5/2wpXW4ixR2vQF8ADASQCvGGMZAE4ASADQzwqyESI4o3sqPs1ZY9qI4SjWG9Z2B2cvrKU05PNMscBxVSZPnowHDx7Ay8sLU6dOFdJ//PFHDQsPdQ4dOqSTJjWRGT16tM59OHjwIBhjaN68OaZNm4alS5fi2LFjGmVCQkJ0zJBv3bqFdu3aGXNZAtevX4evry9+/vlnISaO+q4Za7B//34wxoRAicHBwWjcuLHZ7U2bNg3Lli2T3K1crVo1dOrUSSPtxo0baNGiBV6/fo3hw4cL6XKPTdHR0Rrnc+fOlUkSgiC0efbsmcE4WjxBQUGoUaMGuQxSKOqx0uRG7t8dwvEpVaqU3CKQ60iCIAgHZf78+cLxli1bkJqaijt37iArK0tjA+GdO3ck23j27JktRdTLH3/8AeC/+K1yb8K0JvxaHFna6IHjuMccx7UGEAbgIwBdAJTnOK41x3H2Ux86AdZaGJdaRJbLekPqC2SOCyqlu0ezlqWN0hVR+srrux9Kco8mhj4LopycHEUoohyJTZs2Ccf9+vXTsPBQ5+bNm0bvNvn777/Ru3dv7Nq1C4wxTJw4EU2bNgXw306XtWvX6tTLzs4WvVfG7goHcu91zZo1kZaWhj59+uD7778HYP3dky1atAAAVKxY0SoTkG+//RZDhgxBkSJFRPMvXLiALVu2COdJSUkoW7Ys9u/fj1u3bmmUtfeEKDMzEw0bNsSaNWvQp08fk+vTzlaCsB/58+c3qlyvXr2EYx8fH0UpCAjl4evrK7cIBGExtMmLIAjC8dmyZQs6dOiAkiVLwtPTE19++aVOmQ0bNui8M9vS7WyrVq3w559/SubzyqR79+4hJycH4eHhQt6yZcvQpUsXm8lma7TX7169eoUxY8YYpSR7/PgxGGO4dOmSTWW0Fh6WNsBx3HUAFCnSiuib3DlD7A1zF8bVY49ItaMknMHllrWsopR0XfoUgKS0sQ7Xr1/Hn3/+iUKFCglpK1euRIUKFXTKvvWW8SHQ1qxZgzVr1gAAZs2apZPPu87Spn379kb3Ica0adOQkpKik96qVSuL2lUKO3fuRNu2bfG///1PSBO7V/bk3r17OHr0KI4ePQoAUKlUJtVXtxIiCEIZbNu2TeM8LS0NPj4+MklDiOHl5SW3CAJS8doIwhT0bSS0B2RpQxAE4fi4ubkhJiZGMj8mJkbU/Tj/LmttsrKysHv3bjx8+FDStW3nzp2xefNmuLu744svvtBwGTpkyBCbyGUvtNcXv/vuO8ybNw+lS5fGwIED9dY9ffo0AGDz5s12jTFkLmYrbRhjeqMvcxwnvrWa0EEqrom5ljZKWEw21T2VISshJSyaWxInxdh7rCTrIak8KSWGMcpGe2Hu82eKkkpJiiglor6TAwD69+8vkyTGkZWVBV9fX0QNPmyUAAAgAElEQVRHR6NZs2YaeWI7aZyJdu3ageM4JCUlSZYJDQ3F119/jcmTJ0uWOX36NO7fvy8an8feLFu2TG4RCIIwwPnz59G8eXO5xSDUMNZqyh60b98ejx49klsMwsHJzs6Gh4fF+1TNhix/CYIgHJ+bN2/qzVefzxYtWlSIJ3PmzBmdsq9fv7ZokwzHcUKMXX2u2fjfvgsXLlhl88K///4LHx8f5M2b1+K2LIVXtvCKqPHjxwMwLjYjb/0ktsaXlZWl8f9VApbYagVqfYIANAXwIYB8lotGmLq4rDT3aOqoDxLmKAKUsGhurhsxpbtH04cp90pJljaWKNi0IUsb56dVq1aIi4vD69ev0bx5czx8+FBukexO//79ERsbq7fMF198gYCAAJ10juPw999/o1atWujYsSNOnz5t8feDFuoIwvnhXUISyuHly5dyiyBAljaENZB7vk6WNgRBEI7P8ePHjS7LryXMnz9fNLZv0aJFzZLhn3/+QeHChTXiQr548QIrVqxA7dq18fr1ayE9OzsbQ4cONasfKd566y2TvKTYEv639eTJkwD+mzMa+s3PyspCy5YtJctWqlQJlStXtqaoFmNJTJuOWp+2AEoB2AhA/8oPoRepxW+O44xaGFfCArO1LG30xbSx9yTYmooAqfuoBAWboTypGCHqz5+2Jl9pz5+2fOZYCdFLmOPTuXNnAMCxY8c0dkJeuXIFSUlJGDdunMvc55UrVxpV7sWLFzppW7ZsQZUqVYTzWrVq4euvvxbOY2NjceLECZ16L1++xNmzZ0X7qV+/vlHyEAQhL3xwU0tITk7GwYMHAeRayTVu3NjiNgnzEHMFKhdk0UxYg+fPn8vav6vMIwFdV+YEQRCuCmMMo0ePFvVk8eTJExQsWBDBwcF627h69SrWrl2Lp0+fAgCaNWuGR48eYcyYMRrlBg4ciFOnTmHUqFEAcn/3OnbsiISEBKGM1Hzd1DE7LS0Ne/fuNamOrXnw4IFR13Hr1i1s3rxZOBerExcXJ8RLVgpWjYrEcVwOgIUARlizXWdHytpC32K/GPry5LZ0MGRpI6UI0KekUpLSRgxHsYrShyn3Ssr83xEUbIaeMyVYDymBQYMG4dNPP5VbDKuxb98+4bhatWrC8dChQzFp0iTMnTsXdevWlUM0RaP97N++fVunzK5du/Do0SPcu3cP9erVE/0/5s2bFzVq1EDx4sUxZswYZGRk2ExmgiBswzvvvGNRfcYY8uXLh6ZNm+L58+cYMmQIDh8+jJycHI0dg4Tr8ejRI/z2229yi0E4OEFBQUhNTZWtf1d7X1CStR5BEIRSefr0KRITE/WWadiwIXr27ImyZcsCyN3kBEi7Aec3SY4cORI7duwwSg6p9+8HDx6AMSa4H+vdu7eQd+XKFaPaTk1NRf369bF7926jypvLsWPH8OrVKwBAVFQUjh07JlquevXq6N69u3DuKJsMrKq0eUNpWBArh5Be7DdkaaNkBYcx7tHEyMzMFOqot+EIigBeieHIljZiOLorO3NkV8J3Sgns2LEDq1b9F84sNTUV586dkzXAqy24du0ali9fDuC/QHXEf7i7u4MxJgRbFFPYnjx5EoULF8bvv/9usL34+HjMmzcP3t7eCAoKwsWLF60uM0EQyicwMFA4dnd3R548efDdd9/JKBEhN7NmzZJbBMIJ8PPzk61vfiGJIAiCILTRjqUL5LotnzRpkrB5iX/XNhQjLTU1Fd27dxd1ySaF1JrW0qVLAUBQ/qxevVrImzdvHi5duoQ///xTp576utmxY8dw/PhxtGrVCvHx8XrlmDRpErZs2WK03FJ9JiQkoEGDBhqKG6n/24wZM8BxHCZMmADGGNasWaNT5uLFi2CM4dq1a6Jt5OTkYNmyZTbdaGa20oYxtkDrs5AxthHApjcfwkiMDVKvrrQRWwTXt4jMKz/shbUsbdSVNmJ17IkpigCO4/T+zx3d0kYMR7G0EcOQBZsSnj+l8ccff8DPzw+jR4+WWxRCJqZPnw4AmD17tmSZb7/9Vjjmv0cbNmyQ3In5+PFjVK1a1YpSEgThyAwZMkRuEQgZOXfunNwiEIRFuJrliZwKMoIgCEfjwIEDYIyBMYaxY8ciOjoaK1euxMyZM+Hp6WlSW1evXsXGjRtNqpOWlgbGGFq1agUAuHHjBoD/lDbDhw/X+R178OABKleujPDwcADA9u3bsXz5cmRnZyMoKAjt2rUDAFy/fl2oU7x4cWGt8/Lly+jVqxcAICAgAK1atcLMmTPRqVMnALlrovrWRdXdsAPia38NGjQQrITEFGM8EydOFNYyIiMjdfL/+usvAMC4ceNE3cQfOnQIQ4YMweLFiyX7sBRLLG3e0frwDu1HAYiwUC5CBEssbeyttNGHKQonfXIrXRGgT+EkZYWjNEsba7iyk0Npow9yj2Y5iYmJaN++PYDciQZBSHHr1i3h2M3NDVeuXMHHH3+MvHnzyigVQRCOgvrv74oVKzBt2jSDu/UIgiCkOH/+vNXn8ImJiWCMicbvU9I7OEEQBKFcvvnmG7Rp00Y4f/bsmc37DAoKAgDs3r0bKSkpqFmzpk4ZQ5Y7HTp0wKBBg+Dv748nT55g586duH37NoYOHapRrlGjRnj06BGGDx+Obdu2Cena7tPq1auHgIAAnDp1SnTjw5QpUzTOxSx+AGDVqlW4fv263vib6ptP1TcK8em88UFUVBR69uypU59/T0lKSsLevXsFby3WxGw3ZhzHNbGmIK6M1KK5NV2gGTKlszZiwd7V87QxFCfFlBgqtsJUSxv1e6WdL3Uf+bL2dDelzypKjKysLLPdwdkLQ/dKO1CmIQs2JVyTkjAUNI8gpKhYsaLcIhAE4WAkJycjICAAAwcOBABMnTrVYfxQE5aTkZGBPHnyyC0G4eDcv38fGRkZeOedd7Bw4UL4+fmhYMGCeuvs27cP7733Hq5evYqwsDAAue7OTpw4IewwBoALFy4AALp164Z//vkHx48fh4eHB65fv+7S7wsEQRCE4+Dv7w+VSqWTrq18UefJkyfCcVpamnBcunRpnbJHjx5F4cKFAUC0H0BzLbJ27doICwvD1atXhbSDBw/q1JGK8TN9+nRMnz5dsi99TJgwAd27d9eIiXfq1CnhODs7Gx4e/6lTZs2aZTOXvpa4RzvAGMsnku7PGKOt11bAFHdhjDG9lh1Kco8mtjAuJZ+S4/QYKmuuwknuHVlubv8NC+a4stNG/dm0F6ZaD+mTT+pe0UsYQRAE4crYyz1mhw4ddIK13rlzxy59uxJKVYSpVCq7b9QinI9ixYph+/btAIARI0ZoLEJlZmYiJSVFmNtv3boVjDGMHDkSQG6cPh6VSoXGjRtj/Pjxwjst7wqGH5fq16+P2rVro0ePHja/LiWivnBHEIS85M+fX24RCCemUKFCNm3/2rVriI+Px9SpU7Fu3Tp8+eWXNu1PnRIlSmDcuHHC+cOHDzFnzhykp6fj/ffft5sclrhHawzASyTdG8C7FrTrcphiacMHONIOjs4Y0xv8KCMjw0IpTcPURfPXr1/rvV4x6xNbBnsSw1RLG3XZtdGn0ElPT7dETJMx9V5lZGTolVtMYaf0e8UHCZVS6CjB0osgCIIglMT8+fPt0s+hQ4d0LDy/++47u/TtSih1MwrHcSb7dScIMUaNGiWa7uXlBX9/f3z44YdIT0/Hhx9+CAC4dOkSAGDx4sX47bff4OX139LHnDlzUKFCBWRnZ2ts/vr0009teAWOga+vLzIzM+3i2ocgCP1UqlRJbhEIwiKKFy+OadOmoUePHpKu0OzF+PHj4ePjg5iYGLv1abLShjFWhTHGx6+pwJ+/+bwD4FMAD6wqpYsitlDMBz/SznNzc5PMA6Bh1mUPTFUEJCUliZblfRiKxX6x90RQyv9xcnKyThrHccL/XOx6U1JSJPOePn1qiZgWY8jSJikpSTRd3/2wdxBOU56/nJwcvfKlpaVJKhRpJxlBEAThivCBSuVi7ty5svbvjNBmFMIVCQgIEI6joqLg4+OjU+bMmTPo0qWLjmV+XFychnsUINeHPgG0adPGrjv8Hz16pGH9RBBELkrdkEEQhHGYY2lzHsA5AByAA2/O+c8ZAJMBTLOWgFIwxgYzxv5hjL1ijJ1hjOm17mGMhb8p94oxdpsxNtDWMlqKPuWGmDUDr7QRQ1+eLZCK4SKWB+Qu+Iulv3r1SseqiG9PTFliS6QUAS9evDB4r9Tz3d3d9SpmeIWOvTBVwZacnCyaLqVgA+R//nj4eDza7vqeP38uHGvz9OlTyfbk2kHmCuMfQRCEFEoaAxljWLBggbWacxjKli0rtwh235Dk7MjtntcQW7ZskVsExaCkMZAgxNi3bx+A/94BU1NT8fPPP9vMDWPhwoUxZ84c3Lx50ybtE8rCUcbAly9fSm5Othf6grATBKF8zFHalARQGgADUPvNOf8pCsCf4zibbjFhjHUFEAlgBoB3APwF4A/GWKhE+ZIAot+UewfATACLGWOdzJUhLi4O33//vbnVjUKfxYz24jLHcYISQ2qhXU7U5RVbGOfdU4khZelw+PBhrF692mDfmzZtwueff26kpNJITTKlrC2klC9ubm5ISUmRbG/79u2y7hJSl0vqGdTn4k57p2ZWVhYeP35sfUH1IPW/ffnypd7vh7bshu5VfHy8hZKajhLGP4IgCLlQ4hgoFQCTsC1+fn42a/vOnTsYOHAgTpw4YbM+lIbSlTadOnUCYwzffvut1drkOA69e/dGeHg4Zs+ebVSdmzdvgjGGa9eu4cmTJ9i7d6/V5DEGJY6BBCFFQEAAZsyYAT8/P/Tp0wfLly9HamoqoqKi8Pr1a8yZMweMMezfvx87d+4Ex3HIycnB6tWrsWDBAowbN054L16+fDmuXbuG27dvC+9sc+fOxcyZM4X+UlJS8PLlS1y6dEn2xXLCNjjSGNiyZUsUKFAAfn5++Oeff2zdnQ6xsbF293hCEIR18TBcRBOO4+6+ObQkHo6ljATwI8dxK9+cRzDG3gcwCMAEkfIDAcRzHBfx5vwqY6wmgNEAfje18379+uHHH38EkBt4UNvPtqmYsuPk8ePHovFfsrKy9P4QtG7dGocOHUJ4eLho/pIlSzBy5EhkZWWhRYsWFr+AmGK94e7ujsePH0vW0Q4+y5OcnIzevXsjNDQUTZo0Ee3nww8/xNatWwEAPXr0QN26dY29BINy80i5C4uPj9exsuHbefjwoWQ/U6dOxenTpxEVFSWav2LFCvz66684cOAAOnToIFyfuYg9S1J5QK51SVBQkGg7aWlpOooPjuPw+++/gzGGdevW4eOPP7ZIXkuQepb4dG3Z3d3d8eCBtLfH+vXro27dujh+/Lj1hDSMrOMfQRCEzMg2BoaHh0OlUiE8PBwxMTEoWLAgAODWrVvYsGED7t27h169eiExMRFVq1YFkPv74uPjA39/f5MvNDk5WcN1jz74RS3exSnHccjMzNSIwcBbmqakpODq1asoVqwYAODUqVM4ePAgbt++je+//x7Z2dnIyspCZmYm/Pz88Pr1a6xfvx5paWnInz+/oiweeMvZc+fOwcPDA6VKlQIA3Lt3DwBQtGhRvHz5Ek+fPoWHhwd+/fVXjB8/Hu+99x6CgoLwyy+/ICIiAk+ePIFKpYKvry/WrVsnbDZZsWKF0JePjw92796NsLAwZGRk4Pfff0eJEiVw48YNhISEIDs7G/7+/oiJiUGzZs3QrFkzjBw5Eu3bt8eKFStQunRp1K9fH5cvX8b27dsRGhqKzz77DPPnz9eItdG/f3/UqlULDRo0wN9//40jR47gq6++0rhu3hL9xIkTqFmzJvz8/JCTk4OsrCx4eXnh1KlTKFKkCAoWLAgPDw9kZmYiLi4OZcuWhUqlApBrte7u7o7Xr1/j9OnTKFmypO1ulBUZOnQoIiMjMXXqVCxduhQzZsyAp6cnVqxYgcWLF6NAgQJ4/fo1EhISULx4cY24ivz3JCcnB69fvxb+FwDw559/YsKE3CHk7NmzwneY/05lZWVh69atuH79OgCgfPnyQt3g4GAcOnQI+/fvt+3F50LzQMKhmDx5snA8ePBgDB48WKdMixYtJOsvWbIEGzZswLhx4zBs2DC9fdWsWVPj3FaWPYSsyDYGbtq0CaGhobh06RJat24NxhgyMjJQpkwZ3LhxA0lJSTh58iT69OmDy5cv48iRIwByN73y8xMAyJMnD4oUKYKqVauiQYMGKFy4MLp27YqoqCh4eHjg7t27OHbsGOrVq4fChQsjLi4OCQkJuHLlCh49eoSFCxfixo0bSElJwYQJE/Dtt9/C398f58+fx4EDB3Dy5EkcPHjQpH8qQRDKxCSlDWPsAwB/cByX+eZYEo7jxFecLYQx5gWgBgDt7VB7AdSXqFbvTb46ewB8yhjz5DhOZ2sZYywPgDxqSX4AULt2bSQkJAiT/NKlS2vUq1OnDk6dOoUyZcrg+vXrGDJkCJYuXQo3NzfhRaFNmzZ49eoVYmJi8N5778HNzU3jpYE/7tmzp0Y6T758+QAAnp6eGoE5jxw5gvz58+PVq1ei9Vq1agUAaNCgAZo0aYJLly6ha9eu6NKlC/bs2SO0d+TIEcGfb40aNXD+/HlkZ2ejSJEiyMrKwr///ouuXbsiMDAQN27cwOnTp1G8eHEkJSWhYcOG2LhxIwDAw8ND8PPLy1OzZk2N/x+Q+zI0depUTJ06VVTuKlVyQyipLzyo06ZNG+E4JCQET58+xapVqxAREYHdu3cLbTZt2lSnbq1atXDp0iWkp6ejVKlS8Pb2xpUrV1C3bl3ExsbC09MTmZmZcHNzQ7FixUTvU8eOHZGeni4qu6+vLwDA29tbI33Dhg3YtWuXaB0A2L9/P3x8fODu7o5y5cohNDQUvXr1QuHChZGeni70v2fPHvj4+CAsLAwFChTAmTNn0LRpU0RHR6NSpUp48eIF4uPjUbhwYTRp0gQbNmxA/fr1kZKSgr///lvoz9vbW+de8X1py8hPtMVkL1SoEADNe69Ov3790K9fP4SFhcHT0xPlypVDp06dMHr0aDx58gR+fn5ISUnBw4cPkZSUhOfPn6NmzZrIyclBdnY2Hj16hCdPnqBjx464du0aEhISUKxYMTRq1EhwoxcXF4fY2FjRexUeHo709HSdZ+nRo0coWrQonj17pvNsLlmyBEuWLJG8VxcuXBC+L82aNZMsZw3kHv9UKpWGazlbwP//bPl/dOa+nPGanLUvZ7wmIHeBRJ/1rCXIPQY+fPgQr169wuXLlwHkWl3z/1M++PSXX35p/AWJoFKpsGrVKo3fe1vB99WuXTuhrw0bNhhd15R+TK1jKvXr1xf6WLVqFWrVqiX5/1OpVPjrr7+EY3XFjHoZbTiOw/vvv69RZtWqVXj33Xcl++rWrRtUKhUiIiJE81UqFSZPnqzR3y+//IJffvlFo9z69evt8lw4yrj08OFDDBgwAEDuBjoeqY1M/L0qUqSIxv9Pqu8GDRro7V+73vPnz1GtWjWbLxDLPQY60zzQUZ516suyftatW2fyM+vr64vffvvN5L7MwV592asfW8d7lXsMnDx5sjDHnTZNOiLErFmzAOh/ZhMTE5GYmIg9e/YAAD777DPht6pOnTp6f+tVKpWwRgZA41i9jD5orKC+5OzLGa8JsM17MDNlcskYywFQmOO4f98cS8FxHOdusXTiMhQB8ABAA47jjqmlTwTQi+O4ciJ1rgP4meO4mWpp9QEcBVCE47gEkTpfApiqnb5+/XrRAIUEQRBA7mT1jTVRAMdxVg3mQ+MfQRBKh8ZAgiBcFVuOfwCNgQRBKBsaAwmCcGVsMQaaZGnDcZyb2LFMaGubmEiaofJi6TyzAKhHlvUDcH/IkCF6NWdBQUH4999/wRgDx3Fo3749tm/frlGmRo0ayMnJwblz51C9enWcPXtWI5/XsPft29cmu+nKly+P8PBwXLhwAcOGDcO8efNw5swZ0bLBwcFISND5HUP9+vWRP39+3LhxA3FxccibNy9SU1MRHh6Ow4cP65Tnr2ns2LGCywoedSska8D3tXbtWkRHR+stq359efLkgYeHB16+fIlixYrpyMlfo3Y/5t4n3orHEL6+vggLC8Po0aMl+8qbNy/y5cuH+/fvo0qVKrh48SIKFCiAp0+fCmX4e8Nbw6jHmfHw8BBcg9n6+eP7yM7ORp06dTB48GBs2rQJDx8+hL+/P16+fIkHDx7gyZMnSEtLQ1hYGIBcFyh3795FWloaOnTogIsXLyIhIQGlS5dGixYtkJWVhdevX+PatWs4deqUxk4fY67Jx8dHZ3eQqc/m22+/LVjC2RhFjn/WwB7PnzP35YzX5Kx9OeM1AXZzRUJjoAP15YzX5Kx9OeM12bMvO7piojHQQfqhvuTtZ+7cuSZZ2jDGULRoUTx48MAelnN26cue12TrZ04NpxwDnfH7a8++nPGanLUvZ7wmwDbzQJNj2iiAJwCyARTWSg8C8EiiTqJE+SwAT3WLAxzHZQDI4M/5H/sbN25g0KBBgnlpfHy84BPcXLy9vZGRkaGTvmbNGrRt21YjjTGGV69eYcCAAfjll180YnA0b94c+/btQ8GCBTUW63n++OMPtGzZUjjPzMxEdHQ0Dhw4gMjISIwdOxZArsuwkydPWnRNU6ZMwezZs3WUEpcuXUJYWBhu374tpLm7u2PWrFno0qULSpQoodNWXFwcoqKiMH78eGRnZ+vkR0VFabhG4K9r/fr1aNmypeDPMyYmBo0bNxZ8U5tKcnKy6IL8li1bkJCQgO7du2uke3t7Iy0tDR999BG2bNkifIE9PDzwv//9Dz/++KOkLA0bNhRcd6hfU2JiIpYuXYo1a9bg3LlzaNq0KWJiYsy6Hp6IiAgsW7ZM514lJiaiaNGiGsodAFi1ahXCwsIEVyTqpKSkYNq0aYiMjBRVSC1dulTDjzF/XatXr9Zw9Wcp9+/fF/1e8v7Gx4wZo/EsFS9eHHfu3EG9evUQGxsrpHt6eiIiIgKTJ0+WjCvA+7DlefHihdExCMxA1vEvPT3d5i/rPOnp6Xab+DtjX854Tc7alzNekw2RdQzkf9fatGmD/fv3I0+ePHj0KLfbyMhIxMfHY8SIEYiPjxd+I+/du4e8efMiMDBQ74Xx8WbUf++TkpLw1ltvaZRRl0edV69eCa5J+Xg2GRkZ8PPzE8rk5OTAzc0Nz549w9mzZ1GqVClcvHgRa9aswf79+3HlyhXs2LEDr169QnZ2NrKzs5EvXz6kp6djyZIlePbsGYoWLYrvvvtOiOthCrZ8/g4dOoScnBzUrFkTBw4cQExMDLKyslCuXDk8ffoUT548gZubG9avX4/58+ejXLlyyJs3L86cOYMOHTrg0aNHUKlU8PHxwc6dOyX7iY6ORrVq1ZCeno6ffvpJSCtdujRycnKQL18+7NixA+3atcPbb7+NiRMnYuDAgfj6669RpkwZtG3bFrGxsdi4cSOKFSuGL7/8EkOHDsWSJUuEPlq0aIEmTZqgXr16uHbtGg4fPoyFCxfixIkTSExMhKenpxBD8NChQ3j33XcRGBiIrKwsZGRkwNfXF4cPH0ZoaCiCgoLg4eGB7OxsnD9/HpUrV4afn5/gvkGlUuH58+c4ceIEKleujDJlytj8Xmljbl/z58/H9OnTsWrVKuTk5GD+/PnYsmUL3nrrLaSnp+P69euoWrUqXr58CQ8PD+zevRvx8fHw9fVFZmYmXr16JRlrKjY2Vthkx7vUzczMxJo1a3Dx4kUsXrxYp86xY8ewY8cOwS2OjaB5oIP2Q33J08/nn39uUnn+N7h///5WfTeVsy97XtOLFy8wZswYW3Yh6xg4bNgwhIaG4ujRo+jRo4fwW1q1alVcvnwZDx48wOnTpzFgwAAcP34cAwcO1HsxVapUQatWrRAcHIz+/ftj3bp1AIBdu3bh+PHjqF+/PkJCQnD58mXcvXsXFy9exIMHD7B161acOHEC6enp6NWrF6KiouDr64vY2FhER0fj8OHDeuPyqkNjBfUlZ1/OeE3WxtSYNvojv6nBcZzubNYKcBz3mjF2BkALAOqOi1sA2C5eC8cBtNNKew/AaTEflob49ddfcenSJRw4cMBihQ0g/vItRaFCheDl5aVTx9PTU28A0V27dmkobLQZM2aMVX9g9V2Tdl52djYKFiwoWSc4OFg0XaVSYfr06RoKG+1+Dhw4gJ9++gn79+8XjWljClLyFShQQDTAffHixUXr8LtdpBg/fjymT58umR8REYGIiAhhgcdStNtQj0Uj1n7+/Pkl2/H19dWJZcMYQ8eOHfH77/LHOpV6lgoXzp3HaU9ks7OzERISItnegQMH0KRJE+sJaAAljH8EQRByIfcYeOfOHRQoUEAjjTGGUqVKYfjw4UKa+u+GsfNEsd9bdYWNVBke9dh5jDF4eXnpxG/jN4oEBgaiWbNmyMzMxMWLF/Hee+9pxAfUrufn54eJEycK5xERETaPa2Es2jvaeMVaxYoVhd90Pz8/YVNQ9erVMW/ePIPt3rx5E1OmTMHgwYPRsGFD0TJTpkxBdHQ0qlevrjF/6NSpEwDg7t27ACDEXuFp3rw5mjdvDgCYOjXX+4qYEgAAGjdujIEDB+pshOHds3zwwX8hRtXjCYaHh+u0pb7ZhjEm+PbOly8f3n//fdENX0pk+vTpmDRpEgBg5MiRQvqHH34oHKtUKlStWhUABCUN8N+zzcfxzMnJQatWrXDr1i107dpV7/zb09MTn376Ka5du4bFixfj0qVLKFiwIE6ePCm8i1SsWNGmShu5x0CCMIdRo0Zh/vz5AICFCxeid+/e2LVrFzp16oSvv/4aM2fOxLZt25CRkYHOnTuD4zj88MMPePr0Ke7fv4/IyEjs3r0bY8eORZs2bZAnTx6EhYXBy8sLU6ZMQVZWlvC9O336NEqVKtFWKMQAACAASURBVIVr167pxB4mHB+5x8ChQ4eiQIEC6Nu3r04ev77Tp08fALkKmZUrV+L06dMAcjcily1bVm/7vXv3RnR0NGrUqIG6devqtC3GnTt3hOPSpUvjk08+Ec4PHjxo8RoYQRDyYqqlzQgjy3EAbKK0ecMCAGsZY6eROwh/BiAUwHIAYIzNAlCU47ieb8ovB/A5Y2wBgB+QG4zsUwDdtRs2lkqVKqFSpUrmX4ERiL0Q84HtxSw0+N39YvVsuPPfKNTlFZNdfbFBG19fX9FratGihcbLmhR9+vQRfjwtQWqBQsqvKb+7VbteTk4O/Pz8JNvr1q0b3N0Nh4Sy1YKJertSz6BYuqenJxhjOkobDw8PwSWbvZD630jJzn8/tGXPyclB3rx5JdszNPGyEbKPfwRBEDKiuDHw008/tVZThAk8f/7cZm2XKVMG69evt1n7SkRbWac0fv75Z/Tq1cuqbTLGsHv3bpPqhIWFaSgLpTaP2RDFjYEEIUVSUhICAwMxZcoUrFu3DgMHDgRjTFhYnjFjBmbMmKFTT91CgVe6Tpo0SWeDHR8Mnlfa+Pn5ITAwEPXq1bPJ9RCKwGHGwJiYGKSnp+tswrEXTZo0gbu7u6i3GoIgHANTY9pIm3LYEY7jNjHGCgCYAiAYwCUArTmOu/umSDByB26+/D+MsdYAFgIYAuAhgGEcx8m/9V8PYgvF/A5P7TyO4yRN/AHozbMF2vKpKyHEriswMFA03dvbG25ubqLtyX1NPP7+/qJ5vCs1xpgQ4wjItd6QslYBcuPT2BNTrKKAXAWHWJwXXm6xOkq5Vx4eHhr3AshVIvL3SkyhWKBAAcn27BS/RgNXGf8IgiDEUNoYaMcYForiypUrqFChgqwyyL0hydmwtdscS7G2wsZRUdoYSBBi1KtXD8ePHxdcg/r7+2PQoEE26+/hw4eYPXs2Wde4AI40Bvr7+9t9HUSbOnXq4NixY7LKQBCE+Vglpg17s6LJ2TP6IsctA7BMIq+3SNphANVtLJZVEVso1me9oc/SRt2nuT0wVRGg7W6Eh7cs0q7j5uamV/FhC6Tiz4gtGjDGJO8VoHkftb82BQsWtFRUi1CXR+pePXnyRCddn79+JSui3Nzc9Mqnz7KIfz7tjSuMfwRBEFLQGCg/5cuXl7V/YyytCdPQtjYmlAuNgdYjOTlZsDJr3rw5Nm/erLMpq1y5chg7dqyOVWX+/PmRmJioYaXWsmVLk623nJFDhw7Z1BpSm+DgYCxatMhu/RHyQmOg8dBvO0E4NuZFZH8DY+xTxtglAK8AvGKMXWKM9bOOaK6D1AKzWHqePHmEPPV8juP0ujXg69kLU5U2YnF6+HS+jrZyw95uHEy5Jt6fvFQ9fjejWB7vY9xeiFltSeUB0veKl1usPaXfK/XvlTa82zexdIIgCIJwVbRjtdiKBg0aaPhsB2DTHduuijGueeXi9evXcotAOAEzZ84UTU9PT8e///6LP/74AwEBAYJrxLfffhsAMGHCBPTt21fjHalfv374999/dd4H/vjjDxtJ7zikpKTAy8sLQUFBcotCEC5PXFyc3CIQhEXExcVhzJgxWLp0KapXl1f3OmXKFKSmptrVBafZShvG2NcAFgHYAeCjN58dABYyxqSjOBJGo2+hWNvqg+M4vYoAey8w61MEiFmsSMnHv0CKXZO9Xy5NiSGjHttFrJ6+HQ9yKwPUXZ9JyW7KM8ZxnN13eJiqNNT3P5eSXcmLGwRBEARha5YvX26XfqKiolC8eHGNtDJlytilb1fCVrESLSUtLU32uTHh+Ny6dQudO3cGAMyZMwdz584V8ry9vVGoUCFhzt+9e3dwHIcFCxYAAGrWrCmUffnyJXbv3o0ffvhBeBfgFTXBwcEAgMOHD+Po0aP44YcfbH9hCsTeHhYIgpDm0aNHcotAODH37t2zaftFixZF2bJlMXfuXAwePBizZ8+2aX/q3Lx5E3PmzBHOCxUqhK+++gq+vr74888/7SaHJZY2gwD05zhuAsdxUW8+E5AbCGyggbqEGqZY2pirxJBj0VzKW56U7PqUG6YqPmyBqdYb6rJLxfgRq2fvl2Z9CjYxpJQ2+u6VkhRsYs8mL5+YQlHq2XRlpU18fLzcIhAOyvnz5+UWgSAIB4N3hztv3jyMGDECN2/elFkiwp7Y2wKdcE5KlSqFt99+G8eOHcOoUaOMshRs27YtOI5DxYoVhTQfHx+8//77GuWqVKkCAPjtt98AAI0aNUL9+vXRr18/l35fIAiCIByHpKQk0fTp06VtMkJCQkTTr169qpNWpUoV3L9/H02bNpVsLycnB5UrV4a7uzv++usvXLlyRSO/RYsWOnWkYh6OGDECFy5ckOxLH1988QVKly6tsQmhVq1awrGHhwc4jsP+/fsB5FrkbtmyBV9++aVZ/enDEqWNO4DTIulnYKVYOYQmjDGjlDZKsLTRxpCljdSEVp/cSlIEiKHP8klK4SQVN0cuTFGwST1/HMcp6oXFHGWoWLrS7pU9KVasGKKiogAAjRs3llcYQtEUKlRIOM7MzETVqlWxfPlyJCcnyygVQRCOyKhRo7BgwQIKNE0QhNnUq1fP6u8lRYoUAcdxaNCggU6e3O/gBEEQhGMwaNAgbNmyRTjXFzPaWiQkJAAAwsPDERgYiNjYWJ0yw4cP19vG+vXrMWvWLGRmZsLHxwfNmjVDWFgYvvnmG41yZ8+eRdGiRfHNN99orCGpW7MyxnDmzBmkpaWhYcOG8Pf31+lv/PjxGuetWrUSlWvIkCGoUqUKypUrJym7urvlypUrC8fTpk0D8N86drNmzbBu3Tqd+nx+QEAAOnbsiBEjRkj2ZS6WrDr+glxrG20+A6B7NYQkYoHRxdKNVdqIIbd7NEN5Ugvj+hQfSlLa6LO0EUPqHsuhCDDnXokhdb1yKG1MVbDpu1dkaSNOu3bt8OTJEw2TUcK14Ccl2hMndSZOnCgc89+zAQMGiE7AgNwx8Pjx41aUkiAIRyYyMlJuEQgZeeedd+QWgSAswsfHR24R7MqLFy/kFoEgCMJhqF69OjiOA8dxWLZsGTp27IiuXbti+PDhyMzMNKmt8uXLo1mzZibV8fPzQ1ZWFg4cOCC0AQCfffYZAGDRokU6Li/9/f1x9uxZ7Nu3D0CuS9Hx48fDw8MDycnJQjpvhQrkuijl18+qV6+O7du3AwCSk5Nx6tQpDBkyBGvXrgWQuwasLyb2rFmzNM7F1upiYmKETV5HjhyRbGvp0qWCUmrYsGE6+XzsmkWLFiFfvnw6+U2bNsW8efMMKrYswdIV4k8ZY5cYYyvffC4B6A8ghzG2gP9YQU6XwlKljRIWmE0Nbi+lrFBX2qi3oTRFgLkKJ6UrbcRwc3PTew+V+PwZytMnu9T1uqLSpkmTJujSpYtwXqBAAdSuXdugSz1Ho3Tp0oLbjAoVKsgsjfLIysoCx3GC+a+Y0rNOnTq4e/cuOnToYLA9Pz8/DBo0CMnJycjOzkbdunWtLTJBEA6AuluGrKwsPH/+XPQFinAdRo4cKbcIhBPw7Nkz2fp2Nfd+ruyJgCAIwlTOnDmjk7Zx40ZERkbqjKeG1p/y5s2L/fv3G/X+rd6mu7u7Tl9Dhw4F8J8Vy0cffSTkffXVV3jnnXfQvHlznfbUQynUrVsX5cqVw2+//YZSpUrplePbb79Fjx49jJZbHfW1Oj8/Pxw8eFDDBZuUAmjSpElgjCEyMhI5OTno16+fThleqabuJlUdNzc3jBo1Ct7e3mbJbgyWuDGrBODsm2PeT8HjN59KauWcazXPBogpZ8TSAfMVM/aeQJmqtDHV5ZZ6nr0wR7khVU/qfihtomtO/CFtHEHBpu85M6SkciXWrl2LAgUKyC2G1VD3S3r+/HlUq1YNALBs2TJUq1YNnp6eWLBggd6dHq6I9vc5NDRUp0zz5s2F9EOHDiEnJ0enzPPnz3H+/Hk0atRIsQGwCYLQz8mTJ1G7dm2z63Mch8ePH+PEiRMIDAzEvHnz8Msvv8Dd3R0BAQFWlJRwNIKCgsx+gScIngcPHojujrUXrva+4GqWRQRBEObAGDO40H/kyBHExsaidevWOH36NPz9/ZGamooBAwZgxYoVOuV56+SVK1ciOTkZBw8eNChHnjx5RNNDQ0M11nA3bdokxG0rW7aswXaBXIuca9euGVXWEurUqQNvb2+8evUK3bt3l3Tff/z4ccTGxmLgwIEANNf+lLwWYfYsguO4JkZ+pKMMEaLoC1JvaHFZKk/u4PaG8qQmtMYosOyFqddkjvJNaZY25sR40baKMtSHLTB0Tdry6fu/S+W5oqWNs8EHjqtQoYKG0rFChQoICgrCkiVLXMYXufruGVPp0qULTpw4IZwfOnRI8AML5PrIbdKkiU69gIAAhIeHi35f//rrL7PlIQjCfqgrv82lUKFCaNu2LYDcuDXnzp2zuE3CPPz8/OQWQcDVFrsJ26AeW08OXOl9geM4RS98EQRB2At1rxTa+Pr6IicnB2lpaXrbqFy5Mvr374+goCAAwJ49ewAA8+bN0yg3e/ZsFCtWDIsWLQKQ6w1l7969Gkp0fnOqNsaO2erlWrdubVQdexEaGirIp88DTIUKFdC3b1/hXOzaixcvLrohVU5oNqxgzHHjJIYSFAHGuEcz5XrlmBSa2p8+pY1UntImuua4C1OCVYo1FWxS16u0e0WYz/Hjx4UdI7///jtCQkJklsj+/Prrr6hTp47eMhMnThS1mGGMoXbt2jh27Bg2btyI8PBwi7/zRYoUsag+QRDKh/dnTSgHX19fuUUQMNWXO0GIIfd83ZWUNgRBEM5KzZo1jS7LW9BMnToVo0aN0sl/8uSJWTKUK1cOHMdpzNV8fHwwbtw4xMfHa1jueHh4YM2aNWb1I8X9+/fx/Plzq7ZpKTVq1AAAZGdnAzC87ujp6Yndu3cDEJ8fXLt2DXFxcVaW0jLMXlVhjHkzxsYwxqIZY6cZY2fVP9YU0tUwxmLGVIWOvbGWpY05SipbYYkiQMqixhEtbcxxF6YkBZs5VmpKeP4cjX379mnslo6MjBQC3CkRT09PcByHDz/8UCdv7NixMkhkPzZv3gwACAwMlCwTHx+PGTNm6P1u1atXD127drW6fObQrVs3uUUgCMIADRo0kFsEQovk5GS5RRAgpR5hDeRWmki5jyYIgiAch/Lly+vN37lzp+CeLD09XUgXs3CxNP4JY0yw0ilTpoxkOV6RUb58edH4M6ZStGhRxbguvnr1KgDg7bffBgDBqqly5coG6/KbUMXWNby9vW0an8YcLFl1XAVgLIC7AHYC2K71IYzElIV7Y5Q2htqXG3OtGeR2uWUqxljaaOMIigApJYaSLG30IWa1ZUg5SJY2plG2bFk0b95cY5IyfPhwURdZDx8+NLrdzp0749dffwUAfPbZZzr5b731lmi9bdu2Gd2HGLNnzxZNj46OtqhdpdCpUycAwOrVq4W0K1euyCUOACAkJATly5fHt99+iw8++MDk+tbeWUQQhOWoBwUFLH9pJayP+kKD3Chp7kg4LnLP1+VWGhEEQRCWk5OTg4YNG0rmt2nTBsOGDdNJb9SokU3kUalUqF27to6rNHV+//13AICXlxdmz54tuFkDgG+++QbvvfeeTWSzB/wckV8jjoiIwOeff27UBlJeudahQwfbCWhFLNn60QZAa47jjlpLGFdFajJprqWNsem2RCxuiHqeNm5uboImWKysvoV2eyJ1XabeK1Puua0x14LIlHaUZBWlrzwpbaxDx44dheOFCxdK3v+QkBAEBwcb1WaZMmWwadMmuLm5Cd/Bdu3aoV27dihdujRu3bqF/v37Y/r06Tp1xfoXUyBJwRjD5cuXUbFiRSxduhRnz57Fjz/+aPV4N9u2bUOHDh1w7tw5VKlSxeIX/X79+iEsLAydOnVCyZIldfJLlSol7E4BcoM+X758GT179kSpUqU0yurzD2sLvLy8BMXRkCFDTA5sSztbCcJ+JCQkGDWWb926FV5eXgCAZ8+eKcoVF6E8UlJS5BaBICyGlI8EQRCOT9u2bdGqVSs8evQIRYsWxcKFC3XK9O7dG71799ZIs+U7tHpMWTF4d+NvvfUW3N3dceLECWFNYPTo0Rg9erTNZLM12r+tKpUKS5YsMapu4cKF7b62YQmWzCIeAKDZtJ0xJ06KHJijCDDVekNpCg5TykpZdijh3qljioLGGLd+9sJa7vn48kq3HlICkyZNgq+vL1JTUzFz5kwhPSIiQnTXCQC0bNlSJy1v3ryiZRctWqTzP2/bti04jsO+ffsQERGBAQMG6Jgu37t3D/nz59dIK1KkiMmu2ipUqACO4zB48GAUKFAAgPUVA+3btwfHcahWrRrc3Nxw79497Nq1y+z2Zs6ciVGjRqFEiRKi+bdu3RJ8uvJUqFABp0+fRp48eTBjxgwhXe6JjfbOphEjRugtr7SxlCCcmcKFC+PHH380quzDhw9x/Phx5MuXz8ZSEeagJKsAGscJS1GCX3olfacIgiAI4xkwYIBw3K1bNwQEBKBs2bLw9fXV2Kykb+OSnO7E2rZtC+C/uC9SawKOiLaljTNjyarjKABzGGPFrSWMqyK1cC+W7igut6xtvaEERYA+zLW0UXpMG215zI23pHSljaN8r5TM9OnTkZqaCl9fX6P/N7zyg2f48OEacXB4evfujdatW0u2U7JkSSxcuBAhISE6br1CQkJ04iY0btzYKPmk4IMjW9PSZtOmTTppISEhOtf9/vvvG92m+rPboEEDLF26VDgfM2aMwfoTJ05EWloa1q1bh+LF5f2p55VX/KS4cOHCcopDEIQWxsaRCg4ORt26dW0sDWEutWvXllsEgrAaZcuWlVsEsvwlCIJQOFK/FcuXL0exYsVE83hvFStXrsSlS5ck286XLx9q1aqlcW4v+PdmQ/F4HBElxXO3NZasOp4G4A3gNmMshTGWpP6xknwuibkWC/qUPfbGWpY2SnSPZmpZU65LaYOOsZY2UvePR0nu0cSeJWeIFeUoJCQkYPXq1WjQoAGmTp0KAJg1axYAIDIyUsPXKs/8+fPN6isqKko03VJlCx8Dply5chqu4Mzl5s2b6NKli1H9LliwQCPt8ePHyMrKEi0fGBgoHB85cgSDBw8Wzo19flUqFT7++GOjytqDP//8E//884/kIsiNGzdw7do1O0tFEAT9JjoHfHBWJSAVp44gjKFChQpyiwCAYncRBEEogb59+2Lv3r2iCgxz5rD16tUDAHz00Uc6Xj20UfckcvXqVZP7MpcKFSrg+vXr6NGjh936tBf8PSNLG/1sAFAUwEQAQwGM0PoQRmKspQ3gOBpFU5U2hsoqwXpDX5/WsrSRA1PulbNekzEyK13B5igULlwYPXv2xJEjR6BSqQAA48eP1/uDa2gipE1aWhoyMjLQrl07Ie3QoUN48eIFZs6cabYSiKdBgwbgOA4FCxbU8Z1qjjszQ64zChYsCADYvHmzxiJEt27dULBgQcn6+toNDw83WU4lEBQUhBIlSkg+L2XKlEG5cuUk6zdq1EhDmUUQhHUgF0DOgZKUNmFhYXKLQDgwLVq0kFsEAKS0IQiCUAIDBgxAixYtcOXKFVSsWFEjT9/mSWus+ai3YW9vEW+//bZTrls54zVJYYnSpj6AjziOm8Nx3M8cx61W/1hLQFfGWooApT3QYpYLzhzTxhx3cErFXCWaktyjaWPI0sZRvlfOyqhRo0yuo1KphGDXPOHh4fDz88OECRN03LJZQnBwMPr06SO4BpJ6Od+2bZtkG4Ys0caOHatxvnnzZgCau3a2b9+uYWGydu1avW3qczfnzOzZs0cnnlHVqlXt0nd8fLxd+iEIOfDy8pJ0IUE4DkrasUhuaAlL4K245YbcoxEEQViGuotvc/Hx8RGOd+7cieXLlwvnHTt2lJz/zJ07F2XKlLGobyXNrQjHw5LZ8DUAKmsJ4spYy5pBSYvIjDHJwckc2fW5tFICpt4rKYsppSmiTJHPkZ5Na5SnxQTbkidPHgDAV199JbMk+nFzc8OqVavw008/4eeff0bTpk1Fy0nFhFm0aJHBhc4xY8ZojKfVq1cHAISGhgppH3zwgWCRw5+7Ejt37tRRxojh7e2NatWqYdq0aUIa74LH2j6GtS16tO+zVOD2mjVrWlUOgrAX3bt3F01fvHixnSUhzEVJCwtkvUVYAm/NLTektCEIgrCMffv2GSyzZ88e4Vh7/SYqKgqVKlUSzkuUKIEBAwbolG/SpImO6/OuXbvixo0bZsmtRI4fPy5sACUcA0tWHccDmM8Ya8wYK8AY81f/WEtAV8Tawd6Vrgjg08ypoxQM3StTFHP2xtru0QDdl34lWdpY614p4d45M1988QUAwNfXV2ZJjMPb2xu9evWSzC9VqpROWmhoKIYNG2bys1SyZEkcPnwYEyZM0Eh3pWeSd+9WsmRJrFmzBm3atEGTJk00yvC+hsVQX8z55ZdfsHbtWnTt2tWqMootfh49elQ47ty5s2i9VatWWVUOe+NKzyGhSeXKlXXSvvnmG71jI6EsTHVHaktoLCGcAVdRPs6ePVtuEQiCcFL49VHeW0adOnV0yqi7xPTz89PIU3eZro8DBw5gy5Yt5oopiZLmM3Xr1hXi8zoyStpkZGssUdrsBlAPQAyAfwE8e/N5/uYvYSaWxg1RwqDgajFtTC3rKIoAcxQYSrgGS5Q2xtZTwnU6M0OHDnXqH+Po6GicOHHC7PqNGjXS2b1pzDMZExODvXv3mt2vUqhZsyY4jsPt27fxv//9T7TMr7/+Klk/JCREOC5UqBB69OiBOXPmaJQJDQ1FkSJFTJbthx9+AAC0atVKJ69+/fpQqVT4+OOPJes7+gKPuts+wrX45JNPdNI2btwogySEuXz//fdyi0AQToW7u7vTvzMkJydj3LhxcotBEISTwittxNYGfvrpJ0RGRlo0zjrzmoOzkpWVBQDw9PSUWRLbY4m9bhM9ee9Y0K7LYY41g1RcGH3t2RNzFs31uZtSitJGSkZrKQmUfq8cxXWfNZU2SrpXhGMwZcoUTJs2DTNnzsTEiRM18tavX4/s7GzRBX17IOW+zRnh4wsNHjwYlSpV0hi/u3btquPKKSAgAK1atcKhQ4cAABcuXICnp6eGEqVo0aJ48OCBcC7mqrNEiRJITU2FSqVC/fr10bx5cyQkJAj5aWlpAIDMzExRuR1daRMQEICUlBS5xSBkgDGGrVu3ariWePr0qYwSEaZiiaXN22+/7VQuRAjCGnh4eNA7A0EQhJEUKVIEDx8+1EjjF+bVNyyOGzcOc+bMQUhICHr37i3a1rx58/S6v+7Tpw9++ukny4Um7A5vddWhQweZJbE9ZlvacBx3WP0D4DyAigAWAphvLQFdAWtbnihhYqhPBrEFKSn3aEq6Jn2YokQTKyN1bg9MVZZJpRujULQX5vanBIUT4TwEBQXppLVp08ZmJskUZ0mTggULYteuXZg3bx4GDRqk47u4atWqOnXULQXc3Nzg5uaGkiVLCmn37t3TaEcKX19fuLm54fPPP0dYWJiO6zYpBg4c6PBKmx07dsgtAiEjvLKUh35DXQcvLy+5RSAIxeHt7U3jIEEQhAXUrl0bADB58mQAuZvm/P1zI3KIWVrwmxQ7deqETz/9VLJdPoaurRk+fLhd+nEl8uXLB47jJN2NOxMWr/Awxpoyxn4BkABgKIBoABRF1wS0F9ostbSRas/eSJkZOqOljSPILoU5ruwcWWljSHaKaUNYCu9Sq1KlSmjZsqVGYERbor1YSgCtW7eWDEa8bds2LFmyRCPtk08+QXJyskaauvm11AYDa7Fs2TKULl3aZu3bA7H4TYTroP0CTL+VroMruKggCFPh5w4EQRCEefBjKG81w3EcRo4ciYULF6JRo0Y65WfNmgWO41CiRAl7iinJBx98gEuXLpE1MmEWZiltGGMhjLHJjLHbADYgN4aNJ4BOHMdN5jjunDWFdHZMWRjnMdeyw16YKrtUupKuCTBPiaH0+EPW2p2vfr1y+wU15X+u7t5I6feKcAz69++PmJgY1KlTB3/88Qfee+89u/SbJ08eLFy40C59OQMlSpTA559/brDc3LlzAQCjR48GYHgsqFWrlklyqMe3sbVSiCBsTePGjTXO6Xl2Hay5Y1VK2U4QjgZZQRMEQRjPvn37MHjwYI20Zs2aAciNDQoA2dnZ8Pb2RkREhMY888yZMwBgVkxSW1OxYkWUKVNGbjEIB8TkWQRjLBrAFQAVkGtZU4TjuKHWFsyVMMfSxhyliD2xtns0U/uwFVJ9mmtpowTrDVNkN0ZuR7e0MbYtWogipHBzc5Mtdkzfvn1l6deZ6datGziOw8yZMwEY/u4HBASY1H6FChXMlo0glAZjDIGBgcJ5nTp1ZJSGsCfWVNoULlzYam0RhJw4ustTgiAcm2LFisktgklUqFAB48eP10irVKkSOI4TvBFIuWM1VSkyfvx4tG3bFhUrVjRPWIKwA+as7r8HYCWAqRzH7eI4LtvKMrkc5rjccnNz07Fm0LfwbG/MWTQ3xeWbXEjJYa4LNCUobfRZxphrWST1bNoLc5V9YspDJSnYCIKQH2v/HunztewING/eXG4RCIXx+PFjIYis9m5JwnmxZkybiIgIq7VFEHIi5nqZIAjCXrzzzjtyi2AyISEhknnLly/Hr7/+apV+ihcvjh07dlBMPkLRmLPy8C4APwCnGWMnGGOfM8YKWVkul8baMW3kQEypxGOKpY16e2J17I0pljaOdK+MzePllrqHUu0pXWljjOz0wkUQBAB89dVXaN68Oa5duwYAqFq1qpBnjoWVj48PNm7cqEhTfmOIjo7G7Nmz5RaDUBDu7u4IDg4Gx3Fo0KCB3OIQdsLX19dqbbVp08ZqbRGEnJClDUEQhGno21Q8YMAAu1gPWdN6mCAsweQVY47jjnMcjE9tVwAAIABJREFU1x9AMIAVALoBePCmrRaMMT/riuj8mGtpo43UwrMci836JqjWUnzIgbXulVSekhRRAODh4SGabqpyQw6ljVSfpiqctMtInRME4Rrkz58f+/btQ7ly5QAAkydPBgDcvXsX+/fvN6vNrl274sGDB1aT0dZ06NABANC+fXt4enpqxOUhCMI1sebitI+Pj9XaIlyLunXryi2CBqS0IQiCkEaJ7z9XrlzBP//8I7cYBAHAPEsbAADHcWkcx63iOK4hgMoA5gMYD+BfxliUtQR0Bawd00YJi8nmKJzMVVIpAX3ymaIkkCumjdROBin5DCnYpNqzJ+bGHyL3aARBmELnzp3BcRxCQ0NdZlxYtmwZgP/GQUfzl00QhPWxdIOVenwvf39/S8UhXJQdO3bg6dOncosh4OnpKbcINoPiQBAEYSnqngZUKpVG3uHDh/HVV1/ZWySUL18ewcHBdu+XIMSwivkCx3FxHMeNBRACoLs12nQlzLU8MTamjdIsbUxR2ijJ5ZaUHPrSDeUpQRFgjuxKd48mJQegKzvHceQejSAIwgR4K8wCBQrILAlBEErB0nnSmTNnsHXrVowbN86qrtYI1yJPnjzInz+/3GIIeHp6KmIzmy04duyY3CIQBGEAJa5hVK9eXSetZcuWuHPnjkZao0aNMGXKFDtJRRDKRNz3kZlwHJcNYNubD2EktnaPJgeGZNf2U2lOTBs5MOVemRv/xd7o+79ry26MYlApShtrxx9SgoKNIAhCCRQqVAibNm1C69atNdIpeDhBOA9z5szBuHHjjC5vyZz2wIED8Pb2RocOHQT3iwRhDkqbn0u5miYIgrAHShsTX758CZVKpTFnyMzMhLu7u+JkJQglQLMIBWCOIsCUYOpKsnIApK1wzA0Qb0+MvVfqCimlx7RxdUsbwDglmhLuFUEQrkGNGjVw5swZucXQS5cuXTTO+d+9Fy9eyCEOQRBWZN++fahfvz4++eQThISEGFXn/v37ZvdHAX8Ja6G0+bm7u7vTWtoQBEGYCq+cyZs3L1JTUwGQcpsg9CH/Nn8TYYwFMsbWMsaS33zWMsbyGajzM2OM0/rE2ktmQ5gSN0SqjjpKCHhoyD2alNWCOf8Le2KOgs2UPKXFtJG6j+Y+m/bEnJg2+p5NJbwEOuP4RxCELkePHpVbBEVCYyBB2IfatWuDMYbAwECj6zx79gyFChUyqz+lzB2VDo2BhlHCfF0derYJwnrQGOj48GN0mzZtZJaEIBwDR5xFrAdQDUDLN59qANYaUW83gGC1T2v9xe2HuYoAJce0MdXVmSEXVEqx3jBXEWBOnr0wRz5z3cHZE2tbsCnEPZrTjX8EQehCu84loTGQIOyIKfPURo0aoVWrVmb1U65cObPquSA0BhpAaUobZ7W0MUWhSxBWhMZAJ2HNmjV4/Pix3GIQhOJxKDs0xlh55A7OdTmOO/EmrT+A44yxchzHxempnsFxXKI95DQVcxQVSo//Yqo1A485ShF74mqWNtayAlOS0sZUN3xS9ex9Tc46/hEEIU5KSgru3LmDypUryy2KIqAxkCDsjynW+25ubmjXrh3WrFljUh9lypShBWAjoDHQOEhpYx/MtaojCHOhMdA54MdoLy8vFCxYUGZpCEL5OJTSBkA9AMn8IA0AHMfFMsaSAdQHoG+gbswY+xfAcwCHAUziOO5fqcKMsTwA1Le6+gG5QbIyMzMtuARdfHx8oFKphHN+hy3HcRrpnp6ecHd3FwJ1qVQq5OTkCPkcxyEzMxPe3t4a9by9vUVl5tOsfT1A7oubugz8cWZmJry8vKBSqZCdnS3kZ2VlAQB8fX3x+vVrId3LywuZmZlgjGm0B+QO+Pa+LvV7pX5N6udArl9ONzc3ZGZmwsPDAyqVSsNXZ3Z2NjIzM6FSqXTuvb2vyd3dHd7e3sK5+nVJPUs5OTk61+vp6YnMzEydew/892xqY8vrUn/G1K9J37Pk6ekpea98fHyQnp4upPPPptQ12QCnHP+0seUz4Qp9OeM1OWtfhvr5P3tvHhzZWd7/fk/v+yKptY400iyesT1e8YJtlgsVyAXMYm4WsElwTKpCylAGFyQBfikIwZCtjBOo3BuosIcklQQwAQowOyaAMTa2Jx4be8YejWa0dqv3vfvcP6Tv49M9ao2kkdSt1vOp6pL6dJ9+37O8z/us73G73ZiYmDhLXpH3ve99uOuuu9bUVvO8db6sdm5UBp4fu/Fe17Y6p63mdpptEQA4cuQIjh49eta+DocDBw4cWFHOfPvb38bLX/7yhm383rve9a6uuQe3+PfbLgO9Xu+WB0XOd76i3n4utuuecDqdYmdt1hy8Gps937fCarN2y/jt1rbacUxbRNtl4FbrgVtxreh7a2a7ZEVzW/T7bQXdOH67ta1uPKatasPYSZkfhmG8F8Ctpmle0LT91wA+bZrmR1rs97sAsgBOApgA8JdYClg9zzTNUot9PgDg/c3bv/jFL8Ln853PYSiK0sXk83ncfPPNABA2TXPTnsit8k9RlJ2AykBFUXYrWyX/AJWBiqJ0PioDFUXZzWyFDOyISptWQrGJq5f/rhRlMlpsX9rBNP/d8vaoYRgPYklovwrAl1rs9hEAd1veBwFMveQlL0Fvb+85uro+XvCCF+Cxxx6T9/v378eHPvQhXH755bjwwgtlu9PpxNvf/na8//3vx6c+9SnceeedDeXW3/3ud3HVVVfhxhtvxI9//GPZHolEcPLkybParVQquO+++/Cyl70MTqdzU4/pG9/4Bt74xjfKe6/Xi0996lN42ctehjvuuAP//u//3hBlT6VSAIDBwcGGaoZXvvKV+Nd//Vf86Ec/wqtf/eqGNj7xiU/gd3/3d7f1uC699FI5l9ZjOn78OK699lr5nsPhwPve9z7ceeeduPvuu3HXXXc1HO9DDz2E/fv34/nPfz6OHTsm2ycmJvCrX/1qW4/pc5/7HN7+9rfLe+txvelNb8I3v/lN+SwYDGJqagqVSqWhnNXhcOCNb3wjPv7xj+Pee+/F7//+7ze08Z//+Z942ctetq3HNTY2JveV9ZgeeOABvPKVjcvY/v3f/z1uvfVWvOc978EnP/nJhgj5yZMnEYlEcOjQIczMPFdVffXVV+M73/nOWe2m0+uTzbtd/jWzlffEbmirG4+pW9taazt33303/uIv/gLPPPMMPve5z+H9718SF6lUCuFweE1tUQbedtttDXPsatx3333I5/N47Wtf27D9pz/9KS666KKW+6kMPD92872ubbW/rZXaaZYz73jHO3DPPfecte9b3/pW/PVf//VZ37/rrrswOjp6lm5IuTQ9PY23vOUtm3wkjWzX+Vuv/AN2lgy8/fbbUSwWz9HV82Mj85WVeDzeUDHfiu26Jz796U/jPe95z3kd03o43/O3HhYWFnQO2QFtbecxdbsM3Go9cCuu1Zve9Cb893//91nbt1NWWNs6c+bMlj36oBvHb7e21Y3HBGxMBp6LjgjaAPg4gH87x3eeBXApgIEVPosBmF1rY6ZpThuGcRLAwVW+UwIgkXeWgjudzk2/0NVqtUFQcnkwh8PRsL1araJer0v7+Xy+4XdsNhucTidqtVrDfh6PZ9U+b8Ux2Wy2FYW/0+lEvV5HoVBoCGKw/VKp1LAfl6yy2+0tf68VW3FclUrlrH6wHet2h8PRcK2aj9e6nJh1v1KptO3HZBhGy3PbfC+5XC44nc6zrq/D4UC1Wl3xM+C5e7MVW3FczfcS21ntXjJNE4VCoSFow2vV6t5c6XfWya6Wf63QtnZGO9rW1rfzrne9CzfddBMGBgZw55134k/+5E9kv/UaWYVCYc37XHfddfje974n37/xxhvxta99DW63+5zyfJ2oDFyBbmyrG4+pW9uyttMsM+6///4V5Qj1Xn725S9/GRdccAEOHz58lj5pJRQKdc352+Bv7xgZWCgUtjxoQ9YzX1lxuVzrehbTVt8TVrtoo8e0EbajLZ43nUN2Rlvb0U63y8CdeK2afY3NbLdccrlcW77MZjeO325tq9uOaSt+vyOCNqZpLgBYONf3DMP4KYCwYRjXmKb5wPK2awGEAfzPWtszDKMXwCiA6Y31eHNppVhu9GHv61FUt4qNPtC91Wed/nD71fpns9laPoCyeb92HNNq98tGj7cTWE/fV/tsq8fVbpd/iqKsjt1uxwUXXCD/W7n66qvxi1/8YkvatdlsDXPSX/7lX+K3f/u3cfjw4U1tR2Wgouwc7rjjDjz00EMrftasQ83MzOB1r3vdip9Zaa7m222oDOxuOsEuV5RORmWgoihKazrDu7pGTNM8BuCbAD5pGMbzDcN4PoBPAviaaZry4DHDMJ4wDOOm5f8DhmH8nWEY1xmGMW4Yxv8F4L+xNDF8efuP4mw24hhfzbnfrBx2WiBgtf60Ohcr/V6nB23Ian3vhADHuYIYKwXV1nP/nev7W8VGxtV6rtV2H1O3yj9FUTbOSks0bga33XbbWdv8fv9ZyxttJyoDFaX9DAwM4NZbb13xs2a96FOf+tSaftPlcp1vt3YFKgPXRqcFSdayVJuiKOdGZeDG2C6fRfNcbn1UgpV2+IUUZSfTfo/x+rkFwGMAvr38ehTA7zV95xCWIu4AUANwCYB7AfwawGeX/15nmmZmOzp8Llopl+t19ndDpc1GgiLbSatJZqOVJ82KfCcFN9b7WbdURa3199qkcHSd/FMUZf3ccMMNAJaWFdoKPvzhDwMAjhw5Its6xMhSGagobcQwDLzgBS9o+ZkV67MeAeDJJ5/Ef/3Xf21Z33YJKgN3GN0atFnrM/UUZZNRGdihnDhx4qxtd955Zxt6oijdxY7TIkzTTAB40zm+Y1j+LwD4za3u1/nQqjJmPYEPK53gXD7Xklut+tTpy6OtJ8Bm/ax5ebROqrQ5V98Nw5D+NwfY6vX6Wft0wjEBm7/sYCcE2LpR/imKsj7y+fy2OYEGBgZw880344tf/OK2tHcuVAYqSvtppUe53e6G9y95yUsa3l9wwQWy1KOyMVQG7jz8fn+7u7AlrGQDKspWozKwcxkZGTlrWyQSaUNPFKW76Azv6i6nlfNlvRUBnVRpsx3Lo7WDjSzftlLQptV+nRSIAjZWMdXpy6NtdLm6TgiGKoqieL3ebXtgIwCZvzolIK8oSntppf94PJ6G9630y3vuuWfT+6QonUq3VtrceOON7e6CoihrYDt8Fn/0R3+0YrvqL1GU80ct8A5gKypt2i0gV1NQN/I8np1WaWMN0qxWadMJwaiNVkVZ97N+pxOOCdj85w91q9GlKIqyGsymbbdeoShKZ7BW/Wp4eHjF791xxx1473vfi5MnT2563xSl0+hG+2F8fByf/exn290NRVE6hJtuumnF7ZrwpSjnj46iDmAjlTbnquxY6eHx28lqCupqFQvrCQS047haZTef63q0otMrbVbrn/Uam6bZcZU2mzWuSCdcK0VRlJUIhUL47ne/iz//8z8/r98ZGhrCDTfcgN7eXtk2Pj4OYKnCR1GU3cdFF13U8H6tQZsrrrii5W/eddddumyKsml86EMfancXWtIpyWybSU9Pz7ZW/CqKsnHi8Xjb2lZ/iaKcPxq06QBaPSvjfJzL7RaQqylyG3GMd3ogYL1Bm06q3jhXgK1VAHAjz/fZTtZzrayfrbUqqt1jTFEUBQDm5uYwOTmJl770pfjgBz+Ij3zkIxv+rcsvvxz3339/g/z84Ac/iB/+8IcYHBzcjO4qirLDqNVqDe+b9Z93vetdAHQZWaV9vOMd7wAA3HvvvW3uydl0il2kKMru5Pvf/35b2rU+F1lRlI2jQZsOoNm5TKNno4GATnAurxYIWK1/rQy+TgnabFalTSc93H61a7Va/zq9Ksra97X2bzXDqvnaa7mvoiidQCwWQzgclvd/9md/tuHfWkkGulwuvOhFL9rwbyqKsrOpVqvyv2EYDfIGAI4dOwYAyGazAIAvfOELCAaD6qxWtg2/3w/TNPGa17ym3V05Cx0HiqLsVrjEsqIoG0e9jh2A0+lcMXCxWZU2nRTcAFYPErRyjHdKIMDlcq24faVj6oZKm9XupVYBnU44JmBjVVEOh0MrbRRF2bW0muMURdm9NAeCm4M2X//61wEAjz76KADglltuQTqd3p7OKTuOo0ePtrsL20o3JXlx7Gv2vKIo50IrbRRlc+geLWIH43A4GhS61aoCVnOMd1L1xnqWR7P2z7qfYRhrOt7txOPxrLh9vYGZTrpWG62KarVfp1yr9VRFkZWCNtbPrGjQRlEURVGUbucP//AP5f/rrruu5fe6yTmtbB0XX3xxu7uwrXTTuHj7298OQIM2iqKcG8Mw8Bu/8Rvt7oai7Hi6R4vYwTQ7l1sFbawPe9+oo327WC1bd7WATvN+7PtKwZJ2HddK7TZfj3NdKyrwTqezZcBuu1jtWq0WqGj1WadURbW6z85VFdWq0qbVvakoiqIoirIb0KUSlfPhn/7pn9rdhW2nm4I2H/jAB9rdBUVROpBYLLbi9uuuuw6/93u/h49+9KMAgGuuuWY7u6UoXUFnrGO0y2kOBDQ7xsvl8lmfnat6o93Lo200aON2uxvet3KYWz/bTriUXbNjfz3VNNbPmpfGawfruVatqqJW26ddWAN9a+k3sHQu1hq06SYjTFEUBQDe/e53t7sLiqLsUNqtzyqdz7XXXtvuLmw73VSVwsS8m2++uc09URSlk7jyyitbfva5z30OlUoF3/jGN3DfffdtY68UpTvQoE0H4PP5WgZZWjnNV3M8r+Zo3y5aLSMGnO0Yt/avVdCmU5bcalVpYxgG7HY7arVawzbus9L3gaXjbXeA7VzXyoq1f60+W+nebMdxBYPBFbevdi9t9FwoiqJ0A89//vPb3QVFUTqUVnoVUb1IUc7me9/7Xru7sKl0UxBKUZSt45Zbbml3FxSlK9BU8Q6g+YGeVqMnEAis+NlqgYBOcC6vJ2hjxe/3y/+d+Ewbn8/XssKiVbBstWvl9XrbbuR6vd5VP2sVYGt1jZsDb+2iVYBttcoin8931jbrdWz3tVIURVEURdlunnrqKTz99NOrfkd1JGWtvPnNb253F7aNUqnU7i4oiqJsG8FgEKZp4jd/8zfb3RVF6Qo0aNMBBAIB1Ot1eW81eqxBDOtnqznGm53p7TCiVuuf3+9fsSKFn61UedJJQZtWWI/Z+kyblc5Fq886LcC2WtCm1b3ZKc8fal4mkKzWv+ZjsuJ2u9v+/CFFURRFUZTt5sCBA+jv7293N5QdDnXnz3zmM+3tyDby+te/vt1dUBRFURRlh6JBmw7A7/e3DNo0V0GsxTHu8/laOtq3C5vN1rKiobl6yEpzJUunPdNmtaBNqwqnlSpZVjuu7aavr6/lufT5fC3vzVAotOI+q1XubCfWoE3zEnytgmUrBW2sY67dS9kpiqKshde+9rV49atfjU984hNr3qdTnkemKErns5Iur8/6U87FbrxHIpFIu7sAAPjYxz4GAPjbv/1bfPjDH25zbxRF6VbUR6Iom8vu05w6kD179jQEWawKbbNjfC0VAZFIpKGSpV20UlKbAx9WwT41NbViFc5KSn67npNSqVRW/KxVgG21Jbe8Xm/D77XrOT3RaHTFz5oDgFNTU/J/f3+/PJASWFvgYzsZHR1t+VlfX9+K21czrJqXslOFRFGUTuUrX/kKvvrVr2Lfvn3t7oqiKF1IJpMBABw5ckS27UaHvLI+duPzUDrFXmA/7HY73vOe96yaiKgoirJROkXmKUq3oNp1B3Do0KGG94899pj8Pz4+Lv9Xq1Vxmg8PD5/1O3SgDw0NNSjFp06d2szurhkadM00L69QLBblf2vAplar4fOf/3zL3y8UCufZw/Wz2rJvk5OT8r9pmpifnwew8rVqVTFlvfbbSSKRWHH7yMhIy31mZmbkelUqFfz0pz8FsLLR3g5Dfv/+/dK/5iDmxMREw/t0Og3g7OdLAc9dq1qt1hBg+8Y3vrGp/VUURVEURdkp5HI5/PKXv5T36qhRlLPptHHB/tx4441t7omiKDudT3/60/j617/e7m4oSlejQZsOYP/+/S0/W1hYaHj/2c9+FsDKwYNgMAgAGBwc3MTebZxWQZUDBw603Od3fud31vz7V1555br7dL685S1vWfN3Z2dnAawcCGA1yktf+tLN6dgWsVr/3va2tzW8P3bs2FZ3Z11ccsklLT87efJkw/uf/exnAJaq3pphMPTFL37xJvZOURRl69HMd0VRtgqfz9ewzG+nOaeVzmM3Vtp0yjzM8bkbr4GiKGtnpYTjVuzbtw+vfOUrt7A3iqJ0hhaxy3E6nbj99tvl/Ve+8hX5/7d+67cavvvAAw/I/81O87GxMQDANddcsxXdXDc//OEPV9wei8Va7nPbbbc1vLc61+++++6Gz1YLdm0VDIytRHPQ4t3vfrf8b10+4hWveIUspfa85z1vk3u4MazVTtYKErvdjhe96EXy/qtf/ar8/6pXvQqvetWr5P3MzIz83xwUuf766ze1v2vh2muvPauihtx3330N7//P//k/AJYMK2uw5/rrr5egTfNYbEfQUFEUZT1Y5fe5UIeroigbgUvLdsJzGpXOZjcGDDplbm0O2pRKpXZ2R1GUDuUzn/nMee3fKYFqRekWdER1CB//+MdRLpdRr9fxkpe8RLbfdtttuP/++3H77bfDNE0cPnxYPvvYxz6GUqmExx9/vEEJNgwDqVQK4+PjuP322/GP//iP23os5EUvehFM04RpmkilUg39M01TgktWpdHn8yGfz+P48eMwTVMCUQDwzne+E6Zp4stf/jKOHj26fQfSRL1eR61WazgmADh8+DBM00Q6ncbMzExDwOCxxx7DT37yExQKhYagiM1mQ6FQwL333ov77rsP//Ef/7Ftx2HF7XbLtbrhhhsaPvvhD3+IYrGIX//613j1q1/d8NnXvvY12c/6/KWxsTHZbppm2ybvEydOnHX/AUtLElr7d/DgQfns0UcfRa1WQ61Ww09+8hPZbrPZkEgk8IUvfAEPPvhgw5IgiqIonYj1uWOKoihbwYUXXgigcx64rnQuVnv1iiuuaGNPto9OCdo022L33ntvm3qiKEons9rjANZCp8g8RekWHO3ugPIcTqdzxe033HDDWY504nK5xFiyEgqF8Mwzz2xq/zabn//85ytu93q9qz48+XWve91WdWlNGIYBwzDOek4KCQaDK1bktKo28Xg8eM1rXrOpfdxs3G53Q2Cj22kVZIpGo7jlllu2uTeKoiibx5e+9CW8/vWvB7Ak25k4Ya0IVRRFWSvPe97z8NOf/hQ/+MEP2t0VpcOxLuH9B3/wB3j44Yfb2JvtoR3PYF2J810e7YUvfOFmdkdRlC5AAzSKsvVo0EZRFEVRFGWXYK1gnZycRC6XQzKZxPj4ePs6pSjKjoXP38xkMm3uidLJlEqlXbmEXrcsCWddKUJRlN3LhRdeiMHBQXz/+99f8XMN5CjK5qLLoymKoiiKouwSaEy94Q1vQH9/PyYmJnDFFVcgGo22uWeKouxE/uEf/gEAcP/997e5J0on0xyw2S2OPWuiRDvhKgIbDSLtluulKMrqhMPhVZ/LrLJCUTYXDdooiqIoiqLsEoaHhxEIBPC2t72t3V1RFKULiMViME0TQ0ND7e6KonQcnfJQ7vMN2iiKsnuYnJxs+Vnzs7Sb0aCNomwuujyaoiiKoijKLsHr9eoyRoqiKEpb2S2OvU45zle96lV45zvfiT/+4z/e0P6dchyKomw9o6OjLT8bHh6W/zVooyhbT2ekfiiKoiiKoiibzh133IGrr75a3vv9/jb2RlEURdltOBy7N0+0UxyYTqcTd999NwKBwIb275TjUBRla2muxvvxj3+MBx54QN5/+tOfXnV/lRWKsrlo0EZRFEVRFKVLueeee/Cd73wHAJBKpXa180xRFEXZfh566KF2d6FttNuB+YpXvGJTfqfdx6EoSns4ePBgQ/JXOBzWZRYVZRtRy11RFEVRFEVRFEVRlG1BgwA7C71eirK7+da3voVEItGwbSW50CnP8VKUbkGDNoqiKIqiKIqiKIqitCQcDqNYLK57P83Kbg+veMUrxKmq10BRlI1AGfLyl798Td8/ePDgVnZHUXYdGgZVFEVRFEVRFEVRFKUlV1111Yb2WylgoJUbW88tt9wi/59v0Eavl6IopJU8+clPfoKvfOUr29wbRelutNJGURRFURRFURRFUZSW2O32TfstDQJsPYZhbNp51uulKLuDvr6+hvcryf1QKAQAcLvdDduvv/76reuYouxStNJGURRFURRFURRFUZSWOBybl++pzz3YWWjQRlG6m5tvvhmPPfYYLr744obtK8n9P/3TP8U///M/48orr9yu7inKrkUrbRRFURRFURRFURRFaclmBlo0CLD1WM+xPtNGUZTVsNvtOHLkyFnbVwraeDwe3HbbbdvRLUXZ9ey4FBfDMN5nGMb/GIaRNwwjucZ9DMMwPmAYxhnDMAqGYfzAMIyLz72noihK56DyT1GU3YzKQEVRdjPtloHNy+R86EMfWtN+GjBoH7o8mtJNtFsGdjOtgvJ+v3+be6IoipUdF7QB4ALwHwD+33Xs8ycA7gTwNgBXA5gBcJ9hGMHN756iKMqWofJPUZTdjMpARVF2M22Vgc1Bm/N5xs1mVe386le/2pTf6UY2s9JGgzZKh6B64BYRDofb3QVFUVZgxwVtTNN8v2maHwXw2Fq+byxpGO8AcJdpml8yTfMogDcD8AG4eet6qiiKsrmo/FMUZTejMlBRlN1Mu2Xgl770pYb3aw28rBQw2KwgwGWXXbYpv9OtaKWN0k20WwbuZN75zneu+vmHP/zhbeqJoijrYccFbTbABIBBAN/mBtM0SwB+COD6dnVKURRlG1D5pyjKbkZloKIou5ktlYGb+YybjaASCic1AAAgAElEQVSBhNWp1Wqb9lt6rpUdiuqBy5wrwK3LoClKZ3L2U6W6j8Hlv7NN22cB7G21k2EYbgBuy6YgACQSiU3t3EpUKhXk83nE43E4nc4d3063ttWNx9StbW3nMWUymS39/XWi8m+XtdWNx9StbXXjMQEqA8+XbrwvuvGYurWtbjym7Wyrw+QfsMky0OPxNHyvUqmctW0l0uk04vF4w7Zisbjivh6PB/l8Hh6PZ01LejX/7lrZzvtvvce0WW3xfvR4PEgkEg3L2a3lullZ6TyrXNoZbe1iHRDYYXrgVlwrjvXDhw83jPtmudQ8xvndjcpYK914r2tbO6Od7W5rS2SgaZptfwH4AADzHK+rmva5FUByDb99/fL+Q03bPwngm+fZJ33pS1/6avUaUfmnL33paxe/VAbqS1/62q2vNck/lYH60pe+uvSlMlBf+tLXbn6tWQae69UplTYfB/Bv5/jOsxv87Znlv4MApi3b+3F2xN3KRwDcbXkfBDAFYA+ArU4h2K62uvGYtrOtbjymbm1rO4+J7Z1Z43dV/jWibe2MdrStndPOdrfF9lQGboxubKsbj6lb2+rGY2pHW2uVf4DKwGb0Xte22tVOt7bVyTogoDLQSjfef9vZVjceU7e21Y3HZG1vPTJwVToiaGOa5gKAhS36+WewJKxfBuBhADAMwwXgxQD+dJU+lQCU+N6yjmvGNM30FvV1W9vqxmPazra68Zi6ta3tPKZl1tyGyr9GtK2d0Y62tXPa2e62llEZuEG6sa1uPKZubasbj2m728I65B+gMrAZvde1rXa1061tdbIOCKgMtNKN9992ttWNx9StbXXjMVnY1Dba+/TADWAYxphhGJcDGANgNwzj8uVXwPKdJwzDuAkAzKX6xnsAvNcwjJsMwzgC4DMA8gC+uP1HoCiKsjFU/imKsptRGagoym5GZaCiKLsZlYGKouw2OqLSZp18EMCbLe8fXv77EgA/WP7/EICw5Tt/A8AL4B8BRAH8HMDLTdPsuCelKYqirILKP0VRdjMqAxVF2c2oDFQUZTejMlBRlF3FjgvamKZ5K5YePLbad4ym9yaWHib2gfNougTgL2Apk9xCtqutbjym7WyrG4+pW9vazmPaMlT+aVsd1I62tXPa2e62tgyVgTu2rW48pm5tqxuPabvb2jJUBu7IdrStndNOt7bVFfIP2BUysBvvv+1sqxuPqVvb6sZj2hKMJRmmKIqiKIqiKIqiKIqiKIqiKIqitJMd90wbRVEURVEURVEURVEURVEURVGUbkSDNoqiKIqiKIqiKIqiKIqiKIqiKB2ABm0URVEURVEURVEURVEURVEURVE6AA3aKIqiKIqiKIqiKIqiKIqiKIqidAAatFEURVEURVEURVEURVEURVEURekANGijKIqiKIqiKIqiKIqiKIqiKIrSAWjQRlEURVEURVEURVEURVEURVEUpQPQoI2iKIqiKIqiKIqiKIqiKIqiKEoHoEEbRVEURVEURVEURVEURVEURVGUDkCDNoqiKIqiKIqiKIqiKIqiKIqiKB2ABm0URVEURVEURVEURVEURVEURVE6AA3aKIqiKIqiKIqiKIqiKIqiKIqidAAatFEURVEURVEURVEURVEURVEURekANGijKIqiKIqiKIqiKIqiKIqiKIrSAWjQRlEURVEURVEURVEURVEURVEUpQPQoI2iKIqiKIqiKIqiKIqiKIqiKEoHoEEbRVEURVEURVEURVEURVEURVGUDkCDNoqiKIqiKIqiKIqiKIqiKIqiKB2ABm0URVEURVEURVEURVEURVEURVE6AA3aKIqiKIqiKIqiKIqiKIqiKIqidAAatFEURVEURVEURVEURVEURVEURekANGijKIqiKIqiKIqiKIqiKIqiKIrSAWjQRlEURVEURVEURVEURVEURVEUpQNoa9DGMIwXGYbx34ZhnDEMwzQM43VNnxuGYXxg+fOCYRg/MAzjYsvnPYZhfMwwjCcNw8gbhjFpGMY/GIYRbtGe2zCMXy23dflWH5+iKMpqqAxUFGW3ovJPUZTdjMpARVF2MyoDFUVRzk27K238AB4B8LYWn/8JgDuXP78awAyA+wzDCC5/Prz8eheASwDcCuD/BvDPLX7vbwCc2YyOK4qibAIqAxVF2a2o/FMUZTejMlBRlN2MykBFUZRzYJim2e4+AAAMwzAB3GSa5leW3xtYEqr3mKb518vb3ABmAfypaZr/1OJ3fhvAFwD4TdOsWra/AsDdAP4fAP8L4ArTNH+1hYekKIqyZlQGKoqyW1H5pyjKbkZloKIouxmVgYqiKCvjaHcHVmECwCCAb3ODaZolwzB+COB6ACsKagBhAOkmIT0A4JMAXgcgv5bGlycFd9PmHgCJtR6Aoii7liCAM+b5RcXbJgNV/imKcp6crwxUHVBRlJ3KjtYBl/dRGagoykZRGagoym5mM2Sg0MlBm8Hlv7NN22cB7F1pB8MwegH8OSxCfDlK/xkA/59pmg8ahjG+xvbfA+D9a++uoihKA3sAnD6P/dspA1X+KYpyvpyPDFQdUFGUncxO1gEBlYGKopwfKgMVRdnNnK8MFDo5aEOao1PGCttgGEYIwNcBPA7gLywfvR1ACMBH1tnuR7BUQkmCAKZuuukmDA0Nwe12o1arIZ1Ow+VyoVpdCuaXSiU4HA6Uy2V4vV6USiUAQC6XQ29vL2ZnZ+H3+1GpVOB0OhEIBHDVVVfBMAwYhoFqtYpHH30UpVIJPp8PBw4cQLVahdPpRKVSwcMPP4xcLoeXvvSl8Hg8AIBKpQLTNPHII4+gUqng2muvRS6Xg8PhgGma+MUvfoGenh6USiXU63VkMhnYbDb4fD5UKhXY7XZ4vV6Uy2XpW7lcRrlchs1mw+LiIsLhMJxOJ0zTRKVSQbVahd/vR61Wg81mQyaTgcvlgmmaqFaruOiiizA8PIx6vY5yuQy73Y5f/vKXKBaLeOELX4hyuYxSqQSbzYZUKoXp6WkAwNVXXw3TNOW8HT16FAAwMTGBYDCIYrGIer2ORCKBXC4H0zRRLpdRr9dRKpVgt9ths9mQy+UQjUZRrVbhcDgQCASQz+exuLgIh8MBr9cLAMhkMigWiwgGg6jVajAMA263G/V6HXa7HbVaDU6nE4VCAV6vF5dccgnq9bpc//vvv1+uw+WXX45CoQC/3w/TNHHs2DHUarWGfQzDwCOPPALDMBCJRBCJRAAAHo8HDodDrlU2m0UqlQIA2Gw2eL1e1Go15PN5eL1eVKtVhEIhVKtVVKtVxONx1Ot1RKNR1Go1uFwunDlzBkNDQ/Ib6XQakUgExWIRJ0+exP79++Xeuuqqq+BwOOQ+fuSRR1Cv13H48GE5XzabDf/zP/+DcrmMiYkJBAIBRCIR1Ot11Go1PPzww6hWqzh06BCCwaAcbzweRzweRz6fR7VaRSqVgtPphGEYKJfLcLvdcDqdyGQyiEQiqFQqqNVq8jcYDKJQKMDn8zVst16HarUqx+3z+ZDL5fCCF7wANpsN+XweTqcTR48eRaVSweHDhxEOh2Gz2WCz2WCaJh566CEUi0VcfvnlcDqdMlYSiQTm5+dRqVRw8cUXIxQKYUn3A375y1/CZrPJWHE6nSIP/u3f/g0AMuuUOa1ohwxcUf694x3vgNfrhc/nQyaTkWtnsy09Ho0yoFwuI5fLAQCi0SgKhQKKxSICgYCcJ5/Ph3q9DpfLBbfbjWw2i3g8LvdsLpeDx+OR+6RYLCISiaBcLsPlcqFSqcAwDBQKBRm3lUoFXq8XLpcLMzMz6OnpAQDU63UUi0X53Z6eHlSrVdjtdkxOTsLv9yMUCqFYLMp4ZrsAEA6HRbbb7XaUSiXUajUEAgHpJ2WQw+FAPB6Hz+dDX18fZmdnEYlEkEwmpV2v14tcLodSqQSPxwOn04l6vS7jz+VyicxhW7y/i8WinPdqtQqbzQan04lcLgen0ymywjRNOdd2ux0LCwvo6+uD3W5HNpuV33e5XDAMAzabTcaZw+FAOp1GOLz0HM9CoQCPx4PFxUUAaJjbPB6PjPVqtYp6vS7y1zqXeL1exONxDAwMIJ/Pw+fzyZxTr9cBAMlkEm63Gy6XC6VSSWRdvV6Hx+OBy+VqOE+maaJWq8HhcKBYLKJQKCAYDIpc4xxoGAZM08Ti4iJCoRBsNpuMYx6rz+eTeTaXy0m/ODfXajW59h6PR64D549isSjtcb9KpYJisQifzyd99Xq98rndbke9Xpfj531tt9vls2q1CtM04fV64XA4UCqV4HYvJf5Vq1UkEgmEQiGRqYVCAaFQCKlUSvoYDAbl/AaDQdjtdgCA3W5HPp9HvV6X+8blciGfz8uY5r0HAE6nE3a7HcViEYuLi4hGow3XhLL35ptvxujoKLA5MrCjdMA3v/nNci0qlQrcbjfsdrvoXNVqFdlsVuQa9YjlPsLhcMjn1HUCgQCy2SycTidSqZSMO8o0AMhms/D5fKLTAMD09DTGxsbkHjcMA9lsFjabTdovFApwuVxyzQuFAmq1Gtxut8iiarWKSqUCl8sFh8OBWq2GQqGAcDiMdDot48rlcmFxcVH6OzQ0JLoB5wHKAuv9T53Y4/FIO4ZhYHFxUWR6pVKReYV6KOUSz43NZkO9XkcymYTf70c6nYbb7RadgnobxyD1N87p7Afl+MLCAsLhMDweD/L5PILBIM6cOYPh4WEZr6lUCpFIBLlcTq4fr+XCwgIGBwdRKBTgcDhEzlBGWHXKSqUiY4qy1jRN0ckAiF4DLM1ZDodD9KKFhQX09vaiUCjItaMc4zXjd3jcwJJ9wN/ktbaSzWYRiUTgdDpRLBYRjUbR09MDl8uFTCaDYDCITCYjvxuPx2Ue4RxTLBZht9uRyWTgcDjg9/thGAaSySSq1Sqi0ajM9byu1n5w/uI5y+VycLlc8j8AuY84dnif22w2mSsAiC6Yz+cRDoflfuUY4bxXLpdRrVYRCARgt9vFruFY4dzPMc15xm63i+5A2ej3+5HL5VAoFBCJRJDJZPD5z38e2Nk6INBCBn7sYx+TOYhzJc9vMBiUc55IJBAOh+Ve5xxaLBZlLvR6vXLeOL7L5TJqtRp8Pp/o7/yby+UQCoVkn3K5LHY1x1cul2uQu8lkUj4DntMbgCWbnWMwEAiIHUnZzvu2XC4jnU4DgOgQtD2oVzidTrjdbpRKJRQKBbHH7HY7YrGYyGe/3w8ASKfT8Pv9Yp+WSiWEw2GRx9SRPB6PyDrr2Of/lJNutxvlchmZTAapVEp0GNpZtH9dLheSySTC4TAcDofYNdR/qZvMz88jEAiIvpLJZODxeETnBpbki8fjETucukMmkxE9huPEMAw4nU7UajXxC3DsclzyeoVCIZEvAGQfytlSqSTj0ufzwefzoVQqiT8mlUqJXf/MM8/g5MmTePjhh9d5+yubQFfKwJtvvhn9/f0y51Gm0D6lnkA9D4D4pui3cDqdKJfLmJ+fx+joqPjbCoUChoaGYJqm6D7lcln0C5fLJeOdvjfDMODxeBCPxxEMBpHL5VAulzEwMCDj9oILLoBpmqKj5XI5BAIB8cdZfYoOh0PkbrFYRG9vr9iQ/Jz+QJfLBQBiV9JXQ5uxp6cH6XQawWBQ5v94PI5AICD2RiAQkDme/gDK3nq9DtM0Re7weOv1eoMfBwD8fj9SqRTcbjdmZ2fR09MjMgdYms8TiQSCwSBKpZL8Hs8jdRC3241cLif2GbdTj+b1pq5Jny7l7/DwsHx3fn4esVgM2WwW0Wi0QX7RBqbsoh4yPz+PoaEhOX+cl3g+rHqXw+EQX6rb7UY+v1RERn8Lj900TUxNTWF0dBTZbFZkLH0MPJfVahVzc3MYGBiAw+Fo8GvOzc2Jfsh26Aez+jLq9broarx+Ho8HHo8HqVRK7jf2OxgMol6vIxQKIZ/Pi37udrtlnPFacT6jX2lgYEB8BslkEg6HA8FgUPxQVj8A5wnau5VKBZVKBX6/H/l8XsYUv5dKpWTupr6dzWYRCASwsLAgfnD2ORAIiD1QqVTw0Y9+FNg8GdjRQZuZ5b+DAKYt2/vRFHFffhjZNwFksbQWZsXy8UsBPB9AiUrGMg8ahvEvpmm+eaXGTdMsAShZ2lhqvL9fAhi5XA59fX0NgjqXyyGdTqO/vx8zMzOw2WwySAFgZGREBikVvb6+PrnJbTYbhoaGsLCwgEgkgmg0KkZQKpVCIBBAIBBAb28v3G63CCrTNBGLxcTADAaDorAtLCzANM0GozOfz4uQ9/v9sNvt6Onpkd/jIKbiSkORylt/f7847TKZDEKhkExSNNIikYg4Puv1OgYGBmQSoUFfqVQQDocxOzsrwRUKA4fDgWg0ilwuh71794rDgg7AZDKJYrEowi8UColSHYvFRLHt6+sDsORcjEQiSKfTogjOz88jGo3C6/XKOQqHw+IUSCaT4giu1+uIxWJivNlsNvj9fvh8PhiGgbGxMXHeVyoVTE5OIpfLwefziWPDbreLIlkqlbBv376G3xsaGoLP5wMAUXgTiQQCgYBMCjabDf39/XC5XEin0zI5UkDS+Xzo0CGZ9NLpNAYGBmCaJnw+n0zODocDY2Njcp8xAMhz2d/fL05c3r/FYhFjY2MScOIkQ4d0LBZDJBIRZYUKAydyOnFdLpc4Q2hIWCdNBqMMwxBlnkYRjTsK40KhIE5sj8cjRpJpmhJAmp6eFodDNBqFzWYTB2k4HEalUkEsFhOjko6HUqmEcrmM4eFh6RuwFEisVCpIJpPicLB+vgm0TQa2kn+8T7xeL/x+vxifPF8cW6FQCF6vVybJcDgsBpf1XqFxyOs0MDCAer0uBr9pmnJfUubR6VgoFNDX14fBwUFxDtKQttvt6OvrQ29vL+r1OqamprBnzx5xgtGRB0Dkps1mQ09Pj0zSVEypsFAh48Tu8/nkM8puKuRDQ0PisKA8GRkZgcPhEEWZ8ttut2NmZgZer1fmE8oJOuuLxaKcSwCSMNDT0yMO2v7+fnF2eTwe5HI5cXBUq1VMTExIX6PRKNLptDgfGCwZHh4WGWu32+Hz+UTBTyaTCAQCqNVqiEajcj15TQ3DQCwWw/T0NEZGRgBAgrEMjodCIUSjUYRCIQme+f1+CUzwnDqdTvT29sq9R8OFSjCDs1aHpMPhwMmTJzEwMCDBIQbuKHfGx8fh9/vFOVEul7G4uIihoSFkMhn09fUhl8vB6/U2yCbKYjpT6vU6+vr6UC6X5ZwwGMKAGtvgPMlzRKWWjkfuQyckAJlP6RykE5sKOQNNLpcLQ0NDYszNzMwgGAyit7cXsVhMAkb5fB4ulwvBYFDmfSqWkUgEi4uL4hAuFAoYHByU4KvH40G1WhWja2pqCrFYDL29vXj66adx0UUXiaO9WCyir68PoVBoVcG2RjpSB3S73RgYGGgwvhlQ5L06NDQk8iWTyeDMmTO44oorxFnp9/sxOzsLr9crY5H3eygUEqMRgMgW6hkMSA8PD6O3t7fBgGYyTTweF8PK6oxfXFxEMBiUIEY0GoXb7cbc3ByGhoZk3uV8TOco5R11Rcoq3h9erxdOp1OCLv39/Q1JIjw3uVxO9KBsNouDBw9iYWFB9Kp6vS4OcM6nNPh47/f09KC3t1fGBh0knEus8wzlt81mE93P7/dLEHpiYgLVahXBYBBerxdutxujo6OSIJBIJLBnzx45rz6fD4lEQtqlszEUColcPXHiBHp7exEKhbCwsCD3BhNseM9Eo1Fx4LrdbjgcDszOzkpAZHJyEiMjIwgEAjLn+nw+pFIpCfr39PSgXC6LzDx48KDIXI/HI+eWBjJ1YgBIpVKIRqMIh8OiczOAxXmTOpDf70dPT48EeKnP8zrSMcBEKSYK7Nu3DzMzM6IPAs8Fpmg00xlMuU0DngE+JmJx7NC+sAbjGERl8B0Aenp6JKDOJB3aL263G4ODg+IwGxgYQCqVkrnCbrcjlUrJ2OZ9S/lNu6ZWq8nv0JlFe2eT6EgZ6PV6xSkSCAQQj8cxODgoehLvSwCIRCKIx+NiT0WjURSLRdHtvF4vUqmUBAUrlQr6+/tFl0un0/B6vVhcXBS9gPcbZcChQ4dE/5ufn0dvb68EC9LptDipGFBJpVLw+XwIBAIAIEFb2kWFQgF2u12SM1wuF44fPy7ykmPY7XYjmUxifHxczhkDx5TnHFc2m03scjqIRkdHRWfr6ekRR5dpmhgcHEQ+n2+41/l69tlnsX//fpTLZWSzWYyMjIiOEwwGEQgE5H4EgHg8LuPaNE2YpomxsTG5bsDSuGQQjLqfz+eD3W7H4uIi6vU6xsbGJBGuWq1iYWEBe/bskYA4A8eUKfF4XJK2rIl56XRa7Ey73Y7p6WnRYzhG+TmDV9VqVZyUDIJTLy6VSvD7/VhYWEA0GkV/fz8Mw0A0GhW9iPaqsuPoSBnY398Pj8cjgZVQKAS/3y+BTupQDAxQtvj9fvF/0PE/MDAgQYpQKIShoSGxFQcGBpBMJuX+ZcCGcqW3t1cSEBgEZxINk7UYWBgaGpKxSr2FiTgOhwM+n0+c6BxDdPzbbDb09vZibm5O5nkGeGk/2mw2sf3Zh76+PpmjI5EISqUSTNMUXygDGcCSbs3fZBIdEy6ZAEU5n8/nEYlEcPr0afGx0qbhcV5wwQViAzKhzOfzid3LAITdbm8IsDNhqbe3tyHRg3LpxIkTGB0dRaFQkGvCa2AYBg4dOoTFxUXR9alXUI9mAjyTlSjTcrmc+ESHhoYk0aenp0cScijrMpkMRkdHJWGOSaS8R6enpxGLxfD0009jeHgYDocD9Xodhw4dkrmX92WlUsHAwABmZ2flGI4cOSJJibym+Xxe7HTaKcViUfRjymPavpw/GAiiHKffiEmo/f39OHPmDPbu3YtCoSDJC0xo4HzBezEUCkkQkz5ewzCQSqUwPDws9x51iUwmI35jh8Mh9zZ9qkwq8fv9YvcwqOrxeBCLxRqCo8FgUGxnBq6oOzORl7+72RibtMzaeWO0fvjYR03T/JvlbS4Ac7A8fGw5qv4tLAnVV5qmmW/63TEsRdfJ8PL3fwvAz03TnFpj/0IAUm94wxskO5lGBKOtVOSZceZ2u8WhQ8ObjjLi8Xhw0UUXSaVFsVjEo48+KpHUSy65RLJW3G43Hn/8cVSrVVxyySXiHKpUKshkMnjiiSdgt9tx8cUXiwBwu9144IEHEIlEMDMzg1AohOnpaQwPD5+VOZxMJjE6OopMJiNONH6HGb6EgoVGnNPpFMXc5/MhFovhwIEDkt1sGAaOHTsGwzBwxRVXSOSaitxDDz0Ep9OJ5z3vebDb7YjH43C73Xj66adRLBZx6aWXisPC7XbjqaeeQjablSw8OvN4npnFZ620KRaLcs1oUJdKJQwODkoWK/eho4ATZzAYhM1mw5VXXilZkfl8HidPnpSs8UsuuUSEVLFYxIMPPohyuYzrrrtOJqp8Po94PC7BpbGxMQwPD8t1PHr0KOr1Oubn5xuytzkZ0RnZ09ODU6dOSeCIjopKpdIQoOGL2RAUMMyO5/W78sorJfMNAB588EHYbDZcc801IqwrlQqefPJJEfAcB3QMHT16FDMzM7jiiiswPDwszoRarYZf//rXcLlcSKVSMnEyy5EZ/TTCeE+Ew+GGqDadUsyiY6WGNWjKSTKfz+PIkSNwOp0SCf/Zz34Gt9uNyy67TIw0ZsD/4he/QKlUwt69exGJRCSr4PTp05icnEQgEMAVV1whWe42m02ytrLZrAQtOMn+y7/8CwCETdNMr0W+LMuYjpWBlH933HEH+vr6Ghw1POesUOjp6cHMzIwoQdZKHMpKZqZbg97FYhFzc3O44IILxFCm8wSAZATRYKaivLi4KEpAuVyWIAUdKAzi0VDnhM6sFGbzWQ07TuJer1f2Z/COmRRUIq1wvFEGMSBFZ5k1w4NKPZ31pVKpwUlKJxRlGZVqnlNrFQaDhQwssQ3KEQBSvckqPCYLcM5iUCSTycg1ofJiPa8MfNERyfd0giwsLIhCWKlUJEuIyQKsIgoEApiamsLg4KAolDweOmBp9NDZwt8IBALwer3i0GEQhIowZRYrgvhbDHIzIGOz2SSwYq2EoePHMAyRT9YM4ampKQm4M7Dj9XolY4cJANZKKCrAVHqLxaI4itg25zgG4ljhkM/nEQqFMD8/L9WIDKQnEgn09vZKNS8dG/F4XJzJzVW/gUBAsvLoVGa2UCgUkmwlOm6pB1jnGfaTySRU9gHgrW99K6tF1iwDO1n+WdpJ3XjjjYjFYnjmmWcwPj4uehazzRg05bhisIKJFaZpSgULM8147xaLRbl3rZUahUIB1WpVDGDTNKWKgTpAOByWzDRmDjLxhToAx5812zoSiUiiAe8dUiwWpepnfn5e5BN1jsHBQQmsFItFMTTpfGsOPjHJhrKdlRsMmiwuLsI0TfT29krmGgMtHNfM5CyVSqhUKshms5IIwmz7ZDKJ/v5+ub+tmfrValWCSRzTTHaicc7zFQqFRDdmUhYACchZEz+y2azIvFgs1lA1YNWfOW5ZBen1esVRwOr7ZDIJn88ngS/q+L29vVhcXDyrQt6quy3fqzAMA4lEAn19fWJssy2Odcos3of8DqvA5+bmRHbRIcSgPvVTY7kKkbIZgNyDDDCzcpmBI2t2KO8zOsipR1iTsADgzJkziMViSCQS0g9rlS31e94rbIcOH+qc1qpYjk/qiTS20+m0yDKOW8ppnic65wuFAhYWFjA+Pi7fm5ycxLe+9S2gi3RASzupv/u7v8Pw8DAWFhbE8VOr1dDf3y/VHoVCQRIFmSVLecb5PZ/PNzgoOYc5HA4sLCxIZjaTAmhD8d6jHROPxwE8p39ZKznOnDmD/v5+cTAx6WZ2dhZ79+7F4uKi2PN0rHLsUs/idjrZGLy2ZlpzH2BpjDO7muNzz549Ms9ybuV5sCaJcUwzUM3kHY47Vh4y2FrkS78AACAASURBVEz5yt+lzXjixAn09PQgkUjIWKcz1VrJwoC2VV/mHJZMJhuC4HSUzc7OSmCVCaC001hlnkqlZL96vY6ZmRkMDAyIrUt9gTo4s9UByPnmMfHaUoelPKONbk0EYLBsbm5OfieXy+Ghhx6SlTuUbaUrZeBtt90mdgx9ewzs04FNZz6d8UxKtupE1AMZ0Gaw2jCeW7mAtg6DHvSVMFmG9gBlLwOa9Xpd/CjpdBrXX3+9VCZzDqYOwDFMm5V2GPtjtWto+1FG8lgYYLXqQqxs6e/vl9VLmMDNcwJAgrcc3wx80Sa1JnjSLllYWJD9mdzMlRasFUDAcxW4rE5kMIJBNyY+ARDnfLFYhNPpRCKRgNvtFl2aq9hQDrKP/L1EIgG/39+QeMdrTl01kUhgbGxMzsfU1JQEr3i9mGjFIA99XtRPOT8CEPt/ZmZG5lDOtZyn6ENJJBKSNMR7ksEXnh+uMjMxMSFVo/TxUk+mfstEsf7+fuTzeQl6Wc897xHep6yO9fv9ojdZVzPhvTIzMyOBJs419P8xSZ46/tzcnKzMw7+lUkmqeFh9arXVmCT85JNPYv/+/eKH4L3MeZ1+Edra1soqzkHU23kMhmHgr/7qr4B1ysDVaGuljWEYAQAHLJsmDMO4HEDCNM1JwzDuAfBewzCeAvAUgPdi6eFhX1zeP4ilh5P5ALwJQGhZoALAvGmaNdM0J5vazC7/e3ytQtpKOBxGT0+PlDPTMcOoNY3o/fv3ixFBJYhGrsPhwDPPPCPljwcOHBAjl4rT8ePHMTo6ir6+PhHMXJKkUChgZGREhG25XEYsFsPi4iKq1SqGhoakTXO5nK1YLOKCCy4Qhz4FWyAQwOTkJDweD/bt2wev1yvZLbOzs5L9Eo/HEQ6HRZjT8GE5ucfjkQxOm82G4eFh9Pf3o1KpYHR0FIlEAolEArVaDXv37hVlmEYdK45GRkZQqVQwMjICp9OJbDaLUqmE3t5ecTIyYzGbzWJycrLByU+nCJ38rCCiM5DBr2KxKJlKjLxOTU2JEmyt4ujr65NSUTr06RSt1+uYnZ1FNBrFwYMH5V7o6emRTD9msDModPToUclwGhkZEWdAJBLB2NiYONVYrm8tPZyYmBBnsVV4WJcCYcCGhjXLHmkQMRPEeq2PHDki2Qssy2QfWeXA0t1arYb9+/c3lE7Smb53714cOHBAAjk2m02WRsvn8xgcHBTlhpl4dCTk83nJsGNlBpeO4QQOQLINWBGRTCbR19cnDhAqEZdffrmMKbfbjZMnT0oFhmEYsgRKuVzG0NAQ6vU6Lr/8clG4rEvbcJLft28fAMg5YBk+M9WZEbBWdpoMHBkZkcwDjl9m3RQKBezbt0+ygxYXF+W6MNOQkyEzaVgxE41GkUqlcNFFF8l9FgwGkc1mpTSVWa9UhunkHB4eFoccl0rgZ3TI1Go1DA8PS+UBM4VN00Q6nYbD4ZDMDmbyMGOY+9ExzXvGmpHILBIa6FQGqDRxe7lcRk9Pjyg9dIQz87tUKomC5nK50NvbKxUu1vZZkQJAnHzMFKdjlNn5DABZqz+sWaDsZzQaxczMDPbu3SsKIectzmU05oHnlGBmWFLJ4TnhdjpBs9ksBgYGZDw6HA6Mj4+LbAPQIE/pSOY5onMbeG6ZLo5bLkfC6pt8Pi9LAdC4YECCQT/K8eUxIfNcJBJBT0+PKF6RSETmFrfbjXA4LPM7s7eYQEHnE+do3kf1+nNLxi0sLMDr9aK/v1+SHfr6+hqqEhksZFCIcmz//v0SZGSgiko1DRk6YblsFpcUAiABGOobe/bsaajUYIYxq4mplPO8M2BDhyXL0OksojNtrew0+QcAF154ISKRiFReFotFOUdMsOGSS4VC4SwnPs9VT0+P6GnPPvssBgcHJQDIsUSdy1ohQWOa1WE0TkKhkASdWQ1A2UNnIp1slA0MqDJAmcvlkM1mZVkpVifbbDapXgYghh2z4/k7vP94v1iXvrE6+ymvOadSrxsaGhLZyIBDLpcTg5jBfmZaMxCUz+dF1jAQW6vVJAHAZrM1VHgDwODgIBYWFmQZXzpceH4Y3GLwhk5BBkAZ4EilUqhUKtizZ49Uv1H/oZOR14zGP/VHVoGwDe4/MDCARCIh2ajGchWjw+EQ2c35h/1mwIHnpV6vY3BwsKFChLKS1VWhUEiWh6rVaqJTjYyMIB6P4+KLLxZ5weOm7KZTw+PxyLVidSznIgbomJzAfnBpY2bVTk9PIxQKydKZPA/RaFSSJSiruOQpK2ZZAclrB0CC9KdPn8bg4KDMQVwekueJS2xRH6nX6zhx4gT27t0rvwVA5go6w/gbvM+5agIdHyMjIwzanJOdKAPHx8clMByLxaQ6lQ5Gm80m+jodZQ6HQ5wsDFLwnuT4ZKDZ4/GIA4hji/oTA5YAJEuYCS9cqo2BjVOnTuGaa66Rpc3YRiAQgN/vRyQSQW9vL7xeL7LZrNhLp06dwsDAQMOSW4VCQQI+1FcIk5eYdGEYRsNqGKyksVbeUtejXUbbhYlPVp2LqygwWGldYocykboVK6Auu+wyzM7O4qKLLkK5XMbk5KTYPtbgOsegVX+bm5uTIBIDK3T85XI5yVQGIDa1taKAtiWrq5ilT/2RsoOJNHT0chlF6racLzl+qQexuo1jng7R3t5eqRZipYHNZsMTTzyB4eFhDdp0KDtRBrJ6j/rGnj17xA5jcgdXQqjX6w1JuLSbmBBcr9fFt8MkFAZgaMsODg6KTUTnOx379BnZbDYJZMzOzmJ0dBTJZBJOpxPj4+Pw+XyySovX65WlDylrOK4oh5gQtLi4iIGBAUmqoJOdNjnnaOqBXEWFeufw8LBU3PG8UZ/gealUKti3bx98Ph9OnTqFWCzWUIlBXYMJoS6XS5KYgsEghoeHAUBsTWsAjMEIczmJnDKCPsLBwcGGoBX1AafTKcduXfaNFfK85qxCZkLT+Pg4EomEtEO5yHmS156+rmq1iiuvvBKpVEoSW/bs2QMAEuziPEl9mjoO5S99ImNjY6JrMajDpEtgKYA9NDSEZDKJvXv3yvVi8h2Tgjhv0NdL3xmvOY+HFT2jo6MN1ZC0DzOZDKLRqMhpBsL6+/sBQJI9Tp06hcOHD8sSe6wWvfjii8WG5QoRtHlyuRz27NkjdjaTM3huGIzjCim0sxmw4neoh1Ov5z1Fux+AVKybyxU5XFWAdnMoFOKS4ACW5vf12MJrpd3Lo10F4PuW91w38rMAbgXwNwC8AP4RQBTAzwG83DRNrg/3PADXLv//dNNvTwB4drM7zMwTDhAuj8Sbnjc0nSXMzGX5PDPOqtUqTp48KQY7BTnXEpydnRUHjnXNxsnJSZTLZVn/kg6dQCCAn//85xgZGcHU1FTDchHf//73cejQIek3nZHMcHQ6nVhYWJB+cZkCZtpRoWPmDB2CNMg9Hg8ymUyDMs1Sz2QyKc7R+fl5AMDx48dFqa/X6zhz5gxmZmYkq3Nubk7K/o4fPy4ZpvF4XJxL3MfhcEhWMI170zQbnlFjrbpZWFgQhyqj+TT86CxmdJVOBjr8BwcHRflmZsVTTz0l1S0MwrGCgyXlU1NTDct3nT59GnNzc+J0oyFYLBblWT1WIc0lyxjlZoYADWgGvhj5ZUUVHQrM+qKTgIKZDqJarYYTJ04AgJS9Hz9+HB6PB1NTU+J09Hg8OH36NJLJJOr1OqanpxvKA5PJJAzDwIkTJxoc2fPz85iamkKtVsOZM2dkO++PcDiMeDyOWCyGeDwuhgiFO/CcUczxRiN6cnISXq8XCwsLqNVqEmgsFot48sknZbKpVCqYmZlpcFQwGyGbzeLYsWPiJDCM59at5z4MPk5OLul95XIZ09PTEjRk8IrZwetgR8nA06dPSyY4J7R4PC6T9MzMUiV7KpXCwMAAHnnkEUSjUZw5c0aWwaIRb10q4dSpUxL0oIIzPT0tmdZUilgZR+OcihcDD8xApDP/8ccfx/79+xuWg5qfn0c2m22oEKJReuzYMQmuMjv36aefFsOYwVIqd8xYZhkuszynp6dlebZcLieORToWmOHI9YKZfVKr1WQ9eGZeMfNodnZpJQDKJGbls3rDNM2GJQup4NMBRsdCNptFT0+PLHvGZ1ZQqaPTLx6Py/WiY4wZJ9aAF5cSovPfMAwpt6dhTwWGy5oxi5aBKyqwnDfi8bhUqFSr1QaH+GOPPYbLLrtMnCOU8QxwMCOMS41w/PM7LC3v7e2VtXX9fj9OnToFr9eL06dPy3zDuWR+fl4c4GfOnBHHFJ3PdO5Yq53S6bQYLTzv1izZQqEgmWWc2xhwASDVGtxOpwiXYBgaGpLANoOnNKQoP10uF5555hns27cP6XRaxm08HsfBgwelGodyn/MOsLRMFzPKeO6oKFP55TWam5uTxBEG49fIjpJ/wJL+wrkKgCxDNj8/L06lxcVFCeRTlwIgOh7lEee0yclJxONxWZYKeG59cOtzCGiQU7eMxWL49a9/LfoPZQcNTGbvWZfzqtVqosOxKnVubg4AJIuciTzFYlHWjWZfqZPQeHe73ZicnIRpmlK1zPXPOc87nU48+eSTOHz4sOiB1WpVgk7JZLLBMctEEwZ7qPs4nU5xvDNZxOl0Yn5+HuFwGKdPn5a5m85/ymka49S7ZmZmZJxwrLBNq3MVgOiHDLBbj4uBmaefflp0bBqANHqt45hyOZlMSgIEq4hYZcLqTqvcoS5E5yqvBY1k69JO9frS8/6o7zKz3lr5SVmXTqcxMjKCbDYrz1KkDjs9PS0JLJR1XKKUzibq8ZnM0pBkEJOGLa8dnQeUz7SZaFCbponp6WmpeqHzmAkbDFIx+YvOBMpUOhKoa9NxQUcC9YpMJiPOlUQigeHhYTnnXNLi9OnTEgji3+np6bOWWGXCCZ9bR531+PHj6xEpO1IGjo6OYm5uTrJ1FxcX0d/fj9nZWYTDYTz77LMiQ+iky+Vykrw1MzPT4AChc5HLf/HZQAyycllnOkSZwc3M5vn5eamKoh5KO4D2yOLiIp5++mlxgLIiC0BD9TSfY8mkCi4dTl2KARNrEhHtSto1/f39kmBoGEtLilPfpa7EzGq2Tz2FySR8Do1hGGLvRqNRTE1NSfASgKzOwKxuLjdOmyifzyMWi+HEiRPo6+sTvYPLsNIO4vLEXAKSARfqNhwndCSzn3x2BJN3kskkZmZmJImKCTG5XE6WY6NMpJzx+XyYm5uT68Kqw7m5OXHGUfbzmOmDoBw4deoUJiYmxH4AgGAwiJmZGSSTyc0eBsrmseNk4LFjxzA/P4/x8fGGiuXm6mTTXHqOyMTEBKanp+UZK9bnv+VyOTzzzDMyhzAxAID4AP/3f/9XlmCan5+XqoFMJiPJrZRZfG41v0eZ+eIXvxg/+tGP5BEKx48fx9DQEObn5xvkGQOe9Gk4nU48+uijmJiYkMQ6JnTTt8RK28XFRfER0D53Op2YmpqSJAf635r1OgZmTNMUG9FaSUgdjM95YdCWfeB5KJVKmJ6eloBaIpGQZw8y+Z06E6sxqJtxFQYAknxirbRgEmg6nZZHYPT39+P06dOy1DoTiKenp2VuoC7KyhZWk3I1idOnT4uOwhVqmCDKx1HQ3ucKTgBkOVn6nDmfMcDA+4J+QSYxpVIpWcqSsnR+fl7sbD52AoD4SHhvMLGSVa68bvRZP/7445iYmJCA+9TUFHw+H06ePIlYLIZYLIb5+XnRY6mLPfHEE/KICi4Zz+ICLsEHLFVVlctLzw5iFalVD7UmBNvtdlmRhUHS06dPix+Fqy4xede6DB99IPT1W5MXec+xEovPt6H/j7bCZtPWoI1pmj/A0sPEWn1uAvjA8mvd+7fY59n17mOF0WTePKyQYACASj6zIgHIOo804Gq1peW5GIHkDUfHL41rCjsuXUMhSKWRShcdROPj45JBSaOtVCpJFYXH45HsSWZE0RnDCg8qpnxwGB3sNptNsmB47MwIpxOCJdEejwcDAwOIxWLo6elpyKy3lpMy8hoKhUSxeuELXyhZRl6vF5lMBoODg6jX6xKtpSBgP/jskmQyKWuds4SPzuRnn30Wvb296OnpkXJDLsnFgUjHJLPAgCXHydzcHMbHxyUiTyel3+/HU0891bBuqGEY6Ovrk4dA07gEIPeH1+tFT0+POO8Y+TWXl+PikmHAc8uTMFBRr9fFAUQnBIW4tbSc197tdks2Bp0pdBbRUOYyfpzEmPnNgIc1U9SaYRGJRCQ4ROcK1wrlOQEgDh4u0Wd18PLcRyIRMRLYNzr2/X5/w3qjzD6t1+viaE6lUnIfWZfA4xJT1kqFQqGA8fFxCUQFAgEMDg6KsUQnEtfwZ6kny5qZxTw7OyvZgHRsWINYa2GnyUDKKh4nKxJ4vnivs/qGa5LSCGOAzev1IhaLAQD6+vokQ4nyhQ4UOiYpBzkhclJvzv4ZHh4Wh2S9Xscll1wi44TOfy4rwf5RdnPJK96D1WpVAi0cJ3TUMIgUDAblXHBJIz63hUFjjs29e/cCgChNzDTiEmRU6IDnntlCJYzBHmbB2+12qXBglR2dvbxfea/39fXJdaEhT+M7kUiIvKVDhAEe6zXjb1szg+x2u2QBWSsnmb3MMcxzZ3W09vX1yT5co5YygaXR1sx5ziGhUAgvf/nLG7JpyuWyZMvQCUMjnob/7OysjHFmgjPLis4WVoBSxjEIx+ATEy4YXGRFKZ2OnNeY1UXnKhU+ZpryWTNerxdDQ0OyXAHvcWZN8b61LlPmdruRSCTkmSnM7OV+dHCy7LxcLuPQoUMolUry3BCnc2mdad4bnON5f/AeYnY75wEA8rvWZVgMwxCnFoO165BFP1hNFnWa/AMggUQ63JiVSAcTswxtNps8I4WVIABkjAOQrGpWm7CqLBKJiC7FpewoS5i9xWUZgsGgzJk03uhAO3z4sBi11Gn4vESOd2ZUA5AA6vDwcEMiCo1JjjcGfBh4ZfUHA/Iu19IztvhdADh48KBkQe7Zs0fGM/VbBiBYwcDlL2m88rcBNBhWNLDZrnWZPi5bQBnM8dS8RBf7WC6XZTkROh74O9RFeJzsN/tLOc2lNalPMiuT1erM3OM54PEBzzloGNzg+C6Xy/D5fGIs09mdyWQanLfUszknUsflszQYzKadQb2PCTzj4+MwzaVnSXA1Ad7L1DvL5bJUgDJISL1pdnZWqoYozwcGBmCz2cSZz3NC2crEL1aJLy4uAliaA6nD0TExPz+P4eFhqabktRwYGJCAKJcAZcC9XC4jlUpJsgerCM3lKnrKVgbe+YwAjkVWBI2PjzfIVwbrWM1PR0w2m8WBAwfw3e9+d03yZCfKQL/fL88DsC4NyUxvLp0ciURk9QNWrdI2YFCD45bOwIGBAbEreB35rDXq4NTnqKcxI5vXdWhoSBxEnLcZ5GSFPOUpM24pr6ln8jUwMACPx4Nnn31Wkvx43QFIMka5/Nzz7fjcG8MwxOZlMNKagGIYhowD6jsA5PNIJIL5+Xl53s3AwIBkFDOIa5XhXE+/t7cXmUxGbGjK6f7+fjgcDll9gkFY2nOshN+zZ09D8DwQCMjvUI4wydFms2FsbEzmn8nJSfT29op+ahiG2K9cCpzLdNKXwd+k05rVmKwYBhqX1rFWfPL3OK75XEpWj1ptcqUz2Yky0Ol04tChQ/B6vTLn0gFsfX5vvV6XFTomJiaQSqVgmqasIFEqleTZnhwLlAsMdvr9fhnztN1YLQhAfGvUy63LOXIlHuo8l156KWq1GiYnJzE2Nia6LP1E7JM1obavr0/sh1KphPHxcfEvMeGEyXGU0ZwLKefp76GvhHrE7OysJK5wFSNWVNKPxUoRu90uCb7WAAWTamj38/zQP0m7x1qxR30zFArh9OnTUk1DvYl9ZtU1k3+4qo/b7RZ/YDabFZ8SAHl2mN/vx/T0NAKBgDwXhfp9Pp8XuUdfAKtAmQQRCoXE18Rnc9NeZGUUf4NBcL/fLwE9c3n1BvpamCzDYIK1YpHzCa+DdYlQyll+5+DBg1LFRB8qK5PS6TSOHDkC4LlHTbDvl156KdLpdMMjJ9jf0dFRpFIp8Q1Qx+L8RNuUz9oGlnRo6uGpVAr/P3vvFuNoepX/Pna5XK6TXT6VXcfumul0ZnqmMxM6iSBI5CCEuEABCSm5Q0goAkXiljsQd1xwBxIIgYRAClJQBFxECoQL0BBNJoGZZKYnmcn0sU4unw91Lrts7wvP7/Hr3tr7T/5qsv+71J8UJamusr/v/d53rWc961lrxePxiY5PCHjYP2B6OgjBucNxS/L75l3CSYUcJ0lA2sgxM4n9xoiRpzTbdeL6/7rS5v93F4ozgrmwfJGSKmlMzEWjUe3v7/tAU4oYiUQ8U4EM7NTUlO7du+fgHqURZH2YaCEoC0u/yB5Xq1WX/IcKWcAlGeP5+Xkr+u7du2fSHlWwJBOns7OzLkvkGSAvwqoVqiQ6nY4rj1AI038aFTrKPklObqBOhjwkAdVqtbz2kpzlLJVKymQybpGFUbq4uPCQ13a7rXw+bxIxVN9RdUFLDBwL1TsMEmft2u221V0oMalmQU2PweN7qT4h6Gs0Gg7CO52OHQ+VUWR8Ke1Dncb3YRxYW56LbD6Zc1SyGCAUBL1eT3fv3tWLL75oZ4SaCzB9cHDgvvKh4jCcXUArCEikmZkZlctll15ibEnQDQaj/q0kL3m/nAcqEgjUQ/WjJCs+WLOwX/Hi4qLq9bpboBwdHRmkA0JouyLJLdpwuAApnDbvlx6bJycnTjjhyDHMkPPM+QgVulftCsvBeReUELM32BNheSp7MZFIGGy1Wi2lUin3ryeIPTk50fb2thYWFpysgODHXkKqUAVDL9sPPvjAqhQqRlDKhGpcWlO8/fbbKhQKnpvQarW8VwA3x8fHti2c8fPzcw+KhlgEaEMmQYRRwYj6EzJvcXHRgTXVCSgVUVzSKgRVOPsrBGkkZwjMsRcQf6HyHNAZEpLNZtNKV/b81NSUAW69XpckEyz0+wewkTzlnUcio/lltPgBQB8eHnqmG8EMKhVIz1AtBPDCf4RtnjjziBAuLy91cHBgv8aaQC5dXl4a6LKfAGkQ4awJNjpMPIUKfOzz2dmZjo6OrKrlvbEOrDV2CqUUz8m8IRLOp6enfheA5NnZWVWrVQ9Ahxys1+u6vLy0red+SBTVajVXVfBs+FD8MGuB34EkqVQqDrxo2xUmCpgNRVCK3+S5qAi7qle/3/eAZZT/+EL2XqVScd/mk5MTra2tuf0Ae5hgo9lsGmdBEFNhwTlmr/I9qJKp8sSPEYzyHY1Gw8E9tg0CkaHN4EGSRufn57p//75tTVjtCgnIvVMdvLi46D2Vy+VUr9cd/CAOIZhhL3M+mLuE6IT5goPBaA5CPB5XtVrV/v6+XnrpJVfJEOhCTBwfH/u7wvkXrNXR0ZGTkBCp3W7XbSykSXUc60rw2O/3VS6X3c6M5w1xBYk28BTtm8A24GXsJAl0fACYBLvFWafqHRV/v983KQGGJlAPWx1RBUr7IUkOiKnqBIseHR2pVCrp9u3bTjyF1bAIfiRZnUrLk7OzM2N3fNhgMND+/r7tEwQ7/hWfDsmNXyHRQkV3u9028U+iCv8H3mV9IbrwLQ8fPtTy8rLPJQpT9vDi4qIODw8tLmCfU73DDIEwgYjqE0IYcRj2H3L7Kl8QO6wlIhUq0pl5yLxH4mSIDxIM3W7Xbb1IIlL9iRIdIQgEHkQOyt/hcKh79+45yYh9AZPTEpKYAHx4eHiofD6vUqk0Ibzc3d3V9evXTX4Sd2IrpVFLMGysNJ6lAzbgPsPkH3ERiVDwHfMlUCrTWhH8hS2jVSTrH/5/hoPv7OzYL4VcBPPwwjlOsVjMA7Xx95LsH5j/h+0Dt0IOh1WXYRwvyRV02MFIJOKzR0yIf4MMJe6WZLxHbMxeksZiBeI04sdms+kEHeQ2Pi7s2vDsenY9javX6+n999/X1tbWRHU9PgVRFTHP1NSU9vb23PqVuHNxcVHb29u2J7Sl5pzhI8HtnAuSqnQuoKU83BOtm5eWllwJhL1G3EEMSEWBJFdPg69IFFPtH+I2OiKQYJFkcWEkElEqlVKpVLIoDDzZ6XT06NEj3bx5U9FoVAcHB+p2R224aQeOLSfJ8/jxY7eCg/cKq2uJhxGRwlEgHCVeIzGPLaRSo1qtTnSUQNAJ30BLeEna2dlxVSL8ApU6cEPcC62GI5GI12hnZ8cdC5hDiV+jCwhYkNgL4RVcgyTjMWJ73gUcAPwu1cWIabCZjUbDuJ9Yl/1Vr9fNAVJAAL+Db8vn86pUKhYbEXOCjyUZhyOilMbzd8DP0WhUDx480N7enl5++WXPcOL9Dgbj2bvD4dAxPS3bqDY/Pj52RwlalcEhSDIvWSqVnIwi2QNfCXal2pSORWD5d955x8JSzgyjUqi0IbEEd/I0r2dJm5/wIhCl5QHtrWZmZtwmDUCEEbl165aV5GRVUTHT248AbnNzU+1228QSGVuIHxJBzFnhgCcSCaVSKcViMc8FgWyCUKMiguw5g1cPDg708Y9/3KXf7XbbQBzA+aSKB3KNygZALPeC+o7ERbVa9QD6e/fuaX193S3M+DmKhVDhCSnF0EP+P21qwooJDjmEJ0pKiCsUrjgQ1EKopwn2GPiGo5yZmbGxnJubs6oUh3B+fm4VlCSXRlLSHY/H9fLLLzvxcXl5aaeWTqet9sLI40AgOiBPyOYOBgP3HqccFseGUp2yyNAQ0U4vl8vp05/+tNUUVAdwr1Q1sa6h8nt+ft7rQxaZv+H9kD2nKoNMP4EJyUZKGakcQO3APk+n01Zc8I4g06mACAnDubk57e/ve35QeGYIHHj/qJelETmDcjRcQ56NRGaxWHTVRbc76s3fbDat/GBPUD10FS/OPM4KJQjKbs4cIGllZUXSeMYCexz7QVKs0Wi4Pc7FxYXW19dNXqGiU7lRQAAAIABJREFU4e9RF2EfwiCegA4CE/VsIjGaudVoNJwsvLy81Mc+9jFJmqjOo7c4573T6UyosekDS2IcFQjK8VBBzPddXl66PJukH9UXBNGQGpBQKOb5GWpOSDRA1PT0tBVSnDUSpaE9IDGzvr4+UUK/sLAwob7f399XOp325y8vL6tcLtuu89lhIoHENc9OVdHS0pIqlYoGg1ELT0gw3ivtZUj8hxUdACfaQaHWZb+hDsIukegnWYVtYy9SDQrII1lBgEIykncxPT3t/0+bEuw1ZOb5+bnnMFA1CkDHz4Tzi8JewCT3h8OhFeAA9bD9GC1ElpaWbPtisZhJT0haggyEB5BaiUTC7YkWFhZsIxECcK+sBc8syYomWuB0Oh2trq76vQDCHz9+rHg87pYJV/miEgMsF7bwwxYkk0m1222trq6acN7Y2DBBzFyWsL0hSj/2G2Q2ewB8gk8Ce3IGCMhI3AyHQ62urnrg59LSkglIVO9htQuKM/qO0/qBqmtsLGf54ODAzxC2HD07O/OsG4g1Km3BpexFqm5Dsh9bH1Z0Xb9+XcVi0QQfAfnl5aUTuCRJwhY+JFYymYxxG5WAkOycaUlO2vJ3a2tr2tnZ8VyzsA0SVTAEf5D+BOokuTmnVICAs6gWwV7TjoKEKMQu7YSwbSTMwME8K/EENpQKYxJyYVsyEtoEu5JMiEjjqiVaudCmE7IUoQQkDOtJMgc/nUgkHO/0+309evRI169f937Gz1JBREtAqseISUI/D3bk71m3XC5nQQIJZKr0EWuBYxEO9Pt9t8llrkk6nTaGoZ0uIh78UiqVsl0nzkN4RyXmVb6i0ahFJJCE+GQIQip0wzZaKFrxU1TAhetK1T3kuyTHw9ggkmgkLZlPiZ/FfiDUwUcy5yBUqrOvaW/y6quvWv0dCnywS1TxIwYL5xSEyu8wscq9s29C2xFWl0vjWVUQlsSuu7u7SiaTXiNivn6/78HeqJ9J1PT7fVf2UiHPTIeLiws999xzPuvEVMSXYTJtMBj4DICviZElmfsYDAbKZDLGnOF8UPwchKw07taBrQ7FP3wXohyqbxYXF11Njy2lSgmSmj2zsrKiZDKpnZ0diwKeXc+up3FNT09ra2vLFWecQeJUsBnttOGO4PnwZ5JcOQ8RjM0Al8GH4IMQpxFvg+XC2b9gJCrr8W2hWAIsQSKG7j3MtCIpSoKZGIX52bTz7fV6ThyBVxBJgIEkGTscHR3pxRdfdNVcMpl0op81wNdLckuxUGzHvL5wQDyYmSoObDL2kudFgBzOwIPTpary5s2bxvqZTMbiQirFZ2ZmtLu7q83NTQtWwU9hxxXup9FoeB3W1tb8eVtbW7q8vJwQrdDKDJyPmJr1isfjbitH5TKJEDpbEN+DlahGDqvaiS1JBIVioueff36i6wg+GfwMHs3lcuYFJBn70CYzrHzBN3MfJCEjkYg+8pGPaH193YLDsFsLeJXiBbqD4PPB7OBqZr8iEOIz6MQSxq7wMXwXSS9awMPvhZ0SWHM4GWnMg4aJJOLnp3k9S9r8hNdgMHCQEIvF9PjDvr30mgyV02SUIXlR1DAbpdlsqtfrOctOENZoNKwquXv3rnK5nMEuippKpeKgA2DMzIWdnR0nGihXD5V3ENatVstllz/+8Y89ZIoWEYAcDqwkK3YxptVqVTMzM67+oLXU3t6eA3z6SNKOZ2tryzNIpFGgTC9rZp4cHx9bDUX5JYaFrCaJsPPzc7eyIhiQZHINhyDJpHGz2ZwI/AD2KFdRlZLoQulDX2ECs+PjY6uvdnZ2/JkQzbxPEkrSOOCpVCqq1WpW1VL6yeGnNRoqK0rxuNf33nvPwJlMPeWnvO9Op+NkoTSekyDJqgmUqJL8rgAUZIppU9BoNKwERkGJko4BelRQEbAQRNDKI+wLPTMz47Yh2WzWAJ/zQMsLAmKIzHA+ysLCgh0gys9QpUvQCGBoNpv+TFQHrVZL/X5f1WrVyQTIbPZuvV7336Lsopc+ZBrrfVUvFBsAIkqsK5WKE4+oZnFuCwsLdsSoXKiMQ9VBaxWSmlSqoDyE4CKohJje29vT0tKSHj58aKBGko3vIdGJ2gJFDWCToBB7Eqo4CQpJovb74xk2BJoobAAxBM+AGOzH48ePrbyCvH+ySo4AtF6ve/giydalpSUndi4uLtzXlQCfSptyuWzVR6fTmZingcqEpLw0tkf0GMYOk+hhjkar1VK9XneylHYhJDux0dgxKj4IXlBRJpPJicohbAX9lAFNJJ2r1aoHlJMwRt0MGcK/4QdQPPMuLi8vVSqVrLrc2NjwOtNSExUV55u9RLUJ+x0ig/2BL2PWD3sV28w755mkcfUf90fJdafTUSaT0YMHD/y+qXYEU4RJJXAECWTILOzR8fGx8vm89vb21Ov1XN1VKpUsHKByAfU0IgTOKj39G42G7d7BwYHS6bQTbthi7OVVvgjAqbLiPZB8iETGs7Xa7bbfHbYirORgbhcCBlosoWgmCAA7oDqjcpXAi+AMoQxKLzDN0dHRhHIOvwkGpJrwyRkj0WhU9+/fV7/f18rKihWOJycnJtuprG632x7oCiagioNKt/v372t5eVmLi4vGzpwriFCUbSQRp6enPaeRRDH2ipazkkwmSiNVYjabdXAKNqY6EFwoyb3UCSgJBufn51UqlUzeQ8SgzAfnQ8KituXdgv1Yc9SDVKZil6hsg4DgnKIOByezB7a3tyeG+bbbba2trfm+qUiORqPGubFYzO2O8UdgQXz29va2n/vw8NDVAhAHqA2xsyFpDF6nKun8/FyVSsXJQ75vZWVFu7u7GgwGJrPAgmF/cmZCsTfpRkBrYwh05ngwn2xqajRXj4pAnof1Q0XMrDPwSSwWU6VSmSC0wCXYaNa1XC4bq6Iupa0w5/cqV1uHV6lU0tnZmba2tlQul3Xt2jUnl4lPz8/P1el0fDbB8RDtW1tbkuT9S2IZQUq9Xjc51Ww2vT9DAcTdu3e1uro60SJnZ2fHLUITiYRjzBCf1+t1kzqcF/wr/hS7AXaQRpUkCEFINEMCIWDr9/va3d11+98XX3xRrVbLSQrONskt4hNiQSq1+T1aqUsjG0CMT3IjHh8N5mZ/U/FO1ScCTdoM1mo1JZNJra2tSZLtIjiR/c4MHvwYpKukib3O90Iyos5HDMB6Ix4g4YZ/IFlEkhY/SRKeioVSqaRUKuXkDvMJwZxgdartw+qgZ9ez62lekO3EOtgeuI9qtepOLcSgkUjEIjeq/cIZJvF43HM1iXOPj499dsCExLZUlRFnh7Pums2mB8SDS7GdJJq4F+xfGCeDbxcXF1WtVt3ODJ7l4ODAXEyv13PVOBiSf0NQm8/nnXTCJ9DFAHsHPmXOSSaT8exiSX62arXqRG04lxN8SMKejjuHh4daX1839qKalmfBV4G/qtWqMRpdQeB/fvjDH2pzc1NLS0va3t5Wo9HQysrKxExJ4tNut6uTkxN/B8K5fD5vXENbtFqtpp2dHWUyGVewUC0Pv8znp9NptdttV7VkMhmLoLGtVNrs7+8by4QxhDTGv/gsBAv1et32mSQ/SRCqyRBCMY8JATk+kPcOf0zsDH9EUpAKW3jTxx/OtOv1ehOzfEkgcebCanHa8IF5WaOdnR232D84OHCiB/wO/wB3gbCds0BFEtXZiO/n5+dd/EA8hPiHWA/M8zSv6P/6V55d4cUB4zBDXJA5DA8GpA+K8Gw2a5ILxUg0GnWJIZl4SIBoNKr19XUDM1ozSHJARAuhbDZrdR99IRk+xX0TrFEiKcnEE4aL7DggkgoayFSCXapQUqmUg8F6ve72GgDMsB0I64IqigCajDotPMLZADgtFLz0y+52RwOYCcwwFIBVqlfI5JIZbjabVm1RXQNI5wCjHMWo0D4HB0RShYA0mUxaIcShxUGTbEAVBDBGfYqKC1UpfxeSoJJMlqA2IPmH4p8APywBp0ql3+8beBOoQy7g1Lg39hREEupxSW6/R9klQJtAi/dPf3NUdxDF8XjcA+lp8YQ6hO8Ok2FcJAmoeqI1Ggk49hCEBc/F3qbFFmpLngelZD6fN3FwenqqTqejdDrtgIBAhn2Gcp3n5KwPh0NXB13VKyQLceaHh4dO2BK8AjKozsvn8yY64vHRvAOSZqlUynubOS6SJhTgBKWdTmeiZQrqO5TA0ghIP3782J9D9RyJDqpB2LeQBVRIQUCR+OQcM3gcsgdFMfOtqFLEdlOhQ2921MnFYtFJfobHcy9UttGeg3vCrkKOS6Ok9NramnK5nNeHahQSnyij+IwQdEnjodFheyfKz1EsFwoFq/vpPTw1NeWZZSSRsYkkULE3kpywoY0Xa4FCGnAJcEflgm8ql8uewUJAFI+Phr/H43ErbDnHvV7P5esk/1944QUVCgUHDfv7+64SAkxDxFBlGolEtLW15XfNu4Q0JFGZSqVUKBQc8GCHsVfsTSp18TnxeNz+DJJwd3fXQUVYuo3dYe/u7e15CD22lCpYKl3Zd/1+f2KwadjHOFwvqm44E5wfSf69RCJhIQmVlN1u1xUU7M+reoGDwko8knC0/cI+knCB0KLKBpxCYEfbO4J7qkkgOKenp93iZ39/3/sD+xqqiGOxmFZXVyWNCC8CafYi30lQI432RLvdVqlUspKSBDFVOagIqRgh2YnPJ2kNdkSJRtKg1Wrpxo0bFsZg909PT3Xt2jUTByhEwUGcgbAaaHFx0XYgbGsFKUvVBXuXxDe4D2Kx2Ww6ycmasIbgT9TzELr5fN7fTQsgxC5UXiGUkmQhFHiaKkWqVsNkLAo+qhV496EP29jYULfbnUi6UekmyUkk1opAV5KT3iRksQGDwUAbGxuOZWg7hrIffBaLxSbindAeFgoFJ9kg1Kl4hlAhmKeaBf8UVqvRFg2xAYmusHqDqqxUKqXV1VUTEYgbzs9Hcyep4mZYLspf1gQVKP4e+0XCEj8f7sWwWoOEECpl8FHYOusqXhcXo8HJxMDYfN7jcDj0EHuqXpLJpKuv6KwgyZju6OjItoEzOTc3p2KxqGw2q/n5eVd04+9Jkj///POKx+Nul4q/434qlYq/nypnbDTiulAYRlxBpRiqbMRHzWbTQjDU8gh5WB+IR+JhxC/hGrL3EeLgU8CDId5jfw4Gg4k9L41webvdtq8H80nyfFREbSSiIMVoqQhWTafTrmLimWhvw9qROGWv37t3z63wWFfwID6QpH6Iy4kj8XvYTxJY+C1wDwJRBH9TU1NO8ECQEpNyjvnsZ5U2z66neXHGEG1CWCN6xWeE3RiwF/AXxECQ2SQ9NzY2XL0HjxF2g0Ew0ev1VK1WFYlEzHEwf3dhYUGrq6vmdiDO8d3Ly8sTCWv8GWKXJztoIAzmZ1SFkCSiShmfScXIcDh0gigUXWJfE4mEW/3OzMwom80al2I7VldX7Q/gIOEdwHK0CMZOsj7wqcRn4LZ6va5KpWJuTBrbcOwi9j+bzVpUubi4aNuFAJQKJjihbDbruB7Rx9LSkuejIW4fDAZOtD1+/NiVWWDP4XDo9q6hOAs+DN+KPc5kMvYjsVhMtVrNgmxETwj66AAiycm/aDTquWPsT6ro+/2+K2ew21QD4Y/AjVSo9no9z72jchsMRmId/IVIlEpw7pvYmQ4vYH4ST+xbqtWpyoa7IVFIEpG9jk+joh1BLn6dEQq8b7iVqakp4/awtTMCiye7vjztKwLIeHb9v1+RSCQpqfOFL3zBpIg0HlAakjCUS0uy0oeAgUCJzY1iJyQdJTkjvrm5aTUfAR3kPi2aCDQg9gBFqGgvLi6cHQ83Ge+ew4u6KJ/Pu2ULGxBCjYw+GeLQ6dAPEdUL4JdkB4cG8h2AGVYMAbghLHBY4UBFyAFJzoyH7Wg49DhVHCJKfYJrnpErTJLQaofyUwIEAkOCDgwIATVEKUku1gfCFKeDUYPwxEjzOzgejABJDEAABg91tyS36yPAD40jawuwYG0JUgAdvKNQ7Uv/VbLhkiYGcUJCQJBS/YQiImy7wcUe5b2ERBWkF6pvnO7p6alBTblc1vXr100w5HI5O1VKGyGiyayzF3j/3APfEapsMdQED5D7qFo4W1SyUW6JA/r6178uSanhcHj4v210/g+6sH+/8iu/4ko8nD/vOpzhFFaioBxkbwP4OCNhaxnI/vBvSb5CkJAADb8nbLMAsUxSFFKR88S8pifbVKJMIpiV5AQjhBLfgR3f39/X5uampqbGQ4uxDwSQKC84Z8wpA5CHe0mSzwI2nQR5SIySDAmrm6Rxy0d8QvjzRqNh0o3+yxBjBO2oXkhSUO20vr7u8vUnAwxAHbYBwUDYSxlQBNBCMYYiRpIymYxqtZrvaTAYzTLLZDITg95zudyEncF29ft9tx3jXjn7rAUtUACdBEHYOwIaLoKjSqXiagMCneFwaHU3RAutp7Cr+CVsBlcqlXLCCdyAIATbhD1mb4WqXoIqiGhsFIETthQig2QZZ4rEtySrYbFhqPiotsW+S7LYg8QPpFQsFnOifHNzU3/wB3+AwOTK2cBf/uVfdpKP83V5eWnVVUj0s57sNTAMLTSoSGTOX6vVmhjcSs9zsFmY4A0rMLAvVMggNEGEI8mKZkn2gfhwFI2SPM+EyuhcLqdoNGp7QaDEvsE2046QIJKzSbtAkvrsc/4/ARHno9/v21cwhylMxhIcM7sRwhMBAbaeqp3t7W2TF0/iOZI5JHyftCUkCfBTlUrF7ZtQeBJwss6cAz4He4Iw4fLy0mIn2oRB0BLgUwkJppPkZ6faGXzXbDYdkFMx1e12VavVnHzm/qgy73a7KhaLrnKmvUk2mzXuClt5IjySxi2aweAk9wjySVhRoYOghSCatWR/EjdgA4+Pj5VKpVQul7W+vu45X9g7koEkPjOZjKszpZHfoHUwpD7+jPvmfyP84GziFyAtwIOcuw/twAQGh1hCBECFw7/8y79IV8j+SWMb+Gd/9meurHz77bf1uc99zvuEdnOsf61WkyT953/+p897mNj/3Oc+Zx8avkfaLYIZQtwNvsAH//u//7tjKwQmqHAhkRAqYIvDFltgFOIfqkwQv2CfqKgmQRzuA0RnoagPgvHg4EDPP/+8NjY2VCqVlMvllE6n7bOTyaSxMYly1OMI26jcJG5huDPtL8NODqVSSfl8Xu+++65mZmb01ltv6YUXXlCr1XLlDaKgX/zFX7SYBPvImiOsosvA/fv3LTJ59OiR1tbWPGcKHI3CmypLcCXnieqoUGgkaSKpQns3KofhCKhEJ9kc7iOS+vg21pP9dnp6qm9+85v/c4fj2fX/dF1JG/iFL3zB9gOeDRuEEBkfSQyIWBvRMXEg4hH+Bn8ItkH8cHR0ZE6FWI2LcwEOhMMAN01NTenFF19Ut9t15cpzzz2ni4sLx3Jzc3MqlUoWomADc7mctre3zcVA4tMyGfstjduiYQc5k0tLSxZFIzpbXV2dEAJ/uL7mFDnDYRU13VkWFhYs+qCijng5FhvNtYEzYA0ikYh9AwkVqkio6KPLBbE2mA2hCMJGyP9Op+OEAtgAHAd+hpcIhZWIkXifCAwQ/nE//Af+AA4hGo1OtLhFWI6oFVEMn8sVxozwVXA0kix8DhNyJPrBQtKoEuvs7EzXP5zVjV0n/gFPhXEvFTkIBPEx7BUSKa1WS8Vi0XwbCUPaRUsjvhPOicpo/AKcEHuDDhHsJ7h0hES8U0SipVLJuACuE/HP8vKyha3M5Qv9UrVadRu2w8NDfetb35Keog18VmnzE17Mw6DqoNVqSRpnaDms0rh0EoIEoIiKjAocyEMIJDYuMxAg7GgFQaIDQyCNA0Wye2QwCXLW1tYMpFBeQrT0ej07Ee4b9RNBZdhXk6HdxWLRZCaBDiVjEBoQZqFqEVIPxTdBNmA/nEuBWh9VqSSX2/H8VOOQmSVAY83JKkOeQPRzYFFEMXgRkEn2mbZGODHuXxopyDG+g8FAa2trqtfrBtvSuIScNgy0mELhCLGHI5E0MTANgyiNAtJSqWQDRkuTMDglk8/9U50TKmG5L4LtMFOPc8RZUEILSUcvVfY8qiwMJao1VAdhi43wc9kb0WjU85ggjGgPwnPxewRQa2trE5VBoVKOoIt9QH9PCNxsNjtBtBDkSfIQVNaI1iwEJZLcB/vs7Mylt1xXXWEZKqRRe5CYyOVydsSQHwTykIz1en3CnoTlvQA8AAYAATAmyYF1p9Nxm0YShpSxEmhzrhlSiLopmUx67wGEQuKPxB6q+FB1jWo+JNuPj4+tdueco6CMxWLu0w+4pyUaiYQwuYj/CAnYwWCg5eVlkwMMnCQQfpL0pIQbsAtBmU6nTQzzHlFnYv/DeTq8g83NzQlinu/DzzGUOZfLaXl52faHpBxghneMCpL7o0qDiizK96enp1UsFjUcDk0Wk9Bh3fEhDHOkFdHi4qLFAoBaqhUhjVECoQqGGHjvvfesHAtB5+bmpvckwBdgiko1n89bfcTfAcQhdVCAsc8g5SEgwp7AkpwkkuQqyFarZYEA60jwRUKp1+vphz/8ofd5qPiDNCG5x17FN1LSL42xRVilASFDq0BJ3rdX/Zqbm3NlMireMDlDIkca27DhcOh3DZEEMU81GyX+tVrN9oGAcjgcWqVH9QCYhndHWxkqNfB9EFjYgfBvw0pV/CmtA4bDUVtWAsVYLKZHjx5pdnbWym7U66ggp6enVa1WXcEXi8WUyWQmAsAwIcgerFQqEy3VCHxpxTgcDlWr1dy+keo4LhKcnA/2+dnZmedrQaQMh0P7JogHSHxaYZCQgeSHoM1kMvbxmUzG53ZhYcHVpWBcAmmwONVB0gjD4rdoiQbpiZ09PDxUrVZzgmhmZsZJLDAYFTcQsKhgwUh8Jm27eE88M4mUpaUlq3ur1arJcxIa/X7f7StCsQW2A/uNYpZqUvwgbc5QAiOIgYxCAUnyOBKJWOwDBg7FHpC5JGc4l2C5brerarXqQbsQF2Hijv1FImlubs7rR5tlMEPop9nHVGUicqCaf25uzh0Rruo1MzPj9xSqX1l7MF3o9y8vL7Wzs2NRFp+D7To9PXUiFrU1CTH2w/LysuNa7BiJAUmuEpVGGAFfyN5h4DaiO6rFQ7/IWSJuleROF/g+bNr09LRnzLBX6vW642IIS1q30boFrPHkOmIzqYqF1JXGiYylpSV3kqjX615b2gpJI9v0ZCs2SRPnCN9BHEqMw1oQBxFbcZbhH65/OE8WuwBGhzOASIVfwLZCLrJe+ACeEZvGGpH8Q2TA3z7py6QRViGpTpu0UOj47Hp2Pa0Lu4bNYY+F3TjgF7BBiPngAXd3dyVpQlQqyaIXfFp4LrPZrG0b/hiCn4pmbGw0GlWlUnErZsR6iIzhz0JhBskIbBH+9+joyIlXeJfLy0tX7oZJC9YhbPcqjccTMBsbEp4YCg6S74czotsAXVngk/r9UZs1kincK9gyFJQwU5FuGHRoACuDxzY2NsxDYcPxN+BlhHi8E8ZEhNwclSjgD94PonXwYiaTMR4Bo9FtAg4Q4T2C/8XFRZ2cnKhWqxnvsQ/xa2BRujLBQRCfE4PCtyKQZ74qgj0EV8Qe+JJ0Om3hNPfIM83Pz7uLiDRuwX779m3PcJTG4m+4xXQ6rfn5ec/dhbPD/4O9Wb+NjQ2/a2IX9iw8LnxTNpu1v8dHwM1S/Q02XV9f18bGhqanR63i4ZOWlpbU6XRcLYdPIeYYDAYqFovuxEDF2NO8niVtfsKLLCRkHJnK+fn5iQCZjQJAAkiidmSwczwe19LSktWVBM4EQxCBKL5QRIfBO61jMIaUeBHAABzPz8+tfIbEhkxiA+IQ+A/kGoHucDj0YaQkEeIMY41hZbZASJ4C0gnkyuWyNzdBUFilAjkcHtZ8Pq+TkxO3HyJhQrsw2o/QtoU2VwTC0tgJQOCiBICgCrPrm5ub6nQ6DsR5ZxgvMueoH2gbBIjGyeEIcFY4FUlWkkPIAkoB8mG7FYz83t6e+4xTjYBRp8oJwoMKFMp2+RmOip7HEJVUVaGgIJsN6EehiLqJfYQ6mOeD8Gb/hc9Vq9WsVAxVEOwb9u/U1JTJi2QyaYONcZbGSS7I5JDMYl+ijuB5JZnsHwwGqlarfk76V/b7fW1sbEyUJhPkzM/Puw1RmEi9ylcsFrNimPYkJEzp2wpQgrQhkRP2p4/FRvPAaO9DK41Qbce+J3CEaJueHrUTerINIY49TGBAbPOOOp2OA3kIfBw3e1Yal+Ryxvl85lNh1yDiIPUgsmjTQUIW8BBWoFHOTYs3bBf3DZlB4oZqQxKo+ITZ2Vk1Gg3bakAOPYF5b1QJ0s4RtTXPR8sYfBDJEwYkAuzK5fIE+cdZgmzl36VxkoFEBL4mVLyS5EgkRn3nCQx6vVGP5Gh0NMuNlkLMHSKRQW9d9g4BAsrcsPqFJFCoxmVtUWe99NJLtru0/CgWiwaH0sh/7O3tqVgsmkBut9tqNBrqdDoTs97Ozs48JL7dbqtcLqvX62l5edl7jz0bVkMCogHE2C6SUjMzM3r48KH3MNWuPB++i4AAEopBkiQaqXSEbMOf4eMJclDShxgFspqZQgSjV/ninGWz2QnxQj6fNwZAEEKQ9qR9A2NQqQJGws8fHh5OCHjwswQjtBWLx+Oq1+vGOlxhUNLpdBxA035Kks8ZCZpWq+X2XdgW9gX+k+oMKhzCah58dTab9XPRLg5xB/jp5OREu7u7VrQTUJMcl8ZDqqURmUE7SP4GHEjSM6ymAPdg61ljSI7Dw0Njcqqq+R4U8GFfcpIM9L+WZCIkm82q2Wx6fhGK2OPjY2UyGVdrIg7AdmGrqc44PDxUp9OZGNJNz3DuL5VKmbDlDA6HQweK+MPhcKijoyMn4AeDUUsVsBkKWUlWZp6fj2aPoPqnspHvQtgEGcvfQ6qurKwYF4NtSRQyt6fVavksUCGD3wgTaNheRAysP+uMWvw0AAAgAElEQVSUSIzaLfFOSYQzsJhzms/nbY/wO5xfziZrQFU5+5j5XFNTU67gImEwGAxsC1kH9m+z2XRF4lW96vW6EwIvvPCCcV7Y3vbJCuWLiwttbm7a97LviJOZTUK8wF7e3d01NuNcI/Tj/UB6Qs4hWmCfnJ+fuwoXEQ9iDXriNxoN5XI5J/hoX0Pilr3EOSH+D6uxzs9Hc0iPjo5M2lE9I8ntYULsQbwbVhLy/JxvBDxh2xaSimBwVMaIQxYWFnTt2jUnTsKLZAhxS4h9wbCNRkMXFxdue829sO6hnYaMlsYzAUlws4aRSMSzaLAL2HJJJhARWj548ECJRMJYWpJ9X7/fV7lc9v9GPCuNW75nMhnt7e2pVquZWH12Pbue1kVHBTp8IL4mLmEGJDEV/BnnPJVKaX193XNjEJTgY6PR6MRMbEmuDuD8djod29hQaE1chp8l+TMzM+M2o/BwVHvwPYwdWF5e1sHBgW3R8vKyBoOB7Tl/Q+IJ2wyu7Ha7FptLMrbDdpBAKZVKkuSkMThLkoXUnG+wKzwiSQVmTyMKBCMgGpLkOC2Xy020QKdil8+BIzw7OzOvRIxLHM1sGWxmOp3W0dGR42k4W5Jk2D/ef8gDIBjE3hMTHhwc6ODgwP9G5eHc3JyriGgbSgKmUqm4VSt+bGZmRnt7e8aF2O8QD/Psl5eXfu/x+GicATiLVsv4InwYPqTb7XqcADOvwe/4AHx7uM9IgCAAhKMkrgrbGYfCr4uLC1f3w3uen597Th1xK3FAyLcipIrFYsrlcl4PzhzPNTc3Z0Ed9wNOBNNfXFzo4cOHFsWH85H+J65n7dH+mxclkb/2a7+m9fV1H6ywfROtV5gRQmAGeKQig2TN97//fb300kt69dVXbUSPjo7UaDT08OFDZTIZXbt2zSR9p9PR3bt3JUm3b9+2SoYD88YbbygSiejOnTsOnnq9nr7xjW+4zAsCDtUbB/Xi4kLJZNJkD8CKIDQEfrSDC+d3UNGDqmdzc9NZWGkEpF5//XVNT0/rc5/7nA0uQf/rr7+uXC6nT33qUw4y5+bm9K//+q+KRqN65ZVXPBODgwnZS6kbwSNkSL/ft1qSwdwAdUl2JrxDnBOJDJwLiurFxUXduXPHVUGDwUBvvPGGlZif+MQn3EqmVqvp7bff1szMjH7u535uwqB/+9vfNsH78ssvTxAn77zzjodt4uSGw1FrlGw2q36/70oHjDdOgGQLM1x4b2HZJKWQvHfUvr/wC78wUbL5xhtv6PT0VB/72MeUy+W8J374wx/q9PRUN2/edPXW8fGxTk9P9c477ygSiei5555zSxUM6/b2tgM1iNDFxUVXHEkyqUUCEZIUogPyCvUbJDJkJwQTCsrPfOYzJs+mpqb0+uuvq9/v66WXXnK1FAb/W9/6lubn5/Xqq686GI/H43rvvfe0v7+v2dlZ3blzx04wGo3q/ffftzKd5ClVR1/96lelK1QWjv373d/9XYOEcGYG7ySsrGOtSMgBSNiPYdBKBQVBHA4QxTUl2VT0kbAhmUqik562BPFhuTL2KqwMAASECmYITILwYrFoMpVkPNU8DJql9JuSdYA0QECSk/v379/X2tqaE7Th0EmIEJIGrC/kIec7/D3OARVAlUplglzHdoctdwDlJPoBeLw/CDAuguWwpH84HOrRo0fa2trS4eGhjo+PVSgUXLpNYELLL0lOnpNcINkVVk4C6MLS+H5/1DIprBCQNGHnISEAdbRgo3qK78AnhRWVkAsQjZ1OR4VCwSosgiGIUsr8aYsGWbO7u+vqUdaeRHJIFgL+IFsAp4BvCBnILpKGCDAYOolKmB77qVRKb775pj75yU/q4cOHVizhAyG0OUfT09Nqt9uanZ31fu90Osrn8xOqVwIqEpCsCcmHg4MD94yOx+P68pe/fGXbo335y1/W/Py8tre3df36dRPL7EXOKkk0WvpJsr8jIGIeFj6Ed8AexTeGlSH4b8hofD1CEwj7dDpt28feJakOyYZdJqmC0hz1OmpwbFHYBqDb7Xqe1szMjA4PD33+UYeCN8CvqOGwwc1mUysrK5LkeSFUobCO+BN8siTbaPA2dh1yj3ND73BsRtiqgXeFz2m1Wsas4D2IfdR4YNNms2lVIYKERqNhIQdDswk+qb4k2R7iFdrjFQoF+82w3RzEALaf1kzD4dAVjfF4XI8/HN6KMCy0K7x39tP09LSazaYT3OwxgvYwGUvQG9olKu2wm2BVbAzJdUQSYFRU79gWgmnarSBcoMKM90Kyj0pcYiViF8QF0eioZRxnjEpZ7BQJpdAPUcVEIht/RRzH+vN+qQrH/6J6RUREbPKP//iP0hWyf9LYBv7VX/2VzxbkDQIMBGhPViyT/OPMc0aZUTUYjGec4OsQ752dnfl8P0kGEROG4gXiFd53pVLx/2aPHh4eanl52WewVqtNVDEjyArnFfG7tG2NRqMm9nhuST5rVADyjNg0MBl8AD4X/4mNDP0AZC+YFltITEWyBqyGWOb8/Nw2A0xFAuvRo0d64YUXjMfYwyRJpXHyjeo2iGRiWmJ4OoJQgVmr1dwuDTEfokXugdlgdO/Av4R2h7ackJrYDWw+RFsul/Pc3/n5eX3wwQe6efOmIpGISqWSdnd39W//9m8//UPz7LqSNvArX/mK7QB7++zsTJlMxiJD4hISy4PBQDs7O0qlUk5whxgNXB4mWYkfwHZhW/5er+eW//giqnv5N/BpIpFwBSzcJTOnsYfE1lRNRCIRtVotx/pgBHwi+BDyHaxIu92wwo8EFlfYKo3/H4okEeMRn9BJgBbEdKwIq+iItRG+gD3Ac6wvCWNpzFnAi87NzanZbGp9fd0JGjgfeEL8APzawsKCO1xQhRSJRJzYC4ULiCrL5bLtGpgbm0hLXzgvRHfgDnAsMaMkC4oRW4OjQqxK/EuCjsQWAtJkMmmujmTFzMyMdnd3tbm56W4VCN4RAhE/huJAhADsbSrhQ0zFz8GR7FcSJPCkYbXmycmJVldXLZ5BhEQ8j5AL8QFnodlsmoPlfbIOnDnug7WZmprS48ePtbGxYXEOWDQ8D/wdydJGo+FY+Y/+6I+kp2gDnyVt/psXhvpLX/rSRNsGiH7atYRzFwCeBOPSeF4BROfU1JRu3bplFfTc3JwODg60vb2tbDartbU1DQYD98F89OiRhsOhtra2bCAxdN/85jeVz+d1+/Ztq1Z6vZ5+9KMfmUQjoAkNb6iChuBGoXx6emq1HwFrGDQBtkMCCOB38+ZNE0ZkIyORiFZWVhwQVyoVZbNZvfXWW4rH43rxxRdNUna7Xb377ruKxWJaWVmxIhu13e7urtV59OZGoY1hQu2D4hCjgUoVdUI2mzWBAZEGYKYcMRaLaX193YFzWN46HA716quv2pjGYjG9++67Oj8/19ramitvIPchZm7dumUyMR6P6969e1apMt8B0jJM/qXT6YmenWFFSzw+OR+D912v193CivdCsLOxsaHhcGjyBTXt7du3rQgdDAb6/ve/72QfhotkYLlcliTdunVLkuyQ6/W6Hj586J8dHR3p0aNH+vjHP+5gAHKGVh8YfJRltJEhAAoVkzjCsAfz0tKS1tbWXEWVSCT04x//WOfn53r55Zd1enqqYrFow3/37l1Fo1E999xzLm2FcCMgov0TCttGo6FareYAChK1Wq3qn//5n6UrBFaxf7/1W78laVzBEoIWbAoJ0rDCif9/dnam5eVlK35RORNETk1NaWdnR/Pz826HEPaNJ+E6Pz+vTqfjfUy1HUlW7CwBH60W6ZcPeAkrPiS55JkkOsp0gkkCZc7S4eGh5ubm3HIvDMYlTSRZmTdQr9cNoiFpAakMrA3LqgFBJHdZR9TpBAUzM6OZLSRKABIkxFCXJhIJg3baNd27d0/PPfeck6CoWvEHfBbnS5IBJIQugJFEKICT5wlbgJBE5szgTwDykCeQGNKIPGCP4AMg/Ui8QZhSSo0CB1IC0gQyRRopsPGNAN6wnQ5gHdKSNm0AtlqtppWVFVe4SiMCOpvNTrRWCsnf8OcILyT5OfL5vKRxkgvlFHuWIA17SgsfBm6vra2ZtJbkRCPPRRDF2SRZxDtH9cx9QRATAIbtIiFKYrGY57r84R/+4ZVN2ty5c0c3b96UNBYOEAhDDB4cHBhr0BqBcw6OAssweyQkGXd3d+0LqcANK1oItKlOPjk5Ubfb9Xne3t7W2tqakzfMTUBVSHsN7hl1J4QDtpT+3qGtaDQaWltbc3IcXx2Px3V4eKhMJqNIJOJWFySIyuWy51FRtRq2ZcPPSrLoaTgc6uDgQKurq7YP2BfwIy3aIGqxCyR2qY7BTrJ2VClT6Ujl2kc+8hFjK94fsykkuZoik8lYYEOANxgM9ODBg4lKUDBBOp32s2PTQ5U5WA6fh62GTAkTgdjccrns4JpkDT6SeT8klkKhSlj5mUwmnVhkv1HJFLZ15F7r9boTNpDA8Xhc+/v7vhf8MOKw8GwQLLMHLi8vTYpDTIfCCvY2BBL3SfunkCCB4Ge/0toJjEbiLCQOmCuCDwPv0xYFgQZrjgig2+1O+AJpjEvm5ub0t3/7t9IVsn/S2Ab+6Z/+qTssEMvQOjlMfOBTDg8PdXBwIEmevTQcjro2kCAMRYIhriG2I0nGz0kWMaeFBG4ymfQegPw5Pz/X9va2crnchIBkeXnZ7W3xd+CckPyRxvNrEWyCSyD52Ne0LCUuCdvzcEbBTVtbW+p2u26nRwI5k8moXC7btlCRjSAG0jBU3rPfJdm2HR0d6eDgwJXkJFb4b0m6fv26leMIAcGmtB5iphCiA5LGCH44r+Aaztj5+blbIYd4FiIuVMpDmuHfsL1gbBJ8zJ0EY0qycp2YAQzT6XS0urqq09NTPXjwQN/73vd+Ogfl2RVeV9IG/vqv/7pJc/Y2ggBiR84jWAR/d3p6quXlZVUqFRPekixkJJkDR8VZxTYynzSs0Alnsqyvr9v+IXydm5vTJz7xCc9R5KzBm8C/EBdxbhGR0CmANqCIt/Hj9+/fV6FQUCqVUqPRcFt9cK40wiRhRR7VOGBFYjTs4NHRkTEpuAKsRKvJVCrltSImA4tiH+GBuObm5lxRgRAF7BEKPBDPzM3N2Q8hTun1RiMe6N4AZ0qsSeU3eB+7RAxJ/BdWefT749ZvklzVQpJakvmNUBAQVjPyvZIs0r+8vHRrM3A72C4USsM9SjIOI/lDUosK+4uLCy0vL/t36PiRz+d1dnamx48fq1gsWvTdarWUTqeNCVgPfAVxNs8Ax0HVMolPqnGYn7i+vq5Wq6WVlRXt7e1ZyChpos1pGN+Hog9JbtkMnmfGDV0AEGqSxOKd0jYXPMkz8B3Hx8f667/+a+lZ0uanf0WCQdzh0PWQnMLQYiBJHHAYwl6s5XLZ/ZOl8XDPsJUXwANykLYBBEEEhRz04XDogIFDG1bIAKYAoQSAKHN4LoDu3t6etra2bAw5TGxWHAqBN6ooAiwczOnpqQE+BheQiKEML+4T8h6nAelIthuHAXHCfaJaZKgvQWWoMg1b3fA5HGpmO1QqFbeuoG3E4uKijT2GnjPEen7wwQe6deuWTk5OvCa005M00XsddZMk90HEYMRiowF1N27ccLsIPg81+dzc3ISyMhzEyT5bXl6eUJXTAg1Dz/uEcMMgERCjHmfoF/s1vHecMwmxYrGonZ0dra6uem1wNJCfVHcBOFA8AMArlYquXbumo6MjNZtNbWxsaHd3VxsbG2o0Gla646g5bzg/Bh1DokPmhMOKWTcMM+Q57Q4hbyjNpNqLvQIgkMYll5FIRF/72tekKwRWsX9f/OIXJY2rFAaDgXv3krQADPAfABUkD066VCrp+vXrE7ZHGre1AvSiBEEFBHlCMMfeJWnL2QxtpSQnYtirMzMzJpUAb9i/6enpiYHz/G+AH4QnYJTAmvYs2BrmEPT7fffohwzkDAFcWJuwrDlszwFpy78TxB4cHLjlIr//+PFjbW1t+b5CNXOz2fQsAIAf7Skpoa9UKgaogD7eITad80PgwDryPCTqQuUKiVaUR2HFCa0wCMT5+zC5BvkMsCSRRdKaWQS8A5IaYXIb28b+I6nP3zGnBKIDX4Eqir/nuyALeTckZrhojcIegwTl/ODDIXwo84dMZJ1I2PHO8B8o9Tg/kpygIQBizcPKDZJV7CPugySqNG5LxX3XajXvU84275/keLFYvNJJmy9+8YvGIAQ8+A2qGrA//DtE//LystWBBMqS3C4XkQlJgTA5c35+7j0I5uEdEByCC2jbBcEvjZO2VKuFAz7DZCUCFRTm7DEwK5+FeIKzQJJKkm0wuDWcy4iyDswatkPkXIAdJTkBxRoUCoWJz2CIL1WGiDHw02Bczn7YLhH8gz/j9/huCA9sZtiu7uTkxDa93+977hafJcmJglgsZtvGnD+CVhSz0WjUpAZkRSwW0/vvv6+NjQ3jE5Iu4NhqtepWfYPBwC0+IpHIxGBa8DH2BwKBuCFUyuIbSHjgsxEAUBmGOhL/QEwEAQ8eREEZtrUKE/PcTyimwO7xHsBWIdnD3uHng8GoFdvGxobPCDYQnwFeYc8lk0nt7+97vdknklx1w+/znLRnwX6WSiVtbW1NYI+///u/l66Q/ZPGNvBP/uRPLNShYjCcKUSsSqXVBx98oB//+Mf2MeEMh89//vNOArB/pbGNYQYrIoRIJKJKpeIKvUePHunNN9+UNMYMVFxTWQwW/fAZnKQDx0ciEbcdJEbFDhBDk3AI915YYcJ+ggSsVCqOz3q9UTvUjY0NV1bH43HP7cEmkJjK5XJub4jf59yDbSAVww4T4fmhSu3g4EDvvvuubty4oVarpXq97krri4sLffrTn1Y6nbYdDW0gM6FSqZQePXqk999/31gOXBRiZ9omh+cX3gAykqQLIq9yuWyij2QrAthyuay1tTUnZfG1VOegIA9xZ4h1IDjPzs5Ur9f17W9/+6d/aJ5dV9IGfuELX5jAYVSQgU1IRmLXwGYIbhHdPXjwQNeuXTN+w3+C18BI+D3iv1gs5uQDOB2fTpwVioVisZh91O7uroXGU1Oj9vPR6Ghm9cHBgR49emScj2j6/v37ymazFm0QB0rjuZcIRcAv1WrVNuXJyoQP19JJ3JOTE+Vyuf9bTML6SeMW3Pyc9pNwkVQ68R6ogEb0BJ7lfWBzeU/gYTijMIENdwAWoUImxF34KfwELWHpzIONIhlBUilM2vGMkhw/gI2pOCWBAU8BJuXv8afgFWz6k6342Gv4FJ4b/x0m9YiFiSHCJDrcLkl/OGY4NLhe7rPRaJg/DUU9JGrCBBs4MpwzKUmtVsv7Law8ggcgucTZQYiDsAM/hJj29PTUvh68AEdMPFIqlSxiC9ePpBixF3uw2+3qH/7hH6SnaAOfzbT5Ca/QgITl9hxGjN+TRD5lkrVazQOX2cQoMQnWZ2dnHeCRUSY7C2BE3Rj23qY/NiXMBLWJRMLtAiBkcBBkjCEkw7JrAh/KwiDc+QwITxwIpA79BiVZ/ZLP520sAMysJ22F+H2MNr0OZ2dn1Ww2rW7jeaemptxvkfWXRgOjp6entb6+7iQAyRBK+gDC9K+UpEql4sAV0pIAgCRLOOsEA0a1BoTDrVu3nDRgHUL1IWsByCYQZ9gXlSJzc3Pa3Nx0z9RYbDSgEqI6HOhKsErQxHcWCgU7JxwXey10opJMNLNeGDjUc4VCYUKpyVlAoSuNVa2Xl5daX1+3U6b6CUICx8bQYsoeQye4srJisA+5ura2pna7rUKhYMeDYcVgLy4u2okwhA8AMzU15fULh5IRcEGmhP3NIRno8Y7Kk33QarXswNifV/kiqYzdCMtZqW6jPQoJUfYNLRGnpqa0srJi2xImr6negwTgfJDUI6hPp9Ou0sK+MkSPhA/kNaCBgPbevXtWT2CDsWFU7xAMQoKRDMQWhMkeVCm9Xs+DWQEj9EoPSShJBozd7qh1W7/f99kgaQ1BC7AC1Pd6PatPV1dXXQFD8pzKOUjTvb29CSIfIEUgzHNiKygjhgyD3MTWDgYDKz15VhKYJFN5d9i+Wq1m/3F+fq5Go2FfCWimworPAzhBWjBriHXEz5HwJlCvVqu+N5Rh+FcCmLW1Nd8DCSp88fz8vDKZjBKJhIf/8vxUkjKAk5JolDn4aZTYJINY/1BQAYEaqnBDxRGDGVGQh4ESKlT2PC1+eF7IfAJI3iV7DrvIPUMQhdUbzHkjCEwmkwbEDLtEHIAYA3t8Va9w/cFYqNdQRJNgTiaTJoIZbEkAgnJ5ampKqVTKxLskt5nBZ87MzEzMisFnYpNo70jlBG162IshLsBGkJAGn83NzU3MYKBtF0F2oVAwbggHRcdi477h7BX+DfwJ9jw+Pp5ocUjCg99FiVqtVk2uJhIJ70lsM8mlqakptymKRqNuaci9QBiCMznD4XmAkKfiJmw7RJKTi8Q4SS5UjVRfgIkQ3oTvH8xPZSZnlYQvs3kkmUTt9Xq6fv26iWAC23BO0srKip+Bv6cdEz4B/Iigi0Qafo52dKwtNgTbELYPI+jlflCNIiwAEyOQgswieYnYDIIZH8GeAKM+evTIa07QfH4+ns2EcAHFqzRqeby1teV2H/V63SKdZDLpOaDs4/n5eVfNgiclmaRnkCyED1ibdk/ENxsbGybLiFOu8jU7O+s2Y8QN9XrdZ47WZghp0um0RWjsG/Bj+D5QA0ej0YkKF+Zq8s7ZM7Q4W1pa8lnjbyH0wZuhX+Uc4BsRoIRtiyBwnqzKCtW7nC3IMWy7JGWz2Yn5gtgS/D+JlXK5bAKIJA+2J+xqIMlxYyaT8bDoUEhycHDgvwM7UqUNdiQWJmZm1hgCR84ae55Kt9BvUL2cSCQmsBPJZJTYcByJREK1Ws0VQtgeSU7KZLNZra+vS5LW19c1Ozur69evO04mfuN9rKysOKbg2cB8/C42GVz47Hp2Pa2LM/mkb+LsIX7p9Xpu5UlSIown4DZIcsPLcX673a6TByQ/sB2Q3vwO1dkQ9lTpwhdS1YiNIp5bXFx0S/vp6WnHWcRixCKXl5cWzRHXkOCmGm56elrLy8tqt9uuZIRjIgamQwvrSDxFC27EOCQbiMuoTEcsgr+G0yOhJcl4AqEnbTSJe8AZYHHiIj5vd3fXODP0SdhLcCQ4DrKfPbG4uKh4PO620djcfD4/gdtZR2w7lRxUfJBokWQRMUkk7DTxJ1gfXATGJZGBvQ554W6363mW+GEwHQk1EobE7+xRqq3gURHB8Htww+1229wivxN+fyiwCTvvhP+RRpxJtVp1RX/IFxHPgF/r9brjcBL3/D7z6vr90YwjBARU7dOqEyzA/YFd4VFo70mHj8vLS3ddwS897etZ0uYnvMgmUvofZmMHg4FyudwEYMBAYnQIhlD4E0DxgglEU6mUFdKospPJpIrF4kSZIJskGh21VSHgLRQKksZ9Ikk0kSUniKcVQkhwSvIBpx8tm55gMp/Pu3c/gHhhYcEtpPg5KqZwcCPBab1etzF4shcvgSQKuSdBKIEzZCeA8ejoyE6h1WrZAEkjQ8xgNRJUtFrgQj1PIEz2HTIChf7S0pJL56mqokKj3x8NpQ7VsqglMKSSHPSQFMDZpFIpV3FA+pEgk8YD2jEIEIGQR8fHx24VBJlBf3XuA0MciUS852hdgiKWoB/ig8CEfUfwxB5F5VYul3VxceGyRvYvwCGXy9nB03+YvZ9IJJwAIXAK91E8Hlc+n59Qg0Loci8oDSAMICQkOdCuVqsOnhqNhrrdrp0ewR5zhXjfsVhM2WzWJA3tkMJEE0HcVb0oS4Xsl2Tbx57EqQ8GAxPb0oj4+K//+i+rA4cftlzCvkD6nJ+PZnYA3gi4SqWSyX2AKeXgABMScFR6oHyEkIGUu337tqLRqPL5vEm+UCUMWAkrNiBEIf+w6yj/0um0Wq2WUqmUSqWS9vf3NRwOXcUFwUvFHe1qCHIBeIuLi753CFTamfH3gDUG/0ESc24uLi78PN1u1z3kSf6g7kaNTyUAvol7hOwjAYR9pXUM759kKMFJu912IgDVTy6Xm2i9RLshgFAItiFDmYmFPQkHdaP8xt5DFmJjII8ZUIidoPSa/dpqtbS9va1YbNQOinXj+aPRUXuXcJh8qHojqRSPj4bnkoDBHlDmz7OFCiiSTRcXFx66KcliAXx9v9+3egdfhEJIGlVqDAYDtVot27jz83PbTfYvtimszIBUoSoMW8mgcJIHDJXnfEly64ZsNmsfddWrt0m0gN9IpBAAkNQnQAzVhRDOVHKyXlT9QfqHldnYoIuLC6XTaWMhgncqSQ4PDx1sgeX4D4pwgij2tSSrErnH8/Nz3b9/X8fHxyoWi94j4WwC9nMYEHLu8fVUZUtjJSb4DZvT6/VM5IbVlEtLSyYwSCZJcou04+NjVSoVlctlB2acc4Lv4XDo4AyMR3tMAtuwJRutGsMWF5wZsBQVcNls1p9DAgXCNRYbtQmkDSj4UJJWV1dd2ULQWyqVnHiA5KQ6JRQFYGtisZjS6bSTWU/O+9jb2/PPQvxKspz3RqUUlY6sA/uPc4xPxCYvLCyoXC7bR2Drw4pOcFmj0ZgIXlFegu0gZEJsT5XXxsaGyY16vS5Jxq5HR0d+Pmz40dGRqtWq6vW61y2dTjs2wJ7i71kLEk9PqvVZW/xGo9FQNpt1tUdY5YDAAvt6lTGgJJOKEBgkbsN4rdPpGLPg2zOZjLEHRAg4empqStVq1e+CvQk+wMaAG0M1MjYIjEdCkMRpKCw5PT1VrVZTp9Mx0cJZv7i4cOtrSRYPQmaGM0QRZEKQ4f9oGQPhCY4jRgQTsF+y2awJRLo4UKnCXDKEQqEiGjsqyaKmGzduuFKXewyrlyBX6cqAehvCjrayiG9mZ2e1tram4XCoarXqimXabPP5+AHWCvxDYotWOnAFYBhwKvYnpAwAACAASURBVC22EXFhf4jRSLqCfyAKIW/Boghdw3UC61x1Md2z66d7wWukUiklk0nHYXRTkOSYNpVKTeAtBF2cYzg/4hNsar/ftwCj0WjY9kQiEft5bA6ClfDsExdJ46oW7OeTVR5gC3gvOCgSLXA+tPcmTgoTBFShUFUOP0kyCTv88OFD46mwoi+cnUObXZJGCCZXV1ctDKaLjyRX74KXsAt8JrwWiWd4wHQ6bZxEfEYsTvUE74lqG6o/EZLyDgeDgW0YfgtsWKvVjG2oTsEWh0ktKm3AIXBdktzphjgPvgm8Q6IBER8cVlgtCjbmeUgAIR7k38HvYazY641aWuIL4JD52WAwUKPRMO4CM9brdce0rVbLfBt4jgoo4mH2K8kgBFlUfYXzduF6EMjTNpeEX8gvwUXMzc1ZqNPpdCbE9XDH4FrEtOxtzjHc/+XlpSvVifFYw5BbflrXs6TNT3hRDkbQPhgMnEiZmZlRs9k0cZRIJEw4AcYg4ckKk8zJ5/MTraISiYQDhM3NTeVyObdOoU1XPp93L1yAEJnweDyuYrGoQqHgShY2vCQbCcAOMxRICPB7KJ8JrlAoYyz5OT1+AZskZgDMzFnodDounSwWi4rH49rc3PQBKxaLisVizt4D2mivUCgUlE6nPcCXLC1KLEh6FHAcVJJUDA0nu09PagjmUEWKiqxWqxlgohjl8yEyWF8y2NevX59QKwBwUfwTSDcaDRutXC5no4Dj4N64INTm5+cnht5JciIJ9SZOCaeDc4xGozZOAAP2Iko3MuMLCwtaWlqyMpQgLZfLKZPJmNiGQJifn9cLL7ygRCKhlZUVk/bsDZIq7AHUBqi3+E7uh9Y8EB9hwguVHBcqZyqiCJaovJFkB1UsFk0GkVibn5+3GjaZTCqbzboVC8qCVCrlpBHzNTY3N006XV6O+9Rf1YtqQBwn6yzJlWwM/WNoKaTbZz/7WQeLBLGVSsUqB8hmEoKApU6n417hoVKJag/aC/E32CXIS8AEgTtENCQUSmx6gBNsQkwsLy/bZqDOJTjc3d11QmZ5eVmDwUAbGxtaX19XIpFwCwwAa6FQ8DkGuKLmgKiUZMUHdpA1JaE4HI6GumazWSuFeDfpdNrnMkxAnZ+fK5fLWaUIuJmentbKyopJyjCBz71SLk1bDogEiFpUQwBJlKOsWzwet18ASGMzw3kG7BcAHwowiFL8JyQO90NVYKi2Df10v9+3f1hcXHQl5XA4VLFY9P1ysYc6nY5tsTRus4eP4J1QGQkhKY3sDaIEEkwkKsEJrHc2m51or5LL5SYqmHiPi4uLKhQKDgwzmYyTN8vLy8rn88Yf09PTrtCgdR9B3tzcnDKZjPcx+4p74twsLS1pdnZWm5ubbjWHkrlYLPqeITer1er/nPH5P+Bib7KmIUnEPsOfQfZD4KVSKdVqNUnymmEjIQCj0ahWV1ctDMI3JRIJJ2lRWtJuCkU2eAB/RRLg/Px8IgmEok2SxUSczZmZGb366qtKJpNOFHS7XVf2kVTm3/geAjqSx2EVCcEjRIA0ClBDDEulKmKWmZkZlctlV45PTU25XS9V05wlMB5ik4WFBSWTSeMUyEKwGMl7Eh3JZNKVY9h3AuW5uTmfeWlMbpD0LRQKJv6pVqQtbDqddvsSSMSw6nd2dlbXrl1zME4gTVIGcpp5FvxtiN9mZ2cteFlcXNTa2prtPn3fY7GY5ySF1UK9Xs/JPrAWBC++FDzYbDZNMKytrdkus8aIthDMpFIpfx82ZWdnR+l0WsvLy249LI2THFRLoMSUZLHY1NSojQvvGOHPcDjUtWvXnEghNuCzaZEJoczaswej0aiWl5et7sQuQnhBXoT3gwiNxC34En/Cd1/VC7wWJo0RPRFj5PN5E4z4S2LcsNsBoirUxY1Gw3aDOEaSzzfCHXA+F34dDI+dkjRBogyHQ62vr9uGYB8QmJCIx6bw/rGB4ErItDApStIdrAUWhiAN7TPV4MR7DNzmXrlIqEgyuUQSE5EZ90z1EvNxSdgj7KRjQCaTsfAybOnLv5PIBQczixJMSEyFbSTuxQ8gdMM3QqpR4Qi+mJmZ0d7engVa4MdQPX5+fm6REMJEfB97YWFhwXaW+IF3AH5i5uqz69n1NC54AYQ54GWSDHA4EOhgNvb59va2JNl2HB4e2reDw/g8fP3i4qLJbvwnZ5VKePg/zgacpTQitOH84vG4ksmk5xeTNMEOFgoFn6GQi7t27ZoFv+l0Wvl83rEyuK1YLE6c0Vgs5nWYmZnRnTt3JkQozO4O43bWFBuJ+JkYhuQUdgn+E//T6/WMi4iJJdkXEfvMzMw4Xo5Go9rf37fQmXXpdrtqNptea/AZ1U/YPISQiMXpiBGJRIx1wUR0TVpaWnJ3DbATyYV+v28sSRJ7enpaq6urFnezd3K5nHE9YlDsatgVg+enGgRsxvqF+Ig1oasPgsRCoWDBLB1w8vm8BoOBq2srlYpx6Ec+8hFjhlQqZZ8hjUd44P8R71DJgi/muxAlEueHoldpLAzBL8MhIMRCCEQykipQxKDdble5XM6CCc41XCMCR0kWaoWcJb8zPz9vXPg0r2czbf6bVyToZw75DiHU7XYn+rJCwNEuBCKJIJANh6F75ZVXbBAxDNvb21peXnblDmDowYMH6nQ6+pmf+Rlnjan0uXv3ruLxuFZXVz3AXpLeeecd9Xo9lUolrays6PLyUvl8Xjs7O842MgwXZ8JQRoiqs7Mzk5xh9jJU8YZXIpHQRz/6UR+4aDSq73//+zo8PNTP//zPG6hKIwBaqVR0fHysn/3Zn3X5czQa1X/8x38okUhMrNFgMFC9XletVnNZOcoCShlRBHD/YfskvpegGWCHQeMw43gJ0BOJhDY2NgxE+/2+vve975kge+mll6wi63a7+tGPfqSpqSkVCgUbucFgNLCtXq+rWCxqfX3dxN/l5aX29/dVLpcnylJpcUJyCsUtRDZrjLNlbUOlPaRxWNpIENLtdvXJT35SkUhEpVJJ8/PzunfvniqVij7+8Y8rm806OHv//fc9E+S5557TwsKCieJ79+7p5OREa2trbpFFYurg4MBOgb1CRp4Al3eI2ov9FiZBSTCFigQCHRJwVERQao+DZ91ffvllk8mAgzfffFORSEQ3btyYqBYplUqqVqtKJBK6ceOGE4L9/mjY8+npqe7fv6+NjQ3shLrdrr761a9KV6iXL/bvd37nd+wsqSpDjQgIAfhJ8llESXd5eelgHNKIgLJer0+0IwEwUm0gjaswCKYJyjkj2WxW1WrVM1twtFNTo5kTkAZUWqGs7nQ6WllZMfgCqKLMDVuQkZBAMQygoMx2fn7ec2wg2SGXuGeCbEAE86QgWfEtBNqoTlEPLSwsuFQaAkSSgRDriQoG8AuhiqI0k8m4OoZ7Y93DCjqS+bwXZpRhSy8uLpTL5dwqi3ccJlqHw6F2d3f1/PPPO/kGUIOUoHKD56Last1ue31DgoR3j0INu8zaURmGWhu/iO+l/Qd2VpJJDHxC2MJqe3tb09PTJlmr1apWV1edFG82m7YtkHdHR0cmeyBIIYoqlYrW19c9YB2CBAIZJVtYLYGKHSIEezQYDGw/USjz7yQQJLnChwABwooKRMrO7927pxdeeMFKJpSt09PTVvgNBgNXZ0JYVSoV/fEf//GVnWnzG7/xG7bz+DhJFseQnIV8IqAkkMK34fPDodAEspJMVoWtJPhd/p4EKLaBIOz4+NhzA6LRqA4ODrSysqKDgwOTmXw/ySP2qSTvKYRIqBFD0QR2gWCOylyeFyVqpVKxPQ6rbbBpfC7EJkQtBAYBFr9P8r7dbjupE5IKYQUF30WLEhKjJKB5HwTe4X6en5+3gg7FLL2wEc1wRlF7IsaCsAWPkGSW5EoblJAQEonEeAbQ9PS0arWa15QkN4lsMK8k2zGqZzqdjoeSQ96G2AiMy/5lb1E9yEDyhYUFPXjwQLdu3XIVFMQJgT2te8G9+BlEBRDbCLFCMQR7HltNDMI7RMDGeeG52EcE6uDnsGoIH8e8H9aXZFfYSi6skGVfIeQIcQjENb6L/YUfi8Vi7r5weXmpv/u7v5OukP2TxjbwL/7iLyTJSRqEAoj82NP4LlpjUSEKZu/1erp27Zpj4gcPHuj555/3noLAJKFGshVfQ6xYqVS8/6kavri4cMVeeE75LnwY8zG5Z0g6EuGQ/gh7iLFC4UY4/47kM9U1JOOfe+45+/FUKuXZFyGpSYskKjap0g7PQiqVsl8Hy5DcZb0Qll5cXKhSqUgaK4MRc8BHrK2tqdvtOhYDi4GlSOZUq1W3oglbqKIWx95QcURMFmKyarVqDBaK6rhX8BJnlt950l+FVYG8N9abzz84ODD2Oz4+1ttvv60PPvjgp39onl1X0gb+5m/+pgeYY4fgxdjD+GhsgzSORZm3hX1BaNrr9SxoRbCD36J68OjoyG22iH9OT0+d1AmrChD/LCws6M6dO4rFxrNNEFQcHR050V6pVCxkoXIE0p6KRwRa+EYqYeBrOK/gKn5OIgQ7OBwOzZ1KIwzSarWcAIC7ggwPux7QpYXnDeNsMCQVnQh2QnsUj8cdr4Ef8DMkJIiPiZXgc2kRzz3hexqNhudewxVhm0jAsf7MB0qn08akcMfYU1q5xeNxVatVFYtFY2QwLHaWtv8ke7Dj8H7sD+aSEkuDV/HVVG3v7u5qbW3NP4cXBQMyb/34+Nj4Ej4IDAu3x3ukjRyznaiWotVnyDsgysXW07mDjj4kb6jgDLtaDAYDnwUwY1htGXYn6na7jnvBopFIRO+8846uX7/utUaAgZ/iXYElSVJSWZTJZHR4eKg///M/l56iDXyWtPlvXhjqL33pS65UmJubU7VaNUChqgUARRD04MEDXb9+3YEMATeZdZT+YRsBAgMAKpuB/pDz8/MqlUouXQZIEcRA0GGQcQyALTYdP5fGAIjDzGeGSQWMDocBdSEqUwwZDuHxhwOxUabS51IaK+D4PALOTCajcrms5eVlk3gYXtRJYZ9igliqXsi+orymTQOqBxRNkPGUXR8eHjqoR13K8F2UC5IcPOMsotGoh15BaAFCcehcBIKsZTwetzPHYIalfQSQ7CtpPAuDdxa+PxwgibhisWhFKA6J4aC0BkHBEZYlkqEPSXJprFjDAeFgUP+SyMOgoQKgR//S0pJarZaDJAwkpCf7mjYjOL2wnRv7OxqNTrxzyAvOC/sZsr7RaHheB4ktggLIKIL0sLrp+PjY7brCGS60xEilUtrb29Py8rLB1de+9jXpCoFV7N8v/dIvWYGNg6TKCKBEuxrsIHYhdPo4QM4xPw9bpISqpXv37imdTiuZTLrNz+XlpQqFgok7gAvqIkpbsQ+QiCGw5PxAokFIQWJjhyHXSJgwp+b4+NgASBpXzjB8EIAOoAHUcZFUwS9g31iTMCFJT31sdiQS8XOEiW7+w/5mjQFR/C3kI2CVJCjgB1IstE+S/H5DEhDiYnZ2Vj/60Y+0trZm0EzPcuwQ5CqgPWwzQjUBxK8krw17Aj8QKtcXFxdVKpVssxYXFx3Q8Nk8A6p4QBtVXbFYzP+b+wiBOWAVUj0kkVhv3hdgm8QTip8w2cy/YycJ0GjfQ9Uae5K1CpMuqHqPjo4mFLP4nXv37ml9fd1Je2xdqGIL1wAFfj6ft+KZ/cA7wL+FpBGf2+uNZnD8/u///pVN2vzqr/6q3w1BIwm+6elpE8DsFQheaZxIwAc+evRIN27c8NmnBznBAD6W7yCpQlshWnqh4Oadsi/wR/w9fbZpDUaVGsIIghn2A3alVqtpZWVlYoB3vV73OQ1tDoE67Wur1aqVi9JYMbizs6OtrS3jsU6nY8KN58L2QZrS7iIcHor9gWAkOQlhwhyTUPVP4Igqjz2M3Q0xLm0SmPMFToJAgYiQNOG3+MwQA4XYid+VZD/CnqHlCGQza0qQS8xAC17IB4RcfB5iHjD8wsKCKpWKCRq+B9sFVoIoDXvpkzzqdDr2gcQJVFFLciIMP4/tBC/g02dmZpyg5jMgmNiLVJFzD/V63VX7JOtI8PHOSVjyHsGWCIj4N6pEER+QEJdkooL7xt4x3BhciSiAWArb2uv19E//9E/SFbJ/0tgG/uVf/qV92MOHD7W+vu5kGf633W473tzb29Nbb73lSibip8XFRX3yk59UKpXS0tKS1blUpZBYIUlBogRB3fn5aP7mD37wA89AIM7udDo+77zHEGNyrhKJhPFfiGewJcTDkhynh/MbwqoQVO2IBSWZK5idndXKyooODw89EDzEDqlUylW9xK/EiGGbNuw6Zw5xEq17IX4TiYRarZYqlYreeecd3bp1S+12260Z2cef/vSnnZwKk0cQXCSXdnZ2dP/+fa8Hz835arVaKhQKJqKJUamQAScjLmSN4ABC3EJsh60YDAaOw7C14dBq/M5gMPAzbm5uqt1uu/JqZ2dHr7322k/xtDy7PryupA387Gc/6xkYEP3hXAv2MTwavh6swpkL926YYInFYmq1Wsb+Ia5AQBfO0gPjE9MSVxLn9no9vfLKK+r3+/rud7+rYrGo559/3sJAktT7+/va29tzfDM3N6disai9vT1jTGIZ4rEQdyIuRpBEIpWE7OXlaC7Niy++aII/rEwlzglxQTgfkLbPYDTWGrFumCzn/mu1mvEOeCHsEHB0dGQBdzqdNu7BJ8DbERfDSYLNeUfYKuIlMEWYGOLn8BTYaWnkX7LZrBqNhkV+6+vrjhMlTQhxwOLEX8S5iKOpBpLG86bZf4gCwjnU0hjfEjtgx6ksBl83m01zadjnMBEiaSJm5574TL4nFGPXajULR2Ox0dgQxE7ZbNZ7JBqNuhVgLBZzByOKGKLRqAVAfBdYgLWH0yRBRKIpFhvN3uN3QhGWNI4n+FuEbYxQGA6HqlQqKhQKqtfr+sY3viE9S9r89K+w0qZQKLivMmQUgW4ikfCmoEyRZApDpjlolApTOkbwvLe355YZn/rUp2zEJOn1119XIpHQxz72MfX7fQed7XZbd+/eVa/XcyULhNbDhw/99xCCGC8O3MrKiiqVilZXV53RBEAOh0PPO8FQEQyFgX2oKpientYrr7xi8NVqtfTee++p1+vpM5/5jDc9YPe1115TJpPRnTt3Jkq1v/vd72ppaUkvvfSS12tmZka7u7sqlUo2BhgHAsUwiAPYhQE5RpFsLtlx7isshSPjn0wm9dGPftTEWzQa1Q9+8APt7e2pWCzqlVdesfrg7OxMX//611UsFvX5z3/e90Uiq1KpKJVKaXNz01U1/X5fb731lpUTb775pl5++WUHLpTrhyQsxoSgFsAcj8dNuNJGLVQHkjAk4bOysmKnODU1pddee03xeFzPP/+8B4C22229++67isVi2tra0tnZ2cQA1u985zvqdru6ffu2ex6TZPzOd75j54qqALL14uLCJFiY9AwVj5AIJJyGw1GbljBpU6vVXIqaTCZ148YNq8GHw6Fee+01TU1N6ebNm1ZMQja98cYbrqahemM4HOrx48d68OCBEomEPvGJT6jRaGhlZUXxeFxvv/22YrGY9vf3DcAw4n/zN38jXSGwiv37vd/7PZetUsEBSIGw5r2RbERZiaMFPAFaSNYSEGcyGStpqE4J1cO0+WFQOtVhvEvOAyAGVRAgBBtISxjURIVCQbVaTbOzs2o0GhoOhw4sCSZJvECwA3RJAPf7oxZcqFnCFg3sW/wFCUCSuySZUAKhAMUGQ16kUikrkhh6F/aEpcVN2LYO9S/ABnsJyEfZA6Bst9taWVlxpdTMzIwrLRqNhra2ttyXFxUPhA3qIUB9COYAuBAVqJM4p+wpQBskNpU7IVkBQYKihsQHgEkaz26ZmpryTIJ6va6VlRU9fPjQAzgBu6EyjD3OvqKyKbT/S0tLnjeSzWZ1enrqORaQLfhAqnX4W5JOCwsL/vnJyYkuLi5UKBT8nqgEksYz12hxtbCw4ApayFl8H2KS8PsghqgwA8QuLi7q8ePHWl1ddZtLggP8OqIEKlRJiBGchbb2K1/5ypVN2vz2b/+293CpVPKahRUZJLIJyHK5nOfZkIS4uLhQs9nU6uqqCTAEPQSnVJCELYI6nY7bMBJQhgEuRDj4jqQxQUi73XYih/ltYKN+v6/9/X1tbGy49RA2GPUjgfhwODQhFvaUpk0DZB6EOLYdH45dCecaYN8J+hDTEBTTPgnRCckKVIohmUCATJuEw8NDV0KQjFxYWFCr1TK2JSGAMpOgnsrRD/eBEonRoFwq7nlv8XjcZCMYn+Qe7RxJglFhR8DMvYNjSDBfXFy4LRhkKe+cPRWqfLkQjcViMd9LKJLhvsJ+7bHYqC/6xsbGBJ7nmSORiN5//33duHHD64tfmZ+fV7VadSU/BEZYJUOA/H+x9yYxkqZX9feJjCHHiMyIyJhzzhq6usvd7raxjCWbLQh2WCxhwQIJyRtkhACBkAWGBfIC2LBgAQIhViwQEhIgkGmhpu12d7u7umvMITLmOSIzY8iYvkXwu/lE8X36g76i+SupV7KqXZUZw/s+z33uPfeccwHdWQc08t0G/XA4tKYSgAK5FoAGDNfLy0tVKhXdu3fPGoY0YPiONC6fV2QxmxKVGgU+3zmXy1kt1+12TQVQr9ctzodCIdVqNctnvV6v/uiP/ki6QfFPuo6Bf/Inf8L/t70rXSvNUJ2y5iqVig2n5hmjYsWmmNrOtfiSZMQw9hXrDTAH+z5IhOQBxLderzc3KJlGG8Q8mgGoFXFpgNXsKvck2XnKmUxdxZpxmwjU7rFYTPF43Oq4ZrNp+5vXx9EAcJDcgBwEFRzxmDka5HrkwOfn59YQY4+wJt1zBlwiGo0qm80qGAwqHo+r3+9bPkJjmmYLe4fPN5nM7GpoKPE75ArlclmRSMTmSa2trZndHDGQ/UbjGNU8tojkNDxT8n5IQeSuxBKe29HRkVmvn5ycKJ/P6+233/4MdsnL67nrRsbAn/qpnzKrMNcBoNVqWcxiv9NoiEajls8AGkN0pIZ2CdvkB9QY7AXObsgE5J/kFx6PR8ViUel0WrlcTolEQpPJRHfu3DEVnwvqs6+wMuScdutncj6ULORebp7H+7vNCmIudRg1nc/nm1MuU9u4uRKNKjfXJVagZJGuZweRL2GXiDvD/xspjTklgPzMZCN3hsxGXgZeIMkwD3JhzgOeKbPPqP04H8mv+AyoQpktRp68s7Nj680lcDWbTcXjcV1eXlr+Wq1WDd+TZrEZpY+kOYJCKBSyOSwIBphl66pRBoOBuRY931B0bZQvLi4MEwN/7fV6FutR3pCjUr+7BHLOOElGZqKJA3GCPbGysqJCoaBQKGR5KWcShG/qh83NTR0dHSmdTluuDuGf3JsznAYpa126Hh2CCIBzH8yZzwupAbyI2ebUNd/5znekFxgDfS/iRf43XV6vV7lczsC8RqOhWCxmsuC1tTWT0EmywhngcjKZKBKJqFgs6uDgwGRpJCt4lpNw1mo1Ux3APux0OsbmbLfblnxRGJXLZev6STKwqdPpWAB4nmEOA47ZO/iuEwxg/HQ6HWMO0VnHU9tVmwwGA+uqLy4uKhKJWNEHW63f76tarRprDgsLNiIHyPn5uTqdjiWSlUrFEmUCPd+Tw5AOON1aOtN01QE5JBnQ4ffPvCI//fRTO1B4f7zrUYEwY8dtClFwcz8pfCk0YckChhCIOFAIdihsmBdAZ7zdbpstGgUwAd8FQylcSH4jkYglujRKCNoATcwTYa4MCQLeyVgg8LkbjYZZu11cXNhnHwwGNhAYYNv9XZITwH4smrLZrPluEvwBMygGUELAJgMccIci9/t9Y7EBblCow3YYDAbK5XJ2UBOMsc4D6ORQosBsNptW1PHsUaJxMMMEvakXg3lREND8pakmydYea5JkkvkMjUZD6+vrqtfrxhinWAUgo0ikEUZDAHUerEqksDQnKZ5hawMaYS0BOClpDkADXKVBy55rNptaWVkxNQ/xjllX8Xjc4hmF+tHRkcUKmpc0a0gEYBeRCOfzeUsYXAUcn5cmFkA/TB/YJoVCQV6vV8lkUs1m05qlLhOZYh0QxZ3fwmeCbQJogvqwWq1awuf3+w2QYQA1f8d7np6e2lklyc5F9q0LcLjsJxo3AMB8Rpo5JEh+v99UhW6ySWFEsYFahuSwWCwqEonYswEQ9Xq9dv7Brjk+Ptbq6qpZFdCAdGc5udfjx4/Nr5g9wfoDMMnlcnPSdho7pVJJ1WrVLPJOT0+N+cXZ4TbJaAKhcOO5kHi67GBiKkA3TcbRaGTxDACeYol5JxRDNMgSiYQqlYqazaapJjmrmZnx3+Hj+3/ThUpams2ROzs7M0BPkgFTnOOSzEKAcwhQGWsmmirD4WygNb7QMKvJDwC2YKTT0KUwJ+dCns8zpngiHyuXyzZvsFKpWDxZWlqam+MGKACJgj1KnHCbqC4jmvO7Wq1ao3ltbU2VSsUKJXImwPJ8Pm9qTQplgP1ms6lAIKByuWxDeWGnAwK6DSXe/5NPPlE6nTbwBGAEYgz7iNeUZMW6a83GWQRQUCgUbB9hS8G+A4Qlh2AwqasoJrcHjIDgwO9DYiFHXFpasnuDWuT8/NzYtJxlFJHtdluxWMz2MUx/vrcLlGBVgdUZr01+Ty4IaMG5wxoYj8dzzcparWb5H8+CcxZgmbOSJloulzMVAgU/LGMACpqN5+fnFmMAdgBBSqWSrVnuiSQ7a7gXqH/5LBALOP/5XO122/6ephw1Ejm462RAbnrTyZCQ30ajkU5OTnT79m1b25w13C9IGGdnZ8b6pqGIswJNR/JpnCKo4VDs0KQkfkLYYL3RnOPfUWWjbEThXS6Xbf0C3oxGIxWLRZu9APsZoIa96DJ3IQmxJ9mDrVbLaloUZpBtsMZxazFATOwRp9Op1fjgCTSjWN+SjBTkqnGI69S3mVgomQAAIABJREFU9Xpd3W5Xm5ubZo+JIol9zJBncgzcBFAIkKdxj2mqDwYDs/ehdsfemz3u2nuTk9NoATAk383lcrbfeP5uc5ncl6Hs3BPO3H6/r3a7Lb/fb64aksze5+X18npRl7s3AWjJM1w3CAgSqA+JOeQsrH1mqqLgk2br1s1LIPMFAgEjD0IUgOi8vr5upBP2e71eNzAckgp5W71eV6lUUjqd1tLSkvL5vNWAkiwPABsB43HdLNjrPp9PH330kfb39+07ujXf0tKSnQEo+S4uLoy0ycxHmvec964TQalUkt/v1+npqZLJpOUn0WhU7XZbkpTNZrWzs2PxRNIcUQjXFcjPnOPEoHA4PKfm4fnhMlAsFo3ERCyDRMx9JdcCK6xUKtrf37f6tlarWW1InHLVPdSa5FbU4Nls1hQyPKdms2kND3AvSOgej8cwC84WlJH8d6/XM+cm7vPR0ZH29vYshyNXymazlifFYjGbd5hIJKwm9ng8dn5K17gRJHEIlJJULpeN1AZhjFyNM5uzg1nCnU7H9tj29radw+wX1hx5IGv1/Pxc0+nMkg+8A1tr8FHECDgA4BJE07Hf76tUKmlra8sIlRAmIXqdnZ3ZTL8Xfb1U2vwnL7rrP/mTP2kFVjgcNkCQZA2AhKFTgCBuAeH6yFNwwKADgHa9+1yJ28OHDxWPx02iRdEImEWy4/F4rMv8ySef2OamsbCxsWFND4pIFiuJ43g8G2x2cHBgDZ5Hjx5ZJ3N9fV2bm5vGBCAJBphlcOpwODQvRbrDMEUBAkqlktmX0VTx+/0qFouW0EqyuROSDPQFzKfwozjnsAQkAfCAARQOh+X3zwY1M0cF8CCVShnAyb25urqyA+38/FzhcNiKxOFw+B+GXfHZSd4paobDocrlsnZ2duweE/Sz2awBmjBGKdolGWBCUUJHnIODZB1AG1bF6uqq9vb25phok8nEZPgAl9j6oBxgACxWJVhCoGih4IDRBct/MBgoHo/L4/GoXC5b43BxcdF8jVECwFYEtKBQJza53tLSDCzd2tpSNBo1wEKazcOIRqMG+OPrDHBVrVbVarWsQKG5QsMViTP3D6/lk5MTjcdjJZNJSzhgUgBco7DjOb9oSeT/9OVx7CFdywEaD6xRCtpIJGINP1QT/BtD3AAoSWza7bbZ2MXjcTUaDbOV6vf7ajQaxuJmf5D0sFen0+kcQwOwj2eE4oPDnQKxWCxqf3/f7P+wXiBu0zwheYDZRCOZPUUDk3kFrt3KwsKCJeSuPy4NC4BgAIGNjQ0DJ6PRqO0hGCvENknmkQxLmX8jfkiymMH+BKgl2QdccRWU7gwB19YMRZBbyHs8HovbANHu/UM5xD13FQIAOTw7FB2uSod1hpIOQMBVIxCLidGxWMwaGZyLJLMArbDBuACkKHAAVkiYI5GIpGsVj8sQpnChOAN4x+YK8NxVmhIHYYeR9LN+ms3m3KyhSqWiW7duGbBOrIY8gHJiNBrZzBzXhpQGeqFQ0NbWliaTmQc3jD9IGCSzFDAbGxv2nCTZvXHVruVyWdvb2/q93/u9G6u0+Zmf+RktLi4aeQe1CPsasNq1Q1hbW1OpVLJmKIPWiRWoKyAGwFzu9Xq6uLgwS0rAMpjVsM9pZLqKAQqNZDJpzWIKMvYf+Sk5JqBbPB43wAErCZotqM7Y3/wecZAYBIAtyYbVorKBKEOTFb9u3oPvyb2CBcr7cy/4jBcXF4pGo2ZXBLGmUqnMPUP2IHsO9uF0OrX4RA5FIUkDhzwS+wzONbcxQmwbDodzMRlwAHY6DWJJZpVCXsVMNtc6hD8pRMm1WSN87ufVcVg3DIdDm+8Bo//5ZjmqIiyoIIVhbYTVmusewOtA/uEeETcA8bkHrFeIWjSIsVWi/iBPxx4PoN5tyEmyM5TzGYCZCwU9JCz+DdUZOQVgC6oF9geENazVeLbkw+w56hBiYafT0d/+7d9KNyj+Sdcx8E//9E9N4fLkyRPt7+9LmqlF3JkuLsiVz+fnZjnQYPnRH/1RhcNhraysGPjEXpFkzVvWPjkHzeTFxUX9y7/8izFiqclRzPb7/bmGKWQj1jv1ETkm+wFlP2QZahtJtkYlWXPbrYdcqzaaNMFgUMlkUoVCQa+99ppZPA4GA1tP7G2agwCNz8+eY38836yGNEKjajKZ6OzsTPV6Xbdv31atVrO8nLj5Ez/xE9YsZYg2ZxrA2HQ6VbFYVKPR0MOHD5VKpebUNdxr7juNJQgHEENWV1fVaDRMiQiYh6Uh8Yg/sbBkriEkKc7Z0Whk+AO4BDU2qjjA5lKppH/+53/+zPfMy+tmxsCvf/3rpvCiZkAhSl5UqVTMGQIi8+bm5hy5hP3MWbexsWGYImcsDWKcE8jnqV1ci66LiwubMQZmQ+6+v7+v1dVVPXv2TAsLC7p3757Vf8SUdrttsYF6mJgNwcQ956hhaHik02l7T9cxA2IDOW0qlbImkEtEk2S/S/4A2B6Px1Wv1+X1eq1ZjBr38vLSME/yNNwxUF4Qh8hfUDOSW/AcUYO4KmTiGTkp9rCS7P1o4pB39ft9Ixa7DksQsyBkQj6gdiPvIteOx+Pq9Xpz1svk0MRhcESX1OjOJN/Y2FCxWDQbXRqNuIhwFvIsXUUJ9QF5L40u6Vptwv2EOMu99vl8Oj4+1vb2thGnya+o2cGFICBMJtf2zjRpptOp3ZPxeKzHjx9r79/HjkBQcFXS3W53bm4OuD21OPkD5wM5IGQcsBJ+n7x3NBoZWYzPDUGLNc55OhwO9Xd/93fSS3u0z/7yOMPHNjc3TW3g8/kUi8UUjUZ1fn5uCpWlpSUrfNlUnU7HigQSLqymCM6NRkPVatWaCp/73OdsIU4mE7377ru6uLjQW2+9ZQODKVTefvttra6u6itf+YoFj4WFBf3rv/6rbQAaQ6gYKFzpJgLSjcdjs7MIBAKmogEMhLXNgGMCOlYf3W5X9+/flyR7vR/84AeaTqd666235nwx8/m8Hj16pOXlZX3lK1+RJEvQ33//fZ2fn+uLX/yiWX5J0tHRkc0woEh0pd90RJmfA4BAQQq4kM/n9dprrymdTptaAkZgp9Oxpoc0C077+/sG3no8Hn3/+99XrVbT8vKyvvrVr1riPhwO9eGHH6rb7eqrX/3qHGv1448/NoD2/v37c8/i/ffft2eKZJCkdzKZqFKpaGtra87iwWUeEmwIYqw1QFSsqwhIyHnv379vByZWdpPJRF/+8pftOy0sLOijjz5Sr9fTzs6OIpGIsTFGo5Hee+89dbtdvf7663NDkKvVqs7OzgwU5O/dJITPy/elk+/a8AEMeTwe7ezszPkfw7yCUbW+vq79/f25JOrjjz/W5eWl3njjDSsmYCq/++67Oj8/1xtvvGGMgclkolwuZ699//59Uz94PB49ePDA2IKj0chYgoPBQH/2Z38m3aBklfj327/923ZPOZzZQxx8bvOOQ5hCGYUBBSYSZZivJBLYh5GsAebRWCCZQH1BM1CSqQb4d5I0QADY0rwPLExiMGsM4AEgDitKZlm5UnIUfTSGkKcnk0ljVgEOsNZpzNN85Z7AYgJcpLnKPsT6gj1CQU8Bz5kOK5G4zt4DhALM4pkAJqJs3N7eNvCUmOI2HUqlkpLJpL0nyQuNE5etubm5KWneJ5eEiGa5JGuax+Nx22so8uLxuNnO0dhgzbDOXBY3CfZoNFI4HFa/31ehUDDQ0p3NsbS0pA8//FD379+3ZB8gDrnz880VEltXZdVsNq3A4ftRmMDEJrl3WVr9fl+JREInJycGPvM7rgqN+0Ry6ILvLjOZRJT7QEIJyLK6umogi8vQZx00m8254owEm/tLUs4zwHIOdvzP/uzP3timzS/+4i+ahzJnNfcWlQTFEwAUoDJNZXKKbrdrYDJNAPe+IuunuHDVYxRsAGwUFZeXl1pfX7c4SxHHOcp5yDmGOhSSAuQXzrTl5WVr3LhAIUpV8i0AUQaLcn4Tq9kvrnUQylfujXTtE83eJXchzqI4dwdNN5tNA4n39vasycSegUlJk9sluWBN4Voz0sym+Ulsg0SFKoXvx/29upoNZsdCmf0IcYDGqztMPJ/Pa2tra27GG8UzzRzXB5y/8/l8KhQKCofD9u+ca9is0Ezku0IOA1TiO/P5ATwjkYg2NjasWAcoddcTz5w9QKE8HA6N7Q8pi2fg5mPk0ah5eF7u4HhUz0tLS6aO7Pf7xjZ1wQbXYo14R25NDAU0chtMPp/Pzkd+jvybpgz7m7Obe8C+gPCDm4HX69Xv//7vSzco/knXMfDP//zP7d7SvGLOmtfrNYCM2AiIzn0FTJFk1nPUnqPRSPl8XplMxmZYQSRDoTIej82GlT2KOopcjHjMmmZPsy8gqrAmJBlBBPYseVI0GjWCEfGNBh7AGhgAtTZ1Fo2fW7du2fpfWJhZdkEOJF+gTiS+cn85l4nx0rUVnSQjDHk8HoXDYQMlT09PbQ1LMgs46mXATPIbN/5zFsFQxrGBvcx7gAsQi3kNVz3E63PPiGWdTscUoTyrUCikBw8eaGdnx2ZY8j2ZcQA4K10Tosh1AIyJ0eT+lUpFf/M3f/NZbpeX1+y6kTHw53/+521u6fMNF/KkSqWiUChkrHtyMmITpB5JlueNx2OVy2XF43FzmHFjD+c5+X+xWNTm5qa9NkQSfh6CQyAQ0P379+cUt+zFwWBgca/Valm84O+ov8HQqIMhlEGiQ+m2sbFhNmU4adBM39ra0tHRkRKJhDVcIJ2Qa+XzeasZIU6AkZErEmdrtZo2NzetPnWt52hyu3kguKZroQoBHiIJ89WkWQOJWIxF15MnT3RwcGCfxc3RIDNS39OEcLGs6XRqRGfs4MjlIVhBvnGxBchzPC/OQshKNKHIQ3FcApMBXwC74ZzhnIKAQ+4G8YY6ntfnnlEXnp+fK51OW23gXpD4cQ6i3iT3clUxLgYDAToejxuBxlXcsv45pyA/sI5Yp+wZiPZ8L84g90zkntLEBL/EEpc6m9dn//Be0rUyDcLGt771LekFxsCFF/Ei/5suOqN+v197e3uKRqPq9XrWbKGBgi+2JAMrh8OhFWswiNvtttrttt577z1jn5EwNptNK1oajYbq9bpZT/X7fb3zzjtznVWAUd6vVqupUqlYUQQL3AUJabCQEJNQwiQqlUpW8FIsU2TDdKYAo6vPa5IYAjRSgI/HM/u1drutfD5vwGe321W1WrVN3Ol0VK/XrVCs1+tqt9um4OEgkWSHAgD72dmZAoGASqWSFhZmPqBuASzNgkkmk7HPPRwOTQ1EQ67VapkHJAfzeDxWoVCY+3zNZlOtVsueD9+70WgYkJ3NZtXpdKwAabfbBvpTpBMYULQgk+e+ptNpKz6wyyBYo07h8Nze3tZgMLDu/GQyMcs3CsxarabhcKhcLqdWq2WgarFYNLAbeTvdblhkeMoDSrq+7wDbWD3R7PN6vfrwww/t35rNpur1uhUArvUYxQaAAusARly5XFaz2VQul5PX67X90mw2zUKL+9psNufWKeuTn6GDzmdnDbM/O52OqtWq6vW6KpWKHQSDwUDlctn2Eoqdm3qRoMIcXlhY0O7urjFySB5hf6NYoPmCxBhFBbYYJAmAZq5fN+AxsYlGQq1WU6PRsNdaXl5WPB5XJBIxCyAUBC4zmXUtyTzVAY1IDAHFUNqRNBLHsXvkNXg9CvDz83Njjvd6PWvsukABDU/APtf6DEazC4Tx2Vzp+HA4tEY+9wawhM/CrCpUJT6fz/YczFKSYRj84XDYZNwkPuwl1KDRaFTlctmAYJ4PiRxgIrJ7QGeScJpSWCaxBuLxuLF4iaew4SORiIGHgGtLS0sGUgN4YEflqp14JjBpkJXzM2+++aatz8FgoHq9buALACVxc319fQ7MBjjgmfKMkP2jtiFZBDSHHY6aIJPJmFUagAMJJKAN+7DX6+n09NSaoiTb2EyR7K6vr1sTFNAZix/2hcsag0nEWcI+BtDi/T0ejyWmAG40E2/yxVomP8Cj3AWgXaU1TbB2u225BLEIkIkCgGYiRACacuSSNH0kKRwOG8gNg83n82lzc9NigyT7TF6vV8+ePTNAPhAIaGlpyZqE2DVEo1GVSiVruvBdKLABJDwej+1Pn89nxTaFYSAQMCvbRqOhXq+nYrFoec/l5aXlcsQvd+/SfKCQpsgiztE4ZC+vr68baYg1SOykuObMAWSUZLEVmyZAWPY3ACANHp4fwAbPHdVwMBg0yxIIBjD1adbxnD0ejwG32KHhE04x6hbM5FKSLMZyJl9cXJjtEw1bN3di79LU4HxgbbH+YrGYncNurs3rYbNXqVRMiUSeeHFxYZ+53W7bc+d8pIFC3JFkYAKNk/X1dWuEAxpNJhPzgJ9MJtrd3bW1DfmG5jTsY/YW9iv9ft/yTWwtaOy7ljT8Peo2bAnJO3y+mV0XuSHNypWVFVO/3fSLWhcQHacALMt43oD+PHNiDsp+AMZWq6UHDx7MWfsRK1lrm5ubKhQKBupkMhnbEzQIqENY666rAFZgsItXV1dtJh05GWQ1wMnRaGbBvLCwYMp8SD80qDjXIdeQswJWQfq5vLxUt9tVs9lUuVy29SjNFGG8HzU98Y1GM2sYEBLrMmpSALpqtapOp6NKpWK5KzUJIB/MctR31HLD4VCJRMLyK+bG0iyjxiG3otm2vr6uo6Mjeb1eyxU9Ho+q1ar9SXMPl4PV1VVzp1hdXTWiVbfb1Ztvvmk2T9hmj8djA8C9Xq/FjFAoZMrV1dVV7ezsaGVlxZrO/19g4svr5fX/58LCtlgsSpI5xmAT6PV6lclkLCdfWlqynOrs7MzOQBSf1I2DwcBs213VWafTMaIrKl2Px6NMJmO1FXUkzRKavfw755gbl8mzer3eHG6JzWOxWNTR0ZHK5bKRhiCXMDsUS27qcJrmqP3Ib2OxmI2UoP5w4x45GsqSVqtl4yKwISWOgHUmk0nLecD4XOchMDcsNAH1qfPAnFxXDOzQsIAm/5OkSqViaiLyVb4HORX3nvMInA+86fj4WGtra4Y90Kwvl8tGxgKToBkwGo0MI3PdRcBXeA3U8cyecYkA2OlS6/OdaEaB20A8cdcEamtU6TR4UMg0m0198MEHhp9SP+OMQV5UrVatZiCXJL676lyPx2MWl+Vy2RSi4ETEcz7r9va2KbXdZg1rA+IFDUdqA+oj8kVGhZB34yrEOgJLb7fbqlQqphglx6cuRm3/oq+XSpv/5OVaY0izIIVV1+rqqra3t+cCFwkDC4+AQsJEISrNQGJsUVxg0uPxWAeZTijeh8js6BgPh0PVajWtra0pEAhYZx/vS4B7ussLC7NBkaiBaJqwyAmo+CSS+LhzEGD1USCRYEuyjUFA7vdn/uXn5+dm10JX9OLiwmzXDg8PbeMRFEn2W62W7ty5Yw0FGgHYeSA7JNAhlyYgEcyGw6GKxaLu3LljzHi8C5Ggk3Ty/Sl88QLH47/Vahng+eqrr9rMgHa7bXMmDg8PNRgMdHJyonv37imbzRojC+YgqhHAVDrwFOSwvgm6WBBgo0Pjxi1iX3nlFbMGYkg2bH+CfygUUj6fNzbY5uamOp2OTk5OLJlIpVIWwAm80WjUAE2fz6eNjQ198MEH8nq9BlbduXNHknR6emprwbWB4tlOJhOzTQIkBuDmcI3FYpZsjEYjBYNBm6kDKAMrneIa6T0/Q0POBTFh/D1+/NhkxXy3paUlA9skGYtYmiVoSPo5tAG019bW9Fd/9VfSDWIYuZJwZKYwQFB5kahh10cTj30HsxaWB8Up7DwYKxTCMGl4bWImwDVNBNYbEmXAS/YHwDifmxjW7/cNnMNigYSVf8eGwWUWw/Dk4KewXFlZsXlTLqOE5LDb7do6XllZsaIaOw3UICSmqCFojvd6PUWj0TnGlWsnwe8Qy2HCAvTSPJD0H5hVLogsyRJ/V1HhWv+4FlycAcRBChGXHABQKl0Phub1sFoC9OQe4uFLc55Ejs9EY0mS2SPRHKQIwcLEld8TA3kOFFIAuc/Pa0AphWIHhRNrmTXcarVshlGn07HzA+Y51lcoJ4lbrjUgjSwSWUlzr7uwsDCnGMDX2LVY4DnCegPs5HkBrKAo4DmhJgAc57lIMtUHSXq5XDY1hmtRx8/eZHu03/zN37S4AJuZRjXnHOw86dpGzwUD6/W6qtWqwuGwNQBhx7nzAre3t61oAshDXUjuCcOZ/Q27nTMesgxNHgp4ciJej/XB2sMOCxZaPp9XIpEwxUahUNCzZ88sVhOvKYDJtaTr+TXEEdYY709zwX0/CldJtqela2a1O7fFjTs+n0+Hh4fGYLy6utLTp09NpTIej3Xv3j2LN1idPnnyROFwWJFIxOL9aDTSu+++q1gsZkD0rVu3tLGxoVwuZzkTRC0a4MQjBnwznBjWbCaTMRZfu922ItpZa2o2m9rZ2bGzBaIMOR0FNIDl5eWlzYUhVyQngqBz69YtLSwsqFQq6dmzZ4rH40qn0woEAioUCgaOoz50AWJXkcc5QexxYwhFL//O92q1WlpZWZmzvwXcIt+i9iGGPXz4UDs7O1ZDcL4Fg0EbOsvvMKT96upKqVRKqVRK5+fn5msPeYGcntfJ5/MGhMHYX1lZUTgcVjAY1NHRkanK2+32nKKWfc3eovhfWFjQr/zKr0g3KP5J8/Zo2P9ks1llMhktLi5qbW3N7jOK3UBgNouqVCpZIwbL6MFgoB/7sR+zhj95+s7OjtXDLtmK8x/HAHKj733ve/bs3HOMc1a6diFw1Smj0chIID6fz/z1eW8u4otL+js5OdHW1pZ9dnIhal5yP0nWUDw8PNTp6alef/11mx/j9Xotd6HpA4DlzsZ1mcDEW0BUGkqogrAOX1hY0PHxsdrttm7fvq1CoWDxg/lgX/va1wz4Ag9yyaWwwM/OzoxUSVwgrj1PQCI2QWyQZI00msBgBJAcJFnMBzS9deuWgYQQ9tizWI1CAuK5MtMUQPLJkyeaTCZ69uyZvv/97/837IqX1//hupEx8Otf/7opviBcoBAkp4Is4fV6bW4c+wOHEDAX6jkUA9hRcR5NJhOrjcj1UHMAnEM4oG6GgE1d8/nPf95ep9/v6/Of/7zVlh6Px5wZaAi7ZBWspchrUZaMRtdjHSA3SppTloAVLC8vK5/Pa3Fx0Vwanq9pGo2GIpGIgeCo9cjvIDK75wz1nGvZDV4JnoZFHJ+f3/N4PDZnFwUyuQkW0GA7kIPA27gnroocsglYGc0v5oMHAgFls1ml02mrj2mqu6pmGijgHLwmThmcM9T67vehHuC78P8hhT5+/FivvPLKHHGHWhY1JecQtYTbJOFnXRUkc2PBI8AiWdfk1Jzj4CqsU7BazlfyqMvLS8O7wZWWl5ft2dCYdD8DqlvqYs4wGmK8F+t0ZWXFnh3rl88OUQG1DvsPvJK6l+YnuSX36C/+4i+kFxgDfS/iRf43Xci43CTLZR5SYLs+tQCKFLGup+7V1ZV2dnY0HA7NH9gFng8ODsxzuV6vq16vGwttf39f+/v7ajabeu+99+TxeFSv1/WVr3zFkr9cLmfeuWxGkuDnpc3RaFQLCws2RIkgmEgkNJ1Ojf0J44XC0T20AAq73a62t7dNrVOr1QwwSyQSOjw81MLCzI8f9qckJRIJra2t6f333zf2Gw2mlZUV7e3tKZ1O6+///u+N9YgXPM0Kus9sVEAyDo5KpaJMJqNKpWLJ761bt4xZhE/9s2fPtLOzY0GeALK1tTUHziFFDQaDSiQSVoienp5a8EulUrpz5456vZ5OTk4sUEajUbMCojNLUgtQCOuZ4EBxyoF4dXWlw8NDU2Tl83kbXE2xDyjogqcwoAKBgN5444052SuHJEoyAhTBH4ZdJBLR3bt3DZTx+2fzbT7/+c8bmxdGuM/nU6VSkd/vt2Kbpgzznfg7iiZUDQzGpUFFwQaDgAOAYk6S+S5/97vfVTKZtC758vKywuGwWVehwqF4w9okEAjoe9/7nh0yNDwpREgy+Mx4KBcKhc80Jn2WF/EDIDsUCpnaBXUMQBsH5NLSkq0LmDCsw+XlZQO7AOVorACKkdAAkDQaDQNcaAyRcNLgZA3B3EmlUqpWq7besGCB/USDm8MZSwcOfwBMClYAI3ewcqFQmPMYpingst6RnrvfjZiEPY5re0EiThHMvebf2A8wn1irq6urymazSqVSdp64THXWK4kssYwmEg3b6XRqf+cqSkajkY6Ojmy2Gv/Dtokk7Xm1Rr/ft71OYkOSA3sI5hAJqCRLJmk0UIxwH55n+buSbfYrTVnigMczs4biXEA1glovGo0a8MGzAkzn+3U6HbMGoGCBDU7yiS89sYb7gFVRLpfT4uLi3MBgnrskmw/FWUBCzLkjyQBdSTo+PlYymTQ/d9hDJPOoLiGSoLJxh4/DiCY/oFhib6+urlosJwZ/8sknCofDeu211/67ws//FZfP5zNVZzqdlqS5wgjloCRrzLkWZqhW19fXFY1GTXHNM4Hl7/l32ycUXjwbYhvN6U8//VTT6cx3HAUfaxz1BPEHRU08Hle73bb4C0OMP8lBNjY2VKvVbA8zM8UdmM1ZQFMZ4I81R2xirQKgMceE+CrJFGfsDUg0zIAJh8Py+Xw2OJe82e/324zC520JA4GA3nrrLfX7feVyOcXjcbuvk8nMEvLhw4fGUry6ulK5XNbt27fV6XT06quvSpLlVaFQaE4dh20m7FZXjbq7u6vpdGqNU5cgRZFInlQul83SYmVlxQBhyEsbGxsKBoNzc3IATIh9bpMLG0mIDRsbG6biDofDunPnjk5OTtRqtZRMJueave58Ps4wcj5iPeccMdwdhEweS15GjkbTaX193V7ftX/ie6HA4BlPJhM772EOLy4uWl4M2EV9hqprOBzadyM3pFEIOQybz1dffdXU8dR35HI0oQCHXFKJO2DgMe8FAAAgAElEQVSazwn7+qZeKP9dQFGSrR0IH9Rvi4uLisfjptxguDbxkfg2nU6NSEhMlWR7huYpgAqAEDkYjQjySxobbm0zHA4VjUatCc33YIYM+S0qM/Y1SlryEOoymnk8fwg01KLuepVk8RnXAxrd5L+4DpycnBiwBqjmkmxhAtPkhyBKUxEykCRzuCD3dGtBVwENyExODCkGYp3LnCf/r1arRjoC65Bkz+H8/FyZTMbIHa6iu16vK5lMGiGH3IMG0kcffaSlpSVlMpm5mMEzjUaj2tjY0PLysp48eaLRaKRSqWR2NgxDJwa/vF5eL+pCzc7c0UajoVAoZARn6s/FxUVtb2+r2+0qm80aPgFphDglXdt5k38Tb8ADNzc3zVYRck2z2TSSdjweNyeVUqmker1uNS+1K4oOXhtimetCUalUNBgMTN1z7949qzuazaaRXZhBjSWwS8ajoYTKBSt0mh6QJMgNTk9PzQmi1+spl8tpc3PTGsTU9W5+58bsQCBg+QP1HGodYhOxjhjvzuwDh3BrHsjo/DeNGq93NqMVRTUN9kqlYjndxcWF1aMQumgKQFqAwII9OzUcWFkymbQ1BEm/2+2qVqtZ3oj6GnwZZwpIx/1+X5ubm5b/XFxcGN55dnZm5xC2djxDCGjUJeCPruoIQrSrnGYUBXia20DnnOKeZrNZBQIBm0/EvsCyjBzTJd/6/X4j6ZAb8t4QLXErcd1TsJ13c1v2Ik3K8XisYrFouT/7BUU2eDLrwnVT4Ptyr1yC8Iu8XjZt/ouX68XLkEsWG1ZYKEhg5rP43MUF8H11daWPP/5Y6XRa4/FYd+/eNesspNEwwre2tgyg29vbM/uvpaUlfe5zn9N7771nzDqvdzZzAOk2ixKG99XVlQUEPhMBMR6PW4I3Go3UarWUTqfnhiCiGKJLSXLnyttoOgSDQd29e1fHx8c2pMm11Hjrrbf04MEDjUYjK/YODw+VyWT08ccfa3FxUXfu3NHKyorOzs4UDod1cHCgRqNhhQEHgau8yGQyKpfLxhhgBtDOzo4qlYoSiYSWl5e1u7tryhev12uA3SuvvKJCoWBy7H6/r1dffVUej8dk+hSYAMEU6ySgFK4wlihMsMkZDAbGtPR4PFpbWzMGFoUEcvKLiwtFIhEVCgVlMhl7DshQXen58vKysdcJPBQSkkwdQEOq0WioWCzq8PDQrJ9WVlYUjUYVi8Vszg+WGLAfAXuxURkMBspkMrq4uDAGLIA6ygWSBGT7gMQucExnH7AYIJpCDSYoaxf7IOz7aES222194QtfMHA0EokYQ+Px48fGRKAQ2dnZsSIQUJsiKpPJWCK2t7enWq1myi63sUMD8iZePBsSxE6no3Q6rXg8rlqtpq2tLWvgYtNDIwKAEjBakikmwuGwMWSkWXPjS1/6kqnDWP/j8VjxeFzLy8s6OzvTK6+8YkO8r66uTFZOMkgh7TZTlpeXzQ4SH3aALRhDrv8qiTFJIY1pEiiAPxImilX2HOdDtVq1oeCJRMJUZ0tLS7p796693/OKGOTiNBoAp9bW1gx4oAgm/i4vL9t5AVsGZQ2MdxrZ+NYCnkkz8AVA2gVkUqmUNSwXFxeNPUQDiZhIwuIWCoAM7n5nWDrP//z8XKlUSsvLy2o0GgoEApZIknDBJhsMBmo0GnY2JRIJiwcw82nI8Awmk4l9L4oJFKgMwuW7wp5CAbG7u2vfNRqNGlEAddDu7q7F4WAwaEUAcRcQGsCBIg/wnSufz+vOnTvG8GKvoShFIUlsZZ0AAL355pvWWAOEef/997W3t2cNf7dpSj4DewxArF6v2/fEWx7rGxJxlFLhcFh7e3tWDN3ky+/3K5lMGss4EoloeXlZJycnBiAtLS2pXC7r6urKCjhiTSgU0u7urjGQsQ/o9Xo6PDyUNFuntVrNFIKsewBSQO7RaKRXXnnFYh6qPoBo5hGk02l7dsQBFG8ukM3FuoExDrhHjojFAXtpY2PDCDywvomrXq/XVOA0cff39+0zowRivaMK7na7ymQyxtZHeSfJrA7ICcitOHuDwaCy2ax2dnbMCqjf7+vu3bumGIadjfc6+6VYLOrg4EAnJyfy+/3WoHeVfOR9iURCx8fHlhsQuzOZjDWes9mstra2VC6X53zPUZwSi+/cuWMMeNj7EIXIFVEQss+IM8vLy3bfpetGNopKima/369EImG52VtvvWXqUeoKmP8U68zogoDBsHgYps+rqFjnABWsAxolroqdc4FGKMU71i0oeqklaDyxX1BgoFLk/nIBYC0uLloOHovF7HygKccMS5qnKPkBVrB0wQKM3A+iG/cjm83OsU9v6kWD78mTJ3YPcESg4Xx2dmbuBeQgX/7yl23OEfeJZjTuBTQhJBkRhzwFJwNql1wup42NDYsnW1tbVjNTk0KaQO3M+YaCDXUjbPRIJDJnpYU1GPPtUPSk0+k59TA5g6uYpRmCWwX7AtIJM8E4/10yx+7uruUg7J+FhdkMLMgo0jXARx5HnsG/oVjh+bz55pum/KH+InZxTzwej5Eesd8cDAY6ODiwtU0ek8lk5pTR3Ot8Pq/BYKCtrS1rbvF92PfEG+rBQqGgxcVFyztu3bpln4+6O5lM2tmxtbVllow7Ozva2NjQkydPDLNgvkOj0bA85+X18noRF4367e1ta9JztkPOIgaVy2WrGcnbwL84p4fDocrlsqLRqDqdjnZ3d5VMJnV0dGRNi3a7rUwmo9FopGQyaQ0A5oRhq391dWVNIUhxqHdWV1f15S9/WZIs74GgiMVsLBazeZ/gTOFw2JoabvP66urKcixeT5LFc1cFRy5L/gIOitsNNVMgEND29rY1ikKhkGE+S0tL2tvbs2YZZEfiyng81v7+viSZcwu5K3EtlUqpXC6bhRkWuKh9IX6jbhkOh0qn04YF0QR28YzFxUWz0qRp51qfYbmdTCYNJ3Dn3nDfFhYWtLGxYQqqYDBo+cvS0pJh0DSlyKPcOS1uY4OmD4Qqvu9kMtHW1pZ9fhoO5NCQtYnP/EwsFlO9Xjclcr/fN3wwEAjY50IBxPok53JdKlCZUYPT+IDgGI/HVSwWTbnvKvWxEcQVIpVKWd3AXuPzkV9gCw7OQ83BPhkMBoYjkIvieNRuty3n5PP4/X6bY8VaRClFHvuir5dNm//ixWYmkeHhb29vm70N9lkoUwAEKWz4O0lmF/DJJ5+o1WqZR+z5+blisZjeeecdXVxc6PXXXzcf3OFwqGfPnlmyxyYGLPvBD35gjQaKPhYnVi2wEOmuu4womFAUPxcXFxYAUM4sLi4qFAqZRNy11olEIjo5OTEGKawrQIhnz57ZZ6JRwmFQrVb1T//0T/J6vdrf39doNDJf3G63q52dHZ2dndkwUXfwMuAWBSlAJYcXgYUClHtBooxFHcPCvV6vqWAI4B9++KEmk4k1NmBmY1P34MEDHRwcWIcZoLfVauno6EgbGxvGZO12u/rggw+0sbGh6XRqh1QymVStVrOkuVgsmnJqOp1aUKVgAAQFdHjttdcMxHCbiK69gCT77NPpVKenp6rVanMM6uFwqI8//tgKJAbOBQIBS8gBO1OplFnHHR8fa2NjQ6PRyP4ewB01DIA1gC2FPo0mGl2hUEitVsvAGn4HL2QOIEAhJKOSdHZ2ZmuVogSwCWbB/v6+FRnT6VRHR0daWlqy4XbT6VQXFxfGJqMzj7UgFhGBQGCOfXJTL2IBCkLXKuLy8tI8PmHaFItFbW9vm5IGuwviDqBILpezw75arRqwRKxdX1831RbWPPiAU5QFAgE9evTIYgrNFBItXg+lQT6ft5h8enqqVCpln6tUKimTyVjDlzhC/IY5lM/nFY1GreEAa4SmC00VGpa5XE6STOY+nU5tiC3FKbGMmIfyzW0kwCoFHKHpSNziv2G5e71eex/Y2CS6qGoymYz5/WMzxJlBkvfw4UPFYjGb69Rut41B2mw27bV5T4BGQAyaQjSIYMPk83mFw2FjbHY6HQP8yuWyjo+Pdf/+fWNYwVQdj8d6/PixfD6fMWKXl5dVq9UMIIcl6yblsGaCwaCBS6VSyZRAAE+u1PzTTz81KxIYTDRlaECVSiVdXl5aQs9zgAEkyRi8kswvV5q3czw7O7NnxNlbqVSsyQUYjpzclZ7DigXUJvb94z/+o/n+skcBmVHwAkSSFDMT7tGjR1YcAGhx7nLO0wTc2tr67w1C/8NXp9NRs9m0/yG3T6VS1hDweGbWtsSMbDar6XRqSinsJrDNY7YAKmqaF9ivAhi6TGlpts+q1aok2eBMWIKtVkuTycQa0I1Gw1iS5HcoBSWZ+o5ckT1LQXN+fq5Wq2WqMUAJyDb8f/JgCCMXFxdmJwmYQREFE5oYQNEPg/C73/2uxWHiJwSN560byBmk2XkE6L++vm7nN7mdO0SdAq/T6Rihx+fzaXd316w8WNs0M2nOEYOPj49tlhqKxFAoZA2fSqWicrlsTFzIDGdnZ1YnAGqynlhfzHbgXKnX64pEImZzxNwK6XpoL7GZfAWrKkgonBMQhsjrIC6cnp7a+XFycjKn6ITw02w2DdQAMMBSJBqNqlarWd1Dc3dtbc3mfWATQ/O4VCrZTCBJ1rCRZN8TtRJKGkgV1DDMj3vrrbeMVNfr9Uwxjw2GS2BC6ZhKpbSxsaGzszNryjCXjRqA70+jArcFSHnpdNrsZm7yxd6Lx+M6OjrSwcGBWXPB4o5Go6pWqwZsXVxc6MMPP7S4QMPyx3/8x22mFcQvyHjEhqurK1u3Lplwa2tLg8FAP/zhD+dUWtQJkLiIcVw0Gmn6Mp8IBQ5nKDGQc5I9w2fgHCc/woaQRgu2YYCp29vb9nqAlLVaTXt7e5I011x11UYQA6UZ2554BOmMod2wwGmYUqN99NFH+upXv6rBYKCHDx9arU9DjKYz9SBzZlBh8nOnp6dGJEGNyedeXV3VkydP1O12bZ4jTR++F39SA1BDUP/DkidOkWPU63XF43Fr1n/pS19Su93WycmJ0um07WnXtpX8qNlsKp/P3/hG6svrs73AGVxVZTKZNLta6oHt7W3DntzZbjQRqtWqneGxWEzdblfr6+v64Q9/OEd2xToSfAHnEZQP1GrUQNRb5HKXl5fa3d1VtVo1LMrFqty4+uzZs7lG8vb2tvL5vNVEuEig6KYB4eZ2OGpImlMxg4mhgoDIBoYF+QjVETlNuVy2744qcTwem4MGdRKkC8g4k8nEmhv9/szmN5lMzlmMFQoFa1AQ0yF18HuQIl1HGJ4BBB3cH2heu3MEaQoUCgWNRiPD2VD7cP/9fr+KxaLVl647kiQ7y7Bn5yzAzcj9jKwTMGjiNuQDyH7gC3xeaYZNo3KhkUXNcnU1m5leq9XMVh5iASpaSUZKd0kH/LfPN7OJLpfL2tnZmXPE4OcgOnFe8j0vLy/1+uuvazwe6+joyJ4rttSuywC1UygUsrmVWKCTz0F2w2aO5++uG+by0OiTZjU7uU6n07H52tls1hpSL/p6OdPmP3nhY/mrv/qrOjk5MVAnGo2q0WiYD7TrQQ5zl+DnBgEALh64NAvkdKwBoSmG6Ozl83n1ej1tb29bkUJgAwzHOgjbFoBCAEE6wQwffPXVV5XNZo25wvwVhj4DNhAMCCR8T7q6JNl8Lhidk8lkbnjZ6uqqdY9dOy4Sbn6v0+kYO35zc9MaXJJUr9eta8prsZFgcQWDQT18+NCGHrq+2XTBr66u5izAaOjASnWTTFdqjzyxVCoZk3ZnZ8eeBZ3mxcVFUz8BEHc6HfMqZSjweDybB0ESz30GZKALfXl5qYuLCwMGJRlrDEk7bEAOSIIxwCVSTNYVzH1JZjkHK83nmw02JuGt1WoKBAIGpA+HQztAUUkhgaWYZpBcuVw2mzJJdoAANrE2AZ2CwaAajYaBvysrK3PPw+PxmDUFxRyBfTKZ+bZitQAAGYvFzPaFQpy9QyKVSCQMFGKNsOc4QJDmYhXDuhsMBjo7O9Nf/uVfSjfIy5f4941vfEOSjD3DoVYoFKzwpLEDOzqTycz5pvI7sA7deS4A79iAUXSzLylmkQ6jdCHhQ5VCw4M1RbPQtQHC8ky6tpOZTCYGuq2trVmSDDjvFtW8HjaYJIAkCcRJ/g0WJ+vKZdBTnD/vW5vP5xWPxy0BIy6gFMJKiCRybW3NhlgDxsFOJanHkxVVG+AYwCdxwU00uSc0FUiGXOkzDVTex50rA1sZRu7Z2ZkikYjF3EgkYvJ3ng3P2mVR8ewkWSLJZwNYhiHDuXBycqJ4PG4sLnyDAS6Jqy6rtFqtKp1Om5qCz4zHOq/BBTGARhSEAWIZ6wGyBIAJOQJMLwZuwhRbXV1VuVw2hrrL8Gm1WjZMmWZouVzWwcGBKcpQCrEfsN5zWex8FtRLACmopFgXNKEoMjhD3LyCGVG//Mu/fGNn2nz729+2vIszqlarmb0SRZbf71cul9PCwoKp78bjsZrNpjKZjHl3w6KTZI0MFGA0sFHdAlL7/X49evTIFNcUqagViZ00s4lNnMHkIuQq2I7RRKFh6vF47HPSCIxGo6Yu6fV6ajQaBi5Q2LqxnlyEYor4QQOaM1+SgY2ADZzr2Fa6Kk3WYKlUsqIOVjf5KYSXw8NDy31qtZop0KXrhoYkm2cjzZSRqPSwwMB2EHCRGMV+xzrBVfPwvPl+5IjdbleFQsHspLgvNDcSiYTW19dtJguMPuzHRqORqQ9g3Lp5Oe9FLg240uv1lEgkzKIT8gA5fKFQMGsycmb+RKmPCggwme/JOc5ZTazg7JNk5DTiGEoEmJmQjfx+v0qlkrEzaaLwmjAoycv9fr/NCgIgQgFP8xrWJM1RZo9tbGwYiQNFD/uK78/rLC8vW73RarUs3+aZYpH2a7/2a9INin/SdQz8gz/4gzlWOfGDJjCqWJouuDuwJiCEsKZY35PJRJVKxXJt7GQBmfL5vLa3t81OLBAIqFgsmg0Y64r1ThMVIhZnGuuVcxeGLA1P8iKIirwW+SB5ELmOa18JmQSwDLAK+0oa4RcXF8YOpr6+vLy0fI98EBshanvqL1TlnAkej8dyHJTOWASSV7F3WeeDwUC3b982YIq8i2cFIL2ysmLKUZRtxFlqqGazqXK5bNbj8Xjc7Ay5F9h3TqfXtrv8O7W8NMslc7mc4Q87OzuSZECcJAPAAV859/L5vCmnJpOJSqWSqtWqWq2W/uEf/uEz3jEvL93QGPhbv/VbNqg8n8/bmUNeI0m3b9+2+VKnp6em8ry6ms3Zg5js8XjmCGVgG6iIAcup81xA3SXKUcO6todYfIPJ0FCdTCba3Nw0dSk1DBZf7E/ek5zMjQHuPEHqwMvLS9XrdXuvYrGoZDJpuSkxFmJLo9GwfwsGg3M26eR8btMGZTFxGhIZtdfKyoqOjo4UDodN/YE6F+WQ20CjYUU9BBYVDAaN/MdndRtjqVRKkubqI3IZl3jg8XiszufvXIwBS0+IeBApwe1wNuAsc3MSVPI02yEJkAMS67mfWH6785bc/Hw0Gtn95PzjO0Fg5Kwg9wLHg9RHfGZdUMODz3FeUG/y5+npqeG8LikCUjo1ElglOCJWcNznXC5nYz1QzmDf7NbmqEqPjo60ublp9xrSAmepJPu+nK3kkOTebt4zmUzMOq/X6+mP//iPpRcYAxf+zz/y8nIvN/hRIBwcHCgQCBjzHg9ovKgBamBE1ut1BQIBG2JGl5PCKBAIKBqNWmMI1jKStHA4rFwuZwkR/sqbm5sKh8MGvPf7fZVKJWN/B4NBswgj+fvc5z5nrxGJRBQIBLS2tqb79+8bsA1zgODAMLXnE1M6+nQq6ZqjysHDneS23++rXq9bIKNjCxAYj8fNwxvQATaoNFM3JRIJK1ZXVlZM2u0CIYCDWIfB9gPUwlbLZQGiQuG/2bQcLvF4XCsrK3YIu1Y2+IhyMAHuusVlKpWy53p+fq5ms2kARzweN+s2DuSVlRWFQiErhhkIvL6+rlgspslkovX1da2vr5tnI0AaB1GtVrO1CRDeaDTsQKMYAYRDIVWpVNRsNo3hibyX+4bFDkAzSrJ8Pm9zEnq9nu0Tv99vHuvIKaPRqB3YDL+WZE2deDw+pwZz1xy2ZACTfCfmDmHPhn1PLpdTs9k0kBR28NXVlSnUWEPcr9FopFqtpvPzc7u/gDvsL9bUvXv3PrN49FlfFH+j0cisYq6uroxRS+FLAop6hWYXIDFKFUBFhhe7NiiATSSwJKBYpCFJJcmDrcKeowHR6/UsiaTQpklCUQh7g1jNd6WAJpFxQTHAfJQc/AzsbBJxCkqAcGIADQGX3UIiDlsUoJP7hW0IjV6KZpe1zB7ks0rXXvOXl5dWwBLbhsOhnUGcKSSKAMg0CwAWSeBpdrp2SxQEXu/Mh7bdbtu9xcrC3cu8nyRTtmFrCQtdkjUXAHaJny5wB8DDc2k0GkqlUnOsM7fJMx6PValUjD22trZmKi6AIayo9vf35xhHNJOIdxQrgLI8v1arZc1Bv9+vWCxmzDma0njiRyIRbW5uGlMqm81aM5MYTTxnpkaxWDTQ2eud2aLSOGi325Jk34WZFrBw/X6/Tk5OLFklAQXowcqAvcS/w5Zjpluj0bDk/aYTgWiGDodDnZ2daTAY6O7du2bL4irZUHu595RzCdLD06dPVavVzEpneXnZVIRYM1J4U4DS2Hj69KmRLphfh+r39PTU8hb2WiwWsxhbLpeNyUbThHVD3glhB3ICxIT9/X0jj1SrVZtlBoCPUsZV6aBsYG9BunFjNSCtez8kqVAozDWRiIOAwCh7iQkoeAH5W62WxWnISNw37vdoNFK9XtejR49MSXx1daXz83NjzXN2NJtNO3fc/JG5LsS7Wq1mrNJqtap6vW6EHViad+/etaYOVh6Ql7D54X0BccjtIH81m00jaF1eXtosS5Q5nEeQWobDoeLxuH1eAFcAGQpg1PuQnIgt5P001mgIkf9DICI3RJXPDA5JFl+Gw6Gd65x1btGMUiccDlvt5K4XVL8u8BQMBm1I7d27d62WCYfDBrJQTxCzE4mEEomEJBnAAIBDjg8ZAn9+AA/2D+A7ANZNvYLBoNLptCm1IFy49misGema9EYTh9ko5HpY7ZHv81zYY9S0rDGev+sk4DKlyVNoTLj5hfvsySdwT4As5hL2AGJddaALbvG5iT3U3u665lwkJlLH0dwGwKNxBdmTZjT2wMQst2FKo53vgkqbhg4MeO4tMyFdxTZWnfwODSTuN2x3nhP3//z83GaXBQIB7e7uSpLVf+Aa3DvqVayUvF6v1tbWjBhFXo66CDsgXufx48dGOCJ3Q/U1Go2syQT5SpIRIAD5Xl4vrxdxPXv2zEgWk8nEcoLDw0M7G8lN+JMmSygU0p07d6zZwT6WZPaP+/v72traMjI2Ofbe3p62t7fN8o+ahLMTbI7GMvW3NMPCiCG9Xs/Iyq4qn9yeuSAnJyeSpNPTU4t7xATy1X6/b/FpPJ7NdyH3Igeh2cG5fXFxYQ1z8BPAeeIQ+Ve1WjXAH0Cfs5h8iRg8HA51+/Zt+3lI8GAMfEZwRHA2lH/UYm4u5DYtOMPA9/L5vGq1mprNpobDoSqVitnNoqqBJE9tK81yBYiOfE7yVL4/NZWrVqUeRSlCLsz/J9ZyL8EkyfXcOT7cY3Ax18mCpjxrgjqb5pZr9cu9zOfzGo/H9l40XlCCNxoNy6c5P8Ebw+Gw/RyYqyR1u12VSiWrP8FaPB6PuV25qszNzU1Fo1HDIqhtWeecX9KMaJ5MJo08zP3ke3GOgBORB3I+u6/FmQ8+BLn0RV8vmzb/xQuLAVh1fv9sGDGqBBYqgZJAASsImT8/C2gtyVhAFDsETkAmfHMp+AHo3E1FchqPx20Yl8taJBGKRCIWwGFDIxtj4XJ4uFLzSCRiiTBqIoprkkAYQXQuuTfcKySOAK74YgKEsPkAogDN3SQccA7AAYYyP4ctDwwkN+Bks1nl83mtrq4aK59EGXADP0nANgpN7vfl5aXa7bZtUN4XFqzP51MqlTLgn4YOnsoUMYBqfGYYYyhLKBiYGwRwSlELs9614yOZdv0cKUpIigOBgBVHgIqdTseSCCym/H6/Mdbp7gNyAl7Q9COhxzucn6epAbhMgYVvJBJ+AiU2CdPpzDIOxgjKI4AkQA3UFaxXGliAIxRlMPxgqFFsSrL5DdVq1Trt0+nUZM0ccAD80qywL5VKWltbs+YPseCmXgAUJG40E2jiACqhRCCJYs/gDwt7guQHSxbp2qaHBtDl5aUajYYVlsVi0RRpWP7wLDksOZwpColTHO4Mfb+8vDSrxWAwOHc4828kNiTGwWDQklzsxLBTOT09NSsskjkaIdjnkVxiycNngh1FUur1es2iz1WxkYgBHBGTmDdFAwXVpqQ55g9gAY0LmN40TV3gnUZCtVo1oEGSJW0kWcQVigEUNDTjB4OBLi4uDPhKJBJ2r93EhwR1MBioWCzad0PdCMOMQgFLSxonnCOsI2nGyOQMQ1nA/nbZuO78JNYvP4cVDgknjUH2BGcsVkjEe6w9S6WSzcDhcywtLZnqiWfC3qpUKmbHSHO6Wq3ONWewTaCRMx6PjVDSarXUbretAJI0V6RwJrHeBoOBgbasZRhtnEOrq6smwXfPCYA6lDycmTf1ckFs5PZYQi0uLhogT05BY5SGHGuaBgXklKurKyuc2NcbGxt2RrI23PgTCoWseY6ShDXNeQ9gX61W5fV6FYvFtLS0ZKoRGivEj06nY40lzm6Px2OAN0AgOQT2vH6/3/YlOWSlUjHQHjsI7ETdeSCS5uwhiV80QgApiFV8hmazqR/5kR+xnFyS5ReA/9iLsb9RwsDyJjZOJjMruVu3bikWiykej9vMLmwfrq6urFF9dXXt5X5+fm6MWhSIKDJoLJFTtdttdTodxeNxI0F1u13t7e1pb2/PlDSVSkXSrNDF0sOGeycAACAASURBVBPSg9/vtxlxMPhHo5G2t7e1ubmpw8ND9fv9/8CsJ26jmgJQCIVCprIBrOaekINCvqLGIQbi7e+qlcnnmPPY7XYViUR0fn5u+Sivg8qVc6fb7Sqfz1uOCAiOFR/NYuofzn1yum63a01/5iNhP0Mtwr2MRCJKJpNaWFhQsVhUuVw2tZZbP5F/Uve5SisIJTAvmfl0ky/IhuQ63FOs4cjNOCcABFHj0NhxmdrSLKdGyUatAxgSCAQM4KI+I95wrpPLkUPw3+RPvKYke5bE2Wg0Ovc5yWcg6tFU5Hx39wlWQDQ8yLOePw96vZ4+/vhja4IAKLF/AaTIjbGIoYFC/U0tDZucuEbTks8HcYezmhkKgJI+n89mv6BSYr4YcZ/GttuE6ff71pAjh5Rk93xnZ8fOOpc5TiNle3vbvi/riSYpzXHWCtbgKOI431hHkqwWJe6vrKzY2oxEItbAfnm9vF7Utb6+bngNqlpphhHikALWBSZGHYiahfMWcpiL6bHXIPdQz5ZKJf3gBz8wAvLBwYH9Du91eHiora0ts28i/2FmFA0lV00PiYt4XSwWTVlYqVQMz0EBg0Inm80aUQ7cjfgFkdJVkmNVBZbz9OlTa2b5fD4jQJMrYHFKjU58JF/k5yBL93o9PX782MhOw+FQW1tb9nlp+jKHi/sAERBikCRTZjAXDRcCmgZgtRCbpGtrS4g7p6en1viCxEWThu+JoptakjyYmg3FINiFS4YAs3XrWBpTnU5HDx8+NBwSNw5qY3Iwnh+xGsyGs41mGxgFz43vEQ6HDWsZj8dmIQpOUSqVrPkBIQNSIcQd6kpX2QV+KMmeE+fE4eGhuRxRV3O+kZtAJodc7JJDyDs47yHFcx85s7nAs6nXOfNQh0oynATHAdcZ4EVdL+3R/pMXkshf//VfNxkYxQTDhAEx2+22tre3JclYsjANYbhIsoXlNhcopmimbG1tWaCBWUcxDUCJd2K/31exWFQikbA5IQA4BG02Jgmbm3DDnguFQiZvR6Iuac76gq6z1+u1TQHrmWR3dXXVrONIWFFA0JhZXFxUsVg0WShWQ3STYafCUuB3GM4GCOhK8AAWkPcRBEiOa7WaQqGQbT4aL0gB3QYY7GTuC91VvisAVbfbVSKRsADTbDbtkKbwB/x73ncYdUe/3zfmNYkwIAy2GFgVhUKhOeuURqMxZ9dGks6zIGEn2ACiAJyQVADSoRagMUdBTrFLw4g1QQMDZgfJNZ7sAPqSzIoIH9B8Pq/d3d05CzSKJeSzMOdpRAFEoAjAphAvUYoXLIum06my2ax1513f/larZcy0QCCgWCxmyQtNKfyuaSxRUMFKIKCTlHz729+WbpAsnPj3zW9+UwsLC8YAZw9KMmCbQXUkQNxXmnaAUliswPRgpglgDRaLHPYUoPjrU2DCzN7b27MGAUnd5eXlnLUWCkjXg5cZIySE7EXYKABrAFsc3KFQyBrHJNOwNFOplIFVxHcARxJJ7LGIo26TC+Y8Mm7WG0UpZwr7AYUm+52EGYYPQyGDwaABhsxlocCVZLJpFJYMBsZKjQYq38frndk9YtVIY47GNeuC5+6qAlxGJc2Q5+MyzTb2NO8rXVvahUIhs47ibEUVyHshQee+EF82NzdVr9cN4BsMBjbAnDM4Go0aeMH3RxFKYsoaBlBl3bvJL00sgAuaVqPRyFSOgH58d5JzpO3Pnj3T5uamKpWKUqmU1tfXVavVlEql5ryDaeJjn7S+vm4NLhp2sJhpnJHsS7Iz231+KGGxIWB/wl4mDnQ6HX3zm9+8sfZov/ALv6Bbt26pUCjYHtna2pLP51Mul9Pa2poikYiBujRbYAwfHx9bfAiHw3ZuEFtocjzPmOSZkntgmSHJbOso0CEjwChE4UXswnKK5iGNRBoZsCM5+znXASIokFqtlinGFxYWtL6+rsePH2tnZ8eKJog6nU7HmOpra2tzSpfj42Nr5LqWggCQvDdrFHY2DXUasMwgzOVyikQiKhQKunXrluXIrnKGvUgTFhYdqkKXMUiTajAY6JVXXjEbxkKhYPkE3xPSSiwWM0UbzXdeKxQKmfLRZQ6m02mVSiUVCgW9+uqr8vlmtpow8KXrYeUAp9yDVqtlDQgKT8g+NEmWlpZ0fn5uKhvWAq+Hesq1nACcdm32aHwTE1mDWK6xbsiXn1cUsCY5kySZAoJ8gcaapLm9hAIH5RQzD4PBoOVu1D5YBmK/SbHO5yefcEFeCHJc5XLZiHaQ0mjKc0/JNbDmvLi40O/8zu9INyj+Sdcx8A//8A8t1rCGFxYWrHFNrgewlUqlbPYAcyY5r9kLgJ78PnnY+fm5otGozQ+i2U18IXfC9pAagLmUzWZTkkz5iqIWcgkkNrfubLVatiYAE4lVnHtunHUBLVQd1HC4FqRSKWNMk8vGYrG5hjf2osztoqYh1yHuMqsKABKL1LW1NWuiejwePXnyRLdu3bImJ+okaljyo06no1QqZe9DTsYexj7OVX17PB6lUikjJXk8HpvbxR4DkIxGo3Z2pdNpI2s1m02trq6aZROzLcm7uY/U4QCG2N25intcPLjngOE0+9955x3927/92//Ivvlfft3IGPhzP/dzSiQStv6Z87m3t2f2oq6bDmoR6k1yOmowzrODgwNTInO2jkYjNRoNTadTJZNJex0ItcRKhqCvrq6q2+3qwYMHGg6HpmL4whe+YDGQegpMyiU2SrIRANSl4Jw0Emh406CgUU1OwtkgXc/aow4nx0VNSf6G7SOWm6g5iIPZbFaHh4dmt1qtVq1O8vl8Ojk50b1791Sv1+X3+81+mhqYfNX9dwjL1NLEWfJi8nVyGJ/PZ4RCGv/U3blcTnt7e0YwIefkLBkOhyqVStrb27PPgNIKtbff77caGgUIuBv4AVZ51J80IIjvkkx5z2ejLmw2mzo/P1cmk7HneXl5qVQqZcp7STavl8+dSCRUKBSMpLW0tKRHjx4plUoZTkcjHcs7SUZmcdWl5NPkn41Gw+4l9SykBuaZnZycGNEbO+pOp2P1F+cPuSxkN1x0isWinfebm5t2boDFgiuCY7pWg+QaHo9HsVjMan6InDgFMeOSxuXi4qK+9a1vSS8wBv736Hdu8EWRi2IAFiNBGIkwRQbBFAkZyYgrQQQIkq6Hw6OuqFar9vBdpgibBgAQcNC1TNjc3DSJ3srKijHdSGxdVhzvT7IGsANQSBLJRuLvWdSw95hNA+MWcIyG1tXVlbLZrNLptBYWFgz4495Q5PX7fWu8UNwho+eQxEaLLi0gK5ZAfr/fmgo0LtjMJI2AfnTFATfZwDRxJNkmXV9ft6aUyxSiCUCHFrCRIYjMPeJneH0AP8BZin+eD0FGmnVyGXqFJQiBEKYtoK4kO1BcOSWHlnvw8z40DFmvHAL4P2KNxxqB5UhxBuOaZJ/BenxP1gnAEEm8y4KjwUXhLskOIgAFnh1AAvvGBWPK5bIFWBgf0+lU+XxemUzGQGiGQVPYk1S5TDiKcuzhKEjZN4BWWBXc1AuWBOvLVTOdnp7aQUxDgnXGGuJQZi/yfAHE2Dfj8Vi5XE6pVMpix3g8NmYFoB7Panl5WcVi0djNpVLJBgQyEJzfk2RDlEkWaHyS7KLi4n1XV1dtCDyMXdQHFKcw0Um0YPcC7jSbzblBiaurqzo7OzMWNQxC1+4FEBcFCABauVw2cAoLOa/XawAYSS0xgYIBZd/Tp08VDocttsKkJhbDTHEBDBrCPA/+fjKZ2OvRLCXewIZPJpP69NNPzRrj7OxMyWRSgcBsJgWsMZpGNBwYTu2Chevr6yqXywY8cx6hsgHkfPTokTHOaSgSK2BIn/z7fDqYWqhSstmssfSz2azFCkk2AwTFD2DGcDg0pQtxmUYOYAcNa5RDxG3YYhAMXLWSNANnqtWqksmkJGl3d9eKDUk2OBxgEWUYSfjp6ak1AlhD+XxesVjMWMouGEkO4gLKAHNI3N2B4VgYEG9v8oViA0YVzTjAZJp/7nlGE+Do6EivvPKKFbGczRReNMOJL8TMRqNhjWPYdlgpxGIxa5i4JAlILqhlut3unNoQFR57azweq9FoaHd31wg7g8FAW1tbZlGAkpJ8wOv1GtCG4oSGLGpJn8+ncrk8F8dpRgH6uwXaysqKTk5OlEwmjf340UcfKRaLmSKchtHOzo4xs7mXkowYtLOzY/eStU/hS8OAnJzmKc04GjilUknStTKcs4RzB0ZjIBAwG45EImH3l0YsrEz2Nzm2JGMqNhoNa2ChyvF4PDo5OdHBwYGKxaJSqZSpcDhrvV6vdnd31Wq1rKj1+/2mjOP5+P1+W1PRaFQnJycKBoM6Pj5WtVrV7u6usU5dGwxyWVfpiD0Rw1/dORZcFNHD4dDqEVddwfmICh4WLfG03W4bAEJux5kL+3YymWhra8uIMwBS1AHMBeU11tbWzOZva2vL7ErW1tZMDQm4RF1BLYeiVJLFScAQ1h9n+02+qMVqtZrNYKLpDHDDPBVppkahqby2tqZSqWT53OrqqjHTaUSiXudZQfqikUcuD1B1cnJiZxU1JQpEnonrOgCQioUPQBgNW5ohKCRddm2r1TKSBU0j4jkNZPI56kfyTEBO4rgb97HlcYEicldyiel0qkqlYmc56mniNSCYq0xeXV2Vz+dTqVTSO++8Y9brEN5ee+21OXtJahni39tvv6033nhDzWbTGnTsJwBFl6ntkpKIxzxLajeaLOAc7ClwDWl2zsbjcX300UcGMKKa8fv9Nkycz8P3Yf/yjMm9aAC/vF5eL+JCFbaxsaFCoWBnCnbzxWJRvV7P5rpKM5tXiGPkQtQnzN6AQEITJx6Pq1wuq1arKZ1O2wzsQqFg9lrUIWAv7Knt7W0jndbrdVM/kgvyv8lkYjVxtVqdI2aC29BgZa9SmywtLVlDHNtZCIqSLMch/oN7nZycWLMGjG5tbc3chHCxgFwmzezd+D0u1A2cJ+VyWaurqyqVShZrcDuAyANmBmZA7dnv961J0Ov1zPIO7AA3m0ajoXg8bvkvTZ9gMKh2u21NJGak9vt9nZ2dmRPP2dmZ1U9gTq5aGKUNDhE4Lj19+lSZTMaI9G4OgutOIpEwAiBrizMJrDMYDFqeyxlVrVYtr8WFiXrQ6/WqXC6bepp6ORaLaTAY6OjoyGYAg5vQ5AJ/6/V6pvyGIANuR0MHola1Wp3DMbGb29zcNLzi8ePHRqaBiC/JcvGjoyOlUilrUlHzUEu7rlao5iEbe72zcSSuawdr8ezszBRzEPD7/b41uaRrJwye04u8Xipt/pOXxxk+RqBrNptmQwaDho4zbHA62HhaNhoNDYdD62BL0te+9jVJMqAZ2wKfz6ft7W2bueHxePTd735XkUhE9+7dUyAQMI/nfn826AwriWAwaLYQ3/ve9ywIE0DpJI9GIz19+tQsM0iYSI5htrB54/G4gTQ0SWCzUQCT6ML+YROWy2UNh0MdHh6aBQ3F/aNHj+Tz+bS3t2eM61arZQMsM5mMKYDG47HK5bINcYU1RFceqaUkK7Y4HJeWlky6B7hIQi9dH0DMyZFkxTWSvMXF2RBLv9+v4+NjYzW99tprBmpNJhPlcjn1ej3dv3/frPI4KABot7a2TGYbDAb14MEDA/Lwn0euSNccQNyVfGN7VyqVlEgkjB1B0OT7+/1+UyHwWqPRSPfv31ej0TCw4eHDh5Jmh2QsFrMG1QcffGDqoUgkoh/+8If64he/qMlkonfffdcs9LCk8nq9qlQqevr0qR0cqAL6/b755DM/ByBycXHRgFLWot/vN/CCIoBCo1qtGlMM5qUk3bt3T4PBQOfn57aWbt++bQwV1t/jx4+VzWZ1//59pdNpY3xeXc0GBno8Hn3pS18ysKLb7ero6MiCORYFgFG/+7u/K90ghhHx7zvf+Y6x6jnII5GIDSClmcKeqVar2t/fnyvGW62WMTgWFxeVy+WUTCbVarUUj8dVrVZtSCxNDpI6mroM1Iat7Np0hMPhOZYP8tdCoTA3zBlLIFRbNHRQtpHgwFpGqdHpdBSJRFQsFk0WDdgEi5sEA7uIcDiscrlsnvmupZZbcGPJRYFKkkZzEOUH4Kh7X/FnZTA3M7oqlYqBbyiKJBngBqMLaTMJI6oKmrQMkIZEQGJCMTydTo3ZxP0gKfL7/abMYh9jTcm5gsXgeDy2GVYuE50zlnMJNQrAIGuAxhse9bDuaeLSTILdRFJO7J9MJjo5OdHrr7+uUqlk66Df72tra0uXl5eKRqPWcESBuLS0ZMVTv9+3e+syy6vV6tyzcJPoDz74QHt7e5pOZ768MOfz+bwpEwBBYLJ7vV6lUilLHsvlsvb39y2xRb3GPYGAIV2z11nfMIM561zmO+vG75/ZRPl8PrNtoCigSFlaWtJP//RP31ilzTe+8Q1Fo1FTndCEhtXNekLJgPLQHezaaDTMchQFjWt1hooaNSCFhau8cRnp5Gk07VwbKNTfa2trNh9Fum7WwHAkBqE4hFkmzZRr2OpCgKFpQXFFc4q1w2sAUKD2pZFFAwC7UmI8aggXmMVOIRwO2/OgOHMVMxcXF6rX6zo8PDTGHuQUYhVkoEAgYHlHrVaz+83cRwAFVOecSTR+stmszaeA+EHOJWmuES/JmvFYMWBFmE6nNZ1OrUgkLkciEYubxLfRaGZDGgqFVC6Xtbu7aw3sdrs9V7DT4KJRzTnB6wD64pkfj8dVqVRMdb6ysmK2SRCjQqGQnUnk1Zyd+XxeyWTSYj5gNesbghoqSAgzgEIQoq6urlStVhUKhXR8fGzKBchMFN54mdMkwLoEwtHq6qrl+pypuVzO5n5CMisWi/J4PAZm09QnJsJ8xdYEy1zqG9Yqtonsmd/4jd+QblD8k65j4F//9V9b7QSY4Voqc16Ty19eXtrazGazBhTREKQ2xQqb3J5cb2VlxZoQ2KJx9nAOophBCYrdDw2VbDZrwGo4HFY2m1UikTACAk1p9ncul9Ph4aGpcCC4LC4u2mcHnCJ2eL1es4AhXyKOBYPBufWez+ct1vBaKJapSYnzEBzJ//79WUjSnNqOz0oDqVAoaGFhQZubm2bFC/MYtczGxobFtUajoWQyaUQgCJ3gAo8fP9bS0pINeabpKsnir8fjUbFYVDqd/g/2O7Cp2XvYglKXQ/JyZ+lsbGzYGcD9bbfb1gRuNpuKxWKqVCqKRCJ2vwC/IYC9/fbb+uCDDz77TfPyupEx8Jd+6ZdMmXZxcWHuNolEwlwMqBlReUiyHJ49KskIhJAOXRULwH2327X6NZPJWO3tOg8ATBPnXAVgJBKxuceuUw+KU5T6kCb8fr9hiMQd8izcWiDP/D/svWuI5Gl65XfilhF5jci45v1el77MjEZYzIzlXXnFCoylD1oLdsEYG2N/sNGAsDDrkfBoRmjtlbywHpDwNy8CfViMhe3F7Bp7EbMSI9BoWkzP1PRUVWdVVlZeIiIjIyLv14jIvz9E/k6+0dKIGW21VN30H5ruzsqKy///vs/7POec5zylUslCL+bVdLtdPXjwwEJj3IbAY8ibmPuCywtCKAQYiUTCxBh1N13M4+Pjdkopl8sm1N977z1ls1lb0BJH9vb2lEj052Uj9CF3bjQaFsvw7IjhiDLBzPb393Xv3j0/F84x4hfEP9061MSQbBDayWRSGxsbmp+f9/lH5wY5KiIfchNmiiIaDcUu4FNgyUtLS8ZPTk9PNTU15RyZq1Kp+PMhDEAwg1PR5eWlrUPJUcER6GIpFou2CAfbxakJ1w1mbtPRjNtKp9OxjTS1Nevg+vrauWlI0jebTYs9yS3pFKcriToDrPTg4MDiLJx4GHFA/Qp5Jsk4F0QcgtF8Pj9Q50FKMc5he3vb+eGv/MqvSK8wBn5C2vyQVxioc7mcNzobHIUsySdEC8pHij9UH7SutdttK/xbrZaKxaI3HuozkrXp6WkXoqjgDg4OVCwWFY/HdXR0pPHxcT179kwzMzP20+x07oY+hZ+bwgfl4c3NjSqVitXVWP0wawYGEsAMKyGSYlTmqFzq9bqKxaKT9tCrEeIh7I4AaKIQQlXM/dze3tbS0pKJiNDKI2Q+ablHAc29BugE9EChHarUAa5Q+3MQcRh2Oh1Vq1WrW1H9kawCLAAgEkzx76QTiSKANQO7DvAcPpt0Ou3CHNUZKnoCQ6jaTKVS9h4leLHPAUlRZKH4BBznWXC/YrGYAzfBnCKdpJ0DIZvN+p6jvj08PNRbb71l9QlMfmhvQNcTBwLKCwoIfh87FUl+5gAKfB8OYbosIABDOzPa5UOCE6AM4IO5Dtls1q2c3HfaWTksAMGY7XJzc6Pf/u3flj5GySrx7+d+7uckya2nkHk3N33PVUhsAEAOfMAnBgJjbxLO/CJGhF0vIVBPhx1KcpJIkgC8uNmvENMogyQNzIVCvclzZm0B8nHo07XAvuWQBuym0yz0QmUvU+ySkAIQSXfdRfjlAoaGhHqz2TSIz32goOZ3WNuhV22oZD88PNT09LT/Oyz66WghhjErLRyIG4J8fCdiYz6fl3SnpiKpJy5xz0ulkoeL53I5e8zzrFAmhdaQxGvunySfS7Tf82wBPSBeQt/hsEuVQoaziqQQZSm2BPjbhqAM95MiSJLPTs4kbKDoSAq7ZVqtlqampjxDg3sF4IvaledCnkHyzH0gOQWI5LNRCCQSCW1vb1t9HtpecV9QnQOos4dRR2HTGaquws4Qznha4SW5UJmfn9eXv/zljy1p8+Uvf9mqYuaYFYtFFyjFYnGgY2t5edn3G9CZmVphgRPavwLASXIBHarTJiYmXLiFnU2oxQEXIdAnJycNjLGe6QZCDYgdz8LCguMYe/f09NQkNd2tnPF7e3u2LpVkZTivgbIegvTm5saddqx/inMIb4BVYgj5JUXdysqKz2CUncSEkLylg5r7HnZQQ/pC4mBtcH19rZWVFX8X5vKQf5H/AKLQEcy+2NracoHPfWAfptNptVot2yeTf0n9bjnyUUhRngV5F92O2Fzs7e2p2+3q05/+tGuF8fFxZTIZfe9733PRjnAKwQxE+uXl3cD0+fl5dzvVajXnPXQisQ7D8zQESMnDOCN4/olEwjMGsYEBLKIWYM5GLpdz99+zZ88G7NLGx8c1PT1tG2BA+ESiP6cptLM4PDzU0tKSO26osTKZjJ48eaL5+XmTpsxywv6WGgZFMvlysVjU+fm59vf3/Swh1o6OjmyNRw75cSZtvva1r5nM3N7e1sLCgoH2bDbrzkOeTRRFevr0qVZWVtRsNvXee+8pnU4rl8tZCBEKZ6gDiQlhrQ3gH3bIfvvb37Y139jYmOMv5zTkLzUs8QXQH8AMICa0dCaHC+MZACluEiGJQ5cQHSvshXw+r9nZWW1vb+vevXsmKw4PD7W2tuac4PLy0qAd8TKXyw3Uq9wrakVy6rBGkvodLo1Gw7Xz4eGh1tfXnfeOjo7qC1/4gu8FRCcgqyS7DRwfH+s73/mOJDkGYGMUzsoBDMU6F2GI1B/e/rM/+7PKZDKq1Wqq1Wp66623JMmgGp3VPLdGo+FzBzCxUqn4+5KbY4lIR3v4mtfX1/re976nb3zjGx/a3vjk+oHXxzIG/sIv/IIePnxorIV/ILNTqZQWFhaUz+fVbrdVq9WMYyA2xhZxZWVFURTp5cuXSiaTKhaLjld//Md/bLuos7Mz3bt3z3EXJwk6dTljsTN89uyZCYXz83P95E/+pOLxuB49eqTR0VHvPWLdyMiIqtWqvvnNbzpu8z22trZMECFSDTvxOftjsdif+3P2KIJX8jm696nJEO1Qt9HhGF50apPLIdgmFw07PMK6mDpW6s8JxE5RuqtdwvcAo5M08FnBuegcIh4TZ+jCxLUHR6DQPYjRAuTvYa1K7OM6OjpSr9fzrDewy1gsNmAXD0bFqA1yWVx9aCDgbA2fC+dfp9NxTCUPlfqYIjUPQq39/X0LKFnLvV5PZ2dnzvOwpqUjnNyK70H9z4xw6hecUhC+Mi94dXXVYrOpqSlNTEzo5cuXFhwgrAkdQ8jZyeUymYzrcuzD+a7kj7jEhM0O4bkPjkp+yfMEr8B27urqSr//+78vvcIY+Mlkth/xotiR7oaLsUFg2wgOFxcXBl4gYdjMLBA6TmKxmJWrJHPM9MjlclpbW9PQ0JCVzLQixuNxD/Cm2GHBoo6mAEF5B4AjyS3KDGGEJQd0CsFXSQ4CqKpQF/P6KAOwquH+sPlhzwEnUSclk/2hoAQuLIM4ALFzwBuSYhlCgaAUWpKgBgXw7Xa7binlcxQKBbOskFWQZYAooUJodHRUKysrGhoactEASQSgRuCBbKDNPmz/pJWVTo7N20Fl3F8OBZhv1Ed0OIWEEWAGYCCtgKwrggudXRQekDMEMdSE3AsOGyxVut2uXrx44QTg+PhY29vbfsYEe0m6f/++8vm8FVnJZFLb29tWcHJAU+xz0KDQSCQSqlQqPpwARAC8OKgB50nuAc4hAygWGBhMIsDaAHCh5RPwmQMbNQiH0/HxsTY3NwdadrFrYV9znz+OVyaTcZcg64cDmcMRMPPFixcehI4NAvYJrGP2vHTXUkp8APRuNpt6//33DSChhK3X67YIiqJIi4uLKhQKPjApgI+Pj52s8ezpQmAgIuq/KIq0s7OjXq9nIiMcMJjNZt1JBjkAUQx4TbwD5AZc3draGuhyA3BnL2OlJclgVTabtX1gt9v1YEjIQRII/h4XxFGo9JdkaxxstUjUhoaGTOYAlkJsSBo4b4iDgByQnd1ud8C7l3MSC9FCoWBAm8+NDQ1FNt8d9enm5qYJb5J0iAPIkxAsJPklyWSGGWQbiTdFDc+dMwOS4vr6WgcHBxZjAFpi18Z351xB0QPQgcXV2dmZfW+Z8RaKHarV6gAIjC1eoVBw0UF8/mBnFvfv6urKSlasotbW1nx+hgTX8fGx1tfX/WzZTed6YgAAIABJREFUY6wDSf6s7HVEDti70bUwNDSkvb09f05+9nG/ms2mYx7FFKQsRaTUjxf379+3QIbiDhIWuy8Aep4pQCHDvCn0Dw4OXJweHx+buLu5uTEpg9iBC8A+Ho/bYgCyl7WDwCWVSml2dtaFHwT4+vq6arWa1XHkbmNjY6pWqwO5FnuG/QM4mM/nXSyen59renraeQx7E3Dw+vraFgsoT7l33W5/eOmjR4+cawL+0yWHNSXFHgQwoqB6vW6SB6VovV53bo46k+J6cnLS5xBCGJSAGxsbevTokTtUjo6O3N2DtRFz9djjWBOTr7H/V1dX9eDBAwMGdHVsb2/r4ODAhALAarlc1uLioqanpw3mMmft+PhYy8vL6vV63vt004fdCOSP5Id0ygLWnJ6eDthv8ncBecJOLmqLVCqlvb29AUs6xEwU6tQ9xHkAL/Ld0HaKc67RaKhardoZAJuQ09NT7e/vO86WSiUtLS35HAdUPj099SxMzlNEAJVKxUBZvV63HY0kK0KxFqV7lpoGq2Q6Rems/DhfnJkQZAi3eIaI+qS+WGFzc1PtdluPHj3S1VV/nlq5XNbCwoKfdavV8tojFhITTk9P9eLFC9cXnFvxeN9WCAEJzwQxIGBg2A3y4sULK3sBECHB6cTCmgihDrGWWooam645iEtUuZA4xDvOgD/8wz90vczan5ubs9gsmUx63iKuEuQqxLFUKmVilvybewIWQaym1lteXh6INRCwkkzKXl5eam9vz504nGMhdnF9fW0XBsR+1Lw891Dgyd4gr3/rrbccp7PZrMlx9jngMzEwFBsSPyuVioUJ7777rsG4ZDKpdrvtuHZ11Z9PSEfAJ/Zon1yv8trY2PDZw3mSy+X0Yz/2Y1pdXTXxub29bSImxErAzIg7W1tbxuw488/Pz7W8vDwwJ4uOOeLA1dWVWq2W6vW66zq6WegqpR4FJ9rZ2XHdjV2pJH+PyclJvxYWpdVqVc1m03kXZEtYj9Fd0mg0jPsAmHNRLxGLEH4kk0nt7+8PEOzDw8O20CS248IS1oXVatX25VjUplIpC3apfbhwQyoUCp7LBUZAbgihTl4I/gjmlU6ndXR0ZFsxuoTIWZnRPTIy4m5B7m0ymRywTS+VSsbbwG4hARA3IBo6Pj42bkqtgLMMbknc3zD/Yg3VajUdHR0NCOSjW4ea4eFhu6AgRGPNYm1LhzPvQ9cWXSx06qdSKa2trdk+N5vNWhxAhyzX6Oiozx2wJEQy1BoPHz70+oKIoxuJOgYBL3lto9Gw2DKsszgXsSRlPYNzJJNJzc7OejZpqVTS+Pi48cKhoSHPXMLVCsKK9200GgMCp1d1vfYzbWKx2Kakxb/gj/6XKIp+8fZ33pD0W5J+Sn0i6j1Jfz+Koq3bP5+S9E8k/YykcUlPJf2PURT9/o/6eQhUFK4kagDF8XhcpVLJCQ6t1wRw/g5sLAUQRV6z2bTi9+bmZqDTBUugsBU7m8268wamd3Jy0gksRRCDpGnjpHMEeyyUxQyZBfCLx+NuY3727JkWFxe9yFHLAwTCZkPo7OzsuKMCAJ3fgxiA1CiVSm5Lh3ggqaVIrlQqVsGjKMK+h8AKQACoSdcJdjeQJpATobodewYOrhC8iqLIreW8L4kpRevk5KTm5uYMIoQD1/H7B0ShtbvZbOrtt982iM1aIkiTwFI04uOOCjK0ggNIBWRjADegLwApKlvsLgBJsNhAWUZhenFxYWsKBrJxwIWdTUNDQ241DK2HIPFoSQU44mBj5sbc3JwBQIgdwAhUwVg+QW6SNGQyGY2Ojtrvme8LaEnhgxJldHRU5XLZACn2HfF4XC9evHDSwiHRbrc1OTmpbDZr9Wq32zVBEKrksTh4FdfrFv/o1MAqib1YLpcdGwHvHz586H2TSqXcOQeQQqKHtR1EaSaTMYGdTCa9LkhaGXRK0lKr1axmh/xmXZGYApahBgSoAvgHcGbdQSIAWpOAEl+IFfF43PO52KshOYhdZNiRQdycmJiwfUQi0Z/tRDxFucgZQQHN2p+amjLoKMkABuB+aL95c9O3XVtZWbFqmxlZqVTKCRjEBB0A2Axhn0OXpyQDNiQ9s7OzOjg4cPs2+wwlPeQslkqAGiR7hULBqiQ6jzKZjD7/+c/r8ePHWlxcdHxDGQsAyfo6OTnR6emphwwS/wuFwoB1CuAyyTxCCDpXEFvc3Ny4i4KkdWlpSd1u16QKNnjE7dAeh2eGRdnQ0JDPF+wKyuXywBmESoz4jcUayTWe7tgMQgKWy2XvT1R5AMMo0CgA5ufnFYvFnBNABrL+SMax3wu7PKanp11Y8jxubm7ckv7Bzo9Xcb1uMRBrRbo7o1vLJ+w52XchiTs7O2vQjfwtlbqbL8J5RdG1vb2tmZkZixYYdM+aossQQQde6HQAo7ojX2R9EvvIwyh4sMHiOXc6HdtPUPDRmRsS4HxmQFo67/Aul6Tt7W2/D0Q9cw+IWaFar1wua2pqympJzhPEFaurq47B9Xpdb731lq0Wq9WqAV4K/2az6fsf3doUse7Jz0dHRz2TLZwFhmUPuSCkGaIqRE/Y6WI1AgFP3EDQROw/Pj42QUa+BWhTKpW0sLDggo9cMbq1YoHUpogmfkGYhhZwEBHHx8eO35x7PG/+fXR0pBcvXthCg1hNNxLWJyMjI7YRgciZmZlRs9l0kRsCCcRJyCMs1CS5AyaXy3lOz/r6uqS7jlcspHAUaLVaeuedd/zZQ3HS4uKiTk5O/FkkWQ2JkwBnAUpYcriw4x1nA3JLgINut+tB0fF4XOvr6yoWi9rc3FSxWNTKyoqSyaS2trZ+1LDyl16vWwyExEPIwnNgBk0opkilUgbar66u9Kd/+qcaHx/Xpz/9aQPx19d92+K9vT3XppxXiLpWVla8v4i/0t1cJ9YVYObOzo6fGeBTOp1WuVx2bgKAw+thH0ldBPAmye+BAIwZn3ShAqgynwfFOWdjIpHQT//0T2tjY8MAEV3Hx8fHWlxctBobMBMShe5L9lToGkHuAqFMrAoBrhcvXrgeisfjFkslEgkP8+Zn5CHEP4Q7vV7ftpa6jlxfkuswcm9JjovUW8QObGs5oxACAA5XKpUBAczU1JTPVAhqSSa6Q9u4hYUFra+v2wEBG5tCoeC48sn10btet/gnyecAnbvUccSCmZkZx7/d3V3nBNSXYFvM9chmsyYkJFmQLPX3+/z8vFqtlvMqiAxcSiQNdPpns1l961vf0uzsrK1ciXP37t1zTsU+DAXa+XxeExMTOjo60tTUlOLxuN58801JfdKFGV0I6cB8Wq2WLU7JUUZGRlQqlRwrSqWSDg4OnEuGAuS1tTWTvnQu7u/vO16DJ9CBAZk7Pz9vMdX8/LxrKMQ1Yeck4ly6sCcnJy0o4dnwWcEejo6O3MmBQxCYKZ0YPN9Op2O3HQQHiAEhB+hMR+AR5oHkOojjsMblQkQaiupCcSzicATZ5DRgaxAo5N1gmMVicUAMGs72Zv4bZygjHRDBXl1daWZmxngu4kHWAXM+ybsgWagjLy4uLIbkvMYqnXvC+uZnYJHcS3AAHH1OT081Ozurubk5HR8fO+9mnd/c3JiISSQS2tjY0IMHD5y30NkaPrfQSYlcgz0ITkNuEM5qe5XXa2+PFovFSpISwY/elvSvJf2dKIr+TSwWW5X0p5L+V0n/XNKRpDckfSuKosbta/xrSVlJX5TUlPQfS/p1Sf9OFEXf/iE/x4Sko1/91V816IUqlsKTi82AWp+NF7Zm8ZDPzs40PT090H6Fty6dICjeSGxCu4CRkRG/F6pCrItCtRJAEZuSgoggVigU7MMXBiESOwA1QAQAR4BUPNcBN+PxuIEkWqRRY5dKJbeHSnKHzN7enhNzEmMOJDobYPWxguMQ2t3dVSaTGfDElDRgjRYOGoXgSaVS2tnZ8QGLCgDlLEGHpJGBcgAa9Xrd1hlhF0c8HjfTSqLKJg+tZ1Dxcdjv7+/783HP6FLA2gQSaHR01H6hzWbT/swAz6gGsSRAcUTQh7Tj8Kcw56CBnATEvLy8VK1WszczYArEUafTse8kquNQNQrrT6FEMY1SLVQjE6Rp0+z1evZ/53BiAGr4O6yPi4sLlctlq4qxAEF9NjU15bWRSvX9kmmrZ3AtoEgymfRwOjqUksmkarWaCcjLy0urCBqNhn7nd35HegUtka9b/PulX/olg0ipVMpKlG63a5/6kABgLcZiMe3u7to/G9ULyRgkMdYUxEMUSSFpUiwWPeNAktcbXTyAzMRMlLypVMpkOnuU2ENbOIAXBzkkJt0gHPYMIiSukhhBsBIfiJGSBobQozxkH7H/4/H+8HhIDC5s6DKZjB4/fqylpSV37AEiQi7lcjkntJI8nBCCHiJWku8tqiZiEN+F2FOtVk26QghAugHuAziT0JN8TUxMaPN2sDifBaAmPDtJ0jc3N+1/T9cL3Tu8NyAgaisAGDrsSP5QE5EoEhtCaxFiRUheA4IA7IWEHhZrnIEUE6xZLE2ku44pyDT+my5T1lTYOg4pQzKKihfBAfuFYhGLVc4OSE0EE9w/zuGLiwsNDw/7c7J+md8TXhCOnJ98bvYt+wXhAAXjF7/4xVdmj/a6xcCvfvWrvp8USMfHxwNFOoQ+YD05EQAxZAE2uuRmIeAJKE2sJQ/hmUAUf/Ob3/TsBYoqvNURG0hyRwtrnkKaTmQ6YE5OTnR+fm7/ab4PuQ3qczqCUVjSpQLxmU6nPeeE9UjsxfsbcLHdbpvIBtBEfLK3t2cSH9XfwcGBpqenvd8gdKanp93lQ6E+NTVlj/lSqTSwr8hJULVSuALWv3z5UlEUWRHOPqA4pmuRz8BcMGznILYgrm9u+gN/8b7G+oJc//nz51pdXbU1EnkIBApKRmIT5BfnDnHu/PzcZyIxEPIKi2a+Z2gtgjIeARWq2omJCQOy4Wy20CoTkQ1nQminxr0KZwkSS/k5XvXYSpAHklsmk0lVKhXt7e2p1+vp6OhooB5hpl6329Xz58+dryFaQyxC9z37EQCJPwN04WzHtpWON8Avcr3z83OrcAGnLy4u9Ju/+ZvSK7LFeN1i4O/+7u+a2GVNYg0WxgDqVElWXzPQfnV1VdLdfDbiHveQDvfnz5+7I4fcBTEigisUtQgc6UgNwbBYLOaZWpKcw+3u7hrEYl+EoBekDOcc/49ICRKeWoifMd+MumR8fNw5FDVtOp12BzB5FGQH+1aSa2Ly2tHRUefHfJ7QEQPXA2I9//CMyE/q9brefPNNi+wQCUFWtdttXV9fe94GYsGwmyidTqvdblswB1GFcOrm5kZbW1tWoS8uLjpXJa8/PDx05xz3nXrt9PRUS0tLjieQ4AhKwQYQECIegHDq9fozbZ4/f66vf/3rP9K+++R6JdfHJge8fZ0JSUdf+cpXbLMYj8f13nvvDRAIIQ5DbQFAjlABEFnqk890YEt3HTA7OzuOLbFYzPOt6Rym3qWOgABiTh9AejKZ1MrKiiYnJ02EkGMSkyCfqOnBqchloyhSrVbT7Oys63+6WSRpd3fXAplQALe3t2fCNbTGxvUGQSGzyMiDEUswjxjCGNFH2MUeirexg2QeIG4D1KkIGbmviPyGhoaMYWGDxhwhOqlisZh2dnY0NzdnO8ezszO7IqRS/dmlxFOeUy6Xc/cOZyO4IDbTYAXgxYgvyVMnJydVrVadg0KWIUKV5Fyb5wipcnZ25nEDofUmGCXYKK8TdkPxmbAnbrVaxu8kGQ8fGxtTq9UyXkI+Se4LxkqcBieQ+vUJc3k5Fzk7EYXs7e35PRAB0x3Oa7GOOU/D+WjUVeQC1LvDw8Pa2dmxBR37aHR01Pkiz7hQKOjly5e2xq3X65qennbnEPuU+/tbv/Vb0iu0R3vtO22iKNoP/z8Wi31J0nNJf3j7o/9B0r+KougfBr+28YGX+YKk/zqKoj+9/f9/FIvF/htJPy7phw7WkgaUiqF6EHCXgb90SYQt1kNDQ2o2myqXyw5YgGYHBwcu9mDoKNIBltlgJDWSPMCeRYa6HJKBAMIsDtq6UUhKcjsj7dZ4NeJLSCcFBT4BPVSmhcO4UN2Q6CUSCdXrdXefkHQBmGIzhiUbzLR0Z5kkyYA5KnRJbpGjYKUdvdfr2UaEhJtNhSob1eLq6qpnAxHIKT75zgQgvmc4JCwE3m7XrJ8hz4RB1pB1kgaYXhh6ikNYaooDBskWi0UXmDwnVFGSfBBDyBWLRRNcgMEENUkOyNy30C4JQI/7zveiWKHTBeAJtRNe1hB+jUbDIHlYTKAeADwB6MIqikII0CqXyxmsoL3+8vLSdguoiUPPSWyr+A6o3yA79/b2ND4+7uHaELGA2ACr7KtWq2V1xeHhoTuvKFywlXlV1+sW/6R+YsZhx3MNiei9vT0Dh+wzQO9UKqWtrS3lcjkr+CjcsPJi7e/s7FjVIskgyunpqf23Kd6x/uE9AGTCvXp+fm7ymQOZ9UNL7tDQkJMskgAIxrCLLZvNamtry8DryMiIFYE7Ozsql8smfADNSX4hO4mbqFpIEPL5vItmrBWJed///ve1srJipTxdicQUVF0U5RMTE24Dlu5sztgfiDZqtZo/P4QNgwtJri4vL33/IFAkDXQrse+5XwASzGODjGi3226DpxOT+Iy9EOSudGerSZzlvkp9MAgAQ5I7HwqFgoaG7oaf021CjAIEGhkZ0cuXL90FRSwMz1+6cwA4iWWcg7zf6Oio5xABvLB2AVg5PylMGOTJvISRkRGDErFYzDNHGo2Gk+tisejZCjMzM/7ukgw+hdZI2CIQN7lveByjMqZAoGsmVOORRMdiMSukIMQ5q9hvr/J63WIghTJrAeAZkQlrivVxenpqMoHzjfXKeRpa6ERRpGq1ap9zyGVJnpsB8J5MJvXmm29aaENRhAocMpH9H3Ya81l7vZ47WLvdrkF59i7F4ePHj130DQ8PWxEKmAgZRYEuycQRBEoowglnsIT2O4B9EFDkBxD7vC7vHxKjEAf7+/v+GYKecrlsK0E6lMjNS6WSAUpy7XDWD1ZvNzd3s9t4tuRUEDPsATptwuK2Wq2avMKOlmd5dnampaUl7e/vG8xgntT09LRntu3t7bnzkbyPzhlAb2J8JpNxznJ9fa3d3V3nJ+SoDKYdHR3V/Py8qtWqf85axjUgmUzaxgJgAHAFwYbUz9vz+by7NMk3o9uOdogQABRmNnIWE89C6xbiDIIv1nahUHA+gjACOyg6/zh/Q4UkuX0ymdTi4qIBYtYQ75PP521PF+a/3W5X5XLZ51iv17fuJWa+yut1i4G4AVDTUCfw/CG9sBWEbMFBQZIHD//Zn/2ZfvzHf9z14dnZmTuirq6uNDs7a4cAqV/z4lpAbVOr1awi5hnTQcxzPjk5cQ6BUA2gn65UahYAVuqUD+Zp5DuIueiyoUsH8DM8h6m9+YxbW1t64403dH19bQsZACYuYhpCS4AmCAs+L4QitsRvvvmmcwvpzvIUpbok25FB0KO6hjzDHhA1erPZdBzEPeTi4kJTU1OK3ToMJBIJz8yJoshd0RMTE6rVahaLUM9JfaEH9Vin0zEhn0qlLARA9Y01MHGEGjzsbg47AOLxuEFOzo5Pro/e9brFP0nG1cKOY+IEbjqQpNh3hgJZhGPgZWAut9/PwiycWzjDwVykPnYHgdBsNk3ghkJiLgQm1JKIZOjoiG67kA8ODhwjqXeJYdTNiONCy+hEIqFcLqdms6kXL15oZmbGXQqlUkm1Wk0jIyN2kuA8rdfrtpBDxE7OhfgF5wcwPbCAsE5BaMf5TAynsxgsCWssHAZGR0dtfQlREsZsxJyQBdTbCOnAf0KxOO4O2GyBRSGeJq/ke15dXbnbnnOO+00OQ3cL3fbkSJAr1BaSLIqlAwVMDOsw/qH2BruCNKd2CcWP5EWsR/BKXJ4g6ujMB78j78dtCQFmGLsvLi60v7+vyclJn9Pg68lk0ucreRuYHQL3cO42bj/gmTgOgR1wv2igePHihfL5vOfIcZaABUL0kOetr6+bqNzZ2fGewemAWpt851Vfrz1pE16xWGxI0n8i6Z9GURTFYrG4pJ+V9D/FYrH/V9JnJb2Q9I+jKPq/gr/6DUn/IBaL/UtJh5L+vqS0pH/zl7xX+vZ3uMYlDSiBarWaisWiQS3slCRZscuGAWRjHkOv1/ODp6g6OjqyHQNKY0AUgiIDivHkPTw8tDURCXSz2VSpVNLz5881NTWlbDaro6MjkxKwjCj1sDwCgAFUIpCgEtrd3bUK4OrqyuppCh9J7gjBMoU2ZYrkk5MTF4QEOqmvJOewAKACtGOw5d7enoEzOl5QeQKYoBIKkzuKbwIUrDqtnGGBCAuMDQ8JNOA8z7/b7ZptpmUV4JpCHIutkZERtVotnZ6eqlwuq9lsWplHMDo7O7O1BM+AwAUQAzgdKqlRIYYq8263b3cHkEigYvAq6k5AQ4p/un5Qc2FJRwC63RdeF3hXAtST+OMB+fTpU01PT7uIQfmEHQBKSOwD+E6owzi0WF+AtdxT2HVARfYeqgT2C4cjxT9ex8lkf5bD4eGhD4bR0VFVq1VJcgszz4E1TAcOamteE+/0V20PxPU6xL/d3V2TY+w71K4AuxCxkJ6A5tg5ZTIZ7e7umvhDbcTwYNYYa4lCEzIDIrTRaCifzxtgQTFTr9f9PBnESGLMgLlYLGZrE7pVQmAecgPLNggegCIICpKcer3u+Sunp6d6/vz5wAA+vjctxaxfuhQPDg5UqVQURZEePXpkFQkFQGhT9e677xpQIAlqNBo+bwDUUADRuXFxcaGzszMr70k8IblqtZqTXBIyLC7b7baB6Pfff9+t2bQhYydCa3v43RkOWa1WVSwWvechrXu9noFUCAWAZqzJiHHMGcrn89rc3NTa2tqAyuby8tL2S/V63fEQZXe73dbu7q7JB8AXElbm+gB8c28ARVHlci5wNne7Xa2vr6tcLhvEBuSV5I5ClFaIHUiGa7WaY83NzY2HnwNqAtrTJbm5uWniqlqt2pJkfHxcL1680NHRkfcGXVg3Nze2YkUMgX0a+xll1cHBgcrlsrtJIKqfPn2q5eVlx2sSddrIr66utLa29iNGth/+eh1iIMIDCA3yFgA5Wv0hIgHrKEI4lyS5yNvY2ND09LQSiYRevnypWCymer2uSqViIQLkLfkbOWWz2bRdBOdgOp1Ws9kcsEUjVyIW8B3q9bpBUPYAYPvQ0JCeP39uoqbT6bjrpdVqmeRm7RAPmHHC+cjnI6aT90ny/cHmB+I33D8UUtVq1Yrsz3zmMwM2CtfX16rX68rlcrp//74tXXkmW1tbmp6etn0xBTD3BXsSrLQgDyqVignrVCrlcwgxB8KtTqej7e1tDQ8P2zITyw4UmpxFKAGjKFK73XaXzvX1tYvR2dlZ51eISrBrpBvygwQ53YuoewEsIIARiZFfJhL9WZGA7eTC2HtdXl66KwwlKnGr2+06n4e8YA1wTziHAU2I1YDQdAlJcm0jySrf0BEAoIO8F4VmrVbzPsSikNpMks92zjX2ZaFQ0M7OjqampnRxcaHd3V1bWSLQury81Kc+9SnfU86R2K0VH/cNMpMzlZ9/GNfrEAMl+cxhViWdKORsnCnstcPDQ7377rtqNBr2iJekn/qpn/K5c3R0ZAAKkGRvb8/iH6xJwlmXnO+I/5gxsbGxYQs3ztWw/ovH4yaF+RmkjKSBmXWAQAgWIEo4u0Ohy/7+vsbGxrS1taW5uTmdnp6q3W7r/v37mp+fdycI9kPEbOIQ3ZXsnVqtpnK57DOk1WpZaQ3gRZ0Uj8d1//59E1qQaSjMi8Widnd31Wq1tLGxoWQyqb/9t/+24zd4Ajkl9TxCFSzO7t27ZxIIQh2ngditXc/W1pb3AfufGMR5dLvGJPWFLfwd7gkdoENDQ7YhJMdiCPX5+bktnFC4S/1cCHCOc/OT66N//XXGv9v3+wtjIDhHvV53vUL9Ql6AYDl0kIAAgCSA5EfkSOwjt56YmHAHAM4u5A7n5+cWetCFGrt1KAidThCY4HLw9OlTjY6O6tOf/rQ7pvnMZ2dn2tjYcOzAEgrHAfIpyANIEAgRBGt/8Ad/YAsr8hNqVGIn9Ue1WvX5u7+/77oX0Rq25u+9955rmoODAy0sLFjURJ1EzlitVi1wx8IXZ4Dr62vt7+9rYWFBh4eHA+MYwJ+4j1EU2cI9tHSDCMDBBvzr4uJC5+fnBvrJe+l6YjbiyMiIhZkIPDOZjKrVqvGT0CodrGR4eFjPnz+3gw8z5cARwOcg3hDf93o9bW9v+95DxkDW49IBpkmtAMlCpzfOUI1GQ3t7e7p3755xVmoBhLvh7DtmuuLKRC5MHgtpR76LawPnSSaT8WuAPeAAwLOD3KIjh3sKLg5ul0gkVCwWtbe3587uUCxBc8Xz58/dRby0tKSTkxNbrSGuxHEHvEDqn3fgXa/6+kiRNpJ+XlJO0u/e/n9Z0pikL0n67yX9d5L+A0n/RywW+ztRFMHC/wNJ/5uklqSupHNJfy+Koud/yXv9iqSv/KA/RD2Mmg+1IgkMA0FpzWPRYmuD8gyGHmsLPKgpXgEKYcFZWBTO+J6Hvvwkv2tra7aSIKAQSPgOqVRKpVJJOzs7mpiYUD6ft5cfYDlBoVAoOAmiAJXuhlmTcIZdMJKsymT+QaVS8eaheNvb2/McHtTmoXoIdTyqTIiSKIrsiUhQQUFIVwV2RQB0oRIWAIXAwqGSyWRMomCfATlGkkyrO4krdh+QbgBtqVTK/peo9EnwK5WKFUHcC8g6nncYgAmg+NtTHJHYAgxBZJDwYyVGIS9pQKUAAIhCY2hoyP8O12uoEiGp5hDjdRcXF21dgFKSQWOsE+wIKJ7Pzs6sWgNcJ6kh8Q/tfKQ+gTo+Pm7/Tw5Qip9QNR9a1uDRfnZ2puPjYz8rgJRyuaxEIqEXL16YHKRWIdxoAAAgAElEQVTbjPcBgIBsRQnLIfchXX/j8Q+SAHAnkUg4FnW7/VkfoWUgZC7Pg1hCFyKFeAiaAX4CfvPMGRpNHJJk/1TiJ4UgycD09PSAfQ9kNfuL2EuywHA5umJY/xB/eOTWajUtLCxoc3PTQwR57+HhYVseHRwc2FsfsIpkgntIEtNsNjU5OamZmRnbqxGzIFglWelMwoWiOh6Pe3YOthCo+UlmiLWAqNxf1KsAT4ATEP5YY0qy5RmxmkQPH1cABGIyZCvWcKH9HOdiaBWCGhNrNMh4iFH+/v379wesojKZjGNcJpMxKMhnTiQSPjc4K1Cb0jnCfeM1z8/PvQ7ocAm7KyDe4vH+QGQ6tCCLADe5zwA/oRDj5ORExWLRnskUF5DnY2NjJsU4kzjbUNvSKQFIvrKy4jWMNz7qWOI1hQCdnawjyHqItPn5eYOd9+/fN8lD8YPKPZlMqlwua29v7y+PYv921994DITAhRQA5KLrjUI3Ho97n7FX6ZyR5GecSqW0sLBgNfC9e/cG3od7D4iYTqe9TlB0IraQ7oQzAF0UaHRLs/6IiTMzM/4Z4Ofw8LDnmzx8+FBXV1fa2NjQs2fPtLa2pvHxcdsakSfS0Yq67fz83B0pCC0gisIikC4LQHo+A0pqup4BBkMLCnIr5j6E8yMgZ8gTPqjOy+VyPs8vLi5sAVksFh0DNzY2XPDTvc05guKS2ILYIJlMql6vq1AouKhGsALhFJJNkG9PnjxRsVjU8vKyZ9BgCYaYh5gYi8VMJqEsB8zgbOPsgMwjDwLU5DxCVYraFJB9ZmbGVk3UFpDbxEg6KljPCLWmpqZMXmBlwXrgjCE+EXcBs4iTkkxcE2uwV0omk9re3raqcn19XbOzs9rZ2TGYTFzDYhgAJZPJuNtSku2fyDnYf1zkjOEcT9YXZ9X29rZrFrpYP8TrbzwGkiNRvwKUIRbh2dKRKPXv48zMjM861hy5xuzsrAlqXvv8/Fz5fN4KdYRTYTf10dGRCoWCu3MQNCaTSe3t7Wlubs6fAbCf8x7LFEhxukUg5BGsYNvDLFq+T9iVSh5DNx+kIbZoEKeS3PUF+IhFNqIZOq3JT0JLWqwJQzEH9X2z2XQ+ThcOIBU5IO9PLU38RhkOMEhHD+d72L29sbHhfyMk2draUqPRMABInGRYOjaIzWbTMxnD+V/cf2xfk8mk68RkMunZO+SJR0dHqlQqzo1brZbm5+fdrYe6m9hHLfLJ9ZG//jrjn/QDYmCn07FrBOcK6xzSE7uz6elpk7tS3xKyUCjo6dOnXv+h1ejQ0JDu3bunWq3mWAYADdFDB0YulzNWhFtFIpHQ7u6uxsbGtLm5aVyOeolaLaxRAM/BREIxSiKR8NxZOiH39/f9fnTTIUKPxWJaXl5WKpXS8PCw55JKd5gnID2dChA83Fs6OiDjY7GY0um0PxuYHTUqex0cEiyBmg6QHQHAgwcPJMk1lnSHWaZSKc3MzLiGBy8ix6LDhDwxkUiYrKfGp/bljIO4Cq3xsM1DKDUxMeEudZ5niHmBW+ZyuQHiD0wSrIEuIWyIcbdYWFgYcAQKrcokuaOaMyeRSNiOk89JDp9IJLS8vGzyhDMF0RpdWMVi0TEYDA8R1MzMjCS5pqXxIB6Pa2pqyjMNGQnBOubekDeSJ1LvJBIJE0QzMzMWSkKcsn/IF8BICoWCtra2nHOPj48PYLmxWMz1FmsQgWq73bawKxTuverro3aK/ReS/p8oiqq3/x+//fe/iKLof77973djsdi/K+m/0l3r5D+SNCnp76rvZfnzkv73WCz2t6IoevQD3usfS/qnwf+PS9qhlZgFg1UGhQaqHoqGECze29vzTIeQ3V5eXnbRhzIZ9vD+/fv+AKimpX4XAC3VJCwEKootlEhh5wIFGgADCefq6qqOj49Vr9cNOKI6AigiGHW7fR9oZikAVKCYZrHiWSzJAyYB8xkcG0WR1dydTkfLy8v+fL1ez/7VqVRKq6urDjAcZNJdMinJgB5kBkAoARSgHesHnheWJSiRUebQkkphMjc356DV7Xb1zjvvuAhGXSn1D512u610uj9YLhxO/61vfcvAA0Aa9+Lp06cDdkOAYihmpTv7NYJTeLgB2EIkoZCi6AnvFd9hbGxMCwsLTihOT0+tlstms7bWi6JIjx8/dkEwPz9vtYXUVwuTUJTLZR8+77//vtcMhyPs+dDQkLa3t1UsFn0fsBcBhEK9SdIBcBB65EOIwZrncjmVSiV3LERRpHfffVe5XE6pVMpFHuuM/YPvaywW09LSkqrVqv+MQwGg/E/+5E9ciACOfBjWGMH12sS/VqvldQkQSfGG5y6AGfsoFoupWCw6PgLeATwBUlLo06EDcZJOp1UsFgcs8Ci6KX5ZX2GXIInbB5UldKfFbu16WP8oXMLuAUA4OlzoisBWheSH9QvpTfyH2COukzxLfeKJDg/AQLrpQlIERTXxiESJ/U4iA4FD3EcdTQwuFos+b9iHJHuoQwFGUEay5qV+wUEXAOAKayG0SmLfkvjTOizJliAQxTwzQDEIXsC72G2bPmQFidEH2+QheOPxuA4ODlxQfPvb39ZnP/tZVSoV7ezs+B7hv05rP3ajfG7sqAAUUYAR94jbYaKGspO9IsmFCQRlaNcTJrqxW0sEcgleFxUrwPjExIQODg5sUULMxkoJElWS732329Xjx4/19ttv+1mi9m21Wu7MoTsRO07AzJGREZ91gFN8Rvbzzs6OO7k+pOtvPAYCEnJ1Ov1ZbogxyGWSyaQeP36stbU1F+bEDoiFZDJpix/U0YBQOzs7PtvOzs7UbDaVTqd9phFrQk9xlNnFYtHe3nRDkxNBQlJgQs7RUQhxOj8/r6GhISveJFll1+l0PDAacpH8Essu1gp2bOQ0FEwXFxfKZrOanZ31mYACm45Kit7h4WEdHx9rfHxc2WxWlUpFuVzOyjvUm9zPRCKh7e1tvfHGG84xwjhFEUy86PV6WllZ0dTUlGcvorZcX19XoVBwvk2ORZ4CcZvNZq3cJEZh9QBwAFkG2U8u2+l09ODBAxeu/N7k5KRevnypnZ0dvfHGGzo9PTVZRzf6kydP9PDhQ+87gFTWzezsrLrdrhYWFmzluL29rUwm46G9kE+xWExbW1sumMm1KpWKc8dsNuvhyfF4XC9fvvQ8RaxT6BxECAEwwlwTbF9KpZJFU+SoKG4ludu10+mYMI+iyLkvw9NDNXIul9PW1pbef/99LS4uDtQznHMXFxe2KYmiyN/38PDQdRqgMuIlRGSQbHT3XF31h/AiUEqlUgOdZB/C9TceAxGvcN5zHn6wszisQYlBrVZLs7Oz3qfk6/w9ckZIZeYm8nNJJjboQPn+97+v7373u85D6d5eWlryPqZugsRlzaOehmzmXLu4uNDOzo7FOeQ75G/kUFJ/bqAk52fFYtFdhzMzM1bPNxoNvfnmmxoZGbFFLDVaaN0GCRt27JLjhJ3QAK50CrFGsSRCwd5sNrW2tqadnR1tbm76nkh9VfHy8rL3BN8HpwhIHUjq999/33/29ttv280BMPC9996zjStzbZkXFo/Htby8bIIJsQ15KEQ2QkPsWyHyqTEgYRAO8tyPjo6s0GffQ7gR8z+5PvLXX2f8k35ADGR+F/sB29Jvf/vbFhKS162vr3vOzMTEhOfCkr9ANNMtk81mVSwWlc/nVavVXCOHHYXUwK1WS6lUyjM5JDkfgfyAQGevhQ4kAMsQ0MwyRHhD7KI+KRQKFmiFMw0hD6hxxsfH3SWzuro6QKbQaSLdzQkM59TgWsLnwzqSjqSbmxu73gCeg9uR5yLYBgtAtEFnDDkjdVgsdmdbTTcu2AAiBYQ+iKAYBUD8piYnZkFAIExA2IqQnnweC0psL/P5vDHHUqk0YOUpybl7OBsHocT5+bnJEOyGEcSDSSNE57mCV+OSwv1h3TAD5/z8XI8ePfLaoX5gDSE+o6MndGGSNGDrF4r/rq6ubJk8MzOjXq9nB4FqtWphFO5HkD+sDZ4ddVjokvTuu+9qdHTU5yoYAuIn6l5qbuZ63r9/X9ls1jPmOf/o/qUrCtEe9UEo0gTveJXXR4a0icVii+oH2/8o+HFTfcb8+x/49ceS/r3bv7eq/uCxt6Moeu/2z78Ti8X+lqRfVD+o/7kriqIrSTaKJ8HBhw+AkGKXBIPARdJP1wMF7Pn5uTcaoOF3vvMdM4AUM3ROPHv2zEwgoBysLoURwD0q4r29PScqBN7b7+S/D3BA8n1wcKB0Om2CJooiK33w6ENR3Gg0dHl5abY99LaHcMBigCAm3Q0Nq9Vqajabfn3uoaQBqxc+F8G40WgYDEml+rMbUD4CjlL0c2/ZkID8bCKAx5ubG1s7AHpReFB489ylfkLKzwhGMPfPn/cFG3wO1sXIyIiazaaV1ICL+D1joYdaAEUsCTOekPiFXl5eqlwu+wCkeIYsAMDFUgjFJgESoopW0pcvX+rm5s46ByVTKpXSwcGB22IJwoBPjUZDz58/1/z8vI6Pjw26Yv1ycnLiriWCMocOCk+6y1CZ0XETziiC3AkVwqwBiivAxtDbtNFoqNlsOlnhPtPaenJyokajoZmZGQPLx8fHOjw8NPnIgU4nxJMnT6wE47BDgcB3B7R6ldfrEv8oaqempgysMXQRgJ8EiX8TMyF4Ib3DAXokpfV63UNn2YcUdqxfSBySWLq3Pmith+Ua3rzMyuKzhvucBJHEkvVK0kUHC6pj1BUArhSbkAEvX77094QYDK0wJLmDhL3IHiURDj1WifEkicRNEl0KfEgowCNAV8hjvjMKp5ub/vDLWq2mo6MjD5HkvvNZa7WaQdxOp6PZ2VlbBKH4ZI2gtpbkZyXJiTHxna5HYhKEHTNhAK/D16rX676veB7zzIgFtC7jpzs0NKTPfvazbmGHuEW5KfUJo6dPn2ptbU0bGxuan5+3DSLfAc9aviPPCPs61EKowunWQdE9Pj7us4GzKOy+IM5g98caxgINmyFs45gNEdoU9Ho9VavVAZIAVRSqro2NDRc5Y2NjHnTKXDvUxZzLgNRHR0deF9xjvgfF3djYmIHRV329LjHw6urKdlUUtICUFAY3N/3hy5/61KcURZGePXtmgBmxDveU4olh75xjIfkGEIwFGMU59o2sE547IEHYaUOBRbHEeoeowf6G/+dMz+fz2t7edj7R6/U8owbCkDM+zBUhR/b39zUzM+M4jSKR9UTMBCyVNKAupPs5VLhDah0fH2t1dVWtVsuDVgFM3njjDV1cXKher3suCer43d1d20sAAENoIISCDD4/P9ezZ8/cFc1zC0UA5M1DQ0OeEzE5OWlQf35+3nl9r9fTwsKCYwhKWSzSyD/oDmJQL2pYuuEpjBcXF72O5ubmdO/ePccQzr6joyOvu5GREa2srGh9fd1WHIAsxN2rqys/z8vLS8/aCp91r9ezdRq/xwyN8fFx20hRwB4cHLhr8+zsTC9evFA6nVa5XDa5xTkHQEEtwvlAdzad4EtLSx56zncgd6b2IE+IxWK2TCF/AfBGGdvpdLS7u2vQR9LAecs6leQaDiKPbnbqww/jel1iIP+W+nl+p9PxecWZDJBHN9Xx8bG+973vqVQqKZvN6gtf+IJzNAB/wBcu1it1KEA9wAvkxtTUlN5++231ej2TuNQhdHzw7LCkZQ2zTugUA1AMYyEzCohRoQMBpB1KbPaJ1J9tMDMzo5OTEzWbTXfHSRqwYyE2Y/sLwUn3syRbEpGTUdvweUIrTDpTIIUgpyGsJicnbU1ExyQWQWFOTU5OrtJut62svn//vjY3N7W5uanPfOYz/n1U/8z0IPc8Pz/X+fm59wkqbRTzDOVmNhogKzEY4VGlUhlwBMGmcWlpyTGDjj7U5GACn1wf7euvO/5JPzgGMr8SnAKMhDr3+vraIt/l5WU9efLE3SWPHz9WFEVaXFx09148HtezZ88s5MDWlC65drttMhayErAYIQGx7Pj4WBcXF+4yBMRmXyMYAsMir8fKHxGk1CcI0um0tra23IEIIUW9QhdyqVQamF2GTT9kNzUKYhCwnFC4d3FxYUEa9TKkMfEa1x063hF5kJ+Ojo666+/s7MxkF+JD4j+2drwuuR/kCWcatVCtVlMqlVKr1dLMzIwFk4lEwjar3GM6nKW+aH10dNTuDGAH6+vrun//vvFY8BDmr97c3Gh3d1enp6d2aaKzi7wVwoucFeFjaO+NgJx4iuUdM3pCsTT1DM+JDmPWStglxXmPZWetVtPExISxPWoIRnpwj0MSiDMeW+319XWLF8EUcSjCejeVSmlpaUm5XE4vXrzw2T02NmbMGEEpOTp7A+vdubk5546IMamXwU2xQ5uYmLDohDx8aGjIblbcQ8Qi5EAfRsf1R4a0kfSfS2pI+pf8IIqi61gs9i1JDz7wu/clvbz975Hbf39wCl1Pdwz9D30RPIaGhpTNZrW/35+PxqLkYaEC5vckuQUaZWOn07Hyr9frudgLFWEUvldXV1bqSnK3B0A6BQsBFAaZhAUQXJIL9uXlZRdR2G7BaKP+g3zIZrP2+JZkxTsthAAJp6en3mySnFx/sNBBcd/tdp3chWQD1hm0wrGhCFD8vTDJ5P0AMwGQAajwUqd1FWXs4eGh6vW6Hjx44PcOPUMBjGk/JCjTsREmygDQo6OjbmUP2eVksj/IlXY8gDoOqZub/qydMPjS6YK/OgAMQA22IigrUZnncjkNDw97TULaHRwcaGRkxDYBtNuzPkk8CFIUwnTvUCj0ej0Td3g0w/TzexyqtEeG7fm0X3LAsV6lO2sYAHsUcfychIE9hmKdw4rCjoIfj01aHgGOi8Wi7ycHLmpO1H10XaRSKXd4Mbdof3/fXWMkBlgUveLrtYl/HN4om1Hl8LyxTgF4gjyW7izuAOd4xuyXpaUlSfL6ARQ/PT11fATATCaT7vihFT0kMinaAJnooAAgIAECJMLOjT8PvXRJrJn/hAoXVRKkPIkzXXckD3Tx8b6Qs6xR1iTWRFhahWRLqAoirmNhERIxdDUB1mIHBMCEqIABlu122238/D62lFNTUwYJOKf4nii98LPf2dlRNpv1s+Es4uxg/YTWILRjozaNxWK2VILk5dnc3Nw4/p6cnBh44x5CWqPA5z0TiYRjR7Va1cLCgi4vL63oIeavra3p5uZGMzMzPg+xWyPhTqfT2tnZUblcNpAEIMLMGr5nLBYz6E0C3Ov17LtOcgth3Wq1VCqVPKsJYglhQti6T9HB+Qh4hPUe5NHl5aWBU+luNls4NJ1kHyAd6x+SVZJ+yDI6FgDciamQfO12+0cNKz/s9VrEwFwu58S82+17hdPdQJfI9PS01tbWnDcsLCx4nzNrBrun1dXVgWKGnAvhDUAb5CVF+97enq6urlSr1dRut7W2tqapqSnVajUtLS3p4ODAZCM5HWcVn7vRaBjY/6M/+iPPiCqVSrZJSCaTjg3Dw8MaHx/X8fGxSU1U6+QhIaFHPon6eWxsTFNTUwbrcrncADFOcUYhzP3E/o+uMOY1IJZYWloaUGQzrDadTmt6elpnZ2eam5vzOQ2YT87ErC/yaOIXxNLa2pr3Md+D4pvYHYLLqCkTiYQqlcqf67qPxWImE3juiApKpZI/K/kIa4DPA1gzNTXlAcSpVN+29PDwUPl83mu0Xq9b8U4+xHxK8kN+b3d3VysrK0okEpqfn3d+jCBtamrK6t2hoSFbUIQWiQgeZmdnTfgeHh6qVCo5Lk9NTalSqXhGID/v9Xq2YAEop34AKD88PNTc3JwFJHT5o6pvt9vujCJ3z2QyFhoAcAF0E0sRGI2Pj6tUKjnPJEZSh9BdLUmNRsNq1ZmZGdVqNRUKBXfRfgjXaxEDySVQ9Xa7Xcco8jtEA9RusVhMP/MzP2NAbH193XbCdNMhbKGmPTw8tGANAArlL3MxM5mMxVaIuiqVihYWFiwAY18AuqRSKeenoYMBtSkgLAIeOq6xJyJXXF9f18OHD3V+fq6FhQXvQ2oKwNKTkxN3jWQyGa8vrkQioXK5POCIQR4XiowQAmLRwj3mOyC4oWaHhI7F+lbB5GNzc3Mm4k9PT1UqlVx/su7ZJ1jNHh8fa25uTsvLy5JkgpJuREkD6wDAGRFSJpPR+vq6Pve5z1logqgUcVEmkzH2AVhLDjMxMeGuBAR4W1tbfs92u61kMulZYOR9dFB/WETqJ9df6/VaxD9J7uQIZ1QitGD9E7uw8eSM5ryoVqsmZlOplJaXlxWL9e1JyeM5k6anpz2PEzwCQPvg4MAdvzhEnJyc6PHjx1pdXfXnDB0E2N8A2ycnJyqVSioWizo8PLSIg/nQWGtBVLD3Q0tphC7MMYY0RrBHJzHxZXNzU+n03Wxrak/yMoQ71WrVBBgEFmfB2tqaCQxEiYxAgPTJ5/MmxcGBiEGrq6vGNun+Jq9ApMh3w82mUqn4syDkRHQzNjZm9w1wxOXlZdd629vbmpub872ny4ZuxXK5bAEdNefc3Jx6vZ67X8iZmJlGPcb5hxUw3YZ8J3KZcPby2NiYHYkymYyePn2qt956y5gh4kmEWDMzM64TwWMQXk9MTCiXy2ljY0NDQ0N224G4CS3ZEflytoHN3Nz0Z0Ay2whcD+KdOoF5kWNjY3b+OD091dzcnOuTyclJi6e63a7nhrZaLe3u7vYDw604e2xsTKOjo7aFxpmJjjXOnbC5AYEeNQv5NSTsh3HFPgoto7H+oLEXkv55FEVf+sCf/T31fSp/UdLX1fey/Jqkfz+Kom/EYrGU+gx8TdJ/q76f5c9L+ieSfi6Kon/1Q36GCUlHX/nKV7wJUH4xWJ7EKVTkoFpFmU1wZ2g8hWuj0XDSRBsWylXpzmuRQp/gTxHKYoJFpjiBEQVAC9XgbGIAU1S8AGPSHUhLqx+bn8AnyaAlKurwYAKMi6LIM21I0FHR0eKZTqcNKkFKAFyQvHJAwEijruZAALyCkGk2mwbnABx5T0kuBCAkUEgCbkLaQLBwkMKKh+/Na/E5eP2wGwbFP4TL5OSkms2mDweeCb6/sOKoxlKplBVJvAZBmGBGQAcEoH290WgYtMFqgE6g0LKP1+90+kOHG42GgULU7QB/ALkAqel02s8XFTDqN7qzKLpQ61JY93o9J9/YI9GVBhDAHoA9l2SyMSSysPIJ2xNRXw4PD3t9cLhyPykYE4mE7UdITiANYOMBpwB3isWiQY6vfe1rkpSNoujfmsF5neLfF7/4RYNTxAUKO4BHiEPpzi4ChQ6xA7KO1m1UCiRAzPu4uLjwYQjQRyFHHOt2uy7MisWi9+zm5qbVgOVy2SC+JCevocUYADSxFhIyPHxDYJU5LxSVnAUU9CRMdCFC1CcSCQ8Dp7Ub0gFSnu8QKk9Zl4AAKIcgTQGh2I8kQyGBQNziMwMG0jZMAby/v2/iFsKde99sNp1kkxiTBIe2Kfj2cu8RAkAYNxoNf550Oq1CoaBWq+UYmMvlrKJErQ+JGxKjoUVpqMgiQd/f31exWPTZhIqMYoRzge5MrrCTC7CFdQjYl0wm9fTpU83MzHg2F0lnt9u1Eu/q6srzZDjfSIKJcZBvdABNTEyYAB8eHjY4yPwlwK+QWMJTF0J1b29P5XLZ5wj3m3hLLkFXJ7EZcQT7Kx6PuwOEtXJ6eurZEPl83iTj0NCQvvrVr0LQf+xi4G/8xm/4Po6NjdnDmyILgQPnPf+NMEWSu5M5i9lbqIlnZ2dVrVZdDLXbbec/ocqOGVyAyZyrnFEIflCMS3KRR25IIUpBR74Bgdzr9TybC8ATIBZbBEgWyD3OWYpSiGq6ASVZcME9I26E1hEQgJDrxFJEI2EnNMBsJpMZmImHuAkCBFtgnkOj0XDck2RvcewQuR98n9PTUzWbTU1PT7srmfiNbzqxHeLh9PTUgCwkvKQB2zTIB+4vlrDk+KgJiUOcrRDMUr9OYDagdNfxQpGMgKfRaHgNcC5h/Xp9fa1arebh3pC2ELicOXw3it4wl+I7Aiaw7okdobc5xA3xFoKauoW9wnkFMYfAgvsafj9iFmu/0+moXq8rk8lYZACgQycqeQ15AOIvLG+xKMnn8+4yvo0LGhkZcTcB9/DXfu3XpFcU/27f57WJgb/3e7/nbnS6YdmfACDYnZHz0TFxcHCgg4MDPXz40Ocfz5+1DCBCRynrlPwLIQKgPwKQ/f19z40CUDw+PratKDkktQI1iyTnMKiew7gMONXr9dRoNDQ3N2fRJd+TmEkdR+yk7gAshWhGrALJBXHBd+t0OgNzw1DMJ5NJ5fN5fw9sXvh+5HO4S0jyvQrzXvJJuqS5v8RGYmen07H6HvAKcBqlNPuQPc0ZRXcbs6+SybuZOdLdfAu+F/+QH1E7EBMh9rAzJjfD2o2anHoVG5v9/X2tr6/r61//+l99A35y/VWvj00OePteE5KOvvSlL5kcSKfTFiyCP9BpCglCHAE7HB4eVrPZdAc2OBoxgz1LPAQL5IwCMN7f3/ecF8RX/DfzZ8ADiSPgbQgS6WDAdQF8jY4aSbZ2I//Cup+ZXNQXV1dXqlarmpmZ8ZlI3ga+x14Gd4HoBscCb0S8Lcn3ALcUahBiA/EGcqVWq7nrmt+V7kRX4BTU5JwJ1Ps40VCvgxNI0s7OzoCbEiK48PyiJiNvRJBN7UY8JRZL8tkh3eEPY2NjFhaBnUiyaFSS59TyWtwT4jk1Lv+NAIb8ttfrjwiYm5uz5Vc464e6F+IxXLfUMeQ9YMHkxXwOPgMCP/IzahpqW+kON5I04EYSiuWoJcKOIsQ71B2SBp6nJNew4bPe39+3aAt8V5KfbSzWnw3Pe2JZv7GxoaWlJQsrQrwYcdOv//qvS68wD/xwqKBXf/1dSQuS/tkH/yCKov9T/dbGfyjpkaT/UtIvRFH0jds/70j6DyXtS/q/JX1X0n8q6T/7UQI11/7+vjY2Ngxk7+7uGseR85wAACAASURBVCgkYIczN0jsSDxIBAEJSU7wIAxbr0NAKWxPQ91FYURgJYiH3riAeBwUk5OTbneENLq6uvICZ0gk3uqo3yQ5QSXQ0e3A5+IA431hp0kOCc4UiSEJw/cBcEKtfXFxYU9GSQMAJy2GJK9hgsqFVzWBPgTfAH+xJwGgo0jHLgwQjnvN3AKpn3RyPwjOdA7Qch4COnTp8D7JZNJWJ7lczh0JWBEBdjI8DvYXoIPDmYBDoQ+Tzv3CQoAgynMsFAq+X3Q28Lp0t3AfSSg4NCjEIQw5YEO1ByB0LpfT/Py8bSTCQwW1fVgoAYwA2FMc8jsk5txHDnw+FyQRwHWoEA9VlYCM3Ovw9QEPUFyQgOXzeYOdIbjOugytI17R9drEP+6DdAdWsGZZV9jyHB0d+XlSZJLoUFQRF1HkDA8Pe69jkQCgQkcYikWe/cTEhBUYxN9MJmMFKMNKibeoGok3AG0AdzxjFBQUiBMTExodHVWlUtHExIT29/e93zOZ/ryj+fl5W2KgfAKMoKWWrryxsTFls1l34fCe4+PjvhfDw8N6/vy5kwxiFMPDactmLWMf88EOC74nz2JyclKjo6P+HnQooWqemprS8PCwRkdHNT09PdDdhjUj3aXtdtvrnxkrPGcs2LAkQfkCkTI1NaVSqeR4SmcqVjWSlM/ntbKy4vZ9SPlMJmP1F6AZ5Gomk1G5XNbk5OTA2To+Pq6xsTEPG+fZA54w4JFkOJfL+fNwvszPz2tqasoFxGc+8xm1222rkCQ5vuDxW6lUbB2ECoezDoUeyXylUlGhUHBcHxkZ8fOCKOLfrDuAxEKhoEKh4H157949x20KqtHRUZPWrJtisWixQtipODExoXQ6rVwup3w+r2w2axXS4uKicrmcSaFSqeTf/xCu1yYGhsDz/v7+wDws6a4wCs8d7iVdCRSyxAPW4ePHjzU/P69Go6Hp6emBIovClviAp3bY9UaeQoc2lqvEqVgsZlIlJGzoRuRMw7ec/DGTyejZs2cm5ekAZA1D6kl3lm2A7tKdxcbt87AtT9ildnJyolQqZTLk8PBQU1NTzp95fSwnIDOiKBoA3gEQEVcRM7AUQURzcHDg2Mc+w9KD3JLCPXxtumfq9boePXrk2MnMBXK8fD6vly9fGnwgv6MDE8WqJBPRAMk3Nzc+V0PyHjEDv0edEOavDPxtNpsGjnj+qN+np6fdGTg2NuaZWdia5PN55/5h/kk+WKlUvAbDrlBIRGJMCBwgriBOIwA6Pz+3jQrgNxYXrH/yS2IfIAZrlq5FLKEQLUAaXF5eam5uTuPj4849AJfJDbBlInfmTNvb23O8JjfBQQDAgHOX2isUC73C67WJgXSzkGMcHBy4JqNWJQ/B851aMJ1Oa3Z21mANtQL7GQKHtRWLxbS7u+tcnjwFy6zh4WGLv+bm5lz3QCLe3Ny4e4bagj+jfqQmx35W0kDchNBOp/tzmKjvIROJQ/wu5yt5KfGUvUr38NnZmXMuiFvpzsYMYRikFSJIbCkhOfnsdISPjIyoUCg4Zw3PJ2ZksL/Pz88H3CKoL1Ha4zBBx3ZIvIfWlYgA2K9YJ2Edx+9BwmazWYsV6RziXnQ6Hb18+dJrBmIQPIWcmu/GPk8mk449dBtJdzMUP7k+0tdrE/+kO9cYXAk4MxC3MHd6Y2PDbh25XM5xhHoD4B8wmfNakjEjQGIwwWq16vgSdtGCc+3s7Ojy8tLCWD7vxcWF7R6pLwG8EbWxl+nkY/8tLi7677C31tfXHYvA+TKZjJaXl50Xj4+PO58g/yKfgTQmfobCdj7X8+fPPZcWLJKznzMHsoB4jTUdZxF1IeQL9rZ0siD0oF4m1iLKicfjxqiePHnimpXnRcxCtDEyMuIODTqhOp2Ou41DESU4Mfjp5OSk49fx8fHA/B9ejxwG7HV2dtZdPthoIvST5GfKz8P7LMn5axRFmp2d9SxzxELkdnzuXC438Azb7bbj/vb2tk5PTwc6JMFEIc+ePXtmWzLwga2tLa9pzjC6oMFHyHvJC1nviPLDRgrEQqlUyoJD8ERcmhAJMC8RkU4sFrMVXrfbtUg0kUhYUJ5MJm17jLCNe4mt8YeABX40SJsoiv6/KIpiURS9/wP+/J9FUXQviqLhKIp+LIqif/GBP1+PougXoiiqRFE0GkXRZ6Io+r2/ymeZnJzUW2+9ZW9aLAQIDAQOWqVJCC8vL217FQIoLD4Uc2xCkht8A0MmEZYbsBoChOFiURR56B8gTLfbVbFYtDoFawc2NWplDh0KezofUDIT3ADrSO4IlpIGlFYcJMlkUjs7O7q+vrbtEO18FLGhGp0iDVU2zDzt9rwu9yf0suS/Jbl4/4uGEaIwotAi2UatWSgUrNa6uroyCBF2ZLRaLQcuglg4QA32GICN7g/+//nz535vAlaoXudgj8Vi2t7eNilGgOTfJN3YVHAwhwoBOocI1jxLCgvApEwmY29LDmeGtIYD0lnvHCi8/+npqQ4ODjy/qdfraXt724k69iMUOID5/AwAFfAQ0IVCg6SG/ZVI9AcoFwoFry2SDe4zalBUcageeG4UmyRUvJ7UT/ibzaZVpNJd1wGKXuxjsFZ7ldfrFP8kmXAOD0sAo1Cdl8/nbaEQ3VoDEe+++93vand3177ymUzG65Pkh+R3a2vLoCIJAGA1HWIhCQuQA0iGwp21RPz84BwvkhNJA4rfg4MDF5qAANhzkewANlGYo5qCSAeky2azOj4+HkjG4vG4ZmdnnaywTplD8BM/8RNuoceSClAqJLVIQJkrgoKTvYMaGkIW5cnExMSAhRHkFkrRFy9eaHl52UQ/HRrENfYLBA1JPWAyald+p91uDwxHB/TEDoVzi44Z4iqqaD4X95duBIhz4ngi0fcgjm67B/B2J5Fiz6dSKStjmHORyfQHaNMujy0ACR3JHUQxA71R7ITxm3OOeNbtdpXP5x3X4vH+jC3uF+sVBSr3nbXBrB5sI9955x13VkgymUfCSydooVDQ5OSkhoeH1W63TQpQVGAxw3q4jR0GiVlfnU5Hy8vLfm7EWElW7r3q63WLgZKcFwCOh2cTcYa1x5nD2UqxwiwVzoyZmRnt7u5aOUnHCl205AkUOqwhYgNrmP3CHiFPCkkFFHzYV1BoTE5OWsyAAnp8fNyWXZIM9vEPeQJkKOA6IiSKTQomch5iLiIM9gPdMqxlSK/otvuhXq+7gxdbSIhtchxU/OSCYQGGWh1gGDC32+16TUPK8rzotsAuCAu8eDyuVqvlOY6SnGdj1cP+hCDgvJTkHAZSPLRN5DkSv/guWHaEgoObmxuLcMh5ksmku4VZc2EnWKfTMUkRdhgA9sbjccdSwO+wcwnghLhL7h7dioMgqKU+aLS7u2vPe8g57lWpVHLHAN3+1EDhGUCNBGFAHSDJHVp0eqP4BNQO7VG4WKPkjOTzADihIIrceWhoyFaB7ElAAfbiq75epxgIWcgazmazBtaIeXNzc66RqHmoZyCXqYl4vswrYl0TfxCRkCO1223HXHKBsOuOjhbyQuLIxMSEJiYmVCqV1Ol0DOxBVGJbA7HI2SvJvzc2NqbZ2VnnUqzxUqlk8I7uOkhf6sbQVQBbpbAGh2Qnh+XsJm6HBBOCC6m/F+jupU4+OTlx7hzajZMHoOgnFyS2oyym1s5kMrZ/TCaTA7PXEHeSX/JegJ48L4AsOhjDOMV3qVar/nsjIyN68OCBVfGQcHyPEHAFjIRsR3jAc6dOo7vxk+ujeb1O8U+6EzCSm9HhQMwK6x5iAGd9ItG3k+52u84viFV0GnMWIehIp9Peh+y/brdrTCPMD+fn572PiAe9Xs/iLwga3hN8EPyFeHJ2dmYxA3ZVqVTKpPUbb7xh8QaCyZBQ6fV62tnZkSSTJpzHoUiZ/creDWv66elpi28gc6jnK5WK627+TjhCodVq/TlnBM4Jcr8QN6SuJj9DpIZ7zdnZme7duyfpbo4s+W50S3Bz1nB2YK+ZSvVt+qntEbVQy4FD0hUFhnJycuKubbBQqX9eVKtVi4ni8bg7uYjp1Mrcy0wmYxyatQEuQ/cnHauIvLivYBmcYxBmYAbUHeRRrEdqbOqisbExLS0tWRQBZkSuzPshSIOYbLVafvZ03bBWY7G+WxO4eKVScR4B4SPJNTG2pcwtiqLI83hYH+Vy2fgSwjrWHXZ4iUTCNVCpVNL5+bnFZaz1V319lGbavBYXpAmBIrRaICCfnp66eGGh8nskWST+BP2DgwMnS+Eg4dXVVbdjhR57gMXz8/MGuwC+8vm8i+MoirS5uekkjOCWTqfd7kbimE7fDVgFbIXAYCFvbW05ge50Oi5ACU5hS/TnP/95STIgurS0pKurKy0sLFhVc3l5qadPn9peDgaUIB4q3Ajw3W5X77//viYmJlQoFMyso05go1DkM7SQmTZ8RgAOVFEQX6giUCoQyCcnJz3jgedKkt3r9WyPBTNPQUOyS3G4vr6uQqGgRqOhBw8eGGgYHu4PoQxBlU6nY5/slZUVH9you1CdptNptVot38dyuax4PK4nT56YOT86OrJKvlar6erqymAwh8zy8rKur68HfJ1Jervdrvb393V2dub5IQT96+trbW5uuoACFOHeERhppUwmk2o0GlZ30zVzc3Ojx48f68GDB16n4fdknXKosWY4XHi98fHxARsCii3prqjjGWHJBXCC7ZUkD2uj2OMApENBktV57XZbMzMzXqcfx4silFkzJHkckAw4PT8/1/z8vI6Pj7W8vOw5YMSWz33ucz7sk8n+0NSl2zkMhULBnTmsp1gsplKppFQq5ZkLmUzGaxqSdH5+fgBM6PX6MwJKpZKBHalvlUcHSTKZ1IMHD5w8AcoDjJEEQRhEtx0Q7HViLUkFMRYSk/+H2Ma3GDCcGErSD4DJmj87O1OpVHLX3dBQ33cdexKSf0CNhYUFSbItztzcnCS5AJDk4da0HcfjcRWLRcdwWrOHhoa0uLjofVgoFNRutzU7OzswhDzcl4CikCG8DmfQ4uLiQHs1gDbqKKyUKLRHR0cHukqlPuFCdyvxh/jLOSDJnvftdtuvB0ANKM05QoHF96/X61bCTU9Pu4tsaGjIlpPMwQEwwOsYIAGiERtKzmgS3EQiMZA/9Ho927sAnkPsQehwBkH+oCANixDiY6lUMmHKGZ1MJj23gvXGfAn2NOAp+5WklRiHDdbFxYXjfDabNcD6cb4AihC1kIsBJrGXGf6JxY0ki1Cku/lXnLN4Ykt351xoOSXdzTKU9OdAQPIM8hxAdYBm2vfDjlOKRd6Hi/w1PP9CkQVxn/1PsR2CZxD0FI7EZHIX7iFWITc3N5qcnHS3cPidR0dHbQHBe4TEPmuWWSp8N2IgnbSAhJz9R0dHtrFkWDrPGFIcm0eAiTBGs4+Z7QghEgqJEDVRzJGXAwLTKX51deUZk3wfzhPuJWpQiCDiAJ305CdXV1eOcQAykPRYmUh3Yq1kMql6ve5ubHJfCBkIFPJd7n08HreVL+BzaFNEdw6d5qgtQ2Us78N6D+sRFLzcC8gWCn1iNTVI+Ax4L0hJ6gRIFeyoAdTYLxDWgGGQi/v7++6uODg40NTUlOdosF4mJib8XT7OF7UJZJckd3iGYh66qSEJud9Y7YRK41QqZW9/OjbYk+xFXCgqlcpA1xpgTa/XM7BJvsW5CTFJfkH9zd+F6OUZs5/Cc5vvwfrkNajXqdGTyaTK5fIAMUv3K2us1+vPszo+PnZ9D0E6Nzdn+zTOCGxhQnEMuSqEGDE+FPsh1iFWcUbQJUBnCu+XSqUcgwuFgrGFUPQGgPrOO+/ojTfe8Lwx7G6I3awRgDUGU5+dnWlhYcHkf6/X0/T0tPGNWCxmC8aQrIL47nQ62tvbM7jNMwQzCIV4gMicm59cn1yv4qIzjtoLDIE5fcQMnHj43ZGREVWrVU1PT6tarWplZUXS3Tw4cpXh4WHbafFnlUrFxAT1In+XmEe+F3bNkLvl83m1223PhyHGAlYjfCsUCrq8vNTDhw91dnZmZwPIC2IfsQPbUOpt6uTz83PNzc0Z5yQG0YmRTCa1tLRkrHFiYsK2v3QqrK2tOUZQs9Dtj2AWcTJ1FjEZhxg6jiW5wxsii9wEkRF4E7kVzjrHx8c+n05PT1Uul7W+vu45QOSskMXkPZIsFgLHZNY1WBniJRwsyNUQRLImmNeYSvXncjNfjBwOXIazEkys0+l4viBnNtbd5E/keWCe/D6dSaVSybNsmLk0OjpqK106phFlURNJfdxoamrK61uSZy1ChjCCAucR8ASwk7DOHRoasi08ucPy8rIxOdw4wAUgxMD4uJgRGY/HNT097bUJJsg5wjmM6Ic6hbMIQRfcALgBIqtXeX0kZtq8Dlfs1sfyl3/5lw3g4IWISk+SlXQMQsW/D4/qbDZrz3oGCtLOhZ1POPsFwJuElOfFTANmC6CYQ4VDkQ6rWywWrRYkeIUdHs1m0+QI3oZ0jLBw+SwcAhQsBHM2Iypk2FjUynj3S3JiCQBKMs/nIumDRQboog1tZmbGdhr8PZJpwH5ASjqLWq2WFdEcbJ1Ox0kpBxsHH4pkCn2GgKFA7Ha7JgRoE4e0I1DCcJMwHh8fO7CGwX14eFi1Wk25XM5JOSADn3NoaMikGQQhCu5arWYgmed1u259T5PJpIkdPg/vQTGLGoHvwvcHNGUdciDg6Q8IhOK11+tpc3PTz+n09NQzKQBZSK5RDlBk7+/vWzGJjQxJP8U3Kg6Slr29PVUqFa8zFA+AFtLdXCj2aTKZNKgDcQq4SScZw80gAKMosqUKRSOFXLvd1ujo/8/em/zIml3Xfiv67CKbyGgyIzLz3szbVSuSJRYpQYAA400NPMDwPyDDMOA3MUxIggBJgEiB0tCA4ZHkoTTT0ICGmhkQRBWpIqvqVt0m2+jbjOwjIiM8CP5Wnijh2S7gko/Idz+gUGTdvJFffN85++y91tprL6rb7epv/uZvpDfoY/lf+grjH3sYwoIOCNQWqDlQxtJ9BSBeLpettMNqIkxO6TQYDqceuHz2ZDLRxsaGFbvR6NRKinVNgvPJJ58on8+7Y6BarXo9EC8AabDx2djYUK/X0/b2tuM1BX64P8bjqYcwhA82LhA+0t3MJWmadNXr9Zn1AkhKQgWRANgWjUYNjoWJYLVaValU0uXlpb3e+R2Q3GFnD8AxYDzJcSQynalGMQzRxllAgjQcDlWpVNx1sry8rNevXzu5Q12Eivz8/NxKHxQ0xWLRCTrJD8AARQ4zECSp0+kYcCVBevHihdbW1ky6sSZCAli6m0ED+I0oAdADCya6Hel0Ik7wPEncAS8AnLHsXFpasl8y90+8zOVy/tywK5Y4IcnvOwSlsRWIRqP2vw7XAwUGF0UH8Xs8Htvrnb1CJxSxmXUP8YLynHeZSCQMeEEqAlJjkQQ4RIGHLQQ2mKPRSA8fPtSf//mfv9GZNr8JFzHwj/7oj1xAcC5RKEEGYF8QdjFBOHAOUZiTr4VdZoBQgH0ITNhvoRiCfY/CDcCUsxbSmJ+V5IKMwog9Q2yg4CBXnQQ2NeHnsPcp7s7OzpwrAKTzfGKxmF6+fGmlIkAseWBIroQxkDySZ0CMYc4PxCcFO4QTXSN0M0GEQ5CElhSx2HQ4qaQZ9X/oTY4yns/gXYVq1X6/r6urK2WzWUlyJymz/PDgJvcnRrXbbWUyGeceABAUsQgb+N9h/ppKpVysQtJeX1+rUqnonXfe8eDbMD5D/vCznL3EgBDEJo6FwixiErkZpBFnytLSko6OjtzxCfEBmIVICaKErkW+LyQiz4z8K5xfE65FQC3WctiBwHoipvG9yM8lmYShQwYhEaSRJIPk5HmsO8CpVCplW8Pr62v92Z/9mXSP4p90FwP/9m//dqajirNdkuceQOxARrCXEDsC9FAbkzdCBlKLDYfDmVoPN4DwAmRBwMhZ2u12Z+oA4l673Z6Zq0LMDMkh3mUoRCHXRezX7XY9YJl9BVgVumeQqwwGAxWLxZnuH2pF4hRAU6/Xc621urqqcrlsgI1OztHobj6EdGdVDZm6urpqQBnwK5lMekYV+R4dYmG3N2fVxcWF1erU1QhgsJojZ6jVajO1MzEZ6zbwCGrYwWCgdrutnZ2dmXmSPAeeGcDlzc2N2u22iee1tTVVq1V3Ol1eXs6cmYCM5+fnqtfr+od/+Idf32Z5e3Hdyxj4F3/xF64byANxOEGACsECcUhMhDRFXMN5Hs7vWlxcVK1W8+xgAHc6EcgfcXVA0BeehRCXxE32DflcKC6jq7ZSqXhP0xX0+vVrvffee/4euJRAHoGJhQR7mP8hoCGukDMSF6ltic84UkBUS/LcKuIqeTa1VFi/DAYDk1PkUl/vfCIG0y0pyTkRn72wsKByuay1tTXFYjGVy2UTWWBsyWRSvV7PwD5dvRA84TxA8hXePxglOQV/N6wtEcOVy2WVSiVJMh4ROpkQYzkvwRLBtcCHDw8PtbOzY1wAjADsjxwKAj48C8jNEAuQA7D+EQiwTiW5g5+8GaKe9QOOzN7gGVBnZ7NZ5+7UuNTbYQ5PTk6OwX1iM3p6emqSj9qY/QnWGYlElM1m1W63nc/QxYMIl7wXso9uslKp5PfP2ri+vtaPf/xj6Q3GwLedNt/wCu2lUIJRIDIsmaBCogTDSoChLS1sDwsHP6Hugwj5ekfMcDi0qok2bAZ+AUbi+ypJm5ubJhxQCYaDpC8uLpTP570JFhcXXcASuCW5KGNjUUDycyHwR6JIgcfvBEyisAPYhQUliPd6Pe3t7bmghBHlO1DQS3eKOApJSX7+2MCtrKxYlQkIysHCzAIYZWk62wflZ9iyx2fQFk6LYzw+HTyOZVwsFnPgITiiJsLXM7SiQHnIgQIRRNHDM4TFprgnKcUqB8IPZRaEBK36eJdTWNHlQ5JLEQ0ZBGFDQA6JMYpsrCikuwHv0WhUGxsb7tLhoCLIo9pE5QE4Go9P/SVrtZo9NDkc2HOSvC8oFsOhd4DCkhzEaVWk8EMNRkfRcDj0/+YA4l3xzH/xi19ofX1duVzOwD7rdjAY2HcWAPM+XsQ0DlHIP4pB/nehUHDXmHQ3/0ia+q/ynMO9BVkLMccBTyI1Go30+vVrExkABhSdELO0FNPajYrm6urK5B6fGyZrKEFQjkMUAwYAUG9ubpoUB1xEQUSiEpKCJAn8vpCApmMTRTJrHLs9bI3i8bgJG9YZsSK08+CdsLc4V1BOASgQf4jB7KtQGco+pzjArozzT5L3NAV1NptVt9s1cFutVk02cJZwLpHMs5dZQ/wM50k2m/WAStq3OV8g5SE+iDMosQGtR6ORLi8v1Wg0vF6YVSXJ8Y7YzvlMBwAAEGtyfX3dICoWU7Rb00bPOYmlB2QKYCMJMWAoIAWFFYAhoAXADGcgSTUAPmqvwWDgQoOuPywDsIRCPcwZATjCOUDSzz6nq6PX61kJFotNZ/hcX18bLEH0cZ8v8h4AZM5lSDjUe5HI1NKUYmwwGPj5oEjr9/szg7QBDCEgyatCFSZrgu4c1j0kKDEGgUg4nw2AgD04Pz9vkDOc4xGPT2216NJDNQgpFY/Hff4SWwEMIUWwTwBETCQSevr0qeeRkFsQA8lTQkUn4AJKNtZcKJ6R5O5P9hxxlBjBc2GOD13DENl0z5IXXl9fW2TF96fwJhciLkBikuswa6Pf77uQg0wmh11dXVWz2dTGxoba7bY2NzfdaRMSYFgYcsaEaw3Alr3PGUp3H7npxsaGzysGAUOCn56eeg8TF1mnnK31et1kEBdrj4IcCywIe4B66Y4AqdfrXisQcdFo1KQyMRzAi+5V7hmlP7k2RTidS1iVrK6uqlqtGsBgjXHfWIMQN5PJpBXMkmzfCeENecf+IdaT97InyOWZw3mfL/YYxDLg3cHBge23sEmmK47uj/39fa2trTnuEB8mk4mKxaJFAhDQIfnx9dozJPaIgYA/icR0Rmdo08y6QyxELgE4SC7SbrftVsBeB4ja2Niw28HCwoLjbLlc1ubmptdhKEph/T98+NC5Ejaq1CW5XM7WStT0xPJUKqWNjQ1JUxVxtVrV3t6eer2eRYAhgT0ajZzz8dxubm6cD1LzIqiR7vYpa5n7lKZnXqvVcs5xcXGhdruts7Mzq72xdIvFYgaQAS6Jd9ls1uIF8iw6Efg9fIcQj+C+JpOJcrmcpGktwlyvra0tDYfTOUBYeZPjE3MQ5by93l5v4sJmibqRPCAkQUJ8jDM9nU4rl8u53qUWIEc5OjryvDCIbc521jQkcWhbKMn7hrogPFOJNdLdrBywKgSFkmzFdnZ2plwup06no52dHc92W1paUrFYdGcFcYIzAQCdGo7zE0E7mF8ymTQuUyqVZrATzgby2EKhMNN5EXb6I0DEDg6imPhHByyENOd8KIwH45ybmzOhkkwmPSeUvO/JkyfGKME6+a7k7eTpV1dXqtVqPtN4F+VyWdvb267rmAHLOyOvBTsmLoOb0Hne7Xb9LLvdrmdGj0Yj5XI5tVot59gQRjc3N3r8+LFxRd4XaygWi1lQE4oyQwE5NSxk4mQysY03+ZUk43G8A54VHUOQcbjegJFiy0cuB97AfUUi07k4dNSHuVaj0bBYDqKK9Z7L5Zwn0KETChPT6bSazeZM3Q5GTD4IZhO6UVGrn5+fzzgX/aq6O9+SNt/wImAS9JaXl93qXSqVXGzCWlPIoJLk73y9bZnWRdhnFhIDgklQYHiLxaKDHG3YtVrNbWKoSwAsYQRHo5GLU5RPBHkCeuify7/57iSE/H9USCil4/G4SQrUhZA9FJ54//IMAApJxjkU6FaS5JbptbU1XV5eWtFIcRmqdXjWgH8E/16vp/n5eRd8y8vLOjw8dHcIFmAoqkJmn++G9Vw8HnfAjcenwxvz+bzteCjm2fyFQsEWUePx2KQEBQPkBcGKZ8WBAIHTaDSsnF8xSAAAIABJREFUJAAYDlv+KJRDcg0gu91uK5vNzgQbDjTeOYDAycmJDzXWBwcoymraXQGPy+WygfhUKuV1BkmXTCZVr9eVz+d9UJ2dnfkAlGQgAND66+ph1KAU3AD4dMykUqmZmURzc9PZJ6enp+74obuN5D+ZTKpWq6nX6ymfz3uWEXuNQ/Ojjz6yOjmRSLgLAfUqiQsDye7jFVpDQZ5SGDEXhbZuACc6ZPAR3dzcNLkJcI5VAn+/2+26bZwDW5KazaYePXqkV69eWb2ZTqdNrKE+luRZNKizY7GYB9eXSiVFItNhyKHq5PDw0CpGulvy+bxt3lgPWFrs7Ow4KUFtH6rwUVsBsgEcsP8ePnxoUop41el0JMkt2IAYrH8AEf6bJCeW2P2EdjoAqzwXQITwmTIfCNX28fGxNjc39ezZMy0uLqrT6dgabXNz02oxFEij0Ujvv/++5ubmdHJyomw267MQcBoQm+RoYWHBRDJFA+BOaOUYi8X08JfWmqF1CfGP2IAgAHUVxA6xHT9iiiCS+FarpQ8//NAAwMOHD2c8hl++fKlisaidnZ0Zqyo+iwuCF4CUe0OFRdwGdOceSFaJbWGLPYAW4OT5+blJIlRPKNE/++wzz4l48OCB4xxqeNRFoR9wqKanJR2LM+5/cXFRR0dHevjwoa6vr7W/v68PP/zQlg+SLB4ABL7PF0plBAPZbFaVSkXr6+t+35Au29vbur6+NqFARxxEAc8fwpN8i+4Y4ifPny4MwC0GcpMHkL9wvkH48HkQNggZiF2ACclk0kA85ANCC/YchC3FI0Q3uS3FCnMmyAHS6bQ7fSnOeDYUZtg/UGhSFAIWoACk6waCIxT+UDiGxTRqOexTseWgC5ouFHJtOsClu25v3kNI2ksymBJ2sUciEZNQdFSG4ApiGlSldO7zvW9ubma6wnnfrBkAAu6TXI7Ze+RMFOt0EXS7XRN4IVjNv2OxmK03Q+tj8mgIWoBV9j/kIF2wm5ubFicw7J3uWoCisAOM+IwdVjQadTyNxe5sHCn2w9wfMJ0OoVCEACCGdSaEEGcGOTfiDMAe8lKICcAd9t9kMlGr1VIkEtHKyorX7c3Njc+9+3zt7+/rgw8+cE4hTfOKZ8+eSZLrInJ7HBnoQsMe7ObmRr1ez++N+gpA6OTkxF0dnEnU0fwd4imkC4QP64L6CBK5Wq1qc3PT+2byS6sz7hn7NQhMABrEPKxHwKlCoeBOSkiWUKzIPeTzedfixCEEdORqxA/qCUgrYhKxcG9vz3GXPUCeEc7IgLy6vb3V1taWjo+PVSgU/LwQoJC7np+fW2RH/ISAxoaYvUYdCfGF3Xa9XtdwOJwhsCV5/i9kEfUXgC7fA6skiEBU6HQWEaelqYBla2tLjUbD8YD8+/z83A4ikGdvr7fXm7pwekB4wPmBkC6cDYUAWJL/GyA05165XFYmk9HTp08tSBwMBsrn85LuAGkIFfIf9ieEBVgSZAw2gvV6XRsbG1pfX3cNwD2EriV7e3vG/nBLgAwHN1xeXnZNH44YGI1GdhOCiIdc4YwnZgO+Iyy5uLiwyBHSo9VqWVizuLjoWofzFgtIyC+6FIkp/Dc6a3g/qVTKM2PJYXkexAqeHxgn5A5iILAgSTNOSPz5wsJ0Lhd/lzgJXgvhTpcHeRbPne4XcixIhtvbW9Xrdb+XhYUFpdPpGUu1+fl5W3mDOyIghzCj5mR8Ra1WU6lUmqnpeGZgiaHoSJLPSARFrBEEq+AyiOnBUsmPOENxR0LsjvtHOMeOjs2lpSXl83mfWel02mROKpXS4eGhhZ7sEeqbcHYvZw1nBp1ZIYbNGsWuL5FI2D0E0eloNNKTJ08szAjJR/bUG407b/wT7/mFYiV84WyE0Whk6xVJHnxMscVFexgJDGQNBRYbERYRldfm5qY91NnQFB8kgqhq6DBB8UziEnYKYUFwc3Ojk5MTM8ySzCxLcrITWk1VKhUXgxSPMMUUe/w56m9YTQ6IRCJh7z8SXUAsCj4CP38/Fou5a4bZI8vLyy7KIMpQg5K8EiwikYiLSMDb+fl5F+ZhwB4MBgYvKDD5nNAOgmKAAndhYTpsi0KfYEryPBpNPcZR1FPgs9FJtEMLIqyomOshyWotgJdIJKJ6ve6DBeCCQLi9ve12SBIHlLYUVWdnZxqPx044VldXrcpC6Q1QwoHZ6/XU7/e9vubm5pTJZAwackAzrItiH4CZ5841Hk+HaNZqNQMQgD4UzSQ6FHOrq6vuRqNVX5oqNrABCluSs9nsTBcF3W6oxNg/dEeEljcAy7T5AuKTiAHM3MeLNU0reCIxHTzOOsxkMn7GENvsIYjtsPWYhAaimy7E7e1tr1H+XJK2trZ0cnKitbU1pdNpz9EBdCbpQuUnycQ1RB7EWjKZ9Hrk/gAUIpHpfIQHDx4YVIKYwi6MBIaEGQIdMBcAltiYSqWsxAQcBfhkXUHWrqysaGlpycQnQwhp0SWWlEolr9tMJuPPD9veSWpWV1e1uLjoWQLYaz548MDvA4uOjz76SCsrK7YHzGQyGgwGBhKlu4G1JIC3t7e6vr725wHSQdhTyJBsA25dXFzo6upK/X7fYBmE9mQy8awdgBOSJdTcgMOQ9TxP7gGrItrjc7mcz9FoNKoHDx7MzK0KLdXm5ub0/e9/X/l8XqPRSK1WyxaKAJ9Y9zx+/Firq6uOfZyDiBf4WdYy5O94PJ1Dx3nO2uA8r9Vq7vDEb5o5PsPhdG5NKpXS9773PSeRENbEw5ub6SDLZDLpNQ1gRdHD883lcgZ/UOZ++OGHPt/29vacuxAfAV1yuZxqtdp/gcj067sA0XmexEGEAyi9AN3C+UW3t3eWuXwOP/N1QLLZbBpcY0A2RaKkmc48zljeKZ05FPnEZEgM7pFch25XYjVrk2IMQkeSB7KjHmTdQCoCnobqPQi90WhkBSeEJ7EjnPuDUIh4wN4OLeJQibdaLUl3BRJAAFYedFzTkRGNRtVoNLx/yNuZfUj+ALEN0D8cDr3mEY3wDiKRqa0rgg0K4/F4bDCXIhJLKHINQGCASXJPcm0+Lx6POwciL2IWBuuJjmGGuCK2IUehCxXyi/tCQTkYDAz8EL8ooKVpzCfXohOBdcC9PXz40GcYVnPYYiJQwyaJPDW0hByNRjNiIOoUxD/YVPL+IZ04K1F48l3a7ba7/kMwH6INpSfAD/VbuVz2viU/pluIvcHZEtrC8b7u87W7u6t2u+0Zl5xbYVc0ubEk7//Ly0s1m03n5XTWESM418mtC4WCyczQuo59h8iBOEdOEHYOh8KZyWSi7e1tOzeEtrfkG8yJDeOyJH+vRqOhq6sr1+nEBUn+TOIf8TYanQ5aRlwXdrCEJCLfu91uWxjIz3zduQLQjecOYEaeFwrXyIUhfxEyQvwQA9iPiA4RkBCTyfE4Y5hJELohkMMDjlIL8J2p9aLRqRUsHes4RZBTXl1d2d6O2EaNAKFElzLvibyI34WAVZLf0dvr7fUmLs4dzvJY7M5WirmFXJPJxM4T5Gj8d84hrJUhszlPJpOJnV0QOgOGgzssLCy4hgEfISeQ7uYfAmIvLS3ZKQCLQroQ6BRcWlqamSFInM5ms+465s8hcufm5ixij0aj7ugOcwTyNDov+d4rKyvK5/OaTCa2goQ8v76+ds3OuU5uCuaUSEzHOxCXOS+orSFd+FkETAiniFvkMcQYzjGwVbA4Se4oD2fAMpMnzMkRvUh3MzFLpZIxks3NTcdxxiVEo1FjG9wDQi3qvHa7bZyEd0nehOiY30us/7pYG+El5x65LRgrwi8IFGYXsX6lKdaNAw1nYzKZNC6IQwb15cXFhbEkagLyT7BW8mxEVewr6i32ByKt29tbtdttPXr0yMKP4XCo/f19v/NGo+G8HCErXWOFQsEEKDkIdTu59M3NjUVjdNuG+GupVJrBG34V1/1FF39FVwjqHBwc6MmTJ94kkhxsIUVQoxPQUTcScCaTiarVqhcEBTCLnmSITUhhQ9cNmxww//Ly0gOmFhcXtb+/b49gGFXURNwH4JZ0x5ySSMFQQnKwqZh5ABDOBkAJI00HTfEs2CgA2wBx7XbbxM1oNFK9XnfnC0EIJhRSAUAE6xeKeTqFsL1iYBfJ4/Pnz/Xd737X1kEkveGzgLlFGUDApX2u2+0a8CIJhICigIA1RsmVSk3nWgCQVSoVH0bHx8c+YEjEQwUzBQmJ6+npqRNvVE8oWDlQB4OBXr58qQ8//FD9fl/pdNoqLX6+1WoZeI7H4zo4OPA6YzAvBT0JOgUy7ZBhMYMKgKKLmSM8JwrhZDLpw5d3Tvs6BxUF4IMHD/z5+Xxe19fXBnexVyMRQVGFGliS7T+i0ajVG5lMRtVqVTc3N963PG/aTGnJ5ECiW0GaqsJqtZo+++wzPX361EU9aoCw6L+vF0kZBDDdU+PxWAcHBwaBc7mcFTcAwN1u1wU3xW6v17MqA69xus1Q3FKcklxBvna7XSdfEKLRaNQKTYaZZjIZtVqtGQVIu93W6empCoWC7zORSKjb7VrlxBpOJBKqVqsuaDmoa7Wa1tfX3UWEBQPWUhC6xE66s8rlsnZ3d3V4eGgFPQkeIIgkW3JBRK+srOjLL7+0xUy5XLYqOpx5ENoUdbtdE7V0n4TWWCRQ7GESG1RaFAqHh4dOWObm5jycG4snYirrgsIdqxuAUlS2gCnlclmFQsFxFjKcWLqxsTFz3vE8KDzCuTPpdFqvXr1yazQdSCcnJ7YF2t/fd9dkpVKx3RJFVbVa1Xg89nDtarXq57awsKCTkxMn9likXl9fe/4Hfuyodyk6Li4uVK/XnSyjCO73+1ZpQzZWKhXl83nV63UtLCzo4ODA4Ikkg5Zzc3Oq1Wq20ZPkbkMU6ZPJxEkpJOPl5aXa7bZ2d3d1cXFhMgqRCGdXpVLR7e2t9vf3XWxBnNOV0+v1LDBIJpP3Pv7Rco94QbrrOgnFMaj5IJfr9brFJcQxCijIUj6HAhwSGnITEAsLPXKZq6srdyFT5IViGLp/IJIoLsmN2ENh90go0qDACsU55+fnymazni0DyMjv7Ha7FldQQFFAIyzpdDrKZDKS7kBRiuNkMjljHUg+DEDL94EgARBGTEIefXNzY9KTGM1ekO6sOCADIPEluSsuLN5CkIYzPxabDg8n3gF+IDYhvtJ1w3lAwY/NMucXZyBdkVgwkOuGAiDIQGlqPYqgJASquZe1tTWT1RBIdA0Xi0WDnZJ0dHTkonh+fl6vX792JwSdTtJdJ+zl5aUV+IgFEL5UKpWZn4dcp1iXZHFT2OVMtx/gQ6fTcdHPfkNNit94t9t1NzBK1a+rZekw4Ay6vLxUJpOxLZUkq4chWrHkSKXuZvKwdkLhUTabVblcfuNx5zfpgoylK12aEhbdbnemC4JBy3RwnJ+fa29vz+IUXAroVpFkoAf7PM45ahD2NspcYiUgnXRn30b+xv44Pz/X2dmZMpmMPw8gEBIBogPSl45g7pf9CYEhyR2p/G7iPjGKeAm4g+IXclySc2Lunc41OoD4eezGsDynNqdO4VwilwrnSFGzffrpp+6i5l45E0LBZZiL8XnEvlBcGgpx+N3EJ1wt2Mt09NIljx0rz1GSz8tkMmmAOnRtAAeRZKL64ODAFnLEPN45xP3b6+31pi7yfGysEOuCKYAjkMvQFU1XDjEEAevS0pK7I8jn2duSXPvE4/GZ+Ml+ZVYWe2kymXgmMfsXa1rqM2bP0llAzo84Oh6Pe+YJ9QQdcLVazQJHcolQZEz9SSfGYDBQs9m000ooRpZk8c3i4qJKpZL6/b5F3PPz8yqXy/6+q6ur6na77uwHsOc58/eom3O5nM8nBJRgDAhN6RrCtpG4CUlWqVRcn+EewTuCzEHcwdxtMN1ms+kuGogVcvUwx0GIQxzkO5BrUosvLi56ti7PeDQaaWNjw/GW7n66RajPcZShUyXMWb+eL4YiFwRUdMDSOck5QbwFV+BCnAZejIU3+wIxOrkgQsBwBjo5XHheS9Pcne+2trZmkgshEOQpLiTk/TgvcaawPhEyhXWVNM3pmG1Nzkydy3OT7maEI3r4VdTCb0mbb3gRaFEDk9zwjyQXp7QzApyvrq56sFgIwGDVQ7cOREitVtODBw+clAAgzc3NqVAoKJPJmO2j4yFUmM/Nzen999+3T18mk1Gn07HPIOC2JBfPkCUUfFjLkEzS+of6DoKD4VkUt9gXALATnADtsIVYX1/3IEG6OWitZsHjp43yKhKJ6PPPP3cQC9VygB7MX6CYl6SHDx/q7OxMBwcHeuedd6zip4OIAg77CVrEIcNQ+IQDJ3lXKAt5lolEQp999pnm5+e1u7vr94P1Gy3iiUTCQyfX19etsKKAhyAkuFBIVioVPXz4UJ1Ox0U16gNIsePjY0l3HVIUV6PRyEpXCmg8gefm5lxcYFHEQUTxgioUBSfFCi2evV5PpVLJAR9AHBVGWHABVuH5SkEdAiQQfoA6qLekKYlyfHzsApzBZhBw29vb7o7Dx31zc9NzBljntPkXi8UZQgwwS5LnSKE+aLfb/jn+/XWFzX27UO2hIOZdEQ8gZyqViv1Z5+bmVCwWfZC3Wi0XnoVCwUkuQCaE64MHD6waCkE4CIBEYjojgfZfrqWlJT179sz3Rgwg/u3s7EiaEqI7Ozu6uLjwEERJLmxJllhvtKzjh3p5eamHDx+680qSPbXplqDgRaWbTqeVzWbd8o6lAzGGpJd9iH0LZ0MiMfU+h+Q8PT1VNpu1ShywgcQHIkqSlSmQTsQFSGESUM4lYgZx8Lvf/a6Tw/Pzc+3s7Ph3QoqmUilVKhUXKzy7fr+v7e1tn1F0x52fn+u9994zofx1WxuSXFRQqItKpZLm5qaDixlqi0AAMCnsgNzb23Nn13A41NramhqNhp49e2ZSejweK51Oq1QqqdFoONbGYjFbhmBLAAlCwURnEK3ddFguLi6qXq+7o1OSrSNPTk6UTE7nKfBMsGjb3NxUNBp14TSZTFQqlTxcmPVHsfXs2TNVq1Xt7Ow48QScIl8hISaxpANgNBrp2bNnPkcXFhZUq9UMePIM+H3Yg+G5L8kEqTQ9Z+/zhS0oKkcKXNTb4Rpmf7948UI7OzszAgcAcs4qYiD2YBB7kKyS3EVGHiXJgBmfx3mJtQ4qS+IQg3Mhus/Ozny+c1be3t7aFgBSB+sLiha6FCmSieOc7+yN9fV1xeNxq1ABLMk/KHDoXkZxiPI7nPkTAn1hAQ94TmcYF9ZIFFDlclkrKyvez+QleKTTuUI+wZweimo6uRFlSXKBGxJlxOyVlRWVy2VtbGz4eVO4Qmah6D89PdVwOLQAgtqi0Wg472W/S3LckuQchpgryfuVjp5Hjx4Z8MEyAvIEiynUtBcXF8rlcrZvubi4sK83gCwkGveRSqVMjrE26NpBjRsOP6crgv1AnYQAB4Ca+EfOxtkBKMQahDhKp9Mql8u2YwkH4YbWJdjFsPdwDQhzfeIbgAzPHdsmuhwBtwG2w3zkPl6QGRCfrPsQjIfEIsfAohjLVzoAUYljEwPwn06n9eWXX7qWaDabM/EP+1u6NCDyQntcrGPotANEA6Ak1hAHl5eXPf+Ijh261hDVYb9DBxaqbQA1xCEQSuRZjUZDDx48MHhHPkGnLuQShDnWatTPoWqd9QaBfHFxYasmALTb21u1Wi3nsMvLy2o2m+5kl2QCBKHn8vKy2u32DFHC+6P2gghDnLOwsGDsgM5GYh2qfTqa6CSSpvl1t9tVLpfzPZNTEHexn6fmCEURkFzZbFaj0Ug7OzszhDtnH//tV6V8fnv913tBupBDAYAvLi46BwczBD/j3CInhKwhzyBWDYdDtVqtGRsuiOV0Ou1/I44LiV3pTmwDOI4rBiIHiBvAaYRp+Xze597t7a3n7uFuwVmJgwB5CnkWtSt5zXg8taTc2NiwtTdxm/Mc4ub09FSdTkerq6szNXS3250RN5KPIGaCpODZ0yEIaR52zGL3vLe3ZzEGwltiC6S+JMfqTCZjsVSlUpmZhwzZEn4eXTBnZ2cWDyaTd/NBQ5KdfLdarZpgIp/kfEEoQc2GGBtnnEajYWEPwlMcHOgmCkl+ng3vnPyPDlYwMzBO6vDLy0u7NUDAg8VC6jPXlm4j4jsxnNEU4HNgnb1ez/fN+js6OtLW1pa7XMhJcYTgrEK4yRkKUcS5SVdWuD8leT9Wq1U9fPjQzx4hPnl1NBo16ch5T0fW6uqqRUEITXBQetPXW9LmG16dTsdJJ0QBSjwWKAUvtjEkXQR0Sd5sBE82EwUgJAoekBQneCyenp5agT43N2e1K2rZ8XisTqfjzQ6QR7Cgo4Sgjj8ijDFKAGxxQtYRJpPih4QOhpfklt+PupwiXpp24fT7fRWLRaVS07krgANhcga5gT9uuVy2BdnR0ZFBN8BFNiL2LigYQuADv21JtgMLO0koKNm8AA2hAp73x/MdDof64osvZqzyGFDHeqC4k2RyZmVlRfv7+1Y9EKhHo9GM5yXFMQnzxsaGAx0zKSA+GBqZyWRcyDK4DMAPZSB/1ul0ZpJsABqYfrrFAFhQG/OeASQpamDAIXhg1DkYuQeeH2ROaCVIwh0qOwHFUNhKd2oEng+FNzYkKN8gwijQjo+PrW5mVgQFpCS/B9bucDhUpVJxsgTQwDwl9tl9tkcDbAxJWDpKiAuffPKJEomEfvazn+n3fu/3dH19rXq9rp/+9Kd6//33fZjiv4/Sj2QKMqxer/tABdjM5/O6uLjQ0dGRyQYspDiQITmxOyGZpPsLO7FGo6F+v6/vf//7VoXTvg1Bs7Kyok6nY+KR/YZClO9SrVbdsUKcKRaLTkLX19d1cXGhZrOpRqNh8J9niG0ZCo5yuayvvvpK3/rWtwwIj0YjHR0daW5uOqCv1WpZVRWqCPHap5AgIaTtnqSM/05MYt1CfNCpyPD5VCql1dVVD53OZrMWF5DMEd8RNQDOAjqQOCUSCR0eHioSiahYLNoyBVASUA6SAVIUcPjnP/+5C51KpWIiCaVlv9/X8+fP/a4pIIh5L1++VDQa1ZdffjljVddsNh3rIbgk6csvvzQYfXR0pLW1NR0cHDghRDWGcmxhYcGg1uvXr60iQ4UTqpMikYjXQLPZ9O/gzwGpXr586YQdcu3zzz/XwsKCXr16pVgspp///OdWv4UWS0tLS+7aAuznZ9jX5CuSvL+J9XR7TCYTfxcSfRJ2CoNCofDG485v0kXifnx8rA8++EBXV1eq1+suvpgvcHFxoUwmo0gk4mcC2CdNi8FOp2PyTJK7lyRZEckQ1Xa77ZkBkgxwcTZRjDOgNhqN+p1PJtO5YldXVwbp6apCQBF2bZBHXFxc+HthfUCnB2snJEkouOg4n0wmevHihWMwooZKpaLHjx87r6AjnVyYGAFAWalUtLm56TgDwEu8IGfj+x0cHGhra8v3jBIWYJMcRJqCoDs7O+7cJa9FFdtsNq3kR7EXDqNHaUvHTChAmUwmM51E/L7JZKJ2u+2YRPcxYGsqlbLoC5EAnt5851B5CxmHyIWOKERInJXkOMS38/Nzi6aINQAjdP+FnVvEYEl6/fq1YrGYisWi6xjIf9Y67wbSD5KTf5rNpmskyCgENChkJZnMZt3R1cffGwymcz+Yj8TsRmIYZ9r5+bmBFrqGQuETOTDdHYAqsVhMlUrFc5Wwj7m9nfrL0wnCOXzf52dA8FPDAsJBRobdxXRfxmJ3w4BZzxC51FMAlJyL2Wx2JtfCMQIbvG636zlayWRSn3/+ufc9AA5nOJ0pdOYAMPHZgEH8Hhwn4vG4yUbIB0SWiA3JO0P7Q3JWalniM98NN4x2u22wjD0ZWgtJd/Z7gLbYFUEeI+oEJyDf5dnwZxAodPDQ2Y4QEbITYFWS532G3TOIjwDcEHNAGqGM578hZuF9AOoxtxabIvYm59BoNHL8JOYh8IGMuri4MFhJng1gfX09nXcKQPz2enu9qYs6CqEE+wcxGzkZtTH2wdSJdGww/gBsZXV1VcfHx7YiBRthHhU4F+Ln09NTxxbOV+q6UIRMrLi6uvK8EmItOKMk5znUB1988YUePXqkbrfrehLCFscDuhaoIRDMcaZyViBIvL6+9rlBlwu5MoKoVCrlznIE0qF4GXwAlyDyUPZ72KVJrCf+McQee0bywUgkYlEk5C9/Ru18ezudhQdxg1CT7hyEddiCMVOZGAcWTD4H2QYOwrkpyaA/f49cH/EN9SQxGFKdeC9N8YDQjQTiiOfKM+HMBs8MnTGoJ8BCQ+cm1oEkYxWsuXq97rOVfB18jc5MSSb8FxcXnf8jwKAzC2EZuQfCSjAUsClyampTniukHaQa5wP5MlhOJBKZwbsREZDj0JHD50OKsQ/A6+mge9PX25k23/AK1SL9ft9gGkDi6empTk5OrOxCZQOAErbcs5Hw0As3BYnKaDT10QeUJhiiOBoOpwOtXrx4YZAMP0kW8mQymfHfg/wJgzxBFOsWNi5ejF+3CiK5YoOh6CuXy050SSAlObgTXCaTiW1gKMYSiaknJcVSyHBSVHI4JhIJbW9ve4Ogwjw+PnZg5TM5QGFjJbmLiPcwHo91fHw84/vOAYT6AUX1cHg3M4jknYOJZ0NwDP3ZYbVDsCFMxAFTeLYk9OF76nQ6HjTJYU/HA89sNBrNDIIlgKOgIFCyljjkUEUAgjJzQpILCEiUcI6QdOdZzTpfWFhQo9Hwmjk/PzcI3Gw2HdhpYyT4c5hImim2WYMkShwuo9F0mDuqvbOzM7XbbV1eXmpnZ8f7FGUKxBBAEc+CWRHJZNJD1lBE8J74vag0IQk2Nzd9v1dXVwbd7uMFmMLh1+/31Wq1TIrG43Eran7nd35HZ2dnLtK///3vO8lE5UhSt7+/7wJyPB6bvA0J3Fqtplqtpmq1quXlZa2trVnFy7sPyVZIP9YM6iUO20wmY2XEjBJoAAAgAElEQVQFoLkk/04UQ5IMSJfLZbXb7Zk5I5PJxC3NrNPT01MdHByY7Ol0OpKmQPe7776rx48f27O3WCy6uEW9cXNzo2KxqP39fe3v76tWq9kuDOJpZ2dHT5480be+9S0tLy9ra2vL4FEkEtGjR4/sr8p3HAwGtv1g/wOkch6FRXEikdDu7q47RxqNhuLxuMn0RqPhv7+xsWEgkzg9mUzU7/e915lrIMkFAADYs2fPbGnT6/XU7XbV6/UMlNDZ2mq1VCgUbCGEIjzsEKV7qt/vz6h8AE2I7SSC7XZbnU5Hg8HU33lzc9OFf6PRcNy8vr62wgylLOsl9DIGNEomk3r33Xc1Pz+dKUQ8prBCMczzhDBH4cP5HRIx5AH8PTz2Ua7TBQg4A7DBIEZU0fPz89rZ2VGpVNLq6qqy2awV8o1Gw3Gc6+zsTL1ez57YDG/nPSP2uO8XIDoqMSxesdY6PT11LsNMFN4JeVG5XHZHx/X1tY6OjkwuYPNEQRD6eZPfZTIZd7ZQ+AOA9ft95135fF7FYlE7OzszwiFUawDsAGTESgQRoT0PRF5oTTMeT+cxQUQDsgPex+Nxz9KjcI/FYj6bEWJwtofWe+R1dGpCDGKTSmcKpCGfl0wmtbu765wA8B9AmN9D7tHpdPT69WvHYFSGyWTS1pOSvN9D0oUOHt4HthuQyTwDQBtiAnuL3JE8B5KU84hcSJIVjxTIAD2AsswYo8g8ODhw7gUoE6rc8QbP5/MmAClYQwcBzl+sNTiLQkIlPIc5XyqVigaDge2fIZKkOwILEhrxQSi+AbCi+5+8DRKF+0smp0N2qS8gjzjPINIBOADHyFnH4/GMFQ1nFc8Oa6u1tTXn+1i3hrZZ19fXSqfTOjk5mYmb9/GC8KIeZt8OBgN1Oh13piCeot4BpKIGJL8KnRX4LDprANwTiYS7ASHH6NKgVnz06JHm5uZcj7bbbb169cpxizwBoZwk18I4JNzcTOdhsSaxviVnRXwHUYqAstPpeH9DXjDvhWdzfX3tn4fMgFwMxXkAnzhGhMQ0pPDX1fthXCZvw0o47AQKnQqYW9DpdIwR0J3Iuzs6OvLvB1s4OjrS0dGRn8fl5aWfFwRXWFsmk0mr7wFf6UKX5PgPscTzBRxkXiXCScQ3XHRJdjodx1Se/cbGxswsjbfX2+tNXOwXXGMkuSMAgBjRKPGAegbHDuJHWPdWq1VbmIJ9QMyen5/r6OhIktxNQUyU9O/IUxxgqtWqRR2IgUajkYVY4dl4dXVlEe9gMNDe3p7zRYRG4E9h5wj51+XlpTvlEIKTp0A6tFotz0rGPYM9H7pq1Ot1g/xhvRTa/dKdIWnmPAKDpX6k3uX8D0kQRNXtdtv5AtgR+VOY21GPRiIRHR4eSrrr2MB1QpLjDrG91WqZlEdUSX1ADcE9plIpd0CFwhlyCwTdvPtQKFGpVEy+I4yq1Wqu3ThTiInkTaFdLbOLwHWwkSN/Ba8AK5SmcwDn5+dVLBbV6/W0s7Ojbrero6MjLS8vzziX0PHK91pZWfH9c1/kqNS3h4eHtiAkr+bMpEMq7KyCBAUvpG5n/mg6nVatVrPQUrrDaTkrwbsajYaxeKxbcRAA54IsSiQSarVav5KO67ekzTe8IEZoIYYNZNFJMjgDMMMio4CDRaUIQnnJvwHM+Dla8ihgCbpsmLm5Obf5E5CkaeJWr9c1GAy0tbXlDhyCRDQa1eHhoUGmSGQ6b4XPJ9hRuIULG4CJ9nM2FYA3Aef169cO7s1mc6ZQhbgJA08IAEFC8GwYXEkQg/GEYZWmh2Y4M4N/ADFI2kPQDUb1wYMHnk3A8261Wk5wX716ZTCZIpTODQIganEAFRSq/P6wGEfRdXMzHRIdelM2Gg2DgaHiFSsqAgPgKMGdQgTlw/X1tZ834B7AzdLSkpVxFNnj8djgK8+e4nQwGOjgl7NvCFaLi4u2ZuLQYd1vbGy4YKA7imF12Wx2hhAKwQbIH9YI8yxQiUqyej9UJgBaMsNEkpWcKNfovqDYJ7GgAKDQIEmR5H3FsxgMBh7Cu7i46AMgGp3OzrnPBTsFNRZTS0tLWltbs/ob9Q7kjjQtDJeWltRut9Xtdr0nIbohi2mDDslHCnJUtPx8v99Xo9HQ8fGxarWa27ch5aS7gX9LS0vK5XJaXV1VqVTyHt3b2/OMMhQcEDKNRkMnJyeKx+MGzCGbIpHpEL96ve6OQUjRhw8f6oMPPlChUNDjx4+1ubn578gQSY697XZb5+fnKhaLWltbswqT50xBjyrxwYMH2t3ddYLI7w9VPNVq1S32m5ubJqsmk4nb44mzgKAMr6WggIyHnFtZWVEmk3GSL8mkbjqdVj6fd5s44AB2WSRWoW0a5CgdlN1uV4eHh7ZjTCaTKpVKVs2Ox2O1223boXFfAH77+/vuCGTdXV5ezoAcXJzBnHuoOSGQMpmMDg4OrLrd3Nz0WqeDAhsAkvjxeOxuRwof4jkkXq1WU7fbVSKRMJHFQG+soNLptAHUTCbjblMsJCnsQuKduRMoWAFesS/imfD36vW6CRZU+svLy+7Aicfj9sdGlYQV4G//9m/r3XfftQXr7e3UggVSIewmvq8X3ZQIEAC6JFmNGHbFhp2j/N1cLue8EcvOTCaj5eVlvXr1yqpEzilUl3QEkiew5gGpKDRYH5CNFD+sC+4HK1kEDICE5IPhGczfA6BkXV1fX+vp06e2yCF3gkSSpt3NKDTJV4g/xGnWOco38hdyKIowiM9SqWTgISQDOp2Oz+vXr1+rWq0anAesv7m58fyNTCZjWzVAZM4R9jNFXNixQo4R2k4g6hmNRsrn8zo6OnJuAQHT7XYdt4j1dC/xLCT5HsP3hTiCblLyLcBNSTo5OVEqldLW1pbfeQiqo/5HzSjJIiHW1Xg8tXaDRCZmcg6w3rH6hajs9XpeI7lczmAqynqA++vra3eW84zZM5D+gFmIJ6ifAL+oMcgleG6Hh4cm3Ji/R15HMQ/YwzmUSCTc2cQaJseu1+sz5yH3JMnCOQD9q6sr7ezszADK9/EKO4o4AwHREMsxy0uSyS3WHfVTJpOx0ADCldyGehrhBY4FfHa327XzAmIPYm4oJML3H5vcfr+v3d1dr3UEkKwTALP5+Xm1Wi2DpcTB4XBoy8eNjQ3nt6VSyfEa8p4Of2lak0Fm0HkIuUR9NBwO/T3ofEPkQV4jTWPOixcvJN05X1C3S9P9R46BiIfcFRKE84e8LewUJVYlk0l961vf0tbW1owLQTqd1sOHD7W/v++YzrMjToUzPhqNhkkUauPJZKLd3V3XkXNzcz6PIPhRt/M+ws5kVOjUBwglsPRkHuNkMp0F+1+DoOTt9eu7IC4gYanvyO/BznAF2djYMO6C0ILZNAC+iCEQiAHms46xD4c0AKdhFjbkZzQaVTabVbPZtLAG0SnnGHGJs5EcAdFpGCvICSFhsO0Fp+RcxrYQgiYU0aZSKbVaLecW5IEQK4iWeC7JZNKkMmcEXS6STIhR04KlHR8f+0z62c9+5jhHHkVuDRmDBRszaqg/eW7r6+sWjTBqAtEIGNL8/LxJNO6T3Onk5ETz8/OKx+P+LmFHMvkrz58cCvIAchDS+/T01PEc7CnsoEbUSbdHJpPxuiFWS3ed/ghKJalQKLhuDTtO5+bmLMiX5Jo2FGHgxAFBxv8ej8e2ByenxXIUrCHsUuZ3sgYnk4n3BGc094TgmzMCnJTPAc+BRAWH595wh2I/MzOdtQAWPxwOncuC5/C+yaepCZnFhu35G4873/QvRCKR35f030l6KGkiaV/SP0wmk//7zd7ab+bV7XaVz+eVyWTUbDbtZU+xFYlEvLkISGxo1OAUUYPBQLlczn7VgFMnJydutysWiy6gx+Oxms2mP3NhYcGgIIo2/AJRxDx+/NiAFm2FkqxkfPz4sZV+gEUcFKH6MWT0R6OpZ3Wr1bJlx9XVlcFNaVo8v/vuu34mECkcSru7u/4zQDACMsVwNBq1/ct4PNbOzo4JgWazOaOACsFVPEZHo5E3JAGRQdB080ByjEbTAc2oBxnMurq6qnq9rvX1de3u7nrmCff3k5/8xOrllZUV//3JZKKTkxOdnp5qZWXFNj2RSESvXr1yS3c+n7fXuCQdHx/7QOZQbDQampubDhqnRZ0Ch0CHBRwBHDKB4MQ7AKBGQYUq4OHDhzO2IZ1Oxyw7IKkkH1adTkfvvfeeQQMACgAEPEZRpJKUhD6RFOiSDBjw/uhAoyuMIB2qQyuViudZcBCFYPTKyoq+/e1vm3AMO6t4H1zPnz9Xv9/X2tqaHj586LVZq9UMRrBuuf71X//VXvWSvN/vsz0ayhA6wyjKd3Z2fNCShIb/mwOXVmg8tAHVKaaJgwDZKC6YjQXJS1IACEU8XF5eNmjY6/U0mUzUbDat/k2lUp4TdnR0ZCAqGo2qWq3qvffes9KcRLJcLiufzzuxGo1GBvsAbZaXl1WtVr0PsS+kPZa5BBSh5+fn+t3f/V1Fo1E1Gg0DSXQEAlQBCoxGIx0eHroLEMK6UCgonU472WPYXiaTmRl0z2wVCCy6RElmpLskXZIL5DAm3N7e2id+NBppdXXVCnN+js5H1goJXTKZnFFsXlxc6MmTJz6H8vn8DFE9Go0sOOBMQ0VFK3kmk3GX4vr6uhMnEkpUZiR3y8vLXk+cN4DYANAo3OLxuFWbAFOhHSgDq1F8tdttn+sowyVZvfZ1j39ID4qF1dVVrxGEGHyfcH4YsQbhgCQreGlb595YJxRoPL9cLud3dXJy4o4QQCnOjqWlJa2vr7sA4TtBUlDYFAoFdxWEpOl9vcjT5ufnTQJz9jLMnII1tMmBJCCnIpZStAHkb25uKp1O/zu71lgsZk9wCnDiF+cbdkJYiFFs4/tNToGtF2DW9fW1rXCxd6AQJBYAQLB+KbpRyYc+3eSrrAWAO3I7hCicraF6vNlsen4cBCBFmSST/OQKFxcX7rgJ94c07f6jKwzSDMETQ7ilqVIbZRxFefgd2BMQDMQDin5Jjo90wk8mExUKBf++TqdjG1Bi7tcVg9h9UB+Q00K4YEU8Pz9vWydshTk7NzY2VK1WPQdCks9eiC9JngWE+IQYT+4DEEosxGudznTuBRAE8RGdWdhSQA5Vq1VdX0/nyPEuUElyjnJ+XV1defYn9Uir1XKs5DyjU42YfX19rQcPHvgcq1artqpEbELHRiQytRDtdrv2nEcV/Pz5c33nO99x91i73bawis5HYiVWp9w/oPF9vpgbQE4eni8IAsmHqVUajYafDesGSxSUzoBv4UwUfPWZDUcHFHYmKysrOj8/t8V2o9HwvChiMHUU8Za5RXR+hAASMZP7RLQyHA4tEkOkCOmCyIzuf4BP5lP1+33HApTXoY0X9jRY0VAXkTdHItOZqFjCXl9f6/Hjx34ffEcEj5zpo9HIZMzV1ZVjGWIOSOivD2zGpqhSqXgtIyS5vr7W+fm5Dg4O9NOf/lSbm5v64IMP/CxwpeC+JpOJnjx5om6363yI3A3CBUINKx3+LvVl+IywlaJTkljLuSdNATgEttSkb6+315u86I6lAxoBhCSD0AD0rPNw5i5inVCIAZYGqUEsCbvEiIdgjkdHR54BQz5BNwDnHMTOYDDw3ycvpEuV/KFQKLi+ZLYL4nJiF3sqFIvgIkRtQi4DFjqZTFQsFi3MpX4G97m+ns5WCeMEoDeWi9jcAsBjSd1sNlUsFpVIJFQsFh2j33vvPb8P6jeE17jjgFtQYyJUo3uIuS2cX5BXYLqI28Bc6TQij6IGo6bHAozvJcn5eyaTUaFQsLBxMBjYWpLPJC8mB4EsIB8mh+fdh441oahyOByqUCg4d2RN8w/ieM5xXBjAH6VpLXh4eGiBNuJQnjUYLOfjwsKCn+vFxYXrdjpOES0MBgO9ePFCpVLJ7iLUL7wfiFCeIS5H0p1ADry22+0ae8bKGhKNMwIBB/kmop2wyxzHHrqFqNNxtYjFYsYkqaff9PWN0MVIJPJ/SPpPkvqSXkiKSPpvJP0vkUjkf59MJv/rG7/D37Brc3PTCq1sNmtAGJsUkn5UMiR9FL9cKI5Dvz3sY9gwyWRSv/jFL/TOO++48JPkAMFiorgKOz+ur6/98wTQfD5vcIb/1ul0ZgAkvBhhbEn4Tk9PDTiSrML4owgH5ENZQBFIcg6xw/8PPXsl2Q8SlQ0JGoVxt9t11xEJNMUiLC6gPF6HBBKGYa+urlq9RPLKc2IGRSwW0+7uru8RIBiwFe/jSCSira0tJ5MhOcVzo6CHtIhGo1Za8MwpJDkASIx5Rxy6gCcoryg8ALF5VjDOCwsL9godDAYGWAlsGxsbLpLoNpJkJSGBnqBJS+DBwYGHuV9eXs74UlJoAzZBlFAsjMdT+7WtrS0XR4AA7B1AlvX1dVsAUZSHtlmlUmlmv3FI8T4AfikQSK7i8bgLI549XWIoSbBRaTabnucBEIFCn4OfbgjAZpKA+3ihLMEKkOQP/9mzszM9fvxYyWRSGxsbTv5IXlEysA8hrAFwrq6uVCwW/X6wMMlms55zEovF3L6dz+fdGYc9CuA1gApEijRVO5ZKJUnS0dGRdnZ2TEDs7e1Zvcz+jMVi+uCDDwzsn5+fq1QqOR5DMjSbTbd4k1CNRiM9ePDACkPiKFZZkAYbGxu2mKDbhn+HXXp0fJCcU3CzTuPxuAlHEufT01Ntb28rmUxqZ2fHADGJD7EF+5dHjx6p1+s5FtM9cn197SIYEA/SAkBtfX1dpVJJ9XrdKiRsCknImbXFvqvX6/4dnHuQOJL8u1BDJRIJdybF43G122299957PgMg6UjmIIdJqJiL9vHHHxt4Ca3HUCdBZMdiMe3v71swgOL68vJS2WxW29vbur29dcFweXmp733vewZwSc45j0imAeVbrZbfGTZFYXJLx048HtfOzo5ev35tlTCEZ61WU6FQ0OXlpXK53AxIRcwjuSQJT6fTBqgZUg4wvLy87L1MBxzJbNi99vjxYwtGvve97+nq6srn432+5ufnvR6JHRRjdHRwHtF5A+nFebS0tGRihW6zkOhrt9sG5Pm8arVq21NIB9SWl5eXBjrZe2GHLoU8AF2/37fYJRRlSNOO42azaVIJcob8Ip/Pu0hhDYWWUgzzDrvE2CM8n3Q67WKOP2d/Yb1EoU/hTi4SklR0a5NfIqDifaBQ5LmiIg875M/Pz30ucc/kd4i0INMhvyBWKXgRowCuoJIkp+O58PnYVuRyuRm7xnCP0ukTCg54J+xhwBS6PFBHEq8oGlGPkm8ilKC7MASgr6+vdXx8rHfffdd2ITs7OyajBoOBhUGAtJA15L2QJ4eHh9rd3XXHwfvvv6+TkxN3Z4bEM7+/2+2arOY5x2IxD2zmfkNLXTp9yBVRQ37nO99xXOeMQREMCcp7gXS8vLzUxx9/7DPu5ubG5zHvhw4yiAvEQtzffQeJIUjZF6xXHB8kGdi4uLiwJz2xS5K7MBA+8BxxQ6CWo4bMZDKOdbgZkB9Go1HXC6VSyTVmKpWaOccSiYTfa0i0UFPwuRDZePTTmVUoFFQul/Vbv/VbMyQt98n9oWpmP6GWx74FQU74O0Prc2IYGMLc3JxrczrGqG/DvQ3wRWcQZBpqbZ4rVmrE07CTJ5x5l0gkLI4ql8smzba2ttRut/X7v//7rvHAMchtO52Ozx7yUWZ+YOt5ezudgYpQCdAO0I+8kg6FkEBGMCDJZxQKdgR44DLEx7fX2+tNXcvLy8552CPEFLqt+QcrRWoXSTPAPyIzBAGQrdQCoaCCHIrcZWNjQ8vLyyZPANnZ/5Aio9F0PMPCwoItxhF0EQ9isZiOjo5ULBYtokun047NkkyYS7JdL0JHzj2s48NuauZdz83NWfRDTEomk1pfXzdGR+w+PT21oCIURZEfMHeQcx0hKU5A4KqQWWGOgEicOpD4t7KyYoKEnJEuQMiT5eVlzzUEPyXugCtxPwh7mUFDDjY3N6dCoeAudvAkztbwO9PdCd50fn7uOpf3y/mTSqW0vr7udZRIJLS/v6+NjQ3n2r1eb0ZYiiCVcwzxJdZ+iGnCP6MupL4P82k6Yjij6KyljhyPx+5aYZ2AddB9/eDBA1tPQ8qD84Rz6cJmCHBPPpd8Ays+XKcgf/gZ/jk9PTX2AJ7HPqROQmgKAXZ6eurznVqbrp1fhXjn/3dmGYlE/qOk/+mX/2Qmk8nHk8nku5LWJf3Pkv5TJBL5b9/4Hf6GXagZYWSbzaZ9D8PAE41GVa/X3ZZN8ggATmFNQQpwFrbGTSYTbW9vGxgPfWdRRdOuDIAjyV7CqM1RtMBeh/ZGoW82TCUWVhSXgOAU0oB44QDaubnp8Hd8gVGaos4ELKCgI1jUajVVKhVJ8mA1DihIKQ4cFEuNRsPfk2CLgpTARWFL4OD9hO2PJycnDlIcbrD4gKuhVyHfn8FygNAceNgxoHBCxcpgSu6TdwtAzGGOf3av15vpMuGgSafTvneGakqyPQrqrlgsZoUEAT8EQUgECDq0wHKvKB34M0ADOq4oZHjfFLoAhL1eT81m0/dIqysq3dXVVVsekHxgtdftdk16UIwBSNNay3MH5Oc7c38QJ+yVw8PDGTAN1QvPOiwo+W/Y0NASy56MRqfzSfr9vod/cl/sEfbTfbxC5QZ7FDVIJDIdHEuh1Ov1rHRsNptWiy8uLs4oLLrdrltgITawuWFIMG21ktwFgGopJLMled9Vq1WNx2Nbs5TLZSt/UT2hwKBj7fz83EoMhhT2+31VKhV1u13FYlNvWDpxeAbszVB5dXFx4e+GPVg8Htfh4aELZrpJAApQWLfbbd3c3Ojw8FC9Xk/lctnkLKAFZBdtygsLC+p0OraPAfyq1+t+dhBPnA39ft8t1sxpGg6nw/8AdyG8+AxiAWALStTLy0s1Gg2DkPitY13D/iPOhYABICs/G3b2UJAAiNI5c3JyYmUTFkisl3Dt9ft9dbtdWxZg1cmZgi0e8ahcLmtubk6ff/65AZ+Liws1m02Thevr657HxpnAWd9oNNRsNmesNImJAI7EOeZCSZoRPTSbzRlwMRqN6vj42EMt6eZg7TAvrFKpaDiczlkJO20A5SmUOG943hBMkUjE/tfkLOQyFGSQepzvkry/sSy6zxcWT5L02Wefee3yzObn511Q7u3tOaf6OqFFYcYaHY1GnqsEcAWZjYounM+GWCgEpL8uokCtGRbn/O90Ou0iU9JMkZ/L5UzsUVTjGU0+xD5FNMF3IiaSj52cnHjeAwUV94T1KfdArsb9Q6Aj0OHsxv6CApuzmZyBfQgoAGgi3YmD6K6mI48udDp3EomEcrmcifFcLqelpSXHb8DU0JKx0+n4+VAgk0tns1klk0kT5ijEmY9IfAyVql988YUVkhAy2NpRwFOgh3aNIVhCvYCNISA4BDn3DgCP3V2lUtHi4uLMXDRmS5Avcf90c7bbbYMTEEuAPDc3N7YbxlKUWAJhh4UyZCQkG/UG8R6QF8CiUCg4VwM8o3uX+DkcDp1TM+OIMxxL3mq16vObznzuLewqIvfmQiTCeyMu3teLbq3JZOL5ggAUrLkQ0FxfXzfZyd8F5GN/0qVDDODv4y7Bz2BVSkygC586otPpWLhAPKDGQ8FM/kJ3D3kh9qXUipARkhyLlpeXff7y+wCbUABjm4ldEB2HfD8sBrm3cG4CcRPSnv0KYMaeDy0mQ1syiCLeRzKZNDkpyV1Fm5ubjkE8Z8hmSf4s7g1ynJ+hjuUeySOxQ6KrkPw3Go3q0aNHfpaQPYgwk8mkarWa11A8Htf6+vqM6hvrS8jm0PIJMBbhDST+8fHxvSdR316//otznP0TiUQsSobEr9frzuMAr9vttoXI6+vrmp+f18bGhvOP8XjsvI6uDuLB4uKic7NOp+Punna77Zzqq6++8hkGkYoIlRwzHo8bHwtxJ0nufFxdXXWs++STT3zuJpOzc7qpN/l3OLsR0oCxDsQ6bKD5GWIPuUu73fYZipMAwjqI2YODA+//VCplIolzHnKB+orPRhgSi8VUqVQsngxF3+R8YKcQXsRaSJeQlAbfoLP37OxMx8fHPgfAPhG2MM+InIE8GwIHHJHcBwE6VnaFQsHz0HmfnHEQFNQPe3t7xkUQ5jF/nVhJDYgAP+wIx+0DMQOuPzQJ8KwYfTAej925TqMAQgrOyJAkgpgEywEnx7ZYkgk63H/oTkPoT00SuvhMJhNVq1XP4qXjnU5Scl+Ex5ubmz7zWD90ioMVsqbpuiU/5nNYC5Bmb/r6Jp02/4Ok/20ymfyf4X+cTCa3kv4mEok8kfQ/Svq/3uD9/UZeWDQlEtNhQ9g1dTodraysqFgsajweu/Uu9D1mdoIkbwg2Agrys7MzM/csboKENAWoKTpZ3PV6XXNzc0qn0zMDkFCsTCYTe1nymZBNDHCmqCYZJKiTUKFmYYYNQKEkkzPYatBOyPci4Ia+kSS5kCyQRBA+FEEUd6gOAfUB3CjsIA74XLwZOUQhTUiiM5mMAQOAXYp1AiTJfDjkfGNjw8+Wd8shTEcKQYEik8+t1WomhlBChgUmPogUvZAnEEOQM7TvMWCW58gBABON6gqbIp4Rhw+AK/eM/QVqRZJoDlzpri04tA7Aloj2fwpgDlhIl9D+AAKAwhlgioOP9Q0hg9IX0AZGHpCEtYBlAj7KANwkNQTqcrnsNkqSfe4P0hPwjaKEA5zkgU4cClCSs/t6XV5eqtfrqVgsem+zRika6R4kNj5//tzqbYAXQMa9vT1JslKaRAaPbUgSLKg4aD///HOdn5/ro48+crfgz3/+c6tQotGoW6NbrZYODg58gKO8gJTD3geQO5PJqNvt+r9TYFYqFX300UcaDoeq1+vK5/MGz7DL+bq/eiqV0uvXr2cAscePH9vWS5LXJInuwsKCQf5UKjXTCUkxgK0XMf3p06curEmC6MQjUehY9S8AACAASURBVCFZf/jwoXq9nlqtlt8r9h8Amy9evND29rbG47EHzqKOodAej8eehQK5Ld2RZ6ht5ufnrW5ldgDJpTTtICKBw24DYC+bzZogfPnypdcaMyX4nZBVXABFrVZLx8fHLl4oEsLkXJKJGJLaZrOpXC6nTz/9dMaXlvPz/PzcXuwAsNiPoriB9AiVPKjD2QPJZFKvX79WrVZzrCsUCv4dkElra2tqtVqer0AyCAC0uLho+zySc8jky8tLra6u6smTJ5qfn9fz5899z6VSyQQRADwEA6QbqkEsR4jHKOKq1arOz89t/8Wevq8XsS4ajeqdd95xBwb2LKG9AAR0vV5XsVj0uYfAgiKJgoZCiYKdHJMYhDqZODMcTq1Md3Z2dHt76w7t09NT5zSo0UILKdZPNpud6VJjb1MAonwHrMaWo9frWTUeFsNcEEN0j5CTAexJd5Y+rDk+MxSnhJZVxEbIA5436xNBUa1WUzabtT3rycmJZ9BxH2EuDDkfEu4o3AEmww7P7e1tk2uFQkGSbGHBmcV+D/3rLy4uXLzjcS5NQZLj42M9ePDABDCEWS6Xs1VyWByHSnliJ0WkpJnfQ/5N0YrAihwHsRLPG+CJeoP8ipxHknN0crVQTEDH4WQy8Tl0e3urra2tGSsxcjO6EyBfJpOJXr9+7a4rQI54PK5qteqOzZWVlZkcl+8bdmJQt0DU08VFLss7XlhYULPZVD6fN0hOPk/uSJfRcDi0ypp6AlsryEv2932+6AZkf4YgDHkRXevtdtud/qGHfiaTce4Udo+QG5A/AHIBvhNbiTEhGIQF483NdCg0eR/vjA5furzJLR4/fuzYzJrm/MTehjocEVg+n3d+ADEMOcUzwZqMuiiMK6w91qk0xReOj49tf4aYkvsgz1taWrIQhJyDfCSZTKparery8lLb29s+S9jjOBhQ+0A6XlxcONcjnmNhSW2LUCebzXo+JHU6f++f//mf9fjxY8Xj8RmhAcSRJHfLhYBdqVTS1dWVc6mFhQWfodwjQpnb21tbh4c2SyifyaEKhYJOT08N6r693l5v4iInouNXkvczwmXGJ3BG0TVCDdLv9+2EAgmJLRmxZzKZzHSQ4jhDxzZ1Dznht7/9bWNwoU0q4mDwJT4nEpnawNN9eHBw4HnddI8jPmJ/01VPF3JY+xHPyVMQLQN88/1jsZja7bZFgnTvEqvIQ+nW5hymAwdLOGIt4DqYGEQVZz3EN3ks+QUxOcSuwAB5t2EnNrkKc80588ghwWJxeOHnsVmX5G5vMEC6zsFUQjeN6+vpPN+zszPfI5gBOR9iAM5HcmzOjng8rkKh4POCrq18Pm8cE4ENNQlX6EJB/ZrL5SywAVusVCoWsNKlSVcSgkjWKf8b7I97pTuJWh3RFfgMXUnsiaOjIz19+tQ5A7gE+QeiEYS5jIdA0EXHPWsfHI91g7CJOWvcEzjs4uKiarWaxXoIThCR/CrEOxGCzf/nD0Yix5L++8lk8s//mT//vqazbbbf4P39xlyRSGRZ0umf/MmfeHj16emp7WEoTLvdrrrdrrLZrBcvTO9wOPQ8AUDJ/f19/Yf/8B9chJ2fn6tWqzkR/fDDD70gb25u9Omnn2p+fl7vv/++AxYFa6PR0GQysd0KgeSLL75wAIAIYEHBTOLvG4/HDURT7EvyvJdOp+PFyaZMpVLuLkJtt7Gxoe3tbbOSMPC3t7fa3d2dsf05OjrSaDRSo9HQxx9/7EJ/Mpno008/VSqVUrFYdICIRqP66quvZjYTRSWHHgl9KpUysQQjHbbxhcMxeS4owFEYhcn+7u6ug8ZwONTBwYGfIUkqCvEvvvhCq6ur2t7e9loYj8f68ssvrSzd3Nyc6fJ48eKFzs7ODDKyDmixRdkkyWqmRCJhtSbfEd9LDm/2OWq0RqNhsOjq6koff/yxE+PBYKDDw0Pd3t76O/Fsf/azn7lNfXt7ewao2d/fd8t6sVicsUDq9/se2kebJc+UribAiuFwqJOTE21vb5uU5PfAZEvy2kMhAQjA38GmiyThiy++0GQy0cbGhp8bh/Qnn3yi1dVV5XI5tw1PJhP927/9m6RpkZjJZKy8vb291VdffSVpWrwWCgX95Cc/0bvvvqvBYKC/+qu/kqSVyWTS/xWFpF/rRfz70Y9+pOXlZbethkprwB8SHRJXkiK86knE+O8U2S9evNDy8rLtdwABUA5SOIekBAcs6mQAGlTvWFHk83l7DNOpQwcgiSjqEbzru92uW4iJC6g5AIkgqjY3N+2pHlo/UshCsEBMhsQ09m/sPwp86U6NCogryaAapAwFgKQZUUC4V0hIIKoBSDgjIDyZB5ZKpdTpdJTP533GhMKCaDTquEtCjkVc+N7Pzs6UzWZnEhjiEoAiSjXiath5w2fxDCDEAARDxU6ouuUZrK+ve24FRQ0gJrEQ9SiFAXZjrNNarab5+Xl3E3EmYmnH2UnyCxjKWg3Bw6OjIw/z5gwJvaAB5PnOoZ8+CXxoC0RxFMZTziOAV/4uln98dkg0QuwDNhLjuUL7L2wAOTfZP/zewWCgP/iDP0A5eO9i4A9/+MMZKyk6wfj+x8fHevr0afj3HL8gLwHfATTxR2Y/opxjhhSAsSSvFc7xQqFggJBOcH4f4hwENXS6ra2tqdlszswNAXCQNAPaxWIxrwvA03CulSQD5eRKdDpTDJFXIFahGwdVpiSf/VjnYFERFnzEh8XFRXdthOAo90684LuxVwBG+Kxut+uuIzqvNzc3TaozXya0TkBxSC4ajUYtkoHkCvMt9hufQz5DkUo8Yn/zvZljCICD+pUaYXl52V3/4dkGOAKggDUk75eiko7Z8GwjVnAmAR7wD7kU7x8yKrxHyCq6FvEV5/P5jNAWDzKQWE1MI94fHx87p6QDgp9j7aEixl4VMhCbrn6/b5IH0Q+1GKpUrC0A0lnbvEfIsGQyqUQioePjY8+qW1paspXmcDjUH//xH0v3KP5JdzHw7//+7z0DAOAFOzu6qEPveUleb6x53kG9XjdZzTqDqISMxNYUSzHiEzaT5ECAfRAg4Rql1iBOU79KMmkQ2iAj7pHkuBwS5oBVrHnOfnIwCG3i8qNHj7znsa7M5XJWoYedl4BX5MkIOcnDOMvpAmL/UhsSJ9lb7DucNXhexEZyOPYhOUan09HV1ZXPOc73yWTiuTmcR61WS7lczvklRHbY/QjJw2fQDUDcDwldYjdiF/Ih4jeiOnJ3zj32OEJNaSrq+fLLL/WP//iPv56N8vYKr3sZA//wD//Qlp2cbYhTqYPa7bYF3GBekMLscwD88XjsGEjMwuIPIJ+aBExGkvHGUFzNn+F0QFzLZrMz1lsIhYmLkvx3w3ECgNWIkxqNhjvpsOkajUaqVCoqlUqOsdRldCIR/4i1/AwxiVo0kUg4RyJGRSIR/16IALA8ulEQzYXW98Tf+fl5zyUhR6Ve52eJn9TaOFJsbm5aIASBQX6M/SU1AHVhKGSl1r66unIOKcm5fyiIoS6jdoaIlu5clLa2thwXid+cKVzkRisrK84PeU509fxyPZv4Q/iErXwkEnEuG56ZCBRCi1ys4/g8BKOcvYg4wWeJ14PBwN0+iO/z+byJedaBJL9vMJaw856fYf1w9pLn0dWbTCYtAAYHCTu3WY+8X/bcaDTyGcXZxVqmAwhii/P57OxMP/zhD6U3GAO/CWlzLenRZDIp/2f+vCTp5WQyuZeG5gTqP/3TP3WSId1tbpI+Fk5oIQGoziIFSKYF/ObmxpuT4hYganl52aw4CWoI7JDsLS8vuyUb9TifQyFHMA/9gGOxmAc3htZRtMfxc2HSKskBAxsb2gvpwEgmkzMdRtimEJi5Hwq3kCAh6EYi0+GLKBYkGUyvVquefQOoenZ25iAGqAdbT7BAxYklDh0DtDpSMJ+enloVxHcmIeT9sTHpbGFAKkAyg8DDwylUbjEwEkVANBpVpVKZAW9QUmAlglqdpJv3OxqNrHoIbUgATlh3FBKVSkXLy8sGn8JEfXl52epeSS5qedb47/NeKV7wriYhoXBLJpOeZdHv9x3wAQQymYzZakBG1vf8/Lyt4kg2YNA5HAAJJM3MaKLDh6F+x8fHntfDOg2BR4L6eDw2eFUul60W4SChmGS9ASbTsrywsKAf//jH0j1KVol/P/jBDxSPT2eJxGIxbW5u6vDwUE+fPjU4RZstgFcIsOBRK8nPkGdN4YjKjsM3VDTlcjmrJDh4Ac3xlIVwnZub8xrjXVP8sgchflDmheQECUvY1gyZCOFLdwYgGd8f/3HUKLS5Q3ABZkDmzs3N6eDgwARr2LWWy+UcB4mNIWjMdwcc5XvRRcZ74awKO9zCLkiIJfYU74/PBgCEKCfRhqCgoyD06QXISKfTM8QGawEAFuKAIp33xb2yhkisQusvZoBFIhHV63Vtb2/7uaCkIXm9uLgw6AOIkMlkPKcOAQJrBCU54DFrE8AXyyKKKJShgNMQQIDYEJK8H7qqAO2xmAMQAawg+ee7ojglFnMuht+Dzi7mweGlDaBD1ysWLwgDWCO1Wk3pdNrdDaPRyJZa6XTaZwkFSb1e97v9wQ9+cG9Jm7/+6782YE+XHXkZeQgDlcN5ChRhrCvyAQoH1kK4pxD9MLSVYpNCllyAdyHddbBwjhFjw84yST7LsSBAEBISusQHSD32Ui6X8zlPwcg9YDvEPVD8tNtt51lhrCfu8GzY94AHxFfIfYggwHsISs70dDqtRqPheBwqJ3n2YQcw65mYARn8y3fufJucHHIfayVyAD437LwiT2K9ANigTGUoMH9OlztdjMwK4Wzi7/JuOdOICZDvISkTj0/tD4mFITFIfOa58n75/LDLgLhBty1xnjMY4AMBVqFQMLCC8pHnyVqClApVsSHpBolCvYQNIXk+AAJnJuR1KpXymUuMpuDmHGZdsn7C/QTBFna4U/PxTsm9qd1CIKrT6egv//IvpXsU/6S7GPh3f/d3Bg8hSVhTACPRaFS1Ws3DtofDoesIyA72EeIM3h+5DPWCJNczCLzYk9QK1ER029G1T4cx+Sa1FgIE7HBLpZJjAIAQgklmkbHnJfkMvby8NHFHjKeGJndBiMfz4ZwcjUbuLqFTle8mTWsv8klqbvIe6qvT09OZLj/qVABO6tFWq+U5oFjbUlsCooVOBHRBYh3I90VwSA4myZ25xHj2DL+HOBWPx50rhcR6OPOBmgz7Yyy+iYGsmdCJgn/z3CG2eEZ05//TP/3Tr3nHvL10T2MgeWAotiO2gQlh+Y8qP5VKuVYhTzg7O1M+n58RPyEEhQiCeCD3CTtJ6cZhz4SkOHkp4jSIG8QhiBPY8+wXRA/gIWEXMkI5RCbSlOABSwPM52zgfiDAIQ7Ib8lZAOfJySB3+b0QNeSx2MMR/6UpVnd4eKhHjx655gIHGI1GxpcQK4d1NEJ8ZrVCJAwGAxWLRb169UrFYtH5MGI7Oo/IR/geYH7U3XTKgxdBsoQiAvB44iE5GnnZzc2NHWfIz7DvpjaGWKFzhryErhfwv0wmY+cLMBhq2fB8Ho1GKpfLtg5DaFipVIwDkB8lk0nbsjPnhXvEWpx5rThAIHjiGbJXIG3I3Xk+1KKIGcH/ECGAMUEysn7AD8kJwHdDZxdEC+RxoR0q65IOUxyq+I48O7BO3v+PfvQj6Q3GwG9ij5aU9P82YXv0y5+51xfKnDCpIzACHrJpCWyXl5feaGdnZ8rlcg7uKIrClr5wUbZaLf83LhandDeoGQIE5RhDxLgPfp5Dg1Y8WGtJLi5RpRE0AaNoQ2QjA0rmcjk/i1hs6he5srKiZrM5o4TH051NDrtMJwn+nAR1wCY2VMjacuAR7CBqSOwAO8LD7eXLl3r27JkTXjo5eKavXr3SxsaGPxe7u0Qi4e8JyYbXIYBFOGBL0kyBiNoVxQXEHs/i9PTUhQ+fA2FycXHh30lyDeCDTR33xfMMu3pIYEmiSZpp3eReUZLye2ll511xyDebTe3t7RmIHY+n/s2sb+4DdRagCYMjKaYpWng2HBqoRur1ugeLAjiT7LCmsFLgcwCWKZQ4+AjcrK2QaJU0A2xx71hsQWzSgcChwt+lRRbLAMjI+3qRCEFWXF5ean19XS9evND6+ro79RKJhNbW1tTr9VStVm2hAJDMWry5uVG5XNbu7q7m5ub0/PlzxyEOcYrzSCTiFuGrqyu9evVKz549MzGRTCYdd8JEE2Vtu93Wy5cvVSwWdXt7q+3tba2urjoxAyCHeO12uyqXy47teJ4CLKJUIiby/XZ2dhwfQvUkc2mePHmi29tbEzusY4ghkhwIp1BxQuGPUgpAn6QBJWWYsDF3jfVLzKpUKnr27Jmi0ait7FCmfPjhh1ZwA9xhU5LJZHR6eqrDw0MPoweom0wmevHihSSpVCpZSUTcJh5Jd/aSAMbD4VDVatWfNz8/7842SC0IaYi/eDxuK7ler+eCR7oj2wHxsATa2trScDi0TVulUtH6+rp6vZ56vZ4Gg4Ft5vgdo9HIz7NYLOr4+NjCBt4z4Ch+8wAQx8fHJnP/5V/+RR988IEkOVmm8AMUwe8e5TxJdzqd1vPnzzUcDrW3t6fRaOTvfHNzo1qtZsL6/2HvTX4k3bJqz2W9m5k31jdu3oV7NPfe5PKQIBFPKt6E/6D+AcYlPTF8pFAOkJgUDBhUSTWoISNq/EollURNUwwAiUy4efNG5+GNubm5NW7mvbU1sPwtPxYIvUwq4CVe8UmhzBvhbs33nbP32muvvQ7Tkoyy832JZycnJ9rb23PsR0ULCMdS4ejoSJVKxQSYJHvt39zc6ObmRqVSySP12IQ+5YumJTkA+xZILvAGa5WCJrRw4ZlBJGL1RzFDoQYBf3Z2pr29PRfVNFWIU9jWffjwQVtbWyb22EfkRBrG4B6af5wTRWHEz5LTKXrDXBg2diDQsHwkVoNx+G9iF4Qfjc1yuezzUFCuSguMRGEOKcFnI26gCKRxQhN0Pp9bRYd4BQKEewcpyARUSBwztQFWhhgOm/yRSMQ2IzSiwNU8W54RSkM+83fffad4/PEQcZrAxMvwjMtarWb8S5FKg0eSm2E8Z3IUTRaeD+uTOoBCM5w2QS1KYyKcdGLNSLL9I+phyA+EP9xnFKYh6UoTKZfLKR5f2J4RfyBWpMcJ0dFotDRVzdQfzzMUyNEwp+Cm7gqFC9wjScYkEE1gScQ9FPKSLJ5in/Lc5/O5BoOB6vW6Sa2nfHFWEOIV4hmkOQ08plDAZ+FkKzEzbNIQlxBWbGxs2DKX6fiw1pTktcrfUXuF7y/JuJyGKURSPL44OwVrY5pF0uO5Y9vb2z6f8O7uznZH2KLn83k3kMLYCPmJUA2MPJlMPJXI+xaLRY1GI7VaLdVqtaU9mc/nXeNSZ4KhsWsEJ1MX0uyiUR2NRnVycuLzJDjfSlrYyf7sZz+zswLYAmKV9YzIEnERMZFGJmepEpvX1tY8gU2sAxPSpCE+MFVA/gTvgp0bjYaSyaQxLOIknjscATwKNcPq6qobc5+vz9enuuBFyDuIqmkmlMtli1bB2eQVcm8ymVS9XjdfgU3k3d2dPnz44H2PHRi1DFMJR0dHajQaSxO/1IAIw8A6TAuw74lB5DumsWk0hE1VhBLktvCQ+16v52k+LKjIyQhd+Dyh8wtiXMRINJ6YoJPkHBO6JEhy7GG/dzod48/9/X2/HjxTr9dzrQ+OQBDA2bNwsjhOhLgA7jJsHmO1HXJ98A78Hs+EGAdXgLgabEzegXdCxAX+AceGGJZ7EXIt2FZiE48YCSxITkJogmAJwRGNCuoHsDD2woin7u7uVCqVfDYQ6x/BIa9DzKcu4TPCx9GUpHFCs506mCkkBLxwhbFYTN9++622t7cVj8f105/+1G5MpVLJAwJwSYlEQu/evdPe3p6bih/jX7h2Gol8dtZ+6BADd18ul9VsNlWpVLzmarWaBwR++tOffvK488tM2swk/W+Sbv+ZH8lI+p/m83nsn/n3f9dXOBKJcp+gQHEY2j+FG4UNLslqQMDreDzW9va2i05UORRokFYAvDdv3iiZTKpSqdhOICR8WNCRSMSdzrdv39rCAzAE8OIzoOIFQBMUCPacN0GxDRE0ny8s3fCGZMwMIoL7AClJAsEyB7UdZCEgHRsHOuGolFFkcc5Fp9Pxdw4vCE+C3cdTQIDvsMgMlQNMTmCfQfClqIZMhugYj8c+ywjrHw72ZvwUUpUmAvcYhWkmk9H79+9d3J+dnWlra8uFEYR5OIaIIpJkT2LlnpNkVlZWfM/oHK+trTnJMz1Gwy5UtieTSQOBd+/eaTqdan193aADlTz3Mp/Pm5iAIGTiikIadSpJLPz/YeONaQfWOIkApSzWajRrIOgvLy/t+0xDsN/vu/iAHJAWKrGf/exn9nAFdORyOXU6HRMZlUrFEwOMoYYqV4jpm5sb/fmf/7n0hBRGxL///J//s/cACR0ihHiEeuf+fnEOTD6fd8ykgOYZQnzQcBsOhyoWi2q329rZ2TGRhwrw4eHBZBoJmdhBM3tjY8NTOGG8k+TY2+l0HBMBr9Pp1BNzqJvZczQvabjf398vrfPQVoLPwihzr9dTqVSyXQg2RXd3d6rX624uQ3oAmqSFEpspj8FgoK2tLStKe72eyuWyVV4QqOQcGmiompgQYRIAsoDnKD1Op6GOChuk7J1QPRWOlBNvpYW44fDn3sh8ZkA335NpKqbtIFc5eJjJvDCPcK/Y56F6HOU/cbDb7apUKuni4mJJRct3wVs/Fotpa2vL58QxtffxM8X+LlQlHR0daXNzU4lEwgQrE6A0tLe3t3V0dKSdnR1jAXIanrj8Dv+GGimZTC4VHJDB796908HBgfECpPf6+rpisYWvcqlUcpwivjMJ0u/3Va/XnU8g4ViroWILgoh9QYONpmWxWFyyp7m7u9Mf/MEfPOlJG/YrJDjNCKadUDyyVsI4RVMSMu3nr61EYuHv3+/3dX5+rv39ff88hQJiitB/GfI+kUgYw4CbKHglLeVUmkhMCuB1DdYJ1Z0Uo6HCHeseBEDJZNKYgu8UFvDkfxos5+fnbkSwxoi5YGOa9gglKKIkOZ+jsgR/h2p0JifevXunnZ0dTwOBffv9vrFCNpu1jUSIe1OplC4uLix2QcU3HA49mQZuikajxsjhBB24gJjFuY1gEwRRNFooDPm5fD5v3EucRzQGnuWZkd8gliFluMej0ciWalgIh77wNGpoAEGa0jjnOYeqxH6/r0qlYss2LEggZFHrI/Lhd/m87CFUxGA98kU4fUMTKFTjU0eEAjNUxAghWGd8BvZkmA/AItjiIRKChOc+hWK40MYPfEIM/6M/+iPpCcU/6TEG/sVf/MXSuZOQePxduVxemk6irgt/BoKOxm6n07HQgRqA5xnubYRwnJ9KHULDJpzMhaT8WDUbWqfwh3NTwU5gIuwkh8OhBoOBJ/4QixEHmUKlNgaXgIVpeF9fX+v58+duytNgptHBf08mE52cnKhYLPosQdY+9wi8A4Yl9nCuAtPnEK80r9nbV1dXurm5MZ4mRrAneG7hs+TeEisRMDBNgwJ9MBj4DFf2ELUae5kzLlZWVjyhI8mx9fDwUPV63XiYevP9+/cqFApLDRzwOpN15MVoNKrj42P95Cc/0V//9V//m+2Vz5evJxkDf/CDH3gSHe5Dkps25HZyEf/N8QMhXxdOrYVNy7A5Tmyg4RkKe8jZcGkId7BEDW0919fX9fbtW5/JOhgMNB6PPXmBmCGZTOrw8NC1N/mNfcY+h7ti4geOhHwMzgGXwqPRlID7ZAocS2ByCs2EUFwbWueurq5qZWXFNpvwnGAVuCsaNHBK3HO+T6fT0ebmpnEBzV8wBLU15D4Tg8PhULVazfxiWB8z8YzoGMEkeD+cVAcnZjIZT85QyzJZQ4ymmX57uzjHhzNdOQ81zEs8K743DZJIJOJ1SQMdjBqKLENHBXhcsCK54Of7wpw3HGg4AQXvALdL3A8FOdx7avX5fG7uCOxLrcy+CR0vQmG3JIt4aA6RQ0Ox2e3trS11wZLce/ItDT7WAXVYr9czDwL/AP/O+/zwhz+UPmEMjP4SP/sjSf9B0n/8Z/78h5//zJO+KGZYxAQqitJarWaFPuAxBIl0VxnBwjqHB8wmguDP5XL20r+5uVmyQuHni8WiCoWCmzSocm9vb600Cm3ZAFQU4AAvupOxWMyNAxRFBGNA4XA41MXFhYtKAhsBi9fN5XIqFAq2qgCc0dxAUQjoisUWBzGXy2Xt7e2Z/JIWjZR+v28SFeUzwZ3NA/mHJQKJgQKSJgAJjGYQDTAKZw5rTKVS/t/t7W1Vq1WTqSiyCFT8N42ZfD6vSCSivb09NRoNE9RMbEGEEKj4ntLjeQwEnvv7e5N3JGlUHBAUfE8umjDz+VyNRsN2e2Fg3tjYUD6fV6VSUSaT8RqW5EOqCaCp1OJgdHz2aX5wgCuJLCyiKYYoWFA/hOsRz1KIAN6PZB4G6dvbW71+/dokJPslDNaZTEa5XM6qMkA895zXJGljfVAqlVQqlVSr1XyPuJ+RSMTfDQULanuKFkilp3qFto/X19e+fzwrwBbreWtry0kX0g6lNuohEmhIAjDCzZrr9Xq22+IMB54BiZeGQzQataIRIBg2obEljEajWl9fd/OGpszH8aRYLGp1ddVNGoAiYCiVSvlA6nBqp91uG/gkEgmtrKzYVigajTp+AgoA6xBc7DFJtr8ISQCayogHwv3HOpW0NBHy4cMHq1ewAcLmhPcEUN3d3fn8Gr4TYJD9HDYauMfn5+eKx+Pa2dnxmDPECIAGMMgUAI2c6XSqQqFgOyimTYlZjKdvbGw4dtKED2PGaDQymYDwgf0vPZ5Rtb29rUql4mdVrVb93UKQhvIJhTXKzkqlYnAe2gTxvRqNhsfrZ7OZiWa8gKPRqPb3960QisUW1lE82QAAIABJREFUloOolyWpUqlYuXN9fb3kacyzYS9AFAFCi8WiD/QNVc28JwR3qVTSbDbT1tbWkgKJMfft7W03Q8mbqVRKu7u7jgs0Pin6nuoFjmDCajKZaDAYqN1u25IllUrZppGikeYHGAORArGF+xaJRHxeHGuZHENxzL9RBNVqNefVsJHEvmZ9SrLiPVR1sr7DKYV2u+28Ctao1+uO3+CVTCajTqfjopUpQyZR0um09xP5maKPfcseBsfE43GvW4rG8BBrPtN4PFar1TLJx30Mi69qtepzfWjChoUZcYxmCPcGwp61Pp1OfZCstFDqMxndarUUjUbdfMa+bjQa+dwfmvXEjrW1NatfKSoluRGWzWY9OUceo8AND2Tl2TJJwBQDeXg6nerk5MTELjmbCaaQBGbtptNpWzmGli6QB5Dt6XRaW1tbS5Z/xWLR5BJiGpSdrDG+DyIZps/DJl5IvPPdQ7KCBjVYk3qI2ikejy/5sjO5yGsRL3k9xBcQCWBEGl/kXNYyJAcEFc+QKeGnfN3f36vdbrs+mc1mJuaZUu10Oku2WogiuE/EIZrI5HJJJrMQAbAuwTg0CJi8lrQ0tUaNSfwrlUputoQNT6bKOp2O9xP59ObmRqPRyA28ZDJpNS+kYCwWc23IPmSSh9eCjAInhNarfDfqnFgsZtV3NBrV5ubmkiVbeEA063d1ddUxBlU5eeb+/l7Hx8duElP/hsQhWATyle+Ry+XUbDadAxBqEcc2NzdVrVa972ezhaUu9TzCG0lLdoWI3sJaELIYUcFwONT9/b22t7fNtdCoR3DCvaCOxBmCRi84BdFRmD8+X5+v/68XeBzRBrUqtV7YZEkkEmq1Wo4nTO+GVu3Yy4eiUOoIcg6NEzAX+wdOrlAoWPUf8olgP6YV2efUR3BzxDVJS3VLKP4Fz5HDwQPEevAPGAHrZfhSGq9wZZKMQe/u7rSzs2OeFYwoPR5BQcOfWApewoUitLHM5XIWthAvwcg0/MkBCI7AtbgJIO6Fv+U7wpNuby+Oce90Oo5pnHvO1CaccSj6o4HEOoIbxI6SPBk2TeDA7u7uliaFeC7w0AiMwgYPAn1iIsL28PwV8m2xWDTeY5oKLIkYkTqDmp46B/wJLmI6tlgsLp1TB3cRTsmDjzOZjKeeQv4BRwImu8CnrE9yERw0nxdeCccM7mc8Hle9XvcZdoglyHnUevl83rghlUrZtaJQKBjrwzvf3Nw4n/9ruO78wvZo8/n8f/jk7/7v8ArVx4xIQbbR2Q0tGQiObA42TL/fX1KFM6YNWYWf4I9//GNbl1A8xWIxDQYDTadTd64lmbSmGGeMkTFCJjZCRSXqb0lWztLppbgKx9YBp1hBsFhRrEP4sGkBpABoAh4JisPMIA9RBaEO73Q6uru7U7VaNalBsoJ8v7i4kPTYoWekDTUW5DxWIYzwSXKygRCezWbq9XpOAA8PD0t+7x8+fHBCgGgcj8fqdrsu8gC/KA4h6yg6JZl4BbxTNJKYKRJ6vd6SVQSJCzIjVAxAiHD/UHmj7uDQYeyqWKdMBL19+9YHKHO/isWiLi4u3MDCPoViqdPpOBGG6mMagxsbG0s+5FtbW7bGYPwWlRmHf9PkYc2RXCG7YrGYdnd33cSk0cP6Y32fnZ1Z3UXwxHM0VMbgfz+ZTNTtdtVsNl00sX/G47E/F8Uc94JCMRyJfaoXhD8NThqXeJKiNkYdxLqRFpZ7qPU5v6rf71sFhDL3/fv3VgISD9bW1vT27Vsnd4p36bEgREXYbDY1GAy0vb2ty8tLE1RnZ2dWEeZyOX348MGHTgP+mELge6IOChuPKDBQQAMssAgMpykhb87OzgyYIaO++uor2w8xrotnLTH74zMYAA4oZ7DCAAxyHyFRsMEghoZA7eTkRNLjGSeQpDTRIHSbzabtvSqVigkYGviA8aurK/3sZz8zUOeQXaaEsIYkd4T2mVdXVy54AIjEnna7bZIFO7DJZKIvvvhCs9lMl5eXOj8/dzM/nU7r7du3+u3f/m0lEgmdnJwYiEOS9/v9peYYYLvb7SqRWFhndjodTwtwjgf2lCGBe35+vkT4FAoF/ehHP9LXX3/tpiTkcSaT0TfffGMSv1gsajqdqtlsKp1Om6RdWVnRcDj0Qe3hKDy5laJsfX1dp6enOjs7s1/+dDrV6empm8nVatXNyV6vp9evX3uNAo5ns5lyuZz6/b4KhYL6/b5ubm50cHBg8L+zs2M/59AuYH19Xa1Wy1NNT/kitq2treno6MgTS2APpnhZi7e3t566oSHC60BSMVlCsQEWomHY6XSML2h+QvDhwQ0xAKaiwCQGse+xUgwbqMSb8Xisk5MTbW5umhAIlW6hxSkka6vVUi6XU6/XU6VS8YRfOp32fqGYOjk50erqqicypMezEebzx0PtWd8QbxRfNAUpjMrlsvch7yvJyr1Op+NGDiQvxRwCGOIxRCdFcDg5S0HKJBWkzMPDgwu3yWRiGx7yBk10yFzOn5DkaT8IaKzYaOzSIKaxRNMA3A9hDtaCOCV3hWTqzs6OcQ+fJxKJOAZyOC1YrtVqqdvtqlgsWswzHA5du0hygbq7u6todOF/z1l3KysrOjo6sjgCbEBOpVkMFmedhA0T9hGkC58XiyXEVYjmOIuR78+5YOTCjY0Ni374LEx4gDVZc6wvxGuQa5eXl0v7hloGQRL5GczzVK94PG4bEEiSbDZr+5N4fHFOycXFhXZ3dxWLxUwOcoWEDVPH4TQvsXEymRhT4u7A61MXcCZMKGDBkpDPhQJ+PB67TkHU1+12lc/ndX197ZoRYdBoNHJeoxH9MYG1srLiyTVpUT+Rj+EC8vm88/nGxoZarZYKhYLevn1rgQ57W5IPd37//r0k+TzG+/vFGV8ILKjRsUyExMXy5fnz5548RqRHvY0QDZxNczsWW1iThef9MR2HvQw1kCTHHT4PcZpnyH5jGh9MzzRieB7HbDZzLiXG0ZzGehZ+AwEdKmrw493dna3OyS2IPz9fn69PcbFOQ1edTqfjBir8DfUFZ4SCL8rlsl1NaP4SU+C+mKzn72lAhuejILYgv4eNE+yscKhg6hSOcW1tTa1WS+PxWB8+fFCpVNLh4aFqtZonfakx2b8IqcGQCDlohCBkgGvCOpIaLpFYHDdAQwahDxwhfA/HE8D7gIfv7u60sbFhnpPGFE0QzqYJhSyIPiVZLBpyQcTPkICXtHQWHzkDTE9TgiYauJLGNMIQYiCcJ8JSrhCnh0JU8L4kP3+sxRAMwNOxHkOei6ZaWDd/9913evXqldchNQmNEt6HmoVGOXwcnBkNcDhE8GHoOBDmR2z3uN/ffPONXr165fwRcn3T6dQuQ+Q0Glih7S/vg7jj+vpa0qOFJ3kCTDeZTGyFLsl4DVcWcmEkElG73dbq6qqHH2iczedzO4iE5z7xvBFthU4ln/r6Zc60+XxJBgaRyMIqKlQA0ilGKRJ21PHDo9GDwgybHR4uG5FFX6/XvXkBSix+uqI0gijY6SLSleQgv1wu5wIKEgFSDSVvPL44EyA8eya05uL/h0X/ZDJZsvHBvgslDJ1eJkwogBlfhnQ4OzszWYAikOklutWhvRkdZVR0Jycn9uKni8rPTadT2zeQCCFCIVEI1njyh2P3gMLweVN4rqysqFAo2M8/l8v5YOn5fK5ut6t6ve6AenNz40YDzyMkwWgUYVeH3R5j9wQxGk2odkmCfIfV1VWrLxKJxJJnOk0oiI5yuawvv/zS6ws1wMPDgxqNhn8WAhVlw3w+Vy6X8+emyL26utLe3p6TKfZBTEkQvPHXhMxiXYe+zZCkAAGajeG5EyQeEjNJsFwu20uaJhsERS6X0/n5uZ4/f+4m33g8Vj6f93NlHJXGH5+VIC3JntYQKk9ZaY5iFnCBRRV7I1Q+ptNp1Wo1A7xQdReuVYgt1qwkkyGNRsPrjQIadTPgFHACsIKcCZXGTIfwmSXpxYsXJr0goog72PcQW6vVqj9HLpdzXAfM0Fzh9YlJrOX5fO5iEhCKIhSQR3ORNd3r9bSzs2N1ErEiEom4iQQIDyeKAPbSovDf29szqUezOB6P+zwg1jZ7nnOZcrmcGydff/21Y3iv1/OkBwU34P773/++7u7uXGwD5tmfvPfFxYVjIjE4n887FoV2iV988YVJu3K5bMKSvEID5+zsTNVqVfP5XIVCwYB0a2tL0+njQcVra2sql8tLRATrj0PUU6mUYwaALx6P6/nz585jPJNqtep4QTOSCUSKHGJLNLrwx2ftEK92d3e9NkJF7tbWltcLZDWkLwSTtMAlr169MrkxHA7VaDQcf1GmJRIJT39KMiHNe9B0BIyDUbggsGjOQtIjEEGV/JQv1LyJRMIE3+npqb788ktPUVBgkqPCJjANC8QqxIhGo6HLy8sl9TG4AxUkU35MCyK0oaDY3Nx0DAYD0WSgiICIa7fbqlQqur6+9mQhxBikKNgTkk169KGGoEQFTUMol8upUqlYxMT+xlKN4oZime8JSUf8CifWKWwlmVzFZ5smNvavKBxprpGPwwYUE4c0LhEdkA+YyqD4CxvmKP3DiT6skhA6hZMgkLaJRMLYkXhGjOHeIijgWYeNcayheC8UvJJsVys9eu2H+Gl9fV1v3rxRtVo1mVsul22VRq3CfarVahYoYEnJ2uXMofl87mYYPuebm5u2aQwnq8HKk8nEnufk7vv7e+MKcuJ4PNZPf/pTfe9733M8C5uRz549M0bkfnJPWEsoL5kiwxcfPMezzWazvg+In9hv5HSm3JrNpur1ut+TGCnJAi0Ikad8haI5sAv1D0QGuT4kWSS5wYnIi5x1enpqcocGAHmScxxoxiKOYuKOZ0yTMxJZnD3HFDZ7HVxHrcVUMVO7IQmLwIjJjvD8Ouz0EOuwx7G5kRYTsjRr+D5MZBNjaDhQN4UkJDZAW1tbFlYQd8kR1N3ffvutGo2Gmy1nZ2cqlUqegru7u7OYYjweW5hE7Q02AB+R45leDnMeeJ77wL1CeQ1JzZSy9Gid2263fV/BtQh6wok5BCYbGxvq9XrGVsQk4mz4GdjviI8QVK6vr+vw5+chfr4+X5/qoubNZrN69+6dp/Ag6qmP2u229ykYgcYq9Slrk7qNCW0a0ojyINJpulIvnZ2d2XaeGlmS9+zt7a12d3e9dxGikdOn04W1OM0kLMnD6QPiD/U9wldEekzMEjfCCdqQL4zFFkcCwHFGo1FzAuzlWCzmKRlqGJpekPX8LJ+vWCyq1+uZeEe4wvQ29wyOVZJxGlMo/E5oBQkGx+bt5uZGuVzOQhBwciwW05s3b1Qqlfz3CJLBe4hxqN8RDcBV8Gz4rAiJEBRzDAX8IJwi/O7FxYUnhrC+Y1J4MpnoN37jN4wNaa6xzkK7ZjA9mIx4i2gJvpM1OJlMLP5hwlnSEn+JQHU6neqLL76w2ANb2tDqb2NjQ4PBQNKCjyAXUi9QY4YYj/9PfsT+GAx8f3+vnZ0dYxb4V/IRdVAqlTJvGAp2Qtu9cPoV4RCuW6wZ+IVPff3CTZtIJPJnv8jPzefz//Iv/zi/+heBAouRdrst6bHLSXFLB5vDyFKp1NKmmk6nbt4AntjgKOogVCQ52Pz4xz/2SDL2BoySE3xyuZxVyxsbG3r//r3HAMfjsc7Pz31YNqQB45krKyva3t42yfTw8GBij85+Lpfz715dXSmfz/v3Cb5MKdB1JCkQdFdXV1UsFjWbzTylgh0EhTiqKmlRIBWLRRNl5+fn/6QTjToYIpXgyvQKDQMSIxMxkA+o+CjuSFAUFagqww1MNz+bzWp3d9dFKN81nC5gffCZufccREexjYqApE8xhGKdrjCfNWxgEXw40wDbu1gspkql4oIGb3eaQWFxi/KBRiO2UJIcuFFE0o1G8c7vPH/+XJI8iTCbzVQul3V7e7vkrwoZDtgHwGD/xvg/JCOgJWzc8dkkLR1+vLe3p1Qq5eQWniVE82Vvb08PDw8mmfP5vAu6WCymf/zHfzQhsrm56f1KE1CSmz8QMqynp3ihUA5BD7GJpFur1Tz9BzgAAKC6w1KItU9hGSpfSqWSG6oQlVg5QBqtrKz4TBASNiTccDg0CYDCB8KdqRdIA74T4Iz1BZAJPdvZZ6hniI0oPcJkT4MVtQtWhDQpARSAIoguGrJ8x/v7xZljx8fHikQiqtfr6nQ6br6en587JwCUITZCO79qtWpint+laRxOGaL+zmQynkYitkEqEiOIjWFDObTGgaiNxRbnqaDgJMZCmnAfaDxdXV2pVCo5vvAsmFCRHm2SIpGIarWa4vH40nkZ19fXajabevXqlaLRqFWjqMJC4o3iiH3M1ANxkQYRwotisWigxudHCEFRQoOZBg0FBaAWAAlJDviFQAGIMsUQjUZ1enpqIof7mk6ndXh4qBcvXriA4buCL4bDoUnPUKXM88JulDxBfmMto/h/+fKlbm5uVKvVlmwROp2OisWiCeineqGyl+Rc/v3vf1/9ft8xhkKYNT4cDr3WKOLZm5DXNAhRjVHMglMkecKOJgBnEIHdeI3hcGi8xgQg9ljv3r1TLpdTvV43KU3cYa1DkKHYRL1I04eJLdY792J9fd22asVi0TmdYp7JLs6cY5oZC8TNzU0XZJC84CSwHTme82XAewiKwCiRSMTnPBBTwe/g7XQ6bVUfcRDbXvApzw2MHx5gnkqlrFilORoKU8h5odUqMRGSgFjKsyDuQ9xCCLHmKGr7/b6+/fZbvXr1yrETMRA2yqy/8XjsQ8IRNvR6Pa8BLB1RLWI3FFpB5vN5tVotlUolkwWch8hnI0ZEo48WZZFIxJMM4STTysqK7zd1wsbGhifBv//97xtnsEeYGKeAB/fe3t76IHNwLUQ5aw5xATGXHM/3Ji9Qh9EcbLfbnl6tVCrGvojfyM3EBcjrp3whgKBG5NlBzt/d3S2dqwbOgJALPe/BFrVaTZeXl8Y83GfWxmw2c707GAxMXoZ2a8Q+4gOxAIyXTqd9JkE4UYy4BNEETSamSbDoJXeS28GdxAJeS5Kn6mjwlMtl78mwMUjjvVAo2FmCmpE6njwryRiMvRqJRPTVV1/5PEbyP00lsCSiI/IK6mFJju/gIBrRoV0iokzEWRBi7Cfp0b6RvPXw8KCLiwvjoe3tbaveES79/Ow7x7uQvMUCaDwe6/j4WNvb2z7Hihgci8WMiagdpUchnyTjuM/X5+tTXfBPnU5HjUZjKedTF0tSvV43fkBINhqNfJ4TVrrUieRqRA6IqSH4maYfj8eqVCqazWaq1WqaTqfGfYhR4PaItYiJmYjd2NhwvIZnwfYem1KaB2GTPRKJLIl1EYiR9xABIVYizsRiMYuMwhqD5gCNDBolofgaEQtYmTO5wgYN9XkymbRIGCHUbDZzTIaTLJfLzi1M2vCeuBaRVzqdjra2tizECetDXGNevHjhmE4c4t8QgdCQAi+TZ8AkfLdwAl6SmyzUu+AohIGIlMF8iBvIEWCT0BZ9Op164oYJ8VDIDt6njoBnxlYzlUppc3NTg8HA0+XhpG1o5YytG7Uk94Pz2rnPiBu4b5PJxLiPZy092uWGjZTBYOBz52h8cpYbuZr7hjgMJwJ4CPb1fD5fmgAnr8EtUZ8gTqHWYRqV/Pmpr18mi/3HX+Bn5v/tH/n3fbEw6vW6R50BGICa4XDoxgU2Y9FoVP1+34R/JpPxwaeHh4dePCsrK7Ysm8/nPlgskUjY04+NFtr3YPvw4cMHT51AelOshiQbgZfCPyTq2AwQZKVSyTYOKO8Ikmx0yAcSlyQTt9j0vHnzRru7u1adhwoZvh8+jJD/JMBcLqeTkxMXg2dnZwZ7KP0oqCF3KaoYoaMzijqBwhaPTDYe3sx8VwKKJB9MH4lEDERpphBUSRA852Qy6efIRuY5r6+vuwEFKUEChayliKQRxnPj7yErQpIYQg3rDA6URAkGOA5HXMNnR0IiwTOJQJMI0m48HqvdbruAAyjQwKEIIgFCYJDcKaxIlpCfvA+BEKKZfYRCDLI8JEJ7vZ5VyN99953vRTS68DItl8u6vLxUv9+3Up3x/IeHB3W7XSvz+FkO3bu4uPDkEFaCrAVJttJ7qhfEFI0+7ut0ujhUFJIKIghChuQLoAQEMMLKXsUekmYxh0BDIKHoxIcc4AlxCAnAYeCdTseqadYMExUQ1/yR5MYCoAXiDjIQ5ScKRBQnxAsIRNYprzmdLs4ZkR5HgVGnh2Ad4EqsHA6HPuR5Pp9rZ2fH0zaAGKZiIIdDkJ5Op3V6emrAcnd357F59iLTldls1iCW5hrPkXsK4CP30QQAmEMach+ZBiU+ACDDkW7iGPcQYqNUKlkNm8lkrDTDkglCAcDW7/cdQxACZDIZW50BZCFYaIbTSIFEIL7z85Lc9ENswWchtlKkYN0DmOS1mI6C3KJBCZHAgb0oksrlshs2TD9iN8R5NUzGSNL79+9Vr9d1cnJikE/zHxsvbKTIf+TseDzus4s+njptNpuKxxfnE/GsWNdYdmGpBlnb6/X+tcLPr8QVPnOEGclk0kRaKpXS8fGxNjc3rfIOp7BpokASQ0xS8EuLmHF+fu7zAyDGIO/4HYp79gD2V+Px2M2Nv//7v9fz58/V7XZ1d3en3d1d2+tCmCKQIbezn9jf2CtIUrPZ1Hw+d/Nie3vbymzWdHgeH8ILLGKJGxDfFEUUw6hDeU3IAeIKoprQfoRGD/ZBKD/BO6hPaRZR3Eqy6lSSG28QLhC7Z2dnJl9arZbXOs+b78GB5dy38XjsSWvwTLvdNgENVkSVx34Em41GI9v80IgA0ycSCX355ZcmqqfTqVX/YF4a6ZA95CgKUxrV1AHELUkmv1kTzWbTllc0vXq9ntc9jRNiBI2yu7s7k7ys0+l06uYlxDmiAUiVdrttEgDCgLqIn2dCKGz2kAPOz88tKKNZACkQij7YM9RdYV5jih5HAJo0kGg8B/ANOIE4+lQvmmhMjLC2aJJdXV1pf3/fto00biGhqLkQjvAMIMGYhqf+C6fvwSPhdBu1I1MyWJ/w3xAwCBC63a6bm+RzlObkTL5P2DiiuU3sBJPyswggwKOhewBnFRA7p9OpJ9FY8+A06vBoNKpKpWIsc3Nz47gsycJPPg+xf3V11ROfxAMwDvEQAoxmNPeUv6dmA+sSg/g+TPryXMgbDw8PxjxM7lAng8OxD6f+Z0+TA/r9vs8ihI94/vy5J/uo3Yk57HOatmFOCRu/n6/P16e6aIywTxA+IJ6Cl0ilUmo2m5Jkkep4PLazzPHxsWazmba3t/9JzYTIF7Hx9fW1G5mSTN7DMdJcLhQKajabFmDB9yCOYR+Tx7F2JDff3t66kYxYp9vtutancRtO3gyHQ9evyWRS7XZb7XZbL168WGogMylBUwMe8/b2VqVSyaQ7rzUYDJROp51XyBH9ft/5loY7vIEkN+7hJiQt5RHOCuWiRgzdBcgVxEMaZ0wDEnfJe8RBRPvgIZr/Dw8PxpjwqUyWwi/QOGcN4KbEPQfnYbdbq9Us1gZLwp9hx4bFHRZt1Oq8VzgVS04gJtOwCM8zxvqSvBGJRDx1Q90J1idH8l2wE0NADtcLhg2nsnlmxWLR+SUajXoKB64IETuCmYeHB+3s7LjZEwptWDsnJyfa29tb4nTgP1dWVjw1HPLU7GlyLIIVBhHIs+S7fw0u8Bc2XJvP57/7C/z5T5/8E/6KXai0CahY4MzncwfTcEwwbEpgzUWgxwsRIgy1KwUDv5fL5XR5ealut+tCjN+R5CJyNpvp+fPnLuooQthgFC25XE6np6e29eE7oLgMLXrwNGQjALIpLmezmcE2Ss+7u8UhWYBDaQGYXr16ZSIMUgwCotPpOCFIMinOogfQSXKHHOCKAo9pD0k+FHhtbc2bGbCJvcHd3Z3a7baBPUkH4oTghypAWqiByuWyQTqbmOKSM1koUjlsLZVKmSiGyEaZ0Gq1rGZlhJDCnbF4/kAO0A0HABwfH+v09NSfi+RAMR16OPM6BDqI3JOTEyckADeEMkCbxMtBZSRA1E8Q8ihKo9GovvnmGx8chsKDZ8/UDIpYfEoB/ajJmSKjeJ7NZh7J535AUOBDSTLEIoV1RwJmDVC8S3JDs91uWyGHqj9U/HEPUHpBGDOl8VSvTCZjkjZsct7f32tra8sTTKx/FBeMd9OgIf6x9zOZjCexAA2MA0NMMp2FWgmwwnoCKBwfH/vQW8gebL6KxaLXF8A0nFZjjWAH0+v1rPRALXV9fb00Ts2hqTRNUUBy8B5xHnWmtCjmz87OdHV1pU6nI0lLBEbo2TscDtVsNq1Y5jWJv8fHxzo8PHRjmsYWgCIWW5yBRiOV6bNKpaLxeGFrxXkrFBmQIRyqC3CkMQ2RzIg9xT0q03A6ANLlu+++02Qy8f0n5zAlhFJKkpWe7FfOPgLIlkolx0TICu4XxQ25hrjDPQub+OS6WCym4+PjfxLDGHcmr1FosDZC8h4rFklu1BPHB4OB1wX3CtsC8jlWg/xOSA6l02nHGxpZKE3j8cXhz5eXl8YYYXFycXFh5VKv1zMAhqTnmWMVcHl5qdvbWxNf+GtzDhD7D4/+Vqvl3Dz/uc3aU75Ykwhv6vW6ba4gyFkXrHGeLfms3W5bVQ7ewIaLs4y2tracj+7v7/X69WuTfJwPEU6fsaakhWDm3bt3Go/H+uKLL1xUUPDQAGEfQ2aixJPk4iok6h4eHpROp030o3YnrnKOA3EKdT2CGsQP0qNFGLEgkUjo/PxckjxRCMaDdJ/NZo4zKEIhcrHlwbYCAgLF4c3NjT3SwchgCqbVQptTDhmORheWhqGICTI29JWX5GfNPaWpybRmqAgdjxc2RcfHxy7kITOxoSAvYe8JEYl6kPgkydM+oVCLBhQiIMhWiFDWASQuawdClVgZiy0OXUX1ywQhU/9YM19dXVnURQHN5Ovt7a20uS2/AAAgAElEQVT+7u/+zsIP/g4cS9MS4jmchJEez82IRCLa2NjQ+vq6BoOBY1mhULBXPQ0yclMYS1F4QsxTv7CmYrGFzQnEDaIByCuID3AnzTdwLIrZp3yFU2ShFRw1QrVaNX6WHnE2BD44kvVHLqIxDHFJDZ1MPtrdspaZViH3o87GeQIBC88xzPfUdOADBJHgiw8fPli8QpxCHMTvUyO0223HEHI0U97EIMjKaDSqs7MzYzPITER50kLxm8/nlcvllmwaaSZtbW353D/wIdN+TNayZ1dXV/Xu3TuNRiPXgmBncC9T2DRxwbvEbgQHrO/RaKSjo6OlSSj4DRTc8B7sYT57pVKxIO7h4cHT6eQuVPIhhoDroF4MhTY0fRHI0DDjdaizmdb5fH2+PtVF3RGLxfThwwcTzUz8M9F7cXHhmgvscXV1pd3dXdemOzs7jo/hGZMIdTn4nEYm3BJ5mj1MgwZOhnO+Wq2Wcy2YhlwLtwXnQz3PlGBI5tNI5/Wz2awbw6urq6rX654GL5fL+t73vue8i/iXSUnO0CNmIJBFKELdSryQZNEyYhnuE9Mn8IWhuCOZTNoRBuEOfEFowRWKnmlg393dqVKp2CHj7u7OYhQwDk0zai0wSbVa9ecEv9IkAhOHWJA6dDQaWRgTiUQc1xFS494EnoZ3hscNj7MI60/qyHh8YU8OvgUPIdxh3ZKvJNkJiEYQuRcBFfwGUzPEYElLTiebm5t+NjwnMIMkO2vgLMTz5T6EvDRNFd6bnEK9Qp0Q5trBYODptf39fVuv8TpwBtTAw+HQNRyCMdYdWJ98R9OMNU4j6pPHnU/+ik/8guAAWHGxmI6OjpbGtuLxuKcwADFsKtS+dFtZ7Ol02qNnKHVfvHih/f19g1yASjabVbVadUeThZ7NZrW1tWXiMFRn3t7eamtrS8lk0t1hNiTNHQ6f571QrrDZKAoJuJJM6EjyGS2QSqFVA8RiJpOxN3KpVHLxRIKoVCruqlOUFQoFk4ps0vC9IL0AvBT0kPJsSopB7M4mk4ktDmhKMc4akn8oxBqNhn27se5YW1tTPp/X+vq6bQFCZfmLFy9MDGDnlkgktLOz42KYYigc3afbCxEKcUxQPD4+tk8zFiOZTMZKUwA0xBGHb5MISb4cWElgCokIkgGkOkpHDvpkXZFwU6mUg++rV6+8zhilZL2i8Gb98IwAAmEDks8OoUmxH41GDWq4DwR9irzNzc2lIgUAREKQ5AKvWCy6AcHeIPlxZhQTTBQCNPJGo8UBpE/1gpQFsLAOWOM0c9kH7MmQFAkPeKNph7qnVCoZtIZrmvsOcAHUkTjZm9lsVrVazXYyIalZq9UkPRbvAAIK1pWVFe/32Wxh5wcphtJRkkeO8f7FtpECkRjGBAmAiwm7ZrPppmM+n7dFDYqst2/f2taNQ6CxrKQIRzWTSqW0v7+vg4ODpX1eKBSstiRXcIWKFZojk8nCy/Vv//ZvNRgMdHV15d8Zj8dWSZIfyCkQ+MRg7i37DIBzd3en/f19k/uQMZzNwWQkzYDBYKA3b954fYQN9I/B1Js3b5YmXUKgzAQloJSmGsQLYA1FO7mO4irMYSjBOVeGzybJBDNkQmgVSl7jrDPeV5LxQficaIAzSRriCV6/UCh4WjSTyWhtbU3r6+uO6YVCwSQtoJLpNibeOH8NQjaTyWh9fV2NRkOJRELVatVFEnsD6z/WBTiCfRQKPp7qBRF5eHjo58I+xzoQ2wlUlEydYBOxu7vrYoM9BRZkIgqBQyaTUb/f187Oji3FECSsra25QJDkPJzL5fT8+XP/N8Q/fv80EGkWsF/4fkyMptNpT/ShKAMLfPjwwesKSw+a9hD7kHYUreFUCo1TSAHwL1ZJrKXJZGKhC5+Pz8OegdQDcxHTKY65x5KWVI/gsWg06kO4ieFgB/A6Skz8xD9WeEpyY44iGbyLShTrIojc9fV15fN5N4K4j9JiDzPNG4/HTZJj0ZDP55esOPgcELzJZFJXV1cWaHH/aGzwjCBBeF7g8nh8cQYFcQ7lINPGxFqUn6xJcCc4FiIJyzMmHSV5Upo8H9pMgjX5bhT+NIUQ8ORyOT8LnAT4nmBQ7glKfTzpaQLxnBBtUNDj3w4pjl0IZBrfg/UFruDvn+rFdAYiRGLHaDRyjgAXogCHEAwtEjOZjCemQxEgr39+fu5mIBMx4LmPp0KpFXiOTLGFGIc4SL0FUYp69vz8XBsbG2o0Gn6O1ByRSESHh4c6Pz/XfD73Qcmbm5vGCjRhKpWKLi8vnbuj0ag+fPig+XyuZ8+eeS8hfmN/E6+ZSMlms7ZAYt0PBgO/D/GcSWvqwtBl4+DgwAIbCFX4B+plYqW0EK7V63ULljjHh3o4JJZ5pojnUPETV4i5NPDPz88t5kwkEj5/gZ+7vLz0Z8EJATxJbYlKP7R4fXh4WDqbgP0HJubefr4+X5/qQoiSTCb1/PlzbW5uunnBxAyiOLgz1i+qfOzWwSxwEzRch8Oh2u224wQN5vl8YfcI4UzDkzqOxjgW2cRc/oAjydFM6NAA4udp/lKPs7fAJNTf8/ncOBNOhslCiP1CoaBiseh8gdiF6erT01Nls1mLcdm7o9HizJeTkxPXfcSWj20PiVM0cRC5IUZGwHN+fm7hCALNXC5nBxGsvYijWDoSk2hikwPBHuVyWdICD5DX+v2+UqmUOSzqMf7QUOdej0YjN2bAnjgl8V0RyIeOEAi14UhC149wOqlYLKper6tUKhkfg6vArHAriCw4bzgWi9lyDGE8tX4kEtHZ2Zlzd8g7EMPfv3+vXq/ndQivCV5FYMEeCZ8B2I58A58MjqUpRY6DuwlrDNx4wnvGs5O0hIMZmJhOp57MDc9/pQGEcxGNQPIxwwWf+vrctPklLxaa9AgwAPyZTEYvX770xkIFTBGWTCY9ws1IHYqvRqOhSqWi3d1d9Xo9B7Td3V0rS8LuJCrDbDZrSyFJJlj4nAREFGDSQrlydnbmUWn+nvFiJgbocDN9Q1HNgU3hGDhK7NFoZHBVKpWUy+VUKpW88SjIGNMsl8seTZNkIFcsFq2spEAKVXuAOrq+FFIhEcLPQOiGo6bSYpwTNRFj3SQJ1PMUAdjSVatVH1TPJBCFAYQbdgGAfhooKPQAvzS8ILax6qJADdXYPJOLiws3dOgGHxwcLE2aoMTmELxqterkHU4khAdCMp6PZQD3hMOw+Tuab5B4rEfGNwloTJzRQOz1ei6QS6WS7u7uVCqV/Jwhgrj/FP0QWSRW1i/EMa9fKpVsQTccDn3GDI00SUsJhj3CAaMo9QBYfBYOSIPASaVS/tzsaxoOFAYc+PkUL5TAHKYOcOJwcxRvrVbLcSxUaqfTaa9zPMxRjODzikICAMtr0LSAuIbYxrYB8oZxW9YNcQS1J2t1PB77nBBUJxSDrGWaSwAcGjRMH2xsbOjw8NAkIeQTBBHFNATlaDSyGpOCWJK/31dffaWXL196JJzmDPdPknZ2drz2aW5KWrLUgQAkBxCDE4nHc5uwkQE8xuNxff/731+KsdgzMYlDUTCZTHyoNXZfxBdy09HR0VJjld8lLqJSo4ABmAMWDw4ODLL5rgB5yFSmS1OplHZ3d/3ZIM1p3O/v7yufz7vxTz6BZOf1aEiTU3hmrNFarabt7W1/77OzM58fw7klgD6myYrFoklrigSaNGtra15boT2JtIhXrFXIGEQYPJtQlZfL5bwHILgQFoRTm5BQFxcXzum3t7e2JIhEFtZ77Fvy+XA49JTqdDp1AcLrxuNxq4Kf8lUsFpXL5bS/v29VIoV3iDPu7+/17NkzE1RY3qAoZ09gjVcqldRsNjWZTNzQvby81Hg8tm0ERRG4AAtEyKvLy0s3TiQtiYd4v+l06txPEQLRBwYIBSTtdntJpHN9fa1EIqG9vT2/T3i+B6Qla5TJEEnem6FV4my2OBux3+8vTa3RwA8bq5yhSME2HA49GZlMJrW1tWWyQtKSFzaT3DT8ITOurq4sOAE/tlotvwb3G1waWrnR/OC8GL4/51eEqn72VmhBgp0EWIO8Iz2KZRCNUBjzmYgx5AYKRnIye71er2t9fd1NhX6/79hE0yVURYLTo9GoxVTEapoyWBcT7yEwWF80rshhkBv8G8V1qOpEzYlKkwYz8Qv/evYak7rYNaLoDYUXl5eXSqVSzgdMBHS7XZMVxDfiPkK5drttUi4SiVg1Sa5jP0kyfoAk+NdQWP4qXZAiV1dX6vV6rpfCOLK+vq5qteq8DUGPBSjrAfV4WJ+wh8vlshvL1G2h7TQT9eQ3ng1YkvPVcILI5XIWfIXWk1ijvXjxwjUjoi9cEJiAxoobBTQkKgQk5BOkKkKuXC6n1dVVT6Swf3/84x+b5Eun07Y4BYtgG8N92tjY0N7Pz+vknhOHUdfTCA2JrFBsxWtDKoP/mOAZj8c6ODiwsANrOXDa5uamn1mj0XCtRlOOiVNJfqbz+dwC00hkYQfe7/f9fohHqEFDK0KwMs0Ypq1ub291fn7uxgyWTpJc24b59vP1+fpUVzqd1rt378yxgVloQNM4oCYmv4SH1CM2paHT6XT+idCGeIFjAYe0UwfjoMB5NuRmame4nuPjY2UyGU+M0LyAoN/e3vakITmYA9nJ9XA65Fl4JaYrmb5OpVKqVqver+xrBDGIymgKXFxcaGtra2mqAQKdRgw4galqBDo0j3km8KKRSESnp6dLdrI0eqmBif3gCUnOCfAP8XhcBwcHFhRKMi9IzKceisfjPjYBLqFWqxn/jsdjW9jyucGE4G04NO4rmBV+dTJZWJaBtcLpYWx/qT/Cs4Wn06mKxaKurq6W7IYTiYTOzs485YRIPBS28l7E6rW1NdVqNecX6oZGo2FOYzabeWoFfiiTySwJqcDu8ADkUtZtOF0D95jL5TQcDp3rmIwKz628urpygxF+AyE6jSQE54lEwjmD2mdtbU2DwcBuGWtra2o2m+p0On424PZsNqtWq+XJTxqOrNVPfX0+me2XvPDSBnhw0Dxei91u14GLzXZ5eWklPkUXhTxgI1SOE+ii0aiazaa2t7eXDmOmW0hTAaISoEPA4+cAvTRa2u22NjY2dHFxYV9HgBYblvcLi8ZwsobNS7MDAp+giK8/hStqOxY0hTfBDdUcamjUyBRtBG++6/39vZXu2ITM53N3RCkyIQ263a5ub2/tSw7IxUKBoh/1F4GBoExDh4I7n88rkUio2+161JNpg9DmgcKfzytJb9++dbAKR+Ih0FDvh2OrHJ6FIhoveWwfJHk0kYu1SWORtZtMJnV2dub7F5LJfFbAO0kbohrilqKMwE7igPzjHpA8eIY8F54jqpLQ/orvE05InZ+fa3V1Va1Wy/ctnJKhecOERDjVxr2WtDQpxv0NbWX4PKH6ALsB9gK/c3t7awUwSmkOaX6qF/Zz3EfIN9R/FJL1el2TycTPeDqdGihiQTIej62kAyyiIPz4PKTJZOJR8NDuhmdFAYoqkPMBUFyura3p9PTU1nqobHieuVxOFxcXVs2w7nq9nubzha0ZsSG002FCg+TMd6TxE4lEDB5QStFMbLVa9lulyU6cxEYRj3O+MxZMNKVQeR4eHro5AOAMiSjO/cI2BJsimks0vyjqISWZEOj1ekv3jOfAxNzR0dFSkcI5DngwZ7NZN4ZpYGE9eH9/7yK/UqnYurHT6VhtAykJcKY5G5KJnGPDlNJ8PneDGQJAkhW28XhcrVZLklyEEFNQ3Ya2YpAjEBBMbzWbTZ9pxfqV5M+AsigSiej8/HzJ3g4lOeQpKmGIFPLZbDbT69evnZsgJFETIwqAaBoOh94DPGuaeORvijaakdx3VL18H+43FlHsXRRc/ByqdlRLT/WiOYfNAxPB7DUKGEjIkBSGHKcIenh48L6kMEO5FRJg7XZbu7u7jmncb0m2AJVkpTGTDRy8ytkvNE673a7W1tZ0dnamZDLpfcfnxmKR5z4ajazOPD8/9+RgSKiFZwyen597GgUhETGeIq3ZbLqxRVwOSQAahaElFvEL5SYxrN/vq1AoqNvt+nBXYj/5iX1PYTedTpeU8GASSZ6GRpgDSQjehDBh/w6HQzdd+v2+1tfXrWqEeAxJB3LEbDbzWYZgGn4GvE1M5w94mWKfv6dpyhlAFKpMzEtaOjSZvd/tdt3UD3EcVlDEZiZOKpWKrZchX3nG5CpIbZ4BBCrxBwsQxAEhIcC9lGSMmU6n1Wg0liwoeQ9qCKY2yWlg2mazaYKeZwgupAFJXdLtdq2UDvMIeANsEQo9MpmMnwNXiMOf4sVaRZRCHpYeCS0UsaVSyVin0+nYIguSbDabmdSUZK94Dg8ejUbqdru240QdTp3NnkaQh/0f51oSn/h3RCPYmtHgC62sqfFD20lwGs3a4+Nj24eCTTKZjFqtlmMha6VWqxl30iAGGx8cHCzV0lics64RbVAvg894HRoeiIvCyTGmo8HaCHw4n6Db7XoSOhaL2eYTlT/YHVKQeg4MLGlJBc5ep6HDMwY3/M3f/I1+7dd+TdFoVLu7u64Zwu/E5Cpn+SDioSEeNgaj0UfbT2pPpjBp2MIXUON9vj5fn+KKxWLa3993oz9co5yfCglcLBad08MalfMpaWbQVMbqGfFH2LwEX4IrEVhx9h1nZ66trdmmt9PpaHt729wcXBUCWrAszW3wKI4BxDx4DvYVIm9szqVF4yScTCX+wHPy2ohleb3hcGicdHx87M+PADGclA6n5/jDa4MdiTHEfYSV8E08Q4Q3cA1gdOIF2JGLPAFfRRzGThret1Ao6Pj42I464EviaiiQh18k5yGOQkBHHuNekhcODw/1/Plz5zWmS9rt9pKDBcIXMAtYnzhaLBaX8CDc7cPDw5JoFP5Hknnfy8tLZbNZcwU8V8T41Jbwm8Ph0PgavoN6GnEjuItmFzgQniWVSvlsMwQT+XxezWZTtVrN1qasO54vuA9L1fBcW54/jSLOR2fdh64wiDqwCKVex565Xq87b37q63PT5pe8AHMQ9RDoLAbURKenpybBOZOBjm+v11O9Xjc5wwMnuFCkjkYj7ezs2DYnn8+bWKIhwUhdqVTS8fHxksrn4eHBhPvNzY09JMvlsqbTxcHYFERsIA4opvkAGMpms0v2XHyXcAyezYOlAP7hqI3evn0r6fEwewAgKhh8gFEgozKCIAnVo3d3dyYmCHgU9mGHmGCJuoFkiKpHkolKOvCAUpJlq9XS3t6e35vPwSFnqVTKgQ0FBa9HU21ra8ugFIICUA4JQHeWoEjQY8KIYMfoLcUEKgIKE871oYHAYerSI8Cu1Wo6OTmxJ3CpVHJxUygU1Ov1XCTw+uG6Z4KIzwXpQLHGiGdYcPBdpUdvUklONDxXDp79+N5ubGw4iGcyGRMs3DvO3Li5udH19bUajcZSIg0JRgI4IATFBaCqWCxqPp/7nBWatDTh2FskVBIEz/2pXiF4CWMWE2aoq5lg293ddRMGK5SQuOGZs24ymYyTfNgcIK5CRPHziURClUpFvV5Phz8/AJICFYUQMQDyMZFI+JBwQHA0GnWjKVTJ0KSluURsa7VaevnypW1hwguiKxyJZx9j38bUUKlUMrAA7NHECu0NWX/SI+F7e3ur09NTPXv2TF999ZVVKoDKUAVULpcN1Cgg4vG4arWaD5hEdcx+5VmXy2UlEgmVSiWvb0A04Ow3f/M3JT2e98FaSKfTqlQqbhijVo3H486ZNB0AObPZ4jyjarXqGD4ajbS9vb1kucF+5hwFJn7CZ7e+vu7vw/lGjFTP5wv7OryUUSEB8gCaAD4IItYz4I7JIhpY5DzIW96LvB1aHXGPaILj4QwIBvBLMumCLR1NAD5TSCyi5uJ9IMu63a4FFtfX1yqVSo69YbxHMQWxXK1Wl+Ix498IJIiL4XN5qheiAaavKDhY32AlGr+TycTPnvXEHseG5mOrBTAXcbRerxs3QWBKcnxCmBA2mHmtm5sbi0Cw16FRhE0ezx0Cj2kKbCXAfVj6EH+wukAgFIlE1Ov19OrVKxO7NJhoXkOSbm9vWylIrpUeD9dut9uaTqduKIciDKxLQ4U5hTJxEEUqjXQu4glxmsJzNpsZK3HeCnsfMpGGFqT+zc2N8TS4kr3B2ggVlAhyIE7AoRTzEDDYMnGfsebY3Nx04ci6Y4IEUc3l5eUSWQLuxbaXzwlBC6Ha6XSsTKS5lkwmPZWJVQeNRmlxdiRnbJBvWBN8PxqNfE9IIJpLoV3e2tqa1aI0sxDQ0HAMFZrEVZ4Nk+zcR6apwb/So0AKAQVuA7FYTJVKxWQAzT3ObMlkMsYvNHwajYYtYGg6gG+e8gUpT2MGwih0BWi1Wtrc3FSn03HdHO4FchfEIwQJcSedTuvt27dL50nRYAtrSO49jRhsQ9k3ED2QYx8fJsyalxaWlJubm54uIz6FzRMswrAt6/V6rqXBnljrUcuBt6jBqfFZ89Qz3EvEnzQumJpl+ov1DOlGjKN5xOfkfoOXpUfBWiqV0osXL9z8pREbigyIJxxYTSwB84JHQrFdt9tdauDQNM1kMvqt3/otdTodY2hiCpiLvQln0Ov1HLem06mxHKQb54SwB6kbEOGwVolfn6/P16e6iC9M0yMeZO0iYGKP8ve5XM7/C/FNzqeeCMUb1NipVEqdTmfJnabT6ahWq7lByyQceR6bW3gtJoVHo5FFaYi3qaFwD6AWJpbGYjGdn59rZ2fHTWVe7/7+XqenpxYVd7tdlctl52AaNZFIRMViUW/evHHcLRaLFv1Q829tbandbtsqjT0dCkC4HzgNgTeZIAZ7wVWChZlWoi6nEd/r9VQul42DiPtM7oTnDvKswR5MBmOFRuP7xYsXFr2ENqKIXLCBhUOB46DplU6nza8Nh8MlW7FUKqVnz565uYEYllpvNpupVqs5x7KmED6ORiO7JmUyGecwYj35BAECYnXwF/kOERgOM6HolSkUplI5e0d6dBeB+wBTkI8kLa0dprEYPphOF0cU5HI5Tx5Rb4OHEb7xXeGXb25ulhwKqJ0l6bvvvtPz588Vi8W0ublpXBK6SjENyhDD4eGhGo2G64xQwPepr1+qaROJROKS/lDSX8zn8+NP/mn+HVwE1VgsZhUggAtQmE6ntbm5qX6/7/MWUORAoEEms0m5sHuAQCdgcfAyRTDK6VBxQ+FNUmADUPRw2CGj0xDPbGIUtQS+jY0N9Xq9peYNBTcACJKADczGhNQjuEOwQiRRGK6vr6vX6/nnAev8HrYTkJdMBRWLRU+J3Nzc2AIjEom4uQThJMljbTSDuJfhyB4FJN+HxsSzZ89s6wHBTBEBkKSBRwOMji1qeTYxoBzlPAEuGo36sHBIHdYAwSeVSll1jioaUofnwL1D/beysmI1VSQSsYpQkombsLNNF5l7haqJZId6rd/vq16vOxngvz+fz233w54ISWcIAyw6QpUlxDYFHN8/nOzieZP0JC01lEhAkqwSIDFARPM9ufj9Vqtl8ujjEV3WOv+LooDEztqDJH+qF40rYlY4rUIBB9lDERgWURSBkHi8JsC0UCgs2SzQcD06OjJpD1hqNBreJ/P5XN/73ve8J2ims8aZXIG4l2TwxjgtxSyEQmh/wd/TvNnd3bUKm9gFGcg6IeaFr4kiiVjD+C2x5v7+XsPh0NNixFxAP81tYnClUlG/31cymdTJyYm2trasOILkoCAP1f/cN6zBQlUIFl6cDQOYh9iMxWKOt+Scfr/vaVIEAjRHJLlBhjI3Gl0cyMshjxAZxMnt7W3fQ6Y1GYlH5IASbH193apogB9Ks1ar5UPbmXJZX1+XJFv1EZMAcoA04sX6+rpHvJnGYh8ABFnjWKlNJhPV63VFIhF1u10TEcQnADRgHQIWkIh1AIB1f3/ftnfk2u3tbQNO4jC5ksYZe2A6nXoahyKFhiNrGCEJexnxRKfTcX4iN9JUwG6pUCio3W77PJanfLGnWTeQgsQZpj1C5RzPUVqIDLCT5fyzdDrtQkR6nDKlAITIvLy8VKVSMTakQKV5BgGOegxrG8QIFDMQX1hZgAPCZhFntxBLmBaDrACv8f8hqsFWYEn2LQQCymgIfQqg8PDV2Wymvb0924dQ2FGcYg1HPg/tWfl8NNs5kBwikcYCz49YP58vzk3Aizw8OwEsSbyR5GYYeIQCHuLh5OTEB68ypRkKlcJ8geAL3C4tJuSxbMPOCZUmhOzJyYn97qfTqc7OzmzpCh5EzEPxz7oEJxGvIKuvr6/ddGcCkGb3xwcRQx7V63Ur2hEnQCRhNQERQQ1B05c4ytQouJ7GJKpT1KbgYOousC8+65ubm5JkogNiGKUnDZ1EIqGLiwsLhJiExOaEJhrNNvYb94D7wDpnLUp60hhQktfsycmJBW0Qhuwd1ObsLQghsAKN2LD5gnCKvdloNJbOkIOIZO+nUo/nm15fX+vly5dLDQtJrsFCsSPYEkKfyTn2M7FPkp9tKCaMRCL65ptvfG5Ys9m07S24lrxOLXNwcLD030xchxYqqKdLpZL3Fkrm+/vF4eCI2KjliYc0SfmsEFoIWcC3CDep6dlTTCiCZ2mQY5uaSqV0cXHh38UiHBxBPZzP53V7e6u7uzs//9Fo5OYozwYiOp1Om3AmJpJP4BMQRYBXUEkT+6kfyS+JRMLTW+Copyym+3z921/UONLjVD1TXp1Ox6KeTqfjehdbR+IOtV02m9XFxYXzPbgD3oK8Uq/XzQlFIhFPFYBvqHvhnCDUIZipBx8eHszf7OzsGBOk02mtrq7aampzc9OvPxqN9OzZM4t7yJngwxcvXrhm2tzctFsP8R9O6ubmRs+fPzeHiUiC9+31eqpUKq734QvD+EWtTOxhshBOkdocvhVRHo16OM5YLObG/ubmppto2MwxpRzaGsNl0QgirqysrKharbphJ8lxCb4KHAUngPgrnJYk9jHNQSOCGC7JouBlM3MAACAASURBVAM+Axzr6uqqtre33TwKuYPRaORjBIi1NC7I2ZFIxNwLfC24BswIp4aIcD6fW9THa8En4BoQTt/Co8bj8aX3gXektuF9wfUcQUGjidqLtRvynzTsqIvG47FzO3/PsQ2SPDzx8PCgly9fet3C7bE3qAUQB7Gei8WiOX14X/bap74iH6uE/5u/EIlcS/q1+Xx++Mk/za/wFYlE1iUNfvCDH1g1Fo4qsqkACdg2hJYBkJqMWaOKgQihoH79+rWq1arevn2rr7/+2gTBysriEOtEIqFareZxRggsNh2vHTZuwmBBwYr3M40IQBckuSSr4iBg6QxTHEEkAah5Xd7v6urKHo+oEQGZ4WfHroKimY3O31OgUfBB/AEGeX8SEkq9RqOheDyum5sbDQaDJasYQP/HzQMsaQgU3AsmVAimFJtsaII5SYUOMwfKco4PKkQCR+jri2IbwhcQy3cPlQYEB4pqzgqRHg/r5VnPZgvf+LCoChtLBCa8z0kIWKcxTirJSm+AMYkwBBcQE5K8JprNpjY3N3V6eqpKpWJyOVTsE+i5Tzc3N7q4uFC9Xl8aYSRRAuRRSbDHms2mfv3Xf10nJyduZF5eXqrb7WpnZ0crKys6Pz+3WnI8Huvo6EgvX740gRsqNfr9vvb399Vut012hA2lUP1+f3+vP/3TP5Wkjfl8/iTMzYl/f/iHf6jJZKKtrS1POlE8SjIpEzYZScCXl5dWXpLkUPmz/sP4yL6W5BFuiE3WCU0V6bGBDHnGOSA0BFqtlskgJlIuLy9Vq9W831HrhfZFkUjE1hwbGxuelotGox5nZyKLQhfylAYpFj0AVghImh8Au4uLCzdyIb9C+xYAFXuE+wqIZz9QNNDUJcbQIAFghcQvIIn9yucND1rk8HM+O0pb8g8NIMgDSZ7+I96vrKwsHZiL3U0Y45mmouEM6KawIS8xPs664XmFil3p0UoHkEdRNBwOnaPJn8RxYiP3iPuDXy45CLAPWcsEC405PhdgHvKS5gdFCe8D0GQajLhKQSLJz5ypWgpDyGAEJTS8sB2SZCKf8yrCmAuGubm58aQT5D65nqKi0+kol8uZqCU+r66u6vd///dRVD25GPjHf/zHVqMx/XF7e2uCipg0HA6tAs9kFucI0swBe6H6ZooO20NEQeRvGkVhAcbvIPoA05C7aTogJmISDGVgGCNDDEpjHJKbYgqsO58vznzBZgs7j1Kp5PUsyeuKOAPRHzajKYj5GeIS+IEiFfENDRxIf3A25AVNSb4/f1C4M7E7Go2MhyKRiJsxNAb4vjRhQytf7gFxj4IxVE0Seyjymaximo59ORwOVSwWrdRDPESMxZKS/c9kJTmQuMy+Z+3w/FgfxFga7TxjSbarJF4jEkLlGtpGsaaz2azevn2rbDbrCVXWa6vVMl4j3hGrwLhgLEluEoHzWZNM+aDghTjCGiNU6fN82S8QDA8PD24q84zDRhnPh33DZA2H2YI5uF/sITAFeZ58BGa9vb3Vn/zJn0hPKP5JjzHwL//yL90ABN+R4zY3N70vaNysrKw4HqAkHwwGnmhDzBNa4IRNmZubGz+nUNBDDAmnNY6Pj00k0QTMZrPOkaPRyE1f8N58PtePfvQj/d7v/Z73EI0C8ALTrOxF9mo8Hle73V5qaLIOUc+HmLVWq5mIY/+DFRGt4JJAPRviHf47mUzq9PTUZBaxCXzF4dHYJdEw5r1DASU1FDUncRVnB7A+ZxRwJgWT68S4aDSq9+/fGwenUimL4ZjihLSm7qTuTyQSnuphLxPfEENANHKOVejYQEOVHMQk38PDgw4PD/Xhwwf91V/91X+XffP/8+tJxsA/+7M/WxISDwYDiz7hbGg0hGRyiO+wB2Vfs0/ARPx+aFEqPR55QN4G/4FLQhFcOPUNKQ5GCOtrhEPUvzSB4fWoDcBGNHklmRNbW1tTv9+3UAm3CWItwhdqCPYqmArRHTUL8QA8EHICoUA3lUrp+PjYOYNaJMSQ8DRgS3jIsE4CE8ViMYuI4HcRLEHGE1fhJIg9cELUAOAT4iZNMHA/eB2+jiZ+KGxhYpx6g7N2se1nnWCrTJOMephmSogFyZmhcI/6krwHzmLd8LmoGxFcMKHF/cLCjs/E1DSCdV4HkSTOKNTx5AruBSIgcgCYg/sT8rfh0AENRZqnnJPId+O/WRuhWJXajcYd95naJfw+4G+mcLBEH41G+uEPfyh9whj4L7FH+38k/SdJh5/iA/x7u6bTqUcJM5mMCoWCCTI2BcUgJAxkWiKR0Js3b1Sr1fx3FGiAltlsZkD09ddfL3kLAiIhXThgHpIFggoykQWMxRgKJ34umUyq3W4v2beEU0STyUSVSsVkBBMW2WxWW1tbVgGg5qEwI0ns7OxIkid8Xr9+rVwut6T4TqUWntsofiqVigss1IoEQdQDmUxG5+fnJpooAgGaJK2dnR0HFjYxHfq1tTUdHx979BEVK/c+mUx6kgJ/ZYI1iivUfSj3UCUBYEMwvr6+7v8+PT118oYU4DkC3CkIIE4g/igsCSYUB1hPhCOCqKM5eG4ymejh4cHJFhu1q6srvXz50oVrJBLR4eGhcrmczs7OtLu7a/Kl3W5bUTudPlrsMW3D56xWq2568D3X1tbUbrdVrVZNGBGc8/m8i348LkmUOzs7fg0mrMKRTezMSECz2UyVSkU3Nzd6+fKlRxQBOATpRqNhRcR3332nRqOhbrdrlX86ndbZ2ZlVaLe3t9ra2nIx8e7duyX1AQ3Sp2yNgXof/1kSGc0XEjLrkMY195D1Q0FPHA3JYBIw+5KRZEhrEjmg7+rqyoAzLF55b0jLra2tpQYTVmwUdmFReX5+brserFIYf+YMC74HDRkKYdTenHE0GAw8yQOxCdiSZBA7Go08Ig2hB4gGPEFuUZjT4AJ0QA7Q9IK8AyAxFUizGa9byFQUrNxrLMOy2aybauHEAPERUpVcAUGKEpSJHvIRz5TmHkRnPB73dCfWIXd3d35OxPDQ1ujt27eq1+uOwagtLy8vDXKxQmKNob6BxGNSNZwqpckXWm1AhjBRwv2gKMK6iuILIpQcwHqZTCae3gEzUJRdXV1pd3fXMZC8DZHEmqSxPRqNjCmYXhiPx7735MN6vW6iFBU7MZ/cxjMKgXM4Fo5aiRhLESTJJEloRfQUL0Qs5FEsGrCbQvRxdXWlSqXivVir1Twx8P79e1tHkj8pmCB++/2+dnd3HdOID6jniBlgAOIw64T9NJ8vbCxOT0+X7BXABvwOxSMxPCwkiVEUpaxHmkCsOZoMfEaa3OFkTagGl2Q8RqEZNjr5PfYM+YAG1tramsUzkCOsd/ZqiM9okmPlFTYxiKuSfK4K94AJHUkmEokZKPCII+wp4rEkE/7E2slkYpInnU7r1atXbqazB29ublSpVHyfOf8MooDYG4vFbAsE3mX9hSIH4gNrYzgcKhqNqlwuO2ehtER1yMHe7XZbyWTSU5iz2cyH8/LdqGMgVXK53JIdIxMOkPDlctmk9Xg8dh3FOUDgVdY86kdiNBM5FPPVatX5ezweq91uq1gsLt1D9hD3i4IblT74nhwH6RyKlCAm+H3iN5aZxPynfDGdTFOFfNRsNm2RQ6OLZ4Toj3tLLSPJBBYNVmor8BrCisFgIOmRgMP2hzxN81h6tCjhZxApQM6BUWgA/e7v/q5xGfVZqVRaatyR+0Jr1Nlspq2tLa+NZrPpSVewF//G+jg5OdH+/r5FD8QNSb6n7FeaUeRzyEPU4ThncA9CBTPfFSEnZ77wc6xbGo/EQZo/2B7mcjn1ej1ls1mVy2VPHIdEM2dOhpibvQoem81mtnSiCUdcJQ/GYjEr4Gl8hfccgWKoAqfRSs65v18cwk0sYj19vj5fn+oijoV5/fb21k0B9gCWtORZ4iFWVTQdEb+QJ+HsqPHAKeHZMzSTP256zOeLs7Rvbm60u7urk5MTJRILm91cLqd+v+9cChajAUMTifekZoHwz2azjvfz+dxYGGwlyXgWUV46nXY+piGdTCYtBEH0xkQkwkWEY4iCyQ1v377V/v6+YyviYdyH4NOo6brdrj8TYrxkMrl0LipxGNxRq9VcJ5ITeH8+Ew1r/p3nCncFpiem0VRjAoM8IWmpZgNvw1cSt8G/b968UbVaXRLq0OiiiUEOCacXESuE1tc8Z54BwhnWBg0qcjc5Gm6bZxw6dODqwHri2A2eDZNAYK6w+URTEC6cWv/i4kKlUsmuIawThF5wnre3t3b0wPWAZh8c6nQ6tc2zJDsQcZ/4A4fDVE40GjUmoHZjz4EvmdTn3z/19S9Bl/9V0v8ciUS+kvS3km7Cf5zP5//Xp/hgv6oXARHyjcP/2DgQ96jHrq+vPaY8Ho/19ddfL00X0JmnwUIXlQI6tD6QHsfiXrx4YXU2gBhQValUHFiur68d1Dj4D6D68PCgfD7vIhQlLSAWknJjY8Ogh8CNBRsAiaKGUXO62+FkDPYa+C1S0AGgAZ4kEUgk1JGMUa+urmowGCzZsNFdvbu7U61WswqPCYhGo6GHhwe9e/dOjUZDvV5Pz549M9lKsXZ7e2vfxnBkD+Umn5cAQbAeDAba29uzbRYje7e3t6pWqw7sBINEIqFOp6OtrS037rAbAAwDRCFvKcRJHhAPTBJB5KKyAGyjBGUdUszQXGg0Gi4a8KZfXV3V/f29vvjiC6VSKZM7ECqQoRRnkUjERH48HrdVAB1tVFV40XMPsV6KRCImIqRHAE8whqiQHg+IQ9nIZyeh8ezwwkbVfHR0pGq1qnK57GRKV30+n+v9+/f6nd/5HROaKEQoHiGAPlahkESIDzTDnuIVi8VUq9X8XCR5JFSSG41YILDWUaju7Oz4nlOM8nxCsAER8Pr1azUaDX348EHFYnFJZQPJhhqQ5gVKvWKxuKS4oQnElEM4TQjooZDd3993oQvpRUORZx/GO84ggWiH2OdQOqaLUG9zz0KvWyY/CoWCTk9PVSqVvEchKGOxhbVgSEywn1GH0HRH4YNCFMKBsXr2CgAWEMYe5rPxHLe3t11gY9PBM6ARAuk5Gi0OD+Y8AeLKaDQyiUYM5bnxevV63YTD7e2t6vX60pQLAoLRaKRqtapWq+X4FKrUG43G0gg15E0sFvN7hKQ55PR8PvckGQQgjXQIYEjm0Wikb7/9Vq9evTKZzRQEhM39/b0qlYp/H0CHX/39/b0ODg50e3vr5w/QLhQKxho8C4htGsl4Y49GIx0dHeng4MCEMzmQZlAikXAhFDaAAM3cK3AG9wxlHXmZ4mAymahWqzn3rK6u6sOHD/8Woei/20WRI8lFiPSYSyDWisWi9yGYjkbll19+aTUa2CIajbq4SCaTOjg4WCIJIZuxQWBfhsrIsMlBQ42Gay6Xc/F7dXXlZw1BieKcP8THdrutfD7vxjWYCYzK9N3KyooVc6VSyROUFNSheq5YLJqQZc+srKzYsz20WOSAU9bbcDj0GYEoBMkjfB9JS5iF/DSfz31IK/iR58U+Zx1fXl56shncT6OJXDUYDJwn+H2mQtLptH7yk59of39fDw8PPleM2EET7/DwUOVy2aRkaDkXTvBywDn3AUxJPuJ+ECu5H8RaCFbwDiIY1h0Yh/g2Ho99EPLq6qoFBHwmvOi5N6yh0EYikUgYS6JArFQqJptC0oOpUoRZEE80iZrNphqNhomI8FyQarVqa2FJFniR2xANEOvBjUyTgt+Y0qQRmE6nPRXOPQrzYmgDSvMU4uIpX2Bu8qK0iBNffPGFp9Z3d3eND6hTiF2QIQg0iKOQNjwD6i8azexjainqPxqYrPnXr1/r+fPnzvfNZtMig3g8bpsYJk6pqbATpR4lRobnx7IGEA0hqKxWq5LkXA9ZORgMtLa2ZjuiwWDg8xXDdUSjYjweq9fr+dwByFBqYzAaeBGMRzylvofQQvGNqh+iDo4A5bD0SEBLi1iJqAWHDp4lAkSEjtz7VCqlzc1NC+sgq5mQo26U5CY/jSs4BARUWBi2221ls1nXXmB6bH/BKdxvScZLxMPV1VVPKXy+Pl+f4oL7QbgsPdraSnK+RZzARAGi6ZAbe3h4PBcnzM9wb/xseLA8Igv4QThEuLZkMunzXrEMTafTPoeGeiqRSPj8X+yQK5WK9xpn4Uyni2MawP/UZ9vb27q8vHSsp7ZnL4NzDg4OluzRJbkJhRASfommjiTX5sT4m5sbC9q5JzQowvvLM1hdXdX6+roeHh7MEyC05dzx+XzuyWJiUjj1SRxCVAre5kwtPjMOO3Cc4CNpgUfhIXh/XC5CYRD4mPozFCJFIovzSQ8ODszncfH75GTEKPDK8/nc1uJMhNCgogZHLLq+vu77f3FxsWQ/joiBf/9YTEbjjpzOnqD+QZwvPVqPwmVivwkPDgYOa1HWGLwHDT5qEhqo4bQt3x9hx8e5bT6fez/TRCOXso7hk0KxVKFQ0Pn5uSqVisUO1ET39/f/KjjwX2Ly+b9Lqkn6L5L+D0n/Z/Dnv366jyZFIpE/jkQi84/+tIJ//x8jkcj/HYlEOj//t9/46PcLkUjkf41EIj+LRCK3kUjkKBKJ/C+RSGTjX/qZKGYAFCwCCl7snOjiZrPZpcOEUQ/zgNfW1vQP//APDjSM1hMssXzA3qbb7Vq5Gara2Xj9ft+TK1jSsIgASQAdlEt0DbPZrA/8g3RFBR8WUiSS8J5QsBFcIa4I/BSiTGtcXl5akSk9FgFs3m6365Fsvmu/318aQZdkdSkBA2Kj2+1KkhMgHpeNRkPJZNKjcwDZ4+NjAz0CV6gMRU2O+vDo6EjX19cOysVi0Yf3hoQdQYpzOtrtthXt+XzehSEdbEkusjm8MZfL+f2kxajgcDhUs9nUfD7Xu3fvTKj9v+y9SYxseXr29ZwYc4whMzIjcrx5646+7Wq7y21hJHZs4BNYIJBg0QsMG7C8YAE2sluyLUuWaCG2rNBn9IHAkoUEfPoEFgsvjG0kG9yu7ttVd8qbc8xDjpEZw2ER9/fkP4put7s7y327VEcqVdUdIk+c8/+/7/M+7/M+f5ToPCMUnVEU6cmTJyYm8YlOp9M6Pj5Wo9FQs9mcGlFEWShNlOKNRsPWAr1eT6enp3r79q16vZ4VcKG69PT0VO1222sboEGxcHp6qnK57MDMd4f4JzAC+HkXEFfhZAD7hCLl8vJSjUZDR0dHJqkg7WmoNZtNkw2pVMpquWaz6QkOGoqoCDqdjskxzkni3iBOAW13cb1vMRBlys3NxH6Qf3c6HbVaLb+7m5sb1et1e1uPRiO12221223/Ps2tVqulbrdrP1uK4Far5Ykp9gJTPtIk4VerVRfYxDtiA8AyVB11Oh3Hv3q9bt9twE2tVvN752yTi4sLtVot7yOAVqgEZ9Q8jmNPI+J7ygQatlp4cGezk3NsQlUik2TEXEmOW9wj/rEoPVHPh2PlGxsbUyQv+45nOBhM7LJarZYuLi5Uq9V0czM5zwDbuKuryeHYvDsIZKYHAT/kusFgoOPjY38uDWIsNbjnTqejXq+n3d1dj8Cfn5/bFhMl9t/93d+5Ec+z4xwgzmlot9tTdknEFRSmAL7r62v1ej0TDaxlmnLcA8D47OzMOYPG2NHRkUkgPnM0Gmlra8sqqUaj4e9ELicenp2dmZTtdDo6OztzYffixQufHYNaJ7SeCu0NsNRCtFGtVh2zsJA7OztTu932euf9pVIpNZtNXVxc+Lu8ePFC5+fn6nQ6buZAjBwdHUma5HgI49nZWTcNIWB4RxR4d3m9bzFQurUfpfkb2hEQf8IJLvISUy+8dwQy4TkbrEkKNfYbn4nSX9LUtEGIyUISjJycTk9sEiGxNjc3Jcn3z7mJEIMUk5ydBL6lUQAeRLzUarU0HA7VbDZ1fn6u3d1dW5LGcayTkxOdnZ2ZGCdmUAi9ePFi6gwyinWw4fX15BBxiIhQMQ8BQcyH1MNiJIwBy8vLbq4xDdhuty1CYcISf/fxeGxlKw0XFKIIPCBVsSrkZz579kyrq6uevgsV+6yLra0tF9jsOwgS/nw+n/fBvkwWsH4oSslDTCGFzXwsHogZV1dXKpVKVjTOzs5aIETtEZ5LQc1D3hoMBmq1WsbDoRXdcDh0XuG93NxMDj5G1NLtdn2eE7kmzAX8PBplND5Zk2HTB6sQbEyYKsJxIGxG85yurq5MetAUYIoJAVWoRKbJQDONCRHuYW9vz/UYzdu7vN63GIh7A5jr6upKS0tLev78ufL5vC2HiRvgFMRnkOulUsnrttPp+LmyvsE43W7Xe4NcT26FLKTpd3Nzo0ePHhmv9ft9uy6gtqW5GNoXYQ92fX2tarWqq6srryPwSxhjIe5Qx2NFhEJXkmtE1PZgZrAdYpGwUQG5K8lNH8jZfr/vOpjYx7MIzwiiWc6Ud6lUUqFQcK7g9yXZIga3CzAvdS9nrYIpWq2WCSnEqJCE/X5ftVpNi4uLU5M1PAPwVShipAHF+brsZaYEEWyCTQqFgnPv7OysFhcXLY4gN8FRUGscHh7+OMv8y+s9ud63+CfJdo6IBNkPkPrwVtQb4ENwfWhZ2m633dDmsxDeklepS6g5Q/E19ackxxZqXGItP5sa5fz83Pv26OhIrVbLkx7VatWcYyaTMd/T7/fVbrddfyEQ5L+bzaZ/n/r34ODANdrLly9dIx8cHFhQRvwHY5yfn7u+CvEHBHu/39f5+blarZaOjo6ch+AcmCpnEof8kc1mPQlJrUzdiMg6etdIqtfr6vV6U/wRf4dGTq/X0+Xlpfb39/0ssCA/ODjwtBHvkbMiETLz86ijwK4nJyeuG+GwOBoDpwy4ShpZiFbC3IjL0fX1tfk9eC84WrBqtVrVzMyMHSGurq5seQbfQQ6WZOzI90FkjaMHPwP8NRwOPblJDua5k4to8MMbYIcG5iK/g0vhHxBPMDldr9e93hFmkreoQXj2cC/wSEyxghew3YN/pSnExBg5q9vtepKnXq8bG9719eM0bdJ/zz+Zu7s1X9+VtBb882Hwe/OS/i9J/8UP+Lvr7/75z979vf9A0r8m6b/9SW6IsT6AFB0+1K/4+tMowTaJTieFB4Hq0aNHU9ZUkHCh+iX07adBhAUQxchoNPI4GV1Our3ShGhYWloy4EM9S3efaR1GH1mkktztJ+ByDxTfEIMQe5APg8HAHr4QHHSbr6+vdXJyYiXmaDRyYN7Z2Zk6HJaEdnV1pVqtZsUQGwbFJEQonXU+E/J/OBxqb2/Pm5lNixo+HPsMfXyTyaRVl6VSSTs7O1PrgH9DDJNIObejWCyqUChYEUTgIhGTVPgZ0bvJFYgK7O4gVyEUMpmMPvjgAxcUdJMl+XusrKxYKTAcDq24ZfqFIqtUKvkzGHulOA+VCHz+0tKSCYeQYCJ5MxZPIOX/IVMAMQTy09NTe4ZSnEEgUcxJmvKshwilYXVxceGEVigUfM9hkVCr1azAgMCg045qkuQDSdXv962YY22sra15gkCS7/FzGIl8b2IgRCD7IZzSoNlCHAFg8G5pIIcEDzGPg48hACE1AUzn5+eq1+tT0yHj8VilUkmdTscK9Vqt5hgCwMC2AZUN02oAHAhBClEKzpAQgFgIJ7PCaRTAHD6pyWRS9XpdkqbOyMGXF5Uk0xU0EyHkeW4QH4eHhwaI4V7gZ/KZoQdyr9fT3NycleAAXmw7AJHYiBGXUTASy9h/NL8Hg4FjHBMv7HsmQyFfafJyQbiE9nkAr0Kh4EJnOBzq6dOnJiEp/FGQ8n4hO4jtobIUxSpxM52eHDydTqf1/Plz/x6TiCilUF6jEGfyBDs/Yvb19bVev35ttRqNC9Y0jZKQLG21Wjo7O3Nu56ymQqHgRh9Ndz6n3+/r6OhIZ2dnev78uRs5rIXT01OP9YdTW+REyEviZOi3H9pAkWs6nY4nh/mzgHhyAY1bigOIoePjYxcbd3y9NzEwVFbe3NwYv4T+2MRBcgtrlgky9jb2QWANJm6ICagmJXmSlWceThkjWIBQl+QYzP5gn9XrdTdqmEDIZrPGA6jJscShqCI+Ejt6vZ73HKIclN+Xl5cWJ6GIRPhDccwa4/tvbW25kIJ4T6VS3p/kZc48keTnw4Qlwp/Ly0sdHh66UP/444+t8g6LT+I/AhaaByj3jo+P1e12HU9qtZp/Bjif90lDFaU+2DRsLPFnUV0Si2lU8f74+9fX1zo+Pvb7pEHBu+MZ0qAJxUKZTEZv3rzxdCK/R1GPLz44L7zS6bSVhd1u19YQiI6IW5LcaAaXss4Hg4nl2XA41MnJiSfoWbs0NGdmJufgQAbQtGd/SLL6FbIJ4hkChbWRSCR8pgn4m7xGo7vdblswxr4jrhMv2a/JZNJnUyK+4DtC/NdqNa2trbkxwfv7HK73JgaSh1EUEz8eP35skQ6Tv+CJk5MT13msT6a2aLidnZ25yQeZH8bP8/Nz11SSnEsRJIAfmGAkx9NEA7PRpKDOxj4N8Qv2j7VazQJA9hg5nnWKVRfYI5xipZEwGAz0+vVrSTKpC45G/MkUW8gZgHEQM7KuaL5Tp4S4OHqndAZjMWXdbDYlydPaYOjDw8OpeLOwsGBrw/n5eauGEQKhgg7zXDjxvbS05BhEHZbNZrW/v+8pNKywOf+Ad4MKvtFoSJIODw/tgoD1GbkR7MPzIq6xl3kPiCq/tEf7mb/em/gn3dqtY4lGfQTvlMvl7MIDnoAHZK2DDULbweFwaAsv1jnkNw3bWq3m2ALhTz6em5szXkIgyPQxE/UQ5oh6mcrBGSWTyajRaFgoDp9I3UGMhncC5/IdR6ORer2eyfvxeKxPP/3Uk97z8/Mql8vq9XpqtVpqNBqOd/v7+0okEm7iXF1d6fDwcGqSnD+bSCSmztYhr+Digk3aZ5tfYErpVoBALJPkWlnSlEARvIpdFngSMT9Y6Pz8XJubm25+MaXL80CcCgbiXYTOGMlkUoeHD/hPAQAAIABJREFUh8rlcj7Ttd1uO+5Lcv0KDoFTaTabUw0TnDvgOsJngrgPcRYTPvDJrFF+jfdPvsYx5OLiQldXV8ZL5Ch4DWyUyeHEfXI/Ah/wF3y5JDdH+H6ImqizwbCsCeoMOGzeEXUNE/ngctYFeYM6hMl46jvyfIi9eeeI3tiTcLV3ff3I9mhxHLsij6IoHcfx54JOg2sYx3H1+/1GHMf/7N197PyA3/+OpH8n+KXXURT9jqT/PoqiVBzHPzK7SiGJ2ptiGCUsXXJAF3YnkEyAKwLbaDRyVxClEKTlzMyM6vX6lL0BC5+xfjrA4Xh0IpFQrVabPLx3HXh+Hg0dph34Pih0crmcxyQh1wC6eD5S1BLUANWQgygyCf6hvzHq6OPjYxdNq6ur/r79fl+Hh4cecyfJQciiFF5ZWfGUEz+HjjEBguBOIKITTpMDX16CAI0egjhNAxoJBKuFhQUHV0m2bENRQTBG3Q7JRuAORwLp0EKuZjIZqwwg0ri/paUl23KMx2O/K74LUyvYZECWhkRxOp1Wu92WJD+/YrGo/f19d6z5LrlcTq9fvzahimqVtby7u+vP4f1xjkY+n9fz589VKBRM5ECSQ0ZS3IVj+yQZFKLVatUWHtgiMfECsKGgAYiQBA8ODnRxcaG1tTU3VVHSAUQoHBcXF71nsOpib4djjnt7e1YW9no9bW5uOvlRtH8OxcF7EwOxUqDJGCqzSYZv37410YjCV5IVHDxbCDX+HF6+qCAoblFXSzJByf4BTPB3AKwUkZDXKDQg67B65F0NBgMr0Gn0drtdx3HIfAgfiu58Pq9GozE1hcD90TQnThAL1tbWfCbZ9fW1yV5s9mgOoaCmAOazGo2GKpWKpNuGPgAKMoX3gRIntA0MgXkURbbfajQaU5aCZ2dnzl38fIpgyAueNyQZgA0CgkYdQBX1MrmDSTXAeWg/ybslBgyHQ5/DEE4ShEUN+YGmNJ7AKysrBm7JZFKPHj2yGpw/BzimUUhs4LljS9BsNn3PWIOhNCK/hQdkvn79Wk+ePDEoJw83m003K8l1iURC7XZbpVLJcRIS5u3bt1peXvaz5iDM1dVVk82QGOHU0XA4VKPRsF0fB7GjhOdMCADq7OysXr58qfX1dd8b+5K9wvuU5O/Q6XS0trY21aS7w+u9iYH4jEuyyILJsouLCxcx4CawG4IAYgl7LBRrIL4BE5GvENiQQ2u1mgqFghs4TBCgbMYWgCkt4l8ikfC5WOHB10zVsofIp+VyeUrFGR50CtYgVmUyGdtrRO8mwPCvRrgTHj5O82s0GtkiR9KUJQLFmjSxX4IApBhjHxaLRT8nBDTr6+tqNBqam5vTV7/61anJRT4fMoWCnvfU7XaVz+en4jhELfgHjMIEH7aV5CGU41h+sJc5GB3P+sFgMLUnEVddXV35+7CuKEhpRoTEQmitQiH5la98xe+L+AmewkKM81miYOKLdclaZ0p2cXHR+z6VSrkwbzQaPm+OZ0g+i+NYxWLRAiDwVfi+0+m01w0EBqTu+fn5lL1HKBYDlzLdRjEPcZLL5WzDjHCDiTcIE/IlCv/T01NP1jCBBoYgtlJXMClPzqYO+aLHQJSph4eHqlQqXsMQL9LtFBJCFtYz4gSap4gdmY6DcAFfhrVF6L+PdQykD2tnbm5Op6enXh97e3tuCIeTjtKtiIT1Q02KaAbcw36npqSJHdoUhXsHLAz2I4Y2Gg3NzMx4UhXnDPY1cVSScURIliHqfPdO3eAnztCAR3jH2Yx8X5paoVsH8ZbniUADSzimWUJrGvYBTVAs3qmzQ7U3eQmL8levXunZs2d2JJHkKXWwHefa7uzsaDCY2MGHwgHsbyT5PYSKa2pJ1hox58vrZ/p6b+KfJNcJxJ9wL0qykBVeCwELuQ0uibza6/XcjH7z5o22trYsosF1olQq2dKRe2B/wc9RW0jyZ5BT4fGotxF/j0YjNZvNKccKzioBo8F5IvgmdqdSKU+7wefQVAKXtlotra+vu7nTaDRssci0EjErFHiDnZiaIeemUint7u7q8ePH5nFwgOF8HXJMKBCp1+taWVnxO4FPorEFvwF+IkeFdrnUP0xvgKd5LsRzpoi471A8jvUlnGCtVlMul7MQPY4nNprkVupGnoM0iXvENWxnqUPhQkPhNvcUNvgReiJaBkNLt+fGUTfDZ9K8w9YOAS9czdzcnF6/fu2GC7wEdQrxGswkybmdvAtGh4uGW766ujJWhqvle5LLqbtCXIeQHNs3MBz3G+ZXMDEcFDwjmJ16Gm4DzhSBJngW3H7X14/ctImiKKmJNdp/LGk9iqIncRy/iaLo9yS9jeP4j+72FvUoiqJjSdeS/m9Jvx3H8Zuf4PPykk5/WJCOoigrKczyi5IMqhhLZANBZLGpMpmMDx9GTUmRRWCGJKlUKm4ysBABoXQTaR6gQMtmsyqVStrc3HTyoEuJ7QXFySeffOKOMGcRUAQCDFmgFKJh4oG4AUhj9UAQYDRckhd7HMculAnwBMTwbAQ2Tq/XU7/f1+PHj31gcio1ObCRBgVESblctsXP5eWlAweqLTZg6AdJYN7e3nagXFlZUa1WszqW7wfxDrgHTKfTad2/f99Jl+IxnU6rVqvpo48+kiQnSAr8xcVFZbNZHxaNFVsul1OhUND6+rrXxYsXL1yco9pkXJLnSzGQSqVM3pGI+PkEEJQNFLx8r88qwNfX1w0yUDSlUil9/etfd1Mmm83q6OjICjiaRJAZL1++VLFY9Cg+h6d1Oh0T2zS4IA8kGbxDIjBSiFKMd0KSi6LII/0kRfYllgXj8Vj37t1zEGaiqlqt6uHDh8rlcorj24Plvv3tbyufz+vevXveazMzM3rz5o0VcdlsVuVy2ZNCn3zyickjlDMQbXd8/aPHwB8U/yhwabSRTDn7iiZ1r9cz6UGxiyIEMkW6tS/kmRIXtre3TRiheqGwhKAbjUb2aOU9AKZCZTN2N0xFodjAypA9goo8mZyc20PhSiFaLpdNTKE4jONY29vbBpg0MWjCA2KJR1g90AAFPNK0ZSKJZgmEL7+PapTnCPCM49j7DTAHCP5sM5TYAbkIEUEjiOYWZ0IQj+r1uvL5vPcCwBilU6/X0wcffOACBdXkeDz2mHP4HogzvAt+PVRuJxIJn4vDs7+8nJxzQ0EDsRDaZ3AlEpODiE9OTqxuZ8pxZWVFb9++9XSRJJPH2HxBqrB+eZcQJ8RgCBueJ03/TCbj2Bp+1/H41iefdwJoZPIF4A3InJ2d1dLSkj2HKWxYs6zj0F9bkv3gaULxrCFVIUqwHRmPx/qlX/ole/pCSK+srLhRQKObtUDDoV6vf17kyHsTAzc3N00cXl9fm5QM1xYE5tLSkglsCMvBYGK32Wg0PHmbSqVc2IZxkPWFGj1UwUGGo/jq9yf2aviXLy8vOzeCj4g3EGPk28vLS9s6kC+xEQiJBtZZOC3INK0kCzxoaJMjwIVgBaZuKZQh9xAYzc7OqtVq+Qw8vNPBwCi9KTY5Q4H4jxgH5R/nOGUyGdVqNa2vr/s5QgrTPB+Px1pfX/eeCAlbcBk2whyOCs4lXlOgQnBCZkMEE5tRrVMTpFIpTyuGOIfvih88uJkCEXw0Nzenm5sbN7hoGnI+IqQDRBPYfzQaWXATFrWFQkGLi4taWlqy9RtNx9COitiDYpUcRw4Gg3OuBCphfg6NLKyYsHKimEfdiO1KLpfT2tqapFtyIZVKmbRJp9M+O4faiu/M+QI01qVbe0f2CDERS10IAEgV9hz/UF+Fk72fw/XexMCLiwuTiExUE5sKhYLFg0yfnJycqFwuuzbk3fOcrq6upkiRdz/bZI8kE3CQaoh/UKrXajVjoWQyabLn2bNnJjdDQQZxmLUQTvQRyzlfkHiGKwBCCUQme3t7xjPsewQ5NHRwMuh2u45zkDvUdTy7i4sL17zUICFxx1qjPkqlUv58hBn8Go1SGtCImtibWBAjemOvMcVNwx47QSYIwYXsz06nY/KOfSTJU025XE71el1PnjxxM5S6EEEIsZjpeqyAiTFgLXAfhCQ/g/smzpCnqVO/vH6mr/eKC5yfn3fTFvEG524wPUw+zOfzajabrl3DRgPrm5q43+9rbW3NMSt650TBfoV7ggd68+aNz2BlegDL5sPDwylcT+0B5xWS/vw/Qh0mY8n1kiwOhDjnUHZiMIT+Bx984LqZ2jOTybgxAXaBl6IepplMHCVHkxPIt6lUSl/5ylec83kXkoxDEPqFRDy1HoJh7psp2/n5eR0dHdnFg3vmOIF8Pu+mNnE+nLDks5jMBbtTT9NAAGe9fftWT548mRLQkxdCsT78LOuK83HBkdSj4BJcNsB+iL2p92iGhU31drvtmp2GOO8FPoy1uri46OMdmLiicZJIJLSzs2MRGOfzEOOZzI3fTWbBC32WY2DaiDXIlIwkH61A3cWEFnbF1KDUUtgB45oDhwkuBOPBgbOGOIJifX3dHHYmk9HKyoqazaaWlpbUarXczDo+PnbtwD6/6yvi5fyD/0IUfVPSfyTp9yT9N5J+/l3T5t+T9J/Gcfwv39nNRdG/LmlO0gtJZUnflPRU0lfiOG4Ff25H0q6kr8Vx/Ld/z+ctS/p/JP2zOI6/+UN+9u9J+t3P/vqv//qvK5VK+aVxGCcBjxdOkSfJQBR1CqAJYCnJHTk+h2ISUAh5RrBDwROOmNHlpzPKpkXtThEFUELlQqcSVRQEGT6JgGdUmGGRC6EFyYZCOplMWm307nnq5mbioRgqdbB7azQaVvQw8ra5uTnlC8nI5sLCgjqdjtbX130uBQfLMvpO9zeVSvk7hkrLRqOhzc1NEx0kWOm26UGQe/36tdbW1mwlgqKgWCyq0+lIkkfUuQe+I4mX4ErC43BdAiHBGrsG3iuJiOC6v7/vyZGQfGWihCme6J29Tvj8eQYEbt5VHN96o19eTs5FgDAnIbTbbSszOHB9aWnJBRVrFKslLEJY6/ybhhbTDhBFBNmLi4upKSaIHvxKt7e3XajlcjkXYKhcaSqEoAOiBDKFv0vhMjc3Z9X9ysqKixAmtsKLvYLNDOsM4oEE/q1vfUuS8nEcn/59ceaHXT+tGPiD4t/v/M7vWLUKaY4CAmUbxRRE0rvPkyQDOPYbsSRshKLCxa6JYp9nC7jhXYdFMMU3YAzwAjkQHtQKYQmgnZmZsQIJiz2sqba3t6dUv+EZXHwG6xRrSSZawukhGhwABIB4+POIiwC1XC6nZrPpQyBDxSngi2k99jWEsnQb+5rNpkajkZaXl00Go5akSUGRS2wIC3biFUANAEuBvri4OEUWRu9sjpgeDA/8Zl+iVOOwc5TRkLIo5ZkGhQA/Pj6eAm2Q08QGQCrKsvn5edvV4RuNIII4mc1mfT8URaECFRsB1g0Nl3Q6bZANmc7kBVOTEIEUYZL87Bm1R40uSRsbGwaUECnh+2BCk3MWANNXV1daWVnx2qCIY79AYDKmD2kaNvaZ8E2lUv6exH5UWExmMB0kycqzcrmsb3zjGxzo+IWLgX/4h39o8pv33mq1/HyJP6urq857TMpgN0ixTxFdr9eNMcLpEqZC19bW3NSlCcIaZb8y8QFJyJkr+Cu3222tra1ZcJROpz1RAimNoh1MREFEQUbxypoEl0D4gT0gz1hD4J9EIuEGvzRRk9OETiQSzsHsLfIH+bzT6SibzXqCdzAY2DaLCWlUq5B8YCTWPiKYz57HQLMNy893a0DSra0S+P2zODaclAufKdOi5AHIx1AsRNznuVHsfXbqnuIyzL1MtI/HY5OXxBAIIogL8DkxGWwaihWkSY6kYc3ED/kAcp5J8s82/1kTqA/DiUmmwCqViqfSwdjUD/V6XVtbW85JNMOZUqTQx1o4jGnkYkhj3hk/G6IGIQZNulBIx9RWSCKTjyHjuGhMhJiHZxjHsb75zW9KdxD/3q3D9yoG/vEf/7H3OnVlmO9p5NKckWRRBWskk8nYJovpGJou7C1yOzkJLMD0GPwFRMlgMDBJRXMhbAxEUTTliAAO5PeITeCHcEIfMQ4NFPY5e0uSxResVzAWdQ0/j8Y/dTbEIt8fixUaoNhfDodDq+2pO2h800QNJ3bADaENU6jQDt8Dk9fUxCHxxB6F86A5ynSxJON97DRp1BOzmY7iHELyCDUcwkC+M1YzoW32wsKCSc/xeOI4AheD4IYcTGNxPB7r1atXOjg40J/+6Z/+g/bbl9edXj+zGPDdn/09fZ8Y+K1vfcv4+PLyUpVKxXmcejZ02AnFVuF5K6enp8bs5BCI94WFBU8uMkE8Ho/NQ5HnELCenp66DmQfsafIc+x3RKvwikwcwwUhdA1zJEKdMM8xMYHghQYCAh3wHfwXR0SQWxE9cEYQ55Nxhg64AnHM3t6e8vm8FhYW/IzCZ850Ms2h0J0oiiLjbATIxEnw2Wg0OUeLvx9OXObzeVWrVdeQ4I7RaGR8grAD/BRyicRF4mbYmAPTwJ3xObwXchSThvCFocVtuVy2hR0iRyYweWdMG4dibHL3eDx2o4KjD0LumvjKeiDPssYRDbDmcN1gUgebt8/yPmBuaklqd/Jb6KgC58F3YW2Fja5ms2khNRO+PFc4ULgBajGwJnVZKEZAEEvtD28a1kehO0ooIv/N3/xN6Y5woPTjNW1eSvpP4jj+P6MoOpP0C++aNk8l/WUcx8W7uLEf8LPnJb2W9K04jv/r4Nd39EMCdRRFOUl/Kqkj6VfjH2Lr9gO664e///u/70XLwUaZTEZra2vunrLIKBikiaUGpBhBRZp0DL/+9a9PKcTfvHnjiZiNjQ13cCVpf39f4/HYGwpgNRgMPK2yublpwJNOp7W7u+uD4kPve5RQjA+GAZDgD0Eax7H29vZ8IDYBCEKORgALO5PJaGtry+NskOI0WDhYPI5jH1w7Go20vr7uM1yurq58oBgjmJBHR0dH9q+VbgvU0GaOzwnHHCERJHnUMp1O6/j4eMp+LCTiSUY3Nzf29QUoNxoNvXjxQqurq/roo49cxI7HY+3v7+vm5kb379+fUt7h+39zc6Pt7W2rvSTp1atXfi9h4YHiT7rtflMg8N/Y4dDUChVMqGuLxaI77ZCI5+fn+oVf+AUX+8nkxEsTNToWFMlkUh9//LF6vZ7W19etzOdnn5ycmKzngFGmparVqj8jDMB8PxpZBF8KcZ4DyQcihPcXjpPy35JUq9X0y7/8y37mV1dXqtfrOj8/19bWlgqFgvdCHMf67ne/6wkH1lIURarVaibEUbNASuAhCvFBw7Xb7d5Z0+az1z9WDPxB8e8P/uAPrGSFKBuNRrp3757q9brBDAQKBRbvGqUjzYtsdnIwIPFjZWXFqgoAZkighyRXSBrOz89bDUJixRYlJCMlGZRms1mPPEuyogj1B6pGSVMjuzQd19fXTWhjJUYTg+ZRqLYi7rO+w8MHiQdh45lnFk5ccM+hPURoFxaeCQGZBwDn/JLT01OTKTSQ2Gu8L541qh9UJuG4+/z8vJ83zwQASHyEdGHfYG0JIIPQDZs5/B0AXEgG0gADLNOQwSaRacK5uTnt7u5qbm7OcbDdbnsKASIIoogmGUCXGItKH+KQQgeCB6IZwgJ7pJDkhiiEGJmfn/ceODo6mjr7g2YIlgCsc4rDcDScPCXJTRoILfIe5C/fmXzAsw0tHCDeeS+S3EwDL9Dc4b95r5KmSJlf+7Vfu7OmzfeJTT/VGPjbv/3bJp0gbLENRDADiRtavVD88dzAChRhPMe3b9/q/v37VslRWI7HY6uZaTAznRo2AsF+IeZhL1OsUDQSd2kuQSDgJ866ZYKZK7R0nJmZsdAiLOhYU8RfmjpYEFLggLU6nY4nS/hZ4YRg2HyBhCfnQwpKk1xfLBb1F3/xF/roo4+sWuf7Eit5nouLi1NCEhR+klwQSreCEoQ6xWLRIqKzszOVy2UTD7wz7gmymH0UYg8uJgbxJ+dZSLfnabC/woYIGJ04i/gGRT6kBJNGNL7J06w9miDSJOYiSMMyJYoilctln+e1urrq+ids4JInsRvmnWGfiFCJe+K+IFjA9BTc1FHgX+nW8YB3CaHB80R5TzylfqDugqygmdnvT87suLm5MSbgfUsTG6tKpWLLLfIGdm1MBzFxm8lk9Fu/9VvS5xD/3q2nn2oM/JM/+RPncKaSR6OJVdbGxoYJHOnW8YG1HJIx2MtB4PF+aHowSQzGZj0zPcKZDUxfhY0PGouQpFiFDgYDT0PRsI2iyJZ43W7XmKDfn9hao9pmTcZxbKvGKIrUbDY93Ud8wmbo5ubGttzgl2w2a2KQ+LS/v6/onaoe8hISjPiLwI9YQdwKG/AIyUKij7oLOx8aLdgVI8yDLC2VSjo6OtLS0tKU3Tgqdb7H4eGhtra2fKYtz40zsOAomLAiNlWrVdePTP/wPYntKysr6vf7qtfrKpVKXishtmJCK4w7/JnXr19rYWHBk9Z//ud/rr/6q7/6kffal9dPfP3MYsB3f/77xsDf/d3fValUMl5HwAh+BlORS6jjmIYHf0TRrZU1AlqaKKE4kYYNAuyDgwOtr6+bJKcRxJ6TZNEydp2VSsW/Rl4lN1PL0biBWAdnhJglnDTZ399XvV7Xo0ePHGsgxtnzCB55NrOzs/rkk08cA4hrkix8wUWFGMq/yeufPbMGjBCeqYj1HA0x4hOxZjAYGJfwebVaTZVKxX+HejuRmFhYwlOFTjrE/Gq16nPE3rx5o0qlYkyFswb4G6ECImAEykwogfFoTCB62dramhJCE9tDYQkYHMwIzyfJzTwEg6F7Ezwk9TXiBIYGksmkjo+PLazhXZN/QwFtKGoAA+AixbsGi4Zid54lawI7cpqZrCvyEFwGU9TUQtSwNFZC9xNqWOn2TCPuK1wrfCY5pFKp2IYPfpu9wM8BC7JPf+M3fkO6wxj4I9ujSdqU9PL7/HokKfN9fv3OrjiOL6Io+ljSox/l70VRtCjpf5d0Lunf/mFB+t3PutZkDJPPkHTrvUdxns/nbWkWBjPU5wD4sMFC4Y7VwF/+5V96Q+fzeR0cHLi4/M53vuPCcXV11V3ut2/fuiC8vr5WuVx20fTixQsTeBBMoc80nusQVVjbsAm4TxpOzWbTo+vYqQEgIScotJkMosjb29vT5uamvWUBwQSCbDark5MTN0YINBTDdOcJApz/w8YiUPd6PRP6dMdRTTLmjZI/BP80cTY2Nmx9Ua1WrYQK7SUymYz29vam1IrD4VA7OzsajycHrdG0yufzTi67u7tWNjUaDRUKBb19+1abm5v6m7/5Gz18+FCDwcDrCLU5RSJgOBwzR+04Go2sQIOspYlG4oP4ozEiyYGc5Pbd737Xz7JUKml3d1dLS0s6OzvTt7/9bX9Hkkmz2bSSol6va3193arf8/NztVotk9cQg4PBwBNew+HQ9m/sk7Bhw1pA7YBCjDNBQsVGqKa8vr5WLpfTwsKC9vf3NRwOVa/Xdf/+fd9/t9vV8fGxSQ6mpM7OzqwmuLy8VL1e97goXswhiUTDL1Teo4b7vK5/rBj4g+IfKg1iz8zMjI6Pj/X27VuPhn/ve98zsOB9Avxo5DC1EJ4bMxqNtLu7a19uCj2S6XA41P7+vg9KBYhQtPd6PYNnPhdAx3g5DTjunwtgdHNz49hDwqa5xN9hP0mytcTi4qLevn3rxm8YnwDmoVULamm+O2u41Wp5r6Amwc5wNBrp+PjYqpWQBE4kEtrd3VWhUPC0i3RLrnKoJV7vkqbUpHw/lDFh84amDEREoVAwiIUwpnlJvAY0ovys1WoeFQe40cRCfUS8kOQpOeJ1s9nUxsaGfdh5zxcXF+r1em60NZtNEzzkG0Ad6wdyhXUcKsO63e4UOZBMTg6ipuDiQtULaSTJ8YhmL3vj0aNHU4Ac0urt27dW9xweHroJCDC/vr52I5EDeXlWAOwQI2CB1uv1dHh4qHw+74YiBAoTR6i9wsnZcHKs3W57IuvTTz/V06dPdX5+bvUw6jCs0gC5qGo/z+unHQOZNiAnhwo4GhWSXPRQVLHPQ0IvtG+Q5IL+6urKqjRU1cQTVF40tpkmRBF5dXXlzw3t0MCtvDfeeavVsjUH0x2QksQNSVMqxnw+7/NMyIOSTN7Gcazj42MrQMFsURS5UckEJJPgkBXSrRAELNnvTw4KJ87wLmgYgBcgBC4uLvTRRx/5Xogb4DJyEHmFRgLPkL1OM4Nijp/Fu4QYBm/d3Ny46cOzII6BcSFGONeI6U0mC8DT3W7XuS+c+gX3sadDX/2zszO1Wi3HdqxzyT80MCh+w+Y+WIxnVq1WNR6PLX4g/1CrvH371vdBTgPrkfcODw89oQn2DJtykN5cYGamtsH0qDSJcZBfNNyoq8JahGkz/iy2fhAenA1HXGRt04SDPCoUCq69QqEX3yWRSEypqmmcfZ7XTzsGnp+f23aW+iORSNgal/d0fX09NQ3IvpHk5iWNNrA+ohrOHKWmAyvFcWxCn/p6eXnZ65YcGKrFwwYne4l6p16vu/am+UA9ELohSHJtzJQxmDOcFgNzVatVWzre3NwYB66urury8tKuBohPIAAhgcG+xCtiBepqYjmcBDmE/QOJjAoawQm2k+A+BD28G+rpkAyjToQjoBGbSqUs1pubm9PR0dHU1MBoNNLf/u3f6tGjR7q6ujJJiXCHPAYWCc/5Oz091dHRkebn53VycmJMDraCSIQTuby89LpgIjSVSqndbmt/f3+qQf7l9bN9vQ9cYCYzcX6Josg1GbkaZwjiDDiDGpRcCTaE7D86OrKgEYEitens7KxV/3A7TCpTJzG5Fk5wU3PyZ6iZwPJgVqabyWPEA2JIIpGYstuHH7m8nJz1jM09dST4JYqiqQPmEZgj6iBWUNvAzRGXOc4BPhDBWL8/OVcFMQaCpmaz6RjFdyGezc/Pq9VqmScDt3Am4Pe+9z3X2+Q8cDqaAAAgAElEQVQJxFdMTPKMwFHUdeBH4imTQYg/EVRiJ8/k/erqqqrVqpvdlUrFguy5uTk1Gg2tr68riiJzy7zLbDarVqvlyStJ/u40wOERRqOR+RLuv9VqufHRaDQ8/QmuA+MzvQiX0ul0bJOLXRtiibB5zr0hjMHuGCtBeE/eU+j88Pz5c21sbJgzWFpaMiZAqA6eTSQm50mRE1mH/D+1GLXNp59+qg8++EDn5+ee+gc/09BjSg2Ogj2eyWSMc5gGp0E1HA5dr5HX7vpK/Bh/53uS/pXv8+v/rqT/9ye7nb//etfx/jlJJz/C36GrfqNJV73/k9wDFhQQOslkUsViUdls1kofwBNWXzMzM/baI1AxMoZCM5wuoGGwuLiolZUVFyOo2ULyU5pWpDESjP9fGJhRZI9Gk0NowwKOkXY61qF9FuPr5XJ5SplEYVgoFDwJAsjd2NiQNDmbgsYRnWqIHUag2ZgctAs4RyXHM+bwLoIR94hFmyQrryGOKDAprAiGbMi5uTmTF2z2Uqk0Nf5HUIO8HY/HajQaBoqSDPoXFxedRFAK5PN5k8ZMEu3s7CiOY9vgkOBR+qPEoJjm2eExTlLGPomiiYJ2cXHR757nyeF0KMykW/sVCmqKz+3tbRdIFLbhGPzy8rIbeSsrKw6Ikrx2S6WSn3mxWLQVIMGMMzM424bDSlnj2IoAhBiRZeqCn8fznp+f92dRxCwvL+vx48eanZ3VmzdvDPYLhYIV5PV6Xf1+32OvEC9ra2smWjqdjqcjmFaCxAIokKBDC427vn7aMRCihzUlSSsrK+p2uzo8PFS329Xjx4+tGILcRzHT6XTU7XZN/EIGhaQy+x5VBE20m5sbraysODmiYi8Wi45DFGpzc3Pa2tqyX2673XZxm81mHZtRYNJsRjGC8iWTyVgJTixgP0MQcr8Qpq1WSwcHByYJWM9YNhD/r6+vfcDz5eWl1c/YaEgTFSLNfdZzaDvH53Df4/HkwFdi83g8Vq1WU71edzxZWFhwYyy0HpuZmVG1WrVgQJKnqSAiy+Xy1OQQ74H4SzM2n8/bMm12dtbnt0AYhzkptBgh5pydnZkEJQaG0wHValXVatXkMsQJ5HU6ndbS0pLB1fn5uX3SJblY4PkwPYctGDkSVSeEM6Qr35uiCKFAr9ez3QeK/16vp3a77WY1uZw4fHV15XPZoijS5uam4+va2prm5ua0vr6uUqnk9Ts7O2uw+eDBA21tbWl1dVXlclmPHz/W+vq6z5iamZnx5w2HQ1ttsdbwjmb6cHZ2Vtvb256+3dzcdMMSshfSO2xEsF4/b3Lkpx0DKY4oRCk0wCWsDyZvOAcB67nhcOjCiEk4FMjghoODA5XLZUkygQX2oKHK/qpUKi7WKUKZjgMn0rjl9zngOpwGh/zHEuf4+NjYEDI0eJ7+PZp70u15YclkUisrK9rc3PT3Bt9ub2+beDw4OLDirdls+t55llEUeTKb4p8GCHhneXnZhXeoygSrEsOxQ8MWiDhLs5bJOXI7eIz4TXxm0hTsDnbmGYTTIeBGmjGSnCsgmskjnOOCmCWVSmlhYUHHx8dTh5wTt3hu2DlBsEIisSeJVfwcVOmsP74z+1ma4KfQSomag2lImijEd5olvPsXL16o3W77fMN8Pm+nATABTUQEO4gQJDnXQkTRzJyfn9cnn3zi5glOAeDZwWDg3PXmzRvnahpXs7OztptZX183ZqN2Yg2SI2lMjMdjY28+h1jOPVJHhNj087p+2jEQQpH6FkvITCZjNwRiIMI4GpDUk7zfKIqML/g96jRsWXjG5B7IJklTe579Tg04Nzfn8+8SiYQnfVln1C83NzeOd4VCwefJUM/RBKE+bjQathiN49g/O6yfOauWGpDPQEW/vr5uPM25F0zd8PzYy+zPOL49v47nGZ5lF0UTdwjIqbDpmUgkTKIhdru4uHAzKbQhYn9yzyiVIdi4H2oi6lGEgaHt+9OnT03icdYODXsaUTTawNLgklKpZG4AURPfne+GIBKMBhYEOycSCXMMX15fjOunHf8kTQm3QzeDkKOhqYh4IJWaHK1ATUHeYtoVB51cLue8WiwWXV9h04SjBdgDDBoKSanD4MjYowh4uRKJhJ184HSoRcjJc3NzWl1dVbvdtiCFP0+9AA+DYJxpSDgRMBH3RlOGyWRqw9A2lvgJ3wBvAIdDnIB3ZMKHn4FADwxMXXZwcGB8GWLme/fuuU4KRZXU/TxD8AoCLHB8FEU6OTlRJpPx3wuFffCpnGO9tbUl6dYFgVzV6XR0dXWlv/7rv9ba2tqUuBNOgTqZfIHLDu8EsRFiYiybJfn+VldXXS/ncjmtrq6aT11cXJziHhCUc0ZqyH/zvOEcaPCA9RYWFnyOJFNbfG/e8erqqsUIyWRST5480eLiovcCE69RFE2JrhHi4DQRCoGoH+CN4Rw2NjaUSqXMF4FxeUbsh5cvX05hec4pYv/jfMEZaolEQsvLy+ZVWi07N97Z9eNM2vy+pH8aRVFFk6bPr0ZR9ETSfyjpV+/y5qIo+q8k/W+S9iWtauJjmZP03737/SVJ25LW3/2VJ+9eVjWO4+q7rvqfauKF+Q1JuXeBW5IacRzf+j38A69SqeTzPSgmAEUAiXAUkKYICp2Q+IYIhHRkJLzb7Sp+Zy+zvb3tKZt0Oq1PP/3UgQdSXJp0Ub/3ve+5q8/ZH7Ozs+4o12o1EwFMEKDKJAlIss+fJDdyAM50VwHWkAnHx8e6f/++QSxqKDYxXd5EIqEHDx5YmYPKgOI2k7k9kD6ZTE6dm8Ko82g08kgbyQqiLJfLOXlRVBDgmc5g5DtU+EBu0Szie87MzPiMBdRKhUJBDx488Eg3RArFCuQtSQOLuNXVVSctgC9FAQR1p9OZIi14V59VqoVkCu+NNVQsFlWr1UwC0PggCWazWf8aB8ndv3+fPafRaKRXr14plUpNqbWZXiE504xE2U6ADwkWSBHU3XStmRBg9JQ9AzkxPz+vvb09T/ig2IU44H1AEoQ2doCNSqViRVwikdDDhw8dzLFBiuNYT58+9ShrNpvV6uqq11y9XrctHk2GdrttdQSKfCwiwubWXVzvWwxkj6C4m5+fV7fb1cOHD23ZhHc2Cj1stMbjyQHPIfHD8ya2QF5ySHapVNLHH3+sn/u5n3O8JLZGUeQDFGkaY9tVqVRMfFL0MrFHLCwWi7Y1AxRT3A4GA9vDYBM0Ho/9+/Pz847boQKas6VoEgAWu92uKpWKksmkVldXXWASHyHFaZjQMOZARn4GhBQiAUBcSOYCgthHFNCQSQA+lDBYaV1dXWlnZ0c3NzdaXV21spkzxSAw+VkoUiTZ6iiTyahSqbjpBpDNZrOeHKQJHcexJwrZW0wSovzne0OOof68f/++iV+mdlKpifUS1ozlclnX19du+JDXeE68G8A4YA+SAsALiUEDEUKT/4dMGo/HPlcrmUy6SZ7P51UqlaxmTSQSVtNRgFG8QUijCk8kEl4vAG+mntLptNbW1vwcIPf57Fwup83NTU9ehhMTs7OzKpfLurm58WG/4XQXtn8ILmgKED8Hg4HW1tZsaQVIB+Df5fW+xUAOLIWcZ8+ipoMYpyFHkxW1FratjUZDjx49svKNXDYcDvXo0SNbbRSLRS0sLHjSifdB7ue9IgwBZ5KLUHSi3kaAwJQKzQuIQojEZDKpRqPhXM8kNXsNcvLqanKI+/b2ticcaFLQSHj+/LkPoE6lUrp//746nY7tf1GQ0sDHhxt8xxQOgiaUbVg9os6kIGRSE+s6cAUkCthJ0tQ0GnuJ+BbanVCcNhoNfx6kBPuS/UMOIe+EZ/fRbAnVrEx+EO9RQnY6HdsP8Tzy+bzOz899vhHkAY2DSqVigoNcjY0flg3ESnAysSucSpifn7cdMnGLuJ1IJLS9vW1FY3jWViaT0dOnT6esE8kz5AyeA8VuaDEZnrmBuOfg4ECFQkHdbldf/epXfaYl6mDiO0Kwm5sbbW1tTSn+yR2S/N6waUIZHCpisbYBs4cWp/zZ0G6NiTFw+l1e71sMvLy89CHXTIiAp6lPEb58doKMazwe+/xMGjusg2Qy6XXc6XSMC8h94EPiL2JKGo3Er3q9rtXVVceDUqmks7Mz1700SlZWVtycIZ+H4iFqzaurK095E8tpaECOxnFsC0PENJC5iO+k28O1UUWHDVLIJQjSubm5qTMTzs/PbeeGgwG/Tv7nfdCgfvnypZ49ezY16ca+pSENBuN5STIpSNMqmUzq6OjIWE+SYyl5BqIWwRREKvUZzx/7WnAWvId0e44r7xiRCVbzcAaQi+Vyeao+GA6HXp+NRsPf+cvrZ+963+KfJJPJEPbUGuRZLLvh1iC1w6aLJOMNpmHgkcAuTIjAMYL/2LvUDAcHBxaiDodD25fCQ6bTaTdVmJaBEyJ30cxF9AFWoTYqFAoqFAoWM4ATcD2grpQm53JeXl6qUCio3W5rZWXFeC2Xy6lUKrnGCmtc7KjA1TRmqMmYJsbBB1wN3iInx3Hsw+IRm+GasL6+7po/dBmAu4neCbgRZ1A7I5DBLYLYytTf9fX11NnSIa9B/oK/Go8n58fk83lj32w2q1qtZvEW9SS4mPNgiIWSvN4Q+iBy7ff7KpfLjt0XFxc6Pj52vcmEFO+v2+2a14Gn297edh2Tz+enpr/5PkzCYvMcTn0jHiP2U7fS9KOpdXBw4JxA3sDNRpo4mjDBNh5Pzm/MZDJ69eqVHjx44KYKXHOr1XJz9PLyUvfu3TMnCwdKPqBpF3IFg8FAzWZTDx8+tCvUxcWFyuWyz6OkuSdNBEI0XOfm5tRsNrWwsGC+/S6vH7lpE8fx/xJF0Tck/Y6kpKT/UpMJm38rjuP/447vb1PS/yipJKkh6a8k/Uocx3vvfv9XJf3T4M//T+/+/fuSfk/SL0n6l9792qvPfPZ9SW9/nJvCNx9v+l6vZ7UpoJEgxAun0AEYobaha0zAoXgGOKL8bTab+upXv2pl+s7OzpSPLIF0b29PT58+tbqTscxkMmlACTGFnzcNJZoXTPYwAhmq5WlYMS4tTYLj9va2pNvDOSmopduNSRJAcQ95UalU9PLlS08x7O/vq1AoaGlpySQI/uEkLvzDw/E6Dn/l5wD+IMRoSJBoIEoB2PxZCEwIUpRQBObw4FesSZi+wRO+VCqp1Wrp8vJSDx8+VKPRUKPRcGMFAqFQKOjk5MTPhYBCgGPKhGDP3+eeAPfhaClgeDweO7kQXFH602BkXWJfNBwO9eDBAxOADx488MGREDU0jPBel2SwQOecZ02Rw3ki2H6gVuW7osBE4b6wsKC1tTVbfaDsAnwQWGlApdNpVatVE4gzMzOamZlRo9EwyU7xuL6+7hFbCjlpErwZdeT+2W+9Xk8///M/r/39fe97istwdJafc4fXexUDeY+SrKhgWkWSbRdpqlBQ0TiRNHXmBxNe9Xpd29vbHrkmaUdRpIcPHxpkYm9GYUishPBkT1HYYd0BcEF9BylOkzf0TqeJwhoJAQj7D3UNEySMBLfbbd8/4A4yu9frKZvNeuKLv8uznJ2d1dHRkdWk/FxiViqV0vHxsc9lgYyXJsCNMxMYKadQhgiG0GSaDQUJo+HJZNK+5oeHhyqVSm54XlxceLIJRQ9qZ/IWxOnBwYE9ggFo7HfA6XA4sS0kxku3PrqctUDhTUyHlAA0JhIJvXr1Sjs7O24OYgvH/VI0IK7g+dFMl+SfR7HC8wgJIYqCxcVFVatVK2lmZmasVAUIN5tNT7Ow3ln7TAUx8o89FEQQ6wt7BawjsXuB/OIQTtSrvV7P+eLly5eK41hra2uORajYyPdMXXDgOGQ6a5/3VavVnD9DO4Zw/zPxhFXR5zBp817FQIpmngNn62GPgE0E03hYG0oTImpzc1Onp6daX1/3tPPl5aVzF9iFYh6LMn4uljxRFNm6Srq1amJ/YLeKdSrrG29q4kEURb7HEP9gV4CymYkTzpqA4EbAQwOWmMA0+fX1tR4/fqzBYKB2u22icXFx0dZsTKSBNWkso6KT5NyKhWtI2ONbTjzr9XpaXl52jAPP0ggNbRWYGgmtGREy8ZzAmZlMxrEAwiAsMiV5Giafz7sWID8Rk5nCQqkeqg8hB8JmKRgIMdHR0ZEeP37sgliSPzu0mSyXy7ZXYsqE3Bk2GYnlWG+gpAT7SPJ3IscxXcHPChuUNF949ogqiH3hJD/iisPDQ21ublqMQb7EViO0sqCBFpJfyWRSBwcHtt4LJzvIf7wDni2EOtPqfFY4gQTOgHjp9XpqtVou6JlahIhBFHLH13sVA2dmZlQqldwUaTabJvCxcOXPgYtowoC7aRwTByA8yHlYXIXxCltSzoCoVComxs7Pz9Xr9VQul53TcLjgPUJQ5XI51Wo1N4kgxkJbMQRI7N1kMul9iTCQScpCoeB4ggIeQSNNTYRlTMpKk7M3iV00KsPmF7URTWQawGBXJk9CwhJ8TQ0IltrY2PDh5TQ8cL1IJBK2GUSQEh4Yzl4K67NwwpiL78VzlOR4yXun5kOgmsvl3Gihrmw2m45BIQlLI4bmDnsXB4ZQ1IKCnFjzZdPmZ/p6r+KfJDfwQ+cbhJtwNGBq7LCoJeCQEHUQP8bjsQ4ODrS1tWXxAXVF2Agg/yJopXEOb4GVKaIIYhjNIyZCqXFpEhFLcAYglrF3mIg7PT3V1dWVyuWy8yoTkAiLqFew26auAsMuLy+r2+2qWCx6apZYhCUb34eaGNEJz5CmE6JtYhFxqVgsGnNyfhdNBmI0NWN4Pkk6nbY9qzTJY3BpxFc+r9/vW8gLHsKdgvd8c3Pj+42iSI1Gw9PV3W7X7kjEd6y1EfUzSRM23sB1odAIQTd1IZbNxHPifLvdliQLCeDtZmZmfC4jYjD4RCzfqDt473AYCPwRCjCtxb8R5MLzIr4HI5O/+E44RJydnanZbJobBUMMBgMPJ/C9wdRra2tumJLDeAbUNYPBQCsrK3b+YKoXwSjDA4jBmZJdWVmxGA1hDwIhpoDK5fKdirfD68eZtFEcx/9C0r+443v5fj/n3/8hv/9Hkv7o7/n9P9PkrJ07uwhgKD5C2xoCGwu12Wx6HI0pEopIbHUk6dGjaVvO0Hrha1/7mgaDwRRxCbHCaB0F82g00tramrLZrD744APfR71etw0VixdClfMPsHoi0DK9gPVRFEW2/2LDZDIZHR4e6smTJwZFqD0vLi704YcfSpoUQByASFG0s7PjIHxycmICc3l52XYfFNSAva997WsGxi9evLDaFY9crA3CaRmU2DTVCCr8uSiKrC6QZGLy6upKlUrFFkA0KL72ta9ZRZdKpWzHlUql9OTJE4N2lIkQHI8ePTJ4/vTTT13wXlxc6Ctf+YrJLhSWELJ8X0hVgjqFPWQE64lCg7XKvVK48pzonGMFxhQKfz+RSNgfmPNgSKbSrb3Q48ePbQuyu7trMj6Xy+np06eKoomHPcmm1Wp5bBg1CAQipCWKC0AEnph8v1wuZ8KT5snp6ak2NjZ8iJw0KSBWV1cNFF68eKHZ2ckBnRsbG7bMAAhAWDx48MB77ODgwH7og8FAH374oZ/p8+fPp5qsKPpoAN7F9b7FQAiR8Xis3d1dbW9vK5VKef/iu4s3N+O7EG5MrUC4LS8vq1qtujm4sLCgxcVF7e7u6tmzZ26KMv6KnyoEPwcxQtpDZoeK9Hq9rnv37llhiPqO5g8TKSGxhuoRAjGKIisrIOzYZxD7o9HIIJJYFIIJ9iC2DzRS43jisYpXK38HJRT2MUypoCRh/wI0CoWCG7z5fN5nkUFM0HgFcECcLCws6OTkxPfOe4FIgMRjzDic2GNvhbHq0aNH6na7znN8D5o1xIh79+65iAAwhpY9kP80pyGCUOZsbm46L6Jw451DJEICQXZCKjNpx8g1BVi73TZZEK5p1htEURRFzotMhKVSKR9QyJ/HZqTRaGh1dVXj8diNcxpzlUpFuVxOr1690vr6utfvzMyMizymYfAxvri40Pr6ug/8XV5eNjGC8ghQSVOK6UQAMhYOkrzPdnd3DZSJyahg+/3+lKUTCl+mC0KS6y6v9y0Ghg1FiEcK6NFopPX1dU9LUyhQxIE9mHCgIULBExJyFC/h2R3ZbFalUsk+1+BKMGCpVDJGRTHHuXgosMF/7H8U3aFVDwRnsVj090XUw8Td+fm5MSUTqBQ5koy5mKqE+AOrhB7XURT5/sBAfF9iSDgBxxkRFxcX2tzclCSTDGFTh+dLkwm8c3p6qrOzM5/F1+/3PdUeClFoXDCZzkGrNHlCGwRsgsCLiFvYD+B91JrkB84ODItrcCkqUKZmwEio3/f3970OiOtzc3NTeHtubs7qTKavabjS0KdwRqQS2lTQ0AjJE1SJNNyZRiHecZ/kLGI470GSJ1YqlYrJdKYpOcsJ3EUuYvqLiSTIXnB3pVJxEysUPoEXQyJcktcimJfvgiqTpgPNBUkWB1ADkSMhD5isvMvrfYuBp6enUzUcay2dTnsyDJJQuj2HiXcCMUJNUCwW3aBdWlqamtKi9jw9PfU0TGjxAyZBZME7gMBnGoxYxaQH9RN/P1S7Ux8ydQ95CtnDZxSLRU+IUDNAFBFPOe8AG2kmFxGQheuXHAK5xz6Sbs9Iw9ZFkpXBxPBwsp138NmJawhR8CZxhtqeJmu1WnUtTEMFkhUiOpwsY08wKdTv903uMiUKUct90Tgul8tWVYOnZmZmdHR05M+am5ub+j58ZwS02MeDQ8GbkpxPv7x+Nq/3Lf5JstsNtSzNAcQE1HdYLl1eXmpjY2PKvnNnZ8cWTcQBBGUIEBFxhfZckqasHhGL4WSRTqfN32D3CYdUqVR0dnZmpxAEFQgciF/cNyKvVCrl+Lu2tuaYSJwl97P/iD+4rRA/yfnhvocgx3IKvENTCjzCBDtTxcQG8gcxjDjQbre1s7Oji4sLi+cg84nF1PeIiXi+xWLRuPT8/NxnzRC7EZhyf4uLizo5ObH7SrPZtLsMsYsmEViPGhrOlO+TTqdVqVQsqgbz0tyTZFwHhg75BMR/1BxgvK2tLbVaLZXLZePrRCJhlxzwN3UNYpVkMulBAdZFq9XS8vKycxw8Dc0YjhFg6hYulvuXZJE0lm7UHrwThEKJRMJi0fCdwM/Aa1BrMdFDLkOAw3fjvcHzUMOCFamLcExZXV2danqFbgqIxOCTeEfwAXd9/chn2kRR9OLdKOJnf70QRdGLu7mt9/dixJExRkALwIp/n5+fG8w1Go3/X9DAoiIszM/Pzz0qzpjv69ev1Ww23ZHEogSw1W63dXJyoouLC6tisQmq1Wq2iCCwAtDS6dvDhlHPA8ho3kBsEfT7/b7VTCSTx48fT6khAbMQi7u7u25AHBwcGHBzjkOr1dLx8bFVxc1mU5988okPnyWJjMdjHR4e6vLycuqMAlRwHNqLd2gmk1GtVvMUUajGCz1GIcUgDVECkiQYycNi4s/+7M/UbDZ1cXGhRqPh74168/z8XN1u11M10iQQcC+cYYFSCbDZbrc9lUVhiVqcgpVOO0GKQ3EZAZRk8ggrBwpVkg1FLAVPIpHQ3t6eD4ms1+vqdDouQuI41ps3b9RqtRxQw2KY7/r27VsrS+N3Fiz8HdQnNCI5DFOSvZdJDhQg2LJgDQcpPBqNbElAMU8wh8RHYcwZFfV6Xb1eT81m0+/l4ODAylKU8u122yO1R0dHtjNiPUsTVT6HRGN50+v1dHV1NaWO/6Jeoer23r17LkAhPVjTjHQXi0UT55DLkqbUhigNUSGORiM9e/ZMkuwFHvqXb21tqVqtSpL96QFGURS54Ac80xRn7Dj8vOvr6yk7hiiKbKOIQgRyCyUF+wllLoAVUEI8pTkAWQ5JCiF3enpqIP3s2TOl0+mpBnocx46BEAqo4guFgp89n8N+qFarjmEXFxdWuISFNsAO1VOxWDTYDO23APTSpMiQbicPAdWAaen2TJuFhQXbJDJ9gHqUhjXNT/INpG/Y7A4nCiFGw0ZLqKKnMKdpQ0ynkEJVNDMzo8PDQ0maUpNTwITKW84GAygieuC7JJNJr2+IPYhNih/IVOwg2QeAPGLj/fv3rUQl1tIUJe7Mz89bqQSwD6cf+flxHBsrQLpCBDHFWCwWPea9tramQqGgZ8+eaWZmRltbW1M2V7wr9kK1WrWggbVOEfBFv6Lo1quanM7zJCbQ4GR6NJFIOGecnZ35HAUKHKb9+v2+Dg8PrYJMp9OOrzT7UHBTaNMACAm8sBmHuCQkvnmnNGDBFaz7cIKAwpGGzf7+vpWYnU7HZDV2hJwRxTREJpOx3QWkHTEA0r3ZbFoIAsHIPYL1wIQQ7qlUykUo8Y2GOrmZ78N3o8hDABI2bFjP7E0u7NRCOzhsK2iy09APCV+mtXl+4AOK0/F4cp4W+Jj3SAyFLIZsZE+fn59bqbizs2NBA5geIRO5Ces31iJKS0gXGrqJREInJycmAFjbo9HIylByAz7tNLOYNCH/IYRhyhVxC7UHzzGbzTo/UlizDjKZjEU+ocVGoVDwXgmVvMQqSGbET+RA7g31caiOZj+R93O5nHOQdJsnWLdMNvK96vW6CQOabF/ka2Njw2QiuAchIAQ+k88IQyA8wIfEF7ADBNrl5eX3nYRjikyS4yVNilCQRxwA19XrdTd8r6+vPbnIv8HuxBfiU7/fV7PZdLzAUQOcwPoJxT5cTJ7TxKEpSWOF/c/PrlarrtcRoUGWsS9oYBLTELvALfAMcCVgT2Cjy3dFcEOziroQnoKGB3gTER1WwuDI0FKWd8t34TsSC0MBYXgGBRZy2ILT1Kde50yOEDeDAbnChh34jhzH3wsV4V9eX153caG4B+9TU0pyDGLCgNwZTp1wRjS/FoqryN1wYuAROK8oiiwi4ZyZkNCX5Mmd2dlZvX371rFBkusTziJG8Ih4lT0DFiBGIIpB0EEc4+OI244AACAASURBVNeJhRDnTIqH98UEMzwqTSdizscff+z8TZzl+ALqdzBT6NDC1BM4k2Y/2AhXGs4cIkeH2AFei3oKMSdOEs1mU/1+X7VazRZx8/PzKpVK6nQ6kmTObXV11WeVIqRCCEg9R0zivoiJ8K6spZubGy0vLzsHwlXxd4nB4DvyHXEdlwWmwHm+NOkRKGUyGW1vb/sMYLBM6DREPmJyG76LaS1iMOsZu1neJwJXxKhgffAz+Itpyna7rePjY2M7bAPhs0MxKOsCpwg+j3UHvkQYBu4OrYP5LGpsGqHh9DVNtvCYCbiTdDqtTz75xPj6rq8fuWkj6aG+/4ROVtK9n+x23v8LEEDwAxhCctF0keSAls/nvWAkWaEDKd/pdNRoNNRsNk0ks6j4HAo4xiI7nY4LL4IdBBeFG57CdAYBUhDkeP/ThQeQMYLZ6XRMVtOsSqVS/nPSJDEcHh66s9jtdr1ZsBRqNBrqdrtaWlpSrVazCjUMWjTBwimmVqtlEL+6umpyi8+FmICIoiBAzY6fYKPRMHklTfwRe72eVdQAfAJ+r9dzgQgRRfDa2tpSp9PRq1evHHwpaikkefYUizSZ3rx54wJ6MJic8/L27Vt1Oh2rny4uLrS/v++EB2lNYg0LUghQyNWQHKK7fH5+br9IgiSTEhAC29vbajabLlZCmxQUpRT/JycnXte9Xs+FDOuFg3M7nY6fayKR0P7+vps3JC8SJc+WMU2ASzab1aeffmoFBe8CQBOuRwoDGmorKyv+3tVq1bY0uVzO3/Hi4kL1el3Hx8e6ubnR/fv3/a5IqliNoKTp9XpW+CYSCYOK0Of0i3yxrlAc0iCgIddoNEzUsN6IexB0AE+SLQXu3NyclpaWXOjHgWULar3r62tVq1WTBABEiuF6ve6kPBwODbIuLy+1vLzsxgATfCEIkOTCkiY6BBd2aCEhSrygeAe8MZqN5yuTcDQWiZ0o0on1EIGsf0lTVhLLy8seGeZw72QyacCFYn91ddUxlMkvJjJYr4A5imNJU/Yg3CcNkPCAS8By2Mzk/JbBYOCzEmiOk6N4pycnJ1bkDAYDfx/8zSlglpaWlMlktLGxIWlSnBNPePdxPDnQO/Syp5nEfR0dHWkwGOj09NTWANvb28pms1pbW1Mmk/E5OxQAnMmEIAEyAsUU53hQDEDEEn+k28OrIWJSqdTUuWYA+cPDQ8dX9gLkF885PFiZWAfghHiHYOccBmIsUw6sQd6FJI/JA2xR+qF04tmAG5hSAM8AdCFfuIcv8sXEExankpzvaBSMx2MTb1gP0MQAp1QqFZPOkHs3Nzc+v/Ds7MwENoQozxsSGasAYmOz2TRBF9ontlot7e/vO+ZJskUs7wth0HA41Pr6ukUXrVbL+xi1JXuO80nS6bSnvWnWnp6e2gOb5xEq7cBkyeTEpi+ZTLoJRGGEMp5mKsQcUyMIOpLJpLGnJE8G8t0gFmg+nZycTKnCw/wyGo2mrLJWV1cd6/CxB3sjpAHHoDjkZw2HExtIbGJ5PxD9H3zwgQVCNIOxdATXMf0XCgVC2w1qEKaj8SynGA3jJbiW5j1rj/fC5BxxBtI0m83q5ORkyq6F9d3tdm1hAa7ieTcaDXU6HWNcSZ5sv76enL0ENqTJTnyU5OkImueIwchN4EaeaSaTMUl9eHjo703ThvWEjRRNcuImOZ4cTGOG/cZkxsLCgo6Ojrx/tre3PfWFcOqLfNHsBLujekXoxjsM61b2JqRgu912k4R9Sk4HQ1LLMZ3PJArviD8PhlpaWnIjIplM2rKRGAROYI/HcWyMRNMR9Xo6nbYKHgFQ2MTmz4Pj2u22a5Pl5WXnfOo61PDsd6Zeycc0tsPan/N8Op2OLYDYc4hRICMhia+vr1UsFo2DaTiTe0LboVBVjJCKGgt7H561JK9/Gqk0zyCnM5nJOTehtY50K8wKJ3FPT091dHSkUqlkRTh4nRjD1GPYMGUPR1Hk5hTfTZKbXdls1rmOafAvry+vu7ogoxF9UTtSNyJGGY/H+s53vqPhcDhVc/X7fVWrVcePkESnuQze4+dJsmA7nZ6caYkQAiKZ/E7Nxvl/qdTteTDgFJoerVZL7Xbb8RtcAAcHJqNm63a7FjM3Gg03zKkRwazcOzUg+RasyZ5GxBE6UgyHQ+3t7Xly8vLy0rVjKOSg9iQuI2xBsAQW4cIuCyyMIAgui+/K9+bZ4xpCowEsBI/GlMXNzY0xH7kJTjYUt5F7+KzQBYnP5V6p2eE9sD6DC+52uxYdpNNpHR0d+X2FtuHg1H6/r4ODAwtD4TIRwS4uLrq5wuQwOYz6msYIR3HwjrELZW/k83nV63W1Wi1PevX7fe8ZJmh51mGOnZ+ft4CGmB9O3CM+AHswbYmAHh5iOByq1+tZWEwzCb5Dkt0TwCY8316v55xNI5X6L5zcJsdGUaRf/MVftLvJXV//4KZNFEX/JIqif/Luf/9V/v/dP/+mpN/Wj3lGzM/SBUiEEAcIUKzjX42qWpqQkXt7exoOhz7EiGDMS4X8Cv+bQoEGAItodnZ2KjGwECnYvvOd75i8p0MN+Uxjh8UN+c1/Z7NZnwNB9xBwCQin8OOfDz/80B1cvA9RztFMIuisrKz4WTEhBBGWSCRUrVYdtEgo+J2fnZ3pxYsXtivg4DOmiSjaUT8SBLDIQgVAJ5rNlkgkrEZOJpO2fYAEDVX+dMIXFxetPuQ5MCaHojkc8f+sip1nQSEPsF5cXNTKyooDHIQJVkh020kIAGGCS1hM4L3JoV0kLyzFAAvhBA0kOkFQuj2UjRF/Ah7vHBAdnpfB6CmJOrQwQQlGEuAZhcUuxcCDBw9MuLKG5ubmXMxzXzRNsRK6uLhwwwuVMe+UUUbWJweNMmFE4hsOh/bGJnCzBygYQ7uo1dVVB/sv6sU+ZdQZohFVXjqd1snJiXq9ntdfqIxhWgJA2O9PDolmXaDwgOih0KbJjBoW24rRaKSlpSUrp0nsJPLwkEQKUpLu1dWV6vW6G3kUn+xfYtjh4aFyuZzHvQEbTFBIskUOsZjD63kue3t7vi/2Bc8wnU7r5cuXjq0UrNLtIYPEOEAgZDCNGRqNxFtIYJQma2trkm59wU9OTnwYI7ERgo8/ExK1pVLJk6MHBweS5JyE2hLlNVZtxDuIAZqgNJ9CdSqxjEkUGsZMkIYNQM7YIs82Gg0TdDx/DhHHDgh1F4CV51utVk1w12o1VavVKQIckQBFP7EXArfb7RrAoajjHCeKAs6jAaCy1sjhKysr9nteWVlxo//6+lqvXr2ygggFMopYGkSdTke7u7tu+jBVuL+/rziOXVRCtCL46PV6Fo30ej09f/7c7/H4+NhqrnAMvV6vT01mQLgx6cGe+yJf4Rkx5GwAOtZh0uQ8kaOjI2NG1HPkLHIJHv08b5qBiDNQ8DUaDZPbFAgIHyA9NzY2TNaD25gkwNKCiQAmH3iHqAklOdbRPGBSCyIeIi8saplggHwIBUE0aMbj8ZSlAlgMnIB/NzEjVKlTsDK1ia1GqNwmPzHVTZMeLE4TaWdnR5Ic4xGJMIGHahTClnfGpBQTlEyjU7SFDQcsTphGGQ6H9oCP41ilUkm1Ws2FNIQkSntiM8QDOL5YLHrSneKZd0OeoLlNozdsFNfrdVsQ08hFNMQZIRTmNFJCJefV1ZXrB0n+DJpfiGiiKJq6V/AS5BU4anNz00QukzHkrUajoXq9blxIvoAERtBwc3PjWA6mozkTx7FWVlamFJzky2w266ndUFQExqWRyH2hNmXKKZ1OT02EkgvCSa0v4sXaATOAd9gjw+FQR0dHOjs7cyOW5iBChGazqeFwaKtY8AvrDTKOxiSkFap1VK7ECXAQwp1+v++1BY6UJrY35XLZmFOS4zEkELGXZgRNqnw+77iHowXrmsZUOE3EWmI9QE6GjdrwzEWwCVgDKxc+j79XqVRM6tJIabfbbnBhNRbmB2I4sZJ/1+t1K7FDsZV0KywC25EfwIXU6DTNq9Wq6zIuMGCn0zG+pLmKOwMNPSx1IC+Xl5ennB1CdXQ2m51qLJGTEO5Q52azWa+1L68vr7u6QjEEF/ma3Lu0tKSFhQU9efJE+XzeeYL9yHp/+fLllCgMS3GmpDnigNhKXcmEC7GL6QiEcORCScagociSKW9+HjUWtW14v8Ro4jkiPKZZ4NQQroOTwSnVatXTs5xjSPxC6HZwcKCdnR1PiVQqlanzYGnIk6sRb1OHNRoNJZOTs0fK5bKFbyEPF9qtMoXJu6lWq8Y3TFnCuVK3E+/4bvBnPB94slwuNzUFBVfIn4MfJNeFgl9syBAq0JyBw+T5Ly0tWUjFVA8CFepB3gPYlmeEnSVcCOsOXpNpKOrh8Nxv1noikXBTRrp1UKFeJXbDm8LrLC0taWtry+svPO8HrExtgW0cdQ22mrxH1jccEVgaN4RwEo4cgXiAej6cbJqbm9PCwoJrePAl3BGfH9r8UgOTN2lu/lSbNpL++bt/Ykn/Q/D//1zS/yzp35D0n9/1Db6PF8mfgg/iLRxNvnfvntUvNzc3unfvnpLJpBcVG48pDsguiDY6zigRCW4QzBRJ+OYC3JrNpn7lV37FTQLGGsPEwjhcOEWCSoYuNoQcxCiTHhSBgF06+RA2mUzGaj2KyfDZ3Nzc2O95bW1NS0tLHo/sdru6d++e1ZsEXNRLCwsLevjwoQ/DluSxziiaeFJyAPfs7KwDDw2IcNQTsAihQVFIUwNrm2QyOTWKmMlkrK7CczKVSnnkEpshyP/xeOxEyr1S/NEk2NraMihHAcABshAB9Xrd53VALEOIk2i5F0gQRl95XxS5xWLRz1S6BeRY5UCqD4dDT4lBYrOew2c8NzdnKx3IO1TeBEtIAWzYIJFRo4XNQ4pqQMPa2pr3GOsY+xASXjab1dnZmfb29qZUL/i0A5IgPfCi5/75fhxsyWgszS4IWt7j/Py8lZqQ5GEz9It6AcAAaKh6KayZcGNyolaruaFFgUfMwhYFwISymD1YqVQcDyGeWGf8/OPjY490SzLBzpqHIMf2EYCWz+eVy+U8Rs26J9kCjIfDoZ48eeL9BJBiz1xdXanVatn+q9VqKZPJWIlNc4GzzXh2TL4x9YbHLA0llCeoN4kjEP+Q7qi7IV0pbmmsAejr9brjiyQX/TzTZDJpMoTJCfYwQJ+Ys7GxocFgYI/l2dlZLS8vGwzSNIcMZY8DnohPkKIATfIaeRXRALmOfLexseH7hTSCEOb9l0olE2oUM5CR4QQrHvFLS0tuonOfxHE8kBEcMHkTx7GWlpa8TkKih3zHVC0xEJKZ3EQM4mdJst3L/Py87t27p4WFBS0tLWljY8P2IBAf7CXURUyrVSoV5fN5NRoNCwFCTEAu5x0Wi0U9ffrUTbhSqWQFPSPxTKsBTlFxgXMSiYn3cmgT8UW8mPRDOCLJhRWFtTSZDGPaNxTphLiGKZWLiwuVSiVls1lPZ1Fw0NShEIc0pFiAqKaoCG119vb2nFfZh+fn546919fXnuyJokilUsmNFmJTLpdzfkwmk/rggw+83tkrxETIOnIguItngriGmHt4eOhcjmc4e+H8/NzrjBxL/JUmWIzGMk0z7IYqlYpGo5HjfqPRsDc1+79UKqlarRoHZTIZPX361AQFTShwE4RssVh0sSnJ+4GYS1OZZ8PZeaPRyOcvoIRkciC0VCMmgL2JFZyxMhqNLFDic5mOYfqHZ8Sex66k2+1aERrHsW1kicNgSFSgNLSxToZoIo/ybMJJGYpi1L2Qw5AJYDrieiaTMa5j7e7u7vp7raysOJaiHkblyyQYeyiVSqnZbJoYIOdDTkDeDIdDHxy8urpqsmBvb8+EW0jAMIERYjuwNyQFh9RD8H+RL2rOkJjD1pN678GDB8pmsxZshYKMdDqtjY0NizNYb4lEwmKdYrFogowJGkl+V+Vy2SKO0WhkYRc11urq6tTUGPEZNXaz2XT8JHczvU99DrakPsIOLooiWzizB9nP/D+EXZgjJNk6DrLs4uLCE3Xgo9nZWedmlOvgWgRE5AJwU6VScVNzZmbGIhtwFj8HgQkkFZbSNNWwY0KAxtQNjX5qp1DdzxQgZ3yAZYgnYA7eM4pt8GnY9Aobd+BCmlqIphD88dmsP94HZKU0yTmFQuELLyb58vrHvcLpB3gzapGwiUKtypTB3NzcFI4DE2DDhBVkKMrBsjWOY08J0xCG15JuD0+Hs0smk94LCNWon7LZrF1GqCuIbewV8hnfl3NcOEMTzE/TnmYu93R8fGyHibW1Ncdn8iOTDvAD9+7dM+/GfcEVYFPGs0Ykwf9zX3AGCDDAe7gOIWTqdrv68MMPNTMzYyHSo0eP7PYQ/iwaN3xus9l0bgjrOZockvzuEecRL8Fp4PbxeGwBJaIY4j2i5vF4bOEwDS1wdNjkII9Rl4JjsPQ9PT21MJAjGsBhicTkiAd4jvX1dTdzEEQgygbjIZTCLpUGeSKR8LQNdQW8aj6ft5hqdnbWdX6IQ+GZyFPsJfJhr9fzOXdwGvC05J6Q9202m8aAcMA00hCl9fu3Z6XxvOA+EY6HE8Pj8diTaTTIeFasBe7lLq8fpWmTlpSRdCxp/d3/pyWl4zhOx3H8II7j//XO7/A9uwCHn10YbFppApg6nc5U153mTjiVATgNlatYoSwuLhrE4cuPxx4FO4uCc14I/hA6S0tLPjNFuvWxZHMSzFDHUkAuLi7ak/3/Y+/dfiNNs6rPFSc7fIiwIxwRjvC5nFmHzuoSQiDEoB4hbrmcP2P+A24QEjfou4C70VzOJ3EzfwIgoRYSSIC6aejqoiqz7HT6EOdzOGyH4zQXwW/5ieJDXzOT3QMmXylVVVk+vPG+z7P32mutvR/cLZlMxkGfApWgwj1Atl5eXqpWqzmQhB1DuJAymYzdiwA4ggGgHmVbWpCMOLS5RwAyYBMiAWcc/x8VNJyfTqLIZrMe58PXIU7wOfmdBFj+LhyVhGAFGYMDg/dOcUfBijpOtw+BmOc7m808HgjAS6sh757uKQIZro3wHa2urtqhizMp7NCikEEoA1TjiCW54BBmNAjBF7KEzxq2qEvyyDI+OyTU7e2tnydtleH344ykOJeehBoIFAoUCPHxeKzT01M7rwjAJH1+H84I9ib3mUgkXAjStsq+xjVKYclaoUBE/MnlckutuM/tYj0DVhBqGCkROpQTiYQODg4cN1jDYcyD+CRBIwrv7Oy4QGYPsA8ZazOZLM7UgtiSZAc0e6pQKGh1dVWdTsckKO+QIhinLGvw/v7exOV3gWAikdDFxYXH1QBuc7mctre3lw7kxX2DcCjJxA4irSQLIyFgJmZyzxTOYacZYhcAAVf+cDh0Htne3jbxiiAJcAwFpLDjBcCEIBm6SCAmySP8kWThCXeW9OTKYXwWcZ68hki9urpqUZSin3y0ubnptu2weOc+EFGj0aiJVuIWJMfW1pa2t7eXRMNMJqOrqysLGOxbCNdsNqvpdKrd3V0D4kKhoO3tbe3v7/uzMaJje3vb41TobsTpRkwFyEOgzOdzz4dH8IlGoz77g3hN3CKOra+vm0RaXV2c84QQzudIp9Pa3d21kMA5crizEHs6nc7S2RqQRMVi0e3+jDPg3a2sLA4lBvgzZ56RK8/5ymQyzknEJkirsDMCYi48YJn332q1ljoaWOucV0OXKAXF9fX1EvFNQUQ8RtB8fHxcOiC6UCgsiTXh+W9gmvn86ewYXIAQ4yGWYW/GYjFVKhV3h0EisB/4e5xv0tNB5Jw3w34qlUreI2AnCkrOkFpfX1ez2fTap2uMHI5QQMxl1jwFHM+T0ZWhu5BRv2EHCBiQbhXpyaUK1kqn08bQGHkYUwG+RkiF2GAMUzQa1cHBgbEJHSWMNOSclFarZWzU6/Vc+MbjcRNDYLnRaGSBjmeJSeZHP/qR/zufz3s8CUJZeEYM5/eAV8PiHvMAh8ySd5n/HZqMyCsUuxAhxBbueTwee8wY73BjY0Mff/yx4zfrDkxBvGeKQD6f13w+18cff2znJ+YOCDCEBWJ7Mpm0uxNhajweW+yLRCLe26wzxHtEKrAC5Bjft7Gx8eyFa8wVEJeYTVh7kOrUFBA7/H/qREgmhDViBDUOAiWGFoRTOp/u7+899pq1R/0sye+HNS3JxgRyK+aP8GwY1iMiZ/g9iD04wofDoVqtlobDoarV6lLcYaIChBZx6ezszIZJyElJJmbr9bqxEqNkwFDEJEkWydiHcAjEYOpnBChGTUtPbmDiIEQpOI4uJdzk4JHQtEUM4/dw5iX/H1wZ1np0/IRufr6GOIrwBYGIcSAej7vuDMfBheeYYYYKz7aZTqfPegLCh+uXf4XTS8jHjPSDZAevsI/hBRmZnEwmbaqiQxahWnoau0teYfwgeGs+n9uA892OZDpWqfkws2G2vL291dHRkTkOPg/xGAGVOvzu7k5HR0cePxp2ToIlU6nUUic3uIDPdnt7a0Ml5mNqP2IFtQ0cAWdB0rExmy3OAgxNweQFSR6nRk2MEMLUBeJWNpt1PM1kMprNZmq1WjZs0i2EURfOg/OzibvgLIxJjHfnM/D7GQ9MvRByyKH5BvM+PAUC/scff+ycC58myeJJ2P0Bd0AcZAIQuAj+hLzN55BkoyNjTkOhhriLCZI6n8/bbre9xsgt/H5wMnUmHMzbt29tCgVLUMuEfGxomqAmDrvI9vb2lrqyJBl37uzsmLvAyEHHViQS0dnZmU2e4HsMlxivwBmSlhomML7SCcRZN78oHvDnPoBhPp8zv+vwF3In/4kuXNC8cOb/EVQo7EKHDEQ/xHw8Htfe3p6m06kuLi7clgxgpHPlzZs3kp7GAkCINBoNjUYjlctldz1AuFxcXOhnP/uZMpmMDg8PlzodCIQEYVwvuPFCgYBCpd1u2y08nT4dBA8ZSGcGrWSQ6H/3d3+nVqul3/iN37DLjUPRrq6ulM1mPfKIYvH169eqVqv6+OOPtbKyokql4jNo3r59a5dSuVzW4eGhxRW6WlqtlsfNICQwx7NQKDhA4TLc3Nw04UTQQi2GpGs0Gtrb29N8Ptf19bXdPHwfxSwjkBCLeK6A9Gq1qpcvXy4VH3d3d3rz5o3i8bj29/d1e3urQqGgbrerTqdjJywEGao/hQgusOl0qlqtZnchYlBIGlIUQSwhmO3s7Ojm5sbkzGAw8LOQpNevX+v4+NiK9cnJiedEnp+fazpdHJgtySMDut2u/vIv/1K/8zu/Y8IARyLPD4KGIoQW/Xq9rr29Pbs1wvEmvV5Pu7u7nqNK4OQ8HUDMbLaYI9vv93V0dOR1gLBwdnamTqejVCploQVnCMUNnUYUT+12W5VKRdLCLVcul00EI36xv57rxdpl//OsIGmIMRSTYYcD5CQdAYgk0WhUNzc3JogBjLPZbOlAZsg3EjZjsCgYASNv3rxxQc05C4ysAgzHYjHvHUgAyFZchpzBlc/n1Wg0TJpls1kfXA/Zg1DOZwW4sscBMKEYi6CJGC3JYBrnMk4XgB2dJeQBHJfJZNIiPMCQIgFADUkBWSbJAkl4Pgv7kxnsECq4SOjwQZzDhURMo1vn4uJCh4cLuACgxl2ZSCQMJCHjSqWS3TKpVMpi/mAwMPiHlJjNFufFANK+290IyYkQTN5FZOS9HRwc2OkLscezhpRlX1OEkSsoPk5PT+3gIReELimc4OEzenx8VK1Ws+uu0+mo3+/7XCOAeziiji4D3nNYyFHASE/dXIBdYidnfJD/cfIzgoTvB7wC0ClaIHWI3RA5klSr1ezsDdv8n+PFeCxpgcNCIwSj7YrFosVfRBtEGMRGxhBQvIRn5FSrVWUyGa+Rw8ND48nJZKLLy0tlMhk1Gg0fiEoXLONdKYr5HmIOhhYKU/b2zs6OhsOh43ssFvPs8nQ67T+j0Uj5fN7j+jifETEfA8Pj46MJh1qtpu3tbdVqNTsYy+WyyUGKcBx3lUpFpVLJ5zAivLOPKKgphsHWFIvs3evra+XzeRf/YNMwrtHBzM8mxyFkQBbiWAXDkPMwkFDs08GEYA9RS+wiT4TEPiMYiNWdTsekIzEIYgMcw4gT9hzkS7fb9fpMpVJ6+fKlzs/PdXx8bEwIucrMevDsaDSyQD4YDJzbMX9tbGyoXC5rZWVFFxcX+v73v78kcjACCaEFLBCOfapWq9rZ2ZH0lH+oNfg+8iakEQabsDOtWCyaZJfkOgJTAl00dAIS74iV3BNd9dFo1F1o7BfIZsh7ulNDrAAZDJ4hDz3n6/b21meqIE5zFhM5nW5izAHkbQhHxlYzi581OxqNjLtGo5G2trY86oo65/Dw0CNE2fu8P4SiarWq/f19rw9JFiMlef+FuGw2W5z1h/kDXIGhBtEaAT7EQRg8WMvsC2o1iNput6sXL174ZxFHMDThBB6NRqpUKioWi8ZzxEHwLDmX3Mw/t7e31Wq1lg61Bgf89Kc/1UcffWSSEPIXYQpH9O3trc0+GAYnk8XIaEg+ajbwMzUkRk7yDJgPIRX8GY8vxlVzBg/5B7Ly5ubG+TWcxhCKv2At8CtELF12Ydfjh+vD9b6uRqPhznzOy6S7j7zRbDaXjgQIeQ8mMGBq5CJ2UnfQ5Q7ZT54J8xExDLIYgYL7CE0kYNWwO5kcR64McQ+xDuGpWq3aINbpdLSysqLr62sVCgXjPvgSxuuCce/v7/Xu3Tvt7+8bD4SG58fHR4+Ck+ROB2IR9QbGHOpWzOWI03AHxLRYLKZms7nUHQy2JN9Ta4OzeAaM04czpHuG+jXkQDg/ma55Yg9d8NPp1CPNQ6MgdepkMvF9UuODT/mMxGgmWlDPc6/kGAQtRHl4CupUSZ6qhLkdPpjnGgrnk8lE19fXKhaLxnv8THA4NQsiIsYdBCrqEkxT9/f3KpVKXqPUIwggYXc0GHc2W5w3OB6PvS6kRScvApckXVxc2FCMAQsBiXqLUsHFoQAAIABJREFUn1cqlYwdmOKEyQBei2kCrAueC88OLELNjAHvfV8/V3UdiUT+95/3B87n8//j//3t/Me/cBvTBgkpiYPo7m5xwHU6nXZRRdHBtbGx4c4OOhdwmRUKBc8wj0QiS2eI0KlAkXB2drY0F5GCMpvN6rd/+7d1c3Nj8LW1teVDECHtw/ZBiCqKpsfHR2/wYrGodru9pISGB99TEEF2hgeccWAWQDicyS7JJBvC1+bmpmevr66u+jwSAlj4e8NRTQC43d1dA7vLy0vt7+97/AeAEPBHsKdgoL0+Eok42SDchG11jNXBvUMAxklFAOez8Qy2t7f9rhBhIEQo7ClmOZOFz427AdITclWSXQShUHV7e+s2SAJNPB43kCdwEvz+5m/+Rj/4wQ/sXIdYwXkBuIZcCLvLOCSYWaYo2j/4wQ/snGNt4U6U5KTGerq7u1Or1dLOzo7u7+9Vq9V0dHRksmY8HnvcCQINRWCxWPR8eN4R45m++eYbff7553aw9Ho9pdNp5fN5ky6x2GKeJ+c33N7eam9vz+QBpCXrAmIgk8mYAMIdGyryz+1CFJWeuigQmhmnxRpH+MNtEostxj7guIFMgzgidlBIQoDw/WESBAzx+xFGer2ex3HQfQG4nUwmbrNmn9JNhcgpyW5dwBCiT6fT8WhB4gb7EPEoBOQIlbjFETyI2Qhc0WjUpCGFOV2JFAAAMsSqVqtlhxWkKCM8wtGHAHqIf2lBVnz77bceIYZwimMqdP0gShP7m82mu4SIwRQXgC1alw8ODhy7Q/c3s5oBVzg5J5PJ0vkKqVTKcRcAR/yX5DnGrMNGo+HOw7W1Na+XENwCJCFsJbktGvFJksEm7iryDJ05xEVIJ2IsQi9xaTweL7Xjp9NpVatVFYtFnx3G56WzERczpBLdvADK4XDoUT2MhoTgJC9RlD0+Ls56wEm3sbHh+cMUgLjl6Jql8BoMBn4m9/eL858+/fRTx1YOW+71eiaBwAPP+QqLUDqScezTFUa8Y/3SnQqYZ11EIhHjvnK5vDTWaz6fu1MOUoqOHuIHY+/oIobMYlxgKDCEhLUkk/Xk5ZCs7PV6KhQK2tnZWXKy0yGLKIrQgHDMWux2uz73j9E0k8niTBfGP5yennot5fN54xswSCKRsECeSCR0dXWlo6Mjm5R4rmBkhHH21erq4hwfHO90T/I7EddD1zc5i5hIjA6NI2CPMG6xhyAhMHQRR3HLFwoFiy6RyOLMBow01BWcG8Use8ZAkBe5X/JbNLo4dy3s+gpF7EgkolevXlmcIw9Go1H/NzkG0lWSvyZcu4wtnc1m+q3f+i0NBgPd3Nzo5cuXkrQ0DgJClXEW3W5XuVzO7wtyipoGgQeigfhFLQEWkxZkA4YFzjU7PT11J4wkfw4E9pAk6XQ6S2YmSC6wCTma/A12qVarJuYQgchJnNcXCuvP9QKrYGJIp9OeHMFZTrxHyEPI+62tLeONMFZhhiBWdDod3d3dKZ/PG/cjxFE745AGk/M+k8mkYyl5DQwFpgTHER+oq6nZMWeCZxDixuPFuQ6MAX94eHCnOQTV3t6eyTnG8jA5g/Hex8fHduYzGQNMSz1dKpUce8DUrDdIpPv7e719+1b5fN6dtZBZOJ3Za3d3d0tjUHFU04GbSCSWRkGDG4gPk8nEh1pTDxLjiN/gSO6ZLiRMAeAaanCEWTopqQUYYYOIDc4Dy0Oicn/z+Vy1Wk07Ozt2zIcdOc99T364frkX0xNCMRqSGSL/8PBwacQg/CHmWNYpo6vAPeQQSH4MwnAurHdq10QiYazAfU2ni3OjMQmRh+nUBQ9gfgUHNJtN17mSzAcx8psucHJ9aKCT5C4Juo8Q1Hk+PBNyKDUknBI1YCqVMo4MjWKcZ3x1daWDgwPHJWIOWAoxmy5pOtwZCUZ9jkiNaQjRl+cKXwbGQxiiLqPmw/hEvCLHSDLXUC6XlU6nnZOIp+Px2KI+42AR4RFz4L+I73T/hOuBen5ra0tnZ2c6ODhwPYehqN1uG3Ox3sIxldQX6+vr7tjkHR8fH3syCZ3+jOuUFvivUCg4nyJwhUYe8Fyr1fIZitQUHHEBhgV/cT/X19d+1uQEjLKSnH/G47E++ugjr+nb21uVSiWbzDBUYRTA3DYYDDw6mFHrmChZZ9Ru4AHeUYgj4MMw7L3PKxKC7H/ziyKRq5/z583n8/nR/7db+o95RSKRtKTe7//+7ysSiVi5RDFkU+M2AVAwRodgCNAKFxsFDwXOl19+KUl2WLJBZrPFYV69Xk87OzueOUhwQPyhVYtFxv2h9kvyPwFNAGo2Fq4fQC3JZjQaGQwCJim82CAUO2wOfg/KJ6NpKMiq1aqVbYg8guiPfvQjz3Jn1nsoPtBBQfJCkGm1WlpdXXVrKK3dkKI4rglYkuwc3tvbU7lcNqlPEFtbW/P5D7iXarWagyEjSyaTxQi4Wq3mQMS9QrDiwqW1lpENAPher+d3i4CFuBQezMXzDZMTn42AA5HQ6/Us0hDIOHjs888/lyQ7JnApMHINQP3VV1+5cHp8fPQa5JmzTsbjsQ4PDxWJRHRxcaFkMmmhStLS2JUwwbLuptOpms2mO9dwNdbr9SXxi+vi4kIfffSRf54kjzPAxUEHUCaTcYEEWf/mzRt3mUGMjMdjd/QwCovuuPF4rPPzc68p9hfi2R/90R9J0tZ8Pu//gkLSL/Ui/v3hH/6hYxqJtNfr+Z0gGocdKMREHCO09kLGQcZAWkNGAY5w5FC0knjDvQ8wpq1YejpPATKO9YcgKck/G1cFwKfX63nWNwUypBJgJRaLWaAOW9jpJIJ8Y28iMkIW4gSnm49iFqCHc1N6OiQZ0SYEpsQvgC3dXriC+HeICy5EB9wtFAGQzdKC3Mrn83YVJRIJi0ChezF0xRArITFw4EDu4BqD5ApFEMhoRr+R98gxENi47cEvvM/5fHEWRjivltnzjOGDZJnP5yqXyzo5OfG7CR2kOJX4b0iMsLUfghjiAjKZ+yR/sj75PTx/wDJub94/nbOS7HiSpLdv3/oMNH4+xRxfS7yr1+t2tPGuwy5H8jefh2cJmRWNRvX27Vttbm56X3HvPEeKhlarZdE2nU7rd3/3d8nlzy4G/smf/Ilub2/dck+HC++BGdmHh4cWCJgVjSstHEdILqbTkK7RcKQeBhMKexzLEKChE5nuvfl8vjRGSpJxC05w8BgOtJAcRxDmWllZHNSKCYN4QaHHuodARfAmpuC8ZKQRJGxovKF4gmCDEAmJDkbq4MKHuKOgIs8wBoFzUMCnODt5N+AFuivp4MSoQedx6Ez9rmGAGe/EL8hCZq8j7NM5w5oAxxE3caQzznNlZcVFNqMtEFSJEZCkOA9TqZSfMWIyWDc0FCFa1Gq1pdHL5HA6zsMxTuAjYgRriikDoVuf3MfII94HMZN8DkETEjMQJZiXJJmgbrVa2t/fN+GDCMVYCkgZ8g1xCvExFNTJMXymwWCwJHJilGu32+66poMAkQuMTj4oFApqt9v6vd/7PekZxT/pKQb+6Z/+qU5PT90BBg66vr7Wq1evvD9jscUoRUQd6idi1mAwsHhJzUY9C3bBTU49DdYKxxK32213vGHIYd2QqzCgjMeLkXyczcf7CztYMaCE3W/cN+sTIxx4DQGfsUHgydFoZJGbTrFUKmX3tSSLrWGMCvcOIznDHEzckmSMfX9/r62tLe8rhBJqSeId3AX1O3iKuMj7Iyfw7hBOwJ1glng87q7PsNOMThnWCHUodXK73fbZUphzmF4Afofc5HsYA8czAFuF5gNqcUmqVCq6vb3V119/rb/+67/+RW6PD9f/+HqWMfCP//iPjW1ubm50dHTkHE/NiLGDfPHw8GBejFyNuItBAhMLnBx5jDiFIQ0TBcYeYg0k/cbGho1s1Eq9Xk8vX770tBzqWmo3Yoi0iEnVatV7CeGIuMQY+tCgTm1MXSPJPBUiDf8/FJRD4wiiyWQyUbVa9SQUyHTyLrUrOTkUWkIDHqQ6ndY8U7pBiOmM7lpfX1csFjMuCrthOLaCz4wofXh46DGZnI8bds6H3SLUrwhfxMXhcKhOp+P3ybPAjIe4HX72u7s7ZTIZG/PBkPCF0lONEZoi4dPC83Oo1zGeEetDMZ57ApdubW2ZA6Pe4OxFeEgwIXVSeDYQNTgNCog1zWbTPAZruV6vK5PJ+DPBoYO/EYTAAPDB4TQBuFkMwuAKjJYhvwLHAjYnf4LzqbfI1TxL6m9MIn/wB38gvccY+HOdaTOfzw9/zj/PUrAJLwIOpPJ3iRi6SnDOQkwDoABNKIvr6+tqNBp249Atks1mlUqlfJ7CysqKifi1tTUVi0V364Q/k2KNIM/GpHCR5CKYgpbZzrRXkkBwDBIIcd9wZgwXMykpHqWnYjskrSAYKIzT6bS2t7c9ngUiLJzPi/Mzl8spFlucQ5PL5ewABbjyGVdWVnR2drbU2kkyoSsKUpIg3ev1XKzm83kHTloD2bAE0NXVVWUyGY/sIaivri7OQSEAoKZTEFNMQvbOZjMdHR0pl8tZyaXAlxYkCcQj6wgXG2QOZAetlyRHiFxABBeuCkYSARwQLL744gu38wLMARmQLgRTitt8Pu9CoVarSZKOjo5MoPL/IE5CchIQj9sL8hf3CQ67h4cHE1uh2EPiwr0hyQk8n88rl8uZaGC/ULxTxLF/ITVLpZLPRsnlcnZg7uzsqFaraTgcWmBEPCD5UiA+1ysUaieTief3ksAAiuzFUGiAaMKdyEgczh2RFkDxq6++0sPDgwaDgeMboJRzg8Ixj5zFcHZ2Znf5cDj0viY2cz+0v0ryGobkgyCAhIMMqFarurq6clcFHXDD4dDCHk50Pmuz2VS321W/3/eoGQpRWpB3dnYcb3guHK63srKiRqNhZz6kFZ0Z5XLZBJgkE604KgGtHDYNyK7X60omk2o2m5IWo4J4RrzX29tbvXv3zm4pREwITIB4+IfuDkAogCqVStnpzDqhZXttbU1fffWV1xYxk24FDiyMRqMeNxeLxXR+fm5gBBGDMMZnHQwGFuooUphTC4Dk4Ny7uzuVy2V3yiLQhKOtIPsQkuhuILfw3G9ubtRut03chGYJCGpiBQeKUwjd3997DfH+ms2miaPPPvtMDw9Ph29DclHw1Ot1g1dyGAQNxclgMFgiZhhzxdiS0WhxWHy32/Volm63a1BKJ3BIQrNO+B3P+eLZQfSCl+jonU4XZ4VQJBB3wjVAN3PY+TAYDJzj+LpkMrnUbcdFcYUbXZI7QRgBQWENeSnJBR/vLRaLeTwRAjkFbUjMQeBBzIfFEWQBMSoUfOiIZE0wkgC8Kj25yqPRqLrdrp9tq9WySFWr1VwEUoQhRvMcpafu3e3tba/HlZUVlctld+bhXr2+vvbvx3GHyAFGhPykSOe5QUzSXQVJ0el0jINDnHl5eWnsyAgT1hHvj4KWjl5EVJyuGAvA0HTyzGYzm33Al2BARIkvv/xyKXYhqvHzuShqGXXGAfB0nCOqhbEHbE+RDw6DYKbeoJ5AQKRGYtQJxD+kLZ2BxKS7u8X5hrlcTnd3d7q6ujKGZP1jhqBmCQnw29tbv7PJZOKYBekjyQQy9RFdudvb2+7q5OcjVoFDHx4elMvl1Gq1lgj153hRy5IXyB9MJWAsKzVTJBLR1taWbm5uTD5GIpElg2F47iTiM+5uunXZk3wvBEk2m7WhDdMH94F5hboiHo/r6OjI9VMkEnH9EQonxMBwPRHP2b+h8YHnQKwLyVDiJnUg+57cHsZd6ck4EZomw3G8GAcxuM1mM52dnSmZTNodzffxecDCkH/E0WQy6THECGHlctmfgZhNBxQxH4IWHATphyGA7oJoNGrXMfuP2EOtmUgszm4jfhErQ6PU6uqqz9EEvzUaDUlyDcYVdl7mcjmT0x+uD9f7utizmNDCUVx0i1Ebs1fhQjDS9Pt9c1Wz2eKMDkyPdLoTBx4eHhyDwJKj0chjPjEbki8x3RJDhsOh9vf3jUcl2VwCfqN7HM4qPBOTfM3ZKNls1mcmYr6jBgy5K4RqzBHUyhDcYCRyKULH5uamjo+PlUqltLu7u8SzstfBUpxpFYlEjGfDzhHyPeZFzvXEVEjXIUYSchlYDjM7wgrGe4ya8G1wYeSLUKwDZ1D7UQ9jCgwxCRgtk8m4mxhRja4W4uPt7a263a75DkkeHQrXF+IU8lC73TYfg9AYjUbVarXMxXGeEHU7/Ah4DTGHWmIymXgaBJwd2A/cT60sycIPRz+QCzGmzWYzXV1dLZmMqL0xtmNQIzeQk8BqcArUAqz7sNsKjDEYDHxmJvUWNQH78O7uziP8wOPU8eAL8CY1/Pu8njey/AVcFGm0SAGucCvS/szmQG2mDY8RZZKskBaLRRNb4bk3uH1JAmxuCrKtrS0X5AQf2plDNx9ORECWJAeQZDKpzc1NH6CIu4iRVTjGAWqQFHQM0crG1wImKSBRXOv1uotmCm+SUkjQZjIZtwuiDHMQJa3c9Xp9qV0bxVRaFJ0kKp4fSYJAS7cFF+12hULBrq9oNOpuH7qVJNnFSDEfqtEEOd4BhQrPiPsbDAa6u7tz0udgS4QUgjOjHhDV+N38TsSykLRA/EmlUtrY2LBQRiFPsovFYj6PiGcF+Cc4TyYTJy4OP0e1D927/F273VaxWPS5DMlk0uuzUCgonU7bic7aYx9RYEAMQhjhVt3Y2LBLIHRosF4B7bSzAgQABhQcvHeeDQ4zBEZEOooIii7+ngPncdHMZjOP94Lsfs4FO0AznU6rUqlobW3NzhCACaBPehrBI8nucRLb7u6uyfawO+T73/++YrGYycfV1VW1Wi1JC5EEEbhcLjvmxONx/fqv/7qi0ahFz3Q6vTRiivsk6VPI050IGQagGg6HyuVyur+/18HBgY6OjtxpBfiOxxdzVs/Pz036Mbbl4ODA818RLXE9M/6BtSXJe4azR6LRqIEH8YYxhI+PjyoUCnay8m5wZZXLZRfGs9lMOzs7JuA5V4vDFHFH8r4eHx9VLBbduSbJMQiwxrhOzqABEIYiG0Dru4Ia8Zg8wXlZAHyKA+6b8YvhKBTOpuAdQrzQ/be6uqq3b99qZWVx8CT7Fgc5MRJTA3kbZw2CM7FlZ2fHc9tDByixGAfX1dWVYy8kNiQOByTT6cUIF9YaxEc+n1elUjF2yOVydvlzbhki3+rq4pyneDyuTCajFy9euLMWIhwSMhwFyV6DqKegmkwmNoqQc1ZXVy2WM0+f0awIFpwNx957zhdrn7xLTCH/U6RNp1NVq1UXPWAanr8kFx8cUMuB0NFoVGdnZ853/C7OFZDkmIAIyPujg5Eit9Pp2F3H9+FmpLjhCsfNID5Lcvcp5g6+hjEN7CmwZ9i5NpvNlgrx+XwxxoacSfcNmK5arerh4cHr/PHxUS9evLAgC/4N3XSQp3w+yPh2uy1JOjk50e7urvc3hihJLmKPjo78XsG6iFnEEYpPsCjxgByUyWQcu0LyhDwkyePBOLAV0QRHHwQtZiNqC+mpUO/3+45BOBz5GZIsOoBlPv300yWnPSRTOL4KIpbORohvScaOYUcCwhSYjnun+w/RLBTowXHELUk2lyEYRSIRk0hgeAgG8j0xmU6mWq3mNRB2KIInw0OIIYDb7bZFHgQaBDo6iMN9g0gLGbW+vu4Yyz6p1WrGhs/5QuiU5NGiPEOMERjzMLmtra3p8PBQFxcXPrA6jJ0QlNRApVLJpBV4HxKuWq1aKArdsOGZmUwZAMMzxoWOvnAUKvcLfsTQx/0hblOjg/HIp5B54/HY9X84MoXfzz7DDPTJJ594DYZuakkez8LYIGrd8Hnzs6PRqF6+fLmESfm83Aci1XQ6dfc0NSbPjHdLPcWe3d7eVqfT8VmviCoYHePxuIVk9jh7kWcEng+7oskrcBXgP2o/jKIYY8hP4ECwMvUsNVo4YQEykdj44fpwvY8rPAODnBx2KICvGLsFiR9yS+vr657OEXJ2xEHiKbUlYiW5lxyKYIPIwjhHYkh4/gqdPTs7O/49iE0IEePx2FgfU1FY82KqY2pMu9327wObhN0ufF5wIWQ53CHPi32KgQOOheeI0ZyJHXSSz+dzx7KdnR3t7++bh6EGC0l7zLthZy01bjjhoVKpLAlfyWTS5zfzvfBi8Ii8X4QreE3iKXE2zJmSPIaanAN2JtaRz5hoMB6PPa3i5OTEXB7rKBKJ6Pr6Wufn5+YSZrOZu5jpfgFDhlwp+SY00jMdiHVHjcj6Y2oJP4d1z39LMleLGC/Jz3U+fxp3Cd8qSZ9++qlHgmImTyaTxhTsCyYPTKdP46XB3nwO9hL3BD7gSqVSbiaAV8E0NRwOVa1W/TX8DnIPuIG6BFPd+75+LnYxEon8t0gkshH8+7/5573f4X+wi8CWSCSWnKYsXkA8wIkWKYIswIaggcgRLlxJVknpBojH4yaZKRIhOiGuEAdubm78Pbu7u9rb25Mkz2sGjNKBQKCATA0Jxlgs5uKW4IrYQvHHhqxWqybACQoo54VCwU4p3FLFYtHdCqG7jkKQNk9AIeOCDg8Pl9pBQ2c6XTFhm3c0GtX5+bmfF4Uf90EwJHhB+APwIU5xKzEmgYTHsy0UCj6rgGQD0KbQDZ8jv/fo6MjuANYXhGgikbAIwr0g+FBY48Tn3ZEcITMh6GjHH4/HFuLCpE1Cp/V2fX1dFxcXTsAETZ4v3QadTseuzFgsZhc4rn3ImeFwaPABeCHBMwOUNcCzw+HL7Ge6MnDGdTodE7uxWMxOVxL2YDAwmUb7MeuF1mHeL64KyLDQ3cCeXl1dtUoftjuz3p47aQnggFgP20glmYynmOz3+wZslUrFiZnCDKcQo3JyuZxjJ8QSbcZh4Z5KpZTNZi160DLOGEJJdvUB2CgEWWeSljrpiA3EZ7r8ANUc3gxJE4LuL774wiIAnRyQixS9839pT08kEiacQhGLIhNynS61lZUVj/u6u7vT7u6uY9hsNtOLFy8cM4jJp6enFtJZv/P53E5UwBSfaTKZOF8hVuKop1O01WotjW5LJBLKZDImMra2tjySkHm4ELp7e3veozxrSX5Oo9FIrVbL3SbEOhwwCFWI7qwFRmviwgTcXl5e6rPPPnO3QngwI+Pr6ApBsGPtsp4ZyUmX4e7urrtgAMZ0sPBM6dKDXF1bW3POB6SG8YZcAwlGrOVwRuI5+QEnMyJhr9dzXKULkPPPiJE8Z+I7JBT5DhcspDz4gI7aUMiHfD85OVmau00XY+g0fq4XZ9GBN6Sn8zsKhYL/DkILoUF66p7lvTO3n30E+ShJL168MOZAgIDAg8g/PDy0U4xYzFjHELuQq8ED/D2GDgh7SUsFE52kktzdS0E4Go2MDSkKwVUItoggs9nMh3Qnk0kVCgWtrq56ZBDk2/7+vs80BENhMKIDaTQa+UwnCIVEIqE3b96Y3KOAkuSumIeHB+/nMAZymHCtVvtXbkSKM94BQgKHDnOGFnl/MBgsnUkJxgxdnLPZbClWNZvNpbFIuOlx10ajUZXLZZtdbm9v3T0YjrXsdrvef3QpgLUYW8HzhFjgfYXreT6fW3iGWAm7D8POxtBRCqZDfFxdXdXm5qZHikDMh+fS8J7YF+Hagyx4fHz0OGpyNfdO1yyGIJ4bsRUhAPI3FJbpngoJkZubG6876UlgAxcixpE7EOYQtYmloRD6HC/IQzopyL/Uc6wn1sP9/b1Go5EGg4F2d3dt4KO7mH0oPYmomA+IgWCFlZUV5fN5P3fpqSuRM6KIUwip1BqsE4Rw9h5fT+fQaDQyrsQYg3iIcERtDnmLUYluWep0zA/S04g/usIkOX6xf3Czg1H5TJBLTFugyxLBm1qT7m66rdkrIWE4HA5VKpUcc4bDoV6/fu0xQpxvQ9c6mIkugEaj4djLOWLEOsRu4hB7B4MmvAf1FRiPeM4akOQOt7BD9OLiwrUhphr2IrmK/AoZG+7pD9eH631c8B1wR9vb2yqXy0vTb0ITgiTzKfx/aiswB9wKI6P39vacB+EawxH6/C7+nbiKgESdE5p3wzGr8Fh0q0CK393dWRDa3t425iNXEi9zuZzP3EGABWPw2SeTiXlNiHIwZzhFhucYYkYwAvUeplC4A+pVRHawDQYO4kwmk7FwBqeDgXI0GrkrAuwIJiyVSjZVSQv+9927d+6qJTaC/6Un/ByKUHQZhh3txGq6WOjEwhj18PDg6QeYhajzeX4YHvm5PHty7/b2tk5PT5dqzn6/bz6aNcFUD0z24Wh16cmoxteSsxGOpIX5nelR6XTaJmueOdNGwhHI4dnh9Xpd+Xze5xhRq9JZSVcW+I01QicNHf339/eeKsK4Z8bvwqMwlQijcTjKmEkUnO0GRzKdTr3nmT4E1wO+gE+F0wefvM/r57WE/y+SEsG//1t/fvN93+B/tIs2W4qDVCrllxqJRHR+fu6ChsKTubKQJYAJWsW/O16GQAS4SyQSJgpRqCORiAsSXEsUoYzmIDhAzjNTmkCI05a/j8ViqtfrJiIJRBQ90+nUqqP0RD4ByikQUcNjsZhdN5L83xDfgDiAWrlc9v1QrJEESICA7Xq9bgGChEfi4cKZHY1GdXBwsOSiItmFs7xJHAgGkKRsckaNQG6RgCgOIIghQ0JnbehKHo/H/jkQCDgGQgcpTiq6rXj2dEUhnODEpph4eHiwc5dARwLBlZ3L5ZyEJVmEgCSmWD88PHQQwnXIOzs5OVlaf5L8WQjotA3SwYQ7nG41Wj/p3IK4pDiDCEPd5mso4MK2/0QiYfFyNpstzf/HMb65ual0Om3yi3eIGg+4wv1JkmRN8Nl5j9Pp1OsjdFY81ysk9yHoSaoI1BBPdOEQgxA/EAI4oFp6OpS00Wh4/TebTe9Jii/ag3EQheItLh8SOCIC7hO6J+geQcCAzAGw4tKkqw/Aytpjj0MGUrzjqkfcYG/x7SRZAAAgAElEQVTTQr+6uupzshghh/gDoANwra4uzjBotVp2kiA4sD/Y7+wHiFJAR6PRMHhAQGWk0c3NjYEjMTcEa8QY4gZgWZILFMAmYj1iC0RWNpt1VyQEKj+P30kuXVtbc1t5NLoY4dZut53zGB81m82Uz+c9XgQwD3HCvZZKJRNLfPbpdGrxttvtmvDgcM6rqysXG7xzuhQ4lJiZ+qwTRDHcYcTH0DHFPXU6HY9sQ1CkE21jY8POHUBt6OQmvwyHQ93e3mp/f9+fLRaLqdFouJAjn66vLw4GpXMUYg0XOXvj8fHR5Agx/vz83CMLIaYgJKfTqQlhPhuOWvLWc75wILIeyKOxWMwdyohZdCXz7iCXAPPf7drh5zP2oNPpuBCAgGMvRSIR9ft9z5OWtHTeDOuy3+/7UHnWZDjCEKINfBBil3AkQuhgD8kCBEJwD2f4gXMROXF5Q8ayV1hTjP+R5C6U8LmSezEFhCL+fD63eA0O4N8RNfha3JYUkxB6mUzGpEsikTA5wn7nUGywdLfbdT5hz3GGIriZYhEMHBLZuEXz+bzjO/ufMSc850KhYDIAESGXy/m/V1ZWtLW1ZQE6n88vdeeQO3mPo9HIhDVxAOcouSQ0ePEOyB88N54dZhmIFUQkRmoi6klawtmsM54z52Xirg2JVrDV2dmZi/eNjQ0f/jsajVSpVJbuEwwHyRFiNz5nuNapnejEZOwz9RR7JhZbzJlnX0Kq0EX73Ali4tpkMvFIZIh0hK/pdGpTFeNC6RDlQGUMbpI8nnQ2my11xITOdWpqfgbfS1cYsReSk9qOmgujC2skNBsxWoUOQs5ewbjI5AdIO2r3kGTN5/OOO3QmQ3IitlDPE9P6/b5NkHQME7/J/YlEwqZH1iKduzxrPtv+/v7SeBlJS8+CNcwepv6i1qM2BUsTc3kH6XTa50+GZCIxDMNb2E0IMQaWnU6nqtfrfsd0ZbFXMWER82KxmDkOOsYRa9ifoZESHIPR9bmLqB+uX/5FXiNGUcdQD8/ni3N0wcjRaFRHR0fGQWDCd+/eKZfLmYMDg5GnqStCMzBCAXGMcycxScxmM2MRxFPMvewpRAHi93A4VKFQMD6ig1WSx3dxz+HZVfB1jFzEWIx5i++TZKyLUYM6iL2MgMJ9xuPxpbGVxNJsNqvRaKRareZ/rq2tKZVKeUICOBj+DJxGnYU5CmxMfmLcOefjYSDlGbx48cITJMABcFBgjl6vZ24CjpL6C36CfMUEEEblRaNP3eCYm8gfxG2EAu5J0r8aUYyZEfMf74Cr2Ww6Tj4+PtosxXPodDrGXJhdWNvwD9RCxGFyEnVoKJBhVGA9IMRIsqAClwBOw2zK1yBaUr9gPOQeWW9wddRPTD4ATyMmkrsRguB2qBPCWg2cxxrlYm11u10bh+AEfxF5J/4//xJpPp//r/+jf/+veDFaiyKTcWkondvb21pfX1er1VImk9Hq6qoXDouQ0VKMBICMYqMyDiicsx0W2hA9EE+QLpBzqJ0sVBxNEKvhpq/VagazOLoBxwgrzA7MZrNqtVom2EP3Cm1vbF7mFxM4k8mk5+TWajUXVRQ65+fnyufzPl8BIqjX66nVaqlYLJogpWUe8Ud6Klw5OBU3KyOFALqA4XAcBwcocu/MvqRzghEgzPplLF7Y+t7v93Vzc7M0H5LPwH1TzKL+40Co1+suIHB4MTKN8zoIKisrKzo4ONBkMlGz2VShUFjqMOj3+04yECQkfUl2VYXjUyaTia6vr5dGrEB84NiV5BZDCma6ZLg3kiDBkoR2dXXlsQi4C8JOKkgBgjwFFMUPnUEQF2FbPY4qkgJEbujkp7sBomg6nVp0azQaSiQSKpfLKhaLFhxY27xb1jGJE6IOYn08HpvgosB5jtdsthjX0G63lcvllkY14myQZOBEkoQsQkC+vLxULpezQ4/iuVgsGiyx7m5ubtxVQ7FKbIMEI3ZB9OG4BoQAoHCBSotki1jDH8BnMpl0xwKOHPYM7qhms+lzl0IHEKADAZA1zvrDEYnrmLVFcRx2DbG+uS9c9GHxTYGA0wUhjFhFLsAlTlsz5GAorOJo5jyU8/Nzn7E2Hj8d8r2ysqJ6va5isahMJqNWq+UYzCHQCMThXmI/hwLS4+PiYG0O28W9z9qS5K8Pz39IJBIG6RAogHoEBIhZCN9YbHEezt7enrtn+H+lUkmtVsviIiBRWuSs8PBhziMiHhDD6AqA9KCAmk6nbqO/vLzUxsaGgT/CVNjRCAkE+cLnoCAKc8jNzY0ODw+dd1ifYZfC2tqaWq2WYyaOIcQCSFX2zdHRkd3O4e+H/ETAwYwQ4ojvFgfP7aLTFtMLe5eci/sLnNTv95VIJJaEmnK5rIODA7fhM0aVGfwIPuRj3i35GKIcUozimQv8wZoMu3sk2QGH6ITIEAoljPdlZE3oYiReS0/nL1CgsocRsLh3umjpONna2nLnSCSyONA1nU4vCZ0U1xSumADCMTnsf2lRiGLWoZgKzUsIPrjmw66N2Wym7e1t/57hcKjz83PvQcQfOl3y+bzFbTBFtVrV0dGRrq+vffYaBC3vgHnhkCec5RB2b7IPWUPhWZOSXPSCf3nfmHQwpfB3Z2dnOjg4MO5FxIrH48ZxHObK2o7H4x4hQs6F1GZt8Z7oqmL0BLG5UqnYqECeD12auCB5LxivMD9AcrGu6EwHGyAA4lIGc5NbyaEhfg7fFznl4WFxuDzvCUGcd9Fut00U8buJna1Wyw7m8XjsM3qe80VOp8OEkS339/c+2yt0EBcKBfV6vaWDtxGJqRupy4iVmL6om8FWiLyMF7+7uzPhz57iHVPzhuI4xhA6dXD/QkyR44jbjUbDNedgMNDe3p7jKEI2ZBKmO/YtayccC0kegMRCUJJkXEd9jjgN7sYNzrPe2toy2Rt2sRNb4QwgqIhFGASkp+kgEJfUTJyvwDu5ublRsVhcImchGMGnuOPhKMhpYAvwdyKR8MjEsCOQ+AYWJ2ZcXV1pZWVFpVJJW1tb5iE485R3nUgszkJjnzMVpFKpfBBuPlzv9aLjGqGV+D8aLc54Cw1zuPipIeF+ptOpDVjUi8SLkNjHgDoej3V8fKyLiwt3Z0Okgw/I0ZiZJS2dbwlehO/KZrNqNBoeL9Zqtcx9hbxMrVazQMO0A/YyY+FDbAh/h9n67u5O2WzWYg61IfsUToV75Hu4BzqB4BXW1taUy+WWBBrG4dIBQnwNny/PEgGKKRgYT8JzZcgnTKOR5O4Yuja+/vprn40qyTgFQRxcTZzic9P5LT1NMGGMHTUUxkzwbdhtzH3xe8Gw1AtwjuBvakByF/iVegZuDZGFscXgz0QiscTvxONx84506hQKhSWxJ5VK+Tw6RHhylSQb2eBSOdeO/cV9h3mIPZJKpVxzkOOr1apOTk6WuFwMnRiVwvHlmNjABdlsVu122zxTNpv1Wq/VauZ64FjAxN1uV/v7+37e5O6wTnpf18/9EyORyGmElfVf+AKk8TIIjLPZTPV63eQRhSnFPARNePAw3QaQbhAkqHh0BAyHQ11cXBiIhONH2NwsdIjuer1u4YW2Q+4bEikej/tw0bCo4d5x/0CIsrm63a6DI8ovXTqhaxvFk3ug9fO7Z45QRDMXmtZy3Kq5XM7PG0EMooENB9keiheS3OoZjtqh2KBY29rasmuCDQiA5f2GIk+r1XIBgSOCkUC4kiFGIThJAhSsFBE4E+nWosWV90ByZcQXRFy32/X5GqwJZosiOCGOIJLh3oUwJnkQaBArcAZT8L99+3apAMJFS5EdEo2QMxQVnU5HxWLRI00gL8PzoNbWFuc9QfwiPDFagK/hd4eCC+uaBMkoIggbDluHyMQNiuiIU6xYLJqQl+TRA3R78f8ggHGRhuOmCI9ht9dzuwBgpVLJTl0AJuIsAjMEDs8GgClp6Xykzc1NxyEcdTiFIL6Zqdtut5e6aCDjaDtnnY7HY7dNA+AAhMTdWCzmEVCRSETFYlE//OEPJcluCoAD7kfAGnNPIU0BTnTI0F4L6QORCEHBZ2LdQdYh9uB0KRaLJvCJm19//bUJSwgrxBRcyvF4XK9evTKQptsHJwjFbhh/M5mMzwFiVM7R0ZHFFfYZjiFGxwCO2Ju4xcghocOFMVy8C0B9Npv1WiJncl84P8lZ5XLZaw5xLXT2S/IIDkSpQqHgMYqlUsliFmYFukbpJqLFG7JmZ2fH/x2NRj3qCYAMCCUXkLeIq+ReuhcxWQCYIavDzwFpVa1WTaA/Pj56JBpAN5/POx9BDkFy8TxofZfksxp4PyG5QRfQfD5XtVpdcoyTg3FIUbRSpIbE8XO+GHUA0QYuQLBnRN1oNHIBgwjC3qS7AjMMWIvDtMPiKewSCIl5RhDi6gpni1MwS/Le4f3hiEOow/UIoQDRyj5nz4fjTiWZoAsFHnJ1KAImk0k1m0271xk1VKvV3P12f39v4pfnybgvsATCTTh+KplMam9vzyIGwgMFMkU3I+XAlpKWzg6jWygUrxh/xh5i7AiucQ5RJYdR6M1mM3f68YyId6GhgxwS5iswLTg93NepVMpmrk6n4+53iFjGRICr2+2218T+/r4xIJ3zYGJJSx2pFM/T6WJ028bGhq6urkx0S3Kdcnt7a9Gi2WxaBGq32x5LAp6leyIejxsXr6ysmEgIRVBG7yUSCY/JQFShw4t8BKYfDocqFovO25ubm15jxLfxeOyuRAQYSBBGzOCyRSCHIOIdbm1t/asOAOJfSIY/54uag1rs8fFR5+fn2tzcdLcu3RAQTevr6+r3++r1emq3246jYHPpqSMEogUTADUy73lzc9OGKzpCMQnSFTYYDHR7e6vr62vjIOpCcjE5lbVxfn7u7hfqoP39fed6YiT7mPqy3W4774cjw3EQ07U1nU5VqVRUq9XU7/ctsrRaLV1dXZlgJHayV4gHmBbBSpDEoRFzf3/fne08e0Q06kmwAYQU+5ED0Hku5B664HAmQ0whmF9cXBjjg7trtZqFNLpELy8vHeNyuZza7bZFMwQuSGjyQCKRMH6jOzr87IhZ0tNYNUx8vCPO0/lwfbje1wX2B6tHIhEbceCQpCeODA6DvYrwybgqjI1hpwpYY21tTY1GwwY3DKbsD2LZbDZTu91emrxAPKVrhe5XYiUYJRRzqD/hKlutljY2Nhz3ibHs23g8rmazqfX1dV1fX0t6IrQrlYq/htwQCgqYK8jB1HXEEjoe4KfAlp1Ox/udGpwaRJLPFqROBuOGI6PBnHTncd407wjRGOGAkXNg6mq16g5savGw8xFjMpgG0woj5RCAqKOJwUzhGY8XZwsNh0N/VmIqHSZh9zpYiClNdNuAmYiDdN5wrhH8WWjkhucK312v13OndMjtwIGFplUwPjwPTQChgZqcLT2NwwUT0unJ+8JoylQgeCY4QgROuuwR+8L6Jp/Pe3QoWACOgs8MnqcGYooQNZMk5/JIJKJKpaL19XWVy2Ub9MEa3Pv7vP49MtAbSXn+IxKJ/N+RSGT3vd/Rf4KLDUHxJC3EDhw4bDbcJhQM8XjcI2Cm06kajYbi8bj29/ft4E2n0yoWiwZdFAr5fN4z5BOJhNuTY7GYQSGBhmITApGWahY2rXoh6KFYorWZQrZerztI9Pt9ra+v2+FCgU6HA4fk4ggn2HIftOPRqYRTKJ1OK5vNmhzj2UJ68vlxMmxubi6dGyHJIysQi2azmb7++muTAPyTcRWQImxsCuRms2myma6UkABEQOIge5IJ7irpqZDjvvhM0lNLYiqVUi6XUz6fVyz2NEYuHPeD8zM8+AoHH+/19vZW2WzWzm2SNIQL60qSC3XGckCK0nYOCZhOp3V3d+fPWyqVJC0cxm/evLErc3d312sZohpSm2QAMTEYDEzyU+hTTDAvmaAIgcl5NLgoKcLC7rPJZKLXr187KZPk5/O5dnd37aJl7yDsQBJHIhGvidFopFwup62tLTsECoWCSS5cHbe3t9rZ2fF4L4S2cB77c71wPT8+PqpQKFgMuLy81Gg00rt373xgKcX4/f29ms2mCWHEx7BzAxcPh73d39+7MwBxpt/va3d312cZQWRCkiFGVioVrx3pqQsvdL8CZEj60iKuf/HFFxZEAMIAo2+++UbdblcXFxcGFJwVQUs0bhLW4OPjo4EToDsWW4zGrNVq7qgDnGEKaLVadjThzK/X65pMJvr000/d/oyjmW4gyCMckOxjSW7Zxk2FwFoqlRw76/W6BUueFzkDoAdJi2CNUMyepKOH/U9RA5mI+xIhvFarWYAN/yCSvnv3TmdnZ+p2uxayms2myRJIoHq9boG72Wx6BB3razAY6Pr62u/l7u5OrVZLw+HQYwwolADxCM8PDw+qVCr+DL1ez25UiDx+LueFXV1dqd1ue47+4+Oj+v2+YzuE6v39/dJ5X4wyqNfrFvWr1aq7EiqVirsHotHFKLlaraZ6va5qtarLy0t98803urm50bt370xyAYAhWC8vL/3sKQogxSeTicdZlstlYxgcTZ1Ox/8dHpjMnnnOFx3UrGmeFyB+Op0uHUp9fX3tIlmScy/CAwUOMYeuJvZovV535yLrBIc1HTqII+DAlZUVixKYIvr9vsem0n3KnqY7CFz09u1bF/AQZHTXQhIw6o+4RcEadllS6IadkrjXWNunp6cmd5vNpglVzD7MuIbk57wnRDIc3pByCOAIUBCy7XbbBKUk4xjiM8UpOSrsKmFcMA7x6XRqAweiEuQj5ixIBDBp+G4x8tze3rrjh9xKQY4THZFhMpmoWCxqMpkon88rl8uZkAnH11FII3rg+uRCkHr37p3G48WIWt4xuRKnO8THwcGBzUAIYo1Gw4YonPzEccQg6p77+3uTzc1m07gZgfLi4mIpLieTSbXbbQs+1FTke4rzeDyuRqNh9yTYHZGPs4/AFuwp8hMCIPibsR502WJCYO/G44tz1CAD6PiG7IDUB3s81wtxITybKZfLec8hDEDisDY3NjZcy1L7RKNRC+Cc60VdgDDD72T/UfdKT+cklEolG0yosTY3N3V6euouE0YKUuvE43Gfq9VqtZTNZn1+FmbA6+trGxkQhHH+Xl5e+jlIWhpdzjl8iDIQeOG+4mdxRmNIokoygURsAENjREomk65L5vO5J0MQxxjHBskVi8X8DKLRxRhFDE0IldTaGICYFIJozOhG8kan09Hx8bFd37VazXXkdDr1WYDNZlO7u7vGWewfcDv1ADEUPIEYBaFKjGJv8s5brZYJT8wG5AJ4jQ/Xh+t9XvBm2Wx2CQfDKVCfQUSTW8NO7bW1Needfr+vbrcr6QkXhpwDRDm/i3VNvIQ3Q2ylzkomk2o0Gsae4BnM3aGBi3y7s7Njjmx/f98/n+6iEH/RHfmTn/xEpVLJv6fdbpvDk2ReZ2trS7e3t7q4uLDhhWfFyF2EW4RnMB5GGZ4bneTEEr4PUwY4k+kDhULBAjP8FcQ9ZlAwaKVScbziPYAdGNNGbQUfidA2GAwsuDGRibohl8tZVAN7I4KH3fXkTjpVEBdYR5KMGanNw0kH1L7kGNZsOMIaviLsSpfk4xgQR6hxMQ0iYNzd3en169eS5I4mpgLQASvJpl5JPleJiQ7wFeR8sC8GBvIpkwt4p2/evPG0Drq04a4RPlk/0pPhMMxdoVGYRgPqoHB8NN+HcITphPxSLBZtwAqF0Pd9/Vzj0f7l+m6Xze9K+r33eC//Ka6HhwePr8Cly4JDHGEOIl0OdKmEXSzJZNLF3/HxsY6Pjy0m0DYeiUT0ve99T5JMtkEabW5u6jd/8zf9/1D3VlZWlMlkDApjsZguLy/d2saG7na7nsk8HA7VbDYViUTcHjYcDrWzs6O9vT2TPpLsagHQJRIJj0AAOBKEv/jiCxMR/X5fmUxGsdhiPnA+b/3Phfrj46OKxaLFAByGBMNCoaCjoyMLMjj3O52OHdKPj48OFMfHx3YOQlZxuHeYpBA7aOOjLfC75wkwT7dYLErSv3J2Hx0d6ejoyI5wlONkMqlXr1758/7t3/6tCf7NzU29evVqiSyZTBZzNxmjh1OboIsYiPLM55Dk0XDdbndpbr0kJykSzO3trYrFomazmT777DPfH644XFWff/65P+erV6+cgDOZjJ97NBrVP/zDP7jTJZ/Pa3d3oelWq1ULfe/evbOzPpyzTlEiyUU76xNwQoKT5PEelUpFL1++NNGOSwSiiPuLx+P68ssvDaBCMQp3H+QTHQTRaFSvX792IZpMJvVrv/ZrTlZ/8Rd/oZ2dHfX7fbf9hq7753gBChhzQPcThTZEb9i1dnh46LhGYRp2I56cnFiYY+1BstDJhPDLeBraW8PD+XA7cq4D9xS6ayBXKAwpsiGWePeAAsDTeDzW3t6eotGou2aIP6xJ2sy73a5yuZzBI66cjz76yJ2LHM4MSAy7tABgtG2zz4m7jFykEKcVGVI07ChKpVIWChDzJXlMSXgmTjgWiTgCkKNbBlcruaZSqej4+FiSTGQy6gzCJhwTRl7CHc5+4z2Fo/KIW7SykxMlOR8BqLPZrAEuZAsAl/UViUR0dHTkPM17gSBst9va2dkxECPu87nCcZij0cgj1sLxkNFo1IYK8nuY11k35FH2DqOQ+v2+CflSqWQBi3PxotGoPvnkEzv02u22SqWS1wKjQ7LZrIF4OHIAN/3e3p7evn3rjp9wVAIGBoj4vb29pSKHkVoUbnSAhQLdc77APYy7YC2SV4kdxJTj42ONRiPV63Xt7u5qMBj4OfEeU6mUHWI8e8YvhLiR5z6ZTDzej7GwrGfGREJqU4jk83kLTAjq/CxIvlwuZ2GYdwtZBm7D9b21tWWSWpJxFXsRpyXriNyBSQXcSswejUZ2iTMOI2zuZ88MBgMTc6HYFZqOwB7kdYr9yWSi09NTNRoNRaNRG6QwVEEC4swLxzqwT+lEjEajxtR8JrqpyIsIT+Q7RBTeE+5Aupkw1nAuJF14PEtEFvbx/f299yNCPl0KYF+KdDqwIGlevHjhOmYwGKhUKllICX8HXX2QOBAhh4eHjs2h0QqBKjRJ8HtWV1d1eHho0hfXJOIv5oeNjQ199NFH7hiKx+PuuIHs4pmfnp46VkME897ImZFIRIeHh64FEOS5f7oZGPOKOIB4Bw5NpVIql8s6OTlZepaSPIIawv05X+HIQAg19gR4AjEU0oV9wbkn4QHWj4+LszDp/AhFi3q97pGpGMlms5lxILGR95jNZo0ziKkhpsM4glMdEeLo6GjJsIdxK+wiRqCCrDw5OfHPwYiB8S4kvO7u7ry/iOsYKxEjuddwNDDPZjRajDjnfDrOauFzY1hjbCS1aUjykZOIxZC65KDd3d0lXEaMBhMhknBuU9hNRRcSojydoJLcDZdKpdytSRc9P096qjvpTm00Gsrlcu7smc8Xo2U/+eQTi8qIbeAuPls4mgnT13+Fffnh+uVddBswCpf8jEmW/APZixAMfiAuMYmHWg6DL4IjZhN+D2LB5eWleTRyNIYEMCn5LpFYnL0WnucSiUS0u7trTEUnLKO+6A5i8g9HP4T1D+ITv+fjjz92PNje3vZnxlRCpxyx44svvvA4a0jy/f39pXHL5HN+R7/fVzqdducfWJZRaBjEOUKB98TYbumJCyOPEHOpc0ajkTKZjEWYbDZrPEy8393d9fmTdEpT+8DXgbXT6bQ6nY55X4Roagn+UOtzjiTPH/M3Akir1dLe3p45tEKhoNFopEKh4LGYrJOwOwgRBD4vlUoZh8LBFItFGwbz+bwNSBhCQ+Mlk5U+//xzSfLIbHhVJpSwL8AAIT9JRzY5k3/W63VJMt9OVxRru9fr6ejoSBsbG6pUKjo6OlK5XHbuCk1b5Fby7u3trWsx6jimDny3wzTEwdRHV1dXOjg4cAcWBn94DnA3XMb7vP49os2HS1pqY2M8COojxROuNopzCrYQQDE6bT6f6yc/+YkBf6FQcEfCw8ODvvzyS5OChULBBX25XLZ7hwIR0MSoIII3BTSAicXMXH6CynA49HkSBNXQPUbrHuQ4IgstZxSK8/niLJZ//ud/dlEKEMeVf3Fx4YTBiIzJZKI/+7M/s5twZ2fHanW73dbZ2ZkDO4U1rgSc2SHAI3lSVFDYN5tNbW5u+nwIiEZc/ThGJ5OJOp2OW+WSyaT+6Z/+yUU4zjICxPn5+dLoDQIF7qR+v2/QLUn1et0JArU4k8loZWVFNzc3VtMJqt1u14IUZG6lUvFcYNZAqO7jSMONBulIwYxa/Pr1azuEX7586QLn8vLSbYQIIwS2i4sLdbtd/47pdOqzTujIoTCORqMWBsORSbho2Ve0vkMkkVB5d4hurOVcLueWUIilRqMhSe6IiEajdpbgMsZZT6Kj6Gi323bPIeTxvjudji4vL72PEZbo4AnH1DzXq91u6+DgQIPBwONIut2uDg4O7GSh+IrH4waR0+l0iRBmP43HY5OWa2trdj7wczgnJhKJGCxRaDPzmjmjCNYINKxVCt54PG5gzTstl8sGDDhc2DvhiIX19XWPFuMz4PajyESgB4xJclFM8Q0pj0MSdzFAOmx3Js5BCnFPCJaQ7sQ6WufD+eu4txjHJD0dLA+Yo9ONMWuQVHwOyMZ4PO4OUoAMZCDPCpDG3GAADEQHIAdDAUIHzzUcfcR4j4eHB7148cKEJjGALhCIa94J+4+xl4DRcNYwwvhgMHA3DD8DIhFnLECx3W7bRcfnGg6HevHihclcDAq8c37m4+Ojut2uOyF557icJPld5XI5v2PyvSQ70fh5YRctwhI5hKIAspT8TVwPuwxwCrM/EKguLy+1u7trUglwi0mAg05x00OyPPfxaMR/nnc4liB0cYE/EomEut2uSqWSz6/he8LzM3Cyffnll/rkk0/s8H98fFStVtPx8bGLWEna3d01xtjf318ajVWr1bS3t6fr62vnZ0aygoUPtaUAACAASURBVDcQVIi3pVLJeIU9y3kmm5ubarVaFj4oaIj13COdrRT63M/Kyopj37t371QsFv3sLi8vLeYT8zjfplar2RARGqVwaiPQhnGF7ljuL8SkYHYIPMh6hFu6eSQtjW6iwzzcB9KTYWpjY8OjR5LJ5JIYE8Y1SFwuYgSYDxKm2+1axMGdDp6TtIRNqS0gyPns3DvGH8w8Ye1CjoZQhVwiJlPgk+vY75VKxXgTwYVOhFgs5noAUxgkPyPV+Lm1Ws3FLQ5iCmDe8erqqk044D7yIG7J2WxmMxV7JhaLqVKpuMMHgoWxLyF5srOzs+TopWYD2/MzJ5OJjo+P/Xyo74jpPLPnLlyPx2NdXV3p9PR0iXTDAQ2Zx9ic3d1d13nUl+Q+sEJ4SDMOaoRVciprORaL+f2RMxF1MROF4isdUoghmDjANox1I+/W6/UllzDj2ajtwRD1et2GHmoFYg1rg3rv22+/9bl5nEcBLsKUBlkX5lywLaIsxCVnYVB3IFpvbGy4+4x4z7Mkd+MIpqY8ODhYcrdHo1GbIely43MQp+gUhESFbMTEEYlEPI7y/v7e+zns6ASLhGZW4uHx8bHJ5FgsZlMWBCmjWXGRU9/RHbW9vW1hCI7iw/Xhel8XMYE9K8nGDvYhMYkz0TBQhMY7OBE4D+IW41gluR6bz+euP8DaGFvC0Wpgeqbj8LOvrq4kyTmPDnrwIPULPJv0JAjR3SPJe5vRU3Ax0tNoQuoB6hVq+7Crg9GoxEuwBNhOkqfcgPuonRhRz8Sbq6srd2+Sb+hOAaeCay8uLpYm09D9HB5nQO1OtzsCHTmI90hOC89f42dwgefIeXTjELPX19d1c3Nj0whmR8ylYMpWq+Wx2nTRwIGFZyyRh6kfWZehCTEWi7n7i2fM8w5H2XM/jM9mHFyv19POzo7rIASqRqOhUqnkc3kbjYYn/8Cr8bkk2awITpvNZsZRjNeFu4QDAE+Cv9fW1nyeOZww/ES5XLYZF66GtYcxFTxJx/C3335rXgGjBd2nNFqwP/l7aWE4h3fHoPK+r3+PDDT/lz/f/bv/UhdCBsB+Y2NDg8Fg6ZBZHEC49yTZmSPJpBiLqlAomExhAY7HY58xQFtd6H5lNFkikTAJgLONgMiCYTPh4KNwZAZvLBaz8olwATExmTwdpgUQQ/EHNOJo59kAjBkPErrHKWRpSY9GF7MWcU3u7u4qnU4vHeaJywrlGXckxSYKO3O9CcAEG9yPtLjhMmAMEOR7pVLxMyb5MV8TopL51YhcAFCKvbW1NXd39Ho9lctlSQsC8fDw0IIEa4n3nc/n7VzA5UUhTLHJeArGj1CQj0YjlUolryFc8jiREE8YgwPxyoi3bDbrw3APDw+XZvPHYjEVi0Xt7e2ZmGD8AK4M2uBZO4hidHwxl571yrqE2CTRkWjCZwpBFI1G7QQOO9VwE4SEI/NRIfQ5QByCnMTDe2SdM7pwc3PT490QJwAKkCI4Qu/u7pTL5ey4xWn3XC/cKisrKxYTcZFIcncNY6l454xAaTabHjEBsQHRSacTY6vCYhFQcH197aRIO2yr1fLIFWasM5Lm9vbWTpF2u22xIHQeUfgBsvv9voE3+yx0rENIshcQwHkeADHc3exR9gFuZohf1hVjAdfW1gxEcahS+AL8Op2OTk9PLUghaLFmw9mxEK2tVsvF+tramuMNDhpAH+dL8e+QaLhoIb7G48UZEufn5y4+MpmMCQlA1vb2tqrVquMOQjd5EDKE4pszoer1uolw8pAkdxzWajVFIos56IPBwKQQY0Vvb2/tgMPhTqFE/gjbxlnDvJPwcMzHx0fnmdBRDNnJfeIwxUzBelhdXVWxWPQ7hsiezRYjBGjfPzk58axjxucBljEcMPIOwjocL4lwRwEUiUT8nCB/JC2tPwokzBjD4VDdbtduZYonxrYRI/nciEo4rJ77GBI+L0YAch4xggKU906nM0IgYiZC9e7u7tKImE8//dQ5ERGDAoI8zrOXng7dDmNmOp024U9RQjEPpnh4eNDl5aXHXjA7G8MOmAwcIj3FvPv7e4sYiHasidDZjpliNptZOH7x4oXW19eVyWS0t7en4+Nj4y5I2EKhoIeHB+MHSRaDVlZWPGKJWAym4jlOp1MLMojNFMsYLUI8DI7Aycp+hhwOx1awbyiEwSGIquvr6yYNcAuC6TAVTafTpfeIWALJHZ4l1Gg03DkJcTEaLc49C89cw7UYCg+hYYeunVhsMZ6TfU9tEhb0t7e37pYMO4hw0p+cnCgej2tjY8MkK0I++Zlz6yCneQaIvevr6x4RzGdj3zCiio6fzc1Nj5va2toyVkP84V7BxuQa6giEvUgkYrMH75l9i9DT6XT07t07j9jgrDjqETAE64m9HXbRItg+14tJBhhrqJV6vZ5FUi5EVM5FYv3TiQoB1el0HPeoX8KRZLxfaVFbcjYbRCR4EDy1srKicrmsXq+nm5sbxwbeVTgpgTyNaEFMhlxCZCLObG9vG+cUi0XHQ/YIYhH7e21tzeawTCZjEQFRE1yCKDGdPp0RCi9ATY+BiG5BxnNPp1N3xcAbMHYnjA38HsyakL48M/IQAhbPiXdSKBQc4zc3N20ekPSvDmAHa+3v7/uZHBwcGCOxF3knb9++NVbjDLTV1VULQQcHBxZ4QnOppCWyjHzJ/WAI+HB9uN7XhUkGEynxAYzNdAgIfvYbe4ycA0EPhwDxK8kdIKzzMA6CQyG4Q9PAxsbGkiEFzoax9uAfOg+IN9Q5YTc0POTW1pbi8cV5eOG5zWAL6hlEqkwmY0OcJPOYCCfUHnQkgyOoxfn8PAN4S0j3ra0tczvT6dRcDyIA+AJhhni0vr7u0cFgVH4PphnuATxC3oLvotuDyS7ESbp7qNnA28RQuAk6phGyOp2O9vb2nDeJb4hj/F14FMZwOLTRiokdvV5vqfOV58a9ZTIZGz2pX+FpmJbEyNp2u+21h5CWTqctHjIanHjN1CMwKTiZPPrVV1/Z/Mg98nPDzjCMEnTU0mWGmBiO6IVHJ++DPeA2JWlvb0/j8XiJB8b4C1eF4J9ILCZHvXjxwngfoyQ4ADGMewu5i2g06jWHGeF9X//e8Wj/VyQSIfMlJf2fkUhkGH7RfD7/397Xzf1HvBBMaNPf3t52AAjHNgAQcOtBUCOoIDBsbm76oESckBB+nU7HLiSITdTZwWBgNw3dL2wgZvlvbW359wN8CXx8DggzBBe+hoWKQiot1GJGA+FQJxBx3yjIEJTNZlOFQkGSloopXJSZTEaS/Cyn06l++MMf6vT01POoceLf3NzYFU9gkWSSK3QC4ny+u7tz2z3jdwhUbHhIBdrySKiMSAtd4bVaTQ8PDyoUCt7AkpZa5sMZ5ul02rO5y+WyTk9PLWpAtH777bd2npJcm82mu3Ugo3EOkQRxL62urtrl/+bNG+3t7bnrqV6vGzwghlAooJZvbW15JuX+/r6dkoB+ulVor2StcNYGwg7JOJlM6vLyUt9++61nHUOmoqTTeovTHUc37l9I5mKxqF6v54DIWg/HyNB2SqFM0TMej33gJ05eWucvLy/105/+VCcnJwYxCGKj0Ug/+9nP9OrVK+8RHCB//ud/rlwup5OTk6WzcAAhz/0KnYY4AukgwF0MKR0KfCR8zszgwqkzGAw83iIcHyVJl5eXBlCIeKurq3YA8ff8fn4uezbsrGFsyuvXry0cA7IRSTY3N92BErb5SnIByexsWnFx6PR6PZ9RhjPp5ubG97+2tmbxU5Levn2rg4MDE0vEdsQo3MMINrSe4zomDrEvEXAgIAC1dGDQpTIYDAzq+X6Il1arpePjY+cCSF32D4cRUjxAQNDOTjfb4+OjHS7hwdyS/GwhCNLptCqVirtMeM88Q1z5rA/EL4AjwgKt+7jAqtWqHdn1et1iEV0tFE4UEHwNXazES9qkEawAZPF4XG/evFE+n1/qIGy320sdUpIskPMcHh4eTNwMBgOlUinP8KdQYLzA5eWlXrx44SIP0ZP3x2x89uXNzY1dq8RI8jSfBYIfPIN4CQk5HA4N6FdWFmek4Dz75ptvlg6ORzQjvj/ni6KCeD+ZTHRwcGASEfNANLqYw18oFOxIhjikwGJ8Kl2odKqwBsiViURCzWbTa5FiMBw9yJzsdrvtwq7f75u0YlQEoy3osJHkjtibmxsdHh7q6urKcSwc/0PsoiDc3NzUu3fvdHBw4EIRV6K0iMPgHtzziKPSEwEejn5dX1/X2dmZi61wVBIxne72YrHoziKIf5x/GAYYxxG6CcGiOPwQPtvt9pJhSJJJUPAWcQjsilCLw5SCOh6Pe7+Djzc2Nuz2A+9i0sLNiNByf39vohQhhdzACIxOp6Ner6e9vT2PUeL3xONxGyHCOfIYXoj3zNgPO0Rw+iOEJxIJXV9fe1wGYmW9XtdwOFQ+n/daGQwG/n+8L4iJXq9nQYcRKAjF4PSQpEUgxMkfdlcRVyFx6BSlqwgMS7c67uPvdj5h7GDECPmFegGszplj/By+H0IN5y+55DlfGCJw5EL+I7SAIxD+q9Wq4yDE3OvXr92pA3EDbqSDeWVlxXuSmrvb7br7TpKOj48tAlKzgQdZD+F4QPYI4hAdxe12W8fHx3bgcn5euVz2uFvcwBhvisWiarWaxzHS5YqQn8vlXOtT21Az7OzseI9hHiJuIdLQuRN25/K52e8QgdTF6XTa59RAxMIDQAaG3cXEakleu81m02PCqRHJW2EMpi7FsEJtBqEFGYaBCbzHM8HEMBwOXdsSv2Kx2NJZgScnJ6pWq8pms0sd6ORK6mPOLcPpDNH84fpwvc8L7oixibFYzBwQgjQxEAKcPYT5jf2PsS8UCMDimFnAXXQuElOYyBJyURhVNjY2PMoQLETXLN3MdFY/Pj76eAT2OJiwVCrp8fHR3Q+NRsPn0BJ3JfmfTElgvC61BkZlzNvUMmFdwlQguC+6j+BE6fpmUlC9XlepVDJXhUiACUmSzYJwDfCxdB6CJzGDgj0QonhPt7e3Fujpzmi328YXjNtCoIMfDc2n1NpwItwT3b1hBy8Th8LxwsQy8hw58+HhwdgV/MrakuTYWa/XbfTHZMH3wxuvrKyoUCgsGarb7bbW1tZsFqdmvb6+1s7OjoWXcEIEQkq73dZnn33md8/kHdYDog8iR6vVUqlUcudO2FCAgAKmhetFTIETYH/Ac0QiizF3HMfBnn14eDA/iQmLmoH3Rh3ClBJqNkwH1MDgom+++UYvX778heSdfw+y/O/f+e8/fZ838p/lop2KTc8GB6RSnBJAQ5JF0tLMZ4j0ZDKpH//4x0okEioUCiYRCTI//vGP9au/+qvepAg/k8litt729rZyuZwLktXVVf3VX/2VfuVXfsWt5XSMzGYzXV9fq1gsetZlOF6C4v7+fnFIcrFY9Ibd3t72oYSAqRAwUnQx67xarapcLrtrgbbCzc1N/f3f/72Oj49NROKkQ3gBSCIWxONxt8qFgsdgMJAkk5PcK+3umUzGJCb3CyGM6ANA5oBrOo1oLye5NBoNnZyc6Kc//ami0agPYscdRSLZ3Ny0ExRBjEBDccG9EBi++uornZ6eajp9mklKcAzdnQ8PDz7vho4a5k2urq7q+PjYh9qxnkgUrFmSIJ+Ze/jHf/xHzy5nXEQsFlO1Wl3qsKAwwvnK2kfgYC0QLAEpkgzUacMNxwlwbzwb1i5rMxz1IT214eJyQEgKiWsEMtwsYTt+q9XS97//fbvBWHf8HLpmGCG3t7dn0YJ5nqPR4tBz9gM/57le4X6kOwNQEL57CD5JJn0ZAbSysjiUEUc1I71wXdBlRkLf2tpSvV7XJ598YjKJDhGAByAYwqXf76vVaunjjz923KObbn19Xaenp7q6utLW1pbK5bLi8fhSJ9xkMjHZD/DB5dHr9SwosyfozEsmk7q+vvY4C8huyB7cPggStJRD+APWGDNGjIZ0gJAFbFFU88wgCMPRcIyToH07JBCIRQDvtbU1ffTRRybuG42G3VaQZcRHimL+CdDhPLSwCzPsRqQ4R/TAkMBZB5JcxCA+c5987Xw+9/lJuJHW1tZ8VhAON0aAcU84YcNxOBgJWFOxWEwvX7406c1IAgqS0GEDwcD4HtYZnX/RaNSFE7GEggWxClGbIuru7k6vXr0yvgBsQu5IcncUnW7sTf7JLHcID0waITFL6zf7lNxDbGeUAwcLU1jxtaPRyEI6e/+/gpuV7idmfJPXk8mknb3hmBlyBcIYe5nRGuw/nHXkxtBkQqxFVG42mzo8PPRep7MMsRlchAsvPBOFdc14jM3NTQsBhUJB7Xbb2IY4yFkRXNx/PB73WV8Uo4wSA69wRiHYFDzFPeNmbLVaSqVSSiaTPtQT4YrxB5AYsVjMRRNFG2udopHniZhPxyz4G2zH3ideI+Zwpgl4OCQocKMS17rdrmMZXRgPDw92z4J72Uush0RicZ5Er9cz8Qv+gKxptVqS5E4gul8wOiDY8JkQd6hTwPXgXMhOiI3ZbOZudjqdEalCI0w+n18qmukWomsCHEWsgvSIx+MerZfL5WzUYRQIsSUcocGzhdDo9Xo+z4RYFgrV5CDG8+KEZM+x9iGNGbvK7yN2l8tllUold0qSf0LHJc5k6gtGFLKH1tbWVKlUfmnx6P+Pi2cAHg6NAAiLjHw5ODjQ9va28wRx4Hvf+57xAIQHdQyjr0JX9GQysdOafA/GYPQJeAkMHolEPOefOgSnL3UbAg+xG6JnPl+coTKZLEbrITSCb8l39/f3xjRhtxDGCkhd7gfjISQV+RvBmtxCPQsuZN9xdgIcA3iSuCQtSNNWq+WOOcQpcDtiG2OGwg7Q9fV1m1fokGRvhz+DGpJ4Rs1KvCYmQY5KT+YjuuPobE8kEktTGTB+so+ZfkFdhyknfNbEfPY7GDzsFvpwfbje18XeJg9B7qdSKccbakYIX3IXgjAxBIMxOVmSx6ZB/GImpOalxh6NRuZaEMXhe6RFPVCv1/XRRx+51iZ/gvE5FqFWq1kApR6AHxoMBjZDgFfD/A0Bzjlj4BfqVGp08CjTSsj1kPdhLU+tF3YRYWSn1jg8PLTpKDRLInRjXoN3Qtimhg3janhOCzGXeBfWUAgc1Fr8Ox0s4VjOVquls7MzvXr1yvmLc8Mxe2BoJt4TEzGw/j/svctv43l67vf8eBGpC0VJpHiTqEtVqdQ11dPT7nF64IXhwAvjALaXXmV1/oBsnIURnM3Z2AlgOAECZJVNNtlnFyN2DpLgIBhjLp6e6emZrq4ulW4kxYtI3UVKJLNgfx592T45QefUjPtU6gc0urtK4uX3+37f7/s+z/M+L9jXeDw2LoG9GTZ5xMtkMml7z5BUgGjivlI7I8SjXpTkswOBZyjIBO8Bb2ZuzsrKisWb4I80E/AcWS+cX4hLOX/BILjHw+HQYl/O9bCGxYI1JC45B8j9GJlATUJOSg4T2gqzdzhzOeMQa4IJszbokmXeDbX0zs6On+GbvqK3GWB8k1cURYuSzv78z//cVlSh5Q3dKCycVqvloilUpwwGAwPRqGA++OADF/jSxDOWzpHt7W2rVe7v7/X5559rPB4b1OH3Li4u9LOf/Uy5XE5Pnz717wyHQ+3v7xvoA0y4vb01oRIOZyJwkeiQcGG/APkCmATzSqIGy59IJPT48WMXxOfn5/rpT3+qTCYzBZTf3d2pXq/r/Pxcg8FAv/d7v+ffGQ6H+sUvfqF+v6/d3V0HCcgqgLObmxsHqYWFBc9Jubq68rwLmHOCBQpVEn4OTQJ2u93W6empnjx5om63q+XlZSWTyal72+/39fr1ax9UDORG7fzixQtdXFxoZ2fHSrHhcKhf/epXVqpWq1WDDFEU6fPPP1e5XFaj0TB7SxIAUMf9oWOGZDpMSgneWAIR8PkHYguV5O7urlW3d3d3+slPfqLFxUXPHeL19/b2XJjn8/mp9tFf//rXuru7s30FwZHEA6KEpBtLQUkuILApoxAH9GXvkKjgEUsCQxHOoRmPx/Xhhx86qZekH/7whxoMBtrd3XXLLInFJ598Ikl6/vy5PzdFGyr1zc1NgzVRFOmLL76whyZEAaDIX//1X0tSdjwevxVGysS/v/mbvzEJg6qAZGNubk57e3sG3ynIy+WyZ480m01dX1/bWjG0qgAQIamlKOUgRw3Es6Mr4fz83KpsDtPQRpL3oB2X7jeUiYVCQd1u123DWHEB4rO/sMJjrVKQci+wkwgBVrpOIBIhEM7Pz91Fg684sZyBdv1+3wAI54ckkzCAAjMzMwYguF8UE+12238Hsdjr9ayY5vOgYiHeQ1SRjNIZhEoGoKrdbqtUKrkbZ3l52fcLVQpCBQaa44der9f15MkTF+7MVwPsxDOXPfz69Wutra25S4ZkjpZtVPAA6GGsR2wR2oVADgM+k7BLcmLKecP95u+5F8SlkGwiZp2dndkyb39/X9Vq1aBnu91WLpezUGF+ft4gNIlxoVBwscPgXgoBCrR0ejKwkdlSxGpyg5A0Y09yBvA6kqyGAvSgqKEjFeKT/Qfohec2xBBilD/5kz+hPf2ti4F/+Zd/aeV/aOuFyAXVGhYTAGoA54hOKDpRBrNHOUM497CjBQAAWAu7DiCOAAAkueuDtcmeTKcns/DoDiIPlR6sNvh9/n88HqvVajkPorgJ7YA4uylwk8mkut2u7ZGIa+xxPivxghiBrStCJ+lhkH34vaRJrlypVCTJ5Aj3imG0EBfhOcPn7ff77iC7vb11rscZTycesQRyHuKJM4z3IY8lZ6NwJSZBSKBobLVaJm7pWl1dXfXaCLvf8/m8ut2u9x/3gM548nbOwXCvA2AC+Ibdg1+tbf85HQqhYp77Tpzl/2dmZlSv151fYmsmaUo9iVAKUlGSgaN+v+8uMcBsvn941vB9EQ1gLYLdU3jOky8j8IH0p/iHrAxBe7qiKOZ5tgAckBJRFKnRaPjc4XXCrv6ZmRn9xV/8hfQWxT/pIQb+7d/+rQnh8XisFy9euNueZwFwwj1ERRt295K/QKglk0kTD+fn597rdHIyXxSyJJvNutsDoUm4x8hvWP+SbHtKXCbPAWgDPOSMxYNfmsx0RACTSCTs7y9pSjDI96TuRBiJrRoxPARa+V064yApEHtA/rAPWMOQzThqfN09gtrz8vJSd3d3nm8myWcDgj5Jvn/ED/ZVGO8B5egOICbd3d05XklyBzr1ETETsBZyht/HOYQ4FYotiS3EJOypmasQdtuh1ifGvHr1SkdHR/r7v//73/QWeXf90+utjIF/9Vd/5VhF7sKZQJ4H5pNIJEzcYP0X4lzgOvwMncHkBBC7CNkQzcTjcZO8ktztgU2XpKn5WgD8w+HQMROREXv26w4Gofhjbm5OjUbD70fMRmg+OzvrOSnkMsQsviuvSR4GfnZ1daV2uz2VY1JT/OhHP9J3v/td520hjplMJi12A4+iVorFYu4MQigYCgj5HQh3CI2ZmRl37SGUJg8nz0F0TbzmjKALhXjNLC7OOzqJ2+22OxC5pzwrvjuin0wm43qdTivOWF4HgTakD/U8gk7EgtTJ1Ot0ZEEOcp4hMiXvbbVatgKlm5ZOGL4HZwbrGDyFzmliOSQ69rOMKuAM5EwL5xaCr4C1sBdwxghJfO4zHevkJZBWoY0hnwvcmhqJ85UzHEwJMpVZQpyPYX5KHXN9ff3G88C3u4f7N3CRoIctUxTWFD20fYUdBhRFo9FkYCaBJ4omg1h//OMf6/7+Xn/8x39sNcr19bVevHihzz//XM+ePbO3NoDez372M11fX2t3d9fWOICEp6enU4QRC5MCJJlMuq2ctkAAITbeycmJVldXNR6P7dtN4YeKkq6NwWBgAOri4kKVSkU//OEPJclzagA8UcFjeRX6uZ+cnOiTTz5RtVo1uIfi5/j42MAWCv9ms2kFZqh2v7+/96FFIb24uOhnwiEUttNLcifP/Py8C2+Al8FgoFqt5oFn2WzW4Nvd3Z2Oj48NeAFGLC4uKpFI6PXr114vDEJFjf7jH/9YZ2dn+vjjjw0gALIRwFBporSmSGZt3dzcaHl52ap7vi8JASAnrDn3nkPwk08+sUc/iQfr8OrqSl988YXW19cNRGO1hKIXZbz0wMA3Gg0fZCQNPB86GigEJJlFp6DgPmDFNzc3p6OjIwOwBG0SFb4r1iAXFxeq1+ueHUAApjALfZj5M5KksL0UtXEsFtNPf/pT3d/fq1gsuthAvUcx95tg178tF+AshB9kxOnpqWKxmNbW1ryHjo+Ptbi4qMPDQxdhqPjp/kLxJz3MtuG16BKBSAAgZQ1CctDeCqACYZtOp3V+fm6Cj3gAOE9BfHp6qlQqpePjYxejKCZ+9KMfKZvNWvnN/BESWNTLJCeQU51OxyRiSAQBaEAmhO28JycnLgLq9bpub29tmbW4uOjYTUcShTqqQ74XsyxOTk7cdZJMTrxa2eO0cdMqT3JMBw+vi8UHz4zOThRlqVTK3Uvh75Ow0S1FUoSFkSQPK0wmkz5XG42Grq6u9PjxY8ViMZO8FOfMucnlck7+WG8QUngaS3KRgGUPQMbPf/5z7ezsuCsG26S7u4nXMB2XqKbCjgkScWIwICBKpkRiYrOWTqf16tUr3d9PZkv0ej1dX1+rWCxapQM48qtf/crdZicnJ6pWqzo9PTWwylyFECBi31FsQPhgU8I5Td7B/eKeAdii6OLsIFdpNptWxrOGUZGHCXHYGcs9fJuvVCpla73Z2Vn7mUN8UZwCnAFaAXhRkFDcU4BSQCOEOT09VaVSMSkMQE1+Jk2sIzc2NqyyDhXRPJter6d8Pu8uULqm6X5gXYSDRQHTWGfMEmRvow7kDOX8wyoB8ho1NcUaxE+j0ZA0yV3IPclhiD2crawt9iJn/eLiotbW1mxLR06BjQX7CcBybW3Ntjwo/ok53W5X29vb0n3uXgAAIABJREFUJrghawEPyCmxT+XZ8/z7/b7BegpKwGhUgOxl8gYK6ZB8IZcE6EBchN0Y64Z/+F3iTjwed8HOnv46CAyxAaEbi0261kObUwB3OkuJKdjnUvQPBgOvA4REAKacMzxfzjHAKIRo5PYo6skHyb2ur68tBqBTDEIUC7T7+3sTMhD2dEvE43E1m00DZ6xF3gswGOLy6urKBGxI7DPfjfyV7mH2NsQ7NdfbfF1cXKhUKlm4uLa2JmlyLpGLIFxB7ADIBnkD2Yg7Q5gnISZgnxLPsGgBCAo7uu7v73V8fKxCoeDaibONmMf7n5ycWLBInsbexHIlVPWSx/H/KLGxHl1ZWTFB3ev1dHx8rEwmY3AT4c7+/r7JIemBdIaIIF+BECWvDWd1cW9DcAhCEaEG3UilUslnkiSvVUQYkpxvFwoFNRoNOzTU63W/JuIZwDjpobMXwg0imtcN/+76+lpHR0fOmYg54CQ8cwZth11cYZcm9uMQrGGuR6ze3983WMkMTVTl765315u6QtcH6jGETYD97DP2LeQltS6gOCIDhJ9gXqFF/8XFhcXh4I7tdtuilVar5W5ccBvqutCODOzy6OjItmLhxR4P4+6rV6/06NEjg96chziQMEuOMxRcr9/vO4cDI6W2p2s2JFgQsiwtLXkuzmAw0NOnT32ekzOC/yAApCuWWD0ajTzHFayPnAfcic/F8yRfIWaBlSI0QZBFHowYAKIfkWQURSYgxuOx4yo50uvXr23D9eWXX07N7UbsQwc3n4ecanZ21ufL2dmZRZH7+/vOY3j+fAfOSfKtUIRArk+cJceRZIwDsWaz2TTRA9GECI1zFDKf/BpiEcw4FARKsiAmnBvJv/v9vnNuzjj2GOIBckewJdwJIN1CcT+/S3cPOEZ4hnHv6bBF0I/ggLWHjWAojqTrjbM7tIJ+U1fs//1H3l3hhcrs4uLCih02NkUKXSko3FhcqLIY5ss/MzMzKpVKVl5fXl66U2dubk4fffSRlbNhS/TGxoZWVlZciJ2fn7tgpzhnYVLIojwngEvyJrq6utLNzY0ODg5M1BCcms2m6vW6AQUKlpubG1sswA7Djm5ubmpzc9MFDMEWRQ2DKUNlZxRFqlQqU8O9QhC/Wq0ahKQldGVlxcUmhyhgAsk9HRFfT8bxPA5VSbTCEdwuLy89uJeDhcK1WCzq9vbW7bC/+MUvnIBShLBuSPSXl5cNuMZiMRNUKAzDtlNAaEkesogtE225s7OzBn4JQDD0AKcojlKplD799FOrPwBj6UiSNAX4jUYj/fKXv3SbKEABhyJqx/D78tnDVlWUw0tLS/5Zni0AA0UBoC6gUaFQsEq1XC4rFou5GDo5OXF7L68TRRPffGxner2eSSNalkmmWHuQg+Px2IAZCRRKFEkqlUpeM3SZzM/Pm0Sk0H+bL4CicEAbMQQghs4V1JgkUHSPYauCmjeVSvmgg2zmoAekS6VSOj09laQp4GljY0OS/BxQVMdik8HH+Xze8TlUa5+dnVklAnnCuqIQfPz4scrlsmdPkPwQh/lZiMRKpeIYiFoToJXPDMAzMzNjoD+KJkOTuS+pVMqDq4vF4lTCyYC96+vJ4L9+v28P81gsZrI7l8tpa2vLCQoqd5Ih9hTPkNbm0BYHayPuL0Q5CS8xv9frTbUDE6f4bxI3aZIoMuODs+jly5cmSxlgzXmXSCT8Obi3vV5PR0dHkuS2bmL/1dWV19FoNFI2m7UilmR6a2tL0oSk571SqZStJ1GAhd8DYJnvzufjfQHTUc4CmDKnh4Qb5Vyo9s/lcp67tba2plwup/n5eVubpFIpra+vq1gsmshPJCY2pdvb2xZyAGay52ZnZ5XP51UqlVzQzc3NqVwuq1wuq1AoaG5uTqnUZO4Z63J2dtb2W/Pz87Zbu7m5UalU8vlPgs9eo7h5my/OD85j/oxcDPAYYBegDOUieQ15CP+w75vNphYWFjy0E0Cds5KC5v7+XltbWy5e2Y/kP+QPKD7p4CJ+Y+fEWVwsFr1PAeAADNizDIMndlDQrqysaG5uzsNnOQvoDmIvhUUVry/JuTGiI0iky8tLF/uj0cgCnRAQDq19ENpgacreY+YK+0OSc6coilStVq1SRExCjkin8Gg0soKWwpyckJh+cXGh4+Njx33+ju84Nzfnc5HnE6rJiccQH+SC3W5Xq6urJu/J5RFCIALDJuTq6kqNRsNFLjkbzx5AAXvNbrerfD7vtdnpdDxkvFAoqFKpaH19XbOzs+6iTqfTFih1Op2pbh2A7a2tLdca2FOGpEk6nVatVnMtBegT2lMAYNPlB8HJOgoJZUBhyHAIM3JLiB/yY2Io9506a319XXd3d17vocU0diWIEHAi4DPs7e35e7ytF/v48vJyikzDmpHckJhFrcEzIn7SpYECmDlqkkw8UKPQgYbYTJqc/WHsC334qWdR8pLnUNvyjBAisUeIh9QydGhhCwQhQJ2YTE7saIbDoffV5uamPweuCpBL1OiDwcCWy6FtEMAgZ/z9/b2HWnMdHBwYiwjrk9Fo5PtKhyN5DbUP8e329tbiEoQ52NH1+33v+2w2a/Ko2+3q7m5iH8m5AxkGWY1NDyAzANrm5qZyuZzn1nCOIUIK1fjJZNJYA/U0xDAzyNj7gGnUCuSZiFCwPgQTeHe9u97ERTcvollyPYhrOmrAQiS5sxnAH0vGcCYeNRoq/na77Z85Pz83eZ1IJFQoFPyzS0tL7mALuxBCK0QstMGxyAdarZZJWGpBzse7uzttb2+bgInFYqrX687DwF5Cq15JPoNvb2/d8cr8xXQ6rePjY3eXQ8aG1rp0o/BakC3U+OPx2PNJQuG1JJ85nBPEu36/7/wQYVXYeUkucXNzYyID6zjEOZDKNzc3vp+JREIHBwcmtJjpSk6BaIY6ILSQZUQBZyAYBB0u3INQDEwMXF1dlTQh44mr3Cs6iBYWFtyhiID51atXkh6Id844MD+w0sPDQ8dlumH4Tqurq2q328ZUWPvEYc4TvhfkIXk7eTikCjkE+WoURe7OpHs1FNtQO1NHgQGnUik1Gg3d3t7q9evXHhcR3sOw4wqSCPcr6jo+fzimQpKOjo68jsh1WSfU+NRdkHFv8nrXafMNL4oGQG5UXWGbd7VadYJBoQxwHQJgFG3VatXAI8poAsfTp0+nlCmAMxRP+XzeXRm5XM5sZbVaNat7eHhoT21IiLCNDJATNTw2LpKcMM3Pz/uAIJlFuciC5l4AxlerVW9ANiMe54uLiyqXy4qiyAz6eDw2eAXAgXrm9vbWXShRFOlXv/qVEomE7Xk6nY76/b5b9CGnIEpI2lDboWBA7R+SapeXlyoUCpIm4G6xWLTaCmCX4hMCajgcKp/P68/+7M8MzELmMQuHZL3b7bpbIJVKaWtrSxsbGxqNRrZUwzKHdQDwQ6EKaEJRj0qSYCQ9EBEkFCgcmSWEEjibzdq3GEVcrVbT4uKixuOx/uAP/sDgJT7qsdjE6ml3d9dBu1arWV2xvLys3d1dxWIx7e/vWzWKQpciAzUca4TvShANVZ8o1OhYCMkmiDQKdopCyARaNim+1tfXp4ZchkBXOKQZ8OLk5ESlUknVatWD44+Pj00ehocAB8zbeAE2h62vEK8kAKiFQ+Ur/2ZuAgkkSaAkE26QjZBiAGKQtOl02mpDiEHanNnbgJMoJ8fjsfb391UqlUzqzc7OqlgsOh6ilMnlciaUiWd0fZEMseZRBIWt76xlSBvU8yh+wrZl4unKyoparZbtEunC5DXK5bIJEu4/xTmxOgRn8dbnzAAIvbi4sF8x7dXYapHwh1YwrGdiRalUMulMzK5UKlayovRGqROCFclk0ur34XDo7wLxFnorh/eO84WCPZmcDMXe3t42OUHnS6FQMJAO6AaBAthITEgkEjo+PvZzlWTFKd1KkLOsAwgO/lyS2/NRpWEhOhwOTcaH5xsgA+fJ3d2dE272AMkkcRjfYF4bGy0+N4IFQKyw0xQQo9Fo6MmTJ1PJKiqw58+fe20DsAPuhDaGnDGA7TwXzhx8lN/mq9PpuON1PB7bboYuL8Ck0F4BMoVCWHognkMlP0QtnSTkaxR54e9S+HCW4gENMUG+AdlNgTE3N+fnR77DRQE8Ho/daQVh93XLAQQW7AOKG+ZIEdfp0EEBSIyiG5JcaGFhwWps8j3yU+IPv09hCmBMrEPBmclk3PmEncLS0tKUVTH3vVwum4wlVwBIXV5edpcGhSq5PbGSe97v950rJpNJEyuS3LUHmZTNZpVOpx1HJXm98P6cE8RlcieK78FgYOAFoEiSczq6XhBBALqk0+kpkpfuau4HzxDwlFlbkP6NRsMAMN+RPRCLTaya19fXTS6FNrjEdrrHB4OBPv74YwuziDuA7pKUz+f95wAC2WzWwgxybcQJnCtzc3Oq1+taW1uzoA0gGJAYxSfqZHzLQ0L19vbWFlOAw8RY9hhdvQsLC/rOd77z1pM2WMnSdYsKOKxRWVt7e3t68uSJQY9Q7Ut8Yo8ztyHMAYmF7G3IErrsiRPhnun3H6xlUcZKcoc4xBs5UKVS8f7j+QK0sjYQlVAjhTkqeQf1RDwed719d3fn+We4WVDTYOEHaIeimfyUdUXOeXJyYmEQ4gr2P8QJuR77DICPGBhFkWq1msWOxLqQBCIOEHfBPcAKOM8403BuQBlOndrtdn0/qZkhN3nmxLzRaOT1xDnJPeT1wlyan8EeCnwBoRIk6/Hx8T/pAHp3vbv+Q694PG4r8HAfkneDLbEnRqOR6wS6VOnqK5fL7milBkDEgphbenAfgXSGTGD9SzJRgdiFs3JmZsaCE+YVUjNzntGtwHvT/dtuty3w+vzzz7W9vW1MEsAfbI4YQS7FfFHA8DCfJIdDfI1tODOqqJ+oH7FYJWZxryQZM4Nsubu7s+AXjJTupmq1akKAHIqzgZgJ/sX9x5YdYoXnTH2LnfXNzY0KhYLPwFQqpbW1NeNnvA5dhjwHMDqEDvf39xZoQiDQvX57e2schbw4FFPh0sH9pRuMfOn58+cWD4IHLCwsqFarufPz7OxM6+vrFnKRl4UWu8VicSr/DLEZMEnyXK6wXgHDYA2Aa3DveE9JdniRHvJpyCoEoDQFrK2tGc8LGxvIDxOJyexlZnJTu0E8SbLYCIEG+QL3JxaLqdVqWbCLxS+44dra2m+kFn5H2nzDi0CMyvT6+trJP4k67XLFYlG//OUv9fz5c4MktDCipry5uTGpcnt7q7W1NQ2HQ3U6HeVyOX3xxRf69NNP9f3vf9+LGYDg7u5uai4NQR/7McAWijmIE5hUBpJBCADqSw8KZIJlPD4ZehWLxTykNJlMqtFoqFqtWm00Oztr8OFHP/qRFhcXbd0CQIvNGBswBLEODg7U6XSs7iWBJNFsNpsOiBAwp6enOjs7U7VatUqJA3I8HluZMBqNDFAAHIZDs+isCEkPDiXuWTab1Y9//GPt7u5Otdt3u10tLCzo7/7u7/Txxx8rl8vp+noyzP7x48d6+fKljo6OtLi4aMaadsyjoyP1ej1Vq1V3RJHgQuCEg2UB0lBWpNNpLS0tWeFEZxfrVZJ9giEvAEPw8sSvk6AsPVj6/fKXv1Q+nzdYQxAPk27eW3rwdKR9kufLkM5Wq2VgmM8GIEoBSHtn+OcU7Bz8gNij0cgFHxYH6XTa5Bjf9+zszEDTxcWF1WLM0uB+oahlXw+HQx+0h4eHGgwGarVamp+fN0jJvqLgeFsv7s94PFa32zXgBfBDyzTPiDW8uLg4Ba6E+wrgqtVqKZvNmoyBTAFkS6fTWl5e9u9dXFw4sSFp4VlJmlLOkNClUikPND49PfXv9Ho9g9K0Z/Ma7DlJ/kwUsSSI2DY2m00DV6gs6IhDgVMul3V8fOyi+/7+3op6yAfUpXSxYMfHWmeIOAAJnXcQAMSrmZkZtVotA6qhnSA/B7jCwF4AX+L+y5cvVS6XDWpCypNQATpgk8YzxhsZGxviBskjCfCXX36p7e1tXV1d2WokiiLHJIoR9tbc3JyePXtmEAFQBOCU/Y66Ox6PG/wBwCT27OzsmCSBcIrFYh4Kvri4qGazqbm5uamCByAE0IJ7SSdtKpWyReDp6am++93vGoyWHpTKdK+wDolDkKBbW1u+XwDO7IlQQc4gRNR+kDgAWMlkUqVSSa1Wy4k46qZnz54ZhIYkQzEUKuh4XeI4xRJ2lJKm7Ere1iucR0j+EdpGQPxidRDaO3FWUOgfHh5qd3fXAGhowTcajWzdRRcMXVx0UQGUY0NA0cxFXsrZTiw9PDxUsVi0jzXFIXkCcZ45CPl83oUbRDhKcGIVABrFEApPLBbpnIW84YyniwKbPwRNL1++VKlUslUauSMxORQzhTO32JesXcQ+9/f3FjVxb3hviGD2/cXFhbsGwniBXRnxnH0mPagVEROFZAV7mDyFQpq9RMFOXKB7haKXohMQFVsk8hTpobsx7NqhGxorEgpUcrx4PO6ZfaFFVafTsSUoeSagAaKbMB8FbCDODgYDnz8ABeRiADg8M2ofrD7IB8gLiTuAC/l83vkctk2hVUko3Jifn7dFBYU+ZBNrAD98uhBZK5A5ANudTmcKKAk7MejqptPzbb8AnYh3kMuhbe7x8bESiYRtUKktQ/CLfUBeQM4DAMV512w2Lbrg2SUSCTUaDXeOsoZC0DOsD+iU4dzKZDL67LPPtLOz47qafKPZbPoMDnNRLKpjsZgtp6WHWROsCUAqznbAon6/r6dPn5pYJweVNGWtQ2whZ6FLKJfLOX+lvg/ta/gedMskk0l36cRiMbXbbcc9akv2Gg4LvA72L8Qezh7cFZgjsLS05HuLMplajffhvZmvwL2ixpRkBXipVPLPYc9DXUxnJ4QQcRkiNp1Oew4f52UqldLe3p6FRO+ud9ebuMDNOHP4b8BeOixWV1eNvQHqcxZS11L3cT5h0/XixQsVi0XjILwPeCJ5RbfbdT7f6/W0ublpsVa327UQnDgS5vOI6cgLOL8Qp1H7hF3Q19fXzuMkmRAhLwKsphaEtEXMSUwMOyjOzs708uVLPXr0SCcnJ57bghgjFGMfHBzYkjPMiyDniQv39/c6Ojry58Qe9fz83HNpIM7p/qa7jznffM/z83PnlyHGg2iT/J8aW5LFT+QuPL+TkxOfg3RsE+cgt0LrXUSrS0tLtqvG3UGS82g+ey6Xc25KHY49OgRHMjmx+abbtd/vewwG+TXPe25uzrGcrhk6Y8JuHS5qA0TUuN3wzKlNqZXAqbGNx0aNedX/+I//qI8++sj7hu+1sLCgg4MDYxfYBYazjjg7sF/Gio0aGNes0J0I7BJxCBb6fG/uH6RrFE3mdWOTx2cgN3+T1zvS5hteFHgsUIIxjCoBBC/G58+fe+5HLBbT5uamwbbRaOQEMJfLGVir1WomE5aWlvSHf/iHBuJ5L2kSmOgK4PMUCgUlk0lbAt3f31tpMhgMnPCQLPO5UGGzGCls2XTSRPFGqxkBH1CJ7hSKmNnZWTOXbCCAJ0m2HyApJNgxdwZQAlsKLBJQ4gBO0JpG4KVdm4OHoj6bzZq9pTUUqyaSe2x5QgAL9RIkiST94Ac/cFKNxQ1tin/6p3/qQjmdThvEnJ+fty8nnwnVFdYTFMwU2c1mUysrKzo9PfX3g0iT5Ncg2Uc1v7q6at9GWl15pgATBHISDpT++XzeYMf5+bmKxaIqlcqUMhtlB/eJ+0+rKoU5QO/Z2ZmLY5SXPHMsmTjEuV+sZ4qFRCJh0iwkizikVlZWvB85GCUZ6GSW0OXlpb8/z4XPggq00+nYqqjX67kTAcCX4pEDFfIIxUQImr1t1/X1tec0oWBA+REShalUSoeHh9re3p7qvmOdckhjnQO5BwEUAscMbSQeYJUVdl8ROwHMSd5yuZyurq687oi57XbbCWAURX7eeGrzXiSzJHOAlcSSUDkVi01s+7Cb4Lsxu+rm5sb3LJ/P+55ybtBxU6vVbNczMzOj9fV1J5Eo5VElksiGa5LOJroJAeiI+WF3FAp3FP+0pLPeUZZQzAPcAhwQwzkPyuWyz7vl5WV3Ei0sLHh4M50adNk8efLEhB52YOxf1OwABnTjEdMgFgBEFhYWHGPpxIOcp6igmOE8Yu4RnXmsnVqtpnK57O4a1Pg8M840vj9FGxZXZ2dnevz4sRNoWvK5H3wfng1gFSogzmeAGZJOzh5IJs5UlOAQKyGww3szsBxAl3knp6enHnROscSzBkTmvmDdd3R0ZAUrHQ+h/dbbegEckhdg1wBZCOCO9zMAVDKZNCFC4bS7uytpshYhAyhAIYdYk6jbQpsnFI0hcXh+fm6gADAU+ybUi+EsFSwIUedRcNFdAEhP1ynfF1KHeVT9/mQ4OJ1hWNdA7BCrmRlC7GJP0R2CoKRcLlsNCNlO3OC9ULKSm1HIQqqFftkhocB5z2c4Pz/XxsaGwUaIFb4/lqm5XE4nJyfK5/MGDlgH5ObxeNx+5eRIxJywgwXwH4uRmZkZNRoNC2QgmyDjz8/PbWMkSc1m088SUJZ8mK468jwUs/w/+RQKXNYUz4L7iUCtUqk4tvCzCwsLzpMvLy9tLYxyMp/POyckZwsLZc493AWYd8P7cHaHa5y8HhEPOTMCkZBIhhgkfoZkN+cEdRedUZlMRsfHx1pdXdXKyooB+2w2a/s7Pmc4w4Dcj3jwtl8hkMWQZjpBsHtZW1ub6q5gzQNq0eWHQA/bEdY05+vV1ZVjIO9LZwnA3eHhoQqFgvNI6YFIYZ2xjvhMuFMAJrJnM5mMcrmciQiA15ubG3fZkw8h+EBNTA1DPkKNRs5D7kaMC+tA4h9dLpy7rHWIdURsIZBJ59DS0pJzWURrdMHx/pBP4/FYxWLRNSFkOd+hVqu55g67qohzL1++1O/8zu/4fkNoscfCGMcZGM5YIA6HHW/UuwhREW1ylpCbk0sDkknyvuZZY1/DWfq25yXvrt/uFbqPSHI9SR0HCRx2eRQKBXW73SnbpOXlZVtsEoPAJJ49e6Z6va7V1VU7oKDsZ88wN5DcEAur2dlZg+BgdsS/UJwAqVAoFKYwJGI7Zyp5HO8fEq68X+g0gSNEKCjCWQU3Ceoh3IiePn1q3JO8CXHO4uKi54Ssra35PEdADn7D/EDiAnO5iTWQ4pwLxAeE3JKMLZHDQCKAS5FvDIdDVatV191gDcyKJE8iF5+fnzeOQB1OJ76kKTLp9vbW3Zx0nnc6HXcYIXIIiRvqXEhrxOuzs7MqFAru1AHHA1cNu7j7/b7Jj/A84PMjkiLPZi+AlyHW4jPSeUMXLjgAIkXqGHCWUKxBzv6d73zH9xhL0sXFRYsVmd+IiIc8HkwAqzJqG/IJCFPWJXlMtVr19xoMBq6l6fhk7EPYDUytfXZ2plKp5Gf7pq+3F138DV0kZpAcbAwWMe1dMM2DwcBJKcGZuQAhiIaCkSI/iqKp4X/D4dALjiKZhEaaJKiFQsFsJhs6BHUuLy/9HhTHgHuATXTRxGIxFx+8FwwrwSmbzapWqzmZpmDF6xEvcBhXQMx2u+1ElO9OIUoHBMU3ahsKNphdQEba1AjCBD86KkLbNhQOoTJUklXu2FCcnZ0ZYMZ2A0Umv0PbPYEntAu5v79XuVz280EdvrKyokKhoFarZRAHNpaWOkBeyBQCO2AtCi+eOcQQBSRDrmHPUXyQZDOnACVWqJRHqX15eeliCgUTiTCFFB0UFCQU0yQoABkoIAFsUF6i4CXQh0AlARE1I23+AOS8DwM0AbBC9ScJAaAE70lhAujK2jw/P7c/KfZzdG3h70mbP9+JA56ClH2G+u5tvAC4IFNRA7LOSa6wNSAxIBlh3kiv11Oz2TQw3G631ev11Gq1VKvVPBeB3+92u3r58qUJPw5uaZLoMKxuOJz4irdaLRdurVbLBS6HOXuGfcUagfyglZz1PhwOPWwWMppYQ9zDegWwDhKALhP2EUpRfg9ggf2OopkOIrr4UHCS8LBvaGcPwShJU2cQn/Xg4MDFBi3m4XqmYwC1OIpzQHxJBjuI+RTxtLKHqnIKhcvLS1WrVRNKdILy3rwG7d0AJqheUC4Ra1ZWVkyAEfs5rwChmcmGcpbCBeCQjiMGXjLTgX0d2uTw+sxHI96MRiMDA4A5dPisr6/7M0MQQ0pR4KG4xTIkl8tZvdPr9axCR23VarWsYmc/MauM/ULRyBBePiPWB1988YU7corFohW8Nzc3Burxeua8w2oB8cLd3Z3BOeIugG3YYfA2XhSH5EMhSMe5g2UYsY2ziNyMNZZIJCxqoIOWWIStHuc5z/b8/Nx7griCHQE2gIglYrHJcOelpSXl83lVKhUlk5NB0wsLC1pdXbVdEIVMWAyzzq+vr1UsFt11QizirJyfn9fq6qp2dnamVIcQAlgMhN7mmUzGsYxYDjnRbrc1MzNjezYIGJTcnOGst8FgMGWFxj2muyeRSDgG0EkbEuAAoQDE4X0lnqOM53NiAwfoPzMzY7CZXIMYnMlktLCwoP39fSvf6QBBgS49WMmF3SecD9QPxCJEUnQHIjiQpO3tbdt1EWfDQcB8Z54dIC6KTZS/fF/ybGIgw4cBbQBAWOthQctzZ9Ya5x4WLRByzGdj/RPXKeARFyHUqVQqzo25Z9guxeNxtVotnZycuCOXGUlcrCVqAs51cmSEICsrKxYx8O9wDiaDZ0PLyN9Esf5tulqtljtpAM3m5+dty42IibOLLl8AH9YiOWJYy9BBSJ4ZWiOy9yFwIS8ASST5PSENWPsII1jToQUe9SlrmHlNiGYgc8IuLd6f/UVtD8hJXolAic9fr9dNYDAIutPpuGObeob1OB6PTeiEwBIW6ZwrdDSzd6QHazfyK362UCjYFmhjY8MzCQEQyXdvbm60v79vZX2YDz979swgJfYyiKEkmZzlnvH8ITpPT0/9+cgL2eMIBKnLOXfOWIu7AAAgAElEQVR6vZ7q9bqBSu7P/f1koPTBwYFzEnIfLmLVu+vd9SYuap+FhQXXCsz4uLq60t7enqQJmUldjHgC4R85I/UK+R34CecmnQJgNFEUWSAIQUo+iBViSBpQq4RdL/1+3/ZlnLOQoYgz+v2+xxeQN4Rd9anUZG4O+Qt5BMQwcZi8hDEG2EpJcn1C3U28I8eExInFJg4X5XLZ8YJzBiIYwoMuXsh9MMrw84MZEE8RCzPXtNPp6PT0dOpzIRDhc5N/UBNCUFN3cl8h7amxqRd5DeIuAkHyvbAzHzERuTJnYzwe1/HxsetaPstgMFCz2dRgMFCn0zFWydoL8d1wRARzdMPuEhwxOFuo8cAhwAHp6Jbk+xU2ByAaIo/F+pZ6nxmWYAQhYQhJiKvT1dWVhWQ4W0EYgVcgQge3wrkkrJnppgZzxLmk1WpZiHxwcOBagn9zryEWM5mMKpWKNjY2psRFb/p6R9p8wwvSgCIuVBzOzMx4IWFfhpoXggaiolQqOciwsVH1oiqBsaUYBNTmdSlOFxYWVCqVvNhQO1KUkxCTtJF8ERBQc5I806ZMckvgkybJ+sHBgYM0lmQU0AD+BJ1KpeLh7XjSFotFs/Wh6gk1faVSUT6ft2+8JLf8EXDDQAewLj14+5OwkSCShPI9KNbZtNhAoJoKSTRUkARIginANCAwiXIikfDGliZBEZuL5eVlH0DYpxHMUWFKstqK7xB2MtBVEgJH+NvTsg4QGnYOMDcHQIBnhmXb6uqqBzfy2mHBzwED0LK8vGxFIgcphwqJOIUYZAxJNoorimLIK1pQ+YwUwnhCE8Q5uGjPJzknWafA4rvweQDzQ+s92hxpX6aFErUXKhc+I6AdJBqAQKiQeFsvQH7WMEnVysqK1yukAOAuVjWh7VcymXS3FuuAwosuBDob7u4m3rSbm5tOalFUAhhLD7NFAOBRdK6urrpbA1XUzc2NkxiSFZIryDw6W7DrApTvdrve38Ph0F11nU5H8XhczWbTww7pgiOe0GUBgQAANRwOVa/XTXhyfjB4u9vtqtVq6fT0VN1udypuss8lOVbRiUIsgBzf2toyqUls4ztI8vfsdrtaWlqy5yzgAsAIJEo4YHEweBigzd6lLRrlKOQ7NmIAm7RIs1ZQjp6dnTmmYOeRSqX0+vVrnZ+fOzbe3Nzo5OTEAgRIZchAiqqrqyvPzWBPE8+63a7tDwEvw45ARAhXV1e2gJHkZ4AQgTOeThgSRkAj7tXBwYGBEs5OwFxIFshjOodIXjlP2UN03lBcoMBDaRdatDx58kSdTkcvXrzQ2dmZh25GUaRPP/3UnyNUFIVk9ZdffqnBYODknwLl5mYy9LlWq/1WY9Jv+wo7MyFVUJ1TnKHUY44AZzQdwrlczjaQWKVyVgPaYSsTWoF9XcUGUc6+IbaEhAQdEBQsANp0OUCMQCzROYhyjByEYj8UzECUs8c5lwE++fvQopIilzwXWypJFr8Qlzk/5ufnnf8huICIDjsuEZbUajXF43EVCgWvbZ4LZDp7i0I6tD+A+OaiY2l5eVnZbHaK9J+fnzfBfX9/bzJdeoindJhubm56z0J4nZ+fWzFOjM/n8wZlyfHIvwBQATYpEJlfSJwKZ4uEABO5Et8fhSz3ku5nSGUU7cTFL7/80gPJAQ5QxXOuht13zOdg5iEgFfXLeDw2Cc86BEBCXADoTP6HPSj1C93QrFMEXIA/7EMGsksPM8+4r9Q/nG1YoJJzsF9RjvIM6GoDhA7tIt/Wa35+XpVKRY1GwyIc9jmEKeuOf8i7yf1Go9FUXhCqn0MhS2gdmMlk3BFFBxrrjHqK85q9TFyQJmseYi+VSml1ddV7mHqOuXtYjvNdiPu4KkjyuUxNAxCJVXM4GwLieW1tzUOc2VPUTKHbAoIMaqFms+kzWJLJaoaQUzPidEENTl4d1pYQSeQp5XLZojhyhZubG5XLZZVKJXf3hvZPiUTCRCu1erlcdv2NbVso/mD/9vt9bWxsqF6vO8fl/cl9IXkgV/nO+XzecZP7Dpn05MkTC2HK5bJnf1GHvrveXW/qomufs4b9RpcI1ssIoTj3qH+oL7CdQjyDlS21LU4jkOD8DsQuFtjEBgD1RCJh616ENOFnTSQmdoII8KjLG42GYwV4F2Q0sTIE/8lBxuPJ/BdqzfX1dXfjgiMRN+ha4cxGRAbpgXhjdnbWtTs5ZojbQBqRgycSCR0eHnrf8x7Eu5mZGb8GeTnnOiK2s7MzFYtFFYtFY23hmYTjDbkpNR2fF7ILQQLYpCTHNFwgpIdZPKwlYh4dygjlQ2yS3AyXoHK5rKWlJbsssUbocIEw5B7xGflvzjiwg9PTU62srNjG/fb21usZ8oU52HSrcj6lUikLvMh/wbp5j1arpevra7148cKCaHI8MBHqlng8bttkauW1tTV/du49Ql+66yuVinEX6WFWGxgJ34W9hXiHnI+O1SiKtL6+rpWVFZ8hCAg486nLcBFATEWu+Savtzuz/A1cJycnTtooUGdmZrSxseHClEIVEgKFPmoe2F4CKAuDBQlLLD2w+RS3p6enU16xAEFLS0va39/X7u6uC7OwZZBukVgspnq9rvF4MoA13CwU4ldXV7asAZTG85BB0Ol0WkdHR1Y7Q4yQIAI+dLtdKxF5D1RBBFtYUZJ9Fv/c3JwDQth1JMn3uNlsem4OySQgLMkaQCzzEnq9ngEIAitFu/Tghxl2FlFkS7LdXKim5TDjYMtms2o2m7q9vfWQOelBccnwegp4gk9I2lGQEJgh8ggctP8z64K21maz6e+3tLRkJhwiB0YbIgXbDA5xAEWYawI9RRIHAiBQaDGGLQ/rFhKQFlzAy9XVVRdEDDMDFG+32z7QUI8DkgGw4jlNSyXKAe5Pp9NxqyifjXUAIACwxveGiOLvwnZ6rAVIBOg8o7MN1Rpg1dt6RdGD9z1EIco2lGwo+u/u7mzBF5LGJDt0F0BObGxsTK0tOtQArGjBBqyCcKXdmdZZQJSwWMMeJZVKqV6vG7hDLUE3C3EahSAECirh8XhsX3tUppAy7J3NzU3fK8AFimkIE4gJLNji8bgHMGIJBHFIIgJRQ2LPvucsCe2AiMUU+ACHgGokf5BViUTC9hvNZlNra2v+HHwH1C8AJ9xbEv2tr6wy2SOj0Uj5fN73DdKVPQnZFipD+dm1tTUTWOxd9h1rJB6PK5vNGryrVqu+D8Ph0FZsnBVYluIRTWLNawFqYodE2zxrajweuwhBDQcoxPoLzzgSeIh5Yvzh4aFyuZy2t7e9ZsbjyUyn0D6GzleeD4r0UOmE3RSgMOsOIQXdqoVCwSrxs7MzFQoFz1359a9/rffee0+S9P777/u7ANpIsoVRaP/DeTIcDg2EEaff5ouhrBShkvzMKGZvb29dDFI0YVF3fX2tZrOpSqXiQgIwkDMF4U2o7Ebhh+CG/Uu+SKHLegtBhZDouby89JmPUozcia4I7KD4/ICQ2WzWnzmbzU75pSOY4KrVat7/iB0ACMPZeOxzrNbIORFIYbkA+Hp5ealKpWLrLBSIxK8oimznRZym8AsVfQzzJX4QjyAROM+wEWF+IHkAhNrBwYHz4mRyMjsq9CKPxWI6Ojoy2BiCpwAYvV7Pxbskd7uHALUkx31yGZ4DpA+2YCjZKdyx2OU5Qwpil8gzLJVK7lxdXV21VVsmk/GZTh5HZ2LYpV6tVm3lgcgIEAarVM477sPq6qoH9GKzfH19bcAAwBm7FgQBrDesMYiR5GAhEUdhT95N3IYIRbzU6XQcc1n7gDEQobOzswbacSoIrT6+XsO9jVc8Hve5AmFPDAhBObro6DyjToKMQG37+eefWzwHaQBgRY26v7+vnZ0dgzqoesnhUJiTi1ILQEyEVqCQbojRqNfJoSBaIAwAuXBXQDDI+gy7iCAmEENAeJKX0gGM5QprGZU3eQigJLaV1BXUG7wXe5M8NwSqIFkQTbGeyQ9XVlZ0cHBggAogrNvtOrfi3MBGR9KU5TvPCOJTkorForsI+G/qd2ZAsE9jsZj3JeJF8lyAWur5UOwUKuC5L4gnvk5g7e/vv+u0eXe90evk5ERbW1sWK4RzUADVW62WbV6Zc4FoglyJLrt4PO56D+wtHo9PWUkx1ykUhiA0hSxBjIOgFVyv0Wi4xhyPx3YlYZ9Rs0GIUmcxh28wGHg+IWI9znAsMiFBQicdcj/uD/GW2VPZbNa1Jh2s5DaSbCfGGU5eRO1LLgmuUCqVjC+cnp6azEBwRN6AZTd1+e3trWupn//85xaGcP/DLhPqUWIwcYkchhwhFou57uz1ehbbsQZ4VpKmxFmQYdRVnFOIXImHxGZJbhxAPEbeTDcoNS95DzUEOTACP9YgHZk4yVAvh/gk5xN1MX9+dnbmNR1aGDMbbmNjQ5K0tbWl8XjseTBzc3M+L8CNEDQiuCIPxyo/7LDGkpRziAv8KJvNqlqteq03Gg0tLy/r8vLSo0pYD+SkrF3wIPAVCMoQ8wD3Jvf5+ud4E9c70uYbXpAIBAkYOxYcxSCgTZgowPJKDwX27e2tvQO5oihSrVYzwAd5UC6X9fLlS83NzSmfz1udzGcBCN/a2nKyhbKShAjQCkCKJDkWe5jzIj0Mz0adSICAqKIVTpKDLcEaphjAh0XcarUkTebuACYAQLAhme0CgH94eGjygSQwnU4rk8mo0+l4ACXqHu5zSHZJEyIGxQND5FEB8b1C1TBzUtiMWIzAvo/HYw8lq1QqPjjG47HvLwpRhvhyLyh0s9msCoXClCc7A8o6nY4DCVYAsPMAP5AdHBBhGzwDWAELCCwk9rRwcu9Rvo1GE4u1jY0NzczMaG1tbarFETVIKpUyeB2C9XiT8/ykh+H1PCM+J+oLDlAAGPyjUcVxSFCsoYaDTASgJbADpoSqD1QJdGzRMQCQX6vVtLS05G4rWmdzuZzq9bqWl5en/F25IDJpIy4Wi291wd5oNFQulxWLTfxGAUsgC2Kx2NTA6bALA6KZdUihDBDGQQqRy3wF7IcoflEiAY5yYJ+dnVlxGRLAxAyIh0ql4lZ2iAzae+mKIIbgZ8protKBQAo7iog3zCgg8SYhArCLx+Muolnf7AE8WiEe+Fzn5+cmpVCxSDJIHA6sJnFl7QM+AQZ0u90piziSYUBQulJQK/EcwwHLEKTYdUAWhwM2AdFIgpirEaphpAfFNwmzJJ+tYUsyhTgzf3jmkEgk8sQr7A4hGS4vLw1eEqNQ5kvyWkJ9n0hMrG84d1Bbc55BXAKKkzwCAA4GAzUaDVtSceZvb29b5UNnJOsoHo/r9PTUQA5EDvYH+GH3ej0r0ck76Pai5RxwZGNjwyrkdrvtMz2VmgxYLJVKBnlDH2KSYNYRnQYUThRAqHoBUoitb+tF/AltnkjoQ3sukvhQ3RVaekkPg1EhySgeiT2AVii9EaVQSAFkAyRib4CQB+AQgQx5C+QnMYkzj2Gso9FItVpNhUJBkkykABaEhMH19bWWlpb04sULbW1tGUxDTBEW9Jz9kAt01wEgUtTTgQRAQQfI3NycZ/YhdOL7U/hL8hlMTCNPIddjzkNIClDQUnQCahAns9msTk9P/ZlKpZLVrgDRnEsA/RBgkryv2MuclcVi0WArikI6G7FEJJcmLyLnCvMq8hviahj3eG9+h7UUqs8hGQE/qFfoIEVABBgO0EweRg4McUjHIOuN1wTYZ41tbm46HtORQydteKbF4/Ep4Cmsa7CNOT4+Vi6Xc0crsbvRaGhzc1N3d3ee3ZVKpTwrkrxCmtQPrC/EXsS4cIgvZyP3gtoO++e3+aK24UwPu53pnAOgIb/g3Kc2IHc/OzvT9va2Dg8PVSwW/Tqnp6fO1a6urvT48eMpMQoxBeAJUWM+n5+yNu12u65vySuot8lHWq2WCoWCBTghCEr+ScwcjSYzPLGfpDOGs5OOYMgVOoolWQTDnwF2ca9CQQr1GN797BnqVnIoOsPISRFmIFShMw+lNYQkBAr2S3Q1UZsiSOIcurm58fdhpiF7kRhzcXHhs+329lYHBweqVCpT6m7cKcLh6JJMcNNhQF2PSpx1JMm1RFjjh3Y35FScf9lsVgcHB7+l3fHu+v/DhVCbnA2SU5qcpXQe0AkX5nPgXwhKyAPv7u4c3xBE0snBOUvOwfkLoRLGNYQV/D9nIWc6NlWSLGbhDA5nslEngiPl83nnr8lkUvv7++5YCd0MyFEgnMNuP0h18Kvz83OT//1+X8Vi0YQQZwJnTEgEkA+SM0pyzYxDBnUj9SwdoQgOmGM4MzNja7t0Oq3333/fZ4f0QAjzHuACdDqGgp/wvrE2OEMg+EPCZ2VlxbU0dUWYy2K/StcwXR6h/S41LyIUSELiPsIjiHcERCcnJ8pkMp6FjgCF3AabPpyFEEaAr4ApsJ4QQmAtCt5DbL6/v/fMcf5MkoWU7AGEjYgvEHIsLCxoZWXFnVlhfsizl+SfJ99ot9t+X3J+OqY5R8nhuU9Y8/Ps6Z5ZXFx0dyg4Fvkta2E0Gk05O73J6x1p8w0vlN/MZ2GRATzl83kP/gKAhHAI57vQDUOxc3p6qvPzc/3u7/6uBoOJp//29vaU1Qn2EyS9n376qZLJpFZXV7W6umqvzGw2q6OjI3W7XT19+lTdbtc2LbC/LGba4CAqKEhQwbOIAXAkGdyU5J8h6JH0ZTIZ1et13dzcaHNz00kw3RI/+clPVK1WtbW1ZYUgM4Lq9boGg4F2dnb8O6lUSvf393r9+rXm5ua0trbmjcXng+QpFotWdgMM87ywSbi/v7daALJGerB/gmml8KZQj8ViOjw8tHUF/pcAuK1WS+fn53ry5InBk1QqpV6vp5cvX7rNDhUminvU3BSRqBH6/b4PABSCsOfD4VAvX760tzmHOM8EtRbfHaAC9TfkBoGJwAaYQntfo9HQzc2NisWilbiFQkGZTEYvXrxQMpn00FHIylgspk8++UTZbFaPHj2aassE2IDgIpgDGoWqV1h1yBq8RgHBAbx5lrFYTLVaTZVKRZlMRq9evVIURapWqzo5OTEQNB6P9emnn2pxcVE7OztWCPBeKMpQpGOH9tlnnzlRKxQKtmTCOq3Var3VbfgMkkMlDgATEmaSnGRhXUArNTY+EB88Xwo6Ej5Amng87sQCVR3vG6phURcmk0kr+DqdjsmgVqtlspV1GhLe9/f3nn0Ti8V8wM/OzlrxG3YZMOA1nZ7MJyNJnZ2dVaPR8B6iuCbx6na7qlQqtqxiz+7t7ZmIoMvo9vZhvhUEN0QWgEW9Xtf6+rq63a5VUPPz8y7aSWIA11BVkWDTddhsNq0KgrjigsDgcwBg8NyJPdKDKl2Suzy4J4DdkjyzpVQq2aMcVT0dqIDNPC/UtAA6ELm1Ws02J51OxwQdiTprD4KHWTFRFHlt0R0Zdkx0u12TWIeHh5qfn9f+/r5BaToADw4OfKYT10Kistfr6ejoSGtray6cUEV1u113FZIzcBYCFDabzSnwBQKGBJ7vBVgM4cxrvn792qAvwBCvA4ACMEs3FwAVAD2A0enpqfdkuVz2vh8MBu6aIHa/rRcqc7oxyFlyuZwJFsB19jIdZMSbkNhCyUjhSWcC+xUSlBwBJThrjs7UbDZr8DGKIg+wZe8Tv8L5AqxDilX2iSSTIyj0sMrCZhLQPJ2ezD7Z3t62onBlZcXnOuc1CnfELbVazUQB+525YZwREO2SvFYBF4nvrF065LiIWZIM+nF2Q3bSjYSAitw6nU5bxITqcTgcunOZ2YE8IxTtgB6AuCG5T0F8cXExZS/BP6EFFx3BdJLwHuxflJeAtPf3947PfC6U7xAndBUTSxOJhAmS0WhisQnpTjxFPMB3oeiliA2HAEsyMUiNtLS05OfOGiQ+z8zMaGtry8IPFMN8NuIP5BbnMa/DfgL0hSQl50DtyQweBCB0ZoX2KewnzmnuP/UHiti7u4kl3Pr6ujsSOp2OqtWqQX6+39t8sV7pwODehusO1S8dSawJzi7yfAAo1i5nEJ3ykCQXFxfOgyAU+CwnJycma8jnJFmpvre3573CmoXUCS2MWIsATwh/yFERz1BLNJtNd9AAHLGeEF2E4Cw1N+IH4hndcpBbkly7SQ/kLAIALGWwhZmfnzdYl06nLYIMBSjkbACCkNTYl0FUcj6EnZOcDTwrMA3iKTkWuALxEAKVuAOAx7kVdtKzdvgs5DX8HDkmwthQEAauwndljSFiwd723fXuelNX6A4jTfI4hJuQFDgkIHTgXEGAgACZvYYrQ1jjSg9kAMIESe5IBWQH1+HP2dvkTeRT7FnegzMQkQUkB4Q1OA1/jkBodnbWgi/iLW4C5LIIHSCtOJ85f8FV+BwIWMhx19bWVK/Xp7Ar4hMWrggT+U50YZyfn6vVamltbU1nZ2euHaMo0tbWlm5vb3V+fq5MJuN6Zjwe+7kgdJQeZvlyjoEDQlYR8yCUEGum02mPWSCGknOnUimdnJz4nOPeky8T71gDWN9Czg0GA1u1IZzCUp6OLoQRnU7HQm5EA5w34JrkdDxLOkfBZhCi0/nPejs/PzdJRl2Buw8iLdwysLLl/lALQc5Lk7OOeakItk9OTvT48WPXmwj5mbuD8AysgOfHmRY6MXG/wBAQ3SECAIckH6TbBnw7FOZRnyG8wx2JzxA2Y7yp61stiYyi6L+MouhHURRdRFHUjKLof46iaPdrP/M/RlE0/to/P/x3vNbvRVH0b6IouoqiqBdF0f8eRdHsN/1MBAY2JwDYwcGBRqORDg4ONDMz42KZoEdhDPhB1wAJ487Ojr7//e/bhoGEdG1tTR9++KE2NzcN1tC6+L3vfU/Pnj2zvQBFw8zMjD788EN99NFHVo+h0AS4ZMPwfcJii7Y3Sbb44jXwAieIoWQPmWWCz87Ojj744AMtLS3p7OxM7Xbbars/+qM/0nvvvedEk9+bm5vT9va2dnd3DcoCJi0vL+ujjz7Ss2fPrIafn5/XZ599ZpCuUqk4maXQC0FEgloikfAGJjjwMySjc3NzqtfrVpnPzs5qfn5eH3zwgXZ2dhSPx93iKUn5fF7Pnj3T48ePDSJDLFQqFf3+7/++tre3rcYgkG1tbek73/mOCoWCAzrgMOuDAoPnIE2COfYVsM4ECu7ZxcWFisWiwSJYflTSKAnK5bLef/99VatVqxMIeNvb23r27JnbJjk0EomEnj17ZoKKYEWL7Q9+8APt7u6q1+v5YAUshNzjXrOfAFkg6fg+BHkCOwAuwZ7DmPbc/f19JZNJ7e7uamdnx11AACfz8/P6+OOPvc6YH8Bh8Pz5cz1//lxnZ2cGU8fjsb773e/qww8/1PPnz33wcU+YB/T1bpz/kOvbFgMzmYw2NjZMluD5enZ2ZpAZhTJddDxv/sGuamlpybMdKPAhWjmIGQx9dnamRqPhwp94hoUQSsrZ2VkTf5ubm+6wwrIPH1IU5SQcKNDpfpNksBQrtVKp5D9neCPdB5lMxh1cqIRJhrEASSaTBndY7wAJ7733noEByH0IZDzyAeUAfGdnZ/X06VOr/N977z2trKx4iDTFRNgp8tU6MHmKcgvf8jABwd4rJGdGo4l3LfsBVS1CBZJFgH8STgYFc0Yx9J4Om9CCkU5BrJJQdqGqYgYIe4+kKjxfQ+ANkKZcLltlD9BZLpe9dxcWFnR8fKxer+d7xPlE3JHkbiliGCAEoCEgliQnuADpgFBhVyNKLEgeACtI91KppHR6Mhh5c3NTCwsL9s5GsCHJz4+cZGFhQfPz83rvvfc8LHR1ddUWlShYl5aWtLm5qVKp5LXNzzIAmS42LAQrlYq7abFLXFxc9Hp6k9e3LQayD7F0yeVyjhnSxBas3+/bpuzreRH2DtIDyRkKeeiW4HdnZiYDSrGcIt5xloakHwXoeDy2VzlEIsQz70m338XFhWq1msU4zEMkT+A9yWVqtZrXPsUMNkLSRGXY6/XUaDSmxD8Us+Qq7Gk6hemmQalNrCN+0VFBLgMoQX7AuXB1daVGozGlVuXc4bvQdQaxDXAZghadTsf7mO/BfQzJOIp21PeIbk5OTjQajUxEc//ovuYcRKRFHnN9fe0cMZFIqF6vOz5CFo9Gk1lFYZfe0dGR11eoHgzJFUBnfg5gmloFcIWcntyG/LpWq+nk5ESvX79WvV73Z223235OxHc6G4gJCI729vasQkRERjf5/v6+uwTp+MISkpkXYUEcdvZALgE4E9fJBRG9hZ1UAG/kLdwbQACALizkcrmcNjY23GWZyWQ8qJ7cl7X4pq5vW/yT5LyI/IC6AqArFov5bEaFit0n3cjUewgSWQe8VgiocG8RawGAxWIxtdttJRIP81XofAFswjWBdcIeR+wFmEPHN3lqp9NxXnNzc+O5CpCew+HE2pl4DIAKsZHJZKzohdCR5PUZfle+CzUenZXNZtMAH/eQHJO6FcILsAkBB918iPYQ3FBbAkByPnEf+Uy8z/39vV69euUcJPwe5Bs8R8Bd8u5QaEeMgQhGgc/ZAAB7cXFhEQQ1BF1a0sPcLeos9ij5H3uT5wBG8bYTqW/z9W2MgaynEKMgNzg6OlKr1VI6nXbs4SwkThYKBXebff755665oq9EHJC/Yf5yeXmpYrHo94QMIDehXqF2w1Ug+kqgGOKXdO5Lcs7Afgbfg5QilrLnyD/Jn+j4COdyElsQnYBdQthIskAuzDfIOyGHINQluQahg47cdm5uboqURTiby+V0fHzsepdnhtCWe02uQS4VdqhACFFjksNS/9IpxT2UZCE65D3WyOQvV1dXPk/A9si1eAaQ2DwPiH/wFGz56HJBrIeAIBTw0BFPfkNNgesHmDTnDN/79PRUtVrNOW3YEc45mM/njXt1u13/LIQdeA4YAv+G1AnFX5BfPHtpgjlhqUuuzb1grbG+Q3tSamnI/ePjY2OndKEuLCyYMGUvUU+RB5DjIowABygQoGQAACAASURBVA73BfsBEVdoqfamr297p80fSPrvJf1Ik8/6l5L+1yiKvjMej6+Cn/tbSf8y+P9B+CJRFP3eVz/zX0n6z7/6++9J+sY0WKfT0dbWlkFkWoL5M8BESW5rPjs7c/IDMEmBLMkLW5LBKBhFVI+041Nw39zcOLDwWtFXbGG9Xvd8FVRqBDGsdNjYKysrqtfrtsGam5sz04yVCwoAiiS6ETKZjEFGlC+w6Ch+CMChNdzh4aFbKiEWSNA7nY6DKwq3UF0PYIny8+zsTB999JHb4Ti8QmCU4pRuDoIFJANBkYKDgMn9IahLsgfm3d2dcrmcnxkAM4AlpAY+oFE07THJcwmHrfKceU74DLM2JJkd53VoSSQociCTGJRKJavguHcULoAUg8FAr1+/9kEDGYdiEAZ7PB5bTc26pGOIdcFhj4oL8ocijmT9/Pzc64YCQZK7kvB95n05TFDdEfyxYAlB25mZGeXzedXrdRfqkgyMtVotP99QFcq9wMpG0hSwAFjCnkMVwyHDfYcAfEPXtyoGomqjYKNNFWKQhADScjiceH8CzNPpBiBCbEGtSFyQHkBoFNXYPpEIMUeI/Ynan8M/k8k4SaWD7fHjxyYK6KwIFZ1hzCEpIW6FrdskMDMzE598AFXWJcoTkiFa20mgAFNRuBDTl5aWbBMEeBt2JrEuk8mkLSlJ9MNWcxJI5g4dHx9rdXXViRSKEcium5sbPX361Gp3QFFa+0mQsD/EFqbX6zl5xW4rvO/ct6/bO6GKJ5ZxhpHoRFFkW0cKchI5AAK6p3jmoeI7VI5iB4DKHwAURRyEYyKR0M7OjguRfD5v4AlbNMBpLPHCv+OMGg6HLjToJASQoiMRwHt+ft5ztCqVihPw8ExljxELQ9UpawHLhfF47H0iyUopzgjem6Q+PBc4g+PxuIkYLNZI8DkLAF6xg4RIu7+/t23qG7y+VTGQ3IE8h+5UxDR00oadgXSaUKyQO4TWGeHcGUnunMNKBwCb9zs7O3PRGxZq1WrVRTLKbYpCZoBdXl6q0+moUCgom81aOR0WngDvob3paDSy3c1wOLTNB+8fj09m1tBREY/Htbe3p0ePHjmmQq4g/oCgBJgFcMdujK4PuknG47Fev35tX+yVlRWDAZA+zFIjT0JAAxiAhSXvg0KUvAgrX74z94RuI+IUYoP5+fkp5TiACc9pNBoZEKb7iDXA5yFOkesQv7G6BAAnHqMUjb7qbN/d3XWuxdlFIU7HSiqV0t7enjY3N92tgCqX1yePI3+fm5uzOIn1w30lB+J7SHJcpB549eqVHj165Dxra2vL3auA8Lz36uqqc/iLiwsT9q1Wy/cEsgXVLiQ/SlRIP+IapAr5CfNWEDEdHx9rY2NDvV7PCsvFxUX9wz/8g9bW1kwUAvJwDtGJRQcD3y+dTr/pGPitin/SJAaSD5PDS5qymA5te8LzI1SoY4NIjGFdSZPzKJ/PO8cInR/CNYgDADZdCB1OT09VLBbd7TIej20hTv5CvhACapAEqVTKgkPsXqivqBWI/8SJ2dlZ1x4Q3xCexBb2MP9PPkvdSb3DvE4+HzkT9xHAKZxVNRwObau9t7enra0tn9/kJsQFiC86ciCHiGfE2n6/73mTCJywJEomJ/MMyTl5fepbsAZqR+5l2MEUAsncn62tLbXbba8Jnqsk5ybUXAhTwy5Euroh8cIu+XfXf5TXty4GssbAFQaDgQqFgq6urrS+vq6TkxPPMYGwJi9qt9vGkMbjsba2tqa6UwCJEU9TBxI7mXNXKpXsFkBspUOATpRQnE33G84k6+vrmpubcwcG9f39/b3HNnDGEcc7nY4WFhZMnrAvqefz+bw6nY4kqdvt2pEE20JwL0jv0Bab2IpTDPjMy5cv9fTpU+9xsBtwTs4d6qVQxEtuw3nFz3N/yDMR0IBlZbNZ1et1lctlx0SIKupCYhNzLsEUuZecG2EXC+sBey7u3fX1tdrtttbW1pyfzM3NqdVqWRQUCkyou3CGId8Mz4KQAAptrFkX4J5Y3ZPDkW/m83mfG4j3OG8gFcERwAGoOai5IY/YI6VSyTV3eKZKDxgdHaHg1tjngSlSa/MMubesjWQy6RqI54G4cXZ2Vq1WS/l8fsqRiFloWHxSC1MnY8/Pvb24uJjKN7EWDmc2Ir56k9e3mrQZj8f/Ivz/KIr+paSmpO9L+j+Dv+qPx+PGv+el/ltJ/914PP6vgz/74v/LZ0IJThLW6XQMzlEoUXyGLXthMXR4eKhHjx6ZgUW5SCFL4saAQNQpgGHSpNincwHgbTgcenAUjDeKSwIanweGEMCLYplOBQI3wNrFxYWWl5c1Hk8sdVCyrK2t+Z5wEOCTCxkDW0wRhc0Krcu0At7f36tWq5msoOMIO5uLiwu3a6Os4n0YlBxFkb744gttbGw4maMdDsVCaOEDcErST5IJk0xLPN+RjptUKmVlEodlo9EwyL+1tWVA8MmTJw4O0sPm5vVQ+xMEo68U2bD5YRcD6ihaNUOQlbUH2wsYygEHkMehBDCIDzSAM4GWorter5t0Q/FBkg9peXFxYWUJDPne3t6UMh6QguQEICf0wwTYpYUyVE/xPCjW+L78jCQn6CjjKRQApFgPzA7idTj8UKVhOcO65BnxHUksYP0hCYfDodfWm7i+bTEQ8hHQutfraXl52fGIrgyKbcguDlWATZRJrNd2u63Z2Vm3MYdADuBnu922UhOQE3CUpIeOkmw268SYxHM4HPq5Sw9esSSbfCYsYrB94tBPp9M6ODjwuiTRkSbqeuZkAQ7RnUBMJ77yXaUHNQfrntkokOTYo1H4t1otd1Akk0kdHh4qiiKrQ6QHtZMk28QxfwELHxJv1jUD/uLxuFVBABHsHYAEAIsQ7CfOo1jCWpHvSGLGfgGwoY0Z0gpfegoNSVMFfTKZtKI2bFk+OjpynCGGY2FFQt/pdAw6YFPHOYKHrySvQ8gOSbZLhKBheOR4PLaqnyQ7mUyqVqv5eXJvM5mMvvjiC/X7fbfn8z2xHsrn8wZBIAaJqRCfdFEeHR1pY2PD97tQKKjb7U7NsaPzlu+/urrqmW6AsogNcrmcgfRms+nztNfr+XzkTN/Z2dHZ2ZmTYrrDSHbf5PVti4GsJ0Bi4iB7OexMBoSHJJZkewqUjORYnNVY1vJay8vL6na7U91niEIWFhZcgEFSEp/IU9mb6XRax8fH7pJC9UnxhmVOWJQSs3lfSVM5QKFQMJDK9w1nR6TTaa+5XC7nLkQU5JCPxEbWKuAbMQ8V4nA48adeX183WY/FBTaCoYKSPJ1ij2eEkIkZeqhI7+7uLBxaWVlxXB4Oh1bGY9PUarW0tLTknBKgACCYXA6QILQGQ6xE7MUOk7yP7wo5AVhDrkRtEc6UABggF5Lkzi1Iv1QqpeXlZYOuEH3UDIDCdB8juCD/XVpacryUZBsTOmo5NyXZRoI8j87ObrdroJjzBlIRApB8mY4ohB3hfbi7m3j7d7tdA0p0J+DRTpdHWHTTccY+Ic8LhQWj0Ujf+973fF5hB4jdNfZOrK/j42PvkRBsexPXty3+SXKsxzoZsIJ7fnx8rKdPn/r+Q7TNzMxMKVkholdXV11Xzs/PuwuU85PaBWCNvYZFDN2oxALWKs8bG1LOOuoGSVMzDNvttqrVqokb1iQdwqwR9ikxks4S8h6GVSOEhOQF0JU0Ve8g9EMxTv5B/hqKUIhbfCZ+L6zzAEuJE8QvSCRemzyPvcvrSZM6dWVlxTGmVqupVCppZmbGICwxFRIGGyiAQupQVOHYynEGhup99jZdTnRiA9ZRd3GmEVMQNwHQkm9z7yF733Re8u767V3fxhgYkiGI1UI7Q7qj6dR//fq16zBJxi+oj0MyIjz7U6mUO1dWV1fV6XS8H/r9vnG5sDuDM5Zzms/GXofsIO+gS4X9BbbE+0Mw0BHM6xAvmHE1Go3Ubrcds6ml6JLlc4ZdScR5MCx+j/g5HA71/Plz2+ZiXwshhu0ZeR2ibeJQPD6xc4bAQGiJwAcMN+zGRjBPbkiOkkwm3XWLwB4ROBgH9RxxFFyUTiK6n0PxCZ+Tmou8kLqCek56wCwlueMInCLsbuXvyQeJteFng0znc0POIBBkLUNYIa6CNILUoM6kUxJxD3k9azpcf9RR7AUwaH6PPwuFhnTEcA6Gc+3IQ6mPeV0+J8+AvIDzICS4+LPb21t1u11tb2/7//ks2NOzl7mvkGhgmuTWb/r6VpM2/44r+9W/T7/25/9pFEVNST1J/4ekfzUej5uSFEVRQdIPJP1PURT9X5IeS/r1Vz/zb7/pByDAsqCxxYD1xRKDRSXJRVy/31e/31e1WvUmRJUbqvRR7DCnhtZgGG9poioJmX4SZ4D2fD5vgIlC7/Dw0BYMbHI2P358jUbD7HHYvVAoFAws4FENwwg4xmeEkd3a2vJ3Qj0E4L6ysuIBstfX12o2m1paWtL6+voUuUMnA0AwiTaD0a6vr1Wr1WxLc3t7qw8++MAbm8MQNQHABEpznhmbPWz1ZDNC4GSzWVuVhcopfodB9QSN0WjkQgF1UBRFnvXD4cdwN0l69eqVisWiD30CEmABhwmflQMg7Gqhw4gAymcABOVnec60+9HJEnZLjEYjra2t+cCAwCHYAgZQMKFYSyaT2tnZ0Xg8VrPZdPKCMhUVBWAPyQVAFMQlSQnKOABSSQ6+X7dVo5CKosgH2MLCgjqdjhX9y8vLTpIAoCjOWcvsrdC7k8GoPC9UdQwPzuVytr75DV3/rDGQbpl6va5CoWA/fIqyRCLh7gfuCWqTkDyR5BgYgvsUvxx8qCFRBEIks+4gLyBgoijyEEasx2ilJZmU5BjdarU8n4AikE4uVDh8htFopEKh4H1GsjUcTmx7aMMGrEQJiMo3kUhYKZ9IJJwkkCSxNukICeePsR6lhxkzxCbOGRJhkiLUQ6FnP+oV4i4dQu1226ov4g1FBcUyliPEJkANCNfxeGzADqsRgGlJbtkH2ICYIHkm1lcqFRf04ZBwCnOIagDndDptNQ+AUNg1lclkHDsh7PneiUTCMZ2zYjQaef1SPHA+UvjwXEJrN9YFuQCA0/39w2BjYilnUxRF7kzkvGa/8Fwh3YjR3E9ADUkWWlQqFZNhFHEUgI8ePbIKic4I7vPq6uo/KdRIyCEEAFRDKxa+B9YpYVfvb/D6Z42BS0tLajabyuVynjVEjIH4ZYaIJHcCAL7RScD9g7BEgQzxhWAF2zn2JuuL/IC1yjokB1haWlKtVnPelEwmLYg5OTlxUc+MAIByurwlWZyB7RqqcvYyoCAK6bC4k2R1NvEIgK9QKBiE5DygSKWDGDsj1juvNTs7q5WVFecCKM7pbkB0w31FXRiPxx1H6IBhloQkxwuUgNyzRCKhL7/8UqVSySInlJWhipu8CxIMERf3RHqwJKIgpWAk38J+QZLVr5DiJycnvl/k0xTqvD85HLENZSdnAc8WkpXnNxqNbPXBeZ7P502IkDMyw4N7BVmMEOInP/mJnj9/bltT4hq1z+3trW1EZ2ZmTLpRqK+srKjdbjvuo45E1Qjwje0UAhIENADmoXoT0QfkYXjvUZSitoVQXF9f972BbKBbA8s7xHSJRELvv/++RREzMzN6/fr1Nwkp3/T6Z6+DOSepRzOZjOcjJRIJPX361DUSuRzzCCBcEIfw/BA1ZrNZx1fOO+rRVqvldToYDCyUgeygJgV8I1fK5/MWFlHz4RjAHKXhcKidnR2TsoBygKJ8b+YIsIbJl66urjznja5vakfiqSTt7+87dwbEhEhC7Lm0tOS4jOhTknMPcmxAOM4ExEsAmwhDUqmUbYghXOhykmT1NCBbOp125y+1fiaTUavV8iwL4kyo9k+n0waMqb/4DIlEQk+ePHEMIveFzP5qnZoQhAxDAHB1deX5ohBtxDvyGHJkLIuurq58NofCpnfXf/TXP3sMRCBYKBRUKpVsd8V+gyyenZ11N6c0wXjee+89n93scYRAMzMzU9gaw9zp5FhZWVGz2XROSU7A+bqwsODaCswEoR/d/WF3KPkGdeL8/LwFMOT+YEhgMfV6XU+ePHF9BJFMpzg1jvSQt0FUIB5ZWFjQ6enp1LwbPks8Hre4jJoEbIozBDF6Npt1boqAHlE6eRrdMpxBy8vLjrlYgyMQKpfLzsnovsBV6Pz83J3dzMYDoyL+ICZhBmrYIY1tJaIpYh+EEPOYqf/BunhO5EkIBMFA+BnmYfLsud98n4ODA7sncT5Qt4fkOWcarwvRQ8cxZ2+j0bBF6Onpqb8XwjMEAggtuIesBelh1AH3DHwxFDGRw4M7SA95/uHhoWd9Li4umuCkLuPci6LIM+uoicB+EdNCWrGuwpoLHJk6gjyArnT2IZgwWPCbvr7VM23CK5qsqP9G0r8dj8efBn/1v0j6zyT9oaT/QtJ/IunfRFEExfXoq3//a0n/g6R/Iemnkv63KIp2/j3vl4qiaJF/JGUkOSiE1gOS/P+o7Hu9nrtC8N2G5U2nJ4NbQ4ucr97TShMYd8CbsJW73+87ieTfFFFXV1cqFov2dgYggEDodrve9IAyuVzOQRxihUSWBUoSKsnJT+hXzN91Oh2zmXw2wE8AxUKh4MWP4gdLFxZ59FXLHoGEwjAkSghIFOsw5JeXl+r1elOBhiIXZTkFPZ6jFBgXFxfa29szwAmbT7Dg8wBsUfhBrPFnAMbhHBZUnpIMqvEPfqIQBlgWEVBROsDmUsiHll4oQTmwUILxOqFaC1IJZQOfjd9hLYegKAA1ax0LM0CpUAFFZxAJ+NzcnBN9VGys5dBmC2KJFmDaTMNiBRCSQ4pCjAOFAof7hL80HTcEVvYZcznG44m1UCqV8nuj4KDDh7WJWgTmfzAY+HDiEH3T128zBv4/xb/7+3u1Wi1tbm5OPbd0Oq1isegYA+BBp5X04OVNYpZMJj0/I7THgSxknXKQAhCzxgHmWMcoPu7u7qzsabfbisViJi9JjgDPVldXnaCERAtxgySo2+3qs88+8/7HJovvPhwOPfOGtUEyRgEbRZEWFxc9V4BiE0InJGlQ+7JfiWEQW6h7+E6AnPf397YHIr7SVSHJPzc7O2uSgOIZIleanv9FxwfgHzGMZwB5AmAfJov8G9ILO0VIchIhEnJU5BDddN3Nz0+G35Jgcc7yHYrFohWhkqwQZS9iRwK4WSgUtLq6apCa2JvNZj3XiLOQ7wp4mc/nDbow/DiZTJrUJ/5gRwfwyhoD3AA0WlpaUrVatQgD9TokUDI5scKj25Q41u/3XVSgZMJzGCVup9Px71I4AYABhufzeV1cXLjNPlTfhXYt/L4kdwkTXzl3AZ5/U9e3IQZeX19rfX3dpFiYtHOR62HtA5lDDkTHF+cY4gHOYVrsKZwlWcHGa3EuArqjukNBTVdAaHlAcU/BmMlktLa25s5RSFa6iFizNzc3yuVyU+crxSfWgmF+IMnxX9JUrkQeEqrjWL/ZbNaCGoog8k06YkPbDnIOxErEBWJOCCqgfif/y+fzSqfTLuq4N+OvOrN5nre3t9rY2DB4OBwOlcvl1Ol0/DoQW3yn8Vc2D+xT7NZ4bfKPMGdh5h42wf83e28SG1maX/udGwODczAiyIhgMDglk9k5dHVXS0JLrbYMAQ+GFwYECDBgwDAM2DtvvH8rL7zwA2zABp698MKwt97YCwNa9MZatQANpTK6qrsyKwcmySBjHjgHGYMXkb/DL+rpCa/fy5JSibxAoaoyOdy49/v+wznnfz6IsOFw6Do3k8kY7GbikD3JWVxXV1d68+bNlPc5zyCcHiJOz8/Pe1IfhWKn03HDG/rcAyjwvgDMUdV/9tlnzlk0vsfHx8pms8pms1PCq4WFBQtpAKrC8yeYmKzVan6m/FzWd0iOIbqR7ifx2Ss3Nzde91i6QKTVajV/Vixn6KeoV5k8D8VAoRUUxBPigUKh8PfGsX/b60Ppg29vJwfFc8YaZBykGspUeqZwT+NBT6wDEIE4pOdCcIIIJQRgpEkPdX5+7v4SEgNrZuqmVCql58+fT00BIv4BhOx0OnYLWFhYsCqaNYUoif0Kmce9s7/Ozs4ci5nUhlAgHqXTaQvmJHmNEkeps8gv7JfvkjQongFKOf8HMSB7Nh6PezourL/pMZlGosfD8jycjsYym7qUe0coOTMzceMIpyw5YJ0einfPdCJ1ZThNCfF8eXmp8/NzYyyQtHd3d1NTb9T/2LhG71T6xA1EhJBjn65/+teHEgOvrq5UKBSMK4U4E2IcSe4N2becyUyeHL9z/gjtSlnf9HhgdOzXkLSV5JoxPFOX2IqVNPUgOBn/DsllciLgeTjxQa8Uj8e1s7PjeMj30ddI8t6mNoNEJ6aQM+hdqIfY7/y+eDxu3Ih+itp3bm7Oe5zz/cbjsUkuiK5EIuFaKIx33Af99Pz8vEql0tQ95nI5ZbPZqaMHcJsol8uamZlY8SOOIaeAxW5tbWl1ddVOLvF43AICCBcE5dS65KcoikwcYOkJpgrJTk/KeXtgJMvLyzo/P/f5MvzMhw8fWmjUbDaVTqe1ubnp9wSZzjp+t/7drywsLGh9fd1Ci42NDT/P1dVVi3DouyF0wEvYE2Ckkpyv6UmZxun3+6rX664hEFZw0Vvt7+/bmYXeeGZmRvl8fsoalM8HlohwlH0wOzurfD5vghOrN6bhWJeIHYvFoi3McY2iP2MthlPv7+v6pzRp8z9L+pGkfy/8w/F4/H8G//tVFEV/LemtpP9I0v+le2Lqfx2Px//7u//+2yiK/pmk/1LSP//X/L5/Lum/+e4fsilQfcBghuxkLBazihG7LxQrkqxS5eUeHh66KeZnU9ScnJxMKbhoWhqNhgsgQOPxeOJBX6lUrJ7GCuPs7Mw2XyEoGo/HVa1WzTYvLS0ZxAsL25CZBXzo9XpWplNMQr7c3NyoUql4hDOKIrVaLa2srOiXv/ylz8AAaH33LvXmzRsTGgBMyWRSb968mQJjUSvlcjk1Gg0XqCQSLL64L+xFAFhisZhyuZwPiQWUopGlCQGQJOEcHR2ZjEmn07aAGo/HevXqlRlepoiWl5dVr9edTGiaSXSJRMKsNAop1hnKZwp6FAeoqUjwqDlJTICcJDeaVg5OBmwhkA2HQ71582ZKwUmx32639etf/1q5XM7PrdlsqlAo6MWLFyalOEQZ5W+j0VClUvE0ECAl75MGjndGQQAIBWAJCMlobghQhSOeFOchmPPFF1/YdiGZTE55T5LsAcJZ1ycnJzo9PdXm5uYUuccI8MHBgUEDvOApsEgWWGZ9D9c/ZAz8O+PfYDA5vJ2igsISm6S5uTlbelFYYanEXpPkZAZxTWHL/qEYJFFTrEDShWcYhBOHKJ0ABRKJhIEhDiXO5XJueCmUKQzi8YktI+sRsB1/13fP22Td69evXZADhBHfiUVYkUFKQRShygFgZN1T4PIs+ByxWMw2Xay98Tu7i/B9oHSi0JRkACAkuADpadiZULu5uXEcx6pGuo9J5DzOLJImgEI2m9WrV6+sUkbJLmkKSJEmarO1tTXHJnIK98x5Mnd3d1pfX/e9EGOIN2HjcHl5abtMJmtQrkFoAXKGNjm8S4hwmntiGWscpTX5hLgcThjx7sfjiQUbuYB3CJkCQCXJkys0EkyAhr6/KJEAXli/PA9EBp1Ox2eaQAgNh0N/79XVleuMSqWiXC6nwWDgc8awluI9k6u492QyqXq9rlKp5HdHHCdHIuD4nq5/9BgYTpiwVyDUmAwAGN/e3rbyOgS3aRR4rkyVtVot1w6ce0KMCG0warWa1dQAg6PRyI0jRAD5DYCRRpycS+3IxEosFpuyY4VER6E9Ho99lgdqQEDssJ4IczPfT37o9XoWplAHhTa1iD7CewhJofCzh+stzCmA/gAG8fjE7ospP4BjgIVMJqPj42OVy2X1+303pRDrqAMzmYyOjo5M6KLcROFKPRvuo2Qy6XXBOwmns3gPEAuQ55Ax1WrV6wCRlTSx96SOo26D7IbMZ8IYkIiJLOIMRBG/i4nufD6vRqOhTCbjupH3Gdq6hOdNAF4TD9rttsbjyZk0X3/9tTY3N213lM1mHa/J2Vh5FgoFE8TU19TBvE+IUIitpaUlHR0deS8idmMalClO+jPOr6E+JY/Rd7GWAaiXlpasrCReU2PgJ//dvPI9XR9EHwzoUalUrMJGvAWRJt2fFUOMurq68iQhdTfvkL6WSRpJU70hIAiKcvLnwcGB8vm84vG4rbE5zwYSOpvNejKVupRYSr9DnUm9T9xqtVqKx+OeAmP9M31Mjg0/Kyp44iMgFTVGv9+3YpupsnBd8TPYL4jYpPtzJQEc7+4mdnTb29tTYil6fPp6amj2BTVNFEU+gwcyEwwApTu1MvmfPQMAyL7odDq2XeUeEf4Mh0M9ePBAZ2dnJoXZJ5DGkLFMBITkDNOZCIVCYdfKyopqtZoV/ACii4uLqtfrzkefro/i+iBiIAJS+pTFxUUdHByoVCpZfEB+Dc8fpfYLz8jg/yGqsTtl35BjmToMJ7cRKkCSUmvRE4ZOLO1226JbemmmcZjo5mfwe9rttvMcpCoTMmAkCDnBdkKyudPpGM+jl8JmDbEX53ryfUxlQL4gdKQ+DGNW2ANjTx1F0dTUOHmdPowzdajJ6bH4ekQ75CWe6dHRkcrlsp8TtQn5gElD+kF6tdC6DLItnNqlvuO9h1hCKNgnX4LxkQtxg7m9nZy5A6FBLkHkw2Q9+GClUnG/zVlgOGdwfAKCGepr6m0mjUPLMmI+sZ2jF3q9nu126VVD4RKW6F9//bU+//xzi2YKhYKnqMFDsOil16F25ExJSXagoBdB1IF7AVjml19+qadPn+rVq1e+H95Ho9HwVHl44czzLua4f2g2m/657LmQZHpf1z8J0iaKon8p6U8k/fvj8fj47/va8Xh8GkXRW0kw56fv/v3rRPC2NAAAIABJREFU73zpbyRt/T0/6r/ThM3nWpJ0HI4AUnjCCkJuYB82MzNjVWBo1cCky8nJiXZ3d31gOgkgkUhYsYPFgCSre2iwAB9RV19fX2t7e3tqTBIPPphDfj6MNoAp4BbNCh63BG8KdBTabFLU4JJ8n+E0BWPMFK0zMzPa2tpyEwZgQRACHCe5SbJCioCHUhpAgGBDYEdtBQjLJAuFZaPRcGHLJqO4Z9KDz9NqtfwOJdlrl/vjGVKIY+3BMwHMZuyx0WhMESMALSi8SCYkSJoIEnKv11OpVJoqGEIyjX/zLgBwATgggmh8SVYo1giiJNilpSVtbm4a+MYKjcYnl8v5ngmQo9FInU5Hq6urnnYC/CDZUfRzmDhrBtCcSSWU96HNE3ZKWJ5Q1ABgELhRXzBJhWIOIgDVL4ADxVehULD/cq/XU6FQ8LNNp9MGS97FJuKOC4jvQ9H1jxAD/874xzOCQCRWsO/YnwDJp6entvtjb11fX7uopXhh7ROrKE7Ozs4k3Xue8v8AxIlEwmfEMJIe2pcwep1ITGxP8MClGQ0TKzEjbDQhCyhOIQhomDc3N00aEo/u7u708uVLFxx3d3cGicIRaoADJnkYX2bagmIBooB1y+cmJgEEE8sajYYLENYjBAc2IlyA7ZCx5+fnJt0ghgChyHcQEmFhijpzb2/PYB25EcLo+PjYBApTg8RhCj+IEIiRwWCg58+f66c//emUF3s4AULcoYEh54SWI+FZPNj78b0UgQCuoV0dfsfNZtPvn89B0xNOLBK7s9msjo+Ptbm5qevraxMeFHkhGMPzIm8vLCzo9PTUIBOCDgAj6gdAF8QTgGaQQpIs1CCGUsBCCNCQMaGBSpcYy95hD9ZqNZ+jAxnL9wHeQPK97+tDiYGsEYp1QCbAO6YtyBGhjRmkBRMsAOPsFZpDGqBqteopMSYOmUprtVomkKT7yQWa1bW1NRNGiHAADrEUBWRlQiMEFUN7LkDwWCymdrut0WikcrmsdrvtGovPC8kEAUQTTr1HHOf3hqQ7sYw9DoFOHYGFQjilxIQMNTYqVOpPrAlROc7MzCiXy+ns7MzWtNfX1xYNSHLsWF5eVrfb9dexXxAWkQuolwA2sXuikSb3cU4jwC/TAigTyaM0zWtrayoUCqrVaq7tIdKZ+pHkXAlxAxGP4h+VII0vhAU1NnGRnMz5WoDHAE2QGEwNoOT8LllHjiKuML3AMyBmEruITwAS4c8KD+KlbmCSDUIa0pP+jDwb1icACeN3U/V8VkivcJoXsAjiG1Lt5uZG7XZbiUTCAgEsYgGi6Une9/Uh9cH0tKxbamxEbuT8kGyJx+PuWannEC+yD8J4w3QvtRgiEL6ef2MFFIvFtLe3p7u7O5M4q6urBmuoBQAMqcMgPniP1EMAcSinJfne+DrW3Pr6usHF0NaVHEpdSH0AMErvSV9GfGfCCMcK7pWah/VK7N/c3LT4D2KTvUCsYXoplUr5LEBqw/X1de9Z7NWvr68NhkL4kNs4QwziGkEpMVKSbSdbrZYVzuQYVPbUG8Ph0H2wJMcrMAFJfq5MxoUCTDCCsI8jR87Pz6vZbP592+XT9U/k+pBiIAQGE9HD4VDlcnlqb0K2gAkAmEMeZ7PZKXtARKcQK9TX9MhMy5CvqQnBQMit6+vr6na7FvsiMH/3XBx/EVXze8CtEJxQiwHEIxjO5/MWBA4GAwsXEU8THwHUye/0g9Q5CJWpm4l/4HXUG8Q/SBZyCT1kr9dzP4NDDzEPXJN6czgcqlKpTE0dY5tFDQ8xHE6u3NzcaOfdWaTgl2Bz1Fr07vRo1Pw8J3pvcFdwA94NZAo1IH0ix0MwoYOVGhgXOQHxAZgrOK40cSsKsSv6wqurK5+dyv2BkyCmwtmj3W4bq4YU5PuoBVgXYCRgc9RgYS3JfzPV8oMf/EBRFOn8/NziJTAIBAl3d3c+TxK8E2E398HZxeRrSEDWAfmlXC5bTAw+wLk02WzWuZP1h7CIyVIw05AY5TPzZ+/7+qBJm3djkP9S0p9K+uPxePzm3+B7cpI2dR+gDySdSPrBd770kSbjlH/nNR6P+5L6wc+VNDlLJZ/PezHTXEFEoOiHzQ0bAQoXGg4OOXr06JF/L4GADQeIQ8AJF4YkK1Jgu+fm5mxdhPIfAJP/p5HCRoWfcX19rU6n45E2wAOKIhIM7ClBln+jvgs39WAw8BkEfDYAe1SGgFooMVEJwaQuLi4a4GB8EdCKSQ8KSMCPVqvl0UOea2jtElqO0RASRAA3KE4JrGHiwh4sBN9WV1e9wZn6AOx4+vSp7SzS6bQuLi7U70/OEiA5h3YR4cg9xALgAWqGxcVFLS0tmTQECKLhoIDlMzMBxagh6xFV0vn5uYkTQBXWOBZXKJ9CRTpWLqlUyooNgAIAX0gTQA8IE+yx/i7LPxpnVGKAY9iQAM7w8xhJDieNuOe7uzsX8BRIFFeQDIBLPMtyuaxyuewDt0nkoRUVDQ3PD0X0+7r+sWLgvy7+lUolxwuaqRDYJ07xPnZ2dqZGdCEf0+m0ZmdnfeA56x1SgBjC/oQYYIKkUCg47lCkcT8UI+zXr776Snt7e5LkAgzAJzxMjyKSQi4ESlHwSTLgRxxGBUl8XVxc9Jgz98wa7HQ6Ljb5WtSasVjM5Hs44k6cAvgMyY3xeKyzszMDWhSzFHdMeqBepwE4OjpynuKzcp4MRBuxmcKv2Wz6/BeAVA4MDkEJFEUAIZx1xV6nIOP3htMykG/8GyLiu+ALz4c1wJobjSZevq9fv1Y2mzXgxgRpaHkWWtQxzkzcJm6iNAIkxfMYMESS4ySk4MrKivr9vsfniYOhuisk6GkAsGkk1rD2AIiz2axOT0994CdqN+4DUp/3yrpj3UPUcH4KhWcI4vI++B1Mm0mTInx3d3fqWV1cXHjtEqd5N+/r+tBiIGKK0GaM98uzQiBB7mAKg3zGJN7GxoYBLAQIkAirq6tugPgaFGdMsBHr+J1Y/dEoc4/kNkQS1A/UZ5yXRJO/vLzsOoV6AiKWGqHZbBpUZD+HakeadzzSAWghjohl1B00VNSU7XZbJycnWl9f9591Oh2Dt+wfvp9pQepTaufQe5wJaUDearVqiweAYUhI4kU+nzeASz3E/orFYgYRibuoV1FwokbHdoFaHNsiaisAVQi1lZUVgxELCwu2+iSWUoci7Jqfn/ekCwpf8jJxB5FPeC4HdWE+n1e9Xlc8Htf6+rpVtYjHWq2WCRZAqdAys1Kp6MmTJxaBQW5QF4WTsXiPY6dK/uIZsx54DoihAEGIXdK9XTRrjzwMQEP8pDdhLwNKA8KHfRVrAJKctUz9yeean5+fOgeMmPs+Y+CH2Af3ej2Vy2WvHepozoPBxWBlZUXtdluxWMyOD+yJg3cHc5NLmd6hdwzJtVar5XfFNDvvgZiJqwD/8K7ZewjjlpeXTXazdiEUAEOxYYXgwcoIIol1irCM/hPwCWIEcA4AkdgX2gRCXBJTuF/WHuRKaDtIfuE+eG7sdXI0tQzxDxsnPj84ALVeJpOZIkepGwHXhsOhdnZ21Gg0HBeZUqdOAkDkn6WlJf3Zn/2Zfvazn2k0Gunbb7+1mAXAmv8mr/FMJE2BuBBBKysrtqqhvoPkpn/j/VGjf4/Tb5+u7/n6EGOgJGNe+XzeOA5ncRBD2GuQJfS55BDqSZxYBoOBbcgkeXo2FFQTg0JwOCQQyM1RFCmbzZqYIQ6RRxE9hP0TcYi9H+Y09mI45UucJe+Cp2HLDG4ZTvcRiyCr+XNqOmpFMKBsNmvbdaZKsHBj2h2hBLkd8h2Q/uLiwhMa1FQnJye20Q/jDb0szwMRTyg8oP8l31Bjsw7ovSW5R4NgYIIZcSbrg3yKIJD6JawnQ5EBpDu2YKlUygQT9Rc9ea/Xc83H/UGah30vE2DgHWA5jUbDNSQYLD8DwbIkC8/AisFqQuEVpAv5XZLfKT3A6empcQFqDPryBw8eeA1ybicXz4h+B6yaXEr/gvCdnMlQBZP6mUzGtrdgS71ez9bziDpzuZxFnuQhcEJExu/z+tDPtPlfJP1nkv5TSedRFBXf/TMnSVEULUZR9D9EUfSzKIp2oij6Y0n/j6SmpP9bksaTlfTfS/qvoyj6j6MoehhF0X8r6bGk/+23vaG1tTWD3tVq1Q0OAYPCkaBII3JxcaGrqytvJBYqC6TdbqvT6VidzhVaAwAIoNyjKeGws42NjSnLhjC4EQwprglUjES+e54eQWbxEjghDwAaURTRRFJgA6oRdFBCEdgl+WsIECjK2QioYgBGSHIUz4AI/H6acthSCmvAA0lTgWl9fV3pdNpBcTAYqFqtOqmEY+wcsAmwn0wm9atf/crBFoJjZmZy6Fyz2XRxCMMbj8dVr9enpk8o8HnuqBwIWCRfAh+gGH6TEFvYnhC8KWx5V6ESExVu2PAzWi5p6qwREv78/Ly63e5UUmEMfW5uTq1Wywd4hbZ0o9FIL1688BlCrGnWGsUAE0E8236/r9XVVa97ACdJBjRZayEZxDNHLQGQXKlUVK/XJUnFYtH3x3sDeAHECQFWElOv17M9ysHBgU5PT6f88wFyuEeUZu/p+qBiYLPZVK1Ws9r61atXniSDTGCdXF5eei1GUeQ4RNGGby3WVqEnP3uBKTBU00yAnJ2d6eLiQs1m09Yv7Bd+5/X1tQk8lOBMQpJYKQrq9fqU9QKj0jT219fXto968eKFm2KKrKurK48fc/8US5eXlwZvsRKBbDk9PTXYxnpCFUIDQEHR6XRsE0n8Z5IMhRbxotPpKJlM2sqo1Wq5GB2Px9rY2DCIyOcN7eJardbU1NTt7a33JQUue6zdbrtIvry89P7DCxm1KnEfsoniCSECfz4YDHyOAUDL6empbm5udHR0pG6364OpUbNxRhxq9+XlZTUaDbXbbb+3fn9yeODr16/9Wa+urtRoNFSr1WwhCsl0eXmper3ur6NgowAH6OHvKC5RVAGO0tiFByQSs0LSCKVuqPxhXQyHQ9XrdavsRqORSqWSpPuDI2kGAI75HfglA3pChLFnIBgBgLh/lM8hoMTfA6IilAA0wibsPV8fVAwkpzIRxnQI+YlYB4AF8UZ+RhEMQV2tVh1HpEndkE6nXfdF76b/eO8IMwBEyfPX19fa3d21wIM6DwHFzc2N1tfXNR6PrcqkiWu3214TTAZ2Oh3bRZBrAcOZLApVz6x5RAzhFCtgnCTHbM4sIG6cnZ0ZnCV+5vN513tMgDE5AziAapPYwTqn9mMyPB6Pq1QqmdBGTQchE9qLQf6y3pmyoDGjVqKOY+IKb21AQ2q3hYXJoa3JZNJqRdZJOD0DmIHHNuuIxhAhU6PRcP1Lwwj5gKUsvQAT4YBIrD1qRtZJp9ORJNveIUjqdrs6PT31u6SGJBZhbbG9va16vW4L4a2tLS0vL+vp06eeSAVoB+Q4OzvT9fW1jo+P/YyZcGE/QGRha3t7e2siSJIFQGG/xc9hj6F6DUlBAHaAIH4Wa71arTr/p1L35xyydgCbqdWpHVlL7/H6oOKfdH8mpyT3huH5CBAtAHLsI2qq2dlZbW1teY/SY0AKQiDzbjOZjIrFonte/o5aKwQusUaVNAXKYHEH0cYeALijZ6QPHQwmVsCQhLOzs8pkMrZnZB3HYjHbRzPZSg8MYJhOp/1zsIXFFgaSgz4QhTK2hMQ9FNGI9Ki/QocH1h6fmbjHviHeUBMg9OT7IWaZoqKHRh1fqVSs9udcG2IWNW4ymfT+jKLJOTZ/8Ad/4N4tPPcPQovJLGIgcTW0wIzeqbo5OxILXb6X/HtwcDA1WQqI+n2etffp+t6vDy4GIk7D9YV+Nx6Pq1AouKanf6V2IncD+iOoQKSDkwXkUDhlAPZDP8q+lOS6g1wIoUMcgFR58eKFYw1YCBb+EDTEXTBDMEviI04ot7e3qtVqvk9qxNCyNpPJOPYtLCzYApv9jF0zMYMeHZxneXnZ5BMkET05PSKCXHoSpjfAl5jwo3ak9+QMk0wmY6yTHIOoiPhEHIQAANel3wrJbcgN8BJyVmhxSf8AQUR9xvk3oXiw2+061pPvIGLerX9lMhkLqBGshva1fM7QehgXJbA4MOGNjY2p/E69z1qgDuSdUHeSz1kf1IjS/dltTMAmk0k1m00TY+QaMFn2EL8XQT6CcWrjUqnk93lycqLb21ttbm4qlUrZbQA8k9+PkBgMBZEcZGro8ENfwedivyHUCs+V5XkyIfx9XB/0pI2k/+rdv//8O3/+X0j6PyQNJX0m6T+XtKIJo/7/SvpPxuOxkYPxePw/RVE0K+l/lJSV9P9J+g/G4/Gr3/aGCBjYRkHeoABCSU1TRjMgyeBcIpFw8ZrNZr1BWLzNZtPgNQrxd59Dr1+/dkOAnQNB5u3bt27cnj596kXz/PlzpdPpKVVOqNCmcSPY0uCjCK5UKgbbYUAZt2Tkje/76quvVCwWlUqlPEkE8HdycqIoitTtdvWTn/zEn+vm5sY+x9ls1oedxmIxnZ6empHf3t72561UKlbbSLJqIJFIqFgsulgnMdRqNbPBTBtBthHESFqhl+jl5aV2dnbsg7i9va39/X2P7C8uLnoa4MGDB1PTHW/fvnXj/PjxYz/nv/7rv1YURT6QEWuBKIr05Zdfumin2S6Xyw54fM6wceT507hTHGBjIU0KDGy+Go2G1yiJ/cGDB/4dJHkC5eeff+4A/vz5c+3u7pp9/vzzzyXJSZd1sLa2pgcPJuf+NZtNZTIZg4hMDF1fX1sJz7pH/Xt7e6u1tbWp80VIapKm7GQAilAfnJycKJfLaXFxUZubm/6eRqPhz7u2tqbNzU3fe71e931sbGz4e77++muDBslkUj//+c+tKMAH8/b2Vqenpy6a3nNz8EHFQFRrFHGc2TA/P+8zCphgAay7vr72uwZQghCU5LWEsoP9hMpRuh8rn5ubM+GM7QqWgyhfmcK6vLzU3NycyuWyCRASrSSTLExHABJRnEFCETOle0AVxTyH+YV2lCgSQ9VhCDzSmKOcZ6yaJjyRSOjg4ECFQsEK0tnZWSWTSatbmZAEuOPe+DdqbchPYo0kKyPJRYB0PH9JngYiBjJ5QUMd/q5isWgVC4A+8YsYRpGND26oPEIBxuGKEAypVMqKzNnZWa2srHiCh6KQ3ICy991aVyaTMQEH+RGPTw6R3N3dtWqX6QYUOMQeJhHJAzRCjJEDxkBwzMzM+JDwRCKhfD5vsB3FZ7lc9ntDAQ+BGY5+Z7NZf/7b21tPS4T3BOHIWltZWdHR0ZFtWhjZRm3L82KNoRon72HtGo/HPTHDPuaZ8yyoMXiGoaUSTcN7vj6oGEi8oqkG4GfqiGcDCcxEB7GQPA2xRp6E0Eun0z7kPly/TCmy5pj0lWS1OpMrW1sTtw/2E00hRBzkRa/XU7FYdAyTJucLpFIpnxsmaWrKGKIXEJPfz7tnXX63mceSAEATwJv4BkBwfHzsqbN3783PB/sK6gSeZ1hnUxeEwCDxMIoiq7EB9lAbEoOY4Caes2+ov0IBFPUldl80vkwebW5u2uMdZSRgCQQ/zx4gGEESgCSxE6ENZ76EE+2oQZm+C0kRxF7hBBLkwmg00tu3b/X48WPbqUB+8yz5fKFtX3ggKzUc7yIEsJiIAYgCGL+9vfVkEjmed4BinhgEwJRIJFQoFDxxz3olFkJeAo5glYkAYm1tTUdHR9rc3HQNHSp/w/1BfiT/Y31GLcD5OIDqxO9Qcfoerw8q/kn3ZAj7nVokm816/wOus1+pEXj/rNFwkkuSpwSJfbwrcta7z+KJe94ze5FaLgQ5Q1BqPJ4cfL+xsaHLy0vvUe4RJTW2aCiiqQPK5bLzJkSvNKmNUZhD1EuaIljYx1i67ezsqFareRKJHjEej0/VE8Qb6i+ENPSzCCZ4tqPRSMVi0cKlXC7niTb6+yiKvI8gRYntiAYQaPI9jx49mrKrxu6RSezj42M9efJE/X5f1WpV+Xxe19fXUwp+6sRQeR9O/CI4RPzBewljJe+2UqloZ2fH6wHhwu3trfMxE0Wfrn/S1wcXAyFBISOZXme9gSPx3+QFvof649196fLy0uAxWAfkRyqV8nQCrjchWE4MwD2F6QPEMel0WtlsVolEQj/84Q+dM7G8Wltbc7wKz/0DQwP/wM0B956ZmRn319jukxfm5uY8wc1nxBKW30nfQE8kyee7UMPRw9CvMAWLQHN9fd1fSw8F+YGQAOchjlmoVquO70wuQXQvLy87lhYKBYtKeV68a3rB+fl5C6AgdyBvpEk+o7ccj8eOSViKQ+qTG8BK6MVCSzz6jEwm4zgZi02szcFAWGecV0rdEgrYsZOkl6ZP53dT+4PnQahhHSbJPTB1Eo4e4ODU/dwnzwtBLphkWMvW63W/F0SMhULBdena2poxm3DSn7oU1yqGJLBTJveDldA/hMIbPjOiCwgq8qM0cRWqVqt+ZxyfQY3A56I2/j6EAh80aTMej//eGfPxeHwt6T/8N/xZ/0LSv/h3vafQLxHVKmpK1CkoaWFvw7M/sDIguN7c3PhMG9TRKIaGw6Fevnyp169f68c//rH/DjLm9evXHqWTNOU3+Zd/+ZcqlUpmdPl5nK3A4ZmdTkfZbFaSXLjC4kPMpNNpj3IuLS05wKOIBigolUra2dlROp1WpVLxuCcjamzW2dlZ/fKXv9TW1pY3Kw1Ut9u1OptAmk6ndX5+7qYSeyW8r8OCG1AD5Tag19LSklWpTJjwbHgP8/PzOj4+VqFQcEHJ5+brXr58qW+//Vaff/65J11IGLVaTa9evdIPfvADJy4mBer1uhqNhnZ3d6dGR/mdFMoEdIphQNuQVJNkoKJWq+nm5kblctmK1Xfr3UGawCnJwQsgnabziy++0Nramj83QF2329XR0ZHVZyh4mQZ4/vy5JFlVT1IZjUb6q7/6K/3O7/yOVVCw5JAwqDwk+WukyQgiARVChmkmpo0ODw9VKBR8FgVgAWdtjEYTj3F8/2HCIaouLi705s2bKWKJRFGv1/X8+XNtbW1NgapMZLXbbS0vL6vX69kiACUs5/G8r+tDi4EhIIaqDzAZkkC697Tv9XqeylleXnZBJslNJzGy2+3q6upK6+vrJkFYz4lEwgcaos4LLXUA/1HIYO/Afg4LDYg71DsoBin2AAyI58QJgAqIe4opkjvKG+l+coy4wjqlKAptClFkM+KLsppYD4CF/y/FCAB6aOERTsahZrm9vVWr1TIYT/4gVi4sLCiXy+nbb7/VxsaGJHl6BoCAgpD4gCpbkkG04XCoN2/e+JD6WCymfD6vbrery8vLqUnBpaUl+wrT0B8cHFjRDDGAbyzFLQAACired6PR8AQhBFitVrN1Sa1WM5AE0QXRyxQi6iiaB34fDRb5haLx+npy7lWpVHJMuLi40HA49PQKBWEikdDr1689qo0qib1AfKI5Cf88VOJiI4o1AOPmADMQQQCevIfQCoi8cHR05EkG1LWS/JlRJ4W5kucO8cpkK7mZ+PA+rw8tBvJuUHrn83nbQAAuUoMA+hcKhanYEdrWcDYQOTu0caKZhxzhd5N/iBHn5+eOgYDPKM7JyaxPYjRTJaHNGGpP6ovhcKjT09Op6bh2u21ynNgLGR1OwmKN9vbtW+8HJgMB8EJLAkiKubk5E7jE43Q6PUVyo0DkGVGLhZOA4cQ34EO323VtC5n+9u1bbW9vG5R9/fq1n5skWz5hP0F8TafTbqoTiYQJZOI35zNArITkBEQGVoYzMzM+f+ji4sIWzKHVD6AQwAiTI9RInFkDWEQdDZnHOoBU7/V6UxOQoagCEcVgMDBwDlFBXcs+5+chYOEZLS0tqdVqmdyGCJTuhTKAzAcHB5qdndXq6qrv//r62uK2EABgLTEFxs/jPphIhCADJJYm6vxQcYk9HQflUg9AhAPYAD6FByhzviUkF8+XvvB9XR9a/JPkyTn6EfYOhEN4sP3Z2Zknzqijqe2oBaitAAqLxaJjGuuXHubu7s7raPxuqo93dHJy4qkWakdiS2h7Q5wjF9KfLy0t6e3bt8pmsyYSwrNgIE1YiwjcqKOo6ziLjt6FPcp+Ah84OzubshWTJvGm0+moXC5PCVRmZ2c98UbtyFQ5OTwUVpycnHiP0kMSU+fm5lxrxONxvXz5UhsbGwbX2E/U9AgAj4+PnTOurq60tramdrvtuFEsFnV0dGQhCEQLYj3Ib3rweDzumoF+nfVEDAdjQZVOPIqiyM+Imp81IckENeKq74FM/XT9A10fYgycmZlx3UscoZchD5J/wSfIq8Qk6f6s6iiKfJ4uU4fEN4hKadKXYIM8Go3sPEGsxOqUaVJ6ZlxDLi8vp4SpkJ3sTwRlmUzG94GNG9gK/QdEsiT/GfUO9wlBA1k1GAxsZ4ZoGnEK30tNQj6hJuE8sM3NTfdhiInoj6nrqLEgWBKJhGq1mn8fUzrpdNrk1tramskT3mMYcxCxgaMhmIc8ebe+LNrkjDHOzKFOplbECYN4J927teAGQfwMa15+P3hX6MqAewki0Vwup0qlYiyBd44Q+ubmxvUawiZqJno6nm84EcU56RAWoUiNXMc7hKTivHcEoSsrK3asYqpqMLi3FQ7rfgiWTqfj2pn+E2yaPBriiicnJ56GQ4R0fX3t5wPWGbrngDGANSN8Q5gyGAyM6TB5i2PLysqKms2mdnZ2vpdpmw+atPkQLwiXlZUVLzyImlhs4qOLb2Q4msxkAw0ezdh4PNbOzo6iKFKxWNR4PNY333zjIubx48d6+vSpJHnyhIXHBAabGfuVeDyuP/zDP/Q9v3792ouRIppNQpOCilm6n1rhMOIQfKIhZ0MDKnFQK4D1xsaGFTDr6+uS5M05MzOjP/7jPzYD3+/3dXR0pNFopEKhYDW5JB8YDVlEw/XixQt7FqIKIsADhhC8GYcDMPnVr36l3/u931MURbY3gczOQLldAAAgAElEQVQhKQEoAJbRNO7v7+vZs2eSJsH54ODAhe/Ozo6ngVAWEmz39va0v7+vKIpsubOxseGJLQrKr776ypY0TKRE76xTYLEBeHheV1dXtpoCSGPttdttexSj5ARgJhHNzc3p2bNn/rk01IlEQul0Wg8fPrS6+2/+5m80Go1sB/Ls2TOrErFKKxQKWltb05/+6Z8qiiJbFzEZRULn3gDQ5+fnrRRYWFjw+Uqo3hhVpSGIoshnavAuQ1VsNpv1mqF5Yt3m83k9fvzY7/Hk5MQA+8rKipXKr169Mig/NzfnSbAoijyKCdiEsh7F/8d4sTZpPGkmG42Gm3ZJXouXl5cqlUomY0NAudPpaG1tTaPRyAQm651kB+kAoEIjHloqAnjTxAJSz8zMaGNjw+cpSDKpSiMI6I2CnGZQ0lSRBsEE2I6Ck0kbCiUK4FDNCPGMMuTs7MyWbRRa5XLZz4SRcUh8SSaYIFJqtZo2NjZ0d3dnkgNQY21tzVMuAIwQ8GFBDFHOPZRKJatXaZ4hBigwO52OCRBiTLlcNoC4s7PjuIf1nCSrcGhaiNsALtwHVlv1en1qChSlGXGCz4d4YGVlxWob7KEAB1KplM9iohDGlxmxBKANZJx0TyqiCqYRY33Nzc1pa2vLU7HHx8c+0JfPRP6E0CafcPYGYASALoUk6wZCBtEBU2HsGZRvAF/kLMikm5ubKfCSySmEGIDZgEPn5+eqVqsWWTSbTSvXuR8UwyiYsd+icfi+xsI/lAtFHbUC1oOc8xXaWszNzZmcZMKOc1M4z6pUKhm4ou6g4WFdI3iA+GSvDwYDg2PYI7LvOIybfyR5LwPcYUdDbiOWAjy/fPlSn332mZt36kbiOOuHeoCmNJvNep9DOrOuQzCw0+moWCxOTfVg7QGxG9pchGpK8kjorU5c434h0CDHUNIBtDJZm0gk/A6wSuJdcr+crcLZhbxvGrqVlRW1Wi2LYkLABBCU5pM8xedGUAKgApBLXgG4RoREzqH5x3q33W5bnY8FBs00OZF74uxKAGUOb8X6guaWegzQGxszcg9nsrHm+Zz0OuF74lkQW+/u7rwGWKc8l8vLS+fjeDzuCXHWOuuB+pH4zN8xxcF9SbI1VK/Xc43X7XZNvPKsII3G44mFHhNM7HnWCbUftmnE2Y89BlKnp9Npk1kLCwsGIKlJ6FXr9brFM+QdSDEANMBJ4kwsFjNJCbnH2pqfn/d6kmRrFA4Pxr4NoSL+8ijVAb0gM8OzXbG5kzRFtJ+fn2thYUHdble3t7cGHtlbvHMIWj4nawrhA+ufXoY+K5VKOT48evTIsRrCqd/v6+nTp7q5ubHFI8pn+kfIM8hMxIbcG7UU9ksI2DY3Nz1hDnmUSk3O5aE2kORzABKJhN0SEMhsbm56Uunm5sb7h56S3rPT6UzFYOpreqpCoeCDzgFGiZPkSJ4HWETYf2EZxHRcaAX56fp0va8rFou5f2GfSvJECnkMgat0L6ZlMpa+h6kZMAjyKL0mggfyLCQMWBe9bCwW89QAADiTocQlBCtnZ2cG8amnIHtevHihcrnseBjGBMh2ei1Eh9iEgkHhfAEehjiz1+sZB0SYHDoQ0HeDD1D/cu+QCJyJx2dkIoTcEcYOeixyVEgKkH/29/enrMTol8nxYFDU9wibIFuke1Hr0tKSVldXLYzhWUHy5HI5tdttT5UwxcyxC+H6AEfgmSHqG41GdjchRoe4JT8HoWitVpsS2iGkjMfjnqRaXV11bqHmpJ9YW1uzOALsl3cKgZdKpUwGIWCjju73++5zcaSpVqtTwk2EENVqVcVi0UQXOSSVmpwxGQoEmY5i8o18Cdmyu7vrSVyEvuBBED3JZNK2nax13gH1L8+cv2M/c//D4dCCVfbg9yEU+ETa/JYXjTHNGaAhLzi0LkmlUrZNgoFjKoSAyUZk46N4DIM1F0GZojQcFQ/ZyEKhYHs2gjtKHIISm4ENK90HHH7e4uKi7xsiBwA8LMbCoMUE0vb2tptBFi6q6c8//3zq/rBaAPgg2GI7AnBKQ8Zn5dmhBKZBZLz+9vZW+XzewDJF/P7+vu9dkhMHhBwbE0KOgMpmp0nEaoPNHCqMeY7NZlM//OEPnbwI+Fg20FjzfkP7M8b0AUgoWGl0RqORGo2GisWiJxV4HqxBxvC58K6nmSIYAbLzvpgqefLkyVSywYJjZ2dHq6urJvooWLLZrMd7eR6ogxuNhonN4XBoBToWFnx+3hXJlMaD9Q3gCxEJoICSg6ad4M5nwi4LdWmoTsDSKJFIGIwEBGZf0ADwDrkH9j9A28d8sSclTa3VQqEwpWhF6YciEzueeDyuw8NDLS8vuzGlWGUNhLYkAOI0zJJcpNF0s3/YvxB3FHSc3TIajfTkyRMDnzR8vFMKlOFw6HcK8QS5zaREaA/GnoBoLRQKU3uQCRXACOwPab5RJGcyGZPlPMcoiuw7TkyEaEWtyIW6B+KIZoHC+ujoSBsbG36HkLp8NoAGyIxMJqM3b964KAFEQWk5Nzeng4MDPXz40E0JKi2miVgTqKJQeGOrAzlDQcUaK5VKOjk50YMHD1zsdbtdZTIZF53sU9ZMeJA1Y9c8t/BeUPpwP6jdycsoswCoWQesSZRTTNdx4DKkPAAt7w1lGCAlTRQgFoU29iSAE4A4gLGAIhBCiUTCFqmSXCyOx2OVSiXXDwDOEELUFngGA1ayT3Z2djzZCDFIw4eFDSCTJE9+0SyENcvHeFEzASIWCgUDReQtgPiQMKXhHQ6HymazBr+JW7FYzIQMntyAUygKyVUQj0xmcOAnOY2zjXhvTHcsLCy4LqOu4lB6Sa5R2IvPnj2bmh6FcIQQCafMyfPkzvBMEkm20ABQ5M+wj4AQJaY2m01b/Nzd3dkeBKsgJteJTbVazcAjDeRoNPJzohHn77ERBBimNsdDHcIDgBYg/+Zmckgp74CcQ7xhShqCCdCU+A+pDhFHbALoxHYCm7MQTL25ufFEIbGfP2NiixqWqWL2uCTV63Xl83mDQIDfsVjMFhyAzdfX146zxMO7uzufJYHvOg04BPHy8rKOj4+VzWZtAcf38jyw8+Nz0byfn5/bzpNpej4n98dzpD6Mx+O2HwSM4J0Ui0VPzlDDsT/xvmd6cXl5WaenpwYPIOd5B+RkcjyADXUiRCmTih/zNTMz4+lBwDnIS3Ipdcbt7a3zX/h8arWalcgIrgD4eH5MT3Bh3RPWPVjn8nuJq4lEwhOod3d3tl8OXQPCWFav11UqlXyuK2Ibent+F3sFwof4Tc1IPdDpdLxvqPP4XazZpaUlJZNJ16T099S49EQIcPhzAGFAN/YB5DX4BMQahC1Tk6xdSJMoinR0dKRisWiFeCwWs9KZvNPv990PsffpZYnd7E+Aykaj4R6WPi2KIvV6Pd8D+e3Bgwc+ZxCRCM8ZdXMmk1GlUlGpVPLPa7VaymazOjs7cy/Oc+KsYPbvp+vT9T6uTqejhYUFEwvUO+Q7gGDqMKZ3EXszuUf/mc/n1el03BNjD4XrAlOd1AtMl9HLMPXCBAAEOOQIuR2SmT4eUjyMcxsbG46hENdXV1cWC2IFBSkVWsOxz8gBmUzG5x7TZ4L/8FkTiYQnfXFhyefzvoeFhQXHPmotnBBwEjo/P/d9QDTwNeQAanJqTnI75FuIZUJAgUcR97CcZTIQMR6uROE5eKH4IIyb4JnUUJAeEFiS/JwkmeQm3jabTeOfYJcQgmF9S+xnappad2FhwX0BpE64PugxEXBx5ARnxYb3Qj0PJongj0lViEbWKHUzewAxA1Pqg8FAW1tb/m/qdDBASDgcmELrVTAYMN+7u8nZequrqz7igjwM7hv2VeTRt2/fan193dNfDDtgz8+0UbfbValUMk7JvR4eHvrP3/f1ibT5LS/sG+LxyeHOAITJZFL1et2HalG8YnOAQmV5ednFUKvVUj6f129+8xsXgZlMRmtra6pWq1peXtbh4aHBIoB1gKHnz5+r2+3qwYMHDgpYPnHOA4EZZjCcQmGTonBClUyTDJvJNARjfRzShDL6m2++US6XMzPL1/7mN7/x56W4xToB1jdsfAaDgZrNpu9lc3PTDDwj96F9F2AR9mXYcgHSk4RIbDReg8HAygCAYQiBKIrUbDadxACs2LiNRkPn5+dWwJKo5+bmdHh4aNXg/Py8Dg8P9eDBAw2HQ71+/dpgP0kTVvnNmzdTI4kkpl6vN5UkCJQAxgCCKLwp4lFeUsSidAVs4OeMx2MHHc5nQfUVjmVWKhW/q1Qq5fORGKlFXcW0BGoqphAoJtbW1jz6DzDR6XRM3mAZwMGWoWqL4ub8/NxrDUCd90cTAfDV7Xb1t3/7tyqVSlONTiwW80HrHGQmyZYfb9++NYEFQEfCOTw8dIAObTYAgwCuPtbr6upKJycn2tramjpnBrAQMoIYh6VSqKzd29ubspyjkAMUCxvC8H1KciKmKEVpIWmqcWTtso65N2lC+oRnk/DOQq9uCL5UanJQe3iIPKQBY+4zMzMG9VBZjUYjnznBGmb9hkUDxWq73bZ6MbRwZCKHCQk+L9OLoQUIkymSbHVI0dhut/Xo0aOpM4cgdb872k9si6LJuVvz8/NWqmDBBaHNpFSoms7n85JkAIV8eHFx4YJSknMMky2QgKg3Nzc3p8AIinwAHoBPlE0A3+QpLHIguphCwMqKIplij89MDkMJxdoi1s/OzmptbU2np6cqlUomFQEqWOuArgsLCz4/js83Pz+v3/zmN9rY2JgqMGk22B8AsBDEKHRZx6iuaADIlRTFYVFLvkdJBdAGgIoVwMzMjJX2jMuj6iNu01gBBoeWcu12+/0Hng/oYj0xnYdQBKBsbm5Op6enVq0BDEqaUpOxZwEiAS15zhDZkIMIboglqNYkeQpPklWfNCFM4mKDiyIdAhXbNOoGbBLCsyVoDFutlvb29hzH+D0ISYifCF2YGKGGisUmZxuG5+EwYUgjC4APkTIaTWxHiZt8fuopmvGVlRXXB8R+SMRQCSvJzRRn5tHISrLqG7UmBBgHfV9fX09NqJE3iP2AD+Qc8hLPECCXd8P9IqIBMObeb25upqYSyDm3t7cmASFceRbUvGFjitqUKSZAgZmZGYuzAIk6nY5rUg4thwirVquO4ZDOYR46PDxUOp3Wl19+qf39fYPHrHvpPl7QhIeWy8QlanSIH2I2ORtijZwVCoEgkYiPMzMzVoDysyEZwrWOkI59yJQXoPHMzOQMytPTU+Xzedfo8fjkYFz+HxL3Y714B4jjyLuQIuQi9hm2XuwfhD6DwcRyGpstLMWJL5Bm8XjccZKJ5pOTE69vemOIwUQi4R6YuLS7u+v9kUgkDL6wdonrENjk5FCUQ/8ECYsQghg5Oztr8pE1AUkDSQqIRNxhSnF+fl6NRsNxqNVquZ6m5gpJLRwUiIUAutjWEDshqxKJhOvCdrttQpwcxb1CcFC78Z7pPalBIYvpw4mJkqbqTuIGNW6/37eQiX41PCya2oUYGZLz5IzNzc0pNTg2O8Vi0ZOv5Fx6xI9dUPfp+oe9OM+Yg+hDUS3YWSjKpj6gv6APYK0i4mA6mB4UzIp6kf4YTIa8SF3AJB97kPhDDkcIQf9KXg77aazOcIfg53EeLGQKEzAI266urqZsHyGeqEURflPjgHeRM6IomhLzIqALBQCIZ7Fwk+QczNfgbrCysuLamDyCY4skO1swFR9FkV69euVaj9oPMpz7436r1aq2t7clyRjW7OysPzOED3U/vSvi4jCW1ut1kykXFxeqVCrK5XKuPahXIB8gDfh5WHcxQUnfzrti0p1ekdqH+o97ZT0TbzudjgW1TCdFUWS7eoSTiLuGw6FqtZqPe6AvBxdBTETfyftF/BFOc/E5IZ64T+ozsAP6WgRN9BKtVsvCYfAAps5Y/+AQ9OiSnJeYsqEX6/V67sUKhYLdViQZ++QcHtbz+74+kTa/5QXZAZgUj98fykWRh+qGhhb/10wmo0ajofX1dQNkNK8svtDvj4ZhMJj4EsIoozyBPQXcJKCn02k35plMRm/fvjX5wcHIYdODPQBefBRi4dkPAIaAYFEU2dv84cOHBpywccE2od/vq1AoKBaLeZw6k8moVqtZBYoqnCRGI4lahuKXJhdPc4ANJnjCUXaSFYkqtJkh2RAIaapRXsFAA6LQcIcWMsPh0FM2HCacSqVscQcjC1FHocoZP5eXl9rd3bXKfmFhwQGAYpsGPpz4efnypZ4+fWoLFVQOjObRQKFyCgETmhGA0sFgYHU2iitJ9haHdAGwBczleVJ4MJ5LkUAwRGkxMzM5i6fdbnu93t5ODstEkU9ioTGDZJHuiUZGXfl+GhEA4dCChgKnUCio2+3q8ePHVsgxEonyGBIW8JeEFe71xcVFr2mmvQBl2MuhD+3HekVRZDCdOIcvPGoFAKNUKmWALpxSajQaJj4oDjnHiMOJl5aW1Gg0vH86nY4LQSYWaZovLi50fHzs84mY9qNQwtuWdQvgzOQhABJTKuHep7iDcEZV2G63DYhLcuMOqDAaTSwjIHKIoaPRyOfBsO5Q+koyoMceRilNYcTnQL04GAx0dHTkaUj2A4DG1dWVyQaKVYA/clK1WnWxxaG+AIkUjJVKReVyWc1m08AE9hScEQPpwZ5JJpO23KEAoqnBQoV9j48vCmlIKsQBxGj2ZUi04MmLKhU1Ua/X83QOpC8/X5IqlYpFBeRr9jBxKjyEmEIRj9yFhQXbxBDP+JzfHa1PJBK2GhuPx7q4uFCxWDQABLiFrUJY5Ic2MxSWIfkWknzYwlEj8D74HeQmwHg+H6IK1kVIsoXgMQ0pU0mA041Gw4DU93H44od0oQzDzopYQdGO1z8ECBcNS+hZjmiFRp5cT6NInOWdQApJmgLzAJ0B2mlYsakgzyYSCU/58N5RK2JfGYLZ1LMAEBsbG+r1egZIEfUAJK6srKhSqahYLLpmgBRnX8zNzU3ZA0ZR5LO4UA6GUygLCwtaWVmZUqCHU+StVsuEDURZOG2JYIXfTx1G7sZ3HXU55D7xjRoS8AQCjMZ8fn7eB/+ijud3IThABMJZWJKmJj+Y0g33GzVe+E6I/5JMmLIWuD8a1rm5OU+7plIpnyUYAiesGyZIsZfgvJ5QNcoFGUe+DwkqprwGg4G2t7ctbCPnEMsPDw8dF3keTPeRmxFgSDKJRJ/BvSL6IE8xCUDshfAKp8VisZjFdPPz8ybVIYDa7bYtZEKBCPGYfgkwf39/36AJOTokCD/Gq91uuybBKo/8Nzc3OWtzfX3dwjB6BwgBnhNTzGdnZ8rn86rValZYUxeyTu7u7kxU397emoCgdwP0keSJLxTIgDVMbwH+McUKCHh2djal0GYSC9CTGoWpEc4KDAVj2EzSFzQaDYs9U6mU44wkg46AmEyh0HOEk2nUAJxxRq1AP3Rzc+NYDFgE+RvWS+QLajTOUoSUIV5yD81m0/uMc2LIV+w3BIQhSIz4iX0dnoOEJSZ9P7VWLpdTt9s1CUZ/xv5tNpueOCAmEp8B11CtI66DEPrY65JP1z/sxbkyAPXgVth0cfbF7Oysaxsm6RFlEz+pOzinmZ8TEpjkO2oSchxnxiAklOTan7gMrhe6qkC6hufTIYohRjMlTh6kfqUn4fznEBNFJMEeZd8Ph5OzPhEKXV1deZqO/U+/FpILEMz0cAh4OF+c/MAZxpAtW1tbajQazkv069i5gi1Q7yH0297edj8GeY0gEtEg9dXOzo4/z3endpjoJZ+AzYFvgRtDKOFowfMLCbJwPYGNYhmJnVsqlXJ8xElDkrFH+lUwvMFgYOyZiUbun98BRivdOwyQd4in3EepVPKkYyhExDqVizxGbgonNenFcUKiT7m4uFCz2bQg9Pr62o4dtVrNeCRC4tFopJOTEwvIJDkvIojkfYGTQrQmk0kL3G5ubtz7MP0FdkENzHOOxWJ+T3zGsEZ/X9cn0ua3vFjgjOjR9EhygXF4eGj7BNTJktzMczAhRM/PfvYz//zhcHLYUaVS0ezsrP7oj/7If3d9fa3d3V31+309evRI+/v7/rvz83OPND5+/Fg/+MEPJE0aLCYH4vG4VU6DwcDjyQB0bEo2EU0l9hyoDzkfhmKIRRuOly0vL+tP/uRPfA9nZ2c6PT3V7e3tv3J/vV5PtVpNhUJBn332mT9TFEX68ssvlUpNziR4+PCh/+7Nmzc6PDxUFEXa3t52k88zp7mjYaRQDTcsDScJDuKB0X0OZgQMHA6HU/cnTc6gwWbm93//9/3no9FIh4eHGg6H2t7eNqDMe0Tp8PDhQ+3t7fnvYHIBGsMpgGQyqQcPHvizhaP4gMIUwXw/B27ij06jPR6Praidn5/X7/7u707d3/HxsRYXF7W/vz/13FExLS0taXt7W0+ePPG7Oj091WAw8Fky4fecnp66iSOZQ8IRLAnWJIswwIa2eSG4DnFK8qGBv7i40JMnT3xuTRRFOjw8tAdlLpfzu4yiSH/+53+uXC6n9fX1qfdxcHDgr9na2pp6j1988YXXD8mWmPCxXnhoh8mbKULWF0n+6OhI5XLZDTJ+vYBQxEWmwhjFZTIFe8PQi5/zBFjDgCn7+/smTKR7gBSigIIAIgJAMrQSy+fzLpDDQhcl4dnZmQFO1JRhzGMqhljKVEKtVjM5zbrl96ByWVpaMmAG2ULByxlJWGjQlKJA3Nvbc5xGqchnggyW5PeA8pGieHV11WAhRRT3yrPDJiQ8W0q690gHpAoV4Xd3d54IgkjhWRKfOFsm9KiFqADQJiZI90B1CBIkEgmvPYBBnvfm5qZ6vZ7m5+e9dlEnlctlxePxqcmD9fV1EyKsGdSuCB6YNIUAwhbn/Pzc04wA8axFyMbr62udnZ1NneFA8ZrNZn3+Hb+vXq9PgcHlctlFPM0NDVbo18w0ESPknCdWq9WsDGM/sWZQyq2srHgtUNTSmISWh4CcgCYokd++ffv9BqF/5Iuah3eGypeDTAF5C4WCxSlra2smqsfjsRt2FGY0GqFNKHmS3xPawqI2bzabJjGw/yLOUvcA2EOkU7fRdGDvkM1mp3JsGGeZegXcprYijoQkABPShUJhSjGHaAZinmaTWoAzYYjxABY03Hz2arWqhw8f+lzJfD5vtTykIo01gGA8Hrfqe2lpyeAwIMb6+rprIRpzJkiJF0yw7e3tWRwUeqBzvzT8oaiFOEXTzb+73a7i8bjFMcPh0MpWegzWGueihXsutJSkGSe30WRyLwC5gAM029iphA0suZLGXpJJGaymlpaWNDc350l8LDUkOU/SxGPLFx5ETHzh5xO/uR+Iw1Qq5TXBu4ScDqd0yW2I06gfea9MOTKJwbOCpD86OrKlLtNU1J3htGd4fs3W1pbBZewzxuOxP9PHel1cXGhnZ8e1GX2XNJn0y+Vyji+olllzAPt8LUQe1pwXFxeu59k7ELMQ3ZAQkLH0AFEUOc5EUWSgE7JCkicz2u22iVQIa+oO3nk4dQfRQc0p3Z/xSN9OPQDohCAGYhqwj1jG+bKh/SK9GfuJGIUKn9g2MzPjXgcRIZ8VgJK9xzmD7HE+EwDz0tLSlC0ONfDt7a3rAchoBFrUL9hSU6chQoQM5v0g2mJqGHEScRML3Lu7O+Mk1OFYw0IkS/LPCOtdnslgMDCY/uTJE3377bcftZju0/UPfxUKBUkyGYs1J9bM7FfwCuo99gD7JcR4QnBbkusOaoBqtap8Pu8agvx5fHys3d1d90sAzcQA4hlCQTA7ekxwISbqqDHDPgsBYSi+Af+gbgwnWubn531+FVO/TLNC4HO/YIZMvVC70oMxjUe8CHM9v5fPAQGE8wzP8fT0VI8fP/Y0Z3hWIDUDU783NzeuLRApkd+oTeh9EXhQz5DfeP88S2oQar+wrkMoiSifeoO4SC1ErcO9QUpDMkhy7cfvJFeS98i9EB+Li4uudev1uv8fzJE1sLi4aBt33h1TOGAX1IjYsCN0R8wAljwej23pfHFxYZepy8tLiyVw/CEH9ft9VatVT2UzhRbawkG+4OxzcHCg3d1dv5fj42PNzs66LkYgBaaBDR24EX0xTgoIu3kHWI3e3d353ENJzneh2Ol9XZ9Im3+Li2Kn2+1aqR2PT2xXBoOBfeCle8sZJkQgF1KplF69euUAxkYKRykJSPwdG4viSbo/z4ZCEHAr/LvV1VXb+ySTSbVaLStFYUNRswDK0eQxnjYcDv1ZYPRR58FGwkaHUx0Ue2wMil3+jn/z5xTA/Pf+/r46nY6LUZ6FJDeLBBeKZTYuwY/3QLJCMXB+fu5mmvF3SAQaehqKUDHJPSQSCW1tbU0F9bAZQVUQBnBp2jaIJB6+x/PzcxcB3DtrjiY2BCIhKnhmjIiG9gQAjagFIcu+u5ZYZ9infff+eG5/1zvMZDJqtVouXHiPo9FIOzs7ajQaXuP4vAIaS3JDRwNFwAtVY2GQDNWMMOQkOBQnYaGOBQPkabjOfvrTn9oz+rvrLFR2sZ54x+wfJnAAsz7Wi1jBaHZI0lJ8oWrc3983KSLdgz61Ws0NNkAT+wzLnXQ6bQCNIm08npxLFFqY4I9ODGbqAM95pjoYjUUpi2olJHXY30wAsQ5o/Dc2NjQcDq2wBohl71FEM8qN4hdygEmPcG/Ozc1pd3fXKvrvNs4UEtwn3yPJYBPnmFCoxWIxlctlk0WoW1GFQciwz9mPPHuKe0CT8Xiszc1Nf0aKztFo5Oaa/SbdW2QBhPKOAPhC32PeTUiKkAMp6MlTqJXCg2zxMaaZZ392u12tr6+bwCFHEEfJlc1mU3t7e7buYPIQhcz6+ronAUOQGFuR0NM3lUpN+fyjbOOMBsg2YjREFY3Fzc2ND1Jmf0CA8v7JXYBXEPJM3vK1ECs0Oeybra2tKeA4XIusaUbf+XmhoOHBgwdTNl5cAMnxeFyPHj16rzHnQ7sgXcMGiMmlrgYAACAASURBVBiIfzckWzabtTqQZwZYR20FUcPf8zWo9Ggo+H3sHaapyHHYXzFNEjb8TGIRv0OFGPGORpZJDGLYaDQyoEZOpokmpjO1S8NDrRLWHNSA5Hn27MLCgs9m4nxDyFvyKwKiq6srlUol70maWKa8mTYaj8f68ssv9ZOf/MT5oVgsqtvteq9DDhDneS+h6pSYIMkAC1OcCG9CYCG0zk0mk/6s/Mzw3UvyOXrs9X6/r263a1tZzhuCbIOM45mgYoQ0w/aJuADplM/n1e12vachWLGb4LNx5mFIwjHxxYHto9HIE03heTCsd4QHiAogq16+fOl+pF6va2ZmxnU2sXs8HvsssyianBl5dXXl+ur169fa3t52v8PnqdfrymQy6na7BsDPzs6c53kHITAWTofG4xOrUKZ4qAMhMEPbLRr2cOICco41wB79WC9yIDUOUxmsc9YOit56va65uTkLxSRZBQ64z8QL/ZIk5y6EdUy6ra+vT7ktsH4BrOhB6W+4R1TAgFPsT2pMSCB+f6imrdVqGg6HKhaLBpdWV1fde3CPECPYo4RgFvGcA7ARTUIup1Ip1yvpdFqVSsV1IXk7m816spjPSr9GrEVIAMAGyCpN9gpq4HAyOezdmXwEq0BtTy4hv9EX0RMkEgkfZh6q9QG8IKir1epUDhqNRq6Tjo+Pp1w3sDcC/FteXlaz2bS4hXsD40A1HgpRQnD80/Xpeh8XdQACPYTYYb1EbYcNVkj4g2cguCP/MWVPjTMcDv1zEcNSC5DDyuWyBWnYtkHe8PsgU6h12I/8GXuLnjmdTltMjaMA8SGczCbOkQchXyRNOb9IE+yLyQgmasGC6I+pb5iiyGQyisfjdgJaX19Xp9NROp22qw9Wl0zgEjsQ/1xeXurZs2d2HaCeYipZkie1qYGJO4i06LmYBCQuhiJwajmmoeih+fk8B+Ib9cXs7KzPM6K/o+caDAZ+FxBNuVxOv/71r1UqlSxGx14Xwpr+IKx9IA5ZF+AivV5v6jOxhpkAZT1BMOF2wuQlQnRwa9YGQw24Q5CDsL4j13Of5EHyZ6vVMgkaTmQhoCDfU5eR15hw29nZmZpQR0yCHXMsFjN+iwiNfBZitIgi2Af0KKwL8OHb21uv0e+rBvxE2vyWF8GXJgLShtE9Gl8aEVSFkgzEHB4e2roslUrpiy++8Bj4s2fPdHZ2poODAz19+lS//OUvPU5cLBZ1dHRk3+ijoyNJUrlcdpHV7Xa1s7Ojb775Rvl8XsViUb1ez7YuMNjPnz/3WScUTyjRaIbZFBRqFEKcY0CDC8AQjnX3+3394he/sAp+dnZWL168UKFQ0KtXr3R0dKTxeKzHjx9rNJpYVJyfn+urr75SvV5XPB7X48ePVa1WDaw9f/7chS+HhkI+oDJn49NcEyQ4awE1HIAthR2Kev4+lUqpXq+rWCz6aweDgb7++muP1//whz/U6emprTX+4i/+wqPrOzs7Oj4+1s3NjarVqo6PjyXJamWamuPjY71580bxeFylUkkXFxfq9/tqNptuQrBewF5OkgMRgTm09AI8pqCmaZ6bmzNTLd2rOEajkX7xi1+YrIKhTiaTOjo60qtXrzQzM+PD5LG9e/XqlSqViiRpb29PrVZLz58/197enl68eKHT01NJ0tbWltrttlqtllURYdI6OTmZAlIZ0W+321b4h2pQAEVAQ9QVBPAomnh6vnz5UicnJ7q6utKPfvQjNZtNNZtN7e7u6uuvv7bP9pMnT1StVnV2dqZer6dvvvlGkgyUYaNUr9f15s0bjceTA1UhgPAn5b0C8nyMF89Z0tSkAQTcysqKGo2GwWYKMooagPZQBU3sAzwCnKMJxLufA0dR4IQWaCcnJ576kSaAAMocfHkhlUajiUUZgAKgt3RfWGGJQaEK2R2LxXxGCPfINBiF8Hg89qQDUxEoqy4uLlzEhBOG2FEBBEr3Z+yghkyn0wYJQpCcAgzyi/McZmdnDcKFP4+mm71IvKDQogBKJidnOKFwJT9QMIcFKsQ9xfLs7KxqtZokGVjm3QOsttttbW9v+xlS6EqTPIsyHiUOatHQLoycW6/XTe6GBwHTAKRSk7MYWFPtdlulUmkKUA7j7vz8vGPN+fm5Wq2W1tfXp8QBg8HA55iQw3jnKN0A3LHEA6Qiv0D6QAItLS0Z4Jdk8BMxBdOE2EvxrDj0kVgfqq3Iz7wPClrpntTG1o31IMnnivHMqBEgJq+vr3VxcaG1tTXHAAQTH/NF01uv17W8vGwAjjVK/cNUHEA+zxXRA+rgRqPhxiRs9ADhE4mJbejV1ZWVajRK/D15l5iHgAYrWfYolqvhRVOKkrJWqxmYZH+x5sbjsY6OjrS3t6dms6lSqTRlxwNAQC2IOm59fd25nSYIghmlOHkFG0zqauo6GvKLiwvfT6iQQ8VIHfTzn//ce5vYB8GNgjG0bmO6nP+/uLgwwX12diZJbggBPFG1x+NxA7nheVCbm5u2hQXMhYzmbBkacZ5zqVQyAMmEVKhMDac0aYaZAGQqAbFEu912/ZXJZBx7mQblGbbbbR/iOx6PPUkZxhNJBlVCG5OQIK5UKgajUqmUrcnm5+ftDECzf3d3Z6FMKHh4+PChQeSLiwvboVxcXGhvb8/vjzwQj8e9f5aXlz0NFJ6zQb6A9EIhSg0KYMH5HwjmQotDSHpADXo8QCMA/2Qy+dGf64XKltpnfn7eNRQ5ZDAY2NIE8gBxALmC+ubk5MR7M5xgOzw8tFix3++7BoLcBoyCHPmufSTkNdMc2IQzEcWexE6VNVGr1Qyc9ft95XI5XV1d+XBipnhSqZTXLjVpr9dTuVyWNDnQGyvbarWqhYUFPwvWXLvdnrIupLa7u7tTqVSaIheZ/iJfh+8DcFiauBsQg1j7fM/6+rpSqZTzuyTbqzHxDVnMnxMfyQnkJvpY3jcEeRjTqaOvrq78OSGGAHsBRK+vr21zzaQn4lHiHA4bTKhKMjlEb06dH/Yi4Rlwn65P17/rFfZc2EazP6ipZmdn3VMUCgXXNKxP4hGEBWfU0Z8x6RCKYvh7RH3sP+pM+gDiRTKZVDqd9s+GbMVumWlbzk5E2AOoj3AXC2UAbTA/ertEIuFzsu7u7nymM2fiAXbjSCHJPSdkLtgA9R4kErgAoDw5HmKec63j8bhrMHAiaibqbkjd0JqSc2KwiCbGSfIz4z2DQ4U4BTFvYWHBohtqR/CKcJqeXh9REAQHuaLf7/soDWnSs3HMBM9sZ2fHAsBOp+P+cHFx0TmGHiP8LOCnrVbLMZXal7wa1pn0M3wveGNISEqTvN9qtWz/GYqVsL7k9yG6bDQa7iEkWZwAkYUAql6v25afya7wTCQ+Wyiu5xlubGxYmEPvjbAaET/PGMwAGzkmcTlnE3IT7DQ8Y4lagNo2FGS+z+sTafNbXjTVgBgUmjB50mSBosxFqVKtVj0qvL+/r9FochAjKiPGtVBSwrRj1URxQ9Cbn5/Xzs6OJFkJR4MeRZF+/OMfuwBmXJwRu6WlJfseAvbTBGK7QbNMgEcRhLoStVDoyciC5hDwZ8+e+WeTtACT9vf3HXghujhMmuYunOKJxyd+6lwvX740OM/nA5iQ7g+Vx2IiVEThRUpSwvKD0W8SkiSPwHH+w/z8vA/ighRBcfbZZ595oxOQGePb2toysHF0dKRYLOZm/eHDh25EAX0AAhhpHI/HBpppCvE1pnGn2KcIRsHBeThMRxCYuc9+v69nz55NTQsBLMzPz1s5DVjB504mk16fBEQKicXFRSeVfr+vt2/f2seYfRP6fkry/qEIARTgfJrQpgKABqYbf1DAEJq3vb29qXXM/kyn09rf33chhKIgHo+74ZKkb775xp+Bn8c+RS12d3en09NTM/eswY/xouFCjdvv93V0dKStrS03Xevr637WxCUSXiw2OduKr42iyHuRJk66j4MASDTdm5ubU77VAPChHSWFEAAhgBgAOVYbrFcATqwvw99LY40yhGkfrDCZdMEHFkCcWEuTGhai2GQ9ePDAB+UxmceaJqaj/iCXEGdRy1AUQBxQsEqastpBGQz5y/eSAyR5Soy1juUmKhoUnBSmq6urJsUoqIlREJsUw5LUaDS8Dmga+Kx8Dp4Z+SWcxGICCWCRsxQYgwcU4meFE0mMNS8uLqrX62l3d9fNhySvMZ4LjRUF/M7OjvMj7zNUm6JuazQaKhaLngyjeOXZ8p7C6VgU41i6HB8fOwZVq1WVy2UD/oy7s08kOe/x+wCeQo989gUFLeuaPROSLbHYvTVSqH6T7m3uiK+Mg0OcYS/3MV8hYA5hDyh1eXmpWCzm0X+IaUneG5AQqH+xu0DpyM/CNo+1gooR8iIEJH/84x87LoYTrjQXkKJMsUnye6dmCG2+eMesVWLFxcWFVZ1bW1uuU1nvNGWQjSsrK45d9Xrdk3ZMGTFFR9zL5XK6u7szQU4dEk7X0pRCFPIc+XkQN98FOYnnNJvULMRzSSbPsVEDrGCv9/t922sgYuJrOZcDoQJ5AHJHup885+/IpQCkNLZMOlKzAlADaCM2oqZD2BNOzy8vL2thYUG1Ws05gZ8B0LGysuLpLGIBYpmlpSXv97CR5r1Sv0Ie8pm5NwRH4TqGaGE9AeQwsQYIL9038JB8TM6yful1YrGYrXlXV1f9zjnUHbCE/AswLslNPEINgHhIIkgeyDNsS1OplNWhrF32QDKZnLIr+RgvzhgivwDUQNgBtpVKJe871gnCDYhWVNTkZmqeSqVi0gIChvqj1+u53+EwcAhpiKRwCpZYyb4CNEW4Q+3HhCx2fjc3N1pfX7cFDfdPzqUOaDabKpfLGo1GXm+o21n/nDm6urpqAdNoNPI+Yy1FUWQ7NNTzYb3J+gKEZRqNegZbMCaI+NkQkNwbPSG1FN/DWYIAxxwqjUodgowel89MTIf8CUWdPAvsbUNbuVA4So0HAYh1MD1aMpnUzs6ORaOSXNtT60N2My3AdOCnSZtP1/u8qH3Z+9fX18YAQgEpfV232/XUGQIJ6n9qbOLV0dGR4wKWyeH0CoLa9fV1zc3N+SxJchXTDvTU9FGhXST7RLp3FKBGRLgN5oK4gzOziI18RmoQ6qEoivTkyRNPwnDf9O1YuPI7EIuHPw9BPJ+b+2JKmOnFRCLh+g1ByczMjMl9pqARHIVxMZwghizmGfE+mEYEm0skEib4FxcXPSGKkJh6j+eMHTHPDCIbgo3aDwwAMXm5XJ7KH9RKTFrmcjmfD5zL5VyL93o9SZr63DxXploYKGDNQlIcHByoWCwa8+V9hbGV9U0uYlpL0tSa4R0mkxPreXp+1h7TTJBhEFT0ltTBiUTCWKAkn/2NRT2EI6Ri6MyC+I06lvW7vLyss7MzCx8SiXvbeJ4Pzx5hInU371GSJ80QeCOkZxKUuvZ9Xp9Im9/yAqxmVBc1CQU/RSsNTDgCzGKmWKJQoqiV7sFKCjiAKUkuMFGgAS7yz83NjZtZQFOAVVRmFLrS/eg3iYagRIENsE4SgD0EYGX6gaIMr0AKOsbgKZDb7bYZ1tB+gLMi+Pw0RjSfeFWykQiIHMDGtAMEmSQfbklzTpGMJ3Wr1dJgMFCtVjNYxWekIIfFZbqAZhcVfagE5f64AFClacUy5Mz5+bknf3i/g8HAvuaoFEjqFKY0ycvLy1ZH3t3dOeEQVJvNps/a6fV6U+osplx4/5BFgH4UE7wbgAYukifJRpqAEXgj8zsBOrARYA1Q0IejuTy7ZDJpOwQaYJhsfh/el5z9gfUJI56clQIRQ5JgXxDIw33FSDBgO8AAo6MAubxT3hckLmsBcOljvTgrBNAplUrpRz/6kRsuyEJAIPY7hVdYzHAYYAi0J5NJq/W+q1KAMGKCDlIGwIDGFnBJmsTrUqnkd8W6BWynYCHhU8RJmhp7p5C6u7uzimdtbe1fOWCP3zM7O2slEmsXRQ0A0u3trc+q6HQ6U9Yi/D2fEUADkIOCG4B3bu7+QHMKVUBcBASMzuOHi8VOMpn0NBLvSLonO2jSQx9miBzsPHhemUzGyh6AZ94rpD8NPsAZRSwNO+PgIbnAniRf0gyF58ORa8OYH1o6QQbxMyDA4/G4D6Q8Pj7Wo0ePTHivra05rqLUJ48zucXPkuSxaJQ93Gc4DYAdJMBCSLjNzc3ZKzuVSml3d9fNBaIIPms4RckkR1gQhxOj6XTaFm2QKgBe1CeAWUwASBMlHM+Ad5XL5VyU3t7eqlKpKJ/Pa2try+r5j/miIaH2AXjCagCl4unpqbLZrKcesEBYWVnxWqA5YSKE9YtNIhNV7N9MJqNEImFlZ6j2QzzEPfGOJBnY5D0yfQJIye+kdiBO53I573dJBkOpb8m/WHjQ2JDf5+fnbWewtbVlkQn1FfEsnMIcDoduKInLAITUA+Pxvb97KDYJmzAa/tAeB1CBegxAkJoTcnV2dtaWGxwOPBgMVCwWTVKhzEM0I8kTVvl83jG81+vZ45vYTz1Vq9V87hufaWdnx7Uz8Y91BynPPfEulpeXValUlMvl3KwDSgOQDAYDNRoNbW5umtgNJ8TYz2GdC4hA8wwgQ+7gM3EwPXEIsJZ1XalUtLW15TXM56POhOSjhgjrLNSi5GHWG7V6v983kch90YfRFyEmYw3zbFgvgGxzc3MGgyHbQ6Ee62l5eXmKDGMN0rR/zMIdaQKcINLAtvT29tYTdQBIqFLZn1jYoJhGLBeLxSyeY4+Gh96vrKxodXXV8Qq1LPsoHo/bKpA4ylqhXqDmp/6jTmg2m7aCpNdLp9NqNBq2g8GpYDCYnAWL7R6xZG1tzXUrwsB4fHKOFpa4x8fHjoEoiJmU5oIoDolaAD8+J1O9OC+EinTEboCA9I2Ig9hXAIwhecWegnTBCqhcLntah/6Umpk9gnUc4PPZ2ZlrK/IhdRRWcjc3N2q1Wha5xONxTwhdXl76/ITZ2VlVKhVPpFOT8DwkGYuhroXsh5BtNpvGPT5dn673cZHLAWtnZmY8wUn+g4Tudrva3Ny0NSFrnBxEniLPrK+vGxwulUo+w42eAiFkKJIdjSYOEpAY9ExMbnS7XS0vL9vSmr+T5PvH3YC4HNqLNZvNqfM12d/0G8TCUESOXSq1AvmWWjEUMDFlA+nBfYBNEdOiKDIORr9L/QkWRt0xHo9tsUacBoODyEWAFWJYIW5BPxOPx91jcj4LQhccdqifqP0ajcZUvwamCOlMTpmZmfE7oS9kAouanXePMA8xM71np9OxRTMTJ/SO5D36Bp4TuRCxzsOHD6emWMkP4WQqfT/uOJxnRu9ODYdgHGcdfu/c3JyxYD4fZM/l5aU2NjbciyL6IT8hzgxJGazGqcvpG8DOeebkLiaNQstRakx6FT63JB9BQc0CicoFNhIShAg0yE/v8/pE2vyWF4GTjc+mRcENMIRXMwUEFgWAa5Kmzlzg5UZRZF9vFCgQOQCl/P6wCCVoMiaJihd1NhtHkhtEyCHOCACootg9PT1VsViUJDdEqMqbzaY3CZMugISAA6iDSUjhJufvKK5o/AgYqEBD2wQ2HAU+DTdqgmq1qpWVFQO/rVbLo3cAoJJ8+BaEFv6GFI40uiGwSJHJSCbPo16vS9IUwRY2vTSQsOSSzD6zqQEMANGWl5eVz+dtk8O5L4zuUaCHXsMAtqGakJ/XbrfVaDQc4Hgn2C6xxiRNfT4acZKrdG99QCPEM6UAaLfbHo2nSIZsY0wXwIQ1ywUwA5jf7/cN8hAoaYZYGyg8AIgoHEjAYWNHwcC+AeCimKD44Dnw3yQfGlP2KeqZ0KYkJGk/xotEiTri888/t3oi9DQPAealpSUTdBQDoS827wlyIwQuaa4BFqV7y6h+v29v9fn5eQOFqGhY40xNMOK7trbmwpY1B0nEfsOKq1gsajQa+XuY6uIsAizBIE5QIYejyah0w8/BtApKSw7HpkDHwoN4ApmEXQUgJ00DI9lMLaGgITaH4N/MzIyLUtZzJpMxgYXilPNZwsIRtTlg1atXr1QqlXxeTng2GrkxHLcPD0gPgVQsRVGX0WwTQ1OpyTkvjUbDY+3hAd/EOgpQYlo+n/fXUVzy2XlmTJ9I0s9//nNJ92dkheAf+TSdTht8lKTV1VUX9OQN6R6QBMRlpBsrAZRH2FbRSDCJJd2r+SCGAC5oNsijqNdppiTp7du3yuVyntShZgjPL2HfsV8gJQHdlpaWbG9FTMfTWP8/e3fW22iWZQd7kxSpMTSLmocYM6u7UOh2uYBG/4b+x31h3xntbqBdBRfSOUUoFBopUfMskfSFvmfrMOybwhdlGOF4gURmRkgc3vecvddee+11IhLrIIE6nU6sra19+cDzf9FVFtriyOPj00HmlP5DQ08H1r9//z7JLMQ3ktPvl+IGua3RaOTZANbnzMxMThXaJyYAFUXwHAsCzzTi2c6ytNgTHxFb09PTMT8/n2vj6uoq9+Du7m42JU9PTzO3lk18OeDo6CjPjWMdpCh1XpRcXSrerMWPHz+melXxfX5+ntZfCwsLuSY1GiOerVLFR+s6ItKjnGK8nMyTB+A42E/s0ZCPiLxfvv/Ozk7agE1PT+f6EA+c/+Je+5yl+l7e29jYSBsuuTQi+qZfLi8vszni3l5dXeUZXqbDj4+Ps7j2HZ3b4v6bmi6bDxFPmG1+fj7VmTCf92KvwRpRM8v7uceKZw1dzWDqVpZGEc+NNs+4nMaFBzVsYHG/4/wNRHJEpDrY+iib+eoO0wGmnTwbBENpx0kZS1TVbDYzDlDqwrrWytd6EVk4XBqBhLDpdDp5T+1xe6rb7aYNzNDQUCp4YT0COH+uaXt9fZ01gEORBwcHU3Usp5aCyJLwQdwQf8D89pSzlmAUZ6bAkyb4TdRwdxBn4SJCR41C+HNgYCB2dnZyKhIJFxF9BzpzWYAVyroENhZj1cByslwjl2jyItTsffjZPVCj2yOIYfhEHFcPUz6Lg36H8wYVtNcRV9V/yGF1tYPKiakGBgbi1atXeZ/W19dzUqjT6eRkASIUl4IcRuL6rgjIb9e360tdmiQcB9gjiy0wlDN05ffLy8vkfiqVSvz00099DhIlOV9OIJuIs77L/Cb2lJMpMzMz2RjWEPG7RAasS+XY0u6WWBCuX1lZSYGSeIrfgsP8uzxLhbgCVkGUl1ZV4qkpdsIxdWKr1YrZ2dn8bzlcDDk7O0vXEyL0iCfctLq6mpa6XEDK2KjZK+7g0mq1Wvzyyy+xvLzcV//heZ2vJ2+YEIp44klWVlbyXh4fH2ed536MjY0l/uQMJIeq8QlETKeWNZ/77Z5+LiSIiPz7crpGfawhp6Yo3UC4/URE4lbPcnR0NPOoxuTZ2Vn85je/iW63m7xracspz+EC5H65Xo5y5kw5CYZj3t3djbW1tcSfZU40NEF8Q8A9MTGRvAesoaZdWFhI23K8rwEB7koEqfgszUT1Maw4ODjYx/eWE2tf+vrWtPkLr9IDUAPGAwUSdfs0PxqNp4NonZvC847nYrmobQ4HfGqsKLAEr7J5ExFJ8iimbdaIyO516deIECv9JQUw38cCdu7C0dFRLCwsJEEEMJXWB6XaWUOpJPj9rHvos1PBlXYJGh+bm5vxd3/3dxmQJEYBQvAoD1lVEOsOI2x1jSWxWu3Jdu309DRH3CREgNHB45Kj72fqowTSZdHLOsDmFcAFxW63m2pcxYwmBRWl90YAA9fIHv6l5Si+QrYkcpBsQ0NDOV3UaDSy6NbocAmYkrNnppkmqPpOEZGf+XMLFlNh1kT5+ZAbVAdlso6IXOsTExO5D25vb+Py8jLm5+dje3s7D0n3TMfHx/vOs7BHPX+qd6SIJqMmmPUaEdlIvL29jaOjo1RkIH0WFxdjb28vOp1OqmhKlejXdinCBwcHo9ls5oQIWwrFKqJRYtNoQdBrWFhDijxFa6PRSKVjxJNNlPehhKhUKtFut5M0sU8AkdLuzL5XrJrUM2ngs/pv01jOLWo0Gmn9ZM9Rm5rIUCRqRDWbzTx7gt+uNVgenghkLy8v95FKPPxNyrH9YPMFFPd6vVQ0IeaNQ7MTEdON/7KyYg8prlJ9KwDOzs7i6Ogo80S1Ws0CwpSTZ4wYLJXh7JwoUDVvdnZ2YnFxMWMkRSe1rGeGMBPHKayo1w8PD2Nubi7zEFW0Jg1SA1nK4oYaijIeWaTpB/SyCbu5uYm5ubls5gFmlLQad/X609lH7ieFjmlS8Q8xo0g5OTlJf2kELqJaAWHPiKPOsXt8fIxmsxkHBwcZ06yTq6urVBCzMfU5kdrWt+ko4F2umpqaSqVsOc1ajqvLCSWY/lov6wS+ofibmZnps6axJ+CNiYmJFLzALwpBBDfi34RYo9HIPVZiClOh9pwYomkMW/KSZpXBVsjvOQMkInIiTGHDesGzhwfEeetJ3ux2u6mCbjabuT8GBwfz88C9mrylpYfCBwZCLLDtGBsbi5mZmfjpp58y3tVqT+eTlJ9dQaqByQ4TXrX+NXvFDfGtWq3GwcFB7mkH64qtcoZnyuIBTjL1LDb7LOfn57GwsJAFOCGISTmfheJ8amoqqtVqXFxcZBGtIUssABf63nIzZb1JAvHPvibYgcNhZgeGX1xcxOrqaoyOjuYUDuy7trYW1Wo17SwmJyfj+Pg4z0GiRB0cHMxJIsW6dVxiTa+NRFlZWcnG2OTkZMZwJIK1rng3iWEiAlZlK+W9xV6YVbNBbmWTqhmvwV+tVhOT+9lyiqBSqUSz2cx7bFLna77sLVgPITgzM5P721Q9YtB+19iC98UxohQxEZbz3EynEIepNV68eJF1rxq3JDwHBgay3i3FlXC6CfmdnZ1YXl7um9Rmo2uNserWgPKPn414titHpLVarbi5uYn5+fmYm5vrOyPGJCHyi2iGmAZRVIqXxIHSHaFSqSQWNw0JI2jGiN2Tk5OJUeR6Nu31ej3PR3CWAUwQERmbWL1r9df60QAAIABJREFU0pkqevHiRd/UYkTkhJ9GMqGlWGVytVZ7sirWmFUbEJOKS3AGUSxiV80eESkiIHLyOb9d364vdalFxQTCZ3UtsSduRXwaGRnJc+6Gh4djfX09RdXX19cp3Pvc0lGzGQ9FHGHSDmYoxbJlA8heJ0AhBIqIvkYxDAIT9Hq9mJqaSk5FLX1+fh4zMzN9IhVxQsMHdhOD4Ccx1vsQQsoJphtMQ8zOzqbNGItttWa3201+yLNQb2oC1Ov1WFxczFqHoEBtLr6MjIzE6Oho7O3txfz8fFqUqd8WFxdjYmIirq+v49WrV5lnms1mxibiYVycCR98AuGdf3CeniG3BU2PT58+5WShxsnBwUG8e/eub4rUfdcAkluIClzEKGrsEgcRjMI38jZOD6YlPh0YGIjl5eVYX1/PPWGqHBdkLRKkRzzzvBGRDQ51rsaQtcdhZXV1NbHXwMDTOddLS0spLr+6uoq5ubnMoWpS/KappsvLy8zzBFX4HgI4TkzyUOksYyJIXWQ6t7Q0Jlr9Nmnzf8GlO4qg7/V6CVIsdsQ68IbQLL2SO51On6ehore0z9G5FTz39/czOEVEbrpSTUmBaXN5LSPNGh71ej12d3ezY2hUrlRnI6jm5uaiWq2mWjgikmC6uLhICwXfETFH9YQQarVaGZh9bpvK7/seitNarRbv3r1LpbngY3M7nwGAq1Qq2VQ6Pj7OgpDiSQGtEDCSPzAwkBYTi4uLqeKyUUtLDYUuYtizcm8iIoPK9PR0Hm5a2vQg/sp7Kkhq1EnOAph/CxKUggKI3yn90iMiC4xK5cmf2LQUe5SlpaUkGVmbleP1ZdOjVGdFRIJuHejr6+u0rbOuqTMVEn/+85/j5cuXaRsTEalmR+qzcaKKKO0pqDevr6/7pgHcV/e/bDYJ/kgQBHupWjBir4CIiCySqAB8fwnXei8LuXJ66Gu7rL/BwcH4+eef482bNzlNg3g8PT3NYrmcPpSYJyYmYn5+vm8izIQBBQZVtwJXIw8QMe2jMIt4PsPk6uoqz1GIiIzXgKniXyymgC+nxniu88SPeLanZDP1+PiYk3aTk5Oxvb3dt0cRq6ZWnAemWYmY1DhQyIr7DmGOeCJj2Zu1Wq0kEU1dXF1dpU2c/Xh/f5/vdXNzEwsLCxljKaPdHySJeySOGvW1Z05PT7PoZj2CZNnb24vZ2dkUNlB0UQyVBNn6+no2tCidEZAnJycpDpAjyrFwxX2lUkliUw70d3yjfQ4kEwCGDKhUKtlgE+fK39GsR7bIZ77bwsJC32cE2jV6nFUXERm3I54I8rOzs8yTcMPx8XHem4eHh7w3t7e3KaJAQIyOjvYddGmdDA8PpwLNHlEcWZdl41zMsk4oWD2PWq0We3t7mTcODg6SoNrb28tzBxSs9uPXevmu8qu1UJKFJlDGx8fj6OgoC+H9/f2cINQ8HRkZyWk860KBfX9/n2cDyDURz4cqwwfiCOLA+vbfmkWmaPj8i4EU7JpJSHMFekRkPJVTKRo1SQYHB2NpaSnvxcXFRczOzqbNmr1kusQ++/TpU65LavipqanY3d1Nu6+JiYkkE1+9epWxr7TNQtIjfx8eHvr8qOV0eRpGguVNb1er1RQRaFxXKpUkYHwOpD4yeGBgIA9OLyc4IiJJBvGynHATa8o4sra2Fufn57nXS/umUgCl2axJrWlakpryKkvnssEsdrBO0TQeHR1NizpKy6WlpWzMwW3UsexY3Pdff/01D451/omzJMUbjU51FAEUwvjzSXsxTg713AcGBuLnn3+OhYWFPjs851Miwd3n8/PztLpg1Wn9mZgpbY+9r6lLtR4y3YHB1Jpl0/9rvTRZ1HZIHEI2lifwFmzvWRJ+lOf4eS5wuteBccQVU7fEVPIibKZJpA4sJ/IbjUbaqtZqtazx5ENY8/HxMQVDlcrTOQLqGjW6eGKPPjw85BRQSaqqzQYHB/vs2+w9NnDEez/88EPMz8+n04X6kpBTrSRviAPyEMIQGac5o7lPTFBe5WS6/GayiJ0h/NtsNvvOmxBLPbvT09Nsdmki4SU0dTVXy0lPRK56XRNK/It4VkSXxHLE896EsexNOL/dbsfHjx//D+6Qb9fXfsHDCHD7Tm6z7+EBmMxk64cPHxJrT09Px+TkZHJu4ubFxUX8/PPP8e7du8xhxOGw+v39feIONTVBmL2A/5iZmcmp/vv7++RSiD7Ua3Dp+Ph4ilrVWjCH3H13d5fNWjWL5kTJIxIrwzzEIo+Pj2lhbupOQ54gB2+g1ot4blCUE5zwbkSk5bdYHPHszqDmhcWJ4mZmZlIQQ1izvb0dw8PDsbS0lJwhzKDWlffVmKaItra2YnV1NaeVNXdM1JTTPnBuiTHwrtYTjtnzK6elxHjPEI6T9wwamA6pVCrZdCCatj4fHx+zHoBlCfzYbcJfEU81gXN+cD/eR93veR8dHWU+lptMhGnKwH5EP7ByRCRntLCw0NdUgWPdA5iU+E29AevJeaYzPTvuCfgqe9SaPTw8zMYb8S/+kasJLP7XmLj+1rT5Cy8FK/LLhkceX15eprqfKl+QtvBtdAtUAahbqFBQiEZEAmOdbiobwBHI4ldpMwss5Xi491xfX09lIHuMsksPDNrYEZFAWSfRRrLxSmWhC9FNgXh5eZkEeTmyCaCzCClfNyJid3e3rzEG6EkIEtDIyEgcHh6mfYHXQxzrqlPUu9/U54oJ951iWkDz3XTUEVuHh4f5mQcGBmJubi6t16i9KTmtJUWthkZEZHc6ImJubi5OT0+zqytpIxzK4pvK9+joKJOI+w/4U42aakDQls0I3o68WqkXNE8ajUb8+OOPOQ7Z6Tz5DL9//z7t6XTHWRY0m81UcW5sbCSRi8haX19PBYhgWT5jI7PICYpVxKs9sLe3l2cGaI4CVAIpcCRRdLvdTPBlZ9+zBiYoWRUE1odiCWFQNu++tovKe3BwMF69epWFtASt8axhofCNiEzKVBelVUytVovd3d0kehzOzQ4PkCnHshXe4pnPERFpZyJei8EPDw+pQAIa/E455eUZA261Wi33GjJH0QqQ+O5iMhC/uLiYgACJRokCRCFGTZ2NjIzE8vJyfhbe8Y+Pj/Hu3bv8TpqF4qQiAQDXmJ2fn09wQ0Tgs3vfycnJbLCKs4eHh2lDd3d3l3ERUel9hoaGMt8NDg6mwqosysUsBTvArLBX2PieVFkmEH1+64tyOyLyz05PT2NhYSFzWjmOHfF8GGZEJJk9MzOTQgLPzr9NOZUgXRz086W6DHFF6dTpdNJGCBktdoyOjmaM8lxYroh3GlE7OzuxsbHRBzwRJ4oUuYWgoiS8xO/j4+M4Pz+P+fn5PvUVUluhp3ltv5f2Saurq4lXXr9+3Te5I8Z+zReC/XOlnsku8YVooN1ux9u3b/O5UGrd39/H/Px8qi4VeybjNM5mZ2djZGQkNjc3c8369/X1dR7QTahSrVbT4tD5JyMjI7m/Fe2dzpPNk4NHWURYh2ynSsXl5wUfLOizKn4UiQpUa0/jwr6PiCQGTk5Ootlspu3Z+Ph4X2wnfkH6u+8PD0+2Wxot1vvAwEA2dz8XRSGbfY/PsS5cJ98TpAwPD6c1U6nQlAcnJyezcDXVCZ85g0LDyh43xSGv+IwRkRNPGu77+/spslGUw0Xl9BzcYz97PdhGE+fi4iLzwcPDs1Xl5ORk7OzsZIxvNpuxs7OTxW/ZZBavNReHhoby88pF7hMlJ4FDq9XKfURoc3Z2llM7sCTiVkNUUwpueP36dXQ6nVSnqmMajSeb58HBwZicnMxnpHEgz8ARCwsLqfBlPciuxNqFR8RHQrQSa/w1FJb/N13Wu7MyrYmIyNo2IrJRCOuoMzw7OMo09ubmZgoCSqEeAo9Yh62J511aZc3MzESr1UrMT/gyNTWVzgwIJ1OPlO5cMDSX7HsxEd733pofvrOmUq/X6xPAaFycnJzE/Px8NklhMA2N8/Pz+N3vfhcRT7WfPY0snJ+f7xNEwg/WnxgmlxArqVXtyZubm7RUQ0x5ZpTMExMTScTJR/Y/8hamlyMGBwezIXp4eJiN3lKMKt66ryYGNdDK1xIjxfMSK8l7JW5TJ6tvb25uEiN+7bjk2/V/9mLJpSb88ccf4+XLl5lHOS6wsz8+Po7l5eWMnaYvSrFgidfgzNevXyd/MzExkZO6zqCLiFhbW8spanmwFAZqIGtqIplLYQmsc3l5mWLiUjRJCIc30Zwl1KjX6xlTNjY2+upxRHiJPYkr5Eyke6/XS/st/I6mjVwN22h4bG1tpchzbGwszs/Po9ls9mEtcdsERHmmmiaO19UUGR0djaWlpcQpbM5dcF6j0cjYA8NdXV3l8RJwyPLycoqxOOUQoaqPP88jo6Oj8enTp4iIFFwRO2iqwyWEKN5fHDdBdXFx0TfBend3l7ZqnhWO9NWrV3F+fp5NKjwYnEYcCJ9/Lihy3iNciwssp8HkDvsEH7O3txevX79OnDc4OJg5ExeA6zUNTXhhHUc81Wrw5MnJSeJWf4e/iIgUyBF+yUElJxnxNBlOqMFW1b3GexDP/TUEjF8vu/hXugBURJOHqTArvRGHhobSS9k/Cs5arZbjfiZVbFivUavVcgyZXQrAxFYt4vkcnPn5+djf34+///u/j2q1mgCPPQIlZOnrrUMJ5LF3Mt4OJLfb7T6PX0DKwjcSX05k2LCKHRt/fHw8VdART4XkwcFBtFqtVMEDoMj9brebtgyC7MHBQd89LUl8o5tlwKaUFiAlmHa7HaOjozExMZEg3kGtCkCJ1USSjSyI1Gq1WFlZyXUiMNTr9RgfH8/fiYjsOCv8FCkREe12Ow4PD1Mxppgsxy0Rnr6v+wjgUmg0Go349OlT3xkDCIZSkS/5RTxPMJmuUsi6FhcX4/j4ON69e9d3VsnU1FR6HzcajTyU2b04PDzM4sj30Wh89epVTp7t7+9n04Pq1P4qiWnTYNQmVMYIKGSRq1p9svP49OlT3N7e5neyZx1uqmEnkPd6vVyrSGtJ++TkJHZ2dvJnrc2y6fa1XZ6BglqidYAq8FWej2J9Rjzth6Ojo/wzyttKpZJqG4n16uoqVldXk3RChPd6vRxNpyxmxeP92NdQTGqMjI+Pp5VGue+ADr97eXmZn/9ztQ57QUW3QhiZ78/YsJUWITzCnf3CCojCl+oI4AUGTfCI14gP9xyRD9CKe1TmComIyO/i0G+qWNOBgPTAwECqQMWc6+vrJFedhXZ0dBTj4+MJ/jUnADygXBFdHtwp7gCEIyMjOZ01Pj6e5OrGxkYqxxF4FF4RkSp+1nEUWIr8UiyhGYzIbTQaGcdKMGm9WfdInIhIdQ4CRXxADjoHzBRECQaBT3l1eXk5fa9L/3XPq9frxatXr5IML1XN1iQyBLZwzy8uLmJhYSHJlbm5uYz5bGp891Ks4H4iLnu9XgJqE6yI1tHR0Tg8PMyDUb/mScOIZyJSkxHhbk+WSq5KpRK/+c1vsuGP6O12u0mgK54ouTQb5URra25uLvcD0swaf3x8OlOn2WwmqRXxJL5hHzg0NBRnZ2dpC2ASzOfUTCmxF/Xg2dlZ3z5BpmuMsy9DrCPcFPulxY7GuCkeRRqLSbhDHt7f34+ZmZkkKba2ttKiwntrkon7PrdCy9QF4rLVaiXhLN4jbLvdbrRarfShLzEYyxL7t9FoJDaOiIwr9mZpq8DGYWlpKU5OTnJaxVRWaTvJuhhpLE6bUBUH7V95V95w/wkfNONMC0c8N97hY4pWe3pwcDCnKdrtdt85nRSFGpEaLGybKO3lRNYk9gzBBwKrtFUk0EDEw7zld1YXIEbcN2sZtpyYmEicUoqAYD3PEFmDQLFW4ENNcNPDiApxWAMTcfC1TxvKq8gKjWTrVCNSA9CZQ7CR52catJzYGRwczP1KLIEwVCeXk/llUxBJPz8/H1tbWzE7OxuLi4txfn6e517Bdc60i4hstpseJDoSY+V7uAr5dHZ2lqKGRqPRd7aTWtbETLfbzTMj7EONLOQpctYkZsTzhO6LFy/SKowSnPipjAFiIHcJinJkmr1SWqjBkJqZcr39KUaK1zDi/f19HBwcpNhRrCLqwguot0silsBDw0aNLa6XU1LiNkxmEotC3L0krqQQJ3g0gf3t+nZ9qWt6ejoiIvmn9fX1FMvCZBoIw8PDia3lqbJBMDg4mBMdJljYukY8n4F3dnaWEz6anxrK5XRFr/d89iwRnpqcnXy1Ws36UyMDHqrX63FwcJB8RynqU/fMzc1lwxTxriEtln4+feLnNZJMCrJNdI4eMQUs6HOx91cr7+zsxPDwcLx9+zbjZlk3R0Sf80SZx8tJTrhEvBffEfdjY2MppirzPLEv141ms5nTT87vUpOb4FWLimvyE95Es0jecH6X6Zy5ublsEEU821Ob2GIB7n7Uas/nBMGEsI1aQ36BuU9PTxNLsqMbGBjIJrxGjprduoC5er1enoFE9CnOR0Q676hlO51Oxm41kwYUwVYppMfJmaoxaaShxUp3amoqhQ34Uy4+9lApgFtfX88852zQiYmJPkES8dbDw0OsrKxkH2B7ezvGx8fzs+B4v/T1rWnzF16mV5DwCIqLi4v0lBSUW61WEvOAoMVv015dXcXh4WGSmBoclP5nZ2cJpjRtNIqMZQmIxhzZ5ygokCxHR0dJonn9UnXNAgZBJfhERHZiqeIQAADl+Ph4bG9vpw2Gzqj38r0inkg9ylSBTTA6Pj7us+FQNFcqlWi1Wvk6Rgs1WRCGjUYjDx8DUI1cljY0QKHgpmBk6/Xw8BDb29t55ku73Y7V1dW8h5XKk32QyaU//vGP6UNZrT6NvB8fH2fBUto7eF5GWd+/f5/fdXd3NyYmJjIxUEtERAYd9waBvru7m8oxz85EE9sj4BW55M8VINfX17nGy072w8ND/Pzzz0n2XV1d5T8UcNatpNztdtNCxGc1/UUxpdAxBh8R2VA7OjpK/8pyfFFTEyiX6BRf1GdItPKsik6nk77KJnIU9wirspiwHqwzI7gHBweZeICDdrsdNzc3MTU11adY+xqv3d3dePXqVdzf38fZ2VnfaLT7JyFTWlNEmC6JiFwrpRq5tPk7OTmJra2t+MMf/hBHR0fx+PgYc3Nzsb29nQCO2qecTLy7u4vNzc1YW1vLqR6AVCJHvjlnjOLFs/f8EA/n5+dZnK6srCQoMVlHSbW9vR0vX77MuKdJaS8AoZSAPH3FccSGaUvgyZkU7CceH588wk2NIdwfHp68bn0e/u2aqvY5tQ5C6nMbGtYwAC1wj2T2vB8fHxNY/Y//8T/i5cuXSUDs7OzE9PR0HBwcZNOsvPeVSiXznuKCMsUB5hS1zlU4PDxM4tbriTfIDjlNU19hFBFJXLIb05AoSdLHx8ecwtPkuby8zDMi+C27L+6Vgw1vbm7i8vIyiRSkqe8Q8UR4UQJXq0/nZ2iyUP8CpKWgYmhoKA8kF2c0w8VV97GcXHUP4Qc53vkSY2Njqbzy+ewx+7zb7aYCULOcBYvJMMWh6eCv9frfiRNevHiRmMvzLadnTYbAgHCPIs7vDgwMxI8//hgLCwvZ/LMXCIWsu263Gx8/foylpaUk5eTxssn88PCQMWxkZCSGh4dzzSmmFHWEGNVqNRs18BxC8Pr6uu9cF39nP9/c3MTLly8jIvJ9WAVoZitqYYP5+fnEgew5fOft7e24vLzM6W4k4N3dXVxeXqbtUDmpC/uWKnS43SSS/aIJTAiiuIdb7QP3HCGKtBcXFG8a985c0bTVyCDy0VyBJZ2p8vj4mId3m7A0bTIxMRG7u7tJPmhk3N/fp3BLHFGQi0PX19fZKCImgG+Igkqcyq6z3W6nPRSS3brWJCkVkEgPtYF6R0wun0kpwioLf/EIoRUR+TryR0T0xa1yMtae8fvug/Uq17BV6vV6sb29HWtrazlpU04gwbm3t7exvLycWHN/fz+/L4yqifM1X0QgnqF7xB5rdnY2GypqBTkQWQRfafhr+sIaVNwmdeAQkzX2iNiHfLm4uIj9/f0kEBcWFvLMUvtVo4kgBZZB2pX1V2krXp5JVk5Fmvq2njUeIqIv9nW73bRM1VQxBSOmqUXgUNiibKTI3TBbRGTNYi8hyewRsYf40ll7prHZ/sI+cDNVvEkYRJmpN2IrjVZ4Hpl2fX2d99mEvIlF+Cki8vBopLe4C8OYvuv1ehlv4UDPUI6tVCp5FqP49jXXZd+u//OX3PLx48eYnZ3NWgGOs3fEKgJFGEpOMRWmOQxXq5vEFDGndHwg8tE80NRBFstFQ0ND8ac//Sn+8Ic/9AmoIyLrVTW4qT9WYaUg8eHhIc9JVLP4HOonuOL29jb29vbyu2lCw85lbVIKlSqVShwfH0ev14vZ2dnkIN2zcjKCIMl5dj4HbkLzBxGvOc0ZIyJSfO7PIyIbwnIboXdpd3V8fByjo6Nxfn4eExMTsbCwkJyHfOE7fS6KLhs57OTxZp6zc9dwJxGRTW51nFp0dHQ0z1cdHh5OQYscGxE5beX5eM+IyPxkzboPprEiIrnUcogAL2yiE7/6+PiYtbJjQOQMZykS/VnPzklyJrUzOdVHMCU8GBF5Thp+eG5uLnZ3d/umgNRcBJ4E7fB+6dJROhyMjY31ncFGBFnyVGziNMM0sDSzTHl+yetb0+YvvIwyCzrIEYSzBWDBIiY/DxA27cDAQN/Yrq4zsolil+2U5kNEZCc4ot9nfWJiIhfk+Ph4TE1NZXCRQEpFIpWipg+1ku/QbrdTwW7MW9PJ2DZVdvn9kBbl2J0RtPHx8b5NxHqG2kjhqQhCVij0t7a2Yn5+Pl8TETAwMJCNo/J9EV6CjU1YEgpGG8/OzmJubi4WFhbi+Pg41ailOqm0Wut0Ojl58rkdFAIs4tmLEWgV/Ex9IKFLSweFp/vabrdjZWUlkzilI4Xg8PBwkptlo0Pi5GuPHFGIR0QWHyYLNARfv36dBMfm5mYMDQ312e9oXF1cXOSZQNSJEvDU1FRcXV3F+/fvY2FhIZWJCg9qFUqviGdFs0JAYrBPWNspKsp153cQVs77UNyZLPBckJp8WUtLIEG5Uqn0TcVRVVMSILMo5L/Gy0H1GmdUPxGRpAtlJA9aMVORr6noHByxyyRKRMTS0lJ6lg4ODqaf7szMTNRqT+cPaZCXCsjb29tYW1vLfVMqdzQmkKy1Wi1t9KrVahLZzWYzbVqAtaGhofzzavXJE9cB7VRDAKZzW8oYiAQAasrpRSTYhw8fYnZ2NvcxUqLb7ca7d++SMDSxgWwFKpDI1u7AwEASnO4TMINs0Ugr4zaFCWLT78/OzmYM29vbi6mpqRgYGIjT09P47rvvMvb67gCL4hqAnJ+fzzyi0BZ7IyLjkVygCKJoQoiVBANCFmHA0s4ljyBcJyYmstAqVThDQ0OpwDLVVU40UaDLu5rgS0tLKYRweU3ErXt5dXWV393nrNVqaVVVTswQShgDNw0jr1AOlSDYXqSsRUoD9fKK6ahSgQtE8x2OiMQ1rIIAeSS6nOxefO6X/7VdcAOLrIjIg50pDk3kWptIPHlJLFLwHB8fR8RTUba4uJhWthHPZ06VTRVr5O3bt32qftMCCjPrFDmKlFZ0/8u//Et8//33EREZc0yHKWz9maYIZTNcIi/6nKenp1lkjY+Pp9/655YPEc+HybMTUKQRnGjumNgx7SO2IFIp1QmJIp6tS2H0arWaJMLBwUG8efMmsafPrqGpoUIghPgUkw4ODnKPIjX8njyGyNf08Bk08yMi8yE7McSoZpYGNjyrENfYMPFeiq6sMZPlGhBwHbIZ/o+IPsWl+1dOMbGvKCfkXeJwKc6JiFQaUh+LIciMh4eHLJRhUtYS5QQFQQiSy/sgPawFedl9Lglb5Jday95C8JaT8poDXk/+IeaRDxDwSBT4+v8FRT9rPT7/Gg1wnH3TaDRyHxHdzczMJJGInELyaCawuJ6YmMhpbqQhhbvcr+F9e3ub2ENuFzcjIptGcFO3280pkVarlaILtdLAwNNZSS9fvswazrPWoDHB+PnEall7WUOVSiUWFxfj7OwsLS/tBfvWFBHyslJ5siP1mcsJRfsQVwC/ISg1K9Xq1rHz6RBSEZGiPPHd+mez6T3UvaUNjCabvU5cpCFaks5w/9DQUGxtbeVUD6ITt2C/iUFU0XB6qbBGELNDL0Wxng8e5dv17fpSl/2ytraWzUh1mH0aEdmgPj4+ztglTmkyyOuEffBGvV6Pzc3N2NjYyAYvMdnR0VHiCvxMROR+VY8SibBEhklMbIjP6huNJuKViOirsfFWBBTwIL5LDXZzcxNra2tZexFDqJcJXbnvlDmXtZlaFmbhSEAYExF9YiV1sToGBiktGCMi41M5vVFOoHQ6nT5hzvv37+PNmzdRqVSyXhWvTRzByrCLHEHQZCodpxgRGU/lBLVZxDM2LgVYmmtlXDO5bqrExDnrXOdYls1r+F6OLKfp8SAaGDMzMynYxMPi9kpuTv0Aj1lD8o6c6POaNnM2Onwob6pzDUEcHR0lv+DMJA21Wq2W7kDWksEDz9L3VjfjZXAo+I1ut5v1GjzDuYmFqosFarfbTb7fnie0/NLXt6bNX3gB6w8PD7kwkP6AmwBdWkEpbGxsSi02OcgWgQAg3djYSICiCC7VJgBRxJOac2trK+7v7zM5KKzfv3+fRXBEpKVNROREiEIZ+aRzDkjyb4+IBOgSD9sAnW+TGoAsJTSiCnHofZCArVYr/dS9JsJKYPRdESWUoJLYzc1NBnEB1YFmuqwsinhyI6AV3eWhtq1WK8cOy2RLqa6RgGB0zyYnJ2N3dzefpe9UqttLxbhJIEpr/qZIHyS3n/NekinrAaSa9ScQKdz39/dzwkCDxGsIcgK+NUslXk4CeE8kqwKjPAPEawPc7iO1o2C/v7/f5z9vvQigVAflIfBIHmSZ90G4VKuO10OaAAAgAElEQVTVmJycTLK3VIlK7NR55aQH/39JCsGGkJNUKRd4miNOv2ZFF6sEcUICleQ1bqmlKZwPDw9TEU0hvrq6muoV+8qzESesFU2gm5ubuLq6ykk2TTvNPbGo232ysvrw4UMmf4kUgfn5eQDAgUZkxJMFHgDh2d7d3SVRLcb5no1GI3Z3d/PwVu8ZEanq1tiyrxBe4i1LCXEzIuLw8DCbxBpDVCvyAnAc8bTnKIXKtelngFA/655Z62dnZ3F0dJSkpHgO4LE4E28iImP1/f19erf7ec1wE0MA1OHhYRYPj49P1lvyUjnxYq9Zg+xITH9olhwdHfVN6iBonXOFVGy1WgnaTfQ4CFvhpEmM4PFdHAjsXrrHEZHgeHZ2NhqNRuzv7yfRJL7UarWcoKVmV4SYQh0aGkr7S+v65OQkrf3EYTYvn9tn+rwa44oua9UZb1dXV3F9fZ3qcSIO5+dRo1u7xsSp8QB7YP7/BWJEUV02mTXY5DlYS2yJiLQAQFb6vZOTk3jx4kU+D+vB6zvLRTPFc/IeiDqqMXiHsploQjxBANbr9djY2Og7W8rz9P/Uo9aAdSbelb7cbDUQ+4QQk5OT2XRXlHtt3tDeRxG9vr6emKNer+cUCQsLedtr3d3dpcd6pfLky67A17gUq3q9XvzN3/xN7O/vpzIuItLazXqGkaheeclHRJKL7h2SkOVTRCRhKyaWpEhpUVc2UzqdTk6PKtjLxltEJMmrcbq9vZ0KS9jXvTcRai3COg8PDyl6MKWvyIUZr66u4u7uLlZWVvL+aaxo7Muzt7e3+R3FIE2m8fHxOD8/z/eCxzQmWZbCAVwKTIrOz89Hu93OmDc6Opp4kIAKPjO1xN5FHbS7uxsrKyuZA0dGRqJWez7sWYMfqa8ZpEknJmu2uZ+EJCcnJzkZ9v9CHCT8UwsQv8jV9hRhSkm2n5+fpy0oOxX7R82lFlVn3d/fx+7ubjb31JKaDsSMcpw1Db9riiCqxOj19fW4v79P2xcEKpJmeXk51cWlAvfDhw8xOTmZIg513N7eXqytrfVNcRE6uG9LS0vZUCydAzQ2KLgRmupvtrOcCeBkEyj2o2nkElfYnz5vKeApldjizfT0dBwdHcXZ2VkKPHZ3dxOblfbWLL41dcRQ5DFs6jO67BW5BAbXfBofH4/Nzc2cSu10OmkRihjFrZQTDpubm7G+vp51mPv37Uybb9eXvMQneVvzX2yM6McAakbTE/KmBga+Ru7Q7F1eXo6I6OPTkNUR0ScEK5u5JhqIbIeHh9NWdmJiInOm6Znp6emMtfCY8wg1I+wxsYI4EA4tG07qc9ORLGCvr6/zbDH1vykk8crnUkOVh7qLV8RRmge7u7spVC9dWjTL9vf3s3n9b//2b/EP//APGTsQ7+UkNaFMpVJJ+zXNHfmESOji4iKbLsQwZeyDrR8eHmJ1dbVvWoqFXEQkNtMQJ0QQ53B/+Gf3MKJfxKjhRAAQESmI+FwIrRYvhcvukylxYivvXa1Wc814JqUotRQvlS4+al7cBO4Cvmq1WslJ/tu//Vv87d/+bdbpXmtgYCDPkDdBQxRb3gvYumymmHbVfCQIUKd7XicnJzlBOjAwkCI8YgJCyNnZ2WxG4ZPcn1IU9UXjzhd/xa/8Eph1BQUdBYnxOJvDJEq3++QB6ZwSBXC1Ws2gHBGpPCpHy5B6ursCY3n2hsJjfX09DxHze/V6Pc/6oNBdXV3NswMQSVQzCsu9vb2YmJhIex4LcXV1NYt1IHhw8Om8HP9dq9VicXExyR7gb2ZmJubn5zOp9XpPPp0IxDdv3iSo7vV6sba2lg2WcjSSepGHLlWWhpdurmemyObFLTjpeCMQTEyx2DHlpPO6uLiYRRniwGb2rCKeEu7u7m4sLi6mn6nvdHBwkIqukvjRhV9bW4vNzc0EuQpMAV4AZUPg3kqcrAE8B2BeEapLHvEE/BcWFqLZbGaTRBJTsArMPjsicXp6us9uTqdas0TxfnR0lCpvXXWqxfKQ0k6nk8/HOkX0lwfeAhWsYTRBNZ2ocZ3lgPRQiFPueh6KBsoyCRTw8FyBHq9nLFYSMJnxNTdtPENNwbGxsZienk6FSL1ezwP3ACqEzNraWu5JPqkRT/YPc3NzqY5BYA4ODuY+fnh4yIbd1NRUNkhK0r4cSUcImQTyzDxPI8ovXrzI2BARuS8AiZGRkSRkgB7vXa/XY3t7OwEEUGVqgoLcBJ1mvkmTMh4jQrvdJ/uO9+/f574TA/7bf/tvsbGxkY2Dw8PDVC0Zh6ZoB64iIoEwq6WRkZH4/vvvs6gvR/eBQIV7vV5PperExETa/mg8bW9vx8bGRkRETkGdnp7G6upq3xg9Ynl9fT2BVtn8AtIBsKWlpbi+vk4f5Yhn72jPGFiq1+sZ04A0pMXw8HACrtvb29jY2EhVjr0f8UQSR0Tf6DrP6PJngTgNJDlF7rc2KMmJCKrVajY0va48gjgpJysfHh6SSCqV3ZR15ZlhikYXMC8Xrq2tJeGp0PI9NNcUkUhq8Q4ZT4ln73ge5fSHpp11+zVf9jsSmfimLLRM1Jo8sTempqZyX5X2Ts4QoV6EC0pbHM9Zoad5g8Cz1z4/zPuPf/xjElnipdwq75WiHUrBiCdVYr1eT/wqT3ut2dnZLEAdAAsbzczM9FlclA1xeyHiaR+JNyZ34eChoaG0/nCvz8/PM5ZR9DebzfxvuEoz0X2UI0zHIn9brVZiOz9rH46Pj8f+/n5OB4mn9nHZ4Jqfn4+Li4skPDSGxFTNU42AWu3ZHlMjgvoVRvUZnR1Txnjfgz3Tixcv+qxoe71ezMzMpLJRLvNcNXHkB/mKzdr6+npfbol4aozLf+WkCjKYyAEWcL+npqb67DzVRCcnJ//LBI8z0Twj6lZCjohIbHl1dRXLy8tpl7e6uppNIXEbTiz9xhX9LLRgCBOh5flT6inP2ectp7JNdU9OTuYa/1ova0OT9/r6OusRKl4EI3sYJOLU1FQS6PI/xTlSU+5GQtVqtWzoHh4eJs73/qYrEG8EbOwg5b7SCoUwgV2tOtE5s3z0WdKWJNjLly+zAagBFPF05qfPYi+ZVJ2fn4+IiIWFhVx/1Wo1Wq1WLC0tJTknLqtBWcWYYNFscb+IBynu1eXI41Ks4fOqPzVZqOcRx6x6qfrh0m63m4JP8ZHTRTmF7u80kjU7TdfZh/iOUvAoF8ljan+vw8VBvT40NJTTzPf39/Hdd98lvikxm7ru2/Xt+hKX/RYRiQ3wQqbciETKOk/jpFp9cq4R23Z3d7OZenR0FEtLS4mvCW00EjRBiE1LUtk+KCcaxCNYrzyTzmRLaYdYcobyXbfb7WtSaBoRJpVTMcPDw4mnOAQtLCykeK8Uh+BQm81mWhqWDQI5hZBOUwOWOD09jbGxseS81DVEBRw/uK0MDw/HP/7jP2asghMJpLwukQCRsOcNZ2kyn56eJk4pzyaF2eEXwkh5BHc2NDSUZ8mKnfgAk4smUayhiEg+BH8FR7lHMBCehQCB9RtBZikgxd+Km/KRphZOmVWd9xbv5VN53bMl9Cut6NUKEZHn/uKBBgYG4vXr18l3RjwL8Akd1F+lEBRHKI+zC+z1eimCv7u7y/ro9vY2dnZ2suHmCAVNQry4OtwlDxJBsBiFrev1ejSbzdjb2/vicedb0+YvvACgcoqgHL039l0GA0Hu5uYmAQmCD+ixGRQ4gmVpcVGegyKIIK6AMkQgoiji2ebA31GteP1SSStwIRwBY0UmP3QdRsnEAo6IVNMjQgFpJHipXEKGKhh1fQF/CvNqtZrWVRoY/s16h0pZIrNZBVPNqRKI6uxqoCEuSo9x6krfFyFmLJOiECnqte7v72Nvby/+43/8j/mdI56KXhNY7MlMJwDQ1ocAPjQ0lKSFZ136l5drEjgtn78i1Ot7LySoAsSzQixERJJOfo8dHvVUGcyNG1ISeA0FS7vdziJM48SBoRKHdQz4OLcBWWT6CDEsybsvgq0iTqHiWXp9ARY5pbAwfWHKB/gqp6Iiog94sXZA5nytl+fKMs6adt8R76bPKHGAQo0uVie3t7fx8uXLXMclgNKcaDQaOWFoukMT1NpFPtr7R0dHuabKsWtF98jISH62T58+pU2ZyURxKCIyDgwNDSUYubu7i62trVhfX88Ybs82Go1UFJWKesBUc48ivNfrZe6goHGgoebE0NBQ/P73v8/31gCPiNyL4qEJEXHUAZEAmecljygsLi4ucr/Mzs7ma4j7Cgz3qNfr5dlh8hJV5s7OToJDMWZqaiqFAmJNxHNz1OuIU/Y/Rb9Gr1gZEdkwiIjMRScnJ0lKI33dW2AY2D89PY2zs7P47W9/m0DaZ6KAFX9ZvCwuLiYhVY5hi4FiaDnxVavVkoSXa0v1brvdjouLi7S7UhAgaewz9+Py8jK/GxLX5KaJSveXvSgFq7wCFzw+PuaUwsXFRYLg29vbtEZVjFhDiDp5ATFnP37N1+3tbe4npK69YWpaw9FhomLU0tJSxhWFN4u50l6L0GVycjIVkKZNYBRNAxizJNE8Qz/3/fff5xTh2NhY4hbvCUf5TGLh0NBQTE9Px/39fbRarRQKiQkaiNb6y5cvc5KBes/ZXwp0BResUE6zIUiRD3CL5hAVPRxdekbDGqZvNYLglcHBwTxvSRynmHzz5k1aSxBHwcjOPjs4OEjrJCo6eK+c0DFtf39/nzEa4WKyTj6CKcppzPv7+7R0jXi2gjXFx97Oc6rX62lJSKEOB8NmplhKpS2c4vObNI94jqWtVisbXyXhozgn7vEeSGIxSp7WTLq4uIiZmZmckrq+vk4CH7luXxFeiMXsO+RDwrbx8fFsLK6trSWOLCdM5+bmspFycHCQjR5r1Fp3+HKn08npHJPe8nZE5FQJrC5OLy8vZxPva744KsA4Y2NjOQVBXU7QcH5+3oePrTGkITKKcwKVsf3n+WqMs9e6urrKPFcqoOXK0dHRPE8QEWTNV6vVfG/NoK2trRQNlWc6yPVEIeIJwgaJ6Dws+NTauLu7y7rt9PQ0z2iMeIoLq6urSYKKbRqCEdHXuBCHNzY2cl2WdSKRgJis5oWd5QpNZXmdqh2u/9Of/hTv3r2LoaGhnEpHmtZqT3aJJgo/nzZVWznDC/7QnFGXE/4gi9UVpepfjoDbYLJWq5UWxhrP4sLn2LLdbmfz69v17fpSlxyp/oD98F/qGI0TwoZSbKP5f3x8nGd6RUTMzs7m/pVn1BvqGTWQqZkSvxGWwU8m36anp/MsLxyMqUDiWOemOGJBHLq8vIzFxcU8H1GDXf2hhi2tcO1Dtfjl5WU0m810cUHiq0dMHROPu2/l94VxYS+TOfAcXpR9N86L+KbT6WS9X61W03YrIvKogpOTk1hbW8tn2+k82b6xoPU5Go1GLC4upgAZXwXrqSfhkVKAInZxjoCf/Ix6Au5h0wt3eibHx8exsrKSk5kah+pxuE/t+PnkjgYMjBwRWdOarPZnpq263W6Kd09PT/vwGvtTeVHTR34bGxuLycnJzPdEE+yN/dsEc/nZnYF0cXGRz9caLqexfEe5wR6CK0zEnp2dxfLycu7TmZmZdHvyfUxewaWE3+VzsA6td9zKX2Pi+lvT5i+8qEEQ0wCK4KULaPwZAQiElMqt09PTWFpaSpWIv1taWsogVapWu91u7O/v5/i+wjYisvi0eRRCFpGzDUrrh9Jair3E8vJy1Ov1bGYA3zq4yCK2NjaTjSRhsaVCZAkcQLgA7O+Ojo5SmazRQs1FIac49HvGtR2UjBg7Pj7Ogg25SNEKcNtsOs0OLtNlRtqXI5/1er1vusl3urt7OjtF4I+IJENfvnyZQNX13Xff5WGWPKEjom+SxjgqJZ9O99bWVqysrGSjxyFcyN9erxcLCwtpWWJtIB8peMsAREXle7HxsG7LdVav11M1MDAw0EfAsnB5eHiIxcXFfI6SDxJYENW8+fwcIwRxROTfu6ebm5uZ2EvilBIEUJIcENoRz+rkwcHB7LT7voiycp25n7/++msWoBTFvV4v1tfXcxqN6qU8V+JrvU5OTmJubi6bjuIUgkgzGtARX1zseyIiD0cW75AsFDMPDw95mL1JO0WnnwOYTLlI3JRLrIZKa4xutxuHh4dRq9X6iAYxUmPg8PAwD0FVdFP4sX2JeB5FB0A7nScrJApTsYKKfn9/P4EaVX6p2BwYGIjd3d0kQxFnJYmvgSLnALHils8BfJmqQRbadw8PD33WJkNDQ/Hp06ck/0xxsvA5OTlJCw5j1KZBkGu3t7d9YNw9BeiphRQZiC5No/KMKmtD/nQ+G1KAItRakK/sxc3NzTx8t2zYayQ5j6o89Bsgf/HiRa6TkZGRPi94BFR5yDtC3cg/wsJn8zzl4dKjenBwMD59+pS5xH2Vz4Bs78FeAeg+Pz/PGEdt2263++6vBgz8IkcqCkxJIuiRUtaeM9RMTnU6nb5mHFD9NV9yHowirsiNbAs7nU6qBHkx7+7uZsPAemq1WimgUaxFRJ9yudvtplezph7ryEqlklPdYqCpFYWHnFkWusQJ4+PjKYwQBxWYFOrtdjvevHmTcd37lmSbmEel+fDwEJ8+fcp7ZToa2cteQtHJhq1UliJXNesRumItm41Go5HYSHMDBhcHqO4VnSxwWTh5bo1GIw4ODmJlZSUtLiqVp/Mout2nczB+/fXX+MMf/tA33eSzb29vp1pPQ45ClbDGfRO3FM1wFG9w+Yw6sVqtJgEM40REbG9v5ySr74fURbASTUxOTuZe11yEy9h89Hq9+PTpU6yuriZWMiGAyPEMTRlHPE0fW/NLS0t9NQ/LEfHRmnYv/H9EZJ7TOKrX67G4uJjkf71eT0xAaUwoYo0cHx/nvpPD5LuNjY3EKogzscxEuveen59PQqXENAgUfyfGslT9mi+kTGmtaJKtbNrBG5Sw6jH7pSSK1CgRz5OMcAd7VBNTpWtCxLNTAixQqVTynIByot8ERyl4fHh4sqV8+/Zt1oWabo1GI0U76kdY0t/7b00kwiMErHo64km8pnHs85S1kClFtSxSy1pcXFxMm2+53N5CojmbifCTqGxubi7jZWlTLcaIdY+Pj7Hx/9lm3t3d5SS5Z2MCBgl7c3OT0+Oeg8/iGcLKZe5gf1mKpMbGxjJvwT0RkZbpcJO4FxF9QqDz8/NYWFjoc3OYnZ2N8/PzfL9v17frS1y4NdOfJYdimgy2hoHK2qYUb5lc48jw4cOH+N3vftc3IUaMwG7VAfYlb6PRXa1W0x0HF1aKMtQk8tjV1VXulVI8p8aLiGxmq3VMB5uA1WzAkXpvdt8wrxpDY2dxcTGnXglkfUff6+zsrG9aVtwk0nQPYT3nsfq+vgfewvPgHKSu2dvbi8nJyWg2mxmTYS+vpzHRbrfzPU0OyhWcYdTu7nWv10tBI9cCta08QmBPdAx/apK5P5ozGxsbsb+/n9M+1ovnSMzgzzlrfG5N7vt0Op206GQvTlQG+zSbzWi1WnlmuvsyNzeX94zdsM+gMYkzLy3XYFDTYeoHzTWch2YKvBbxfLQDq10CHOsJB0hAadKrWq1mw7MU2q+ursbp6Wkfty3va6DBzhwUTLJxfJJ77Z0veX3d7OJf4QL8yw6qxezvETWmR5AZyCLFgkBWBvuISLKLHZMLmV6tVjO4uhqNp0OoX7x4kQeORTw1Al6+fBntdjuBFjU24g3AXFhYyGkSZBpwLCiwF1IQR0R2q4eHh+OPf/xjfPfdd1GpVPo+u7HmoaGhvs8OCAOoL168yHtRqVRieno6Tk5OskAqGyY3Nzd5GKbGzf39fQJ1hWFZUGsuAY4KXEBRc8EoehkwNAfKzzc7OxuHh4fx4sWLvufosyv6NOWoJgVR1juu+fn5LKxNv0xMTGTHe319PZs5CmKks+454sFnoVTVXFJUlVYi5fcybk+h+PnnM+r4+TprNptxenoai4uLfc8eGNfkOT8/zwmWkpwVCKnb2PRQfNRqtVQ1lB3usqvvmd3d3f0v62xxcTGVJJ9/Pmv783V2f3+fUyLOBXBJ3tZTqTz/Wi9F6a+//hrv3r1LQkfSo2oplXVlE7DRaCQhSLGO2DfRUHraigtjY2PRarWS+EFAIsw8e/Y53W431ciaJ4AEyxuHfx8eHqZlIzUHQqhspCBtFIiU6qVSpvSVHR8fz6bw4eFhvlav10tSnk+x/cnbtVRvAsHuD6IKiCwPaS2JWcABIKZgB+LLSUdTFvV6PXZ3d2N1dTVJDTadQDYyAiDXsCtJR9+JbYrJIsSM7y5HIteQPcDq0dFRglHqflOGftd9r9VqSbYODg7G3t5ezM7Opuo1IlL9LbYA94CzIkuDiaoTccemQzF1cXGRTR/qe3ne/XZOXUSk7YH75D1ZBXxuD3h5eRmzs7O5r9xbz61U7yFE5O9OpxOLi4tZpLgUMMAl0izi+WB0h/oa/abkc797vV4+d5ZfRu+/9qaNiQ57TsGr8FIAOuNEA61SqeSBz/afOOle12q1VBFr9FFQliozuBIW1chxpsmLFy+yueoMEVOQYi27xl6vl2Ib8VYcYmkgf1NSssgSI90TRZaiR8F6e3sbc3NziWPsExNdChzKQc17302D0HQRfCB3IC4/fvzYd4bG9vZ2zM3NZaO1VPD7zvYqm6xer5f2XqaOYQzE7O9+97vMPaenp6me3N7ejk6nk7aIzi8Um90n+UiuRKqa7EGGVypP520tLi5m/rT2WGBUKpWc/Ip4VkkSRMlPClA4EBGiIDV1dXFxEXNzc2mzrKnBvgP5WqlUYnd3Nz8TcZEGzvX1dTbLrRv4qRQn+Fn/X6s9HST/8PAQHz9+zAaKZ2pfdDqdODo6iomJidja2sozekxMzc7OZm1TEkJyqjiqeSCWahTOzc3F6elp3zQVkQCbSlMI8kZpnfc1XxrMBwcHMTc3l/WH2gapyC6Q2luMvL+/z9oZjtLEMI3FXtJE1fDwcMYhZAhykJMCrIf4MVEoJ5uqchFm2a/ytQbG0dFRNhDZuahZNFcHBgb6cArSCNYxJff4+Bg//fRTvHv3rg8rqs9K62UxpxSPubdIRA1a04RwIDGf17u/v4+VlZX8WZhNPIIjTk5OcgqSLS2caYLJ57ZH1tfXE+doqhAiIMx8d99XzvPanU4nBTjuvTPJ4HV4S01wf3+fjhVEhPV6vS9WRTxNT7FtL0WV365v1//fC+8jt3U6nTg4OIiNjY3kgkzZyW/yDgI4IjK/nZ2dJU548+ZNHyltqtZetNfLc1XUl2pKe1h9wQo/IlI4Tdhgys4ZZaW1LNFXadtGVHt1dRXz8/N97gLwCn5Qc6LdbsfCwkIKO4hu1ZkEFOJMKUyamprKnIoTIygzTWEiurTEFfdxDgMDAymwNxmzs7OTAvTFxcU+ASjuiZgYl1F+L5NLpYBBI6OcEOSw1Gw24/HxMbnUiEjMfnFxkbHQZKk6nwDi/v4+Li4uYmFhIWvq1dXVzLmeuzyKK/y8iTEzM5MCVGJlEymzs7OJT9kil1ZlzvmGm87OzvocVIjZ1ewaaaZPfSfPpFqtZj7d39/PegknEBHJTxBawO9wmO9N+B8RKVhV29RqtVhaWsqcKscRRshT1r/X4ZZhffq8uGtcB87R99R4/JLXt6bNX3gBh6XlC6WViQ4EtIcPaCg2TTkguEsQWalUcjSQHZqrVNx9ruhnZaJDXTaBBFjB2Ps5X6dU5vECRwyWakCf1wHjRrrZk1Uqlfj7v//73OzlZ2cBYxyw/Hz7+/tZaJX3QsJw3zXKIiIPi6RaAtwpgMtRbgQqFaiGFGCteWDSp16v5zkcusEsTz7/fOUBkP+754jYLJsEpmCojUorBXYDguzFxUUeiOv+IY8jIj3wp6en4/T0tM+2ryQOkZQ60qZKgOjys0sQnlu5zq6vr1PNVD5H64GaqXz2BwcHGbxub2/j8PAwp8Wq1Wr6RhtnlHQFRcBIp10xp9mmYNbkQsp/vs6Oj4/ze5WfzzrzPMt1dnl5mc+41WrF3Nxc371ot9sREUlE7+7u9qnAvrZLrPj+++/j9vY2rQVdyGYFkqRt5FTiLy1dFPGaj4AM0i7i2SIi4tnywNQb0As02bOUKdaZApCSe3JyMhuniLxut5v2FOV3Li1gIiL9Y+/v79NOhZKmtEejtgFokerABjsVsdn7KYqRu34XcEUSimF8bO0LYMUh9b6bRoNmLJIJIV+r1eLt27epSEWmAHuaz+xtZmdn48cff4zf/va3ERF9I95AjkYaEOfg6VevXmXsQUQ/Pj4msa1pwhJDkYL0NoVqXzebzQSS+/v7sbKykioi99U9XFxcTDIHqeAMNmBScfTmzZtcm96b4q1ef/IcpvARm5HfSOVe7+nstqmpqb7ztEx3eV0kq6kj6wWhJScRHWjAUfabvkGGKYist06nE2tra5kfSzU+Nezo6Gicnp7m+ypWFFKAus8JMyBRvvZJQwXXxMRE7O3txdu3b/um/pz3UhYK1oSYwBLA9KYmBLV12cBlrzExMdFnSeP5IUNhG2SfM8UUFtYMQvL4+DhmZ2cz1iiiWU+wIDBBExFZ/IvlilGNDoo6xRU1JuskQhnrH2HnM5eTu6aiCW7Oz8/zNVgyiBkR0Vc0+h58sGdnZ5OQKM/UKc8LnJ6ejuPj48Q3piNZ9CqoS4KUkEdDzXkqpaWYSRriLljLRPzV1VWSDSbwxfLHx8cUUyl2EQEaORpg4pkmWUQkuSxWwD/iaKkQvrq6ig8fPsT3338fNzc38fr1675m4NnZWVxdXfURC6V1FaGBfFVOirvPpYiqxKX+Dg4vxQQRkYW3e2Qdz8zMxPHxcWKBspE2NTWVRDeiYm9vL0ZGRuL09DT90+1Nil3Piw2GekYuLGsCBEGv18t9QEX6NV/lOQHUvZphGqImo5rNZlxcXOQ9UwuYqjCZbTJC3cO+xHlD91AetrYAACAASURBVPf38euvv2aeg0U0UWBNcUMDfXR0NJvDvd7TIcOwonUVEdmkGR0dTY/9UoQxOPhkcy4+qscI/nZ2dlKdHBF55qBp6kajEa9evcr94LuyXEQGXV5exvv376PZbCZf8Pj4mHWIfcYC3AQsYSFM6NweZGvpMqBG9hyur69jamoqTk5OsvnZaDRieno67coODw/TncMB5SbMS0tOuIAlmVxlIrnRaMTe3l4SirDnxMREn/U6fE58VKrdCUnUEgQ71qCcJYaJN9+ub9eXulhS4Rh+/fXXWF5eTrymWUAkVTYM1BxwhNgnRpoOLAXFJkkJpjU5CHDVAqZ14KmyJtNYhb9WV1ezzhHX8CHsH8Uwgjd4wER16VATERmH3BcTPgTnzoje2tqKN2/epKBIQ72cujWJoUbyT3ng+/DwcOJxdX7ZCOp0OilQx2fimqamphLTzM7OZiNbTFG7yvEsN31GnKFnVsYleF7zheBOvpmdnc3YrR5VD8P2hPbqSc9tbGwsDg4OckJF7biyspLHRJhq11CPiHxObCflbhhIbcJeHudlKMG6npuby5ha5k/8XylehoMJDTgy+UzWW4kL5C9CfE464+PjKY60FgYHn85TPzg4SC7QRAzBuyZUacXrfScmJrJJdnR0lDns4eEhf5+IvVKp5LAFbhL3CHvi70dHR7Nu+pLXtyz2F14ASK1Wywfu0CuEmYLNJox4VpSVjQ7q4n/913+N7e3tmJ6ejrW1tfjhhx/i6OgoXr9+Hf/yL/+S/rMzMzOxu7sb19fXsby8HPv7+6mEHhwcjJ9//jmazWa8f/8+fvnllxgZGYlmsxntdjtub2/Tw5dvs8Wmu8qOoDwbpZxUkCyMUI+MjCSJAFjZUJeXl/HP//zPUalUYnl5OYtRquWff/45D6m9vX06DKrRaMQPP/yQne7FxcU4ODjIoPbhw4cE0gBvo9GI/f39fN9S8W/su16vp4pIc0dRhrAw2ULZeHBwEM1mMxV2Nt8PP/yQ49ijo6Px8ePHLGL/63/9r1kkLC4uxubmZlxfX8fi4mL8+7//eybRX3/9Ne7v7+M3v/lN7O7uxubmZo6mttvtmJiYiB9++KFvigaBhmQt/86/y26/Tvjd3V2OqiMdqUqR5o+Pj/Gf/tN/ynv0t3/7t7G9vR3n5+cxPz8fnz59yjX34cOHnJC4u7uLjx8/xsPDQ6yvr8ef/vSnGBsbi8PDw2i1WvHLL79Et9vNtTo+Ph7tdjsLI5Ys7XY7E6OihF0fUkaBYVTTWq5Wq32+l4iYw8PDeP/+fezs7OSUTavVio8fP8by8nLs7OzE7u5uqvz39vaSrPn48WOcnp5m4UGtdX19Hf/5P//ntM5SFP3rv/5rntnDguprvUwDdLvdnB45OTnJiQX2PWJbrVbL5uqrV69ib28vSTkFsf28t7eXDTqKRkDop59+ioWFhVR0jI2NxQ8//BAbGxsJsq6vr1O9p6jXxD47O8s4AvABEYAQgIxs1PSgQkGCG3c/OTmJq6ur9FY9ODjIqbpyqq1slgPNDpikKi+nMBFZzlEo93oJhFhobG5uZnNEc/PDhw8Zr+v1ehweHub9q1ar8csvvySALRvK4vjIyEiCP9+d/+3s7GwqgIyB7+7uRkQkePXcJicnk9BA4gF7h4eHsbW1FfPz82mJaP3IeRqvvhvC0oQT5dPDw0Nsbm7m93Dvz8/P0ydX3EcSUsco8vf29jIvahaWgFN89Qz29/fTxgNQU6goGnxOeaRcW4C/2Nxut+P777/vU+V59u12OxsArVYrC0Iqumq1moSHwzTL8yEIFUpCSbPSCDts8+OPP2Yjxzke9Xo9dnZ2+goBTQqNn4jos2v4Wi9TlxER7969i4jIfGBded7b29tRq9XSC7tcF8Q3GmyUWSZaSrsEBfvOzk4WSsQfmrelwIIohZhCjNzf389zCuz7csoBqR7xRJRT4lFXK04Qoog11oJnZ2fR6XTyLKvvvvsubm5uMs7Z4z4PUl0+RxS8ePEibYg0sBSfJycnsbS0lFPiCF2FcjntpEje29vLtYtoFqOcKzg+Ph7T09M5dQIjDg0N5aQ57KepzTZYsXt7extXV1fpy40MNQG8ubkZ9Xo9bZJ4zJdnZ2iIaX4geBC9jUYjpxEjIjY3N2NhYSGbJ57X7u5uTm9p5lobGlyaDMQAb9++TRLWP+Li2dlZNnCdNVOeH+TfrO2IyDSAidaQPhGRRa6mCRKbfWjZ7IJZPWOxx0QHUgzOLi1rfU9T0yzTECzW1+HhYSwvLyeeZp0hTlrvDqyFPZE87vfXfn6Gg5OpngcGBuLi4iLJD1Z8yENEXnnIdMRzjouItCxrt9vx8uXL2N/fT1tvWA6pB2PAUlTF5VQoIYZGoHXg2ZreZ6Un5iLbNE6tO8QoS0WYxTS3+GLdlxa+k5OTsbW1lU0tpBrOgFhDLKxWq6keLvGiSbzBwcG8z5qF6h9iTPtDQ83eLEk/uSbi6ZwidczJyUnuM89QowZOILBDjrJco96H24hPYalOp5P1WmnhNjAwELOzs/HnP/85Xr58mTltf38/VeW7u7u5zy4uLvqmcAhMiAGopRHImvXfrm/Xl7hM0IkVeC54RG1JEEF4qPmIYFZDwRMcI+RxExbEFxoVuAYirV6vl7wVHKgpCvubxudIwJI2IhLTe1/2ar4frpHIUA2hkaqxgYMSq0uBDdHSyMhINiRMyPgMiHhxA/YpLfPlYvffNHm9Xk9Rr+8xOjoau7u72STpdJ7s1liQRTw1UHBrZ2dn8fj4mPnh9vY2hdFcYry2mjgiUjxCtESwGREZfyMif1e8Jvw38Qk/Dg8Px87OTtoiyxlwoWdC/Id3hdXVG8TP6s0///nPsbq6GouLizn9cnx8nPkLBiUuIKiE+cTWkit2/0sbNi5NBPBynab98PBwnrc7MTGR4gY/Nz09nWvPs+FYhdecmJhIHM/CnuMQ8eXExETs7OxkY0z9/vDwkGtocHAwPnz4EC9fvsyaxzmGQ0NDsbu7G81mM6f98Q69Xi9rAvtMcwg2/tLXt6bNX3jZhOWDL0ehkH9G33QJLWagtvTdbTQaGazLcz+MT1LX6spSEivmkABIuc3NzSQEWBPY0EbVka0RkUSWACBQKb50FKmkJI56vZ72Ez4jkt0BkOWYJZXlp0+fUqkEeCpaT05OYmdnJ1ZWVnJ6qNfr5Zh62eWPeAryfBlPT08zaJWKPFNQPkcJ9Nx/hB7lM3sgDQRWJ4eHh9lkevv2bUQ8BWFEmmftXmtiKFIB6MvLy7ReAPJPTk4SXDoTxqQH4k3yLxOZopfasRyNpcIQXJARpQf4yclJnJ2dZeHrDA7qacDcayNrFQaK4Gq1Gu12O46Pj3OdIF4lBF1tgRbxpylDmdXpdPqsoozDr66uxu7ubt9B9EZ9JTMF1J///OcYGhrKUXy2I8fHx3FxcZHFjqR2dnYWR0dHsbe3lwQWQHN+fh77+/tJ7JeHpr579y5ub2/THsj019d4SXTllKDCUiyizkZGOt8KIVM+cwU5xUpJ0pgosAcGBgZyTHp7ezvW19cjIlKdyHLSaLP3YaGALECOAXhiAx/Ucgx5aWkparVakuwUu9TqFMus/6wPhzJSaLKkQKyKBw7R83udTifV4faXf7NQs/epslZWVuLq6iobvo1GI9bW1jIfDQ0NxfLycja2WRUpDkxHadBERL6HeHVwcBARzwd4A8Pl+UP1ej22trZifX09pzbdL0ouCmx7D0ErXk9NTeXPUZorJMpGnKaMz8oqivKWanZqaiqnvsR9ogsgn3rI5I4mS2mLE/GkcNvZ2YmHh4dYWFjIZ0dx7PXY8Ozv7+ckilw/MzOT3xv53ek8We7Nzs5GRCQZRK3t+fsc7oFJN1iiLE74DSuAxEmk/fT0dOZWijaAFJHebDZTiOHwyLGxsSxOPn36FHNzc3loqnz+tTdtNMsUOzMzMxnP5CvYZ2NjI4tcyjJ4SqMBsQZ7KEQ9D+fjiI2acqUlY0RkrkKOafYgVzVG7u/vc2pbDrM/xdLybDfrk5ChLM4Vi4q8qampuLu7i++//z7XvIM89/b2ck2KldY/uwvvAYP43u12O5vh5dk+EZFNWRhxeno6ST2FFa9sxanvcHt7G7Ozs4kfFbaehcaFvdBsNv+Xc5s0zsoJ+0ajkUUiYvr+/j6+++67JGYp3pElnrtzXqj9SssgWMZ5PN1uNxYWFvqm4DTokUQawwQyrMesOc/cmjQNqAFXqVRyKsw/SAlYXE3gbEje5uV5E2ongjdY/nO7kkqlEuvr64m7iRjgQFYWrK9YUsgbR0dHsba21je96XkiMZD11qj8sby83DfVLVfDvxShw8PDfVNJ7sfl5WUSGl/zNTo6Gs1mMxW7GvmapPLI5eVlKlMJCUoLxnKKGA56/fp1Njpvbm7i6uoqGzIRkTWeGALPlbYpL168iKOjo6wrCcLsL2tenC2nT5zJZNqvPC9TTIU9nBU1NzfX11w0eas2hhmq1SebLupgdkLOQaJ2Pj09jZWVlcRvNzc3uWd9DuvO94uIzL0aZvCsdS9WaXLJFRwqIiLxQkRk/CMSkLN++umntPrxTDR0EVY+L+FA6Xwgdlg7bA6r1Wq8evUqMZ96olR/w3/IQzFMLsSRRERifiT6t+vb9aUuuIY4Ss1nj5a2VPIw/g3uMo338PCQ058RkfUO4QzCWP4pFf6w5tHRUQp7y/gaETlFX06D2xPEzGICvs3ZKThJwpyRkZGYnZ3NuALbEEYg60uxrZgCW5lYYOV2dXWVTWENbFaVGkD4PM2N29vbbMATIMkH6umBgYGcFNQwEhtM/7bb7XwuGialfR3MQ9yJ3zDRJN+JZWpqk1OfPn1K+3U8GREm8l9zQkwkrsZDqivVpBxCvKd4XU7VRES6jairO51O/P73v894CQMPDw+nCNcxAHKTPGviFScqb5h0MkklzxDCc9ao15/OQH7x4kUsLCzEwMBA1q/4FvykNeAelramsKQmUWnBTOxL2KBOZkmnYYbPsWblasMLmnHy0MuXL+P09DR5Cs+Lu0Hp5ILXKl2tvuT1rWnzF15GsoCknZ2d3PyIyoinQztbrVYWk4DHwsJCjvJRXbKDqVQqcXx8nDYoNzc38Zvf/CaBjs73wMBAAlOb9fj4OIMlmxekv4BSHuJVgjUFS6/XywaBYpECzWsp/oxUU+sqriSrs7OzVKFWq9WcZHB2TkQkKHY2CPsYQcNZCHyBy7MkDg4OskFycHAQHz58iNXV1fwu1NLlaLv7ruBWQAhgurmshTS3vBabj2q1modV+Z2BgYH47rvv8ntpArFUoESm0KegnJubi3fv3uXz//DhQ6yvr0e73U6/bEFQ0wHBppj0WggO3pTIZMFSknQwbpkI/sN/+A/5+XhN8+JfXFzM5MvOzSSAgoxlivcbGRlJcmRzczObGdavQl1wi4g+D9V6vZ4jrYq6lZWVtBhQHHk+V1dXsbe3F2/evIkXL17E7u5u/NM//VOSDiWw541dggzqibGxsWzGRUT8+OOPERFpuUbtMjU1FX/84x+TcC4tP75m0rI8p2V/fz+bA4g/6sRS3apA1tzRJLD+BgcHU+ni/+1bhJ5YB6S8ffs2Hh8fMzlTvkumSDuTgCW48tqaF6ZNAFnTDA6hn56eTssGzTyKEUSNUXNNhojItaWodl6X6S7r3HlcDw8PueY1RAB8+QYQsgc3Nzej0WjkWSKKWFNKDojtdrsxNTWVpDJwYq8DIgAkAPXLL7/E4+NjrKysJMmrmaIJFxEJmt6+fZuv5dmXI9FnZ2epVlbMAMql8htoXFxczPunAU3tWRIL9nmr1YrV1dW4uLiIly9fZjNOQ8hUgGYNIgi5p4BADGsEGen/u7/7uwSN1pCYsL+/nyP2Jycn8fr16wSEmioaSuwPFBYRkZNBERGrq6uJKSqVp0O9kVWlXZkcMTo6GhMTE/HmzZvodrt5bg4i5OLiIgYGBmJ5eTnXv6u0lvGsjJZbw1dXV/Hb3/42R+OtFeRRt9uNjY2N/B5f80VYsba2lsKLiEgSXHNOjhYXNXGnpqbi+vo6zxfQfCESKM8CszcVbicnJzE3N5eTBPaZ3AW3WHdlM9mEyvHxcczPzyf53+v10iZNM8a6RlDDAvK8Rp4zXDY2NnIyYmhoKIsuh0mL04RLpmeQrGxhFWLwb0SktQgLHgKovb29jOvOVGSPJLcQrIhFxCzIZjH8v/yX/xJ/8zd/kwSliUiEcETk75Sx2VkWPp+pM1ZszqMy1Swue64zMzPZaJiZmcnGD0yk4XB//3QG0cXFRZyensbq6mpiNZjL50SawqZI36urqxQE1Ov1JFpZEXlvpA6sL9bu7u7G3d1d2u3BfeIUgVKlUomjo6MswJ0dx25Ck4QQyWT05ORkqnEdsi62qFU029RIBDQwOsuyg4ODPutjIgCOBkgczRt7mKiCtTFiA7GPqLu7u4uXL1/m/zvXUJ0nX3+t1+joaLRarRRoEDkgzMQswpDSzz7i2WYlIhKjaTSU50TCjsQHZUwrJ0nERg0WdYr1c3h4mLZfRInj4+MpDiLaELOJVYjLxGTxSn1VCkDUL84rtBb8jNhRntlD0f7ixYuYmZnJPKDOFCeRgTAXAQcikONH6QQCx5TTxaVNeKnGh80070dHR+P4+Dh/xmcgdlpaWspmba/XS7JM7lFXlnWpOqFcL4SFLGnkKk0zE0XX19fx6tWrODw8zHqWcATGoV4vpxIp0kti89v17foSF5KWSK/cL2obzWx2ysSEpk/kWhaO9gjczVUCp1Cr1XJKzWHqBAP2QUSkgCoicgpYjQO3w7EszkvuR51/f3+fApOlpaUUNpoyxSP6rvaw+I7MFn/gYOKbiMjcCstqPKiHNKBc8gvsRgRSNhHggdIGrLR6gw/xFXjQsiFRr9dzivbu7i62t7dz2np5eTnzGSFcs9lMlxv/LfaxDZMf2+12rKysZE2A+3AfNXPa7XbmNFyD9SM/yhOEkji2UsAYESlQNmHsNeVYdTPcpwnOYQKn6bksLCwklifgIIpmR9Zut2N6ejprcIIJE9imZSOexZfyk5hu8tu9wZfgVOUK5xJFRJ+1JpHIzc1NHBwcxNLSUjZ02u128nbu293dXe4VGKV0JPF7k5OTsbOzE7Ozs5nXYGlr7K/BBX5r2vyFV9mwEWgQSTaXg/LYmc3Pz8f79+9jfX09gb1GCICCSJmZmembbkDSe/hsEJBaCnbkfrkREYTGAG280dHRPoWj0T/B9+rqKk5OTnLcjErdxkOcAtEK9XKRuxeCX7PZjK2trRgZGUlQST0+MTERP/30U466AeHNZjP+/d//Pcl/Sch31HAZHh6O3/72t1k0+Pzr6+t5nzqdTkxNTaV3aKfTSfWCDeZZIIhNCVD0IXwl3nq9Hr/++mt+R58vIlJBTuFVWjY5AFhHH1kS8Uz8DA8Pp9f74eFhzMzMZBGBoCkLJA0sZHXE81REef4C5YeAhvRwL601f+ZeSGQICUHUumXThKBCUiAcdbLv7+/j4OAgRkZG8twJPsqPj499B84B3BpIkpt1pQBkObe+vp6N0LW1tbzngExpF+PZC+oSlp+z3+bn56PVauXIbLlvHWrbarVSqVGCi6/x6nQ6SSwbjW632zEzMxPb29tpz+QZmqARg7rdbqqpqXFMAwJgkrZLk1mhenFxkQAQOSgJl+dOARSDg4PRarWymI6IJM0QUBcXF/lZTKOMjY2l8igi+kbMTSqOjo7Gf//v/z1+97vf5Zg7SzVWG+wtFMrAbhkber1enJ6eJolnKobaB4incNL8LYmuiOezrLzX5eVlXF5e5hlUrDE1UhGXmlURkUTk8fFxbGxsxMnJScZM05Aa3p+r/ZF49/f3WdSURIMc5bMqWoBrQFhT5eHhIUfakTsaf+XEZDm12m63k6xzb8SqVquVRT8rkFIRgyQp/fV7vV6Szu12O05OTmJ+fj5JWjGYOsv0QRkLPJdarRb7+/uZl605uYnC7vDwMCdekPxsCExGKhYRS6VtFlsS38e69T09l6Ojo1RQlROv8kPEM9h3DyjvkZmeHXBtn36tV7Vajbm5udjZ2clDXIlMTLGKZxoX09PTuZasSyIX90tRb4pADGWjBcOVhKc4QlwjhtqrGi2dTieWl5cz3/V6vVSJavYiSqnHkO2lclJz3STOwsJC2uSapqxUKqmAgycGBwfj/Pw8rq6uspDUjNEA1KAQ28VMStOIyKJPo6i052Kv5T44t+zh4emwWQeTl00RZMLvf//7iIiMRe59RGQTf2FhIY6OjtJKrdPpxMrKSpyeniYuLi0gnL1BnKRYjYj82bOzs2g2m7G6uhr7+/vZgNVYEgNmZmYSk2v+f27hUU6AaQqKOchPtnhwlHghvsq79/f3sby8nHYgJbltfdnvSHTCmFLIpIkIs2m6iYfU953Ok2WJ9WLNmmCylrgMaI53u0/nCK6srOSkAmwaEfH+/ftshlUqlcQi8rf8qeguyQXWpPCjmsRUDwxe+r6zyPvaJ23kmIuLiz5sVTYo2YZrlMn/bMA05zQxBwcH83DviEiR3/DwcLTb7VzTCJhOpxNHR0exuLiYz5TQT9NAU21ycjIV16arqXjL2s904dnZWdZZ9qzfOT8/T/IOYSrfqsk0tx8fH2N/fz+Gh4ej2Wz2EWgaqbVaLe1my3iOSIQFYTQilbJpOTIyktbClcrzWXcaPT4PTOI8IYINZz/u7e31CXw8B8RXq9XK5wXnwkkmqOUN2JIFpc+nwaZ2hxmJuuwvOVKzjDiJGMt5R4+Pj9kIU7vBVb3e04Hb09PTua6+Xd+uL3Hh6zqdTmxtbcXq6mrWGuJHo9FIS2q5EVaH39UQYhDsYZ9wKomI5D1M7dh/9o3mDA5NXSiPwfRljQvrd7v/s713j400vc78nrdYLJJNdvNevHWTfZ27xiNsNkHWsrQRVrZlY52NnURe/5FdxN54JazgKEACKMhFCdYyBGy8UrSW7GDXsCwZUYwI3sCRtXbshWOvLCsZzUQzuoxnevoyZJPF+/3SLLK+/FH8HZ6iume6JQ67qngegJhpsi7f+33v+7zn8pzzVkysQYxvd3fX/KSpqSmruCcWQkICUR3n12ZZptu3b+v8+fO293pRoO9g09nZabEDeJTvJ7lC4vbcuXOam5szuwgOQ7RCnIqEFLzE3sQ+A0cUCgXzm9gzpMMEAvG2crlsnUVodYxtPTo6aiKjlpYWE0qyHyFCR+Doj6HgPiKsoQsPv/cVg8RA8R8YL/FeqknYh7A3mSu+Cgt7DxvIJxrgdvgS8QvxTElmV7PfI/6Co1kHQ0NDJnBij6Y1LddDdxAqthAdLSws6OrVq1bljb+PMIFigd3dXW1ubppN2tHRUXPm0c7OjtmzrFv2KmxVzieWqn7Y3NycnaeYy+VsjXL/6SJDdwxfWcPcwsc+bkTS5iGByheHY29vT8Vi0ZR+OM+SrHx4d3dX165dM1Wvz6r6gDvBs9HRUU1NTVlwGAcHBRcLzitHIEKcBe9snDlzxsq0IUOqWrwxiDIXA42EDAEdX6ZN1peAGRvN8vKyxsbGzOAkyeWVmwQU2HDoBc9CZ/JnWabz58/bQpAOkxoE9VpaWsw4np2dtY2DRUkW1B+SiSHPOFjsnAOzublph2HR/gcnzxuFktTb22tBPTYnnIq7d+9a+wvuO+Tb2lptzXThwgV7ZiR/aGND1pn/0saG9+MoY+RTpkv7Kox0EkO+QoDAB61afPsKeoJyvwkw0LecRCI/OBp9fX1aWVnR6uqqRkdHlctV22XQPgCyg1SZNwTGWVeQsSRT10O0vqoLhfD+/r6uXLlijoHfeEnwkYBDyUE1RFtbmzlQR9UcIJ/Pm+IFIwKDjPF0d3drcnLSVCzNiv39fQuYYCSSaEPd4I0dHE6MiHw+b4EPNlXKjeFUgkC+/HRpackMQ9q7SNX1RxIJw7Onp0cLCwumvtja2tL58+eNwzBsSF5Lhy2nenp6TMUH/5HgwQGlRQaGzjvf+U5TWKLyQ0WCmtNX/ZEw3tzc1NLSkt0vxgWHoO5grY6Ojtrv1tfXLViB0cprSYpy/g8tPDjLATUywWX/nfl83g6XLBaLluTgXuAEd3d32998JRvBTM6sGh4e1s2bNzUyMmJ7CXuOV1/RohBVFsGzLKv2ab506ZLNQdYgfXAJtFCFyQG9PhEN9/Eeys5xqlCgFgoFDQ0NmSPE9fI5WZZpeHjYeANnin/7KgOSfPAB/I6iV1KNEtcnrBk/+wxtnvih5Rtzlz0M45qAPc4iilbUp4g9uH6qan0QRTpMmDKXmS8Y0QRZcZ5wmJoZGPckrSXZHIb3SOL4FlX8jn2yp6fHKmc492toaEgbGxumNl9cXNTw8LBxFw5uT0+PqdlQLbIWULyRMIa7mJvYnYgkvKgBxxbxCk4ZNgNBQ+wBnOjLly9b+wxa1JBsYd+G00m8IA7xCWwCjIheCObTIqurq8uSAdh16+vrGhsbqzl7hcAiCf2xsTFtbW1paGjIqmqpEuY+UGUOt6PULxQKunLlisrlsh0kTkLBt2sjiENwGMVkT0+P2dS0TioUCnawL/YbNg9KSCqxSZBKMv+CNUwiBWEAzi8tJgjOIIagyh0BDgl1qguwN1OqtkO5deuW9Q6fn5+3ZBSJIfjeJ+e4p5Jqfu9FQUcrmZgPKGZp/4Z4ClsAYRKthAuFgp566inrPc4a4LNHR0etMoJWbCQmaStKIGNkZESbm5smdGDtUoGALc+88ypUfAapuj/RTrRZMTw8bHvn6OiorRP2LW/XEzzkvrPf0rcf33NwcFCDg4OamZkxcQqtAtlH+TzssCtXrth+RfWyVN3P2tvbzc/D12hpabEKR0lmY5DsXF1dNd7Bf8HuwUalOobPJHiFr9Ha2mqVNO3te9YaxgAAIABJREFU7da+j3Xh92WUvQglmLckXLGvabktyYRFcM3Y2JgF/LArsKPhSVp0c/4tyWtsFDiMuAICEux6qgio1Ozp6bH2wKzPlJK1SpVka42gGMFW/C2SntgO7JEkkREIwVk8fyqqEfcgPCHox+/pKsH9bfYK4MDJgrXb3t6u0dFREzeRcGQ/o/Urtr1P3BK4J86COAufBVuJvQtfhL9RAUfCZ29vzxIXxBhZN9JhVSNJXfyvLMtsn2SvlmQcwBjxY/EHOMLg2rVrxoUE9Okgw1pmTIxjbW3NxEjj4+NmL1EFi+1CvAb+JJaJ8M3H8BDqHK2885Wz2MPYS/iu2HTYFSQEvFAf/pqenlZ/f7/dT3/eDj4dewGJL2IC7e3t6unp0c7OjrXEo0KcRDdxPUkWv9ra2rJEAj4G7Ww53ws7hDgtdhXzyCfEsQF9jIY9I6WklZUVE28S8yFmODw8XFN1SpwGW2phYcESYlThkFAkebW9va2RkRFVKhUTceDnDgwM2H2A19m38HHo7oEoiXXB3ADE1Zk/XgCH/cG1cc424in2UUlmZ2M3+9gAtgE/FC346zg23jn2T2xy4EQQiJZkBmSpVLJJSFaQADcZQIw/FiItBXCefLCdwAiGIsEqjDtUSThotGLb29uzYAsLhGRJd3e3tfMhQ0nQi8wsJLu3t6fp6WlrgcZib2lpqalKICOfy+UsiI6Cj+BPZ2enbt68qfHxcfssroEgAYtekhmfbW1tun37ti5cuGDBIpJPHHxJdphkAKpNiB5VKQ4Wz6xcLptaoVKp2JkuKBFxJligHFBKwIvNkWAFpECwhIXLmNhcqfxhPrBZ0auU8j8Uob4lDiWKtPhKKVlLiq6uLrW1tVlgFwXS7u6uVQzh5BPkpZ2HJ3zuM730aa9Er2CfJWdzh6BIBqKUJZNeLpetVQEBSpQBHARMFQYBFBJk/A3jAfUmCTyCWKwhFM18F8kYgo5bW1vW6o+5jmPJa9kACCYvLi6aYozn5vu2stGwaTUz4AkqDeA2ngcGBQkCKgMx4AgAelUhlTTMT5+AxhFDlY1xhqrcG6AEu3xgkk2ftYST6ZPBtKMgMcR14uizbtvb202F4QPgqIHhaFpx7O/vWyUS181cI5BOEM4nk1AwoXaUVFO6jcGC+ga1E0a/79lKMIHgBvMaw5XkAy19SMjB9yic/eG7XDOGJUYP9wtFUpZlunTpkgXVSMLixPDs9vb2jI98Iq1QKOjSpUum1uH64XXuMfsjajGce5KDvmWbD7r6hIx0WL4uyYI10mGvZP7Oc2J/Zi7wXzjAtyZhLvvnLR2ej8eYJdUEd1DDouzyinfuAQFh9i6Colw7+xUBNeYGToqvwuFZUQ3h91TWv3cIsCM4rJnn16zIsswStiT72ZfYX7a2tjQ+Pm7BQRR+WVatnvZCAoRAVHn4FjU4816FyTrgeRKs8/3ScVxIJs3Pz9t1MBepfsFWIBjJvMMWvHv3rpaWlmraD1AxQ69ubCDsRtTnCHbK5bJeeuklXbx4USklO/uDa/CtDrwKElsHO415hqOFw8m6X1xctDVKOyLUpqxnbFYU93AavErFrq9ahFs4zwIer1Qqdo4O+6GvosPmwIYhCE1wkoQWgQzOBiKgK8nOacMh9WdrYAMSXMCu8VWljMGr61E88v1cHyrds2fPam1tTUNDQ8bD4+PjJrbiM/h8AB/6KmyC4qwdzyO0W2PfpQoaVaQkS5ZIh4Fb74eRKMTGZ4+hegxxFrzX2dmp2dlZq8AhwY/oh/0UW4HnSdUmh9ei9PfXA6eiTm5meK7PsqzGXvF7OHb1UR+Sjgi0B2JPHx8f1/z8vM0Z9j9sPOwRv4aOzjPOOmBvJyBVKBQ0NTVlXJVS0p07dzQ0NGTiCQKpPlnH3JFUc14FSl4+n+9mf6bCHPsln89bNVCpVNLExISdW8FZOggOsSVZJ6wr/FiqbRACsLbwcbk22rTjQ6Lk5h7cuHFD165dMz8ROxLcvn3bqjGxcVmTXBffR3KI1j58r2/dwzlBXhVPUHpkZMTiAdxrrgv75I033rC9cW1tTb29vSqVStaGB1FBPl89e7VYLJrvGQgcF7DJNjc3LeaCfY8f40UVc3NzGhkZseA8dgW2oK9YQURMW0aqSfP5vLXp4pwQOtSwTgB+rvdpfLtd+OHMmTNmg5FMkWQxJURZ7Im5XM7OlIV72Tt3dnasTT7n4iAWwuf3HXKwTeCbtbU1832oOvfBcOmQX/GtsEnh65mZGWvhjB3V3d2t73znO3r88cetWwzcQ4LHV4IgTJFkFYVUghNHhX/z+bzZ6yS9JNkcoFJjf7/arjzLMmtXPTIyoqmpKV24cEH9/f26c+eO2SQkZGhjy33EV0bchR1cLBbNDpFkCQZirdx/bEAEVCSiaKeJLc34SM4h1CLOBf/T+YMOE1tbW9ZOfm1tzfgdMTldoTY3N02gtL+/b50/EGjRVcAn4LDFeC5UGLFfdHZ26tVXX7X2dDxjhEUIgvg3HTOwGREh8XkUJ0iy+A/nuBNDOCr8Za8hFnncaG7v+m0A7UpQRfs2JASb/eGLkI8/nJwDtwiQ+VYltCihzcvly5etxzf9DAmwE1Any7uysmKfCVFTgYGqfG9vT3Nzc9ZLemNjQ6urq3aoFe/Z2toyVaB02NMPI5lqkI2NDZVKJasYIQBHAAFHOMsyPfHEE5a48AeYsrC5d2ROac2AagFiQalDGwnU5V1dXdZTt7293dRQkPzy8rIRPdloMsQoi46Wqkqy+4yClADyG2+8YcovkiUQP0F+iM4HzLa3t7Wzs2MqW5wBsuMEhba2tlQqlaxChCQYnwFprqysWCslApgEWH1gD7UnLUU4JPa1117T8PCwOjo67JweXsN9YXPC6CdYhEHO/GMuE1DO5XLWno12Cig7eR0BRhwJxsbB6r5SgUArgfDZ2VkNDQ0pl8tZNRUtB3wVAUbT8vKyzUPWM0Ec5hnPIJernsVEoIZAO/eZ50spNHPHt1ZpNtDLFieOtorSYcBNkgX9eS5eHcnmR/sMjFTaZbCmcaDPnDljZwNI1SAOCT8MHAwDEgYEXFBWeDXE9va2tcfDGEWdyxhyuZw9dzgNwwzjmcQ0ySUUPhjp8AJJTJL1GEaosAj0YvDCL6jnaZ9BmTyJYv6OiogWE1R3cs2+Og0jm8QJ3w93w9XMY5wAHOpcLmcHodMagIQpz5v3UrJOoItEP+f2kPwkmVwoFMxJwXH3wVdJNYkyX1XK2Jl7PDfWM4aerwaCz/gcggqSTBAxPz+vkZERSz4SSOb5Mz6f6GFf84dX+iQTvOTVQpRnY/hSUeDnpCTrq8ueRkIupWT7IfeH7+Se8F+fLDqqdEfpBgfnctXKTQxTr1hi3RL05zn4JFQzgko0uAznM58/PPSUqjsEOATax8bGdPPmTQ0NDdmeOjs7a5zo7x2VciRRec4EG3kOXnBD4JSAYnd3twkKWJu+4oGAAdWBPrDmz4BAWU8Sp1KpaGRkpKaHNiIjr1hEIf7KK6/o6tWr2t2t9khfX1/X4OCgHTYuyZIOiCHy+cP2lblcTjdu3LD2Rm1tbWYboQz07Q1IRvOcvKLUV/jAxbQnwtGmUg7nlbUJPxBQ5VncvHlTxWKxRrlJwtO3zSX5WalUjBO5Dqp8CPSw5uAA2ukSvKRlIWOnSl46PIMCMRd7HHuTrxzAroHXlpaWNDo6qv7+fhNeZFlm4rKNjQ0LyLB3wBfwGj4OYDx8lq/cJIHGmUSbm5vm4Ps2U/g+PsmFqhNbmHNwsLmx89lvqMxFGMGcIVFNcGlsbMzuTZZl9lyxNQg+7e3tWXvfpaUlq/RpZhtQkq5fv25CFPbPtrY2qyJE2ett6d3d3ZrkIpU5kqwFKvecljIkfL0vI8n2JtZFS0uLvvnNb+rixYvmD46OjtrzxV9eX1/XwMCAdXegqgUFMWe1jo6Oam1tzQI2VIyQYMT/lGTzxneWQBHsE+7FYtGCPLu7uxocHNTKyor5yfv7+xoeHlapVLK1TNvecrlsNjDiQcRv+GtU0dDGleQP14WfBn9sb29rb29PV69etbgG4g3sHAKNXkmMOA//DU7kjDSU8j09PVZBSvKF+3nu3DmzoaRqxbxPdhcKBfOP8YvhU+wxX21NEBDOZK3Svu802CWBk0V7e7utfewo7AESwMvLy+ru7rakLeIWkpaIgPENWBM+5rG5uanR0VFba8Q78OXwG7G7qEQlcE4Q3NuF+BmIzbHdJicnNT4+bj4ZtgLVyYha+/v79e1vf1u9vb1WWUOSBRFXb2+vnn/+eb3zne/Uzs6O1tfXNTExodnZWRWLRasGJz6ETXbmzBnNzMyor6/PfCDiWZx1R0VnS0uLVaNjC8EZtM4kOfX0009rf39fL730knWCWVxctCQLIifsDJJX/lgGRCJwJH4Z3OzvF+PDd8SexsZFYDQxMWExvZGREeM/7GqqcPARurq6rCsQfizFAiTmsb+YT1SpeDEfsRL2LuwskuF05sDnQ0AA32Mjk1zhLFT8T/g5pfQ9yXfEaV4syWfgNy8tLZnQVpLF20iMIG5DbEpbNqq2iIuyB2dZZrEYniPrmGtk7NihtDhGCFkul3XlyhXt7++b4IT9GUH7zs6OVVYxP44TkbR5SBDc80paAtSUXFEOubCwYIE7SoFXV1fNqEUtibOOEq9UKllGHCMXB9sfuEUWFYcGxRLkilPEv1HitrW1WTsUjB5JthEQGMLwJLOLwwe5jo2N2QFWEAwEwAZE4mplZcUMcohBOjQgWeBsfpLM+CQTDDAsCQyjcOReYqDSb5CF29LSYv02US76lh0k3iCUpaUlczZQL7GR5vN5nT9/XtevXzelFORGcJqNCOfV993EEfSVRfv7+5qZmbEWHrwG0mXzJwDBHKLUEofSKy3JrLPZEpTw7SB8wo0ACedCMP9wKra2tjQyMmJZb1TCKEXy+byRK85KLpezhOPa2polyzDEUb5L1aAkChJUp9wfApsoQ6XqZokzxb32rft41pR7ppRMNUyVzdramlVW+Xl8tDoIhYIvm+WaKfeXDktlmxGtrdWzm2ZmZkx5SoUXQToC9lQGUOWCsq9Sqfahl6qJPuYhiUScxBs3blg14+TkpJVFS4dt81BwoPRBTYlhsLm5aQcpkjTwiUw289XVVTMoMKxIWJOk9AkDHGDmMeMmWEcSlftA5aMkS/zxXklWoba/v29BSDiOxPa5c+d069Yta93DGQBwCjyFul+SzWtEAj74uLi4aE4uzjTtQFAbLS8vm/oexfetW7f01FNPmfE/Ozurzs5OU0n19fVZiyECgjxfVEHcM6oNvFqcknbfApTEMUlhf6AihiRqJl5LMMc7QVtbW6ZgYi7AT/AzbQp4TqxrVLOUvfukPv/vD3kkSI6BiBFKH2f+7ttncX0EXHEANzY2zAkg6cQz5TtxnLAPvGPB/ukrAX3VEnOa9bO9va2ZmRkNDw/XJC6ZLyQaX3nlFT3++OOSZEm4t8NQrSewZpkvKMb6+vqsYo/nSSuZlJIdmjw0NGTPvaWlxapVWA/Ye7QVYL7Suqejo8MC+1R/YLMR0CbZyd5P60F4k8QGSSCC+rQixV5i3WCn3Lp1S5cvX9bCwoIlYIrFoqm3sRF98qalpUXj4+O2RlGZI1hBsEEQpFQqqbe315Rr2C6Dg4NaXl429ea5c+fsrBhsRBxV2pOxn2OTSTKuJ8ifz+eND6hgYdxwJr3GCTL7pDTXSWADYQl2G5zFGqMaBn5jHsDBVNtjM2Ovc6YU+4xX2GOvYKcBBEmoQCWZQhNehBOwewqFgiXEsKsIVGO7+2A0SReEFH5P4d9+T8avoPqC76aSSKoepIyvMzMzU6PGJbFFtZcP7iPCoDUe1Q4ErRDaLS4uanp62oItOPCM7+7duyYEg0/hdXwvHPeuri7bF9g7GUezYnR0VCklzc7O2qHM3FfmDeuCPQnfbHd3t+a8K5J08E1vb6/5H1SwbW5umr/Z0tJiwSD2sM3NTT333HO2701MTJjNRbCS9Uo1v2/XzLkzVMHMzMxYkpEgG8kHzgFgvTB3UeyynhC4kbTCxvNVMYwZWyWlZJV+jM/vvb6KZHV11Sq6WKN85+joqLUvxIeSZP44HOFb9FAxRNzAq7HL5bK1qdzf37eqG+IU2E8EHc+cOWMtjUlupZRMEOJbLfIcsFHYvwiwra2taWdnRxcuXFBXV5cln1HLc9YRVZfYL3t7e9a6jz0mEDgusJa8vUL8hxhPSskEdgTtsyyrqX5LKWlqaspEC8QSWKP4tcST2CepKkPYQuyM6mpJZhfQhpXKnNu3bxu/Ec/J5/O6evWqcRpCEILzXN/6+rrOnTunJ554wqrweQ/xFpLKzz33nPn/VKdTRYK/RvKaYH2lUrHYHWMlIU1yGT81pWqbW2zZv/qrv9IzzzyjSqWiS5cuGW/Cyx0dHXrHO96h9fV1pZQ0PT2t0dFRs2e88ATeY4/Bt+e9BPq5FhJOfCdJA6ma5CLphm1ItQ62Jj4t4nqqlXp6eiwOiy2LbY29hq99/fp1jY+PS5L5sST28UN7eno0OztrgnJiDb5yiBjuq6++qitXrmhhYcFsZGJp586ds30YH9R3PiKpgk3KvPbn/VDR7c+6xS7t7u42e454KvFMkkX4MawXOpQsLy9bnBNh65kzZ2yvpuKaGOTW1pYJyrFZWltbbZ1mWWat7Jnr2BXMDyrSSOT09vbWFGscFyJp85Bg0VGJQlDGK7GZGP39/drc3JQkU8J45R5BdggHJwOimJ2dtWwnDgmOw9LSknZ2dtTT06PJyUlrb3P27FmVSiUjGBzp7u5u641OEAgHZH193cr2Zmdntbm5qZ2dnZpMLgEFH/zzmUoMokKhoIWFBQ0MDKhUKqlQKFg/XIKfc3NzKperPY8pg8fIpVctZ8SQmFhcXNTu7q79O6VUk032hzVC0BiBtDIolUoWiCWBg2KL0k8cRQxSFJEoDfv7+81BY6NDKYV6CyOdzZtkAYFtr5wlYUDZ3fnz5y0ohzGKuquzs9MChnt7e7p9+3ZNdQ0ZaZ4x7c329vas/zGEIqnGgX755ZeVz1f7T/q2GbQGIJDDRkH/R3/AOkmmcrms5eVlLS8vm9PFAeuo/l944QU9++yzNg9RM7BecBowNqRqEACDwStnMWCYm2yes7OzyuVy9vz57nK5rIWFBftcXoPzxu8InuKcLSws1FQOEKggsIYyjjE0I+bn51UsFs0woLoPJSJGGwkvFAskdOBIEnscsIzx2traqtu3b9s5Tjilra2teuONN2yjXlpaMoNudnbWDBSccxxW2mTs7+9raWnJDi4l8EowqqOjekgzASeCQcwpOJ4gPgkVjAocWeZMlmVmlBCIJWjP+ud1ra2tlrBBPYpCHeUnBobvd4vDv7S0ZIlDDDBUXnAXCuKFhQWrZEEEsLy8rGKxaJVOHLBL4gIjBofhqaeeskpBAra8xgfQ2OcwsiSZ8tlzBcE7knp3797V8vKyqcuYFyToEUqw95LoIxgNF2EAo/j1CT//fBknwYPl5WVtbW2Zwm1xcdGC2HAYz9knUejji4F/dD6iQEcMwL5GMrpQKOj69et2oKkPplOGTjCRID3GM3sC+yjOI4Ey1F/MN/YokpQkwhEsbG1t2ZojMEOlq69kZV/JskxvvPGGVZbAD80If5gq8xgHD5EJlYRUJ+OI4shlWVZTOX3mzBk7xw6HkPf5aizUcgTgffULHIoDtru7a8IhlIkEvqnIwXbCUerr67OEzP5+tQVvX1+fVVayJnGICEYSiCCwCb+y5qjkwTYeHR21pD73gHaq3Mvt7W2zjfv7+7W1tWU2xdramiU8KpVKTdWmbzFHyzfuL0o87G7aYOBIUiHkWx5gHyLYQiHr2x8gniFxA1cyRxAVEYAhkNjR0aGpqSmNjo7auiXYg62P/U9iamNjwwKsPEdU/QRF4AWS7/v7+8Yj/mB17DrPmV4hT/IYG8sHPxH4zM/Pq6OjQ6+++qpV3925c8fEM/BblmV2dhgdBSSZ0Iu91QeV/QGxvjsBQV72R3whSXZOEzayF1wxL1H6E+j2CmTuDW1jyuWyhoeHtbm5qVKppGeffVaSTHELfzL3WHvNDIRXFy5csETLmTNn7PBi9gECYT6Q3tFRPYiZICOCtFu3bmlwcNC4Bv9qYGBAS0tLamk5PMyZ6gk6B3BmCskHSeYrIRRjT8YH297etoAQ6mbsBLgAO4mx8NnlctnarBBoREzC+0m6SDKFPdUiWZZZG1fG0dpaPXh8ZGTEeBFbD5+MChqEH8xffPBcLmfV2t7mkWStnpn3JHl922iCUpzDRaCqUqlYsHVqasqCaNiQiB3xa0lKc26iF/RRmQ1fYVe1tbXp9ddf18TEhO19VHCinsdOefnll3Xx4kUL6PoWQMRPfEyCAHUgcFzwPoS3sanYIGBP61zahzEv8U86OjpMkNjS0mKBaOIq2BC+ug8bTKraVpOTk7py5YokmWiBRDJcijDEdyXw5zsTA2tpadH8/LyJ9uAUqdqa8Pz58zZ+RDX5fN7aA7e2tpqwENEMgsz+/n6Lg9F6W5LF7OAEbCEq7jg/iyMksC0QCxKEv3jxotlyCLOJpcFP3Ld8Pq/x8XHjWQQovgKQSlJsFWKYfD7cwrX46mHipySXOCOmXC5bgorkgxdT08KzWCxqYGDARAPz8/OW+Orv7zd7DEFYZ2enJiYmLCYyOjpq88GfJUOSCBED10E82Iu0+YyxsTGzyUjmIUIg3nj27FlNTk5axxHfTYnPm56etlgRz//s2bPmA/D8fUUnrdgQ0yAGYN74ql1eS4KR+Y/PWiqVNDQ0pIWFBUsCLSws2DVQnQoouMDvYq8nrsE9QCxC7M+L5o4bsYs9JHyZP0FD2k0QqEZxVigUTPmMQ8CDZIJBeAS9IFWcMkkWkCagxqLlWp5++mkzCjc3N3X16lWbWF1dXVpeXjZ10+LiorWRwukiyAe549jQk5aJxxggDrK8TGRUwRxGeOHCBUmHfSrZkPwBlJcuXdLdu3c1OTmp9fV1Xbt2TdLhgavz8/PK5XIWfMRR58B7yJNAAYbh5OSkGa8EqWhJMjMzo66uLmuRxPtmZmbMied++EXa19dn2XGc4NXVVSurI+CCkY+T2NvbW+MMUk3S0tKiwcFBu2/FYtEc4NXV1ZqzY3p7ezU9PW1kx+ZKoACjNaVkLT9QEVYqFS0uLtrByfwun89bBdWFCxcskDEyMqLr169bOwk2LSoQMAC6u7stkIQxDekXi0X19fVZ2wNJllDb3t7WM888Y8FyAjBtbW1aWVnR8PCwbty4oWKxaBsslUwcgEZQkaQav9vc3NTw8LBVV6CqKxaLeuWVV7S/X+3zyXsIoG1tbZkKEydKqm7St2/fVpZltuZoNUPAm3tJAOXtOHysXkBlGmuQNhjMb+4F95lnjGMJ38B/OH8kelCRZ1lmvUrhQSrKlpaW7Hv9GVeoSpaWlqySAaOKOYvBxwGnGBwEBqnGocprd3fXemKjKmG+YOicPXvWlNtwqCSreqTygHVJkBZuoW0H7/FGH5U9Ozs7FpAgiIah4StbUM5Isr6uBJZ8ghnVc0tLi0ZGRmy+e7UiCSYCyLS547qHh4fNQMbIIojBe1EjsyZxWrguDov1Z7+h/mJfwugkyU2AhMDyxMSEBQMIZsNVu7u7lkDAyJYOzwfCGSGIhBGL4OHOnTt2oDKJfIIaJGF8FdbRShZUsRsbG8b7g4ODFngkWc1eNzQ0ZImX1tZWDQ0NWcIN45PKIMZEoIX9CAOafvxZdnhux/DwsDmbe3t71lqEZ8jfcEzgSZwxkqm0IeC5oz7D5mlm4BTjcO3t7VmCdGJiwtSNHDhPEJf2f16VhVBnbm5OY2NjZvuxf7Gv0uaW9eftTgLh+/vVvtCIFAqFgvr7++26Ob+GFrO0ifLJYmxRggicg0KlOC0pODDci48KhYLNZ1RycDOvQyCBihpbFGeaBAnrxldK5PN5Xb582cazsLBgaxHHm4QGHCrJuHt4eFhtbW26deuWxsbGLChPNRkg6YpakvGRcOPZ4ODjPPu1w/MlkM+z5BmS3FhbW9PExITtE7S2QLHo5wnXBh/BAQSOCOyQEJYOW5ZStU57CYLBBFAI2vT19dW04SNZBYcQ7Ebck1Ky6i8+o7OzU6VSSf39/Ra8x6aGZ/b29mr6ghNw8ZV/8BHCH3gf25e9mwA2ti0JzkqlomvXrtl9pi0LFTEEeLFxfRUteznzn/v12GOPWXtjktzwoFStCKZ9ajODYBQB/7W1NfPZfFUzzwq7C/EKvhLPk5bi5XLZ/k6QCdsDJSz79s7OjkqlUo2gkOAVySHvJ+CHwCv4oNgX+HXsh2tra5qamrI2kHNzc5Z87u3tNXvWdxbAD4f3qV7s6OjQY489ZoIhn0zGXoNX8Gu5FyTXJZk4BZuAJBR2OX4ZiSzftpA4AgEwbBWqwlFYw2mcB0OiioQySW/mgf+vb33NOKnegf/gOO4xY1tcXLSzrEiYYdfk83kTf25ubuqxxx6rSYxRNc4+QHVwa2urpqamJB2eFxgIHAcITjN/CRKTvEUkQ1svbD32S++HUe27sbFhNjt7OElb7Hn2e/zbvb09Xbp0yVrNM+/xT3wiAt7yInCpmvghFoLdj1CPxGulUtHFg/aT8AW+SF9fnwnHpcNkB8na/f19O/8tpWo72dHRUbPRaHtGsopxFQoFjY2Nqa2tzc6s6e/vt7gCY+Vz2RfgOWxPku/Y1yQA8LtoKY7tRIKbe0gFNue0+opcOBzBRmtrqwkuEStUKhU7PwUfVKrGBKgqJtGVUjL/Fx6TZC3gSMhJh34rSZ3BwUETYbEXdXZ26sUXX9TVq1dtz+JMHH9GLfYdsWHfYQhxgHR4LhI2LD4N9iPPg/3D+/YspRDYAAAgAElEQVTwM0IdP2f5HngaoRI+LmtJkgl9t7e3zR5mTlN1trCwoGKxaGdmezt8cHDQii+oyud9CIuJ8zBfuAckuxDTcu3Y5vh7+OrHjUTG6jQgpfQhSf+lpBFJ35b0n2dZ9ucP+N5zklY//elPa2BgQK2trZqenja1GosL1S7OVi6Xs9Y+GE4oLH2mGZUvGTscezYESCrLMus76Y0inJ+VlRU7b6dQKJiTTts1NgMMVH8WAt9BZQjKNwibkkeUShiDXi0K0XJP+H+SCjiaJD+4RyxCCIOAHZsawTVfWdHd3W1KOIw2yGZ/f1/9/f3Wd5kWJmRiFxcXjagxltlkUFsSXIYseNYY0agBfEsM1MjcN5wHSJxAJk52SqnmEM79/eoZETdv3lQ+n7ekyMrKirWNYuOg4gBDASOAjcz3S4V4eF4cCLa0tGQVYUNDQ2bso5AkGYJq0ytLCVyh/CWBhbGBio6s9+Lioj1zro21wuey+TEH2traTMGNApzv2Nvbs/Nr+B3PJJ/PW0CK5+vPQyKhgGNAIpb5RlmwrzDAcKBMdHFxUU8++aRee+01U9UQzP/EJz4hSd1Zlq39YKx1vPh+ORD++4M/+ANTuzA3SY6ykTHHqIaAC31rGRxnnF6eP5yC00owZWFhwYIz0mECEG4ikNnV1aU7d+6os7PTnj/zAiOE72DdMscJIKL2ptKMeU6iiCAEgXsU9RgiBP13d3e1vr5uyXjuE4EKKuF8kBtjlTMlUP+gHqc6Dgcb5TO9/+FHgkwYjSTO4A32K4xkrs+vDww/n7gnscb+4dWtlO8T0PHlzlTFEDQkEIBxTZLbBxYJ7vk2Z54nCMbAAdwXniPKIQ70ZH+SZONmXq6srFgFD/zZ2lo9L6Gvr88qgHygk73Qq5MwHJmXc3NzGh4etqQOIHiDEUoAnpYu7Ke+3Q4GID2c2TOYTxiuOFPwKsGctbU1C0DTLgtVoK8swMAmUIwDKKmm4oPrhu/92J999lmqgeqKA4/DBvz85z9v4/TtY7wYws8B39oKm49ET29vrwWbFxcXLUDNuV20vvAJQ/Y2RD9zc3OSpIsXL1qVnO8zjQDFK7aZm8ViUXNzc+rv7zcHl8o49luqeBGaML6dnR1dvHhR0mGrOLh2Y2NDy8vLVmVGkJBkKL+D33zbL+nwTBa42NvHBCnhNmw4PoP1yflCKELhC+yDlJIFNZeXl03wwn2AU6j+fPLJJy3xtbOzY8748vKyLl++XGODcVaNV7Wz1vyaIfhK5Ra25fT0tCqVilVqcb6MdCiMQGHK/kFChepIb+tXKhWrOqD6hsQ/XInNm1LSwMCA2dy0IfKVZKh/X3vtNY2Pj1uVAEkZKlnYlznjUlJN5YxvN4nCNJfLaWBgwAQKly9ftjlJRSP3UpIFH6hgIlFFIEJSjZ1K8h+bL8syC2YgCMFevnnzpkZGRiSpppKN58Achov39vZMhPKBD3xAqjP+k46HA7/+9a+rt7dXr7/+uvr6+iTJ7DsqZ+bn563/PK1fCGYgDkH08MILL+hd73qX+ZasK/Y1fBAvliTABTfOzc2ZH8Ch35mr/EaU5iuIqeCRqoFD+AW1N7x5NOBPkgiOO3PmjNkKvB7fDv/s6aefNsEQ+zEBULjJq8TPnTtX489iU8JB+LJdXV1aWFiw1pz8/vXXX9fQ0JB13iAugOId/6ejo0MXLlwwOxClPy1m+MEvQ0BAVw2EjvjZPB+EBPh+KLFp3QbPsr9h68MhdNvo6OjQ7OysBgYGbD75pI63uwiUY/vApy+99JK++93v6ktf+tIxraLAQ6ApOfBzn/uc8QLnw2B308LTC3yJQ7S1Vc/jI8kA37AWWBvYBPjICJAR2/hk+OLioq5evWprxlerwj99fX165plnjEN9pSh2JrahJNtnSfLgZ+BT8G/WIGeBYPviT1FJwh5JAqu1tVUrKysWS2D/IC5Ay3O+E87lnviqJvZlxnXwnMwnpMMAopJyudoCjQ4TfC/PE7uJCkaeD7yey+UseU/HJUQH3HN/L32Mg2p27GX/vPb3q0ckTExM2D2gCoi4HCIcSRYLRRjA+L2QB8E+PjB2K3soyXQqrLq7u822Zp8hrojPQ3KDOA48L6kmLso9QJiNPdvR0WGto4lVEGPGFmQ/ZN6Xy2VLrC0tLZk4kffC99j0t27d0sWLF2uSlFSqsvaIEUiymAh7GN0LuP9+bhILx1+ZnZ21s3oRr3Nff/zHf1w6Rg5sbjmQQ0rpA5I+KelDkr4q6RclfSWl9FSWZW88xOcYEZF4YNKgHMThKxQKmpub04ULF8zwIdjkJzZniqSUNDMzY4uKzDjq1b29PU1NTemxxx6zlhUsytXVVc3MzFg5GxlOT6AoqH2ppHTYxxlnEKUSxjgbEYsHdTlZa9oYQWwsAg5swlDG0Tt//nyNMo5e4fyNyY7SqLOzUz09PdZ2JMsyXb9+XZIsYzwyMqK1tTULMEAMqIsIqN69e1fr6+vWk7lcLpsRyTMpFos1QSuIZWdnR1euXNHOzo4dXErf7pSSlaeyUczNzdmhrl4FSYngxsaGnnzySSNIVAq0BxgYGNDq6qr6+/t15swZcxoxoHF22ZwhcK/GwOkplUoaGBjQwMCAZfVbWqoHWZ49e9YCi62trTVt+x5//PEaApuenraEC0F0jHmSQYODg1adgMFeKBSsssFvpFwf7WT8oeZk14vFYs2B6TgyqFmkwzYx7e3tevXVV3Xt2jVTtFKSOzU1VfNvAjR7e3uanJw0lR2f3dHRoRdffFH9/f1qaakexozCy1cFUC2FIVOvrTGOiwMxVkiIcDYA7WLoU0qgyitsOVy7XC5bqxmSD5Sb4hhiyFA1QV9Y1A0YOXw+64LNE2edM3fo34/xR9Ble3vbem1jBKCepN0FPdBRhRBQYj4y9wAJQgwGDAzOpPIGE8osqtn4gdt9Up5gA9/JD0YRfydox77Es5mcnLTgYGdnpyVnqA4l4eSVXhiVBPa4p5xvRbIcgxg1EQYeyVfK7b3hSUAHvurv79fa2pq2trZM6Xz0jALWng9CE0ggGEGLz1wuZ+sXRRGGLYa+P8iaSjlUUwQPcaJI+uRy1YPRqaygIgBHhb2OuU5CHkOXPv7s9Sh+pMOD1H2lE1y+vb2toaEhmwvs2aj8Kd/3ggoqZlHCwdVwsFe3e8dEkj1DnwRDZYct4NsE8NzrEcfFf1tbW6YURllM21sSN97eIDHLPg1v0PKLtcDe40ULXlkOn+IEoehubW21xCLzXzpUw+dyOQsoYv90dnbaeXC0lyFxjcOJE16pVKztGS2OWA9UCJEAwTny59bh+HJdtLJgXsOlnZ2dFuygCliSCZFIgsO5BHVZz17oROIBzvCV4TjdzP3d3V2ryiUIu7tbPSgcsdGVK1e0srJSozIlsIqalfVNVRwiIBSQ2P6sZZR/2Auc0dPW1mb2mbfb9/cPzyviO8rlsrWzIwGIfXTnzh1duXLFgiXs1djIBD5IwLHXEdygNaWv0PLJ/87OTqseaG1ttQpk7+RSpcLZdMxh5iACGLiFqkg+n4AQ9jfBBl/5yF6OkMirafF14H3uGdVrtP+jAorKCCpBxsfH7bMJxrG3ojb1vE7ibGlp6QehqrcNx8WBtM9ifpEUw28i8cL6WllZsX3CJw0XFhZ0+fJlvfe9761JtsGhBDvhISpt4Udew2cirDh37pxWV1dtP2xtbdX8/LzZElTMwE35fLVNJGsFMSX2IgkOBB2S7Dp9WyGqzUgC+gAQHSgI+kiyzhXss1RPw58+GMc4qNxFECjJbCiU7SklXb582aoaSURWKhVTbHMPBwYGrDoUX50g5MbGhqanp03NzJm82Bzsf9iOcDx2KJWP2IW0DIKL4AkvcqKFEP5blmXWhg/bgnviW5VK1UAzFfFerY+AKxA4Lg7MDrq3IKQjlkHyk6plhFhnz56tqbQlmQIX4KPhSxGoRyjmqxUQmmELFItFE+x40WNKyVpYLS4umu2zs7OjqakpXTxoJ4b94wVZJMm3t7ctKeWT5di7+OOe21paWmqSWAibSDZIh+enFotFi+vxw37C/sp18/+SjLMJrON/8N1HKxlJUBPUx1bm/krVONL09LR6enpMmE93F+xyqv76+/vNFsGGpvKbJD42LOMgzkjszQuDqB6mUxJtJ8HU1JQGBgasCoiECqJoSVpaWrKkB3MUQUupVLLuR8QrSMZQLcwcZr9BUERyhvad2EQtLS22b5IMwxZnXh9NTvb19dlZL9ijUrXSlEqVXO7wzN2trer55FwHvi1Jf9rScWZ7V1eXFhcX9UM/9ENmq2J3DAwM2Johhsk989U8iNg5vgMxCEkZfLLsoGMBZy4RQ+Bc7rfDDjw1lTYppa9LeiHLsg+6331X0r/MsuyjD/D+c5JWP/OZz5jyiuAuiZy7d+9aRcXk5KQdsA3ZMlGkw57A0mEpIUEQ1MqQD44jiwnHhIM0USVubm5qYGDArofstXecUS3hWBHoo5QcJTsLgoM2V1ZWzJBlovt2WxiX/hwLFEiQK9l1St25JjLQJFt8eRnBETYJ7kM6KCHEiSewSwBlZWVF5XJZFy9etICnzwRDwjj6VBVBcl7xxX2C1FiQbEqUfPvDEHGE+V4SKig0aatAQA8C2dnZ0cDAgCnOcRh8WxQ2IsraCeT4QDJOMWNj3vlDrCFYkjyoa9kIcIwJTuF0odQiScaGRVDD94GG8PyhZzs7O9afc3l52ZT6VAFw3wlsQsY+IYhzxwZPhv3s2bOWwfdBZCrISLT6ADwHoWFIMUdYAwRbyKazdiqVii5fvmxrnGDO0tKSPvKRj0h1pjD6QTgQ/vuTP/kTa0nGuiRQhaFC8qJQKGhmZsYcPircLly4YM+XIAxJYBx0DE9+cPCHhobMYUUJzrlHzGH/Xgxg1Mi0qSL4guFJIOvouUkkCVj7S0tLZgTBWxisJFDa29t1+/ZtjY6OmuFCCTlKX6/SxalFNU7wFu4geUPfXIxTOA/DnjGxjrm3kszYpYXW3bt3LUngr8knReAegiL8HaMeroR7UEUtLCxY0hOFLJUIkmzu+BL+qampmioEghc+wSbJ1irq/Onp6Zqz1wicEXzjOzAMfUUJBrsv2+b7STTBm35/JtFG8M+3V4F/cXC4n9vb28aXvk0UY+ru7rb7yTUgDsEoJCgD3zMHeR3n41AVc7Q9oU+uHA1qwrvLy8vq7++358V9IODB/fWBTP+5rJV6rLQ5LhvwN3/zN229sGfRd5v1+8Ybb2hkZMScTWxD9sJy+bA9H4HBLMusPShrEqeZ50DVQrFYtMCbtwkInJHwgydY/yT3siyzdYQzxfrDzsrlcpqbmzN7c3V1VaOjo1ZZSEsj3l+pVMz2IyFAMA6bEf4mIEkyAj7C/pUO+0LjZMHvOH7Mc/gI0QX2FK2ScAS9fYHdC0eQIOPzCeDfunVLIyMj6ujosJZf2BUEKOFy7jHrFbsam9Dff/YLOHtvr3o2w507dzQ2NlaTHGBOYeuiFjx37pwlGJiLvsISx9knqXnOnF8hyQIfXL9X6Po5xX6IWAaxBvOSIAOJLe9kE9DA9uYcLtSy8Df3hLN/2OOw27DFuT54WJLZcyT+sE/whVhT+Eu0eiS4RiUiNj8iNNYr+7vnaPZ+9j0+a2VlRT//8z8v1RH/ScfHgV/+8pdtX2d+tbW1aXJyUhcvXjRuKZfL5guzj+Av7u9X22Qh/MLnolqWqndJJmogqUlgBxU0iUp8HZ9chuNIJpPEhdP4HnxFnzwggQG3UJGHr0sQj8R2sVi0yjrpUEgHt9P5wYsbCBqShPFJYOwX5h37Dsp4bEjaqOFvsz8zdlqqsYayLDMewxZD5Mj3SjLxFZ/HffV7BJ+LYJDvI9CG3UPMgDaFnPPhlfvwso9/eDubNYcvR8wALscWpOKOIOqLL76ob33rW/rd3/3d41xOgQdDU3LgF77wBfNrsd3pTEASn/lL7AnbhCpngA2Ez0qVCe23aNOMwMTHwqiaxydmDeJ/Edtoba2eQUb1sbcBEYlhpyH+kFRzFgycwb5JkokOJMRVJNl+ToeScrlsxxxg81KFjj3p+XxjY8N4hPgR+wN7LJU28CS+HDEtkg3sUbyfJA8xOmxtuAvhB2PBnyYhhwiIs4HYQ7zAneQ2dhy+ETHj3d3dmnPL6VSDYBFRCD4athm2NYKemzdvanBw0GxfXz3jq9excfr7+22OwLdZllnMEU4l4YSdjkgGoSW2G1WezBPmxNzcnJ11RtyXeCdrBpEHMRDimdhU2AWIivh/7FX2Dt9Sb35+3s4g5F6Q5PFjbm9v18zMjAneEETR1YjkJr488W/uIzYFMS78ad8W/86dO3r/+98vHSMHnoqkTUqpIGlL0n+UZdnvud9/StJzWZa95wE+45yk1d/+7d9WR0eHGQcE/znkXZJl43AeUJVAgpDZzs6ONjc3LfvJxCGZQLLFt4XY3NzU4uKixsfH7XdZVu0fSGYdgvZB+66uLisFx/kgUIoxSUse1J/T09N2rgQLjAXqHTrOS8FYgiipUEER4Ps5Dg4OWuKAgBYZakl2byA8AnE4TAsLC6a8l2RtQGj7RRCps7OzJmDrHVRKEXd3d3Xt2jXrJexVTTjetFNgYXrjkXGSraaHIsF8nBKSVyTB8vm8hoaG7Lkzd2i/QYsNHBLfPo/k2szMjCn62Yj39vY0NDRU8/y8UrpSqViAjzYbuVzOzoSAkFdXVy3AzrxFRUjlDxtpT0+PtWpDGYVi99atW6b22t7e1sLCgjkffkNDyeBLIQmm07ZNkjkNkDZGgz8fgrmJMcFn4ISTUOS7SqVSTQKztbXaw5LWSiQlmH8Eyb1KGYOjtbVVP/dzPyfVkbH6g3Ig/Pfnf/7ntpn78VIFQICHTRkjAqWDpJp/YzjChxg85XLZHHSSaVSq+LY6vtqPVlc42STd2Lgl2XeReJybmzNDCwUTgTWfICcA5hUqOMQEiDY3N7W9vW2HppI44DXwI0or2rKhUMFIkA7PtsGA9P2GMTrhRQKCXj0OZ+PgYwihBMNIwrAjEYXD7o3n1tZWe1Y8d+mw1zyBAIIktBUjII1jTpUd6wwlpyRTlWNME/jwLXV8cAOuRj1F9Z6kmj2I+0AQUzpM3PmEPPsNfEBikkQj+xv7BwY81wp3kUwmoEi/fa+Ap39zSskMPhKGra2t1vaTPYaAPKXjVDjQnm9gYMBaXLEvMyYCvlxrqVQyYx8RAQHY27dv64knnjDHEnuCv1NJyTi98uyAI8zBuHr1al0lbY7TBvyN3/gNCzZWKpUaBZt0uC4WFxdNwYfzyj3DTsHxZb8jocwcInhGMpozR1Adwx9wJE6sV0Bub2+boIF9zc91HCRUbVwvymh6ZLMvElTDJmGtkkDnuyTp29/+tlWF+2oGElh8F9XkvKZSqVjwnoQE6wwhiBez5HI5lUolE0rB5TiBOPDYm5JMJENFTErJ7DmSqOwB7E0EOObn53Xp0iXbx1ZXV+0sD+7z8vKyJFlSBXuIMxXPnj2rhYUFjY+P11QB+vY/vg0ICXCETex1JLU811BZTIU6exiisqOJVpLT7BV8NsljbC9s2JaWlpqgPbYYz4j9BA6DQxGRMT72FAKvtI/iecMv2MI+OQqn03KDvUeq7hf4KtjMJAppX0ZgmOSgDyiwv1PV0NbWZs8LP4Q5jN/BHs1++bM/+7NSnfCfdLwc+Gd/9mcmukJNjt8wNjZmFSfYOSSDsd2xFSqVis3p4eFhbWxs1Jztwt7C5+DLYO+sr69b1TddDFB2Y5+xxr0giyBne3u7pqen7bwBEirMfRKEPjhKMoR55Dtj7O3taWBgwFrfUsFNJWV7e7vZRj7Ji+1K4o/W3QSDSXTxeawtAmG7u7uWBCHYRRCP5PmtW7dM1Imtzr4EhxI7eO2119Td3W3cR7yAzhe+mo51hi1J+12eO/uMr+CBx1dXV03VnM8fnmGLvcVegBodWw6RAHYYNjX2syRrgb6ysqLJyUl99atf1e/8zu8c02oKPASakgO/8IUvmLgAbtjd3dXi4mJNJxf8MhI52Ego93ndwsKCBgYGTNDK3kJsEV70oqm1tTVrqYt4CzudvRD/t7e3V2NjY5a0wQ8jgUBrREn2GYjj2traTKCBT+CF3+yRiMzxA7gGKgB9tQzdd3p7e803w8dFUMdnsE9PTk6qWCxaVbY/k4X7QvwM/0+SfR7iSQREdOTg2lpbW3Xnzh319vZaIonr8uI1L+bE3kY8SfKGeYH/5avZadHKfsYzIs7l9zgfHyTxAIdzhiWfsbe3p+eff15PPPFETdKQtnokmbBtsDlJPhQKBRPIIKrFbib5h0DfXzN7CO9jzOzhJDiwZalIpkUdYjT8exKfPgmHfUWVE/4O85WkIrHTK1euaG1tzWKiVBGtra1ZxY2v0mQtIlJdXV3VwMCA+Qa+64kXtVOpRjxwe3u7pmXeD//wD0uRtHk4pJRGJd2R9MNZlv2F+/1/LenvZVn2+D3e0yapzf3qrKSpT3/606a829nZseD7+vq6BY4I1pAZZRGygLziheAJ5OaVPrSHgXz8YY97e3vW9gXHaXV1tXqhZ8+a08WCIUO6urpqCxbi7Ojo0OjoqAWzCIJKsnJ070BC5EeV5hDMwsKCent7LWmEsU3mk0Aogcfl5WVbSJyfgGG/tbWl6elpXbt2rabsjvMeUFbh6PF9UrXP6KVLl0x9Pjc3V9PawiumUkqmvPOtaDY2NswI7+josE16bm5OfX19KpVK5gCQMcdI39jYMJLF8KYHPZ+D8mB7e9scAoIXGxsbNYSCgz00NGSb887OjhYXF8048OpDr7RIKdWMjYCQDybs7OyYAUCwmBJAnGxKWlHW05YAAubzUTG0t7db4IdnvrW1pa2tLXsGZ86c0ezsrHp7e42oUZWT2CHhyebvjQICiouLi9ZWZHd3V8PDwzVzlfJg2hKhNJWqB8jyfPlOqVpuijpCOixzxUkoFApaXl5WuVy23tRLS0v6+Mc/LtWXsfpQHHg//vvyl79sQduOjg5r/SLJjCyCW76smSQAjjP3F/UjBg9J8FwuZ+uRz+U7vBIQ1SycQYIDhQROXi6Xs/aRJG3gVj6DQL8km1scRDc0NCRJdliib1nBHkpQCO5lbnte4jMJcHkVB9VilUrFuJO/+bLj6elpXbp0yZInrH24GW4kmOdbFvnEB4FUgsC+EtSXbfvzfeAM1hjjJBGQy+XsmflAgFe9YNwRVGD9eiOY8njG4RVrPoiLIt0HCDBw8/m8qaS5t3Czb2VC0Jt7yX5J8M4nkBEPcO/pAYySm72Z17K3cN+9wp+EJbzNc2xpaTGuxUkiaQO3EjxZWlqy9lQ+6OgD/sxxBBO0S/OJVJwinB9EJ3AfAS6eFap/jHAcBpJFly9fJpFRFxx4nDbgpz71KTu8kuCbdHhWF0o5bAZK+AmQcc8J/KJIp5UeNgTJaRJ6vsKPA7LX19fN+fRtIQjw8/04/igYCRKyZyFggJvy+bxWV1ctGMfe7Vvs0paLsxQkqVQqWXsa7A7sYAQUOEDS4XkpvNYnCuF17Ap4kIpFnDGENnARnOorE321COuQa2BOI26SDoMW/f39NUkZhBwEJrGP4DH2ORx+nHNsJd+OYXt721rfzs3NqVAomJqeZAnVyb29vVpbW7Nnwt4qyXgeJ5I5grDH+wXcG59ohzOYK9j+2KPsx/AunA7f0baDVlbYgyTXqFKBl7a2ttTT06NSqWSJHFSe2HN8lrffsAfYV3wQiXZ5+EQkPklQok4m6cN8JYHkE1gkxHylDXve0tKSrX32m/n5eQ0MDEiSBefK5bJ+4Rd+QaoT/pOOlwO/8pWv2JwmKC8dHh7shWLwGwkW1iLrHYEEyTB/mHWpVNLw8LAF4+kiwJr1tpakGsEH+zS+EAIz5qXnFwJCvg0hAi7m4NGEr+8AAUeRRMYfoM0OPmN3d3eNmISqf++HEoCjvQ73F6Ea3MP65bNHRkbsPhJIxB7lflLxhnCRak+SwqxzhIF0yMBug1+Z59htBAU7Ozs1NTVlFUfYtdhR2FXS4Tm+dEYg+UP8BPuFe4qvyr5Iotgnn7xwAZvn7t27+su//Eu99tpr+uIXv3hcyynw4GhKDvzsZz9rwmfsEO+PUpkKd+FX4Gt1dnZa60FiIZOTkyYg9slaf/wAVaIkGVhn7IM3btywLjjEsfCJaWdZKBSsWg/uJpiOLdHS0mLnZ8ORvM8HzEkMEwcjGUHSCb8YW1aS+Uj+bCv2dTgLbqTy//bt27p4UA0JhxCEHxwcrDkPFYHH3bt3zSZAgOsFIyRWECgRq/BVigTj4SXvBxJT43kiEiCJB7C3fAs9/F2eHTYTNpB/dsSFEYMSI+QZS4etaLHX2Ae9iJnP8fFaEoMI7Um8YE8i/uJ5kpzv6ekxITf7AnsKth77M1VRxJHpEpDPV88r7unp0dbWlubn5zUxMWGxUql6BhAVMexD2Fi7u7vWXq+trU3z8/MWlyO+LammMwLCHZ4FfgQJGf4rVQUJiFCI6TNPU0rWVUQ6rLiXVLPH/dRP/ZQUZ9p83ziaoUr3+B34qKT//ugvP/zhDx/3NQUCgeZEn6S6MFYdHpQD78l/P/mTP/l2XFMgEGhO1BsH/sA24C/90i8d9zUFAoHmRL3xn3QMHHjQ8iMQCATeCk3JgR/84Afv8dJAIBD4HhwbB56WpM2CpH1Jw0d+X5Q0e5/3/IqkX3X/PitpStJ5SevHfYFHcFLf1YxjatbvasYxneR3PYox1dNptA/LgUf5T5LGJb2s5nxW8V31/T3N+l3NOCb/XfXCgWEDnq7vasYxneR3NeOYTvK76o3/pODAeviuZhzTSX5XM47pJL/rNNuAUnDgo/6eZv2uZhzTSX5XM47Jf9exceCpSNpkWbabUvqGpPdJ+j33p6VQ678AAA/ESURBVPdJ+j/u8567ku7yb8qvJa2/3aWeJ/VdzTimZv2uZhzTSX7XIxpT3eBhOfAo/0lSSumNg/9txmcV31XH39Os39WMYzryXXWBsAFP13c145hO8ruacUwn+V31xn9ScGA9fFczjukkv6sZx3SS33WabUApOPBRf0+zflczjukkv6sZx3Tku44NpyJpc4BflfT5lNLzkr4m6T9TVTn+64/0qgKBQOBkEBwYCAROK4L/AoHAaUZwYCAQOM0IDgwEAg2JU5O0ybLsf0sp9Uv67ySNSPqWpJ/Isuz2o72yQCAQePsRHBgIBE4rgv8CgcBpRnBgIBA4zQgODAQCjYpTk7SRpCzLPiPpM9/n2+9K+h90pGXQ24ST+q5mHFOzflczjukkv6sZx/TQaBAObNZn1Yzf1YxjOsnvasYxnfR3PTAahP/iuxrne5r1u5pxTCf5XXXJf1Jw4CP+rmYc00l+VzOO6SS/qxnH9NAIDnxk39Os39WMYzrJ72rGMb0t35WyLDuuzwoEAoFAIBAIBAKBQCAQCAQCgUAgEAh8n8g96gsIBAKBQCAQCAQCgUAgEAgEAoFAIBAIRNImEAgEAoFAIBAIBAKBQCAQCAQCgUCgLhBJm0AgEAgEAoFAIBAIBAKBQCAQCAQCgTpAJG0CgUAgEAgEAoFAIBAIBAKBQCAQCATqAJG0cUgpfSildDOltJNS+kZK6Ufe4vXvOXjdTkrpRkrpH57UtT4IUkrvTin9fkppOqWUpZT+zgO8p97H9NGU0v+bUlpPKc2llP5lSunxB3hf3Y4rpfTBlNJLKaW1g5+vpZTe/xbvqdvx3AsHzy1LKX3yLV5X1+NKKX3sYBz+p/QW76nrMXkEBzbEmIIDVd/juReCA+t3TCD4ryHG1HT8JwUHHnld3Y6rmflPCg48eE+9j6npODD4r+Z1dT2u4MDveX1djy04sOZ9dTuu4MCa19X1uB4ZB2ZZFj9ZJkkfkLQr6RckPSnpk5I2JI3f5/WXJG0evO7Jg/ftSvqZRz0Wd43vl/SPJf20pEzS33mL1zfCmP6VpL8v6WlJPyTp/5R0W1Jno45L0t+W9BOSHjv4+eWD63u6Ecdzj+v965JuSvqmpE826nM6uMaPSfqWpGH3M9jIY3LXGhzYGGMKDqzz8dzjeoMD63hMB9cZ/NcYY2o6/ju4xuDABhhXs/LfwbUGBzbGmJqOA4P/GmdcwYGNNbbgwMYYV3Bg44zrUXHgIx94vfxI+rqkzx753Xcl/cp9Xv8JSd898rtfl/S1Rz2W+1zvgxB1Q43p4PoGD8b27iYb15Kkn2/08UjqkvSqpL8l6U/fgqjrflwHRP3/PcTr635M7rqCAxtsTAfXFxxYx+MJDqz/MR1cU/Bfg43p4Pqakv8OrjE4sM7G1az8d3BdwYENNqaD62tKDgz+q89xBQc25tgOri04sLHGFRxYh+N6VBwY7dEkpZQKkv6apD868qc/kvQ37vO2f/cer/9DSf9WSqn1eK/wxNCIY+o++O/Sm7ymYcaVUmpJKf2spE5JX7vPyxpmPJJ+TdKXsyz74wd4baOM69pBmfHNlNIXU0qX3+S1DTGm4EBDI44pOLCKuhyPggPrfkzBf4ZGHFNT8Z8UHKj6H1dT8Z8UHOjQiGNqKg4M/muIcQUHVtEQY3tINOKYggOrqMvxKDjwWMYUSZsqBiS1SJo98vtZVUue7oXh+7w+f/B5jYiGGlNKKUn6VUn/Jsuyb73JS+t+XCmld6SUNiTdVTX7+h9kWfad+7y87scjSQcbzl+T9NEHfEsjjOvrkv4TST8m6R+oes1/kVLqv8/rG2FMUnAgaKgxBQfWoK7GIwUHHqARxhT8V0VDjamZ+E8KDjxAvY+rGflPCg4EDTWmZuLA4D9JjTGu4MBDNMrYHgYNNabgwBrU1Xik4MADHMuY8g9/nU2N7Mi/0z1+91avv9fvGwmNNKZ/JulZSe96gNfW+7j+StJzknok/Yykz6WU3vMmZF3X40kpXZD0KUk/mmXZzkO8ta7HlWXZV9w/X04pfU3S65L+nqpGwz3fduTfdTWmIwgObKwxBQceoq7GExxY+7Yj/66rMTkE/zXWmJqJ/6TgQFC342py/pOCA6XGGlMzcWDwXxV1Pa7gwAd6/b1+30hopDEFBx6irsYTHFj7tiP/fugxRdKmigVJ+/reTHpR35sZA6X7vH5P0uKxXt3JoWHGlFL6tKSfUrV/5dRbvLzux5Vl2a6k6wf/fD6l9Ncl/ZKkX7zHy+t+PKpm1YuSvlEVQUiqKljenVL6R5LasizbP/KeRhhXDbIs20wpvSzp2n1e0ihjCg6somHGFBxY3+NRcCBohDEF/1XRMGNqNv6TggMP0AjjMjQJ/0nBgaBhxtRsHBj8J6kxxlWD4MCGGNvDoGHGFBxY3+NRcCA4ljFFezTZIvmGpPcd+dP7JP3Ffd72tXu8/kclPZ9lWfl4r/DEUPdjSlX8M0k/Lem9WZbdfIC31f247oEkqe0+f2uE8fyJpHeoqhjg53lJvyPpuXuQtNQY46pBSqlN0pOSZu7zkoYYU3Cgoe7HFBwoqTHGExxYRd2PKfjPUPdjOkX8JwUHgnobl6EZ+E8KDnSo+zGdIg4M/qui3sZVg+DA+h/bQ6LuxxQcKKkxxhMcWMXxjCnLsvjJMkn6gKRdSf/pwY3/p5I2JE0c/P1XJP22e/0lSZuqlkE9efC+XUk/86jH4q6xS4eLJJP0kYP/H2/gMX1G0oqk96iateSnw72mocYl6eOSfkTSRVXJ7ZdVVXu8rxHH8ybj/FNJn2zU53Rwjf/kYO5dkvTvSPp9SWuNzBPuWoMDG2NMwYF1Pp43GWdwYB2O6eA6g/8aY0xNx38H1xgc2ADjalb+O7jW4MDGGFPTcWDwX+OMKziwscYWHNgY4woObJxxPSoOfOQDr6cfSR+SdEvVA6C+oWq5HX/7LUl/euT175H0wsHrb0r6h496DEeu728eEPTRn99q4DHdazyZpL/fqM9K0r9w825O0h9D0o04njcZ51GibrhxSfqipOkDsr0j6UuSnmrkMR251uDA+h9TcGCdj+dNxhkcWIdjctcZ/Ff/Y2o6/ju4vuDABhhXM/PfwbUGB9b/mJqOA4P/GmdcwYGNNbbgwMYYV3Bg44zrUXFgOvigQCAQCAQCgUAgEAgEAoFAIBAIBAKBwCNEnGkTCAQCgUAgEAgEAoFAIBAIBAKBQCBQB4ikTSAQCAQCgUAgEAgEAoFAIBAIBAKBQB0gkjaBQCAQCAQCgUAgEAgEAoFAIBAIBAJ1gEjaBAKBQCAQCAQCgUAgEAgEAoFAIBAI1AEiaRMIBAKBQCAQCAQCgUAgEAgEAoFAIFAHiKRNIBAIBAKBQCAQCAQCgUAgEAgEAoFAHSCSNoFAIBAIBAKBQCAQCAQCgUAgEAgEAnWASNoEAoFAIBAIBAKBQCAQCAQCgUAgEAjUASJpEzh1SCldTCllKaXnHtH3P55SKqWUzj7Aa9+RUppKKXWexLUFAoHmR3BgIBA4rQj+CwQCpxnBgYFA4DQjODDQaIikTaCpcEDAb/bzW5ImJY1I+tYjusxflvRrWZatv9ULsyx7WdL/I+kjb/tVBQKBhkdwYCAQOK0I/gsEAqcZwYGBQOA0Izgw0IxIWZY96msIBI4NKaVh988PSPofJT3ufredZdnqyV7VIVJK5yXdkHQ5y7KpB3zP35b065LGsyzbfzuvLxAINDaCAwOBwGlF8F8gEDjNCA4MBAKnGcGBgWZEVNoEmgpZlpX4kbRa/dXh77IsWz1aEplS+psH//6xlNKLKaXtlNK/TikVU0rvTyl9N6W0llL6X1NKZ/iuVMV/lVK6cfCeb6aU/sO3uMT/WNI3PUmnlCZSSr+fUlpOKW2mlL6dUvoJ954/lNQv6T3HdqMCgUBTIjgwEAicVgT/BQKB04zgwEAgcJoRHBhoRuQf9QUEAnWEj0n6R5K2JP3uwc9dST8nqUvS70n6sKRPHLz+H0v6aUkflPSapHdL+kJKaT7Lsv/7Pt/xbknPH/ndr0kqHPxtU9JTkjb4Y5Zluymlb0r6EUn/+gcaYSAQCNwfH1NwYCAQOJ34mIL/AoHA6cXHFBwYCAROLz6m4MBAHSKSNoHAIf6bLMu+KkkppX8h6VckXcmy7MbB7/53Sf+epE+k6mFg/4Wk92ZZ9rWD999IKb1L0i9Kuh9RX5T0jSO/G5f0pYOelVK1ZPIo7hy8NxAIBN4uBAcGAoHTiuC/QCBwmhEcGAgETjOCAwN1iUjaBAKHeMn9/6ykLUja/e7fPvj/pyS1S/q/Ukr+MwqSXnyT7+iQtHPkd/+zpM+mlH5U0h+rStovHXnNtqQzCgQCgbcPwYGBQOC0IvgvEAicZgQHBgKB04zgwEBdIs60CQQOUXb/nx35N79jzfDfn5T0nPt5StKb9bJckNRb86FZ9s8lXZb0eUnvkPR8SunDR97XJ2n+gUYRCAQC3x+CAwOBwGlF8F8gEDjNCA4MBAKnGcGBgbpEJG0Cge8P31G1x+V4lmXXj/xMvsn7XlSVzGuQZdlklmW/nmXZT0v6nyT9gyMveUZvnrUPBAKBk0RwYCAQOK0I/gsEAqcZwYGBQOA0IzgwcGKI9miBwPeBLMvWU0r/RNI/TSnlJP0bSeck/Q1JG1mWfe4+b/1DSf88pdSSZdm+JKWUPinpK5JeVTXz/l5J3+UNKaWLksZULZcMBAKBR47gwEAgcFoR/BcIBE4zggMDgcBpRnBg4CQRSZtA4PvHfytpTtJHVS1pXJH0gqSPv8l7/kDVUsu/pSppS1KLpF+TdF7SmqR/Jekj7j1/V9IfZVl2+zgvPhAIBH5ABAcGAoHTiuC/QCBwmhEcGAgETjOCAwMngpRl2aO+hkDgVCGl9CFJ/36WZT/2AK9tk/SapL+bZdlX3/aLCwQCgbcZwYGBQOC0IvgvEAicZgQHBgKB04zgwMDDIiptAoGTx/8iqTeldDbLsvW3eO2EpF8Okg4EAk2E4MBAIHBaEfwXCAROM4IDA4HAaUZwYOChEJU2gUAgEAgEAoFAIBAIBAKBQCAQCAQCdYDco76AQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCRtAoFAIBAIBAKBQCAQCAQCgUAgEAgE6gKRtAkEAoFAIBAIBAKBQCAQCAQCgUAgEKgDRNImEAgEAoFAIBAIBAKBQCAQCAQCgUCgDhBJm0AgEAgEAoFAIBAIBAKBQCAQCAQCgTpAJG0CgUAgEAgEAoFAIBAIBAKBQCAQCATqAJG0CQQCgUAgEAgEAoFAIBAIBAKBQCAQqANE0iYQCAQCgUAgEAgEAoFAIBAIBAKBQKAOEEmbQCAQCAQCgUAgEAgEAoFAIBAIBAKBOsD/D+MSGniRkbdsAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "alarm_clock_3-120526-B-37.wav\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "car_horn_1-24074-A-43.wav\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cat_3-95694-A-5.wav\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "coughing_1-58792-A-24.wav\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "thunder_3-144891-B-19.wav\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(2, len(audio), figsize=(20, 5), dpi=100)\n", - "\n", - "for idx in range(len(audio)):\n", - " track, pow_spec = audio[idx]\n", - "\n", - " # draw the waveform\n", - " librosa.display.waveplot(track, sr=SAMPLE_RATE, ax=axes[0, idx], color='k')\n", - " # show the corresponding power spectrogram\n", - " axes[1, idx].imshow(pow_spec, origin='lower', aspect='auto', cmap='gray', vmin=-180.0, vmax=20.0)\n", - "\n", - " # modify legend\n", - " axes[0, idx].set_title(os.path.basename(paths_to_audio[idx]))\n", - " axes[0, idx].set_xlabel('')\n", - " axes[0, idx].set_xticklabels([])\n", - " axes[0, idx].grid(True)\n", - " axes[0, idx].set_ylim(bottom=-1, top=1)\n", - "\n", - " axes[1, idx].set_xlabel('Time (s)')\n", - " axes[1, idx].set_xticks(np.linspace(0, pow_spec.shape[1], len(axes[0, idx].get_xticks())))\n", - " axes[1, idx].set_xticklabels([f'{tick:.1f}' if tick == int(tick) else '' for tick in axes[0, idx].get_xticks()])\n", - " axes[1, idx].set_yticks(np.linspace(0, pow_spec.shape[0] - 1, 5))\n", - "\n", - "axes[0, 0].set_ylabel('Amplitude')\n", - "axes[1, 0].set_ylabel('Filter ID')\n", - "\n", - "plt.show()\n", - "plt.close(fig)\n", - "\n", - "for idx, path in enumerate(paths_to_audio):\n", - " print(os.path.basename(path))\n", - " display(Audio(audio[idx][0], rate=SAMPLE_RATE, embed=True))" - ] - }, - { - "cell_type": "markdown", - "id": "fc725f3f", - "metadata": {}, - "source": [ - "## Image Loading" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "014356a0", - "metadata": {}, - "outputs": [], - "source": [ - "paths_to_images = glob.glob('images/*.jpg')\n", - "\n", - "images = list()\n", - "for path_to_image in paths_to_images:\n", - " with open(path_to_image, 'rb') as jpg:\n", - " image = simplejpeg.decode_jpeg(jpg.read())\n", - " images.append(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "f9a5c522", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOUAAAFWCAYAAAAmOSn7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d7hlSVnv/3mr1trxnNOnc08e0gwwBBH0AgZAxKsomBADivEKhke9XuWKEUTMcn96TXhFMaEIYgAJkoaM5DAzCMxM9+Tu6T594k4r1Pv7o2qtvc7p092nw3QY6vM859lnr12rVq21Kn7rfatEVYlEIpFIJBKJRCKRSCQSiUQi5w5zvhMQiUQikUgkEolEIpFIJBKJfKERRblIJBKJRCKRSCQSiUQikUjkHBNFuUgkEolEIpFIJBKJRCKRSOQcE0W5SCQSiUQikUgkEolEIpFI5BwTRblIJBKJRCKRSCQSiUQikUjkHBNFuUgkEolEIpFIJBKJRCKRSOQcE0W5SCQSiUQikUgkEolEIpFI5BwTRblIJBKJRCKRSCQSiUQikUjkHBNFuUgkEolEIpFIJBKJRCKRSOQcE0W5+xEi8lwR+QcR+ayIOBE5cArnXi0iKiLfd9+lMBKJVIhIT0ReJCJPPs3zY3mPRCKRSOQiQESeHNrdZ20h7CtPpU2/rxCRy0Xk/xORd4nI0qn2Gy6U+4h8YSEi3xfy6tXh+2nnw9BPVxHZtYWwPy8i33Q612nEcb2IXH8mcZwNROQ6EfljEfmAiAzCM3jyKZx/QdzHxUQU5e5ffA9wHfAh4JZTPPce4AnAv5/tREUikU3pAb8CPPk0z4/lPRKJRCKR+x8vAb75fCcCeDDwHCAD3nga518o9xH5wuZc5cOfB85IlAN+NPydbx6Hv5ejwNtP4/wL5T4uGpLznYAvZETEAomqTs5SlP9dVV2I+w3AI7Z6YkjDB89SOiKRyH1PLO+RSCQSidzPUNVTnWi7r3i3qu4GEJHHAd95KidfQPcR+QLmYsqHqnrT+U5D4G9U9a8AgnXvM07l5AvoPi4aoqXcFhCRh4rI34vIIRGZiMjtIvLXItIWkd3BvPMmEVkTkXtF5B0i8hUb4qjcxV4gIr8oIvuBCfAUETHh2GdFZBRMxD8lIj95KumsBuineY/HuLM1THYfIyKvE5EVEVkWkb8Vkd0bzm+LyO+JyEERGYrIu0XksSJyQEReebrpikQuRM60Tggm9YfD118J5UxPpazE8h6JnHsaLmhPvo/ir9xuHncW4vqpUJb3hzivP4Vz79P7jETuK07UPoffHyEi/yoiiyIyFpFPiMj3bohjnftb4/gx5UI8Py8it4X4PiIiT5Pju2+lIvJSEbk7tLNvE5FrN1znGHe7cN0/FJHvEZHPhLb3kyLyDZs8g28M44iJiNwqIj9ZtfGn8izPpJ+xhft4noh8LqTxJhH5jk3O/3Lx7nNjEblLRF4iIj+02buJRI7HcfLhvIi8QkSOhr76v4vIA0PeetEm0ewN9cpyqFv+QkS2NeJToA98b6NPf334rapPniIifyIiR0RkIbTPl25I17p6Q6b99Z8RkZ8O7flaKBeP3+Re/8eGcvVdm93/yTgLZf949/ECEfmFUC9X9eVTNzn/rNRhFxPRUu4kiMijgfcCR4BfBj4PXAI8E2gBO0LQFwMHgRm8iez1IvJUVb1+Q5Q/AXwO+BlgJcT3AuBFwK8B7wZS4KHA/H10W6fKPwP/CPwp3l3uJcDDReS/qWoewvwl8O3AbwPvAB4ezps798mNRO47zlKdcA/wtcCbgVcAfx7OqYS680ks75HI/YPnAwN8GT2lWW7gY3gX9zjbHbloOFn7HISc9wP34vvjC8B3A68Ukb2q+tuncdmXAi8E/gx4HXAFvk1P8f39jfw68D7gh/Bt5m8BrxeRh6lqeZJrfT3wJeHe1vDjh38WkWtV9VYAEfnakI5349vpBD/m2Hsa93Zf8UzgKfj7GODd3P5eRApVfS2AiDwKeCv+GX4vMMTXad99XlIcud8gIgZ4Pd5F80VM27s3n+C0fwJeje+zPxL4jXD8B8LnE/Bt7Tvx/Wbw4/wmf45fNua78PXE7wB/C3zVFpL9Y8B/AT8Vvr8EeKOIPEBVl8N9/TDw8pDW/wlswy+T095C/OeKHwduw9+HwddhbxKRJ6nqB+CiqcPOOlGUOzkvAwrgS1W1OWD+u/D5WRo+0+JdUt8CXI1v8K/fEN8Y73aWN875MuDTqvqiRri3nJ3knxVep6ovCP//h4gcwt//s4G/E5GH403af0tVXxjCvTWE+/tzn9xI5D7ljOsEVZ2IyEdDkDtV9UJyJY3lPRK5f/Dwhov7DadyoqquEF3cIxcfJ2yfgwVMC3iKqt4RfnujiMzjrdZfXg1wt4KIbAd+Gni1qj6vcfwG4ANsLsrdpKrf3Qhb4ifCvoSTl7ku8NWquhrO/RhwN759/s0Q5leBu/BjjSyEezNwYKv3dQ7YBXyJqh4CEJE3AjfghY7XhjC/CJTAU1X1SAj378Cnz31yI/czvhb4cuBHVPVPw7G3ikjGVGzbyCtU9XfC/28TkQcDPyAiP6ieD4qIAw6foE//ZlX9ieqLiOwAfltE9qnqwZOkeRX4hkq4F5G78WtKfx3wD0FofDHwn6pabyYjIu8FbsbXExcCFniaqo4BROQt+LrpV4GnhTAXQx121onuqydARHrAk4B/3NC4bwz3fBH5mIiM8Z2BHHgq8LBNgv9bU5ALfAh4tHiXt/8uIheatcnfbfj+j/j7fEr4/qTG8SavDeEikfsF91GdcKERy3vkCxo5ifvbcc55ZnAnGYrIqoi8VUSecJbivkREPioinxeRh2z1Ps7QxX0zN71XBreZ60Tk7eJ3ZDss3hWtt+H8U3UNikTOiC22z18FvL0hyFW8Er/50jFl9iQ8Hm+Fsq49DIPyA8c55982fP9U+LxqC9d7ZyXIhescwlv9XQUgIn289c+/VIPZEG4Nbxl0ofD2SpADCELDq4EHi8jl4fCTgHdUglwI5zi27xGJnCrH68eeaGJ5s3LbAfacwnXPpOz/+wZL2o3nXgvs49i66Ha8Ze6FwusqQQ4g1GevB75SROxFVIeddaIod2K24xXdO48XQER+GvgT4D+Bb8U30F+CN4HtbnLKPZsc+w28WebjgTcBC6HDe8Zrypwl1qn3qlrgTf53hkPV56HjhItE7i/cF3XChUYs75EvWIL724fx5faX8bPQL8QPvFvHOee7gH/Fu6p8J/CD+LriehH58jOM+xH4umQCPEFVP3/GN3lmpPhdGN+O35ntD4Hn4QfUwDrXoO/Cu+Z9M/4eTuQaFImcKSdtn/Ht12b98Lsbv58Km7aHJzgGx7aT1WZvW+kfbNbGThrnbgfkFNNzPtjMKqg61uxrXOj3Ebk42QkUqnp0w/ET5a0zKbdnI4515zY2iazOPZ266HxwvLLfwi/3c7HUYWed6L56Yo7iTacvP0GY78a7o/1I86CIzB4n/DELFIbB7MuAlwUT+q/GrznxFhG5QlWHp5P4s8g+vBkpACKS4At/VUFUn3uPEy4Sub9wX9QJFxqxvEe+kDmZ+9u6wEGA+h28S9XXNdxF3wjcghelvmwrcW9ERL4avzbMfwDf05xdPo+0gN9T1T8I398qIjnwUhH5MlV9H6fnGhSJnClbaZ8X8GvMbaRabL2yyqrK2kYL1l2bxAebr3W0j3PvbrWIH2ccLz0XCpulpTrW7Gtc6PcRuThZABIR2bFBmLuY89bJ6qILheOV/Qy/TmbBxVGHnXWipdwJUNUR8C7g20RkY0NcB2OqdAP14qSnagJfXXMpLHL6R/gF468+nXjOMs/Z8P3ZeEH3+vD93eHz2zeEexZR+I3cjzjLdcLpzLKdC2J5j3xBslX39A1cix/Q/03TXTS4WvwT8HgR6Z1G3N+Lt0j7c+DZF4ggV7FRRHxV+DyZi3tcczJyn7HF9vntwFfJhh0PgefiNxKo1oI6ED4ftSHcMzd8r6xY17WH4ndF3IpL2llFVQfAR4BvEpHa+lZEZoBjdmk9jzxVROpBd1h799uBW1S1snR8F/5d7WqEM8C3ndOURu6PvCt8buzHHrMD8CnStFo913wWb3H27OZBEbkSeOJ5SdHmfIuIdKovwWDhGcB7VLW8iOqws04cQJ2cn8bv5PSfIvKb+MUS9+Ib5ucBbwB+SURejC/k1+LdUvazxecrIq/HL3D6Efzui1fhdyW5Db9z1JYQvwD7w8PXfUBPRKrFHm9S1ZtCuCfhOya/qqq/uoWov0VECvwuSNVujJ8kdLhV9UYR+Xvgf4lfsPYdIdz/ApaBM9pWORK5wDgrdYKqrorIbcA3isjb8bP8R1T1wFYSEct7JHLW2Yr720Yq69DjucSZEC+nGPd3ACPgz1X1GAv780ihqhtdcDZzOztV16BI5Gxwsvb5xfiB3TtF5Ffx7e5z8LuavqCxycOH8YPc3w1W4It4N+wvb1wLVT0qIi8DXigii/hdyC/H73h4D+enPfxl/A6PbxGR38fXOz+Lt0LZcaITN6PRr3hg+HyciKwBVDulhnBvB56kqlsZ+xwB3iEiL2G6++pDWS+KvBQ/WH+7iLwUXx8+H+iH32NfI3K6vBm/ztrviV/H/aP4ifPnht9PN299GniyiDwDX/5XVfWzZ5rYraCqTkR+BXi5iLwW+AtgntOsi8JE4tPD18eHzycFkXygqm9qhL05pOHBW4i6xFvOvwzfP/rf+F2of6UR5qzWYRcLUZQ7Car6SRH5UnxD/hvALL4D+g68qeVL8YvD/iB+W9+b8I3GNwNP3uJl3olfe6raHv0gfkD8kk02hTgRz2Z9pgZ4Tfh8MX7bZ/C+2pbNLSU36/x/Szj3R8Lvrwd+qrkAI/D9+EL/g/htmD8R0vNmYOkU7iESuaA5y3XCD+Jd3/4N7ybzV8D3bTEpsbxHImeXrbi/baQSqI7nEueYupSdStzPAX4NeJeIfI2qfuIU0nRfkojIzg3C3GZuZ/c316DIRcDJ2mdV/ayIPBG/RMwf4a1aPgN8v6q+shFPGQbWfwj8Kd4C5h+AH8cPFpv8Al5Yej6+bfwvfPv5Us5De6iqbxaRb8XvYPhq/P3/Mb4++p7TiPI1G77/WPgD37+osOHvmCRtcuzfgBvxddyVeFf/56hqvTZleJdPA34X+Gt8Pfo3+MnO38JPAkYip0wQsJ4B/B7wc/hlGd6HX37mg5x+uf1JfL3yD/hxwLvYuhZwxqjqn4mI4sce/4y3+P1N4Bvx5exU2MOxZf9F4fM21nvyHU9P2qzs/yF+g4w/CNe4Efj6sPSFP+ns12EXBXJhTcBGzhdhAepPAM9Q1TeEYy/CD/p3N3c/OoU4n4iv5J6jqq86WfhIJHJuiOU9EtmcYO3xGOCazcqB+N1I3wk8RVWvD+5Ut+Ot3L+4smoLO4jdCnxeVb98K3GHMN8H/CV+c5jP4i1vH4Vfr+6Dm52zxfu6AW+J++Qthn8yjfsMx16Jd6v9ycaacojIz+MFiK9Q1feKyNPxwsWPquqfNML9HF4oebGqvuh07yUSudARkQfgxbkXq+qvXwDpSfFt/l2q+jXn8Lr/DFyhqo9rHFPgj1T1x08zzv8ArlbVa85SMiMRoN606e+AL1PV95/v9JwNwlr1n8PvZvrD5/C6H8e7oz8rfL8a7zH0s6r6u6cR33mpw84l0VIugog8BW+llwEfO804noY3/f0o3sT80fjZh88Drzs7KY1EImdKLO+RyAk5mfvbOsKM+wvwHfk3iMjL8VavP4t3Hfm5rcatqqsb4l4Vka/Fl6m3isgzVfWdW70R8Tu4Xx2+zvlDtSvah1X1thDuuXhXlx9Q1b8+SbQZ3nV9Bu/i90TgF4E3qep7Q5j7yjUoErngCJNc3wm8H78D87V4S5UV4BXnKU2vwHvc3IO3UH0+8DC8Jc+5uH61jtVT8NZtpxvPy4CPA3fg3daeAzwNb6UfiZw2IvKdwGV4l1OHd9H8WeDdF6sgJyL78Ja778RbrF+F92aZBX7/HKXhGuArgEcCf3sG8ZzXOux8EEW5i4CwnsWJcM0Fpk+Dt+LV6+9X1btPFvg4rABfg18Lbxa/XsSbgBdeYAtURyIXNLG8RyLnjy24p292zqtEZAC8EO9qUeJdYJ7S7NyfZtwjEflG/GYKbxSRb1XVN27xdn4cb9nWpHJH+X7gleF/w9Zd3HP8mlx/gBfjRsD/ww9mqjTfV65BkciFyAB4HF4omse7VV4P/IKqnq91FGfxbp+78WX2Y8DTVfVtUG+YcMLN/lS1OIPr/wC+f/AOfH13uli8C9s+fF10E34n6tMe7EcigVX8Goa/iF+n8B58m/iL5zFNZ8oEPxH3x3gRu9q85vmqeiPUm6rI8SIAVFXLM0jDC/FrQf51SMfpcsI67P5IdF+9wGmYe56I6AoSidwPiOU9EolcCAQh8F+AR6rqDeHYK4FnqerMacZ5v3MNikQuRhqu6MdFVU80cI9EIhchInI90x3SN+M2Vb363KQm0iRayl343I1fW+ZkYSKRyMVPLO+RSOS8ISJtvOvJj+PXybv5NOO537kGRSL3I16EX3A9Eol8YfE8vBXa8Zicq4RE1hNFuQucsOPhR853OiKRyH1PLO+RSOREiEi1m/KJKPX03SAuAd6I32TiOWfgjn5/dA2KRO4XqOoB/M6MkUjkCwhV/ez5TkNkc6L7aiQSiUQikchFQGNX1BPx/ar6yvs+NZFIJBKJRCKRMyWKcpFIJBKJRCIXASIyi9/d8UTsV9WFc5GeSCQSiUQikciZsWVRTnbvmgZUBZmu/ylqUHGISPgfqh3vRf0GPyounHrshh4igoigqqgVWu02AJlTzCTDtSw72rtZHhxFyUhafbJyyKVXXIoWJYtLY4zkJIlhdtsODh06jLFtynEOQImbptlONxua2TbHYGWVJElI05Ret8twNGLfvu1c84DLyCcjVoYjRqMBBxfWWDiyQtLqMtfvYxQKCrozXfqdNjvmZ1leWqMocoxaTNLh8OHDGAPzvTYkbY4urfDlX/wV7D94Gz/xXd/D8176ayRGMf0O4+Uhr33Z7/K6d76HV7/+9ZQoH/mHv+KHX/jLjEcjEKHf6dPrtXn2134N773xsxw8ssDNt99Bro62GI4sD3jPq1/JZTu2cc/aApd0d/KO/Tfzspf/Pr3eDFfu3sOHP/IJFpcO8/6/fS2JwCOe9SxUlQ+8+jU84qlPhsK/nyRJeNrTnsZ3fO038/0/+2MwyXECohPats04mwAJSZpS2i4ffv0/hffteOwzvgGKCZdfehXXPeRBDAYDPvLJj/Lcb346b3rfp3j0Ix7GyuIS7/7g+xFAjeWXHnotB4qCv7n5luk7KguM+jyTL+6gvOyRJLd/BjUTjJtlTWfoJwf5hu6AO/sFFJZP25QvfezjuGzPDnZsm2H/7fdw84H9XLlthkc96FK67Q6aGEypOOf42H99jrvHE9aWBywuL/PI6x7K0x77BEYL9+JsjikKFnPltgN3ccn2bZDC373/Q+B8ngUHWoIIWihGQUxCWY79sUOH40K5Z4n/8dTdOhqNSBJDnuf0+7NMspI0TRERyrKkLH3+FVGsEUzS54qrHsyVV17J6uoqZVmSZ8rBO+9icfEO9uzbjaoyWFvBOYdVJcsyJpMJ3V6PXtsyKQsGgwFtm6CqtPoJbeYYlzkmadFut1lcXsIYn65er4dzzqex3aHVTcmyDOcc7XabPdu2kyQJzjnuufcurOmwOm5z8OgKZbZKXoxwDpykDIcTRqMS2pZyJFhrGRUZ3ZkuR4+MSLsW5xyTcYkzLUqXsW3bLLPdDi0rbJvv4yY5O3fuJMdhTZvV1VXa7Tbtdpssy0jTlHbHUhRjyjzHWsu2bdtAE9omwbTbLCws0Ov1WFpa4pKd2+gKXHvtXnppm6NHj5JISlEO2Ll3B4iwsLSETVqMhjmDtTU6nYQPf+STzMzMoVqSTdZQCtbWBiRJgrWGLB/Sbs2QZRPSNKUoMlQV5yArS9+2OEvpctQJxhhKdeQGTOnbEWMM1rax1lK4HGu6/NvHF2IZjEQikchJueqRj1RjDM2xkR+jGHAlKgYR/PcaBSMh7PTcJPF9BhFCW6aoKtb6dru5iboViyty35dRxQBliKeZFh+PH29p6O8UziHhuGqJcw7CtRz+uHPVtfynD6uN4z5udQVapbcoqbd6cIoKiIKWDsSBTp+BweGqzVzN1ppcEcGtTmL7fBGQJj1d91rFoOowQQtQVdRIGLOpf7d1/p1KBuILQ/UFdQXG+HIyDeTzpmDrk/336VbgVR61oRw2f7MKTsAilAoqShI2Gy3x8VkN/9f3449VYYyG/CnT8meRdeco67cwrX5XVSyCM+E64sOZ8D/hd/DfqzB12o3U8VbaSPOT0tXjZA3P3jR0lArnHMZMy2j1m4IP7/w7W1e/NJ6fNHSeOg2N/wFsqCvruKvqJFzWGlPXMboxLlWkqlQav6P++VcUBsRNnynhesYYxCnOCDqtghGnlAIJQhHqPxPeZWIs6pzXcEK8WOPrtAaqIGZ9HddMd4U08n/zeW3GJBuctK7b8ppyxiSAW/fwYb0g5wuV4znf9Z3stT3+z6v+kjZtnvWtz2SpWOX1r33jppvwrovTQT6sljAxmG4LJiU6n+EmBVoKxWSMSVPuvu0gaavFNddcw2c+cyOdfpeDB++lzHKSjoXEUrqSqriKsVhjaLXbOOcYrixjbUqJkg8G5HmOMYbDR44yWBsxHo8pS2XXfJsr9syzvd9lMCkoy5IjiwM6aYtuF0ajEZ896get+XjCTG+W5SOHMCKUecHY9Vg7uoRD+fhNH+Hqy67kd//8z3j6Yx7PpXu2k5k22WiMAR586WV88YOupkCZ5A5VIUlTXKHUubTM+IZHPJpf/pu/oN3rM1ldZefuHRxaHTAYjGBuhkPLi1zW2oExhpYKHbEk1tJuJbTbXRIVci3I8xy1jm67hRRSF4qyLGm1WvQ6XRKErHpvpsN4bRnaHSRNKQGjbpoxjfGNNiCJpdfqkhcTWsZy+b69lKUXU5YXjtSVs6jj8v427lldpFkSJVQMOGWYtOk9/UrcLVeSv/fzdMc30rv6MQzvupt3t+GRonxSC8S2QJVWq0UaxN12q+WfQ9L2HY1JSbvbZjLJWRuucd1ll/L6A3exs52ieUHSSnHOMZrk9FvC2toQFTCu4AM33BzEgQJsgmpoYJyAUdQpJA6bdinLfKvFK7IFhsMhvrMsWJsymWQhD5VkuS+X1qaoKkVRknS7WOO46/bPsHj4Hq697jrSNKHbacPll7Fr317uuuMWWolgTcp4NCA1VcXqcGXOOFPG4yH9bo+8mCAi5GMl7Qt5XtKxsLy6xOxsn+XlZaxNMMZgjGGcDUnafdI0BXw9Nze7nbVxxvZtHY4ePcz2+T3kotx1dMnnfWNRDI4JKwMYjwrUWkbLBd1eSuZywDEcDhARrBGyour8l4hCSyypTbDWkeUDrDFkRUm7nZJlI3q9DkkS6nNyOp050tQ3Bc5BXpYY6eAcJJ0+iCNNU5aXlxERklbK2miJ0Thnpt2j0+nyrve8m6984uMxCqN8RFEUpEmbdqvFJEnIc8WVhiJ3IF5oU7X+HqxFsCS2hXOuHsiAYTLJaLVSKEvy0uFKhzUCztdRLjGQu3rgoKqUzoAY8kywnfORUyORSCRyMeL7GF5caw6yRARjLSre8MCEZR0rgwNjpoMza6slH3WdGGHtNIwPb9EgYjgUtcb3wRVUBOP8RHclSjimg8CyLDHhuA2DZWstZQnG20LgihKjXoYz9eB5/QCyGrRXYzAvrDk/SG2ILApemAM/+tXw6XQqyG0Q6jYiIjTG4JGLGC8orxcomoJcJRSBF5ebQrd4VRulDPnP1SK3z/8GwY/cXfgUWS9U+X+m6bEKBTodVwZxW8QEAWwqrBXV8enQDdcQCy1Sx20UynD2OhGPcK/G1OdVv/u0CuocpfiyYpD6t6qMl/h0oOvjFYKwhBeiQq1Rf5YolL5sYw0O9eVQoamcrhPyqnSJUDpXC3NVveHCMUXRxrNe97zrFy21gtYU9acneLlSVWthdt3PVXp04zPxecZYS1mWU+EvKG616FpPavjjooI0hD0X7qEIkxfG+KefKpThmNceQn4IdR2uKbZR12XNZ7hRkKvq1OYjaubzdXl+C2xZlHOu8BGrAU0QtG6MmolQVf72714FeCFv7HJe86//QpZlx62J1ymPThHjB5hGhLJUFGVtcYXEJrR7PdZWlkiswYiQTzJu+uSnQUuGhZL0WyTGsnP7DsZ5yXg4wqYJWZZRZDmOgsnEv1RjU5J2i3w8IUlTiqJAnWMyVAbJmG63S6fT5t7FnDsP3snevbsx0iZplzz8QXPccPN+WEvo9RI6aYvxqKDV6rM2HNHv9xmPMxDL8toqrTQlGw3InOMTt97E1Zdeycf3f5qP3wbLkzGFVR56zSUsrg0RcbTU0O+kXgUuS5w6rLZoW8PSYMK//Odb+LYnfxVf8d8eQ7ff4t6Dh/nXt32ET970ETR7CIfuvYd82xWsLi4x158hk5xtsz36vQ6LCw5xQOILaDFxlJMC0zaUYc8VdY6ZtMOePXsoN8ykycy8L/h1BjYkoSIoHAguvGrHOB9SFDkdm9JptSmyktWlRS9UhIwuCvkkZ5xXFo0+qwgEdU+Ynz/I0Ve+l7lrvggzvgNIWT30di7dNmA26fNxV5IZ52c6RCgnY7Ts+UyeJKTGYhIhdyUlhjQHsYADl01IxLC91aNYG+GMULiSjkkoizGFOvIyo2htR3d2uDTpcc/KUR7xgIdww63/hbU9LwZMxkgnxU1KTKIkSWurxSuyBSrBpixLiqKg25nBJoJzXjTK8xwoSZKEVqtVP/98NGBhdBsf+OAyX/Tox9DrWTq9lKKwXHrFNdy+/yYmoxXSNMVpwerKCvPzc0wmEy/upimj0YhWyys87U4b20rpCuRFQZqmjMdjWq0WrVaH8XhMr9djbm6OoigwxtBut1GFslSMJGSZP644Di8ssLIyRJI03CcsrymDSUG7k1DkFmOgKMea5zsAACAASURBVAr6/VnGkxVfzoyfzEjTFJf7MmpRxJXBYkxQzRHjha+q893pdFBV2u02SZIwOzuLYL3VXNLFiJJnDmsNq6urDAZD2u02QkK/32dptWCmO8Py2hhTFJRa8qhHPYqjR48wO3c5vV6PUg2j4YT5+V3s37+fXbt20Wq16HQ6TLIRUHVcLHlWYi2+jrPTwYMxhl6vw3A4Jk0txhqy3FG60tfpkwKLrzKSpHF/3S7j8bi2gI5EIpFIZKsYI9QSgalEOME5RSRFJMfYykLFhHPM1IKt6tuKHDMYmw7kKmuP6fgnz33bXVvbGUWdF7JwUk+AV22dcw5jLa4oam8BEZ9OnyiBMlgthX58c7xVtbPVANeLDN6iT6yB0k3DNk2RNuAwXpg7gSBXXa853NetjVMjFwDGK2MAtWCmzoCpvOC0FklcsGqjFiRYn//q3xpCXIgTcbWFnEWw4q2dpBkmMLXeKimNBM88b2lWXcuLWFPrLwUS9VZTBPHpePmwCl+PgN3UWgwgsZZCnU9TELAlWKABJGJqi62qHBm3XsADL6TZhiBE6RDjRcOm9WFFZWWHNIpkQ1SsLOBMECqruJ0RpPFuSkDd1ChKxI/rXRVreD4uvFfTHJc33kEVjtLVv6vxYas6qapDm6g0BMMgzCp+XFWLsJUYFiwWDTIV1kJSxPhJjMqa19hgYWlNbVWn4f5tEDt9nvJxJAiF0/o9VZaNhHs3DavPdUJbdf2GUcBm1oVV+rfCqe2+6sQXGGm4o8omKmkVPAh5k0mxwfzSqyHNhqGpQjpXhJfovMrjhCLzVkfFaOILwigj6Xf50kc/gg+9+0NIJ8G02hSjDEyLUZYzWB1g04SiyCnKCUmrRdqyTMY5qsq2uRmWV9ZIO23y8QQxSpq2a9PVcZFT5kJeDklsTlmWHLz7II+47kEcXVjhSx/xCFptwz33LrO2PGRups/R1QHqHIWbeLFAlSv27GJhdZXL9+xDxHLdvqu55bY70aLgumsfzM//8I8yPztLnhW86o1vZjCc0G5ZUgzjyaTSxcGkFE6Za7f4pq96Cp++8TP83O//MUNtMRmtMDc3xzft/Dque9BDedutN/L1nS4z7R69dofVlUUkz2lJSj9p4cSLA8YYujNdnFFES6/6A1qWqBX2bpvzqnSWo+rfgahBymkl7Ewba8CpQdMChze977ZSOr0u9x5dIE1TjIUkMRTqGA6H9ftWEZascIeOEWmhNERASl+oCsf87H7m99/Kw6zjph6spimoMC6GgEHEeis958hLQdRRaFGLOINJRllAmhoGeUbLGMqyZKLCXCehk3aYuDE2NSStBMlLFlYLinzCtrkZisJx621HvPiSCp+6+QafX8ocp0La71ME6y3RacMQOVs4FhdX6Ha9y2ipjnwShLq8spLzFmxVJ7MsSyZ5hrUd2s5x4POfYdv8Xi65/GqSFsz0+gjXcnjhXiaDIxgzpkcfMCRJwng8DsKOF/uyLMO02uR5RpZldIMAVJQ5zjm63S55PmEw8G61XtjvsLKywr69lzEZO7LJChQTyixnJRszGPm0o1CUSllAXoCqMB4padtiW46yFEaTHCstUEe/n7A2yMhcTpom3uLMQK8rJBYSA9ZYRqMh2+eVPM9DJx4mY8VaxdqWF+g6lssu38s999yDc46szOnaNqPRiCQV2p2EPLe1NfF4pKysrdJJelir7Jjr0Wr3MQYWFxcR26IoHEVeMjc3R6fTYceOXWSZLx+tVovJZEKaeuvVyWSETRRVh7VtxuMxCozHE0QMk8zXgYWDsoS8LLCJMJk4er2U8TgnSRxZplhbkNgUMVufnYocy7vf81ZNWum69tm5IlhZUs9yV24mzdnYymWhKH05qPJds/PXHJxWg8xq8OgHplKX42pmNEmSWuiuqGfljVCWDmvt1OrD+e/rBqLGu7d7FxMbLGwTnFQdWj9pV+j0/iirwWvpO9BhJtc5R8smOBd+r+NVVGVd2kWEJPGTB6JKqf5+clfW7uzVuUXhSJKUkjAIV2gOR5xzFFrWonNzwGPxg/Pmc62sY5pj5to9p05b4tMmBqg66lW/zK2zHBIRiqrjHP6vrIM2nTnHP9Msy/y1q3zTeMd+MJNQlBkmoXb1Q711tFPvzm6Nn0CtLGrrGfMGzjk/aeGEPM/rPCti62dTvRtVxYV+bJW3qnzTzGtNIQWorROqidOiLOtn6POZfy6Urn5Gzjme8x0/GCulC5ikWRc1jldlxKnU/eRmedhokbKZ2xisLx/N8NXkYlmWwYquihNKdSC+PW+W9eq8Kq9O69X1LmVV2fTlpWHJtEk9WqX9eOU48oVJbcnUsAwT42oxqBKr/FSrUIiysaJLgntnXf+7aZkp0HC+z6sWqV061a0XO2xdnITcOYyxuNLV1lIwFf/qdsbUykntQlrFVYkwZZUG8W6nIkKCkFc+mZXYp170Eqe0xFCIF4vEN7Trb9oIWlZ9j6of5RAMBm9JJkF8q9JrKyszqaxo/aS1EZmWZefFKAFS08KVGZgUkbJu52vRP1i61MJm5bbqH9TUBZapO+pG6zV1WlstTt2Sp5aJ4XV48ROpxUcL/vk4pmIfU2s3E1xN/bvwFmvW+AmBwiipWH89n8hanFPVde6ptYinvr5spquy2qzSVH0Xabgja+XaHMS2Rl1Y5e9wi+sEwWlOBKSamFmfBVQVu8XqdMuinLUpBCuGosiOO2OyEVHD13/1U3jD297eaJgcXkRx6zsxTbU2fE/TlCJ33i0wUBQFYg1uNOHD//lhaMHufZewOByGQmNYW10GsWT5CArACKUWlEVRZ7SFo0tYa0nFsfvSnYgId9x+F9t3zrN9e5tDB5eZjAa4rKToWg7eexiTJiwvDRmuDfjkTTeze888Uii7d+7g3uVVVpaWgvtmwczcdnIcyYzyhEc/gPFwhdTOMD83yw37JxR5wYdvuJHv+98/w55te/mh7/5O/vEN/8pakTMsYJI79h89zI6ZOYaTMdtm571dugiroyHbd+5gx455Vu5d4Csf9xgefu0+8nIJLUoe88BrGRUZtx84wKW79/KJmz7F9ic8kbm5e7jzzjtBHDlgXEmvN0NW5F6B9k8eUVhbW6uNGyVNQENlEN6DGoNRJVXLuz53C0+46uGks9P31G33wAmzs7Os9Tt02x0/4M8yut3OOmX/31kmE1Ap8GsQhuv6IQrgVfClFnygZcKMSJg/0SqqqqHwg4dOp0OS+sJkraUswNjpYC2TklyUz9yyH3WGVQoSEjqtPh/a/3k++rkDJMby6CsuY8fMDG+57b8QESbjIbaVYtIWeZ7T6rYoJhkuL9BJjuAo1YLGTs3ZJk2pB8OqExDDZJIDCXkGaWoRMWEw692zO50e3W6XowuHMdaRZQWTyYRLr3pgGHTBzh17OErCvYduopO2sSahKB1qIXMlabfD4uoK/X6/HpADDIcj38EoHa00ZWlphe3bd7K2thImHwyTLCfLCwbDjF7SwnQ6iCjGlUjh6PfmObpwiPF4zNo4Z22cIybFSUFZGGY7fQbDw160KwqMhU67F9awG9NpG4q8oN1K6czMUCDM91Ky0ZhU2vRnu6wOBxh8p31pyTHT306apmzfPs/Ro0cZjVcQKel2e0wmSziXcuCO22m32+yY9xZ/89v75JlvALudlFZL6aVtkpR6dn88HtNptSkL6CQpo9U1+r0ZjFjyfEKSCoplMkkZjBZJkoThcEinlSIk5PmYvChJ0zbD4ZAkSZlMctQmlIVv7HwbabE2pdcrGQ5zuj0/uE7aihhv6SDWIrUbUeRUaQ7YYDoI9F9cqHcFdYIYi2plpeEgiGNNsakSriqLDrNhYAvr10DxYpmt10NqDhSnIqFbl66mi0x1rY0DZqUhrIhDEllnBVKJ+SYxdTr9IFmxNqEsC0R8xzmxSZ0eDZ1ra6xfx9b30shdGcQycOF/bVjUtGyCBtcT5xSHqzvelSBXudRV92uMoS2mnuVWdJ141BQCi6LEhvVnpNHhbroa+XdSuRBN7Raaol0Vd/O5V2G9tY8fHFXPfuM72yim+r5kUb8z744XBNTSgfp1Yqo0VZa1XpgzqPOucolJmeRZLf4Snp/TohZSKqtinweb9zrNd1V6q2eyXuTQOt8mSUJeFmANuRZYA0b9OmNOQJIgCjfyIUyFkciFjVjvUlp7bIgFMy0DhhIhDQYKzXHLNJ9W0gRUA+OQ/8RPBKgTkOn62s16r570qAaUgDUJrlpnywYBgsZ6UUGYqwRn3/fwdY1UIrOYMPFQLQ8xFafXWXc4WefVVFsABpMQ1SBGN9zJwFvLVUJ45P5HcxKtEi2quaJ1PQUNFlh6rJBWCXVVm+A4VrgjnOvjWH+siq9pZbZx/cdm+Ob/TX1hs7TVYmFIl8NbtWW4Y64hIljnhbTN3DOBWrSrBLDmtb3Q48WyevknF0Q48VZflbVdZWWGO7ZPhlpUStACwSCiU8MaxPdtXIk6MHZqXYud2qtW7uSOIDTqeg2mckFeZyHWEKi2IgUZbaynF6jXmaus1+qupVLVowYoKku7xjsEaqGwmYGqZ71xMt4YgwnP1zTuz23IF5WlXLMKq/L7uu+N+Os+gnMIfhKl+Vwq8bA8sRFxzZZFuVILcEp57D4NJ0TF8Ya3vX3dC/X4BqYo3Ca/GVRLUMgn2abxGsRPeRvDlQ95IHfdeQ8OQTX4IxcF1iRYk+JcVvtK+0ZK6fVmabdTts33yAZjSgdFPuDqq/ewtjZm/38d9h1SLXzHr0x49CMfjMtX6Xb6HJ1LOXDbnQiOexaWWBoOGY+UXbt3ceTwEXbvuZT+TMJkknPn3Sv0eh0e9OC97P/83Rw6ci/XPHSee+4ccNcdi2STnMzBb/3JHzPIxuzevoOcElHlIfv2USjM9rvYUpnrzqNpi6c/+bFkuXLv36+yb++VtNIeL/t/r+Gv/+/LWMtzLtu9129k8ImPc/mVl7Fv9z763R5p2kY6oXNRel97zRxSZPzwVz+BR3/xwzgyXOXX/+8r6Hc7tGa9y56qohssv7zfvVCagh/7+Z+jl5e86IW/CWWBExiXOdloyOKRRVLbJi8LWq0Wu3du547b75rOVIi3gFpeGlFV75X76jEVqSZgShSHqPWDwwYiSpok3n1wfpZtM7MspEu+Yw500xaFGqxR2jYhGTkesnMb77/jXlaGBSw5fun3/4BSMz/7nRg+dOcdfmBZ5L6STSyIXywSo5SjHLISR4Y4ATGIThcgjZwdfIfTW21U1g95nvtNGbqzpGkL5/wgr9Nuk+cTut0uRVGwvLzMzMyMd60shPFojc/f9GkedM3D6ff7rA0H7LtkNzZ9LCsLdzIpBt702ZWMx2PvvhkGZVmW1RY74N1B89xv5NDrzjEcjhEznXBYWFhi165dKBOyPAsurkM/IdDqsbpc1Pm70+lQimE8cTin5HnpxXGBsvBusKXLGY1GXnQONbgYcJrTbs+Qpm2MtEiSgrm5udqyZzJaJcsydu6cR531IuDaml8LsxhhbcLi4lJwG+15t1YRxuMxMzMztFotBmt+Y5zJZMKqTsh7CQps37mNvBijKvT6fRaPrtDr9Vlb9a6qeZ5761hxdDreSm5mZsaLeJ0O3XbPWyUmPTBTqxJrLeMR2HaowVXJc2i1TOgolSQJ4bij00tqc/lWmtYDnMip0zKWInR6jDF+zRILYpRSwZDiSofBUmhBYoDSdwwxvqwgFkSxxq9VCM21jXwdqeoHeNVGKVVnzQRL5mpyrnqvtagnybRzWB+fCinVjGVZBncYo6gWYX1cn3eM9YNIEYIbmmJSW6clNbZu+0QEV5RgrO9rACgY5+i02wzyCYnYelFhVd/HScz0Hiu3MmfDRiXO4YKVWXXf1qa1YKWlQ4JFWFEUqFGssWhRtUPBpU6n1l1ZWCzeWxAXSGK8xU+YBKsFtWrCTSoRtClCTS2FTJIE97hKYGgOUOQ4/68XRZviaT0g22AR6SfPgkWDMwjeCt0LaiDS8mtSQu09IEbIgkVj3clX8WtqrRvQVRaXrYY13LR/YdRgKpGzcj0Ki483rQ7XDUyc+o6++oFQnhWYYCVixM/gp2FZlATBleWmA9DIhYUDjA2DZ1tlpI2uqK5R9wQxjiTkabuujvMWtL4/a/EubblO6uupCTYzzbJJ04ouiPXOkYZ6wgoUzfwdBoXN/rJzUovDVRnTRqFYJ8Spri+XltoVrLY2Wa/VrSesJadONt/kwXjxwYXZ9ui2evGxTuQKn9aYY0SpytKssqiq6sx6zTaZWmapH0L6vkXjeEVTQDtWJwjXa5QZCEJfELk2E+BqsTuILS6EsUwFtkT9BIvboDqtE6Nkeq+VZ0DtNludZk1lWrauPlDVSvHH90UENcFSLVzbpNZb1DuHQTBJUl+nSlKpue+3FKW39lO/6Zn/Daw0rfMqS8bwnKpJBwVRoW1bqGhtcADUa8dVz99A/XvlEdd8xlahNFNR1foZBW9ZKBzT/on4DKDWx91sWx0SRC6pn3OdJ8R7TTc3xLAKzhqvIFSVVfXeq3o4CI84VwtvEtprBW8NaASHt2wT8daaRta7zE4fj88z076H1nm/yamY52x9xNJUbY+jDK8P72jPzjFZXUXE0pufYbi8eozaWc2uV3G3Z3qM18bHixURPyPvM0YJScrBe+9BrGHnTJcvecIX0+3M87p//BeUzC8EXj8hpdPrMZ5k5GXGYGHIwsIixlr6M12GwyELCyPKLAfnmNsxQ6fXwtiEQ3cc4pYDd5CLUOQHmZnp05/tc3R1DSgYDjKufMA+Epty2SVXMRl7l0lMQtIS7rpzgcXFRR7ykKsYrKwyHA655uodzM/u4+M33sC1u/fQbfc4vLzMbYcO0UoSfuq3fgvBW7Opc7iOYGyOcSXP/Z8v5HEP+yLee9MNDMYDrrryGh507UO5bPsOsrxgtjNDOXQcWTjKQ657ILNzc6RiSFTptLoohqJUxq6gk1hMp8XL3/x+ije/z+9MYmYYjie4cbZ+umLdK/aFsy2OP/o/v8OdRxf4l7e9lm7a9a5pApMip91uU5QTxpPcu/ZmOWnSqCSxuDJjJZtQWVFO37cgkoTZce9ua5MWgh98lMV4XWdJxDKZeNfh8TjDBOuMxFpUHaNhRtrtUBQFOY7bJhM+ddca7bRFkWU4QHWClSR0TKDMJoAhbfnzWjNt8qMDjBM0EcpsHNZAmFYA4F23ImePstSQFf0ANcty2l1L2koYDsa020qR57S6HVbX1milqV/DzSQ4V3DgwBF63SEzsx263S7z89u48YaPsO/yK7lk76Xkec6u7T1K9nD47ltpG4FS6LRaCNBqdTDGi1nGWG+ZUcJ4lOFQEtMKA+0CmyjW+l1he70ZWq0OIgZnDcPxCNvyVe+kyLCmjYZGJMvGWPWuszopSRINLqTQ7bWYjHOQklarTZ4XtNutMLuXMTPT85uZOMhHY/bs3EG71UbbSWhQvdA1WlulP7urdt06fPgw8/NzpEmH+W1+p9iFo4coC192bKvFYDSidCMGowFlIeyY3c6u7V0yKeikfQ4uHGbH3Aze5bbEb9IwYjwe0e712L9/fyi7ltFohDqLGr8ZxHg8ZmV1ldnZWUbjVaRMKUsvDLjS4JeH8O2EMYZOx1JmSlZkSFjYOmkJnW4LdZAm+N20Ox2ybHgec+zFTa5eNDGVCGa8NYRzzlt7aFjEXJzv0LoyuD5Qi1DeTdR/b7VatcjRtJKrO2Y6dSesSJKkFuGaHXNvveYFmEqMgvXrEYJvo4yZzrxW7tq1ZYqCMd4yptoN0ce3fra1aX2nqqhztZuHMYZJlpEYU6ffH5/+X1lpVXGYxoRN0zqraQFYbRgzFayC4KcGNVr3yYz63RdtYuqBThLSYa2tXWCqZ1dbLzasczZz860HVhvWydooHEx3kFzvrlv9Pg2nG9rq6XvdKHj5Z15ZXk4tMCtLHBsW20eF1FgKN11TyyaKK6Hy4THWD0gIbi6Vqx9MhZPmTHzTutMY33/ceD9JcCNMjK3PT/Hii1ovtqJhIkn8wC/DkSTRWu5Cp9qwocqTAN5LpOrPSb0Qurck8SJciZKYpN610BhD7kpfThv53osBFjH+M9esdolq1n/rxQmw1vjdWL1yUa8XN023WVff+DrR4fA7sXqL/o1L1XNMmbbW+mVjCOvohfK9UZDThmJh9CTLtTitd62NGz1c3FRvva7Tq+/Vb03Rqyon1fEgYtRtQDC+qIWX6hohHOvag+m1Nu4q2iRVP5mkG9rvZlqq+wCwDnLxflcmuB82z5UgJlbWdFVamzjn6vs6Rggs3TpRprYwpNLrQv8kpKisT3P1M63S3TyGgVTDhFsQvpptaDUZ6Dtg4SzROp1WbGjbSlTCOnIayr/6CwjeEAIRSlf6DRW80603OmlM1MH0+dR1XXWX4Z4qaz3ZoMo3ta4yLJ1ljEW8KRUbca5EUgthostWHgtBk/ATyUlYRkqh8JvoVL+LNdM9JWX64arNoxGcYV2eMSas8dd4R5WIu24TEzgmf5xKdXfKZgRbEuQAsZZsOPCLhaIMllaOURk3i3OyNgwvfXO2bdvG8vJinekvveJyFpYWKPIRh5dz3vbmd1EUDjWmNsWsC5gxFKXPTJNBhrWWmW3zLK8sMLdtB62Wd4Vby/xM82BlwMriCpK0Sbo9VldHUOSoE44Oluh22+y9ZA+LLLO2MmD/Z+9FTMkDHnQVk0nGaC2j1++Q5TmTzGGTPtdf/ymyzA+Ot8332LdvD0aVG275HPu272EwGaOqtPtdJtmYw2tLtGxCW4JJe17gXMkVl+zh8j17+InHfRvbei3+/d2f4p03fAznoHAFs7QZJyVL2YD57TuxCqlNmJ3p0O30/fOwhtle33co210K6xt5MV4USIzlY0f3n/RdJ7bPZz9zO5du383DHngNH8zeijNgJGHfvn04d5A7Fxe46/AqSZqyNhgxyfN65h5gPplj1HEMKlfmRkEBSNI283PbOLJwkKJs5BlnUVM2CrXvTI+z3K9phbc4KJ1DxZGrw2U+H73mPe9iqRyhY8fYhk56WWCS1Ls1qfN9HjWIc+Sjsd8IJOQP1QwtpoK8C7OBYFCanbjI2aCyTqs2e0jThDxziKRY64W6euBfGAockNd5ZdfufhDAYDwec/RoSa8tHLz9NlLbYu/evbRbQtqf8dcaHOHWW2/2uxUnhk6a0O30WV1dZcfOOcALcp1OBzcpQIWiHJLlI2Z7CVDUu7FW4oJzjgxHWvgB4q0HbiVt7WN1dZW0ZTBJyWSQM8pAXWX11SLPMtCcsnS02pY8H2MTb0I/PzuPagdjDN2eJc8UKyU7duzg8OHDPHDfAzlw4ABpP5kOvMnI85y1wQLOOQYDWw8I8jxnpr+dhaN3ko9zBkPYtWsXSdKh1+sBSn8moSz9PUwmExTnG1NnGI1GtevheDxG0pRDhw7R7XfrpQrSlmMyUb/eZ7BcKcvgFhRotVLKQr1Akib1enZFUSBhLbBWmpKmU7cyYwwzMzMY0wK1/jNyWpTGb/aBOhLj3VSDzOHXTzGGkgkqgqUdOk/Bpct5N3KVwrs5uam4ZIy3qPDiTehINqzjNs6Mb5w5n1pFlYiY9R2ixsC3FrXEuzyXpUPVYurrlBiTrhtEVOWjsoRpDlar9FVujXXHW/HrxuhU9PF5dbo+XtXRrYUxpHaRqeKtzm0KRRuFqipN63YfI6yD5cJA3KR1h1MUnE5F0OZMfbXMg+pGF6BgOdiwPmuKg5tZ2Pjfj10jbuP6Wc3fNvYlnXPeCjAMJIwITnK0DIMwUZLE+v5ddU6oZ9aLsSVi/PlFUXiLegUj6TpxX2QqHlbuq2ma1vHUrrVM07tR+KiElLIsSZOEAvVuKsZiClcPJAEksbUwG7lwmebxqXjsPTIqN/aw1pwLFjLhBSdiahe4MuRhEQHrw9X5XyrjAj9A9mtDTddx3My6p0pHWfrz64Xhw7VUtd5htV5YfUO9MS0f1TqM0/qyma+bv3kBLUwUhGVtNsNVG79tIswdb9wXufg40ZushbnG+67Xa6smeBriWDVoq0WPDXUsYfwOU1Gt2mG1OYmzcbLnmDRvuE71v0hYwiFYQmnjOs1zVbV2vdz4G+rdUwkWWk13yOqzWv/OmQ2TTrL+eW1W5gm7glZ1BTRcWNVbHxqxOC2nwpTvgIEYL2qVgljnJxaMC+W4el4GsX49PN8P8PWbX0PW+fXjrRfGvMjvjaISMU29dEs4V/plKahELlsfN2bjFhBTo5/NUNXaUwmgKPL6/+qd1X03J2GTnvXxeZfgzd/3xsnE+hwTvAjC+Wajya9O1yRsTuSeyvqcWxbl1s2g6nSjh+OxsUHYeOzE50wfXqvfpchGaOEz0XA8ALEYcZBacJbsymuwg0WKuxbI/AJyWExYtLEx624srihxZYE4R4mysryMkZSVpRW2zXeY7c+yfb7P0uKAicsox2FWW/1ivhhLEqxcRssjDizfRn/bHDZp0ZsRdu3eyR133oO6hHyyxsJiSrvdZmbOW4RcfdWljLMRl16ym8/dchfZaMhXPOnh5JOSA/uP0u/3vYtc4bjh1s/jBCyG+aTDnu276Xb7jCYFl+29lCuuvoT33/gJHnPlA1gYrmJLxzCbMM6V+dk5SgryyRhJHdJO2bZtG3t27SK94zZf2RmhLHIS12FtOCBsrDw1P24lfOmOa6iML9f5xjcWTMzLMR96z/v4sZ/9Mf7pTa/1lRiCc5DnGaPRgJsPHuSWv34Vl+3bS7vVIrGtOm+ICK1+m2ypxDpT+15XM2pqDf8/e+8edEt2lvf91qW79+Xb3/3cZs6MAGmQxE0IcIBEmEsKEwiGuJL8EUJMwMblcLHLEIwSBwjCQRKqmMKkSOEQAtgpFySBQFXACkhykCERAiSNGEkz0txnzpz7d9vX7nXJAUcmvwAAIABJREFUH+9a3b33OTOMZMqMqLOqvjrf2d/evbtXr17rXc/7vM8TjOLGrRc2IOeMumfhceT+FIWUr+iCxaohRoVWHhstuzvbvPfhD/L00Ylcax3blSZ6hyagXIDgCEiJFERJdmpNUVrcfN45yQRFq02jAkEZimqAq1cofc/58c+yyaZPo00pekFaskOySRYGzny5bBdsbcbEKCVEYiwiOiyogDGWiGe2CoxGI1549kmuXr3C57z+C6iqIQ9cusDx8ZAHYuDk+JhhoTk5OeHk7JQL5w958omnGY4qhsMhZ9MTTk5OWCyEnDEawnxaUY1mHOxdlpJU71tQqa5rdGHRWrF/cMj1W6dMtkum0ykRaLwE7WjDcu4whWdYGVT0aMDqgAswqgbE6Dk5O2Yw3mKcvmdve4voGlb1jMHQcuv2DXb2Box3dlktPTv7O9y+fSzuq8piK2GFGlOwWs1FP1QpMW6wNc2q5saNW3zO6x5iPp8TG8fJyRGHD54n+prBzjY6RApd0WiHqyNRG5qVxwfFfL7k+OSIrW0pgT05OUmLpkcbcL6mMsO2dDG4gCks3kNVFSyXNSbV6tS1pyg0XjkBjJQjBkVZlYRYM6wmSXPQsbWzQ9281Ii6116qFdq0rDYVIiZGIgWmsOAasZs3XVmnsZYQxZhDtMtUAqbkub1bzNwGmBsxwmZQsxloZXaoBLVGEidpDsisOfld2HDiteVToNqBRaKHxx3fY4xupTUkfulAJq1iCloVCiXgjqZVUuhvivuMwLUNBEhpaWFEg877tY1xPkYGCaVkzXQAkY8pY543zOsBZd7gKOiALtZLgjNosBk0boJmmyy6DAh2ent3Ms76m/3cJ5vshn7g2/b9mrJ+p1uYh0j7HWQzh/XyqZBKfUL0QF9br2O09Vlvm+faByZa8Xy7PnD719kHkSksOgbqpm6NOay1RCX3utCGdc7EvfZKbN1c1Y3PHOOJTpzGKkUsEiNWdYLpmqwF2WdWZmfTHsjXa8YUwiSj22Rm7aP8/n5yIgPpgIB/qfWfbaU2NBHJIvpdIhzW92QdIHfnPi3GDpBTSnWGMRlkfhk6cm1FWVx/7V779Gga3d68DJABrWnC5rh2bkHAYE0lcQJgfSoPjFL6aFVv7Ymy888MuX4RYJEA76h0hsTbcV5YK6BZGuOZGb7Z1l5R+RyS0H9KTG06bAZkf9hyZH0gJrZXNiiIWqVCy01ph/RM9Upa8/NoknRFNk/qA0YqKmLq52h0C4prLWBaSGYIihwHpRio953i3iyVCuj07KcJRceSXG6OauS+kjTaY/840PmwJs1b5UFFvAtordpqgPy9woi9s++l1DXFDzHvxHzLrMwlsS3QmedUeveyB4627+3dqzyX2AjKWhrn0vxMywJsyT5h49h3aXcDeVuWZ28+XPtMAhf7ccVdwdaXaC8blFtHeNv8Li+nWnYdoFt3Xs1NZ9p3olpLFtMRnWd8cIhbRUajEWeLMwZjy+LkFvtb+zjveXB2wmIZuWEEFUYlt6KQv1O1yGobiIldqNzMAGenK87OanZ3xmgTGW8PWd5cURnN3v4uV6+IxlxZVbi6ET2XYcmoGjCbT/m8z30tN49uc/36dT7rMx9kenTK0lfijhY1W+MBJ9M5t06XaOU5Op6iCWA0jzzyNJ/1GRfZngzwAY5O5ji34iv+0pfwRx9+GO89U1/zzI0rXH7gAluV4uL2hP/7gx/iiWee5nfe+0d8wWe/nlIb5ospg7KiOVvgrKLxNSZoXnXpfnQ07J8/h9UFgci8WWACjKsBPgZCLADZxY7HY5rlin/17EcJMYkYps0Z0DIbAGJlwFq+62/+HeZ+IZOMAm2NlBgaRXBLDKWg/sqzXHVlZcZapqsppSrwer10WR42TVitWsp/NwkE0MLKiCGC7bKWOzs7xOgpTYmyhqosuXL7NrMY+Io3fAH+kY/wJ88/x/7WmLPFqjUPUUWJsZZ61sj4NgqaIDXxweNqKc2TyScHXEk7J7EM3XxOvyz7XvuzaXkTmDesOaNbVaI9JDpkoJToizl3xmg0om5ma0FtWYrhiHOOwaCkrmuKwuCD4rGPfojXvPbzKaqSvd1DRoM9jvZu8+zTjzAaie5ZU0fOX9gjBDjYv48QAhcPRHcuKilbr0YVMQ5BOa5du8ZgMCDGSF3XDLRNi5CmXoExcHZ2Rgiy+Jelpl7k+Qqc8zQatkoYDAqsDdjxMGk0WgbDgsFoQlmWTCqDJTAYDSgrgy0qVkuHCmJukTfFW1tbEsBrzWq1AtewWl5ne3sb7z3eO7QaE1ykXnoGI3j++efZ3d3FOdf2RTno7s9sNmMwGUrQYS3LVYMdVgTnGY1GKKW4ffs2g8GAuvasmlMG1YTRaMSgGjGdTinLkmXMsgMWrzSmqvBOYS09VpxGYUF5qsJiS0kq5vs8GFTCHBwO/80P1L8gzaNQxnYrvFIQRTRY2B6SQY0RlA34BJTHqIl4TKEIXqAjH/yaq6G2ovuVSxPXkn4bv/fBnD5DLEaTwLyYSlQTY1lFDD2WXITodCodTGGmAWFGe4hSjoZSomOiNVFptO4CZat0zlbJ5jvN7UGEyVAuB5IZyAObwisXvKwjPcFoH8BacVzub4Rlg6LWst4ZtPI+iC5dTtX2JEVyyZ0AcV3JR6ArH95kFCqV+1Gy4i6IRlAOKjPgoHuuqvk4LTAaMotIylqU6oC47j514F8G9fqAQWsEEb0wMNOmP6qAChqts2NkBjyStmEQcDKEIMkx40XMPsiGIUYIOcGhpNQ6m41kzcrcF5l93YGwAefqBFiug3Z9cHITvNRKMSgk4dg0XjZzjRdQW2uWL5H9v9deGU2nqpSgpExfXktlbSbxbVJo12kikp6n7ADZlZ7HaNBaDEhkrMQEMKeNn/JJF0uTS8Hbwi3VadndwSzVwpT3PbBZa91WBgnrtrfZT1+qU/lt34X1bkwjpcQspf/5NebrXWT6Vas0dWdTMa8bHQPqJalX99orqvXBFkXfbKG7iX19N6sLlLagegCWWQemfURKL3PiKSBjEwEB83e6KIBURGQxiKIBJ6kXkdqwqDsAm37rj/V2HYtJi0yv65bl9+f/qQysmQTIAJg8O+Sm1/pJtcu07sa7zhBXxxSLKqZyyt53t+eAYBrI/lvYuem8tCJ51LI2NQTRp1MEotdpL2rAJPkfLZVe3jcYckzgZW8ePDH4NS3Ats96c5C8rvHedQm/DP6ncv3+vNLKuymFi1JNoeg0/Ppzm05GD0EllqEWPTfL+r1pPxe7/o5KmJT0WHQhdrNUC/T1YieigJaZaNPuFdMYC4o11ma/3W1ejuk6+5qG2TH25bSXrUSvYv+tmmJg2J4MXvT9d3y+F+yI+LO58/V0g/WgFADIiCbD2fEZi+WMk9kRhBVaw/a5Q1RpuTAcc2m0R2xWhKRZBgjAcpeFBqAYVDz0ugc4OLdDMRyAEXaUNYbpfEFEcfPGCc3csZrWAsiFSHSeejqXTatzED0+BIbjEddv32A4GhCD5rFHn+b6kQABRilOzk555tkrnD84xETHxb0trIloFdnfHzEeD7l1dMbx4hRbQGEka3b16lWqpG/SBM+tsxMeffJxVIx83kOv4Rve8DrGJdx//wW++U3/Nn/tS7+MG9eu8+5H/ogPX3tCkPE6cOngHEVRMBgMGOuq7YdoSorxkNVqQTUcoesFJjpQgZ2tMVVR8tkX7lvPot+FhhkWK557/mn++x/77xgPija70DQNe3u7IhYexP1Wa825c+cwRSEPQwJLR2HEcr7YGHPdv8J8KohFRSwqtClSafTGOEtBUrOS8rz5aklYNVw7usUXvu61HO6Meer4Nn/4+JPMTs44WcxlvFUF470dAXeWDdgChZHSGS11/DKfChDdnxRiFGZOVBBizScn63ivvdxmC2FwGaOI0TMYDNrfc1mrTiKjxsjmra7nrJaOpg7iQKS7jLJRsFzOWSxmNE1DPT9hsTzl/e97F8dHt2iaFWUF25Mx91/+bIqtQ5lwtYJYUdgRzWJKoQJaw2BQ0gQvArFBobSYNGQgKxs/uOjY39nn6vVr3Lh9hnORZQ0zD5m2s1rKPClMJFl3rNVUQ9FLw4ue0aCsqIqSQakh1GiiGB8oIChWi5qtyZDlsma5XLG9M2K5rLl48TzOLal9Te3rZCCxYjqdslgsmGyNuXjxPHXtKErNYrGiKEqc81TDEVYrRoMx1XBA7RpcEO0kFRSLxYK6rjk7m6bnwlMNBhhj2N3dletbLRhU4/Y5WizPhL2oFEUlQB7AcjlFqUhZIeBbjKgYsKagqgqqcoDRFqsLKjtmNJqwu3tIURSUhZRZ3mufWiu0wSotDJ+UZMluY/2ATSsrDBLVgUut/lkyhtCmyxjmUsF++cFmmSh0sUE/IxpCaM07+oBVey595hKZtUYqMYyEgIj6R40Kag2o0r0ftbkB3jjf9SQlErTlrHaQbLfDE7SAXn1B5Bhj+0VRxbuAV1lHjbW+kv9nqYauPLevfZVLOfO1yy9Bkmm++x7pP9MCiEEM2VAxEFTEI/8GFal9gycIUKZJDEkjQbqO4gqpEZ27jda/poRnkkPjzWxye08jEtAm4fgMHPogWfuQYoY1QeoopiGuaQSgi/IjbAGT9D1ljCodMXad6dYXas6/F0XR9ukay7E3Tvvsogw2ZhahigEVPaURXUYdIoMX0UG6115ZbRNwvdvcAndu/jcZovnZzHNXf/5rP5PsQeQZ0e1m/W7PRn6OjLF3jMNN5ueLtfz9fRZvbps6XZ9M2dW99he7mR4bq5U1iHTMyzT2jNAnhBChOkadvKW3/qTXVFT4xDzPeoxFa9DViwF097tSYgjUB9hiMova/FFKYY1Z+2zLzNaqNXHq/1hrk/SMaf/V2rTPp9KGl3rMJLmkEdM/EKmM7u8qXWdMScPuGYx3HFcpJWxaAJvIHmtvMu1n+4zVkKoHpN8FuAvBt2tW3ge173dSXipyG3LN1pgkiaFaQN304o18fioZdgkjb4MNH8UQqX/v23VWBSK+J8eeEly9y8tEoH5r1+P0f9ubpkzs/r6W8IzdOWyaTuT3+Ni9v8/Ui17KfoOXvWY+dv+n/T6ffmJsKwSij9wlPLpr++Q05WKJNg1f8+9+Me9+98NMmwajLJ7Iffdf4Mqzz6dM+Z3fLg9PQqONRoVG9MBSJqcN5qPBz2qoLMoUqQ7ccP+Dl7h5/YjQzJkt56Ajh+d2uO5OeMPuOdRzwqKptkYsZvOOnpgzygnptkWBi4HHPvK0UCuS8G61NWK1WmFHI6Zzh48KXUjddAsOaSmjbM83QL1akRkwN2+cQPBcfvB+nHPcunGK0QWjwZipm3IyPePo6IRnn7nG/fddJMaS69dOuH1zxnA8Yv9gi8YrltePGA5HXL15U0ThjeZw/4BCad740OcSleIDjz5BM3U8f+U2u/sHvON/+xVqv+Rv/Y1v4cLNa7z64quYOsdwZ8ygEKbJpYNzPPnEszxw/yVAaKAHW9uczmf8z7/+a9g0AfqVoxoNWS6XfNt3/xeSD9tYrNf+XxbMZ0t++13vZna6ELTZR/RqSvO772P45GP8B0HjCawee4Yr144ZftaDZLRhZ2uH99+4yrYywMbGJ0a0d8SioCxKTIBFaPBKoaNB+SVBSyYgIo6B1lp0iIklI0H4ax98NfO6pq4dujBU1jNvwBsjspUhsDpbgA+YVJagbCQ42dDECJSWuGrSad+dCaeUkqyKDy3wfK/92TQp/yxZLpfYQvTKQnB4H1FK2FHLpQQMZWlZLGqcE7fOqtJ4D/P5si1L07bCFiXG0m72g28oC8OTj3+Qw/Ofy6XLFxmNhmR2bVUNmd66wXIxZW+yBQVcvXqVS5cuMZ2d4aPoEtFEFvWC0WjULYIo5rNj9rcvc3R8XQBEGo5PC6phSX3mmNdGGGZlyelMnKcLo6ls2ij4iC09RVFgrcY1SQQ+RgalRSsxu9je2pHgpii4evMGo8GQ6ekZBsXk8Dw3r93EKsv+4XlhymnLbLpCK89wOGQ2m7FcHTEcDjk5viEmF4zwDmJ0DHa2cL5mtYhsJZaeDhFlC3b2D5jOZuxNJkwXc4qiYDgYMD07o2kaqsGAoihYLBpJQhQF3muMHgjbKgiIUZQWHxBgD0uMGlsalCqwpmiZk0VREEKgKgqCi2lDLyDmYHBPU+5TbcFJ/zrvUhZUDB2896iesQLkUsIchHWbxBx8ZlYGdMBRX88rt/7r/c1o/jcHOnL89fOVv4vDYB4bRhti8EhGWaeSGHXHplRpLU6aPmCsxTWSZOkDXhmk6YOLQLuRiCmDLweV1Ewkoq0AlCF2hhT969s0t9hkbnV9IGybzqTi7gBRv8TXGINGStm00fjYv26dQL4IKLIhBqyDT2VZtoCkUgqtdMu6lfd0QETcuJf5vDavL59fy+6JkRC9bGDaceDaeNLaAue747TjpE3YaZSS/tXKtIzFrnxVtexk77Kb653AXH9j1iZSeiXR/bLd/Nl8DXm+dcFjtcHFWgwpGgfW4AiJBXCvvZJbB74ZlMqlzAVB5ZI6vRH/6bThzs9VH3Q2aJ3YnVoTo8GYrM+YN44KTCrK03kzuK4Ll5+XPCc41zlZex/W5s0+ONefd0HmI2MM+FzKFds92JoBD4YQG5mb/Lq+Zrdp7SyOlY5EdMucW/tO1WPJyVTTrQ/3HodPmxYIrSyCVeuOwpmhFmNixCVCiumBJVqp1giAmEXyhVkl+3zR78QH6ihECCLokD6bqGd5KVnXa40YY/E+rVP09OuUuqMstQW882vpM5vDUUWd2KJ90K67Vjler48SE9oH1vQVlYq4kM4tJvAxYQkhiDt8dj/vJ4B6nd+LqfK1aJTyve9VkLiD0WeQqaePloAxvDhEk0hmWectM+J9j80tQKQU7beAHuvXn/tdnueeMUzuaxITUXUEmxgjNkCMiiBMivZ4jphkQVTLxlQoce+lA9MytqMjuETGkK5ZT7YW1rbgY2bCSZ900gNtrrDFl+UXl+VC0rGzwU9+Tz9Rt8b2683Vub3cqe5lp+0G29ugHCFE3v2uPxL73lITB4rx2HDt9nX+0pu+iGg1aMmq55MdbY0JRhFTDbFO4ru2KNqTtlZcBAMeVSWNBeehriEEnn/iOfyqpllKTTIebt44oW4CH3j24+hxSbVVsphNpYysccTGoRKoQu2gdvhljUXxeV/4EHY8BBOxVZk28iXuZEYzWxBXDcFF1MAQLZRbA8pxJeebjqf8uo4KUbN3sIurFxQmcN/9h0lD6YzlsubqlWtMxtts7WyznC+4eHGXehUJRhGCYzLZ4erzN9BaM58tmS5XNF5K8c5mcx68cJnfffiDNEFz/7kLYAJve/MP8poHL3Pf/gFDXTGxE37hN36TTzzzJO//wB9RHy1434ce4X3v/T1MVfKRJz6KKWVzsYowHBaUzvA3vv6v0hSWFRrKknE5Ymdnh3p5kmaYPGKiINshtD9FYdBVwfHxESE4IHAfkdd85ClufuxRLhRjvvrb/mO+4Tu/hUuv2kEd3WD3jz/I6xLCvwgLvvj8fYySeP56C4TgMCmjkMENrVSyTY7YYijCt1gUwuxYecdyucT7hmg0/+z338tP/9Zv8cvv+wN+7/0fovIGMxgJg2LlUR6a5QJixHuFrhUx2F7gIH1Q7k4oJjuY4RCUQWubgreUHyoGYCtQhhjcXa7nXvtUmzHieDocTrCmSP8X5meMkflcAKCiKFJpqpg6SJlcwDlPjIqmadpN2Gq1YrVaMZ8nBmyaSE9PT3nssd/lj9//Xm7euk5Rag729rhw/hLbh/eBHaDLijpExjvC/lJKjt00DT6xXJ577jlWqxV1XXN8cpsQFNdu3GZRR0ICwhbzGh8Uy2XgbNoAhtVKjCxAJvh6GdbKMUMQRkZZabQJ6BAIzQJrLcPhkCtXrjCbzTg7O2NYlMynU6ITMO/4xi1A5ty6rgkhUNc1ZVkyHA6pqko2t0Zx48YNnHNMp1MABoMBoKmD49rNE558+gpPP3dFskgxYmxFZQtGwwpHZDAcoqwRvQ+t2NrZZrVa0bJWehtg730CWmUuzhuNohhSFkPKslzL7BVFsbahNkVBUcgmPJfhZiDlXvsUmgoYZTGqc0ANMaKNwfQ2czE4SbipQhj1UVhOKtgUsGYGyLqJw2bmGjJjrmNU9dki7UZTRaKWkkmJ64VpIkGRwqoey8VHdNL2NLL3XWPlBRVRVhOil8x7D7gyKcutEYOL6H1i0dECv0aJpIOOEvTqDP3FVDbbu94+wKeUat/bBN9uqD2dplwfgJLPaYwpKIqKEGhLYULoQKYMROXvCEEyvDnTXWqFIaJjIOqAtUkvV3lCoGUSGkQEW0p/Rdg5vxZd2nCpDMQmkDWNh9YsI266V6aMelgHwdqy2NgvL1KytiZTcx8loy6OlQmARIMq0LGQuCRm04WIJo1F5UC5FkBTutP30iagTWj/nkHPiJhLgMb1Ium+zl8HTDiUjfhkKGQiEnMqBdrglDD1cl+uV5zca6/EFqLrNm5GJ/1XgfWz/I6McdGXA9A69H4yk9ckMA5Ao1SBUhnsM+m5Ke86P0SVS+iFnQPrzFKTKoGiUu0uLv9tjTmr9NrfcrubllvfNTmXrfaZLZtN9SpCNktW+8dfA+Tya5sZlXvtFd9U7LQTs05aUAJcmCgMpbVkRQLoHKLoKkSWuMbY7rOSIgESKEPIiFHE9z4feokntDDscuzYNBLLKp8SVyGiRNMkrRexRfQyqSYfM7d8TnJMh49NOlYgBE8IwpTqM6Lz695LIi8qwT+01iij0FajjUmvGSlV1bplcyudE3UKzSZDr2PaGmPXnseYvjfGTlbCGN1+1hiLtUX7eQLtsUFANk1i+Juka7ehDZmvTcwYzNq5qQRQrd1DFdfONycrc7zTjiWliFZ3GvW9+a/PcNxkPPbjQUJEpbLo9phataAwJHAshDVAzCZkN1d9rLGh0zVtMoYzGJ1Bxn5clz/b77k2wfcSz9OLtZfNlAt4ilGJI3Lf5Ys8/9TzuEYxmAyYz+ZU4zGPPPYUioKobRK0lUzncrlE+YCphvgIoV6idKQJDjMegQ+45DKogidYESMMIWC3J6LhphSlFWcsW5YQPNoqZospYRYYDCsWyxkqaurFUjKsCTRqm1KMdibU9ZInnrmCcyuMKXG+7gha6SHODLrYRLCK5WKBtiW2KAjUUJWoqHF1I+i9BqUCKNm0nJ7W1PMzxtsD0JFiOKRZLHjh+asoo1laywc+8Cif9dBFLo33ODqe4ZoFn/GqiyilePiRJ/G1p0glEXVdc+3GVe4/d8iWBj0Ys9rd53c//CiPPPoEV05vc/n8Ico4vvlrvoY3vPq1HFy+zPBwl2/8yq9keXTKIGre+MY38PDHPiaX6j07e7vceP4osbq6XEEuDX3Dax/iE89de1GYV2lNCKKJ9b4/+WNc7Xl1gDcuA5NL5/j33vEWlo2UGTZNw1d/ydfSqAVXfv2XaX7rPZii5MZwwtXFGTdvn3THzYh1+r9b1Qy2BrgQKLVl3qyALsutE9yddYQGo4ra1fg6ir5g9LjGcXS24naQh9zqgtg4Gi/ahRhNMRJNueV0QWktejCkqZcyoS9lQh6ORzS+RpWWWHcMgqDoHNfKkhg+aXPje+0lmvcRY3xiTlgaV7Na1lgr7KnVarVWGuJ9Q1lqmkaA46bJmzPDalVTx5qyLKhXDaPRkOViTlWJWUL0gUFRslo8zyMfPuL1n/ulbO0cUAwLzl+8wKgacePGk0xPpjx4+RKzpgZ8q9WmjMZiqaqKEALzxZkYuDSenZ0J149usVyCqaCZFpwuZ7ioiEqzWEVcCFibJvXoGA00wXma5YpqKMwRhcYqGI2GGBsZDMbE6GmagLGK2WyGUorlyTGDasJgMCKEwMHuDvP5nO3tbY5PbqIoKEYTiqIEJCBpGkfwit2dQ05PblENAqWOKOdwwVPaAjMcMjncY2AVj37iSSaTCZNJjfeKW7dusZqvOD095cq15zg8tyeg5XJFVQ2Yz2ope8wMk+EIRcnAKs7OFmzpiqhgONglhJrKGOq6ZjjYSsBJTGy7BYPBgMbVxGgoq4rJ1hilYjKuuOf08Kk2pSIuriQTGtZLsRwBncv6rMY4jRFRDtarCjcSV6llZ8vN1g+m5BzWHVAl2BOnT7JeUg6OekLq68dZX7w2xZhbkeGc8NG6FVOGDijcvJ7ssmrLopeY6wV4Roxo+uyv/jFMAip1jG2JhjDgOibY3fqvK8noMveZdZCvvx8wQmaj+hSogDBkFM4nhzVNq5PX3yxlw4OgaEtTtBLwDtadHkMImKSXKczjznFWXEc7ps3mpry9v+35p7Gg7tzAK6WEXWEiBIfHiwlGBvoSEymqmNybLSFtXIy1aZOm8K4T2s6JGxHOjgSfXDR7MUY3Fnp9m5hPRM8yeoq0MUArUAbvGryODKJoBt1NcuNee2U1RXYob3Fvgk5l7xpi7I/rgFKe2ALQNv0tJxZE0NzoUpg7sTOJEf24mMbeOuimddqA64gKkoC4WzOFRdWRhk4P0fflZnrzlpSL0WpRyuvrmnP95zPSzV1yUmr9s9w5t+bj9F9uAbmky/RyGSP32iur5fk4CiqRX2zB4Zjfk9raWIpS2mhFAe2uIG9Mx2vX1/xeWAN/2oTaXY4BwtqzSZNxrYXYGiLJwrL+99g7thgY9FzEoR3t/fWoD5TJB5NOXkxSE8mZGy2JmU3eVF7LM/nD04DP3xHZNMjSWpirGQPXIeLI+x239gyT+sxaS/RK8mLt98oaLRIP2WRBE2juuMa2+zYYdFqbtf/335PPQesM9Me2v/L1K5C1UrDY1hX2xb4zHy8TZLTWoNMslMdNnpc7ylv7N50YeWmGF1mt3nW2yZG4wTAkJSd7INtmPPuX4kxhAAAgAElEQVRS4Fv7vrs4U9+tvWzUoAmeUHsMimtPvyAOlTFSn8wgRpZHUwnYjAhEGxXxRcH29oTZ8RnOWKJvpEREGaL3KK3wyxpti+SXCr6yFFVJWMoAc9NZ+ntgkTbVMZVOuNpTbolou3dQDQYMRwN8HdFBcXoyveM65osFo/GA6ckMKWVwkolSCcGXHpcMrYdYqLTL0IQmObhpMBicF3MAdMSaUlweZ6KntLu1Q7E35tq1I3wTCG5OZtmpGNg73EZFeP7KMaEJ2Mry6KPP8uDlC5il5cse+hzC0PDwRx+V0ixreOTZxwnPP85DhxMWK8PCwx8+9QlGwyH/8Du+nY8/+yx101AHAaLmrmZ3vI1zjv1zu1yfnTA7OmI4HOOVIOMX9i/yWPEkRqcynDRxjHe2efbZZ7lvX3QDNwchOoqOUBp0xhiaEDE28IWnii/6yr/Mg9/x7Sy94rGPf4L9vV32Dw5koowll77pr/MV53f5g//lN5g2NUdA81KrdfRMz47ac8mTdFSK6JNwJbLRC2lTUFUVnkjVVPzKz/4ylXboYoCjJuiIt4qzZkYTFUdHRzx75Tk+/vRTPP3Mc1y/doWTkxOaZY1PdstqYGBVszhyaAfegC5Lonei26M1wa2IRqFq/7Ifwnvt5bX+5No0DcvVkrKopKzVBKqBZblcMRgUBK+x1rJYLClLYc4VhWW5dGmjqXF11g6yPZZcJ9C8WHhG4wrjGx59+P/jwVd/Lof7D4CG8d4O124ZPuM1r2V2ehOjI841lLairj0DE1ksFmxvbxMTgORqg9GaG8e3QVmaumY5K5kvznAovBdTB1kyFGVZolSDUWJmoZSjKAq2JgrXgNFly6gJITCdTpns7LaZpRilrP7gYI+mhv39fY6OjpjNZozHYwHoDg5YLT1bB3ucnp5y82Y2YmhoEuOjLHZQLMXkomkoK8vp6Sk72yOapmFUDtgZb9Gsak4beUZLHRnubrG1NaAaFdy6fZ2t4YjoPMcnp2gl86XzwjDx0TIaDtGmwpiK0lhURNxe0+bHGCOGGQoWSTZgMpkIOzJYtJKkzXA4FIZdadZ0wO61T65lM4cskg/Jwy8FtX0HUq0yKyut68GtMTagA3jyM9z/N7eOMdc5l8J6QC4gWspqZpbW2kYzC6nnwFTcN7v3hLXv7+uORNWBM6EN/u4E+0wKtvP1tCWjqmN+xcScS6iZbMK1CB3b1nVNzBu07so18nnlEog+wNj//hhDGw2Kbk1sE4T9TG4GHTMrQJlkNuFDYv8ko4iwDv5l4FEptRZsZ3OOzErsymVtLxjXuOjafs/xcJ576QG3fU1ARf5+1QID/b52zqVY0RBcgEJjlBLt1yAxiWgYapzPZSypnEZHYshbq5B+5DoyjuGcw1iFsRnciO3+c+08N0DSEAJGJZZkYhwZoEiJlobIKvh7iMSnQVPKiE5i2olnlmpMMa9RDXJ3I8YIEJe37JkJ143hiI6ykdRKE5TCkEtNTRp3kmiA0Ju78ntkPJHWyf5euZ17ErDff+ZzEsDVzZ2lVAq06gTg+xJCd2zGtUoow4t1VgYAe2X5G4e4V6L6F6P56NFRkkYtUEaKCkLsypR7QEgrzm+MsNyUgNuBbo3OoIdjfZ0TxlO338uAiULRpPLWlkaiBQhuEybadAAKAJ1WaB9MUqrDF2Vd69xQddKN8961ZZybO7pcLktA5KCVJOJkzZMSUaNMb51OumOk9VpLfKCVwUfX7hljELa8N4oy77NVJFqF0euwTQtzRYWKIeXdEriU9O/7OsBr4Hp6r1xCWidj7ps7zbfyHJENHvoyGxmoy/3Yj1s6LbvWx1Zeb8vwjZCo7jLuFBCDTiaPXWksPeA13/cW5Ox/vp9EU2IOohPoGzfeB5KAadlwRhJzokXSgXgmQugD0arTTnS9o2aAM8b4svWtXzYoNxqPmS1vMdrZZnpyuu6+mbK0MYS20tEjbKvZaoUrLPiA15qyKojOEWOB8Z5oNKFZEpXBVAMx5p3X5Kyz8oHgJdsIQLLg9Y0jBsdqrtCFZWeyy3Q65ex4SlFULOcL2VD0ygWiEnex5aJOtZBpAXN+vUQzRggGUyT2mDHEXOIQFFEJA6/VGWkcTVyJq0j0LOY1q7kMtrIcoFhw34VLXLn6Agowg5Ibt25SVRWfefkiqtA89uQLjEcli8WM7eEFZvWC//GH3sq3/9f/Fc9du865/QNG4zGKyO7WPtF6Xrh+k8nWFirC//o7v0vNnO+3FbVrsAFm8yVlJaVGn/e613Nx7yJf9qVfzj/5Z/8cpRS3T0+YjEcMbUloSQfC+CqUJlgYjYTJGOAOXbmYtIUE/FhgjOErZvKYXP7Pvw0XIroseeTDf8I3/0d/jRAiV65e5Z3vfCff+q3fyqUv/TqmP/srvOrojGe3BoQ+xeKuLYlmsj72xH7etPFBphWfJQ0rlJzjKkQphzZDjIqEhWNb7xFCYGc44r7PvI8vuvxG1JsUq+Wc/+ftb2F0fpuv/t7v4WxHcZaYWI33KUMRcb4mOo9zgWhF90xotUqyHvfan1krS4s4q4pbbmkLEfZOG0zvPYOBlLUGL1pzVTVIZVmOqrJsjQctk6MoGlAB5wJN49BKU9dzjBFmh7UarUqwCuoFzz75CIvZks/87NezXDS8+tWfjw8NTkWmt0WjbTpfMBqVLBZSorlaiS4LYcTx0TWsHXBw8ZDHn/w4Vh2yak4JGFZNGrxKs1h5jIblomE8MML4K0SoNdKwWuYAoSv/KsqSsiyxSjNdrPAhUNcziqJgNptx/tz9PP3040wmE8ajoTA+h0PqEDGDElcvGQ1Kdne3qWvPaGSp6yX1aopznnIQQTlsYVitFoRo2VUGQsN8NmMwKKmqrpRY7ldJ0yiuvPAs586dY342TXoWGnGj0yhTErxnNNzCmMhkNKIuStlwaJVKjBUUhsIic3HQFIWWElcchMD25KAtb9ZaMxqXknG8p+H0KbfgogDWLrbBolGaxjmMEfH8EJ2UiaQAxVqbkiWyQYUO5OoDNi3w1dcU670vtwzGZODHKEvwNcoUbUmBT5pHLXirpKzVGCuOnlrjQ5QSjRRYkthlJToFrEjyXIseqkuGCvl8JCaLUg5rdSoJjYQmoHXRATTpmgWci/joMYUVV9fkKlYUBuVUivE0eAepD0xKCOZMtsZA6GmorTWdyjpjcqQTp1SX7o+ATWLEoNGp/EgTvMMYhQ45cxwxQVHHBBwQKVKfByWgpkEYYIU2eNMP0BMrKCZGuhEw0xjTZr1tC4zFFHyrtXu+dr9jAt/qVApre+YY6R5kjT4VFD6BDjrp2uSkHKZoA3gBTPoswS5Q70DiXDKrCT6DdkAPXI5BEXsl2HkdMUaEv1vtuihadzSeQmu00UzdSsaRvceUe6U3lUqwdIxEctm1sCvBE1QBSMl+LlHN4K6UmoZ246+1MOUE3HXpXeLyonUGILJ7q3xWNHLXQWC0RUcnJdtRys/7VQFa61aAXKWHMuTXQwfItZvsCCEqYuwqPdb7QHQ2fX8THO/gHrX7K6XWXVdzyeraMe8txZ/WrS8/kVvK1cm4jh0Ikdf6rMlFXucTipa1vbLDaiaEtEknLbIQYYNdTkrU5HPIzqky5u8854CsfQIC9TW+5ZmNXsk6HgKbzK9+IqoP1K0zWtNn0tDPe9hcct47ESCusVhVC8Z5fNaojAmgSudkg1QpZna4NXaNAdgHFWN0YlzhBLAMQUo0o6J1as5JVLRC+SDltvmaozDXcjduMhPzGMh/y2tgl5zKJa7CJJY1tWOit8kNQOkAQUC9EKIQnZR8LiatTd2bT4xO7Lf8Ut4uqZ6DrVJiDuW7ct6oSMzChGuwHke116pIVX9SASKlzbKOZ9ZlH6R0GZnu9VXTS4rkfsswowp3zocv1l52hLA6PiP6wNnt41YYsL2wzewKUFQlVAVutqDSUhu9vbODKQvsoEJZ1eouRWPFabVpUMsekBE80ZSyIatKhuMRw92SrZ0RMXqsFhdC4yMvPPcMZ2dnxCjOm+VwxOD8BJW07cqRZedwC0XA1TUq6kTrDMIO01L3rbTGbo1Ex6Rx+LrBL1bEOqAc0EjdtW8c3knpBBahmfkgi2dREdFEY7FW43XByfyYBy5fbGucd7b38C7ywvUjYrCc35+wPd7i3Pk9fuGHf4Q3f8/fFkbLZIfdnR2u3jzioUuv4pvf9FU88MD9fNmXfDEnyzOqYcnxfM5jzz6FTRPBfD4nWvjt334XVVVQVAWFNlxfzXjPv/wYs5OS937gBZ569gkeuHwZjE4aPV1JeV3XRK14+COP3AHGtfc9gZIPPPAAREU4m3HfsuE//NvfkzZQmhtHR2xf2uePP/IhnnzuSd75e+/iG/7K12G0Aj3gP/nxH2F31bA9Gt51HK21lI3ZbN1rcp7WWra2ttIG0XO8mPGPfu7X+bGf/j/5uV/9V7zn//0go7JgVBbUizk3btzg+RvXODq61eqN3ddo/vlzR3z8/H384r/4VS4sha1kSsOwqthXNR9461u5f7TL6k8e58Jizu+/7R+zV1WcH51nOJ5gnnnhpa/nXvukWtM01HW9tlHvl9TZ5FQsToWKuq5bxskgmQt476mqSnQne9mjstRJk0HhvYARrok0dWiPMT9ZcPvGUzz6yMMsl0uGwyGKiv29cxxeeJDTaWBrvEPTyIKwXC6p6xrnnOi7LeeiseEc2jhOp9doavAuO0PmsjjFYFC2WZ+L+3sMCo2xUJSa3Z0DiqJKZg9SIpv15nLWylphrYzHY0ajEbdu3WJ3d1fOWSmm0ymr1YqyLFmtxHX16EhYbiYB7c5FRmPD1k7AGAHZ8t8BVqtVu6nN31vXdbtwgSxWo9EIgMPDw5Y5GI2WbKcq0LrEWstoNELpwGQyZm9vj6qqGAwG7fX1M/7ZgXNQbTEcTBgOhxwcHLC3tY3yoieyvb19jyn3r9H6YJhSqg3YrDaI+cY6Awsyk2rdqKHvltp/PWwGqC/CjOsDNzGBNkr3yzhpAZ5W9FlJcCa6bmrt+6zS6CjusjEKAJXngc01KB+3bQmcdM5BjNhSGDOyiV7PJvdBH2N6LrGuV9ITo2StM6suxHaTnplnfZOB3Cf9n8xm6zYKHeCV+6R9j+4JF5uk6WJS8Bo7ll5rJpHGQdZ+cTGzxwJaK5ySwN9r2jlnUzuwD77l+5UBrf497gJ+sIW+47MZdJf+3NDNS1q23jftONnM9Pf/3++nfJ/Xx0C6dt1pUsYYW+AjrzH5PPrXm/tAWUPtncQUJKOQ3vffa6/MFtL8kMe8NE1mwQFkgfn+/c4bT5Ga80TlepvR/nMbMUZA/aiclGC1c59uN5OZcdeCwqrvuNo9+8ZoYvq9n0RQvc9uts04uj9n301W4G6foZ8c3wDk8r+tDI3qPt8H5+7OjbnXXqmtP5bsS6AMmwmkdm7t3W6Nbpmo+Rnqj2FMJ2HRrmFaizSMtfLeIq85pgWEjDHJ1dy3wE5e37rzi+3rikJAIloi1F2ux7ell/0+iCoS6PTm+tfb12MTzbk7SSch+FajNq+/IXgCIcUU3ToncbZo3fWP6b3DuaST7Xy7FmXdP6VUy4iHbp0PWq2BqErrtvzzbjHb2u3W/XvW6eBJPkCnedKs91WM+LAk4tvYTfY8aW1t+yq01xqj9K2jSdfuqdP1tyzFtaboNO+0yJFYGROFFhfZPFa6xImMER+75Gfg7hhXfm9f667tEt0zDtuINfoGX39ae9lMOdes7vp6/4uLqqQJHhWilJSpgmgs9XJOjJGzmzdR1ggry2pU0hhAaXTt8ToSYkCpEhqfHphAORgKkFaULGYzykJhRyMmwwGLpmY5m3Hu4kVuHd0kBPneyhoOdypeuG0Zno/U3onzYh3ASemCt+nBtFoeCmTB8ItVh6AGcWMTCmMKok1aoAsrhhIRqJ3UHDdpUCmFsobB7hCOG+Kg5GQ2F+vnVeDEH4MKTGeR28dHHB0vseaYk9lt3vKLP8kXPvhv8RH/cX7qh3+QX3/X7/Cb73x3K2JfGos1FecvPcDW1hbPvfD7eKMoCouOsLezSwiBx194jslgiFGGUpc8ef15fvjtPwAafuPdv8R/+i3/GQe7h5QoTLPkn/7972LnXMX7n3qCP/nEnGnjuXDugBgfv/PGh86N79nnn6OoCsLJCS4aDv7Kl3N7EZjNZvzoj/4oP/tT/5iAR2OY3b7Nj77tx3n9Z3023/cD38f4wcvU3nFBFZzE9UlLHoTeYLadNXRIdP6YHNvkhonwNFHT1DXKRAxpop4v+eWf+G6+9yf+CZ/z0Ov5nfe8l729PR647wEuXrhMpGE2O2NVO4w/4Rt/8O+iVMX73/8hFosjtp9+iq968w9gvMEpx2/9o7fzl//bH2dVrNjf3uG9v/hLfONb/gHEU/RsiSnnXLzwwMt9vO61l9Gih7IyHb198++9DVjdNNiiK00TmnXEFprZ/IyiKBiMhsKgGwzSJtuLIKuB4GWSFQOIIUUxYLwzQFGxms157qmP4v1nsLt7nrp2KFvw4EOv4/jGC+hgWSznLShoEnFisVxxcFjS1Iqj20CA+cLRoCkKMXeAQDCRxrukyeSZLU8ZWs9kZyJlu8sa7wKmhLKwEIWt09ShdTuNMbK/u8dqtWI4HFNWjvl8jnNOSk8n+0ynU0Y7k9Ywo6pkszuZTHj04x9P4NwWzdITqYnGUlSGkNgpi8WC3UlJrOUZzdqXWutUbiuL9t7uvrDmVkuUNYwnY5zzjIfD9vzEkMFTGIuOgcLCeFhAqHCqYXs0IXrPfD5nOB5SL2qqqmI4lDLcSltKZRiMDE09Z29nG6VgZ2fyb3CE/sVq4jwI2sRUm5HmWx2xupcRTJaB2nTBeB8074Nd/X/7sUPOuvYDmxw8ZmCrBWCSwotR68fWyYXBGC2mDFrcAH3vO3KmOINVhEhMIu7ozXPqlbhm8Whr8FGcmsXgQnRfMmCcrz2DL1JyEYlKdNsU8rc+0NjpscTUb14MJFC44NcCwX7AtwmA3glApdcJon2nLS5k3RnRXsXoFlDNSY3+MYLvA6I9bRYluo4gGxutNI33G/c1MdDaLHOuAOnA0z6IKcfurfcqle9tfL9SmnXTB1C996kEcjjn5Jqdo9PSFhBV+tv1znedxdn20Vr/rrNFcjKizwLNYz5rJiql0Naig4C4xcvPg99rf45NxlK8Y9MVY95gxfb50j3wTilhq7bzS+y9nkHn/Eylj3WAbsdCESqvImsyaS2Oq+34k6O2z1p/XPYBkf4z1v4/6S722+azuNmEpfQpd+eLtj81EX+vvWJavlOZ1daobr3ZfM9ma5lL/WQboVeKGXHQlbsigFUGh0C1bKh8DjFGos9l3HltDJ3LZwKJOvboukZZCJ6gNQrRNw5BAHXZSmqs7UkftGWtEhdldl82J7pb669lWfKhz8C7o3/zWpRUKVpgMR0ng4L5WP3n2hi7/joZzLRtqSkbybwGYeLl+9NHJHP1Qf7umO61T6GgjggOEjqgNUb5nNe+Nb2Sz4qBVYEmBgXR98ZDV1JslMEHJxIWCryWxEJ7wxMGIzJ0Uh2Qgbn+vBVl6kT7flyxvm6DHD8beEmSEnqKIHck6vrAXF9Drw+4bc6fSoskSfAB8yLJjs32siOEFxt46Y8AYsjgurpk1US0sqAtCoOOBWEVscpCXYs7ZRIPjypgklVwjJGdi+eY7O5RDioat0IXkfl0xqCqWM0XxMZxdHrCarVia2eH1WrFZDRhWI2oqoI61Dzz9ClLf8rRC8fMrk/xq25CaJHfu+h+9Z1FgaQ7JyCbLiw6lVbgmuQQ6yT7FUF5Cb5iCITGsVo6Lt13jvnpQiaQsgCjKasKkmPcrZsnbE0qRsMhD166n2tnJ/zmH7yHDz/6KBWab/ryr2JUDbCmxPuG8+cv8r//xm9QLFZ85CMfYblc8uoLD7AzGuJipPEBHTRPPvcUpbEMBhW6tO0gBWjqyG+953f4xn/nq5m5FY/fPuPbfuKn+aa/9w7+4U//Gteu3wbX8PBHn4AY72TLpcA3amHHNI1DIdpu16/e4Pv/yx+g2Bvz6te+hv/jV3+N2mve/hPv4Onbt/n7b3sLf+fN383b3/F2bFVhrGU+n24av7T3SmmNsSW6qohW45P+XTeJ9GiuxtDUC4iC+jsiRkW+7hu/modfeJaHP/gHPP7EM1y8/zIPPPAqtidDDseavcmQxjd85LGP8/6Pfpy3/eBbeMePvoW3/sib+Zmf/BlU6IJ1HTV/9b/5Ht79Yz/EeBXZmRwyfPWE9/7E29kux7z/l36eyVTxL/7pL77kM3WvfWqtvznMk2CfHVLXDUVhW4dW2WiJY5K1tmWYaW3bzNpgMGIwGDEcDtsMSNN4nIucnQnAtlgsZCMXIriGGy88x/HRLYqioCpKtre32b/vVcyDMCRmsxOCXxG0Y7maYSwMByOCV8QA03lksiMOvk3jMUbMLPJUG5HvF3DMMBwOMcasMdSapkkMDNVuBLPOg9aa6XSKc47VatW+PhgMKEvL+QuHrFaSbCnNgPFI3I+n0yn7+/tt3xVFwdbWFjFGVithKgr4JuXtkrUs2u/PfRrSJmIwGLXZzuVyyWQywVpLWZYp6BBAY2dnh+FwSFFJKaxrAvv7+5w7d46trS0O9s8xHo+ZTHYYbw0oK4NVgWFp2N0as5pN2Rlvcfv6dZrljMVyzqWL5/+8humnfcvMUaWk1NEGcDrgtYzR4DVES99lM/+bGY19Nlv/93z8frCT2zrQth5MxQSIKbXOSNsMUqPxeDxerx8vhFQ2oU2rZ5K11PqtnymOUQJMay0+irFFrhaICCtLdJk6AKcvbizHCDiVgj9MyypTqnNhtVnEOZXB9UGgPjtsk2HY74e8RvUZon3DiFwyB7SOqipErOrWt/7mvmWC5VhJizC09w1KRWxU2KiItWtF8Vu2TpKRSGchoEPU7Tlt9rkApsnFPDEP++NjDVjoB+ExEvFoI+WuUo3QrDH++uOkD7T0r7f/PmMKsgNsv/9bZ9mNcdI/v9wHIfWZUgoboAyK8k9T6LjX/txbjmtzAljGhehKy+8Rnap/rNXpd8F7xUckP6uaiMXakr7jqilKtC0wRn6KosAUoG1/00di15ZpLIpxkdaWshzInqo3nvOQNGuv3bmhVEq1mlJ3m4uhm1/uYDvdsQXsPUcbkjKwzo7LjtTt6z1w5l779Ggx/WyOg/66S4ytYVC/3TUWUCJXELwjOHE4XVf5EvAll0jGKLJVIQSUE3MkKXWUd4IYrkSvyM4MUSHuokoBKjmNalRphUGl1hOFBC2gmBKjoLzm5R6ISpJz0UeRdcprqxLgKv/46Hv/yjlopQg9dlefrbX2HOh8rAQwBSlvbc0dtFl7fuQnf7YzE4oKXFgvT89uzt57CkR2QWmDsRaj5RzlvLLz8/o9LBFTLxUV2megLqQKpQaIgjNEKd0MCUgzYZ2N234Ouc7MAMxjIzur9mOXu8WK+XhrycD0fbkP8nvyWMr/1z6uzYNtTBd7zP60hgejBOdqJbI6ZmS+TxlI7IN+QXUJ35fLCv6k7SFV1ES1XoqQ71z7f62xTmEnY+rZDK0MIXq8Se5cYYUphviwQjlN0AHtIlF5CiMOr6e3j+QGlJqyqBgWJaerM+nMwUCyUaslJsL0+ISt3T1sAYuTOcPRSMoYMlKdzy8F4TEEyq0R9XLVag4pEvp+h25LN6C7To2tKYSpxNLc+ZqAiBUKSKdAKWwpQORgVDKdTlvnmjpthtsa9MYzmmxx9cYpJ2dTzh3sc2KP+I4f/mG+5ou+lLOwYl4vsbrCDgacP3/IjekZo7JiMB5xeHiIVwuUAmUNLgYOLlykHI6oiQzLMY8/8wGCcmmkGPzS8de//2+yV27xP/z8L8gowou1NYqbN28zLIrN7rizfwy4xqE0RKV41QOXeOvb/iHf991/j5/8qbfxSz/zSzz6sQ/zpq/6Sn7+53+er37Tm/i5d/xPfO2///U08zkWw2nq007o0rVii9aWYEAlsU4TlPR1dKhoQXkyoy5qRTSKWBhUDJgIW6Mxb/yc1/Cxpx7h737nd/J5r34Nhwc7XD26xh98+A9xQXHp/AU0hssXL6CVYvq+f8nlr/haytEWz73z/+Lr3/oPmJ0u2onhJFzia37oRzhVivAZh7zhVd8LOE5cwRd+19/Co/jaN//gn9p399rLb9WgSFbkPumVdRoqMekTtPNSFI0gpRQhiq5bYRKbhpBYEklrcLWiqmz7edDY0hCWNcPRgKZpmC8XLBcQwjFNuWRnsstyfsb1555iNpty8eL9VMNtlDK87vWfz8nxTZ7+2AfRVmzVCbC7NcbVx9w+nrJsIEbL2SywNVacBgGz6kWDQsqulYay0Kxcw3gwpK7F8r2JcwbDHaqqYrVYYW2BD8JUK41le7yFQVE3Sy5evE8c2pTCNx6tFNu7OxRlhYpBmGSx5PimlLeOhltp8Qw0riCEwKI+4+DggGE5xlrL2dFN6mbGoBizXK0YjUcsZnOqckzdzJlMtqSM1Tu29g5Y1IbT0yO8XzCZTDg9PWUwFl27clhSDcdEHL6u2d3ba8GI0WiLpnaU1lCVWyil2Ns9R4yRarLDeDwmxkhZlsznMy5dPMfNmzc4PDzk4GCHZ668APHgz3fQfhq3qER3jejAiFmCikkeVxfE2BAIFKpAKQmwdLtxvZMZ12dHaWUBL6y2IMynu5WvAmtlqdGIgLGJBqeTkD5RXDJjCuJRGFWIPlwqQzNB4qmgFUGJIYMOOYuq8L7B2nJt07DWtASOVmtwXYlGm0lHoenMIYwx6KhEa1QlMLHVgwmEkK+xy2o7PDotZ1GBb3VSECHt0NOMMgpCIJtt6KTVIn2X2FsxIkLTFpcYBJnmIBunHEinvKpWaHWno2r/PsYYCRFiml+zo4+g0gIAACAASURBVKIyUioSEmstRrCmSlIDWip0vZNNACb1wfqxQVhuGVDM4yGX4bbjSnXMtvw+ycDnHtAQxXhJ2bQBRBHiqjWD6cwqMgM0JqA3g6kpIes9Rldk0f1NN7gMMPQTQ0Q5RRMzgyFpf2q1ppNzr70yWwfAydZBALFBeq5k7GZwSymFUUqUq5TCB40tbDuv5HFkrV57huS4ai1e0ThIoJ5O2kdZFtHakhAk9mlZQdqsjWWtDU0Ma2Vmymi0k/mxBcoVydEVZPx3c12f8au1aMqtkRh6+0rZZqZr2hjXreNq/p11gO5upaz32qdX64O+IPOdUlqcsVPs0E+Y5SbjQSWEr3utlQtbY7MFtBGd0E12p4oKZUQDdvO8lNKJMdUxtrQR3VnongedSjbzeqJULm1Ne36VWGHK41SavdNSo9JJ53W8v45FpYlK5pCsdbrJRotKwKtsItF/uDIglBlfEUPUoefSLow7bU03f6TyTIitpqNHTC9zYjA3kXbqdOBabTmj157x9pTTeXsVCCqA79xTc9Jyvey9c0KNmlZ6qv+8Z0dmOf/1RGwgovPE0RsLsv53IG/7Hb2E3eb/QwwY/n/23jzqti0t6/vNZq3dfd05555zm6pL3eopUBEIgxqIYGxiIkEU0UTEZAxBJTgcQ8soEWMXAxgESaJxGCPDBpFYCtIFEBSCQFUJFtIXt6i691bd5tx72q/be69mzvnmj3fOtdb+zqmqA3FAFePMO+44+/u+3ay91lxzvu/zPu/zaGcmTnPFco6nshnjdRm/73DcaWe6Tq6TRVDtXZNUE7jY9FqZnsAHHw8Myo0L8y7a+aGGeAjnZyqxq5zPPLnBVHOtrtuaKIINCZxHnNl1rkgGaTqCCZyaTpHVjbJEYlME3nuc9axPTgFto9iebbDea/ti5REJu8drjLL6JjeCgB4HkCo36KhYBylorzZlgZmc5BTjICQoJGUKzip9P4FbL98BG3nd61/D+VnLrdt3B+YdOaEwGE7O12z7LWKF+eIKZ2dn/OTPvI/V8oBvfPHbuHL1Er/wws/zqZ/wes7W57zh9U/x9DvfwSd/+qfyge/6bn7q/U/zSW/6OJxz1LMZYpJqQG0DS+O5Q8N3f8u/1pvVKgC28jX/+pu/gy/4Y1/Ij7/n3ZkebInA1UevcfKBZwcmzf3GEGyenuOXe/RmBtLzwj/7V3zdT7ybv/O3/ibP37jB7/vCL+Dk7AxvKr78r34F7/o3P8Lv+6I/yDd/8zez+J6G1gjnWfx2YBdYj4QejOrVGBSZV2HQfriJtTIimGEmJ5xxKmJpI2INs9mcNqx51bXH2O5veeX8Dk+/+D7OT9fcvb3hzWbG69/yKq5cmfHCSc/1DzwDn/gpnCEcdFv2futvpT+P+JRoTMKilFTva7Z9h5Euf7YlxFZrNpKAD33uHo5f+lDLb6iqmhC0TbzvwFqhqq2CTrYstA6MsN222KLnFBNRWiqfkyuDMkCNYGxScEBk0J8ryWBVVXRdxBqtMm02m0F7cLG8Q9u/xCuvvJdXvebXc3j0KHvLOU888Tpisrzy/NP0qUEkMHOVtnrayGJpudsLkmC76ZjXFU3TMascbRcIVrW7rBMEz6bZUs8jmEjfBbr+HGuhntecb865fPgIt88VWKuc59L+AcfnaxaziuOzDTFG9vf3uXr1KnfuvMxq75K2tKWEm1nVczNap5zP5wiReHqXtm25fHRElfWcYozYyjOzM+YLPebz47tce+RR/Xvq8c7QZgCh73u6fo30yoxerBZ0zYzQBbZdA1n7aW91xLJybDZbDg+VsfeOd/4bPvMzP5PKrQBNPupKg4+6Vp06g+Cs4cr+IULP0aU9fKVr3/5iDxObX70J+7E+RFsoQQNQNTfSPzmbiEFZIqY8T8KQ1F2k/pcxBF6uuJBFMF6DmNz2N2WETV/rnCMZdXojB8VRIs46LeIYm/9nCCxFRN0OcyLtAKwlhggi2fUQin7TlIWbSmApCp2Nx7WrCTey+SxGVCg4xkAUzeq1sOSZAknT6q+KDOu/QQRnErEYohhPTBGLuq5JdlIrZhbKvhkDTecc4SLYZaAqjLfJ5Q0h4VyV9d1K8K2V3YusxikLr3wfERlE5J2zhFQ0/Mb2UWOK+6vJACIDAHuRqTM6YE/Bi1E7a3BWM4VRp+0r3ntw7IhOl8/11qGGXgLJakLBqB3jvdG2JbPb4nfxOC4Cb+XvsZArjGDCaF7inFMJl/z8yli8rzjpzj/ibfdw/OoOLdbVKPtV1xPVk/NgYwaVRJklVukQxXTGuvJc0ET9PuL498wrMtGhCIzHYd4nk3JbSAEJyz2TEFHzhwLuUQwqMIMzIFm3izjezz5BGo5h13l1uAeSQXKMNBY+d9cEGbJPkwG6e3Xlhu8rE5DOFuD+ISL3sTR0e/BD6akYDkznd8zT3GEw1uxozQ7zKP9syACYyc+N2p1WWrYVxMoFMsNgxmhE43cxYFNmoOVinCVoHG/VosVixvdE83SHylVp0W4kgljRdsqitWoFLWwZ/UaunARnilrSaNCQRikFAF/AsanumGMEecr52OnUG2Mt/Ve7vDBW7y9JOF8hRtTBPXllYCUB5/GZxWe8H1jrVQJT8h2K3qSCki7r1g57c5EOEWXeJbRFt2AZJqNq1u/u3WpIZQkpZDMoPzLSypNENew8E1kSgUQG3oq+XY4fMMoRciOOCFb3Wyt6HgvwmCzYCQO9zLNgRHn3phg17a43OzGqs+qSywgO95KwhuwwH7FuhMtKh09Azc8sJYYbP8MxjUO8sh0fYDwwKDetoHykYUIi+Up1VCRvSkmBlJR63SCM2tpHm6Cuh5vXOYd0Qd1WY6dVXrQl1BlPchD6Huscq4MD1ienqm1SEMmYcHVFCoGEYb609FikVYCGOGH55UXAlACx9nmDYaDIFt2UwUbYaPWpcp7Qdqq5UuiiXQCfW1BESMZgXOLwYMUHnnuZRM/R4SPcuXMHX9X0TYvxbmgrEzE8+arHuXXjjI0JvP61T3L39IQ7N045a8554to13vFTP0Zz5xara6/jdU+9GU9FjEJ32mSXWPJ10uDw8iOPkFLia/6Pv8lbXnOZd787IsaCDcyN5y//3b9JsxWefOzVnDz30rCx3rx5k8Vqzsmkp1RS2ml4NlYXi9/1uV/Ae555js35HZ59+hf4l9/wDfyV7/rH/Ksf/hE+7dd9MgfLA5aLPeSqgERe/Tt/K6b2/IU/88f4+3/wj/DS4b0mD5JCTtg9JhShZwNisX5JZzskCNgWiR5yzc6Jp6prFpVH8oI49567J2c88+x76WPgaP8KV648ypOvmvEW4Kf+17/NC+/6AT77D3whf/frv57PfsubCE3LDz3zPH/6v/mv+eEXb/FJn/3pPNO1zENL2FakPcv7//k38ubf/rupDq/x3LvfydEnfTIH847v/eqv5eN/w2dx9bd/xoPeXg/HA4zB3S5G2jZm3Te99TWJNaMT406Qaej7nnk9G+ZZSfRiVNadMuqERdY5M8Ywn89JKbFeb1kuZ7RNT7PtdcOIPd4btuuavnVgT3jl/T/N8dGjHFx5nEW94NpjT7A4OuLszgnXX3gf67NzTjcN56dbDDWh7xGjidx22+G9mkyEoIErXs1FttstcwdtAHCYypGiJ6UAsmI+W9CTWBzsYWcVPYmAHUweDvZWrNdrbdmNLYeHhwDaRuoq7p6tB+fUtm1puy1nZ3fB9CRpiVHZsjHGzFRMVF61muq6Zp7bbkp78MnJCSLC/mqfLgu6r1YrYvJIGsWn9/f3qSvHLF8XY8zQDhtj5Lf85s9SbTqrgGDf92w2qpm3WCw4Pz/n6PCAvu85PDgkJm3RXSxm9H2v3/3g4Fd4lv7aGSmNTB+JotpySRkeMYKx2m6SRP+1bmy1nFbIp2t7aQ3XVmdTypK6dV8wcCkg2EXNDmtymwVC7wwQ8ZTPU9a0WEghYLVGSrSarGqLQo70rCGkPgOLY5W2MMRUO41M8wAooEzc+W4js0w7AVIU1OhJq71WVPRYYhgqrSVYV2fTbMhgLOBIaBAHIFGyK5kQ+6hGVEPCPRZHS8tQ13VDG5yul5YUVKNOzO730yB81LIiRnVfTXKPrMe0dWSq+6dRXI7cYykPkwEvnz8LSkKga7Q6SU/128o5nIJaBaSbXpdyHDEW11WIKbP98n/e+KxNbNX50goYR+Xr4T2ttThfAMM0JFOl8ND3cZirBWQ0xhDT2EplrcWWRBFUezjP4Yvzv02RJBZT/ZKbUx6OX+GhIuUps3fy+pUZ9mCwrkIk5rXFIk5ZY1PHxQFUy3P5HrbQfRgd+rpEEUjX9lWvhAArgFWCQH7PEJKqOheihDF5rdgVQC9uslOWrY0Jlbd03M8UBYk77qv6/gxZdmlXvS9Tzkyez7AkjEyZNLKDH9SR8OH41R9OkTHVVzcGl/fEaJQlFzPBRCiGQOM+NGXPD1pjTApHEwmJlJQVZwepA/3ZiIIeIQaM88O9KfnNnNHjMU40V88TTsTqHpTBaQWk01DUAmU8WVuTpMtbvkNMRHV1x3vb2UohLRGMrbASESLJ5P1Lyryf3Cww7nfoHks+HNWNkwHoJ/9ufOFILxMxBAm5QGeGXFwLixP3epmsJ4CxFcYovoCAt7WCl2YamzmKNqbENBQkvVEmokjSmCqloVBbRtkXQe/1FOI9jDKsxZevZc3AptdTNSlYTE6Yu8CCK+9fTouuiPn4ylqDGdh3XvRIoxnftwCiA6Bn1PBL26llmGPGGNXAywdpbS6Y5GKLzVImvqx1IgOn6GLRRbWNZbjuH2k8cIRwv6rGxRM2fa4JmryaZFUc2YBN5MoxIDFTFC2pDxifA+82EAkQtUVFJAzLvTLeAOdJbcvmuIBkToWdjcFWo8hy5VWT6PbNO3RJbYJNudFFKOVhY4zqxCRRmmJGTnEWTNJqdWbWFUZl37QjoEeuEDurLbLOKhPt0iFt7Oglsn8wY7W8xovXX8LP5iyy22jf94SuRxDaPvHcB16hnlku7a+wrufOrVcQWSBBeOnGK4QY+d2f/lv4hu98O6977Sfynvc9zWzmwVasj0+JCPNFrZVfG/B1Bcnxub/nC/iyL/4jYBO1cbz1Ez6B7uCQ7/++72XJjP/7n3wjn/rpb0VbQfXme+X6S9w9Px0RdKttRjvXGssP/dAPkrwndmteqio+oer50S/7Wn7b1/73pJRoui3FAU/EEAXmrfB//eH/lrSouHN1yR/6rN/OP3z724GqTK5y0fVfpwHz3M2Y1Z7bJy3dTtUh5eo5Q/tLspkBhMeJ5cnHPo627UEM2+1WQVUbeMOXfjFsLe+PN/is/+7LWMWW1d6M33jlcV6qPI9/Qst73/MTuEee4se/+4f4jb//dyPthuvXr3PwU/+WV9ZL6tvXufSpn0JKS37X2/4KL/zYDzKbfeTW34fjwYcGopkRg06RIk6uxRYHJhJCYrHQ3/tMx7YTjaau2+QiQ95QgssLplbn5vP5kCQ6VzGfC23bMt+f4TE0TUPbZoeg1BHaFucM5+mEs+2akATram7cuKFaadeu8cirX0t68Tpdd4arO7abLfPa0DZgUqKqdHMNCKu9is26pwuRbdtSVQ47r1mfb7EW+gTLy/u0Yc1qWWEqj7GeqnYYWzP3c9qmYbGY44ylbRsODw+pqorbt29z5dHHqGZzmqahF8PB4R7tusXUHjmP1FXNYrGgTo5Fvch6Ecp6aZoGDKybLfv7R2w2Gx6/epmz0+MMqFmarSbavSSe/+CLXL58pK63fknXKas0GOHS3h7dtmE5r6icOiZvtw0pRirvYV4Tg7CoK0IfqKpqSHbqylNXHucM3s+wMwdpjg0dfQZarTTMqoftYr/cYY3kwojNm7fN+yXZrcxA1j9KuVJ8MQC/yD4rjwFSmrT8MQYzpVVVx8g2EUlaOSYiRlnSrhSNMsO7gD9RorZ3JTcEeGJUD84kybopQoy5bTEzrFPWdDTG5cYuGYwMCkPKGV1TIjIEweXYg9bDtG0lt/JaAQmdBqLZ6bQAnYbsgmYEQsSZRHLaEidR17U0AaxEMvSUlDnqsqkLJhva1A4iiFWWjQkdxvlRemMS6I5sHv1TMmPhQ8q1LQwxkZ0OgeH6iBppGKO6KyIJbyzqIJsUEMCDSUOCI0nBtItMvIvzBEbNtmmbiYISI6A3PSZlDCUSkWQZXOeS9MSk11V5AgmFdVUmwFmVRuj7ftDS1PeMmYmkxR0YQclhzsaE8yMQN2199rl44YzV7gz3EIX4aB/OGcjN6MaNxgq6rl0oFGgGfM/aNf487lljSKtrWJnzZW5PjXGgGIughX6JO2unMucSMaJFdiJK2BnfawrcT0Hi4T1Sma/3Mp6AQQ+qDGUM5/fEgigDVllHMgJzktlw5clmB1sYCA56Xh/eDx8rI6LMo2Qy/wUyMKfDYUYSy6T4fT+WaNd1JAnMZ9rxMJ17F9tUh9eKRYyyn6csven7Tj9Hb6MKbOB+6K8Ry3T67e5HbpibvhZSdHkPhiFHJYPa9ISkRk5EBa0MFUI/vt8AtFtSNAPwDerMLiK7YNxklOMa1pyUYyIjO3vibvHTDetWjDEDoGRmnZIBxHgwDodBsrudMQZjYwbhchs9EVKle3g29SputeX4dtavmHaOQ48v7rSsJ+ux+T0K8D9lxQ3xY0n00r2xwth6rAW5SAY3B0amDIDteDyWRCb4oKDj9NwWkFBy18NuIVKyTp8emGXsaBjNoUrRcVfz9kNhZfcbDwzKvfaJ1/LMi89R6M56AA6I9/0wrWh7sEl106pKv3HWcionFeO4evkyN+/c1so1o2CwniQ3AEEC2tYYA9aoQHGyQN/hjSekhK9rjLOEbUNoAzeuv0wMpfI7VrnNpFqTDNCF4TN8VRHJzLfKKbU86UY5vbWNzcAdebdygqkctZ/RbhtEhL16zmpPk9x103HlyhXEGOZ1zenJSf5S+k1FLCFEYkz0zR0et4/x8R//Jp5+z/PgIPWR6y/f5Lt+5Id59JFHtSXUW5rYMxNLtVhSRUhWsNFwcrzm0StHLCrPd37Xt2olNwkd8JPPP8ebX/8WwLJaLvjPPu9ztIUvn/tL+wfcOF5ycHjI2cs37zV6KCPBH/jcz+fvf8s3Y4hQCW/fE37/9Z/hn37+l/BHv/Hv8EoFhfkpM8v6O3+Ab/3nb6eeeb6vSvQngX/4bd+NsaOmT4HRRSIxJTxzYoJNbAmSMLbG1BFpWqxPWSfIkqyhriyRyKKaM5tbfuHZZ/iiL/uDGKPgMKGnqmakEIkmYu0MQk+KDlfZkVEZoHJzkuiGI5lJ9f1PvxdfL1ksXs2NG3MefWTJlU/6DDYvrYmLmrm1XP11n4k/fVgV/485SrIfQnYji4IQqGdeNYXyc1yOFMriWLTipsmSUq7LRmt3gKfSmjp1kjw4OKAJEekCe3sHrFaR7balaRRkikGgg8rD9ff/IouDy3zc699C0zTcfOEl1us1kkGt05MtYhJ9H/He5QUdQtAEMEminoEkC1JhMGzWHXsLTRa35z3n5xuM23L5gIH9sVqt6PseM1tweHiI9/q96rqmqiratuWJJ54ALDdu3WKxWNCtz5G6xs1miA0cHi2IQTBmyclpw927d1kulwNTbT6fc3Z+d2CwbDYb4PLAbBGRgcm2WC4JIXB4eMjp6enAdFutVpiNVqK6LkAXqA4U/Ds6OsI7bRFeLpc0WzWyCCGwt7eXTWWyRmBV4YK2Fx/MFjRNQ7SW/f19zs/PaduW8/OH7WK/7GE0+jaJgU0+iv+Pgcb9dDlGUNvtBCcw6rVNATvYZUOVvztnB/arHpLbeS9jSjtprpvm+9zn52FlGs9lnQ8N4ooxyRBU7tSbkjqNlYDQjknGkOTKmKjqsWry7KwjpKDV7BJneAX8NBjX4DGlhLOl3QzNb8kOdBPdk7JGTQM7bW1lEFsOZFajFL0qrfoaW2OYJNvp/jo/4yU3AzkwZSFmclVb2L3WhYU8nJfsHquukSaDmAlrtfWmMA6MLcDn+NpdN9qRLXc/Q4jCMBw/12TQL6/xTrT1BwZNroGNh1G2g2SGgtXiTVlTpi2w4/lXJkVpqZoG4BePd3rNpiwo7RaRIQl4OD56hy4dU4OQoh+p68zutS8xXnaEvgDKATlVDJN1DYwpTsd2Mm/izrwf73UhJc21rFcQTUQXiwI+WKst88aNHU0DGCjstBHqg1y8tveCJgoQgITc2hfzGp0fX2xV1S81ATimABy7gJzqM43r6YOlqQ/HR8NwGIIFKwo7YRi02bgwvwpzu+yNF4snMfWa24vgnM+mCGBTGkAdkwEda52u8TbvBTIhV5VaoUzAD6P7oXcGyOx0swsiFc05do4tYU09+cal7THl+CKTgBh1Ja2tgIqZUZa+qTUGKOvC/RixaiLXg+mJgewiriYwKWk7utBnR9gLZis2IEaBfu9r+r6FzNKrsv67Eg3IzrYp36mlHR/VZ7cJJDN+834qw/F5KjuR10jVuCf6AgIGrJMdhruIgvhpiCBGvCUheOeJOV7ymZUGUDvPwDSDQWsuGdT8MwI1E9XcyfnIe74VwUmRt9Jj8GbyvKx/Kxaq6dp0IQYqYK/dmWT5eRmncSYSBRA3gHvTbo4pQPnLGQ+MGrz/hWfzhzjwFRK0MoPAGz7xzTzz889ivSP0W91UxJGsG/iG1loiSbXejENC1HYOAzeP72BzRQnjiaFRq11ntI0xDwMwaQFJscdktkswikr3basn0MFsucflo0vsHx7wvvf+IpIBOMnMGiiPx8vtMvOGHOz6lINTq6YNMUboJ2K/2TwiVQ5adUjZv7TCOcNsUXN6ekoiMq8WnJyf0Hd2aHGYL5ZIiKNuW4ys9vboYqBrIy++covV6YxXP/koH3z5DsZrq8j147u89VM/jWevv8xitcfBsedotUfXNFlPDazo4na66Xjn0y/y2jd+CpHvgRhwxnO4OOKxR1/Fu3/2Z7nymhW3794Zv5OBLgRu3rnN5cXeh50XIpF/9B1vx+dAtQ/QmgXfdNDzOYvA3/uyLyVhMUnNMPo6YZzjziLxM9HR+QovynwJIaLG2OXNy4UWTAxYNyOJMu/8fEFar/HVgpB6jKDzK7sFeu9zYG4pJMwUovZ9Y+mb7aBxmMxW5+hCBUWJKVfyAq1kRqSAnc1ou3OOb95Q9kQUft5rS4qR3EYjJVMzLPeX/Ik/8Xkf9vw9HA8+ShI9n1u6rmexMCNTzhTAriNGIaWWuq5p2w7npgyMsa3KGY90ATfTDbFpNji3GfTk6romhMDt23d5/LFX00uLXenGl/rAclXjvZp/nByvqbyj65TJd/fmHY7v/iiPPP5qnJ9zdHiJu7fvcHp6hz4GthvBe606FQZgr9Mu0/U1COmTQDI0TSQlQ1UnQgTrPN4vaGOCGKjreW77lCFx3Gw2PProo4QQtAV2UWMdPPfsB1nurZh7h12u6LqOhfWIVz2qGIVus6bve7bbLW3bsVgsODp8RBloFtpGmXuHq6U6OWXGTggBITCjpm1bHnnkkQFAa7aB+XxJ3zcsl8qam+8vmO8dsFqtqOuaR69e46XrL2pLMZblUveF5VKNea5cusz5+oyD5QzpG2y+7i+//DKHh4fqAtsmVvN91pvA5aNLv8qz9mN3JAMSAt4W9z+Hy+CGc+M+tgNU5cfl91MdMuCex8B9g5f7gUYX2SQFLDFZC3X6WiNFK2TcRiyqW4OIsuhQ5jYYVJmhgEQ5AGd0R6XE5MaQMjtmaIedBH/eWdUbQRl5U/aUGDPIZxhy26jR97Si2igFBDT5u5bvrWvbaCCVD1QLRjlREcmtxPmYUyla7pzXwsQxygScgF7ea6ucL+0cKeUWYw1QS/C9c+3yl4+ZDRZjYcplvSCKllwBLdk5txcZcNPiyRS8vajlVk66pFGrrpyrOAGKi+ZeSgFni4mFy8cQJ99JW3lLe235fimpTlgM2ejEjHtJuR4DM2mSgF2c99Zm3cUPwQJ5OD56xsj0LfNScK78/iJgW9YMOzy//G1YEyfzvfyt/Fv0s3SMDE2bW8XGdRXADMlfjJo8K5A3Jv/T9XEqtD9tqxo6C6wdGLT3K5iUYyyA3odjeojsJrEPx6+9EShyDJojxlS01Ccg69A9tjt2mHDGsJivdv5uxCgYYYvb9wiCKONLhsKQsffOM+1gy0xWCdrKmgRwmeU/YV89IGNJmd1xZ3+yzoIJ2ajK5xikxDFFHqfalVvA7sQ4SSKz2YIUZQe9Hu/tOMRQbdtqTC19Xi9mlK6zPmx0Hcisc31e1ntFZSOEoMCbmVGWGWstKYBzabLOCc4nYpCsk1+e6zBWJR4Kwy/GHiFgsgO1zTIY1nhGVvlYuBOJVMzVcO8+rLFpYbScZxEZTDXKqZNJ//wU5ByKD2V+kcgluXF+lGJlTJnNaVCu59jVMX1uiZHKVxnnr/7CGXaA3t3PGU3Nxrn04GvjL4HKk/uMsyBxtZxrkkzFYu4xzqsOXK3MIitJ+W3ZviS1G2Z7h5r0dQ2m8tgqt4mBtmwkQzSCMzXJdCAjDTCbhuUW1F02qrEekwIyqVKJsaSm43yzpo0t1J7UtLh5Rex6wGBTDqb0EBE3/uwqj4RIKFUnILV91lUzI3OsbF4h6exxlrs37rC6dMjZ6RqJWk27fvMWj165ys3jE9ZtB97jjYVa6Dqj7bup5/FXHbBczZFkeOGD12mayHbdsKirvPlG7m7O+d53/jCvfeI1tP0dmo3AwR4hC0/2XeR//q5vpz3e8NVf9zc425wSI4NQZpTAzVduUXltUzG+0iC+nE8Bn4POojVVho3agjP87D0OtD3YgJ/Nic0xf/ytB3znu44JpuXR5ZxlEjqEl1FwZRErnjTCW//QF/FN//jbQAS54PRqrB9A2b7v6ftjZrMZIsL27hprPWL9mr2DswAAIABJREFUkPyIMVQ4nPEsl0tS6EEs3ul3MM6S+g5vK2ISxCt70ziHTQJNDyntfG4KYxtjEkFii6tmSNsjixqJILHH1w4TPNWspjvfYGLH9s7Jg99eD8dHHGUxL5XgAmalNNqwK1NufF4BD7z3O0yI8piUBqDh8uXLhNDhXHZl7TZUldqCF/aciOCiUOV5mIK2VZsjlz8ncPtWqwtGD7deuk7qI/v7h5x1iaZp6YO6sSlQNZqBOOdIIU02Gf0Ooe/w3oFYNusea+F0u2a17+i6EXQs320+nxP6nv39fVJK2jo6m9H3HdvtdjgXTdNw7ZpqTm67lvNmQx8MzTZw8/p1gkmZYdcNG37TNHRdx3q9Zm9hmc1mWGtpth11XZNS4tLloyExPTg4oGka1bOzliSJ2Ww26NHt7SsLb7lc0rYtTdNQzDVm9ZyzszOcc+zt7Q2vCbEnhMDBwQHeeI6Pj7GZIXdycpeuC6xWqwEofDh++cN7r1pjkyCjMKDK44tV8HKfluT2nmqvMfcNUgpLZNoOofpfbphPhbWljmW6H+KsCk9P2GVqxqPPH9puUtJ1wtqMM7kB1I8qkkcIHdaOAJQmBLttX5KrqCZmUwdJw98lt4+FqC2WUyZhzHILPp+fvoBu+bNC6PXetIYwAXWmGnslYBURklNALgytagr0pdTjnepk9inm85TjqHiR6ZaDUJMZCaVNwQpIUhaDjOBauS5lRBG8HfXxLrLElFUQKeY7heE2BatgKk0wvras0QPLbQIKTh1i9RqNz08JKj8jZY28KGEH/CuJiJ5bPcrBMGIyR0cwMAyg7xSEmyZ59wORp6CziJCM0F2Q/3g4PvpGAXLLsBaKecPFtQ0uttvvPr8kcaVoqM8bgTfYbdce5zQ791phy0kMkARrNUmNEawzgCN02lofZASL72dYokn5OA+nc7d8XgH/p88r7N377qhZC294ghlztGnnk0XZKjY/Nz28Hz5mxrD2MrZzA4MBgDFGdc3ZBXV34gOTwe0PIyaoLtXDKyjmbWMxywyGCdhxndXaWTZkzD8X/djpMVx8PIKF7sJzCkNd75uqUj05Nal0EwzaTsCp8fXO+nwcF9aTcv97fe84sLN0Hal8le9fT+WXpNQRY6Tr2yF36fuWqqox5VxPDThHjDTHSR51xS0AG6RYsJLC0hUkGZzPhbvMPpfcIeicw9lyfvI1TlqIiEk1uONQ5DKEXlDQUkE5EcHYNOyxJVdJaXRhL2z1oikNEHrBWO2u1BjI78RA99uLNTSN9+zL06IEgDOOKHHnupXn6WtEW2snS1QBTqefP7xOgFKMEZONRHYLdQ8yfsn9dYW2PDhLAW9445v52Z96Di3XRkyyUCrXeUVeXnpEK47rRrXiksF6y2OveoyXnn9pXOkN6jjkrFa1AXEeUhgcjpL3mBj0BFhDij3O10Q7WQz6nk4Mtus4Pz+lni+Y7+2xPjtn7+gAiYnN8XluW8k6cCJQe+qqUsHkyQWSDEa6uia1/QBw4bOwYl4cxBpmyyWb9Zr5YkHXdZwen5EQjmdn1FVFU824dDAjBWG2UKt1YwxHR5eoq4q7d05IyVJVDu+XzOczHr3icSKcbHsOrxzy3qefoXrSselavBX65oRIxc9dv8W/fcc7+A1veQs/s7fi/ZKIqnAJk0kRSPR9Ym+1xGXdk0G7z8DhpUtDUj0uegF8paBkyog68Hs+9/N4+7d+CzEGaLYcxI7Z9gbvfFtHH6CRHiIEPEIgRcfM9vzoc0v+5D/4F+DqD4k6XxxTN9iUAiY7ZAFDSzKohfz5Zo2xQhJ1hZm2YYk1OO/wdU3XNJrUScKhTn5jlQNwHrOcUVcANSYlZO5pz3uq+Yw+dsQmKMPwXIMmg+PwaP8j3U4Pxy9xlMR0NqvZbDrq2ubgNiexSQFza3RTSVkE3BghhG6HhRFjoqoh9pq0JWcngazDmyXddosIOC/UUSvmYpWl671nPtfWysVCtTE2zYb9o4BE2LSRFA3bDuLZCU2AJkAfAIQmtDuJpKlUk0MLMqIt3yZhvcUZSzIGVxvqumY2N8z9iq7tB+fUGCPzeY2xwnxZZddYZbn1fY+nxhrP1atXdH2zhrpWM4uEJfSJ9fkdtl3DlcuP8/zND+pGSUXbRG7eus5TTz3F6Wmr6xbCarFH124HVmFKie2my0DbguPjY6qq0jZXEzg6PODWrZuDicZqtSLGSNM0OKcg43K5HDbexWIxBDxCYr05xolh5hXEEztWFO/evTsYQVy9epWm7wjdg22ED8e9Y2ZUuiGaCYiSGSPSgXHsBMz3A+hgN/C9GCCV35UW88K+K2L8xuzq1BVDF9WXtUhmIEVJuKHdLAN3GIxYZUlVnmSSFlayCYArbodRqFw1HH8BAaUAWGb3eAfQvLSdCapJmbXqMGQpCC16JVGtWiNga0fs1TDJMIJMktToIfYBJkYBSSlwObcvgGQGe7JJhRgh2p5A1Eo3hmTRzgAgiQLioYtUtqfKIKZLQkl/DEnb1TLDLhgwTivf1mYnUT+CDzFGKuvy1qvtotq+OgIJ5bG+xE3mCcN1Ledz+vgiwHURsABwxmfQsaXKHQxDlRohFJOwEBBibr9X3WHdn3c1Dr11uQUqannSqKqztT638Wrx2KHC5sO1SSNoOg28p4ChsvcS3npC2hXhfzg++sYIpo7Juf5cwDR/30KE/k7vobG44Ie/69rmc3xRgG4ZXrObQN7fgEGsMm9kAOsgRodIr2L4BmyySMwlCWNIRiVZSu4+zMlYhOxHdn1hgI6RtOYDIpLj/rjbulri9gv6XDCSgIq+XNHj1nOWZYRwPBwfG2MsUoytjWVc3P/vV3SzVkGQKB8eeJjy7D70+2XZAi87rdIPOgqbadRzlDwnp6ZS5WfNn8te5hwZaCrt69pDe79zoNhWRNtcy1oxBf8s5E48dUNVoEtBMAUB9VYPQzdaiZVCsLgZOX8YAa8CdBljSNKRouI2MTU4UTaf0GFMRYgN3ju9NsFk4F0ZYSlFkvST9c1msLEiu9ugOOx83PtMj2GG9wWMAqg1V88s9LGzyQ4mFdMi6DSe9JVFRNfQ8trpGFxeJwXG6TW+3/wZiiiy26VRyBvTguH0mk4Ls/crLOsSacBZJKoj9SB5bEaW80caDwzKOT8HEnFSbRTRoOT28V3tNxeh2p8R1waTwgi0ibA9PgWJA5DmjAbeLz73AiIG6kwmzBsItsI4vUCLheoFYS3L/SXnx2e4eoap8sXqe1IIODzRFh0FS3KGdr3BZtApoJV/ZZc4/MFKjzubLVhRXZR+u6G0MwwAjmL0hKYbTCl2QCNrMLl1rGtbjLWcn54OvzPGcHp6zmOPPcbJek3T6U10uH/EYjmnrmYcH5/yzDMvUM0XXLm0x3y2wLkl/TZyfHbOeh0Rk7hzekxdL9g0jX52amnOT5j7y/z5r/0qVqsVv/GNn8gHX3qZftCFyIFFPuSUAtt2y+OPPKrnA0s0adDJefUTTxDbbtQGkpbPbhK/7ff+ZiyGf/Pt388P+zmtdXzr93w/n/bpb+XHf+ydahVfV7zvpOKf/rzjR3/8Jq96subq6oDP++RTPucfvJaTJMSu14qeY5gX02GsBwnDNXiQYYzRtcIY6tkM6ytAEz6nHncqsj2voLdI5eiaRhevvmgKxnvfM/T051pJD6qHSXICqUd6g7cGW1UkA6ENFP1ClosHOu6H48FGCJGq0k1D2VS6kPd9oKq0RfL0dEtV7S7EhbHS94Ux1lJVFdYmUoRqBpJBvdAnqmqGNYlAQ5Kew4MVSCSGDu9meSNybNbnGKdmA9aphua8nsOqx1lhGRKbdWA+q9i0iW0bsW7O3CeapkME2j4zQRCk13Z+Ywx17QdXwa5LuMogIVHVAjHQt4bO9DCfkcQRg6Wu56qzVlXU3rLtA4uqZrPZMJvNBvfU+Xw+/Hvn1k0ODw+xJC4drjg9P+FoecTZSYex0LY988pgzRxnHSlaDg8eofLnzLzQNBsOVjMkGZpmw2ymScdyuaSuVZ+jACyFSVf+lpKe/1m9YLPZcPXqVdq+A0SBx9pz8+ZNVsuD3CLrmM/3CI1S+S9dusR2u9Xv7BxPPPEEL774IqFPHN89pe8SLB+2i/2yR8xi3xPGW2HIOVcrAz7FncDnYhBzcZT3KcyoKZuuVIEjSaUrDIMGGowtCAWAT0ZbaXS11bbF4bNTdke0Y1tXOb5i1jAAMn6svg4AsGh7atn/dpkzGXiS8eedwC1oe6xqyOlzkgWbihzHrpMok0BPW8pGxqBkUE5ZbAZEr0lKQjTKCm9jz7PP3uBffsu382Pv+nH6TaBvtjkRV1FjZQI6QmV545tez5d86R/lza95krp21JWlkj67NxplrwjahhoTIGr6kcWaS3Cu57mw26Iydowy6gDEWoQRDPhQo1z3aUAOu2y44Xzka2Rw2ATRjsLSAyAmNjP/I87NELG5iOwz0yEH8Gk3mC8tps65gcGj502G1hzV3plobLEb2A/XcALUxRix3kES/EXk4uH4qBtFNw7Gualj1H/bBeLIzDVtcR5ZdOP7qCNyEXsv4LZgTGGKlDUAyO30RXdu+pzy/il1Y3HAkBPe/B5OQTkZvkOkQlnqobB6831WuAVl3pYkt3xH1YBjZAtf1JL7MOMiU24gLxSwrqxvD8fHzNB90aK6UbmgVKiRxkxS/snct46UBVudcdqaWuZA0WjM+9pO26c4UnYSNjK2oZIUtnMTDfTp+HAFwB3ALBWN0KzpZtWEaHxOdmGW/H2sFp0kmQya679TBpa1dijmiCSVdzC7YMxU7gCgshXKmIt5H8r3tdWimfdzjOkHzVpjHDPjcLYGlOWfpB+vTwHWRZSRavMeZGqsiSQx9MniSXg3B4EYYi4k6k2qMbvJ1ykhouciJVHyDcqU877GWkMfGi0IWHUaNcblrqNR586gn1/abcdzl5hqBQ9gqIEkHfeg/Rfm1/D+wzUlsxnvZUnqhdL1EqPrWhlVNTXwuBeA03hnfN97RpFKEQFb7op7i9QfaTwwKPcNX/Hn+OKv+ho9SLF8/Bteza9/41M88+JLvPUTfz0/8n3/jtc9dcTn/Ze/g+/7f3+Cp59+HvqeomBsrVDNF7T9BsQQmwacVWtjYazqZLpp6QieLRY0my3kivz6RIW7Y+yxBow3VIs5B8sFt2/fxTi9kR0gocf4CokR0wWi1WS6Tz1daJlVNc0664A5m8tOCVfNcAJ9UIYVgHgFkU3tR025LOSMMdAFJF84ddmyKmxoi0mE6q7cvHULYwxnZxv29vZ47zMfpK5rDuYLDpYzzqsZm9MGCUI9Mzz15AHP3Tzl9skaZ+Dw0hH9uqcJW5puyyMHR9y1DucqJBne99wzvPaxj+Mn3vvTPP/8B3QTT5CUyjcshrWfgRieeeYZXv34EyQjCiDm7/v8889r9dlbbITP7eCGLLn6aZ9F7Wf8vt/w6az/2l/iR6tLdOtj3vfepwdBWRMtb7ya+KF3n3AA/PiLc976xsTf+n7Dje1GW4FFWJEwMSD2Cmt3ek8iZ/gQVPkPMyrj1e03dKwWc6yF7aYlbbZQ13qe+oizltBtMXhsFF3UrCOZ3JaEy+y5iDOea9cuceDgF28dI0SkV22ilBKmqujaBmOmN7Xh+MatX+LRPxwfbnhfGBWWros4R64QObbboNUlN61o72r9FLODulaQXitLCWXdlJaUSN9vc4UmDmBQCEoXDyFgUEHWqqommiyRPihF2zkVh13OF8y85fx8g/OHHJ/fZb1pmc21FX02q1lvOw3E82S/yLBQynYi9nFg7tZ1jSvOTtbk5/ks7ApN1xPFsVgsOLl9l8ceu8Z2ux0YZeU9qkoZJsfHx1Qzz3rdYx2cb8554fpLbLs1zs2x1rJarjg4VDZgCCEDBZ4YO5qmYTFf4V3N/v6KruuJMfL8888P+nxVVWVm4RxrDfP5HGOy+3QIXLlyhRBCZsnpeT8/P8d7Tz1zOWEQZrMFHqfMlrze7u/v0/c9p6enysCrA/XMMl9UNM3mV3SO/loaUQwYqwUbiRirUIcyK4sD5hgclWrth2LDjUG6HYDa8b4z9wRBIqUtfXyfpHTn3QPNxzAAHprv4iYubeV9C9imLQYqyqGGK17Bo0lAP00wynFPWQL2YrAHyhiDQYTdAsapwZCYpJpyGfyZjpIcFGbeINZuFeALEtm2HdZXhB7e8Y538c++6e289NLLtNsGlzyS1ODCYlh4T0yJlAxOhKbtsZXB9pFnfuI9fMWX/VnsouY1b3gjf+bL38ZrHjtgbrXd1Zm00+47AEyQm1E1jtLW0LwmF8F4o233ep4KUKHXcLq3l2r+9NrfD8y9WKEugEbUFAZn6qxtNJp2FMOJkBJJOlRVxBBDACNjy8/QnmSImR0/BVukzNtBWywN7ClrLSHlOCK7vU/bgndbD/VxhaV/wMD84fjVG9MkbGpKdxHc1+fmNjoK00Nj22qQ0tEkW3Li7/2oRQgQY2mJSjsgtLWSAXWXXeLL2piGQojOzwyCy73JPozrbkyRNDFHwZjB9XB6zw2vLe2BMoJrZUEsQjfCpMg/bV+FXbdVM/48MObKe91nDX04PjrHUHwwQHLDtjwtRACDY6adgFHFhVPnHnleTcBvAzZPNJNBlR39uGlVx6b75ob32zs+1GMF2zOLFTU8UHBIgweRrB9piuxBiS08xpTC5AWZC2Mw+InmXZHJGJ1ryxqycz4ZC0rW1Dg3sqqs8ZoXONW9rrJRUkqB+WyPNnXUMZBSoMhbGcsgAwMVlbVsmxMkQT1bKXYSZcyNrBrOle+n76U6vXpdDZKcApIDYzDlLrSOFJShO5z/XDgt8jFj7LfbUVGKeQBSwNcBnBuLA9bMkOwZYE1m3RmtFhSmrRpXuLwOkcHc++sa20LawIGJuQ2XwXBDteEtu+Ygyu6zzmkH5yQE1WN1QweD/tKRsg7guFc8WEHjgUG5v/ANf1+p0wZsSvzCsy/y7MsvcvTYinZ9jrEQ5/CbnnoLn/aFr+eyu8Z/8ef/7ECzTikQOwsxZs24XHEMfRZNzCMJpo9EGzBJ6LpO1wBF7cBYjLVU9VwZXlLRxw232i2Vg75tBkc0A9goROkR6yG3pbDVNobU9xAieG1dSCGqe1HXM9SuSsLRpwxqiVaiDJiQq07DwmGy5pzDhESw6gYbuk6ThMrT9Q2r5QGN0wsc+h4r8Mp2y+nGc+3aNcTcZX26xvsFEcdiXnPVOm7dOebOjZtU84rVcs5isUBE2Maes/OGWb2iCRGzqLl89GpSsgpcdD0gWBlbJ6qqok+RL/0TX8J3f9v3Amb8HsClS5dU4DUmqrTlD331/8Tb/vJf4p/+2a/hj3/9V8Mi8La//pX87P/w19ku5pyfnSF9cXOacb25xhf9Dst3fHDOM//hFj/5786QuD/mUxL5w2/Z8vm/2fJTx56/9j1HnHXb4fNLICD3W30nQwyD2LQuCNp2VFnHaXsOyWBDYD6vEWfYbhqMrzg4OuD0OBK6jpg19SRG7HxJtL0uoTHwn7z+EaRacLla8APv/UVMNUc61RVYHR6wbreYrse5mWrYmUlgHh+2qvzHHMUpT2nGk+RZhNnM0rVKKddk0k+C3129p6GiQsSYUh3O2gRW2+BSUtp4CAHnVhnM6rG2IgZyJazP+g7aym9d4uTkLs6DMxUxKTtzubfg5VeUnSfbnvVWNS0rYDa39F0JiMmVKF0vZzXEmFgtK5IzGIl4C31o6BHcLEB7jlss1c0JBgdWbytS13NwdDi0dm23Wy5duoTzRoHqNCYCRWvOiHDp4JD1Iw137ui58t4zWwiLpdLmtW1Okwu/qvCVfnfre5arOdrBZ+i6btCcK5pYej49TdOyv79PXc+0Hax2zJIjJa2m9rHLlbSOGHuM8cwWNevtOXPradswAH5N03B0pDp2TXPO5auPYK1lGeuHQf//jyHF0VKETEEGVK9NXERyZRtRsG6qB3cxGFJGmAdTgq+RMafglVHXdEkYG5HoAXOP4YFNGtyIRGXJmV3tjpLsJbHqgDppGRgDxLxGGyaJgyGZVgH3OIJQg/hwEWqJ2h1QGIQJUYewohtXQoFcXRerWmt6rJYY1CnMeNVwQSSzydTYKqaINRXRCNELH/zAS/zoj7yLb/v2/4f12YZus0W6wJWjS5yfb4AEISCZkS8eqCxtp0zYvs8Ob8ZhkuBcwool9ZHQb3j/u/8Df/oPfwmXH7vGH/2TX8yl1ZI3PPUkhwcHJCKRRNe11E7bzSUHY1rcjHic6vemLKDsBMkGFqlU1EWACmxUiYlkJ2yiyXy7MHdgV3h+BxDNrrxB4qArNCRkVnaYbtoiJDibHfcQyAYRBVRORArDTz9QE63ijl2KPzq3ElFiNraIw9wUk0j5uocIzmtLUjn+YOXhevQxMKz1WEtmq5md/4terYJw+vxSDDNZVH7KnhsTW713YuyH5C3ldjXVbyrphYICGl/E4TlT7aUSe+AEl50ggyhcPmUClX9TutBqlaau1xONysm9hjWjo2VZywqzZBKPl/as0r5anFkvuq8WLbmLsbyxHya4fzg+qsYISN/nQlJMS6KCrx9inRtBm/JznvdpNFHRtVwB6OmnXGTAXfx9eXy/feXe52U288RtVZmpBWSL+p1MDRPnZL11C2tahntZXTjvBQSHgqUI0aj8AUwLfBP5JWPy/ZBBw9y+anDaJmvVaCPahLU1VixzvyQRqI3K6BQQcbVMrNdnxNiTJIJ4Quhpmg3L5QF1XUzxYgbdCiCWcN5grXayGJkr51wihRmIkNdBiEGwrh+KF1BypgLCKr3KeRhpNgZEQUZjFfDT9S3snDPrQFI2zcBnMkQa2HcyHJPReTcwk1WzUIu/PXU1z7kgOFdR16o5r0WPasiDRCJi9DNC10wKJz3aVN0Tg+BdJgmUNdmUNT/HyXnOVW5vuMZquMEDjQcG5W7eXWd9E4gWKpuo6iV/4ff/HjbtE6Qo3Dk+IdrEwi/4/L/8lwZADsDUNX2IWCpSCjhXqYuHyQt7EsQI1Uy14S5f3mdzesy2EQja8uGSIXq9CKUFdTar6CRBH+nbgCrvg6BtsNHmr2kECQG817zAO77mq/5Hvu1ffA8/9O/fxXL/iJQS2+1GgTdrBw0Vk4SYRocvCWNLSwkgByFs70a6NoYUI6aucHnRkmBYZ+fPk6ZVbTqvN+t203Hzxh2CSdSrBdial16+zea0IcbE4d6CejZj7iNHR0c0XYuzlsXMg9MWrquXjphZw9f/7a/TQLPTdlJiQoIKFle14z9/62/izAg/9573se62WBkbN60Y9vcXiBXq5ZLHrCNVFS+t7/L3/vFX8pVf8if5I1/5lZjZDGdgUc8QSRwdXabyj9CR+Gc/+zI/Hd/MC9dfZgMkWyOEwawDLHOvWjSmDSyM4ay4ecD4PFF0ftreMswpY5hqWVhrsZkS2zSNLpre8fi1K3zGp3wyXdvyLd/7fSRg5fd46hOf5OXbt7nxyi329w8IkogSeOzgCi+88jyP7i/4Dy+eEOJtZtbhqpp+3bLcW8HcsT3ZqstfjLk1NotWJ6iWC5q+edDb6+F4gBFjJMaUN+zCXhnZDn1IQ6CsAJuKjirzqojEi7aDOqvtsH60XVd6sgybSmGUqf6apW1blss6g0taWSuJnPeevu/zaypSKMcbsaywtqFpemWn9YEYJduiS66ukxl5ibpWl7+6HkGB+XzOvPa03Vrp4n1gPl+xbjas2y2Xj64MG+F8PmcxX5Cyhl7btmy3W/b395nP56w3Z9k4ZdSLmC9naqiwusRLN24o6OXnA3CyWCzG+6pvOF1vuHy0D2RQ0qgQ7vn5eT53MJvNODw85Pj4mMViMbTMtm3LarXKzEZHVXmsNXhr6UJL5dVJ9saNG1y+fDAkDXfv3mV/fx+iAoxnZ2fjuZnPmc1m7O3pRnh8fDwYWjwcv7wxFccvLDIBTC7Olevi8Vgp7uq6H07vIZFiuqIJZ0pKnXAF5MgaIzHlNj+0ip6ijOZDpgS/jmmoPm0RrKqKEAPeugEILolE0QuZjikLyzmHN2oIlO6TDBgywCNlnxmrwgrIqzuqdW6HPVhatMpn+doTJeR+VtUnS2LpYuLnfu5pfuAHf5Dv/55/TUqW7abFY+iblpmvqKyjIhFC4vTucQ5OBSt2EEguicJyuRzZwNYw89mYy6KAX0zUxmgBsg+8/MwH+Bt/8X/hNZ/wBj7vd/1OjDQ89dqP401veiMzXyEx4fxoxjBo1kyAV+vs0DJXguPxHExkIYwmIlP25LR6Pm0lhrGNtTAsSxwwvb7Tn8ucAqjrWuPMfF5SASDiqE9aGJ7lc0fGUiIEueezgxHETqv9pUV1TAid0fbfOGmXLS1FD8dH9xiZ9uPjMdkf18SS0GmCBt4Xg4apSchUZ1D0/phMAWOMOkTLyLiRVNrmiutqBtXNvffcdEwZpdjRPIIJS07fP10wp5Hd1xbR+LjLSFISkWrKDbZwYievcTvtrdP2VbEMXUXKgPa7T3o4PuqHHeZU3s8uAHNiypptdn5njCFqvYYy/Y3TB0ZyDmezQYOASFaVM2jbKgkxuyxmuJcZV36XH6GxRhpjQCndFffGhNb6LF2gYM/wXU3Q8rlMmW12iG0m75Dz0fsdSwbjClOIst+54XXDrYfGzrpm9IhxKo9jVFrCGIPPILnzuTBmKsSocVxp9638jMuXFhlkFPr+F0nSEWJHXc2w1uPdDF8JIST6LtD1a82J7IxqkJ7pB51f1chtmfnFAIg514PU+n1s2Q9Vy84aj/faxTMaSuj5H/dYj7EB72uMWRBjm9e67Ert8ropRVuvrFtjTKDneTYcU5mrBcCLMYNiySM0hK2w3pzqWm3mXH3kGt55BtaeEWarahJr1Jmx3JMq7dSKWUpIv4sec5IOSW6IJ/XOnPxGAAAgAElEQVR4yr8VUrqbPsJ4YFCua06HSSMGgnGcn274U1/zTfxXv/d3YixsTz1/+uv+LrdvHdP1uzeLVtctLkIoyHVlqBdzjIGm0ZNZ4Uj9ljuvdIixmlgtFiQLqQuYEDRAFBArg7B3iAnjK6CCXrVPcHYIxCUZ5ns127YnmYR1hr/4N/4OXXtCvdqnmi/otxGCJnopRkw+Tu8qookjBdu7wehBRDBeq8VlgUhWdKPt1YWDXuu2gZ7V3j7rZsv+0SF907BZr+nbbgAA182WxWJBbHuOz7csFnO2XctiseRkvWYZImE24/yluzz2yFVmM8uVS0dsT1sWlYdLl9ibLTCxw9DjfMWrN4k/de2QLz9OtE1D10V+7H2/wFMf9xTv/8Dz9H1QB5jQwf6MKkbe8/M/y3f883/JV//1v8p1A+3123zD//5/cvO28Lb/7Wv4B1/+1XzG5/ynrL2j35yTui1nqbRt6I30ix98YQxKQo9hslCJZVH1xDDntEmchZB37/xnM2XB7S6i97rkTOZZZi/YymODJUXDizfu8I5//5NjWcY4Trbn9K9Euq4jNR3/5Bv/Ee957lne9LqnuHn6Cn/ubV/BS90WoeaTX/skP/2+DxDbFoxhc3aOD8pSlBDxDmJo1bACdbd1SQGIh+M/7hirzKrXVJJvDVYDvrKEkLBGg88CJgD0vTCfKz1bcvvdGIA7QuzwvspB71hhK612gFac4hZX1YiMAHDbtkpXJhI6NRrx3pFijbU14fYZszn0Gw0s6srn4oRluazps2C495a+S+zt1cSwpV4Y5pUnpR5BtdbquuJs3XC2bjk4OuDO+QZX73Ht2pzNests7kkhsqhn1NWcttngXMXpZsvpZsvM2ay35JhlxnGzUdOJbRSiWFarFSLnzGZqqOCcY2YrjOu4e7odQICUAvNVzeH+ATdu3GAxX1FXs+GcF2BsPp9z+/YtVqslzlnaVoHOTdeyNEtMgkeuXOX4+M5QcNnfVyBwb+8gJ9fKTkkpsjzYZ3tyhsnXcLVacX5+zsGlPeq6Zn9/n83ZOVceuforPEN/7YyisSEiQ4seVlSU2Iyg3f/H3ptH65bW9Z2fZ9h7v8N5z7nnnjtXFRRUFQUKAgoY0QYNRAgiTq203S6zbDsxstJR0w5Jr3S602k7aWKc7QhmtaY1ihpNpAGZggxVFENRFEUBNU+3qu507hnfae/9DP3H79nDOVWEIrIUXPdZq9a9p+573mG/z36e3/P9fYdIxAUBpBrmUN90uLlHZXg5XPakGw1opkwCaFxEEciMSEr7ne4GCDvM7jDGEFT6M8qxsfGsg96BIqQ9RiscEdP7NxWlQx61AI/Rd8mrwmRRaQ/pGgK1F1sMkZiQCi/DgYNJev/aahYusKwCH731Vt7x1ndwz+fuYjETCbhNfmaZseBrihCIvmZksyRtVcSoKbIBubF45VHkZEYApO7QJP5SOjF4UF2jQb6LiNZegilGA6aLOUWW4xcld932KR578EFe/Zpv4fz589z8oZt4+ctfxniywokTJ5opkApP+e5bj8AgPkOHD/rCbAsE3xTQ4cB38mSHrCf7e3sdewBZH5jrH9Cax4Qkn22lhaFJsj0o9es3+wRkhVhLQ6cx6dZavOpUAjl0iK2UV5K8ZW5Z8VCQAKg0x5p1Kz+UMH9lfPmN/nxspNjQGJ0f9I/sJPiGvuQKaO+Lw41kRXPAj086Z5WWBkV3r3TA8GGj8/7zNqx9YTd3LGdhtfsngG/9Pw/LXp9sxBj/XI6IB69rWuv/HM93ZfzFj5b5RWgJEO2/PQnAqlK6h1GpmdcDpgBClL1Bx8aPToEOqelF5yN3iH3XsOIVWjzqaOZWeni6R43OO6sIdZhJ11jbdFYoKAlpUzq2jbdmHWgApf6e1V6TqFDKJtZU18TsX7P+++qzaeWxBh8jmkYKKQ2uw36l9BRtnhQsRWLZexDJpm4T3QcDAcyOrh9ndy8j+EhRjFkZr5IVyds5Onb3Npnt7bJYTuX81DYjLH3vN7CiCgsBkdwPDigkiArnS2LM29/Ls4Ist3gnaVdaGcpqjtF5+r2cPE+yfj3EmoIsKwjBUVVVWp8cLgGEBxlyAaV8shWK4usWmrW5B86pXC42FqM9zmsiFVCzWE4ZDlbQRiUf4MS8UxK8F5WQfWwheQTee7LctnWHMUVaY0lQRZL3KtXOA2mGPLXV8ymDcg2FOXFT0Rhe/Ozn8tlHHmBUiNeQLx2Pn9tEFSbRMCUlSGnN865/OpuXdimBi9uXiSGSaUO9WHD85AmWS/GKC5nHjodc+7SncfnyBUbjAY+cPcdkbZ3aK8p5hSoKvKswMRfT8+AgJSIppQiZIUuHOB8jMXXJl8slK6MJS7WETPHKr38B7/vQR9lf7OOLIUE7jLbCemq7Wwo9KlD7NTEkqaoCdGdqqXyAXDfGeIJmG+mIBy9fTlbkVMuFbJohsHd5GzvM2Th2nK3dHWIQw+miKFguloxGSZKmAoXNmM9nqBBZLEpmi5LRYMD5yzuMignnt8+TmQFfdcNp3nvLB9h43gtEUuIVJlM8kC/58c2S1fEqZQqHKEZDjNGcPHWKz1y8k0E25N/9k39KXkx4yQueyd7lXZ42OcLTfvaNvOBVr+LXf/5X+Ol/9bNMVUkYjPi53/4lvve/+RFcblKzSxNDSehyqnGLKWQDdBCfl9gcbAiAZ5Ipliqy4h1n8iEPLBeftzDoG9B2aTfdYhxUOgqlG8AgsrsQHVV4YnjD3s4O0+mUWFeYoNje3uZNb34zX3viBr79R7+Tae0YHVljOav49NlHxKBbaTmQGJFGEiIq1IiDocYEYZFiLG5RE5YlV8aXbgjDTQ7DzcYHtICBbA7i6RZ87D2uOcz1DmVWPJwapleex5bxIEy4ugWHgMSSGzBfXpYFuPRYm7ddkbquUTq0oQPOeQajIdP9kqqaylrkDGjHqBhQLpskJ/F5M1YxyMUX0ipQ2jFeKTA2oFTFcJhDlM9aVTExzmrqyrBx9AyXLl/m6U9/OpPxGKXFE7EBVeygYLFfkec5ly9fZm1tnfn+ktF4gPcSlOBcLZuMySQAYucyy+WSLMsSQBfZ3d0lRlmn6iDXalwMyBIzYDwek+d5u6Gvra2lFNYRKysrLJcLiXavKopi0F67siwZjgbs7u4mNl3efg/T6TRt0HLAWS6XrI4mlFXF2toal7cv4pyiLEcURcFsNsM5l2R77kBa85XxxQ2FeIV551AxmQToSAye2DsgGqM6TzGeePjqH16hObw+MaXMaJFGRG2IUTruPgZxBFAIE08n31dliEbCl6LvDqDSyIl4Jf+GlpI8+oA2GkdIyczyuJgWErG8SB3y4CCGNoyqOUBbK75tTkl3ToVIbnNCQFJqUQwVlKECO4AExOzuL/jAzR/hlg9/jNs/cTuLRYlpij8nAQRFKtiyRLM3KIw2ZMYQlMZmBTYVonXw0ggMAhzaCEHJfleWJVZneNek14osONfdnuWD3FtKgwue8WCIX1aEKMEws90pH3zfzXzDS1+C0YH3vPvdvOzlL2dna5uNY2usHj2ewAUFVoukxovcR4WYfOhcZ0ERI9QRZSI+gg4Kk3UAbp/NeHgOHWYcdSylLvgBaAtepTQeh0rrRZOg24LFWuqV4MCaAh/K1KjrXk+erx8u0SW7+sS48yGFU8WOhdmYY8tzdKlwDbCslKJyT61bfmX85Y2OedlnBzVDt43B9rCdfBy7OZvCF5SA832pdsPgb0DtEBr2ZJI+9YDsJ6uFOxA6MTBUw/RVON/N2eb9xRhxvvNLbKT3zbyW99u9Tjv/m/AUYltoaRUJyapAqG999uvBxrkAeGn9V5333OFxOFjtyvjyHo03XOwFPB0esVU7dWtqQOraNsmXdP8oJX7mQaN6Hl5BpT2+14jpD6WaQAFaZFdYZmJTAwKI6B6QBqH1HkufpgXxlBaJpzSQDoJu3T2lW3C8fU9RfOSaRlN3nXqMUVx6zMHaSPaFXq0kv9gDCKV+0apZPxRaWUyu0plHYZvGGxFtkgpBy9tpgTVr2Th+NadPXZtq6RprC4I24p1eVxTHhuhj11CWc2bzfVbGq4QQ2dq+lPY1qGsBv1ZWVvBRfDO11sznc1ZXV1u/7bJaUFVzlDLkwwFGZxL65puzugffvwYHQ7jk03i0GmFzBz7gg3hPO7fEe0/tqt71ND1/cA9GwNa6kjkqNjfyHefZAGMyynKBczIPGkVTXVZkVog1IXYMS2XkOkrDwx9gSfYZ+l3TROayD3Urz5V95EucvqpReGOEgRnl5vroZz6NwlClLmwgEOolMeTE6FGmaC/wnfc8RB0VxAUC4EDpFM94zhle9KJn84e/9zEgEOqSjeNjIgvqRPcejkbM9qesr69TlQsptAIEX7bsKwV4nQzSrcXN91HZQApukzMscsZ2yJkTxzm/c5lzmxd56zvfQwiBwWhCZizBxVYao42knQVUe+MQo3jK9A4brXdC5YTTZQwuBnSeE40hlkui0bjpApVrqrJklHyf6qpmZsRHbXJkjd2dHdxijoowXcxR1lB7mQxEI4L2KJ52wXnG6wMinul8wan1CZcuXKQKkVAHBgNhwIi+uiBEj6+7hWNgC1ZWJiznMBqPiZXm1d/ySrZcZLusiFcf4ZObF3ngwUdBRW4aGbZ+5qd5GsKCu91qLtmcmDyg7GhIOfXQdAsTW2FgI895xnV84vbbJUyD9J+CwQBCFVgbrGKfLNHEWPGlUQoddW8x73yADoxoyPOcYTFAKSOG9zhqX6UHSDER3DJ1bEQn7si5sLOFHq/wLa9/Lb/9q79BbRXl+S35nlECyGW5eHu5ICEiCexTBIYrY5aLwJnZgsujnNpX7QZ2ZXxphlJJruoBralC4wmkW58558STTTpFhw94gboOZBlYcozWKSRi3iaFxqCovSfLBdCq65rZrMRa2ZRi1BidyVoXJK04hoA1klQao2xcEcPlzR2MMWxPK+oaVoZD3LxiMV+SFRneq7azLYlHjhA9Nofjx47j6zllNZPQmsqlxFjp2hmr2bw059Wv/k42NjaYz/Z56O7PQp2xurpKWS0oyy6Z1FrLspyztnYUYy3DlTFVXScJaUatmi4U7Fy+jK9rJoMRuTJYYGUw4MHHHpUgBa9YWZ1gtSK3Gc6X7O3ts7q6Cijm8wVra2scO3acixcvopRiZ2eHGGG5LHGubk127aCgMJZQOexkiNaaPBcZ7N7eFK01w+FYvpt6ymgwYLFYcHTtiEhUCwEB9/Z2OHHiBFuXNjmxcQxf1eRZxjRJXK+ML374GAi1FEx2IA02nTqxqNgm6ELHduuzn/qHvX4aZZPeebjj/GTMJ6UPAjRtsQrgA0EpQsowIjVjQpCivi89Ix20rbUC4mlNCOJVqOTJ28Nz//daEEgl2Xlw5EanZNPY+tZ5L95wD21N+djHbuVP3/kuHr7vEapliasqjM7IrKYuK2wUBr93Hqs1vnYMiqKVn3qFMHZTsWh13l5D773UJS7igkdHRUheuU2Ii0+H8BCa5EjVglrByNpIiK1nXoxR0sMdVJVDGc3jj1zklvBxvvq516OV591vfzcvfOELibXj8qUttDWcPH6C0ZEjYEzrwWtVJz9VvbkgLynffVTxkEeWPvAd9w9tzeMaqbt44IQWBIPEVHMd461pl4rfC9S+86qJHgLJt8/71pTb9+Zx8z6a0T9IeWJq/DSAbQcOHgZRmvmseoCicldAiC/7oRTWNrWqyL8E+Mq6NSqqloGjTOgFF3TS+Xb+eoimSYPu1pZu7TSSaKhrjDXEKI49ws7pAGV5XN3+fufRmlHXJSo1AUBBzy8WaMF4ue97oF0IxOAwPqJjxOEEVFeyvhRKah1ZP8RWPZgU99KX6jVeculPIBn+07Kj+kSqBhDsTPGvjK+E0cyvw2cbZdKe0meIAUJd8lijWtzqwHeuPCqk0KTULFMo9CF7A0hAXCPDDir97HqP8Qk/VonF17xH2Z20icm7rldLEJJ0VUKhRDreKXJU73PKczY/aHyU/a75YJ0/nCCFcq/Lz8KYpX09+TxIOGRqTuvmT9UBeBGFTbZIXikwAe+luWRQ0pzrqQmsaN5QRhEwRK2FJaYM2uaIr74hKtt6sevMomqFUZp8ZJlMxJ9ZACxZs2wCq8rkn117h0UaC2urcuYZDiRFdsQkrW2ReVVS6AKUx6SwThVAZzpZCgmA6jXgDToBswrbrrWNHVme560Co65LajfH+45IIcukQiuo6oosKxApbSlzLlqpb5RHKctwkHd1LGBMgQodaz6EIN9e7CxIApnke/YVGsEBwuYLWDQpOFBJ2nukbgHIpzKeOiinczzJuFeRDHtBWcd0UdHKSmyeijF1wFOuJmADOCyqNdQNbG1Neesf34JJN9N4ssLJU2s89MAlrMnY2Z3havlyVlbHbG/uga8QQLhXQAXXMl2NscRsiM0zCYrQwlTTUXPX2fs5OTrCtaefxsOPPwrGsgwOv7/LkdV1FvviA4fWqCCfNXgOfBacJybvuANFpNa4ZLhezvfIR0OCUmC0pILEmGiuCenWCldWROfZ2xN5sEZhCkHsR7louy9tbQn4HSNZntg51rJYLFCrkcHKhMl4wqlqias8y+iZTRdpEiWZh1LsL/Zbx4d8dczFS5eYegf1gro0PLDYZ7ZYcPrIKTY3z7O5t6Q4LvIvHRUzNPOQsennXLJjgo4QA6eOn2Bx5nmUD9xCPH++hcpijJRzx4MPP4SxuTAHFYl1oRgPDNbmzOdzYiyetDOYHCLRHpxymLRg+dj9XUUJA/IhkGcZWSEG77PZFIMVOjJSQ8Qom4BSBqpKiJ868uC9D3DhoYf597/1Wyy3HuGG8Qr3LhzRgHGgxgWxFB8xrZGDD1IoRe+Z785YtZpH/+VreNn/9l4+jBz6rowv3ZB9uwlhiGS5JAKVSweqY8x5J0SVvtSj8QzSmrRYy/PVdclgMMRaYWxluSzkzlXs70/JMs1w1MinPMUgw7soG5iVIl0SROv0erIBG5uhdcDaHFdXaC0+mHnhqWqoqpQmpBVZLoX3YJjja0+eK6b7lxgWlhNH15lOd2n8MGSDtOzu7/ON3/hN+NoxHo7IM01VOb71la/iYx//CCCAmw81i+UMrTXbO1NWVgJGWwZFweqqhEA4IhjNZDBkd38PXy3ReU6R5wyHQ0CkjOsbR7n7vs+xNplQhwWGY8wGhkiJ1YblfMHa+pH2ui+rEm1Na4heFAXb29scPXo0sRNlr8hthsqzXuhEifeR/a19jp88gffSJWs6Wn0fqWuuOsOlS5dQhcUWlkxnTFZWCN4zGo24dOnSX+gc/as2WpmpCqDlwCUgycFk48NgSl8W2BxQDz+mGU3x1ZdndfIOSehq5IfKO4y1bacYo1ubCR0l4EVCDQTwalghwSTTfZ/eMyJLbN6T0Vp8lnqyeGHpNR55JSazBGWY6YiPngvnN7n1tk/yZ+/9AGcffpTt7X2yqlfQWSXJZsFjfYRgsUiTMbaf2+KNyGwTpw9jBLzTKIrBiKqqscGgMyvpqAnsstKRFN+eVr4jPphN8AtIYyGEQJ7nEqSh5LVCaMBJ2TejVhjvqeuaI+MJly/ucv+9D3P6zDHKacXNH/oI3/qqbybLhaV+oVoSzz/O2to649UJk8laD0BQCYRrvHfBRJF3hkOAbMNQ7qSAB43tm4NBJxc5KAmUNOgeewHRBHnvMdZiNB0D2nvAoxLjU6mY0i2fHCTuz+EQAj4pGqQQP3gPdObdhySJVYXJUipxdqVR9+U+tGq83JIsNYEGMYC2FmLjKR1bkkIDABxmcDZznyBG7V0DzicPJpvWUwlkEFKATs/TGM7356dpGf/QMOcSu05WlQScQPTN/Pb4UKd1gLZxiBJyw1ff+GyGeYbt2f0Mh0OyzDAYDZPcWyX2iiUYhXYBFTWz+ZzK1Vy6vM329g6PnXuc/cWy+/x94C6ROXRiMMubfGqJhFfGX/74z5IMQjPfSWBt4w0roYpEAZhUk8LYlBXtetuzgzq0Fnf1RBfSlAwO0XR2AE0ogvxeH/wWEFGhQIn8Ue5L3UoWoUtBlt/r5OhNwJzqvWcFSUaaAJuWRWcOrP/Q94E0aC3/hfRZG4msj5o8EYF8ukc0DZOwA/mik/epjMGY5JeqdAd0mprovLwjlUIUCGRZ58muTHO9m7UqPaeymBiJyqC0IWrDeLIu1zIaIhXa5lSuJlcGo2KypKiweYZSUk9ZIOoaH2rG+SR9N5WknBpHCIqIk8+VQkNsiBLu2UPulUqp0W2QQnPtDUWhKYohLvlmN76xzovCyVqdQLrUeEthOvJ9ylyOBIyWxkbb/CsK6NVTIGutNQailvT5Q4EUTZiF1ikdCEsXGmVQeBQKYyueynjKoNzffMnX89aP3dz9Yq6oS8er/quvY21lSCNFwgdJNT1squwcPm0qpjAUgxGrxzM2L85wVWhvrr3dkjs/8zBPv3aDB+7eROuMUFdEb3n43oewwxHF6ipuUVIuKnR4YiFVV5UAZLMStEFHzfb2NqNxxo3PeCYPPnKW3e3zMiFqQcDHaxNmi3nL3ogKfC0JsCCHk1bSqsWIMqhm0xUAUkk1n/6eQ/Qcv+YYFx4TyVsgokNkNptSFANcsGS2MxmuakdM/g9Ka3ZnM47EwMuf+3yuPX2S333/n7VJj5Vz5NGB0ezu7vKcjRPcMDKcPL6GjuKJEhy84AXP5raP3EE0Ci2hjzLRYmQ0GrF57jG0GVG6XWLUvO9N/y9biy2+7du+nckk53OfewjQvHpvj7/9K/+ccrRCtIqf/94f4O7jJ1nGjIvTfeKmQZWDBP93i5IPJTv7kYgUsXKIEJnLH99W8IOvVPhSJDmfT7oKIExT2yO72yclvhulWV2ZMB4PGfaSH/tDFqLejaUCv/obbwKt+OgDdzObbokHjMnJyHA44mzGymSdOgbKvW2adKpuBPaVZeOn/5TdoedZNxzjnkd2P+/nuTK++GGMTsEJkOeWyrs2XS/EmP49kGXdetA3gm+e4yALAtnIsVhDy1yLSOBCcwCcTFaoKod3nUFyAwJaawl1TVl6BgPxHRhlOc459vcWZDlopXEhEIMlzzwqdGanDePCOcd4NKAoxJsi1rLhZFlBVXbFuVKG3R1J81lZWWF/f58QHTc+66t46LGzPPO66zj78D0sy3nr57a1tcVgIJ2vo+tH2U9NgNl8yWBoUESm0yl5nvOMZz6drf15Kuplfdvc3OT8+fOgU7dMVQyHQ4rxiNopFIEquJatMxqNpABPYMNwOGwTXqdTsSooy5LJ2iqZMWQDCdRowDqR6Vasrx0RanldUxQFFy9eZDJZoyxLTpw4gdGKUyev4tFzj7K1tdV5SKTPXRTFX8TU/Ks50loeG2lqUOKtqoVVIQ/pTPab+6wfrtFff/sARvNzB9qoFnDtS7CajmsLfKiOXaoLYa9lKdihqpYYI0VSZlNqbEtyF7qGjqCMSYWVeLGpCD5EtEl7kxLJVURkDM4Fzl0+x+2f/DTve/9NPHDvfSxmC+plTXAeE0XCmwUIaIxSFEaRKYtDYfIR2mmUjSiTEXygqkUaLgmgQZJnvaMoCjFvthYVacNYGuDfWpuKTitN0Chd3wbUEtP5mohcS6IkjjZBK9oLG8YYYQao9N3lgwG+LNHWorVhsb8H2ZDz57aIMXLm1AZ7m+f4o//wx7ziFa9gMhnhQs3AZlyYzhjujDhvMsara2xsbPTmQEgMAUWmFa4OeC2latNk6TPNDjMs+4yj5jP2WZmt1IcOrGtrMfniu4AGn55Py7UNyXOUxK5s5llzeJH/4zE6ayWwxjSvJ958zdxvQNBmrjfgoqvq9F2Jh2F1SOZ0ZXx5DjExN4lBE6SejqoD5GR1EMCBHoDrwdiDc9qYZMAehWEcEygMwviJKiTmjzyfd1HmY2KUiul5s//LOhZCt362B3bf80gETJaxmO0TgmO5XCaPRddKU2Nw5MMh0VeEqIlR6ietI84vMbbAuyXZYCBgXIAYHVbJQd9Hx2icY8rI1aePc2x9wsbaEW76xK2g1AGGnPQPUjiAMnKhoPMMuzK+4saho94TmnLt2RhS4+wLsyK79bz9P0AXeAKgVd4Dq3v+4j3v8X4TUGvZJ0OQFFAVM5GrIqw/a23CbCIceA6xJYKeFLT3RnT/53Qd+mD5QWBRpLVKWazJCQrqBKRrpdBESJLcGBLTTadU+h7DluSh3ACkAqLr3mc11EokulHp3vs2bUOrUSsc/r7EvsMmAC5QVx5jkh2NCsQwwFGRGSW57CrglcJXBms1Khiccoj2IBNQUKdABzUkepdkoYjJoOvqQYWEPjaBNL45sofmOxcrKiF/1b0mnMhW5TMotLZoZQihaGsnURjZtrnrYhCoLNUFDVHqsGdn/+cDgVa6a8YdvoZP1oAGDtQUX2g8ZVDuedd/FW/76M2EZGr8+u/9Zp6/dgPv/PQHycjFw8w4fupvvZ63vONDTN2Cze2d7oUmFlc6XvDi61hO95hNHZUTI+fMDoXRphTRBYoi4/7PXQYXIRNpx7KOKJ1hjGdgC5gMOXlig7NnH5fQhdAzbIwB5QVxRkmHJxo4cuQIF2e7mLzg6tGEs+fOoTKRohCE3hhjINTpy9eKbFCQZYZ6drCDrwwYr3AacB6sISsKytlcXtN53EyxZ+dyAyhhqKjMcHR1jemyZGAV49EQpSJPO3GMG05exYnhRLygTEDZgsxYtM4wLlJYi3cy0QbDjMIF1sYjjqyMeeaZ43x830mX3M1SN67mGStX8Un/CX77p3+K/+4f/1P0UCSY/+Q7f4Cffcub+Vv/ww/xkfe8n3d99BZcVfO9X//1cN1VPPj29/O073wV73rHb/CCaskP/t//iu/+iX9E3JmxdvwUw1PP5kWL83ywMLjKce2Z47RMS2QAACAASURBVDz6yBYuBDRRJEX9ZCavxTwzRbgHVXPd1RHnA1X0uC9BCpPWmsGoA4j3plNhVSVKbzOa6Ofu4OeaWcp0vgBy6tqLX6FOlKo8Zz6dEX0pDMqYuqSq2xiUD5RrI3RZcte9mwxW1v7cn+nK6I06kFtDHT3JOgCnklSVfky73CfakIrMvhlzd5ASUCzDZqoNM2gX4Sgg23AowSVVKRtGjDFJz7oipOm0kJizRZHhXU1eSJR5NV1QB/Gbm80qRisrbG5Nk9w2MMgzXC1G6Iu5xG4fOzFmORUwypohoyN5S9VeVhU3fNWz0SZjfX0drTWbW5c5cvIEjzxwP7tFJCsGbXJsWZYcOXKE2gWMLtjd3RX569YmJ06cYGdnh+c976t54J57KbJcut2uZFSIT9vKeIJ3gf39GcSaWhnWVzfQBqp6yXA4oqrm0GxWCsq6oi4r6qpC5x3lezgcEkJgf3+fyWRCXVbMlGZ9NMB5L0DdZMJyuWRe1djBEGMD4/GY5XLOiTOnwUUq79jfvMSoGEhXXxtZc6NjPhcwcn9/n2PHjv3lzNW/CiN1cpt5LSwHMDojqicWK325Z/P/+55M/X8/yCRReISV1q++hW0mzCcVRP6ANkQtXWrlOnmWc8KclmKobpOwm668SRJOFyM6+Z7GGFA4tLFia2ClUFuWJZvbW9z+8U9y000f5tFHH2VnZwflFL52NCoAg0IbgyVH4cjI8EL5JyssBIUOYBUEI4Wy89Iw1IIeymeMKVRCKSova0nRBM44ueYueHIjCc9ZlgmLL6iUGtbJ3PJBJqEzAbIsl5TVTIIiQojyeOcETMxsSmjNWFYVUSmc92ijGAxXqGKF9zUPPXyWyWTMMNdolfOnb3sv3/NffztaiXbCGstyPhMZUPQs5lPyYsj6+lGGwyGlq8l0hiOl64ZG7CqgWFO7HpT0dXOqP7ealN0nAr1BPAVJgRgqtk4aRLFLkYLe4epa5EnKoEzqiveYekB7ECHotgHTAJ5NF10Ohr0Ofg9QVOm+yYw0XF0Iou54ihKWK+Mvb/SBAVmDDFE5dJOwSAOOHTS678vOuoOiFt80ZdC6ARJ0K2tVOpL6w4RoxOg9mcqHKItXw+wBEnvOPeEQKc3lHqARQttUq6qK4GuC9wQxY+kd4sUL29eezEiTQBDrSOOx1QDgeVLp9F+7OfiG4PEuUtefnw0SaOx+fOdBeoUp9xU7DgByqiGuNIZmQdjY3eLe2go82VCpuGjDG2JMeFi3voJCJfLOkyWoNo/rN3jS/0XriNIORS6MvfZ5vDDsoyZqm+7rg88v7yWlatID6NDdXpAsHHTkADDjkQApE63c14lxqpRlkImVho+BhpslLFJ5XaMEfDN60K0B0R7iOwm7VfoFjkikyFfafcgYI9iDEWunYxsn2NzclPs61u3naywhAEwm9lIhOPk+VRDiggblJQW6kYuaGBN7GGymUd60xCFltLD2ojT9I6BVAbZCMcAZT/ClwKA6EXNUjo+VrFFO/Pq0VrJWqoN7dFSiBBTlmnh9ap2SUolkA/H9lbUKghJikFIR4yJRG5QB7VWLAWij2kCKAz72KnbhOeGJoTj9+db8nhDnHErL2S6qpxby9JRBuT/58AfkhYLgV7fd+jme+Q3X8w3PeSEX55boRNr1ihe+lMFog3/2a78m1SiyWT3va0+xt1OyuXWJchnZ2pqyOpmwfnSFyxd30TEjELG5pV44lFUUwwGBSIiwcWTIrJqjlGJcWCZHJ1w8v8n68Q22Lm4yXBmLub4x+HIuEzx5QBAj2li2t6b8wx9+Lf/Xv3kHM1WhBmI2bk0mjAq9pF7muCjadIPi2HjMxb0ZQMvgCMZzyz//x1zzDa/jX7/3T/jZn/85BjuBsqrAmtYY8NUv/UZOra6hgyMqS27kJql9hXcRawy1C+AitYo477nj8ceYTuc8eOEC02pJHUPLyNEhooxhY30NX9XslFP+9vd8J++59WPcfe9DbBw5wmJ/wYte9FL+5x9+A697ww/zRx98N8FmrF5zPWqQEWLEesPj80v4aPnwxz/BYGWM8ZGYw86Ln4tzjvz7vp1HQ834mVfjb/swbpDxY3/nh3nP2/8TT7/2DO+8+YO8ZGMN9iq0q3joo7+HVjIZv/GqwE2P5aAaiYfIC7WyYqIts5yX35ixUzoerxZcLMXkll6iz5N1zp/KqJZLnC/JjBFj28aIuWU5dTdbjBGMxVgrUidXC3CY52gfUTbiKgchEFygoap2v991bIKC5bIipkW7Xsy/qPd9Zfznh3O0m5NsJICB5dKLT1wmHeUY5bHjQdayapwLEveddb5R1lqcE0ZJiDUa6ap476XjbWR+GBtxvkyPF3YeCspK2C4dk4NUqHqyrMCagr2dfUIA5yIBz3A4SA0IGA5z2diMwdUlWZYxLGT+7+0uWR2tyL2YDanKiiyXA/hDZ/f4kW/7fkJipmVZxjDLWexPOX78OJPVnO0Ll9jb3caYjEGRsbe3Rz4Qf7m9vX2GowHj8ZitrS1WV1e54447OLq6hgeOHD3KYutSW7Tv7u7ywAMPCGsvzxiMJLVpNBoBdXufjsfjtiv66KOPMh6OOHr0KPOqbOWrZVkSY+TIkSMMhyKNGQwG7WE7S0ygGCOnTm+gtKwhEvgghVKe5wwGA/b39zm6dgSAopCQif35LsPhkP39fUaj0ZWghz/n6Pw6OtYkdIe6BsjuS/f67LdmyGP6iVkHfcQ0AmJoJcWVMERt8vCKUuy6gLeNx5htgTGiHCLbEKYEiEDqWDfnVBUSUxtccvtwZeDyziU+c+fd3HLTzTz00EPsb+8Im8TV8rzeo2tNMIYsgikKjHfgPMZYVo+eYXN3m+WixqSClRBQ2hKjS4W5ASVz1/eKOjlMQ+1qtG0sP4R51b+2Wuv2Wrhksi1hL2l+K4+xSppJdAxFpTRVVSUJmqHuyeabxzUHe+8i1krCqC8Upo5UixlZnnPvPQ9y/Q1Pp6z2KbIh99/3MNc/6xpwS2zy41S5op7NwC6ppnvM9nbJClknjh87KfVO2/CUr6mR/DfjMMOg30Rprpdz7kBnunlc8/vKi+ceQbW8NGNTkE9zuNEGFSPeNRLpgww5bUAh3fk+015pmxLaujTXhhXY+cwdlN827ztPYWNXxpf3EOa8SO20VQnXVwks04l5A42cTqfUxeAjxnaAHECT2uijyLaUauRyiqg8wTWHN1L9nALMjEYHjSNKkBxNHRwOrLPtn8njtm04agHzGvZxILagWJ/FV2grS6UG8dg0qFoT0/mx75EH3brSzO08F6uYZl5P5zNZexNDLl22hiSY7j0lDfvIFabcV+AQBUTjqZ4aXAgTLc2SNjgJpTAxedGrSOjdG81o9sA2RKIhPKR/b5hxnw+Ia5/jwN8lAVOnNE7xprVtaEKMiVmlDMoI09y2LLJD7y8FQsQDP3cMOJC5jdFSjzTXQAVsk6pqhHGtkvRUq4wYkm1FPBiS1akNJNhB6Voajkreh9FZ+xm1ti2YFls7ju5aNcy4PBsmD+2MwWBMCDUZmezHpD0uSo1glMUFaSJqrSV4K3is1eQqpyybDyz1oY7SJG3WHsFJlqhoZZ9VoJL9DjqiXAJEozT5QjpDG20kcTYOxDvTemKwqACoikjaz41FB9+YfRCImIZ8q6RpahTCNFQNjiBra4yRLMmVrdJEL6FjIlF2bfpq7J3x2zkZY7vXtyy73r8fnovSPDFp3SdZtH3h8ZRBuYv7W+3fdYT7HrvMv/iD32SsM173utdJwbfn+Rs//vcgRrIiT0Z+gKs5/9icE8dOspyfY29vnyzLWFkZsFg6rn3GaR6+bxMdFRvHRthBTjmTYtuFGmtyTO3J7JBBnnP2/BR1bgudDzl5suDUqZPMZnNKKkI55/Q1T+P8+YsYq6mXJToVt6/9xhfzT37pLShjsMNR6pzKRlfWFS44Yl3LFxIlwe3C3i7DwSqzepmCE2SiP/7AOdZfZPneF38r3/Hbf52YGz794N288ZffyD1nz2JqzYc/9Um0V1x16iR33nsfqsgwuXSjrIZ8MGbv8rZcU6VQw4xf+Ef/O884cxVHVsYs45JzO5uUVYULgYceeJCLs12m+0umywXves+7ufrUNdz47Ckf++RnKPIcbQ0fu/NObvvMZ8kQqiYa7v/sPWhjWF8Z89af+wVqbfmtN/6ffOr++3B5xjv+07tYLGQx+Ia/9gre8JM/yXe89tu4//77OZVZQul529vey2te+VJ++TfehB0cZefSLm48wSjFkdGA+aKmIpDrmv/2uYbZbM7Nj0+4tPAJqJQDRzOGao8LyxGF0xzJhpyvDh6g+wvVgUMMB5HpfkE+HA4liaqOGAXaSDfvxmufztkL59ndPSgpVRFUDNxw+jT3nL8AVktSrKvxQUFdtb5KnTCgS57q3oMHlUl3SDVdf8eV8aUbQi5RaA2V8+hMJNrWIgfb2lNXkOU1NpPgBa3BJXNtazsJrNKe6AXEM3oEVuaPqwV0axbltjOjwoE0Vnk/8ve6rolBJ18Y8aSazkqK3BCsSt01WFQeokZZGOTgqhKtFUZlrE1GAkblIh/LMo1WQgE3uhCmmVMYnXHsyDp7W5c5evQogzwnyzTHJie4//77eck3vYRHHnmEoxvH2drapHaOGDxra2vUzrNYzFiZjNFas7q62iWarh5hbz5PzBkLHmb1knonUJcVi9kOZb1AFysMTUGRDbA6YkxE60BRFDgn8jutNRcuXOBrX/BCyrJkUOQt6FZVFWfOnGE2m7G/v89VV13FdDqlyHJiiJTVknE+YHVUEE8eZzgcJ2A1MhiM0qFbDh9FUVC6mslkgh0ULdu6kepMp9O2oXFlfPFDKdWGD/RZb3I/yGP6gEnzO/11GzopXwPCNP5wzb9BSsWMMXmdJVaSr1tPUYxu7QqawjVXXRHdMEX676MBWVTyv1uUJZd2trjn3ge55UM3cc9dd0sCdxWgBpUkn1prTGKLaGXx2pAVkuh+9fFj2JUR3/ryl3H+oQucuOo67q89v/ebbybzFdpKwRlDdxqNSAKqiqQQmO6zB++xSophVMT3QLjmXmyAnxACRQPqW8NsNuvWIxVQjd+qlyK18d2T9LEngkRVVaWwjub7lUMKvcaHMRm+8ngD+9MFo8Liqhkf/chtrB9d4/jRAa6qhbmXQr9slhEU5CjqumQxm7K1tUWRD9nYOMZ4PAElhyaVonU71nrHYm6M7Pv7e1/y3DyuDw5L0ANE08hiFEp3PltKurWEAEZFYuyS0w4CfPEJabDNfIpJjyf3hzkAEsbYddgP1Cc+YGMg79U/V8aX6dBSY0BqLjSwXDoIhyD3tGkAKi+Hf6lxU1hc6A5wIaTDe8PCMU14jHh0+uASi7+RkUlgQggKFetWWt2fi7KWNhVpTIyS7v7uA2/NqmiMIfSCRpRSrWessJMSUJ91vnhad8yfPtO5+WzN/to0W/ZTsJIktHYQReMnpyCFTaR7JFzxWPxKGyolqAsXLiYzfEgoSTtCFIm/Uh0jWml1gDF8uHHX/NyY5EPTiH/iPOn/bke0kHOm0mJnA6DSuUGQYWHIxyhngT54pRrpU++5G9Ze22ikY8EdtkbSqtk/mr1J9pG2dkqMWfmsJI+6tIfUaQ+Lrt0TRbZq05+G5qWEhQYaAcTblFAljLL2uiGBp7mxGGM4c+ZqynKBtopRvsayLMkLTbmcHzhfG2NpknBjjAII5jkqmbNnWQqZwuNDIGQWS2ztMsBjjHjEB6cxKiOm1NKAMPRjCnkIQacwzSgNjNClsEevUaaSaxgVYNM6cxAAa+sDA94rjJZmmgo+NUalzrBJjeEbaw8Ed3FeLFnkkNUwEuX5fRTPPZtA6FbReYgo9OQMOt2uoU9RuQp8EaDc5uYmkHzUIqyrIVvVlJlyUsxiUVEOrUdXJwxGQ86eu5h+O7B1ecruzoJoHcc21tjdW3Lu3D7eLdhXOTFK4s/W9pTVowXD1ZzH7j5HxKKZYUYZoYzs+X2UMhhbEELJ4+cuYqwllsnAH8OFc+cxQ8v6+gmOr63z2fvu47pTJ3n4/CY/89//Xe646x7e/9nbcXVNUQyog6L2jpd/zXN59Te+jN/9j28Fq1jOaz539iFm5b74lDTd2qj5nl//t9g3/1tcFJqmKXKu/boX8pPf/6M873nP43g+5Jxd8tp/8CN89v6HMQPpouINw0HByWPHmc3mqNVVMm245pqrObm+we//wVtQxjIZD3jFN72UrQrOHD3NVesbXPuCq9mbzimwTMOMD3z4g+xFuO22T7FqM/IiMt/bZzcrOLa6ikvJdRHHqRc+HxUtNhouOxgNAnd97gNcu3ot73vbH5Jf3iJ4SQp514ffQ15HlBJfp88OFI+880M878YbueWmW/i6G5/L//rj/yO/9BP/ABMVWVawO5tiU9FR5JGfeU2k2i5ZmDmbM83vf8Lwjs+MmJqcBpgrLOwulyi3kuSu0BrAkorZkBZH8yTdlUN/DyEwXywYraxijQatsEo08Xfec6+g9Cn5JuKxw5zRYMhYBR66cBGjgzAXo2KYW8qyQtkcleWoEHF12Xu9J+rGlTKyCCrDlYiHL/3ogwJZpkSKprsNT5ggvjWhN0bjXEorsrSboxzuKmw68LeHuT7wgFCevfeJYWfxPrZsORA/h0ZONk+MNZvJZm1sIMQlWTbE+zkkxq+iRqmc4XDQHuastRgT8EE624PBAKXq9jDevEYIgfl8zutf//2MxjZ1YQKTyRr7W7s85znPYTqdts+ZZQIQbBxdF/mdEj+uI+viyea9Zz6fY61lNptx5MiR9ufhcEishNU2q5bJcyNDKzGRtxYGA8tyscAYw2QyYTqdJoaTRKA3PlbNwbl5b81rrK6uUpYlWuuWRTcajZgMx8zmu+1GF0JguVwyGgktf3U0ZrlMnlxGE43GuMDG2hFiqJgcWWNx8SJHJ2vig3dl/BcNZcCnoCCrui42JqJVx5ZwPaCkkUb1AYnmnhHWSMN+6vw3QA5sISbjY2XwIJYYoRbALqSqXkviKImpoo0EMgQNMQbwkQC4ULG5ucUDDz3Kx279OHd+6rPs726znM+JdYWxImHRKELtKYxlkGmwOcF5NiZjXvGKV/DwI4/zubsf4Ef/zg/xy296M9/yym/nV37rTexuBb7nu17D3szylt/8dfKwxFiLjx6tA0Zn1K6U9+cCnopBUVAtliktVKUOdxSfvhghQGEtzke8kSK39gHbXmtPrEGrSKgrbCbPrZRGB4MP0hGWMkVoxC6x/SAd5k26pyABAb0wjpgRtSYEBaEkzxuQL5Bpy+XzW2Snj6IAk3luu+1WXv6yl6S1ybNkJgeK1IleLmNixyRfLee5sJhSx8BwvMKp01dhcmmC2QOanJgaMN28ejKwqw/g9UFHMXZG2EtB5mpsJFFKYbWm9jVgExsaUJ669libE6nogEJNxBF9hsC2gix0jH+RPmklnoDNnO8DqQ1Q2D90XhlfvsOYDphuxsFGQwdQNQAZNEmBiVHcJA22taJCq9ACX7JGduBZ8/dmHGxCP5FiIaD9Qan3YbZn/7kON0+693CQ1dyB8TbVJeYAKNcAAM3vHvZWWiwWn/e6ilT2YHP9yv3wlTNUIqUThaVkdPqfXoPymLQGiuVER7+QoIKcSIlkgppW9hli5yF7WI6t1RPD/xrwpkkwPXifdCEQ/dqCoAQwayTT9FJU5QHyriLEfnBUww5VErsgr9Ols8o9EVEqw8dI0BodYstCV8YQFZJgnN4T3iY5qUenJHhpwqfnpTmfSiMaVWOSj5zJNIQeCIdpGd1ZkeMIZC4QoidTI8hM68E9mmyweXmbU6dOUVbiBzkYr6Rk6IBbepSVb0ZnFl+XaBJT30iSrUealQ6PUqDJMLHzVrcKSq3JUqML3QUkJdc8SGuW2FgoYh27dNkUSNOtr2Ir4uNS0tJDLTVBagA235xO18JFR9AK1a7dfWJMt/aFEIiNH2wUcFQlunBIAF6IYiNitBZnsx47+fB8bJ5T5kuzHqrueySnz57+QuMpg3KAABrJAGG7WuJCJDOBalETdcAp30qGGpQaBEBfLpesrKzgygplFlx/43Fuv/Uck5UVXBWg9K3Xy3hkWV0teMxqtFOgNUU+ZL7cl6IpisdHNrCcPD7h4uO7KO9waJSxBO8IC8VWfYnlvERpw3RZMprPeesH3osuIr//5t/hdT/4fayN1rg0neOj4sgzT/Cyv/ZSfvl3fhetIjGPqDEcn5zg0sOPEtMEdYhW2QfAilmjnZecv/nj/P2bP4qLkaA0+JCopnJA/qprrub00aOsjMZC7baGyotRtVKK2lUcObrBiY1jkGlsNuRf/Oq/RPmawWCA8+CcaL/f9Qu/yIuvfxbHhhk3feoW/sMbfwm3qLnt5ffzy7/7e7ziJS/kI3d8Cqzi+/7md3PXfffinGNrb5+FHXLvO/+EE6fO8Imtj3DnHY/h4hDnI9/6Ha9nUERm+46veeHXsDebsjsY8Y6b/oz84pQ3/ptf4//5+V/kV97w93n/ZJUQA+MiJ1OR+WwfY3Me3TP84js9n7t4grywfOjhkqjF0BalJQUvQjEYEKIh2AKVWVgk0AtDo2Pv+W4+YYHuJpjcCDoVSsv5nFDWEBR1DFy1fpJB1OTDgovTParKsbF6lOO5YrNcMNEWP1DsTmueMRrySLVkYQLDjXWWe3OIAW000UtARZDS/EDHpPHSggTWVBwAGK+ML8XoOm7GqKaxIYu+Blc3KWbNRi8/NwWz1ooYNCHW2KyL+o44vK9QqQgQOnVsQb2YGC4d+zFgTNZKwkSyGtGmShtYql68xmaQ24JF5hkZWbeqUGGUSDerusKHmrXVtQTuzan8nBNHTrV+LT6K3Gu2WHDh0hbGeuq5Yzqd8vwXfW3rz3bx4kXWjq2TZYbt7VlbjD9y9lGOHz/O/v4+p0+fZj6fU5alrKFZ8qDykcV82YJmly9fxhTiSTe7fB5XLxmurGFUxsraQMJ98IzHY6qqYm9vj9XVVS5f3ObE6VNcfdW1TKdTxuMxdRQJXVVNsdaitWY2mzEcDtufR+Mh88WMYTFksZyxWCwojCZXhiqKsf0wE8bdYrGQCPbhUAIdbMZ8MaWua1ZWViBEcpsxnc04febMX/Kc/QoeoXGBaSgOHUut353ViY3RX+36hscdu4m2WPl8bDqA1KSVwl0Jg8RoKTDFPEB+x2kwUeEjlMuSnZ097r/nfu68804+ecfn2NraYrY/R8caq0WWTl0zyHOs1jSbiyky1lYG/I2XfTMmL/jTt76D73rtd/O7//GtvOHv/ii33vZLnL9c8/d++KeYLuZUIfL4Y2d5+jOfxQ/9xE+SxwWWKL51SJEagwRIaJQUoFG3QLJIU4sWsPRBwgCaQy4h4qIYJhsr4VlKKaKyqaZVCRT1qautJVwr7UdKm9b/yRiDr323T8WQJPpdkdge4k2NjyaFblm0iRgjBTghUi6XlIuKvJA17+KFHZYlKOXwdY1JRtWuYd55OZg4RDqy9EspXouM5f6Chxf3kw8y1o+eZGVlhZjej7w3Ofg0DZZmLrVhDj32ZjO/+jJrrTsvrINTWuQ9UYN3fUm2wmYN88Mm0+ve3NUdqNY/OHrvMelPbbv32peyNs/j4kG24pXx5TkaMNak5GeQI12tFJkyXcJqWh+1ERmV0QICKxTadJ6HXilM9IkppoQxhIQ7AIgJeXPgC4mRklh3gRZ4bkbD1mzmtqv8gUNjn9XpXCUpyDEF1ymR7xPleZsDcccCFKnsYWPz5t7rs1KBtmnY3Bfz+Vzq8STka+W1ijY0j5536Ocr6a+ML7/RfFcta60xUTPCyA7EFpADkmQxQoSoqrRrJzaZ6oIJghemTzP3kraESE3DNmqCUYSp1k847dZTowOS/Wml2aYMJtlURCxGCxsuaIVp9kolvo8moYzqEFCt6IIEGrZsM9fl75kEAeElyLKnpMmavSVZJcheLTiKNoWEZWmEUaqSbD2N2oVk57KS9jNhD2I0xmaAxyhL0Jo8y8htIUFKaon2mrwYMRgOWyudZ1z7TB589GGxgbEDVK7ITI6vS6JawYw9yof2tfJCzuYx+oR7WEIVpLawnirdy1ErYtUoGwRQMqbxoct6bMfYAoqiEAgiHba6TU4VMkGOjwFXOZQihV6KPF+WDANa0fEitcyA4EEFbBQ/PFn/kMU5De9lViklTTuTjmkxMZHBS8BE0+yLEHxsuM9PIOEc3subM6K8T9cynxsvcrHz+sLjqYNyUeMTIBeVxuJReY5yAV/Xsnl5j0kF+2LReWfIRYjMdhaoLOfcoxUXz1+AuGR9Y42H799s01ejq9nbynj0wXMMV1bQEaZbe0w3F6weO8l0b0+oj1rhysCFC/viBWYM2vvOWDK97mw2Q1vDcHUkwE9VYZRlZKUbdv3113PpU7djsJw+ss5DZx/hhuc/Hx/g7IN38e9+5bd45K6z/MzP/S9U89QF0ilRptnIvMKMx2T5AOUc1d4Oo/EY7z1luWCQF9R1yZ0P3Msd9zuyQU4xGrJc1OTacHz9KCePHuPkseOsrqywXDrGwzXObW9zcrLKsi7TJJP0NO+XbFeO7/nInfzD/+OnqVXGdq14bH+fd73vbfzRK19I/bJX8Ttvfzu/+j/9JP/6bX/Kxz/5CbQ1OKPR9Yyjp65j41nXc+NkjUcuXCB+9rPMyynv+aM/kE3YQF2XvOoHvh8Xaj5KJDua8yM/9mNsh5pLyStvXIwY2YyRzbBGsVhWfHq35I5d8aeIfilARYxS2AIRjcbzmbOaWVUyO3qC6f3niNGBT0Bc0Oh0sAFw6S8SMHxoJ9expU9LlHuGzqx83ipw9ckNXv3XX4b3JTd/8nZuvf1Oti9ts4Wk3e7mI7Lo8SgeVZbh2hrT3R3K3XkqpAKhrNFJcOQsWQAAIABJREFUKKBRKJPjQ9kyRrS2TZ5F12Gxg6d8e10ZX3jIQimdkYbtIUWrHMKcj2RZ3i5+nbypA1BdqCgK8agQn7Mh8/kcbRwxZm3EtjFZW3Baq1sZWSMry7Ku+KiqiuUysDLputJ1LZtKuYxUpSdG28rRtLa45P00HheSLuqWFEXBcDgmxphSRicopSiKDGMyLl68yHXXXY+1lsV8ysaJ4wyH8v7XJivkec5jFx7nqmtO8fB94gHXSG611kwmEy5fvsxkMoGye+9CKw9sT/fItQBok8mE6XJBuVgSvEGrIdV8n9WNMSsrK2SZEXZLiCyXS/J8wPb2NvlwgLWWycY6eWaYTqeMVtdZLpc0QTw7OzsMBnJv7O7ucuLECTGjTu9XBS/2BxVM5/tUlXyfzfUXI/skOTPyGvPlApVZBsmTT2vNZGWcfO+ujP+SEYPI/wSAO5gqBtA/APb/bP6tz9yQn5vHQ7+YBloJ5RO6iT4IA41IUJKSulws2dvb45FHz3LH7Z/mrrvu4eK580z3ZiJVrz1FnoMPjJTChRxDZGByXMwxVqFNlMOANlhl+L7vej3/39vfzmC8xre85rv4zbf8EUopcpOztnact/z7P+QNP/pj4CsGtef5X3MdWTHmBc+/kbs/+Qkp3lWz9jefTYvHW5SOd5aZVsrWDypQmOTnZghemm5GQXC+9WwRbxfaNE+VOvLBeZQGa0Uy2hxsyrJiMCgOsHEb1pYc8GXNjFG8+5QCFyTd1oWSXBtAZEPD4ShJZTXnLpzn9OnTktyoC+677zFuvOEMWkUW8/mBEAabRZyrUMpQhYpMiV+dW5RkJkq4jbOc33sEOywYr6ywcfyY+AVG+X6aw1ifkdOfb01hfLhYbjwLm0Z5AxvbxLLUURP7iqhoErPOQZSkSZRvWugHAI8WlIkC8IXkxeN6RXqfSdQCg1oCPa6ML/+hVURkbmn9i5q8AWT/f/beNMyyrKzz/a1h732GGDIicqgcagSKmhiKkkJAQcCmwRZEpVFu61WcRQXU2zaIfe3mitjYXku5XkUQG5FJRFEUqGKGQqCYaqTmqqzKOTMypjPuvdfQH961zzmRoFQrPk/18+SqD5ERdSLOsNde613/9z/olLw7WauC+DBGP0lj1VpY9MooMlGzCiCAF9aNEq5QUEA0hFhjjEqSN413KaVVKZGIRSUM2Zn5PgtOzzJBJu9BC4ChlUoNYpn7oswXdl7WKib3koRRSGCeSZL6M1l0Z/67eR1VVeFjYFzV215KA8iJ7xTJLoZpk+ebfeHOjn+1IWCYQ6x7ZH+IUYAZHSEGjUoSahVB6zgDukpjBs5gt0WdmGWidlEYtgXxTR7bvIgE8s34ggPi5djMLS2/bxOIozIwJDaemZFUT+7V7ffOtjmOQuSkM8w7ppLuph7SZiprbepcq0kNdYVVBm0smbLJAMkQQkWWG2FyRwNMmdZF3k73n4RDWGNRWmNMJuChMmRGklK11WirUMpwwSMu4eiRQzjnqEsnthlK8cDRwyilaLXaxFgTdM58d46t9T42L/F18j1TEZ1ZnAe8J9M53ktwQ55L2FyIOdZ6NJpYljgLqmmqhikrV5RBAsBrDCHJmCefb4hEI37B3m9v4IqUt/HVVUgtIj6ZZjaxPV2S5nOfZRVrLT7CSkmiNToSVED7hNvEmF5Pw/71YjESAyaI8iIoUWDOjmbdnVqxTBsqIaRGjnIErLAvJ1YYD8264iGDcpfvv4RbTt4BaGxwvOKHX0Sm2/S2NnDZHLuXVhi7ES54di8tgfJsPXgUXE00hdy0QKwrglO40oGDB+9f2/amfeXZWNsg7xR452gtd1CrcgP2Tp9E521MnqEKhY5a9MC14/xHX8jq8VMM1vriAaEUrg6oXOOrigsuuIC77znKS37sJ7j2XW/nN17/26gQuP322wmhwmM4dPA+Pnx8zL0PPCimfL2Kj37ifXzlSwepqlr4man7bWyBMpZHXbSfBw6fwNcOpx2Vq0EZ5uYWUCpy8mTFI/ZfwI6FRe45epATJ06we+cOVtc3CMEyqsecWD/N4ZNHiRr27dzN8VOn8EqLbMfXOKPoGCusoLTQXLhvH99rPd+7cD6jQ19i51yHrf46v/Ci/5O7lOWB4/cxqkra5+ynGo/5mR/7CT5w3bUoqzDdeS7/t/+Wfr/PCR246ge+n/HHP4DTFj/X4dnPfTbvfuvbOHjyGK3M0huPOVdbLhk5eqMBF3TafNmVrKKwhebo6qnJRPJEqBzFfBuipjYGRlWzWoqXgAqoEHnC+Y7bvxAZFJuMPClExAvoGgVj10nBarDgnSDZZvu0Vc5JyR0tMdQMen1B25Pk5/pb7uC6z34OE03q0mUEa1CqBW6Mrx210tiijQ1gYiZzUhkev6PNTadOkBdtfB3xPhCjJvoyRS8nwABPYTKW5juMXA02w3PWz+qbOZySg3nT2NBKp3RV8VEKAUIQ2nGWa8Zj2QSyrDGs1+n6RZwLhOATSAaSxhQmAFYDHBgz3bibgnjKmHA4P8Z7mJ+XmPUsyxiPywnDI88KhsMh/ZFjYaHDaDSSA6IKtDsNW8bgQsTmBTEZojrjcM7R7XZxzlOVNYN+xZ4nXERRtDkxOM6jLruEtbU1yrLk2GZPfCP2nINGcfLUcaJ3E8bG8ePHcc6xsrLC1taWsGWcyFeXl5fpDfu0Wi26813qjQ0WWov0+1uMBj0qV5LlGZlZoNVq0SkEAGwVHYaDAZ3OAiEEyrJkeXmBXm+T7u6drK6usrKyQjkaSwpTUCwv7+T48aMUhXjARQXD8Yg9u3axlfxoesMBO3cuM9bipbkw32U8FoB0eXkZpSK93iajUUVrbp4YI3OLC4QY2bFjmfF4yMLCAuPB2aCVf9FQctiMIYiHybYCRMYsG2mWWTH5edQThnkMpLSs7SEPzQFPp4NjjMkwWokfagiBzfGIm2+5jU9cdx3333m3MC/HY7SPVGOPVgXjxCbJVA5OY4sWPgaoA85FvJL72WQF3tdJ4Wjw2lCaguc//3ksrOzh9OYWRSvjiY97HNd++BM87/kv5P4HH+A3/tvr2HfOXmw2z1fuvIeXvvznqFyJweCVovZegLUgh83GF0ckOk3R7iiKTBi7CSSLTeEYxZAd78UfhYqi6OLHFUELmOZUTPRgSZ82xhAM+FgnYM9OurXj8VjWNysMOTRYZbddQ7l2wiA2Osd7R24z6lqCkjLbEtZBCLjo6Q2GbPYGtDuWTb/FdR/5BOfsewGLnYxQVYzLirwlqfEhMVy9r7DB4K2hdIFOMU9VDwlE6rEmtwVUFRv9PuunTlLMddi5spvO3BxypsmTDCQSXGKwJbXEVG4n64McHGZYRapOBz9Jw/VxjFEWokVMoRNwrEAHOTzE5CszabzOJEQ2uFsjv9baprku9Wjj09dIamdZRVErWln+r3Cjnh3fzGGaIIdoMVon5ywByYwVFogA+vL4qMIUEEgHRx9dKl7TMVELg3aaQ0iqVxrQIUpQVGzAA/k+Jhay0dPGhTw+fY0aHzwTEIMpYCbzTqRqhMgMESc9v0jjY2qYi4+U/N2syLcxhhpv0QnT5Qy26teVdiUcsAHhJgqCJuhBXsU356KdHf/qI+BnEoYjUYn6SScJ4yyoAjMsSDUF5ExiucVtKafiLbYdG0uSURXQSiVgJsh9wAygZoBo0VHhVMRo8WRTUacmINg0pxt2v06/37zeZk4r9ISVpZWw9WT+z7JJ00j7ucaCdmmtAGNTSIIUTCk13qJTyITHYU0BRLJcQmIaKS5k2/Zl7wVI0hiCNhijBSxXFptnyYIiJ7MF2lq0MZxa65HlLYpcpUZRzZOe9K3ceOut+BDSGSPDeSjLkiuuvJxbb70VrxqvbY1VAaxB58Kobzz5dYxAQCuPCZZoPHlRgK9QMQViWZV8+cWOzJhM5kfjxR6kLmj2cIgoYzE64ms5r8SJj6xCG1EH6kwR3ddp/qZAD5raE4NP/1ll0NETg8NqgwuaGOTcFmPDymyUUWn4RPqIARMR9eWEeTc9/03uidCcP6u0LzCd1zHgojDwpiqrbzweMii3uLILTt4FgMPA3DK2tcD+AxfywJ0Pirm2hrp0rG/0ef0vvZStuw7xH9/5TnyS+2kdCC5Fy4aYGEjJLFGlDnPU4D2Lc136/Q02DldgM7rzCwwGPWKsyfMuw7FIrfKWZqW7woN3PyCbRrsDY0cgYAsrEyXLOHjwOMOqx2t/6zd47IFzOXzPvUTEBJmh0L+7c23e/cGP8KRLL+FFz/9eXnvNNTzp8qv5yme/zKdf+RNcvmcP5QiM1RRzC0QduaNu8dRXvIzgDbEayCSNntW1E0JfdJ7bD95L8II6mcywtTbARQXBYYyiLEt2nbNMu8gYrg85f++53HvsKOees5vTG+tUVc3jH3UZ/3DLLWgTMDbnW170Ai5Z3smX772bejBmuVa0dh3gxmMP0Ns8xrxZ5ESvB7ZgMBpz/6FDmAjBRSrnufnYfWytb3BqPCLTGkNGVjvi1iYffPd7eMtb/5zd5+xhVJVcEjTX/Pp/4rgpyG2BUzWP+ct38of/8FXK/ljMIrdGibYOqEjV72NbXWxmcWpMCA21My2MUeEqT+0jN95yFNRCaqWF5NiYwC4FGIsHlLJf01qTCO0E3CnFeFwzv7wghtjjsRg1BieovPIoLI3nbky/GEMllNi6JChDNRxA8NgcblwryW0LE3NoGWIdyIyiGtfMmotm7S5ZYVjrbclPihxfnXWW+2YO7eWw7lDSWVJiOgoyXUIQeZw2DXCWuiWyZuN9wFrNRDbmpyyexvdKHisLfJYANWvVREra+Ls551Lwi0msNwmXaMJtlNaoGKiqIRjFfEczGJXYzjymrnA0CZNygOt05nEuoJRITpxz5K0FylGFtopDxzcJJqdtPcNywFXfejU2Ku667y4uv+xxOF/Rbrfpr69z6N4HaLVa1OV4UjxrrVla3kGvv8Xy8jLz3Tl6vR7leMzqqVMsLS/jnGM8KslbbfpDkZqWZY1TgXYyml1aWqTdEVCu3+uxsiK+bUXRnXjJLS7OY60ULc45tIpsbZ5mYX5ZQMn0+ZdlSdFukWUZp0+vSTJUYXGuxXA4plsI+y7kBe12W0DA4VAkMpmY46ICVelxztFqtRgMBlTVmMXFRWFJnsm8Ojse8miKZJFBhQlzAtjGGGrG12UHKTFBbzSp6swFHCYFWAOQGKXx0UOE0xsb3HLLLbzrbe9gY/U0OYosKgqlUNpSe080mtqDMSlt2YgxsjBOUicrZMnwmYncSilQ9YADF17AwXtuZ35xPzfecws33XQzz33O9/OFL3+e++67j09+4XOQALT7D26Sa41zwlgjSohRXbvp4TQV90rLetV00X2AEBUhKvGb0zodTnRaNyTNUdSi8ny9Xg9CRHtF6YR97kIqWIF2XhBQGKPI8ywBRHKAn2V0zYJXzeedPv10rS0goTDMSNdSK1kakUH8Uk+cOMHS8jyLi4sUmSGESOVqdHDYXLwyCXId61LCsWqtMZnBmJzxeAjGS41mCpyvqH1AW4M2GYONLXq9HllmWNqxm06nQ6vVQluDd1JMT2Wq29kXjX/lRGqSNoA40alIUiZKfF9ibD6rlIbpQ5K/CLNT5v9UghOIk7njvezvspdMU29n2aGz5s/OOdR2gsfZ8TAc00aBAHENu0Ml8XyMMXkcN5I6hRb9WwIutHhFKTWRUsm6oBKo26yhqS4JJSSDeq3E+Lw5v00Yx+jEEGrmtvxuCMJekvpaGHyz98Bs82P2/TV/u1nHjbaIY2Iu674Xlo5OSY+zNi2zfydGeT7vI8PhcMIkhATGRUnFPnPVV0qAnPBPJGqeHQ+voYT5ABNYWRjHBE3UQaSK0uORx8sJf3LtmwaF0mpSB8Tkvq20R6mmYSH3jk8KpJieO0YBrYVRmh4aky80kUwrQjAolYIKVLOGz/i8zdwPzZyWvUF8IOWe2c6MmwBlqlHhCFCvUnMdLf7OtshR3kkogZZ3Z4xBKwlgNEqjVAK7jUapTBpEM6OpsWKM5Lm8NqMzjBILj6gNKrMoCmwOuRFlWCObnZ+fZ2vDY5QhGEWhLJ/9/A0szi2iW1rAPJ/kxMpyz1338phLL+WBg0fpl1sSrKQ1llzsaQpp0JVoosoJriSjk1jBhhhrbAiUscKm9NdgA9EHYrLwijF55iok5MEF8KCVF2ZZUxsqYZk1kl8dZb5Yq2Xv1g7vZZ2bAGTIY4P3aAUuLZwqNmn1Sh4ThIVpYiAokSzLHNjOPFa6kbNCHQOEIP7GMSkVZXGkkaYqFalrj9a51E40Etfm6/b65KGM/wX56vShNhrarS55JlKlVqtDd67D1qBP0AoXPF/4/Gfoxw6ogsiQ6JKMowEyTCaM1lBJJzRRXSMeHTxrh08TCo3u5LSioLrS6tUMh0O63S6lKzEqY2M8ljcdIqF26KVldusxy23Djh37+OL9D+C3Vvnuyy/m3dev0htWHNs4hjKKiy44nxM3r6KBnSttSiwf+8qX+OBnrifGyEt//dV89md+iB27lrlzYT97Lr2Y6z/+Pp5SgBqOGRvNL7z4edxw1xFuuOmLvO5lL+WXX//77N27n6NHjoNSrCwukHd3cPTofVz7/T/Nn91xI39+6+eY7yzylKuu4qt338l5O+a5t7/JyNfE/hp7Fndw7PgJ6XLrjAdPHmPO5Ow/sJd//2+exa5Hns+X/vT/46OH+1R1zY/+4s9xlMA73/QnrN14P7/5Vx8i9AaMgyOUnqsuvxhPJFMGHwJ/d+0HuPDCR/BX73svyztWxFi6dlAUKOX5wf/wIlRheOM73sK+zT6nioz/+Kuv5omPvYrPf+Um3vLG3+e2z/wUO577Qsbr69x4zy08cPQUxCkQpVSkneX0tZ40xIKSDj8qstAObGx4lnYtox8IBDXd8M9kwwETqirI3/DREU3qNESHStLRUDuOHz+eOjnNDqEmXcfo6iktGlk0VEiLYXBEKxTnuhbWowtRtPdVknCZFjGOpeMXQBtLXY7JyeVAGjQ+jKceGmfHN3VorRkOXUpTJYFqcrAVc055XJZNpXZyINWTg6mECrQmaTqy+Fuqym1jXJxZ1DaFbuMNFRP12tokoXVuwrYLZGLUbjVExWJhGJbSJcqtFSDYe0ku9T49f4UxGYN+TVEYMp3RG9SMXcWzn/kMdi4vkOc56+vr3HvHXXTn5zh58iRz8x3m5uZYW1ubMGSq8bRAL4oCgPPPP5977rmHzc4WnU4Hk2cs79qJq2pOnz5NZ66LzixFUXBo/UFarTaj5G+xf/9+lpaW2LnYFZP55O9WFML4a7XkQL65OSYzUuwPh0Pm5+fZtWsX3qnJZwfQ6XQYjsUSoCgKNjc3aRVWvEdTQMT8/DxFUdDv9/G+nMjTy3LA0tKSXM9OwWAwoK5rQpGT53Zyfc6Of/4ITemtFWbG3PPrsdyan58pZf0a9kQqWM6UwYIiBC8eM8Hjoki4/+RNb+K2W24lD5EuBjKRbfgYYFgTgyXESBALpknTh6jFZkQZ8QRJB9n09JMDZqUyBl5x5PQmx2+7k/sPHqIoCv7ive/C+4gOnpbWlEiSs4kh+bwpCQtSU+Zs4y82kXYhcpmGNRiSNC2EqedYjHHiNaaDFHK5NYzrMRBwTdBDnBatRqdE1iybeGdKU2Eqp2hk9sIOmPqrVd6R2TwxhcMMSOewCmwm6XRaa1xdY00+8Z40gNMGbwzDXp9Rf8TKygpHj5xk//4lcuXRrsaFQG4tuRa/SJ0aYN45YggEk6OCWI0EG7EJQA21Au9QVkDAYTkmuBNsGEOr1WHXOXsk3GXmMDULPmxLoWuAxSAHPGG/gWnel80mBYVSiuBrSO4xOgF5wac5PPEzYqaYn87z5jrOPu/svdJIhuV1nK0JHu5jAh4kIC4mBMxoM2kuyBxs1rM0J5RPB9MpKAYkPzXkUGqEEUti8mjjQefStMckn7mYkgSZzHXvPajZeZbWM+2IPgFmk6TxqbS0ea3NaEDl2XsnRI/zNbnNkHCVnKgb8MFsZxOdsdZPw1eSuflsUFv6p+Hr7wMRJomVZ8fDf6gEyEEgKL09QXVyfWeuf7pvXMyxeiaBdWYqKAwRl7zbtv/ebOJqjD55L/pt90Xz/JNaQjcm+zGB3gqjm783nbsKnQKApoCQAHEzoVUzTZ8GkBNbhCR3VAItKpv2ryCea1Y1dYYmywwxWIwSrzaVQDeN3CtaJzmtlpRTraevJURFVFrAcqUwJhNWmQJbaPK8JetSpjHGsmvXbk6dOkWeFwQdKZSlKHLa7YAX6r6wdZOPnbYa7RV33XMvmYFMQTSWGBQ2s8moyaPzFrYeS+CTtdTOiZJsZt+1KSgjBEXQmqggupDkv9vXIo+snROSbGJBykgS1Wa9iVNwK4ap/cnExz39XatFtaZSgEOIkmytmuZFjKgouQeNMjPGKOzKGdhBKakBnJPQCECIXZo09xqW8zQZuPlbs/Xs9ibIlCn6UMZDBuVcmLb4vA50Ol2sadHKNPv2HZh4iTSbVWgVnF4bTUxFG8M9FUWGaIIlUIlcYNb82SukSS7hD8HDUCtsonWryqF8oL++icpzXCmMOZMVUHqi0ni9zLC8j7Yq2Dh0DB+l83njPQfZNz+ffIuEfnvl5Y/hhptuAWD11Ab11mlsbjn/vHM5emKVpVbGyz91B93uPOX4yxgb2ext8J6V3excXOCxl1/Brz3vxWyurTE6/78yHDk+8ObH4KqSA/sO8AMv/0VOHT9G361BgJ+//r0cGzouOu9crv3jP4VM0fKG8dFDfPrkGq++5vWsn97gnJ1tXvqTP0S73UabLisLy3QHq3z0zsN0913AX3z0k7xg8RSf6+1kCc/SYqC1/3xu/8gHODoKLO9chG6LIjN4O2SOIZkfM/iR7+H7rv0bTp9ex7TbPOM7ns2hQ4eYswXa5vy7F7wA5yp+73d/n4suuZhue47KbjEcKfqV5kd+6Ac571GP5nd+/40sk/G+j32Ep1/5eA6NZXltfDZijOyY67LZW0+b+XSBDUSc1rz30F6e9Qz45b/SD5naSfDoEEneoGLPKOA1REWWabrdLgSPQcPMvI3RJ3Nng1Ju2000KRpslgIpAkV7nvF4IMuFjigraX2j8RhshsnyJJXMYVjxkud8D2/88N/gSoeq3GRBPzu+OaP00oTVCItGJGGyGNa1bMLGyObnXETr6YbbaP4FOKsmRudNJ1yTU5aldLysxft6EvJgrd5mIh4CjKtSDppeUpm9DygX0VbWSmssmIJ2ptgYDel02tTe0ykCI4fIpLXCR0vwmixXaB0xJjIYbJIVXaw23H/oQSIiHZnrdimD4/TpNVZPrbFnzx5271zm/Av2c/LIMT7x4Q9z6SWP5r77TtLvbeJDoNVqTYG/2nHXnXcTCdR1zebmJjt2CHsuBmh3O8kY3pHrnIXWPtbrVdpFi6wjHnDD4ZBhS9GKxYSNNh47duxYTJ9PpN8bM98t6LQLsixjVI4ZDoe08zmACeimtWZpcVHYj64mxsC4KsVdxHs6eZvRaERVVSkJTg5M1noWTIdWPgfWsLq6igkaN6ppLS7Qbhf0ej008ayn3L9ozEqS1AR4kqAAv00m+I/+hTiteKasJlmDzwRXZn3Wbr3rDn7vv19D3BqyaAtcrFE2YrxCxYgLHm8VrtaEWiRaIXVQA3Jg9c6Ljxcu0VKaA4GZyAsJjqNH7uf4YU0dod3KyBR410dnlhANYxewSR5pjCHWYI2l8k6KUCVhLGpGvuO9RxmonfjBOi/+MpOmzcznF2Ji2QVJHAvRSlEbI3mrkC6vUpiGARymB/W8k6MTgK2UnjB+GzaqfN5Mgh+IkapK3papax8QFrtHE0LEB4/VU3DCZpZRNaKqS2yRgxsDmrqKHD1ykk986rO86IXPA1NjqIlK2P+19VitKUwmYJQXf87SiUdNYQ2mDoxjJYbVqkDpMSpoYp2hjaEa99Fa4auaXm+dVqvD/NwOFnYsYrJp+TobvjALmE0AFatwVSWyU6Woa4/JgoAhCnKrqVwt36eGoMzNKTAj90I1KcjlYBAnz9+AgrNzQD7/OGkWnmXuPvxHjFFkelE4QUo1wSqzCaZ+yoTQEvqgFamOFeBda/l/KsTkHSceSKLcE5RulrPaDBWlfmmeW5oLjRcn6bzUrF9qcp9KuElac8OMDysKr9VUwqoVKiqyFDAh8rrGP04YQta0EkBgUDNg4D/GmPO1yLjkvCdm641cNn37NUOz/fB6djzcR4OkbAfkFJEYZpp1anquQoHFQmz8xKbghVbSnJW9bwpwSCOtMcyHBrCJyVdRIdZASkvaONFOATcyCQVI7DUBU/S2+Sdz3oDyk7TThv3c+N7KzxoWubzv5uc+eaOqBvGhEduq1PAz6XXUws7KpNmodI5WDmI2WRuMFckl0aJ0xNhcmKUuCL6tI0YVqOTxiFFo0ybTBpTBGIvRBa08YzgY0y46yZojkufi807M5HWpIAy9CCZGtC1wODJjyLVYN+ioKOsxEYe1LalNYsDaAu9LUCIzDlqaTN55PGCDpY4S9kRUWDIUJY5mDRHPQO9rTJjK3bXW1HU9sTRp2GghNC3htJeGEmUhuhm/QcSJMIRA1IIjTa5f1CjjMaFRIejkaSdgonjBOkyS0TuS5NbN1KJJHSHWAk1y9gwLv7nyars0NcQKxZkM4MDMkvlPjocMyj3tyVfyjKddxvLOvfz2G66hk1tsq0U3sxy95wjrW+s4L6Z9lYeis0SxeUq0tigmDWyExuhMcsUnbHv5Stz5QDWdzojJLMFF8I7oIDeaP/iVp/Ppm9d564dvRQdBuEN0BKvIevezvNTl4n37+OqhU4StDU4Fz+GT5eR5tDFYpXj61U/mjW/7M0b9EZecewBf1Vx27l7md+1isapZOW8JgdFuAAAgAElEQVQfX/3K54k7dnF6c40rHvkI/t2znkuIihOrp/ijd7yDPYsj3vDAGuPuEseGA8oQ6Pd6XHrx+Vx55eM4d+9z2XvOfoZBcfPNN3Pw/e/l0idcxds/9RGe9cSn8dHP3MB7PvRervlPr+HKyx/Hffce5Gd/4mfYomRzOORRe3byzMsu5cHVo9z7wQ/zg898FtVolde89kNcdtkc9zx4nP6c5qNfvZ7rPnw9eZ7xYy/8PkCxu72Dduzw3Je8jEoXvPJtH+Dl73o/W9WIX/vt/86vvuwV/OqrX0l/0EeFMX/3nr9kPB6S5zmuLCmrGl063vve97DSsjx45DR/9Ae/x8LcPFdlLVyoue6LX8DOX4gzJ7fJM06ePM5UstrcSBYVA57Iaz5Yo7Kc5zz5qXzo0x+XDf3rMOS2jVkE+oydPhIYD0uGg03O3b+P1bVVslaWOpPbkWv5tqEop4OhscwvzNPf6oHOKYcDjIqoJDGkqkBDnllsZw6VWfqnT1Omrt9b/vrtqM68bCrtFlmRPbSb6+x4SCPPkx+S9pNuSeMD572jiSlvCkbnIJ1LJ4enJhxJKQk5mKTjJZbdFCQIEyBu9nA1yxIyxlBXsuEShRGnjBSaI68kHl3ltNttSaTOMmEWB0/lPNEFskxAo1nmUPM8Jze2GFae+Y4Aa4PBAJtFjDIsLS2R5zmnTp1iaWmJI0eOsHfvXm644Qae8tRv4WMf/TAR8ZVqfndubi59kJY8a9NudbE6Y76bMxhuEkLg2LFjdLtdhoM+xgZQnixmxLKmrmvm5+fxvmY8Hk9AvTwX2cHc3Bwxeg73jkOoyOzULDrLMgHKDHS77YlfXgghhUA0gE+H4OptDJTRaMRwOKQoDEUhkuJIYK67xLAq2bt3L721Lebm5hiN+lTVmG63K7Icc+bmeHY89KFojlMN62oCOM0c0GAKikw6yxPfuBm2qU/9Oa1TAa5wzgvYhMYScB4+e/NX+O3X/A7tqOgWcl+0soI6COhbBmGklE5YlpNmXkz+M0TGvhK2ZHCoqLFZShLDoFWQxK+QSQc8iJzRovAqSCGsM3RQGATkH1fSefWpuCU6udd9QHkwEUpfgTbi4ZTYZ1Ehr1trkVhojTYZKkZsMk8e+xFF1pqYETvlUyqixlMTtEKbgPaWEMXU2dcVhW1TujqFEclhYNIUDXIIMsYQPfi6JsvySVMjEojakdmMGBXBOTluKU1EilsHoCImRoosoxwNMTYT/xqkW48rOfTgMUajEapVi7eQFQAzCxHyjJEfYDItdRqWytfSvXYWrWVeVcMhwQr4Hp1CmUAecunwE3FGvOCGVY/xYMyp1eN05xZYWlqi3e5MTv1nAnI2zUMBSQ06SgiP0Zms9ybgXaR2SlhKQdbtgJr4+shnKeluPoEtUVXEUBBjSIc/mX+z4JyZgA5SzzoTJ4FVZ8fDdzT7/6xX2qwNxOxogAeUSnNBJuKstF/WQiAIKDcV/8nYHt4wy7Yg+U4Cahp00kz2BhQ+0+Oo+X8CEkSiD7R1hk5WOYXNcL7CFDmdTmfCdmme90yG82zjpHmOpi6aDY8RO4+vHVqLnPdMEWvDJj47/vcYKjZzOiWFTjwV5Uwfiag4ZUaJdFWjtLCQm3pilhUn3lsGlYgQRD2532bvNW0EfJMznwDAk8CQFOwWURNwuTnbCRA483eaxmB6bV+P2a/UdpsO0EQdkeRPSUNHJ6sJYzFKT+odlWQ6mpDAN/F6M81riNnkftPaisQ3KjCiKiNqojaQpzOGmkrM0VYaXCbDYZhvtdEYIURZzZVXXsktN9+ID+Jla4xhz8oK61sjTDlE2RYhZdHqLIVAGdAxw5hIbTW+rLFabCQAjM7wTvbl4Ct80MRQiw+2c+Kb62uCRq49Cq2Eya+MQYUwSYoPKczBRwm7CdvWx69VWxAj2mb42omaMkrCvFbTNOqoJH5Rp9pQfDdJiejZxC9OE4hp/fWkRFdlJOzBB6IyKcgxXaYzatvpuU8kqk3oRIMdbLtPUlhJAzJPFf0PDZV7yKDc69/2h6zs6DCoPEU0fPpTn2O4OeLuww9y2713ogN45ZMhaeCN73iHMJWMAS9UT+MCXiNocIwEI4aMAQFYjNzbhGRWHGKNNYpWp0PtSpYWzmF1fYPdRZ9Ld2Vc9qz9vP262/nQJ97HueUB3nnDX/OZw/fx4Te/m+hqLj7vQu64/xgKjQ9hIhPzqZPsnePk0WPEuhLfp/Y8oWW4f3OL+vhx8mIOtkacVpp93Rbz4zb3HT3GG97+VkIQI/bMdhntOocvbB7Gn9pEKdixY4V2u01hLVd/+5NxTvOlG29kV2eOc7OC573gefy3l/4ix9e2mHOGUyfu4uU/9rO88prXc+cdX+W8A+dy9SN2MTe/iCXj0MYWT3vJT3Li4D2MxmPuOXiCp+6ao6dq7jt0DKUjXx47FjtzrPc2CYOau2++HVVXxFDRXpznyU96Eu+/9u/5f/Oc58+3+LWXvRLbznnDG9/ES3/65fzn3/w1RrWjY0qsMUSvKV1J7SruahteNAi8+FdfjSPjnW98M3/68lfxqWLIYraTLa3BtqD2ky7J7Ngm90g3HjFiiFzyiEdxdGsdrcGrbzwdjbKTAAX593QEJTe4QTzAQggiO43bZWzTG6bp3qSDu1b0NtZBGbSrEJcEDX6EMiLraajT5cZGqsUUsaoAy4//+x/nLz77fk6f7hFK8cs7O755wwcnzDWtMCYmujJUVUiLXkSLNposE/maD54sS/5RKk4kqp1OJ3m5NHR5Ye8YY5KB+Ha/rCa9sDngCcPOEoJCafG+CEjTAKXQ0Yp81ck8bLVauKawN9DO2vT7fXI9poyKMDRsjQagMlTWpfKwtr5BkeWo3DJv2kTg9nsOctG+/exYXmLr+DF2LS1z99330t/YYGNjgwMHDnD77XfS6w+p6tEk5TSEQO0dc0uL5Knj6fyY2pWSnBYq2p0WK2qZUVniXc2p1VVqP2J+aZE8zymKQpg45RCd55PPornXlFLsWFymrmt27z2fUJX0+30WFhZY2zpNt7OIDzVlWdLtdhOwaVlZWWFt7TTWWjJj6Y+G8nmNa7z3tNttOp0OdV2KcayW16K1JteGUa+P0hEfBCxcXEwps50u6uwh+F80JuCGnXaUm6+z98eZMtbpz2d8zZI0UJb/KbAeo6cwhmFd8aFrP8Lb//TdqCrDWiaH2DpMM7dFWunQMTHOVIbOW1TjIXmWEYFoDGXtsCiqIAEMdgLQip9LRFPXkoA2+z6ag2ZuDT4mTxHk0GmLPElLp6w/V1UokxECVFEA5dwK9GWNJlciAbUml0IvSkBS8FC5gNY5TkOV1RTtHKNHROsxeSBqz+LiAjoYNg9HzDCCi2jbFOoi0QRFVTpa7TxJV8u0ZkXarRaj0RhXk6QuEFSkqj2OxmcuYFQmfjjK4RBGXpFlKCXMnTwX2asOivlOl83+JiaztIxma2NAZ7cU/SGxKcu6xHuHNQYVpWExGIyEpWcU6Eg9GjPwjtNr6wyrGh01eW45Z88eFhbmxIMvyZC0NRS5wY2GZO0Wm2vHGfbWMVmb+bkFVnbtFN857xLAEbYBF8YYCAajgiDENGAL6Ezja09UgdpJ+naITn5XgbEmdcs9EenER1ySXDMBqmebAD41oIUdCUFpyjNSA8+Oh98QoK1p4k1rQ00A5RLbTSM2bwEVGsZ+AsqS35AkPUqgVJO+2ixiUej5qCCEhejSGqqbg1skOpFcN6+lmc9ToLgBFJo5KAdMvEeN+qwfOUimFTsKS0tp9u1a4shahYqB05lhqcgmzWrnHEWeTdnoWRI3qYoQzARknGXJza7zxijGIwHlow6Akc9JpcbF7J6QgBcfBdw4O/53GT6xLBPLc0Zp1NgSNUDrmXLl5v5QNKE9IvkUZlPDTpLp2MyzaY0x9XhTiVWnUcLA3AbiCCVTEpO/FjyfbSTOvnYQW4OGVd2wWLWWZrM0YaRRpUWDjlJxCqyp5DcZobnBG0a+0iJLr2Mga1io1sr70RYIZDoTqaQyZLbARycecQnNMUrOs61OC4wmy3KMtaioMbnGWEtRZNx7390CpqmAzTIknT3wohf+G9713vejgsYqg/MCnhtrKXJh1l922UXcdPNdtDNLFWMKMUyNCZOhAKM6+DAEZSdN91BXkipfR7zNiJVL18BPz8czMlNIzFoVaXJwZ5to266nM+JTOLmIwnysq3LaMIkBnbzjYmL8xyCy20Cdwik4AzjThEQSMkEyb9Xsupxek/ceS3PtpV6QevYbg2tnpgOLtPmhrXUPGZQ79pGPMbKWu44f4q57D/IPX7mR9c1N9lx8AfsvfTTlaMQllx3g+k9/gYVWi+NHT9AbbPDDz302R08d4+CDRwHNPYcfoPYe5SNqXKLzDj4GVEIfJ8kqIaKcx1VOpJ8248TgCFpb8pZndWOTn///7yLEih/8mZ/ldb/yGzz9KU/jjd/3J+gs48jA8ZZPfJrRaATKc+7uXfTrET/y4hfzznf+LUdOHEbbnEEMfOd3PYfrrv0QT3jitzCv38ojl3ZRLznuPTXkljvvIFORjVOnGQ6HuOD5zmc/h5Onj/ODz/seTm8OcB//e0IILC7MM/aefn+LrNvmyisfzZMuupQ3vPdd/MALXsCLXvRCvuPbvo2yZfj1P/9j1te2WN65xJMvuYJfeOUv0c5q5pfm+M1XvJxff8vb2LX/fFxZ0i9H/MpLXsLLX/UrvPmnf47LL7uAt73rb8gC7F60fOi1v8MLX/d6Lr5oL5++7UsMq5rrb7+FLGi45w6RmY3FO8uUkfHpHq/7L/+VWDuMzjk93JT7P/gJ+u1Vzbve8AdU4xEnioI33/ZFnvPKO3AqYr3jo20HdPn+J38bPLjKn2xukEVFreRm9340Q+Gc0enHKcU9JqDj+KkTk0n/jYbX02m7bdob8a+Z77YxWhHLEh3AOENMBblzccbUbjqisWAi2nlMYXFjCZuwVuHrQDSZGGyS/A+jR9wgAyql58Qa1qPj26/+dv7yA+9HWUt0JWfHN29I0SusN0lNFe8A8XQjHfbjlBmBIctMknX4bd3r2U2g8V/KsmxyeGsOWXIQraa+QGkzMFaiuuW5AkoH8kzhKWQB9tI1KoqCuq4mhWyr1aKshonNJWmrZe3xXmF0ITK3Oko0ucqpq8BcltFtd7nngftxRKrgOHHiBL1ej3F/wMrKCsPhkCuuuILhoM/q6eMcOHCAW2+7ifFYWGOtVou6roVxpi2tVovRaETtKowxkxTXxcVFsiwja+VstVpU/QEhBJaXl1lZWWE8HrNzxyK9Xm/iU+ecyOH6/T7luGbfvn0opaiqik6nQ5ZlLC8vM+iXKA3tdntyLdrtNuPxmF6vN/WIS8BoA/jleT7pWo1Go3RNHOPxeOIFaIxhMBiwsnNH8uUTts78wln56j93nAnATeb+zP0xyx5tvm731ZrtVjfSrqnfS/N7Y19y3/0P8j/++M9RdaRlBDT3dRDvExQuBmJKNUYrYm1BRSJBJJd2xpemlvu59nKQqKpK0tGMSemKDsgmr1em19R7TUBsKfZMlhGjm8yxoiUMWXnvMXVcHZm12DyH9HM7wyqUBE9J6wwh4JMaICs0XgeYd8wvKPJWpFhoUyxCsBVBebQL6FGL9eN9jM0wQVOFxEZQU1ZOltm0riUJjdJYK11/AQRzXKgbJxGKIqNBC4wxVC7K+0x5SpmWQAsXA4XNyLKc0WiEsTmtbof1voSzqBp6vT67luwk1GLsRungDbV3dLRhVI3QKseVtaSV5xZjtIDvdUBVCkeJr0ruHzxAq9Nm1+4likJk8DoKWxKtoUwMu3GNLiOhrBmNh7TabeYXF7bNheZ6eu9TSqBKxX5K2g6RcV3JQcJoKZ5DkryEQDBRvPAa5iFhGzupmcPidVlu89+afA2S6lacNbZ/2I/JIRsEjFNTQ3CvtKQ5qjB5TDOXlArJL3IKCDgv3KAGyGh8iFU65EcieINO6cqxAfuDNAZlfzNTqXtgew0TpqnzOsK4t8XayWNUoyFaGVwMuNKxtGOBBQJPecpV7Np7Dn/78RvQGMpxhZnvkGc2MaHldQcP0UxVAU391DQsmvsphBTeF8SvMqY0HVnzZB2JmoS2NBW+gHbATArr2fFwH430WhmDJyR7RYWKYqCvlFghNGy3WbBlypATmTVRiBFK+/R4k5pL0jCWX0msPB0FaDEO5dNjEfvCGCMGI4woY5N8VF7v128SzrDiJmBfJESRbkctb1J8TqcgikYaWV4pMtPIV6XZ3+l0Eks0QrSpVtVoo0FbNAqrp+myTdqqiqDynIASdlqStGqV5LjaInbUhkxbcpOT2RbRaIzVaCv7UZYbirzNEx7/BG644XOYvEVUgSLL2X/uIn//gU+Q6TYuuMSoF39bM/P53HrbPcx1MkLQmJEkmIphtzDrYkgyfZVCM6KmdgGUxsc6WYdUkyT5TGeyLnqP14ZoAKMIMZIXmZyp/PQc1oCyss4lMFbVKUyiWVsDMSiMzgmxxgWp1ZTRRFcnf0JRQRgjQRHgJOcLjSUKcw8/UW3UhCRnDdgZkLcJnHBRZKtxwgAVMk8DFJ85mkDLr5Wqah4Clgf8L4ByP/qqX8YrMRPtLi5w+QWP5D2f+hzBOBQBo3OGm5fyIz/1fXzXxc+kEt4Ii3nG05/3Y5z7yDn++DX/NzabY3PsOHZ8jS/c/CXiOPD6//EHALjoUbEGJ4ktMcXRKq9AKdrdLsZFXvNbv8Xbr/s4z37++dzy4CmOHTrCa17z/1BtrJG351hud6kcGGMphyO8ggsOnM/Hv/h5/iw8BsP7ICqCj3zhc5/k8KEjAPSHPUw+x669+5hfWeK7dz6K17/p9Xir2djaEFDLKl7zkz9OrRWjsub0yQ2+eOo4SmvGZUXpZEKM+gNuu/NOPnLTDbz2h3+E1txuvvMZT+GSc8/nSc94CrfcdC8//d3fT3SRdivnZf/HD1PxIFtZlxMnjvHLP/ofeOw5F5DlhnvXj7HW7/Mdz7yaubzF773lzXz63sPUdsTyfIeTG6sMegOe9oKr+eTdN/LURz2Rz99xC74ecfXPv5Sf/PGfZbC1hSfiq0o2T+A1r/pV9l1xBR+67lpMpsUbIKXVEhw/9PM/w9+/9MuMxmNsa5ln/fZ/4cYvf4WPfuZ67JFjlLFi6Gpu6q1y+KDlPC03pMkzwnhMgyxPD2lTmj5EgodzjaY38mIS+Y0xuX9yqBAZDAb0en12LM6nTSLStjndbsHJtbUJQXVi1pkKcYIsNlkm2n5fjiGkNJggyTzKtgh1JZtTnqN9JPhSuqVKc+T2W3nCt1yF8U7k1mfQWs+Of9loNrW6AmPkgK+VJstmpSYxgXCSnBYC1LXsL1rbSfKi1pqyDBgri22r1WLQrydMmSzLUCpOZHuzQJFJ6Y7jUUlwUhwohE1isgKV5xivGVdCb85zAeqcj4zGfWJoOnUihxuNSmDWnF2xsmsJmxsOPbCGjYpOt0v0nmo04uiR4+R5zp49e2h3uhw47wL8njEuQndpB+MHFAudOXbvO0Dv9GmsNgyrkoXuPDvmF8kzYR4PBoPJ4XLXzt0cO3aMQa/Pws5lMisS2aWlpUlwhNGaVkuT5SLJbcIwQgi02+3ETnF02nOEOtBuzeNqzzBUOAdZrtjY2GRhYY52u83W1tZkbWi8JfIsYzgcy2ccIvPz84xGIxYXF1ldXeWcc/ZJamw6/Ha7XXq9Hv1+nwMHDjAY9Njc3GJpaYlRfzDxLTk7/nljNuwEtgN0sF3SPfv91COklqZFjJCKTaUgeFlnMZLQtra6xW+99hpUrchCTqVHaOWxQVJWQwxEL91x4wODskbrBbSupLgN0tgL0RN1xARFXVdTny+fjNFVjQqKqBXOO1x0eKeICjJjiTpOwl+oQVlD7cYIAcWTm5xWUYAqkwQ2iom1gqiEzWdzj48eYzMw4IZjiqzAO1mXjM3woRbGWnQEVbFjd4fYHaCNQxUabSyKHN93VJuGY6eOsrJrD5sHaxSSNq07ElYQtU7hNklS75NeQuvEzg2o2OTgJbZuAJ2KytqlJFMrSWIqGiyKOoXPZFELQzkBXUYHxtWIvN3CjQO2nXHnbXdzwa7HE1stHDU6syifZLQKxr0R0Wo8Q1pFjveOsq4pVE41lmuiI2S2oCxLKmqqrZJyOCDGSGeuzTnn7JN1BsBGAeqUwrkxtVM4X7G1vsnpE8dpzc3T7XZZ2rEDrCEoSY71PuBjTeJa4KrkY6TlUIYPRB+plRcgxmSoWKOUR2uPD3kCUxRaB7TOxLMQnfaWCARC9HJojRIupY0lOjfp3J8dD9+hTTZlTCTWjFLii2wS48crTWaYYYGFCVggaYIipRLfWElkDoi9T5wc5gQMgCYwQaRejadd4/XYNJlgyvgRptzUZ86XFV+9+YbJe1BKYQTvYD7PObS5ickXGdcVynT4tssv5OS45pO3H6R38ii1DxSZZceOHezZtRuTWZSxZDHHanlfzsvhufGsDAGcV6AyohqytbXF1wQ9CCEWyYBIclo0cRIv+9CzBs+Oh8FIMv2UqyTnc4L4oKZ1sJGLzrKOmkaR/I9mLjfsMqbfAxPAFmmeaGUJ2gGKoCxaJeP8VEOHdM5UDfM+aEKc2gicaTuj0/MqLRM0ximQriIJCEognZIVQGatwiZAJtAwvRTluAYViEHT+JCa1JxCKazRqQZqmnPytoNR2ABWSxcsaIVSGUaDjhqFQ6uMoA02grKKYITVJ6ChvKc8z8m1YTweoK1BachsTqfI6G95Hv3Ii7ntttuISZVglLDWUQEfEys8QPAZjpILLjiHYyfXKSuH8xVWa+og5yCrzTZljA/TsA2ilr+Fl3rNgY8KO8N3Uy7gCROAahY4DVHSVBXJUSRZWamQAiSa66w9+BTuQCPfl+amjSloAi+NEGXQUVbcmIg0REPUoL2QOrSCOkDtaZBezvTGmrIrm8aqm9TCs2PCvDRqEgpxJsP4G42HvCLmec65e8/hxOFTZJ0W197wGf7q797CB//+eh55yRP4v171Cm647Ssc+t0H+cAjPskO1aIc9NnRnWNlr+LLX7mZ//xz38dGcR57Vg6Qd7q4rEPH2m0XBi+yiW2Le4zgasa9HhHPpz57I1ncw9LcTp512aWExx7kDX/1SboZjOoBOm9jlZebyBh8XXP06GFU0Kz+4S+wb9fedPfBi57/Yt5x3d9w+71389JXvRJv2zzq4vM4feI4f/S378BaTU3g0kdeyH33H6JSgWv+/K0895nPptJAv8SWsqlmVqikxMDVj3s8T7ryUl74LU/nq8ePc+K2z/PdT3giq3HEe/7mr3nMo6/irz/0UUbRsX/3CnvOv4B7r7+Lv/vYB3nq667md//gD3nKVVdxrIw8/nGX8/7PfIzbjpymuDLgHZwYjPjIq3+dkDts8GRhzHOf9Vg+e9NjuOaVP8Ql3/XTvOrbn0X+rU/lN3/3GrIo/jiLO3by8l95FZujAev9NW45foh3/tEf8qMv+ynawzVGvS3mdi5QGstKrRj2B5Ab9swt0cXy/Euu5mlPvJoffsXLsSanl2tsbpgfnsQtADHJ2Yho5ADfsh2uuuRcPvHlW7ZNYhNqnvbsR3D10V289i+P8lCYciBJjZLG+7UjM7lo+K2l9hVBR0ofGGw0gRNafHGUFFqlUyKhVh5Mxi/91C9y8513s2v/In/y5j+WTqm2ojufEP8U2jnRo6OTFEbz8Xtu5+N33kJeq4nE9uz45o2GXROJZLmZFK9lWU02iYa5JotoaM6m5HmLPC9wrsLaPMk6pxKQQX+cJEsQYkiSJ5E9Ox/QBumQa4WLUI2rhkyBUk0qVCTv5Hinkl+CdPzqumYwGLC0soLSHcbjERHPVn/EoPKUVWTQr7jwonPYPH6ciy66EOc8NjPs2jNHq51zavUE1J4DBw4wP7/IFVdcweHDh9nqDdjc6tMqMlZXT/PA/Xdz3nnnMt+dZ3H3Tj7x4b/FVZGFxWXGvhYpmPa02wXGLNEq5qjqMcNyyIELz6e3vs7K0jLrq2vy3p1jeXmZGCOVK+m0WomlKJtUE9rQFOplWbK8uMzGxho7duygDI7cGDqdDs5L4EMIEjTRSIIFjPQTT6xOZy4x/DqEEFhZWRF5TSEpq40EYG1tjUc84nweeGCVPXv2sLnRo9NtsbS0i9FogIsBnZ0t+v+542tlJNsL3Fmp5z8WahOjxtUJqDMAjfm+HFq1MYyGJW9641tYO3EaGzQuiOeHzTKCDzgXkJRseb68VWB9pKYiRAl+KmxOHRwg3Z0kMiQEjw8BVzmMAhMiMRqiDgKAJxNqbTVWpSItlyTYTtGidhARBpfSkeDEA1FrseZwKkCuUUUk6yiyjqc7Z8S/DEM9rFk9WKLqAq9BB8CXaKUwyc9Sedg6VOJz8X5TKsOmjqwJoFqB5XN2wVAkr4GU1Gam6XAxTBnCGlnDCGlHNW1qXRFDDTolTRtpsDa+nD7UtIourqppbLEbCegUBIiTQ01va0DlK6zKCc5z8vQqMaXixuSr6Z3H5BnOOyKBeuwkATuIH1XLtqmqwGY5pPYe5z3USQaqNUoraieg3vrGFmtbPbIsSw2JvbTbBUVm5ABUK8ZB5oqxOcNyzMb6OieOnWB55wrz8/PooqA5BYpMKswwJ1LzkEZeLQbPsgckxlyQJD8fPP+TvTePsuyq674/ezjn3Lmmnqo7nU5CZkJIQiABQgAFJDIoKIOIEg3ihOCrD+DAozLJJCKPgoK+yCBgBhNCGGQmQIAQMpOh0+l5rqqu4c7nnD28f+xzbt1Ogk9U1pK8q/davVZ13ap7T927z96//f19ByUjvBVYm1H6jwqhyIqEdmsLX6FilDYG4wy+Y+MncwS4lkJuFO6Fkt1Slq/KO7xVSBHjsOAtjuB1KeOijycAACAASURBVAiMISkF3npwgWUjCQe1sodRkoECRhAO865kzwkT/JkkaBWPrDbCPDQFIOdHqoFt9945kmApBJH36DhBS8fQBCA/zTzzc4totZte2idbOMKztqzhtv2LHOxl9AYD9i/Ms333LpwQIaDCOi57xaV85OMfK6SzgRUfx3HRuAzBO2meM0iDEXw5xBhTLmDVReDbGMvwWOP6kTMeqvkWvobS162UoIafL6G78nfdaK39v48yrdWPyRIVQmZ4p0GWgQtmTJGlQmJ6EUIwzu4f1SwjH/Hyb+Con1n9OjDXSmstIcRquIVfBcdLGbYs/sapqSna7XZ4TMkAgAkNBGKHlBonXCCheIuQCiEdWkUhXEYLBBFaOKSsYIrXkpFAk4SQhzhcZ0UlyEgGX7nYsXXr1pGqRAlJra5YONJmcanNxGSDxaUB1geigg9tJYSHpJKQmZQ0D3XX4tISb/yzl/Lmv/gkzhcBVMJhsCOgUukYZwbBkgSPEQF8y22KF8WZWDikd0VytEdZcEribI4f2xsfqrG7Og3EiKWMl4GJ50P4TDn5ynVJOYktQrOEHxe+FrYTI7Zb0SwsmiSIYIlkseFvhQDGHmUR4JCytDYqzpfkePuj6l4/uh+cEw8bkIP/BCh387338ZXv3ojWmka9zmJ7hZe8/KX8r8v+N88+/ym8UWrSVDO3sMwzzmyxcHCeR61dR16tcPjQIieecAqnr9/F4uSJkEeI6WmklfSXlwv6qiw6SBrH8KhUFF90G71zeF3hvIuezM7dh3nn29+Bt5ZXveCnkcMhsYohiqnmDi9yXDRBxx3mp5/5bOqdFe6bm8dvqOAHJmjTreWbN36Lu394AzpS/Omff5CV5R71JMZ2e5z2hCdz6gkncNL6dejcsm33HroSfv+9H+CWez7Am1/7h+yji730VfxBDids3Ei/O+CjV/w9lzz1Ivbv28vHbvg6bmUFIsXE+o3MLS0we8YTuHvfAS658AKuv/l29hxZQesetfaAs05/Kn/3sStYXDrM637zNUS5oR4lnHnJi/nU5PF8O9JMNDTHz9TZuniIJ517Ad5a3nzpy9n6rXvYtGYdZzznD7niHz7KK1/9Kl48ux6bD4k0YB2L7UMsL89B8b46FXPh7DoSUWeLaqBO2Ei1ViObP0A3HSBkAsKx+YQtHJqbZ7lW56SJjSAUVjre+LuvYW97jt39A4hff33BbgzJMN5ZqpUKl77k59m/bWswUi4TbVBYAW9733UcN10PN/LDHCFp98GgnJSSar1GrVoNh54oLm5qjzOW5oYZjts0y77t21E+otma4MDCQrhhfEhNedsH3k2tWqXXH/KKrXfw0dPOC2bT1oIJ8hchQ/ek2DUAQoS8C393XshfSrPMY+PHM0rZnFJh0dNak6XhoBei0EvpVhlnvhow4r0nHVq0TlBKBj+3WI/WF62DR1pg3kUMBz2EgCgqN0iJ06XULcgvhgOD1qBU2BiUUmRZRqRDsEOlUh0lC8VxzNLSEsNhRlStkGaCbupJ0wiwbNgQGGknnnhiAOz6R5iZ2QwuYf36tRw6dIjGVB3jHUIHuWm73UYiWFxcZPNxGzHGcPppZ7Fw5BBaR9SnJmhMrAFhQ5y6U6SZoxI7vJcMBgPaK/0gCU0kw16fpBLYb3PzB5loNiiDMLTWo2I8y4KJvjEG5xyzs7McPnyYSqUykqvWajVc8f6N3v80JYqiIkE1rO/dbpfp6emRx5z3q0ylLMtoNBoh2KHYfIfDIbVajTiO6ff7DIdDWq0GU1MTbL9/L0klIo4qCOFpNtc+rITQY+Ohx1GFtxDhH6vk/QeCcePF7urvh0NneKhgqxUFUskMveGG73LrjbcT5UVxrUOxaHOPVhrvgr9sFEUgBcNhPzRLvEMJ0JUKvd4A4x3WrAIfxpqCqRUqrwAoFQa9hWRTCHDCoiPIhUN4iUQirSTHYmXhI+IE1oV7T+nQy0+NIVeedetriEqGUzlJRaOi0Ok1xrPU6zC5dob2gRwtNSrR5FmGElFR4AkSHWOGBt8TVJJGSHkVGqnA4bCmh9IVesvh+qzNEegQQlFKPTy4UmJWsG5LOaXL+lgvqMQqtIqKIlcqjzEZvvCjkniSSIc1NopgdNhZNbuPogiTB1DSG4/BoTKPr0RYJXDWUCaeV6KY/qCHkMEHRwrAe3KbIbwkz9NwiIg00vpgP+zsiOGQpRleKXLnSJQmdxabWXr9Ljvbu1Ba0mhU2HzcxhCeISwy0uTZEIMnihKybMhwTwelIuoTLSanWjSazSClKgp7pRRZwfiNpCrqAYErEtlEUcsQuJggivQ2B8EPqTR9dmhNkfa2ClqPg9rH1qOf/BHuHz/6H5RrW3kolEDReBMBABhnfJVJyEGpUTQLi1VTKIso5oIr8secH1OQFKFko7CqnNE8DU2JPAB7XqK8I5OG9uFDYDO0LNY4wHjAZgwzj1aCSITj85GVDFVp88O77+KkLSezJmoQD/bw+JZgX3MNd+7cjY8k0vmgTqpUuPyqf6NWa9Dtd/BSk1tLPhjAYDACJrz3OHk02DLOlAMCy6rw4Cv774FVeGw8skax75QNjtGZToAL579RLVBAI1LEQLB5WWU3jD1jIQ0MzbuilncSpUUREKALVl4ERaM9gH7x6DlCTVECZkf7xIZrUCMwaHxNXpUlFr5xIkYpUYBR4R6WSmO8J1Kr7L7Vho5DqwSlItrtNuvXr+fIkSWkWJXxAsFbVYAqpa06hFx4IfEyJLoHqr0AFzxJVZkELjROQRwFYomWUZBkykCKedwF53HLD+4asdtrcUw6LHzRneWU08/mhhtuKoIwVj3eqtU6g8Eg2PfEoYHa6aW8861X8rSnnccNN9xJv9Mt0moFuciLpnhEmmZ4DFJUghypkBvjPBqFwWILBqB0RQiDCgWhJ7CMV2tIhzVZsS87rM2IZIQVbmRZpFRRz6FGeyu44KNJIFJ47wtFgMITJLoORS482voRe036EPgQskY9woeQElswnEuQdXUPj8akqSVLThUNvFUQcTzgARi93kOx6n7UeNigXJ7ntJpNjMs5dPgIggzyiCuuvZJrPndtIJEKgSXmE5++jg0TFSJ1Dp+/6QZM7lgepLQeVeXKu3dRkTG7v/pVjCjSVGyOcD74KBAoh96X5X9IArGSoNnwhq9/41bavS7Pf8FLOf/sc9jglvjQ5Z9n9ri1dLzl/oXDvPTs4/j0vYcwKOYPHKLRSpioNRAdTVxJUAiskFz0+Mdz0ZOewfLKEY78cC9/+P53oCXkeUpros7rf+93MMrw6v/9Bv7ujW/hKSc/muv/7s0cvHkbu+Z2cNYZ53ByLyNKYqIo4SOfvY4ta49DZxn7Duwmr01y4Vln8+27fsiuxWU2n3giu3fvYrpZ52s3f4+3v/LV/P5lv87WlX382q/8Lu+88Ank7Q6vfeubiOoN9h+eo9/rEuuIp5z7GO6+5y7+fW6FqaTC9dt38U/XfI53vfI3OGnNWj55151Mxjnfesuv8OK3vpm/egr8xuVX4YXj1Oo0lzzhVM67+BIu/bM/o6s10oAl5RN33M1yb4XvzB/kA3/9HvJqQmpytm2/P1BxreBbd/yAX7vsFawsL9LbfwjIkb7Ga970FnYvHWSY90aTbhwVfuHzfo6PfuIqnn7uWZy+aT2zs2v53h130TMW6TwDUrYtpKCT8Pn+R+mrQYTOsNt5qAcBR7WiyXp90laQx4XY7CCB6i/0uOfI1rDmWUN7pYeoFrRiZ5EyJkpiLr74Yr702a9w4xevQyMxAmrVhP4wAyECrTbPC7o2Bf3XoYZDqEKZ7+Bs/hDXeWz8d4b35YbsChp1AOeEDBLiMrHTOUsUaYLXS5haWnucE+hE43yGK+jmwQMoxxpY6fTRSYSz1WAH6lKUDsRdlSi0DZ1xraHrIZjVBiNnRES91sR7z6FDK1Rs8LXygkAT1zWctxxZTlG6grOGeqXChk0bSdOUI4sHmZpZy+13/xDlI4RMeexjz2PXjq1UK3Vya9h43CaEEMzPz4985Iwx7N6zD2MMB3bvZ8OGdagoCQmqSYN02GXP/n1MtGYw3lCpriH2njQb0mpOMDFZJ4oi5ubm6LS7LMwfobOyTKwVzuc0fZMoiqgmCYfnl5ho1ul2u0xMTOC8J8tzojgO/7RmaXEO5wwVNRH86o4sMjExQW5ykiQJSY0F221mZoZut0uz2cQ5x5HFRWq1GmmaIioaKxjJZAeDAdVqtZC6pgjhC5DQ4b1iZs0UaZqiVejiLy0t0WpN/89O2EfwKDvHwOigOCpk5dEdZyllCEIYY1GG7wdALPzouAedxwnH0uISV15xNZ2VPg1dGxVBQSIONqBbRFEhb45LkBd8nqGEojPsYYTHmqK7bjxWusC20yGowLniwCssSiuyQpZufY5XHhIPUY4UkqqoYvtgrMaanDzLyfMsFMY+LQyIBVkeEsXayzm1hsBYGLgMa23whhSS6fVT5MsGiqTWoU2RKoS9uCLdNXe2kFgobO7AKQYmo9IMHmpJXRPJGOXCfE9tTqwEUaRGALYY8zepJhWMzVheOsLk1Ay9lWV0pcbM1DQHDh0K3nPWkNkA1nsviHRlxADUOsj8oQReFVGkRwEK3pWAqgNysoIFluaWeiywhe9V2ZBwPnhBVpK46DAHeVHuM2xuRpYCwod7PTM5SRSHz6f424wxRFIhCIm9vuha5+mQfndAkiRMzUyHpkAlrLmp6RWvJ3A258hcl+GgR1JdYnJyHfVGYEuHTn5IFQmFfel1IwJbyheRT1JjC5NpsERKYVzwlrE2RciSzVnOcTF2H4Sa1phjDPqf9KFkAaCVYJNzBcMt3AsBjJAoeXRKqfUGLSKkFjgzliAoZQHUhXNryXIrawfwR9XMeIn3pmAUl4zNkjkUWLx4z1I+x+LdOxgOhxgXDqASj5IeV3h2xRIknlatSu4sd+zfQ3XffkQiOGmqSjvr8MyLL+Lb3/8+v/SULUQK7jq8QLs3REeiaLIXwJsThXH92KUexWo5WuE0/t5AsZYUFgblbx3zlHtkjbLRVqr7yv1aShkk2l4gxNGhTADOpUiRjOSb5e8ezbwPc9aaALh573FWjM5wEKSyHlk0RFafp1TG/CgWXvl4uKfACB/qA1+mrurRNQRQqAx5KV7bWbQK/nBCjoVGqAQhBMZ5yqT5wWBQNOJ1IU+XaBWkrLK4jxBBDKtVYJ5JEWGFpqIjLDlSV0Z/t3dlWmvYQ7QsmtpCEOuYSiK5955tSBwVLdFa8sIXPouPf+wzIdHdeO687fZwznEu1FQEklO73S5XM/JhGjA1K2j3ulz/9R/wR3/0ct72zn8hy3KMyUMaKzlKSDTBG9dbg5YeazUaWyjIfPBlt6F5ZZ1ESj967YDfhb3VOY/DUoYolIQL611ozpbNL6cLUNUWgGwRsOfKpkUQGks80stCrluw/b3DCRFSdG0IHBXWowje9LbYp7UQo7ld7t0PBHCl1CAMzhw930owrpzHUjJKf/VOPWg9/FHjYYNyC/PzTDXrLHV6KK0xRIjUsnPfLoxVxFWNEBKVCIQyHFzpcN13rgckkRRgu8zoOnvnFnD9Lt4J4grYrIcQMd5loXlSxMsD2BLUkII4jshT8MZxzXVXcsbJp9OcXMvV11zH087YRBRFnPuYk3jTH7yGv/vwl7j969eFA7r0pIMhh+nz5Asu5Ds3fhuhKuAt3jo+/bUbuPKrl/Pxt72X8x//OH7wxE8xsJaO61OLE0zuGHS6fPa9f0csElZ6XbK9HV79vndy1pOeSXXrAVQ1odtp06jWaC/1uWv7LtJum4NzSzzzog3cdu/3+Mvf/H/waUYkFVFdk3dTrJG86x8/yQsuejr/8JF/5J//8o1coRMOIDjhgsfx3btvo59l1Ot1vnPLnVRixZ677+bE6TW883Wv5Zde90c8emaSmVYF5xxPeOKT+P6Xvswrr72VEzdtZnb9Ec7cWOfug4vcOljhuaeez1e2bucxm9bzkj/+U976preyvNzmeRc9nb+Rio9edQ2zJxzP3Xt2kCTVIB9yKa7Q9r/i936L26/4Nw7u3UWkEwyGaLLOd974DobDRR79i68Knm3SI43Dozk4f4BmLWHzurWcc+HjuO7KL9GoVxm2+0EqVHYnHNj/CJADwknGBrBr/GddKGxUHFGrNmhNNhDGoQWIwsxZEEAyATgZdOHGD1HowtsHatUmnc4izTiikuXU/uojqCjDpZqhKVNlPGQZOpJYW3jQ+CCZ2rhmHS+59CW8+70fAlIeygjy2Pivj8DUCOmpQaq1Kq9b7WhQdC+OpphrlYwWWGttCCkoCoSRNLI7JFIJ3idElSYzazawcGg/h+eXGAxSNm6eYKqVY3NPlg6JonBNSRIOtjqq0u/3UUoxu/k4du2dJ46LhEgrGKZdtI6oNjRTky3SNGVtay0q0dxzcA+DvuXee+9ly/EnsnfnIfI85+abb2b92kkAsuGQ5eVlGo0GPnMjcM45RzWpsLi4yMaNG9mweSMTUy2csayZWc9gmLGwsMChA7sZpm0OHDjA6SefXPjqpeR5jjGGVqvFcDgkz3Omp6epVCqIIum0lKimaUqWRFSrVYQQpGlKrVZjzZo1dDodlpeXqUaamZkpemmgkq9bt44DBw6go8CM27BhA0IIut0uMzMzRFHE4cOHmZqaotVqMRgMRkbSWZYRS0WapiRJUgRn5EEOawwLCws0GkHuWgIB9XqdTnepYEMeC3r47w7vQydx3KNllZ5fFt2BoVYWMOO0f60VZQJm+B2N8I5elvLlr1zP/N5lmpXG6F5WhT+Lsy7IBIHcCoSPGaZ5KGIL2ZdUEZETwejXRTjh8GNgCM4HPyMEOgpyF+8kUit0TaCajqgWUZ2M0VEcvBO7Ccu7UrDBc8zmFAE/HhkJvLPkPqSzaedQqaTTz4llEUhiMqIqeDEgqcd09nbwJgERDvwCFUySCYWiy+xYMqvE+5xISZyx6IplYmODREk6mcUMe2hilJD8wev/hHe9453sP7CHmXVruW/7/Ww+/gQueepzufyTn6LbP8By1/DU889hpbPCobnDKFE2EUIHWSBQQqAk2DIV0VqU0iPT5XIoJUhTS6IjUj8M3nzeQRG+EakimdqDVJLMZCgVha6+8ZjcF2BDkOZnWQDpYxGRmwznDLpg5w3SIRUZmAPeGWzxWaYmI9KaLLVB9ic97XYXrYcsLq8A0Gw2mZxsMTU1gYgVpgDDYq1ZnD9AEtdYWlqiVquRVCpMTU1RqdSKBD4TTGwIDA0lA9tDUIQ3aBUOHQX4Jj0YM0RpiXUGSRLYEEpg8xzvDUJorMtH4UPHxk/2KAHVUFOUErjw2DgI9UBvzYf6uvQSKp8j/P6qjKoECUrP2sDSPLpuLAHyEnwIXlWwvpcxl9tVQM8H36VyvZZCEGmFFJ5hauikQ6ZrVeYHA05K6iyurDC7bh33b72fpz3hYnZuvZXnP+lcdn32Gwzj0MDwjlGTZHJykm6v/V9me4b17b/0q8fGT8g4WvopiyZ50YSTIEUBmMng7ezcap3gnX0AiDEugV19rJznzgXbGOkECBMAYkU4uzuBUqvBRuOEkHH2fgiOlOBD8FqJi4SkWDlSjJXsunFmmxMORVA/CbXahCyv/agE0ILtpZSm2++hZYQ1grPPfiz33HN3eExKtIrJvUfLEAKhJJgiuEqqkLYupSrSTz2RlljnkEohhUaiETrIxkvFSSQTet2UJIpJ0x4b1kxxzTVfIPMZ1uWAZ+2GWfq7DxegVhGc5QIe4QSBBWdCQqjGkSFBCv7iz/+ZMx69he3370GohL7pI5RikA4RUUKWd4rPGTw5eIEVriT3hpwA4REqD6o1a0afsXAOp8Bmq6593ruAIQiCp2ABvh7Vs/AeX8wv7z3CBS/xMuHXWxvqwBIkkwGkkx6ywkpAIcOuXlqaiNW2ZlkDhecs52aYL+Va6yxHzZViVj34hvH6QcDe/238pwwuJtZNsdjpIYVHOouT8OyfeR4LSx2mGglf/Oo3kPUIO8yQSRI6jUHJR9SYIFZLtHSLZUBIixAxsyuOA5NjpZ8qpCsSKApyTI6TYZLIRJJ32tx203chlmw89Tj27LE88wnn8sRHn83XvnEzT3/yGXzty/9KpT7JsHOEgcuZ9jFnbJxh8zN+lh/ccQu7RIyMLN/5wbcRQ8sH/88HuXHf/ZzRalBrVag1a5x8+hnUpxtMNFq85+OfpDe/yMfe87fcfdOtCDRPfdzjmag3yPOUalKhmkT0llMi1eddr38dYhBCH4ZS8Ff//EGmjp/lZRc9i+337SaZipmKJzjlMcdz6e/8LptjRY5iyWY84zkv4uJnPxshBOvqGiUkL7jwKVx42gm8458+xNVfu5Yv3vp9tA6L3UAJ/uHabzCpl3jJ457M3OfvoXnS4+h2u9x5OEPYAWfNTnHHdVdz6a9exj8cPsIP/uAN5HmKlorzfvFZpDblDaefwWnP/Rne9o8fotPrI4Qa+Ws4IcF6zn7Bi6hWq+TeIyQ87ZxzefNVn2f3fd8PyTsPmJhf/tLXqFarzM7O8qlrPkfPpyy1eyEh1ReGm6JMVX2I4SyjuLjy6+LGLloqBQITpI2HDh0iiWaJ6xVKKv8DI9yFUBiXjwptCJ2fqOpY29yIalSx0vDaX34Zl739z1Ha4WQMWUqtWcMZQTroFF3PcOMqrfnVV/wal/+/HwqdomPFx499xHFMr5tSqZabsUUoH3yliqAOIeSoM10ezJOkgtaByVNv1EnTPmWIn/fBDzKOFZVqSJVas+ZUTj3jTNqdw2w5fpZ2Z5HhsEennzEYdpjffxjpCWvdIMerYFTebEYsLWX08w4z0wnDNEdIjcVRa9RpTlWp1Wrcu3UrtUqV9WumOXHTWrbvuI+kInE2Ik40e3Zuo9JYy/49h3jc+ecwM9UoAKpWkI9llka1Rp7nVKtBKusF1JsNpmamWVxaod1us3nzJrZt28bCwmKRtNoly/vEOmH7jn2YrE+9XkcIQaQ0R+YXsFhUJULnjizLQjpq2mft2rUjZltJ7c6yICW1BeOm1xuwMD/PScdvGsl8ncvo9Ic0Gg2iKKLd7lKpBUCvWq3S7XYDsFlNiJIIk5kRIBei6yR9DJVGuM7d+/dxwnGbMdZSUQkKRTYc0DPQaMZIX2WYDUiSKs3aBPmw9z89bR+xYxVEWwXeRodCjmZCjH9vHJQLBvhmrJMtsMX6fd89O/jMVZ8n8QmW0ovLFofhAGCIWOOcpBInDIYdnNckOnTjc2EZDoakmSS3oYmntQ5AoAhy6zzNgmeICs0XLSOs9BA7REVTieooKaAv6HeHAY/pgUsFaT5AKIH0HmMCG5M8rDFRlNAb9INMezgkURrnNE4WJtQYGjMyGMFnAUQb96JRJVDpFZGOx4BOSxRFWJciNWTREFFRrBxSeKNQnuDV1qgxuX4LPmoytWYNSlY47dFPYM36E3jLX74bhEQpuOO222h328FM2lFILwNTUapQlAoRvOykirHGFgbYq597KSUPYTkSLzzOUHSdWe1GCxFANO+xNrDGhBBYlxWd7iBfc95ibWBbGhuSKyEESRiCb184NITQiVhEZM4EH5zyWnQc0uTcahowRcp2e6nN8uIS+7Sk0aozOTNNc6JFL81QAvrdNq4vyPoJQiuWF+doNKeYnJimOdEIrEYjkFJgC0alxxVMzcqI9eR9ABoDoJIWh0SDtR7nFJLyoGhHktZj4yd/hGVvrIEgVmXIDossGr2jny8AMCn0qEHryrXOFaF1vpTnKXwpH3PF/UQISAoMIAMYnA2S/fHDqLUWlWYcvvt77FseBhYdFlsw7zygRPBIjoTDOMkwD55b1ufUlWRve0AzijG1BtdvP0Bzx36WbU612WJmaiP9dodEGuJEk+aCSlWPDPRB0qy3GKTBNgIezHYqhx+TrQbWjAiUF+kL0Kbw6DsmX31EjhEgUUj3j/78A5PYexvkphTHtId8pjGfOWEQyIJ74UbHvhGzUpThJg4hSrP9o2Wq4/VJeSXeWZzgqHsWVkHBVYDNIop7WCmF8+DlgwG58FpBwh5Y6gRZLkF1FdR+GUJq7rzrdgQxU5PBnsY5T6veZLm9RFwLPpKSVeXBaiCKQqlwb2gZIx2IaHU/jqLAyH3q0y7ie9+9CaUkUeyIY0W716c3THGu8M11km337aLWqDHIAW/JfQ4ehnlOHMfkeYawFtA4KREohsMhFZWwsrzI+vVr2XdgHu0jjPVYaTEmJ4k1xgSJaWlvIrzHSIHyDuUFRni8ITDOR+CpD69lQzhSWHJ9wYMs9365WleMfcYoibdjQQtaB2upEZgarqP0FQSCjHasnnXjqr5irfLF/1dr2WKtEiooq2y5zrmRx6i1OaUVywOBN+fKM+bDD3mA/wwoJwTdpR7BXisAcnjPvgMHmGg26aUhvsJHVZzWhclwiOzWWjI9Mc1Uq0ens4QSYIo3eH9DH2Xv7/MsSBaU5H+95jd5z/v+CYDTTzmVu+69h/Unr6Gbel703Et44RN+ilpS4zdf/Spe9PznkuWKeqPCwvw8a2Zm2br9MNV6PRxaqxF33X4b+xcWqSf1ECYhBE/96fP5xCcOcsPOH3LK9Ax70gErOxf5k1/7DebxPP0pl7DU6/A3f/54vIC41uI91/0F5556Eo991KPYf2COzRs3Ebkgg/v7z38cG9X5yq23sbY1TS2q0suGtNZu5Jqrv8KVH70cmQimajN88/s38OgzT+XJF1zI7XfcxJOfdC6oGpf91ss5YXqWqJIE3TXwh+//AG94x+t55Qt/h0hLnv9Tz4UVwyksY+/by3v/+q2s7DrM4du/y2+/9Fd5+xVX8+If6pBlIhKyYc7PnX0X9335tbz6cVv4+5uGkA9wcYWP/NX/4bdefilvuO5TPP4z19F60pNYHnvmtwAAIABJREFUSJeIlCZ1BOYbDh+BwDJ03fCZWckzLnwSUkd868ZNfPV7Pwzv62jKCGqtGjONGVaWF9m4bobvbr0naL59oIFec9W/Icl53gtfjFMPQJpL8K2g64++Hn9sDKQLXkLBSwfCojvsD0bXtNoRKXaIovuOtFRrMUuHl/C1AdJ4sqjCb7/7r7FESGfD6i4c/ZUeeDPqspQ3ovU5b//b9+G9LaK94RhT7sc7AvgjRwuf1sF/QqmwiY0Xz6HT5kceZuVCWyaolj5vZXe6BPGqCRxZvJ3Dh6fYdNx6+v0eE601TE9P017pIuQajt98Eibts2v/gLmVe5jb5UiqiuzwEgMDIpYsdReRHpqVOlUdwIx+v88ZZ5zB/MIC+WAIuSVONN4mrJ2OOeK6xJUmrcYs9ak6lbiK8ynLy4Z2u83GjRvJ85zNxx2HzUL3fM+ePTQagWU0NTXFfffdx8zMDM1GjVtvvZXdu3fT72XE1TQcejMFLkM5qCZxkJVVKhhvmJiYoJ/2We52iHzowLdaLdJsMHrPlVIoIZienqbTWSJNU6rVKoPBgOnpafbvC9dTrVbpryyvHpiLz2/Lli0B7Gu2yPPAlPHe0x/2iaKIXqdHHMejwiOOY2IdmHL1ep1qtYpzjlqtxlKnN/o8k8RhbIq14ffS4ZBWq8UPf3gbT/wfmKv/fxhlJ3i8UBkVHUUiZ2gh+ocsnoIX7KqHSZCJhwK4l3b48Ic/TD5IaakqHZOOXjO8jkWpKi98/mVEusYw73PNZz+OGcyTaMilgbrEZo5IS7wNfnGVKCbLU1zBjgoFfclccSGBXDrqrTppe0ja9sSaEA5hIiKdIKQjtwNc0U1GgowsJpUkuk5mHWmak8TVwLLVOoBOpXRDOkTkqbdqDPpp4TVqEESh4y0l3uSjTmQoasOBXCmFt6CVBO+YWjdJUvUstoPniZfBpcephIuf8hTe9La/5E1/8ju87NJXs23PXp721It4xnOezTVX/RupgAuedn7oKgtZSDoMzoUwA11IhLwt5cLhkCCkHe2VZfJ0uIfDmuC8Xe2TOYeXQQrkigTcMEc8SsZkafgMkIzW3XAwL0JYlCTNDUY4vLV4KVCRBlPIbEThw+bLpkt405QKybJKaUwewieyPDRBTRZMptPc0Ov0mTu4SFINNgHNiTqR0Djj6Az7IWymCr32HjrtRfThGrObjqdaqwTrPVH6wgTJcV6wtJ23gdknNbkBITR5noWDIwprPFra4KnkV8PM3DFw7hExxiX4Ixm/lygUnjzI0vxYXVmsbQ88mOmCAVeCfMGTjgBeF0CEs0VwQzE3nAOEQ4kEa/vYQcq+e+9g2FlipZ+htEQLyIwlUaGRWNa01sNkI2LQTtFJkJhb72jVGhzpdQFInWHHgcNMJhVyl3HJOWexdedOXvzcn0G4nDOP28TW5T6VSo2Dhw7TatVw1oJQdIcDKj4OKa5jtb4LOP9oFDaeDxrh+2r1oWPy1UfsKMNwlEhwPlslKCjFiJxRSgELxtM4iBsCSwLw7b0tNLFBshrSTBVCeqzwBTAcFT6MEqkCqUMJNWrohWsKTZ7VWsSNzgy+AADVyP+xlKl7PBkQAQYhwvkxwNCFB17Btl9V3xQAkbNIrcM8LmS9Agm+sDSSEVKHPcz6oOQZpD3q9Tqnnnoq1gh27doVQuSERnodQgjlariMlIEZJxVIqQpfc8nEZMx3briRWCsirXnVq57LBz7waXrDHs4VgXfWMzRDVKRpLy5RqVfI8gzhFdYbhBSkWVh/rHe4PCeOIqwdgpQMbcre/YaZCcuLX3wx137m22RZijKSialpFhfmsMIiMgtKkbociUY7R2oMupA1SxWTm/6YlF/ivEFJGdKpnaRMuA0p1RGOfsHYD5+VL0Jw/AOSUcvzdtlsVOVe6wIbWXiHpGA0ijAXTdFUe+ASVYKzwceukGQ7y6p/nAVhi+Zjya4s555/wHOVDZ5V6evDGQ8blJNSM8iHeCnwSiF0kFk4Yeh2+tSaNbwGHUusDMlkGIcXjmq9xcbZtVTjPRinkORUtMYJSS2uMCjisQO6GYz+nBd84Etf4nOXf4qf/YWXcu+2+4LJs1Tk1YSrvvRlrrnxO+jUs4jgE7fcyJlpSnViCudgfz5E5Bla11hut9lw5kncve9eDJ6ecZxyyhZqzZiDB/bxoQ+8nS9c/QUev65O1y7zjk99m8/d9B0e9djH8+EvXMdUaxrjHOmgR6NW55Kf+hmuvuajPPOlv4AsDIK99Pz9u98NiWXv4UPccMc9tKam2bVrF2eefgbbtu2kXqvwlHOexbv+8f0gBbWowl337OCz73kLzeRF3H14keu/fyeXf/tmvPX0BwPWTK9laeEg9cxhbcKNd93I59/zPq792jc484TNHF87iRvu3EPj/p3ouEK8dj3NTg9vBmiv8VrgUVSrinOPh4X+JPffvps1a09jbjEEIPzxn/4RrXqPj/+cZtjPeO/cEv0sDwloInTgfJh1q14QYVXiiq99nf1Li3zu2itWN2kXQBLvPZO1BjPNhEFvyD2795APChmHDOHSb3rX+xA+wwnNUbt6eJFQ+JQnAGtWwblyjMC5cIBAejZumqVRjdlz6BDWOzJrAM2vXPI8/uVLV/MLFz2Dy7/5BZSMQCtsLkiHGUqLEVPHO0PfFQuykrzgvLO59gc/wAgFpqQvCzZt3MKBQwcpU7GCB4gAAgPi2PjxDe8hTjRSisKvSKCkxrtVaV3Y7ClAAF14HwUGTbVaBSBJaqETVkjqoigqJKYWqRxV1eKkE45j//79JElCrRaTZX1O3LIl+BQqRWZy1m8QrJy8jnRouPnOuxjML6O0xnpPmhv6PYNzC5x04mamphtoIVmY28/6detYXl6GpMr3brqDNWvWoPGcfNIWlpcdtVYNbx0nblzHrl07mJ3dwO2H56jFCUmzRWdpgU53SLVaZcOGdUXaUzQKY1heXqbT6bC0uEBjehpd6bFv3wr1akK1WqXT6eAqAuNy6rFESY/3jjQL0tU8T6kkCVrrIGEtkgmtDT6QcSUOnnNxwmCQhtTZWJAkERs3biRK4lHK48zMDIPqkOFwyCC1rJmZQhfPFYAAQZpmVJMKNjdkWYZzNrDohgMaWuFTR73epN1eRAiQcUJvZRmhAqCR54VNQe6ZmpwAY+ksrzAzMxPYTcfGf2kc7feyyp4KkqtSjhrCUcYfG/ffgFWjeyOCvEEj2bnnIId2H6BKgsWPwhlcSNxBCEkct5DVBhbN3j33MxiuIHWE9Q4rU5rr6iwtd8gzR6RjlNBkJpjzq0gxGAxQSpF7R0UGEMo4BdJi1QDvEkRuyDJfJKESwB/jUE7ihAEFptpjZm2D5R2Q5Rnax6TGYDHBmkOFlDnpfTByFwIjc0SsyA+qIH/0Cc7ZUKS6Yk8VwXNEaoUouvQQzKqdiHB6QFIFaWImdZ1e3MHbCpaMm++8hbWbzuYHN36PL3/jdhb7fZ76lIvZt2MXRw4t8MQLLmRmepKlI3NM1wLInfscYUJp5lmVIXs8UkBmM4SIEM4Va6zBC4VxFoWAAsSz1uKNH3n3aa/IyVBE4aAmQ9iBUAapLN4Ftk2kweUG4SK8BkyRThkmC0IopA1FuceihAgFvw6+OLn1odKVgtxmYb64MM+MN6HgtuBVSHrL83DoMJklHfTJ+nvYdNImJiYbSAmRFDgnyLMhcT3BWIsZdNi/7342H3cicbVgAZeHPiERBZNTYCk9v4IQJjAoS/N+rQXORninglm4c0VtcAyEeCSNUsrkpCKCwrg+pAuWTGDBmOG3UCOzeWuL5Gc8amRURCGZcyMZHsjCk9aOSmDvPc7n2Nxx6L57WFpcJLUGK4pUY8RobYMgx6MAL6oyoheleOOD1Dy3dAZ9qkqTOYOxAeDPrcELwRdv385FJ8xw1qPP5G8+8mGypE6nt4BSEZs2raWz0qVSqXDO2WeyY/d+FheX8R7aY97O0sM43BzAidWvg91AwRwuD7cADyuJ89j4SRmimMdluAME2WI5//2IIad4KH+3ceCiBJ2A4mfLdbaQgxbnLyFDUqh3rghVAXzIRHcUQNWoIa/GahZfMOvGmHNl2EP5dxRycpwuPNvcqIkoCm977/ICv5MFOB8H64QCZLPkaBEDHm8VKIoGWxJUPF4ySAcA1BothlmKMYZ777sPLWKCA5+mIkJjLhIJVpQBdDrsVQgQMchi3fGeWIb7/7LfeAFf+PxX+Nu//TfyTICReBkCEFKXY5zFZYJIJ7jckciIYZ5iC99LLSS5y7EOnM/J8sAElFD4vToW2h3+9YrrmWolTNXX0mGB5XYbJxXSaJyyeB/O4pnNkEAkJMZ7pPMhoVYkWJuOpMneeVZjwwBCA8EZS0hXjTHl+b5gX0pk8X6J4vVEAF2FRhK8P/3o2Uq2nEQ4gxvJYAulgFZQeLzaovmsi8ZkISvAeTuasyMfUFc2By0/ysdw3FeunGM/dvmqlZAOUhChaBI+MIWmJydYWe7T7naQeaAfeu8RJgdcKJSHKd57BqlBaou3kjPPfgy33HILGzfMsvtwSAMVwLpmhXq1wVCC27/I3Tt34SsqIJ5SIdopot2mbTImhKBiEs6ePZHzzj4f43JOO+V0pJQ8u1kjRnLiplnyzPMbf/bH/Pwzns3G9Rto1iepKsETznos1nou//q/87rf+m1mZ9aT2YzLXqkQShE5wUJmuPL669mxdz+D/hCbGw4eWeRpL/g9vv3pj+Mqhnq1yWSrwWe++gWedPEF3H/o27TbS9TrFV70vOfz+S9/kYaMWBSSq6//Ipc84Ylk3rJ7/hDbdu/gpp17OOf0x/DTT30cX7z/XmYnGmzZtImZ6Wn6/S67dkfc9P3v89uXXsb73/9u9v3y8znv9NNY/Per2ducoXdoH2unLkFVJvjOPbdwaHmJFzzzmXz3/o+FClFJfGb42jbFdw/GVIxGpo61UYKfrrJ3/z5Oq3uO90vkM5JopYI3IcksSmJSkz+IASdkoOqmuWFNozWig0LYgKWKMCZj2Blw1tmPwfucNRNTzC11ik6Dp6I0v/drv8y/3/Y9bvrBjQ+edPJHbNjjfnJj4RClGfyuHTuZ3bCGbrdbdOYF2sHnvvdNZBxxwmNOR3/rixgsVRdB5DDW4vo5olZFOlNsNJVwONCCP3/UTq66MaQEl7RttGL/3CG8EkhkkPji8DYr6KzHCo4f5zDGUK1WsTbI4UoQoDQmL03mg+dY8FmsVOLQBSr8fLLMoHUopJUKrMrBYLDa5XYKqSWd7iJr17WYnpmi38tpt0MR2Wq1gtVot4c1jomJCVZ8lwsedw5Z6lgeZPzwnntZWFymUok58YQTMGZAt9tFFwcy63zwUopjMmfZe/AA69esZ2FxL+c+5iJyY+j22rQmmxzcA+lgSLPZxFpLs9nENzR5QRnfvXs3zWaTLDPs3r0bKWVgkS0tUW3VQiEvIak3yG3O3P4DTE5OkmaWpBoM0dvtZRqNyZHHnJYRWWaoVOLCqy2EMuCCKWspWY2iaJTwmCQRvV6P2dlZjHPYwgtzcXGRRlyhmVTxwz6mP6TSqJFl4VA97k/jvWc4HNJsNqjX6xxqL1OvN4Ohe57TaDTYvn0nrfokUaRxaYqUmnq9Tq1WC2Cjc7TbyyPPu4e7ER4bDx7j71/pGTcOupXMNxgDeMaAvHFwLpClFF54hrnh01d9lnwQgBGDC/Ly4r623hHphGo1Yf++vSwvL7J9+51Uk5gsG5IbS26ht6OLGYji/nZ4nxcMu8KPTaqQGubCIdDgQYOuSqSoYtJhCFewoYCtJhFYhyuSnDWKPDGsP7FKksQs7+yiaZDhsAK0deioKMZLmYRViEpG3AgNxn53SCyqgIDCyFhKyIUvj/MBpPMer0MqmdaOeqPOYr7MUHroJmTtIdLFpMMBkdScuuUMTpix/OIlFyB1TFVaNlQy9t51I+sSj489fjhgYzPCiNIjJRhNlwmtxphROnJINRNoLfAmAAshCMOjlER6TehWr0r+lQqAXagHAnvBGoe1eUh7FgIpI3LrEGhMXkhalQdjcELhlR6xD5x3aA8uz9GVIOl11mB94VVkDbhC5mqzAhgOEiZhC/8Z57CqNJNW4AIDD+PxQ8fhfXMI76hNVCEPBtOICDccBo+eKCIdDNm54342HXc8teoEqNB4tfgAvhVzWovQjTfGF2yMojvvROHFFda2kNKZo7QIxtvHxk/0GF/3RmudDynOAkWZKDn6WRGaCCWj1FkIIWAOJyTai1UwrzBHB1kkOxYeSx6sBedd8fs+JAcvLjM3fyjUp6JQekBgxRWS7fLQp4QkTjRZAdplzjE0HrxH4YkUNKOEYZaSIlFCM3QZZ63XPP+lv0Rt80lUalVuuf8g3jqOzC9w9jmPQSKYOzjHo88+n26/z7Zt22g0J1jptFeVJw98D8eYcqOvyzOEeLBv3rHxyBheBED36M98vAlX1AveoH7E+WfcR64MVEEYKDxNxZhtAjiEi0ZkhxA2ssrWh1XPw3F56rh3Y/lcAl0Ahkdfvyioq+My3JL1V8rCV9cEiccEoGfsOco1QRCa/SKKR7J2L1fron63i4wjRBTIBEFxyEjSHkUhlV1X4tHfpWVUXKhHiyq1aoW4ElGtNHjZy5/MRz78OdLcEBxfDFo4cutD4JIVxTU5jMlwUrB5y/Hcv30XSoYAJVsw/IUQeFtYTEDBUBPY3OOMwWrLynJGpeKo2SqDPAQ8IYvmgieAWqpo4uNGCgrhGEn6RzWkl+FzVRLhc5xb/VxKVdRRP3+U8syjVCBTjEtDZfE3hf/4gsJbziWJF6Zo/JU+nKv1rR+TuI4DueEaxufVKkD3H7HfVs//JXj38Na8/5SnXO4twnokCV4LFJq1MxMIW2HvoT0YYdG5GSG5QiimZtbSWV7h5ptvJXp0jZbIWPYD9u+bJ6p4Tj3+NPYurIx0xEpF7FlaJAde9FOPZfs3r+UlT7yAT992M3mWsrLUwZkUJRLSwyssZzAv5tm6dw/NqWmu++o3sC6lNxjQqNTJCMbKg2GPD175ObJhn1gpTjn5dF5/WYN//fRVzM7Octy6DRgPWlaItEK4gE6n80tcec21nP/ClyEGgsxbXveM57B8+D7+5pVXMVGp8c1bb+Y5T3826bCPFZJX/vQvBiDIKzJhOanxizjnWOkOee2f/iaXvuL3kUrgrGfD2kkQikq9wd65OV77cy9DeJjvtNm7fRs6qrEuafKcZz2Lz/zLJ3n5836WLdNrOLB7O/2Tz2INPeSgyq++7jWs9Lv89UtfyrQneDbkwYvPA/3lZZ77GPiZM5d542dSlvpdNs/MkEUJyi1TjWOGkceIyihdTUqJzc0own00vMTZHC8VWgq2bNpEJDS2mMBOEAwykawM+yy0F5msbmRNo8Gf/t6v86Wvf4tv33IX2TDn69/6LvX4YW7QDxUE8YDvlelxUmqGw8DQ8RbySDI7O8uLz/15Pviv/0xSqfGmP3gdl199BdsObufzf/aPeN3nF/7ktdyzfTtSRTgTDCjzYc65H19BCbCqSFPRGusI3c08xxHxljf8b/76yvezeP/BB1Fsj43//ijNkEumXBxrrPVEUUyloo46LAbAQBQJgYxMY7XWxeOaYTYIRqlxBVxghg2zIPPsrRzi/J96Fp/61OW84IUv4sD+iCzLqFQqLK8somWgf4MkijWDThfrLO3lOaYm66xfv54DB/bS7/WYalbB5Hgt6Pf7VOuTSDnk5JNPYmVlCWMMy502j96whX57gYlWi16eUUFwwXlncXBuD1vv6zI9PU1rosZEYw0CydzcHKecfBLD4ZAjR45wyimngFDkec66dWvYev9WqtUqK+0O3niq1Ra2KVFKkqY9BhZ6KxnTrQYDM6SfF6moUuKMp9WapNFosby8iBSaWIcO18LCAjNr19Ab9Gm1GszPzxPHIRBCCM9gMGBiYoJhcdBN8wzvJJNTDbJsCNTQWtPv97HWkWV5wZhLmZho0Wo2SdO0SIuCUj5kraFer+OMhSimWW/R7XdQSuNyRzbIyGs2XGus6fU69HvD/9E5+0gf4x4tP8oXY1WO4goGqht9P3RFAwNVuMAiPXDoIDd/72aquoJEIKsal1qiogmj4gRrLcvtg3z9+qswJiPWgggZ1nLnGaSe3ICKIgSQG4vAkSQhqdfbAHpJBFEB3kstcdqRNAV5TxErjXWSOI7CnHIKKR0WyC0Ib5BOsLTTkA7bJHmtuOd1YApIUXTEQ2XtvUdITy4sM2snwv5hdfHapVdM4bGrVcGmcegk+NPkeRYO/UKw1DuCnBTUqg2WdgywAx8SzLQAnzNRyZF5FeUN1makMkhSpQ7JsMbbcBDWCpMOR4CqEqFolVodBciV6W7GpmiRYG24J60zWOcpUyKjKBhPuyKwYfQ5l7Ik6VAi3Lcej3V5qBcLVpkXNhhc+7Bv5zZD6OIgIhW5yyESZLnBa4nSEWk6RHjQUof0OOsRROFQUxT9Xmg8AksGqSezFk1gFUkZPndXEeR5yqH9c0wPJqk2EpBRMMPOSrm8I4kivJbs37uTTZseRa1Ro3AnwvgcgSCSApuZohkZmMZhf6iSZRklASMcPggMJ2uPMXcfIcNIUNZjReFcAhQ8XoI3zyqzx1kbwkiEJBKBYStReKdROJwP3pHhcLd66M+NKe4jX0hWDb5I/3U+nKMO7t+BtQZLOZdKVrJAekdW4CBOgHCeYZZDDKkNYIPAo1XYQ7PMkcvQQFurE9ZWE+pRhSeedRqTM+vxTnFgqY+qVrnwzNM4srjMjbfeykXnncvTL34iO3bcz+23387FF1/Ml7/+jaPer1K+WqZjwoiMFLyXRQh/YUy+He7bY3LuR9IYAXIePGVi6dGgVPm9/3iMM4zcyObC+cB2llKOWJTCh/vOeR8UVorAaPdhTT4aSBsD4caBtwIQD7jI6joslcP7IFstn8u4oBD7/9h78yjLyvLe//MOe+8z1alTYxc90d3Q0AwiiAoiRMRZY5yDiRqHa4wajdGYaPTm6r1kNjExiUa9SjAqSoxoJKgoDijIDDZDAw3d9DzVXGfce7/D/ePd51Q1GENW8vvFZPXjci2trjPU3u9+h+/zHSg8dAsePHiNw6O9KJihAbjDalwB+qikABadgL7KLDeYSBaMPsB4ykmEyTK8t2ih6ct9cwyivw9SQapqXE6kE+JEkySa6dkjrJ5aw2mnbeSKz32fdtojy3J8kRjrlAhrphA477EmK/6ucF3OP+98djz4MHEpQSkV9sgyrNUeT54HUN8ph/KhoVYZrtNqLpKLGNvSxEnKaKPB3MICmTF4lSC9wniDc+3gsV0bo9WeK5SEAulDOKLH42RISfVeheBGZDGO+gxKgycFNJ68mESCSiLcX3lUQ7+v3PPeEymFcwbnLE6JIuFZIJ1HIjHao23h89YndshghxGGo1+m+Q5KIkQRzrUCuPtJY+8nEQHCPvinPQ/L9ZhBOeWCFtc7gVUWKcJlO/2ME6h31vE7f/abxaITUjb6oObc7HSxcYmYXWhhZYmJ8VUYYbFU2dc6jFLF4Vkqholw9RJH5tvs3dVkl15gVW0cox3OWmQpIqLE0591HudtfDq3br+d1/7SK5isH0c5rtI0bT78sb/m5vvuQ2SahYN7wPbAKDIPolymMtJgsXmE17zr3Xzjs59m2/bdXPGDG5ienkZGMbEWjFaHuf3ueznnSU+kuTTPO174DN774Q/wjM0X8dY//mOetqnOQqfFbXfczktf8jK+u+0OTp1aT7VWJkfS6WV89EtX0NOSHbds5bkXXkStpBkqN9BxRBKVyEwPZzwPzs2xt72L1nyHuByBUHTai8RI9u7dy6/94qv4/h3Xc+bPPY37H3iQt33ob9m9dxdpu0N9ZIK52cNsnFrHq867gCQZRqge1uaYkOgMwEGpufbWJVqGkBTmDbOtNp18jrNf/DrcrZeCclz0yYza2gdxqcGZLHSSWfZOgxUTsAwmjzf9eCte9TvpfXlT+FxjHN/98T2cefFJVOcq3Hz9zWyeXMf13AtCcMbmk5k4YTWXfuaywZbnJ9VjYb30qfxSBxmrlhHOGaqjVVZNTHD/gQeRvkcsEqKG5Opv/xO7ZveTW82v/8nvcfwZj6Pbk/TmO5CFtNVquUK71cLKHO89leownYUFklhh8i7OwbOe8Wyu/c732L1zN0lcLb6rDV5nx+o/rIyxxHE4VPaTHuNYo2QSGBOAlAGUsy6lXGngHKS9NpVKSOEUwg8YdVrrge8USNJujzjWJEnCrt0PkH095YXPfwG333YLeM3U1BTD9Rpaa6anp8E6TGFeOjY+SrfbZUqCP3AYnQhG6xFDtZhKUqLTCQycxcUlWp0umzadyHijzkknrGfXrl2oIqSkFmlG1qzC5zX27t7DYqvD5hNPY6I6j5Jw/PrjaC8useXEzUTSc+jILLOzs9TrQwzVymgdcddddzExMc5JGzaxe/duJsdXsbS0RC/NkVKT9lLq1SHyPCWJS7SyFJwgLqSGQgjSLEVHJVqd5qD71Cso2EkS0em0aLVaTE6cSLvVot1uMjo6Tqc9S6lUIooiWq3gYaOS4N3XbrcZKgC3EK4RgLxer0epFKTFiwtzZLlBRzFjYxMopWi32wPQZ3R0FGsdcRSYeeVyUqTnlhkeBpB0uvNUa2NUq1Xi+JiE/N9bK72SVm56B4BI8XOtNXnh5xV8HPsdysAs9i50Rm+5/g4SV8J7h1Me7R1xIshd8O8KSpFwytN4hHNorxHKooQntWEz573F5gXTpNhQ50XnVOgIicN4S6Q0KpII5ZAJJOUKvXmDlIVPmw0pa86F5C9jDcYZSnEF0h5mAWIhcUW33lkf3lOGRqWzBVtGgUoUMnI44Vjan6OcRHgd+DXOE2tFN8/QSmGFQ5egm3XRWhJXI/K0B+XHGYKsAAAgAElEQVQIZx3jjSpmUdNZ6OJtRCVKMHkXKSJwHhmnlJIKaZrhCCzWkDgvB3J+m2eDkAlnHabwf7PWDubBAcsvC8lvXliczJFeogsbCqmXpckmd3TTfDmcQzqGy2X27dvDUCViYnySLMswKIQUyELi6YTE5iL4tMjAlFVSkmcZ0hq8dBgJkdAo6UmtxZGRCEB5fA6RU+QSjAvAa6I1qclxSuDJCzamJdZhzhIyxpgUrRRkEisNsY5YWmhiTY4u6cBaUBqde9LMkZcCIKu1Zq/Zx4ZNG4lLGpunxd4mHNycD6DswCRcC7p5Cyk11vS3wB7nJCEwPgCax+pnu4JXVDiAqT57pwDQRd+exJsAEAySVYNMy8ugIvL4gYzbF8d61weI+/MmRahNEQIRpLCwHBYCw0OjLMxM47w96jv299iRE0EGpgUjkWChZ3F9dgjBe04rx1RjmFgoEq3opR02jtVZt2Y1Zz/5AobH64yuX0OtMUxblpA0+c53f0C5FHP2KVsQ0nPl177N2U96IutWr2Pr1q2PAj2kJzCCVgBycsV2XXjwtpAF/iSzuWP1s1+uf49Dw0sULM9gzy6KhHI7kO6tTFQ96m0Gz0yfKScR0uFs8E3zThVBgAWgLUKCsPcCRIa0gWPeH2BBpmqPksPCo4GS8NwGa6HBzx0IYVhmPUkkDsGjQyOE9uAsToa5XwBCCcDgrURrAc7i0cSVCkr0pZkCaUELUEmEccHexrsSpbiE9bB2ci3r1q3DmIxdu3ZRKpVAOLrdLnEUMzU1xZYtW7j77rsZG51Ax4rV6yb5wXV3kxsbgqicwRuBS0KzLcsyrDPkAwloAIeu+MLleGNptpdQTuKVo1ZqMDpWZ9++fXjhSfMeGHDC4QTEeU6e5zhniZSi3TYMlRVrphocPhT2MGBwQiKjCnmnR6c9i/OOyAlyltmCOIMChNBYnwZZu7FA8NscyE9tAFJBDwJwBOBFnyHpB+BvaAADLiAW1guUjIv3DYArQO5s4Dr60DTEM1jTB5JpGUhloQkiQASm20+rMN6LcVKMo8G4WSFlfSz12Jly1iGVILDvJdJ5dLnM/vv2878v/wts1COmEUz7hChMez1exUTe41xGljt6ztKaPcLU5Cp82mXXrt2MT67mwPQOLn7LO/j6311Bq9UEpbjxgW08/qSN7J2doTzd5clnnIqMNPftP8j5607m4qedx/YHdvGu176PmeYe9Fidqy+9lJtv+hGr1q3mfa//Vf7vld9g+6GdPPHUU7CtnLOecDqvvugFmMwUkhrNpnWn8vCRvcytXs0/XPd9mrPzRFFMLBT3PHgvV37kQ+y/4cfc/L3vsm/ffjZMlrjwmc/g7NPO4nFbTsPiWWj3eGB6nu997Ru0eylGO8o24/BDO7h3+/288sUv5m3vfy9aZ3TSHq2lJpOrJugauPPATs553Jk84cnHI7RAWIfSJeanD/Gj4WE+dflnqdRG+MIVn6fdnkcIH9LHbMbM/DTaWnb7jAc7a7jkTy5ncmiCr77zHcUGNYBovXiMd9xdAZtRcQajLL1ul6hSoqVijq/UaGeeZuzJFhbJe56kJArPlp+M/mId//T9a9BeFQ/NilFXdMC8FHg03TRlZrHNy17ybObn5zHOUi2VObgwR9QbGQzmfwl4eywytP5BsdPqIMYaJKUIa+D9v/BcRsbqlEoVolKCFhJdUlSiEjNL83zy69/ivnuX2Fiv4HwWkmuKTUXJKZ733HP5yrW3YZ2nszSHFDHO5gwPj9BsLnLLLTfhpOPT//iZASovBCTHAIH/0NJaDQ6GgbbsKZWigkW1PD4CIKBJ0yBpjXSFOKqy1Jwj0qE7lOf54GAaJLAx1WqVZnMxMCaiKu12lzvvvJNqvY41gkOHDrG0tESz1WHz5s10u13mW0skScKtt99GtVqlZ0Ln+8j0fkpRkH/W6w0mGlM0W/OsXbuWXpaxYcMGFhYW2LRmPSOVIXThPbBp43oOHd6H6YUABRklrF+/mn0bVuOcodtxrF27ll0P72VpaYksy1i7di3HH7+e+fl5er0OGzasw/S6QIfVU3W6nZTKcInG6CpmZxc5eGQWFWm0lpSTEsamzM8dISlkpX0a/fz8PEP1EtVyADR1KaHZbFKrVfDeFp5tQc7a7nTodruUyyFhdmFhgSgK7ML+xqbPnCuVSiilBlT9/qGm1+vRaDRwPgCmvTxb9p8oZMpho9HDmHKQ1PoQ9NButwvp6lKQ2xUbqlqt9p8xVP9b1ErpQP8Q1me/wbKH3MpAiJBa1n9N33cl0P+996Rpxo9uuJF+12bAgnQmMLVMSNkMcgJHbiw6ifGF52NfNpDnPTxisMF/JEtPWAfCD5KCnXOoGFTc75yGzXPwf1IIFxJDZeHvVE7K5L1eeG8EuvhuToBxWQh3CN7OxJrAzFKKzBqGxiKU19jMIAt/kty4cFj3nlI5opcDVUOuUuK6R8QGVc6oVCKiRDPqqszs6tCbnyGijlASl+UoHxh3fZm+M22iKA5pdQOWuFz2gJRBytt/fvpyt/4cqJQKYQePCOrwThfbWBk2qE4WzbhwyIrjmF6WDj5n1eQka9etxrucpU6TZrNJt9Nj9aopkkqJNLXB902Ga+6NwNgcHcWB7ayTIIVdIXmRCBIVYWweAFfnCKYoRUpdrEP4lo5J8wwZRdgssPUCtOvJ89D97481BAN5S7PdYihuBKZ7moeAsjgmKzxKhffMz06jIsmGTRsG1yb4xz5CikNxRvTgbUjoDGMxbOyFECEJry9FOlY/s+WcCwnEvpAe+wAsP1KqZIpk3v76tBLg7r8PHL137c9hAyWKDU3v4CHnipRnP/Cl271nB27lSbWo8DthXnURbK5Usd5T8l0WyfDK44gRWjBVK1OJ4oIpK6iWyqxfu4ZznnoeI+PHwVAJ6zTNVsZDew9j0iVWrTqOmenDxFFErVYjzTNirehkbebn54njhHa3+1Ov40pQpF8/Te51rH62KwDJIFcYCIaemwNCQmWfKfcv1fJz0peKhvUxMECDdFsKQ25UgKiDWSLe9xt1Cghs6/53WvneP2l8OQAJegVo0veMC5+/knSy/BwHeXiwIZICbG4GHmFKhX2IMxYVabxyy3sl5cmzFrnURMIhVRkbEoOwPY/UGpM5dEzYHzvPgUNdDk0HSakUmnZPEkUxo40xur0eR44cYWlpKXjOJRFvfP3L+fSnPk/XeGweUlZDRKui3VyiP6f4oxJPLcJr0jQFYbDWBTzHeObSQ8wtHhq8TgpdsN8N7U5KbmbBG4zRISRBCBa6HZY6Haq1EqumNDOzwyy1mnS7LYT0SCvQXpAKGzwlhSgsIFThMWcD0OqXQcNgAWCK8dEP/fIUkbzFDbWBka9WNDhs+E5KKbwxIYF1MO8W+z0ZfF8LXe5ReIPwHjvwlOtfryxYDDyC3b4MutmgApH6UeDzSmm2f0RD5V+rxx70IDR53kNIRey6pL6GyHMu/dLleJvTqDdoZnaQSiR12JwPl8uMjjbYvXs3rZbBmTjQDHWGF46TTz2Bv/vIH1Ly43zzujv44JX/GFIRnSBOqjz7opfQjA4yXilzz+Ic77/kPZzxj/dx5ae/zOVX/5irbriDN5ZgaHKY7Yfn2XPoCB/5gz+kUh5m5759/PZb3sodd9/JeU98Mnv2PczU+ARL3SajQyNUZIyKa3z9uh/ype/8Axu2nMmbX3Qxi3MHueaGG1h/0glsv/Y2nnnZr3DG5i289pdfx8TYcUgEu+cED113O700JY4Cc2THth/xW29/D5d/5SoW5xbI4oT923fhqprfeO87EcB73/52pPc0xkaolhLWbziBb9+9gx/+8DYOnLxIc2kB1+ux4YQT+eGtdxBZy5FD03zn+i+A96Hj7yVkGRKB9ykffd0v8UdXfInLvnQVubac87TH86pLP0O5UmWkMcyhvfvRHrouB62IfYw3jkq9SifLGVOGuOqZVB1WI5g2mrHqENWpEdo7d/0UoMxSH64yNhTCKPIV/9Z/WGyB0+W5Y77d5Pf+5K9p5ykRknbe4tUXv5g/v+zzgSX377Vb8ZYonNPpLrVYXFzE5DleaZKkjFKKP/ziZ9h36AgpMTYLnRMlHK6luPbLX0MlJUyBijsBnURyy+33Y4WnXhuh4S3l07dwoAVzO+5lqDrK0tJ06P4LH2wo+5v0R6bJHqt/V/UP1yb3KC0GXZI0axFFAQB1HqJY4Vy8nPYYKXJrUDqmXK1grSMpl4h9MvA269+ztWs2DACljSeeQBxVeHDnTsqlIUZGRqjVaiilyPIeC4tz2NyRecvk5Dgz04vBi0lCtVSh1ck47rgxer0ezWaTRqOB1ppGBPdsvYfTTj+Zffv38IQnPIFbb72VKIq45ebbOfnE43nc2afz0N4Z9h2YIYoiTj99C7fccQs2P5GhoSE2blpLs7nE0HAnJJ12OjjfY3J8nHa7ydjYGL12h4rWnLbhRLp5xvzSLPW1kwjhOTyzCIX8q1yqUVpdob0wHUzxSyUiqcicL0IcYur1OlpBV4ZDvHeQZxlzc3OUy2Wq1SozMzNMrRqm2+0OpL7tdpu08OxLioNBtRrYpN1uFyklWZZRq1UB6HQ6YYFLksF9Hxmq0Wk1WbVqFYdbh1Fa43NPtRKRZZ4oKtNqtSiXy8RxjE50yJqxlmq1+v/jCP3vVysZEStZHitBiZXVB3z6oFz/ZwAew95DB9i3Zz+JqyCkwlkXSClKB8sDHxI38wxOPe1MqkMj1IZK3H7LDzBpE+M0edYFEcCiPkAYUoHlwNNWFWmmkQ7jVccCSpZkSJN2BRGCXCmESwGLUAqEw+GIvMLlDlRIBnNWYAoWncOhSxWsNnidIzV0VReUxetwYHCiQvOwRaUxGENUCgCzUoq4rGn1logbiuF1GmKFjiUqgagmMT4FmyKXJNliSpxXQwoobgBK99OJBYJqtUqaZkFOX/jG5TY/CiA46j65kDgmC0Bz5e8E5nBeMG9icuPRWqGVxNo8pLYVN7UP3uMssdaMjY3S6wQ7ACU1jUaDkUbogGepZWF2iV6WgpJMTq1CekksI6wXoCR5bjDeIX2AS/G+CMQoGJAmJ5eeWGu8tTgszltU0agpR0mQ8JAjVMG4FCB0McYInjaJVERKYY0hikp0FluUqxWMMwgPPWPJemlQMyQGrSP27t3D0HCVkdFhnPVHgb8rD3B90A/6+58w6j0hpTCRESb7D308j9X/ByVEkDpZIRHeI4XHeYEszO29cOAEUgZPQydVkHsVY8JJUbBtKNjBBGarApOv8DAKoxKcxJPjfR/4CB5N2WIzSOgHIRFhzhMejBQI79ECYq1J84zhWhWpLOOlCtPtFlrHWGBfq0dDxKwbKtHr5YyUNEtZyu69h5hZbDM+Pk7ZpPzg+ls5fmKK3Yd6rD5ugpGRER7cs4eTy8fzrGech7EGgeZp55/L96+/9adfQ78MmPRDH1zBsML5o4IgjtV/jfIi7AX7jY6wruiCadb3O+zLV3+6n1w/2KEPzvXtZaBvE16kFAtBkQpE8YCASAagoJdhZC03DW1YA1D0U1SFD2x7X/yOc/053CJXNEn6e5Ywd3ukjAqAygWprPCgonBM9RHOF+usLa4Fwfu+IMyhCKx1Z3OUjII1xQrGVWBoFSx0iganpwiOErTbbbRUSK1QKhr4Zg9Xhmh3Fzn77LP57g9vxDsbGlp9zMos20oUbYEQeiQEuTc4B7GW5GmKkC74xUuP8yFs0bkc503g9yrJ6MgkS0sHkF5jZfBGSzst8Iparcb0/CIL85I4dvzt376XN73pf+JdiTxPkc6iTVjHvfd4FXzdVBGI5EU/8EEMGrtCgSTGk2KMKtbPAkjVPrDfvCzW1yLopmDy9+3k9EpGsg+MRUWQX3uhCmWBK2IjgvQ1Uorc2vB3e48Qxb0uGM2evLD20sVcLx/ViPlJY/3fWo8ZlKvVq8wvtNE+IpURWliclYVEQbEw3w03V0ga1VLhn2SoTNYoZzEqilnoGirVhOM3n8i27Q+AG6Lmqrzp9/6cxuh6lpaW+NZ9W8FmfOsrV1FqKMY3jnJC/Uyiao3t27fz/ndfQt6U/NKrnsl7XvUWPnftzbyg1+R7f/77PH5Ok0VdumnMld/+No1GAyMi1mw4ieu2PcC2rXezfsMJDGnPVz9zOffvfAiEY/WqDXR8i3ZXcHD3fr7ypStQqmCSVCs89YkncNfuGTa0ehw+dC8zMzPs2b2bQ3sPkpqUCp77bvghz37N1Vz6xS+g44j3v/PdnPe0p+J6XaJGDR1FlCPNh/7qY9g8JHwONUpcffmVvOH5F3FwdparbryeZibJek32Tc/x/W99k6haZm77g+EGW0OtPEqjNsS+vQcoNxKyI9N85p+uZH2pRH1xF3fLOtdc+RVOOukUztzyOG6+81aG6sP00iYojfAOVTz4mxtD3DG7yA1Xf5U3PGmSH8zDoVKKywSz7RZzux/dCVu5wVdC84bnPJv9+/Zw7y0pK/OXrM2XJ2bnUarwvRACLxXGW4ZVnQ9d8UnuvePho2jGg88iHJR+4qB3AqX6wSICCpNI4QR52qXZ02S5pUqDF1z8Orz3PLhnD09+4rm8YWyKTt7lU1/9BvOdFj5WeJ3QnTPIOKHVDpIfKyW9xUUON8qUtabTmqUjIla3a5x40incuf1+2q4bqMwChJeIShWyHuOTq9iyad1jfbyO1WOogVm5LOQgbrlbnaZp4QlUxRqHsTlxHPylyuVyMeGbQeJn/2DV91UyxtDpdIo0tFA7dz7E+PgkZ555JiaHRqNBq9Viz549tLsd1q9fz+zMPN3WEmNjY0xOrGHfvj1EJmd0fIy9B/ZhbBfpI0ZGRpidnWVqaoqlpQXGxsY4cuQIWXOBHTt2MDExEaSclTZLS0vcdNNNPPGpT2fbA/czPDxMu91mzerjMa5No9Hg0OE9jI0PIxcj5ubmmJ+fQ2lLa3om+Lk1YahSpZIkHJnejyq8ttrtEMc+5jW7dgXAPSmSVqvVKr4tybOcWr2MlzKEUWQZWZYRVZKBNFXJiKWlpQGrTkcRhw8fZmrVMFmWUa/XkVJSrVbJer3A1JGKoaGhAdOkXC4XKbpBahbHMd1OiyQJAGvf/88V6bl95ltnsYmqBQlCvV5ncbFNFIXNVblRJ+92AhMys4OfH6t/ew0OmcVzshKQA46aswdstMIyoO8lB6LocDtyl3PbbXcgRJ/dmhPHxfOXG2yRdGWdpVZt8Au/8Bqc13S789x52w2AC2boBUDWf1L7HWrvC+kB4SCoosAMG6xZ0hNXE7JZh4yCIbIzAu9MYDOpfviCLD5D4FOPLlhlQkpQHiuXqDU0Q8cpknqEqihUyYP12LZmZjuYBUeUx5SqZZqdZjAzFp52p0mpntD2HTpt0BmkhezUOE+328ZlAtkzVEWDTJoiqMKTe4dX/fSxwFbrM9X6HXGt9SANd2UQR/CUykiSBOfcgMG6UsKfZYGZGscxuXVoHRjwRkqUAtsz5Hm6zK4z+eDajjbqxXodoVSEsVm4XlLhrKRSG2JI1cmdpdPpIK1ncXGesclVBB/MlKRcDhJR15eOOLKiceCVAm/JfPhbVTHenAlsZ5fZIgCiS54HXy7v5GCsBrn8MqvJe4/PgqWAzXIQ0MxaRFEYm9qkmCwP414Jdu7cxePrpyFFuF4rg0/6ZU02YHLiFU7YAUsUkWOd5jEQ/o/Vz0B5JNKGAAfvPMFPSGAFiH6nuQDLpFtO/Av/f1m2573H2WJeMj4A/yvmUedDqmRgXhhc8Rw7k3Pw4O7QOPOOkoqCZUOnN0CzlAtMvtjBaKNCq9MOrB0Bw0mClopIwYmNMmVZYiZL2bnYIWoZhoeHWXfiyXz+c1fwc+efwU1XX8VVDy3w5AtfwMz1s8zMLmJNB4Un7Tn27T2MiiRpmnPr7XcSxRpWHA+Cp9zRXkwDhnU4cxckghWSQihYy8fqv0plWZjzlZDBV3Uwx3mc80jxkyWr/VoGKoKnnBKi8GkFbwLIEUXFvO3B+zyAXP0HzAff1sDa1qhB4vsy+22ZrRcYfEdVcVZ7pCXH8jzeb7ZEyz/zktwHVjkmDwnw5MEjlqAGcIAWBu8VeW6RmkFwwUqlWRTFICWJDuuw8R4V6QCUxQkOGB4aornUHgCgJZkUTbecJEl4+7tfyod+/x94wtmngQVrPLYIfkP290cWYYqztrFHMeGdcJx+6uPYunUr1onAf7e+CFtwxSNssN4jvabd7eC9IPcOl3XJhSoClyzdXgtURJan5Mbytjd+kIue/nN0mo7j163iY5/4ZFh3hcdbRyQkMirR6naIBAinQ6otgDA4G8ZW7nO8j4JE2kMwGvRFWnsfaHs0W12oPsApsN4W80uRplFAcJbQ+BWC4ry3nACrZdGI9b64vyHUI2zC+qDlMiYRPvvRY74vWT1q6PHYGHOPGZQzvRSUIDcOVMyJJ29h/4HddFKDM4Hu6NothCtx4XOew9e/cRWbTz4FUzJEc5bc9LivdxzPesJGbtNVLnrRc7jzu1txaZeFA3OMlCfxtklnXvDWX3wZT147xrnnPZ1ma45W2yIVrFu1imtvvIuXPu0prGoMM53BrVvv5EXPeg7fSGLGThjjlks+zsUXv4wHtt7Cq1/+Yo6vVnhg650cPzXFU573DCZGVvOad7+T7txBPvDed/PjG2/nVa+4mMefcTKVUhnnBX/xjrcTxyE9LFIRXZNS8hIigcscrWaTrffcx73btyPiEudfdCEveM2v8cLzz2F+3tDKMi644Cm8/dd/jXe+6nWQGpCCI4szTNYb4aCA5kVveyvfu/kWhsolzj3vHEZqFQ4/vIuNJ25h185dvPTiVzEyUucHn72C54x1+O7DC1y7ezfNhcMgJM97yvP4m9d2+Lm3Xo9wijNPOYMtosqXrv8BD+4UPPTwAzgBc/MtSqUg4/JCkvsMaSSjo+Nkhw5z/HDCaDzKgwfvpuzG0LWEXqdDOfLMth/NhOiXlfBnn/gk4y7G5o5+hDQrDaARaOVJknKg28sivdcKPmBzfrk0waHffzVnPf85jx50KyQDjwTmhBC8+KXP5qtfuoYi+IV+Mk6lmgR6rBYsmAX+5OOfZePUGqL7f8i9LcHnH7iOi847j99++SvQkWV2fg4j4ZvX3M6tO3bjJ0r90BbWjIyyvzXPS859Mtfcs51uu8m+h2/jdc88h6f+8q9w/77tXHvtt/jgb3yAv/37T3LB08/jt17zZpJ6KbRMjtV/WEWRHnTR+sMhz/OBxxxe4yzEcYk4joiTMr1ejySuMb9whDiOkVIPmA0hNTQZSB0rlQpp2kboYXLTRAvB9PRhJscnaHYzDh/Zz3B9jFNOOYUjR47QbrYCG9RajMvRZY0ux0inmZ+fZf2atYyPj7O02MVay4knbuKB7dvYsGEjnVZIKtX1Ogf2H2JouMY555zD96/9DuunpphaN8GBfdtYMzXJ/Q9s49xzzyXzntmZefbu2c9IfZI8m+ayy79GZ2kam6bUqsOcsHE1q1ePM1qNGKkklIcbrF2/gUMz0ygVcfPd93L4yBzWWkrlBCEEzWaTKNZ4L4mSMsIKWr0eq0ZrlMvJQLrX68HQUL0wRc2RSlGt1ciyDBVXEVoMDuxRFGHznKzXY6gAFSOtSbs9oiii0+nQaITE13K5jDF9eaIY3JM8Dz6OqQkc3CzLBrJXIUIwRLvdZbg+hlKLZFlG3m1RK4ck1mp1mDRd+k8csf/1K6yBMSE1VB4FyPWNdlcy6Iwx6EgeffjyAIKlpSVuvO7msFHSCuHy4IPiFd5ZsmJzZJ1ieGySrXffQ6Rjdu/ZBsJirMK5PBzyHnEQ9t4X8oR+OMWy5FZKUDoGHRK7pGoR1TVaG0wMypboznhsy2OsJdJhW9Rrh3TW/jokhMAIi6tZ9FgJyiHMyOcxaWbxPWjNGPJFhUw1Dke7YIPqSIXkzZIiXhXBQoXuAfCuh5IamwemYEmWyHpB1pkTGp9SBU+4NOsS62gQiGERIcRBKUqlCu12e8ASHABPBStFChFAPCy+kCFFOsZaU/xtvrhuEmNs8PQRYa3WWuCdROqIvNOhL8fF51jvUCKiNpSgPGhZyDSFBifJTUZUvJdQEdZYEAoda2r10cAgyFJiHeHTdNDWk1KG17gM4UFaD0aH71mkXGLBOkmn3QUXOtlKKXAGZ8OGPKTGF3JB3LJPUCEl1kKTdQxChzGYuhBUIXSEsxm5tSgZsWgXmJ1ZZHS0MWBnhnXEY20+GCOBRQF92kKfdeGdwBgGgOqx+tktgy+8jUJSYwjsCMxU0T8grjiEeYp/FwIngg/dijyDEAhjU1bau/hCLhXGbf+wJpFCYn0OUtGZOYQQPjQJhGfzGU+gPXuYnTt3grXESUInT+nmhgzHhY8/i+u3/ZiRWkzaEUgkJS0xBrpRj42TdV74jCfz/e//mO/tmOZxD++n017ktgfm2SOn2PLEzWzfdgP14SFM2mNy8jhKWlAuJcwvLuJ7ioW5w+QOHnl0XBF0CHBU4EO/Bo0UWVCJCKyVY/Vfp/oga5BUe6T0BWghijCF5VoJVvQ935ZBMAHYwDr1AqkFwgcZq3PBx0wXCSEWBgBY/72CNNBii0CT4IX6b3crXLlP+ZeYTc4blAQt9ED55f1yKmuw0FAUKRLL68MKMK7fPLMmQwtJ6iwSiVYRHsUb/8cbueyyy1BKsrAwj8ChiPBCktkuPs1RMkYoz5Vf/haZ7XLTTTfR6/WKAAOPswEolV5hnSMXFp8XABQWZzP6ksodu3ZgsVhnweTYQg5sBWHNJcITvC1F3sXnEitcIMm4cK63RSK0t55yFNHr9SCKuP/eXew7vJsbb5SUh2p4bzl+9Tr2HDhML21x5plncdstN1Eul2m3crq9RSItwMeACTOHclijiutrwnrqxaD5GO7Vo4GvFSfhxEIAACAASURBVHdtIJOWQoc1uviZM0GW7Hy/sRvul/V+wJLzBSszyK1dYeP1k7GI/rjuf254zaMbcN49trnuMYNyXsdUdYPTXnQx/+e1z+XVb3kP5SjGyoQLnngO04dnufOuW/G54dwLzuKhPdu5/C8/Ql3XSYTCWc+uuQUu/dyXOfxPn+CGa29EvitCFHKzL3/7DrY99DCfuuKPOetJp/PjIzMs3Xorf/PJj5K1e5x50hbWrFlDY+063vKu9+NrMRs3r2L0uNVc/tWvceYZp3PJ7/8OjXySq667lp9/5gvZ8fA0R+ZSGvVh7nl4L9+/5VYu+Y03I1uGb3z5SrTzvPK5zw2mlT54GgVKq8Rk4SBopUEj6HlD4WtJpV7nKec8iaec80SsMQgZMTY0xq+/9vXs2TXLpd/6Ep/62MdRsearN9wULrSAucUFpiZXBV8lrfjg+96HEIqXv+IVPPeZF3Dvrn00Jkd55fnnc/GWkwJN0sNF730Hr3jLm5lZmgNvAwlcRrzwF1/GJd+7mzz7Iec9/ULOPe8ZvPd33803P/Rmnven/xxovC5sYvM0AxHAwVgkiFix0OwhheWjb3obOw59kTf95RE+8fSn0FlsU9OKalRilsKQub8R7o8H7xEuZ3N5jD/61N/x7J+/aDDBCqkHXTEvAvqcSE0sFd1uN9BzveWD2RG+8bm/g+/880+UQvU/J4x1cZRzrPSOL//D1WgZFR0bT6M6RKQijFX4LJjaZ1mP0bEJMi3g7Iso33YHTzn7HK751neZ//Fqfv75Z7Lv8CxeCqYmV/H88gTX7rgHLyTKG9qpAZ/wtTvvwlqPtznCdvmDj/wBKgpyIq0rTG4aZ6a7yJ0PPcibP/S/6Xa7KC+491tXPdZH7Fj9KxXHMVZCblLg6DTI3GRoHeFc8DGrVMukaUqpVBqAO+Vy8CHrhwxkWTZ4jyRJBkCddFkREBBM67fddxf10Qm898zPzzPeHkOgSVNFLw3edAiYmZlhYmKCcrnM2rWrOXDgEAcPHiTtBc+HcmUVcQK7d+9mvD7B2lXrWL9ukn379rHjwQeYOzLN6OQERxYWOG5igqXpeYYrJbqtFrnL2HLKRj71yRs55ZRTaGddPnHp32N0mzf95nMYj1p4F/MXf3Uj5z/jGZy89jjyzhIqqdDttgfP0ebNm+l0twVDV+9JqqUQvFCwCIV3WGfRMjDV0jSlMTE5YLQ1m00oJ9Tq1YF0VRbG8ps2bRowb5rNJvUCsOuzcpIkCendxaalL3HtdDoDJlw/3bV/r4InXFjoKtWIxcUOST1GSsnI6DhzcwsF02+MAwcOMDkxQrvToVYdJct7x4Ie/h0lAbxEChXSTaNl1tXyZnQ5tl4pNbAgOHo+D93FgwcPM3tohljFmDxFKE/PGiIhsM7jXGA7xVIxe2Qv3/7OF8m6PYZqJbS04BVCmMFn9RmXUABxxX9CIygAc3GsQ/KrDPYIJs2ojSdEVQ/S4IQnb+f4JYJ8smCtWUJHXuAxefCBkdozPFbCxQkL+5u0D0CsoyIhzSN9jLQSug6HCRILKREy+LlYLMlwhI89rcUeFT9Mnku0log0dHK9MCSiWsh6PXEh+Y7jiCzvkec55biMVposD6wFhw/dbBHEkrp4HtM0DaCkECAFxtoAEBUMn+Ct1gcv+5494b4Go2RFKVYoDVkauvSL1oELptLWBsvv4WqJeqVClMQ4awdNklgpbKTx3qFlSK7zovD8lBqtPVk3Q0YSZwL7TWhNmoeOvbc5kRQB8EKiZYwVebHnCt/zoR27yXPDaKPB+MQoYKBgAFoT/I9sMa6cK+S9WeEjGHkcMhy6jMXa8B0QgtQG/z6XGbT2JE7y8I6dDA097igPRSHCOFRa4CyBWdUHWfzy73kbgAjjVpp8HKufxRIFw8XbALIKFWSsvpDYuUEgQ98706OExrrwL0XwYmgyCbAESZQVgVVHMWakEFiWmUbeCTxhfrPdDs4E5o/WihPPOoe00+PI4QOYPJiGZ1nwPFLC07KQdhc5ZWoVh2fnqA+Pk+VdEJpypGhnLdI0x2Upb/7N1/MXH/sHZGo45cLnc+NVX0WMrKXV6zA3N0e9WsVmKYuLXdRohTKwbs0a7tl2P2eeeRam1+G6m+8aXK+BXQsiBMMJNVCPHMVIKo7ArrhOoYFvHnX9j9XPZgkvEHj6wmstZEGOLMCGo1iSFiENfbWmHKTshoZ638/NuoJlbwvbMGdQUqGQhaxQImXBePPL4HXfj074fhJykKlyFLD2yOagX0H06DPo3cDbUYgQVhheF4A/R9+jWoSUbgdEcdHYKYgnUga2nM9QUoUAAi8QMg6++j5HiCjsBaxHRAWzUAkUQYVw+eWXgwsBUSoYSoLQWO+C9NaDkB6TOQ7t7WDznFe+8he59LLP4lyO9wJXSIG7WYqKBL5g0koTWOfCR2TGoCLBwYP7KcdJWMthsJ7LOMI4gLS4go40C/YzwnqUCt6uPs/JVQCfpHfochK+g3N00xbvec+v8aE//nTATIRn5+6dgV2O564f345Skl63hSCcvfA9rBWFHLjvXesG99p7FWT9ftm7uO9XPGgUe4d3Dl/Mt0IIrFLB47WwM5EetFCYMLOHuJL+uJKBkil8P8HVIURUvH8BBvpgT2CtQ4Urx0o2pvNhT2WdPUrKHdQjjw0yfsyg3Ctf8mKuu+mHLN34Ha6uab796c9QKsAXqcIfLZzg0Ow8aycm+OWn/Dxp2qOX53SEZaHZ4g1v+x3G1g4xPj7BJ7/yWX7+eS9mbmGGz1/2Pf7kj97AWTPH86qXno+Mq7zzRVV+ePsd3Hv1VSTxECmero246ovXcgvXs3psE3MLnoZrcf113+Kv//wSvvalG2g1O/RcF5s5jLOMSsGehUVW1Rq86y2/Sqdr+dpnPxo6WSqkI0mdUEpK5LnFSpibn8cLzeyRaZwzTE2tJokVY2MjSBwdb+ilPRItkLHEm4y//6tL8EKw4YQp7r/vYe7bvhuUBSsol8tMTU5SqdW48ebbabVagbrqQlLkOU/9OUr1Cd7wq89mfrHLoU7Oqnv+mcMP72ArmjsfPMz6VRPk3rF+7fHcdf9WLrrgInY+uBvhUp7+ktcxNFRl6/3buOSP/pT/9fEP8J13vYxnfvgKvNJMjY5zYOZQuJFeIkuKczecwJte8VKetm8Xr/vD99Ezx3Phr8wwP5vibYvTTtjI7tm5YiOy7FdzlE+N9QhKHJzfh89N8YCHyTOkkQiUAyUkyjuOm5pk20MPYqXESIUtreFT//ht7tn3MNf+4sVhJzMY3QKhVOh4yyLOesXnh6jjBFNsgJWT9Lpt8jwLjAITtPVxHDPz4G7qjWFUEvPqF/wCIyMjPO+8pzE7O0dHWr679T56useWUx8PY56JdI64XGWhucRJq9Zy5pmP52OX/U2YIKQGLF5F5N6Djkh0zFvf/Tuc+aSncP755yMRXH7lZaSLP90I91j926pcqjM/P0+pXCLPeyRJlU4nhAcE+WkbISTDw8NkeY9ON8go8zRFq3jgxQSQpmmQaxaLalKqkKYp5UodYzIiWSLLCtmkSmi1WhhjaC3MMjlaR6E5uO8gDsHs0gITU6sYHZkgKdXBw3C9QbebsX//PWzatInp6WlKOmKkNk436zK9eITvfu97vPAFz2TjpnUIbzm8fy9KSjqpY2bpMCefdkpIMI3K6Egye2iWKKmy9+BBIl0lFV3uemCR937gGsq6y2V/+lLe+ZvP4Xs/2s8Ln/UMXJZy400/II5LeGsxyjNzeAYpFMPDw6RpSt5p0TMZo6PjQcrrMrLMMjYygtIOpWI6nc4gJRVgutOk02szOTlJt9sNclbhKEWadrvN6Ogo5XKZ+fl5GvVhpFJ0222WjCFJEqqyRhRFpGk6kNglScLi4iL1oeEQ8tDrUatVSdMUrRW9Xo/UeFQS41LDUrpAqRbo/Up7FlpNdEljXE5uUkw7C7Ja/dizjI7V0WWMR8lwcNRFcuRKEK7/LPUDBcKzFGQWRyeXhddtu/cBvAVbGH9Y57DOIQpQW3qCV6oQQQKmLEJbTGbxSmFzOwgzMM4uy6MGknYGMlvpHVoX64aUeCNRTmE6Dm0FaTsnNZ4sc2SmS700SkeE+do7R+ZMsfmTRZqzwwpDZSiiN9dFdyKkjSAKB3Tl/MBrRAmL8wpBSGGUUmAwuNhTGdIkiWceSdrNqJR04WupcTKAANYVslB0Mf7D82CMoZyU6MvtI6WLQ3/oXPev+XIgBgP2otTLG8eVoFIU6YHZfFjjw/X1op9QFxoVzgZmahzHpN1esd/TKCyPP+1UhJJkFmIlKRVAuM0tRnoi5cGGcIaolIB1WJujlCBOElpZRu4sBo/0Blkc1Gyx7XU+/G0pKVoopAwWBNOLM2x/YAeNiQl2HzrEps46Nhw/Gf42QnfbGksUh79RqRDyoaRE6RBMFWTzkrTdw3qD9SB8MO/OXdh7OBckizMzs+R5kLT215zANPTYzKJkgjF5YbkRDnWDoBor8bnFqWPpqz/rdZQUqr/fJKQWe0QAG3yQlQoUOInxBqEd+Ajr0oFsymJR3gUgz4XXuzy8PoD+4cBmTQCsfaHTy63pq2OplMrI1hEeunc7OhEMVzSZCyxahCOSkhjBTKbZON6gXB6i2e3gXAJ4hFJEKqbZ7jJzZJq80+OD730L11z5Da787g94UqPK/7zkd3n9/7qEUhKz59BBnnT6KXibsf2B+5icWs3GdWsYGRnh9tvuZmi0hsUftQYsXzyJEEez5FZKzB71+4/xoHqsfgaqD34Jh17BNi4IYstKqf7/dsvech41YCUdzUwTqMKuzXtQOqw5wkm8NOB1aHIM1np19DlUBWnicurr0WMsgGeikCv2W3ai8CmTA8YX9Fl8fRZ00aiCFR5jYvDfsM6vHOMyuBa4gi2NR4gch8Z5RTT4qcV7NViXTzvrCdy37UFM3kIIRew1xnqUivE2Q6ngx95fr7WDX3/n6/m993ycz3/u74mloucNxoY9gJEgXUy32y68n3PMgNjSC9/ZWEpRiZe+5MVcfc03aS4sQtHEtGkvKA6KZcpKgbA5VgmwGcZrpJfFXiXCBT5/8LR2jp6RoBP++sOfY3x8kiPT+zDGQyQ49dRT2bp1a5GKrhDOhMAGb3E2CcqFwkrDC4WKJLbwwgugvgr7RLk8Rx/VEBASpEdZVTi59seIGthbhftiUAX463FIVzRJXL/R1vdM9gMGNIUfYD9VWgywimXpbN/WQuki+XWgGLQ8at77KfWYTywnbt7C5hNPBRHhlOfam+8kieKwGcsyHj6wjf0PzXPeBU/Eb5PkedgElUqVAMooxb79h5ENz7vf8RbO2XwBl37mE7zml97Bb7z5lWRHFF/9zjf4wtVXc9pJp6GSEhPVKr/3rg9z5gtPIfcVJo/bwLtf/Fze/6HfomczTj3jDN72hlfwzWu/zIJKeOpFF7Jz/37WrV3NwsISSilG4hInrh3lo5/+Am957TtZ0ClxrYZOSkQE9NlJhTcWFZVQWoLxOJuFRdI6kijCSYUU4SZqL7DSrXgwZdj0ZhlPOv1kXvPyi7nwvCdgszRsgKUgzy3CWeZ7Kdf86CZm5xZxJUVULiOF5qZrr2XfoYd5/LkX8NWvf429e7azuHiIc9/5PuLJ3Vx/2afZ/LgzsGkwvHzhyVN84Zp/5sQNG2m1uzQXY2678zbe+MLncuk8XPjhLwAa4QwzR6bxcfiewktW1yrcvfshPvixj3NGYjlnZB2v/9DH2XtwHie6CC9ZNTzCtgMHiApfrv5G/ii6r1L8ynvewp/9wZ8GemiRWCV1BFlAkaeGKzgXQJBaYd4uPERCUS1FfOSzn+fme+44erCt4MGLFTnCRwOCgFxm7lnveMNrX8cdN/+IBEGaB3ZQRIWnP/VpRJGi1Wox+/Aetv7oJpaWWszMzLHUaVMRmjJ1soMLbDxhA+e/4lWsX3c8teEh9h44wA033MDHP/xX/O773k837ZH7cJD05RK2m6KsZ3L1cRyc2c8VX/g0uhTTnp/n4tM2POYH8Vj96+W8ZHikgTUQxRVy0yFJSsCynE4IQa/Xxdo2pdIwnVYLiaTb7iInRsMB0zlqtRq9bkYUSdI0JV1YpFKp0MsN9XqdRMdk2TxDQ0NY4wPIl2UYm3LvfXewad3jGRudotNdolwuc3hmgcVek2qtxvj4OCUVoaXirNPPYNe+/UyOjjJUGWL4hBGiSszu3buYnVvklttu5/nPfy6Tq9fQ6cywevJ4KuUmScVxxx13MDY+xZbTNnBg915kqcRJW04mSar88DtfYWS8TnnXEjIyCF3j/3zi2/zle17OVV/9Ir/9jtdzYN9erFccmV2i18tYmF7CCc3Q0BDDIw3279/PoYVFavUhlE7oddqUK4p6vUGeeSIhKJeDXBThEJHCZYZGfZgoiQeJt2maMlSr4TBEcYU0DZ18KWPSNKckBJ1Oh+GhOmMjoywtLQ0AhHY7eOQppVhYWEBJQewSlpZaGJsWzEY58AXMsgzpPUkSMTc3g7WWpXYrSIGKcTA0NARAY3Scbdu2/ecM1v8GJbUAEQR31vOoNUAVBv191ppScmB+LKXEO4EVBuU9adrjrrvuQTqBkQaXBxmMsALn8gB++dD06DMsjDEBZPMKk3usyovDMctGz8WaYK0lUhpnDVpLlPZoKVBaI9HYRCFR5HOWVNiQEwEgJCKJED6DLEdIjfMCm4VmkvceoUIX1ugeqlKiu88giIhUCXzwHBGANQ4lQKkYbDgkxJGmm/cQsSaSDlnNaC9KIqsD4GjAiwjnHfw/9t47ztKzrvt/X+Uup0zfmd3N9s2SShrZhEAIhEAITUQESRQQERUVfv5sWEBUBBUpCiLNgj4IwiNVEkISCIEkEBLSk03f3mZ32pk55S5Xef647nNmNqi/WH4v4Xnt9c9mNzPnzNznuu/r+/18P8UFeXYYFlqEcINrLgiFp7AOpUDEASjsp66GCX1guQ6AuOp7+76Z/bPUuTBRjgWVnDQY24daJnwuXkhElXYWk5K7gm67TbDEkdREisFgdcnk1DA+UmgZgbdI68isx2nwZYkgxWMQtiqVpaD0lkSGVHaBQEYKV1qwklhKCmuQShOoFgGkNN4ilQryUmtxTtIzhqVDh1FKseOR3Zyw/gQiaVBovCwHezMMZAKb0QuPkwlYgxA2JMGWDk/wNtSxwvYKtEpxsQt71gpKk9FamGN8fBRjg6m5dcWKsIfgSRquv0PpqshHhQYz8iEV+Pj6gV6DZ0qV0aBYli71gevAQK2+nkpa5RSZy1Go8GyTAuE8JaC8/z45U9+byFWKEmcDo98aT1QfZu3GbQwlnuF6jUcee5jxRhgyWe9InaK00O3lRKmiHkdokXGgJailDZQMZi6oEAQhqVHYgmwpZ9+u3RxY6jF0+jmcdtc9LOQFD1x7PfNHdxMlTUYaDR7etZt1G1fTiENYU5nnqKJDvaHptHvHqGZWLomj8m0H3x/kHwfe/m9ZIiR4BA6TCGE2Qd6ZrJCrfr8P+DKQ5lbcB33PcDFgUfq+hFBUSawyMPGMNWgdV4wjPfjaJwR2iDB0Cu8XQgf6yw16ymO/ZXDuCh/YrC4876XyeJsHqxzhUGrlgFKsYHH5wXBGe00/UR4vERF4a0kaDe67526c1cjYIwWUziOjGO8NUkic08ss9tJidckX//fX8a4AA0+/6Cl842s3Ir2hsCbUT5Hk5M0n88hDDyO8CyxfWdlZVAM7J0r+8ZOfxDnH9u3bueveexA2wFii8uqWUoJ3OCHQLibDI2wZ+GEyZrhZp5t1MCUY12e8WnqdLtYbzjzrFL57S4+l9gxeOHbs2BGgeudoDjXpdcAIgzMSKT1lxTwXIgQ+Gb9sGyKlxLpyGYSrfKgfvwfCXuqDsX7QF0pZsZ19ZXNSMQsHmIJ0FXDnwYd9GQC85ef2scPoY5V9fQBO63ggm125nAt7+YmsJwzKffBjf8P8/DyltYyNjKCiCCM89SSlMTzE3r272bBuHQ9//AFMVcyVZfil4zRloTVHMuJwuefa6+5ket7zpa/eytfvfBnPuuRSfvLFP8qH3v8Joijisd6jbNiwmYeX9vFHf/ybvOdv/4ypjdtYnN5NKZdI4gYLcwucuu0kfuet76ZZG+cfPvlpXv/qV7Pn4H7GRxrIOMb6gqPdBTq7c97zm2/lBa/9KTQRyAhdqzG5ZjVpY4zJ9aspraC72AqbEYMtcvr4vpSK0oNWKY1mjc7SIl5Icm/JuiXthSWyrIOny7d37OAlL3wen/7ql0nSEZJIA5JUR8T1BkpITtu6FbvV8+VP/DPjTzuH9sIMT73oQj76F+/iksteQOPMp7AjGuaLV/4zN//mr/Pzv/MuFkRGU6XccO9N/MrPv4FH7vgmeTFEURSBVZLWqKke93/87QjRYY1WvO0lL+WR9jyfvvEmpjOPUx5pLQpIWjO8aKTGqjPO5r3XfpPXek+ZG573jIu44cZvcdnTLuCWRx+m2+6BXN6MK2+AKIbFq6+inJ0nosCSVv4a5eDGOGPTNh47vJsIw0J3PuwHDVlpWSwW+eIXvkHZm612diULqNgNbsXBLxQ8vqgJOgEHQqAERGmQsgpZEsuUWCjWDK/mec/bXhXnfRPMMAIxtqgYeYEZrbWu5jkOlMaUllPXr+Gpp53Kd2+7g7NPOpdOL8fYHidt2cYFL74E3bPc/shdPPwPt/HBr7yH8597Gc2kgfCW/dHwE729jq8nsJL6BItLs4wMhYCAWi1hsTUfzM3lsYafSik8JVneBidoVt8TxzFZlg1Mz8vSUEubZFlgyQwNDVXeCH45IMKbAaPCxDHGGHbuvpdznvIcRtIxWq0WExMTnH3iduZaRzl8+DCHMsP8wlGcc3S7PTaunQRh2bhxM0tLSzzjqU/nrnvuZu+e3bTbXYwpqNXGQCcMTwjOP+dcrr7yc0yt28Dpp5/B/Q89SKvTYf/efTSbTR7c8yinnL2JNetPZGxyiun9D7Bz5yztTsGmE8bZs2cfptfjsZ27mGsHeej+/QcZnZiqJlGetBYxtXpNkK9W91oc1XHWMdSoEcsAgvlanTiOWWjNMTUyTrvdpiGaNBoNFhbmGBoaQmtNmjaRMmZhYYFms0m9XkcYx2J7geHhYUaGRwaNSKPRYNeuXWzevDmkTGnNyMhICOJQguGRBkUR5KdLS0vBf6LTIYojYhHR6y0b4XY6oUloNBo4KTBZAPO63e4AoDu+/uPr8czolX+u/Pe+jHXl8v0m1DkQkm6Zs3fnPnzpESrIBKxzaCFROhTLpQnFc03XWbduA4UtKGzB0ZlprCgRSmJtgdJhkt6zDAq2PuOVyhtNKTFg1XVzG9K4BKA0WiisMwH8U5akoeguBWal8lD0KusKp/G+JE4kSiXI4R6xFESyUcnXBNaA1ismtrLvnwNgAY+QDqckPjXoWsqBB6ZJypEg6RQQR5qiMFXzGrwUQ7EfgM8wmRVEUh3DQFRKDRhb/Ul6+BmWwbfvY7cPAFWFNRahA4vAispjRQB9lpwMHnFlWTI0NMTc/Ax4TZQEia8SEiVh1cQEIRmyynpTGiV99RnU8OVywl6qNNZ7hNLgw+9gbIkSIJUkQuKdRShBz5akWuNN+Jn7khJvPDUtA5vSO5SOK4lTYEpGQlBkyxYHOgrXoyxLtAjpsM65cNa7AAjW05T5xXmElJS5QXiPijylM0itMcIhYsnC3Dy1WvC8tN4hvA6+SoA12YDJEQaHCucDK9ATfJH8cVDuB34FdpsazHwdyxJMJxxaaI5tBmVgZvYZEc5iqnAbKwTSQuYtEbIKbgiMCg9opTC5GfwbXmO9Icp6bJhIA1vOedatXs3R6SN4a0iicO5ZWzDUTFhda1BPYiINI40GkRL4PMKkHlOG55FzhrIIDbNeyjlhQvO//vEfmO12efJQk/nFeZa6OcViN5jtK8nM3DzjzWHWjqbs3nuAnYcPsXZ8Na2lw4E+ZGUVgu0rrq4fuMz4ii3nfd9efZlhzcrm9njQww/NEji8lzghEN4MPNWE6Keo9mWsZcU4C3ZGfRlpf/U9t8AFL3oXghL6JYQjsPGEUEgZSghdBf0shyv0WU+PN9gXPB6oCZs1yDmRPrDlhMAAkegz20wV7tD3viuB8LviREhzx1NKQeQCuQS13G/0JdlCBYa21LJK6gzXwasIqYKHa2ksaZzQ6/VIhEQpH+574YNosyyI4xThwmBORCndpVma9SFsKXjK9tP53nfuRCC56YabkCJ44QrvyE2JMlB023hbIISldAKcQzrCMEnIkOosBLV6nTvvuRusw1QhEZEPRCIqNjCA1SXDzRFMkSEIFkGL8wuV/N7jZRQcOJ1iYXEejeBb37yJk0/cxvSc4sjcPLguViXoxJPnOUgQQtOsN1jsLBG7pFINLNcxDhBeAR4pLc7nCKLB+W3FilTn/vc4P3iNfl3oKpBTykC08kKghA7PbO9xTgUbLNTgdw4sOR8Gd77PEvUgygDcrdxzWLReaZWzXKf1AbqVdkv/3nrCoNzWM88kiiK2nXoyznvqtZTHHnmINE0xRcnQWINmfYSR1ZMoIZifa7FhwwYajQaPPfYY9VoN5xyjY+M8cPe93PTdmzk8txeme1zxok3ceNN9/Mab34R3Ch0leCl5+NE7OGoW+ZmffhM1pbDecPP3HuV97/1TGkmNx3Y8xKrmBA91d/DQjjuZmX9RMAu2cGRhltFGhBQp7fkWl17+KjZtPwkpIqQITWGe50DOoQMHSdM6vizweJbaS0Q6PCFE0mB4aoqoMh8//Mhj6MjTzTKkCIj22ESTRmM19bSGsp6rrrmOf/rs/+bd7/oAaRwSBOM4JfKGoweP8tjRFj1RsO68JzM7c4S5do+h+hA+qnH1v3yRZn2Sh7/3LT76Z3/CNV/9Or/6rt9jWjTgzAAAIABJREFU6+RqfuZVV/CkU7fQmznII3sO8ORnv4QNG7dx23dvZvOJmzlwYCszvZwugn984y+TZRlrJzTP2fij/Pg/fJ7cBort2yY38+yHO3w1q3H5dTeydXKSZlLDOMvrXvdadj9yP5s3bsAY++/Sy4vS8btf/ioTo02MqFWa/2B+DaFo37Z+DXunp6Eo2LZlCzd+5y4iFdF1Gc5odL6EqQEtqhQqUP1UMykZ8Gh9eM2wyf3AM1f2GQIypMMltRqN+gi9skMn67HYmuMpL3oZOQ5tPaUMN1uiozBJFI5EhEaQ3BFryamnbOOiC5/OueefQ3N0hCSNuOTp53Pp08/HeE+sNU4JfClZMjk1FbFjy5387Bt/i1978+/wofe+j3PWbuC+h3Y90dvr+HoC65ztF7C4uMjszH5273qEkbqmOTQWmk9rUMLjUAPJo7MFpTeUpoMQq+gsCaSISNIYb4L0XGtFmiZIGSYqeZZX6YOGoXoVjlKxTchDwrBSIjTUvocUKROrRrEOjh7ZT25D4mctqtEc2sCBAwc4+aQT6bTm0Fpy5123su3EU1k1uZbLnreer33rOmYWW1xy0bM4dOgQd99xB2vXruUbN3+bmaWCy7dfyIMPP8TYyAjee2ZmD0PtPM49q87TLljNV75+D3OLRxC2RDhI6ooolszPz7Pz4bsYnphgpttj5949rF+/mW63y7Zt2/Deo1XErbfeyujoaKCee0e73aU5lOKcI/eeREvKoiCJFYmM0XFCpzPN8PAwzliSpMbiYhu8Z+3ayUEabrvdJk3D60xNTTE9PU1cAZrDQ+OY0jE+vmoQ1JGmKUKIcJ6YgiQJBVIURYyOjoZURFcyVKtR5MG3ql6vkxmLsAW9Toe0npB3c7yxJElSPXePe8r9V9dKhlzfL6w/gez//740IHztMignRAAvZudbdNs5kVE4Txh2VVJJIQRFnqFVRAFs23omF174XFSq2bn3Pq76yudxlKhYETclHugcMcewVwCst8RaIXxgUXkhK+nmcplTekeqk2CxQCiUkrqkfbhNZBtBjBEbsjJH2QQlJaYoMFFOoykpMoe0Eq0UvrDHTGIDQFax3YB6vUa320bqUFz6qMSWEunrxDoNLJdIUxYhnVipCFP6IMmRgdXeZ3oJD16GsAYpJEXFIuy/t3FBAhxFweNuZXLuSt8VqRWm8qLzSgYWEI7SCpQQIXhBDDQiGOcQaE578tns3rMTHBhr8NWU+YTJVSQ6wSsB3lGFo+GER9BPybXEQhFV979zLoARxmCsDbM144hUTFGUKBj4wOVlGUInfEhvU1FoXqwP8pI08VhyIh2jtETYAlnVXMY5Iq0xZYFQChVHSFuFkkiBkGJgByO0CPJsJQM47DylybAaKAUuEmihQsL02ikslVLC2QC4EoaJVDKsfuMZ9mhI1aRqJI+vH+zlfWiyVjb8K+VSIfsxhEA45xCuSnP3bnCvOtcH8lb4qjk/mCz32ZS2759IYAZ5l9EoSpRvgdCkcYyWgbU+d2QmANpVDYpzJJFmuBZRiwLb1ZWGuNag2fR0Forgp1sNnPuy66GpCfbPHuTU0zfzyqdfzEkXX8bzXnAJXltqSmOcIIo0znpmuy1ae7KQUKwkuw/uR0hPJBQisoPrJYQI0m88+IqBJFZcu+NkuR/65YUPwEaVfNpnE/UfogMJqeuft3IAzi3fS2rASgseZP0QBxcGXJEEH57ZkQ509pUtaHiuiuo1loOn+oOoYFPQB1AeB9CJSp7qK+KHAVfVLuFrl/dz+H6JcKBUSOTUUoL1+Eq+rtAEHnS/PnJgNF5apPd4Elz1/cIQAhZ1RC1JKfMseNHqoGYTkSTyDuc1+JJO0aUeVSF0piSJa9UZWDIUT2LLghGt0UDHZywYh/UO7TwIy/SB/cSxpshDkIMXjpLgoub98ilUGoNwHusN3moiHZOXGVEVsGHDJ4PKLVmRI6VGCYctcoRWuCooKvM5OIVWAonBS0mnyLjvwQc488xTQqCDFaALTAG4konJ0Bf0Oh1cXiKUGnxWQWoMOL+cEO8jcBKq67/yOO0z45aHoxrnipDU6xQKhfGBlemVrhKzTZWk7StW3QoQz7lBTRtk0f2BtKpAPyoWXfC9kyIAtc6ZAVt0ZRBFAJef2ADiCYNyV1x0ESPjI4wPDzE+MUIt0sTPeSbeSbzx7FuYYdeuXXzz1rtZtXEjWc8yv7jI4cPTSCR5VqAjRWt+gW2nnsQnPvQRZKxpjK/hod3f4i2v/wMSpVFieaLiL9pOJGJ0PMk193yNG2/bQbdXoKXClV0O7NuPXWqx9cQncecDD9JIUg7tP4BC4eKITqoZqo9ywclbQXZYN7magwcO4YRgMZsPB2nVcHS7XQobmkKkwjsJwmBtSdnrkve6lJWGvrCV9llKpDVYa1nIOrSkZPPGLXzwAx/nLb/5dnQkWep2kEITJ4KnnLiK+gkncNdXv0rP9fjIRz6GKed40+t+mcVsjlVDI9x3+z04XzAURbzzbb+HdSWjMmL3wiyP7n6IN7785Tzr+Zei4yYvvfdrpN/5OOeNruLeL9zIay//Bd75ySv5pdf8EjQbyEjgeyW5AOcVqjJOfOorLuIL99/DTbt3c8OllzL+G6/mkfklGiPDfOpzX2L/3AIuy8iz8phJ+/dRkqu/qigKsg1ZSZJk8AGIpCK//yFKLcHCUFKvpE2hWF07sYk/fNubaa4d5SWXXxGMMIWgUa8HjTrL9OI+IPf4Va+H1DlpBR/9+N9y0XnnYgnNfHMoZb7TZqEzjXaKnvBEtQYIQc9mlO1F5IobxVcP+oe//RhfvvmaiuqqUDomaTaJZYQqHcOqxoUXPZ3XvebVxDXFySdt4kPve1cofFTETz7neWRFzI599/yrP/Px9Z9bo2NN4iRIWNdu2MTc7GGmD+6i1+kxPjIOPQ3WEMcxaZrS63Xp9Xp4L8jLRbKihSBiyI3SbAagJ8syOp0OIyMjtNvtQfhAmqZBylQdCLoCivsP7E6+xL0P3sszL3wuS0tLdDo9vIJOpxO8hrI55ubmSJKEI0eO0IgDWNhqtdi7bxcOweZNW3n+ZS/mhhtuGHhhnXHGGdRqNYbHJkBq3vuXf8VP/8SPsrCwgCtKThifZGrNEKuGzmdECN7xxrP5jXffyHAd3v2OV7CwAOnwVvbt38n80iIP3XU3q1atZ2pyHa1Wi6mpKZaWltiwcTWPPrKb7du3s3fvXo4ePUpZloyNjhDFofmPY02sHNaUIXhBSqIoYvXq1bTb7WX2gAueEu12G2tDgyKlDMm3ScLc3ByNRgMIUldBhJSaNE1pt5dI05RWq8Xo6CgQnjPDw8N0Op0QDENoKur1YZYWu0RR8MQTQhBLhS8NsZc0dEIuHcJZjMnoduX3MbiOrye+lotVP5BkHOvRt1wVLRdDFde5YoIoqbDWMzc3jykssYiJCMCO1CqY7AoRks2FAKNZtXk9N9x6Ky992Y9x91f+KRT/PoT7RMMx3XYPqRXC9H1kHFJCpDVCSOKYkM4qHMY5ZCRBKkRl5+BtAIUsYCKPUhpMgheC0gvscMHUmpTpB3poU0dogY8y0tEmrT09RKmRSYqRFfDY13wIFxJGq+dEJ+sNPG9QlpExjRYxKrcUFpyVGB98y2wlLRFCIL3EGo8UjrLy3yuspSyAmqZWq0HWwXuFiAqcBaUirC3J8x5pXBuEYPSlm1RDh5CSHib4ZVkVwkgiFRLhm0N1lhY7yChCCkXWDUFWV19zDUmig2egdgg8who2rV9DrZbQtTleK7QPQGgSKYyDSAVDcGEdzgmMUMg0Dr+rd0hloQz7J7c5SktKY/CV4bWQBLmqUGihAsggFVlpGJ0Y53mXXoJzjoceeoitW07ElgWlCPvPVTIdlaR4Q0i59Z5Ia6SQGF+SRikQ2BNOQFHkIbldSrwNsurcLAEJzgvmZhWdTodERzhf4mOFMyowoChxNjSESkOZdYOvoRMgBTmeREb//9+4x9d/aRlX4kVgfvafewNgWwqsKUMQjBAoH/ICXRk8CgUC6y3CKqzLw0aQEkpLKRzKSawNwU8Oj7dQFFkAs23BKHmQqmuNJoD8IorYsnkrE2MT3PG97w5YqkkS0dRh+KRlRBIpkjR4tcaJJtURi7YXmkEJykO93mDn7p1ESczY8Bj5wjy9oqQZRwwT5LFLec6QIqRL+5g4SijLYH9TGElubXi+V4zBcF1cxXKVCC0C0O8cXiisJUjFpMAjkX6ZbS2Og9Q/XEuEwIAAjEBgoCmEXOEfN1BVHQtqH8scqph0ToLqexBWDCWKinXkBsNAKcPgo2/YL4QKSdZehnCeavUBuZXvuVLlFfZclRS70sO8YtOFn8EQwMM+C64IAz5XDShF5dRkDULpY/pjKcNwyjuJkAYhwRiBUhZhBQKD7XmMBC0ExjnWrVvHzOw0ghhjM5wMAzJrAxkgDLJ8AN0FfORjH2ZMOLZ3Bc8+Yw1X3vEIOxLHvIGOdfRKEwB/IcmtQRFYYtYFEKp/tYQIvu2lCann0pUURU5ai8mKyr7LhxDMEo8SIQnV2gLpq8GkseR5j1o6hEwSbNEGEewnBBqjBEvzXf7iL9/MG9/4HhIZPFgXFxeZm5sLV77qKzwW6ZeHutKHmrA/eAyfuz/2eVwtW6WyeuuCosJU7DQbPC6FD/+O94F6CWEPVLiCEALnl+1ClvdPNdwUVD/byvf+/mfXvyen/m+Xr378s5/mwgsvZNvWzSyUHYSomsyFLjt37WF+scX4yDAvvOw52DznvM1rueCcs5mbz/j6Td/irgfvx7Qs80VJvGUTF198MW5YcePV1/C5L97I8IavozGoimnVSBPIc7SQuKUOkZJsUHU2nLSZ9WvWMDo6HBpHHQ4Srx2RELzs/LMD8BPE7sQqxlPypb/+q2o6H6B3JZPgW7ICYS+dpZak9LqGvUdmuerb3yZb6LB4dBajUmTkybG4IieSkrIsyIoiHJKRRkk4dPgA67edymUXXciNd17H56+6keHaMA8++CCnnbGOpZbnwMwBZubnEEIwOb6e2x54AJPlDI+OU3RanH7amXid8tJLns2aNev4hTf/FkJYzjn5JMoy49ff+i4u234if/3Gn+etv/Cz3PbNr/Lwo/t52cXP4g2qxpWfu5Jnvu4yzPqzQqywVGz6zNUcnJtheHSEIym8u3WAX3abuOfGu7jine/hgx/+bZ77k6/n69d/i8R5PnntV4nqMUXnXwfDvPcIH5LGEiGQCnxFRY+sw8QRQij++ehh1g+P4fOSVeNRMKa2wRvohJHVnPXkk7j69u8d89pCSpTW2DL7vvd9vHyq3W6Hzy/8IwqBjmR4oMmIKNIIZ7H9ptEFSYF/3OsBOBHmAlTeRFQTHIqMbD4jq953sV7nU1/6NJ/68mdARsRRnRFX4+/+7n2MDDWRSuBcmy2r1j7R2+v4egJr3epJFhcXQSqKYpg0jlm9ehO9rM3hQ/vodns0RsYpul0QhigKzAxb+chJ61HK0Fo6QrszT7o4ytjYGHESKPRLS0tE9RRrq7Q+oQb/HcA9Q9+0vl6vY5zh3gce5IQTTuCEzZsCUFVN75pDDeqNWghIKDNsNz8G0JKRIG4k5Jnl8le+ir/8yw/y3EsvYnykiUYyuWqEG79ziG2nnsHRVoteax5hHVtOOpFGY4hPffY6Tn/S81g9Oszf/NFLELFDSsufvucLvOGNv8Khw/s4MrfA1OR6hhsjtIuMelon1jETY6Ps27ObOBJ8/fprmZqaot1uU6vVsLYkcWrAYIKKfSMEkdJ0ltroOKLdbleyYU1pPYemD7Nu3VqEhFqaVqEQhl5vCazEWcOMnWXVqlWY3JFl4fv76a0DILW7VIV2dGk0GtRqtUrGqmm32xXzzdPrBcmqcDZ4cXiDUNDr9KgnMc45Ht31GBMTE/+TW/b/itX3KFvp77E8STxWJun9srdfAOdKvHccOLAf6x1Ou1AS6+UCXisdDNCdRyvJd2+9nrwHf/XBHbQWDpMXOWkamJOtg90AYHlFoiN6ZTWJRFAWBh2FRLd60iQvM1Qkq/dQQRohAktPVKbIzZGUrN0JU3PXRWlBfSxmYvUwMw/2iHRCIXJ0TdJIUhazklhHlQGxRgefhkHzsLL490G5Cwk4CurNGtMHWwiaGOuQUqGjiDIvApNKC5z3aEJxmVTs/H5wQ6w9YJlZmEFKqEU5EQk4RVEN3LSWg6TkPoPROcf4qgmOzs0O7LZXes313yOOFO2lLjIKww2DJ601OfW0M7nu2i8T12KyssDakkgA1nLyySeT5xlaV8EWzg/MswVykK4ntQIriKtwBQRVYEd4JjsBSkqkAaX0YCCXe49UkjwvEE5VvoWhSNZRhLEWay1POvFJSKVwBMk9rmrkXABAIhlVLN6oYjeWgyTuPtD8eEm2dx5pPV5Ref4JOt02WdFGqhrCl/TaIWFT+Col0KdoHYbQTkBpQtq9KzzWW4w/Hv70g77mWl3q9WaQNsvAQLEVQNfLs+qctERKknV7HD16lM1bt9BeyoJFDILdD9zNpm2ncOTgTtY+6WSyrMA7iCJFp9vj4MM7OOmp59Gb7aBGJsiygtXZUaQTDDUTJscnOO2MJ9NZXCLPc2ZnZxmamOAZFz+bb1z7NWQU9qsVfWa+JolicJ4k0pjq5011FAIjVfCsOuXs09DxELM33cWJz7yINS94PmmSIkQYEFgbmKyFUmjnkMGRk1otwnswSLLcUniLcFV6sXMEj6XgF2acxQsRfGVxCC0RItzXpfX0jKcIEMv/8Cd9fP1HV5BY98GQIC9dkXcQ5J+q6q4GmMWxn3MfrBMihOhYIRHOh97ceaSMKqZp/xsUBoL0NCA2eC9RMoQQrgRn+oDf4Bx2wdvxGAsHHIKoAlyWgyICEBfYfcv+dwqlNHKlHJHgIyt1FC6FUMGTDHC+n4ieILzCWTGwouj/vqUMPqVOhbPx8MF9CKWxZMRaEwlJ6R2l85C3q1R7Re4KIq/wLqVeWLZvTqj/2os46zV/wsO2Rrd0GBe80qwTCGGIZURZlJQqJMcqb0O6qvegBb6ogEdj8EJgvMP1QnJoc2ScTmuh8vD14TwUGucUSEORdQBIkhhjCqQz4doJiTeOiYkJyqzH/Q89zG//5vtYPZbw9j/6DX739z9MZ3GJOK3RaAzRWWqBM5SuD7pGVR0ZlHpSKmzpkCr4CRfFsXWWRFRWEsGv1tvlRN2+cgNpKhlsgZaiCgrrA8cVu9JWDMoVNW5fthp7gRmETfZZmBIpA1DZ3+PLYSNqxd8rBua/QSx6/HrCoNydd97F7XfewfDoCE86cSvnnredVeNTNOsNrv36NbzoRS+iXq9T2hK05OChBT551XVYa5lbmueW227l4JEDnHTWmcSzNeaXFtlx1/0Ia/BGkjCPzGpM1TQve8GljNSHkHHEkdkF8ryHMY5Wp0uv02Ox3WFuoUVZeQuGlL0YHccksSetqNoiGHmEC1gVWsGThODhYh1OebSQaCWItODUk7fSTBRnb1mDXTqDp24/g3vvfoQzzjqJN/3xByllRmQNv/iqK3jv33+SrAhpXEmSEEdBkhGnDVaNCN71gQ/zh7/0S7z8+S/GIzGF4xW/8v/yyI4HOfPs7Vzxkxdz5Re/wOb164jiJs459j/c4ILtz+DkLev43u03cskzL+bP/+D3WTW1hkbqmC/g7e95J3esHeaOA0c45649fOY705xy3oW88YpXsT9exdNP3MD+IxI//SAOQ1GUvP0VPwKAihU//gfvx61Zz0cSxy1/dxWd++5l4chRJsZPIFExhVTMt/OBbORfW0IIEILUp/hy2djTCzh184k8uH83vSzDU6c5OsKIh7PWjKPEsi/dfLfNPQf389DuY2WepixDLHR/WRMmjoAUOqT3Pf48l8vafmstvV6vunHDZEM4Cz7caP1bRFUacCdV9e0e4S3S+mU7BJb/HPzeMGBvYC2FzciGx/mp1/0an/vUhxBGBBDweLLUf+tav349+/fvJ0oDk2R4dJRO1ubo9AKjY1PYrW2aw8PccP2/4IqCNIkxpqTeCOECWvcfmCG+vCi6TE8XARBqBgl0sqKR7Rs6J0lCnucUlTeSlIEZkSQxRsLo1CoKb8ldxZpdWKCXdVFK0e12UbEiTVOiSDM5GSSeAAcOHGDrltOZmZnnzW9+M9+68RscPXyAE6bWYL3h/HPPxIsGH/jQJ/jtN7ya+dYcjz32GFGtwZ/8yZ/y95/5LFunDCduXM303FG+duNjvPInXktrfprDhw9Tq9UYao7hejkjzTqjY01mZ2dpdxzr1p/ALd+5janJtezbu4/R0dGBxMWYgm63y9jYCFQpl4cPBzP1NE0ZraUMDw+TpilZVgCwbt264BmV1qs/U4IXg8fkga1jbPDyk0TUajWWlpZI0iAx7TfISZKQJMkxPmX9cI56UqNWq5FlXUZGRmi1WhQ2Q4iQcD0zM8PoxDhZp8vw8DBCHBlc6+PrP7H8MmtdymNTVvvPwZWTxcf7zvX9ZoRQHDhwODR7pqwCFMK5jQsp2VJEKAnGZrQXQ7pnp9NCEDw/gjONgixCVu/nKpA8JKwGqC1JEiAjK3ok9RRjQ3Pal7WEJC6LExYvDGlNcnRXhjIxQtbxpcUcFTy47wDK1DHK4IRleLKOySzKRpWk1CD7/jHVhFXrBOOCd5kQYdpdqzfp2IUgu/WCrBWARxO74POEAekrf0SLd2CdIooSvJfkZUmz3gjmyULy4KOPUhj4iw/8NS9/8U/RI+fyl19KuTg/YNv2z86VxeXs7CxSyTBJXsF+7P+scRzSwlQc46xER5KiLCkLy3333Uc9jijLEqRF+wDtbdm8haRRI5Xhfa33WBw6CswJZ8NnbEtD4U1gK1ZJqiFEq6wAOhk+W2uJoiR4v1X7Sic1vIAsK5Aq+BRLSRUEGJibSgRPPiEd1oVwhz4LQnhZBUksy0uNKQZAXJ9Z4Z2hzHtYH1LbAqiqcNajIo3U4XViD6bXpueqQY+OEEoGNgUSZ5fw6EFDWFYgphCqUnw9scL8+PqfW0cPHWFqY0qiI0QUgXPE1T6RZWjm0jSoPuK0jowTkJrJNZOBRVlLGX3aM+l2epx05lkcPXSEVWtWhzOsXseYMSanpohiRWt6js2ja2nv3UtcSVNNryRtNClKT9ocIStnSdMm4CjxXHDh07ntO7dAlQzsvWdsqEmkPUpJVq1aRSfrYYowaDTWU68Ps3rNGNd87UbavYxnn/N0kuEmrVaLofVDZEXOa1/4Qk7avI0Dhw+wMW3yjs9/Eus8ndxDbpAIlLC8+tKzWJg/ylK34PBshy3rhmkXBUvtgk7myK2hMJJebmj1Ais4Ly2ZLSiMBauCpF8Gadzx9cOzwpnef5YK6EcQ9eWf3uPd8kB35fcd83dpET7IDEW1h2VU9Zs++LAG2FaBD96zAQADIeMVLLh+iEN/rfTy8gNArl9LLjPk3KAXEIhKkRVe0/hQU1inkPiQmiw8VDWEd8HDvP/6DoN6PPDoXQXCBPAm7HOF9B5nw2+mfQgfQjlKDzFgiPA+AOJWZrgSUl/5rSqFcA5pcrLCMDKWUl77GQ4sLdEoerz53FN5YPc+PrXk8aIMgzppgvVTGbwynRArvB8lteE6rfn5wfWSECwrvGFx/jAgQniBVlAYBOGMtdYvD/68D4oHC1hJmA14ZmePAtAcGWZhYYEZb/iFX3w7G9afQJpEZM5hSsPExATTh4oQpjUY/oZrpyogU8gc70KQlFLh//UtAkwVboUH5UNgk3eB2Wd9P7Ahwrk8YAAIpNRYH0LGJP16TuBcv/cTA2BveU8sr35N2Q8eWelnvnL/HcMKfYL+mU8YlGN0DKRgEcd9+w5z/4EvEylNd2kOLRXzSy1uvPlmNm7cyMjQMKeeeipxzfGlL17NjbdcXwErsGXNOqiNIDjEU598Dg9cfz2t0ZSHb7+Nt/zK76PjFCkiWr0edLroyKOjlEhFrJkcDz5gg41fXSCqmOLvw0D68prqTxEujJRB8hLAuuorhUe5MIX1CArjWbdhA0dbC3z31rvZdOoJ/Nmvv56fffeHMcLwd1+4CmKJcpokSdBKYIuS9WefTS1t8I4/fxdj6gTOO++pPLBvD70ip8hLXvmyl7PnyD42bdrE0y7Yzl9/9GP886c/wct//LXsPXKIO2//Hjfdeh/Wt9lwwhpOPv9CdJLQXjpK4lPuePQRvDDMlBkHY8XvX3cbqqcpFzVHc0cpcp77jAupKY3NC7y3RB56WYaMY1QJj5ghaDaYrDW5+JU/yi//P7/KXW3LxNQQRd5BpwkNJONDIyy2OseAUv3lBEgnec3rf45LLn0Kr7zidQhXFbPDDSRhM+s4wpkCpSGShtIaarUEVVFcDZq51uJAD+4JP6uzdgC0IYJ5LrIqjJQaoM4rQcP+TdTr5pjCrEiQkYHlpGVIaexHPvcputJhqxsmTAIM4t/B00prj30Ee0081GC+12F2dhYVJQwNNRCof+sljq//xHr3u9/Gj730FUxObSXLMrzv4W3C1k0nsGfPHs49fzu33noLCM2JpzwJUwQwSWZdJkdqdLMexuZYC0VRkGdLJGmNLGuT5x3iqEkcx9XBGxo1Zy3OS5wrEcITx+ng4EBpvLXMzczQaXcZHx9HJhFD46Ps3XOQWl2zdnIKLUOC6WizxpG5We6++34e3bmLdFLwlHOfRntGcOcdN/H+9/81YxOnc8vXrmf11AQT46M8uncf555zJr2ywJRtzj9rE3vnOkgVseOu76HPOZvvfu9WnnzGybzvPX/MlVd+haGhBkmSsH7dRvbt28eqyVWMjo6yd8/DdDsd1q1ZS3uxZOboIvPzCxUA0kNHisXFgtGxYXQiA7Dtchr1GC8E1jqU0lhKdJRinEfHEY1awqrRMQqTkwDtTgelFPVajTQs231jAAAgAElEQVRtUsiCXpYx3KyBcYjI4rylObTMSsyyjMnJSebnjjI0NMTBgwdZu3Yts7OzJEk0ANvn5uYYHm6S5yXOQWEdaSMdMO663S6NWoPFxTZLS0tMTk7+T2/bH9rVL0j6jKuV0pA+QAccI299/BDHWhAoZmdaCC+rSMPgBh6AsjAldxV4p1QlgfIebz1FkQ/etygMUoJygdlaVO/RB9GTJKIsLfU0CbYTZQni2BInNAISEXlEFMymTSaIfYKnCGfYoif1wxgDlhIiR2OoxmKnjVdNrAm+b67PDBRUATIFshr0BFCmKuSkpzYUADvlQmqb1BYtQ2GHBoNBucqA2oXnk1IKoUNCsTMWoSOWevCk057CY3vv4KzNT8aoGvPTu1g7uWpw7fsF4/edjd4jq6FY/5r1wfAgR5N4a1E6ojCBRTA81GDHjgeZmmyEZkIEWTCl4MQTT8RFitK6SrYMXqng81qWKB38A70YhOXihA+MSIJvl1KKLDcoIYmEYrHdJkriKl3VVUCqrPZXMNPWKjyPARwCJ5Z9hZSogLT+NbAuMC2MQUZAVffJ4B29LI2pGi5nbRAxudBUGRMYcsZkpLHCi5iyl6GEo7QS6TXe5Dhj0VW9YsvgPVNU/prCQyk8Jls2pD6+fnBXb+YAvZEx6mtXD557aZpiy5x169ZS9AqMLYgiXbHmV1Gv15mbC2dpGgeJcpKEPfjIAzs46ZQn0c0ylLAYHKMjDVzpOOspZ7E41yJ2i2A9EY5GrY61lsOHD3PeeedTS5vkEz2OTk+z2JonTuo86+KLufmmb+GcY2y4wchIQhrXsFlBu91mw4YNxDICITh05CgL7SWm75sGJBtHV3P6pc9g01Ofy8z0YfCaZ59yOqvXbGRq9VrOveiZXPPeP6PVzbEeaklCIjUOi0Uyve8gVjuyrJ+OXmLLKkDNlkHeaA1ZaYhVRFZmOARl6SuvT4tBhWf8/+xHfXz9B1fo0ar+SATfrL5/FoCSEc6bik30b0tJfZV02ZeThuFeBSBJd8zXD17DgpAKLwOoFuqHaIWc8Fj5KoD1AZwJYF9IgxdCDM5BAuw26Pf6QSSC6Bg/O+cD+OLCF2GlOKYHtN4NvOWkVDghkH45/bPP2PdU10BVeISoGKPe4tF4U+JVAAiVF4j+oE05NAHcW1jsYGPLB27cxQU3zHCLbLCnZmjd8E32r16Lr/pk50EYj/dhYCVdYLIjbQA7nWV+Zh4Zabwt8RJsFUQkfWAYGu+weX4M6SaA88GDNQzOEpQrQj0RLzMXi7KHkIqlzgIRGqEFbdNl157d/O3fvYM3/cp7WWjNMbPQAilRPuKEjevpdJeYnj4AVF6dziJFjKVESB8+G2EDzuVDanzwmFUoISgxAcizywFYYvB5K6TwVfhSP2ym74Uc0lZXDpoHQ7s+PjGodVfWV27Arnz8vu0Ddiu9FP+/1hMG5Rw2/KJCkJWBnVAqi6wNIYTgb/7+47zgBS/ggQceYOvWLRz+5jTDQ3Ve8uOXsWXryXz2yk8SxXBkYT+/9pqf4RNdy86HbyeTAiUtb/ndP+IL/3QVb3j1K7E+gClKSyQSvwKd997hZbgoWmpUrHClQWhJURREURKAF+9xFY1RKIUzNhT7QuCMD2IPZZE++KBprSt6IvTTRsfGUj7yN5/i8p/4Ma759s285PxncvkznsE7PvpBpHBBN+1FALFqNbSKmZtpMTd9lNOmGrzq8it48eU/Sdme4eXnnctQvYGTiiPTC+w9vJufeuUrWLNmM5efdzLTNcn6NeuYO+l0Hnvodv7w19/GO97/fhIvaDRiRuMawku++b1bWZ0kGAuytoFetsBkU3LzLd9m8+QIh4/MsLbWxBQ9VBKjZIwrC6QeQxCihhEGXXZptxb40EvfxAvf/hZWn3cGV135RdatnWLHo7vZtzjPUFILBbjXIU1JB1mL8JIzt5zC637157jhG9/iY//wWCX1tEgp6Haz4IXjQwre0NAQj7Y61PYdoXCOhheAxinPXLtNL88RlbG0kBW6LFcc11ItS4Kwg3SU71te0qwnmKIve3WUeQb9xDMTXtd78FSadR9ovYMG09pg1CkkOg6MHlVPSbWmPb9IFEW0C1OlxIQVElqC0W5mSmye0c06x/2s/ptXLFOuu/przM4dYfXaKX7ip16FjiBJahi7mmuv+wonrF1PWVpOOvUUdu/az7bRMeZnZllozeAKydDQKDMze4PvmRB0e22kFOjC0csLcmcYbjSRTUVtwNgK+6/vKxfHcaChO4lwjl6es3ffHu6++26IFI1GgzRpopRifn6eM598Ou12l6WlJR599FF27tzJ773tx3nLez/H33/6ZoSo8akPv5oD+69k594zufRFL+Cqz3+eNasmeODee8md5P7dDaZqEdvP2E73gR0stOZ5/vOfzw3f+DpveP3ruOBpT+bbN93OgQN7iJMIZz179+5lZHgMay233XYbgpyTTzqVoaEGd917D7W6wuR1ojQlTmqMjDSp1wIjpigKhBYMN+rEVXCEEpKlpSWGhlcjYkG702ZiZBSdBnZLWtPMzMzQbDYpy5JutzsAdUZGRmjUInpLHerNBq1WCyFEkN7UQjLu0tJSkA1XTLuyLIMHnfDU6/UBOJT1DM1mE0FEo9EgyzLq9TozMzNoHbzsJiYmkA8/dvwe/C8spatiN9Qty4WZ94N7ATimKJaPY1drKclcd+BBaF1o3iIhKsNmiawKVmOCxFsKT2Ft5ccW3s8VDhxEscY6R5GHtNJIK8oiNHelMaRJhCkJU0988IeVwTTYe4uONPgQVFCrJRR5h5rTeHK0VCAhK8qq+NKUgqoAFPgO6LiH1Q4VC5wtQ5HqGrQXeygVoVBYHySVUawofYkoLUrWmT8yS32yTnO4hlcZui5xIkgsfa6YfjjDLOgg9/YBoMQG9pl1nqKsce0N1zLVNJxy4hl05g+R55KNm9fismJQeD5eatz3W5EsByMppbGlQSqJFjHCiTC7VIFJVhQGYQTP/rEXs+uh+0PCa8WWFNbRHK6xfusaYi8R1iIiReZC2IwXPrDtnMLgkFGE8ioAZC4Uz6UzICMoc/YenGZibJyICCliuh2LUBV4Wvl5OjxaxojIUHqDVMG82Rd5kMJGYVDokUSxByuxJUil8T7UDGpFaqYpHVovsypMKcAHz7wi6+KVR2mJ9zKwQhwURagNCqswWQ8hFK7oDp5LRhiUjELzKGSQ2pqSjrVIFepPL44P6n7QlykKtIRaEhr+siyJlED6BFME83Asg0GEEqFBn5k5wuaNG+mnPvfB7st+5EWMjIwMmOA6D4MGmYaeZWnP3dRdSFmWSpL3Cg7t3EVSixl5zmU4L3BmKJyreY/W7BztdounPf0Z3HnLt5k9usBYpKiPxMRxwrptW2gdPspLXnEF1199FbWoxkJvkdRNsn//fn7kla+k0+1CUWCN4C9/6408/0dewOp1G7ntuutYPHqAi97027z7ipdhpKXVLYGSRCuksjxwaBHjBJkJ/o675rp4pzDOkjmLNZaOMVjjkAQZfFF6SkvordDLvlbHUbkfqiUqhph3wTcY4fDe4F0FjuGrXrCAf5WUELxFQyJmYKSBAmEqP7BQa/SX7wf94SEK9gRyYJ6vK0xi2ev58UtWUtVgdh6ey4PX9sEOIgAmYlArhj1ZDkAc70WQr1a/mxABM5DOYgUI61BRxMpAC29dOC9diZIJtjSoKA7ySu/BuuA9KQR4ifYSJwyRqpiDwnHV1R/jhS/8CZJkAikcOnXU0gbedyg7C9y+uJ/3XHs1F55/AXJkgrnhhFh0Ud5TolE2+OIHT8kEa3s4qQJQN7gBwZkinIvWhb7bgsOBqTiIIvjvSucH18ATUtARgp639CFKV+QVaAoeRYzHlyHIwuTh7C08vOanf4+NU+uQzYKDWReUQDjB/Pw8nU4gSBRlhrWmCklY3jNKxDifgVdI6SswNwCGpvIZFN4gVISw5Qo7M4cVhrKqhRQqAHNKhuGxIKgyRMC7Vtax/cCtIGkNWFg495dByL5Mtb+fHj+kXv7///56wqBcaESXJ5JSymD+rcJG68we4fobv8npTzqZffsPsHXLZhYXM7527de55JJLmFr9Rt77/vdx192P8J4P/Clv+tlf5E/fdRtbzjqDiVHJrV+9m8z3+POP/i9mjsxSZgU938U7EYbrTqHrKXEaU2vW0HHE8NhoNU1Wg2auLIoglygCcutEhbArSYxk/sgMFhvAF+/DJq3Qau89Sb2Gsx7b7WGLnHZ3iZ/7+Vfxx+/8IN942s28862/x7tW/zarmjWcjKpwUI9G0TEZWScUa9MHDlFKzfbTTmff0YPIZ7yAmTLjwu1n89Lx6/nSv/wz69ds4llPu4BPXHM1i9+6A1uUeFvgZcRnv/B5wJAVJWW+wKqpcXYePsK3b/g2qxLDvrYB3+JnzjqLv//e7Zw1mnDUOlSS8ry3v5XP/NqvEyuNN54YEDpCOkt3cY4fO+dMPnfbbaheyf9h782jLKvqu+/PHs45d66xq6rnbppuugEVRBQcEVBxNq8aTDTGxGg0MTGPWZpo8qgxk4nLaB4TlahRn4gDOBsBRUUZojIIAiL0RM/d1V1z1b33DHt4/9jn3qomPj6Y1/VG1+rNYkF3Vd2695x9ztn79/t+P9+brriS977lLbz6irfywZlp4kgz3KgwVE2YsxYnZAAuI/G5JUkqvP0db+OWW27hIx/7JE+46GIO33Yb0gaIq/fQnlugNTjIzNRsAD17gY0Fu4/M4ny4eUsEFeWZXVzgxOTk8uQtU1Yfyo7r/bc3B1dWo5ctpYbcQcULjM1ZaC9R2JITR1BseOEQQodJsWIEXzj9G67zkKcZRWZgbp6eX9YDYkWio/c+bOTawS5rbI7zvmQOneqK/zyHlGBdyqqRAfK0y9X/+2N0bcH6dafx1Kc+lcsuvYT777+fVq1KszrAGVsT0jSlWk0YHVuNEIp9+/czJGqcODGJN7OBs6A0jgBC1dkSi9aQZV0WI4lWFZSQFHkKBHl1tVrHe4OOYWhogJ3338f87AxaVxgdWx0sKmnG+NAQiQp2p0aiyYiZm57hDW94Gc4vcXAywNDXn3YGf/2uG3jPXzyHu+/bxTf+o8Zzn/scHth1HxvWr+auB/bxmc9cza8+/1kcnTtBTMr99/6YB/bsxhTw8U9+gkP7z2f37t0Mj6/i8MHDjE1MUKnENJo1KpUK4+PjmDzl4MHDHJs8Et6v9ECXrBAIKfG+yvT0EkL4AG+tVslzTbNaodvtMja6CiklM9PzNBoNGrUGca0GgLMOk4d7ai/lLcsyGvU67XabvChoL87SqjX69+YoCtHqPattp9OhUvL9qtVqCGtpNGi32zSbEV4F1obyhrxIMdZQrVaDLTBN6XQ6NJv1vq12oNnCdLP/1jn7yzxOhjOvYLJ4f5KKbuWwZSOsz5mT4Z6dd1MqlRhsb1EbOo6heKEwJQLBWoOVQcHuipAwCmDzovz+kNjWC2DxZdEmwM9VYNQojxIRxnikdvgkR0UQxxoZ5+hIgPUUWUqxZLF5QaSi0Em3y+ER1kmUDJ3h2elFmiOKeL3GJwWVikZGmiJ3+OmYw/fOou0gUIaLCEmiIzp5jnAR6ayh1hrA6Q6i3iEnJ25EWFfgrMDLgtZIwsyMo5IkFEVpuXGlrcbDQDLAnbfu44lPupxjswtc9Zm/42kXX86+3fegvAdhg9JXLlswVlp3ToJmex/CMoQuz1fZuzKgtUJrODa7wEf/5X00h5sURRFUfaUd4Yytp5MojRWCJFI4AVWdYEumWxzHZMYgSmRA5INqIY4jjHMkaGxWYLXlvnt/RDVJmJyc7PMla40WQ0NDjIyM0GjUqDdrmMwSSVCl3VUAcRSKjk4IhHMkSmGNCwwaT4BbC0G9UcU5i7MKaw1R2dHvrRtTGxhwpgjWVutNOPbel2FgFikjhPAUWZdIgrEWnENpD15TkKMowmbROHQc5rY1HlOye7Q+VZT7RR+t4Y1MHTuESCLWrllPVIuwxqMjiXcCrYNNvigCuqYXatSo1fpp373rTOsQaFRYy9TUFFu2bAnNAa0xDmrVFhUftmGCAud8UKdIh58r2PXj+zj9jG20Oylaa85+5LkcObqfA3sfZGHyOE9+2jMojhxk09gqhLeccf75VGsJcvs2Pv+P7+LX3vMvHHjwCKtPP5OvfPBvOOuZz2RepJBXSIVh3zffzeyxWdozXVpnjzK2diNbHv8kWnVJc2Idi9NHccIEi1jJttq8usZC7hGqwlLXkGaCqfkOhYWlpZzUBbxIEgm8gkgqhJQUJeqiJz8Ka+dTa+RfriGQIi5VcpSICxUaF2XapBAKQeXkn+ojLVYqhoKtz2ERXpXPpVBIAkKARH/9IZHCIkRQPnsvTirewU9GaQQlXMAWnGwrXMajeEzZrFr5PnvBDyUnT+r+O8YHnIbzHiU0QoaAKVsGA4XinCntt0l5TASSsK5w5drH+hwta+Fa91BJKqSdLj+44ytUZcpAQ3H7LV/CZkFMInUU2G7ek6iQ1toclNx+9y0klYjU2DKiAuaXLAMDUb+ZKpynUwieeMmr+sXT3v1LlPZg6wL3VHlC+FSZai+FQguLUBHGW4y14ekrA8KKwgb1f8h2xdpSpIIlJ6zPcu/ROsKYgmolRiiPVxGDwy2m5+dweU5mDcamSB2RpR201mgd0+l0+iGMQZyVh/5hLLCh0o8SBH6xkHgb5k+wlkqsK8Jc8Rrh0/K8BpdEbz4sz9PSjSeW6w4r/w3NzggoSqTL8jpruSbhWLZ0/+fX/r+Nh12UGxsa6f+SJI5LjptGyQhTZByXsHntFmbmO5y1ZQP79x9gw4YN5IXg61+/jgsedz5//pY/5T3/+D7uved+PvC//5XXvOZX+aPXv43rr/88r/8ff8/QcA0tJd0iJ/MWb4K1ILESJSztNEdkAjtfHpy9nsHRMZChghlpjZCSZlJFxBqtNa1mk0a9SnOgRdG1DI4Mc//999HtdDDOUomTcCKlQHoo5kNlNVESWa8S4/j2t7/NRRc+lR0XPZJ/eN8/cuklz2Tj5rFSH+opckcn7zCiBxlYu4a9BybZ8eQnMDs9y/Su7bz8iU/gSzPz3H/nd3ng+99i/aYdJNWESi443l5kZO06tjaHiGWXe/YeYH7yBCemj1NvhA3nQBRRVZpdR08QaY1KBBsrdTh+hHuPHQUSXKvFG178Cj53xx288mkX8Mp3/g0fe/PbgzcdS2IEebZAkU3z3M2D3HS3JFcJb6kdZunDf03lWb/FpqnjdBfneOS2R/O4c8+jMT7MEx/YhXFw6y3f54F9u9hx9hm8653v4bQzd0BX8eUPfJrNZ2/qxxN7ZzDCUqnXYGqWKK4GxYA13Lv3BF6WKkWt6Ha77Nz7IEszc+WkFQitQvgNPGww4sqJn6cZlVadhaU8bDR8sKtS+s9d2RHovbbwckU3ZuVr2RXVboDlIpsoF/vhwgsJWp2sTUIjKEHKwqE9ZVX5uY5IEB5qzqFiTe5ytNRMHT/O566+mpGREZKkwulbNqHxJNUKlUpMNanR7RSkFLSGH8H8Yput1jJ1dJL9e+7GpPNYnxHJCF9ez8YsopRA6SWSuFZaoz1ax6UaxTEyXGFm8jCyLAwMDw/TagQ25Pj4GLNTJ1i/ZohYGfKlRbwxdLqK1askXeEYHlqFpYIUGcemuiy15zhtveDN77mKVQMvZvXwKJs3zYKKcYVhcnaOr91wPTt2PIJtp21gz/59SK2ZmmpzZHKes899FCOrxtl02mkolTA5eZSxVWvIsi6Dg4P4smu0sDjDkSOH8d5TG2hgDdRrlcBf8jmrJ1aHQli1RrszS6s5SBxVGBwc5siRI0gpyYo8KAJ7/CwHC53FUPwzhiRJQtqjtWSlHb0SRzSbTbpZKKDVarWSPSdw1uCdJc8d9Xq935VSKjRc6vV6ALZHEaYID9vexqjT6SClo9VqAFCYFIFmaGioZIydGv+VsRKmu5JP1sME9LqHK/lyvdEPUMKH4pkNBRDR62i7Hoct6lsCpEpwzmKXg9j6KjylVPge7fBCkGc2WBm1xvsy6MeFyHtjSxxFnCAE1AYSZCJRsUVGoePiM83cwVlsComsYJ2n6PO+ZHkf91RljHc5dQZRpsAvSXzmKToaYz1FLkhPdEn0AC6HzIYisBOOtOMwwhMLSfuEQS4G7lqWCNLMMaO6pGlOJYrBK3zXo21E4QqckxgTFrq1ejUkNxZTfORDf8/IwCCdToeJVVdTT2KqClSclBZv07eE9RRcvQLqQ8+t9SEx3ZaJkToq0xR9js0sn/rEp3nty5+Lc5XSuBbOmVKK8x97HspavAzpd8K5kq1WlMo2EFoRlfxNXI5UktyUir4iNOVT71i7ahXVWsLYyGBgtwlBHFUpCsvs9CT7H1zi2PEpaq1BHrVtG6tXD4d5KMJ5tqYIybpe4EyYA0IolA7FeqlAyipSCgpjiHVc2p6WO9nzCwt9O21gwC0rDQsPiLLwWK3S7XbJnUOrKp4Q0uGsDUU5FSFcsK0WeRasU0biSqtMUZxaE/yij6XONCNrJ0pLekpSiUJwWBxjXQgZqtfr5aZR9xPbN23aRKfTIYqikhEZLNbdbpcoScjznDRNgxXWWrAZ04d3oURQ3IdrtLQ9Wc9jL34y1179cX79997I+Pg4s7OzwQlkBI98xDkcaO5l/949bDl9E2vOeARDts3oxCoOPvBjbr3mOjqRZ2ZmhjzP8eQ8+w/+nHtuvJa8e5zj93wLPf9Jbrm9yVJk+eRVV/HD736D173jCvbt+wGLTvPFqz7B5X/6d4iogVo4weH7b0AWgQHbmZsliit850fTbB1v0KxKKsYTq4g8h9wJCutITUFJdfrvO6Gnxs91eAoEqlQLgXeytOn9n/dry+IKW95blwsUy+gLC0KuJBX1R+/55ZwrgyWWVc+9sZJD/JN+NwTcgSgts/3XJvDqHmqxPfl9+34DZ+XvElKAsFj/UKFIwGaFz2QQhHAYqcWKNY3AOxNsmHFoUPdYp9YWUO450CC8wPgcjQIpyZ3HKR/2uFIEPJgo12dQpr5anIDIg5cSYUsVWHkMK3EU1ujOYXEBJWIDq8050/+MxoU1jaEgklHAOzmJ1IrCWVQ4qnggLTFgOI+TQUlnTI5XEbm3KCSLWZeKl7zoRc/kUY9ew6//xptAx8TeY/KwR49VTOGDI8ZaS1bkGO/7rjZrXbhvlg1Z4RxIXdpYV5xbIcJclZQ2WAHL04FeAe0/T5rl9e7ya5VWY1yp3ls+5+H7QtKr98shJQ8tzD2c8bCLci978QtpNRJWrVrdL0QYY4gEHDh4gkgs8NrfeiWd1PPpKz+BxzE3N0utFvgI37nxu5x11nb+4q1v5mMf+zQ/+N7tjIwM8Ye/89vM7SwQSUFW5CwVBbIXVusDCNBaR6VRx6kQw6vK1E+kZGFhvr946jiHF44546jUayQ6YX5qBidjpPU4WdBZ7JSwY0WkgjRdJkngjEmFzfLAmyor6VmRc8XHPsFf/PGf8Yb3vp3NG89ky4YJ7j9wkEdu2ohyEFehXo1J84LD0ydYNzGIKFJOm5jg8HQH1Yr5ykf/lZlsCTDoW37AmrUb2HPkELuu2RPghUJi8bSGRkE74qiGKULC4MTqEZw3vO/978cKx/bxTcwvdThj/TpeedYoi7bCrsWjfPaGr/H7r3kd2T3fo+vrZIWnkArnBAv5EtiEItnAZN7mtb/9Bi655BJarQqNSozFc2Kpy4HJQxw6eoKjJ46z69t3c+z4DPm8oaI03/vKNQyN1MK5sZbp2Vl+vHsPXQnfvfU7QUWmIgofgPlSaCpxlcVuh5bXzLZTnBcU1iBkwdMfeRF/+Zsv4y0njnH//T9CK4Ux9j/5sn/SeOjXhBBgoVarUWs0mJ+fxfpwY1GigfUZvpqAh2pSKxkzAeocVyvhoZAbYhUTx7rf4fdltHKapuRZhrWWqqqwWFqsPQJZTzB5wZrKIN1uhsWj9Snb3M976EoIXKhXWnSKDCE0UaSIo7AAHh8f54c/vJtmq8YPbv8u557zGAYGByiqFq1TBvUAnXbG6OAoS0tLDNQabNiwgenFNp35KXb+6E4wOUJasrwDhAfA0mK3n0baarXw3jM4MEKtOsji0hQQ5t3s7CxD42PMzc0xWI0ZHWwiTIEvukyMDKB0lRe99NHsP3oXGzeNMTt5jObwILPHOthimix1HD86z8BgnY986NP8yR//OseOzjA5GYCpd937Yx7/2PO47rrr2Hr6JqqxZ3Cowth4iz0H9zPfTTltY8G2M05j586djI6OYIxh//79WGs5cugAz3/+8xHS9otmrUadVnOILMuYm5ujyHOOHDmCMYa2XqDZSlhaWirthYZWq8XExARzC7McPny4f522qnUGBweB8NA3xlCv11lYWOgDrpNIkOc5SZKUKrygmBsYGCDtdsqgCc309HT4uzRleHiYarXKwsJCP401risGBgY4ePAg1WqVer3O7OwJxsbGMMZw/PgkqyfWYa3tpzOfGv+14UwvPXP5fmxtePZC6QpZYVntMTmlDCgC5ZdTQOuVUGhptzvh54QtOYWKggJsQCAIE9gnD11kCxEsDoIicGERgAmWFh1Ud856AnddIaTFOU93IUcIi9LgbIFC0cmgvQiJhdwX4MMyXaDIC4ezgijRFIUlUZrsuKF73GFchtQFUhY4W3bac00kVejQSh+skKLAlPbszDi0UqTTBqSmg0NpifCaxEZASJsLMGiLcopIhc/vZMTiQjcsQKViKKmSdxYRrqBVVUilyUxKVChcuREItkvf598IIVcUUksem4zxhKREKT0qChYOLzxFVnBiqs1LX/wcRoZqFC5YyL3UCJuzY/t2ekxNiSV3BqEkWZH2z3UiFN2sjagkSOdwwl1JnPMAACAASURBVFM4F5h7zoASIBwyKyhMisxDCESPOdhLQq9Xaww0W6wZG+O2u3/EQneRETuIVsHSglPggo3KGkF7KUMmAleAkgISXVqSUyQe6wlIFC8xwqBNjMMiI4EtCPY6ExQAASTtEFi8VxjjiBONEkBh6eTz6CgKHDppsdgABbcgVCjAohTGFRSl3UfLn22Bfmr8/z8W5iaJ4gpJZRAlNM5VQ6iMcEQ6oVar9ZVwvYYBhDVpURT9Z2u4FkJSpATWb9xYNqNGiaIErTUHH9xNpdpCSYnuqX9EsObZwnHeRZfymQ+8m1e9+a8YHR3lwIFDnLZlG/v37+IRj3kMg2OrOXrfHczMHCMbGGPurju54+YbyLOU8y59OomuoSrtsGFtt5l84Os8cMd3eOr/84dsfOTFtK9/A8ppWo0qR6aW6M4dY/bwEdZfdDGdo8dRUpPEIFaNsXX0ckyseFAUpFO3UDUFzYpGC0teCDp5CG7JDFgPzklkpEOhuyTKeCdOdjW6U9fDL8sQIWaanoKs92gOYoeMvoruJ44e10ufVOhCWGxZhAtP4AKplp1P3usQAIVFi+WQwIAMgh4z3rkVoomf4lAS3iFYXpOE9xIcXg8tyIU/Lxcae5zWlQ4B64plxZ2QJRaptz8VIbDCaby0ZeExCjgNHwpLWoOXUT/50wkBIg8fywV+q7cgpSvZ1gYvNKJMvfBCBU5eeV1Z60niCGRpSVWC3AqU98goxnkTbMMWnCn5+hS4IjBwe+xZfGn79RLvC8AhvUBqGRJblSO3FmkFTq44Zl7gRU/QQt+L7LzFKxU6cXlOrjUf/7d/Y/SrIwzWB5ieO4GXslRNSqxw4CwzM3NBBJEXNBoNOqkMwWDS42wotAFBVOUCs88JBVLginy5SFqGljkvUcErCcig13HBRu19SIx23gaBkfclsxZk/35P6aQITERXNuB687lv+CsVoyvn48Mtzj3sotzi7CyLc5L7dz6IMY5Op0NmDWmasm/PAeYWTvCRT17JyMAoZ5+zg8lj0zQaDWZmZqlWqxhjuPfeH+MMvOaVr+AzV3+Bm7/2HV78zr/gz/72nYgRgxGhOJIXBUhBpDRK6cA5yQt8FhY5TgnipNq7NyCEIM8yZE9uKSWmm+GjXie0TXWgic174QC2/3NCaVxWIHEUcYyONEWeIVzwfQvpMVHM1u3rOHT/Pi7/9d/i3R+4gic97rGcu2UTWgXeXeQFRlq+dNU1vObVv8awrnLfB9/Agmnwvf/YRZ451umc3/2d17L9SZeyac1pfPA9b2Vy0XFiborLn/ts3vjOvwtJg0Jy6PgRHJ6GlBib4Uyw4io8d+3czbfe+kc0redD13+dP3nDH/Cmd/wtP9z7I+69+T+YqEWcvW4zxmUkVmMzS+v0HVz4lKewmHW5f99Bbrj1Vt52xf9i364H2bt/L94JBppN1k6sp6nrvP+v/oZNLx1A4OgUGWm7Q72uUD4oFEQkWTM6wprREU4UyxYxbzzWO6QPgOY41sQ6ItaahYUppAvWTu8i0naHnfv3l8lvnsL8jJbPFamswsCVn72Sqz7+rxSFDRt+K3ns5sfytU+9MWyuynSfxbQgUhrjbDjHOsik85Il1OtYBg5P6HKbMiDCFiZ4170jijQRgXMAknbaZnRwEG2DtLcn/z01fj7De0+SJHip0DKwyLIsQ5fBH2Njq6lVd+KtwRjH7bd+F5RE6ipPfvKTiasVdDXDZJZKZYhqO8H4nImJCRYX1zA+tp7jx4+zb/9O8hMHcT7FGYN1km43Ky1zOcODIyStnjW2ShzHLHQLqnXQUrFu1TDNRLF2sFHa/CNELKgMTfCoiW1c/sK/5FtfeytX/8tv8sJXfxwVa972x79CHFW48fbdnDg4x9rWAPv2HsN7z3lnn8FS5y7mZuvY3JIXhizL2HHaeuZ/tBPnLGOrVjEyPMrC0jzHjx5jfn6e48ePMT21yNq1q0mShPMfey633vYfqFgzMzNTLiYERRo6/RvWrUHr0Alvt9sszc3TaMQMDQxhjKGbpiilOHTkIJGKSaIK3XYbIQSNiQm8yLE2XHuLi4tUyiTVoaGhspCTkPuCerOBkgm1gWoJVvf9xNUsy0iSJCSzJgmdToeFhQXWrl1Lu93GWovxQbHSaDRKi2uFLMtIsy5JXGH1+ASxjli1ahVTU1P/3dP2l3dkEhmDcQXeLqcS9xZuQa30EBgzvU64xJex80qFOdVbzAb4fQBGB7W/LbvVYSFrbFCe9mxhWutgI3QOIQVShIRgI8AbFwITvMfjS3WmQMgMpWrEIsHOBzuGE2XwhFekaReZSQw5IdY+2FSFDJ1Q74NlVCLAOryR4AVaVsEmCKFISgut8Y6iKEpOpUYloWDoLQirqKmI3BThGJiST+JLGLwS9Dg3vRQxoXoqhLAIl3FoCERSkZsMoSOcFWgtyfKcSGu8DefCAZlfVjFqrbEOnHEkSQVrUrxQAUrtSgsxAldaTqK4gkbzyQ//A6//o9fhpEEg0dZhi4KJkUEufPyjwWV4YpQHlML6kLDcC6iwxqJljHeS1FristCAFzgkvrSiVCsD6CjGC4l0Rdika4Xzpr+wX0ZbOJTwYb7oEPllXUGSBLWSVLBr930YucyK00JTq9UYXTVMvV4lkstBF3GkQQjSTt5PpXW9IChgOZ5CBkWIcESxI8uXENKA1nhjENZh8VihyoArRY7FlY1rWzZ4I5X8RO7RqfGLNSqVGt46Fk8cQ8dReV3EFLnF2g7a6jI52mO9QccRurSMG2MoshQdJ6XdPqjrtdbUm02OHDoAhI3gwXvuAelR3oT7jhDIFYnXhw4c4NzHXcC+nTu5/guf4vLffjVr1kywd89Otm/dhhea1WvXMljXmIVZ6hVJZ3QNT3/j35K3M9ZsOZNjR3aGpFjt2f/F36Q18EQe89zfx9oGX3r/u4jQ5HkbWxgiqfibN/8P/upDH6Nz+AR6vEEiJVElQXuF9YaaVGRxHXXOc3FKcfbp08zd+01cZ56jbbBRg00DGReOn8EXHvgRwoT7Wm8pLNXyVQX8xBC5U+MXc3gRUi0D26tACBmQQJjy/6Of8tPLdtCVNj/vgrXZ2fDMVVqs+AnVv/9LBM6D9A5EhJf+IXvF5ddfVu8v2whhRegDDuNBup7ldbmItFLB1+NJrwwLeKgSr/81X+DLvSgrP5/vPUsk3ge2PbpU8guNNZ5KRVJYg9JhjSFFjCMFdAhY811woblkZWBPOkIIQ/hHYGQoOPbUa9YHvqotHAKNl4bCZBhr8WViqBAOY3uhHCK4DEzv2MkQ2BHYYeETeE+apuG+hwGn8AJsL9BICPCOJK6F/bfyKF+uY3rKNuFCsEZ54S9mGU4WJYokC+xeYZdt0d7iCS6JZrNJp1OKJUSMI0cogfQKax1eeiSeRqPB4uJieS5dKNaJnrotFO4UgQ3n/XLBLIQ1BHeCFQ7hJVpA4Wy/ICf7TTUHokCVzc6+tVWCs//5pvazqOUedlHuox//GL2Erm6321cQDQ4OMjY2wSO2n836dRtoNBrkqUXFMRNr1nD66VtDAmeZ1DEyNEScKJ73nMsYH1/F+Y9+EkXjI9QIfupY6T6X4aEe8b5M0EFh2lRqVbzUaKVwWuNkyLbyZUe9cMECq5I4nPRehb58Qjjvw2LeB9ifyFJEHmxReTelcJbIgdWC+XabDas30y5mmZztct5555FJz2h9BGu7fPpTX+XMDQlvfv3v89Vbv8uuH9zFY+pbkNMnyL1ifH2VwY5E3PMt6pdcys1338bV13yLxz7l8YyPj3PTvXeCNQFsaMKlJoVgVSumSsKiW0IJhxEgrWR+chIzMMH3Zw0Hv/ZNHveY8/jMjTdw4VmbePUHrsDlhhjJrYcOc/VN36FWb7L9xm9z8023oIVmiAovufw3eecf/BnGzbN3z1EuueAxRIlgfmGWSEmk8BgUSZL0N1Xee1y5eNUl5ND2mG1CgC6VMsKhpKPVqBIpAc4w2Gzh/TG8ACUdlUrMts1bGF81BqXs01tBpVIJHCJjfvqkVCdP36mZE+w/dJjxkTHiSo1uMcnxEzMcm56lMDmdborAk+NxxpK7gjRNscadlNDS2/hbW6BL5pEQAieWI5JVr2gXaZyVSAyTJ2bZtGENPX6AUPDIR+14uJfYqfEwRrA1hg1wnucn3Re8DzfkNF1CehkeQN4hi0W+ed2/k3vLth1ns3XHmQihaLVCh0b4GB1Jms0qAwN1BgeGEOICOukMP77nbo4e2E8UKUzpqz5+/DhYRXNwjNbwMNZamg1ot9sMVxUaGB2oAeHhl9RbDK/aiGzUWTM+zAc+8AH++O3v4k2vv4RvfOp3OTR5lEQW/Pi+fXzvzkO86PnP4K7v38N73/N+Ln/hs6hVQuHv2MwUW91mxsfH2fnAXs7ZsRmbFZxxxhnMLy5Rq9U4fHia7kKHM87ayoYN6zhyeIrHPe58rrrqKnbv3s2OHTs4vH8/URRRq9WoVquMjo5ijKHZbNKot/rHubOwiHOOpaUljDEMDg4yMDDA4tI83XZKkiQYU/RVdJ3uAtW4SrVaBaDT6ZCmKRMTE/2NeiVevmaNMejy2hIiWBGVipiammJwcDBwehohEbdXrJubm6MWJ8zPz/etr9PT07RaLYzthteEYB3Sp6yr/5+Gom8thWU7K5T2VN9DAixzNXqjx2QRBL5Qs1VnQS8iJWRZTpHl/QKfEx4ViX6650qrSm8RHOaGCulbMiFJBCLPcVoFCLMX4RkeRURxz7qpEU6TRP3sTyIZ2LhJXCavu4SweFb936dcKAoqgtJNKlMWJSNiGZO6LnFcFoKkIJYaoSK2bd3BkUMHy0JigrXhGWHygoFmi6VOu1SzBaAwhG1EL7U80hqhJMYUCCdRUiEFSCExHlCaSpKwuNQJDYlu4KNYE0IpgopBI6QnLy3eeVGm5ApBmmVEWuC9wiOpVJLyHipDYdIW5KnjG9d+gydd8GiiWkRmCnpJY1J5Lnry44N1RYSzG8mIorSQerPMaAksF4f1ZWHQuJC4KiVpkREphc0KFIKs3UYljkpcBSkCw6ZsmglR8gsBpUNq2uLSAs1WFSlipFQlw0YhhGNgsBnA2ZEkpEUEtuXBw4dZu3YtEyOD+FL9qYWg6woWO4vEIoRSIIPKMs9TRC/YQgSrq9QWT05eZMRJ4AkqQVgLq4DBMFYgI02WO3xvI6cUkdB0UvNTLV6nxi/G8NZRbdapRKE412sW94ruvuQq9vAMcRxjjMO4gliHIp4SEpMXVGpJWazL8UIQRQnGGGq1Cp1DO6kPDHH44G7WrdkSrFXlmtp7x4EDB3j6857P+U+5mK998TPc9t1beMwFj2dk1SomT8yB7DA2toHTtzyFB++7A6UA6Viam2Vs7UaOHrwf5wRRvYrbdQMjT/97Jn9wB5N3XMPS/F0sdM7HlCWD3FuM92id8L0vXM15z3sxLrbMPbgH2aiR1FsMrBohimKUDgrBzBiS1ijrL/5NtNb88Ir3oIsuuzsVmutGWLPlAtasWYdr7+Nbt9yOt+BPOUh+aUev2SZ6wQy+Z/1TpeK9J3b5yeysh6rQQNELhvIl/8ia5cKc9xYvNCfZC5WGHtbIehBR/8srC2E9Pt3Kwt3Kmae8L0NHgnJumb3qSrVTj1+7XODrhST1rIt9tZwPqeZYh4p0X2UV3lNIWA3JxKZkuAEiNDsjFZPlXVTUU2GF553zmjTNAre2AO8LpA2OACsE3hqks+H6FR4lQMuQZRjpQIDKpCf2mo4xVKSi8LYf3ACl46EMMvLe9C29zjmcpSzGWXwf/SQZWTXC1IlJ8KJswLqykbmcZN7pBneKQuHK1zMSKl5RTWI6eYZSksNHjzIyuIpmo8qMEBjRmwsOj8f7Ak9IUO+pkgMHT2Fsho4UptBEcWiyVqKYbp4Fd4wMaxPvPYXPyiarLdWVQQXfY9QJUbLxvAffE++WjERcv+Hy0CJwCBCRCGH6jOMQFkV/P7oy/OPhjoddlLvoyU/BOh82UT50OHogUyFEAG5b6HY65JljdNUAM7OzHJucJEtTPBBHEfVqlU0bNlBrtfAm5etf+BZSgoojtPNoqYiiaDkxTIiTYuSNMWHiA7YwVCrV8Npl0aiwgV+Th9kVeGLWstTt4DtZOLDOoh7qOxYK5R0Fri+TTXQUMJEq4drrv8G6sW1c+4krufSFL+Xqz3+B0eYqXvtrz2ch67Bt9SgTm9ehkojcZMwZ6Gw7H/vgvxMlMc+5+BI++8UvcOMRw9X/88957evfxNodZ0Dm+OZdN9NZDAkkrsgZH1vF0y+6mK3r1pEaw52HD6EXp8ArqpGkkJaBVSPMZoo/fNpTecfnvsjlT3sGSilqzvGpN7+VF7zxTfhKwhVf+SK5E6jDBS+4+FE85VUXcWjXIf7yHa/AeoX0cNt9RznnnNNZcm3kUrBzKhXSlLwMfvGV0l4hBLHSSAfGeNqdwM7w3qNVjLCGJG4iBIzXBxCmTdc6ZooMJUM3UUcJXZMyNT/N3gP7wnkoL4K8KB5yAfzfh/eWNM1ZWOoy0uz2pdWF6PL1G75J2k55xtMupbAFFEXoMJiTYeU9gLktk/+89xhr+ml2ptxzRpHiq1++jmq1yrOf/UyEFnTSwLBbWFhAaIUiFPFOjZ/fsFZQrZbW41IN0btZN+otDhx4kNm5OQbKhXBSKjfiRoDO2k6HfXvu5847bkegedJFT2Hjhq0spB2806RpSrO1honVY3TaOYePRzz1Wb/CzOQMB4/uZtd995ItLRBpy4MHD7HOSVRSIUmSwLJsNuksLTDYrHF8aorBSsTmzVvZtGU7XldoDA7RyZZ48kXncfDEK/mzt36OgYETjK0d48CDM+w9Ms8fvuq3eeHzLuMVN/8eXmnu/vEDHDpyhNM3r0dLx577d5MWbR591nbWT7RYVW9w8PAhxsbGiGPN6Ogo7XabWiPh5ptu48EHH2RkdICnPeXxbNw4zo033kins0C9Ihhq1dGqissK6q0qpnAcPXiALMswNqNeD2q06blZRpoD5HnO3NwcSqkV6aiG1atX0+12iaWi1RpEiGDjqdZqwZpYprkO1CssLYXiYZotoq1GV5tBheIFzuUoFZR1vWChLAuJnD0VQu/vQvE1Jc9zxsaGw8M80wjtWJidY/Xq1czMdfqdtVPjvzC0Q1hVNrpc//7vQ/sa5z3Ik20fvcVo7xoFSyWqMNCoc7Rcm1TimDwzpVUhQIhRDhkJpA0dXGeDKk7IsigoJVZY6nE9pJUK8Cq8R7zEmjIIxluMU9TjBIsoIfzBzqAVBKdqgTEO7WKUCN1SYx2VqIJVhrqqgTcoUSHN2ugkBjw2s3RVQRRVKXKLVjW8t0Q68N8efHA/Ju8iEXTyHBlphAsd2KIwJNUargxC8M6C9yUXLVhvC2uDjS2JEQ4KW1CREd6JsiPsSLs5UhnSPDzjhJdoBbbkxDgsOIUSUYBRE35PP3DAB8KTIrCuvPVlAVJRGEe73WbLto2sWxOQGRJPYULa2Pazt9EaHwYriYXG4EkBU3hkCbiWKkHgsLkpi7oOJyVWKqzzuCInimIKa4iSCJ8WnHvO2Xz/tts5vHCA+XlDq5KQmQKEIK5XGRsdptGoESWaOIlCaqqPwWm8hUhLMp+ihUI4j0sUeal01NYgfEjUtEVGmmXEIgEnQjHPe6JYYTOPkgrvCHiNSIeAK+fwuUNphY4Mcazx2GBxNpZcCXxh+uETeIdxUbD2Wo8XFmcNuS8oMEHpd2r8Qg8voGi3ETXw7aDSMEJQwdHtdsF7vAuNaqUUWZETuV4yuy4VJ6Vi1IZrR2tJRSkqleAKccaDE0jjGF+9HiUl+AIpEoTKcU7ijOerX/giv/KrL6F41vO59upPsnnrI5kYX0NnfpoN689gam6BTmeJ0856DHt+eAuViiaqNojqVfLjlpuv+gMueuLT8Y97Lbs++wru/sEhnnjZn6JHX8pn3vd+Frp52PNoTZplzBnHNddez5pHnMWqsbXMdKcQXUk8X2Hm2AHipEZteBRZqdDwguGW585b9rIwP0VtIKHb9oiiw/dv+w5eCu6523HZc17EeedVWb1+gvvuu4+9DzyAUCEz5tTl8Msz+k03sew0o0w3VaXlNNg15U/dvy0r0zw9L7NUpVL5pJ5FL/Qh6hfMVuoshVBBlbbi/QnRY3/9ZxvrSfy5MjzpoUw6pWWpGqf/u8LHlv2ik/cy2CfLAh0i1AeVkCcVbxTLPNyw11Sl+iw0niSi3/R0xiNLQUuWFSAMmROoIqxVAGpVTaQUAomQcVnHsKTGExMEU9aIco8NCRrnXUhApUCWghO8xOGoVhOybo5dedB7SrAVx6VfTBWO6RNTpc6sQKqgeDfGBBqFEDgsxhSoSAdbch9zoihcRrsd9tKpT6nW68SRYvv27Rw5MokxRZ/dHRpaEXiNFyFptd1uU61WA5c6XWBhYZFIV+mmGZGI6OZZv7hqXLCoOlP01ekCTjo/DxV8hfpDT/Wm8SxzEP1D5kq4t5dcwRU21T7GpRSUnayMf3gq+YddlAOB6kn/yw8oEX3gNhC6k8Dk8cNsqm0EPHEcY/OCwlnSNKXdbfP5T36Sc4ebXPrCZ/Ivn7gSORwStKRxiET35YC9Dv3KUSmtjr2TbaxFatVPJVnJKOgXXLxHWY+LNDYvQu5G72CtKMhkJZjVItCRpqIiulmKLDxfv/YbvOTSX+Vt7/0CazdM8OWPfZ6//vM3cqSTcsON3+f9H3gPjdYAw5WED/7TP3Ptv3+NL09P470jzXMO7t7P7KLjyu9ew5GDxxgeGOZP9h6gviGnRcKSWUQYhxCWyaNHOG3DGjZPTDDVcXz0U5/ldS95Bk560iI87K/++s1c+IyLOfi9u6g1mnz6S/9OYQwv+Id34TsF//y61/Ab7/pHVg02yaa77Lz720QiSILTLKedGQ7Mz/Hn//NP+b3fex21rIMRFZTXpO2cKNHgDUKosNj1nqha5bvfv4N3vP2vmF6c5wkvfDb5vjaf/+j7+se7KAqivMChSZzkkgsewa133UexOMPs7CxWSGpRjYywWLHWknbbQbbqy5sglp9B7QkEppcwjghNpVHHFAUSGBoZ4uUvfgmLiwtMTx3nn97/fl712tcGuWugC+CUoxpXKIzBeYt2urTbKVxpZfI+bGSEEFz/1WtxOBaWFvngRz6EQnH55S+m2aoGr7oJmqrp6dmf7UOcGj919Ioz/Rv9imLAyMgIBw4cCJZGFeZVu93t/0xP4WitZWxwmLm5eW698TvckH2DwdERnvq0yxgZGaHd6dlUC9aum0CqmKFmjfGJYbbvOIfDxw9z8P7d7Nn5IzKXh/juOEaIoAxbO7EKk3Ww1tIY3cTExjOoxAPMpdOc2HWc+XaXxYUlXvaiX+FFl13KgSN7IIGkNkS6ZPj29ddx87dv4JGP2sFXr93JianjbFi7mnq9zpPOP4cH9hxDOwumoJFUGRqu8eD9h7jwwgtpL6UsLCywefNmbr7xDlaNjPHEJ51HlhbcdOct3HF7TL0eVHdCarrdLhs2jPOEJzwBryT/cctt7N27t3zoLWFti06nEx5uzpFmwaaeZRmDAwMAaF1HKcXi4iLjo+H7kyTqH/fwPbpMoQsBQT2e3Jo1a1iYW0IIDWUgQBQF6+rIyEjf9tg7xz2gtix5Y0NDQxw/fpxOp0MvGCJw6aKTOA+nxn9t9Owkxphec7VfBO89n1cuRH5SMnZ4HcvI6CDWWrQKcyCpaPLc4a1HqQgtBLm1YcEahQ6mLM/hcuBHBScEcRSRZllgskQCrWPwljgJ163Sgjw3JLUqQsTE0mEFeFKEjFFWE6saJs8CALlUqLS7BXEV0rzAmiVqFUekBMJCt3A0alWE9LjCILVAqwjrFU4K6o2ItEhLa26wTfbsoZagGBO5I9ERCkUultkkClBKoGWvESRIZIwQhpxQkEMKpPco10txkygVmLHepESyjjUhey2ICSxSaEyZINsDEeN0CCoqu9GtVovFxUWUUiQ6Ye+Re1g1uqa8Vxb9+20UKS688HEIJVC2TFTHI4Up7Uxhrni7rJTz1pOUCcuIEPoRlICmXCB7tNKMrBrj0osvoWuLYEPvdEtm7QyLCylFkTE9c5zRwUGEh0ockpnxIS0OKVAiNBiVUuSZIUpCgJfB4FV4/ziLNQWZNyy1F8BLavWgthWxIJISbzy+BHqL0spjo9D9bjWrZGmntOEEYLg1NgC0FXipQYY1kEZiXAEurJc9jigOqXKnxi/48JbG4BBZN0UYgye4g3rPMaWXz3MURdi8wCpLrKP+BjokDRqE9SRJUGz0rPhFYQPvWKQc2rOPgZENJA1HoRRxbBEuAjKQgrMffQ5X/ON7efmrf5fm8Bi3ffPLnLl+kdXVo3z3mgo7zn8x+/feyaMvfDabN57FiWN7qY2Mcdun38KhIwe54IXvZe32RzF98AesfdLfYAbuIK46vve5L7PQTcmKkJAMoGSwb3XwDNcGuey1fwQ4ZBRT5AtUdcyOLet5zrMvwyzNMj89w9btp3PAVnjkxFoa1RpTs1Mc2H0fx/btJe8sYTodrrv2CwghaT5QZ2J8I8MDo7zusRfwvttvYWpp5r/vPJ8a/4VRPtedB1mq5lYUG7yTpYpOIqQDv2xpXS5qlCr68o/eh1TvXjiC61udS/eSLXAuXHOwzLJzwoUuG4peKcP/FD/0Q5V6joC1UC7cn6UMgQ9SBEadVAKxokTSW9dIGdhhSul+4FUo6lisDc983WOOlcyyhfnDDA1txHmNEjI8J6XHmGBTlTJeVtfJlDwLjUdjltdRxlgkBiljXO5R2iGcxFtHZgVKSYx3eCuR0pLmeSgEOoEONK5y7Rbec7ezhCAoe70TZYBHeG99fJMMYhnnu+AlfTuwCzzgnhoMpbGui3CqL5ryomdP9kgbou3EiQAAIABJREFUmpP9VHjpsdaQOc89P7p9ee/vfWDNShnYdxi8C8c3yzKMMUxPT2NsikJgXYZWDmN7SsZS1Y/ouyOFCGnZJs+REooiW1GYC3UH0ddR9vABZTiWl8H1IRxuRTE51JZ0X+XZO1bOif46uKeKX8al/ZzTV3upgmGTBLbIaXe7XPWZqyGBFzz7uWzbuI21a9ezaqDFls2bybodUmM5cvwEN910E0dPTFIUBa2sQ23nHJe++GV8+Lof0kiqQSxYLvKlDBwv+xBbjBAC4xyOZQC/kpLEg1fhYIaocUukdOiml4W6nkTRqtA51kKQ5jkmzzHOo6UAqRDeESdJ4Nr17ho6YjGf4onPuZCp/6WJhcPXa8x1l/jeNfcQtx0X7riA2+++myN5ysH7JnnCeefztVtvolmtoFTEzPQUF156EW/4y3eycfMGKkspmzdu4I5dd9FwMRqPwSK8RmnJ9tXjHGh3uOu2H/LAj3ZS71yAtGHSvGjdCC951Su47jOfJfeejYXhtEdsZaT1KOrNAYaag/z4wUPYxTbXf+1LfP5zV/HCl13Os579An7jmb/KXPsEtz5wL//zT9/OVNFhaqHNpi1bSOoVhLAcmzxCa2AA6TzSac48czsf/Od/4UW/9XL++Z//icesOZ0iXeQbX/wGz7roMv72r97Rv6CEhCw3FFmbSErGsVQiTeqhMBbvLfOdWarVBkmkcVoyPb/Ql4/25u3Pupk2haBwHqstyjvaZQHh6NGj7Nm/D2st+w8f5bnPex5pVoSqcqnGnEmneePr384HrvgH3vTHf8ZLL38Jx44cRkvF05/19ODRL3JcmTDz5EsvBWDbltP54b33UI0jqtUEJTSUHZSiKIhPJT/+XIf3QWUSVFKdEu4uqFYbbN58Grt27UYKgarFsMKOjLF0si7eGiqVBmiFSiJMUSCwKGf4zle/gBCCqNni3PMfT6s5hJCepaUl6gNNokqVISFoNmts3nga27Zv5ejh3Qw1hvrWs37xSQ+SJAk7djwKHcUsph06SxmdxQXaSwt8/5a93H3nHbTTnENHprDWMjW/iLWWbqfDbcJRiTXNSsya1Ws5cuQYlUgwt5TivOGxjz6X/YcXWBy1bIgrHBqqMzExwe233UmlVuWH99zNM59xGUmScOWVVzLQavK0ix7HGWdsZc+ePSzlOWeeeSZPePyTGZ8Y5Y477uDG73yHbrfL+Lo1oSlCzoUXXshXv/pVNm7cGECqUjIzMxMUuSXPb2z1BNnSAtU4JHBJ6Zg6cYKhoSG6nRDOMD8/T7Va5ejCDJs2bWJxcZF6vUFRGOI4LougKZVKjWq9hrOi/ywoiqKvrusV83qpeDMzM8QKEh3R7XbpttuMr1lNmubUmi2W9h8jSSr/3dP2l3ZIFIXNg2JNLBfjel3Ak+2qy6livT/DsgV1/fq1CFUWoZSmkkQloiAnN8tJu0qHAo8T4KwhkRqHRSHQVHj55a8jqsUUZon3/9M78SZYw3ARFz3pBZx7znkYm/LBD7+bKGrw+7//RoqljBu//w3uuud7xNR44xvezPTcLO3FOT704XfjneAv3vZuOqlk2/aN3Pvj+3nXe9+BNIbnXvZ8zjr7PGytwpUf/Qhnn72Jr133ZYSo8PnPf5Naq8GhI8fBGj78b+/j5uuvCR1zHxgqeV7gZYUbbrqJr1x7Da/+nZexb9dhnvvMp5LlbZRM8BYKL6g0miwudfC+i3AWVUmQ5aJ/fnEB3ahRr7eYm+8QSWi3U+L6QEh6dCmx0ihviZI6wwMtjh+fYqA+jCm6ICwChXQReZGio8BC7WYpzWaT+flFHtx7N5vWb6UxUMWYrL/8qVQqnH/eOehIhoKjJDBXrA32TSHwTgb0BgrpAhqk1wQRQhAhMHh8T0WgVBmKYEP4g8wR3iPjhIaOccbSHBhElu+7txAODZYACA87I48TNnT7hWRkbJQ777qHNM9wUqGUoFFrMjLQolGvMdQawJbz0qSOwhVhYyYExllUHIFzyNyCcohIkzlDJAu0EjhjcS4UYwQCbyxSBaahszl5HuZxp1gKqa9OIn3JMzQGJf9PIPRT4xdlaCLyrIuQYYOepUt95bYxBv5f9t473rKqvvt/r7V2Of32O/dOH8rM0GEYkC6gIEoUMTFBfWIsSTSaZh4ToymmvJInMTHF6GNJYnlij4IIomhERHoZ2sA0pjHt9nbuKXvvVZ4/1j7nXoz+gv7yemJer/n+A1xO22evffZ3fb6fIgS2rbvhKd7rtkjiUiTCb0oTP0QMAkk7zYgC5UGEPATMOUdfeZjy6l5cIBifn2B0cCWtep1SpUqoIlLTJopLXPPK6/nG125ky0VXcPMXP4y6+lWMXvt2zj5pjoG+Cg9/9PdYfOoLXP2yV7PvsQ/QmryK0YvfSmViD5UgRh++kbDnYqYe/BxPffdTVEov5OG9u2gnXhUSS9+nSgdnbjyNQqR42W+8i9WrRrjqxRex+/F9nHziEI1mk8HeHib2PQFArVZj+93/imr2c2j3Uzil6OkbYMvWFyIvvLS7gd67cztT+/awmLTZvXcPWy+5kKdGR3jZL7yFHbt2/Ree6eP1o5S/p+egRIfM4vnoS4/JmXLgf56/HyJbYtSbfCjlumCFzYEZqciBmNy+SIZ4pEh5VYW1uNznExdhnUGpjopL5iCfyROvVbdn+X5GvwCEMd17knMGLSCyohte1bkH+sNdYj91/F5hSdponCPAp5yaQKCsQ0kQWMbHjtI/sBarfey4UiJnYqkc1DEIIhwZWepZfGtWr+TwoaO5ZzloI9DaoZT/Xlzm8uf5e7k0BmM9+946QWQhxUtWQy1wLgQ0wpLbVUjCMCDTFqcMInMY3USoMD8+h3MBxmYI6fLz6tmBHuzLuqCftRrnQpxIIZNIlSEo5ExxlzMLHSo/15lJufDsS9i16xDV3lWM6acwmfapuza3LTN+MUinfQhVR3JsUoJAee82FyBd0hE0EwhvWyRE7g1rFcZo73Wd22FJofJz51mVPtBJLQPTvI2Kt8Yw3lJFgnRLdmodEM45un6Zy6+TzroW4kfHMp43KKeUwmaGhfqcRy3TlLvu/h4iVggN377jTua2zNH63l1s2nwizWaTSqWCtI677riTfeOHSdIUnSXMFgLaVtOYzohrBVQUYtsJMgwpxt5zwX7fgYhlMlbhfNOnhUMCmbOIHKH2U91wiTFn/JLWWiOFoBjFmKSNEIJCFLGgTTfp1aR+kaWNBi7TpHFEHMcoIbClClExIhJFPvnRj3H5q36ef/jAh7jmRdfw4pedx2VXbeG17Tajfb2kznDxyks5NDbNrgNP47KUY9OT7Nm3n0FhGBw9kbUb1rHv4D6UC2imCSZa+mF796/9BkcW2oxPT/P5m29EKkX/fBPjPL3z9eeexvSXv8CWMCQoVrmsvw/jcm170kbZKYprVvPqF57NZS//OVKdoKIqj3z4I/z5hz4CxrK4MMtNX72J6159PbsPPsPufc/gYrwsJwq92WFqePubf5mPf+xT9I4O85EPfhDShInFOi+58Bp61tT4xCc+xe2lZecJxQ3XX4fE8JUvfZn+I5MUgwIL1hILL+scHhxlYmEWFflGQCdphyP8Y5fWqZ9cqsgzAYz3HQuVnwRok9HfW8s9jJY2jhJPo0dEuCBlIUu56NKLeP0vvZnPfeyfeM2b38RpmzbjkAwWSqw6YQ1nbz2P3t4aY8eOMLpi0L9PEHXXnzHGBxAUj4Ny/5lVCmOIBU5nPqBDeEZDHMeEkaRaLCKEw2Xek6VYjL2sUsUUCgWUkNTrdbLUkmUaozXVWo00875ocUF6sPnWm3ACTj/nIk4543QajQbSCWpxkVBFtNMW0xMVBgZXkTQa1Go1ojDGOYdJHa20RSO1tDJNEAqOThxiYmLCs4viIuWeUTLjU4LmGi1GV44wM99kdm6BoYEaxVLMXH2GK65+Mb09w6weqvG9u+9jw4kncf8DuwgySY9d5LHJveyYTPmZN7yGiakJhgYH2LtvP+vWrOWmm25icHQFr33Nz7Jn1y7azTrbn3icQ8cmOXJ0gqnJWR55ZBuXXnppzkwbpF73SamtVgt0yvbtT/O61/08n/nMv7B582bGp8ZYt24dUxOTzMxMeYbc3CyVakx7scH4+DgDAz04k7C4MEMcRpgkRSFp1GeplitMjk8wMjLC4cOHqFTKzC8sol1MITfGrpRrzE0voAJJuVzuMrKyLEM6KBYKBAKsCsBYtMk4uP8w69evRUUx4+PjRCqi1cy6IO7x+vHKGOPNehH5JPv7GXDPlYksJQ4uTaOVAqVCVq9eR6oTSmFMKKWXGUbe20PrDO0UqdXIHJyTgcrv99J7JSGoVQc4cmyK8y6+kIcfuZNOJL0QPljh1FPOplgb5PDEsyRJRrlSoRANMM8xHnhsG6HH6imVh4hrI9x37x3eJllItj+1i42nnI42jptv+QaNtkHKjIefeIIVG86gIhV//4GP8I7ffjNapAhRYL6Zccu3b2XN6vVMjU9x0y1fY7gou4EUCItxCudK9PT1c8qm85mcgg2bV3H3Q7s554wTwXlQJ3Xwjv/5Hv70L9/Hd26/l5M3DGKBP/7T97Fzx14+/emPct/d21i39iRWra/x6X/5JpdfdhYXXHIZL778MtZtOImnn9zOV2/+FwB+/e2/xdduvoks0TgV+qk6FikNRvoQAiEBJ5ivL/CGN7yR0aENhIHGKZGzBTwguGJkiNNO3YxUjkSnSBUiRG42rS04QSjCXMqSYowmjCIaWQYOZBShG00fzJCz9LRxOC0InPL+McJL4gO8nNkkBofx6WcGcJLMJgR5gpy03pjb5mw1hJcd9vb2ctmlF/geMrMkSUqznVKuFCkUYnQKmfOJvULm6XPGYrQmEH7Dp6Tw7qFSkmGJUUSxw5J6ma6S6Byg1nSm9NIPlq0iSZoUq0XQYK1GY5HOG/7Y4HjQw096ZXk/kCQJiIBYKkQc02g0CIKAyFriqMOS8Bv+NE2xGCqlsg99iWTO1DA+TM5aH26TEw2ETjnwzDb8FkyzeeO5uFDhwpB6vU5PteJZ3yqgf6ifF774GhamFrjgiley/bFt1Fas4vz4Th47PMfG868nEJLF4Zdw/lt+lnpzlvr4Me685Y8494KfwUSO+dlbKJz+dgZOmOPb33oA4zKCKCCKvQQcIThr06k8U19k3cmruOGaC5FRTNhKOGF9P0Ya/u1b3+N1N1xHsdLDww89xkuuvoTe9ev5yqNP0zYp1jrGDj7D/qeeYsVJ61i9ag0DAwOseNE1yKteRpa0KBcLBEGBVpaCdWw+7fT/4rN9vH7kcoEHGzDAc1PSrfWsIw+0PZcZtMQcykN/lpfQCEIPlrg8Od3kwUtSYxBIZ7p+jh7Ui7DOIZVXWrju9ZUb9guRM+CWGPcdNl7HYW75NYxTKK8qR+I5gUsqAOf3FsuAOt/vkL9eiHLw9O57WLvqJKq1AW9H4RRKhYBFmxZhUEQ6hyBjfnaG3t5e0sRSrRRRMuXbd9yGEJ4lNzM5QUecGyA80QBAe0zDSRBWIIXEYD0zH9EFqJKcMWalI3MOoQx33vlFJIogEkRhCWMzlPRsxkZrkRecdwWB7KPZbBPGKdiyZ4q5ID9+zy4zxgOSz2G4LYNgrQkRQtOxtOh8z5nWFOKQIIy5577vERYLXHPu+ezeu5MwDPM1tTTMNR2gVkqMyZBIpIrQJkFIBybrfkey24+SJ/r6pHkVuG4AVWeosrQm3b/razt/99YDNk8Dtt3jW2J8uu7zl/6+ZPH1/b3y8/WTfd6g3K3fvJ3Uab9o/ZnBqYAoKlGuFalWy/T1DHL+lrWsGFxFmrUZ6uth/7PjnHLGmRyeGMMKjbfaVwxvWsOtX/g6ER7wQwW5j5nFCYF0PooW6MoFJKCtpZX4fG3t/OSqoJZkbXEc+xOYLVEXfTy3T9lUy348kty7zGDRWJ/M4ox/TRlAlkGgyAQ8+sTjTM1PsW5oJTPPHqV+7BAz0y22bNnCw997jIWpWV79xlcTOk09ycAlvOyVV3PgYweYac5zdG4OqWJm05SJvTvYfXg/WqdIZwljrw//xEc+6WV3tDn0zEH+7h8+iAsA4QgG1iKsNxz+0hPbeftvvYtn776TqKePZmJRcQFrUrR2uEBSFpIvP/AE0sHLr3sFDz/2JGNjRznl1DPYeta57N6xkze99hcQVnDySZv533//fi685IVYk6CCAGMcL7z0cr76la8wsm4Vj257jPO3bvUMsNkWr7vhWlavWcEbfvoV/MUHP8KXb/2yn2RLwYkb1nH3nXeQGjg0dgRbG6BUCJEywApY1BnWwsziLEfzDT7SdS/p51wgNs/L7vzzh5QLHYiESC35uKVaU1KZ//6CgELs8nTIDKR/H4sH8IRwJEmKNI7MtBBAO23jlGP73t0IF/CJv/kgd+99hN//g/ey5byzMYteO79i5QoEiquvvILhVaOAZtWqkdyI+3j9Z5YzFgSUy2UyNLVaDecc4+PjFAtRV8bYYfPEcYyxlka7SagC4tinpkpF7kPlgzwcBmM83TuOC5RKRe77t1t49O5vEZcrvOilLyPqrWICSawjNm3axIHdjhmtPXOvlXj2RxSQtJsUZYFUGw6PH6NnYJB6O6XVaLPYzAgCx/j0HHGxilKKY0fHOHz4MOeedzrCCp9WetDRO7AKawSfufVeeosRd3z3Pk7ddALH9u1n5YqIcq2X+T17abYW8qm8NxxNs4SLLn4BcRwzduwAjz/xEL/+1rfwuc99gqmFGUrFVQRBjYGBAXbv3k0YhgwM9BPHEcVikXvvvZe1K1dSr9e55557OOmkk5idnWVkZIRyucz5LzuPr9x4I0EoKRYLzM5NsGrFCM7lzMJiyctd221KpRJJ0vS+e0JQq9VYXFykUChQrVap15tdb55Wq0Wj0eh68XRkqZVKhVbLS9oaC3XiOCQIvAwySy2Fgk9f1cpvqIb7VpCm/re91Wr9Vy/Z/9YlrcIpsE7DMl+Nzk/08gZkeRDEErPJ+4oNDvZRrITodoaSMWEYUCLGOUuqJO12QiBVd2ot8UEMmcuQTiKdoNma51vfuZnHtz/E2PhB3/PrfKoJPPTQfSSNNgfHniFQnk3/nW99g56Vw9Ri76yClNx11104YfnaN79IHBQJcIyNHWbF6rW847c/yC/98uvZveseimFET38ft3zzNl54+SW88S1vpj5/hFIUY4Vg354dXPuil/DGt72Fj3/8kwx/qAeZNbo+e8JBQSnaImJsGi544UbWn3gZN/zMa/mL977V++VJP+XOCHnzL/8szx5JuPeB7Zz3gncyNfUw7/2j36EoRnnw13+HS6/YQjuFd737f/G+//VuQgnNRsonPvGPHDo2TdJq87d//0+84zd+kY98+KOsHh3u9snWQ6soZwhcinUKJQrUm4vUZxf4u794P7X+GIdEOYfBIKRh9cpVvOoVr6ReXwApkUGAtoDzLJtQKT9BlxprvGedkiGZ0cjctNokGptLaE1mCMPQhzgolzf3ElUskOkmwvkkSxlbn46eWVQgENISaolQklAoLJ6F54TurkM/zPXeOkIFSCyFQBEWfCCEkhEagxPWs/ScAwxxFNFKBKoQYJwGpwkKEZnxrASJoxg7/145OJ1YL5u1xhLJwBudS4nB4EJF0s5DKoQmcIHfaghJarL/Nxfu8fqxy2BZnJ/zSe+Ay1KyVhuVD+mzzKfuCeHyND6/phH+/tNZi95CQYFJCAoFTJYSRF7KuufuB5FRkXVrTkFJx9j0fvqG1hOXi8TFiMWFRXp6evjml77Mys0bOPWUMxhdO0JlIOb+O27hjs//I9Fb38LWV11MfwE++t7rePaeP+DqS66i1ruag+3NXP2Ln2RwdD1pmhInmolDT3Hnd+5DBI5QhQxVeti0cSOlcpkkS7n2F3+dj370L3FOE5V6cFZjrSYOYoqx4vWv+xluuuUufuraCzh8bI6xyQm2P/o0MzMzxJWSH8KgcCbj2M49TO3YjSuWKff1cd6FF1Gt9HTv7eVCMd97HbeX+O9SzjikFCjl0FZ7sMsphND4cIWgy5pzzuSsuWAZaKF+CAhiPdgmOqCFBCe7MlXhHNKJHOjzcnKlwFmdD5YMDoGVCtHx+ZIKBz+gNxF57/KD+hW6/+4hGD8wkrlx3NTM0+g0y9lqvgcqFGKSJEEhydKUK7eezF0P7sQBMgjze5QlCkOm9j9MHCoOzS16jEJrTt+8kaee3oVzECgoqIBAQTsDZzMKkUQbS6A6aj+HsxBISb2tQBjiIlSEJNWWCEjysIyR/j6cUByYnM8tNTS1OGI68/soY+fQxpHajgdeyP0PfAuBY7C3yknrVjI2OcHBYwtdOae1jt7eHnp7BonjEsVaH1E0iBMK4Qze6LcDrHUAK7+/RubKpkKVxWYTnO8R9u7ZRxjXKBYEzbSJbbcQuuXJUtrfy4U1KFXw6dZZBi5ESIMRGmGdl+5qkweHdEDXfI05Sag8diSlRGCXrQuX96id9ZgPTfJ1LGTn/y17vW51BtAdcE4hpWa5jdxz1rn4T/aUm1uY677ocsM7iaKh2xR1zIMP3s/KVUM8c3A/wjrmp2bYevY5nLPxDAaocOv37iBrjmOSFtff8DPc+M/3Ilf4jxCGHq3tbKhFLmcEuqEMHfQyVAFp7v3VfQ6CQCqs9WCdT0DxKSL+5hlALn9FKpzROCHzaGWFMDml03odswkEBRHgpGDbQw8gMDy9eycrBtfy1Mw0zWOTfPxD72N1rYezVr8Yi2O+0eDJXTv5xw99mHRxnsbiIr0rVzAz1yAuD5Nmi55aaQ263aDa14tutunp6WFmsYkVbY7OznLoyLM89eTTOOl/RISTjAcGoUCgKZ28kawU0hQO004Iq72EUURYHUYEAfPz85S2voDCZ75Iu9XipltuQ4QBQsOevfu5+OJLeelVL2Lnnp1IPc+efbu46NJLcNa/hzGGUlRhanyOQMe8882/wop39+OcIQr8VEJKiUOAdUyOH+qeH2E0upUQhQotHDtyo0UlFFGkkE4Sy4BF69g1tZc4zGh8n89K90e7A8QZ/e+SVr+/lFF5nLPCOUUQRCghyFJ/PFmWkWU+ejmzxlNRNaQuIWkmWIkHafOEHeEkqTX5OAKEszRNGxtqtDCUhms8cN99/PnH/5zffMs7OW3oJE647FT+9B1/yWCxj82nb+ass87g2isvfr6X2PH6DyqKg1xCYpAKAqdQEkZHRji4/1ka7QalKOzSq7shATojkCFKSc9gDEKajbbf7IkAIW0O1hfyREXlpUdxSFgq0GwtcNvN/wpWMLRqlHPOu5zBwSH2Pu2ltHNzc5RLNYIAktSSpBYVWZ49eoTh4WH27jvE4OAgUZyhFhfJsJRKJZyznHnaRhYWFhjo76FerzO8YpBde/ayevUa7rzrIdaMDHPROetZs2YNp55+KrfecjsbTlzPJ//5i1SigJlUc8455/Dlm27myOFxNpx4EkePHmX8yFEW5qfpLcWcdvJGbr31NpIW/Nbb3sX49DgPPvwYaZoyOjpKlmUc3LuPLMuwVtNfqxIEARMTE6xdu5Z6e5FirUIhLHLs8BgLMwvEcYF169aye+fTrF4zQpa1KJfLtBptij29zM7OIpSkWC4RFeKu4XWWZbRaLYSQjI0fplQseqBVeV9IKQTlSoFCocD09DTgr98gCHwUvLH09vbTaiY4lxGEIb39Rawz2ERTLZZAClKdeVZDdFwu9uNWGIb+foXLLWSWZKvfL2FdPi3v/G2JOQfFYpkNJ6zhwJ5j2MyAEIj8/GitCVXg2ZBSev+03MLCT7kd1lnqySzSSA49O+GB3lKJQhxQKBQw1rJr+3c5sdpHb2OMkZHVLGrH5NguphePsn79+txvzHHgwJNonbF5w2qEcAibMT15kG/edowVvRHf+Mq/csYppyARtBsLCOO4547bGKoKVlSGCYIVtDLDxz7811gLNrO87Y03MNrTi7UVUpMggwidaKw2tOZmue7qS0l1QpC0+OoXP86tX/jffiMiwWlFMQrYuPYMjBZYEXHi6kFO3nA+0kk2nbKe17361WijcEoRRQU++/EvUSsqhnsHWDN6OtVKP61Wi2q1wp+9969YvXIDkswn20rvnSPwEkqRp4i3kya6nfH3f/O3/OF7fhcVQKY1xliEssSB5MVXXIZuN7tG28JBZjOUCAiJsNZgjcGZDGskzjqs9EBZx491eXpvEPhAHSF8L4DzwFwQSBTKp547gTMC5yQi8qlmLvcwssYPT3U79cm4+W+LEA6h/GuHMsRJhwvBaotzKXHkE6Gd9BYagYo86Ge9OiAqRliMty0y3kdGKkNYCDGuiXWZ7yUDvF9toJbsVQQIci+5MEYbTeYM0ua+NNKRWR8o8qMGWB2v//clhGBhfpaevl4iqvk1mpE6P/Cr9tRyxo3L5asdPyxoG+9rmhndJQgoJbt+qFniB386maN/eIS9+x9hdM1JZGln8yYhlPStWIFut+gbHCRwikK5wvjEBEpotlxwOc/u3svkzoPcs+NWNg1pXvDT70E0NTMrN1LYcDLrleTofbegp77FxExGMnEz/3LnCRB6v8pGo8EJp65haGSI4eGVULG0d/4dQdJGFCo0m02GhkZpL85z/7ZtXHreeQjV5tWvuBik4LqXXEBrfpZdB+f89e8c1kiCIMytCASpNpjFOYxucOTgAUbXrSEOI4qlCk76IL0g+BFszY/Xf2k54XDCYXMPOb9PyhOmZcfTbck/y9nOXq7jxfXvAyD843PfLvCyQ7FEqMEFIBSCDlMNhPRSVoRPEu+Cd4Y8cMJ15bGdHuS577VccWe7nnDWGaRY8iIWwjPTOmBia6EB5HJF5SGaRtsHF7gwIzHw0M6jHpdyis2rBtg7PUtrMSVLDSdv7CXTCfsmDeAIN6plAAAgAElEQVSTQAfKjjAMaaYZxgoqoUYJgRSOOGdkozwkFHiyHErJ/Bw4+nsqJEnTW3LlQ8eW8UDmsdlFLj51iGfHM7SDgoKVwyHjBxv+eJVAW7h4Yy8P7Z0ls54hfPWZI3z36UnufWwXQigKGCplRTs1tBzMzC0wNTdPtSBJTYHzLniJtwLK9+hLwZx58mwOzApnQSgWFhZwUiOcZxM/8MBDDPUPoCRc+7IX8e07H6e+MImwCYv1Ntqkvi8wfl2oMEKnCdbI3PMv8++FA+OZ9tIB1uW+uqkXCueKOSe8bHgJTKN7zr002wOfAAL5HC+5TnWsNJbbtnT8DDvpvMsf69/gP9lTzmGWgMdllD0ExGFIo96k2lPiE5/+LEmzxbvf+262bjqd4UoPA7VeLjjnFDasP4U/+PAfUqv1cNnFV/KlL9xPoehNuTvpLeTmyNplCOcvJiV9A2d9DjEWR+QAqTD4SPIokBSLRWQosZmFQNFuN/0FlWkskORsC6Mz2pnOF83SRWid8ylakadbxrUy9fk5nM1wVnP0wAHWrx+l0dzFypF+Jo8do7dc5MHHnmb/ob0sLCwwdvgA2/btYmJ+lrWDw4yUaxzavh1T6SFJ2rg0BRlAqhkJFPutYWpqisz4hvHGm27m0JHDTE1NoHIfFiEUoQAjNNZkrB0dZmF6lqKSFEKHti2MBtNsMNOy/Pan/w/1v/0QGZZisYySks2nnEK5WKZaq3Dnt77Nx/72r7j1a7cxsVhjoNbP/n3PMDMzQ1ioceHWC/ipCy/mhVdcQBQE1FstpBKofLkIB8gOhVUxNjaxhCE7ye7tTzE3OYmQEfcdXWC9rBIYQxBKjIQ0WaQQCPYee5YX/+zrcUHw3DXVqQ4z7j8A5DofKkmSPLlGEEaRn+wjMXYprKE7qcmlb8ZoWmmCcNBoNcBY2ibBAalpeY+yKCLL/POSVssD0c0mDkmjOY9wkt5aH6bdZmxinCtfehGf/fqX+cpXb+X3fvNXn+8ldrz+g1pu5m+txVhLHFXZtPFUduzYQbFYAGtyj7IlxlyWZQRxkampiTxwwG8OjfWAschfs5PuGQSe1ZVlHtjpABClYgGxuMh3b/0sQamPnt4VOAdxHFMsVHG2STvxsv0jx46xes16dObo6emhWCx2GWFSSqrlGkJKxsYmKJfLhHGRyclJVo6u5ent+3n44Ye45IIt1OemGOzr59n9B3hm3zOcsGETUSz4s7/+Hd71zvcxMtLPbbfdxtjYmAcKdz1No9GgUqmB0ywuZgwM9WNtyktffi2f/vxnGRlZyebNp1CpVT0bwDl6ymW+9rWvsXHjSSRJwsTEBH19fRw5coQ09b5TlHUX4HbOsX//ftI07X5Xs7OzVEolH0kOXaZatVr1iZMuBVFgfn6enp4eksQHvBSLxW4wxJEjB1m1ag3G+N/1LMvy46kwPzNLKYppNptkqUEqTalUIstcN2xoanKauFDh8NgEhchPMY/Xj1eZSVFC4lMScr+Wju/GsoSz70+0eo6ZsvG9QxhGXHXVi/n4vk9jM5AiAOUoFCQSS7ORIHMmnumAOYHCaksgJO0sxQkIpAd9ZBjghKNSKWOyBIWjEggGpUVFRar9QzwzdozRFSPUeofIckZsq9XCZj74JQoBq0mNRsoCic66nyEuFXPWiyKQFosEmyCtZ4MbOrJev1HAQLEUkea/UcZ4rxdtWszOT/DUU4+jhCNUbZxNMTiiUPlBohO+HwkUN3/1JracvYmNG0/lS5/9Is4lCCk5cugA73rHu0FEKJtRKxiMbVKIAoKqJaRNXJEYu8DQQAWbJEgVQejNilNj/L1MBSRGMzM1w0BtiHu/ex8XXXAufSNFklYbpQTWevnqddddRxhHPjU08JsqZUMUEcZajNM459kQnRg6YSVCuRys9N56LgOnTHd9gGchaOuQOFCSzDocCiesT0Z3GpTEaJdf614mFcsAaywyDNHGYtLcM0eGWO0IbYSUoF0utbGKMPCsnEwnnnUpFc5a0lQjlcMFAqsTLLkFCgIX5HYgykueXOab9cwY73eNw+UJwZmzKNeR2Jj8GPPXMgpjMlJrEVISmOOg3E98CUuhVAQc01NjjIysREQRzmi0lizM1alUKqQ6y0OFQGvvI1wq+XT4KIpI24n3tnZ+491qJajAt7VZa45atZdaZYhKsYesRxNgEDYmEII169ZyxjlbuO3GGyn1lHnk7u+y6YyzqPb3cebZ5zE3McX2h77O6edfS3z+T9Pa9jme2fEt7F1tXDbD+edfyYlX/Tl7ny6y4uLz+J3fepzDh49xxroh5huaJKjS29vPKWds4Rs3/Qk/9YvvQwxfw6XB49x3/10M9fTxuU99jlVrV3PV5S/gppvv4OxTT+Hkk9dgUn//nz70BGPjU5ioik5NNxTI+1F5MEMpCdrx5MP3oeKIkZERikJTKpS7RIzj9d+jOsCEv8dLf+8TdE3yO0DY0uPVkmRPGMBirWe8edaXfk6QAkKDk3nQgxcl+vuRXdZn+Id2gou8XHXJO67jebcUBrfkAebyx3Q+oRMgc69cpZY8xZ5zrIAzBiedD1gSFsn3sf2ky6WvhsX6IirwjD1PRpE44ZDOkVmHCgqesY7ACYex1mMdQvh7SBAhnLdS8J8DlAUZeE98ScfzDByOhXqdSjHAapsDo95LzebUu7mGASWRFox1aLF8r50PEkQBscz7LLG6y2D1QJofsAqlUJnBCDxz0TlC6a1lBEuBbF55lveD1mJ0RhCCJKK/v4fpmXFkDtQlie+Vjo6PEQQBt3/9uzRaTWw7ZXTVML/7+7/CH/zeu4EAa+km1ysV5kFUDkGepC4kzpru5+js2yAXn7ol/8KOjYAXfS5hA/4z010z1vrj/0Hy1uV4RWf9LK1/85z/3wGln089f1DuB4AmUgRIpWi1GhRUkWPHjnlk2lm++JnPc0dvP6tHV3PmaZt5/cuv5677H6ZUjimFIaW4ghF+mlSp1ZivL3Bwz15sllJfWCDNTR6dkoyOjnLSSScjbIACpBHElRKFYsAze/ZxcPdOSrkJ+Pz8HI1GE4L8QrEOK4FAUa4UMUKSJW2wlkAUiOOYck8/xUqZ3r4KWdKmOTXHzPwC9bl5StUSp5x6Gu16wtoNGwkL83z+ts9yWSlkMW0zPTXH/sOHmZ6dpjkzxdzMFIU4pq9YYLI+wz3bHmBubgGJQmjH4MgIqRUkjUWGg4CjkSIQVeYb8xSCkCeeeJJUZEir/WUhBNom1IpVAmn589e/kdF0lrDe4MR161l1zkU8ue0h0rExZlt13vbPnyfVWb6ILCaKOGHDRsaOHcNYx1VXvZiyO4A2Ke//y7/kLW99B43xJhuHN/HWd/8CoyeupKdQoBAHPtEMKITSMxuc7E4VjM1oNptEUUyj0aJ7iQvLwQNH2XTyBh7ffYgFk2CcpRQEDFWq7JMTPrVH+IhkZ61no2F+4Bp73mUdLvW+YFaQG8jHKKd86pvw/gR+M5FTcSE3G88QDtpZmqe+pFjhSBPvbTjQ38f00RmsNrjMYJ1jbnIOJy2NrI1zjplklk98+MOA5XNf/ypBnsp3vP7zylqN1h6ISXVGtVrF6Yx6s0G1WvTrp+sXYbteZCKMmJuZ9olHAnwgulkG2iUI4Rtn5xxRGCOcoxiXMJm/+WutkYEis440yQiKmpnJI0gVU6j04KQjNSmZcaS6TbFaZcXoCIVCgbVrTiDLMvYf2IvTmvlmg1Y7od3SlHqqaK2Zn5+lWi6ze8dOtm45m2tecjaHxxIOHTrE3d+9m4mJCayAak8/5UKZHTsf47Wvu5Ib//UO9uzeS63Wy4F9z/iwhhUrCJRj08mbKCofmuCE5JFHHmVkZCWDg4MszC4w2DvMnh27uOSSS3jkkYc4+6xzcBLq84tkWUKxGFOIQmqVMsVikYMHDzI0NESr1SAIFFNTs4yuGKDVTOgbHWVycpJy0dJu+9Rbk2W0m00KhQKkmmIt9t+982a0xdgHdrTbbUBSqRRot9teAlsuU6n4iX2AIBCSWtU38kEc0WzOoJxCyogocrTbXhIQFGLSZpv5xiKlQpFisfhfuGL/e5d0YVeWJ0WANSZnyzuc8Mxz4xxK5v5eyPyaWmqIpPKNuHOODSeexJoTN7BvxwEgxWqHUoFPxyxEWOETeB14+WPuD5O5FCEtUkcIJ725tMqNeJ1GqBCtjR/EKYeOImQhRsWBN4Qm9gmnLiSwDh1YogjIHGHke4TUZlTDSp7yGmIFlEp+IyFChW6nOFGmKGOM1AgVoHWKcgZMhLUenFc6wQiHzDelVvpGrRDtptluee9Sa/0UV/nBQiEuUs9CvnPvNt50w2t4+zvexJnnX8HPvenXePTR7zC/kHH+Befwzt/87VzyEaCF9MEDFoQMsKJFJBTCGowViEBgczmZcYn33XGCQlyjVa8zMDDMxedexsWXnE+lL6TdMri8qQyk5aUvuZbe3l6cAmcFQufpjFqS5NIkawVhJNGkGONI2xlxWMQZDxiK0IcciEyQZJJAegWDtJFPbjMWG0PWzpAyH5yZEOMyDAaJIMusD5bQBiS0TeptRoz33UEqrLE+cTUIMFajNQgl8rXhhy06y5t27dAuQ6qIgMB757kMrfIwEyQ2CBAqReEITEJChnMax7LNm/UsKVwOzArpZbNWIZ3DBd43TziNUdqn/ZoUx3H56k96OefQ7YRCXGVwsEaaprTSjFKlSjEIcM5iTIZOE0IlscJvhpVSJEmra6PTCYboDPz8kEJitGX86F4WyyVGRk7kqace4rRTtjIzvcDgcBFt4NCefUwdmeD6n3sNTz/9FMf272f7E4/z8uuvpxiXuOyalzJzZBOP3HM77flDXL0p5fJf+Dizs+OYxgLNoMpUIgh7V+MaDZKFWUqhY/uBMc5esxEbLNLbW6DcW+GSV/8qtaHN3P7RK1g7fB63fX0PfT01XvuGV2MyTwQ4b8tprBwdBsDqFCMk01NTNNuLhFHZH7+UuNwMX0iDkgFaO0zuAblr+xP09fXRbscUCqXnsGiP109+Le3PBM6GCOEDFpwV/DC/rC4Ikt8Pl7OSlgNyLm/OheiIo/I0b5eznoT1IQbKIkxI1+RCePsD54y3R8qZZEop0lR3h70dgEy4JcLScpJG5/p0/Ps9qMDm1g+ecZ4ofy/C5Jwe562XYgkXnrGBJw+MMzXfZHJ6Bp3551oBUzN1+mo9DJYlUgoWE8PeA5MUJLzorFEKlSrfeWQ3zuWOTdbmliE5EaarSnAEIfzsheswAr736DgppnsOrrtgJVkr45GnJhifL5NmOcsQaDQTNvQWSBPDeCujJAL2PzOdM8k8aPTwjimcgUogOG/LWTy07XHAoa2jFAWUjWEh8QCoT5d1SOFw2uLln4qO15wvLwY2zjI5OemHV9Yz1ITQ3u8t8NLU8YkjgCSKIp45uJc/+oN38/u//w6UGeSP/+wPcaaNyz3jrdN0LP2CHIxNcV1QUjiHkb4v9edb++/BKg/GOr92wOSDhByAsx3w7Id7wC0HZTtYC2g6TMwOIC1k7oP4PKWr8COAcqsGVzDQX6O/p5/+/kEajRbbd+5gYnYaGQS0mgveRA+LVZLFZkoUtpmYmeXw0aM00jazrQXm5hZYf9bJJA1Pcnzk3gdopQ2E87COCn3Er1+Pfoo6dugoh/Ye6Hgz8oqXX88j929jYmq8690wrxpoaxEBFGt9APRVvW/S3PQU0jhUXMZlWR5fr4iigLCgCIMCgQuJGtCjejGVIqN969m0cSPr147iAjhz4yY2bVjFbZN3UVQRR/Yc5Nja9ezdsYvtTzzCzPQ4yUKdrNGgTwiCvgHGpmY886YQe4q3NMzMzGAQCGs4f+uLePCbX6fVnIfAYk3ijaeXg7JSoYyg2qjjrGI4SKmKCo3D+6jjKJxbYO0FL+CZb36TzDoS8VzjxazR4OknHvWLFPiXT/wTX/vS51CBxbkGH/3An1IMIhyGzHlvgEBZhIInD+whCAIef/JJJicnmZuZYXxsgqOHjzE9PYu2hk9+9IPM1ZdizQUhU3Pj/PzWa/jK7XcRKUkcSSIbUAgUhUARq5DEtMkFAAQS9DJ0WqDytJbnv5BDAWm7wdCKldRKZdomwdqMhWaLo88eRKdtkiwjTVMS6x12nPMeOFPJFAGCxfkFjLPMLdZBLoWDBAXvtWNxPuhESCYnxtHKcuMXbgRp2PHsHm88KXxEuBHg7A+/qI/Xj1c+/dl1p6yFQsHToTt/EyafwCTdDVQnNdra1HuaNeso5Y3FhdQoXPd14zjGaMvU5ARhGPq0zziiUqlAHpvemcKVSiUvgUIzMzsB5FPwTDM8NEozSzASDh06RKlUoq+vjyQO6e3vY+eu3axYsQKr/DocHBymr6+Pk9av4oxzTufxx3dx/4MPo5SiZ2CIDSdvYmL8KIuLi9z5b3djraNciTjt9E2MHZ1mfHySYrHI4OAg1WqZMHSMrhwiXaxTX2h25TO9vb05sy3l4YcfZvXqtTz5xA5OPfVUpqen+c5dd1KKYqpVf7wdZtzk5CRxHHPaaafx5BOPEYYBw8PDVCp+GDIzM8PQ0BCSDG09a7VSqZAkCa3WIhGSLJPdDUux6JlIhUKBWq1Gu+2DWnp6emi329RqNe/doxShVNTr3ksuTVOqVUW5XM6HMPN5KqtvCMBvgKamphgdGDouX/3/UcsniNZ1vLtyr5fcjxH8b7gUAidsHspgfRfutSZdgK5SKnL9T7+Ev/qzDyBtsTutLRQDMuE9ZdvtNpnRJImPrZd4+Vegqrzmf7yFnmqRheYkn/rkR0h0i6aLeOsv/zr7Dx1hbn6cx+76Lr/wll/lmYOHOGPNidxzz/d42RWnM1OfA5Hx5NOPcOaZWwgLikd2PUQkBEoWKMYlKIS+iXeaIBBEMqYclVCBIBMOqUKkUl6WSoYKBGEQkuJlPZnTKAKkXfKrscLyjdtvZXighLOJH87l0/NOGeMIVcBrb7iBA3v28bvveCfNdkShMsJXb/wOf/onf8GZp67ryj9lnthWqlRpNFv55N77PwmBB+OEyo2uIQ78tWayhLnmEZoLGSefvJY77vgKxXKMtRprJWHgWWbXvvQlrFqxGmPbWO3AkiexWf+5ncXmQVpZW6CcxNiMIJQkWcvLj5XApl7SoTONiAzGgDV+Y6Zd5tN4M5AixJgU5/BSE2FxNk/VNbns1UpS3UlK81Ylxhi0yXxog5M0FueJw9Cz7oxvlJ1odzf/QuABRSd9E6802njwIFQ+HMhajZRenQEGbdrIwDNDraNribBcwt0Z9kmZJ/0JgbEW1WHFCYVwSc5WOA5C/KSXzTQy8EPAZn2BYrFItdqL0YbG3BxB7L1rS6USabuNCkOUCnGCrm9cq+XBuXrds+qiKEIISauVUSxYVq07lYXZCbIkZXhgJfWFGQaGBwkjhUktCwuLNJuL3Pr5z1LsG+Al17+S+mKLe++5E6VCNm46lZnxAn19q9C2wA51EVeUUpr3v585DRvO/BWChcfZf9/H+auvPsxLr30rX7jpZqKSoHdVHxetP5e1J67j9n/9a6R+hnVv28rqc/+YXeMTpOYZ1p24mW1P7OYFp51Ekhp2HzjMtsd3cv21V2IyiwglqXVY4y2BPDvYy7qdlWAVVnimkzEKYxOaMxNMTUwCvh8rl8v5nvF4/Xco4TxbCycRwtuRIBxyGSPuuamqy5hEud3RDyNeLGfYOadzG3GBEqCdl3SqwLcUjgwpolzCKZcBfnkKqtE5OKe6mIT3lrcI5Ykmyxn+TngQJxA+GMI58vv0cz3njABySavM+YGGjjzRM8kKBUEoM7QUzDZ9UqkVglAojk4v0Fpo8oZrzmfHsRke274fXEa1oCgUYyLnGXUIiXT4+4nw1lydBFZrQUReH5k5UNrhk1r8fl8pgTACZwU2kLSSJoXAs9+Ns7SamQeqnMYKaGFoWQM5rWZ1tZemaeOyFOWgJ5xBCn+vC6xlVV/MppUrqGdwz9NHvM1Pl7nXGTgtYxx6GhXW5UnryqJ1jrzmLZASEpcl3e9aBgqTaJQISFspf/zevyKSIaefcSaPb3uETLfo7MW8pdnS+6kcrjVOgwCrTS6dNV7g6gQ2B+e8DZfwfUlHAWJBC+M/k15iXNquLFt4Jt1zQBoA2QWFrV1KZgXvo++l28/PP/N5g3JbzjyHNKkzMTnNnj17iKKIY+PHUFFM1mxis9S/XA6cjc1MMT07w9jYGIv1WR7a/Tjt9hym3eaKK66goDL+6R/ex8x8ypHpCXp6qmRJ2qU/O+cIA0EoA+8NFAbEQegvbgvt1/+8Z+XlkcTI3DfOLh34cz1uBKGUlEslTJbinCMQsnvxabF08pQFHTisU2SZoVSI6QkDjBEcmxzn0ksvoq9viCPPHOH+O++kMlCmkSl2TswxWZ/m5KERpufrOCWRUYhut3nja3+OT33msxidglAoGfKB227zJuWyjRGSKDeIzgfKy043RAqskISRQKSKQrGAzjKs0ggXkAL7Z+YR2lIuVlhsLUJ3U9WhUnr50Q1vfBv12Xl/obuMQEgQPmDD4lBxCZdqb4gM3kDT+mb27S+6moGVGS/4xf/B+KFZkqxNmi2BT845MuEIjF+Y5209m2Rqjkq1gJyp502sf6wQXu7ixNJ/8x9QPH9QUgqAcJKJiQkWFxdZ2deHT4jp+BwteSBY69NeZR5xjwDdSjHS4ozfXDnnILNdb5ze3kHGGEegmZqbBGWZnZsHHDu27fQya7nkWdBhOAr5/C7C4/X8SinV3RAlWUpcLDK0coRDhw7lHoEOJWVXhiqElxZNTE0yMDBAsVzxpsRxiNaactlPeKUMujdgKSVRKSAzKf29AzQaDXxCZEohCBHWEUUF4rBAluYMFCuoxJEHlxy0mhk4ycz4NNVqFV3IePSxR3DOsW79aubn53E2RGvL1PQsp512GgcOHOC6V7yKvft28/73/wNXXvliLrr4Ah5+6DEmxqbZtfNpLr/8hRwbO0hvXwlJzOLiIrPTU2w+aTXt3ENNm5TVq1axbtUQcRTRXGhy8MhR+vv7UWFEHIdUq/64S+VeZmYnUErxla9s44wzzuCEE05EmIyxsaNkaUqmfRBDoSCJY8W2bfdTiD3ro1au+YQ4IXFkJK06zhj6+vppJw0QXobWai6CCqn0lsAZCrGknftI+iCIhFqtSrPZJGm0Wb9+Pc1Gk3JPjZmZGQrlSg6aQpYZZmdnkVGItY5mfZ4gkF2pcbVUxmSaWqGUS4uOb4J/3Or4sSz3zlAywBiDQiBy03sjltLJpApzjy+Rt0d2SbIoBKtWj3LxpS/ggbu24QBj8qS0/BrshD11PWasIwgUtcoQGzeeSVgIueuer3umlHQIV2BoaB2PPrmXxChaxGw4ZSuiMkyaNWg2b2dqYY7zL7gYa9pkWcLVL7qGXXuf4qu37kMJ2LDuFM7e+gKueulVzMzMcMd3vs7Xvv5FQhfyll/6DRqthC0XbmVkdJRXv+panx6rJNYIfvd3fp+Va9YyNzfDihUr+LW3vZVyoYjO5RH1xgKDK3v9MEeF3e9CGYWxmmq1StZsUzKW+Wd30RdLQhdSKRmcPMofv+e3sEbwxLZxpAxQKswZhopKrcpis+F7FhUinPXG1MtS6iWQ6cx701hJqdLDO9/xdv7kj36PvoFCPun2DaMTmq3nnctAX79nAUYKkxqQMrd78J4/voH1zS3CIKyXCQWhD63wG3SHTj2QZ3HYLPNebfnGzAqfQGeMxmUSY9s5iAk67cy2/aYrcz5hVaAw2odQWKWQRmKspqlTYiVRoSTRCcbm02pHVwbvjEMbjQp8Uq9nZGpvw2F1vtGU3X5BiAxMi8xphBYo4Zv3jqS+04dIPAPf4kh0RmACVOBBQ4fFWp/KanG5xOY4e/4nvZSQWKFRUYjRKTqNaC42KJSKREGIFJIgCJiv1ymVSjnTJs1Bc3+farVaeb8S5+bkhkJRIZQgFSHFco258WM0Wk0qlRJaJ0QuIGktEgUxlUqJUqXI4cNHKc3VuflT/4dyTy+bt27hxA0ns1hvsvWCKzi4dw/P7HmIHQ9/iyP3OG54z/fod21cqHjo7lu5f2eN0y64gYdu/yT/8z1/xkf+5v1sWjfI8ECJ8uhKtl77G/StXs8tf38lcTFgbGYUnOPBBx8E4LQT1vHE9r2srBVZsXk9s9OTFFRIfWGRdtuSSkdgdPc3P8iliR44ydMUnUHljNVCpJiYnPUM1sz+f2W3Ha+fsFqS4HVkoxKByodB4gc8dknOKoTwszqWpIAdJr2z6jnPdy63txAOhA8JMC7AaS+R9klKXvrqhyNgrUEI73feAQU7a7Lzmy7xyhkZdoIhc+DEdkIel36fXR4+4b3TcywykEhrkKg8wCEPpAKyFKQyHJhMGasblBOMDg9xbGKcMJC8dUORs04d5Mo3vYb1r3gv9YOPUFt7Fq0d3+aSV76Zx/ZN5+9X8ENO6QMirIBUGwLneVjOgRLgpOSmB54FHL1FLxeXQGYstzx4mPWjw6RGsWXjeq697v+y9+Zxml1lve93rbWnd6ipq7q6ekinh3QnnaQzkIHEMCSQRBJmBBUBQRGZVeB45aigoucIcgVBD2E6igoC3qgoYAaGhMwDGTqdntOd7vRQVd01v9Me1nD/WPt9qzpwrhH9XOTz6eefylD1Dnuvvfezfs9v+AUeuP8RvnXL17ho3SrOu/o6lg1K/v6L/8iJmRbzjSapi2nrjJnmApUAMg2FM7Tz2B9fBGFpvePPqySQUK32+X2Wzstz407q94zx/t/OeJ93bTq+V3SLa8aUGIzEJ59T+HNsVYBwFo3AqZzt2x7if/3VDbzrl94KzqKtQ5fD4h6otuS9nXMECLQQiNIHf9Fj0C7KUzkZV1BlPyMDvL9ul/3bWyPSDyWXLPnFa8P2kmKF4KAN3+gAACAASURBVKRn/jN99j9jUO7rt3wNIQIcGilCrFJlo1J4OYYUJTXV0/kTrTnvrDO4b8dO5psNbrrlVtb2DVO//Ar27XyCuYsbDMY1xgaqjA6c5k80IbkrUFYigjLNA49aLy1jLfWogjKuF5EMoIQrwxG6B8rgnCKUS7XwAlTiX6dLgpUemV5aPdQ2FijppRIf/8xnWL12NSuGhnnptVexfmSUu753F6Nr1zLb3Murf+51/MWn/py9xyeoV/sYqNRLhprgK3/zFzg5hEdvDNr476azBGthIKkxPj5dbjTESaCcEIY2AungW/dv55pLLiaoj7BqqEp6/Cn27duLsnDJ6DBffMebqVVj3nDDX9Nu5Kj+Klmn6c9REBCpiN//zfdy7z13cmDPPk47fQ0GwVlnn8/dtz3Mrt37WDBzfnMUhh55Nl5HnhSwYmyYYvkQH/jQJ/mHv/oLFpqziED4OwYemLLA3icOEAQRCMP0/BxbVp+OdeMoIcnS0rsrDskpFj2JSiNQ5/x5PflG7U76+QMlDcY5ZqYbzPfN0EjbKEe58SuligDY3gbe2vKml/tEn06hEU6QGT9RcSUVNUkSBBYjHNPH53HWEqLQGO+h05u6LH5+zxI51YD/Z1ZRFMSx9wnrr/dhnGPN6hXs27kX5XwAjHGmlKD5pNWjkxPU6/XStywmCAIajXlvulx4CWz3Rm3M4t9KKWk2m76xDgKENAQqIBSKehASJhF5nlMJQ2QoiAeqyGpC1UoEBU5EpB2NLhrMzBxidHS0nBJpzjjjDGamGpy99TwarSYPPfQQL/rp6/noR/+UN77x9bz//b/Lnj27uPf+hxg/dpzNZ65jePgCbrvte+RFE+lgqBYS1mIueMGlHDs8yYoVKzh69ChrV4+x4bQVZO0OjfkmnXbBeeedx8TEBHESoZTfkHZTa1utDkJaNmzYwLZt21i5aowkUqxbt459e3ehlCBNU5Ik6V0znU6HTtpicNAHOlSjmEo19IBmFNHpdMiLjGo1IQzr/jgmAaFUdPKsZMkZAiFZWFhgxchygiAgELLHoOt0OgwODfUYkF3mgQcIEx9AoBRJJfTJjCUAJ6UkLBmBc7MLDC0b+HEv25/YciW72jelotfEOCuwUiKF9N4jWnnfFCXIU89uFCWjVLusNxzDWqpRHy9/xfXMTk2z+/H9JasiKA2VBXEcezsBsfSZrajUEm75zk2MrV3LfQ/ej1AC5RRxpUpmHBdedAk33PAnhGHE5NEZarU+Hr37AUyWc+55W0lzw+zsPFde+SIKGzI70yLLUiLnOD45xdbzLgQj2bvrCRoLc+RpizgZpt4/xhf/6W/Ycv6z+eOPfKJkYbU9EOX6ufyyF/Lh//vjtFot0qzJbGOWzWdt4okDT3L3PTdx880Pcv8DD/CVr/wNf/gHf8TLX3ENy0dHGRsY8aBdowEqxmEJhMYiMdISBzHaWhJhcEEOCJwKyo2/3xRMTk4ipQfInJVEQUQnS3FYkjhG5wXSQlqkpEYwMjLG5MRxPvpnH6FvKEGKAGO9J49S8JqffSV9tSqBC9DWoHNDYS1BOY2WKiTPfUCOH545nNQU2lAU0G42icp7p7Ua8K/jJJgCIhWSdnKUBC0cyAysxZVJe9Ya2p2MSCY4A0JC5gqMKz0GtcHhN0O2sNhcU1CgsQhniAKFsdZvYqTydhPa9QATIRzkOTJIEEojZdCTtCjl+4ooUhibY0yLAFM21SUTg9L6pLecuxvTbtCJ8n7GBoQ1WOe9xkSoyP1vETwzW5lT9WOsbmKiUgpRat2k9GENSlmCMEQYgwTyNIUkWZK2KssAEFcCA34oHscVjAGHovH4wzRnj7Nq41ns2/kw1g3RX1vGw9vu4Kyzn00r6/QY4xf/1GWeADE+zvjRo+z/8i6wgnVnbOQVr3sjv/Cmd/HuN1/PNc/7adrGcu/3b+GchS9y41OXsvdbX2Zg09nU7CD1FUPsfeguXnD5RYyOjrJ8eDlf/9KHyRq7eNU7/46LX/u3xLUVnLjpn4h2/jNZ4Vm5X/nHb/Cmn3sFQuZYC2knJ0gSQpnTFHVwUwQu7/XqeZ4ThjEgcNJQ5MbzfJxPw967dy8Dy0cY6AwAM8TxKXuJn5TyHmtlAIL0qiprQ4QscC5cwiorWUVS48r9kSczLe7dhPAWJt5jzpNmfFkEIdZ6MAcnSma4LPf2xquWnPCfA0MXxrBWl970TwuUsAKLf8Z0h/oelBEsRVZ6gxbpmYCIEpArQRmnDQbvMaeCLnjnKwglhbZsP3AEIQSRFFTCAqcCjNG85fzlbNiynmD9mYx/5wYmx+cIB+/h3J/+WR7atYsbP3sDIlC88zc/SJ5pZBCB0UjriIQg90glUpfOXEL4YSbipFABH5Ql0S71gSwXrOEdv/mrfOznruXuiuJZ547y+x/+n9ign5v+4tNUg4T+LWPc8vgEzkHLGS7eMMY9+6bIEdz64D76QyiMQTnYc7TFriMtrIA4hGanjXMQSI+h+pDNsDw2FlH2J9jCP4/xdhiqTK2mBLIQAieCkrneVWPkOOkZibrwMub//mv/jWpYAZ16cWk3kKE8dz3Lou5zGcBmJ+3Fl3rJ/cD6dr6P9TZs0odQqZPXk8Niy/t7N4S0i2EsDrFL+eqPAAE88+gbFSMRGBkskhOVxOXZEiYWnLl5I0Wzzbq1Z7NyeYWBSo2Hdu7n7HM28fPv+QW+e/dD/NWNX+KzX/wiv/eu36AwDumUNwc2EIuwG4yBdAonvZ+QP5jO682doN3JqdXikkVY0iN/ALBRvWtOqdLjRjhsSc1S0pR/7xlT3elql6Uryy2JUCHfuO17RIFidvIYb3r9a3nokUeZbyzgdJsjTx1ERZJLr3gWw18c5vjcBLPZNLOUC0BFdFwVoTOisE5eLACKwb5hXvaSl7Bx43qO7N/LquVDKBeQudwzEpxGlQf7vm27McpRP+9SwrVjLFs2xoH770DJmDAJkGEFDdTCEJ1ZvvK+d/ORL32NO57ch7ReckKekwtNn9Ts37uPQjq2bd8FwnLW6tX80uuuxeQvxAj4jQ9+FKsceVEgSiroG659IaMXn83KgRGetfVZdDodsixD68W7gpA+LGPHnt04Y2m0C2IVYGVAFCYIIch1hhEBUrseG6/bhC89h66r2edklPmHAXNSBihyKjEk1QrttEPhDAFhbzNZGNeLVI4qCU74tLkiS8FookDSP9gP1ptMa5dinSOKvBeBtZa5mXlkOYHHOW8WoDiJ6vz0z3uq/nNqqH+o9GiR3suoKJCySqUaoqyXqjqg2WxSr/f7yWwQEsYBkRRIZ4mVJCUgjGKc8A/pKIp6slSlFO12G2s1fUMDHgxSJaVdQhgoKkFAu8ip16u47g4tyxB9/RSFQShLrVYljrzPZn9/ncnJcU5bu5ply5ZhtGX56BDTJ47ywP2Pcumll/JXX/gM733f2zHG8MAD97BixUqWDdZZddkFPPLII3zznu8RqoDrr74KlXWIQ0mjOQ9SEp4+QqvT5NKLN7LqtDUUhaEoAqaOHUVKSTrhE1+LZrMn582yBgsLC2zcuImpqSnSTpMLzj+X48cnmJqaBWEZGBhgYWGBpM8b5Hflps1mE4Vi5oRPZxXGEoW+WUlNThxVe0ma1WqVVqNJYQym0BSpB+WWVTwzbuXgCFoXmCyl024SBAGtVstLg7KMUEgKrYmDkEqlQrO5QKfZIEmqhFFMp9kA56ULUkoaCy2GBgdRMiRSEdOTsz/WNfuTXt17rel2ftZ6tpHWWOmZUVJ4eYo1xgPYHsUop6QBGO9H6pnZjsH+Zbz9Hb/KzTffzK3/+h3yzE9ehRJgBUkSAd6IP88MFCkHDm1n/1O7USikLcBarMiZnD7I737gnYRxhC6aRCriY5/4AEElpNWeQUn40499iE1nnM1jjz/MZZddwYP3P8bll1+EsR0KF6JUzO7du/nMX36eD37wg/zpn/0hSQTtdputF2zlU8/+FPff/TDvftevce8d/+APgzFYGfEvN93EW976qzz2+E5OXz/K2998Dz/94p/lwQ//Cd+97yle+4a38eijD/Hxz3weHdb57T+6gX++6Tbe+vM/A04SKFVKQUXJNIHFyb4fdjrb3UgY78XmXJla6JnZABZLu/CAkTKarFOAVKTaUKkP8rlPf543vf7n6a9apBIgApywBEA1qfKSl15PKBWqC6RZ79UW4pvLosiQpiiTVh3G+hQ+h/GMFySRiLCFQZfMCSe6g0cPsrYzn16nC0ueGYLIYa3GGe8RI6PYB3ppgy4KP0Cw2ltBFBorQrAWg0aUE2jrNKbIsUKQt8tJtpK004wgCLxkSmuCEJx1OAKUMYTKB5nI0A8LhBQIYTA2o9BNnLBoa3FSoESAsGDRKBVSmBwCH2iRGUFYgDOSMFAUoiCUoffCUwoZQ+HROYQQhKfkq//1S5bXl84961NoXNpGhqU/YTnkDcPQ3weDAOEcOs9LvyTPXO2yf631VihZ6rDtWZozx+gfHmXi4GOcuflsDuzfjc4Lzjr3UlCCojA02w0qcZVDe55gxeqVbNl6Phc9+zKyIicpgay7vvrfuH/bOM+56pUMrlzB4/d8k2WHN7Jxy8+S7NzBS9/7P9n59Y+wYuWzOfv89zLx4AfYcv3/wh57lHB0LbWxrZxzxgb23fyLGCGRso/2eJWXvfg6ahXH5NHjDK/oJ6wHfPXG7/HyF1/J1Mwk408cZvngAlDzezTnfRk9w8QzaXAOXfhNqhR+EGhwNBsNkv4BTszMsmrVKPkp+epPTHnihO2xnUEg8CmaTligy4rr3uO6liLqB17HOYt1bklqa5fh1DXnL5O2pX8dQTn0sN6qgRKYQoAUCiG6zCvpgUAPIPi1uWQr1vWOk2UwkXPOm54s2a9ZUwYCCIdSwid/d4MPhEAElNS5RaKIK1neAuHTzoXwlg+lnZRyhoWpOVaakG333cKeJ04waXL+ePMoz3nJrzE52yIIIgIVUgiL1V4K6koVgn+NbliFQRrHWH9IkbvSkoFFSwxrGZ9sEoeSG+/cy2fG1vGy172bvmqD0UhDOomsOdrakdQFUT1BSu/V7wRY6RWDorSSQnpArvt5tBNIShZaXmBd0VO4WScRLvP2Eg58aq7fO/fOsXMlGNs95mVYFrm33HAQYJHWEKqEzPphJTpjLNcs37yJx3dvo1KpMTU/C4VGlyCrdRpHgRBe0YFYXI+uJ1vtMt4UznkAz6F7p7Qnay4l0I6TWXieIe9lyU+XYy8NjPDv2x0s+1ThZ1LPHJST4gds77rSyG5Vo5CDTx7mFde+iHsfepDD4zHC5rzmlS/ipm/fwdShFte85BpsmpKlBffv3cXFm7diTQEuJA4Wqa5dDbdyi1RYKHXjBnJn0NYz3EpcpPxMi5HMSyvTBaFU5PjFDb6R6paSi8CS9AJpHA7t4L5HtzE1N09/tcovv/Hn2fbYPgbXruHzN3yaiflpzl0xhIwr3PLNm3jFa17BZz/36R84dlivZ/7Qh36P97///UgFP33dtZx33nk8deQIt3/nNn7ptS/38l3AeEsTbxqtHXc/th1RGO6+9WZe9qzfIEpiXKEJEoVxIVmhKZxAIVi+chXTzXl+7aVX80vuOn75zz7WWyhSCKZ3PkolsDhbIaoYCie569Zv0X7qEEl/nVWb1vOx97+NNWeez2vf9h6MsMhA8YXbv89f3v4gP3f1lbz4mqtpzC9QmAxnFcjFBZfmGQdnpuhg2PbYbrasGPEPZV36BMkAawr6k4Q0L0iBH6Aq/jtLSokuwGhNWqT+4hNeciOdxLiyMTCOdpZS1d5o1mhNrgsQIY1Gg/n5eeYbLZyFQAmCSky9VvOG2TZjbqrxtDdenPI4uyhZ/Q+FVpyqH1qFzTDOUK1WscbRVx9i/74nKDKNXRLcUIliwjBkdnaWOI5JW03qcYU4jhgfP+FZo8YSxgFh6FknXap7F5SrVGo96ZPVhkqSUFGCNO0wXB/GBAGdjpevSglxFKCbLWr9y1BRBaUUfbUh7yFpM+JEcfTwU9SrFXRRUK0n5O0O1mTs27edKy69gIX5GR57bAdr166lsTDDxPhRNmzYgNQ5z73sWQz09XP6af3UwmEslpmZiFAoBjuDaAubN2/m4e27WFhYYH52AYFCyYBW1kEIwdiaNVSrVZYPLWPPnl0455iYmKBSqTA30+LYsZQNGzYwPT3NsWPHaKYexIvjKjMzM2RZRpIkJGFEFwzI8hYDtTo6L0qPPou1OQMDfQgHx44cZXhg0J/AUBHYCN3JmGunrFixgna7TafToVpNCAKJEKACR5q2sdaSpin1vr6ezLWb/LqwsFB609UwxmEKjUT4iaXJGV4+St5u0O7kP74F+xNezlqKMplMdY1wpfQsReGbKz/VFItmyqVcuNuEOavK4Va3EfYGz0kML3nJ9Tz/+c9l26OPc+eddzN+ZJIiKzBWE4SSIEiIAoOQjkQo8sIhbY7FJ2NaEYEuUMpg8zZGOzpFSmrbqI5CKIkRAswCjz5ylKJIue27/wRYvvOt/VhX0KFJPrmNP//UTgyCl//MzSinabcyCFJe9vLnoqRPTS50SqIsxhY4KdC2zSf+7A/5k49CHFeQgaPTmuHPPv5x8s4C73rb2/nSl77Ent0HOG3Fet75znfzW//Xb7N8aOykZOcu07pr2+Hxz1IlsCRBTDnIdUYQhRjrG2HnPPvWlebWuigQJiftWHIL17/4xdx557286Q2voVYXBFphpSHNc5Ik4pKLn8XGdevBWqSQvsm2lrwoCKRCm7w0nHYY4zc0Oi9QUUCWlyltxk+OrbVlcm5Xgmp768CnklqM1OAcgohOO8da4/0mrQOd+deyKUJJisz7FWrr7+2ZyYik6CWpdW1IZKAwxoGhBPOcZ/rZAieUB0yMI5AKlL/HaG2QoT9+COuHoLaDdh2syEGGflPhtTtoaxBKoh0YGWKdJUCCkBTaeF+98hmS6gJH6cFnBFZCrAJMea5O1X/tsjik84niWZYRx5Y4qYKxUHpd6UJQ5DlxklC02x5cUJJWq0UljrHOYIUHK6yVRFGAzTrM7biLKOlj5vh+Vq87j+OHdrNp81Z2P7GdQwf3s2H9mQwN9DM7PQNWUKvVOH5sgsmj46zZvInTTt9M8+geJh75FBe++qNceN0wd/zjH/DQ99qsO/NyvvyFz7PvkivY8chtXCEkL3r3Zzn0T79Ccsb/YP0L/4TH/vUjPPead3LowS+iD+5ges0I1739DhaaGSE5h//hdow4gbMwsnwYJQSNqXmuvfwC8mYDqwtGhgyT7UEqsQJhMUJ6KwMlkAJ0kREEnlkqSqlfID3bx1qLNf6+1m6nvdT0U/WTUYt7mi7JZdEiSpQ2JvyQrdzTk1k9m21xn9Ql9tglfqw/7DVO/neHwNtlePTFlFLYkoTiummY3d6jBFmcKZmsJ3+nnk0HiwoBay1WSgLXZUv5/8dJckafnFqRkuecv47t+44x0cg5PjOLtoIYwf6GYPv8PO+LR7jxnx/hcFOx7tyNbP/+7UxNNfnU77yaiWMLvP8vv4NQEpwP0cLqEqSCApBuESB6/paVaBS3Pfak9zIDlHVcd9lqdJZz147jTC5kHJzt8IW/+zSmk/GX3z3Cly+4DGkUjy8IBlLLlJvDGFBCoHEcPNpAWsdp9YQLzjmNbz+yD4XHIdeP9bFhWY0FEbJ9zxGssD1FhT/A1ifUY0GY0hpjUb65FNhaKh31yakFyIBYOdbqmFdHkq+1co5VFNoWbOpfyesFbFnfx98/WvCvdp5YSZqFBw+17frSyZPe5wd/Lvln4ZWMPqxkMZG16xm3VLa69BroAnMs+W7++9glbDnv9efQ/6Yt19J6xqCcsqV5HqCEZ3HZp2ll45rkmuddyeH9+0lqIYePTDAy3McXb/xHBgeGaMxqVm5YwRvf8hb+8Ss3smP3PmxmuPjccwmWfGgvfSiThukB0oDBaC877YsraGMIhT9+Fu8d2DX6E2JpUIAklAKBJRIedxdd9LPHiOsy5MooZinIC01HO1asGOGRh77Pe9/xVozWbN+zh+ENA7ggQcY12scn2Pq8F3HvI4+QRCfAKpBdHx6FMA7r/GX133/rdwCJLaC/PsjYyBBzCwtkWcbE8XGCICF3Kb3kDyEgSHnhZWdz68FDPHLoMDKIaWUpuoAmOVnHESYVAhUho4Dp8Unv5ZSmRCLgb37xDXz54W3ctHsX6JQTeYN7dj3pDZXLRXfACu4dP4EDAgtvvf4alNT8ya//Mkmt7idegUBIi84szbkJPxmLfFO7tHJtaXXKRDUEjU5Ko9n2TJsg9GbOziG15S2vuI5Pfu1WhFriPcD/h0z1/1DLqgNs2rSJffsOYDO/aZIOxkZHueySy8i032wURcFcY45qtY61mkaW0Xi4IOJhli0bIbCwamw5wioGhpdR5ClDw4PYAGTVUaQF4od8tiRQ9K8e5cRTEzirESLqIeyn6j+noijqTbqEEGzZsoV7772X/lqEzWWZfpYRxzHO+bCBwcFBFI56vU5a5D3gLQxDKtVKyTgBKRf/e5qmCCGphJF/vUqlJ0/Ksowoijg+N4W1UIkUsgxrCIKAWq1GUXpRnJgaZ8XYMHme0263SdueWRr0DGhh1VCdWkVy2bMu5ra772XT6WsIQ8Xh48fZuHaUojPPJRduoa+/QivLSeIqtYGEhZkZ1q1bh3KCfQcP02rmfOd7d3P8xAm01nSyHKUUQ0NDDA0N0Wg02Lt3LzMzM7zxda/n4osv5r77HqDV6rB582bWrV3N448/zp49e+jr62Pt2rUc2L+XWq3G7OwsIyMjzM3N9SSiUZTQbM71wIRqtUq73WZ0xTCNxnzPe2nNmjWgl3p74MM2Stae1j4hq9FoMD09zejoqE9frfb3wjeyLANlaDQaCOEYHh5mZmaOarVKmqb+fDmoVCoEkTfrn5qYpZ6Ei9LJU/XvLs928o1pUDK5jDFYfDCBwAN32pkSXFoc0glZjh1Ft4mFrmTEN74xgZIMDIZc/twruOw5l5MvtDg2cZS779xGu93m6NFxGvNzPfAqzwBjaRcd0iIFA2nqkzhtOY0MVIB2BdaBy3Oscp6J5SxGFFgtES4vn/Eh4H1LlMiQ2qDx4T+BkAhnMGYBISQ69RvJZmY9cCyklzzaFFVYCh3gpKPVanFiYgdxXKExMcHbfvl6Ou2CWjJAXRR88o8/yGc/vpj45sE5H0bSBXViGXlPN6UwmF5gjbOOQARIp8idIVSOIvMTdaM1Ni83NITEccTbfuVX+eznP0U1MowM10nzDrZUIfTX+3jVS1+ONjkSRW69VMaDZw5lBIXNSXO/wXaF7Z1/pKIocnJtQRSAwuXdcC5dGm1bDItgrf9+2isVrMXodunpasl16X5R3hOt0ORpgUUgrfVgmPXpekXm5aw46Q2enYE8RyhJJ8+IZYTRZV9jBdrmPRa0kRDYjDipoALfAarAUKmFCFugEFhiRODTdHubw8IRCumNvqXA4BkQStDbdMhyeJwbjSzPl3LSp/AqL+/OioJqkvz/cu2eqh+9+vtHaTdn0SYnCDzjIu2UTJYwRkUCnXswuMgzhJBI5Z9jYdB9tmucKaBcex3raB3aTqxCoqiOFAFP7LqbLWdfwbFDezhj3Zns3b+X8cljjI6soFpLaLUaSLR/roWCp3Y9zOGHb2D56uey/gV/yORMm3/4248zVB/i7IuvYmb6OKtW9GOzgutf+qt85xuf42d+8S0MnvcODu/5NqeddSVD1RZNEbBqecamX7+BuDLEXX/9Hs575XtIklXMPHU7/avXIURC1km57a4HeO5lz/Iqoelp6vU640fn2LLlcr7+3buxFkJLqUQxvSEDKIyxBIHvrZy13m3ZCc+2dcarEIJTzNGfxPIWSw4nDIIIZQ1IhxJ+fwcCZ9QiCCZtL5Dh6QDH4k8/4OsCdD0gRYARksDIXi/huqiZc95fTpSDP5djnEIKh0YSdBnmOgURooRPizDOm/z75+XJJAqhFkEd4Up8RnQZT/5zexmmJRQS7WyP4RVJQ1qkGBTVap0IAWmbG+4/wpHAcvsrfp5NCdz44ffw1g/9Ob/1O/cwUKuxY/cUtYEE084QsSqTYgVCxZ6ljiAsxboWkMJRGI1SjiipkHc6PWAslgm67AtOTE0w0BfjsgwlNFNzYGXbE3iCgKN5ytSkRlFKTwUcnW8hgUrVkoiCUqmLcOU+tx5jykTXSAY9oEsIgdCWAg/QBkJhl6SwdvsbbXKU9H6TXcsg4RQOD0JaZ3ne4CDX/T/vZfQXP8HvN5tUSQibTba84jL6V6Zcf/p6vrlnJ2eanCNJwngnLYeU5Xs5QYEkLPsnn1UQ4JzpnWshLM51P+PiPsGDxYsAsHGU5/cH5a4nS559oEb3WHSBZyWUD4zqmuf/G/WMQTmrDVEce8+eUJG2s7JBX6zXvvylrBocILYJB+6+m+teeBV7du7gZa+6hvt37GNsdIQVq1ZzzprTWPaGN3HL3d/mSG2CoaNDbBhbTS32shWzBBD3Xk+lfbHz8kifAuMvZCW7aLglkMqHCJRfXuJOoq56+q3XKDvncNIDf0HgwyTC0sutsH6xOG04cGKKv/vKV3nv+95NlhU8tGsn+w/sZucTKc+76vncfss3GKgEzM8u0Go3qMXD1Gt1mp1F2VRXF23zkMsvvYiR4T42nXEW5557NmEScvDAE6xcPkxfrY4qyqfckvNftQnn9A3w0WtfwNr+Ps5es5JUwOmvfTWDlRpOa9qtFnl7ntb8AnmzyfTEFH2Ro9OcQ2F469mn8eazxvj8HXv42Fe/61OSjD+OTtiSaugn4lYJbvjWLYQ33YwOyrAEp8q702KT7YTXj4ulSSoWTl+5gloYMhA2OO/0tTznwos44/RhZhduIS8ss2nG5EKDkVrCV279u9VpCQAAIABJREFUNqEK0D9svPIMqntRpEXO9m2PE1Zi+geGka0ZQhXRmF/gkW0P08matFodP3Ev2TbO99vs3rcb5wyP79wJUrFr7y6UkBw5+CTSCHbt3ENgLB/95Kf8GlwyIXHOlXHVsief9DQSe5KO/VT9x0viqFUSotCHHKxYuY6KvN+z3iKf3thJ2wz2D7B3zz76azWiQFBN+ryZt7E4ndG2BXElIhQQKIWzflOvdU4YSAIZU41C8rSgklRpZTn9Ve9ZVqlUmJ6dQ1tDpVIpr40AY3JEprAYqv1DNOdmWTY8QCWp09fXRxRFTExMIIRgaHCAqaOT1IcH6D8tpr+/nwcefoQzTl/FxPEJlFKsXb2G/v46u/fsQGtNo9lmZGSE6elp2lmDQCqeePIY0/MtgiBg/4ED9Pf3Yy1kWUEUReS55sSJaarVOqOjYwwODtJfrXHrrd/m6qtfwPr163n04W3ccfv3GB4eoK+vjzzPmZ6eptPp0Go3/P1WeF/FlSuGybI21WoELqBWX/SDWViYp1qtUhQZSRQz2D/A1NQcQoQIKeh0fHpqNYz95LyUqQ72eZlxu91mdHiEdrvN8uFlGO3vzbbQBKH3qTOmKAHG1mIya+hBOJ/YbalVaqR5Rl9fH4jCN2Gn6keqpT4ZhTU9KRLW9Xy0eoOncmJurB+OCTx45ayjKL0+pDMIpPd4EZRsIg/wgSQerrBpaBmrT9tAkTsKnWHyzDOeC+irrcRZxfxck1R3EEaS1KpkuvCAe2HI0w7TC1OkjQ6dTovpmRPMLSwwNTXVW2dZp02apljt+xdjDMZanJAoCaqXlCX8+M6UA79SPoOwFCanMMbLVqwlCAwmK6iGElNkpKZA4TBGkgQKnS2A9EBRUYKE3cSuXOc4DKo0Iy50urgpiB3kHvCjFIxK6b38cgRWl+dFBljlPRc3bzqL7du28cW//TRnnL4anbcpdOqvvSTj2itfTL3a53u5SPl7l/MJokWWe68s65OXHYI094mowoEwBiu990tqMh/8RtEbltjSv81q40G4OER3Mso5K8Z65qpxGucMgQxJs6LXUyhnScshX2ChwEAhsTZf4p3jPetsec6MczhtscYgpO/bnBQU1vtWSimRYUBgHapWoRAZMlDU6lWGlvVRSRQOQyQ8LGfL3tIq72ck7KI9C1b5cye96bfW1od52QKpLU4F5LqgmlRwDkyWl96KIVmR9lLDT9V/3aoPLaPZnvSesUkNwMvtMBS6g3MGg6AqErTVqCBCa++t7XJHGES9wLqgVvORiYGgmJmgumINTx3ZTSWMOGPLFezcdS9bt1zJE/sf4rRVqzl05DBjoyup1io05ibYM76fvN0hiULWrDyd0bFrqSzfyJM7dnLnHd/kggufw/SJI9x7z9285o1v5f777uDQ+P1cdNXVXHT5sykOfpNo2Vay+z6COu8akrPeypc++9tc9cJfoHHjH/Hcy9fzvDf9b+7753ex4cJ30dQJaq7Dd+97kHot5vIrrmBkICEMQ756y/d4/fVXMjY6wP6DhzkyNQlBWKpFrJe7lawXq718XDjtDdl1gRQK6TypAxEQ1WKEOnU9/KSU7aYJlL7x3m7CD2KcFGVQnqaLnKleoJ/qecv9kFftSQm75YE7/xraeCmrUhIrCkT5bJZCUGiLCkSpbAtKDzEvdXUoH0DWfe3u60uBsF27gkUCiLR+iwtgtEV0Jag4sAYn5UmKPAEEQnrwTPj0Vi0c33rkEBtH+pjLGkgJF68Z4FuPNbgp9dvnGddhb32IG17+Ad7wi6+n8f272PvkYX7vy3cwVKtRhAphoMCCXUz8NGWip1SuJCEpvvb9cSyO/qq3+HLlgPze/Se45rrLEAfv5My1CffumgEgFLBldT87jyygASUhEnD2af3sPTzvn8dKsmXNEDuemmbfiZyDxw8SJv6jhAKOTc3htEaFVbSlBLY8KGdL0lZQ9txdEM6HO/qBnxRBGZ5hFn3jrfPBOk4QCIEVgr+eO87Ucz7A4UiT1GtEhSZWlj++6zDLJ57gYQkvVAV3W8Wc1Ccx4QQKhU+Ydc6gCz8k9oxKy6Kk1LPZ6bnPdQfLrkc2kELhjFmK2S2Rpy6RPHd98VlKCOuGTHqfRPefLV91FOQl+pp2OPlDWYcIJd/ftoufeeVL+eonPsvpo5v4mRe9hE9PHmf/3sM4U1Cp9bHt0Z0s6xtEKM2GlWsZO22UtcvHKIqMyVaLJFZU4hglBFHgZSOqIv2ik8J3/dZh8YtTKYVC+P8nxZL4YHvShsyV0+3FBVH61EmLNZ66qJ1FWJ/s2OqkzBaGW2/+Fu/4lTcTZ5baUMAFGzfy4LJBHnzwQWq1KlEcUxtaxuN7d1KkGUiFk/qkC945x/t+/dcInSOOEqy1LB8dQSnFocNPccs3buaKC8/y6bLlFBgMqNLAMhTc9/BOLh+NaB6dZOcNnySqRBgL1UpIW4MKIih13AiFzVOEUEROI5RH3ZMg4H1XP4t36q288av/yryTSOXp591GVzjpEWehyZWXZDorewvKSYtwCiHAComw1v9NuRS0cIRWUFGKJpaqFKwaGWRsbJT+WsTKwRpRS9Fptjg2N0+j2YEoASdPOmb/3kpN1jPsV+UEJQgCTJ7y1OEnWGg0sNqfi8xYb1qPw0hLZ6GJI2dq+jjYgk5eYF2GCgMQghPjE2hRMH5wih/6WBHwshddz1dv/nrPsPz/RME+VT96BUFAkiTkWUEQKipVH+agTdYLbhgYGCg907JSGhH3QPc8K4GcwvufRFHUY851Wi36+vpw3c2oCwhDgbU5UezvE1KG1Go1hAqwJcOue477+/tpLKRIbZk9McXmzWewMN8iDGrUqkNIKTnnwrVEUcTj2x9k9bq1BIFAY2lLycaNG5k5Mc7o6CiNRoNma540bfeSZAEWFhaw1tJsaFAwu9Ck00lpt9s9tln3GMwtzJMkFZIkYXZ2lk6nw7nnns3U1BRKKe644w6e//znMzBQo1qNSNOU2dlZnHOsWrWK8cmnKIqCdrvtj12eI1xRPti8F18Y1el0OjSkIlCWNGsysnyQ5kIDpRTVaoQxGQEezOwybVqtFvV6HVhMqRsbG2NiYqJnxFuv9zE3t0Cj0fCS5EoFa3Vv8x9FEVNTUwwMDNAqnxvaFDhXxVpLo9FiYLDqwblT9SPV0kZnaVBSl+XVDf7w0/DFaaFbkkwlhCBUDuMybxJNgHUO5yQW708nUFjtEFLirKNSqVGr+edznucEgQedQtVPtb6cTlvjjEYIhQzKaXwJDhqb+c+c+2vmJGCxKNC2KFlnGl1YdJFRFDnWOhqtJlYbjh8/TqOxQF6ktNtNGo15TkxOMjc3x9zcHK1Wq8dyc85vOAECGaGET392AqSS3nPKWWToGab1Wj/tVgOfOZATR/77a209s1pYRBR4BqLWhC70/qZGIwKQUpUbIOPNqwOo91VJwhqNVpOik1ELJZc/+zLQgiioYEWbmdnjXHnVcxkcHgQtydIUrVO0diiZQODIipS42keRpxTtjHaaorvMNyO8bFcblAz94NJpTMmgy7Iy0ENYTF4sSpo7YPIC7XSv0TWlSX63ETbGLAH1DCIMfFhDOXEucg+2RZH3pNWFxtiMLOtgnCon7Ya8RPKFDdDCIZ0lUJ5Bq5QgjBVDQzFJtcLgYD9RvJi4LYTwmzjjEDIgM20C5RPaCyG9oXNhPJND+MRVSs/jVGuEjHGqQCjlGdUOAqewUoEKMTlEYY2Tx9in6r9iVZN+hAkx0pDnHqQWwifwiiDGaL/ZS51FBGFvI5ibFIujkClRlJDnPpU0TGJs2sKYFkmlTpa2GV25kcNP7mX1ugvZe+AhNm3cwpNP7mHTus08+eQ+GnOTPOf513LpC17J1ORBJp48RG5yJiYP8/Cj3+H6V72FNYOSRx65jQtWaY7MOuJKQtrusPa09RzY8Sgvft1vkn7/D1DnX8Tlr/4chx67nclmBZu1ufz5VzPVeS4PPfQg5/K3XPaqT/B3f/G79PUNkCRVrrnifG686Tusf6qPrJpQ7+/j9a96KVJnzC00ODqV98bo0i3K0aS1IPyzQFu/6Q0CHwrorKZSTWi3m1TNMkxuKEz24zzVp+rfUT47m+5mGosr+S9e0iakKckZgsXshh8E3bq1aEnVRTwWf7crh5VSeC8uK5EuwojCp4+WvYk1Eqlc6dcVUWaUYo1XK3XRlG7v4p89AlcOWoRQPqVbuEXCBYvJrkv3cUopAuPZ9AIopPPsT+O8MsBaCgN7JhtYfDDd/fuP+/11SdgIVcTxE9MEKuDokSPYQFKYrsjR9Vj//lkqfCCScQSyGyDjD3HXdxY888857z8LsHHjENPjJ0AXOLvY/8rSs11LD4RJBykCjA+fxAlqcUh/ogmcIMdRSIhdialIyArFk8fbZEWTSqjI8PdCuufESXSZrNq1MjHG4EqA0bgCgfJrxXgGmseuDEJYhuI2Ukr64gq7RgX9QUB1fhJimFAhqrXAQ/P7yBqafSZjwRqWrzofiywJWQZb2pKJci1ZTI+o1T2nfk/lyvXRPc8G5xaZb91+hVLq/G9ZUi0qM/1a7rI3rfWszGcKt/2HaARL6aUYx47H9/DAw9v4zJ9+mLvu2s5wpc6e8b2srp1B0B+xb/c+1p2xjpXVAVwUMlTtY/vOA9zdepShwX7qcR99VMmM96fTNiWQilAHGOnTgLpSUyUkgfRGyUIIXPlNehcQAViHln7iihSenmm83AX84u9+D+cc2jmMM3TyDBsEfP3vvs573/Um2vMtjOmQtRXH5+cJbUglDBg/MsGmdWupZGmPhZXmOTpbavZnkFbwwAMP05dU6RvoZ9XocuJaSppPs3//IWba8yRR7AEd1U3wXPwuYaF48bvezq2f/RIbK5KmEASZIQ5jsjxBKO/dY6xBhQFWe0BSKQV5jjYQBJLAKhLpaaufe831zI4up1EXfOgjX2HFioSJmQaZsBgNLkjKFJPuzbOkbxpZMhygF3G9VCEmPPNIW5+UJoxBhdJvoMpzJ8tzWbS71GDhNyRO+guoS290Bc49bYmWF3eXp9ptDOayNnc+9Ajnnb0ZJw1RmBBHAQemp/ijT//lSWCaLCOYuxeRDCMIA3Y8vB8pBP/01/8MMuR//P4nwQVMHTsGSITtmRCUn0VwzgXns+OxbWx/YhfVvoR0vgPSb6qeZoFwqv6DFYbKe7MYL9c+uG8nYSRJlAeH/INAcHxymrVr1zK/MEen0/G+cmlKWuRMzx8nSeoIDMZqaiomqnjGVxgEPLH/SVQoqfbXcBiKIscZQxjGKKk8CGidZ4x0N5naorWhWouYOn6YzWdexJP7D7L5zLM5ePAgcV9AGNRojY9Tq9VYObaGvNNEhIpKUueMM8/kyd07qAwOorOUME5Ikpi5uQZr1m5kdnaa6elp4kqdtEipVqtMzy7QbLYB/4AeGR5GKcWqVavY++R+xsZWIYSj3W4zPDxEtVrlyJGn6O+vs3PnXsaWj3HPXXdzzjlbePDBB4njGCEEszMzFHnO5MQUq9esYm5uzjNR05RKFFLkHkwocke1WqWv1o8hRwhJrBRpmjIwMIDWmlrsU+lECHnuk26711yWZeR5Ti2pMDPjJ3ldAHKi02HVqhDnvAS+02nQ6TSoVuteyookjj3DMAi8sXSea6IootluURvox821sZnuGe2eqn9/LSYKclKjslSK/HSfEB/+FZRSgq6cVaJEtMhgL303pZPYwnuQObyPmfepCTAm81JXK7CFRtucdm6o14bp66t5KSH0hiD+szgsCcpKXK23ZTxpyNPzVnVlWM+Spp3QYbVD4eWH2tpFVr3xP43JKIwGrGfYWovOC7IiRxtD3umQa88cm54+QdppsTA3w5GJcTqtNq2FFsfGj7Aw78NkFhpz3rtUhdieUbbEq0QDnDQofHKpLvz9RmvPHpVY8o5FupCtW7eyacs5jC4/DbRnAE9NTSKcY936FeR5XrJNMyBAKovNc6SI0UZTFE2KIkMXGWmaYgrN5OREL8xDaFvKyIOe7YUuMp+kVspDjPH+f9YaCpMiZYC0frOB9SFLznnHHisNGO3Pj1kyVRelDLbcQCn891WBBNsmzz0AGkXKy6UiR2FyQuW9hKRziAhCKUnikMF6jZHlQ9T7a9RqFarVKrpUUDjjAygMDqEFuc6JhMIqbxSdFX5IK8OALPdSRuck2lJuanzTb7KMuBKBChHGJ7I65+fjTkqMlESVUrZ1qin4L1/aGL8B1gYRGAgUOvcMz6S71p1f5zZtEUSRZ4AocCJESi8nFyicCsh0wXCtSq4LomqNJFCM1QeYGd/JyoELOPJEE1zE8pEVjI/vZ8O6rXSGVnD8+BR7H/skF5wVMTK4mYHTtlI0O1TsHm7+2uewNuGccy/n4otXsGv6e7jp76OiGheefxGVxm0MDv46+jm/w/fv/BfOuvy16OM3kYur0eF6/v5fvswvv/RK+s+u0an/FK3DDzExYzk+PcOufU/wqhdfzQVnncHDe4/zlje/iiefOEBff8L89AJptJZjc7vBSlBe9hbQvT+WcrHy3hko1dvL6FIK6JMlDUY77yN1qn4ySoJ15fbHlTxyQekD5/yeB5AqKh/MypvuSxZpaEtq0YC/JNFI5w39KUkppT+pBKzyfrLSBT5AyDoCGfrnjZMgNLJkYRdFwdzcNMtXrPLMfFd48Kf0l+ua+3cZfwifAOvbiNLzvAvIsAQf0D4MQAhBYMv7exfXAXTpy7ZsYJDxuVmv0NGWrJilnflwhFwb0tQD0du2PUIcGKw1DPSHrKhGHGx5xptzjgLXex9tPUjpWfsWrOaaS84iKzo8svMQSJ9L65xj7wMHaRcHMVFCwyx6NgZAW+e9PXdXnTaT52ivbQDpKKwpJaggRQXlOr3vmBaGIBA9OwhhXekp7yXBWmgi/H7e2PL5jsNohwoEhS2oirLvEpRetA4IsMoQKo0MKxTSeHwhLWhnOVpJQmMgbyPCCE0TGzpCK+kUKVYkS4bHulxfpVecFT2iZNcKxPetQXnOvd/tUtzFOb+vsl0ptYUuw25pLe19TckItM4hnwZCd1mEz6SeMSj34iuvxThLUXjTTl02WUpI9u47wNHZI7R1wUAl4H//9Rd48LED3HPPPVy19SoOzB9mdrZJEFuee8mz0cbR1C1WjA2xZtVlPHXgKOO6BfjpsAwkgYgJSr8Bbf1U2JXJY7I8uBpD4PzFI8pmXgi8F0wXbbaQ93Ach8EnAzkEGVAIg+kYDh46wsLCLGduPoOR5QPccvMDvOftr2cubRFVKwSqjjGK+3Y8zmP7tmOikGdtPYfpY0cRNgWREyiHKQou23wh/fUaSin6+/up1SusXreSM07fiBOWhSLn6IlJ0jRn+/YdOKBv+TKkipExpcHKUpqkZGp2nst/4VWEsaJvsI+4kxFFMdZIwoqngFtrPQgRRlipMEWGwk91tTVUYp84mhvNhkpCoHzqynVXv5TN172ayFmfLkaBMCXqVt4kuyaXTzfbfHoJV977SgBLyBAwKCVQzmIKjdMWg2Gsr48rr3sRX/jGN/3n7/roSVc27D+k5JLFbnSPTei0KY+XQlhFvV4nlIpqrYI4sehl1Hsf56cTANa0OXf5GhZkyiU/dSXfuv3bNKabOKfKSOfuzbkrY1G9C/fxxx9DArv27O4l+oyNjTE+Pl6iwafqP6u6LCrnHJdcegm333k7A0nlJLZOmqYeNCq81DHP815gwIm5Gc+gKM3TgzIpstlsIqX0IQZJ0vsbbYoeG8Y51/NJi5MKM82m93wyBud8o57nOUIJDh56goHBZUxMHmXF2AhpmtK/fKT3Hp1Oh1r/MPV6lSAUHDt8GBFWSOIaeZBSXxZgTMFAiXZXkgH66lCrVmk0Gj2wxFsJhARBwMDAAGma0mp7mWscVADL2NgYCwsL/neDKn0jy9i6NebIoSPU+yo8+uijDA8P0263vbQvyxgdHWX58uXMz8/7JlvIEkCLe76MI8PDPanr6IohslTTjYqemZlhcHAQm3tmYqvVYHBw0H/vWo12u01cWiEIIWg0GiRJ0mt8av1eRuuc86y/EhgMgryUfzmiWJBmDfrCQYqioFKporXunaNOp0PRXGBoaOjHt2B/wqtr0h8EAULKxQRWPIAtjaPApxD2vMiUwpjCN9xOopT3DrHGIPDPZ13YnpzBX1uZb0KLwp9fZ33ql3MURUaWN2m3mxgdEVVrrBxbD054E3+5RErgpDckVt4vBPAsPBZ/xzmfGmac876vcpEBaIwhjP1kVThJiCybNIWwZVJomTbI/8veewfZmZ3nnb8TvnRTR4RGBiYnDmdIDslhNrOsQElLZWsVvWtpvVrvluxdW3ZZLmktWcG2XCqtpbXiKlMkRTENRYrDITmcITE5YTAYZKAb6HjzF07YP853bwMUZY+02iJVhVM1hUGj+/YNX3jP+z7P72H7/myrYFWzPjSUgmLbYQx4G2oaU9s6hQ9NJusqvHBYa6iK0DDL84K8LOh3u4xGI4bDIUU5pNPpEGvJ8vkVLlzeYmFxNwvtNheXz6IjxebmOmtrGxz7wEeYm93JHbffyt2vuJPrjxxgOArhRd6GOkJFGXEck9qYLMuwVclo2MN6yXhkMGUFwtJINCuXVhk7h/MGV9XYCjdRPQTWW2jaOowJyWmuMngZNkbOM1Xw5iaksjMpiKUNrgeo389wj1aqbpIJFRodmGmz3vhQGkRaEiUzxJGk02nSaKQY70iURuFJGk3iWJNmEc00Q6swQMB5qsriRTgmjKvv47aiGSd478KA0VXkXhCrGC8Ela1QKkI4yKugSIilwpiSRAoiNNIJRH28xFKH7FwXlKCRVpTjHBWlIRjj2vqaXqNRGHZNFJzOmimruiiK6Ya9rBEKZVkihQulqXfISFNVec1e1dx8+AZWX3iAG294FcvHn2DXroNcXl9DygbPn3ya+V0H+eKjn+PA/sOoZJbPfenzZJ2Ued3A+Zhh8iaEijj2uT/CCEtz7m7aZotycIHOnt3859/7C97wujdy/yc/xZ79S1w8d55773wNPu/TLQXlmY8hXvPtXC73URTrzO87xNbzH2f43T9GNHs348//FL/4yS12LM6z8cIa3/KtX48dbHDv617F33tHC3yEVzGaiMHFF7Fqlo3uJiBrlc6kGVfrX50LHMX6mi6UrhMX3VQlOxnOXa0uuba+lpfwE6VcrRpS200MoSTYiZLLIohwtuLK3sRXckJtD/VCfaFkUGSH76Nucmy3KYS04ALuAlESKPImwPpDHihpmtJsZFy+dJGdO3YjlWZl5SILCwtEUd0wtAbrQem0VvRNeGRhgCTV1Qo7pUR9DQjHe1Ur1uJ6e+iEJYkVb3rZPo4eW0UIwZnL61P+Llgcgu5wTCZB64juRpdGQ9KOBC+/fomDs/OcuLQe9t6iNlr60GxTtaDMyFrR5z0d0cUlUf2cIVKh0fWau5bIK8ODT11i7fLq9L2rPBRjw1IT8hw2TPgFK6t9rAndz1G/5KwKn9PNOzvcemQH9x19EQckQnJwXnHnzbsYjAUPPnMeR1wHQdX4CSG2RTt4Jmx8IcPxk0qNEI55IrwoGXgY+RCUpJ2jMgAV0gqMGyNlBC7HGsVABMXgyHpGMoQ1VR5SoaZOiCuX9x6PqweFda0WrIQBUeFDTeMESORUfHTVMT85ZsWVqcNX/45tjJUPQzwh6l6vZ5uhrPF/KSr1K6+X3JRbXJglSmKiKKLMC6wPYNM4Trn+uoP86u/8PiKy9CrwUcRr77qdrKFYHa8SiZRWK+Yd73o9lwcDjl8+zY033cLjp8/yxBOP84o7b+fYI89yYm2Zp554hFtuOsLu3XvYs2sneE+qFWnWZr7ZodOaodls0mg00FoTS0WkJdZWKBTGO8rCMB6M6Pf7OG8ZDfoc2LuPpYO7iRspvXzMud4mo26fteUNzr3wIp/+zGc4fuoEBxd389E//n1uuWMfj516EeeCrfMzn7wfr+HC6ir7Dh0mF44H7v8CaWS47cBOvBcYC1VV8J73vo28MpjKY4sKKzyVcpxYOYWONaXx4CtefP44jz/1OAAPfOlJDuw9wqisrvIvLy3MIQYVew/fiEBSloZ8lPPkH/8hOxqzJJGmlCLw6KJg0+t7ExRzgK7VDbYyXC7GUAmsrUDEFPmYKAqTvf/jNW/mZz7/KVzdEQwbkHokgsP7bWXE5GCE7XS48HWHkAJnPFWdxurKIhzw1N1xZ5DOIb1kUJZ86Zlnao/8X9GImwB9vmwJIfBKh5+RCmpfP0ERTWkqLB4tZB3ssb2+/MTSKubZSxexUnLhA++jpRv80x/+Hp5aucB9H74fh/2KJ6MUkLWbDLo9sjihqALg9OKFZVBsK+uurb+VFUXBPjoerrGwewlFOJZDgyd8z6VLl7CuZDTKmZ2bIU3T6cSru9VHqcA0i6KIWEZUpcE7yLQidoI8L2m323SaHSpfsL6+HpQrhWGr6tNsNrE+NAG11tMwgnE+AB/hjKPTNvT7q6yfeZFX33Mv3gv27dvD1lYIdGk3GzQ6M6ytr8AwNJLAE8cRzWYDay2DrU3iJDTBsqagNAXtmQ7LlzRxI4axwSM5cOAAg8FgGmoRJwn5ck6ej5ifXcAZT9poMRgMGI76zM3N8dSzT3H3HXexvHyORpaxubERXpcxFMWIjc1lIp3RzBoMBgOiKJo2ARuNBt1ul8UFaDabZKmm1ZwhTQxaOBpphjNhWj4c99i5cydah2tQHMfTwrwsy+nQYmVlhaIoiKTCWUtvswdImmlz2mgryxJjyloZ59hYD408pSK0jtna7NFqtRjlJQ3VII41sUvgy5W219Zfa03shqJuuE1UchOQv1Ryyk+C2qrgBVqHgn2ingobt2ra6HNXTDOBafPPOUdVFgyHQ4bDIc4Z4kTTbDYdnOxiAAAgAElEQVRoZHM4N6bf36KRzeCFQ1IrkESwFW4vv/3nZEBXT/e9CPcDqRVS2InoOlgPEWiRhAmwnDTwRX1vUnUTcbs4mxzXX255CEBhUavs6hRSAc7UxaF32/dMTx164up7rrmiwenr+iYoy370f/lxuoOKd//gD3L0Edja2mDfvgNcd/0Bnn32OfJxyb1vuAdnIUkiLJ60M0ec6PA5OYOUYdBZjHNMPsaaitKO0ZFAy4hRZShGQ44dO0Z+xWvF1cpJH+DWV35+4GqGlMfUn7ES4TOtqoqqxlMIz/T90RO7s99u6E6OhckgUIjt99l6BaLESclmt4vSgs3NzSn3UktVY06YXpt1JElTHZAoMkJHgqQO+FFKkUZxCPCQg3C8a4VSGrRk7CtAEMcR1oY6RkUaU1b4WGJLTykMcSOlKuu0NRGObS8iHA5pPdaEcWM5Lv6bQ81r62tgySKoa2QYdksPzjvKMp+e417J0NyvLNZIhAgqHSklykV4J3DSYyqB7F9mx85DdHtrlMYyzAu6m2fYf+BmIqU4c/opXn7Hy8nzkpWVkywtLtBozrHVXaPRWWRjZZmL507wbT/wz/jCZ/+c3tY6y2dPct11h7nl1jt54oufo9vfCM1B20RrzXVv/gc88P4f4u6v/xV23vqttKIhzfl7ePTjH+CGV7+dCysln3vgPnbnT/FrHz7Jgb3X8cjR57nn5Xtpjs5RYkiiQzSSGKEj7nr5bZx7/n588yAf/ej7Q30rPb62pbpadSqEqAcr29Y/JUVId5SawWBAp9Wh8p6yrKbXkWvr79aaiBLCdVvi7OR+NrnvOupbLtuNDje9tk/WNBhKBC65d2L770zCIRzehCag8ASU0pfVdT7Qq8jzEXY8JE4UzYZmMFillTWYbUeYoospamwNFmSGc/FVyv/Ja9vm5U7uT/UgSmzvdyd2VytqNRUWJyJSJYkjRVGGGqeqURuZsNy4NM+/+rHv4qf//a9DtMCL51eQMfjcs97voYRA6ijcH50LrjK21Vi6fvuEBGProA0hQ9jcFUm4UkqUEmwOShIRAruMg/WeC9bbWhnovaQy4ffM1krfsQn2XaeCNdUxsb46oqiBKwwKHYKOoqC6915gXND6+/o5iFr5byjRPoRWOWnZnbT5mXnN3v0ZP/uc44HBFmWNxtkaDdFSEWvNnBDcFRnulJJfXj+P8gmrzjOqxozzcL1xAhrOhnut3E5Av1K4EIJDfd2QC8ehEiGGcXLMWuqsgq+wgsJdMElk/fLzYOoeIbzPE8YegKcISkJA+pfWD3jJOxaTj3Emx8twMEauwBeKTWOJqop/9E3v5r985M8pTcGXHn2GSVHlvGd21y5uPXwTzx87ycc//gBLuxf5xAc+wmvf9CZmZ2fpDgu+8ZvfxYf/4H100xv5s4/+GUJHSC2I0wZZFNMQkhhImi3ajQ6ttBEmlmnM0twOhv0e3Y0+xbjEVY5sLsYLTWkCW6oEtsY9Lq+vs5UPKHoDTFnRbLc4eOP1COU5sLSXP/jNX+PEqWdoLizy4uVNXjh1GjMe8dq3vZ4vfOFhbrvlZo7s3svvfvCDDIZDNhhzz6tehji9ii2GWJvy1tsX0DbGViVGapR37N3Z4YXlMQ8+v8LmVpdTLxznkUceY1SMEEKQNlN8FNUJk2V9NFSUoxF7F/fyyBPHOXT4AHt3LzGzO2a1swMRRcg0YSbL0HGMUPVB6aIaCA1eSWQkEZGDJHCdimKM1hozAIekkPCme27krpffwHf8p1/eVhb4ALFHTE7+q5NzJiucsJMLqwRrUCJGo8OmQIdo9MoMUUqiM42WgsML87zuNa/gmVMnkZW9KpRjury/ShEH1OBNddXfJQJj6o2diDHFGIGmzMvw/dNO+NWWq/DjMlh0nMXi2SoG/Oyv/QZCCN756tfx8Ye/QCNpMxoPpidmuAiDrwQCRaszw3hzA+k8119/hJMnTyDdtYbA3+by3gerY6QYlwWzjSxwLbzHOUjTFGPC6Orw4cOUZU6r1WI4HAfrVlEi4oheb8xcZ4bKlCRxiiKcfysrG+zcuUizlXLx/Crzc20aWYuVlRW6QGVgbsHSSFI6jSZFVU2LdFMGWXcWp3hXoZOIJBWMxn2eeOpZkqyBlJpWe4YoUgxHfbyxCFdSeoNUIbCg192ku7HJTLuDUhFFMUIpxczMTM3X0uzds5eNzWOcOXeee+65h0YrY2N9i7m5OcbnL7Jjxy6Gw2EtyRfMNpqUoyEqy9haXeUVL3sZp06dYNfuHfS7PWZm2pw5c4ZOp0OnM8Ng0Me5wXT4MTlfpIIs0ozGiuXLq+zdu4tmmhBrRaeVoWRQGaRRSl6r4YQQtNoBlj0e5dMGThzHwW46HrH/0EFOnDjBnp27cHiStEGiIzY2NkiSZKqqK0xFbzggUhJrJJ1Oh83NzamlryxLdJIwHodhg7CC4QSAem39tdckIVjWF3jvXM19C6B7I0E4h7rCyiqlwlmoyjB1NKaaTr4nYThKKZy/mrtqy4Jut8t4PEbrmDRN6XQ6JElSK2QFSmqcM2xsXGScjWm2ZoKiSupadbldSE+aOaH7Jq9SZEwGSdKDE9s2FQTb01C/bVXw3tTqu+3hzuTxhJ8UwgHLIKZs1GhaoCmx/fu9D2EPV9oe3HRoNfn3q5PjwwYghDz8xm/+WlB7ec/1t1w/tY46W1EWQVVWGlsXip58NCa2krwsoAFGhJ+t8jE4gXR1uquFKI6xhQNjGeUFlbMokdSKcoeVIVRBTodw2yq38FlPGpICpMQ7S1VZlIqQri5etZoWzpPPwftw3Nia9SqmLKIJ9wXiONxLVa0AViqEcEgksdTT4thLSawkSiqEC6VDVQaAdOU92gC2opQlqVL4JLARjYqIdIKpHEpZpLIY64nShKJm1RoskQ8g+zwviaTCCslgmONFYBtbV6CTGDdVBAmcUlTSYytHdA0z+zW/xv0e0skwQ3bmiqGz2h5WG0tZX8ssBuFq/qEAfQXgfOwqVroN9iwuEjUEe2Z24o3j0P4DPPvkg9z+stfy8tvu4dHHH+T6G+7gzttfxcrKMpcvn2VuYZFqXPLciWO87LY3EqUxp144Shy1uOuul7Pnpjt4/OHPoaRmprOTixd6ZHKBC6ceZqb5r0milNFgwM6b3sqzX/xThmXKjsV1Fhdnmb/nvyPxI/7THx9DKs/Zc6fxWB564ix4HZS85RlULGjPdLDe89Y33kvv8gvTHouvyffeB3URzuOlxdZMp0my/WTTap1B1eeuNQbrBfm4/Cp9ytfW32QpIWoF1xX7IOdqBZ3n0N4ODa2JlEarilaiuPeue7GuxEj497//Sa7mHV3RoBMOUDVfbDIQA+eCuw0URd6nPxyzY+durA2J6xJBVYJXhiKvKI2hqO/f0nlyXxAlwYlRjHNiEahxVhjSLLDnwn2oYmtzjfm5XQilg5jEeaRUlEWoIyevW9XlRYVD+9BQrJzl4186weJcC1ka9s+mdK1iNBrx8zekbPmSd//Y1/GKb/leMtHjte94GyeefIpv+/Ff54Fj55mdnUd6U6eWe2yttqrfWjxgvEA4jxKKP31kBS9gNhPhPXIWoST3PbHMDTsWqJTk+oWUlb5jq5/TTgVLM4rjlysm9H2E497rZ3j0ZJd//E//Ib/wb3+Vl+2Z5fGTXY5fGCOaYkrqAzizNuD5SyOE9DSVR9chXd677U/Sh1psst9WqHqAKoicYN45Wq0BUcuzp+dpbW1xWyPjs2bI+bOnWbGhXrxOSn7v+1+B/p638JNv/nc8gkAL6KvAePWV5a47X48xCc4VdRPQXjEYndRwEu/NVLjhXPjvSpSJry29zpkJUwtEzaLzNdcQOb2uX3n8T+pH5wPPywmHdwVKJDU/L/w+VPySzrGX3DX4g4/eV0+4wysQUgZJnwzFOj7ooZRQ4U1wIsj5gDzPWV6+yJGlRWIl2bVjN298zxv58EfvY8++Jc5fuMjWsWPMXDrGqBrz99/yLXzkwY8iGylOSlQjpV8E1ok2JWprg8oYTFUh7MS64vhfv+2HOX5hmbd+47v41//630BakmQNZufniJspycw8C80Yv7rKqqnAO4bDPqePnaDTbvPeH/mHPPrc0/zpL/8HUJK73/v9PPHIoxzcu48zZ85x1113ceL0WY4+8hhxlpDXB89mb4Neb4SzJTMtz/kNX0t4E5yApqyY6fV56tw6RRKxsr7KAw89xGa/VwMAoZU1iFJFGqcMqwLhHW+89/V87rMPcXDec/er7gwwWWc5+sADyPkZ4qyJVzAynu6lVXq9LfI8pygN/Tynyiu2Bj3yqqQ7HFFWltJUbBnHyEygyIYsTplLGrSilO+88Q5+74UnIWTHIQhcJiEEUkU4e8W0wwUGjJIJ1of3IhIghUdg8bYAY6a8GW/DBs7lBZJgBfjzB7/AhCEQNkl/+diTQZ179bqqUSf5gfd8K69/29v50Ic+yIGDezl9ZoxQAiMnYdKTx9h+/pNJRziZt3/D1Obq4OMPfRatIw7Mdrjrba/jDz72iVCI1RvWYR7iow8dOsTqxiVAc+LkCwghmGu3XurpdW29hDVR2Ry68Wa64zFZGpNXpr4w6qkdrtPp4L2f2l0nwQ8zM21mZ2fZ3Nrg5JnTLC4uThUaxpQM+iPml+YBw/6DiyjpyHPDrQs3h2ZTEtS5/X6fuJEhfMK5k8s45yhNYKktLEQY52hoTaPRYM+ePbz6ta/l8w8dZceOHaytrxDFS2QqQ7hiGqSgU1Hz0mC20ybLGgyHQ6IoIs9zALrdLnEcs7q6SlEENdHRo0d5+zveghQhzXRhYWH6HLvdLsePH+f6669naWmJlZWLU5trq91gNBpRliXnz5/H+YqNzVWCFc2RZRlVFaZXrVZrauVJEs3sbIdy7GlnDYQPm9pyPGJ2dpZinNPudFi5dJ4sy+h2u7Q7jfC8VPg8Jna0brc7bWq2Wi2klMF+nwaF3qVLl5iZmWHnznkajQayKllbW2PH3gMcP36CTqcTbES11XVS/J85c5aslZH3x6Rp+tU7YP+OL6XEVU3UyfkXpoKhkFH15HhyjZdSYmpOXBjKVdPG0YQzN3mc0XgQQk26W8RxTLvdZseOHcRxgwkoWOtwXitZh0mgcMJQFN1QD+gErVI8cqp+0pEkcJIVUtqpYnyyHGHDaJ3DSz8tfKUPNY2TIoizncB7Q+CNSCbMGdi2wE/eCyZNKhUmylJEtbvL1yzVMMoXfjJ9dzjna9t92PB7X+M5pKqtQIGDKwR4axFKg7PESQh0kj4wditrwMWkmZty8ioTktTLZk5V5iS0KCuLlx6TF0gPZV6Q2/Aa4jgmL6CyYCp46unjJEkWHgeB9zVLVkBEUN0JKUGGf580Q0PTNWzchJTbDVDhUbEKdaGWQd3mAwB5osAMJpJtrl6SRtO6QkqJ1qHmiNB46UKjzgVrkY6jEBJRJ9BKCUqH36+lQqsIJTQy1gjliZREKxmKZanwTgWbsrIoLYiUJmtEGB8Gm0IEqHekt9k1Uimc9SAlmtAYVlrgcCFkyHic9FQeYhljI77itP3a+tpa3trAwmJ7CB3+tFN1ENQqmXoPYOprnxACU22rISMtSZMGy5dXKfOCxYVZJIb1rRFL+2/hkccfZteO3ezZex2b3S2eee5Z9u/dw9yOHcQ6YmvrMtYJnj72ECdPPsib3vXd5N0Njj3yCe5953v57Y/+DDNzuxHOMDfboJQdWnFJWZa8/O3/J1/42L/lrnf/Gz74vj/m3rf9MCLbh5eC0+sDfuuPf4tYGayLp8PN0pjp8R1FMbqQDMvgivrEpz9PpzODcgIrfb33C6oQi0fYMKS02Cm7abphnTTmbEUxztEtS1FtpyZeW1/7SypPR0bMWs0ZUU0VzpMurRICnKA/zpEIWllMJiGJcqyNkDi03L7PgcRNURAWJYPtT8cR73zLmylHQ6SEffv2YU1JpDSiqojSiNHIgPeMyoIoUjhjyPMxznmKvCJOdEBU1FbqJMkY5UOkDPcY62B1fY3N/jobm310HNPvjliYTcF3Sbzm4OEbaLdn0FFEpGI+8MHTQaMiRBih1fcA4y0SH5iJItwTpKrvZ95hnaQqSypn2Fq/yLe/5xvYWt3iZ3Z1cMOcpByy2GyTRY7LbmK7ZFpjAcFqK0KTTtUWYS8EKrzEUGNM8zI8pRJU1iN1jHFDvAgsVCVj8CFUaqLnykuHUHD8hSfJUkWiNI1E89a33I0TMctnTtWfUXgeDo/yEistrsyxJvDuRP05BnSIo6pMzWH19XMPTczn3Qa/sKrInzzDeGaB+UMpZwc9btq5k9tv3EksgyW5193gn3/2Are/cD+vfuPLuUU2mC8GnC8cq1GKsZai2MRKz+ryRbzSeBRKa7wUWA9pc1+toJukrX55WEPNLxS2HoTWGAqC0EOI2i3irmgeTwJbudp1F2o36gFNWtd4wXJtjEd/BcffV1ovuSn31rvuQNRTEScAEQWgPVVgoUmFkhZnInKTkyYJcZQSpxl/9uAD7DxygC989gne9YNfz9te8Woe+dLzHDi0jzRrMOz1efDTD9Acb/COr3sLn79U0pKLlEUoItfHQ/Alvqgwrp6wC0nlS6SKUVKy/6ZD/L1vfhe7zh7n6NNPY22P3ppFRz26G5skMy103KIpZllw+3nLdW/nnW9/Da9+/c3M7I8ZF4rf//gH+fBv/S6LBw4xijK+8MAD7M12sTfdxeuuu5OFvbPcsX8/n1Rf5OhzT9FKoyDjVApjcpSUFMMxNmkxHpZYW1HZkkF/jUWj+PjDx0izjGNPPEN/OJ7ycABGRc755cu00xabox4WycMPPVKHJTh63QEzi/M0kibNSysYJ2h6jy8sWmvm9y6h9u0h1hGls0gf7G3lMEf40ADz0k+ZUFqGm2ZelGipGA0HaK0ZYrhp715+8v5PBXCk2AZy2nI8TXjBbUs0hfRoEWOtDVNDHzzvKEmkNEkaLGbWWnxpwARtwPJ4xMpyN3TS/4rjbtqou7IJd+WNvP7ab/zR+/nQZ+7nra9/PVtbW4wHQ7z37J/fyf/0P/4Qjz/+MKWX/Mn7PjR9/r5OXgmbBj290E15eHX33BjDhbUV/sXtb+EPP2Z5z7vewgNfeBqtNcvLF3BK8KWjDyNr+XCSJJR5wabJX+rpdW29hJWkEcaW7DxwmCcefpCWVKRJYMK1Wg163QqlBK1WIyQzx5p8bFjb2GRubo6NrW5QmBw8zGC4RZYltc3OEamItBNhq8CksKbEOM9oaHHpmCxLEQJG4wEzcx2GwzFKSm6+5TBFURDHMcPhkKXdS4yLgo31Lvfc8xq+8OADPPPULMPhkAN7d3HDDbfzpScfp7+2xq6diwx6ffYeOEyiJJGAQV4QK0lRFGgtWV1dJ45Ter0e4/F4av+c3zGPFYLV9Q0GwzHd3gY7dyxRVRXLy8ssLi5y9OhRut0uJ06cYGFxhu5WP7CVvJ2+Tu89QjoiqSjMiMGgT6cTEmxHwxAqYQoTEmhrKGuapkgKmlmCdxJnQxE0zockSuJ8SZZlSAnNZoaSGoFkNBpNmztZlk0bLnme00ybjPJBYMBJR5ZkLC2F1zN5f/v9Pt57hsM+zUaMwFA4R7vTJh+X4fGzjDNnznHn3bextrxOuz3z1T5s/84uY8fgFd7H0+bcFJQLofgzxVWNNi22GaTeWYyrMEYGtqkQlEXBVn+LjUurVFU4bhYWFmg1O8RpFho09YTaC6isw7kAcFFaopQkIqpZdYElm5djKg9l11AUBdaWFEUoCJM4I0pi2s0WsZbEkUaooO4OSg45VXSYSWq6BapQjIXgCoG1fmoLgRpuXQ+unHDb/2YhMEu2bbEhrVNM7RHeexQSJYOlJARf1EW8FHiCuj3w72QY1qo6wdBLpPfEUmJrJpusQPoInMcag9KayBis9WgtsUmC9Y7UOcbjIVZqrBehUPYOWxWM8yG5LalcxbAoOPHiGSoCP83XnBhVF5XOepSuwfbTqbGfFrDBwufxdVMy2HvttGgNz0uh6iaGUJNmnqrtScHqJp0Liaty2zothAg2dySJkqgoAKe1jFD1hkbHSWDwSEmShaZ8EgXWZJo1EdIE9a0DFQWVXdhDeXRUsy6VoHIeHUUhUV5otEpx/mobt0gEmU9qJamoG5GaqnThsTWI0tRNxSsUnNfW1+ya8IemQWBXAN+v/r6rB7mTc8FaC7UC965b7ibSkoVOE43D2wqIyavAvT186GYGvS4ylvQ3LnLXy+9hfXODY8dOYqXDWQtCoCgR0rHrqRc5d/JRrjt8PXnRR6iMWAuGxZgokeAjvulH/zOnn/w0jV03srtR8szjRylyy8zCTr7vn/1ffPDXfpaPffiLRJnGGI9Q4R5srUUqqIzDeUjqc7Ly0JQK6zyudHzD29/OBz/1iVArq3C+OuewSmCrst58bqtCttm7oXaIVYwxFVWR/yUO1LX1tbukh5/Qiu/+yXdx8F+9H2MFTgSovyDwjZdXL6OFxgnHah9GsaZfVpiqwmMZVSMacRJCQhBMWGSBC++QIgQbPffs01x/+AiRLnjuuRdYW1tjtb/G6VNn+Y7v/Dbe/4d/QuUd7WbApZR5TquVIaTnh3/gf+B3f//3EDoMbNupZPfsTlY2erQGA54d9WlmLdb7PXYtLHB5LQSNeeFpN2LSJAPvWD5/js+e+SweeOUrXomKrlD4haljnfIaXkosBfOLHUaDnNLCxtYIH0mU9PzhKYuP4NFfeoAneiGp/Pv+wS9RWk+1GPOtb30lg16XD2z2qKoSKcB6ha6Dj6Tcfq+EAI3kPa8+QuUqPvPUGaTf3pe/4e4bqSrDxbU1nrmwWfNkFUVpeeHSiLQeFE1CsLqV5Td/++fYuHiaJz73DIPCkGrN0c89TNLOAnLCT+eOoQHo6vrGe6yr6jpJ4uz2kHPC+fbeY53DSoHAkinBhWLEfSdX0FzG1NAs758PAUy18HYuSbGmIH/hIu947Svx5ZiLXlIJjyn7mNJhvKEqS5Q2QfmIxjLGV4YCjfe2dk9tDw+vci1MFX2hGYfYvs5PBorbwRB1rfNfuYdvM+ZqF4EwgCDScooG+2+tl9yU27d7Bi3D1NeVBTs6GQ0tiLVCKo/UEfOzMzQaDWbbMTqLiFXGuMr48AP3s3LmFN/w3d/Ayw7eQd5z3HXDjZw+foqnHn+O/qDAZrsQc0s8d/QUR+6+jR/69Z+jV5TsmJ+HsqS31WdWpexuL9AbjDh/psfRxx/n+MlTXCgvUVZjfun//g983Xu/l4c/+wfM7bkJLpzk53/yp9l780EKDTjB6edPc/npU7zw4gk+9Bcf5P4n29x0/Q284p5X8Z43vZvGO76ORhzYbNJtqxfLwrA56HFu+RLr65fw5ZA00qxthMjjVAlUpCjKMbe2BuQiTJe0V+y5++U89ugXOH78eeJmxpn1FQzl1AojUcxkCaOtAQcWlji9fgGA3ORIoDHTYG39MlVVsZrn9NdWsVJNN7mzs7O4umnVy0ckWUrlFEpo4rZCOIHMYmxVBd93FCNlSFGLGwFEHbUyKmeIrefuIzG/sf87OfroMW45MkvSLjD1SVcWTYZVRT4scTh8HPHTH3tg2ijTUoZWlwuquWAFkkjcJHwvdNOlJ3aCZgnDOEQqK6HrxvXVB++kd+mu/PoVdlYhBG9e2sFNN93A+V6X1ZWMSMVY66iKiowmd936Bj75ifuYTTp0y/42ccgLkMGWIAh2pCn/jm1GgkoyllsHsc7xvj/7c5SHV153kMuNiL9/75t4/JknObe8HJQieZC6mvJaU+5vc+V5aBLt23+YRz/zCZKFDvnYhgaQ8qyuLbOwOINzARgfxTHjUcWtN1zHpUuX2LtzkaWlJZCeA4d2UVaG8ahicXGRza11Wq0W3jusK0lqnpsxhlYrMNna7Q7OOdI0xbkAM9daE0XRVO01Uer1BiPOnTvHm970Js6deoF2Q/H800c59vzTfOO3fjsf//BH8N5z5swZ9h08QlEUNRDeMB6MaTTbZFkSYO9F4OYBLNfHWHt+lqWlJdYuXeKZZ57hZXfcymhY0Ol0GAyCAum6667j2WefZXZ2lh07Ftnc6GKMIR+PaHcatSpNUxnPxuYqcZwRxYK8GNLutIkTiacizy1p1qwtZmEKvri4SJqmDPo5w+GQPUs76PV6mHHBwuI8/YFF62A9HAwGOOdoNps45xgOhyRJEtAF3S7tdpvuRncaVNPqtBgOhygV1Qy79avUj1NFljEkUYSotiXrk/CLyeOOx9fsq3/TVeSGOA6TTmcBTw3hD4rGieLxygAWpWpGh7UBwyA1ZZWzdukyy5eXEc4zN9thfmGWNG0Q6QytEhwWKSKc9VM+UdiwaaQIttU4TimxaCVRKjSJLIGlEklF0tS0m2kYPNlt9Z7Jx1zuDyhtibWGLEsQsk5Ts4E7kiRJYJBpTZpmJEmMlCo0j5TGUEzPQayr+WeB2xJmN4Kq3E6rDV3E8H/bk9ltm2/gnABKYG1Q+tYmBAQCJzzSC2TdCHe1+gwhkPXvULXVdvK8nHNIr5AeVBRspM6BM6EJXxQFpVJAVXNXSnKT0x/nVIXB5wZrHUeffBKZJCTS188zMGUn55yKEowtESK8N9vsHb/9PSo0LKMoNOFlHaojCcwpITzCBuWEk1c0N7RCqKDAVA6ECrycwLILf0oCWFxKiRKSSGuclVO2X6IjUBAlcc25C4/daTTxUUQWReAcDomKCDYVqVD1ddw4T5RkNJPAsswiNVVhxnG6PdjUGqf8lKGp0KGBa8BHoDUILdBKTWualwp7vra+esuZok7sCygMV4edAFP+cTB/XTG8rde0cefh9ltvRUvFrmbK6ReP02nPonWM1IpMpzR1grWeRCWcXb/EqTXLyYceDo86OScmrE7hwMIDjzzM4UVFs72HteWLNFJNMzENVfYAACAASURBVGvgDRw48EbkzBJjn/HM53+dt/7Qf+FPHjzN4dd0ObTnZdx+6428+PQD/Ob7PkmrOUdZhPN0lPdRQmKdDdd54XHWM6xV/HFsp41xbyHrNPj+7/gunnvkcU5dusil4VZABFSWOE6RzuOtwfiAk9E6KHpNHbilq5zINcjz/K+VSnhtfXXXP3ntEmWk+c1PPMQ/uXcfB+Mmb731Oh66vMGjRR7QS04idWjGJFKDgq1BjyxrUpYVP/E9b2c0GhCrBGsNcZxReUeSpeSDEZ2ZJsuXVpjtzPKzv3Mfg1GfA3uWMHlBo5mwa7HNJz76EQ7edIidh67j+NHHWF1dxQPVuMR7y/L6OoPSU40LOo2Em5YUK6fPkkdtzg4GVHiKKjRLLq2th+GasggHeMEdt9/GI48+xnA8CgmrAtY3Q1gSchInEXaH2ssQQiwcSsGtezscP9lnE087C8MZ4QSz85rn1it2Lc2gxmtsjSXvfO0SETEffuw0w61VvK3xHrUQxWOxPiAxnLNBIefD3E96T0SO8jbcJ2UdNqAgdgOcdwgD3krC/dtiRQi4OiAELhLY0lEBa8tj3vudP46WkEnF7GxKd5Bz3dIsR/Z1uP+xs2FYJuHwzha37Z8lR/GZp85g7DZfcNsSuo208L4CZBju+TC4W964xBeXL5J7hcaC1NhavSfc9nV1s8jr2knwxBcfoZACpyVWRfSHOcrVyj0ZgiViBEb4WlMTMGvXt4dAelWNsh1gyVVfv5IP9+UWVcS22vfL19XDGlk3JQPrz/sYar6w+NsOeqh8sJI20gzdFBSxYizqgtxJJIJLaxatKxqpoJlIkH0eOfoEAEVlePH4C8xkTW656Qbmd+xm/4G9vP3r3kiqY6QSJEk0LSyrGgZeVZ5CFJQLbWxp2RoNMKMxu3cI3vya23jtK2/l+XMXuf2VNwVgeyPmN37pZ1lf3yIqJLM726SNmDiRxDrirtcvIl//ylAg+tDNDUycOj2kVgJ47+u0WUc/H7HS3eD02VM89eSjHH/+JL1el63hGOMlzzz2HB0dEccJm8WQT58f0VBt+r0RlbPEF8/xmc+c5MLyRbyQ5KP+tNMOIQ20tTjPd37z1/PzJ38FLwVUJqjEpGAwHJI0HUnmaOiYwc4OSb+HFYpCOFZHPYZFjo4beCwyL8htGaYTeYWLNXGWhg01EMcJRpSI3nDKDarqBpJzLnS1jeHW2w4EgHyUkLbCxuHUqT6Z1rQ7KVka8filDZxU+CqwIax19YbMh0RUW2Hz8RTuPk20Mp63HVzi23/kXbz7Z34Ph8BOBhGThps1IRnlKzWmr0xe9R7VbuEjRV5UJElEWRQYa9m1sJMDe3dy+uRxXveaO3nnu99ItjDPj/zo/zx1rArhg5LPjAKUUQlw4IWZwioHRclP/NQvBsuOExgsD714GiEEH/nUfbzu4PWcl5ojhw4zLHtcOr+Gdy/NQ35tvbSlhKSZNdDpHDsWZogizckTL3LLLbfQ6/XotBuM+0OacwvMz87Q7W6ilcWTs7DYIh9XNOdmEM7TbrfZ6m5AK0YnMciYZsKUQ5ckGcba2sZpmJmZDWDwNA3phXGwd47yMa1Wi83NTTqdDo1mysWLF5lrd7DFiKceO0q73aIoh9x04008f+IM73/f+5htNOmur7OwsEA5ykkbCTgwZcX8wg4ajZSTL76ImtivpKI5N8PK8gWs9TTTjKeffhqtYk6fX2b//oMUwzFSyqktdH5+nnHe59zZEWkSMcwHDIfrtFtz9Da3QkppUZGmDZQWWJfjvSWJZnFViRaS2ZkGSqiAJfCBBdlqNmg3mpRlQRpHjAb9qfpNxDHeV9NGRxRFLMzOTZlvSinyPFh9gxpQMx6PybKE9fUBaacxvUbEcYoxhka7xTAf442lLAp8s0mn06kj6sU0zbIyDi88Vkhc5YhVhLmmVv0bLyEUxjjiOFxjJ5+fMYYoVlPF0KSAmRQ1k+bq5csrnDzxIsJX7N23hxuPHCJNM6K4gRK6bq4qtIoxwjBhkEzVJlA3hUJy6Xjs8UJDEmGNQ4gKp8IgRxLuNzqSOKuIpCeOA9OQRrBSltYEtb8N2A0pJba002moMYbhaMzl1RXKsiQfjbHWB4VqfTxnWUa70aTVaoWgkywlitXUAjop2oQQaC2nf5dS4mogtBAC6Wpl9rTQ22YriRpE7EVozgkhEGZiaAFf37j8FdF2qk6gswLk9DMRdTEOlbdU1kxfa1VVDPsjityS2wJjckxZsrqxxurGOlKHQnLa8DPhuWupQHqSK/go26853KjTLKnRENsQbetDAyCuG18KMa21tBRTm4tQEi+DGk7LwAtUNc/PIYK6t0ZoSK2IREKEDFlPkZ7CnVUkA+9HBHWnlqGxVlmDUAk6kggROLbOOVQSk0RRnS4ragWdptVs4kSwYAfFj6uva/F2MEVUK6t8grEFWUtTloaw39DgI7QOtt6yvMbQ+lpf5TjcMwLvsWbKTQbDBLjTZHA7AcGDRE3s5/W4faHZpBlpnKkQWjEYDZFiQF4Z8tGYi1tdxnkVQl+0gDgMNOqzqVZlBDQQXqIEWAlnNizjZ5+k9dynWdpzO+fOn2Dn4ZsYxPM0u89x7NkOaZpy9It/wRve8F0c2dVBHnkPv/KLP0OaDqikZmRKIqXojQYkKmY4HhMnEdZZvGOaEqxqZWhVhST6XEt6W30WZ+d43W138NbXvJ6N7hY7FnfRv3iZflHw4ScfYssbtLM4B2VZW7viaNvW6gFvMNfOh78za23HEo88+zzewzd9/w/x6fsf4MFnzuAImzStPd5InPLINOY//vav8o+/74e5bWk3xhgurxacWtlia2uLudkFrLXEcUjGvtztEkUR480xS7sPMLf7CP3hnyCAcxeX8R7mqg7dQXBLxNWQVnORtbU1JnmEE/vhn33s4wHjVIXAs/vWoT3TwvTHlC40cIbjcVBFTXiuVuJx9EYFn//io8FZNlU9eS5ePI/XIH1gmSoBConTlqhu3AnvwUeMehaNYF459u72rAw9T256uhLue/IyGugI+J0HL6K8Za7ZxEQNhsMBSkiMCDW/t1XYiiq7TVcSoEXozh09eZmGjomExFyh0BoUmlQIlNAkkaA022rUSAjOOFBlYMAZwPjQCHII+tZSrY4oFDx7fov9ewIPOnCF3bbS20i0V6g0CoxIeyWDt047FXVPweQgQl3Y760y11nAlw7hAyALa+umHVfqYKaPBaCzlOGgpDCW0hkssDjTprQl3WGB81ABeFEzcEN/5dLKOWZm5kiS+eBuELXwRgQkibMVXoRjwk8biXUzrh7IhGvwlcPV7TVx000wSKH+pX4RAuUllatDcFB/6ee/0nrJTbl05y6KoqJMBN4JLAqhFEPnKYocKRVLO3bhK0vZSBnmlrgRsx6FaOTVjS5nzi/TmWkGZYvQzHfmaJiYTBVoKSnKhFgGy6PQ0Mwy4iZ41ap5zeHN1HZbRuoFfJ14JXiJFRYtQqfyhj1zOCGRNkyyw9cDA22iOndUeCnIq7JuAFYMxiNGoxGX11ZZWdng/PJFVi5fZOPyKuNyjDee0WiAqJktEkdRVCgXLgqD8RAvNN3+EBkpKAylqahKS384CNNzFyLW61IOJWKq/ir4ikurl4MnuT46hRCcWV7h//l3v8w3ffe3Mj8/y5nHn6WVCUQrZe/1N6N1DKVg3y23c/bkGXbdeJgzDz+GymKyxQV0I6YYjhhv9MEahsMx4JCunmyXkwjq2n7kqtrf7/GxotsbM784g61K2u0ILWJEJNCRYH04xHqD1ME+Iqyh8oaYGEGEEw7nKsoynxbT1JLRcV5QST/lCvylVaer/pWNuStWqSRbAbSDYzse+eTZM/zSz/88abNFNtthbvcC2cYq//KnfoL/+HO/TH+rz+1HriOvxhw7ex5R8xGV84DC1RuGw2mLX/xHb+AbfuFPp8qIycnrhODzZ08ikKwvn+PW227k8vLGVRuXa+v/+5qdDeqw8ydPo1SEMRVHjhwhjmPW19eZmZkh2ZGSdmYR1rC5tcHevUtURWgG65rzJn1Ico2jBrv3zE8B80tLSzhnWFhY4PLqRdKsSaaabG5uIYQgy7Ir+EeeOIkpTTVlmimliBPB3Xe/jMceewrvJDMzM4xGI4bDISdPnuQbv+8H+eRv/TqjkWWcD8ka8/R6PZJssWbIxZw/f56ZmTZKKXq9Hu3WDIuLi5y/cJZms8nl1fWpIk+Q4KxgfX0d5QVzYjaAy42hqDZ50xvfyqmTJ9jc3GT/0l6Gm6uUlaHdbrO2tobzOYPhCClCA8OQT1Ugk42y865WESXh9zYSMAULC7MsX7rE3r17qUwRfg6mjTIdeYajLWaa86FxZjyzs7M0m02Gw+F0g1qWJYmOyLIM7z1VVU0Vds1mk/FoQKQ1VoXEV41gOBxOG3Pj8Ril06AEGo5pNZosLCywsdonzZKv6jH7d3kF5dGEK+fwBBtCnAS14gTYL1BIrxmN+5w8eZyLF84RCcG+ffu4/c4babVmSOIMoaPw/S5YBaYFjQgjT3tFEt+Ez+R8Cb5O71MGbwQ6lRSVQaqgwLbG4JVCSEVlPWBw1gbILjHeGbyogjXUAkoGJ4gLnDcpBFpKIuFoeJibmwt2SynABkCx9W56rFVVxVZ3nUuXVhgOh/R6QwaDQbjOSIcWmtnZWVrNDos75pmfn6fTaoIM15DQqBJ1aPg2U20SzKK1DpZXIbBsN/IC0GY79VReGZYh6jQ4Gabh4KYFosfijMU4iykr8uGIvD9mXBS1ktBQ2JIXz5zlyeeeQnmHjmOcrZlwVESpxlEhRESqFWPrkF5M52dTBqBXQd1HhZJZuP9jacqofp0KJ0DHQfEWycDUE0IRq2Q6UddR2JgoESzEKtIoEdJ5p+obFQKthFZIDKluYJTBVQ4ZyeDskAItg/VUC00sIIpqxa924COkjEiyqMZ6RFPlpxChGZJEDbSKcb5AJduNP+rwqGnKmxUUTgfbfpowYZ0WRUESNyhMSdy6xpn9Wl+xNOTWgJUIFZKYJ/UyQtQ8YQfCIqQkqpmbUaRpN7NpzX7m3BluPXSYbn8LnCfLYrCOzVHJC2urKCOwV6hEv+LycnrO27pMtgKWN9dQDkyyQUdF5L0NenHMH3zoS3RmT5BECY1jn2RhJuH2772N4WDMYmeB3/rUU8QywnlPdzyilTXY7PXI4hhb8yPNFNAuSOKQThyO4TBs6w36LF+8RLZ3P1/63P3cfeudPP/cM1x3843sJOJ/27sfm2qePn+GDz3+EN7VDcyak6mUwldBZV3lo/+/PsZr6295bYoeo2bC3I4DHF8bk186hVg4hNAWgSevylpVFBG3FJ4mUdymNCF1feQjxrnn8saQzuwiKI0XksE4BwSuyvE2ItEFF1fOTH/vRPm02R/VjRXB+rkNVl78XZRO6DSaSCkZjYIjo7fVpdFoceDAAa6/7jbWN87z/HPPEccx8/PzWOuDWl4oiqJgfXPtKit6YDgHx5er93h5ngfnl4KK4K+0IkjbrRTouoHznjc0+Oc/8I389//iPr7/7fP87390Ennq51i85V+SGMnSoka4iAsbQ9qZ4tYj+3jy+WWefeYEr775hjpIxmHq5+OcBxl4fVaEN0PU78dqDm88vIMza6eIlJzuRx8/ucxrX3YDBsON+2d4+lSXRpZgypwDCw1evDT+f9l771hNr/u+83PK095+69zhVA7LcFhEUiIpqstFkWQ7kVvkddkkTpwFHAQbOEEWC3uD3ST2xlks1lggCWwrWW3s1TqOHJdItmTJliWrkNawDfvMkJx65/by3rc89Zyzf5znfeeSkuyxNohlYA4gjDhz2/vep5zn+/t+P19Kb17DOTh1pMGFyyMq64iikPuOdjjz2g65Mvzu6XVmY3DOgoUL6yPOr4+oDMxEkJYZZZkjhG+MFaJOnQnHyy+fYWZmhrLKaTcbFOMUEWhevfgqlXM4rrfY7hdAv+6xl2eIUOFyLyQ6AXGrw+7Get3YWwuCwgunSI+hcs4nqIriEr3OAcbpgKLIOHr8FALtBTkrEXUscv+3nzj/7TdqTLf7Mr371nTvAFTsKxK7wXXDopwWEgKJM44w0JRFhStKojCmmSQEOqSsjJ9EVyWtXossyzg4t0CFxJmK869dYnNtlaefPEO72aLT7NBsJjSShLm5HrPdGXqtHq1Wi95Mh1arSafZQoSaZhAQKY1wkiBQCOuQgUbhN7HK+Y38pHUlN5ZxnlEUBbu7u/T39tjcG7C3u0M/GzEepKR5gSkLClEhnXfLeau68QeKcZg8x1m47c47OHrsOEL6r/fSq5d4/sWXGA32iAKNLS0oydpgQFFmBCJgnKakecbs7OzX/uLE9T8thjfdcTvZ7g5UBqUq7jhxnHOvXEFIONQIee8H3uWn35VBN0OEEkQE7Fy4jFEBVikGm4+hZMBr1zb8RUZrdkZbyMpghJvGfNACLb2rwThHkAQ168I7EwLtM+OYirASSJEQhU1cHHN7Dy6dX4FcYmTM1bUtVGkRUmNshaNCWyhLA6KiLA2lMZSjlMIZjLP+vZaCrKhYv7w53Vx/3VULc7Avxip4fRsrIKsKhbfLV6Kksg4lJTMNzQ+/7SFWV1cZ5znFpUuY1wxZoPjZv/sjjPaGfOX0Gf74xWWWuj3e8ehb+MTvf5b5eJZ1s4krfEzxohzxC8/t7rsA+IYZqCMN/imPndTy2JMv041Cbj+0eKOn1811A2t2ZpEjd72DZ57+Cu2kSV6MCZvhNNbabs0yGAxIhOCrX/0qDz/8sHf3EBCFXuyJYkUj7PgIZSOh3W7XF98VH1VKIt/iqUJMWREKyUzbxy6jZrPm17XIhqMammqIo4h2a5EkSYiiiDNPP0uv0+Ptb387p0+fJog099z7Vp5/7mV++//+t4RIQqUIGx3COGY0HrD3yi5JktDpdmk0Yvp7O5SZZ0nmWcncfJcs9T/XeDxmd7vPu97xTj7xyU9z7NgRL+Bt77JYHSCKEjY2LjMz2yXPx6yurhIEAe12m9I4nLMMBvl0E5Nme4RhWLPb2h40L7y43oy6lGVBHAm67cTHSoXECktelrSTGFvkNOOYcWUxtiJQikjFNJOIYSUoyhxx3YzsH8RrwHuWZXQ6HYo086woa2gkLQyO2qMzFeuorkddtNYMh0OiKPK8GiqazSZlNaLba1IYi9Juygu7uf78y9VxQWdFjTPxUYKyMPVGw1CWOStXl7l48SK7OzscOrjI3fecpNubI44aU2FCygAEmMpHmwIdTt13++OX+6MEZVkilW8i8/8rkc67jaRQSOvv00rWdLd6EKO1BiOpqhylHSjpAwvCD8Iq65BCUDqLM0XNNnS4ul1caoUQGmed59sJgRSWKAoIwxil/T7BWeoJsY9PF3lOkVf1gM8wHqZsra/y6vlzpHnBXn84bQYOw5BOp8PC4hxLB26h0+nUDt0IqSxhGCCVRWvvNrPCIl1Zx4Ovxy6m3JMJ70VKj6uQEls3nmI92sQWfoBY5RlFvkdVFJRFQZHnXL18jWeeeQoihQqU5/tIh9YC0J5nJ5UvTRKSRuB5dbYy04EEgFR+7ihljJbaO9+U9EKAtdOIqazPSzVx3zkfQ0VIjLNEUegb/KxAalCRwDpRs9k0VWXRQQRKAQ6pLI0gITcVQRx6LUN595KUEiMkgQ7BTa4JDlRJFLZxFrSOCQPvm3DOgfI/qz/qPSfOWB+fl1IiRV1CYqvphFxJidYRZiJq1MUmygqkDInC8M+eLt5cf+HrwVOnSMsKJRSWysePqQiE5zv6ga8BGVBV/nnHOj/gt6VhuDcC67hw6TKvXbzst4tK+j+tf04Qzj9kfz33xY0sIQRWweX1VZAh5/74S0TKIUXEcDwm0wWiJdkZw7/85V8nVpJmo0MsIpzw7t8oitgdDQjDYDpgsdYi6kG0qqPmmzvbU5xHURTYyDvY92zB/W97hAvnLnD48BG2+rtU3S4P3H0PtshZitq8733v4x/8b//cX4PU9dKHsvRCjS1vOuX+sqytqyMefffdLK8q3vueR/ilz/0nmpRIG+K0rQ0vAmEksQiBK4xGA7arEpVEFM5ilaPR9QVrWkdYZ3wxoJs8C/sVxzE/8f6HOfXm93H3/BVUssBXrnT45Y9+hGsrV+kkAe3FW5ib71JlY6qiRB2Y8edW5fEQl69eYXF2jq2tLQ4tzKLDAOc8X32COymjBmXZ5m3veCef/vTv0Wo1+NB3fT9ZlvHJT/1nHn34Ub74+Jf8z6c8gxWAyaBMCKTy+xOnJa1GSKQKHAWHDyQIQmy4yMGGZn5RoHVC3Jxne3SJMAworKUSjihKGOY5xnnRSeOjmVqCcd6J56wfAjnnQApsUTKWaipq+eXI85LljX7tnff3oCzLCB1IHeDE2PNtLV4YqwS1/EEYKs8/kwJXgBAVUnkkgxcHwVW+1MIByl7nbVp7veHUOcEdt99NU0guXn6JgD5KQUe3OHpLixeXt0nrn9v5H/tPXf0CNIaDi12K4ZCycKxcXSYJAwIFSaIIZECgBat7BXEcM9cJ2d0eceKWOW8UMGB6CwzyPliJm/DJfCwOQc1H3LcHnby2/QmIqWu6vqTvFxSFcCgM1jmEFIC5/trcjYlzN/zEMtl4JVGMDoPp34dheP2hCabMnziOSaKYfEEQRhGHl5ZYXJij2+rSa3XYWt9kr79LVnjn1nCUsqzXCAMfWQhDTRS3kIFGCEeoNFEY0m43ieMYJSNePneeJIoJtSSOY9rdGWSkSOImzpRUzjd0Dfo7lIXfJJdV7pVc53CiwkrJTKfDysoKjaQJzlIVFaFQmKrk1jtPEEYR2+srPPalPyTPSwb9XVb6Q7b3hkhyWrM9MmHISw8VLMuSXncRN+zT6XVxzhGHPtKx/9gTzv9ihYXDtxyh9ERHTCU4e+6C/yCpSJSCJEQhKLOcve01uotLjNMhKmx4cUgrAq1ozs/QmJ9j9tAtKB2Sj0f01zcZbO3Q39ylynNMWVL6L11Hhbzjr6qKqVvOZ9UzsB4YfeWlTU7cuYCsHCrb5LlVQ5uMH7/zFn70+CxGGIq8QrQa/JvHLxARUpYO4wrS0ZjOqRmErZswy9IzB5ylXUOysdXrhbZJPLUW5L6mlXX/vytNpCRlXpAJhSkNee1gCqwlHQxpxA0aYcR4PCavSlxVsvL4U0gJf+t7P8CHvuOdvPDEGf7d7/xnunML3HPbMdaeXEMof6yHVvHsV1+aumsdvq3PTtT+KSDS4jDsZBWnX331Rk+vm+tGlqiI55ZwVTGFZprKx4LiqIkxJZs722S24oE33c/i/BzXrq3iZEwYBMzMxgTCg7/LsqTd61IUFUEQMT8/X0cufVx1YWGB1dX1KUOt0YgZFWOShuchbW9vs7S0RCuOScdjXJIAfqK2eMC73p458wRSWRYW5jhz5gwf+tG/wSd/7dcxzqCUFzRwGhFqiqokIqA/3KURJyxfucrs7CzWVaRZxerqOlk+Zn5uqY7IOM69/AJvuvska6tX2T18gLJIKdMxuztbSCHIipwiTWkmIXlWUGQj8rKaNsYlSZPNrWueu1S729rtjufC1O1DWVEx12uitWZxcZ7V1QonDWhFtzvDnnMo6zdRaZqzsLiAMd6Jh9O02x6cXpYlRWUYDAZURUFvzg8qNtZWicOAZrPJdpYxHA5R2rPk0tolNC6KumXKTsW4TqfD2toarVZresP0/LiEQAqqYkyajgjCb+6h5+aq7w2Vv2YHkwih9QLUuXPnef65Z5CB49jSEU7edphe717CpIPSIU76jaSqgd92AkPB80Z9c+r1426yqZngFPLaxaW0F0B8jf2E+zLGCQlSo4XflGqtUYEXfKrClzzoQBIEzoOTpfalBlVFEEbT67hBkI1TwjCkqPLaxVE70VSAlZPopJ8WW2tR1ot2gN+oOodWgihooToVBoFxAknl9xNVRWXsdDKf5/nUmV+WOXvDDa4uX2A8ThkOx+z1hxRlxmDQpyo9I7HX63DglkOcOHGcZrPJ/PwsrUaMUoGHLCvnOWyBvt5YW0eNrbVkRU5lDdk4JU1TsiyjMClrG8t86St/xMbGBnEjxio3jalO+GeCwItb2kfYnZQoBVaUJA3v/JrGVOvBWFA/LAilESrwfDwp0XriNPYP/iiJFh4topScMmqkqhtyBSSNGBlIRIV34GpdswxDlNaEYUxejOk12+SZb9T10V0fIY6iYLo/lTKkLHP/dwJwmiiJvAAsNWFQR1CkQEiDMQWNOMFaSShilHL+WBKCCW9MqwAnHaV1SAM6COuosEDJkEArgtAXTXjo9M31rbzSwnNILQVaSmxVIoHc1sJD5ShthjWgdYiWyrvMnMRKxcbeXg1Dn7Qoikl3mGfE1c8B+4vevsYp4qR/QBB/xvFiHcIVVFZghEDKjDzPEUIwqNvb4zDykfss59seeZRcWL74J48xyjKCQONqJqJ1hiCOqPIC4SxR3GB3gqao985xHJOVBeM8Y29jlwdvv4crw5c58/hpHnnPO+m12nzlycd4030PEt6+hLi6w//043+P//Wjv4StRTmPpjBUZYYzNxmLf1nW+tYu//FXfpfu4hF+4zd/m++4++iUqykQBCIg0iF5lTLa7PPf/cBPgguYPXCAINJsbGwQSctSt+GbzW05HZpK5QU9KyqUFGgZkY12Wd/Y5pf+zX/krhMnOPrAO8mygjCIScKYKEp8SkwWRE0/2HPO4QK/d/3w9/0A9913P+My52O/8lGUUJ69pqEoS6IwwpQlhw8fJdQBi/MHKIqMJ594nKWDh5hfmMXgWFxcotVIuHLhtWnDqfDfDCH9PSAQUJWWj32qz9mXn0K0JU++OuTtn/95PvLzP83733MfP/H9D3HbPUdoPvyzOGfpFxVruxm9dojQESt7KdLW7HWjg59R9AAAIABJREFU6j24TygIFNoJ8no7q5zgXffOE8jKFxzJSQmV4DsfPsp4POaSsFxZGfn3BT/surbSR9cRT1sXVFy6NqQUgBOMRikvv5phCsdcHPLQm2/nT558cToE7AQBJ08eZLO/x/L6rhfhatfb5P33LcsGqUJS53BRwsE77mL54jmSpmdJ5iKgDpwCMDPTpd8fvM6xCLxOGCuBy2v9umnW78lsWaKdYCcVGJN7HqaDbDhidzhCCEF2cYVuU2OMpbV0FyrsIBE4xPTnngyEJ0NO/81rFtw+Qc7te61v/BnBX7IrrRFmsqfVTBi+jhu799+wKDcajQgjP+G1WQ74B9sRMNDe+t9oJOR54a3OUcj2xi6BbiBwvHbpIivra5w4eoi022O2N8OtJ49RZCVXLpzHYJBWUllDIhWBkgibe8u4VkhhMaZgOLRsbG5z9oWXmZ1pIFtzPPXcGU7dcx+jUZ+gEdDrzKACzec//3m+50N/jTQdM9/rsru1XivNgsqUpGXOaDRieW3E1vY2VVnywD0PoExKJQo+/yen2fzsp8hz36IqrW8X+f53vZ1uULAhJAmKoBFwZTAkr0r/8BEJ9oZ7bG5s88orF7Eu4KWzr9Sb1uu/GFs/tGgtCOOAQATsDfuve9/vueMUPZfRDBuESUiUVSzNzpObCpyHOes4pLIGUxjWL68gL61w/snnPVsFX408OanERPWtLyjSWJwEpf0EuCgKrFYIA85FBDpgREFYhWTWIDB0Dh/jlO5jhD+wZ2h5LoZwrBW5jwdJ4yf9TjHOUjbWNl53gCvnsAHsFdez6NOCh31Mucna75KbTFUw/oJkqIgDj990zjtrqmw8naq3FudYvGWW5UuXOTx/jGuvXma8N8CMBdoZLv3BF2BpgXvfej//+yP3cfrLj/HrT7+IIOTUXXfzwssvcGJ+jp/8x3+Tv/eP/jkeIim5+8Rxnr94HlcpfuyHfpiP/cbHkIS87wPv49Of+hQzjbkbPb1urhtYOmoBKYu9FmkhSFSbJIh4/oWnSeIOSimOHDrM/Pw8zlb0+32SJGFv4JmGKtA0kibWGcLQtwF7nlkybQW9zrLyF+lut0uWZQihKIqCAwcOkOd5Df32UdMDBw4gaifa3t6eZ24Fgecx9noMBiP29vb41K//Gp12k53doXekBgHO5JTjlDCOyEd79ObmGQ52p2DxOA5ZWDjAzs4ORZFNWwoHgwFBEHB1+Qqzs7OUpb/w7+5uE2nF0FrG4zEUOUmSUBQFGxsrAOzsbk3juL1el+FwiBCCmZkZXyLRbuKMZabboV+zPiavZ2lpid2dIZ/74mluu2uHB0/dTtJM0Dqg2S7QeIfJeJiSF2NmZ2enLDIp6+uQ9QOeNE3p9XqMx2PKMkeHklarRavVYn19nSi6HmedPNQIIWg2m9PXX1UVe3t7xEmbTqfDeJSx1+8zOztLFAdTt8vN9U2seiOh45BslPL8mdM8d+YZms0md955gkff9gjtTock7tXcrwDB/oZWgaOYHrNF7qbC6qSRDySV883evnXVP9xOziFbVd6BXzvuMIaiKvy9NKiw9aa+LErIsyn7q6wy//nOi3rClUwKh3RdJGFdibOWRiNGVKAj7ZvArXcIFq5EoPzQSnqBS9XFC1BHJRBQWS8CBWp6j1MWCidRKkDoiED41x3ohE673vg5g6hdfJNSCmvBuoKyMLWLdYSoIMvGpHnB6soF0nREmqako4KdnR3KssQpxWiY02x0aXcSZmdnmZmpXXi9Ls1GjDElo90B4/GYJ54+zee/+AcYmyOo0K0QVTsWjDFEcVC7GTRhEOMqV8fZQakaBSIFURL6WGnpxTIRBGilkMa7yirjCBoNAhchBBhR+oGrDLETZ7urpo2pIOuH9tpJF9QCo4wI25K88PB5JcPaBSgIwpgkaRJFEUKVaA3GBjhj8ZiBwEeYK4dQAbMz8x41kqcEUqOUJGklpMMC5RRW+NKRRCtsUNYDaf+awzDEVA6t/DE8GUIHgUQ7/zCCg0iEBHHAOM9oNFoYU6K0IGn0/iLO5Jvrz7Gk9DxNIfxjm5RiWuyg0IjAoWhN701F4fE3lTVYFEVusAiUkDXDiOtsuMmf7He3cP2/J26K/R//pyzPuPMqn8QffyWejV1aQ1CWFGWJsI4oDBllOUePHOLRNz/El5867ble2jvUBX7/HwUBURT5AUJZEAYBYRKztzckcBaMZZSO/eDt8Czf+3f/BruDPteeu8BMZ54jC8d44rXnuOf4nURH5jhOyPvf9BC///Iz+PIZS5Gl2KryiZyb6y/Fuq3botKHCGPNHaduY1zkDLM9Ahn4YJUxFFGIxLIzrjh29A62N5axLiXPY1avXSGcO8iRgwusriyjiOs9t3dNhpHAGcWF1V3yckQZHeB3Pv1pOkduwy4c5er6FnefvAuNY3t3QNSKcEWOErLevxuMsfXgJqARSQIh6TUaRKFG1MOUKNZUE5wN8OEf/iHMuIQ0YycbESjFgYUlThw7SDYqWVpYIok1a5deY39XsEL4ZwkFzs+pkSon7AjCIOLsasFP/f1/yigLOH3pOf79Z59jptFiJoRSCHaK2jxb5AjtR2C5gwCPnJACrJRgPe6pmkQz8ZimQGmELT2PUvihoZICWeYEzuMulNjXNKokYSAJnCPNLanzZVK9OKQockoBwkqCQGByw2InoVX2QXoXGc7SbAvmE0M7nOHK+vbUkGJtiRQ18qp2jJ09e4Yo8mLl1dU1rm6NubL19RnPOzv9r+sa3t+EOnkms85NMs1UCCoBbqIVuK/9/DGC0cD/+9prL9b/IqcCnHOSW4/d5X8XtctdConDc38n35vpZ1530jmBj+1OGruFRONAaG/GF97xOHkNN7JuWJSzzuCc9k6HelrpakZA0hQ44Ril3hZpyoo4DPkf/8F/Tzqy/MYffQYnLG999C187vd+H5iojhUi0LSShDc/8GZQsLG9xzPPPu1FqjoqoOs3cBpp0YqTd9zNRjrGxjFH7znFKKmwlIy2trm6uk6a5hw/cRtfeexxYh1w+eJVfuu3f5uSkqKs29OUv+m50lG6kkiGPPLAA+zlGRbJ5ZV1EBWHDh2i0Wxz7uxLPPKORyiNIJSCo62YYSY4d3WVQEdsbm6CsOz1RxxodpibnWXmoR7OWRY6MWcunvevfTIMq49BUQuFZT5G2NxDI/EC1LmLr/Ez/+ynGQ+2iCvL2toKQ1MRCUEcNxBaojCoUBNEERXCo3KMv8EL6dBWTKNCVorpQSeEAK3QxnMBA6kIlW+StULgVIhxFRe2d/l3n3ua3fEmjx48wk//nbcxP9dm49oOEsue02htcZUjNd5NUJUSax0pBpxkY3eLYV4xLgqMg9L59tWdNPdXtDeuWpjzDSvXuXJy4jZU2k8IhPfVOlOQBbA4fwt5VlJaQ1XlBE6yfvUaWxeWsdKwdnXdP2g5IIlwgWB9e5PO1UtsXL3C8Qcf5OS99/FTJ27nscee5g/PvsjC7ByLSwuc/q3fw0qNNOCEYWF2ES6/AkIxt9gFoXBGcOTYEkI4WknzRk+vm+sGVo5m7dJ5fwNXMYGSyFDTa83R7LRZW1uj3e6ys73N0aOH2dqpMKag3YoJkggpArTWFKUX5aIwAmPZ3NoiieuYWFnVgkCbKEro9wcMBgMOHlzAWcF45BuBZg7MsdPfptXr0Z6Z8W2UJQQ6Isv8pH1+fpYwSIjjBh/8wF/h9OnTWFcRBh6gL4QjSRSikghTUDrLuD/wD3kKqrxgtDfgtluPs7695iO0saCRRAyHQ2a7LTY2FHNzM6yvrnD02C0ICWk2REtHnqVM2k6FEIzGXvAPQy+aZNkIrTVJkhDHnoVjK0NZeOdQIwkQNBFYTFWgnaEZai5uLvO3fvA72dpNCYKQ3BnOv3KVC5deY3N7FycDkijm9iO3cZuO6YUNZmfbtCpHmg0J2q26/QoacYNSlbXQooiTiMJYBuMRMgpIghApEx9Vrfk24/HY2/Fr98n83BLjLGU42sFWAcOBn+h7fsjNTf83u7K9MV/4wh+xtrJMqyW58+RtfOCD30az3aORdAnCuGaIgJSeXyYkIBxKTx48Q28OcQ6l7HSKWpZlXfSgpxvzQGtM5TCmnLrmpJNT8U4Ig1YhruakCRsirMNNigKMqcHNirI0U7eYMQYp1DQ6mWUZSvnNOQLKIkXx+kiZtR7L64QvC3AYIq3AVlgh6/iqw2L954p9UVYJDoEWqo531q5DPJPJWIOqoyW2crUbTxGGQe3Ki4kTv0mYYaYekF2fRDtnagGvjoHhGA1TiqJkPB5jjKHf7zMabPEnF85j0jHOGcbpEEdFmg4Yjba45dCin8a7CqeEb5t3jljHVM4SBFHtNEtQKP87CiLPEFQgdQiBQ+Hdb7IWrfKiQAqBFHXjqhPTTbQTTAtghIDS+rIPKb3oESgvtMdxVEfp6mZlESL2CWPO1qKuFURBhNICrTQi8hGfIGiQpxlxQ9XNrTEq0j566hSudvcGIqQyBbYELQKcFfS6XQajYS2SCIT0Isd1zmaJkM47CZ0kDBVgkdI3cU/cpcD0+FMohBLYm9ejb/nVa7U8J1YIcJU/RoRFWedZT8bUBQUOatdGGEdEskFRVQixCcJNyxKM4PWC3NcT2iZ/v//f/iyX3BvWfgSMs4Zuo4UUglGeoVSA3dmllTQwznLr8eN88fHHkaHfCxvr8IGckLysaGnNdn8PIWCuM8tgMKIscyoVkIYFBkc2GpO+cIUzm5ucXb+MGhdcO/My97zjQeZ7C2yvbXD7/AyXz7/Gt7/7HXzm7LP+PiDwsVXnrj9M31zf8uv5V9aYnZ9BjVNkZ5aZ0NIMY98cLizOee5n6SAKE/7VRz/Gj37ve5FG45QX7SyKf/1v/x9+6EPvR0rP95QShPRxUm3hjsMLvHB5j4/9k/fxrz+5xaFwjRd2CqK5N/GLH/lFdkcDlmZn2djOuWXpAFJS73EhqN3yZVnyi7/6UY4cOkmeDei2EwLl9xtpmmKdY5xnmKLk5372X/D2d72TP/iDzwDwE3/7b5OXhq989XFuvfVWnn/+RRpR7Hmx9TO1s35P4DsBJVJ5TMQwF+QF7PZLoiqHVoyxKc1IY5RiYzBmmF8/r6PIN7xfWt7yJho9Ed6gEm4q9oAXeKqJOcU6PvPMGrHzZUUCz0OrjOP02Q0CoXDGknG9KbqygnFekaFA+K8nnWM9y33ywNNn2RpBgObi9h6Hj87UIpRFSSA3lFSIMPY6hrJTDputCx6EcDgsxw8fotdooBkhmh2uLq/APlNSt9Oivzec/vc34sn51+v3jvOzc2xsbaKEL+Zw0rv6vdP99eKZX5OCijfy6ixHj5zg0uVXOXL4VqB2JTu/D0Iydba9UZDjDdqhcx6VZWuRE+c8J9lJrKvLIh0U+fo3fH371w2LchJfCKC1f7CVUnpWWFFQVT6uWpqSTqvDj/3g97HYnUcAH/+tTxIoDaXkuSeeIJYxmRlx5Mhxtra2SNOUwWCAEJ4Vc+rOUzz11FMM+kOQ3rbpVcn6TyyNRoNL56/w4Nvu5dkzL3Lg4CJnX3qFd7zzXeyOhvR6PV597SJShHz5y18m7sZ817vfS2kdzbkeRxcP0Jvt4ozFOsH2ziaDwYB7b72dzTUPfVze2qwLCRwmzfngB/4K58+f58M/+Ff54//wCSSCQ+0W58djLq5ucPKOE4zzHJxgfW2TZLZRP3QInCkZ9bcQfC05zUjQStFudhj3hyRhAP6ZniAMaSAotpeZ7S0x2B1h1tcIq4oo1IRUCCdoJG0GlcFUJUJIhJBooXAIqrKkKr2zMVAKhPKbhMogrefAGOddCQGemVFYixIaXImUIffPzfJ//MC3YS3MHoxRwmJjR2uhiyksZpwSNmJiFSDHKT/zwUfob+7hUduG4tWzLJ8dc7IRMNZtcmPRrsfhTo/xYIwWksrZ18VV978/cL3wAfganpwSkjCIqUrob2/RlLKOylK3B0Y4V6DCEFeWnm9ROwfLoqQRzzEWI1RVsPb0swyBOx95mO773skdl27l0198gs89fQYdCu44cgjn4NXLV5jVIcKAdoLV5U0mV6dBmiFVRChv8qz+S657H3orT372U8wvzNTweT/ZHY/HNNotut0uc3MLXLlyBfDxpyzzJTRaazqtzvTiPImfTiDGUjiSJJlG6jY3N1HKW+JnZ2dptVqktRtkKgilGTOd7vSBrd1uc+1a3wt+UURVVXQ7CWEY8bnPfQ7n/PeYmW2z2x8RRaG/gTk/mddBhLWFZzOWlv5og167webKGtJe56j1ej1Wrq2hlOIt992D1ppzr12aNpwOh0O0DllfX6fX65Gmg2mUzaMFIh/Tq5EE3tnsp5bSlnSbTaKoSVn61sGZGe/u6Pf7KKWYnZ1lNEqRymCH61hrObEUMRsfpNu+n37aR4rANywNBlyp+jz9/FmWV/psbm4BGWmecvjwYR564D5uu+02sv46KvCCZigKer0eDuo4q55+/wmPa+KIGqRjjKmB8RjarRkWFqDdaU6PjZvrm1v/6eMf5dSpU5w6+Qi93iyt9gxKN5BaYZyP74FASYlUPtTvh2eeW+ic88eBczjrpufspCRiUjKkhXeLlWn5ug1QVVVo6d13VVX5chdnwAl0wPRrKqUoXeljy1WBtRKUpjAFatJ4JSRpkdV4BoVUAXleYoUFA5VURDrAmAKQKGWReFFm2hgoJc5ZtPV3cofn2grrkMbV5UgKq7y4rSQIIZFKU5ZFHX2xPgJsAFdPu51vmxVKYZ3DyOuTYekEFoVzBlWXIEgRoIIQiyUIY6yAZrtLnqe+TME5ytxDt/M8pywso/EQYwyj/iZVVbGzveELqMbefZvbCvD/35Vuus+bxGyTxF8PoijClNZPxLX0zD4AKRHOecEr9pF1LSRR4O+RQlmMcURh08f6ZIVxjqbWaKGpnK2ZNBIlA5yVKClR2uMgnBU+ftLoerdlFGErL5hKqT0fBtBKopR3RQRKIxUgDFQKKUKkgGaj5dv1bOqPB6n8wC+QKCGwhaERJxhKyrJCC40U2v/ONNP4bBR5/qgQElfz46rKb8KlvO72nMSzQxWSV/u9FjfXt+IqsjFR4NmtFkHhhkihMVUBIkJLH6vWOsQaKKuctMgo8k3Kyguxld23j32jIPfndMP9WR8zbQvcz0Cq2Vn33HWKs6+cZ5SNkMKxNxxPr1kfePTd/MEzj2HLilBrlJZU1lHlFbtyDDgaUYPM5GTZ2Ivhwj+kpmnK/Pw8x779IY6XhsXnztHPxpx9+hnOvvgK3/+TP84nPv6bHL77DoK1Xf7w5TPcsjjP8mrfM2CFw1UVVZH///lV3Vz/FdfZjRHFyi6JcxRc5Ye+7S6uKzKqjqCW3kQjHK2mL1NABwhgZ2eHAwtHefNbHqhdxn4QrpSf5gmkbwl3kKWG3/v477EdPMSXz6xw+Na7sGtr7KY5o9TQbHW4snGJW5XGuQoZBEwK2ILAO7p/4K/+dbqLizTjhM/9/idrBIZFhgHOWUKhGNbN7hcuXMAJiRSGa1dXGI3HjAYD9nZ3Ge0NuPW+Iyxfu+D3G0Zcx4NZn35TEhpK8cv/4gc5fPQU7/3un+QDDx/g5371SeAiCzOPkqYVs90G/SKdOq3uObrAuStbZMOcudkZtBtQ4pCOesjpEEYgao5zIBzGgVCCUSZYPDDPxu4mwWRAgGN9XHHs4CxVusmdB7s8c3HXu7exHDqYcH7FCwzOCUoEJ2+JuLySYoSkF4ecPDrDk+c2yCv47BMX6SV+/KCF5Gq/5LWvrmHcCt0YTGloBj4im1YRJZ4/LIQkTGbJhOTs+XPcecfXJlZcYd9YtvoNV6A0QnkD0yQK6hA4YynN14pn15edtqN+zar1nesOPY8WMEohnfXJDQwSWTe0+sSEm4huTEoltP/U2iUvhEKgsa70+wYKpBQ0brDk6cbbV2PPYnLOEkQRpjRUriIOY4oix9mSe46f4MPf8yGsrXjlylU+80dfIGw0mes2GZYj8tJxtHeI83sXufvOE1y+lPDSK+cQCJbXV5htznHu3Iu86b4HePrlZ3GuRCm/qQ91gHOKsqiYW+wSF4LnnnyJve0dOq0ecZywNLvI88++wD3fcw9721tcWb6KQ3D4lmOMy4wiLShWNtm+tuWjn7JiUmEudED7vgcwWYlRmuee9zZHIRSre31+8Vc+TqBCtl+5SmENFY4g8sJbqDQvnz3HJHCeDVPGrRRn4dDiPJ12wqVXLk7fSzextNcr1CGtXpcrp1+gve/giYOQQ9LS7faQoebQsVs49+xTSAxZVmGEREpDvr2JkBoXRDVfJ6ScMir8JN85h7CGwpS4GgTtrJkerErLKaAYIeoD3avMUoX4XLRj++qYYydiKhyNlmJ3JSfUEVUuGAmLFArynKV2E+cMmbUU+YjFZsB8c3YqimihQUqeWl2nmpyWE0Hu60zPhLsuUL/x1DPOYqx/oMvKipleh53dySdaZG3hMJUhEBKDIQq94yJQAcIYpFZU+RhtDYfNmK3TT5BJxbve+Qhvfcv97O7s8MnPfIXHVq6SGke302F7Z8Wr6dJx68GWZ/sIxWwnwdmKI7cs3OjpdXPdwNLNBYTy5SxaC2Rg2d3Y5PCxwywvr3H8+HGUUrTbbXZ3d2k0GmxvbqGb0TSKurm9gnOCdruNMYZGo8Hi7BwEXnyPmg1/TUjBWE2Rp0Sx8Ow5Qd3ApAmUIkWgA8d4PKbb7bKzu8HO7haHDi2RDVMv8BlI84x2p0OzMQHfe7hoqxWT5SNs7dpwVpLagrLMkTi0FLRaTbYHu9N4apbFWFuxsDhDt2hSVCXDQUYSxRSp4bW1SzRbMUopLl+8RHIyJtCSLN8jjmOsy7E2R8sElMJZi1aKZiPBGEMSNciKnGbSIQwk8/PzCCEIDKjYkIQRwfw8gQow4zFR1GBzc5Mk6dLfWUWJIY3I33x28z0azYBya5eTxxY4utTiwhXBwYVFsiIlDGIQJRdeucK1rTWuXbvG7t6AdFARRr7Z8e677+aOY0fIXU4QNUiaCc4JTJEyTlO0AlM6rLJoHTDIUvb2hoRhTInF3WxA/qbX93/fh0Fr0BGNZhPwnDApIBCqLg+iHu5YlGIKFsa5ulihqvshfHxz0optBdiqQiH94MiY+nM0lS2nVv9SFL5FNRSUpiCkiZAOY6wHITs/IMT4SfAUyYSZbtKE8KxPH0lTyEAxzofefSU8q8wpQYlvaQ6DCFDkZYEMFKUrEApveXHSXwOcb/0siow4CHGRxDp/b7LWeAafq5AC8iJHKO/QEkKgpEJqTVFPd50AYa9vEONafLPOkQ2GhC0flbPWO+qtq7zDUAoq52PCmIooSvz7Yg0yjDw7MhA0tETKmCKvULTJsoxm4yjD4ZB8NMRUjsIZbOmjxjhHVQuncdufy845mo36dxsaVBRSYtGl9QB36Zk1SilCa9BCEihNUVQ0kpixzYm0RlS2drgKhLWEcUSiG1Qmw8kAXaNQrPGRJC1tzQSUNQPH79kCnTCuMsIgQUg3BUz748s3czfihDwvCbVGaocQkEvDbubF/UhElJn1k3Zb4rTDCItJHcI4bOjF0YnAFsdxHb+W9WvI0Vp5dwA+7qiUwtZcvDiOSYt8igspCgPcdAZ9qy+rYzKhEU2PcRG2QVHliFBj85KyHJFVBilzf15WBqQkCCIQlriZUAy9A8Q597WC3J/mhnsjDPyN7rnJh+2DLIvaieyMP8bjKCIOQgKtGQzHdNpttvf6aKnIy4zNzU2OHz/OzKF53OkaEyAgK0owYJUjzzKEgGanyfbuDrYeuEyGKkVVUjUCLvzRE9z+3e/mgfe8ncvLVzn32jmq7bHnZW/tMhgM6HzXoww+8gTf9vD9/PtPfh5tDUpKCmu/wYP0zfWtuIwxKAdC4CODAqwTKGkRzmMftIoASxQIPvS+t/nhGxbw965IGE4eOYQSzt/nhUYIz3u1ziC1JMsNs2HKv/rqmEo8yXicsXTEcunyVe66405y4xjvbjHT7pBVjkaomQBrw9APhIqq4K6Tt9HrLhJFAZ+XGl279wOY7kOUClhcWEAYy8H5RaJQs7a2wmiYE6C5em2VRqPBhVdfw1QFykn/vGodGlk76+sEl/LDnzgyaBWzuLQA6gzZyGCEpBtbZmcDVnZTqtpdXwnfaB9HIaYoySpHoKjj7w5jfUGVwaGkq5mrCmEs0llSm2Kd2scrU0hjyMd+CJjvd2bLWpREYIWrmegGU2lkCOSCylVUwre+O+Fjqz5/4D9XCe8g03jXWCQNQbpJZSVKxzjVprIF48Euee7Fv0aiePXcq0hU7ah0BFoSxIKZsFmXvgXYKkfW5qvMlNjKX3OyLPNu/hJ2d3bATTSA61qJEHhnM/u1FQnS1GauWj+uGcFYwaXLlxFCsL6xjHWOgwdOokKBq66/Z6Jm4cIk2uqHz74fYJI6NGADjwaTAucMjgIhFc4qEjdi1hYE6r9wfHUyMY3jmNWVNTrtNkVZogPF4QMH+fEf+RES6Q/YX/vEJxibgngmRljNcG+EMYZKKP7b//nv8L/8D/+Uz/3xV2r+hgQBr51/lc69XfKiJGm3UJXDojBlhcBSZB7E60zJ+pWM97ztUYR0NO87zuXVTR5565voV1u876+9h7Ta5o777uDilVd59/s/jBJ+kn38/ruYmetQORj299jb2KMoSkZZipaGAMWoygilYlgfUDiJsIqSin/58/+Mr/7uZzEO0qJkbA1rgz0qW9bilq8E3tnZ4pb5wzQbDXqdNp1WA+uKaVx1/xIOukmTbPMKq+dfoHTXb1KNRoNTLT89d0VOIQV7uwPmY+2b0aSup7IRQml/wKnQn9BKY/0Tgt/E49X2SAcY53VmqyRC+qpyK67HYzAVUkk/0RZ4wQsPgrVKsTtM6XUSZGVodhLR55ZvAAAgAElEQVTGo5LCWP+gZgQb/ZJUVbiyoBEGOBuz2S+JQn8TjrXEiYwwaJDKoM7x7jvBpMbZ6hsXlU3KH/YJdSrwJ01VWkbjDFM/2LmioswLnPEATWesf+2VQeKoakeHPxElA1MwsJpAOKSteOELf0xWOu57z7v58A++n+8Z5Xz8N3+Xx1aWedYYGkmTsAqZowArMHi3krWWtfXtGz29bq4bWKWBhblZrJG1qyLg2Wef5dRd93pHSFmSpindbpfxeEhZlrRaLcJITWOPxhi09qJVURQEoaOsRiSNJvkwpxPNMBgMiOOY3b0hcaKQtT06jmO01oxGKVEUTNlm1igOHDjA+vp6XQrRIBCalZUrLCwscPXaFisrK5y66y7G4zFhGNBsJjgq4kQThpJ07B1fSgTENd9xrz/24mIc0x9nWOcoxilxzVwbDAboMGA4HEOkSW3Jq5dXuf2OW3n53IvEcTx1irXbbYo0w+FbBNtJd+rgGI1GUBp67TaNSAGGKJA02m2GwyGNZkCn2WJzK6XRaNDotCmyYhoFbDQ8vDWOY6SUJImPm6ZpSrsKp47GSAmW5mcYj/dYmF1gfX2dhWZCabdI3JiH7r4Vrb1I4YQiDDX9wR6rG8so3eGFl15gkA3JBinDQU4zaXDkyCEefOBu4tCho7h2N/h2ue1Bn06n8xd70P4lXnF7burYUk5irUFJ30rqlN/klMazT0xpkUogpW+i9uwPC1JR5mnNAPObnbIswRgQAqscZZpTOkmovN3fSYUxFmsltrIIXfNQhUTIClPJOprqSx2EKxFCEWjvTlVhWDd1aqzzHNWJu1Upi8n9/dqKAlf5JtBA+iglAsbFyDMQhcaZ2rEXKsqiIA5CxqYgUCEiN2AgtzkGRxiGdXhWI6TFGoEUEEqBFF7AC8IYIQVWC2KpkNZNo5+2dgxiHDGSXEDS7dYRCHx5knSUxiCsRRhBKL0TUNiS0qTYOobiN98QyIAyL7wbUWvQTazCN1cLRdDseEdXUVDgW9HTNCUM1bQwArzIVJgKHUicC9FaEjiJjuq4L1BUJVhHqwZwu8oQN2PiJEQWilhFlEUBQmCk8222kUQ5AUJijW9FjYMYEToMnnMVxL6RNs8MWodUxmCrnCiRxA1FmeU4KQhl6Nl+zhHHCU46kkhS5iVR0kQI/+gSqsg3wFuD0nW0p6gIVICSGpTAuRJZCaRSWCXRgfYPKlb45rqamVeWpuZlehyLlD6YbIzDSM8xnTzMCGupSvVf/Ty+uf58S8iQKAq8s0bZ2uHeRErFaLRHlhVoWfjCOABKyrz0fLnS+OjrN4pi7RfY3uic2y/I7f/7/R8rlHfmOj+Mnn440Oy0yDLPbJJSUxaGvcEueVGgEahAM8pyRsOU/lYfY0vCKPLFZzU/Mq8KVO3+aTbb9Pve2aaEL9OzpSUIAvrjPdLNXY59z3eQr/f5zBe+xHf+yF/n7iO38+L6M8RhyNGDt/Hik8/w9rn3cv/b383qhVd416Nv5U+efpKicD42br7RJv/m+lZbx2Lotpt0W220VoS1NFJWBmyFEIqqKjASxmOLAQIpqVzlHUPWstDresFChRMU4rQ4RyqHzSs2dkqeeGWVz59+lp/5h/+Ij3zs/+VhKXjwwfv5v371oxTZmFMnT7L5wss04iUkXjiZcKKrqsJWll/4hf8TFcVoASfvvM27ma2gMsVUXI6tRaE4duJWnnn+DKvra3zwg99Nf2+P3/rtj/PWt76Vx7/6hN8D1OLYxFhiBKjrSEeqCv7Jz/0Gq8sbXN3I+Q+/8Swm+Mf81N//h5SVIxDQ3x2jlKAynkN77vIWYeA4eXiOJIh4vL+DcXhBrmanm1oamyzjDFoJvvstB6gI+fLOJaz0smSA5b0PHaUoCp4622d5018PPJLDsb1T0os0ZWUY1tzf19aHk/4KhpnhzCs+ZjkTSh64Z4GvvrjqRXag1455x5EuIm7x2JlXwcLVforAsLg0SzNJKMcOcocWARLBbDvhlWxziukCWFro4A2Sto60W2zo29e1koTErG3vMRxlNWPPX+MOLyZkld9DBkFAURR0WhHKGIyMUFKCdCih0SLz2cR6qFZWgjjSYBxFZckqg6iHwEIIyvE1pDjgBT7AmAKlrpeawutdybUEiC9zMHWSwtRDuLq5XVmcETjpuNFL3Q2LcmVZMhwP2d7dRkrJ7tBxx+Ih/uaP/TfEYYSRgt/57Ge4cO0aIvAT4SiK2Fpd94eTdSil+bVf/Ai33XIbF5cvgAChPPDYAxoLxrYgsi0/EbYFPq2iPFvEeX5YVgo+86Wv+DegvnGdfvIJwHHvvffxwgsvTH/u37efBhEw0VaFkwihp/GnyGmW2j0OHT6ASiV3HboTayve+8h7uPP+e+nNJIxGI5Ig5Eu/9bs4YUmaMWVZsjsc0JmdZ2dled87ZVleW+f+U5alXpNmrMmyMUX+jSekk6nqqaOH+eyF5fqrGILScvutt2IRRNq3z8502yQByDDinm9/F2v/H3tvHqzpWZ53/p7l3b7lfGft06skJLQiATICg7EtMIsx2MZ2GCfO2ElmSeJUzXgyM7EnjqdiV41dTjJVLiczNeP8ESdeB/DEOIABG7yxikUgQEISUmvp/XSf7dvf5Vnmj/v9vm5kUul4UmOY6qdKpeqWTve3vO/73M99X9fvOnORaeXQyrBy8hhWZ4wOD1g9tsHhxT2Ud/govJ+Nm45SDiccHhzgy5oQHTfdfhuT8ZizX/qqcGPw2Kjl4BWDyDZDQMWIJbC2YekUwv053C9pKov3GhWgcQGjNdurHXnoxUyYMcYQQkbw4GKgqiryvMBrULZl+/lrCgzvvm4DE6RhR3zhZ6lJVYJXFmMitXckRlQZqRUYdawamqgIKkjIBJGoFLa1R2udyAQgS4UrVpXU0eErT6INX/zIn5AkCfe+/tv5kXd8L28eDvnd9/0BX9qdUpqK3/zYQ8SoUNpw5/ZANplwo+D4T7nq4Tm0SvGxBbW7QK+/zpOnT/PAy78FYzQHh3OKbkqSJEyn06WFKMsyJuUQZQw+VEv75qVLlxkMBvjSk2YdYZdlGd57tjZW2L08Ye1on4sXL3Ly5MllOES/P6CupxzbPM50OmU6ndDtdtjZ2Wkbf5rV1U0GgwHnLl3k5InjFEmCyjKaeUkMgaIribEhBpJ+n+eee46bTt3CwUFNWdYo1QhkWnmyVHP58mXiaE4+mKK1YTAYMBpLkiIhsLtzGas0jz/6OPNZyZH1lKYckVlPnubkVmFtH+cCRdGVQtykrG+s4OqG/kpBp9NlNBrRKTr42VzS52YNIYON9U2MNjjnKcuSoigYDofUdc3GxgZZp99axeX993odYlT0eh2yNGc0GrHS7VGkGYeHh3S7XXRE7GFRwLmL5qpYZ5PlZxmbA247eYQ0PUlqLS56ZlVFv+izc+kKjR9TzeDZ82O+7aW30DQN29vb7Ozs/GVftt+0y2jbWk/l10q17LYoTR8VI5lNiN6RZomkCbc/g1L4lr/kvUchA5kFG8QmGa5uaJwDm+AmFSoxLUi/YZGEFUIQblwMaGPaAl/s164JJKlZoi2E4uSp6rn8LFfhulYplHM410gybHsIjSGilaZuyiWDbhFqAtU1HLqGrC36vatpQkmSdQCxMGjANzVOR+pqRpYnqKBQYaEMj5jU4nF4F0jazyGaBbvEY3TECjWZxjekaUKjHbFsSHWOOIQFPE8MRAKaIFN6DRkWh9jhUXppEY5aLK2OGp0EVBXoFTklYsmoqohNcopORuMcnU7O6HBMv7tCWZa4IHiSTvRopVple6CuHQ7Ik4zMWhLnUG2TsdvLqEv57l3dkCfgKVFG0++tMJ6N0QZCrDBKiBRaR8CQJIayPTgZDDEGVLBkCdRewPPRiXUYkGsGTwweYwM6sThXo70mSVNR3NlMLIhzUTCVYU5GRhVqbGrbwJspTXBYBSY3ErZBJFQSVJOkRtSQrZXZOY+1yfK6jlEaopEg6j0lBX2MgXktQ0JlbiAtvtHXqZO30LgZMaploNDKSo/JZE6SWDqdnMPDQ3Z39yWRNO1gOp7pdEzd+K8LLP/3rv/YEjHIPeuBbsu+s1YvLaViB5QQpUF/RQIoWmxAjJHBqti/J5MJG5trEhLTNhrqupaXFCPKKnRsBygKUdNdo2xbDJ7V8XV2HnqUMC05mI5hs8/GTcfZGR7QbGnOPXyBC2fPcXR7m7NPP8Wp48f5pPucDPo9xK/Hk76xviHX3swz13MO9ydcBt5x0z0EIikWawW6n1iLDwrf7/Ab/+79/O3v+06UtqIORxE8PPnY53nZt34HeOHBKm0BafY2uuHEepdHO1s0UbO/d0hWFKxtbrF34Qr7hwesbx6h6HYYz+a4GMhNsmTVxrZYSdMUh2FeNmRGo3XCvJpB6xIzOsHagAs1ly4P2ZyVDIdjYvTsHxwwn8+hiTgX2lpA2ghpVPilC0DE80YptIpoB7NqxnEbuZDVWAPPPnme/+6nfpkZkbqB2cjhAWukLsgSSxobUqNQpsYYCQpQSqF8wLX7jbIKE0QJa4DoJfH9asAA2IAgLoNHRS9qvtSSto5AY5Qo1RD+pDTaYvtrALFfNm1C+KCX0AlgW3UkQBJremlK5ecSVKnA1Q0OCP6aAJto22A3aZBdZTu3rzfIOTy2vNygAyFEcUAFT79jYb3H/vRA9tp2YGpMxsXdQxEcTGpilD260HBuPP6aYcixniGqlEtj2fOVUpgYWetq8iTltS/e4F0P7xCj5/jWMbLOGlrVRCxLuU+IRFx7jV7FXi1WCA6lAypqIhJ2Jq/BtYOVhHlZMdQNif76IRcvXNddIYwnE4pOTr/fp5Ol/Oc/+Fc5cWQNZSxffuxx/uTTnyYtcmglokopNFq4Gy3EMWo4nHpWuzVv/f63SSGjNMYrqtmU2+66nbXeGvuXr9C3HTBgdHK1sLYW5QPRO+ZNg6+uMmgWsd4khtc/cFwk3HlOt1uwtrXByZtPolOLDw3TWUlVzQmuZdKIHAztAr6qyLMVXnPvK6TrOlH0uhtU0wm33nEH0/Ehl3b3UMmcF992E5953x8su7+LC/Kpp5/jye0nWMszgvNUNMynX8tOUIvWL6Ct5szHHmKjHhFCLamipJSjIWtbm1iTU/T6EAOhmRNth2Y64csf+mN8WrSBDIHR/oFM0IhcfvoZsZ2lKTE1hLpmeP48vm5oQ9pRSvH0lYflBkFsPradwi2SRQiBJIPeiibNInXl2Lk0E8WNhxjF1hpa5lVwERUyXKwwJsGqpAVBB7BamppJSh08eSejP69o41+vXuj+z6vkIq2gToMJFq/b29s52u0A3YYw6AjjcobSrV0JhU6MJOJ5Yczl3Y4oG4oMbRN8ELXc9HDEbDyhymbSHEhTfNVQaI2Kjq/88cdJUjj1ivv5Bz/+N9k9GPGxT3ySD33pKbIs4djWET744U+BMqx0b1jn/lOu5x7/EraWw3NRFOzvDUmKHptZf3nYd84xnU7p5F1ms9mSm9br9TgYDoWFWYuitdfrUdVTtNZk3Q7T6ZRqXrK2tsbBwQFzV2GsJIKur68zn0uK68rKypKLFWOk1+uRFDlKKW675UWs9HpkScra2gaXLl2i1+sxGY6WjazJZLIEgIcQ8DHQlCUnTpwgSRJmswlnz12k1+3QyXJWOhkxNRSdlN3DKbP9mltueRHz+Zyqquj1Olw8f4ksy5YTwBgjTTkh662TGEu36DCajpYDBk3kyNFNLu/ss9Lv40Mt8HubUKTS9OgWcihfpGOtrEiRn2W52IKtXTY9RZ2S470jScQCPBgMOBzu0e+tLL+Luq7p9XoMD+fUITAOi/fQW4ZSCLNuymQyWx4GjE5RUUD2Ic9RMVBOpxzZ2GA8m1JkOZtrBYNBH6UiPrr2Nd24B/+iy3tPlglXcaGqlEPg1cacdqCNXHOL+w+t8G0RpaIc6BaNPa01TdPgYgON7DVRKbIkJapAEzw+hpbVocUm4KV+IESCiksVdIg1kOF93Vq7m699bVpLwh8t56lNXbVWmmuhaZO1qrgMk4gmMp9XmERSQZUSCwVK1LIqRHwTSbKUxpXQDnZAUVUNWSdDG8Q66gPGZK3irFoGRFiTEoJr76UMnZhWoR5oXMt3Sg3GyrDLJinO1ZgkEfYZCq81BRJ8paxBNRK2lWnbcs4U1ib4xknj0ikJmiASnFhlrNUtIFnA0d47QhRG39r6YJnCmkaLUoE0FyZa4iNJKk0qRUJ0Hh0iqVZSzxlDVU4JUWNTqRO01mijsakmhBlJhrgQdIKJFucr8rwDdUPtKvpFF+ciztWkrXJYINeOLM9x8wYtXT1hCjYeHa5aTYxOIEaqyhGNQ7mZMAlDIIkRhcfHCqsUrm4IpXxmKMg6lsbXxFZZV7T3QGoFYm6McBQX9f+iSF88D5fcxFqm+VZpTJ6LguPGoO4bfunMsL5+lMwmNE6ed9YkHAWca6jmDUc2j3P7LZG6rBiN9zn9zDMUnRVM2uCGI2ongVFfd0WNQupUL33cq2uhpLvG5qowKBNRyDUdWkvsrBSWk6uh1+nSWSRRNw0YWmanp2zkPWRJSmYT0jY5uPHCr4xekhm1Q5r5OtAr+oznE5SW5pyVSGN5TipJuJzMpowPDpnuHXLpwg6TwwN05bj/jd/JE5//IqvHj3Pq9hmXdq6w3bEcHO5x/EUvFnFFUHjX3GjKfROtCYrR1HPvLUd59rkdkpY9rnRslcpSBwY808mcwoBJpBlcNY7aj1FNbJ+dnqAsuh0MQcTVHqskFf1g7wrHt4/wyc98Aqssh4cjHnnsKxw/dgvr66s89vjTrG9stcz5QJYVLRu1QUdFkiT87M/8FGmxRqIC/9c7fwOtLJiFaqxuOZHgYsXeziWOrm1QVXMunHme1dVVBpvrPPrEk2xsHqWq59BM25pBBB0qCjNdIpsUPtF8/KldnAffaHamgYcv7TPnAIsi61hykzB1PRLrecV3fQ+XPvNh9oaXOb0fOHX8ZtAXJDjLQxMVpg2SidHTKEX0kbR1DvzhwxcpMrESJ5IzgQE+/sh5VlKLSjt0s4ZG95nNJtRNYLBqONVb52A248LY0bGGIrGcORhhFUSVcaynOT+Z89x+xbAeYY3CBzFrHs4CDz1xFh801kNqwDcNJs0g1miXYrQmSVKaeQVKUbkX9D6UwsUUS4PCE4JHmxzSiNEWF5wwWxNRlSeZxc09GugWCbrlt6ooDcaik9HTEEdf+/es9At8MNy/vc5jT+/Q4FEK1rsdelnK8xc81kLTgLYNoR6DMcyrOV45dDCkmSG3ChMnDBupgzQp0TgMUjPWbkqebFFX+ygfWnW8o/GKyWwsDV6r6WfXt/dfd1Nupd9Ho3jlS+7lu9/0RnTU7I0O+e3feQ+lEkvidDZZcje0loJsWjsSI9Obwmb0+30GgxX8bELR6dHt9ul1unSznF5/hSLJOHrn7XzLvXeTKEs5my+5b4uCS2tNmtnlgTvLkjYpzJLnljTNMRmtykJsnEppKSDFnUAwilQlyw/QRDkgl75iUteMDodMp1MOh/ucP3+enUsXGB7uMxxNmE1rDucTho/PcIvuWoQFU06HhOnhiKYKNEmDSgyzUjgL4tSQifliJWjSckrTRMoAOmj6G6skwwM2j22ji5yqqljpFHKYj05CFJRuQdaRLE2oG0dAE4MjURk3f+v9GJWgLVx49Ammh5cEza1E5YBRSx7P4iCD0fQ6jsFqTlCBWV3TybeZTeaUjcEqSU1xKkA7FRQ5bo2KmsY5SY1R3faQJhHqCod3EZShrGSiV44mTKbln2dmGEtoOSx/7oKNCm+u2lZ128EemJqQKGjypUIAFfGNI84mRK0pG7nZfVUyPpQIZq8geE8TPLfeeRtbJzfR+gh7F3e4eP48ibEkuaF2DcoZFI7KOR5/6HNErbj3Na/mTW99E69/44P83u99hM+dOcszF59npdenbubXe3vdWNexQj1Dm0CSynf++FfEorl94gQbm0fY398nSSRwYT4tlw2jvFNQzUt01KQmJVrVNtUaOm0zaDIaUxQFwYkSzlWO7aNb7O0eMGn5MFpbNja2uHjxPKORMNqMUQJxbxQhOLI0YTw8pLO9zWw2pdfrYMsa1Qusrq60yaGzNhyiz+HhjGA1W1vbxBgZHR7Q6Sb0Ol3Wen0iUrhW1ZReoZnWCQejhul0yvnz5zkYHrKyskKSWVbXB3R6BU2zzof/6CN0jklARbdbMB8esN4fMLJTBt0u1lpMjBzbWhfouRd+QqhrYtOwsr4uKhnn6PdX2Ns74Nh2RulrbKPY3NqQ7ySskGYG13iMEfD/ooGzsM4unsPW2mVzruhkYpPLCoajA4pOG4zRG6CccDHTtGYyGdPp9LCpoZPnjOZT0jyT14zicDjCu5qV/hqz4ZhnL1zmnttvoXKerJnfKPr/XyzT2o5pJ82LdOKl4q1NTfO0E0StSTCtXa+1mGqLkDgClWvaA16KKh0kmrouCdFjbUYIi6JTkjeju2r/iwj3TUdw3qNIsDpjkf6jdNuEapuDTXsQTZKMEOcoZYnG4RpLbFluVVWhrSXVkgLooyJG04ai1Jg0aYd+Gh09rq1rdBsogdGYCHU5R2cJGphO5626TpFgqH2Niw6rdBs8oYihBpuRZRlNVUOlSRKDDw1WC2wdJ7gQaxJC9KRZQt1a5JJEQhgIUheZqIiJJURPjKKckVRch0k0iQvENJLphPk8kKaWgCeStMmkwo8xxqCqQIyBECoUYIxeWmFd5TBaoa0lBoTj5iqS1BJbnpyrHUaDweIIGCupbBotie8RrDbkNmPeVGAzTAwkRZdQeVSiSElp6lIalkbU7T5ECpvijcXXvrXjJZSuASKpsej2ABit8AYNFlcHlLbCe9WWLDPEsiEag9Ia7wJET0g0qTL4ylO6BhU0RZFeZV4phwsKa4wgEpVC60Qm5Wpx0HPL2lfsz2JjtUmkrH17YL3B0PpGX4PBCrFxrK2vEptAPfXUV4acO3eBvrHsT8fopuHk3XeTZwmx9Nx/zyuIHr76xFfYPr7B7mTI2Qvnqa9R9WulQBmx9QPXYOFkqSBJfbQOogWfE0k4DPGakJAXlMaT2ZROUrRNYIuyhoPJ4fL6TZSwmfTaVTXLdD7Du4hW4GrXegkFqj6bTZZFttizNVHCjvFOsDbD6YTBxjrTm46yffYi586cJ0ksblxS146+Ldi87SS9pMP6xlFCU3M43BOFXKiBQHA3gh6+WVZo/xGLfsTYHomVX0egrOeYxKKUpl9E/tr3vxGFIrEa74QDavqGex54LTYqOTsbTfTiopOhSKSpA/fdezf33Hcn28eOs7u7y9Gtdd743W/mzz75Xu6+83ZidRfv/cCHyWyCayqqqoTEkmhLNMIh/flf+EW0tkxnI17zra8itcL7dE6cWPO5OGnWVjfYOLLGc2dGXDy4zJvvehuXLl5k58oV3vi6B/nkQ5+SgY5vWJoWYyBE4ZwaAG2oqkgZPINOxrSpUEZRA9pHvNJM5w1ZT/Nzv/Ir/C8/99P8N//wH/BPfuxPuLxXsH7Tzdz8kvt4/IlPE3zAB4O5RpElwh/V8ugjSkPSSTl28ihPn34ep4GgCBGcVgxOnmR49hx5J2egcoJyqHIGtecn/uu38JM/+xvMIkwrxctvWuf8ATTKsKYcR4+ssTsXvt3BZM5qtlDfK6LWXJ6IInElF4TUz/7kj2PVQgUmCelVcGivWsFOoC6FvymsesGaoA3aR7SRmkj2ac2vvPOD0KoqoxKm3tUltcq1zsMQHNG238s1oQ4xRox1fOH0JVHhR40gxhTP7OyzWgxwzi/373/3S/8Db/mJf0auHLo3oJqXvP3ebb5w+jSDfuS5/ZRRadleNbx4peRTF3Jeuh25w9/Kyv7zfK5XM20EleWMRaWGK/OGSy2jz3F96Irrbsq9+NStvOMHvxerFfOq5l/+2q8JWE8pytmUWkkxPp3MsIlBoTl/8RLPP3+FPLfMpgrnGypX0cSKpJuSdhKSjkUXoHoG04+YDIJxNImBVJOtrdAtUhStUi7Elm/WUFWV/J3U+KZkOiypLld43zA6HKORxL6D3StUkxn7hweMphOmsxllWTIvPXM3lwLNKFIriWYGmXa70GCUWCFCVDR1SWJSurlhe73P1pEtPn/6KXRQvO2NbyKxHbFN1jO+/82vxznodjPmVU3RXVlaMmP42gnaZDriRHeFeKxL+tmnQQVe9qKbGJ41FCsrrHR7JEmCms7QUeGChENEbTA4QhOIOmd9c43BqRP01rbEp7/aX0ILT77qPqrpzTTjEX5/yPDwkNnBhOjaxpqWglMrS3ezT5FMBECfpPRvv4eZ6mKssLzkoteYFk4dFdDaRY2RQlQcNHHJDAi+WabdOudwTQOu4swTX4GPfQm1kMZFTVwUwtciNtqbzanYQkVbwa0GEzS33vsS9lXC5WfP0u10qCcC7e6YyKnjFSmwM4kM94TRl2NIuz0aHIfDITYEnn/0KY7ddJK6aSjnc3ABnDQsE2SzCbbtITpH9PDon3ycYBQvf9PrePsPvok3T0oe+cqjvPsTn+ex+uL13l431nWs3EiarlKGNFV0spwYPP1Bj7KacPnyLkeObGJ0RhOnS/VWv99lNCyJLWtMa5FTT2dj0BprLUUhDW9R3JToRDOaTCh6AgtfqGHH4zH9/oD9K8+TFRaUQNctiqpxOB+pqjl7ewccPbbJ/t6E6WSG1ppOpyMp1S3rbj6fkyQJxaCP0Zb9gx2KokOSZGSqy3x6gHMKFzw2TWhmMy6ff57DecH6+iqXLl1ifX2duqxIrGY6GbG1tcVwPOTU9jYvu/cOstxSaJi4wOpKH6sVa6vrzOZTrNJMJlOUUqRWrIOTyYSjR48KSmA2IUkSer0OOzsXyfOULzz2KC+97x60kgZbZi78cAIAACAASURBVBNSaygnc3q9Ho4G731rAZzT7XYBlpydPM8p25TIyWSyxBwsuHPee0ofKL0kPRpTib1RO2ItzY2ynGOMpdvt0ulI2M5kMsFmCdrL88l7z/7+vjQdbqy/2Gq5GSHGJRg50QYfHEp5lEpxDSjL0q6qjDzfYxTGWl1dDW1IkoRqNqdpBFcRGlG3egc2N1AHog9YNM47omn/HWOb5qmIHoz1KF2SaAlwiQTKak6a5a0Sr15Cyet6jjZBkhOtJ7E5vqlkGq3loOucWFDSJJW9qVU7mbbB7NqGE4gKxSh5P66S6zwaRVPXJG19Us9LeV9G0AwhBIxNMK2yzSmHUaIaTayFuPh/FLUXNR5eY7SlchXatEOzGEQ9p2nTx6RodWHBM4nt0K5tmKm2kDeaplHoxJL6BkdG1FBHT5IatCoICqpyRl70mM8maNX5Ggj7cp9HlHpN05BYizbJMsAjxkiWpSxCNRJaq6dJFuNKtBGGbVVV2FRSV7MkxdWeRFuUVdSukeCl4EWJ4eQQ4EEUPVpjU2FV5gQ0mtoEolJobQhzR9SeYCPaajHoKEvjIsaAQ1g6Ckn3hQJPTeMCympRImCW72nB1kvahL8kMa1dVa7pheIZpOG54MwFArpNbUtMmz5srw/2fGP95a3xs3s03lPv1+Q24fHPPcKJjSPkWtFdHfDiu+4mObZK8DC8tEuiE2JdUUXPy172MiZVzbeuyP5cN6UkMWcp9XhK5SqmdcnBaMiZvYvMqoWaXyFZhIt77t+TGPj1kluDqGRNmrRBM275zPXei+Kv5XzWdS18uLpmNDzARIHK06pEUYK6kWxDeQ1JkonbRUNoKso2MTXGyPnPfJn+Tce544ffzB//n7/O6//uX+fLH/80J0/exEOffYinv/IEtx89zst+6I0om7C5uoHRgbpuJF7yhnL0m2ZtdBJsaLhy+SIvXusSMi1DhtYlpdMUH0JbD3vGZSXoAQzGOqzOhO2aFctGiCAYhB2PFhX7l5+9wqNPnOXJM8/yoz/0n/HHn/w0P/jWI2xsH+eRh5/hox99hB96+1vpdPuU8ylpKnQ73Xhok9KjEjV5U3qSrCMDtbYLXlUVSZKgTULUDTvnz3P81HHOXLiI1ZbJZEbThgJcvnyZeeOIdUWqwFzTDdcqoILsR01woCXYrQ4eryK10u0dLaEMGoRziiIEKLVGZQqvIU0N8+GQ0nkMYLXHx4SwUOK1/RXV4imiizgdRBUfBcsVorBLtVIEram9I3hN0c+o5g2jYUV/a5Xb77kLbRYUKI1f4KCC5wCx/lY+sOjSK+WJHhG5WASa0QppogZqh8oV5XxOUWT4ADYEUB5QWJ1gOgnOBWzjuHI447c++DF++C2v4E/+7AvMqxptpday2pAkXdJUyy4dWdrqiVKDGaWowzIeEtXiLUAS4Je/r4Str5ghz1NPaENxpg0cNkM6NqF2DQma7/5v/6kIs4wljidorfn9x3ZwTcZv/eO38pO/8E52px3O7Nc8txfJM8XDZzxf1JfY3b/MK47lKDISHAqHVoGQaeJMgqv+vZzRF6zrbsq94/u+m7Is+d9+5V+i82zZJNHtoTb4SJqKumoyLjlz5gxKR4I3XLp4EWVzjDPs7u9xONzlmdNnxJ6qpIsctQInk+BqWuFigEUKRsuMIQr/RYgKAWPTtri2uFCh8Ki42MwWTZ4ElMOQ43wNyqCVSGxN1uH73vo9fPZjn+Zwd4/VE+s8+/wzRLtoAsloSGnbpnd4ogrsAs+dvwh8FYxFqcj9D9zHdFRx84lTbHQz1tcGpFYK5IPDEU15zUTI2GVYQVTQTXMOKBlPIs+6GRD4zOe/wNvveynb2yew2tDJCy4/9RzKJuhEwhws0vlHG6gd4wtXODh3CWUEnuyjhBuIlViaUWoxbfOBxBhJdVEWH6NsvCm4MnD5YMLmVoEB5peeIj3xckKIZFpS17TW0niLUmwuVG0xKhKt8a0sWSuJLVaipyc0zdKj73wgNItI4q9zwV4zSrxGiCgTxfasHSN4paiAw7HEVx9MZlSzOYlNMdZglEYFz1YnEKeBySSgdcbmLevYoCkuGqpQE6wm6UA36RPtgEunz1B0uxA8p+65G5sazn71NP2s4OKFs8xHc+bzGY13PP6HHyWqyPotN/MdD9zPie2befzpZ6739rqxrmN1u10mE2kU7e/v473n2LFtiqJgNhMrh1KKw8NDbGoZDAbLQIcFT6VpGi5cuMTq6ip7+wf0B4M2Uc8ubUiL59qC0dLt9q+qH1prUlVVrK3dRDmf0tSKqoocHBywsrK6DJVY/PzW1hb7+/vs7OwsWZYHBwccOXKEsiyZTqekSUGn02HWNrcO3f4y8Xo2nWKAlW7OnbfdwlfOjrl48SLb29vceuutnDt3jtFohPeec+fOcfbcM3z7t76EVBtG4z2yTp/t7W2apqEoiuX7WzQg+/0+dVOR5zlJknDlyhW63YLNzU1msxnT6ZQTJ05wcHDA2tqa/ExvtS1+5D5fNGL29vbYWN9kNBrJwTQEYTumKVkmRVmWdblyeJFut7tk+117AHY+LBUnC7vjonFaj0f41ga2sM3K575ClgmrbvH5dzodURTdWH+hFZSo0hJthKPSMt5CENBIdDVKaUyjlk24pnZtTSDqSVEQheU1B62V1IltOzUZqZEEVm2ksFwAzL0TpRcomRq7hhAkaUzgwB6jDcRAK4xuA3xUe586slxYd4v6oaoqVPTL60LpQAie4CO6ZcrJe4Q6xrawSwgt5464YDrF5bUp/Dph77kYlhbaJnhUa2GrdU2mrXBR0oS6qkTRrRT4BhUtBDlEY7SoXTTMZzOKIsOYyGQyksa3822Du0PT3neJSlvbapSBnLbE6FvVqlhjYxBVmCjEI3knpZmXZEVK3XiyImc+n5MXBVZLCqr3XhqRiV025mKMdIoedVlhjQzqFlbYoiiW+7tJ7PLntbEkWUrZcioTnWCTBN00y+/bxUCoHNqa1h7sWm6bqPmMNgTi0p5vlDzDggbTcgJj9KR5gsIQ8FidUFUOZSB6Sa1fPDcWRbLWGq1SooqtESku1fZS53iSxLTXb1xey4s/Y1ELJ8nCvSEKAVHpBmHuKi3X0f93t++N9Rdc9955N6P5lN3zl2lmJQ9+z1t46qtP8PJvfzWdmPLsY48zffo58qgJ0xI2e6zffoqbNrf58ucfwaz02DiygXv+Cro/IN9aRdWK2VpN//g6hzv7xOGY3WbCzsVLoBV5P+PK4T5Pn32e2WxO1JKO6BVYZBhN1NLIQhrjC/x5MFc5Td57Ap5mJnbsNE3xMeIbT7fbZ14LT7cz6HPpcE/+rLjgOql2SBLE/KPj8hwUggzbjTGiokNS5Z/81BewDz/Oy1/3au5+w7ex9/FHObGyxfmvPkOuLd/yutdwbGOby6MDiryPzRP+7g//IP/i135L1IN/GV/wjfUXWj/z07/Eb/7aL3PLlmV1a4DzKSFYlPGtcl5LEjeKiTd0V47QcQdEFdBKY3LNl5/e4cnHHuNH/9rbMFaJ4tropVIuUfCKO27l8196ls31dZ47ewarDfuHQ4bTklfc/wC1a9jfG0NsCEGeuSpI80spltiK//UXfx5fJdTR8W/f/ZsE3PKZPq8rijSjDhGTpTz22OMc3zqGMYadnYt0u32OHtlmZ2/E0Y1tZlVNNdu9atFqlxxdBbfkcLzyjk1Onx9RIvdVvWC+teTY0STwpY+8j3D2DO/65/+U589MGOSQ7p9hMjlLvgh3CBCUk3t/YddUCuVp79PId955FDRcOqvxKqC9IprIa+7boqlKzmm4PKyYnj8nTXtlOH12n1f9lZ/BSnsP8Fw5bDBK4dr98PT5fUJU3LbR5d4XDfjTL59Dt+iogQ284YFjBAWf+PKFa/hqmqJj+Rf/+oOwssLfeuuDJInhl37rffzUX38zumVhBhMJRjGcNJRNymReMfMGGzQhKPLUYkJD3SRIbIVw52g/xWnlMUHgefLZR+ZlIG/PMwsVMkDjwLZBDYsBowpQNo5Ug/OKOkSO33ISMzzk8Q//H7zkB/4Rz//Rr3Dr236K4mDCr/7zH+Mnfu63+fYf+EnMP3mIN7zxNbzrPf+KLChCdIydWarfFRlag9dWOMMmkmrpPyQmoq/TtHPdJ5b//V//Jk2oMUWONuKiBiki8yxfgkYjgb39KwAkNiMajS9rlPJM4gRaltli6qraDWHxeyrC3/yxv4GvPeWswfuGfLXLtJry9JnneOyzjwlAWWlCEwhBcWJrA20iO5eu8KY3v4HB2hrPPv0st95xCxsbGzS152Cyzz133UVRFDz0qc9w6113YJRsYi++9QRN4+kVObv7U54/c4bbXnwTvbU+qys9HIoP/u4H+dRnPk18wWTHKIsPFdN5SVCRM+efpR6scDDcJ8bIrKqZTseMS3nvvGAbUlGzbhSbNiUpA//4lS9nMp5zdNBh5dajrK8YEmpUFdk81uXYsQcFzBgkVKFpGuHEaSOT/RiWFh4ftFhTXETxteq82E6NMRqFFUh2FKKjUgqTvQjla1SSS5JaYqRw1RYTF1YMudEaWpCktUQitQIVFCEoqpZZIwdvj6vnVN4RfaSpakazOeKdW1wQ8nAHrirmFp/VCwC6yweV/EdKLw2/sq5QRkuirE4ZvOzNVI99BBM9x44EdjQ0PuXcI0/iVKR2ERsVjQ7Md0egNI2rKZ1jdDgUqf6VfVRisdZQJQlHb30Rrqw4uHx5qXi4/YGX8Afvfh8Xv/oMR08c5W/80Fuu9/a6sa5jLeyQ2hrqshLuw/oaaZ6xe2Wf9fVV8iLFh4bZrCLRhiwrRF2nPVErxrMpa2trJKlibXUDZeVAtWjiJEnCfD6nKIpl06ip5iS6R+Mb6rpmNpvRG6yQJSnj4YSjR7eZTCbMZjPW1gbM53PW19cZDsctJ+1ApnPpChsbW0wmI/b3D7E2ZTq9wmBrg/l8TpZbYlS4smE4HDLodkWdgaGqJxgX2BwUbF4ZEbQlBsVXnzpNVc/ppjnnLl7icP8Kr37gLlZ7OfWsYn1ljaou6WQFhwczKdKtpL7u7++yMujT7/c5OJCCpSzlPdRNSVXPiXjKqmZ7e5vD0Ywjm9usreY0tYfgaUJFngvTzxhDr9vH2qtcq+FwSH91gCcyKaes9AdEp5afUWwbJdZa0jRlPB6TZRmJNriqJsRIGhXVZEY+WMUYsSlmeUHTNOzv7y8bjtPplMFggAvybLI2Zzwe/yVftd+8q/Guheq3jbkWQCx8MEvZzFHaoVXacr2aZUiKc27ZcF38WpTUhqapSVMpwoMPKC8801kl951zDp1YklbFHaOw57I0Y155jE7FQqOgaaplg0RpMFr+zqpu5Fldza9iL6KmiY5Ea5ngKw2t4kyr1qIVZUKstSF4j2lZSmGR0h0jVllidPgojRaNIjEt7xaFb+S9o2Ugpa3Bh0DtapSRgRVRtwqbgDGK+VSabyE0RFLA4X2ztNI2wTMYDJhOp8uGkY8SCmGMoW6qVs0XCMFJ09M37WAsEmtpAMq+LRy/ECRBEkQhHIOiyLvSuItXgz2EP+XodDq44PE6YLQh15kwZFsQvLkmeEHpiEcRg6fb7Qrvp6nJOwWmZes1bcMyakWSSQHuG2naeqR5adIcXEP0UYaMMQpmoFXZBA0xtUTf4Nvmr1eiWkhNhp83FDanaSq6WUYVJXjKOUdmM1wTUATmVYXNZWAR2s93oSxKM7tsSC/RGO1gMgQBlEvwg0z0VWvdluasR2uFbwLGGvxi6n9jfcOus48/Reh3eOWbX8fn3vNB0m7GyWLAU198FPPUDv3jJ7j1pfdw6v47UXXJ8GBE9dR5+htr7Az3OdGss7lhuf1tb+AD738/7rldOollXpZ4V5GTMl7r0H1in/vvuJexm/HEmdPM9g55yalb2R0fsjseMp5NMSHilCBm9DKDsH1qtQdlpZQoZfDUrmrt/q2lW2vmVcmgv9Kq30sikNpk+byAVhQBxCAMqwVSRtMmCRtF2czpZjkj5yFqDkZDigdPYc4P+bP3/D7f8SM/QHJ7wUff/wcc2djk2M0n+Ffv/HVOmi5/5af/Hl995PM88dijjJo29KdtCtxY3xzrB970XXTMRd73+x+BzhpFVaONx2pRZC+WVlInfPRzn+W77n0RJgQaILcGpTJOnToBgI2ahkV4SGjVxZraRB587asZu4pemnPLLbfQ760xnRxy6sQWTkVObG3znd/57Xzg/e8VhZWV/TaEQNpiJx75wpdoQuS500+LchzbIjU0mUpkYOUda/0e/ZV1njnzNGmSc+LECR555BH2di7xba99kE889Amcbyi+NogTo8ATsFaCCvMEbDTEpiYoReMV/VRRK01ZyVDPBc+7fvvXUcHx6ff8LuiINgYVKqLPcQGMAb0Io1oMm1SrtDLy98qMMaDdIggJopH/X4WI8tLwDrXUEEpLHba4267qzGA4n4OJFEoanHUlzFXVptyrVjW4SMiFFhulW1t8LMmURWNI0kAcX6Ywisp7er5Cni+SGq2iwXnLq1/9ar742HOUNkcROX7iJP1+lzPPPNOq8DRKe1LdNguVNBGfPT9s+0TSL4rA/qxiOG2kd3CNffXZ3QkrRf01v+eAMwclSolCOAbPmefOk6Q53/H2/5G7j6wyf9HbWL3tY5iz7+On/udf53tefRvv/MhH+Ft/50c4essreeyRf0P9VM2TQZ6TC7xaQKNCyyFWKURHeo1RR1+naee6m3LzpiJN5aKu61oA3F6kzeV8xqyu2d3dp6odMXqKToYhUgfZORZJqYtJ61LIBpJwYRX//T/8SfYvXqZuapqmpjYNIXoSXaCU4q477uTFt96GtZbp7BAVFITIeDymLBtWT23z7KXnmT/7BNW85KnzT1G7RvhtDfzOe98DrTIrfkAeIy4sCldLULQhB4Y//HC1LKrhahTuYqmWD0H0vPH1D/Klh79McIHVXs7J17yKvSv7PPvVJ7jvlS/HVxXj/dHy/S+XscRYsdVJKZqGxMFaJ0V1U6ILzE+f4/TT71ry89KkwNcylaido0hSglbYVF6bD+20jKsSTr9MNzHYFkxIkMNOYvSy+I5WC9uu1ydJc3oPPED+oluxKqeuZ1ibom3WSkkjjZtTBwFRKp2hsgTXlGiv8b7GZhnONSTGUjfzpZ2lnM+JVUU5nREsuFYFqa55qMfl1IVruuRX17XfhRyUAJvjVIJJE/AOFxzORaKNxLxP+rLvp3ziz7DxkCObFfvDEc04YoM0mL0KYqtxpUzulRzQXMsLnPoGqnoZKHB5Z69N61NtQlXk4pmLLZA+cPHcefbf837e8Xf+/vXeYjfWf2CFEJaHdoC19d7S8jifzzly5AiRqwqHPM9FeRWapTqiLEu6eZc8L6hK2bCqqiLLsuWhuyiKZbz6QkFnrYXINcwqUZxubGzgvefw8JBOR9Jb19fXqeuauq7Z398nyzI6nQ7j8RilFPv7u5w6dbOow4IlTbrMZ0PSNGd9fZ2HPv4J+r0VVldXGY1GklBoI3U1JUnhRccTDDm7kxH752rqpuTC809x/+03U24eY5C1wHErzZATJ05w+vRp1tc2hLOXirKt0+ksmyi9Xo+9vT1WV1ckarwpqeuaoig4ODhYNlS8k+S2XneVNE0ZrKwuGzAAvV5vGRBQVRXOuaX8PEUx3Nun11/j2LFjwu5zThRWTUO3210GCyy+qzRNiT4uX2eapkzLCmOTthiTPSlFo4xhY2ODK1euYIxCr+prUp9urP/YZZTGt6mRPjhiEFWyMQbf1GgCVkuC6fK+cMIKMtbgXAXRLJVjKor6VJKxvYQQ6IQ6CJ+t3+tRz0upEVqVvK+bVtmlqJUgMExs+XZBtcKR0CYQuqWaI8tSau+wNqFqGpJgaZpAmluCDkTXqukTA0HwDV65doCkKOsKw1VeKrTNIhUJoSbGgFUJwdUErQmhtThqg/TKAroSjp6JVhqaiHovJcU5CX4wiaUKosCvGrGimBhwbYMpSRJc7aldiauEk6eTtkEUGppSnl1KKZpWZaa1WHRSmxBilEM1Hq20WGVdDVq+D5MKOBnvybXcU94Lk02Z1gURAjgpyq02JKZl7SmFtlcbtdfyr0CRJRbbHpSyIkUHs3SsaYTv6duBHe1307Rbe6ZE2Q/tKcUYUe5I/Kl8H4nM++vGoTRkWXbVfqwUSkfSXN6TyVOiAhsl7MsmhsY1MpTx0lQkeIL3qJZZHEIgVfZrFNJZdlVpLNP6q9e+TYzcI4vU26jwXsmhLUGA1vqGVu4bfqUpJ3tbnHn6GY6ubXDzqZt45AtP8+CPvI3P/Jv/m7VvOUX1lUs8/qVnuKSnPPi9b6F45V185Q8/ydbRLV731u/jMx/4ELvnL/HqB1/Llz/7JeZX9shJUKeHXJmOOCgPeMk73sj5P3uYXeW4++6XcKXT5QtPPMbxo8cYdHrsT0aUvuFgPKJ2TavmRZpm7QFPGnICQy/L8msUoHXdSGphiHSyDuOJDOXKsqST5Vy6fBGrE9LMMp7PQb1AMKDaBh1+eZ0bmxKZYqJCucCfvv9D/PjP/SPqP/0Ej//ppxjcdQvucML2vffyyY9+jAfuvJvte+/mQ+96D7FI+eSnv8hdd9wJLQsyhBv3wzfL+sgXP8ev/ta7+Y5vfRX3vPh+Pv+Z96NjJEbZc1zDEhfQt543vOwOrGQkYb1iY2ODo7ecIMbjUhMAFoMPC24hJFqRxIIvPvYITz475+/9F2/lV9/1G7zj+/8+N922xs/9/C9gjOK/+tEf5Vff+R5OHO1ivcKmFhUVGGHFKqN43wc+yIWdK6yt9HjJXXdSleWyFnExSGqqydi7vE/QCbNpSaXmbZp3JBpLt1fQ6XWZjieEcLWWNChiFImNVxEXQDdw4cqI/+mH7uRn3/Uk0XhWcsOFkVuq7PtFwmguZ4dxVXH7yS2ev7DLJ79S82CRkeiUyoviHaAhiu01eDxG9pQYccCHPn8BgE6mSHxcuDv5oy/uSu1gNScGijN74gToJJrjR3JO71zl9EcFpzZWeX7vgHkj56o7ThoOnjecHg55+pEhm7kEQcUI+zN478OXIERWc3DKk6isdTho/vaPvB1XOSI1qYn8l3/1LUCQ3kRUxBAwOudg/wKPnz7DdDQjVZpLV0ZEPLffdAwTpNYIRhH11YRWgCQpaJq5NPSv+lfRCpL2c1mQN1MUTa0ZmIQRFT4sLNMWox2aiPPts7Ka8+SFmkOfsJlnZFmydOs8/cEp/r0P89rjgYkbkJQrJKc8L/WaOkTKeSU1lFZk2hCjIaiAUpbcFmgm6KhIzfXpgq+7KVfXJVXVyvYJuCCJPZPRkPF4zJWDferaSVEaI5M4E9aIhwUnIb4Q6E/7IWkgRH75F/8ZUui8QBF1zS/V18MsXLMRfd0//zq8vJ66/fc1a8H4VeaF/6VtJEnzK89zbLS4smZj0KUs5c966SteiY6RbrfLxvo68cKzV/+ANm3UxGTZFHDeQStdVZmik3ao64YQA0mSoU1E55ZoDNQ1kYhpgYg+ygXkifggcc1KGdxC0dbCNNt3JJwatWgSalKl6a6tE1peyni4R1fdJtaUtCOfjXcoE5mOZxTdDqpt0IY4593v/rfcd999FGlOUuRopUgSi7EJ5WRKjIEkz/DRUQWPzwwh5Mw1bShD+z1FDVaarUSNMtexaStPHTzReQa9AetHNti9vEtUgSzLWB1s45oZvVe9HaUio8M9stE+F3/n91jvreD9HK00aTR4ZXCxoQwBq5Qw/GIgqiDWFtVSAkLAGOHfaS1mgsYEmRpZSH2gnF9fBPKNdX1LK4tWlmo6oltYmdbYlNlkumzmLGyQ+BptelRtwmHSKwRq3DJZvFOgHE0T6Pf7krTbNMvmWV3XpGkqDSMfSWmILUNoOByyvb1FWdY45yRooVVLLNQU1lpWVlYYjUZ0OpL02+l02NnZkeh35wgKBpvrNK2qbDKuMFrT6/bRESaTUZuMCJ0swypHNZcNtQ5T1vsZr33ZgMan7Oyt08yn3Hb8ZsqyZDQZUxQZWZowGu8CtOB7AeOmaQejPaPRaHn4X11dxfuG8eSAwWCN0XBCr7vCwf6QGIT95UOJ1jnD4QGj4ZSqFGvworh2zlGHhrJxFHnO6uoqw8mYXq9HbBoODg7xYSjBP0VBXdftd+aZTEZ4L68lz3PZNKOWJgSR6BzGWrRywv3TemlZXR2sUNcVR44coWpmS+VcURR/ORfr/w+Wc072l9YuoLVI2Z1v0EqSrZUyYjtthxXX/uzCMlqWZft7fmn5RGtRvDaufX4qXFXKYbMdLknjTcIGYgTvpWHuWhZd3chQRLdMO7dIgG1q0kJTZBnT+QSClddqIjqxhLpEp5a6coT/h733Dtr1vOs7P1e5y1PeforOUT+WZFnuHeGGTXGwPdhywARCAmRICGRJMlvYlN2EmWzYSdllCTBLkiUbzAJLAqzN2MbCgG0JWbZkFdvqXaef8/an3/d9lf3jd933e2STRQTPrtk518wZad72PM/drt/v+/uWRRAAhpiYd4EYFFlu0oArJOumKKCKbf1M5b2F4OT9kgDi0AjQXJa4GBGjY4c1BzLbpqmkIA6eBo9PzWmRWOquqrrBgqsXSaopzbdvHFEFXBSvtrYJ0UQJiXAem2w9msYnpqI8E+u6JuIxWaDxVQceusZhlMallGVjDC44GU4F+Rs2z1LqowzNjNKE6IWZ7wQsb2XKIt9UNI1IdLPEnA0mnU8t033vPCozGC1DsRCCeMahCIkl6b2EfUSVZM9RWBF149AKYkpfbdN5NYYi01RNTRMj3okkPio5f5aUxo4iWJPSLOmGgu1woR38tInCrTwbQidTbevKVqLdXv7GJCDQkK6TViERUi15eX0jr+zQCrfc8FLu+PWP8LIPvpO77riLsViNSQAAIABJREFUq15+gs98/HaO+pJbbriFxSsVZq+Bj93BUx//HFPtePsPfx+1G/OJ3/5NmgsTXv/etzP3DcvzyJv+6vvZ252w++BzjE7OGOhVTt9+H7ia7/jBDzA6e55TX/oKhw4dojfo01Q1xzYOsz8e0bc586Zmc3uLkNt03fnuedsC51/d5+gEiJe5MM/HdcVwMGB/NGI8HjPdG7E0HGIyzWQx/+MMZLp16f0gr6OY+Bo7yLj9F3+FV7/nHRTKcOquBzj+shvYPXsBP684zQx/zyNM4pSX3niC+d1f5IsPPiBAvgtf0+tdXt+463/+Rz/Czsixdf40nzlyB7e+9EpCyGh8ROmQvFYNSltmzT425thM/Dm1lj0kBkVdN1irZPCDSFfFe1NsvE+ePYuJjrX1Ac+dfJb19XWqaovtHcebXv8mUXKEmo98/FF+/IdeDyh8I2SVvCySnFXxkz/594iNZm+8x+2f+L+I0eODxSuNDoE8K3D1FE+k1ys4fPgoK8Ml7r77blZWVji8scG5c+c4cd31bG9ucu7iGUlDjRFHxKbBFY34nDkd+OLt/5KmOMxPf/R7UbVmPPYUJmPuG8G3OwMDGdrY5Nv4hqXA58cTVK6I2pDj8RFC1Pj2vk5kJocMTGMMImMPkRoht5pW5o4MsNaGK5zc2YWoMSq8YN9CRQEyVXwBrqIo0EyJMdUcCZDzMRJi55IHRElETwPX/f0dhquDJGdW7O/tsrwyAAzWKEkttZoj65GnHr2Hv/F97+EPfv9zTKqarMgTe93TtBZ3zkO0KOWIUcCql1+3zleePCufLz2L1vs5168PuP/ULrGT9cP1V67Q055HLixobfMUkZcdy3jybIO/5NFzdH2Z0XjG3v5OZ3lkNWAU+7tTlMmZVn2yMGHFSF2srACkGINXmoyKi1sLjhweUGDx0ZEZizWglOXFhs69aFBue28XYyTePagAWjGvPBc3N1nMpMDTKMZhgdGFeLsYIJrEEPvjwZWoQGKNfZqw/qcBNvnun7RaNPKPZ7j9aVcLwrzw7x4kGFltqGdzorL0c8uNJ65jMOijl5aFHRiiUFOpIfiv4TCGVBhPFhXeCYCmtPg6BA3RSOpR4z3G5FSuwSWj1XZKFnWDUjlj76R4D+AyuWlCknJppYSymgpr5TUhhStYAwvnmWxvQpCUnENXL4Tl5gKjxQxtTWLoCRAx39+T11cK5xXf9b73oBH/veACOhMjbJNZ+nlO8NKsOC/mtFUAV8+oRtPuWMSU6Gdt0TEkvvrsdVJnH9IUD7RXbI5HXNzZpnE6HZfkVecjUQeyIsdoAW42DheotUMs33QNs6fPiFchiPxFKXzToI3YNaLlb4jhOdgio5637Eo5/joKWJwTuhs9ao25bOr8dV0tW0Frjcml8Sz7fXZ2dgT0Sfe6955er9c1dY2WdOLZdIxzjrIU76TpdEpe9qmqqvOGahlwIADfbDZLRUEl7LoULtNO3GazGcvLyx2brqoqquQXNRpNOHbsmAQiFAVZlrGyskJRZDSNQ5kMXUgAxGQq90GvLDl06BDTkUhf9/f3QTnm80iWm46l4b1neXmZ0mZs7+9QxppiZRVjPXmhWc/XWSxmwgBRivWUprq0tESvnzOdTg9YMGnt7+9jjCLLRbYlUoC886bZG+1jM7nAy7KkqYU11+/3cS7FmBdiKjtvanKjWVtbY2t3RxJsm4jCMBgMaH3oJtNdrrrqKjYv7qRj3O/Om9YaFRXDQoC1LMuEkViWzJy8v9ls1qVRtj5+PooXVm+p1wFCl9efftlWutkOHpRKEoHEjsIkOYjqzmcLCLXXjXN1SjqWgqQFgOdVndhFmQw2vCRTKh0hiO9ia67fvpcW8G6lMjZL0+Ra3A+MPQBW3Lwi1jVWSSosUUCSSNOxunQWMY0hOknfDM6hdZ4KO5F/ipF/SJ5ghto5VPTEoAUQ1ClcIIGI0TvKMqdpKkLa63WAxtUHFh1KUsxMRCSvSVKD8/gQQNsubCJGD1phtGHhGyRCK2JiZNFMUwK7oskiOIeKsKglGKZt1PMEimnABUUgECXWDJNZDJHYeGwGYKkW8rlbtjDQ3ZNy4I3UI1bTs3nHHJbAqIyQKuCszCgTKGW8AG6SD69QpUWHgChAItoarDWEJNPROjUEKqJyUTG4xgmoZQzKS1K8SbIWrSVAwiqDC01n/p0nFp8LDZkRVqS1LWimxWdXPmD3DPfeE2Ld1TfGZJd4zAnIaW2O97Gz5mivuxYIVcrQNBU2M/im9Zj72oHz5fWNt97ystfTrBX0rzlMvrHMe1/zzewPNdcfOc7Jp57hsSeewM49N7/tDRx6y02o81PKs7s8dcfd5CeO8JaXv5HH5vezfuVx4t6YJ6ZTyt4Kh7OCrfXnWVVXkDeGYA2LR59nvj+mXFqFqadXZNxw5TU8deZ55vM5hw8fYne0S+nFrsETWTQ1izqxRZUMrLz72oYvEEVWr0Se7on08oKzTcXu7i6lFjZxPhgKgcK1LISDmkBFhG1cSY8XU4qh14GB0Vxz0w2sOM2jv/tHvPLb34JZLlldXaZ/7BBnHv48Zu44d8WQe+59ghtf/UoGgwF74z0BBzSocJnJ/udlTX2fqRtx7XCdR57b5E0vvYLSDtExPdVTuxNDzT1fep7NrXN8//veefDMi44/uPtBds6d5Hv+4vtQ2kqyO0oGXibDxMAN1w44v7PB62+9gV6vx2vf9DqWB8u4ACeuu561lSXG+3s8+aXfptA5UUmCptZawKo0FOrlhjme6Ux8hvNUR7rGYbRm0Uw5cnSd297/nWzu7PP5e+5kbanHeL6gKA2vuOXlwjgvC4a9IVvnz+ATeiVcFql7vBHmnGrgp//Zv+Ef/+O/w5KNXFh4yn6Orb2o+lJwgvw3EKOmihFF4AldEPOIRsKuhEEOQQno1h7DrrdFfB9VjKigpciAF4bFGNiv2v07UjuoG0OmNA4ZGPoYmQffWXkAzGuFioFcQRM7u3g0IhstQqROPyuzMLEOWVvd4J/+r7/KNOT8Vz/yIZSt+G//l9/kn/zEX6U0HqUCzjkqH/G6ZGt7TNErGFcB75QE8DkZnkV5MakFrCHUnoAksQvocXBdRh+Iqo3gOPiGwkkYaVDCAk5+c7Kvv/Da1kkFNXeOW69fZWenYp8Be6Op0LFcwCuLUhUqGnx0GFL4mBHJNh72GsdxFTHIoNOrmquPDLn12z7EHR/7lRd1n71oUK5pJEFir54ym80YT2bM51NJWrFaEjeVTAKbFHPtapEmRSx0nmZfBc6FmIIb/nPXAfChVJsYAh2/O60Y1YFEUgsIaHUmIQQ6CsdWaUBjkMYh09Ic5HnJMLMs90R7Plju0V8eUlhLf1iw1CtYG/Y48ZJryJUwQC6cP09oAllu8DWS8vXHiIpVSI1HKialoBO/OBDkW2UmmRtLOIPVQptsgydizIjRJRaQAq1RLhDMAWocFQRjRB4TIBgS0CQmmVobVCrg5/Wc8ZkLTEfbnNrap85LVlbWOpbRJHhmO9usrS5DkM3eoFiogI3yWPBOzLB9JQ2yD0mSNp0RXYNL2utF44hILDZRY8IlkrMY2/uoY9NBkrqK7harMxye1cES5fKU3bNbDAYDdpXQ9ue+YXt/l9LmhDCn15PI+BgCV970ck4+fR6MEh8qHWiCJ5qS6BtQGu9CihURplw1E+ZCExxWHDfERyBNIGxUeB0gKnR8oY/f5fVnWzpThCTB9tHS6ycJqs4Si0E8UZraQ67IU1OVGQu1Q6vIcGWIyiyTnS3W1w8RVAL5TMnu7i7DoRSovqko8n5iv0Gel5w7d4719XV6vV6XpmqtZTQasb+/z4kTJ2iahtFoJBPvXsN8PqVKsrM8txijmFY1WhsGZdGxuarFguXlZSaTCbVrqOoFS2tDms0ZS4MBKGGTVcl3qw2oX/gFy8ur+FiwmFedJHR5dY28GDIej1OCasF8OqM/8Ghj6fUO8fTTTxMCrK6uMp/PWV5eZjzeh1iwu7NPr9dLIQs5ron08ozBkvi+qfTMHgwGrKysUNULfHBM9se4EFnu9zi8cUgkqMbSL3tM3IIjR69kUc06r7deOWQ+qzsp6vLyMtvb2zRNQ1mW+MWCShuyLGMyn4nFQGIktr8DEGtHz+YsQkNdV6m5rlhZGfx/cKX+/2PFxGxTVqSEIQaCFw+t4ASoI2phkylpAENwHRgHEFKoQggQtcNkIl210chAKgYBogCtc5o6TZQTM0qlsKImeAHwGoc2spU63/6MACwutuEgMm2e1zVL/QGuboQhFwLKKbSResXGjGg8lQ8MdYEL4genrMF70vRWPkflPLkWb6dgFUo31C4TxrmWoZkloIsgEkyjMColbqbQBSkQtTCzSkU1m9LvrYAWf6U6+M6HLxKJMWCUIXiHi5FYB7BWGmMVsYisGGswDnxUSRaUWGdeitImBGqXGgEdRAanZdgXnAyjxNg9AaGFxTkgSsCKS0OnNuwmhEBmsxcMCNqvR/wB28wHbJHj6xqbft6YA+VC1EoYEqFlqGloPEorgpY6xljZ91XSvUaTUn6TT1+e5+jEZDOI6iJ2bDiR/ci1mRMaRzQtq+0ASPNIbRWRwZvSoHwmstM2VERniREMRVGmO0T8++S4WFwtIRvilyVKhRZgDKmxCuEyKPeNvs4/8Cgnz53Endhgen6Hpx9+DHolK4c3OLK2wdVveg0P/trHuffXPsk7fuAD1CcqnvnKo8wfP8sT9zxM8fIrmZ3fodrcY2warhiuMT67ydHVDV7z9lvRGE6dOsX5k+d57bu/j/NfeYrZsmd1aRk/30VZw7GNI9z/lQep65rJZCLPP60o85JZJYOmtlH/aouGlkFijFgHbCwLW71dITp2dna4+cQNPPz0Y4z3R0IeIHULbaprWt77LoxlPJ52g33vPUUNh285wam7H0RlirvvvYd33niUz33qbvbrOUvR8sbXvI4HHnyIz919H+PZODGZpNv/s5ImLq//99Zka4+ZskwXFdOqhigMZhWEDQTgVETHwM7+iKIoyLUAS5HI2uo63u0Ks1lZUUf5gFORzEgaqlGiSvr9z32O7L4v8MN/6Qf55Q//Eu962ztZ3zjKx37no1zcPM9P/tgP8W0vjfz73pC6WaShx8H1FK3mn//Mz3DhwgVya3jFzS9jsZBU9NyIx5l3luefeZZnnnqUuTfsj0doHfjB7/8hPvmp32O2mPPG17yOL3zxC9x44nqCVpgQaRJzvoMT0q3Sy+HzDz7Na7/lr7M1kdtEz2quWC55fFQRIowXjpblpWLk+XObHFoacM2RAVlm+OIT5+R7QdCKGGKnIhOSScDnkCnFB269nqaquPNL5zoERQXFd7z2GOPpmC89OWZ/XKeAY2G7NYspG6Vh5hwTJ8+KxcKxcIl1B+zsy/NlbWi56fp1Hnx8ixa3GfQCb3/pFYxD4J6HL6LlAsDYHt43NG5KkRWJsV/g58nurMxIqR44B9eduI4/uvsxdnYvcuiKY3g8F85d5LorDwuwqpIKEKlz2qV9g7Gg3EEdYYzBESgj1FKiybXoBXm6dLAox9FiEuDYft0rCX1QSvHMtGBzLwIT8aYPChU9ddNgtCTpiidvTPkKgkK5NGjVwaB0jlcLrNIcWs244Ybj3Fe+uL3/RYNy1uZMpjMubm/ROEdmcnq9ARoxLzRGjAdBgJ4QAsF5vK84fsVxKZrrmkWzOCjgQjpIURDbVgYlps2yqVy68SgMBk2WSxJfZiw9IyyJYDV5XjAoe0StGAz6B7+nVNdsWyU+KSih27Ynpm3qsyzDx0CR5UQV6GUStdsmaWmdp4JOkxlLYaDIM46uD8iUYmV1mbpq6PX7zKYjzp8/jTKayjUC8H41QqsthbY0VYPzvvOEMyhs+vxaCYrceJ+mrS11UwT7UQUsGTbdVFEbTIyQLh6j1AsKaGUEtGtBVBfB6IgPomHPTc722QssbV3g3s99meyKw7zyFa9mZWmVLCtZyXoUxsKioijFD8rEIGmwWhr1eV3h6jlKZ+gswziJbC+Hw+68zKoFL73uBLe9JWNtbYUis3zl4ccgWkorRfrZrYtoraXxdxJqcWF3m6ZecHh1nUNHD3HfY49wdm9EaIRJ8cwTT4m3WJQ45fMXt9A+glYJ3AtoImqwysZtH2Axm1MYTZzOWezssvn004T9MbFpaNqHvYoEFcXIOwSik81EK4UP8lpRK/HrE4ooRl1Ofvx6Lp1pZqMRKiqcaxhNHCsrKzz9zJO84uWv6hg9WZZhM0n0dCqylmSS84UYsBalYbhUYrUhGM10Mqff71OWJdPplOFwyLSqqL1jMV2wsr7SMXzalNOWUSFyJE2WFYxGE1ZWljh+/Aqm02lqxh1ra2tpY9DUtWNra4vltbUukXRvb6/7e4vFlNl8n8lkwsbGmrBLnDDvUC6lkA5YXV2m1y+ZTCbpGemoG5nqra2vMk9hEVprirzHfDFFZxGCYmdvm7I3ZDgc0usNEkNEk2USttD69KEcOzt7rK2tMZtPMVrYgWXRJ8sKTp86w5Gjh/FBgiNQTrzfpnOqxYKmEXlsy9KTFEYYjUZc3Nohz3oM+hbnRhRFr2O+tQ2FUsKsa9mJLkZGozH9/kDkdiF24N1iUaUBiqXfX+1YSYu6+hOuqsvrP7UuTSMGOlP7EILI/hI7rL1228LRJCN97z1ZbnGNS0wjmYgbo/Ap3EepmBj14FOqaJvoLp6LqR7IDYumpqdtJxc88BlJzCfV2h4EYS+7QFO90OjX+0gMDUoZvK8xSot/mfMoL8CiUxIyoEMkak1d15S9kqZ2EAPeQ55ZKTx1oPE1WZbMlJ0ihgatbAcYd59dCZgotVGNLW1KRz043tGH7jgqFDHJW2KIFIkdHIMESrShSM45kcPG2O3v6BbcAx8cIXqUDlw6rNQRolLkVpJWo4fQBLS1YBQ6alyqRrRufX803qfACAW+rjsQrr1eWpajUkqktQnMk88qzxrnAlpZIk13/mKUZLYYI5mW4JA2ETJG8ZWcVjIUs07sU5pkOxKNmIZrpVN9JL56vbzXyYMlHCPiok8ehLFjw7Us6fY5b4wWT9xMBrjdQFCZg8TdZGHR3iPGmA68QAW0ibjGo5UMTf+fbFYur2+cdeQ9r2X4yBF2Hj/L8pUF6+9/O/f/1me46X3v4Ol/+1GGr7uRC+M9rsyX+Jkf/m/4iX/2D7jhza8iu/EmJr/9Cb7lr3wXn/wnv8xzt3+R1/y19xLeehOf/w8fIwTFVa+7kTf+hXexogeUR48w2R/x3F1fpHjtjbz9L9/GH/zrX2X16DHqcpc4qTi9s4M2hqA8i9qhzZzGN6ikEnHhQMb61atNPjdaU1WSBL+1tysyb60JVZO8X+cpnEnM0omXKDy0ovFJvm0Lalcl8kJMHkqWpbUVzp8/j3vgPuI1Kxw+fjUPf+V+ysxy5dXX8OyTT+CcY1ot5BkQYhLtx8vpq3+OVtDg8fiQPIJNqoEJ4DMgYFTA2JLvefcbZZ9OABNR403Bt7/1zeJnqpQ844MY+iujE+tTcITxaEqvsNz34JfYvrDNqVOnqCrDmfMnIVoefuIkTz94Bz7OOk9jrdUlydzwD//+f8fmxR1OPfccD37pHumvlaZnxZtWa09/ZYmNjeuYTubsT8aUWc4ffvYzLC0t0Yb+rC8PefNrXstjX3kUnXCOto+PCBErKsi1wlOyPa9wRFYHBRmRZyeLjm0WEzO7xQJCCBglSgAdApkSAkgbrGBiJARFNGLPEJSQaqKOuMUUq/KEZaguQIngxes3QuUc/TwTeaoKjBfQ4DHqIMV+f7RgYDKBwBRM5o6gYV4JPtEOsJRS2KhYuAZlrPgLKzm3Ugtm/P2f+AkaD6WFzJT89D/4cZSv0VoS7QXvMTTjEb21nCVW2VhbZ3e8T9kbJgxI2HE6DfI64pUSZroEXcjzhxCpXZOsjcRarV3GGLSxhDBN5yqBdE0tYRpeyFok/AMle/3W1lYKoUFM+UnnNzMUWrNYVDKwM/K7SkUybSF4isziUei4QCM+c9o79rf3aBYvLuTpRaMG5za3xMdHWXqFpGuRZKmFFqNhkvwPFEWmGfT6rK6uog3MJ1OysqCwBhcDyolJYM9kYrpoDBhN8BpNoPaOQVkQVQYhSWhQIpvyjugD/b6YircFlzGG3GZoZah93X2v1H1MTKwK6ylsRr/XY9ArOXr0KP2sx2C5T28woFcUaK2ksS9yMm3QRj5XK6ExKqaJvKV2jv3dbc6cOo0yMJ8tqGdzxqN9mkVNnpfUThr8r15KKXpFjsly6uCpfaBSARW1mF6GiDYR28ondZoGowhRjChd1Dy/tcmJjaPia0bAe9GIV56UjCNMOO81Sss5a3KDJk/yj0AwIk9yaYMveis8/KWHuLi1w7HegN29bZaHK3KxK0XRG7C5s8WqXiEqmCc/GqUU9e5MvKBUpHFNmmwH6lkgREfTVEwmE7yP3HjtUU5cs4H1llkz5+UvOUYTA9YoVGblWFsrDZKRi1wm0gIsZkXOjw6+h6JX8pFP/i7nL2p6/YKm9ijA5jmHDh2S4r52jEYjsAobNE2SBpXDPk3wNMYwvOI4w1e9iv1Tpzl5190w2SeqSBMj0XnxFFDgIlhjqKMTryUvCThei4RJRfH4uby+fis6x2ImqZ1u3NAfDlksFqyurnYNT1UdSLtRIi9rwf3ZdMqRI0dSCENFkZW4RgrXdprS6/UwRhiyZVm+AABwzrG6usrFixfp9XpsbW2xsXFYklNTEMFiscAHRVEUbG6ep9/vc/bsWfI8Z3l5mdlsxonrr2e4PKB2jvlcJuGtJ93Tjz/B4Y01NjY2iMGxsjqkmsyEQUOQ51/T0O+LYXMIgc3NTYreQCTvQVKwz5zfZH11Vd7vBTF+dX7B+soShw8fZmt7h7Isu+TTVuZ5+PDhLgE10tDUqguBeOqpp3j1a2+hWjTE0DAcDjtmz6C/kppV1YVmzGazTnLY7/eZThOD2jnquiHPBvTKAT7I86AdjFwKDIYQJLk2y8TnwVrG4zEhAexRSbjEbG8EiKy29cXKsuyyfPXPsDoQQStJYLWW6L3ITVNaKdAl7doUAND6D4n09CAIoJ1mh+CRVEoBtpRCksNMRlxI4dkESUsOyN6lI2QxuZmk4VLL1mjBlXbSq5UmxEDZlwFdbHwH+hilO/NyrQPYDN0me6pImWdUi7n8pSgSSWu1yBVyRb3wIleNNagC55KNQoxUM59S0yDPdJc628vLVL9AdAJoZtrgVaByFSYdl/ZeUkr2d2MMIR07HwM+VIRkVkzU3TMONCE2kpxIIHqF0rKHVr4RhplurR+k8fbeo7z4tihjKLIc5xeYIsOloSBBPGdi9CiVhm9GJCvCSIPCFAIyhpalqDugK5KulcgLZPICvKaJdrRdLJX4FR8wHqy1XeIvgCfK/e09UQsjT9IhJUYDmxJwDRAChTV434DRB9dhAJ1luOgE9IwvHP6278O72IGNxmoBEKNIfkSynM6Lj52fXgjiCdw2MVoZitIQfEyWxCrJhC6vb+T1xd/7I9707W9nc7zHxc89yqtf937Ws5K1fMDZoWL0L36Vb/1730veX2LbNdz+4f/IrAx829/4K1z31lezfdeTvO2//BB3/qvf4uRnHmDpm27ijd9S8SRjPvexz3Dx/ieohwPOPvcYZDlHv+U1hAeeZv/aY7zq+76DL/zy7Vzzlpt4/cteyx2Pfp48L1m4BZnSzKuDxq6zcrkE6L30OjZKhoXzxUJCpFbXOLd1ER3hXe99D+PdPUaf/TQD37A7GTHb3nkhIJdW8EDUFEVGfYm9ByGyv3uBo9cd4+g7X8+Tjz/MmdGIkydP8srXvoHnP/ZxsrLHubNnMShefsvNnDx3BggdM+/y+vOz1jaWKKY1u5MFG6WlCjWFzroBjjzXBZxrqpqst4x3FVGLl/MgL3Em0NQBVWosgYaaGMXP1DULQuNYzAxHVtfRmeXJJ59msLLOdFZz9z2f4+jhE6ytLHP/Q89wZmeX4+sDisJ0eySAVYosy6nnE5aHPbb3RL46TISQqqpSmnuf6649wgc/+EGyLOO3fvP/JCssWdZjdbBCE+c084aN5TdxdnObBR7TsswhMUblKg4xslVFLjy7xfXHrmR07gx1VfHEcx/mra/4AR7ZV5gIWWaoxGifl69FfLnBMxd2WR6UvO0lJ3jwmQvoKH71xIiTZExog5W0QrInI3c+tosPAkNlMVJHDxo+9ZVNCqPxmeIla30ePZ9qY+DwasGZvZoaLyHLKI6ulpTMWV87hDq0xt75czxzesLrvvnNXDz3nAyyAlgN+wv43Qe3MVaAtxAiH/noH/DK11zDtVcvs7FxNTGm4SKBYQZkhs3tPVZXVwnOsb6k+aEPvQMbDc+cO82Tz50ljMYUK1CUlkUNJjO4NPC6lAm8O52CyoAGHaQGqXw48BK/5KFSNR7lJ6yv5uyOKgii15xWL8Ri+v0+06pJkmD1gtdrvWpbLz3lI9am2rcbVkOF4CKvuGaD+UJAS6JYhzWN45d/6d+y0v86Bz30KsXG0mF6NmdluEQvL1C5JVcmeQn1yDLDrFqwtj5kfeMwK8tDytxSFAXaWspcJrIrKyvJq8AmJkiNtTlETzQaHxTDpR7GRGym0SonEMm1RayXFU0zx6EwWqOjGESiAgsnhfAnP/WHvOPWNxK8p1k0uNozqcbMZw3VTFDxnekuZ5/YAicpZkGBJtDvLZOVIl/1SLS43AYeU5SEylP7mqI0vPKGG7ni6FGuOna8a94ngwkba+vMpzOCc+zt7bLee4wYtMDc7Qm/RP+8k63hVI0iSwaBOQtjsXg5xrEhWlCpGJf0EYXXcLy/wgLZpMvhCoXJQCtW8hylNR7I8pydC+doxvtEZfBGkWvFLITkO9GCdwn19grT7xMjZLnQaTRZAAAgAElEQVRl88xZrrvmeqrpBJtnaKS4Dcp10tSDBDZLbjRN8OjEeHTek8WGedWgo2FYLHXNnDEFztWsZMNu2vzpz36Oz977ZYzRaDTeyiQg19AvhS1krabIcspejilKnjp5EkyJNjmNn+AIOBekiQ+OIjNkuaLxWpgaIVIt6s4wPiLyv7UjRylvvImlq47y1O98itHmWWwC7F2rS8+s0Ji9EeNqHcGLr9a4dgwKS33ZL+PrulSIrK+vMxqNXgC6HD12BS42nbcQQJ5HmkpSGB2KunYsD4ZYpVk0FbrI8ArKosQYw3g8pixFonrllVcKmF+WeO+ZJFCs3x8yGk3Y2DiM95Gi6KEyGQIoD0WZM59PaZzi0MaQjY01JpMJN954I2fOnKGua9bW1hiN9qjrhchK+0NWBgM2NzdZ7vclFGZtledOnmLQWye4SF4OCLGimtbk/SI9Mx2RwHg0w3vPdDRltqiY1yJDXVtZoa5rtra2mM7GrK2tUU0qfDAoFWgaL/B+Ah17vR6bm5uAgCzOBYbDPvv7F1ldXUYpYbG0DKjesEekpKlnZLZPVdWdPEDSLwvqumJvb5cjRw6xv79PURTs7m6zvLbM+Qu7TCYjrji6Qq4lHKd9BrXJtZktCcERtRZwIs9kQ0zASlVV2Fz8nsqyFPZ0r8+5c2cYLi8xGo06T7LL60+/hGklDZQxKfHUgzVyTJvgyZTGJpleC6IGdWCY7x0HQBJKmGoRgg4oL+Ep0WgJ1AmVAHFBQCuNxitBfyIHw7cQNErRBRcpo0Q2q2Ug5R0oHZPfClQGTEz+SzqB9Uqjo6GazTtmnlKKeiGpq857YeunOCcdDoIkiJ7gxTjZxYAmE7vYKNIwa60kyuqIVcmnMtOYIEESWaap3FyY/5mk1lllJGHNe6zJ0LnFeY8mikSVA7luCMII86ohJJNpn2SSSkmIkw8xhSpIWIpCoQ14V+OVpCkq7Q6GDtREJdNslEYnaM4qLVPk4CnzAgiEaNCxwqZzHT1kOiWrItLQoCI5hmgsOqNLYFcqo2oCmYmo2EgNEy5RSSS/TuddB/AJUz0k0DKgjAC1xigaV2FzS0QYjdoktBCRXVukRpIL1qMzEeIoMrS+BOC9ZIUQ0EalmlujoxYAEwgYdC5gn9Jipt/6kGojsLDIjMSnJ3g5HsYin9VHLq9v7HX2Cw/x4NTxjr/2PTxy/D6e+4+f5ubb3snnf+5X+bbvfy9/9Hu/z2//g1/kh37hp7j2tjcx+8xjTHf3efaBx3jDW1+ND4HHP3o3b/mx25g+eZI7f+43+MBP/hibd32al564gTe84y380Ud+j43jxymynNEXH+aNf/m7uffXfpewuspN3/k6nvrUg7z5r76LI7dcz30P3Mt0MWGS9vczW9t/bODdpasFxrPMsKgrgpEmf1HPKU3G6Tvv55GTT7E522Nczamix0SS9Yru/kb00vl+NYCmUUQ0e8vw9BMPc+cXv8ChYZ+oFWfOnuJlL72BIjFrjx85wr2PPMpzz58CDgD6TpJ3ef25WN/xTSfQWY/vftvLeWTvaR572OGVxwaLC3OyLMcY8LHhZ3/yr/PRB89y9x2/R04kKMtsPuJjn36Qq48f5hU3X01tymRTcOC1WWrLVVeuUvRyJouKm65/Kfc9eA/f9q3v5NZveisf/rVf4rkzj/ITf/PH+Z1P3E6eA0qGgTbtQT5EdICf/flfYDSb0isKrjpyhCb5tLZ+0A2BL37x8zz51KOcPH2eqDxZZvENvP9db+Vjd9zJG9/wZr5wzwPcdNM1ZB6wqmO7kYZnrbzUK2Ferag9ehHGPnDLLT/CrFlCxQnrSwVXbKzwlecvcqWOHF9a5vlGkmCjtXz7O2/mw3feS5aR/FQTBS+BZyqmPjupC4qiIPqGeePxSQ5u0s/0ezmTxRz/VdZg/UFO2JPk4zaqUpuGLN/g5/73T3DFK27kfW+6mWIIb/+O2/js7b/JM8+eQRvh2DsFVsl+iA6QaR49f5L18WGuC4f5n37pN6mC5m/94G3kVvGJuz7De9/xFo6srxFSQuloMuPnf+MP+Dsfei86X+Gv/Rd/kf/x7/8jnMmIjSIYh3OR6CXJPvr0vEDx1LmKQa+X6hMZ51VO8ej5EVpJzdOu5zfnZARsqA68fGPk1L4jzzOCa0DBdC7qHJ3kspeu//o7r+ETJyMPPXSWMiuZz3bFNzcECmPTwNKT2ZymUZzaa9hY1igX0cbgvGPYy/j2934HD3/hoy/qPnvRoNwHvv+72D13XgAuImXPMh0vMAaJwLVznNbYTNNox6mLJ3noyX1JL2wc3juMlUaqajy9vJCfrWqKnjAkjC5Q1iZ/D0+Z5dSVg+gpi4HQGXXE+YrFvGFpZSB+M5XHBTH+XiwWeB8x2vLvn3oe0CidXeKzoOnlBcaJFEcZy/pwnf6gIM8tR644xqBX8vjpZ6hCTWYNKhNqok5T695SzgqRwmiGw2WsNQdJrcBS2ZeLScHCNSwNDKvr6xgVXnCL+Ajz+ZxYDrjlg+/HYFFpamut7SbPp7/8EBce/RIYTXSykbUSV6UUc7zonK3l5nd8E3kyvY9RoZXtJsFHJ/t85ROfBDwGTaPAYCCC0wGN+PygLZ6GiydPo02kXkyYJQP7flYIE4HIcDikns6x1pDpQj5zDELbVJHSCKgZYySzhhgzyt5AzB7dgrI3EGaFrwVZDtLYRQ9v/+Y38OY3v0HM4XPbsQ6895hoiUbOn0msR2PgP3zyU5w5v0mWWfmnLYuqERlLrzigN3tPUBGCpPm1bB6jhOZ/+tTzHD96nMyWnHjft3LmC/dz8YlnCMFhkWYU5dFRrve6aaQh09IQ2NLiL2leL6+vz2oDE1oZldaanZ0drr32WqqqEpCXgLFaWL1kAkZ51zGvYow00zm9Xk6ETq7agtFLS0s45zr6er/fZ7FYSMKyzbtgAWMMa2trbO/vkOWaYm2JxWLBYrHg6iPHk8w1srKyws7ODseOHaNpGlZXV7lwQXzfVlZWJIm1aVhbW0NrzdGjR3n++eeIKGYzSbCejKcYGxgMxB/t4sWLLC31WF1bodfrsbe3h2s8S0tLzOZjFosFNis7oLy9xofDoQBuwZNnpaS0dumwIrebp3RXpQ5SUCeTCdZarr766u44tczBPBMAzieWrNaa3d3dTuYorLiaK664gu3tbayFyXzBYCmXAUZiyFVV1QE5ZVmyvb1NkfsutdZ7T+OaxKDJqGuRrRIC+9s7HN44JJL4/f2OLdca0F9e/3lLGjvdMZfaMA9jDLV3svfGgOXgZy5lNwkgIcwq5zzGZN05jj5He0UMjrqGoGT/AZkmRycCpzbsof3b8vqS4hlTcmsErJE0MqWUoGNphRAotKYOTvZWZI+W4ZGwOi9NjhXGn5EQAN90clKvfEoubgiEBI6RJBON2DTkyTMuHaOIsLtE4hgI2mEKjY+NAIopyEFpCN6TZTkKK6FY6XgXhYGUTIo2BBVoQoMxgRg9xlhCDMI4i8mfN3gUFqIhemG8Na4my9vkaTGUtkmW2vrtynmT4IgYW0NqiNF3LMiYpvFaW4yJEkKlUigVlzAiiWJY7QNBRazJu+Oc5QaVZMwu+docDPTowNf2/0nnrA3YaVmSgYg2mTRhCAsy+IC1Bpd+r00ODkH8eF10+CDS2VYCeKnc9tLX7Sw/nARsGGskgS4E8eBNaEVnhP9VjKVWEivXyqUprJfXN/J63bvfwaHtwB9+5ON853u+lc2lTT774Y/wth++jcd/9eN819/6Xj79r3+Df/cvfpb3fvf7Wf7WV3Pfx+7A3fEQn3/seV77A++lWFvlrv/td3j9be/kune9kbt+/tcZ37TON3/w3fQGA97wl97H3V/4fZZ7Q970yvez+ezTvPr7381n/t0n2Wr2eM+PfS/uYs2o2qO3vMT+eISKUFe+u1f+JCl0nucsFuKrOa8rYf5H8NZy49vezOiTEyrtGa6vcvLcmaR2Ink/pfsxajHSjzCezGTCYgAlZjmnt/e4bmeXyXTEq196Ixe//BivetUrGO/ts37kCPuTMYdXh1hd8Njjj4hjdzv4V6q7vy+vb/wVw5StecGh7/xRHvjZjzOMf5g8xT15UZCbHPCoYPh0fDUPXDxHrg1RW5q6whOZNXPqao4xGVhDpiIBqeV9iPQKYd298uZX8Nm772Jn6zyL2hFd5OSZ0zx/6jQ0nr29ETpqqipisiQxTEMrvOzvr3/DN7G6ssGZs88x3t3CeY/XGqU0OiTVE2DzPktLA+bzOVlWcmh9mUeePc3NN9xCZgyHDq+xvzdNpJ2vBajbNbSWtSVFtTVlruQ2uTiuiaomENmcLJilYfiFoNk/O2VpMCQ3ltOnLvJjP/V/oEvwQZSRKoqfWlDi+6rSPWmiQkfFfDwms4ivWxBQUGvFRj+jWcxRPrI9O3h/XsFkPmMl08x9TOnwsLsf+e6f+ml+6l/+FK+5Xkno2rTh9v/wixjlRaKqI9FHBj3Ly08cx6vIlx49KR53KufOOx7k1puvTv6uOa7R9Gygok6DKIUngAq44MEvmMcFIS5YHhiakGGNFdWZa1BEgm7IYiRoCZhQSlFaYaxpRFFBAiuNtPMiWmjPUAzCxm/ZxJecuBzx9nWtFJZkLfZVj9R//vHnMBoUhnnj6EWp24wxAvkog0VMjr0Rz9wcTRMcURmyTFE3c86cOYV9kY+6Fw3KPXD/Q4RYYU1BUJ5snqFS4ZjZElMJKyogRbZSikG+lAqpEm0l5n6pLz5JAMP+gKAdO9OxTKrzg9drqoaaSLE86ArnpklpaHUg60mk8nw2lzAJpwk+UuSSBKiayA//pds4ceIERmlJ+NK2OwFt8WW1EaQ+tjpuw/ndbe56+F7QYKw0EjY7SIMzDlbWVzh+eJ2rrzguwFPyw+k2m+jY3d2l1+tx+rHHOPnIIwTtvuaQO6KYUFuNMjL9VdqioiKkJmM+FaknqQlx3qGMMOAkeUTS4Y7dcBUhiqzDkNhbURgASkfyoSQbqggBT54eMUqD5JJGjPdYLSDql59/jqWrrhPJpylo5mNipkDllMZQri5R9w0mG1Joi4s1rp5jdUEMFqVD18i1PizOOWKes5qvUjeLVMz2iIl9EEPAhzm1F5mbiVHAPuxB45fMmo3NZWKnAyZXzBZTsqLA+cAV11/FVx59hMJGLJEyt2htybJCXstFvNLiCVRHXCPSujzPGQaFa2ZEkzEcLPOSd72dbH2dp++5FxUV2dKQrPECMIcIRky2lW9otEI5hdOR5nLB8XVd+/u7rK6ukpUlUWVU8wWrw+WOUZHnOcGLvEOFEpuYuU3yJNOZFUl6naO1wuaFJAK3YK8xnRRJKNuSrGqtyGSFnSe+A/ujEcOV5c5TQ0c4fvw4F7YusLc7xtqcLBPPqOXlIYNBj9GoYW9vh+XlZbIsS4msBYvFopOIVlUjzGBfMxnPGS4V5IUBTNfsayKZtck3wrOysoZSigtb+4Bcw43zXXpim4RJjLjg2d/fZ2Njg7Nnz7O6uto1pFmWsahmLA3X0JquAS4KeY/L/T5KxXSsMsbjiwxKQ1UHMepN0/n+0pDRaEQvLyjLsgNT+/0+e3t7+LphPB53wKcco2UBTJuGPCtZXlplMpl256MF2PI8p4mS5Nh4x2p/yGQyYeHakBx5nrdec22gxOX1p18R100FvfPdsKhyDdoaDKqTjHTprNCdU6v0CxrHVkKqlKR+Vq4WGWAEUOhgMUqxaCry5DNmbZ4kf63/lwyb8pQu2jao3nt0KrNNCxz7g+8XEi3apZ3neS7MN38A3iiVQgSIwtRKoKQAi5rgxTtUaU30QfbY6DGZBp38RWs6ZriySoKYlCYqTah08jkR6UN3bHREaSnkjNI4FTAxkNmCgMO5BaDJtDDFjIUQKpFapAAipUVKolCS3p6Au+AN4LGZ7JkhDetCBJ+KRu8bvAsSsBCkUDdK2GpRMsiTL56V86SSpC1Nn1vZrch6XWKzaSKaLAsiwfE6hVa0AGjoinXx5Ty4hi6to7KUHNkE8eT1TfJmQ0IgYgyE4FHKEqNIeZVS2CQTbZoGZTRaSf0ZtcEEh9YOVNGBApcCHZf673ovHrEhBowW5qW8x9Zvx3dgYXcNXeI5am3eyf+MiV/Dyru8vvHWK9/9dtTjW/CFL3H/7X/E9e94PVkVGT38NDd+6Ft55N98jDf+6Pv46M/8Ovf+x0+y8ZJredsH38PWl5/k2WdP8uxv3MV1t93KYxef49mP3ku4asDhd7+C+ce+zP0P38622mV7a8Rr3n4r5WCFQfQ8unWRp++4l3f9xAd45g/u43f+1a/wF/7uD/DYb93DTM3Z3LnIoq6oEH/jF7Pquu56Hqs04/EYHwPDoBidvcjKK1+Cv/M021tbXyOD7aRZ3oMhsVfjC3rWFsxuCQQrK0ssLy9z3333sba2wcbGOlXtJXmddN8ECQySl7jMlPvztBYBPv2HD1L9zR/kC/c/yYe+/a3YLCfLDHVdi59XdGRofu/n/3t0mdHLZfha5gVKW77/u96Fa0DbxI6PoK3Y/2hjsNqQ6cjP/NP38eb3PMjOeJ9jR46yP52xeeEiN914C1mW8cjDT3Dq5BlOvOSqjiwTPETliTZDK3jrm95ANDnnT59EAXmvjyHShEjlFXGxYG1lnbLsc82xa1lUE3qDPkXe49ixY2S5IjM5N9/0UmZ1w2/86oclGDHV0kGrtB8IltPPIoPccQFF1DKwwuYpaGEBKOZ1I77kMb2H+YT1pZxjq30GZY/7n9wkKAGTYgQdIyHGBDbJfeNiBCLf9KpryKPnzofP4BDbL0LkNTcdYrqo+NKT2zjXoJImT6lItZAhYBG0hEehGLnAL/zDH2UO3K4NhYUmKE4/d4obrjssHm8pBib6BqsXqEvCE+bzmnkQ3GJlMETPMp5/4iQve9m1hNkSxqxCmEidRmR5OOSm667FKs3F81P+9t/9H9iZztjcGvPq648L3qIURjc0qQZo1QI3X73O06e38MrQhjBlCm65aokHT+51uFuMkRNHC8oMHj9di3tleu7cdKTg9G5Nk8hDCkWRW6r6jx/g+4CwAmOE3JIl8K6zD0CJTY42mMwSg8bkBZlWVN7RVI69M+fpZ19n+eruaDd5/iS/GLWQD+odf+tv/xAba4ekGIrJnyPEzgxRhwZnBBjCh07B6aziDz99J3tPTQja4ypHbvNUbKeCOCINcSrwJ5MJuSm7yW1nKh1c59dxbGWdv/x938d6v5TJboeWyoVkUjyuar/mW4DU8PCzT/LR3/8k2loyZambitKUWJ2jIqwMexzdWGe132dtuCyfL0ITAtViSr/fJ0SRxwyWl+gPMo4dPYRWYlr91YNSpRSDIiM2NXiFzkRWoVAYDUZ5rArJnFqKeTGbdOL5ouXhFmPk3KOPUxxaZ7C8DNpIgotyKCRZVWtNvrrCfGuzA+pATKR98NJEEfDR4+qaK23Gl598mqPXXYvNHc888hDLy0s0riJ4cNEx3d5leWUFj6Dp1ggAYKyi6PUweSmgQKQL0FAa/KTGOWEiheCwNkNnbXjFkCKBeZltwQibpiniJdhSWluJ0RObZ9je3mU4XCeEwN6FbfplyWh/zOnzF7j1yqvIrabxXkymreoShTPl0L0+ddWQFVkHu08nc8pBTu1qrrnlJqIKPPv5+0EpXnbr6+j3+zjvxU/INcSqYTaZcfHMOU6ePkNzuQD/uq719XWMMfQGA2YLRzWbd+zYthlqGXQxyU9BGHat99x4PMbVNWU5oE6/3zaVRVEwnx98rWma5GOWdxLP6XTagUl5nsvPLcSjopXmnzx5Eq0thw4d6hrN6XTKdDplb2+Pq666iqIQQHBnZ4+iKHjooYc4duwYvV4PNxyyqGYUWc58MeoK1ywXoOJSBluv12M+b2iaRgDEuekavzZ9rQUdh4lB2+v1GI1GXHfddR0omeeWuq5ZWVnh1MkzLC0NGAwGnVw4y4QNskgAZ1uIN01DZg583EKMKB8IdYPp9VlfXxdZYF0znU6x1rK3tyepiUk23gY8tFLTljXXMvv6ZZHeoxzvwWDAbDEH6IC6qqpwztHvD1nM5XuXJ/F/thVjAnJQHVutbfB0lNSpEOmGR+0/m8m1oUIkRGE4o8Bo2wEdtXegPVpnWCKuTr6yymFTQI5O9m8vbNwEcAseCdhBSeMYZUya53kXKCB/QwIASJ60RgkrrA2rkM8p/y2Kgnoh17cPnjwvJPWwBViUJIGGFKzgXdMlyxIBcyDDkeMEUXu0MTShIStlb4/R4xv5LBJKYHA+olXAp9RD7z0qSgKGSv59PgRhtiH7V9VEMq2JAZSuASugWlRE7XHed6BqIIVE0bIBLb6GhXdY7TtJjzKRqA249nwIEOrdQVhUxANS5/kYsDrDNw5rIdqMECQeQrdMQKXRWEJ03TAUVJL6lsJ6TNdWey+3wFxmLI1zmOQv2DImoQ1mELagjiJprb2wKmKMWG3wWpOla0IryYzu9Xp4V1NH1z3bW7ihPX9tSEcL1hktQR4yCDnYa0Dk2HKO0idTMlxQyhCDAJ0oT2jlz5fXN/TSc/N/s/fe4ZZd5X3/Z5W992n33DZzp2tUGBWkMQgBooqOQJCAMbbBxsQG1wTb+SVxkiexU/zEiX+JGy6JjU1csC0bhMHYVNEMBiEBKkgCdavNnZnb7z11773K7493nXNHMvhRHOcJfn7z/iONdOfcc/bZe613fd9vQV+0yKFznsd973g3j9zzJzzrB17Drdd+mKuuPE72xpfwkZ95Fy/98dfz0Me/TByM+b2f/nmu/sffybd8y/OYb8xw2zs/zNIlC1z0/Ev54vs+RifTXPZDV/OpD3yI1bv62HHggS/cwYHmPu5Z/yTHXv989i8d5hO//Ae86Ptfz4Pbp/nkb7ybc6+6gqft28PsDTeyurXG/acepRz2/zpL7nGJqUAaIsoQpZ03WNvcSEPsiCPy1U/dQNEuaLRbDLeTV93kZaPc17LgyH5f+7H8mYBJz3ZdVpw8eSqtDTkzMzn3P/Awo/prPOXYBVx44cVsj2pqbkIFJfZDZzCTz9bfn7rrnj7ZfM7mumPfbJtMe7wfE1RL9kECWd7A1Y7a9SiKOVSpsJliXDp0qNkZVIQK9i7No6KVIL0AKtOAQ9k2K0N45jU/RVNnNPMmvbJkrtPkSU96Lh/72MfoHjrKRQcOsnjgAF+98zYKI17pRmuqQY0xjhr4xV/+Oc6/8CJOPrxM0Sqmg0IfapQSa421lVMc2rOHO+67m0Fdkil40xu/j89/9E+5d22dl7/s5fzxn1xHd6abJJw6sfrFFDUqRVQRG8HqjKr2OGVRoRaGvHbMFJreQDChGJUATlak4VUNJmrahRX/UyXBDzEIYcapCIkFplBMHhvlFdE4aiwq5gRVowEftACj2uABGz37ZjJCdJRVoF/Ka9VhItQUwG+EDJl89NSVYDfDSkm/nwZ+mZFlZtwbYTpNSOz6N7/hVRzYu5fRYJvvf9NrRKaKJuJ4w8ufCX7AidVV9i7sAS3y4mte8CxQFU+5/GKuef1L+dAfvZfaaTbWewyqIa72RF8IgSiesa6FyRBvN+graKasdflPk0VMQzQ4StT0/6VwjQQyEmTnV5Mp4+OpcqlUhNBo0PCiJCJEdLab8p4XOSFYMhckUZ6AcxYUjOoROzsncM0nppx7wqBcnvSzk+mfUorXX/NKLn/qUwU5JKaJt0Ml34xJIhhAJoYjgCJozdbWBr/+e++iJmCzxtRsvbQVeSZy00ZDpGoqBMbDEVlTAiVMrhj0BjTbreTTIThxLOF1//BqnvrkJ4OfmA8nuUzcNYOeHB7OLK/hD657Dw+unpSmzXt0Jh465agk+khdi2/S5soaTzv+ZLpzMxJZnBrKotFmXNZkVjMaVxRGUW1u89kPfkzouvpxl9s7lMnIG5ncaD6Almm5SPQsuIpGs4nygcrV5JPs6Umlh8sJHE//kdMsHTkX50TOK4cpP/0ezjt+GXd84lPkuZkix1Elbz4UEv8rP3vu0cM8cscDjLZ7dOfnOPXoo6wakfxUXlhwvV6P9uY2Swf2C7ONETpLmv2V9anZe6fTkQaf3cOyD7tpfh5ptg2K0WjEYDCg2WzSme3KpHxcggp0ul1UULgYaOYFzUaDneGAz992O1Hn0iwEz/ZQHp6gIjfddgdPOv8csiiMQpNb2o1mSv2rcH6Mc5AVGc71MU4xLMfkec5gexVtDadPr9CZ7zB3wSE273uUL//FjczOd7n4accxeUamoAZaeZdDM006+xa567a7nujjdbaeQGlrCMHio8IYRW/QJzMWbS2+rgU06/WxNiWG5eIhpZWhyBsEH4mxJjOW0WAkh1sMwTlarZY0lgBKcp6VUYQ64HBT1tlkotzuNLFW08oLyggGxfb2Np2ZFucdPcrK2gbj8TiBzinlaHubmZmZ6T8HgwH79u1jY2ODY5dcyN1330fHFuz0exJyEz0hOBYWFqjrms3VFZaWljDGUCbfN+XkAL+xtUWnPT8Fx3r97alsdRIOMWHNCcA2wrkqDTXkOdyzZw9bW1sYbWk0c9bW1ti/fz/tdjsFQhicy8gyePCRBzEBsqLD5sYWhw4dEpAUMfKf63bJGrlck1aHTrvN+sYaxhkaeUF3ZoGVzXXG4zFFITzdCVux8o7aSxhElmVJOpYxGPTIsoz1zQ1arZbI6VudxFh19Pt9uq32dN2bGNCfrb9dKWOJPhB0oPJBwLjEIJoAszZIUxRilKnuhCmeGBQECYBwzuF8JalVBHSlUCrHWpPYTJbKVcmSQVAuldK2JBhCJbaRDG58qMFAGVLqanouq0oSVSdT5Rglpn6S3qu1JlpNdBU5Gh/Y3ZOcR1uTAB1FXUvAiEr7BiGlgxpL1JosE49FosaHStYM0u9TiroUAF2sEQyuqhMu0vcAACAASURBVBN7N6C0IXpPpqXBnIKPSvZfbTK8r2SLjhFlFc6PsWqX7Z8Zaeyt0kRlCNGjTQLp0sAxBgdRvgMfPXgZdPlQy2QdIMjBwoeAsUr8OY2W1DyMDM0yCT+YSjc1xATOhpCGXL7CkDw2Y0QZYdf5YKdA6YRZV9cerSwgYRoq+Q2eGRJijDAwjBFwyyRZLD4QlMiYQWT39bgWf79kIaGUo/YVKrdU3mGsDAwMyX5CG0wUlvPE4Bl2vbi8L6e9o073d6wj1k6YcDrdn5Ik61w5ZSWJ/2Kg9kpYkYghXYwK584O6r7Z69Nvfwfnv+R5LJy7xHN+/Lv47G9ex0d+7nd57tveyHv/w6/x8h/8DhZfcDFfevv7eMbbXsOj9z/KFc3n8qlfuY4Xvvn1bDU3OPQdV/C5376euDrg0te/jM9/+OPw9jt53ptewfqlx1nbWuPg0UPc9JnP0TxyjBMfvY0jz7qYl7zlDXz+9/+cq17/Ur5y1108dMNXuGnjFDumpjcaohrm68tWHwfITXrsqhKwbWHfAbaHfaICh2JhZp5xf8Dxp17B+z7+YQ7s288jyyd2fZUUst5GYRePRmM5r+rd19faoqJnz+IS7bzFxz/5Sa56zrP53E23EKlZPrHCzuYWX7rrQfGaPAP4PpOherb+ftTr/vF/5KJjSxy+YJG+y/jDf/+TZMpjtKOuEwvbB7L2DL/0zo9w8xeX+cTv/JgAGMge/Dvv/gSvedFlzLZb6CLg0nk8erFOyExgptOkCjkZNWvr2/jcYBttWq0WC/sO0j18BKVgbW0FlQIKoxbPV2stLgYybchswQP3/RVF0URbw1ynw9bWFlFnmAAm2TlUIYoNhzY0ioL1zTW2t3ugNKdXV2kUHY6df4y77rwlSSXTPWuStBsZCK2Nx/zE97ySZz//BbzuTf+ahQW49n3v5arnPoPCHKQikmtFHSMF8OxnnMvd929wYnOb5V7JCy/dT+U2yDKViDbCtMcJ+IeJUxyjjpFP3nyK4/sXcFRkSs7uTkU+/pU1Lj5njsIarrmswbs+9ufY2Su4+qIum2PF1rjAasPdKwOIiv3zlhAtB86/hLvu/Ar7ujmPrI84dNGFDCNotSoBiyHiasNn79sh0mPGyjrx53/+SV501TO45Nx5rr/hdu5ZPsm3Xf1yWpni59/5Af7JP/pWFvfuISpNhmZre5Pfue4v+P7vupqnP+eZvOwfXMM7f+XXKCtRDzWynFE1xNgJPhHI7C6OkeeWOC6nTF3nIYS/HqTpgiH6hGvEMzApY1HaMekSzxykfqOKMaK8ITiPj6K0iD4QlMKFQKwjWke8yclUIARNMBHtFHsWFqniiJnm8Bu+/pn1hEG50pWAJrqavZ15fuQH3spipwExENODVdbV7gePu6brSsWUxADRar5w44189vM30I8lOljxZDFyEC7yTFDZTJgb/X5f/lxk6HRo87Wn2WwxGo2S50fAhsjbfvit7OvOi+F+0lmH4Kdy2b+pbr7zLh48fVKQ3IlhdQjkjWI6KbW2RSu3HNm3j9nODCY1lZODSIwpHSw6drbWGW6u81ef+zzn7V3g/tM709+VGctMM2dnKOyOdncmTXwzaWJ9olEGhzWt9E1ZGjZLB2OPZhcgEGNhWfTWl09xYDAgL1rTA9TE30QpQ2ffIo2ZOXA9gt+ViuiEhmvliUqAt9IoLjznEHetbzMuh+SFIbO5MAudp9vtTA3yfVWjgKLTmhrwxyi+c6PRaPo+lNb0d4T9M3lQJgfxVl5Akgvlec5oNGJ59TSLM7OMyxJjFadXV5ltd6d+W957Tu7ssDoQpsSgrGiPhe0UnUKHgmHUfOD6T7O/k2GVZntnk8wW5LkAD5PkzDoETJI6aRTeKDZ2dsiyJsQKXwk7cclk+Fizs7HBDR/9JLbIedJllzC3tGd6+Oh2Z7jieZc/0cfrbD2BKoqC8chTbvUweYYOYAub2Fpm6hk3kbJKqqisSROGxdZ6TyjWWhNipNnusLO1xdziHOsr62RZRrPZZGF+D8vLy5RlyUxzN4V1wi7b7u1gsoydnR1hECtFv99n79Iio9EIay3Lp05y3tFzk3xK02g0aLcFNGq32/gYJJ311En2JJaeDxWowGAwYGFxluFI3nuv12Pv3r1yAK1r9rQXWV1dZ2tzKJLerGAwGDCqRszMzExlqRM220y7w2A0nDI/6rqmMhULCwtUVcXGxgYzMzMc2H+Y4UCSlMtxPQ1dmDBpBORXDFf6XHbhxWxs9TDGCJtZa1SMDKuKxcVFtje3aOVy7U6ePEmmDLnNKYqCXn+Ewk5lppONUQCaLPlAtnDBMxzK+66qSpiBg/E0JMYFT6vTpur32N7ucd6hI1MAdQJGnq2/XSlRA6Zod5nUngmuTA5WU/8tpacMown7VF5nl7U22W9MCg0ZjaoEoIqnmq9qlJ6kVHpQIf0dAI2KZsp4l9eNKGVxdUCbgI7Ju0RPepAIfvd3y/t1yWcVmPiJGiONVPJAjQoynUkSutIEFTHWMA4OFx0ZhhrAyhR1Kn8MQab/CZypay+ApdZkShOc/C60JnpJ6J5YPGRZRiBQV24qOc+zDFdWYuJ8xjWdWHmQei3n6ilb2GRWElixaZLvpXFE2GMqQmYyKl/JtfVgrVhnaA2hdmhl8Th0hIislcpo8dpL8t9qXOOCpyikYc6sTeCTgKoaAR7rqoIsBX+EIIw9pdA6pc0GTwhIWnnUaO2nPdDEw9I5R17Y5EkY8MnTUGtN5USiaj0y/FZJtoxCRYsi4r14u/mqFAmrzZP0NUmqtZ56zgrTX4DCshxjbT7dV0IQk2jQab+R9GBrNRP8Pwgxk+hrQlBopYhKTfuxs/XNXS/4R9/KXR/8Ajd95rM84znfwlNf+1Lu/PQNPPjeT3L5D72GG679COFAi0u/95VsffA2Ohfv5dgrn8c5xy7gL9/3IWLIOO+c/VzzY9/GO37217nv9q/ytNf/A3iu4pYPX88jt/8Vpt3lnvZt7Jw6xdzcAi/9sTfz8Z/5TQ5efh4XXvVUPvTbf8z5l1/GU1//cgYbW3zhc3/J1oP3sdMbihT7GzA6JmWMSQdZYdoOhkOc90QFbWv5f3//V3nFC17ITbfcTNZspLXljNdN0jmlIjYrZB+NQQJ0lCak88dg0CNvZDQbmpWhY1wOsJlm5GoOHT3CX9x0C2Ws/7o8NlWIf/0wfba+OWu7GnL0Oc/CjrbpnVwhLwwxakolqi6rDFpHuvNdHJHTKycwDQumwdz+I6hTOzhjqMc1KhO/wlwbgopEjPh0J6/vSy44Rn+whak8dqbDztY2xlhmZ2fpGsNtt9zEyqmTdFuFeKz6QNQq7Q8aozQ/+rZ/QYyK3//jPyCGEePBOJ2xxfpEA4eOHGFr0GPvwl4O7F1iWI+49bab6R45lzae9dVVFudneOSRRwg6oN1j2fAiEBPfN4IiaxRoPQQPezsaqwfgKoSb5Zmfb7KyMaIOgc2yTpYeQHB84Z5lmkCd+g+vvFDT8EnV9lgikUaxU4tiMaR9NQZ5PlfXNlHkjCrP6Tvu5dCVz+LiI/M8sA7l6jbznTnuXh0QYqQwltIZbvnyzVgDrUYHH6Tn1hjpqZJEl0noQowSuIRmPBzx6Ru+zIXnvZyV3joBy6gc08wLqqhAFRjtMDFQpiBNbzO0hSuueAYQCJWn3Z7haVecw5duuhNUlGR7JiKISFRWBnFpzQhnBCnK0Fb+/UwLDKxJWRm7649SJvWpsi6pCG4ycPgbZvg209QuIHNlwRu881itidagomasAtYJUzEqMLlhuz8gM4pW64k9Z08YlPPeE8sx3/2GN3Ll074laYwnKLdMOwttqROtUHk/nYyATFv645Lf+h+/Tc87fEotK9KG4FyNzS1lWaFRlEpkGMZYREWR5IYuNZ2JdeddIIuKN3/7t7OnOye/KzV9Kk29p4cCHvtATQ4XD6ys8NFPfUYSV63IKyellEq+eTnznZxD+/YzN9Nhae9eCqOT4wrsDnwkZGI0HrPx0MNQV2ByfF1N2ZGzecGFF5zLzbd/DWzO/N49RB9wviRSY1OzGqMi6poQkxwnMp20BsSfhelnEi8YX43F4yrJ+CafdXJAMSrjoqdcxh2f+7T8vZBkSEHkISo6MWs0GtsosDMt2qMxOs/pNFsoA41mQeYtRM9sRzz/ZuZmmXgJ9Xo9yuEIk+9Omr0XT7lyJHKzyUMjqafQzNrokMzEY6TdbtNoNKShBWZnZxmPxzQTi7IoCqy19KqS1b7HZhPvITGFtFrjlEcrCXUIeZvesM98YZid6VJVImfpzrRRQVEqJeaStaMKHlfXRKBdNAghMhzVDMdjqpGj2xJgIrdapL9Vzd03f4XW7AzHn3kFRbOFD4GqHj/Rx+tsPYEqx47Z7gL9fl8ox9qyZ2kv4/FYkvEmTKuqYqY7x2AgwQsZKV1Rw+JsF+droXDXNbEcE31g3O+jU8IfwCPLJ8nyApPAhyzLpuCQtZaZmTZlNUJFT241CjP1MJO1yhMQI/xc5wQEaF5fX2ffvgMysQ6BtbUNlg4ewuYZB/fuo9OY494HbiUvCrLMTFnJMUZ2+j3yPGd2fi4dbA2NdoP+qC8sDC9swRgjVV1TVZ6trS32HThEkRvWNkY0m83EerPkec7JkyenARIhBNbWT+N9zb6lI+zs7EzBzBAC3c4Mo9GIoinTyK1+D2UUdVVSlcIKHA9GdDqdKUAaQqBTFOxsbdFsNtFaMzPbZXXtYYzWZFlOWQqrVRJbK3QK8vAKsqJgsL0jYRylFhfMJIfNsoygFVXwxOB59KHTPO2yy6YA3oSpeLb+dhW9JFSTDPx92JWHT+XKCZA7c0A0uf6y/2jq2omUL+4mqCrriShMzHY9uZIHnAsBaycsLUlotVbW3MnvBgE+xOfVkOWREBTGpsCgOBmWRUj2DlqJl522ctgMlZve21NPvASghRjwMRCjDKsq76bG0JkVTzmllEzqkd9b17UkccOUPW9MYo0pRSCQG/m5mDqvKvqpo4VzDpPZ6XW11lINKzJr8bUnWPk802nxGXIMnRgDEohUoaJFB42zQUKq0udztcOiKUMt2mBAACaFthZXi92FeLYJO9Fi8AjrzTn3mGAEW0iwhzZa5LIpHX6yjqKg0A3qWD/GA9BkVgAxJqBmeic6vU4C/yYDTwmTEaDO+5pAko+GmNQCKjEWNDH1QtYaQogYLf2NNoGQW/TkMJhSe8Xphuk9DRBDkMT4rHiMqkKCMcT2Qwh3JgWPBGKUHseYjBD0dCgi/ZdP98NZ2d43e+VH9nLstc/nod/8Y774gRtQ3Vu59BVXcnt/i5nP3M6L//l38MG3X0u46wT7X/c8Pv7zv8Ut13+OQxdcwJFXP49Lj55Pv+7zibdfx1t//Ed5eONhvvaBz7F+cpWr/8m3c+V3Ftz+6RsJuaG7+CyMz7nrDz/G097yah78/O3MVJEX/cAb+eJ7PsT6w8v0XcnYlbSbbTb6ZUp8/PrvfUKGmAxPoof5bof+sEdEAht8gP179wAw25nhdG9reoaYlEZJsrKCWNfoEAlnPAeTcDSl4PDhw8x2ZrnmmmsojGF5eZlWay8q+OnAQaxxdv/udB0PT8wf72z936+N/jJUJ/jizbfxLU9+dlKsZDKEsTkGR41nY3Obf/2Dr6YqI+ctia2Vd2OMrfnhb381EUdhM0K0KazHTgcXJrNkueb4sUPs23sputFCGU23u5+1jR2OLs3g/DZXPv1ytncu4EtfvBEAlRK8G+0G/f6QKjr+y3/7T/QHI845epgiy/FB9p1yLEECRM+9H/8t/tlP/jz/+d/+IOuh4NAFT+Wn/tV/YbxzH//mJ36AP33fe7n9rgH7j8zyH3/xfwK7jCqFQqVo76gj+2db/On7v8Af/N4nCMD8bJu7bvoznnN8vygFQdQpWqThd955ApMZWkVGXmQUStGvhhincCbJxwlEJRYI5gyRnM0Uqvb0RgKsZUi/rJTi/L2zGBV5+OQmr3vTD3LokosgnuKi868gW9jmVVefw6GD53Hnv/k1+lXFxlZFMCoFJUUeWt7CKLjr5lt5yqVL+CgSWqsUhYk8/5L9lMCX7z1FjIESKIdjWvkMG4/uELMZNle22NPdzwV799NuNlF1D+dEdWHyjGMHFvG+4Pff+d/YYhXfmee+02sceLSJr+PUCgeEhVhXnqg841GfiElqCiDZZFRxd22afD8+wE5ZCmCX0LaA2FL5uIsDRcBikfXvG69Hw+GQ2UxsKnQMcu/rMPXrixpcb0zeKCijR3stZLbgaLVmIfwdM+UOLO7hbT/8Q8w2m+LLcoYE1GpJ8IzIzaG0Ima7TXgwitX1Td7+6++AzFA0G6igyJKfB0iiHkrYMDoZDmeNLHlz7Hp4BOnEp79flTU/+o9/hKX2zPQimwTOTKY+Z4Jxj5eu7owr3vWe69AZgKF2wgqZJDxWY/kz3jMeOzY31tg3N0emRD8+YdVNmn6lFGUocaM+OrOoLCcqxSDuRo0bDTurW9SlyHm6exfkRjJyM07vC6NFkpEkKzHsNvrwuOk/ExktrD38CEsXPAmNwVg7PTBNvXbmZ7A6E9NqIzIX0UFriBm6sDIh85EjmcEULR5aG7JjxMtpYdGTGcvsXIeNeovesEd5Qnyc8mYuE2MttNPgJobWWiYkWkwR2+0mJssZDYZ0Z+epg8crMbUkRoL3wrZjMvWz0GgkeYo8SNoYenWiHiefoahh7MRPJ7iaoMUkH2UotQGjU1Kn2zUJdzXjsoJk2FgUBc1WmxA8/dGI0WiEKyuc02J6OzdLvb6BrxGvGQdoRbU14qYPf5YLjl3M4SdfTF2deqKP19l6QqXp9bdpdNrgJHRlVJY478lNTl3VFDan9GPxglKGcjCgOSdgvbUwGFYUjQbRahgqurOzbI4rvAOiYdAfkc0VdDoij+wkIKqu6+lzPhgMaLY6VL5PWdfk3mOtIm/m9HvDqWz0ooueLKBgJv5pp3oDiqIJ1lCFSGELBuUYlcNWJXLp1bUTZKZFv98jywR43tnpY6ImywT4azbbeC/gdt7oMBwO2draotvtMhxVuDpiTE6e0ktnGi3KusJVNdW4JM9z+v0+VbUujL1Qyz3uHN2ZNvuWFhmXQ2wmB/MQPA8/vMzFx84lzzJCHWlkDZrtDlu9LZb2Lsom6muarYIQHP1hOWW4VPVYJn0qULuSne0eh4/s59SpU0xM3vN8wkLJcXWQQ3tV0253KO3wMT5hxpjd9Tkx5pRSzM7OEqxmtD2i0WhMAdqz9berSXLVJMz0zIFWUEyBt2zCeNITUMjtmvankAHZf0JitjtAgBtFkq968UEz2mBilNADk6FCg4BL+56Whjb5yCplyTIlgQpRo3Taa6LYVNjMyDRQC2hkjGJcj9FOiz9c8kUyVjxego8iT9HiZRtUnHrW5iYZ+UdQXibZ1pgpA60apPuskD9rrYhOQg5sLj5rUUUG1VgksVWUyXsm09VcWVSI1KFOcswAzoOFKtZoq6cesgqIExs9owkpjQytcD5SqByUvH8VolAeQ2Kma0UVA8pq/FiAbaU1ztXClNcaFUBrDz5PYFnyufEOpSJepaTTGMWbztfCRkQSYolQVU7YY0Q88v0aK1LYQMT7gFJiESBJ5uBwU+/bECaNriTFogLBCLPNZAatJkFQOTEolNW4UFG7On1X8r6VEl9DZdL7TSCsUwLwRSWgq03ymMnPxyCM/QkjdBcIVQkMrjEmufJE+Vk5oEbKsk6BPMlbObjps3E2ffWbv37vP/8az3jxczn4yiu4+cYvc45r8id/+IccO3QhF//Qt/Oef/tLvOan/wlf/sj13PULv8Ox172UPM84fdNdVJ+9i/e8+3qKpuH4q17EX1z7Ab56+y187y/8JFufuYPbb7iVzfuXOd3b4Un7DvDVe77GcGXMwvED3P1rf8wr/uVb+Mt3f5D8tnt40fd8G4OtLa571x8RWpFxOZKePUqS4mPqDE+56T3rodHI6bTanFrvT4yp0FYxGg4pXc3JjVWyBMiFxBSZSlijSNSn6L8WtopKB9yyLAla0R+NObGxzgN3f43jT72cPYvzHDp8DidPLAurOaY05jSoQAXxAT1bf69qKT7ML/zET/PM517JH93wqyjtiU7JgVZ5ooPaGPxojFGKzBjqakioLL3TJ1DjmtF4RKgHLHaOYrUiJB/hUDsZEnnDI8urfOzTX+A9v/RGvnTLA1x+/Djv/stVFvYt8iu/+g52+kP+40/9O+6//27xAouRYDOiq2V4ZgR7OHTOBTz66DLNvCMerNVAzoUhYI3CZAXlxn3U402KuMOBi66mHp2kU9TMz7XZ3u5R5DOsrd3N05/+dBomo9WxbPRG6KinrKpoIypGslgyHo0ZjjVRwZfu2GH/x77Ea1/xwkkbwnAImdbUXpLH8Y79cw32dDWd3PKV/u71jiTyUJQk112mqcbYwPOecpS6rPj87SdlMBYgaMWRPSJxOLEC//Xn3sF8UfLP/t27mdEjSp2z8+Fb8LWj8gqigUyJQiEKASYzDUauZP9iQUMDWmGDeM/ZDLRyGMBGUFrxlu94LYcO7kOFNX7kLa+B1PsZZXnrd72MshwzGI3Ic0OuM7yC1179LEblmK2VwGduup956zl4dA/b61uYCC7UxLCrrEjoBHcuV8x2shRWGcXRLUTuXu7JjPEMtu/prTHm61DflnuOTkMsc+bmFtja2qByf7OiRgED7yFX0pZpQ105wMhzEKDCYxVUBlS0glFkGldZHvqrVeYWzN/4Oyb1hEG5n/jxt0k8bwgEIDsDtp2kTFql0yRXPMIIgcrAn/3ZB7jjvgcxRZOgZHKSW0lv1dZKEosyxCAJYM55mu0mvnZoJc1SnslBtz2TU1eOGDyMPf/ix3+U+aKVUsXiYw4OGpFLSrrqX/9MY+/55d/+LYzS5EX2mGn/ZGoq01bP0r55Dh9YIlOWuc7c7u+YMNKiR2mLq8cMdnaEdfLgCdzIo2dyylLSw1CGoau49+QyEc3sTIvGbEFuhJ02rEoa1qDJiAoKoygaGbkSw0KsFu3y1I9GmlOLeMMpHRmvbFJcnKG1eSyAp+Q9zyzO0967QH/5FNJwi3klILKVkIDGdkFjtsMlT7qIq668klhBVfYIKOqyoq5Lztneprc2YGdzi83VNfqDmt5wi/2Le2kXbZozOSZroExaVELEBcdgKGydznwXknFms1mw6bYheLwDX3uKQqRtw8GIytU02slfr6qovOf+EyusbG7RauS4CIUWSfF4NABtcKGmrBw7gx3aRcHq5oBQD8isoXa7oKo4kStMbinLmlEd0MHjlSazBb6qJUUqKk5ubLO4uEC9voOvJM2m0Wxx9Lzz8Llhz3nnsHTxEW7+kxuf6ON1tp5ABb0rg1vbWGV2dpbS7YIyE3nQJOnTe2FcTiR1Ozs7kIzmy7qkXTQYj8fT0AIJUZDnZXt7G601Ozs7Is9OQwFrLWVZUhQF24NN5ufncc4xHA5l3agFeCjLcvpeJzL7RqMxlVQWdpdtUlUVRaOVgLJKJJ1Ny2AwoN1us76+zvxMlzwFPayurrK4OM/CwgJ33/tXWGtpt9tTPyatNXVKNM3znFarhTKOPXvnU5CF4tChQzz88MN0u90EkrdTkI9cs+S1z+bmZjqMxnTgLBmmz7O+vs6wHLKnO/cYaZb3kky8sbLGgQMH5DlPoQ0gwT0+yBpblmW6vo52u01VyWdwzpEZYSdO1rAJ+66qKmHljcfs2bNHJPRFzqFDh+j1ekzSnoGznnL/m6WUyO+Ax3wPyoiBPuwmlz4+WGPSRJ7J3PCJYVZXPgGyEWMKXKxkah4TqysmI9+0v05Sj73TSZpq0ImVP3nmYvBpDxRZhVKR4AMxBHJjqMoSDRglIRFBgfYGawtiQCSR6T4X8MZPZaITyWZdVmKHEYVfFWNE+0AjFwsEGT9NrpcCpxKrLhBTipmvHSZqtI/E6GgUGX5cS/pcNAJkFomB5yEYYZlM1rHJnpXnspZoI9cxOE+uDVUKbSJGLAqXvgPvvXj2TczaC5tYhCGtn7vraMSj0AlsjRLkkGeSnmqEpWcSs9xoSXytoxdMLjEWNeIxpHxApXVVW2EORp+unZKUVmUNyu32byH4KfCuIgKYJS87pbT452kldEk83oskutls4ka1SIWJKMBjmMgUzlRInMns1BrG4zpJeHdZPQB53iAER11LmqVSRsBM5af3+wRsiCEpEoyGJM83mT3Dj/Tv8OE8W/9HKmz2+ejv/iEL83u56jtfxcLCHC9ofCu3fPGL/P5//iWOf+dV/NnP/w71uOY1/88b+dR/vw6fWZ7/mpfyYLnBFePzmN+/n3vfdwNXvPFFHHrGRbz/p/47r/qXb+X+X/kEFz3zKTz3ycf5zKc/SbfcywWvPMqemUUOHjqHD/3sO7nyDVfzlbvu5vPvfA8bseTK5zybz9/yOVCKubk5Njc3d9/s4wIepmtwlPXP+8i4GjGuyinQ1mw0sNowGvQ5vP8A9z70VynU5etfD4PCG9BaUWQ5AYcKGUpHut0uRmeMfeDB5RWWDpwmswW33vYVVnd2sMaIjZAK6X3qaUibXOyzD8Tfl/rytX+KbTa4/qt/QSsWzJ1zKV55rDFU1qBSyJBSjqt+6E289+d+g3OWDuNCREWLU5EtHGEw5HAaUrnSC0tLa6KK5Jlh3+IC17ziBfzYz36E737Jc/nyV77GwB/A7uxwyaXH6fW2WVldpz8cUIYKo3IypXDIwGSSSPCm7/xunIM/ef978H5Elhs04t3ukvps+YGTdDp7uP766znnrvv5/ff+Ga29T+aGL9/PTXf8d3Q14NC+Dp/8yEdQ3gGWXMu8DBJo5hQoqGPO6c0ho9LjgIZSfOD6+/nQZW8DNNGIF3qe/FF9Yge2s4IWFQYh1Xi1CIqf0QAAIABJREFUK1WV/UmGoJM9S6tdpmkWAKWxRiScCk9wnqytCVpz35rm+/7VH3HknAN0KDn58Gk2Q0btpHeyGvqVJyT5MMB2OSYqy8lNR1QBS6SOiG2Vgpsf2sFVybXXRd7/Zx/hqpc+j0v3tbj2Ux9njOfVL7mKxU6L//SOa/mnb34DzVaLqBWEmqp0/Nufeyf/7m3fS8wUX7jjYZ56dI4dYzARorayb4dIDigT0TanHNdoDQvdJqPRmBANdZRQTNK1yU2knHw3Cuqg0Yj1hvd+OnBoNDOIFTvbG48haX0jX7kIDEcVJi8w1uBTSJQLNUSNNxnK1URjyZXBa4X1Ea8zhmrIkWN7uOiSI0/oOXvCoJzyMrX8hv/fCHI8kRx4DWNf8Ru/+S62+yNUrshzQ4xman4MkurmQ8D51NwpRd5IDDqtyIzGO/GBERqsNFI2Kn70R3+EbtGcNlBnXtzHMONQPCbMO/nN3HznV/ExoExkMBBD4awomMCNVVVBEF+0nZ0hD44f4tILL8Q2jBgoA84Lkptn8t8ihq3eDu2FPVz24hfhY2QQhsw9uEI8dQplA8MqTiOFN4Ylv/Qzv8o1xy/h2a+7hvnF/TgaxFBRPnqC+z71UfFbsRlZVJhgps25DmIEqZL2Q6eDfr26zIOf+iguyPcSVcBoQYaD0uQmp+z38EqDB280hphAw4jSuUg+ysDaiXU2T/fYHu7Q6LSxTUO7k2OCmCY3G5aDFx5GFxfhSTKmsgQNxkiay2TjjXiCB0XY9V+ZgqmS1hLDJBXVg9GE2jGuRdI8OfRrpRiOB+yMxtz4wGm21tbJ983hqxrbmQUk/r3yhiqMJfEvwPKpk1x2aC+Zl1W1jsJ8qJwko1VjYQytrveYnZ0lKyzdbod+f8ija1vkJqOsxmxuVCw2m+hmgfWOcSWS3dtvvRWlFF/94i1T+dTZ+rsrHSJ5p8Ww32enJ4BVPkkBjR6jwdeBrGhgrWVzcz35yomMsS5LCqtRymK0Zlx5isKKXL4sRdpZSbpvbziYAkl1hIAizxuJgq0ox0MKnbOxdor5+XkqD612C9NWxGAw4xKtFcZoYpSp8mAwYHZ2llFdkRnN6mDA0tJetrbXWDm5wnBryKlTpzh69Ch5HtjZljVmpjOHztWUmTQzMzNlmU183oYDMT6NCvFE1JpG1qRZ5DQKw/LyaVyQdMPtbQlKWFxchKipK8/c3BxbW1sMR33QikZeYIwi0w1arQad9pBGM2M0KpnpttnY2mZlZYW9+xfTei4H2n6/T5E3JQHLe1SQQ/r83CIPP/IgrVaLfn+AjzscPHCUXq/HaDQiRp/AD6i8o91ssbm5RavVYlSL91Wj0ZiCJkrJ3uGcI4uK3GS0OzPTdb8oiscMac7W365CCCLJnEwsJ1JVmDLiYBf0ebxpriSGiw5Ka/Fmm/y8MRrvY2KRSYJWDLvyJgHwIlFFyiSbJIikVIAVGaZM/FIheaMKzU08RxGTZJ+GbD71Jzq91uNNx8/0bJteA+eJVlO6GmsFHIxa4aefP8gYPEZUkHT3QBSPGytgl8biQsQmr1yTKarKSZiC8zJtjRqckeuCDK+MEUA8xEidglmmCdPJn06uuYE0OMi1mu6rIfU6JP81X7v0/XiKlLisMHKdCYk1ZnFOhqvW6mQtUuBDwKMItaewRsb3Tj5fOFPCTKSqhPFnlFhJBCXswjpJhkFAXpca5crVmCSvnYJxSbajlSTDBUHnUh9gJrlhcmAxGh8co3KcwEWmygGrdboHPLXz5LkoAUKYrCXCfMsyk1hw4r0XE9DplRcQ0mRMvPDkPfjH3D8qXeNdGfHuQcpFR5jChGfrm7le9+//Kb3+Bic+cSvL19/CH991G//8l3+KGdvg8NMuwd56kktf8kzmF1r8+X/7XZ71/a9i89EVPv3e67E7QzY7Y/Y0Fzjyiqdz7S/+Oi97zWs59/XP4tO/dS0HLztKSzX40/95HdmMYf3BEwxGffKnH2dvYw/P/8Fv49bf/RBXvfV1PHTeCc5FsXznPQyHQ3zclVd/vXr8XhdjJNOG7X7vjPVYep3O/IJ40Kak8qkv9t8g35ra4BhZ022yB7ruuusgRhbm56nGpcjNW222TyxLkM6Ze8Ju4/+/8xWdrf8LVY6h50sqb2F7hePnHxcmtvaYIGQOnWmajSY7vS1irGk3W2gfqZMUWgbbYgmgjSEmr6+ohRndaGXEENh/5Dy+96nPIHhot3KuPDZHOepxySUXk2U5Jx49zTOf3uGDH75OFGEoQvI2zgrxFNYmEl1Fr7+F3LKJsanFv945x/f97Lt53kv+Af/1PZ/ha199H91mg+OXH+Sjn7sZncFTLnkq77vxS2TGED0MtkcYFFEHjDrzWVSc2BqCzrFa9otBLSs+WlZ95UHpyDD5n0UVObrY4qG1He4N4sGaGTmHRw9o8XhVVuw09BnqynIc+fhNjxKItDKV9jLZgz57dw9NRBs4Z1/GI2ue2+55iCJG5mczqp1qt8/xjqUZS3/gGEbDXCOwf36O+5c3OXRgL+1WxkZv4i+sqVxgZ1yhIzQaAiCVY8/yiRWO7TknKdO6DMaRhQ6UtaauI608Ttmx3nvwCq8itVMYdGLrB3RmsFr6TKMjL7xskbtPj3l0fUBm4BkX7+fkxoDKC/YxUSgeO9zlqw9vTQE5gAMLLXIiD60Np9hBIHLeYoOsCKyFgn45BiKZYmpF9g3v/1L8rp0PZEXOsC7JlChDbZRzocWgTMBiGTtHcJ7RqMZktXjRPYF6wqDcpCmfNK5lalqNitiocDEZFEa56ddWNvjNd/0e0eZEGzCY5P+SYfVu3HzlkpG4tuTt5tRPRb49LYa7VjMcDTApjl7VNd/35u9hvtGeymYn7/HrHcIe/99jjPTHNR/6xPVkjUIS07TCx0gcieyq1Rb/I20MZVmRF5bzzn0SzUYLSwbE6f5iz9gog6/ZXN3iyDkHheqtHGFQsrM9BJMYWSQGhwITFQudNntnZphbWIJoGVeOnJJxbwdV1kRtUNGBMcSYU9dRpCEJQIvKyWTYS0Sx9pHe6hYog/My6Y5OmHJORQIiSQpKJtQhOMh2U91UrVBBjK2JkcoHNh9YBu1pzil0a/fAEk2BPXAZenbfLpI/8bpxIvlTRhO1gG1aa7kMehc0rYPHBIhWkxuLNQZlLUprgs3I8xxtTJI9QXQ1tXOsbp/i+S95Lr2102gXOPfgEkVnhm63y87aGocPLHJ6fYPzjhwk5pavfulLPOu8Izzlosum77UsS1nAlUhXt7Z32Fjbppk12bO3y+ziHOVwxNZOjzwatHNsnHiQ3vqmNORaYbShjhGnNK721CTzTvUEn8Kz9YRrIo/rdCSswVibUh49deUk1KDRYDgcTpNPJ0yXRqOBVRJyoHMJTdna2mKu1aGVtTDGMBxvUTQWyLJsmvynEvOtOztHlmVsr+zQaYg3W6s5R6PoUlfbLC0t0R/s4Gro9Xp0E3uu3RZw79ixYywvL1O0JUL+4MGDrKyc5uCh/dx/z/0szS2RNxTjqsfs3Dx11WRjYwOF+OHNdTvs7OwwO2uSx92YLCseAyZUVUW7aHJ6dYVmow3K4d2IZssyGArzp9vtMhgMpqyziW/mxLdzY2ODfXuXaHeaYidgMxqNBs7J9Z0EVJw4cYJzmocf87tbrZakKlbjKWCwsbHBxsYG7Xab0UiCKNozbVZOr8p3Yi1GNyFaQhAvuInv5AR03GW06GkwxJl7hXOORqPBaLQ9Zco556Z+eWfrf70m3mEAUUvCWQiBhrXUPlBGT572krpORvppLzZnNDhTNtFE7gGYTMDqrLDUdUn04L0RKaqvUcFikCTNoBXGRoKvMcm8PGW4JgBGDodGyWsKM8Pjg5KhkNpNC9RIZH0IQbxUqcUQ3SNMjqCISk9ZbZMBoo6IfyiSvCkMzxaVdwSDeOlqUM6htCYGMUh2yVfJKC2ebPWI6BUeTdbK8bUjVgFdZFRVoJEhCXbGCHBXV5jMUpicijBlyAcfhBHoIg5h/YmM2KOjxkXxgIsxpgY/EF2Y+tVqY/EuoMjSc4akpqZuKssy6spTViVZJkFMaIVOagjx2dX4GNHKEggYlVF7Yd7nxkIER0g+kIYYhO1no8ILCRJVV6hYoJJnYZE30loUdj8LoHDEIKoF6R1EnqeUkgNZiGRYPHK/uhiEuaEmBs9KhrxTgFmkpKJ2SL66UZicmdEpMFUGwyFUiTkpn0PCIUIauMQpEFcHjw4BHxUepkwljUKFNNQpzxrbf7PXzb96HfV5c5x//AL8+XO88KK9vPunf52uanP0hcfZmOux/PHPEo1h9vLz+dRvvJ+XveaVzLz46ahOzl233U5veYN7PnozL3jza/nQO99Nt9vlqn/0Gr7wm+8nXl7w3KufjW0a/DBy8503s7G6xhf/4qPMXHKUZ7/l2/jw776bmYOLzC0u8ODKSTZ6Gzz5vIt5ePMkyhqYmJyrvz74FXar/Hur1WBnMCROpKta051ZYHZ2lt6ozyOnT5LnOZ2UPg+Ptf0JSu5nExRepwGKj2gd8F4S0Y8eO8bK3feztb1NphUjV/GV++4lxIBJFgZEYenJQxRQZymjf+9qeVBRasiKJntSyn2uDSoqRBun8FEzrko+9D/eQaOYEQmi8uK/5uBAc4agm0QLPipcjKAMwUu4o1GWsurzP9/1B8y3Gjx84hTtpua73vRW5ucP8R/+w0+xsb3Bv/lXP8kvvf3nuPCiJ0GU/VdbhTE5ygWyvOBn/st/YliOuezJF1NXXoZo6bZziR1+cmWNUyeWuf2e+9gZltjmPK3FPdTKEmuPTYobY+RRk3x12b+CeuyIJaBBO573sn/IJz78/l3hZEiOpyqSZYbxlMoF0QXqCN/3fW/lt3/7nWfsV9IHRCVi8TzK2T7l0kPQBNzk5SEqjN4N10QFdNTEqPCuIsqcklargdke4vBTuWeWFUTtUD6grShrAptsbm5S2I4YLiio3e7Q1Shxno1KUZYVd9x9L1dfeSENm+FDjR97lFU86ZzDjKsBs+2GePR62Wff8K3fQXCCB1x66XHWtk6xvb7Fk89dQvsxIZaoGDAmp6EjMSicjmz3R0RsAnjBe/kuxSM+KfTTNazrGsmeeuxa433EBC3euxOGXWZwdaDRyCXXQJs0uJsMbhPDngzw1LVHOYhG9noxlrNEr8mwBAWFMXgx+iN4K+exJ1BPHJTDg5LGaSqJTBdg4m8wAeRuvu1WPvDnH0M1CqhrjLJ4K5PYupoYkMaUupKkE1Ym7a4W+RlIilZZya1ttMX5mugDr3jxizm4OD/JTZjW4wG5xwcdTH5GKcVnv/glsgS8Refxyc+oyPLUsAtV27uKhbkFukWBBTqNJmZy4+OnU19SItzIVXRnO3gfiNrjfM3YBapYYwJ4nWyFlZgL5rnlSbNzNNoZUed4V5NFRTBKpHZ4cjSawNyeJQ4+7XLGI89o5QSZksUInWPbbYqZNlSB8ek1TJpGBAU7Gxv0N7chekw02LkOi+cdRmlL2etR9/riN1U78VObX2TuwBKj9Q0e+cod4APBB2oT6ESzSz/XiuBqaTTH/V3w0yd5SO2onDCQQBN8lZySdxt7zEQ3HqEErCUai1Gasa+n0+kQArHyRCsT75X1k3zxpttYr78oVFJvGW1tUG6vEbaaHNnTAV0RssDJB77GuC7ptprcs7JCXXuefflleOdoFMX00NhoNJiZmeGcI4floBhVSmX17Nu7QOUF4Kn1GBotnHPyGUYVVD2yEHHaSkKgC1Rnk6X+Tqs5I+CWrgPt7iyurjFaUTvHeDQiyzKyzJFbmYKVQ0lBHQ5HssaEQEhssuA8eaugsAplI73eFsQMUzRZ29iZMrMajQarKxtYaxkNx2xVa8y0ZhgnwDn4kJh4Hba21/A+0mzMsLRXZK1LS0usnTqN9577V1dptVoURYPtLfGey0JAV5GGKWi2NdbkrK9torSjlTeE8eVI8rshrWae/JQqVGxQV548k/Wo0WjQ7XbZ3NxkrjtLXQ8YDAbMzwt7dGGuyyOnT2KVpdUW6dsk/bR2JYt75jHGMNNtYwgUmeWBBx7mvPOOsrhvjv6gjzYZSsUkGW2yfGKVw/v2plAK8WtqNAvyqiLPGoQo6alLS0ucOLHM/OICWe4ZDQVYBVmTR8MRRVEwGPYoGm2qqp6u2965KYg6Thv5JBE2BEm71EpTVkP6gx7dbne6Lk+YAGfrf71e9erXnqX1nK2zdbb+f1WDS2Z49Mt3cOorX+XQ3D6KI4s8/y3fRqdV8J5f+V3myXn6W7+VG6/9IIeXDnDhm8/nputvZGGUc2LtJDMH9vLyb301X/jYx7n+f1zLy374u3n/H17LPb/3MV78tu/h07/6O9x04wOsu01OnnqEI+19rHMvF1/5NEYnt7j/9CM059rs3PsIjW6H5a1TDCuHUzWdvMHyBJB7nHQVeNw5x+BcoK5LSAMOEJ+5Q/sPcOvtt+GqWkJUku1HOZZQBxl6KbLcEnyy6TECRtQRVGaJZBxZWuCRhx4F49nc6dHMcnrDQfL+DgK6OCEgqLALRkzq69kKna1vzhoEkeM/eu8G+4/NYSdjragpMo1xgUCNi5Gl2YtQZsSwqmkWAiJHJQxoWyhKBzo6gjX4uqbRzFBETp5a4/9j783jLTuqQv/vqtp7n+lOPaU7ISMkkITBABEDBAkoqPgABVQGQUSe4nt+1J8K6nMAB576fqhPHzi94ENQEOEhigwKJGEOYU4gIWROp5NOd9/5nmEPVev9Ufuce+7t2903PWWgvp/P/px79t27du199lpVtWqtVWIN8wfmubO3yKk7dyJGePs73sEPv/DFlF4RSdl9926yVpPKh8kovMdJyHOmSfDe+rmf/2WsafKe9/49qQ3hnCoeqcLCI6V3SDLJ0kqPM844i6p6GN2lRW751s3s2LqN1kSDvfsPMDM5Q2KVbj4IHvBCiBoUhXo1VlF45K4Gi3MFn//Q+4MBvDbE+Tr/mREzWlEUgozOLw3YMdnmig/+E+ftmuGu/WFBFpMIVVULhyr1wuJ1vv0QQbBl0jCdtdi70A1GQwNWPU+54DQGpeHGO/ey595e7a0aDFZz8z2aiVJ6qDQ49swv90IOVTzLKzk39u5GbBNflTR1ELzEjYBVskR45gVbyI3lSzfuB1FmtrSZ7Eyy2Hc8/YnnMahKrF1hYa7iud/9BKRaZGGhRDE0mxmC5/yzp3Ba4quc77zobNL+KXgclVZ8/avXIXUObWPbtIzDmx4W6vQRQx1ngZDfrnSOkOJ1dXnRSj3eHewYUxYVSZoyKFYXI/VF0FF5HhYWa7VaFEWBc2WI9sDT7/fJZQKT2lGUgjfB8Ol9QcNMkEgX1ZAaq8BjMgvquHt+ls9cdf2m5GzTRjkAHQtfMU4hCcY57z2ld3hV3vn37+G6m24l67RI65DTEKJaYcRSugJjw4tc5AUTExN1Iv+MypXY1I5yIzlfrclT5J2yc3KaJz/+8SBmNPN+yPoewnNu94H9fOG6L4M1JEZI2k2MWBrN4PaaGFsnEoSs1UJdTjPLwoqgnTaqrK5u5Ic/WnhJ5hdnIQ0hH6Uv6S8vs2fPXaFhrJfRFRHUhnwuPvf0RdmybSeNRMA2aSYp6kqKsqRp0zDLLNBdXmbhjpvBZqhVChfcZItyhcmZCWyrRem7mIkOW849CzAcuOMOkjxhprOtXs3YIJ0mnS3TGJuiZY7QQhcqWrYBRil687higso6JDOQh1xQvoSiCkkYrSTBsYAKS4H1jhKPVYuxIb+PT5Rm0sa5CpGKOiCktnCHMBmRsICFNwZTG0K9ViH3RZqQpBmaGKwkaEsRY/GuYuvMNnZNzHDT166l8I52sxkMZmXOkl0Ixj6GXp0FRjKM9dzwzW+xzzS5+DGPGnVgjDG4ohyFNlVFiaij8FrPcijLi0u42iMpydpseVh7FM7VL3pod4ql2T0InqKsY/OLzSV2jGyOYU6yXq/Htq3bGHoqZ1k2WuUryzIGgwFFUY68qaAOTXMVaZqS1SFkIjI6Pk3auEpG3mNbt4bwjqIIOmplZSWEUg5CCMkwh9z27dvJ8zzknmsZOp1JyrJk165dHFhYZnZ2lizL6Ha7tLMGWyanmNq6lbvv3gMScsGVZcnMzAxlGVZPtdYyv28J3RJysyViyBo2eKTUq551Oh3mBwVZlo3uZbhYg/ee7du3c+++u4GQw817T5HXhnAJz1BVKQvH/Pw8Z551OgcOHGBqcobJyUm6Swt0Vyq2b5+pn6EbhY1laZttW8N9h1mqAmOGi/YYer1eyEtX12nr1q0MBgMmJiZGniXDBXyG+nl47xMTE/TzamRgXF5eZmpmmn1zs0xNTY0ayxBiV4XFHWpvyKpk9DyGXnoxfDUSiUQim6X/+d08+6UvYGrnNm647WZuueIadl93E26lzwt/6cV88GOf5NNvfgc/+Cuv5mOXv4vuvgFbztnB6c+/hPNmttB2nv/zV3/BRc94Gj/wXRdzxdvfxwt++pXs/9q3+MRf/R2X/tQLqJxy5/4DzN52F512k3tuv5t0ps3ZT34Mf/HGP+aVv/bzfPQd78HumMY3Fb8A++cXgidovZDaGoOc+NV8hWpGC8ZV6ikrPzrW2ozb7riVbdNTNNKU8855OLft2U2SZTiUNDE0khQxwbO50WjQH/SYnpkKEUVZg31z81R1yoEd2ybYfeNtKAlLxTJbpya59e7dq153RYWoA6ckJhj1VFaXO7Emts8PFp75xLOh8lQKs8s5gzwPnsVpgvfJaBycKVxw2ZO49sorabYyMi90y5Azdm9viYlByfZTGsF7yynGJJRFhZWEyV1tcLBz1zmc22oxGKwwvWWGsjBcd+03efQFT0TE8uEPfZptW85CJIzZkiTBiNJstyjLnNQaJqfaqDe02hmWOp2FL1EtKAl5Z5/17GfzuMddxO233s5nPnsVLl9hZWEfDz/zYSF1gXPMnL6TflGyvDiLYTUqRYVaToZ2BqEz4SjUQuGDQa7OyTtM6zWeuFFRchWm0pItTcNkJtw150NKC9WwyFK9evyQqlKSREgVHvfw7aR49i72Qp7/UVqXkqLsI15pJAll4er0EsFopzZkjB0ubJWahMpXiId6wXUoB0x1hE4nRWSAM4pxYdXR0iilKxguCVMUBU/5vqcy0xLmBl1m5xaZ6Ezx6FNP4zGP3MU1195MM5ugUotTDz7nT//ibbz65T9Glna4/O/ezTMe8zAcFXnh6hzfFcZ6ztzWIC96bJlL6VdlfX9De0v9XKyQlxWdBhQIgzx4+1cuLDK1Hm+hckWIIsSw3XqWncGIw5jgDdntrozSpAzH+Y5gs6mqauQxaTGIBZ82kSqsPl9VFWogEYs65fQdk/zQ+Wfxur/8/U3J2aaNcgclcDayxuh1774DvOMf38tCb4VWu4GqpypDDiOvDtTildGszGgwVlSUWpLLAKdhcAWQ2PA5XP3MeOG7n/RdPPPSS7FSh0AehvX55YZ13b+yyF//wzswSYOGmFX3RHVURYmp8yQkNqGdWjqtNhPNBikFzSxlkOdo7d6YJHZkGAuD5Yqbv3ETDzv7TPqDfsgxIhmTJmFubuHgOiaWs7Zup52kdHZso9cvQ/LnrAgN2PICWZKChFwu3W6X5etuYLLVDivMJuEZSSsjqcNjwKNVj703fpOUhP7yAh4labfpdKYoqwrbaJCmCYt77uLu627CO0dlIFHBqKEUZe7Wu8MzNApqMFgaxuEWKxaLjDSpyFJIGp5q/w24hSaaW/J6hqAyIfGklaCsNQ254IyCTyxik6ABpEHSbKIET8nChTw0HoNJLL4MyTBNkmHSDEfQhGfs3MFLXvJcfvRHn4MvPSUVeZ5T5h58gc8deVlSFAW9QZ+8P6CqfFgWW8E6R9puhjLLKtTXlfhS6pXmDBBiwl0VFtGwKHmRY7XOHaMhx03TNnAzKQ3nGCzeja17HJNZnAY8nqRiGAwG9Mqc7VWF2IQktXR7PfK8h3FKe9sWBlUJ3tHK2iysLNNqt1iZXaDVatF3joYJinW52yUd5pfLuyHUtDnNwsICi0srWGvJi5yq6qF4ms3gyp4mCUWvX+fFEpwrmZmZoigK9t07R5qmzGw7g8ysUFVhYmFxbp4iL0lSmJhoU3W7LPR6LC4ucuaZZ47yxXnv0crRrPNqWmvp9bs0BjA53WFxoc+WqRkOFCssriyyZcu2Uc68YchuVVV0u12mpqZCA6HK/v2zTE52aJoEbMLi/Bznn38++/bPsrS0xKDXp5FmNNOM/kKXygmNLKXfD4a8lk3xWYuqJOihlSWcc0xMTWNNhjFhJcyyLOl3F0iSbaGhnGpg0hRXVdisgRJmobrd4MXYXV6hNbUVL9Ad9EdL26/0VsiSbGTEG4Yir6ysjMJXqyrkcgw5nAqmp6foDxYxXplstDDNYAyNRCKRSGQzPOVl38/lb/pTJhrbOIUG2YWnctb3Porzzns87339m3juz/44s99xEe/+rTfz/b/2Khb23EOj1eZr//JxHnvOuVz+oX9h16mns/Sxr3PzE/tc/H1P40t//k4u+vH/xDc/9xWuftfHWFlcYM/CftJ2xs6JGS571Y/y9je/hafuaHPKji3ML8wyqcr+e3eT2YyJ6UnmluaxkgZvmaE/yLi3nK6GrolYEpuQ5/1RTkmAiUaHXTt3UA1ylvt9MgOn79rBzXfeAQM3tuCdJ00zmo2MrVu24JxjcmKas855OB/5xBUYSTBYyjI4MQzKktJ7brztFpx6jDq08jQJ6XOSBEovlM7XoV6C4dCJ1SMPQLIGp5ybcMmTvot/+8CnaSTNkLPVGhLjqXwwTE10LJMzDSY6bdRbSoVWq4OX/ey55VYedc4jQC0hGNDg8BiSMEluM7yWLK3s49InPZV79+/n1tvv5AXPfxFUa5mqAAAgAElEQVQXPOaJ/Ppv/CLz8/P8zz/7a/7jox/m5luup5mGXMNVVSJVGAcaY/i3f30fX/riVzjznDMxasiyjLzokxhLXoQcpv/8vvfxhWuu5pqvfhkVaFnLEx77RL72ja/TLXqc94hzufnmW5me7KDGo2prL7g6IltBTMgRl5fKvQvQVVcvMhnSQK1/ww2CN3WaJ69kktI2QWYpFbHD3KzBcJjXNopkZMwOkWbWBHkyoiQS0m4UdeoWEaESj1TBsy+kkhDm8tWFqIYWkn7uOG1bG8Fxz+wA75RWajm1lfLLv/TTvOoX/jSkgjBCocJV187jPXQawQNPxHDr7ts5a/vDue3OZUo7Q7PVAUn5xd/6U374R15EKiEVWGosvX5FJSmJbdC0YWHPSjPEQCqKFTA2xbuKzmQDdldglQTLYFBgsnSN3vCOYLvxYFRHurHyQt8nQLHm+ffzkG7Nq0Xw/MDFZ/DOz9+D9eBFaIslH/kmrlIU1ei6Tghh274CK4izYYEnH7woRQ14T6WevKjQQsmaWzYlZhKVYiQSiUQikUgkEolEIpFIJHJyiZnoI5FIJBKJRCKRSCQSiUQikZNMNMpFIpFIJBKJRCKRSCQSiUQiJ5lolItEIpFIJBKJRCKRSCQSiUROMtEoF4lEIpFIJBKJRCKRSCQSiZxkolEuEolEIpFIJBKJRCKRSCQSOclEo1wkEolEIpFIJBKJRCKRSCRykolGuUgkEolEIpFIJBKJRCKRSOQkE41yDxFE5FQR+X0R+ZyIHBCRJRH5koj8tIjYTZx/toioiLzyJFQ3Evm2R0TaIvIGEbnsKM6N8h6J3A+IyGW17Fx2gsp/ZV3+xcdYziNF5E21XlgQkTkR+YyIvGiT55/Q+4xEvt0Yk6kjyqCIvE1Ebj8J1TpSPV4gIu8SkZtFpC8it4vIP4jIeZs8/wFxH5FvL8ba0bPr70f9Htb9dBWR7Zs49r+JyA8dzXXGyrhKRK46ljKOByLyahF5fy3z/VoH/KWInLrJ8x8Q9/FgIhrlHjo8EXgF8PH684XAJ4C/BP73Js6/B3gy8METVcFIJLKGNvB64LKjODfKeyQSORzPBn4Q+L/AjwAvA24C3iMiv72J879M0BFfPmE1jEQih+L3gB++vysB/Cqhr/JG4PuB3wQeD3xZRB69ifMfKPcR+fbmZL2H/w04JqMc8F/q7f7md4AVwj19P/A/gP8EfElEdm7i/AfKfTxoSO7vCnw7U3u0JKqaH4fiPgM8QlXLsX0fFZEM+K8i8npV3X2ok+s6XH0c6hGJRE48Ud4jkcjh+EfgLaqqY/s+XM/2/6qI/NHh+h6qukTUEZHI/YKq3nJ/16Hmuaq6b3yHiFwB3A78f8CrD3fyA+g+It/GPJjeQ1W9/v6uQ83j18n+J0Tky8AXgP8M/P7hTn4A3ceDhugptwlE5PzaffteEclF5E4RebuINERkh4j8hYhcLyIrIrJPRK4QkaetK2MYLvY6EflNEbkNyIFniIip991Yu4guiMi1IvILm62jqs6vG6APuab+PP0I93hQONuYy+7jReR9dYjcooj8vYjsWHd+Q0T+WET2ikhPRD4pIk+s3V7fttn7iEQeDByrTqhd6vfXX19fy5luVlaivEciJ47DyfdhznmehHDynogsi8hHReTJx6nsUyWEod4kmwwbU9UD6wxyQ64heL5sPdz5skH4qoQQoBURebSIfFxEuiKyX0TeLCLtdefPiMhbJYTNrojIB0Xk4XWZb9jMPUQiR8ORZExEHiMi/yIi8yIyEJGvishPrCtjTfjb2P6N5EIkhK3dUZf3RRF5lhw6fCsVkTeKyN11O/sxEXnUuuscFG5XX/fNIvJyEbmh1jVfE5H/tMEzeL6EcUQuIreKyC8M2/j78izXG+TqfXcDdwFnHOn8I9zHz4jIt+o6Xi8iL97g/EtrvToQkT0i8nsSwuoO+m0ikUNxiPfwvrZRO2u9sljrlr8Vkemx8hToAD8hq336q+r/DfXJMySEgB4QkVkJfe3T1tVrjd6Q1f76r4jIL4nIbXV9Pycil2xwr/95nVy9dKP7PxIbyT7wJcCxOdk/1H28TkR+o9bLQ335PRucf1x02IOJ6Cl3BETkO4BPAweA3yaEf5wKPA/IWO3Y/g6wF5gguMheJSLfo6pXrSvy54FvAb8CLNXlvQ54A8Hq/EkgBc4HZo7DLTwTqOprHi3/DPwT8FfAowluwBeKyHeNGQb+D/BjBPfWK4AL6/OmjuG6kcgDjuOkE+4huIN/BHgrcHl9ztBQd7REeY9EjoFNyPdG57wU+AfgP4CXAA1Cuz6U+U9vsuyDPNdE5DHAhwiD4Cer6oFjvMVnEPTMRh3uzZDW9flr4A+BpxBC2s4CnlvX2QAfAC4m9G2GobAfOYZ6RyJH5EgyVhtyPkt4/38emAV+HHibiOxU1f9xFJd9I/DrwN8A7yMMWC8nyMpGbfF/J3i7v5rQZv4R8AERuUBV3RGu9YPAd9b3tkLQM/8sIo9S1VsBROT763p8ktBOJ4Qxx2ZCzo6IiDycIO/vP4ZinkfQRb8NdAlhbu8SkUpV31tf53HARwnP8CeAHvAawu8ViRw1R9lG/V/g3YQ++2OBP6j3v6r+fDKhP3wlod8MYZw/zuWEtDEvJeiJ/x/4e0Lf/Uj8V+CbwC/W338P+JCInKOqi/V9/TShbf6/BE/WaUKanENO+t1Hng5Y4BvHUMbPAXcQ7sMQdNiHReTpqvo5OPE67AGLqsbtMBshZ9M8sGOTx1vCy/Mx4H1j+88GFLgZSNed8wHgKyeg7s8mWLT/ZBPHDuv3yrF9b6j3/cm6Y19a739Z/f3C+vsfrjvuxfX+t93fv2Pc4na8tuOoE7bX8vGG41SvKO9xi9sxbkeSb0IOSAUuq78bYA9wLWDGjpsA7gU+s9my62NeWZd/MfC9wCLwHqB5HO7t1XXZP7+JY9fcZ73vbRudT8g5o8BT6+/Pqb+/Zt1xv3Y8dV7c4rZ+24T8vgsYAGes2/8hgnFouv4+lMOz1x23Xv631OX947rjLqmPu2qDcz+47tgfqfdfMrbvbcDt645TwkTf5Ni+nYR2/9fG9l0D3AlkY/smCIZKPcbnmxCMDovrn+Ehjj/UffSAnWP7LHADcNPYvn8iGB63j+0zBIPAQb9N3OI23NbL7/r38L60Uaz2jV+77ti3AH1AxvatsEEfeKw+b1m3/7X1/l1j+65apzfOro+5FrBj+7+z3v/i+rshTPhfve4aZwLFejk8imc6CVxf65aJTRx/qPvYw1h/pi53Fvjo2L4TpsMeyFsMXz0MEsIxng78k6oe0oNFRF4jIl8WkQHBS6UEvge4YIPD/1UPDju7BvgOCSFv3ycix+xtIiJPIDRoVxNm8I6Ff1j3/Z8I9/mM+vvTx/aP8976uEjkIcEJ0gnHo15R3iORY2Sz8r2ORwGnAe9QVT/cqaorhNnqSySstHxfy/4JgqHgcuBHVXVwH27lIETkBwiDiPcC/+tYyuJgHfHO+vNIOuJdx3jdSOSQbFLGngl8XA/Oufo2Qlj3QSHnR+ASghfKmnddVa8m5F3biH9d9/3a+vOsTVzvSlVdHrvOvQSvv7MARKRDMOi/X1WLseNWCA4AR42ICMFL6GnAKzZ4hveFj9d1H9bPEbyQzhWRYfqNpwNX6Jh3cK1j1+uVSOS+cjRt1EZy2wROuQ/XPRbZ/6Cu9aRdf+6jgF0crIvuJHjmHjUi0iR4rp0F/EitT46W9433Z2p99gHgu0XEnkgd9kAnGuUOzxbC7M1dhzpARH6JsOLh5wkrIF5CsF5/BGhtcMo9G+z7A4Jb5iXAh4FZCflaLj6aSovI4wku3zcBz9FjX0hi7/gXVa0IVu1t9a7h572HOC4SeahwInTCMRHlPRI5bhxRvjdgKA8bte13E/pZW46i7BcTZuEv13qa+GgRke8jdKg/SvB4PZbyKlVdL+dDnTGuIypVnVt33L1EIieOzcjYNg4tq8P/3xc2bA8Psw8ObieHbfZm+gcbtbH52LlbALmP9TkitUHuckLo6CtV9V+OtqyavYfZN65Hjut9RCI1R9NGHYvcHo8y1pw71tcfnns0uuiISMjF+c/ApcDzVPXzR1tWzaFkPyN4w50QHfZgIBrlDs8cwS38cEnTf5zgnvmzqvpBVf28qn6R4I65EQd1hlW1UtU/UdUnEPJRvYQQa/7vsi558pGoB+gfI8RrP1vrOPNjZNe6ayQE4R8qiOHnzkMcF4k8VDgROuGoifIeiRxXNiPf6xnKw6kb/O80wBPC6e5r2S8DbiSseHbRfajPGmqD3PuBTwAvHJ95PkoSEVkv50OdMa4jEhFZv5jELiKRE8dmZGyWQ8sqhPAoCCGpcHAupu0blAcb5zq6P973ecI447jVZ8wg95PAq1X174++eoety0Z65IHyXCMPLR6KbdRx10W1Qe79BC/4H1LVjx9l3Y5Ul12EENsVToAOe7AQjXKHQVX7hI7sj4jI+oZ4dBjrkjPXyUnvqwv88JoLGpKcvoVgoDt7s+fWHfePEWYJn6Wq80dThw142brvP0rIK3FV/f2T9eePrTvuRcTFRCIPIY6zTjiaWbbxMqO8RyLHkU3K93puJORIeWk9eAVGYWQvBD6nqr2jKHuOEPJ+A3DlRqusHQkReTahQ/1pQof6WL1oh6zXES+tP6+qPz9Rf67XEQetrhiJHC82KWMfB565fsVD4BWEPGdX199vrz8ft+645637/nlCW77mXa/ldTMhaccVVe0CXwR+SERGC9OIyARw0CqtR6LWaf+bYJD7GVX9P8epqt8jIqNBt4hYwjO8RVWHno6fIPxW28eOM4QcfJHIsXCi2qhxr9WTzY0Ej7MfHd8pImcSFmS6T4x5yD2TMKH378ejksAL6nDY4XUmCYtEfUpV3fHWYQ8m4gDqyPwSoUP7eRH5Q8JCDTsJDfPPAP8G/JaI/A5ByB9FWE3oNjb5fEXkA8DXCS/hfkJD/osE75ebNlnGowgDdIDfAM4TkfPGDrllmGNDRJ5O6Jj8rqr+7iaKf4GIVITQl+FqjF+jjltX1W+IyLuAXxYRR1h95tHALxOSwfoNS41EHpwcF52gqssicgfwfBH5OGEQfkBVbz9SBaK8RyInjCPJ9xpU1YvI6wh51v5NRP6a4F3zWsIK6r+22bLHc0XVZS+PrUL2URF5nqpeuZmbEJFLCQa5vYTVHi8asxkCXK+qS/WxrwD+FniVqr79CEUXBNmfAL7A6uqrH9Z6lVlCqP5ngD+uc+R+iTAp8Yr6/1FHRE4UR5Lf3yEM7K4Ukd8ltLsvI6xq+roxb/MvEAa5b6q9wOcJq6hfOn4xVZ0TkT8Bfl1E5gmD2NMJKx7ew/3zrv82YYXHfxeRPyOE9L6W4IWy3jPoSPw58FME/XDdusmBXFW/MvxS92OerqqbGfscAK4Qkd9jdfXV81lrFHkjYbD+cRF5IyGc/zVAp/5/1CORo+VEtVHXAZeJyHMJ8r+sqjcea2U3Q90XeT3w1yLyXoLMznD0uui9wA8Q5HB2newvqer1wy8icnNdh3M3Ua4j9Gf+hOAc9quEVahfP3bM8dRhDxqiUe4IqOrXRORJhIb8DwghaHsJA9GC8LK2CY3W6wgrk7yG0HhftsnLXEmYUR8uj76XMCD+vQ0WhTgUT2Y1dGyjRIg/SUhkCyFW27Kxp+RGuWZeQFh95mfr/38A+MV1YTA/SRD6nyIsw/xVgrX+I8DCJu8hEnnAc5x1wk8RlkT/V8JA/u8IqzQdiSjvkcgJYBPyvdE57xSRLmGRlXcTOp1XA89Q1c8eY9l9EXk+YTGFD4nIC1X1Q5u4le8lzNifXZe/nmew6tlm2LyOKAlGjT8nGOP6BE+a147V2deDkj8mGCUzwgDoxwnPJeqIyAnhSDKmqjeKyFMIhuq3EGTkBuAnVfVtY+W4+h1+M/BXBA+YfwR+jjBYHOc3CIal1xDaxm8S2s83cj+866r6ERF5IfC7BH20F/gLQojuy+9jcc+tP19Vb+PcwdpoHltvB1Vpg33/SlhF9fcJq0PeQsh3+e6x+/iaiDwLeBPwdoJh9B2Eyc4/IkwCRiL3mRPYRv0CQa/8I2Ec8Ak2bws4ZlT1b0RECWOPfyZ4/P4h8HyCnN0Xhl5pv1Fv46y/r0PZkzaS/TcTFsj4c8IiGd8AflBVR4tRHGcd9qBBjjF/cOQhgoh8B2Fg/VxV/bd63xsIlusd46sf3Ycyn0JQci9T1Xce6fhIJHJyiPIeiUQOR20IfD/wWFX9er3vbcCLVHXiKMt8KcGj8KnjxspI5KGGiJxDMM79jqr+9wdAfVJCm79HVZ99Eq/7z8AZqnrx2D4F3qKqP3eUZf4HcLaqPvI4VTMSAR6abZSIzADfIqxm+tMn8bpfIUTtvKj+fjYhYui1qvqmoyjvftFhJ5PoKRdBRJ5B8NIrgC8fZRnPInjvfIkwc/4dhNmHmwihN5FI5AFAlPdIJHIo6jwyTyN4BO0nhP8dTTkvAR5GCOfxhFWoXwt88qEy2IlEYDTJ9RLgs8ASIWXF6+q/33o/1emthIibewjJ0V8DXEDw5DkZ1x/msXoGwbvtaMv5E+ArwG5C2NrLgGcRvPQjkaPmodhGicguglfblYSFH84iRLNMAn92kurwSEIf4rHAUS8Kc3/rsPuDaJR7EFDnszgcXlWPJbfCRwnW659U1buPdPAhWAKeTciFN0nIF/Fh4NdVdXC4EyORyCpR3iORyKGoE69vFCI2jtOjD4M4FfgQIZ/Wy45BnpcJ+aF+k5AD6h5CSP1vHmV5kcgDlS5wMcFQNEMIq7wK+A1Vvfd+qtMkIexzByHk/MvAc1T1YzBaMOGwi/2panUM138VoX9wBSGU+GixhBC2XYRQuOuBlx+nFWAj3948FNuonBBS/hcEI/Zw8ZrXqOo3YLSoihyqAEBV1R1DHX6dEPb+9roeR8thddhDkRi++gBnzN3zcPyOqr7hhFcmEomcUKK8RyKRwyEilxFmwQ/HmvxYkUgkMk4div4ThztGVQ83cI9EIg9CROQq4OmHOeQOVT375NQmMk40yj3AqZcDXr8k+3ruPgaPl0gk8gAhynskEjkcIjJJCI87HLep6uzJqE8kEnnwUU8Abj/cMar6xZNSmUgkctIQkUcRvNAORa6q152s+kRWiUa5SCQSiUQikUgkEolEIpFI5CRz2HwCkUgkEolEIpFIJBKJRCKRSOT4E41ykUgkEolEIpFIJBKJRCKRyEnmhKy+2mykOnXBU9j/rS8yMXEafTOBrOxGB0uEVYchmZygWuyj4hERGlPboTuHpjPg+ojxeCOYdALrcoqyR7M1DVWFCmhpKP0ydmIbvruAqoIIgseJIUFoNBqUZYmXDF/2UHU0mzP8zVtfwM/+zNvBNXn35a/gh1/xt3zoLZfyY7/+BT71D0/k/B/+OI858wy+fuM9nLajQX85p+s8k2lK7jwvvPCR9LtLnHvhY3j/Zz5NJ2tikpyEFF+W+BVla2K4Z/8cz/PKb31lD0uPfyTfKwN8p017us1N84tURlnOlWEI8Silqta2Ulm3wKKEA7wYbG1PVUkR0frfljQVRCwiQiebwOssE5NNZhcbZFnGd162k6c+cpp7dle87z++Sm/Q5KKLdvKVL86xUvU5pdXEJJZHsIOVR8DWexpc111h0fa4tL2Lzy7P89TJFvcMPI/ctpMrDwy4bMckN1CwZ88syw141lmnU5JwfVfJ9y7QaRv61YCnnbeTZprx2XsHDHzCwyTn1kFO0xdsn9rOhbu2AvD15QF3rFQ86d5ZLuylLL94Cx//j30857vOZVA1WFqq+Oo98ywXXUzaZnGlwtEDwLgUVYfSBO0jZKA+PGMtERGspoCALGIRnFRYKyR+hoQuzgoNY0hkQL/oU3iH0QQRIXfLlHd9Oia/vR/59w/+ms7etcLtt9zLYKWg3ezgbMFpp51GqwFJkqDOMDU1hTGGNE0REZxzdDod5ubmaLfbqCoiEjYf/u60M9I0pSgqytLRaDQwxqCqo7JcpaRpSlmWaBL2VVVFWZZMTU2R5zmqiveePM8xxoTrV552u02/36fZbNLtdpmamqKqKvI8xzmHtSm9Xo8sy7CpYWZ6OyvdBUQseX+Ac46810fE0ity0rRBURR0Wh1UFefCgkl5npNl4V6cqxARjDF47/HeY0Uo+zkYwXtPlqSj/5VlSW9pmdm5Od70Py/nlc99Nk99Ssapk6fS6/WYaHe46ZrrePS2h3HbbbfRarXYOrOF2X37abVa7Ni1g1arxeL8PIOVHpk0cIuOwixz1nMfzf65WdQVeCO0O5MsLi4iIrQ7TZIkod/v0+l08A6KoqDdbHPrFXv4ytW7mesJrp9j04yiKGg0GgwGA9rtNmVZkmUZS0tLNJtNfvOuG6Oc3k/8+R++Xm3dthuCjAEYY0byYEyCMQbnHMYAmFFbZozBWov3fs25Q5k1ZrhwoCcsJMbomOE5w/OG7Ws4B7z3tLIUCG2mqpJXJdbakZwbHR7vGc91Prx+OFcY9mfG04CMX1tEUNV19V7F+7E2XjyuUsSEsqy1o3OsSUnTlCRJRnplcXGRpcV5yjKvb95iJCFJw7NLkgRr631JQlKXJ3bts1yPIVyz8m5Uf8GO/h7dg+pItw7/V1bV2LMJ2OG1jMHWv7eq4tc9l5EuHvvdjAT9ZIxBAe/r51s/d+891obfXwFVQdXhnKuPgwol8VD6tYvJDX+X0DfQkc42BkxiaSbZ6BmqKkVR0OtXrHT7LCz1ePWv/Mq3nX658mMfVliVpeGz91XJ/Pw8WZaNtiQJfabhJ0ZGsmrQUT817JA178zoXVA/8hxQVW667Wbu2X0XU1axnUkMnqIocCYbne8xzFhH1wsTvk/ZXeabcwM+c803uOD8M9k+3aGTCY894yz85Ayt/jJa9emZDGtT5pZnuX3vAnMH9pEPejSbTSrnaLQmqYqCb9x0D489vc0pk232LOX4RofTG45WJpgkoZlZZhAWegP25ANcmXH38iLTp51Jwzf4yjdvYaKVjt7RVivjO86a4ZFn7GL3gUX23L2bVlFx+mk72D7ZGY1jygLuXukxOTPNnUsVs3fcwUseewq3FcI3l0rONV2WzDS2v8yWU3fQsE2SxNPNBxTJFHcuV3zthut56qPPZNv0JGVZkvcHdLtdlpcGLCz2IUko1NB1sNgdsLA8oCgHvPCHn8PZD39k0EUiuFpeWo0GDzt1F0mSYLwidq1+W58eafh9vW4GyMuSe27+PPv23IaxbT7x5ZuZmWoxM9EcyWmSpZBkPOy0s9i3f46bbr2Zs0/dwuRkB+89K3nO+ec/jpmZrVzxmS/wretvYMv0DElqSJKELFGsL8K7lSbMbDmFLTPbuX3Pbp70hPN52Cm7IAl9sOV+zr375rn6c1/E91eYm13Eo5x1zpns2rWL666/hVtu28Opp0zymMc9ek2f0jnHrl27OP/8C7E25aInXvKQ0BVlgXoOn/JKvVCrVJoN6A90bRvqgx5f+26Ec1bHsopNDNYq+QC8E9SNt5ehnVc/bNPD9QDU1eNpQntQVVXoa6QrVHkTYxJEdNSWGAO+Au9CGb4eC3gf6lqWVf3+yaiPPOxjuMqgyQLeWdAMdRVoCyclSgFa4soMYx3e+1H/fPzeR+N/XZWJ1X3h07t6nyihTzI8xuD9sH4OpP6f+LXleBk9u+HnsM1+3g89iQ+978v0KbE2JXHg6OOqBJUKdeagOkNdFaN4b1B1GEJ5vvT89M99N2996+dZWZ7HO8dFj38Ue/f26Mw02X5Kh29cvYenXHY+X/ritVzy5Cfy+U9+nYsveTSnP7zNu9/5mdW+iRGyXKiaFeotExMTdLvd0Tvwk6/4Lt72jqtH9zOqm0h4Nwz1b+lJ02z0/I1Z7WsYETC6pv9hjAl9HhP6O0mSjJ5BoxHGXKO+kU0xPkVsrVdEEUL/ctSHE+Hp37d9UzrghBjlvApLN36ahFZ4ACiqlmEHNhyUotKt94UbKVFcMUurPUM5WKasDJ2kQtQiPqXMc2yjiXqLsX1ELcYpTh2hQ29RX2JUQTL6/T5pmmJF8WoApaoqnvWc7SwvO0R6fOxTV9FOHGc+ekB3JecRl72CmcaXuePu24CU7kpOiWJ9QqEFalIQSzvJ0Myi0zuQai8NUkQcqU2RLSVpDkYcW0wDHrOLqas/TPMpz6QQJUFop8KSqwVpvcPiemMcQcFIfZxF6j0QBHSskcOPjHrO95hsbWe+uwxWGPgVrv7UgG9c0yDJhP5ghtIV4ZKmQMjQQhjQRCYMiyslk87jE0vqLK6oaHhIfUbbpnzjnt1MTZ+O6hKuEkiURA2Jpiz1+iTNGVrpHHmR45xS9rs0TUZR9aES9k+XdDRDutCqKsQW+MrSXT6AaIsmKRdm83zwzhmedfGZeBo4XSEpPcvLJWfuythzoMSVFUiGEQdeUU1A+kFJeEVxoCV4i9oClRLwJFg80DQGvEHsLM5DognGG0gqXCVYqyCOUptUtn2s4hE5Rs678FROP3PAk55zIXN7Fxkseeb39rjjtrtYmhdajTadVgIdT7vdpN/L6XQ6OAScp5GkJGLwBvr9fj2ADQasubklWq0WzrmRsU29hIFZ3bCqF8qyZGJigtJVuKJEvWf7lq3Mz8/TarUoyxJXlGyZmmZ5eZk0SXAEY5iVIMmptRSDQZiUSFMWez0kFSZa4R3rFwUf/PAV3H3XIi//8R9Cqy7qHFmWUXqtDXw51trQwc7DfWrlsAi+rBCbYACtOwRVVWGtpTsYkIqlLIIxYmgU9N7TXZzjwN5F3vSXb+ev/+iX2dHYhzVt8rLAWsvuPXdRtZscWFjkSU++hOWFRZxz9Pt9kiRhZWUFVeWGG25gV2c7ZTEgbRlS3+BrH7iGs59+LhMz22qjYsopp4EFkvoAACAASURBVJxCq90YDb7B0+sO6A1Kzj7nDIxP+dqtX2BxYLE+J202cQqtVotGozEa5AMsLy/TaDRGjWjk/iE1FjPstMjaAfeQNQap0STT6oBcVUdGKI/iCUaatQav1c7lWmPZwZ3I4b5hR2n82GHHbWhsWN/BGxrnhtcaGmrCfYBI6Jiuv89xg9zIeDRWr6HhEUKLbhOBunM7vPb48xsaHYf/G9bXGAPGIKx2KleNn2bDZ3EowqBrrcFuo/PH67XRYGP8OY4fN6yPr40S4wbC9cbN+o9Rb2cjQ+va318AS5LIyOiRIjjxo+tsZBhYW97BhkJjDFmW1YO/Bnm11sD37cZGvxccLDdDg5yIjCaVh8bSzVyjFnBgaEiWMHBMPEndt7cecpuODPyoIBKMtU0SqtpIMpRbgLwC10hopRkmN/TI0KRJLoa9CwP27dtHsTxPlljaiWWAI5GK0od7SsXjGinZTJM0adBsVHR8CQQDwqIouXMkHpyFbamE/qaGMYj3ds2zQjyDwYBmatiZZgzKAusJRmnnyNKUbj6g9G5kPPbek7uKwcBRFsKgWMGanDkMnW6fe1yPU9OSCZvhG467DWTG0DSCN8EopaXBZw2qtMBkKWoMzik7t+9kIq+Yv+HmkRys+V3GqKoq9JNUyZKELMsOqW/W68f18ryqU1cNGOPtwfh54+3HuE5cPxGykU4GDnoHhzrTr6vHcKIy6NrV9354z+OD9nE9ba096Nk92DmUQW6tPpCRgWzQh7QhDHqKGEBXjwnnDb+PNPyoTFd5stRgEw2GMiOIrnsPhv4rumqUG9ZHCfo+TROcA3UZiU1wXsELYsJxzoV6jRsKw7sX9I0xpv6t62uNvbOPeUID1Z189Ut30mx6FhcK2m0YdAs6nQ6TM5PMHlgcGdzGJw030p0b6dVgjHOIbGTMcyBV/fzWGvM2Nvytfg5l5v3vu3r07JeX50mN5UdedBnv/adPkKbpml98jRG970lo0ZlS+qXHugbP+v6L+dB/fJrL//IKehRsndmGTQfcdOO9eNtnpWvYuzvFmZKrr76Wsiz5xFXXIOL45GevJv1CusY4KR7yTIMNCBgMBlRVVcub51vfGqyp2/hvI8aP3oGh7BpzsP5JkjABuR4ZM9Q550YTdHmer+nXPOPJZ/Cpz92Ojtlx1v+O92XlhhM2clGfIFLiTFU3wo7hbQcLaD3zKoJXxeBrg4qQ91dIsgkoejgnSAbiFFeWqHqS9gy4+gVWU3eWwwyvmroTr1VoiMWTmCRYkL1iE+HsXf+rnhl1/N27b6HvUy577lcoNeec0/8LvZ4y1Zxk2ef0Soc1hhSlKgWMoVnk2FZKVgpNI/SqCZqdFJN3kaSg6lkK32DCCTMkMNvFf/NudviKWanwtqQ/KPD1c8Af+icbvlDjZrjwD0swA48LniMztp6BdoBFTEEja9ErwEhGXhnK0iE+IVFPxwp53sR5waKQpFSakZdN8pWChlgqlzIoCxrWcfGWCa4/sJvTtmxn1nqSok+jndHAYlyFyhJLxTKNFjQGA0pX0n7EFhZu3MtMs4kRsOUAV7VoDBy9Xk6RW8pGTibC4qDLlo5lfqliRg23ZgnTdgcGxbkuPi35yE0LXHrBJGWh3FYsI6ogFj9sxJEwM6AFUNYuiAJSkPgEg0fwqHhsPahRHOKUxKQkUtEwMKgsmBInCZ4ORns0dOH4CUnkqDBOmJqYoDvo8bAztrK8vExni+NRj7+Q+bkVDty9xPzuee66q4f6JjPbW6QtIU1bVFph0gSH4p0ny7Ja0YdOsbUJS71gzK/KihShKoOBLmE4QLY0m02W+l1arRb5YECSJCz3ujTaLYramzdpZHQHfbCG5V6XNMlwgwHOw+KB2ltPoKpCh29qZit5ntMvgpebFYMnZVD1+B9v+p/81599OQsLizSbTZxfO+CvvMMklt6gjxVDXpeZryyPBv6psbiyovBFaOBcjrWGosxHnn6Li4vsvWeWt779Pfzl77+GyWovrW1TTDRa+LJBr9fj7LPOofHYKfzsEld88ErOPe0MyBK2bJkmTVO6/R55r2TXxE60cjgqTJWSNi3b+tNs0a30yi5Wod/tUfmS+eWKZtqm1+vRbk0wPTPJWTNT3PKNBd73zk+wbXqKbKqkO+vxRY92e4r5+Xmmp6dpNpsMBgOyJKWZNSiqcp3BJ3KyUSMjAxGsetYM/1ZvEBNmxI0kIBomnmqjnErono+MPXXr59cY1erZaleODHRhFnytl9oQ7yuGnjrDAbr3bmRsG3naeI+R4Qy8IrLqeTfeoR7+XWlJwsGeXkPGy11vpILQ+VNV1NXPasyTTb1gbLKmwxnusRg9g1B2/SzNqkEOwEhykOFreP8jg1NoDRFd+8xG+0fGLkZ9EWrDynjn33u/5nmPjh27X62NM6o68qAL9ZQjDlao23ljAEkwQ68BQIM/JuAYHhr6R4QBmCjDp7WRYc+zajBM02TNoNoQ3oek0QjPzBrcfTByPpQYf5eGBi4ASeyGxw8N6UiYVF5j3Akv0EHeVcPrjL+vQ6qqoELCYIvQ7y+84qyG39okiPeISchESZzDqQdqI11ig9y7isqFyaowMHeIWHIv5GVBpiXTky0amZBlno5VcuNYrhSMsr3VQFpNTp9uY0RoVgNS7ykLR6meRJSeh1IhMRU54FxJ4fya5waQGEOzclRz++lpiuZ9GmJQ51geVKiFXR3D3CDH+DBx5h1YVXq5Z6BKq5nQKzNmBn3SToeJlpBXhgpYLh2Vg4YoTYVtpqRoNKmqijSryBykaQORkkHhyeuJuiTx9aRe7fSgq8POMMQNv1Oj9pYty5KyLCmKAq3fkyRJaKTBa+RwEwMjmSwrkJTKgxpLYrSOIPIje824/Jqx70aCF3A4xobJeKASxUqCSnB9cmVR34OMGf+UhslwEjwBRYIntrqgFxKERiJUrE6EeDnY8DxuFBz3dH7IoGvlMeja2hA39n3YHiNQ5IT2XYeebYf3psQrWIP3MOhB2nIYY9EK8hzwgqo/qBwInm3qQ3vlddg/qIt1KaefDXtuC+36yEdI17YHwShkRvc1xBioKsewa6mqXPfVFZIEvJukLBOarQaK0GwH76v5AyskiQ/ecknQM4oLdotRr2bcgLbqbAPUhrhqbP/qp0hwOBG0fh7jxs1V04BHVw2KMPJQX//sDUq70cTalH95/+dIMkujM+DSJ13Gpz5zHfOLc/zgcy7l1lvuIu8W7Nm3l8Q6BlWJ8wOc5Pz7FZ9CqchdSSPN6BcrSGFRKRGf1HflxgydYdLFqwVVymKtIR4k3EfdOayqgmYzo6oqwHD1F67FWD+SwXLg17yiRlb7LzJ2v6GPFGwmTtdOMI4+lTpqwTP0rFQVhARrV8den7nmelRbaP2bUHvYDZ2o7qtR/gRpi2BgC55KKVSN0eVGs49qguHEAWpQSbFJB2yC95APFrBJilcJM0bGYLMZHvuEZujwpxlIMnJ7Dy6bUndOg2ZutoJLc/A8qyXJKxddcAbeh+s0mwViUqbMCraybGMHzaRHj8UwO5qEunsrVOoxieAMkKQY6yj23sPAWM465Uw6nUlSY7hp/wo3H9jHacBLdAW/8y4GE7fxckJnIfFgh4KyxiB38EByfKZFhsYkVZQKpKqNb+HcYHuqzXdqsYmwMiip1GO9JzGWlJwtTbCNHC8FJcK137yDfgXTacq0dZTJPDaZo7c0oGdz0iTHGGg0hKlBnyftOpfENbDtHeRa0sPQtApJRWYzMpqU/ZT5ffdSSE4ioYGqtKJXDNieTZFMKzNTStVfYaLy+LLHgcV5ptqTtLJpnHOc3Sz53Jk7ES3AlEia8YEr7+H5F2xhorRkRukX/eAm7Lvgy7Bp8IwzquAqqABXgDOIhgY4CaY7EjEkfkBDcppWMWkPa3MGzoGFSlo4seCXSWRQtzCR+xNVpdvtMtFMGaws0klTJtsdJrduZWprh3POn+GiZ57NJT94Lhc/4xxc2WffnmV2376H1DRoZQ2MglaOdqNJauzoc7hvqjNBI0kRHzp+vqoQb/ClUuUFRX/AoNvDFSUWCZ53ZUU5yEmNHXnkGYVGktLKGsF47D1aOaYnJhl0e/iyore8Qt7rU+UFWjlSY0nEhHCpXo9WK+igD7z/A3SaHcSv9fBwYx4nrq6DRajygiovRmX7Kniz5XlOWQZDRr/fD95x3S6zs7Pcdddd/O3fvYdf/amn0fJLOPrccccd3Hnnndxxxx0sLy8zNzfHdZ+/hqs+9ym2nnM6A6MsLCywd+9eer0eC3tn2Xfzblo2Jc9zqnp2fzAYYFPDTR/7OkJClrZYWVnhjDPO4BHnncf27ds574ILOGXnVhLT4Z1/9Sl0aYbnfO8zcVqRdAx9t4wvPbOzs0xNTdHv9+n3+wCkacpgMBj9Hbn/sAzTKNjR4MTW3ixDY9owZFUJ7ao1B3s6DDHDzlnNuCFo1eC0drB7sHHHjs4JYR9h39AmoKoYDV5+VZ3yYNwYN240GoVgeo/FjmbUw3XGQiDWDdQ2GryhIVTCWosZu4WhYWg4MWft6ixyuNBaI59BVg1J9TZ69sYglrCNXX9oNjNjg49VA9qqcXBYn9E2ZmgcPW/Wdm5DPyUMAsYNkuPhqMam4TnWv9+wXGDkuTs09ukwZKl+Bl4Vr8La8OK1zx1MbfQxyJixcv37Mfy9jDEgltRma56FqwfgWZbRzFJazW9P/TI+ETT+XriyGv1/jYchq1vo99deLWIOMgKPY9WToLWBZPjeVCwsr7C0tECvv0KvHJCg5E4pi7A5har2hDGVh8pRqkFd8LZNjCUxllaaYVUpqzCBL9ZgECot6DSanHLKdloTLZrtVghv09BX9BgSrxjvaDdbtFNDwypGXDC6qcPUAzaPY6F0HMiVe0uh0jDeMWatL4SoJ5GCpDlBlmXkg4JEK3qDAYu5I3fQXe7heiW26lEZGybJE08hCQcqaDZS+li8FkwaT0OhaS2VN5RlzkpZ0euXGPVU3kNe4gYFxaBEVNHK4avgEebq8D2LRV2FUUiSVY/UoSfZ+MDeGEOz2aTT6TAxMREMdaqUec5Kr8dKr0dvMAhhrxtMTITn4HCuwFWD0HepKrAGfHC+CA4YelA6BElW9cZQhivvKfMKKyEVwZCq9OR5SVk6fFFSlTmlr+p7K0mGHlyi2NrQlCCIlmGsIGEyyfugHy1C1khGk/vjnssPOYMc9SSVAa8O5xgZKoZbMGYOvc7qzYN6g6uGZYBzinf1+N+Z1c0Hne1L0EqoKk9/YOl0hIlpGAZArA+HHTc6rVKX5xV1Qe/cdatHpcfDHykhjNYFY0s1Vjfv/h97bx4rS3bf933OUksvt/ve++5bZ+bNDDkzHHIokjMSRWrfLQpOLAmQEiuK41g2jNhOlOSPBEgiGAEMBIYBO7Bh2AgUJ5BtCXYsCbIcWgtJLVzFIcVFw2UWDt+84dvv2mttZ8kfp6q6ut99XOCMaM/MARq3b3d11alTZ/md7+/7+/5osYlm7QkMN2hD7qWvQx49vX5Er9fbcMg5rCsQ2uG8RCgHPoDX73jq/rAuo5CdV6Rla+dI5ZDKIaRd60dC+rDuS18zufxd82cgK3XYcC44pBpArntc87dZZwGqqqAyS5yF5TTmd973ERaLCUmked/vfowXX/wK127dxjlHWS0xtgxt7SVZNidJksCw8/5rvoQQbR8K+JCmkRRp6rX+XlAU1ZotZ42gLBxV6fnWdz6FtwJnwjOQUvLnf+bbAMdTT72NKApOvVWYtCBN07YdmnHrnAtRR16gdUzgr4VoTKnWnZo/8F1v6dha4bk2ch/Neb+aQ2KzvCIzxpoXWEhcXIK36xOVDJN709m891hfBBRXCpyIMPmSSEu09GAE/+lfOMO1q1M8Vai6qALjpYMyKxkja0+U1hIlUwRJ2/BCCL7vB7+fZLxASsnf+h9+EF8e8zf+6p9hONrhvX/4tyiM5Sd+6FFknHPfpRyBwnpPhER5QElU3COSgu1sSTrSjPYu8cS3/DDWawwSKyRLBCrbx/Mo/Z/4H9FIXOnwVqLiKAyWu1DUdWBu7YH60PG7JZibFgkoF6jk1gZDIy8qhIy4OA4bHl9JZNQjiizDKAYfBQZh5VEqIkl6DFTMme0BxgkGTmKMRgmNlh5lKz47PcKaBXuDCC0EwmWgRJhAhCJOLEs3wVQRu8OY0koGuztoodFeYK0jSR3CWmKviYcemSYUlWUw6OFcyVBKEp3yGxG86fKYOI3QVvNbH3qGH37qAtJbEqkRMoQ0CZfXmxsLTuJ9Adbg7BJECXIG3iH8EsgRIiMXDiUkylviWNNTUTCOTNCfscZTIEABlWUnhtJMGA5fm8b4v09FAjvjMb2kTxKlxHHK7vYuPRmTRim93g79wRgdS85fPscT3/1Wfvqv/Q3e9V3fw5UrV9i/uY9zjq2trdaQ7A9i4kSipcLbAFI1YZhCgHM2eIC9b8M1lFI1uy78LcsSax3HxyfMZvNay0IipaqNFVrvcZ7nSCmpqhDy0u/3mc1mlGVJWZbhvDLhLY8/wWg45r77H+SFrxxwcDxFat1ev2UulAZXVEQyLAxVKZAiBq+RUmOtZ5EtQQqsd+SuoihyrHUcHu4zOd7nuRde5kvPPcP/+Xf+MpcvnQNnkFLxtsefJDMlt6aHLKzi5TsnJP0eT77zHSz74JTj3MWznNvb48LWWaKFpx8lwXkiBGVpWGQ5eVlRGoMw8MV/+xmsrLj//kvMpzOe+8wXyZcLMJ5qKfntf/UpZocZ165f5Xd+9/d45JHHiFPBj/74D9LbGbKzswME8C1N0zZkNUkSzp/da73hr5dvTmnWeq1XrKPmJUSEjlZhP42XU2oV5mSxYik1pQt0Nf83AEwX8DmtdAEXpdSaDlpXwy6SqgWhtOg4w8TdYFcTyhA2qx6lwrHNmDwNlNsE7br16p63OXdzze5nTXs29Wyu0T12BYKqu9phk33U/X+zDRsWSde47LLhuuGgXSN7rd2bVwPu1a+GAemcCxuGBvzqgJ2hjVZadt7bFhBtXl2DvambtdXahqO5h00QbrN9uudqmMNFUZBVBl+5WvMzPINekt6zv70WyuYmYy1MdeO40/pF9+9XC/HbZGLeufEVbr38Egc3rnNy4zp37tzk6OSQ6fSE2WzCYjYNa2iRIV3VskKstXjriJIYHUdEvUFb3yiKUEq1x3gliXop8WCbrPQ4FNZLrNABiFEKhsPgaDaG3DgWpSVCE8uwJRNAJGSnT4b+3pVaaP5qBXtpSpSG0M/zox5nBz2GShCbApkv8MsFu26JMp5pVrbyGsu6ryulMEogCoMqLaXwiCRCxRFxmpDqYLda7xDeI1yF8NVanZrQxGae3Hxem+83n113HoiiiH6/z2AwII7jdu7LsozlctmGoXWLc47JZMZ8HmypzfmyuV5zre4coto93wrwPG3cr7GInQmkiHqu6coadOvkAHQEWiOi1fwawpDd2lzdnfe7a8GrpXjva9BKrfXj2t8cwkT93b9pnGZxEpxy4fO75xHvGpCt7ktOIpzg5Ngzm1X0h6ez0TdLKwnR6ZOuBgdd1edLX4SL9wu8l537WF8Xu79v772z/jX1mM8M9z+U0t27n1ZHIYK01Oc/ewe85Kl3XuKd77pEVVUoLQKTX1qEtOvn6QBxa8/BrRyH3TrdCwTadAp273Pzvufz+V3fb7ZJ9zrByVbR6w3JsuzUNrtXnbrfNXNR9542f9fYfJvn9t7ziU/8MShB3EtoNAB/5ZefBuCTn/wU1oZ+WFVVOz7zPG/X9uZ8jQwPBEyl60TdDFXXKSix+uzfdcy/csI7rXCrRJjak5JIpIBlGQyb4fmHmB9cRXpbe7wsWgT/RBAR1HVjS2Rk+Nt/79289zdewhaWUbJHFU/wrnamOPDWE8Ua0Ng6JEXVHhBjwuRpveUf/KN/SjGPkBL+87/+bfy1X/gDfvGfPU2+cHzyt/5XpNoi9+Aqzf6dIZFekpcxViyJox4VkpEFrzT3b8UcvnybT04+zMV+AkiIFJSeJXD70Xez/e0/wOGv/wM+TKCbRnI1+ccaisptsoLb0nZIIVbGqwiovxUe6QN/TnmJEzW9Ugics+Bg2Mv4+DO3uXzxMpXP6fsYJyVaDHH+CGEVUiQUJseVnjtJwpm9hOimxLoZpdgFV+FFykBI3rJ7ibysGIttRHlC6TyRsqjCEkcWLyPmRYbJM8rRBWxWIZZz3MAzKypG/YSkzHDCcv3Wgt3dIeaoIs89MYI0lkRZzn3zY5568yVEVeHFkt/4yFUevnSWvZ7GVwtmSEpnasPLIoXD2xgnZ0gTAQbvYmAZ2sQ78DGJNOTWoaQApRkJi0JhXRUARqkoXUQh+whj0GWJt1PiQcSuj9ganx6m8Xr50yvOCpaLgr7sYSrwzhBFwdAa9EfEccxkekySKBZZyaLIufbSMyzLgu/9gfewtT0mUZLfe9//S6wjLly4QFVlOKXQ/WBoJ2mfOA7CoEFLyOGcbw2xNmGCUpRl2RqYjaHR7/cpiiIknfBmDWCYzWaMx2OOj49bD3Oe58Rx0MHc2toiz3Mq73jppZfY3t5mPp8TR5r3vvd3+NEf+WFGO/0W0IPVAlFVFdYG/25j2DorMJUL7FpC/ZSW5HkQeZ4vTvjnv/Sb/NkfeYIf+tE3Mj28wqVzDxIryaVLl/jIM19AD9/EF/ZvsuNi/syb30CZTYmiiEtveJCLO3s886u/iz3MmA4PKMuS4XCIrLXuPJLFcsHOzg5KKebzOWkWsXhhxq3BbfI8Z29vj+Fwm6MrFb/2//wBxbzk0gMXkFJy4eI5Hn/8MebzOYXJ+LGf+iF++1/8/trCvVwuMWVg/x0dH5D24j+Nrvh6uUdZhV+CkE2wU8OQU0gZvJ6+dtbRRoqEsDTvbRv+6vCtpb/GHBdNGEv43Tpg59uwlMZ93rDOvPc472rjLmiFRGsJGzxN+MqK2afq8FdJuHyjT9IRsmd909o1lJuyabCtvZd1I/jmPjxSrCdtaLTrmvswxoT1z0ukSmvved1GPoRvtmAcK0O8va6s27dpqrrZmk1NC3p26hrkRlZe99MM98bbLBodvQ7LsH6S9XFdQNXVoSwrUM65qtNmTeKN5reyNryD53x17fUN42ojL9c+3wTpRF1P4z1e1RsDF5wfOE9cg8wB2H1thsffq/+6WlFHtmFXq/6FVDhEG8baMCqbv10tx6Y06R1kZ6PrCOzxo4MJLGbcJz35ieDm0hBFqk4wEZIFRT3FuNfDmxLhwngOAFyCVBqrFCJKUNLhnAnhrMbwhrHEpoLDLGc2z7GFxUpFZiF1oRYCQ2ENQ2eZVh5jwVjoS0uiIyrvAisOSLQidzLYmF7hXNW5S9/eozEOV1l6AkrvWCxLxChCS4EpCnJfsL8smXtB7BzOg8aTxpqBrYiTHlU6JOrPGI97xL0eLu4RpRZZSkwUoWTQrzUolPBEUYJ2gsJavBR4JZHSEyu9AgMIYvtdJ4kEXD1OT+sTm/0l1pq43sg6ZyhrRl5Vs9ob540zlqwqKQuD0EGPXNi6rwi3mssErT4uuMBgdOGvjHxgPjtDWdnAyBSifm4aqVzNlpFoKYmSIBMCIHSEr+85hO53QuyURlDgu+xOuwICPeuAXxcofDWBcg3DPJQmocPd99csy2GeDWHmzkG2gP5QsphRRyR/9bbx3uNM3YZOUQIqMriintNdsxasbG+Jxwo6a16YdJq1vdGxu/oiCFUiRUj851pA8W5GV3vHorFN6vXJOwSSa1fmbaikD50ktA/1KBce4y1aRxgbpCc++6nbeCxpLzjuwYSw2mAB1WGpK7uJNgzV4axASIFzoW9326tbNgE7fJMEotHyP52pPNja4jS5+7B+r0DDJ554Mzdu3ODGjVukaUpZbjjD/comO600YzOcu1mnLZxmqxDufQWJdKIEpOqsIw5TFXTZcCtA0tYODYUxJXEcY4xrtYubazrngiXqIVK6TnolWzBea4n1OSlb/MEHblAKhxa0bbp+f6vx8PWUV4gpF+iYANYrUJpIQRLHpCoGWYswZlPS7YsIGVEJhfKu1glpPA71om0l3kV88INTFvOSVCUsq+u4skKpBGuDoWcFKOkCIChNGI7SIqSvw7WCwVpVtt4owPbO34Wyx1/9Sw/idM5//bdvgRF89PeuI4RiWSypSsBbYqGojEObikQrCudYes2jzjDxknMnR1iXEUuIleFAOP7+9avw6z/DOa7ySSGxUnFQ5EgUSapXHcdDQ49ca8uGCln/bylpOrFy1KEBIZxV4kKHdi58rizLQvAT3/muwKxBkBUFh1PB0eIooLsyBunoRSmp6qEjwbB/FmdKlnKbsrJYDakQ+FSgbcXnTwpO/ISFrijtHbyJGHtL6RJUEmPmAmcjYpGTOE/SV0RYkt4AtMU6jy0Boxjs9rFRhvQGY0usM1TMefzN99HrxWgiDqZzzowETzzYQ3qNcQLpc66fZDgxxwmHMxVe5Agb43yGcwZ8GSYW71HSI8QCS4XAoSQkTjDwgth5IkJ2F+00peuhVYx3GQnHID1m7hE2ouB1ptw3u6howHh3h2xpEMRo1aspxpIkjjk8OGCrv81Wf4ed0YC+jlkul2yNRyT9HsPRNlev3eSTn/wcOkqYLU6IkpSk16fX67G9vY13hjgSKBmM8EhDojTpoEeapkHzrRGNLoqWVeKcJUnidtGrKkNRLLEmaGfNZ0uSJGmT0DQLmakKTFUwSHshxBRHOkgZb42w1nL27Fn6yZAvX73BM89+OehbGks2XSBr3ZMAEBoMgsKVWCmpgMwYCueYFY7SgC0r5ocTlvMpB4dH/MP/41/y83/p3bzrbSMeeGiLR978AJ/8xKe4c/uYj794xL9++oR/8mvv50++9AIf/uRzvHxY8IXnnuX4+JCi+n8e0gAAIABJREFUmHD1yy/z6advMR4OwCSkOmE6XzCZZGjdZzgYk8R9qtKRFTnKw9awz+z5Y9545jIXH76fKoO/9zd/iS8/e8IjDz/GAw8+wGOPPcJ0esJ4vMVv/sa/4XD/gLc8/macL3noiQsUlcNVJdkiZ2/3LFp5dOTYGox46K1738wu+povXQMHHzJhhXCVRsfHh3VaybBxb46VK6Ov9bD7wPBYeUabcJkVONUF5JrSZel0DTPZ2Vg1QN1pHs5wysaacq2HtNl8bf7mtL+nsT02r9ccp2REpMK8oqREy6gF5Bo2TwNOhbaoM53WgtSNJ71pjy6rBAKR3K/s6bY9u+83NyENOCbXtGt9C5w1IabNPZ7m3d7UdxRQP7s6PLU+n63fAxvPpdbP7TzT5rfWViHkqMOUO+1vs7luGBsNA68FlTrHOmuxxlCVJUVpyPOSzNrgYLBBu/O1nEhmk5kaNswhlKoL3ghRh616hxd3bzWac6zAnjoEWzRsmvV+o4RASE06GLIgxi4rjg6OODqccrw/4ejOCfs3b3Pn5nWOb91gev1Fbh3eplycsJyHpHLLasGyyMkLS24sxWKGLUpYLvD5Mao44OF+RZqMKUyBqTJwHls5nJTtBm5ZOvJ5xvEiZ1EYqhJKK/DGMpIenMLh2dYSgWdAiRQVztmWVRtAZcB5Mu+YZAt8UXFzWXEjN8yXFXlZshBQKU2uklZr1pTBWZhKxY4ULL1BxJIojdjaHTEYbdFLYgapxiGR1mPKCicjllJTIqmcbbOv5osca0wLwIFD2DCPNFmLm9DT1g3SmQe/3iKlJo1jhv0+W4MBg16PWIdkVMZZ7kxKppUir8IeCyVbp4yAmtnmcca2kQjeW5SwKO25sNMH5zGmxFfN96vNuVSKqN9H93qIXh98yF4Z7iWEzoX5yaMwIZKIOsEXq/XMOdeG97fn7rRFN5zt1VTCXNuErTZJBsPLWb96tcc0+qsrRt1iBuPx6pzd7tPM5at5XrTnNJUgX8J4R6PqcOrutCJESAbhpajDnWugrr32ejIHGXkQGqXhzHmHsUuodQY3M62GNSy8mrDRoOEaQk0Rpr5+k3ihPlY0OmMOpTzOB2AcEVhxDcbha9Zqm9XV5Xzrtz0CBNKRkh5JcDwo2WMF3azCTtdZfeuMuS6Drv2M4GyTp4xfRYyMgi3WAHGekN21Wz73zLMcHU5JkzCWvBN19t3Tw0+7r3XgswsOytbG65b1+su115q9WZcoStgs1vpaPiCM96qya+zHcPVaZqG2ES5durQ2jnvaQ2mQXlPWDpoISRQldbZ7j9hYu05Z/u5ZXjHLIngKJELmeNIwgFzrDkf4AVsPvpHly5+F0VmUFTidgjRIBGVVIHxM6NgR1jr+4k++H4/GSYWpNHGcYn0IQ7XOoYUgEnUcuY9COl803jae+/rBKQm5q8UkHd4b/tv/7RMINWBhQ6x2tkxxboHQkjTVzJYVzsckSuNEHERIRcruufNMT55nvEjZeutZ7MtXeNt5hbRbXLnqiZwnqX4IvGHmfaiPj3GUXBj2eWk6b9tsc3HzzUJEjbZ7j9JqDXV1zgVdFhoquMKjQBZYk6C94PAkQ3mIE8m7vv+dvP0dW+ztfQfv/fX38sEPfR6pFWkEXocQveHuCbdtipBBs08KxcN6yGf2j7m8lbBINY4EbTRpb8S0mDCOByRqTuzBlwaThgxT1uQIH0KJIxPA1RNznarYYyA1F+67wJ2XD7FeEhmBTBIiNWKsY0QpyDB8/HMn/NS3n2MhJdIuiaKIGyeHYfNhFd6XeK/A5UCJ8Aq8ASHoKY+WoETEwiqcikhlhRQOKZZYp5BS4F2M1gp8iiNjkExZTCvSwRmiYoYShqNSwo3lKzBaXi/fSCmKjO2dAKBFUdCpakJN82zGeLTThnJNpyeMRiOWc4OMJTdv3kSriMFgwP7+fm2MCfr9lKpSbUhKFG1hrSVJonZTJ1TtrY0jhJQI7zDe4QQMBv02Q1eTvMaamhLtJZPJlOGwj5eCZRHCrUMWVQtKtuxZU2f16yUJ1kiWyyUIWCwWnLtwntlizq1bt3jxxSGPPnw/KElW6xxmiwKhBXne0Md1u4gZY4iUIs8zhC2ZzI5YLip+5Vd+lV/4b36Ihy+mbI+3iLSj15N85/d8Kx/4xE0+8N4/4sx2j/vPX8QJyfHJhEGa8Oi73sn27pjn3v8sT7//M0h9hkXeY5QsghNDKowtOZmccOHCBbZ3RpycnCCEZGdnmzzP8Znh0+99msvf/24++v4X2N56iIPD2+zfOWI0HvCFLzzber+cc4xGIz70wY9w8+YtFtOSc5fOUs4TpiczTk4OGPTGnEyPePLH7+fCY+N7d6DXy59a6QI2TZEy6HKsAVViA1BzNTuCDojFuqHp/Srs6G6PasdL2YBxcj3ZQWMTrDPvGiP29LCO067RgGBrhp1cz5J6r+O637ev1RdrAJ6UKyZ8Y+SGkPkgUn+aAb7ZBt17aeoJtSHasBu7YtFtnVYZULvA21djyXTr0AB5p7XlJtNOCLGWpbUBZ1bgXiNsTbup6f6+e+6uJtDm911wqXtPzntMfX1rDFYIRAZlz1MaQ18qUK+uzfY3WrrPdRPIvddxiFPs268C6LTsxc65mzVWRjFRP2WcxhwfTHFlCDfOMgcY9jJHHsOsyNBRj2URNI7mxxNyqUh6KbMTRekLXJlTGVjanGsm4aS/ix44+oMRkyxHe4lhPSRdxhFJL6Ff5oFpR0WE5cAoLkpJT5YsvSF1OdYpjl0QuTempNG07M5LhQNjBFLBrAwSNAMVMeglbKuY8UDiByXX5wXW1skJdAit6knL+URzp4gpkORoejhGwuCtxHhH7iuysqInS5RYZRRtmP/WBtKBVQKndGvztM9hw8HQAhudcfW1wLnT+oiUIasxBLvOYDk4OqA0ESWSvLAIYdGRQClJjA9s1lpCpBvOr6TnwrbGaTjMqpa10x3jUkpiXY/1mk3VPa57X96vQmSb+4/q+w0yQauMvus6lqtrvbpYcuvFO7kxd989Dzefr+aIcMzxUVUz1KjZYSvgLIyN5hrAmuPLc3Io2NnzHB8ITFUnAtlgxa/Xo7k+nev4OgGCp8gts+MUIRTWlTXDvADUqX021OVuO+DM3piD/ZO1fnT6b21bp832apw9KT0+/cdXEcKTpj0efdMl/vjpF0h6KXk+A+FYLFZ606c5w/A1vCPMuh3WYZp5f/f6631g6JvKroFJm8dJKdc06rpldey92+K0OaN77KYdc69jT8VNhKAsy7sy3m86DgeDAWVZkvRSvPe1460LcsKVK1dQUYyo5wvrFni1jVeuxrRofwusaV42c9tw0Du1DU4rr5gKpVBhMFofB7F030xsAi89WkEiFNsPvSPka6g3v4FCWmdkIyDR6AKExfkCaz1WFcQDHRYSlSJU8MAIH7zuXlrAtp3S+6BxoFWK8JAoGQAnCNnJpGc42A7stSjGeYFLmpAzR1wz/5yyPHJ5u6ZKg7AFRAKZjijsdY5lHBJBCEWiNKUzDJQECctYUiFR3pFlJ+RVSW4D9b1BexvvcftwpFzFk0N4bxXCq7CgBJi7A8h5BBa8QYsEpyOqsuDDH/0QKlJoBe95z9v42Z/+n7m8c8LP/PnvJI0E2oe4fYcn7Q1ZHm0hvYU4JJKQUvL2JOfJnT2+NDVIEdFXwfMcuYRholjaiKy0PDTexaVTdDkhyxRlJCBSxHmGEzmHywmPRm9BRwlWlCzMHF8EAWvn5jz/lS8RUSKdYOEyfv2Dn+M9372LlH1kpZiXkNkFD114gLwq8TJBywQdeeI4JVKSSBVEyqOFRTjQMgKrULZA2ZC5S4mgW3hmZ8TW7ggjE3JXYpgT2wKzKLgwUjw4tkSYEBon95H61SXc+h9i8d5zeHgIwGAw4Pj4mMbzoVSC1ilHRyccHh4zm83I8wwdRSwXOaPxGIRnf3+fqqpYLpfEccx8vkRKTVmGDI1SatK0j9YxSkUMBlukaUyaxkEzxnnSKCZWmkRHuMqsEjRkOa4ymLJEAmVWMuwNMUW5lvxBesCGid0Yw3K5bBl0k8mEKEoYDAbYmqUhhKLfH3LlylWu3bjNrTtH9OIkCBLXwFtV2ZY12BjdZR4WmuUip8yXTCdHvP8DH+R3fuu3+Z9+/rs5P1ow2kropYo0jamc4Pefn/DRL+4z2o544L772R6N+YHv/m7m8yX7d+5w8+Wb/N2f/8f8yYeuETPk2tF1Pv7MFWwVB9F2JTGVY2s45uR4yp3bB1TGMV0sKU2FjBOmlaPYT3jmd5/DlYF9eLh/xH333cfx8TEnxzOuvnSNXjpEa82VK1eQKrACz5wb8fLt5xGJx3nDoJ9yff+LfM/PvZUH3j7gzU8++k3soa+X1hsq1llYAN0EBc13XWHisIF3wTiqk5qEzOzh99ZW9WulMdasm80xgYFl8awYUO3xdDXI1j3ipwFbTWlDmVgH0ja17zbfd8/R1YHpstnCfVls40FmlRBhVZrQKFNrqnXuSwC+o2nEKnQqbA5XYTBdI7dlM3Xq2hrCnpa5FDRjgqd8Uzup+xy797sGjG30j+b409p9s/2bZ7zKnNvozqxYc83/ohtCRADtTgcO7gbkmusqKdEqZINrgErjXdvW1TcSi/IqK10QvPvcmvZvANR2EyVDuKHqMCy6DKtu/27tWQFWNGyJ9WQri7ygco7IW6rFjKEWxMqT9nuk/YTBVp/BsIdQEuE8NjeUeUZpgh2bzRcsjifkR0fMT47JDo+ZHhyxmJww0J7HRxlv2HJEURRCm6zHtSH1oW46kuzt7BInKWmvh1aOAQ7vBDMryGtR+WkFuYhBaQ5sHeKu1sPsATQW4QwyjkN7qlpzehBh+lvYrS3KNGEZpcxUimucCx5y58mtwCxzfOmwVQiBs96Bt5Qmo7CWygYwMBYCLQO1qen1SilUrBCq1n909bxSs5NjFaNUcte8sdkvvp6+s/nqFonnDXt9Hj4/Qomc+cmEyWTGrTvH3N6fsn84Z1YYKuswPthDDXArfGjHNI1JI09pHUVVoUQDlqkwd4lO7JHzeIKNJGpW02Ymzqoq0V4Q2QrpQpxysMdsmyxLiNBuq/ZZz7r6agLmvANrHNZ0x/6K1dQAGc6ukj+066iXbcIBIRTjHbCuYTA3YJxowTPXbIW9wBpfvwRlAXdueOLEcu6SIIoNSm/qVtYgYXv9zjqFX7dLhGSxWNkTzpeYCgajuxloDUtuVVYMuoP9I/b2tjufr5dun/9qY8F7H8weUWeELio+++kvtwCSlKCU4Ny5czV4LEjT/lobrpd1cLhZ19fqFS5cM+c8P/dXvou3PflEqE8duaCUWlvHi6LoJJzoPP9OeOvXKqu2dWuvzbVk0xYL9p6rbQC78ftV6Wp4Ntdr71tJFtkSYwyLxYwsW1CWeYutNM85jmO6CTV0fDbYHKZq676qQ8f+wVGVOWWRcXIy/brb5BXl4HtAO0B7vDD15OWJvMD7jFKU9KIBO3v3MbnzEl5DvPUQLG/UBp7HmI5h2sQaexXCYUygMXunWTVM+F4IidARogyAldQe5TVF6SnK0Jm8d5SlQauUOI1ZLBcs8wVCxLWXus4wI8OGuygNsxxIDTJRtWEcISRsVznzWcYjj30vW9WEX/79D3NJRjxkCo7UHV5+53egheCkKtBpBHnJyTxkDdQypE5vBs+9vE7hsyAWKTyBJisCEtt4/KVSaBXOsZ04+n6Ln/yxH0BHUJWWqy++yC9d+79537/9ILNFiSvBJQKFx7qYNJI8+7lbnHMJKtIY4ekVFVek4OFegRluoTHkTtBPEwp/QGnPkCpLGkle/PINvIzox4qkmlCpGJWXlAqW/pid3oi5P6LIHVszyYP3n+fL6iuUruJLdyY8ct85jPB4Mee9f/Qy//H3PoQoNZX3xM4xKedsbw3IzRSf9/hzT23xuSu3uFHE+MqGkFzRB8DYkKRDGIclxPErbUiVIh2NkFajdYJwCxIl8SLBiDmRXaKGOxTLiiNfIFTQ/kvdmKJ87Rrk/76U7e1Ru0E+Pj5md3eXyWyKNSHV+HI5bxeqyWRGtjzGuQVvfuxbefnqdY7nR1jrao0zjbOaJIlrQEtirSGO4zoZQzASjCnbUA4Z6XrxdqDAGgtCoiNNWVRU1gUNHa0xzuGlICsXtTcaVKwoyiKw8vKiNv6DKHEcScoiQ3jH9PiIg6NDdnf3ODw8ZjFfomTE5QceYpkbnn3xKlujXRBVCNE3YQOsE0lhKmwdKmjyAu8rTDElnzr++b/8VR57wzZ/8efezPYg5ty5SwzGKdpaTqaCf/GBr/DFL50wHCRcvHiRcxcu8vjjj3NycsJwlNIDPvZrz/HA4GEm8xm9Xo/ze+dRQvOZ2wc8+eBZnPFIBVorPJZFNqc/3qLKBC9c20cJSRIPiZKYfu7Q2TGZB58mpGmCzQ1SSc6e3ePo6BAlIx5+6I1sb29z7Ss3KMolDz/2MPky4yhfcPHdI37s276fJ972CNki4/PPfJ5vedc3u6e+dsvaZpvaMSIsstY8a0prcNVGsrcr0IdaeLcB7LqMuIbJsB5K14S2BsM5fKfX6rTyvK6zsDYNvwAkWQQRcLe3tvv/5np92metB3oj7LVhhXWPa8JJVCSRohu22TF2G5BDhA1HlzEWQM1NpmDzN4TVt+2IWLuP+pRrmVSbYxvtJYulqxUTvO/h+dgOMNftA81zWgP9NgC4doMtAmjQPZeo7bFuaUNra21A72UdmuLaZ9acv/sMgoFNC/I1unZNVsgWMGpAw/pzay3GhXCX13r4qpRBd6sJPYcOo4qOze48UjX26t1A9WnMiHAOAkDnRa1WB6UxgWTiJTafkY63KIqMsdIc1F1DSkEiesRRRCVz+kpDb0h8VAEFURwTCYnNC5bLOVtKsphmKOWJdyQxGllkzA6PaiBY4m1gQAgczlhiL0gkQZcYsB7OSsjDDVJ6i3VwjA5SDaJgTIUSIYFYuOcVYD1UYSOdVw4lyqCTJWtQQkoMvs7wDnHdh01NQCi8ZWoFkTX07RxJiBiyXmDrEMJKBB25CoeSMkTSEJIkSa0RVUVswdVJ4mykAhvN2fZZboLwMjwwlPrqouZCCKz3Xxf7QypBfzRmx3nuqzQn89ucGfUwpiIvcuZZznQ6ReqI2wczXGUYDlKKOkvmeCCJoojShQz3SoiQNdkT9o5uAxSp29/Vz1d6h/CuzS7bsJCbeaMBKl1VYaVGIzC1NqmQITt2GAPNnBW9qgA5CP1pJSXQrLer770PwJ2g3q5Lj3c1FOdakhYCyeQ4/O0PJIv5OrOqWcOca1hzYnX++v/5VLCYgVKaM+fh6I6jbLTmfABVnG8YfL7VTvUddlO77nUY8/ggKzWfWpyvsM4gRcJqOQvrC9y91h8cHCElVFWtKSg83q3W32af7pxtHQ2bjsDN0nyWF00ETAjBXCxmXL78EFeuvEhRZAghGA6HTKfTsBZzGiC1CTSuz78AP/tffB+/+It/GI5xjiJfYH3JoD/GOxcYV9BmWA3lFAG6b6Ccdt+hSBod3wYYO31MdZ/73efuPqfmWrYy9Hq9wJR1Ye6WUnPmzBmOjo7qfhOyrxZV2YJ0VfUy1u/WmsfghUPWTgvwOFs/YwLj8GvIJt5VXjHLQkhLkFk0OCfQhIVW+RirC4SGRAwprSVSY7yJEDIhLu4gzjzC8uZnUEQIoWr+V5Og2hPytgbdA4fH2kA/1tGAColWggIQtgypyoVAyyhgWNLgfYX11F4Uj3Oe6WSOQFMWQe2xKkyYVXxEltmQosE77ly/RfzIm9gbjjnxC3JniCzEXrNTlXzhc5/irb0hFAWVgDcBPR/z2CdeIBYhG5KQKYPIMmmMXQVl1RitTcagepJoKagdMEi4GpiMQdago+gBBQiHrRQicuhIcGEr4pGnNJ+5E5HPp/xf/+RDiCrBypACXcSK2Hq8skEs0RdIB1YpZCWplOH7Is2tgUGYBKMqCtPDSYUXGakbcjCb8+hwh7Qo2b10hi9cvcK3pOfJnWHhJZNbOXGvT2FGpFgGkUYYS6knbF28SBr3sfEJD5+/SKWm6Gqbf/Opz/Ej73wLIy9YLHKyyFCqkg9+5gV+/DveSlw5TpZ3SKtzjAeaEwY4bbFVhLcGvCCSUGYWmxgkEusMCTmlj9kSDicsSRRjYse4LCF3uFJSqi28LylTx45MmMQFotIYY0No7Ovlm1ryPG8Ft4ui4OTkBB0HA6gqDNPpNDBqrUV6UMKQ9CJeuvo84+ElHJ6pnbeZGIuiQEdNRsMwiWdZAQiU0igVtSCgRFIVFf1+fxXWKhWmMhgPOE8SRWGj7RxlVYXweSEQQmLLCo+lKgpUnRG6yaRqrSUvckpTkQ4HCKEYjUbs7OxwcHDAchEyti6XGYeTCaMzI37rfR/g+3/wXaS6/n1eYha0510ulwy0pCgzJtMTPvCBj/Pj73kb3/nEBdIhbI16JEmCcBEv73v+/q98kaOTQ87tnuPBBx8M9xyn3Do4wlaOS+MRn/3XzzKbz8l1hq2CUbG7u8tACvZvH3BFnPDguT5VaYNB5iWDwRbT2YJl4TA+xeUZo3HJmTNnmM5nnNE9JlpwlC94+umnSXVEmgz42Z/9WZ5//nk+9KEPcfnyZT72sY9x33338ZYnHuPq1ascTA7439/33/OpT/0Jb3joIUxZkGclly7e/03rn6+XFSjXhCFCLYhdM602wzi99ygh8WrF+mzGhBAKrdcz43VBrhX40ySUWNWhBQrkKnFDF8jbNODWwTVZWy3r7J81AGvjs9MAus3zr/SGNsEicddvGgDoLi97zfdofmuMQatTWHyd+zytzsH+WA99DUy7AJC2Bqy1IMXa8/xq999lp3UBuq6+3Gn3vAl8dq+zqWW2eUyzcYb1rHSrTXL4fxUau66h1wBtzVzfQr3tb1YC801YymuxnNa/u891DVzrhjx+jfPee8NFe42kH2HzCJdLeoMtrs0Mvdgj8obF6nFCskSSihRb67iVHUA3jmOiJGFnOCKuCm5pxZbUfOGlnJeuV1x1GTLpUSzn7XWlC3UrqpKqKqiyOZUXzLIClZeYqODEJzhRg1lehjGjFPs24VAs6d+jfTwgPTULM7CvnF85FBy+1uy7m0VqUBS2CFIZQlE6z9JYqqLElJbKFMwyR1nPe7Lz2y4T11oLpkL6kH1+paNFq2fZXLtJ/NJ9/ptz89dbNufStDdkywmSQYGOBP1+QiQSKmsoqqCjOc9LbDZn/2hOsbvFcjnnpB9jyx7D4RGVrJjPxVqf7NZR1iBJZQxKW7wDGXfCVdUqu2NeJ6NAJaAN3q3m266TpTl/s75ssqBfLaXrVNlkYK3au7Ou2c5ccY/zLOar/hjFEmvA2RXI0hzfsN6g6Tf1da3gzg3HcCRAWKpM1QT7AMa112J9rej+XZMyoArgnQchIrSK2D3T5+hw3q4np7VLtyRJwnA4ZDI9WXMGhsRrvh1H9/r9aXXcXCN7vR5Xr15lOBwyHo+5efM2s9nsLqBwXfP1XnUPx8ax4pf/6Yfb76SU9IYDbJXinUaKFXPua7XBv0vZdHrWn951b5tl3RF5t+21WcqyZDAYsFgs2s8ODw9ryaNFSLDXWeuVUsTZG6nik7XzNPZqmA9kCyq3/esbYNe/IqBcoAHHIBxGxChVYrzBe4WVJViHR+H9ktRLcgFeVsTCEu+9kfntLzPafZTJ/ottUrYGzYYaidcW4fXqIQFJIjClxUe6RlYVIfOmRCOoFGBCaJqzvmbUBeiwpyULCyEljEFJBWUMeJSKwDliHYHXWFWQSbA6ZWmW7EZ9VAy7Wz1OJof85kuHGJ2QpBGjMqdcHhANLAWAlxQiDwYvnlhGgX3DPYwW0Y0F707yIfubb5gAnRh4oSSRgPt2t/j9j36GZ5//JL/x23+FwXibtzzmURpefKGiNxzx0tUFSkgsGmzF0lisGuFs6FwFFXeU4tJc4KMg9ui8wRuNFTE6NvSSPrHM0G7J+OwleEGio4w418hKM5ndxNk+ZXJA0t+i8hKplggrsK7EDjVv6O9AacDBMze/wvmdsyRFitMlVeZIopzf/sgzuGjI0leMU4lUEa4XsbxhQReoSuN9iaMCIhwlKp4j6CGcD1mabISWMYoeSkagIaqNkMoWoAQYgxQ9+t5AX6CODVIoFIqK7P//AfN6+YaK1joYRQLysmA0GiGEIMsydnbGHB4akIosy8iqDC0j9g/ucOnCkEV2xNZwhxeufIEoTVpdpriS9PoR3q2Mz6oK9OQGHPACbK2zslgsqKqKra0tAIqiCWWQNcNupZXiXfCa9Qcp1lrKvGgFixsjrjXwIokipswc2xeGPPntT3H95evc98Al+oMB165do7Il9sRydHOfyeSYi5fuJ1vOiaKI+++/H1+Ht6VRzLA3ADwKhVCGn/xzP8rudoQYJqS9CSLSnMwHFCT841/9KPPpDOkj3vHkt1IWBUmScP78WWazGb3+gPOFhDxHWk9hKnppymKxYHYy4fzZCxTec+VoztmzW0FSwEJRFZRVxWhri6NigdKe6XzC9mjIdD4jny0wwhPVzohv+Za3MRimGGP4+NMfY39/n3d/x7fz9re/nagfc/PaLZ5/7grXFp/jr//Nv8DNo88j4yVSKAQp29uCL33pS5z5pvTO1wvUrLTaYxjYWMFjLtW6d7gp3nusCyGZ3oFUIctbo5XWBXw2N3LNJmgdxGmyca1AIy1k8Ig39fF3byhXvw8sneAdVYBdA5o2ga2mTqdp6G0aiqoDFjafNb9b1ycKKZxWm+jOhr4OGwFwWKRMamN55b0W0q9thIQKjI7uBqS7YdhM9LAGnkqBty44MgkSJC1brvMMu+dr7l0GMbx7Am6unh8DGBhKwx7sGtddnb5u23b7U5PdctUvNE1CDO9Xm6/sOQ2sAAAgAElEQVTVedafhfe+zbZtOxtv7z2VcVTWoG1ISvVaLU17OW9RrEC3QKSUWB+Cp5t+g1D4zjjpnmfz/eZmytVsBO0FWkqkl8SRoqoiVKSJ+zHDMmeokxWogsM4hcQiKktmKqgsWkqM83ihiFJFmqbhCtEQHQuinuCwCgklrLUonaCkwNscJwJbzQuFE4LIC+4UIUQ0iQSVUxQOVERYh5wBJ7BK4K3FOY3XsmafNfcc7lfLCCclsYLUBXaN9gLTbH6dR3kXWHbSo3WMd4YpsGdBq9C+lpDMYTLLiIXEVobKGmalQyURpQtJTirpkXbF+IzTHiqaUekIKSRCr3TTBMF50H1+wSlw70345nz6taCpZuxJoegpybIOKUSqkH1XhoQJW1riiOgN+gg0Weno64iHz5ec3/EcTad89LM5uRiSZxXGBE2pVTbpoOmXO1sDmuCMBS8QdfZuKSXeNclhygBiSIEWIdmA9IF91WVPb953+Cs6CT1ePWy5hj3U9N325cJ6FY6h9o0JTrvzVb8JDChX6y0KJKYE5y1pD7KufLevUbImiQCrsMkmadT02HP+PsXRgaEygcwjAumUhoy+ZkvU9ew+x24YYnMvQgiODufs7A45Opyd2u9XgJ5r58bJ9ITxeFxrKa/WGKUlVWnW7JhN55LfQAM2nV7j8RZHR0cI4ZnNpkynE0IG1y4Lrrm3la0TPrsbINJa42VBUYTIlrbPeg+uyTjfpNS9xzMVp3whTnfCeSe+6rjoPo/V+/Xv1s+5DgivvxcEbGQlgSHqh+89PPDAfTz77LP1cSHJw3w6QUpJf9jDuAotI6T2pMozjY9byaD2Sj7o5pelCeHBUoa+RbAf+oM+X295RUC50AEqqLXYvBMrr65TCB8TuSR4iKQEU+HqxbA32qOfpNz6yhcZnn0Dbj5FqEB/Fgisd0hCyOoqJbfCO8NiWYAvkaYPDd2xThnsRAU+AiRKgidCCcnZsyn7ByWf/vhf5k1P/jPedNlx7c42yh8xLzJsCWe3E46sIzIGhcZYAbJHWlZcmywZjTQ757dQUUSWl/xHj57lXz17gzvLnE+lnvuHj/Kuz/wvFCIYyq40yMihfExZWZzwwVW2MVmFtuyEgTTC13XK7u7oaAYfDnQcBsiF0RDijKpaICqH9xnTecr8sEAIyeOPjbn68jxMGFqiVEk296g0gFSmb7m8EHgUd6KCC9ayLDwinlHZiCSJ6Y1iJvszJlpzYAW7pqQfJ+z6Hof9gsouKXKH6HlsqVBRxvVFBbnA+Zz+0jGcHTPcVmjpuTo/RsqUdz80xJQLrJXkMue3PnoVpxKU7ONFjqtGKCsoqzkX9s4wmUq8zIliTV7Vi6GXVH6IEgqBw5uSyGusyvA+6BTOjSLVispaNIJeVFIYTWk9xuUIr1BKoFSFXyoiOXglhszr5RsojcBvXhREUUSeh4xGxhgmkwnz+ZzxzggwJEmEtwEge/6FZ3jzm76Nk+ktzp7d43oN5kEYP2VZ4l3YHDbZTJvzlmWJJ2jOhcm3JEkSqqqiKIp26Eop6ff7FEURRJh7PbQKmpZVFRIylGWJMaZl25VlSVEUSCnJy6KeKw3XrlxlujDkRdgoaq2J45jhcIi14Zw7O2Nu377N9pk9Zssl127to/A88MADWJNTecf+/iG9Xo/+aIdlabh1LSOTW7hbc0SUcO3GhFvTKbf2p+wMhvR6IcNsfzhgPB7zxje+kaOjI1566WVG5/e49tznKRYL+v2w0PT7fZbLJaUpQArS0Q6fuzrlyTeMMXnJ3vaY3Auu7B9z584dLl++zHhvFycF8/mcfq/HIIrI8yWPXX6I27dvsfhyzmNvehjnHA8++CCf//znybKM0dYOh/OX+en/6j0cFGe4fXKbne0h/d6AVBmWiwJjDfJ1Qus3tehI4FCtVzgwZUK2Nu88st4s1TuccFzNdJNq3fvesDTgbuO0+f40wKe7iVQ0AJto19YmxLVhSIkaaNr8vffr2m6bDKD6omGT4MVddez+LoAX6+yKBigSQtQJMNaBotM015q2ae/X+TbMN1zDr2nFdcMMu+yOBtDstlVTuiCjNyEqQYgV+24TJG0BvA7o1W0D0bnf7jUa0M7X2nO2E+rarfNp59x8vwIcZS0gblAqqrPEmvaeV+1/tw5eACNWpXteZzxOrYcFvdZK2M94pNIIv0rE4936mBAibHBClj9Rh0Trte+QzTGCzr4xxMI4jxQBCPGAcY5ISwpvMUCcDBgNB/SXM/pZDeS64BzTrmIYx9xcFpRK4YQN4x0JcUzlAuMjimN8bFCJIHGKKNFEYpU4oCoyltMTiuWs7d+xlGR5yUxFDOKYsYWp8TVwpcCXCFwAlCwUtZ6bcDVQ3IIaYawjSkqjEalG4LACIu+xlcEXOUs8eVGRzw3GBWeDijQzY1hYT6oVZZLiqhzhfNA6EhqERxCciiLSQQ9MSRwaKRT4MAcqJSBNiUgw3qG8DpqWhIQ8UjWhqyGSQDeaduKrb6y/oT4lBMZWkB+hsjnFPCP1gl3lcFJQAktnUTJo6PZ6PdJexBsvab7z7WdIewlSVGRmwKefW/D8V+ZMT+bs7e2ENUYovAsSRA0o560hlj2UsmgRr82LEMZ9vsyQ3uKMAetwziMkeOuCNEk9f3UdLd1yT7LFf6ClAeCgHrOueUe7He0Ctq4GOValcfysr+mjHZgcN4CeIlsGEJU6OaQAnAtzRJh+RB2OHM4R2llw+7rj0oOKG1eoJWFUzToV7f7a+7A2Or/uHAzv3VpyA61W6+TR4SQw92UA3tu1p6NjKsW6/TCZTFoSQdsCdlWP7rHd/9frtHqvtaaqKk6Oj1pwrfmttfU1vEJIz5nds9y+fZvKVMSNXmXnXE2CDYCf+k/exS//8h/ifR60+b1fa6/Nupz2/73K3W0MCN9KZKyTjZrjmrFU9wMaIG39fM1av/poHZQLbQOBXKU7MhqrOa0sTX0NgfCiPcWF82c4eB6iYYl/ydF7h8JWDlyBaxxTNTNfErT/Yq0whhr8c60eeMDEtr6u9npF+LXBYA1iw16WIYuacLV3wiKVQQqLs5YSh/UG5UESUxnIdZ/xhUdZzl7GybhOGhHO0QgbeiqEtDifhIHrg3i/dwrnq1ZHIKDWAQENA9zhfADxvPeUswxhJR/58B+hhOTSmRFFNuWojNCyTzxQpJFA1RmYBjKihyBOLNiS77u8B3EOPuGYkv/uR55grntU3mKV4stK8FSZw+i/xBIhRYxXEiU0e1sJMq4BNteIFK/vJrsCg+1nPnjHfa0P0zxKgW7D+DCaZ24c8p/92J/lH/6dX8BjMAb6g12SaBepcybzCd4ZEAYpDM5GWKOJZUSmMlxZ8vYz5ziL5dOLJZNYEKmYLMvJaqFDm4PP5owTSb+fMDmYQvz/sffmwbZld33fZw17OtMd3n1Tv349d6slYUktiUFgMQkkwFgUkBCcgjjgUKbiuOwMppxKUcQkxEXlD1JJJYaiDAQCjgMYu2RMQsRolBYFtBDqlrr7qfv1m+97d75n2sMa8sfae599zr3dkhLLDVKvqlPvvnP22WcPa6/1W9/f9/f9SqyOyeIYHTliHLEw5H7OznHJAxvDwFi0gn/yE/+URzaHxCJmLmZcuW54xyVNVIUFv3UVv/PHL+EiiYpifFRhK40xBUVp6acjlCtRrsKHJCN9KVFOk1gV+o2b4/2MWFicEgjfC2XOXiBr9yzvPX/0j/9jvuN9F3BMEW6OQmEKDa4gLwwy8TzxyEmb5Tfav+WmLChLIySb5yVZf4hQEWfvOweRoChnICxRDFILpIrJ+gPu7l0DUbFz+y6ba+s02fXSWXydvWomUOccRVFQlCYEdd4Sx8FOO017WOupqqCl0F1ACyGCsYxeGM3M5/OW/WGcJe1lIYNba11IFSFVRBL3sbYxbahqbQPL3t4Of/RHf8LVq9eIooTCVMyrEicVf+mpd/LKzRs88cQT3L5xk+l0TlkaZrMc52BtfYvZvGI6y7l58ya2yrl2/TYzv8mte6G0/M4r19gcjXj/N32Ap556Jxcv3sfaaIs0GVJNJ1x75So3rr3C5LkreAtrZ8+SDIck/QFWSJSOMT7o55n5nL2jQ555aRvvcj596x7X7uyQxQln1raYzAp6/SHWg5GO3iDj1rVXOJyOicZTqumcSV5x5erLnN26wI1X7pAkERtr6/zzX/85vvPvfDWH/jZnz18gnx8zL3JKU2LFhMqNWVsbcXS0/zp1zjca1MCVDnOb0hIhHc4ZnDMIJYM2j/FYQ3BxczVYQre8IwDg3TlwuRSj6wBZ/+ugUeqVIjiVN4Bc9xkNoM0KW6fWWmqcYbvnssyCWAGbhEBp3bJKgHah1tVj6gJ77QJQuCWATwp9ws2vmzVugCVJ2BYhsXgqa7C+Cu+zHOhKvQAtvfdL5apNWwLYBK3IezM+eVGDMTXDFwJDp/nuq/WB7vXqjo+rTo5h18H5tMsebj7vmmx0S+sW90nSCKw3i6vmcpdljq11o1bvW+NC2eyv+28XEA2MDNsG2dZ8IS21P/u2Wpbcva/N+3D6M7P6b7ediHEbML3zdtN34jgOYJoXDAcbDDe22NjcZG19HZ0mRFFEmiQ4LSmThCpN2j6ntSaKInq9Hr1sRJoMcToOZgZCUhQF0+mUoijq0vllNovwln4S45OUNA2vJJXMRGDALRm5uJBALIqifaaba9hdgCdeUFhD5YMxztTF2LJgtnfIZDLh+PiYogiJwcbhL+jNaYxfjC2RkBAp0mGf3mjIcHOd/vqIwWhI1ovD9ayPo5H/KMuSap5j8oI8z1vzguZ6Sylbh/vuc7t6n16rfbbAXVVVHNzZJj8cM5vN0MqzJuBSKnksdrwpdfTjcP+TKCaWGinDOcW9ASoakPVHnD13kQcevNRWKnTHoKp0zKYlVenxMsIKqLxDRouqqyYmtNaG8U8IrNIYpUMyqXPvlFJLUgSnSSZ8obYu4ao7Vp4cG+i8ZAvINfO1qQIg10XvGh0xWDxTzXeWfzOYPwS1GI+zgqomMVvb3PfTjAJOjjfdv7v9ut8PRAwdqfDSmo3NtfCcS06AuautSfA3bZWp/tm05ni7+rNpmiLVooQ6nKND6TDH7+zewVMRRdGJe7Pafu5n/9XSb3Xn2tOuXfd+vFYfP+2zVeD7/wu492rvRVF0Yv9Na8bz5hia337ppZdO7DdJI3Z3jrEbu5TpnP0H9jksZkxrYkV3/905cTabkSQJ8/mcwWDQSiStMvxfq32emHKdLIqPcQqk9XgdnD5LE5MKgbOQi2AC4YXFSYX0JakBkfTw597J0e6ncKLWNPA2CCRiED44DGo/I69JYx5bl3QEyrM1dXmqgCDe6AgabfMgjCwt07lBS833/52PoeyIp/90F1SPfDxmbWuDairJhgqx70Bqcl+GapbcYkzJg2fv49aVfeLIkgjNP/+1P2T08GWMgLn1uHiDyBl+5ZHHmamU1BqskBjhiGYGbaHEI7WqRTS7yPCiBrwbTIbPwuQgoc4wuiBKaQUYhZOKg90pz05v8a3f9mUU5R2cVTz3yW2sTfBOcO/oMJR0OoeyAuHDA6y9wGvH+crxibuvcHnjImfWL5L4McJLUq3x5HgtGA1jzHVPIh1VlOBLi1SCNV3gkgzhS2b2iL46QzE/ZuOCrkXgLWkc89R9Z4mFxWrN7z23w19+/ALepkwoEM7zW596EestkQ417c455tMjBqMhWjmiWlBTaUNmBROCO5BUDucSsIdIlSKFYg5o50hwKO/xCnwyQLkpifa892/8b/TXdtk6Z5jmI47GBYWaIFzKw/et8cKV23zyyiLj8UZ7fZq1lvF4zPlzlyjLkihSmGKKFpbd7TvEMthhZ1nGeDxGyRhjCqT0jMeHXLx4nrSX4qaG8XjMYNDHGUM07FGUVas3JKUizwusCE7PSRLYvSgJUuKdCGxdGaj7rj62JElaNomD4NyHJ1KKeVGg4xgvBMbawKCbz4mTlNlsFkA+KaiMZX//iJdfvspgMGI8HlNVQcvu5s2bpP0esg4Gn376abI44eMf/zj33x+01Pb29thYD6w36yTD4ZDxeMwjjzyCtZa7d+9ireX4eEoUlcRxzNraGh/+8Ie5fOkyBwcHvP0d7+SRRx4iSjP2J8/yYL9H4R3F+gg7mdPv95kcHWOMYXNtHVkzj4xzyCRhbhN+7+N3uHy2R380DHMClnw+Z55osihmOp9y5dpVNtbXeOihh9jd3eXy2gaPPXGW5698Cqk8b3rLw3zi+U/y8Jel/M2v/nacmpKmKTs7O2xsnEHrMD8YKoZnE165cqV2oH2jvV5NCAEylGoEoEegpAZnWzMH64PhwmrAqGqDh+5ip7vfVXYZdAPj5UX0YmG0YHN1QZ2mrKO7YLauWgLYVo/htAVCt/y0DTRPyX6vglRNeeoyMFcbQHSAp+55aq25ducOz3zsU2xt3Y+K1tk7miDljCyBNIUHLp0jqhn3zW91F4rd3+te0+BGVx/nyjqjWfw3bJ/uuS9pTi2BpX7p+nav4UIzcJkV1/1eN5BevaddTaxGx2UVUGh+u9vHuvdglfHY7R8tCCGW+06zaP9ibE2/ULIGdsOqFFj0j3Y7YHfvHsfHBwD0ekOSNKXX65GmvfB8I+ryxOWSdNlI1XQqRqqq4pOf/DTDdACu4ubuAX0XIbOINBuQZgnYWb0I1pQOZJKRJhn9oaXwHolDCU+UBBBmjiXKMlJdUQqDL2gdYL0AGUlUrPCzGkgTiuPccmwVKlFEVIADIwPxQMRY6cmExboC4yPKyuO0INaq7j8WKRvgPDAMrdBo58hNiQcKLxgAOMug16eXCYZOc1CFPmm8IcORe0FmLdIYRFWSCEGcxSRZQlXmSGKkrfAmMF+892BDaaZ1QffWOYdy1OLwYdySUuKFDcSKFoyrn2sW5avNs/jZAnOvuYAvDcd7R5Q6QgiovGLXSTadpy8EG4mm9BGHIiHVIdEynkGeS+RRSRRbpg5EMmI4BB3LRdKTMCaU8ylVPsGKGCPBVKHiIB702B+PGYmgP94aPNROupmSeOPxUiKFoiIYfEgMSkZ4aMfArq6cUF9YunLeLdakTR8Iz0UYJ5vqtcVtDiWCUtVAsg9ssm5CzAswDeOu0z289+AhXFYRPF5sM054Fs7sNUlPCKyHnTtw4UHLzZcVtloGogKwvpw8AEKyUFCXjS735el0Wt9Tg9YKaz2Hh0cofXIeerVmzKJcdcGwWga9nHPUtOFwep1Ex+oLIC9m+NphXkiPcM252FZnXwjqRF5zn1jZT/hOpHvhevrVzxfYw2uBeqe1V9tudbzQkQpEiE4iMSRil3X2X20fjQGUEIKyzImiCGMsIQRrYkJZl5MvrqlzEjDtNqH8WtDvpcynGi+DeYZ3hkHWA+dxOBQhsdHGL14ilQgyRVHMvJihY8Xh8dHiuD8HbP7zaCEVmG1CSSKnETp4mQlpUDKUbjpv0N5SmiB+HolQwuq1wvoCkhng0VVK1UtgtodznQfKg6GmotaTCb627XWSvAzuSaK9gRLny7aDOQeVAi0Fa1nGdGqIVI+8dIyGA2ZHU9JIcvvOHO2jmm4JyjvWPEzdHGJYH3iO5xY/ragywVpUYSpHpRQvT474n9MB/2I4YJKb0O+URAtJP86Y2CmRmmOmClpHrwUw12Xh4BXgQbhQ5w1B2wXRbmfLoLsgRElhYaoS/tdf+R1KI1EqxpcSoedY5+lTUegIZ0L2wgpP6Syxn2CN5KsGGWWvx8emOb3NhGSeYeUxwhqo5uRVij4nqVIFlYP5lNzFDCNNkhiOqwrvYdjrY8sSJ4IhhpeODRHzroeHOKtRvuTDn9jlm566RGlLIhGhnOe3XnyBwzLCJQovBc4HbZFCZkRRjLdhEohVgnYGnUjUrEKIFMsULzzSJyAF0hsSEYooYimwThALKMoJXiiSJGItLvmP/sY3Mrr8bv7rH/nviRKDdzAaZUwqQx4XRP6L13Xtz0tTKrjtTaaHi+BHa2azMVkvQUeCWGTk85z7Llxkb2+fC+fPMJ3nTMYzbt66SmlTpvOSB+6/hLVztFTgJRKFc57KeKiCDqaWEinBG0tRFCRJxrycBwHkepEMtUC48EQquJ9GURzeMxYlJa5ytXtcTf03nrzM8cYzraZhTMIym+bM5wXzsmJzc5PZ8TGbowGHkx0O793l7Nmz3L51h3MXzvPiiy+Spin7+/u87+u+nqIypFnCcDhknhecO3+Ruzv7vPDi822mfG1tjXMXL3Dr9jaRznDWcf8DD6O1ZDKfUdmgRfPRp5/m4898jFGScPfOPb71G76CX/qX/yejYQ9TL0yzQR9bViRRzHR8xPb2PfprI6RIGM8rhFxj/fwFfH5MOStZH41Q8xnz2Yx4oJhNSy5snWFzOOTGjRsM1vpsDvsczY+Joojf/o0Pczt/hf/sH/41dsUtLp19gGuvvEza67O5uUkURczrDP/G1gaT42Puf+wcn3z2ude3k77R8Jaa6RaCIgCiUALYGDg0+j3dTKJzDh2pevHamf86rctC6AIqIeiWuE4g5wRI3wRnrgXivPc4AZEIZaNtWU6Izpf23W1dsK59ySbYDgxe2QHVukDYCUDPSwQ2hMayntsJIGbQiFscq5KS555/jquvTHjgoQc5nv4JB0fPcmHrDL1eynia85Gnf5fpfM4Dlx7kq7/qq7h8foMoDgz8BuRsrrVkGQhpQCjj7NIxClHrAsp6+7oU1vnaKXYVOKVdV5xg0qzqwnUXM6vsuNMW+93jX+4XdTJ2pa1m/Zv3VpkR7YKjAd1Wtm0CcOscTn72pTtfaK1xXG37ROdZCe6Ti34mhODs1kUuXLhAVVUYY7BlRT6Zsrd7L2hL+2DMkCQJ/d6wlk7oQQMUh4JTALy15MWcqrKYCu7uv4LWN4liT7/fJ8syRr2UQT9BJZpYR6SjEZYIzz2yLGFra5P19fWa5ZZgtCY1OalWFCpoy1rv6PUT+r0Ym5fMteoAwWBw4F0tQ1ORl6YF4YW3HBvHhgzjjzVBu63f7xOlUTBIwwIqaEHW5zm3hnWlcFYjteRoLBgONFsbI1SWMIw1Ewq2pmXA/7wHJSk9VEIxUpKqXgdpH4z1rAdnDGI+pVAJVWmJ9IJZDBKhFEiJ6qfEVgQdOlnr1FmB8QZFRrNoDd1ehCftVZIWp7XPBNw1Y7FIIxIR4ZkBoUx5VgVCR2YFiapAxK0rtfBw9UbOpXMKJS22D4mOiHWQJ2qSB17IAMYKMN5giorCGaoyR8iYeVnQjyVZljEcDEAIZrMCayu0klR5HkADF3TKbGVbTeAuO+e0hNEXUvO+O3eF8tRFP+h83pGBCDG6qsslBcZ6lFgkxIKmX/2nW0BiYbXmsaY2CcLWoBjgwtjQlMw3JaFChqXozk3FYK3iaLdhQIZnM3imnEyqdQGz01uXSb1I8q1+57XYXF3wrU1WQWubIOTi+q3uJ8syZrNZ+Gxln6F8MwBzzfzVTSBprQKT3tXoZfNdIcAJ1jYU+/sF4hTgb/H/Jib4/9+nV69xm+Ba0p87WUq++t1urNA0pSKqKphWNqCj9yBrJ+/FPgRJErY5e/Ysuzs7oWxXKMqJxIlp6JcN8Gc78WlT9VlXVM3yKuiTykU59YlzPlVd8fT2eUIYHB6N9GkoS6Eid6Fk1VcCSUrFlMSE+lvlgzhepevskXMooZGFRjrIzqzD8R28XsdUhygnkdaDCJoHbZDmFd5XdTDogBJjFaBRwuKUri9amJCk0PzCT30N/8EPfoR/9F8+yg/8N7e4vfffkib/KSKZ0hc9nnrPZY6ubPPS7hxt+vRFTuxT5tEmw7WUJ5//HSajR/ilmy/wyNZDHB4LBl4zGPWJjeEPS8udJOHQGC5UOUc9jRJQOEvPOby1CJ0h4jIQ/FptjdCh2sEeBWI1OytW/nZEscKYOc4qhPbsjndRMkLr4Ejztjdt8iWPwpGJuBhr/vGHbmI1SK2RriKVmkgk4KdsHx/x4HCddWWZupJceBK9xqQqmHvL2lBz9bldRt5yNJJURjPop7j8GOn6CGkQPcHmMGF7vyQvZlRskIicr7uQIASUvuCjN7Z51yMXiYWr6c1jntubcWfqEcISxRLlE5yYE6sIO6/QfUmsBd4KpLAYYYl1TK8XMckrdJkio4JZPgeRhIyhLEEpCmeQZorRPbxX9FMPznM8n/ETP/PrKPEbbMYZ73r32/j93/sE93Z20L0B0q7jKHijvb7t8PAQay3z+aydfKyOiOOY+TwYcVy6fJGjoyOqqmA8PiZJSuZ5yWw+58GHLnDn5i0+/fIrnNkYMRpEqAjmRY7wYIVH6FCmKqgncSWxzgWwLc1IehlAy/hpdO68c0zzOVJKxtMAtJWlacXDjTWB3pznrZOfsYai5txX1lNaR2k8zgsODw9ZX99EKcX58+d55plnGI1GFFVJr9fjbW97G0dHR3zzN38zBwcHXL16lbe8+UnyPKcwFZXz6DihrCpkHTDevn2b+XzOV77nvWxvbzMej/nOb/93+cmf/F8C+20yYWtri+PyiOnxES7r8yVnI24883/zlicvcu+OIVlLGI+Dzo6tDPFmQlX1ePjRx7h5d5eqypnNS7I04ulnX+Ivv/Vhjve3odQB9CtL9ssKh2BeFrx0fY/HHnqAalKyd2efdBDz0rU/4x/81N9jGu3grWSgR+zt77FxZgutdQAQ6gzkxqVL7Fy7FoLqdcfXfuBrXqfe+UYD2uARKU7orEhhKbUAs6zX1gSTYb3lllhn3YV+N3Bskm1SSrQgLHq9b13fPA68wElq8fmahUZwVNdChmDWQyNUHYSNTw+iumUoTQsMUBmy1k4ssUfa418BEZfAqQbY6oCFIXgOwTaAEppf/o0P8filL8PJe4hqn7/6je/hYH+P+XweNBV7Ge9559+St44AACAASURBVFuIZcqv/+4f8PP/+y/x7d/yQd78+OP0+2a5bAaBFaA7YFzL9hOy1s4JzAUlFyy4+gDx+MB8FCWNpkuQhhMtQLFwfl3WmFtcsw4zzftXXcx2g+7TGAnhWi/KTbusnAZQawLoxb5DWXR3MRZYQNQsmQboVa28RbPPhkXzxdy89y0w0m3dRVJzP6yVIGN0kpBmkj6whUfV/c56QVHMqUzBZHrM8fiwZUgKFFmSsLa2FoC9yuNE7brcgMxWMBnnTMY597zHeodWMWkqSNKUfhTjnMLakiiK6Pf79Ho9+r2gR7sWDYgo2TKW67N7HOwdMp2B6Wd475lOp0tMlziOUVrXTN+TwPbcCAqtOBd5Xi7DdUiziCRJTpRQCSEwwrclbpUEKQS59Oxbh0WxGUmyWLKVSibGMlFN3w5jysx4EmvRrgpMfSVJhCdSjriYsz0rmdXPcDNvBjaJwbBg7kRECB1KYrv3U2vdOkCv9oHPFnw6LbFy2ufO2Fp2QBArTyxDeWmEomrGUkLNYxjHBfPCce9I4a1nwzvSNdEmSrv90OGJXElsLRPlGGQxa5vrlEaSbWxy/4WzVM5zcHzMwdGE6aTg3t19IuVr+SJA187Zpp636qRs9/p0ExxfiG2xJqUF5Lusq8ByajauEFJSVd0KsC6T7mR7NWDLo6jKGhhytNpvi/FGgPNYB/ncM9iIiBPP3LiQAFzZ7TLAU/fBz0Bp6jLMVse61eNvno/Vue9V9ylObtN8fzabtf9vTZA4yWRbPQagdRtfLQOuISum0xJB1MYapx1D89ZrPcfL7LWT27zad08zcFplK67O6a/WjDEnysZXx+jutkIIsDnf+cGn+M1f+RT7coKIS7yIkB2TrVU5kSiKKMtA8AqGQf/m2ucFlIuGmxTjHYTU9U8cI+lcFCEQzjO9e4XB+bdSlrNgAEGEp0J7j5O1i5hLiHxCtPUwh/c+jU57eO/w0tTCzBpEEOpzztZoq6ofsuYmGiADgn5aLTyDExWffPYVBmqdx7/+Wyh/+B/xz37qFxgMe+ztRahozr/+8Kf4kstrgMT4nCxWkMD65oCnnn+ef3pnl9EjGzy+pVHplAubPSpXcn7Q4/1vfjvXrl/hq/Zv8Itzyw/ddx9/b3yPPgnSeg4n4zrIa4DFRiPuMw/mzbzZLD1CIK8x1mNdcIvzVmONopdUOKdB5BRlyfkHFVc/Inj3e+MA3ikJrkQTU4lAce15hRrGvDItkEhmxRFJnKFySKOUFIs1FZtrhp3jkrWRQU8TlJ4zlY6+7lGUJRpPf7iO2Z0xEAkZJdvHnstbEcpEvFzuI43ifCoRXiJ8weHU8+zuEaWvSJTEW7BJQc8qVFkwLQpENMe5CcZZhDRMx2DjAlU5jJHBWr4KTM2AgFd4UaKcQMUO6UF7RaQ0npJKKkqvsJOINKuQseFjzzyLkCXrQ9iezBAulL2+0V7ftr6+znQ6JcsyhBDkeY5SwW01LLA9L7/8aYpijnOO9Y0RVenJeglKRezem9LLhrz80nXe86VPYYxhPndobUlVhIx1oNrX2TFBvQgBIqmCk6+WQfekDsaSKGr1XmxVYXzQu3DOkcVpTc/2eGPJzayeDBzeWFy1rJdka6HQ0WjEY49lXLt+mzNnzuLGM9785jcDcOnSJWazGfv7+9x3333cuXOHr/iKr+Do6AhjDBujNXoCHnroIe578EGefeHPuHj2HFubZ/no03/IhQvncM5gEOwcHPKTP/VTACglODyccPP6DYbDIVprbmzf5O0Pb1JNStb6gquzbapKMZvNuHz5EscHx9y9e4/SOPK5YVIG17P+aAjGUJqMjz9/nbe/+SJIxSSfU5ZleDnHnZ17PHjpPl66ep1HvvRB3vmlb+eAA/7Wd30fR/429miCSnooeqyvr1OWJdQL6MoYVBwxPzxAynBPbJVR2ON/u53yjbbUfN3/hRM0DqhQ64FJUJWjssuADTSLwCCS2w3EGkOGVwvK2oVQDa412UxYBnKUChlTHUKu5e9zevDWBXe6bVX7rQnsu0yu1fPrttVgVMiaTecCKBfMYi0ewYc/8ru8771/jWc+9lt88P3v43i8z/b29lKgWO8VLwXf+o3v5YPvfx8/+j/8Tzz/6cf5jr/yV8jSzjUVEHUW391yzSaIbzSPTwvSwwKmCPEXTflwXaokJcYuSkogAA3dDH930RrOedlwotnmtOC6dcNeAX/affllsK1ZxDTfC/viBIDnfWAaBObmYjxuNA2bsuommfLF2By+dZfzYnHNnXMIbxFCL983KVCd+7loAeQI5WqeOM2ISegPRqGCq96HhHbxE0qN1OI58b4Fcxd9CbTQCARVJTG24NBN0D6wWZ/500+Spi8zGA15YL1Pkg2IByPSQYRUAiUkB/t7SFdR9DOyNKnlVhSmXrTGOsJJjXMCV5ZUpgaDZbC08HiMq0i946K39JXjTJaQ6KCR1/Sc8B3wQuFFRKwlrjFZcIKKiH0rETYmsYbcOMYuDgl6KRF1HzU1Y6mUnr6MMFWF9QZnJPsI7nmJ1xGVtIy0xqqISEniKKVvK9w0RxcW0U/ACqQLPFdPYOSpOKLx3gnjme0A6J+9o9JnAua8Dy6zUQS4kEQRNSvRODBSoxDgLFbowBZ0nspL5lVJ5D1VnZxR3rdlyEIIvLRoIRn4EqE9JQloTZoNEQ4Goz4XLlwgTVMKY9k72OfFKy9x545jMquoqlB1FUUwnswxRVgnSQnIk87SrzaG/UVvtjVuqmkjPoBwrklAubC+tybHC8+Fixnbt+tr0tWg6+yzNkWvP6jHXd8FvIDaVMK7xXvOtD7G9bYh5pBSYirYuWXYPK/I59Q6qDVG0P7U8n1pgLFFc6fOP00SqHnvNNBtFazrss+EEC0rbXkffmnuaua17trAeQ9tAqpxFV8kpJpwwuNwPrwAnAknprXGlFULynk8ZQVaO8rC1tuour8Hok+43w2oFzS0X+satmP3KaD0auzWfT601ktyFgHTkLUkWf138/0W51llvYe1WZvUqZHjEG+I+m+IJRRSkKoIP/b86of+DJG4Oi6UQWal8wynaUpRFAyHQyaTyVIi2dYlsMIL4GSMqLWmKj77eOHzAuWXM48SMbamDwufBa2yWKLiIFZsROgYR7c+jrJTLCWRc0hnMFjm1QzhS1RUIHUOUrBx7hE8BpwCq8CG7HQTGKqowRgtQjbsuXBzDybTQD0mRqKCzpiPeOVlxcxPWO8ZUI4P/eYhjorBoMRHilSd40O//7fRMqIXeYak9MeCj/zhR/iVawXvkGuMbr3Mm/pnUUaQO40UEedne/zyv/4D/uTqNfankrGN+Im7u3gbU3qJiiOMiFBKI4VGSt1hyTWtBupW3EmCl5xDtqNc01EXGd7ABHRoOeHcQActPpfw4vUj/sef3eOPXrjNj/3kVUqvEChMYShMgUgUBs/jyRb3lRGf9HNSUWFJUKUBOSeKFL1KUs2Oic70yJ1B5RlplJLPpmRZhHdjNuIBgoij3UMo5xhXcG9W8cSZiNgYZt5yZ3fK1zx6ISTcK0tZRdy/HjNQCh0rtAhmEbLyCN9De4GSU3wZk0pJYSuEVNy/PmA9ixlujeit9+lnPeJMhQiosUFGI5QncpLSGryfYSkQGCQ2DGiVZzKxvLI74+g4x5YR4+PghhVbTfEGU+7PQRNoLZGRJq9K+qMheVmQ9jKcBWs80+Mxzhh6aYqUkt3dXbz35HnOvJxTekPSy5DKk89rlyYHOluIQgPtYiyABTG93gCA+XxOkiTtos/WzlzGWJzzlIXFeEVpBdMyZ1LMqaoKpRRJkjCbzUKmWnhK3/i1ayaTGVVVMRgM2D84YjrP6Q8ytNaUleH6jZtMpjPG4zFlWbYT2dFkzM/9ws9jCZNzURS8cvUaT/8/H8WbiO/57h/gkYfeitY9Ll2+nzjKuHr1Bs/80R9zZn2Dhx56iDc9+RbKUnLh/kuMpxOOJ2NKa0jSATdvXmcy20NKyVvffIn1tT4XL9zP/t4eaZbhgKI0oUxEaZTSFLNZAM9EzsTGfOLTt7i9vY0zFq0l/X5GL9Y8dP/jjIs93vJdj3Phy8/xyuwq28fb9AeaWy/cJUcS94YUznA8HpMNBq0Llfcekxcc7e2zs7PDcDgkL6ac2Vx7nfrmGw0Ic5b3NDHwUvDkPMZ3Mu414BW0QUNgtQC6Tv7dfKf5W9EAU2pJ22x1m0UGNZSwBmOAZefW7m+tBtKn7RdYsPhYCFh3wazA/guv1Yyr7LzXXrqWkOYRKqKoKv7kT57n+r2X+MA3vBchPEp0ZS0W35USGvMIJeGH/+4P8vHnnmNWEOIk51sziHbB2gn+u2DXsmve4pia7RwilOC1Y6Wgq++yxCTofB+WQcCmnZZlX73e3UXKKmi7qk3YvWctaIMiLM7M0nk3gFxzrM32zjmMCYud4ODqsMZ/0YJyy3OjQKJQoom7a4M3IU4ArE0Lssl1OZTzoSzINf0tJFB9U5pYfz+O43bhahzB17QDfC9+n/b5dr7E2BxjSmTziHiJ85J5XrG7c8Afv3Cdj37iBX7vD/6QX/7tp/lXH/0E127dI4r7pMMzZP1N4iij1+uTpilCCIrSEguL8g5jHc64MOf74OwqcVjvKRAcFnCvcFSiftZU0KFd9EsFvh47ZEgkxPV1czJoaOW2oqgM3lYY45ibsLisbFmfuw9seOkxMqUoS3IvmFaK3cpxN4dCROhGc0oGjbWqNFRVESpNlEf1U6IkBSUDSEjVXt80jgII2N5LgZSKIMb/2QNOn4kp57BLSW/voS8EsZRYETTIjXcIH0pdTaN/6cNz7X0gewiCNp63C+1LRYTyFbGxxGVOXwkGUqB9kCiJI0kcx8Rxj16vx9pwxAOX7mNzfcggTUiVw5mC4+MxV2/c5Na9u5iyaJmH3XlkFZA7LYn0F7l5HwyabDCkxdgOIAcYU9AbgJIp97Zr4M6dBJraucQ4rPXh5ZYBOaA1F/LO18Dc4jgWoFdItnknsTaUmVuj2d+teOhJQZKF5EqEBq9X+mJQHjx1wuv8zhKotgK2ngZOdc+3+V6TaFjdtvk3iqJX3Vf9n3DELjAPl49hcVyriUCPxflgFmOcRUWaLMuI45hv//b3URYGKXWt9adqjT3fVvg0IFsY+1373K/2d7xE+B7f9z0fCO95gKBNmalh/blrn5smsen9Yk5tkq9hB27p7/Z1qmNr2K4oKpq5aPEi/CuCsdOoN2Qg1uhFkgNX4JwJgGen7Dpcd8FgMGrjlaOjI5xzzGcTaAFKSSMHsNwnPaasqIrycwLmPy+gnCt2IBuBGuKUxytP/1xKup7QW4vaoFAn4KVicryP8g6hElxegi0QIgvW5Tb0Q+n6IDTD9fM4P0fFgHJtMNbqiXiJIGST2gsRhOiYzSusr/DCIaUHKfm137wFCN7ztT+DNZJ/+VtXcaUkEQkYC+qQL3/HT6ALizUwmE+Rowl3//hP+dj1q/x0lfGxUtEfapSU9CMBwnI2B6ErLleWX3OglaSIYBglKO/QCFQiMQ6ENejakUYsdbblAH4pyPHBbZWFekv9cjV7RyJkhFJDUlxwRlQSRJ9+3EfLNWRvkzhWSBwyknhZEcuKDeu5Mtnl07MpykOahd8tcTjfx0mLixVeVkzGkvXsLIUN+0iQnNtMcZGiEIdUleXeboGzOTPvuLCWkleSifL85ovXeOfZDUpfQOLZ2Z+zEfcQQpCoHmlkiGIYqgiqAlfdo9e3YCTCGpJUszYqSY3Hilkol51PwFfEaULqg+uJkpZYKuIggoDFosQxMRJTgHERioxIh4nc5gZVOXpphlAOLSPSWDCpjqiOq8/HI/NG+xyasxKtEw4ODlqgbTgcUpYl1lrW19e57+KDbG5sUZYFBwcHRFEoVQllIjHHR1OSJMGYUE4KYXHd6DYYY1oAzRjT0pW7E3Or8eB9+9sLHQfdOq42k421QZPu8DBo4VVVxXQ6bY0rJpNjtIoYDEbs3DtgOBxireXs2bNtyW6TsUnTlL29vWAqUQfMWmvyPOfGjRscHx8zGo04d+4cxhiefPLJtswiy0Lp7Xw+p9frIaXk8uXLfOxjH8MYw507dzh79mzrQnf5TMYDgwGD9Q2kcpTmkAcu97GmQOmY2dxwd2fCvPKUFpIkWQIgBZJ0mHBY9alkRJnnrdPbvKyY9e7w7u96B731Hmmc8ZYveSvrw3Vu79xFVwkHd2bs7u5irWXj4kX2dnaYTCb0+32steR5EHfd2trCOcdgMGjv6Rvt9WmiDtwa849lgE3V5Z4rJgdyAXC17JtXYRx0/7Y0QJLr/MbJObMBjJr9Ndt7J9ogbxUQ6v5ed0HRLbVcDZpdDXZJcVJJZDmre/I4hQdVLzSFByz8yH/34/zMT/8qTz12MZTb1tenZe6J5cVJ/RZCQZJE/Njf/8/5Bz/+owzWHgu6ddAK2XcD+PYc6biurlxz7z3G2eAcbQEvMa7CWFuz42TLHGnOsXvNuufd/K2UQtci8+25SdmWv3av12r2vdUUXQFuu4Fxw25zzgU9Lx80/LxzgRnXYdIJIWrgru6/dSl1AHoMHot1FZX94gXlVkFPu8KK7ALOq/1b+cA2X3Xz7N4jWFmI1s05Rz/RxNIvfW910by6gO72v+42ze/HcYwWknw64+7eHgfHc7Z3Dnnp2i5Xbh1xay9UbxweG/r9jH7t8CqEIEmSwCRbMaVxzmGF4m5uOfSS0so2ibR6Tbz3DCKBVAnSi7psX1BWnllhmeZBt65xhG2eS1XT10ZaEcchqR9K3XJm84qjacFknFPki5KuNklRH68V4FWEFZp5rfvXfN4kJKMoWmIJryYk/k007z3COubHE2aTaYgfrEN5gxIe5UBYR1EujyENUKC1RkiLjuSJMa35NxhaGJQpEWVBWRQob1HekCjqcllfG+QIsiwLwEWiGPVSNvoZZ0YpD4xGpPFrA22vBkr/RW/eiRZ8O/G+9+jII0XCfLYo6Vt9lkOfD6+wNBcrr9qx1S62cbZmynmBx+B8hfdh3re2q4VGcGM1UJWeahJz7TlBmgmeeJvC61PY0Z8DYLI4/mUm3GnbwEmjotU4pvu+lIsxYvW4uuNZ9/PV43i197r7EUJQVRWz2Yw8z/n1D/12GAvqhFzDTHbOtX+vAn2r+xZCoH3EQw9sgZ7ys7/4YTwlcSLQokd/4ClUTmw8veGIRx99tGWeN2uFZv+NA/QJzOOU67v6mRChtHRtbTkp31yX+czywMVz7E32mckDDscVpSlOXCdYNn1q1o6nbde00yoimvjkdQfljHXYw12K4qBmseX0U8FmX5GtJ0Q1pS9KDPG6JUmD1lvlcqSz2MrhfI41GnyM8wVUBZEsiWVnMI4GIfBVTYZOIqTFilCmuhr82TpoFF6iZQRAEgkElkE2CCCfDUiw9IvvaxucE3vA23XMffmcD1r4sYHiW3rgI8WFgwi8RuuciIRioEn7GV95fkjiCmJlqHBYWaGFI5+XWONOPLDL/+88TNiafSDDuangLFRvuXT9rTV4HzqT9Ucc6U20l2ih+a++9zL/x4//h/zoDzzFP/ux72kXMzESQYpUCc4XXE43uJs5Yh0hC4cpjliLYoSwZFaRSegn56hmYwptGLsJMTOMhv27M5QXTMpjJIJICOa55d2PbhBJRepSfuWPn+evPno/cZYisZSVZ2NtSKIkykCmPJE4g8ZTTSaUJXg/IE1jTD7nys49hpFCzFOcnYFUOCsgjomVQ8gCk0lkXKK0wMsKJxVCW5yY4UlQqUXrOVJ5hJ4wPhwTuZxUCrQXrI028RgO8x1u7xwQIzmnvzB1Iv4itfHkoM5qxsFd1Fqm+ZTSlp0yVsjngrXBZayNGK1tBhadDbbVWgwYZOnimfMSKUPQrpIYtMETNFriOG6BuaJYDOBSSoqiCBOZs1TeUXnLvHTMKxeC/RoIM8ZwPJszyQt0mlF5qDxoFeMsCJVQmMA+OTwaM5uXSJGwublJWRj2jvcZj48BT5alKCUZ1Y6m1lq2t7d5y1vewnQ65fIDD3I0O2QyPeLg4IAsick2hzz6pif4zu/699Au5ZPPfwqpQybs8uXLfOQP/oA3PfEEvSyjKkpu3bnD5fsfBuE53LuJKo/YGG4RJRnveseX8+CDWzz2pvPcu3vE3sEYEYXslrElZVmgVGCjzqZTsjRhPqsQeK7dK9C9HlInWFXxA3//u/nWv/51PPnkkyRxTJxokJLpfA6l5PzFS1wePYC2giTS3LryEmfOniHNYrbv3sZjybIsLOS1QEmH1pLde5PXt5N+kbfuoqQJSprAzhiztJhuFuOnBVin7fM1fvUkSMYiEF1dNHcBwdPaMqB3Mvu8eozeh3K6pizU+eWFSBeI6DJxV1sXMEi0ojfY5OXrz7al8s1vdkGu1WNeHLcgSQV/6U1P8lu/9yEqq+pSwwUxoHt/uu00jTcp5ZJBxKpJx2nBe9eR87T7s7pd93517093IdLspwEPTsZOJxcSQoTSKk5ZGDX3LjAafcvc7O4rVDQsa/N8sbVuHxZCgBQtSBRA+Lp8VSwYb9BhNQoCm5sGRLctY1OpIKXSfebCd0KdoHNgnEcoTZotXkmm6fVSkiRqn5FmAbW0KJLLrFDvg6NrXhZMi5JZWYGtDZu8QKjgXJgXJdO84ubOIfuHE65sH/HRZ69zc3uPT+8Z7uYRpRggozVkMiJOeohogLWGqqqoSk9uK6rc4GqWh/e+NVrUUdCAE0LgBCgtMC44pBaVITcWW8J0VpL6CmtcIGn4wORINThj63HVY5tzFSIY4SmIpcZ4R6I0Ub2+8ZXBFDN8VWHGx9jppAYRPLGKa+H5ijSNV8Zd374+l+fgtcbuBgSonMOgqFqHbkdZhevitAzmMkAThisEsdYo7YmEACdanXGHaJMQIRHvSSJNJBXKBVH3lq0jfF0ua4JDLwLpJZJFpYSMNL0k4fyFM1w4ewZXM7SbceK0a1GWZRszfiG0FjBbefma+W6Mr//vsTYAagutVNHZvis/sAw0BY5NqI91VWDGhe/Vz6+N8C7G+wBeN9UxriMDFUqsobKWovIc3BW89GeO+x9VSOXwTp04r0Vz7fGdlpTy3pMkyRLIfdq+vA/Mt+bvXtbH2WU2nPe+TYGtJg2gwwz3AmsW2whh22NcsMTt0jF2jxnn2/nee3Bu8d43fcvXt/Pkqnt201bH5OY6NfOAEhIjcq7d3Kl13j2CmKL0GF8wmTh8ZXCpZX1N8+KVq0uyEs4tO7i/2qu9xgSpMo9ltTln2Nvboa00rEtwZ7OcYZZy694ezitcCV7VjO2V69XEpf1+xnQ6ru9TYBs27L1wXS3emsDm9MtxbmgSY/4cMOUgOFSoKsfvfRTlcoaPZAye3GBwXw8nHMPhGutbfbJ0RNqP8U4SyQyLwWHQboqtdlGUOBFjdUXlPUZECCGJkxG9WGFc3lKUbVWB10QohNdtZlTWIswIh7MCoXSw+RaaL/9KTeQUP/xfvJkoTvnWb3sEW4AUjmmRMysc18a/TBpnfEUx4x8e/DTnehnfaHIuvnyD733xBf6TJ9/Bc7euELuCcxvnUQoi6XhvecSW8JR2yEEJlZJUTuGlItIab0MJRSIkkXDomhraulo11EtRMw2w9UvXlO062CfEmr4NeAEElTPgsqDTlwDeIHobvOM7fpjv+aEf4Z3f8UN4QxgQIoHxFaUt2ZtMUdKCKTh7vk+/l5CqlCoyYCWpswzjCU5LtkbrOC844zKs3IBpzOb5M4jKcJENEluiheJtGxkXfA87L/n5Z5/j33n7ZYSwuGJGLjX/4rkbmGiGjI4xuiLSgUEoZjNKrUljg++V4Aty5Xn0zBl0z4CfomSCcYJKAdUciUJLRaojZKkhSYgTQZpWSKmJSNB2RkqM8p5UWPZv7rKZaFLnGQhLYT1f/41PcvvePbxNuaxiUl9y9EUajP95alprjo6OgGD6MBgMODw8REpJbiuO51Nubm+TDjLG+YR+f42isFy+/DBJ3KsZaJ6iCOUHURQhpG8p1U3GqBlIq6pq3eP6/X67YNNat0yzxYISoji4+TYTyXw+X1o4TqfTFpyYz4O+WsMco56c77vvApPpMcYY9vf3W9bZuXPn6PXCOTz88MOt82ocx2xvb5MkCXfv3sVaz2AwIo5j7u3cJo4lT33ZO9m+excbCc6ePcv29jZKKXZ3d3nsscdqZ9mE9fV11tfXWybexSjB6x6DYcZ4POb555/nzsEe0WWJ3JAYr5HetABkk7mOlUYp1bIIAbTK+NNPXmd4LuKDf/vruVdeZ7Bxhnt39lBKURQF169fZ3Nzk/vvv5+iKNg7OCAza5hKcPHiRWbjMUVRtPpy0+kUpRT5bE5+bEjyITwzfl365hsttHbhrpaBNCFE68i6xLjQcgkc6rJmPhMYJ6Wu2TfLAV0bMCJYFesP2yi6Yv+rx38aqNMdF04cUy0nYRs9JhHK0k4cU+2yupqxh1qzqy6FQgpmRcUP/s2/xeH+rRPAXhRFYbwynSCx1eKTnWMW/PXv/g5+6Vd/ka3zTyD1SWDsNAAyUrpddGqtTwbNdQErzuO8qQPWwKQIDPXFfVvtA815dEE26ZePRYjANuyykLrXcRUg6o7Dq7+7OGZwK0YNqj63LsAXFoHL4Jvziz5kzRcWA+azbcKfLCFu5z6h8PLks9Htaw2gG7SoFK7LmvOd70mF1FFQWa7vXWENeImzoUSpqkLSrCzLVs9VS0WapgwGg5bpFEXBBErXZgfGGGx1cjxo7n8oVfbMC0tRVMznBUURGCyREu2i+vhoyit3drl6Y5cXX77Dx597mU9ducP1ewUvHDgO4y0u3fcQZ85fIk0GCCW5uDVEyBrsrq9V5MIzX6FBKCJnUF5SFBU2t1RVRZlXzPKCNUHQmRQSLSRegcKiVITGg46I6+5kngAAIABJREFU0wgvwnFqoUm0RkUSrEPaPGjZlgZfhvpDY8pwT10YK7WUCE9dJljP5bVxQrgXEmo3VnWK2Qe0dUtL7bUWpgE0lWSjNXqDLJABXMWxkxxLjUcioxijNF5LIqVQwpNqgbeORAiEd6E/dXQNg8C/R9TM1lhDFGmSyDPQin4UEWlFLLvAmsNLT6Q0UoFyoLwDY8BboqjLHlyUbMNyokTK+vr8G3Cs/PPSVgG05qUjR5wG9przZQCNLS3g4b1HRYYLlxxSeGQ0a/e11JzAm8CKcy0DrqsZR1vC6p3AmmUQpStj4JxpGbiVtZhKcvcqPPkOjY4WZYcN6BX2s8xsW5z3MmhzGkgl/Un2XcuucjAeB3CnSeR777GdJ2UVkGv37QUeh1SLsROnlo8/HEG7r6VYxYeyeWdZAehCvDWd5Ei5yniV7efNPVj09YXsh1JQTO/gWqd4d8qrvblYp7hz55gPfMO7+JJHn1iKj2iSdsIy6m+hfVRXDp5M8p0G1HWf+ebVHPMHvvnLyHqCyncY7jUw2ey3AQa995w/f76twlnto+39cUHyKLwnlktt6+3CsPm5WTd8XkA5KVXQWLAGaQXV3jWUextf97Xv54Pf972kKuPbvv/bePc3v5M3vStj/TFw0iJUQT6/AuRUDjxlDTYBzqOcRoq67lhl6LSPchGo8CCpKFCYkQGJFw2zTNIOzhKLMxYhwDmJKAdUwtM7fz9lMWcoFEmaEwmFSAU6Unz8N/8JM3nM70cDyvP/PpEp+bQeMkh3SN70pUzMMZtlRmEFWmoQGi0VFxyUwpNElrmMGKqIi3EQilcBWiPWAuEtamWCEx7auun6PITUQU9OeEC0QoQeVZcEU9eEh3e1kEipmYwrrAllve///r+LoED5R/FSo5KaMeBU8MydWDazDV443mGk+igrkKKicpYy10SyQONJGVL5nGkeM3QJVZTTV3MuPhAhI0ORa5yy6HgLXc1467k+KMVvX7/O173lEfqmj5Cewnt+4+NXSdIh0qV4NMpnzKoJRhqcitgaxSRJSSxhXgqOdit05NgQfaQagi8pq4q+swiRIIxH+wovprjEYvUUREw+8yhvsELjfIxTBuNjZvMjHj17gXXhiIGpcviq4Bd+9v+ipxVnUsm2KZhXGunfKF99vVusNZFSZHGEFjA9PmIw6EHt2BhFEWka1WBWxGxa0O+tM5+Fss/pbMbZzQ0qVzGbFnjCpKVUFLLC3tJLBngvlujkTflpM1Bba5nM/l/23jvYsuw67/vtcMJNL3W/ThN6cgIGgcAIiSBAUmA0RYEgKUoUKZVUlhwoq2zTpqWSRVZRZYuW6GLZYsmWZZcpimKAGSAxgABEIhHAcMhBnMHEnun8uvulm0/YwX/sc8499/YbhD9AFIHZXbfu7fvOPWHHtb/1rW/NGc/nTCaTamK3lXd9VnkOzZLxUIuo12Gx0yxnNK201xBMpjl7+0OeP3eBtUG4Z5QmTboURcm5cy9w/foNnnz6KZ555lnyPOfUmVsp58FTrlWXNE3Z3t4mK+ZcvnqZP/3kJ0MomBRsbG3y4vPnKIqCO+64gzvvOstsPqHT7WKsRUjJHbffThJFRJFCaY3Zuo15vMnTTz9N0o2ZKIfZ6DO3hh/8T7+NwbpGpwlaK4wpsd4tGUjWhjETx4GFe314wGu/+fX012OGoxGPPvooe/vXuHHjBs89e46rO5eZTEdcu3aNsizZ2tri6sXr6CJhPp1RmBwVRczznO2Tp4mjEE7UXd9k/MSQF37rM7iXw8y/6qXNqmqDKY7AdlkFgmqD2FXGd5tZVR+zylaTUlfnpTpm4TltvOai3ky0je2FLkp9ry/1DMvnW2zij/KiNyARIblB/QxB1N1XTkLVgHOrdVA7GOtn3dm9wX333Rcyja8CaZ6mPsMupv13t3R8kirK3HDbmbuDjhfLgFUbzJIItFyEEa+CkHW71iyT+hlq+0UKj65C61QrFFVJia5CVduA3VFFtAC2dhbX+v0ocHS1r6y2jXeBnyXkIsRNCBE8KXX7eo9t2BaLvtbMZTUj4wgP/ddLWU1wUpemH7QAzvr7dvlC7V4X7UUIWWyNjdXQLleBRm1ApGYm1bpSNbiqVADrut0u/X6fXr9DP03oRDqEoFZJQEI7F3hfIqRt+njtqKvHcptFWj9zndF0OhlxZW/EhesHXNsfcenaHp97/jKf+fwL4Cyb6wPW1/usrQ3odruIKGocWm2NJSklBs96lFI77xPVGoP1mK26ehzHjY2xGlLc/rwKKIgoQSVdiJOlNqvBjRqEPGoD/OWULzjehSCSjsFal7SjAcdESCaWar9WhdN5ifUSJwMzPxIh5FT5hUD8Kru2ugCuYmkaYVFFjrZZU99HMWB9a14wxixsN6WJKuH7dju0n7H+Poqir1kpjTYg1O9LiixiaytibUNi3DBkRxWHBIF9iSkUVy8JrINyPqDTL3FWLtWzd8sgfvsavtJccK4KU22FE66CZkcBKcbOyDPPuc/C+mbbaaCWftNm0q6Wery3NUVX27fuh0ot6+Gu3ttRfe2o52l/t+rsCB8WOnmrYdurY+7mNVPzwT/4kypCkJt+057jVl9SamLfIxmcuqmeXqrU537/+z/OJ5/+FL14YQf2OjF/9fvfzre/+Y3MzVU6Hc9WZw0tBxXuUe2nvsC8054D6nGppeL97/sEgkU7rdarUoo4jinLMthdOzsNQWN1vlztG+1+0/77S/WhL1a+Mkw5GbzQSkkKwsL4+G+/l+997U/wY+/8r4jSHj/74/+QX/qf3s+//5XHuOvhU0ROIqwm1h4/uUo52sWbsBhIEeOjOVLOwITwVqVm2CLHybLJ1gTVu/N4FJ1+W9DRBSFmEdDc4IW1nH9+F+vm/MLPfYBId/mTz+1hZUpOSh+Nchn5/JZwL0rz+UODExEfkQmYCQdyQqbXYBCDnbEmM7R3uCjij6Nt3tzr8YasRJWW40DiBAM0PRwJikQI0kiDBU+Jahk6goVHTQjRPKfwtbBg5Y4QDiptuUgv0GmBxrsqTt0JjMz43rf+CN/y5tfzDa97Hd/05nvwFCEDqTcoEgaRxqdzylRxbNBhXlpiYxAypp86OByzdsddxHHMmgFpM6TKETpiLrpkMnRsOfAoFSFcxvfeew9dofn83og3nL2H22JDHs+QIuMjz11Byj5KpjifoVxJbiWnj28SRQlJr4+IFNL3kT7G5LCx2cFmhqjnES5HMyBRMaXziAiELHBWEquUSBlEIdDaMEhjjJjgfE7hM/AJ09llMldwexxzQhkuuRGXdkcMzYwzLkF7w8GkoG8lxJaH1742F9g/T8W4MfN8H+tyhLSkHd3oEqyvr5MkCRYLCmwl6D4azhiNpigVAfVGXjLNcvI8ZzrJcFYyLw2l9eSlhSrkY17koGRj1FGFZgodNh9CK/r9kADCWprNf1mWjQ5dfb2yLBmNRuzu7lIUBVIoet0+3kO3s0a/t8HrXvcIZ86cIc9zut0uk+mU8XhMWZa86lWv4syZW9m9MWR39zzdrZj3ffhDnLt6laQTcfbsLTjnGjaejmS4jg/3rpTioQceJE3TimU2JooU165fReng7ZlMJuR5jvOGg+GQ/SLj4NgxxOnTHOLZuPd2+ic26K73GU2v85bvehWTWclkNkXqwIyTUtJJU+I4RqkI5wxFOabbj/lb/+UP8UcffYrzz+/jPXSimOMnjqGUZHt7m83NTe655x62trbw3vPss89y+523k/iUw6szbG4Z7Q+JZcTetR3W1nvEPuLib36ewTBBxQmj0cvZV7+apd6othlN9boWKY2SZWDHqeD4qv/e1l1qe73hZv2oowzF1Xtof142KBeZP9sMqS9UVnWZgCPDJ+riVoyyeiPvvG/CR9v3Xb+3NxtKRezsXEcvMVWWgbzV87eN0trZJ71jsNZjc3M9rMsvsUGv66MNtrWftz5vW6R5qX39Imywvo92aPICUFmEMddshtW/1Rlca0O87RxpAN4mnGcRslhfp91/vF+wF1eBh1XwzXvRABvtc9TXW633r6cSMk62Qkyta5KOSGgyra4yTJvNaeVkF0LhxeJ4AKfaiUGCXduW6vbttqx0INuJE4CQTMH7Vr9YsN3nWSV0bgzGenLrMAhiHRFpSZpE9Hsdet0unTSlEy02us7Ypf4lhUfJ8B4u7JCKSttMIyWkUbysWTcv2bm2z/7BlPk8x5ugbX25THl63/LE+T3O7c7JVZ/N4yfZOnGSfr9LtyMxQgfQTSV4XzsGQHhNomRIGGVKcmsoi4IsDwmjSmcprCEvDYVxqLiL0AoRa1QaI+MkhLl6R5nNQ6ZZGcJDjXcg46rdbp4bvxCD+aXE7F+yX3mP9J5BDBE6aFZWSTB6kUA6ixEaJzVCBB1slGTmBLn3GCmxMkaquEl+5V17DZBYB1YAMqR3daXHNCGudZKXIHavEOg4QikRIrQITtMgk2EAgzO2SUy02s+lDA4jELwEmfDPZXHOYV1OWVCxz4Ozazwq8M6RpDDei5F+A2c9zmw2Ia2u0oRzLuxWZ8MIvMe7gpOnBb2uCqGcPszLvcFy2GsIY10GQG6a45dA++XvHZrSlZSlp7fmQiSHj6q5JETruTrkdoklVq2NPrwUgqIoQoVYRz6bNyw5gM3NTZRSlGXQpq7Xr3oeW11T22DPUbpt7edor3e1/VCHVN60xloadtwSqKccDs/bv+WVJElEUU5ZSo1Luy8vJ8MSKDAFb/umh5jP98iZI3wg/6wy1sNLU2uzLj2zkMRRj2me813f+lpkETGfFfzyuz/M+z76Sco8YpwZ9rJDnJvwd/7W25AibpLrLc07YlX6xKGU4Ife9QgRmtLnWCOa/tqenaSU3H///RhnKUwJrczeQoT9kKukzKTQjZ7iUQBrncegPddZK9jcHPDlWAtfHq/uSywBSBMIUS1aNhia3/mt9zKfOrrrx3nVG17HPd8R043XOf+5y9UGMmRscekAWWbYco4nZDpSeUqhLdg5KhJYF+OFBa9QKsLblmcdkMozGWc4D5Kk6uyLxphMJnTTDhf2egg/49FnJlhX8tSzQ4yPiGXY1HbSlL/yN/810ksKk/Nb0vMKI7m2NuPSqdfyG5unODnf5we/6Zt43hs+8cRnUdrSNRPGZcJvXyn5mVsH/PsbU8bO44s5UioiKZlbTyo0U+PoxGBKj5MCWiBj3ZhLXuBAesGhqiM8TYpgFxMYBxLrSoSK8B6iSJBEcDDPGV8ZIaxBjmLEHHzskV6QiYLx1GO9At3H2YL1zXXiEnBThNskTXLKLCONBVLnmFKh0rAB64uM8UHJbaf7iFmJjx3ffWvE1IxQccKl0ZBX9rpYHxNFkv/w+HnQt1C6A4TMcbLDcDplc9ClM5YYGXMskng9Z9CJmExKuuueoigRMmYjBSc9xDOuX78BLiR0yFQM1uOVYz6PGKx3wWZYWaBtgkcRJZ5ulLFnCzajTe5RI359Z8xG4Si9Y+Akf0kL/g8fkSvDqQhuSUCpo4j5L5c/y6KijI1ezHxmKEuLkglRFCbcLMswxtBd6zKdGIbjQzZ6W4xHGVrHHOwfEumUM3fcg6tAqiwrkBL29/eJkhghDEoVjYc90RFaaawSuCrsRSEo5hleBaC/Bt+clZgyZGTTesHGqEVV6/DOOnFEt5swnc45tnWSTqfHxUtXefrppxkNJ6yvr1OWJZubmxRFwT333MNTTz3Fq1/9ar77O76VB15h+F/+5fso7DZeFzzz/Oc5vHHAXXfdRRQHOvrJkye5976HsD6EeVy4cIHnnnuO+++/n+l02iSGePHFF4kjzfETx+jFvWbxj3WEyg1X54bt7bOc2C6R2YwXzr9IFEuU12weN/hOhnQ9jAvMpNlsxqDTrULfIoQUfN8PfBc5hxgkx7eO89RnxmzfUXBss49WC+Hu2WzGY489xm23nmUymXDvvfcyn8+5fPky9z38EFd3L3LixBpXdq5y9uy9PPHexzm9O0DLLpnPgkfdvMyU+2qWhUFXG3NV+zbZOeuQiGUBcSl1WL+kQMpl7ZX2JrA+VkpJrFa1yED7NoOh2gWEYLglEOmocMdV73bbCLzpt4G0Hr5zVAZo2KgIaIzdJUNSOFwFJgjpkb5OdLEAxoIRLzi+scYv//ov87f/2o/gfblktDegGKKOwgBkw7Zr7g9wXpBGMYgQIi/Eos5WwayXAuzq+mi3Q/1b2STWChn0QCDwwUsBmArgWmKVVK8aMGtfo74PLwTWLbRr2oBtfY+rAO0ScFadu7lu9V37eZvnJlSXc2bJI9+AgYYGrIv0V8R0/nNRlvR/pGjAZy/EItDIeaSSNyU0bJig4mjmVL3ZdDIkhWiX6XzCfDwK4yNOiaQiicGiQ3IUIarxF+RqjLFLrDOqKJt2/3LOMbPzxfgs7SJjp1LEccWESxdZCOs6gEV/qHWRRD32aoYwwZ73VElvBEghMaWnKKYEXdqw6TsY5wgpsaYM7L1Csjcq8AWkwpPImJgY5xWdJA3gmqz6o5BIJyGOUQQAoB4300nGTM9BKpR0DaDunMPZkjKbYqczpIiwNkf2upQeHA5vyyV9xbr+jvp8Uz9p2vxLY9Y55yl9pd3kHB0NG1EIGQ604NC+aRT6lXUhr2PhPM5rrAr9pmkfEdjXvgqB81KBiHBxQWklYyE5GSlkEe7SU7HpBCgVkShTOScUUmo0jk4k6Xa7xOMS72/Onr14V1WIl+drKXwVKxE+QcuQcEF4VemHabSGySQD0grYqtcPAB9CU70nZEH2C4qni7lyPnzsb+QM1mNsqbh6cVF34Xzh+NopY229VrXZdMv7s6bPtTJ25mXJtUsxnWMZnVize1kFJ7wAkHgXPntatsbKeVV1TUeYJ4ypgBsv2L22g3MQdwW+jHDOYrzBews+AizWKO6+9zQvnLuMUAJnJY6FUy04Hqo6FK5Zx8Nz13chcfYLgZOLOhBeIKWvMtuCkiUf/IPPVe0RfcEmF0LgMCivcWTIOOXDH/k8nc6x5u/hXVFP6Ysw4GUbb7VthJD8zgceh7j+djXkNQDl/+aXPhrCx7+kZVcSS8G7f+NPyV0RxqIQrXMvxuN8Puepp55CqNBPlYqWQlrr53E+9PXwTCtMxyr7t4DQx1qLXmkL9neHX9YU8BWxLISvYygrnQgVloncauJBQonjwoU55qMjcv8CXPcICQbHho7xoqTbO8l8XmCyXZw3WEoCN0zgrMUSI/yIju7SiWIOs3FghiHRcYyUCwOdSqfFeYuSgT0TFq0SOzcgNMY4vBEY4ZHKobxGqy4KyV0nFU+8OGFdel5ZgI3gnbslt/oP8I7b/gpXOM6OjhDnnuD85as8dPcGVkCcCDLRhzWwu4o9I7grtjjRod9VZPMhZ5VnZ+64nsak0jN1GklYvBECcUT6X9lg7pYQ7FNvLMA5C0LgvUNKgZI2LB6VVkQeK+IkIbJdxtMpiBR8hJOWdQSba5LcdxGDFF9qul2N2xtRFnBoR7i1Y5SlQ3hJhw5zIRh0UhJfYqXHTCZcmWzzCu15fm/GvZsKEUl+9dPneOf9t5AnOb3S8UtPHmJVn+NrlulwjmedYiY51e1QmoxupFFmTllO2Ty2AWszCmNZ0xEFA4RdQ6cHXD0Q9OOUUydO0o0UpbFYbymtw0ro6HCvRkKsE/J8AlGBdDE3hhNmc0MsFf/zY08QKcfxdcWlkccZwdsPn+djYpPepoDCMjGmWuBfLl/NUpgcLxy5GbO2fpzx5ABbWgQRqGBw5tOCfJrTSboYU7C1tcXh4SFaR4zHY67Or3D65BlioYg0YayhmxAF52gSNQSDVFBMZ1gJWlUMXh1RWoO3FikTrDWAI8/nlGWJ1prJZNLQoLvdLgC5KcmNRekOs9mEztpxHnj4taRaU5SWa9euU5Y5RVHg3IIBcjAaYvGcO/8iDz/4arw7YNC7Hetz/vFP/DRXz7+Hj//RZ+j2HuDUqVOYuaWYFhSFofQgjOfG1evcc8+9oA3PX7jK733oI6yvbbKROr7/ex7hF/7dx7j99m2iKApixvMc1e+AdVwdZ4wOL3Osr9Fasn38BB7HfDzjHe96DR/8zWch90il0KquT0PagfsePMvF/efpJh063ZTjx4/x6U9/GpMdI30ox7kDQKAjydbWKdbW1oh0CEvd29tjsL7GmbO38fnHH2fz1tPM9iA/Z7jwocfRpUOc7JBf2kV0e4z2DnjgoQe/Wt3z5UJtqDlESxxfSolCIXyJC1wHFiZIlWRFLcJJ2oDLURu6BWhUed8boK99/TB228evhje1Q9Ham+5VpthRIFXQEVlmX9XgVPCc3Zx9VupFaChUG3apbvJWAwy6CR/+yB/yEz/2j5iPnmvuvxbFD2DDCiussg+cc01IqdYx4/mMS7vXKrBQNIy0dohq/QztzUGb6SaEwHqHvMnKdOGfqyIS6rpt1XP93gZjVjOarbIGlupp5Zilq7cYBNVBQeGm7j91G9TP4OpreKT0UIe2EvTEwia9CN5xv2DJeV8Bf18EYPiaLc4jlGzWSeGDtiAE1ptqjbGbGA0s8Il2f6oB6HrjK4QIMSCCJWDOuZLXrc+5padZ33RcOcx4Yl+zXwoyL7FeoXVMJ5JESVi7V9mjbTA3JFoQTRbimllnamF6sQDfFmL+Nmg5QsNedRXQWz9THeq4cKkHAqmXIRnd6lxRlmVzZAPySIVSmuF4zmiSV5nXIwZlRBx7jm0OKEXYYF8HjhuBHGyirMOSYE1ONskxh4fkU0ceR80c7L1FEWE9eGOJCNe0wmPKAJp46/BON2O5vZFtl5cK+4eb2XJfDJgrnKVwAlM5dCKRB4aesGiC80B5iaSiAEmBcZKiBkvVQvfSGBNYnFU/dNW8ZbXH24jSl9hqk+2r7K5NW7XnNlfN47UjJtEkOoCDSkc3ha4u1hgWDLlVZPrPcQntV9dPijE5/UHCsVOC3csQqbQJLwUqgKNyyFlfjX+PRyBcez0NSRhH+x1G+xV8UGmp5cWISG3gvW3APtfSqrupHLGOtr/3XpLPckyuySPFA68SfP7THmN00MIPt1gpw9aOnRrUCSxeKfVSiLgUCTrdo8wGDTusnHvAUMto3PvQGs89WeC9wauCZ567EPpmBazdd/9ZPvOpZ4jiOsIvwvsSYyGOw/WMnaFk2jjTarKRswFIXOjwAmXIhEts6PdT9vcmgdErJMYs5sL6GW6qrtZ4NUXJiRNb7A3HL3l8uy2kXCS4WNhNtjX3fRlZm4UjLz0/+qNv5xd/5WOkwuA7A/LJcjK35p6kR6sB02KIdyVKpdX4DbJBTbI+LEkaWLP1um5tuXDUsmyHImwzf4d5MYD9TQTEihyGEAJT5KT9Dr7l+Pxi5SuCMDRCxXXxwbNRFp48y/Blxmz3RZ7/o6vs/PEModfwwmBkRGE1XslApXYlDot1EZFNUTbB5zlCRmhXBrq7MCjtKW2BJOLk1llMZXBJguhw8MZW6LqRaBVg2WCUGRyW73jrnQglYDIndoJI95jaGVM/J86HbEaatxYFf9nfQNPnlQ/34ImSB59/EiXHDC9cJWPK0OYII/jhE2cwsaOYTbi2awjrSElpNL/wyef5V5+9yH88nPDu0ZM8+pl/x6AsEQ6UKJESVPDbBGOloUcHHRoflB6DR68SNXVOgw+GeqRFoNYjMD4w6rzMSbSgJzRvefA0v/2vvo8/+f2fJur2QOQoFxavg8IEz2OiSXUQmS2jFJF2MVHQh4ljzbwQbPZTcixKdonoUMy6CJliRlOePBgTxV1SIXjPE9d514NnGShJt1DsFgo6MbormOQjbKFYl4acElxC6taJhSDyOeBIDw95jR7wwiNv5Td+9n/kn//qz5Nu5OxcOmSjF5PqHGGgKEt8VIKPSOMYZ3JUqvFUyUCMx0lFZCxS5wwPLiBEzrlnPoewhi2peHbX0CtLTghL0e/xpi1DL7IMYk9Xx7wcvPrVL6XJyIsZzs8xbkppZvR6KYii8aLNpnNOnz5NWZZEusPujUPKXJPGm9xx+4NEOmU8HtPt94IgcmXAa60rcEA1k3HbG+69Z1ZY5qVjOM0Yj+aUhWc6nTKbzZhOp3gfxFzrz7UIdZ7nzUbY+6DVMtjY5pG/8AbO3H4nIkowxnLq1KkgVN0NXjUhBGmaMhwOsdZyeHjIixcv8NQzOdd3bnB8o8f/8y/+Ibdtp7zpkW9kNMyZTEaM5zNkHBFXmhdFUXD6ljMknZRL557h9ImEMyfv4If/5o+RzSe8+pUD3vSa1/Htb/8WXvPgKwJdX0o6nQ79TpfhrKCzdRqhE4yB2SyEqQ6Hh7x48Rx//T//i4g06NJEaULBjFKMOXHnBvF6xL333kecep595hzvfe97AXjm6Wf5049f5fTp02xvb9Pv99nZ2WnYexsbGwzWeuyN9unnCec/8gJXf/GzzN5zkfj5jLm1nDy+TSeKGPR6bKytc98D93PuqWe+Wt3z5dIqNbiySOKwYHu1jY9alLcd+rAK5LQ9srWW3PIYXc585b3Es6xDVZ+vfX9t8Gn1uPb34doLMCFokLWMWymabJQg8Zbg7KvCIZtrWdfMKSHMSjX3uVoKgNIyHB8Gxo5SS++iYpLV93mT2DUe6x37oyHf+e3/CU888RheLsIsbmKWcbPXfcl77z3OLK6xCmYCS1nK2vW4+nn196vHHGX4f6Gyylo5qvj65W9mANbt2mZCtvWm2t9/MdbP12pp19MqWFp/btf/KqC9+vml6lF5bmLKFXlOef2Q8YXrqBeucctwxPep6/xoss+3Rod07RQx3WN0sM/B9evsXr3Kzs51dq7ucv3aPoeHh5Xe3GIz3b6/0A/VTeMCWJoD6rFcJ5qo3+tjtA46dUmS0Ol0iOOYJI2IE4WOBEqHMVKPY601vV6POA77kjqD/Hg+a2nkpgihmc1yptNRjYaCAAAgAElEQVQ5mfGMZjnDScm1seHJnRnPH+Rcl32uu5TDLOawUPh4g3RjizhNGnacISTNCCCYp/QCdIKQUchwqhZJbgTLGRlX6+tLLS8JoCwf1Iwtay0lmrmFsVHMrMLaktw7Si+wlUa4I0QXOcFSf2zCC1me44NmVIEQDqlcM7aNvDkct56XFC7oYLZe7U14O2xvdR75Wiu+0nRz1R47SRI6/ZzDfcfWadi5WjmpXP2SSxIBbW3X5Tlf0SSRcFXUmAshmFGUUCdkuvl3N4etfqmvYIs7rl8tmwiW+ry1rb/ab4UQlGW+BO6XZYnUM/JZr5kbVmUZQPHM5zKsy5fqo54zrLU8/dSLdNMIKgagFDFp2mWt78mKHCdyKFWje1bf26pjy1l40xveiJMCIwoKU7K/Nwn3Y8CUIgDuK07H9jPWfb9OljPoDRgOF5Iwq46F1fXyqPX0pa73pZZ/+8uf4G/80JtI0ghZuiPPKYTgnd/+FnIbNL63t7cbFqMQYmleOOo+jlrbV9e31e9e6nm89zz00ENLkQhfSvnKMOVeyjMgDN4HqmekNEWZ4VzK1Weu4b0iciU5GSKLmJo5jhDDK73CqgwhHAUGKQxWSygXIU8AXs5xcp1ESQQeHUmMsyHeWwbmnlIhm1DTONITefjE44dIkXD3w8e49MIUrQdof4VOZ43+CcXe/ggFKByFnZC84/uZfOT99O/4BgadhD++dIled8BW2kGXMy7Gki3b5dYk44XDgvuUZyQl6dRw263rOAlWgvObcOoOOpEh9pJcyCbjlK/otKFOIVBZA0W21ngIvgSH0lXYj1Ahlt+BUgJpHToqESJhODVsrnW48/7TPPgtP0VpDCb/GaTSzQDft5K7IoV1GrB4HSP1iNQYCrGBMDOM3WS7EzNyBQLJmTMRs0sThJYMOl3cdMTJ7QEzZ/it87u88/5jWJ8zV47ZEM4c69I71MxygVKaSO5wmE+Ylx3ERs7c5wig8Dmnk4jj25JuNya3M06//fUM1AY/d/5FHrr3DIdTwDqsk0gNolCU2lOYHJQjUoI8jxBkuEigikBxF8YhVcpsOkapLmnHs59npEpyUpY8sJEy6Tq6aNakx8oZBV0K8XJY3Fe7zGcjTAlKd0hiw2Ctx3g0JM8qp2YUc3xri+l4iBIWYwuMcURaolXKwf6UwwMDSIwxqAq81lojRACds2zeMNwMLVBcJHgTsidpIRFaN5NyWZZEUcR0Og0bbirjHo+xhsFgwMHBAYlO2FjfZH80ZWOjj07WcMaysXWcze3jXDj3AsKF3yZJwvzwkOPbW+zt7XP6xEnyvGR/f5/RSPPX3vXdXL1yEUlCZ3AnO1ee5vreLvfedys3JrtsbW4SCfCzAuEhiWIGaRdEyfENQTa9zm/++r/h7/zwO3j2GcP26S0ODg6ZTmdhgdUarRKczUg7GkXCPJtx29mzHF/v8cwzz9PvdnEm4/rBi0TpHHJBOcs4dbbP7XfcTb+bMJ/P+fQnHyeb56xvrGHMKXb39km6HQ4Pcv7gdz/Hw2+4DSUMkYywhWU0mTApRnRswu7HL/I5dY17ktMUomA82if3lvte/UpG031G8yG9JOXqtR3SOCHpdb+KPfTlslqCEeMQ3teLWcuYChnqZB0iJUKYa9j0QKORKpYBqbpYv8yK93icd4Gl79sbrcAgb4vQrwJ+RxlgC0BxEb65+n98YBCESB2BrZh/yHAvDVNLgGw+V4al8ggX2Bee5fBRYRw/+d/9OP/Z3/8b/O//7OfY1AugS0tVGedh7omTCGtLrNMYB5ENWeaFEPyzn/95fvs9H+XTn3gP3kq8AOsd3lXP0/LyyhVWjKt4Am0D2PrgFGwDF6yAW+FDaEPpZRNGugri1W3abhPnQmIMZ28GdNoi2/XxqxtlISW+ctC029cZj10BW50XS9pmoc3B+2Udv+A1BWdNlQzi66/cJKLvlzOVN9+3ghePAubaRYh63NShUrLh0baPUb4aUxaYF5xMZRXVmFPMZ+zsO8bzAq0lt5w4xvb2FpGW2KLkwvU9Tm6dRJczlFfMZyWjIjA5rdYkqhNkJdKEJIpaz7Os8SSErJiUVYiq8yAkzoM1gZnq3GITJqRZ0l9cPE/Yt0RVQiWhJJ1YMMsq7S3ncAXBli2KJolDrUvLPFsChEL/DH8fZg5rM6RajC1VCtYHa8ytZDh1DHoB6NBxgkMR2xwZJcgsJD/AhQy1C4bzou1WN93t8sWAtzqLff0sdYILCIzD4OgIDlLjPJlReECroKOdWUhskOJwxiO0wroQDqmjCG8sDk85X2y+A6PTVm0pEUoTawupIlIyZA32wZESMrcubHzrq+eXAi9k2FvWQIR0DUi3ygyVUle00EW429dCcXhCaGdIViiiGbOZQmK5csFjrQy+GO/B1w6qSs7B08gVwIKRGOaREL58FBhOFSKr4ilmliytE1/OnTduQOHCHrtylh0eRtz3DSWXzxcMdyKEmnHmtojzz1UJTqShNlu8Dxr3IXtkyW1n17jw4iGmVHjfDh9dAFbNq2LNOQGiCpG0ftkRWDiHFxZrLGkKs1moNIUAozE+Ryt45w+8nl/9t48GIlHNDPQgvOMHf/Dt/NqvfbgFhFZ/RAHLmce/0JycJAllXuCJedMjD/Mnn34CVy40Y/v9PvP5fAkMX53rj7Kzwuc2uHozN+xoJ47hgx96klEG0s+q56me3WliofiRv/0I//J/+0P0mubYxha7ewcM1vvMZrOl8ymljtQDdi6wa+t+snovzTMKxyKp2DJg7IwnSWKsK3niiSfodteOrOOXKl8hYYyFrgmingwJdFRvCZaNIVYxhc3QTiIiz2R4SK+jGM1m6N4mnV6XCQdImSFcjpQCjMF6h/I2MMiEpanDymj3ShMRM89KIp0uGVDChc28cxNS1aE0UwwZ/cGY7Mqc8chgScgOL1KUA3xhuPuB43zkKc/vxQUvdu5j+Oo7+N3/9f/iHd6R3/NmylcUDEwG0vNNr38DTK5w6sZV/t+/sMY/+fCQSwbWOmtMp3PuWtvEq6AvkZVz4mgAaycZ2IQ9LBqJkwTPj6+E5aEy2COamGUfjHq8CgBdvSnwNUNAgTBokfO6W7p8dlfjrMcYx3v+w6f4vQ+8gmODdTo9KOYSqyw92aGfRJRyjHUxPa2YFB43d0QyZmoKfKRwuWHe7cN4zolTU4TK6PeBaYzxEd9zdo39IuXRnWt85x0n0VbjFTx7MOJVx9PQEC6ENmtvGGx1GU8dxo6x5hij2ZzOQNGT6zjGrKsoZMOcGbKf/j/p/zffzCtOnmA66eJ8jio0uZ3QZY04dqA0mSsRNkW7nLmfonyCNCWYHlZPcTKwibYGXVSeY8qcjlKspfDGdI0THYg7kv1cIKSmR0QmHeXX0AL757Wc2r6PS5efR2nHtWuXOXXqDFJJNjbWiaMBh4eHKO8oi4JYKYpizmAwwBrNZDpife0Y5587z40bNyhyi/IalYQNbp2koM64FiZgqkQSmrIIBqUxpjnW2hDSkmXZUmKHeqNbL44H+yPiuMNkOkdGOW/71newtrmN9wKlghfnNa95Dae3T/C5z3yWFy+cRxCxvb3N5es73Hbbbezv77O5eYyLl6+SZRl7N/YpipKHX/FaHn30IpO5ZW1tjStXrtNNAxj2wD13Mz7YI+kN2Nraorc24KmnL3L/fW/lO7/5VcR6nSeeu8itt7ySpKO5cOECRVFw5swZpsMRk8mYSMDa1gZaOzJrefbpz3MpjbHGo4VjY+0YKor5th94Je/5pce468xZpJii9cKIvf3227lw4QL7+/vEccx4PEboiNlswkc/eIMzZ04Rb8woqwy3nSghHkVMn5lwQh/DFSX99T77+/tYJ9nor/Hcp59m7eQA2Y25cm2H07fewvDgsAkVfrl8dUozBryFRlfEVutUFVbqQ5gWLBvkQgQNuhoIco2eS9BNXTX86g2jWQFK6ivjfXOMlDfrkS3uddm4aoAcV2dO9c180DwnVKGzgZHf2BqiAnzqTKc+bGi88zgRnq42UmtlWKGqTPEtgXKpBWdvO8NkNOX69UPWz2429x5Etz0feeyTfPObv4NXf8MbeerJjzfndc4hrOD5S5f4mZ/6F7zv93+D05tJ2NC2mD/tugzA3HLoiljZYLxUewcdp8V3tW/W+xDyiA/gnhTBuVjXlRQhAFKKhT6ZkD4w/1dE1Guvs2tlRZNtVgMW75a93XVb1jpTNOHG9TMtbwDCeRXO2eb6oZtKtPN4JViRGPq6KUHPuGIF2Xqj6wPYzhdnCL0UK4NwltA/WIRL11cQQmCKklhVYbIe8JJYhg2wEjGR0kSRB+cxNuhaK6XY3EwZW89gfY27T93C5mDAhnYMp3N2D3OkhMNswvBwwsFsymhSYo3AuADESARxt0MaS9K4h9dAmaNEiiGE4quq6zu/LDrubBjz1llkBdQL6VvZXj3Whn6eJEmVAdAiZVzNU6GPzufzpv8rGS1YedFCM08KjVA0rK4gWm+R0jHLw5i/dAA7hyVJMg6/sRZhw0yZGIMTGmkMJF06sSSbZlXyimVWTJsdc9Sc4L1vgV0gvOXa3i6//fvvZ5Y5OjrUwebJ43zHN76VTqeDd2XY8/ggMYSsN/Q2JBNRCcoGAkFuDQYa0NAg6CcJqfJ4Z8jzfAkskPU9B4QPoSGtbBPnHFaEsN563q4ZSN5V2ns+LF22mpuNA+3VkoNoad5t+nXQ8/qaKS7MfUKCiHOUiClmEd1eTppKyszjXL0PhcrDBnUwaMWiC/NwOGUAuRfs6brUc7N3EustxnTors2YDQc4MQLfqY4UeF85aoQLKTnEzQxwWvMKUmAJ4+nERsxTj3m6/TQ41MqU888FjWohIMtHrG/0yaaBGa/oAJa0Izh/blxpvC3Y6ot7X7xqJ53HI11tN4RJo72uhnVFIaUgy0yoPrdIdKR1SFjy7l95jP6appxChsf5srIxLP/fr320MiIM3i3sqwDIiUVI+kqYb6yTqj0CKG1LUwHaGY89/kTjCAxOMEleOQagWuvVzVmP27ZWE8bcyGEsNNuOKu15JYoipNA4n/M9f+kuPvOJA5yIKXLP3v4OVllKLL/6q58i6UUIJzg8HCGFYD6bheSYrYQQwaZbXGspw3vjyF1IH9R/qwG90HaWsBiYkIzUB/kDqRZEjW63W/X7Lx03+Iox5XwzGGUjYCxqcUTn0FIGfQqpKZ0jyktKLZg4TZpqhLc4NEpIrl85x4lTt2BdRGlyhFNgQ1iGcB4vkmriDfHB0kWIyLK2dQsHwx20kJX4MEjh8DYY2XlRgJdoHfPUuQk6TdjbtUgriHod1m1JrBTv/p2rZHnMRun4J3HJW6TggyKFjTv52CDhu+dr3Heyz1PlHN1NGUwynt3d5499jM4kRimmxZTXaI0kLK4YRyfqYHFw4zqpFminkUikLPE+IsR/h/v2XiKaQSQIGxyFkMETLWxAfp0xRLHCGkJdxD3WNo+RjudkWcFkPmOWa+zQc3XHgFFBMBPByM4h0RgfMeiAmnsOhyWbcgMfdcj1HvHMM9Z77Jh1jnc96/0IT4QsI5QxPHJKoHyMKcbctnmMjrDkwjHXnseuzXj9Vo9prFDa0bWK4eyAU6djXBZDqZnljs1el7yIwB8gkghhMtKo4NN/fIV7/4vvI7FnmVuHExNsIUh8ji2mILtMjEdp1UwGxiuECxlqvBJIeYiXYGeOruxQWsNoWpAScU+iuCW2HEtKItXlTXrClVjwwixnliQM5CEzs/GVGDIvly+jaLrcsv0KVJQxS6eM9g4hUrg4xuVgsjmiCvmYTGZIlXJ4uEesBiS6jyuDoKdxFdVa6iCEGuvA/a5KMCw8MgrpsufzAlMuA201NbrxGClJWRQkaQJlWXmDJYeHIwQx8/mYKE7ZPxiytXkcH9ebGx9o2aLDiTO38EoluHz5MqO5QaucNO5w+co1yrJkOByzffI4k0mgaJ+9/W6u7ezT7SacODVgNJxwYvsUwhre8k1vRcYeXxaYWYFXkpMnT/LqV7+B/cOU06ceoNvtkt5YQ5ASRYq1wRYA0+kUrTXdfocyK5nNS/aKQ/y05OyddzCfjIPmHoJYK44dO87W8YR/9DMP8LP/4P+m3+2itWZjY4M3vvENfOpTn0Ipxe7ubmDgJRFxJ+bUrXdS5JYXnzngDd9yC5fHl9je2uTKs9e49Ox1TGF56PZb6SUDxuMp3W6f+WRKFEXEQsPcMyvG3H72DnZ3dzl+fPsmNs3L5c+2LLHgqqJUHfy/YL5JKcE6pF5s4GqdNFmBK8LHBNHuRZIB1QK12npizYahOqZ9P1B75xeGcwibPTo8del5kNW5l/VGAkvOhv8TNsRhExc0X+vr1HGTsgK9amN8yehzHu9dyPRcbe69BaU8//rn/jk/9t//D/zY3/2vef033Ik1ga323g99jItX9ukOurz69Y/w5JOPUlpLpBOct3zgEx/j4bu/kU9+9o941b23B0CO5cQIN4GRLJhw7WPqenE1fFLPj+3ED94hPAstJzxSyEpnWGIFCOtw0iErXRlbOy+WALmqnbyokoYt36doMVPaXnhVZX9nxQhu378UdR1QbQoc+Ai8azTPrK3Dnqn6pAYkXuWUpVkSvv96KkfVeTuBx+rmo+5PL3Wu9m9ean/WXK8oiL0kcgYR1fdRab55E9g0SoHwzIuSWVYSx4EtWu87Eh2Rqoi11FNaGPQi1jYG3JYKRqMZ1w6HzGc5jnlw0mUl2XiKm+9ycGi54DQn1mN0JBmWDmsTZKSbrIBHaek1TKDWeK/B5RDCbtBak2Xjpd/WzH0hBFEUNJqC3RHAiib8vXIS4g1Ivwg5FaIBUOvdr5SSApiMbcUKibDeVXZMGMuR9HTTiEGi0cc2iKJoaQ64mRXJTf8PDNRWpkiCPfHe3/2PbKxtsn2shzGG04dnKN/wRjqdDqKZw8O7qhh0UWv3rEUA4+v1vXaKShmhohTvQzjhbDZbagMhQiIe5wqUCHqDpVxECNUhhauhhbVjtr3GNAxbt5y4pr6fZl34GizegROGrQ3NaJxipcUaGB1qTt+uGB/WoObyfA1VsoYKrPMO2kkZVvvWol+1+51lMtQIkXH3fevECYwO4PrOnLL04DV+BRy76f69x1rP8eOwdzhhbX2DnSsZAPkcdOTwPmqAMGMEsT5GkRlUUq0t5AhvyeaBCbkA2FdBwBbgJrjpuzBGVoG8as6Uy3Wx9Dm495hODNblRGqDvJzyyJtexaMfe5zSFDjqJDcQZEHCdZSCY8c2GQ6HlKUnjmMODg7Y3t5GeEeWZUi5DDT3uz2m80XioyXbSFY2gg+fV5/xqHmjzYpfbf92aQNoYU23XBs53vd7FyitC5llxRy8agDeOkopzB/B3em9b6q/zsxcfy7L8iZbrz7mKEZwPXe3/6/a7NnqPc9zdCQRNV/qyyhfIVBOYK1rhUHURnhIZx0GjcVLUTtD8DoGU2KNYTKBJLHopBf+Jj0He1fo909UArsOhwYcxlomZq/xVhtjMN4RC1BiSi/R5Jml1xswnWSUSjYP3TSWVzgyvKkMShEyu7k8q8I/Itg6RrI/5Mf/3v18+KMTXuvnvOvFz/CuruUPv+fbiKM+bgzqyouMRhOGacw4mvKDt2/y+KURGQl3pAWfnzRWHgU+3Eukib2nIzwzaSm8RCqHFw7va+OvFpsMn0OnEOBVCM8lGCTGlWgkpfJIH4Hu8YFnR9y6Bt4nZFZQlIHKKoUhEhqlS3QcY21ETEkaewrnEU6TjXNcPCcRHSybbHUFpR8iXIaOBblMiGdzfDTibYPTbOcx896EK04SRR7nYnI35hPDLlG8gZB9YkYopTh0Hmk1W+vHGe0fsJ/nDJIuyIiMnCgpiAWknT4uKTnMrrH19r/IJLckbgsVz/CmREmFNA4pBH0lKH1EEimK3ILu4eYFQloUkEuBLEKiAKskutNhY16wrix3JY6HYsFUxmS5Z/SODg99RrGvYg4mJUr0vqAX+OXyZ1Nmk4wk7pGqYzh9HTEQ7B/uUroJx09tMhrvIZVCaU+WTdhY75Foh5AWIUqc1wyHB8RxQhxp5vMc0QkLemB2SXQUNfpvZhQysRZuYWwF5pxqJvU4jsmyDGstcRw3IRpFUZDnJVJE5JnDe8ndd9/P+kZgvOCWDTjhg9bcyVOn+d53fi/vfvdvsL+/z/FTt7CxucnOzg733HMPf/SJT9DtdllfW+fOO8/iraUo5iRphDXhut1+jxNbx9BOMp+MydyIeOMYDzzwEDf2bpBlwdO1u7vL6dOnKYqC69evY10IMXHOkKYdJpMZWxubTIcjjh1LOLV+K9PZHuuDAS+ef55+p0sv7ZAMNlnbFozLS/z9f/qjvP8XP82zz7zAeDpm45kNTpw6yXw84aGHHmI0mxLHMcODQ9Z761wZXmH95G3sXNB0+l1mMyhfyJEzDYXh+o0htx7fIk0D0zaKInZ3dzl16jS7u7vojubg2g2Obwew8sSJE3/m/fLlsii1cSLlYjO4YIZVYEwNDkmJ9S0wTgZPu1aiYiV4XBUmV4+V1U2PEAKNwMvgrWyQL2qDyjVrZi3qG4yoxTnaRthNYXoQwCIRwqu8CMLKUqiAAq4AgIIFqF//v10vRz1D410uA9Dv5QIU01ryT3/qJ/nxf/yT/Ld/7yeQPmNrLeKZ58/RS3tcvXSDD33gE2RFwqCjOJyO+d3f+0O+7y//CNd2L/DwPbcsWBywlP1ydU0Lhj9LYTZ1cc6BrLSWpLrpt0rIpQ1IHeLnCbiAJoT24gROLG82hBDLISVeUlvbNWi3er1aB7Q+R3uDc9TGeAEmtdqqBppEyx49wtPvKSojXDUJNL7+imvAiMCakyzkalzz2Yuqj8mj7aVVwCT8aJEYRHrfZGCt26JvZpyJDX2tiISj8B5JYJmpCNaFo1SKQlicF9gy9A0RB0DV2IrFjkF3+mgrIAvtGSFRSoCOICqIfIqMBIOe59RGBGXKxaHh6bHnr9/b5/bjA67cOGRYKq4c7HMjz7hmHJPckztFSPMgiaLAfouiKIj/E0gLrPRlW4fB4hpWl7UOV2lhu8rOCPNllWRCioYpV7/KskTXIIE1FLaVpKUJHV+AlM7NWuNGU9pgfxyOM7QKYKCv2mVltqLe8K6W5txA6R2qum9jHFJoECLICni5xNaRJjg9vQ/sqVhXc5ELckTSA85WgGQYwwoRHIMyJPnKrcPOcorCEabmSivMeRQGTbi2tTmlj6u5DJSzeO9aPtkgzh/YQSCVbByw3gRCiBNuSceynlvC/1UAVkRdV18bZbAZxtRgwzOdgootLgNnFNculnhbsZZd6GfOL1iKoW7bfabNsqxZyzT/D4yqNqAjAI1znmefnGFd0ILzTpD2SmbTOYP+BrP5sGIwVU44UYJXlSMvIunC/n6BFF0mwwLnQHqHtQMefERz8dyUU6d76DS051N/Omcy8yhbLtZ1BL1+n/F42gBy7UQyizG5yvzzFaXGN8l5m+fz1fonwNpF//PeY71pnVMsQG803QEUBymPfvxJnI+R2oPVKKnJigwtFUIGgpN3nr0b+yEMPi9QQrI+WKPI8ipCaJG8pJ5visIeuZauOh/q3A1B1qLSpj2yTm4Guurx07YHanusSbKDo5yVOJdXPSQIih0Fqj388MN89rOfpU7MWC/XNZgvgCRKwQmMK+l0OuR5jneiGed1m7bvbdUJJcQiWVSwITxnTp1mZ2cnPIsMOIzxXzpJ4CsDykkfDOTqQaSXwcALspwIIUP2LkdoSamRzuNEinchdbArcoY3LiJkEgYehuHoMtaBkglCGpTTzPMcZ4OXpzBDOqITNgJO4InwGJSAotBILVHYRlRZaxVEkmWJNyoInZKDdJQYhALnIozM2Z6MiMWMfrxBFs34RmB/Q7F1Y0as1jF2xkDPIFojUxFvveMEsxf30QNHF/A2J7cpDypwRUkWecS5HcpbTqPWT1D6Ai0jJBItFbbKklSnE7YrOn2+rk9vkegA2XlRLU4JujQIaehEBeXUMZ5qdOzxc4uKJdYahIwQ3uNNWCCtDpp03iYIJ4gxDKSjMCmZnjIvYwZakwuFjSUdF9HrOGb7EcPZFttRjkwEH3zB87ZTHR7PBYac37louON2zZ5U+GTE9RuCk9GAAz1CdxS3njnDpRf3yLM5QmyRaEFCjvcxaEhSiRMRI2ew/+Dv0n/LX6XfGTMqLQeiJNYFO9OS/RfO41UMVmP9DFQAbjv9DqXwxM4hnUZ5QSwcEwq+6zvfxud+5Q+5//9n701jLbvOM71nDXs4051vzQNZLJIiixRFURJlU5Yt24ElD7JbbqcNZ7AdwPnTHThIOgYSBDEQIO0efqTRQTpJ253ulg2rbcuRZMmRZNkaSUsiKUqUOKvIImu+decz7HmtlR9r73P2uVU0ZCBqARIXcHDPPWefPa699rfe7/3eN9rlXhSD2HIpC4n7jv3Pp0wGCsqQynX5a1Z5MnH86+/GTfNG+46bNAKTlYzyK1RVSbe7SLgWsLm5zeXLF1lcXGRra4dOp8PhQ6vsbu1TpBVxVzNJCwQZeTEhTROyLCOOeyhhUTrA4MiyrM6G+gHaVtC4HbcfHHmeT7MqzUBe5DlxHJPnuTdJKUsmk5SqdAS6w/LyKnt7O9z9pnumWk3GGKIo8tus6mx1ELC4tsIv/8c/z7//oz/FmJIgCrGu4sUXX+Thhx/m5fMXABgMBoRaIqVgONpjXCTTjFE+GYOoELZg98Z1lnWEXlzn3e9+N+fPn6c3WOD61as8+uiX2N/f9Zp3UcTS0hJhJHFlRX9xwLWr11jqD3j7Qw/w5Gc/znC0TXz6FCsrSyz0+qwd6hH1E9Jc4PIQon3+i998H3/6wa+w0AvZ2trClBXj4ZDNzU0scPbsWR64/36uXbtGqDX9fpdXXht6ymIAACAASURBVHmVfHuXo7LCZIZSgowhM4brO3tE0tILYxYXl6ZOuhJF6CJwvgRoY3uTy1evcOf3qH++0TwLromVlNToQE0DT1s/y3StHOWkQDsfqHreZV3egg/cAjWbSM4zvLxj23xG0+s+zfajCdj8Z8ZUzDt/2bmgcP43s3X4fZ8BRwKBEo2Oqy+1Ek7OJt1WeD5Z89smm9xq7e22A7/pcTrhWXPWJwvX1xb4t//Hv+BXfv2/ZHF1jcsXL/my+ciwl4x580PnOHLbaT78oX/D8vIqD771YYZ7r3L3qVWsr4NpHbbP3kvElB3WPn5B7SrZnmw2IGejnVcvKxtmnZx3t5yuUzbvfcwipJ+0zZ0LDM4dLHeZz5Y35a0HAZ02ANcE8cbNG3e0wVzPEMKDflOHxFmgraXCKTUd032/MVONLg9SfP9MtP82rSllFjUDw8epxU3XxKe45LTvHGzOuem6DA4lBKa+bz0U66b3S/P7HpIhvrKlNAVluEApQZiMbiD5BSX43RvGV25hQfgkmwewGmdO6ceTPGdSGmzgmW5O2Cno4+83i7SCvpasWcOeDOj0+8h0TKQ0mpBja2vcHkWcO7LM0JRspHCjLLgyKRlNcnZGKXuTXYYjD0ZV1rJy6CgLg3gucZemGa4yU401ax1BEGIQSCuQ0mtSNqy3qqowtZ6RdTN9Nme9IcFsIgmxbgyrDHY6J7NkZd2n67hGAIUxlBXkRYpWnkEchn6C3dybs3HSuxneignTsM0qV+CMLy0FR5Hl9QWd3eNahV5+x/oYKqsshWhMZFRdNs4U7EJasIairJBOoJp5kJaeSFGlDCcppTFeIqd5jihJmDuU9SW7lA4RSW8aUTkslT/Hje6XhaKyVNZ4wXzHFGjwDCpb6+F5IEOI5nngpiYes/vk+6ftbflrubspWDnkKNKgZhRabKU4dBo2LspWn/FyDXMM9frebkpO2/IBB9lm7T7VfhZ4WExhKkcQSpKxQIiQ8ThBCMlb3rHAM09krJ+0XL9ssc5ikChpyLIZSxVAihCpQyZpylOPShyWG1dHBFLQW+gRxBFBBqXNp3gGwjEaTWr9aTu37+3WPOas9VV9gnlwygOYDdA303uTDkqqKSurMdjw7p927vc7O8PpNjzwKRHOYUoItS/xFa1Kg2YbnY7/rp0wFcIz//xgKFHGYJRCtZJzzeVqA3XNOrxhhsaYcmqAMyNize77m68n0++av02SoUkMdLvdOW24aQLPtYA562OTbz79DFIq1tbX2Nzc9Ot0EtmKDSdJNr1vG6BNalljQzPfgXaMcVOM45rrW9RsesH161ebo0GgOHfPab753Cs39Y3Xa98d99Waqj3bSMDDD1ecOWZQqkJI4zMWzYDepCfczJEoLw22KnA2x4vJCn8zYJHCgCooKTyoVKPHwmlubL0GdohQztO5ncTiCOJFnNVIESFquqE3nnBgPWrtT6l/mHvpEYUjB6FIw5xYdtHlAFskXAG6H/jP4aXniAMv+BnJI5TCkmBIwojf3Rvxzb2E956MCazi8TJlLXKYQNF1IfbMYeLAQllic+X3wYEUDl1bRAvhfPZfNmXANfMA6en6IpreJBaHCjSlqbydu9OMxgVRAKNxSVFUxHFM4DqoUPGBn7+LIvNlnYQw6GtwIbjSl/gWIWMFoXQo1cGR0RE5/bCkdyRCq5jIaZRIOdTzGloffjbnF846VEeQmIRPbWWEnSWE8tp3ozKkt6IIujnORQThCr1Yk6SGiRMU0gciynSIgpgosix0exzR3klGDQT8+L1EFWDh26/swSjlTMdw5PgxTq0usn5kmaWVQyz2Y1++4CxKRR7MpaISBhFKQqX5r/7+P+AIluOhpNIBz9qYbliiRcgnuneybxf59Hidj2YDru3vUOV/OyeVN9r//60XDwiUxhQ+23Nj4xLZJGOxP+Dw+jJlPmFpIUZSUJUp1mUIWTAeblIWe0gxoSoyOv2+p0XbOvNZeQVHHXQ8m1QojAUrHRU+aGzc1hqBX4Mjr0pGyYRRMkEIxWg0YTJJGY8TsqxAST95z4uUaxvXefIbT6PjDk74jHYcx1O6dNSNEFpRGItFEfUXef8v/AwnT6xx/dIF0uGY++57gMlwxJnTZ/jAL7yft77lzThn2djYoCwMRVEyHk/Y2dnl2edfJE/3sOmI9V6Hi088hhYFC8tL3HPfOY6dOsH9DzzAsWPHiaIOh4+s46zFVBXpJCEOI4bDIb1ejyxL+MiH/5it3R0CHTNJ9qjsPne/eZ2lw45ev0tlcoQ2jJMxN4qX2UxfJqlKlldWOXr0GIsLSwz6C5gyZ3d7kwsXLpBlGUePHiUMJPFexu2L61gboWRAJ/RlyFmeM8kLdNRlbW0dYJqhrGxJZUvykWHztU3OnrmTMIi/t530B7w1QUxTTjbNiAtvkKKYd60zeN03H3DaWXCINyxSShAEyrNNRK3dIeX0vWgcyVvrbGdym8+8BpBftm1I1Q5KX+//5rjqw6CtUSOcT0Y24r8HtdAaTTnj7BTQaQNw7f+bALaJTWQzmTbeuOhP/t2/4e//6q+SeZyQyjieu3CeP/jDP+LDH/4gL154gUiMOXfHEU4cX8c1un3t7dcsvBlgNjsXxllfhtoCUw6aPxw8b+3sevtzpZQ/NzVg6ZyoJ8sChJ1ORBq3vhng6nV3hai151oB/DwjRcydr+b9wevevpbTzLuoHVuF8KDpdOI/C8Dbx9SUs5lbsIN+UNqtANE28/NW91B7gt1evmnKgbL+r0agD2j8Nb+dFAW5cyTWkOiAYn0NdfoUwe13MQTWRMXZ2BHXbI/mGd38Xlq/nUDAShzS6wQozNxxlGlGleVgLAMMx2RBD0kchLUBQu3aKMH1umRaUQpHoCTH+t5JVUchnYF3U5UChLOcWAo4vhhSFBl5npOmvjw2DEPe9vb7eeAtd3Pf/WexLmd7e5udnR3ycTJN7jXH0Lxvu742ScHmfZMMNAayypKWhnbYKqWkG0n6HY3SnlkSBAHdSNGNFKFyGONdatuJx4NMloPjVvt9sx9ZlrEz3Gd/krI3Tm66pu0+UhTFFKhsM2CbSXxVVchGIL9l4tLc740m8NbW1vQ8zSbrzs8vS4MsHamxOCUoqoqiZmFbAoxTc2NKexygnjdmxrvW+nJAVZcZz4837c++n1rjnlqWjs1rjjQVWKO8jicNOFXiGWINiNv8tmWuY+eBpb/ps/Zv5lzM61ej49zEg8YIvvblXcoy5/Krzb3gv2/6WHN9nHMYm1OUCdYVVCab3ke5rdjb3yXqZjzwSDQFhyrh2ZvOSorCzIFKzT42x3vw79/0ai9TuJnDa1v/tX2OZtekAfckoDyT383c2dvP6OaZfKuX1nrK6u10Ogz6HRbXV2szmsAzUlvLN/08DEPCMGTQ6bI8WOCO247S7/env2lezf9z9xQ3xwzNcR4cA9I0/Rv65fy5btr29va0/P5vuh8bnbhut1uD7tVcoq/d/w5us92a8avZ56IoeO6FC6+73Vu17wpTLs8rzjnJBekotUCS8su/cht7V8d86CNbnH+pixMpkpp/IhwSOQ12JI5YBxilKIqMsF6v12+RPuNjFCJo6v8tQngaq3IKZxVZOqEfDJCBRFWCXCm0DkFmlEWKL3ZRCHzm3FkDsgKrwUl284JAeTHIpaWQrWsJl0XFz/7vf8wv3H8n/28v5Jvf+Bb9v/Mr3Pu2c8TkTGRGHKyyIgvKzRHvOvejXH3iy5TvXSV69QqxCejHHeRohzwS9PYFLK9AaFlf1eyk0juDKnCm1ksQsoHRfWAsvVuYp+TqukjHU6UrfMcJnCDDooSlEhVdKfmRHzvClx7bQQUJp07dxsuvfpu3v2eFT/zpAoUdYlVEJwjJbIhNc3b3R8hehcti6F3HlZoyCjm2HLF07CiiKJE2Y0F3eauzJGHCR15L+I23rrFfGEJlkKlhIZJslSX7iePYIUPYjbGZYkk5VFwRZCmDwSJhX9K1IHOLXnCMtgKiwAvFL3QU4WTkGUvDr8En/oKxcJx//jWWglVORSmXuxGbxqGDGOUqlAiojECLBdA5tgqodIVDo1XGpAxY7sT8vQ/8GncEY/aALWk4Kg1j0aFrE37z3iP8089LtpUi272EdAVxN7xFj3+j/YdsJq+wxqCsIlIaoSWhFGRZyrgqptPHSEmUtEglCEJFliUUJiUKFasrA4JAk+c5g75nxDUDs5RyypYTwmuUhGHoJ4jTB38dCDMLBsqyJE1zOh3v5BbHMZPJhDTxBhDbWyOStOCd7343TigqJwiUnG63eQBJKb3gc2FwUrG6us6b7jnDA+dOceHiJjs7GSdPnsBax7Fjx3j66afZ3d3FWq8J0el0uH79OisrK/zZJz/D5fvu4y13nKbXkdhil0k2ISwHPtiuKrrdLg8//DCj0ZDBQofR2h7b29v0u0ssdPvcf/o+nvra10BIut0uK90uWkAUl5x78zn2htfpxH1KXRLH8fQBurc/5ofedweXnwrYvbHDnWfuIE9Snn/+eU6cPMHp06dJkozxeMzly5fRl3cJdhM2dvdBCpa7AU5C1IkZDbdY7PVJ84xJltKLe14jczwmDEOiqEOVZSS7KfnuhNXlte9dB32jTQWw2ywwmM86NiZG03I4oBaEm+pQ+cDIzYFtbdClaQc/a7YxV37Y2oemHQSV2u0gEDcHOrTiMde47DmfXW4YAnMABTMx4SbgbAegBwO8duBtjJnqsFhrwVXccdtR/tU//p/4b377dwi04Fd+/pf4T3/9P+F3/uf/gb/7vh8l0BFSemOM9jHcajsHz2UDwN3qfB38jT+/nm3XPk83L3sL9uGtznWzD7UOlnBiLjhun9PX61vNON3ezykrQsrW7+rJvTowoW713SlDDoep/LU2zjIVKf4BbM15csKhkBjrwWjnaldC/HlSznPB3euU+ja3jaQ2+sDWLNkZW6B9DSdlTobAFIZQCfKrl9lB0O1EiMrRl5L7uo5RmjEU/RqsbztielZuaQyVZw7QiwNEzdix1k4BM90N6YmQbqg5u9qhGFc+WawEb3rkHvqH1hhtpAy3N8myhHSUY1QHhNd+lhYCJWrjgoo47hLpgP3hjKVjq4K1I0f44Ufew+kjyyz0+1y98hp/+NGP8cQXvgydgIV+lyqtSJymrARJ6RAqIIw0gQCpIqR0NbDcsJFnroDNOXQO8luwkBQC1xjloVHKEMchPQmV9ZrbKpwxi2f3YI2TW0teVdNxtmqNt0VRcPHKBru7eywurbG/swt1gqGyZgaKA05IEpOxWzpCWyGVd9x0zvkydyQ9rUiqEqnANqLxGHTQ87IWpvIxwXCCMb5/NXqVNdZex2kF1oAqa02+yuGExgjQOIoGoDWV1/R04JMtjso5yqrClPPOzn6MmjGJm3Pw/eTxALMySxDIIOHkHT3OP1s/+pxm8+oOuJXpsg3D3f/vf+ecmxv7p87kB4Cm9vubn1+OxpSjMSaafV+DWVPTDs/uaz4HSZqmvv/Xsfds+5Y4jimKAlt5tu/VixnXLpU89EOLfOtrEleVGCkwlQSXejwCiKNwav4mhJwyrdrPJ2u9+6qzreMRdZmrA1Ozjm8GfGpBvpYshz92idfpk/X9WC8+1zehYbUy/Xr+mSelRCgPsi30B/zwj50m7BiefnRvOi4e3Kdm/UEQEOqAtcNL3PfWPkoFTD5XzB3/NHaxnoHuhJxznm1eB5M47b9RFM0Dc+5m/c5Gj7adaDkYFzaAonGVH8ekpCy8LvBoNLopGQezRF772P218+YfAFlWsLg4mEoaOedQQchDb7udrz5+nu+0fVeYcneffRvfRlMgUZUlUPAH//YyH/nokKvXJVLkswclM9HmJguuhEQ6TyHXOpxOgJ1zaDU72apod5J5BNk5w/bWVZST4BSB84GDqrwYsHO2rt/2oJ5EgJNIR11SVk7r4rf2cpzy1ORNoShch9dcny9l8KFogAs2kSpkYjpQVaj9K5hYctJc4Sce7JFdDNjKHUnpuLK9jxqsEQUrEKr6CsRkeUUuvc22QCGE14qTxqEcBMKLUnutAoMgRAjtwTlhcaaqLeMtRjgCIZAoIvoUpeOddw5wzmAtXL++QRyG/NZ//WUWDu1SuQLyPY6e6GCtoRMqZBUSS4mooEoHSNcBkdNRBuI9TJASyQ7HLpX0VcVL1zv89PGItIJQhfzBS9cgsPRFQKQDuqLi1Y1dhHUErkMUhoQWqiIDWxGgyStFoB0vXNxlcXGCCGOk1AQdiYs0thszPLLEU3/1Jf5hpPjAmUPeBdP2CZQmw5FYybiQVCbHBBFO5midYlSOqksSECGhjFCyh1TQV0tsmQgRaPZVQKbhz3Yi2DlEYDMm6Q6LGA5FXZR7A5T7XrfxTkpVQhQFdOIu3c4i0kI3jIlVgCsqnCkwRcl4LyGbJJRZ6s1FogBjxkDC+sohylIxLicUlSGIYoSBIsmJdYByYPKCWAcIY6cPsKasKQgCAqkwRTn9rA3s5UlKnqRM9ofs7WZcurTDqVO3cc+b7iKdjDBlAk6STLzQrNd7UmgVIoUmjDQyjMgsHDl8ik5/hdtvv5277jzFjRuXWFlf47HHHuVrTz7NcDjk2rVrJElCURREUcTnP/95vn3+VT72mc/yzz/4J4wzw0c/9RmfnKCe7APWGVZXVzh9+jTjUcYzz7zAL77//STjMZWteOrrTxIHGlsV7NyYkKQpRbHPmbsPsbO/TSA7JKMheVKSjLKp6YWS0Isj3vrIYdI05y8/9WnuvPNO7rzzTpJJzt5wwl13neVo2OVIJugEmuUjqyz2+kgp2dgdYgpDMR6zPOgDFqTm8sYWo8mE0f6QXtQhiiJ/zAtduoMuG69c49q1je9Z/3yj1Vlx42gMEppX+3vwEyXZeoyrOh4wOCpnp+Uf80ynACk1WodIqev3+qbMMDDHWmjr/xzMHLeZNW3jgmYdc4Gak16LSDQTjYbVJmjKRBCe+aWl8pouLWeyxkChfS5ulY1tQKHmZa03qXI1iPcnH/tzlPBC55/44schDPit3/5HnHvwXVO30DYD4eB5bP6/CagT/qWE9LEY88scPDeuBlaUkNNzdTPIaZnNGJi+l9JDMlI4lDywTSt8uSszx892eV57YtHuU+3jsvXERQo9B+4Ze6BUqgYzDpZPST9A+rFZOkxVIcx8xvwHqc1NoBy+yqXW7ZI4TD0Jd0LVr9l9I/GM0eav/71DOOMBEyTGCcwBJkjTZJF4ppSQnDi1zL13rtHFUY0LrBKkDk5jeXcnp68gFAGqnpiLWrvVCUspFMigZnOoW44ZUiv2gJVjixx75C6OnVpCSE2kBEceeDuDux/m2F1nOX3XaR548Cw/8rbTHF8JSNxsHGqOYaAV/cU+QWfmCO6cn/AXpaMT9liMuwRRl14UIfe2WOwHnDtznB9+4AzvevAs73/LYf7O3Ys8fERx3G5iJkOO633CfIditMdwf5/x3i7j8ZgsrWrmnPVl4s7PsqRrnKpn+2bw+lVlWZFkOeOkYJwUDCclWa6orPbiOG6eyUS9HqECoiiqNfOkL0MuS/I0pUgLvvmNp/iDD36EP/qjP+GLjz2BMzWbub72QYvJuD2C3VSxnQk6cYjSEYgAJwUITeAqFrUkcHYKpCqhUU7SDQOkswyzxAOhxnhzGeuBkNJBGChUJ0KGEaH058WWfq4nbKMD6o+vqisnjLNU1k/KK/z8sLIaa+oy+HqsEk5O+3XTh0SdVPh+KmF1Vnh9VywnT/e4+hq+pFhYlHLccdcKgR6jFb7yxPnyzLaDaPtZ57UH3ZSd3WbDNd837G5Xz+GtraalmtY07LQSpcTsu7qvNs/N9ufYCuEMSjhfjecMSgk6nQiHJc0SjK2oTAnCYF1JaTKeeGybKJasHunx0CMD3vFjPRYGEWEYgzBkZTYF5PLS0OnMqjWEnZVvzv1tgZamlRxo32++FLiW8LAtkwTnZW6wutZobFcR0IpnIJBq+moz3tpMtjiO6feW+ImfPs0TX7zM5z9xEUvFkbU1FvoDep0uvU6XQafLUr9Pr9NlfWmN9eVlfuKnb6dKLV/5qxs8/oUt7nvoEIGK6XRijh9f4j0/8QBHVo8TRj1EJ/Rl36L1Ugolg+lzuh2fNa88z+fiuHacNh2/hZoGlc0ybVZtk5TzEgUSiZqe8/Y6D2774P/NNo8fP45zAq1D4nhW8grUJdqOrz75Mu98x9nv+B77rjDlTu1s0v2Zf8bV87/P5otPUqSC55+sGCyGGBsipUUYj0cJCYX1FG9ogimDFQKJdzFzUqGkJC9zQh2gtGVv+zKd7sLcdp0GYQxCaIz1NrXD0QZxOPCiooAM/IAbd7Sn3TqBVL4mHid9Yll43RhHiUNinHcNs1KircSGJTIyXHMxzpYUSUkUK/pqghaO13pHeGu5gwM+/WLGj/Vv8PCKYCcTvFJV3poXyd5SwJKrILWIqkSGAYGKKV2FU945RKJwrsIK5UFZwdSNDpwXTkWABicEgQhR0k0FDcNIYK0isxoVaM9MdI4kNeQlPPxzP8knP/YFUhxHj3a4+EKBExYlEjITI2XIwCyhIsPxEwNcUtEJB5S25Bl7hTs6FftJjzPLIUEhEGXJv/z2NeJ4gXR0jYXVQyzFfbZ3rtLRMW4hQgwF3XwRS0IYxuRpRkf3cLLi+l7JyfWeN7sIQsKuIQocS5Xi5PoCP/XvJrzrnqv8s9vfgtv8OolwuFDRD2OiwCKoCA2+vKDKvCV02SeyFiMUmQwYqApNhtIKZQagDEVYgoI9Y3lhL0ZQ8M3zN9hIYo72DBu2xwmdsiW6vNG+t+3KM2PW7+shpESqiiiKGI+S6QM8jmOQUBQlnU5A4Qx5VuKcoCwyKAPCBcmpM7ezt3GVcCkgMI6trS2iyAszS8m0JERr7bXlpJhS5RsafENzVsJrzPX7CyRJQjqekCUpo/0hr1y8ysaNlHvedCf33vsmtq5fx5YlpTXc/5a30+l0mEwmrK2tMZmMiOMYpR1C1CLLbkCVJ3T66/QWLVG8zw+97R1E8SJaSO4463jmmWc4efIkFy9e5Ny5Y5w7dz/D4ZAw6PPapctsjDb48Mc/yT/47d+ZCrK2M1O9Xo9z585x4cIF7rvvXj74+7+PUoorV64gFXT6IcePHmNjd4tFbbnt3iMUhQ+0kmTM2uoySvtM4UJ/oWYcjKmqiqHY5uf/s0f41Ice59Of/jSvvPIKR08cJ9vY4Wsv/yXlOOG+O+7ixt6OF5ne28MpycLKKlmaEKLoaDllCy2tLLOfjOku9Ckqw2qvh3OOQEeMRzkiXOWTf/nEG5py38PmAWY5ZXk1MxNrvUGAc26uJLIB4pz0WWflxJRJBw3w4vVUZpjQvOvjrcwZDraDoFSTOW2+O5itba9rLnPa7J9ra9hZjJktp9WstEohUDUw5+S8aHB7O7fKFgvhmbxBEFAZhzUFSimubu+ilA+ms92EL3320zz04AMEwuuiGWfR3hZtuv83abY5fLzTgFCtLLzDzQWgr3cu29pfDRtQIBCNE22LiSCElzaRuOmyRtblo3a2L5aaQdACSrDzWm7tfbLW1syJgwCdnE52mp96QM1LofhgXE/Pi1L1pKieUM40fZzXnqoBvFsxK38Q2sH7B5hjJR68JqLtTHeLEmi/fD3hnn7qpv2gzXh4z+mI3ewwW6Xk4V//GawIuef5J9l5fptgkuDyEtk1bD2WcySoSNQ8szaU85MsJdTcvSalJOx2vIGCFhip6Z+6jXG4xFhuEivPDo/PvA8nFXL9PpJvfxGXjSHdpZeGjK9cmltfk7zrDXoUo2J6Dzb74F3dS9AhQkdQlWxdvkKgNf1Bh06ngzGGQRCAzDgSRAgVYhO4/USH5dIinKCjLcNru3xrK2FSVvT7XZLMkVae5W8NBJFn+2vltac9G9W2Jpu+lHXKasHHNIW5dbnprD8wnehPE5I14zDPc8bjMdu7WwghiIJwOvltxuyy9IL91/cmvLKV1sybkGEpSYEw0GgNe9J5HexIE4Yd4tjvY1SNWdSGtCzY3tpnzhm7boEFE2ls0POgnhBUSpNVvhTVHOiabXZQewwonSQvC0o3E/dvPzeEELWpzfcZRa5uC8uwt+2dxscT2Nv1AK1EkFYFz3xDo0QfaxOkCrn3zYJvfXMXTJe25NrB597f9HkzMnh22a1YVP7VLh2EWYmzH+9fn9lsnXfLzPMcxLzO69TJ0wmMNexs77OzLbl+uTFwCnjwhxcZjxZYWBLsblSUZcmLLwxJkgSl1U1M+Nd77rf/vzVbjgO/UUgZIKZmKfOMfyFsDcoFSO3dm/24J2+Sgej1evzET58iSwXPPb3HfjL298BOwerKUR75yeOEofY5GGl44tFdHnpkjacevUZZpnzuLxKyzN8vQZ7SXVgjDCX97iJJ6nj8yy/R6/f5uV+8i8c/t8H1rQ2EMLNzI2c0P2PETffdwWdBu7VjFNdiTTbzhZuAu/p9EAT+2UXr2XUAeGuf71u1S5cucdvps7z22mveKOh1rtWTj3+b953+zmYk3xVQ7tO7l3lo518hxGGs8E5KIwPpTkEn1ATCU92FcCx3BozNmDKXOCqvi4ZnzZWuRn2dAGvoak1mDa4C5RyT8ZBp5hr4H//Xf8Q/+W9/q9YP8L+HEOtAywwjFKVLkSgCNKmtQFWYMvQadPjSUOsqb06BRriS3FikDcBprDFUTpHIiK18g8PdU6jAYY0iVSW9wguU9qoBUgmuDSteiVKuWsFiVnIyFBQvnieKYpauD+Hhu6EX0gv6fGVvk/tvO4UbeWdUJwW2MjV6XFCiEaJAuAhwGNeU/XqhVu9RVFFZixN15jrfYfHQKr/7oacpiz7rx1YZ72+iBPS78IWPfZ5ISOJYozuLjMtdFjsdKkJCmWFdTjeakGYLPPzOkO3PgNA5CbSfRQAAIABJREFUL3x9h3P9AVKO+Mae4eH1ikLBR69eZ2WtQ5kHyEoSC8217S20tMgIxqlkMBriTIk0kl7YZ7Q1QuicNC84ubSKq0LiqCJ0EqM1g6DLxWt7/N+ix7vuWCayhr987qU6cyBYjyq+bR1bmyVG5wgncEiwOVJESCPZKwVLkSGwFUWlyR10OiVxJyZ1JVbEaBuysC+5JocYDL+2eYk7eyFOdjjTKVkWC/TF6w/ub7T/MO3k2XWMzCmrCa4qEDLC2rpcNB8zSSe4UCNKQygda4MlNrNtqrIiTXN6HQijLpeuXsIOh9x27BBGmqluSVVVuNpty1pLWgyJ45jxJK3L7AR54SfGYSf25a0qZDTM2Ex2sLZif3eHbJTxF597nDiO+ZVf/kWOnz7KxvVNTpy+nSuXb3D40CEuXbrC8ePHWVlZJUsLgiCgKPxfqDNhVUmuNUmZ0SWi0+mxvKp57sVvURawvDTg7Nkz5HnO6uoyZZkjJTz00EO4IuPq5Sv86t/9WR780XfSWV2CUDMcegfkPM+n2SQdhfzSL/89rl66zHt+8n28duEVrly5wt54i/vveRNf+NSnWalyuvuWAM327g5RKFlcXfUuVHbEwsLCdCK+sLTMZDKhyAry8Dpn33mMF794gTfdfRe39ZYYXd4gjLvkKCrp6eke2OwDYKoSrUJWV9dIR9vkxQRlNVtZRhxoJntDTp04web2Nv2FHoWRPPvaBOMmHF8+8b3tpD/gzQuPz3926wndPENlGnyJGaNM3GIdPvj0Tn1+kntz2WQzIW+/b747CDZNSxrMvEbMXAms3yOcMBRA6OQUNPLr9cBbO5hsAsNbAYbNpK757KA2zVQr1tT6Rlrx1196lKeefYmtvX1WF1ZYWRjUASb869/9v/jjwYBASXTQYXlhnaOrEceOr9GILR/M+mJnbnBQVybZmwGWg++bl7V2jvnX/G32v31M/vMKqSTYFhsNUYMwM+24W05KpN/f9jmcP6czgLTZP2Orm657s2wjmC0ObHPKXDDzzLlpX+PWot4/CO0gMDMHwuFQ1s0mWS3g14MejVFK63cCDLIuWZ0HhtvbAzjxphMcevAE96zejTh+L9IaOmGH5bULKCoi5cjOX+LpRxMuZ5IlUxJJR2Jr0wApa3aEIwg1h4zDIhgxK+OKggCsl7zQOBYXF32ppdJEseTYsUNYIRHOYF2H5RNvYeflr7JfWK4R0OhiQ12mLgSH+gGH+hH7SWOIUR+fdJBMpvrRWIOyliOxoiggCma6V5mR2MonIFWng0kLhsqzw04NIrpa89xwhNzNON7vcHx5wM44IUktt68O2Ngb8kpSMIgFFRZrCkypyI3BGIdTIQEaGciplEYzJnkQrbkmDuH8PaBvoUfZ/KbNdoL5CbFzM2aUYV4PzziLLQuqyrOjmvH3ulK8HFhCHREH6RTYSyYlg65kvD2kMDlVZVnuD+j0OgzzsqW3LUEEGGmIpENFklwIKuOoar056SxOzFhVaVVgCgNViSktrqqoqoLcaIpGc6pmTM+Y0weTBu77qoR1bxuksrhKsnGpwDkv91Q5B3jTB6TD2gBwPP1UgakCBstjjhzr8vILjdHAzVqTAAi8nnkLvG5AuYbJCMxE/ptz7tQc06zdZtekWd/N302fz074nACC2YJuamTklzcY400NjM147HPjmvHd8XiFqrjjznVeeuEqSgoWFxcZ7u4BTPv4jDHYvC9nx8KBv26aRcfXqipwvqKwyPIWGNTo5Tb3m2fCyUATKs9AGyx0CVXgpXaSnIoSKSX33H+YT370PFJq8jKZknqMkdzYuMJn/7wlnyH9tfn4h69Pz2P7nFeV4nOffIUo6rA/KhhN9jDGkKQZH//wHuuHFrjt5Fleu3zBaz9KHyf1O8uk2T5F4edgjQ5vW+rj4Pk5+OyWgqmJVBQHJEkyHb+a+MJfR18pKaQjDCNsXcra7fZJ03S2vjazTtz8XIqiiMtXXvWekk7U578VK1GhZECWlnyn7bsCykktWV16kBvbL1KPS4B/ME+KikBAXxqMksRLcOZQxNPPFriiDs6FAGtR0juxmTprivNZHmOhKiqUMiitcKVGCMP/8pv/PaYsiKIO3mHNdzgVaKztIslQsktlDVlR1ie1Q1V4K1y8qYo/pU6CqGpqqANlvc26dEQ6ZNcqL3BoR2TCIlzoQTIVMiz3uR5rfpaUr4eOotAgIt5xaMjetYrorrvIhcXdBrEtoRhRKRBO0FtYpcq3sSYkFylCe8dFKSRSWJwL/IDkFFIoBPV5cjMdG2M8UOmkI4p6vPeeo/zBoxcJA4GxOYfXTvPqlavgHEYI8tJw/K5DvPCtayhtkc6ghKKwFiMrDBG33y3p9DsEpiCpAn48EDy9n/CyjfmRoyXSCl5KLJv5Eit9QSUEBTGrYYzrFphUEwcSM85Q2tLXGmETRFCRFCE6cOT7FiFSUlIi2wUtWRKaf/GHT3P/mZM8tH4IhMKYhJ98+D6+8vhXqWzJB58bslNpxrYenKkQViNVjhA5vcEyK9EICH35bARWhJ69oAOyfoAad3h7XhBoQU8HPJEJVmPNK50ePZGzmWs+OZTYoPfduGXeaH+L9txzL3DuXWcQRHR7i0jpXbKSYkJvcRWANJ2ANiRJQgf/QOqEEThJUVSMdjNeevZFjq0vYzDIOgjVoc/kJlk61ZkrnSSvHIGOPWCHz0BVVYUUEZNxhslzsI7x7hbWCB7/6je4sTvh6NGj3HHmGEE3ZmtnyChJeOZbz3H48GEmSUKYpgyHQ7rdLt1uzGg8ZHV1taZqO5QSuCDAgafUVxW2tFQm5W1ve5hrVzd49tkXyfOcLMv8MWjN0tISOzc2uXR9g4Uo5dihNbZubKPDPmvrR4g6XZ+BHwym5a7OOX7v936PZOwfog8+8Bbe9cjDvPD8ea69tsHZM3dzW+cuHr7/LH/4x/8b73zvvfR7HagKjHJYr7DnnVaNYWdnh6Io6HX7FGbCXW9e4a8/vsW9S8d5+bkXOHXoKAury1RVxXMvvuAz+tZy2223+Qehc9y4cYMrV69yZH2JfrxElnkh3iBSGFOyubeJVhFPPnWBRPVIxxM6nQ7Hjx//3nbSH/AmkCjdiBXNAijpGj2iGjRhBlgJ6xBqBszJ2pZMSA3tiTy2FZR5ragmEJoxY9T0N379EpgF7W0gsBECnv/9LAicgoX1VoSUqJphJsVBhpupl5/XHIKa5S68Xp4SvuzTl1nNNM8Olpo2+/DUM8/zredfZWe4yfbmBr1Ol6IuUdE6pCoMtsxwFXTimEA7THmdolxic5izvtLl5NEjWFe0Yhw3B/4127oVCHpQm68BHIUQqFoIvsk0++W8Fm4bgGzOAcaghK7BGj95l0YgZCuYnRIgvNGVtZU/Z86PMdYZhK0BTdEKmJ2ZAwObgLotVu+BhtnxeZadwDqBrtk+xtXMOzsDhp0xU0AuDH8wZSzm9f3ak0DvbCrqsiGs89ezviyqZjA0LCJfGSNrpmkT99frbW2jaUIItrpHOPbDv46jpe/zljcjT75A8spnqYabpMvrHD1+jesbIKXg2GqP85sTTD2JF9YQSIPY3aU36BAFMDS1EctNAGyFLQs6y6t0+x00gvE4QVmwEgSWMs8I4h5p0CVXvpTeVQ5kNRU1v+3oAsfXO1zcnsyBx7YydOKIw4t9KgtMJmRbNzgbO3Lt9a6rqgJnMTbktVHOYBAShxGiGrMcLBJQsV4W6CJBF5p+HHFsrU+372UvhIL146u4OGLrxog7jg6QCqTQFNaRjSeMhhlbkxxnUsqs9CApMFheoWpKxWjd+61rIpzx5U7MxsGmNaWGxvgqhaYzNGNe474bRdGsf9VgiLENy8nLglhnKCrIXcpYzErYdoBrQcD5vddQ2lc35HYCQjIYDKbjaaAEpQhw2oApvJwRYioJoGwFzlA5n1ypKlu/KgLtXVq1s0gUtgrwQ4YiULo24/HzU2cdUqrvYyatpawst5+RfPsli6qfjUEoKGo3EWNtKyEnEDJkvB/yyo5D9xxZ6suKbwVATZ+jB0o9m37npisWTDXlAOcqnG2ewXXizvn9da4ZryTOOuwtiBXfSZJltowfH8rSb18JcNbgGIOQOCT7O/s4J8izwjMuhcU6sMIDfl7Owz+IveSFrI/f3ydeY05NgThRg4XKqRoPYYbtH9BAmyY1awmc93/gHvICwtjx2GdeJcs8o/DcA4for/QYLEo+9/HLFEVjcjG7j4WoMLIizefHfmBangnMxRBlWdZlnPt1uXAjaQBSlly7XrCynHPm9kNsb02IexEPvf0of/3oqzzynvt4/AsX2Bru4UrgwHU5yPRvWvt/qSyCgDwrOXzoKNvb2565X8df3udqljRFWCSawWARZ4ta29virMbhDWuOHj3MtWsbCOHB2De/+T6eeeaZWdwDgMKJ+QoQrCPqOJyL+E7bdwWUCwiJbRdb7BMHmqqs6gHQ31hGSIY4lK3YvjHCZAKFRQbKB7MVVPgHt0OAcFM9hMoJJA5Ru3pVhSEI8WWuxtdc+0HcoaUXexQCkAaJQUqBRpFb67UQdIQrKmaSL6UXIUQQOH+DWZejnQZZoE1IkWdUIiQOFjC2JM8VkUzRIiCpLKuhQPYEXyy6BANHmjlSVXH0zEn2R5s4AZEVDGVF7CLK7TEmULz33T9CPhkD4MiRpcWopoQVAiSl9PoYDaruUAhhcK7iH/53v8k/+af/HC3wIrxasJ8rnrg0QcsQYxyCil7fdxthLLLjNSO6oebCq0OkLalkjC1LIhmj4phQF/RFQNyrkCJl4emSMDS8sJXzyydSjDtMUhYc63ZQccbSQpc4yxn0IkLt0E4QRBGqcOSlQwSSkIhQQV4M2buaUJUBgbV+IlZZpE7oFCUvPfEqP3rfMaypsHGCs4oyKiE2bEwUgYCd0vHjdyzwlWFMEAqsAZNnuCJAqoBclEgZEtgQqfexOiRwAamtWI4y8iQkrCp+6dhpIOTR/FUevT7kVJ5wu6z4C1FxcS/zE46guGWff6P9h2sbVx1vmkiG+T6jYUbc0YTdJYKghyMALFI7Oh1NkhRerBs/SU/HqZ8IFF7vQUpda174TFiapt6huNZIKYoC4yx5MqERuJLKP4iq0jAa7lLlBaPtbdIi5Wtff5GdYQJGc9uRdd7xjnN0l5bI8pzDx46RFYb9nX0OHT3CK6+8yl9/7Wu85z3vQQjB0aOHWVpaYjQa0e/3SdLRnF6LU1ClOcPRmDSdIHXEoUOHKNKCneGYwWDAysoKvV7Pg3dJzvaZM5jcsnD4BLktUBaGe7v0lzRlWU5Bh36/z4ULF7hy5Qqhht/4jd/gj//9h/ji5z/L0mKfMsn4j97xIK89/ihsX2FBHmK0KTlxYpUXn32GhYWQMPCsweWVZba3t70GlJYEPcEkKVBmws+8935uPDHhtpOnWOz20VHE+fPnEdZxz113k6YpaZJy5coVKhw7Ozvcfffd7OyNCBcElfVZ9Z0s49DhNS68dJWdPGNl9Si9LCNYCNBasru7+z3qnW808PM0WwNTEoUSTebZZxKnTLKardVMxqcyFjAtJfAAl2fGNb8/yNLxi7c/F/V2wAfmZgquNSyQg+UMMNOPOwgISOndzuuFpvcNeDBxPps6KwmTeqYBI1rbcfigVkvvum6cRYmWU2TNZrt0fZO/+sJjXLt+gzQZ0ugYNU5yURRhTEkUxGitWBj08BonGomiyFKEs1zJSja3Uu45e4ROLKAu8aqREGCeudc+JwfLR5rPmtLkRtjYWjsniNz+zTTzPBX6rrl5NVPPcbMTra1BVYvBGR/LTXWIKoeowThr3CzgFq4OwL1ra7POtmvfwax7cz2UazF9XDXTopG+dNXVTp2eLf2D26bnoD4Jt2Ib3uo3r7eug+1WvwcYrB2fB+TqFq69ifTS42zuX0Qur7F8fAm5OURKybsfWOLiZ8fTfdQKFoUgkrZOumkfT7eA8PY+ZVnG/nAXa0sGnZDkQkY6/hZh9zSTvetIM0TFIVrrqTlUs54gCFBKMRwOSfKZo3Sz/lBFhL1FRKBxZUGS7ZPublIlKXG8QJbBF557iavbE+65/RCvXtqj251QmARTGr75Ysn68iLLq5pOmqNcRaQ941xrTVl6E6ROp0MQ5FM2cBQFKBmgaXQXJVpYYlkxThNk2KFysJnlN7mYHkw0HATt2/2hOQcAS4OQbqfP9u5wboyY9aUZ86QBVqbmEQfKEpv7uLmnq6oiy7J6XbC3nyKUJgj8dqSUWKmwwjG0XayUlHFEJGe6WsiAstbeg3LK9ivLkm43xFVVDULPnFmbdc/K5Pz+fT/rTXrmlubVbztOnFRc35jgqog8mwfXpumzVpLJCodLA+IoJU2i2fqYB3Qb0HZumwf3gTZA51uTKJ/tJzQSBfPjUms/hXjdMetWx+6XtdNn3c2/c3S6ku3NlHf9+HEe+9zluq8IhKifl4VFtIBBawTOebawqHVgmZpT1PdII5EhFUFDKqz3vSkdF0JMj78Xd3DOcee9C/zVp15hPEnqe72sXVrhK1/dn4KBYCjzsu7b7eOdVS7cxBRrX6PXYYP65eR0GT8GwtbWHkmW0usuMRyO+fOPP49zKV/6bMlPvf9OPvln5xmPx9PjadbVmOEdTFzONy9FJlHs7+9z7Ngxrly5clPyVTQMvXiBn/z5E3zpLy7xI+85w2OP7rG7u4kROQJf2ruzPfQsZaUwxvDsMy/irKq1e+vknmlkNmbXJlADjh9Z5vyF67fYz1u37w5TrnecKowxmbewDqSkv3aE7Y2rSAen1w+hbv8pNl/4FNVwjxtpQSdQaG0RUnogrepgogpLhTZipiVSg2w+aIdAeJ2nIOqhQ4mtl7W28oEuComkEgYnNDI+zqqESfI0ppKICFCSOJRkSY4SAg8R5jgXgqgzNUikUVQuRypLwZiyCNDWUHV7WLNOlV0llIL9SrGsDTuF4GfuOcRHX66gKPnIs1vc1u8wGSfIqsLJAruwSrDiH+jbz76AC7wwo6kqlHMIlyO0psJ5yqzQ2Bp09IGop1EH3Q4f/dj/Qxx3cNbbKVujUIHkxdf20DJAKMtkBK+MXkMFEi1DEAYjDDu7Y0xasag7aAdKCxwZwhWYSKEiyJMcxpJeJ+cTF3PuWOxjhWO/LJGxRllJKByBKni+2OfHugGLOqaUY2Ra0Fs6zKTMESh0aHAUEFSMswIZWCqXYBigJGyn8EB3wuL9pykJGZoJVAVKxZAojv2fH+HEYIWJLfm1uw4zEcY7ZJpakFnGSB0Be1RGIpRAaofWgRd/1SUBEb1wnbW1s2TBVdxiiLhRIIuIzXCfpaDLX+7tUUhJ5SzSOPJi77txy7zR/hbttUtd/uU/fpYfeeRO7vwhz+QUxFihyFOHkI4sA9lT9JbX0ViKfA8EKCnRKkRJXyo/moyprERagRMWHQYYZymq2mW1zugq4fUmJ5MJwlmSJGFzcwtcRZmPyceOR598jkxqlrTkvlPHuf32wwzW1tjY3mNpKSSbJOxub1NUlqe+/jSD5VXe8c6HyZOUL33pS/zcz/0cURQRx11GoxEL/R5lWWKtQSpJ6DSqI1gO1hgs9CiylGy0y7GTp1grx5SFoNvpsbe9g6zBt8uXrzAY9HjqW09z//33k5cFcagZ7e1ONRWksnz7ygVeeuEl7rv3Lvp9T+G+/Y4zrCwtsbN5jff+1Pu4+rUvs7jQZWfjCv2gory8xwtyk+7KAoury7UjYTV9eArh6HcWCUvNztYemUpZObnCU5/5BmvhERKpKNOUxYVlNILhOKHf73PxymX6iwsM4i69bnfKwlhcX2O4tUlZg4gf/eyXGXRP4GzOyuo6Tmt2tjc4evSo1wd5o33P2k0B7y0mcW3wqyaqvy5o0rSDgeGtPmsDY/6z+cl2eyJ40DTg4Pray00zxZjp73ASKysEYs41q33sbXbZHPDl/ETCuBrMsrPjtdby1ae+ydefP8+1K68yHo99eZtSBEGAc7PgtN/tobUmiiI6nQ5ah4RBRK83ALzeU1H45MTzr2xw4kifw6src9tq7yOiLjF0M1HuZlvN+XCCqeFE28Fups3WKne5xXVtX7s2M7F5f/D/aYmsdXMlrG0R5+m6jfWMhQPbaK7nDECQc5NGV3cWzwzyBiGlNc03c33i9UCmH4TWgCG+H89cCxvwmzox5gR1LO2mgLSo2Y++XLXCoD1QK/waBPN9pWmBM7jKYIobqOAEiAJwOCuxySVEZwE9OERVlGjpE+lCCP4/9t48yLLsru/8nOUub8nl5VaVtVdX7+qWWq2lkdRCCElm0eIBAeHACDDIWNiBWcLjwROeYQbwjMMe7Jkx9gRjLJhhMLKQAAkkIQm0q6Xe1+ru6tqzKiv39a333rPMH+e+JbOqAf3RJpD6RGTky3zv3neXc8/5ne/v+/t+x+sTFMXFMCcJx6saCUmkybwncgJlLVLGCGcYycwDYUzKjOXy0+eYrEQcOFglOi+hu0vOFUR7E9vr0CtaPP30M1xb7YSSZx/MWIwxCJux1Elo7Bp6ZugADJCZnJMnDtKYGsMXGVm7w9jEGNH0HKfPbLLy7PNkuaHVy3BJnS8+/AS333IrRbdF3u0xPz/PY09f4OH6ON/31rs4Xumx2+0hSj3cwrigOS31sIxeBEkcnWoiFaOFDhUjwiEFpHFEXK9SCMVyt4kXCUm0Fwj9i8Dt/vkJIVBxxB233473nmp1nN2NLT7/wOPls6wQMuhkjurQWeuRUgTyRLkAHx1fRgG6fr8CBot3VZb8SufI8/647XEuoyhg21o2pEJLSRorfNsgpGJ5J2d8aYXx8VAam3c7YB2JUqRKgskoBAhfrlukQAsQSob1JqF0zuFR+puXKWedBB9W49cWFEJWmJ72LC8JhByVCqD87QcMWOfBUpDI4AzunLwOzN3Pnht97X3fmPH6RFG/b2gtB3qgzpXbAEGPtmTLDmKS67/rL2qj35Wm6XWOpOE9R3PXoSJPtw1veccRdncMl1/o0Nzu4LGYohc07AnMvQGJtATHoC//ocKzMOIi7QVIFQ3OJVaa7/2+W3n4q+s40+HkbbPMHazw5c9u4EWHZ55exntP1h0m4K3N9wKog6RVH3A215336O9hkyPXd9h8yMiWf5WMaIagnLUWIyEvDLs73fI4QumndS0+8UfP8c5338HH/uApvL8+CfNisdUAcGOUxe5ZW18hTjTWGiIdlfGfQAjH7EzKkWNjfOqjZzDC86lPXuCeNx5k68IpNlurdHrtkLzRgc04iHO8RUclGE/B295xF9Wq5BMfP8N3vPVWzp/b4crSEoWFcxdXv6ES9pcElPs/3vnTfL63gcuayHKmFd6hvSATnjuOnOATj/wO9xx/A1NveAuLX/j3dLo7eFMKhiJQYx3yaI615ibWWxDQww6yoEDJivNoFVy5iiKUKeBcGeD3yzRipEiw8Tw/+Q7BqeMZtZO/xT/82X9Cp9NECI8k3Cw1Wg8sDfiopDAr+rRSLxOEF0TVlKTbJe5VMckSkQrD8+RYSivaQSYV2iLh9TMtfu+qZ0Pk3HFijlqtGnRchAt6eSiKeBzlOkQmsFatswglsU6gfLCLz2XJGhQqWLoDfSWOosj4Lx/+f3j9699GkQWqrpCW8bEJfFbQKizGCXzXIVONlAorHeM1jd3ssb2yg0NhnII4gqzAOcnNp2bxV9ZIdZs/+f1d3pZMstTTfP+xOg+0u3QNfKmZc7+sMaZ3iFVCJBMqhUUnKautDlHh8FqSu4K88Mi6QqoUqTuoniZjC59MEvmEWCi+euUy9x+/ibhaJy+CSKc2AlXVPHRpiyLPqNcqvOc77+Q//NGDiNggumHi9JECq4ijArzGmTES1wwuPRLAI12KcgWGLtMzUyhxDX1kkl9ZfJKHtzLMzCxuO+EpEbLz9HKUDMCuFd+ck+3fpGbp0pia5otfOseffnaTn/q5t8CcJXMFM3MTdLtN6rUpelkLrWOcz4mqCbsbu4MBfW5ujrvvTrh2OQTsRWFIdTTIkOZmmIXNc1dmbYKzqOkEzQXvDEVh6WwrPv/YM8Qq5raxGV55+xHqiefON7yS589vkqYpY2Nj1Go1oijipptP0u3lPHf2PPOH5jg4f5j5I4d54IEHePvbv5MoVqUAdGDtOZfjXEgOxHEQa/ZFD+dzdlprdK5dYHb+JqTQdHZ3WV64TCwVKkmpVqvceusJLiwu84nPfIajx45w+PgxDs4eoNFoIIRge3MHaw2vfe2ruXz5MtcW13j0kcdptraYbUxx66mT7K4uUeyu022uc/zoUZqb19BWsfb8JmO3Gtob2zRmpmlMTdDrBbavUorJ2iRL51appRNsbm/gpefkG4+y8MVNZKRxDtbX15mZbLCzuUWsNBP1Mbz3XLt2jerEGEeOHOLZ06d59tnz3HxsjqLb5s8eOUPj4F1sr11hrDrGxYXL3H7zLdRqNbrd7h4XpJfbf/22HzAzfW2iF8lOC+exAyZSn+HGYB/DzwbG3HVAzL7A7MVan9kweoz9LHMfRAqZ6X7iS+z5CccjR76bobB4WQoBlCjj9QyiUUCnX0LRd6T0KmjSeVPwua8/zFcefJzW7kYoxQeEl6hS6zKKksG2YVxIGRsbR2tNJU5IopixWgVng9amjlM6nQ6Fybh6rY2xkgMzY8N4yoV9ORPKP5VSWNzeayIl1rvwuf71JjDVBvp/5U8fuLlRnxj9+0ZlQ6MAnxcQqaG2Vrny3QuwUpYf2hAzediTYe9/bvR1H5yTcoT9U94b60KZmvUWpQXOCaQKxju21JIaaBp9i7X9YPv+6zr6/wDAWYRQOAHK+QHb1CNKzWZK2I49+9m/b+cc3c4GLDyAqDZQlQrCp5jWEsoHiZrx8XE2NtbY3umCDwytBx5boPAKJTwaT5Q30VEDITUWTzWfqwe9AAAgAElEQVSS1ISnM9JdrPcoH8qZu72COE6ZO3GIubk5PvbVs7jeLjiDyzOMC+7gG7s52T7ZoKCJJGh3ClxeDJ6R8ByEtcbBA5NorbAOpucP8gv/2//OucUNVpZ2aRU94iTh+IFJnnjyaQ7NzKDwXFpc5PabT9HrGqoTsyRj4/z+nz/Nj3z36ziWX2bdGIxR5A7yVsF2sz1SZuWAUGVkjcF5gweiyBN7D1oRV6p4ExIPhXFouXdh3D+P/S7Sez4jJUpGHDh8hMnGNEXuePzxISDnnMEUDj0ylvaZbqGcz4ZqKCHwVtJnSO9nyvRfj7Lv+te+X00UMIbSjdMHlm0O9HI5sP7uXNtgZW2bNE1JEk0aCTrtHgZo5xYjAwsrlppExVSSGKU7YWzyDNwvtVQ4H/S+BwY430S0Wm/3AmfeClaWDbfeqVm+FrOzXQJV/cQJfXAsgGAe2G0KEgnzhz2XLvcQBP3kwT11NwbnALwbPj+U1XehjlLifIHJhuuzvvwMsAdoGsw55VztxF8cNwzmazf8u9MKmtJ25OZ6SsatdSgrePzBS+RFhziO8TamOjbO+CTcf/dhvvTJFXZ6WzgjB3OwEA5ECsLgXAEIpIhJI6iMSd78nTeDEDz20BJHT0xy+YWMe183yWc+cZ5WK7CBFxbXS+1MyLJikBxvTNWp1+ssXVul2ewNDGSG+rdD04X9gN3+a7M/druujwg7uJ/hc6bcbsgS7msC9+fi8P5QZ++hhxZp1A6waq6V9xpA0mfuDeIR208IhX1orRGu1MP0QwBfCEEUKSIZBbdcHG/7npt48EubPPnE0uBzhc944mvXqFYT3vKOo1x8vMcLK0vIvAiVnj5U1IbkqML5AkWFBx64Rtbr4JF87kvnw3eWcxC4b2gMeElAuV/6//4Jv/y6u3lL0/I/xDEJEqkC1S9ygsb4OPPG8dC/eBO89hDUfhsT3Y6+2OLfvu4+nogl53Ys6YzmB972AxyNusRSMa0rjFWr1EQezAhsl9obvofdmTn+84UlPvTB32TpuS+gXZOqSBAyCi6uWhDJSVQyw61v+2F+5O++G+8KfvVf/msWrgQ6dS8f2u0GLUNPX2BREKF8cAkTOsK7cHNbzR1qso6PesQiIa00Ed0IY7tB5yQ1/PrnL/K/fOA+4t+9RM/BF3qG/x6PEY4MhxKQmgmU66ARWCFQzpNKifOexEIeh4x87AVeOoyQaKFLTUpD0FmRvPbVbw+mDyJMYt5JjMmZm6xidrvoWLHVbDOhK3SNYTouqdu6r7+jSZQOtslJlTS2pBXBVDTJUqH43sKxIHLmxqdQpk27CR/dbHLrkaM438HamMwLUuGRWuN6ivmDEVFL4nNPLBXnNlu8cSaFvBUy+N7irSC2NY42HB0d88pDB5CxRfsYo0HqiCeXlrizmfEvTk3zE08YxiYneOz0ClnPkhlFXOniOg7tUjAF3gqMzEEaCtFD6BrK5yQqwvkChAIX0e3sMjYVUatUedQptoXhoNzlKoGlmXmLixzWGryUqN430Qz7N7Stbm1QUwVCeuq1KT747x7kA//jdxBXJHlP0GlbqlVHu92mPpYgPaSVOvk4NHuGialZdneg0Zjm+RcustPcRuuY1dV1qtX6IFvUN13ITCjPilWK06BqkG9tU/Qsn/riI2ihOVyf5FCjzvxsjZNHIybma1xc3MRFnlTVWF3bZPHaCgBZkXPh4jluuekYD37lAZaPH+fQ0UO88Y1vLCeSwECIowRjekHTJM+xLuh1mCJoZcbJGPMHU5bNeR5/7CscOXSK2ZlD3HzHLRS5p9ls8tSzpzlx00m2tp5lcnqK9Y0NFq9dY3KywYkTJzjz3PPccccruOvVd5EkCbe/4k5uuiVnZfEazzx9mkNzB9jcWKdCws23386V5x6ltbFGs9ljslFQKWL8Vc/cmw6zvrpO7nLq4zW8EXS3ulxauBIkBiZj6tUxnHUcPHmIkwduZeEry2xubzI+OcGBo4dZX15idW2Z3Z0A6h08NI8xhvXlFWpJjU63xVefPAeqysTEATrZLgcPHWZ1eYnZ6Wl2m01uOn6CiwuXadTH/4Ie9HJ7qZsU/blzuPDplxYCI4H19eNpCMz2/j0MBO3gf3uMIUaCSdi7sN/P9BplY+0PRAdg277vHj2WMuW757uGv0tgToWzHxyHH9F+6e+83MUAIBJBa+6Bp57gsaefZ2tjdaDzIoQgiSRSgpTRoKRdqX4JVii1r1QqFFlOvVpDKcVUY5q0VgUvmZiYoNlu0W7tsryyTawVjcmUQSZ7ZFHULz2GkhEnyxLeUGODcB5TmAHI6BiCm/1myzIf730o0x1dzI38jN7HfgugWrlvsbcsFjnUJOsvQLwPeoQBCLm+P40y70bZj/2+oGQ/4GfEQVbhCQs7iaDwJgB3sg8SfGu3GwFy/dejC7rBe38JcL5/f6PN4mntbCHtDumkQZg6Rd5je/EK0juEy3jmkcepNaZxbrgwP7+e0TeCi4GK9xTKUZGUcX5YyDlXDMoO++OPEIK8l4HLOPnq78RWpunwcb7+Z5+jPjaBisdKZ/YOh6bHWW9uXLeIDYyX0Me06CcEhsmAPlPM5AXv+m9+kMJF7OQZU9OT5FueJEl49MxlDAJyg2730Emd5y4tcWp+lrm5g1y+dIXvf+c7+PAXv8Ybb55F6ZhOtyAzgtUdS6uZo7W67poWRYGwZaJAlwZ8rtQHs0PNpVF36nCB/vI+0V9LRVGEqEekhd2jHbf/s6PmEKPfJ4RA6VDhAODcsG8V3qH3JQNGxxgVheVtGB8CACGFBDeSNBgZB/LMU+RtmlIgSlaMMZ5ultPJDUVWMEmHZtJDGpisV0LCo5RDeLG+/M3U+vIB0L9vHiHh/HMOGVuMccSJwOZ9IG6UARdAOeccXeu4dsUwfzhi6Wr5Xv8a7pvLh/f0xo6tfSDHs3e7wdw0wobun0PoL+W27J3/9zPwBu8RyrGLosApgcOBZ0+fG2xTgpJaxcRpTq8t2dpeZXMjZfHiJvfef5zTX3N0ZAa44DgcKWpjVV5xzyQPP7BIURS85XtO8NXPXaXbhj/56Bm8F1ifc/nCFpGGj/3RwsCQjr5jOCVv2VG+Z2i1OsAqzgVN7FtvO0UURTz6yBPl9bF7zmN/+0b6czA8GZ2F987I/XuyF6ALoFzoX5ZzF5d407fdjLwwyfpWq3w/jGGNxgSmW1Afq5Jn0GzukPsAQM5NTXLrbbM8+fAOrWJ9kPiTUhJHKW9/1xGuXmhx8dwWH//YM3inMEWG1pqpqSk2ttbBSzpk/PmnLnHvt53gcLvBbkfQyoNWdhzHTE3EFKbD1o4OrGTXK5mOe8ehfh/sJxP+Ku0lAeVq0tG5406WHl4gF5Zd0+OwGcNLgdYxE7FnB83TP/2vODY3i88KJt/9ffALP8HPuy4dEXPl1Al++cJl/uxTv0eEpuYNE3iqKtjeC+HpWsXa//3/ouKUm+/9Mf7eD/5rHpurUv3Sf+YPP/TLjKVVEhECQkvO//yjy5x96jxP3/wU97zuHn7tx6f5of/pMlr36BaOSClUUAEkkgopPNJbihCaIZ0nERJnm8Fe3Tt6ygXklITdzBPTpSscXkRoL5g5dIh00/B8ts0hHTMVpzifo0WC9h4nLFS6KAzSqwD8WIOXQdRRRwXKQweBkArjPVqHEoKsdHvDa2oVya7NsZlAyn6pjKfdMsiKQ1hH3lXUIoVEUZEmuM9ag3c6yGDrAuM1TsZI3WEXTRpbdJJz56pEqYKGbhDZFsutjEmt8JUKkw3B7q7goDZE3qIZQ0rJyQmNLgwFllQWFGQo0aJlJlHGUPESLwUVZ5DFCm8+NotwhlwpfCapNKC73eHRh77CR97zetZaFSrS8UunBL+6DnnWJoo9lgJ6gqr14Ho4q7GyQOQWi6DoKogcziuyrIXUjoqrorWgk1lY9RyYS+hkjsjmiO2cSGY4EQTCdVLD5F3SSPD6Iwdfikfm5fYNtHq9zu56izSqYTKDtYo//+iTvOW9t5LnOdXqGEpGKFGludOlMVHDOUeRO/Ca3VaTq1dbTE3eXlqhF6RplampKbKsCGBcJjGFZ3enAzoEjBQ2aJ51u3zxK4+SF3CwcYC0vc19p45QbSjueeMJjNth244xNjNBsRbEnW+++WaWlpbo9XqsrKzQaDTY2dlhYmKCU6dO0ZgJTqVxogemC85boijCdJskSrHbbRHHEZES9PKcKBIQpRw6cSvTs8d56qmnsNYzPXOAM2fO0s46dE2H06dPMz09TbvdRkrJgekZVleXeXRliXtf91pe+ao7kFhSHUoAnNZMT0/z7fffjzKeNa04+5U/Y00WZF2YGI+YiifYWN/h2NHDbGyscO3pRcaPT+CsI/UJvR2DokIucg4fP4L3nrW1NSYmxlBKsenWuNZZ5PD0EZ577jniOGZ6cpKdnR2mpqaw1lKpVLh8+TJzc3NkQrO4FbPVtoxX4OYjB1leW2X52hJCaWbnj7B48SJpmpKmKdvbL5eZ/3W2wBwTKBGYZc4FNz0n5CBgC1jdXnCkH0A5t9extN9Gyz/7YNX+EhgYBnpysJjbqy82GiTt3360nHM0wBoV9R0EqSNmAEMhZDECNw4d5AbbMgzgRwEpKSVdY/nzBx7j/Atnw/fJfqns3mM3pRNjtVoNoJfQgUXrPI2pKQ4fPkwkNUZpJsYbpGmV3d1d6mOTrK4tgVAsr7WZGKujpBvor/XPbXSBEQCV/gJmeI1uxHQb3UffvVQIgR0FWQUDYf0Xu87DTLtFqQjvPZHSwQmz/LxzFokI3pUqBL/GGNy+RYUaKT0W5X03dljKpAaBcwAOA7PB4bxHeomSEifdQE8m9Jnruua3RBsV+x51pgusGYfVCul9KQMTAE6HQ5bC+E4olHd4IVHeYQUYodAvgvQMgGHv6XY6REpRGe8hZA0tI5ysIEwHX0gWN+FEqtlu5uQl2yY3gqzI8UJRkxZrQ8UO3iLwSCSdnSbWD89FUoIP1nFlJbgBdjcuoNINjOnx/IU15qZzDhyMuLSyw067xaFGjW5hBmyPwfVCYGNFmii0DM6eXihwDoMnb+/yQz/4XmTXcvrSKlES0e22Q/LNGNa3NjnSmKWwOSYK7PnxWkqzlzE5cwBjPa0s46sPP85kYxozdZS1hbNYpdlq5bSyHofGCir1GqevDSuBpAdvyxLjkO1DJYJapMCLETBOgFR7wUZBENUvn7m9yRCPlOCFQCpQMkLgMR6EVuV4EQAUIfe6T49qxAFDDd+RsVyoob6WvEFN2NCrO+iTSymRSuKcRKvArPFyr6FQ+CnHHufKvM9w7DJYerml1crZ3jVEKownURzWikH7Egz90veR4xpxjP5maNb6wXwuRMlAc2Cl57WvSnn0oYIiL/C+NNcphmwsPKHQ1wf92MJJNpcNWicDfeNwz92e+Wc/s20wd/ZzSJSMbe+CiUJZUlmtVmm324NtRuc1T9CudzLM1Hve68/HZXzSn1dkmaR3Zf+HMoYZAROlCCYV/TnIe0mnGTN3MGFlyWLp0C0cX/vcRY7fNMErT80zPgkPfXmN5laLZrfD0meuoeUYSks+/vuPk2fDc7IjE2lWgl19Y4b9Ccb+eQM412d2h4TDY48+Xv5lOHbsGErGIDwLCwuYYkTSQTDUgfXXx2T9ap5qtUq72wm3iaHu3uj43dfR25+4cH0zJdGXvDAo53jwa+e45ZbDvOFtxxAo+j5Qn/34WWQiWd9aI01TXnPfcV44vcub3jbNFz+9wOOPXuHb330U78agkDz81WsoCd2sxx9/5AzG5DjXjzPMYOxZX18nlNAW2F6BMZrHHrhImozzyvumWXq6ymL7GqbosrZZlDGAJ6lUQ2VOv4quBKOlDHHf9HiFI6eGciF/WXtJQLnVCL5MwWflJs5phAjsJCMTfNZjxmtMLeJ9W4ZTW1scxXDyv3yB9ofP8z3rX+K2v6u47fwVfpdxPi/q/LqEdS95LvIYBEaGjIfXMUltAllp8OVOm+Jf/W2q2SL3Vcb4iff/Kr/1m7/CeGpJadLkHuJDEb/6gb8PjGEKeKx3gm9/zxSXvvYHXNuQeK8QIkXIDkfmp9hY30EABaXRhJBIn+ELR+wdlfoktrtDoubBd6gljkSmVDKBdDnadzlzdZUPP9Hj+081eGE1I99eR/Xp4M4hVAw7hrSi0LvBcS5KHFMyY1wJelTIPMEkQYb6/MIZnIqoFIJCWbRW/LNf/Kf84j/7JYSkFB8UpQC1I6Z0qBMF+BgvHDlQKTStdosoSnDOk+Y14gmLl45X3jFG9KynnbVZ325ybOIgf7zV4Z0HoZCKT2yMc9fEEqJIcYVkt9NF1UDrKt3sKrt5h1ptDlvsII1HaUthMmReRaFQPkMpy8GoQNbneN24JRMxsZW0yfAq4dnLbf7Xu+vM/vN/ztK/+xKJ8DQqOT90a4Nf+dgmd73m1Tx0eQXTtXhh2MkESQWcyfG+QoRG+BbW99jutBhPJkilIvOe3c4mlbhGzy2S5PMU3Q5eW1SljunskApBFMV40UWkDl8I0kqF3Q9+6KV4ZF5u30AzhSNNE7x3RKkmb3e58sI2bkdSTHTwXU+n1WFiskoUB20gIUOQkKYpxjiKzHBy/jD0uggZdMuCOHIBOFq9XfI8R2iB7eW4vGB1dZXnLy2wtLCFqieMS8E9s3PMv+IUr/+2V7LeXqFSnaRHnaodY3uzF4RdjeW5Z88QVVM63R5Z1qXRaFCpVBAotre3GZscI0kSWs0OSVwhjmNUJOl226RKsbS8SGNqhm63S6VSCRbceIzJQVjiqubue17N4uIyv/M7v8v8oRmEVGih2WpvMT3dYHx8nPX1ddI05f77v52pqSnmjh4ujSFylNb0TBtvC4SzIATtvEuhYm46eZR8aw3f69DsbNPLM8YrQZS5Wpnk6ukFXnVyio3LO4hVSzWNEDoADX0wUGvN2uoOUew5cuggMz80y8XPX2NmfpZqUg0GLcaT5V1iUnSimZk/zpOnL2LUGGG6NziZ8PSZ53jFHbdRWLiyfI2nnjnN/FSDJ595mpuOHWdm/sBfbyf9Fm8hCBuaJkgpsS7oLVEuXPtsuv3spX67UTa1v+8bvR5tQ3Bvr8jz/kB/P6Onfwx7g8m95asBiCsFpQWlOHj5Vv94RXCaHDUwGCzWxI1ZQcYYfv03Psji4lUKk6G1RIj+4pFSM0cPtimKYiAuXzlUZ7xSG7BvtNbUq+PUp6dRMiKKEo4eP0KWG+I4ZkldY8NYFhZXOX54GDB6HzRulFaD0lg7AmD5kdKi/YYY/Wv+YuUt+xlro/dktCwtfEYM/t/X8zNueBwiXORQvtQXrO+z3kQoQe1/Vu1Z1A+vubF2sG8pZXBOUwqXj/xfDBlDo31gf3nst0obBeO89yAVEnfD52jYx/vPrgsMJIKhS/jd58vuLfXe+6US4+Hq+cv0GrC2cAV0RJSkOB+RpJL2TotjBydAODaaBdIFbVkngg5WMEdTFE5TU+U4IwIDUkuP8IHJJhElGB6O4dzCKkmS8LU/+wKZj4Jze6aZsBpjHFFa5/hEndbOLlmzvWdhjwyghZY1Ts2NkVJwdqUVmFsINDGRh81tz/MXLlCvjxNVqhRFxrXVdfCOwzNTdHptrIqpa0VSr3H+0pXQ/0yTnd2cyVqNxaVrbG+nnL9whtfdcxe9Tpv17RZJBHfcciAAbE+uBvdH78lcXu7DUmQ55AVeJ4hYoSKBMAFETVNdjkMj45V39CWJbtT6CYYA7IX7LqXk8OHD/NAPfBe1Wo0kCs/T+NQ0/gZjghBDMMu5fvLl+nLpgaN1/2eEkewYit/rgSOqpT9e7AcH+sfQZ95aH2SE8BpRnoNxhsyE+xsZUYKwIpSrlscvRyRuhAexr/z3b3Jz+D3GRn26tzeWbhesbOEKDQ6yIiNJY4zpO6Dakf0Eck3mBXfdVefpJzeDyYEoRkpUR1l2sIdNB32roPBsU4Lpfjgut9vtG+7HlzJYRgQQb5Tt1m99xpks3+vrL8Pe0mjLADsO3zGid9o/SiEEK0st3v7dt/GZT74AwmJ8l/Pnc86fXwOCJIX0YGUJZvmNcJ2cx7liUAK8h4038vfwZ7RqoB/j2H3XcfQ8BZcuXtkzp/c6TaJKSPbhA+hcTaulrE9OmlaAwDA2zmK9o9kemuns6S/7WIo3GuOHz68rATpVbtfl+ecXOHt2sXx/ZN5phpvQ6eY89OA55g9P8ek/uUyWBxD2kx85U/ZRBslBZ4cJxf6xDY5TuD2mLX0dXiEcHs3aquPYHbNcfSzH6QSdeYRyCF1HSs3BYwdZW92gsA5vTSB0STh8YpzZdILHn1rm0Ikj113/G7WXBJTreE3UPsiui0h0QMfzwiCcxauI7cxQ7eVsRzFPGc9pqXiVFpy1hp+ekURf1bSOHEH+qON+s8VbreCzlUl+p4Blpen6BIPHSEvbFCAjhJAomTBTqXBORpz97V/ix37kJzBqmj/90L/BjhWstv8+OWNIb1CJ5md+7r3of/8UxcWPcm3NIyOJFC28iYhsSqSbGAupFuSFxcpgnCDjCO8L2q1taiKl7bpMMg26jTc7RF4haCJ9laSSYpsxx6TgNSLiT1oFf/qfPsxtd5+iomMOvPpWVh99BJd5CmVpaJjQBadmNccnCzY7HbZbnqs2YrGbsGmCyLPA4LQqnVkt7/vh9/GLv/jLKF0QDJNKZxZZIKQhs0HvwDrPL/yj9/OpP/gYl1dapFoicodXEl3L0VZz6GCVZmeH2BkWnjHcPneADy48z985djO9CH7j9CZJvUqvbUi0YrvoUuQWE0u6WUYv10zEAkWOzQ1IibUCrAWziY6msSgmdta595YZsk6BrdVQxkCcsGolr7Itfvlfvhu1sQnLhk0HkcpRKqLbiuhGPdyVc8xoQ8e2qcUVqmmMzWO0zhFFj9yHunKTdRhLG0jfwynACGrVBtpnSNtAxYJ6lBAVjqy9Ad4yU4mxwiILzUS1QWd7hcwe4W/d9le3Nn65vTRNiMAQ7XSycjEnaRvJh//jo7zj+25h7nbL+Pg44+NVllcW0aJCu7MzGHCVUphcceHSRQAWl65RrRwtnT8zrLX0iqDbdPnyZVauLlF0e+SF59r6NpPTdWqtFncdPcRdt89x4NgRkqPzvOLg6xGJJMstq6urHIpztjZ3yU3Gznab7u4us7OzzM3dxtWrV3nwwYf53u95F81mk4WFRaamZpmfnwNCaYmzBq0FzVaH6Zk5vJNEOiXPLJb+QjNkeRAOqSwHDk7xDz7wEzx7+jlOP/cseeY4ceJE0EOJNW9+85uZnp5GxdFgIZxlGUJ4er3eSGbNcfHiZa5eXmCmMcnhQye4emUBWRiiJKVSTTFZj93dXarVKrOTczzxh08yeXScLG5x4OAsygl6vaBfMT09HfaPZWZmjo2NDeKoyk33nGLxww8QTQrSWoOdVpNIwPzth3A24ZFnHkJWGjR3dwMLrjJGLyuoJRPs7OzQabU4fugIxhheuHie206eYnp6mtXV1f/6HfPlNmgehxZB8F2psrzH2QFwI4XE4gb2CGJfQDcKng3d7a4He0aBtNG/939mlJFxo59R8GcUkOtvv/fkggusECClAhE4N+VGaFW6yAOgBxn+F28SMFy6fI2tZofdre1SRHhomtAPsLXWeCEprCFOE5CKOE7JexkdqZioT3Dw4Dy16iRjjXGshcnJGtVqNTghCkWtVkMoTbVSY2HhHO0spxKF80eGEtrR6xmYbq5cYMrBPRy9T6PXeZT91/9ff9wd3EexF9Dbv7/Rz/fLR4UMxxGhS0ZTMN/ZH/Q7PJEP7DrEUCi7z7jz3uOURRRycH37xykAdNA+EyoJWnuiPyaC9QrvBVJ+a2pWji4KRQk872+jz9v+ZgWlE/PeezZkON24FUXBJx++yNtvn6I+LrDGI4TC+KC59PQLa2w2c+646SBeClD9UlEZRNWFQ2hFR1imhMIrhVea2AmktMiSHbb/PL0PDuCtVpWddjTQL9xqZlzZWEQpRTfvYYsusbc4IW8I+M/N1en2dhAypr9Q13HBl//k03Tb20xPz5JlGbcdvwl9s+PC5assrqyysL1DRWikzvCuoCgKjh46QKfb5bFnLxIpyevvuZ1zZy/zirvuZLLRYHZ6li9/9uNAQl2nPP/CEq5ax1tH0e2F59HEFB1DlgUDmGolRSbhGtRqNXLbRSkVEoD7ytJH79X1Y+T+sSAwc5RS3HTTTdx64hhCKWIty7L7mEhr2lk2YEv1x/1R0GwUVBgdK/oOzYNkCCOlcTK83t7eZmJsnGq1yoBuw95xfc++3dBZ+kZuunke9MRqlX0Mwv5+xDCZEfb7zVPK6r3H2X3GQARW0JnzO/hOjJe2ZEt5up0eHkccxxT5CGA1APcFuzsZt901yZnTq3gnkcrvcbAVUuwB6vYfjxh5vf+9/f93bpgU9KN6cC+S3BMMy1+LEWd4N8J+7MsdXGeYNNqs4LOfeiFUtlkAg/MOa4YVAlaAycsEhyc4pfaBsb5U7QiQ1N9ub4JrpAy1TJbgxQ2vxeD6CTEgJDjnkHE6KNPsdnuAp+M6g/l4d3f3unLM0Rig1+uVWnbXmzCMPk/746ph7OWRYigpMDDjkqPXXONLAL7Icjpn85J0tBcAd274nd7tTcbuP+4BI7LsH9VqFWMMU7Mxl852uaKXufMVJzgwHyGA1rblzOlt8syxs7HOfW89TOIczz7Rod3pcMsdk0wcVnzhE2vfkMb1SwLKvfO+H2WzWaCFRQiNA4z1eFuAFHRTTVsFodVYWhSejSih2dvlk95xm8u4527Q7z3Oyq1zHPi37+MdmecdZ57hN990N2fahnWhWXVw1QsMiigHTM6Y9liZsRlX+dCHfpcprfnD3+/xgV/Y5twzq6UtguQ//Z/v4/3/+Oe4/eAEHw/zgzMAACAASURBVHouhygN2hRCI6QniiVSaASCqZpkZbeLU6HD60LSQSB1hMo9KEmz2EQZhZVjdNwWVVelkzXptT1bqsVGJeF1tzl2Pr/JO37yh8nxZBgyIuZeeQvGpMzVcrw0vPqAZrrRYy6xzCSKjZqk1tLsGMVOYdFe4LzE4IPNtBQcPDiJFzX+wc+8k9/49c8GdD9RWBOjfY2YHr/2S6f4gZ/6HaDFo5/7La6uK7pFjtQ1qnFYHo1XNDLdZboyhoq2+I7pKZ5Wivfecye5ddSbBpWmCC9pmQKdguh26WYdmKoSqwJXOIzN2O60mFRh4A1aNCm5TqlmjnNZj++6bZ7ca4zOiLXEx45PP3uVL7yqDt//FtxWEzKH3biGl45Ua3qFJNvYQrsJjk9MIjHcPzXDUnsXY3KqkcSa4FYr7RZxnCKJMPRQaPAF/TwaShGJlMwZesUOdqeJsD2yOEKZnJvrXR7XFVzeoaIihG9x+aV4YF5u31izIfshtSDrBqtvFUtMy/DIF5/jvXe/iU6nTSQnaIxNYWyXoihI4wStFMZ6nI+5dO4FsixjdXWVmelJ8k6XTjdndXWVhYWLOOfROiZNI5odw6WVTSrCc9t4yoFTk9xy181M33KSQ/fcy/Gb7kBqRbO5w8Wnn+fMc2dIoyrtdkY6lnD40CE2d7dYXV3licef4pZbbuHV97wGay1TU1NU6nU+/vGP8/73/73AxAEKZ/EOVJJi+t50KoxPoXTDhcyc1GWpfXCYE85z252nuPmWU5jCYj3keU6cVkmSCkIrVBIjlUIpQd9EYsA2URFeKrqdFkJ4rq4ssrNdYWxskqK5xbWlFVLlmZwcx1jPpRcuoQrLTGWaiXSCdDqil3e4957XcOXKFaTUbG3t0On06HYyms02zkEkPVftC9iJLo4aWzvbTDcmaHUNH/3EQ1QmDtAtIpTvDMEXIUmihGa7i6dgutEI7EbhuemmmxhvNFhcWWZy7GVNub/OFoJFU9rQB8a29CEe7QfG+JAd7S/u+wAMDNfsowvlva6PDLR8+mWF+4G5UWBglMHT7+d7WHTl/5RSexhge1gYAATzJ4kFL4Ofg4qC8TAjemRiGFr58lkdttHjCtltpVI++qlPc+XSQsl0d6V+XNhWyGAOWZicKIlJojiI5CtBr9eh14mwRYb0cObsC8zMzFBbG+fVr7mXREdUKhET0w3yPCcdq4SFchSxvbPF5uYGJ45U9oApo7pOUkrUPiDOe4/U5Wf88BorIQclL8jA5usz7m60CB4FLvYH8f3PR1EQTB4yYEKpZJ8JOciEl8YQkr0lwc4FXTgtgw6vtRbpJSJyIyCxQOIDWIgE71HC42UAXsP+PN6IsCr7JmK/fCNtdBETeCYOW4r1h2tvkOg9z18fOEHIAMgNmhtsZ51HvwiQ50Qw3ohyyxNnt7jtSMrZF5awUZVKnHD7yQkOzkxRSTPOX1xjfXkLk9aDNqL12FLO5Q6Z0VAVIiVKvcOwMD82U+X8WpOml1AKnmslgtmB8NRjSSv37OSezMCjT19A4VCRpNFoUK/FaOmwpaj6YB71oWxbCXju3CqXVro4l5cMYc/81AQf+cxDRLVpehtrGA/L68sURcbmbouxao3G5HgAq7IMvOE1d9zK+StX6OzuoKMKEYZKpJmo19jZ3MJlBeeee5aDjQmWFzaZPDJFTp2tjQ5CKLxTeBmS+U5DGkU4a4klRHFglR6biKmLgtMIdBzt0Y2UvqBfZjb6zA77xnC8cIPnzw/GVSU0WgriMgmilMKLIHPwbScrXEkqPHV+M/QpJUEYYlUre1ERjLscewD+UWZm0NkOQI23Q0aM9wHoGbUUCccj+x176JCoCK6qpeSC9SCEQSmBlHrARFai2GMaJAmgsxegpSRWesSQ75ujuUDZGpZKltcslgmplvR0Bi6UrHsRkhzOOvKsQEgX3JKdQ6ohQHLxQhOHR/sEoZsUJkYKSWNGsLHWYmZ2gpm5GudON4kTyHuKorBAjySqYl2GlJrCZPg+bU04lEqwtrgOkAq/Q8LmxcAqKSVFUTBWysxYN9SbZCSpEPrI9W0wX/jQPwtvcLmhNqaJvCLPFd4bEA7nQ+mttcOYpLBmeL0JX+e9Z7/ZaZZ1Szf2EYbuyDGUr4Zgnhxe9zIEA++xRb4nIRb2nQ8YarYEEGH47O0/3/7xjrL5RzUI+y7b/bnhxQBCsDhhEE5gjNjDUh/OP2EcEsLjhKAoymSDL66LM250XfqSI/3jVCoYuSAcsYrxQKfT4d5XnuD0c9c4evwYCwuXePSh7TImozzfgCcppTj/VJullVUqScrUZI2nnlwje9ggJYP7+VdpLwko95kHfpvvvv9dGK+IymDWlg5dGEctTtGuwCuNcRFRLDnX3QSV8Nb3pRz6tddw5gsdjq1c4MCZ02weu4NPL32Qdx8e5/0NzWrh+LoxPInij0unHiw4nzGuLR1CuUYkCz7wU/8tN9+2ya33fZg3HPp1rPo7PPLZz1GvKhzzVKuf59C04PKaRvoxYAspAmColSIrsyJpEmEpkEaRViYQ0Qa16AAU18KkmTaQ+Q6RUVSkRvqMqpphlrPYYpwrfpevPVTjvkoFQ49KoakIB9qQZxU0bVo9x83jXSIFN08Lvv1HEpL5Bhd/b5lPPZxwsLNDM6+w4WOs8TgVsvCRVsTVaZxzPPzQVSYnU6zxdHuGah2KyDM5p3nNt78RkOC3qE5Mo+wa1aiCNTmFkmgqJGkPWatRuIIxI+hJzV1VR1H1/N4zm7y/MQFekPqcqbjKUuFw603apo1wYygl6HR3SdUkM3GCyXok3uG9wdhNTkSKtvccTusYZ4kSSVwknFn3fN9EzttvOcBzuzGnli36wC6uKxHFBtkkVOQ81e1L/PwzK8Qbnh/YqfCpJGU2t1wTigSLxaKkRcmCTNexeQ+v2mgO4HwQyLd5RuxjrPU42iAT2hvP0rj3JLWnX2Asc6h6l/FkAoehvb7E9FiV5WpGvdiCqPFSPDYvt79iKzJDURSMT07SLCyRVEEbqcj43ve8ka21JfCay2cXSdMUrwyN8YMY20JrmJyYJje7xLGm02nR63XY3tqg6PQG4uS12jhJEiEEPPL4sxg0Y1HM0UpMpWK59/5THD56G4dfcy9jB0+GsifnSJKE17zutRw+fISzz5/l/NceImnWaIxVqVUqJEkFrWIuXLjA+Pg4zjlOnTrF3NwsP/7jP0arvYunNmDuhEkyAHJKqSA0jgTryYsMU1hq1bGw+I0VUuZ4a5EqCqXq3mNcf4IME5MxPbrNXvh+oQeTUxC8dtjcsru1zdkzL9But2lnbSaSKvOuy7gTVKIKtapidnKWpcVlIh9RTyfY3Nxi+6keR++bweeOKwuLbG/vcnB+LiQJooj5+Ukq1YitrQ3OnTvHnXfexZHvP87KE1vsrrT5wqPP0ekqfFpne3eLOI6pj42zurIcggEZygjiagWpJM1mhyQJi8Barc6lhcvk7S61sfpfYw99uY0GUUNNIF+WYwSmGWWmMzCUQt8sShOTsAC6MWttFLzbz8wa/f4bAXP9IHEQLAqH8xIpPJGO9xzzKMgXDAUkiAh8gfBiAMoh5JBBtu8Y+sceDn94LKPHJaXk9OnTbGx3McYMSu37bAGtNVrHVMemSJIKhfVkDnaaPc4sXGBjY41IBSfjSiUhThN6vR4YS71eZW1tjcNHDvILP/Oz/ORP/iSomGefep7a+DiNqWkWdrZxzgUmCey57qNA2f5y4P56s7/Q7YNySDEIwJVSg+B/sAhgyGgJf4jBvgJ+eX3J8B4WY3//I+CqtbaUHuhf72G/0Doq9xVYLEoJ+kSMQRZehIWR9x4twItSrFtcLxTeD+K/1Zuk1E8yQ21H74PzpOwv0gBdgiRutKxPDNmfwrPnubn+e8Ki5oXlJrdOVVlOIybmj+KEZiLRbGSSM1fXOXNmDYFDyVBeqbVGKIkpLFoqjqic8VSifYH1MUI4YiGZHtPoPGa31UUh8BbqFc973nUfr/iun8V7z+d+71e49tQ6OIczphSsN7SbLbRPqCUaZxyFD6XNhYE8N9jcQ+rZ6QWTqb5WonJw9sxzXN3cYKKS0+n2GK/W6HQ6RDphLK2yvrPFqfohFq4uEynLTUeOsraxhjGK48cO0ex4ajE8/tQZer0Wu1vL/KOf+8c8+PWvkpiM1506jBobp1KvsFNkVNOYyvgkQkm0FFRjh5aOLMtQpkBJEDqimWXsFOUDotV1Y1X/Id4Dht0A1FAulJI7OWQPqnJMQMrwjJV9ZSyVvPUtr6ezsczuR57EOcPdN41zy6kDHL37bqqzt+KyLmef+DJf/PozXFvYZCsnjN06DqCOVMGQRng8EWKQgBk5MDcEkhhx/BZiWMbYB+uiSKOlIlIG4aHbEeRu6CaqtMJZi3d5KI0ux3cjJEKpwNb8Szmgf7NaP4E1uN/OIki4540RX/tiN5QY+36s6UtttQDMehuScEqHZ7Lf+tenwOCzFO8txhdsbyQoWWflWsbqUk6UODq9MjknPNJrdFwwXotIK5KlRYVxjiRK6bkO1hYcO95gZalJL7OIUidwaD4Bx44dY3nxKkV5T6UHSq1EKSVbW1svyqK7/v9754k+kAalXAKe3WZBJVF75tjSlgFBPx4pS++dC2y30pgkzFG+ZOoP5SL2GtRcz9Jzo2W/I6Be2Fd4HaroXJAX2Xd+nn2s0n1nfaMYDUApjbHFEMAc2XKocTey/ej3yJHkz0hCcDgWyUFC1+KuixdGW+iz++VP/J7jHiTnpKTILUqBxLJweYWsyDl37lwZT9i93+EliJxaFHPu4iVwgl43R+kYITVZ1g4x3V8wv+1vLwkoZ6Tk2Px82LnzyFKDRbiAagolscYhhcVox6logoWoTq/Z5TOP93j9p77Knd/5PNjbceYWPpJZFiuSB1Z3OYHgtVIQK8mss0jp0M4gXBshHYiMwkqk1NRFjwO1gt//p79NpZswdWSFn/rb/x0/9mM3Ua1N0F39j8zedoQdI0mERSaLwDjKKZSwKG/Q0mMKh3Qe4zXaFVzcuIDUkvrGU/xf77iNZwro2Q7NrEsl8nTzLkWi0Mby5qkKVS14tB2xqHd514lZDIpEa9jtkU9APBmjY0nVeKbSmGktef2rpkje+QCWMU5yLycvr/DsjqSqLNuFo5ACLXIMmiIPBvPCRTz16GmmZ6fodHqlYH1GWuRUKjE//w8/xKnoP/Dg+TpOeSJdoVcGLD4SHD5Qx2yuIHqSzgWBryloWzA5X3l2ibrTyPGEmoJda5HakdqQNegVmlhqpDMUmUX4Lt6PlQ+NoSEKTo7Bqw7MIlwIjKLKOJnv8slnz/OekzNM6QkaQrGlLV9/4DRvePetWFngxg7xyr91jJXlNrf8m0tUd1Nq0pOcnGd+YYXNSKFygVIal2fISJLh0HhcnKJMhPM9IuvwKi8fQoMQYXBsF1vMI5k+f41KluN9h55N8EWP8UizkgmWO4KoMYvNxyH6Sx6Al9tL2pwTOCdYW1sj1TH1ep12s0kljnj4kQu89q2zdNtdpNB0W5Zqrcra4iZeeOKkgvcSrSWHjx5gfHwc7wWNxhgnjx6jWkswhWO7vcLTj53n+WcvI+MqR0mYjgRHDs5QkPP/s/fm0ZZdV3nvb621u9PevqquSqVqpFKpJJUl2bKxLSPZwrg3+OEXE2NMBjxgBPJ4g4ADCQTMCCOBRwIhjzyaxHQxBGMcA5awjS0sLLmTLduSJZVUJVXf3nvrtqfbzWreH+vsc/a9VTL2H4pfbM0xatxb9+yz99p7r2aub37zmzkaE0aErQkPFg3bVp/wepWzO7aT5ZrzC8scefIYNh/QnpgiiCNmZmbJsox2u41SilOnTnHt9ftZW1tjdm5ypL/mtUwMchiZxg0ZHCpECs9CadRbKBUhZYC1Pr0Cq3258yGDQTm/qMfDyKUxEmkDr4ulgtEms3Sc024PneX0+30WFxexOK49cBW1ImLQX0ZNNlhbWaYu1snX++AUhTTU2wFkijOPnOPQK2+g2x1QqzWZaE/x9DNH6Ha7XDWfkOeGJEnYtWsXC+cvEE4GpErw8U8fhiiiVndsLA8IajFSylG591arhdCOPMuoTzTprncIjKXVirF5ytnTZwjDkB17dpE0G9+w/vm8eSurZY0dKjOmwA1RGof1EetSOHlL2uRWh298bjGK2G79V2UvlMBbqftmnU8b0cWYdeeEG7GvhCr1kHzq7VZgUYjAt71Mk3CCcqPNFRh2Y9vM7KDKwBOCD33s46wurvgorAqpNyfAKWQQ0my0CZN4qP1qUYWhP/B6OaGKhs8twLPrAoosRwmJiBS9QYYKYy6trPMv3/1LvOvn/7XXgskH/PAP/xBv++5/wpGnnuT0hZRDN0xcxlLb9MwdKCWxuBEoVt2Y+4Y4D14yJJSFoQ+aIkdgW2kl064qhO6co5ToK5kvo+5Ssva2sCcvawOezOCfh4+mj4DbIUkCGOnFebJAqbujfX80dryZLtthr3C/34K2tX+UTNet464cn0b6SocCUMM9n5NXSAu/gpXPWmtN39Z47Hyfp871sKYgVg4ZNyCqkwkwrklo1obBG0koFYka9+colpvAfBX7fjpYXiNxjnkFJ4esklBFTM/uG43nvdfdzMOPfgwVCJrNpmdWlgEBK9AIrANrJdZFGC8cR7vdJm7W/OZZ+zQ0Jb0wfjaIkE7SarVYH/TpDPrkeUAcanq9HknS4NzyIsu9DWaaTc5d6tLpdGg1apw5v4ZMQkwG040atYkaL7jpOu6792/YeWA/l86d4JaJGou1kPZEnfVeFxVakmYD4bzekZYGXAFZOb8KpCtYSw29nh8PcRwP2c6bwaXqnDjqA1cYF0op9LBoj5QSJS+f4y0eQJVBgHWSuNlGUTA71+aavTeQTO6Dxm7Cmub6mwrazRq9ixfZ6PapxwFxvYWNBBdOX+TomWVOXcxIjWFjUNBoNDa1r/y92re2su3KDXpRjJlwQvjCFNkgJ8/9JrtjDMvLy8zNzRGEY2ZxCZJIKf3U9iygzv+KVtXcA7BOkcicz92v0EOd1ernVT1S7196YGPTvA2Uk3IZ+IGAdDA8X1mVMzU4qyg1xyCn1w3pdTXa5URhkxtf0GJ+e41PfOw0hYZjT6+BTMFJpLAI6chzza5du1jvrnP69GlfNDEbkCQRVoTYPB/5El/PHFVli20NIpa/A2SZ5k1vfREf+dBTpGl/U6pu+QzyYRv8kzEYWwz7k9flFEKQ5zmBCjcFRLYGj/w7urJ8RvVYr592+ZpeTTet/qw+m2djvHU6nRHL/asdd0XQswL8V7VqxzrD42cquTyId4WbvawN5RxWPrsyEDqaD7TgZXfs56/vOQzCa3CW2RpRFI32ZLV6QGG65LlnICsVcv78ImNNvyvr+T2bPSegXOAUqjCEgQI0QvvolRC+YqkSmnYYUDjhN8RJjfORJEwEu6+CHWfbEDdwRQHuj3lMRywQMpADFpxjTVlmAwEWIiQ5YG0fZSEQCbmVCOVwMsANTrPtBS/n/B9/iNaLmvxvtz5EtrpKUG/zx7/zS/zoLzzMJ8/8MD/5zif4zfce4vrZ95O6gtCGPsLiFM4anBMoFxIHKY0g4Jd//IdY+qt76TOgEJK2DoiDGlhL22bIKERhedHOmMeP9xAWlsUEv/fMMi8nQBsLE01SBqwcfDWR6mKLJpaUKLZ08kvUiIFplBLUI0FADYzBOjEEOQtk1PaDU/t02OmZNvWJBkJqVpZ7nq6qBMeXVknWJE/kEdY64tgwMD1iFCZQ3HxdC9sT5Npy7FHDvkaffj9iut7hiUspaSyoixqZLshkRC8tEMJCM2KpuwGqwGkDUcRa1iOIplGpJogkszrnTfu3E9sCEYboQU4aSO5/+jSvnFB8z555nHWc6hfsmK6D7sAgQIp1DG0+9Zmn+YFPdVH98zRdiA0sad7loxfWkIEjnGii0g6FjHEywOgC5UIK1fO00dCghSMUIWiDVAZnQCgvoKldQsuuM7W8xmogOBc0mYlqPNPpsehClPD3GgrJLY3nI+TfaDu3cJF6vY60hhhF1ktJSLhmf8Kdb9zDyuoCudU0k4gkTOh1e7g8BAUbnZTF84vMNNt0i4her0etFqOcpBj0OL92kTNnFnno0cNQRDRjxY6oxkw9ZHa6QVwPqJmQU8cX2XmtJGm3CdCE9TZaa3RWYDVEKmDHzqt47Wtew/Hjv8cXH3mSb7v9EHPNWda6XQaDAefOXSQIJC94wQu496/v4dWvey2T01M0Y89YUYHXQZKqFCv11XyUDBBArTGBHFYPkkLhDISq6Z2eLCMqNyCmIJRqyE4AqYY6FsZrXykJRnvHQAlHfaKBMQV33PHtfPnLXyaKEw7esJ+nvvQl+isb7Nm2nX5ieObICaIgZHJykqLIELbBIO3QjmvUZJ2u6bC6uk673WD3NXtZX19nanqCbrfL+soGUeyjo099dp0zR5cRjTo6dxRFjouDIUPIs/empqZGi6KRjs7KGu12m6WlJdzSgHoQsmfnbjKr6Q1Snll7PtH8G2lVMfgq2ymwUMjSCb2y0HY1dbL8WXWgRsy14c+qU1v+3wNfXmDaMyDGYsfOeJfOOoezFmkDHzyUY50jpQTOKaTczOrxDSq5PyDdmAVSvZNRJNz49Jatzm2VoSWso59pCpfS196n6fZykiQhFl7LKA5ixLAiotYaazVa5xRFNkzvUDhXoJQgy4Z6bMPNzA+/4wf4yuOP8sgTj+GCAF1YRNDg997zXn7/D/47zSTmJ/7p/znSjKs6kaICTHr0So6q3nmNF6+txzBNx1mwQ9qbFA7hFAKFxQyJgpUNymjTsXlDP+oTwjMPrddmxw1TA0u9p03AkBxXpzVu/KxlxRmu6sk4HNaaoej+5s+qbSifxeaqr3ZzhcVvIdvKShUqADtOzZHCs02RcjRiPKPOg60jUXQcwRAUL9/XlTbBmzZtygfbdTYgUBKnAjInECrASkke9ikKhTUFYUMRY4mtw5gh+1EFCGu8PEOgGKgaTXLE8Do7JjKmlxSrMuBSx/Hwpx7g7mv2ECJ56osP00sFSoZMzdTK1hFKy4uun+Z7f+qXcWGNz33gN/jwJ54mQlFvWM9gr8fEcUymfREpayEQgu5gg8lmgxOnT9GoNxlkA4J6DZvnvkKtycmLGrMzcww6HfINX3wqMwYtLHWlaMeKLMu4edc8/V6HV7zoEN24TSuuYVdOEgF7d82gdJejl3LUUBpDqQDwlZxVFCKc8W1zkkYoWRcG7SwBY01Iz9L3KaqjlLQtKcfOlZtdMdJnUwyDEHhwVgmBUn5jLYYsY6xlfXWNlYsrDApAa86e3aDdPsbVJiNZPYURAfnaKi4TDJyi2ZqmPT3FxNx2wlrC9h0b7N+/zMLZ4zRizW9/5BkcCTiBw+AwfOeBKS5spBxfWKeXQ27HlWZHYKHyfbJMtRszcsdzidYarS1pL8XpgqDWQJdFQoUcTm3+frdWg/5f2Zzz7LcxU06gHdhgHWeGoPxWZrECrYvh4Nd+Xz2slmCdHb6fUjStLKZQnY+HOmvDyqyjdgg8SxHf59KsyyNf7vKo1Oii1Lx0YP2aZZF+rpIhZ85dBDHWXwvDGGOgTH/0c5GX3Ri34x8AkirHlb9f6bjCCD78wSd49etu4sN/8+XNfpJjpK3onKFRn6DQ2XDNH0o0DH2VQIVjtnl5vWGfFW7MkKuCpNU2br2PKqhY/Vm9701M+a3r9ZbnMDMzw/r6+mXPo3rdKwVbATBu9P58FoLxDPkywMs4UFeeYiswt7ldZbvHvsUolXp4zlIGo/QhpRD85V99AVdEiNhuAuzG/pyl180RIvDgKZZ+//Ln+w0H5QpZUFOSgMBHpsHnegtL4CCpx5jCkkiBExZhLCEGneXccx+czjb4x6/YhTr4WwT6R+gGP0LH4lHywNBTjjDy9NPA5ggsgcsoyKjZAdo1ETiUzbnzHTX27jvC+eW30w0f5/U/dZYT96xxNnkdP/7u3wEWge/k//rJUxh+m8L9EaBwFAwKDU4QuhApcgwpkRR0UoVCcOudd/KhB/+ObROGiVqHtG+ZCxKeWVXcul0hFTx20fCmF0/x/oc3iIqM3apF6+I6G3KZ9uFVolfeTvv4pwl3Xk8jtCx1LSup4oknLe3fvQY1BU99JuCZFUtuBzgVgdUkDgYiRmvNxFTI2pJBOcfSpTU6HV+BRClBKAJCZ2hEAam2YC31wLDcK8AEJA0Q9Nl/4zTnnxKcPmXZFmqOdOGORs4jG4bz/QY7o3VoBUgEihhj1pmuzeMyQzHwpa8zlRHoBkUeEKgCpwqeuZTytutaZKZAIxF5nye6G8wGNQ61FGvGMB8KMhHRMYZLOqCu69Sbff7w1w/zsxdTIpkROUlLJPRJsYlGhSF31ROeVlBfW2GqnyFsRKADhDBoG2BMSBxogiBCGoWUGiuE1xkRvlqPkg7QUPT5RL9HECqa05Okl/rIRoAUhsRJ+lbgRJfl52LAPG9fl2V2QN5LQQQMTMF6v8N0lPDOV72O5aVLpGmBFdAtUhY7K6PNe5GnxHFMPZ7g1DOnmL56lrvvvpuPfeyjdNaWOXcaRBJw9OhFQqFpy4jd8SQz29skoSGI/UJZBIKbX/46bvi2l/qISeY1i9I0HUaVQcmAIE5IVMy73vXTfOAv/pqvfOVhkBYV1tm1axfLy2scPHiQ/fv3c+b0BbSGLM299t0wfRX8vCeFGtMMqCxAzl8PLIEaavhYTRypitNhh+CW/+7I0VESZ8cgRpkGZoyl3+/z27//X2k2m0RhiNEZ12zfTm11nvMnzhIBE9PbqCUBa2trtJsN+v0ugVLENuL4p48x9+I54jgegWenT5/m0nKdRqOBkgEmm+Dv7v0k89v2MtlqU982xfFHzxKEEbrI6fV6F3wapQAAIABJREFUtFotwOs7NJtNv8kRglrNp+VNTk5i8oKoLolrCcJoVjbWSZLkf1p/fN4ut9IhKUGUqiBxVZtM4VMR7XDbJEffu7IjUwXoqhHi8nybq61eriXi+/hm4KW6wfSg3HjsWauH7bFbnLwSjKuMyco5R4ChFEhtRiw6IQRSjdNXnHPYAB557CnSXI908kYsPycxxg0jtENH0BpckVOPQuav3UOzfoNn2DlFpguWlpZ8ukUQooKA9/zpf6PVbvDxv7qXIAiYm5tndb3Dvfd+iF/5zV+jcPArv/VrvOrP/gCtLVUAsXrfHsi343RTMa6aK9jMEJBSDh3qcrM1ToUp30XlrY7+tgmYceXm1m3qO+U1y59V3ZqtfUAM2cJVZobfWI7vsbr5KPvD+P3b8btgXHX1m6mi4tdjXiNpmOrlSxNinBiyDR0IDUQoIRDOs0eFFdhADSugVtKgyudaAb2fDZgzxiCtRuKwQg2rAA/Hny2G6c/jvhpIQSIKiuH3EYJVDaELqA3ba12BdQYhA1QgmGkkvHQ6ZLEjSV3Apx5f5oGf+XWyfIOrd8yz3vd7jTCJEcMCINPNgDvvvB0beg3T2+96I48cfg/nl1KkHDIvVOBBcjsEqoVEO8u+7ROcv9QliiKSeoIwhoaKCAJHbSJk2TgKk5OmGVo4TDYgVgFpNqAWROjugFp9kttvvZrXv/oVPHL6IqFxzE41ObZ4lsJJosBy4GWvYvu+p7n/qY8SKOXT48rnJAS1KAIlCZVBWMdUI6az1h89fzuUvxDWIKQaVcq9nClTDTyUrFY2sWoDWQYkKtIEQJrnrJ89z+mTF+n0HDVlMU6SdrssLyzSzHKEgPW1Nfq9jKyXoUWGMRqtNfV6nUGW01leIS0Us7MtWkmDXjHuU83A8B3/9JcJdIfH7/2vXLzU44snVhgU2leAHbLjsiwF4efcXASjNcxYi7EFzlkkPhUZLgcmy7l/87P55rBNwQsnMRhwgu07a1w4mQ7nS0G14EAohkV3KowtJdVoLnVVJpcYr9nVedmvJ+Aq2lyjZ1sppFTO3c55TdvR36vHUzDSS2DzO7r8fdlnPeZKzK+tdiXmWllw6MEHjl4OfLmhtAOQa0MrFPQ3+h5gw4NuBo21Aa6qDVcBAH3QqdIGNn9evd7W+7oS4HglIG0rQLf1HgFWVlY2jY1RUNQ5NuvsVsdP1Tcr+4Eezj+CMiLohEU6iZYgUUgnQZRBHzf6flkcwgOecnROb+MiG745pT9okDiUEaggoBGHdG2BNbB9+zYuXDyHLrxU0czMDMvLy5XnUFZ43vz8vh57TkC5H3zhGzi/fB5js+EGFZzVeDUkR5AZLJY5FVFTCWQDJosW9UKjBPCIxB62xAcz/sMdCfkwbcuXrRX0Q4gjQVQ4pFWemYfyJYyFQ/kADTqD625+BXn2q4QLr+KWH3o9cWOBG/7RL3Lq3t/kw7/8Y7zhFx5kdeVBzn/+o+y75a8J5RCtdkMqrXGIMAPtX1jfKqYnmzz2wF8x/7I3ct1Lb2HmxKO4qEWj2yEQATNN30nmQvjwcoc33bCXRx64xGSjjdA9zPQkUTQJcxowIFL6uWYFQRSGHF91aCtJN3LCuuLCquXwSsCJTkjPRCQyJVU1Sn/3z//8z3ntd3431lgSVcegvfNqPd01iiJsPyMW4AJFrBQNmdEPJdZIXv/dL0PaE9jCMGXbHF5b4/arZujmBY9swGzdEMgaOq6hWAerUEUdqQwBEet6A4NCECOknxCujtqsDTKaSexTSPDV6O578hS7p9rMT2Z0UkEWKOJIIjJDKhQnBxc412vyK19aIFZ9WmELnMZaR4okMZZuKqkryWywzPYwpNacQWz0sIMctEYHgkCkgPUMHqNBGgSSCC9Uihuy5IylKQIWTi6wHloahUI5SVQUDHJLolpY58tSxxsDFtaAyedi1DxvX6u97PbX8uCnP8zS8gmumt+NrLfZwPCe/3g/3/uO25ncHpIOfHntehxRRtqiOKI/WKfopzzy8FnetP9FHDp0iI989F7iWNLvGU4fv8COuTa37p3lqultLJ8ZMMjXsEiMdgQTTZIoYtf+PYTtGRrJBCl90iJn7dISa+srHNx/E41ag5OnzvDxj3+c3Xv28dpXv5IvfvkzHD36NLfe+kIOP/UUb/iuN3PkyaPEtRbbr8ILU1tLoQ1BGI2YbWMgo7oRHC5YDB1mKbFDsXtn3HBzP4z+DqspSWlHml3g04C1KYs8eIdmMBhgeilPHDnKa1/zGhYWFtg+NcUg7XD+1CkOzOxi4egJVBiSBI5eL0PKCCUTmo0agdMkSYRyimQtoTubsXDhAmmes2vXLowtaAYtPvXw46wsncPpEGdg33U3YsWAojvg1LFVim6faKhx5VkxMatrPurWarVIswETk22M9ZW011JDfv4CeT+nOdHm4MFt/3M64/P2VcwCahMoZ4AA6TVbhf9prF89FAKp5LM6f7CZwVSmEpS/b/ocM0qJ9Sk3JYAzBnhGrLWRQzVm4fkCKJ4lp3W+CRRSww1C1XxUd/P/hRAoB1YOI/RDVkgVkAP40pceISvGbS2MQWlNFIQINM51MFkPJSRX79xLrZGwa+e3UxQF/XSAc84XskkSet0BLzx0G2967RvBGer1hFOnThEEAX/2/r/gD/70D9i9dzdSwlVXXY0IfDtCmfiUmdLRxm+cSnLIps2YAYEPOo4ce2E8m22oyyYqakrV6PLWKPvonJV3V2XKldIzo3cm/dxmnXfSR3OXqbTR+JRoIQRWVFhzW9KLnRtXb6ze4ybwztqRFk4VvDW2eNZe/61gVQC1ZHiUfy+t7EdaCcLCYlVlAycExmNlnvVwBTCu+q6stVCkmMwitB2mvfvz0O8ggcRKjAQrBAGwHiQoApwzRIFk555ZmtvmqO3fi5iYRJ9eQHQ2OH9hndZEm9ym6MAwPZGwsA5WaHKRgohJc0hTjx+OQWhBURguLZxk1uQoFbJ84ShLqxtYkYy2mkIIxHCdHY8BWOv7Md6IEhIladVrdM6d4tZDN1IIR0MrTJZx/OICrVaLbrdLpCQqShAmZzquc9ue7dz5ihdz8PrbuPU1+8mXzvAnH/gzGo0Gs1MRQoYEkzfRQhDwt0RSoK1vfyg8/UBJQxwIhFAUxrJ3e5NBL8OY1VFRAyGuXCH32Tbyo/lPyRGrGPxesDoW/XkhLwpWVzo4GZHbNWIRkBvNqTNrPP7MBeIoIAwDsixnut2kHsU4oVlc6qBPLRGHEuFAFwOWe4KVxUWW13OCmk+fC5zgxXe9lEBmiGCC+etvJplcZ6F/hMJBYC31mk8JLHJLd9Cn17Gs97r0ioygyHH9lFjn7Jmo8fTKldMbyzlja3XKbxbblJqJGEJFsPOaBudPDIafba5ymWXZ8PjxmNZaXyGINryG21zQyVcBHWzSWaVyrq2g3DiIYq/YL52zY2YeVwZNrgQ0bw3ejM+3GaSrrnHVNaPaX1Sg6fQ2V+Qcp+7C/I6dXFg8T6fTAWDPnj0cO3ZsfH47BrjEldbor9LmrZ9vBde/2vOojvdnC6CU91K2qcpgG4NyUO5nnBunezvnvJ7cputtXqOrAQGzBYAc7YdG61IlmHqF9o7aLMUI3E/TlDKgB5Y8NzjlaNUS+hud0Xe01iwuLgKgtSUM49G9VJ/blebHr2bPyczxp5+7h589cCuhLDuNxeGjqwEgNga0lWC+yEmLnA2p2KUDVmzKDqmYsILskw1o/xve9dAx/t3tB/jKmT5pT9KQlkYAyjlMAMoEKAzK9BBOEQhJJBS5ydk3MYO1b+TXfq7Ov37fe3jms4/yd7/7Kfbc/Z8Qj/8Fr/mFz7G+9j6i9s/zkh+7ix59Bp2UOIiRxkeGnAgIrUC5nAJJJCQb3RVuv/V6jj79IGl3hcXdNzJ1cpk2YIOMYKjrkkYJdVHn3Ae/wi/vmOaRS4s8lEIWQQxkQpIgIbdkpk/IBH1ruLhsObOuOXkpQASChdzStwEbxpC6gtTFFFi0sEgT8KY3vJWoEAyko5utkTBBYaEeF2hniaXgqu2T/MZv/TN2TDZ45w/8Nt3jT6OtIpKCqXaHc+c36B6rc75YoVFrstrPOKENrTChRsG0aJDWFJ2+IBYZGSlx1CQeJBinUATEeh2H4jVzE9w0pTk7MNRkgXJw35FlrtutuOnqOXKnyXJJIn0KbjcNobA85QL+w8kNTLpKPRRgGuyQlgUilCrQ1vejUGU4q1hZzXCh4m+fPs5tjYgoCpDSIgqLdpJIgS4inw7lPHPCWF9dzQmDVApjNlhaT5lqRcjljIG0JMKSoFizhnaiOdftUxeOplnkqW87AEeOPBfD5nn7Gm3b5A4OXncztXqAUoKz544x2Z6hF0a8973380M/8B1YLHESQJExKDRzc3N0+mtEYYN61KTXeZxLl5YZDPoIAs6cXiG3gj1XT3Hbngn27p2g3RIsXehD7ifXMAxpt5vE22aY3rkDIQRZlnHhwjn27z9AY+8+pla3c/zcBa66JkQ0E974tu/BDCw/+ZP/nDzrs3f3LpwQzM/P8+ijj3LrC27DWsuBAwdI03SUnpbnOYKKdgFbF9kK4CBEqYs6qkIppRyle6qgTJWTJEkyBEn898v0UCHGuhJJs84rXvJSzp8/z2SjRWEMK+tr6F6PLx85yg3797Nw6gQXLy7RbPr0eWENUatGq9XCDNuvjq2gooTZg9u4ePEi1lq2Te7jg++7j1tuewndtSexdoMTJ07QaDToDlZJVc56f5G5+V0EQrKyskIcxyN9F6WUryQbBnQ6HZrNJoOBr0DVmGyxtPwIb3rbGwmCb830sv+/WOmIeCfaM550xS9Rw9RVYcrItq80OgZGNgMo5c+qEz9yfN0whVuBNQ4V+A2kMT49UTB2dh2bnVev0+LBGWsrLFLn07us1UOmmh6d321xNCmdcMYOZgmoV016itEmB9day6EbbyKJArLC692EoWP/jdeS9wfsvGoX11yzF2cFYRiTpn3iJOT06ZMURUEY+Y3K6tqaZ6IoxYWLQ80epcBJZmZmmN++g+5Gh59/189y4cIFltfWueejH0WgaDbqvPjWG8aAXMWRvBJ45qwA6dPpqw5y9V05N9b2u1LfqP4c5cO6iuMt3RBU3QLSOh8c8RXQ/JpeTWuGzanTlYfvAbjy/7YaQa/0JQswZnqUoEG1DX7+3FIG71vExiwoz3QYMeKEB3XKfm+Gz1QKhbQO45G3cYrgcD8g8KyHah8yzm3mTjhHnufUQ4XFEdcVoYqRTpNpSz4MPhW2ILIFrZqklsBEpIiForCGRqCZvO2FRNe+mGT2ZpyAZE9G78RD7N5xiSIMybKME8axdvakD8IZgzGORuiIEzzzXEgwFob3sT4wvPdvTzL7yX/Grl0znDi7Qpb7QCDCIMhRJvHrVgUIkA4arQbNeJ3dV+/hyaMnufvQNez6tuuZ3T6DNpbHnjzN3x4+y627t3FxYZm28hpScb2GLQL2ba8Rmx4tIGjWKPprhDM7OHDNTo4vbdCIFRtpTuf0J3jy8a+gVEEjFGgLVkK/b9Fpjhn0iMIA0YhIJFz38pcSTx/mz79wnno98SnKgEYQCuvnU5x/95Wx7Jz0IKss08ICIud8ld4tc8Qmpp0QrPdznjm7TpGlyDylYw3HzymmpmpgLDItiEIvwj7IHaleJXSaSCoGxlALY4yzDPpd4uY0/VWHRhC4AGcNhVB8/tOf5w1vfCfkazgHaZESSYft9pGhJFYNgljS15pGGBJOWNqNNulgg+66ZqMwzM81uXpSIhQ8fsGgcWgU0lzOFtq6fn0z2BjwAiEcedYnbjfw2GfJXh3P29Up2MGIpTmaX6XAWIMQwzncDbdqYqwX2u971qYv5FMFOIY/TSWA58bs7cvn6AqbegvD3VV+32zluxwzRrey57aukeVaVAXEqqmPSlma7RnCYoN+16BkhGVAlhoKbSkKzer6Gq1Wi5WVFZwznDhxbPjMxmwuZ4dpqpW16dkYcVuBoa3gWvXv/5B9tePL/8/OzrK0tLTpWpcB2MJuekauZLPbzecU+KCPEGM5Cg/eefaVlWZTNdXqNYf/8+fZss5UgcLy/L1eD69FKzFGMegr7rh7L5+8/zCrgx55nhPGER54HhO//fGF1+sdMUC/PoZcac8JKPeeNry5YfiwMZwQij7QUBKrDZKAHcryauP4vf/+07BrAh5WrE+0mDj0Go5+31tYbB1j8s0duMuhgZ97qAvpg/zYtu8kjKEVQDRkCYZOEzhB5AZY50itQhlH4gSve8sbsVLwr3/9HcD3sbj0i7zy7d/P5/76Hu76mSdYvXQ1s7NnefyDP8Ghuz7PO15xlF96+6v5pffex9KF07ggwUlDbgVpt42r94mUw6SCCKjXEv7+U1/h9Tfspz8jmcuXyZkAlVMLJVrnpHlBT9RQnS53TAqOrTmkGaBUiHryBPrgHoJkNxO1kItmQK/vqMWSS0VApzssp0zAgJyCCCMUGo21EmEDrDA4K3HKgFXUkoQsy7xT60IfTQ4KdmyLuGZe8YoX/iy7b66TDQy57EMcoELHw/d3aZLRFiEruuDpdMA1zTbdLCN1CjPRZ5CGtKXPVY/oUQtmyVxOljua9YAsavOWHRBnASKuwaDAtAMeX13ilqtBBXWKvIdwETrOGfQsQRBxKQj4o6NLuLjmqfHK4VyAUpJEGZyRhMbhhELUBLms4waS2dWUuaLANBNy3cf0J3G1VUARGEOurS8EIn3Z9UJpQie8Tg4ORMKllSW2XzPByhd66BwKYWgFgkWpiWyTG5SiGyo63YwLJuUFZ44/F0Pmefs6bMeeHRx+wjI/tYfF1Qtcd+2NdNYW6fRWWQgHPHPsDNMzdXIVkKUFIghZK1bJSbFS4WzMysolWo028/PznFtcxqGZbUfsaEVce+0M7UZMlBj27p/gmafWCQKF1YagEXLDLTcS1uqoKCQvDDvm97K8ssbjn/sEt337a9lz7T7CMKQe1uj3clLV51d/9Vd48P5PcO7saUKpOHniBC97xV20Wi2S4ZidmJhAFwVKSozWZK4UyzYIEWBtNWLkRqmcSinKilIATioKa1ElddwJnyQoShDP609J6bBIhFM4AXHNiyJn/YyvPP5FHn/8cdqtGR78zKc5dPAGmu05nklPUjz2OJNJjAwjDI4ojkmSGlEY0wgDsrxACom00H26w+rVHc6dX+CLD55kevo06UDw4AOf9QugsOy+djcLywucOXmCPXt28W2vfBFffuAwkawxNTVFlnlNjTAMSdOUWq1GFNdRIkH3B9SSOgPW+UfveiuHPxNTn4jYNjXxDembz1vVJGPnvOL8jQKXY+BGqTIlsfJtuRmQgTIVzRdvkEPB5zL6XZanr+rOWW2opixUUx23nr+q2+JZc+PvGGMotCaQ4ShyK0ogopKqVLp88grOqrVm0zVHrAPreN9/+r/56X//71HGcM2u/ey6Zh9zM7P0+13yok9/sM7Cwhr9fpc4jukPvC5ls9GupHTXsNawMaymKqQjTVM21i9w7swzFEYTBk327NnDi1/0Uq7bu4+NtRVe/pKbmZ5uo4t89FyeDWwD70zD5YBc9ZluZSNucoDhst/989i8eRAoXCX4UH2H1XNqrUfC7OV8uNUxdmVKahWnq7R1q21iyw0rco/6lLXPCjh+s1u5KS3Tmo3z1VaVGKaIle8ZH9C+/Ltj4FuAZ8uVpXmHtjkZEHCSPE8JAtBGInHUAkkcBGzooZ4iUAAKzWwimWhLppuKHhZpBNt21FDzu0jmbhxdGxfS2PMK0uZj2JWLCBnhVERaGPI8xxhHnhtu29ui3go4sSixVpPnBcL5vUkoBEI6ljLJSv88Kqh79q8xTNYErSBAx5KpRKCkQIoAaxwIRzeHWq1GURTsmGjwwpv3M9ueIAp8Gv2uHdu48/ZdXDrbIb7zhVxcOMfhJ46wY9c826enOLgjYO+Nt9CcmqNIe7jhxnD3gRv56IPv5d3vfjfvf9/vcOyRL/Plr5zAGYfWfTCWIIrB9MkHObYw6DCgGUikcoTb9jFvCpz7FFEQEgyr5gYVyEK4cdrcs7JPGEsCXAngr4Le2hqOnL5AkTtSbUgCxYZzXvM3iZGBXyssjmK1S545nNFIAUHoQU4pDBQDGi4iGhbH8mDIsCqqETx93+/SbM/Q7/dZWbyEztdp1AKMNZhi4OULcMgAhLTkeoAzHaSw1Gox9WaL+kQdwxJg0HmBMx6cHq8lFuEswlpcZb7/ZjCjHaB41eum+MRHLqHChH5a8PDHO8gAtGa4Fvvjq2v/ZjBnK6PIDOfa4dzvNgOAW5lZ1aDJWNNVEKqIPE+Hx1T9Bje6pnMOJzYHnrYCTeM1aGzltUo/Zesat/l+Ll/nyjVDa83CwhJRFCFFjHYD3vSWl7C0AJ/8+4d8yqUzrK92CKRiamaWxUtLFIUZ+fBeK08Ms7iqEh7VMVZWCpVsShHe0sby9ysGs7bcw1ar3nt1HV1YWNiUwn2l5+Qq73rT39woPodfa8ZSJVYMiwYJgTE5ghCcQQhLYEPMFXyOZ2tvNWNBWEGuvX82rvxqSWp9Hrz/STKdeXa+kpdVU61Wji99kSv5FF+rPSeg3Fv3gfy9/8yrXnE3mREsakEmNYfa0xzc0WThmZP8dBuKt7+bnBZp/8M0X3MLKTu5/uhjXG8CzPEHsD9Tw/4fGRzKsI1XsncbvGC3JOtYVvrQHQQ0ipC+tSgriUyO1oYpZ8iA628+yJOP/Cjt7WeQGz/Ay78rB32Yl731e5DhXzA3+4f8yQ9O8dbf/A3+xUv+hKCQfOD9n0WLEI0FZwhthHGOsLFGT0tEEJJnmppqIc06t7/oZi4ce4KFYwuYlx7idUfOciZJCN0acVDDCHhyTZM2Cyb2SHY8bJAqhmvncSIneGqV9VBj84ie0MggIFKatTRAWa8BZ5XXh7LSkZGjXYTF55aHRmCEz9EWriAKI8BgdOD/RkxRpKwsLvOrP3cPF4olus80SESACmKUEnz2wcNExldJlShs1iMMIlSgScKErPAdrCahyApwAlPkSOOQtkPkIq4N1hnYBvOyQZ+EyK7zqaUud9Y7vHB/m6Nn+zi9irWOzCWkpsOyVPzNqZyazTFKERrjdTikIVBeMFjYJlJ0sCIhUobbRI0fVE/znR/7BPzbn0UudDnSFxwMFE4tIm2CdgJhQWpfXVJK4Yt12AAZZojc4iiIwhpJGLFxaoGXzl3FpXOnmW7X+fGpFf7oYh8yw+dVnfW0j7WKWCre9x//lD/7V//kuRg2z9vXaJcWzniHq8iZnphmrbMGMiI3hr0753jg4Ye46eC17N+zDyMcwhZYF1BkhigJOH9qiT3X7iRMamjjMFoTRRFKWnbumkTF3tETQrDjqjaHv3KRPJdcvfsaNoqUg7fc5EVWnR8f1hZ0VxZ52avfhFMJQgzTIAY5xjqSJAAS7rjjDj76kTWMszQaDaYnJ+n3u2zfPker1UBKT9WHUuzViziLis5GuRj4qKE354ZiykPbuhCVOhtSjhepIKj7cw9ZD3a40EgpWV/3VamEcBw5+gQvuPUmAuvYNjfHxqkdyEsGEUoaYUCR9piZmyHvDbh48SJttZ0s9ZVl816f7uqAWjHL5+6/j+uuvYljz5wgjr1mXlEUHLjhWqIo4sSJYzRbLV5+x50cPfwkh267gce+8DTdbnek8SWlJI5jHz3NetSiGAm8+Ufv4qpDE3zpsYfZf/Mh9Olljp8+y83PYR983r66lSLfzjl0Rb8LJzBDrbdQluLaJQjmgeMqaHUlx7mspFqmrYyOs35DEKihU1SmeAwZUo5x6tTIYcSAkzhjvXi3yVE6JAzL9AXv0EvhsA6M035tGaGHfs3yVtXAKcehZFxkotysVJh6ga+w+iO/+G5ecNOt7N1zgDiMkArOnj3qiznojG5vQLPe4OLCec5fuMD8VTuw1rK2sQbWjJ7B2sY6SdxAa+0F4A/dRLfbpZ916Xa7tFoZTx1Z5SuPP0K93uDFt72YTDf45Gef5FV33ESWpptAua1R7q3OdemEVrXeNjHbSgcZxVhsebOTbk35XjzgOk41Hh9fnntrUY/y/ZdC7VvnSSHEKEXVOTcObVfbocYsDSHKvucBXiFADtNY/LnNcEMw1iv6VrQrbnicQQ7fnRIBYgu8tpkh6cE9aR1W+oIs5edGyJHQuwQQXgfSipCsGJBlBdIaRKIQMhjmREpkZNCF4PwAuh2J7oJqaBCWej0iUAlGGKRTPiiLT6EFSRDGFGkKTtDvp+RpRlEYTGGZaSriyWmEgGKQcXGtgxA+66IZWQ7MN/gX/+UDCCf49H3v577/8SE2uilrA0mqC9qT8IJbX8YDh0+yiECI4Wa53iTbOMJCEbKt3SKpJwRRSAAkccL05BSzc5NccyAmz1MOHNjLC284iDAbtOamqUcJ9SimyAf0Lp6hNb8bVyiu2rGT8xeW+PU3v54nbv0ObtrXoZ9b1ldWOE3H93kZkFsQMqLWbCHiACtDr7V48RgnT5zz72I43lyFFeJBDRBKbuoDW8fqswHwY92vcjcrcU5wYWmFQAqa9Zg48sEPFSq0zRA5MKwCq5Qgii1Oe70payHXmsh5SQQhHAPjKLBE4AvjOYfRgovnF0lWlygGKZ31DNfv4eIYrKXQEi0ERZ4TRRH1WOEKgbIS4QxOO5wMMVpSbN34D1OChTRIFYIFJ7/5ysE455icanDf3/i0PYcjqQ0llcxQd9PZ6lIIbE579efZLBVQRkuuDOC5y/qTFOO/V5lpRVGMihNVgzfG6FEwbVh6aZQtslWLonptU2FgV1P0ra306a9SlbsKzmjttaeLoiAMQ5RSDPIBQgju+csv8j3/+EVIAoQrSPuDYaAw5cKFPsZZhHBce+11HDlyxLdBWM9ud5ur0FfX6jIAsrVyioKGAAAgAElEQVRtVwLaqtrS5TFVILJ63isBeNX/l2B8mdlSZvCMr48v5gBDn2jzelrBFoeZlgzBsrKww9CHEwZPszEUFnDjAmDV4Gt5P6P3IQVU+mSZbm6cRVj//UhZEjHJSr4+BIuvvJ6Ngwti03vYyuD/Wu05AeWi+74L/m6VhzAsOcilT1Nprq/wwGCDz+caEcT89Ll7qe+c5cKbf4JG9ikSCrAhVoK69mWo3+wxwBD/m5t5+D8fZV8frtpnyRJoF7DaszRsxnrUJ7FNPxhNTCIEZAPCBcm9v/Bn/Mw9D/CBf/kzvPKfzzN7639BBcf58Dv/d4rGOu3gamoTb6fb+3likXJJKUJtIJLkg4wJlVEYCKImNSUhkkxNTyBsjnNw8sQ6h25IeGxlwKGoxhcmHNfKFt1YI7MAkUAUOz410Dz6WIs7rxNcevhR2m94C+L+v6CmoG669JxCOEehJT2nwBVYF+GcwdoMI0My6xktON+ZlRDoocaFlQ6HYuFil6ntNVSppRIWdLsNTnQMjx9+ABHM0O07L5hrNM4I0jMNJD1wEqkk7XqNXpbTagkuDTrYDGbFDOtKspKmmFRRCxLqdUlwcZU3XRtyTTyDtSnKCe5f6tPel3DbbJsN26eer7PUDZmuQxhD5Hr88ckMaUIcmkwoQglB4NNKlQ0QskCg6NbXqachk1rxiVvmSPccoPbGg6T/7++jN3I2ck3W6xG3avSzAXVd6hKFoHKcyJFYzHCDFaYJzg6AOnHURgaOwbpmUWScV47G8irvmz3AzG07WXrsSWIDrTAgiBWBKZC//m54HpT7htrURECUxEjrWN64RKtRx5gYhWBheY07vv0GLpxfptDH2bl9G40oIc80euDAGD7z91/i+pfexESrzcRUmzvvuouHPvsFGg0/oQdEXr/C5sigx9RMQquxg2tu2E/7mqsI2w2MA5HlZNbQ7/fZvudacq0Rrlx4M06eOs7M9DaSWkyn08Eaw6te9Sr66YCnjh5HhSHz8zvxG3dPh66mn1prybKMKApGFZlKKzfDI2dAqssWIzHcjFarWZbfMdqiZARonPULqLWWPM+Zm5vj5ptvRps+S4vrrHY6nD72NK3En+fiep/aVJM4CQmCiOVLqyQyYPeua9C6z8zUFN1ul0JY6q0ZvvjxJ+hvQL0WsHv3brTWHD16FIDV1XXuuOMOlpaWqUcJD9z/OZzos7aakjTq2ELT63ZoNFso5fXJZBgg5Qav/L4XorZrau0ekZhleXGZQ9cdJDqwj4f+273Pg3LfQBNC4CQUdqwXAgyZT9XN+dhpscMym1sdQy/ybPx3ne+rfsNfTSNlJHy8iVXlxhXwquyN8tyCYMyYwrPllMyHY8aOxo9DIQo7iubrXI+iqqKSmlKetxzHfnxWWRRDAA3L9vldfM/3/wD79h7gu974drbPTTEYdDh95oRnxNUS/vbD93DbC29B6xyddWnUAvbtvoqiN6DenqKeBCytrjA/P8/Ro8+wY2aSTANW0W5ELJw77Zl+TjBIC8IgQkpJmg3Y2FjkgU+v8/H7P8Yth27h4tIBnnzyaV515y1IMQbAqiDb+L1dmSVTzkfVYgn+g7LiM4xSkKqbBFlWQ1U8G7NxUz+qbECU8vp2AWNR9pKdAxAIOapEN3aWwadI63G7Kw50OR86J5DOH6udwadnDoscfIvas7330WelsP+WY5/te6qy2QVQDkzZB4b9KcsyciNQoUQUApSkVzhSYckDg5QCYwTxUHfKSsitoQbgAqyVZJ11asaRC0UgNIICs3yWsNBkKsRJw6Dw0gtZlmGygS961KszkH0Ka+mnGZcWl/Brdkg7MexpdnFZBlHCgT1X8bGN84ie4WynwDqo1UMmrzvEtqse4ekLJ0f3GirNXXffxSc+8xjGOnpZRiuuoZ1P1w3DECF9X5ycnGTj3Fl27pknqe3GGEPgBGmWD6uUSzoXz1PbMc/58+epNRv80r3vZ8fdP8quHduYUb4gQqeTIoQgimsYoWg1Q5r1hMAZbFaQO8PnPvsFvnj4wsgfGAPzm/vA1nf6bPPE1t+r+lrlsV4f1BAISSDt6HpCCGLlMZ4wHPGQ0c5SCIdUzksKOIcWXu7DioDcXA7yGBxHnjlL3fVBW/pZjg0DsA10ZZ7x6dg1lPTBERVHiMyinaabFiwkEWnu141GozEKGlbZtJtAx28iU0qxvLyMF80vWeSaG++c5QufXiTLcpzzVXq3stw294+tDOhnL0Rw+XcBuRno23xcpVDS+GwjINAJ54Nxz2Jbr3Wl91g9t/gqr7nax8uqnmVmTKk9WDL0P/i+L/DCl+zmyw+fQOu8cg/j8XXkyJGRf1ENXlafwZXavBVAezag6EpBta3A29b733q/5edZlm3ytapA1bggiAcNvxbbfE9jMBYA6dluUoyDd1VQcWsbfYrsOPC4CazDz0fv/P67ec8f/r1fi+yVX/LWuW/rnHal6/9D9pyAci68lnu/7y28w8D/EzvCQrFNBLz2TW/h5SfO8ZHHH+KULvjePd+H1tCTih+fuJrd0rLXRkzdOAWf+gjYQyRS4X7xcW7/xZDbiy68pMVKDhu5oOUscwSQOzZkRl8KtltBGCo6QjPV/Bz/6p67gTlec/rTfPDFgj1vO0jcTpieqpMVffrRVTh6dNwAYxM2Isue63Zx/PR5klixNnQyRD4gEiGukAyMp68LIbj+pXXsRsANB7eDilkWLep7JnnDT72Bz7/rr+g4jQ0FqVUsuYwPnBFc96vvor3rOoJCU4icQDXpSy9ca9GkhUA75RdnpC9ioaFwmjAYikxLCdaz5EIBOF+NJa5HCCXQmUVFAaJwLGeWrrY4lWAFWK0hSGhIS+FyFldSJuo1JJbYWU5pwXwjptWUqCVJLnx10qwfMB1ahDLUJZxeynnbzpDM1khVxnp/ghe9KuMv/+5F/Lt3PsKFtRbzjZiF4AQ3Rn2O1/by8cPrGDOAQmKlT0ESQiBkiMUgpCMqwBFSSyTTqaEdF7TrOer6g9RfERN0Evovu56J/BRXb6xzKe0QzGWIQUDQTChMDnIDQd1XUVEaCkcoHDowuNwgbEbeW6VzaYNLPUtRC8ms5HUHt7OSDnjo8JcxomBOKjakQYmAQWS4vsieiyHzvH0d9r7/8ZcIQqIw/P/Ye+94za76vPe7yi5vP3XOdM2MRl0ISQghwFRRTWjGYGMw+MY2MeD4Oo573GKwA742dmg2xnCD7ThOHGK4xsSSAoguUB21QRrNjKbPmTn9rXvvVfLHets5M6LcXOEbrPX5nM8573nb3muvvdZvPb/n9zwQa4wDJSJqtQmaq8tgSmzdNkOpVOPAkSNctHM3vheu22RcxyoFPuaCXVs5s3CWC/fsYd/td7HWatJut5C+BjJCiiASfMNzLufBe89QKpXYfdGlYCQi8XgM3ksajQbeFkEPRWacmJ+n0WhwyeWX4ayi28mYmimRm4Jet03SiXnzG9/AHffsY3pmklI5wroMqSKsFQih8T5Q0a21GMM5WZdhhlB6vBO4LJR3ngsGgPcBQFBa9jcvBtG/75TUWG+RKtjCCyFoNpvsvWQvDzywH5MXnDp2hJmZGVbbPWQpYnJujij2mF4LYwUyklS8oOi08dKxuLpGt5eT1idYXV4jNwU7Ns+yML+CihMeeugharUapVKJmU2bue3rd/CNhx/hyssu5ylPu5bPfvZWFpYX2LJ5M83jGTJJSNMy7ZUWJ7snuPG1F7HjimvJbIcGDbyNufO+26nX66S1CseOHWHXZdv+0cbnE20ETA3aICAb/D0Ci88TMHk/1DocNGdBKY3DjAA6N54BHRk9iEGZdv+9UgQjlEGQNP49o+MZsLMMzpt1ZU/hPomw0g4DvkgFoBwpAmtkAHj79aWP42Uj48Haj/z4T7F5+wU844YbueKyq3C+x/3334NWgm7W4ejxIzQqmqc/42k0m8tEUYmJiTpSaE7OnwStaa7M01WWRMDJQ4uUBWRtBzpmuZmjFVx+6aUopTh4+DATtRiTrZEVnrVmhy1bttDrtqlUKhw6dJAPHXmUH3jlK7n3gdPAGpddtPNb6sIN/j7fJvS8ZZ5ifBO2PmBXSnE+qbYBGP9YxxDK9x1aq+H8Nw7ObRSHDoyFKATazoNUCG/XlSEPxqhztp8wWc/s+N7jwHx7LfTv6LHwPoAYG5jaQijwDi/F8CmPH8oHrlvHpEL5McF34ZD90rM+X5HcGAoPkfMgPL2uAS3JpMcKgTcmrHUGCicRBZQLR+wD+yE3npXFFYp7P0VUaxBJRadXkLU7pGlKp9MGkbLWK8A4YglptUTPZhxayLDdjLywGOsxxgUjSWHo5p4HThh+7nUvI0lyUFXabUOW276Tp8fl4ClotdtBmsIRCAROQhyjPKy2mux/+CjVK1PKsSYSsNZtMjs5Ad5iewW1yQbtZhPrS0zObaG9vIrH0m2u0JjdAkmEko5qvUKiFff/6YdQFPzDTZ/lFd//fcSJJEnLKCVI0zKZ9UitsQKkc2AsubMsrnRZaWdjCZF+MkIAXiGC6AWO9RIA3ykjZLTpD3NFq9shLpeQPjDgIqmG40BoiYrU6PWIALZbBViwoZQPKfFChb3SmHSCEmHsnl3pkHaXwpyQaqqVKVwcE8vR8QsPabmEExFO5iTOkxmF6FgKK5lfLeiaAmNyavUAyg2Yg84HTrAXHun9enOT74FWmKzPbB6AYyH5snzCYU2E9zngMT4Y/wg3mjvXx6+DfgmJuXFQbiPAse7//b+LIjDHRvP0eEJuWDt7XkaYww7XoY3ftZFlNvz/edh0w+NjfTwx+izVP7/1DLN2u00UBcmXbrc9fJ+xloWFJXrdfhWMGzH8vXV9X5uR67T3ATPwYuCAPtZfYgNoLtYD6O4cN/mxcxtnlvfNPPrdOXb+nLffgL5Uznpzp2GfMrhOvj+/9HVcxQZQ9nx/ehgtJh7fd0Af6BB6LNKN3cdjWnRu3akG/UvjAxiqlYLBcbpRLCNdfzwNY7mxGGR4vmMJ3jFAchC/DhNN34HcxeMCyon3fon/2ybcGVtULvmDOOeGDH7p85/lY2sL/KyEmoPIwkkteFSnfGCtjZHwbGd52z3zTM5dS/LAP0OsXQJbvx8qz6ITJZTnLmNifj/1tqdmYApHT1v2FJ55n3GBiOm5gisSzVPfshuY4h1bLubuFjR0zJbOKmkjuMCqwtHNZjn50J+gRBnSGlfN7eCpFzyF5sVL/O3X/ge9ZhfhCgoEXWWx7YLES6pxRs9Y0LOU5AqPzB9lx95LOH3iCE/auZnP/v7nKOk5XrtrlXtPdBGuS9PlyFyh1Q5Sa+nEVaoeEN1Az+8DeEVW5eZ9n+YZ17wAoUpgexgM3scUImRupfNkyqPx5E6iaSFEhaRswSiQComjaQqSTNArLCmSGdemJWKMDAsfOmJHJWLFWSKheCh3LLQytqoyU3MF5QOGjswoVWfJsh66pHGuww9fUKNlDW0JcZ5xoHmQv7j/+/joj51E0qYeLbAaTbK6uERcTPPh4wlbi1V6rsAJidYWS4SyAikcuAwnIho2ZnO9AKlIpKDnNDJ3zPQE+ZfvJN26lYyzlOUmaCpWI81hCyezGsIsYvRWpMjBlchdRpomdK3BubDY9yiQOsI4Q+YyOkmMaa2xeXqK5flV3vdwk9m4jZWekjfMVCyX16rYTs6BXPFInn+r4f9Ee5zbynILqRxCB02WJIrwTqF8QrkxyWduPcSll89SqiwRlxP2P3qQzZs3E8WK1sIqSaXC97/8+zl4+ADtdpvlhUUKm5HGMd0ixytB5sHaYHud+x6+VmZqzy5K9cnhIjRO7T5z9hRFUbBpZgfbt+1Cq4RebrA2jBfnQiCbSI2NFZvmptBKUC6Xx9g+o59xEG4IwJ0nwID1NP7hgiKDY3UAF/qLSuYZMENk34RnYO6gtcaakMFK05RUR9Trdfbfez+b5+Y4efIkmzfNsTaVsXzkKKdPLHNBI0UL6K212b5lO8IXeKHo9Dz16S2srixgTEGtUqPiBfMmo9nJiaIUYwxPetKTOHL8GJOTk2zZsgWtNXfeeSe1eolG4yLqlTpuzvPgVw8z3znKz/3BWzi5+hBLSy22bNrC/v37ue666/j85z7Lzp07mZgIi6YrHG5T8t0bkE+0c5oY6qf1TQf6IDCMl366dYHMAISG9SAejJUeCEIppB8FoEVhh2Ndax2CWT8I/NebOoyXo4wCyaBb4r3HGY+VhoKMoGs6Om4lo+Air0Qoc4iCziQ+BLKDQHN9dnTkBue9YHbLVn7gh97Ac579Ip563dOplWJOnDxKnvdYWT6LFoapiTqbZ6eYnQtmMLXUo7Nl8oVlqpFk24RHOoNDYwtBVuRINFJCt9tFuB5xKvBKsXz0HqK4jMgNxlWYmt3O8ROHmZ6okShDq9nFWEtRLNKo1/nYX3yUmenNvOn1b+LgkRYX752j6HbQIT8xnPs2loSMzz0bAdjxvh5usNyICRMy12DHyoC8D06rog/cjbNrxll4Q2fIDeNLCLGuxN85F5TEnEVLhfMWOZhncXgRwJ+NGzOlRokOSdC+EkKA+t50V/xWbZwxFTZ/fXBmw8Zs+Nr+xmjwePR7jP3ohry4dZvhEbs2ACqRdEjlEVrgXGC1EkdYCQqJsK4/FvvrqAwbI2chkgq8BSkDyz5KqSWhYiTvdmguryDiMu1uF1/kxIkiTTWx0bRshC7sEOQtJQrvwtySRoJKKUYpgdIVkII4Dkm1UpzQzrt0reP0A3dx+MhSmH+8DPOFsDz9kgvZ1jO8+5M3cd/+w1y29wIiBStrayTC0ez32ez27diih84MovB0FhYRWlFqNIjKdayTpKUSRWFR5YQXvOiZzG3ZBn99G6vtFmdXC+a0RpcipNTIRCGNQsgY4zyFtcTO4VXMStvSLsSIbTJWtqUcOBHKy9R5EhzfyTgaDYCw4fWmwLmwbhdFgZABiND90nStFIg+O1lJTC4wog/GCZAqzHmRVMN1R2sNwuLwaOdxmcH0ckSkSJMEHQ1++tIhzod6ujhBCE2kFNWkgvWrLC02yZ3AGU9hgjavtbY/T/VPRTqkjJADQMatBzP+d2/WDBK94IRBOI8sIqa2K+whg1eh2g1Gpc9ibK0e/1kPuq03MBuOJ+FCSTVhzRh05vokyQbDAD+YvxkzDXB9GJkAAG1g5m1k3I3//xyG2YZ1ah14ty7ZZ9YxtoWQw1gouLubdeumMxHzJ9s4H5zUm80m3imsGyUDh8ZUQxCSMdDIDQG0cVBroznW4Dw2JprG20aAdLyNg23n3Y9gEQODJhHMPoTog3t+Q9k3Y899G23Qx+VymU6n08fpFM57YiQylkRRRJIkgY1Y9Mehs0EDPM+RIkYoqJZrwUTEh7EVwFXwOCYmJ7lr30GSJCJNU7rdLnm7YODbOzKzYZ07e5xGNPpVPeNA3EDj9ttpj09kcc8xdsee00qwVSj+VsV8Kcr58yuXKApBtNbgjuMrVArI8LSjlKtMm5ZUfMF67u5JNmeOD7/qUzD3Fcyp96Cvm6X8rn+P+9Qf41UbZy3TLc8v5Zsxbg694OErX+DmX/05TtHFti1/s+1dNKUlSeBKp2jmBm0blAuDFQXK5dx8y+e55Za/Z9kknGi12H7qHh549G4qE3O85rIdJC7hwPIitz18iLKTFEpytNkGHxMnvaC/Fqc875U3YBc8OQ5v4cT9D7LrqmfTuOB63vCNu3jnzWtQr4Dz5IsPc0aklJUAL3FCUtMFJ51GuhyZFDzv6huQooZwhgwZFgAgHg5w0A68ENiBrk1hyLoFoqLwXiClQgtN03SCuYKANVlBeEnkBR6JtJ6D7R6zpZTD3YI1Y5kqacpxhDEpXq2B0UTO0cy6HMnhrTurZL2CVtdy7Ow8v7FnB2ZqitbdO0E8hKTGS//lMh98+xrNU11uPZlj2o5cQSIkwkmMlMAAwfZUtKCmoSwFK5mjnuRIB7EIfXQmsrjcIqJZdLad1Ve9ns+ebnMs79EsTtMsxbTynF5+BNGJgkubz1lrrYHIEaqH11PExpNj6HlN5iARlkjAvMupxRGrSEpasmuqRtmtcOdaxOfOLBN5jXSWPE0fl1vmifbtt0t2X0ySJDw6f4KzZ0+hdFiYkyQliSRxVOLwwSZKG3pZE1QLkaRMNxocfuAA8/MLoHo0GhNoqTn66NHgqOY9KIkTDucMWuog4qsidl20k1aREacKZEaWG0qlEh5Hnhtq1TpxVCZKS3jv6eVdnIdeLyfLun26eQC/dKmMabZ47rOfwekzK8hyihAOpcBaQxQlw/JU8EgZgpxxgE4qAuDg+yCeB+E8Sgq0CmVchXfBlEXKoWbCePZGaz1cqI0PlH6pQMqIwjnmdmzjGc99NkcOHGR2Zo4zZ85QTSosW0nXC46trLK9XmGiWsN6TyuzpKUSucnIujlCRJw+fYqnXruDUwtnKAvHQ0ePMD09zQV7dtPNC/buvZi77rqLM2cWKArL3ot2cv99DxJFCbVyic07t/DKNz0XWcq4Z98+VlebXH311Vhr2b17N0ePHuU5z3s+n/vc59i0aYZuL+P0wlkuufyyf6zh+URjbEOOIojCrw/wgvbPmJi+CxovI7239RlWqfrlAH5MT86PmE+B0TGepbRjJavBCXBjULruWMdYVEKETZ+w4wGkCkC26AsLO4H14JUfadeNBejOGQbhlfeeOE75ibf/n1gheO5zv5+nPeWp9LornJ4/wdLSAta3mJ2qMDO3k3333cP2BlTzwzzt0mmEEPTyOtIH8KiKp6MTbrvjPh7Zf5a8AFdvEK+tUa0pdmwtMTs5icxa5JnFq5yKdsAqrbNNytLQ6RouvfxyWu0H0NrS7RqKPDAImitn+J3f/11e/fIfYHJillolQceWvJePXVsVBKkZleVsZKRtZLcNNy4opBoF6AN2lHeiz2Doa1X50WeNg3wbwdrBmBln7A02Q8PrKQR419f/C7oxAQrygYVwHjbBYMO3ThJgcDz/RJlyMNqobmRJ/b9lBG28F8e/ZxzkTmKFdBIvBcZDJMFKj/IGLRVCuADkOE8aCZR0w82s9x4rNMIJisygXY41AiVjotgTpTUKNCbPSUsRaRqTpFGYm7zH9MFhLRxl5bBKYYxDEdbRqJSiYonUCrTEiQydd4dr7N33P0qzANGfP8L5ST5765e5OpZM1WfwJTXUP4zjiJXls1SrVSYmJlhdXcUXXWyW4zKPyzOiSgmXlvE6otPNyZttprZswwnJ067/PuoyGl6X9toyaiZBa0kUJSgdIz2hRFZplBZIZ7EWeqagmxfDazy6p7/19X2sTfxjPTfeXv+sLVy7q8Kf39bBFGIMbPCjTe4AlBPB9XeUjCRszoWEKKwR52PveuswOCIdQ5wO5xIpYqQOj43JiUtV0koVoYOrK2iOH54HwFrBYI4amlDpaDgPrTe2+B5C5NhQMio91WrKZDXli58/hc09szNznDq5OHyNc26oMzm+/p77eGTYNGjDdWHwWneuE/Y4g2nj549/jvcWOUBOhQtsuQ3tscbnxkTNwIRi/D3jv8fXj3F2fhhbBgjl+ONJI601M5vKnDndxDnH6uoq9XqdlZWVdZ9vrUXH0VDOxvuQ9Ajr6mODad/s8Xc6b38zwG5w3uP9MDjuQYLzW73vmx3X4DVZlhFFAWQLdLjw+unpaeI4HpYJW2up1WpYa1lYWKBSqdFsdjGFo2Vb6z57MNdt2jSD1prJbVNMnOiMxaeO+kSDvJdRrVYxxrC4sAo+aBkqpYjj+ByCxXeqK/e4gHIPfu40f/C+q8g/uxfROkSe34sxKc1n91AX3kB05m6u+hMJLclCz1AoSdOBFpbNFkoOdjs48R9/n1L5mUxt3g7EQAPpE+gnKv0EQB5cgeYkXPkmXvSWN0JhYfWrLF7+HG6lyqTt0oodbatY+LucC9+YY02ZniiYiAwd4IpqRrmV8WC3xMRKl4u2nuQfvnSS114Ol6yUeeblVT4/X+XhlQUWV9fwMiDAa6dbzE3Vsd4g4y53Pdzk+qd3kdUq937lC7zsmXuJ95b5yy+WmLYZkfSccAVRNWXysm040QPmA8orPIYI7Qs2z22lXG9g8yYHji5iUGhfBHbZIFjxFusFkfTgNcJ70rSMlqFMoJcbcJLCRigZaNWRcEyXEtbyHOsksTJEpBzttNFWkEpBWSkUijPzq0y5nDNFivGOJ8WeRmRxvS6LzYwvzrf4ymtfwqEH9/GkLZri7Xdw/Fln+eR//gx/9Fs7eO5knc50BkugdY4RJmjZeVBekwjJRGSpJQLvBD0BhhUkFTQZLeNpaE2HnLaM6Cw3qaw2UC/eQq++xs13foGdsxHOK5SwbC6XMLpOXnLhhu2VkNKR5S1k5PFkRF4z0Zji7Ooy5WSCbmcNqwRVXSIVPazMSJTn6EqTLSZjqSi4oiT56okjGGM4Js7xBnuifZfb6uoSxhhiHbNz816cg25vlbXmWbwVdLtt2jIhSSKqpQrluMGmia3ceefdGFNhOW9z3zceJE1jvPccO3YMayDPXNCYEnEIJoSiVJqEdJalVUldhIytUNFwsSyVSiitKKU1iiJjeXmZNE2DzohQaO2QsoS1ljwPJaZry0uUS6WwsYjjoUg5QJqmwwV3vAxLCDEsxYJzN6eDBW/j5H8+B0vZB+lGC3tg+cAggO6Dh1ozNTVFfJHk6NGjLCwsUE0Tdj/5ck48/Ahnjh5DxiVQikeOHmfX3FaK1R55r0uapjQaDS6//HLWOl26nYzcFMzUJ1hurpHOz7O2tkar2SaOY2amZ9m1ewf1emX43oXuEX7glU/hoSNfYO2AZPvmi7n//pu4+OKLqVQqdDod9uzZw4EDB9iyZQt/93ef5G1vexv79u1jx44dj+sYfKJ98+a9H4JkIWiWo6xw/zXryhqGAZhg4EW6G8kAACAASURBVBq2Lvh2EiWjDfop/azsWOAzngEeZc9HmooBnOlv9AbZThU0x0Ixrcc4iypMYE14jZIJQoVScQHgNKJvrqQB48w55wMygHdEdPMWr3vDm9m2+0Je+sJXs3fvXs6cPEbXdDl86EGmpuok6STHjixy4dxZnnnVFKIoKFwEtoVXhmNLhnu/foJXveB6uqvzTCvLYZ3ytFc9i/nVFW67/T6ue94VbKlX+a+3fI09MzU6QrIsZ/jG/nmec80sorlATzgSLSjHcOSBr+FFjenZ7Vh7DHyX1VaPdpTSKJX41E2f5OziGV760pfx6P5TXLirAUbjoz47RIzcTwdtuGnzo0TAxnlqlPUPr/PYfimyhz6DTipCwtK54Xs2bsYGQfTGuS/oHI2EpUXfiVF4+tUvQQxeIfBC4jA4YwMQq0YGJUKE0mQpBuwAUGLE2Pun2AbXQirbF/8Xo3txDJQ+3yY1sGH618T7sRKgczezg/8NWp7n2DxDe4dUrl8y6CkU6EQSeYeWDm88ufNE3qMVeKfwUpBlBSdPLtAsr6KSZQQKnVbDIVhPZhxegfGW+kRYg+JEY72nl1mMkVivqJZiJihRCEW7m1GKYuqNMqV6hSiK0FoH9rlvoYSm51tYFdNuFQRPGd9n7/TZnI0GjckSP/2anXz0v32GSinF+8Bgv+iyy8Nmr1ZnU7VKb3WBM2fOEBMcb7WKefDB/dx/5Dj37XuEUgJXPvkqfvRnfpaK1xz83M2BAW8tT77yydx991d5ZmMCvASp8MIihSXrGKqxIlKKzAYTjUG9V1EUGO9Qog9MD0r0/fmv0ze7Lx7rucF8sHd7nerkJHO14yyu9jWnNEOwS2s9dDOVUqKExFpH7hxShnXDoEYstbHPHpRbGuGQUUpUa1CZmCatVShXKiRpSpqWQlyUd0lLdar1KXJrMcbQKjWJ0wTRL6UfrSwiJHRjERh//esqlcBKP7xHvldaiBXDfJ+UNJ2OY9IqECVwXVzPEAlGCQ8fxmqYf0dz+EYdNDnUiBuw2frmAm6cXW1hA+Nr/LM2/j0wWBo0u8GsZ/g5YvSe8TYeSwweb5zfxpMz4981vuYN3tPpdIZGboOmlEJrzQ++/no+/te30+vlfb1TQavVCn3C+de9cGzB8AHBkL3bP4JzEknj53G+9r+yro0nUMKX+D4zbv13jidxxt9LX99NKTliWIrQP8au19MGMLZAOtXX5HPESUI1KdFut9eB+AOWm7U2sOc6GTYvsN7hxtwkpJRDt/dBDHPXbY/SSEo0e8GYwzmHLQxpGuZorTVT03V6vbzP7JVjjNmRXMp3Cno+LqDcn7Ykf/DhezGPHITYUFEOVA9u3AP33gcmoiszomnHJR3w3RpJdhaTSrKep2c9jyQR2979RxQ3fh6fOHrXWErJdoI14hmsXYBeQd6Zo1R+Mcinw8QExBlE0zD9bOpnMl6Dhd98JZ/5wC10tUNmGemRBpULm3zsVsWstFTrkJQium1PM+qyLYWdAp5+veR1H3bUr2jz9W11yvEqL712F//l3nl+53238M5fux7vDJEosG1Pa6nO1OQERS5JqxWuu0yyML/C3StN3ro1ppZK/uGsIW+cRMxvpZN2mRYJMEFWqVBur6EImhNLCyscnj/LdK2Bp4diB04vg5U41S8L6t90rW6PmaRMJiHWII2iECEgGYhnOw9WeGYswejAisDOIUXUS8y1LbkxWAmFd/RkQbRsKJSh6guWujkXx2Uyu8DfH1vmiulZrpitg5tle6XAlWb580qP//Q3NZb/LGdCphS1Fi6zKCGoGUkiLZnwTImYOBKgDFZrcu9JtAqLmxNkpoWNFE4W5EpScp5tOmb2JTdy/BN3YP/iDLe+cZ63f/BtzE4JPvrkX0dUZkiTFqvWU0qqADidY30HpRMKa/FC0RMZJSdxrsI//4kb+dD7Ps3eqT04fZqDWUKv8BTC0s0tuUqZSxQ//n+9m8Mf/z0+X9nEn868hq8/rfJ43DZPtG+z+b4mRCUGrS0ryy0aaY3p6jS5yMnznLZrYrKCbma4ZM8sVZ3wz17wQv7wQ39JMlFhZusmtEywWY+80wlZrQxsLui5Ng1fxzrLSkuiZUyv12Hn7l1084xSnOCMQhDKY6zLKVxBq9uhUmlgrSXLCoqihRCKdrs33LxKKalNTZG1OhTWUyonCC3REoS3OBMWFCEFeIvub4KSJAHhyPKiT4seBBVh4jcqAARKgrVFf4EcAW5FUSBVvwxPjfQOBotjJIPOgxOA0iGAiBJyeiwtLQ3BxspknZVmh8PzZ2hMTdPygu5ql4lSgy3bt3H0oW8QJTFCSc4uLOG9J4pCycxEvcrWaoX9iyeZmZkhSRJa7Tat7hq79mzHFR2W5nNOL5/huT98GRdceBXNfIUkmmTrLsmhbxziskuvoNvt8uijh+j1euzYsY0TJ06QpinPfe5zWVlZ4UUvejGf+cxnueRN/1gj9IkGYcOipMKNMY1CCapA62hdqWp4XuJ8hvBRYL2sYyz5dYF8CPgZlrZAn+Wm9fkZEhs2joOfQYCLWL+Jy30+FPAWwiCcHDJW+2Ij/e8RSD0G+vSb7KvBFLbHW97+81x0+dW86PmvYOfOTZw6cRjjLTZbYceOHTzwjYM879pZ5nYVaCEBi4xT/sPHP8ePveZ1ZGuHuOuO+1hb6VIWBl0OoMCNz3sardWzXFCb5el7Xki33aMXl3jji66lnfVIygW+pTiQr7LSbFAVnoNHYM+OBmXfJVISb9ZYnX8Y76rUGw1U3KK51qadBe2oBx+4h0OHDvKOf/sOHrz/fnZuqeD9evB/I2MqlM7LAD7I82fpx8tfQ0C+3jXN+1C6Nghux9vg2g3KQ8Y3aYOxMiovkYDsgxPnMrJsH3BQkR5tDOUYC2zdmBNjCZTvTLz5e6151zdCCSLFoKLRveQc9BNISnj8UFAbhAhOq3LDBvd8CaUhe9U5Or0uzVzhTEY9kjgsLaNp2hjloKQltmdwXYcyEpkFoC3WYR7JexknT59lx9w0OjesrLUpVRtM1CsUhcVJjZQBUKjEGomjFEV46bHW08wDQFWNJI2pCo1IoahyummZnWkQJcEcKooiskzgbQAtq2lErGE5NxTWE3s5BJaUkqTSs7LYZuXBL1FJKwglKUxBUop56Ogxjh46hkwUW2oT7NqxiXItYu3sKrHOuP/hg6yttnjgzvvZf3qVtJpw/Z4T5N0uKo45feYERVGQ6ohP/N2nSMplnJhCSBkE0QW4PMf0HIWXSKWQtqDwMaboO94Oy+EESsgR8UuOMYf+F1iSg+ac4yOfOUmj0Q5lYFJSS0IZWo5E6Agh+xVAQJJo3vrLfwDAr//Mj4R71kuUBCckuXWYMU0p7wXOW7yTlOtVpmammdw0S1QqUS6X0XF5OGcksQgu7wqUE7R6bWzWI441pj8erCuGCVovFLJf5Bvc7EfAJf8f9M3/n1qYmyVOQZ4Hp9OFeJEbb9zEl79sWFhbIymn9NbaIWYFOp1O2Id6NZxP16/lMJrig/nOwIhhkEQbtI1xwGD8rQfjBgw6GMTJ4BiYDQWpinHAzuM3sKTDQa2X19g4V3kf4uXhMfggUROOZ6TbPDgvreOhHEJwD9U0qlVmt1b5m7/6Knm+3rhikDR3fdd2K0NHddudfp8MXOb73+FCEmmoq+fFee/NjY83JlE2tm8HfF//PQNG+rmfMfwcMWKwaxWYp4MW9aUhxuO0wTXwuHUGCmmakpaCNjYK9Fi84FxgsA1A/TzvYUM34ewGGRMvcRa880ODCiE0hXDESPyYIceAeT0ah5YoCiacWisEijwz6/or1f/ImnJ/7TSfvMOSl7pUCkcUcCEe2HcWq9oUQqJvCA6qk2uS6IGE1z0JVtYiPvNwxhkDuS148V8eZ/qjx2kLuCTSTFUMCM3OOOVIp4WpQw2NNR9HADMixpiciTV41Y/tInrnR/CNpyF+82Zu/E1DU3pqH/tpHvrgndx3053sLYGog69BUi04swaH1wTl3NPoQZ46orUUK9e4/sSnua44yf/Y8cP8VMVjr9yFXahQKjIiX8cs9UiVxYkeIoZe2/IVu8YNM7vY1mvxRWt49daU1XKFL93X4uazd/C0TTO8njawyqZijculYRHP3ULQ84KSisjFIpONMvPLR7Em6aO0Bt+/CSKteN8H3s+v/etfABuyGFYmCCNx0tKvDsXjKRMEjrVWwezBxiAcse/RxlNLSswKwdEsoy5hsenZG8FzL415ZNFwIF/j1RdfQ3b6a2TeUk0cNEo88NAc73qgx93HztLuxRjv2dswbHKGyWbGCS/JWOWGp8xQe3SNh5c9laTDqbhKK/NIGbJM1uYoB3EiKHzIfla1JBKC1baF6y7lv3zxK/yrL/0eb14SLG55EkW2jyiKoOyp1UosNQVeW5ACY3tEUUpRZIRtkqbkNEJESNVhYaGFUFDZUmbHPV3+4dh/566zJX74qc8itjlrsSR28J8/fzuv+61f5x1Xv4BNP78XnvbCx+O2eaJ9my2Ud8QYEwTZo1iAzHDeo5yllsRUfA2VgPSwKaowm9SxnZyffdOPcst99/KNBx/iiosvH2aCQyAlcJ2MVFfJiUFMoErTVBtT+LjK8eNH2bJzO+V0JmTRrWUgVt7LOsSJJsuCoYT3niQuAxBNpEMXM601uSlIyiWWFhap1Oq0el1K0fryuvGSMB3HfTDDDSnZ430BfXaI9xRijLUjR2Unoaxi5LI6TqvPsowkSYZ27YW1oX+dRWmoVCp475mZmaGbBQDziquv4p7b72S+2WLvVJ3ZiZgTJ04QJTH1aoM8z0nTdLiorq2tUavVcLlBZ5Y9e/bwwAMPsHXrNu655272PH8vD9x3iCw6ylt+6fmU6howNJsZnoypmWm2PGsLywuer912B+VKioojCmfRccz2nTu5+547OXbyBC9/+cu5ptv5bgzFJ9pjtACwDMo3VJ/JMCpZkWNMBucGAvKhpNFjhmNzwMxZlw33pl8au97hbZwp5xmBP48ZQPZfb30osRk+70fB//D4hQhxfb8kzjvBoMRWIM4NOqUg7xl+6MffzradO/jh1/4otUqVVnOBTqfN1IRkevuT2H/fHfzQCy8hL9qs+Rq9rMaffPLj/Mo/fwkHDrf4xd/9E97/2z/C2171LLJC0uv1aEzUsDms5V3K5ZCA6rSWkYkk9Z6oMU1qCnpZm3rVMveiy8naXVZaM5RmMvY9coKpeo1dWyYopRZrDWW1ytLZFjsvuoJu9wBSBN2kTreFjhPe9jNv54Pv/RAHDx5gspwPWXAb+3X0wCHGsvXjfeN9KGENryOUwg4Cf/pJREufjTUCT32gGq3bQAxA1PExAAzLTcLfAx3NjaVIAi0EocTab3hu/eZknWOvCOy7f4ptvZHQ+tLv8T4rTJfFxcVg7NBfd6T1yCQA2wo1BDiVUkOW2QBoHb9vBdDr9WhnjshBJh3GSnoOugKE8awBLoOo60ljjUaSm1BfA4HRPlOv4mRClJZIfUp9YgIpHL4osNZw9OhR5k+t0GytUSqVEFGCc4Zer8D7tD/WgixEUkkwnR7aO2IxMgmx1tIznl7hyCzkThCjaXXdEMwe4lp9cO5RCp7/mtfw02/5GT71wffgNdx25wMcPPAI11x4EcomfGLfneysJFy8c5Jt27bRqKTs37+f9krOri3T3Pj8q7n44kuxxhNpybFHj/KRz3x9eO5zc3O4KMai1m36rFBILQKDzFl6VuA6HiO+OaNmMHdu3PR/u6y58dcOr7OMcTZI9Rg8RArRN6uTWiG1QqmIzbUY3y/lB0FSSumZLoJQjjuYu8fvaSGC42K7l1GeqhNNThP39YG9ivEylLMbZ3G2QDpPLDRCerROcEJSeInzEmtcYGD6YsjgG8RZg/N6rHnkf/c26NuJyTrLy6soXdDrOW69eZHJrdBq2aD15T3dbnd9uav3Q5b6eKw7fp3C7/Wab4Nk10bgbfx4NoJKGz97AMqN2ug9oZz1PGDUhn99M+Bq+KnD5yRgxtaNMM7n5oIMzGBMvuRlT+ITn7iTImcd2BMMBhTWGKYnpzmzsIBAYrwYGhsMtfYG3zlkgg/6+vzst/H/fTuA+vme33jvrr/vz//8+HeOH9IgySrl+PWR+LGy50EMYPvyJNPT0xRFMSyLpW/GNC5bMVhLjDHDWLDTaZ3jKj+ewCtXwooxuAZrbcPLX3oVn77pnuFxDCQxoiga/u2cGwKipsjWjUmAlcVF4Opv2s+D9riAcj3lsBKkk0ypaW7rSv7d/zFPUW1iX5HQuT1j4gWw+8kVKu/J6O7zHFgCIzLe/elP8huvfh2pKOhkjrNCUxjDr92rqF94msL9FBR/Q+F/hVJ6I72V3cTlCxG9lyDr/wrsi/nbpwru33eUw9ffSHkFXvgLz8P+3B9T4yJ48/u58I0Rl8jDnLl6D4eiCFcuUCnMJHDxJs+zngJbroapy6F0w8vxpgx6BZm8jhd95Pew1d2cftvHmRdPpq7rOCzdZodtO4KYekFB5gzX/+Am1m6RLPUMU8LzrnsXueSiCV7yzKfywdtv44xZxFBF5yk/+azncOlf3QIYfnlLiS9FlsxHxK7B9OQkC6unyEyMKpaxcR3tgwedtY5f/YVfQQmBwKCiCOsEXlmEUzjh8EKAcORes+gcpbbFCYlzFusEpoipaE851ngnKTmDNgVPnUjZ3qhj25IDCwtMp10+dM/tPD2eoOfatBHs/bP30ZNTZL02e2enOCMzIhdzVaNELY24+GUv5vZbb+K3X/pati8tk/zolbzzI5/gTHyWC1LJfqPRsiDzhkRJMm+JjWOmLGnljuVmi7qO2FnvcvK9f40UDnH0dvKzOxGbr0ElKXmRoWyPzZHjWFKlZ3vEXlApT5LlTbQq40yzP2FprMuw0vAPN9+GlD2eeuV29MJZ8g+8g985ejW3Lxzm2pnNNDKB147uf/8I//HZT+Mt734r7/yZn4J/ffDxuG2eaN9mm52ZI8syet0mcRwHXQHhMUU3lCRZC1oikSgpObW4yM7d24njCNvukXQ82zft4sCjh6imSV88VaBEQeoBq2kZjU4atJs9zq4dZXpulsXFRerTk7iJGaTQ/ck+gGlKK4rcImXIMKdJiTw3Q3BtsLhkWUY36zFZrTPZaNDp5QjcUCNhsIgPsmRKqdGios4f6Hrv8cai+hmmQcmKMWaYvR98v3OOPM9x1g8zmWmaDr8HGLJQXN9pb2pqih07dpBlGWcX5kks7HvkELqUMDe3lfaJY+gZjUJgEHSzHt578k5OlmVMTEygtaZUKtFcXkEbx/677ubk4gLd3iGq1RrN1jLPeMkc6dwkWiVYWwzt4mdnZ1lb6iA4zZn5NkIoYqXZs2cP9++7l2uuuQaAS/ZeRKvV4sA3HuLiC/d+F0biE+2x2mAMeR8EeL3suxZ6H8CaYcliAEeC7fy5JgwbBYXlBixkvGRDCDE0chCDY5ByzFVThJI27wNa34+6lRyVjwsPUo30y8Y1yZwsEANBYAnYQRnkekkDIQNg9+a3vp09e/bwpje8helGjdW1RZaXTrFn1wyOGrJ7gGsvrYQSsiwnq9S4c99t/OQP/gCnVzLe+29ehSnAFg6cJlKWqJKEQFRkpD4n846pxjQRCe/6i1v55Z98Ae/40y/w82+8mrQXUZgM2QIhJJO64KqypZjcxK37TnHZHHz5/g7XXtxASEkSGU4d2kerI6nWFVqFTUaUSLTy/Npv/iLv+u3f58ih/STJ+usyHnyv2yTAUGx74BQtNpYTj73P2xFLzTuJkP2knSdoE4lzRcPHGQyD4HsA7o2z7wbfOQjApRyVtm4Ed0eMPb/ufeMMvX/qLQCTo5JU6DNNvacUl7hg+wUEdFWsuzaDZNNgXQvM8i693uCeHySPg4RC3E9ESaHpGlBS4pUOpg1aYJ1ASIExkCQJOtGoKKxH4XstZ5a63PXAQS7YsY1KpYKME6xbodPpsLa4jFTQbDZptnosrnSZFZpeEhw2zZgjHxiyrODewz3WupZyoiktdSjXgpaZ954iDyYDxnlya0OViu2Dx7FG9ME51y+VWmw2aSrJX/67d7CpUWKl3WPH5hlOP3qMT31tH9ddcTE37N7OqcOHyfNJSuUae558MVefOM7yahubeyZVne3TU5Q378AVBlmqMdHYhDEHkSri2PFTrK22eMZlz0ZiwzyHoRTXMbFAugLpc7xXFAZytx7QEpK+5qOln4Y4L1f0WwFxj/Vaay2xTkL5OOCVwnhNbiVOCrTQ4GXfvddjnODPfu/nWG21yazpH+tIW9K4YMwyuocDq/l0D5Jcs5I7RDPHYJiNYipx0AL2AnKvSYVGRQkqVpSEJhdHyAtPoSxdN2Jnib70gXMOFUkYzA99V+4BMPK91KSULCwtIlFY29dIE11qvs6iEuzYupMDBw8PXz/oK+uK8+rLjSeZJQLX1xlwY+uGc26YLNsIuIVqkZHL9jiDaQiY9MeA6DuoD1jRQgic9Xh57mjeCDitA5jcWBJv7PVj8HRgCPvBehOYc6dPn2ZmZoalpeAAfPToCmkak2VZiC1cOG435vh9dnFx7BxGsiCif47D4SUG+nrB9IGB1IIbmSVtbINzGzdPOl8fDF6zLvkoHHLgUO9lv3y7X2zr+4CkZ8SqHfvcwfs8ocJASh/Ms4RAMjDHCNc1uD+DdxAnMVJK2p0O0bCSISRojTH9MlMz3POMn1tW5JTLwUDDjRt9eI+WiiQN5naDfhgkiv+fv7+DrFPg5YiBJ0TQkwzfLRFChgRON8dh+wBhhPDgjOdDH30nb/uFl5/Tv+drjwso54XGUSCF4pTv8dLNTV78Cjh+O+Rfynh4AWaOw9PfI7jtYUVsPGsd8Jnmj173SnpnYe/3XcT00QP8i4eXef9Ug/rJGC68jYgPQ/I5In4QZ1JKE7cAX4f4lXDXj8IVP83VuWT3D+3kql/6BkvXznD8z25j6Y+uxvd6XLIN0q/fRJ4+i033WDZ5CTe/hc+892NMGkv9UUs7hlYFGlVAH4HMwvIK+dQJ4rkrUNfUmbvl19kW38C1p9uc+LM/ZPlEj3SHJhI5qUqp1lJsa5LN0xq1VOOu5Xkub0ruPXKSX//sIzwjMjgcOlvFJ4rL/9t/ANPmyH/9CS6Yi/nyqgZbkHmJNC2ssJTjAqkqWAgTvhRY6/DOkESKTMRI6zHCYE0ImKQQ2JCXxLmcmoho2XCzFX3XuUgbuj1Hw3taGAwCqxQlXXD7I2d4zTPnuORMgtERpVSjZYmPr3a5zq1wZWOKrzR7CAVrcUS5k+GzNWYmKlwkj/CnOzZxSgnec1mJ5+3/c/5efhy7dQv5Sk4pdXhbptPNiJ3GmYLcZBCXOdUpEDKmLCxdmzPfEqh8jVOtNfjKF8lahr+9+2HWvvZlWjj0/CoJhiQypHE12NHnOYIIdA65R6kEjcdkHuE13VYPa8vcdtcj7CwMX7jpQY4//AV++sTXKHlHIT11HXHVTJ1P/dtfpIzj0tq5AqFPtO9uO3X6KKVSic1zm1ldXV236fKKsKg7S+YNNrf0csHJW76MLwxPv+ZKYp3w5x/4GL/7/t9mZW2ZPRfs4qGHHmLzTJmLd19Kc0Vh6imdTpeknlD0PNu3buPI6SNM1OoUJsPYnCRJkEJhjcP6HCUjEIY4TrDOEJX65W4WnJUhs4OnFJeDY6SO0NqRddohGMwMUpaGmhJRrLA2R0Y6ZODciD0gx1Y47/vnLDxegXUG62zQ7XFhczAALAZis1prCpNvyHILlIqGQaY1vr8oWuqNKo8+ukBrrUmsFNNbt9JtdnGFIYpSVnOP9l1aq2vs2rYjuEACu3fv5sCBA3Q6nQD6SUG9UiVrdTh0/6O86JUv5tjyfWy/IUK5YBCRyYxKpUJhcs6cnWdHuoNyJaXdbjO7ucHKSo9rr7meQ4cO0c0KDh85xtatWzm7uMzx48d59atfzeLiItPfrQH5RDunDYCLwIbxffdEFdzy7LgeokQqg3RynU4RnFu+ACDHNvjDwhA5ciqW4xngDUHkIHjrPzjnswdg3vhmQYgB28+u26S6sY3BxmywEIJ/81vvZnZuBz/46jeyd89ujhw+wPLyKbZuniOuTDPJwxRdT7Ob4YznHR/+Ir/4hhfxqU/v5yU3PJUeDtuT6Mji0Hhh6XR6fQ2aGOu6/Oaf3MKv/uTz+aub7uYVz3oKhYyJnEGIjFJSRoiMtM8V0pGhp7uonqCtJC+4bhtZO2PndEI1rXHkzCqb6opICWaqUPgAt5QTyYljJ4misOl5/4ffx798689y8tgjlKL1TuSD6zLcNPWzzQOQK+zi+9deOGCkkTnYdKwvO13fbB/IHS+9Hwdt1wXT6twN3MaxCazLdA/KXAZJlPG2kQ30nYAP32ttnGFQOBiVK8m+xqMabrSt9/2SrhEDFWRf8yc6px+H69sGTSZrLRNlSzkOzKSsCJqQUawxg/tVKOLIUarElMsRpXjw+bLPYBAsr7ZpdwsiqdAqAChKaJRQOLoIIYmkGm6oBvdzYRzSQywF5VJMr9vBGsiEZ7Xr0SVQOuhMDlgWgzGltabnQTLQ1wx9kaoIIUBGMTd98VaetG03e1/+Gu6/6RNcvGeS3TNVjjx8hCRJOHHiJFc95TK2zm0mrpUpRXWe+ZKXkHfWaC+1mLtgJ8YYOnmGaq2RxTNYJdm2eQd5nqOk5I1vfj133LufI0eOUJuc4BU3Xku3u4iyHqtidLeNkQk9FKF6MJR2h7k07K0HpX8A0q2/R8av13cKzvk++D9kSHsBKsbLCCn8UHsLYH4179+nkqyQONNn1uoA+A/iF0nfzXtMOwoJuXAY62l1O6TlhCgukaTVMJ6LAik1cVwmTcsUQmB7Ba1uEUBkmVCYAChLT79stW82g0KIvrumUMF19HvN6EEYsBLZhlXMSgAAIABJREFUJ3wEgNmRW8OhE22e97ILePj+c8GcMCbAetvX7SLEp8MX9e/hIQOyv88SQSfS+8DOHE+ejJhzYR8cWh+48oPy1QDweQ9BEiG8LkxPI71mP5BFVeeyPs9J/Bj6Hpzr28YklZB+6NbtbDA3cs6xsLCA9AIvHLd/9SDPeP5F3HnbUZqtNWyfTDM4zsHnDUwNNiakBl043hf0dXm9H/S7Rwm9ru+klEEqa8AYFAI3prU3SJxZV4zObUwjDgKwNkqM+WFpcijb7R8fjO1bxt1exxJygr7BjRo+ZpCU9RYtwjpdadSIdCBR+MJg+uenpAZB3+DLDe/j8bEnpSRC0+60SXREJ+uFc+iXmpfLZeJ+RdL4NRyOMwFaDfpQYu3I9Mr3+6EwBufA5BZvHXEKRWZYPHuCdrZ0znh5rPa4gHLXecGTbcIhHMt5i7qRfOFjngMz22mnVaYVXPF3JfJPLfGl5VU2l1r8Rn4JUggi3YNNgt7pNmyaJn/5U3jbSy+FM5sp7ngH6mtryJsX8fkqlgy/XKUwbXy0g1JH0uZ9zHXKtP64yakPXIDY1CFJE+q7CnRVcXppGv/2P6SybR9+bgstO89tv/OfcKuWRHv2TsDr3ltB3fgjoOeA5yHiNcg1MAcig/jpFL/1L3B/0eJgAZe95/ls+/cP8j/Ze88wyY7y7P9XVSd1mJ6emZ1Ns0krscpZgALGBAtkgsAECZMMJprwYhP8voCxMZZtbMAYjAHLxoBsLPNiQJYRGSEkQAKBBFqhsNocZmYndk/nc05VvR/qnO6ekfDf/oD9N6iua6/pPd19+oQ6VU/dz/3c9w/f+UIuPu8RzjJZWY4fncYuBtx5ZJYVW+D4ujaveOx6Dn38NwnjNutmj9C66juUmOFNl2zhz7+h+Vh5nrtVm4YQxIlPWfSIY8+FO1qjRQLKaZr5GmKZDV/aDZA600vOHxSbUV1HfEhsxIrtkKCIpMmEDTWdtmAkUBjPo5haPOmyEnfXY7zxdRyvRyx7LSoovrnU5oak4wRVJyvY+RiBoicMRrd45Ykh3RXJ/QttFtet45kbf4OP8g72fe4OZs8J2KPabLOKqS09mksC03FshERarJRIFboSeZtScOM/GoGXKm6zK9QaK3BriZFXRLzsxpshafGhbpvLdMxn5QiaEGMFnorQKkXbFM8ktJBYnaKtpYdGGIvREm1beGonc8WY9zwwjdQJtVtuZKMBVIIvPb52tMNyIhkvSMZ+QctW/v/UNm/aztzcHEePHsVay65du5iennZ6IGHgAKGhCdwJPyv8SPDj+/cxMTZJKCKuu+56Ln/mU4njmND3GA1C2ssdfFWG0ZCJyY3U6zNo7bN//36iSpleV1MqKsKgQL1Wp1AI++yJZqNJeaSYTQweOsmYckmKwHcBroSkF/PAvn1s3rwZIQSFQqFPtx5eSBoTo5TEkkI2kQ2zUNw5DgTN4zh2GefMfTXP5hSiYvZZ22cpGOMmeKXC7LfcZLM2EMmPqdFo0Ol0mJmZoeAFqFIExrC4sEglhZmFJlOPmKDgBXS7XRqNBuVSgU6ng1KKjRs3EkURcwvztFotNkyu57GP2sW6XW0uOecxxGnM6OgozVaNRCf9YKlardLrxujE6UOUyorTz9xBuVik3Wxi0pTtW7Zz8OBB6svLnLB9O4cOHGBqauq/tlM+3Fa1YYAmX9hKKZzYuZJDnzFgJZ6wqxhqOUDmWKzWaVABZGWm/fLHof0Pf3cYNBss701/+4PBuvwTtr9PgNRoSLP9ZCCCO0zHkltb/hHHKZu2buHw3AJXPPP5XHDBBRw7tB/p9di16zTu37OX80ZXaDRaJHGM9seI9QK7dm2gqef483c8l57pMja5hZe882O891WXIgV04hjfD/vs0VSN8J63Ppd3feA63vCKK/BpI2k7YXjPMV9DP8AkKSMjI/hejBLOHdL3e6w0unTCMlvXGfYfT2k0V6jXAk7cXsJTCmk6rHQ0jIwShj2k9FhcnEcIy9e/egNPe+qvceTQXSgsuVZPv/wmz1sJ5zgtsgy6QLlSIWuwxqKUy5RbIx50Hyx6VVmrsSnYYRHoAQtuWEOm//nsGFaLYg/KUvLvrzWjyEtg1urY5Z/J2ZMPVb77i9BWawE+xEJ0LbNCDp7pYcB8+O/w62Gwdfg9Tyq279wFmUaUFh42tSRK4ctMfiJNsSZFeopSFOH7ihjHBI9KIVMbJokKTvstTrQD46SCrCTd8zxUGBCWinhRiIqctpoysl/ePlouEBpDrxiw3I3xfNEvwZXSAYBkJkq5AUmeCFsFVvX7UURsDKiQH85Mc83LXs7v/sZz6XQ6jJRLPPJR52bGURfQbnfpKQiKI7Try0TrtxKMjUNrDwfu20etMM6TXvUiZmcWGeul/Hj3veCXXELEk/zwhz+k19WMjo5ycO9+/m+jxtZtO9i+dTNf/trXuPgxj2Pr1Hq+fdO32HnC9j6gOLjPg0X12nudt/8sKyyfI/Lr0+87athVeXXiY21/G2a39p//IWbscD8ar5SoVquMjo5SCCPCQkChUMArhHi5G3TGtMn3rbWmZwyxcQvmtb/n+iMIY1ByYLr189iMVv3B1d0LM1QVKpg+2mLv3uMUCkWazeYqsfvVDLk1ZjDZHqx1bsc58IswfcAOBmP82vHZ2mFm/Wq5i3y7+6Ae+k7a/83BttXaccOJov5Zmge7Tq99HqzLlA+SDAwkNVzCPWRiw3rmF6b5zrd+wrOfdxE/vuMoe+5zOpBr9zUMDq16TtZo80FeBjtgMFtrXZJ+zZidiMQx3ABj3Tq+f0/IE25y1e+sOj/WMmNt/+/wWDH4O3AyH066DINfwwmz/DNWWqJCiUDkuvMDw4v82PLrn69v1h5zHMeYZLA9DMNs/aNWnUver9bKnuSVR7ke4KoKisx91WrjHLmVk1eSUrJ4fJbPfv1PUGsSmP9e+5lEFvOFAl/uWoSN6YqIo/gkUvBmBOuaDXYkhnI6TUmN8N1mi3PDEVpzM3RIkSpihA5B4sOyJJ2fJxhP4OYOfriM+XHM8v0+qREkukScQqx9emYBbTxQ0jlqCYsUKfbQZrAx4mjNZXZ0A37wHerq22gTsGDbxFGZ+R2Xs/HQdXg24XPP6RJ6/8BXkpDnb/xzzrtsJ9F7/pIg9cBAzBJ3/n2Tc7cIrl7y+eN/LfCF8w+RHD/EPfc+wJYTpkjTmPpsymTLI+gZRJLwrvOrbLv6Jyi/h5+OkkaKUgpf2bqF2c0u0/bNxu2cecoo0/f12LK+Sr1hGBsvwsIKfhjga0sndQHrzq2jTNcXWWkojJeA8TKjCJtNZAprNQJLW7uSISn9LJckCYVC2gThSxJrULEhGi1g5ntEvkbbgG5H88W9TQLhc8NSBxkUODC7n52bttBppwRei23jFc43ko7ucEd7gmVR44VP38GLf/8b3HzXh0krEcGpOwnGD7D+WJORFWhsTKgvdVnUEUIblLGkCcRCMBYItlTL7KvXGckE9eskXBd3OByE/PEt3+btL3sG9hsHEGMTeFojeiU6XgWl63QSR2tNrMVYL3Pus6RSUUgFVkrwYvcwmxDl+aQlyfa0yvHlGt04xfMMJhPyHy1F9FYMcSdhT/owU+6/u8lE0OzGXPqrT+G279zEgUMHSLSmXKoghcWzPRDge67mv9lrkXoSFZTYtvVEjs8tYrB8+xvfYucJW9m3bx8qDAi8kNSkyDCkFJYRwhLHkupYlcmpqawMM6BWW6FYLLK0tMTEulGCIMBTASMjCpHpOOZZrCRJHLNF60yIVSJ8n5NOOZU4jmmuNIiTFE9alK8ykwcQIsVa5ZJPuSaXGTA4lLMnHEx6JnMTTDVGkNH0Jb6vQGiMzTQblcvmdtotoiii13NOxY65IIl7qyfzPOMkhODAgQPEaYJQkigMGZ9aT6teY8PUFKoVc9++Y+zcOEngeXiFiMJIBeEHIBRxnFIseoyMjDA3N01pq89Jp59JXO4wWlnHcn2ZlWYDKQXlQoVOp0Mcu0A99Dy07lGpVOl0OhQqhs/ecC1JK2T9xDrWrVvPl7/8VcrlMrtOOY2jB2f48Y3388Sn/tf3zYeba1pbhnVb8jLBfkDuUi39gGxYtL/fRF4qmvXzfF8oEKwKvgbBJJAFbFII8hzK8CJteDGQAy3DgWH+TGlrCRCY7Dxy13PrKWQWYLqs8JB+kYXLfu15XPaEp/Cc51zB3vt202wso5OUY+lxzj4hIQw8mqpIWhzFx/LqN1/N+952Bb5XJvQDlBfQqs1Cp4uRPjrpOlBAuUWq8kMC5ZMkCW0KTI5AnJTxvRJhKXKlwFKglEDHmmIQoYTE9ySd4208X/OVO5tccs42QpmyYzIlntiC8izNRBDoNp4IKPopnfoCqfRJ0mXa7ZSRkVE+8Y//QLEYcdqZF5I29w8lCLJr3I+3hWOv9IPbAcPNGpE52Nu+AY27xxmLzrqEodFu/MJKhBwE38MLvOEgf3jx7kmJYTXQszbpAKvNJNYCQsOO18PfX7tI+UVpD70YA20zlmkOiuDMHOQQGDfc1oIlaxeMw3+xkuOLy+w7POsE+IcWyzkjRUkfzwsQUqPbXZaanYwFYRE2oRMrbtt3jFJYwEic1IRwchFSWUQGPiWyiDdSois9erGENNO5MynKE5hgFK+wkfFyQnGDS2yVopCwFAzOIzJ4UYzfixFRmZHqCMKIvrahtdaVZSuIU4PGkmiNJxXtRPPk17yZG//u/aysLBFVfArCErcSavNzpJVxOkmbhXqHS5/8dOppmZHTHsvsT+7lvF0nU6s1KRULjFVDtKEvi5FqTaPeZLG+wpYtWzjxESexvLzMzMxxGo0WZ511Fl/+4vVI4dFqtbh/zz6k7zG5eRvXfuYLXPHsy4l8UNZghu7ZfxaEe6i+5J75DPwQoMxDM1NX9YmhvmOtRdsUKRTKE+g00xnDlQjnxizGpFTGKkyMVyiXCni+7xIdKiD0HaNYGI1IPKwwIBS+NUhh8XGGMdo43e6c6SOEAJmNGZ6XeXhDzthaO578T2/GanyVXfPEOGcxR23ipE0jLB6XeELS6XQAGJsYp75c638/H6+tccYYGNuXmugDYGm6ysBJDJUaDoOy+f8BTM5IMw8exwffyfbZRxGHkmrZNqstdsjEZPj7qxJE5GBi/lkepC3r9E8z4EbgSlm1oTpaodfrcPTIYZRSnPuoR3HtNbdw0s4zueIFj+bjV3+dNBkcg1KKXtwll9sYZoqvvgbO4MFtdrXT/WswxHLLGW5Ys+Z50qv26WIhkwGeeVw0MDnK1ziwGsTqs4H744OTklg9R7uSVPe6D8lm22T/mQWQOEd0jUWIIRkKnc9F7tu5JvZwk/m5pAnK85DKSfsksSbIdEyNwBk1WJ2Ban7fIGJwXeGWm77FIy+6GGuSVX2rL09kBMVS1E9ExXHK5KaNTE2ex737buQ/2n4moNxti3spijGM0KQ2IRYRN974A2554tOZEglzxR6HvJixyRM50KmzfsN2bj24yMQpZ7B8eDejywnJ9gq6kTAx3WM+rlD+yDH8wCBFhFrfpdNRSB3jSw/Z03R0QppYigUPEQekW6YYmV8gVSt0pSTqCtptTclLUArS1EeplCAYZc+G57GzcwdSxjgoWhL0uryv3SSKJXHQwFy8BdntET8lJLzwXLa8eRT+scm2doy39xY+8ulvsuELhznWKvFLOy/gU1+4n4pf4bMzTZ65uUxnts03TY9XpYvw2c9Rm6hRtQnXffVP+OpmmOiB9QyveuZH+eY/v5S//uvfolB8BL/+rLdQjYsoGSJMgudLRCKQImFpqU7ScYv3VAw7r2RBqRCkgBWG1IISAqWzAFYohAIpFFVlaJmAYmgwiXG6O36CTAQmUOxZiDlrxAUNHim6U2fnRIWpco05W6FZS/mO9Ln80pBLohVGwhDTXODwNz9LdexsRGU9K7PTmOkG5rQys4U25n7FVKXAcdvDpBLft8Q2wWoFcURQ9dlUGWdpoUYqNVoq4kTREi32BhEvfcVXOWPnFO3lFayvuK4ygo0NOokolgtoLTDxClHg0+y0SI1BKo2UKeWepk2MkEUsKRvHqtSXWjQCy8TUJP7MAZCWPSbmkbUG7w3O4tL2j9lbCCj46b/b9x9uP/t22q6T2bljB7fedBOTmzaT6Jh6bZ6llUUUkmq5wsmn7OLuH9xJJSwAhiTtkHYSKuNj7D9yjNQaQqr8+Pvfx6AQWjs9gnIBLypRrzeIoiKVSoXx8XFarRYTExPMzs4ihGV8fBytNbt37+bMM8/ED/OB2QVxUkqMNn19N8iYFiJzd8xYbWHm+oXtPOg8cwMG8iyS9FYFCsN/GZqY0jRFebav2xDHmTC7MH2QI6dq+36EMQbPCzA6K3NNnSaOsXGfUbd79+5+JqvT6VBbWmakUmLj9q0sLTcoaEtUXIcWAYeOuWBjcnIdBw8fYrw6RqFQ4NixY9Q6szzpxU9gfGocKSz375kj6RxChwmBJxgZKdDoNrKMF2zatImlpaX+ZJskCa3jczzmsWezOG1RNuJP3/1HXHrppQRRkaIZ554v30JFj/3sOuDD7f+zuUziIJhVyjEtcr0voz2EsmuCwtWiu/n/LQNmAkOGDP3315S0rAbeBoLIqxb+Q6Lcw8ALJtdFkbCGFL0K2OuDeasZPS961avYuuUEnvmMK1lcnCcIPbZt38T8SpMN4i6EDFhYaPLs136Qj1/1QhJ/ir9424spmIB20iPRGhV3eeVVn+Zv/+RyXvcXX+Ijb3wyPSUwSHSSYLRGCQsm4Yzto3zpWz/icY8+2z3HCEg0hTAiTWN8JcAGJMaZt4yPj3PvviWufMpFdBsLpO0CcbOFpYvuGe7b3+CMnRMo5WOTrjPQSQVKFEnTJY4fP87Y2Cgf+cQn+Nv3ncrBWsLE6GBc6l+fIcAzv86r7nN2bT3PY/UCI/9+PrY5l8qc1a/UQJNs7cKrv2iXFpmhsXnAPFziPAzo5My5tSzl4Xs+zIxZzfb4xWvDDAUAjM7cJ1eXijuN48Fi7aeBeT9tW77d4FhTttPGthYQpoSyKdKk+B6kKOqJk4ko+zFKW6zvE41WwPjUmz16MZQCSRBLAumEwYWvsNaxHWKdYhPBSjum3uw6RpTnkeoeWhu0cWx3P4iYW+owL9tYJfugTK3XxW+7uFApBZ4ish5G+YhSSLtjMUmCH5ZcSSxuLNRa40VFZBARISkFHtO3Healz3kmr/7Tj1DsLSGlj6xUMKnBr9V4xI4drv8haXsjSN1FprB123amZ46xZeMGYpuidcJcs0FldF02Z8ccPXyE0886k5VWG084Ftzs7CylUomlpSV2bN9JVPBZv349t9zybXbs2MENN3wJq3t89rOfZ/PUVqrVKi954a9xyiN2kpqEpJOuYqoM95HhZz9/vvLkyzDIJqVGCoXExxqTlTy7MlnnQq8GTBhsv+wxZ9K5/uahhEUajZE5SAIm1VgyPTIliEoB5ZERvMwRXkqJ7/v40kdjURk7Nz92zwvwpSvHk1i0MRirMNbiKeHGV7K+kJWz2v5cpchdRH9eWuQ7yEBnZmDGGLApaWppNg3L7QV8FZCaGCFdhUWuldzt9tz8nZWS9rVGhxImxhi0TlbdA5dYIStEzRMyA8YzDOb+/PXaf9DP6TFwYRX9hNqA5QWYLI5QAzmE4URQ3hz7u4+VPWgOzJlhNvttmcEtY2NjHD7ccH1EWr5723fRWrNn725a7QqV6ijz8/MuCS81Gu00eIU7yjyJNMwQH7Sc1fdg1vLwtc6O0p2FXQ0euwTqauBN9Bl6A+Aul9kZvuZr2/BckV/HfiyX+RX3lzDCbbNWOAJDflwZe1HbhNzRdnguz4E9Yd0zSh5TDLm0BkHYP3/f9wlDp30K4GfMeDdGCbSOB/Oczs7NpNRXlmh1FohbKWPjm/prO6N7eJ7CC3xA0lia4V9u+Fte9uJ38eUvfpq77v0y4X8CNviZgHJKjvFPl/42z3/75eibupTe8RQue8IFXG6PkCOtPdoEVNjyqCdx/u7bKVQn2PSy5yP/8XoWdn+HXmELGzYUmP7ed1hqF6kmqSu7fOlbCY7tpt7r4u3fTfU5z+YH7/kbdk5UmXzhFdT3LFD58ifxzrmIsQCWr72WjW97DcUjMXXVIr3mGmILIlAkSDxqrFu4mSTeTbRhA2Z2GmN9Wr5kRnhMff9ttB75FirfXSGlQbB0K8lXP8q2PzxI/aoqvxO2wKR84uxL+CNvhl97xWP5+Mc+w4FD01T8gGIwzhHPsvW1l/C5v/wWtz7nbLbc3iAKNPMCTj3fadfNG0Wa+nzo317J2bUef/iWT6GbISdsHCMINSkxBSkJrHV171rRjBNSz8d2Nb4JMCSAj5QKROoYAxjH/hUe2BQtXfbSw4nkSu1T8Sx7anXGvHHaJqGbapZqhumux66KxrPKaTaQckJlhNl997K1FPHI5/0u137ss2waT9kyETEadVlXqqKCHq1ek1anR3Wn5OyLLDf+xCeYskSNFTqdgKIaRWgPtIeghTUagw9CIIWlG2sKiWRDuUjSjjlh/UbKvs9hkxInEUWvSd1Cw1ikJ1jQIZ6OUZGHNklWIiPRpo3Cx+qWQ7hlSEFDqgVeJvo5Fh1Hi5B16zeyv9ZgUaV4rZi4FfP6yi6ONWdQkcAkAvXzyUr/H9V2nn4yMzMznLzjERyaPYhQkl6vx2hlnE6rxtLKIjff+j0KHjztSZcxu7DIysoK5bDE3ffcSzftkKaGyug4e+8+QuAJJicnOe1R56FGqrTjHhsmxjh69CibNm3i+NwxJje6EskNGzZgrcX3Q9rNDu1eHeE7l1E3sIekaYLyNEoG6FQ7wVfhNCSEdaKieG5CSHpdpFQ0OynFwCCFBhvg+wFR5Jia/TySHnJzytwsUTk13QW7xho86YEV/Yye26ebjLR2TnNpkrHmjCvFCgIPY0DrFKkgSVM3qWlDrbbEjh3bsFYzM3O8n3mPFVS2baJ60k5W9hwmaTa5f7HJaVs2A4a2TkmsZWGxhhf1iKbgiY95AsvNGulcSpoaJiYmWZhdYeyEkLjXRY0WUVFCt9ulWChRKJaxSzUQikazjUUyMT5Ju9OEoMf+++c49ezTUATM7W3wvWs+S4Tigdn7/qu75cNtqCVG47KryvXfzLXRBVOO6ZaXArhQ88EmD2szwbnYe/6ekIMSkYcq43ALpdUlsQDIAWANqxNZuQubC/DEKjmi4eMZXoRme2FsfD1ahlx55UsZnxhlZvowO6Y2cPolj+W6v3krXrVEr6dZais++YH/zc237eeiUxed5lbJUJuP+cO/+wYfeO2l9GyHbluy3gPrBSitMUmKMSmFQhEjNH//uRt5wWMfxR//4y1cevFZ+IEhTjpgwKaabrfrdLD8FF8qVxLmKW69b54XTpVoBJK2jSgajWl06WnDeVsDDi122DIuKBQDOu0uynRJhWakXKDXa1OrWXzf52Of+ieufPZLUHaFJGk85P1bG0DnbRjgWqUJinNtFdIitBoYewiD1aK/GBt2Ae2XueSLOA3GDMoHc0BgeGGVLxByB9C8f+XHlpenwMABuN9HjFlz739x2jDYMnwPgQctytbel4dqDwXYCSHQ2eUVFqTR6F4bP7XIbhNpDdqCZ13ZaEnH4Fn8JJNCSTXV8Qk8v0BiFD3TI7KSDaMlNkyOUywWUb5EeqLfR4Q1zC+vcPjITJ9dpqSTwliqtznWM6Q6ZvNoxAk7t7PzpJ0UikU8z0P6Ps2lRebm5qjPztOMY5pxl1qtwWKrQ7PRoasVyIBCpdQvQ4tTy/G5JVqdNgJFS0uavQbf2wtvFl1+cvgQ49V11Gs1bKo54YQT6DYdyFEsFmnWlli3bhKddDFJl/FKiU6ng1Uenif7fTx3hD//gnOoToxjZhcJPZ9ms8nOnTuZm5vDGONipPIWpqdneMITnkCjXmf9ox/F/OIcx45Mc9IJW/niF79IdSRi25b1vOHVr8ILVpf2PRgIWb3gH3Y+zJ9931euvMwYFyP1ny0Pazz6DKc1LX921/7+Q7HTrLUEYUC5XCSKogf1UyFEP7mzdt4RQlCIosH4kicEtO4zah6qlM4lCH6+xom1yY0cILOp4fb9e1jYv583vfVZXPy4J4MZ4eihFf7ygx8mDEOU8mistBxhJJtb87EYBgmU4X/uWRnSJ+v3qwfrfq49Lve5h3gtBuCQM6pwieq149AwGJefe/7+qmTQECiXf3d4Tun356xvr1+/ngMHDmTxBkShW7845C6kVPJZmF/G2rh/Dfq/JwbXKf/Ntef5U8+b1c+d22YeBKBnV3P4rpODlqvH9CHgdI2+5OrE6Opy77Vz5zBQZ61FaouRQ6z67Hi1yctyVydyhpOq1gjINIvdHO5ARqPd9R+O3ZRyINogBhmw/Ky1YD2EdQnApYVlHtj3I2y4xLe+8XWu+sN/cP04MyPKjfm0Trn+hmuoN45wy3dv4BmXP40/ee0WkqTOf7T9bIQxml2u/Op7+cwV7+TZzz8L8W+3EzzjLKwIaXZXUJGPn3wL4Y9RSkNe3llmvNNmuaV40WvfxOMrivK9P6EsLZ1QIFpL3IbFSxJKn3oXS90eIzixxmN//ucIAc2FJvYv3+MGeQF86Rpk6LFx3Kf5wQ8RY4iNJJAFDusmG40hkRpLlRPkIU7E0mw38KdOZWTrNjh+gKP1w+w4s8D3njJF7d42z3vpLtLf/wb+kz4NsY/ZLNizpcLGHSts2H2EkdJWfvTJ24haKZduLNDrxKRqlr+4/mX8nyd+jDM3VWn6E8wUUlo0Ea2A47enLBUNU6nGV/DWZ1/F1W/9bWaaNZZ7UB0tsXNinIoPvjSUZELDFFwuX4SY2BCEKUKkGO1KabC+00cQYJVEGYUUmtQqAqMx0iJJQfqkSY+LnzBG/YsQhALPKJbMZ9zLAAAgAElEQVQJGAk8wlhxzromdT+k2JWcvr5KLYaRjuYV26bo7djB//3BF1HldfikxCRIinTnp9lz1QtId99Ic+tlqELMxl6dTjrGedMe+02AMCHlXoeJRBNLiUCDryjbNpNScqDe4uVnncY35jTbNpZYbAuMijg1TPheXOOkkfXUWnUKfuDAuFaNWCjQEmMjPNElVeD7IanpYulhTQFpNTXVJUo1iXFOdiaeot08wKFyiWZXMtsN8KyFEcGLkzk2THqs1CvI1FD9ORNu/Z/Y5haXWao3OO3s00lNzOLSPMpCY7nGqWeexpEjR5hemCPV8KnrP8cjzzibarFMqmFpaQnpu0xKarpgCgjlEfoe7V6XsKQpVUZoNNwiM01T4iSl02lRKEY0m02Wl5e56667MqcegyVxLA5PYExMELqy2b49OWTOpvkiJgtIxGBh43kDvaIo8kAkMKSpJDLmQZIkBEGwKmjJA6O1C1TlgRCOYp8kCQqJlANnwSAIQLjFRrMVZ4BHPsHoPlutUqkwNzfXzyZ1u110mtJptxHlEVrWpyE1pZEiNo45FhumCj4+EhUGRBtHePzTLmbv0Qc4vJJQKFSZjAK67Q4HDs4RSYnsTTJSKbO0tEiaplQqFYwx7N+/H4BSqUS9Xu+L3UoRMjk5QiFKuOe2w1x77Zd5xKaTMcZQ7zTpkaztNg+3/8LmghvX31SW44a1Gl8OZLHWYoQTDl8r8O/utYexAw0PF9y6910Vt0Ao1dee0zm7aU2wuTbIG/6N/m9lz4YdMiLIzSXy4x/WPRkEZiG/+szncd4553LRxb/EzLGDzM8e4KxzLufj738j2ydDetbyldsPcP5J28EPePKFG4iTHpaAONaMlUP+7Lcex0uuupbN66bwqPBHr3kqL337P/GJq64k1inSV3S7baIw4JXPfgqWmD99w2UYD/70DU8jbrX5w9c8gZX6PIWRKiZxepRh4NFsNvngp27m91/1DBqNGtpaEqMpFAokKVjdI8VnU8Vw98F5Tt25Fc8DqSVGdzCiTLGo0Cja7Ta33HorT3zcEznrjIs5tP87q65NP8BeVdZiV+kt5fdieDEmUFiRm0E4TbrhxZI1q/ezlg3wUIuB4UVN3oYXzoMxdDC351paw/vIfysXlP5FbNZa56YqZSbKLvssOZX9yxluWNv/P4CT3nfXWA3tby3LKmcdgVsOamuzcjgJ2hBrS6IhNRbPczo/QgtaWtPpGGwUEbV7VKqRSwBYJ+mQL0KNSUErJAGmX7ZmMHEvY5Nr4kSTtNt0uzGtnkEpp9O4acM6zj/7dKZ27CIqjBAUy0hfUK/XmZqfpl1bodtZca6utQUOHTrEbK3Nobku9U4G9EqBEAEjkc/6ss/h9hK9dovdDzRQwmOl3eVNb3oLr371K0m7bYIgYN26KkncodFoMDo6iu42KZfLxJ0OXiFkfP0GakvLBEFAsTLCsenjzM1Pc+qp56O15uyzz+Tuu+9mbGyMRqNFuVyk222zc+cOisWIQqHA/v37WVpaYP369ezfvx8hBCeddBJCGMbHx4mikFNPPYVdu3bxit/8DUyvjgiKq8bDYfbK2gTJT2vGpNkYoGG4v5i0z5Luj7+DKjyC0CPsKudUiUZbAVly1DGKHAtHCoUVhigIKZcK/eNdzazSSJsZcQiTHVOCm8MkYRT1y1QTkztfOpbl2nNTQqCt6Sf9f55arFOEsWsANKe5+Hd/85csLv+Az193Nec85iRuuvF7fPADnyH0PDpxJ5Od0AhpnOOp4UHjbw629QE5yDTmnFGE7Y+7wyWbQwmZoXF6rVxBridnDEg1OHbQ2CFG9GAfpt/XcjDs32suNsn7fQZi5cYLwoHkp59+Oj/44Q9BON1boQWNhmPNpUCz1iWxFiHXGlpk52KdnU6qU8ee48Gg9Nrr4I5t+NwGhjPD13AgW5OSJ0mFlSASUj3Eas+pf0MsUD1UzTA8l66VDRl+T1iNkI4FL6CvwZ1ai9KZaZe1jmCQDMrmXYw2NLZk19jovJTV9HX58usnpbNkwWYlt8JpAxuTOr3idPVYJYVEp7nutmLdxim01tz+w5s5+4Lz+OLX/hU/FvzKU55Obu6DNvSSJXaefCJvfNLvszX6Gr73be6/ex+33jHLuVf+u92n334moFxYjsDAc6+9ir/6lTfz2ndvQf7R1xHveCojYYUX/t5neccV+9i+dDJTG85mg4155e98kw989Encbz7PzuIzmDOWjSqk1DNoqyhkWgF+0kNGAQVrOZYkrAQ+MkNQtR6hIhKisMgWrTmr0aKju1QUNG1IrBIO0mOsWCAgIU5Txlp1ZguWJIUmPcaX7+ECfZhOU3E86fDo8PfY330nN8wIPvuuPZz+7p1cHiScc/s7Cd/2Gr70ng8TeQWmi9t5wdll/uW+Js87XTBZ7dJEsGF8I9/83U8TFEM22Jjb71/GFBXv+ItH88LLv8fbL1J8pwfPWalQFzOs332YLbqAmSixIyyA51PyUkLP57GVAmeXFvir44IVIVBJB4yPiSXS85DWla8k0tnQK2lJtcSKFKHBEwIlPCAmFRaZphgsb7r609xy0tPp6R4mBXyLsIpnnLeOF52juO3fNA8UFeetm+KGr92I9QW/9KknuAFHAm2g4BMIV0bgjY8xFZ2Onlds9E7keG8Xe9ODfOMVb4DRE/mjK57D5jDl+7MdpnSRN4TwtVKEmfCoNyImbMpoDCZRCB1Ds8aOYsh9c3v48UqDdqqZn5aUgogzp0YJPEnbGgIEvThltJpgu27hliQpOonRPYk/Ajo1SBGivRgpU5AxC+0GRnTp1tukMmGps8QZF00RHksYKzW4dyamhkEp6OjwZ/HIPNz+E80gWbdxEzfedjMXnX8B933+cyRxl2q1yl0/+hEGqEYFNmyYZP+h/Xx/912ceuIjWDc6QZIkFELPiXH6irGJbXhjmttuu5GpTaNcsP0EeokbjE877TRXOmkUhw8fJgh9qtUqAslYddwBVL0OOkkxQbZglwqdOo0bx+bwcei47QupuoDGlVYMaPtgM50ZIawLCAUEQUBqBzTyPCu0dvIbiE1LRC6EmjkuOVeljGqdvReFBZRUfQ0US+IAuiR25YU27U+oSZJQrVY544wzWF6u85nPfIbTTjuNY8eOoXVCo9uktHkC3eogdELHaGrlkFZJITZOwXiRL9x5N42WRFtYXDzCunWTAIwVNrNjUnHw0DzbThzBGBgdrWKtZXl5mXK5zMTEBNPT04yNjVFvNlxW0evgNy31A00Of/cok9EU9+3fw/apLfhhxLaJ9f8dXfPhljW3kAKXcR3o7+isTBxWZ8mH20NlgdcyDoaz0n2QZgiMeyj2xlr9OFhdXjGcCV8L0qz6jHR1JPn+lFKEYUh5bJRLLnTzYrVSRNoN7P7hNzl96xZ6ZonFxgoXn72N57/6vfzDB15HJ2mBVbS6bQQeUaAolyf4+6teztXX3sLr3vU3/O17X8773vUqfvMP3sdHf+/FLqj2C3Q6LYJAQGpYSQVFK2l3OyjrmPDF0iiekHRNTNx15zEyWsYTMbFu4kkoFQroLDtcKYakcREdd/BQnLqtSihT9h5vsm1c4hGSpj1KE5MsLiw55/ck5ZOf/CSf+8LzOLj3+wi1eoE0DIQO3/fh+7dW3NlkrnjD2jB531ld+uJabrowzEhYm/kfZjwMLxzgoQWswzBcVbaa3+P8WFyC5Re4mYGQN0ZjcisV45gf/cIk6+qe8veFcKWHa0W+YcA4yQqqhiTDAWPotjvoJCYWmSlAFmtaY/GV02pCQxxresJQ1oLIWJKsYqK/2EdisoyYNgaVuqoSk2qnl+qF+EWPXreFMZAkGqMNylMIpVhXHWVkbBy/UKS87YQ+eBuObyBODMutBGM9sAGik6AKFcZkiZWkSTNecgkFg0viyRDjwWIywpG5Dq1uizAs0OnGHD40zVnnnken06JVXyE2ll6vxdQJO+gcO8j0/n1M7tyF53mUo4C0ZxipjKKU4o477uTwoWksHhs3rqfRaLBv3z6arRV6vYRTTjmFI0eOEUVFluor1JeWOXDgAJ4nufDCC5mZmWHLli3MzsywvFjj3nt/wq5TTubw4SOcc8653HHHnbynVsNay+t/68VUyyP9+/lgxs3q7VinG9d3jxeux6Q6c0vMJKaktX1dXCV9x4oWq0vWPSmdLqVJVzGiAVJrCITMpDk8PBwr0vcGxla5JmjeYx14744RI7AmRWegnJIyA3dDp89rDJ6UhF625hEK7BAQYkAnehUw9PPQtM5LTI0DMdEYk3L7d7/PJRefw8ev+RZy8xHq86cQyYC3veO5YMr84VUfIfCKSNl1pZfWILJkSZ6odq815kEackPXMGcyCfqC/8NsduyDy1jz13li0FrQKSDSfgIg1zd9qHlhAG4NdNWEGDq+IVavERkIpw1IhRHCldxqGBkpc/c9P0F5zsCs0Wj0y1GNcNqqfqRYqdcZHavQme1iRdofa83w9RJkAHSaAU0Pjleszc8711R8cD9cdekYsMRyQMyiwYKnXP+3Q6B4fm36AKAFM6TNCmCN7IPZg/JQB1p6UmUlsLl2nMGkzhQPJfuOulIOse1NrmFIX7vb2D4aR79iyGSbRArWVQHlpni5WZYDGTVCuPfyscLd+mxNZiFNE37w468wsWGM5pFpDh7Zg7B7ueTRTyfRNW665UYe/+jHcvDOb3DBU1/KJTu/D71rue27P2G6GfCT3ffQSP/jBpE/OwupbGZ+xY3vRn7kNjixxoJpsY4S93zxM+x82hu44FV/xreuvpbjNwe8/6NPpQ0cvDvmKb/+akaXDvD2v76Cc0//TcoFj17P8tiTJ7juthmWMycuYQVB6gZyD4WSLTYow0se3eXCnQU+f6fTnfBmI36yEvO9ZVfKqXo9NhQEMvJ57jOfwE03fYWFpkda6nH9ss/H53psSnzO3byNDxWzByqBkzYo/m0+4V5/jA/eaPn4hz7MmedPccbjT+Ft7/wGvaTIqZUm1arH1LbTSPZq6s/4Zfj2Vzjj3L1c8Z5bWfJP5KpHTXH60z7PrZ98Jff9xS0sVGIu+c59WDZx0Znv5i77Ie5ZqHEo7TFSVUyNFAl0mze+7gRO/KVf58Zf/xfuSALs0gzCS7GJwoqE1Do0WySKoklIpSGykp6VCOljccLRSafHWLmAr8AT8MgTn8uJZYPUVeJQIFotiuWAdWmXTiEhkSHXf+2bjK7fghWuRFaUf3rmK1IFoj99Pwdf/0Juv+UfOXLvEUb37efWy15GdfsGNsYBDyyHjLYNx3pd7ihVEJWUc1LJnsgjVAq9BH995wy/sXUrTx1Z4rpegwvHqujxKnGtji6V0ekybSMplyM8VUDrGGEl7U6dgh7F0MuyCz7Wdkh0ESUNaeLytUkcU6mWadtpRNTDq6wj9JbYcfJWRkcsbW+R6niJdMYH28JoQ9x9mIHz391uv+lLWCVpt9vcd89dWDTj4+OEYchCbZ6R6ijNZo0j01183ydJetx9z26mNm0jKhVpdh3jKuj6hJtg69hWNj/n2YQFZ3pw+OgRrFJsBo5MT7NucpJSqUR5tMKBAwfotXvcf//9nHnmmVQqFadDIp2WEWQZPXTfxU8gUcIN7mnqwK4k1n2hUsAFgiJGKedY6hzXHKimhCBPA+UMt5x2r8gcg2yKMRqGyiiU50wj0jhFShdwep7EmNi5HBuDpYsUPrk6u5AaEYPpaUSaCdz7HiuNFg88sI977rmHXpxmRgwxtZU6nY4T1S4HAcGohyxVOJL00EkXkfYoJIljOMQx3W6XNE1ZOnCYNE0ZHZ9g/+IIOyYKTLTKjFRTJsbWUa/XKZfLCCH6pS0OUFX0NLQPtNn9wN2cse1ULnr0Lv71uh9RDEKWlxqsmxhl/4G9/8W98uE23PIAR5GXMLqs5NrSjzwgF5K+IHw/wMxLmYYcV/vB2ZC2iVDun8p0nrTWSD0UBEmLMNIxZLJs6VpmTt5y8C5nAuT7W5V1BeQQSGNMyjOe/xIec/GlXParT6HdaCJthxNPOYPavi+iTYeyDIjFDp7967/LX7/jSuJ2Cy/wSVLNSLFMp9Oh200QwiM0lsf9yqP5/VdfypVv/Bi/ecXjuOaPXkwvDXDZaQMiQfmjHJpL+fjnrmOmITlhMuS1L3oWUvdQ6Qq91MP3nTC+9ATv/sgNvOPllxEVRjERtHo9pOdK2JvGMj5RZmUFut0YsE4zyij2znXZudEjEoLa/DS+X6DdifG8gKPzs3zgvX/CE5/4LGYP306UlXmtKuESA3buWobiMFAKZHqDljTJMvXSrmbgKVe670pUzapFQV5mOqxPlN+j/HPD2wF83+9vG2ZYDBjMXt8ZMgf4fpHLV2F1melaTb9/7zvWOobRcD8Y/l5esiof4vudToc0JXNPVqAGpWHSd/c97iV0jSExun/P+sw9k9JJDO2kRyosfqrwVWbiIFKMVQg/YmT9CM1WBzyFkgF4vmNRaJ9eCsJoSDXNbszEkAOvELDYNcw2oJto0i50Y4/jsWW8EKwCeIWQCM/n+m/dQbfTwPMCipHTN4vjGGkSjq9YlBcwPbMfawwnRxoPQWHmCIUwYOcjz+XbP7iTRr3OjlPPpLp5M9akzBydZteuXWxYP8Vll13OAw88QLVa5bzzzmNhcY5KpUKj0WDr1q0sLi5SKBRoyDrr168nCDyOHj2KMYbp6Wlm5+eo1etEkasQGAa0771nD1u3buUf/vFfeP2rX9q/DsOs1ofuDy5Z038nG9/7mk4Z2DFccp7vT0qJRq8aW/L+N8zIzZ9Rm30mLy1TSrnqgKHje6h95eehtXZsHiGwRoH1Vn3ODwRRFPXHNiUHSQHf91eNLT8vbVCmpxFGkwrBNde+m82bqywcm6YTd1hebHPPnm/RbqWMlcd467v+nnpvjte87IW87/0fy55NMBj0EHvNlaoax4Ycum65eQOAFrnpkiB3ZbUMMcPMEFg29MytBa3y+AJA2NXMseHPrWXOuW0uwdAH/HJQTjj92wFTbiiJJDStdh2ERWvJ4uIivu8TRVGf1aXweNyvnMk1n/w62sQPyeYfPjc95IL7UBIRg9d2UKa7Zl4ebn2c/Ke9v+Ya/rTxf9VxZCie09h21wEebK7kvuM05kD3QTwhxMCN1jqTun4CLuuHUkr8zO00l53Ij6fRXOLmW78GHiSxRXhuXAk9n16v43S9wwI6M8WQniBNnbSPTWIeeOBHRFHE1JYTuPeBOxEyxfQs5WKVr990Lem932Hd2ARazDJ1YpHTon/m5tuOcGxmiT33HUMFJQRFNo2u4z/afua+7pH04JUX8X+e/Hn+YP3Z8CtncMeN/4vnvfBjfP+br0ObHvf8k89FF8W8/IPH+Kc3n8WHPryRKy9+ORee/gZsDPvbKb7S3HzfMi3PwxMZfVM6dx0nDCpAeAQiZrZW4nCjgwwiikXLWFFQ7Uk6nsA3GiUF7cSifMHSwe9w8s6QzbpHM4C7bku4+ulljs0YPvfjJrXEw1eC+XLCpcc1K55PQymW4ml+UFOcM7GJaLJKoQAfLsf874suZMcvn86eH+/l47ffzO//pMzjn/VEfu9rZa74209SetuHedEnbuHzv/1yxm79NrfVmhxrGO7btpnKNZ9AHl7ku22fsUhSXFchFCljJcEDieX9H76bD73uLTz7or/iie0KX7/LctORCGkSjPaILIhuD4RFCYtNNNIzdGNNoKBt3OJ+sjRCWIzoJXH2cHRopQFd3cP3igjp8Yk77+dPH7mVL3xNka5IRisFOgd6+CMeZhREAP6/c99T6dMtTHGsuUJaGOWxpz2Of97/NfzlGp6sMm1rtIuaTuDzxRHB288f56NfWuZAzef0dWWWwjbpaMo183u4obtMVJG8YMsuesBKUqEZJEjj0ZUJoXRaOpEfYGxKGgfE0TK9pofnWwwxxgoSbSkIhe91SdsWK2Ka9S6VEzbSUdNUxycY37WZX/v1HXzz1gf4wb7PZA88mEaPIBA07MOg3H93U1axvFynUimxMH8cKaHX6xDHXSqVCp1uF094CJMHWzA6Mkq32yWOYxJr0AKazRWMiSlGEZqQbneZffv2IZTk0RdeyMrKClu3bqXb61GtVtFYdu3axaH9h3ja057G2NgYKysrWOsWkb6vVk1abgHtYWyeMXWTVh6UOLHW1ToYLoMTkJdtDQtlJ6kDv5JUD4JW/P77ffYcCRZLmgwWwwBWpyTa4AcKbeIhW+8EPyiQJs4RySQp6IF9ea1Wo9froZRiZWWFiYkJDh48mJX2ugmz2+lg148TFUIW5mZZv34dK8srCCFYXq4TBAHdbpd6vU4YhngqYmSkyqF9exFRBWN30Kwvc8qOhEK4RKPRoFItAzAzM0O1WmXjxo2o1OP4948ys3eGbZNbOT5/nMmNk7z69ZfzuX/5NsKW6XTa6NTycPvva3lGWQPKDpg1w33dvc4C1yyb2w/orKPNuP7pzCEQpi/ib4xjySBM38nTLZ5EVgLpPmtNtpAUuWCxY+Tkzwu4DLcD+hgqcxs61qFM7bDuWA7ypBm74pKLHwtY/MCw0lbc+71/Zsu4c2V8zLOu4tMfeiUfff9vYGOnZ5UkGindgqLgK7QnUUqQlIvM3nc3C5Pb+NA7X4CwDYwokIiYkVLE1dffwSufdTEv/1/v56mX/zJ/8MbXYLtd0l6Xz914O0dma/yfVzyLd737av7sd65k+fgyuiB548sfj7FuvPACSWjAhgGMjpIag69951ZpLHEKqUmZmigQKQ9LgFAxgVKkSEbKBTqxKzn5ty99mVe/9o0c3X/HgwL54UB9OFjP+8BwOWu+3ZjsPkvHOugz6qSPE8xzTIXhsW2tttQway6/T/lCYPj3Hgq4S9OUIHD3LU+MDOv4/CKXrxoci8I9axZhBJIBeyN3u8tbagzSU477Jtx44FnHhwMedO+zjX1gLu8zvV6PqOhjMkaVVIow8PEDgUKhUw8tYMS34AeUCiGhr+gm7nlVSmXlSo7t4wmLycrWADQJKipgYk1PGzwc+7XbaVOOQlorKR4GlXSJl49Si2PuPzrL4x//eKanp1laWuLY0ePU63N0Wm03x+uUbsdApUgnOe7OB4VXKHHDl77O+OR6JteNs7wwT2lklE5vwfVPTyGN5vPXXc/S4iKXnX8W4yftRCcpQhusF3LgwAHOOOtsAj+iVV/ku7t/xK7TTkNISW1xlte8/s2srKwwPj7O+Pg4d/z4R1k8pJmbm2N5eZnR0VE6zRYTE2OMjo5kJi5j3HvvvUgpueCCC7j//vupjk2gtftepVKhVquRJAnhvI8fSLaecBJH9t0/cG9h9QJerDJPcOOvyZMqRqJNQprGIIyT2BADk58+O1Z4WXJmAJ6493ynIyU0SnhYKzDCIlIQnugDDdoqwCU0V2tb5YBMxtIyKVJYrHBrS2EMUnqkJnFjgPCwNlvYh74z4gKsdDqIMnfuFDZz7abP4vl5aGmarjIYSHSNlfoSBw/fQTkY4+q//1fe8sYrWagvcuaOy3nS5U/kre94KkZLPvS+T9NjkOBwYJvNWHfOKVkPGUA8lEYc1pUrmmzez5vJTKSMNf3SdycXk4NGejWAJG3/d0APupVYDcwOgLhhMGs1MEUWPzhDqVz7TYBOM9a+q1zLYx7f9zJ9Z02v18s0nQMmRse5/vpb6cVNjFYYG9PraQJP9WMPx5ZLM9A5m7+y8xgGuezQGAu6r98ns3VHPxnGama5G9dXV+IMxz1rY6Ph6zA8t/fvGyBtPjfH7t4ZA8bDZqYNCkAMioX/H3vvGW9pVd99f9e62q6nnznTK8NQht4EC4gKWBKVxPgkYomPURIbekejJkFFjQVL7KLobYm9I5oQEURBaYPAMDB95kw5c/rZfV9trXW/WLudA+bO88L4xLA+n2GGvffZZ+9rrWuV3/9X2vsCrS3BQcquwgjoeLi1C3H2s1oGXprG/OqeW6jXq0QonDZImoAxGh1biWw9De3ndgRh0ugU4JJIWQZukoJQrFy3hqOHdrHjkWmkJ9FxRFH6nLNsjGojYl4nnHPRiYwf3c/w+tP4pw9/BqWaGOORzQ2hpSAgSyD+8/uF3xEo1yax26YwvPeWD/F3l3+Gtz95DZe/8F+pTE4QrFwNtV1ccO5ycLJ8/X+tA+0RZzazzZzMGVsLXLt5G5+83eezRxWR56DSkIZvF2XNGIGYwcUDqTEuHHaKfGW34esHHNb6IWu3DnCvVAyuNWRnYssI0QbjWGr7gO/yo980Cb0BlGngpzEfvtUwWw4ZyvrEAZgkh5ur8cMwhySknyYnPv8cvvqKzyL+6bn4L7iG64c/ybc/fCGTkyU2Tfvc9+s5nuqfyt0/2830j6tc+OxVcPaTEH/xVE55/Zt57Q23cXyQYeU6n+Gqw03767z4shcQvPPD5MMYlXrMNGuMbSqTi/M08dhXT1i44VWcf0aO8nzEOccpfv7PKfmMIJFVXCfgh6/M8NzrFVHsgqMIU0XR8aloCWnEN192Od/+xb3cNFXnne++lic97SI+985reGjPPazI9HO0PMfRqSqpCjmaOZ6NJOSLNQ5nh1n4+Q0s/8s/Ykw3yegMRkCsFYHz6GHkGjjuf13Ng594KyKtMFro55jJcmG/ZttkhH/cCsq1AzQnBhBxmbfcpHnG2qdw0aknMejezwfvupW80uyfLzCT7+e03AB1AYF0CIbyDDiKhogZjyJCAaMnjpA2YpJ6mQCBUB6up3FkhoRWhZ0MWtZwYx/pRqSxA05KVcWcPrqCnUnMsWOzvPF136fWHGBzxuD4hhE/ZU4LXA2Zxz3lfu+tUBxizdpNlOrzzM3NIRNITUpiFPlsgawrqes6eT+Di2DFaD+e53F04pAFtRqpNfv1DJExHHj4YVZvGEa0NpWFbI6FUolSqcSaNaIGBfYAACAASURBVGuI0oR6vc6mtRsAENowMTGB43TDEwwJehHjQrbIbV3fB9Vid9jEHvtd2qwBpbuLDLQ3pMZuElubSM/NIoSgXq+Tz7ukqUKIuLOAat31T4AukOA5liVksJXIJElIjcFz8/i+tHRybRPQ0hRSGSGQ6CQlShJ8L4dSiv7+IiecfAI7d+4k1QlxooljhRCa/kHL9omiiGIhz4EDB8jlchhjaDYjtK4xPDxMod9Qr8WkOoFGg5EV6xgaHGHnzl001q6nsJBjeUniB5JmHOP5ksHRfgoUufkLP2X18BrmJiZZsWoNy5cv59ChQxw4MM7556/k4gtP5YYbt1EpVcnlcv/1A/Px1mnGWI2IEALtSDzHXbRZAysxSo1GYHC17HiWtMGyroG2QZhW6ImkFWAiW2fAFuCmhWXMSQXaw3GEBexoBULQI0n5LWck4UhrVEt3o9rdXJoOm6P3O2qd8uIrr+LELady7vnnETeaJPXDHDywgxNW+USZLPXpg1z37leC14euhfhZg+/kacgmSSO2pXZhkNIQ12M8J+JZp67H8QOmTUQmzjNfqrFypI8b797NSy/dSn1hjo+8+6UWFPFS7hqv8C+f/CofeMufIjyfMJznH171LN7yoX/hPW/5K6an5igUPQrCI9GaVGty2SyBlyPRcxSLBVuwUCmFPp+FegNdqlLwNI8cCYmlx9YVHsZNUVGd4sAKKhNzpE6KmZ/l3370bU4942Im9t6O02KILJXYd8YFbbaBWPRYr/fbY3u6pZ2qezvg49HvK3rmw64Etf3+jitIk/ZhvFtp70iRhUGrBGEcjOgmRrYLGEuZff/TmsSyUQwtUFR0Qe3epkwXvJPaAjCqBcDrljxRS4HT7nusFxe0JWEtULU1fjw00tOY1riQ2KS9QiZDEPg0Gk22nrGVMI7YvusoxYyL57gkSYwhxXGy+IGDJ+2f3mKXlTxZcCCME5zWGFOJnT+yuTyiVkeYJiJqUpmZZvbQOA9PNrjr9p+zavVapOdSKpWYOnqE6WOTJElCPl8kShRDuSxGOC1muiKNQ04++ZRWIrWDKyQTE0dwhCBbKFCv13Ech3f900f44vvezLpl/ZhmbEEL6UG9wrJNJyEwxJNHyI6McObWk1hIFKtWreTB7fdx513bOfucMzl89BjT09O4rsvgYH9LOZDQbDYt6BiGLF++jGazieu65HI5hoaGmJ2ZYWpyktGRERqNBlHU5OkXP42bb76ZjZs2Eych27dvZ2hoiD9/6V8zPBDwD296A3Ecd8ZA266DnkJHp7VYMVp0g1Uw0ianYhYdTJf6R/YexqUEZTSOACMkRgrSFBIjyZpeMKUb7GLXg/b5VCKli92jYcEMo5DGbUkQLTAgEgVKkwjdGdttKWe32QISgDACYUQPc+oPoymlODa/mzu2fZNnP/FNpLkF5uYfIchlma8d5nWvfh6CHP2DAY8cuIntH/4+bt7DExJBhGqlWSqdtK63vT6JTrogkG4DcQDWmqoX8Om2XgacQGnrn9xlfPUGi9ApihvSjp+dvf+XAHGLwkbac9LioiKd37G46NT7Pr0sO9fxWwWhxSx8x3HwPI/h/n48XzM9X0MIx4Lf5Tle/eor+NznvtXS2y5e31KdYGwOxqJ1trOeilayOI6V9SqF6Ak2ojXPqnZhim6xcqkf329b83qB966MuFNSaRXCTEvxA+iWV5yw+lLrTdobvuB07netLfBqAc+E1KTMzk6zb98+vIz11m2v33EcW6uf1jjS2rKy2++t7A7O/ld3VUxdyaotxtmikn08jGocOXwA6RhkIHj6mi1kRYapsI7OZHE1pFGJiQMJ1apiYce3SOIQR2lE4GFkFhOHzMdN8v7oo67db2u/I1BuMQHdacUof+B7VwJwww3/AEf/DUwKcynve98unl7az65p+JOX/hWB77Bs/GE+ds9POfDy9fiDr2ckGcANr+VU6uzquwxn3SuZGv8VND5lvdGEwYRFYspk8pqKyXJiX5Zv3VwDz/DkjEQYBykswpxzIJIOdx9TVIFatUkxl4O84dhcndTPMBInfPetKaV7FW/8oWLBr9L0hrg/idhy+tvR6u8IdYr82AWQRCjXJVIG85MvEwR5sqpO3ZP4wSzedROoz97DQCbD8kfewAYR8oX7x7n6eecxOzvDuce7DPED6l9/P9OOpVAuJJLNwQqecLLLLw9XiB3D3l9oTj47IYkjyiXAMWgZsu/rz+eE536fF34qJXUGeGFfyFerNmW1bCxbLOtk+PMv/oS7776F6zadAFmbQvTer3yGV152Cfv372USiYvDr3/1QzYuz/OnTynwvY9sZ3NoEC+/mDqCY06WtcABbdjo2AhrrduUc9E5EMnRIjqp4MgUbbaQFz/lp80hBp4Y8Lmv3cL7vvC/uPXjN6GHDddd90Zu+dujHPeES0mOKrJrbyGd7edpJz6Xm+/9Fs3pCgNnrEI0m8iFKonQ1LThwmds5QlNKAwETB2aYPrIBLncEKtWLqc5e5BSZFg+us7e2KqC0T54BUQi0Lpqk58qkxzNL+c1Vz2HL19/C5c8+Zm87tVPYXbPQ2ze+ixecvnfIsYn0PJxP7n/P7RM1qNSXSAJUxztsmntcQhfMjUzTTNJyWXzSC/L6OAQKomp1UscOnSIfH+uIw0VQqC04uDBgzSaJdKDdcaWDyCTgOHhYer1OrmcBaMWFhY466yzSEILzq1cuZJcLkc+n18kiWpP8p1FTXeZFm2/kjRNaTQa5LKFrsyitRCGYYOMn+0cGHojxKEL4OXzedpV30Um6WKx31L70Nmm2gtSVJKgdIQfZPGlQjoCgyZNIlzXJ4ojdKzQsSJR1nchyMSsWDnK3Xffy89//nOGh603XxSlKB0xONiPEHSua3vTnyS2upymmvXr15PP56lWBSpwOxVm4fnsPrCPvuFBamGTPUdSVo5mOfXEItJxmDo4gxO57Ni+k7XDa0gatsI1NTXF7Ows/f39bN68mZmZGRpRmfVr+5nL9y0CTx5v//XNoZu2pVlc9W5vuGyalmVPGBYfcBzHsRvnFqjWqXJrO16t1LXHK063KsPGRRsbWmKfc2inbrVb7+bSEYv3KkslGEsPVO37shc8dByH0049l75cnth1GJ80rB8yeG4GT0e88M1f5fQTtvBXf3Yexhg+ev1PeePr/pKoVCXwfMtCdSVaCcvkEAlS+qRpyoDI8i8/uIOb73uAj//ji7ns/JOoLJTs3BEphOPCfIWtQcQ/XnWpZYkocF2HFIe/f/1zaYZVHj56iBt/fCfXvvYF1FILGEgpCZOQIAiIwgQtFRk/oNYoc+f9Rzj3pCGUMpy0Jk8jbtBUeRwBricpl8sU+zJUqpZ9/K8//TkXP+N5HN5jGQ9LJTDta7l0c987xy19rv1Yr3y4w6wTi+WoHUbNEr+yXqmklSpqy0ZM0s5ji/q85VMUhiFekH2UzPJ/MiDX25YeTh/rPun92163rmcjnYPkY7Pllo4dIQSukN0Ds3AJU0U9ClEqJUki4jiEFpOkPS6iKOocYpNYd4B1O524gCA1NmSg1gyJrIErWmvqUYoSLsZxMY7EdxySepOwUiNMY5K0wcTUDAuzcyRRSBRFVCtl4qZND58U06Qahov5RfPf7j37CHIF0lQihEeaGPr6+gjDkFKpRC5n9ynHDw9yxmknkhFdBr4X+Izf/2vWnHoWTmGE/uO3sucnXyU/OMA+p5+dDz/M+hOOZ+WKFQwMDHDvffdbSxu8TkBUEAREUdIBm9M0ZXJykjYj0RjDGWecwcLCAnEcs2/fPp73vD/mtttuw3EcpqenQWjOOecc5ufnwRGk4QAf+sRnee0rX/Z/7ctFz/cwgFTPVNwLsi/90zv3dtn+i8dn+3emabrID7L3faHLxutl2j6auauItSJZkgLbZo3ZVPBuAuvihMpHA9b/nVsURfQFK6hPh/zwxmt5YOeduEagaLB29WbGRk7k4MH9rFi5gb0H78CTHjNHJvjq9fewf9cBsoODPfvldrLoYkBJ6O5+1xZPHu1V2rs+P9a60csGa/9MB6x61PstZTE9Oom1HaT22/q0d0w+Vmv7kPZ+1vbYKxb6ed4LzuLLX/plZwzOzs6CUHzhC9+116jDklssF22DvkvHrjGm8z07Mv8lZ4PHFJeLR9uL9P7M4i8tLXNatlQOPDrkRQiBSFtztnQx7cAKHGQnzGJxMFTXZ9AQRQ0eeOQ3KB2RJi3PR6BajfBaYH+CQHgOoUqQPX3bexbT2Pu4/f16LSqSJFm0T2i3IMhy9objyGqHSr1MQyfIXI5wvoljNK6QNGua8b0PMloQqEKBaj1HpV6mP5tnzWmnc8uvfkJuuI+Z8v7fOjaWtt+5fHVpay8KZuNziae3M3OowLknreTszZdw9vm3c/ET/5hbbnoTq91++v/1V+ytpYzPvI/52iinrxxj/1SNsPorzM4DQIFUK5v+pCWOqNHf77NhY5Y9RxuccNqfkz14HYmBOTePIxtYnNylblIc43DuE07m4Hd+w8YNlzE+txsn3AuBzwe+9lWu+JP/l3P/aZhZM0eQzeA6IcIJMZHAlQskoUFIF0UC0uCqFL9V/TGqQuj2M1ysk+lzKY03WX/RZTx8160UkzKZjU8Ad5h3fPOLXPE3r+bz982y8/i3c8VCg0p2mOWbIj7+nm/y8qtex8BsjaoryKsq3/11ga1v/Tq3XvlyHLdGXkbIWcOZL7uFxA9IN21gbHIO14nwXZ8wUUhSjJakriJXyLNuy0bw/E6fCGDVOWfDfMybzjuXy978Bm746bsZ2bicoac8lZf2v5HQb3LPDV8luuxVuEYxLSSNhmFTv8+D9+/k9DNPsBUxEisJkCnHyg7ylIvhlm+SGRsizkhcmXL2k/6cC56wEV0dYYsssypewdeueBdzzQI/u/+rpGGNFUOCQzOzjPi3cPG65Qx4NY7sOMJgGnG65zO9bAXlQo4H7ppnvllCxy47jh4jUyhyysmnsXrdan72gz2ksSFspihjE3AcA816HRNotLYyv2B0jCCf5TtfvJ2Ht+2i2pzhtl/cwbOePkD21l+y4/ARGk4WhIfI/OEssP9d25GpOXwnJaqVUDiMjo1wdGIcV2tcKYjDJmjNocN7aUYhK5cvBycljGpIRxC4RaRjmFw4imkam262bJj+gQFyhTwrV65kz4GD7N69m3Xr1lEsFrn3rnvJtDbXUTOk2WxywgknIIVi5+79nHb6yUBvVQmE05KcCp80TVpMH5dMJkMYhq0FpsXo0AmeXwDXsxRvYz24XNcljmO7sRaW4aFa0tL2ptCyEQw6tVXBxFg/hjbbJE2tUb7SBq00AT4ihYgI3WjY+VhLGs06RnuWCdFexLUhSSywls1mueySp7Nt2zakcEmSOo6UJFFKEHgoFGEY4rga13dIYkOpVMHzXaQr0KJJsa+fRmOBcrVGX18fh49MsG7dOiuHjRNWn3Mm+w7V8dUCJ29azyrWMHv4AHk3y9jK5ezbt4cVq1axbNly0jRlauIY9XKFiYkJTj75ZLKOx133HGJm+nGZ+e+z9R7KZYst0W5toMUgWia+KQbRuh/azFHdAuNsroLW3Q2bsE7gPfJWy5ID0ZGkdBkwdFPfeg52aOt1Yuhupts/235e2F9gK8DSJnL1bvLTNOWGn9zEstEVXHrppdTrVRYm96OMz3AxwMsUSAOX8047g+c+8ziMFDx8tMqVL76Q7Tv3M5bVOAjy+UFAkkQ1kALXy5GmKdnhAYyAP3v2yVxx+Tlc+ebrWTPi8IbXvJAwDMlms/h+hiSJcIpZRJIhNgkZz8XFMFjMgXR4/ds+z7VvfynPeMKZpEEGZ3yy5dlmJRs+BuE4ZHyf6ariZw9UOe/UdRyZrLFiyAJ8M5OwclWOvKpRESlpHOK4BQLPJUpiHtzxEJXyUWp1yeDgYkbZY4Nz0JXXdMdMu4Ldfl0bzGiz2bpAXXfj3vGTEl32W/t3Oa5A0JI/G9liaqhOsaT3MGWwKZ0KgyOl/VkBuiWBTtO089r/qfLVdlt6+Fp6oFnKFGmvXRJA65asiUXSvt5Dn7QPQAtY8XRqWbIIMoHDxmVDjM9WmSpVibDspofuf4TUcWgmgmq9Tt510UYgtCCKEuqNkFzBpm+KlqS2fSDTWpOEIaYZkslliKI6OaGQjiINm5Ba8KVRKWPSEcaGVzC2JofM5lt+kA1mZ2cpzZVo1K0HajOOKTea5AtZZE3hOPY6JCaDk2hmZ2cpFPrwMxnCqka6GQJfk3Vc1i3L8tH3v4Xqrp14I8OY/iEG+0aYXZhl1TkXMT++k/5RDabJ2vOezi++8b8pj6zmnKdcyIUXPYs1q9dTLVcAGxblOy5RFBFFEY1GSC6XoVIpMTIyYtPUlWLVqlUcOmTVBIcPH2b9+vUcOXKEjRs38us772bd2nXW3kMI0tSgUkMul+PQoUNk12TYuWs/b3vn+3nvO96C0fYcRKufH3WgXzJW0jhBGjo/s2j9aHlKLmUlSSSxNghjgzwsZdMGN3SYNo8FohsXIUUHTDAtUNYmzic4FqvFUhpcEpOgMThuQGS6RRnP83BddxHTtv19NBqJRyc18w+kXf+lv+Y1r/gcT376H/O5666m2DdKGM6jNOzY/QjTM2XWrTuDfF9CuTJP1AwJclle/7Y/ImNGeOnL/5Gf3vJtNqzewNq1pxEEmdYeoc3eWgKg6V4AbTFI1Jm/hZVcWpCKDiivlOp6zAn7uH2v7lph36/LpLS1vtaaJW0a7NK2FPTrBZPaben6h0otIb5lvWHZmbYo9OQnb+Wb/3InURR1ASKnG6hhdA9wrdpSa1s8sGMtaY17oBe47DADex7rvaZC2DAeFs/f7fmwc98Y2ZG/LgasFwevyJbVBEZ1PlvakiaDQcp00VrQlhe3i6oG1WHM3v/QPaSqSaptKEgXqLP3noMhTizgblTaUkjYhNaF0iRDg2M2URcLTra5sUbbNUigMUohW5/fEQIpDMoIZByxPuswPzdDfrDIkckJ1ixbTtQMEalmqJgjk88Rhwl+IUeagly+gTvuu5tc3iElplJ+hIlfPcjqnMeAb4iK/3nc4HcDyi1Wry5qnYkV8Ea3snJZRLyzAcsj0tDw7z9/G9t/+ACPDI2R8xW3TxeZjCJEWmfdRc/igQPHiKIqkoP4OgXHZdC3tGFBwOXPXE7hkRQ9Zlh36omIO75IPrMdPflpLpB57pPgyAQpNMrEvPxwyMccGEpHeebKZ3P84TfwTqfBa694BcUgpKo1nvEJHYMUWTJhgnA8isUiFVeD1sg4RqBwHcNgRlKKYCALYdKgUc9Tnj6KcQocufN7uGaQI/PQiCa47IKt/PUrz+PjH/4S2cET+dOnruDipsu3rzmLi956J5kgx7c+dD7ZIw9x1SWKjD/KT/79Hn5xxZuY9kZ5w7cn+cToGhp9Af78EXY2DFngrA2jTNYEywp97KnNMeoXGcxDkpU8ddPxSJMjMoKgNU4mp+bYueswZ6zfwGWnvITPXnUlN+3fw4qxIX69vcrrP/0RrnnRVbz3S3/HHXNw1grBkVnBGiI+9aEPcd7IEM1TjyPr2YocEnTq850PvYuGajDHGGvdMRJ5hPL0KXzpwx9g45qnc9HmA3zuRyXKD1W54V++zTsfvI3V45OsjfI8wTlMsqnBX6tBju7cRdH43BLPsW7VEF/0R4hnEhpxRFiLUVojZQp9Y3hIxo8eY7pUYeXaE8nNTjM6JMjGfTQbmobWGMcgtTVwThTk5TIirUjiiEqjgXRdEP30j7gM5hWlKEQYSRA18Mx//uZ6vP1u2kVPu5Qd995NyRj8XJadB3ehWwetsGlT/mbn58jmAgq5PPPz8/bw6VlT1XyxwOTMMfxMkVQ1UabBwMAmisUipUqZBx98kKNT06xbt465ubluUpIxjI+Pk8nn2LJlC1JK5udLZLJepyLfS/tuV2gNiiSN7MJjDFJaT4k4tpuEMAzJF+1hAaVJWwua54uWl1aLUi8lSRLjeR5t03zHbS3Ygk5CpQ0Y1y2JgMZDIoXBEZYqHmuFK+1hNQgCkiQhVhqtHHzPRyX20NyuIimlSJKEI0eOMDExYVkLgU8jChnuH2gBg36HCl6rV0mSFCkcjj/+eC679BKKuTwHDhzk4JHDjIwOsW9/lXKlTpqmLCws4Ps+69esZe/evZjVQ1QXNJOH55C+ohGGFAoFdu7cSRQ1WwyIhPHxcTZs2MDs3BzFvj6EdJidn2PFcoeJo8d+L2Pz8WabwnqseKbL9OwyngRSuhYQM6CF22JzLknJbMmfjJY4Lmhl04l12qoMa+tXBW32jbQyUFwrcTXd+69zuGsDa/Kx53HZqvYirEeQq1vm8tqgUF32nxQQK759400846mXsWXL8ZRLJaqlBZb702ij0Srhuk9+n8svfwZF5gnTMtWa5p0fv429hycYHeonTBW5zCjvfMPFZE2Ko1xSqWhOHiD2N+A0LBie6pRPXfsKXOOgTEo245HxskyXqvgu+F4G1zXI2DKFGrHdsEqtuPbqv8BzJY1SBSGq5EYLhDVFlEbkHY1LSn+xyCe/fQcyTXnRk7dQViV+c7BEEGcZ9KtsWFHg2NRR5rKDDHuSjGtYiFKSuIlKHeYXZrnxhn/ljy5/CQcevmXRNe3t086hysiOrPixWAe9YE67uIBpHYK0DQ2whxcQnUO4QJtuNbx7MO/KhRDYObPHc7I7LsFxPJv2KOxrhLDWF57fBQvbyW2Pt5bUR3aZXF0Ghk16k/Qcqpf0c7t/H+u4sJRtoZRCYtAIPDdAoXBcQRSCkRoQSAWhThHSp1lrooXty9QYwiihUm/glRwafkjg2ZCHKIpIlD3shmGIjkOcBniOj58LcJEshE0aoSYnIMInKPQxum49xZHlSN96Q9VLc1SWjVGenUXFTQDiVHNsbp6myHFosoIjBI0EsoHH5OQ0yhjK1Sp9xuAKh0hZMCErQz7w92+jvHcf2f4+SnNz9PkZSqLE2IbN1A8fYGDFWvY/eDf9aZP7duxkc15y+toxPv+dG0hizdzcHErHnXsgVnHLw1KSz2fJZDIUCgVKpRJBEOA4DgcPHmRsbIy5uTkmp6aoNxqsXr3asnaAY5OTBJkMw0NDzC8s2GT6JMFzLdO2GdZphDHXvP8jXP2mqxb3alsi2AZfOpJBK+ttJBGxVjgG68PlGDtHtPzo2umrvSCwlvZe1CgcFgcEGHsz0wHoWvK1Xj+5buGmLV1tvTceGG3FbjrFpMr+bVKgu944jgBHdtYMV0iEtp6n9lHdCib5w2kT08f4yPVX8JTzr8DzHWq1aZRS9BUHSKMCE5P7WJifZP3643ClwMllaDRrlCsL0Aef+twbWLNmHT/5yW94zZXnomLV8oFN6Pgou23QxrbHYsr1/q2N+q3PPRZTrgNqLWLQdwMaOnNPb5ouulPkaxvQ9fqTLvUm7T7XZgdrhNO2VaDz/VzHZ25u1jJvO8oS60epWqFwaRoDsuVF3QXntFEY0cOcM/zW8db5Fr3A4ZKCWft5o50WSNb+3gLT8ttR9K7XwmZOdUByy4BWtItuAq0Vaav/PONAKwUZ0/IkFZCIBGNilI7ZufNhjLTejkopNGqRh2GXIaioN0p4vkMmaDGRpV3r+/uGWaiMk83045JH6zY42etRCMJIlFCWWJVoBhtHEbqJCPIsNBQiCAirdTJGEuT7aDbKNNMckchxpFYiUjFCNklLhxi/cxsr+wpkvAzCCJqpROPieP00jMdZTz7nMfvlsdrvZGdxbyXl7IH/+K1TNDqVOCbDhrMy6EEw+om49V9w8nPX8/yPjPKrr9/Oxw9XeO6q5QxnyzRm61QaC7ieb6c8IVqD1OAJyLghy4v9vOqEOR48LLjxh18mKR0ichTu0ChfLM1xpYZ7hcBIlwTBbePzrAxcgj6fX6y+lO+O9+GlHkI1SbCJIAaFm1q0d9DzUQZ0YogbdbaOjLB/oYYULlJ4RK2tQz1ySBGsdAUDg2PsqtURDJPLeoRKMlNe4GUvehq/uvkAz37F6TiAv7fG+4cUL5t/Gu8Z2M6nX/wivladRyhDUykc5xAv3Rpw9WdvY/s/PZNrnnIC75UexVWD9H/2iwRRHYI851z+F8R7bmdu2z6uOGGI43IzvPNBj7PmU6780cdANQn3HYMTN+BWZ7nl0x/mSX2j6MO3840bPkopKTBTbvDOTbtINq4l+ve72XruOXzumu+x4rhTuetJ53J6cox8MsCLnv0qEjcl6ykULhIbOqHco2w86zQmDkVsOPMsmnfto5B9GqsvXMPMfsEjd32bwXKe+37wbhipc8oZL8QPspRkyoDvMu8E5ETKE886k7IxnL02S2Csl8W947sYD2PiFPqlpKZi/EyWUAt0klJSrY2zSMkWB8hSxJEaXyRoLUlliDH90Kp+948oKkcSVF5SDxOWjfSzMDPO3P711AaqyFCjMxCmeZKo8bu4ZR5v/x/aA9vu55QTTiNphExOTjC8ZpSFygKO41DLN5mYmmRoZLTl2aKIooS1a9YThTFhHDE1O009CnEch3OfcBa7993HzMwc5WoJz/OoVCqcdNLJVCoV4jjm6NGjSGklW8PDw8xMz3Fo/GdUKhXOP/98+vv7EcohCRMSHVu/OmxqVJomONJBCp8ojewCIzQCh0TFGCNsJUgZfN8hURHQMjNVhlwuS8eTzgBSkChwHL8FRksrYaOHd9JauIRWLWNVC+xJYQ80RsV2kU4UiUOriuRgDKRJRLuCFcchKkmp1+ts27aNiYkJao0Q6XjMz87QPziAQOIFLhpDklrZKjggDIlSXHzR03jGUy/mwfseYCA7QLO5l1yuwPCyEaIwZVVfH5OTk+RyOZIkYdXKNUhX4ag6+w7t59TTtjBfmmPZijGmp6cZHBxkYGCAQ4cOccEFFzBx+AhR0BHhJQAAIABJREFUGOJISbVcY3hwCM+p8JznnP1fOSQfb0taGzRW5tEsGmixmIRAyK7nT+8G0SYKt8Bt0QaznQ7AZoxBOItDI9rv2wWAFCAs462nLd1IP9ZzYDdHiWilH/dU8DUGGcZ2DyMFZ55xHtqkaNXkjAsuZN+2ryKiiDSJeNHzzqS/OMLho/N4QnP+Cat50pYR8CWTR46QH91MwYtRpoIrA8Dwl3/7eT763lfiJinSEahU4qCQrocgJk2tJ5xJm2R8a3KsdYxSCs8N0EIT5HK2shsEECXUGnUcYdPzMtIwXTX0ORF1JfnC9+8ibpZ40bPORxSLfPl79yNViScdN0AjThCiQBRFHCmlnDLqITWYKMI0K/Tni1SaCs9x+d6NN/DCF/8lWtlDrXQWJ5m2+8X2LdBi9LaZBlZW2GXGPQrIEzaZtV3caPd3W5bSkaw4lg3RlSq2ZMzG+hF2Aj56wLul0p42W8B13Q4Lox0U0Zv0+D+1GWM6ffdYrdNvPcynpa/s9KF9waLndOtxh+5hTBmQRlCOQupTKYfnQpLU4GCBVkdY9pYRCVFZkRcBBBIhJGEYMVGrUyqVOn3Z8RJKLBtca03BVdAnyef6yBZzSKmsLBYXhEuSzVNYsYJl6zYzvGIdSZJQr8wiEbhBnmw2iwptel+sQiKjmKl3ZXYHDkxRrdpkcQ0sLCxQAzzXRxhBxhN85dp3MTG+hzRKmWGG8uQMq8vzDA4OE5Vn8VasJq0vcMLZF/Cxq99EslAlv341afZePvTZGzhly4ns37+X9RvWoA8cIUkS+gtFgiCLMYaTTz6Rbdu2US6XOe644zr+bEmSkMlkGBoaYvXq1VQqFWZmZuzP99ugLMdxmJubY2R0lHK5TBiGbN682QJ0aUIxm2em1GBwdFkHzPu/jSNjrFoh3z9sfT2BjOeRDazHnesIAt/608aBwWlZ5SwNYBEWU+nMG0uZsEuLA0tlqu3EXvtihdIRRlvJb2Ig1aKTDtvLkOq9BxaxsVksB/xDaC9+8d/xs5u/wbd+8AFUKtmwfhPlcpnJY3Nc/Q8f5yMffxunnHwK2x96kHo9Ipfz6e/vp1arUSv7ZPOaqekJgozP9V+7kudc8joK+UF+9ssvoE3M8y/9e1QCqU56GIhLwxeW/LuHzdZ7rZded4NVT3QCIsRi4M/2Wa8vtOm8VggHTTtI4bHl2L393l2/uqAfnWJTz9plUk45bTW/+vWDqFZxIE1TdI802miPZlhtzVc9MlbRVh1Y1r/oAS97x33vtegd/21JreM4LY9r2f2stP34JJDSBuc0osURMGjH/rvtA2eU/Vyqx+vPfscW0xyD1KZz77bv36NTh6g3SpbNaDQ6jTue28qozrprL3KKAQ4c3MuaNas4fHicVSs3cGxqL8tXLEOYHLv33sfY8lFEM4MX1HDEII70cJxukrpdj1KyUYJbPkKchCRDOZYVx9h3cIKNWzZTLi+wfM16fN/n9p2/JnUUsroA9RlWjg4hHINMfSrNFM/JEIYBBAEzjYXWWPCYm6/heC7jN/47/3At/6n2OwHlzs6q//CtkyTB+5XHSf/8MR7+4Oswp4FKwDMSlb+IqHSYN37/bAaGR7jpDfCR7RN88NqP8dCtXyHIemgluoNSOiwoK3+RqWByvsyr9je5ZMs6vrt3AMUORCqZSTJsJrb2sMrhl4fKPHvjMv7x4CGqQmDS20h3/QiV1WTCmER54KSdz9z2tclIj8RxiasNPCHZKcFLJdrzbApUInGlQgrNgJBkMhky0pApYv3LjINRhpG+ZXz6M98HtYyLPvE5nvnXf8kPDlWY+MAr+PGXvs4zkwwbbnyEX1zk0/SLZHMB5527kqkJw+dfs4WLVi1n8LSY4SdCzh1n/Ma/Ib5pgbrjsOyeVfQlDzLnZbliJUxlNJ8fi/AcaHz5HH5Zijn+7HPo33INbLueleJ+tl7wFPb/fJ5VJz1M+fY9PP20Evf6Aj39Q/rSm3jy5new9tUbic0lzM1WeNXrXsKBhx/Arfs0ApfRwT7yhSz5qEZ/UVCd89nfrOH1DZNbWeQNT5pi80qPr/zsIJszkrPdAp+579t86ILnsOuwz2j/AEdUTCF1mOvLIBoSjOSR3zyIyQ1Ra/oM+TFZP+DkvhyxghnZpFxLMVJgGimZjIfrayqRDWhwMv00ylUOeQLVv5mxjRq9Y4JQCxxpE1cc6VGbnaZUNngyT6Veo1j0cIRgcv8BPvPhP+UbH/0Sx7RHLmOomscr5L/vduzoBAtz8wSO9WpYvnw5w8tGGRwcZNvD2zn3/At46JHt+L71a1q7bpCoUWe+tECpUiafz7N583I00AwruK5LGifkCgFSSk499VQe2bOXlStX0mg0OtKJrVu3ctttt9E/ONypEt96620opdi98yFedeXLMY5etBnordwK6aGSBG1s5cwISapSvMAnSVKSpEahGHSSmfzAbcmuWgy4x5Bw9P6eRx0UhV5E01fa+ssJ1+0AFalqyb+wyWZKWVDdGI1oHarrtSalhQoqNcRxTLlaYWxsjKNHj5Ip9JHJZFhYmCObzZLL5ZibtWmrhULA5X92OUoaLv2z57N/9z4ues5l3HbbbWzbto26G3ai4dM0ZW5ujkC69BcGiCt1sn4fDz2wm62nbOl4+YVhyPz8PGtXraY0N8/Q0BCHDx/muM2byecLzMzMkM1n8Pw/rAr1f7dmjGXBGU90Ek096SySfaTGGr23K9CLUvF6WDJaaxzHBp9gBDh2E4o2HeJF20hYWLqEZcmJx04MW2rW32Hs9FS7Nbby7AjRSgvskYsojXHgwMEjFP0Ma9eupVapMn10Lwf31FmX9wiVw0MHy7z26k9x40dfj8KQpBlc2UQZ8KRhaGSMN77vk1z33r8nqtSpNGv4/gBvu+qveO/nf8BfPPPprBuFrOvj+JmWmbGLlCmBFxApgYkSXE+S6AShFZ4viY2CNEHrFJlo4tSGSYQqxnc96rWIyekGH/3Rj3nPq/+Cyy89kUfGJV/48XaygeSFT99K2qhxrFQG6oSp3UifevwqkjBFkyCkpC+XwbgujrDpbqVKmYHhfsLUJetF7S5cwlprb4htYcIyE2TrcKEWHWrafbcIgFOAUDaNUWjrHbiUcdeSxkoHrIdcC8zFQYo2+8b2dRtY6rAz2xLpnrFhjIQlINR/5B/0h9zaIGsbXF0KyvUeVoUQNrChBchZW5Pu/kmyeJ3sXb+EFq0UTk0aKfzAs2bnxv7uBi7KSKzW0LLwNApjIIljUiROPiWXlaRpTJQo4romrKd4whAmiR1D2HvbbbH9Mv0eUerg6pRmPaRSqxPHLmmqIXAoDBYZGF1BX/8IJltEBpr+TI58cZA4adAsl6iXS8RxjK4p6xFZt+EH5UpoQxMShQxDvCDAdV0ajQrLVwzjlsp8+YPXUJ6ZtKxQHbP74QP875/cTH+sef2rX8byFcvojysc27mPWmOGkCITw0N8/Bs/Jds/xrJCjlq9TpJqtt2/A8dxyGazGCNIEsvmv+eee/C8gGIxYGZmBitHTVmzZk0HaGs2m2SzWRYWFujr66NSqZDL5ZBSks3lqNVqrRR1h107d5LL5Vi+cgwhBBOHxnnJK15LFEV8+IPvItuTytrt8Jb/mtBooYlDgVE+ruPiCwfXcfFcH4yD6wS2IInAk3mUSUmUQzbI0FccplFXBK6DHzjgZxCJTfGU0rO2NcYgWx6nvQzpxcB+2pXtGbtHIzEYqVCAVgLhSLSx4RzGmJZXnwOixcYTWEuFNhnwDwyQA/jmN6+nWj/GW1/3HT762Vezd99uRkZGOPfUy/noJ95Ko9bEdfKEYYiUGil9dCrxvQJ//qev4Kvf+gBhZOeOQAvu3PZ9Dh0dZ+2yU3nyk57SAqKsZ6xRmlT1nMFFtwi3iBGJZexa9qJjWZHG0ElCbfVvB6hqzzVtTM/YFNg2u6vNmm6P0Ta41mZaWbnro70HbfJuD2NYCJRKWvsNEK01RLfWJCEEGT/gW9+4gyixQQydtagVOtVmxx1//Ans3PlQJwzL4h9W2im0s+i7tq9JB8hi8WftAnStx3Q7ZKdr/aCM5ZZirI2HEG7rmpgWG09g0m7aa5J0gzoMsuPN2i67aK1bUlGL/9x5179y5PCdGJNw8pl/gtZ0PbaVJg5nWZjfi+sphsZOIVIZXNt1aJ2wceN69u17kDhpUK55DPQXiJpNDh5+iJGhQcJGndn6MUZGRpCiQV9hHamKSIUhp1KYmiTViszwIBWdMLJqNXMzsxxqVNn6xPP55W9uQ6mUI7W9eEmToWKepJHiSY+kkCfFQSBYSGuQDahrTdbXzE3PdfpeCEEcx2SyLn19xf/0Pfa7QRiC326y3YgVwc2Gp173WW644nXgQuyEBI5llzhAbmQN7ey8Sz+Scvd9c7zrvVdx1QX/xiN+lriRkPEhTjQySTgNjxOdiC9GkPEFf/WWp/H1z/ycN7/jtbzoT+4k72iE0yBpxgS5PEmi+H82LqOkUnQ2IKtddr8pou+9IYIMIS7GtXRahEDgobVhWX+GAI/lTsTDsUHiMNxMqHguKS3kWKY4wiGDgxKA61BKFSiJdm3MehKHREpSi2IuGVM8s/5r9ly/l89/7UamneN4wyUX8vDELO6tX+HZJ28iDKd56Ss2MDK2ind8xfCxu+aYvXsGo12yroMc2ogjy7zvE1/ig2/9BIfG76BR9XhB0ODVP6tyNIJa/yiuMuQQFALBqh2C7Df/lq8sc7iobxTkPk7dtAr9yjXM/GY3lxaXoZ9kmDwwSX9eMF1+I5Uv+2Q8hQwT3v88SeG1xxNXAjJyDwMvOdwqds6RMkz5Z2vINiFs1qhXDpE0mqwr5LlsS0icSNxIs+1vnsOyZTluOlzloOshhMNkEjI6K6m4kl9vyVKZmeJvz30a3vZ9SL/AxOwcFSU41KxgYpcCilIika4FD7KuIev5+H6ecrOOdgS1uSroXeyKTmR1PgeVhNSxRreJToiaLr5okOoYkyYIHTA5n1IqVbjkRT+CAqgwRYUxafq4gfzvvbkOwnMJTUqoUh7YvQukXSAcz+WOu+7EQXX8GUrz0JfPYLQil8tx3nknsVCf4sjUMfLGZXhoGYViQGpCPN9nx44dBPkC27dvZ9OmTTQaDUqlEvfdd19LsjqPlJKBgQEymRye5xGGKV/+8tc474mnc+KJJ+J5PrplZG+EZfPGGnACkrgdzy6Jw8h6vgQuQeC1Ah+Sls+bZcS4blfC0z4YthfWdjR4L9uj7csksOwQpRIr25LWwyuM6ri5PgBEYmWB7eRWpRSOtH6TKrbGz8eOTiKlRyZXBEeipehIgk2rCpbLZTEGKpUKQgjCMOTNb34zOAbH82g2GmxYt55aHPNHlz+Piy66iPe8532Mjo52aPuD/f3kvYBsLot0KwTKJd+XJWlq+kb62LNnD2vWrGF+fp7ZySnOOeccDh8+zNiyZWAM9WoDiUN5Ye5xednvuUlpg5WEFghhPbqEEB3AuZPLYAzQ3dy1N5SOK9CqVXEW1lelbTpk6DE17vkZRY/cRHSNh3vZWkgJPdLI9kZ9sXcNnSq0kBa+dhAd8Me+0OV9136MsZWrOfvss2k2qgwODlKb3UFZpjiO9UlZMdJHNYrROrbv7UiE1qRRjETxgbe9nPL8AYQQNBshNVPl4Z17qB+b5sDkHJ/5yt3E9QW+9um3EVUm0cYGKWht0yE9R5BEoQ1scWB+fp4g8EiQKB3jSJfA80gRJHFKmBqSRLN8MIdHgas/+28ILbj2HVdyxklDyDSm3qyTeg4ZX2KJ4faw6pkGs8qlUU5YNezjuZJqbIH+OEpRqsTDv7mbM897Cg9tu8lKuHoOUktB0KXstPZzvcmrvf1jjPWIM8amSbfDPNpylo7UrTMmZMsXSIOWrb50O2xLIQ2iJZ/rPaADix5bKqV8zALI/5C2CDhzLEtTagU4aGzanYvseW37jyXD9V47bV2I6JWqtZtuBTo4rb5tS57AssjDVOMHAXGcoo2xY11BmipSJL7jdph5ruui4wQlNYFr55SMcBBIkiRFY9nqbWDFSEGlFjJTKjNfN4hsASczCIDSlgUcxyGyVgbXIdUtD1edIVsYQLsFovIs0xMTHJiYYb6p2X/gKFOzCwAEQcB8pczIQD+XXPxEfnP//ayIFnjXx67BVJqE9TLFXI65akSjVufcFas4buMqpucXeGTPXsI4Ynjlet7+rZ+i0wRlJPnh5VTLC4RJhrn5cisEyhZChLas4jC0bFrXtQUOz3OI45hGo8Hw8DA7HnqIIJNh5cqV1Ot1XNf63w4MDLB//36klGzevJkdO3YwODjI6Ogo4wcPksvlKBaLZPwsk1NTJLEijmM8N+Dqt1/L+9/9lq5nWKt17yeIwoQDR2Y5Mj5Hxnc6/rlBxiOTyeC7DtlcQOAIpAQXQZDNopoxSTWm0jDkZURABscRKPFo9rVBYbRDkkTotDUGpUDKBnE2i1IOSRqRpimBk7PrgYowMrX+m3HLe9D0Sh7tWHKk7HrwAm1ilxKL544/hHbGaadz772aj153JY4jGB5awexUjahxB82mXePuuff2lm9ySrNZx3cHWLVqLV/5xgdJ0marCGuN9Pcd3EsQZEmbimxmFKUFSFAtqpSATjoo9EgY7f91wbnWfqKX7ahaHWGtLgymlUbqea3kXrF4Hrdj5dHSV8v415aJKRLakmj7+ZwO464N5rVlq7rFClOqvd+w490VEmkcPOnTlx8gTCPSOO4UpsCS/6IowXV96s0Gu/fuIV8coFEr99gtOJ3k6/bPdYINHjWlLh6D9rsZjNIYKbF1JzuGZ2amKBT6WvL+GplMrlOo6r02ljHo2IIFvSB0l5hgr7eHABqNBq4O+eGP/hktUoquhzaCOA5xJIikwoHdDzEw5FOrTpH3M7jCJ63spFZvkOtfjxuMgqvZvftBhBPhejA9fZDVq1czNT1NPuczPTtFHMdkMwHVcplac5owqLF5bA1xWKfYP4izZiWl8jylqMHxZ5/BHffeihAKkUaIPXMMBhEnbdxEVKmRpin7Jo/gBD6hoyn29dE3aM9PfWIISVcBEB+YhlYwj1KKwPMRRuN7v29POaycqT0uFAIXcBScdupVHMscxankWZ++kkZRkdUWkDMyBeMS6QghA4yARLsU1veThnDwwGGMsqbimfwAMmlCbQGFZqCvnz9Cc3D/OJ9/7yxO2uTq1/wDvhMR6iwqAm90Ldoo+tMGR6MmJAbiCHRE7j0VUtcQ1KdIoHXgtDpyz4H1IyPWJDUOqRifC1/zSn75ic9TikJ8rI+VqzW+DMhIjyDnsXz9enKNBpVCjnghZMXG4zn44G/oGzZENRgq5rijEfHH33kEpbajY58o3MEJ553A8NAKHkpTzrr8jXzth9exa7dL7gWf56zGjdx8z3ZMoYBOAyrKMBTW2PiMPj50zd+wrjqPvPSpJD+8ge8NGG5+wgDP35Ylmq6BkJx+0WrCUo2xoSZbHpll2c9+DHfeT+32z3H8Byd5xRcOcs22f+PWNz+T5r0L3LbH57sPwXRJIJ0cQhhSEeA7KVqX/g977xkn2VHfe3+r6qTOPXl2ZzavVhEhCSQhCQQC2TI5GVskP9hgbB58jW3ABmMbgzHwmGDgCgd8HbnYgDFJBJGEBAKtUEYrVtq8OzlP5xOr7ovq7pldyX7wC+zPBf5vJnRPd885dU5V/f6/QGoCrn3x73L9NYZWVRA+4PDe6y+mmXmkqZWHqmyQrJCnKWLM8DXw1b9HLWb8zEdu4IrHz/CKx93Bjtq3uOfugHc+4FELAqIoYeJAHW0qXB/F3L68xNG1OdIsQjuSwuiVrC7exbP27KK+3OazS3P4UpAYQeC4GC/FzQyudOl0YlS7g9JHSYJJ3CFQrQ46qZNpzfTaAgU/h24lSBSoNmmWkRoP02jh50PcTp5KEPL/vPnZP5pL5qf1Q5cvc6RhjBEGT3loTyMcQb1eR+sY33FQKHxlwaU4jmjUO1SHC+zYsY0sM8RxSqmcZ3VtiVKpRKNjfct6E970qSkcx2FtZZXMQLPZJlcosGViG9PT0+RyOZvQ5/rs3LkTYzIazRpHj5xi167dVkrmemSZJkk1UljTX60NjhIkWtuE0sx6UUapDYtxjToNROhtUJMk6ZuNK2XBjjRNyTA4joHM+mqCpXxbtk93SyRt0pWS1j/FdfKILmPBiJQ0y9Cp3jTxZsRxRBS1cF2H+aUZjpw4RpgkJFEbIwSddkQul0N5gma7jecFmCxjy5YJVusNBgdKnH3+eXbzbVK0lhAEVPNF4qiIFpprr/sZvvj5L6CUolgs0m53GBwt4ro5HM9hwPOp1+s8dOAQk3vH2LNnD77vU6vVGBgfY3Zhnii1x6XRaNCqtWk2m1SrVcrl8n/9wPxp9UsaUMqCJ0qdboYthDVm7uNfZ0hBLKBnuhvxja6vMNbUWzqyvzAXj2Iwv/k1e6/Xe6zXve2BPZsljJvZXNbv5HTWD2zqMmegHYct4xOUSwFkGaq0leEyhGFEkB/gnG0OH/vgb7CwsoJuQs5XtFsJaRyTAo7j4poIqbryjnyelhjkrK1luPoKrr1whNtubZOKIi/5rQ/jui5/+ZYXoKRLdWwr9eVFdJbgeIoss558AwN5Wq0Gxmh83ydLJUY6pGEbHRmiMOQtf/FFqtUKOc8HrfmNl17G+sxBPOlilEJKhee5BJ5PGIQ0ax2UcjCpS7TWoFrOY0yCNhFxkiG68npPOdx19x1c/aQJ/C5L6kxG72a23GbW1WaJ65l1GoNxs3dPDyTt+hb2ztlpEqeezxwbzTTHcchSg1QSnZ3OlOxJenrvcaahd682sxB+kuq0a0J32bDi9Mf/Ixb3aaBe93uFwsa+GEuCFT3mRre0ITICRxg0iiTTJDikUpDKnkQxR2oSjBQoI8ikwO2OLU+5zHTWiToRJgjI+4pS0UXoDB0J0rAnlrUVxdaTsdZOaHYyPFkgH9i5dGVpjamjx4mEYmh4bON/RJPhUigPEeQL0G5xfHGd279/iqHhMpnRpKndoMZRyC+96Hl8e/9tPHDgQfbsPod3vPo5eFKwVq8hlGB1YYbWWgPlewyODpDl8ywuLpMgqQuH933spu47S3wlCdtNpOPZY+/a+61JTV8OF8c2oXb79u3U63WCIGDLli088MADbN26lbW1NSrVKmeffTaHDh1i9+7drK+vMzQ0xNTUFENDQ1SrVaanp/vXiW0A+DSaTYSU1Op1toyPMz01RS5nfeuUAzt2nsXJE0fsp+3dn+VG4ItEszC/zOzcEsWcSxxpwsyQaolWAkf55AMf38sz7MJg1SXzCgwrQRhHzC6F7KzNUR5xMOdcyLJQGKzkUIgNeXyz3uLwkam+B5zGUCoUaI2t4gmXVthBCEEz8DZ8rACjFWtra6BF37e31zyQUsImQG4zaN8bUT9OAH51cIB83qdWrzNQ2ctjLtzH/ju+Ta2+asFzB1phjbHSKFEkcBxFvTHPUJyjUPBpNhP27HoMhx8+YEFiofjl576Jv/nHP0R5r0QnifVHNtZuJdP6tHuvseLI/hwOlunau/dro+l7j2LQ2rJUERvzSBzb9XEuCFBqAwLpMSX7cnmZ2TV190S6OBjdXdN0G9fKS8hSiVR2/rVSy03A4Kbk09NTebsAHj7XPf1CPvLXxxEG8kGBdrtNJw4xxjbFgyCg0+nQbDZJU+ut2R9vRpKmdl8hhJX4Z5kFIU+/16rTj2PvOjSCLDPMzp5CY8kCQknCuNV/j1ptjV7qdaU8BKILahoJcoMg0Hvd3hpLa+trbS2EIqK4RZREVmabZmgREOQCpo/uJ4lDhsoOuydLhFET7Tj4nmMlp2GHghK0V4+wunY31eFxXD8jSjI8Y1OlT506hed5JCajUCgwPjiMI13OHt9Fc2mVkcmtLM0vYAKX/LZRvnvXflzZJK43ie+fZrKYI44zLrz4Ch46+gM8z+Hh6WNEqWFycisTxW24rmsbg8pF6gzPzaM8t3t8BY6A1VzTKis0aDISnRDkXDznh2fW/0hAOU2GMIpIQBNwwpQGUMscPnrz2zhqBhkvwM2ZxjWGw0c7RCM5Rol5+uprOHrfKI1T06x97Z948mPg269eZttiwK9/7jbe9KQdrKgG4WodncJAzmfMODzrTc/nib/z99xw/QCHjoW84FyXt95hKGaKJaEZ9RQLtRlWgS3BEJGbx6t4zM8cx9n7bMTKXZTDJpGbR2YhpqevloYtZ11EljRYXTrE5PAunKLm0D/fSLVYpNNawxODVERA5if4rqTo5XDzirhVx6sM4jiCa655LEOje3nKU5/GP37wT3ByZbYUd7FN1pirt2kkLUwG5XYbt3WAra1x4tu+z4mr9/K26xoc3/GblPIjPOacAmP7KnRmXERuiNrMHIVhybadT+Zo4wjb2t/kB1/6BuvpCNezwrVfiklMBiLBUQG3f/UYVMdx0x/wyfkUZk8QX/4rXPuUXyUKirw/Tnnxnz2Vl638Imv/8kmEUiAlRrlACtpFCNtdVCUBYcY3bvoXvvmNz7L1WZdR1Hkmf+UZND71eY405kjWDI7nQX2Vz3/wz3n277wLznkWeu1f+e7/fB23A/WJEYL1SaRskharXFKFA6cksRuRlzk+97VvEAsHkfM4f3grE3u3ILZeyOL6HoZpQOdeLs/t486pk5ZqG8eszZ9kbOd5NJptPM8ljFNysk49XaDjVylt3Yo4+D0Sx/DwoZOce9ZejGkRJk3iVhkpDLcc8ik7kryjkcLnBa+8lPra0o/ikvlp/SdKuSFpmCG6m32tNTkvR7VaRZNY5pXURFGE5yiiuMEVV15GnCZkWYLRikp5kLge9lllUpm+34xSiq1btwIQxzHNVps0TVlaWmJhYQHP82i32wRBgDGGG2+8kX379pHL5fjqQ/v01+MwAAAgAElEQVSZn1/mF69/Lrlcb2ICR1nqtjGWZRbHMY1Gg0KhgOtJ8rkiWarJ0pAgCKjVahSLli+82XepP6lqC9jpsEO73SHNDOVy2Zo2Oxt+K70F40Zy06YACrMhyUpju5CwzLuENLP+cMePT5HP56lWSszNL9qNfpexF8cxA9UiSik6nQ5ZYhl+MjMU/RwDAwNWOkPWTWtNSLMMpXxK+QJXXv4EvvXNW0mShJWVFa58whXEzQaDg1XaRx+iHtqFxdl7z6ad1llZXMZIWFlZYff2HRw8eNBuujyP0dFRXGH9S+I4Jo7j/4aR+dPqlZVpWON8K1FUCKn78XpCG4yw0sXNGxkhLHfGegv1xro1JcYItLGy0jO9fHr1H7GYNhg65rRF678nM+pJWOlu4HrpYhbwtn5127fvBpOQZiHTs4dJwxRPQC0rMFIxLE+fgNiCFxaod0iiCEdAEsUoR5LECX6gaCUJb33/X/KHr/pZtpYbHHroKK947lW86x9uJcgVaHfWEFLzK7//CSIZ87/feT1JpEmMPa5apxQKBfzAQ+DQ6rTJkpQwDJmbXyRJMm783gEGKz6OP8C1TzmftbnjKK9ImmryrpW+FgOH1ciC/77v4ytJnBkyEbJj3GP/0Xku3j1EFksCCflqmbm5GlJKZk4t4AclkApjTmebnXYOzui8P7IL/0jPnkecn57MtNv1B9HftNnQj83m273NglUtCGGZV0Jm3Y1J9qjva8yG946VY7KJ4fmTV2eez83gdq9OAybO+Hrma/Uf2yT9OvM5sU4xStBJRJ/tshZldBLLXBJCYKQgUB4Su3HKNkmnUZJ2u02r08YVgsy4xJGg7AuiMEUbhRIbQHEUpXTCmJznEAR5YrfrwZQYplZW+cHRk9Q6LY4FHr7vA7a/X66OMToZo7w8Dx09zNdu/g5Ly3UOHpqh0WxTKlVYWpjn3HN3cd+BBzBaIqRLvbHKXbffydnn7CKNY3LKsg4jZSi4kk6lgJPzqafw/q/ciaf1hkYSaLZqFCqjmCRCCEGj0aBSLGGMoVAsdCWBKfl8nlarhed5OI7D9PQ0j3vc43j44YftRnZ8nCNHjlAqlTh8+DCFQoEoijjvvPOYn59nYWGBfD7fv1emaUq9XqdSrbK8vGxZ/p0O5XKZtbU1crkcO3ZO8uJXvIo/+5O3kAsCOs1mn6XTq9517DhWcWSUxJEanUhSnZHomJpJceKUAppSKFmvZkybjIFyhVy1glg+Ra7ewG2u4IpC/3UtKOKgM1hfqzE7F9GJrLdYZlIqhTyzQ0WCIEBrC9jn/E1ATWZTVmutDkZ5GJ2dNlec2bjprR/77GB+vO4VSwttWp1l2uEa03MPMjP3MJdccgn33reI63p0Oh1KpQrLy8v99eTwyCDzC9MY7XLxY6/i2MPzXHvdc7n11pvQScKNN3+Q177yQyTtDCmNBeWEINUaoU8HkcymcdMHgDYBYPb3du3Xk6yeCUT1ftdsNq1nYZeZubmEELi4GG2BtvX1dXSXvVcslpDSNoOzVGx6TVDSRWeGzHT92sTpwSKb75/VapW951T52498ibPPuogHD9xDHNVIkoQkjfueckJZv0eA4eFR1lYW+8D46aw4a1FjjOk3M3vV++y9z2r/PmRtddXe28j6nnQ6NaRmswWBJO/n8T2PWn2la3njUCoUcV3/Uca3phXWiOOYKIpQwjbda/VlwqiBRuDncyQakjikWnYQJsH3PAwJ2iR4nvX7DFstSkUrm08MDA+UUMqQD0MGykWml1dJ0415RIZw6bnnsH5ylo7yMNLngquv5nNf/xTEIdJEJPE0u0oK6VZoBg7ClcSOIZHw8PRRSsMlXNdFiS4L1mQEQRmB6obxYZO0VczsyQeQIiMfBBT9AkNBm5mVsH8ctJDEBlyT+/+5sjbqRwLKHdSKB+YTbj41zzWTowQn7kJvv4rv3XEft9/4BZbu+irbd8Bl+y5i++MuYCg3ytlPuBLHh+n5J5Pk6ogdQ2x9+es4UU/5ufUvU3AvYe3eD3LLH13KSj1mbX6dhxbrTC8nLM/XeNkffIwd7/o3tgxo5mLDUq1GJRtmOV5i17afpagO8dvLDf7CSKZlhC9i3AguNfDw6pfJsgqO6xImcdf0PAOTMjy4ldbSHM36Eq5bYr65iF9XDAwPEDYblPNlgszDlQpXFijlJMWSouj7iLyP9KAYBLjzp5g5djdOUGBiYJCVxYSanGKt0yRKM1TY5Jw45vcqW2BIcfhrX2frjhwj17+Tgv8r/MZ1v8Df/eyTuOeOO1n6wQqrsSAJTzE2uZfnDR9n8ZMf4kLXY6BSpOSlXP+4LTynXOefvioIU0OWAirkhn/7J544vJXzLr+K6P99Dg988SbkFQmzpQlajRov80tkuyvUP/xJCiVrruqSoQ20pDWK3TpSsbRTNElZMjI2gcpFvP4Xnoce2kcOyZtvvIfnh3Wmrr6QlekDnFxSvPANv8Vt/7rAE194CR45csBZOqIzs8ShXWcTrmh0s8VdK0Xe+BtX8f6/3U+StKjKjHVZQEqX1STBWcvYVV5CduCmgw8haqs8FIHxciAEYdhCuRWU6wMSbTTK9UjjmKGBNlz8GNw/fSczr30bA/d/l3an3k/ClAbC1FLV45bGCTIqOUWom9z7raPccyThA3/6o7hqflo/bD3z2Y8FkyNNDI7KUa83WV5dxXVdZuePMzY2jNaadrvNQKXC2toakcnwXIHwfFJtpcmdMKZaGSBOWjiuS6FQoFZrsNao4zg2mdTKO5oYbRNTBwcHcRyP9fV1lFJMTU1RqVSYm5sjDENKlSJHj07xkb/+JC992YsolT06SUjg+2gDSarxPI/5+XmazSZCCRzPwXUjpO8jUg8pFEHgIR2FUDZgolAoYNOp7DEQ3c5LUCoRULISVSDRGSrrMRmENVnFQ0lQ0k7kwpFkdDu5xpCmGcYI0jRDa2g06hhjaLdS6rUO3759P0qpfgJhpVJhoDpElmU0W+vErZjh4VFmZ2eZKBd4z5/9Cd+99RZyHkRJiJQeWZrg+w5CayDCdRVD48O84fdezx3f/R4PHTzGsSNHOW/fXkrKQeWKFIgIw5DG2rpl3aSCXedOct5Z57Gyusjo6CjT09O4UhG1O6yvreAX85z3mAv5/omH/lvG5k/LlmVI6q681Pq2WC/YbEMaKESXzSDpeXzZjqxzGlvUSlit1EKq00EdOH3T01ucbX58c9lMPANSPOI1TgOGBKCN7bxL6z+jN228pI7xlGJwYBjpKHK+JGnNUAoUUQzP+YU38O0vvB/HUWRZRBYlJLFByowg7xNFCYFSNplMSZLM8Nb/+Wn+v9/9RXSaUY4z1ht10kaTt77qavY/OM+Ln/MMXvw77+Mzf/NWrv/Vt/PSN/0rH3/fr9NYWwZP4Wa2iZClkCQdVGaYX1og7qT8zZdP8pwn7eJVz7gCvzREuWzDG3LnXsGddx3hovO3dI+9ZZf4jiD2PFTUwXV8kjRF6wwh4bHbSkSJwRGA7JrkmxTXLXDvgw/y5u0DnHro0UG1R2NQncZQfJQN1Obq/2w2vN96xtlSWtNr+x6mLyOzDAqDcnQfC9AmRYpes+KR46e/qd4EJvYlTI/yuX6SajMQl8nTf9er/ibpPwjF6F97PfaRMdaDDnudZlbJRpym6EyCsnInFAhSKwWX9hw5UiCllTcDmMh6DfdYlFLaPMxUZ3RCQ+pI2olDrnApxaFR4tWHIDqKMZI0see2UsghPY/1zCUWgo7RtNfalBdWaeuMUrnYb8ylmWZ+cY1DR44wszjPQ4eOc/ChaYZHRygVK/i+z5axUS44ZxunZhZZXJxnZHScU6dOMTb+WP7xppv5pexyvDhmaLCMlIL6eoOZ1SV+sBLzrW8dJk4TK74Wp7Mu/KDAxNgoMzMzFHJ5sjjB87yuTFDjuh6u65MkEcYYfN+n0+kgpeT73/8+Y2NjrK2tneYRGARB/9pcWFig07Esslqtxvj4uA24aLUolcu4rsv27ds5duwY1WqVOI7J5/N4vsPk5DYefPBBXv6K1zAyMsI7/vj3yHlef8wAJJnBdR3KlaL9uWs74jjWZzxOwWCTs0MtkGmGJxLmtUO7EzJYLtHas4fG7GHKrQbStQzrPmNTdKXsQtEOY3Q3MVIKlziFZiuiE2pUl7Fcb9jj6jgOvpIY0yGJu2STTYzbnkedfY+Nho3p/k5155ofJ6bcPfd+DeFoRkZH6XSsvPq+++7p3mNjBgYGCMOeD7OLlA6NesS5517AyZMneeDB/Vz7hFew76yLuPkbX+IlL3oDX7rlL/jMlz/Ei573m8SpZb2prrDdrhM2Qg3+vSCHni9cTz65+R7+COklmZWzGtNllZtuw9xYd4tNSaywMU57LMlWq9mfGwqFAirw0Jm1klirr9JoNPrMOKUU1WrVjl9t7FJCKZQTUCmX+P79UwhhePDB+9k6sYOpU8dI04wk1WSZZcDVl1bxukDx8uISvpen3an3QeceU7nH0LLjzSaU2++llakay+dttRo0Gg2EtMfNGNMNWTD918k2DPcQGBrtBo12V8WgLfC8Xo+Q0qFQKCClZHl5ESklrc4qhw98E51FnHvps3GMz9yhh1mYO4pSAscv4rlQrfikYZtSziHxciRxyOr6GoOVMsJ1WG82GKwMkqUW3MvlAlJl53uRc0nDBiOuR7BlkCCSOCEUtlS5/+hRjDQ4QZulw19jZe37TBQVOEXCxCPxJKmBNGtTGa5SLAXWP9gxSOHgdINvHNdHCYmnNL7jcurYA7iuopArkmU2yGzb4ACyS27QJmW0LNlS9fn+0QZa+aQ6IY0zRM77oa+xHwko98ZnXMXPXvcUXvKEn2EobFM9/xwKZbj25y+ifdUkovZSWisnwJfsvPTJPHz3dzl72yh65h6i0YD63D/hqjaunMcUFvEO/zWdVkqVAD2oGdldYvCsy3l6tBt36utkzTlaLUE7a2AEBAqiGB5aPYqzCPef+AKHtr2QG44dIu9K2jojNbCuQv76ids5fmiRj1XaHE+GKJoaz31iha/dMkS7M02y3sQol4L0kYAjPGITkZ06TiW3lT8czjNZFrx3scnwUIHAyTNayDE2PE6gNev5CkHe8OTrruGTn/kETs5neTqhMJ5A3GTJHealOuFx2QDnvHAflf1H4TurbN++ndvdhKtKI9CZ5l9fMYR518t4Uj1h4tIy9y8b5sUYBwslvvKQRyPJ4eY9jjy4igRmvn4/ub1QyI0wsW03tZlZ1pnlqbf/Ldf99R3sLOZwh1Je/pgc37t9F88ci/hoaHjONYtc/JqQIBik01nrXuQSR2nOHVAcX1tldSFGyBxSJUgJzeYSozu28vZfeg2Pv+Y65hYW2L7dofHtiPtPHuGPf+kc3vLeI5i0w7NeupW/f8+9/HJlJwvVPSwUhyDIU/na3SRPvQ5qx1GFhHd/9CGeef0F3PiZ2zFtRZy0mMoUJ8MWL3vak3GqZ3P0m1/k4akTIDSJcKyriVBI5eLnB0j7UhdDpjWJUMyvtJFfvgX3pitQIiDLe0RmlSOHb8doiackpjbLWT5cNhAwBHx8DkpkNO9v8uZnbf9RXDI/rf9E9ZLADCFR3GRsyyClwQG7SKzuJEkigiDPsWNrrKwvkemMYqFCagztdpt6o0WlPITKCVZXFwly7mleFOViiTC2Hd+pqSkrHRUC5SnCMCSOm0hpu++9zvHg4KBdtNYbKOmxvLTCu9/5QUqlEvVOnVe84pcZ2zLG0SMnWF1ZotPpMDAwQL1eJ5fLbVo0ZCQJKGdDMpXL2S7LmcmEm4GEPuOv7ymh7cJG2M0NgFQSpTwM9JlkoptkhmOTWeM4Zngox9zcHLOzsxw7dozBwUHLihsYIEkS2u02K8srRFFEmoWUSiXW11cZGa7w5Kc8CSPgaU+/Dik0c9NTTGzfS6FgvTylFP0On+MEjI1v5dqfu47HX97kIx/+EFu2bCGenWPb+CjJ8hwrKysIIRgbG0OHCevzK5wMj/LYx17M4cOHrVS1UiEDQmUojw1yym2jxwv/9QPzp9UvOxatOXCPpQQbC+kzjfJ7GxepbBCSVBs+b72vSkoLqHXrzM5zbwHeuwb610mmUe5GN1yY7gJWWgbeIySPxvRssGxtYtX1gULl4eVyVMrD/Q2JMi2SLERJj3e/5fd57Rv+nLf99tMRwnosJpnBdQKE0UgvwDERYdumMRvt8NZXP5c0sV3WIPAYcQsYBEq5POG8bazPneKGt76Cl7/2bQQOaJnyq2/7NO973dV4XpHm2iLSUSRRTBiGhGHIBz5+D/t2DvOHL70UE7hUS0UajRZpFONKhUzbtJ2IVhxSCQIynZKZbmouAt/1cJWDNmH/f3dzPieO1dk2lgOU9bST0rKKm00gA+OgTXLGhtSy2TYfxzMZdD2AbrPP35mMOvtKup+eaR/QfRbFo4G0ltWgUY7oS4p6xtI9j6BeytuZrK5+6qqSfQ8fNvsL/oRVD2g78/rb/LX3/eZ56kzG3JnnafPf9liqBhAmo5Z6p71e5jjkeuw2YfAVuMrqW9I0xTgSIyRaQ5yloG3Cp5TKeighcD3HslCiFKlcYu0BhnwhgFiQzxVQnksrEUSRRicJsws1Wu2IHduHGd8yRLE0AI7TlYcmNBttlueWOHFijgFHMzszz5Ytkxw6fIJyuYjjVQiCPCCJoojdu3dz/PhJtk9uY+nISWIpuPnu+1Cx5O++ex/l0TGk9EjTDN/zumDaGferLGNudpZSqcTS0hKeZxNDHcdumHvM/jS1LLrJyUlOnjxJEARMTk6yuLiI67pUKhXLbBoe7gdATExMcODAAXK5HGmaMjY2xvr6OpVKxdpvJAnNZpMkScjlLDu+x1hqNpt89jOfZ++eXQgl8XMB7/3QX/KG33oNOdfpn3flCKTSlHOKTEMiNXGckc/5ZEBkHDJtkMIDJMs6YShLybk5WlGK6wlK46McWVlgeLlFUil2wYNu4ENX9WSve5tw32NTamXIRxIRCIw5PTVVGYi0wpGSNE2s+b3Z5G+phAWPMTib5genC5qmG3qrH5uamNzNwUP7gQHCMEIoh0RHxHGI73qshTUuOP9iHvjB3TiOxoiUYqHAocMH2LXjPI6fOMRdB7/C+OTZ7N1zHvfddxO/8LS3I5VLpwXK0V2Xye59Q1qQDrrzfS95W2hMd37Z3NBJje7fmnsNGmNs0ubmNYgQgiTp4PoeZIJczqfdjrqMsh77uifNF0hjEGjSNAa5MVYa9TqmdronriOkTUfPUtJYsBguoHWK7+eYmJiwstwk5RkvOJcbPvh1ojRCCzh26ggk1gsbsxFkEQQBriP7oQ/1lmWlZwZSbRvqQL9hZL+3SgMhIDM24CWKI1ZW5/trKJNtsP9NtgngtAfbzo1yg2UOsj93ap32rUA7cRfFFmAQeF5A4Pt0OjFHHvwOQoDSCscR+G5GLmcoosnCFo4QLK4u4EiHIF+gXC4zPjLCaqwpZDGdsIVEsGXbTm6//162Fq0iypiMqJPymHMu49vf/R57H3cJUzPHELPTTI4P4WhBJ0vouFXaJkFgMwgmtw5bX0oFruvjEaAFOD74ooAymnZ7mrDRwisWMXFKIiHB2o05joPJUoQAx1FILGlZYCXDSrp4MuXxZxVJteSBky2amcLhh18v/EhAub/7/K0UHQcjE3I4SCMQIgQCSuNVkq3DDK93EI2bWNm/yviec5m97ddQK5+lELcRnYgGmhIZFQVRJqi74IgQIYs04xUWH/gS+RR0COtziiMniyzXfPJukUQ6+O06jw8Cdl/S4IkveRxLD3+X941M8pgPLyN1EyTskz47W3maTzV8669CqKxgVjLi49O83Wvxz19R6Cwjy9oMlEvUaxEyiSgbl+0GxobzvPAcg1kosHfQASnYli9Rdqq87K9eyBfefBMTO8cJqi5Lc7PsnRhnfb3Nb77yOXz80zczVx+moo9xwRXDTH/xYX79/bfxlp1jnD2UEqPx9Rh67gHY/5tMf7bGZEkxsSNmwq3xpKIi0TFuzoXdOdi9z7pIHjnErfvb/O8peNwEvHwi47zS91jbIYlbOa55z1d4xkCJQ501tqWSVjDIcZaoBDkyDY/ZBvnJMeK4idNRlqYpBAbF4XqTF15axGsu47FOIKDtlMlyPt852mE9hjs/+2Uue8FlVMfP5+ZbvsI/5GPuWHgSmbwXX0ncxON3/+gqrjznVdx94p+JwzlcJWj+3NO55tR3+PbPvJ74+x/HyVa56VPL7H3az3P8xn9FYmhGmgIeE1t388SRPZzKuxwJMuotjZCgpUEJnyyNUEpx1vnnk6RttBYYmQPPoaw17bCFwMNVIUZJZr53ghdfcylfvfNB0ghyrmDRpHyt3cQ1ghUhwSgejARHPzPDb/woLpqf1g9didZ04tianiuIUsuoWllZwfUkjitZX6uxdcsAtfUGYQyzMycZGh6nE9rJsdNpYzKD77hkIkEJn9V6wwJNqe2C+H6bYrFMuVxlfX2dzEAURQwMDCCEYH09QykXIQTNZpNKpcKOHTs4fvy4/aCuohW3iSPDV79yM0tLS1SrVS666CKmTh1jYusOXA+yJKXTTlmP6gwO5FFG4EgXKVyy1HbohJKIzC7kHcdByA1Zq+iykXqfpb+pNRnaGJzu8xzX35B06A3vJKNtmI3JNCaD2KRUBgapVNa58JKLOXbsBDMzM7RaLcIwpFaroTwfk8RsGZ2gVlvB9RzyfsA5+84C6dAKU9ycZN85F9DudCwl3Vd4XkAUpghhiKIMIyVu4KNFk8svuYzWeouRLKa+ME/crOG6Lnv37uXksaO4rsvMiRb5So6Tc1OUBqosHjpCfnCA+w4f5PJnPpHv3HYHu/RuJiYm/ptG508LQEoHKU8HX3pfU6NxpNNlONlktP5mqLeBSjbLSbvsOLWJ/XBGnbnZl1LaUAhtQGzyaQS70OxyHv49MEF0n3c6+J11AwMMrucitGFkZAxXOdTWVgm8VdII0iTkiku28fb3HMdkApQkCFxe/Ma/51PvejmOG5DELUR+jDf9+d/xgf/xPJIkhFIJz0RIYWUSjpMnSQ1RJwQdMbUww2AyyHve9DJMUue1H/4mnc4ir3//Z6x/X2IQ7Tq//7qX8o6P3sZbX/N83vfmcXp0JuXY/6NMDiE90qSD1pKrL9lO1lakJuO9H72J11x/OdDGiARBRpAXrC9DNWc3BodnE4SfQzl2k1Rv21TXZtNKBBGGZmQI/N5G1d6fLBB7+sa3d7/qJ0tnGuk43Y39hqRwc/UANND0gh1NN2Wx18zoyVeNfiQwJ4Ts+8wJ1CPAvDM/X6/ZgdkAk4X+cdtu/3DVOx5nAmuPJk/d/Debr/9HAKyP8rebfxemhhSFFNhUTAG+LzGpDetS0mbL9V7C8zySNMI4HmFkkN3U581AllIKF4MbfY8ksjCAVi5ePkep4pInTxylmFCTSR/HdRFSsGPLAAOVHAXfRRqIw4hMh4Rxwvr6Omsr6zRqTbIkpTA6irOwShQmXHzxxZw6dcqChHHM2WefzcLiIqurq2AMMzMz3EOJaGmVuWbIw42Y4sBYn/kD9u9618lprCFppZ9ZljEyMkKr1SJNUxzHYX5+HoCxsTGSJOGCCy7g/vvvZ8eOHRw+fLjP/p+asjYVnudx4sQJKpUK9XqdAwcOMDg4SJIk/TT7nq9rEAT9hqGUkm3btrG0tMTc3BxpmlIqldi9ezfNZoNtO7bTaDSIY583//G7+fN3/mG/79HzvWtFMaIbOGXXOBLHdfGlg+O5JDHEKaRxRjHnM1IoETcjEgPSdwm27aaxOE3aB4tF/1z37jE5V+JIvzv+DK4USO90H8TeMXZdF99XFiSKXKIksaYFZ4znzYzu3rE4cyz/uNTM3EMMVIe63saCdruN7/tUq1Vqa+tI6fGDg/fiulaxVCqV8LrMyKnpY3iew9LyLEsr97O4NE8YL6H5GPMz0zz7534dYonjOLhud22rN6xWAAuuYcBsCnnY1ByATQw6Yde/vYG2EebU83b2+cJNN+AIj7xfZn2thkGTJEnXL1oRBHmyLCNKIxwVMTw8yLVPuZ5OvLnB0AX7jAEZMz0zw5bRc8jIkBKbIGsU7Xabw4cPW3ZaaHj5829B+Ioo6vmWZuAqxsbGuvNSZpn6QA8Q0zoFBJ1Op/u//HugXIKQNil+YWmhyyTszoWYTcfzkVYSmz12kzTl4MPf44LzrqA3H29mIG72CgbbEEnTJsrxiBODV+g1cNoMlF2Ejmk1I5xKgBSKVquF77iUSrZpn/cD/uZj/8KTL3w8lYkx2p0mruvSrNVZnV3kCZecb5v6AqrlAe4/cj/bdlZoLR1CJW0yIZleqSOclInRrRRz4Dh2TPmuhyN9PC/Ak661LFqZxeg6mYBY5xCECOVS8POILEU6Fti0zFeFSa3nntuVPAusl1+PFekpB5NY+x8lUy6YLNFMFFr5P/Q19iMB5QY9Bwx4oWZ9+pOk9X9DZVM0O6sEHEdmBUjWcRX4Bpo3W9SxYDLKgYNjUkwC6wIqe3fx+f8luGt/wuFima2Vh9lRzvFX91zIjtwSzTSivtZGhw7r8ToJy0SZR0GDRDE6fS4rN9xBWxRYuuFi7n18jg+/+pN0NPzB514HV32AfVTYs2WCwtlV6veewLSXCUs+OgsJXA8lFbVGiO86CA1JIpkqVjjeXOUFd/pMToyRhSFb8iM4YhBVdLnlPXcxefWljO2doDxuu0e7FvYyd+IUpw4c4bLdo9x1aIbfL0ty9+3nH5/5fJ72yRu5eX6Zzy2kJEZz3rYV/tfzX89fvWiNycfn0ItN2o0GxXrGX3w844VPcijrBB0lcPdDuF6E13a4oAB7h/Ncdct9hD+7j/UIjMi4fMcgS+NPoH3w60ytTnB+Y4l/uKPF2NAQjiuoFFOywZ8WXc4AACAASURBVBZlXaCZLpNi5Ua9SUZnDp+6U5Klgxi1MYAGJ7exsnIE6eZYdV1u+tR+0vQ2cqLE8ee+jM9/5kbOH0iYDcvQ7iCN4O57/oK7pma5+Lw9SOMgWy1m2ppnf+29fOYJi8ij30FnCUdu3s/ep17H1K1fQUpBlKU05+eojW5n1/YKuQc91kRoGQ9aY3TLSlsyjXbBL4+ho4TIAZNmZNrBLVaI04RQVGiLjG0vfCkTT3sjFf8TdO69m5ZU+FogRYuG9vBTjYjWMGlG9OMzv/5fWz2vBSVdWq0WjUaDUqnE2NgYi0tzhFGMJz3yuSJrqzW01oyOjtKKrOmo5wXU1tcwwnqgpdL0WRNK2clz586dLC8vWx+0NGV8fJx2aJPKVldXyefz7NixgxMnTuG6LkNDQ0RRhOt7FMt2IbK8tmo7P+NFpqen2LlzJ47j0Go3OGvfHnbt3sHx40eJopipqR8wMTFOmnqUSiU7WfYMXYWDVC5ZN9RASkkYdfod8c0L9Uej6yM0Ugq0Se0kLwxIyzJxJGjTTV9CgCOJW51+h+5zX/wyrutTKpWYnp5GKcXw8DBHjp2w/0uzg+8XkF2vt/vuu49rt4zhBz6ajDDu4Pt2InRdFyGtWa6NirdysyRJGB8fh8ddzIFbv0FnbgEv7tCs1bnssss4dOgQA9Vql+kgmV+Zpzo+wvTqHDvO3Y0zNsRzn3QxX//mTTz5qdeQcxwOHjzIxf+to/QnuzIMSpy+YOuNz+42h81+cvIMVk2v+hsgoU/bOPUf66afnRYA0HuOxJpzd0Fr0cdqrHy19/xHJK9uKrvpotsZd7qedtZnzPNcHKnIuroRndgNo5WpzvCMp1+L63tEYUKzkfLZ9/wiQWGU5/za+zFBkZc/70re88ZXkDZWyZcH+dMPfY63vvrnCOOIQCmEScGFLPPtJshzmZmf4eiJkyRJwlP2FNh/qEmabEoLzVe46wcnuOF3ngEqwXO6fiyZIEkisiyzoEXX/1EoeNdHPs9rfuEpeI7LWt3hAx+9y6ZQKqdr5O9iRMpFW0Eg0GGb4WHL9jEmQwhsAwCJFA5pEuFYO0urPNIbLMfNQIzdHNGX2QjRbT5ogwK07CbYddkovU0AbGx8zzx3vdfXJsNoCxpuBtd6z5VSbYyTLnj3742DM4NCNr/PT1r1jMB7CJnIUqxVfw+I6ALgjgJh2ZbwKNdWVxIOG6Bp1gNRxOnP1WnWBVZSZFca6AhhzcAVuK5Ld9+/sSGPBdLLE2YR0kCSWSabMJJi4G0C8lwUBqElWgsyLVGlCmGrxUqnQyvMqAzmkEpSyDmMjo6zZXyY0mDZAnXdsZUmCc1mmakpOKkVpfHdnDxxAsfNIRzN8soafpBnemYOKQyzs7PIrkwqywy+63H/1Bora6uEaQ9UABPFiMD9D8e7wc7lrVaLXC7XB896yexbtmzh5MkpRkeHue+++7jyyis5evQoo6OjtsGmFHv27GFqao5cLsfo6FbW15e7yfI+7XZIuVxkdXWVVqtFsVgkSRKCIOiz8ZrNJgcOHCAIAkqlEr7nMTQ8bEFHYGZ6juHhYYxnKBdKvOUd7+Gdv/+7XSaUIkslSeaghCQzGQqFJz0QLsr3UI5jwRVX0BYCU60yNDRKuN6k2WkwSIGWEmi3hFAKqQVZl70iN40zz1X4gdMN8rMbatd1++xP0b1pudJFOAaZJchMkCYdwDntHtDbiPe+75ewfqmSR1h7/RiUg1SGLE4AQaFcASxgPDxqZdC2mWVDTdrtkDC0Hr/VapVOJyLIB3z6xk/jeCFaC6LQgsmJTjDGEKUGJ9q45+ZLxY3GCRZkewQY11vzZl3meff3WZY+sqljhB1LIiFLUgI/T5akDFQrXU/JiEqpTJqm5IuF7vtkzM2fYmF+jW/c8llMKvtedFqD1jGVgSrTM8dBaO65+xa2T+yjVjvOlU/6eTpRk6GhYWq1Gq4w3P2D+3nsJVeCMSgFWlv7GRNnzE9N2f9FawYGBiwwXcjTbNYRQhBHGmNSjNgkP+0y2SSCdrtJo1kHNvYBpgssYUxXktqVA/cAus3sWwGme8yWVk7Q6qxQbyxRKQ8TxW3iuNPdZ/SOcRdUJGVlbo5afZliwcPLl1AOVAuSsNYh7nQI8kWyrEkYguN6SAz5IEerHVEs5Ol0OjzvWc9EFwu0wg6FfJ5GvUWcZFx4wTkobZsDgaOIs4SBvIOUmlKuwPpanUQCYYpwFKu1dXYPbsF3FGkasbZ0yoYAKgeJi9YpOVfhOS7CZAgZI4TCkQalrNTYERIpXZTa7Hm7Mb5c1yHLkv7axHVdDL4N/skSXNeloARpFv0nrrAfQS3dKCi7ikYhwzXgAVJC1Vo8IOU6uCCVQ9wpUh5ap9QRrHQUM+0UN7+Ff/uI4JLXvJvnveQtzDdComYDVYBXXraHVz/zYZ5/zd08/vdKkMT9gSmkxmgfxyQkSuIIzakDB/jmU/fxjLtOUv2V73DrJ9/D66dfzhd+9d18/fo/4vpGlTgKcYNTLN111EpuAolKYjIMRVVgPWmxa/s+1mvLqEaCCiSOVhSFpI3P8nKbLZUx8sEIpbFhhscGGNlzKVseO0RxbAyvOgjSITfWwB/ayvmXXc0X/vlveIYZwT35MCuFJ2CWcwwpwapS1IxmJQw5eaLJ8HjGs961wpdeACpxyUcGJOzaW6ZTaxCHEASCkWKESWB1OeOUBy/Kx/zLE8/lxc98DJ/42gN8Z77IF796iu2XrzC6XmZnY54bbvhbfu0j72V+eo6GyOM01xgcKbOwfpRS4HZvcGDJmRLfdyjkXJTIcdlFW1lYy5hdaxKoHHJyEt1xMapJFgsazXWaYcK7P/hZ5GjMgFOkLNvUhEcYxcgi3PuVL5Gu13G3VOmYHEleooGrv/1RDj7+Z2jMHkNkTU7ecSfvfO1VvPH9t+H6mjs//0maD3+Xw/U2HSO6evgE2fXckhi0EqQu+LkcQblMLo3J5XxinZJFGojJKZecMSQ6JLzjEzz2la9ideFlRO/7A5qtZZAFMgxtV5BrJ8RSIH7sJtn/+6rXlYwiK0MYGhqi2Wx2k4pySOWRdLJuZzYmilI8TxHHEUo5hGGIQmCUIozbGDcjjBMc36O2ukYQBMzMzPQXadu2bbPJY7PzDA4OsrKyglKKo0ePUiiUaLVaZJmlnbc7IXEckyQJndR6qzTqHS567CUsLi5itOA7t93Oueeey623fJuTJ09y1llnccF555BhzdUX562hsiwL6+2CJEsNcRxbYEuIfod6dXWVarX6CMDCyr+6E29mjV6FZ9NXjdZkwgEFOguxmyowSpKl9L30giBg165dpKlmdnaWHTt2sLKywvz8PJOTk8zMzBDHGTI1FIo+gyNW9tLpNPA8ieeWCfxcV67TNV5OIhqNNo5jJ7s06pDL5Wiutwh8l935Eo0opTI0yKAfsLK4xMjgECuLC+RdH6Ele7bvobHS5MLnX82Xvvllzh5yEDWXgUqF2uoax5bn/+sH5U/rEbV5MbwhR5T0PMDOlIyeyb7pM6ikxJjTF9b9vyNDCtlnQ5zJ3Nmciid1d00qNh7fnKL5aJ+nJ3/ZDHJnmUEbu4h2PYUb+CRZRqfVJsgVSYzhql96D3/19l+m02niew6lsub5r/s0W8cneccbnsdY1eOVv/8JrrrqXEp5n7Ed57K48GF+++1/x5/+9ktwfMsJ8JWLG7iW/W007Uab+eU16p2E759IkAo2H5pz9p3Nd753kOsu34HvFq0RtZOgU43JEqTjkURxdyORcdc9D9Js1fHcIkK1MVHI//jlJ9vgliyjHWbUGx0eWlxG6gwjBGmcUSmPIJJlslTheYootm2ENIsRSULiurhEGAlZV0ovhTztvGSZTb3spfP2jm+iNxJPbVNQWT9B2Q3/MG4X0NvYmG1m3fXOXw+QQ2SAR6Yj6xnT20yZtP88hPXL010/zl7qdW8cbmbC2AH16OPxJ6GEsUCZlFamJbEeQ/aYWMATbcMbepvpM+cnk+lHJCf3yt4lNt0HyEgTg+d7gO5LE303wFM2tdyYDQal7oLUdC9tIxVDgwM0Gy3rf6g1jlRIx+2yKlNQAqmgNFhk547dOL7H7Owsx2cX8P2AWgfCTkLoCWpRgup08LWdK5WS5P0A7VW55bP7cRyHoLNMJwzRWjPgVtBZyPr6KrlcrivzHOLOO+9geHiYycmt/UTUeHEJPx+QJAlKQ354hFqtdtrY07on0esmrAvLlHN9h9WVtT6TvweCLC+vMjY2gtaaQqHAwYMHabfblMtltu+YZN++fezfv5/t27dSq9VYW1siTVMqlQonT57kqquexL333k2xWKRUKvUN8uM4Jk1TZmdnGRwcBGP6EttCocDi4iK1Wg2AgYEB67vb6aAch8ltW/nN33srH3j/O0jTlChOkThoKfH8HFpDoq2/n2sEkerJE6Hd0dRiQSkFP8iTaUhTu55YxhAI2/TpJQP3/LGE53DJBZczPT9HY30Bk+meAg9XYL3oACV9hJJ4UuAqYe1LPB9hTB9IBrr3EbVxTnrnyAiEsWzszcEEPw4VFDx8x6dRbxFFCcVKQBiGCGFYWV9DKnvfLpWKtNvtvl+n67rWcsZoquX/w957x1t61fX+77WevsvZ5bSZMyUzk0kjhIQSAhcJoaOCBRCvcqVcRBEUxXbpXkVFRa7AFZEmoiAYKVciJIikYJIxIb3MJNPnzJw5vez61LXW74+1954zIf5++gfyu5L1es1r5pzZ+5TnWc9a3/X5fso0ce8Ez33Oi7hl3z+ixQqn5tZ58uMNhcjsvjxk2BtDv9vCGIPvBwjH21RXSHveM1aQqQaA3DD9dLjG2xOhQuPgY/jKVz9GrVpBSEUeJ7QThVYuO3fuHAWhxHFMp9PCGDV6bhq1hvWY7qQ0GuOsr69TrVZZWV2lyNY5NX+cSrmM0jHGSFZWTwI+//SPX6TbbeN53iDsySPNMzq9ea666jnk1EEY4jgeJXwyCB9aW1+3YQnOacIw5JqvfojQlbz4R/4HeWHZcu3WGnmej7zlzIAdaPe2ATCnDQIbtuZ6mxnKlmKsCoWUejCPXZRJ6fc7zJ7aT5al7D+wj73nX44rQQ2DFeSwiaJZXjyFTlrkeUGhOyyvx1x8wXmsbbSpVybpmwr9OGV9fZVypUyWZuRFTLPZxCgQniLNE3uO6nXIky6loEaapqxurNNo1BgrlZGyNDj/eDhxxsbGBv0s4ZwdY1yw+1zWWosI17IsT6226a+tkku7dwcytKFOuUG4Blc6OFISuB7OoLHhDPYBYzS+4yERltAwCMqwdcEZAN/aBuUj2boyEpMXtiHt+GR5MZqn/9bxXQHl6oFDUFIEwxoqGBSOxupvMeC5ggtevI27r55FxbAUF5x4oMHDs8/lY7fv5/75U3R+8tUIecYU1Dcr/MWNgpddGXDJiyb51JscfuGjc0S+Rz9LKAUB/o4tlHwHR7s0x1pszHf50XsPsLb4Xnbv+CAvedW7+N33/RIvf/qt3HXBZXh/chrjAsYlCOwNnwwCulmGlDBdq9Msmrhr8+ySCr8qiKSgKgIaJZeqcGhMRGyTM9QaPjtnxtj57KdRfeYToDKBMd6IPusFJern1ll+8G6iIuRIc5pLTpX44qETTLxonGtaVYyf4/o9RNcgRYcfuvJydpbGuTaT/ND9dyJDAwm8cLKN0ZAFAiFd1tclTqY4HGseiqGcFDxtPODeaw+z5bXP46OvfS+86Wf4yNf7LJ0/zdajJ3nnm17D0eb5XNLMuXM+4b+eJ/njm1wkijjPkLhIo8gpkMJHaUmcCeKsx7W3HCHuJkzWGvTUGqv9HgoP4UgqgUBpSF1Jr9fhiY2d3H/vMX7xRc/iL2+9m9rMJO1TC7z+La/n2v2HeelVj6OqXE5rxYxwmPYUy898DvWvrNDrryAwvPsT9/DSn3stqzf8DToV3Hh0kWPrKziFxhscnGyHxLIqpJJUx3dQijxkpUxZOkitSZXAl5p6rYpbr1HbsYPTx48yf2KelS9/jsiVmF95I9s+/THWjh+iUrjEaUbPkQgtMUL9K7P+sfEfNTrdDQCiUoTnS+tdJA31xpiVmSpQFJRLJcpjVbL19cGCa5kuaR5TCEUaJ7STHn4okY4gFA79waY49GGZmpriwIGH8X2fLVumyJKcchTQ6/VorbWIY+vXMOw45QNDZM/z6PZ7qCynUotYXJrj6U97Jtdffz2XX3459913n6VuBwG1Wo3WOdvxpOHUrGX91WrBGdab50JRjDq6AEMD63K5vOnjM+bnw0OkEAPDfayB8uYDLIByQqQyyEHB6RqHVBUUuTWaveCCi7juuutotVpMTk5y/nkX0trosLCwyLnn7mX//fczMTFBKRpj+/ZpHn/JhZSjgTeVzsmyACGszChN7bXyfZ9cGYpc4bkV8jglyzLcXoY6cRyj+uR9qJYitNYsLS1ZQ11X0OsXPDR7mlaRcfxzt7Lnih2cv/sCjBHcuXw7x4/N8tznPpdDhw79h8/Lx8bZwxgz8vGx8jHbnNt8gNkctvDIRNWhPFub4ixw7ZHj0ZJTv8Ozzlh7g0eORwKB/9q/h+DPZsDQdV3SNIXB856mqWXjCY+v/+83sppKjEhJUwssPmXPNG95/RUoHZCT8he//1o+8VdX8/MvfSHd1nGkU2LCFRgSm3AmfNKkIC9SijSjn8S0e92BAbTA8yVFPgCTBr53Dzx4Hy9/3lOo1muoQuP5EkyZNLWMmGLErHXwPI8VPYMjjyB8SdLWBOWAP/nr221yte/juTZ31vg+T97hYoRAuhGHT8xx/kwFKQtUdkY+2u/3SRJbXKP0IGz3DFh2tmTxjO/N5nt5tpTMPetzRkuMyO0aP5BRDu/1MBV6aAtkWURWcqxJcaR3lvRv6JdvjEEgLaA4MHIXQoxsDB4J9No5+f0Jym2W7Z3NejxbQvZIRuvwdZulwcPxSHbsI+fAUI4ppB5JhaQBR4KQmkIxoiRZcNBsWnsEUiummjU8Ab1OhovGdyWetN+nUDZwRQhBo9Fg6/ZtjDUb1MablMebZKninv0n2bV9il1bm/hhgOu6I9Z6rjV/d93NRFHDAnJhSLvdZmxsjDAMmZ+fx/d9fN8fSVCPHTvG2NgY1WqVI0eOUCqVWFlZoVqt8qQnPpHl5WWkhPsPPHSWBYCVtbvovEApRZalI8Z8v9dny5YtdLtdsixjYWHBHkaDgGazSbfbRSk1AgCllKyvdXjwgYfp9zK0aqOUYnp6mpWVFbZs2UIYhtx+++2kaUySJKNmaJZllMvlkefrwsICmSpI11bRWtMfBEkEQYCUkjiOcRyH8fFx6wGrrRfdW37tnbz1V9/I2toaSWZwHG/EYtMKCmGQwsMMmDyOcCnynBMn+4wnKXFUJkn6bK9WQeYjxcOwAbR5Xvq+VSFMqgJXZKPQH8dx8AMXd8CetcmKEg+J1JokSejFG4A6a55u7tD/v0m3/zONjY0Niiwm8Mdo1Mdp99rkuWJqapL1jVUro85y4jgeeH5am5ThfQiCiOXV4wSh5Fv//A3SNOHkqRN4fsg/3vwBsrTOC5/3UxTFwD/ZnNnfkyQG3R9d0yAIwVi47ZFS1hFgonMQXa758meo10OKBMpRaOdot4fr2Gd528xuWq3W6GsURUGz2aRcLrOxsYHrupTkGJ6bj5JQh3Ot0Rwj7sa0Wj2mpqaYXzhBuVymWq7i+/Z7TU9P2vpgsK7FaUIcx1x/w9fJsnwAbNrfy/M8oigaAdq6UKMzhWs8POFx7bUf57JLn4cSZjQNzwRUnD2MMSRJQpxscPDQfq64/DnAcC23v0+W9zGcsbTRCrTJRmtxlvdROsUoiSM9AFwU6yvzpL025bEK6501hDBs39pkfV0xM7kDlZ1grDlJksa4WjFRth68ietQCssUgHANvpR4xkUpQz9LqU9YiXR1rMqWAQkhDEssLS1Yf2rhk0lFfcs4U75PnmW4jqDamEDrYuC/18IRAldKvKHPBZs8UaWtPWwI0HD/sLYXrutaUF3b/SYfrNtwpvazTcBi9HkhBFmWIXWO45zxqS3SgqL4t9cL3xVQ7v6DUzSqK1TJGSsL8rohDCAqueAWIEF1Au7b10LN2kn1jZtDzPmv5WPXXcfNBx/C90KE9HFEPjAmNBSFg4zgBb/t8fDEMlfsTXn6+U/hoVP3ccFeWN4wVP3TeIFPrTqGdB12PnGGKydzztn1fvboFR6gxDt+5SPc/0vv4Le9D/P251f54DcTcvqUgxLrrQ26uYvUCl8Kesk6VcdGdedaULiSnoFCpiRdReKGlM7ZRXvpFBNRiFZVqtsDVLRlYLS+6cIIDQT4UYgqIpzuSQ4kBas7a/zAc55G+x8exN9YpZe6yKDAyJCL9vg0qpPM3XeC2yoNLjy8hhGQGvvgSA+0qymUIks0iRF0pOC2TsgzvZhjs/Ac42J6F3D/fQ9x3SmPO4sSOnfRzi6qpd1842d/m3f/3mt57p6Ul37DxXWEjXZG4zoORV7D8YBcs6FymrUKppvgVUNmtk0ye3KOZrNJnLZR/YLq2CRXvPJV/MPHP8xLfvNniU4tUhlL+Z0P/hnf/rHn88zn/yi/++d/he9HvPJ5P8DiwhyTWy+mLh26Cs6TDj/+J2/jlmu+TOraTbgwPtf+zdX8wW9exh/8rzvZUA7mv7yB5NDNVFSL3twJXOEAOcY4FKpgYiKkMXMOYqpBPQGyjKKf4Lo+gpw8S+nsv496GFKbHCMe81lP1jn54T+ndu4UJw7PIhxQgYswEiEVwjiPNuUfG/+BI0171mg4SanX67Yw9Fy6SUxQLtFutymXxthY36DRmGB5aY0izxC+O5B0MJKDRSIiVzFRKRqBZFprsizDGMPRo0cZH5/EdV02NjaYmJig0+kQhiGTk5MYac2Toyii3+/T7/fxfZ+t22aojNdtOmgYsLy8zO233cXExASXXXaZ3ZjjmF6vR7vdZnZ2lmatwvZzZqg1m6y2NtjqT9iDhVS4wvpcbWYDDYvPIeNnyPpxveEcHci2svxRJVgAKD1gtJtRAMPwtZ7n0el0uPjii1FKsbq6yr59+xBC8LjHPY6FhQV27NhBmqZ0Oh1Ozitec/FPIoRg8eQcqIJyOSHLKoShDcRQBRjtUKicLFPgQJom6Dglv/Nm6nmXftrHb1QoioJOp0O9Xqfa3MJNt95Nq5/hRhGl0EUtORy5cZEtW1c4evgEUkpe/vKXU6vVOH369H/UdHxsPMowhSKXQ7BNW8koDLqKm2VA1mfMoAfJvIP3D+VZUiKMHjGYhNyUqmrOpC8+Ula4GTgQA3shh0cJdOA7WTwjycem/7fAjbYSb7D7glL0+30AxsbGCPwxekkPJLQ786zpJo1AUjia//7WL+KFVX75/deB8SmyPqBJjeJ1PxSTrHcJw4hfecNzcV0X33HJ84JUxeRpipGCPC0YXiJfwnlbQu45nSNVNjqUeGHET7zwYvLEJsoleYrrKpA+WaYQMscUBqSVA77sihnuva+OZxTad+l1+/z+rz2P5dUV4kSjjKbd7nL4VI4xKUobHAznb6/bIt0IpJFotJWc+S5eEJBnGdq1he9mbzh74LYNEitbPeMZZA9flmk1XOeUKnCQSNfBQZCZAgdBoTdJWNXA66wwGFOAkSNmphiw81xpS91h+JNEozb5wg0BuWGBrZTCoDBajsCXzWvv8GDy/TZGUig5eBoGHwNnPYdIMUrzkwMW20g1Js5+DodfdzPgt/lzSW7lb64XIISkKDQOBjx76CkJge8YlDmT3lp4DkoaTCbAU0SOIA8dUC6hJwlDCAa+VY42BI5PFEUYY1hYWSZWObqwUu/hzzzeqLNn73mEYUgY+vgSckq8/yOfpdtXLCyeot3eoNls0m73iaKIxcVFqtXqoHnn0uvFaA29XodGo2G93KoVunEfz/NotVrsP/gwq6urZ8234fxzHIcizUZAheM41CpV/MCl2+tZ9trA/214sA9Dy2YaMn6klNTGxoiiiIXFRY4ePcyePXtG9cTMzAxBEHD06HGe89wrOXToCJOTk3S7XTqdDqVSiV27djE7O0u9XqdSqdBut0dAaKlUGnmNjY+P02q18H2f2dlZarUaCwsL9OMulUqFcrnEpz7/ZRZXWyhcHOESug6eY9mqmoE9ABYkB3ufTxUOnXSVorTB9omAp+w9l5UFxcETc0AESBTWyF46DiBIOh1uv2MfYeDjS4NyLLtFq4LMKAo5TMy0bpOFEHjYBiUjY/tNnpibYhzMoNlhWUr/2fhxZ8b4RAOVNnnGk1/PN2/5NI7Q+GHIRmsNIay3cr1eJ+m17VovnYHU1bKMkqQ/SAYu04pXKZVLZFmCKjL8chVTxCidgnHBODiutT5A2HVfKUM/7uO6LlnfSgIt2Gc9u4xdtZGF4K//5o+58MK9xP2C7Tu2kecxE5NV+v2EosgodIRPQJz06GVdyvUKJ0+eJHADonKJ3bt3s7S4zMy2nRQqpb1hGXtpmjMx0WRlZYnV5TnK1RqF0RhpmD05h8HQbq/RDq2yZfisep7dM5RSCANxkRFFEZWxOoXeADRjY2P4fkiWZVTGxuj3+0gpRmtTEsfWczXrcvedf09hfC570nOtJ7QwZzH/YVAPiYwg8Dhy7BR7zt3BRusYteo2jMjpdROOzd5PqVSi2dwyuoeVyhj9eJ2iGIYueeRpl6DUIE16tNZW8D3F6to8u3fvZktUcOHMORxb6YIRNJp1/uWeW+yzF0g6G8s0SiGkPZTWSKXo9jYGQHmNJE1prbcZHx/HFzlGSKQo0GmMIwz9bps07uGQksU5OuugdUE1aLCxuoQjfJTbxfEiouYEygjM8dO4UiKlwfU2h+NZ6wwb0uDhSIkj9Cgsz3FtreK59poaAUEYkefZyLjUceyZyxUSPSBxFEVhgXrXQ6AtEsj6ggAAIABJREFUbuVIy8r2/+0etN8VUO7Kt7bxvAijInIhwFhqe8mLCB2FP7GDIsk59Vf3kbrQ1/DL1zmMX/clZo+d4MfPqXJQQd8p8IIaa+t9NtYsc82THpNVlx1vkZz6fZcP/cwdvOu6n+IVr17ijW+5ic/+3ev5yw//PbPzEjeCoCzYtrPBZ//h5/izPznG4m1fp9/J+PLH/pqNK57Nu5/0TZ5wSY1XfGCJMiXcwCMQHlHojTaI7bUGJ/ottpaqeFpREi7jnseYkPhhgOnFNMZDJhoTzFy8lSycxXcerUNib0zQmKFx/lamTAS6xbt/+dU8eMt1qLxHSxmCsSqugMV4FZEt4VPGGMFtwuPJEcQ5oAWFMvT7htwo0kJiClhKDKbkMdfLWboQ0gBOf+afuO0rW3neTJnjniRYPU0uJMqDYO4I29/2Fh5+9uPYHzyMrtTRvS5TT34qb/zA7/Hn7/pd3vO+D9NRAT26hKmLMYIdExV++pI9HDu9BHh42iAIcb2UfjfhHz/1MYR2+ebnvspEEDMpKnzhZ1/O3/3h73DlW9/HDz3jBXzlrjvw3IDmtifz6nf9BZ+54idY+9bf0fQMy15B+rUvE//wj4Hp8cynPZt777uZt7/nHt77ay/jrR/6W5rf/iztfkyqCpu0RIYQLkJYGupdf38N3XaKMQqlwXUchDZ4ruRTX/sCr3vJTxIPAAtt7IP70+98N41LE578kqv43/fsJ8lSpOuj0EjXRxePMeW+10MJl0wLcp2ysLyE70UYCrI8xdUeFIqwUkKpdRYWliiVKqRpSiuOkY5D0k/s5p3rwUG/oCgyxscbHJ89Neg82wKg2Zyg0JosSWxHKyvoxSlQ4EiPTqvF2NgYrY22NZ12LANlenKK9W6bHdu2s3fvXk6ePEm5VGNqaoqTJ0+OOulB6HDpZRezfbtNOfOCgPHmNNVKAy0C5lcW2DI+SS4EYRDQ7/UHJrsOpVIJIXwEkrTfBWw32AzMzouBB50QjpWAGSsxG7KWAsfFKMiLgqTojxggvhvaVFnpcu65u7nhhpuoVKwcYXhoPXToEHv27KHVarHWalnJWQuOn5jjnHO2smXrVnwf8iym3e0SleqUogZGKlRhjXZVYYj7MTrPWfnqNZiTB0lbKxQqpyg0a0sLrHRjwtIEp+79NmmcU5mso7Wm3Y2JymNsHG1zyxduY+rSJhdddBEPPvgg+/Z9mze84We/dxP0sYFSOWIoHzTSFmIjdlyx6eCtBoWrTcg+c+Bh9Lc9zJ8BygaexQihEfI7mW5DkM1FUghw5dmMCTjDynskMHcWK0rqgVRywJDQNsdPDw57buDT77cBqIzViMo5rhOhCsl7vnyA87bsZPeL9iB1waf/+E2knTagUDqnnxSUA5d3fvALeF6IKjJe8SMXEAZlhClGPiWedJEB9FoblAOfcjmi0Arp5CSxwc37uF6JJO8RiCofefd/5Rfe/lU++Ds/ik47CEeg8tyyAwKHXqwwnsD3XZQS6Lzgja+8iiy196fUcHjPn91g2XHG+nx5XkBQqnLxVIHj+WhicmcSqWNAkqmMorAd5iTJKApN6FsfHindM+CoEKDUgNVkgVrlaKSwZtnOYH+WQlIYPZCdCRjUUsWAnaawHUnheNZP0AyPYgqtbVpcUWgrbZYSV9gy10J+AyaNsHJaITUg8PAw4oz3nAUJLbNz87xSSp0lbf1+G2Yk4TMonZ9htRkFxmckTVebwPORxeN3MuYe/XuIEYsRgFwhR+nJA7Yc1s9OpwI8B63tt3GMtomEqgAZonVuJdwywRPGAnKuJHStv1hRFGCsB5jvu+RpwvKp07SXVymEodAa5VRQStHr9FlaWrIH6XJA7Dl89jNf5ODBg6P5vba2xpYtMziOoNeLaTTGOXnyJGEYMpRFR1EZ37cMUM/zmGg0LXhXKg+YQQzAdzliBo4YK1lG6PmEYcja2hoSSNI+na5lvAxZ5dPT06yurnPB+XtZX1+n2+3iui7Ly8ts27aN1dVVJicnWV5etr9PpTKywrjjjjuQ0mV8fJzPf/7zSOHS7XZHTL9SqYIQYmTi32q1qNVqhGHI0tLSiEG0ZcsWjh07RrlcJstsIvQQtImiiOXlZTxnBSEkj79oD4uLfeLuOtVIEvoBwvfJjU8/yym0TdBWhSFwHLQXEvsQ4lAtBzQbNZJuCxw5SpQUQ5sCaZO2p5sNxutl1KAJaVRGPzsjd7fsGusxp11wkaRaUxQFUrgIoZDmzLwdyoY37x2O48Cm1zwac+n/5pH1rIfaN2/+c9r9dYQ25CbH912MFIShj1I2aK9cLpMkCTgCpQRFYed7nucEnrLJtUVCGAToXOOKEvVmhSMHbqHTavMDV76YVmKYmazaOVVk9GJrQ5TmCmHyTSy6fHD9PRzX7hXbdlVpdY5aMCs3CC1IYru+FHoYhlZQrgiKYpYk0TQbPsZYW5yjs6dxpUfaHiS8ehleUELmOceOH6I6FqFVRBAEdBdbNGt1SpUGs7OzlMIIz3MoRbYZ3Uu6jNUiilhTiIxqY5y01+foiVkqlcpgT9Gsrp9GFQ6VcnU0J4UQaJUPAjACMqNIioLx5hZKpRIP3H89teo0W7ddhHBcBAVaCttwR3PX3TdSrTbodFdRpk3gSnbtCqmP1SmUw/TMxXiOIEm7BI6DElVmT3ZZWJhFCINSGmM0p+ePUQ6WWV9dYmbbFprNkI1WzuLKAuXxMnFsCMnRjkvc7bF9+3Y6nQ6B9FFRgzByEUUb5RWEgYMqLEiZJTmQM1aKyPo9Eq0J/QiTG3pFD89xiXzfAmZ+Bd8BP7QS/ywrcAoHv2x9crWKGQ8ibrr9XryBZ2foOwMFgwK8Ue2nhMZohdG+pV1jvf08Y9+X5wpvkLiOMXiuC8bgewEj6S/Wc3jIgJZ2iwKsr6JSCteTqH8Hsf67Ul2ovEDllgppe6iSIPBIuht0HE1VlJjeEqB8SaA8dOjykj0T/P2Nc5Qdn6+dSplsgHYkcZIShiHlske306fTyuh7mkAIfuP6Hbz7qsO87cc+xx98osQl543x9rd8ATybUBi6HpXyNrZv28Fl5/8wn/344/nCNV/kt379V0GlfPPWf2YmeSJ/9D8W+FLlWfziHz2EMg4lo/CUYMZ1+e2//Tjp7Qc5evAQR4/P8fZPfZofv/xCcq3ZCEpUuxHTe8eoNsfx6w3Crdvwd/+Xf/XaGGNwgpAUh25Hc7zrcd7pg1z80++i+odfp9sx/NxztvC+z8+y1OuyrTlBuVmiUlmnWcn40twifmFlwLmCVIDJPXBydCFo5YYjMudBz+f/LAU8v+HTOj/gnBe9n+p1b+Vx25a4Yd52J3JTJtOrhH7A3n0t/unlKZ6uU8iU1ukV3v/ClwKG113xBCqOT64KJBLXkcS6wMNBpQl+4OEFNWQNUqNwVIDxwOmnJCsrnMRl3kt51WmovfSX2bXlUv7p6DWUvRr0E8ov/wU++7mPkvZW4Nk/y/6bPsA2Aq7YU2fLgVvY9dBh1g+cIK3UefBbX+F/vO8b/PcXjPGJr81h3PKgcAGtJUIMfYsgUh5fuvEGJmYaNKpVxqtlDj10gtAxdNtw9Re/QKNZRjkp653TrLQ3mO8HfOSTD3Mg7VMei/AzRR4bcuOiVQ7G/248Mo+Nf8cYstnsoRqyLMH1HLZs2cLC/CLlcpk4jq1HS2Z93ZaXlzHGjFLE8qxASEPkR/SSPlpJjh6ZpTxWth4iA5llkiRoGG2OeZ6TpimVSo1+z8q0ms0mnu/T6XQsxXwQNOCEPjMzM3Q6HRYXFylFYziOw759+0iShJe97GXcc+8d1Go1jDHs3LmTMAypVCrEcUyhMmpjdVzXHbHYfN8fFfiWoi9HHfB4IBkZgg2jVDAxlI9Zz7hhM63QZ1gsnmt934wxdgNxJcaklEolnvrUp3LDDTeQJMkocc0MZCy9Xo/du3ejtaa1tk6322d+eYmtk1PooEIQhkht1/A8z3F8hyzL8dwQ3w8wRUyJjHvvu4up0GOy1iAzio2NDcLaFKFbsN5SVOpN6hOSdq9Lq9Xi3HPPJUkS/HJI/FDB7XN3cv6bzuPw4cNceeUP8LWvfY1Xv+R/fm8m6GMDLcAfMAeGh5VHShiltIXoZnbmI9lpxhgMZ2QGQ4/TMwCdGUgkOetrAyhh8IRz1qHpkYy6R77v7P93QRY2QRXOhEMY2+3udDqsrKwgEJRrY+R5CI6m3+/wh7/8Gl7wM7/OTz3v5xC+BQd83yNJchzpUQ4kWrj83lt+eiC5zHn+E5/A/PwyUrijbq2VATnU63V8LyAol1hebxPHMccenGP7ZJWffMGT2Lt7BtcP0EXKp//0DXzr9pu5cOc0kRugPGh3u0jXwRMSLTQqU7ieoG8KHnf+Xo7sv48igXe+6nkYx2WtZaVsSZyxsrJKv5/QS6z8v1SusrYRM1Hy0To7Sy7UbFq5n+NaIHXI7hn+Pby+SilwJEJplBgmtFoZvVL2MFIYhRSPzkjb7OWEMKNGxZluuGVgbr6nbJY4gj1wFBIpbcOu0HqUBLmZMTecn8OGy+b00e+3cdZzuWmfeeT1eKQU/dEA8Ue+52yW3BlQL89zJkrgOAzuKzjG4EhtTbmVwhNDGbPBdQw6V/QGsjbXE9Qdl5rQqLLBxeCGAb7jUhQ2aMHzPAJf4qJRnTa9tsFIQT8XpGU7L1YXlwhNRhAExN4Y3/zW7ay110d1QZZlNmxqaWlUZyRJQhAEo3mTpumAvWZBr8nJSQ4fPky/3x/JZxdXVkfXGsTIr3bH1mmSJKHd6bO6ukq1Wh2AHyUWFhZoNibIsoxms8nCwgKeF4wYNp1un9nZWfbs2UOWZVSrVWZnZ5mcnBwFPrRaLcrl8iiYaVhXFLkmiqKRV+7S0hJLSwtMTU2xvLzM1NTUCJxrNBqEYUir1aLX641Aq/X1dSYmJsjznMXFxVEgRK+b4gUbVKtVJsYdVlKJ1AXaSJzCkOcZWVJgBkwW1wkxQuMHLqWSR5HlbHQVB48vMje3MmK1GnPG4N/6C6Y89UlXsHvPLsRAaq+0Ji0GYA42FXzIFiyKgiRJKIqCtZVlDh44CvHZ/qN+sMlOZNPzMVw7Hm3u/98+Nlqr3/HsDutqx7fWL1EUkQurnhi+ttFoUhQF/X4XY6w/8s6du+h228RJj6LIUNp6nRoKavUxDhy8nbjX5dA969QmL2Rt9RQTU+cwOTlNu9VnrNYc/Qyj8wApWjvc/eA1BKGgwAWtMapAiaFXKZRcl7if4bvg+hIGdbJSOdJzcV0PlKDXtYzOVpzSXs2oVqoYJRGeR5ZqisL6mnmeR6cd0+llSCnJsoyZmW1g7Pyo1sukpkOlWUEph36yglAlxqpjLC8vUyqVCCOHSq2O60TMHl8k8nzCge+lwEUrgZQurusT1e0ztrGxQbVUZnnhOO32Ijv2XMTc3Bw7d+wFIcmLhPHxcQqV4ri2NqlurXPrvrt54qWXcvzoMc45dw8Sh6WFDhfu3cMd99yDce3vMHwWPM+z92zbGJGbEfmKw/uPcN4FO+n0c+48ssQPX36BBQxTe27o5FD2Q8abU5hVQ5K00DomEBJHlsi1ZTzGiSU01MYadm107XNVKpVI8wxVnPFzMwjyPCONExqNGknap1wuE1bLdDodpBJIR7P3vF3MH58FBuC541AUIB3HztUBYCcGAWJyUNv5vo8ZSFIdR2IG/oS2Geef2euEZT4KbUFLKQ1FkSFchzzLQAo8P6TQ2UDu/G/HDb4roNxmnw/heLgIwjCgl3cQ2uDjowpjacJuiuqm3L9/gq6WuI6N/U3xELnLxJYqJgqob5/m8LfvpxAKa/bq8NXr5nnvSyDvw/Yd57H/nqO0NjZYOgwyEkRlzRXPCnjWi5+BUSG48NIf+nE+85f/iwduP0oQevzlvzzACz/rsuv5EW94zdP50F/uw5eC8VoV4UgeeMfP87TnvYj+VEFpJed3X/4inrFjB+PlOlE/5vzxBvtcRWkiQGzdRj69F9zpR78wJiGNDcv3345WDrff+zCthTXWTs3z8PXfoq8FsdGczqrIUocffdaPMXnBTmYPHCHOUqbPnaayo8orPz1PBc1Ka5l3P2snWbbO0lxEPys4tZYxvrWJmGtzlBkuqy3wN3ckiLnXEfXG+Ny1b+bWd7wPLyrzyW93uf6hhKVuSMNUcRSEFYeNTkxx7GFaMicSIVrk9EQfo60xoik0QrjkxuAKSdZPUGlCoVMKUaFWP4fO4n5CHKQDSjnkGgKj6QjF/lO345Z9UtMnS2PKn/kdEiGQepptr34ZnT3P4q5dz8D95gfZKuHkR26Ez70b12iKIqHCJH/70E7Ory+z6lfIOh06BZaFg4trAKFZ6/X55sc/xQ///Cu5bPe5yMBDFzm+E3HB7j18+K//iGc8/dmYrI8XeESVGd72/jez7Yrd5NTRz3o++rabKOWr9HRGkbk4j6lXv+ejWrU+D0hBtVJCa+i0e/T6faTrEEUl4m5CqRQSx72RH4MjMiSGVGYoZdOj8jyhXKrR7vVJlUbHFnjqD6Ss/SQhHWwyruuTZXaRTpIejisI8FleXkK6DmmWkGfFqECtU+PIgYfZdu4umuPTOI7HybnTnLN7F/Pz85ycO8UrX/lKvvWtb3HVVVexsLDIrp07WF0ceKg5glIQIIXB95wB8wRAk2W5LZh1DjgYbUaJiiYfAB2OwnUczEByrdWmYkoLtJRI9HcUjUOpWalaIYkLXL/HxZdcyuzsLCeOHmN+fp4t22ZYW1ujPNZgfa2DKyShE3DTdTfx0p/6cU6dnmP71u0QgfB8kjyzlO7cRSlNEncIgxoyEBy79gbi9RW8nXvo9vsooTlycoOF1jz12gQLCwsIqXja056GmivwapLl09Yv54mXXcbhw4fZOFXl9NFlztmzmzxJmZqa+g+ckY+NRxtqkJQmzSMP3EP59SavOLDJpsPXYGUrQgwMs7VlyCAENtjpzNfSQ4aC/s7DwhBQGX7eEdIy7waEn82A3qMBBcK4NvkVDcIZSB+wIQLasLi8iDEKHJ8s1SjLqeaug4fYMzXJwPANRxjSoofnWx86RwZI4bK6sUogNa4T8hu/80Xe+asvxnWLERvQDTyEVviuh1uROAL8cJz9Dx3lVKvE21/zZNth1qDzlMATHJ3dxwc+9g984v1vptvpoPJsBIAJ18EloJ91cdwQjMvb3v5JfvF1z6avN1BK0k9iTJKQqZQkzUjzlH7SQ2uXTGsaYwHz6x0mStVB8Vxmvd2zXWnXZ221S+RYiToM7v8grEMwBGQFWlnbDRyJ0GJgcq1HEhzHsWn3xgyCajbNHyMMckApMoKz7rEZMOeGH+tBOq+1E3FGcspC2fsinUEZLIbM6TOA0xCAG36tIWj3/cqWs9fkzKHGHjo1yrg4jwDrjDEgh3fcEogkZz+f8P/tu+XonHOqZRCFlaYpg8DA4ECllcF3QcgCzw2QxtCRkiQZgMVG0Qg0hQOGgUTJETilEh6Mml5CCHA9CobSaUNqFDrXoCHOC+I0oZVKHjr1MBc97nHcfPPNnH/++Rw4cICiKNi6dRtLS0tkWcbY2BgLCwujZpo1j+8Qlau0Wq2R5FN6Lo0J6znV7nVHTOJhuiFAOYyYW1y2DUkBzWbTMufSmH7fUCmPjawmTp48Sblcpt/PmJiYoNfrsWfPXqIwZHl5mSAMCcMQx3HYu3cvR44cYWVlhcnJSR588EGmpqaI43XW25YBl2XW7yrOLAMq1zmO4zG3sEhjrMbs7Cmq1SpgGSNDIHAITFarVWr1KlprLrvsUowxnDhxggsvvJB2e8PKkR0rfR8fb/DAt+/CST20gF5iSAehIlEUYUQMxrVKJiSOL2l1Yu4/Ok9vdeVs6bN0MEhcYxNqJyenmZzYcgZIk+5AEst3rB29bkySpRhdEHguD99/CKUMRm7yPMTuJUYAm/cOYQZ/zjC8/7MMraBQOVEUIYSV8WltmzzSgJQOcZzadPIwQueZDQ5QOb1enygqDZreUA5c5hdaFjQJBYo+553XABFTKIHrGYIwotvT3H//A3heyLHj9/HQwyl53CeMalQrdR5/6VMwhBgM80t3c/DgQaQb02w06A682jwhcIQgSQX9uEu96vOEp17JwQP3sPfCizn80ANIE2NMlV6ccN55ewhFytzpZeZmO+zYsReXjpWPd7vEcc+C4sLDcRyyLCMoRUjpjOZ/q9Om1+4jHRCOpNp0WO6eJk1ToiiiPlZn2m+CNhTCEEaSNO/hCYdLL7kEtGFpaYk4joki2wyPAodOp4XnhUxPTKK1DUOqViu4niTemGdyzGN54QiB49Lq9ekXG2RZwvj4NHmhaW10KYqC2+++F1fA3K37sCuzx8OHjmHIqVRKBJ7d44zWCKBcLqNzTaffZ9uWc+nWe+hCEQUej79oL4UpMKP9Emu547psLbXo9XyEM4aROZ4b0e+skihFyXUoRRUKlQ3AsgBlMrKkixOUSJI+QRChjB4AbobAj2hnLTIzOO8ITRz3KPkeSkNraYUDB09QDT2U0TaYwtM2YRZriWLrSBg2PRwpRnu6gYG6SGKkwXUDdJaMzl7agBRyEFxiRj6f4GK0IC8KwkqFNI3Rw3rn3xEM9V2pLMKJceQAuXb9gPf943/j9Rf+EX4oGQsrpGXF4rqN7E1SwZ2Hq/SdhFylg8QsycaaJiwXJEmKLHLSzFJchaOx6gWFkYonf+gH+fYvXMsvPvE4Nz90OccP3YBfCRjzJU0nYPVgxvyxe9i4bIFquBfHk/zhez/JG1/zchYX1iiVJT9zdcJt5+3n2RdJbr5oiu7cClOUGA8jjqQRy9cfxG8IAi0IKgU6Ucx35hEiYMot4TdnUI3tNHfsprPWwtx1F17Fx4tCRBBiHJcsd4i7MadWWgSHFji1sk558hyOHVtiZb3NytK3iKKIdXcFEZ9iLcl55y88if7SLLX6JMe9NkWqCUOHdtzj8Rfs4ninx45LtnDjHQlqqyaLPb66AqX5gHq4hZuSHl/Ia5Rn2ty5v8OL3/lk+q/4Ii1P8LTLerz4UrhywmcmHOdBM4dwAm5++X2sNWag3yWqFhhaJCXYde5WFo63aC2k5JkmzwTGE2RFji/hOe/dz7VvexyiiMm8BXwkSVdTGAdHKsqViLWNGOn6xGRcMrOL2w6ukXkR86XnsPKOT1Iejzh//0P06l/F3fg/bH/DF3B/8Ck8/MQSO8ccmpEiVglFr82sX+L2Q1t5+JZTnHZ86z+grOTbPlQCUyRc8oPPxykqXP9P36LV6/PQkQP0V9eRIuBfbnyQ9/ze71KfqXHJE87npltu4+hDxzl8632019bRaUogS5RchcC1pwv1mHz1ez3SwlCq1jFyYH4qJEmcDeQVOfOLi5R8H8/zqNWrxP0U15VEJevZkgwOFXEWE1YkWVaQxQlgi8osywBGnd5kAMxlWUGv10MIM0hEcgjDEp7n0e53icol4mSdXBU0J8Zt0dzvsTS3yMTEFA89/DDT09NUKiV27z6HXq/D1VdfzaWXXorrulxwwQXEvS5+GJCrAk/4Vqo28EUaelIMR6vVwnckUrpI1xpJD8MUiqLA9ZxBF2fgP6fOmOGiBz50mzaLEctukCrXT62xc6M+Rb02SbXSZHJqKwcPHmRpYdH6w+U51XJEIF2WFk7SWiv4xJ9+iDf9xps5vbRKuZxRqYwR+AZjBEY7ZKkikj5H7r6Jzq376B4+RL1Uop0nLJ5eY361Ra0+wcxMg7lTi0xOThKVPA4cOECv3UFKSaVSodPaYHV9DT8MmNoyzT9//jZ+8+Nv4SvXfOn7lsny/5dxtn+bw5CRCd8ZzDBkONmDzplxhkFnNQHGAOpsuakQA1+rYTrnAJgbuvoMDfltuIFASGm9aYzG6KEUb9BIHLjGjXzDhEQ7IAoz+B1sMwoUnhNQGM3i0kl0WuCUQkRUwc87kBt+47c+PigEbTqXMQKjIKxUCEOfIilIC0XPqTJd1yhT8P4/fiW//YEv86uvfBZeAFmuqYQeSoeD6yep1Wo8dPAIX71zlj9/x0+TxIokyUg6PUoll0QHjHkTfO4Db+aX/udH+b1ffxWe7xJ3+zglH1Fo4iJmeqrBwlrB1++8hze/5UcwG6uWfSYMoeuQuoJAhqRpSjnwydNotB5EbkiZZJD9COnA084Yw+MvPI9Tp+dxTTboPg9YKcP7M5DwbZ4DQgiE46Cw/sJmCOJqiTFq5Cc4NPg3AyDO5jlYXyghBcWAHSMYGLYPvOmGZuNagIOVxTqDRoWUlgUtseCdkCCUM/Lo3Mw4Hq6twz/fj8MM0OLRsykKwMEdXI8hOHqWHFwMQA9jPZ82g9+PxpYD0EJiYQ+N67tMTVXQmEEzDRzfG73/DDvKvtf1PWQv5tTRDRDGysxNzlKrhxp4EfqhSzmEUqmEkR4Z1hzcx8Nx7M9dGE1BCkWOERbkyYzgG/9yLzt2bOPqq69m+/btbGxsEEVl2u0uJ06cGAG36+vrI8lpnufUalWyLKHeqLC2bI3eG40GvSTGmAStBH3VH12LIVu/2+1aYEE6hJ5PoizIXCqVqJYiVlvrNBtTpGnM6bmTDGWyue7xzetvRErJ4y66gG3btrG+vk6Rp5QaDU7PzbG0vIAqCrZMT9PtdokqZdbbLYQ21CpVxsqVgTWMrT+GEs+isM98p9/BSEEvscb+bm7XOelYJkm9VqPVbtNut5menua2f7mDXrdLGIYcOXSMJEmYmJyk0+mgck29WaMysRWVdOl1u+gipyiG39smc+ZZTG9NI5RdY3xXQlEiU8VobR9KzREFUjo4QtLqdwcWHDbwRWPrvDOHajuG64fGStZ8LwDXw4gUY4ap0HrEihNCDCT4w3kubLChgM373n+G4fkGj8CuqY5lnQkBRtprUhmAEQ4GnWejtNFOp4dSio21dV7wwquSkzeWAAAgAElEQVTYd+u3OXr8BBft3cOBE3N4ns8F557LJedt4cipFq94xYvxazvZOlXlU5/9KL10kqVTC6SZtvfBFcRZh7XFZfr7ujzliiu56847cRsnCUuCODYsr6whpUvSj/FcSaVSQhQ5k5OT9Pob3Hvf7RgKjh06QF7EhJ5Hr5/jeC5Z33B8bpFSuca2XXWMMdSaVulSa45RZAN7Ca9MmqbEscDgUORnvMlsqnCfcr1EUJEYocmKmLFaA9+PWF2eQ2GYnNgKOqfTXSNOE5rlGQoVs7ywRrfbJQi9UbDK8vIyQtjn4eT8STBnzgZpmtJqt5ieqJGjMeUa/XwV1xXg+6ytLeH63ujskmUZJb+EMYJSeWwUhNTtbZBkCa5XJlIuzXqdIAhYXFzkZHuOUgT97galqGIbWloTORHIFNdxUWmKY2D25FF27djLj/3Ic3n/x67FCIkuFEW+gVbg6QELzeQorcnyhHa7Q218giLtkyUpnhuSJtmAcatIckWa2jC9OCno5xkT01OD9FlBv7eGI1zSIqMmA+K0oFYKkDhn9h7AES7eaP/aZE0hJM4gaAZtMNqQFTGu6+M4FsRXeYHjSBtAIwqS2Pr2aqMQwhCE1g9buB6eECRxhud/j5lyjufhuJI8SRFK8dHXXYfvSgoNncJQEyH9je5ABwJ33FslNYrymA0QUEYjUbipBcJSyiReQVj3SHtnFjklBL3Dt3Nw6g/ZuvguPvOqG7n8vjJenhMIh1y4RCnc8g8PcPeNr2VyV5Xz9lzOOVvqBGPjyNkuoSdwGnV+65bH8/s/f4qPf+YnCJ3Lybo1+q11VnK45ZprmC4HhJVppucP0MtbhO2QLBZIL+BSR3KurNJbXWWtvUL1vKvQbpOi3SNZWMY4S3TWXBZWV+nNL7GyvoB0y1CrsNRap9We5p0f+QbTzTGmq2P8xl99iU/ULmP7BU/n9L330FpKiaoV5hfnibsZ9bLHtw8c4pyGz5/e2uHxFZeddTjZgjDMwe2SSklpY40/2efw6XeOs3+2zfVX38oFYQtlYN9Blx/+uSdw+LrDbLhzXNR1mG9rTFUyphZItMfGusKTAjqGBxbmye15BCNclGMLWd+DeuSCnuDCt61y660349zxF1Ti6xBjBl9lZAZ0llAJQaoM34O7PJf0ky06pJxPwDOyNsHb9tJrr9LTKcZA2xeIm/+Z3dsnSCsV1kLBxskEb+aJRA/fwDM9wTOfL+i0ct6zz0H1C/ICAtemURkJr/1vP4Xv++CBNCmuF7GytMzWrecSRQHlyOWho0cphwG9NBt5zqAHHgQyoeS6I5NiRf7deGQeG/+OIV2Pfr/P9NYtnDp1imrZepz0B0y5ZrNJOfTo9XroRBGVfJK0j+MYpNRILciKgh07Zzh8bD/6/2HvvaMkPep7709VPanz5Nm82l0tCisJBUAGBAgEGDDYJBOMsY+xDRec7jXX4Pg6Yg7G2b72xUSDMbyAwBgMvETJJAWE4iZpV5tmZydP535SVb1/1NM9swv44D842ECds2e7e6anu5+u56lffX/fgGWttUZYirBCjJhxzWaTKIoIgmAUhe1SxBwYODY2RqfTo9vtYoym3W9RCiOUkKwurzhmpnVdnGazybXXXkuapgwGfdbX13nUox7F1+78KmfOnMH3fZaXl7n6qitpN50MJIn7eKqM9N1iMJTVDiUCWmvaq6tUq42RdHUYSBEUHgxBEKCLQnq4kczzHFHQ6nVhnK8QmIIBIgSbJLwe1rjnNBrjVOoNolKNY9ER5ufnWTq3RIxFmIzQ07TWznLR1BQfe9e7ef7P/wIEIdpYjFUkScbk+BhRxeNrH/oQq1/4NCjJ0soqHiUWjixRqkyx1hywZ2eDXtIpNsMZ2mQkScbs9Azdbpe1lVV27drFyYeLwn5qiqqs8Y9/+s8842VP4MTxk9+9CfqDcf4oNu4jYGXTxh02pCebHxtuth3bxhY+Hecbwrv750tiR/K64qUtm0MEGAFvQ/TvW/lbOQDJ3R7KL4UYJmo5DyuZG9bWV1hb7TNdLmOZIU2XsRZ+5/U/wdXbod1uIyUo5eP77pokrMbkli8/uMq7/+mLhFHMG//3CxFrMb/9mhfyxre8j6Wjy/zeb74IEJRK0QjYaq63WehKZsOQSuCDDdGF3CLLcqxOCLwK3W6fN//Wz/JTr38Hb/3dFzvmTCHHUkrxubvmueqS3Tz7huvpry5jPI/Qk3giIykMp1dWVlySZKtffHceJtMotc7MjI82zszYD8vYjgOstm7fBpkm9DRJrhCe2ihwrcXblFQ2ZKEZYwiUhzXnh80MwTmMK6Sl2Oz9Z9DG4G0KXBjJo6VFio2wiM3zyeTaAbLSoqRfgEznz53N/w9vD5PzNpt1fz+Ozefq8P6Fcr3N45vLwr/1+FZgnT9RQyhV+K1tpN+laYoX+CjpjLalBM8LCFWXTraKtQJfeqS+IhMx1reoIMAPyxgtyTPAc/Mw2LRxGiZHSikRRdPA8wVd7VGtVgsgzvlJtdttut0uU1MuWbDb7aKUol6vs7S0RBAEo9+TUrK+vs7Y2Bi+7zMYDEBAnjuvtqE31jBRdZhi6eRUzvB92CQ0xlAK3HUljmMmJyfIswRjBcvLyyjlIQsGyKEHj2Ptg47VlCUgFFIpF8Bw5gzlchmNA/MqlQp+AWgPa4kkib+B8TVMVY2i8mguJNbS68WjVMKV5jpjtTpBENDr9eh0OiR5hmmuj87z1vHjVCoVqpUSQgjni1eORq/hZMvueiGl84HsDzqkiQvT8BolPJGi8hQIR9eU4byz1s3ZQ4cOsbKygue5OkkVUugoikYpscN/vW5CojNKgc/K4sLovUrkiCWqvE2+pBcwtIfXsW+WDP7feQghCMNoZOsylGp6nj9KXU2SwWjNHAK5w+uE8DW3/vtXkAis1pw9cYznPvWR3HLbg6wtHWNu2aNS2007KfGsx/wwUQCPfcwauvUl1hdOUq9EDEhJ/Izrr97J4mKLlaU11s/eiVJtypWQhbmzVCoVtDZobdHWEPoBvWRArVwh1jHSj+j1eigPpJWoQJFjqZRy0szS6RylFMHc2VXXNJQWW8gohRAYwai55BiDzp9S2c1rlKZaF3hhTlQKRvuTZmuFwC+j85TuYEC1FuIHkl6/jVQevfgc/Z5BWMHkeAAiA5OR9Ad4KkcISb83wBOWyalxut0ukBIFgmq1TCdz/pKD9YRKxaUsr661zrMNGNYB3W6XIHQgVLuzVvzcYnNLqRZSnSjRajVJ85xqvY6vPKToY0wGSKQM0DpDCw9Z1DfG+MSDmLHGJAuri7z619/Crv07CLR0Uvw0plafItd9mt0BW7fMsLjSxJfeaK9VkiWXCG0MUVQt9jMJ0ljyTFMq1yiXysgoZ2FhYeRT2W63Ebnkhquv5NjJ0yRJhhReobQQBH5Emm54EUrFiMTg+75La6eQthb2G8N6NUlcsMjQamPYbPF9VaiUSghhKZci+p0O0ttgC6e6+22fY98Z+WoYYrpNsnaXbtznULNFSo5fLuGXt9Ltt9mxpSiqBXz8qwnLq13wPLJAIrUgTw1eI2Ctp1Eqxk8VSdt1apV2lO/caCq2xQtfdwtHXpfSiiVPvv6HOXLoZmp9j8QM6K9nzN1Wpdro85VPLxCLM0xNlOh24aIt07RX24yXUh48epBbb76Glz7zORjZIBDTBK0HGKvt5OLHPgNrnW/E+h3v4OCdZzhx9CE6KuVY1zDWX+dkt8Vk+RHoXVXW3/sxasJi6JGmISZQ9PotFjprdNa7nE167NyzE1naymyjylN+7pf46DVXM/XUX+Q1T7qeflDn/s45/uAFN/GMR23n2Jk5osAyteVi2mdu43JPcG85QvRynnGx5Xk/+hz+9m8+giqlXD+dcaJXZZAI2rbEAdXn9NkG1z82Z/62VU4HkqZyDIKP/83XecZVIbeuQ2o05T7UIzAdifITkGCrULKwY+cMZ1eWkBr8yNJdFuS5pZZN0cpbdLo16lHMjz39OVRvehqLhz7Emc//CnkLyFKUdCQHz5NkiaG6eAzvN3x6WiM9hchyMiMQgSUSCj8XlManSLtt4mPHmapbTAsmFJTWvkAyO8lADzi33KdSgj99Whch4K2fgwfaltx6lH1JblJ0opGZKgrwLo9//E2Ugkluevzl3H/iJH5U4uDBg5g8HcmZnETKEuKRGrAiBWMJ7fenbOW/0giigDRP0TonDAMGyQC/HLnCuD6BzlPiXhttDGEpohf3MFLghwFIwVi9TD/rs7B8Guk5SnN9rDbyD1LCYvKcUhiipCRHkiQOjPV9nygKWF1dLSStzlvNWmc+nZkMMghCHyU9Mml41rOfzcrKCsYKjh07iyd9PKm49Qu3sGfvTvbv38/y8iozM9NMTEyQZH1WmwkTE+NYsclEdGQwKtA4SZiQPggXSqGUA76iqDwCIoxhxFIxBpIkGy00RhvQpvjbG+wPrXO3eGqB1jFZagqGIOhcMzU1RZ5fjBdGZPmAtLlG2WjGGyEmgx3bJ2muLPPgZ97L+iBgz+4rWDh+lrIJ6PfXyNbXyRaXKVd8Bm3D8dMtZreP0U2alMoZQVjm4LGHCb0cPxBMTdcZDBLCMKTX6zIxNUljfIxyuczZc/PMzMyQ6ZzQ8+me6tJfinno1GGe9t2bot/3Q4gi9RRnrGyFM8veDHZsBuGGZua6+Llkg41jzcgODMe8Gt42o+daa7HKBfZsBtyMwDHpCkDQDBl0hRG9J5WTNWi3cZNCYKVAiQ05pDEGoQRY7dg7QmFJedS1Bzh87DT33H0/T559LOOzu2iefJB+nnBgu8JkhqnaNOtxl9CHVAekyTKn1ur8xXs+zHve9Cpu2Ffl81+fJx2cY6w2w1fu6vIzz/0JFs7OEUiL5/koCcYqBknKXffczXu+sMC//MXPYoWkHBkkVdI0RYQe7XYbE1XwfEu/3+Xdb3gpr/rDj/N/Xv8c5/2qJBMz+zndWiLwEt79oS/x3CcdQOR9/uhdt/H6n3w81gq6nRilfLIkI82Hxw+MFChRBpuhwckXMwdqlMtlbnrKD5Nkkn5T4g3ZKpvmRG4N5Ga0cbZyg9E2vP5mRrtNndVoo0fMn+F3OpIlF/PHuB8UrIGi+05eyG4UqgAG3fwyo423EoLcSiQbXkMgGGTZecDc8H35vmMSZFmG53+/MuU2gBmtNdoKVBF/shksP88nctP5qBDf8PcuBOLc/xtgey9JSPJCrly8rpDOZNuiMFo4qN1atFR4ShYhHRKdGFCSSqXEoOE2zcoDo3NsZhhkcQG8CYIiDEl7BUCnLcZYcg1YTSAtX3/g+Iil5nkBYVii03FebMPU9iFguLa2Rp7nlMtlKpUSZ8+e4brrruOBBx5gYTBwAO9Q8SgEg0FvdHvI1h8ekyGT3/O8woQ8o1wuM8gSyqUqQeAzNzfHWKPmJFytFjNbt9BptqhWq6Bz6rUacRwzMbulAE8S5s7MU6/XC5lqyvr6OpXIye8c6ylhaWmJ2lij8Eba8Ne11lKJStzyyffx5Oe87LwQlFqtQTroUylXRkCc7rSdJ64f0Gg0nGdlHHPRFbvYtWsXBw8epFyqoLVmz769XPGI/dz8vvcRCAVIcitgE9ClPHcdDlWJEhpMBsV36EsFNh+tQUK49NVVm5FpinXAHcehhFXnhVxdSeJBhqckkwEkmSbt9l0jUwwl3E4CfSH7WwjnjZDrrGBmfyMz/L/zMAWArLUDIXSeMV5vjBo4WmcEoUeeGWq1mmtmWIkkx7eaqy67lpW5B9l90eOoj1c5evh2to/fxESwQiBnqZav58u33UqpfDFHH3o3pfF1Wmc73HnH3ayuriNkxPT0NHGvSrMpWVn0mJg4QG5CEnuOxVMnKTdmGcQx9coYrfYKKlCOWWsErV7HyRlxdbEfllnr9EjiHlccOMCp06dJsow9u/ajdMbJ+YeRvvMoF37hiytcfSCVJSg5yWIcx/T7PWq1CmmWUQ7LWKkKMGcAfUjyFFBEpQpZnmB9RT2qkeYJ3X7qmlxZn7BSQUXS+bj1BqMaHcDzQhA5Qjs1S7vVRHqK1VaHUrmK8kP6/SaCIlyzOsXy4pKb475CJnoE8gN4kYcB+v02aREMp5AjH8tUQKVW3WhQSOfHvmfXHhbXFlg4t4RfrzNYOsfCyXU3SWyOlT5eFDFRnyLcUkZqTWpcIKMflB15qdpgYjxg0E9caI+RlCplur12sZYLpBKk+YBypQJSkyeasFxFKkGWu2t3Wuxjzs7Ps3XHRQySPng+ZJZuNyXPNzVwRY62Q3sMibY5SJ/Ai4AcjBydr9pagsiRH+LUBUb60RhpPMAqifLLZGkLgSKIKiR5TOB5xIkgSVI8k2ONh1I+0pzf0PiPxncEYbCrq/TbLQD8UpVMp2Alz/qbt/DABz7OyS9/lpe80GnSrQcLZju5PoIwOQGFEbEK6KUxga4itSYhQ4UBWZqipQCTo3yJjgTB2m0sbXk1tUP/wO+/4F942eE9SNWiKgf0EBxZH+Ct90F4aJUyVQopxfCy3/5x3van70THkonxiA/fez/PO3qE4JKXYEwbGnsRdhJRBAcEQcDsDT+L538Ivxuh10+zZVJw6Zt/EavqnH3a6/lMawu2lELWRxlIvYwMjyTJWBt06fcyFpKYAzc8kbvuOUycDnj0Fc/kzvl7UCZjoFPK1PjA636alfUmWTjD1M4pHnn5bj70/97J2Ng+rtp7ChYz2lnMXLPFG/78w4yXLUk8zraxAYE34M6zObnyuEuG9E8/RN+vYkJYKUWQZJxOy0yGPW45kVAKwZRdQtF6bLmhIbkPS+SHlNKEXmg5fXqJQADSY9DKKVVADxT1619GNv9PzH30Gi57+b9BPgbeMqVHvhD55Vcwtn0fYyqhffokWoOUllJF0M+ATFOSFs/kVEqQW4HQFiE0CkkpWcQG0K5BkkNmoeRDlkESd1EyZboMuW9p9iAK4DXPBl9nvOPfM+5aLhcLqGPA2SINcOuWaeZOLfGpz32R1X4PSUqWJWizEd2d5xbhDX1u3AIuBCQ6/06cMj8Y/4mxvr7upBPddTzfbbAH3R61sgtpyLMUFXgoq+n1BlhlifMBaW4d+OwJ0l5MnDgGiDZ6JBMZbt7iOB6x0UqlEt1ul+npaRYXFwFXlA8TyTazeoSQJAO3WCR5SmWszi233MK+ffuweFxyyWX4KuDQocOUy85r5hOf+ASvetWrmZ2d4tAD99CoV9n/iL3o3EWnDzs1VoPnufQqITY85IYbx6FZtCxCGIYx3Uop19ksClq3sR36Ipmik6k2GMjaMUO6/XTU6fQD6bzgmm3W1tb4+t33Mz09zSWXXIVOu/Rb6+yZrZKtn2K8ElFXE4hMMBu0+dxb3sL2qe0kXonV5hpbJ8dY6GtOLrQRuWJmy3biQXvkxQHgqZB6vUye53z19tu5aOdeHv/4x3PnV79E3HfsgdXlFarlCrVKlfX1dWpjNepyjK9+5DDXvPj6794E/cE4fxReXYYcyQVpnMXYYL4N5aeA3ZBbbyS3DgGdfOO8GAJ9hXTVMAT2hAPcjD3v74/elij86jg/jVUUoZ+bf09a50c1AhFVyIuf/2P85h/9GYcOHeHJT72Oy695DF888WmqUYRM4AW/889cftEsv/vqx9IcaFq9On/yrjvoLZ3mbW98Fatzc7z6j79IPVjn3R9IedubXsoNjxQM8nNsL28j92J6/SYlFaJzy9EHT3LzV0/zoT/9aeKsT+j7YD2CwCfPM3TuWB+tfpexRhmdanIV8pb/54X85P/6e971568ky2OW5o+w13fgxUuefa2Tusut/NKLHsUfve3zPPWJl/LYS2Y5c27JecZFIYM4RyeCo6f7VCse2yd8tLFkGgbpAKRkYmycscY0Dxy8j4qv0MoVyygnGTbWYrSz2RObNrHSgrF6Y7NdMJMcGKbxZTCSQwsh0FYUkjFvNCcQBlCO/YbGDMFAocnz81lww39aZy55U0m0E7ecv4EWjo1njEV5YsSAsda6wvX7cJx3nggHkjhITjLky7m04k2S9CEwcoGf3DeTrg7PX5dz7MCTPM8wxvlXOSW5hxYewrqfC6RjRkpQFACvdQwxlbn1r1QOGMsrkGcjFs9QfiusSyj3PK/wX/TctUPk6Dwlz33X3MoFuU7pdmKazSZKCZaWFgoT9LhguHlMTEywsrJCtVpFKcHy8hIrK4wkrirwkdaOQvD+ozE8Ro2xGjrfuI7Vas7PcQgUr6+vU61WWW+6gJZt27Y5FlulzI7t2+n1N2SxS0tLCCFoNBqjcKrhY2EY0ul0qNWc75211gF2eY4xEEVlut32xnzwA/B8bvnUB3nsE56JCcuEYVh8n4LBIKHTH1CvlJneNk2pVMFazdzcHFNTU1QqFe69/yDHHj7p2LJjjimnlKLdjblYAUlKS6QshTVyCViNFAEOCPapehbfE4QK5xGJIDEJvoiweGQYPCW54tJL2bpj62iuDeuhNE0R1pIWvlb9XsxKs40wlkhZ2mstlpc7sEkiPZKw2/MBZdcsUIR+ODpGxn77G/L/6sPmGuu7BOHBYIC12nkLNyrEcY+wFJKmrqlSLpfJ8oSkO+DibVsQeYJtr1H2aviZoSKn2bXzUfzDu/+W6x71eE6fOcanPv1RKuUaN//ru7js0gMo4YDi9Xab7Vt20W63Of7gQWYnplicS5jcsoVqfZJs0KG+I6Oqd7G00AFjMSbHUyGeF9BuN5mYmKLdjbnxCp8vPpAjUPS6A6r1Okr5nDxzGoQgiTMemltkeqxSpHO7FORhHTIMmzFGk6RFUjeaoBSR5QbPD0lthic8uonzniuVSvSWekSRYhD3CPyIzGQYrfFlidB36aHVatWB7WmGkYpKY5IsSQh9n16r5WT02l0dJQZPQpIagnKFfpwRd7soGSCkRGeGc/OLBKFHpeYad8N1dciIc59NEGfpCPCfnZml2VrlJ37qibzn7R/DV26fUK028JSTkXpewI7Z7ZyMB/SaTcpjdbxSVAD3ikwbrKMQbigVjCUzlmq5REUo1taaTEyNY7RmbGyKwaCDH7iEWaRrMPrKIwp9Om0n7W00xjEmI/BL9AcdAGYnZ3ng0AkOHNiNQaAJObv4EOVqnTzpoAvChBKSPC2UblKgs5w8N2hfF8F2CilcqJiTuSqy4vv1VIBJEzrNJRbSgCAKKZcjJrbvQKQxufRJm2fRSUy1WkUIQ54JpNJk2UjL/m2N70hl0W23UEIgrGHfZTtpnk7Y+Qsv4NZfeA2VS66nKhW/9ssppgtKK8b2XsND999LEHjUGgH9rsUPDJdfsYuD9y8X1FdBmjtWFUgkFt+AbQcQZNz4awe5/RWCmja8+DkZ//i+AWU8YgElm6CFJROK8cCnPci4dLbOP/7p+5msTlP2Vri6NsNDaYVbP3yIp7/OIII6UP8mx9In3LEHqg9xemWde073+fAzXo8YxHTymLh9moGEer3OrplZGBjmbJe8nZCsn6MjyrT7A772mc9Q23MFxwcJb/j156CY4bF793Plfstd730dn7rzbrbvmuar982z76IKX/jKQZ7+whfw8Q++l9OJRQaWfdummJlVXHvpNF++8zheYEljzfT0JNNrC5xtGtaNz11mCy9rJHy9l/BpvZf1zjKXjLc53NdcFkny2OBXJZ4PuTF8vWV43K4J7m+v0PZg99NvZP6ztyA0oHICZxFEEEo6h/+Khgf+/teTxNOEIRi7jYrwuOI1GV/7yNtpHPk5ogByBVJblACjBLmy+LlEKoOKJCqzJAICz6dU0ay3rDPJFJJAS6TVSAVWCcoywQiB0oC0VKuQDCQBBh3Aa58hML2Ah0l5/c0WkSqEcpTbm//lA4DzjrDoUUKOFN7IPNgPVNEVT4oFd2g6/r3T9frvOiLPmatqC3mWYaxABj7tfo/ZyWmyeICKfAIhGSR98kGKsTnNfovE5Cy12lgJjXEn0VLCdX+jyCWOOWPVEo1Gw3WCIg9jLIN+Sq1WQZtsJMfIcsfgShPnSYN0NPYgCPADjzyOmayPcezh40yMz7gLvFQ87nHXs7q6Squ9zr59+6lWSy4+PCyxf/8l9LodotBDYMiNQZgAz9uISBdWgHGdpKFRchiG7vMEPpVqBc9zpvLzp+bOkxh5nof01AYDr+i8D30rBoOEwWBApVwrpGU+6+vr9Pt9ylFIaevsyDdjZWkJhMQCK62Y3TMXUQ0EaccQ+Aalyjz++ddz3ycOkwUp1VKNIw+voVMnLRirl1HKR+dua5djiYKQ1bU1Wl3BlqlJxqsNZmZm+MhHPsKBSy7GWsvKygoXXXQR1loWFha44ooruP/++8nznEde+0iyuR+cp9/NMQTPAIbJCkN25pAVN5yTF6YxXpjSeuHjsMkjbjO4NwTghr5wUroaYcioGski7YYXt3S+BPYCNsOFUq3NQwiB51lqtQqestz/wNcY9F6KjASpncKmZzFYnvLo6/iFn7mW1vISaI/P3X6SN7z60Siu4mf+4GYGa4t84K9eSX+wzq+86SuUqpPYdI2p8QZtKfFbcmQQr3XGPcdWeNFTn0SlEdBrJdgkIRcaXbAHtYnJc8Og1yZLUoTVWOE2j2/73Z/kZ/73W3nrG38OKVNO9FP2ZrPAGfI04P9+5HOstmN+71efRnst5ff/9pM870euQ+qUVq9HlmlymbF3X4VO22JMhu/5pLJE2m1jpaBarXLi1DmqPqDcNdUTRefZSufVJQTGOO8WIwUBElGEQIxSUY1xjynH/lW4gI2NpoJAyA1p6XBe+IGT+A5ZkBvMXz2SvikZIkRKnhuEKVKBC7BtyPTxA8eUSdJB8ZwNyerQ5+t7ySfqPzM2s6QuBNa/2e0LZcDfznETwvnPueeBsRIZlBCe3AiNGbKUhHXeVsr5F14olx1eZ0qlkvvjmfuOh/PGD5q/8eYAACAASURBVASZduEenudh8whrdSFHC+gkmjh1TND7j59iy5btzGULtNtNxsfHR7YR4NhpExNjzM3N4fs+zaYzWB/KYrdt38KZM6ewRXJwJi076iXWBmYkjdo8NvsWLi4uctHuvfR6vVHzbefOnRw+cpDJyQnSLAPchv7EiRPMzrqkVoSTsmZFTVKpVEYMuBMnTrBnzx6SJGFiYoLV1dVRE7pSqYzsO4wxNDttwtBJZzfk/IWnZ3HMv/aVT3HdE549OvaBclLfibFxkJZms0kcuwb42toajUbD1V2ez95duzk7Pz8KyAiDgFOnTvDo666hesftlBDofEC7ViPXkiTWRUpzRiXyqAeSZikkItqwLijA4yFzsV6vU6nUR/c3MzstYI0D8rvdHrWma/xGnsdiNMfJc+ukGqQ5H5j7D+cw3xx8/u88wjCkVKrQ7/fxfAfSdjod4rg3AonjOCPLNVvq40QDS7hVcWbhFDOTJZrtnPGxLbR7pzh4+1eJU82u7btpLq9y9eWP4p677mLrRdvRWUZrcYV9u3fR6iyyd+tuHj55HN+rMFmbZa3dJiwndB9uobXmJa96Fk1/Lyav8vEP3kV3vUcUlkbfsVIhOhcYDbfelzLINKXIJzeG9sCFugVhMAp+sdbSS3JK1RLGOEsEZbziu3SM7yxP8VWI1jl5rrEGBjrDd9RtQq1JUyclbbUcJgLn+276fjACxpVS+KUKa+0OAkuW++B7GCEJrB2tj+d58ArnazjodYnCCnmeEQUhnX4PJWRha5GhzYYEfKOporA2H31vwz3Q4uIyl125i3f/40cJgwgpCk91GDX5h2tgOSoRBAHj4w2UZ1lcXBxZPWw01lzrQQgfG4QkCIzvU5uaJfdA+IJu6ghcvSx19YHvoT0fISNinWOUT1ivYsOAbiclTzIy7Y6HjTN2XbqDc60WU1MzdPMc30RE1TKdvF/IyzfWgtExKL5rd98bfTfWDr1QN5pP1lpUWGbMDrj22su57Y5DXHWxopMsoIKAs62cmbqg3XMp21KB70UYm2ONIMm+fTLPd8ZTTgikhMlGhNdK+dE/fi3v/F+/gbKa0LNM7dnNmL0XbUFlkjSeBekSL6wGKSxSKg7ffxpPlCDNkRZ84Xy+cpMhBCjpIUROnAn8s/fyr2ev4Hkz9/Hjl6/xT+MTxL0+S72YvPBBm1CCqUqdnB5PerHk396W849f/CSvfsELONhL2bVlPw/0PG4y6yg9ifgWVhlSSqxK0WmJIPKYXzwN/ZhzvS7VyiTayxHpgGChycv/+e9pvuWDbNldQv/YE3jeo17Cih7APFSDiBMLq9z0y2/m01/4DCfXl9ja2cVqPsYadeRSxv6tKb3BDo6cfJjVpQ9Qn5xlS7+NV4JIpgzW+hxcXaPVzwlDBTalN+gx1SjxcLdLnhv+5nOnePTLZjjw5APc94HjxFnOytyAm+fgTU+xBBZsF7QxjE0AUnP73DqRgN3jMP/ZWyABWZMo7Qy3ZSQQMoNUkAlL/sDrOH7/b2C8EBtdha7tJFr/COO5xqtDbj0CnZMX9gvV3GLLUESZgDFkwEwAexqz3L82hxcJQiDz3Ultc0GOJbSQhZBjkVq6p2eGPLAYK9G5xC8b7HibAz3Dx39acNJO8KvvzBFBjPMKNlhhilSIYkNmLAKHoBuTFxrxwhOnYF8I+f3ZIf+vNLIsc5JRJUf+MuAKoMW1c66TqkNXvEpDqhPCckC2pknTxC2wvsUTCt/3qdfrnFteotfrEQQBU1NTzM3NMTExRblcRvqSUmnC+QcEHhAUnXJ1nmdGqVSi0+uPPF7AsWtveOITODV3hiw33H777TzzGc8gTvqcOn2Cxz3uevbv38+xY8cYHx9n9+7dtFotsixhcmKLY6kpjyxLEZsuSLpgAPieT55tgHWzs7P0kw3vKCEEURSxurrK4cOH2bJlC71ej/pYg0ajwTDVLAxdDPmRI0eohhWmp6dHvjndriu4Tp486bzukoRB3/nDeELiCcMVl11Ke32JSrmCSVtU6xNEvgM4x8bGeeILHsMn3n4bJjCY3K0RwwV7dXUVz/MIlaTXajM+Ps7Y2Bjtfo9+krN1x16SJGHPnj1Ya5mfn+eqq64ijmPm5+eZnZ3l9OnTzM7OkqYpp0+cph//IH31uzkcM7koPmWxMSmAmSEoN/rdCyRvQ0DFpWINpXEbclJRNGrcncJAXrjwJ4kz3XabRosWjKSow2J0WJAJsQH0bQYRL9ywDcd5fyNzy1atWubhU0c5fOhhHvOEKxmbvZTm6TMAvPIn9xLZHvUt+1lbm+cVT9nK8377XVTHZ3nPG15I0hzw+a8t8I5PfIEP/vmLOfrQKhfNesTrPe55OObv/u79/P2bXk6axnzlnnu45Z6TfPDNT6S1kiMFaOvALCkECI9KpU4S95CqQqpTKmGNXGtCabCBx9ve8HK+dN+DfOG2uwmjGj/3/McRqYjP3HaKX3z5jXSW5/mzt3+BuN3m9a94Cp+7+wR3HFrhSY+cQfktev06JdYJyyWyFDKjoUiWq0YVbnziEwoGSeoYaBZyXOLq0Dzf6hwpFAhJIDdvVgVDE7/h/PDEhoG/u1Y48/3h5sTY3DHvlDNu3uwvOJJODtltRmCVRpAX0iVd/I7FFKCd0WCVJctyjM1H13f3O+79Dd+bkN877Jf/zDh+4mEX/lGpUAqd36q9AIwb1kwXghbfDMQQQozSkIUqAPPNzwEErikvPeXSdq1r3GprRt5gAkEuHStvCMD7fggiQym3DufGoGWCFxTqB+MAG1kEA3ie51jottj4ihRZBJDkWjN3dhUvahBFAWfOtAjDkCiKCvCqzNTUFMbk1GoVhHAet61uh3q9jkJw/MSpkSehwudXXv4MSqWIv37Hv20cC7vhvTdMbTXGsGPHDs6cOUOj0XCMciloNZtcffXV9Hsx/X5/BEDt3rULaxwDfrIxySMe8QiOHTtGEAS02208z6PT6bB9+3b6/T7VapXl5WVmZmaYm5ujXq/T67k1f3p6evS6ceyY81pLrHWhC3d96Qu0O6sFyGm585ZP8OSnP5fUemQmZ3ltlaG0WWuNHw8IlMfk5CRLS0sj6eiRo0fxfZ+9e/dy+PBhHv2Y65hpdZFBiUqgSBJDRSjqjRDlBRw6vYAxIVMVj9lxx8LLSyHjVDh2ZhUAo2MnYbeMpPJSbmrOcCFz2snftXQMIqUkQeAjPYXODWKTzN7Nb88lRw+bO8WwGMdoEq5xyvcQUy7NYmQg6acdyuWyU7NVShhtyURCIy9zzSWPYXFlnrHKOP2wTZwbIuVjsyqN2QmiquXokeNUqjVKgWJ7fZr7Hj5Gp73Gj7/oJdx5992sLq5y4MqtHLr7Tq665ocISj73PXAnWi8yMTHF7rHtPHTiKKWyTy/pc/M/fIpMp7z5n3+HOz8xj53MKJcCyuUpTp2cI9eGVqdDkmW4ACLLzJZpVldX6fV6lMsBRkNPZ0g8rPBotQZO9qo1kR8xyFM866Nz6MUDAIzZ8BqN0+y8dUcLxczUJAD1apXlpVV63UHhTejWIWPAL4Wk/Zharcby6gpBENCInJxcSsl4vUI2iMk839lsSJfMrKwE6QDEQAVEgc/k5C5OnDiBlB6ZNkRlSZ64ZlUYhoXKZiN4K8s0YbiRSC2ExY8EDx45zWMe8zju+tqdBJ5rMJT6MbVSRBgo0qRHnsfMbptm28wkL3zBj+KVfP7lnz/KkWPHGWQ5K+0mwhjWVxeYGJ/FExAohe738MOAQbtDmmdE5Spaa3paI5SPtB550iPwfbr9daxxSp8oisj6inqtxtrKEpVKiXq9jsaSpSmTtTp5v0dZC/xSlaBaZtAPnX0JIKQkydIRoDg895V0QZEITZK4ZGHX/HOMQHetyNC5s9NZW1vjmgMXYT2Nlw5YX+uSJmUe+6Tr+eRnvoAXSLQMkTjbEysUNv3Gpsu3Gt8xhCEq+dSqDV777vfya8/5EbJBjPQDokoDE7eh7bo4fT/DUz2k8MmloZ+5ZTiJU5QKkSYp6JNgjQRpyZXzULI6RwhFpCyhGfCXX97GC3/sECl99sxMc/e9XSIh8D1FJA2z1Yznvvo0y0LyzjenPPaGR3PLZw/y1n/5AJ985Sv4kbf8GcYKlDkJZMCWb/rZgmgnPVFhOTMEIqYvUtp5xlilxGrewxjJ5bXt/PyvP4uTv/w/+aISXH2X4mN//k7mswFxnpGsr3H57FbGG2WeedUBTjUV45MThI1tPHTwbi6+ZJqF+Q4PPJwQVnokRKxZH7+fs2XbLCy3KYmQiQkPmRuu3bOTw6diDp4x5NmASORsCyzdUhnCBqfWxmh+9V625IYklHx52ecF15apVPp0OhloQ5RDpy145JMsBw9JPGmZTwwVX5KXBcQaWRVYbVHSIgyIMuBsYqj6kOQJirvIFm+nrHxSlbvUM6UxGQRD+YMPGIu0iszkSF8QRZYEyQODOUwkCZXBs067b1IwgSU0xUKqcbcxmFyiJYRIsJpQSVb7hjD0kL7BhLAnX+XmVwr+6Q7Bzfe6wmi4ERsVQlBIEAKyzJ7n6zHsnvxgfPdHEDhPhM7ABYIEQUhzfYk4cUyzIAhY6nbIkw7VsIQKJMKDim9JA0sv6YM2LK85avNic43JsXHAdU7SNGXnzp0MBj2mZ8aZOzfvDJCjkus64TpK1lqkhdDznU+FcF4wO3bsII5jhHDSj/n5Bc6ePUeepzzpiTfw0ENH2Lp1K1dddQDP8/joRz/K4x9/A2vrK2AH1Co1Go0GvX488sEqRXWkCBxjOIsplULyPCc3FiMM5Zpb2OIsxWicT4Nxhq7SUzx88gSra02CsMSxY8eo1Svs27eP1dVVrrzySubnztBcW3MGuWHKenOVSrnG4soigXTylv0X7+PYsWMu/EJ5xL0+SgkGgwH9QcJ4vcZyXzNbqTA7U2V5cY60l9LOm5w52eOia67g8D33F8wpj7BSYb3XoV6uknZ6lGs1gsB11BuNBmPSSWm7/YzJumLXzAz3Hz5CozHJykqT1VUX9pDnKUICwtLp9Lh4117uuPuzvPS7O02/r4dBoqRrZjjhmhqBJZsBsCGofr4xt/N2E0qgTYLJM3w/cowlT442rCOmnBToYnO34WUlR7c1hjx37BdhrFMcFZLWIcBjhfNZdbJIUYBKG5KV4e9prR3gWIDgr/2FV/LGv3wLH/vYR7nu+ku57nE38vXO1+gPegiV8/YPPMClV8Ijxrt45YiX/cgTedHT93LbkVX+4h2f5K2/+yoed8UY6wsxWyfcezbC47p9ZW76kRu4454eSf8g7/nEcd72uz/Kn/zfj/M/X/Esev0EzwuRwhTy8ghrwfN9On2NMYIBObpU4ld+69289U0/QbdZ5eyZmMWFPn/y2mfiScVya57n/vD19JJl/uS99/Gal/8w/eY5/uBdnyOQsH/fbtLBGnmqObei6cSWK3c4UCrPoNV1Pli7du/gyU+8iaX5eWqlzSwqd43cHLpguCB8w25iQwonkRo+3xiXlpoOGcKoUUCENQKLxsOtzc57UBQmzQpjc7K08I/x3ONZ7orjzUwWrYdJigWzLneseS/YLHtlxLBxEtZvHW7wvTwOHzxEpeKaNtGkv5E+KTd7MOZIueEfCd/IPD1PBjuE4YpAD6zr3Drw3JLmaZHKu+EnaLUBCmBNOY/V4esYY9F66DtoCTwP4Xt4REhfEEgPLV3oi1IKUcyt4fdrhHt/fmHgrhAooZiYmuTUqVPUajW2bdtGq9UaNbU8T9HrOcZNv99Ha02qc7Zv2UoYhsydmx9JTYXOeOIN19JdWaaPZawE/fR8UG4IsEkLSirCoMSOHTs4d+4cjUaDQZoxPtVgbW2VQT9lamqKqclxzp1bJAxDxsfHabZarLXa3HnHbeTagdNpmrJv3z601iOW33DzPwSqJycnWV52CqVjx45RLpcRyicMN9iOsmhOr6/Nj4CIrDjH/79/ez8X7buUiy5+JMaKwjBdjz6fa9SNMTk5yeTkJLfffifbtu0A4MSJU4yPT3L48GEu2b+fRn2cUDnvTystpVBRK/tcsWeKwPfYs2WS7VvHCQKPyPfQUo3Yxc5Xy8njPSkRUo2aOUPw9xs5bAoPhSj8SY0xZFqTG+2YVnYjDGLow3shmCoofFD53tsv+JEDRcvlCtpqwqhE0uryiC37aJQEGQkLy0cQok7gjaHEGbZPXUy3NE1ncI6z5+bwhFOdVCou0XK+e5xyNaHZ7fJ3b/lLQOBFlgcevIdAedzylVvpd/tMbt1KwytzdmmBNIu54rJrMTbh3LlzTG+ZZWVlgde89DcJVUh9aozczzl86Ajbtm9laaHNYNAZsVZnd02xvLyIlJJKKUIIQafTwWpDEJTx/ZDcQp4bgiCk3evhexGpcWnnrl1QNHIk6Cwd1QrDdS0IAuLMqU5q1XoBpnnoTAPOBiGKIvIkQ3g+udEE0kNZQaK7+MojifucWFmlXg4JgoB+mrr9D4IMg9aQGjf/4rhPr9ehEpVo9/oIFTKI+zQaNVZX2oXcWCDlsLbRhKELhIuiCI0lzpytTZr0OXToEIM4w4QQlcsE0mNyfIJmt0mmBb/x8z/Lm97215isxMzMRezafRnvyT7MmCdpD/rYIhQx9D0EvlOhSUUQlul1OygFtWoDLwycZ2ZQQ0oPT8TkmXJsxnCMNIFatUqpXCaOY9rtlKgyAcJjZa3LeFglSX3SnsXk0M5TfN+yq+ITBRHK9xHWydq9yC/qS49Mx6PrnsUnkJLU22DHaY1LrgWsEfiBRGhHXsiNodd0c2Lrzlnmjyxz+133Evhl4kFKv9NkfKwOxtUJvvfte9B+Z0A5KcltwPU//zL+/hf/B+1uH08FSOkRlqB3roXVYKRFxvAzL3oUd33ybwmNj01z5LDTaYu0QWHIrXEIrwBpNsJujLAMtCIX0D/1dUQjJW3BX//0Ek/5zRJ20MVDc8VTfMLnK/7hjReR5zlXP+Wx/OG738+xd/4Zvr6SZ779/ZDM4wUaIbYD0bc+aGMzrLViYhnRzDPC6hQHrtrLFz/7eawVdPKEo3HOL73hXzl48DSdwTnyPCIJNca69KBeGrKy2qTbz3j1Lz+H173pg0hV4bbDD5DbbaT9jH5fE6gBd89ljFUzji9JnnfjJSzMnyEi45JH7ENna7TiZc6tWGr1MmPlBBtUyRbW2D/j8+UzmjxusqVssf7FhKcf5Mqa4LKrBadamqhURpUSuusx9Zqk1TXc/zXYsW+c5YVlwgz6sSHywJYhTyR+SReyUsBahILIl8hcE0WCQHn0sMhShtKOqWCMAd8x4hAu9MEqyLMcPwKsKH5k8MrgY1HKI0uKAj20eAWt1DgJOMKABvySca+TGlIDAk21CoN+Tr0EqbH4AkRg+bkbLT99fcLvvl9wRyfEM65zv8GO0Bg0XhAiESMWlJOxOhnND8Z3d6Q6JU9yao0xut0u/UEHEXhUy05OYnTGIOlTCiK6iUtLjeMYFShE1xSU5cx1rbVmrFQny7JRTPiQXTE+Ps6ZM2eYnJ5y8qY0c7KOTptqtcq5c+eYmZwaFeFJklCpVVleXQFgbKxOkqV0ey0uvXQ/S0vL3Hjjjdx55x1MTU1x9OhRzp49W0hJHnbm4SZldnYLVsDpuTkuu+yyorPjkaQpgfBGXedut+v8UIRgYmIKY1w3TArHJon7fc6dO8fCwgJTU1PEg5Tjx487OZzJuOuuu9i5cydnz54lTzMEitWV9RGlu1LpI0Mfv+pMnm+77TYqUYmHH3Ksvk6ng5RQqVSI4z59T1ArTZAhOXR8EWksvabP0XsPs3fPLnZuj7jn7gQ/DzHK+fZVyy4xyUOw3mzi+z5hELC2tlYkQC46yU25xMLaCjt2bcfzPB566CEuueQS4mRApVIhkgH1ep0tO+og1/j9P/7V7/Is/f4eWmsQdiSH2uzhM9zUDEGxoYx68+bGMSjMaNekdeEhx0YgyWZvKyklVg89wAyeFxSyyG+S+rjJdHczGLi5SeNJ9Q2vMSy6rUkx1qJtj0rkHn/o+AOsLXYYny7RyzQC6HTL/NDjLmZfWGE5XmXGn+S5N17MT/3eB+iuZLzvjS/CCxK0DvB9nzuPdvjb9/4bf/OrN1Eqhzzzh2ZYP1flzu5ODjyiy1/83S381mufQ6fToVousdrtMV6tgOeTZwPiQU4UlTFJh16WEEVlvnLXPH/4G8+lH2v+6gOf4Wk3HWDL5DX0UkUlMLz1HffycOvf2b5V8isveTof+fzXuOfQcf7H86/lK3ctsmc2Qq91WUdx0RZNOx53xawSxMYD61IpL734YnLrEYXny489pUaSw+HxdV15Hwog1UoJBSBm0syFPyiJcQgdaZaOnuspZyXgQDiB8ja8BodgnZLnS2eUJ0eg4PDvKOljjB6xXhzbWpBlKX4RqDP0mHWAjWN/DVOp/6PE0e/lMTs5Rqlep1FvFGCUh+/7I0ALOA+g2wygbz4Xv1mDc/N5tvl8HSaPCzZYSkMJutYaK3LwFJnVSBRCym+Q2SqlCIR0gUieh68tmo006Avfx3C49+4hlWDXzLhjWyTJiLG2vLxMnueMjY2NUtur1ap7v32Xsr7ZWP3ApZcx2YjIUsvJ42fwEByYnWWhOTf6zJtl/UYboihiZWWFJEnYvn07URRxdmGRa665hs/ceuvIfmIoT52fn2dqaspJaDtdnvHUJ3Pf/Qcd06QIiOh2u87nqtcbqQWyLKPRaHDmzBmiKKJerzMYDNyxNIYsy0bsPSklY2Nj2CzD+BsJyMPPcOLho9x+68dJTcyNNz2f1EjKZecR22p36Pf7xHGM1prGWIWV1QXW19d5whOewOLiIrt372F1dZU0Talay2TDJwtL2MBJYrfONKhEIeNbp/CER6s3IBMWoeQokGJ4LIfzsdVqEUTV0fscrkEXhsikucYWHru5VRgrscrDWkb+pBeuKxdKVDff/15q5htjsIMu24JJykEDoRPk9h1YMhbXmghPs7p6Fl80qJUqxXX3NN1sQK4HzExOIbIBW7dNc/rUIrExmCRhfHySi6YmCCcuplaK+Mptn8ULAq565GM4eugBrn/aE7nrS19lNUi5/PLLOXzwAQ4eOsujr7uB/bvHeOjEUbTW1KOGCz6YWyUqBWwNtjIV1miXBiibMTU1wfLaKu12mzAMneJGm5HnchiU0VrTbreJ45hyuUy73R6BecMaxtXHEVns6u9SqUSapiRJMlLPrK01qdUDyuUySZK4OkcWa4t2wUJpmhKG7jHfV2TGkUKCUCFy93rTM5P0eh2yNKYz6DMe1tFpBr5Pp9+lG+dgJWO1qNijumtyVPUpVyKk8MhTi1QKIV1N5s71sVEwjVs73fvRWhOGIevr64DbOwW+jxd4o+uv1ppazdnbxP0e1934ZG667gDTE5OUKzuJUktNRghjKZVqSBEgREKWafxCVhtGEUlm6HdgqZkSlDwqJc3MZI00k5w9fYZKuY42kkGvz5bKOOf+f/beM8yuq773/6y16+lnutpo1CVbLliWbZoJ5mJ6CD2FBGJIAoE00gCTCrkXAiHJDfkn96ZRkgskJAFCjGmmuWDccJOsYpXRSJp++jm7r3VfrHPOjIzDk7wg/C/xeh49ks7MnJnZe+21fuv7+5aVJXzfp4DHwsIChdwoQc4kZZtmjUW+ZLwya8sdtEhRyjagPH21hrTROjPee0Lgulb/zJdh2Wv7+iBRd3DvtTIJ97X6Mtum9xAEEVlqnnPX9/ps2RCQ5PqBNZD8m/vdvzW+K6BcJuGal/wiu657Lp9791+gdL/gdgo4xIhEE2uXYCmmVLR482ufx6//UpG02zWLJTZWP0UnxaCfWoMUKZYy6WgSgdv/W0joZhmFRotPLr6U/1a4icwJuOvIffzMT/085ac8hZOHjnDq17/Mru15fu13XsbznvWrfPhVz+cnP/F3IAKczu2Q344SJQTF7/DbKWIhqJ8/TrQaUFttUK/XOHxijiwNSLQmyGLuPfwt4liRShA4ZE6CTiUxKWQSOwk5fW6OAj6LC01cu0IiYhxLMpZTlKo5js3HtKKIvAh59YFLOHquzsxYRn3FZs+UT7c2z4G9mxjdtpOPf+oRzp84w8RYmaVuyPhowSQz1RIiWeL9N7V54/NLlHZMk9bmsFKbrXkLLQWlchGlFPV6hnTAyucIk1GecpnPg0fPgLZIOoqcJ3ALkKQCW4C0Mc1KaQIcdM4AdbGOsMugIhAuxkpbmNSrLANbS8PwAYTf7y6kCilA922DHRfSNENYGjQYyxDzNQ6mOyEAS0liR5EqsEqSfKaIA03ZdtDFBHvbpVhHD2MpSDKNG2ukr/kfr4NecYIb3t8gzBSWlNgCsHPDTd1s5toc7pTT75I/4VX1vR4jI2MkSUQ36OG6RnJSHKly5oyRh3Q7HQNa9WKk0GRxjG0bs+dCmiNutQnCED+fRwcBEkEQRUMpR5ZlpFoxv7SI43soZdJHfcf4yLmWpNtqUsz5RFFEo9HCdl1DOx8ZZXFxkSAI2HHgAJZlMTE1RbU6QhCEfPzjH2d+/jy5XI5Tp05xzVVXce2113Lq9An27ruELI5YXamTz+fRqcS1csRRRpZ1zc+iY4Jel6yf6tbr9ahUKsODTxRFWNJsumEQ4zp+PxLc+GA4vocKemzfuZvV1VWWFlfw3BwzW7dy8vijZFlGuxfQaDTQWpPL5yn2fSOqpTKlQhHXdtACer0eaRLRabexbZtOp4Pv2rjWOKPjO8kJyT3Hb2X7rp10mg1uu/00P/rjL+czH/0cWSyGHbr6ao2piQlajSZTExuZPzdHtVyh2WyyceNGms0mrXZAOSfJUk2322Xb1hm67Za5L57k9OxxfuKG59NortIJHW655Uu84Kf++/d6qv6XHVmcoR0JsWngDIIZDHhmXeApN2AfDQ7PgyImt/7h9QAAIABJREFUzVIslGE5CYHSAnvdYUdKSRLFaNsaBqIMPMeUShFijckgNIZdIwZG8uJxvesGwE2iB3YFawb/g8ZNpoUxgM4ktnSZnhjl/OIZbrrpc7zilT/IFc94I4dv+zPKMmaXbXHT1xb4i49/kU/9+Y+hteRP3nED55d6vOztH2SqVOBdb3s5Tj3gL//+6/zZW683bJsgo77S5eipWW7+8r0IUWHLqKSXKlzfIUpiSnmXKI75x68c4Qef8kws+xhB6OCXKlhJQpKlXLW7wG+++1MkxQLv/bmXMVrwCCck//3PPsdv/Mrz+YU3PB2VQmAFvO9vvsGTL9/Cm19+BX/693dSzpfYNJrSiRIOn+2Rq5TYkG+jhCRLTR2gpaJSGuG511/P6uISBTscXjtHGGai0hqt1bCec6QkVdEQlLWEMIEQ9BlCwtxPTUY68IvrH/yFMCEA69NQNRlCGgnPwDMm08nwQG6+juH8GnwOWpDL+YBZiwTGl9MSmjhLsZQ/9BobHMaGAJReS5X9rzRmtk7j5nLGg8n1EdYaILcGlgsG+QVrMuELxwUsunV4hkabZ279a5lG9cNB1jNtNcb6xLIdkAJPCWxLDO/74Pva0gQ0ZIb6QhKndLtdstB4s6V9IFhKiUrWnnOlNN1OgBJl0IJ9OzZw/OwixWKRXq9Hq9UazqVarYbrmlT2wWF/ZmaGR0+dNDJv4NqnXEMcdcm0QImMWqSNJY9lvr/gQhDT/I7mGk5OTtJqN4Z+rwM7CRITRFWv1+l2DHhg+x7Hjh3B8vKUSgUeeugQQRAQxzFhGHLu3Dm2b99Op9NhbGyM+fl5qtWqsbUol5mamqLT6dBqtYZWHlqH2J479JgDc2h1i2VQfZYya+nWFhCpFLC55Yuf4rpnv5xep4XjlhidmGSsugZqtltdRkdHGd81SaPWJOxFnHz0BIVCHtuy8EbLOI5FfmSUdnEUci7Ct4ldBzs/SqPRoNcKTGiGn6wxNvvrQoJCRyGHj88yslxDSmlYiAiwB/PE1PoD0CFKMlwpKLgWKyu1oSx6PSCnlVi3vqzbl6y+HnvdrP5+GRdXd5KKmE5Y4+TZw2zaspmwUSfMEkIVEXUinn7Ny/jKbZ8iOHMPWaIIwhEkirAVcfFVr+DmL/w1e/ftwMm55MjTUMtorWnHHagfZvlsxHhlCtv1uPmLn2bL5Ebuv/NONkxPce7MKQ49fC9S2pR9n2/ecwdPf/pTKY9UCXsBnXqdiy7ezRlcFlYW2LixypkTi3iWxfate9i1az93PPwVLGlzZm6OLVs20WoahU0QRCRZTNJPE8+0sV+xLAutBFgay3JQykhN4zhGS3Acge1oEBZxbLxVV1ZXGB+v4PiClZUGAnDdnGGmahOyUK6Ys+YAHO/2QqqVCpD1zxkerrTotTtYtket3TQ+2pkg1YYBmiKoVKvEQUiSGVVClsWkWUa+YEEW0+x1sJxBYIVJgx2sYQOmWJylF/hqZ5nChOv0ATTbMVJ6LUmjkDQLecvv3UiUJGweqaJ7EHc7LCrYOb2BQltydr6GX8izdfNmwiAjjY1Hu8YijFJSCYtNhVI9XNcjCns4doFTZxbpdCPy+QJRnBLHxrMv7PYoWZIsiRjfuJmSb/whVaaxbPN72I6D1jBRLRCmbVrdECFKfQBpwHIFrddsMeJUYLtW318Wkv7eLoTxG+6GAb7jorXAdjzajRqtaptUSiQe+cIIrgiRRIRJjO/YdDoxXqmItFKyVPRtWP5947sCykkNL7/x5fzxD72EkVKBlXoLT4E/MU6z3aIgU6xCTMGCr3/O59qnj7JxwwbOPHrS+IaQIG3HLJqs62ADWZ+yjoYuClc4FG1BUVj0ZI/3fvAhfvjnPTa9vsFNvznDK37kfXy5J9n33ANUk5DXvXAvjQ/fQzpzJ6/65KeQwa2gY8hfBHIcqUuP4TQnGBjIDK0FDoKlxRbdniLutUhSTSvrEihwhCBWGZkSRMTIDKLUFI6ZMP4DrnCwbcMUTByLj/7LnWgZImML8haj5TxRECOzhLy2WFlu87Gv30q+Ms7c7V02TRY43wnYODbC0TNtWqdO0erVyQo2D9YVIgspWx4jOYtEN5GdNkcyQdxtEEYZll1kzO1wrhlxflZQ3OhSykt6pOQdwZiTccnb7iRePMbYuSfTamcoB+KmxisJ7ILGdkrorI0sC0TSP8DYEpUZg9eMFOkbn8Ckk+HaNqlOsSW4WhsfksSkx2hhQLX+3TZyBGWKbyG1KfL6xYolzIZvzDcNXc7OAA+cNCO2BW5FkMQpuQjU8UP4owWceps4Z0GqSFLQ0qbktPjYb83w/n9qcXg+IlEaFbJW7IuBSXRiNPpJQm5dV/CJ8b0Zs3Nn8Dxj3hyGPdI0pbVoEsEGht2uY9FqdUnjhCyJqFareLZFKefTjQJ6gRh2iVqtFn4+Ry6XIwgCkxrVZ1EopdaSTBPTjfF9d7gmDVJavf7Xnj4zi5SSg1dfxeLyMps3b+YrX/kq1177Azz88MNs3ryZLVu2UCgU6HQ6eI5JfQ2CgPn5ec6dO8e1116LUopLL7+MTBsvjHIlT5YldJttmo065XKZKIoYGxtbk4FJaSQ0rhgax66srLCwsDDs5hUKBaIoYseOHeY116NQKLCwsECpWuHUqVM0WwbsAhiXEqk0tVqNsbExRFmSZCnttkk+Wu+/JYRE2i7SdlluNokbdbbt2s3S/BxjUxtQacpXv/51RiZLnD52nmqxwrnzc+zYsYvz588jtQHcqqOjhJ0uxWJxGLrR7XXYtHGMLOvRWjaHoZmZ7azUDrN1xygXHzgAVkov7OI7Pl7Ve/zJ88T4TxlCmDTUzNJY2GRaoxSgFLYYJFynQ9aR4zgXsNYMK8pFYJo1QtpDg/HB56hUDxlySpvdw8zF/nsovcbm7svAM5UZmZzVB37EhX5yA1Buvbcd6w5jZr5LJCa0IBPwxjfcwDvf98fcc99d/Lfrr2NstIjreYRhhzDqMbXJ4Z//8EdxCntIk4eoWAEju/fw6T/8KYRjUxid4JU//z/507e8EI1NoFp0Ao8Hjp3ik58/xv98+ysZHxtBeUVu/caDnD6dsG/vJJfP2Di2zw9cfTlWTpBEI7h2D6KE890RPv/ZO3n2i6/kHW99NW68gq3adMIeUru87Y3P5Jd/8//w+zf+EEkGrirw5lccpJXl+N+f+CrXPu0KxmWHlZUVUlHgopkCD55eZiI/QpZEhEqT9tNud2ybIe+P0G4s45Zy2H022eDPGkPSQg3AsTgZXl/DVNF9Fo7ZX81hVxgfT+UMza0H9yhD4wzZjEaWtsZ4sVDKMN/WewZqbX6GAfABa0waA7qadGsAJ0uBNVnmYxmT30Xnl/9fj/JoFcf2DXhuOcP1/7HsuCGI0a+lH48tMHye9IUg3fr6WwHStnBtB8eWZKpv2G0b+XImFcKS2NZaw9QctpL+12tSlRF1ekRRRBSERFHEyuIKvXYLz5J4/TngCIUS/eYsRmEROQWcchlhCTrtVUZHR4fMtyAIhuDc1NQUSZIM5ZkAj546iRbgSZvLL7+ILDW+sIbRnmPbFVeaWlNpvnn8M0jponWyJl2VEiwuAAaSNBx+7wceeIByZYQ0TZmcnKTdajAzM8PJM3Ps2LGD2TNn0bZNqVRgbHx8uM4Nao3t27czOzvL1q0m1bJQKLCyssL+/fup1WqGte555HI5HMchCCIj5ZUWcRzSqreQKLLBc9lvvsOFmJTOUpKkzejopv57WTQaDarVKq7rsm/fviFoiOdQqZRIkoTTs2f54RfvZ2LRgAe6WgU7T+g55MtlLMemGyuavZQgkQRJip8p4tSsLQrLhGEhUcD58wssLKyQZUl/3q4Z5mvx2LVCUyn4lHybMBwwdW0yvbY3OI+RaBs2EGgF6HW+pN8/mBxLzWXcnI/rVSiNKOrNNs1mm/HyJvZM7iQZb3Ds6Dc5uG8/QVfglkYgbiCEw5WX7+POb9zMNZe/kBNzhyn5m4jpsLm4hXpthcxzmVtdwnE8xsY3MXvyNNuntzI7e4qxsQkaZ+cpF0ZBJZzvBMxMjNOcP8s9d91Lzsv3wTjB2fnz9FptLtqxl06ngy1siuU8R44c4fjx4+TKHnbBYXR8jGazjmU5OJbEsVziJMHCRmUKu79XDJ43rdeA/na7TS6XI4pS4jjB9TTV6iiddo9Go86uXTPMzZ2jgI9tWWyf2cGZM2eMrF6nxlPV9+l1Q+phs78HKRrNNq4nUYnGcWB5tY4ULmPjJex+jRSlCXE3ILVNiIO2YlPnIOiFAUmSMT0zgi0FjU5G0FVIObAIEcNzguN7wxCkLMuQQhAHIbKQMT61haUz8/190UII8ywpNFESoZRifqlJOe+RaHjta95AZebZSCk5FypKlWn81SZg0o2TSGA5Dr3YIYgTwkhAHxS0+rWY6/p0OgGO4+L5tkmxjWMqxQJSaVypaWUJQkiCdsvIjbWxKhg0WRO9xsbPiBFuhhDjWP17qZUaYgmDpqBCm9TWvhJC9BVymhQpbDw3BzoDFEmqcB0bkKysLDE+vg0lbKSVGAxDCBwnRy5fRRFBJlHqP9bA+65UFpV8lftv+RJurU5pagN2vUkmNZXJSaz6Ir/0qh5qyUIUNe+/eZrNrzpEbbVlPByGXTeDVKsEnH4cfTSI2ZUWrgVlS4JtEYYptrTwlUcaN9jw1hYJ8JzrdxIeeC2bjz7ErTf/I8/dW+Hoh7/Bmz/+V3gFG3f+nVC5Am3vQogCui9Z1ZlZWC0HNF0EITAGmCIkUxHv/KdP8TM/8BwWo4huFBiKp5DILEHikGUxXqKIMgWuxJY+KuqS1xZ4Gb00Q3UykrE8l+0d48GjK7S6KTrN6IUaz5HUAyhI6GmHPbuuIOo08Fx4+NEM8h7d5nnyymbPzAROfgNHZ89TiVrYxSoeoLJForCH7Be077st4canW3TaFgtxganpLu1FUMsxXSH507ssjnkJs3//66SUiMYP0hMFRNBm1IZOCr1QUyiCztqM79pBt7FEiilCkDaWpZCWh5DGeFkqjVvUxG2FcASWrdEZ2EphSbCFQywyRD/1VCuNO5onWOziWprM9ilP/xTzT/0AcQ58BemZo7hLtyOzOnF7Cat9H054HKHbeFoRdxsIz0hbPa1Qbh7ld3EyAy5agLAzFE3srMtvv6jCuWiUd31a0aq1iZUpFBEWttBklotKNcoyB7Inxvd2mE6xRxAaCQZCDb1dut0u4+PjLC2fx/d9mkFounDtNkXPolzMMbe8ZECBPgNusEAPTIeNP0OIbdu4rjtMMHJdl3q9TrGYH1LATRKRQ69fVFZKZbZt28bsqdP4RSMl2b17N/V6ncXFRS6++GJuvfXrTE9PMzk5yf79+7nvgQfYf4mRqbaaHc6fW2BkZISVpWUcxyFfKLK0tESv3aGUz5FzveHPdiFDQVMsFkEbCYfv+5RKJarVKr7v0w0D5ubmKBQKuK7L6OgolWKJKIqoxQmtVp1MCUqlKmmqCYIOjUYDlS8wOjrKo48+Orz+Awp/LpcbUtk9xyafz5NpRbFcJnMdWisrjG/ZxJF77uVJe/bw9Ttu5/I9FyEzi8Wzq1SKVRbOzzM+OkZtaRkpJbXaCkU/N/Tn0Vrg+3nOnDvHxXun2bx5A9u3zDC//Aiv+5nrOHbsGHl/CktI8n6O8fFJTp48+T2bn08MhknEriWJ0sTIxvqFk+UZeYdt22gy4iTBsb0Lfdu0kVlYUpIkGWQRaWoNpR5DNjMGkFFqIEM0YRLCMqFRaapwHFN4aSHQ2bpAB0ui1z37AxBpANqssXI0YKGFka6az7GxHMfsJVozXq1y7PTD3PzZL/DKV/4gW/e/iqO3/x+KVcmVfsLv/sU/886ffiXSyuiEGUWOE+uUbx1t8oEPfYwP/eaLSBR02h3ipMeX7j3HM666ipVWnu3btrFSP4+Kelx10ThX7IPi+Dive9Nf8pobXszlu4u8491/xPt+6wbuPqL4h4/ezI2/+gpe+8pLScMWKrHJkpRG1KU8UiInXYKww3vf/mLe8ce3cONrriSReZSAstXlp5+3j3++7WFK2ydMceomPDzbZvfGEghFamnSzCXLImamt/LiF7yQThAyvbFkDqn+t1t/PBaUEX1PzsHH0H3zdM1QyqqROI4B1+i/8ngeZWZPXufptO57rfeye+zPs374vreuuSCAAagv0Fpd8LH1ISX/1Ybn5teek3VM18eyTR8r63vsPfhO8r7HylxFlvUPRXIImrvKMjLm/uckSXoBoD7Ymwf3K+oz4cNeQKfT4fxKh6CX4tsWjqvxbQvfsqiM+FieZ3zUbIvULeE5Pu32HKXqJtKTR1BK9ZNVY0ZHRykUCkOZ6qAGAZCW5KUvegGN2gJBZNgx69POz58/bxp/SfZtadKDNcmRZs1rNBpMTU3RbrcJggDbttm0aYrVWmMIKufzeer1OqVSiXze1CilcpmHH36YmW07TGKmbZtQJc9jdnaWiYkJlpaW2Lp1K/Pz82zbto0HHniAiYkJms0mq6urlMvlYZDEQMKfZRmuK4brJhjnUMS338/K2BS+W8FyDauwWDShGPfccw+bN2/m5MmTjI6Oks/naTabjI+PY1kWVzzpMrYVHYpqlEyAcHwKtod2HCYnJ5G2RavVQkobYXkkYYqdwoCmOdgjZnbuYGykyrnZk2SZJkvWGNWZylD95muWGuZMkCYIobC0wtY5sn7zR/WB5sH+9Ng1ZNiYXFePfb+NJFY4rk2r1SHqBYRZxsWXPJnaufuYPb+AEBUu2/NUTpy9C9fTpJ2U8cokDx66jaOz97Nv71M4evIbBGmPoKWxHAtBShImCLdAvdVkw/g4Ilhg82aXsbEKcbiZUmGcoFln98W7OXTXw+zeuJFz82c5ePAqTj/yKOXRMe65917KlRKKjGK1xCMnHqRcmmS0OMmZpTNMjY6zvLyMDPOoTGOHgsrUJJ2sQ7vdJuuztbMsM2C5XJMv+l6eKEpptUzzfyBtFDhYtgG+tK5TqZYoFHKcnp2lXBzB9x3q9Q71+ip+zoREDOqXAbjvuoNgOCOvT+IMjaIT9LA8FxKzJgxsPlzXRUUJSgpKpRJhnODZNmmc9BvZPUqlHHEUMrNtC81WxunTZy7w/xxYPWTr9sfBumPHLrWFOlqlaMxaFQlj6+PnvWFzdHLDLs6ePcRLX/cm3nTDT5Gv+sRxjCt9pAVxLybfb/Q7NrTaIba0cL0CftHDFua9gyBA+D5pZKS8YRiSpH3mnrSxEfiOS6vXolIdw7I8lBT4+SKNRgPbdrEtm1KphO3mhsx2L+fxrcN3XLCuin59t16ZoRUEUUqQxv3zk8KyXITQJElsfg7X7hMyfIJuyMTEBEdOPEKhEOA4DvV6kxHf79sYBRTzE3S6Z0GahmSchP/uZ+y7AsrteOqTuOvDnyCpVFhst4dSldL2HZy7Y47X3bCK29KorkNj6zN41vPeSH11GYlGaomUxsgfwJEmBcfqy1WVTtG2QKqMLLMoCAGOSw9NEqU4vTZZJ2T2sy9k5snXc/iuOzh070dofPpBrvjLN/HSd/4QnftfRjA5jZO7FNueQsisn1iA8ayzatz6t5/l0h/YTnX7QQxbLgPtGBmmdECtsqITVoOQZhJTzZfotZo4MuZHX76HuXMtlhaaZHaOK/ZvI0mW+duPH6Nnm7SvRGWkysLrdTh6EmqtCKFNoXOy2aXgaGwREkhwUNxy9xH2bd3C7rEiOe8kBZGnZHtEacJKO+G+Q0dAGwrxC/bvwnbbHH0kxlZLJJYN2CwGIf/fHXluOCihm3F+zmHvTJ7z8x26SUbL8vBEmYtf+9ec+50Pc/pQm5G9ZRq9mG47oV6EcqhIaiBLUJs9TWF8MxRs6EX9NFzH6FqFjcpSUDFCa9yRkO5KhPBsLDtFCgmOIssSLAWOByrTCFtAM8aXgtQu4IsY3byF/J1vwWYT6mm/TDCzF5X3cVYCek/dR3b+DONH/54svB8drWD7Haw0wFd10DE6a9NxFCNj41hWQJYV0FYZnbapVkepz68wU8r46Luu4I1vuZem0LSjoC9pcUGkCAts2yN7HGvYJ8Z/7rA9STcMyOcsPN8ZdpLbnQ5aKDq9ttksSSnmXFq1gDhKUHaRIAiZKlY5Fy7R6xscFwoFhLUGtjabJmZdeB451yPNElzXRihNqWS6yWNjY3S7XUQ/mciSDlGoOHDwEprNJpVKxRTVQrK6sMRqp8mWLVu47bbbeNKTrmBhYQHLsvnsF77AT/zET/C5z93MNddcw8GDB7Esiw0bNhBFESkp9916G3v27MERHlmm8TwHS9o4tkmBzefz2K4FfdmPkIZNHOoYz3fIVMLUhmmWFlfYu2u3KUykZOvWrSRJwujE+NDfIgiM4e0ll1zM6dOn8H3fMFBsi4PXXM3CufMATE9PGwaezCjnS+hMUa1W+wwnG8dzKRbLjI1O4OiUsWIZJw3Yf+nFnJs9y+ETRxhzNzAxuZHTp0/jBF20YzE3N8fk5Dh5zycMQ5Nol2Y0Wz28vMfxE49y4IoZ3Nw8u8cmaXdadLptgsAcPqanp5mdnaU8OvK9mp5PDEwYi5YDD06B48i+t9hagWTALQvBWmE4OLRmWYbSKUKZplyaZv3wBXfYuEuSBIQxg3c8e+3QOJDACj1kzQ0iJ9YzrtbLZdcDC/CYpEitQSoEfX9TzDM2CAZQSvHLv/DT3Ph7f8Ctt3+J65/9bEqlCTLPxrFz2DnJ7775en7kFz9O3KnxsT95Pfm8z4tu+FM2bRnnz298CZHsYpPHdkBYVW6562u85NoJbvnmIV7/smcQBhFRrCgV83SbXQqFLh/8458mDRvUw5Dfv/EnIexx2WbBlW/7cSwvwMpVCXs9lLRZXunwvr/5Er/2k1cR58ZwbB+EzS/9+OW860Nf47d+5vnEcUqcJAgLnrZ3kmY75OSKxVjJZddGiW1pkjQmSh26YYLvelx15UE2b91J0qnhuqNDn6bB9V27hP/2a2C8ZAfXcngPLGd4+ftfccHXrr2XYD0o99ggkeH3+A5A0How6cKPCQZg0Po5+l91CMvpKxQGz8zgWnx7w/LxPOQeT8q69vl92RDWusAH6IUhOs7QaTYMJegmNo5lEaZ9Vmaf3WDYkgrhOOTdFKlMMq+Xr+Dkq3gJ5BNNdUuKSdhc846UUmIJTaYFcZoSpwkqjqi122hhcWRuifFKkSPHT1Eqj5AkCZ1Oh2q1Sq3ZMOz6KAad8qJnXkmjHXH6xMPm3GAb1tmgmeVKjZ10EAIyJEJrLEuQz5f6Xq1yyAQdeD4FYRcpbUolAyBv3LSF0bEJzpw5Y0BEIAi6JBrq9br53bKUTZunjX9rsUgURYaNXq2adNhmc8ie11oTRdEQ1Gu3uywtLzA1uZlOp4PrunieqXdGxieGTcxs+LxoLKUM+5i1++xaNrHO6PVC4sh4bXmexbOe9SzuvvtupqamuPzyy1lcXKTTbeH6HgcPHmR5eYk07NIqjOD1k3kVRgXgui5KqD6jEGzbMGVtZ01ZZXyvM0YrPhfvnCFLYprtFnb/HiAFSbbmdzpQRsRxjNAZnmPjei4qSemFEVjSMDC1SamUfZb1cA6RIIT/bevM9xM4t9Q+h9etMV4t0Y17RFHGkUPfYtfOvaQrp3AsODH3ABs37KBRPwVJl+3bL+LQ0btxPYdHT9zNpRdfy5HjD9LrNti7dy/z8/NkStPpdKlWJmn1jFdypTzK0txJypVJFlYWyOIu37r3PoqFHIvLC9iexTfv/gpCF1hsrTBSHSeKFNumtxEEASPlGEuZWuLaK5/B/Q99C9cqYAuPKAqQnkBFigplIisl8CIaHQO6xXGCZUMuZySmrWYDpUx4g07NPEnTlCRNsDOJYwnGxkZpNFexLM1ItUyn02Z8fDu+u0K73cXIRzNc12J0dILV1TppptCRsc3pdrtD71IhHFAZWoCdt0iJqJSLdDo9Ws0Ovu9D1CMJNFIo/EKOeq9NsVxk4+YKS+fnKBbL1JMW3W44JBEI2yJLDFN0pFyi2WwSRVF/je6Tn+IUSKFfmwkhiNMILRS1Zp0MCJOUdruOLTze+553MTpdpbW82vebTCjkxhip+KSpQng+tiMolkZYXTVhcmQxvV4P33UZH5/unz0iLMsh6HbYOGaa7LY0rERlR1iWjZMr4zo583znFZaXx/Xy5pl1HLRK6UbG50/1Ojh5hyCMcfI5HNum1+sZz+G+Gs6QLXy0jsGySTRE/T3G7eNOYFjYxoLFQyjo9Tq4rk/es5mdnWO8XKLbC5C2Rb1VxxnxSJXGtgzj2Xb+/bjBdwWUe/I7fpWPvOhHCd0SabNnNlhpU56YINy0G7k6i7JiVDXiRa9+I29/5EPkvAeJ0wihU9AWmcmwIVYxjlPAlxaR1kiRQzsprvZxPdgw7lI+VedO18aKMzy3wMaZaR7+8xWSlstX3vOPvP2mu2j/8nns2f9BfOKvKExegizuQLg7QUkykSEIELoNYgIY5dpXX8XsZ3+P8rY/IQVI27iOD3GDzK0SyQmWls+zGoSoJKIeJZTzCVOTZf7hcw8QxTmKbkbBb3J+OcfLXvo0/uXLi5xtLJEplzQTZERsz0mWmwG29FBZhNI2Gwu7uP3eO9m7YyuPnutQytdx3RK9qMcjj7bwrAna1Ln77jp7ZixqtQ7dmsWeXT5iJeUL3zhCrJtMlnxe9/yn85Fb76SXALbF/Y0mH/m6zY9dBSJ2+ObhkPFyxsOzsKpctm3ZSL1eZ//vaP72FRGzhxNSJ8IubeWO8zM8b8MdCM8mbIFrp+h2HekXsPM5hDUJhRRbSqS20XFIqnvoKIFEUNzsYHVsog07kKdOkLoRKIFjh+jEQgWSo40qdx/fwKHaBA9GG6i7Nj1nnK6XQ7gW+h8+RFysIkfKpMLBvmnFxA5HVzBSuyXZAAAgAElEQVTa3cEYIdfZx7hmKuPSsW9Q9CLsaB45UcHtpXRm3kvUOs9Y94u4fp40buLOjOLnS1Rbd/N3b1/lDe+Z4KTj4eqQBI3OBEqCUokpsJ4Y39PR7PS9J22f5vwyQgj27N1FEIbEcUyn0yGJY1wpcB1vGIoggGajC1LjeR7jmzZw3333GRmFY+TJaZoOZRtamwReJUzBZgtJGIaMjIysGZ4OjEC1zSWXbueOO+4gDEPGxsaG7Dpp2XSCHlu3TJPL5UwRkmUUCgUeeeQRHnjgAcbHx1ldXSWKItrttuk4uS5LS0ssDoCwzZtYXqmxa9cOwBTe+Xx+WFAOOkSD4tKWFn4+z2WXXYbneSwvrbJz506mp6cZn5jAtm263W5/I+5RrhTwcw5brI2cPXuWiYkJPM+jWCxy4sQJoiji0ksvZXl52Zjqlst0ug3CMGT7tp3YtvHVy/vmZyqWq6S9Hu3VOseOnsLXKVMjVXQQE+uEuJbS7nVNUlyjQaVQQuRy5PN5luYXmJqaotlsIoRFLAOe8pzLuHjPFk7fcy/79+8fBl1ceumlzM3NsXvPHpaWlhgbGaPVan8PZ+gTI5/PD4G39Qfy9QDYeomo0imotW6mCT0xBacQGtf20cLqH7y8ITtkvXT78Q7/6839h4clpdfkdkKhVZ/9JNQFYI9S5jkSOkVohYXxk7Mc23iQWibBUfelZlunJllcmeOTn/4kr/6xV7Hz4Ot56Cu/T4yLVCU+9r9+EjvSvOWdn+Ddb/shPvqeH0fmJTntoFSRMM3QmeIX3/dFPvKHb+bsfIOSTtBJiyy2aMpRrDhhfKxCEEMpF5B6RUZFRk9n+G4OlSWEUYeCXSBIukgLpE4YKVZ59Uufzwf+6S5+4ccnSaOQLBG4XpHfeMPzeOdffZWfe8VVgKTd7tIOIh48FbF1TBALjVIxsbDJNHT64Ut7du3medc/j2atzSW7px7DXvt2Fsn6+/J4YJlWCinNPdACBAO/psH7rrGuzNcMWEVq+LGBPGf991uTHV8YNmDea72nIBf8PRiD5MgnxuD+SaS8EJg0csE+qJmpC57zwcfXj8cyjQay88d+XAJJkpImqg/ou5DaCEsSKI3KfJKk/5wKU5uZdcHH8QzzYqkZsVCfJ+qbmA/BVbkWCjMAyvx+unOhWkZqqNXrNDsxvmtz0a4tCJ2xf/sEKo1JYjMvgl6PJ01XsF2HVCnGXI1TLgAaJ7LI8GgHa+mMYFL9RkujfcBNUfDnaAUxg/TgC9NsFblcDsuyiFREuVxmfn6e+++/nwMHDiClTaPRYmJ8lCCIkJZFN0kZHRmhFxj/KNdxCCNj41EqlYxnlety5swZpJRDZcDKygp79+7l1KlT5PM+vu+idcamTVuo11dpNpvm5xgc5IWFIsPSIIQyc4ALn7OX/fBPMLNlmizLmJqaYm5uFtd1h0BfGIZ84QtfoFAokCQJJ0+cZu/uPVx35UU0F2ZNUqI018JREs93ERIcy8WzY/Kei9MPeBBS9kHddOj59uiJWeLEeBvm8/kL7d7611dYazJ786LGxoQVtZtt4ykmDeBonK3XngEDvAnD0P42UP/b5/7/y2P3pmsoFmFhZZkN1SIX730qDxz+GjrVTI9v4bLLns0tX/1nzq902DNzgGI+zydv/giX7Lmcxuopnva01/APn/koueooU2M5zpw5i2vZVKubyKIYlXZxnSLFoku326ZaGEGlXSarDhsmr+Ds+SVy+SK79u3nwcMPMZrbxCWXXMZDDz1AmGWEwQonz6Rc/aQDrCwtML5xiuXlZY4cOcTU1AQPnHgYO7YpeCW0nRH1AtxSiajTxXddNhXHObeygu0AtmGnxXFMLucjhLHcEJ6x2xiuJZlZo2qNpvF0dJ1+7eIyNzeH6/nEkUJIhRCKfD7P8vIivl+k1+7h+5Ig6CKEHjK7XdemWKzSaDSQlkWcRkRxhOva5PMGwNMAlsZ38wRhF8/3SbMQjUWSCZZrLWPJEybkiiUqrkuv18FxTJJrq9tC2BaVwgiW5bC8vIxt21QqlaEtUKUyQqfTQSmN5TqkWlAamaITNQnSHvlijsXVBp1ujUrVM2eeXI4obhMGHXyniO1aZLHGciCfKyNwiNMY28nh+TmSxCTaXrzvUo4dfoANYxuNP5U20vhYBRBZSNsiWVnA8zy6QYTlmPOOdOxhmBQAqTkLLYQtHN/I2gtZRoyxvHJs25wpshTLcVEqxXZsCt4gHdvpN4dB972QkyzFd72+vZpFqVrBtXLUajVkMSKfd2m1NTk3Ry4vSFWMJTWaACEF8j8AzH9XQLm7PvEZOpHGyTsgIrQUIAW2A7rXJBU9HCVQbZsT1QIl2+ZX3vUu3vNHHyJeeBgLjW1JvOKoMfslT8fxsH0Hci6WSkm1JtaCYysl2HQFj97wKDtvfARLOsRUyR+4g3tv+3v+7pFV3uYEOKdeh7QTbHszODnjKyPLkCiITkFpH4iJfmnXAWczW3/ob4Amlvaw0kN88aavcf1LXoYVzdE9d5Sg10ZmigyLMAuQsaS32MPHY1PVJpd3GamM027U+cJnvsHVT9nJyX+tIYVGqQSNTUOnuMJmY6HD2U6JQt7iyLlHYWQzXq7HromAKMkxNWKxXFug3Yi48VfexFc+9xkKzjLPeeYzOXtilonJPCcWaziWTafV5plXTnFq3mZh7jRJ0wfbcLxK+TK/+0dv4ba/ejeTbkRRa2xt0Y4UXaFZXK6RK/g0s5BaL6BUcplow63RNfzab7yGj7z3b7npXx/gJU9qcvXVKX7gYFV3YTsJ9vhOpD+BEi62dlDds1jxWZRaIlMSmQW4Voi6+F30uh/gze+oc6YyRlMovFTSEXk8IVGijpNJlJeiVUY5O00ukZBqlHCQSpt7aFuIDLAFqZTksOjmK9xcKPDJ0CY993rcXBfpjLAh6/CZ0ptJ1U1U/FM447vIRq7DGbuYMccmU1Xy41cS3PZS3v8LD/GzH/RoN22CJCMjwJYOoFDZ988G+//qsIVNKuH8yhJbNmwkDkLOnZtDytSEf0hJrBOWV9tsGJ9gfGIMISEIekRE5LwCWS/m0CGTSDZITh0UVAMKsun62HiOZwCgvtH3uXPzw0SeOEsplUpkqeDs2TmkhJGRCqCGxqlBr8vywgKHs4xNmzYNZRVhp8P1113Ho0eOsH33LsP02rqZZ1//LI4fP05ztcbxY8fYv38/y8vLHD9+lAMHDqBxWVpZpVKpGKWGXksfBIbyGNu2GZ+cIIliAKY2bSSfz+MrNQy08H2fTqfDxg2bOXXqFKVihUZzhT17duHYOfbu3cuXv/xlZmZm6PV6HDp0iI0bN7K6skqpVGLDxhnGxsYolUqkacqGDRuIw5B2u00viim6LoWRMlu2beXur36JbVNP5cv3fJ4Xv+KFPHD/I5w/uYwXe4yPVUhCxfj4OFGnzdjEKFHYoxkEXP60nWy7vEyt3eD+MzV8NIcOHQJg27ZtnDhxgkqlwsLyMvt27+b4sUcZ2bLtP3lWPjHWj7znIizDYBkEK5gkdfqHbcPqHL6urQsO8Vrb/YAIZSSN/aRE2/OQwpQttvV4B/11/1YgpQkzgjXvuPVADayxq7RWCKVBqH6yo0KnoLOsz4IQONJFGhMsLKVQ0ngNCaH51V/8Wd7y1t/mq7d+jssuuYwdO2bYd/A1nPrWJ0hFSk5rPvHlI8zXe5xvlNhcdVFpRJL1COIIqR386laetK3CyvwxfutPbuUP3v5Smt0mdx6r86kvfY0/+PnrAI+co3jNb3+CuNPjg7/3Gpwo4Ybf/Rgf+O0fI+c5BN02jmUTJcY3E6nZtUnz1pddye986Ku89XUvJkvriBTCLOPXX30Nn7jlEa69Yppas0et65ArhJxpwPRYQoYFWlMLJEpBqVDkWc94Go3VDju3VYbXcfD3v3UwXZ++u3bP+iw1KaH/fdab3l84BnNkjZ3zWMBtvSnZ+te/XXI2eJ/H9zob/ltqtJIXgHXfT+yX/8gYgHJwoWx1/f/ld2ASPp689TuxibTWHDu9RBLFCG18IdNEIS0Iuh3AMKSKObN+eJ5hkbXaAZ12jwyB76R4joXUFjIzYFcYxvQChbAEcRZSyDkUXYeSVITSoVKuIixFHAXEkfEhKhaLaBLjfZbZ2JFJJHUSxwRKSZD0lT79a5Ur5egEauidNJB+aZ2RpuZQr1LFk/fv5PP3PDq8LkEQ4FqG/TsIjhhITwc+tlEUEYYhUkqKxSK1Wg3f91mt1cjn84bZ5vsUCgV27tjBocOHUUpx4sQJLr/8ch588EF6vR4TExNDiw4pJc1mk9nZWa6++mpmZ2cpFAosLS2RpjGO4+A4ztCPN0kSLOfbn+X1z+CZuVXGRgyQcPz4cbQ2RvYDL771sjrHNXLdI8eOcNlG11gcCIsBW1VYAhuBzDRYIMlwLBCZoORY9PqfJ9fNq06rx+ypfpMx5w7nnSXMfiTXMRIH981zbUjjYbr94Pd7vMbDvwX4r5/f3y+j0TxBsXyQK67Yx+qJr3PHN/+RbdsvZ+v0bh568F/5+Kc/wNbN17B5S5HTJ+7kyMk5nnXweezccxXfuOth/ummv2bL1v2kImNx9jCe71MujiMsi4XaIt24xfTkFIQJI77D6fNn2D6zAyEsjs7dQ4JPVkt5aHmFvO+yae9Ojh07QslzmBzdwPz5DM92+ea37qXZWCYRKbaVQzpFPBwu3XgJqmgxN/soxbSCZxdxRRHfjWk261SrVUYrBdI0oTxW5fzyogn3sdyh37SUsj8vFHEY4XsOk5OjCM/Y3tRqDWxpGgi5vEeSRDiuRRiGaJ0RBH2P6jTlkkv2cfr0SYIgxvNsCgUjQXcci3q9ThjGxorGM35yQkra7fbQ91wpRRL0sB3oJTGu73P2TI2c72Erqx/YoEjTiG631V8/AnzfJ46NT5qR6Dr9FFJFEHQol8u0221Wa8t4nkeSGLJCmAQEtWAoWw/iiARFlgjsICPLNI6vsBxN3EtxbE1zNSMIArZsvQTXgyzTNDorZCrBDgJyroMUGceOHCWLYqxckbifEl1rr+DmCzTqbUQYI1C0e23iZC3ISzo2rjQKi0HjxfM8A54r2WdXF9caPVKilF7X0BW4UiJUhnRcPMc0aaTKELZZgy3LHp4THWHA2vHxcXpxRK/vNR9EmlLeJgoVSaIoug4F39RLYZp85wdr3fiugHLf+vAnUK5NGgfITJpkI7uCDEMCHeEJUJkgzV/DgYLPX9VXsXoFiqUraFf24feWKG8o8PrffRN3fP6rnLr3BLqzhC8cRNxGZgU0MQIHvdEm2L6Xi469nEbyWt72ggPo/DSzK/czvmczD3/mOJ27diIdH0QeXcpQUQLlCaTK0FaeOL0MV5WRdorK5pBKgbARVohONbW/fQnVS6/j/W+/nX/4g/fyl7fdzOjE1QRJmShZNb4ECupJTBoIbDLmO6YzZktjSn7RxVMEjcPmQdICLS0UiqCtuXSjy0Y/ZrRa4skH9/PW9/wlQfteXvC8V5MmDqVSnpVeQNHx2DAu+NCff4iJDR5bN27jvrtPs2HEI+y0sdIMy3Gw84pjJ1ZoKpeFTkhgBdj4GNtcxee/+il++MYb+Py7P0jZTmglEGhJPieJ42AoA3DGobOS8dffhDe+IcfRD7yNp6YVnvvr72fkxeBaV4O6nVOfv4UNe34EufUa0zXDRZl+mTl8Lf0L8sS/ULv/IQqbazifeiVfumWUjhhDzR5B90JqUUhIBv1FRCHJVIQQlrle6zbEgR7epKgI6FNsB/W7oZb3jcYFaFIawucVM1N8/uc+h/uTzyWUr0blX4yL359LGifLSJ7+d6we/yPe96Lb+ZWbzpG1zRwI0wzbcrHyve/GI/PE+A8MYQsWF+fxXY+zc/OUikUypYnjiHI+h+14NGqrSKVJeiFSKBxh0UpMYb/SqA8XyUGhLC8w/Bb4vj/8f5Ikw6jwgcfcwIzZFmuHxyzLsBzTxbdsmw0joywtLRHFEZu2bDad4CzFzxs22NzcHKdmT/Oc5zyHKEk4cOAA9dVl7rz1dk6fPk2hVCaIQu6+9x6e85zncPJkRqPV5NijR9m0aQNKa7q9aFig+75PkiS0222mpqYYpC3lZG74mjFTd00B3N/YAQp+bvg+W2e2mFj4Zodz586xZ88e7r33Xvbt20e3awIY2q0WY5MTbN66k1wuN0zgs2ybnOXh+kXCbo/m8iLtcwtE3YBKtcqXv/F1Dl77VM7MLVGsFLnuuXv5xs13000SLCFRUqCEpNlskOZ6/OzvvZrF5hm2bpmGk5KNmzcQzi4zUxqjVqvRbLXYPLOVkydPMj09zV0PHKK8YRO3HT7CU76Hc/S/+si0Qqo1JtKAiSCEQEsDg0ix5hEFxpSdrH+AESa8QYj/y96bh9ma3XW9n7XWO+6x5jp15tN9uvv0PHemJumECDEgs8IVBSVEEUWIooB4FcR7LwiCF/F5ULnIGMGEEGMMmIQkHZJOp9Nzn5MezthnqPHsqj2/41rr/rHevatO02jwMfoYsp6nnlOnau/ae7/vGr+/7yAmThYOPikKpNSvelByVesqURULE3+fCrxzstgSa12IwC64cy2jx1jH9pg0KyXWyCmTxxiLoQQ9MUF2ADhlyj/8we/lJ/7FL/KBD/0uf+27/waNeI7Gyr2MO08wHsLbH7yO337v73Hdcp+1wSyLcYIgQFjFKMt51z/9DX7m+9/Cuz90ln/zT76DcrDO//kL/5kffefbef/7PoEKGiR5jhE53/aVN/H6170Jyi7jeoCI2zRrIePUjdFRkkznKSkleWZ5prfKD3/76/jpX/3PfOOfuY/DUUHYqLFxdcR9Ny8zGCZsjyRKDOj0co7vD52BsYRE+2irUcpy7933cMvNd5NmI1r16JqD51756N77tLf9cYfVV2O17WUYXZMCsOc5r5SevhpA+N/6/d7fTeS0TkEpgQIrJMLKyQf4I+/jT0OzVcgJuPEqJ9dx8ntrnTUJr+IjKK5NFn1l2/X/01PGuiclIQWzsSAKXWE0CALi0MdaZ5cQRDWkrNZy380pL527xHa/QOBzcHmBdsMnzXZlZ6PBGE/0EF5IURm4RwqMHtMfabTcIggiSu1Ym0q61D8hLKYoMaXrc7YoMaWGUiMESGHIc4sYjCjGQ6L5GuPMQwi3f5iAchKNLHJEDp5QtDyJL5gGVACgJEWeY4scT6mpjBUgTZ0kbTQakaYpo9EIJSGu1XjwwQd54oknnEKg368KeqeJayFLS0ssLCywtrZGnuc0m81pkeK+++7jk5/8JJ1Oh/vuu4/RKKHdnmU8HjM722an3wMhWFk5QG844OD+RQJPYqysuGO7NgRWgCc9vvMdf5P7772Lz3zm084qY26OLCvZv38/a2trCCHY2lwniiJOnDjBmZdO02zWePOdx8irIBlpHVvaWouwFmssybiPnylMnqOswVCiMSgZujRmMQFG3RE3z1PKModkt3jp5gy3l/N9l+DrQocEkSewRmPSHJOkaFMgZQjGOr9xz/me7zJ/y2usECZ//0sJkAMY5ANOX3gYY0+ghU+tHnJl9SmG/Q4rS8cYZC9x5vKnuHA55uDKfo7uX+b0pUc5d+ksC0s3EoTnWFt9Ft+rMd9e4NyVC4zGfYpcszw7TxA2KfQYT/p0epb9B5Z5eeMcZSE4sLBMyw+58/Vv5r98+P0kox2Sc2Na7Tm2ultcPvMcc7NtRoOE++65i2efe4Jbb7mTx5/8HHfeeTc7Oz08Ixn3euxvLlN40B93SToZM+1Z/LkG46xLHIQUQqL7BYuqSV4UaF8S18JqX2KIYsf0XNzXpigKjCxciJUvWGzNoYuc2bkmmxvbFKUD4KOwRpIkpInbgxijef6lF6nHPs1WhDWC4XBIFHvMzrVZXV1DKUWjUUcqnJ+dJ7F4jAZDp7aJfFQsac/MUMtyBv0+nnKBOEiDp3zICowt8byJl69Plu2CzS6gxhU6dCnQ2rCz08VaSy1uVmCinRIXJuC9MYZCVCxl6fZR9SgkHWfYoiTMoZSwb/kAYdygs73hPMAxLMw18P2QIs1c8UEbVCRRczXKcYpfU4zsEKsNSMvS/BJK+Sjf+e9FUYSoxm1emunZLMuS6RpT5ilDu8NolFDMWQIlnQWK2U2iNcaAVORliSdDRFlgrfP0G2c5gQ2mZxukRPk+Zerx4umLFFoyv7CMHuZs72xSGIv0YnTRwWs2GaUdfK9iVPKFW158UUA5m1v8eowSBi0dpbk2O4/udmlsDREmwNic0W3/kc7PfBIfzYc/8jH8UUisLMECqP4Wv/zdfwdfaEdb9wRlIZG2JDUJUjvaNMqj3LhII/od3vcfLN/4nX+eGx+4hYBfpqEukpXL+PGQSM1g1i7BvjeBvB6fBVBN+qurNBsp9upFdK2OsSlgkNF+ynGH4fknWDNdvvZbPogxsFVqRuf+gO0Xz5CWYwrtgc3R1sWHCqEJ/AahLNBC0fQ9CBqcfPYMY+GQWOVFBNK6arwpuNzp0w8Kao0Rj37mCf7v7/8Ovu8H/hxz7X10ums0A4GXBFjGeDIiDVNSrfB9zeWtjJc3R0gxz06WovySZhhwOW1ydZSytV0w02pSFAZtFKEQvOcj5zl/NuEd3/AdrD/8awx6Be1A0QgaDIdDaoHACHixe5ybzBme8W5j/ImPs7k64PitguXb/j3UfwWbXkXEb+fIN/xZpHDGyOqaLlVRzpe+Drv0VlZe9zD2/O8hnv4D7r93kw+cNGyMeljjNnehlORagSoQRoD1QErnTVe1UhUo6+HHEUVviBfFTgueu6qp22CIaRKUlBZBgFWS7UEPvvbXsI0mPo+gzLdWRd/K1FlBTcc88LXfRDB6mfiDa5ggJAgtXlKQFDlJFnwxhsyX25+glUZS5JZmLSbwJHlWYgpBXpSEIsUPFHMzM1DXbF5eJQpCPCmZqTXojpzuX2cpQeQ8XkqjiZWHrvqZo6U7/4iJ9NWlhoWkac780iI7OzugJPOzM5UvQ1FVjwMakYsbT0ZjJIL9+1Y4duwYm5ubXLx4kXazxVxrBlkxTj5/8hSHjx7hsUcfxZSaEydO0O8POXjwMGtXVul0Opx89jnuuusuwjBkZ2eHfn/I/PwiyWhMluTMzs7S7w7wPI+Z1iy6MAS+oCwKvDAmjCOyJMX3vcp/JXCLbq1GHMfOBDoMXJrcTpcwDGm3XerU6dOnufHGG6cb5yRJOH7iBPtXDuL7LuY9DN0YKssSKyBJEy5duUzN80iE5WKnQ/PAQYZFxqWNdU49/Szf+I1fw4c//vvkfYPJoNFosN5dZ/+JNu1DIXfcez8f+vgHuePWe/jg732U173mtWxe7RAqxalTn2djbZ2oWWehyLnvvvtYW99i7tBxHn3pLJmq/6/son/q2zh14T9KOHYL7Pq5KSGvSVLdPaBX0kV2jfWl8FFKTIEZB4I5Tx+BG6tUjzXGoKTEWoNS3vQ198oZJ6+3F/x55e8Bt0m1TqpkjMQQ7srejMXaskos8zAClCor8/uI5dlZTp16gn/37/4/3vmO72bmwN0MO6cpTAdjC979L9/FN3zXz5EC/+SHfpA7j4xR1qemXapYR9d46uXz2ORG/tlvfJYf/Rtfxe9/+iw/8K6/TJJt46kQRMDLVzKOb3eYURnf/RO/xXxcp0wT8hJGSY9A+XieR55nDlzyS371vc/xo3/5Ht75NTfxr3//MeSw4B1fdydJmpImBZ1xTFH0efzFHrcd86t1WFMan+1BglI+r3/gdbztz7yN7X6Pe47Pk6bjPdd27+bzWnDO3UMPU90/Y64F64xxPWWXySgxOp+y6xCvkEzy6ow1s4cpw57HuNefSGclEw+zV7539/g9Ujb2yqEnh+4/nWEPwoKQlSG4VFPgwQqDtG7M6Urua62dFrWcV1eKMe5aetLdA9/3pyyySfrdhBGmlCJLUza3tok8H085fzjP8/B9Ne1bQeDW54WlJjFu/+d7AVHYcIdPT2FlANIVecUeX0vf9ytprMWaHF0aRlnB9jDBWEG7HqOFxBq4utPHsxqTFw7gMRahDabMnQe2tXjSoj0fnY8RVYADcpfBPvlXIvDlZGxYpFT4niQti6lPmbUWT0gacY3RaDQtFPq+T63Z4NzZs9hS40dx9XiXonjhwoWp7E5rzfz8PJcvX2Y40GTpFYqioN1uTwt0k/Fx6tQp2u321G/OXVsPazWbm5vMzc0xHA7Z2tpgtj3HL//SLzCujO+n/WMy3q3guhtvodMbkeVnaLebjgWfZezsuH3WzTffzPnz55mZncf3fdbX1wlqIQ89+DooB4yyKp0b62T41XVDa9LhiES4sZqXhiTTJHkJyqXXOisCxwQSQlDi/Mi1dv5Qbn5xALAr1lB5YkviKCQOPIa5M5zPjaF02ICbs3Bplnv9EV8J7juJq2Jqjv4l0r7pq95BaTMefvhDHDp4nLtuvYFmvMyzzz9Mlnhcv3AjhVUYCmZm5qgdvZ3tzQ3GxZDRaMgDd7+Nzz/3OCv7D7O9vco9J16P52va7WVOfv6z7FtYRvkBs7UVnj31aRYWm7TiJmOT0W7MkpeaU8/9Pvv21aiHR+lu7xAFMTPxLIoQ3yoOHWrx/EvPMzO7zMmTJ6kFIS98/nlUYJmf28fqhXUW55YY9Ubcf+9rSZKEzatXiRoR4TBgptVmZ9jhwqWzeLGH7/ss1BeweUmix2xn3SqNVZNlbgwVRUYtiBmPh3j1GqNsTKdTkueTABpLWmTU6y6IQRiwxuIFLt231YoxhsoT7zBbW+u02036PWcvg1VI4aE8jyTJsI68S70ZY4ylu911hfnQhb95nsfC/DwXL11iZrYF1knThZLV2dj1z70BV0iL8Iyb18QkICfFWkMYhtOgiem8We6G69TjkFhJmp7HjiiQVnBocYnhIOP8y+eIo5gQZ2oAACAASURBVAazcUSZu2Cabn9MFLaIosgVQYVEWdgZdmnOhKSjAJvA7MwSee4CFhAC60mCqmQmlSI31oV4IShKjZA+Wmeoap6MTIO0SBxBB4vEFWQtFqykLAqyLGO+3aiKJh6+CtAmqwB9N38opRBGkBmFDkN0rlAyYn2zh5I+rfnDzKmYwfAq9XoDECS5AOmKt38SH9ovTq67KPC8AJO5D648w+E77uXzTz/JL/zIAGtzpA9PfuoF/ukjlzDRPF/11dfx8D/4MW44/BCDi58H6tQEaJujtSWzBYUpKY3FSIvSoK1wNHApsYnix37sh3nvzxxizn8fSe8StBbx/AYmTUi5lX4/pDkQeOokRIrzH11n/sRhku4ONvkIzH41ydpTNA/djm8FHglbj72XhWyJQqyzXVh8fIL9t9N79lGEGhMLgbY+xlqUnzNTa9EfW2qRxItqaMbsjHK82QYMRnjKd+mjnsSTiusaPkZpSlGjHXr84F++iXp8Ez/6D36Wol9C6bPdzampnFzUEcWQxnKbehQjjGaochbDFqN6wUxXMMgkw0ySFkMGvZym71OXgi0BpXYmtkIKXlzv8Hf+7Se4e77NVx/sM9eTjLoaqWCc5Mw2Z/jZD435198g+Jo3v5ab3/FVfPLvvAu/DOH2vwbWQ0QPg/1W5BdQNBZEWN6EWErhG1eY+6WfJ6jVqMctTDHGaidHRqSEoYuKDoKAvCym9H3f9wlVk1//3BP89Ld+Gwe/6k7ETMEHf+PXoaLUO3aTdrIlt+tHKbeJzq0iaC4Br0cVP0mhBvg0r32fShIs3gKLP8Qbjv1FntyBja6H0imhF+CX2RdjxHy5/Qna+tWrGARhvc143CdNEro7lzl69CgPfMVDhJHi3Mun2Vxd47U3v5kw8lBK0NnZ5vnTZ+mfvcB4PEZ6agq89ft9arXa1LxYVBRlcGaveZ7TbtfpdDroCmRoNpt0Oh2MMbRaba5cuUIYOrZZEAQMxiOkkjTbLS5evoRSivbsDL7yeOa5Zzl27BhJltIfDvjwhz/MzTffDB48+thn6Xa79IcD5ubmuPf++4hqMU8/+wytlkt3NUieeuY5DqwsA46ZBOCHAX7o2HxKCucVE1qCKHTMuAlzScipJ4a1lnq9Tq/Xm8pTBoMBSimGwyH79u1zZrf9/jR8YaY9RxzX8f2QsiynPnZaO7ar7/vMLcyyub7BoVtOMHtwH//lQx9k+cAh+psb3PmWt/DIqRdo7jtIJ7tKU9RIzA5v/JbbOX32JHfdcT9pWrC07xCXV6/w0Ou+gve85z183bd8Cy+vvsRMHHDdiRPsDIaIxizv/einsPUmAyvo+xEzS8v/C3rml9ukZVkGtvJ5Q0/lUZMNTpkmrtpaMVYnlVf2RNpLT1UHJXHNAWgiHZ/0XWMkSjlfn8K6Km6pK3DHCAwaKa5lU03+5jUyxT0Hq2vCAjCIPYUhI5y3nGNcTKrG/vQ9/tW/9G3883/1y5w59xyPPPIoDz30Rg7e9ue58uyvY0qNsZYP/soP8W3f81PceUDyd3/iQ/z0D38NKg759Z/6Li5sGNTQ8tf+rw/wz3/gG/Cl4eHPnObPPngCSZ2syPGV804a9MfML0S8/sQiZzcHbKYKmY2clKNMwVh3aCgLTAktTxFFEVke8NZ77uDW/QGDcYIuAv7wuVVu2l9y6pLmzqN1rBFoJdFa0ssFvh+yvDzP3XfcyXiUcf2hmGGVbj1hOb3S2+/VJI7uml7LcFR7WJNWOCmZ0aDL/NrnVqAswmD0LqvN2IkhXMVwM7vsemOrpDXhYdB4UqGtA90mUuhJCu+kH5gJy2VPv7iGsfenlCmXZClpMkDnBVk1JqSUqGr9iaKIMIynoIX0POoVaKSCeaACMEo9XUfdzyx7MNDqOleJg8JzScpWooUlLwu80gE11lrSQjNOSvqpC2TLS00yTl0onLXs9EZO/ool8gMC5ZFYQ+gHqNAH6dhu1lik2ZXWFoWmtBYlHEPt0uoOnm8rsKxidyiFj0fsGQJjsEKijUFoPQ08kJTTIsTkS1aFscn4MAb+wlsf4Fd/75Hpfhec/1GSJDTaLTqdznR87Wxv02o0qbeabG9vU5YlN95wA53tbV5++WXyPMcaQxjVSJKMxcVFrLVcvHiR17zmNZw+fXpaTGs0GvT7fVqtFmmacvnyZWq1GuPxmDiOp+85TXPqdRdEcfBgjfFwsOf+CayLwkEIQb01w/Gb7sEYw8LsHHEcc+HCBQ4ePEyr1eLChQuVF6+dKl+atZjF5Ra2yEhygy8FBSV4PsoalBIoBUpqjCkojACj0cIjSUuS3NKIHZgplaS0kw5lCaRA4HypfOVVCgmB70niOCaKApr1GnEYEQUuSKLX67G5uUmSJwT9hFJNZPeTRO5X90Z0YdACY8pXZYT+79yubr/M409+mjc++JcIvS6eqvPJz3yIo/vu4ra730R/+yWefOaTzCzvYzBMuO7AYS5cfA6N4siR28iTPjfecisvnnqWG268HfKE3GpOnnyMo8fvphWECKH59GMf47Zb7seTlqX5Gqde+hwFKVvDTeo2JPZq3PWa1/O+3/63rCzsRzV9JJZOp8P1N9/E9rgDyjA0Xcqk4HUPvJkXTj7Nwtwym41L3HDTrZw++Sy6KEnHI8o8Z3vY48rOGuF6nXa7TTNeBFVy/LrrGA1Sruycp9ZscKB2mPmDK5w59wRaGApTQqnJ0pwsLdnY3GDf/kU2N7apR03SNAdRUBjrPOwijyLXKA/uue9mrly5SKfTZbbVptmYQ0lHFojrDcRoTJIkFXBcsT99WFyYY2enR6+fsDDfdt5xSUaSOJ/GuO6SbJUX4gUBo/6IRqNGbziqfOPqFKkmq+ZQhKHIimp+kSRJilJufnCgo5vrJ6xSrR2YXRrtmG4UNOvzLMyEbL48ZC6K2ex0iGsNajMzZFmGzhN8YTHSY2lhmW5vhFKKOIrJ85I4amJ9zZlL5znQPsjM4izlwOAJSEdjVKCQ2kfnOVbtAt4egjLPdn3+dI7REhEoWs0GW5s9xmmJkJrQc8ooF0K2W5hJswK/FmIFlEZjjJtndalx1ikwGKR0S8P61jqZLhmNc0IFRw4cZGlhEWElgSnZHq6zOLefsrBErRrGlJRF8gWPsS8KKKfrDTxbUIx7Tq9vFLc8+BpsdpVvfftp9FVQ0TF+/kffg37T98D5f8vBA0dACKL2iPG6JWRMoTWZNtPFNa0mWV1VWI00YCVojTE541GN624RFN1n8ESENhEIH22XCeszxNffg2eHKHUTae9ldOt2rpx8juXrR/i5Qpmr1FfmsIWHNpuc+fR/QJmEd/1Kn7e89c289wOfIS0SNp54H5d7TUIdoaSlYIyJI2J/FhnAa287zvmNLVQRkJgGIumT5RrfD7FCODBASeJAEKoCGShG/pjXHfY4cfsK3//jHyfRkqAuKIUk0IIsN8yoBJQl6fR5cWcbX1uazRpzB1d4/skXUb5kWCZ0k4juaEC/cCj+jCqZDQP6uXabUQu9kQQ5ZH1mht99bsRSMUaVc2gjaDVjMqvRSiODRd6W/xIf+7mP8Ja//xOc/dhvcuQX3wnf8wnKTYG35FKsXCn+v4YGSwQ1qM9j7Tcxo36Ofd6IjUCR2AjPFuTaMY1sWYApwfPwjPubSil0KZAi5gfe9gb+yrf/OWphxJO//geMlSI0oqKiV1VsC0IJjLFIFSCK3A2k079FvfV+jH8Pvm3+se/WJh7f/le+ht4Hz6OubLK2tcWw16f8E9BQv9y+OO1v/cDfZmNjg6QY0mw6IM0PQ3q9HmOdE7aa7L/hGEGzxrDfY6e3hZCG8+cvsnm1M/WGKLQDkyZy7UkVyFpLUZS0Wi2XEBRFjEYjrly54pJaK9Bgc3MTpZTbvEZ1Dhw4QJJk083soQMHuXr1KhcvvIy1lrgKMQhqMd3hgIurV2jGNay1HD54iM7WVa5evcrS0hLd7R0O7j+AJxVXLl2e+ljcddddoOHq1R1Onz7Ny2fPsH//fmq1GgsLC0icV0qtVmNcecBMjO2l2q3uuqQj15cnvikTr5jNzU1mZ2dJkl0q+MQ/ZmlpiXa7Ta0eIaU3lc1OFuuyLEG7A25rbh5dWi6ev8Dzp57l1uPHubTRYebgYbr9EWJxH2NtqN/iNhXzYcpqX3LdbV9JfwxH9zcJghaDwYhzq31e9+av45mTp7nj9vt45NOPsxAbRiPJcDiimL+eYKZJWmbIRDMWX5x605fbF9bKsnQssim4paf9bcqcSRPKyvNMa4PyPJTvOesBL8BYd1D2qwPt5ICzFzh30gmNrQJ4dllWjomjta5kGRXwV7Gjpofj6pA7kTTtPURNmFJW5xhTYq2uqsoeyKCaK3bDJMCFDggh+Jvv/HZ+/t/8Kh/6yPsZD/u84fVfweyRb2Z05T+S5glRPeLf/+K7eOr8VX74x76GP3jqBd5y+10Yk7J/9ir/4kffzjv/4W+hhCUzPiqs0dvpUo9jjHCAQZLkBKGiHYa885vfRCJq/MhP/ho//SP/x5TFVxQF48KSZZakGPO33vEQP/ubn+N7vvkmji0oRmnGcDzgA4+d4/YDTZ67aLl+wVKWToImSs2O9ZDScHj/Ae65+wHq9Rae50I2RqORu1bYa2RhsjJcnx5ahdurTe6jUbvAnWcFmorpyLWefxO5jLUWI0CYXZDMiOp+I8BOAI/qtavXybXznpkAIRJB6Dl/ntIax4hWCi1dvyrLEszuZ0EKxOQe49QNrh9/aR22v9AW+5JWbaFaK3eZcpO0zVdKVIVw3pEa0FXRFJj6TMIuM3EiNZz8bMKg88MAq801jy+KopLHu3ulhWSUO4A4zaqAJeFhbcnq2iaekm4v3Aina7iUsmKfFWhVQGmg1IAzCi8qFonzFFII4TyTpFQYAaW0lGhyK0lzSwC79hVWoG02LTa4z7gLXntKEYb+dP4RGKx0IHFZOhAvjmN0nk3Hie875msYOhnq9vb2VMo1SVb1PI8jR46ws7PDaDh0B87UqX88z+PEiROsrq5O/dwm46ssSy5evMjRo0enIVRpmjIcDpFSOv9anFdtrVaj3+9XMtw/Og601tx//5+h3mowGAx46ewZrjtyeOph2+93CYKARqMB1tKoOeBvZrbJbbedwOh8yrI0EkxZYu2unFz6zt9RCci1Rgsxva67c/ouC3tvEWbCsgzDkDgKaDTqNBoN6mFEVHPgsee5+xeGIWEY0u/32bDb0zVj0jdfyZT74woQX0rtU4/+F+qtGo899Wvs33cD61uXydMhaxuPcPo//wGNyGecwc65NYQZcenCY3TGOe25AyTJYwwHq+Rac/3Re7mwepqdznmEB/PLx8mTPs+ef4GszFg+sI+r/VXS/lVGFvAt3d4ODb/GbH2R0bjHZz/5bu697wHOX3yZ7e4WQihm2zM88/nH2drocu+ddxGLFmE74KWXXiAKm5w89QTHjhzhzItPs7y8wtNPfo75/Utc2bzC7Mwcxw7cRKNVZzAYsLJvCWkljbDO5sYGw/EA7Vk8L8FezhCJoD0zx9zyHOevXCKKPFqtGbq9LQZ9d8YYDRIEPuNxARbCMGQ8ypBS4PmS06dPE0U+d9xxK1curhLHHv1Bh1qtiS8Vs80WSEEYBmRZRnc7RQUxWermqGycVPspPZWmFoVbl7MsRQqftbUN6pEjC9TrMZN9UaNRI9newfd94tgnyzyiKGK70yUI3H7KGOeb2Wy2GA6H03E5SXN1xFVNqBRhpLg82CCOfVSjhqxHhM025sI2eZ7jz7YBzczsHL1edk04nRCW4WiLbb1F5Pmsbl9GWIPInR+uChVKSYpy7KTkZrewlkuXvJ2WbswVaYJSinyYc2T2GGEQVQFhHpHvTck7eeFwpbIoCFRYeX2b6RpfliVGl1OP7nrTIy4Ey/UViiJ3ZmDWqQqz0VXGeUY7DHEsJeFCMgarRFHkzmFfYPuinFwCLPYr/y7hR/8JRc8S1evc8cDtfOS3/hNmpwvAaODz0N/863zoUz3k+d/BlscQFg7sn6G3WqJzy1CUlBoMjtFRIpymX+wm3gjjNk95buiEV7E7XQpjCaSkSHuoYJnx1Stc6Rzj+Bt+mP6TP4jpPYzAwxv1OHzTYXr5daQyYT7L6Q666LIgrnVZO/k8C16HK951fN0dB3jq1BwvvfQ8veEWP/ZzH8OrK4wwBF6LKIzBi2nWfV66dA5la2QqZ2t75Fh0QlJiCJRytH8PjswIiiKkJgpEUmNwacj3/t33MagfIJKajauaLM+IoxpjrSlHY8JazEJsaQiBiet0emM+8/iz2HqTbn9IHNfxyozAaBaikEIokiLFVzUiX5MWEiUVpacxRcmZyzsst+rU4zomTfCCkGZjjp3BGqJU3PLdv8AL/+ovsuRf5MwHvpdN//Xk93w7XmmwC0eAAghBD8Cb+W/2DWNvh82n8FvH+HvfmvC3f2uewcYVdBCQbWcoTzJIMuJWjSxJkS4GB6U0KEiTdVIr+MVf/g3Gack4yQl9nzwvphOF5ymMcV4dINCVT5gRPvKjH4RjMabTRN4yAl5d5iaCJa5/8Dv46uh5Tj7zeS5deYrtzoCXX976HzJGvtz++9u5i6cpC+e/IqUkyxLKrMNgMCAZDzh/uuR9/+G36XQ6dAd9Yr+O7/u02g2iKKIsXSrbMBlPmWGeVIxGCZ7nTX3l0jRFCEGSJM74dJwgfc8FI6yssLq6OpVtFmWGNkU1+RqSZMT6ekG322V+fn5qnLqz3WW0vkYYhtNACaUU29sJvu87Bp+U7Nu3jzRNSZKEwWDAQw89RFbkzC3MY4Th7NnTiLJkcX4fM602s7OzTtqiPKLQR5f5FCiT0oEFUrqFwf3cHahM4RKoxsmQnZ0dOp0O9Xqdw4ePcfHiBWZmZjFGMxi4qvgEWGzW6ghRELei6YYA3AJrypI0TcnSMcm4z/rGKlYKVne2SYqUcqiJYp9GfZm1tSvML86Tjses7owJgoiuKllZanP+5JpLx1OCixefZ//BYxjd5KVPPE0URJhwlktXLjHI+ywfOkQTRas5jwrSVzGI/3L7n9kc46nyR7KKV6oMTakpdVEdCjOUH1TP2wXWpHRAOdOEzF1D8b0MBWsAVRXstNll3eE831y1E4xR10gY9zK6/rhUULduKFwq6OTgpSrJhUBUwKPbrO56rSgB3/4tf453/84H+cNHP8HC8gK33HAT5f6vxqw9TDp2bLbX3bRMX28T3/ca0vE6a6OYBRmTG82/+affgRZjfvAn30eWhMzNNDFCokdjgrqTlkgr+dWPPMfXv/Ygjdii2vO0ahF5nlNoF5gxznIKbTG5RMU1vu9b7yLPU3SWsJU3KdMOd153kM7WVY7NaLQNnKG+sRRejCwsrUaT19z/Wm647gZMnrC8EJOlxRQosGU5lQFKKZ0U0ZZYKVAVi60wRQVuuPsvxCQncTf11ppd5szkkO3AM4vJS4Tnkm8t1oVyWEOhy2vYlFqXU/N2d49ACIMujLO6mB6u3b0urUQY54GFhELn0/tYZXq4L9ye02rzpxSSg8LKKnXUAMWuJL0qaGGrsSREFaGxJ41TMJWyTx4Lk/F+LXgyadY68/RAKMrKB0hIjcNhFaKSlhrpPH+M0VURysOYAgeEQSk0lAW9kZMvhmVKEMX4UejurdGAK4KXRmA0U6Yv4JI1pZzKojxPTecOXfXDWuBhsIyyEi0lpecx5wUIkU0/82TeUZ6HqkVUf8CFnFhLrR6RZa5gprWmVnNFO1+5hMGZZmsa7tBqtViYn+fK6ipFUdDr9Th8+DCd7S1Go4Sjh4+w3unS39liZf9+siyjVqvx5JNPOpZ+tbdoNpusra1x4MCBqW/UxLNuIpd1ewZZgYB1Slvie4Gbw+21ITunTr7E0vI8eZ7SbsaEYUyns4MfKMbjIb1eD2OMS5aUkqJIabVaXHfdUZQQaCPRtgDhuT5kLUJJPGXxFSjprmVp3PxuTImZsP6FG59WWqwRKFEBxEpSb0XUa82pZUerWaMWRdNwkL0S9cJqclOS6YJMazePvUKCJr29/5dg96SxYqa4/ZeSr9yJ/fu46e6vR6Q5Tz77YeajWeL5EwzGlzlx6A2cu3AK30TsW1mg0V7iycc/znX72hw/foK41uCFM8+wc3WVqJAYfGZbh0nLPqP+JlvjEUevu5vtq2fJyoQsSTl44GbYOEe/GEMQEdRb5NJSb7TYHF5l/aVP8YYbv5L1fUfZunSRueYcM8Yw689ydW2LW2+8jfX1VdaurjO7NMtokHN5a5PeaJvt0ZiH3vpWnn36GdqtOQLpzgELszNk4xEXL12iN9jkxhvvwNqQ5YUjroBoDBubm8zMtBh1++xsXiUzGUXNycsXjyzQ3d52ajKh0KVxrH/lUVT9VOcaT3oMRzlhFHH23MtuD94b0Gq1CLyAwaBbra2CxDh7nHojYrs7nPpdz800yApXVG80Z0izMQE+1moEDoBqxDWU58ZVo1FjOByiNXi+xBMQ+R79nQHSV6RJ7iSuFdgmsfieR7ffdXOhsYSh866W1oUkHLtpkZ3tEZ1elwPzi5wbr7O0ssDTT5zjsN9gZr6F1hnboqDRUKytbzC/vI/RaIxwmzfC0OfC2hmIBQhB7MUMd8ZgpRvL1oKWU8uENM+uAb0nTGSNW4vyvMAYtx+L4zpUbPqyNCjl4wcBSvqOhajACPCCAE8piiJBlyVKSKTymcTW6IotuFfyT/V6RVFMiz1K1snznNAPaNdjpAIl/hcHPSAF2cd/Cn+rQIQ+tfZxRoNNwnAHnSqkB+Xxj/DN9x/mH/3EdxKyg/iNf8XHD97CmRefRZeGobGk2lHcJyCcnvh4TK6HsVUyG/hhiysfa+ElWxQixPhNdOEhyxKz7+McP34Em2d0rnycufoYEbSYi1J62xkXruTcdltE2u8w6ipm2lsMXl5D+h55d5thd57fff+n0HlBoQ3NeBntSfKgRuRJSiRjY5ip1TBCI9QCtRZsrg/wpCErLRaIgxglJW7P4qrXQri0sTcuF5xZk3T8Nja1SK/k5ptXOPncc+ApFlp10p4lGWSMbEBfalrSbSyHsUfWGTM22kXxhgJRBuSZpB2VjG0TlWtCISk8g5DC3XrhOtp6P2f26Aqi38WUGt3ZpNleZlhmfPJn/joHlAUVUjTbrMSPsf25Jwlfeg/20FfSftO9KOSrdII/2iwpAg+z/BCDA/fg7XyGeizwQ48yqVgInqvABtYjE6qqsE9SUiTStwysR95NKvq/e7w7gE0WVokQmky7iqnRBnwPKUoG3ZRYHSOfbaFKwx9HqCkKjfXr3HPPXew/eJBTzx7mxRefJwyu/HcOii+3/1EtVALPgo0CsrRg9fI6T37uUTY3Nxn0tp1MDsXiwgoL8/um1R6EmSbzlGU5DTYACGN/Cga4aqubfPv9PvV6fXpQHI/HeJ7HdpVwZq0liqLKuyknLZx5shCC3qA/ncCHwyHNZhNrRiSl2xxrradV6iwr2NraYn5+nqtXr3Lw4MEpQ6/f73Pp0iVuuP44jz/6GA899BCUOQdX9rGzs0MURcSxq/LOzc1N09kmIRbg2Ekl+RS4DoLAAWhS02hGCLlbAROV10Sj0aiuVVGBmc4faMKMmxjIW1tJ5PJdE2prLWfOnGE87tPrVZsLxFQinKZOnh432gzGGUEQY7yCcWnY145Z3+xQbzSZbbfZWN9i5dhtoCSjXp9Dx29m1OujfcXckQNEeUFZlKgwIGrUubh65ZqD3Zfb//w2AbY9z8OaEmu96RgqisJ9j4eQzhhe4EAQTzrABukAsLLaHLmgCI2UoIsJSLfLbnNOBXp6mJ0cgK0tdhk7tpzKQPZ6nDmZK5UMcvI7McmHQEqFEN6UBVfhC9M2OaArNfGms4BieWGeh97wOj79yGd53/vfw9oDb+SNb3wj3frd+MVF6mKdNM+Yq8/T8Ar+3998klMvrPEDf/+bWN8acqPnY0rDT/7tryduL2OGW1iTEYY+Ni95/PQqz/3Ld1OKOd72+usJshxLTpFLur2Mehzi+RJVuvVR+SH5cAtswUbS4vEXL3Pm/HPUbMKRJedxWQiJNQWZDrBhDU8K9q0scuedd7PQXqDIcm4+voQ1gnGZUhiNJyTKE/jWJysLdMUoKy0odllte2WgU4lgVVSdhDJN5pOySo+22mCFe7xSCkN1SDfWydPshD01+ZqAs3rPfG6rfYKZ9gsHBuhqPpPTuWxvKmxRFLsyViaBD7byLfzSOWj/SdorJd/ANQzzyfVVYvdxjjfwChZR5evzSnYR7Cb0Tr43xmAr9pPFuPtgHTA7eWxpDUI7ViNyD8CHRAqDsAKsm09KWRJgHTCGRHgKkQtK7QICHD7nY0SGJyReIIiUj6cq6aryCQLvmvdtjWC+Fbmgop2BWyuls0MxTPzLqs8uBKXvM/RDPKmQGDyjkbrkLzx0F+/+6OPTfUqeuzV5dXWV/fv3A0xBu5mZmSnruF5vsrS0xKVLl0izMWFQJ9clVhfMLyxNgbWTJ09y4MAB0jSd7ovKsuSGG24gyzKMMaysrJCm6TQlPo7jyqLCEgQurV6UPtrsSvpdf3D3PIoihuOU0Fc0WwH93hDfD2k2l+j1eiwvL0/3ViDJizEz7TZB6JEVJcIYjFBO3mxdX9HWoo3F4mGKCSNXUFYyeAt4AjAGbQ1KKiwaKmVLrdHiyKHDtNst4jgmDENqQTg1cXdM6N17pIuS3KaYvERnGUbu9k2LJPDkNSxBay1ClkgZV/1zb9jDFzCw/jdpd971NtIy56Ofeg83HnsN9971Zj7y8K9y/U23cO75l7jtzrdSDLZJSXj0sY9xzz1vIVSSgozzF56h5c1y+MRNnDv/LH4QkTJicyfhvlvvQIkZzl95iv0rt5CNt4lX5riyep7Dh+4mGXeptep84jMfYWFhU667tgAAIABJREFUBi9QUGpmazOs7pxhrrnI6WSdGd3EGFAy4Pbbb+bxJz7NnffdA76lLHKskgyHA5bmD5LnGU8++hgL+1bY2trAazRQViN0QW4HSE9yYPEYsoRjhw6ytrFFEAREcYCSliTJ6Q4T4pqHzX3EsKTeakBHs9Q4Qr8/pAyHaJuitcHzxO4aI1yRL1QRyVAT1yIaUUS3u02v12NxcRmjLL4XOmYubqzleUEUSAcASUuWFgShY8NmWeb+HyiSJN3jjR2RpmPCMGDY70+VQXnuUmGVJ2g0I4yxZArKTDvbJyErGbZ1Ppy4wsRknphpthilY5qtfaxvnUHkmhdWN6hHdZ56/CzLK3U621vkhcELCmYbzqsyiwp28iG12ZBxnqLyEaWfk2NpBg2s1KSDnCTLCKTPJOQF6wGCIs8pymLqiy2EQPrCKYGc2hQsGA2drW1yUoTXxvNcWJc2BlEYtK4KNqWeSnQlzlu2LAv8KKxAQ2g1Z8ny0fQMNGFxO0sWiVex78H1PQCsj/Iq6byMv+Ax9kUB5WStjr/Rg9AHKbn5TW+if/kK33zkAsLTiLCGnj3MD/2npzjczLB33scvHVym8f53kxYxM5Fktb9NAZTVBg8m1Zg9KZzW1eF+4c9bvuWv72B2xgyQKCUoS0WzUXLiHSGH4u/iQ5/8BB/93X/E27/y9ax9/HeRzQJP+STjFqMsRycCPV6nERdkm4Zhp0OaKmreQRZnYk5fWKWTpFx/8wkef+YURW+ALQ259ShthsJjY72D8gPSZECvW8Nagec7VNYdYgMmBsKLcUEmLHY4JkDznoGiJMJPBTNRDxPHXFnv4Ysm7XrE9miMLz2ajRoeCcK2GfVTWksBwy3LkRVBVvqcuTogGxUIL0T4ln4m8VXJWBh0KWkGAcNMEgZQVpsdKSMubvRQxiMtUn75N97NX/3+7wNjubo1wGtBqAqaxQbFTIv1FFTvEgvp7yAOvwyHvxZUirXf+1+lbAsr0eMOZvg03dHt+DNN3vXgx/ixpw/S66bo7T7ZYESrWSctcwLfodTGgFJVtc5znTsIJqwFH6UUtXqbwhSESmGkwiIJJ6maCupejVvzizzyeMHrf+pzLN1Qo3zgPtRtv4ZQByrpbZPchniig1IXkKLJfK2BXd7P7Fc0ufXWmzh56pkvxpD5cvsTtHf/9vup1Wr40oFHAuftMjs7S7NWc4d+U5AkjtpdFk76kZUFutosGWOwSrC0tIRNc4bpqPrrzoRcKScTMcYwGIycR9rcHJ1OZzoxN5vNipnpsbOzw+zsLJ5yctCyLJmfn6fb7U7HxMbG1tSTbXNz00loq4nclJp2s4U2llGW8fzp0/hezIGDS5y47VZWVlYYjsYcv/F6Pvv4IywvLjFKR6ysrEw/T7PZdCBaZY7uh0GVgqacrx7CgZBm13jaSgFC0pptMTPvvB+ScYbvK1qqjbWW0ISVNManXq9XQJ9FSlHJzRwzFa2xZYExJZ3OFum4z2gwYDisfC4qb75arUaeZlgjqMUhcRw7PztPsrJywPnTudWRbq9HGAf0egPm5+eRnmKUjEl0QaKLaZx7a2GOuF4jCAL2HzjE2tra/8Qe+eX2yjb1DjMGYQ2V4nQPWOYOUtK6I7ut/t274cm0k2OVugQjKgm3A95sJXnAWDwvwtpd0+G9r703UMIBcvqaf/cCREJ67kBojAPatEFWfV0g8Hyvep74I8+fMIZ22TBgjcf9d9yIEIKHH3mMJ578DACvufce+qMlUq+FZ56nRKJsg7/6l95OVAt55NkL3HbdDfzepz7BvrjF0XmffOcqIgCTCoTnURQjfuVH3kJiPIS3yGDUp6h7/Ph3vZmrO5sUwqIHQ0qj8Dw3JyZJwmY35dEXerzxhhFzbcEDNy6T7HRIrTskSAulamCUIPAVMzNzvPGNDzFTbyMCj6PHWlgjpp95l9UoEWL3WrqfV8xDC1SA5d6D75RVpx2wN/EaK/f4CioxYb+54A1EBdpYZ35tbIYQHgKF1hl7wxp2v9zrTQoUnudN79WEGT2VEU76woQluec+Sykxe1h8f9rbLti9h/225+d7H/fHPR9enUk03eNXXqVmGhoi0aXF816ZuFt5REqLtt41rzEpUAnl9qBRKAgVhI0aXhQSSoE0hrzMQQpaNY+ihNI6ySeVlHlvWvkrP1OBobAGhZqClEXF5J88/lqg2KCrAy9S4kmBhyS06ZSl6fs+WeEsJGZnZ6dgnOd5zM/P43kely9dQirlDuSZY/r7xqfRaFQpqxs0my5k4ezZs1X6aUa322Xfvn3UajUOHjzIeDzm9OnTFEXB7Ows3W6XmZmZ6bgYj8eEoUtZj6KArNydRyfNSMEP/r0f56knTxLEIanWNJuzzM+HjMep87etbDA8zyOOY2ZmW2RpQa3uoSp/K6P1tLCye709NFDoclfGLBwpY5KU/WqBPrKaV2qhYrbZpN1uE4dOTjaZD9zzdp8rpUQrJ2Wv1WrTQs+EKDd5nNljpj3xmtv9/trHfqm0QTrkI3/4AQ4fuJ3W/Cyfefo3mV1c5NOP/CF33vUg4/Eqqcl54cXnuP32r8Aoj872RbTU6CJi8dAhLp19isX5JS5uXeS2Ox/keDYm9BQff/j3ee2DX4UpS+baB/ns449w152vQSmfRsvjmeeeZHFxnigKSMeuWH7o0FGklDxz/nnuvOsuLl+5yKXzV4ijJi9d/Dxh7PHoo49grODO2+4gL+C6o8dYu3QRExi6oxEeFpGNGZcJ60nKzqjPsQOHObov4ty5sxhTcObsiywsLbG2doWlpX0sLi4T+DHLgxVqjZhnTj6B9KHMS7pXU8qNLkHoVGpWQFgln9ZqNdJJCJZSdLspM7OWEzfdzWc/+1nXL73KUgaf4TBB+XLKmvU8GA2dj7UuU8ewBYrc4ntuDTdaoGSAtRmNhguds9YxOefm3JllPB5Xc6Nj60qpSMYFes/85iScerqPmqynk/fS7/fxwoCtrQ5hBK36DH4j5PzZTay19LoZ9bhGr9+hEYeMxyVShBR5hpQZyABPpQxGY/xQ4DcCglqN8TBBejmyoSiHBZ51e7iyHFN4ynnLSw8sRNWZQheGcTIm8AOsdbLYMAjY2dmhlCnWLgHuutbr9aqYwfQ+aK3xwrAC2kyF1ewqJ8ZJf8qGS5Jyt2A8ea7nVdcNjHHXqcAQ2wDPc77GX2j7ooByjVuO099YA+lowHe8+X4+8b738NTPbcC6YjSOGXzqn/Her3s/N3zbgyw1b2Tjo+/hzPrL9IqcHSEoq6o21oK0zoHC1PHVAJlKfvsfe7zlrQWDcVWtKxSFzvFNAy1DRpsdNoYp1zcOs1n4fPA7JW/6+lm2z91C0tvEZwUTznLqApzPr3JD+yU8NQNiH+N+h8G4hhpc5vv+Y851J/bxuefPECqPZGD5B//PxyiUj+87pDTXJWHgIz0PY3JqjRhP+Y4CKSMKq5HWUJY5QrpK3GZiAYkvGv8/e28edGl21/d9zjnPdu9zt3d/e9+mp3s0o9FoNFpGSGKTzWpUIWErk7ggmCSEJBSx48JJZJwqG5wKOI5tTCibIoANNhgwhrAJhJbRgNaRRrP09N797tvdn/2ckz/OXd4egUuuilCB5lR1vd393vfe+97nPOec3/f3XegLwApiVRAqy4mgTmt9jWww4vHHz3P97i5xFCKNJqsM6ICoVoKX09tXhKLg5V1LiMQWGZ4fI6UiEJDpjMQGRLJCNpvuhvLEzHTbCxRGa4oyQ6oYRMX/8N5/QOmn2EQwzCKsHCHSJiurI9pFTjGWnLjUZPTQ/0nxxz9Ka/O3iE+ewV/4OUz9DNJbAdnAigaC+qTgqhCiRMURKmhx5vU18tGYj99e4/vO3cOeGfPCvZz+OKHbl+RFgWcNRhekxlImdbKqRAQZRRYjLOTeiNi4SRzVYUX7+L7FE87PKBeWpUIjAydvffIdsPJ6wcAzRN97RDP/OCLXlAf/CiN28GVKIELgDLrmUdkTVCJkNGhT6lWCus/Djz7yhbhlXhv/EePy+YsAk4NoTlFmGO08WMbTuG47L5SNrh7ovmutHZvLk4xGI8okQyhmbLdpkTYajSbdaCfPPDw8JM+dT8zCwgLdbndWGAjhTKml8GYbWlE4cGya3jrd3AaDgQMd8nwGclWhk4h2mg1sMmZxcZHt7V02N11S2sbGBm976s1oXTJOhtRjZ8CaF2PW1tZIsyHnzp9CKkPoOS+UaXEwDXRwZtoToMI66dE06GJWhBpDHDtJt+uwZQgzL7Tk5CA6Tcg7/nPTjWqc9NAmYzAYMBwOGY/nHaZer+dS2NJJrLm0M0BzuskNRznWKPLcve8ps3EK1iRJwng8nr1/3/cZDAYUlVvTwjCcpce9Nr44oyrKCbttIgEUxsXb8yDbxoUW2tlcmhZK1lqkUORpAjgmk51INpgU5NJzslhTzaUMgZQYY2cF3nEgaFoMT4e7FxxLAubeT24eF0jpzYpAIQSmNAicdFVKD6PnKa92kso3W2esQipLqSVveN0V1lY6/NKv/S4f/KPfY2v3Pm9785ehgxrKPoUY32C5PqZTD7AUfNWVZfpmn1/42ffzUz/63fztH/83vOfrnuTTn+nxXd/8NHnSJYxi0irED33StI8vNUVhCbwIoxSB1eTFCKXgN5+9Q6AKTqzVWQ5hd+MlRufOE/ctg2JMhUIYS6kh7KzgW0ur3uDkydM89YY3MR6PMbbi9RfXMJWikBW+VBMw3lBYi2IOiM5BLIHWznNF2HmxOv2Mjxf0U5auti6JbcaYM3r+c5NadyrdUQowPu7SW4SZM3eFmF8LBwL4k8OyQUoHhhgzCYuQduYzc9wD7NUSZ2Nc5J2eeYR96Y3jANxx1uHxIYR4QKaq7dxjbvYYmClg3PpwzJdrwnZDuCA33w8nViRmwkj1Zs89e0/CMT7sBKAJAo9RWiKVY3F7nodQTGSIPiqQxM02QT0iKH0yBcoabJnRtDAsSmoIVCAx4wKUj1Bz9p5+lczdn8iqqqqYzQ9/IqF280gh5RxIlPYYsGcsuTVoBMYIGvWArAxJ0xQ1kZK2Wg1Go9EsjGE4HJJlGW944glefPFFnFzN3UeeCkjTMTdu3EBbQZGnvPzyy7Mk+anM1Um7XPJ6UTiGf7PZZGNjgyAIqKpqwtpZmQUjDId9jIlpLSzOQdHJtf7BH/xfuL+xxdlzJ9ja2mFpZYXRKKHZjDlz5hQbGxuz97+3t0en02Hj3iaLSzGXLz3s7sdy4uvIHMScsqsr4c4ukqk/KKiJdNYaN+M0GjFZKKwRCM8lA2ut6fe7GFMxmCgIHpSfzveLygCmIs9zDnf3GY8zBApwrEcpBCiJd2wfO57G7Nic6nP2n78I45Vbz1AKy+7BK2zuP8fa4nn2bz+LDGI+e/2DLMRLdI/2UaLi+Wu/P/FqjjnsbrHSWuAz1++hK4/r9+9S9ySf+PTvUpXuTB21A1548cMo4SFkQUXKS688g0bRiJc4SvZBQZn4rK+cpTve4IWbn8JTIaFS3HrlOd5w5SvpjVIC2aLRaHLu5HkG/RFZkXK42+XM+kluvPIyKysryMRDhwX7vX0OkiOieIFmvEAgA7Z2DlCeZe3kCQbDI8J6yCvXX6bTXqbKS3RRYSJN6Ct0nhNJyZlzlzg82ndWNYMxtdCnng/oDQesnzzHna176DTnoYfPo02B8jTbW4cYbXnmmQ9Rq8VYoyjyhDLtz87qyk6TUB0Tbn3dMWZDf4n9gy26R07ymuclRZGRU00UOsIltVrXmBiP+xSlU7FMw9zCMARRkeduvwy8iMxWbm02emIXPw88cmc0idYVTM539+5uEgaGKhojBiHaZJw6c5q7dzcpcrhy5TLbGwccDfssLy8TmDq6glzmGGnJy4LxEYStgLzMMSpHiRCV+Qxsj1OnTjHcHxH7LjE6SRK0tdRqAdJTdBpLs2ZCmuSUlQM9hZTUQ49BkSCk2yOCIJqoKiy+H0zYwBLfc40Dv92c3dNuHTJ4npOxSq1JkgTfd/vPq88z0/OD7zs2oTWCSsIoy/G98PO+x74wnnL9ZLYY1WvLfMc3fiN/8E//H9JehtCWWnia6OhvQe09ePF53vTNb+Rf/to/pVeVRNIt8f6EDmitQSHphIY/+qmc1kmIxj4DT5JVBUoJrBEUY43QrsM1SA+h65GVlm//K1/N1fzHCHKfZJTSPDpE+j5SK6osIOvnvOctGr07wrTqVPIOWeJx8R1fw2e2dnhZ9PiWpy/xG888gxQe2909OlFAJwrQ0qPE0PSb1Ooe0svJkwZF7iS3Uk1o1aXFBuD7DcoyxwskBk1RpgRBQKB8Il2iRcDlMyvkpWS7W6Jsyac29hH5EC2W6fZ3WKzHDDDsjaBFBfWSpKcRfgeqFF8ukdoehZUEvkeZhTRDzZlGxYv7XeJmC3RFUWqa7YiikBhdEAQx3eGYRtzi0ddd5dmPbpMz5BNHKzylRpxZGXLUbWOkJIoCkqEge/aHiR96hPrRLnn7KqXoE44lsjbEBAqpWiBD8Npu8lIgtMXoBCEjhLK86z1d7G5G3jviibRE5xW6MhRjVyhJ41GYAuwYqS0Sj1LlKAuykpiJfrnSoLRm6FtMAb4FowxeCUGkUZ6HaVSMhpai8LnV7bJ4WOKFi6jGd0NYUCszStsn0AsMix7Ng19ABA2iYZsXDy+irUb4lidf9+YvxG3z2vg8x1SKoScdVXCSijRNUUFAZSuU9RFUYM2sULNWY4zFj1rEMQyTIWma4vkeUgnScYKQHs7fxvkPlGX2ACA0NSvu9XqO4dUbOsNi5obLe3t7SCUR1jHglFL0+33q9cbsPU+BvTzPZx3kx173KFmaIyqQSM6cOUOapiy3l9Fa88q1F1hZWeLSxXPcvXWTtbU1Wu0m2lScPnuGUldEUhCEPnKSOOw8eCRJklBvRqjMIHCyHoXASoMnnOQbXHqeM8i2k2JWIoTCj5yxfZnlMzBsemB2QIfG2ByEY69VZUmtFrG/70Ijdnd3GQ6HLC8vcnR0QFlqgokhK0CaFbQ7i6RZMSuk8wKGw6Hzy1MhRWlJsqnx9NIM6EuyfJaWlqYpKytrNOI/2SvytfFnM0pd4VkHChelxvPdPeg9UKjOi/fp/8GxoADhZIfW6gfYTFOQefrYaVqnsC45y1o7kzla58Z7zGfOHbamQGBZzn2xjoPLAELMAyXcazsZqJQSU83TyGbgABqspJywSJhIPhCG1aUV/uvv+g5+4qd/jmuvfJbxKOXxx97A6fU1+uNFjLdOU92jpiSpJ1CZ4Jd+8vsZl13e+sTr2N0XfPs3nOO/fe9P8pM/+v187LM7/PNf/jANP2NlcYH2UofRsM+djS3SPOTrvvxxvvptD/Orv/V+3vXUI3zoxVv84Ydu89Y3nuDdbzrH3t6IUVJSlQa8EC+OkSLA9xWNZpvzZy9w5cojHOz3ObHa5OpDJwGFsRXSSvIJgO6um7sG2kyZQK7zfrxhAcwA/enaPX2MlBIrJJV13lFzWdiULWUmAJ9jME7ngtZ6JsdX6nON193rHANOrQPlnG+WxNoJyHYMLJ4+rwN/1Ow6v/p5p4y8L7VxHAibgWivYo0dvyfAAbJYp/me3yuOferuj7nEdeYfOZGIV1VFFIRu/2VusP+AdPQYwwnl5OnODy0HMU89tdoxGXJfUghNUJQs1aJjDSeJEYLAs4jcse6klVgkGo3VhrICqSYS2skw2sm9dOmkrla7OUs49bycM3cny8IEwHswnbMwGuF7fP1XPMWvvO+P8aWaBVAVRUGn05kw1aLZGWJ/f59+v4/nBQwGvVk4lbWWTqfD4WGXvSxhYaHN5cuXuXv3LsvLy8RxTK/XQ2vN9evXeeSRR1hdXWVvb28WbuX7Ps2mS1t195mm3V5ACovS5USiaakFMf/Jt3w7o6REygCtHYh2cHBArVajLEs2NjZmKZLWuBCtvEh445OP8YbHr3L/9p1jc2fOWp2BWlbChKHMpNnoTVjQLpkVtJiyEi2KOYtZSkk9UrQaTTxPos0kKKSsEHK+7h8e9bi7uUuvP8QYiKShKApGo5FrCgnnNWisdWen6bWzHsboiZpnMtemc8OYB5oPf95HUTZ5+twTrJyrYUXMxz/2e8RezONv/Cvc27iO0BlRo8bFC1d58cYnOH/uSZ57/g95aP2NrJxZp9Na5EMffh+L8RJXLj/Bi9ee48T6Jap8wEMXn+CTH30fy+cuIKqM9vI6t649z+kzV3nx5U9xavk8y80lgniB/YNXiOuLHPa3qfSACyfPo4zHvc3nKEddVi8uInsef/Tpj/DWp95JerfPIM9YW1tjYXmBjZ3blGXKYJhy6sRZzp25ClVBIAXL5x/iaH+D/f1DhklElg8ZDTRPPfE0u7u7HOztOym5NWztbhMENc6cexhf+pxaO4MIPKwtiYMWyICssAwOu5zsLJBlKavLi9y7fo/N0S71sM4gSanXY4qiQkoXKuV5Ac2wyeHhEXFcJ643SVOHF2T5CCEEw1EXRECtplzzXPmEgbOHSVPnUV3k5cwmJ4pcqvB4PKakIAjCSQMzoKpGCOE7FttkNfaUR1VpmNhCxHHsgl+Uk3wKIZDKIvBASBYX1tg/vEdnqcXOzh5RWEcquHPnDouLiwy3Dbs7+xglQBvqNY+gGbN4eonWCty/l3Jw1Ofk+ipCZMQLNcIxjG2Peq2JzjOM1pxYW6K0kBYuVG8wHhAEzsLH86FWbx0Lt5GENCkqi6RwfrAicIw4Xc2Beanwg4iy1DABQ13wXYbWzte0HjlihVSGqjKTpmQ5Y9tP60NrrQvAU4JxVlILFFUx+rzvsS8IKLfzmU/iTRbDxfOPsygL0mZKqC1EkJz6t7z0vney8rVXWH7qLfz0X/sWWrUY2eu7hVQbViLLt3/bf4ayH+S/+IodVAx+VJAOBKnJCZVHkQlkASa15AkIXzDaH6Eziy9KOut13szfxexUyI7Gj87T29mkGltM1cMPDG95dJH8sIcIFyjHzqRc1NewG5+kONinrQPOP3mVCxfX2drsQloSLi5SSksgKmr1Do0QkJYoWmG7v4UfNTAaFApPWYTv0a+gqjI8LwSjCXyPetSgrgRJZiiAppLc3DqgVnrImsYPffx6k1GaU+OIuN5EijG68mgLHxGUVGlMqyXIkpSx6mBlic6bBEoxTCtqccDYKK6PK/ygpDKGUluiWoOycEV33Ino7mco44GCD33o9yYUBsn7bnV5fRyyaRW+yGlHllv7iszU6CwUiOu3OVjpsBrfRhzVGfs5nsowfkI9jlHBAqq2j/RCpAon3eoRVSHR5lFE7wB74a/iH34cs/XLeDWJGVf4IWAM2dhy77DOqRVLaCoqUeJXEz+JwFHYXdKqwhhNrEAZxbjW4flbQ/aHFW9+XYfm4usJnvrneOcv4f89QfQP1vBjkK1F0uAMqY0YVHVUpcjqD7N+sQPlbQqTYIzh2sZX42mf0rPwVV+Iu+a18fkONU3Q8RTKeGhr8AKFbzyqUuD7Ifkkgvq4xGx6oM/yxM37uDmTlzabMVEUMRwlM8aXk0a6BXw8HlNrxNTrdcAdHg8ODqjXGrNCfsoIA1xSkRkTRRH98dAx4jyPeuDPzJUHo6H7/nDA+vo6SZays7vD5cuX3QYcRXQ6Hd7+jjfS7/fJRrlLTEpTaq0GlbCsrq46/5maAwQRwh1erXGNDSwKqNfrGKvJ0wyvHuFPkhCl8jB6DlpIKWdykCCYJkyKGTulXq/PGE3zVDk3jDEcHBwgpWTY67O7uzszUa6qik6nM0tzU8o1XdI0nSXK9Xq92eOnhtPT8Ivl5WV2d3ep1WvOIJrhzBuj2+1OAjcM9Xqdfr9PEAR/pnPytfHgqKoKLeZpnKZSswLUQ6K1QShmLLSyzJmavU/BFTnp0iopQdgZGDMHTiYMTyUds82C0e41CjNhvtqKUPlkRebmXKWRnkCXrkivqoogCmc+WK5gNhOGziQYxTgjdkE5sVN4kB10XKJmjSEMamjrCnAhHcMikD4Gzcsv3+bU+dNU2Zhud5eHLl3hkUceJRlrtkcNFhoRdfVZfKvwpMEGi3zn1z9FUeWMk4yf+LvfyWdfuc6v/87HQZc8+fQbOHduhV/61d/lr33rN3Dz3h7v+8DH+dgnPkG7kfHON11lNBrx6HrEqWiFQTfhsJcijMVqjWqtILyQqjJ0Wm3OnbvA2fPnMLmh393n4vkTnDtxAmvLB37vKTg6XVcBfD944DHHr+UczALnwSJdkqp0yatTZtoUOHOAn0TKeXHuefPnctI0D13N2SjHU7SPMyKPF8VOUuuYlFKq2Vyav/YE4BEeWIGvArStkKjZNS1LJ5/8UhwPgNDH5KN/GjBnrZ3tJ3/a+NPkrdM5Mb0PPcED1+g4IDgLmlDzuae1JvAVUvhYIyYeYxPwv3JMda3rM+BEa43RGmPmstnjclX3fuzMf/XVMkXnfzkH9u2x32EKwEkpMBxvFNpXrXmSmi+gnAOeQRBQr0dsbW1NkhKdhcuUQX/69GnyvGR5eZler0ej0cBaV0iGYTjxmU3I85xmsznzxJ3+bm9729vY3NyceX2urq7O9tFpInscxxwcHLGwsMB4NKC+tDhhKMK//fVfIyum4FZBkgy4cOEC4/GYNE3Z3t6m3W6T5zmdTocid8qFIAj4b/76d/P+D/7B7DP+kzwL3feY+I96M9n89KuHxTcWo80Dc+M4cLyyssKZM2fwA+VsCoRwfn5qbmtweNSjMHDnzhbSGLQ3SQguKgyeY3u/Sh7r/m2R+LNrnec52Ll3alLm/8H5/+dpvPcHf5Z//Yt/m6Jc5Y8++v/yle/4DiLl89LN3ycwhmJseeqtX8szz/471tcv8dzzH+Sdb38Pw2GfhVaHZz/6e6wvncbKilu3bnBy+SzD4S6XL72RrY27XLj6Bg7uKMaCAAAgAElEQVT2t7hw4VGy0ZBHH30zv/+B3+bJJ7+cVrPO0uIq155/ltX2RbRf0Go1uX3vNvtJn7dcfIxPvPQZFpY61IzHp7au8diFi9y+9hK+gjsH23RHOyx0VllaOU2VJDx8YZVOu8nLN26yutxhe2uLM7IiPTzAmJLhYMBD566yITe5f/8OJ0+eZJD2OBwcok1JXO/MmkP9oyMCqVCRRy1aYJSMKJKUxXYHU1bUmg3SdIvNlzboHx7w2GNPcnvz+sQ7ssBaTbu9iDGGo6Me2tPU63Pfa+fz7JRn+/v7Ewn2nP2fpineJBF7mmp6nO2d5/nMHiQIHLjf7/cBiOOY1pLk/s0xLsTH1Vi+H2BsSZE7dZFSikZbMOg6wpQQkjzLCQKfcb5PLa7jBSF5mFOVJeCjpM/B/hFWG+phjeXmGkfpHkmRIv2KcWY5eCUj9H0iz+f+vW1Onl1j52gTIQKk9sEb4+sAbSz9cTJTKFprJxJzn/F4jC5KgnoN3/cJwpAyd7L58XiMV29gTTXfK8R8r3D1pKAsNbXQm9Us0yArXVZuP5l4cStVTdZu91nCvNY0xlCr1ZznqVYIfJT8/Jt4XxBQzlQaoXyE0rzuTW/H90f89bdvI7SkaC3D0iX+2a82WX7XVY5++6dZaQTs7N5DGs3rLzVYjZtcvLLCYu/f8E1fBzUfqgRy7dhnngdlVkEOVSapxgYdhehBDo6sQXTCQwR1asOM838zYetfrVNWOcgF8t5dguUauuyhZEBZSrAphTH48SoBA176aA/TEWA9/sYP/Qv+x+/5Hn74vT9CIQWZ1nhIShkh04R+LghDn2TUJarX6A1K4noAQuNFLY4OUowo3UUqcwQGoQxCRCSlQSuLFZqR9kBbmottqrLLvWEF+zc5f+osZTJiuRlzcJBSVKDDIb5QKBuTJBUagecL8irHiJhSOp3+yFh8Abo0+KEm9j3qoU+hDTaqsxBrZNSi1cy5dm2forKYcoAf1DC2ouXD+lLO1n6NZiS4sakIayOWozo3N0vaLYkxfXxraawLvNYZvCDHEx46rcAU6HIBGWiEVyKFj5EWY1eRtk7WfDeNe89QZCMi81bGp74JNXgF8/LPMNjX/Hc/l3Ofhwne+mV8+J3vJ6tXNAYjpC/QgYRKU/ptvM67CPwGWZXAzgfY+90Dvv83Q9L4FCdPrfDc2z6IfeZRFDlmDNLA/SOQ4gixHLD8hjdT3rxFrXGKIHkOrg8oCaj8GuPCsnfYZVylCPUfPmC+Nr7wY8pAw04OTcZiKotEOWBtOHjAX8T3nZ8DduIpEMVIaUjSEUVRsLq6ymg0oK5cJ8kd1ufSialkdSqZnD7n4uIihwdd55VWZrPNb+o9UOROAuE6tB5l6YrYRj3Gk4oSwWgwxFceRZZz5swZiizl3JnT3LhxgytXL7O2toYnA0wFcVxjdW0Fz/MYpSPX8Y5iB2pFNZfQJiUYdxjN08wFK5QVYehSYYMoZCoPc4WDmXWmYVpIP5hKOQXloiiayW5mCYmTjV9PqN2NRoPt7W1u3rxJVVUURcHBwQErKytsbW1Rr0eThFkzAzjT1MXHTz/naYE0/RwBDg4OEEKQpRVxvT3zxZheZ+eRYRkOh052WH7+aUevjf//R1Fks3kzDWAQQmCkJDPON8lm1UwSJqycFT1TCZvneTNAZQrGueCICRgnXUiSnII1k3rJ3YegK4k2hkpOGReOqeGCsAR5kSIEs3vX+STOGV52yuabFNVRFFFODmppms48J6X0QGikUMjJYQ4pKIpyNj8DL+Sw30PWPHZ29smaTYywfPaFhO3tTa5eeZwL506RjYeM1VV8LE21TWBLKuGaZ/WaW8fOr3X4X/+rr0AbKHNNUQi+7d1vpK6PePfrlnjrpa/CVpZSCHqHe4xGI9LRmHGR0eunFEYSd1bxgwhTuaCaTmeRE6trnDxzmjt379Oq1/ihH/qfSTLNy598H1lpiPxgtk4Uuppdn0B5s8N/KewMFJt2kKePm371vRBMNZfGiLn/3xS8OC4bnV7T43JJl+47lTPOGXdCiJln3HT9mX7vOEB4XGarpI+jUc2LmGliqHsdBx6KCYNAyvJLlin3avYjfK6XFzwItBmOyRyn18m6/1dKwYRpKY5JOucS52MsOOkAcpg/dgpqTQsmx4Z3Jt52KpmWFmPNxApHUBkNBsqsJBsNqYpJ4FKRuUAI5gAxgBQCbzJ/wmj++01BN7dGuRRBoQ3CagojCIU/MUo3s/UFJMLOmb7Te+W4z6WnAhYWY3a2D2afx+3bt1ldXWc4HLK/v8+VK1fY3Nyk0WiwsNhme2t/xl5PkoSlpSWiKGJzc3vSdGzy0ksvcenSJV588UUeeeSRmQR2PB5z584dms0mJ06c4N69e7O99/DwkLW1NY6OjlhZWZmkFSpGacbf+Ft/hx/73/83fv5f/urssY899hi3bt3i8HDffV6hT7t9is3NTbTWHBwcsLqyxChLObG0Tq0WEoQeUeQ7yfJ0/kyu3ZzlqJ01yASIm4JygQdRGCBGkA+zCStRYoSdSE0NxsDS0hJLS0uEYTjzfzo+b4uqRMiAkycHCO8zmNKBwZU1yCDETPYqpZSDmNV0/gmENBP2nGPKDMfJjMVfVSX6LxAo9+P/13ezsHKW55/9TZ549MuoijF3Dl5mPEoRMuTS697Exz/+W5w6eZ7nPvMsX/5V34LnebRiyXOf/gCL7XWuPvxGPvv8Rzi7doK791/h/OUnEIzp9fe5s9XnyTe9k7Iac3h0i4N7Y86evcry4gr3Nz/CZ57fJQqWuLv7Mp70KakoipIlr86HP/0sa8snCJVPb7DL6aVFdgdjjvIhj114mEZrhWw45tTJ02xsbXLqwjlefvElmod1Lp4/y82b1ymMZnv/gJHNkaJGVKvz/Esv0mzENDtt7t29yfnTZ7l+7zqPPfoEd2/fR+sKIVy6uF9TJFmBSHLSwoUyCRSD0YC4ucCFsw+zu7eJFD7JUZcWMSGaXjkkqAeMkrGTSKqAcZZSVRVhGM72ucPDLkqJSaNCkmXFDIBTU7avMQ/sh9baSUNC4vuhA6+0ZjxyzLs4jjk8OKLZWqKzWBDGDfZ3R2hd0a7XODxM8YOJwkAaAr9FswVLJ0q27uY8+oaTXHtpn1otZjxK2dnexws9/MBncSlkd6uPHzoWWi9LGFX3aHUUD18+w95ul6LSxO0AoQPSrCRuNdnZ3icIIpQwLHTamDyjKMeEYYC0BUj3mUdRRFHkGFsQ+jgrDeuS5YtKoQWEoU9ZOUmuUu5zk1JhBROvbG+ynkh8zyVsz5pBxmJsQeA3EdLMmjXexLrMMYiL2ToyvU5TP9zKOHWB1p8/bvAFAeWUsJS6REmf7/uBb+Jrv/yv8vJPfAoLJGXO+P3fy3bjm/H397j9/C8S9iSPXD3DQ1fexUd/+1f5lniXU9e3GbfAHEJeSYgNqpCgDannQJWgkhS5dQjnoWPRSQmNdYkQIYM0JzZNbv/MijNCrFkqu0KegswzhFCU/T4iihn2B4TRMvUTHvc+vkOF4P9+poUeZ3TOd/jXv/Lr5EYhjGGcV0ShjzQWqxSedf5xgaiTJgmdToSoBINEkOuKwuZ4VlEJ1yVr1ArytI4fWwoD0kqqKiDqLFFl+1i/j2dqnFwqCIs1eloRiYitwx5JYtBBnbybsN6I0WFBzVpUEOMxIlTQVQmqDBj7BRGGZksxHCqqImAkG1g9INeOal2OEkQ/x5gQkAhZ4QmPwmqsgQS4tuVx+VzB7oFPo5IoLbm1l+KHEPoWQ5vuZo9kFOM1t/BqNcJag0a7CV6KV+9hwyWCKER7AcKLMXSxVcVS0SRRb0Kbu6ThVaqXP4U8ehY1XObOrQTrxWRJl6MP/AH/ffBOTOMUzZufpnP1JGtyhTLL0dxEyTGdcpuN4Ralehe/c+eTlPZlZG+HzbTLyy3DYpyz60GkoMgVWhpqNYtizN5vPsORzjnob9GtFIutOsuxx8m1PbyFdQ43thlLPZMivDa+eEMqCEKPstDzw9mEGaVL6ZJ0jP2cVLhpUY+oHFVcBLRaLZTn7kGrPMoJ7XtaVEZRRF6VeJ5CagfqTf0YlVI0W84TLqoFM2+WqRlzlpeEtbm0tlaLZ0y6brc7A6Lq9Tp5VlFaQ6Me80cfeZZ3v/vdrK6v4fmStbUVFhbajp49OVCueeuOyl5VhLUa6liRIqXA2NylodYiwFBpB3jJwCfwfMwEXFTCnxXHr2a2zApUMffScSlyAiHtTP5ljcGWFZHnM+r1KfKcQjs/mlOnTlGWJaPRaAJiTDdGZr5vUkrSNKXRaBx7nNsAp0xGpdQDvnxWGIrKHXYFasbwGwzHZFnxGij3RR5JMp6zR9RcQqYmxedxgGVakM7lkJP/R2DlnGczA1KMuw/DKECXToIgERSVSxWegrzT1wyCgKIonEF0Njf69X0fXVZ4gT/rLuuymnRDnRdVWuQoKfCUD4MetTCiqlwyYj5JELbkSOlhTIbv1xCiYOqDlyTOT3KUjPn7/+inkCiMNXSHQ1CSOEwZjo7YP9rllesnuPLQFU6fOYnWmo3+IlL5KM9QV33ieESQ9jANgdYhsizRMiMMDVfPdsiKilE6Ik0SyspJv8fZkCzXDEpJrXORMCgJtPPccvK0Nq1Wi06nw3A4Znt3h2vXrmEqSa0VkVUJJy69mVee/wC1IJwBKNPrVJYlnpDkVUk0YcpprWcAu5TOXyUMQ8pC4weKShcEyj1WKIkwTmZy3CQfnOzP2Ll8dMbknTQFjgMaZaFd+i16tt5PWc5GM5lzTgYXTCSvWInWLlDKsaoi560r5iBiXhZ40n1fKPCkhyeVA3a+RMd0X5gB7ccYZfCg79wDXye4nZzoVaVwDbXp9x6QvIp5+vJM1j6RhUspscoFMkltsd7EA8gCzAHdub+jAwMB0BLpucdVWcFROnSsSCnwpXMO8yR4nsSTapbIXBYWKUs86c4G0pu/d4BGzSOqKXytCT1JnleAD2IqxzRMfdKOf07HmaXTedwvU66cP8NwMJ6Bku32AkkyotGoz0zWtdacPXuRa9de4Ny5cxweHMwkp4PBgPE4RQjHqqnVQk6cOEFVVTSbTaKojtaWxcVFer0eCwsLKKXodrucP3+enZ0d+v0+Z86cYTAYsLy8TJK4ZopLnRdIz+PrvvHbEJNzVafT4VOf/CSXLl0iCAJeePFFt5bqkkaj4Rh+1tJut6kqwz/7yX/IqNfDlBXK99xa/yqwV1iLNAJhtfOPE4IwUsRxTKdRp1UPqdfr3NvYYVTukWeTM8v02kiBRLC4uEir0UAeM3B361dFUjhgstvv0+32wHpIOU/2ttaisZiqmu1d071q+hgpPASSqtJonc2urxCSUZJ9PrfVn4ux2b3H9fufYblzlpt3PkImE3wRs7W7yeryIr3P3gMh2Lp9izL2+INnfwVr3PXf6x7SrB1yd+86yhPcOHiJKIp47tqH8aWi02gzToa8/6O/gcSyvnKCcdZnb7DNTv8lnrj6Tm5tbJCZfWq1iLW1C2zfv03Nd4qRIikIPcvawjLbB3uEzYCs36XjWzoLp7jd/SyPPvEo16/doNmMOdzcwlOC9VPr3Lh9A+nBoD9gTZ+gJloErRplltOs1QmCkLv3b7G+fpqPffoTfOU7vpqbN2+SlzmtVovNzU0evnKRm7fuMO6NOX/5Ig1tyPPUKTxqjZnljRQejXiZWrRAvdbh/v37nF8+x2B4wMAUBF6NIPDo9gfUaiG60mSFA9riuI60DpQrdEVVVC4Z1QqCSZpwkiRI35v5M/q+j6eiWeMcIIx8inzeYGy0agy7Y5qNNke9EUWWo5RHrzfkrU+/nhvX76NNRrsTs7tzSBQ2SQaKc+fX6XWHeF5B92CIlGIS6GaQXsDBTkoUxuR5zuqJdfKspKxS8jLn/uYe3cOUKAopS0lZjikKg5IGYxWmNFTGsH+0D0BnMWarO8AUhjAMHNCYp24tQoEpkEIwnqyZthJIIWg2FhglBUvtSeNX4CTCfoTvTc4saApbYbRb12pxnSRJOBopXtkeYcwIrQQPnVjhxEKLQFXUfInyQgzasQaZMLaVJAoi0jRl/7BHVnl43heZKYexeMIjqi/wtssPs6AyhABtoZG1MekvcXLxHbz4727x0OmreGdjQm9Iee9f8Ds/CAxBH0GvCxsfhctfAbH1yEyFqEBUkjQxICWSivwI8gyMB7VlKI1FmDFWN/hHv1PwfV8PpsoweR3NLpVR5EkJfoUX1KmGQ7S3QjMOuP/CHfa7glanwW9+6A7LSx2eePQKP/73vpfzZ/4y0pPIQmOFQpOQ+x6jrE9rocV+ekg98EkT6CUJvvRR1qU6GmnxJp4paRLQaCp0aVC4MEQhcux4AyVDsq5HayVClwotK95+ucO1l++RSUPUrkGRIxcM+2XMqk0w0kPnY1oLCxz0Dzm9ELKZNGhkPXJP0uumaK0odEXdG1Fpn2ZN4ukRulJEUY3mQkK/61OLQvJ0jNalc52yirEVXN9SnFxUSErysuZuCBlQJD73CjixtIQRCZ3Y0GytUgtTwFKWAdlQUSUeo3ARFUWo0IJtYKSlW/TJRxG9YZP06NOMDwcU/SX2jlrcHyYUjZSmJ6hXgk+/cI03nw351MaYb3rkDD/7O78HfsCTDz/F6mrFDov8++f/PbFKGNbaWKNwGEzKr9+GKIBAQT0WZJXmVAReKIjNiHocsVyzrDRDhskRaaEJRcC4V+P5o5x+Npx5S7w2vrjjOID0aoZEIVwa6LRoK8tyZuJtq0nqmXZyzm5/iOd7FHlJFEUzinez2XQBEkVBlmUYMZFAWTljYUwZceFEhjmV2EzBwcFgQD1uMhqNQBiisOESlYRgMBhw+vRpDg4OCMMQrTUrqydYWV9j48ZN2u02YRjyhx/4A77ma949K35brc7stdyfABnMZVfTA60zJIdGo+H8lqSHMRViAlROO9Kvlh7NTPaNePC5mBfBdpJINwVcpiAjOKBka2uLwXjEwsICa8sr3Lhxw6WtFsUDzBkpJf1+n2azSZZlFEUxK95zXTlmg6ec6S+ANvT7fTqdDrVajShaIArdQSfLkhkI51h2Dxr6vzb+7EeWJ0jhkWW5O/gVGQtxkywvQLh7x1gHfOVpTrvVpDceUfc80jLHV4ED2owDuakMUjmuSakNgQzI8rHzbpWQjQrCSDEcVRjtYaoSXZZ4QcCg13dyLJOhswqqkty4cAKFQiuJJywID98TDIdDoijgoFvQCiO6ecZC3GCc5zQbtQnIHsxAwjiqMyoy2rU6h0cHdFodRuMxcdwkzceUeYVf82YsMGMMJ0+ddimI45zPXLvLk4+dZdzvsbu3w8lTp1leXuWhcxfAaqwV7PY8qiKmKJWTngSCyg4RYoSiIjM5pS0ZpQVjXWOQG7TfpLSWUpbAGGN92hOZfhiGxHFMu73AwdE+/aM+G/tbDIdDKgy+EqhoiaW4xXOf+AhSKbKqpOYHjNOEet3J6D0VkBUVcS2iNJp6GHHU7zn/mfGYZqNBnqRoT6PLDK19PKXppwmNsM4ozYjCEFM5sD30JnIRKxzzwAtdouY0udJM1yzjpGzSrVF+MA0HCSfrIWjj/OTEROKjpAfe3NOzrObs5unap6T/QDorxoInMNoSqAAp5AOP/1Ifx2Wq8Ll7yvGvM0t8M5dvvhrMe7WUtcwzFnxn4W88Ztde4YKLlBIoAW4XqsiOPdd0TJkjSqm5Z50QZEVFEAYIMQdppDCEnkeoBFG9hsE1pSJfs9xqkuQVlRXEUTTzowwjRbsW4XuQjxOCQGCz8oGGg5ywd6fvY9pMfDUrtKos46LACxTNZpPDw+6ssFZKEEURe3sHXLhwjjzPeeWVV3j66afZ2toiDEPGScLNmzdpNBp4XjDZKyOEsDQaDQ4PD3n88cd55ZUbNBoNFhc79Pt911iMnL/e3t4ejUaDMAw5PDxkaWmJNJ0nRrrgiRbPP/88y0sr9Pr9mRXFuXPn6Ha7M0+6oigYZzlxFNJoNCjynNFoxNpajJ4oEqZniOPnuuln47ydlLMb8QJqkU87rtNut6nXI+p1l7hei9ssrq9zZ2OD7a3D2TyazrPDw0O6E6leWZbkec44d55U3eGAbrfL4UGPg4MeaZoS+ThD+ErP2DGa+d+PM22nbN/ZPD92Paefy1+Usdo8iV06S5IWFEXKpfNv5OMf/QOWF89x5dLjCAqS0ZDe6IB6a43dnfucPfcwH//kBzi5sMLDl99Bt7/BYJTheUMWVpfp7mxzau0025vXeevDT0PoYXXJvTu3qak2j1x5G8PxHnvb97h44iGiKODocECZFDRrDbT2uXvrkDhaprPY5JM3n+fMwnkyPaLmC173unfxWx/6Ld799F/i5o27VDpHiJDM5jSbdW7eepHz565w584dnn7qHdx86UXqix2GgwG+dN5i0tqZv+Lb3/wO7t69y9mzZ0nylPsbtzl77gx//NGPsrq6TrPZdHLwIuH8uYsTtYcLR3ChM5JazSkB0nTMysoKg8GAtdVzNIZ9tnY3sDXN5dMX2d3dpTsc4wWKRqNBVZVUusTYkqzQmKndBhYfZhLTsqrwJ4Em0/rHhbdIPN/O1pRpcxJhWFlb4+6dTXJdUmt4BJGlLCpu3b7G6toJsMvs7+9Sjz08KalKODjco3tQEoY+cbNBs9lgY2uXsswnsvs63W7XkRRGfQrjwntqtZgkyVhbPcnR0RFp4uqDuOEaYqHxiXzJYW9MklrCKGDY11gTYE0J1tlLOD9ajUDie8EsJMhZEbjbcqrWsNYxprXW7quZy3mnu5MQAut53O8FPPfKPjKq4XkLNFdO4vs+e1owzEOaokF/NCbwoB2fQKW7nGnkCJ0T+CG6gnq9xckzD3H7zg34jzgufIHkqxYlNZ2li/yX3/kt/P0fvEeWS5AGs/ifEo3+Mf/w636Dr3/pYW71u/zNC6/wA99zhK4U/Tsa4YONoHESSgvmAPpoYiXRwSXG29fBhyKsEClUOdQaAhFaqkShIk1u4LDf4pXDFmVxC20jbGmgKjjoadbCCM8PKSuJUSFnT7bYvL3L0XbOQnsJW9co65PZjNE4ZeXkW6j5TfxgkkASBqATFhcjWmqBR9bg2q7m9t4ArZrU6g2yLHOJq8b5pgTSo9ZscrizR6YsjXqTMkspTcbqQos0FfhRSiglR/19llurVGXKJz6zwXc+IfiZZzw3kayk7vk0I4nWHoEfoWoJgRryl6+e5mObOwQk6FASElGYMUqF1LRPno+pNWr0x1CPmwRVSS81ZLYJ6pCsAF25xDmLRVt4+aDNQ4s51SEsBh6NmiHPA4y19ESGF3uMkz621qTW9xhqzTiE0Bsj/AipapSewRc9RFWgsxDpS/A8lG+I23XCaJFEGUpvyMBKajpBpUPCRpN2IBmP+rz3P/9WGn6D97zr7fydn/hZ6qbNQ+eW+Mo3rTIeWlZ8y9Pf+g0oFvgnv/3zbFFhrSAQlocbitBTYDQ2164rV1h0ZeluQN9L8Xww3g6eksggYVwUDFTJh5I2PdtHCMHotVTHL/qQOD8QbTVSWHxPoo2grHIXrlLMO/nWWqQ/oXSX7qBUGk0oIKo5AC0IApLhiCRJOHV6ne7RgCTPaDabs81ryvhQQuD5U/+1YMJKKxHCQwrXpZoWvMmEdSeEoNc7wvdDfN8nyxLSdEwQeBQFnD7t5Kof+f2M02fWeeSRR8irjCuPXkVOWD7tdhvpGXwVUItirCddiMykc19lqQP8xwlREOJ5EXrqKSEtxogZw0VrQxA43wRtnOm2sQapprKwSeFiJt37spyA0RZPTQtWCxhCoaisZlwUlEazuLJMFEVs3d/g9s4ORVGwv78/k77keT7x2RuhBXhhQM1T5LqiwpKNnSGqO7CkdNpt0I7t1G63iePapNApabUaZFlCFE3Ma4sCMym4G436n/3EfG3Mh1XUQp9hkhDKgHpYY7d7xOn1dQaDAa1Wi629XQIvYHGhxb2dHU6trHA0GuEh2e8esdBuYnVFtz9idbnDzfvbXD59gsFoiOdbtg4PiRs1WkHI/f1dHjq5xu5+j5WlNoNhSpoVdOoN7h7uc25llbt7+6wvtrg/GrO+1GHncMBSK2b7cJ+Ty8ts7vVYW1qg2xuw0I7ZPeqz0GygDewqS3c8pObV8YOAdAKwR4EiUBGDdMxSs80oN7SbAaWWtOOIwggCD372F3+TeiOm02qRThKehRBUZckP/8B3YazmH//ML3D6RMVhdwelfF566QQrSyusr68TRzHtVgdjKqqqJM8SCtNgnDrpthFO2uosOhRh5LyxOu1oBqA5kMAjDH36/T6j0YgkHfCWJ5/gyqWLvPdH/g8qYwk8nwrDP/mxH+H7/6cfoiibGHvEWrvD9v4ey0tLJEnCwsICg/6IOI4Rdi5PbbVa7uukiKmHEYPBgFotoiwTTOVRi0L2e0cstNocHR0Rx45FPBgMWF5YpKgm7CthCDzHeNOVRfgT/zntjq7TtUlMkmCnBLZpkva0eXJcqjaXrbrk5gcDI+ZmzUI4EKQyeraXlMYBCF+qoP+rWXB/0r//JKDNSajckFLO01mP/aywn+tZZ0xFOzgmhRWgdeWS7UrHwlVYAglSGhalpB6U7JYSM03EnADhaI1FI4yP0ZrQUywuL2EllHmKScegFUoqlG8JooA0c2FRQkgWopDSCEIE7WZIlYsZS194iqyqqPCAYvb+S81s351Jvyd75XGPzBmQYx3rXAGHvT5g6HTa9PtD6vU6SZIRx7VZojuk3Lu3wc6ua+hP/WpbrRbj8dglnec5+/v7lOU+y8vL3Lx5G61L6vWI4XA4A5Km98xUKTBdp3d391lfX6fb7bqCOfTpdg+pRTGXH36Y559/Hq01jdj5vea5C4NqtVoT9l9BUWp2dvao1yOwBT/z09RxnLUAACAASURBVD8P0iVfz7yvPDUDLZUSNCLHgotrEfUopFkLiGIHFk4bC0j3vjvLHrV2m95gwCxXZPLHoLl19w6tRnPm+ZZlGWmakhUlaZoyHCQM04zRMEVi8LwA4bsAGqEn0nY7ZfC666mEAxiYhPlYO5+nDoT2EWIuVf6LMDIbcmL5JGb7LqsnHuVTn3wfX/NV344nDfe3XnDhZ8MR7eZpdN7lscee5oMf/g3e8vhf4uT6ZZ756C9TX1hjmKS0F88wPLjHIw+9iY997Pd45OpjZFVJNhqgpCSot1hZX+Hm7ee4dOFxUq/HIxfewgs3PsTqybNcv/UCoaiz0l5gcXGFjTs3SA4ti/ECOwf3OXvqNF5zia3NF/j/2HvPIEuz+7zvd86bb76dw3T3TE/e2ZmNABbYhAVAACRIihRkQUySSNqWJZply6Eo84NrKatsi7KKRbvKskyxaJEiBUKiRIjkIufdBRYzu9jZybF7Ooebw3vfeI4/vLfvDCBIBVUJBZHE+dIzPbenb3jfE/7/5/k9j588w4VLbzA5OQlAN+py+Mgxbl6+zkRphsbmDjnLYf3eCgmCbqeJaXgIUuqdOt3AZ7Y8ievluXn3DmPVCpsb6+TzecbHx7lz5w6PnXmM/VqdnUGdomfj5EsEoY9tuwRBlto5GPTZq9UpFArs7O1y/PhxfL+HNGz292uMjZWZn1vCNmF9YxPLTDi5eIRUK26v3ePwkTm2t7eHmJ0BlnW/2dcPMj4zWlPIeSRhpvoOlEIaAqVTojhkZnaR3d1NFIo4TjFNm17bRw9qvPDC89y8dZ1765uUSyU8x8T3A+6ubABw8tQy9fo+vu9TzJdptxJMy8TxXPbrTdrdPp1On0KxhGFaBGGKbdg8fHKBN66sYDg2IhHs77UpVfN0+z0MGzzbIfRTuu1s7nQsCIJsTyFQ6CTFLNoondKJUzwvQ41Apl5HxcxNlGl1BhRzDmtrDWKdNWxdJ2GgwkxZPUT3qESjHnBnCCGIUgNpFnhlK1O5ycoUllsi5xUzi6zI0qoHg4Ao6mRFuvaArirRbZfYTqoYxKSNHkcXqqSdLcadEpZxg1b0nTOuvytFuYnJQ7gzE7jzkq+/vMm7/vYaliFRqUUw83eJb/wjhJnwlX94h0SnGECqBVKkVE4JRKrpXId0AIYpwFJIw8UPFGn9FoYSWMrCTSIiy0TbSXYo72lULqW+Dx99zeNn35cSxgFpVEYlA4SZkiiXfkeQTNloDYZXIJ+zuXd1m3ojwCAkNSdZPjODI69gM8buXp0Pv+8H+ZMvfBGpPHIO5A2FMB1EkNLUHb4WCDxpcXJ2hnv1Bn6osIRAyhJahGihcGyXdr1PzrOHseU9NBau49CptzlzdIaNWorreQRRTKfVBa1xPI//66stXFMiUhOdKIJUIOMeoZmQUxE/MGbwRivly5t10sRhxkpZSwWdXkykBXkbMCIsnaMXKqquRSIiGkFEzs0W+SySPEVaJjrRWXqlEFzu2xRyKVMyS9UbRIJcTuCZoBPNej3GsWOsvqZvGoSkOIkmyXmYBKAMhAoRokJqa4giiAXSDkA7aHzQNtK2ID+PNSYYJHmSzh625xLpLoblZrHz0iDNDfjl//4n+NV//DHubDb5oJSYEy5JKDFljiQasLffALKNUZgK+oOU2EwRIgtyEgq0NojTlDQE0wTDlZgSlBRII0ZJjSbm7qBI3/SxUzCt79tX/1MYD0LGH4SZHnR80ygeHbbSOP2mx6ihjDtJEsrl7FBoG2ZWRI/TEWdACEGpVBopJA/CChqNxkjxNRgElEoFfN8nCGJsJ1OBPZgQeJDkk4URQLVaZX9/n6mpKY4fP8nKygqLi4solaV9ra6u8v73v59+mMGZy5PjTExM0Gi30NIBxyPyM7tnEAQoBcJ0iVKBNmz6QQzEVCslkiQkGCRDVs19RVwcDS1B4turG+5bV8XILgbAyEKmR4erOI5HtrUoitjc3BzJ4pVSFIuZYvDgkGtZFnnHzRhdUYwSQJqpATMu0H3bYxAERIOsMy+EwMtZhEHMxPgU+/uZrP2AdxeFIeVymW6vN4Ljfn98b4ZhGKxu7nJobpooyiwLi3MzbO/sMTs1yfb2LmPFCkII7u7ssTwzQxhHjJU9wiBmyqiQ9zx26g1mpyZZ2d5gbnKSdt/HljaOa5DzHKYqJaIo4cTcHDutOp5joOKI7XqTuckJEpGyOD2JTmMmigVWNnc5tjjHvXu7HDo0Qb8XMlGqsL65z/zsJNu7NSbHi2zt1Bgfq7Czu8/Swiz79Tbj5Sp3NjZZmB5HpApTClbWdpidGkel0Oo0GMQpgS/ZqrWYm6hQa7SZqJSxHBvTkpiWZKxQxR9EpGnKk+eWeOOtK5QKOd79xJPMz47zT37/UyzMTpKma2xtr3HjtkshX2FsbJxKpULey2EbNq7r4uaKWE5upMB13dxIiaMVIO6rT4IgyJS7UqCSmPc//zTzc1PZc2+1+F9++X/kf/31f8R+o41raL5+/gK/9//+Dj/5N36CP/ln/xQtDFw7g8zn83mCvs/YeAXLsmg22tmG177PkwvDkEKhwO7uLpOTk3S7HcYrVbb2d0lR5PM56q0G09PT7O7uDYvuObZ2dzg0ewg/9FGJIAxiiqU8qYpxLAe0JIgDwjjCs0wGYTTs9oMmxbTM7MBiemidYtsuUoIWElSKMIbWxCE4XkhNFMeEcYQls5TdzIITYVgmJTtTM2sBu3sNZsZL3Nve/t7eYP8JjIM1+FuVcnC/WPegkn3EfHygRiEYiYy+7dBKkSZZAdwyDCwhEZaJYQq0sgADRYoELENkwWpY1OL7//MBy1UpOEABmlqQd23cQn60BgZBQCoyxqI10JlSSgpSlfHi6n6IH0ZZAueQOydEgpTZGialRKqUMFEkCkCjtH7A8n3/hcshUw80KJXxz5QmiRRhrElUjMDAMCXdbn9ov3dHAUjtdhvf90eqc9tyGRsv43nOqCGZy+VGzcSjR4+wsbFBrVZjbGyCJMnWadd1R5iOjMt6fy9gWRa9Xo9cLpettQZopZHa4dzZM6zdWeHatWsUi0UmJiZYu3d3VJDf2t4e4Sumpya4u3KPXM7FtnN84pMfJej1RteBUiCEgW1k82MulyM3DLfI5/PkXG/Ey7NMGyFNklSjw3j48wHdwKfT6bCz28qScNGkOou50qkiCVI6rTYKTRonGUtvEBBHCb6fKe1VohHDACxShRQSw3hAQaP0qGlpZD1L4CCVO0vlPfh75lZQw+f3Z6eAPzm1QKu1ztziMreuX+SZd32QNA5ZWb3KxOQcu3urTB86QcEysOwlXr/8ZRZnjpGqkK+d/0Pm5k6w39piYmIO24Ynn3oPX33jZY4ePUq1PMad1RtMzyxyZ+UyywtnMYyQxx95F9946zUmxmeode5iGi57tR1su8RYeZIw3GZ7q0XTb1Lv76Atg8WJCa7fu8vxpdMoIUF3yOVSNrdu0+9GHJ1boFVvgEqZmZlhY2ODuYkJNrY2OHHsJGvrt5iYHOPq7YtMTyzS60doK3OcSCUYtDoUKmXC2Gdta5szJx6i3/NJ04SlqVm6vSZBNGBQz66v00ePsb+3g2XZzM/OYTsuSila7TZr63eZGJ8hl88TJ4L93U2WFpYZL5Syfa1QJGnMiaXFTAknQQlFLucOE8nNkRNFJxrTEvi+j20JgjDEsk2CIBMLeJ7HvdW1TGhgSywrO6ssnVhi/d4Wl69fot1uUyrnabd6DPys6GzaFqYl2NrcxTJsDDw2VmsjZ5AgxjAsgiBCIOl1eqNzkGFY7NUanFseQ2uPK7c3WJifpdFuZOiafoBpZ+nO1WqJOAyJkgQhTaRhoIY66CgKGfgRlmmSTUbx6AwI4Jopc3OH2Fu/zUTZw08SNILJ6UnqO2sEUYJnDYMBrSzgTotsfbATk5tNQSdJKVRcQCOHCAzI3BkWQ0SSBi0s+v2QXjCgXBnD8xwMSxJGCsPy2GyZrF7aZ9q7yfL0BLv99nd8j31XinK/+0u7PPPITQxXkbqaX/ub8N/9qpF1Rbb/IdIOsMcMEpFysFYJDYklMFQmRS8uQ1iDdldTOnqccP0WhpBEJhiJJo0iPvybk6Q64eef7fDuUyl9Be0WzNo2r907wn9rrjPrxaAHGKZApQZJEtLpCkxHkSQeFanY2mhS2xWUx0rEYcTsYoGVOzsYhSJpkpDEMZ9+5SKum0MJQdFzcfJFarU97KJLSQtQEs8KsURKOzgIgUrppD6OUORcG4lBqeihlURKiyjK0sjiWFAt5bnX6BPEmrRfw7TzkCToAHQ6hMlK6CUaR8do4REqQRjGJI7Hb91JqJo+bSFwLJPU9pBJF88W2NolTHvkbYNIpdgyJBJF5so2ec+g2RtgWRkw1ZIpiYaYAK2GTC4V8fU9k7MTMGNDbGcF0CA1KArI2TCINW4UYwQhnp1B5SMVYNoCywEpC8Sqj0GClCZaW8g062IJmSBTiXSrYBRJUoWUDo1uylhRkSpBqn3snAek2GEERPzdv/1TfPLzFzC0S77qInZjCEPiJKbeaXzTNTlIINYCU0AyPKikRrZZiwwQSiPTTC2UCIVEk+qIppnHqUpspYixRglw3x/fu6GJMS2IwvuMGRHrjPskTdJUoaXAyXkZE0oLklQjtMYyDJTSWdEuSdBJSsHL0WjUmJwcJ9FQrJRpNGosLS1w9+5dLMsZscz6/f4okScMQ4QhUXEGey8ULcIoQRqZEmV8fHwEUs7lcljWQTJgpp7L5/OsbqxTnZzg9OnTNBoNbty4ydLyCdyijV1wKRaL6DgmjDW2zGFZFjrJil9RFI2srZZl0e8PMAyD/f06lUqFj//hH/Hkk0+O7Liea9+HrQ/tthnkfMj3SbNNtxDZxvXgdT84HuzuK6WywI3hEEoT9H3K5TKvv/46YRiOgMfFYnGkasm67c5IVm+axohLo5QiSbPXZghJs9/BkBZhvUHOzTYhnudx4/pdxsbL2LZLp9NFa43r5KhWxtmvNb5vL/sej4tXrvPCc+9ge2sPy/Qol4u0ugFHFpe4eO0KRw4tgUip1TucWJzlG5dvcu7kMdZ2G5TzDsVinr1Gk7mZCVrtPoaSmEZKvT3g2NwMl2/d5di0y7212+RzOQqORxjGzM9X2dhvcXhmima3hx8plmYqKJ1xKI/MZVylUqVEmmoSaZC3oFwqIbUiEXqohHdGdrE4iAmThChVFAt5BBa9oE25mAPDBKXp+gNsw8CPIqqlPBOlHFEacejwMf74019kolrCc1wqpSIbtSbrq5s8fGKe6zdWkFJSzNnUewFr2x4njo9DnLKx06bn96mWq5QKPfbqu1iWgSGy9OJSIY9tu6MwlKwYx6g4ninFBImKKZVK1Ov7/Nxf+0l0mM0XlVKZZreNY9l0+z0mxsb5uY/8OIcWlvjLP/c3MS2PT3/u43zoh38Yt3SUenMD27RIlcqYMYZHo9lmYmycmalxfD+k1mlxaHYGw8z4fbdu3+axxx7jzp07HD16jLcuXeHxc49wc2WVo4eP0PEHeK7NxMTkqNExMT5LkgbMlqdZ39pkemISy7J488pNHj13Eq3hpc9+lh/54A9w9dYqZ44uZc23JKbgeWQMzGyNf/PyVfLFAp7lMDczxddef5O3P/koF954izAMeeYdTyBl1sjxXIvt3RaLs5OsrO2yOD/BV8+f5/HHHsUUNivrK8xOz3BndZNDC3Pf2xvsezQeVL49WJB7MHEXvrmxM/o57iMRvt3jv91I04S8Yw2bSimWZYwKbAmCNAG0ROksZCSMoRulJOI+ZuLgeZjSQMr7LDzLskYKvm+y2xqSVJJB1A0brSWRSukH0YjxdsCVhWxNFOZBSIkkJdtrPMi2M0xjhLU7+B5JClKTANI0RoEyoNjeajBRzlFvZQntB7bJXC43XCcTZmZmaLezlPPFxUXiKNsLVCqVUUNMSsn+/j6dTisLiTl8mFqtwdTURGYtHULf8/mMjes4DoPBYMTYHAwGjI9PouKA/+fv/RKuY9DZX+eX/v5vU5ieZOCHzM7OcuPGDQr5/DDMKdunnDt3jnw+T6O+z9kzp0jTlBs3LzEY+Nl+Yzgcx8DziniuTc7Nmpe2bY++mkNFTJIkxGGEMO6nHB58bXTb9LoDOp1udo2l90NAhBDEYcSg20ELxSDMGq9hnBBHw0CGmG9SyB5cpyLV6DhBqSyk41s5gP++8c0IkD8bo9m5gxG3uHppk5MPPUsqLPYbF0kIeP3Sazz9zvfRGnS4u32FMDEINBxdPMzO3l26QYPWSpuFxUcpFHPcufMl9ravIoTD/MIJTDNBmgM2azeYmlpmfLzKNy5+miDROMUKNb9F89ZW9nmlWWhLv7/GzPRxdNIhUSmFfC5TfsUBx48fp7m/TTU/xU57CxA8dOwEd9fWs3sojHEME89xsISgsbeHiaDR2idKBmzubfHYuXeyvrnOySNHaTbr5GfH8OMAaUisnM14aYJ236derzMxMUnP75GmaZa+KUWGU0hSdmo1ZudmuXn3NktLS6yvrVIul+l0+7hOgfHxKQxDcGvlOoVClVarNbTPg4eFRCGVjW0L3PIMzX4XwxR048FoDo2iCMd0huKBAkIqNOGwSeYQhiHT0yUMQwxdKxp0Nu+4XmYvH/gBKhXEKluL82OgAxe/66MjQTtWWGYflVpIaRHHWTPey1kM/Gz+8zybMMxU6tm+P2JzvcX82TIXb6xheUWafo80ESOOZHZPacKoj2Mb9Px4JGpw3MyGGw/6FHN5giDI2HhKUa1WiZMQ27TY3m4yPqMZnyzQacWEESQyQxW1DEEURdhSjIL/1PAa6qoq91oG45UqRrdLp90nSQc4yqYv+1QrXsbETXs4ukrfj7DdTKE7Xq4gSTDQ6CTEEJLWxgY3N77M7EQJKbN56+jc2Hd8jxkvvvjif/Qb95D4n15MhUIj0BG87Ufg935Fsvz2FCf6YrYIohFkXRIkGfsjVqQWyESSJppU2ySGJNjdJ01BmBpDgXe4yIf/Z0UtNYj0gJev5/lLb4+RkcV/+ZtVfvjRLl4UkhYcpj2D6UKCSg1UKlCpz917iqVjc5D28LuKvXVFaUwgtMnisVmcSoV/8rFtLq31s8O9ZfPE42fY2t4FoRgr5xkEMQsLh3CSED9RTBQN+kGfzXpIkkoKBQ8lTcKgRbE4RpoK/EEPTPBckygBz3UzYLpKsNw87Y6PbUkQdfxBSLXk0Q1S+kkIsUIh0UplC7gwmJuy6Hc1vq8Y0x3swhihIeiGMf1YZWmyhollSlzPIA0F+YINOo9pdOkEPQa+S8m2kVpxbGkKzJh3PnWM61d3h5LszP4GBrXQZD+wKTkSSUQgJVJYWIZEY6Cki04NtLTpxXCpU+C6P8lK3+J2KNnpGWyHZXYGkvrAYn1gsR/AXijopyV2QpuOKrKHRyvIU9NjkBqYjkKn8M5HnqC1X+ONN69xaGaW0A9oDyK2NvaZJcVPmly8fY3JUoVPfP0V4jgZbsgkN7oJq77ko3XNZ1vwiQ58uu3xBd/hq23BK70CrzYsXq7ZvN6QTEjFwLB4o/okc1NVSrkSBUshlcVP/+RP/cp/9Jvm++M7Hhe++pUXDzb5pmkQxxGJThBSZIW24cbpQHmmVAboVclBUmgy4gpJmUmSDSMrCsVJFv1tWSadTmdYgMssTuVyOStueR6+7zMYDLAdh4KXI1FDVZ7WNJpN8oVCthFHMwgC4iRmZnaGza0tcvkc+UKBk6dO4Q8CJicnWVxcpNfrcfr0aQ4fWeDc2bNcv3yTQT+gUi0PD9+F0YH7IG3uQPF3wJexbZswyFgJ9fo+l69cYWNzg77fp1bfRys96rhnSWJytOE/ULuN4OnxwXuZjjbA8gB8PNzApmkW9hCnCa1Gk16vR6PRGPH5Dg5AByzGA8Xdg7YyaRokw7TVg6CKMAxBZIefNE0yM32aZIBWU+I6kueee4Znnn4npWKRnZ0tHNulXq+jh7/nJ372v/j+ffo9GrV7117sdQLWtnc5d/IIl2+sc/zIHLuNJtEgYvHQDOcv3eDhk0usru6wvLSIkCm9ToeFQzPs15rYhos0BM1WhxNHlrhxb4sTs2XeuPgWFVcgdUrOsvC8PN1YUS1X2NypkfNcCsU8m7ttThybh1SiSLm+ss3C5Dh3t3Y5PD3Jdq3GTKXIbntA3rHZa3eZLFXZbXWYHS/S6PjYpsRPEqr5HF0/YqpSot7tMlYq4IcRM2MluoOIct5DaSgVCgjTwnFMdmp9bt65O5xXNLPzs2zvNGi3ezx+ZobxSpEgTHBMcC0LIU08x8Q2Mju3UrA0XmYQBgyiiHvb+2zttWm0e3T9MLtnlCJFodIUTVaYClPNfqNJo9NjbXODJ554HBWn/NiHfpjPf+llzj18lnq7w/TcPPu1GsuHl5menEMYKVev3WRxYR6hFbdWVgjihE++9BK+3yZNI27f3eaJRx+i2/eZmqqyurrOwuIh6s0WQTxge3uXhfkFVu+tUd/f49Tpk0Sx4vqNu+RyGdtqdnqKne0dpCmJlaJSKo2uG9PM7LX1dsBbly7y8OnTbO7VKRdy3Lh9h6PLhxEYHJqdpVAoUsoXuH3nDl7eo9MJyRc9LNPMlEumyfTUDLlcgcmpMV79+nmeffopLl66xiNnT3Pp8lVOnzxOOizg2a5DIefxiS+8wuOnlnnj+m3OnDjCyuoaE2N5xstjMEzaHR8rcejE2T9388vG+uqL/05m3LcU1r71MQgxVDNq5JDv9u0ejxQjCd325hqbd+5iWDbasIiEgTJttJcjtRx6SrDbCWjFmnak6UQmtTBCWia9bojn2eS8YXNJCIQps/UqUUyUPUzbwhAy20MEg6zpk88T+An1Xh/XcWi1e7i2iWlJ0jRL27SGSvqDIt7B81dKkSpFEEQU8i5SmtSbmR3v4OUppXAdC2MUdqFIk4QwSFBpiumVuL2yTqvTpdVqjYpmURRRKBTY2tpgbGyMa9euYZomj5w7h9/vj9AZcRzTarWy/UgSUqyOkXNdKpUK+/v7VCpler0e/X5/tIc4UDO2upn98/DSElEcAAa//fd/mR99/u24tiTveRRKVV5451nssIcuT3Pl0kUOH17ixo2bHFlezlKPw5Bet4vrWsP9Ssyv/9r/zl//6z+ThTAMP+MkjtnZ26TgWrg5F8e2R2r6A8u4Rmew+yAgScKMq5Vk+4I0DEmiiE7PJwhDep0BtUYH1zLo9iPynokhDQpFB9dzCMMUPwgJo4gojLPnqgSpSonTlCTJ9kCWbeLYNqnWREnGEUyVwWAwII1TquNFlg8fxrKd0T5SSoODUKzRtZAmNJsN3vnOZ/5MzBW//g/+txeLpUOsrN9mY3eFO/feBLPCTquBn3S5ee8qa1u3yBenaYcDmq0aK5tXkdhoI0+jXaPW2GBne5Xx8iKdboe97j63d25S7zSYm3yIvt9hc+cO+80t3vbED9HutPH7A4q5En2/z/HD5xCWxfTkEmliMDY2gQjg3MknCQYJ87MnkEmM73cYm57m9r3bTBbHmSyUSKI+MxOzBJiEfoBpwszMHGvbd7HdPO2kwcb2BseWz9Jp91BCo/shOs0CpeamptnZ3UYZAqEEnmkSDSJsYWTAciEZBAPiuIeUHoZhEIYBhw8vsbF5D9vOEUUxJ0+fZGd3l2a9zszsPLZtsb6xim1YjI9NYjkOSoM/CEnSGK0hTmLCQYQwJd1mm4lyhcD3SbXOGnXDa1CjKBYt7FwOpQUqyfbatiOxTIPBoA+mged4SEMThjEqTvFKMDM7S72xj20X6PV9kgjK5Qr9QZ9cyWN6YhphGGgtCIMBWmjGxis09tt4XsbLGwwGFCt5lIY4DdCpxnIdFmanmBjLs7MdEMXRkNkdUcgXicKIqalphBSEUUQxVyKOImzTYeAHWIaF69rEUYRMyVA7gG0Y9Lp98nkTRyZ4bjYvx1riBwNQikpxfFSoTOJMPSekAQK2BjmkXaTuS1zXIYgS4iRhamwSpSEYDCg6No4lCGNNqoZYJKUoOC5p4uM5LlEY4AjBWy9/DJ1uMlG2CZMB46UcUdAhimN++r/6O9/RHPBdUcplUnWNQkCisUzBR34pZf2CzdTDUaY2Gkp7pWVClJCQZKHiAaiBJlVFwq4PWiEVCFtixWDNmHRXujTsAmHU5nd/3uQ3PtHhdz/j8pGnYxzTR6UGJ050+Hv/apFf+dEmSRIgMQgjgZ23aQ8GpGENv9On1vLIj2VpQoWywcyhIv/yo2v8xmfW8FwbIQX9To3bqwZaakRq44cK01TUd2rYnkUvlFT9kETlGC+adFtt+oOYvOfhmR5JrCD2ESLrPinT4kcfK/NHX9/CknkMA/xgQC7v4PcD5iYXQCVs1mKiTgNp2SzMT9Dcb9OPQ8YsC6TB6madVDmU8wlRWmWn3qDsFamUXBwzJo4MDi3Oc3e1gaH6lKp5GvUuM1MwNVahsR+iSgGHFw4xUXLJ2Uv81r/5Yz7+8fNI00TpYRKaAD0kdDRT+Oq+wZwUHJvVKKlILQOdSoRKCbUmClI8JyEWHol00TrF0g5aaeqdAMcyEWbW8Q+VQDox4/aAgDxYCVJXCDyJ42VcwbRhESiDf/A7/5hBPyJOUj79jVczW4JMMaTDF99QDMIAQp9/8fnP0ul0EBiYhoEyJXcim32d4ttGZp2VilSl2EkC+RIqCNFCUHA0z49J9gaKZPEExUqJ/UamjkrChMS2vhu3zPfHf8C4DwS2hh3rLH1RSIP0wSSzIfz/23Xh72+a7heDhBD0ej0qlQpRFKC1JggCtI7I5XIj1Vu/nyVLZqD0Mu1Gk/1GnampKdI4yWwZKrOtNGp1bNdhYmycXqdLIZenmC8wPz/P1ctXCIe8tE9+8pM89thjHFlepN/v89JLn+b48nE2NjaYT2axPReAuEftbwAAIABJREFUfj+zspRKmap3dXV1ZBF1XZcvf/nLlApFkihCpwrPyWVdpM0t3vPC89y5c2f0eMuyiKN0ZEMChjDYTC5uDEMs4H7EejJ87MFnEClFGmXgZKUUGxsbrKysoJQabfYz9g0jW9tBpyqXy2W/y5AIKel0OgCYVvYZHkjyAWamJjEljFUrPPfcc+RzksWFY0xOzLF4aIGn3/V2Pvaxj7O2tkbQDL+vlPsejxu3Njh77mGEnWNidoGJjRr5/DgLdp5TJx+m09inkMsxP3eYUyfP0un3+Morr/HCe59jZ7PBqTOzlHM2r164wpOPP8HtjR3OnTrFpz//Bc49+hgLM3Ps7G7xxKPniMPBiA12oOAcxBHHT5zijW9c5qknn+Ljn/ok73/+GcI05oWFRc5fvMHM9By3VlY4e/I03cBn3HBYODRL50qPYmmMejthfn6Kb1y+zvK5BcxugmEpejstqlUbGSVcub3B4qEZ3ry2yvHleRrtNlGcst/oMwhSHNeiYDkcPnyYsw8/wj/9539AwZPs1kNW1zuZ0lUp0rQLIitGJyp7DbYJuzrrJqeJxjEl2jJQKrPfb4V9wvWY8WqJJEk4fuQw2jCZGcuAzB/6wPs4srBIMV/gk1/8EmOVPEeOHKFarfLa+QscP3KYZrfPYNBnc6fOzHiV2UMLFHJFQHDz9l0q1QlmJnocO3qEn/35X+LuZo2tmxdYPrZAGsPJU2cwhKRSyGHbFXa29wmiAUeXF9na3uX117/BWLXI0uIsL730Ej/zMz/Dxs4uy8eOEIYxhpB85nNf4vln35kB3hFoYGaiyFjpMaSAvd1tOu0my0eWaHc6OHaWdn3xrauce+gIu/t7HD96hCs3V5iaKpMwXCNMhyAKKBYLrKyscPzoCVbXtrAsiyvXbvEjP/Qhvn7xEs889Vg290RZMf9DP/A8X71wkUdOn+SVr53nB977DP/6j1/igy88y6c/80U+9IM/gMGfT8X8wdpwUMQ5GN8upOFbQyAOhhACNUxSffCxo39XD6zZpo03f2hos5RonTV4tMgatUa/z14nYODHwzU9IlEmNsY3hXWY0himNEs0Eq2jESv2gDGY7QMEyGxfSyxIMh9q9n+ngjSN0VqSWBp9ADBM4X7qqwKdhSWhMtj4/XCSB16/uv/+SClRcYJpCGJt8LkvfYViLo/WmZr+QEHnujbNZn2E3FheXiYMQ65evUypVKJULtNut2m325TLWSPPsgSDOKFSLDA7O4vruqyvr4/CFJRSzM1lac/bW1tMTU9Tr9e5t7FO2Pf5wv/9d0mSPrGUxH2fyDSIopjK2CRPPXaO/JsXeC1OSaKUJ598nPMX3mB6eprJqSlMQ3D79h3OnT3F//lrv/ptLcxJknBvfR3Xtsl7Hq5nk8/ncS0byzBHaYYqGSJIuK++VFqQpBE6Suj5A8IoIYgTBAybixqts33eIExod/zsvYwPGoqaWGeg/DRNQelsHykEjmUMn+P9z18aYEiZhQuN/uWB61dLsvxeNVLHKQXqgTCsP+1jbvwIt9ZXmZ47Q6no4hgmd9fvcuLQPFbqMbc0j+tW+Mr5L1LMjWGJMqE/wHbKNPdrHFp4BKkjcq7D3u4Kx2YW8dw8q5v3WD7yCF//2md44vH38LYzz/L6m19j5fZlUiwOzRxDKZ/pycdYvX2d8ZkpXMvg8JFltu6tUJ2YpdXr8sxzL/Cpl/6IiVKO41NnOX/zVcbHpjn16KPsrtwl8gWt9i4ah0K1SqfT5+7aPSzHYG3vHqeXz1CSdVq1fdIwwIiL9JOIqp3HNmDrzm2afpNxYxbDkmzs7HL0yBLr6+tMFvPUG7vYlotOiuzubXP6zFnK5TJra6tESYptgUpTrly+xtLheWzTolIuEYYhOoV8MUe72UGTcuzYUe7cuZOdxYUiTlLcfI4o6DM3NZWtc5aBju7bOAUKaTq4boW9+k6mMFMpWipM6TI7O0OSJEzOj9PrdTAtgdPy6HQ6KO2wO9hFahvPztGMW1h2dr8XcnniQFGr1UfXghBGdqbfbzAxXyUOQhYWZ7h+eZVBL8jcMHGCEoI0VbxxYw9NjPQskl7WdARBLuchZRYwk6n9Bd24g+dJHNckiSUSkRXI3ByxjIiTLG3bkCaeZ1IoFMhLB9MElWpcw0Sl2Ry3V1snTjThwMUehkipRCE9k7W1CzgiT86W3L6S8vDZ97DbTOiFAzzHYdBtM0gSImkRJQGWAWGvT842yFsmOgyRccC1859Bij7T4x6eIxFpyFQph0gTpifGsY3vvNT2XSnKhWRy7TRO8aow2AedwNIjLtKfIDS3kBoSBTJJ0FKgwowH5XdTlLtIuH4P0xQYGKATzFCDI+htxDRDiNsF/s3/0KOExQeed/g7vy/5z97m83/8dI5//aZP5HsY7ZixsQjdhRAXFfZQnstP/tVHuXftTTqdCvmKg05TCiWHw2cW+L2P7fO1lQHohDTNLpDd7Q4vPL3MJ151iXvZAhmmkl7UxpMlioSsdSJM1yONQ4SyEFLTarUQro0lUpTUgE3k9/G7glcv2igkceJnQElDYphg2oqdWoyWIa5KKY7NYbiCNOgzSCDvOBielxX4/CKxbtPrebhmwmI5RxD1SDqC2HDxciZ3Vm9TtXNI6dDrdSFJSMJxwk6CI128oksa27R6Mfc65zk0P067vUOcZPyNLB02K6IaIgMj/+UffQcffIfJhdWQxmrIytY65cBiTkbIKMZXFhZbFCyXybDJYrWKqCbUOxFNMY80IkLTwTIVJTF8TTIgr2JiHSKUwvQM7DmX2RB2DAdbJswVLXb2tmkPeqQdg36a2QV7foLvN0hSQTjw0amgWszj6gihoZoIco5JogRFB3aSBKlMZm2BpsBSoc9tkbCaKIpCcbMn6eQXyEUmTquNtB3SZpPCxAyDbvO7cct8f/wHDMfMuq+JSjKrZRojzQzQjSExbAsjzlIbTdPElE5mVx123/XwMHBgr8zlckOIsk++4CKkwrQMkjgFJIZx//EHBaUD+2cYhliOR7FQxnVyxFFKpVSmUCiw32ySL5aAbM6I0wRhSIIo5vrNWzzxxBPs7m4jpaShE/p+l+vXr9Pv94ccpnEmpsfIF8ZIwgRtZIUwy7LY2Nhge32DVqfD9PQ0N69eo1wuUy2WqFRKvPKlr7B45CiO49CoZWlkL3/lVe7cucMHPvABXv7Sy8zMzHD8+HEmJycze94Q8nw/IS5LR8u7efy+j+u6DJ0ko4OCVmJkA96r17BzHpZlsb+/n8nzh4U2AMfJuspRlH02STLkuaiUeGhzzQC2WTG1VKxgSMV4tcx73/MspXKBQs7DyeVZPHyCYqGCZXkkJAgD/utf/Fv84i/+Inkv92fKMvKncRw9sohlWZw5ucSXXznP29/+JDdv3+LJRx/hyuVrjE/P8uMfWsQZBplcvX6XH/7A+zj/5iUW5mcpFDw+/dmv8Bd/9Ae5c3eD+ckx7t7b5Omnn+c9zz/F629e491Pv4MoSfAcgyhKwLSQQyi/0PDbH/1D/sbP/ySvX77J8089watfvUC+WODdz76T+bk2ExWHWqvH5Mw0179+nne/60muXN9k6dA8hVKRUjnm2rVrTIyNZU27vEcwaBL2fZIkTy9IKZYrbGzVOLI0h9ZD3mIa4ngu0oxHB+tCrsrAT0hVSHeQqV17fkDe9UhUim1KBnGMtEwSP8AxDaTMktPybh5fR1SrVRrtDpNj1exeMWBhaYnDh+a5eOUqJ06c4u7qGsvLi2ztbDI9PsG//PhLPHr2YcarYzTbPd586xJPnD0Ntos1ZNDYtk0YBTiey/GTx9jf2+KD73sftVabV167gGVLGq06l9+8xerGNm97ZIntnT2igc/k1Dj9QY9+P+Sty1/lmaee4bWvv86z73qaVqvFU+96BwKDoNtibn4BHcZ85gtf5ic+/OOs7mxy9OjCaC5VWhOrTNEshODCxSuce+g0j5w5zW/+s3/BX/vIj3H+4ps89djjSEtydHmRWqvN+979PF9+9RWee/YZfuej/4q/8pf+AmiNJuXC6xc5+/CjCGkyVfUIKSBUysVLlzl98iilvM3O9h5jlSLBULkbBAFve/wxep0G73n+GfYbLT703vfw8U99nr/6Ux/h3vouefvfbvT8eRnfast7MIXy2wVAfLuC3cFjHlTTPWiDHf0uKbFdB2FIoiQmTUDGyRCrkhX2psYqbEbNocI7K4Y9qNw7QC7o9P5zL+Xy5HI59LA5d9CgE8IYqcUPnmNWiHRGr3XUlFL3w0MQBwzW++/Rv6sZ+GAC6wEWw3Eyhcetqxs4jjPcZ/i4bmY7y+yo1ihgZXp6mmYzS2Y9cuQIaZrSancpFAo8+eSTvPXWWziOQzDoEkQpW90OrVYLz/NGifQPP/wwGxsb7O/vZ7zXQp44jonjmNlcgV/8z/8iQdADt4BlWxhjOfxWB8exGPQ7uJZgfm6aHzo1wcVuwu2rt1hYWKDZbNJsNrEsTZwE9wtyD1wbB0p73/dptQfs7t5Dp2kW3FMqUfBcCvnMNuY5JsYQ0G4aYsT7VVqgSUmDiF7PJ0n1qMGq9UESe0qamPj9iK6ZFeVScXCNZaW1BwvCB9dxkiRYQiBShUgVWoHW33ydP8hNhAyrolEZEgRG11EURf++2+lP1dhud/DK0xQtSTwIWN3e4szxYzzy8HM0W6toWeS1b7xMvnAIYQnCxiqlYon9Wo1DC8eRRCRhQLO1z6HcFEeOPkqvX+dovsKt6xc5efxxFg4t8+prf8j8/HFurtxkfuEEBiHVsUPcvXqJxVOnkAmQ9Gj7TXKlIhrJTn2F7S9dIRQ+O3HCnWufx3Tz7O/UCLt9arUauVwp4y6HHRwnR2IlrGzcIZcrULVLmTPGEDR7AcVyERX7nDr2MJtrtzi6fJTzF19nee40xXKB3b0NpqdmuXfvHuPj4+zubtPtNnHtcYp5l8XFRbrNGgds6kGaZkrVfImZmRm2t7cpFco092pMTExQzhUYG5ug1+uzu7/LpUuXsCyLmYk5giQE7dPvdzFti1BrVBSionioxsuCW5I4YnzaIYiaBEGCbWdN8TCEqTmDe/c2sB3BsWNHuHTxFqEfkSTZftxzPFrNHkoa1GpNisUKvt+j2WwyOz1Nvx8QBD5RGCMNgdYC27UYmyjQqrcolibZ3qrhuAam4QznaEmSZPckIkWagiiMhw2BbJ7e2dnHGbK4M7SNRxRnTqBer4dhZIEqjjQplwqEPZ+tTo+zuTGutms4nkm326VQ8UjTzJaq1P2mke/7KD2856XJSnMNx3QIehJp2fiDkDC2sPKS69c/QxqBEgk5bwzhztPqdJmsWIggwHEMStU8kd/H0QnXrrxML8xEO+VSmXanTTFfxjQZzUODwQCn9J0Hz31X7Kvp2q+8GEVgehDsgUoEmUc1JTQlVlEiwngoJsnyzM0QwniSoBdArUkMCGEiIwWxJlIQDgSp0lTKJr/+2Q4/+zbQOc3P/EYe04CfOAf/zT/v8cUbRbqRwS/8WJ1SkqJVpoZvB4pixaGxv0VnX2PmJabII0SOw4/leePr69ze0/zOG5ok7KK0wDJt3Jxgv2ER6CJm2ueFp48ThwGBNnmoFGOYHrbwsXSBzVobIQ2KeYcg8Jk/NEU80GAYjFVtgjAijQwSkRAHKfm8RxAOcCyFMDS9bp/SzCRSpbT7PaqlHFGc4OVnyFl1ul2BEQ9oDSIcM6TqFTie7+KjkWkOy1MsFyTnKimNtIw0E3ShimNE5AsV/EGdQCr8yGDxsIlrKuJEUW9qZickd1clnaCNFMCwu6cZKhB0yo/94HFUL+HSdY3nRIRBl9xYhcrsPI89c5Yz7/oQm91t6v051rsJtcRlJe6w13HpME1CgE6LGHaEJSNi7ROofaLIxk8NVGoRqS6CGE/NI6wupixQViHaSRHSoaglJuDhYOmYnEpwDJeSHlAVFsKQWFJhKkmKINYRfWkQ6IRunKCFpqEEO2qMDQE3E4+12CIpTrKflmkZeQIt6QcGzVafjFAj6PW6hAh+4ed+/s+EFP1P63jjay+/mKZpBvHVIITMeJVpZgNRqRp1P5VSxEPVm0qzxDM9tCsdbL4y9kFmDbVdSRQFWJZFo9Eadlv1qKN+YMnUOrOBuq6bgexHBaVwVHRyHDe7hySYhokUIjsIK5gYn2BjfYNeu0Oz3uDI8SMsLx/h6NFj7OzssLCwQBSFzM/Pky+UCIKAnO3QbrYybks+x9defZU4CJmdnmZve5c3LrxOmqb0/T6BP+Dq1cv4fo+93T3e+973jngz165d48xDD2EYxsjGghDUajU2NjZo7O0ThxHnX/saEtja2sEe2ko0agRwBUgTRRgEREFIq9Nmc2uLeFjsrNVquG6m8Dvg+hy8dwcW2SRJMG2L9rB4l9mNh0wOnfDcc8/wjicfZXaqyuyhaWbnFpg5tIBpSYKwg5Axjm3T6wyQ0uCZZ57h9QtvIITgL/yVn/7+ffo9Gs3tlRc73T5+P+Kptz/OjWurPHbuNK+//iZj1SpLczM4jo3p2Fx86zrPv+spXvrU5+l1ujz7zDsIBilvf+IRNrd3OHnsKG+88SY/9P73cXhxjtWNPU4uTpLKzEbwmS++TqQUiwvzOFYGPb58a5MP/9gHuHz1BocWD+PaFtLLceboPN+4tsHZh45x+dod3vXkOV76xOf4wfc+Q2Vsijcv3uDRR47SbvqcOn6EN6/f5R2PPsTK+j6z01Vu377LE29/DIuUMBEsTY2TSgtLmkid0PV9NhsBlUIOy1Ls1Pq0O3326ntcvnmTMAxwHTvrMiOwTRM/DLNwJQW5nItKEnKeC9w/gJoCTKHRSjFWLqKB0ycO8fCZM8xPz4EFT555mIWFORIxYGOzSRJF+AOf8VKJjf0aUieMlfMYVo7z37jA9PgkzXaTMIj52usXCPoDOo02r56/yqnjS5w8usSnvvAVKuUSgR9w/dZ1Hn5ojp2tGp12m0RoqsUyn/ncF1leWqTd8qkUPdY3t8gX8vQHfSzD5DOf/CRPvO0JJsbGWd/e4dDsPJeuvMXZM6f41Oe+wAeefy+f/tJrLC/NfZNquVTI89InPsvZs4/x6COn+PyXXuGFZ57lD/7kU5w+cRRpCC5cuMzy0SUOL53gt377/+MX/9YvcOPGLQqFHFEUMVktcXdzh+OLs/zuRz/O2dMnuXX3Ng+dOs3V63eYmR7nla+e5+VXXuWxR8+NElttCTnXZfXeJoaZ0h0EnDt5gqs37zBWLvP7f/CH/NCHP/Lnbn5ZvXv7xYM/P1ho+beKad9SnHvwe8O/ZO5Vcf/PQorMYgoje+Pq6l1u3b5Ds92h1mjRbHVptjvsNzu0ej0anS5xmKBFChpSrUhUhG2ZdPshrmMhJahRZGb2PC1DUi7lUekQcxGGSJVi53LYjsP/z957xmiWnXd+v3NufnOs3NXdVZ17elLPcIZhhjkNKZHSriTD610tbNhraQV5gz9obS9M2SsvaNiAAAE2sFhgZUMOgkRKK4sSJFE0RyKH05ycOlZ3deX45nDzOf5w36rpobS2DFjmiuL50lX19q236ta55zzn//xDq+8ThGnG2hj6FPLOsdE/kEm4jn/+7ANNdlBlYllRLuTRhqTd7ePY5nvuk1YpaZKlMCcqRWWIIbNTZTodHz1hs2cNKoHrOiiVTsKiJKPRMPOA8kOmp6dZX9/AtCxGoxFbm5u4jsPO7g6u6+CHMRfOXSAMM/bKYDAAJEEQYlnmsVTUsTPP2Q8+fpm/95mrEIVZbWBalKs1vFwRy7UY97tEwz7DYQ8hJYP+kB/96b/LH/7hN0mTCCkgTlJOzDb5zd/4X9AqIY4jwjBgNBrS7Xfp9Qf0B33CKGZuqsnSyUVmZpp4joffG3Dr9n12dvbZ3T1kd3uP1kGb1mGHXm/AcDAgDCLSNCJNUjQQhopUK7pdn/E4QFowHAYU8g5CChzHQJom6QNedFq/l9GmEaRKoFSagZCmQGMQJTFaGCgNo3FAGic0akUWFhaO5atZ2qqJNLJ6VOssVC5NoHW4xzMf/ugPxFrxq//qt7/U2btDPp9nc3+Ni0vLnFt6kijsEmjBrRuvEKQO1WqDzv49SrU6t1busnDyApahScIew+EIqVIeffgz5AoucRRyZ/0NXNPh4rkP0Omt06jPcPvebWYWlklVSn+wTutgl0hCrTrF2uYNtg/usd9tMRyN6HS2OOgeki9W6Q4HJGmMaTugRGYdsTDD6updRC7PYNTHzefpH+5RcesUChWMYIw0HRwnT2uwQ6XcwPcjpCWxLJthcMj2/j6NqTn6vS61WpVeq0usUkb+iMFohB+MmarNsTBTZTAcEIQ+5VqdwWjEcNRFKJvTp86A1Ny/v4pjezQaTUZBQKfTYm5uhu2tTcrVOvlcjvF4iBDQG7ZwLAvTkMRpip5wNMMwoOoVyLl5MDItW+AnBFFEvWEw6IFSMbbtIKVARSapTkiSlK2NHfzxiF5ngOvYjIOQ0XBMkioM2yaMQkzLIAgDbNsmThJG4xFSCFwvh2nZeDmbSs1GCgfDgoODLrZD5u2tYDwMSNOIUrmEbVvEaUoUJZNE5hjLst/z/JlmpsxL4whpSFINpUKFOElRWtGcruP3u4QKRuMIT8LC+WV8P0AITdl1SFSKFAZKOoyDEE2WwKoNk0reIzUViZR0g4AgiIhDhRQm0jARwHDk4+Zd0jAiTQKmija7628ikw7D3iGDbo/pmSYHu+vcuf0SrjMkVQaXlyoMAgM/SuiPEjqdAdWKA0lKs1bGkIov/p1/9P2Tr6ZpxoyLOhISTaqzlCGpFIbV4T//d+AX/4WDFiFRCm5P4n7qH9D601cwwm+SqIyhlU6CDmJTogKFniTfHPRtjHyDp355l5d/XmS+bHFEFGq2ugZmLmazNcdJAlQQEWiQuZDFuTrjUcSLL1W4vDzENB0se8zcssObLw9Y2bP5hX/5u/y3jUePO61JklCrVxmMRpg5sD3BGy/d4MRMnUZF4McWSdinWZllPwgwbQMv5xBrheUU2ds9ZH6mzr172xTzNUwTcFJSpTEMiygdolQGWnpuHpEfMp0L2e5CrVRgvxVgWQF5NaIfGDiWTalUJOiMUMogClPuGQWWnDHoHkkU8uGlWX5vJyXUQyQeTd2ji0s4alEp1SkWm2y2DhmNJFWvTr+9w0gb/OF3O2gFhZxHmGoiP0HLFLQJk5jwhy9c4u/9w/+EX/nv/jknl22a9hOYbp5Rr49TyzEYbHDuYgkdmvzJywH9cZ9QmeyLAd5giOkohNnFi3N4bgXDtTFDi1inqLiHrU1iHaIluM4BplkkDgf07TpRapNYh3SMHoPUY0gL6ZgkooI/bBMYBQIzRImQ0DdJiEhTSCKHjGxuZ5tnqpHSJDVipJ1HCYXpFIilRrqQGham4yCMlCRKaHVHeAUHUymE+uspW/m3aRx3sqXOmFtCIyedkaOiV4hsM42iGEM6aB0ev54k6XtMoCEDg3rBiJx2sCyPOMqCDo4YXXEcY1surpMjSbM0uKMCN4oiSuUCWqeUKpnvXBhFx15qtmWRxLC1tcO5CydJE0GrdcCjjz6Kadp87WtfI7kNjzzyGKsrd+ketDg5t8BTT19lY30Pa1aysbdFIZdna2eHJEnor62zsbXFwtQM199+h7W1Naamprh/bxUhNOfPn8dxPO7du0exmOeFF17g8PCQ+fl5fN9ne3eX5eVlfv93f5/nnnuO3/jKV1mYm2f15m2qtSLehI372ist6rVppEohiTHcTF4iyAIzjoImfN/HkgYiVcdG01NTU5mM/AFPuaP7CVkHKYgjgkGAaRhESXhsah0EAX/rJ3+UxROz5PIeU3NzVKtVEpUBfLZroXEJowTPsZldnCNVEul4/NI/+2d8+ctf/r7MzR+ObNy+tcLFS+eRpsmLL77C1Seu8N1rb/D444+T85wM6DYNDg/afOCD7+Mb3/wWzz33aWzLwEBSq1V44dqrXH30Mmsb6zSnZilU8ty4dZ9zSyfRKsEGrt+4Q72WQ0Uxnu2Civk/X3iZ5z71ScJgxNr2Actnz7C63uaxy8vcuLlOs+Lywosv88Rjj/PW22+xsDCHmyuztrbHxz98lT998WUef+QS7U6fz37mGcJBSrmQZ3ZmhnGQUvQ8Oi2L9z16htFowH67w5mlU0RRSHM4wi20ydkW41EPTZc4ThiHAVLD/FyTbm/IVKPIYX9MKWchLQvPMWl3BziGxKnXsAyBH8Y0qyUOWm1qtQaGgBML8xlQp1NOzdWYakxRKRa4fSuhVHSYL88RByEb93Y5MTdNkkYsnTnFnfsr5PMXabdDfud3fptHH3mYG3dukcQhL7zwbc6cnuNrf/x1PMvisNPmxq1XWN9pMTfVZBzE5PMeZtrHM0wOepts7e3ysY98nO9c+y6ff+7j/N4fPc8nn/kg333tbZ64+jDfufY6T1x9hN3dfZ7+wAe59t2XKRZyfPvFl/ibn/8ctq2RpsuP/+gXeP75P+ULn/0om9tbuI6F7XgkaUq1XONv/Njn2NpZJ40TnnjsEqbt8lM//nm++pWv8enPfJTxaMCtW7eolSv83M/8x1y//ibNRoVX33iTK5cucm99kxMz0/zOHzzPj37hYwRxyKWLFzAdj0fLFX7zK7/Fpz/xUaZmmrz80pssnznB1vY+w1Gf88tnaU5P8fIrr/HYlTP871/5bf7Gj3+R/YMd/r2/9VPf70fs+zK+lyX0vfLUPy8I4t8E0AkNWVdt8nn2n7KDVBZXShAHdNrD91x3tGcfiQKjyUfSABONk5rH1hWubVIrOoyCjJ1KmslLnQnYDVnCq05jpGHh5QrZ8yVThNQo5LGNg5QZI+WosXSUfHrEFIQJa1BkMsZEK9IoRSXvAkHvCYeQWfq5TkCnMrNjMQxmZ8sctnxarRaXAwnwAAAgAElEQVS5nJvVGIlCp4JCoQAkFItFVldXyeUKrK2vMzMzQzzZV61JCFWj0ThuSF6/eZtg3CfnZN5ylmUdM9pzuRyNRoM7d+7w6Wee4VMPzVCQGbC0tnKf+uISiVIMe11UFKDjgMOD3Sz5PdUUy1W2r7/KRz/8OK+8dhsVBSQy5hf/q/+CnZ2dzAc3yXx8hdYgJZaR/f3TOMY2oVz0KOUcFpoNbiNYubtFohVBPMaXBu3uAJVKdBLjOia2bePlrGM2XZhoLMdjHESkSpEmJgJNnGoexIuz+vDBkJGMzXIE0FmWwLZzmYjekCRxjGIiSz46Lmf+JBOGZYJWVgbIyhSw3vMMHDEwf1CGNAMUKZs79/G8IiQu9++/xr2tN+lHGkMUKBUb3N94HX+0x15ng5kTp1DaZ2v7HugQP1DMNuZ45e3/gyjp0OkNiJDUnTovv/ZV2mEPJ+fRG47or3axHcHpE+fY29/ioL2HHw+Yri6QcwoMh0McL49nw+XqIm9dv5aBo9JEYjIeDFicOcPdm6ssLpxnfW+NwWAwsXspk6gelvRYevQpDC25deNNmt4UM6cWePPGG4RKcn3ldWamF5DpmJJbJHVD4igiSkMsbWCakr4/ouxkZv7317cpFAp4OYf97R1mTsxy+06PZt1iZ2uNKIool8s0Gg22t3ay2liYBElKvV6n5DnoQn7SnD/Jwc42vh+SKxUpFsps7+5QLOZBWEjXJQ0CarkKfX9AJEM+/Jkmuxsm1akddFAmiBPSSBHLGKU0SRICLnGckPdM5k/O0X1rhTgB0Gg/e64H3QGGaaKSlChJkYjs7BWMs8mgHcZ9wWBwQKVSoZhXhOMYSLEmkppUQ5KkDHpDDMvE8zx83wcgjkO0InuPyTnCMAyEzLyutdZ0+h0K+RLReEQchXT6IYVCCQn0HZN8GhNHCsuWJEjkhKghVXq8JhuGBcLAsEx2/Tb93ohctUp7+xDHcTJ/vDDEH2d2GmEYIKWJaUranX1OLZ4migOSUZck7vH6KztoobAMjTQsHlnM44gBP/L+K/zBS2uMRz6xjonjlFzOZhwG2PIvbnv1l8KU8+/84pdULCDVpFnAEIaQoDIvhY98Cl74Xw3ml1J016GTWGy4/y7evX+FdE2SUYKMM81wnABRtnGjIE0kceLxP30nwrIVP/mY5FffNrEDweXTgp95JsSIJb/wiUOE1iSpZiBgulpgMEzZ3AvJFYfkHJdU25w+f4pEKF59LeY3367zs//4n5LqrOsmhMAwoVqbJg4kZ04W8Icdzs2WwIqwhUCKkB3R5Ob2AYNQkeqEOI3RkcawJdr2IIoo5nPEcYrCoeYKQmVhm2CbFqa0JmbwLUYjj631AfkixFqjrZRhN8F0E6rFMpH26fsCYRiYsk+qYewrWqrAMHGwjJi3fRirPJBgGpJ+nJB3XcKxw4XHXVyzQWJqwo7ElwZr66sMfTMLkjB8LCPzoUqNCJOsY2lKE6VSLp+D1bde5pGHz3P91SG5gsfrt7ZYWGpSMKpYOcnphct851s32Ths0+1HJCIEwNYesWFBotDKxVIpKspI3zoSRGnMIBggtEmUpmjtk6YxtgXVssRwNXWriTSKiOKIM4uXgTHjeIg0TdAC00rQwsWQEktDakhAoA0QMpMMCCkRpgEYYFgoy0MYGcgjpEJhkqoUEYMhHFxHMAoSDGERhQH/+Od+9gei6/VXdbz8wp98SQhBotLjgieZ/HtUBB0FPiRJghSKIPBBZ8EBalKAPXhIKFUzQ3WpDbSCMHxX/uq67iSwIKNXI/TE48Wl3W4fJ4pGUYRhZsXuzMzMMXhoSIFp2vT6feYXZvC8PMPhkN3dXXZ39ygUClTqWeLSoN/HsR1OnjzJv/7Xv8WFCxdxPY92p8N4NOb69et4nse9lRXiKGJvZ5e1tTWWl5cxTZNarcbBwT7lcvk4qGF5eYmVlRUGgwGGYXDixAkGgwGrq6ug4JVXXuGhRx4mCiPa7TY5N49KYTQac+7cBa5du4ZSijAMKeULjAbZ83Z08AnDEH80Zm1tDaUU77zzzrF09ci3Bt71+UuSLIAlCAKCMDz29VM6C8tQSJpFh09/5hkajSaem6NUKWdAqOuRzxeI4+Q4dTbWCtv1SOMIhCBKFVcuXaY2f/KHz+n3aQwPN7/09ls3qVXq1GoVdrYPeOThSxOWmGbl7jrtVpfFk1kC6UOXLuC5dlb4acV3X3qNDz/zNLbtUqnWWJifpd3q0qiV8TwP23K4v77J4okTNKoNLl08j2EIVta3+MiHPoBSKTt7Bzz1xFXiKGX51AIvfOd1PvTM+3Fsl4cuXaCQL+J5Lk8//T7WN7c4d26Jw8MOH/3wM7Rafar1MqfnF9nY3OHppx9na7fF0uI8B4dtVKSZn5vi3toW77t6hWq1TLlUJo6gVquyt7PNB9//NBeWTnJxeYFCscT7rlyk2+/z5JVL9AYD5qablItFPMfiwvJpisUCD188hxSaj3zwKeammjzx2MPMNJs8/dglPDfHlQvLmEJz5tQpFhamsdWISxcuY5omM9PTFPMFHMckDgLmFhbIex63bt3ic5/9LK3DQ65cusD+wQGXLpyh1e7ygaeeYmNtgw9+4IPkbZvFEwv82OefY2p6ji8+90kKuQo/9cXPUSrk+dTHP84bb77FhUsX8bwcYRRgGrC71+HCuWX29rvMz0/xJ8+/yLMf+iC9bpdatcrdlTvk8xVq1QoXLywjZMYesi3BvZV7zExPs7GxQalUIAoTev0hBwf7XL9xA9fOkSYJpVKJlXv3cWwb0JxeOoHWGj+MmWo0aXe6CAE723s0p6dJE0WSppimjWk7lIseYZjZEUgpiIII04S5uRn29nfJeS43btyh3mgS+gOWT51l5d4KAovl5VNIw2I8DFg8uchgMMIwTJYuP/rXbn1ZvXvnSw8Ccg8msH4vCPfngXLHrKIjEI73suy+9/qVe7fZWNs6/vz/SQqbMeI1hmkyGse4lsXCfBWUJoyzMBSAYsHFdeyJx1hMGIxJwohEKaIo5aDTzUy9TYvhyKeYd5BCoLTMpFA6s3t4cD87at6FUch4HFAouKRa0O+PMeR7ffhMQ+J69ruBBlJmIF6SUCgUuHX7PvV6ndHENsIQCmlYE/uKLC3Y932SJCWOo0n6+ohKpcLlS5eQUrJ6/z65nEcYJ4yGY5y8w9bmJqdPn6bb7R7vn4Zh0O/3ee5zn2FxtMpcY5rD9XvcffEtrvzIj1HMO4g0YdQ9QEU+7b19eoMxnptjZ/+Q/d4Ad/Ey/rDH9m6LQs7jv/6lf0IYxscSUlJFEkUk4ZhoNKDXOaTTOqDT2afd7dBudxj0BwzigHEQs3+wj2GZWJaJtDOvyTTRSCBSijBOCP2YbndEpzNk97BPlCqUyoADw5CMxz65nAvKILOYlcdefg/OtaO/i1KaQqGQHfDjJCN7hCnB2EcJgcJgNPaJo4h6tcDCiUUs28aQ1uRcwQSkfXdehkHMwf4OH/nYJ34g1op/+k/+4Zdy+TKjIMAPxuz3t2kNuqTCJvAjlAqJ0w62ITg1d57RsMdw2COKD8hbRRZmlrAsTaJ9DBHy6JWPEceCFEVzah7DtDk5d4Vhv4MjC1y58CQqCciZBXoDn+mpBfJuiUa5yWtvvMqjD32QgpPH0IKDvV2qc1XG4zGmKUgThaEdFmaX6By2caXDnfVVHn74YVqdPWzTxDIMTNNgc+02W4drjPyYqYWT7G/fRwlFr91mYWYZlaRYQuKWa7T2d0ijBMuQJJHicNjBy+dQqeDkqdP0e31mpmbZPthhqjnF3v4etu0SRBGNqSZSZMEie3t7nFw8eQxS9fs9VBLjuR6b6xvki4WsdtaQ+AFezsvWoCRrRMdpguPaJGnGoDWFgWWkRH6OVnfM1KzC9RK21gMMy2FqMSHv5ilWSgTRmAuXzpI4bW6/doDlGkAmsx2P/eOAtmxtnvhJxynlaoFGo4ZhWPi+TxynuK7LYDBCILLGApmFUKlaZjgYYQlFpVxmHITEcXS83luWhWmZWZCbyIJw3iVOHMWBKoRQLJ9pMuyEKJUSxymlYp40VZNUaY1pWuQcA52oTNKewsiPjps4luNSK3lUchUwLPbbXaTMUl3DIMS2bXJeAduySdIM3kvThOZUDS00jXqVKE4Y+z6JjjCExrFMZooGBuA6mtnGNBeWF7ixukcSh8zWM89FKbIE8S/+9PeRKRf7YJganUiEUAglMmnZUaiShMvPRrjLC+y9ukn7fb9N/vkvYjiStKsxUznpDJEl8AFOAn6S+Y7kZR+t8+i0RGS0kX6ZVJr0/BFBBM9dVKQ6e59IQ6Ms6XeG9LoWnmlRr7qEQ8HCgoXljvjDr4/59nqdb795kwkp/YEN3qTbH/LcR0+wtWMTjyPG2qUQdYkkrO4rhrqLKSWShKKbI5/PMw58TNOk4GaaZSEVcaTIOQmdsSRfMEliENpCGmMKhSL9AUg7YvFsg8ODAZ6dcq5RZdc9QOoqu0OFSExcQxELTToqIkSMYWQbzTiBA3LEHZ9yASqVGm4uxVAWyqgwe87i1uv3qZYVdUdQPGnS7Rzw8OUlXr/ZIecYqNQjSGMMaeKaBqEysU2NUALX9vjwh5/iq7++g1vs8vRHLtFpvcOnPnSF77x4mw98JMfG3T0MJ8EwHeKoQzDKIUMDZQXEjiAXWCSWAcaA0HehYGCMIkamoKQzcGMU9TFxSVJFCYOuE1N1CtSdKn4pppA6YFbpdDaIlSJnVlAMMcwQpXJYIkZZBpG08ZRkrAJ0ImAic9QiA+a0lJk0N00RIkFhIxKFNDO5rlaSSEeo2MZQFiEGlqf/76b+D8f/D8MwMtnju51ugZQ2SiUYhsC2DZh0KU3TJI4NHC/POB2CNJBaHV8vhCBJEobDMa5lUC5VWF9fJ4oyr7ler4dt25lpaRQQBAGe55HP5wnD8DgAot6YeiAYQrO5ucnszBTr6+vkqzX8NGV2boo01QT+iCeffJI/+qM/4uTpUwjToL3XYtDO/Fp6vR71ep001SidsL23zc72JrVqg0qlgiklaRizdneVer1OpVJhdXWVmZkZlFI4jsc779zg9OmT+P6Is2fPcu3aNSqVCrVaLTOFLmXXeF7mAfetb3yTZ559lsuPPMytG++ws7PD0qllXnzpZaSUvP3229RqDW7evMPi4iJlCXEUEfgp/X6f4XhEv99nf3+fQqFAu90+Bj6PpKrwLjAXqZQwzTa5owj5aqNK3AvJ5w1+7uf/Q3L5Arl8gWq1jlsoEkXRseePIeVxUlsQBKiJZFgpjWFqKrW/eAT5D8f/9+ON169z/sISOzs7TE/VOHV6AaQgUTHX317l3PnTrK5vcO/uOhfOLmZyTi1o9Vq0Dnt84ANPs7m1R6NRZTTy8VzJYDik2xtwciEzAD996hS+P6I5nT17337hFZ56+irrG3vk8jazM/Nsbq1zZvkct27d4VOf/hjvvH2bixeWGQ4CTEuztHSG+/fv8/ijVzk8POSxxx6h1erxyMMPIaVkbW2Dz3zqY2zvtnnfY1cQ0iGXL1Or1Vhb2+AnfuzHuXfvHo5jYdkuKjU4f2GJT3/0o6gkJSRma3OPRx/xyBVLXLl8nkq5wJULZ2k267xzfYXFE7Osb2xx+dxpkkRx9lQTP0xZmK5RLbj4eZtmtYLQ0KhV0amiWMgjhU0ubzAc9THwMQhJw6zhNNNssL+7w/lz55BakXdMTKkY+0M+9+lPYBkm9UqZw4MDvvD5z2CYgiefeJSbt+4QBGNqRRd/NObhy6e4d3+Ns8sneeutN7h08Sz7BwfEUYRpC0xsKo0Kezv7VCoV7ty5y/lzS7Tbh/h+iOdFLC2fIk1TNrfWKRSrVMo5ZqbrjMdjLNtATWqufi8gTUOEYZLP51k+nSU59kdjHMfj0oWLJGnE/v4+UaypVqtcuLiMIbJUxHt377N85jQqSXEsE4mgUMjR7/aYajRZW9+mVquxtbXF7PQM62s7TE9Pc2apjGHCo489BCiqjSaH7RanTi2xv79PKcljGAZPPvEo/mjIdLPx5wJDfx3G94JiR2v7sSzz38Cg+/NeV2TfK9Xv7g8aPVG0iixNOIwJo+Q4uCdjpak/c/8zCwuNRqJIMEUGzmhSOt0RgR9RLbggBd1BhD8M6MKxXDmOY0hSknGEadpEfow2bECRpjFCgzAlpikxLZDSniSDZ6BTHE0kkUoQpRGDsU8SRgjHIopjcp73rhed1qQa0iPVhkGmnNECLUQG7IVZeFK5XGQ0GpGkKZZlTrzYJNvbu5RKFQaDAc8++yHW19Zor66ytLTEyy+/zNmzZ7HtXJYuO4544vFHeev6WzSmp9jb2+Ppp57MPOZyBcIwpFAoED//NUaFHP/oj/8Fn5ieglyO50oFhIoJhj3GvS5RlMlDm81pVte3MGyLP3hrlf/sR/8mp+brlEplrj72EEkQkkaZF57vDxkHmaVFmhz566oJeCaQZAdxw7Ezmw8pKZaLx/dWKYWvM9/aVICBPJ4fCIHSGi0FQhjHNUccx2iVyeKQKYN+yLjXx7DM43rOdGws2zlmPqYIuoMhQqWZ5UhqoA2BsAyYgHlH/oNRctQQzvy2NYC2yBQ5xnv85n6Q1opivkm32yVfqqEUhOEI2zYZjQacPrE8eRYCFuaXufH2NeanTrNw4gzX3/42syfOs7l6g1KuyJmlRznY2+L+5gYyhYsnruA6OaRrs75+k4WpM1y++DgvXvsdlk49zHff+BOmZ89jGxZz001uXH+VMycv47kum2vXKZRn2DxYw/FdDDMDXyM/4OrlD6DSiOXTS9xbf4fLp5cIOyPqRoU7O9ucP3WSCIUqWNja5t7uKs1OiSiJWd9a58TCOWrVKfa27qENC8eWlEo5QpWQc/N0u12alRpJohCW5Mbtt1ApdMdD0kSzvnWfRrlJGCXYjoXnOuxsb1Fp1JFC0Gu1cKQkBRbmT7G/v8ve9g5SCoJxn9AXeF4eK+cez+16vUoURczNzpLEijjKwhXjMEVKj7gnyZs2nV2fxqKH1hHB0Ofc2Sme/1oP5XTJ5Ww2d1Yolh1OnKrQ6vVoNBrkYhgbQ5KjJofIguiUn4AgC1M57GDbNoZlksYJYRhiWhZRkslObddhNBoxHI7wPBeVKiKV2QdZdqZWS9Nw4r+pj21/SqVSlm6cppMQCI3tmKSpZme7jd+LKFcrRFFEq9PHMjJgz7ItXNechLXEIMzJLpLl7QEYpk0iBDJWmFJRdExa3RHStlEK+r0xrqvw/SBrZKQhhiFp9bvHzaTBqI8ixTYNqgWXomuQJAGJVliGh+2ZDAY9hJF5SCoFiVZoYZPwF18D/lJAOS0lKgWhFEqDVhotQaQiS0Edpxihxf2vbBJ+4T+l+PUvUjQkcUeRRpPFT2fUR6EkOlWMYkh8+PH/Ef7nn80itTUatIdIRiROmQtTYJAjlT5aS5LUxLNz+P0u/b5B3suRBkPGfYtS0abQsPj9P04RpZN89dvf5iiwT+sj1TYoFREFY/K5MtXcLtVyjYNOQEcaJMLGyYE5PCAszmWbp4qJkhjD8giDIbZl4Ad9CoUypg0xAtNSBH6E47mESYiIUkwzJIoSPDcm7rfQSYAqznLY7zNXm+H+/iGmsPDJunVpAo6jUdpGygQjDkgsGylNlJVDYNMeBuiRRaGsKUuf7766RhAEpJaH6picmTNJZZm37q7jmiUiArQWaCFR2kAKhWNIUIqElA89s8hv/c5dZmcSfu3XXuKLn30Sp17lj77+G8wtPcz/9pVb/MhPfIjlhXmuPvaT/N4ffpVf+/WvcTCAYpwjTMckyqKMQ7cXE5saM84KLknMISauNjO5skqwY8FIDpBBgeEgROYEjWoDYfYwRRNb1THsPaQ6II5jRkM7w9Z1ConCBqIoxZRqIqFOkSiEUqQxSJGgHZEFACQmkC08MjWzrFlDILAQqUKZAhX5k13+h+PfhnHkSSalJk0TkJnnEvLdVDPTNCeL/vhYbqKUODZZfrBQ9rw8+/v7mKbJwsIiBwcHWTfHNI+TQC3LwnXdY0NkwzAytlaazeOjDclxsn/n5+czinR/zFbrAMMymZub49pL36VYLlEul8E0KHgFbt68yYnKPJ979hmuXbvGs89+iLHvk7dsnn76ae6urLK5uYnnOHS73eMOfauVBTkcve+5c+dYWVnh7t271Go1xuMx5XKZxx57DCEE165dw7Zd1tbW+Lt/+++wv7/PV7/6Va5fv878/DyHh4dcvXqVP/nmn3L+/Hl6vQ6PP3GVG7dv8NDFS6yvrxKGY5rNJsPh8LgA3T3YZ+yP0cmE+TZhLR4ZuD6YjnmUZJsV5pmkddQPqBZsfu7v/0dYtkWtPk2tVsvkKXFI1rEz0DrrhAsh6Pe7mTFsFKF0dliS0iRJf3ASz/4qjisPX+DuSsbgFDLFNE1836fd6nPm3Ak2NzcpFz2mpqZIkqzY3N7eRhoWi4sL3Lhxg/mFWW7dusX09DT+OCSOU04uzh0/91okmKbJaDSi0+nw5PseY31tm/mFaQb9Ef1ej1OLJ9na2uLMmSVu3bzL5YfOcbjfIl/MIYVJu9Ph7NlltjZ3WDgxx+Fhi2Ixz2jkc7Df4sLFJV544RUeunIBKSw2Ntc5sTDHyt17LCzMsLW1QbHgUi6X2N7ZpVhwMIUNUhErjQgjdjZ3eN8TD7O6vkqtWmHQH4PSFAsFnrz6EIZhMhwOadTLbG0f0GzMcff+OrlSNq+r1WrGDrR9DMPC83JYlk0uVyAathiNBiwvnyULpRGkOqXRrGFaEsuEZqOCVglTjXrm1zKRodi2zWi0Q7mUQxqZkf3y0ikODg+Zn5tjY30LKUvMNksMen3Onj3L/v4+jUaDQewz7A7JF3Ps7u4yNTVFq9Vifm6KKMwYQ4VSnsPDQ4qlPMVi5sG0tb3PeDhieqZOLpfDdV3urW5QKuQxzJSDVoeZqUx2q3UGgDRrVbRQtNttavUKU1NTxFHKcDjEHwkajQrTM01m56bZ3zskiGJOLs4dH2IK+SxdrlTO2EVZh16yeHI2S53c2aHeqFIpF0mShE57gGEIwtCfmGRnbN5CIUepVPozLOu/TiPVGjkJKgDes39+bxrrg+PBvfbo86Prsy88EPqQfYNJwyw7dCrjaE9nAr5lDbgHAyKyfeboYzOThWnJyI+IQoUkmgQNJfgiRaXv+he+y+Y2UKQoTExxBDZOPGhTlbFvZKa+sAwT27QyCWqqjgEbU5nEsca2jOwgONnz3rXWyPYxCViuTS7v4tlZuIPjWLiORbM5zUsvX6fX66FUljrb7/epN8rs7x1i2M5xgumbb76NVtHxXJ2amuLll18mV6xSr9Y4bPezply9RhzHDMYjvv7N54/v/1H6+i89c44rj12hfmYHT3W59OwnGfU6lF0TFUf0uy0acwt0umtsrt1Hmw6//OvfwC1W8dt7xHHI/FSZe3du4YcBaaKO6wDbto/rgGwOTM51iSZvGcf2FpZ0MITAMiQWkkSLjBFkmAhXZWnx2QyDSTqqadowSfNVQkxsjozjeSiUwDRTdBwz9gPG46x28DwPOfHUk4aZydwm11iWhTZSkBJp2ogkzcBg3g02eXD+vzvn3w0OOXot/QFaKlqdDnPzZzFNyeH+Fq4lGY1GTDeX0IaDI0KunHmE19/8No9c+jhzc6f57rWvcPbiB3jz7ReZnj1JvVLl/vo71Kqz7OztcOX0VUKRcO/u6+QLZUihMXOS1uE6S2ceZ2fnLtLKYxsm4/4uG0GfIEo5c/YkpENmp+ZZWbuD7eWQQmf2S2FIpVqne7jPINhmEIYMg5hRGGNaGtPM0ajXaY+6kEiKOY8gCHj6oSfp9VuYyuYTz3wBrRJur9zBMi28UpXN9S0EIaVKmbXtezhGmTRS1KpNDltbuJ6dNZtcgeEY5AtzOI7FaNxmcW6RjY0Nzp5aYmPvPlK6RGnKdLXG7u4uKokIwjHN5iwHO9uYtkGYJoTdLoZt0Bv2aNSn8P0wa9wLI/NITFKq1Sr94QDXtQmCAGIL06/T3+pRLgpmzxa4udKiOpen2/VpTBUBRb/tE4eK6cYCW1tbE0/XjO2ptQIliYI4i8QGmvUmOzs7DIPMaoYjOxqVIMnCPceJjzkBun0/wDAkOvSZmZ1lb28vA8EVxEFMseTRH/pIKRkOR2itcZzMP9N1XUajEeWiRxRHKCOl3+1RqJbxijYyUcRxgmUZ9EdDZM5GK4VpkKVkKyZZLhqVaKJQEeoejs4xVSoTaxj2AtASU2aJrI5lE4dxJoQ1TKIwWxu3t7cRhkBIcB0DxxIYWoPhUK9VgQ79fpcgiDgx0+DmYB1MC4GegIzOX/gZ+0sB5aRSiFRg2BYqiFFCQKLxfY3pJ4RjB3H18/zUP/gKX2n+99gKwlSRJhK0QimJSjJAz0w0FgV8PeQzvzpFZPa4c+hlem6gjWLWtDhM+xj+KMNWgBCTnB0hpWL3EIpSIOIYrDq1qQ6lqRLferHLIGnyE7/wX/L3f+WTyPcsnlkyj1KKYOzzq79xjYpjcPXp93P79ttEfmY+WJSK1GyQBCNUKgnHPoV8jjgKqNebKN1CahclBSpOSFKFcDQ5ozCRfUXkci7CSKlXCxiGoNM55NylaQ53DHwh2E8U/dDBkGDbBirROIZmHEnMaEyEQdkR2Ag8kXC2YNB2coR+hJtPCdKU4XjAifkqdiVlPIrxqhW2+zY7rVW09DDSAWYqCbTEUBJBgGWZ+KlNqMYI0+Sppx/l2je+zqvvpJxdXOCrf3Cdn/n5RV69OcLwBsSjHb78pZvsdANq9Zi8dZpWNwRD4hsRlkzQVDhIfEqeS+xFpFGINgp4hodmQN/yKOoQP7LRdh7LSHANsBOTVAmCcIxU0+TKI3SakvM7pKUKg+EhVl4gA0EYmmjLgAAMM0aIDL0pi60AACAASURBVG0/Qq6lkpgyszPRSYJFQuwKEA5Sm0CaJSjJFCE0RmSRpAKMDLD84fj+jmM/uKNiSAmEllmHXStMKQn1OHt9UnAbhoUWIY7nIYKsEB+Px8fdz36/Tz4/jZQSy7LodDrEccxwOGR+fvaY+ZWmKWEYvqcYc12XnJ15obW6bVzXzQ6gW1vYjmBv/xCA2ekZAHY3dwmGYy5dvsD91XtMzUwzHAScO3OWfr/LmaVlRoMhcRRxuN9i76DDndt36bRaRFFE97DF3t4epVIWpT4zM3NcZAZBwMrKClJKrl59kjfffJ1vfOMbRFHEt771rWNPh/Pnz1Mo5Li1coeVlRUuX77M2toanU4HtORrv/v75PN5NjY3kVLy6mtv8OFnn+WFF75NuVxmb3cXx3FoNJvkcgUGgyGnT5/m/v37jPoD4jjGdV3EpPN/NFI0/X6f0eTeazPDuS+cXub04jxPPHGBWq2A6Ti4eRdpSfzInxyyDAzDBCEwTYsgCDAMiyAMMQyHJNaYZkwcRiQ/QN3pv4qj1emxvHwaITMwdnenhZh0XdfXNpmfn8eQmbeS72cAWKVSYzQa0e1micLdTp/Z2VkG/T71ep1GI2PIxROWq9bZXJKmgePZtA7aLMzPMhwMKRWLtDsdfN+nXCoQ+D5nzyzR7fRpNpsctlqUSiUa9So7u/ucPrPI5voWU1ONyUFVc/mh82xt7fD0+59Aa8Hu9g4Xzp3n9spdTp2cmxSEFgsLcwghKBbfC9iYpsm9e1tcvrhEFEU0anVKxQKHe11OnV7E8zxUEtIbjCgWMoDKtk2khka1Mkl9VohUEwYxO7u7SCkYjcbkcjksy2CMyNafXOFd36pEY3kWxVwOrTWlkydJyWTmaBNNys72HrNz0xmTbnLIPLqntm3R7fSpNxsYIktLLhfz+KMxhUKBJA6pVCqEQQwKisUiQRBQLBaxJr4xR6BfznOyv/E4pNvt06hXM2byYEyxlMeyLJaXFmm3uhjSYnZ6hiCIqDfKDIcjBFnT47iTPg4plvKYVsaUUyqTq8iJtUBzqs6gP2Lt/hZT07Vj64FyuYyXK9BptamUyhwctvEcl2q9wqlTp4jjmL2DQzzHZma2AVpy2G5RKGRyfS0FYRjT7WQG+65jfF+fr+/X0JM99WjffFC+etRgOfo6vDfc4UEbg6PXjsCq7/WqOxpHjS/TNN/j25b50L0rmT0C5TLQ7r3M7Ae9Zo9+hgdtFY5AvaO6QqsH/OG+x3v26Hu8RwJpSOTEN/XoesdxMoaJnjQQtHl8ree5PPLQWdy8heM4OJaLJSf3whCkGoY+rK2tUamWkBJqtWwub22vHUvLjlJcDw8PcR0DaVi02+2ssAVGoxFKVQE4ffo0o8CfAGPxe36Po3vzZsfniuPwY5/6KN9ZW2Xc7xCGKTpvU6nVCZKYO3fuYFg2VrXOL//LXyMWHu39Q1bvbyAMSRhmUjxTWhPw8d17eMR6O3pP0zQxdPqe+aNUhBAps7Uc7W6CThXSsjGFxjElicOx/5RSili/y6BM0xTDNt/zu2mt0egM5DNtHCVIOLI4CRDY2YEfjW152b0wLTxDomORMTDjJNtzDPt4nmZrtf0uIPfAnD2ab0fz5gcJwK8W5ynlqqxvXseSKX40ZqqxSKU0jU5GnJyd4/bdV5ifuUwhX2Fz+w3OX36Km7dfpjE1j+2W8aMe83MnuXnzJqeWLtP3RwxGdzl//jFeeeV5ls49xnDUpbV7nVEY4JhFrlx+ipWVlxkOd3GdMsXCFO2DFYJwj439FqbtYqSCII0wdAbo7Hd2ObD3EUJgaxfHiBE5k0q1SiFfZtzvISxF56CH1jlM06Q72KBSPY0tHf70xa8z15zGThKEVUIYknHUxpAOpu9zYu4yB1tb5DwbnSoKVpFKtcZuuMt4mElAg3hIEJiUSyW2t7czG5jIz3zSooRzF87z2huvYts2B60WjjJob+0xu3CCra1NlJSUywVUoqkWavTHPabqteOGhOs4WIaBbWa1UbfbnawPWbCJ7hYpYjPai1k8eZrX1lZoTlUYDDpUylPEAXQ7fVqHHTyvQBDEk7TTicWPUkjDQGuFaRqsr29kk11n9cSDALXjuMdnqiRJJ+u2cWx9s7+ziyBrULieRyHnMBz2yedzDAdjDFNi2/aEaGGitUQISb8/xMtZlGqZV3Vr0MKQHk4+jyttoqhP6Mf4loHjOPRHkzXIzdPt9jAMiWtIOp0O880mSgvCJCb0A2zHwNSSYBxi2RmBo98bARmLOk0Vtm1RqVqEfrYf5V2LwWCAlc9qtrNnz7O68hKzs9M4jkMnWKX8yCV6vT3Q6f/rNeAvBZRTEdiOxB/GGIIsojaQlJqS/ZsJ8szHML79NX7550H6GrRAJRqZKBKZdZ0SQCSZr1rLy/G5X/IoTHzDHpoec8I02cfglbdS1lD89n9gkfYNVJoyVlB0NaOBpBsmuJ6L6ymIIVcYM7+Q483Xd9kb1vj3f+V/4OTCJ//M73BkApp9nKLjCJWv8crrN9AqJkFD5GNWquTdMsPuIbZt0mwuoHSC6wr6gxbomGqjnm1CXo52u001X8OyNXEQkkQGSkeAjWZMf6RJ9RTdLUneDYhTiY4lAkUx79IbDjCThFDYaMDIF8iLFLSFGQUU3ZgDLTCihISUjV2fStXDLuYYBwH5/YQQxYlyjvG4jaFdtJCYMo/SIZbhkBpZJ9+PBDDMvDfQ/Mhnr3LzlXf42594hP7BNi989zpf/m/yXFqu8sLzzzO/2ODZ93+C9vA2N99pU6sdctiOUORJdZSZN8oQB4kf+lnsuFXA8tqkRgFpGAgVEZsurilw0y5KOCiR0k7b5PsFgjRiyq4Sk2CXfAhKuCQ0p04hjB2isSYlxgodRoSosUITYTsGaaIQiYGQkzheJAoIibBigTIlyoxB5cmEEFm0VuIkSGziVJH8MOjh+z6Oii04KvozdtxR+EOSJCg0hmVmqT6GjWlm/ilHhWwQBO/xskmShE6nh2Fkfi1SmvR6Pebm5rAs8/g98/n8cbpquVxGKUWn0yGfK2JZFrbrYFgm65sb2WE1Ckm1Ip/Ps7Awx7179zIKt9TMz89y48YNJIIoCYmSkFNLp3nplZcZDAa89c6bRJHip3/6p9nZ2ck2pFYL27QyuWe1imVZbGxk7zU7O8vm5iZTU1NIKSkUiiwsLHL37h3q9Tpnz57FsiwOD7OY9o997GNY/xd7bx4rWXbf933OOXev/e2vl5nuWbjMDIccilqooUyKlhHZoq0oghXYskzFBhQo+SOJke2PJAgQOAuQCAgkB0gcKEEEOTEsG1YUQhutUDZXUZx9757p/b3u12+r5e5nyR/nVr1uCg4kIDRjigdovOnpqnp1q+499/f7/r5LGHPv3j0CqfjkJz/J0dERBwf3efrpZ3j55Zdo25bnnnuOr371qxwdHfH000/z6quv4pzg3PktyirvwMuCxWzG5tq6L2Lb9qxZCgPqpumSVe1KMhQEPoylF0f8uR95niefOIeQLb1BQpoMyJIIZ1rSOMI4n4qGVERpTFvVqFD6v4uYqvIeP2VZgpIrSdx317dnjfsDX4yVtU8OzjxzNM9LLl64sJIMHR2eoJRibX3MfJYzGvbJ64rQKXq9Hs45dnZ3fcOLwTqBlAFFUdBqTRyn3htJRQzWRyvJV9u2bEzWsMIXV6PhkKps2FifYDoPligOODqcsruzQ102DIdDwjDm5NgnbC3mBaPhhCAIqMuK3d1tZvNTxsMBg4GXWvT7fawBFeDZusbSGE0gFFVbkySCyWTC/fuHJElIVdVsbk0IAkWe5wQqwhhLv9/HGIijCBWFq4mxNhatSz8xHg6J4xBrU0ajEWGYUFeOtq2RIiAIu1TkoMUaQa39+4ljQdABG03TEEUDhBA0tSaLLYEKcEp0xTzEMqDpa5qqZbTW4+ioREhLFAf+M9nYwDrtC2jTkJcF/V5KXuQ4MiKlVsCclbLbTyUqEOSLnH6/T9M0NLUmChOiMGBza52TkxMfdiUcJ8cLgkhxdHzE1tYWiyJnIARVVdE0Df1+n6oqGA6HBKFvDObzOW1jGIyGDBoHQqGNQzeNl6xFgs3NTU5OTlhbW2OxWHByMmfUy3BCeWmwc+AkWE1/PGJ+cooIFGkYMZ2e0Bv0meVH1FXv232JfVuWpGPLdeqXB5uyB4G6FXPOej9oh1e3eI98/9zlc4wxBFL9kcZlKUNUgUDIFpxAic7/y1n/PTkf8OCcwXUMJYMjL0vqqkWuLb2hLUoFGDSB1N5fWMgzsM1YD2Yp732tjSMTYK3u3ouX20ZKYfC/19cELWgPCGa9iCzL6PUy/x6bkrZ0q7pj+buSNOL8hW2vEPmmzw8gEIp//Ou/wdraGvcO7+Oc43I/ZXtrwpvvvI5SIaJuaFPPlM+yjN2dDU6nc6qqIoljnnrqKa5dv766XoIgQFhH0B3zkun44GDxf3/jLv/qjwj2Fgs2IsXRfMHhdMEb7xwjo5jN9QmjuIeNYj7/1ZfYK0K2Nya0uiCKErRu/HfrHMa1D/kHPsiMXDIePTDqfca1tkgERd0wSAJ6m+tsDyuKPOE0r1hUkqa23nfPGCDGmDMgONeGOA7Rzp8LPjyv+45ES9lajPQBb4EMQQYoB9J6gNJ7whmCMCJMIlQU4GDlGSgkOPz3bI1jfbLm97SH0uQd1p6Byx4QNN9E9viXe53f2eXe4ZskYYE1gvFwl/XJRdYmKa+89lVu33WMh+ep22Nu3t3j5PQ9mtbi4k36QD3d5+jwLbQMWBvtcGfvPVqdU9cn3LpzExn32Lv3BkaUbI7O09YL7s9ucfPFG2AlH7z8LPcO7jBd3CEJY3bXnySKz9NWM+Kox3Rxjyff/zGuv/sGj+4+SZqm3L7zLud238ftvXeIUCyO7tEuKtK0BwjWNwZMT3MmwxFhmKGrE/aOj0gHMfmiYTQYIJVgfnCH1CRsndvy6c9371M3BUEwREYWoQRaN1irOTw84NLl97G3t0eraxaNwAhHf23M7bv7TMYbzKZTXnzxJdKsj7ENFsO0LpgkPfLpCTvbm+zfP+Dk5ITN9Q0WixlREFKXDUpIjo8PiJN+VzsY0jjxbF5jsDh00zKZrKOtYbqYsn8tpx8MKGaGLNtiOi9QyjOKtTYsFnNgKbnuWKBdqMlgMKAoim6/PVMhOSdo25okianygkBKrLAPeTdevHiR/f19bHsGlFdVhdYNQkjQegWIGePDNYMA8tzLQIMgpmo0rVmQRilp5FUXM+Pv671sQNOeUtaGlpY48ZY8JwfHREnEYDzABC1rwwyXgNQhAaBQKJcSJo6mqgkCSVEsPItZSpRzBLEnOwQuYG3iLZJSpXFxH1NXBEKRDn19U9c1aZzx2qvv8uSzT6NcyHImpb7d8lVrocgNAoFpHbr2QQ/333W0EuSLv42NHefWwdTghMNYQPhwCOsE0ihap/mNF1IuPzZHBD1qKn77sw0/8UuWX/lZ+Eu/Cv/DH44JTMX0OCcVjtYzClFSM51LGhWxGQM2IhkYNrZT9t485p2jXd4uRpzf/QzGhUjZftOk7myK1rYtWX/A5cfOMz0tKcsArEP1CgKnKcopUvpEwKqqUGHN/MQSBjFR7MGz05MFaep4/OIOp5Xhzu09kizl3Do8+8ga/+TlfdLYsb1xifnilDSq6McpVw8L0rSmlwm2N0YUixp6PeyiRCoo64Z+FGCFpd8LORQ9BtJSWI2IYcdKItWDtoA65aidsntxi7eu32FeaRJKympMK6YIEftihQFWtYxiQ9k4NIJQOP7MJ/9jxoOQk9OAa7ev8unnP8VwreX2nYCf+KkdvvTVl/m+jz7K//SrL2LVEBFq0p4jn7c0UU2g+jR1SRzFyNjinEC5gkaH4BoylYAL0cKgZEQjvOS5cRWySSg4JmwVtwOQsUNqw1rao0SBi6naglxb4thQu1PiNkIkILTDaosKFWFgqesGpAWnCKQ3pjQOlGlxLobAe1c5q7ABKAPa1UglGa0NvhWXzHfXn2AtgTXdhTngzlJ3sBaJIpCKqmlXU3M/gfGbvG4qgi7xZ/XH2U7+6eWq8/mUMAwpioKq8gXk8ubX6/VIkoT9/X3SNEVrTZqm5HlOW/vCdG1tzftpbW9TlxVpnPDqK694NluTc+HCOV548es8++yzhGHIPF8QBpLXX32NXq/HcDgkiWM++UPP88Uv/FOSJOH0+IT3rr7LZz/7Wf7wD77+gOw25fz589y/71OQnnjiCb7xjW8wnU45PDzk4sWLDAYD3nzzTTY3N5nP50RRxPHxMR/+8HOEYch4MPT+dx0Q8qUvfYk0TXj++ef54he/SJZlvPrqqyhcxw66wN7+TdbX11EyJEkytNYrwM3LhDq/HqNZ5HlnFtsynU4ZjcecP3+eJFb8Gz/7V3nkwnrX0CmENITRWcKd7+B82q11Dt1agsRPtYtFTlmWnl1tLWmaMpyMObp78G09R/+0r9k8JwzVKhAlCAKyLEMFAmd8wae7hsp7t+JBKBzDrEfW86BHURQd40OQZTG69Z4jQRCspETLArGtNb00od/PsE5weuqTf5tGU+YVo3EKTrKoCoxxzGc5Du8LVZYlg8GAg3uHjCcZt27dYjQa+AazDRgMffhJmsXYkUEIyWAwYDqdktclSRrR1J45dzpbIIQgS2OSOMM5GA6H6BYGQ3/enp7MODg46qbWc7Is80VdmlKWlffAmowppzP6qW/yi9r7Mi1ZOHEc0x8NcU6tQBApJcb6KfbJbEpVt2xurpOGIVmWEUURQdBJ7tvWS0ucbyaXw4YgUIx6PRj6pnMwGDCbLhiNB7SNT0ZOs5h8saA/yBAopFIMRyOKRUkVNsRZSth55dB9T4PBgLZxzOc5w2Gfoii64YFPvBwOh0xP5x3zrqFtG9bW1lZpeRJBr9djPp8zW8xJ44S9vT3W19dJs5jhcEhVVZwcHROmIbPTOWHoWQPzec76+oQwlIzHY6bTOWma0raGk/mMMPSgcZqmLBYFYRzQ1JayrOkPBjS1T8yripokTDDYf+65/52+hBC0rvOK7v5OZ03woJTV/zyziRBC4gV+gPVDT2stohuiSPewHHDJsjbO4ZzyI1QpQAgUCiH9sExw1uxZqwlEsPISEkIglT8/hRCYupPSOlahD3AGDmIMBofRFZKAxgZIITr2iAMFgyyh108Y9Ly3bJQkZEnk7SuiiCDwn8OVd28QmhyBXfmdSSk9Oy6ICaKke5OWB/sNjEXJmDCKmAwnVFXFu9ducO3GLcAD70mYrB6/KAvu3r2LVLEPKghDbty8ufKmmwz9PtU0ns3K3NczSimSMCJNU46OjhglCT/9S7/K3/35n6TKG6anU7565V36vTH/+Pe/gAtikiRhUflmeDIYcv/+fdbX13EqxLU+0G15738QdHzwv5cg3VI2u/q+jcO2gjQLCVOF0QmjNcdGYyiqkiKvyYuGqjEsqnZVZ0gpUXVDEEYUdSeNdRZvQuQ1bEkUEEqHkAFKCWLAGoNrBdI4pJBEUqICzxQmCsApwihjlA1RwlJXmtPjEIQjigKCqPMxlnEHXjzMDAUw2lE31f+Xl9+3dV278fsMsiFr403u3r/HdHaN09Ob9OKMjz73aV564fcp5nfRekYY9rhw4fv4w1e+QFQd0jRTAiLe/74f4Oata6TZiL07dxlniicf/0H2710hTNaYrG3Q5iXW1AyjdS7sPuVJKf0Jb73+h5zbucggHXPtvZdIwj6vv/UqH3n2eXq9IdM3pswOT0nDiEE6IopiHr3wfub5gsl4i/X1TeaLI/q9NW7fu0GShuzsbKHCkqO7t3jk4hPcOz3h/KULNNOCo1lFjeHc9i73blScf/Qct/evc/7C+7h+422CpMfa2oTpdIrAMplMmM5PoVRUeYEUMOz1mFWFZ3InGzgk0+mU8+fPc3BwwNbmBtevv8eg12M9GzEej+n1Uo6np1hr2d3dJZ8v2NjYIC8LTqannNvaZjReY7EoGAwGHB4e+oTjbhgexRHzfEFrdOeLHdAWmiToYbTm9GRB1ks4OZ6uWG3O+drCM+A8aB9Ffo/N85xer4eUglbXVFVNpBLmRY6USzsMX+PleU7jBEYbEIK9W3uegJPEgKWpz65LrQ2j0YhFsUA4TSgDZJJQFFVX18nOCkgTxxHa6dVAsDWOptY4u6BuDeP+gFaXaBTWlgzHI7S25LOSH/ih7+fVV7/G3ZMDLowvkM9KxsM1Do+O2Nm4yMm8RNsWoSAMQkzd4JzlsYtPUNc1YeQIhGO+WNAfDWnrHBn2UQJkGIAKuXf/LuPeiO/58Pfwlddepx87Nkexv+/8CRR23xpPOd+XYmuHbaGswM0MbeQIWv9bawNGQLtQ9MYGq0Fbh0LitKUoNH/tlyS3VM0PvWsJrUOomP/gNy13LUQ0XAw1+1WPX/u5EIqQed4Qp9CP4Pp9KKxjc2wxTpJI2N7KwPT40o0csz7kV/7hNUw3KXHuzBMAPDUeupj13hpZf8jerT2iJOxONo0uBXNdEYcRQsB8umB3ZwvtIlSQsznJEKHk6HROr6dYSy4wq6cc3T8lTnpYJ9mb51z/2h7DUY+Decn2+hQl4YkPvJ8y32NjnhFlkpYRs0WJUYJYQSgVDs3aaICLHc1pyUHZ0stamrbm8nrC/lGJHG1zYy9HSoVwx+yuDckPc0wdInVIIwy9aEYlQ7QuiWRLWTmcgCZIsaohMwnTasEPP/+91PWc0WbDeh6wtnbMq9eucHHrGR7d2eCdzU3+x//5c/xn/+l/xKWnn+Fv/I2fwdQhWuQEFpwWyFBQOUvSJgQyog1rIjIUghJFKgpkE9IoQ1/1cNLQlCcEZARK0EYa545I7Ig0BdtTCDVESoEUliJaEIcBg1KRZ7X3vNIOa6MOKNYEQYhuQYsWaQKIAO2j0aVtsTrAhTVO9pBK40yIjAKM08yO5t+KS+a760+wlFJeigV+KmQMQnVbWaAw7RkQJ6X24R7GGwEbW+CEQqgQERiEFTijEVbQNA1xHK4aM92l/nk/tDPJxdILbWNjg3v3D4iSmLrx4JA2Dca21E1KEoccHR6wvrbJfDpj2PfhEGmvz539u0RRwNWrV5lMJhhd89Ybb2INPP/xH+TKlStM1tb5B//g7/ORj3yEvbt3CMOYRx55xDNsOg+W09mUp5552ieidtLbGzduEASe6RcEQTeV0qyvr1OWpS+sZzN+/Md/nNfeeIsnnniCvb09nvrQM1RVxbWbN9jY3mRnZ4c33n6razQCVBDQ1CX90ZC3336TXq9HVTa0bc5waDk8OWRzc5Obd277GxGeJTGfLzDGUlU1UkTEScL2hXP80Ce+l0994uMMBgOiKCIMwLoWpxxhHNDqgjj2EjUVBgSR8l6cUqFrQ6NrsDAZb9E0miQzlIucezdv+yTW765v2yqqmoyYMOxMtYOzUsMq7WPjW0NRtaSZT/IN4oQ4CFZAd1mWNE3Tef4YqqrBObPyibQPNGVN03gwOx1QacNiPkO3Fic1zmp6gwRjQTc1pjbEkQQkYTagLMvOrDonzWLKsmUwHNKaFmEE0dgD+EVR0batB8SScCUZj2NvJm+tl9XO53N2draoay/hblrD6XTOaOQHOlpr8rIgThRlWSEdhJ0fEkp5Zm0/9fuWFYhA0JQNVVUSRSFpqliOYJPIp0O7LrhI1zVVY7DC+y4GUmGNRgeKLI5RWYYBojigrusVy0M7y+npKdZAf5B5GaqMwVgipUB60E4q5wcIkW+ym1p7QLJrwpGCIq/p9bx8dRmq4835PZsoz/PuM49YLBZEcWe+HqX0+16SnGUZxggC6b2AnXUEkQcSx+PxquHoDfrM5zlSebZPmvRoM0OjW+I0oswr4lQgA+FlML2EMAoZj4e+kVL+PNC6IU4STKtRoffR0daQZQmmY15XVYMVUDUtcfzH94j5TlorgI1OxeS+2ZPNX4/O2O4eYM6krHbJHvKPW7KZl+CclGeS0iWjqqwagtA3NArvJypEhFMe4EMIjBVE0u8vOvKgFtaHJIkHpJ6tczTWIEWwen0hRAcuekackA5nHFK0qCBAGo1Uig+8/1F6vZTBYOAl0VH8gOfc2XFb65myTV37fUoF3uf4AamvlL6RCzu2WmMMxmma2rNEqrbBWMH08JA07TEajXzjulj4ILQ8J0j9Odu2LUEU+mtNRSuAP8u8Kmc6nQKwvb3bhV61xEGIM3Y1gJvP54zHY0ByMpvyc7/4j5CmplVRd1z3IB0igNo4kjDCdccyGg1Ik4jX37rKhc0BYahWYJtntD2cqLv0A10+ZhXW1QF31mqiqEc/VVjjhwtRbIl7MVnPMNaavKqoSk3dNjTaolvn/TtDBbVevd6DEuooUCSBD8GRgT8nmlZDGK7OTRsGpFmPIO3RLmXH2vvf1nXLycl0VXfWdY0zBhkqEBrpFNb59Ndv9pn7TvKU24iGPPXBT/PlFz/PxtYWTzz2PG+88Fs8++Ef5uXXv8oPfOzHiOKAr7/8eS6ee5KX3/gDPvD49zMcjsjne0y2LvDaKy/Tn5xjZ3SeoJjz2GMf4603/xkfePzPIlTFe9e/ztbOY9y+c8SlRz+ECmOuv/cS0/SYUW+DcW+HNIZnn/l+3rr+Co8/9hTD0RZHJ9f5wAc+yttX/4CdtYs4KXjn2ks8cuHDzObXWd94hKPTIyQteVl6SWj8KHvX3iMSMb10g1sHt5ifnhCZijSJ2R5mXD885PDVW4RS0e6VxOmY6+++RqwCHnn8A7x77QpSafq9Na5fvUM2mlDN7qCco21LTKvZXFtnkZ8ghGHQG+Cs5eT4mCeeeII333qDixcf4eDuPqPRCK0cZVEw6g84mk8xzg/C9/f3OXfhPEUx4/DwgCBKiLOYu4f3Mcaxtr7G7HRKL4iwyrOUZ7OZt2DI5yilMNYiphsNEQAAIABJREFUrUDpgLa0jMYp9w+miI6B3LiGMI5YG084Pj7uWHQa4yyt0UjjAySbtKHKva2MEII06ZEXc5r5AttqnBSojvjQWgNSYJq284+3qDBc7Q9HRycoJWisJQhc50EZYI2X2ue5l5NWZev7fOUQwhFGCqMVRVGQpJLK5AgjqUwNzuHaZeCCZTzqUzeWVijeOz1gvTdmOp/SuJb92aFXGBBQFw7nCqIo4n2PPYbWDYNhjxfeepOPP34Bkw6pbEkcBCjjCNOIN195gSqfMk8seWnZvThCvB2QlzXbI5AioNF/fI/rbwkoZ5xEL7zev84NLMCGjtCrKbwo0Dqchl/5NcNn/zKEAUgh0K3FSnijFZxEGYHVfPGmpK1qNtZ2eH0m+PmPN7gQfvEnCwz3aY8Vi9KQrcEo7XNwtOB4BhdHfvrmnCEeO4yWfOHlHJnt0P++f4Xkf/t7VO6sMIVVrYsQkigbEEcZaT/2vi62pskbRoM1rGso8oowgO3dIfu3FySZ4+j0hM31Pi4SzPKaqi4IwhjnHPdPbyHThHjQYzqrUK4hUZJPPf8on//GHYJeiFucMs7WefW1VwjSFBmnCKm4duOQfi8gjgJOTwscmkD1mDUtbrFgLUvRYkxlLLUVvHo3JMgGnNw+IEj62NawPsmoVcBJbRj0CraCmINjR2VCtPZSFAKf9lJazXxWMl4LsK1FacVf/MwP81/+7b/Lz37yJzjXe5cvv3CLp7/n4xzcmPIjf+4v8Jc+8xF++f/47/kvfuG/psot2k7ZODehuKUQxCAMTkhcDVbVFKEhqQKMyUniAJRD2JhWNAQiojItYWDoMaIKNI0G0dQokVBFOeQZSZqQZo5UDQlCS5IEqNgyKGLyecE8TqlsSqMNYagpFzUidFiVI1uJEwLlBEKAFdaLViU4qwiEQJQtTShpTEVoFE6Yf/6J/931L2QtJ85N23rGmyfYds3AWarqkg0XdjcALweraBvf2GtzZsCsu00zz/POoylbSVWXQJanVQcrPxrnHJubm8xmnpHjGT12xeK7ePEi9+7d815zR0ds76xT1zUf/dj38pWvfMUDC9oXowLJ7u4uUZiws7PDa6+9RhB4md7Nmzd5+umnOT2d8aM/+qNcv36dOI65ceMGddvw1FNPMZvN0NonIWmtmc1mPPLIo9y/fwDYFevvueee48qVK4RhyK//+q+ztXMOYwwnJycMBgNeeuklpJTeTL2TbqytrXUJtQv6vYx79+4x6g84Pj5ese7KsmQymXD37t1Vsu0yWGOxWAAdO8pVJEnE+y5d4v2PXyLuZ/QnI5xzDHox1ra02he+SvomPE16qFgipJfq+IY+IY7jLpa9pSwrDA5Ra+6+cxVdtzz+vX/223WK/qlfo0GfLEtWMqkHm22jHXlegoIw8qbsWT8hjkOU8kmaS99GD+ZJ7xnWmf86A2Xhm97atsSRpN/3srF5UVCWJVXbECiFsIKtjXV04yfIQRQi2gahJQaHbVqi2Es4hHCr8JS2aTCmZWNjDWsti7zk/sEJUsHuzsaq6VNKcTqdU5Y5a5MRi7yk1/MBDXlesTkZcrrIfUBMHPvXWiwoiwXDoZfZBkFA3ZTkeUk26CMRxHGE044oEDjtKBt/vEEQEEcpSkqMtSgZYpyjbRvP+Ktr8o5FL6VPB/NDBS/fC0OJNB7AapqaWmuSMFx5Mh0fH6OCTayNMcbS61iOURCzyEviKCAMuv1SeK+YKAm9oX5eenmhFJRFvWLdOefIFz6VOowUSRpQt80qRGc2LRiOWAXpBFFI3TYEUXgm+Us8M0iEqpPg+hQ3qx0EUFYNznqvp8Gwx3yWUxRFx2bx0jgjDPl84b3uegmjyZg899601oHUBqcEprWESlCUml4WYRWgJUL6BDnpeMgn80/TWp73XkJ65hWmHgDmugf+Ea+4PxLuwBlDTSj50POXQN8yzRzA2CXDwvqU1gf85Jw9A+hxYDGr5y0ft2TWiwd+bxiGhFlAL+t7BluSeNsLAdW85Ob+fYKg5ty5c/T72er1nPRs/G/2pgNWHnjAKtzoQUmvtZb5fM5BdeTvXbX2jPxSd6mFnsm7fE6e+/2jaZrVwGJnZ4c8z6mqhrqu+fAPfj+/+Vufp9/398ft7W02Nzep67pLLffHn2XZas8JgoDt7W1ef/31juWXMBwOAWjbAKE9I2V5zN4E3tHLeqD8gHJre5v5bMaNGzd4dOfDq8cu/fWW58Dys14y5ICHZLTLzwrnwbzWhj5BMYjRTUNrNAbfWy6Hj0JJXN3irK/nDDw0/Hnw+5cyQCkf4OYzoBxBlBEkaccS8gqv2sDpad6lxpYenO/uCcCqTlwm78rgj0qul8e2PKbvpL3imQ9/mj988ys8+8E/z+b6Om++8Tm+5wd+jFde+hIf+dAn0BpefuULvO/xj/Hiy1/m3O5lzu88St0eE21dYP/2TeLemLXBOlYf8b4nnuPG9bfY2nmMpB+yd/c6jzz2Id69+jY7554E4Na1F9jZfYwb117hox/+M6gAbrz7EkEyoGlha32duj7h5GSfVlcs5hXZ+QGVqTh3/hFO8ztMNnaotWFje4fDu+9y7/g2g2wdqSzZcMSNO2+hgphzFy/gdLuql7NY8/jGLtFwjZOTE4zNGY3XyIuKc+cvcmfvOgqNciFbW1vc2P8SRmwyGk149NJlDk7uIZAcHR9ibcOVK1f4wPs/xPHREdZa4ihimPY4vX/E1tYOzjl/D3aW9fGE8+fPc3p8wsHdPc6dOwdAmg6gNaS9lDCOeOvdtxkN12kavxf04oS2bYjjmEo3zGYzjGk7pY/GChDO0VYFtYE09XuGc440SRHOcXJygrWeKS4l3v7JaFSQcHR02ikIa6xxSKUoyhkgMFozWV/rAmrsQx6j0rHqDfQDIJXfI0DKoCM/iBWon2aeuZckPqRpc3ODuslJEp/YqlRAEKZo7euJxnX+ba3FSYlEIKTi+rVbXNg8Tywkr1y/wr2yBSFJ0wGLeQVOrUIdltYbWaS4eXCbi5ef4uMfeAxb51R1RS6GzM2A87Flq7nPYTljnA44aiq+8NaX+cjmmJ/5norffyVHiV635/3xr7FvCSiXH1ukSGjmNVaDjAWqcbSh9N2zcd6joQr5+1ca/loLWoFEcWoSfvSXCn7337RUSqPCDJqW//Xfy/ibv3IIleMnPlDRGD+psxpKaxiMQkLXcvPOglmtGPcsVSQZBQG753q0J1O++HbGO3c1m3/+U/zn/9Yv0rqzIkPKwBu2SolxXiol4gQtHG3dkCQRptCMJ5scHN7nIx9+iivvvEcQJRwfnVK1NZPeGlXREEhHbmMiJZkbw0AE5EWJjVLqg/sEQcTa5gaDKOL+3T1+58u32Z5oFkZi2gnHpcZqxfdfej/feO1F+q7PaBBQFAuSXp8kyRBYauswraWfDjEhNBYmGZxWQ37kzzzLP/2trxEkfmqmdMP6MKKYzdmKBzT5lL26obU1ASkyksTOoW2AaQsC0zIIFaZyOKXYHqf87he/wmBcc+vaF/nyl66wvfMEL7ywx3F+n3/tp/5bPvvXf5iRbfi3f+6neOmtE3rzOV95+xvcFgvCMAZbEqEg8Kh4YjWFbBkxQNOgG0GiJHEYo21IE82p3IC+cMRGI1VARUwjTujrNWy/xgYjAgUiaRkl54iyOTJLKeYzgjTEBg1iJpEYyPwm4kxLJgbUQYM1oJ3EmRYhwKEQoiEggGaGiSNC4ZDGgrCYb8kV8931J13W2tXk1zmB6zZ8JQTWWIQIvccTAa3TGBFgXQ1ECFE/ZJa8LB59IeUT3JQyOAdZljCbzajresWOWEoxliBcmRfslwX9QZ/BwMtD0zji6tWrGOOBhOGoD0h6vQHnd88x7A945plnePHFFwHIFy1tu+Df+Vs/w//yy7+CFCG3b9/mySefpGk0r776Op/+9Kf53Oc+x87ODuO1CXf299jY2uTOnTvUbbOa4pd5wc7ODvO5T2ubz3IvQZvNuHLlysq74fLly3z1D/6Az3zmMwwGA9544w0WiwWXLj5Cuch57rnnuHXrFi+/9irb29u0M4tUEaPJmNOTGUmSUBQLnnvyI7z7zhUOD4+ZTCZsPb7LyWLGYjHj5s2b3uPNWqQUJGHEX/8r/zptNeX9H3yKdJDhgP7Ae/IpGbIo7nesRN9QN7aGwjMZZaCIwgwXhtRlRbEoKVWNQKI1RG1LMS04eP0q/My36eT87iJNU5zzhtzSG5QA/hrV2icVW2FJwsibZscBurUPNZFnLBR/nYZh6Btra2m1b3RUKFfy2Pl8Tlk1q9cPO8nmMqnXWs8Ga2uNlhAKiZP+fXm/Q8+QX8rPhv0BSkrK0nu6OQxpmvnaoDue5fuNooiirCnLkuGw30khExqgLhv6nWx1CZwvm1GFQCUBi3lN4wyR9n6MYRhirHnoWJIkotfLSNN4tX9FUQTWA+aqYwtHcdBJShRJYv6IdExIX98EYemHC9InFkZRSL/f895bxqLUGcgQJyF5WawAh2WiYsvZe7RNTZKGSOFZeEEou88/QOucxWLBcNQjTRMc1aoAruqCxbw4k9QG6qG0ZtPq1XvXWmOE81I3Caa1/vsSUDV+IJGk0UoSWzWt9xvVBolEO8eiKGl0S7+X0u+lzE2Os5bKajCOKI5ZaINUlsZYQheCqNAGAqVorKEty39h19L/n5a3I/Dfi+RhRtLy31fgmuvYcq4D4/CsuJUB/tK3CJ/oasXZaxkBwnQsyy4t3dCiVIATXu6OMGegv5JdCqpASYkT3mBbSEPjNMpBmMRkacK4nzIcDomScLV3hKpj3yqxAl3v6btdEqDtUjpjkGf+strpbs8QK8+gpYS2rku/XySht4Tprj8pJW3VsnfzLnfuT8nznLquPVu1Y5ABq3v0cq/xyawxxhh2dnZWA7Nlw7tkCo/HE46PD7l37x5pmnIym3Px3HnvO9kB71EUrUBtrTXnz3vPJ2PManCQhN5wfQkIqiAA6X0+67rGNA1ZnDCfnbK5uUlVLlZebkvW2/Lnkl22DEZY7m9LT7YHm/RAKrSxzBflylqkajW29feSujVobVb7w9K3zUnBGX/zDBQ7Oz8tTknCpEecJigZYTrJdFVV5GXLyXRG0zTo1mK6Pc0zM0Gph0NJlFK4B8BmKSVSnaWvLmtLbRpM850Dyn3j9a8zGV5iMBhwa+/LfPCZT/Hm219jd/uDSBkxn73G5Sc+xrvvvMrlyx9kfW2HtpyjaDk+PsYYy9baOQJZ46zm4N5t8qbg/Zc+wZ2990A1HB/fJxn2kQE4MSdMBYdHVzi/+xhGaE6Pb7J/eg1HxPrGB4iSkON8j8PZHWblMYP1CQfzu8ybGfPjewD0hhOMdhwcXWVzcp40Vuwf3eBoeodYCJ576hO8feM10jSlf/kxjvb3SaLIe9KaY/oiI4wl+7eOuHf3hCzrc/X6DSJlObf7KEfHB7z17uusre0gjWL3kUd47bXXGPcmbO+c561rrxIEIVu9If1exv7eLbIs4+0rb2MxrE08qNZqQ9brc3x0iJ2dMhIj1sZj+lnmAd66oalKRr0+oQzJ5wvWh2Os9R5yvUGfovEKsSTJUDiwhvHQ+18rBE6BxBGpkNZaFoX3amvbFtv6a65pWx92iME5P+yyRlDXFcLJbp+SIOwKJF9er0uFzvL69KpD5/0e6ZK7u2vkm5OKl//P73+195rs6qYoimhbTZ6XWKu7YYdGCIfDYozDCYsUDmI/KBTO1wp37txhMsogyhgNMyrt0AbKssS0DiFUlwAuKaqSWAmms2OGQ29h4kRB1u+RxAUivostNTerhGHSEAW+3rluZgRC8n+e1Hx8S/HBCyPePvTgqHHfZk+5cuFlIoH0BbWtvbrflNbX5gZwCkPDv/9TGa0oiGuBMoa7eU1qUn7s71giJfnln6z5K/8o57wQfO6nHcYGaG1xDTgpaYWjFwcI2bI/Fxy3jo2eo6odqU3YXGtIVc3nXtK06xP+YLrN63/77/li3IIQ/qYgwtAnfuALZRFlZEmEMJ0MSrckvRGz+RFxHPPu1ZtI4XyBrxsuX37UT6ollDYmS2pkPKG4c8rGRUt/MqRtDKq/RtQlB+YOxuvr5IspopexrjKiMKCZ58xswpdeeAtrBkzrggCJCjIOT2uS1BHGMW15giNERAFWhaAb5kWMMTW/989eRMYBzz6yzsHdKYt2zv2TgiqPWZRHJMnY2yYYRTYYUhQFUZgw7juOZg1SrqPsHINDNzm7ly7Rk3f4+b/1cV76v6dcenwbGRxysOdwuuAv/vT38TN/89+lOrjOi2/+Dk9fLvnDl9/i4J7hdN6w3gsIehFzrRgPGuo8JA0VRkpUmKB1Sy9JaELoJSlKOVS8RlgZ1oYj7i+mhJ3RbyB6VGFLqiWNmoLrk0QR6Siip/v0RhOak5zD0SH9dIPZ8B6zecNsfoRULapMsNrhmjl1Zb16NZaEKmGBJiwMNpLoMERgsUIipUAjUe0fn4b63fWtWcvJ89Jbqm1brHMIBdaah34K55tUh0G4CG0NTR3hnPTm6IF9yN9kyRbZ2tpYyUSDIGBra4v9/X2yLFux5wYDz3QZDAbcunWDwWDA/v6+T5ZUiq2tLU5PT1eJp+ALwF/7tV9jPB7zta99jU984hNcvXqVwaDHzs7j/PbvfJ7eoE8QRMRx2LE9QrZ2tvmdz/8uly5dIuv3KKqS/nBAWVe0RrO9vQ34ZqIoCkajEfv7+zRtwQ9+/BPcunXLezZNpys5TNu2fOYzn/FToSzjkUce4fnnn+fq2++ws7PDiy++yMHBAUopTk5OWF9fR9cN2jQPeU+88frbhJ3nXpIk1E3BaNTnxo1rK3bCkhWztblGWS/4+Md/gNYYegqfjpRG3o8PSxSm/mZtBFKGHdsxRsqoY0sEq+I4yVLfJFiN0TV71/e59fVXufbia9++E/S7i7LMvWdo57NktKFpKhqjcdqzJuIgXjW9ZdHStl52kCYJMhBIEayum2XTKqRBa8/8lIEjS73hd1kVFIX3bellmQfkkpiga9Yb3dK2LW1rcAKSMKKqC+IwWoFkvmm1hCogTmLixKd+VrVnRXg2nve6EwLyRcV0PvcT7zj2MoqkMyu2DmUMJ0enyECsGtKqA/HCKKLRLU3dEEUhMhSkLkLXDcZZQqnQXVqtjEMGUUSUJqggJAxD76slJTZQnsXfVAQqJc2iVbBCXS9ZweGKRSREgJO2k4tGnQ9kS9M0gCBJUqw1qyRC7XyD7lMiI4x2SOV9Wfv9PioQNFVLkgrSxP87oaE1mqqqVswVJyBKYtpWI6Wil2UdKJcgpKMsaurWB8FQaVT4QGkqPejgpaagnMBKCKT0k/S2wRlLqzWlMTSNB+XS1O8jjfYsybbWBJHAWuG9ZhYlQSeXbnTbsVo0bVMhnPc8dK7GKS8TFCrAmi6RTv7xPWK+k5ZzbsWQk0ohvO+Lr+O+6bFLE/4Hn+s60E0hH5K/PhgSAT5QwqtczoKdVv6iDpQw2M6EHCN8+ISUOOm84kb7e/ru2jq7F7dJ03h1D1oyuAPxACjUAYcsm8RAITowP0kjL9l0nikJdI2lPx/KOqeujWfHlhVN7Rl+s1nOJI25sD5k/+SEIPB7w9HJnOn8bc8sVWdsuzPmmKWuyxUb33vD1atreBlUAnJ1fX3jhVc6prGgNxx5qVpTM8h6LBYLzywTgv39fc8mHYxYX19nb+8uk8mIyWTE9vY2R0dHHB8frwDAwWDAZDKhbdvVsKQoCsIkRbc1jXCcns7o9SNkEOJsi+vCGJYMueUAFc7YkKv0VaVW4LsHtgSLytAWFU2XXGi0ReuzOu1seZ9ChCVUDkOINblv0p3DWVAqJE5TNs5tMhqu4bCUdcN8VnJ6OuvYhtVDUlsPngKdV+FyWGutB1yX5/RyB/DnrcHDzmcBGmeAw3dOUnOSTdjc2uFk8RqzxZTX3/oSSXSJ8eYaTXWL6eIW+eFt1ncfIwnWsCpl7+DLOGu5vb/gmac/6YHa9h3u7R1wWJR86Mkf5M7d97h973WOjvcIopj14TmuH96moSRUQ1q9YH9+j8W7p0RBn+3RmEilvL3/EldvOMLA8aEPfoq33/46gSi4P71PbyD52Ic+xY2bV2hNzMXdi7z37jdI0wGubfjYBz8OLczn95nOc1xdk6mEW29fY/eDT2IWJ7RlTmMCrh+8S2FCJru72EVJvaiY21M2e1scn56QV6fMqoJmtiAIQN80WKVJhiNu37tJGPgk0basqPJ6ZcFRLkrCwJEEgtOqZjErOibsNtoabty5wVrSYzwccXJyjHEQJiF5WxM2Db1eStSLOT4+pljMCBM/sAsjRRor5qXfT1vj/W6drrGtRTq8/Yex9ERAU1eEYYo0EicsKla0RkPn/1su6s6zubcC6o1pV3X48l7v9zPxgB2YXV3jSnmLDZ/KTMeOO2MRW2MIQvXQnq91s9qLhLQUVUHWG2Bs52sXRSSxRKqIxhqSRBMkEMcBR3cLLCEiEAy2Qk4W+yhzjslkxL37hzx26UneeecqKvJ4jLUWaQRZHDIYDrh7eExtAsz4TWQYcXkwpJgq8hlEwRHnR5IjFPW0YHv3Eu1xi8HQNiFX92bsZn0chjgeIZz9f7+wHljfGk+52m9NgfU+cUIIGuuIhcAZh1GCqjRYCz/yRMG8DalMi7OS929pnIgQ3URt1LMMxQYiOMSWEcgGJyRWOBYLS9YHR8vxQjDLJZO+AOMZM+NBg3Utv/diSzje5MuHPd588yu00uAwIEKkCjo6eoBDEaYJpipwNEjnaIUktp7ZNZACLULCUFAXGqc0UZCyaDRl0SJpUE5SaUPoHKI+Ym0gcVpxePeE3iihKhXxxBLFgpN5zqwRVJWl12uZtxptHNuxZNgfUdsZs2nN1kZGiOTgaMFjj65RNQtM2yCSFMIMXSw4dz4kL/vMZqeMxhlVXuHShOv7B/TCiA9cuszdYp82y0hv36IocxZJQD8IcGJBnCaURUE5DVAuQ88PUT2JcTFRXXNveo8f2vgBbrx6wOL0lI+97y9wurjKL/x3f5WXv36DX/jF3+A3/6+f5JPf8wz/4X/1l/lv/pPfJxxN2DmnuLk35ajMSY3CSsHhPGYyVrRNRT/p0xQLXAJC9FChoZWGYNEggoy6kRyeznHxgsYMiSKFUQ5BHxsuQAyRYYAuIAwFOu4T2hk2DRmScToOsCQkIqIRNY2ISeOSebUgrFOUNGhTY21K21bEIsTEISLr4ao5NJKsp7yhpCtpvovJfdvXakJsHbptkEIQ4OVtznk/G28mLwlkSN0awiDGtpogiAjCEAer6U6gQMvOU6abOuczT5FWAibDAf3US/GKosBay3A45OjIJwPmec5gNKZufeCDB/W2WCwWXVHfo240d27vc+HCBeq6Zntrl9l0wT/5vS+wvb1NY2q0azm5P6VtW2azu4wGQy5dusTbV65y//59Hrn8CPt3bvPRZ5/lypUrvP/xx3n99de5fPkyx8enq6m0UqqTr16gqipu3rpOXdeURc1kMiGKIu6eniKDgLt3D7h9+zZCODY2Nnj55Re5ef06zz333OrY8jxndnKK051PlIIwjMjzAtBebjcYeClaR5UP65g8X6B1ixKCJAzZ3d1lNj/l2rUbfOITz9PvD8liz2hpK0sQpV1TJn2SmQGB8MMPrVfsOaFClPAMKat8kEC+KGjmU174h5/jzmtXkN9B0+l/GZfWGtFJF11t0DTUjQfU0s4DaXm+tq3pAPYuqVMppATbOpQIqNsKIR1a+9TGNPKSozTzwR9+eppjjSFN045V4uVN2vpmualaTMfcWfoeRUFMqw1SBkjpWRFR5PeHNPOFoGfveblXP+sRBr65rZuWoipXwQtCiBWTtm1bkqhL3nKSMBQYq31IQlGvilXT6IfACBWF2FYjnUUEAuk6AEFIhJKowMt7VRD5Rq+TzzbGdKC1fw9h55PUPuCr6D02Q8AhpSIMgxVQ2NSaoqoBS9ABESqA4AFz4jiOSFIvU5fKM2dWPnLCrgYkRmuc60BIC4u89PWV6cz1rcB1EpNlqnUcx+iOIQgdC9oB8oHgLenN9peNvcARSLVi/OR5SSAdjXFUrkUWBXHsjeldK2jL2vviVZ2kxhmKogu2iDzTcQlmevC2Xh17aywWH2ZgtAd/vDn/n75lPTUMeBh0E9ZiYMWQWjZr3yxJXf40xvsMAQ8BnA95cRm78hNa+j1b5+VPSkKa+O9s+cczwAJOD09YzG8RBAHrGyPG4+FDINDyj+yaQmstsvOHWzaDyyZt+X7btqWxhsZYFvOCqtYUpfd3K4qSvPTeR7ap0U3dsaRanDOkaQ+twbmzJrZpzj6PJYAFft+UkpXkfNkASyl9iNwDcllrvS9cWZYda9aDjtXUW1nEgZd6LweOWce2iSLvPVfXtZfv/j/t3ctuXMl5wPF/1bn2lc3mRaQ0muGMRrLGnsxEk0UCL2wgARJkGyObGLCTl8gL5EGyyTMYDrKIF9kESICRxyMpEnUjKV6aTbHv3edW5UX1OU0GCOBNiGT8/VYiBZDs5jnFU199lyCg2+3S6/UYDodsb29XbTAATk5O6Ha7bh1dTnKN45hazWUZ9nqn3F/7dJndHIItAHMt2FZm12qt3TTDZXDUbbzd9/E8D608xqMxs9lsde/jUxRZFaS8eh1ZpTEovCBGo6+1FinfIzfxPef0tMdw7DJ2F4t8mQW3KoG+ev3ly+eNKqvT2tVabXOUzbAmxTWkvl4qezUDqBpG9h2xSIccnX7NdH5Bq77BdD6kN/hPnh7+ikmWsFNfZzgecdDr4y/7SX5v7/tE2mff/Jr/+PaX+L7PDz55RNyGIDviNy//ndgruLf3BzTiLqaYYJVPUK/z8OGPODx+y+XlBY1GA39Lsd7sMByPmE7H/PmXf8k0n5EteDu6AAAKJElEQVRMZ8yGPTY3dumsbeF5mnrc5PjkLZ6O2Ni6TbMe8MUf/pCX+09YW1tjOl3QjH3CWpve4JgobPD24AgTGN68fE7NaDpb67w7fcXO3Xu05zPaUcxv3h7QMU3u3XtAv3fCbPye7vo2kyTn1p0dLvoDepfnKFPQqsWoPKHT2GAwmnDng9scHx+SLXvZt7pN5vM5z/Zf8NHdPerdkH6/T6vecMNXWm2UgdP3fWpeAH6A0XaZwVdQt14VhG511hgM3D4gTVN0w5XkW0WVlVqu13EckxRJFRDz7DKzrcjRYYA1ro0DlNc0VUD+ai/IslUPUAW2XcZ7Uf2NLz9Xrvvlz5Kmq96SAH7gXatAKDNS3UAqzz3fxO4QPi9SgsBbZueCVgGQUa/XyUkZXrp9wSJ19/Ho0nBxlrK2l1Cjxm5nh4ODNzSbTYaDSbU+Pfr8HlluePFmn1a3xeXRiNmojWHMt/MDiiwjTX0W8xA/SbAmpV6vc3D8jjQp6KxFDKcTFirCtA0XXsGLiwPiVvw732P/O0E5o9zpdLlQGYunFYvcnV6QKbIUN+VoqDAqw2pQnmF0CbbIsZ4PSqO8Bf/08xHvx1BXGSZXqAKOB5a7t9xi2hsYzgeWThMwOYmFjbalHWsePw+5nHf4uvD4l189I6r57oSLMgXZd0Ees+wZskgxhaUZRvz4r/+Kn/zNz/jbH/2YVruD9l1jwe3tDbqfrPHs6XPSbEIzDlgUCSZNsMqDwRSiJvVmCDPLYDqm23GTwfIi4eIycgu68lBaU6v7jJImrdhi05QnvQvq9QnN2IKJOe+l1GJFFLc4OhvjBTk+TYLIJ89SxmnIyXtDO8wJPZ+FAasbxLHP+8kEMwt4zhH5NGAwT/DtGipI6ViPeTLGmgytE0hzVFgj8OZMvBTSmCDMyMKM/kvDP/Z/wd/99M8YjGZ89ajG3//Dv/H24gnvT9Y5ez/mpP+MRmfOv/7zA/7iTzc4HJ7z/NU5RqWE2qPwFKHfYr2hWagcbRrodETDrpOpHGNmmKnH0Luk5tfwx2NyrSEFqwJ8m0IAgYnRJqPAYPKUWZ5iPU0xBsICfJ9GGGH9AL9xSRh8yCwY4fseoR4xmsdYqxnqFJMtsL4iKAqSoEE6T/E9RZCMMdqnCHLSRYZSlgKL/3t6Qv5/yarkXFeLfJqlZHmG8gOXIWdwJ7amqHoB4blGv2gFWhFEMUmSUVzpxFtm3rkeCwVrnTbWpLx7967aQAZBwHw+p9lsLsvV2oxnU5qtFhQ5jYY7nS7TsJMsZX2jS5HlPHjwgKdPn3JwcMDW1hY69BkMBjSbdfoXF9y7d59Wq8XLly+5ODun2+26qX955vrXXVyyv7/Ps2fPGI1G1Go1jo+Pef9+wMOHD2k2m0wmE5Ik4ejoiM3NTbTWbG1tcXrSW05QcuO7y1KYx48fMx4P+fLLL7HWcvfOHV6/fs2f/PEP6ff7NJvNKhOou+GmRZ6d9qoymEarSa9/TrvVrE77N7ZvUa/XWV9f5/LysjoR63a7vH1zyCxZEEURaZpWm4Vyw6BUWP0BLx/aPe0ty+R8wLCYrU633SAXTZD5FIMpkeczL5L/4eoRN8JzveKstcySOaZQKA2+vyolLbM6i8LSatcIg4hg+XA0TwrSwvWT0kCWgB8YjFltgJLlBL40TdFaE0eBCx7FUbXZdgGWjHmyqLLL5gtDvRa53kqBC9yXD4Bl76NkkZFkKZOJK9mMopAo9qtAUtlTKIqiavNWNkV25RzLybN1BVYxGc9J0pwsnxFoH2Ovb/jL98Rl7njY/1buUGWS6FV2TLkGlocL5f+VH0dRRKMBfuAmmHleGXig2hRnaUGhV9Mxfc9lCAZBgIebXAlUGY/luuF5Hna58by6eVXaYE2+bPIMxfKB3RqD0pYojAlDj7KxdPmaXWnKcqKi74Zd+Mq9znJNznNDFAXLgA0UFFX2jvUsaabxfZfhVvV80po4DEk9RZ4YlNaukX5R4AeaRb7AN6vm9GWgoPy95HkOWq0CAlqRF65/3e8ju8yMQynssuzwWm+35b1ZvvdlMKN0NWh37WvCtQCeQaFsTpHMCYOQ1rJHZS1eDY6p1WrLYU6rAFee5wwHA7Ry3yOKImq12urrXu1757nm/BhDYc2yhN1grSJJXPYlNkcrn2+fHzJdJMxnrlR8MZ+icQd4ucnhShnj9cCQrgIzZWln+ZqLwvXHc2uVex8pwHqGRWrotJuMZ1M6tTqD0bDaQIdhWA1viuOY0/MeDx484PX+C5exojyiuAYYgniZIag9isIShjFpuqh+1lu3bpHnaRWkW19f5+zsjFarVa1pZUBuZ2eHfr/PeDwmW8yZaUUttty/f5/+xRnw2ZVNuq3e9/IQtQw2lodr7lBmfqVE3x1uzPOcxWLZewqLr+2y7FnhykMtKvAJwpCoVq+ynNM0JcmKZZ/ZiSuTwLBYpOy/fFet7e66CLDWvxY4Wz0HXs+ELZ9dNDmRr9nd3KTT9ElnIxfY9WNyVj1Gy+tslen43elDPZqdM5hZfC9y/x5PuLv7EcVswZ3uDovJkLu3PybyNLd3P+Tw6C2d5ha/3n9Mp73L3t5DBv03eCqkSDM+3n1Eu7nO0cFjlK2jigm7tz/HN5re8TMOjg7pX5zx4d17hEGd08Nv0Wu3ODh4xfc/+yOSLOfk9XN2P/yU56+ecP/TR3iex9vDZ2zv7nFwcoj2IjZv7fF6/xs2b+0xm01orXVJ0zkXF2fUW5tc9N6xvrNLw68xHids+zFZZHl++IrvffwJk9ElaZ4zn2i++vwLHn/zNR8UFp3Bg3uf8c3BS774wVc82X9CHOSE0TZEEf918oq6p9lba2MVnPXPKUyCF9bAizg7P8JXmt07H3Bydsrm5iatjXVev3lBd3uLndod3h2+dc/DniKONNbzadXqDAYDzi/7pHlBu91E5YZFktDurGHzjHEyxfM8ptMpUbNONp3iaarnFGD1/IDBZDmmMJgiI0tzPK2wy9YzjYZbD+bzKXlhSbOMtU4La10fbsyqbHuxSKt7prwHtNYEkatUyoq8ykY1xpW3bnW79C8Hy49dea3V7jDSGkNuCvIUknSM1opWu02eu6SrwmTEjRAz10zG7jDD90PiqI4xU4rc0Kz5jIII/AzPRsR+QCOImCUJH925w6ujQ5RWnJyc0e5u0N3skuiCzu4aJ4dD6i1NraXwvABjMrCWdO567U3H7iBSUSct5sRhjTSbM/c2SfKh+/1Mf/fBUOq7FMUXQgghhBBCCCGEEOL/A0n7EUIIIYQQQgghhBDihklQTgghhBBCCCGEEEKIGyZBOSGEEEIIIYQQQgghbpgE5YQQQgghhBBCCCGEuGESlBNCCCGEEEIIIYQQ4oZJUE4IIYQQQgghhBBCiBsmQTkhhBBCCCGEEEIIIW6YBOWEEEIIIYQQQgghhLhhEpQTQgghhBBCCCGEEOKG/RbVkU6DWDpKHwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(2, len(images) // 2, figsize=(16, 4), dpi=100)\n", - "\n", - "for idx, jdx in np.ndindex(axes.shape):\n", - " # re-arrange order to show the images column-wise\n", - " image_idx = np.ravel_multi_index(((jdx,), (idx,)), axes.shape[::-1]).item()\n", - " axes[idx, jdx].imshow(images[image_idx])\n", - "\n", - " # modify legend\n", - " axes[idx, jdx].axis('off')\n", - " axes[idx, jdx].set_title(os.path.basename(paths_to_images[image_idx]))\n", - "\n", - "plt.show()\n", - "plt.close(fig)" - ] - }, - { - "cell_type": "markdown", - "id": "e7c11976", - "metadata": {}, - "source": [ - "## Input Preparation" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "bbf1059b", - "metadata": {}, - "outputs": [], - "source": [ - "# AudioCLIP handles raw audio on input, so the input shape is [batch x channels x duration]\n", - "audio = torch.stack([audio_transforms(track.reshape(1, -1)) for track, _ in audio])\n", - "# standard channel-first shape [batch x channels x height x width]\n", - "images = torch.stack([image_transforms(image) for image in images])\n", - "# textual input is processed internally, so no need to transform it beforehand\n", - "text = [[label] for label in LABELS]" - ] - }, - { - "cell_type": "markdown", - "id": "afbb9ef5", - "metadata": {}, - "source": [ - "## Obtaining Embeddings\n", - "For the sake of clarity, all three modalities are processed separately." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "60c71e0d", - "metadata": {}, - "outputs": [], - "source": [ - "# AudioCLIP's output: Tuple[Tuple[Features, Logits], Loss]\n", - "# Features = Tuple[AudioFeatures, ImageFeatures, TextFeatures]\n", - "# Logits = Tuple[AudioImageLogits, AudioTextLogits, ImageTextLogits]\n", - "\n", - "((audio_features, _, _), _), _ = aclp(audio=audio)\n", - "((_, image_features, _), _), _ = aclp(image=images)\n", - "((_, _, text_features), _), _ = aclp(text=text)" - ] - }, - { - "cell_type": "markdown", - "id": "e4e45ed0", - "metadata": {}, - "source": [ - "## Normalization of Embeddings\n", - "The AudioCLIP's output is normalized using L2-norm" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "f9758c7c", - "metadata": {}, - "outputs": [], - "source": [ - "audio_features = audio_features / torch.linalg.norm(audio_features, dim=-1, keepdim=True)\n", - "image_features = image_features / torch.linalg.norm(image_features, dim=-1, keepdim=True)\n", - "text_features = text_features / torch.linalg.norm(text_features, dim=-1, keepdim=True)" - ] - }, - { - "cell_type": "markdown", - "id": "c92adfb5", - "metadata": {}, - "source": [ - "## Obtaining Logit Scales\n", - "Outputs of the text-, image- and audio-heads are made consistent using dedicated scaling terms for each pair of modalities.\n", - "The scaling factors are clamped between 1.0 and 100.0." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "12a89e64", - "metadata": {}, - "outputs": [], - "source": [ - "scale_audio_image = torch.clamp(aclp.logit_scale_ai.exp(), min=1.0, max=100.0)\n", - "scale_audio_text = torch.clamp(aclp.logit_scale_at.exp(), min=1.0, max=100.0)\n", - "scale_image_text = torch.clamp(aclp.logit_scale.exp(), min=1.0, max=100.0)" - ] - }, - { - "cell_type": "markdown", - "id": "32e3dfd0", - "metadata": {}, - "source": [ - "## Computing Similarities\n", - "Similarities between different representations of a same concept are computed using [scaled](#Obtaining-Logit-Scales) dot product (cosine similarity)." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "c3121148", - "metadata": {}, - "outputs": [], - "source": [ - "logits_audio_image = scale_audio_image * audio_features @ image_features.T\n", - "logits_audio_text = scale_audio_text * audio_features @ text_features.T\n", - "logits_image_text = scale_image_text * image_features @ text_features.T" - ] - }, - { - "cell_type": "markdown", - "id": "b7a0dfa2", - "metadata": {}, - "source": [ - "## Classification\n", - "This task is a specific case of a more general one, which is [querying](#Querying).\n", - "However, this setup is mentioned as a standalone because it demonstrates clearly how to perform usual classification (including [zero-shot inference](https://github.com/openai/CLIP#zero-shot-prediction)) using AudioCLIP." - ] - }, - { - "cell_type": "markdown", - "id": "5bdd15af", - "metadata": {}, - "source": [ - "### Audio" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "6ccc74da", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\t\tFilename, Audio\t\t\tTextual Label (Confidence)\n", - "\n", - " alarm_clock_3-120526-B-37.wav ->\t\t alarm clock (99.87%), car horn (00.09%), thunderstorm (00.02%)\n", - " car_horn_1-24074-A-43.wav ->\t\t car horn (96.12%), thunderstorm (02.17%), coughing (01.14%)\n", - " cat_3-95694-A-5.wav ->\t\t cat (99.96%), car horn (00.04%), thunderstorm (00.00%)\n", - " coughing_1-58792-A-24.wav ->\t\t coughing (99.36%), car horn (00.56%), cat (00.03%)\n", - " thunder_3-144891-B-19.wav ->\t\t thunderstorm (99.36%), car horn (00.38%), cat (00.17%)\n" - ] - } - ], - "source": [ - "print('\\t\\tFilename, Audio\\t\\t\\tTextual Label (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_audio_text.softmax(dim=1)\n", - "for audio_idx in range(len(paths_to_audio)):\n", - " # acquire Top-3 most similar results\n", - " conf_values, ids = confidence[audio_idx].topk(3)\n", - "\n", - " # format output strings\n", - " query = f'{os.path.basename(paths_to_audio[audio_idx]):>30s} ->\\t\\t'\n", - " results = ', '.join([f'{LABELS[i]:>15s} ({v:06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - }, - { - "cell_type": "markdown", - "id": "96fc0350", - "metadata": {}, - "source": [ - "### Images" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "d020de4a", - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\tFilename, Image\t\t\tTextual Label (Confidence)\n", - "\n", - " cars_1.jpg ->\t\t car horn (96.09%), thunderstorm (03.02%), cat (00.52%)\n", - " cars_2.jpg ->\t\t car horn (99.27%), thunderstorm (00.42%), cat (00.16%)\n", - " cat_1.jpg ->\t\t cat (99.62%), alarm clock (00.16%), car horn (00.12%)\n", - " cat_2.jpg ->\t\t cat (98.40%), coughing (00.99%), alarm clock (00.36%)\n", - " clock_1.jpg ->\t\t alarm clock (99.76%), car horn (00.21%), cat (00.01%)\n", - " clock_2.jpg ->\t\t alarm clock (99.80%), car horn (00.11%), cat (00.06%)\n", - " coughing_1.jpg ->\t\t coughing (79.58%), alarm clock (14.55%), cat (03.70%)\n", - " coughing_2.jpg ->\t\t coughing (97.27%), car horn (01.30%), thunderstorm (00.83%)\n", - " lightning_1.jpg ->\t\t thunderstorm (99.72%), car horn (00.22%), coughing (00.03%)\n", - " lightning_2.jpg ->\t\t thunderstorm (99.96%), car horn (00.03%), coughing (00.01%)\n" - ] - } - ], - "source": [ - "print('\\tFilename, Image\\t\\t\\tTextual Label (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_image_text.softmax(dim=1)\n", - "for image_idx in range(len(paths_to_images)):\n", - " # acquire Top-3 most similar results\n", - " conf_values, ids = confidence[image_idx].topk(3)\n", - "\n", - " # format output strings\n", - " query = f'{os.path.basename(paths_to_images[image_idx]):>20s} ->\\t\\t'\n", - " results = ', '.join([f'{LABELS[i]:>20s} ({v:06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - }, - { - "cell_type": "markdown", - "id": "f49a1a06", - "metadata": {}, - "source": [ - "## Querying" - ] - }, - { - "cell_type": "markdown", - "id": "b939334c", - "metadata": {}, - "source": [ - "### Audio by Text" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "d1e0b4ff", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\t\tTextual Label\t\tFilename, Audio (Confidence)\n", - "\n", - " cat ->\t\t cat_3-95694-A-5.wav (99.25%), alarm_clock_3-120526-B-37.wav (00.34%)\n", - " thunderstorm ->\t\t thunder_3-144891-B-19.wav (98.60%), car_horn_1-24074-A-43.wav (00.76%)\n", - " coughing ->\t\t coughing_1-58792-A-24.wav (99.78%), car_horn_1-24074-A-43.wav (00.19%)\n", - " alarm clock ->\t\t alarm_clock_3-120526-B-37.wav (100.00%), thunder_3-144891-B-19.wav (00.00%)\n", - " car horn ->\t\t car_horn_1-24074-A-43.wav (89.28%), alarm_clock_3-120526-B-37.wav (06.50%)\n" - ] - } - ], - "source": [ - "print('\\t\\tTextual Label\\t\\tFilename, Audio (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_audio_text.softmax(dim=0)\n", - "for label_idx in range(len(LABELS)):\n", - " # acquire Top-2 most similar results\n", - " conf_values, ids = confidence[:, label_idx].topk(2)\n", - "\n", - " # format output strings\n", - " query = f'{LABELS[label_idx]:>25s} ->\\t\\t'\n", - " results = ', '.join([f'{os.path.basename(paths_to_audio[i]):>30s} ({v:06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - }, - { - "cell_type": "markdown", - "id": "19165854", - "metadata": {}, - "source": [ - "### Images by Text" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "b7133e95", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\tTextual Label\t\t\tFilename, Image (Confidence)\n", - "\n", - " cat ->\t\t cat_2.jpg (65.46%), cat_1.jpg (34.24%), coughing_1.jpg (00.12%)\n", - " thunderstorm ->\t\t lightning_2.jpg (86.26%), lightning_1.jpg (13.72%), cat_2.jpg (00.00%)\n", - " coughing ->\t\t coughing_2.jpg (49.51%), coughing_1.jpg (38.11%), cat_2.jpg (09.61%)\n", - " alarm clock ->\t\t clock_1.jpg (85.85%), clock_2.jpg (14.01%), coughing_1.jpg (00.08%)\n", - " car horn ->\t\t cars_2.jpg (36.45%), cars_1.jpg (24.53%), clock_1.jpg (18.69%)\n" - ] - } - ], - "source": [ - "print('\\tTextual Label\\t\\t\\tFilename, Image (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_image_text.softmax(dim=0)\n", - "for label_idx in range(len(LABELS)):\n", - " # acquire Top-3 most similar results\n", - " conf_values, ids = confidence[:, label_idx].topk(3)\n", - "\n", - " # format output strings\n", - " query = f'{LABELS[label_idx]:>20s} ->\\t\\t'\n", - " results = ', '.join([f'{os.path.basename(paths_to_images[i]):>20s} ({v:>06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - }, - { - "cell_type": "markdown", - "id": "0fae8c15", - "metadata": {}, - "source": [ - "### Audio by Images" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "cea504a0", - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\tTextual Label\t\t\tFilename, Image (Confidence)\n", - "\n", - " cars_1.jpg ->\t\t car_horn_1-24074-A-43.wav (63.43%), alarm_clock_3-120526-B-37.wav (19.15%)\n", - " cars_2.jpg ->\t\t car_horn_1-24074-A-43.wav (92.30%), alarm_clock_3-120526-B-37.wav (06.56%)\n", - " cat_1.jpg ->\t\t cat_3-95694-A-5.wav (99.99%), car_horn_1-24074-A-43.wav (00.00%)\n", - " cat_2.jpg ->\t\t cat_3-95694-A-5.wav (99.80%), coughing_1-58792-A-24.wav (00.16%)\n", - " clock_1.jpg ->\t\t alarm_clock_3-120526-B-37.wav (99.12%), car_horn_1-24074-A-43.wav (00.67%)\n", - " clock_2.jpg ->\t\t alarm_clock_3-120526-B-37.wav (97.73%), thunder_3-144891-B-19.wav (01.26%)\n", - " coughing_1.jpg ->\t\t coughing_1-58792-A-24.wav (76.45%), cat_3-95694-A-5.wav (18.38%)\n", - " coughing_2.jpg ->\t\t coughing_1-58792-A-24.wav (83.47%), thunder_3-144891-B-19.wav (05.51%)\n", - " lightning_1.jpg ->\t\t thunder_3-144891-B-19.wav (98.98%), coughing_1-58792-A-24.wav (00.52%)\n", - " lightning_2.jpg ->\t\t thunder_3-144891-B-19.wav (95.33%), coughing_1-58792-A-24.wav (02.99%)\n" - ] - } - ], - "source": [ - "print('\\tTextual Label\\t\\t\\tFilename, Image (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_audio_image.softmax(dim=0)\n", - "for image_idx in range(len(paths_to_images)):\n", - " # acquire Top-2 most similar results\n", - " conf_values, ids = confidence[:, image_idx].topk(2)\n", - "\n", - " # format output strings\n", - " query = f'{os.path.basename(paths_to_images[image_idx]):>25s} ->\\t\\t'\n", - " results = ', '.join([f'{os.path.basename(paths_to_audio[i]):>30s} ({v:06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - }, - { - "cell_type": "markdown", - "id": "bb44e32e", - "metadata": {}, - "source": [ - "### Images by Audio" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "eabe3821", - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\tTextual Label\t\t\tFilename, Image (Confidence)\n", - "\n", - " alarm_clock_3-120526-B-37.wav ->\t\t clock_1.jpg (82.85%), clock_2.jpg (10.75%), cars_2.jpg (05.61%)\n", - " car_horn_1-24074-A-43.wav ->\t\t cars_2.jpg (97.17%), cars_1.jpg (01.44%), clock_1.jpg (00.69%)\n", - " cat_3-95694-A-5.wav ->\t\t cat_1.jpg (88.33%), cat_2.jpg (11.40%), coughing_1.jpg (00.22%)\n", - " coughing_1-58792-A-24.wav ->\t\t coughing_1.jpg (69.95%), coughing_2.jpg (20.01%), cars_2.jpg (03.78%)\n", - " thunder_3-144891-B-19.wav ->\t\tlightning_1.jpg (59.54%), lightning_2.jpg (36.54%), cars_2.jpg (01.90%)\n" - ] - } - ], - "source": [ - "print('\\tTextual Label\\t\\t\\tFilename, Image (Confidence)', end='\\n\\n')\n", - "\n", - "# calculate model confidence\n", - "confidence = logits_audio_image.softmax(dim=1)\n", - "for audio_idx in range(len(paths_to_audio)):\n", - " # acquire Top-3 most similar results\n", - " conf_values, ids = confidence[audio_idx].topk(3)\n", - "\n", - " # format output strings\n", - " query = f'{os.path.basename(paths_to_audio[audio_idx]):>30s} ->\\t\\t'\n", - " results = ', '.join([f'{os.path.basename(paths_to_images[i]):>15s} ({v:06.2%})' for v, i in zip(conf_values, ids)])\n", - "\n", - " print(query + results)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.7" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/demo/audio/alarm_clock_3-120526-B-37.wav b/demo/audio/alarm_clock_3-120526-B-37.wav deleted file mode 100644 index 475cb4b578000c2e1daec2d68977780491148405..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 441044 zcmYJc2Ygo5{rG>M1TslT*n5U0dv9^dw<*~CkTQVpIQG3f@iLY1xZ0p@co;AeDk~1=^XS3n!|Y5E9e$<4>|_9oVO1; zP@WvLggHU4pluL_S)6C_$q1UlQ(R`9J2PloM+^01JjmEn%CGTa=N zhx^0z;UPZTsB?&Gd%{)WmasTn7H$m>hP%U}ur%DoXKz>#Zsd9yr4{_&LG6ZcANMzL zR1#M6TglbJ@IbhenmcHHZ+M)uQflqwvz?Nnu!^&-v``TKhkN&j|K(YG=tF7rgl#-= z4^Jzk_HM532-k7ECtO3Hc5?S=#&&?GoC-s(?P4T_jNv3t-pl`D&JI!Q2+*nylY&}W ziBqS5dn&^d+_5ce4Xi3@xq_bTrhY|O&j^~RodlH6aCSOO4O#)kWJ=<|HI=z(9UP}d z|Da2d4uo@oYWH9Oknc=M=b#faGAfu5j0gr&+K)P!L0_&83kFj!kE?yTw>>r61S!m5 z|DZQ5X9j(!*^ahSgCW6aW_JMpdj*4Np(FqMan~T)7!>s6j zaerBa1LAEPMtOo2b%xd(c=9putSRgY^u&+q(A5^w^H@;BlTyHgJibj~dbE05QLiiT zN{v=>TcD9bc^31V%^c=(+?^|}I6nhKgmp6CP8$PWcHw!t!u* zUdgBup99qJbAoF%TssoMy^isvF}Ft;e|2={(J&+GPbNKYVN~@%_&E18hi$=80C&L4(6X^^hKN}Gm|HPOThmo?oR`^oXP#bPiUvn_6e>WV?-^$F&SJ*1~)o^ z>BlJVz#45Manxo87iCjjei zVB;i?`|_IyehmOyrvuMkU|R>EpTN(-ln;vVb0Ggab5}2}_2X(k?im+dn-Edy@zC^f ze0xyC_MIPhW$APm<{_K%lVd(vi7RPVxUR@MvNDCuqkN>#w+fg!!ug7OB)~hHC8R-X=;b`5fYZ17(%KwH8<& z;D04OsiU0$Y&p*VqdXy`q>;N)Xs?OY5$DVm-;p_KMSCjV1U%dU?Qn8kql5o+Xfr6Gc=y*kCS zvgm0;w8oNHT`{1L8^{qk^C!5!H6v}|H(>N_7*7U}=u9nl^B&+rTmHL4OZ9Srk1M(x zJiVv7(nY%Nn8&EryvG)RMIkXawu&Wh#C6yI=sr*j|Vn@N0 zHqKfYS-!DPEQH5y#>@y#gqTT^;Ce+i1_U z&(hXTtfL&(nd9rsc-$?{uzU9eGDCq#4@%^t`m-ke9mo0}&+ib{?nq$RkIx9c{aOD* zfpa%n6jyVh38QI6PR`wDD0g&YCIX()pXVmi3#of9P|BgaJ*C~~oog@?*b3Eb%9Fs0 z3}7km6*8{lK(dn21i>LNLLN5GcuxTv$GMl0x|*A)cbb;mRZek!063fma#ayzq-)2y zD=9d_|0d3)`K?%a?o>^{untT-&OPpCr*L_dQTibH4-wvj^ z8&om21JU~3&rvlklyP1RK5nM8fL8WLtM?FPb=0n=XL3=efufvSEwuu$UKq)lHHXgi zamqTd7KK9>t|l?toqBhH5^c;DDPV~}! z$oY5ecBNJ;TJFR1#eC(J-VqkI<=lNpd9oYWn#CRNAlb~C_;&(0h_z{ywql$q@I}Xf zg?G#6r%_KS!d>Px&^rNyn>bcFl+!-OjMs3*nUeQDNnQD^3NX;M+X_rL8sTXpPihaY zrqI_I-!z~fa31iafVG=KKV2V9(OQr*&Sh*NSm1o5(aR7VI76SLw+ZY!#VGure3CwPjbRJ#vM}q08|l@eFsobnxOBI8p({T1NXJ-9Szvi0{z1#xT{3cu)ej9$mZyCp*P$Qpbz0Px9iQSttE@^tw@TA^J9g}Ke z$6|+K`FsjvyJPG4zc}`8?Bm#IV^AL)4fX~l!M0!rziWcU9BmI) z1)GAcl#UM}H1}75pH0EchXxhxj}a{3y65_^#m#vo2?GK8kfZm#ee5?^6C>9xR~s z$*kB3@QYJ|nMmgYS=Te8)jN<@yR$ysNt7cq_;uANJ&R$=VeSg9$aH9~(w`Vw%UsLb zN=K!GYF6A4_JV)%>H8wuRfr~MBRI1Y>b3=}DCM(*&u;K(W4M;mjo{H1_TewXe}O~G z!%xHa!v70D0IQaPOCN{tgl}{93IAWF{3HJVJ$#Gu*Td&1d6lxihJWJdiSPlw4~0Js ze;z&>J`+9_{xbY?`0Mc5@TKtK@M(UZ;rqw%!SKoOH{9_a&wDO>fxDj#{~5j?zQHp- z;Yr_t#eUxBDes1_g>QzRQS(jkeIvAaIdxW`^ZAOSb$oU(GRL%w@#Hi5ldL*9dMT2; zm3v7Gv@4C3dlFquJ65@}V;?BqDd<9bXq%K;DXKklJ%}s4n2nws^@T>}QhP8nHvsCF z&bhR?8&`%$b2*jSJR2Ms8_{buJmWc@%gp*ai`l=4xt$`9bo;9)cihmE~k89a4UCR zLCN>H?@F-y#^5rp%;rg#bACB3&*$D7=;KtLvw-spz<#gHi}3$KO3np$FQT^>bMG85 zdnEWgBjS68(${mq&OH7*(h2-d1s0=$!2s6ASRgT!^RuYY83?!ItShu}2v<8W%I;wK zIO=-sG<;Sc@Yvnr6cp5*Q4X~|+))5z<4}I*q7k|si>NH*l=(RWg*-`F1^BI&!yWwq z_`H?Cou!J1&f0FnBD7{+p9SK9y4(}RO}wE+`;Es=5i5b*F(t`GIQ54JL1QA z)V?I*LC5mUvCP$YW@0vQ9!+T{D2`HnHjov5`x)B?c99CkwUV(`0;{jl+OA~1Y+=0a zzVc($jH((K4`ZH&@*T)*pUd1|NS|j!T!%W8Y*xzv=E|KhL~AH-(}pM2u&3_>VpYIt zKdVnFvJ$FMOv#~W&eV&vK)rg<@&%0W9>yy*z8XBeGFlh2z@oW8>vGC(g_i#^_yy2- zJa{_zHB|q(;19uHgFiv{9|KCaaF-NQDm$F<4h8~~xc?Sl{C#Tvp50+ZkRKEVwLwxW zC)R@Eaa$~hYEY>sDj@_$6tSZ)lt5_JsY57pJ|E&!^ zV9)voBlsh&Kg`;_E1KUMnE%_M2^Ru~S&U$Ew6aF?I~|yu%__T)*_RSr&CwO~=7H$! zKKe3;va5jDc-GbsR-UugnSDtOWGBj$a|2eCx~Dy0!OjT7*FoDqfv!r$KZFYZ9=iJr zX!PU!|8@8ij(-&12UWg5{9brRcx(8>@Uigj@D|P%gmc4L;lyxsI5r#?_79um$Kt7B zR+t&4BHqXN%?#Uwv9Ky$60eOn#P`Qf#nZw%e$&I6cv-xWva)zQI!g*O!ejBwa6s6J zPdn~P=H4XkEv8Nd-{SbectLze{CK=NzK8Gb__y)p@fGpSTq}y_$G38}p3>FvW$|_K z&-pBif5Xw5_y_T?sQYI8Kb(IU|1|z(d@1*R!0(3mKjL3==i5>J*W=&CKaRggJKx0j z#!tt~<4rtmFa2v124VNGZ#aaJ4hV;b=Z2HQVT}FaaAY`wZ+6%=?7;X>GN$TyO*{xI z;=AHW;c5C)5Z_4o{qdUS1q;5_T=m+oW_T=@~`mUVC7PNm%wMd%KrX# z_z(8?Pbv8vPU0Q-i?`U*kc}NXVyc3wnB+o zp!~{&Yw7uaXm=I;lpEf{^Zx)uo(+Eo_wj46{h{zqF#aduqVRh7li$FbyaW&O0iPAz zY26p-@m6>sd-oyy${X}n-sc_Kc#75Y1mC-9;|A8om~aAkk{9*^gNAa{J4_2(heyDX z>iA*sEG5ikwFInPx^KIZ~Xsl{GIqm@qfoR(chKy#~ytSeyxcY z#!JEQz44>;xQua}iZ_Gxox_3P+r{BktdonvE5d8RxO?FH-heCo04%9u9<*?Egch}9 z-g>c1oeiZM&ki$_-vMAs|A>yyW52r+TK52a{he?*e+b@y$A2;SPw-Jt9JC-+w22Lk z^@(+g4Uf%;O-2rxj#M%S+2kBbra*bKp}WmN4RXdhsQ)LySHYL;1-}peLK|N}wF|hi zF*p*O4pL*?VpC}&kCx7lofn%QTNt}Hc7N=l*kedL7soD-&5VtUb)~fysQezJmc_L3 z9y`Qy!86eEpF+2vW;c2w_&-YD=JQRkAy^$82+jm)wB4V!hx0ptoo67w?U0vR#TtU$ z!CIuB=h)YN3hlp%-TM-Df-9l^!-0{OzdRtKZhks2I)`0<5xe1CJo9b#j$cR5e}cOo z$XacCI?OtPD6CwHFiU*C^(1JeeohGn%buf_@?&U*O{Y1?19tZ0ImWukFncb z#6EuoSaL4CR_iU#*bzQ3nci#FE259;71R*-2ZHhfXTc2&q>p2P$wFZA2)pi!NR594 zTE7GrejCl&Bf>s|0l5HNxpw$1P?M(&r;{FoV^SeBQE|kl66-F%aN70 zfD6mvJKhXF4c?{v4`9ag^ze^h|E1B`=Q0Ah^*i9)Z)I(q$G(37C6`8{n@{ha;u*hY zgny&u-*NXxwDlpMcX;l5wEaGu6h@`!H5{pJ>%j2j1tyT`Ao>&A9HQweNF&J8df6$Q57149t(X!)s|@?pRrBWF&Ja zi_D~r%YedMaAp!vnFAi?ft_<%3FmI7Wq=VsgU~e4FkrGBJyNcEWt)ww9UTvB- zG&NbRBiUyn@YdR&iCo#2-xRR53%J~#^W$*f+O)JllRMjVqq0fWq^$5mr0sS3F$uwp{h+N9=Kt`YjyC2W&!T*uWfm(~v^kfha z8o}r$QfD&IRN7nwS9uxhPHANkb9)an^8&LhH-0Z`E63i>_g+@m_o6mkOOMg2wCqM^MUU>Kh5KpiN0j}To{nSg=7TNsz?a)Ox)$7-3r?zqSwP88 zxONS9+ykwCD7yE1^y+TVGqf!P9;M&E=jeGPi8ojuZ?Nv(VO4*~D*Ol69*wBOKUkH2X4F!P zr|7{Q5#7ECn7j8)rr$G|8?{MigU<;J9nZ>{$(Srt=21qv1=^%UuXai~{%Xd5J~%xE z`ZbbuFob)$v7U1ydaU-oCBm_4@bVPWU}vXlq(Ot)MN)k#I(4l*XV|Bk@tSA@<<{>e zhu;ilU29Y?R{Iq2Xas9~D)eC@7&IlKl%v723;60yk;9#8*-x_PmxBX4nE!u9y1uu7 zof?(JaN%F@y9!!V4waJ!*K{Y1dk#+?4Bw$mDB(+? z56V%VvWb?r(W2g4TK{(QtTh}JP_hS_sy{#_wU#k||Ay;cLchL1LU@&<703uH;pjhs zhfs&1{-P9k?4`|}+_|0_OK9zDu;Lx=c^UoUU*PqB15W%7dH2WRbx5_hg1E zhG#|J(MYy^kVXfA=?@_VJc17Mw(w_g|4(u63+ON3hI3l$qys> zI`DvodPxN$828;2Hgn!F9m}x zhSEF)e*P9-KyCWp!Mgtg&&9i6asCQi!|M_DeZc?{9@HiOl=-_0O7SGK`fKL)ugrwn zj4zm@H<+P!!I^(?^eOU(SKg-lmFPLjm9If3)L#FMJKy9fFY^B%%;)>mR^ogQTw4P^ zZjES04Pz*d#?YBD_6589GUk!YkXq2QSf3X&b6HT_9;`YocyhoUIqS%5X-)3JwTTf$ zmUB~2bq;%tn%aAy81o|;U>5UqEwtkncJZmScsX#Es$T#VIFDzXM+?Jw_6%lY60H;MqbI{??;J|bj&P?x(o{P0AxBpag_qOU`sC`?@~YS4Zr0vrzFVOGaxVp}9X&8z zi(5JW4j8Im{}#x61Y|y-d^u&yfa^!V?|C5nG4TEzx}dDS63Bl|$-h~T%EyaYq4N8# zl($Xa>shqL$*bonNZ4eFOL39PtjyT6c5D)zrV9yBG3%8&8@I?1!_mtV$;m?AduR!Tu zqU14jH-Dhy8ED62T>m8$>`9L9hcZ18t%4t-rTYozKj!LnXz6~=TDb%H`$6jdftmUX zPxv!Wdx=)w;mKNa-iUV4H<`iDnA5M&aIa&2ck*4!EPcRP3G?|aJ>LlpF67r)*$+Nx zLDfFn%r}H)9b(L>=ydek%K+yxpaxoG^_odxZ&CWpWK|^m`LwR&0lA*kZO44Nqv?^X zZ?YaNZKFBv73~0xV09X+8tr^CiaQ%==D4N zY5`phu4=j32;@KF+L!z;=E`@`SXZ;oRqbNV_k-K3S#er%^+(oss1oef z7L|lYT{CiPDkHB4hTRzL5a@~2LhZ=Zh*oG(x&+)C0dJ=j=LY`I=D%2eCs?dC^A332 z@4;)xL;n$sR|b6y{^J*X9|xQ71B-tSjemgEaTmD%6rAWoa3^!2L3gqmZUNixhO54j z^>78NY8+Jla+9g~d))OG zuKb<<&-4E+=HeyV`9*}~uhYVd)OD|akvi{l*WbbOmuTr<)O~~Ne*xeBk0berw<&v{ zS$~h&+CXccK*c_ycZ;Jw?t)TnWG+8v_IA+ErR-AD!xhxs0Zr9%uh-3Cu>UAKS_3Qn z1gk-x9&K7Rz(H^38g@KAusSizdLU|*$zg^Q_ObSqsv{MS?izZhcH+~WuNK9amysh44H$Bz%>)I)bIIAMCa~plrW38N$ z{Ah)%HDppm)_3mf4U-< z9;1dnMS6#KU}U|)-hL4WqmOET&SphaRNbEzcP-=YUc;cTGuY3RPA5m7k(|wqgh$c_ISp#vm5;uh zde`e)JeVH#<)||hNPpz6%!hk(`r2-;Frv0z}7vH{IdHr!o%hkz@D_g3c)UOG)Mc zp?N@UDm&aT;C2mr;2f@>3vB1Xf4I9&q2~CA7W4&{K1EI22%b2ZJ4evIp8q}h6`pdX z10t^HEbudv*&oKaenSBm>`3%!YZINz6}nd_#{~3OU!8hjdm1RXw!~w7`D=iXUn2*q zfRWw|`&fy_hiqd9Ce!oHv9Qi(n$EgYyZ+ZDctoztfh55%JfOri$+hc zYG!9Y&)yI8^=NH`s?}5L4Cfj2IpOK8$5RR;Ndi)x7+YsnW+r3SW7YW(3PZrOUf|kb zR)uq+kMLOdIDN7D1DPJcPR|eHLBw{g>dKz|=l$!=z4EiFh^OWb=1?;Xa@ALl=}2!J!AmwQH)clcVm_V`}s}ikee^ zsFdg2=sS+txB%FV=lV>J)wAipqjV+zJsJ$34ILW8opOk35vMS71AyU(=sss-5~b65 zc4ulE(IXc0V~(_A>1o;ljFMKmH^i~5r?G#Y0fJ4)cX}-}16iZ8j4M#~uK)tZ&FFnw z2W*6o-t^mnma#8NR?dPj-9fn&d>!179=6i{VoJ92eTTPk)VgIzSw#K=s~BSyPRGJC}n$&a=_~pzWO8Uf!!&h90MYnAhpT^ z0%t|EVKfla%l2HLHUmkI- ztGQc$meriC9&5GL6XU&iEP_MJf=` z^T|k`Hb7dBVq-+~F*e>ys%*SZ8gT2tjJ9Il^aAe;EQc~H=K@zfLZ$J2fN~z^gQ0X{ zt7}SMX6?IrOH1c%r33KI1S@<>Hgl;xxE)aUF0Bqm`Lts`^ttN56T47He#ehbXhTUC zYUrP>G~12)jdSV2u`+cQJ?H`!I)~ZZVT6mG(?;*KrPR2#4z#7Nyfro2F(!Rj_5ISD zzZ3P_ah$|gUMDT0Zbsu6&8Lrc5||)`7m~&T7>{9mLk3Tg=Jch#=Fk{DeL-Cj@(9gP z%Jk@ZJC4P>RGwz6W_xxyy`hZ})SEto@=WfKTIorug)N3>lX#{rz`fs?BqO~}f`hI* zeWWc{*QLb11MEBuZfyY%sv`U_W=`2?MYP`YBbvMty!npLS5V=V@VwgZw}U&<-Nj&0 zG5EI%99<3XyOdI;!6nrCj&u3Nt>Ew%lq`XEucPI4l&$CN-`rIkVeV$I)A$BG3#I*K z^ll41GLlnzA}6#HOs$4y$qO0dqo1{$vk_xz!P1#4{b^4y7p_9*;wU?gUXDiIh%rgP zUy0HAuvRAX+!ee@XFi3rc<0;>j4;Spx_(gIJSdZX`}$fN9odIZcWB3GAU+Uk)16lO zg1en)U)xttW<*I>9>uuX&XgKklS-*JA33q)h?|L1OG+rG>k4o^^``Y6%$iZ0MsUdU z>mj90R4s-PfHmMnF13w`(XTDWvxo2;BeRTsv!}`u`X3svVa%?(Ru`^oDb z(!Ky zvyPOm>gh`rC5_xCUn<2Fo8uhot*%}~D~l0)`W&`^)oL+}wGsx&lxy!+R%#1vHuk}< zva`{MF-ql1Xl`(H=OQkg@eD>9jf9^BK7neWTG=)jCfxs`-^ zQBP~^SUz2t?X##gl$}eIrf;X39ko6IwcTa27_;>67~?nEM0mCU>w~~;A8_Bvv3^JH zp2qH}A5PGbwUo(|8y#?fdD+I1^I#mIw5yyptEsEzWgX|m&?|Rl{h3!mt=4kQJ#+*2 zuI2n2cG_Y}w0X%DZKrfS$NEF-EBQI~js8`4T?&qrQL8562;{uZL~|R9W?G5c_(Cam zIar?w$7al!oUw5U&Z&EZ^O_CRr98%U_u^Q1js!x+5_RQwFtDA@+(@6?zxpy`&den4 z=nbuMMe6|}pRUDsI5VgfAeSp6sWXKVqq^nUoy`tBCy(n!c&5;v6s#k2VJ`>JmVat; zj5un=9O_N3Mn9dN%6qz(D*wtC8QFCT>^%+E8quY0PaeS--V=<@*3|>lab_fhK4i+d z#%3Mj*LZm)-dfg<5YvD5L^R*RSkF{t-2@+d3R-#s95}+$%7A}WbXAR?{MJ@xy_~Xr zw5LwZs2e@J6ZUbV!j<8S0#(i{;#i*(_Zg$RwE$LtP21>;84T9bnsIr?^%T>l@p(r$ z7t;=MMXv7vcQkNk0awf#pv|g+eo2{j@Lc6ctr%Otwe{4fj9S-wrX0#HPi;J$e)@Hc z-Cy_cDq61KNpcuM<#055cS|+#$G|dmtce|?p1Q|5GhVz+wA$pWz32ild@i0ExJ5L_7v{nv&!3BG$czxsh+&iMd#jiHG zL0psWHbRRNF-z$@N17{+%dMsGk-u=S?g3Qmp;ksXs-afmH5woz>ZP%{G1i6ge)e8U zD8zfS)_O;)Igc{6xV?ao^l=>Do)J~;AFW`c;*{8x4Er;CU8t2uTgDI!WlmhPdNcN+ zOxwM?yf!~&8tsIgC^Z%?nKh|4q@HoPTFn6T&D@rFkE%BwW;>v~U)BCJ}`qI_^dqjd-fH-q=ui`RgyM_2_$IT`b+ zmwYL|dzm}e-vQRfYOYqWN;YsuF;`t#HC%D6?4V>VR}N8Y1J~S_jX*K;#$Hyg)Y~|` z!_=3~o??FYbESx*IQ8qWJ4hR(Qf8*m!svRFXII-Q_0_{H#vDqQ@W2TftCv){eR+3h3t$KPhp3mC43@ejX zSpAA-QsPRR&Q}fOFjmtj+MY_gUBQ3>w53;(`Z6Oy^^H&DG8hVW7?Wx?2I+8b<~^A^ zjO*+IhN@#ti)L62no(<~qg4@t{re((FJ-(^8uf}w?)!lJLC&2EZR%jxLjAZ^nU=xR19N{wwh zj#~k{k(?=i4g+3BdZ*Bq7U~hykV{fNFv`RTODUq!s2N;MWZRIUs<|+;iR)h(q&w@r zk=}G?3`V#b`O%$cr}HFjV9Eq?H)@#Dk=|_2m}sfJvP(JeJOW(g2jm>9xRS)$IuNar zEnIPDatBbpQ)lLWRsmG2`K@AJja!k+JjQ?5mJz(}O|CC3soEJ`xyoP0pBr)QDlsFA z+@>?&Skx35tEEao1zXP*rwuAP}P759|_SXC-#<8@5x;Y|Y;i}L&qn5WM;sy=@ z^CD`gkJQ^lIBH2$fB!8t{l^Yhx|krCfs% z{2OUy6YFFPluMpej&v9In$bv0z&cuS=Q0x1NSuB2xRTz;Tk2_GY_q$)d%jwzl4!17 zr$)A^0aW%?+KTa2(r|UPW;UCFo0?GL*VJ+-5w>F;h|kKBYH;*7Y@`ikTxp&WT55WG zaW*W{Seh}#d@5SBv$@+}S4=->lw3xC{tt$FO@nL^&dQq#;ZYO(fmSMa*+ewA)X=;%>R_}l zD{aX|x_Z@@iXp3+y`7PF$Y$n$b%Y6@V#(YD%qbjU?9&Wmn{Xz0R|0F zE_cs_{!0%Avnjat)lsNNQ_GPHB>(5n+Xm>%+qdHG7U0s>R3oqINzX>JxHJhgQh z)u)C?-buTpytPzEt&0+Kf7(?dQ+iW#Z&Zr3N?54Xlv7WS#+-^yMDD~r#F+V`P5N||N_5j!jRn#aZasv}&MmNj!-YHePdV_a97R-f7%n%K+?bmfVS5r3D= z^OZ4@>02&VE4d48IQHHs#kP#gJ!=wcWjG^#L{tpqa|7?=I^OpjGsLT&41# zd$_s^bq>;Vb;xI;^`>S_t)4dN6Hq2S0pj4Gd4#IKF(oATxe7j&(8hemZI%x$KjLjd zmuRe|F>6aGQSY;Yl_f8@hwpz_A##Q*qm{6X|3>AgIgrBIqS5f`fYv~3w{dp?N9(wE z1s~-$+g(D5(a`#DZ>LoMjIEp>q=oJDOgTe6ftnuoWOr`$76DLEZ7E9@%5^HInLX%iYO32AiS2eG?T!QE^*0~HwLY{kju~}5Y1=Y0Tsz99 z@@(Trhthsut`FvJt;hYiHk|Ty;Ht5$F-D@ln^t3O<~i&-8QjsGS(T@16=A;?mu!yY z*7^g5Hq_M{RO^B(LXIn;DKLuU3^;Clsu*1lMCD+U!Sr(As{DJ3*^}y;o9z%a+}-4B zl=9RrR534`m>2EvCCr;^N4``$q|%{$k-l!_V2e2=-0!vM6!2+?sHoC+F=tz-Tg+_h zsiXX&--P^Z0qyMO%D)JRDx8h(7G(Yt2W)-aavon+-cb`9#;;{3}<4rxmEOGbHs8Kew+&> zDCH(OYxR24awT_j6v?T`Y3iLPCn{W&G3uG$7+Fz_Dc06u48B=DQaDmyV;+kdM&NT3 zdSLlfKjv6D!mRG+j)Y#-(q>BClTLAuaYb>CviLPin>5dO2>l9-W>NA;hBB)i(;Ll5 zeys$V;HTV;^89(Mj*eh{Z|bQL*Pp2ym@7wNq{ql;mvYz8KA@FROYu-vmzG@pD%?pf zjn<0sRPH2N>AmhwCHCvbGKaOPTyOTEk<5uZpx!5D2hvKV1Y&+Eb){y)bN;kY>Jj0Q zp6bFi2^#L~8~>ij$W{%;n9I-1XUT!Nl@3Gomcf^7i+Ba&M&w1+dg+U%H<}bxEBrR_ zdk++JAG57(SC}8BOb;NvcGa@#7g_?u>o_W*#QnPcu! znfX%W%1hW&%p9RLKuJtmqQtDngZd9M5bTbgBz-X_o!KYM3us)OI;RF;Q${cKi&h%b zcBh|X6IiJhwHvkM)7ABeyLqfs^Gdai@KGK<2OQNOOfRzDT+{!?+&xOI8Jzb6qqVxW zgR)QM{$8Bx{V(-bjuXqI_|k55&s`{2?`IBKBQn)0CiGicROR2)CuwWS1!H}N_A&EX znU_lLP>ZD6I^!qI5#|_-`8D&Ec3zLPPwA(m%~sl>9jgaVHanpnSFTaHL}dyi_w;Qu z`-2gpLaq~SXxWwTQ0wWnH2T()C*)A09i`fJ)sN}@p&dFsdbYiiMwqQf+e#+C8MGtj zgv_N>!aPFyQW+ax&unUimGU! zS9lq9(b_l9V;v~1%F)OJ_2#SXSD!VXWL{8dehzmjdG=(~9cb6cTUUn~KQk~61;3O) zl}`Hbk*AVdQ#$aO#<~uSuJ{b~x|!7I&z_`SO53q{@{~4>eo)iwE-6(L)67RF=c6}( z)_yYvtErZ%Yx`2aeUOpnwhHki7!5 zM*W4qL?;b(u0@{_EbGTKy+B**DfGr_^5q2BrCml3DhFjF0v zS9Qcv7OAdO&0KA2fqQ~|W-jwe4rjf%r#G14UB<-f%h)r*Oa0j0$F;btFHCs34`j}@ zD0Bq-#9Vm_V?p!~({?X!FD8pk+Ud;LYHnM(cQZk&b&+G!4^Zz(JqPnRa$U$zsM$$m zXw(~~?f)xn$C$fwx3X>`g1i&dP3}gEuF*lpRS#h-S~zS`yiMn;_o5^340mFLPftp; zK6s@5P8nE<*6eV4luFID`zHfQwJ*7>Wp!`0>}=W{)M7~s%y_E~)I5XIm>8`l?A%Ae zck?@+;hOxbJF%LH6L>3moWvfj?`J|oCV!FeYtpAYpDTLN?gxJhz*{+T{Q%TTm(Ye; zAxk1DQtxJSP448HTDZmFeJRJv2%ETD8MA;jqsGp>C|dBAu?n^zCzkO20^UeTb30Ez z$gjFS?ZvJi?ZwvlirQ=Wzlrhc)mRX<@fC9Ax2(x6^h4i-0($W^a_X0~p`~Lpcc`aX z$=RpW-H1MD75&olW+NYEnPc3gR=xxXngdavE-lRJ1`-+Xq~v;`Xz?=htNghfeiL=f zJg$dEKW0@);3V2ou`>&-8p!@8gKJ~Kqb}f-R`F>(#Y}De!L}hhwKte)-hAa(=Ei6wFv6vXRV>E0DX1)p_x{bqu$W$O!5}SpUsGHUN4MseDp38r`3Q=bFO(wg2U8u4DCR@oxtl^er=XAOMz1gi?pBC>~8oT7F(R##}+k(H^J| zsC-zLXoltA5*bnCN{uJfo{$0D)!e${k7XvDE42gSja-Fsw#qE(y(~8qw;Ew{`x^I< z3Z}TP!8h^D?|QJuP}3rCv0+hlxe}LiAqm0c6CyFfP(p$ zDxw|29Zq>$-PZy33$^=dJk@?~2lnc))KGa{?#I=r_e3Upt+ON7uFrs0renZa4om*t zy;q+dZLw;ag{nE1vRJog&@AV&rmN_`>(%IUt#@abmkf4z^GqjlMC)686kD!qOI@`2 zr|z6>#7*`ITFvVhg7RZ)$47VuAF z))Sc-hjOOvR_Q{U`2U}?JKc)pwfJT>k^L0Q#=x07WHF z^=ESOYC>ok=2QK5VYI#uFy{qO{*BDEvVdNV+qte*dp(@Q5^O^Hk{ikRF?>c5 z_N2Ac(pT~e%HHGrE54s{ycRyjn0h0l-(g*Ujm^odU~9SWqbM454c8N%=W4?@v1-lT zBfpf07T(W)rBb5;?4|k6_dpq>FA028ORk+Qk#Rz~Q|q!4xbk5d&@^(x{Zl^Gm>F$G zW<2f<{gi5|v6hDGbCCya)#HCI*YsPuAhHLZ3w<39Z8cVLT!b0pp~psh>1#0xzG4=2 z_1c)g(G0j2vw=)vJq7ZNuL?7~*Dz*tL!0y1e7#C$$~EriT0L6$7ILi2rDhCi@cl(BX~XCl?D2bOY+az}c#Y1Mc2 z>+_%R>or$`(on*qtBL>8V6{tU=!x-gdU3dJ)QTI4sV20MYwCfu-^!_OVbtoz)y}AU z&>zSZX9R*HX`v;(Gn^@X%GB~Zh5!s#ldAqj>uzsmP<^9v=P9Ur5875Qsw^nao$$j~ zUoHM8-sz)-JsCbrdD>j#zO}?`7G~=9Z8-V|`wZWm(Toca%*#(3(B81+|H46@1Hr9)Utv zO}hJl@l{$|v_EO(_KjEi_?WZYoiYKrF2GT4O6l|r&mQ>yR)H(LmY%iZdO`}&lAapj zt=x<`_r>Cb9aODY4o|j!4e-Jpqn*}0#pfh5ZutZ?LtW{qk>QT?I5oAnwa`Cjw}$^p zAliUigKNIY%bi>dtmMqLj2c$|BwwV>MN7WE*5*StI!IYUYnu7)&C4ZCsDYM9t&Xyy zjOCLKm2q^86{jC|2`kDyMeULATaZtbCpksQ7DjrKRehi`1`y|g!*2xNU4jEUFMqb6_)p8>R?_PsYxo*4B=KH`5oq|qt;7=tlzTAK7< zl53LJHyd(dhfKtyDG%xcAXjO&OXFa(fR~Un1DIS|He8cl)auv#FDEBgt>>~bpmxc` zn{JM>GbCaujM>)1eizr|F|ZSGfGm=wpZ7uBD zPB$~ha_T23HNs!tO*0*+2h_4EPkIF0_>Q}^t@}J>3S$n{*!UJHwJplDOSo3fZz0cI z8`Y5O*gy+<{BPn(azgSOa>7Sg8;7W+Z0)EH0u`f*9jnlZ11Yupu0Gd5C0N#*8hR#3 zKN6CIv!P$C>ssrpnm~Q3q#@D{JsPx!8{4IqpRn`QZIb%7XN!gf~_Q^G5hA9@7-uaKh#Wgim08wdgdk9KSvsD^n}(Q^&I--tIczF z)S8pa=qebmV>%YCa$_@7p)z_%YeC*eyV_B^f=lXH_2HM2CPV#?0Thc@GZ*`Ws0^Pa4TgmqOe zI}wp(1fjY~_3h?#QE${YT0g!QNsdszE`2)_F*NFi<*4;x*56S2uU}eQT2Q9d;^P~e zeBXmwU}>f$a#jiJp=+oxf`Ge#Hty44oB0xUum<$Klxih3f`#DRYOaWNr4i10ypiL* z;I6(T`lIL}sLgZ*xc(iy^H*@y8{x&@g`a+x^W|s)%|GHbrDr`@)^q&dc(a%1td)$RtjT`%%&(%OWk$9UaD478deEj#LQ^m^2$seRL(K|aEap6+j2<)kv5 znQ`OJoLO@KdZZOkE<<~_8Z+%}(x`!4^BqjqPvkr54*sP<-TE_+`nWpN?*BeVZ!W2_ zelL0^Xz5eW-6>jo9hf_Pk^;_sdx-I$Y6C|=HMOc3y)cN{#dt2f z*L>Sm9u(Ld*TyIGf>)gi%ANWY zn5LJkx=Y{7)EUSm;=bIuU0YhcmG9N&sG*kb>LYOoyz_0B?zZBf@0!taqXtAu>buP> zUqPwf@5+JY;H^8Yd5#mFt$XN!79!tm=o{9g_r6zZH|=OyGJDQ8uA2Qr{|c`s>^iof zja;pa9{TEdq_bKiwZEuUl84m)R5?#xM!KXIK!<3>snu%>E~xYO9d~lE@|61R=-s9! zR0^DU$B`U?J{)RA4^f^T@z2`LPw`AGl)fWIPF>xIQ66&9a;nciy|)r6Z*L9L{590{IGjZr`98L^^8 zTW@`1^v$Vj6u-8iUbL<*LX0zRG7&SWy)uz?Q*XQB+^fdZh^~QrJ4Vz|4WhcFcGMh1 znNf7EnG{-6D`7;I(KMO#Le5AHQR0n{i8oIsad+a~k!qmrvo!t?kaf1)U0Q*qNl0}@ z+PM#_TNcA=zzh9w5_{%uV5!*EOiA8Fqeo1*)zEwN3dTG6$k;Gi zYUac!1gVF(pdW(%k4hQF{i)*-yX=*cv|3K-gnpq$|LH%G$mJ%VYL*J0>7Hdooiw7H zR?-+{5hYr#jFI(SZhB$(-po?&GHO^{O31}xbqV#fGlX0hY1qgSJ; z50L)0dg1EJr)?}wJu^nDe>HMk-HjYfGHX|Dqxhn2Q~u9=A@Mc__4I=x3BnwJ)7d>H z@jV+k;_PTYGLwKW``&J^dMX9_AovAyxa(x@H%j{Ff_>~H3dsP-N z`k^dZz4AbN`53XNMRW^un#jz(gjv`Mr?Ql*z8}q6X0_M}C$tV;d^vSDW2-cO%WAI6 z*{fgt2EOH8G>hgJ_=4Z{=n?+`C$t&De_)?(t0`##u05msdQ=NNk5MCvNpDUB;SFwG?zBd}oMRA;-|>g?#3MS&1C1dhK=s7xht}NiTb{ z3k?F(?VEaqR(u_s_|%50oxvgLnX$`i$+Cft(y3ZJcVFKFs0W++f`tEx?~dBTZlVr& zFZJ|tl2_5TlZa|kVl-0LtSQFlD(@))YAw>jE_YMJk+`@DEJ@fgHiI*Z(M&JpUUR&z z;I7ZXy*=QJx&6#jxRSO!GLFW5O6$J)Y{V4b^I%q4V|?nkZYCV}K&@H6A-0ZI^`x?| zQeQQ5 zw{7%Xsi8JaId0#psvk(gYgQT9Y~XG@4xdyP9F6)y#_EJ|h38tl%CkEm!7E zW%n>Pxe-ru->RpNmvPU=P8dsXeo3XcgB&H|fAt|v$ZqP~)StV9Y27SlzVt+r2Uag7 z=c>P~IGf1QrstaRk!qsc_4LKoJ6q01iAx=`7E39Q`AN(tp|@;8gCh4M#_HLje{+7c z+el4Iz`mv2v5!_NqU&P1vZJ{R%v+(imQk?!Jtg8-?fD*_ZA`4Yn9o#4Y!(c$NnDj5 zDy2*xYTwB2uIoDlwc@IQH(QAm%e~S#9ru0rQ6=@nd%D%;3Prh=Oy*4ZD#7Ug<31;U zEN-;}W5z-ooPVRaMl;9lne*wCnCZbh0%le+Z`LrdKuj6OP9?rgpxo>dYDM&n8%>$M zc8MqgTT^eKhn=~hr*h5AKFWCJJus7jS?jdy^`>=g?fN?9aG$!40o<*HW+-?kCuo*9 z^(g)2m2Ztz5Tupw(cLS_-4g%s91%kG`blI@tnl?d55D zMD6CzZQzmgZX><-`Nk=3<+}daW=D~`-$HBhjQZV+sbad8eKod92gW7oz2&>RTsg;|r4{!K=enM3dWWi|Rr=}x?a{kH9#TJL zX}Ee8|K#7b>WNW$GAOI+yXpL>ZPgE6KMSMY#V9?<^~sS}Nytd6BPmJ_#aK@xN#xec zm~Hd98PVi74D|hAYs>OE&d{-ipUhUIn z_E@Q%Z%`D2jDR}Cc|JXp^B1>UA+P9PshnkWi18rWN~AQ(+O44AN?dZ#%9z4WkA2sf z@|1cZwV%q%YH-Z|Xs$h_SmQ>=FsITLvnF?l=3foH{E;}MR(?9?T43d$)ia*OTpCSk z+@6$04ZKkm+HTbcnH5n#v_yoTvG~UD$&F2<4d2!7bz_nBpYKbn(kP`qbz|mVFyc^N zPYEE2Uu{s@ceU4Rt(M+OG4u)7A5|}DeKFiAO5ka=K+26e__>)&2#Z{tj@yOB)F&2lnwQO3iRP~!dOB=t=p`e_-% zWBidB;8LJVdS^(dl86v7i-S9tces0Mn{p@A7tKsY?kU>7+;6qU7(cDQhZ0?a4jNOd zX56@%(>zH{gl{8NcWizVWmn%Uuja+K|0Z@OcW`yg_CmQ)%ak?Lo2f%nZ|feeoNX%| z=$DpZV{p|y>5ZZnx>QNY&)r?w#_Nf94C((?%9)a#Z=z3lQ<$qw{~&Dv>bd1|L*#vR zkV<@JhLmEdZC0k!r$m0((TxNX)Dmb(G}Do5-Vr_v-D-lg z%4(BOWME8q259HfN-5u#(2c6~)^e*(KufDTuKwO~O~%D(n>AAY6wngKw8Hx|v&zVq zx|+otB^NE{`i$w{uJ*)zzJXTN25Li*6PI_@v%_pU#-j*1^KI$xY=ne4K#bs#gVGDp z{XuQe2Q308eqvtrN7HvwX+N2^9h=?*r{MUEs+5=4k3wGAc{qyINBgQ+kjT!XUQ}znb8QTa zQm?*CdI<^}Ew1WOjq5%{8)|0FKdtwbcQweXyl>64x ztrPRD=34FD{~`~?QF#FME521z4?V5b%5X=yPfF^_HX1vj@m4mhqjh~>)EuZ2lMj_s zQT8(rie3xiw0b%vB(;xbOVQ6$3ypCK>e;0j>MYHEs3(egO|4u;4yoU@_d-{^H+N}5 zBd2~`J)+p~KmQs%Jp%fw*Mj-^oGoQ`BaO^y=RReQHYH=VdHxy|mGCeyAC+11LZGDg zg#Gl_x7_R3s4rYI{n9JNJi@*a!C0ZhPGF2*dPK7vq4?;UQwOWwPr6{<9<2ecXk|sU z-EzV9OJ7K{=O1P~#+4?l7e?;tx1$`F5&0MxIqaKhv~8H>OFU4z*TSbHu52&e(u>)B z%Kbsjq`SISV^@v-k?wu^LY-pvd}2EAH99kq6)KSfPt8vo_Kh*D54{D|59u?L$OAE&9 zJ)Ml|>B*h$7qO@vb+p#C59T#9^O2q}=H1YeuWm)VjJ_`V&FNp~+SamWmMgu!4lq_V z8tRYq&XW5v%fldAuutkj>`6U&1 zRGGR;b zjn%FaZF=VO7dP_It6vhm@8}NX0i*Ly)7v(@z3alH*IV73@^;GLR@+*7oP4crPR;1r zxyM(Zo|d#DGrhxuU0&-vG56NgS6i+)`EC7=j<;|8I(~nviLD0q!piBS#|W_d6jGG{@yeoc~NrzmL&~uAI+?~?#Sf&wejoQ zKHlfT;ZKZOFnC1g!r0Q9r}tNsPAK17`&rY(*o^q~Cr{KoedOipUmQEPsa?hg-A4_p z8kaiyK;K_we$#MG`Ok~%OP;M**l>3I{NS-Osr3&Z>36vF$a@WS$-_GT_N<)~FPrrF z(6Hm4=JA!kE55ntvwhQRFK&JUXSXgVdK|g);JXJutX_5I#_WZ84^Mn$X6B?t{a2@c zdGv7cqXm77AFcfBsRcNo~WyL;F4{-&~uY^jx>=$IL(X*XIUfuI=<-w^eva;vu%EG-VPb58X^5w&q@5?DWe(3d+%d##W+;`>|7yfYOWdqx%Ty(fqLGHH4 z3bHGPpPrMlJ#}9E!n(Qx!%GXxMpV}ZoqJq0ao3zPbN)D?yweX)j3~Zh%ip$C?kTJ} z9dyj-kTT@-RaJ}k-c{13d{)CRvf^j`Zq|dB&OiUjAs@BwedxaJA8)vG`+);@H7-hR zlksqH_OUw-%qo7mv|UxVuw9Rfrlee2cj?cj=5>9dVN&4_H}u~yVfU1yIkC~1&!(oG znO60W(u?*S*!RQw*=;@_`r!r1SFW7%{;;hn&zBc(p1WrEri;stpR7$?pZVjYd+YB# zkh-T^@sf(4wp`f#!l{Gj-+$%tnNRm9J8`n$wzZSi^vS=pYHl#U%}43k&BayEmK@*x zcIi{K_hxh-T7BV<7X0{<0i(~$=zOT_=Cvz3uK!)}I}Mvsmu0=s`o0tG4=yQcD!jYA z=b3lAWKLp%f{c5eXz3cme|VNwO1BBaQy1D`nEqx+j45&p|^`3-u=YBdrltiFm~b_ z^E)kk>B7MSe$m{1&u`XDTygE@ZU=|QznA?@_KMh*wRw9_?|QTF*~(b*=DfP|tF9e? z_1vj%wtuVozgxdrF=6$+1!Z;jr`F{>p0WIN&x##|19xSX{;K}o+*RYU=1;i3!^O9p zwKw>8$>_CXmyg}}{Qh&Av$E53@{avXWX=RU{`7rCA+{~0-$A|8lyQ}-Iul83rozv^fbDq8SsfCBneXIMT`kp(!T0U&~ zl5KY%nbqpj+}~%FwcJ>>r0Aaf^@TsIel6qc5r;0>cEg=lbQl|^Wgj?ueWztT){ZUN zbL#On@!XxM15bQ!|JA#y@^39W*cj_RaAwmruUx-jc75;MljrT6x}w*zv$s4{nVGad zrzHDS_*ixO;#cx3cE4LSJ?)}lw_e=s#<#9|a6&xuoAQP0Z(R~!`B>qChG`j#a(|Kb z^~wDQ#uYT@Puu(D$%$S5JT2pz%p32Wdu85lPfsX#dc`M8e!KCBgWJQ-Iq$W7Gd8Q{ zp_0n{4+>H$t6Oy)(meO~H{7z|&yyc-yRhO18zwAyV#T=yH`h;2ug#s7vA1#C!4bQ^ z&MzWf!8g%KZv*w3uivF_lzQsxFHk7^B)HnOyoHnhh>qhLodgoWW9yl0_eUsPo z!uSopyKdguH+K54`jyR{mo_eYWk+7kg(=_9{W3GX>5Gc-g)iji7Vob6Ea&C%4_|re zrZty8Gh$Hk&XPx0cV2Se+PnAu>CDNjA-Pwy?ppu)-iG|=cV2lQDW2DN*{s>u=U%`1 z-14rQYG2;^-=$raRcw2#`tsJBbI;9cXr6I+RbhJm%%ZL}f64mwm=EVKS~TFw>@hE= zoL%>-*jK?(DaE-P4es z|M%rrF1u^%IaN<4pUL?_*1IiJs}>ghamT*hl}Gkv>=^mNWyLqWan-?b%hQkUAGU7g z;_<8AFY0~r`po?~@26baP`j`9u6OeLmYsikZjbxU8FBr&^wsikVpt2qCaz4@ntZjCd3ws8MVH_Ypux2W;?ozE^i{@vpn@(#jrwS6;t ze6X%Mqqu3uGX-x}-k$P>J+L`GA?N9w(xe~PR+juG z|Jz-EI`s48iv~Y9@1vVOTX@a%``R6?EZlIz;%}Et*}13gUuo&>Zp^r=aaH*{yT01~ z%$~OOceLL|+P##xugn+tDWd3^Et>!01fwq1T)`@%st_P_2IGtcRG|B)v*9ay|+>9Or?YUZUh=j_hdcKQd0l6K#)9OK-SDnB3wzbFh_Gl`~%F9`n{PVhhmR^}ZZRg?x^TJE|ce-Hr z4NI>7=eZ-hPOKfdb@0;9m%hDiSas04GUssSTTPQI?=QSOf99T3wPSN0AD?~IEjPb& z#cxLKZdFGSIO;SDd{`0n|y z_GnYzYJ0G3($dyj=U2U&{CLi_ZSHQKaCk(~{rNvDI(+o9tZ&CGxZ)o-ue)l;*r{oE z?n_yF*5XH2y|gDh`FZ9;Ij36hJAQEAx4a;&eBYH#ul2g`yp$X6yJ_%+FZ3SNuzvfU zOK(_w_ojbTyc{cU+as%~WpUM>qNM!P!UIQ!W|KcC7 zj2Hg#L`vp{oE0fgHstMpc-JjEgMFJ$KhR_FIe)qC|8Ckpr%S)zpL`(yyk%D{es<%7 zhyE43-u8!C55*@RS+wW&{OaBLRfEz;jYzrd{F|3uvvpFZtbdmOc3slqxhrZ4h994p zJ~XE#rK;iL{S$WmD1X%6ADlYcbk^63Y5-Mak2#j`g|Ek78a+V+X; zdBL&jX~q5XzbV*Q`EbfLLyIq7x@h9U4O3stxxHfl`n})nUAA@S703RXc24g6^cPRv zQQoH@FMnIfs1s**UNi0VwOejJ`_fMb4{5F~cyRey-(9e-)Bc_ol`5AY%Uv>E2jh8Gwv$SZ(tlIghSLZ&M(e8BB!G?n4JN`eG zt^%&f_4~g|dK)Ssh@c{&fQl#vsI&@*v~*b4u6ylk{_NIkd+p9^CmY?pjctr>7@cGJ zKL`IGKA>#R`@GL{>Uqccp6|I)(cOD{jNiPV70C%n%l)PrtN$o>On;g*FMDGRN3O@X z%Pb=Q*X38m=OvWQYg|o|Pi|f!iPMQ$o-hS&zuzI zb0Rh)M%#0n$-6Fx;s%bKlTv(Dl1Vk!kJpvUueN*<#q!38qq~+e4>-ky>`FKi!k&>w z+fw~2^H-8_=C6uH(tElb*8gaad!uVM@>la$)nzM=T9|lc#FWOyd3%}#^!AnznwRT>g6aTL#4 zbWY-`y=R(u`Lu+la1Un>oyhwCvX3N%r_B+5==-3xjpeFgJ&;^?y6hJ3bM-u_#Kd-y zUlc9AZt2`fJBMcQ^HMIbJ@PXfClhy=qZr|8t@c*&GM=4qcWaEscDvkVAEB*c=3IS7 zTw_hnx1_hJ3j|rcJGE@}PipQPyj0&>c8=Fp)i~%m_Q8U@$liDxe}AiJnTOy*>KwKt zx1s);Y69~W<18_|<9`*Nyek6NmhUvtlz0B(`0tVTT{h|4wOq*igKe9d#dqzwt{J0$ zRjYeQ)DR<>z=gbBRX(l)R+TpZTWB5E-B4izpii%ioUb9?J%opzR-sEt-`wR`+akv6Tg;VMGw+^pMLj!8mL+F$N{VQ036wpole%vdX02~Uo!klKl8%phCNqA=)}}#W^RtUki5(Oal) zlpGdM;++tNwms4m+dD0uzyTNpl`-@SsFpcgR5R!{j& zNKbo_v^%G%mZPv^q%u~(bK%O$|9H~{nN4dbb~e|2!{h1E?h8+j`L8V}--G=vc^&t8 z=NEcDYmBy1+SF(ubmncU2=9F`dcxe(;gJcHzz{okV!3!rdU#SvR#Wu?d9L0gCWX@8 zwY=&aPsy)q&?jA+d~b<3?vI#gcQ<23=Z>N@PIhuc>GX~dGyzLn#~Yptj|-o0=ZMdA zuhSpnoDkNT;2(T`+A&ITrAcOg(oiO~YQpfJx*X;#>ZzX0>Nvibf2%%Sl{ImqPim}Z zY=LK@>5pzk$%*9a$wnooC7Y-ZSvtDe@{KJKq73f-^1@CzSSQOg& zfLy?ws(V^-zIAQ62ajCt)A3PPG2>#8Q^KM!>sgPr_SZemj%OQY{8|2dV5jyA<_FrR zzUS~cBAV}5dq%d)tkLabR8j1$#p5Q}4_@KDNpa!i7aVW4CiyTA>Ut}uwH+^i&V41E zDWPevomR74BOx>Vv2(wUtbRcblU<$mLinT4QR^Dhhwj^7Tbs|f;ccp3CbcrvThtf% zBJSzZ;7J2RV*Z)ba86FXvJw71!LZUZQ~hWwDZkA%71p=rXk52@uxwTQrxkDKu48mH zhU89USEUY>Irsk3T*2aL@CSa>nU)Q6W2&|fb{l&w*b(_IUc*1wDqhAC>`fiR=Hw>T zhp8$V2N;&bq4pwiJ~v3<*CM6mO!?D4FTNzQ$mNFq`j*DL688R74!@zhL1P2!jb{5` zcKwaAN8HVoy#5D+=a<#}Yy_g-BTUfV8`Is?{d4V*s)4cK??}*@V zvm^DK%?V#>{QIa$3vY~}Nd7L^#L-C&;MsRo(a*BJY3-DHHtrX2xJN5$diRZSn-{&J zC1G9Q2D|&jq>AksH`uy4RW-fx1&kJ^lAP8RRF%fNTy~~$9qHrb zm!eagTgi(`86BHw|FGJ$17+^bH9{8ef8yfqRQ+|%kHQuu<_Gspdq(+GnV-QtY}(!uV(H1vO)g& zy5|Z9i_4yRF}AUu-fXkM-q_L?$uBtji!xi=$@v)b^oH~geprR<*Bb+?Yl%9t#leHQ%# zCj4)yW0JcIx|*DcbBwLJh040NC~*p}OXSz?uYJbhuYk{SU&1MoXlO%DM;@X zUhI=-ZeYgHU-lob%PZT=KUY&Mtuu*VxG-`c)?}&1q?RGWvd^gjocH;!8gHn(7|->B z)TZs-@Lae}$ZQ*>SzvciurSyjP%C8a{tHnN}D5?+xu8^6U$U{|6oQvUGSDC zttuU)jBRpFi%`aG^P^hrlid|8NW0C>&JC=8q10zo>xC27JH}N0;57*@w;0fWPU-h+ zh^vTL>{6^>-(r$~g`J(!!0YU4pr#tX!nm&U{Gu z+#OIY=C2fp8XZaPmU|c9j`fW`;Z|%^*Ri3fgQK7FXDO}YG)>L=q!TH31bcbIs}|>W zllAjwT@JC0rv-@}mQsc)&tyJg-^+@w@*DoB>&_ZOE9qTYn^M*QREV*v_Y*FAdB=Fh z#CS%V)^vN6_$FWC+$bWooua&A73l`T-znyajrdo}#T^^PUb*sFn~r!B@4Dzv`wtz-^k0Fg@g`w5vo32z)~(DgPI{Q`U;c2QNqYw?ls>LM zw>GToGXGF*xva|Uxck=V|HYXv(VVbv;Pc3H;r4=U&1*?TOm97!>Keqtr`&$wN69Pr zjI0%Cm9QtA>byZc#=5cWtWvA`M}`ah*ZgOWsiR4{4OC^`fpw|G1$g zS0^S8UFY9SJ;@o!CpR^y$1~UJ{i$-4%n)aDHH6<=b2aYR?OQe+XSTwAt`ozjsV6rh zDIj@XX>j{8>Jj~etOwL%{mdq(Dsrt`_kQhu+X@dGf2#X_t2D~>?m?qMV$i=w(MZmtnbSU!uB&dVAJQf> z-xwR1?H_B+Y$vUSG;@&TRGWGG(=P9R^I?HFO+BemuKR7&UxrQwRE7oR zvGjb;-Ok$1q;CDb(*qx+_Z5!Bb@CO;H_ArpIr?(#WX3CfbNykRKPca2oBLPy*!EoL z{nQ^cv`;2ba)__w|4|-NW>VF(cbYGCj2Pn>Pqc%mO2z0QPG4JZN8jgxvY~LMy;bVjQ2gC!4!AR*C*;Yk@`Utt4+CUpa*QcML zpVtV}RBIT~?~qrkl4aYZ2Zyc>c}Qmr$IFJ~+NuwP52c>^k)}nTPCrTiLbsXPex~Vp(WyD1?pYjO)etwhok+zb?pk62KQyrFHAC^gv57)`|D;ksosvdO0ysyQx{!R%!ut40RUyfck|ZNH%$R!tl`WI(fZfj_NPO%>af*{VME4ALC3ioBPSKrx~;k~!o%WOwpTk`@uFs!@ED zYstsR|C7H{R4UEXe#8#ab+QNL807@Tfl>n_Cz5ZFz7l)Yb5!G%M->|sd5W9L-Kuc) zbb?BfkZzHO$zv&E@=CIhKcRAgj0&5WO}bAiBDIrx zNjao5q}ec90G-8E>ecE`DtlF>vH^CKqdEpGyZ;c41dC)%awgf5x`>a&MdBc_2l%JS z#6`8Hx(G&=n? zU5RHzInfOzTv9?r{0p7R10Yj`Re(z1D~VN`08nKnbi7xo2T7pQ+XW z39kcW+(g*x58?y#MPCFNsGsWlz=@Is`7vaMVi9@J`+X^lUIh#)1L`p14)L5g2VK(5 zAk$n1wF()KWwQhctbjWdK-clj>O|;8UJ2Q*0O-d42VfV60R!<8I+Wjll}?3M{vskl z76t0#>MiiOa&g)SIBT0yFf8#%Ke% zT~P0YRULs@?TBdN0P#PVLk61P36l5={^gF0#_FwS&_#Wh`Y>SWd)4ls!+S8+iQudE zs^_Zx;cGJ>0N=uQ4$OH-y&wACCqX7KlDJKLh5d#>ChrxDaRJSpgSikhk3C_(t8YVR z_8*`Z7m#*3=?Xv7 zHp!5rODX|tv;@sybxAd3NzslFLyY{%$a)b-+#&>U|1Khh*a?}!53u7Ku+Bn|D`wuY zCnsVs7=R7DL6j0C(o~WT=`C1>NPQBd`Zs9oBjm!d%CLO|X_*YUOcGdF66{G#e1g>! zfdpo#Y3eDUo!2ATXhaf-L0+E$w=%4b1R1=7JmebK=Sz^Ok-A5vtM&$|Bj=_LWG{b0 zW)=H~FoAbqFWCHP;1;73Pt~4khMKB2PzS5;fE<3;bZCHNuw#H0@W<~4Z`=u9CQx4l z&5l#E)N|AaVZBPg*IR9tDv*xkTXq(`z};FsYBJ{zq zQ^&w6SAq8-4+PdJAZpHPM&fxSL~(RTpRTLXv} zBbd=2c8;BPkhiZ9#$r|Z7q~wgG<6d!{4rcp4k$re&`khX0y6d^Zzdw9kns<(=vd?R z4(hck!JY^}sw@WmMvi3S5f_iRBCG<$s$8te;XwW#J2rN}tg}Hs%RrX1VP}X1|IG=n z1gq?U)nFZ2F%>$0E=QqFQFaDt8dOKwthK3B*KVT^3dan}D3L=LFV|Ah$sPoGr&8 z{%wZX;|ueS9l;KR5Sxg#uh=_i8r*#|c+;OSrx%Puu32P1?*}O&x*-E(hZRc{ zm}3EqIsjf03EnaRc7c^C$ij?R7VIg2oEKvFT^m+4A0)K}WaR?h^}7=qR+k`$00*o9 z(f`OPPzs~bUN^$%g&-q7*hmS)l3y?%qHxd>kTC%J5cYtq?0}0idZe~c16EoF7KE(s zh+aZeObN`3wZ6#nZU-_52fez&p1Qz3l0o;#gIWe7kV~o>B!!mQq#h5R8UTCR1a@Ex z)`FD>Xd}OIn}}3Hq%g8LVLg8^c;HGn6|r(?G=a70h%v!lnuxkZ)|ncR2V$MAM&=C# zpPmU%4fU`#WDm@Oog*R{>nD)QstR^W2W$@ZS6MXTTa6=D`V&U}mKWlPkck!hnb(0A zYJuz#9c~EE7+6L4A4uyH_yF<`rh&c+AogOK-?f3Jfc-eu+F7mD{=5W6JiUpbR&-| z@*!XiDKY{eUJ}t}bHMsn5L+P@g+e^Q+V0<7pJ@=^#=}^|EMd(>u#xS=YhX0I-88 z@HB#bsnSUF?^`VWVwfs8m)K$m##)r?@65VwuB*T^q| z_0VSU1cOL?Z;$}iIwSiCRu%k4y*Gp8enQN^iar6@0rEC1f{_e}!}XxmEbu<8ltE^M z-^|tDLBCaC!A5GgXaM3 z$b@XznP3I!Bk}MvSP=5{>Vd@|dJnq-mcgB{#uV)l@k&K7Bi2b^bs^S_VkPBobT;xW zrh?5pf_bqcQ~``jg1NB|aV2O5D;==*Uk=j7{_jN)E3wly)+iRh7_4GU0^7p+x~UKe zu%Dm_=%x?GB*7~1M5qK^bizKdM*~IYiwu#7YDZ)_vb-S* zydUDrICwq{gZR1!tY#KmiTqbxpo!lYbY#OpmJei4Gl3_EAc$}$Asz;SerLn1Sdokz zV`$wb;75ox6~cbWU{6tS7Q~FiL&VS{<4`sHL^P`c_-~MJ7x|2^yA<|cTne*Wz?UhU zT_U(2;y$q+9?xj3zQf9>I`A8;Q$rRgMEGM>Mm9(Yk&B3j!>(CraNc4SDRL-b$5Uhs zM1C*qAY2NTfp|l#6T`Zwvj4XM3)oE{NXi|abg<&O6YLLh$$Z!c*86miXac!7G+@q9 zc-B}BS0H~pGPD)K8tPylS|Cy6#IJ-`gkV?5_uvQ5FDpPg$a;-@M=4+>$Rk1nsUi`Ta-Z3w;<39?-bGGM_oQv=M2rwVd2 z41?}^z!J;g`ri_8fn9mS6%Jq-_|%dP_FVw;;Mt8FLdXhL4A)X%wSjQXU{wv`A0;s7 zM|fV!fl=744xe(dZxUXs4Z8J&Xc!H4g+1?uaK3#6x!1!;ebj?)a^M~0^29C`h^)sdeiC?!A6Vgjc;;IO|0lyagB42xxHq!wBVzV9vu!7w zp7=Bp4JUX6c$hs{HumSi=L^}$d&p$1g!^M9fFXE74BUS!%!Z&)N1T^ppp4raB zlUN$;4m)QeBl+i%x-C3Ok&zbpr0T$v*)Z-3JZZiGt3@^#e5%79aQMlq4eZ+%WQv`V zvf=9&dmYmv zo(}u+g75L*2O>Br*|7f_usXzMBQq=F<(1$s$ZikS?Jjs1f0 z$TW$)8jvjmeFD$3so)6#FdnN$`(elU#EA7$CSVu%xe(d0uu20fx-f2H<-9HY-U>d5 zT}-iJ0NL=T!3eDDLM|C6s15T4J8%KZGJ?p7*4YoMLL@dam}4avB2}?|5JxV8FGtWg z?*ARw0CHz*!h2X-kNgbS=@YHp5`1eZL^yk}H$1(*gZ!~76wh~LVnS3lN(<-4zOvX6 z2pP4J-}38-kC%eJe)k&x-6aN5+{ieMEW0Am=WY1Q#3%Iwu$L4bCs(`&w z$Ph2Fmk)kwuYh?UgO69jdXcRdDlkcA6kpmkI{aCcd{MT!Z%$WV$C&P^1IrZgv>ZmK z!7t-ngABdOqCAx5lKFr((_Bw+&ZsgV8EKX&md>=hiMNTN+(`s`pQnUuBvIP z)@!-f|3TGCoR^>K`(Fo7V$vDc->5EPex2~=bfME@J2w*%*|IaE#-yUPCc6EyG+q5# zbzo>u*T%NW)|H+9!=Bm}9Epb3aRMVdRdujvnHhFjV;TEUH zl4jSQ!=z9{XS*1ey9+#LNR3I#aZTSvlZBc!CY=)%t0||5b%VhYQp2OVJ1zV{iOw3! zhUGh9DdXKLN)NGj)Y&j=eE4-PJ-WYfMXi@UEj&Z`NiD`*#}n~k+*zVmwMBbaS7 z_MLQBwNdFGB~cYQ9l5F|jW{Yp>eRNbW>-}!pj_Q`PuP^YJ@N1HOq()Y^HWO{uQmU6 z>9ac5!Ob*Nts4ZjH=$ucr9rhrTe9kbiO@OKZ&AQYm&>NRhdznT3)=JU3sy<8RTs4? z=!3%-+DfW6h#ddzf)DO0^|L(Kicrk86^XjxpcDm%2`OjUNjKmC-BGv#L=yWx{~ zY(-NOMR8*6`MExU)}cGyRp#@DkCng4p=a$aZEl{a+NZnn5sn2%osk$n7E)JEH(|oL_`y7kd8)829r~W+2>|)Dw zyR6kha?d6DS>`{Qmxh8HnWDNfX3e4ji!oPc-wg_hvhba0LsdVlFv$KdwLU+-{;lGK z-Y{b=`C(UE)gV7mXbH%?x0CL9J&CkkQR13n@TOx!@y^r}>3{Q8o%ZxRR*23Q*`j8) za5>MaqQ2XaW#|+eR2NehaKL^crLD>>yC=CZXI#x)S*2bFi$mSmGpo9W*TBD5pQ*I7 znB!3xNsl_^e$m9VXGZDF)QPFBC9fo_sMV|wx<3_ht@Fya^Ujq&=;+juPt#cbXDln& z*0DsRrq(4##xcy=P_c5zP?xU1lzzF-y;jcm<1=c%4UZkSVG$!z5uN0H$~86xzQ- z`=tIKnhOUb>i;c!$lFytV<^>lhU>2tM`HIaHMg8PJXz3`wlaB6L2;uQ;lf#=WGOlP@gh$2LX#xgRuUbxtn2$+?#Ntz>Dt zCha{dQsYzIU%Y7MQnKkTa{DEw9PNy%M}PYlK0wG(-H&!PFNfMdbW{{TYXBl zB*{Jfx=7Yvuf0wGi-ygBUfngmCGTGKH>tpMtXq8a_xSpyl8GimLSAT!A3Hw3tZ^3c zl{tp712Vop#pb+4LTcMF&2IZC%Tp3=Mp(@I!H8=j=V@|`(vJy0_ffPH^$%%oAKX-b zvdo8c%o|_lcz*UW77BCu!{EqpRt-QHHQtJ~s zXX@!?uM&czOkDHzkGDwjjeji1ewsC;)hsP)Y!Uq67Kw{{wv0YH*LTH?#N@yhyBy+{_>c4*NnY8zYii_2 z84FmeDK_0pstkE^`OJn{#4k(kVp;6==qR_vMiV>E7Fu(TB*&LN?^sX2qyIwZj?Auk zoA4rclK5!%DSaR3*I{E5slkm7dE^O|XETzMRGG$Afx|a+|7IpqLc0^HNIW(#ziz)u zK5?IqUYvXEGS7o1Rb2;*b&{=;JBr^)@~M1Qxy}x`cFSy0J@>EjU!7%)zn#iMNQt!} zbu&t7|EsRb%ulMyxLjc=U8)<$8lsNwZL03#NqO?x$-Q(75$3S9XdP+Ns$D`+fS_^3DN! zol7hwZEN3{+PnO6UU|(~*|3?ZM@)=!y#JC)i->`*T$2IkWL!hKw}zj-UIdP=+hxCD(ThHIaGcFR!SZgxq^FptrFK;sF^ zN=rj(+xS$lig&g0YJaSuV18`Gi-h!mFSh5D{-PymaY;Y3!)muGj2PXFJEZ?QZ&Y64 z4U}zc8YVxnw)348zbLwRp|ydt#I|4u`&P0K_utOH=s#K8wT}(&Z8{?i;zd+!?B$K# zIah1NxJ2zBFMCZ=2SlybBz{(8^%B`Az3t5Ll)2sasycYH%XkfMh_{x!#TVn=#SFQ> zHFoJ-R=sQNgNEbpJlC;RjbVEP5PRCxST&A)ZW7CrN#9P*KFfo;_a?s$b8Mh-0w$A;`T4m zpRju1BDXI2KATmb(d5FPd8)grft2Hx zl$Sazc-ohxb%!-W!whOU3?XW1R^J9EedV(FFH`L&%?qsCs zd8@~^e-`WUWP*#W#+t9~7c93(ToXBA{zGPMlQ`Fxy(@KVS!PePrVZ+dR^8HS8agn!5O3V+@+!M>JB^u<%R zEGtXUik`lpbJXhAIr;HyyOhPeQ(ZOmsjTms5kp%V76|6^&Q!kdzhG$Tk{Yon@ze6g zDMwYGME|9=C$(p5)qa(S={;faNwUswmFs!`l$~$-kMhzc)Ne|HPfW!kZ9|jxf&w;s zUGo0YBOSYGa^@4QhtkW94+WpN1{Di?>qpDxmani|*&g)XoVG^rf4IS$q-nKw>A&$YvGY9M7;AN=77nsm$-^awTefPOya&ik;p|zxm!eY(Q(U9M0ek|O>9TF|<3}h&0?hW~w;1rtS z_>}&!`bp-4q`Mi5D&7t?>&$0a&>r=!ubIX#;hnFYt5{&c@M6d0#6I%=V0NnaSxFt| zF?(C#{8lZ>X;y)5p2DJai)ak@i!i#~N|)xiDL5w4DcoyTv*v>FF_#2?3-RWnZZz>MNCFUB_BZOLVe!G06&<>ZrWn*y)q6{JD1LSxn0woT># zaxV#uB-L6IrVT7VnGmz0*11XNRef%DY0|y4qr&#SF0B&QdJW5g<#o)mRlJ?mcG6mt z*^Ayr{fh7K4Yd4Qn#AX(tYWw4t!)&k?=iy}@6{IVm&JYD8i7ZvtwyvREx;v#h-{q~ z%3Ra5JlBdXN;MN4>2=Vu)L*6PJ!n_&UG|ClwDRqMqj9b4tH?D8a(_+he%ZeQY3gw{ zGf%(ar)me&ovBYc)p4_8kegAqy_rfgoHEh>OZlk zpVay|6xHyyEP;Es;$z=s1IPK2726Wz0gI<7l($9vv_m^ z?qwB?+2kwM@xFh=AB$k)I{5>!CrtW6ok3+wXGIH8}Vy?pqe#>oN}H(0#8M>eW! z&WG^ygpYx>cIm`xu_ApFyEwbBW{RSnp#W;R$Zq>8170}ax?uysm>j<3LtJ#sCiiG# z%g*qkSDcs0x}}}%WwbT=|LR}B0RtoiE&rFDgVSK~-a8<&@eD4FX2C*kSn@n80?-ZLP4{^eaJKA)p=UBZu zx8ze=Ohk9MW6CFXHtJ2D86Dgczcr+4hKhE+TA69jcFFuyp)cJI6-BkQpgwg?4Szqs zr?y+Z)O@U`SBxlD%SUFG+B>1tKKUVga^bob7qT5oq5D!9+IFM7ms=rxEs<-VoSqRl z9Pbl0=;WaFp!QMLm!xm$FUq3^-{>sXuYro9PqnT5G+syzZ`jW)!Tox4Y248zVG}kF zcygnX$?RYGHBHW>IjlatER~;Ru2_>7CfwZSsa4?cV7Xm_#fn~McU?t&VfNRg!nAf_ zB%q>c`WYHG28!!0mi^)#tnL`PX;Qn;J<2)$vTvg06=@xxni|CBurt4cHPTF@rxsT=V>xeH+{_wU^l1sl^OTG*F4TL(mXWCsn--_@M@|; z2K|jMxpqWckKgQXV!c7GB@9S=&2GzmRzFi!&G^9hNbKtPT;appATVx;r|D1W^IH}F zFjC>7F{-9zYJMKuC-o`6wcA#6n6*_)TUy%?CaB{®Bt8LXb)xWXV|cK{u%@Qr97 zEtXxGV+Wrj4lsh5I^?3xWtAmd%`)qzSrn4Z8Q;YCL(xkYJvJznXcqp>d6pvJe(d~@ z-oRR{y%Y#)jtVAm{}g}h@gFUpvn~8vLSdl2y#XmpoSWW|WS-qz?Jc)pOl9q+IClF~ zMf1}5XB&jXrO8j1*u{^D?Q_3mT-DKAc$Jf$>{80=xJ9dFQFPjecQ>^P47qp9`?~sA zDYGYqWhFQVAD*_Ja;wrklg&2BcCFqjE7kkN+CX*bnO-gA{osr17pgrb&GiY6eH&xt zdCnxg%cfY(nVJAP`s0+z(oU4&qW0*aj zL(OuiG?z+sELj>f_g?>!z2^BI@1p}_KY8yS|99V)Qqzm%XYqbu9j`j&9H*(ky}5-jWj@fYRz7S?FYo6z2t6b`t!9Ui z<>~QH!tXeT=-zA?%t>JfrMC+Q`rc>-vB(-j{n2$+P*Jp@x_0QW$%BOjkuT%Am%f_h zBDE=dpSp~*KYvr>W%Vd#mEI|Jd^^2jGH*a&)vBlAVfScRe*CeBig^NNRP)3mORm`}_ zxJ~$U?1XALZNZghEt=*OmEZUH;HV*2!_f~~ujO~JNvWMYa`$$P_pEtZH;48#OJazjMX@1pVc2revwsm0wTiv2AmY*F`9WjBU*OB+E{21)saA%(khRyvmxt zbSQ2pDrezAgUgaf1-)#8l%3qQoqy7ESzEOehbtP-3nIB}sFr&^`oP>#EA$dS1&*=z zB#o*dGK5JQ+5Oc9@_TyMn6>20E=m=_3*lQe*bo;ilNLM2`Nkx>ryC#a{I7^e{+0Z_ zWLG1^hW%0cN#T?I3Y zx}hhbdJXRdZ$sT-<--XY-eY3DVr{(oOl^8Lm((X8OHL{_lo(Twv6^*$$hWolhz@dV zL`I!!7!FQ5L$VSkhUPjp(qn7x!l&668HHlaq1`%WEGOEYUcVY&K9iqPJ19SCPV=P2 zq{LeJd>miV7sNe~lENt}eAi-1e!z6s?NoHMo-d!ryD!?-zELN6dRZVn;aphqtWDbf z^-ekQ>@DeMMJ4?<+J5jk;u6%gohtj2pILKqc*?k(MdPEgVx5+VCcGXT&2LC4V`t@$ zZ?Ys@ncMW#c9}%{{=rkftqM(C4G|C+mvF z>j4V<_2UQcY<2fgm`UiurbzAh)4q=_ora}l^t3Yee|eu9tkm6%0=->o^Y(PHJ8z5d zU8{=zV5-BilK8HOjr09jtC~&o=CiF+OZoing&IegLXA&@@eR)e27K-6@IfPEeb-$P zC*#L0+hdcgm?CmYH{)dG_SD5GEg5Ev7$Tx$xT1$QR_Na{NHw)h@;wk27rE0_F^bwY zt-zl1BV{5_zl%#h$|{0SvldM$LI=KMRbfBRKs;~P3Y!G#@`fqpD${biG>@OnX)fiI z0fmWP}1`LUF^ii5~Xs^`nvOk8O zt2K1FCP9^>(14ynuj{a4vkj-Lp7o6QdvZu@+i@&p*zaYWYjn( z!*uPjs&V~}ovD&vl9~=q&!2-YJ!=?jf+}ev`w^Y=?_TOirk^U29*7u2W*DYrLScU%DKcGN1?<>!FR+NY~KU z_)b+4KNLa35krN8{zF#Muwkz3fkI2oAx)*;rPAD)`^lr*wB2S?udn!F6 z^&eg*3zv^mOjN#B6%y6tIBFtINE=O`O&_9Z(FVz#>bD9LS*?^K4IMrstCm+No+;m} z42fSPA4(+En)ZvPNoUbRY3C^o#0O=UEOyvnI1}j9Rw=G3FRLD_e-inmV)A~9fU=BQ zO6{S(qkg6wA$?LY6;84n!-ULTUZYr``dj@PW_(OuLis?cq;ymCsJhhe6fW6~G+jNc zFqe;(wGN+@vE?Sp11hz8IcXKyfpV6z2T-nKDTCyf*=SP@D;RHz2g#*?hkZZ* zCn4ZrM=38Vjw>{k&y=fGwvau$LD-X$NS@@aE8kL$y;ySC%&i*69S3}8A@L2? zuT5|O{R*gS*co!&VV~O<>OTRW8VC5qSC9pp3Hm(+s~d!T+Y!L^9f7f!&qWrWUdWGP z)~ppeQ-=^2V7J9EcNk=Op8*#1uMyN@3S`!hixd02Jchif1h7+)fQ97ijJu7#|CH;%|Tlb_LlUfqP=NN5m$kz&A2(kA^(zdBD#;2h61%c-SdGQ7=-5 z!QSoyGAbW(fiD4ViKvwpwKHVX|0TY_yenYV{{StyQoRyiI|;UwHIKd*+ehc`(enQ@?lm-^;GpT zSZzAwC9z8!@(ChKI05_K36iQH9z*`!i1-M4nFOPk!D`C^1A-Z3M93hswk_nIcY|iL zVGWxh!+TD>SZxc~)ezVrA7=Fg%mt!kkTVf&I@1iR}X|cc`5} zh8y92zF<3xL9?5|CvU>&18^rqamT4+Kod8?O7&r;Fu)6jK)%-*ya6$UyJ6gR$d23R4YCB6bCcQ@>7+eoh10M;7_qrD*p;7H_0Qh@DX ze?2}}$QiKjwP1@+K~F}odr#QUd_cY+t6&w#5K$SupvA8+_A&U_Nmy|jWU{A21Y8HZ zae#P*zEcSrN90@)*v1bSa|Bj#6?}mYV_jeuu8=X;fml%u*c?QS7IrZSw3-M=xWynX;}L{H#YkM~ zfbocIL*9ApvN;H7js@VUYe2hhU|WU|f68Gba`l#hED?!{I1oe(DAb533I(JN;tr7A z4bg3Cz!TI#yhZ#RZ3Oct0-qiWYg_>u+YVzVLiEI5!H5__p4Q*}46;G5hzCN%A0k>3 z;V1G&{_Y-(?1G5bx7 z%=)kF2E#Z1yMEV?Njmb^xCZHZvLaR0>FrN3gmq zh>h>z-A0f;b|t{R234?H79c(lpF)OxWkYf(RYN^bEqY zjul8Y685$bEC74tRe+T0U<~pyBBv?#(7|3{hA?tDNHz>K>k67j)_o1IRRZh_agWXr zlO13bva*eX-y*=KB47=^aEc>Z6glNsVB-_P+swhvv6lvROP>ZiiUS|m0#<+w@`%bo zbQJQsBi6_c=0zTEJ-ELISk!*v42%ziv53b+JP#e_``v*BIcKZD6Wag>Xb$)Ghbz3m zwv-@szV)>m<8)pz^d?G*eM-*L?Cx$1K4E= z{9Xii83m&jf+b?@1Xk@JH%-pL9q#s$WE!8_R97uis; zvnMhu)8QW2T_+b_YaG!cTK9a=HVeGD2>h@R_M8THMJ!+~{3ZZjcnd#!;BJ#ZUf2nJ zXyl!AuvmPWMJzWP{>=wl=YZ6(XTx~#E(_QJcK&RH`M!Z{-+<0UFcR^z*opczTqgqt z+X)a6tYGvYyo>ruf`1XIh~4P1`XO!PKFGYP4LXqXou zc9}pnSLEtMZel!X1|fFNg*l_(Jo18QfPJY@?#O-I3G-m5;VxJM_DazKeOiKTt%5HP zSSwbiAhxXq-oak&IuN0dAs#W(N|37~oJav9XAE}y#dsot*;HWl$X%Nc@_LDHz6^!oKP7*#o~t)wF$8?u7yJ=>wj%x&yU*3b9g(RSpH#5R0U~{8z{n*dPa4>jupMG&E?7)4 z>>qnvAp0^tDdfRU5gqRVXL2NX!bEr#J7NET$ejo4(}Z;+6EId$6@#rKr}7eztq)v7 z02=Na#D9#{*w+j-I|%nj{C6?PMIXilfX!mhrG6Om8Lag+_%w2&qF3T6mjW|1!Md@+ z47>iAgT*2j@qZ&oOb*P8-R?y2S{bY<9i*!VYsCI6$R}C{SAT-1!NU;gIdDhh@5in; zY4H0`kZ%{n=2;+rCy-(~%y=7~tG6+6Cy-CT>ln45V_@%xAgaOA2Nbsb)5&C^=rWn zJ;4UF0nv)545Ev%b1D-ggIuWCr3`B%7r>JN)-)~zJ4ETEgYRQMImDQo!8c-_vC|R> zJTU~UI|l3kZ3~~ruuiEIBwzrRVG6d0)=L4uaDX#rHJmiDumX&;jW93z2!6Jj339}q zjmnV-?*LvE3C~6ALA&$d4kXZS7RVcWHdujfkWt$L);t>C^M?60Km9@%9zlnT;J*LD=gg;YMJ?=M6zrG*S{Z~{3t$`tb~FVv z;{dU~1$OrpG^}t9Eh`q<4J}eq6>^JZBbkP4X;t2dTVmIh`DcIy} z(5MwezRmFZIj9=8C;L!M>8W&k+84EasJ*AEv%Pakua%TecxjPFiH&v{2ak@^{)1Q{ z&F=H)>lw6Gx=?P>=8{UKfjx)XUr9D}Sq^c?Le`G)?$*^-=4PYx0_C4NsLiXIcXqZ* z*O5+8uB)~TYIVJ9t8H`YHkW5=TaJ4&<@R*9scz#QXuR!v-1txR!MaE7x1Q&b;L~-YQ6clWaqaPnB)ur-rQVOY)=Y-SVWqhIU@-CW&M3 zWp#)Cp~=))opWrboi*(um$x&jHtvHABGFY#!x)6v`AnJ8LUJPGhl zlDmC^0P6%ks%RRUXrmO7+$~PqQ0zYPuq(md~z_8M-s(`mBY^y;odcY;3(y z{cmMv&X@GW!e{jn@~Jxi=zb-fyPB%4gHIfi{^_tRd7QQ_ zqlAC7^BXmTu|n&@u%LOKSSd)WPU!Q|e>d~Wa*e2WeqK|*lM||moSYQj+z-{h!`V7| z%pa5kJ#T6@3&cXRrX^~=h1fkZB4>r;BG0k(p7*77sgG0rN(Uve)Vr){x(gJ6t!3pl zWzveqt{-~L8J5fU#rOs;nSPk=Q9CAQQ*v8YWd&(SrY&U_(vJ5XuRUEBUiQ5%Pu^k{ z#|R=dqX9& zPUu{1@XLL`xscH&y3^mUb&K^_6-)-d%2pP z`hHrkhNKOngiHCgRrd#YhCAnHhL4Y{_1kBCSg}wvCcU41A@_UTB4se6g|UI;*Lke6 ziuXd`*1U+~Zr!`YF*Y~if~$P=ED5c!mvcUK7T>7*kj8xdjoMR(m5tWIDBhC__ukRK zDB}<|7?&Ava;hm2FRn>H$DWe&yk@ODPwy8XyN0`5s@CvC{9_GU2#)2(#gVb)QHn(o zMwdJ6iv~CwQ_4y=c2v;J^zZ6$WTTsXggd$J;!WK-EdANc&|C3#K{p&a$zhcrGi=$R zSvplV!;f?|SvRO1Jr)R zK=+11*>X$tooilh+L@^*b+ixeihmpOx8n~wtwujhYM@?Q#){HV_B+<80Oi_Q-6d@|ZCdmtiWUEBX~?8c zLxKFFlxyr=`P3$BVlPv!w_IHc+%Ge^vjmF(33%B)Gaw}4K*ZvC)r`QVOSw1MDQQ;1 zO??lvH1r)cD+joBXvk$zzW#cpljoujB7!wN=It+)3TUo|Ct_p+RNA{LZ*f zEbfS{_{!}lD`~z%E1q)0za;)?^I)YHFRQG!NlFph^Z^p^ zdQ|QLLr}(*{N?Q4WD(c3%S=Pga?{orzSOu}u#1~mQP#V7%%iyn!mSd-%bTZWshi68 zr7vTf<@D54%XJxufh5&pxSE`HQ~9FTwoq2m*F1?_d1O^&L_OJ9>TF6%~>o-9Dmjy02-*t4fP zlNZfjUtgipon-5CH`XII&vS|CSwI3_=4|E6EG8t0)Irt}-B87|mKmZyxXq&2PBz2S zX?4i;gs&lU9c}56)!Q={CHZDFiVuOka9RDdfIg>M34b$xe%)2YpB5focCnA+uKJuD z@7y=3RLY5Arx&=j1d)AMt-3PBrdGZvk*hD-(cZ7~&y2L7tc0Io0ki(6MX$@tTAOqz z{Ym-jK?B|G`bzrfe*fCr{71Z9HE)Mo#+kY&M4yS%T2f;XI}p$HPL?Iz%HP){Cf+lb z>5WxwX`5TF&utPsYirTEJ#BxWGU4rtzvswxTN<)+oY`N~{t%Y-4QgexA~m}EDRr0m zZQLo<149Cn&V{q1%;W8SJ103wukZ^~g4oG&S`P%>$&^u-BiPjWJVToq2p)8c-}-oY4crL-IRQPuY~xh?XHQV=&kK}#_WWY z$2@v>0WfQaX=M++Y48=Oxn7ly{euSQ=Nm=rNyrVDH^oWC7A2)sB+bhytsPXnW8^UR zlP$Z7EBEuV%Z@jBP$)Lre0RsMj;1U+VQ@~uF6d*|11I3Y&X05({p;Erhs~Pwge}}r z6+=BvqX*`E1|XD1ke@vj&@ZLwok@||hBdzO$&7WZYRaSTma1BwR@uFV1BAkI?2i~=DYTDar+W=8O6e&^^5G*KSLsS&Is3;v<)Fc`cjro!oV~L5qL=$6+-NYVS z)X35i5s;LS7!rgOEnVB=^+&k}iC;E@spWAk|YjP(g4oljXzprfr zH~|-098o(ro+!Rl*k0P&`GeTOKXp}i{C{C?z5Io!6aNH8B1W?_uQ+8M70%r(2h&4Q}T5h}*dA-WOFXWKX5Xs=3-xqwMCYqa$M{ zgm{fC?y1XnPf|&4=Gr$`fFJc3|4Z%VCWjJbK|--@+g=NMzt|Nw;xksSoV3#{v-cJbT#?3??Clg*(#}B)g={cL?AF&jj_iT%yl~2pH}!RNhrCI{aM4m zjC9d2f-m*2T4t7(6znR>Z+>93)yq_{&&{TKzT{-ws1B>7E+L({G9B!)Y zZ>VXPT`K&uV#nZ*_Lj2_M;?zWTzJ^^jj~U6IeC9VRaSVNRzHYz60L^&ZK86f^l6c6 zv$sjK*V`qI@$L~j1HHs^8ol4|k(^6eC*RP`H=QrG13#*wc2vD~&P0TYlBcR6HToRAQF(Z_P1XIrwxhGoN>KDwfOKio=?gaHXDy7p;mLj5swt-72Kn zFWXO2m6TX`yJIcSL%i7ROJ#cfm&L`>cZx%O^)~*2$!l(aPxsu|zYOK2bJN}>?8rP( zm960j{}3gx{_Nab;UW_kZEQFRZt>m)&asywPt2TTv#8Z0XPx9!l5L?+$Jab3%N+A+ zRZc@maiX-Z{7KJA>)t8fhUdm7Eg$Obz)UXtD{V=F^V{+YTeXYesEE(jbdIZ7A$=rU zT<6Z%g0<5;c6jub+5gz?>3H-(nfM}USV4K)IqqyrnZ@Ut$xUG;La@f0bw!BFCxxsE zik}*mJ+6`cuOcG7&g>rdsyNwknQQHG{dMQy5YJe**!;Q69VU0D z=ABM7NsRhX+dP{+P3+14NgLhlQEDyiE@^7NDQFu%C9Ey(*~%}*XYstMtl!>Aa7$lP zCL6eDaYU@J*5doYCU*w&i`PQaIvu+g)02A5*4FrBUQAG@?kTy`H`_cxEHZKKe_PWIj<=1~ zKd4VA1wpRgfyPVw#DGPBW^vrRV)+^U^lG*HpL@h;=A_ha;>Xy zztD_X(w;_uB|lv#D@ z@`i%@Wm|g!hd58QUNa~ML)ax2kkwfQp9A}cP_7ZA>AxbuD4}9 zbGsfo5c_-7)mb(}?b;sXd@hkD{+Hj>wv)S1JkI=>YHCA5QCQ*1vQN5Gtja>uAx{U8Dj(-E~tLXI!i1XUBdL!<|!Wr|LNK z;j6@ViRSsNwl20h05#peFoVTJ3$Y<;ac7ZlUd?U2wqNbx~= zo<9?3#msuFs;C%y*)re5Ll!W`1dF;gyp1wnhBceyp%f z>)wWk`!6-WTC*jyBH@!X|58Q&6bnmBk;&CQRkf$wTK1;uo@%y(MbPocxv|a*tet-A zZz`MwD`e*+H?Wvv#C+j+1FLO9xufhSa77fz$s2OBrb|wwJd}%iT+J?99yGI2I@UKM&%*wS zr2a35t(kUs&B<8y;zqYInuA5>QgjK!vZOUBx(49_k(626!K;`p^DREmw4D3S^Sec( z;&c)Br%SBnH``_hfLpw+a6#uVlUlK(`2^L9hNs1rGO1!h-&vc|sms<3jeoY(ZH%*i zU&+GMpoF8Dmeq^2$AzZiaqQV$eHFjTB8ql4++g*(S%pet0wdjLz8+H7av{4sp*?YQ z!LIfJAV+J>`&A_kn&Nt?3V9YhtgWZ4Sp9w6i)ArhzcDVC{Q_*h>)X1D)#`5r0pg{c z@4Kay^|DrZZC!!kl*`7D+GuXn(x6|41-EiWje4actZc_IgERx_yF4hCs0y_~p;Uw%lz!;Z>i?F3Mc+98vG2pZi<% z_UIXN((GS$-uuum$(DG3c;CF4eN23o-=LK=Zz=s+np;}e@t1ILLfA^%br)Avk3Y*h zQ5l`VP3TSAP*yZ>)FM`#z+KtvTs;5}>rpdF`@nJYoXF@mG3oOZBM$Z4%ePO;m$>1? z;#HPLY%V;jpVfM%Y>~{WEVSbj!JP3uE0pny)jpHhW&zbR-|F9-O9i01f2>7_M2d-z00Sc*(DEuh#kp8bl2Z z2eKX|yiUF#bLd`dst^w`dpwv?msZpxJysza;Mq=|ZXdBF{??K}54DD0oSbqs;j?#| z>OQTX@Ud_))4c=d$H1riw6T)&kLROBkK#U!G)!-|n%t~>KT=|sY$zPj`HuI!xXi3t znO7fJ{IB$`BB<}RjS5J>4e{HSd5;}p*ihP^dOTrPrl_i4t>f<(_A#S6zo_t)waeev zKLx}6uM6B_dm?>j35QN;)8_O^en?tXu(7=eFE&P5+*Kzw?kagMon4;LebXv$^6=Fc z)W^cG%7C+?V%b z($l2K{JX7-ICf%Ri(wj0)A^D=q|3|hcBY8hC(c`WD9$SEGhZdgqp~eyq2xx!KzYO9 zI*VLk82g_t51bG=FY~Eo=o6fT^H?#fV;;}_#o?dszw`f0QYT72ls9Wx4@DO&(ln=< zj+OKj?kGLgaa5Qy;oq>>_{dek6PB4oRXM!9oZz1xTXt+9$NZd#&AruAT-7N{ksYcz zt?hGMF()9}DYiZ2TSs=^vw{u4=F4+R8*efbL<#)$y5N@9(#O&nrPJCc@xA=omk*6k zS*@ECX8xh(U}j;$>a@Q~%=>qnuNL3r?E@b5j{Gm#tm@fn&WO68wNW{-g$taV9}YA~ zvyxLJN3%2Q5rYz13a;t*ww@?Efb0!@EvwB|`;;yHDeh&s_mstgi}inI^-1_?ON-a^ z2ABnjKQX!6KclumZX)ZhoTEHuKXT^eh~Hw*EL6LmSNRsrPIXVrd>>zTR=-<#N^sXu z-u9q8O}eOfPxE{eQ?D6I&c~&${UPvIaem_u?@vj7NHLZBbq_OrBpzy(IH<2HEGm?) zso33rY*_2G-`4iT9bEFK$5U;2@!?c+$)I? zh38}YBi7CE9kQTxL~crAKk%p?oi)5OVhi)xs=EzKN}^;h6pwrV9CA0nJKQ(!#M0U^ ziws4jThrtTpJlGBTA}$t;3QhX3h(r*Xq6VqYwP=%yQEtlXqVn$<5vA$DqB)6zSkYiHf@n)JHATW1^|Wh# zTVcz+)-xTPUKeGA?g;ZN`w?5kie|6o#aK95=G!bBdQ$Ak6KhI(q#esTZgigM_Uij( zaEm6`FvuLr_GbUcp2oduxFd1^jcP$O7sv4PvATQ)eS*P`cDPjuhT0jA1D3)~Rv9A`9l4EJ|#8L!;5z&y_4 zvDp>wC`OBV*kD+Hc>kP%3xlqz08O8c$9%=^<+yPtbJuZa^CC=+n1u7bXP-BeYi6m& zDP5FzmDg3p>Q&ms`b@@5wgq=M?+h=A$24& zon9Zq+>SJ?GVXNVS!7y^;yG}Suwo2hT2J*V)o-eU>X(`v?G@b?{Wk^`<236f`xa*r z_XPJjHs#J&NEU1Q&5xiB3JmD-t_uheJN+cke_ z+4_lw{fvC(DV7c;t=I*uH>~%p3&4;n7=ecKI$!Nv&16lQ=DhZyu0ubXv6{JyHJZJT zeVXmb&SCw8#GPM*`E{Xz0XA6+ZK1|S`y9yKAM`&O4m0*J*RaZ29Cj^hCpcQaVm2V| zH`B0C|CugbdrQmJJ=N_3ODa&8j62K-Ry}JRdm_7n6~cM|3~2ykxgl1+Uzeo)LHj|w zR>##}($7GI<2yzGQ_i$uO=VfLD!|g(kC?_YL$;o;-=uTbt=2UHUAz^Myc3K8#y4Pd zHD`@r>6yvQNM;XE7};Qs9D|a5+IDS}POJM@|2@zVzk}a$Bl8UN6!>3%VFohIz@NDV zG0)EodHQLf*_)|<0DjtT!_UB@E@f_Fe#(quT7!=h=PnTass`puqhGIY)?L<}*45~~ z!eAQs$tOZi? zFrtTiAX*4>kPeKRGq_|=>Cfrq`h}=-KTxwnnd6xOOec&+0`%QHNYo#3p?1W>rWi`~ zkMvi8i2V*Ru{q%U*#p$yHbl@J5ffD)%Giyl;SAiv0pI4&h&WwE+-?_eutQO!h}q2e z4{;!SMEeO*RDoz1F7_neiG3ycnQ@FQaCP;1W+wKH_z^QNv?I z!$S}oyMn$=MI7!D(4e7)*+B5#LPU|+iXNc8-_fhrhzYs_L-`YMiEE9L-EIg58gvul zbPv#*hlp1G56H;f;IzyKVq!XQW_uBRbpk)?SBA-8NA(2C@*+?h&rv!P5y(Fv{VK!< z=K&RY3AF}8d(UzIeAK!Cc-@2O@h!-c7;he8Oaepz3A_3nILh&m^$U#abIA52+NW4& z9^#)*U{Az#G#==t^FTn~LY#OkkO|jN8*y#EMr@R_&=Nw5atAvBd9e$a>w0jxzQX8+ zfOY5})cG6m0 z7`+{ZnPZ32Q=kDK$fN{JI{+*Q#h!_~ijW;YK(^bA z5%6B%#-lNkm5{I#3gpBPFo2IBf0*)S6u?@h(p;xd^ZFoDGMwQWhu)op*sk9pn|MDULeyG0W?b)kK55R$^uS^;dXe5e2hwiQBA_Ai2HXf z`bl_M!X^=xsum?FXD!l+!FLw|*I^5bTMM0fV(sVzZs#fH@@st3;e}K1d#({tL>#ad z82x(88A3O7LN^k8h*9qYG^xNmd4YP9alHhR7zIlXg$24n=O3V%zhNCI#(T2yeHE?{ zQ)vyfY7fm5cj9!6Uy1MN1j0+)Q)?UCJQeb{#>g5V zn>X;hgfZ-gwZzNIMJ0ee(Jqr_xNNFhr|e=>SJ5mwTT*+KlS#A8eu&0|n-16GqQ7BCiOYOF5hg>o{nb2|u(MpJkYbj+k8{ zd}oew_Qn-LZ2X%AbP%y<&oughFi6%D+U>?j`Ix&lun9u?2#x5(4#>h1vui$ZWs#8A zcxX(3j}m(CK@Tj@e`~BC)Mvt(jfUS|W}G$Sv2GA{wg_V&G&JQCCv0QBaaLqOJN;Pc z#-TQbP#X3PK?bnpVQ zeu=AHsMQ5?ixAL+lg))4CZHAtS|pCvJhYGli4$M2+GsOlP}&mnfN*8+QFA)#tApkV zk4oC5IzLKqDoQ%S3djo;{C{5wf8K%K7C~o}0i6jMk`;!ctR1|O3g3U^(yqqrXJVzJ zeCv6zL*l8Nk69ZAZ!inJW#BuSEtL75vW5?Z{0JG&L+|+5A8y7DYZK-zvAL3$Z-Cb{ zf%RBGtF*(RRflq$leQwU0NcdgP2+2QVWU(3}re!=1*JeL1ww zh8?w`w+5^zL!lKRG~EFS6Za|Ay8(FEaQJv{jLZys^k&r4g}FtDZ_4vt16`FuTg2}l zj5T2{EY<>AAb!<+cq78wtMGjVWI~zhNwcG1Rl%4EKIo|_EU5vdOCTdPW;P!^ZG;9B zA#ED1BV_6aOCF6ek!ODkk64PD2n|RUC_@{sFzZON2<@z-w@@dnd;B1lR%L z0M+Ozafauir;X6wRE%jARvJG@l7}aVm#{6;JF%`3Pi{BbPlgNzAlb3-MX}J@IP|p_ zC30bP4ftq`ctsJULU>CldgKP*y$IG42pbw7`aK6`-{W*s3XHLM-Y$oGNKY`z+(0jW~S?jY&-0Iq0nnBd5Lf$GtOX8*n%M zJrw$nH(H@9JWj1~)hxwa)L_?WW3(WeHC@oh2#h@hJBL$bU6MI{(Zouwl0&LU@S`@+Ovfy?+4#80zIG=;0?-_pjG0I^?-$VLW=aXMcl7} z&=s9JAl}&)Xq-pBLPO*{|KiHA5*`e@hyp>=7U z{Wp7hdWWjA3<7Q*$4CEL|D%pkt;5v2$C>Yu=HfdnpR4G*)SOd4w0THR zlJ-k>Hfyr>Wp7KHra7&3NUuGkOKjsj+DAL?n%jdRD-GQCC)MVa^XvV)cWT=i^L0o1 zvpUqR3){cz`BQtxV$X=bysaj^95=&phv}C+oi(bmpDN@{7y2LQQw{&9{@1;?^?7q~ zo9{p?ce~wruPal+C%bw^S?y4<8xEKKT572I(6w5(ho#rC`_fx#>dPCBba?4TTl%^m z4tPE@Wm2r;7WSc*ugcaH`6^bl3|F0E1+(_6CUq3nm()CINa*tJovmFXz>)=}|Dkd50Mz`kEU}t3#?!HQ!Yquxj!Ontgq~_cU{-XhucdacO#< zNy)-yQ_VBpXS`I+&+VQy4iy(`OuNSNt~mKjvsiR$K5zU^@%B!i;^dq^@@`f1cPm)G znSILsqF>XXRlHU_ZV;&UTTk#Cv0%|MzuEt|#298&zx=T6y|45{LzOzl^tNe)uBN@b z%D-%JrAzxt&T?n7S@TyMUwVCVob|%apJgZCMZM>gDmvrYO%{H^HecfncuZw7tNP!s$WZ1Y%&NL&7H=_vvAOed)yR^*vgBqf)(fYyE!we zZ)Z(UwSIrBGC&z^ZY^BI-ra3h%`0A9GO^*V-q#V(!SF|G?gyP59@_h@^oO*-wETj` zmaVKxVVFgOW@fWhS&;m4xv+CJfATn=CALxHm;dhf$aGJw`Fl=Ea^^UNXt2zDgxH(M z?enV{SCl8eTys>tYk2&Ox8a{h&YZV+lxXmgyfp2<6m}lJDVyOenkCq)pWS+~OdzW) zS=745G;i$FMGet{)g_bv7WOsz<@}!PnX$3t-`?-dWa3Gt>jtuFzb-l^ORan}aC=x* z;NRgMF(Vf~9POb=DsD=vOp<5cult|AM5q-;GTl1j6l|HO*sbX>XOYK^Q2&^&HBr-Q ztWLIwb5$ULxh8Mwl9*JA|1fh^n%93>B$nDMw)8pW8`hU4rn8dH zXXRH1Yo`kbMGj!m++E=z8&Nd8A%Qt}w8Q*c(Qc7bXFV7?q&+itFflthpzwVAP3}o? zn|YwRqG3_-Z-t>{-vf`DGU?Jv_qfvKKlzB**A+n-I!Q>Tpwd-+QBW%`;@s~(Qdubd zTIN>!UKivvbngAAlTrJFGwpxtO3w37+LTnB7lydt4Y7!SM$_N;xY)i>QPSIfSD+ui zFiahHedVd~gS?-aangH&r@F_M|BvEjchgj8O)R~bN3dYL#T~`)FiJ-y#|z5;O0$pG8h{VNqSTp2>O=?F zpLV5HD5N{(!S!y;uSScIm$fXaD5!l{M!W5Y{fU>8I`X%*akyWKxfXlX{*CFymeSwL zBw(hz>Yu;rRJ>c*nQi}&+Z z_LWrU$u>x5RF$a~jyN?tIjSgj--4q~!2?I7`@oMnH7C8HlyO=VE;y|ZZ*?t8DU2_AlOK_8tV|kQX#eR< zUBuS7e;1y29k040f0t4&dG-Erot?o%WDpb>PPEyUhe|7pxXraZORtnAUh(Z~d#1h? z*);ZL%>V<@888ranQRbmGtC{4)n>^xg-;Yy`wtFtpB@tNDE{S=i5^zkb;Y5nqa;JJ z9@c!NyCGBv&6!u)&y|}Yr}=k{?>LV=Uo5&C7Z+Iv2BMA4KG|C&o07kg?&}=n9Td+p zdpDR+7gyva4OW=+RoI*k9KW_T{^l~l*knDwv@rEZLQrO4)l|(|flj!A^=apjiWX_D zd}PBZmYw_Gp(b&uQT(8rLqBWl&FPmsPTE_rwEZCW6Y*6b0TUXo7l%k)%1?D~x3Zg} zU!52K^@^cB)y&o9_URc3@oyhg=v7k$??oqpM;%kSTee@GQ@4?E+V$W0(XmO<8-l;K zV|1o|IG<>r8sjIfEb(pR^i&+rFqfRj za8tx9r}FvYXB?lNXkf5j%dBdh^a0NQ%u9_?#aPbcj9Apuj-2LBiQT#J&DpGW5sM$H zwQbHQ`A{e+IoSS-AZ)^zm0Q=HTs?E5#^ilf*xN&3@5?WpH{f6qEPla_>m6SGyR1q& zwfcKaq~p0ct6~lb_`bGkG@R0XyUq`i_JV&~!>X9nTp+D$h)YiDL&}q)U z53G|8O*WUP-v3ws&QLAX@~!o?Ewa)Fh5DlA=G&&8J|~gWeA?RC0p|rX>eJpeB$%Z> zEeh`a$Bb)P2He4wnljnt!YLJkLA~9fnKvS5$5$=dI67G6C(lj(kf6vKS0~eJg(kv1 zhThiEWwQz$imo@+^0;0JOSZ?Kh>!%DiYpr)XHAxTkuq8Sb@zDFPsKr|*9RWe{w-%o z-zc{AzaBOg=$D=G@0YCd@YH@={7dR($(LE|+S|IF!Y_o!88h3bmH%EiO}@1uk6rH( zx#)3RdgRs_>#P%+7iV9UTupv0UD`EZvdhxn{HfBZzFY2F*j1L-(>SDgs{h*g>jIXS zjy+^JQ_4xZlyD?dSrwpNA>1IUV9xINtb9nJm26jC7;~SS=|VxgOU#DZKMxbMFUsX6 z{*m;!fZGwn8*ABRo}=<=*jdCcDKrE3HR3=ftNi4C>8| z@x_6K%fT%kBaZh!x!Pm>j#V9gd%0y5t1{ju1ZGT7+*MxW$B7?v(z}mU_DZ+PN@^-~ za;N?Ca$|V0jCtQUeAT@ve@9Yk;=K>5<{fn>tfmABXZ zyxM$Xu1Rjyk++hPtD)zc%@fd zP?Q)Zxu4_QGg%i`i4*WL-x2xivreRn$HX-Ys*a?fV7W^tWKT7N3|QOgQ< zSJVycvm2bDiYSP?v1r-oIVxv)MRH0)b=IeKJVTslpRn7or|o>%4RFz4XxhR%G&W+1 zA#P#BWni!h8zQsbCTNoLWWn7tOy%MNQ{G@#?Jaq3VV$C+Utqgwx^qNu{0~dKV1-{4 z|C;)*#J@@!OK=Wi$A6&)4@BU6mFn?)8ls`g36X+S%(2%RV2=H_R$+N?nyu_BOlnZ*?Yrj_@G! zMMsz-OqwJg-LQ`(b&CvD#@0po1@VUYw-4mDB*rB33m>%SbF;*+%m-Ax4MoK#q?^js z-KkdmDU#Lu;$2rryst2|WoOfz6W(VWs3=vj1c{;x?8dG+m5XFs<=u537=x}}3)pd= z#3+KV*gfvh!?q2H3-cY?u5boLQRYunyBqS0+6yL>PV3Z((kAU*l@TvodDr(8=ZlIj zGgeCYZ+jI}RMvugusSn(UQ`Z9<7HhnOdtV0<_$*oM(5569q!gu@j;ZBAmMzt)+}Qs zi_Tl@)YvvDikB7kl}zvWPB>*^^-9kA;o&#z9%@U_i7zl7AT!l;??%I z#YVsM6#?s7!%O_D%$sXmGr0-2;L{!Ky()I9 zgP+!|FG`eNsu(@6*7o`IPa^(`Z(nlVW1se5@%U6riCxyC8Xp~7SS7%D=k{IY3#8v8 zEyyVD-=4b`4Uc0+TFuyJJ-J1d?Uy(`#a%Y8Yq!Zsv5DFB!HT-vq7-SdVpHG0Hhok7 zSo3B4`epuOgACV7!_o#44rj(!t<~%obPM~LH63Ra`=!t26B=q+``kw^+!1FH9Tub= zYS%6Ulj+E085r)Zd3oXk=KED44Z`A@Lcen7o=9s!KuP%Kb&pqYeG-^K<)vx!68_1M zD@3ZP{7&IpR!--nidboa?EAWPj5^nV1-5Z#V%mc5+ckE4{lP6UGI3g-Noxl?Lv+Rb z6ZN@9x02D)(6Uiohr|N^+*PjYrmno|JA>1%IFa7_=3shg`JaQ^Eqp~i?6uv$RgRV2 zmmR3Rpg-X}I4?iuT}<@cE5rA7#pmrz{6}&&x1}kNbwG5);#W;f(=ycBQ#z{CSrjnQ zb>-jj0jqMxzrndS`?r55@Y1_V=Yq*pBihdG>@lnMk@v`ctXZd3INqIO7E=@39nv^5 zrgw6|tfZeLr*j@Oo?+&Ra`^$e(&mWLh0?*2&NdtVL_fO~+v0VrdH#{+1vMu#I};+) z?v;${zhZtz+{ruD=Unrh+z%%ft<_;*>HQ~aeBAWVXU=m5+oT(l-6S3FKdZlG5R1MR zWZ~3|1N4c~z?u#|U0#t$@>r>zTm2e|vbkQF@Zf3dSC8kdXEb8_Y zZI+c)mJN=#51QE*u`h1vqP?T{tIXsZlN}P;-zjU}=zb9%6t*$C+b1d{(yF50o5t`w z$I2Eb#;uJQIju_k511*f!DM1j(l^Bm+DS)XBW1{?u^WwF=O2ZA!QetL1Vw7)#2S29EskP*(0k6U(ZtjzFfnREIfNn)mJRf)Qe zzg75@sqApA7%dxCG`hiuHQ(**0*Bb?Q7yANhK_GH|Da9Wnf!0TV4F3UBc5XZx2mwA zw^%0qr`)pVoz z2yx8{*%0FvJt{cG?pS9;-efSD4$EKLYR+jDwVS_Dmoy$JxhcI@X4z#g{%TUuN~`!k z!*YEcxV*|28FrG*8J3FGN)vvn$d?n^eWEf{RwElxyIIF``fl#O(Sb3y=KkrB*}Xe| zeA2zd!ynEz7qPlT&U}AuR?~r!dxb3}58CeuHcTiEQ^tp`J}~h=)8DJp-X2camu6r3 zZU1cq!Q|ZSy-ii0%L=95)h+62BVB{5qBh1Jnjble)Bky4QqmrYdCr-J;f#yIo%|FX zxAn)e1Zi=}|Jrt2NPMf7{~rG`eC=d|#VVXA@|NsM%`GbEi80L(UgPrn+-r`@*UI{< z-m5k`2!p_(~R19Nd)5Y4_N^aCK~bMEHz0>t9>uOL z1ooa9QXX(5{J%KAWrxQ;HMEuPPxF`5WhPYJ(_9yf7Hwl4?%Y!0FJl)a*1utzxoumZ zk1>gQJF8)+s_n;IyTnULK?RL%Yq;U!^X9dxdkudVua}N3Kh!Rl-?q*z zSISP6DLa-3vnRY+>AOBBe5}8}Ik(mcJN~ki`|<_d$4&i*{A8KQ+1IzYVQJ;w+QWUT z#LeS8=Ks0m=ULNT)-yKLIDH7sJe+G)`FU>?C!hZb|2TJ>=0$gMn@KmaY}&jW`}34+ z|Eul~#d780`fDXT`Q_5u`kTG(hCRGy(;s;gn5#9V%451g)Ba)MuAAH!kMgnllv&xM zZ8FsUTx;L>u6^{tNqrK>%Oss!z)aPP8P|FD#r<~Qj!@e!7A|304pevSZtZC~)28Xn z?(>2FgoU^>w=0PH*<#U{`@MoP?eb@V@>q*y&o_l?J2J6&c>Q^((*caHz;8W%DicFOj z?n0>`+sukB)0iTp|5eY%-s%1O2c6Vj;C+3{5_48^zT?c~mh!k}d(HjLPnz6e@pWsI z`}$w>P4EADK%msC4r{L%Ua@*PrCbeHz`Mt5GI?OyZE~EO!TeFzt$Hz-G4Ntw!C<)Z zrRt`}Nngp>07R^eI~EAnd%V}Y9&QKwHbbLTs%9yf%0HDyRhQI{HSOB{`V)*^RyBvs zd&J|Ic$$b!TzO_3Ci9B!qB=$Cs@$NARUKBp(1>&^^y!B0nO!Uqr-ZW`Y_gkp-P{$N z6HI$OL&H^VQ2MA|sAIGWpj-zHET##|i9NvH$EoH_;qK--a&_!dW|O{Mb5XTdxknkH zdaqunP16lGY-BuQzF_^r=5hi!>p819J?!D^i_AX^hjh0zOVujXC+cWTvesSyr$NM= z&Kl4DlYNH0i9Lqhz}m|y1A^1mut4{(W}CW5<*b&gdo|zbO7xzL%gi*^H|$&NsqEXV z0I<2nGqV}*4BzPebz`*WH0L!eZMwElSE$bcEf$;gh&7Vk&x%F4smz~{9lSvQN_S3s zUo%s)OjD|PuT9at!PsvzPBUXzc`OTd87qR7fsF1z0T>qPqjh(*UuZ9A&2-OopX;Y0 z-V_Gx=sM;Lrjl9C+{R=uw=>=tEDUq>J9Qb_&$TDDj=FYTvi=WbTbD9|nJ<~9EO(YI ztBARs$zuM3_{I)HvR||bNrZQgx6+4ny1oT@hA~W5<>M;#p>CM4tJE+^QcR`G1 zDX^T`V5#MT9rglZlWbsW9s^PL7|bhU4PE*KeJUuBRv@0U227}wL%xWS2n6N=#H}78 z7IYPSkzavnlW%yZKMFipACP(`hC#g* zSVyaYhy4y1$zwoY1|y#I8u`$d0bMIHECo_=8IYBxhAO>6KcEl6z2PYN46LECh*2g3 zmA4ZJI?A#wM!fAH^3Ln^BA`KUBktITXrMi!Miz)~-T;EGS6{8y>Ng?M)Q`B>Uy#`s zKrQ}&$lEByVpkv@8j4sb@wn9>>ePc+C?OeVAwt!K`a*yOoe$hzAGjlf5xbKEJvak= zoo5jVGk~G=3-o_0qHf)Y`cjtkB*dDX5aIj@SjHa^kE=&~?{Acy22{Zglr&}BL;lR= z27e&?enM|3AA1F4LGd+W=edPg*m&^Gr2-GS6Va}Fz+y%Lt6B=g$4W>x6tO(QgsKtK zcR*y2FpGPEofa5Z>ggnJRyOv4B%XLma4=OgBQfbkD_bMGKp&jRo2DWE2O z!J&B_=uyhRdJR~=`-qxmA`ZO?Oud^9z(e&kYg1zI0dn4LV^+o(%aw$RBjwveFXVFgI2F#wC54E9RNdaED#$r z5nD_J4wq>t*Gu(X`aqzF|A*3#puvae#eKx2JrMi91UANzZm;uLjd}*6`HJq(AU;c3r>%iOAnqg{>>&p$K1{`2tyAdt!ht-TkYZ}C1 z>(PcQFet?Px(haHiRkxn^x|8LIT5IjWkAC3LbP`TqRPZ@I1}29f^`HUuG)lo@iiD? zzXsMf6W`4N*X4J>Cxj!O?vE&K7_d_tP}T#wO*SH!CqNq!(2>j#0NV&bRMi4CyFvR0 zj7*)oVD~+k?H4g`wn6Xd7)PLS%!C|WhKTVHd_RErEph!7Kq|iiJ-ry#sMOm7tDXkz z>RCuW(ij~Up>7xWhS%_Ca~M*5zsO)~sMcrd-{`aSJjmG#+FlBeu?^o{f@aLnmr%%& z!H_@#haf9rIxL4zEQW-Kz7oa02U~8X3->VE-y&J9)+OgUY2&pFljl2=P z*bD^o4OsVVc&ARx&aZ*ew}U0_M2nkY?{Q}lpjoI!G`J83+ zGrnV%Fzc9IOg=of7ps?ffjNQs8n`8Q@IQZ!{_4kmzFukR|UYDp#(q-t5=+^0W>JI6y=~8tKI(z+W{Vcr` zz8|iiuRpDS3(q z{rnoU@it^ziO)^=_|2H59Lk%Q2 z00!nBoJJU63}a3Nm-#IGYs>UzPGZi%xsbW|--MY2``-YG&jiNB3-&t#avKM0mUkb|$#rGD# z%*?@zI0zo(6TqEq$2o*tta5r_;WOdAJuycJhe&*64=|%Y17rDUtWO%f4d(bt%*j%q z8eHI|`Iv{q#`-s`T?y<2p%N)e`9}{-jHzqAT`^XmH5i`^zAp>@ z=_<~Wq~V0cbI3>omi38DEtqm!A@xh>K>+YTlQH^k*eso2*n>Kr0Bh0=kDY;b>!Gr-avgBS7Z_^PT8f!>9OrY0tJeoBek*GJ7w1S$K==2sqMv{T zE(Rm`F=+Z5tPzd|Gt9`j&_8+Thw#4=%rs&F{|nx(1$cKq=wmKEj#!n7(Gw}=4`rO@ zVXb@)8zMvvAz1CBzLgX{MJL-vgWxxy|?+QmkXN0U=_> zYyuO08Q9?2I90Ql8G+9<=1`m{x(=r66R@(&xbJWHyPq&CL*XmKfk^)i(mMhzlJgW=#6Bh9Lgg#@U$Cc2|U+~KrumWNp zw1)RDgB|<^uW$e}X&3zZzwl?oSC@-YZ!rsrtCD=X4)T*h=Ko;DJB^w270S~|lD+u( z1#|HaXhen?I|8;53~QbNALNc6h%i&;V4YcrtHjq?3ri-X@l^aBjZqSZCIcEGo@!!U zCceOt=$imm9}G0z4oKz=qZMbMm`qdTE%+Bc^CIMQ6#L2j_?B{_&xICUG2(fU(HU6k z&yZIP^hjB~UE!G*LVuwsxePKQ9{fOPY!mc)74z(S{J#qGdK9dNu)@Uo*@3x3oU@b< zy&LGvIoR8rM617|^j6d|1wLRZ#xw`@PJuO1u6HJ8nhrW~##Mi`?1LRv9cJP^%&#M` zVmb}<6svs}{Onm+EOGLwVSlceNyLw6hFuBh&8zk$W!uBOR*9YBRms$tuEAB1&tPAG&H(Olvfz7oltQh zsCgFpOI(pn=pEs(%Z$396Fg;DB@Eb!4uiy2W3}G_ITHIV;kWeAlqp6&8un)cKTYx? zr1TI-WDR5*2)PiGC-JUQ_HG?;U2K#TW3E${@?NaeK`8kdb}ie`k5SN+9W0rL@s5O5 z%!2j^MP`DXz%uNvcHxZNL$GUahvy`Qb1O)QSPoa?@A>G{2w=ceMm+LT_|RRjkVDx2 z`oWIIqqc>xr66d1BmB)OjAAo>-wmI18&4h?@YqSv?s@D`!XY_gm|YH;Pk~NhWNc^Sl7~gd4vG-wp{uH~RD9D(wpN$w7oe?4L zM1H0V`)n!fO^CXPhntu|JD`~YtYvSoV{U@hx}jgGaV|YSOH0t)oXoh0vm{ns8E<}$BM@eT2h`WC!B>Fvm zW*KE=KyAc;*#_T2?5=JYBk>Z`85Iw#T05YvFQ7Hze(gX@?eO$`{7zV50j!vwgLvrY zeCYHDW(~2X2cpGJjI9=yL|pI0?P(3mpz|_x62%?To`)JeVJn1$yo`0=0@jo)jGFdX zZ{c;G!XFVUwFP7qgt1M5R$4KxWY}~m>M?_@kAMvO(4$gVB5{f?f*vPAGc-riu@+rH ztuIiU0(xl1m2&(}I|4c#;ENsv;$JI9A>{fBI;cc@&5+kv^i~86ej_lOgk0T#75Olp zOyXflgeDbZ)Si%D6jrl!@DGu&hsDtSPCV6CU~eFUeI0`zk4Ei;WLyG^KZ3RX6Ikaw zXnzLQ;~$aL;2g3xyo6W#5w*-RmR*eB*29jE!{+wDqBo*eWP`!(A{S5Wsm9zD%P~Sa zi7^Y_axVHrc1tH%=3&mP#qRPu%z}exdk!p52U)dZ)guq(>VdH5%oC< zdktUo#}{^}z?01>tUy_?gkET<3-$M4rFjpX)uQwS^lKQjOLou#Ykds+RH482m}}$> zhoA?;U~7|MTN^Rf&oF97v`D8HDlh{GCp!i+kj@|W!M=5vX+toxW@6TOVU#AAHN>`D zfKhk@r@H`Bp>=9FzV(D=w?MudAP36!K)765`BYfrg(w}2z75CN8Sr_dA?YO;J;}-* zA3{O*qMQYOC!{QKW3ws&Hc*mvlI3O2}r!v3sd-TK;GMNCq2I77O#$O6a(HVnw%y0*cehehr zXOxE!qoGyK1NV_H%Y(HHz^60t7wvDyLo=f>UMuv`6(y%af}{gFV?oT`gjhDk-8AbK zK?ffA-UafSjKAi=>Q`e11)?r9^m>$W*5SlBJoYD$&}_(eq0xVDf*n#09qKtT=a0Y- zF~@V!TYvPxAETLwzAQ5CwCCV^bF2}Rt)T+GZv;l`4!JuR?Mh&5%>lii1szz!w>84| zyv4qdPS2R49~z90kNfFl6P=AC_INrItH*BhC7uTVgx`7&?WV(fXW{2D_DSdQZ1Nwp zQwSa9;oIM_hrWsDo5OfEy#$?64u${V@si+&-eDfRMeiD+n>wRsyMeM#@RlJ7wNVzB zUbLvhYDy=^bkKt>WbA_8_rp7X%pXB4(W5X|CqP$Dkc$mg3R|O8r$7!q_?zsRfv0m0 zMq-YU`aoNukkn+{=K?+XKvwJFnId5Ew9Yf2Lpm`Lf>NL2n1fBRK-g+@+ z1)Wb!#Mp_iI|H^%XSKAbza3WHiN7k1_C|<);;5&rPH!*=p5fmVNV^L@s0eFE0(|*f z)IxbOh{Hbz&*T@Ng)4Z+@-IHb{9T7OTd=ltp-$S@d_243iGI=P72^Jvp*`Z5@5QGL zf91o5C^H2E&ry2p)^ET;E#si87JUxHa&E!%*G}o{Wj-uRg3jbc%qU0QBfz zJ4Q^*;;-R1X^({rW3XL%S4KO!O0?F8{!><=0?6bscJl?eqaC(Gr$p!sFXeN|M@c#b z(qi1F5Dz__ts``PHOjK!akR#9*FYb9JlhgyIi16>#&tULM|lItb24EQ^!(0*9LXbz zVFh%i#|P!d;F=?Rnc8?Zgif2yg)a_(r8(g`vFp>ErL$Tgxb6#Up!MAf))ENI8;4qE z;9pNj$r-+24*m{;-|&KUxu7j;{N@7Ld*S*_NSsQ!qg^^RN~Z(p?MVQ7V}emyK%#v7 z>w`ON;N#fnvmSC9it9trUpnDKPXiT@iwyFj(e*&q+0b_dq)Vr()X+>1?4l0iru|z9 zb{P^#A`j9nfJJus#8E$pxlgBCS@2MF@|Ens z47Cn{Zs|-dWe%X66kU*+J^D7v_;gbYOVh(5C@<0|lx4wte87iJ;L)20@?}=g0p&)Z z>_!^&!W2@YGqQTLO4%2huqx2Iim}iwoeQF!ixvL0Lf?bnIVWL0Qx*c6qo$B4ohqJ; zdF+C+_L#L~JM{Kp94uoT{0JM*-?ReIo|S=?D3^`}Y>3WpwnKJe)IAJZbAx2)od@ZG zcBR(1pK|JO;L|BP0iAoMlY3gsn<}g%8JJU)v5U^ew?Qj5uvc0iNV=8K1Lf*a;)hPD z=EGmmSuuK}KpX)av`^3C>5wQqf7<4xLS=`wYZy3@iw7Hlmm{Q;whU} z0a|Ltht?W;>id{Yg|cQ<;u~W0=)_ezAJ>f%G@?rUUy3p4(6$JYwZm?$AGK009usJm z1u0lUFLVNu*4QpwB|l9&BeEm|?xgjIPL)l7T{V%hXMw;t{-$XYwItYDrLTeg~o}PGUM$oBzl2S9Qo!)@7LEgo|7fS!iN3KR zNn*BOVEr6K8%ng>jlDrX>ZNQjbaJ>2mO=M*;cru8xdv#v**F>YZB%1q1_>6 zTcS0X2M6Typ;*KRag8+kb$v_SRh(MADAOcqV6J#QpZrItTvD zfHle!mPVP5JW-ZBf(=?TM+tk_8hK+ON?M{f8c2i*yQO(B4EoaIZpsiuyRzZviw(-t zh^ds;c&d>2ap@G z7RgYH8T!$uQ|_HAXr=()(N3%sbr82mC+v()0#m*cdSCPLttFMDJqKx>PNy~)>!#Ag z`9RvDcKhH9l&FuGD=32&Wp|;~p0wVCs|ws*4fzsZ3caVJ)8QnOkI%RR;8n53OeMW3 zjU%A_`Y`mLRu#&_^)X+ODXx8d5*Q1aQLZ;NN>eU1FW7(x*N8)*0d1Q=O4i0z*%ead zKno0LP>t)9>x%XuVxt_1F@aWGTIZeM%N)=mt)yffrqG-_Rtj6A7C+7rdQ(pfG1Qg_ z z^r$fh$gd1TJCt9Pfst5XB=n*8f;RA?wvet1>aoUO6g{yv_MWoVFc3fJgX|3Or614R z>e2TujIaxOrR;J%_z;@I^bU?BP3t*5;|Xvt4>f5aO)3#$|2I!~=z3D^CA8@4=dj04* ziCKWk(q4~)(E!H8H_iqI?3#85T+D0Yn;`xc%B|TAUDNtS{)XNh&=2jJOCjwPtYaS_VR{=t zJJvKvxfE;hGrXU9gtsrmlJXd`e~G8C^N5ut;p!hKOS~w=j+KsmmjrJrUSgFmhkht? z>N~vWOT;&ssGXh|Kkg1Qp~H04mV~$2iRe{3?4=OTbD3z7O4IuZdW%B)2jbda z9heog_R?BRc~9xtt_k;17Dd`m@i9wSm=BcGkMhI~!#t*aoIB+IaZY}m-IU9cc*RCS zBb@)E=|14Btgf|zGehr#^j-x80Z~v?MC>hg#jaqA8WWS4rq@K1+!Qs}5~GPpj4_F^ zBvErMiK2iMX@Vlm488Z>I}G3RKks)rzd4-qp11D3_S$Pb>sf1Ogu^RDc^vCVy3y#P zUFeLi>76F|E6eA$rFj@4(j`*JXK0zb;X}d#dE;$M+Mi{>v+7sc+9AJN1C2j##n@gs zu4zebtw+{9=Ts@6cj=hU`3_y>8}^9Q92?nU(ORdoMb5%%?3uH6FFjeO=(UEWJv(LZ zlX5nmClrA7(XP}g?n(^_>v-)=n;nR*t6S1MV!_+;%uV78>`aSkgWdVRRpbz!cQBg9 zd`=IkGe_sFD(TIA=@ou3Wd75fWlMUgStyZTFINH_bd;lkc?3j%eAs zx!UfW4IU(VsKNmqSHxE~=d9M1wIZb%zzT_rOImho?t-=!apP6fo7QqXk~?agCsd(` z{Redvi-LZt9_DG*MC$ncyYqB=GpE4 zRrTyk>zjFK@*R27ed(EyAhZ9WY=J_l z*rDf{(^go=f-bX=S4_Y4{~FfUkqom{_tUaVA-*f3YYHxy-UlmCq}YtJy+Yq~Q>sUl`%8_D{5d!&-JxjXG8!daHyq3c>i+IMHP zv`*iMkg%<~mLyYY8v!o}Gx z?sID9LMYU*e7i1^GC03rfSn$Fc4DqOEU#{nh!bJ@Tn*-dpAQtbg4jl6!2n9Fr$zYw|*yJat?xZ)nP$;U^V7u9S1TD-r z-_2S^G&F5zdPv2tMcG?DtEG`FK6jx_Szr)uI*`s>pZ|+`OZK+~vqStCTSAOtakkfr zc82aO%T-q87bqtVtQB|hBq3<*t@)83E9hDs+MGTwGq_dHKg>PM%@|NW2{Qa{Bz#(q zoe_zhk?o@K#>}j29g{t*z%8ONIrl2AKdoeMh-^;^Ph@hAR#)fq{K`hK&y3uGd*ETr z&pn7(dvdL7CHsTaCHMwK*zY3?V^Grr-vux>E z(&(a8&9fcm)j6Z5d30#Ky!f5Gvi*^G`m`c4dnmo3nkgTS-_05?kU8sRv)JiE@=zVg zf&hxSPEXIyj|Nix^3B+juO|ZaS}e>N`Q?>-`b}6t|B8M2biVx~DF3^Wo;MPy`ct9< zPbZT2=h%$@$Zszt#`SzySC5Ay_xqgV)yUZUIsUJy>HBQX`iJZ}CD;3Ve))T}=?Br9 zf6JMz&W+vkPUP(KY*UHz(|k5kXGikXnVM3PIy?;(-bAtB(GUw-uSY(sLWRR}Y+8_} zV*&Qd3-=DP(m$<9%e2Y1Q?eI5CblU4KPdfkR!MKELpV6Cd{VX!i_L#xzLBebrM*X_ zNAVY~N*|sYJvk!!4x)Hw_OXs{uSmvKIhL<*T)v-{qaDu+=~j}%wz;d5A_d)Zbl>!6 z*KFlY;HdP=Jq*rg%rGmryTXv%{YiN?I-GaiG$Vv8h*80mto_?6b_-w0C=!EbL#VFF zyH&5ss_^VIND=#~NwyuE7EvXTJtuxuCtKOZs!2ABMr7-4$oTA#eH;amV7(i~m|ZNJ zL(#D6MQ+U}*bUqMKwi7@4d$l)8~jIAM3LdO`Cl!)RnZ>1qcPZsa6u@u`mHPSnSNyD zKzvtbYgLXGhxjbAYmMv5(!Nt7FV;_98~L(M?!?GSvBLSX{J$Ybkaip$)%$o6?!-Rk z;Mw_YLGH^M<}0EBtz69?nUU+S$z6-OvNgBnIbfgebx-b_$Ia)azZd5ktYmYHyM;ck z&y@;HvNC58^MXvkgjxE=C=F*+H^}GO>4nzm)nn6ZP^5}{ZWZZNZxIs0*J+YpF`as* zC!1y-d*=*?V+l0PS^1{5a@DrE5{nlf zflUm@#fo8Z!*=UNw?J^3WnUHt6sS&)7xiitlt&b%Nu+FN&MP|EIG>>`Dpb~_eYQs* zvHbf)GpXjbKlg!g!X`B2 z`E6h3dGmpooOn>f?8*Lb7D{?zvL12kted( z&7&aAYD7c2;NGN_Ttex{s+yoja&|Ig=C>CNlon!H?Mcj}UZjS%0-Nm;*%Tvb5_u)d ze95l)%xgIzGT$-#(2(u(`Q&Irp1u9l3{>3`-v|c79%!8N6li#xl4RgRlQo`BP3-25 zxig;b#NJ5uv2P)}-BG(PHcHv(3>d zQ=?6=3sg;}zgB0z&m$dBR}~DGq?Z;)hxyekOjpgwtT!pY(~ly3SWPL$l)Yy}Q_YJE zO^>yPhch8Fpvu(h5UOrkpgd!YXmx(j|Hbx^Y5g zuioiFpV;~AvZ49EN9MvInOE8D9ny;zX8!4y|6zL8c*n5BhCMcC!Z03Cn#+3UH)m{@ zt!>leDjIe!&E{(3_sehQFIwo>oJ+m&_9Y!>D_(}Gk1(ATc{(vuagnAuk{mXOg-<8* zv_-PiQ^z0^RTU2_&<`^m9~7RYncGoBBoZ?rgn@{{!HuC$$*5QYaUU6gi)(He^@ z((2yXWGrYSPaKMMEN%@~rWIC2dXDByka_2W;WW&>;s_Ww+8z>Qymd<-7$5EO4K~#^ zt%Og^jxdV&YHhPkJK2uAqDHeQsj=0o)LT5K2H65XFmJR>+jso`ZEdz`m*d4bVgAM` zi=#!(qTZxN4mGhcGi+c6+=h4WlIFRb_upf5F_L77b8koNU z#ZjYqQ`%kScqkEX9Ggtb$#>zsLxu1VA)~mE zxJvv-xckn?6o$;9=wZM39g3*}G_KQzoL3xjTR!V+voZgVq_K!t9&`+;*^xczVQBuk z{NYJiCBQtxZsApmq87iw3|w_(p2RFvSc7%a^7~8kwJ|N0K`V>hm~R`VXXtpIR{eYy zLE&AAp+W0fr1c?d>;-Xc?1%liMypcq;Y;B7h)$X3d24ktN{>yiHp%ze*{^YASAU5Z z8d3P-`oAK7Wx))W<$fCGye)HWNTl@wnw0cUz4X6q81tk!saRagoDox}agJr{yOU-) zca|*59m%SIPMK3^tahbO;-V+!-b7Au6Y)b>ShNnd2yX(OhL6P$YnJ~z=gjar&qT(% z=32Z9R!iN?ln_|4`$jq9m^=k$opC}p7W@&Y0|e2NvB{u@jq>DXDV&`)Ij6fQSU^U( zK7od5r3dCii4*ge^yZId6`Ir+EUkG4!!?Q!{ZMlvfeNapG( z$qPOwtE8Np47;0-o|XS^N;c~q`MWatpSK^qJ{fA?POjOvk}>4(2g&ezIJu1f9iR7? zVZuHiU-qZ@{JVItPsOKwJ$~!2!-~U<9TN}vU-6%@H_g|R^5RKrKs^y*w?xB)tSjBGY@)vsU~t5;2tPr9W#$elW%4-q50a1DpVo2^TRN@?l|eGCWv5 zgCZyGb433j5a-5+9GaQwZIqQVk_ znemiVl@{-+&M!x@7vzdp2ti}B?8+Xzx~2I}$MRNbM!71xbH&=Zzb%nv7CZe53o)D1 zQP%H)lki#iz4%txF&5qlb&&J>0Tz79?Q2Zi>Y2Bf&Iqp#6 z&`r}uFn+b*jZ`xg6dNN*jEaWC+@RI)vQ_^-RGKyUQ5Xz-bu(+L^gjNe*`41G>F-qP z)&J7{v%is{OE}w zOTWxMPnGbbUx%6gi+uWX#v*?DGdc3l+2{B1|NoqGJf9Kz`w|OP{^iTLu6XEs`Tq~O z;}3(xzmv1V>#^U}{Wn>wVAoOcPlAOiv2kz$Kr#DaX9NI*=u^vDGGwG3ym;B*%n@GRCYer z1UAm*9K(xIgCCY$mEOh%;H{Vy94A__IMg_H+{zgf-eD zT1<{vuV}DN*}}&d5Pb(T>y*)gMF!7k7Ck0%D2iAw*T<`1QS+bS){Em^VYW^z{Vz9| zWWSTwhuLDKpjoA!w^9qwjZX$k7X|uf+Ivi-d`zVL$<$`}Q6%=!)Z_SC{_e{PQx@V$(PA7s9II^*QAj1y=4ZnBWSpBe1g z$UVeXKF7~<#UEtLlch27WJb_ma`*4$Njxu!nw39m4Ur4@114Xw3V;k!Xry@I<>5wr zJ((_}lHVlb@~-@SEqNC|O9t6jk_q9{g8ZFbc1gZpl+5JI%5EsTrtG?`QTU^>@8w(%<%kFK{#4HRSkCx(*-y)UPys~kY4YW-%8_5lI*F&|{p_6W_U!Y$vY+MeyZO7T?ACn$R@O-TLfM7M zfgV)WqpVTc(OO%wn%u7Zt*mvl*7mG+c%atWJlWb>JF-gPx+vB4$(pXNH79xL3$lGd zGN|V#qr56xKS?g!xa5WYGZ}ObCg1J0;JK${Hs=k|G;`D5m=Jq{iJcJX#rz%|&-kXa z=8uwR@NlXyd?)#Q1JbU2vbN>T<@c3;p}c?jz*JOdTfVVuUD>j-=gXeVGk>k@OJ#Sb zRW46U4M;n8%F2yx%Ub6N`sJ@%*|B9Uk|$p$S;{rZ_FhtJZdS+pQ*ydrO}&^mlb8K+ z>Yj{C{_>RE|MILB*}m+!98o{DaoQ#`yi3m5J?%C+*ZEr7^S-py#c9u>X`}x6tzFK2 zAhiX?%!ZRZzdqn;qJV?mObu?B>W_D^0;V#JlvrSHbZo1DM*qD%jgzo~hxjc&Kn7)CGz zLM*jw`fYeDuPaMYqx;hW4`nnwl74?Kd8SV$$MUX3iHaO=OpWqX^|02IS@SQMr~WJJ zIo_7BePPD?mC+a@Q+4L6ncXJj9;{ikE7>(ea&Nci%zsN|qxU0e)6-KsB4-;l;^3`gt_XccM2gj`lb)TIJekr0b(aM#mEVaCho|#VrQt_g1US0C)nTj2aQ!AnQ(b`Ab^BY9?#m%$k`;xYIJC#JozZ(3y5Xcpgy&%8K#`L)EY{*!im`v2Pj|HziV=Xq?G zQ;SVtZMtisxxSx%ek?UM-cG%yF=@A%8Pl7S!@o1yYGX$9)MT%YNh?2}@n_97*?wJ1 z)>-{nR%T6-F)8{IC~AzltP0lJ|#G5#W*J$$vA~ zmpS{TFwKgr+%rq_r5pyf^|r_bW|TR6akTRI_!w_S1}Eex)f%yC%Imp$b@YbZdYpRe z<{U~CO#I7TU<93znRQSp#w3GVCT*ukEUdCRXMQ(xz)v%O+?P4)#>_jnXFmCMWaQ3L z-Gm>Me4bZwow2zFoTMx>DC-%YX+)m!%$&PdtXdev(%2AIs#}>^WNKRdp`7!ENW!qZ z&WbN~a=bG2F*>I1QlC^&xx6&1-Iy8j%egi=zcVxFk0YO7&yjcK*sCKGS7Z(xo;^>? z@q_a>EVJRDobTHFc5Xbov-1D&ykD5DXXN)@k-6iJcFSMu_=e4n9urCH5Z|zOX3bOM zANI(n!I8-UIqIHV@y^KcFCxiLW}bX0V|zwg-TE#v+IY$HO7s2fv^y(mVp{&su{(d8 zY6%bLm|ta%{Zd}v&NEz-d;W5s=Id$Ary_s9$r!TI7@TKr?4-kyQSmhAl?PXNNbJg~ z>C1OA%AZef{8#4eALSgQGp26JSh_UNc23THdY(w-nOm~$lK8B5XXF*V^iW3iQyI6v z%bmSe(jqTr^t_nS`sdijk7YDHk~v>(n!D4k-z&B6UAg<8r>*}xwNcp1&*bPwW5s-! zCwnUUKapd9n{%)n-b(+=5S@^ItxnsB$;uY7k`SED3Od_Lo)w;*l_C3-FqV;tfu5SV z?&?U&1(B4C!pO7=+JzZOGBJ!}xUdX380872u{|hbTo%T~+3(UEdq?7^7w6MOu{o@Y z=5aDndBN_IOU6g^4yj$A(Zu`QkP$jB_pZi~>SZvI<&jr*zvr@A z&$N7#@n&Q^pYir?NgKYJc6~KE@poy5zokX~9x3=|#^W227nA2WEF9b5*uj56Ze|*5Zb}JQ@mGurR%aD>WzYP%d!`=m5l$=MIxl*`Y}!uW!7A{+T8EM>AcN`P(Xq7iG4* zyu`pbGxB#$a`Nxa-?vM7+Uok;6FvO3SXbXpRfK!;>6@i`d=JM;`);;{j zor1%eCq%lMrN>%jUV$z0%R0p`T9*EkXDPF4Ra#(GbOxsF#I()y^i|;}@;=^)e2p*7 zmSfX1_!w_y+bh}gU+I@=k-yi{s{hFAHzl9>g_6wb-9P4~lH6MiDcf)%8Ne< zAMhkRD119>BN_!zcd>rVQdp5#%b`3q1Rq-y@>vm$(la=PJWI%xJP!V$nlx?mKb#Ct zj8E7lpT!5Q2ZuF_H6{*WU1Zr_gVR6QYUid`aA#F#IkEH!8?9?3NbJ08_J#hoPhZK{ z#2}H$&@C^xO4In0m>V*HASF0XxD8?&kQ$n?CQpMOur%ZSP{ubN1U>}+AEKphjdd;O zr%ibI^U|WKQjvOW7id^zNkd>xEYG=Aa8R8E!&ICHLk*TJ{vd)5j}pUb9lso6C_k=! zT1<6;Vfi~NPkm)1{`^ShIVE=dWs%(P#1f)yN0zFB+#73kRP2$_kz2f_>m%=@BHg2+ z$8U}0dQYkwd?8YQV`Lw*{_4C&XEfZF_nY#rqLErRXXp5N;Jik$o!bRTZwi; z>?675DnPvuDgGexD;xQPNbVn^!C%Z6`BvuY2Qt4tlFtujZhRmb>nHKTznj;+nRV}q z?z%0y>$c40cgHrqE5H3Hqvy%Y_`k}#ar9)y&+qf;_ZfMwWkz@{`tik#q4zUB=rQc2 zw=>e-%^iJ|@v?AkeW+U?7TYQEEO${PUA-bmq6%a3@M$4YiGHPRDj2{x zJLZ>Gk#TVk8B+Ulm+X}TK}%$&iS~$t;u9Z?G|K)J)83fpk=+7qCFL^4th6joMy__9 zoZDHN<=pb7u}Q>R`saI-NN|rxqBHW$xhe zd^#;Meo^jqc(x2l%jz|`2@PY3)C=Fk`oHWC`K@ar8CaNO()*uAFHeqK{xyGNqFZ0e z>}z&?x-|bj7J0irQu#ln%6Gi1KW2tiMevu=&;JwYdm{4or`YCX8kY_-`un^;op(6u zv)T4qW`P%TZg$Koc|D!6@NQ(&c)>GRko$Qz@0g|7te7H=a^D9t17U2d;3X0u>fa)L zbV{Dgn)NDP75W78cUW3OC7*Lj{cvvnzcVxDozW9_q^-UZ{qluqfjiQo-%2}vJ^$a6 zKl)-+e!C@~zL8dbAoK1GVQOAo@`rBCw<~kLQPDm$$mMyzD%$0SpdvWMsw2P)dq$ox z57Z{y6U(PZ+FgFG?CBzoBAeM~RRQF5tAz&}r%hJm`LTLLfYrK{r8qycmN)}u?2_n_ zvC%)DW#0Q|KEIQe!>wRlvVP}82Vs*h%g9!#4u6|=D)^T5GEay{SV>+)TNI*JBwGBs zb?%dACWhH6ca7%&%N&q)JudIZrB&4mQ@QQrNZk#Q`3uq>+TqgZQ#F|`j?8~G|6f_s zyJx3;u8sU#ZT*t$rE(`7Z3XlzbFNErhLI&1#aF!`XF0pH?aYiQyu{PehP`qvS#|2o zbc${k|CgDHU53-c^HtLTM@V$idXwHoHN@ZLnc<+~n#)>-p384rnKm-(t4&dv|3wn9 zq+sbPOvvdL(^;M^YEJMZRGGsrl$(ZyBO8Dok;l6s5{g^UI@@Gb)-TN)V%Ju654}KAL9{vu0UfrW~I=yJUY+A|4IDrhi^mwr&}{ zYFo$B`OLq^<^JT1h}y{T#ly7n?t#Rg*2NVrvh;rXxwylfmddP=Sr7ElrWrKc98ch=-3hAe{dSw;l@=lUF>Z^YVE)tQsN zGxo$sFgfH9%TW;js+I4eVfZ2S(~lxr;sf|PD%0)C_P+UF2A6D4mN0u*P87+ae`ICW zOFx*ciq&4N!7ERa=i^KweByyPg|aW@tg|QZKVTN}GfAe*&0MB5r>R{aTT+aR^@gEe z7Ast|hmFR!f|H1#%}ndf&u3afB*u)cj>-JAEVTUJ(Y3f*W7E3orpTC_mGe0s8*qNC zlK1jyX6bj#uX*VsGpP8A$UN=|D_DF*r3WjOSLgngWe+h2On({eYLtj1W5dqP6Nn|t zR8o%wd#I>ph&y>OeIZ^fXM*fwFm%Xx=$&z4F7FU&$93Tjz&7ga>~eB1JzJYMYz7c+;ctv5AoGcm8}X?1x( z>V#nQir0vKElq3bL)>9#>*DklHr=@VFOsJIf%-%0ieqfaz|p5F((FioEG$Wo`jmL0 zcur!+MkF4!+IlP|3>ncZxmT*Mh}B!ayvT9FORq?~%a4;M+AS^JH<}lErkYDdwy9{{ zA^)GAw(pU)Z<{tgA@7~iDs9vHV)!ld$Cm1qEj`li&Ute7pn2$|Ug<~GUE1bceR40N zaQsZn8_{t!C3wu@*%$}%RAdTZbjW6w!|#cwH+Ce-OYjTU* z%M_7K{CWN+i9(+yH%PwWg1~HT9J0a))O(r64U4EgFrv)$HUs4|IKr7TCv2fkpuBX*@$a% zZFPdNoU9P8Nh}(($4krPdCnMlm+|%TUAl zrP)fJq|8HDHdKLLgwM;!V4tnX|Hcz6W<{O>>ydnKES-@q#A22)u_$A9ab7BMs3!=e z*ibqv?XWM$`%SF`ECX4Mw#?1Ff12ycH^*L=`6yRoNk%tK%?^jdvPxuqt7eJO2KQ3g zpLJ#?Fy4zkz>zAdAR5IuLRf&fcAX+uw5UqIs;<$uSWz+^$sAC?|$eb%;jTp@2YX}fNMn}*-BPYpnu3; zQC&#hx>?iMY!i!%$1Ov4efp&`?JVCwb}Zy+MOu4hzR%6O+-m4E_LV%IeQE!NX>Y77 z_#2BI>x!Jzj{LIP*&?d&nLjaKu*N6lvno+|C^)ri;}Olzw+T7F9KfnbAJleMj#X)m z4f;twLnT?IWS4Zarp8CQ7v{RIg>y19vxcgkQ}g?zT+JLIYX=i%Zte!-Xnyt?lfB=| zj8mEYV2$o&a_QVt(=IF{$bT`P@Z2Ej@OGoc^VVc!%iD&~X??j7ShM6xCJH8$R+cHx z{)MrZXMRxePSi^#J$AQD67}j-QsD=w;bwoCBP>yw9*ax!h>R9h(qxBXQLZRSF<$wu zY+aGQ+?(e%&n(WJ@QPGXl!flB+j1{OeNSkls`+LYHnAES>;!XzydSlHRCY5CWZbA| z1ly^fUu7qGM%>tXkupqG6$jM3-TaGiY8J}zwo^Zq5IX+^WoY@GFb*8eG91cum zJ}Aztyn~9gluBr7z3|m|*>Y4=g2xNQ_0!j7*^Yn3mX{SHQ+H2VR)#7oq%v|N`|*QF zr|K7D^8d_8D zL#Bq$pXLP>pPTE-#h@Qm&zl>0HJ)bXj%MVV&~oFF{lng0SkjVaq@8&J97wT)ZJC42 z<@M967|V6iH>_&RCmB=vt;pq<7f5RqvnN0Hr068Mvpu4pR1K7;0b`@J;A?VK`$t!G z$Zuz7t8X3ChpJPal$IV63;}+4aS(@7vW+FnhhWd1kZI?g^|wrm!R3ePO$tohM*< z!*676HqQ%gBYPKXla+%Fb}93yOp`H?vD=;zUmALY~3AXTapOvpAFwNoQalOk7hRuC8l7+Ew|_@kS?TWtDf}=;ycBfu<4EtD*)}E^m?|+7AVySf5O0CkMu)46p%x|^MNS&;4i*BP!V4}q zlk9K)IlqDwvVNdoPwn z2JW)a$s=HG-~+<_RU?x<$>zWtRmsO}3!USsVV2NuY*kpQnt`9^R}t;8!Jt2jw9JYO zl0rBMzi@s@K2_8ppW>YC=J7dZS@s~^tmL<%LB)7z*7x$i^##a0{rg#D_WfK%t)r?) zXQ6*-P*n?L)J=~>l6`B3U^y<#T}{ZJeGcV&RYsXL#@6JM*rY0pVv&0z$13S)gCaMK zO?6Cq&zfp5Wo;p+S7s(=cTo#QMs@Re6Obr*tNcKjPTkUn^irerh&pxppM5GKQs~4Y zA_gaG78!s#%JotUzzp3jeI*v8B2kOT_t0$b5NU=0s1r!0Y4zjt{YWa|@oUu7kd1y) zMgZL5`0U>`?SGJn>lH)H|eOK(a0EzKXyQ#{xVr*46KCN=HY zqcV&62X!+;@LMsl`SWZrwKQbR;al&{ndao1e3x~R3o|QZKqelJHt&a3sO~5fsihqlORh-!cuxNg=V^GA zJ4@ba?dTW?fQ;6SkxKcw_yzob^P6fa<}1-~{i7n~vFUXgeDY~krWE06lkMh35uhO@ zJ*S>zQ7N7Gjb(9iNf-6avGgM^eMrtC8txqG%ZQoNGuU>0a#zMmvwVWr9}U_9m4dLd z6G?Q-d=jIC7aB9_wHQO{EAs1QFRF~xwzRE0+0W}DN$@OLb+Ba>F2s(Zr{o3qM`ad1 zGgK9lq;@5if#|E6YqI0iU9$Ja%uvoI$6OqT|5Gsv>$38}6BF@mb7?EY#N7|M;8_{w7i`767y3`^)~6;bNU1y(Kdl zvI*(n`@q6gYhY`rGHUe8v6XkOZ{=51X0|98l$d_YGZ(-qaQx?_kLRVYmSsQl1uI8g z5?nE8y%j;A`OuhICCy+JnAzE?HYtqLT55WIcJ?wK(nX(?&czpo`y1U0^8|~spJP;3 zZ4U_xMw zsC?oKU32EsbJecd=ajrdYwR&FcdhD+>U<=b*61GzlAkOKq*Yp`PUOrPFdfXeBD7+I ztSFWfrgZUtG1A1Wnn&_v=+Q~C%hUuu5Gh%o-)hI3l+UJi!`5uYe89J(Wgr3&6tzw8 z@Kk|QYaE|%UHV^S4ewv{29h@`GDELf|8h!6M~VE%w^6MJUNbMhiAX^0_y=%pzpsuo z%In-zlAV>2NNds@$UgFeSLaWSm36s>s$#RVRW)!NNxZ;KxnpP^ZL%z9tQ)jfU5b_2 z&s=J~EE!QO`O5qv>UbzenAK$viw>%>D_2?0h%7sq!LpwrhjN@%tHVvIpAjmeYb^qi zc^a;$l)_e0+p$jM+p2N$gKDRz3JF%pR(zI)tJX}19E$@W=GQ#(1KqWHjjH(8_hC1y zG~cHrA7(T5fVVDrP6%vyA}YGYV5sv?>V)D^alioDQm zX;0`BsZt@?$cNII8&#Fw8CeqdQ?H(6u`aAZB7TCO4%c0iy;TF3H^#Fh6k@XG_fr!kE6z|X3;aAl;@3I`DIyM~%lkjYM-6v>@`cen-?eqMt&G8~JD(7IX zs`QQtxg|54a$g?y=lpdQcsoLN4jti&Q(1WV^5 z$Xc43F#=T)*TVM|ErrrS#bxWk=L^r2q;Jhg!E36_v5WG%YU=Jn&Lmc?8HUeOFy7_G z%l1%zS&X_)q(Kh3YA8H<9u+AhZE)!0vV{$jLu-A5JAPE7jn( zoEGnMVD>mCvS$k~)hv5rFE&WlAqFh^O#NKQN7j%8&;$i7$M z$xC!Yek#4MYI5gnQ}qM>$(zBTQ8U=;6ygea9U}O)m>1P5Bx$0fdaGcvnN39w*scY- zuR5dXG_D?>Ykb}pMN5gTPS3X0B`K=T7V$#$hxIE4Hk?%~WJS(MBNnTGhlZ5ql6pqvh&GpVNve3z8GsznFXBI4TqItcx00VoSD&UdV-1We1;u z96=kfHCvVDAMxWO;b6gaRj0FJjcA^CH9*uMuo92xp|i7X_X%=Bx>}8B0S|@;dp=SWycD0?EGT2h&%shPT2(h42*h#aVCanqcEVg|Izn%DTB* zbw*$+YPG5g4l7dg7Q4rNs4>zZ-+36KfZcNKBe^SxA!JEqUs%65lBlfOB)!tsYQyo! zdC*pf^c1}4203Hx(ujsbnw>-wd9$8GZ`IFUMU5`CzaY~vJonYM)K+W^F&>p4pnW*N z;sKC~ohp zw0lvt4#N#g2$H0N9gLsnuQK-ZXhbV6S$6}=g2(ZXQruun5C!>D>N%<2`Btz6dymbY zW3qi}-e+Ztda|Mnc!*YVle2_*4<`^u67j>Y7L^NRzCcgJ`Y~(F@ff?CGFo|5 zo(SH@(jq7Fr$ro9HXwiMTC=yX@GBJo>m9}SI1F(7-LTDlehOFot8b|rlPb%6QzJK=#qO+YMNCOi~gy{}1hOay? z)x2C$b_fZYoO8faKg!&!o{{{0@8(T?Ze;+nEB+qx z$h)eNq(HQS1>PsUz=t!7V4th#E8cAdR<%S#gT(#@<(TaG~>gO}_fA?&K8R&KRKY!4Q!6cN;j>#%o zU&Q^3S^yQ<6MKY@pw5vwNHo*T%ol8zkznrJ5vdoI>Kg5B{S$LHe-O6WJ$ixVs{Ry< z*2;_Od#i#-AGeOg(2Z;>c!s$W_74+PhoDKeV3%oCGmHEYs~)PA!q(@L$#K#P_(r%B zwyAnW2Z@iV55`hay%+}rt|_jq3X|F%(2>oN0SK5{ns`pEW*l4@hFx3B14FFSRQO>FE6|9_{B@T%piJgV*vL{z%d8zH7{zG|Ym^wk}u&Pu(_h%O2 z^N67HqWOv17czLbH1A_fi_MWQbxcGYWQT~1@iNS=@+RqHc7c9@j;Wktgl;Qs-;h?- zN8562tF*JqkY+%V&6YD4vULh1kd}7;dJD5b6hqAp{(v^eXtj#9wTRT+TAusDPC1ZY zWfo#jK@FWB_eULb>tI?Nm93@@rRRdy;j&;}$@}P@KE=Mk<5EWl3mG>6O2M`~oO7xW zUzUC>PkR(~YG8Qc+89g_R=H6km_4#5MAv8#?-BbM5=pl5I?U#{T*Y|ck+g{%cgQzY z;YHq>WZbBzEdDM6peCO9r6^p%oPwud58$X2D-Ez<9V>ppMx;sA(-p51@ikvS1w}yn zWE4Z8)HOA~Vs7gh_8Nw^m0Uzo>gH_Ln-%X>36yP$!{skT)k7>iJ5wVu@};%AFq;i>M3 z-vDD&rHs7?fwoF@!TRR;YKQvCI<3xi#UWr4&}}uHoO^Ago0O|*W>pUyMi@3b&bhE6 zz1T^rszL$u+UERL)C1j|wkxuQ)R$B-XG8vQ-gy@4HnHzX8cQBikDXrB>NW$3SN2Vh zwut15nW+fR|K>BuS?C*iS38Ss&&&3!Od@`_O3Ixx9~~FzW+xQ9m?BqRP03?&q@zhH zBvRb}l*qER69?o>@(3_sth3xEcfxDHJApB>#zp9ONOX=!KL1G-Z$2Wamy67r7u%Nw zPTPxQzzXq+m0Lp~sXST_E;VpECOz;cYqj+?3Z)jJVRaVY{%=OmufY3ostb7Xv zNAME+!sg7@=3dNIH8*)|a7~d!xLB>6 z9luPB$^0f(ry4Xg9fu85wsH0q3C7nk4n%QeWLN=RtbreGR?tc?VYvZDB~CkjNJXBF z9Z@^y6#2743q7H&VJ2{jTKNPIQMZj(D2m8#k_To?HV;w?J>UniOb$fidEhjc7vRzi#*pgk30WrPw z!jGR7|7~2xqiPbONcd(`V)0MT-}~8yV>2V)#%24AjE=S0$69T3GIHcIEXp3Ub9V=` z-zT}(0_9YD>tLQqHXDu365)&E+~_gUiGs;3pMVFX~l^4?}|v%QvwftH$)tRx4i(iB`o8Q$e3!UBm}_m9!`yOl?hm_Q2Q&s>=?H z<`paE5vosuc>;4O^gN`D4wb)UZ1B!S8e~n89_vFuH7a4Ov`_ooJNr;Xmvv^| z7dfC&jcHbFt$Y@h{Xh0sv6dCR1U19IKNOwOIy#Cqk1J+nLfDZtb;WjIc6?IyEsTP{ z*EdomPY~|_9%PLqya&39wF%!~!ItN2)~G7jQLsn89?TAMPG9m@WOAxcyeoGCscM!_ zEOa^trl~KB`r+m#5m@JU-ulrpwA|icgnSg4Bt->rD<`Wn&#pCVh)ZtUhME$j#s&7Gs8rDo@*29w!m(z!`A75%+fxRkNJ6jNd5=6N zZ`RBR>B0VygQqek4bilOfb(A5yXXh6^k^b$aB=VF!t$0-M820DdqS2}X zV7QvSNk2QCwwF!XEGq()rH5!ks}tbBVhh(!#8y;CZEC)#DnsIcb29!nWyYCSni=HH zVKbU>zAN_1Ey zd)m+n8scqujbe514J!)c)|stoIX)P?nx{~-Im@1IfX?HsKu*qMws=y8&O1DIaZH+E%Tii2VeP^ z$O<+l-h$P`@g!hnY*2V9>lM2g!rd-2vnb%;TnS63Md|L@rEM~s;=p3w^v~6BzTuh} zr%>A7`6eHVUoAF6r+7x#0$py^6VX!nfW{GiiVB}B`K6H)^IO4G-yX@5pMjNNrYrJ5 zFg`0|uly$nr8NrV!dmfQT(C-Y*)Z$>mD&VjW8eHcuXj?v;6Jf@u;g9{uE}0{w^T7n zC8`BE=AYRUzCAxO1{a+gNu3?$=cN4qS?&o7l>E6b)lFeoFzzk+CP&#_^I>UtnMEqM zn6Xt#gF_jcY|YMT;e)X%*qcSoT{vaW62hoedzGx4zOiu54|aV?>>O*RiOaH>PRo{y z^7+_ULhApWpEe(!st0P&=nu9OqJ8IdjBl;EIZX|!37=&JF_Yud_shHc6!8W zv2urud$^jl(!~C8X?YPCq5RHb4PmHUk$1!H!9#(TTHA>>7JU;Fq8p4i2rX@jU5y7w z!@?iUyz+KtRE?3^g!$xF_A{;n?8{-JOI&>j(LZf>AQZBvbK>7Q4(wE$zrrFeNm&n zYxaOO^o(tMeD1W!foYNNopZOU7B$W9)}lW(GS(?udgM;!en2cvikx9pxdu!G24be? zahm_@^LzCR#{6nZl}P zkMJMiz}Q&yS6Nz>pYVU{OXAeX>|kfYN3}DAM~;%JPW%PBuy)3k)c|nyp{Mw)tR41F zQ9Y-?3PcBJW_SSWNKfNW(E6eTDn@jO<-^y6?3lx3VKt8}K#Hsgij%Az*dx~PI}+Xa zSz3hc4J(In;Dymm?8hS+Epq%n&vq4;SyQSr;HIdr0I6q#)5%aebv5vk)sg5f!81Kt?572-afe zf~6XBIN?w(wHN3pebXv!gE`1LW&vT8tNmjHK##=?&5p7=*yi%!`{$P;YHM|vj_Ebb zn3E&lusB@7R=IA^#FV&(o`69`~o~DQF$wK;N%rmSDIxT`$L8S zj+|VYHrW%}ib2{Z{Ra)OAEc~TNpe`;y>i7yrM)rc;6gk%d{8S;$%T~VjhSw%Y(lnH z`+O^S#gJl5QN@%%JolwmKZqdRTNMOpo=gx(v_M7PAz# z08XBHqF^P9N5R*y*3D$<`{P?2O`GGH^WT@`n-!a2Ot5|S3!b?dmjo5-KrMsl z$jG|{!J#>xfQ`v`me>u+`LNu)6rv{EuzLMv!f0#YGh)F^x$F9C}?zF7WDcL)7O|6z&{HB6Jao7rLoK`}8FRQwW?jA^pS5j{W8GmH({C#6@WDk$SvcEDzlg<} zfp@3ZAij8K5F#r;>OqWO)g9nG*p+gh;JT3YDd}(810#qvj|WT_i4=U6ZL9K&HQcfA z^8v8gSgIpVjla=s)x#3;v&E38#096QN+LW~+-BlZi_75iR>4n5l^UdJhU?~|jCk2T4L#C&!KC*1syHwBQq}6hr>_ z!D?YZ+}H>_b=7XHonYMS!4+va@p%}R`BrpPd{7ihO)m`j-O)6d2%<#R=dO(QB4vCz zOeky6PLB7dx{O$75mD8{Dm_js_4T5h(~PGM)8>+VTJefZstRi>y#zCd*N@E~uLTmi zKJP`vEA=Tz9xqpwAGR0n7EBYaPb<5+`JMz86=+2IdG44q1s4Q!v{rf*Cj>^pT9RW` zlj9(V@>rotg+8>^I4vSK)|ImwO~HJF`-!FeU)2+u4_`@c1PfF~aZx=9(}nd^tP3MH zPVWD&>X>Mhtax5a!2m5HNaZ;ji7Rrz=mV%0h60`@?1KmCySr|bzQ%K`ISTcv6)omB zcPD-&o};cXoY1^?e6GX>!_6=P_!c};IID5vo#lYVh(ibcQYnXbA(sc+m{q|OS3e07 z+BIjkVyc)>;g9o&JT(qI{j07kERCHhV+|*VhQ~^P{;~l?*Q}ZfUFn!-;|1Uo$yMVc z;VP(1gX!NsTh)n`565HYFJTR`W(MYywaBer$VZSDqkXU0iV8!XMBHBbl z96H)N?SdoDc7Riw<@vQxa*Sya-Q|((q6V2bKJ0>bjgikES2=uH#sy{{FF-_oZ**=| zX+BqHOnqq_Fl)%n%pU(v*0%g4wK>MdYM2%uUB>LB%=}|A=c|w^3u$~t+J7?krj%@e z5A%IlECg$XTXk90862{rW*qzCqtY3nIR~@nhq=q8xvD!>?L};trGRIRGb46Jve=t+ zu$a`=(j2A+3HuqNxK33_kOmxS@n~L!N*3&4Yt+CuNfcI2!P)PV z^TP3rf2ao}qGPV12B#P<{K2e*MI{oQK+{%|zzB;S@_wK^k#P8X4D5d2-vhH7kP48AdsS%iv}05Qg7Wqm@YjiV)L zi=C0cT{*|{+yUKfT{ZkF70~75$ytIl)9Kh=&?*Q~-#92@>m1T)y z+_BGPLGa|vYbv0L;>l_$a!q;B{Aq2W20NQjToRYN;Jb+fHBSr5i^V+^J>t1w9MEyt zka()FB#c$;cFYzvIpwp-Si-ep3(K%m5erJprWMf>!~I~>)aRiO!FKkBd}PFx;)#|3o)K>%-7}?{^ zt02QpE|0dQhpjmccQKpb-HT+AOwV>~LfqV!28#Sj^X56X+2VLdQSx*^n zOhv_x*&_Ff?<01hz8t228dECNh*-CaMY;C>>oZ(XaZMF3RffPxp>Oc~`GaN(vl}Y{ zwgqkHIYL=P!^BWjpo3OdMt12-E1;T5D@$@^7KPW*uPP3xg2z5(4XcqN;)|16RK8IO zN#%88aap#@l(F_1o}=?G$w&Wl zRGP75$%+ik&e7IduP$9tu8viPVNYALO{FQ(boI{hPeqL2_r?#)Zey-1i$IQnN+GZ) zxJ{c#@%G4qUWQUwdk{iwrY=i%8>`*=<~Zsq&xvcwKZhMOj&#b0mn*^!7sF$#^B0XG zzlgVB6=Msts3GxZ2D$H*V}=K7#pw*D5$nLka1%+u!=eUkN8=UYaxG_MNiiik|io) zmX`CiFTGTmmRFGuD~2w{FckF{pIwyw)<-t50%XIptz|Ehr5Ujf)TNo0ZEIq2V7k1W zGr$`rX8W8V6lyX+8s5%1teUKTr{{+&D!Y;^Au_~U{tTkGh|Pv?~!BJ z#;&KXhq~`79QDny{KK}9ATdhXSWPeN8=fhon?)dhUj-X8m#h%&;oJUT@MOtzugx>N zn}Sh|b;T=WvF%U0x*86fyfq^i?r3cynwciW=4cdMOFOdq8m3(_K=2rO^El7$K$MQo zWp&`7c}|&Vut@Q5zKEXV`HNi23>3qF)j>?KcM2UVrbLVKx-e2zQmYrup&}Tpu4(ki zfoKru0*q8-g1*NulC3OzN$!0S4}y(aOQ~_5vsI3iTQ8d&gReo_Q++5|B(g=JQ6f&N z7dJ^8n|W*H$y5Q7Q-Br0c7jS^gX2K(vDsI+Gy0c>jETVes#RjY@C@LK#-O^`1;-zb zOv~~kMCnx(o}O)@1rsuERKQgOaB{|gnq-w3C9;o11wPI8jTsei9;_u*$gDuMA)ojv zDi$wD3op;_u87OYUXpbnM;xwXB*{5ompM}93pt|8(u(+m#cITm7j-k?r5H}4Avlai zmRKHEIZX~=Z&>V?O~cwZBGe75lXn(B`DK6e>|rEu6ES$4 zPUtkohln9|qP4Q&%~0fH(z83$hpN@9f`;2h!sQngh@UDZS`sD!S7E7$mtssF%c2zo$HF2%Hm}E7kqGh6L>%Yo=CdwEh>h_E!V7GAGaQE}Vk+M0P*W>n#Ru-;{x zL5letEN@v5b%U&k)E7C&qFJJUkigaX6T^Vkup4Bm$QWj6%!*{mM^}H3{l=e|9f`+k zVOM;TPjEylu3O!mWJA#B<(_fz$g>z5n~YB&wyDQx8<8D$qR+DM`G(|xKc-b#T@Vh@ ziUyH4^=Y&cpR3TKbP{>O&eFE<4sk;~U+b2tea>n)F58PL@dHc$cg*$0HyUOi*&DJN z#54K5eM(~lQUnV;K4-0;^UKL=5_@KF{%7gSdJ|=ClQClSkn~>prlOMy-ts|2l4VD! zZZ;&+s3M>d!p1)##}6+3RxmfMoud-38sHeAW+JbXavWa0^`hnNKwla}!nA;z3A~4b zm5WyhDe@${(~>>2y=hu(Rpg{V$wW}a74QUcld;&zIBR27v;#j?+d?SFxTYP80N-wPOD2mb1Vi+DB(%SHezOL@vc) zpl%SFzWJXN!cvSF=(5})US^@AaIt%48#&`O7Bv%!m~f9s+i5vh_t?k%a+HXD=j_!t z64)c>hmXQ!NO{-D;DEeaccpD46C134ei@W)19ODRLj3Au^P8G9B1mQvYua}b{l*1?NotB87tb`)8;cm<+A<e;QSZYk0UeqyK63b#~=?KgPIeNwVR#y8cIAWqR<}%ni+yw{WK<>-TgK>-%OIb$T6saupjQl1o-ZGMc zheVgFiM%G(pA1QJ?aK7Sft(i#ArG{5?A^Ub`HSag&6*3-t7c8!{Gp@2s`Z`n`E|Zq z?}K_=kIs@eE+#e zU#_#Y&c`+V_nx=y;Z2us{{D`yA3UM{4_em_73jEL2im?-6R*ybwvg-BPonV%f~q4{dLMxKY_h zM>_27yKTtkzie5(bIIZN8lTnq{Ql)bjybWS+x-o%-}UyYuP^?=(r>Nrz32X#KdoDH=O>?^Nd`;3EkZ0)n= zk1I}GGi1m9I`uj~H~98*tIu9K@Ov#^-E-Qq_bYo<-@Bsy&i%FO)qk<9)t-~rpSOI^ zvia*?*#Ahyp}t2)e0}x)g7%o0cD4`ODcSeNr)Z+3KMOo~eIJ!z+%?+4j|yEf?2Y_J>Wc zmksXv&amgNc<}O@hThfs)*UCz`>z>a`DDO?6Sht)>)m)|y{-qY+|YmN9~aeH^`q%8adiJoT?UwGmuzKy()l*-sYPtEzvRj+{tHBEgH*c7~OuFE;Mk|M*Mq zzj5UiFAkd1u*I4WW`29pqtg#AF5mll!}FVez1|o1oV@yv3s%j4ebs3P8+SNs*tOR^ zbK}+LzufJz{k!KioO0cy)t`NB-KwLHH@mm#kB=_e{DURWS5H}Z-KIYE-#WhGCEvOE zkJsLR>i%XU*S|Ka^TaEsES~@P&Yv{+RmGA9Gxt5PrqhB+)z>Y*W$%zSx13geZL3@Q zU9$JsGY;=r&}Pc7CcHQEe^=dnxb2>$`>OWNe{22L+V}K+`NC^&zViC9 zXS8kEd(%6g{%FFPlP6VOx9#qF*H*M_^sNI=tvznRQ&qi|{%hA2Ef1Zt>zW_mT6Nj& zeH+vovG|cG|MSsbW{g;I`=MVoo!9)M+MBokW!Z_T%8oa*N!jV-~i!a{s^@_&_PrSPSZI@p8PXEre zPhZ-1>PO@MKCR)hw+{?#x~SsLy8qdE%!&`I2haQZ>b5mM?DoRBJ8v3s^W<~h=+Jn_ zn9u(_;fV=DKA*7h!P;M{c)rQ%!yj+hyYPalOBOw~bwJZ=22H;5ueS}oX3wBu^?R0`q;%$3hY}~TNr}ZA*ef`RY^PZ`mxpMlU&7FUK_J7}W=#~>Mc(Ti}yRV)5 z#DuluzxnBeb!U|=Xg;CowwnKJTC}K9Rf~n+-TYFcWdpu=MfcmEyzX~Hwl;co)la7% z9ye$5-3u<*y{F;F6;IWlvFE;3_su(0wQG6X1M@pn4*%+nEpHoq@i%(>ao^ag|4e*i z{EnILta;?<`OUxFELifEBa6ROb?t)3HZH2atKU~H+jiT}uHQWLie@*gT{2_yxQ8dT zpSOR)f*Z04-=FIs`tJ*I8!|p${KIZhZub*@KQSM;7+F<0pqZVHI*Ao`jnz(5C$Og&-Ql?QKY zdTvF#I>+t!?y_%HRaFmJGrQKpUiV*g^tPV2K6g%ayRU3L;j{MR|1$o^vs-TJTIbId zn;JiK=$F%p=i^t$-ZQ2Bl3(rrdy^Rz z&(&SKv;K-Zs>fF!zj{N>PkKCX!FjiJzisV#6Fb)0@!{+@#}6If|FfTNm{{Jl;&)Bv z9iF=3^@U3+&s)@F+oR3yI(hgt?~nS$wf{V6Q2l={zkh1oaj$>;w?)hMKG68ZiXQbo z*j2gWx$0Z1TdZ1ecw^T+=YDj{HMjlsf(yG`yX*crPkpp!+{#&F*8O+chUQl_-E!ow z8@DX{dS$bPy|!G}r0<}AT(w}-h>EuTl{Ze?J@%%^%PYIDZS+pXhI()8eqiO4 z>QAa3TJep8EjvGR_OhFQbo;XxkLliZ?^%^6O!(rs;WNLs=J!WWYd*E<;hN7jRWF)W z`O1P9Hoe_&$bg5gxPH`2*Y_N{r^&R{FHAo;w)3Qm=6!AFvIcKdoYCNdz5iG>a^A?Q zEz8#LYuRDr@W*bdJ?hVw&g|9TKP=i;ALo-zNF z4WHG!y5GH*?YsTT8!tNJD;3{a*W{BPpPx1X8WoC z9Qo$xA6$L>fL7)AEnYPF^s#@RvS~@*10OYMQn9@Dlcbec$TT#qGKJ!Zo+e zzIFP!JKA5nZN+EzjDKqUX|q>tY+mQJic_1+IrOdd-&}BH?)HU$+}60_(IF$R>vqTV zYu5~#UH8Og4^8>T*att}zv%pZzinKvVq2ZtcD}Z}N%cw9_pF+EtM4LO}f-{+VpI+R_}!`ZywRO-HE-fIy&m=>ldAJY2$}i z&7L-6?4KrGKmYz+mo}_jF{a-3-S4g3Uj24e*e^=Haj1v~kp_myPUw<-uvy%O?C} z>^U>8Up2I*b@MIFKC5-dmM0c}sdDeUS{q)k_h7%)mvJd)zN4 z%&*+G?dJMpD^6=TY2TjJ&&~T;<@rlr-g8^qdxza|V~5d)EJ)?PFJ(#p>l*WJ~n)t#qJxqi;*F;{Ir;lo-#T=d(?AB|ly^*hU6 zJNS#H)0z*jJ!1PiOM6w#t^UQD%gcUr?9CUyar?u!UUkmOwqM-x=%?l5mySO?`|VBt zRcCZX$Hw13IB4CQ^V?UxyXfHd7hAME^(!N{MQeR^VBgx8FB$dmEn`PcIb+G6_TSfJ zb@Riuo9-CCtaVk#>h`M#AMMifvJ1!DcFb*;p7(Nx`rEIb{nGfajDO{`#v4zs-MC^> zGVPq_Zn^LF_b>W>x81wHF}Ll68RP2AdV1}nwVr7HaML?$j%@6*=r5Ix z7QVmvy2fXp_}#01Ir@YfUOe^X#y?xNCc5ykNqy({-F2Wr{fe>mp4;7cW$)@%Rj(|6 z_CW7WYe&3)bKgQ9C*{7*R2&{^xr-t*WZ7RrP~qqxU`A{@LNb zxoO>~3orY9?+*@MF|TsskH;ODv1HX#6k{d^j z{_z##j{oq;-3zKG-8t^P=}T9PKD?vpj%H7lUAOhPC4Z`XY~Gveo~`qGq;Sja|G0Vh zS&y`uy>Za2wd1av@ZsDiwq9EA<%)rgw(Wm(&4crn&Ha4wmv=2|b<*h<->`r5(^t(p zVRo%I7QHd~>9K#Ddg8LH51!NX(dI|X7i?>_^yihAS6{d0i)Ak!d;i6c-`?id!)LE; z`_h($pWZtD=8yjV`KZl1>fBSYzR@iQJFNS7{)oyC7d6@OREw3T3>i6j^u^aaH1JEc z?_KiD$NwDr@RX5DZrMM-@t2zav-Y9wBbK$SYFNF0RrjOwdd#?B=xtTE{_?zII^MDU z&Do7VS~7maXI(blSNp1pK23%mUbueYg8M6bEc(W_9?g3VZguVLqvu{b{G>y5n=R`z zrOw!illLwhzPCZ+))m*(owM`R<$tRBTh+9c#~%4=x0lX4_tyWtZNmjOb$N2v>^Utb zd^WzpXN%WgSiY+Hl}+A1{QC`GT=;{^feXK};GWSYb&p+o>w_+`Of_}cC0<3+s%VVefQEjy(;#fU-hF2`^KL4$*9#6 zYRa0Q(d@v{cQ;?RxPH}L3y#}#T*K-8KfL1o(bwG6?~K=)PgwiRjKSl6Ii=g?gH>Ox9#Hw?rT6arVY@$^+2*E?NB!!uFZ6lk(CPE9{eLW71zc3w_kYtv z&Y+^$3QDVlfQl&6sDL0y$6)KvUe{Q2U2Cm1*3PwSjWyPl8M<4h>F#D=VB-DH(f`K} z0yB5+yZ6+6kMlj>lYUi@nHN!?qq%38WvC_^IwL9_MBAi8EqY8(>xavG;!UHjE-W=V z*s?3XfZv;%Pe8{SEDM9-_L75l~=U-&h0gtvUf7wdnufpT8PDZ%bs zi`w5+;|xL#BjCO;xH3z4S+b|Og7(-VaA|E^Ym{u!(=lf4R|>t8H>8G@Wp)0^n9rS| zyJ`4Q(;``xXld2VfwvF~_lB?IZ3#}b-ATBYugsXuAIKV8r88`xUt`FoIrMz4au?-@ z&ou6$9Gpq_H;Pxrcz8scEa-|Y{xkVhN_r`;V>Uy@eX3`x8rzaBnV~XR{@%>Z z<);U$bZ>Gx>A&^8t{E215}Vgg(0EMy*~=#OV_cq3-{i)=ncq&N_$BWua%;IqImx-K zKUXuOtw=5qUXs7Sk|zie4*k|4WaLeoOxFz1-TYVBa#{PO>VTG_gex4PTr z2v(TzD#L$vd7+nCPv*ShPf1@Zx!6b7*~-1lx}~s$=Lk3Pn%d{XnG<)p--$kyaC+Ie z8F9*bkx81nz#u=VK1K7%z{b3*45_4USmrHrpE7!Am`8KD4SgKUkOUm zti`Q8Jk~W%C#!p~qv4J;PQ0z=(hz(62DeF(Z{sg5Pc$zXIU#wUR>RNDmDC!kHTtIv z_7k+Ok;+lxSlOr6Xr_<#s^zERjiZJaULEzel~TAjc|%%;aB6ovQ^?`7-wZ8oydjl{ z=2T}Z{u>+Xx+LO%37vtvtsZM0$);pH7F^4nQF}$@WN_E;HKnM_yy}=JP&&8e0sT+Q zamy0pEuu#j6^;pNFDTrT{2}#48MiBqF_v4Z)2TFX;!9mb?Ufb%ug2V%9~wTC(757) zZ8Nd3f}ieS;@tr7_&tC}8C#>{l~TNM``)3)TU$+xb#CFfEm zrT$&|sa;8X&B@WdFjCZ4Cv^u6E$M^37ix^f3&f-A^VAtr zMV^ad_QbyR-Zoj$_vPE>REHGT;)WI{Y8B_XzK$lj^`<;sSR(i6@--;5&j~h37!{^* z+{0d7`z^bkUyxxYU#Qrr>&dlaCikzdZ5FK;mDEP5mP|S6VHIN^|IzQ`w4(|ep(OQL zva;}W^8tzl_mROA?e@0+$&<<)WR@LPdNb`JgWvELMfACZ=o>Y7<$4LGWiVxS@HG2{ zYt1@0@TvBV=(cckP4w`{#1{9_F@<1-O=fn=JEE7V6v3kW0}TcwlhbS9M1E?&QNBcY zP3qLQOB5i{BK<_E`0Joeyc4&0Nd`X*darLC3iQ@;| zG?5z;90T&rMQ|d=q}}9a=I*L<(%2c^H7qB#bT(8Z3r9&aTIkHX)JZ^BmVq zw@b-x+8}){WQ+ zvc5?~IX|<`uRJa%W{k%?6IK_kcuKM)IjLlBJ3$ZRHtAKW23u~+lSJ(m=XyUHU3Lx$ zo5C|#d27xG8ozR1Cc(d$X=BI@YZGofjGA=orR|uNld5<=@KqORiCf zb*FIi8LRrI)arlvP!73p&;Ai@0?vwcKI?O@^KtbGOlRt)thDH>gSy%aiEb)t7k$58i5t??MH^&FQp zrxtTFZj^FLqk(LOXrJtS!{NTI+6u;I_5tQL%5SO;<#Npo_W7|TrjyO}rt-Pn5DI%-6(I{-oK^ z$I(B~Wz0g|#hf~$4_vV>NeLJp-S6EK-$U*58JIeBW@MIj9z~CqN$aE?qc3Ilvt@eu z2DS!PI@_q@R2vmX`=<5%um6mqa_IEPYfUS0i`GrIV0bc`7;9MpI>&Vfbf&UGsc+O1 zl*bgQ13MM(2bU>*NA9VU$yRC)y^t}?n9SreKe5c&>sd<~e^DYeO~XY)&4VL@vLRwP zXv9dpPU}t)(0Gh+=4Iwb<`7fH)M571{vjr5I3qlzvGN~f=5XmqhN?~-u3b(DsHJok zvy|z~3TL^n9GEldrj*N?lOqMny-Lck{z#B2S{R^A(yjO#BYq5sdtq?hA*F(PfcA(MN2{d8T&6uWPPrACr9I3q?TvAMGCPciI@*QEClkB4sskkle1_uX(KY zP_I;fP;b|SX`Lb4K1`%jmQ$ZnWz@G+Tk2&BhjM@@AQ_~i_L63aCRCH5*`T$D49iKv znUY1Zr5>l=r>>_msTV04=oX(r_Gm4%yEPPzzGl0|RNJS$PlgjJB7yRX(odO2HKcx{ z9H$slUIA+DHK{|!X_GYjH7_-m+G_0s(u*i2Y$ySg|50{RA}LEK<0;>W%S1S2Ob(HC z+5oMtmZ6=k&C#AC&4_n|DJ7T^P4S~lrc@G_pf|k}?JMmiZLW3!pw)eehlH5uBfb%Q;udtX zp8?pNESLdnFK>{GNjh1g6=|oFx1k<%EAfS>BJznh#93kuWb1xZgkV)`4tauHPtG7& zqzn9{AU6@Y#30DElSm_e2V@>H#hF5$F$A!7RN^hUk#r<&$(?{Om_Y0yUJwutiStmQ zKOM4k*vG&eKC_$H0GY;G@+!HB`~@=1=EScsTRx1uPeg**6~b#+Q8yO$<_POJU5qJ_vJ4ub5G$&2J=V0cJ|Y#UlCB~U?YDcB%p0EaS>R5 z+hE)Y&|D7W?|yV1vV_st6=E95_Xg-?gs3N8fppo#Q`qS_@(##Q1KM@^o^3XUyqq!2 zvw^rn9n$!%l^ z`7`+#GXGeGhW(w8u>v_&?Fb%m73}9a=(hz%Y$v_R1d!tcKo=sjK^pK?Jc6ryg>0rR zu@9tm0`#Z@`#(zhkqgOK*xh@W>qovb1Ln<#pWVSS-Vk|U7YUFteoe-K9r%J|pFn;R z5yky5?<455R|FccBaRTCVYSBq9a;kO%^;_e?&My;K@P%Bu%d7fR*bd7=3qTv5%Kf=Fzpbsr@3&((UEdZ-~2C^Louk9ehz-kd$Xb$`rKY><{!z&XB zF<8n`KgiAClm9|4+78D447%I{mhS@j ze#D(wgU18|a%C7i^B#E#(~a$2=Z#&orn#K-RY( zT^8SgRb2$HIR?J)0`MnPSX}@}z#p{S0TzsT@mjFXD%i_s(AW*o)iwADy9!MOq+2Ac zcrJJe^79}AP&34(M=<6-`4FPV?_krP;aY9vY*;JumDoc}LhLuzZJ-y+!9J1KIti?> z1pJEw5h@UL6b<8%34AQXOcKTyz{pfU_ad9iR~RjUjQdPjYY^;gDQF8B0+e8n$RdHL zK^d$A`?+H!1$HX+g&D(%82FBS7|213{8UVcJ6Jb@y>5Qsc9F@>4tBp1d<1ogb?S&s zLu@!A$4X%@SZ{?W)A4ZiU0_K;VBc7sfVfrEDKh$CC3P*xxfaF_Lxgc9qQLqSVP34t zMfPQ6kwbnqWZT19MeG?@2KMR*@{b3rLVPyjmJt1lcs*p}#16mM{}8e6BsmXkXd^_5 zC|K)cs1&FG`C~5)tT{w}UuL{>O-2ta z3xphN?a|A@@s_#e(M0_Bd zff(KqeMh7q2Q^k2VdqKY`f!5NG7;=`8u%Y}cWD6&Oov&JjR9G)u$lm?zRVy-c*CAn z!y2%&HZmyGfb~_vY{-&>h%>BU!#d$3mc#srAUB2R;|aSn2HO*ZW;4EH%CHU}{Ywmb zM*e>Z*rhIbDstXC08Rxxxa50He;Uk-Tpx(E#qPq$&e{VuYY&kX>&K|DU*rKn%r7#$ zBH{;`T(Qd_@e$Pp{PkgWqTW=7xdM6e#0Bp1M}eqe=>Fsm_me=F<(JG)>HZ|w5d4?99WvRaT8 z_HFzE`{UjbHY1y+l-v51I5W=Z7Cz*?^+7>kTHL(omz1MC&;z!~4foE7m6LekY594hwf&UR-*#=j~ zJ{K?HYNcRpSQmjFi}hW_aOE_(+GiMvJ+&)f4cM<3BcBXx%n_^$v6hCt-p0k#za zGh<~YcBDcSH8Qp$dld3_t3g+mpx0e+Pp}8gy!-{NMW56zu zeXtaMNBrVqi1Wwc^g!MzWaYqq=zX9?w`LKxct!kwc2KGX(g;}s(8JVOJyN+Clp5O1wqF{Uoe2NB7 zr^xdy2YF)kHFAL=HXkDxvfKH>s33^6*r!aFs02Cv;N-+-Tx49uh}Z~zK!d$|!%FQz z3W%4N!G4iZrX1cw+&|U;VVuEwmLft9qwGc2Om9U-D1 zHvqD`%!b(lVBBHw8YehCFv?*)7d{yy7bGI%e{i%c0&iUkW5XcI`oOH{v&h3w1Bp67 zAAy+5C9PYc@qX8vIt?7*dq$rT#&&4dn#eI5!T?j!g`VAiVb&s zdGKVH27Xfxqp`-73o=9wVC=Zm1)hL+BzT?(K~i79TA#o(5ym6rS;JbLa9eLt3tCODq_zfWb(uQlz0|k z-4BUujo+=Zc;;3LA|zGoG`1Y^}*I<7EcZ zXcI;}1~&CI4?G_6rr0q4rgBtc`olWi+w(hj4`{W&>K~lIoVmfmeA*?WBr>Guf6bkZ z$J$>hu8<~l3T4so^xgyQv)bA^y@x6odgGeRE9WH7vYh_A!6juxOL?_dO-)OjVhou} zn5oSBw|CC$$nM&wSVuW)6lCUWzi+OY%@~u<#Ho(vYU_%ZwGo}a4$mRBY0ZWLyKlCg zZ@beyTD3uc$+SFs!TbWpaMM}3VSVYfd*yd3Vw)c*TnQRgPxW_?prx&GbnC)?Ev?+d zarP9qVYeG|-i=KixzI35wov-8#;BXFIZHDngbGS~c*B?a4Q;-|w++k9Rjv(Q+ZJw_ znZWwm{y_F?S--Tb>A=tjS}=pJ9@}%a(WsWzVA;*5Hcwpcw9n^*&yBe|#{N7wyXs=; zol>*P&t0p@o2;!g=b`piP0i=()TZh|a}M3c%yUvehR0_MN5;XX$z`t#=9ZnWZy7wx zIK)0l`t&9?Fsg3V1b28*3?@IEKP%vEz@zyLlZXLX zyO#5u6)+gza7k(+iLL!K^laSL1yjO;qu=@cH6u-BF5j26B(1M-Q{w?`kl|X$^VD>{ zsvH#YWG<~j`U8txKYnz^s{92@M}28KTJ$D0Ib)C5uZPXL&TZDYtNgujlC(=`Sk>9z zGFsr0A38OzI6!4pNCsBqWeHPK^5SX_swxc3xC?0?x-F`@g|j3>jS}LGnV-+7nBK?( zi_6B=bjpjPQ}xrE${u$nFm7>!^e&CKHY=sKh4B@P-p$;bb0@9rjk69uF#7}T_o~U+ zJChkX)s?Qw0lkUbLV9`c-_>3s7ja|#Xl>H8(O#+17BSB}S5LgrJN?_s)Wp=GlA~?Q zY2n=G`d#Y#t!w0a0aL^6(lfYke>?bfyh-RKhXbtPn*QukfmPO}@}-00^jf(>=Klta z>-LK~MDy!nRY{W{EtwEakK68>I#o|W6V6RLo>Ed&-@KMGldEUgtKHSkEB6ul%BtF3 zb#>+htk|9~vZ~BksduztAlD{2C&NlMZh)riV5H9$D!S_Sh&zPyYKoL*6Td8e6tyM( z{?dQUjwX^$yf_S(Vd`Xl05!c$e72KSh(b~_mvm=F~ZW6`HNB~4D(OD6I+)Q@Op zasJ@^MXBiAQc+&!AgO5{$M|3sySz32T$H)n#!(Ynbqk&VrskP&W4DBPp1VsYcgU~d zoOoSXZ$)GOHsc2irbSHWjb1Tey`0RFr)9hrjLkh=W2;(c;K12TUE2M&GD!GBJgdor z>SMmfKR-?u?d`s1Y+A?VB7U+(>g8|aI_ELmxe2;Yhj%tjl}gG4<#T(fqmH`VTJ@E8 zKIEs_e^50QJ2LC|%d$hOHVtR%=Wrg-_VwJT+9}*AO0G907n@!6?TQE;Y;`0 zlEW#Al%u8m_5<{b+~4#}Rmsii(#vHx@7 zR)wsz?3FCBbAiDphvh4qd1qGLoy%u$sLjeA0ZdJxe7E9&t{1nN5!yeY_O_^5IIT8s z#B0iE&!m`Z@x^{0rv0o)D)UGUN@f=&H=n1>;a)W`)gEuVCa)?Rk><63(&gA)4?fQ; z51;FDQ}09l)11rvgmk9#OutyCfE&$vFmS2%z37S150HS=Nosdh^#2kROGC|`4!Mh( zQw4(c1yzlH1cQ6U@LxazI+VXC8zr@DyTq2vst>Z~*+*WR-)s=r_#!ute=O~anA(@k zZsZV0^=(+Nc2Dm4FZC{1JP}ziF|82YDy!gS0a^h8!Kr-cH|& zsxmK$Qwx*Hv^f)SKjBc6+d_LI=axd4 z*$aIluks!Q9kAN3@s({&f5>moSy>yaUT(OJV?uq`wYYMD@Pqh5Q#h@~B50Xw!s3`$ zi@U~5XdhR2K=2}^`5l5uT`c(Wf1KW`0XJ$tw-cwT&bCIwdx`pdH-dfz&8csV1cvOw*c*|y4YniWnf7eUH z`E$>N_VY}_Y#hoM)aqqf5&Zd?*UBdh4eP179Ok@!e$8>w4v}l!A+_7IYOkEwIq}Ut zvdMXUdfyhO$OM5!cUpE*cXAC4rfROXYGf5_b|l4FP*qUc#H6sf z$p#y=C2gSLW$B-eS1 zPYF}2_bDwVj(1-f?U68VS&5ms@`=bS?Qa25VAB{vF5^TPz9Q##2+NlXcSxIBOIWXL zMS)ETJ0njm*w5*LTet&)@sP_qx0qy29 zRo5hWX|n{sFi#s@@ClK{?lL>NX3;GM9uqG3(u*8E3!ruvt~be&|+$XDznR^ z|6XO6^_3r;Wm@?}*{t8d^=4>#f35yoXd!By*7*BAI{hzf2G)@dxAq_ z{MzSQGgYJ!w$(bSOQ+^|ImfXRto=-HkQV4g~1x8SP_*C^G9_i4Tc3)Mk&=PiA=j z6MLMuaM@kcb%TRtS5kKJWAn!~9wH}l)*39<*0hP`Kb7@JX17(d!)6~?klq+NKodWQ1bgz@hGMbG4&TwXupxN?-}V#=nZ z{kctbS(^QZ`i8ya*^Y1JLuI!m6Iws8*3H_t!gaM{%v`rEM&jn8yp#OxsiC5-9xrwW zw~Spqc)Na!_(<8(N=HThxMyzpQR5SJgXUOXQ!SG4Q?DgG&iPR50%s@5Nu*YFov-{y zxLYD=_GjF&)(_N6EQ--AiWtpo?azCgbT_&5TVz)Z)0MkGrwp+9R7ql4P(@<@HRDp( zfylx{|KKe)9CDiceYy)@p6y+er@Cx-nR}c@=`n|>RVQ|9N~WH%Sh(zZ!qnIi_rS5~ z?PNg;-zWKC>DP|kjB;*=?$i-Mlc!W&Ho3y0Z|CSa^SKeH6RSdkXB$zER8TT~_;0di zR$UnG(-(1`(eCvmRV4|H#OE3uh-Whf{oce=;wF1aOjdWzFLp@&Jvp|-u6-RniJPJ4 zqUvehB>P49y!>3x0C%f%OW3%?`JtJ1_vrJgbh3*030Y$+1C{Rj4DLaCey_IrPf>}; zrJk*=o&KxOj<^GHVcsnh&3ao(J|tHQGK;pf`qHYn?fNg(!!5UEOyOqvzODenyN<@8 z+(b>-Gspcb+nTdkSxFNzmdM)_j(Wdyi=pk`@tSZEN7PtrsXje5*efNrIsP|4!PGra z`$MF53-Sxwo9iidTt9=SfCRiIw-MfzUFkTZr)M7$lFnNlKFK*=_ePyz&I*2D`dO*< zfTQkz+;-;IfdzFt#Id5D8pZJQNvD?R$B^+Wmb#e!JQya_q%Z~Q{Pm4@NG>PA;DdH^ zyGOa9@S(K7?WoST+4(Ep@mu3`m#sWEn@b%i?@J$(bT)HL<^PmzdWIZx+UcH#sytzXXkEiHqI^b>|M-MW zaazy$6AHS6O4^bGQx=wHwtuGU8_m&wteVi`E}JNHEO+aXffb73M9y9rYB!etOJ#n> z?4+uUn)2wOfAkcbSM=fD?&@Qr0I^fUMl!(cmhb!c`uHO$0Srt-W_#>T~8@_jzVx1as3FWEw%Us&FBoDdn->qV&9t)FFI%8tpnfQp{) zkhaob^|pw)F4OgV>tE#DNzTx$fYc%fYh~=SQ;U&oVgDV4S<0 zza;IJ_+9T!TwQ-n zyj!SKJ#}c;_`*d~qHpoM1OKzQu1c2t1r&F3xyj9Vs-Hwi;wUYTS1r@0o!rbnOtQFi2cGQqXLy@?=>|7;(;O1EUg&vXjd7Kr; ztnX_r<)bo&_(eInHJ?>I2G2PEQvJG zP3|t`cBV51xgT_chMzXBmPD7mDF50!d$i$vdc@tt&mnoU{3#jbmojYm{aGKXPL5a^ z)^KOgV|r#)nF=q95*vKrME=KbL;Sz7Qjgsx*E{2ieij5K7nW4Ddo%tt+Nl4tYD2T1 zG@;C<{GXnqMw4BRuR50K61v1rO8c#Hai%=!RAz9+!=V(tR8AoMT<_cJr6P0jxQ3Y| z+ia5W!?;CpO0U+5p1rF|Hvu;PW^rWe9_ks+UA;zCb<0}$UeUA)PR}up+gw)YTAngg z?l7Hox#m;0nZPXb5BdKTVx2NW9^JC8KktMf3eO! z&TGc%ey`d_QIzOQt%J&7$~lkwF^q&9|Dx#ug9$>f)Sm^L3-TI)z1VQ4L523e_M!3- zVWVtSN4oB>b6%|&%j*ok>e8xLR^OZRoXR!8+1W@#u(l@P>Szm0D0(#@s5r-G7 z;T&yRl6QoEE_IRUc25_pha03LADY)_BlQ%qs@D!~G`Z+DJ<6N6GEi&LrfQa~OEcz+ za~9RwsEZA94L?$nx)ha1M4P2IT8=ObtOu6AO9+T&FIqJEW$V;}HvZX^fo~a|2N{Ps zT%BdgPmQ~!#v=2o#{=EQb6hhbF7OgpjIvQ`!{t@!llbSeH&y>U(xcDfT%;y<@2_Hs zG~zK$Q>kan)&4&5`Z0UmgU32{{9Sljz)i_5E$KMKsN-(a%N+UG{7hyhdR+0eSAW!G zm(;Mlg!*9p*(!=xg(71+|8myF$_C{w{R)l^eOd42>UAP#u|vZ}@`~BdzDMJZ#ELv` zOc>Mid&$@o-INn0liRK6>$sJAsj7P|bop~(bosaLHjal=V`vbsW@W!!KmE@tMWzk^ zWag}jtRZXttK5@}XMHznq#~`zuf9QZfBK-eeq2o4dGE86KK5=Xou1;E%qZU98bmAP zS{nSUv1v<{9|Tj{(pjf(;czkJOM+$CX~%N->&MmXbpCKgiQHu{Ku^JyFc%M$)h-lA ziSE{JS7l6D>G?KB9hc|3ck01`LuD4J{epdkGny4dBBxuwOY^l&zx;-fCQt47O)uQe zA^1%~_^Mx=Ms#k}oz4;Q#p#cw@A`Q4wCL?RbQ)zyu-PQJb5RkT$+!{1?g zi^5*GBz1w{TfS{$JXvLU#lV5w-0`g97m>Amu$`}CI9n5VIbN}9n@ghpx`y!FTK=N+ z4-&HPl#ahq2HSGza|26ySahMBmHm5VPxFrF<| zi|&q&TLX)k&67Orxbqg-|2IX>Jk&E>O_R(K&#n}-Y6lG{_n13bhv^0+ZNz>ghBDUh z)}+*#7iLVEuwK`B1j4<1p`h-7LEjYe~%tzxw6yyd(dGi7X=Q7qeAvvk0_o6{B4 zeWcfVAZlo$ia}1GUZ=gIrP1gNF8iYXUtEom&@i4Ap#6F9S?{=>k3C2GOccwNWvX4I z86ZMm&|cGC(-*UNx|<9Hh86nHSkT#U_~gL;z7KtN0~Ui9l)tM|w4W#<+8z2wdMjPY zV6)S7w(G9adCf>5Mn;T>+!S<0ufk=hRk=jP(K=9sv_lLl=1k@~=3JI7dmr1IwU)k& zn56Ddx(<~MS`Kv#QHK8>DO6jMT@-)%d&XwwbLJq^pEa5#Vz|@zBv&0U43FT-X~T{q z(^XdLBbq7XJjyy6mobBRlPO`Um`9m27&oYPWUk72c#P6U$sGFa2%M2BXvDsi}3`NweHh^P9ghEB#3Cnl21ZY( z9i*mEw2;#oLn<|Tns~LjdcWFS)2m6=-XZtGSYzrlY6G>6`UiCk^&CY4d5jI@K5dD{ zMpLD>(EO`8qg@DDj(5a-$~zeAMD?bQr9P(EQ}Q6+^Mw2csMU>{Ng7v8q2`!2h;#&$ zs|Dp(ii|>1dMGJ?bsYtG*f7X|g_Fm%-!!*0ziXapRseRjmfT1PiCL6*$~npj$|}lY z${-+Ae}-I<7|@bQT03pOW}5bd))ul}Aw&gXO$nkzP~s?Vlybo71wbxo3?Tuu;5hQO zc9S+%dsa&Wte7dF?bL)hWgf+oGKNwL*x4}1G$B(-Bjg&L$qsFj_N$hFEDi@UTa|<{ z#e_16VoDhTT;Wz2i&^T`AOks|)FuMTbt0JvS)0Xxe#?N>76F>?H^6I60&IX3GD$SZ zIWy1_~-K~^V- zzloQCfZGRGMcy4`FGA!_AmskqATxBFTnE^;QplU`1KC^#EaN(utrT)w&mqTJ0U0u6 zk!l0n*(yNUx&RXLU&zNs!RSqpjhqPi&3Awp!0diEiP=;K$Rs`|x58T2LvE@8q!k1! zbc6h01|W&9!m3grx8_CsLi_=l?LL@yBk1BMxLzydCXp|>2ljXcGF(?cf~A0STSq(q zOsE^=w*CS{>}Eji2_UaF6|%?3U#NyW*Bi({s{jSEn|Mt82UtWqSnmZ`Zy4m$zCZ?T z7&4SBcufYGu?ooI&4RUmCdvsppnA<9b9)~Ure`6i`yb4Otb~ZU`H`uc0DC+INaZh} zwxN*I zPb1I3TK7VxIt_M$olLM>q6F5{4akxm#0BCR;Bikvj!T>%ozgi)ISlY1QU>Qaywaxi0dG80x|41REoNCu?z0m#M{fL#3m zx4HpV{1L9Kh3g`Ze+o!W32Wy8()SIlU=3XBA2J@$u+HRiSaTsr75iEte-U;Yqk+Bd zBR;{{YcPK=SehR>ft(IjdmOaT3tir@GZZ5D#E^?dPWYcdufAZ3>7apm;58hdGLH2Ykc zyBqv$BUnE&vU$R_4}j;dgw<4m9q$D#Y=D)dgXR}PUiu24uvfzVF>{SweM2Fq?Ep5H z0k*OWP{ez{e@a2J3jwjW7RJv7y(9N91@hj;-|;nH0b#nH3?^5DhVO%fCc>2y0VNUu zt1}1x!Tw2FK>i``W))FTlSM=UV~UeJj|*W{_np%xVf(Z3b&V zcCCKMKMTQM5iju+P(3oR|7Eb&-5`Z{h=DV|BTcX;3-%U3lvEYOVm{2-1^#6Nv+jej zd*I(9kO6WwB4=nN>>1gMvB!x3ESds#vGhAiCJy%H3{eF6xd@O1GDUTR^<_eKy%fBp z5YCyYpdo+IXAs~K#zQ`T2#^lQrHlO$OTOpYb3sy=$L|Id+7i(HLWmesAn%X;hOsX& zvURq=b*n%M$V~ScenRFz#7LOJUJwO`-FcAZvk+F80W-e`WC3R3(_vl{K(n|4^2QGI zse!S`HunQlSO8;lAr9P!Ia5In1lY9|*fg@!B7Y+yO%aoV{RXguKn<)j=R5j<1!xKn zz=(u@N7P_P7YXbNF@-qaOVAdwKTAP_Bd{w(1S29AnKY5>8Bz7f7FGwifv+%oA$)HG zq=E&=X*K9S5F*+PkUw@jz>aX(%>zC8M?b{PK3d}%A3higHy(;!kI z2N|M%kRK0O_mtmJEy#909{gx4L2C`fFsL+Igw!vSBngSeV}<{-9$$A z`EW*{Wd*=$XfQ9zF$1oOD?kh&@@XPMbqJ!CE6lqAB1$Oe7dt>o!2%GYi0B~f!GSUy z0%@6omH5KE0idrySU2rEb`){T$VAu){)Ct)>?w&@PSipmd}22E0P=_<>oOvBD&hKw zn@09Hx*Ee$jgjO&fmaJ5Q&-vU#J&EQz8>Cb~$VYU6n!P{|NE) zE4+t&g%FvINHav7)Iena(X)dNNas9|>nE`MJKzHypf$wzA#xUNvK^w<1n{fnu;QuU zqlkx1g)7&7mlDPq2xXATJ-{{SejE2506h z@b8r%FKfX1C_t`7px4hZJHFcq{$BxCK`-lp`&dh`R>bP*fxUEsJaJa!9z_{p2jhnC z?A6$TKm{=lyZT_SOYFvk^+E-33TMJ^$mLk@-Pf~V&0T=nnhp1u^8wALg7qQ36XlDu zRe}WYcZ@^GTgri$5eE8Q05eko--tY?$iX)Razq|sWRpeKRU^=oH|%L8_^mrc59GQ> z-eY8C#{Or>-Hcq!128LMcX{An8{z+0&@e_B?5v1=F_0q^^@v?v#=@x+0%zBLh{b=v ziIo6r{?Tg@ySkXdyQbiC82LG%Aw{eLZC|13m9{@|2F4tF;g z9SZk%0dPIeckNY#Fl4A`>~TmVk9xgAGoG{VG8>$q*&~f%D=O=qw4W>>b=2 zJb)AF73iY`bUg)ji@oA=K&#K8$^!mU@%`@UCRo`$`1ux$#|YK~GQ*Ar4WOA!u)_Or zr+EXu{sEhO50-WhPOsN+4JlX!6XGCt?`Q%$eGGLLAK|RRI*b3{bJ$hoEBu@Sx@hnNbd23akdf8>dptZ0cMzcvy*%MPU8#*Q4wqs|5WBkMl$ajGG5jspvcf^+s4;wXF%1ubLACZ4d^M-JIWk=qn`FST&@ zU=AzX4|cT?EF9m#ewHY0#P0s!Y{V{3$Sur(HH3i-0wF3Q8|~ot(-0#vcC<&^#!3!k zgKY+zv4MG=;jS+T*EuvpFaXRk1b1CigK_e{R~Z62(l8l;GpN`qIB8x`+0^uTHtLeyFc z)@lWjI~QdB6|{sM<&Z%hdqcE?1dzRX8c1phtaCBwLLa;l`w_eWITpZZj5a9UEcgxO zF&$?00{<8TlI;YEzJigjU~cSwgS8ADAPww(#)N%&e4leZtOPqH6oUp3yIKpY!&CbQ zmninJHw4Kp0lRX6&rAiWW6w?j=%5K!ioF7mOCOQ3{qQ+_GK&XUVXe|s*l#JU0pmbF z$N;;oV1&RP7}zUt3XBbfnX#&h1t@5sVuF2q1F2)jAY?S9!PSJIhabHcv1`Rl@TwBH z{%4RYcI!aCROBH?q$o1RBg6Gn@OxVr$prsMg=mIP;fOWH+E482i~RD4M#awH*cW{S zEGQph+eNVMOYrpa7WP&LuOsuk1a^=Qqkr@n9fI*cLmsO6_MpX?q0CB3U-m9 zgLIuimJ7kML*P8LfmadBD*A4LcuF8&Fm`k>0z0+1WQ>AcbiAx9x@U9ss_AR3i7NWt-&6>!7tW=2C-kx8lr?Umu|xpGj$oJ zhm1hZ#?(zJs!^Z*4K{+}_{RYxIvz zPO$N^E4I>`pwF1o`?3B=m4DrW&d0-fL_F!Itm^sPQPt7db82`oE7W9*mD178;qMtX z924c*rlyKNDux>by??3~5Negnz@g5)Z5AD?`<*DV(aSBWoIcDWXRR3@MLcM`URf!- zP`#~#Gm=j+AuNZ2I)j>DHu-jp8~&m$Qrl^k$ZbT+mnCxV756_F;P@**N}z z(;xm7%ZwLXm@qVCRQYew&cYkgwe1VE7CHv3`jLqpLp24JqI#?T!+Lp^b3ENvtnzz1 zD^(}1W!pDu9=rHb^{atj7>9J%Q!n>#ZS<}TsOo4j&}S4)USM_0)fs=Yg_Yi3sj)L!lRL+6&|Ht%(zZUG(k2Kw$TUL|2!`|`ZX+k3O= z+w>CXPZc+t##cV9*woZ9GRMSgUhj&~Ra?B8rtcluBM;2Eo)J=9*05L|rJ??N8-thFMKkScjdK^KT+9AkF=fa_Z-8@@5#OI( zn<%*~X{~Qp3#S-*ruz%8~)DaC6$Tlz}2?vyvFc5$Vs??rlF<;UtbOztp)# zZ`qs+L8Idrgqb*9&@HJq%)60npJ^+r?tc<3=aR3PpW@v{kIA?H|57ar5F=k;Act ze&b9J41E$sr-=pi`Be=I$yuC(hENUJd9%_&Y$0FUewn@9_IyBAoO0Fac`=5|n(pUa z7x2>cC6{`~u^(~U*k_04HolhHi>K7g9J*pM*6n#jW!(8?sWY#ScuFn<-{q)0`?}|9 zmf?t@0d-AxbJaSrqs*%{lX1=}eA)WA_J}^$W~1_!iu^5t+o>VK3Eip8Ebc1ZI6#hC z%W6e^RpS(|jNKP349}0h7`V|YRdYi2HvKogGW&M*l@Xf3XwH4=qwbegBGDY__2vkg zg@x|YH*vJ+`HQz0(>l0C{>il|i@qK2Xr-^<%5+bUoNwMJa}q7Byw_JWYMaZcFzbYt z6)M~Flx-DTGns(Xlybd=964=f?~3YJ(HpUTBZv6SY?SX{?4(#D&&T7>bcdGs zrbMP(FZr+S4lRu9q`w5%*c7rm!l?4*?sU%Exu&5739nZc+jZ05SMAIC#($GpQr-i( zwmeQAeO{kwO`zzBXkz^-P0utF@7UNYaVLQja8`fuw-c$MDbI@cwZ5Xx=I+;jpJ}}BGsH;$Y znWF1?E+!=Yli$5*&WgQ&sc8_n6+UWONoWio>mSl^+Wh3AvOt-ChmqbWJMZ9SyteS0 zE^+$*H7IlQ1%??1rPuq{>4b18thRx}b#KKdMJ+XlhF?yc>uwNzJzlW%x!Ejbp=ey% zCc*jqRSomBG(!u6DWqe^yb24^C7EeE$xfa1A?O&dEi!AtF+jiU$rJIVsfR@;d!ksa z964+4U`Ks~#6V(UlKb+p zV>&VmQw2*?yuJl=mN4FMkLkt_S2dPN(#z~Bmh{aY{b1gFKmv9K&!1&Pd0u`sV-w## z`(c%2SjV84^BXN1m?>+84q{=$MS_^=?%xwXEpCzLXp0gcF`AB`DM8ZnAs_nuat@Uv$)6TalK*H*+LJI zSAC$?$u!C5X57)ZA+LmqzxMo8@+5g-azgRntwU5gcUVuQI@NMY#uo0E-|f0#sCCq= zJi{{!8*um^>tIbxHd}Br^LhEp!BD+bz|z~_C#>ldT^0G&`KkY$I@+s0CNpld?~y5o z`nP>MpHe7zUwE&11?4{HoBmqOiZ*)reqpUl+o7kw!k!*N@XoI~<)qX(To;v-%%7eS zC5stg>&A1RFpmxl)-Dpy647dRj2xZphnJrnA z7R+Cp>s9BWxoKzvDEiQ@vz0SNlcdL5-Z1W2pA9hK9f^MCc6*d}Yhb|}!Hv{I!pq(B zf$=C=XR~r+W0&MAoafUA&Ke6AEQ}b#%M0?g*3<5j#iZ--`?F`(>{bmL@Huw0$ey5T zYq74>rP-f$+JaoVC1F%-hr8q0m+egjtNGUjF(m=*5-I5L`FZ*jF))F94o_(E=5nm*M|)3HcL|+Ezt(L8+<}RYd0cedChy&ouJk6BMx@+J{#fkS)=ryg zWNDyO&uh(>QG`Fqw{?XWzH@xPax2d^tjS><%b@0S7MCBB5h;HSDEe2Na0a8FR?8Nr zi4y8Is%xii_j(tbAODM={j^bv(z5lbzR7Kcw}1saj`K!8LetqADIYAm4tUfvdSC2b z1+U~;g~vF*)cpXg&cE`1OaClo4^-(~r`{fmDz z?Wwr5_agf>cMbdcU}^nQ$$U{twRp&Kf^tzxR8qq4fWcZktP$NyJ;qPW`>B4Pb|)v0 zvxt(`$*L?AT1$0W1x%UE^}zQ$R`lqFmfQnP!rZc?^pqn)#~y3;8KX{}rlEv}bn%`t zr^@;PuW>XthbSq}GpNvVsd~ILJ1v=CoO`D(TeFyx!|9?d?HX5UB_t$H&GYCsRvVU! z6BN-87kwRF+ZtZrE@(>mTxQh0jJ40`4WOmIHRed>3;il({g;j1T^12dZZGU7esNHkS=JrAJHso`&T|k_=_yGBUtaKU4HOBo^kki=S8|9b%oj4Nl9rH5`SQI_T(C}6ay#f zo{E1GDQc>RGbZtu?1?#$P`T9F%x5T7XqRd#Xv^m`&LXcHjsa}GX?tw>T4A;HLEA(2 zAG0~J% znV(iD%IryFJ?HxC6b`jF$R(Y^KdVv{!Q*BxY>POaup;np%SJUJ`#D|6-*lD z#71aXd9{Cx@w^4XoEyxfR!~rOvfC4J+J(uRgj>gTGX?o}mW ziXfms687GE&m=G3|HNN@kn!%j?_UA zf)kQ*!+^ozxbGImWe|(J8D^peb zA7_;KhVdaycw<@NIk`*WkQNhT&V=M;lVe>%*G;-_SXX)Q-G6bJNw4yAy4D$RC3l6# zyC+qiMtoGa3ZKC&yE)UPtIkBBmVaGv ztSR1LqkGDdGckr?GkqT#AFKX4EjunVF<)uj`Ir70Nxfcg&-SW`c}p=PPwk&=t3UN> z#MGFM1x+J)17c-S!q0Io>Bd!Qntwz$M46mZEv>~Lm`5Rw7em(5PzVQsmpbl)9h!4X&>iWJdd}Iv$v7KBX}?_;Z*Ln))?WRk}iX! z{*0P2`9I48OZIokEwp|gLMO!TSo+)8hgwbH|B^>aaR#frL3LjAha{Odzx_g~iK0~5 zRAb9M?jo9hH~P_Phv`*TPn(Uiew8N3VzbvYPZhLCwixXnG^@LlKU+Socu&UyvyVRS zLkvF~y29RLkn38qC*}9Jq_=}5hX&S|n3--DeAD@5d5z+l@_h9@?a>iG&xwyJi)@@> zZM&(h{=;XoLo)Hl-HnfU8zlC|T(uNYozKe;7b)AGiLZMPS*ebxUom6CDZ%uzH*fRf zdQ#REC-emwmr8iTLtVQn&M8kRqpL1zoSZ^u-HQA?Ds|R#AOUT%&&n=I=VYC)pTK=7 z4m94U4r&k;PLgjf9NL;>(&_2GA~^O@u#NZ6`nM~lzFQ>qPq|Z=(Nkm?Dj6#*>Po4& zryQZ2TKTJLxWmYx?W?jP3uae3uw8n&3Gut6g&9X{u`@0H!K9L{YT931u81qtZ;3MM z^0=|oC1zzv-NX}y!m1PR&c!WBQs>R=ayDocrwYw`ysMt(ZC0+TxHQl=bj!5bh@7aA z^X@pU>OCS~lwct}1N`zF?LzT6(R$9?WDTNT^e2Za;FUV1G(4OP8)Tb02T?gKTp0aLd}G)9*%SmW$6cs}ooB#CV9`yExk zXj)9}n;@@Q^B2X>qbxW5N@b4vv5BMTIA?N8NO4x~2c>>p zC2yT;z=ELYa}nNw_7?4p4Vj+tqm%L#$J-hGTc%$cKEdiFHSdu8d5KrIgXImsf{=pf z-o-tm=dhgxmdXB7&AasSRGgcQ5l3=owyi4Nh`9NFbvt?2N43s(j*+cqreC+Z(R?E7 zxXdo$znn2G9)cqAUk2y<57qpeSDYJGJh4+??&^Cp#6C7_*--aQ+_@zq-)@!ON^7g;kR+`r+ri`E#9 z7#yrk$zLwNP&BN4spP~&``~|Km#w@q;k{sAS?61!)b;K6#qavW#&aZ{e07I;`9;ML z<&i46#@)$hmL&3UWcke3LkHURvi0IaWDXw|H}rDjB&$q*(g+&=D7-6ADqPztH+ki$ zSpGC7d8Nv8yx!{aX*k!`m|R}y-s^>IAD+VPUHpoC#m@?+^0I2DLt>EE>ZmA-Ijs&x z-C?{qOiI~Lq)e4>BY&1A{yn8jfNKbeVlO+s37+}gz7mD-Mv`o^a5`Zc|F)w}Zi z6<5p7_T96I4irT=#oSpq)8+fYh`f@-aOua;FIxW8@kg{X&9*0P|aPo9AY_W_9Nd~m^;=r<7~18dB8G&W|~N|U7A z4}aIsW0pvQO|J_FdY9IpEHkXAX|>m1HOf6GU{U@I>F8hdeytmw&7^jveUZPbc^~U! zz%zO!_+4$=Rn>gIwR~`%_?7dpi616y8>6-OP7~aaP~@q6k{@1qwe3HZDgU|NZJ|H+ zC-vk3AGLwd)#5X!*Djl#7F#^yg?8_2h^jhYF}-?y|$m!ZyA3D{}jTqY|{VCsKdlh)Mf}zQ}eP{-ua^AT<7}k%e^ZH?yGG% zELY0+70eR+E$9-CG{`dSH&pANL!w+}@UPx6J!^Zm_2%?RG2(IB)+yFSCd(|yPLn+N`>`q_ac zs!i&hn!{|o_FKl2w}-z;pcVuPX9-^ly!n@yO>D4g)WGNc@%_aE->S@k;5@8N;1n}L zL~~usSMXf~!Ga*cGX7TX2W_tUi^0(YE(4;$EvhcWv3;)X+`dp!#BPaA4cuHdUc|4f|GW3zX{?o`7%0Pvd>f8^K(LGWvbq&IqWL!9~>j@XyBH6c+Yu(yj<>l?mNbsvE;O|_ca&PZK@*Gc6FF02mhq=YfWaboNH$G^SGO)$DNgM~$y$n&zSA3)U37q#-~) zc5uuX55|qrV{);Ry9gx{5Wh5q^Q?&o62s+j`k)*wk!uKwU~1sdoq);Cqx+q3$f!mTdQVYvU}K{SOIqE zCIHEq!l^(HiV%}@J9g6TvG+r<=!&r~8wu>}V>W?pV>e;fYB5lkm7FHjD+2=bOYGKo zV~>dTz}>Nrcnz4*XvD_6g}t~~jH!`R1MFoT=Q3zS2rzf-g)hR6_I!L!2exkq_WPT( zs}c9M71&uJ)5UoTR2iX#yzzex_K414r+fgrcz3Xmn1o%iSl|;=fya#p_Hz?aeHgirw5D*jHbIow_9KxBZB+ zgkK0nsSq7437zr^dvu+^0Gz-W_hLuUit`32hF`IRU4`91FO+k^{Y}`TJ`D^5Vcix3 zoBTVFd7i+S9z|TvjX*&>0{!aH6N=OL0%(b=z&K=JPk9OF7nGib9n!zF;fOuE08u=D z2JIeWXY~elxc37aco2N41={c@@FNN%e2ti()3lb_F^CTu0fZl+{B|Ka?Jn%F#bNI+ z2*}6-7{e0mWc~&Wq7UNGEC;^u9O!l)Wq&{me}S9nzzZzW;T3|g!}$*+Yyu({TO;o1 zcI>MYe&}D+_z!mN@_`&)0dAZF+HVPV4gUqkb+L9n@Vm#*&zIl^#T|>&-P42icYq^= z3G)FS?RSjf3-s<1_DU&AU=Q{>Df(j$cK!%|@Bor|1?Y+qkb=`F_Y-#O2`x-fcnCRL zfKTSwN&W^gXDc`bz)Eii#q%Hq=Yb_D(V<9&VSmsJ`@~H;;wr3c;F z2@YICA1PXyCw9??WABp(P7==dBZuX1p+Bdg6%++|7fRm-$H!uyb0wr{vJU++322Rz zzyljIJSG|Av*5%5i5ZHK9mTw34i1K6uW~N-k-dNuSO=7E4x%R)0V}=?h>PDrt=Ztg zci7o9M2&<3Tm-ouhdt+LQ0h5w<%y8d3DDl3p=F^!od1q}RTh%F7&QD#t0Ca5;q%$35*MML15eNA?KEVyXz23UZ6lOc)A%l z@(@JHJ&j%aKE#%qgwfmSIMIlG{;{BjE2z!o$kFaDM891HWbS?F9_50a2zvQ~m)+Qd zrtHIJ*fmyxqlv(J})ygRx3(3LXJ{(=%b@R`yPP)reoKCJZQ5RJ*GHZAMqlrOBH1E254{! z(Tcx9FE&AIGJ#RB2esTlS0N%TzJa7uBuyE(8IO?@ZfOfJPPY(wnlNiq!LJ!WZZxA+ zihV~oSjvo?2+hBPQjc*Tp&UnJZ+sOfzYsJPgSs5>l(PL&1XhZ(SB;h_YrF|++z9LU zoi5_zLdZ-Y!uK)gOE@S%8YTpf zN7-XpwT=-zL@zWj;%Qc*`Q(6gh!g~^bnVsMAzD*l7lQyl_LhWCfybSA7{ zw=Ux6bR8atgR)5|aUUE_gH4IY>jkX86!x4V0#aPcIY3GHfEs<^{v%zjuW>aFWzx`} zzjXJcqWxjuO#n&`2kPP;e!qiSpP_dTV0-D*2BGT+S62=NHIo_(2{lK>aF=^$p~YP&$-xxD~SyVc^OjWfM{3JfM`;LuZDA zhlHb~2(fC^LGfiN-?$ZI%@J}l2k6}+kijFsmyu4p07*oViiLO=VXVVZhO(zm!HAZl z+y%tQKA^LSlzZ9&^-u(2C&IVvnW_7|db5PnB_s&5{5pZ1;8(9VpQZVwTQgGxR-fL0T4N zm1vJpjaevHjWPB?Ctjm;A^J)Yc!z^BL7)xAxod!a)BzzxxF5>mtU(#-aW+0tjM(|m zuMlWId3%+hObxD5)@X`WOu48DaZIr>C!nwMb^7H7z7w)Y4MbTDYGpuYio;wA*`hHG z0j@6$NS!cn+XWb+3XG28LmR?!8-h!OEMwsP)k7}Ep~lbP7p?{$DSNpd{4qk0H^3Sg zL5eHUK4o*)LT8-8t2N;4cyOBsnJq&vD?y!Z)Wd-kQ=J9qfe03924=QUSQjshi-*~R zViXslZvym{q9-<@_Y|+z4zj%n5*UWMXF&ESPGST4O2{)p*imG}7HDBLXhNtwtP!9K zUXVRAcmjkk&qE(d(Pz>a!s}D~=t1D}CZX(NSR)(Qc#1lkhEk>A7*Uks)lxohin~cC zV`jpBQmkkOZ4*k7?7&mhO=ogGz&^=fL((x`23(j3s*Z$K^*~QaXKz5apTQa=qRc;# z%UiG|Z%~UG{^&FvHgFK~Ly-d?;MxON3mMwZfOWc!?`fb)Ip!I{*;>NFWJ9k0hK-S; zWja5R3`_F{vVH}&IaRK zs51!?(hZNc7nYsR`2c#gg90Nlss+&5)u5~o?5q_u+z{_9BzZJ6P6){u0^0QJ&b>ro z&N_toV?8X0AFkR!+8xj zjT%OQ^IyWYkc|le*T`~wii2*Yvnvz>Q~>Xnawbg1JR1yqv=knbA2IT?wR>G+mDJLQr+8&ew5-&ZdJ) zSKznY0vG74Mgw@301i_u-WJ&1aiADsk_RDC+2GDaQ2aS81x5H)pxk}%fY5pEpcqME z0BFhqZY~*Cg0QPuknVa&A7KXR{6`AD6O!B?6deQ3^g=3bqn0;#6=Jqvp?@k!BB3L@ zF(Xa|4d>t$2s%?l+H}zy*p-J^+-Y4`{j=)^HqnRSF6|#Oka7BPM=P z&Jb4jYdzZLsKo$D>;0Y|3Q|rAtQB|W%Qugji|jJ_fn){e|Tp8kOc$G z9Fz&+8Tcp%CygKjbgr`d>AYC~5>9)1WsssM`@e zZ~|R;Xukxd(x8bC&|BpG#drqr*9v+RV_bxocf`vG*k!7XBJU=G4&^9GnP@segC6Kv z2IPY9&JxhR8x$i|G`c;5l5ars@P93!VA?)M}yi#>qNb?8H zNi>5Jx}MH*(fO=q^rjZ~mty=m_@>5-PG2g}n{14Mg>;)jzTLquI_0o4|7O?J26atV!^EzKnnvCo?!T&? zU9K&!8!cK2x@U5Q=CLDU+$}v6BY!qqugPj!TCt%lw03W2gvO2GX{Pqnww`RB(W>YQ zXAhXTIR4{a;2q_@z<##y-*&6YA;r;U)eS3p6WCGOihhfZq^5I?L9Ijkt@Za06}jj7 zj-6yNiYwXLmsCBe$fBsDO40FJ^OCu#PVIDPoK|aG|80Aw_Kmso=y{Xnfp5JE?LKl& z*MC#EJTJ3E()827GOjyg($8&~Q!}kFzM)Lh==di&Lye=7rWw|=}^u&z<5Iw=gayr-#Va`B0xF*Oqhk}da4T(h`i zW!+5S$b*`HOTKvTkox1tOVxRUUmG|YZf7U9{$Bn?p`>(Ov$^2=kqc+E2G3ru?-y)- zwk16$;_ZZYkMq)6_wjO!H|ovq|D%p6K2q?p;!IDinZEZ|OESVn%^x*-40EmYeA?cm z*o?Im83TMHnaL%tx_x8?Q{Yq7Sl_`M8}2s4BrG6gcYwy~c-!He`N_^H|H^G!G`!W~ zhlaU>$@LG4`ttnB0y#mj2`laL zPvzgM?oj(W)J@9{8w@WDin80?)s;ITX;Y$i_CUiSuDxWN$u!oiskrF5!lUS`7E7Zx zcVQ|yh;tOSACxTSA6B$Sw+$wzR@|;X1&NBd8KKdz4B^B*1+S#h=JIF8tnsX~MhQ|u#uU69c@R)58~6N?I?l0xqKgqifz*uTFZ z3rl{QH@5SEezqh;e_wA))r!2yii>3}y?cig_y>pWiE5wEbB-Kr%_~d#P4@Ns&#LZd zu8DF*ZJex@U?978P=>WEJkd^3-!@TCAxSp~?*FCc z^Zen8k)_MKhgrt?y$=bAc3&Jl+MabQJd)fZ<)kN7Y*4Qjsl{)(e#j2YQH;;~zV=J* zdY29JwntS)bO)MRUTvz%JSy9kFg&-cWrlEr=_;enfnRHPpeYwHK#n#ELnYk#kpzg5rk!)_U|q zt?X31V|EnqVsj;DjEq$e>f8%f%TE=VwD*Yzykk~o$IM!>dwf5Cu=M3y59xuo4aGzH zgNz?Zz7Z_xbSz(?_)Sq)xm;5|%yHJ_NLl2VS##`u>-aKzO#BpCQI>T>4fl~`iOJWR z6AcdvuI4HWjleR5dH>pd$dBf4XmHdk8(XtzYD{2w_T-_G-E~3lzn6ZU z$Wc!3*r-3t^qzrp|AZP|{zOGzsUJcH*xoZ#;5K?G3Wnf9|tNf9Q zo|136J1xzp91EKrTesxUm_2M}!TzM#aR%?&%E|^UO$J2nT-&yZrLz@>^9pM_xrU=A z&)*f@u&Qn9P0RSE_{?VM#rVxR0WArFPRTf<$U(G`=H#!z*YHE8D2Js8m+Z=bRk*!`!KegJnCz(dJ6)>JPJI zNwOOsmo&v7CZLV+1C>YpvV!IEyG6U(Ur5X+Jq*?W{qn>36?~J@+bIrl4^yIw@Af@4 z$`haEzwF2@+oxEpEUo&SbsBzn_Q|N3fD86SLqv17PE&NQ*6gszf7*CzxuzXvr zZK%hjUkqz2zkK&F&M?`n;6(Q_!*t0My~6HAhzU4WQC%(>OtFiYp1kUMbnZNZ;YWK< z%1L)>Iyq&?cSv1pRKB45?G*5H==@ukmW7lw!V-87k3b35&qxYLQ{ z%7vX42E~#|`U`q@Rh269<-36dJYaihs^hAAF&h^C;QZ&ncgl{0>v4zE*Hv|D&WU10 z-*OhW#1-F=FUbF@!AsA1-1fzdG0qXiQyL{5b?e_dN$(}tDW)!Qs7)c>w8tvV;q zNbyVQ;T~V>#r|gD=VB%;KJ5BIeKWr#aev(GwA6~{>T#k%(Okx|byZ2W{9@iQAOQ

qtFZmNvM~WQN$6`=a&Bl1TYurGM=nZidV1`IXUsuP&N)*(#;^b=GgN zFS6|E&A0g-;+cjg29DMKnSW89Q~XV5fcZAxp`j+9nXWMLsNzm2IgoNPZqHk%65IYr zqvN7xZcMwTl&>&XF0W3~ei%_a$2r<3Drn{%TZi_CALqrdkI(qn)cBESA@Mho4(_cp zC~%hVD)ML_CW)LlB)Bp*er3^w7Qw}`j<;!Xt5Up*7WHNt9u)t~FX?D5TcmiPXh5#o z>%%6_@`~CLZ868h!J#WFXGTJvtUW8Eel>SMyv2C6`oH?S1@`izg`TZno1}RDx zYaw;s90PfU#k*9*(-jtm^jtPvE14v`(B)N8p_l{Y=wa0Zhs`s_M#`e&=k6co)AJ

G&Dw{~+~@;;^_?1|rcQG3mv^tIA=iRYCm9Xs`dB{%gR_cT`irc9Sl zEEDzx*+d2|jfjc4yD-uP(TxxVyhmD@?pF1c##E#G8In<3B1~6Jx*RISTfqMssC<`Rep;6e`f}_*K~!&8hrQNsHlXpy&mNWa?PF zp~KBg>XRD6eCD`9=uyZmE>2Ir_~vNJpT$gnfzccBX8whai)Aw)g}&9twKqpJ&k;tC zhzgyVWGieR`SG}HrA+xDq;VMUv3Qly0oAj5>%tduL*(%tErn!EILQeU3DQ=#uG3DG;%Q(k#S8KAgRzGI+t=;>*}tCZ12 z^AC)$>`zxLNz9UFzK^SZ#C|2(XEIvb*>tFAy!>_kw~agXz1&1gUd9-P*ZDmXt*os~ zmq{Iy^zv#uHtS!J1n39%PCyLFv+|BoQQuUX*@1QuqL`S4ubusYqW?3|OL{upr|PEW zJJB2DeU`M2D``YF>AUq6f(2tT7M4W!gwOI1Gxe=M^nSkda)L~5)BZs(!c=Iut$$ig zQru*)4mvkCF4hXYijaclKzeJN_$tqXeNn6B{KM0-<0^tlawE8(|O}v zr!M$CdgQ9V1KZ3;HU6A&OzN9ZmCJAA=&d)+F}yplwKh0^x4g5syHjI6$1gavE#{A< zug4~7+Y3+Q(DU$jsb$v(-A$H>&v1WkvoC!uzo5KS^MHBh>^83;%6qlt^dRfcTFSDX z%ev#kat51M2yRI_3}a!n!U}|nqGI39vu4|TOhbmmj$b~>eLQzhu_8I~%@---ir4h{ z8r6$-@(erfm31oY@|M(W=Lko(&gqH@h)SQiXz1nk7av9OGTDD0gpF3b_u_AirXxP; zfr8!g*rJTKcyX8a*_8pY-YXAIxG9)ew(ISNI9^I#VO7t0py<5>HeH)5jPlmz?XT`- zR}MchJ0&VMx^(tU`>@WK?1M5}>9oxL+Ca`Ik*iU+YI4JoLO;d!qQ2H?A}6m|D|}=B z3l8$m*SD`c|89r0FL_+yw4N^wr%09w!@4(BM&|V>Csv(TdpUZ{&|B>twPns}$Lrm0 zxqIWw;#@O6*6h~q67?7-u>Q^Q#pcRUMX4>*jWfo}mYqNh$+JE~jialtrVW+4C+*3L z==9a!FRm4y>-nwfR$hnVO?g|t$I!Z|e@0A>UN?X02*dsY#h%1bveg+IYQEHt7YBlcaspo$2;f-)Rg)cA{~dzUG6)7vxs?)%7cdMPqCh zNuv*kmrNON8e8AX?t8e4}*{!#6pmy-KOv8d}O3&G^J(4g3xn34a}Ru^tfW~3Y6`IOI4y)$9O zOL@Zf{iSY-xp}*4k8uBS88ZKI^rh9+)3#YnZoZc}UAje<^>I&=nE#`gYdCb^NlkoS zd+stI0VkOM=bIbK{XA#ImmZUO$tA1bekq-uDk|jZQ?L|qw>4to96>nz8wlbmOxMHw!gC=X3^{g$CVNq_g58D@X{+zQv zAuHbhqd}t^@06s^I9olX!KrYI{I9}^tp`nh^Xy+fJ2pSq)B9`vofW?C4obgC;S`zo zijBUNd=!{dDcE<}MgEyvJ2OBymjq-&vCS6U={NzR5S5 z+y>*qlezi@R?Rbwz8b%EnS1Q|(1uA@U<(`5tYuZnTMI^XhZ}qp&l0wF-K%g>x+|K? z-wg!Vy_&{dWffgI@7eH2eO#qO5)<#2DXG1oEk|U^ZnmW4Bs=Wn@Q?o`JYk_(RX5DwF&m*UciNvj5{r;u2B0(yT zY}+S%DGt{+?TfA6lc$vLFa4><$J)(b8TM<;*2S+}-8Fv{L?_ov?b2;4uc{41{i3Z* zbIY6J!Q2YvusR3+Dc3~{c10IPObM(tf7rM-bGYn6LRRjQ)_Oso_zQ!D{p)Ka`8o0i z;8EQyMU(#uEsUA9^yb)c9C^`KDgQ{%zuQ^%W}w~3UBuyTX}eQ;O0h3*XRQ-=gv(F! z9HK*3J5P_bzSv^<;kayj{H|1_*Z_QIH_ZrS*Q;aVjR18`F;0N zZdl2~l=3*Y)FGwzI3e;vEa&yN&nmM}I4c)apVU4cac9o+sJck;%zd`++c+Oj%93TD zf2?cF=S`DbH?mR1*I5-*=hhYe*!Em(JTYzMjo1e(jXhaGOxeS?)o})Iy^1&Yy)tSS zKjde0WS99Vb}Rm?^w-o33z=0O*%y^CTVwCgwK?Z;yq9cbRzuw)W{9}kXpY*iVOimR z`MSb8Ev6KAL8jQ z4SKukMbwSCc23iKrz@0+;`rY)x71c@H;JN*FKc!-Ru>+Z8x|^?V~zSfQkEWw5r&%k z^ctP0HcQW!#w6d*U)+_g|5z*+4(Um*R4T72rc_uDerj`EQaMrB&%|m9sUAM2kd+IhP=X zYZV{!EgLEX*eIKFDs$@!eiJ6;a{t5Xx!&+YR=ZnJ(>iU1JomOyLVNqJqb=P8{UtUOPjPueDW5t}gMY80c zIN>|Pvh@QBqhQf)u1kAl*R(#(IPZM!vZB!TJ(AFgqgQ?#tysFpt%dO^W|G(cmmGgV5z&51_(o!HGKTYg z`~9kwrM*anI?8PLgqd@Gn&0i$F!aZPr^N>E<5NO2FO**BJjWejXlc;Fxb^?i*4uQu z<0s~TbWU02yXf}?uYf_&|kL4$$gtlD7qkYywO z9+@*V%Q!-9+_txNY2~fT&f0e^&b>R>1^lmtHT+RbAG?Ctra!`Lq^-nmnAI1C>ogW! z?ahlD7dEbK?r*!(-8OKJy~5OS2e`v{LV?g=qG-PP4a*R-JqDp{O81Pmik7ZcNyq-K zfZl|GCz`R$GM<80%`4`AuJ@NwtvJOrPCUI{-}1h{`~L0k7zk0hXm)4=xJmr!LIb_6dRO&2^;-1ug<<@=oLWS4J<%WD-`?Le zP&JsZ8mh@)?U~!ivG%iYvfdAR*Yq~)SqY!;4s*KH&Vx_;|LFg0;Mc)2Rj=BL{al;O zIm7kmhX~w+H-%k@JZm8|f4%JwoEH#KIg9C8S#(t2lz`6 zA=XmRz&poWWXn~x1I)lT0}ls>t6ytewTRuvT<4zUjp9e}zu}+fpX3Me*YGl#N7^vW z4pr=+{a^~h&+O4~v@x99OdR(zPlWieS9zg43GY4EgFBvitS!^bQBPLst9Gga)Zb~+ zScVhB+~MBgP2o@AzXs0v4%dx)lS$(o(7GXIs=K;crBeN+euhZ4$RZ2aaSeAZBKcnA ziFv!ZADN-dKF$s8AHdGGt1qfc)tfa=td>=3|K*%#HgGlE03c!;xGTALm0Y|vC{eq(0? zage|XV6HPPGma}p%a@r@rWE^Pe9k#7qg}_cnpVva_D6OGcEx3!Rm^$jJ;UX8F$v5$ zW({MCxU-a{{gT#Bd!C)g&P3eTAwbWJL?l%%aJ?Itjm!eZp2-5jX*KpuMk4yiSIFm{ zz}{gS*$C{MsNH)&A5s*@NbC_$#|~))cDw!tPOU^6fGbZpJscro^4c<5;Q4l72Wu2|=jNea zXY7baBm2A?@N)5p0Ja~f)l^OfFp6ow3VwlBDN}nG(5PQwf2{b+ZzFV4Aq$ik#15SvcG~rEhY#qV$jSiIK5Cl}q+S`PoAUsx%!0)@^a(rK`E zGE|?Zl>jAv0!W74;O#v0Rt5bD1+QwnRn75!}KBz9o4k|^hl|l;d zKwdb|=7*dH&N!g=*D||chh{R7h%o&Fa~$6T5exfE(38+z6dTVGoO#OOG0un=ZO^di z!DCP&38?mNX!B`MZ#-m)_N>S2kR-Q&kbjJ^gy7d6*fLw}!23etD359dc8)0na|6b- z8`$Po94SW+@u~};72Bal*{JaeP@iApZdafy_5!#14@Q!Ree==S3--q@_I=>yx5KV1 z1Zw;gaH!XSHJ=BZ@k(IHS3!H9VsBcgL%^j10lgCF@`+kAygX56zILS66%nId5&QNG z@WFCmG?v4{cN8R*TOF5qbIxY%L=WLHje!sk-8Z+ zLzAW{&?IU~5QALEI%F`t1m#~39O$UVp1%MId==NfR|;EEHY zf;650l{7%oo#70^x(@?)3{mrVoT6C7{LS<*Vy>3SWeS-Q+#TEo?h@W+F8ENwZ4hqzTaMK$P`AH2FAz;>Rv!=d)341$zxq)c=BpJ%Q#h3>R8^4|uD^ zkl1=i;~D5OY~h2 zNQj%5g(`u~SOHru*Ub?!NJug?)&g322R7Ut)_4r;NwN;#@C33oh)BbGP`(7^6|kCJ zK=-*rJ0|Hg?i{3g6ev*1en8J>LW*)wn+>og-@!)DWfGYw+*{my?q#kaH;j3QU*`d> zQV6*vTxcpr6AYX2Elz4A0!a~z*|Q5=Tggm9Ty`#NOR*RZzi5H^PW3a|UDid~P|Lt!zjnYpMz!5DB^rW{f6e_;+WUt>1v zhYScIyBA>BYk)$z4X(>Ee>j4_9{9~4^6(wdXh}E`l!LkQOCWqGv-C^ow;#NYkwE_+ zf~N0)2G56fZG^m>#%Ta=SV4QOiB`kbus7ftU4tCFW&2nY*ith{NiHJVUuF;ESC-Y& zrn0ACd1Kf~tPNgn>|$u>b#TxG9*8gMX<{X?0i(4RT0WwBkHx22lsLdXz)7G)obRb+ zr@^AkhBTz3-lw?t7xpjwUc$Dpt!xupiW5LKIOjAMp3+W4Cih0aI@w;fi|u9^)E5d% zu?tB59r!y0PCUl!BY^D-!YpwX8gc@sj2`0L5X-Sbl>QLRV=KUyHpt}>=-O$_*RP=c zQh15a;T=7M%)UVBH2m2!!O-S3CYgDP^Hi6ZE8to#PGA{w)0nL|2bGT5WFO?<4s2l& zM?A62WD+|%wb1hk3Vv1acbyySlwSxZywG>#Y3krfh*r&WkcCap>b`fU80=AgV#_6mcb~(!`FG5o=b+oaz|Z;|{z)|EpiJ27VOoKF+*hm|JMUALk3CMgH|bqq#b%T z4p!$dcpVB2_zkus4xYsY%%7jZ2iyQ(lk#{|yw@Vs*AG9o5;OJztuxLiX;~pWm_^X- zMX*;PpwRz-{8NBlW$-I4FuziS%1Q92DLc77yt_cuO31qi(BuGSp(7aS9(YuQoTKv- zT=3Th9$*0av=L>)arH9f&j|C57xa8Qe4#72G6C}o#SVQ5Z|V~GvJLv_3<@lRXHp4| zb_8rwAUsOS3D1F_?gbx~Fn1#`0}q1Q4>4QsLqDrv$Mk?~On^Uh1?PS412?0Uw^?a!AlDTnWPU z$&jE;IK2{%^ErDFOY%0_A_V+ZoCnJQciccD8z5iZK%YV&_3F`I2ejpkRs%tMJG?Ij zXHLKu`yCP$i?Ik{*Pp=>8NdqJLx!iq*E52*r($y;!>gbLU9kUj29Hi-+2NBFY8(Qo znFM}NwBc~bgf&pmZ(tYiqA#~G_7L>d7w328pszoH9vPr-Dtse~?EV>EU&HUFsNowy z+p+MU+OVD|g)BUP+!n!;D*#gN1uV=l%s>gCtRAS}hLQdVX*-1a|Ayx`06%{?5UPYs zCoYWwJ!hfrP0*7?psW)-^(NG-)-HmFdm1+37PR0iP+~efvEz`1Cpa~E8d9+abkW1Q z;8WyR!j?9HcDd-mRd6x^R%Qg~wgMcR2Kn;F=t=sb;j`X{-*_8#>;P7NzhdQe6cTk6 z)LjEE+hO&T4Gnq>fAl3NKoN55uo`=bF|qTG*j}oITaka$#5evEI0jUM55Pq*x;q zqo>_iLz>`J2t}<;#~S22%md%zY!scCYQ`#J2v%{U(BdS_1#7|GL!jzXaAP#IkdX8g zz19@6Nb%|^vb7#`!WiF|!2-<&KUnblFN{1G+CL2zC<4}JIZoFFqG!XQkLxh!JcAs3 zK%Z(b#%GuZj^Vu5CCEe*`bY8Z>3l#Q#yA{06%GskIbJ@{gccw)%RzaH?#{tCLR>$? z$Zx=Z`5RXMHhiu>QU7v0cW{86_J9tC!472ex)4BryVf@PyXWsf8|-^Td_8(7I?`S&efqTQM{J3}5X! zWbq(qLB3@l5TZhySh2+X{z#>qLYIpc5v(SzY`l&^|C7@OrbgdM8yoOcePS}A8t z`90vr6;L-DGVo9*g=r{{qvvQ<4w<};>j&V&{E0QjHR#DJ(D8TB^Z>N;JZ2FYB%S2$ zDkvQcTQC)T-S_F`r{j5;WS?i1Ln(~!&UIN3@$K7PWlGRQm4W)v4c z6Iw#&{yOkHN)C=?!ZPf}8Pwyb?-5$cffSTt)l~<&WMU;)j#-1&NUUzf(~kM-C3K(^ zztM?9I-f;n4+xR&1+LJnHXgP_g7R`$vd8cVsxb2n1qW=QM-=;(&Nh2NRu@CEr-7G2 zsAmY?r@%5qf~yB%4|d`cWek{sHP>R)x)8LcTo- zkaq#(&lKYw3#s%3)f{2pTyT#7^MSighy6fegiPl^8d&hx3=-F_yRHYiOoSwnB${L0K=)B}a>^Is z0dCP5RpL5FXF(@I3P0thmv|75R|@UO z$H*%o&F{gFSD@ov{MA4kdLa1>>ZD95WXb6?p$TfW#7r^(E>e~Y1`;ZSTv8SqvYGul zc{j&*ci3lh-I(Y!nGjSr2Q`PFU!I^HtGaeK0$rdHZ9xnks$-KKY_1%A!E$XZoNk&Y;yaNSqj-Y*B{=YA{Ey z#^YB9lo3D+E5Wl*xzQ;1LmOry@}lTWXeT6e5OYNXWQNvY&%tquLQmOrcqmCHZ=Pbl zPrR*CPPxZP(Ph~o{zHR zKe&LKc4&z*eYilD>GVIH;If3=)9K04;Jz!$Q~nT=0-A#@(NAmCH4Al*MN4+LM)RII z`ZgLPAZfP7XFhC<39dS#jv0`xaVR|$a%7B`Ir?mc|CA>{1-jLOnk~o)Gzz~D)yWTK z7wE^#LnG#bVx%ceus5aPFy$@lgY~6TXx8wh8({ORAStBPlqrj{M3sR0*(gVrzykdv zPm@-{T{_E6C*6ARixF1Jo#1gUt`$Hk`f%L}l1X`*5+MtDkS5Bm*8n^A4t#zJZ~ZwW ziB3$?+LqQ7boz`=S-r=57ust@FM9D#`JX=hMkiW@=s_pyqo=dgutx@1t9D|ShO+o| zU`(`kM&63P%mS)C|vi~*=*3EtBaey(ozk?XvYDo{oQ>e}h%nKsyQ25THO<}=EZ zrU%;78Cf;{XyzATyyRa|mOKs4n~G3+0A&qOZ!cy;%JPJVA83O(M(1D!m{lng5#@qt zM}N6kbM@d|AAM`ZILUXUd?Qw9iTv>%=qkxJSu;8t*o`|VV@Vs@|8#1X&d}4HT<|9s zb(3#JPlhSS2%VSDz|5-zO$K#yNP1;1#LfHnXhjcn`5Or~&VRoPbty+3uc__+^1P;U&h#2h+DaRVp{z!IIOJssLO88rn#S4p?#KsRPXJ4kQnY$o}r z^PriYxK8mHhM^aRXwwGmP%BhM0y!rRP)r0z=;%1yJsLd}qNEYVXpg?p`E-gTK-pwy zOq2s;DEdQQDV@C)f~({$P!1HDvjm`o7St^O#prxG`6HBliL&SALc%E*86R5J3mz4L zdUS%HVqz%3rFKXuok5gChAICMoyyI_3|;~r%ApnS@M}7xhO&{A;6BnHvWv93pqyu9 zwP~M+BK@SnI#%O*Iesn2i&h6!Xe9$0TBP$RsMQb9q1QSsQ=$#ZmX(Y4sh1yhb9){1 zsvCb4gMlKSWJB&KCyfClkfgj^CvBa$w-qu*T0>Gn=k`g~D0>red1a1vSiBGc`MGT^I*&dJpIyp+*qNfdZkPs&ww}#?<48GAW zoGo6XAV-0)dz2B-0j*FB09yUpp?-VxLyh`G;GPZYp)=0Iz)Q;1MShnd`bV~&vOqEL zRcL)fr&#F;7`-SQRm&Gf)qz!7~lM6Wtl~T!i1uA&VMaD`chV*#i%hCdvd)}AtF(fMc_=!_N0h;==&#&^8n)Z!bRc%?JI6pf-oSE2^;MzcFT*Qm#T+S{#!w37T$1e6whlVb*;ljd^hL;>nh z>g-n%zNKLuL3xu}PzOE3BRx|C@RMvYWJ{OSyCeuxIV~Pjd$80%-&X(m)oNV&Kqo8_F{a01j$X!J3eNF&uQD=f0g7 zqd90pF;G6Oo5=G}K@yGdyD`d;Tq0y3sAU0u*noO8V>Y5*$`fP)`$IFC3HYhfwa^XO zBmM|*C&_>a_t&CN11LX$QCUI4HJ}gWs3TiLC%Va!S%5d>$I;2?UbIH{^D&cG>8MO? z(%eO7mgyO&O4p}u)I)O0LHmY~vH|=~@xJO%yA7m;*5%}LSnK*vr>n_6Qd}4zY(P2c z6r+90oTP^y7-1xXItjq-I_Wn=jaC>n^Kv_hG@C;|h6T1b28 zJ4LCXllG*Qw1y&Hd}>7q3X&}$9?eR6Iz`UZ#&>wkbh~5o{`m{*cg2L;)oi_ zPa_XZqLZ6JjD-cY8_+k>P4b8abb3TqNP;oa+QvZMcJgulO<`OC`iTq4!^vVdIY2F=$>tk?*Rw48pdI&xn;j=etpx7Ctk37_3 z1}cj23$4XkzyZSOR6=IRR@Q)zl%9_-JP@|kl|Y{WI_)4Ezt2e6~CoIDrsF=fmTY;aw{Yv z6|K^KFFh-6M1Kk)HC1SpcAI3nYm{fV3inVsdbUNVgC^WNfZr+qEah}-#$AK3HDon< z@qGZgM0!FoG>kwE0W?m9&t!Eed!&`la?zd<%>}fwq6l6TQIlfT(2PuT14Swkfv)t7 zmu!y(bd`&58q5dutbu&f5#Xc)O6!9c^z2X%ZRw+S5$+a2>d3ZwfxGmi&kCrnKb zY)CytT`9vSC4M7+J{LMkxpCj)MSfKh-YGvOeN*B;<%3m%cC=FY6#IxYh%~$%I!-yf zOHe^L3!zEcblGc(K9}Jw&nqe4A8Cjrs5k}*CFs3Tp_9C@B3rbHwC4=p$}vg z1Mz>Xt`=W>9uJG=j{E&}*8^~!p4m|xMT#>>86#<3^69BHp-J7*Cixs>)hFP)035ah zZ^(v9@QJj|7_%|az8~`m?U#^0LU}vs*%-y(p|zO`FUoh^0E!o3{4~4LYKZyCvx;G z-VKuP0(yRWHtz^YAzP%voI>&Q$hV=o>`=lMxjD>OonDFG=)OjLqL@Im^F-Q} zg-^6nq18?zI7(5+^6)<&oFg47hb+|U?ofhLD*Q&z18Q-l4xG)xb&@K29#7VcY(O^fTU5W0l+Gst3* zcT9QQNkbXkGaZ`m8o-wVyeN_&p(V<|ZOTha8DQxNO@mH{iJP?Y%mruqa7Q!hAl?$M zt8rf@{@&{NoCztYgKlS`K0@o}pbm;#n1eFpvr>e~9F!m%Pr0xwbnVctVg;mNK-Uh* z0QH38IFc{(31>prd(iuW|I>69;8k5&8%}~Ifd~%8-HLm0*W%LR?Nq1UsZFOXoxh#x zRHyCKrY&`+3N0l8g1f|!5IiI#NU#98;eX$AX1Gr-_a47{uf6t?Z+)9>dNtZ3rs^^+6-PTeKgM&Eo{O0{ zXFlT)<`V1DCvwS(CaX((R-t!9?a1Y)?Ngm|jIh_HPt>!n;A~&nV~$7BBULz8540Y~ z8dcJ2QfHX)^QmMw^I1xH`l~p?v(NAgjhz}rEeY%kdrr-JmbMYsqUE8?$8g64eu3Je z0e3aNDZ;B9M^xj}8L(ijcoxxT$2h}ZT#xtKJdO6kdG4egq)t_nMALGK=%aJY?V(j- zKH>_VuAJ6YIin_Rd5TuA!yR0$SBp`FvX5yup=|2%Es>}7URJ5Uc<_O|_j zREfaT&Z`%+Y8Be@46i)?T_S<7&VN)ET8KbL(ys%3!oiyj6LOeVxw;-Io{aX30lIoaSl~8n~yMSWZd~O*D+S> zZVp*Vxf=4Oy=h+`<33@O$X}@EAXlB)?TcK!BKI`X?&yg_BFgb=)Z-l(b6Slx z=}Rqr*YP$MXiJ(cYrtM(EHyY<>)PzOUaFBtvs1=;92d5lc{TND6ZZOKCCnqvDHnN} z_bFxu79(%OO1@m~Wtckrji^7mU~+cAwwOMUBAzyP6rQHAf~fPdQihV20|%9{upv%v>Uh8na~}|C{S`Uu$07gM4zB zTh_8PlkJMzeXwV>Ci`%-XLsO?uC%uCg!&xO4oxYyrksuTf^%C(KG)_hMq1IFWXd+PsMNzKE2@5czV>KTG=@VwN!frEeg&V*#x$gX2C%rwD^% z?3Hi*D0YcC2Ki;p2^9sJBNr=lBQw%6UaPT4tjEb^hD+n9oqXSd55AHAw_&UP#<^yJ zjRd7|jlFo>TC$6St2t^X&-pv&8udNG-M4f0E@rj8 zd^d`4i09qKm?%L~?ETAVCC9L1;5@(DsG-QP^2p|CdfV7(64Ihq>TIv?rLNY(@UvrF zD?wD2*(gzq?U4h$h8p~}VM{w+&Dh$F-qAa5O|SOD%F)g-YS|g-xQaPTdr0g~D|%S@ zs>kt7`6NjIW(TCD3)gGPU7E4~D(=^u@5+)H6j8j5gJa_p&zo<9@JtB$!)H)=C^q?u}C`p)xbXk&d}$D|oeeSc@LbI6uR-*d>@ zakd)gHWz&w*)l`5fzNr!!(MvWsJ+oU@vAZ{=OI&~35*wRLqbn;ExAPH z-?BNjIvU;__*rC0G?Ovay}>AR)-s2&lV5q3&*plZU5&D8ogJX1WKliAJ&*DIFk9rA zwq4{V)@Lwhr!DWZIK!0iJ2vp`4A(utUwBRdpR~(Ed(N5NIno(K7VScgcN8DvY>}m< zw6AfZ6MU;oFB^@}@@+u>wm|AyAa(k9o%wF|Q?#kk;`+#o8PThd7NgRw&{=gkTJKQ& zR0rgw0)MTMst$|_Ir#O^^(jO$gyawT|K5_pbzy691%WW z3*@*RZc2aZYdstjX4kw3v3pMOw?*{2;Ao`zuQ_o*(_MOxydJ^oPu~#q^b& z>@p^wK^jgYx4Y?oQGG?c7X-Rgj&SQVjD-JzkpSg-X7U_;`t2xIQK`Uth3Mj_%hXw%qRuXdI-Fc;Z?dVn*%Y-E6#h@(oflE* z`YEpusLOd1^z&C#qr3@negUiDybX^2K3@0o`YW{xcQboV1Kl_m9OI3k%WvS*Exe`% zm>Y5VQ;4Y>K_7#Zhz$_a>k1{^iMEg9U2K@B0Wkrc*j|s%YIN7k7{GZ0(bcVyifi~^ zAF~cwWN%Fv<>9F0e7f{EIBhb;<{$| zluvO%;(KZ_vb40EP1Lz^rHdx0j;5^6wT)Kjvx<$i(nXw)@f3aMnnmp(WoRo)#m6H{9M%~NTQ+9nY$bj}+t68~TA=A&r^T2~O`f8B@QnH~ z`Zf9^<|i*9+o5(bYo_h2R3AjnPon$e##bjD4Ro~{Ta=<1SbgDK{<5$S*7Hpa!=^x* z*Aw^ugGj#i!+Q2^K{~ckTIh;{Aj_XX}oS}@(8`(bujLvMvSbwf3AHXz_ zZ*zG~0XI8_y~8-KKYwP!d~)XoBY&uWaO_B~)SWgPP1{W8`z&grW^t_TK8Y5*g__~N&;$2z_7vLm2Ch4oBju&rx}+wTO%G}Co*mHaWms6Ey&0%VFW4lZ-az?gt`%{Iv(Kj zYh3wZ7&`t!mBvd{DJh3f-a)XcpTDfGAR9Z)z^JQVCle zHD)6UIY!^bk)thU45}V2VXk!yt#uu3_XIT=Z%{$`4OLp7@%J%v&WFr5i(sVqfbG9f zt(#7r=t}rVK4tE?n-;bzd>rjRjuuwtXCkfh>D`;@hi93gUgm1QF_-ONmAnekwcre> z!5r9!nXplGU#j1y@wzGcMylUuM$d&wVgmDIdn%HvQ=fc>>gsqnQTDNt*-GkRzYk`< zSE5rsnoE4 zN}cBuJliA4#-DjjV#GQkhVcB?1*6Y3&y=)2jJk2iuDIhNw3Ms;xNd@)+|{oR^S%`A zl}g>i$H>G&svh133%(E>_`hJSxP{)momIr9!Qjx7I;pwTEKa1lXDanQ1F2K&1{=Z1 zD_yBvta>Gp>h>dLWz-SIUa5SgtgPvky402?UMVVzqk^qEECo%ewi?C%%>%}QUYvIo z^|u|V!)i#)&=~5!`f}x2)Pr45CE;u;({AE>zbl=nQ>)Jv4^y3d7(RkE)WH5$_5roh zpO(E^_9hk6_wx5(*?naT${ywOomA961E0*hWiOO{SoSLw(aWgS-OAIQg2AGU%HFy> zVRhcisDsX+CVywyPh}r-+;?2* z`{&C3uWWkR%Vjx{>r1Pa4lV6nIr6fxfzy>biRvmya<* z@8bWz)0c13!|zk!@*=f{OX%-+1I+(hXoGL5gL#!>AEw^$T}JQI=!jRqYro20N?>7% z?$gHHrmR|#Ov1?B_|LtPz8pAV}V$FwH5Gyd9 zr}dmp;nSG$t%shSPi57kR2Kh-%JJ2Vy-fHfE=AR&%DfHM=hg5|REa*%mKfd-Frp7) zcUoos4b{ib2R7z2)Cb>>>^DK1m`yQ$XpY}lhVh{qJZF2JdM?j@J#~41<(~4*jNvzg zSw&aDQd5=jY+@!|X(tt1;5$(4Z=y|KqGcaIMyJ!-U8u=ydnJJy?X$?(jyMS? z^JxY34U;MSh4p6S*^TSL9ETKSyRqCiCha84?*8859{28O&>DWNu_^WKQIs$lZ|_ zVR8B*vI42u8_9_5LvGGRs+1*{RVqs=t6$auhL3ivKRU8(O4-1&vG5{H`f_Au1Z0EzT%o?a?E6Bxhk7D2l29$4gym zz+GeYhUodxf5X%HPxR;bIsbyY>UG#}-iuxc^TVUC#XN}b^AKDlccIZIqTO3?P8%4b z;@}}U$16Y3!#j97=aKBFV)XjSsAM#K1&*nMU(}pCwTEeH4*t@0(YHp=;%YZBGmK;< z*fu$ldPdsc%aP$v z81t`FfAI#rw}9%}SD3f|7FY=HGyeaLUHm@BtYd^)%e7ewqS*)m_Yx z&*4+Pz-;>lGwLVIusiWczh^dG!n~WpoV$cN@kP|ne#rKZ0`K%6obf8`0x#0GFLM54 z*Z_~AA^roq#8Uz9z>92uDzG)4=gQA>{TJw)r+Gbw)$nI}=Sig6V;(czP}Hq4cM@&t7OoV-)7bwV8Q-04xC;|@mJNUq$IvyC{4OV#rutur|DA73c>e*L<%6J|Zl}dTdn^~mq}4c~DM zf7QdZ+CPF;wk@Az%Tx5oTR{sy8r<(T?)f0H;(D3J55(O~<9Y6)MQ35#O=r6+ZCQ0X zIIylq(87ah+X);on-(9%F%$53#$h*2<~5b`#in;>Of_fjvwBwSwprrC$eup0*kjQf zVa=^M*j;#_yV){z#4dYK7R3?7kab_Unb7Bfy>u)bdxaQ+3u4KIYcV?I0n3-Q; z{Cvjbb&!{{jE!Qv%StfV=v&HT zR>qT2eKMD}=i7%~*)uSAG7>QtEeE$z;6F?7se4dyW&`2vaTJth3Nx zoIq>!V~f7Zb&P;1wD@G&^E#w+Fq%nEX&A>3r4PpNXYGc*>BPXpbQQk-^vyi9+kL!W z&p4USanpI-Ot0RB1V0|k6Zg@xj<8$NiOT#PXh#_!tO|5(r9s?x?0+p2S0#1j!as4f zN07z^SlMsz`9-YfCy}r>1AXvbAf2CJnZL{2^Dff-B}aUZ6fVS)cpf?Yj#2O(TUH^R zsqEKcPeG4t3?z38*2iAh<_@#vF!RoC=7dAY_9nLPLbq>Wp4fzRZ|A5q_#@V%_kTpf zS0V4INPjx#ZQ|uTu!`}N#-}eB8DBFSE@afGJ)UO_{FTp-(<%@0>u1pxf1&LL(B8B8 z)e~st2}rzFe?QvI)^^Kvd=INAt-jWxvARYSpol_a)5nmhJmgoI-HjZ6&dc>nzeW4M zMYa7i%nXlWJw6JP&>b){Oylobyns2_Ju;Y#zys)kJztam+XYNAHQ<$qgU2BTyFVIk z5msEs8Y+fSXFpcMX>6iHW&5yMbFs;nVt0RuO_2e++-8`K^4Wh3ldB5XYl6++2*08` z38&HS7F~pQ zBSwL!TdOh0Amy&;X>4Ku+F8VtSOF`TjA&bxskdvsR+LSBMyRMUD~M{azX|;j;%r^HM zW_0x@vSCc5KiBSrd<^4G)=!ON^cjKa%xf^)9G8Q6f?n(uc{hlc(U}p9+990Tf$=Wm z#RR0w2-0|to6PmCLzjtUMlkAUAg6z3{LW-FI;tOI)V+aq^FHHl0oKb4jNAK>=m(JH zThPGQBik}}UduHG(Td%agL&Pe+nJPvE~e-1pLSFqym$IqONG)?6FMm$g%F(&ZmdenE~joyZ2 zJ&o7&JP{Puh+u5Ihv(#4oqA1gu;o8U;gj%K$dYm=a`zzT+`!*MypQ6#)8RL|o2%c- zyL;|HW?$tR-yxl{=zNY;{>(G|#0;>JxxlQ_dS;Rk1HF97fLsW%Tc*n5G zluzR+B4-PbVR5hGE7bH=gIUWOAuFN8iiF%mVXdQx@3zQZH#Fv8Bv?;w0-xm%bk+1( z=#lZf)UAE#*8#{)UwXy}TpQZjsM9INj`%k5Nyq6OF-k^=t+_eEFEDnr70Xa;N(mWO z5i!m`#xz9$$lqahcNw1527dcCX3Q_(Q}~Wn{gl@E4{h@vBlrzQ@EdGd%-)aS5BPz$ za!u7m=&UWADSFC^;_cka>N+_=HUzQV)m(cQPvI)xt{t4t{f^O^9w&~(|3x2&`H=M` ziqURF*7_@3OiYF~Y~quev8@2CgB6(aRv0NaXQ%}l%Mop8qu%@(866*tiR***`!j88 zG;|EIJ&cy@%SdxAQJFHtUYk3pKwBnq4Xcf!kX}(x;*&&Ch|9FPG={s2baO4=v*5}r zfxZ{bmW5Sd=6(+^@%G}*Rv}SqX%DT6<=7bEuQ!^#4jW?$ts-xRH5T#&{D#*5jqfs! z{*2H6Bgg$4Dg8IP_1}Rt|2(t6b6E6mp;MoyXP#q3EDZK8;cDhtt?t19Bj%(_}{qPEgvvc^axkE68+$&iOayTY1wSEIJ3Vj^ui3SDz8dSMI_ zYCO3ox@!X4r=Tg?u*Vh6ZPPA68_N`?{UC?z^;i+Na<*D#4t+5ji$Tlc5$x|j@$DwQ z8?PS4b&OBbb_pz?cHGC9x(r**d9~sHX7rvonbKecSYPc}5TRhs){M3F z%8SVfY@!D?23yQqn29jgXMK#>g(XO{^);*5WA8Xq{md(se)$TCe-3?N+~zaJg1X4~ z!!wKrvl)x=)4u1N?|GS@NDcBBX2;iaz3oW5jBnvcJjwN4u~yy)^UzwA+4NX8Pc0%$ ztgyDJSqC%9*6*DPdMFXSZ#8ox;`Xj@>>9%@m@E7&w!kWxt2o9eyUYfzTy6cQ2#bdN zdFIs|A?{A3gHa-V4_RNDGQNz*i@+8sXN=fvZB_D4=01(yh;FpT$ZXF_e&b%+?-wNZ zcVsq&mwaTu(9YV>AG7TzT1Tz&AN1?jYq|m?5#&Gj7y2C&*e95KypsfE9y?!O~jyCg&5E1HhXPFr_};2 zXgSfXR&a=C?HSCHW>d7^uVz#Xpbr`&vDeTOW07s`ks-*l>>0z6?h(w=T8!5*a?DgX zYtLddOy!fS@LnIxz}3rwm#@twYf3}T5{VF2 zy*aB{=Vo=K_y&=mg`ny#BhO->Bg}%%I7ewgb@dsxi%YSJPCaA(Ty1%l_C3tFIKloy zd^eZx%xaWU1eEiu=%`%w<)QIKpSj+!^$j_^tK-a@*pFc@GsNtMRo7?e%`9G4y~&?w zUAJoryJD^Lxw>&b?`9?S|E!gh0mh1{qii$dD8^+mvb}|?n1>PTZ{Adkz-(lwr#B+^ zDMWR?Mqhl0)QJiZH~ckn=6tt}d#Y#GaMW79t8uKIRr=O)thH2D%vuSM#hQ>_*!f8#gNqI-AuX|Co}j>`6iyKaq!6+jt1zT4vdGY!PR64tj$ZN zmL|xTRnA6wWx?nX$WS$|t!16a)wN%&7#YZ?eYDs_@8r-o&I?v=C_&a;?xwe`H+9}P z$jC3C^-iOgWi&d27SOM^KG)p6Ph^EwV_tINSixdELxwX~S2s%Ln3w(iF0AWY8Kt-I z?GAj%`xw!4i4{Icgye2)?%T1*ALaYKSm4hPPq~|;^{eMICq7No<{muG2Z%^M$QAz1 zr+Lhh#;2xo{rmZUI`=R;IgbD5pilJsC-9oa5%OAhX4GGg&KbmKt0-kR5j|)9xvT;4 zj8_ro4bg6*MUByy(2C-{jv)6U3FSm^B)CHJBBb1rvIH%<80lWjT&Sh8CYU3?WUG8$ zA7CYZjMo2xy-Sz_7P9S=VD|iyPYZ+G*4Mm$hE?+%w$AH8&g*ez(=WKbv6qiH?t8A_ zytnlKp{#V_9((QI7Ajy%+;jderjP z2yH^5^jS6|Piv6*J^X#omV?Y4tC92H(fW&!?=O(_uh8;Z9k2223v6&@{xxLzWvs-v zc-JHS2NusWL_l7_UVH@$#vG0Q>O)vLFY$dLUeicDlbLV`rAwd7jO z0!vypGck)TIL>FZ4yrxpHKQfWeE9Tz1G}gZ*YC|98IM~8XSGGsDwA>rUc>#oznEd` z8@+;K-zT({+Xg+*l(sCpVw~s-BiB(VUR*4-buC6$F0#Eci2P#u(s^CHYXNes$8XiN zh%Xt#j78|_q#~!=k(3?i=|xD2bD{in`a9YDFV1@dk}F4mR*m?B-AMM&$lce-vwB@$ z^k=qxizfbwEqX&gbG%Zyn&ZS~87u#aZQ3&0R?Ze;uy*r=>v$Q{)J8Gqm4$rnNB7Eq zrF358NpjI{as`N#asHNJ>@ad0@|NVYO+6)gSr7GK&?;6nRHCiS9?Nzj!-5e#8K0W) z-3leES*$=4SEuceL=PCJ3#}4+y+I%+q0c0KPkEKC#_IZp^iE^0CQp$*m8{b;FV~^B zdU9@k`nPNFtrao65gZYsSk;Q{xN-+%qY1Jo>QF|pE*xtexf!D-+)FD)yrI5>^_9kg z{uc?pfL0a>FOSn@JTKADqHjdyTp_+;dlb_?RuWjlV-393E7m_*wXVEeRAyrbNq9 zAj4W4wzp-wI7`Ps0{6DoN+e}yJv#24>zrdkhD#$YdQ&p2Szo44P@b!6rzUZ3CEBQf z{0t!SB$yS}9A| zF2D09NVPbOPw_^-WY248Vp;BAM2CMA=;aTwOuk{uJB$dUEN^k_`)qq3ZM>Q5f5p{* z4o1OG+(8VNI7Bh?+mU2rEn$t}4xaTOPpY*pSF$yIVu#PrhtX8y9Hp<6+C(HmonR|k zCsc^N_JetFg4_Pw}$4OC~7& zMQb2skkBTVm&A&A^_MBEim={`Omlf%xqnNHlqh)FyM_kY^W?9!s^B!gr-0vR*2i3;TdY}=(e5-JvNajjx{Df+ zal!gn<>$ro5U~wrfRbx5_(Koln|p&eeJ-My`~8>r&Onz0o{f0_|f|r3d?Z z^Vb^d&-yUWl3PFqqq<0*c*GvO`c)sxRWE%xR`u&);@$*jNh$YbH32#kqN;yu6F>0TU zOyqH&95l3bMp^7V!FUp1Z8S%n=Zt?4$v78WL)%o}%qO;fEQjavy5=3M^O0ptTU^#Q z>)xy++Rbr0xvGeBSuy1DFA6>x-PQjy?|%SkuLOUyks@Ou@&cY^zt4Oed6Y3(Mv@3K zsPm_@s=k2iA$jaq!j17;g@24+6GtyuUvCYIJmK=mSo3bgE1c6?u*H#BJ?Qu9^uPFT z8JNu?lt*g1At!y=-yHeWzL4LzE%MQdeZBeX&t5-Stuu_5sN~Mbwagi2_4^@zQ#ht8 z`$S{=HyoeG+@JaT!T4EyIcrLwfx~J=&y-<9jI>!sWmX?87HRCwlgW`{C7Ub~>SBFU zYe^gPNgvqy12c9q($(agkinrU(rRUC$dY3Xs^5$rU8HpjXiK>+tT-;_^I>%Jp+FwQ z`m3d_g36@Nv_ZA@j?ou+fmW1P!wNOoA>?0lF0h7Fji{Y#4XQDGEkRjUtTDFI-ug5d zAzYJ248QfP;yq*~&E+Vo{~ZsReA7l2tzmr88cHkBy}x=$Ysom8Q34st!fMXS=vO`G zu!_}Oamel^3#HsQSBS2e3zg~GYES1g<3m5j8@ZwCoNuy5x4K zgnXXjF1BeUbb$4d@obe5F&bTI7Fo@$WLisqif2EBq#6@7Kj3JwUdG{v*oRYvc}HH#1+o5j$UNB3_;cmn^Ti7SsUKkWUJ`pl9#7N z{y2ReTg7U4y-Xt)vL#v{pnWK}Q^=dEon-a1Z7r|9u@2>1MkxEp`UPwMJ=&3JB|^wJ z5X)GsjiiTcDB7_98xiJ_)XU;?@)IOB6)R?a`xePR}iee>j7HwZhPs{&%61~2S z_6;?j+B}2TVUCpDBIMB8#+Y;T6(cWl#u;1A;krk;hLzmb63L%p_Ak7nxnl2Ot+zT- z6mT|2>3>>buSHQDNV%3pDf50q+Qm6bRB;j-MuswVhIs(Bi|i2Qm-S*3&?g~6BDC_A zakIFN0(}BGl4XsszEIynd(r+Ag<-|K8K_$5Fj;r4i!^d=t(X-I-ccLE7_68)Tf8QH zXO7l!8uG%*W)<4o&a!G3$CNdM%CuZb*6+)YC4;7@EqO@fX7N|VVMRFtjW?eS#)5vV z{+28w)@2!OmkmZ#vvEdQ6i(2_C+XKb+B=v2kjE@P7&qmjGWcwby;V^$T>U6_vSQS6 zt>>g1<Uh-3v_{=viG?X{30Vd){mHru?pJ^ zwwxK!w3Km15i8gBF2Wg?_e;-%ofO&X#2_7wV9D|l=d=5 zaESic!alP|BKbrjX@hLXpZJ4!^E|S16$bu5XvfIitS4&awElOU$2Rh2Cyn#StE>a=NlYyzWG z#;=VtJ0h;;I>xN!F{s4#TG5(jU91dtmT$xsE6ZE)O;%vrTC2cluQ6k-RGDYZZ)mUT zfmumy4YRx@N|W)Z2)|5hiL3^C1o{uMWXPQ(BZ!=Rm-#H0gjpKvVNcQS*|eLQvU9m^ShhsRu-3{J?iivcWMgp5sgI3Md4xPt z_OmjmHZ^ago;R}MjHb>4jeMjQQy9&uL&Nu%vl0Ad@ zJ{oIr8s7gXwuurIVPrOWSg@@R(ez0iVKs@kqRw1>H0R0g-5E=AB6qHXj9K4j)vM#% z$f|x*bAD|U5-2afZ1-2Lv_zVW%XIEMCVPw-8`rGb z68x`Szm~qTzm{TA%8hMaXcN(wZ`tz|-$YPY&n-*kX8O)dk*ocz2;${d$^FW{437LB zIg|fFR7Yqfnh_RjXuM!25d_C~8h4lV-h8WUtj?24sTo0g*{WLE_+8P%r&Y#{MHz`Q z!)V>P_K!UG)^;h0>SuYFWywzuWJgw1J+3U?&3sqHk}yIl^S%DIHj$WOvBP@HwUMD{ zG=NO+=0u&5W%_nj)tA(k)cbKMq`D3-Z83AbTFEuIp3%^X$c-oxuOhQtHQv?#A}Zy> z(9hSGwldb$_&OnJeUVzR%pt>|6{|y$Xt69qkgayeqdaClqccQH&NOoCx@WHYHIQSP z@J!;u#V5&O(3WG21a#)JmEp2?h{6yF>aVcg+xl{Avt0w*$b#4g+e;*9$Ze&sQwbSW zqALe2?e~z=+5BNtFt1*r|BN$-p3w>PySOR2thEibvR%pP3=(M`UnJ2Qs!Wza&M&m zXGY2rB9@Ez^bM~i9JiF0oUOkg$KH1{pT%C9_cqt9f39@uH90=z`Bmc@0n#5+)5)DE zeoUr4*9%`6jLIS3aEmoVSeYSTQXIUVpg<64QfojD@yAUd%xbr&qgij4RdjLNfHJU6E3m zuzF(%TjdHKfUKz#<@)uAK5P*^KNY@3I`!=aX{N zpHHG8WC&0ueQqt_W{enDG^xoiI>&f*EIW$LC>s$|P8_?k!O9?_517C?#>ez>wY_EV z(n>KhDxbJkjkWe+T=Fm)$V|BQzZLzif3=?8UCp1&hD*_!t{9}uxw?Tf?aKek%6hhm zz5Wi3=!)55SJZx@55H&MBBJ81wEHb_@r6XqKSzFC4c;jFQm(d+vr>^QBdMrq;MK&s5uCA~KsWL`&0?9KHDvzmbUt%+iJjoU0N&#}inE9~I zNj5UM(nGcz^_b{wzqxvd{+kRCV!3{yq_?ztv{KFb86C7{yCXASKl({7 zDP!rf8XAph%)7A{D}DOVPp&WS>fmyusJD6{8R8wSo^YNX%huM+r%I%fBOY-K&(My~ zjRKwIN^3GI%3s===P`YAA3#4bmv?;= zBM4!IxBll&WWy+;*0D^{=3LYwt|lag$=ICsm=$L-CW^HZePNZ2GUr{*>&a0YW~N;u zKs;AiN$!2k^SC0gxvhM(s8}*OHH1s zfaA0TtUijRhqQ+E^7X!KFEQ>X_-)1_MRS@vkZUN5*2-qD7N%D1F4`m1wDM@}XY|Su z8}@@4ed8*k5oMnhgJ7&Si&9@LRMtrm&-UAb0T@+9)VySA-XkGx0LX}I2o^-}%VDsO33MsQ1>uOIu= z9%6o62~1l-8=+e8ochXISVkpevM|r=YC$3!+A}L72Fob0F`AmRycuq}O65&= zEetu=^ql2ubzWCzo8K{(Xar2YA0^FKQ{>!v!!e*_%9$kgT3=igLITIQa#&w%4w;Rd zcSJY!W^}o_o?L`l!tIb{>w?0puxNN$Q?#dLCkgWmq7mc>lj%?di)@DSDmmV?t3@G% z>q_cLSj}YS)_j@Xg7Is4h^>6k{uTLb&ffl$>&o_1?qtu@^S0kzF~*pHEoZ-qsnUCv z1ziu?cjL%ncxCm!NDqp1cTO@ZZXJmG%(R+WGM}ghb?w5C+u7)&wIQw;B5PP>syZ*B zvx|ee4f$8Yb$yJjhVf*pUbL-3J|*MgA(maPH*=~+wv`U^2qJ2%&^9-w|K@6K;%#L0 zG6!c|$yyqp(LCHveuXh4xsmipjW}%Qe0g7tHksXWMV(E|hVmNuX&HZqIeHr!eG~U_ z)s8&&{qIW74B@If#%*(H0jmMT3z!M9#wVH;%w$o>4#ui;yzTF-WIjQZn|7u8TjXIQ zG?^BJnN(NVGt1D3el#MaM<~aR$LIrE9ncS%(e@21kvp>8_<=GfD#2;bZVXZADMnKtf9Vqj@dI?(jjd|5&{5aDXUzGFT z7{1J>_1LaI=8ELj(H`YDRv}&`!>Uy~uH|VI#>lC4M6N9m;ka;(AanB~`)xf}F%a>q zwXu^UjVLNdR^w`qyQZYGx{R<^+l!#qMiEV8_FMbhT#(+njP0)85n@TjkS6gv>ax8q zzsWUfwB*bhcW1j<#dfrCb^gpDoBOTIH*qm$gk1Yi-fQn8{@$6``OYgD;cm?T@{Jiu zG`22s^d!Ga)Wi|`T|~hVq(Yrl!lwf~wO9e8c;-W`e0H4%agT@j?C3N@YUK22V41iw zf!Tr3GBkU9oVmlQYGZFQONjoGjUYrbn87oCCo_k3hPW;n?nRWzC}N&@H)o&ZyLO-v z(;Z0fG0xHMw8r8x=ea`kd7khz{$moKBdAvEviF}f@mv++SU2OypX7?5~RmDr7FDlRahW~l z{;X6g;t7;B@mgkfU8_PiX>kf>9K}Z&nfDi)AxWYi&38ES9^qG2#r8J4Vw;$?(N}b} zl1k`3tq%38QD8Z=#Yc!I%H;}jTAN9&%k##fg+kskl$xf49LZXhZ;2&sWZx(3Gp4ke?c$(QIb$>1f8-h>qjNdR`q&JfW&{6QEoOC_u_9;i zJYL#r8AyPYk@`xqk~>>f;Wu93*NLUCO%KJ=Qf78tjV$zj%}Tjqj#j#Jl(vlcdKpng zXUG982ZC8A@o58T``&yq&NG0ys5`ThQ9;-8vA>KjHDTUr&sK5y9qFY`+|M--%d{i^>c4lJF$`jEx6+(Fv)5OUIgmlQonG@(XYond9MHAYe`ACq=mU>Ud zFSKIK7>kN2;0Wczyxkf8v|{!2%`=#xmZM#E(GXc8mRRJ9E4#@3FM=Y%J!SRRJ}_#a zb#8I8qLaMqQZUH*FU9@_odE3Vpiflqo#)}J|MtQ!oY0?wzhf4NSd z*k>6vwUgAg^%;?_T4AhL#JuawiniBZ>BZ-kZ0&{K6+P7~(9H5bbig8&->Lz7T^qc0 zpeM{sx8r)fxWXW^Xr3d}qzok;(G1sc&E8n9t}y3%M&=|M@mzXc+6>K*KY7BP)omwb z(zw4X-PC1^QsxT3dO+nspqY)fC!C?I`E$jgEsRd93|%Q(gnSx%%tBgC_!Az3+SZlV z%zhf<7qKcc`;S4CRTT4Lj$4h^{hs|F^Eu1`n1}iWOKbyM#PM4lvMtd3R<~|OcP~Xd z@8JlmBE?7>_jSF_aFr90fFb_D?5%wt@<*A)5)Yy`eUV>mq%o|(Fluj&hILWeuj*>s zS8Lyu?%MN`MZXPu>Y;giaEzJ#E^KQ_4|$YPc;hTuQ|7pPv0t`z5$B>otP5#`6o>>3 zSI}<4^<+x7hS1e##qt{^6(eFM$TdI0nDOzTZqUj+EqH6awCNp*;v=dfn_5xf3Y4xG zY@A&UpkC1q6t(55NAfesweDzF)Hdb5XKiyN2s3w&iowW?rt%A!Dz(Z?To0wTtuiux)E# z!^H#fMK_%ksy=E#jciWaMk^(I!v6=96EgtL^$GVOo!NycR595s4V z#2B&;%PJSEtj&rTYYsuKKtj|@{ePWsP%*+|OMxgpn z=2KbNwbqO;81ZsuGam0Oqs?p`kI`W<1J3eBB8(}Dv2cFT=Mz0x1=%!~um7&~9or}WRPlUsa>J%l&S5=*BUgZ z5^8M4>S;4evOKRv_pQcCU5rjmMeD5z>{{8aUB}Y;?2YKoFWL7oHF;l=({lC8l~i{8 z!nw=&{tZWcja9swbIot9<|-oU+-p6-uiP((>&tGv4Y|(XDDxkpPW>~lW!;h6HVm2mia`s`kEI z+vXC?^>$<&Sdpm3@602YNW0)X@lqnvj5pQdIYjiDy{*f$Y0ns&WjsE9@LuayJY z)Wfu2jRUz7k}*R)<&aHWoS^wlvpUE4U;Mi0Gdam!*>OFxxD4GJ*8S@*$qQgC%35^& zW7kC8i0p~r*M<<6vW}xP+ZM60F?xlabaO*=1SNH+>AU%TIp;^?#aX%|vqgg_1Mx|aGI$9V$vyqJ5X zUN1acvBS)RFx9h+w>$dG~nv0v<#(em~jX_P=7zdlG`(?FhGxw0?YlDUi0 zB@$9Qrxx2q+URE)sc6k_F&66jeIjT67n8Rg^e;q08x6Ep#(1qhll6T@*R>lCGUmg& zNA2v!Xc()4tbqviig5%pfyUvLH*wp?kSkXoU5|{o+NBssrNHQrSa~fB^R;>}g-C-D z7&Em-^Ue7hTQqLIgFS^@Q(T;yp@ggLMh4{EH$E-O$@ql&!x5u*bAbMqucAC$sBX7P zDMU^kK%XfqR=HooU(`BqW|XT|jbm&?uglC*`Jm^-tU6w`4ejArTDMLh4f=0a1(G2C z(Rz7(Ut`OTbB}jDZZm)KU+8Iyi4uunuFtJytfSSAZ`z+`A!Y4z1*pD(rV_O*I!WI^ z9cC;*TS6>REZ@CC19V~pU7`&c9cXo{i_Blv2qZ@qxp0-QhMcWGWG%4S3nTun2d%fO zeQJhLoR^lBo|@RJ)64^fv~Lt6NYtI*7xx8rS{CU)BcEpG>qy zDq6wyr`90}^5M9ia~c|D6`x!)B3woM5B|4)Za>=QM~)D4qHp62=u2MAP3SCZfW@M_ z8kPJhhq$xb%+r~_*uxg9>W=ci94=-A?E~j}YjgBbog>Qy@%W~+oGSrUrM0Z#cf3aP zZf%wI6y|%oFlzK2wP%dRxz>oNp#E&vAMC@7Av>nIh^}n!$xJedy>hXSV_q4~=b_*x z1sT_F04FJXyNr3Ro^U5yhqCv^psI2j6_pd%H;QXaL@b|#>So5FYs;@HRLT36D!8t zRYyfDyY7-qYMH#R47O$SZ5!XMv-ylUW()qJUf&;Vx4!XbkUhV!-KgLyY@uH`?Zhh)2c-q)h&hwH&HmkjHrN(yU&Gax)3c&I9Ouq*;riaL29nOpnyg%2R(+Xu zF!$gLWF%kTzl3a^Vf$`Pa6#~XKKvn0RLM(XAO?A zabtnN9S~tW3>&bTUajrA#DzxFMv2rOGC+NmD>n>fZ%6;OpL_f<|7OpsL6v0|b z8F5`d$W=hXJa`YjyQ+FJ?Pi6&G4-UN&5aIP-=UrjEdkLvN{-PPeQRekBb?f>%AA;v zFtcpF*$Nr4j3>}m)}UFX7NR1}@rui_9x8=VXHAY(k=8?r!;~v73tehl=SN11(Hqfu ziy0|KVYc$;v5wZ&^hX|J$uVN=Tui6h?VXNeiPB7R;rKSr8&bSs$I}1%b4Q80R=vXzfoW!E<<_DZ+lR4H% zpSct@?I7L4dNX}9uyBYHm@xzz@ArDWGylD|ybQMok6Zj48NQ2Wj5S#5c9-&Y|o zEzy6nP>A2F6O3^A4&oW(vaGnCV-H5WvEOb%t-~nh=&4B0K)A2u?|cXem<@l>EzHRG z!xiLuKMyiX-vLvWyg+~9h==(87dUO7gg@vZShfDb9Q`zW<*)F5CoEczbH?A{DVI&_ z9?qE!?~p9j4=@!D?H*(TPZ_t1!v5JDiuyLs}L+dHxnWb>HB3 zG~qYNs${HBzE!w+0wMg&=uH*nToX7)8mPYSxiHO^(p`YMpFrGXW&o<98rEhFaF>hX<8!Vk#C zB6@c-a;X=oU9g1h#+-lSo1B+#2UudcE`I0F{Nc~+UCY*w`TGh9T7*=-kIeiIURd@! zW6c|RPGc`ixx)&!h(Z62`~1wkGm)v~e3M&UemyNwIXGoUbyctpf%elUv0_8?%o={P zwK=wd9h{oLBDc(WR0Iv=T8mb(izG9vXf)0UiwF|E1LK9V73dE*|CR*# zVAra0-70JN#cPNdG&>}wup#|yMYmO2>K2(!hVs80LC#}l!ek=t%u%Ad%pZz17IQob z335ds86b_M4Me{UVvkH6{W$t+bl!NRemGl(1{%<{zVtWya-SY(O!FCHX0&aMp&8+5 z#};*-d`!mNtS)NL-fn#N?xMZo_+(bf=hmY(i(y@*XbG)PF*#P%T1ytsG2#002^`;n zJt7~pU9EAq?xH(wBWB1dG;`&~N=0hxpJ+i{W_~?QOUBXi)Y4U4BAhjpwaLY8)lTvr{;4J<_-gP5CXdCv%L*+TW2ny`pc}vx9HuTvqY_ zI?hYu?Co4fo<@<*#$~JqGS_1yTumsiflnze*QlAR(~A-k;a0$2bK_RFiCFZ{stUDb zA#;ooAblaL&W)lN6*P)%EL=RDF(~UJL_1lpe-&qlUQvh29&J2JTeK7XBs#WDAP4rD ztOFrSZip&OMlP(9(J~u=WXlj>zQ!s{V|B*2t8z8t4080yLShzJj=6I5v+**$XEQRQ zf7;!euBO|FZ!uh_4d;rdHEUwj#(29vx;2p2rfO|O zaVK*nGHEDfMh%SOoBeey1Y`9^>_SFAx%kc_ae5QlwAP=A#5LDq9N(;W0v4@V&a=p^ z7LkZmZAg(VMnLqZ#og$0m|4wbyEe4zjvhvCo%Kc49-;5V4~98iv-@V&3pqzC!hC?p z8}Mh!pp3Ox4N}NA?!p!>ViVZL2$HdW8OoF+%ah=H|`zi{Ei>HMXN4mxTN@K$_(u z>WZYu(5Bw3$H>r16hk{08Ps;I!xm#ZB5JL2G@93)Gu4~^V4xpot?MlPDB8hwbIrqtTEZ-oxhz|&{fTib(dotC;z; zC1w3H9%S@M9wMvF*3l=fEvrvp)Mz@IP&w!X+M^|^7omilw(I^uKCS2{IAz2zN|C-Xg`bN6~|(It2HNb zyo3=GV+&S>m{GABT*j4Re&>FEo4g&ajeeN6QJVGY*CTPtc|I*Ci@H{a86K?@@#BlJ zl>fj+S&SX54KCMWxGs_Gb*@Du1DagxX|(Z|SSiL8mSJVD<4&?x8-w_Xv&=M^N7Am} z%(k!iCSQR$KG#e#N0h=d?xUZqGqf(_G&6^z{xba{=a*RL1ZE?dlw#3Z^_d}@Va2zJ z!McRDsD*7UUhE{FMMh{-ir6-y?%ZS*ur`4C5c9yUV&petXyPsO;6+}#0=aB2VkMmW zwYkG}WX}9YZFOJ;o00s3D~R(}sy87;R-KCeaQ-$29@eOyVh#zph2&Rk@TXAcK*U>Bcz)*U$1*6o+ zyDNl^WM8C#e-$3L>%&Bf_~tM6?lSwWl0ERz!)sInUoY+G!W9 zA*RpvI6-Th7k0+9(%=x^cd$+_n`q_Kg@lv(+NO-R@RryHoU<81V=hRIz}LU+2Eif)-=t znrmk7)z2bV#7T#KIM6c`j%5oJ}g&Qq1-|2nCrIvAbBNq0A{Ud_RH52l9 zRyh{s=R1QHZw|C7UX0NWBaWh}UFY10wG|a+*>=&h*06}Xa@7UvJB%?IGtt)Zsl=S> zo4BUH@4Q_3NbMr(PcO?An|vm%N09_)IBqlhl`gG!v&&)iqBZ`*h@82)R5z@r6UgBo z$mhl@&qv)7^LzPe6(?7mQtr*t#^LPDo?HTM$?n67Bo9vYe9vN&wh}< z^+>b)zQrp`?aJ`5Xs?)_CtKfLZPCT~M=R}Zx#z`0BTs)Hxhv+G z$c!^b^CO3=9lcPL7#W=0vDL8NeFnVI{o_VImrE)5bkBdXKFrx)@UM%&FyTn{>4FMP8b06swISyRUfbcfb*|#D6V&>|DH=fxReYj#;ROPdC@{;$* z?r(f-^u;@q-b*)6tYZi~-ND~>JSExtpAg7cr{{hU*@_xU4RFWg$~ ze8WAq3{rQ`&UAu1U9fulTIv(4zN=Ed1r_&EM-*bIV<$^lVTN?ErkUn|)q;IZ? zuifbMne=vRYph$Exus}wxzwsJ#qPVbIDdG~*Sp@`|9$ay2^k&l7`t$K)R>3coh(O$~XDT21Y1g~EcO0Ek*0bTz0q;*eKeg3>+`9iRK9pX5 zP2Dwp(myzUL(E?iM#Mi~`gp-Bd!NX9I_Hs-W$`6fw;g-grBM`D2p!qa_`ldmG-nQ{G#&QcGr$sGxNL2pLYMK%J`$7ZW_Mw$+aKv9(VTH z*eyw;D=$2M^WkyXuVfbQf9t}I+WCDxoBH0&2S?u4Ec4=#OVDpLV$SwxnM9FK(W_qVwv-S*uUCsC+)@o7ksH zmLBPu9h=c}-?e9t)+p_@U~1~@x5qx%x=z`--J{mryyEsvPae8ElAF*rsb{(PQ(y0! znelYi??;ElJltZ%h4Ut#?uyAc zx;OLm;^dA!s!e%$&I98k?V3lwvA5QmXHvVaFUo!T((I}aCT%R=sQBUi)iZy~9DaC9 zS;eM9hBcbiaORjn|EkmAvwh+_9lt2wJ@?_YJyP#pyCkQyq-E8IlJBqh?U@@6RLy)NqwB%OrCl0D59vR1 z)U2*U&s??r^qK8REACxhYg@yD`^)7ey-;;uWMsiDyR&vavg?(?`{Jv0nlz!t+?G>f zyT(_3`@n1Ku1S4hP05~~7p7M!NnTv3(z$U5M`bq1$lu@g(t-LV0~cSvWA=~{|7vvd z?8%*LSLCGLyQSH&&M^m)o=TW<<&)!G_hjyTJ^N(Atk|RuW5@qE_lapQ^>{S?+@Xc* zFQn97UAn8qxvKGz!&R00xI_qNklH4;FdeuALzsdD|=YBH!*JgK=Ov)@-xhOS$ zbL2?lsG`J!2@gb_D2&^CX6K@;HOF48*sERDaf9dfnX#w$fW*T`Cu|&_8ojDo_JlL7 z_kq@>of5uG+#K`c$?^NP zq<@gP_{a~@+gr3BwVB0S?;AL|);EO@ZMiWuYQ^_Eo+#Q>Av39U{G>~D@>XZJO)uQj z<@EmKK0TwR9h&#r#K*4wBl@|$Q&wj$o3eJnzLgi-RJ|_gqw?EM*WSM_y-%J@NbYuE z@`v;OJ~^vX(Y5e)nsM+gg zHybvr{!6FFZm+j|VruQJUGqPP>6o;uO5e!N{0X~{?Yv`GT4ARuk9O`oY5%;}rXK6s zxN_SAN7fEXd1Q6pJx`qfD1J_I=Sm-*y>y^fW|xfN2Y$Ph+u-fNx6MkPTYu!bMt7a9 zzcY3D$0^M>XC2)Zb${Z-s-w%c6^B53GwsqnV!?5Q~abuIqM?J zveQ;%H$K}mE;;#RrG4kx9om#xmR@^*TFHG^-8^vS%>8rU8(pQ@trwy*?pe_xW%ZC`NhGxO4BywiJf!j&VpZ|ITII_>qWOU0?N zo0Ff9O}nu8@YJk{>GSvXIR9&%g#Hz-zirD{=V#~F`uLjPW*nV&`=2bWcrj^KT$77=M>=IsPhYY3 zTygsvH}`&d`o#GsCiG~3Q`FKuZC8&^xo_Q(+{2gds(NGM&oQr`9J4Pc{oc%uN1~$d zY%yijO>>XTdTG!-weKrBy5-r_)a5;PlosAt;iIIs@lRixlb5)wTlzouq@MbFa%|7R z(+_s>b5 z^VHDu^*W#WdfUw9qn5w8ZC}BWa*rj|t@8cl>c>uHU%#{Y?w3w{o-nrC8&ewH@XXW| zT|TLJF}Km$x+!sM#_oOY!sqcBiJz2TcKX5GyV9qn-+G|za#o}Fhpw1CcJ8ndw>Rv2 z=Kpr=T>emM(Uz9^%VQ=at*(+)S|@+PuH8Ex$}V468h^5Li^=_NxNdq%_ocD(56)b7 zep%+K7j{RT?;ZbBQn!lZ&OEyRvGn;n7v%Q7c(DGI!AoXUo%jBz-c4RUSG2SJiqBIz zZtk2nDf(#QoT}Bz9xfQZJ9+1KS+xt=#jfqJc*0}zr_5;B>zOJK9{zCsH7Og@e#owR zwoP1v`c` z_)S8GsLu+I?peC?hOG6+)>KSu*Xr7T&b#%xuljtEST!$d<3lOOR-VtCRNOiC!Q`>A z_golw_-y9!ozLb}J~yX!Lcd+trOo?%T>n;gUQWm!lD06V@y6)Gua)<drO+y5flj zIU~}KWj4)wqWtr19v)j`-n-W~?RQJH!TEP@YL&WTWyj1XPp_%GJb6akzLIZ_l+XTi z`ja_-I$OKe->=y^BVqpN@o%^JF7ni_^t4tfkF3u+u(fnyLQ3MTF|AK-&v`KY#mrhq zQ)3piDmSKZZq%$D17_BI{P@qC??}yG@mTu8lkZjfF}XPIvx}pScFn#z{fWKfi$_%7 z((AtIKh1x4;^y|RN44G4d(}9_~W)B?t zMZHxg_igRRf*v<*ZCr3uxzfb1e5Bi7r~EYk^pr7Ox>TH$ zd*hlx%c55g*z?Bu+VQ_7UMT;M;)nMC!d0gnysdP5qdSMrpItQP;_%fCrWL@MxANg|JSEl$g!ukG6{L zkQAwUpzNOGSMS-eb4K=W1y9A6bT~TU$@zbq(X-c(D(4Pmt-EbmqqNT1rDr~jJCgiG z<;mx}9C|79{`B^_nHN&(wH>%@=DB&D#@^n%ddbxpcdl5rEMen2hi|`9nAke;m#9HS zFYSFJyzrS1(@iNqt!R?*)u|gRSE_bC?&FISjy{^bJpHDe^fQ%e zHtO@-^eXd~Ui)gBZIM~K?oa!9S^M>e4@5_b61pT+FSnPub4B_SnQM=Xh&j}9%;@;J z9cDHfP+a5Q<7t~;N-bIOr}W7u$5h&t{Br!WmpbGv&(7bOx@XVnP1T}%wVhTrxA%nO z?aD{(-Q9iF(q&!Nb>9Dfmv2m1k#tM>`%k}~J3gan=7Wbp$TmAW;_q`Fo3&xk!P+ku zWo)@8^`+$lcZ@8mQ1P?mdR1m#UX_=f{ngG7c27I`c4CL_|C%yw-n>a$I(!+kes8VS ze_6JFO`m-`DWYGS+_+-*Ga37{GO{zOA37Y_+@$XC*JqEJy=O?hdfiV>+qyU9M9M$6 zzENNJPChno>6EEm=2mvnyA_P)3+No^|) zIhS(qwagkB@9bZ3@q_wL4Ekf{oVhQI+ScTW^N*#!wxUkz&6_9ZeH8s;(gz6(uS6HV zx#zm{McMBa?5_OI)$PVd<~}-oNzdpiFC6;Qy5Y-)rQMcY`Ru>r%93MZt6gY(_@1oZ z83%J8FKK*L$ANdwymQ|2F%LKYqGWx>*%i}MR&Tue$nY!e68j~bzOuKl-rnUqYi2b$ zR;gl*cDIguf9~2D5A?Yw@sFc18ylu(r5(*`d8SI-oNBe>rk6B4l9shQ{h@su&plE5 z-o86$d_DKQu@hQ;cqu-s!OFXqEnWZG!4{E&RjVYdjVdV`l5;x!*Q}zv`W3df**^Bk zc_U}m>p!acmi!ksC8XZH^8Sn-rzTYTAnDH7TS~q>Qa$^+^zu26p4m|&y3gq8JLdjy z?LXS=ioCV!-)TQBJG!p?ilak6;J>4=lGks6Sw8K-Q&NOd1>fO0_&Aw~!j5s3jJMs#jtuQJ%KYseGmGWr@k@&zR5c~t|=F_@47XQrc7Sj zXWwHND^;C^E`0g)o4K(W4`$Rm)TS)2$*ExrX8&pS;Gs3H`sq~3wg;BKv%J>!508IY z{$x_uDiurj9xL2+ZTb_t=bdPq@MzZslb6gJKBZ}w&nmvSzva66slTs@%4u2Bp~@3U zb1G~oUb6r9j5{+{9C-5b2Mv>kl+OJ7>}JC&H+=5@S-K9mCX=U~9!f}ppn#%+iYN$z z3L=V%h@ccH(o4X0XYYER=UGlqJ-cVWv-jT5nuK1Y38WB8=)Jd){(dw3zvG8T+3dT! zGdsIso_U`B#ij34=cOzyn%bI2xyK!25~>^1cD>w9v|l#0!`1jtm#v}OlCmQ{&ic*p zL!CvgMsOu_Y{hQHR^v}xGGi6oHXn%VL`Q4RsLosO_r4J)O}yiuZ&N?`MC6`EOYtbY z)x3iIf#YCeq3>^-Rk2)DUZ!ZfX?WMUYx$%k>!?Gscd#-V`g4!LAM}4I+t%-AsO5ZQ zG!6V(7cIFgx>4<>{Acva1(C6_JWKGxO{yVDOPXBpI`7YhpY>zeQ%uGZt2zQJ#iF7z zR@)2a)M+DwJ9#gnlRUFItDA%J_6s7@V z6Hgx4J^8%Gx6B{TPD!q7omk6cKVC|*S4-+ zdx9Owv87md%c`nG4$_BBYKpCW_%dtW%s96N8uPgJ`vtp%q_h~(%x*3-+*Dw6N)_G| zUB(lgsGQnoY_`l}UF5nXe#rG{b)+8^=9&J2aXCk-`Dzkd$!(*J?enVnEL`3pbMpQSz1* zyIgs6nS4>!KE6rTKqXIkidDhwr|;;GuXT~+h;P=7*0tJf^vzDVpSXR=Ut@RlNsDKu zj2E^SCbV`_CUe)Z#M-Z|apg{;ZrS?I0F$m6N5k(X_eHFlb>1MR_ItL1KPR)fe2k*P zsGRdReQCdOZMxV=ys>tg=Hj@8KJVgLymmjq_^ttts4(@da6_Se%W3jljuT6*ZEpR! zTvHk)V|26{*|`LS<|XZkEOC2aw5EQ2Zk0ftp_h>c4UGCY0gTWA^EwB~CwLz*R%L5l zy^tGMnrO3ho2{MVAJLe!@4|wDrlwsa2ab!$N_|LsV#P#JMcKIaCx(AGe_cL1$v^6k z*$Y^^8brAd1(b|wW$XK28s6k4FqL zOYB|d-cmzbJasUjk*A5Zo`2VDUYj`os$gy^RmAMR$vDlmHCm<0Yf6;e5NoSm_3t-d zGe;S@C`q_{qGKXaSbitNR`4e0PR$KXok>hE~bB zZ4{!8Z?={#678sP?Agn0b+d@5PNIZcxICb>$oX0Jf&*FVN{;d$V_%Llt+ID%O{aLZ zus(^2n}y6YH5_ z;q^)1SJcn&V&1HY$u9h6p2m@s_H1H$k4WY`rrho8Z8#@iSRXJjz}Y>0hF?k`b^b$} zZk=(>%mO<|7=DrG_US2R#`#7jv=QnHJ^AfF_1qvtBQH2!pUrgp-R>fL*3hknc-dr0 zYx%UMqx~oK$LMdFo9U}bVzo&5R!1@X$08YuPXori<=7M6y+$p|>#gf&G*i0l6oL9^ z8lMqDKT7V_*OERnPnoV6?K^gcrLjo?Q88fCWz#NiyV}9(xjyhpby_bZw@{u?LMWY7 zJ@bT#wVC;-cV_2}50M@z?)Rj39q<0Rx4OSjv0Ob-zk$4uI+A8a>!Yn=?l(5$9vdO% zUNJgLHdJ}_U+;O}t$3syr5V&oNQbC$8k@eBK8kUidBQNqXpPao%&U|^?HXm;pmyNc;2kJ5&sTYA z{fWhtc-kboD}5E+nBmG)G836|={Lxsx?yOlH5 zDVq7ZQ2ioe87YDsMKPuxr7~#iXhK>kO-lVlW)YjUht)S!GSz^3owivwiC9EhL-wZh zQ8rTVPz$NmR5|r2b&ztNyo2!8C1{xHJk?L?y_yDXoE~z^q&o6DiW@bCYC&zMG*faZ zdnuR5_N0^gcI_+849$AYc&)o`r~V@Gh9n`sq)ef1rn*zVQjSurDSOE^kY{X= zBDIp9ko_s2DKu&m4+nBkYdSC$#U`_*_1MhA|sz8$C3vDsr-s)*3ZzV=}zc!bdh?M z{xdP3^pHd+k0wtbk0f`I@=3Qze*nsOJgJO`B?|O0dUt)S{)s+@7(=>8GKXIFzzDXG zy~sx7BGN@rMfHW;&wYYLT+#dJ?e#o;y51MEGNGhbq;gU}jH85f7c^I0hI8nX0cG@@ zm_rQe(_rpXh{KRyIt0%&BGbvuq(ahO$fZt(91~WjR{$DvK2fXxpns$n>K!1LJPGnS zcS+Akk4S$5j(Q2?$toeUGXnBz_|-vT3SmP`BoZO3YzA7!&q#TsH-NR?1zA2s*2y7@ zq=NjC1kmWPmc%GxHt4u_6N^bFNjFKiNS7gRi#k`&APZdzxg;0J)iFr#iJe3!5d>PP z8PMxm(hZo`X+Y4hNHRb)+=A93!Wr_u4v+);4E=@^$)MPm3%2@sSZ8?(WY^@-@-AQ_ zG{ihWem?-Tw;ky_;M!4z^*Lm|=0ktckOv+G^{3gxnB-={1~ONlq3uc-eFbrd*bazz z8L&xAf~;{MtoaBM^55n`?v(?0@yDcW(nr9IPa#PGLw^Yn^jVNG!y02mOZG!<9II~} zpyfZLHWG!*hgF$CDj6QveaNwO!6-&S#t|!g$|2)77V_BtfL*FdGMMdjz{~y#>$(+s z{swu!M#%8hz=F?}%p$yD&3=M)7dT zK**w&LjG_?0kRv?AtQbiR^Sw;n!5i`+>lz02 zCm}F*tQ4CA2(DA4m#}wt!|Rn`trf%qXuF))2evl?4-1CuHzHfHy4Mpb6i$==g8Zlf z=_9QDG{O<)mINz`jFqT1hwNfD;1S5Rumoxq*1&TVur6z%S1;)MFIX)mv_Vt@Do7yP z&S=0l#KD+33HrSW)h>78dj;T7X2L2W4>+Q) zHNzQi#BmfrKW`yIqyWa|738yPA>)s%L6NWmsHcY9amYxB8a-HVUjqB}-7u8}QWsu@NDM0@n5+<_eiuP@@Fd*4~1( zIshR$9V`<9tAKVzRcoy2M=pQVwkd|OzJf6z&s!;s0GZH{{~S@Jh(1E4BE+pDufQv) z|3Ret7Z?j0+Bt#exj{@qgb3D$A>Spc?qZ!%HdqQZsLLU~n8E6=9Jc>>@Io_~7jj`? z4O$2EjBOD^fVwxRK#~AnmCHoSikH#Ql*>V?*bhmpbm5tlI&Jbp8rZNGreM8ml- z0(wQo3S^N&hD+onB*U{1k(&TJ?=-Yt3tuCT1~P9U_7}M@bzp-ASm!p_Ee^1vi4cF* zz%GdZ>5kw=`!+Pe!dUV0~k+n1yM!F8-^}p(L)MWx@M|;Jb*o^9qHYTdINM6$EUbjMgE~W4 z1)T?WMSYSQum>G5Of!cqfJ|hK(9Z|x2hmr^8;;dJsC0sC`^c5Uh4_Ga2o%`)sPK#` z(|f%y9-cupSR1s{WdeuCK}qiqRT^$WB^#4KWpu>uw= zOps458zMjQ{ULV>R`#N159;@!ZY?TTd&3A&mBSQlkM%srFM${tM4Bsy?a&7p8VlG{ zfv{Fdu)AD_M}ZZ<$V=ZmjJd&TU&QYlK)!x2#HuX3p&H`v$d!>2p$#~-kF{->d0 z3AbF-XZQ+M#Zy`WBb7ot`~dyFfT;Nv;uCVtV%;QSJCR)m>t+xmj1|R*MMG|5#Qz}6 zrUOJctf5Cu15=1vID4$$whE{ttPH zI5*VSKrht5I|;n=ZHMR)2_JS44Ul~RE9{!!-ydKn)c8UzDF*n(A{gr$@YwO-cc`j} zIvcexGmIJ~um*^yD})(f{f#}W!9o}b>SChBPzU`3tQumnP*eB|?4nF)ZwRaE4Ifis z{HRWb2usAeW9&e!7sOX$t&#*HC+bA`z^dXYhqcIvyUu{fA%&J$@rNoMSj}Gqqa6=x z8xN5i?=Wp(8N|LL?ig{%tuQA<$s@}#Djm8*4&~hn^0};Q--he7})$oBxvM%U74W5N8FqRN!BOu1vfCcft|EUk6LJ}1`VgPmm zqQJ2p*%)RN4y(TeMu6B!Tus~$Ezp|?T4G&f0n8L@B*%kI*FsHaAgqNs%nR2NV~knh|(U2 z)rhIYDkMaj(&2SJ5V?{da(P4SKpuc}uq84{q6Pxi(x7iN!g#D;m5}!$5q7vetbqjP zfVT)ej1IA$h|@=`DOM&;0$&M-wF-vSQo$I@U=^Q0gh7mR`|vua!EXM%iW7%_HAKZuUF2XwiJkg55-pGbg4-xAYv7cBE@63LMTGLO^<_5&9 z>u{69*FOTUM;%vW0saE_x>LjscvrLsZq8Sr?FabxEd1;*xO3ivorEk3s5*wKCZFMM zxf^cUYv30D5F#KV=)Vo0eS8=las?p1lr`+FrLgPp-AXE04f#2+ssgQz+9ep}y*OvO5%|0&C0Js&c_qXsteYM8<3B8H>kB=E{X@II^^$2$%xq9K1F@>SHr z+F>2$|LW0@-=ZG;1~TLzh{ko}+(R(~(NGvvWN|1nq^ zd0e}|8V|s}JK^U444#Jk4XBhM0KfPXykG~|{S`bD?=6)OiSb7N5@K=zyb`(o>!9Tg z@Q(fe|Lz5ujIc^d0=|bk9#OKWa)DJHgD?WD3q{sAjFlJ<{-^VTr+6*w8Qhs>FnX-8 z!4n#*Ws#-fe|o)Ta5haO$5G$WYZ>kINb*-zW1msCUsp@dLd7TD07J()Flw{qpXMx< znw+3A8~EP$ZSaZ4jUuDhQtH&7`>H$W?Xu4M1BZxU6Q3~$?fmTzkN?cA*4K33YQEUC zt>eA|-a*k$lb$Od_qevZwMBMmhO!yPmVeuqO*eBgvq@mR8KSf})hw=!Y0FV$5GP3S z>d-z>M{|39SHqwU<<}7|llZRAvzQL|MqMWiJ2*AkN?Lt!*BSL{Qkl+8v7@WMHLOkB zU9I`uWSwp7jJ0!eXH?tp4KDRcYlAAr%15;hD*hwwBg<94c9%5&(ij8>1cyFp^y29} zFKe$9r&H!!)w}xXvT)h1y2hSydOmd>@qVDKbyK}_{h77_)kjX!6j!f_zK7=?oft}= z(pFRUsx)8b*fOYmL_1I4p$+eT*x*uQQ~$nefFiZdaKGESv~l)N`*ZQLpuk0oChw-2HhPvE&d)BbYk00SV455H z5Wn|$)_<=&Q{B>TLopg(JNH{~TTqC{;K&Vq7G?AE%=4efqPsSd9~t%2`-Zl+oUXcG zaiG3sAeM9A`LCrRD?a%D>ySgcUf)_cHfLrcBTH?2H zqvi*N{~Ip!x@`4Ff0o27Co?-xe4)LAG>_G2@LX-)cD!o8Y<`VF-%FFn&ZPnA(U!r- zrnfUkHniubW`yUhly6Yv8QeE0I3Iis@{RrJV)7^NW@mjuZ+SY7-`KAE} z!y%46^XI`+^#)}uX?pEFjq6=9VEav(C$-DurWF^qHMx`4azfZ}AMB7< zJ`xwp4BJ=?`>FGn?TY^#Ve660e%Aaoza*tS;}7Y*-sJ{!OkWs&ANr-iMtVpTB5xUZ zF!InGc|=2kZQwzBy6%(AD05$mFppRNU1!K4IHxETUE8aUiRMbbHEp6)*=_P?CfLR7 z^rD-OZU0ulO&OU!N*vcMW_Xy+Gj>zoY#LEU5d~Hj^==ta=l)f02%9|mnJs3T3S+12_d?N=(Uh_YmF zJLJYGF0P@YlJ-XA&U$Y6s;(*Lo#1+=Tg85b#Q2)&I;O#3K%J>1RTNpXQZ?1OeBs!* z9f@K7N}IU~u_z$TGUZaCU&~xdGj}^Xj_7Z{SMjr`p{${8li@b!&gDy!I8j?>-(^)b z4CUSzursce@%uj+^0~*EYX%?G`A9-VG7(o$0TI$MTmn zZUg=bFH}x@Ism^Tbl~PM%%HMToaX-0RM(#@%hfSIuL%m(4%?uVi&7NBQ ztNOEvlv_>v*85xa1Cdm8xo)KX@r03n7Kuv}{`K)3o!3qK@t@Et<>e2{c0XDx*NZh$ zD`@#kR$A&-e!S~1cF#;A+$Z_&3YBXD!?7kRd$OP^)4FocP@S#eOHpT77hV6bFMO2-!Ud6&FRxgnfUw4v3VI>i0iq)~UI?MeAKz#V+(FlFs`{UyvV zc|oLbmXTpf?fqTo)x)n<@)Ok6rjF&OA9GuxL`Z(oV8CZNK2(yvBwt#A;5D$wH#G zeQ`xV=@*Hjc_Aas@kDTYQezBnZW346{3fqkpiXO-MD*=6>@`pd|e5Uh43(As2n z{Ned;&4|`D`P&3*QlE(i|$AYU!FgeqJJ*? zoG$0D%5AQFt3AVh%1NX+byru(MJ7_;rgxN`_67m=N$cZhEUX`?Y)>gr3o24NN=iCa z^h9onVV?3*<7%n2q^aDmmu;r=I2iRIxi)lz(*d%7WlW~4z&VFhvrN-wBIRtRp6n6H zABy6|_v$Yb2PUcf&+*hC0B+&b{U`*$P=?9{M0N9`3KbnlWJ};?OZRfIzyxs`PJ#Q9NPikwTZIC65r$2 zr+OWW8-$+1n?*C)9#D^PwZ0lQkbjUrWtumZ)cs+v`J5Fy(#mTRq-%pt$6DO1Z$Sa6!v_${y}| z6RJMEZG3riiA3tqo@R8=MIZV(`Fhkh_ff{P>iIclf*Tp@0gt-Z*x59P(bivA^Fy?& z)UEoAGJDJdZ>xBVB)es!Cj6>6BzltSAUs~cYnG5FnO3rQ64wCc*OZw zNI>%D=s!J1n=l%g-;)LL>35~IeNl$rxP{D5gBf*P$$zCwoOdM0PUlK7{Ao?qoI|HM3W5TY9>naJdzJgB*(dL$;A5IZ z65r=wxYTsI;ie(ah6z%-h*woVFyDd!UTBrPJ$UbwcUp!lKYfj0@pn@|y{XxjoItXo zGrRJAsf{GD=^6FSl!Aa1UVH4M`PpW_v^f?S2p^_C6mfd!1`kaS82zjYZaP(VPgGS& z>kl@+J?CiDmn2F^yyHtEqkJ%ZCf_jUc+H?@1bYF;mtx;tSG7TuCa!9TAdj2uu&kap zI^m&rjD>&am%;-=W@>FoYv&S%m8pYqwA#G+LfO$$%Zl$k)Da91O4N_!i($K*H&9Mj zDl@k52eS^!B`T^(3g;B{Y|kzET#<$NaQ!JFZqjA{#k`ILfe&}|#ctalJ;LOaHN_)4 z8fl-oJmUgDMMsqBOXRY9U2`~{vqURSCOfaNbRDFH%g<$YeS48vT6t0Vp7ojg82$*I zRr6l_8ZcPq`rru-OS%$Q^3E?=KGw3&yEt8_5wMG{w<;+^90qHPc2VnTnX=?o+3pSj z>&1+K@Xg7$BaY5I$y{GEKKmJeUgpP&bwfX~-kK^H(+8f^wu+6!UbWq7-*JXMYvVU1 zHZGYquB%U3%t{FngcWRQ_9cJf_?e8>GuwkJJVcXZ&Fy-lB$v0Lr<3nSN!@A27WH>? z`uVdnF3Uy@)*9V04KpxTEUdpH*(!>tc2-)CFL9^ z=ebP@7{qSx}XiX2O``JFL2JY|5l-8)r<jiij)i<9;&|J%WoC@SBW(ZD~QbG@cT z6U3g!RZy4qGHa$uCP}Y1t|R|p$5{F%Q4qI$q1C7{9i0W0f}c{xl~}^rnP56(d`>g5 zB}$eox>s?j$Jo@z-7DgB()UnPXB9cAa(3ot{+jG2`2uymiIVF^|D|tdO`3R`L|H$d z2%8x1w=OX-!N=#N)u`@EMbW|rp?PtCyCeOusgQM18_+tle3z)K+^KsXhvSyFVnOn& z@OLh6X+O)yXRYVAWqz)-Q(k2aa4YEx`)zAkl6zuaU5i#=!}eX9usl)Zn`-@{cV2O$ zkSSyoCAO+4JGdzU(0s3Jv69vYFVyMIu_mR zan{73ab@lS{@-acrH}jO7!Gic7*L1&8%{{w#rLWo4w;PhUC9f9@1MB~>fR=?OJR zFl{jWqPz#l(R`7c{4n5ANnRB(UdbDR`S!as(Nbz!`?vlaeeGOb3i||S8^yi5qAF7~ zLwct ztUcS3Dmx_#sOarp#?`syMvPmzYDJ~XK3aFx`plefn=>z0?oduNS!61tTlAaOawKiy z+4Y9{7TYCDToMl^9`dDHU+JkS`Xq1`>?@qpYDK-vRk051CbxYkzaUB~-`us4T{Uyj z3ip+BBO7L(V=`(^XBqNiGftKJDRvvnxEB}>18KDh;M+fH_i8G}z4dWUxWseyUp=1R z?_9!7SuO}I*wB2Be3;8&*XY-`hgU?4uE=h6oG~tNQH0(}J|DHyJRPAT^7ekdb})TV#<(GG(GhP|5e^EjcVdwjxGBQ z5#KRXu~8IJ#%SAR@Yw0ia&q$3=qYn*O{^Oi=k|TeOx-47^>rJ_xStHR4ZUcnk=l!w zR7Vd9tYQ}&h?|kD50u#LRHce*Q zla|F+%)QS&*KCm&EU-wsB_8Z?F(~J%4ekwT8V021;!3%R;<&|U@v!I$LRsV&iNXFG6c6ipXR?k6sjj%}Gw@10r@cs1#dxT*6enfbIn%lpE=nUY_+ zvHK`13Z}w|S27{R?77j%YuX|C(PaTwIdaSwyeqRvC4vPB$$r8zEXy zY1h@s(f0#7-N?&nuEMf*}?ztCpzk*?C+KT7FNdyjJ8c$!ge5N}qJwKO^x) ze75&ni}22Eg{Hz$DNBln+B0btTr#UoLu!pLHx<`Z9PG*EQrzt##wD)`-{$g$HedcM z(~~dDJXZO6=$o;WbBXr2_i(jVbWqHyPtonMmG~+WwkN*xy#V(@{f{fcPQlV5ZR;B< z)zsW1P$zEPR=!Czsl2i?#Uy;DD!eH9Yedn^@5~D|aekeW|f8#pAz3@|w zop_l@QRAk0Gwy(oES^aG*Ux6Ws=u~mW@^9Cs)z)2N=mNABv8M#&9Qtz>G?8I`!wVA zF8e}zlfFg{xy>~?UUwlURM4Gqx}2prVf>S+A#=vSj@k?2pGDy{QkCu4#6@-SCz3WS zn=xUl;XtQa&fsrDjz7r^pi>fI~kI}jFhhon1z630_fluhM0d&}TMsbg4ve4z-tm~GxzVQATYk=u7q+CCNrrlK%zNA-gH=Oc8cL*e zaiY9@V9uzmb3>wgcr8I!ri|20f%g%?f~;I--5Kq9lWA-#vRBvaDi&Zo?VFsb`SxFy zr6kUX<<6gF?%nQGn4B`0#u9(*Rx+ZvKO54NDGl`!*V3_-xBDiTubyKW6_wPv{HkLU zv8-Z5=6!)>?msmVnyDt6*g0f+_vfn7qCByxA&}f-_k3wMZ+*Otw}-{p&OL==g%?r+ zN-8?Ev|^6h@PcYflTLcC^j*b~-oHmsJSrobliA@TrVmkeRuyCx@jquBu6nODV{POZ z(f;k7RMR1TFL~YoIoXMweszg&6H;3yu`|wQZ#iaPo~kv|C%>m3xZY zDuR2Ka%0@eR%}Y1x8kDfO**GKBI`H)i_E49jl#fq9Y;cY+GkdKT5?sgranw}!X|I= z*o4Z2zkO+A|Lr?gGB!0`SXtQ7@`&OKG|SiF-7MVT#P$`p0FQcl#`&( zYF3iwbFQ=A>N?vtS9}yz$@X`QHLjZeE@WZS`bZ1+6GoJJa&EX_ea2GR#DTMh3%UNx z*MnEsVTBqt}#f}&-TB?26v8eWe zd~(ZY-S;u&bFKtzTzYDj)@)=SxlEe-F-Ko&)O=7q$UMQCXV^ySR{ZEvb?g{SVO|+` z$koFm%4N>jnRHdxW4W)yALL_|ZR3^IUrco ziY+yWnod(NkFZ{G$BdA(!R8L^CVms&=xptjP+GRqDB zW)+!~8~@AT5nGjm{a$_N`#c7M6latPn&0$$$ujB}+B2Gt#$=EU#u?QZT`?@CCy`j1 z5kr#)`vwXI7Y|h^bJZ(!Q6vZIOB$JONB@H!!C1%4XMSZ2P(k-mGe&i0$aHA$&^BeR z>Y!$qu93Jwxk7tE_h7^`ZZQm*t&AIV1M1&|UX!eHRoW?gl>MrDwMbK^{Y%d$HB(N} z*3+}-6ox0zB$m=1QnnGJw8g4yWvwz3Btyfs{<=~6Im9KBC1nFOndVM^L6^|0>1vvY zq9-KUDe5w1k@CKZp*gI5se7WoMVujhBEJSi>>=tn+8)|}v}3dwsu_8n{*z{u`j%>z zI#N@rjn^L|j*+gAH-Qw-Z`5yK19O@=Esxqu@ga{UTC^^jK=llDmwKl5l&)6~IXQ9+ zMN4s@`cPe{3@Vu_r!1$qlkXG#y8YUdnq*DAMyRdQSrP%HljP@=-BkD^74ZlK(x zSW^7RPNYWt2i+s>Jneq%pteX?s{cSdCf$JNQ>hVPQ#IuPrI8#?ehZktW__P7M90$E z>OSd?>v@pxW{_*h7br8RCt*&$)GUfOaC-lo9hjWp{B*&3|CtoB#Bwr@4BwLdU0i#(4*x4(3hW>`` zlCDa(UOyhPDN{+8NM)oJQVpR0&O-jk7&0c$h^0iE{-A!0{<-c?U8ODr-~k^9Z&ER7 z0(lYHgKR*S0kiKcXqyIk!6ZPq{-z(PZ`YOUX6ohoWXJ*q1ETUF=>zEtWXRkgH;;UU za>$+k1qjH|#8>^lF!#lP0h$g-R5?ipctR=ZEo7YSAajR|xGx|Fxt?GU-}Sfkcl0%S z7s&S5!RVfnQUNJ>8gh3_Avdl7t{lY8jRcg^4Zz>ILMHJ&WWF~6mXSf`0>bwPpb3K@ zGf0Pw80w0+K{oRPWHF}^E<^-m99fX%{Yok&6_H**R@M=+?cIu9zpJK0c3R3A;Z=T`Dbrq11<7QigNfL9~R^&iNS3cynHAisA2J~lwE&j|8vsM*bgpj-!G2Df1K3`yD0>m$hdp%wrKGSkRe*ai7i4)p#LWHL(u)tv!0u_2X1Ztw`? z`Jluca6<-wW&Rn z0JI3AfubQpiCE)6Ky9u8TB#v-}`?n+3bTi7+E9!4h}i$sF*!TODdGTGZf{t%7(gvFgJ)bBMx)+>95x$fwH3T+ANXnljKcvCBgk4F10z8@{s(Ki z9Xu)(#%el@g2TBFJB-!%89c1rcD=VHWYQ&wXGG^pH14PFK_)DFCm3243?I z?AvEBvu?s3+W3QgCP0*_g`ecYzAS>>{skiFGw|AL5M^$|&r4vZP6y;sFw6xRu}lC@ zQUZ~t0Y--^G(X_kUxyKgX|PjSU{TbRcLxhFA93!^yQA{KFI?JF=9b z9dNYBL5;kfsH}ph>;Q=B`=MWCpy$F^o8j5DfLlSuDI7bh>Y1!B77IME)6w_Q-vQF&7mGQKi)azQeECusW!_ym>gH z?uA|I3p)=LS5Wa68Q+leA6p~CCl^*Ua(Lfg01pg--DCi^LVj6f|HPF;7EK+jC^CW~ z59oXtFJd;4J5mknlmQ-43Vw)ut;l7Hnx%*gLS&sU?AinvH%2)ThWO$M{>24^CE_L1hW!r_u4vO{KxrX2ax3(UeEt(*?M6Yb)v)?M!1kYE z6nL&6b0e~OR>2I~!RofK|B*@E0MKd$&x`~%TyI8MZ=pk~My_zKnhsL;|6 z*1-}+-vm$O!}Idt|A@%Vh9?&Qt|||HgDNPlfEPkFz0uHXEwua(evgdS$S>CjE1f?a zi@rlkTZli%Ry!3e-vPftm09FeN5xN6l_`UfV6Vt1Hwof<2=wa-<}M>IugkITMi>Hgb@hf=cu$i1@_BKh#9DjiOPx< z@X-maQ9Bd){19`9C|$%CVl@IHn6Y&=JP{R95Sfl_leqrKt%%4iCs+Y*h{Vfay^!q> zIf79k06Dbr{L>A4Kpniw3Va|6JaIA1Y!22@qasLBKY50xCx+Y zL=gB6vTtkPlMJK8vG>DRQR4|ULJ{SPXVpp=hX){rkWtnY#xe??fSjSoo{u_=sH8m? zBJnElZ#*rg!R-+>%n&n*sO(0tegn)7&vs-Ow}sKphdnbJyhaD>R|%_#cf@M&Gt}ur z_E(G?O1MR#cCs&gBK}$rzeBFr5?CcE^wjkK5ea#e>tOV#!ea$}8pHh#y`uo0kH~N- z>>k8oK8K$n&o^>5BC|UpA(8bE*+RcTuc#s04KqT$C{%pF$j<>U@Pnw}0P{xtG%7n3 zgU9B>zeUiuU>L2=hyBw-pnfxQAESCh1++lDD#WiNE);ol5%ru6{?h_JiwHZ^5HSMF zRD!>v9tPrUQFp8gS|W??D~QX*V3}FaFKWChho6u7CVbdks4swcSQ$J!A4ZKU<_@vg zAFSm9HXnj#;z?IF?7KAZc2ulDR@HoXJ~B1);70BR^P@wIsRoau!3rZ&KQhZBdpROL z5yiIx?79NtcL>}D%!bb{tg$nJ6`Tq7VZ*pk=}Q3>P@WK9kHSrNH$<-q-~p({j>t3u z(3q%shg|W9Up9sj`U1M|IQStCd;xD!y|7NmPmF4y$Zn52q6hqu1!wn4xH)Wqm^cq& zIkJ!sz@BM_eP<2dkAT~O2F6nf-=mhmI%vBRW{0{=*bbSydtiR8!#+L$U!e^c;C&%* z%EiHoIl-I;VEsOU4T@kc7~c^eju9Mhq$8nMRL8(rzyhyF>?ryZt^zXHBcDH_;49!6 zMzB+YAsWR)JQ@%4#dmWUk8LKB7CqX3kfk+q&Gjj(&P(#Z{5Vv!|ACNy^1y)1cGu}~fJd+@1c!DR+fCx|svqEh( z#D-UbcVXon>Z74X6ccu;6L%ntS85

ki!&X{3JL#qK8ie#IlozD-)6V z8e5J9FSUU6$C@2Om`y17OCs17{lE&m9vS58pcf0UBi`5Tp|u%|&;@=U4Yvra>Os^$ z8^(*Qxj!KC;L6Mb-=x7$QB%zfMi~Wn-FR59@$j=|SQo67Xo5J&0slsZ=#kKx1f!V@ zEtbHJ@rAFD-L(kr!q35DP~Q|Q9Wd4-e?2M|kYQg>gHcX~`PRVfUjY`i7~^>+sER67+yIYC`Y>ygOoj6xMeP0_Ga^PH=CcVh!$moKXd|c>&(?0z9z{ zEQ%)A|z!t577E4I&A?S3u=utiwZw^$GAK z7Oa*Ob~bvo7Vg5Rcw_=UL%vuoj2D@LQOOw9Cs2_M^#M@ZRtI~w5}tg7M37h07BC($ z&e0C)Un{zL#&_NCI@KpsjwQb|;+T0_GA*^Hi3TD17Yb?L-2Qh%etIX`Wx5^d=b`p) zUi-rKPu(`k9kkXF4mNM>@7bLgEifFVT+-guSk|oVPFLqrvZ=kg_`$Ny^42?TnLR(W zUMBa)B~Qz6`FrXpt32wQp0N5K@(uOnT{`s&_&eT~p^EN?_Qf6NdakLmn6Xx;91hM> zxZaw0)1*-GrLnE@VpUqxiT-lkbJ9N=zy7F>J*|h^Bm1k#^pPK?sN7pU;+&>ivWcSB z#Hx+uM2%b5P0blf9ucVU=$PEp+Bl|TmFhg}-~>PS4+}!(B-kkp4|VrfotFAlOln@F zxI?~7HPasN8EU#xCvS-E7Lt9e_PTCf^xWso%&C?GDx zoc-Q8-eyi~-dV!PGcM-Vy;sa)hzwPvq28`~!%AV5ck5(5bIgG`uFIca%@-Y=AO;0psR%<=;!m1+=`kb@bsR}OF=X7VDC|=NzF5>Qr1+tx$|#>)~V_KjF`gEzubOfx3zGJ=o#FcYT4*M55^gjIgAmC^^Nz+y=1id zgUXc_%jR4SCt_5v@He!s6&JHdrYj3ZHMnajtg|doJ?^|FPnJr`L))C`p7vM#d}2RF ztnvIYqNcsHs54pnsiRms*lU4BQz}mrUzWx+g^pnqo(m2xMz1D?&KBXtpic`tOl(u!0NKT${gf_C(zkHs^wmhiQ zh;_l`L5Kry$%>kp>kP~5__>3?mUOM6eDGf*H|}o6)&YI(M#&!WuG)`k(%6QDzs5dF z5c=iY{GoU#o|%3iWqILHlQXHAZDMjtAKkvPf+x}fKWd4AhttvEWZsuZpV=9#4UO{e zpM*pPN0!xp(=dl?Ww2U7Zg?X-C?2YQJM`KrVg8et0G?66?Md~jBhrKE9>P0$qZ^j! zpRsqdKaq}isw#6tGs>J=!x#@7(gOo|Y0=L-9l6ELy1Z?|nDhq{UT>hmEK`Z$W95s+ zS!H9z0(sV8u*J~ah-fh{GN{h}ftDtl3MB}8z8|TRXh*Sg*=NW*x^`AQ6-|&@HNT|F z?4K>GO2hN%GGdabvrrP#Akk^TpNoF;&$^LfL{@)T;#z%X9vgqsFP&6ea zDpg!^s*}oyHkB9$Xd0Sl$mWR-RV4S^=H|G4U9mpNHtd_T12wYhROT0cRhGD_Q~8Cp zj$1)9>uanYBR(tksAuYnY)39>NT^PDxcK)mnw~|)w^KY)mi^e%c7Phlb!CNW)h&-@ zPfM$1?>i$+s%FH7dn7AX{5ONdoL}Rg%@wFJ<0|hAC9)h%moskmJJ-@B=fq}pWUbTq z_deA6K$FMJeDGiko+l|K_}BJ=d*jTV4LN)KC`Ik#D@v)j2FAxj%A} zdxp`^^<#2>5@cqmWwwJ)jIy~ZM#?}>?Z09hQB`%UYMb>K@1=2Lcw3i>Z6g%Z0sZn; zKrXn}luaUYz1Yu)1s$I%*rH#{%-Zt|#m-kken~EkR(QmiWH)%_zTjJ>i>1r@qYOQ` z8b<0sdhHDH>e6F!`=MT|^$Tp{o+bGQTH9?=J(s*mD-*Qm5e@OgB~BXqZ&FkzuhLX> zN!rok$PAozEBIcLYs_z+L7YuZ{@+jXZ>L@r&*+UZ$mc#Y5Gm^F8zpukPx%anpL28K!6Pg}I;WF6;8x42~*K#!=0oy^6gVXC>-7k72 z7S?Yj*pn9d_b2X7nBud^sw#L^qad%>-?;Y#Q zy~)LaDQ|?rB1&5@^(?oW6$)=TcaCdbg2MB@hHErs1<9I$*@dmsczpdkU4*XQ=oO(jIwJ@~BgR+I&0%)lj z?X-&4QX^SMJKcD;OGxPG02Aa%24 zS`MH8y|I3SK9jwW9YC4|=oc$dq|~QnGGn7-V6b_zP3)1m4qQdkh41(HuTx)(m-Ie1 zxNOQd>>R2CWY=y{w7h+=-GbuvYs||ea&VUYea&5IOxhB@dv1Gei`Iudz`jks(Dke; zPqbRPtvQ~ip7J^1HE(3xuK7&!Lv5;jv0z)Ox9Cu}2Xmt7Mk7B}Ow-A-Rib;9ZGA_~ zJLlYsDoL6a66d&)xLH0oL&D#hv#I8w=CR2?oDk}tJ(H`G#WIPwaS|nG^44XhN!|$> z?^hPIPG;dvfkjGP@#79P&76D4$X0FAe6~zddc7jDck77O*-s-MC#QwAIkTzjs!nHq z;3sDH%YD=bOai%0)DJysd8a5x{Gwi`A2)He-`|NL3Bf*3tT^5Gi#&uUg*$$XYxk#J z<2tgYYqMLjWD`a8<@McnxtHBHMZR6xw&J|&Z}bXzPv&AiKhvvn%h0dJdpI*_cX|cY zbg^7iQTs_NwmIT^If0t^n{SY{u$NL|k$OHQ?8l8ZJypal06yLAt&_^B=%; z&h!fROb(A&G&7XxUz451|JI$(D*tovxKSzR2K{({NNt69hWOXo-!*aL4=iRRE==n1 z_qM4XI9)nFb&jyA;A8VsGQnY)Jkasl{w#l8`lBqjoiO6Ld=33I`Eb-T_a>vI^`$v# zzD>q*nPz}tywUV2@aaCRJ0qcsqiUj63#~VMyT(sW+O_Q02~ZFu+5%oUJO97N4#I=; z#>952-S*g^$;m4uJ^5?QT2Bevp=sTBKLI1%P5Mh;mBDGQfx&Xco%&RX zu2fM~Ke*1a!E0RX&ZHLLkjzm(lTJ$43rh2-jV}p9?w=e-azLk1Wol`nG^RyNzv3_< z$UaFClQZ`YcXxBy_iFyj)CJ;`J=d95Tu*~`1+}4ELI*xw!9dBV)AO2Qt|hxI_nCS? zw?~$mK3VV}cR`(lZX;X9-a_8lWmfgIR4iWA7)D95Ck4Fcor;^Z;E?&Zwgm+-!sgT{ zU^1P|3^Dx#9Fh;4=9Y;{H5GP!SIlhZY>f&_9u?{{Z5D}M!OfuX4YNm7pHkbI*mM4c zThTbVx9F&NLc=`Zkn~*oh_^Fg<05ymxSIdS~EWJ0;r~{AE&k!Jwt_NA3}Z$-rN=1`;Rn zzS?z~ljGuiMkJK+VwO7D)(uV(ZA%Ri+7!-fsUsV6SDQHMtJ<2%4MjBB?e=X(71M8o zo=NVF%AV~DwH%9cO$0;fF0!D348z@AN9Iq1Cg3k3(O@-G)i=h@yESfd(&T{uCXP|w z5VO;Y1T*q4HGU*QIdj;bh<(5LLx7^6PD$t}hh!owf%*|Yu;pd^R4O69Er4CgK z1}2U=H@7odlSEtYKGjKATV|Jjg0INAQOnovWAEYEP=0i6uG%ZAl3ZUgQA2>CX`tDV7k?62wTjN3UNxLaaoq6x#&w8J?xYbz?e7b2Vu_Zp8 zpXo(hnNg8yPE)_Mqtu}Cb?@8}?`CtNoK`LkpF5qPSX8-X?%<2EoaN!F%dE$oi_{+w z3tx-wir>}GAby|d<}cy3CQ29QjLzzAFS;lsgq=S=wx6WsaA~Z)n!4s!Wr?Nx%6E2; z=E~hZMEI_xMZ9(Oq8G_GX4Ua4GdYz>Ll=!}I0BkUUvIT5+zZFmo9OFo_be$-Jjg3q zvUaRZUu^ML;TeHr;mejFNsgEB}3PhY^>XOOFF4Q=!;e99}z1b7S0NpQ8yTNuBnF5xD{MqwGPjN(<9}VO!v0Inh$7r&MtOC8*&IGE{XF1NuNeApix}tNeMFbI zPgGRXtSYm9>%BGpM^bdaorzgPtHicxGQnT@(#B`RCQdjzi#X6>Qn_1ntL$1^wZSc? zf0i31yT?#Heb|YOzvb@bN2EQMjO}}2P{KW7P^Vbh5F?d~{Hqg(WLDD`xW;cKT3a#y?{NNWY_ts^0BBx`d>>l!_`q0q)qx5n>Fvb=}#>O@+<|P zQ`h_-OXmR}W%2a!E4lRKLINQq^biQWhfaXdd#@n{Q7JZxpn~!TQL%uiC>AUzf(VMJ zC;~|cX^_xD?$Uejy%+Aj4{B}m4U++T(jnxh=?Mq6!rR#Oo zIc_bk#7CXA;dt26rJwm!CfYxC zQBCMKo7M*wbPcL{?}2mF^yqad(`r}S#<{)k_%X4fL(ZQWZjsNs%3Hl{CY4ff*+j<^tIGlX-c5~GCk8&$MQoq$@hU>HD!ph}Y4*H_Zp|yit z%12kPa0olO`udo1+iv;w@w+3=#ct00xMhoDht{CUZ)z^MklH16YoQKZcz#yfrYj-q z=D*oDpryaADf;uM@&_Z!zE^bBCOQY0k5r{+73y|otgJfj;5DLoX=h01n!5obov#%4 zPi&989{V?;439hZ?~-8mVN0)~fV3<6i~0Yx|Lkp?9=GAmkh=>Ok(Xm~>bX0HNSFJ5 zB_Wmu*S}nzv23cIoc%YhP107D_DZ@KIXY%sT4-a6{b9GM z_W!ol7TKlk)%}$FdFy{(+ouiQa3b{8#m5E)88)U*j2(FU`TPGASDUA6yK9#yo6&`{ zbO+L2DSw~|9`euP>?I>wUtnE?YNbhuJQ(HbxQI^PYXdb;BN)64#lkckA}#dg=S8?Jd=*ULN%6!p))A zHzfupb$h=0#KUi+CPt4+aj8|=9&&rpvAttS*_Mov`Vl$hjkz9$6C2iE3;SaEbHi>a z(z7yRmqgUXFUbw=80vh>HA%Igeo)>gddIZ)N`@#;`K?&6In;mi0(L}hP zVodAv+3aw<#5 z=Uay9wnRroX5K$hnx*(pd(q{tc}3OqtRA`qR?PeWk>doX-V~Id|=wjT1BRFu?+r`X7%*+O`>KjJ?)QnD5f$`!Pi0s2jxP7R7;Q(ky;>fdH>F@&-3|Ky z|BhL&E!iJr^8ekoq_p$#!G!Ti!I^K?dMai+9&<|895W^~zE~YvJIwH++xS8213sB> zZ^)CbkBz6xM`bnZ3)0gI=hv?=?zPd|9kMM^x)}d%&otQB?(cf4-<5&S_M6`Iy85T) z){4Q!^@SBBuGRV`XJfX?-}YC{Dpj5NYs)T8rR$eoV|sP;809uzy`$}XU2auJ<*MqJ z>aI6kZGYD^SXrxbRR5>?RjsyL>um0l+^xN9fY?o2InvYqRaNH4RW?sMg!OZS%ZMz0K>km+g-_ z7C9!^kF|N#JhwyJYHXg=GOqPPTX@HBhA++kQ{GlzvH8j-(q^0Hr0w5!f7p#B(OtCJ z-SBbyp|)?@CbrKe^6PlxA+w+IBXvJbnt`Y;S9OzI}3s zTc^U%Xb3ieUsFD>jHrH5o zDNU+Cn?afcjhn5%ZHy+w#$V-YsWXsxtUbBCykoZ^-dJujnN`H8n4zjvg{X_vyKP!* zJT!Z4;#Izi6()DX!;YUj-s@~NY&4xUgC|yF{_6DuBL^*{>uAlJq zEySkX4+wmWa;IXKWsP~i>9O%e;|1efQ@bh7e9{uC2vVw5r&W6R`l70fYLBuC-_XaF z^X4qmDpOC>GE;`>J@Ytx7Jn<&D~pvYRPTd_9i&QEz6s9t9sG^S=4{g}lO2B*rti(m z@#4I$uvZ>drYJqBuS|JUxlcJ<8IQN>8Ozt^3e)Svlf7$tgV?<7mai4vl)EXBr7Tj$ zDi0|qEA5nb@nT6d*|*HCrt_v7ritbf^B0y0ASwGOS1NZZcYv^UR{o1G_Xu9nI{bG= z^FAWP4l$nqk9yzoJaH`-D|acwDH}v=+Hw#(JMgJ%6j31MbmlkBOUL|Yd zMQqYZmadk`_%j7jx)qGvYxKDb-m@FvR6oZX_XMA_hE`t&H@n0#pNK&b_?|}NH+&ht zRUbTTF?j8+;0?0}EAbL_48j}tA2n~qPnyBKk|A6$ZTZ$Z&){Jz2I;m7EbnXJMso3@ z{?8gevy3Q@TcPE2=-7&vR4^tsc$ANVvHYEu`BU!~U;w`X6I+P4Px2bu;Y%#VKUU25 z5PDfaMB*plEXUBUBrtP-(Rx8iO58{@9=Ce@e_ioq9smnl2GaHzKDt_Z^dr5!MQdB| z;|Y?lmgkqy_L*Q8Zz^gP9Yl%!idvJw&Ypp;$#B7*c8Xuygl|r=Q%(a976JCT5I%0B zU4L0U#22AY9i=71ub{HJ;=@}+-~RxAU8=YZUceg(I}BYv096!+w^K4>O3X3AUv$Oi z`ySZU|A;*MCSLebyxFfJV_)K#F5<}@c&RJ#{pH|??GHyHz&^(#k@N8yo&gWL6{P78 zc)zdW*-WE{5}zsxs?I}#{!&~7ue}vH`v@r*M17aHB)Pul^5C3gWDQw)~5KGaH}&Wa4rC3{_`Am;b<__O`fyhz+34cky^T zK`{q>r4s+p3AuQgI`@N?sE4XS$f4TeNK0PAvoC&H!P^zmvoa8;FVWt&q17n7sc$2% z4%9o=@-k1A_^6V7b_~9G$t61y|M#mPho-}uTcEv{(zAioz5@#Mq||!G%mhje1X;BP zKAeQEf&zKKcwI&;*{$^OHoo#8^w|y&3KOVPjZ80ur@KIMj^$e%yjlx7JPcX93pMA0 zcsNY^)=}>;{uZK(=2L?|p6VDh%{$QQ1eC9!C%fS12~e){sks}t28sG77$Y0T$7Q78 zFr)4w{q~_%uTt_1HLpf`Rd|ghHq}!6@9L$v9yPWZG zkA)XgkuAwZ{s;8^3NO4waqA5Q_QR#!lwHdB6$F$I{{^isn90k?)@RiIH@qDRO65KN zp5>n2w9t%1w(zue>in0!zhe22F&2+T?ghs;F?Ki6>cLQ`5$UahgH_Nn0!g?GV&g3G z^q8v?;lQitxMwLl0spqdZZ1aG-Pz$pEHk4ZPhBcV|NXE|fJe zj@qn}T#IBT(;CU+-U5z5B4tj%J3kSGgJi)K9b%@mAo5zMO|T?SplTy!$09A8q3I+j zAZ@in0^50NJg;bID=}qDDCnQN@ak45$vo)IJ^VLB)*)S4zTB`3*h}4xZ4}8D44Gjevw?)f@UbRax9gn zw}IA}M&CEnw;|9}@RWCX;$3GfFo_-7{*)AJxHX>4(j+9e1_!Sjz;S} zq;A2VNt8n+$dW*)x(?kgF@lvul9q^PkI?G5d=mVeAdv)#r?MizR?xE`c-98iLn02} zrY1o+iarq>s^GjF7?)$f$Ar$u|Y#%??QtjM6;# zHHH!3gj}c6-b9`**g8S8N}RK&xv>4{(>&@Pj`r(r<-ucS3W;DWdC=SGo1oZJpqMQh zr7u!Fns#eIdgt+cp^&sy5QS2E8}$p;S&3|qgi-;}RWefNTjewc+CHH^!Oh5BVpm9x zW?!quoCM!g@V0~!kC2gAXe4NJLAazsiFE1~EaW_7p+Eh~qr^=(EB(sm*@DVW;)+Bs zOrs5cJbfZ4BZ>T+2~`DQE;3MH)%s1=IY{!O7bEi$Lvj{9>jlOr%gR~7ZwsDE2M1bd zM>;gFV087QSId!E!HYRyUlj6tIwM+%Hg3eu5)8bc(CvBpI&|t*s~(csLy)4)jIKdY zdI+@igpZO_U1C44Kx@7O-g_ghn8sM|58Z}RQV_0=yxfogiOfCFs<+?3UfE(rIgX?b z2WGhL@LTfU3tqmB-j{-@8bgUa=)#T62U~ci2V7I~C(+a;O1q3JHEnW6wkI)DY-65T z#&0rr*;8jFy$}Sg8!a~>W$DnO09p)WMp;SEmeIm~)KbV;ErW^@W3vWIW%D@&=@3+t zkBj*cA#EQJ)U$P$KyKMTx)QNQCwE z4>b!edmycn*ujFO6qM`VjPFEV5zOxQnGw$OCkX61?47Z^B=T?v&yjenXPJNgw6;P| zZGRKd@H?bNZ?zi4g6Ikdljvy#Wh24YU7&tBpODTqiCJCG^Ls$;iHwC2v_m5AMu9NA zg*;~>vro`Re}Tz5ha{GR*ORj=zVNsO*^}||kf%jKr6ztYfJ(_cNpQN&#BvQ_R-MIr zZ|o)+Ux}0~!J4rL6DCnuA49ux=EGr(+BIn7C5&7_8cHncR@$cJljKSlmRkB#V-u8&hfej3(FUvT zl4!XygViwqj^)X6_Q#F(*IBRYp-qxi$L3H*qHPPFza6UhLIKG-?}g0s$rx&s zOz@(;uVa}$;yEU4vq{W~6Oelg^p+^f*D0S)ErMg1Q=iD3^w=9ZE0816Wo5{~U?{o;-MyLlqc5W= z8@?vc$`*2WjDW&w#)ibBwnGyN!g3F*m-XCbpvRA(Ya+CfxU&+$U68gC$J7RX?nZCy zgAWTB5p|UPo3`a5Ij-E>o4KHd&w{uY%T>^`Yp8oHQMp`T5k*L@Tc$&3C9-Rt1f;L{ICZ>1i=zR#5C?=#iY+JjY4Q&p3g10eYoTu922s zg(h+EqJ}p4(Mr+AwNT{(aYTxv}r=*V<2#vhSI%bw4 z-=g{J=&hXUQ86y%M2w7{0aghJ$0~S^b6~sCo#W9UGINU@_n_Pyu1#Y^3U1z)PjeZy zd*SQ^u1NG=iIx0-db`sDIYl=Nt>Q`FeW-aJd|l7`)6-Id$d7|c3hwL0C>G6E#{C7f zOz^xCg}5&=l+T!vD7n$rao~l-0!+aQ%%}fiH;dlyfxMM4f}&WJ-n43C$t=)=@oqw5 z8lgxTBh!zk^oBAcX^Z3|kWpR4do6RjL=X<3rGoO671An3%VK1v7n(pU+#2dJuoCs> z-XXN00bba^ovz5BSX;{(xn7JViN!8BegY&wpONUQp4R!S9a$O96Xax>oPQFFPbd(D z+ zT!Ud>#ryFNi8!B#9o0}i1$~?9VXdR&+am`ofcFpi(Wp@7KyaQ#a zP0P%ymCqZOHh0#fR_Sa0Z8~q>=sLIW&XKX>77u^UXOYdyx;F||WWSq#scKMrIj3W{ zwg=YVt&FHhsF~ZIWB+>3+7W#wy*~b1zZtHo){(^rvSw#@mYAAevV5s}&8TRcToGDw zplm^Xz2$#h7Y!+#d~o`wV{CnfS<=dW%X~Kdo4g4%uNzjWdnli48(w|1_;#Up`Hhx| zj`RATndmk9!1T`tuW;7Xugc!3o0FbbyrAWKm0q*mtZxV|{V#uGp{jbDxz00t)Y{o` z^In~J$!EM_O+o#WiOF-brdEGqI&4>FGqPiOm3P6h+^xj}oAx^{85kd!wzznXa=4?@ z@T!~o0S{u6`xpGseAH%}!wuyJO}9$!<>+$9&*X@<(InTeh8catMZ?M#J^+Z?Z( zE>&me`e#Ju%&lp)9Xd!kclElw71{~s+=8kCle6M_-n*AEwqcy6m&-KU{;i8k=4Aem z?pQdeZFe{42?ZaPE_)F1IL#WeP=hqZp)vn3wo<2P5OvM!S z$^mt=-8b}IJ7B6;x8|DHk{e>;;#8^M)@n72wI4fZI}VjD&*+&tH}`|arCk<``)tK; z!7nYHH0-SEo7}B;??*c&^)I;Hne2QKvqv2?;jWgfcm>WEK?t(rav{dM9V|GRx9{E;` zP?@y@T#`)dD?iNauKO&*ST)QscEl^oW`x$Q=@*dZWG>bxeti3%cthsKmKPi^xV77! zX|^HK;9t7?dA-^Xd-n;9+ORI<;({5zy7ozFOJXNSk9hcb=_JJ&?ReJ{mIc)nSyS;& zPprITS2%RWlCqF{>)xI;PP@9y_x`rqPhvgNcQl@{zf8=ooYtlyBbkgh<-XC9<#}jI z?YfDfZ!Nw#@DIby^p|35qDqsd6(2TF)rM#=e!MGY(bep-OE3FVNFQQ2KQ<4 z?lBcE4^BsYbH_*jb)B>G_AdF+}veQji@-?D>423blnYhoiJ zXWvWB|I#qfb(LF^`q%o>T(fRx>WY&7%AS7b=N}4b+mt?|%Co-u&4&l0>Ta)ol33kO z6XSN!DWP+7SxkCm%KEI6Vu+7X21T~bB1oN3(g9v^8UC!=kbEuKDQS?UR>EP^YBn!6irVvVVfkHR0!BFhV47YzIrE1URmRBbgHDe|DObJ}-f!KCfMmy| zMVWVpM@Ge}GW|hzeeX8iZb-}0Lf6#&x*qvEIu7;xWM=cGZ$f`wpz436^)ub|=$=u1 z9(-OJrr4$Z)+N*YN7bUNYbm4C!zz0_d@y3|@@3%<*Y}Lu+F6Rcd755kwn7r|sut|$2_`TL~EOqCdmm)_dX^LMlKXQHD^^xMw z8eR5w-A`$sl~1-^KGb1pM%ddMmro7s(x-e)(tyb9=$G|(>znPqbZfG|+;*<`nY2({ zL{5HlvghilTQ_tG|9$EA{x^(2r;mzhkGOO%piphv z;;^s>n~c*(bsb;1?f&XWP4rJGS8Knv-RpMM;cojCZb& zTjf7xsC7SOuBuDXzBqo`nzZm&SBH*Xpi$=i7w;drF#f~rTW$GH-fqJ+KQz8WWXikx zs=}=%_kIV+%lf~N+&Ni2Z5mG{kGmZZRrJuk;%ilbwx4sWv9;pE%wU~EW)ksHFO6BY z>cemw;-hY~4=X55P(_x+zMlDC%Mr(awQp(WH<|K3)7$C&3V!YM?p-zO^a|E7tuS@RwtBp(&yH zmR-z%^dFjzI}CLD+xClQLqWd&C0%6RjrJm+jv4WrhK40BobP+2tyy60p5z9@Ne?_xyQo!3&+8ur_7anst* zYkjY%BJ~iFDNnbWy*`=VuyJ_!?j>Iie5ccrYIA34MD{&>;lHN0UFW%ep?H<3&ZBg* z(*~5^*Wfr>q7K(>ygl{fE(^=wNtzOQDmq@*t^QlPD`2p$wM7?iN*k{`mUFc^-t*b1 zUv1bI9=a@iu!HGbx;kcCM9SS)3yv7OyZUL(%BhDBSFGv~)9 z5g+xRypqm$T+Wg~)mZmpZkaAVHMhh^_3glo3&(^l-2B~4-|mss9uLn&c0@%ae_1_B z^Oak7r{kRq%gWQkb=vIj8m_ueofxq0#Vz|*Z5nB#HfH3Mo`#k3a?Qole z4cU3$>&K?{DBf(@>U(qEoY3DwvS#Oa$JP}*S{U_4)PTolE7Q~`+*UddH(oA}${4Nt zHPf%|xOV0E7uGD@;w_Uj9dCxk^zi>=KV*)jtuyr}u6X-z?)zQ4YEK}zQfz1Ib~Y<@HJ#Qd-NZfz+^ zSrV;}9QPov^gD&E_ObH-vv1Xbti!qy8Rx66J1!h`XT^>1ZtL?Vyytwn`2BmABO34g zkyZ+R`Ih#kZU2^p!c(dL>VC-!Z(rcEYsRTf!C}uW@*Qxby-;t6o)-COQc>|H%WPr- z##&BQkH}uC)23gl@U=fVyk*&gaOK8Fpy-#CdL%B2_%pf!{BozAS({+z)w;3h>(oY~ z^#0H~zQ-@qQ#aO!ZC>(lU`gk>w8A^xBiAH$7Jg##a~h>gavCV|8V=E!wy3gWGl!r8hC9DciHz-t(6!?i-ec|F_I} z$OF^Xj2$tDBg*bBDHv+3by=VdR*k7E%K23HMe2Z3gQ|AWn~Pov+ZtRMIINqZD*wKH zuC$&h`?3rTzj%B)$#MOY@LyLv8n#_AJ?lX1j}aXSxAN|F zzUcC|Hc;(YzbN;h&ZN&T?yF4l`(eSA(8-$z&T{fPR&(uPzo@CVbCQ3oo~$|IcHhyV z^T*Pq>7S-JW}T}4yvx1`HEVZodAzE6};<4ILhZBBv&{M#_J+>*XKWkBYqwF<54 z_?OpwvgPWUv@vUKx8&`KUlDOA&OQ6%HaF)JZW)>>P3QAx=XL?xiUPj!LUFid>M>r1}6Ta$`Ef?1nk3ZpX zso+3@irC`G89%j5b?OT8BcypjL3e#gN@HGahp|_5(8Q4C;Tsly)bDu9D=9~A7e#z? zzh~KQf6qd(57cxbAv*#ESM|=M??3ddK=l1SYiQ=6C$y zJX*h?9Q$v>i2cOv%2{h8I!y2UA5tJIuoT$R64KTf}>uz@JOZ_Lq#3<}Me8`9s$A`HXJ3<{VtHmw%Bc*$np@63V_a70!v9(8JKo#jWWlcqMFpqybk~AAoyy)dvxZpYeGE09|T+)WQ zgqZtPX~AGcr;n=Y<+x#F_VO9wgV(oCnC~-(gh=nmj(ib&NcW`%mXj|31kWA@2 zbw`L;{<6=vGYU4Phczz>8*s2aM&JF;SCOV9-;!Pyz3W#l4wgGrZ)f@IR;8ONg6z)> z&s%mf+;*d3@^{)FN}o*}9C`OnYwEbhMY$~x$3sxdUypoZSo1< zvEqn&6pPE?p%?W zG(K{Fbe679{W`nNZcprYx4m8*mbO&4GiO`#N>7`q>o;r+e`Q(J-~!V-83{2{B9GpS zEcnzo*wsy|QMuOD5AYkk!(*XQN7 zaIS4m$u?!3-<<{DpbPzGX}ylu?0IO2tcn_voLjZT=1c7|$LXD8%ATYLkSSf$@J^TX zfao>;;fX5;k6fz$KF1VSjucMMSE@O`RX>d?Y341e_AALP6_D%57d{l0-MJ5&C=y@qpb4@$2qLbO@Vk4&FddS%_! z>s>6%x2LmzQ@~gb(^CDB0G{+aF%1EHpyj@<<~0jtjj5NX{8m@?UxVVw5%#@*apqy ze_cIFS0)BUX5Xnu?cMmT{Z2O<`)#cki!7=C>B_JR-}icf6Gi6GKNhbYc)Rn@3j z$mbFt6^=1AyV$#4Rn*sP%^9ihmi|onUX5<>?#24hUK`(^s_*i+T*JAxzoL)mUahMI zIeN9zFJy5F;3 zCEG{V#K&vThFx0z$}pmQW}lAxCo=Eumi%W7T33I!`)d1!kMn-f*QCBxVy`S2FnGRm zh<)&PGkv^lYhQd67d7v8Q1YXy*KH=a`8lP5iZ-S9&@IneRj+gF9uT}{ZTRk0dqySN zbmpoOjz_vD+{k&jXUzw^Z}`7ix!x3`#qWS+UCuh*Uw(=bFn_{agW=7 zM_qVysUlhxuk~<#$9S~jv&=%BcUFGwVb?Flo>?_7+GXRChXc9UZaaR#^L*@^Kp-N()*N&PGg(J(H2p+~Sa?9c4R?b;N#d?AsUEr`xffc;_6V8&{zlvI7nU3v7}lvv?S3adqV3)X zg}YhJo^;hIUaHxhotqMzw!eIV?fRj{CGUo3Y|>1Rbk8jRDak!@dGsr~hjl-3uFcLd zqWxk?TiO6!?;PLeex47fys*I>{`~TsA>WvUUt|PVT?3`Kg??iNq+m|`IrQUH`*ZbP-s$Uv&OH%XON zS4EX&>9qsemRd$@g6+;|&M4~lP9X>M6uf3$XfU3f!w)5X@oo!!l0N`Lj& z>YHl4%_+MIr(n13?xWnEaagYy)&6heU-jM%UpKZl=e8{~RGEKLI;o!py}8%ssO?^d z7o7cFTb$R}?^XtMrZqp`7}ofA(~XwC?GHP(<|WF{i2GV( zBikC={5rnw{J_{^KBX*D&(~NqTWtTc9bh-XZntfJn`4UKjN3Z?YI~!tYx~TO-JKsA z9vOqo_SQQg+3eL%;XogWz17z0g{%->sHQT9_G zwRuA`fm+Yl-qWP0Zz-NJz1sPCd%yOZ?X?{n4cCoc=3vVQihAX6b(?y>%`Z05Hg{~E zwVB1<^lRoA!|9H*?O(UQ#^Hrn<1TZS#YH(;HB=p~wzU~<6KLaS^9Wq(Ze^Io)6~sy zqhoW2Q|DB}abs`uBTImCsj45y*%_3GQ~jg5u3Dj5pv5cl<@%3t+8D9+z3W6jr%Ck+D)VFo*6z0upem}s&)l)F`f)!(TP zs4c2(s^37)Zd7cu>@lA<VE_e(<;nMD6?$EZWAb6tp6ZZEN1yDNQ^X&~FCQ{NT5@LzyA3$e7CPnv^>JUh_*syWTP0iU22 zB+G~34&T7f>8XeWZMO!5;6n1PkG7c1x6GfLBg{%77>>rXc204f*qXukh??*bZX>?v z|ETvXqVK!_uCUyE&unYO0CvOA8jLq?Ek37*co_GA!##wLDGz^EF@DKy&|)}k{~DiY z0A*L;?eB(f>kfX)y_6P=WHx{Qfb1Jb$*uS)>p_2Qz-xDq(%#?#uF|Hnc=)G-1{36~ z0&L%V)_c>52)T&YXnc~6;Ew*G+~@d~>MT=<1r>x3Kb0r%Au{PzJY?g*lkLTKI0R2^ zAzrY@cxwBC*7%g(zKcK0PH_XQ-go%tlJLMw3>@+9-J(D5bFIuW3uMVxaOEw$VRyj` z9z~`kMvyZ-QiDrK#TzbBww&-Ho~6#y@Wfkjh3Kdni#zDXWtQ#4N|oH7$DrLF@RmpM zkg4%l9s%FD5;UQkQ+tBr2ynv%Yq5J^O^j&;ru|!7g0m9N5 z%<*RGdV^NJYzYQ+`U!3Au#5pIa0&_rfdo1XCU~@EA}Grj=}jdynegJ>1+|e3rAFeN z3kP2_1uyxRL|k>W)S0_jrqk;0`28{MxQ~zcCjMO&9@_JuO!tGua3tpGarpWy^u9q| zmG}>9@es$ts~_N%BQ%m&M1lAxuOJh{Ed7XMx*bgBpU_nDreCA}U+A3;KF61#>M0O5 zD#fQ{y9}hQp>X&Leocv2_#30-BuK`aP<9nOJV4)EiO;$RBxF=ChrB~Tj6i5zI_z#lcg?IE7VxYc)=d&FQ+ydI_ zX&DUFj!~n;CT^f#7wA_k-u)3!VHN(^VtyTDNi|<&)D)YYz?ojBRyERDOEO>&g9@ zOD~?mgZ?bzHVD7$GVmA67%?G?u2IOn;LLvE*^*862Hx&DNdC9T^!tp+AnKn_zkC(< z83Wrb&x2t868T#|OZ$V&cpJ^8QZ84nQ9gp6gTc$ZhVOo#rP^F-E+oSB0`md$U2_jw z;f!Z`6Qi$A(O0R1SDQdOCvz5HD;h5nef5!L3|g$&yaVctpa&8~&X$qh6RM3uN3Dhe z!_gF@7`a^-6N~YFd%&A_kUTpyoJ7bRjGp@g+=|4bJ_4PTP+%3v`$K3uC&t%YXnG1s zTT1lh9r&X|h+=(Cd7Ho2lpB;wltY!a%4|iZVjyQ3-dDb%4C6e(DX3qFY&OtJwdG^; zG4nQaAbM79ZZa87_U4i1J?2y98|J=@Q9nzrIno?!zG)68w)X&Lg||%ZCI{0CrZb$s zC^udSobkPua7$k_kJ;?S=ySK!qqEPMk5Xd1c?P}r zMl;^9yak^8D0=!Pm;i|(nt;c@5$!n@1Xm3G^FTUAff@Znv0Z7W3RSIFgA4PxFVqFYF zT0E3~%1KIpPMvfRz5H#YvV|GxPo6adnH0>mE$u9aCjWulTEo2`LBTK4?4O{67Bjjt z&?H~+%$Lv^Tbapc5Wl^gr#hpT=2}PPUdueRe3=ht*K#H@L544y#7TZRh$2(CHz% zLn17aybDbtNSGd=+!KgUUdaiDLvV37c7!{$_Cdc0R(T&5&Q+qy|IIHibIv1;u{1hMcq*a2x>5KlD#n@d2rY=n}MY&!X3|A*BM`6pD6|IUKWaD@6=if8m z{D_VSLn0?LPwipUuSK(WG8?(TxBKY(FVS=D7Rd`g8I;XwG`M7AuY=;9Xb!=*k}m)b zm!p-{jNMUaZx?EK3~J{%CneTlr5wgWh=K0skiP$+(Kd5(APCytgtmTGP3?&0*}$ol z`-&Q3kDC>Z$loRS`y3jv8yeXjTjL*e@E&G@&CvBbS`kazKCoU{i+&!3Ue{V0%}M6J z%`u$)=>vk~L!Ow#Y&jS^B!YeiVjp^N1}YcX&fqyJ1*sx^&(wVQL zkm@sxvFmU}P9%6T?#tk~#6L`dV&2euKfQb#>HL{ddYf@*qz!$PgOy&`&wnzD2oh=D z|Kqf^*mhY^Ee8FV$ZRROtw%xYBN@(m2|M9E#_ShR<7ZlPkmn03xRbi8kh=n_eWSUCus8BvpyKT7o{1NaWM7wTdc#1cnf>@|N+|vt0n8eS|#OjJi`ddL%3S!I;YS}}< zG4$j$^u#%+`T=q?%lh2j=;R^RR?VQay>-M7g-5H=H^-pEAt)kIh<%|!Pw44Eef`mJ z3XqiLNPs(Y^dhXFqrA35PdQQJfz=}@dpT#+!a6}BFvnvRHq!sO%)y(X`a&dX0+KKm z>INazTakn9^ja`#GoVp8+UPi^qkch097Do4LSKnfDd^0Jw8oEiJECtpKrHs8{2K0^ z!0cc^y8lGpzvU$e$V%EMYk^ecy#{^_V>BIMm2{k^t>;N&sdX^4nPhFzBwFMP4J7X5 zD%x}a-F=w%c|6aaSvsA5Rnq7F^s*~2i3}=n$>+eUoy_MiQlCGxkw~MNJUy58nb1=? zNW(8^u0NPl($Q`9@Jh~?-Dh;Z&$#&?vxVeVkZXEuVzJEASYvt6s`d1J1-4`pPreT= z+dv*V)BE1EvWk)T7v&RKshH7zf`Lp%Esg*OwB(Oa>`$I9=O;X+Z@Kj^KfkhqpyZC6305xx&rWnb3?57-&&q+ z4+VFjEp|ZHXOOHeNUh*zo#4*XxTzD7t5uZV7U4^YmD>g(MaA;WBX2r zyMq{$f^45pjk}P$Mb@>@OK6%esPQ(^^$q$j6i&~kZ4xK`4SqYusNcl%m+^WIzW$H; z-b6!$@nlcNZ9B713$*Etw8&`i#Hw+&j?)?FkPS%qP)4y0YY2(a`j|OJ%bYYEnR0?d zN=A=AC00=PBKk7|X()rQg6>X*@@h1h1uhFxS7MAiAobH|-!z^lCyE}TYkxtfN1=7o zu%23|Kby}P{AL6HdZ7%sX$*NoK zP>V#b_eG-^kkfXaZ;PD!F#;w~Z#U{Kq&A5Yd=FV|W%V=^8k>++Ib&nb^M@icvv{{h zIt5)G!}BcI1mod{FI4b`S{lmP^8BUncs&x}#rDJnImOnWRHbw!o4L(p^PQjjp+p+ zWbPddU0#OT6VaiQdF~M8dJQG#a%BKi_J)eZv|UTf#D*IVbpnv+;ruq7Qd6Mm^V~6w z){Au7Q~OZpy_WGE!q|QZK1w|6**s$tQn=8nxdxzfyPyN@k;!Rj9vO%I_$-*`32n;Q?(Gg&@}cW}^yF`>n;t_oiI!i(-8H=G zt+Tf?cgW}zoAV!Dm(k{lP&k#bngcI#7{iirLn6Ls@_I};InDVMYtYl2k&$y3G8*Kx zZYKOr<_V4PS7IQSP=}rp(X`?woM=Y^BnGyH7F06Q%CO*NecTh-bYL!c!qX(rhD7=w z1eLo(Rq36exdmlD52{T<;^bsf8&9l4+O*Jp4mxKUI%)=->P>CK;H>QNtzc9&B6 zE?Ew|xN8ujP;5dAvLmM^3#hjZDVNg-&d9u+>}lcdDyvTJR{Y?!|_)7Q-sVvM9Pbh#ZI2t%Cn@ToC z#(u&}PJc>|q~F@Jlg|~N-hsKO36y8H{awOuAJJIOg(MTNivRPLO)s8>(=r zG-2tSvl`K!CHqC<@!)=1vbrQ=sp?hN(K?hyAyyumi!U@ z;gQ6Rms8M6xHJw8EazAav`3!qOxd|;=YeRs9`MQu?uZ^5L|p+~6HD0%emNpnvbGg1 z>&N|W+*?ckBo~I{+mKVIz4)_(N-}mOADs)|B%hDi0y193%5k7SGB?Z4m1GpDr&aCN zaV~NHW#u9(-b`BO2o2q-LGrZK^Bg(xWJ~W{xZjIfh0X=gD~Hk29X%v+FE&vd6qJ*( zwme1lZ8h{tP7TXB!8-aYI!*Q^Iw&K#ij0hR>6rqa$gdLBU&%MERY&^r-$Gpy2|@mp z@J>dq8f}zCjXGK&vLd@flATCSe9LJq$*xjKJKC)yT6D%^=J|M@DRaEc8KvAUc`PE3 zBgsc4XQ^ZOe-BAMi@kjnS*=C`h<$bs=}kc9#DDX^s?`#ZzbnZ1KgjF9d`{s`$uW_F z)|G57vI2b!%{ri51+*@p_A=_rq@{h}sboMAT`Bo;&#?Fts3gka<7)V zhjG8yb249xF6<6XWj>eud3}&Lna5;)>5a6G$1;#_-Kay$f6*VktoJ%oo1EX4Jd&~p zCz?`v)Qm=~;+kY|czP~QX6k%ia{f_4S;@uaK|e+6bXLAebLNdAv{WV97-NnS4*5gNE4CxqSjGr&vH8ZEr{pbjNGP{9}3nUvTQ zE>LzLHH*Yc+#5M}UWBb8JH#Rb#f+MCei3`z1J23}Av;a^JV`R*h_04M2$GdBoBy(# zAtO*p-E#6!?iVYng?=chTWo?xWI*z6+0w_SV@=kpwbal+oyGhrrRB7soa)Wu>7p|_ z&@^%eQZ$HY!g}lT4Ny%+n5-O)P*pUS3lh*Bipfjzau_IS&!>LOM@b%FHU# zs{ViN)QKJtooh$S<)o)CT2}hf6Uh{c4rex#_0~jckzEJ}Buc*fQAc;HE^~xFE|is( zhny~zT{*GkT=*vQ>@Z%ERZ!OAPqpR%e(6sgl95L8VhJB4`$#h_?xa8UNKYQL5ju(% zXyiA^=2L6cZf%s7JR+j?q?g6aU`6yzB88M7lahZc4KB)w+Dz`rqlBE>ZRB^cH6^Q* z|E7|(G$ERCp7dcHYYx-=SBr{edGoM6x zNZ>BLRR`Uq&UCA8k+=(Df7DP;cwY>UN}hOUruFw|@NE1-|v*UG$mo&zb&+o$kmt zd*oJ2&)n#*Dg3X3!ZMNz zpO$-B%kqE)X_;t_L^)TgH{GK)#P zpdYcdZctwwI#%pjX_f3XKHyHVw_}i*a{k|tW(8%ZO^m)kyKePi!PRImIJKPD-r9S z&Ki=#NlsVyr@gXMD3+P*OUU_nk!{HVH-g{%=;H{=_JuN&p@PIlkQhp0g^gmo4P!*k zhYAw6LUL=3qsF1!)0=+w~ZfY7W}2FFlutAmW{qm7mZ?cA+Kb?Ih?W znQ{lh2T$k(jtohX9Ckj?v@bLk9{Ey2PRR>Dgm1E|;A@p+sY~`0M)Rv!AS(DZ04mFj zDG{k83Xaig+l$@Sn>t0#Bv-Wp9<)*3fDPx)xJjYMvOAb#)$ZcaZiE-I=b)p%Hdyy! z;Te!BiENdMMO(mFl<}AX#ZsV%WD9M!a<2mpN_?JT%18tj$+eh;G>Uc+*)iM@eqq8D3-P4j+B*`hS4E0R$P%^u@PlWF*Pz&f9uLW^AF3SWnUpi38F`8HrF-3~f6ZyJC&jLkZc3D}shXJ$u?ISz#p> zgNC_5RwEAFD|$-yFbtHG9W)!tiRVsU7OqrMlk{6w)Shr!c4cHg<*7|5J11h7%IZw^ za%D~tFRVMQ?aFtth{SgydsGVQlU1Qud?j4hQd>XTBvz(a$F@+oh1Sc=B~jfZPnqG@xgvXLCg>@esFP=>GKO;Ko8(-T*)E$a zl3`Y&S&H={7Nun0l^lk#jNMpj&Z4ZW{bk0gqI@i$D)=uu0uoV1*4Hv~h$hJATQb*V zpGfMJOlePJqR9?a4K0=!ixOp1C?Wd^Pq@2^ckvuawm=m+Sg4#!d5LHyHjdoAY@%3ne|GMPtj_!gCaY& zvWgM;6InM?F2wHat-k@arz1xSuwk*Q){@yM>MtXg=6#D5XIp0r=` zVb^hw_|zpbj%0n7+?!%wOQ{yCY)Uk`T4*EGHgKm3xpIW(qAgX7PRW5Ne3o5u+3OY0 zm+aE^Kwe}9?rXJ2gy({Ac&Z79U0gEd38gkWsgH=2|&@%|b?>&hR<(SYn7tOdpA_C42Kv{VBp9nXzQvYN8Iwa9PLrlnm3( z)>%q+pTwr@1I@*&=WUgzZg6B0QaFJ>c^7Z$P_9k1;y45^vKpx!&tC|iHsNpIfNymn z>%bTI_98w)@xbo{AMh#&fiS*>u^+k|tiT4OSYqYP;NGRYi=4}@ro=c~#9pYZE(5tH zUhsvKn8w(cOI!SSi8VX~DH6-V4~dZ|P+~ioSq=6?_PQfgG9!yT$nNMeBm-b%X(ijHcQ@HiB2b$ zq2RQu;JxHT6%V|$TkJa>(jl0PG+HimK`JHEkZak`DB+r{+n&zx71Z+7j!&Zw$yJ(5 zO~pL-0j)AKM#Nqy<`;?XSw*WPC%jk#PpwIrH)J1^!(Grt^kyzk7N3jgV6j4Ex9{m5 zat5WuHka`ymRkXBsi0>Pn@@IU#g>u1AhAOQu_gJ$8@Rij-(;^|qPxo4Qr766a7JP_ z%gk6yNhf}l9rdovyn?;xiJt7oe~IZVnrjr=Whh!j)^oB`AhH^OJdNkQ2W1BGlIWbW z${d1pkKs4TDI9=YO~h+DgL@`fbz>kBID+pp*?o}M##7nrAJ3BnMG%N2PUO=JY7+Sq zKg)1llG|5oguYzqhLlOPNnftX>@NNUkw|yyAHlB@Cs6dGM5Puxu>l!!N0$n|K;{zB zUt%wIXB1aW6?q4*B0#AHSW*hDLF_< z5uYXgXR%eTWHi+wb&>&H-USKOLfeG@g6eFgS1Po%@Kna6tX^aVCp)O}t9WE3)|o_G zY^DZTTZ@j9o#O_c+S>z)3r~hpMyxFhmWn5z-Kkmp z1!_Kv7pxodASf7LM!vMC8&~D5M;B`7Y5gV$pYG^Icb;j%zb1C2NZLT_tR(tF_}qnh z+>t$reC^73l|6MMEfgC|{DTsQSY`dygOWZxQ?hBh(0f@6itQ?zSZpZKP@+T1;DSWI z6^l9_3doF=!)O1oKODwEdu8Y?*4*8Ki zfhg|3ZC&{bE=fuX>QA!X-=Z#wT`BvX`ACH97-i5a*<%wcSN5{I(Ie3_lJU7KpJjcg zu<}D9@V3$yL47KD7y9>xzk=Bt!?!_bPAT_doXv@3E!qZ)8iQ8Msud>%D@rK36`T)v{F3sa5c;0H>WhXBRe%yunIb6%< z`*lX^4S0~q-)*=S&AY^4jl_b9p|pIHGJi4JZ(zUtMwz?tGllCCIr0jg*#zso@m!a< zv{IX#0C+@eGT?9qoRwKbG>fe99`i}|u>Ylni99bJX^{Nv_qZO-bDz#{xjgX}E&k8C zmve^}h$R(a-6zuV{|P;ol|vErr}4COWKdR~5DQ z<@;u?Z{gZ1O042F6KN7`ti*Vp$MdEmnTz=>dE|##rEdxnC3x8p$cwBt{TU+?p;CqhNBU}Wth7~|jJt)P%Za{h$l zf-rjm4+ZZOZ}r(fX7BC`W`Ofx;03WJr`P^OP6Rvl8{e;4r6m&1{>ryVq~Kr5UE==R ze2$^aZ9=WsO{pMifs>EBZzDQe^L5W)ku0h>auBvAxjumCU{JU%beqzD5Vh9kSZ#g?^R@ zw=zOyU&)ghqYF|Zo_NRqqv(o{4)VctU{S?(P<>xO)=nl+wO>=_@U5sXO() z()LxT11$w=F$jbZG?|IJkPuhm$+!OZevkYTM(*6X_ndw9*|PT9`UF~^T^x^zSQfj5 zRWb#_gBUC*G_vAgrHPD@QFYfW;r9{gZIj+75`niw#uqQjRY$U~;YpPlJ0vJ9z8@Td zn~o<+&AvsxmdsdpT?uF^GGXK_K-qwx;Ty?!khkJn$+&|V>s0iNnA!xrj!%Y8>MKo! zrG$S+b{&rG`I4`0`cAwq?hh{SUdGW@otIZklq35u9-NuY!#@Lk=BNKbk>T%>VIn>< zRXZ`U8FoqXN#I3^qxLYa13!b<#d?&Z z|3Q<1F5&vp^_c1lsu@^K$SYYzB0^Pqy;T2Wr@$rKs`tQj5P@Y+hhw@^XM-ac^eY*C zc0Ukz#Cbc6=o3;7J{N9dKi!S5?j0Kry!jw$JiN}e4nK5uS4X73+E29~YmaD8YOiW9 zX>V37wpT|`$Ka0Ps@R*;v9ja-jypPT?|7!;Y4sU;t>aL~s~sP9{M>P*<5N|4|IqPM z$7OXB`lsV+hppqHsuv48GCIoiQ`ynjQLRotjUC1M>)ctdN3N>Z9HyVKs%sgks+Q5J zzMH9P&-tq7-JvR@C92n2sm>|$RrRycs5)Ay+Uw1#Dchmymo=)+4OQLS3O%E$cBiTo zZ&xkW-KrisAe7Uq!t1}FpC|O}QB^B_p)N2_t6#|h{e3|_KJM4ww^h6JnJT!xm$n5j z^|LDczLJFfs7M4EgZXJOB#bN! zo+&;65k%OF(TOfP4j&to5iHxClCE@pFA|2gY|*@1v=ZP-Z z!>Iq)G?VlW_|^f&4&F_Agh;+=lY=7y!+?Db9)Ner81|Aj_LD7%K0>mlD9SKcT8RCh zx)3r%J*Bxga}PZpB#U6aq>m~F&~rpcu-wM#h~csg(4Sgu?wZCKTychGns@@yjT?HURDbcdnQwAE=zuJ}SFHIaLeivp#4kse zaWwr{67{S?vqCPAoB(qKZl+S&n2OAvx)-x*#8vZEuC)(KI~hgrL0mr(k{*U@S|4Or^;Ajt$VUmAazlU`6FFMz8T?u(pSja!q`MKU7^bXy@e$@G>^Z8t_{ieI(UVqdP zf9PJ$=u>d`UpDr#Lh1Y@X@@M$|4oe{J42@=Hib$)OM z{q)1?WOaksCi*j0dSQ&dg?#S>y+@{;JQ27BbOW9Qacp7_=qJ!t>|Hx?Ix>K?X_L|%i_+dooiLEKT*5Xh|YfcJ6GMp=IUp*s#GWG z{Y84dL>;`wXt$cCD$P}@JKwIoX^VEGb*hoRLpv8o&Cni4PqJaEOdhF<&i*=EH*pvE zi0Poas?I0t3?X7@2+@AFMZfG*PwKkvRki2yl1ln}{HVKp&sbCM8@0S#|5uW-6NY?$ zEid7M83LCgY&^o{%V^Ni)+mZw#{ z&9{DT`Ob1&9TZPn>(5dVJP$-jZU8(I@}bxnH*2VOgq5^C9{>RaNJKmRqV9?xl+1 zYV}EUuyi`)IFviosA4xqyb9OEVvwjx;zU&q$ElwFxT@}x#B=kpDn36{eeZ7hv!J(v zB%?*Lc_TG5cy5gO1<55jMk))@)6yQ_ZL*;3@tf=}^_6Vab=Il! zJJq3H&)f8Bg+seTi;lRZN@y2Vv6tv5H;dIWNcG1f)c10_WtQ%Hq<(s<&U~h2nPwr} za=S+V6>&8@t(jb+dD^W1*Jy->S}c}$RiRV2`-8(NRixX+p3|sraIpki#^~DCY5c#n zd}jGsvvtE#ZE4?BM1 z_@Lt~#~zL@j+vUX7cDzABjeOhlFIGVlD5wzbAPB_IZpRhpbC9A-N8J|CP~{)%M=bGhL^*mhi^q}N%xTUY9ShbBOB(=Mx!KgDXlD;^mHS(s`{A2q2jP(8I zTK#WpzJAg!Lu3YBW9FU7QKOAQ{y$o^MvqKehCCi!azYfL2r*(C_@(`|_u|<#NC)BZ z#Az@1MeFe+t=DkbuOqd-M@fIolMTB-THq1Yraq?cC00Z=156uq?Rs9-`#-Ca_`It7 zuR7Qyf0tCz|A)r@L%p|8QH>C3=<(8|CA#9Dv>Vz3h+Tn<<^r-X%Y&B@iZxn@i!`S=YG_HS(bkH_w zzA$~y7I7=wC5DX0WlO)H{qt3g=ze|A9`PaECObS-dh$N$xwW#;sgr$B$Gxuo`7@2j zKeC?40Xj>wlLwuuJta(cO$V?giqAZ(2+qAmhp|n1HAFiD*;r5cVdQ(kQV^XY(?b_6 z;umC+;1C#~;}2-me$`0DYyAEavy`LyoO+8{D!|fBe=U+KZ)vQ{TE*X}p7j%Hw!8J6 zvo&{EQB;FfYjlXy=V+{`#RT&NrklL(4C%t)xNOP`}UL_|@9ayK%LX{M8xSute|Ix_4seR@Fjokg(6Sl~M3DtP*)Yz`mKlzoHem&tU4?)G7xj6h zJzf@Myeyfc`aPm?c~c`v4bMK=22W^|@7H{6)~v6Ux4c8wzDKsg^TtR%Bwh2Y*61_( zuJ>ed!^(v%@s{rHpw957zI&gJecU+iaozv3x}vxB^O8RQrnCYpmyt`?m85HpkX@jL z#7Aorv=@CdYh_Qmt8x+F#>{hF(db0!YX8!wn)E7>jcnPVReDAiVz_i(e`&p$vIEIC zlTlo&oso*YvC?rCh)V=uXHBhH$ZZbs!b!HF!I_Pz( zyXb1^tyO4ZwXvJ)6q9U|)eWx3tW_X>Nkpba@&LvSE&zH!QW+2>-AMPwpSA8zYCf*$ z9$Tyi`aU* zY6qz(r+XlE!o(kl`%)ca)y#V6=w6b7;d+0xW)XxWdElPtq^c>v5P~S*qhU z=;&oSa+5x}SowoF`usY58+q+HvL`s(0(mkk^-8d=imp}xlD)CIR_dv$Bwtk5g8Zj) z2uw2hCvpX8k}&>J@8YB*!Hf`Bq^Bo!Qqhtmr17%m3dGA9J-VuQkT>G`@WZeoBMjXg zD>?Z_$6V0t9?>s4^D)TY)BWI(_Y$DkgC+3%;nFu=ee!tZE}^e~P6V$IMF z%?O>2x5!3Vs0#K~nz{S*Y?VA0y2S3$ete(Udmh$&?hy;cecI{oQkIfWZPlKCub%JL zJNN7F7G;vc^vcAn+ZETi=QEJJ5b*Jr4vn4!;g zm84O*3=%wF^XV*4gRw*sh!0T@NTi5(9T^Csg2d&(R)PRXH%5_45~{7hdfGMPr5d$b zJ&My2bk=01$~1QAdWFhwu%2KNh+dOj0r!xqu_P`9o}I`h2ru$s?5Ut?z!g%(jt0ah zBIYwntCxu7aLGu!a5%6Yu!cYuP1hKL{h6$h9i}^;q(`eX9>Xrku-Y!SVLsjFlSQJ)0r2Rn#*Li94e73+dA%8}Hj>lLsa zpbSBY(Sgz?z0OWbCs#0r;0EEnB5KTz0Mdjrlao!;S?KwjrgIhQJEHWwPNPdjJ$wa3 zgwZR0n)4QM9+HV1s_Q4F-a}&xCU$~Gos2s>FPLjkTGRm2yOAm%-U~7AY@XiZ@iL7r zx^IEBA{;%T(yc2s!h7`yPSW+#kM~P|-l^kfO8+j>{5+&jt1KEB}bE~GniOwI1$i{tvY{^&XcTn(1n$HP6ujoEah4YK8oX0 z|5qi6fQNysvA-mVnhR{CX02N8iSEpx(utyi-$4_>#^Iy68>rWUC8Z#ZiMWzCC*K=j z>J!Ja!~d#+>j>+9S4RN z|A;yZbcsbshf?WA*do|Xh{jScV-XKexqhx1V?jRnmd*h3icBk-fT{}WTDV6t^F)Wi z6jOsmgtwn&zK`w*%`;ecMQ>s5kZK>E5m~{)LOZzWm#D!QjmjvEm7Cr}TCn=*iVA{* z^G(n*y8hBdb+sgSg=8E3I$zSfL{hw5uP@e7BlKvSY(4h#andDJCxK{0OT)`U44j%J z_>V?vUC;p?Y$ET>)-$dO8+L%MB3M_2Y_qn4bu=|^BXt&PlZc8V=Zr2HXX?X=&$}8? z4J-w+ef&_5ObrO$Jvf_7+R>;!#rm^Lqu}S0%Q&SSjp%NItU#=+BuQYr?C~hsUPooq zgZH2!gig6Ilu-ljP%whuy4`v*+X+e-4NIX56#^Wy&s_WO)eOa zsTLj2y6$fH0N@dk?8*8T>g)pby0^x0h#}oDE@EqeU>K&yz8ZNdqPt7pKzdSR4s!zt z5UdGmbSos2U{=Vx6-$cAqrz5Wa)^*C1kGY*>^T-zA~Js_yFsfy0}oh(MyNnz3km{! z6w*!h7i^%jMuUoORyVcIX5JkvWwFiz8h}rMqM%9$bOIlP|GZoy8gLOPO7PN$~ zemZnzAYNfcs1?2&_B}U!3-}yr)bU#IlznwP_61o;a+4rtnsp@m7kNciG~64WhK-9R z@YmJAF;OeshUWB9ya0Oy3jh8ohZ&+f?53GO|B^rF?({*O3Dj4sY5en9K%#UMuSO}(@U!#_Xo&MV0({S3@+Il8eNMANzLRghta%{=3==9`sG!UF zhX(+f%SrOY>SC8`H}dXO(oE9Wf}?^p#YdWdqVy~B<)Pqixwb5Ieg1X%0()jabm2}lvX6rL%{ZD`C52E!Gbp(3`m8m)9h~3mg7bEqsEY)a@u=k@=Kv6NP za2LR$l`2gE0}eG*b&_J!F1exCQ#5jDe<}#T3&C1hV9Xd53MG1uu4YG|n>6x!L+1iF zOaulDaFMRf)!;`gHf$U`E%+`1WL-PS@p;0?L`Bh>t9nw6k zTf9)>WW4L4qtFass$jUm2jdReC5Vbq{lF>*0}nn4qdw!`d0Q;YJ}aicVN+j zd%<$VRzt(EQqW@H0>N~kpR05)=n-=GSb#(om|<)#>@_N8sD9-U^~7Byp?D3Yx}Rc= zi;J!alo7TW5<+bQbq2&5@XOiX(7D)x)y5oCV?Z4WSP>!{Xpc6{LcYerLEqV|vli+x zJ4Kqb0TFg0fuKsz%i!^;Z^JW(Vb%lU`5nw++i`}+R4pO zFAX;sRgP%POr60`^8qUoUYf70RCsRwXQ{x;NR1K|gV@%L19(R;aMTszZ3IfQu*+hb zPyyqs)$gtM=_HSJ0jmyG4^#qTdt=Q7NyqRSTnKnmQw=Y5zHC7}FZjk_KNzLCaW(dg z2A!Xt7$(Y<9i1v}tORhTK9U~B0HiHe3iuu>5AdGx36WN6KVfKN=Wo;4p)o-9fjFf0 z2f1a0h!(L%@PU|pc13(8JX&hEs75vUI6=W9DeU}U3gK%5H3_q3hB1~%6%j0E0`9vm znp=34@e0V7)$6XPEu^jxJOTR|oIfyeQh(7^|M$_mXl}3~!8!v~AHEtvtDX(gIQQ14 zT4k-l?iHZtUG*KT40d8C9YrN^AHAyNoyG#(u&d5AQr}1AJ9Y->Tv%49D#u@9tzqGT zN_EyTcv+w*i5-Di&DS_l)t9Cbq*?+kOMMvHBUSq;wY6}s5v5I$9D=-r#RJ^aRXrl! zjcmgcLrmnH9@Xiy)MKC5^E$mwtckOfXtcqvwCR8RL~6O%`8svBJk1Ze6H^CKfyPQD zmd84w?%Cu4uxJdB7^<7~F!T}C0Cx?G5{!IQ zp3n^g&BfL^O$6L55g#lm@NaE8B3bu@2BZR%wa+eBr4ff~$h75)G?sAMm{tj6 zp00ZZV+#W-mMr@nnSeTdGqr(em?qsN8X1oso*Al^s1~F;mHm_ms=s@DHa};l`UBoKES8&^ zA8O=oXeDInb)+Uq7U3DKAaY3{2h(JavP$rr*!`(h;~CZ8?8jC5Yvz|SwF1a6r|68- zx3K%eL{Ml*ADCyN-mF8g;Z$2;5#<>YPUPD3X}NY-I*CVf-A$58bRkG~Dj6#EgZ3kG zM}(Ki5<3(8HlQuZ-x9;55_h!m;{1HDv7?U*Z9b0c#nQGP;+( zGkAH_NmGZ%PC_)yWHP|MAOa1p5e5;mLPX|3rV!(%`iOe*WJwcxm+HzaJt9((qt6kq zL+>U^y3!?o;H=G>yd0h3rj8`qovWD!hh3>Npci3HA_5Mh3$a%7Tli)y)g(#T6`dbz zhzjxo?FsO;QV~N|I7#1##fI!r%giTu4?WL%Wqo;Q72zG4J~Y}3Ym#hBgRZ1aI;ul{ zF`Ufoo$Q+CUI|kpwfDrN2WlkY(18JxU6e`m|F6dL`t- zU9WQt+TWt{z#bPU%4YLLv{@g zLJ$D3?2?NZqsQbQ=y1?WvJF1CoBl`3z|_TF4Hh6+X9Yn_-U#go2Q>(gTFD1U4=iD- z9f&rgi{aR4l6EKdOkBoM$JgjSiKyViw(Gu#Pa?5IGRZnqXG7eJ$QxCBW;6?1jg^k4 z1pi#IB$j+URURhS3mgPQ{6V`H>YVu2)aMXcgn64x5t##aO3n&S9*-2O1>L|^;!%n9c@NeS!>kFn+z(f1o)cF9fr&<3_9-mRwA)*&r+3!z0W!EKKp8p zsf48NlL$Y#dn~a2`o$LFNSM}OZei7${IX~ZKUs}8bSKOTIa{oac1d2VMhY907zAvP z*qivOtV28)x}(5*%Q@PO86sv5Lrjv6z?Z@Aq)MKhiTYmFG5asJ7`}j?bS2#NM6yBr zm1|wV@qrBt27}7`WW~)cYt1AXD=|s74M;IO0BX-J=t!#fvlTPDs?Wm%09UoSX35^c zm<(4#w$8#XLoO;wyA-@4Rr*w{&Yh^w;Z?w&4ZAALV^}m)385EFZWXery)}A_AiYWO zebBP7hoA$|j(AMIx#e=I%2pYYw+q)6Fy!R(hPlioF0=Gr~d%;*sS)6dIz?V zu{!5mt>3;z9&nl7qwbc@H>;G7nXDr>Dkrl*&)~i^tH9|Qvr1=&>3Oyu&DI&F>YJzN zXxL2PG=wu?q^_{H?i$b0#gJqye|Wvo3uybkk~*s-kl0H%`5*ACfwmvWsu$RIPmY^fCqTo~^C!MMLroya2e_>Z4VvkM6>L5bKyF}iw zMX*}YxEV9Hk&Pm{1*)S;_6!yo^AGA03l=^Qb{X^-5q=nPU^j&i z8(Rg2WO6CkZCRRoBCnu5(j*ypNkk}MGC`kGyAE3CqK?E?h9Qo;0!JrGcF7zP<j4|wTtxV3fBCRS%9g2lJwR*$=($G;*Isye3Shhs87IQ zN3I8iLq9!2ry@B#CMqypX934XJaM+(AxDj5(}`!gA>Cjrz!FU|bl`1zHd!lx|3S%5 z)u$Hfo53KFeMZiaLL`g|Oui*p*9GII$(Y$sQV8$+7~}fbN7xOz$>yd843C8>VpyJu z^e~F-(L@rlr?Bver@{jYPXL(%Bm%qUnzYgtX*Ljvze{_;N)oNPCX)nO`K)I6cRi1n zM*CYjjQT#ZM|2mV8_DnbJ+0r1!lWLT<^x;(r_R7G3Cj75bmr&!G#nb#0)l*}vW`!{ z5e8QnXvuh8#RWYge#H))AgRNv1V0n6>&3HUO;A-w#qAaSBKzoYdcI+^Vb2rUz&;=@ zi|ytnxd1C{GMTr@`=`A{0XO3AO|`NNY$=ONIO@Di9iKh`esC!$E?l7n&nz| zcw^-CkzuRmk7xq17w`ZBb@xO>@vLDSgVT&WIuT^zsGiaVbQccLj08zb5aDANB#J}i zhA6d%#u}6kIm7?)DiTS8kBB{yxE``Z&W3mlJ~*fkxOhPSz?+7}O~eG7goqpwDYz*e z^)19l;O8JGKsE+F&9#xerZ*?tQ23kF=Atdhqk%hiZy`!N#r_9 zws4;2DG(tcTMTA| zYHcD1*rUu$vph|_7Lfi{eFygLV9gw(>a6d<-{H)BH#syg<-??ZiEP2f2iGGp0=Ocn zSf?VkQ)dAK0eTV1Abv``fG7aGqO2$IwPb;b;1Xd2w@xG#I|i>53xT=ChXuVv{sTU} z!8#XS7!hjhCGye3rKPc7iLSw}g)c^&jqYK@jX=QQ&k@HV!)Bt!Iuywv`aw*ISW=y2 zjg^XThnK@Ra`m0YEYWii?v^aQ%YK@z^@8_Gx1Ebxl{SrPvfi!KJNO<%gwTu3JUI>+ zkl>@u(~;z(O$M3E+RKSqoYuPu`kO6Dx~Svf)kjvakIf8rfnffkBk{{RggWSG@9($U34tSERcr8JVBCCUw}^dJKu;8%7wij)Y(lv(k|tZ_OX_k9NkxWyBneBMUW#@IsSO z&)3L-`i9{N%g9895l70@SV!xB;-cA_qhvk4BE5?Kgoid!ugB?!J&@j}S2aUazSCj) zgx=%%aUGwb-&6YiM_Pb56sT16JiZ02nV_oSP{finb?GMIH{Rq~8!(OT1%_fR(3@zA4c76dXlhwTRbak-?4y zuB5l*8;`WNUWM_MXbYWaIy#BFgW|+rK<|-3g|#9;R|qZ+FM?PO8EWQt3ceIJz2SDhx5#^d7iX&_r-pwNjg7!1_*t4e%MoTB_oMC zJCR{Hho~GfJIulAi9Z2WgNP;hXm%*F2AB06^~QaGGyx|7=LxZ9Y_ta10Yv!RG^&gg zUK4%*`ji+ZF#vWSJTUeIa@v8C9(qtSy5wnKj|QuNUMD^Y(#Y(#NRAMHaE#7}jSceD z*Lathj48n&S(yu{Mw=?t$DgvPKu9E*c#&!ssa8V~-*tPIle& z$;~Jb=r&WnsW|ATF&U=czFI#-Z>fl2CuFZ8vqWZ$oDyvAj2!t<; z2xKsIK3J*Ppzb;+jOJ)~YCU-kyQGW0g`5-BeRvokqu{s3vc{947c7{`>AE{mf5H0k z*WSw>4F4njQK{P)CC_JuUZ1MtS&NhP4Ax@y_=#FyRDs|bPtZBRUyoO05es34WRMs+ z-GX6X2D#E-qc=>R8dx1V-3-?=x^40f)ratpz+y-Q2xI{4^BhB057q!#BCHbh1ePF( zPhvO3?_o10ON(tz=Qn2Glz;kgVV#q8#?G(T*u%)gNP~iAUp0BxN;J-BF!C$yk{RZa zRpP2BHaSRq7BjbD;@I#G;FY2OBDNkDJFybHUV06b>HDa`B8zcFXTa|Vw}lr)A6=W) z1J;FI^9_bBUysPXrs`AFKwQ>)d^$}l2llIDS}kBelMU}ZPJiiMeA?JIB6K{R3Qudb z{UdLlI^aL_OKt4m^4^IEz?PXHAOBk&^NUtwqK?Kd#FsyzAN+K70vIq&A0^wcI^gJ$K5@gIoTz^6%;k`BaV(M%h7guWfSm+m`ey(`>2 zctX^HOwp%^Ct%O^)>+5ux`XsSl_mJMFb2`@-DFXQ`L(BUMf3{+n}b!$w_?8{fmk)Y zbbNr$ILh!dka_BQ>4`{J5+oms3k}m(N4V-4*)cNWCeDIvB*+o=Hga=V|M>SUk_EW3 zuq9v+g!vRkN;5ML&Xim}Xh7^1qL8qo(p8YYr}X-w6JVya_TT#7CdvFmQU$jzu}F?O zYe;Fl{&;R#>(e`}dKTm?` z0k34Bo`aZ#^9>uEHG|!NPfUEAGBPtn)W8ulc^9xTawl&^eyk5B?`JzgeeHdR2E1jBqG$Zj(@KYe~v3kfv z@(Vtk7%0cVLP8}cx|Aw@?3#ZJ{SK!gZ1hC+iIrY8BpMVJoB-Lz*^^{Bozt4Qs1*R$ zG2%vlbk_Gw|5t zp@>40^M;cX)F+WOdJhB}dI#GG8=iRvrwc;yxOK+lkegw>FaWK=@J zE{6R-Ske!+fG)Dw(L?kJI)H$l8miCFmW0DvHd<>0t^umP=1Z#*37BPM0%l8_qUqtr zA7N-<5L4s@VAmp#L|=BQ)~D!rV))b|j8^^%i-n4^F}fzMpsz-UJkwx(1Mvg+1c>Ae z*45(6vg5$bLUygUM#9NhDP(fV3**0FuVM4SDnLF1NksygQjN(6~-tdP`RlpY0FPDLD* z+}KX!wCLbLzf&x7&U01LN#z>-9ZjA^kX-Py$LaIrfyn3b2n0WDn$(0-UqK`Wn+qQl zJZ_%ep$Y-~7R*lc2Qw?6{+FN1m92rzN7R#OEuG#?9sr^j@Q#rGL|+p{pf20gd7xIi zN#gLp$lp`z36>fiiRK$62?&;C5w%1jkx4Q;#GbGKChPeK{Y9S4n8qZ@7k$>qVp9FG z#;`1gO7<4$*<2k(o*rv?j(*4_EzoniGR>1jF3`EiQNYkWOW#D*C3r`Ahk^X#T439l zs-uX)f$PCOf<1}62-Y;r`NTMgc7vv(&J%o)ucFsrvWV{B5AbPrNRX6tcLEg+HaSRt z(G)EjZGLMdZD>odPt=B)Jcogb z{13rKESqmJGg_ch8}%7vgT9XR10gmC=O;QAqyVc494d$pY-#f-u%*0C%#+U$MF;)C z)xsXi{*kD6!HgrRU`pb2JyZ%)3q!AXq#mYUB#nw6D#X#o*brdHsV>B`rCaa+RvP{o zybQ!uK%av%B8tyFV{H&sr5*w+xKsL+*bkTn@HBM)B1^%Z*dkBU%uo18w$LzbIuHI_ zo9ZgqH>ri8t3;>H2hs+d5n2FrHy#}JG0|zWevnu>UMn+eMoHLVv0Vpfr$@&Tx1&PN zSFa7#J76}@o2&$O36QA7((!)rfr+mZOX;e22IIjm0kLL3y#lW$$QKat^xDSTG_7`GCV_gNzDz@O->h!x+=#_^>KR!8 z5Ln~_$q(R-F!mtIxqG_q678YGBsMcu+MSwnvXw=e75qt72z@80h{UD_y-EczubY*; zM2qQLa!Gm=J}1zKWPjkLk5y&gk9s9qkEt}qdpjv9B&&a3|I^15USnz{U~&OFOCLM* zWTvDYo0*Ir?_V)~$iq?*fwe&I)dU@B=3?QOy{xr@CWY|;`K3Am{%UMuY$&=+lZPO0 z>0m@L=zopPKxIs|vp{YVXm1FeFo31ln%6aV=z_K*8TxUgw8fV zYtigvMZAm{J^lk(KiF;?oU|embL{Yg&y|N91ZP(LwrGtuZ3)m|NpgL_0Hd7ayqG_B8(q8lYp1_UdPZ!EkeKF$-+OY z*Rb003Rv&3$))RjJR(cX`lUx7ehK{aX4DUU7$kx`j*IREABwDLx$ccFLcKI5V7uuZ zMV^yLG8G79Je)MLgLO1f4C?jCl{2%TN2zAQ>!(hJSQ(KPbLLscCifsQ5&SheJ`nGK zU5k~3MUH-k&x>48u->CKiuFj;4GW(5yNf<&)@cymC*MvF1tRt%^g6N8?z$@Sb@!It#tu*+Jn^BAQDq82=jC1@URt=$M^-Krv!v zgV&o6ZmC_i23>H9`0oU=^sT z1G|BJguhIsZ;h^!4kN_OvFP~)(@XA$I!`n(x}5vQUZLsn&1Q=Ge@?Q$|Tr*s17Fn=;Qzkje{5n zU_xN5*tv-x5Dy{}K-C=iuxgDHJ{-L(>U1m_F8YyCc?I_0uF(PoLf#L16Lbci5WH%P zE47CeIybyn@U}PTIr|{I`|O!!*G#I~s41rRxVbYC9U+&>YNH|cc}Ly3xviXKTbClvwn{~0Nu$y2c5y>t*4s~ zkEu6AN3)u#C81M16>w-MvI+EcB4)rSf)A%7DmYkbEQv3$M^U|olyOYHj<3>Q27;2> zWsovvzYH>t#2Trfp~{8Yc39KFg`wF^)*oW-)FzwkY@m*)MWn*4i(~+n3p_%)(h(Jb zv)qi;4b{pfcGoCN1Dl#1DNx@;hLEm_M5U?ZB$tUDVP+_?ILz7rvnmkDr_K$(98Li& zKWrwh!ekBs)rC)F_G<>sX714-&)LPP>R|6ChEMG$_;vCGRG|_FCGUmrO-%|>Do~l# zlB;Vvj%YkpLiDWzvqi*;>OQPY(D&f&>H3LJ4gRP>5(;vT?zGqsNUzylfnKI$y6_jN zY5>Vjl$e+|>x%d^HZS8c!gxldD49m$*|5c<#qm<{M8Uuf(5pnor%AHVz_4!MEfa~P zs}mjQ_(n7>>@}ct*eOQo`-#yzOJ3O_$O6C{N{$Ac4Y4I+{&a4q3KrZGS_zw+%3Nm4 zS@X@$Al-wbu8KP%Y6bf@Hczc)6;ukVJibetdh$_C%GHpsB=+{d{*l-OaNB}uzzP8CMGcpkv4tZJX#&AZ z4hmhw%H%cnAbR~EYj_SV`k!5jeGE&J_!8bF)yXx6&dSxhbXb8;5Of1t6YOuLUSUK# zCBax*%Eg&~t{B3H_^I$3{y zvVqKggD@tTF?y{$bv3<1iLr334M0Szr$c+@`^AE zFrAnzw#3=tRATnA^Xb^pN9Q9-56Z+{yAct}(Rxgrl4v+~3>iw~zlVP5g~Hj{-C(Q? zQoM#(Ik6vn5xf}u6YP$GdWEjs#E@p`8^}M=^_4n(tQD#+Ks3+MnfVrCJM4Ny8^NH{ z5e}>YGshl=62Pd?g$B4;^t_ulys6n64YJ@ALUc<#oQ&~#p{74HJTB@(WG5F{)7BJO1ty(Eqro6}efd!+|7+cb+IUq9vyPMfdgPfch&46!q zghqdcq=LFz*e0gQDkWw&L~~?jRVM0HutjJ!xQB=_VBPdH&IfZU898iZvWmfyR$>e6 z>aO}lD(Qm*PiYrv9&&wH_Tb6EAi*2~*8~0@xh9SSH_u2Q+2FTWam4=EmEaI@)UJzV z0qY35p4Epo0LuYd(O>Ul&rltLegz2vBF@}V>3T#|nfM&ISkr?9t!r}pkr|+OEj~ZE zkOo}`dKGLzmF9?uHBmS847IAD72LJ|fS*Gz5ve1(MYN6DGyF8_PT4`t?x=7Bzy+Ny zImXJu_e39|so2wCmLS3gbLKUjhlunoJulJj2M0>Mb}{;6!;VKhlUgpgAIM6B0l~{g zT9^kcd=O<=v+x#xA)p=+%K%n7Rw_AY=9B6?y7AIA$?S4((Yshk#FyDS@ND3T3DD8# z59&cb|-4+VRwN$2-^Xy2Qx^gWA-xqb0VBX z@rln;Z-N~QhWn~UiSC98T9KehFY6KAypxTi@C{;&N8rbZGf}%lt_$QiJjdjez?bm~ zb_mS*Ai|k1B0O}bqoxlAr3zgU86#E}5(+NZtT{KUKZq}L$Ha<24Wa9aC$g`CBxEI0 zi^>`tXT8kSBtU=Gm;_$Y418f2dO>M^VwSdYYW*mc+`U~$5JDw8z9pg|lLY&lsm zvXa!d({G9DYx+}{OM8L)yRJ`=w*;|KqTdJ|X_u~}dY*k4jcanbl1qe(ms)nZftu_m zXT$|zyrg)(`ZBni6rm}I)HjIc3t`>fM21u$;2^ZVdBvePeNMh zmq=z7xo?nWBr3q}(pz_pw4xV?3IuAdsOiNbV4nq#fbBu-70qkLCeSJ9A25?d5U|#) z+IQ&R*Qqmsq@>mXL=@jmtPiebd~Udu$uGjrM{WQc6%CTAu_R^+8kP(}qs9(~E#j*n zCc!wK)%XyB$GXYYS?CK*l-@+QVn^e}QSVP|mMjBZR6(791Ow-cw*!ufI%~8rcrYvz zb`emEo%#%Y2w^oL!U+oy>k^g){9y3tM2(4aVmV+R5@E(eCihM36Wf_sJJAou6uScJ z67*7EjXOM0&jE-1f4?U6Kf2Ak~KC~$1@k?{a~l^(IYAu$VBI8 zjLkX=xFe`hA^S;&=bC1O%qTVU_}bJ(ur9Ln2y7s`3x0Xx|G!2KiJA-W@J)I@T{BJ| zmQ@Mo6}4}m!N>}+>aOd(3VjzIFE#trGgARaUYGa?mIt+1cu`p1@SG3@HS+=Fe_&?B zLh;oR#AMsVw2zkxlO>T<@Oa?R*w4FYm!lIX474C7JailpO)5dL_mD-(aE};dKKG333AVdyt*1s5I^S;Bu(&fiDzJ;5Z{N~urKk>W(q?wSD(OkhgAmT{4{;j z6g{WX$Wdn)qAR0Ikm+CdmyAp`uC=eO00vaF3b+Y;L8^<~^=PclM)e3f3ZHk z#>rBHBTbawZ`PZFwWM+ld_D*^v&(t4J^_}*rf^@D{=bO{9GIDHyiF8b5tSYRzsae)PBB5~nEqC(Y4p8@U=omKY=8E{l^rgM2G&c^2ag0AC z>c{5nXT0B2$5T}a<0kz9%(@iNAw4AjROOLTMD{`Pk=vzj5a>^AR^lOGN;ea99sNpX8dM$GCNSSbOQ;cI7R>HZph?-K!QWDEOtb?FgnS1WQ6gT{SYY?FYnv>I zU}wy31Mr8yi$|m*M@Nx+fIpYakVU++AnyK$iU3b(R`wEUhpUy!YhtSK%YZr}=Ry36 zXgod)`Vt0hEH7}M?5W`L!1uwuils%p7**VG;4srfr?GWmL*Ob(^(khX*fjV!=AAw; z@aE8!g{oPy6=+ej&YAqb$s0(20c>n+2YeW8AS(Qbp^|4JF2u@UH8n{d251f#ZPpS# z1HL(*AeKrD!=h1TB{2KMq|EwuEIE$CZ(?oI_lqb8Y`5f(uvW1nKmzlRb; zH^SG!3x$UaTZ|eptds7VSL|jY`qWVQ=$onH#_vs}E9ez}%?g+pb}IBS zRvu$c+yKj$ydnNSy7`7AnJ5`66N{5x_Qcf4|Co$-bhReB$=sW>ihhMniI@WwOk@=C zJiwt*K}IHk*b8R>L4e0>b}BO2jN!z_8lk3;`Yj@PFz>+Qi~qpfW3R(7MmCfc4;puZ zW*yI*RR>On`={EeyD{Qs_K?+1y$1dYeXTt-L*NpL#ggSA!i@*ZI%W*fq{OSqcal*D zFA6IudlcNC)C#h)iRd%0*tTdVD%8-7V2$wKL0iH3M&1yKz+P_G$WeXC8Hk9nikS&^ zLE=)xIFSJ2k)ZM_v_|n!(2mF%Obf72z&u7Zm1(=0_;Q#s!4iUWf=>lrRCZwe1tOjv zx*yOnL3?f()SO-)I;Rly%+!pCRLiD##wkY`IC`Bx@JAZa~$uYJ|4{j0k@?bK2GO3ALGhi+EYKGA;CX}9BZt#j&P%2$>ql>c7e z)iJrtnt=nyygp{kpdA0pZJWxR^S0+aa^siU58LNh;@d9P&#Amt_I1S*byGS%_PM*? z`7yDR0>+#Q`q(9~`iH!`Sq;bnsujbO3L1X z$@K>vd%L~w&{0`@mZHL`n zbbYP$(TY#=v$O9msH+ZlD;f|nYwvRZCCkSJ`$bjuNS%7+{p(J-x7TGk-SpV!bfn>) z;;8JS*++^Ow&ZrJ8UN+d=vC9^<@WE^@nvqz)e)DzwJ$9h(00cCQ}>IJWC z_%)Z8u!6)ThG$GsCDn3iAVdM^@cs8I_=r~n1;|U6D9_&YTtC<(knv` zI@q$`y*TRJyeog^FKhYO^EdAgEL*Bma*I+oW_aKH$x_hYb;0^g_io6U>Dwc$syOkL zbAfRWB|B7p=hW^qz~e;ou#&AAsVR@rNnS&=yMtkZ9~&IuD@2VB~n zo7i;Hv$yX?r$1_@<=srNq@67q-BHu`;Jj&@V>drA@6NzqYVWiq#U74zNb)Ru&N1Eh zUav`QU)>DJsIk{%?5=F{@*SJD^2qknYpTYTyLlG`Cu}$~JO25sUX31Jy{t_xZFRx< zlTzGM{0p|X-XGL|ZsF$NwsnU1_G@dXvws;|dFHEYaV0}7R=*nWX&oENx@1P%bJHI$ z-{$e?s5L9b?09B<%cOL#vqeiTHNDYY~CzPzO>@hUga)vhy?Bruc62Tj>~5wLbd|driv3;zGx1L)I_dy<^Un|IE7B_0_V3E4yPF z&wg$Ht*Wcr3;uU`J>T+T@#|^-vcHmbt~R-g*VKI*)`lKg2X=h3?SXk8_1s=*z1B5m*_ok94^&)mdCGsQ z_p#Q^CEuj|V5`Y^p?a6qbMlGx_l9j-``DOAow{Yec>edu+vCn%R{w0 za?ja!CD#<()v>>SWyqu*fjgEh%n0rcopY^m-ZstbL+O9n24oae z&hgEi@XR`EckVcj-G zPJYjGb;11jKO#Sf4M^)!U*K`ly2WjJ!=L$=l3%r7$Q|Dt*8A_dA=_RJowRJ&fGLej z>|4(qikf}-wj2Hq5BYWXJ=oc=ygDP>Ha6{Y>2derqZ3x;hW)VlKhwVU`MK!pi|vu= zXWvg5S-Zo1oVC<#%B`&hS;;qSJ90uA=Lb~JerxM1VF}BZ53X&Vl(O^eqfxmD3kw%^ zob-Ls_c@2z74K%Au{b+sE zBcLgu$T4-Q{aE(ChSNR1n7MCDNcgl>dxu4~Ii>w^c0=UH@o(n^wH5fx@*Cqgx@u7N z61y$s<>E%C#lx)2CxoSJ+dQXxx8%|XFNa3GAM--e&`KZI@2wws<~JwZXiptwe>iJn zolCdBraiUkX4t!{14n+**)QYQ*tUqqxZ84;w+!>K`4v0$uQ`^}ZeNkoQ1pxTrI7z*CFA*qO3p#=`D_kySz0 zjzt}cvR|EF`l!=R>rC&ZZM|+zPXFHKnz5~Fli$6QoHkqy_uTN?_+ZzZoEdS`Bb&}O zXILBG@!Dt2cX_IAU*6}*pClhFc({Fia7f6(9pCMYUli8oeC?vdl;~HYe!TKoNw8zE zwZnUF`^?hf^kUnW=@%>9eF7#NT-P3cZsXEPf4RStXOByXcrwO9__RBdpq8u*yUG*vL_`2-FjDKvO zr`;-h({u0Gvuk{Iy|#Je)D*A00;l-mh~;PVQx?_j_qbp^?RKc4G5<#L0{hzByrz}C z2hOu@KOA=dZS@2G)#zpaG3MFGx`e=@b)75xcKLR7I9I+s({4MJ+P&1*J$ICS)zjhj zEhnZw=G#;>{bJ9^`_J@BUQ;vH{Wm*7~r0E8K>B z(y}Tg{><%>&t42JxYAzlyVLIjOJHTstbc5kDbJT&cX??<&5G{f&u)vKmFxdY$;pHj zkvn3>+eTI$b`7=u%VToW{Gx)CPi?2Oo~SSE9x!wNmV)qAtFI5g(f(rE*Jpo^_~Sxs z?l-ONKIwivoGPn6%l^Rrb4taH2~G!w9>48iSnT%0bLV&8TXx6glabq_=Op&3nBg+R z`haIrv+YJ^YPzj3^U2x`UB8~@w0X|1J!{KG^|a(>{2lvY#J}QNvKO^H?(?wqYv;df zYH~{LrOE4yIvl1A4qP@TY|_p>3zqacQSsE3vyp#BIbAlEN{qXN$ek*4mOY zI;vmxzdR*rzH?HQN<;{}&U z_t>)3TXnB^cv}DK`d$6J{BM#Y?c4K0TfF*wF+Y9#y0F>Hp6nlT>sQ;^n13R7UV6A_ zXXjPl{XV@r+sj-tYi--phLvsfm^dbG^)KNgx4b(&M-*_nCnK=Wu{So%ra_7M>H@}uV<&1A+=0#hbvZt-tj>_aTkz3TLIfU|W`b zsiD2+gxQz3dhB{=)yu<9wUwuSes*4DP5hMnf7)jH_VT-KxmI~5tH$<#1 z|6D#7xj%YnqF=>3E_Q3E*Y7R&6gQd z&)=E-R&%;{sb9QPe05;XeEUbqt%ZL&Gz~hjv|m{G&f*2G0dH2`ef2=p^yrz_|5G-> z`6+9L*K@5~N|Mr??b9>kt8=XtlLI#P*cH0|jd5|#-()|2z9Zs}^OrJX8^7~P^tI>Xe&rIQm;-yj|Kqxj8fa z0h=xTNaaZ1kcoTNFW&X|#s?>Ebz7HPetuNMJF$n;9d7x1rCCq8de%RYmv7%?@5pOw zeWYK{kb8C>2y0t%U%z4XNr|6EpNf3(@`2)AmSn#LKK1PfO20@Cw%wC9t^9Sbx^ctS z9oaQxbKsPXo?qopzwlJV<+I(>Ua!B?)7Srq+lq$Q^FK-6ZEwmgZ~i^#nfb-ro?%>TXSqzqQ8&Wlh9Q7O6N|wM2kDGmOY)}Wm}c{aOonCPse<;=7(KwTh~mF@R?b3 zA-*7@;LOgHg4%CA9`}FJy`kaP{1UsXtuy=4MxVgBbG^2o3SYCrdvHK=?_`fNgCiR+ zRu#O_(beyy@8b?h<^3~P*e0i*xcQOW8>8x0ZQ1qBHvd__T7M|6xOh5ZYs@~|eO1r7 zKJVx0{_(B2g2d!0wu#x%4Oe?wXP?{ZyX)~)pANg$mYMqQ*-4Q{n>jYcYD3wva~oY^-IBT6D2e;_(6D(1?^ zC2^Lqe#g9ewAo6orY*63p8ns;QNE)lKDz$NU6C7aP2A+ZJJ0*VrpPVliqabz8a!XO z-tFpCe<|-w^1S44^S88(?DxpRdv-h$dhe2c{hI4+iOtb-qf#$#Ek5ng?7QFlvG$PC zZ_;NziRt4 zw_i&}(7)%ux_wmG6U$=yFS#|qHa6zr$f=k16pieB-8azZ>5hlWUd?#fwj%9~GFQ*` zF&oxg3!kv%Khvi8G#A?92SpA!dsoWr+Rg6iekOi--i?&?~ z`+Ir9pq0({CvQ1(Z=_ek#e$pdlYOgvN;-cpe?&#=NvS7q4s$CX>9=Y|_@=FeGjjc! zZ(O-JJJR>eKKoPE@47u<{nEWxhg`CTzaU+BXxme>Pjp#!bIhd=Bfp8c-`1rn z)HTpL-D6VI-lAct&9))gN%g@!Cd^#3<#hPo)$>Pu-mxluSM0*bf(!r29oss?$KCHf z$E{TpvUl0POIcq0n^Wx2xZ57kj%=IzaQBF^tCs_!lA>QtbgO80F7)&Cyu1178hilbO{>_{96oC8-=n%&nlh?m6C$3CJDdGe^EvNV{MI?WSRIfPVgDxOjvK9( z%Y)sPIfOaxT(aQ#UgIkRuZBgrMz>v?Q1+SAML$okjFzn8chem0-)5%NSh~bc*}t*N zuD6tVlfW7e6*C0_IVdO4r3*_7*-oR%D4_(SKifvJnH@BD1%9U)VC zAFV!rEjar7sCTcvd~=SY)o+g1$<`YsPp3a>?~^&W`YylhiM!YT8UD$JlM}kTZOPpj z=N@_Qxr+4IhJBvL{O)iWU-x9*jpUr<&kF8s-x+*=$gLgEghni$*LQ8*n#8-Kzm2^2 za!~Qt4vD_=z2~-1DQ!;Av>i-;w_=fZ-neaR_lE~>nl$+zkL~&47wRLr#FnQz)c@|W z&g$jn*YHKYV@mhrn7q?1tNTRFzrOunVXrK+_1}4GtgR)wBjRjAzoJE*7kv--jO=tS zFUdG+>yg&AY`@3;F_tw6;j6d&K5eT{Tj5*rry@Q$Q<1!(HrV5Ke=mr+jCx z&Nd$Km!zf7HbbH8iA z$o(tJ!d7fuHFKZ!MDgB)-H|OZyX{A->)fXKcY1s;zcVH^!9FIZvf;s=+h%>ZB{S@` zl^H|#wEdd8=d4fUlkxB8RkhCb3HJ4~++7)wHQDZ&x~gQa%U{Erm%kJC{kGQG*Sel6 zy?VKO^c`o`+8(R?!R46WbdMLB%8EWroo!#99akUQefNwfH;)NlxB8V4wH+U&e-RrV zdEvr<+7E!^ z?(OX2_b-oG%|G9mo3`5?lJ!UJg0BA4wr%RQD{$R}F?$^cWp$o=FY>RrSF%?$-{XDS z&&PRnO=M1nJs{=wq9YC=gFaePzw_Z8p$mKink#!>TNV9!bo;fgWj{ET`fc^v*?L>a z`LtqNTE^Yg_gR-set5&N@agN{9yizJv7GzjEK!5vx@H|{oZ|JlUxM>vwMDr{l4qy9 zQ20YfWdF5`Qg__8GcP1OXiV+u#K|$^qu;r@{N_@}4SxUia%t-*2}}2}znHPP>RaE# z6Q5jvD?E2Y#)R!|=W@S|8ymUzoHb+AtrpKsR!`S|%PtH_?wXvIU)0vwuWez>jweD3 z7Jtz9rMkn3*Q2{dB2|TgKU{;o)t}A$Hq-tdmw!IrZ*>7dW7Zg zxzIiGj@a#K&(x3dOtS8Go7nJh{>tQ5+tJ+m=Hj4x=l{6vej)Sk0llkctW<`(a_)qPQ8USZeN zwf5kg^|umxJ~r!%Eyu!cTX|MeXiaNB`)#Dt#m2m~ZJT_md=5K&S1~Xv)s~wwsHEC? z`f&U5@4}94yEuDA*BdwYUwSF>_85z;tnwq*50s+GZptc}n);pXr>t4^N4v+&=((jR zyl{2rh+ds{r;mtzJt98tK+Y>I!+rMo^>mt5?U3_d`_n1U+}P*%?2wkyu9?2le>ooEn;4YyMqvf8Bnk=K}tZrR#ue>iWVjlMymN5dlRMMZkd|s3-!8 zfFPjA-oa6~)>&7zZfmV|Yu#E~_tsiR680VzjVF>FBGG?EEQ9G z-t}D_oUS(2#Zp$$q_lckAN`J=mgU5&G(N_CtN#ZXtnBJxbl>g%u~*kWa%i>Yv+fYZ zkoFrbgLaL6i}|a;J|lh3Ye-o15&x;q_eb?6^)~nM2BU_!8dIG$pW z`ZL-V%3WQrW`ugFDnr$*4ja~LL&@F5eaboN5?VT~jaEmK(9&o-X%DHRC__5waIZRF zm8$wpovCrxe$-7Oj!>RbH_}A3x3u*%F6}GzJe5IZP>zx^?egIT8hy=rjmvPN_HW%V z8A#bpT}f+%KG)M4s5_|n6i3QdB8(iZ>l~gqoUduo+#J5DJ*7KF{zC{TXQ@uKU9@0Y z6V;RYfMP)jC-#wtb!W9b!w-kshfipOb)JyB$tBKF7E%kTdNfm7HPxMZiP8!=k_d8( z?y*)q{CHS8JVjfn{h-@UP9^e*Wt1X{Gj$1dI#o$ILNTU1gKSR(c~e)f{Z0E=J6>_|)SV*d5E8(1+@>$tigUAAs5WcmIkl!P~B7xec7#et$G#Kc45EpZO`>kWuoq$k;|%hM5LAmpf* z5Zj6K#BJgxu^;$I^a&AEa@>Hbj?YlF{4*Iujvy;^1G;F)-oy}DgdSxs#f8GAG!oCC zeH5T-#zO{cG}KQXBPWxsx>Q}h&Y0W;Ss|>`b%zWSs$!&)XUP+g0a8G|Y&>KF^T$m~t_6X*-5YWTPP-pTMu3SVMBrd?rydl^1fm{m~iY0f#tV$tE$O1n+ zfls{2RZzRqOiqU$4-q?wL_pwBA=ikg%SFUpqK)W)QLTY|-oG%r%TV3YOd_(}9;{Ra z_PIsghx(OzavFHzIaqun4?N69#Jh>famIe7YM7<#66xPycA=VB<%Thv0`~`TYFVOY} z@YNN#C-Re`swlDxV`bJj@a-SOf5a!^2((m?zk;zeh;}}M`ACu`-|8I zz1G0J7m>@zjpTV~+W?4UYsl&rgQwEJz1skG$|I7A1K`Ovn0p|svhC1sK3EGe&xr68 zLF^ZS9o&f%5LbUfd?>-!p`<-&L(T(Fl)zY>0B2?cd0(vgwt)L4!ix9|bK^r6_9+=g z&LF3g3&?X2!^5NlAQ6!(3bWLsAbR=4QQ{J@1LAFfyh=uq!O-^s7~v2(3%IG`KxG9h z%f|Pz|bL=)(lv~p)jJ& zL^NE}4gLNEUN{bz!d9?>JFJeipsU~l@n{LrV+8j`{fyaQ#mBJTHiE6NqDx2Ox;+BX z|10$40QW}>U?4;T)zd(#Eg_UyzB6T&)Xgc(as=oGc53Jx&K%{(t zKHowVnnHyK#{N05=3cn3(>GfnH_~Ll8+3ldr2P$e$hWYYbd&aA*-fw>e*jxxcKv(( z4{|?s0~+lWMC~nzm`4z${iF-5xp-`S1x)0d6I*8gy;Dz}RcZmH*ea#}kWQyRP|3GwK z1RFepIK&DM75LU4?BfYDLX<96`=9~?){DG^R;caq0b&}J9QDDH^Pt^)h(^S5(;%v` z8W_3Bkuf(L+M%`Y}{h;77lB7Z$HiORsjsMdfSz^KB4DnVGw zQ3S0JUz`IY$4a!XU}NNQ!1@@kZ!M<*1_-$-a0bXWh8zlrm_&pX)=FUgbqK`PCWr+$ z@T?J70T~Plh&ik<#%d(QVj~0GB=FdB@WXnzVmw%(96Yapkzq9vvNj;%5-ryRSC4@e z5DKyC26w<3AO(ySxs$441c>5CCJ*FRs)6rl&~q5f44;TF^3uVw$j^jYlgJ~69zzBX zG1v>4xEI1}JnU$#&_faUryTB&HQLCoiaZ|35!DSNp8;pbBG?I#+eD8@hwH`AD^|f^ zjRyJ)Yx7WJ&j~ym0qbxs#17U$_d!c!3P1*WuXi4>PO(hQ4x!`>%&52du!e zhA|-e3DL+{Q}-PY)B(0=gl85+Aq7L!;#q;!)m%9Fas4C04e>)52i5SBf|sX2e20P! zPyx&so@eCn=?Ab8VvSL87BvCWV6<(3TSc~Le~1RG$~1(PjV$*S@E__&VqKXW{*Muh zb-zo%R=yBn9&j2ViWn8fac9G|joOhFU_DfcwuJr`e;chA_zmmBhG6~$FbdROz<5B$ z9;}8K1+fwcXZ32>YbHQTBbZe!w8n~8te3!=PBDzU9e#B%;LdCQe_l?8cZmE$z6M0E zVcjiqETKn`zh@G}VI)MC*SGT!6)Uj~BHNG~4teJazz$fCkNjCAenqQH+N+SbI4F zc0<(h!U}~vh;Br4A&(xSx>LX=$T@Bcen1ZJL9k&p^od+%mCy?SOrU)l^oUq-tQ(pH ze)WRZ=CBfx6QmtRi6;p1AGAPg+Mv$ci@Tn^7WJ7G6K)O7>IH0rEjjItprvF;5S-DD6&7T^5p0`~HR zK9K882s?5Xw8g3!)w;qQ+n^PCLJDI*TqUx6?Hm4z^Q=N#oBAsvcyxl46MO|Uc=x-TmgT2gOBmq7rDt1r;Sxe$or}Xv8jZ2 zPOu8&;G~O(mWU_rgu5Z@Cq@^d+;w290$5+Tb6S8;7sGD60M;R$D1d$Q*|#SqtUdY8 z(}P?ns2s8+On!;Hxs2K^lC6^?g{I_nk=$8B>g4j9w74bK$qVJy=!@qxuSMQHiw{ zVjr1RkPisejz__LO~Je2&=T2$u=X5JyI%Mmj4FGsaIf#^Q$+vHhS&;%J#h})4J+OT zzKsl3a&2Ju!KX0fj={4C@9hcuyeHTePix#!k*5V2_fWYMF|k-%kKAy`HR%qYU>$=5 zESduQOAU+~xSP3I}4N>tBBB=A* znK%~OAd>^)T#@HB5MGY(SvNcj>>yW@Ti{<={)D(}hn;LJ%nSAC;$ffj`u0p`2cyKQ z9^^Y8CP!1EX{Q*!Fjq5<6IDaodI!1=bnWWlD&OcddVM?>vn!(=NAg)Fl#N5KeIt7P z26k%fsSg;dshiZNdwHFAJI%7y;rU4>}*J=^=cG!-)3AKC!Z6!IL*h^Dcjh!cX`FdFSox2);RS{q#V{O zpw#r=YI#<3rlzFjpsL?wyd&3lZP1Ti={7vdo`!41ukusGR z(dz8F?$Cc3Up{}~(!9Xsvp$Uwb^lg+Fs~y2ak-;HM)5aP(;Eg~wd|;}t~}KEd5|z! z;$*#KWSGFWXfjE;UpJv}Wp?}*|AtwrSNhq8;|Pu7Q(b2H^Q!vx2#RzkURKi^;*?~UFA$WAAe_Db?=qlSJnx0`<{a&uhV zV(o+_Ds?F*BPV5hVN!ECd7N9#IYsn$gje1aKa)La+r%8OcVF^T{BXo!HyhsXt;Pkj zQ&s^Ubx-d<`VPiU29C;EjjYli#lh7z{l%t}=3b8oOK=SI20ZGR@?#nAk{S6wHvFNL zb4t14)VEzxRXfB3(sj+psQYYP{9nW$h(14mV+6H*kUBTTBSBQI+*E55XZE{`f#tr9koQ+q}A9jnXQ^X8uY~w95 zz~-j!*SM0HpS}Ju3+ZBh8At{UQi)aPZpH%RMMkljqb>JjaV2r(sxCIy)Mapaeu87j zlj&b+8P&gM=|p+irZtVK=j;#04op$++**Ih8p-YY8QQUOc7g=Y0sjOE% zG-@|?(wo} zQ7&!~oO#U+xwayDdTnWS?^=Ts#$E>Vm9~whrKiMKt49u6j#j&OL~Tx-8#uxCKXq#9 zp0tsom3cbA8%^V`;qIg;I@Ogc#m7o(TVB%5?5{1MCdNb$%==_)+x9yDgs3~UK~mkF zq+euw(6Df5M^h=p%db^N{a&U^=5CKHN<0)CYcJ83mYJrX6ISPZsyjV=k29S&hW18b zQoT+5qqMNen)-|FP5*NVrm=CJ3r$bUUl(|Zj;Dx9Qo9WFGL3UtFVr>77P2EHe^zYl zd14YgCmS-p^Fp3aeL)0N%t`-A@GfgZO`f`y{V#7HeOk|m8lkvL@?+x^;`fP57oSQv z9`}C1XS0ybghH(_Jh`y=eMbr-&-jATbB$%ITbZuJtU{sqg*V{p6+SVkW%*9W$F$n2 z{)}wFk<6&7o*^T)nzxlPqqn^~X#fTI!IL88zDNG25f*V~$EN zJ?&~Kqwk)VgDJ5BkK8>C-nt^r zAx=CY?wC@!L~JGtZ*$f&pSmen$B&6|cAstR-&&tnAbgR!KpNAtL*L!_w1H09(D-NR zOL1a#*1(@;8{E}V!Th?QDR!%eAInap@r6dYOY3P`4^AcLSIVZYV^sq2rqYvu!CGd& zDe!mxzp?i`+D5EtFU~(Lv`zW9MA#){>UdiWy;Q?ZglwevT4hh~;gKWfx<|c8(k)|5 z1?|s@dFeL9 z#c3UXGR7JI$$G6`+R`msBsQqL)AP*4c}`u#yQFo?r%$I*O)Iyh>kH0i=2wkYT{Y6@ zEvJX~{8E!3SuefVs3XlL8ZGWkcou)pyWiYP@w~`Gv|nWPWo!F78iglfJ<#lGEiAhw zzE?4?+mE-&wIXbK(!J1UGybFRsFr68fA-1vS}|IAh~>)Lz^Dh=xP{VRq@@i3x`*Rm z_@u`NB)su?G3L*nNyXKoPT`rtORd$EXl^qrad>yzvGPK3XZh}~4t9gHMW{+b7jXyz8?xRaVj7$#Hs#$$mlO`ueVXWhMVB z_#uB`GpIasz1TrIp4`1+zxZxhXvYH9_8DJ8z9e-;PM*DpwWgss`?g?lnwji=pWJ|I z+^d&1z-}0p9+o_r?}wd#+JKn)W%TpEH@#)H$K*gP1LQ*lNx+oN_Wq$bTDi#r>pl zTMf|V9BkjYqzGcyA2LzY0 z&(!YIY-jg!CQ&^U@zvWTH%lokXJ}S-3zkR|&&N*nl#N^@Ut4ff_$ayVtF+UMnaxWv z99DHT>zB#JeU-(%MkCj{-Hcq6^kLcHlxDK5oR;48*&?g9dY(F*-N-#j+tuA#Jy()1 zebywW+_OyxFy_yWf4zWjChuq{SR~vgVi!AijA3N(VxX2|RLfbJs-(PPN6%)Hn%OTS z_9gi)kC{H2I=k|}bYsD9neA16suUwD-Y)u+9(m0f$rkD1##E9r(R}eh!lU@3-fHtL ziqxVBqS2zlqMhxBXjI;9)&Yxub{U1G%)TE14PL?D9`%FUJWfs%EBC12bIN+j zo$hCPlX>&>lLs9dFPDZ$_STpwP0VZNS4S`BGlL|y4w|o}CTTuGpWHX~AzC+1A}5>3 z>5QwIDVZ!=-0IC}wEsCUIdLF*vHNc04XtPEcb}$IZ19yZ`z;Mx|O-7SqogV{cGoI!r7lW0?L!F<5joC{-w4ppJ)zt{!8i- zMX^^s157W-s|)y|eJPhqg1aU%5AhNWZ>gR%SIFezuqv~@iV=!ApCUr}p38ElK;>_R zOZrhkN!IF`t?IdK88@G1)$^ssPWrxdU9%@O(Dsi1gGAr>MGM15_jD3P^F+qUZpF9d zTG}7nGlmK3;FfCHXz{sYO+QEConBHeuXDV%%6xUDD=2?&RITY`i z@YLtonEgFjUwlPQLT$l;)^*e~yr0-P+BJZpZxwf!uk4brC(kShUB03FH&01L=kjc~6<<{YUD)O3WmIbvf#hR^-CQIKUMxwzXc@fA=dhnJR3`S2ZuA z9OAv>{6lKw6%|?H7iEh(MzefpTn+gnNgU}i+miLT{%cm+=igHIm-h7%1|xZ+^kxhc z)L)ghi^tWb4#iu}^9qTj@tXo}*z_xRNZL}ug}>xIX{3-et_9~Z8P+ja;V7OX`?Kwc z-ValKg6k3|L``#RXD@BKo3ltzl2Rpc?1|H_;T7ncD>NddUZx)=%F|I#5e3+fWor1oKN#)je#khyH81a; z&?MDd(yf@LcZ!!_KpR@rBK*_=uFtGCai=u4t7|UURFBE@-#62UG-0 zrd1s6%4g>~n};q>`T&XGk^1Geo>{(v1?iv5^ajEWC-4%Op8fK=AEX%)v-)=$nN_HF zZrtv~>x=EJANG$gd7FGgIKH5*xsuq!4PkrfB<+lfIpU>d1M(_E&J33j)1=jr1GBtX zMhyYkdjv<)&d6H&-Wy!ut<_sG&{+SkG+6So_NnUSn2-g%vGe)Q0|IPB%0-e}DYn9Y z@{$`fb$@Xh*zj-Q9Xl)Ei@(T%+Y|Nur+7jvHmrl z0BSk*HKvsYN;cM*D$UJ@=F?*i@TUYd+fLD3E8PO|Vwdx|E@Jo}_EFAa%C4@8sz^zc z>~8B*MzBL)U?~5$m`3+@JR>n;9p&4(C(YoRJZQII?CFd(XDSqYt;=&GV z$GIW;ldYWy;d1wHBODjEi_v5I+4%qxAr*M&ks0Wrmtk@{As_^d$Vo!124|Q#2;ZZIJ^_}ZhWK9;-rbU*e z_a8QF;koHG_Q%uJl&i;aA*uiHGX|j9i z&7zHY&JE+V=h^Sspt9O2sVorBlQp*XGv+$158R&kIy%W+Y3$baB;QsvI`y1*go4d9 zQ38G|G|WPalbFf zHB0W?Uo=12CdKlrXUApwG@c17U46D?M%guSXyvax*~S&K9)*+qXUj)BPNIcWMP+yk zOfnlQM-M$_{miwd@9XKSxh+YQ&T1S>>e)p2F%r)vbS~ms9_c>#$V5UGeIQRSHAyco%u-#w5e=3(gmr88x?|q9`jpwVX33F>K@h&Dh^}x$ZA% zj8w0|K)cquYthB{4+$B*Mpm-k!s5ju%IBW!2X#XlZ%%>9Z-&n`b2~QFji@E$YRVpK zkNJW?wV!0hEbiUTJK|Sa16kX}daX&CpY$&nrRvWm77qT=)zg`*EHX?Q-{)LC+jhE< zg$4Ce$Av0Cs1ZG1bEjjSDucRDZ?oQiv@yB{RhXuccEC7(+<&$|+W4CFGeeaB$_pDK z>)jilx5f7;RW~R+<`HHt&5cMUljvnezmCcn^P8pEq=~UXwZHp|{6zawIjzgJ*I4O0 ze2*}o326V&X431KwXEC5Q2t^%jrWz2q5h+Hb60Msx8kQByZ-aa`Es2hEp0 zf%(Y5lappFH_l?;XM_yP``>pLD-3$(_6-bJtKJM-5KpL7`bzpMdOBm0z89;SeTtJ_( zdp~t>wbD~{TN9!?NeKazt09xg{F%94Z-sua{tf13+7D#3=EBfq<b^zJgpGk&6)k(V_VD$k+gLl;yu&G=yht)9+>%p+D%Q)v102u2CRocWdUg1(%( zliWYdP)}5CP_0punjPBTbSKG6#Cu9PHH)@@zMn3oTQJ(_bLj%=9KuI?Uu~i)9@?uC ztG5mp0i?o{I7&G{b)h|_mD3F9W9drTZQ6ZmJ&~b%KWw2%P@hqUY0eHa0Bd=lXs0w& zPtiWp_R>bvUQ_v04mFlChqw;qZC5lO)B^QU&8p!$+E$$bkwE#4`V-)mU(w=dh1B`f zV#;jFc49d>plunRHaw__A07pS|D8He_akyB*QpLPS6UBs7d3-oO4$o&%W7SV)>3v}zVn2xU3*P?S=#`8E`aRJHlmoI0SQiv+^L< zx1RJN4M@3e5@5TSkl8v1xXT6t(Xf94QVF#!M?tm^wW*DXkAUrr1BB-7jg0~YcaHy}sVPkI0v>ja?PtRO#lojd}z$bg)y8RXi-VU$cj>b`)Mm%%GM_-r3| zEC}rT6lS&=M(_l(V#xY65we4&kcGSseWpRyZXVe88u2sOAp>xYKL8^2N61oEK=uz= zfy<#!d_9Lu=Qy~}L74AWuv|XiFc*V;H^TisLOu`iP>8s@2%Nx*;r(w>i;B(Z|{LX=g$f=cpGk*FFWoidG{fFc} z80k5%mlS4<3~ z?7ro2r3~_=(*S9C1iY{nW|{^uFqveNW~3LahCIkjBl|E3aW8>PYa3|`S=z-ApB50A zkI8WG>j-ijxfI5t0GlD_;z&SHqiQZ_i{kUzB}ndB&PCYcBxMYcFZmX3zi zg=|?ASX(w=7Y`WgTR<7RK%Y|q>3RYo{$lERe`|1O_0TFkoc#oP7GC-C_f0Cv8$(60luM6FT*U``O*n+3bG2%-fQtjhtP z!iG4-xd%anRKwjKLX19u_SLXnK0%ZUA*w#YJ7hI>hV>EzzC~q|F8K60tc}mmTPp0n zsNtRkp2Dm80BJoR?BoMz3Lbbf4SKx^*y^_sPp<*5g6N`G@D4TGYr$RH~ap@BeibB53mp+NZ-k1mHW=Cz=Ce#b{PR#Jz*hAHnN0%)bCein^Al(v9mLxhA8) z3JwsBePEkxXrBe&6@!fs$MGF=s|K%5hxvHJS(yki;{Z{Om^0K)Lp_{oIIj=~hs^hg zBQ*wFg~92)6(Ye4=7y*<)PhA8M%0o(L=7^@J3~*d(BltK7m*03l{0*YwG~(?fcp$` z#^Jt-+IE)U)dcACB&@E@VBe{57enY9IZI99|HvYWOz+4Phw7(m;qH9cV-~`CVFDfp zIsQ=P1+g#4)=h=AL4$q475Z8QBUlN&BO(V^KPvdt0IEw4dpRm`A=4)!noPi|(a<^q zMmh<4MeJiEL`xai3Rz`Qg{T9pfhq?WF(F_tKNvd)_T*BCdpY(-4=#bIv4R<(8bUeTzZAxS-2PY- zg6dc0;144>slC5N?HI6j8N^2(_!o7v5szF6?=xTocm@$*KdfJv@omNQfcO7~_)LRq zTA>wU#GZe{4xtVM@;6U_Qy1BYJD??E{c-iZhbs_c`vu-Vg~*k{e2rnG$j!$FW>7iY z{pGjFLw-Bl1=AoRQ3VIlZ7qNmGK9750gvtq=(+*y&Is1r@+) z@SPpBi-zZs1Q-J{2qJqsDu`jkqRz-L>_w=WH$YB+Rl6J_+Ye4+H|SRfR)GxTx3Qoq zD6-jW;3`xCa{xbWgjkG#E9QVDjA8xaia{nx7R&=xTM;#d+6LYb*Q;TdTLyl>m_^2W z)G*R-L7k7mJI34&e|VW+{GDJ8T)MH561Bdhs$EoH1!nhm3jfoJnQaDT*h zS-_5fYoHaP3l+Mop*14mRAAL#7zeL z9a*rQVMnrq(+IK4-_=wQ6^~~UB2JN+y9n%!ETOJo-I>r<1@BTIl8V6RdC&`L#MePQ z;OYGmVps=z(s-~nVxqfY4@`xq`Uv+cfGbcX<0HftzCOYl!#!*)oJFXQL_*73uoI`j zs~lD?YIGw?Ukuk`g_a|Xz#X0;@wrb0_sN41A~WfC4Y_uh6Y9->1$&Kw6E*=n-~m0O zc6KRP24{z7FdKYa4eO@>K2^c*6hH9l2Cyv7ZUpQ_sDy&rVRW#`SlEFEp=CB$4xfM) zL&R)=oz@w88G^ebM|lNA6Y6_ez+PMqc0=7e)QejVduK2_(RzSoQR@;bW3cK1)topG zJ;*AJ+96yxIoCjR;SPsSI0bOFpz>4)L=Eyn<66cQhPJYS(c&|~T)0~wM1TmMnm)sb zQ704kLew59fKh#~W>^f7jkr-<0oky_+y)=Xz^YBqvJ*bRnu;Q@9~XRz6_IFH9at5s zE?z?~xT=sT7qQR%@LbUQ&8~cS*82hGh0l?wErDxMA5H|UI{U6ejOvc2Fvd;r+`b1| zuYgrSgGj)d7u?s)A@coU^&ww9@`(GujAGzKS`WK-DD-Osk$|-UgAn(qn(Ff{LQ!P| z*_oGu2i8H`aPS8M_O1$;g%m8%4=W0}ZSnUG>KjEyV%r&7$zkUA;py@^SnM72jWe$VPi4bhup$E^7PV_}r}zj@4$t7% zCjPp_lQ|9SSq6Rm|<6ljSo z(OB#B3|gLmUy?_`zsOSF0OQ8rhYz6dDi|;F%Oj&}EqwO|elK2zb@K_vhc%D5H+_VKr;lPY+|8-ljzfnFHH5X{LCyn;B{nXpqLD|I2vxClmx)&OF}MIeL(MN#7e^H@ z7W6m|e2J^s0d~JR5Z3{)3i%KV3n7k>br&l-P|v^=dYl9C;tA0(1AOEJe-DB)W;OhY zm|)bdMav^wxy!fJyb9vW5qh-*za!q<7xvf)xYtPd_m{um^)J|S2%ZMR;1~8T_&16@ z5KXAAi_b}@&13_k(u3IQ0IT1Fo+T-b4D?EA{}Ca z4QoG^pio{@^%$?26uo0~16{yidUs&gbcIDW z%^k|rU80|36pvbv7t)w! zzc{qa=FizOCCb!ncy~)(g{aK5PSRyRyoEZbvls}HS2s;;HtSrhspou|*giYkGk5m0 z39p!cb`(~)!h(6;(m7a8q0s8oTNJ^~hwGm-sk>Wg7cIkQ8hc+^=;|~)vS9FdO-)IN zm|k;UVNHfGCsX-@Purf?eXXr*$yK^>8|@!^J@-HC$)6NRpV0DDtSXdCJ~ufG-CzXj zX|z+j?Hh&FkLtE{ZlpdOJKoK2$=?AhXFWIF-8WF?RUj{TS8msJn)qn&fl)9tuDzya zT=maQa|i$7>P;KryL4HM&uzQy^uHTVeHq9Z{&KPYl+s*}XLy!a)pNb!aiwd`I=Ksl zZ?(+bcbUhsp1FpjH}wsd@^a-l15%rgBZL>LS#O#8_jXoIcSTvfy6+E;-Sh+gsxVeS z$kf?PN@GMJk+r$tdClg*9eO8NTd8+@+ZqZh9I7U_Jtup|9-MzHv@PtBXQt(xfwiUS zS=TeymON<7Bu5%$88{8Em;YXERX(ToLysH#*0gg0(NXV%6*Jx%BsOg?h)Yk&8BsZ= zf1}=g_B6)d{RbM~my62{nhy>CYnkiL3NMX%vMA8ne`tg3QD$aZO40e|Q@Szi=4UlnXlvNj91H4Vg|Paw^if%LE02EBw$#rl zc2C5oxd|q!_OFGHQZ}X!N(vMz<^*FG))DnC$lw)9467&heKc7*%P;gpTxH->`xm6P z!ZCAp@{Zi4b;mXTu{pdPnxuPgO%pJLBsa|^nkKCDX^XiK`$%pliriOsY_E+$KLnK zi;j=0^|@&k&|grpH+4eF=c0kumDE1oJ&q5VCeNsNFMeCb=~!s^@AQpJS&5$Ej;?DB zS2p~XVItg_U+Jli)4?`=$?2N|Gy`+D`!ZTruikG zD2Q*KMM$`noRx$_CsDOVvZQQQ`%%4yDMy0L6E{aT%sIlj)I1@tTevu_Oq$zsT)&M+ zGx$-N-l!|}ktnLUgRjiu-IJntiI#!KY)@+T${6YEMX`Aw8mKxYN61}HHWs{oUaohj0@ty5+3h37Ij6?%g`hDU&n&8)wz?hjxxeOos}6Kj>aa4^<3!Nt#O-1`1C zC9D*N=u*MRmTux1_Zs`IZi?KcB3QhsjN9?v@VKMTvbMx25gD#~4T*-=+2+FN^!a6e z{bq(1#wxvM17-E+r7Ce`?QB(<O6z-<8rT`P>DwsH8m&toifgJx zgM*_>=Rc1Al&D;?ags=NOFA>PR&X@;#|D}%jnm1QL#gO2s$43*Sh}b+lX1tvG>F5O zMz_x!ZA`Q-$#Vc6teuiSyQ%uSjmH@79$MCPs+1?bQl;u2ZN_)^iEiXy2o~Gr4quk> z(w+*!b8gga8y?MJa(gI6UDv9fh%HOUK*qPqPA_m7|3K_HkJ=Hg?HBW-g&oP8OZIi` zXIAj88J-6;L%1wf{H}6LU*pKtb0ee9CuJ?`p9231Q$9ZZpujNuQ_XvI68kN8C2dW& zvf4}XM*6r(LW!_t1-wrb$E{p2*{q>sQ{ie+T5`-+_s*9Lp7Cv#M7^hlS+-t0vGPpM z0TaVH#SwRsPAoq&{Q$MCa(zazV0zZLYFE{HBL(0Nwm}r$knEG5ZpRLP_`I6{p(aSbA?ILdu zd!Lroez|-G@Gqb0v}FJ0Y#q8d>9_EIW30#x)&k*eTY%a4=^yk2&mZlQc?#VGOEvK09h!%{~} z-~=2O`E1q{R%}B%Q?c2#DJU&yT6C+Js9%?n=7KNfY_Z52n+v?n)6C`~;r zJ<-G0ujVlg7Ag}P50omzQ8gw?a&-6nx6uuW34vXcR;!nnHl}V8-ph4p_^i#~cyMo1 zT)Gmf^dw%g%GN%{L5H?LNn%m7cHR_Y`_}lp*}{$#1IdtLrruLtmch=UM@@%hZjznV zrUUV#!sfX|+4BQ}lkEnF#WMG_Ji(lt@Vc?UO!*7<4)wZXW3`*)M5#r~N!q~V_JD*$ z{n!H@b|a6rXXmdG-UU4Bt4<-~FJ8N0pn6J+Ty{s?R@vCAH*%5Ngvd|)Rm;v#c|kUo zd!}C!NC63WQ0>p|;mT;z?zo!QlEl)0W*XJRcCCMN!o)br0@bLNjst+ASBZR!U&wvw z*1U174s~_Q@iLwGQDt_Iy@|){qVRma;d006UexT$q>LQEV7;sQb4bTZ8=dRa{9nfRy$-a6YR`LuNb8ivYzowm`D2-0}J>f>HLOYv_sZ*KKtW;NZ|O6 z9oyAoUwl)vURYYd0#x)EUKqPdyScrz{4ep&^5RZ^HsATL$> zU$IkkKg!Qm6pIbZ^E>XdewlF~WJA(_fCSvj+S2eS`xv02jb#yiyA8^C)AZd2FEyMj zwUP$aJy-QuUh+B<>(94YBC@d>+9J7{GC~-e7ty#w=g&FC{+;|8@Tl7)pUeE^-TIN! ztd{2U?V@ewlAK-5+jCn5j;Z=mKVa!S&wCCymGzCKrB5V7HCL7E%_BS_WB%ZCgVx#p zpl+3#rEU{E%L%S;7#6XW?3KiUPQ$7Kv9~OsP0D;SWo|GxDLv+k`v>EltYZFJr z8!yzEZR}iA*eC22=@m!H|DuI*w-_!{C$=mvD-uUke(H%Z`F-{(*b66x9&tQDy9C_g z?*wZzt*bnTXhvG@1A0vlueMrJE~PYC5xF)e{eDVlia)rh%YxlK>B}3@Ls30(5>|uzsl!r{DXuoz9+}}_UU;`_yW ztb6+%OQMsD1YY^H=8=E|%wZSl_Q}swJQY7G^Xlj_EOe}1R>)r)={EZX>urNkjzVxg zZL{pJzN-e$c`x-U20|O$OYce2YWJ(gj-f619NV9GHo)BGjxrYTsB?wu^By<0>5RF) zoEGwN#}Ab%u}Rs}_AB~xr|B)-#(x?0kJ~StiOm;t4+{rU^-A4(f7d_D3)dG71~=A~ z-jbvPC*V%=H6D{=7V+N%F0-vwKQ7gzvV?6pKh^gR_p!Y=*NHRmT&NO9%M98UG0PmL z1yT4mF{|CL8((Vukhe|vB;~63cSQ~J0B@7Qw4u#S0Wxnu0v?4Z{5tPe)L(o}@Im{x z09<>VRwMYBeW%u1(`mGxvy*bRE2V0xq^UHe#hgCIt}`GaF(%g4vvuSw`Njf6kv3WN z^>OFljFY@$h9_0?o8x5n#KBd2`a(ypar2Lyle9M^W9r|8UB$@saKXwfvRa|KZRE~X zQdNp=)e7-d>5-;~6!oOn{zZwmWprC-b)lQcA~~SAMg9-{4eudqq~;26Mf(E7 z{gxgBli=Aw5oJ)zG3fZ5wzX<^#yWv_rf=0xLt~8u+z|R_z+k0I&Pz8p{y^H3ee zY)w!uiUkZ-?3WPHHR0t#cH04J3wNr~%Hc_Elgrs%(2TP3UU)2aZ^D$tLDrK75=(ND4+%5!r#8PP&vHH*IqDMR!U_{fbD2}e zX+v{I&N5YEYDCejJ1kAZtQ?wfQ(9Z;P_IINKd)cUYf#+q7%CP^Yi(4^EsH%b#Vk)e z9dOCUW$2QmGR0XKp7(R(Ro(A^N0pHs9T}D5CH1oD?PK-T!0P;vZyD`0*N%I$IW>2M z@VC@0(u|(Z`pb=X7*L1on>=L~Bxh=3m4W7N9tJTJ`2Phu+ip{HN{^?S3Ks#x{Uhxr z&N~jB(%BhZ6)brx`>`#Z$(S-W$c!H!)9vnLV$-%Ne^6+eS}ne!C}W=DeK2@D)X;QW zwpH?``pN*$Og*nRYHHH2OWW;pw2@`^(q0HoXWy+|p*h4}#7&~kRrFMKi2X{(wUp6j z+QlrP@lE2gJ@rj{+Pm|Q2yZ7her@QiWNhU@(Su6aG*R}Wn5c^CyEn4btuS(N5+x*N zY7`My@h-hb(3urqvp`*9#NlqE?oilNOT=l?7ftsl$&<|eYZHEt%URH8_PjHvaIwfE zd0DYQKAT?8-D&t$^76=mJO8rRKYN1RORSw6v$Ni(lnnQ=p~J9Ac*&yb-} z3)hbB*fXm}EN+!(8>W&|ZEXF*60(8e{*{GV5&5M>bWL=xNYJ*EI+bh5a@LG&buJ@I zGRv6?HaF0P7dATS*RUzhi_I`1J?2c~0IN-BN96`dRN3eD zKlQa!{|XM{7e+O>ec&u@zMi{MSeANEdc0?}{sW#+-%fe3QBwL*qN#bQ6qqM^aAI8f z&4D6YI}KMBk+xcRAeU%Zq4nh4;7p=S>N*Rk=#4Tl2+JOFC<%O*D2+bjKG`H5sw+c9 z4^sC@T)Q{x_4BBPH;0ZlxyuH{eN|8U?MGS98z1G!e;NG9ezeZ2d_CY%7w5=puV^l? zL%G+f8x-NyD0A(I0FdK0W-ojgrVcgY_XOangMp|8!I?o4B2TUMmnx}`;S zOZ>8OXYZa7TjxxRFofsAps7C+!4)UdGX$!vvo+_{hcXkGh5G2V!>rRdt(FOAOYG*G>LLt94z{~H=b8WeGxPg1uUTfExzBy>J$=tP_uQNBl}>P55%iwT-F<%D9R)`-_GNdh ze#YQ!HWj$ zAN%?kkA4SigPX?Wk4)*6Fp?uPW>#m|SG&7=4fA-w+}!d*Q-b|Xui_B@UU&C>uv@2~ zzNUYwCKpEJxaAzpZ&TJ(JJi10`mo1N_Zw!z*vmnnAK6ZI9MR>w4r%`TO&jXwl=myS zUHpEjPvzO#Rt`jb*HUG@Zhgf1vRjDP>;8j+?+RJi_8C92PaDovt}ee+e!6l|&A9rD zO_%L=njf-OSZ`T3xxMf4i_iQ(_cj@<81AwhZrW2*U71(8w)$l4!G`uN(MGiSUF&$a z&Tfyod3fyfdeHYT|FQmedly+=Y>BNas@`1vVa-c*CmNn^e#0JPdc~Sbeb~P4zqrry zobCOgPngds&s@$0`=RkjT~zJ(x;6D>4LMBbBV=YHKi&3%){)1K|UwooxQ z%KWlDt?6V#K*QvQv5i}r4m3a5`nu7_9BbX-KHKAfN3O?2&#|6i9<$sWrXlugO|1=I zHgs(4+%&9tX3M>;>Go1bKZ}psGWP=aIUe78{NR!9USh2@y=Q;E`Do+IjkB6|HQ#Qj zYAv-F852z9=6%-Nc+dSjmU&F{_{=@WI@H{3cW()7TGDu|vAAhROLJ>~V}fI&=}q$~ z%RAOO>rS_1H-Gn1H^bV-a-ZY7)@Pd^YWkw-x8`20Uy_kJ)bxOPyJfz$-0J7nV)b;Z zw?sh1T(cZkqGS`}8?e2EcI@!9%Qfc09{?hciW4_Va+T8MF%jYef zTMJq%>^VlQBhXxK{>IYA+Rb|2vea_RJjJ}9e4b{*(+IN^W1dX}tMa^AF}j<|EX8?O={1Qlbj6kw#a8s=W5U z?4ylR<8Q|Xs>v=k?>18e+8l4bWd6du#oWhyoLET`xp$Y0&Bi!mrE$X8KwR`;(-~6> z*{e0CGOEQsPwZzPG4C2O3>Hu$_NeidagN;8D5}23m{yy=G=E}#o2=X^&rNqo0aqM!uO|N6ABzxZY#h_XV*}Ex@QDlBTMs#U2kt3aQtZHo| z$=tf1Xwq%sg0E6(@&K{JVdQ)s;K}b2j~otuP7oqlaUHBZA1# zbfQe3n!Y7Z?JnYyK}5JzeRB+T&RFIX?nK6D(hNo)OwkPNNZSq{V0>eY#R<#oI$!bu=xp;D#*VF2v=@i+hQ^4Ln zvWM^D`QMU@P)R&jXJ)E~n=+47`S2a!`Y~7xAsh2$p8q6OL@yGjtLCXRp>+-UP|9&S zM0M07WI0U(vR{MSH>e4G9xV70O|}AqOkkjTbCbdUYe023l;BUVuQG!B81a8Z9(AUr zFQd9j#MD7n!79_2^tm58A5G@g_fXn)Ahws8Q~;}NpcKscq2fLs<3vuBc(DU2y*-B!_!@;y_6b>N* zuF7n&^tTU+c?*m>sMx%jmfwl&TgN5J$g_T=|dZe?v~eXSDx^ z*uO8cxs%pY7+)vyISSx3<(Az*1}GbS7Z7`ww{{M+2j1hr#Z;c}3ty^ss&X|iL7zwA z*PqBgIL0%I$s(TwO)JlIG*SIPV&jQCs}vcc%5uuzJWk7asMHSiE4OPC?>=M!6mwP8 zsgn4sy3DHn8V?m-gb$Rz91bPTf&z3(xiXnl>n_*Xwv7Lk5t#<8LYR#z#NLYx90f)k z#QJqcZ~z!^gKt%-v;e*;Cv$cIw6PjUjR!{^Xwk~3bas3N{i&9uMxop_ou1nbI88*# z_oH1MS8vfq6%LhWeAJnvbBbP7Yf*U(^XYdY^s1AlmEEgMB2`sY6}a2nnF!A+7gRiR z7j)H!=c{U)@^`YCSveRw%*>;ie>@UXHM&-#5uPWPp&wMI>XynTRK`gP{VT6U`5u1A z$+_e~?u2GnLRW6|shXXVi>mvX1nkf8{8UD6rO%~kh5LA~MbFhUm;caA%JVqGJB~KZ z+?Pjgg%>;|eo#_hnsO89FjpIXp7Nyz16y#8V? zN!%l?cY_}4pnyJb=-p0O`IDuW$n*b!PF#7=noqS878&qM02*p8_?iZHw}nGWn78VN zilX8ec@fwU^{7sv>b8%g^&B*XD&I!YV+=ClDDYH8%oD&*b%+ZXyV{Oq#5$wcM2^Zu zMsN%oJq$#voNZKft`unbz$MZGYmf;289^B{R!&tCEmgHJk1>^Tk1`BHkUk4|jfeB4 z?-F>ja!OCYFBfUk$UVjMtLn=-C3y}#kA`0Iot*VI&rhdaEHg@BcFBx39xl{r$5Wlu zsw_ZN%}k`vKC-85xCyLSf?^_oe3=r#qnDWPY*&@6ru-e(3UnR zY7^3E8T8T#nWY-F&;OnxP^)c-868W9cs(I(P^QSJmrO+Ey~ZaF|RcNLSOY1bkM(&kmrZoW+aKL>2fl?CecpyBZrd%m&$Ld&F{)_SG~e)U>Xgr=Q48Tk*n@(C|p__PW4{Xfsb;dYnWL(Mx`_DbLdlNqpwBIZ-vHH z8`BKVRFANZmnt;Mt|)L)Sw8t|!+82e+RuU>yCT_Zd8RUrt=t)mB(3Ec2C!`lW@n@2 zTzPo1I|{+L>J5v^wI@K?^2xlFXQo>1v!Je7U`us7uhL4DxCJlCLh*wtsVbXw3iL98 z_dxikl`E?EsZ1=|G^xBZ<=-h|RheqJ%qWNFC-ZbS<}wRxEd~avM6MkISLsvrWMyHh9(EG+ zqkUAWLcNTZQ<+&icu|>H$+WK_YqAp~YC;NSGBf4Xb%P7<1P8N_;i_(}j8L5quG-$- zaDnR-du743Lt`w3YnF0He`uiGNwL>?W;J|R$9+0mK=pMikn=+rtMcMULx~0ars~tu z&CTH6mCc+64VN<_**jBcJ&`%-toRgGJ%7+sA+)9Q3JMwNS!lBot=1bZSjGq@0u6)f z!qQdXU+To&6l1_tA zEpQVOZXvp38@!;pvyF`G9AiCCyWY$**a??(u$ReLC)4U~^vpEwYK8w)DPC5Tg?4>_ z&p>B3Ya@{B2Am$n+LJU=RbkbBj%TFGPwY-R*)fZspop z^ydknb&a_+fh$#)Ry}yxHL7ABLd&jTOFHo|7VfuXS)O9dH=R&D3`Iyf)q!j64O6at z0lNDy?Au+~m>2lf;MYWYSKVyslVD`PXl5FMU6SpD>OaUL$@O~VtahN-nPCxkIatSO zuhtZ3w*lDy3a(J1Wy@ETkXGcXML}#`LWEy6KWsA^8*>NFE|h2|0(G2`Or;gU+8EXD~yMjwFL=r87a~qP5+VUYgT63 zDS3ny+(B?Of$v|jvR%!ryy0BgJ~jA3US?3|3&rJ+#?nfD63+>)vt#<_}v5^(ge$EG~BqO$u$02t&OL22xZB@nL@>7-X z)UTGKYf6*G#e7g42>hEj&Hs3IfbbrD+xHYtPMEQx56J=>N7woY< z|8_Xjt82g8-Amf^G>2FD78d6nFMhf9P2;HbE%Wf^(CV<#w~JpbYg-@eHlW?yJ{3b- zhOF<|KCq=}Y*Bf}YZ+e@bf~@GXfT~?Nv$a<8(I2H`A@ZQwCzHV5yPJzedpi-ouVyK zWivCMN$r@qx1@h#j3dj4X-KZ9D89G&a{0SWFZe9zI(zuz6V8wB(R-R-YR%T{St*aF z?#a7dIadHW07RL`^&hO8eveDb|hO(TwXIN5qW@80B}6X#{DEqk-2 z#4^|PVErd0ALafpXJ1iz!|#5d_wF-s&FmplM)!;MK3?{3%D!98iI%)q>NZ;jyYI5s zR<`8%WG&43zU*Vu+>XY`7w4>+_wm@y9a9>A%dp+-e&cXzW~raCz_Xp(rpAlK0aq|#er?S9w{ul^+;^bo9(l2);;9@fVZ3Zq3Y<|_tPh5tScVs zXcszY{EfxgOUF+h5^AsaNF5W~<#J1cQQT+@^!dm0Y;#RE zl}8t*4}HPAA%Elb>*vF-B;O9IJK<63`>wU1=45VN>LY0z3u;RxkY=gK6&cK*>@8^spMGI zz$UMs8Y}aEPpM42lIdCBzuob1{Z@|JaB5+GzgVLnHSyfDF)5cfW=FO3_V)<agRB*=Ip-{c2FT?LF@BfQ)bLvKWXENIjvnL z)Oy8zc4~0UPuDILUN&DMg15`KqhwENaon7g{iS<+-WvM;Qn#?pt9FfE?el5Q;fs$( ze{yzEN=V%mpM60Odu^+)&N-S`6cKgK3U-*wtO;i<}0&&;51zMnUB%I}=CJ?^RW zHnnrwwV$|Uja&GyOMe+)H4Y{BAcD8*Vq@m-E!qD61$MGlP-)N+*FAAZ{&ve9eS0kk z3Hy6}=(O$aJW3Z_?SFE~DZjX{%MW9%bHfr{T6&dwS$$pK2!>Rp}mGMXX{)DT!15L5L>gI0S)NW(1nf*JCuUK{c z*2#BbX5QRhn&DP$Tj1B+@>Sut$+P3uq}Eql34DL_Un_@)x2#w`{J7h%xA&fVFe>-l zh;-jZi{In6{qD8Z|7Ko`uZka;v)^9TJz;j{#Wa>+`YgQICe2 z?O9ji=ft1N`luzctLLmy8(#@~WZpb70sGxDPKHF^y7EAQr}>+}E&h)hBT5#e?u>ge zd1z^%uix;1J8p%0t@&~6Cg1OK8ZMMZo+SI_shaKH&)XjL+*EfpJ0W3e{NtJKO&ddp zPOn`bv3bbC*q%=`^pB5@`8ujg>_d52jDfoYvK%`~hoHNe3KV<@sG&Or}idCHsLrS#-ErmA3G3H~e?TVS9nF0c z|2#D_D(2GuoSsHrKte#W>5HO*6ylz_iRg)cS4~DKR!v6Rt`j5IB!>@Me&3*99oJHZpLr?r^!aTW5zRyV|KJ?oC6!;@E{;2x za3(Ls?A7-lrMt#&5+s`k1(bwR3N&yATOy`+||^jRlaRr z9{13lA4mMN;`GoPmW(vp*;UljJ(6DA__N4f|q~ z_w3!BiYta)PmeB%UUU6Qae+0)_O{=>t+xxmN$wOEoieTBslc?+XICAKII=33yn{b7 zuAe&)`NY}NsqyvGd^_4!xyMz1M;86V@%LvJx4zi@#_XA!7KhE6d#X!w_12s9Cu5@9 zUu!O0V_9yS;r}T{T13jIxV+?PWncSU7;*24VG)z=Y#RNTw>f+4g`rXV&om`>s$1bR z(bmV~Le1i=!|{=E-(^l|exl1GGoRo1;pScoJbL_FH#+V>%-HC6ugovF!~BG8Q-H5y zaYh)&&ih~63Qwc9F6-m?_Hl1# z{MmRQ^y2i}8=ejyx9I0yvl<=okDYRh9uqqvZ=GXA;NXD29m7ixqz1=rO;d)mXOiD0EBfGt zZ!@24+3Q~$kZrzE{(1U`aaR)F$X{pm>L0$SXZX;K71Q>#iz&HyWny&On5LV*mR)my zojO?eQw7{eblh5+wxN1f@K@vg*Q}1%Pl1e7)6=OhaW3nQ^OlTZ&At5(25z#>f(jjR zPbGBDOEmfS@m;WEbNHt1Gq-l|D{sEqJ^Ea9-1YF1L2fH;FZ)hyDJz(gJTh*1>bT0I zwzXp~uRa#>(aPFkh1S&c>u0w`TF+&sjcDBJ_oZ!y`?~5unRmtSjqjclWQ6p5cJBPJ z0bzg5ULX2#Z*(BEQzw_lpLnEQtGG%G>4d1hgAHebsjneyg7z z`Jl&p8Q+|HBy!T(*HUlRAMlN_1$oS=Ihpxk{JeP2?Afic-NI(C+EgDlXx>|0H`Kg* z(-iYfbjsBWg_A5ZZDai3u!j_Xlrk(XGTC0b#BcA2B`bzU+;gXG%){Qc?4B3WA~#T( zGNA5NpHsG0k6&s>W^YN@6u%(l=Uh>KP-54BrE#NqH(>_i6H}2J> z*rG2yUl@E~X>9o6b;T234h+xlb?NoUKV$xk?_af<9IO|-_ciRveJ3$4?)dF7^${J; zOqsL3M?}_=S^YY;%uH-^D*Ht4g@3YAT0aSRG|+5$zkFl*Z*lJ=-Y)QTFCWmn_+a>; z4cn(oZu4T{$jhHbCY)@%wXtH6XNRCrpC22yhu3)%xG~BXlI*hy;U*$c43@%;(Pg4>zn-o7R?WTbK}VA+uC(2$%-wF z{4V$%yC6nF$vyJw< z(DHa;Lvnpw$F#!A*+IXJZCD)_ab)G-;g_r<(=*R}bYkh*@oB%2MQ^c1yP2wOnV-h@ zNjRBv%-GvAdhXV+d11bD-VJ@Ia>VsX(SJupU7b@DY`tN--+!0gtN5psJ#l}fykEXJ z;QLXfE009Hwz|`(zdfGG7<2CP6GP8@m@>Wo9^XH0qddN=8J=}Henxy^R`=Gk-JY5K z=cfBN@1A$4>yn!8H|wM4Mm>Ket6;1p(iRkO%&=06J|ym$V9YUgLKN${kGWL=ZJbK{I<8?!gJEEwAJm->(6rp647 z>J)n<&(rj5pnJfJjs>No($eCFCATZt;{E#2rOO9Je7ZJwe7Ju`?#hb~N4|BccjD3N z=e(Z|D)-8(H|MTO42}OS<7&gCPD`hqT;DtV{GyEBlbe<$j6Bsh%5>S5`<*c~@M6I4 zrm(ULX(!`GB@HUd@W>i8bLrdRZ>}qv7#mog|LvvQkrgpF|0EkhH#of;7tc5!+3y>_?2Q-R$rAC=EZUm540xW3?i zw`~KyTl~N9l^ae?`Kpbn=)&cYD9@OlanTk1yzXnW)OTM~Zr;H}@3?m9XKU_g_vggH zYmbNbTlW5dm+ijEgHI2R9Dm`v%wDZ&0bkobvUaK5db=4a+>rmIC8}@Rg=02E%UJXQpS`gUth%fFnoJMQVU`l>^1LdWm9Gb!9y9ziCccj|~U zVUaJM-<}cFvMb=Vpr!7ORrwje#ebEMm^)zHixxt1(euMjO|& zN?P6C4a)L+v$ejkHTiVh;nZgUF_{{A0?8AGkozuFpYU9~ipLHs$XnXyW=*OaiuICoN?3Nki8Q@{eEdDv= zxwxGvTg$r!ygusRl@lTkqmhF>yfYflW}o=u%m6Cf@Aplx_4By9CN^_Td{NxDS--S& z>lQsLYUBH1C*}rs?NqbqX3EL^(caf46}7Y87qlZF&S+OMg#2ZDa$#w-?^nb7-r*TO zYIWSGeqP^YUO$&`;=9v3k_Xn!@l6Wy^4d!!Q@_Nr_`k9$o0Ge|IrHg_M>mHoNbCN5 z-5!)p6KYjBf3#auu*pL`kcydDI=a<^% z-ZGvGbPvomy){lY_*{M7eW^P`ECr$$Dty)-JPmvKIDv+Y+)XvL9q zb9_ePg2D&feFk1#91^}}{acgo52`7MzqCH`t&<<#$}La#IA@FXzPB+jZ%^Vqai6FE zSNlUq(B#L~6-CTi{_(&^jPuE-PyZeH`-Q^H^DU+Ry8~k^7b~8;9TcCNFg^cwOGv-v z3+-Vc8!D&XXgjdP{mS;J2Ty)^^GexVj~9ck`HpI7E!da5B7SaqeRW;%s0k5kHbpGH z9^kR%|9DksMQon0DP zarWD^^9^ynd4bVx!POlyZ^XZpFgv%u<66&Sa~+$GY`S~)#L#_}|6QMT((7dJ>%)rM zSZe~4ef?T57hX<&DQ;Nm0~K=v7mYr(vM_wlsvRREJ!&%i&)<%mc=l?_D|OZ0zJa-J znbqB>SpIjyS2=IkAMYMMJ9gu|u(#%hbe&Z5-OcVXZ%1#xno!WrJTLID-)(zB@oTC7 zqdscy^3VK=hj+N+*5(ISzd5>xcU)G?`Av}@pZ+@Oa?MunGHQ$eQ~PQ5=)}8I+1Hzc z*1S9JJHPL9@4fg{WW=e932m#N^qOvK@;qJtLhh8L$q7GX?rQwL)0%1F>wnw)#-i%p z=bPFj9!C~#z0{Ju#ojTXTfoPrAInyyKNTO6>|Z?J^Z1}&mb7l(xUSu#&9<)!rd;-o zS{Cy~+`)=q&wFiSy*oEf&l{XHB>wpAhPor|D<=Q6ZgNEN(%=E>?L(5EK7Ana`h|e3 z|5|4FhX!;sZ!P~Vy>tA_iDL@Ntq=FVchR=Z2iLbwITL)o__HgkqCbcUjO$6Sql4b@ z`J(C1{6Wdj$0wyn*Zk1-$b?~Q0>cL`3maHte4q028NaA)7XmYLnkV=V4a~HJKrj2^ z*CxJ^|C8lJ-=+oLo3CtGIDJP*eCfMaAB_I*tRrFXlh*tYrFS{e(EB(II{o&H93 zZkyl66|82ilg8Ik4(h_^g#1 zhQHyq;CAWRzLD$B2BjTqnD3Wtt8rgavn1=&gs&6+%xSi->hai|$2VES9-XtS^MI<| zXyo-#9k1S7*wvC3_>13cdz<3FQ$CB^pYm4u?0|Ph#jN}|;>hY-qe8vhvmQAAR^;br z)}(w}cg$y!t;qfUnvks2_;=#FWtX=M=(cCp`y1Z~n>(+(Yidp8&8JVk9ku03*MbJq zw}BJ=1B}0lN2dnHpGv7OEAzWN;)NA^B5Z5C#`g0WoqhEDjT1*teVq79^|M~f1N}U@ z*Vbg+mGD9Qr&;mM$Ga?>xo%_e=9&eId#2W(iu;nR=sS^xsgC)9xBUGb|CLmxc8O0+ z&M&d~{5`aI*~ai^)_gxM!0*?bk1yCFSDuPVD5`qi>j7Jq=kWT<9IvEj6Q0c4-*hPS z&gsu>I2Jx@acG~RO+E>iVy;Afc4=0II*bG7#2kw&s_5z28aT)+qJB%x!i4*7jYz+{wqwY`Nk6W6I_#@OTl;*} zbSVC6^x%JsPTfpCQoGZ8Qqb$ZkK4a1dnN0a^q9Pv%?<5;9y?>&WS=A>>cNb?CPbk|`^;&&a%X_Aw)+^Qr z$+Z01-RkptU_{&F?H&*E^J-|d5`Zl!8&MHnRaaA4AK4sdbh6yCR$2?KliW9XW%w1^ z`nL%Pyx{qR@mc+$s$P{TmC4l$>)JNH+>&iPZf>#MZT-^vyW2631K!{JRr&Y!>*ncY z3Tg_keYHBL`m5Rl^+k=BS_+MN^E|g9?jzjixDWU6@yhf*;PbM#+2dc+>XyX~{pxPi z9;x$h_@VJ^^V{}cO>bFOxF@=ox=*A6M6lOpuRzc7Zi`K$TRS)XuOYDEsfLFdKc%8; zS?grS4RbHIz3v;ya82^)=vnL$=|10j+0mmlqG@vD{Kn=+uV&wtF0I?_{*LM953CE_ zBRmQ``guO&Inp!R{V}VX>9N-2rmq`+Y<#5Y=VnW5sC}IAh~uQ`9!t5kg37Z~J-+n# zz~c}1AFaQd?zJClp4T*v4BOo;ZuZs2gN}PmTg~rU_E^Wc9dQeApYDE_d#>AS)&=He z#;YxVGzB;P*p%EnzcrOC*Dp*7=0eLq*5Pg&+}?0I=Jv1KLvFjRftD7>zxIlj>gLqu zuUax%7Z`gTnWpZR3D#QcP&a?K>(;lZ>3YS|+hR98;W%%f*gC$Yxp^n~y?@w)9m`DL znVT(!^=r2u-Ilr)Sa(?KENd(;m^Yie9arq>tS*G`x$5=`&Z&*)S4_oi!*&Qt_%`cjc zP)*j&xYs_+KEr;*{;DyLSj=yxY3BdToh`F1%Pr$9H_0}&liza5(b;jA5pRFN{w=UH z6AAf%`mkS_i_L>Avn-=54)f3ERpw;kc(Z7-x)dvJHMQ4L0A)E5bb0>}yUVuW&talRmWE z>saE*Gd?#yF|HeT5{Y`r6v)^? z=GB`zn}f;h%_slx2_j7%L|5Aro$@1c`ZL*ucM+AjKpoa^O--h8<{9QuW_vDfxO&l7aUj`36hL4$LvtnKDiPQVniCa90$&J8`W$$y*vlB=ImTR9{(3)JrEgUgcR` ziKxFqUfyOhZJLSt{XxvngNXRuTz!?l6N$}TB^r62=-yL~x|2E7oI#Xs z5!h4x$Xw#*a~Z)l#-tP7RcU7yQN6>owNrU@9~9byj} z?>Kc=i;3n<1y)~^KO9aDUl^N#3`JA`>odS`9>3i~ zTb(mIkjwrzCejHgYWyCOlCI@pTk$QKYTV<+dRM&vyYm8+CuRE#C`WNGjU`9vD zi}rDxGp-q)<5Xxw<8~5H}l+04$do7623|G z>eI9w=FD1niD>gkq|z>AW2$k)2!?tWz@Y<7-#7+P7rCRO%&0V0AgkJ#;-Q#uBFaxv zr*;f;^B`mUZD9I7PYNe%{}sneNVm_Chnv9GQ^v!{!w|CR_1huh-gmNOoP4KROb z{t>Bt*4%6kw4@k1%Tb(30fpSt9Xw@LEk)cW+0vk!h40?a9SnjGoy7FMdxJ!CW$HmmuY~ zFu$*<5FN{W&p7k)-+><1AtwjGpQ@;O0J-rpBlwP(e+@jjkNXpVXAL82g_r*Wd&8+} z{T^4Zz)8Qs&vTJ$4={&=8LT{jU3~Gamgq%+QB#X!MiV!_nb&Z zg@@@DQgRov`cLHAuh8j8+Q%8Uj5Na?3OoT0y-XL78Cx6=k_YOCR2TzSJqb;OP{qBQ zd4YKw8gnwcNVb99wdlF^$dsGp>~AH*{uWTnhWq|R4k|C~7P;ZO$Q2po%<57;SpoE( zg7kAZRzT->!eOuSI%Bq2D$LR5cg!zBFJFSS5;(ULTvtwpP#d(t_rUHTS-r~c{s9TS zmUh?8|Dx?XniEau!OlOl*#}kq&aRMQ=owXgdj%OZp6cOV@LLXWNj8#(7I{dHmp>Q zUJ6gFr272N#$!g9G2fVO^fb!s#debsYRsl`{WN1EzkFp}HJXerSV3cvg&Q0VTzQ@m z>@!|5J~a}I0BYS=8s8Z27*R%rkw*>v24g6+G{kYi*k$}^6dL04E>LMO`YaoYxsLu_ zg3joVK2a{DfxOub9aUgMbOp<8kmKP_xTzU~^CN-QehmITq{fAvkiHd5yWf z`F}kB7W&}~qxb=;QFYW5@H`j_Jq};{n-j=lIfSiKYU*J2#M=4@jp0vD&JeP!@=RUK z9-I&G8qfD53#^%pp2_g#eT-l$eCSCfa?-Fy?<yDaA+F*n+Y%Le^nvQ0t?EN>O&S>u`~P2 z4cb>_J?$>|l)WpX90lC_I~20hSZ@sE3AgQ)_Fl$XW51DNn9wKdpw%%*i3h+!E7;i0 z?w}~-bRAhsk29-SGPS0H>E&?8S4g$j8Tm8t%LS~hXR*OT$;eU#KAoJcy)mh9o;T3H zMcq9w^Cj%Eb=YFAf1{wWAy_pVu&7))ck|JE zvV+%P^Myf?5AwQ~-9L{*aW68W^H{^7$n{Q0`LW2C$>{g_&evFTZ>07yDDqJ(HXCb% zEO`4Wu+eUzF!<>%s@UJ>%zE38#h^OoKf=SR9;|12lR2fF?ps)+aX_RIxO@eb{zo4t z;i(sRg`)$ucD_T$+1&rW+I>dLPNd6Jnsb8bLndU5}}Wy15fMk7{|Dxz*`{l zA%wABp!Gp!TmcuV`mJ`tWUxX|KCCx1ul(V;SbZ;moz-NmNoI7y+US7QtW(xc^Sn#& za0xy3V6EdxUYu4P4M49Ls3;>{HOLF0Tr;-jV5G=4Y_n5XgMVYeL}P94Ktjy|*Y`pp zE6AjqLO%tJq8fN^f_^^6c6^cFhePQG*039tr=4b<;c7cJ&R$-zhc58;Y!) z$vw+>u69Ui_do!4{TBA4JqzzX0!Obx3akM8%g_z0u*7>irS~_;rIk?rLafF&p+)W2 zQT0z%Vjs>JK15dRV;<9xQO9WU0Ig>sm!<;c0m$4sqYgdR3(DLHcO8MZVzFYrcdkEn zp-VFuuPXh=Fxyk)3GYEZ?FC*x@c$0v^BUF9Z%k6|^L48>|!jW^cwG$1mS z_dqD|C^CH~ym}wJ@&VS;UM!Et*oXEUF#HkSqrDoUTV=5q!UIiEsiq}56=+ZC8KLK(F{d>SxU zRcZ&{T|A+z?oN!rMow-Lm_Ef^ZnGc5b?(J_#xa|F2JspKMU1Ac&YJiS3VsC|`X99X z50t8t29(X858R4*nh)IBiI--T#QNqppnMdqr~O@`BJG^fnJAIatoD(qLh%V^^CmFb z<;3YVuIe901R;OAAu0Moq1qcT1Bq?J8cn3Xx zenDS9B2#~%uV>jO8i9`34y8phBkiqKW_=?$#x>Zx${kj%=F#-s0Pm{;ymtObPWFY~ z{Lsniz}JP_TKH30?b<k=qddmH_oS=^O8&lmg+ zpmjg~_T_oO$iz@qz1r0@mevEou}&2l=%mfZ(54@vsb507zKC9Zi(ReXv0wN%^yMQw zp*xw$I+r7q(JzCir$AK!$h0)(*NYJi<_Sgc-iL6cd^u*G)eV{(!LwEOc^0z&9yGx7 z^!qN9{Wx-2JN#6ITJ@O=!HbQS{b}2VzFL^~HK&z#0XQbm^Vi7E&!CuOo~S*HZumCx zoKj6W-1T6v6bPLMN1ve2UWHG;rS&1G@)OqcPs8^QqkVTF1w?hn(cbT1QEx;R<9CF+ z4{-G|P`=7&wA;|N3#$z{DTMZaWM0p}`LD71*bDCep!WmN<+JqpB%1tbDD+*{r}Db( zM8-eqv=L4~O^M)8=W5h}XPt5|5?Cw+imH^|9!}QTMaqcpg%lYLoIUWI<$!5B5>b`8 zyD(D=mW5Vm32>mQm4^b=A=r_sc|DrfY_Pfr4L^=Nyx>&mzG z^w$w=O+*rpM;^4JWi4~n=_=i5F@*m5@X7Ne8fAXM67RZcp7}OQS zl|rak99F>d9LU0EzTE zL3A$}Bfbf6&L)VK)j;JEG@<>3q83rOb{RGBR0A2KlOD7iv^TWj;iL|6dlRxOm?!D1 zhOWHZ1Ce1+<$SyhGl1Yoe(8*+7et4`8S|YQZ4$7Vi3XU51lL&?D}cgqM(57lgP?m4 zo;3q58bgn&eXpwUJ$cFyuJ`40JK8jW^BSO{isNm0uC%8Wx~_p5-02~Z`?T*a-Dv^I zi*(T`y%T`n4J6bt_$UT?P6Foz^pywAeg%zviah*+-*k?O_JBkpdk%1~EX=FWn@*JY z6}sO?+ud-DPOth2jT3{Um()5+pXX?oN3S~1Ap_g%I?vQ;C(^`aU@V9Klj!XRpX!jc zO~6=lX#)DHeV)L0w69$hsuMqSQiuhb=>-T!(5(=v2lPD$#`pKl#8St)i zZ<4{H_TXt}Pr6e#od=io@I(RF$%YUA1LKFm{dHPtPh%_mmJb$nQipcMs`5c7^zS;a zLFXrFUz_R*_&9l4Czfb0ujXsQn*r}d|Ou8mH)6-=KUfqnze zxdpvwC#(n8dVn#VZz4_NpuY}4OHxO*+r{@K-0#jOontc*C=TRTPi#=xBVCZ03we)4 za`?bG&A`ZwK6Pf+WG5dFcFLp>?sNHjr-9?1P?fZzXj5E2%Sj2nxE6$D=>(o6b*DfV z-N3mSTGk9i1*%ohgBG%w#J6_jRtI|S4!)#obaKH>;86|jcV~3I&XH;dayetOGBzLH zl2gSlXem;=4`*)Xp;P#TVB#fqz%seeL0s?5K50 z4@un=`12CITj@_;a&N|^9mIJ~+N=QEp4{&a9oE(pRTM>GXg*;qrO#q0TA`LYn#kC&e9R!SO>FT?d}i z9=K~KeMj)$iTOIfK_e6+FHS95F__i7VHj*GovhXeTXdeW??I zv^Oz|YiIa9#R+rC&fk%zzp}pjgFAGdSDcftbZV4N;Q0k!64Y-v?ZTgtt;dkS+RLBm z*OGP_l1hO zf+5km0j71*gS=VYfQn8RaX=j==T)8RFcNHZMOwAtju7YHLEubvNOWRZ8{jw?XbbML z0LSo6E0=EISJs*&XFuBc(6e@qcLLhNuGSBt4e?8RC&oL2sR__b01)@%ZyRSHlCL9> zr~RG0Unf`$qkru)mNpKer+)B#7oOai-rS&D+1lNqF-dh%fb^_Z4rZ?R;`(6v z_2F7DS9KbndeK>NlDm?qI+sK{DqXwpw8yg=zNq86Ea3p|Q~eHcX1VPHz<_~{HX z?O9Ys4nbRIKk3{PU)~llGSVrDyKz+>d#y&j>B)opy7RX2Nm9gCRRwal&dbxP$OhisxWj|_YPY%Un+)b5oNCv;?2BSxr_C)6K9CxMVaEp5TM=x+-lY) z;OaWxRHsme&{DoF{bqswJAwn9AnDI<(u-F3q8m^hOUsVHT<5t6M|w$jN+Je1pXkNx zwQE-R*4c1@PA*cVh!8lj8zWG!ZNRMTHCfedc&YM%G>~hBV&=2<#`=LV4`w0Ty~+t| zckU8aBwx+Yt}GzkrPaGUSy~@t0ntjn3%+S^hNxJSuc{uR@Cy3Ud0VQ=kpXVCC%=SG zTCL0bn9uJzp(@vjol2~cSolNMjPRBXpQ*Nr&H+;0fgJA8*<^V5Sk6C^FbOg5ghtcjJb zq>$)e`04HBA+1z&PN>dA(k@(ak2e_aKyR|L2ElDw3(GbNabB0Nrx(|H(vz$dNo>8^ z(_eeqb)z?(*5}LL_S~UwvSoDsj?M=2pl6-H8A|`YJXg9-l&e#pw5M5=Df>ZZ1?dD% zH`>V3lRc?ABM!7?XU6Exs~!jlH!Zx>+7B9%T`LLipsmF@Q?0fXSyP3MG$30B?uvn} zAe;mIrRQS7mY}aX0+Mz*+3ptYwNGECsHwt79=$Xj}B8vT^gXAV8eXCh3vYI4Z- zDWZoQCk;x1o0+A2K%x*;RcSyr*qpQW0Jru0E*?xklC%@|SPE|n?=Tsmy^jz6570k1N@z*1D zJ>W)FO3O#%h`v?3MLtI>Pidl^>~B3yI1??@(px!@5=>=Zcz|ckv5x1+A1v!#s{*at z<=N9IVQFY7?aSA*>u906F{+@$LF2$ir|bDMe)%J1Ux{9PfrFqUxmLwkJMyUoPn8RH zTJ_d5L)FrBE*(s^I1OV$avNFqw_Ym|2S>_uB~k2IMB&eaLevTcI6-^P9Z zwDthvzVMA~_W(XCKA@h&bEbGZv|M;OVN2V--Mk~@F1H)YqxUx)k@3_OHmS7GEZm9R@1JWHZ|~( zD#FMIE-z*!Pso4^lUZ4)CQ>}~(#*9IcvdTtG^d2DV=U^=6>Sl1B{RMXr%mJ1x~it5 z8a<+kQl2IIRX$javyxHipBs1))I`~$AK6Vhy;RgKO(AX;t+Y5>s#1gWr0g5vF$gSZ z-R%YLJe>H_DoWHQFPTd#%ZH*hKvy)LJPhJdgP#4Mfne^_>QdC*20HNMyJ`WsWUy9e zvQ$K^{ya-IwLCfUtVuE|3M$W;kCP(3d9KS6(0QpgTFPRVCKkPVJMWe(Zby$gO;R4A zHcnYApI#fjtG%dO=d8+eAX>I@RckWMS29BNg*q@_(O(~DZ!Y^+G_La_N4 zN|VJP4$;YmfMf}7c8m;UyaYqaER>W0Vf0~EubXaM8dGIUg zy8_x1SIY*Gj!;yi!pWQR7OUcjbd5AjsdJ8X^eVY0--WnVZ^>UtS7|22A!L8(xvH9? z+FzgNMAV_s}%1239QLgM^)g1|P%0KxdWy$DVMM+F~ zuVjIWLPfh>xVsrdfzc+XE;D7mUw8k5X%_A$d2kjM^>dLns^bo>mgSjrN zs57)F&z&^1_|wKqHnc1-t%f{lCx4B&*VjoeTGPpMrWK#dpCW9!BFMSGQc!LMjuhU7 z25NXoqH6u2Rh#S|;Xr!O#V3;TvN0tSRhcf4&m~AaRp}EQWbl$*lMkh64X?^Ks{fb7 zwItfhgPMY;^%D2oL{5tq)suYt1^iW1N9Te{zsrhJu7PSgsoJ4DzBsWDsW~H-oRpqc8ZDv4eT2IJE(b`p-MHZ1LL>8;o z{IV^T1tt%G)^Ngypl^^3q?6ulP=vf}l1Q$#NIU-5%0fPd4q#1IYFlK5YqcX96V0{Z zm)_26y`8isD_Gvl5GUodcV6pC3sGe-&+Ef;xFG)CWWJxp7DFU;N%v(BGRfSahNEW1Yr0^lhAbOFtA@#uopj)>bw?KZ zxjG47kzz$UGd6@?bmry&KFjYbZ;qa%m`5j`Cak?EvfMYB{j%60a0B^WFLPFexU+D`)lT47651p*mGHRJ`APO5{yb+_;+ zNXgG8d$@vcs%dDaU*!P1R+zH-B>knQ6s-~$=F+$Nleba#xlY2);uvsOv@KuPp{%Ct*B*tDLNp@rGM%{T3HfG>j7yx`3s~K z6qi&aP5Mx?m)B5KChcVBO0)A>q7#is8IaOQ%1O#|(o`mNrfiy2?vM>CKZa~g$uU(l zlm3(>(o2;MWi@8fhx%9DMR{6us;s;pviszL&E@WVTE#kHqSakJ*R{fSWmF1ZvUHoc zql^){Y-w41vY8~|wK7mWOL-*3%UXSFr6K!K*1OA2k}PTq4JwMQm9hNM19{04s*`ZL z@M~A}j;e6=MbiwWH+dMl@_TQzjH2LO=wIg$cj4Or?o@QNA8i8pEQ!;D{s+-VcX}Dg zFVbe+_+2?nBWa=dkMyN#c8x+3$_qY#>+;#iCewHZa$WZiVm#unE>OPC)9p@wUHCtU zr@1*LsC1pIGkF?>b*)}ity8j0mY=d5T-6BWnH0{29aUhI|3q;mmnWqF=(}P%s<ofdS{aT%ZoJMpf3GAPu)p@|%$Z{iC-2ga}S6s_{Fq2*L9?k4Tx=}!_&5>HWwT&~73Dp8zhO>0rrg!})M zJf+igX1u(!qDHN(C1)FfhP<{~uLv&kNXt9pMq6dfxcnC0Ty=TLwJw*Hs`aJff{ORb z;*tF=zja^MgOX$2`L4gJMm+$$DK;z_B|Hv;Ze*>D1iRC?n>|Y0*#TK6*(Td)F#k)| ziKaU8i}YJ(Cq*hcEKjqZ9}I=aE^*a?lW#`$i>l{oozl@cVy#!@jg$6M2BunQwPbVl zDm^VdC&_5ynjiF_^}lk(Wo1_*J7hV^ZgGQulrJX^bJ?2B_zEN+Rq3~hw^pdqEKRI_ zWR3f9hj>?O5qa6=xiCR_@^Z=+6|Lz`dBw!N@?*NZ>9Rm&KUX>FtQN`C#CKstK4=$Z z%97PeOLxf+FIm|L^~vThr>#!1uZ2=1Rpd?0arPxiDSau)o8f$}te+B|ROFOQMYNPv zUx93tRpZj?S_u^LS-Rap&qa(v)kY;dRr6OCfuPVx3;9AM_cd$LmR2WU6Yqj(#Pe$k%g_bqwEovb)@yM@F{5}%c+K^bmbmd=QM6vF@U7evNo{3s zO22oYg{uOoyvkaiDyu>EhMu4pdOLVU``0=`Uz&w9nIydIOc&=WYA1hKTYeXB$c~ZZ z_XF~>B;2^-iaNBQ&7~iGc#>A68k=ZAJ{8egE10h3cNZ1Nx|1ds2FsyQtkM|S#fo{3>}SPFo4HRBN3GVx72?b) zXR9Wz$}*6*#^lU%k#|SgUOE{;_sA128&m5I`81_r%jmnDZ(3^>@JeBfiXpk$$SPFM zh%7?UyZAs}TbK7;F)ZD!Qxdc~tzvZ2yppZTEtc<4vE+R26=y4IteMEhl&4DaO5PEz z*gGK8w8zG^9v5}`b44dAD8`^n4cT=4kgC#g@@VVThgWZ>Rvg4HvK2=lWk(=Q`#Uw~ zNF-@rUWzD>=9i&F4Es8ztyY_3h$%{=PN&rbB)Dq@pa{Ke(w@${lzG&LC-&yMRUayUddt@+ijf|zqJ`+S8T!^bRrRYyUNs74m8 zVhxIm$eSd8v1F%e>;`k6_*)WG{OnqRNY40z9Yq%x` z$(JtK>XLPmLXw6que*s)lH6KPw1FlRBbQa6Xn?Fq+1su)uKWU85$UDahP?S2uUhH( z%G#GVN#0@A9oH|C%34WFPHAlb+v z^~^?ED{3GKEbXI}omO#*ylM4n@Lm2+ja_`Hc%{7htxm7MDg{e3i93H*CYug zjb!h+Rt%Z^Ccl>?qei3rGkLuwNky-!;w$am;*^Vu3u~;hH)P4^f7#L+w`kdpH`t9e zobaoeOJ|Bsgb&eztVj9y1sPqHl_uSzUju+{AabQEZ3H`C;3iM3a{A=KZO2PmF$8I( z&!SoBf5j&{^Ohwc=*b5z&8OTZ*$j$LNZU!1X_cZA5!AnY-&UY2>JyfwsWoTiJGuID z$uq%NF#~tzB@D@zDtk@ZN2@I571RL*Swpgl1Y`O9RY_YqQZSMP)Cw+{-z5*4k!{Li zkWWf$L6@{pCZP5(C^snu+2N}8o=IP_>Row76sO};I<2npy2$l3-mcX^3Nr2n@+^V% zg3i0R$#<0f!16`_)kSmV`NUOG*>PAdb+ zMqx!6QzoFNlPR?Jm(3v@y1_T0KwDXK%GT1}4(YCr{NKa59?+VhHDPbnS9ftj3z#na9w^9=|<@b`P8K; zWR>ez;UOQ&kj14Hro05wnTon<$BFzVu4tD&YxOGsw`79s7jd{Gg?weQWQw_4Ud&?d zb?H^DcysAZm{*=xInR*IrdC=x$P+KWowQk=bBway)QhyGA_sbFO{3L~B&_Tu=|@?G zlGciO$?GX-N{_iDzi7x6DQaf^(kqhFirr{k#-!+1`OdCYldM;7`j@3DZ+HNwt7UzY<)_tqAD$%1E~zVy3gCBTfOp~l z5LyWninWPXglT0x2vhQv$!n+#VXY+OKUSDB)deV$~TdxP`OjWr1(reZP_3#P^z#f zNiSU>jV3M??iFj(-STk?+mh|lt)hM9qe<7v2PmGA?@pc|c{!E2CJ&8rG*bC{9XWjw zxtq)Nc>Y)Z@kKuAj#yrad^<^d#W{4|R4U)K9+AgKRXnuwR(Y+Lo!%eqi;*l>q$HlX zDEC0V1g*`affTn8e6)_0rWX9A-L;;S)u$DQGCQU7gf)5Rx?$}P0>{Ik5$*Eq>|8et zVcnozE%M%tq9B>4vn{mWMY2)RAy;mXXil|K6G?slPiL14zR+-Aa(Fo)bk*z0QmN!b#ZJl(Z-8j;kvgl=} zi5nz|B)jBY&`cC}SL9oM7U>UBs>UNKb)Dy@9Ri|#=^??Wn%`WjX008h2bA|FAGZ8c zib^XtR*@@NmV&2bmg`t)?Q0+xf1XmJM+@~mu%P(H|fAl6xNIF2#5$P2(wLV-K zq2g-k0TrifG&b*L~q)41jz|ejRt-Y0(tKBYI^(&?{n76E^9`w``?&!le@w8-n zds_5ya!*^nDPK`BX<5s%Z?zJaoYkjV;Nr4JwZ;@oUH(UT2bHfRf1!LR+NU7zNh#RZ zwJfBLt|=-fIj87_&i>IFyOiIO;2rHBQkJ34SkeC6D_qfz2c5s9vqY4i8|%Ct57*tq zX4M%t=aG9?xvEpmqLF(#Q%N?e_MM*N^JV(buUGj0BGNCFp0x8*@|5cw zs$3^O7crg`a4YYob^_#s>n6TwHhJ&FwJw`O zky!akl*OxPMpy8y2u45tYHyP8ub8{eKGg0&o%1-4l(}` zNKeK8UAt;rpOgTX7QYs8Y6os6tdIjV)U12hDcj z7pTlv$&E zci9Z`A<8c#zqe$eEb{+H(^WERG=$zx+X40=gC z$<9b72X6dw_`a94oR?N- zUa2x7BWjRPa8Pg{q70%FY&wh?vLkUEb#zy+`FvjDAn)ohbd_qn^@lnm%EtNhf}gn@rUyC4mEMv z`Yq6B#H`7>2P&})n;7314;kDYmJL~T^43lI3%nmDI(#3FK(7!vqMO-?3Z4Kyh2ajt zSjUegK7cEXRDz7cq@gwy91wq~O8^b|k7W+*c+;tb!$eGLzNE}%%G!U#~GG{PE z4NsBWew#2F{77PGbQ|lJCno}@7Lbf1STYxU!O+x{mP|um_Bxw`PWUY}A$T zg2}s>oFwy0eg^vrLkg@6tlS_U=z1b&GIoYn;?S|=gwXcr8!$4WKKcU~FOkUVvhK`M z2O+#hG-H{LA+p1N0Xt!B;Gbegu<8ai2a6z23m1jj9xM>Z499_hawqV0!MivoxW38g zV6pJI@qt*2pdM&Vv?!i*j_ZB$zeE)HLhPSN%#fpR!a#->!>WaMgmklyHB@P`pMs+W*w$6d&u?GF|2Uz5?q381sPv-FzhA}XksAnY=iJ4X{>*= z3N;MmRmeQSdWAC%7Rro(r=iI%=r0&MR9o;DyDSs8vy*XwbSiPU+08ReUMRawMoJUH zL!_e{{V0z~ug2={6qnw#>pk{~XQxV{`#gRBq|TKtUCeHzuo_c!1a)hmvoMIrC&6zl z(H$VC*aH57UyGlC9JAVZ3gTd6YmgIACbBkotmI=%UY%?6aA8{#y2Dzf>t8W%c>`rf_7mP!Tnh8;74d0vMO|Cz=tDR zf(rpkh?N542WO<(178*Gfkwl^!P&6sj?e&jN#Kp9gALz?!A#!9u-u5>iD{Wr&g`z$ zOrD*YMqjXxFvu<#Lz(UoYyl6BYZ1MZH#D4cu1F@4cpaaPd@G!1&gDg)Hpl`NiF_>cV6Y5Ral-oIcyb|}!&jD#T|9|WI16<@ z&B8H}D`F1hhP4LI3hV|e4&Q=GTRhf2S|39s-}n*uz_2-4b3^n#$SmBrITl%Y>U)Xu zW@(ks>4BJ$EWTmtj?-&U1#mZTvJR#PIkwqS1c``4|0VqPd{ze-ikHjSgL8DfY zEGBy$lS2T9Lz^1z1tzE zsI(#$>fw?i^dGEj*hMfaseGhb5xr`9Z@_Hi4q!fkCUQ-D18@vh7I_C`mb*ez;Zd`W zv5n+o$OFSd-d^Bd!blxClMRPLd zMsG3$#I10%!BDA9MQ6dVKvqmv3SS-6-!OCWd|=seexAgPxOoB)Or8nt0k&tVc}&$G zdIjr1jsy)wg(2B`vcarJG!Opowfa$f4kCTlFRK8yEV%-X!RI!0Z)B&jr6AR;X?zg; zYNB6stI0Q6iu}=3=sTDkaKgDhJ~}niRPHc0)RUMZlH{F25k>N4@Q}z?&^3dVm!o$xwKhTM@OVuBFR(o_A!qan>oQIL4!v)P zCD~8CTtLYniY!`)zC*PQIr0IzPy8JGZT;!imZ@$;B3bXI){D$A zD~q@bFWIp14Z6q3!Yu)pV1;4UnwH2~Iv?cr)z zWV|nsKHeu|!Y6n}h7rhmUOwGB; z#jv&vG77(it`G)?2y}S{b()LrIu@G=W&!Jp)r#-cA)l12Fz6aOgqQ_?6FURrutU#4 zeh5^Nr=+%!xg$<9nNM^uF|MDk!FLP~nd_60#v4Ub;ltq}qpgs2^3Q0xFiAaZB)Ucg z=>G=aGL`bdvPC2G9{hcH8+h;6%hQLi4T1)P1I9l8!t_SUN9kWW|4h`oL=A&l2`-J2K#tPmbKUJ^CM^dUIZP55~ZDz^xlR4|1VkDOzEdom!<;2iWVMr zO5e}Y@r63aDOZm6ygJu_lEK5LFA+=|)4_|bkSBFsdeTrC48I?4K4;`eQ=5dZk)bQ$ zYogssC0~YRLsSP6Y>*Nn6VP<5vx!Qu%Ghww9XJNaKhlC-fc=N{q8pl*Yn=N_EJtdu-4wH;(A z_yo4W5NSg)9TW5|({I6?8NEl82Y(bKb*$?O<8(YxpQ#*yr$Ekvt|)k^-Srn(KrcNd z?~u`;`hS4y?9``_rADqmn!(KYfrZ4n0tFP%>Bm5<5M#z=XM-!aEt}`Gl)QM0h1e$9q=L=99dMnY-~MQYIHQZj@Sx~O>P!>VqM{zl3Ou;0ysVyVRVK*R(!+C3vlTe zVnJdDeyOp+#)fFr@l3!HhH2i2dcarVtasP^z|jHi$9Em5f8qIY1{hgnMv>8RI!|xO zSx?O?)_T0&C%=jPMn>pNYm$l|HFyp$zTzo8;N#dC~&l?nKNg_3eaQ5^elj%Wcb^L`-9&_J_tLG z#1Zj>%@IX|KcL*b^ zfHc?Z-*$~RI9iG1!7!1S^J>jarA8YTJvkmQRk;7mAj})|73@NKLV?1YT3|FC*eW{l zv}B}QM-}QdaX%;lQ3f0;GF@18DooJom-UN|Lx!pC&DP&k{DL5~==*RYVJ*U~B!dQ; zk0hf1@ee`!z~)Sz2u~az8^03U%WPv~IhyE#$PomR@g#=`<`t~*2FEgNCT9GaPer#O zGRg2n=xt6G6CDHEN?#*%9{n`P0@10R{>0Q*z>6hA1S(3;ieOy}G!#BRo*bG>wat3iE9^)kF+nG{lF*K6uX9ZMZ<(JDLkV0Bj%T z4XsS|81-6=DY!CzQmAYGOeKC7jS}7T$w-@ih%hFo1;b-vj+jSsB;=Q2%z@jmO2^25 zf%yUE4Nr%>;V{h}mJ81sl#N;*&c>18*~EhIC+TrQOxVRWx1bixb%^c-9fTdC8zD#> zxCEL6);zwB>B>OlOMLqk@F)%3vNb)%JI~G@Qp@&0<#RgOYBrB z+hH;_cJR6Y;*Wl@3=raaw`UH%cY%38AUW%o$BaQ(Z0}%s@yR4ap;RSML z;%Kxps}H6+z9c9KvVc#-D1s)#W}t5}I-g1oEIaZ58UsIs_?+yr>6ZaUM|1`9z)Zmk zXXN2paaLvt8;|#8y6E72vZ9)0b+CX$!&ok~C!>wj8it#Rn;A=vqxPQOvDh^%IF=VA zgzPDOgo!3#V}qhlmy8DF7*-ZuBHk^YYnpztTx*I>7u14MsYW+qvheUiz~)%-SG7LN zbVp#}AhD+Y4o?@H78ZhGAJ7>N6oD>f_?p!CqY=pS!$yC9e2JaaxgdPq6b@2!IORquS=@v=-IaTk( z!g;RfhFm%Qu!xx8l%%?1CC)=c!`0|&N5_6D=1pGK^u6N@^n?N9CpQXX8XS_oL}c9! zYRGHs2Hjw(HqF=h*y#=JMm>#LPvD6lS*$0pPmm|m%NA@AjEr8Ej0|=k+_p{fMQ)K% z28BRZkXvWG@%&6p8Tc|>T-H6=HKHfDg=E>$55z3^TSy^M5$Gfq01gSdiFh_xQh}tB z4<$P07aXRqYnI_j(a#xth8!xa62s6(R@rR;zY=r@HZ?v3@judvuW0hV*O*R3WpG=F zZcIM}&>nJA+#gTH@$j*DI)hkaS9n@1Df*8}FZ8xyd?Al~+jP-p-0*x&?IC^PK((;K z{0pO!dTU}SuzIuG0Qed?7&In0kjZFZ7r;8GQ|2$aYJpG^d2~wN$@7sB2G<5j0}(ek z9uYsN3Rz!xBW;ojGQPwSaG2C4qc}1FxUrcn5-;2fV zqrbrx@QTTW!$u*JVs-Ero*5ZpvSieVVt?^`@PP;FJ>q%nHnN7c#K$E@qMISB1^)9a z9T}=$Dir8fM|b7!($i>j)&QI>y7QV2I$)hx1K1+43y^Wv7nuY6czTx@e+!-;o(EAN zwuN{Mzkz$lhVUHZh^TWxFCeA-;IDCR!!aYmK+5^1=?n#?NuCCr-BeG3Mw#3<*=&Qx zpvS2hx9K$q6)TTbXDUmnJtG>&>w~q1H%a7T>iV&Urluc%7N3c%JY#FnV0g}WOVlXA zOrUZTJ%+_)Epb93^V%40`J5fSoV-*#|3q6b0S@C?Fs=x6T@FL(%;qytFhb<7FWKoC$8uR2@OCi*-Q%fC-Y3?ymP(k=!Yr1-LhQvXY-f(m^4>cfllB%k)2n zn?Q^L{$R3H*aI{?eLV5v$cZB#@T!p`r*tJTHlC{Kw-1w;d@mdhmvOsxq$ zTVQ^(Dp*UzJ0NgGTjX)z9pP_)oDk)h%0kd3VxfA;8LOLK<3y>fY&0{rm)=IKf3QpH zTVdE?+pqO$G7Kr~KCBK9sNODJL&sLM9*kC z(=D#A%O54e>Mg0Fc7RxSq|VEk@e#~-z$&Qm<6S&h`VQi`fJLFRks14|1@#dZ?y!Z4-2iwFZh09F@FP*|UIn8(w^nI z7(c`C7|2VKkImDWZC18EbxL|*uEHP!O(70L=MdM>lbAd=aiKwLxfhc^B~J;y0mccI zX*gflc%B3MfYh;?K)HzFs8HwJ_$}ygB72ZdGEHV3!Y8FiBRp}&h}A_7fwQxwVD}Oi z!h&MOf}4U25P!mLV}())z#Y?*2n>#FF0mRl%*1o7AhO0p96U4U=QghJ;v_iM)Co+KMg^H6 zmk&1)4l22Nc#Z5^JxW($?-DXoyiW!bZOU%BtTkA#RKoVvIq}!2k0fU7BVA1nf^%~$ zSWr*>Qa2E$Z-V8r4q2ICvuIZ;y}%jpOo&72U^GzwXLS;d!rP>;0l5-*04C-D{e!s( z0>X+R_9g13at$8=z8eTQ-D}!36V#dzU88Zq28ivMPne8I6&X`1N9ke%m!CL`s#3f3 zYnn?_lBYT^%L=EJih+22R-{jf@X3Il*T4LgsG|$@89Xc49Ldt+=xaK3;`Nf*A}@Ph z?-S|KsS|u5&-G2bS~y)s(}QME^^VWYx&-Sp91uJb)+v?N*XmI4)yb*j;o?Q&4Usu# z1j#uuj%Xz+wczt34OE%pA;SA0iig#~4ASGDY&S6x*+(=Y@esRSAx)+d0K^X;6HgP{ zNc2xkHcGGYr}2i#OoBkbtp<0*9)L$+BjK>(4U#njXM#28FO7yxK*yPE1-K@Rc=}?3 zqJ#Gky@H*?ej|$D9b#axR3c%R7raBiXlhldf+M2Ae)1jm*@KM(B1df>GLWm|h=k~6 zMAU%~WIBkU-RNFU2FkGcVDVAMLVST&3*u_nu*enqkIF4r802H{qj+M*z(iyGzeT<% zeej7tEXgxI1YBhzN5fm|R3r!X#t(iqya2cpRBM3L8GM~lgz?4y;eU}CA+|9b4{~HM z1^66qrCr@gsKJ3NLY+gCUW16TcLXRM7?Q#Nm;tiK^umKbg?`5>!Op-d27@IR2#QVx zviX4%iLL^xBgVv%@a$+(t_$*In5p0`;DInkS-(`abN^1wg4w%@2!OmFRt@iydSQ+w zY5Kn22$hfI-rOPAQ z6c!vlt?6+Fo?v#gK+l+7Dezjzi-2%)m#}llsUhQ3ZD1K-Ny8~7#|FwooP(XF;tV7T z`GLvCxPf(E>&Zp_2sS7gBkIt=5bO00IeO~is8^$UgscPnPkO1tpvPMzeuvkISBXrc z_duf1Zmbf+2?eRbN5uCdpGc1Bl77G*@m;xhcFV(;1tr3>0|~``v2$R)YnHLG#*%@( zBYVsXoNz1~|A)^)1`^y8{|=OwF@mK-g(34ojSfBGh=G|C(}{sDB%n#;i42PkT+iex z=*!GLGcb|Bpzx(wDOfcu3Q;z`9y4f|^z=}{*TaJ(rl#tRiVc`JbdZ3X4;vYj2#LTq zBezJu6!>#kI`UY(b-a-`?t~~B`vsa~x}vbo$bRC}5$_JtweaPT86s`;AdC<+k&Wp zh==ZG^jRS~F4MhUmAt_%MwZz>3T~sxk6?N6Jn`iWLmj)!jz6G|t@@W74H}Bo1b%`A zA%;hr(#?{0!F-VxvV|azuy;UV$OL1*;5cH74APC&Vow`T8nTV#Ag?iS@T-Uki4pKc zuy&l2j1`_0d_+)nw5sV82JTFy5gAb`ai}Wqq5I^1nR`~lHQpO+Onh>50=_q_CL$gD zL#ne_5nxj25^^>$QNTCw=#17Q8%LlcwD1d}zj9pGQ+BD4}~ z4P+c!fS*JbA3ch%Ky5GxFOtYAB749n83r(2_>FHt-VC+}eisoheOXM_0cHkquZN!A zWXKsKlU2e((p`X8c(*1a0#lXQh9N=5l`J+^0Z$$uoOl8sn!oVdU_m17NFs4E)n%ss z9-IP%(qv=UR|#o@hrt=qov^sa zH8>iY0(`=zIbv@mIDqIfV}0-nuu6@_$|Q7qg6nQWHe4OfZXUs|FS| zpAu0Mx8hI3_z0FkIC?{zD#ul_ld>pke@=%3H}GsHvR%pDLR^X zoM*=SGmLVsYvqW*s0&g?*D$jF;34>{M0!|i__Sts6!aop9`WvxJNT5uDe10P7jz!_v7m*C zgV_y*?n^|n=yC25Ki068s5^k8M+AdcinmGznkq|px@ccK3Un!PB!A=OVU-Mz9@LJ^ z{&gB<)3FadLvLzu5Q8EUFNP`lgIh+fpAH)^RLy>)^dQ3;VhQQ_LFde2`W%)xF(udv zHIr~7sh31A!}|sk2aO|xg9az#KU_2Eu6MXH8jt%x0+0(VI`V9~vf_O*Yvh6HFaV-N zJ^-YE`C~^Ld?yKodUH12eOBZ@N_g%cWmDp^fua&Ry_EHb)O zL4w-C;Gx=_Y~E%4#aN?J&?Q_gUn5NvMn4hsB3w0UagkqY;?VByl2KEgh5twG337?A zKo14h1AZ^I4c*Kt!XwA;1=BWFXT-kO;)bp|BasWJES^aU|e8VXfNVC^b(#Xo*yU$*dqBs z`nmHdNE@G114o@1JP^b1MzawI5`i1coXCmiAeLlCn03R)GqDtC2XQR%1K1c@2*XWe zZ1JgsrCF#ZgHL4aA+{CHld+|Nl5+46I8COb0Ze{+$dnq7E{u*cznld;Ap4bw=oo{2w*A@DI_!H~^EyD^)rXF9quhD49}hs+4k zGO`J}Wf+FwJVaV#^5HmBM?@Di*k2)+GPu^%B%#efq{z6!6ad+xYyNrVg6JxA zT9_0)`{D4%Dr1x^bPH{VhJ$+6#?@_YW%+d=jsp*?~m>3*WHL#%V6WKY0aeIYXa-hQY9(sBdyTvP4)y_It*5 zaenYiVoI(9y8!EiW@UwvAvL%p-l3_$W?ngly^>51Iy_2zQG9(6F6J99F8(dvE^CW; z-bBxM5BMGU7jQ%IN@0a&Y6OYzS~chRA9xa`z7t8ndw?U4p9>C6>?|)zRXrAf0sjC0e594hB8z7mZ9zh=sr>BkxIu2F4s$tJheze(8VeJ>;K#v-G}fJ5FSghCTc$pZ%!N}3tl^&%iy?jF^XLGL4~8rv zHzwmlEf1V0(0mXqazJ=edG-jmOx0spTNy7%T~dprZU4Yh|q8J6GICY=snZT2Te#15^{lbq%v80&^cBF ztbaUn5Kp9mCq@&}Kh5YM!_H)Uh+L>s#UllSVZ=BJ1`C}o@QPXa)SI))!KuNhsdqN} zNaC#^F&qi*g>Q*XB>pmc?Ga<+)lf}_CB!np+{Ioxbp^aoqA=_x7#MXI!*o^TFGyCA zp11>bJlFzz6~TZYnlt-*nT#WvjiU@#A2vRfO7wGrxleTyQVAP}vk=3fA7Nx8H+c1A z1Wi5ib$SMJ;;aN%PDn3If1b_sqW9F9`S03ZWUM2qxWUiJ84IqBq> zq@(FOhaYq;e?)W+_n(*_>t=R+uGJB+G|6zY(=Ks7ya@CexCPzlsmDVqOrH|)BD`*% zp7;@dl|fX13xZq4wKMvQJgFX?> z57C+Ma^O+$F1r8_ouO}-Q83W~IsyhnFa3qb#aTE838aHGb_&D>?s%A<#VLf8?f~sV z!>CKdmSa1}4zlKnn?ZNck#HM`X3;HJS$H8Z8XWqUnI&sxdhElhM|;32LGzn9$5dP6 zTM-+Bn&VdxrM8f+1K25bVkKQc*V zyr{e(vqWxydUW;(0U_fruFQFe6kq{jhw&W1e$5_xCWFS^<7t2iuwpp2R98Ub;!B`k zsr)B~XAX%S@hqt~yoQJ3ACav=>rg*|G!nH_=>(2wYDth&lcC148x8__8~lF!c4BP& zO!PJDvb#pWWMIicv1(YoNCeuKyc97lo+!4083jc)QixYXO%G#*=gR09UB)YHC?mwI zkckErWj&bQp`ee%+olQ<>BmE2^zr`jvWO0-_9sHex5C3ST?_ErIg+DT7x+kAiRhj+ zL-dA6NQEP|nH33!iWdpL6>OjN!^$-sAMsF;dc0Pokvs-7Mb;b1GAkVf1$#ygf|w4J z8{`(*0+WE%X}W|nNN@sd>^!Zy=ye6IWjpJMhVRWLjdVRy3ry*8V`16CMIAUu-is@OcexiGCnw% zAy$$;kKowoM}si1mn9vV7*%>sQTc-h18*JaBsT@7MGn9)-O+VKCS)rToO1g z_X}?U%>)XAr7=8P5B+WWWDyU8Gg76A1z??-{1LNg%Cp*VYeXw?4y+P39*c!;;(qB$ zg68GP&29?ZImn>tX#*?TaD7ZaZ*nPU17?rwV+FwEh&&hpdh5b9Frx|L%UH9*>2Sn< z_>+tu){M>x%p)iw&wvHS+QFVQcr@#as2LgKSYlATGo&776&8goC}V~GCwquhMQ<9$ zH(3XATV&Gt7N{?C%q);Q!aKl1f{U{1sqF(J!|S0=9?!$@EsP~2GmMTz*1)@wBrGEM zr|C7qeP9(}Et?pZS-=w~LxQyg+oYBSwhppFCdJgE;T@1;G?nG7;(UFA?jV~D_o3S5 zFE&eGf@Q+tLle*?0WHD~Y^l-&Fo{fc5gs2J*VN@utqzltxR!W@b>67YYPEvMA0aE$ z=)yrl_rhi5{@`PiUGk9p!IT1DB}>i|gBdekj0I2EN75N2?}5rMqbnI-!;$cmPc~ei z;9-Dk;l+~=BC3RCidSMXHHPyAzRyu~c_q`12X9_8i&VPsJupx3S2)zn7`lMFA^s$X zNj7tcWP%<8npphFkyjMc+xV||#K zBj(9;EyP=-yN;>E$B$u-K`u;3AM!UaU%;f%<;*OzU8cB@j>4d&RGl!Zt%?ltbta+& zynMK4#V&sx9`;q&yYN8`R}V%ZwgBXf8W}3JsllQypJ)Jd4AdP?6n=_fm148dQ{?to zSy*#Ztp~tb5GAVY%>{pvUCR1 zBojACGft#os_0px^ub{ciARtS>WYZ!i8koIOa%mceUhUGA@$a0;EMQKbWH*$!h)fD z@o8DXcyr{Z;IA0g4n8U*JTe9FhIN- zq6>VjYgN~=DvQ#^gDM!E3tA#4EYdl0O8fb|@U(6ga z##ltOCA%3Bg~K{SC*$*hwvo{?`6FyF{76O*)SI}O%&3>nNz~m%Yk;xEKH@*a{~!~{ zxA8j2H1ixhH#^$ltJ7bVUKCXtFR(YdSTa+FKZB++b=CO%2?$~N@ZaABGl%`9JLCo=S!KH}Buv++N*f$dwQ2Bso zi3dh3=H}x6nanl(Z~D(sxj`g>Y%&_ecW_mZ2Rz6?jTHVL*CAdYdygd|%I2Q&q(QX7 zyZI*AnTh7mDWD$6sKStZwje6Xg&?cnC)$F8&Mfjb9suv6_hFJ`3Sq^}+GS7TUAQBA!H}m-(08c0HFXBmlvBe1yM-=Ve3zb;)F1MS&TL8g zoQg28Px_6JALKQXhgCDZOIZDImP~h25C!xCIcAf|1$D&_fq~2_VKsm&&?$l3Jy{j3 zukpwXGQ+APKBd|jZxxmV`6}YXD?-`u<4nysE0-hj?}>-dy1tq{bSE=oDq`T^!tbWu z1!NnoOcoc974C`Y8O%F+vS5RSVcSs$8fiBPTanKh(m|{e&DbOn`~{9iyri zItWqWLXDxR2?Gfw=S)90YQ*@4;SN)A0d@|*jrNmb>DIV%Pg*;*qvIjX(MnOar{5M01VD ziEnH)6PY%{Yr|`S&qn^x^pPU!fR6#w65NQnZj^n1iA-++x67G>?-gp*dnYHP#4&AAXnHM_{Qu@4NgUbXK-~g znM6vavd3g;Kz-3ZXg_>rED@M85f?0JP%6`b7i5u|5HLHg%GK%Gz{;b#D_6&X&$GtO zJ)@_|Xkz2Yih{;)6}&ZSDBzPa)*O#cCGzBbq?~x2E1K#6#@TQVu^#w6%oXS?2mrVt z)z7f-c})%xy9M5g7Q|CwwZJ7ezOvye4AW<<3G^EIM6@1}o2lFy?b3|!HPMh%$p-2; zcCRzty3mEaC9BBmNJ$+1T}Mm4sR%OrI8AcNI(=i=X^DOz)O1mGjy^^Qv)d^2X?%qn6hH*_+2Lp*Z2U(<_#{e<{MUs6>; zt!<*TFuTCS>Gy)(q3iD@mj+Ij4o=Wtv91a+cJoS>u1?mGaBLFQ0pX0!$zF(LmQK5l zJtHO#JACn)&L7lovzHis57F541UaW4IQP_&!O2H9*&mnMv3eZ?d*4JN)Inj#%?=4B zt4gFw!~mZJIbxlmoAJ8wbI4vJjp!GXRX`IHLts@+Cv(Z&nLuf-q1 zYa^~;HL!BiO%!|E;&UCc?C|AEbqdw)65=T<&spBkEfG%sU#cUg?wwCzD0!0IjHhO z#u;1KYw%JS;Uulo5`6<-3X4Y#F}MtfNv3|WWUvN7RWIv_@n`YS@QqE^8mud`!aTqR z3eaqTR)H}SE0R~Z7HffXF!F{)F<9^86NXAgiGb-W$3D+=05RAG8WsjLs{xJ4?lI%^ z+V~+ug_MkU$vxeK4c8D4g#AeAEz8a_bW9qj|I3fu`g3tbP!xPI8_d5+#2tam2s z6OILa;pp)?j&IM=X9LtLVWDfCu_GVc#L4AMDcW1f^6C*opq zg~Z%MJy;|x81@sa6lNNjCi@Q1&+fct012Q^FbD_T(7`^akfq!31?je5oWHu5hX0e^ zi_uS_dI|rgcYfDrXY~I#X~{pFKkD~y=TRLKt=H_>bwV93=zS5ZGo8^nsl<)aXY9mv zMv_2>VXi`b8SWn?LcQ^{yFDXIc1fMEg4 z6izez4LmZ?Fwjq8{;nET<5v#U`|N{A439@j*D7pV7mYghbGYVVxJDM;MgF&&v>B{I zvR53B{YJL1zy`$wg#*R))VinA3`qoGg>4NQV|0P3(m;!Q>vPZ>vKYk2WITzu*vH89 z@gyQPC=DG{sS5yY#lPe~;#qikU^T?atOKwivOe%MOe|)0NP^W3JAhwo0@d4K`FI|t zpQl+fbdW($(UHbT6diQQ9&ulc0vtFp)yDpS9*`e}muIjjVneb_c)0kHV8P_^z=~kt z<0DepM%;nFgs*7wd!T@z62zm}cJepWK3?1Tgl9J0zxWPag}~i7>lMwusc%EarRv=V zNgFj4#BA77cui<{d`#9rrlgl%k6^OgAviM;G1Zi;6lAVks~}F2o1#0$rzX?P>@nKZ z!?DA0l)AcP>F0!A!v=q!brFR~+a#;5aazOI3GA0!=M zQ}&F$Gc(CebdqDyS`WL;Ev%#20h&Eq}!`?kCy+Z zq@&{7`nt}q+%s$+wjHQjTNQk{ylPrwy_w_OCAgui(A>u(G}N z$(`9&kB&hNRn@tb#npB7mmLoU-4you_|a2q$AWwXRJ{SAmF#caN2TXf>Sij&mn${Gr$iA4prR4GY>CSiDzUdfVXI11D zH&+TlGxZ?sH!x_b9yDFx2xVzZSP04VOzE%{`y{U|DtB3q9sfd2Qvy8{+5A7_g-M z!Mt0N{(EM5+AkH~bVm9f^4Z<-QB_6$i0ttN1y|;H`wmN8IA_D4)mtWc2TiVgI^~AM zinBqvm+EGFcKCaUICOjIrkwY)-Alf0d7}HrQ#Y@jv1!|)A%iZo-<1=4dUL|1B_+_Nm?B`Ci~& z@3dzBve@iTGatD0VUu6CLYj5y>Ixy1~akaT% zSmsCBkrjdNg@flT?%bNVDRoxQZgZ;VCeMstb@I=&RW%1Z*9E`k`+Dm~W$jtNroWZ{ zNc}CLzfPXMZvBqmSM?cn*mf{4B=P6im^0f8KWY0k;J)BskMi1$h3hh&&x|ZR=Bx~R ze&Jo)j%+QQTio+%&G?J=#r26ll5$_wc#l3IXZ>v*T`DrN+EV|U6MWS>Xx7Bi8ya?f zyzbHQjh?d$TN3MHK1lo_@3WTs0|tdY>y=;s@4~OrPNeNC>elgPzmMl1-L`(m!bOku zU0;79;e7bX|_9w~b8 zbZPX4gmc-&jW75;9#Z0!-SE_xnsBa?dq~@$-w_Mzm_&S{^yv9 z=g*eyw|y7l2-;-@R7d4pmztfCTXDs!bkwBPhj!;|zGeC&fqhChpQ(;I7ynhp()uTS zw}g85-rRgg@#^#!?1%F@8b9heW={6jv3sgkh7Yy1f0S`1{_E&(&YmhRc03&XM6k^* z;mTXNKiQ|HuPL*;|1i8^#m?Q$TbpLh4GpTW&h3fLhT;(tT4^Mp8_4TW|ZGFxgCyqo8J2fcZ*}6RN1DUpQbv+6Wr4CG+RD74ScFmIK8@IsfE=$OYZR#ioMR)&rUJlb)&{OimB`$t(xR~`$xb8_B>cf()YV4D!{aVf9l zS1#hg(?4#emtJ85N;fucb`Me5vX?|HBjN*ZmzHw0XglmA+qITAO%Z)Pj?*W#8U( zlYetaq}PoN7YiM!9rmJv@oi;&`!4u($NAk)FN+!QXT!df9Wif3jZXTkY>4fb;5P#= zIDW2-&i>xMG4uP%aKEMFSFL+AV$s$K(@Xq)i@!`95jF6{2bp0F5Br9Oobmdrp|bFn z)caEY&dYCpx%Y^9&h5E-My{MZcy`PFw54&~qHjOTH`$zse_Pw-!YPb1(8S=8v*`~Cjt7%WzKh3+L>2R;i z>zD87wl{grZNq3>u6NY7GgUTD=YShA9?fYBjIV= zC(k($dQ*?P@n4duXZOpRG@p{*-aa{%7t-4PiZo%wDzaP{dzrM~{4{ zb8F_eagE1^C$25*-_aDfA$Ygj$eP65$L;@03oHH2ZS3&-S3Ve?we#J1y}RF0nQ-nv z)T=Q`DaWs5dHojpn*S4RZe`D8_}IthOsQMi^`RMWZ23K+Vcm;k{_1W|5?zNUiAI0r}tDWeYOAZ^`#d_#(Wi(mlRpv)vaI1*1+M8xXW=_?J3hUw^V)Le}2O8 z^`3iQ+H(I?o8QNm?maau@>u+&tmhi*{bq(f?|psabC;&2ePEwj@P2DS---oecSVK& zxZ?D{@TU9iFU4d>`k(uw^psT_ToqX1I8Zq{`$EdNj1`x?efNyJe%;u;4{UpWhI`=e z#jhmJi>!@H$Y`%0?{_dX+-FhKJw<70AKEA7$233O`>T1gcRn4Fv+BJenJrz?M#er8 z`R1ATiklo`gC7rCWEEEp$|+3QlOA85Qy)bl@pS|Tk$#3aC z_6s?O>xXpzVb+`5UfFy9x^APh9J90f#U~zr{L}*l_qP8YxF`5dw=p$^xrglY(_Sjc zw{0Bezw*8C@Ley@U*F@_s)YjKtAivUHnL4)kW#^-VS1nt(XYuX{ zi~hXs#hRNhJRF@8eP{A_m1{k=hCJfGu-&VCWoAFSclO^kEy1@;oxC|}@03kbC+_id z&%f>DYsZUEypR*yT<1S4#7nxcEq{=tF!s`moofcZwrc}>{pS{)In^_ASiCK>PeYRLLm_j#S2spp+Mo8S zy)1t~>zKaX7sT%LkGNyykAr43k59c2vm`R@%#9`LT^{^lP^a^*s-xNV6npx66&c=+ zF>7vc+v~mk>zSj1?k|Z;EId9et~`Bb{Yl@Ip>Ozn*L1unJ8h-?le`N}cU+e~H*d$) zh=$eGLmOMaOpp$<>)ZZ_IKFn+$PJydGXIPl z8yTOt=F*(bw4lSmNwzsxd~!$I|4fT6{kQvy5ihU07`}MtCv(Sii@Ch(+?`R|V`rxN zT)n~D7COnVpyksNd-|o6dvc2E=5#webNALCBD~j)8-1&@GRqn78}(aa|H7BsKMuS% z_&2vbHQ(l5O?fA^z4#?tz_8a>goV%D6*>Ru9-meHmeeF&xISh2l~}L*(DVLpw`G*h z&p48@Df`6LM?y=db=$IU@170w#&y~zie7&+mbM?zlu$(tiTJ~=S=?w0ohVnddCPOWRrw^FZ5U2y4{j-asD7l-Zc zv*+xR(0fvEZ|v5A8`@_Tzxh8sbvk ziMc0gYEs|wk#3nGhk~AQmR3HI-I}s3BjNH7z769ZU-w0R%x9|MWov(#2Sb1bneACPJhhx5ptUH@gy2SQd zNKo)N>!m8U96$S)=`$;idUuSm-Ee2b6WbQgOby&v;&b|@$PeNcXPm8%@Eg(PKHsU$ z9YwKe?J4u~UTfNP-79mq?^qeJZT0@4kGH;*77^Po(&Nkn#sBA=6;c-*XB%~8Q0|NN zZ`1dcpZENE)WkJc!r$Kh%IwcWJ}GNBU2wcO=6vdnwXr^zLl65^wM3Wn$avcRW9|

Sq}c85nv&dG?JuR>Ub@?T#)!kK zydoZy6!z}+%;ocEBO)(E|CO?^=3m}bq0jsOt8I8$OvWPnyqqm{XS?p28N2nqy?N^{ zjlRvR)p4HNLTmkf+TSg^no*oGE&Hjf_k`w7E7-hi@1Gk|#~pV2Pma%tfycL= zd?$BMYiq!^kO+_EwJY;KxA#fyUG$_QcF>K>#)rSS=aa?fduP{pUAQCa;i#z>LMw0c z@DKeWV1CDc%U{VnkuoLgi7P(^t)24NrW1SHHuawLsprwWb0>2DS$bkv&Ogmz0Y^jr z@GP%;xnOu|vOS@2b;ta$&?R1b#)f~r^!9#(>z+#P5H%1*T$FO6%+c&Xv2-y`t zCjRI6e`9B+|55k0Z&c`=zU!Lni+)cVYJVc{?WSSZ-8*;xj*StUSKmAINNZzSS?oKJ z)6Xm@u5;WPJTQ2?ExI}}XQBPY^y|wX@f@uT%DLfDJC@E3>=t+VgLAK{A?+>p)ipD`-w9pgzqTz{Qn!JTl`(|@R zMCgXi<6d!_ko)3^4~}~zEX(`4)h}>!NT!EJ-K2ty)O*v$7cX><99+G$YPa9+@rzDh z_gc-K3q7MJMqj*eTjd^)sE}I%#&<-Pf1l}X|1)b$&4l2sQwD7c+FP=**Tf*t&+_`7 z+;sf66Z3Q4Xtw*$51H%v@49~qT2kv%y^C({Y!BPC_6<0EwQhH=1RqqUZV^Y>s=+Vprszq-Fm%U}!_q#SPK3BQKu)Pw79_lfiEVW;#Bu zjLJT0|0HvK)oH&^#y_=gYQ*bXHce~vTUS(l>bl5&@%=OJYnb7e9dgL~aO2XV<>_~& zPA+(_Wk{cNy&`)tVwYg)*%V7s-y+RELKdS_<+_ zWA9k|Uif!g|2^Zu!1*QBiRX{+h&`0%QFqy=XK04cvgQlLy)xcSjm_WRyz07)>u=qD zQ+Up*$f5VQy^&|_6`nm3#n<&{nh?v+IJ-lw)cmPTlq+M`_9qx*Y&8Xs!#HWPLJ`o zPpaACof7(z|Ltwl%KS3-+xz6aU;BEOE7KQkc_!l0y7)2OZ3A=0o+vo}MS@>`x3=bh zFN0rj|NH9l{5`2}rHv^WYy02Ow^m#Zci(fzqCc+tyyl||YohOs?!2(5GTr^T;HUg{ zv^`$7IrF4FFemP+EwqcG*`kQ=H|!t(jr+yiUrzKo{`rZGIS(|i@jnvW=}}boVd1Um z<>?zs{&2PpdT;6Z-E(%ovS>o@A8K;XFN>NH6)vr{*sV|S4gN>kzbsG9TxS1YR@0Ty z!P}=?-B=e9w&|;hg`VH#k4vycMxCh29?|@s|CW$1J%j4=3VusHoO$R=>@4vB{I7eWKn-`nJ5rwmaB6;9$pN6%kpp?KPRRt3MA2nv}8OvAz4ZOq=?F z@4QQkPWeQB5q~N(vmwLxjo|-y?ykSTa7@~$RI6}X+r$0p7d)`@kv%spzZ%xB>AZb( z?88yZ&mAgVWcdWo3XFGLsC3V1vcHiTQ@O&=fBcwr&qmz3^}XrO1jH6!PFxqcHSSRQ zYjwwbCWd_B-OzYnQCRw|sY?s?wtU!o`@H9OydGY?(r-v)%WY}@ihVuu*E3g(=Q;y} zR|KuF=2iRTZcO#eEUH-P?KNiD+O845Zws2`9{gJA<$lrItTm&?Q8~TN-~IFJ!p1dEA3Zr_&|iKX_3JKm%jlgJ zoHMoj$Hs80&}))UFVCBur&=ppmN}pC@80|9kdKFc+4ttaq>fi>`jj~?JyR4?-oNIp z=0Bb5J;S^^Jd&)h9P4aHeU5Y~@15TFn;w7qecgFy{f*VRmu;0dRQId>tMOvn>&^pi z;qG1B%iaF+X!dz4sJiRC9(7%M`_()4H>T9gzcQod$=Wdu9Zd(@!W|#k!rec2KkELI z#}4nW{9A)Px||LU^u6Nzw)wWYO;^9adQ)9RLr3%K_VbRTwz=-VyT9hX&?CZYg74CR z-a&N%`+OGI>RZzqo~t`p=co^8TH4aw=I)qcJMR8pk64c)kKa5W_kPs(TfcVSWUp^+ zy*o0R_cxwtIM^89w7X?RTVaP-GHw?){dR`HQE+bFui2i<+&5VD9qZb@i$GX*ar&|yAcip>q z9MH4<=<${Nzimy9tsRfGWwb7AySKflW4hxO=hN2vw!?0N-4DBe?;h>mtfSAlhq`}d zd*69?=S%H-+Ge#~Y)fk&-g(dw>uk2%+YU;T?+oai)cHl{4o9H!c8^%YZFbxJ zZV7H>Zoj)NbW5`>w7qSqy20V*xV|&KBeG*eXL{!gjycLq+-0>{hiq4EJ>0sxdAP;f z4%)(OFIef$M#m7xSDo)F@%Xu8oiZ#>S*_Mu+efz3wtU+e+l#g>HXqx!>Iwg%Gv3kG zxxKSj=iJVdo%c9KDf@DVRbY*`J!<>S_P4(Aux*d6ukD=mxRv4@=6u&N&N0-n#gXK= zPpq@ItyHVS8ffcpb6AObwMW@cZ!67tr?bGZ%~9KVvD4dez%fK@j@{NJYp^Zc_Jn>H z+XmU1tdrJJ>wD{N<+C1fRyp2s-0k?-(dM{A8K3K|d#&fJXRXJSjkT;2WpjQ~j`O7R zh;x(E)A@_z3&(j!U%j`|inDsy=GxZU7U&N0t=Fve%8*evRjKUG5@(r?Jm~n^;pV(U z*{9*w8f&wDrYKKz+WD39TV*@1s0OL8uJD8N0p|w&o^(#J{$qLB#@j~Oy4Vt}|5Glw z(D^@o{$G6-?R?X@*jerPuj6gU&yEo1Yx@3l>rvh3Cgm?%l)q*7S1sRY9>lHmko$md0=R3-RwKxYWKRs6Y<#W258#O*R>K==9 z^ginmYqfHce>tCWzN*oy*7NVNp0RGXmMN21pgeDivTEb32dp1;U*B4HDwFuD^I_*c z=OY^D4CTP!d|hyU?R?kyobx?N+9b_LvS#tLB*EW0<@`=#az?qeYqf^8%JH$=S}$vx z^^uig67GiU^#c34BSs6O&E3JTh zu`SpG*z7e&1!o`YCe6%g>!Ni`Pu9me?|j*LkMmzTnx5k@d&_k7EamcsSX-_4t!Uk8 zt@WF})zeCJe(L;EBVC}ZULR#dJ2fM*x(j+6&((E*(#Sq(-Jsm)hZ_G|ocB9F)8}P6 zXT8pTQr}D$r(uqDi}kafE7p2TW8SO`;v@R`mqv&^Qwx-b|IPWc?*BWr2h{ z^WxzAt)o_Gb~oz0-)l_iZ9}HBw=;)w+W?J=Zcx*miY3pRPn(9yFsD&ut4BF)!9 z=k3mW_5UxGN1m+bdQs>7m(H|M&ox}^5BXBk1}z%RPb3GoNxojtjOJ++w(F^%ux`~D zT<6NM!zK#U2&8IdAv5mK&$>EXt(j}#oJ0$uYz z(gh#u>PN)=I3t-wBka>z7fKhy8K624K1Q?d_Ov)5|I=LkqqXX;`@3Fawa?n1eZ$}> zQVk401NKmoj`>R~{5Q#7k?wV>o@kS1eU^(I0ndk8P*WQX13Fpy1O}74?r({X+@#TD zJfNp0mF93pVVLCU?nml~o2|WCc`L-lfq?@*n0hu*h?}FwsS@%kX9Nc$$PG@Lk_0*C3th-#}x?I|q?r`vV z;M=k@1#CQ6Af3(un$stKX&L*Gmty z>9_*dbs0yx1F?%0ytHbUCR(Xgb*HsRdZ33i6?P$3_e&QL?2g&fyg*l?UTBcDPTFdW z=Dk#(v+vGt`c2YUT@W{et|093RxCX=T=KeDyW6mLNR37(N;3M3<^kRlH2}z=U3bqe zDkF7u_POb&dqwWq{pY;S&mN-ioRJt9tR7m03nj73G#Xv?wDhWEWa&ae_XhYM@a16r z_1F9_(rm5LJq(eapq`BmCGf(j{iU*ls(nkVZiGt)7U_=Bg`Td8X3j%}417uEh1ye_ z*8BuX)@D7~^;)lVCx8PU4ivKmTaX^S)V{+k=QVY( zZW{R|T3Pco1_QLF>HEXJjqH~MgB5NUd)6dKI&4}Y^CaJswFWzMHmW4pJ(+3?sx6B( zD(7@83|{7oT?of&v>Npe>|I9xlCH@f3-EeRX=cvrD&2IxSz6_E?WT`5Og4JzrMc!a zP2Y>rnqZHeb|YcJ|E5s&(D@dIt z)j6j39y=|=59=r0x52ti9^aE%IrF3!`e{9&kxlPn>e%SGP4Ab1nyD>1=e_cSHt7!N zZw$wfzS7jr1?k?AFX{`&>4*rOcb}w&eWG9_!mNkShdzcMPe<~r`fe}X!%F##Gjv9O zRV2{0?!0D)4o`H1PS=WK&-rwXBT_I{cM_(1uhi%t*D5@wPtR-Zuy@@t*}5o~BwUqM zruG?*AD+xP>9nKLa_B58!E+0W8T*U!*dVl|UzT+%}C^=!$@_xjD$ zozw4Vy6zQrTcz%)MCVSGq-JWK=d0}@G1Mc_C5ws%*6mfDoeqFkG`69Vg1z!YmgwI>`V96XRR(l% zqf-E5oUSKo)>zHc_&+F%yiS^fv86(RzMSoP3Ru_ZU8KubtNMDK^L}ZAX_}2-t?4Q~ z1A9Z!;eZMtSh`iZ?=D&`8+6_qC5KbA*8N@DfL*Yu3JQ@FQt`>&WE?wHIwL|-vq0DP za?MzpKB2D?b)wX66lokX^pr4Y7fM=I$Tm7O<{27AEDb!jcAwkO44_zY@$92EuNrxYtzima_OR8@&$AB-tU^pW4dOZo}CKfB3s(oYYKRGzNJ?ro9!96iV0u<-fM>KZ{VTfaf0x=>oyTXEF|N#7Zri=Gyyrw-K$ z)YbIS6Wu7kd5w-8pw)q*X=eXVKYKJ@ef2ICJf*IA?Iqcy zXEXa^cRFG0Z&U>PuvX({jRKWz@MY_@nqURfFN#`2w0uuV!3OD#ozls3HOiHe*JxQK zyT+ATeEbxu7^(U5(AY0} zuC?@?7{bRj7VykDj=jo~bshSPQwQK9R%4##@Fzu2U(3fkt9yn?o~^%5=;wl-I6$LB zA0@oO1g*m#oFBP-LC!-5Q&u__f}Oyr)1`{VT~;PhclxDbUUt`m?VhXu=jbVkGg@6U zHp!*4{1xlOX>R}0|5;&FIno)zbe*Q(JA7@b9;iZ2*IgZRJyVTF%hWs~H&mk&DbA55 zfXCfKHp%p4y`Xb3rtBd}O)=h|hn}5Xb?50D-SoOj=RK)sq4OCGQfgaa_~KccZnN;j zhiV;Q2hZx6QuQ4E8bfN;46mEs)9mHFRB|;@KY^MpEZ`|wSb9Enla4gi;#5Be>K@rY zYOZFOuJ75hRgAe^ci^Gp=pRVmTlT7=GLjuvhDnkFWIyS5fhMM-&0yUX6+@;EG`-74 zXmu^soY8$h&2`SR8r5!k+9evt!J2b+_pH@(j@Bx8NZMej-YwT^fh(IM&C*rlvP$nx z)j8--WUS{7>mJ#eyQC53>O7Vru0mB<&z3H^Rp?EW&F+4}^JTB=JttTnwA@-Zyr$$z zdF}1Zp3WIQ?I8nu-qb6p>mdJ8w)B>kdbj%NO)ERza(l`%!S+q7cip+FM=PVQTKeYpTzj-g`$r zI$_+Hihj@ej%eIn`b7RWg-=!fDHQfuXLZZ0+E=QkRDE8vvALf|X}1rDU6{0Oa`f=< zuFE@~tN3@`k2${=Wz_U(uW-KE5!3KQb$&(q<;At*9Fs%5hIE?}I`hDU8~c@dJbWcP z|CX#hdHpZvHXo6V@oXun?ppRjN!aBRjn8^t?EA^Yfpfo{{pYA(L+)veC|sTKR_0Sh zVRa`Q!`;8=e53A$@}x_j7KK(l+fmqM*XXjj;ftS|ao2!(wwYzGrH9z>%N}_7-nQc& z&F&s;y{oquO)q%9`0m;-yj}=N7GfnMVWo=31-M)1`89#06|a?P>>QqBt$_e zk+f^=+BMc%+qG9$*X~?(ZJnXJ1g2o<7#fC#$?v)N|CS%H%-r|B=bpOnc%J(lpOao& zX2{r2WhYB+{5V#WUwO2%hx$!Bh8o=MQXg4yp~9tMzMMX6s?8&BS^(AkjcK!5uiBv? zJl9RwTyLPbul-J2pyagGSGklOtLkhMFa#52ZVwhW`ERwqVr19eC48MN%$->JRF+Je zqDRwu+LI(5Q?{Y>WSvj{hoOBlXD#erx_7=}$}UQBWkT+M8GZ$Ewd3W9I*q#B>apz? zt0qe#%ZIiM(8o{Go%b#Hzo2NRfMJ&HxA^tx&Y3+TzqS>$!}{l#4*k9j6{RjEYpaub z&J78(OI!3PyxQ*{%M#kU%Fyh#6q{U+sDe6YKE!qykTMV z&|z+7BRgajMN3oPrS9XKw){zJVu^Kg=fIPi(QweFIqocz>rjl zvI>(NvYwXT>l>=)ZOEr*bx^B*7wr^B*IB7U#?SWf37@dcc;3L6dtC|qjVb4n4GMQR z`O$3I<_5LOSxp6!J;Gz9;Ir|f=Q-2k|=)9n_pR-w~ve&)#f@qcCw~GC}{~5n^ zULH0)+R49r$_7P-_)&^gLTmPinn+bUYm*_L^1aopjL%nz>guUl*UjJg{vFj2zRBhF zkZDcA-1iB*WDDW1vYp!YMo0DR25hAV#IN|_Wx-vB!)`g|grrBa7yV~ZqSlv~r`GdU zWtLa2Q#@zou*c$Y@J%^O@L4FR%c5SIvco4Msx_j<{rrfC)^+)36Ks>N6bV{|43^P1 z{Yi?J`mM!h_%cb6temsOp={~6nDc>g*0Hod%WkIG#z$pzm+u}pW>CZ4pw-?HSJ@(n z5O&qPS6fc(m>&?88@bE#+UVb96AR)K&LzC~kquR6))!t;@+k3wuIsvHM*DP*_TH`0 z7fJX56}$SfM6Y6)c=BY&lyR0rbn6hE>eh z(-tfe$8sW;Ia_cJ)<WmIoaT{N7-en$;yqm>Qi=L_ql?ezGmt^Ovlw#)V1B8JkMKIPow zc_dQ#L)sP07$c$HzJa#7G7*daU#VwT#xV9AVc6KXb%Bx7@Gs&erYX7HwHd1_T@}|^ z@7PRwXS+xFY5rQ_<2oiS%IvAHag0gi(YawGes6KlTNB@saG)@(^%bLndi}v*s5EN#wATfiNz7EjRwIpIZF@3>4#3XpQEFwoR@x>`z+;CiA%4e zehVj!>EB&a@bJ{0x0;gwB(VK)AUSEztT1?4c7qD8@JDX=p zI*a}iFKXVT_h^PPP$%x!u;y9w^}}nfXT0UUOwJS!>+aJX1q_yP?~xi)k-1=8rP;vv zvF^a5Zi&_N514ef&qHuJ(U5m3dvx6iO(@&lFi&%|Wn}3}ewetTu|WH?Rnwx6u|~@z zPQM#cq|sS>d25qJBHOOBx;{qPI#c_O)MkpT1d}TC`eH|=x>ZIKR+p$649BvasNY*(lv?u_ipDhv7}=JG0`A7%kND5!n^9qdPmY4;lk~TsROY9{ zH44{D>OWCeBnsf~FT2|vGa|{^e3?U>%i>!WO{#y3uP1Nk?#hrfPna^{~*jZsJKWFgDP=_|HeR6pQf2Z(jT@tlz$~xb1F?%Du zJr)@sX?4kOjn7D^DDY}IuGPlgq&Gx9w|-3V3%*5ZNJq9&@vP4wir7O-=ri2tFUp!y z%em!g8D;nSpX%Q?Y@+=u`@LeXz**Q^L)Q$QbZ7xPW_k2puk6wKGW#EY#h;E><*#bm zOLyQj>1Qiq8^VjLimsJ-w4Y!r?JI&G#oY?#+ZHiGDo&3jBcDXeL&OI#smvWBn!*W-bH&G=s`KHA+cwm@ob35p2Txyup>_UCZ+U1#L z+$qU9q9FJSmy@9VsHd;`KVcJJR`Ixh|CqaTGnQ|No$3E!5~Ke&!H2~0yxZCG+Oe8@ zhW;#$=3vX^(lY)<@!Q5%+AQnii^JotEn6|C!_ZHpko zwB!ZIV#N^xmt>=34Y#uw@I;C81b@ruI!laNbm#X^ulp#9;D0ESck3JPbUC*yGR}E% zw8c!7QXHIojhmmrsM1k(v!=0`w9>XqWkLMEfWcZxcbaXA1Rd7HdB12D1A&~vLZitoHCx%`YLZ{{D*{@g_PE73~QqVeVRgwy>lJ^ zgCt9K)<}1DU&w~InkA+)X3;m5{gL_$*C%ai+4}yO1|97AS}QtESG4he6$AqbxMSi< z@6@O>QEpz8G0$a&1uhAd@l$@>Y-*qvaV{A|C_5VRi@o{clJ>R_hJ|)bOQYkGg8gR> zXF64!2P%47>Klo$*G4~^U8l9Z^FrnC0xQ9g>OYkc6VzUxqgtZlz2nDy>YQ4*CPB#y z%?oHKrZ%%x2Io{UO`;Mn{)^)3mLP)EvSGb2Q zUmp9n|CY&l{lkPci7DJyS#>oB)VB-=SY4XrmffXa`Afv78joq8vua#q5?8Z~>RiBf zsaIw-bE^}J1)DkqI`@oz)qU8PSeqo$7nGN8?M)mx$L&dkS6pU*%uFQr6h$Q+=cZu&TK0{fAe!CqhVjjk8!#=-X1SNE`;gLxui3i1xrxX4lJ-~H7me=f zg$>w9ABr6XHu#5(eItHzz8L;BR<_8|!d6u#RwuE!Rv9-cTNJK_uh~~=tJ^s^`(rN3 zkglgI%@6oT#>PYn-8+#BXXbw9)h5g-3TgX;X>U}n7eDZi^qKe;UkX&T?y&7nXTrSW z6oJZVd7A%9SScI0SJNFT7RudNKiG%pA7w!mX9XF;sJfZds3{|S=fr47HF!KW_G>+v z=N~^mA+BIti%9D&XOn)F{5J5YTKr9tLfKzNnps|^tcVQxZKf6TNX1*^!se7YlJ~t)`YSnwj5A&9tIULa!ISDD zrF{H!uad|m(dWDwCKI~G6`CYm;MM2OZje&b*k=r^RI{2|@B}xrB&PL}!4KOXZT(KyRt7uy>iJjb5>Nt%=8%iEGPTsXeNQ0EzktFyK*v$j^$%fDE@uy^yw zgRbY6)yLde7;C1KzZHp-+PKY`@A0&fVd%h4p+0WAU#8%n6jjx`F!U{H0W)H^MX+4$ zhO{(PWry%?B?|au?MB*LIV*J!_w(!i5NipN%l3BX4X>Hw5WXk2deJ(IH>#J#qf@r? z4rT^a@fC%v?d%VQp){l%# z(4cLU2$+|E~&KI^m@YVEi=^g?Vy;0ddbl$(-=DX+Mnkqg(z*Rhsxe6%)nR8~wC z{vxWZi=#SB$?@rmZipN)Z|ca_R(W1z{D_2M1vi`Bv}SU=@HxT^Sxd<`DOJj}jG7&? zgFR!}OP)?2L4R9joYuxYnC4ctt$%~TE{-oFrBhz{L8vbZsI5|4O&sn0SCnTI#p}sv zhHT!CgYhHc{qxT^R?+l0jrwlNJvgy=QIICFY4+tn@ckL_K0*0zF?UJ;#c#e0}~ zUUI!RT7Nf(%A|I?Rj&}qgcEB{D(%K^@brqTk8<*UIj*3SRX8zWId5UEO?@3@3VWBq zXBDIQiDZf3d`Up-2!jTjy+N~MkA|GLcL5S`RYn8XCFOi^QTKSgAP!aAvu9Mz-=bfI zEmb19-MC*pVwT^JzThLCklnL{e>bt8SCunPiqrOnvsnphL35o%$UjmnZ1&L8o)Hyz zBz9-mvDrEXuC-S(*YNJ*bHuu?KXvIwo;ojjr`P_2Tqv&?+HW$t$IT_eFy_2p(xe0Z z0|G`;2=98fVcj{+U3R149ZFQIu$0et7SCvGU}jD;UNk#a6+U84nPHTao5kgsCl3*= z?A)w7bcjNCPJdnPF%g%)uY6eVfN_-zYuUY+0}CC^dgXJ(oyj5b-r2&Mz3NTu-`HQM zzqC1(o#ihVeW_2^nr4yXuOD-C*#;NwAtM{tPw+yB1KPyCR- zrA(`P;qdKqu7|N>+ZQETxT&p5_M|-Joyy!-Wv2`PX)24})&98LMW7T~N%zs>&GLP> zMZb(_a#Ia^+H8_n8Q+)qxX7TblkuKYsy9Z?mtF%l|8VK+&cvaWjy<8uSeKwws~k## zq$=eTcTM`&^5OxdK^8li-XWV&u|RN4SXq0Na(J?h&o-c6ErahtJ|{-`V`^)}Zbt-h4jpRJ$9{!2^U zVO5zZ2oYM<4%LKBES|57ycW6KGjg=6tn5d0LNAJ4u1!w#v7Gq^XOycOx0ZDAf0b-) z&ox|W2Y7JI?4_Qz62_hiaoP{=tJFM6W3Rh@GMmA8+F4#XM>t7XRb8u`Ibow$R-_`z z)H`|H*sc?W?8NGLR=%uZ6>SPfV-T&PH$5r2z+YMNyfw*SgYC^A$Jp?YHTK;)qAITp zU*6=@JtdEEuC1D5t*z<4SzRP76!ccDR@j4-a=Sf-`ocBgaOx>iYBWQR*Px35FdsrgFFraz&7p~o>;x?flajYbb)8QL+YtAsu8 zI(EyVI!<;?>zy~iRkmqtX#T)?CV+k=QhSA-G3y=6SbsUAO|_!Ww=1h-Tj#v)&Aoa3 zFBQFNeVUn8p;n@n9pf=GMdzlTt^QYC9%B-PCvWaG=qc)c-(%L7-v3U%TJ?+)OV89| zF$@`37-yIVw7+WKV0O`UD8rPO2KMyN>d)#=8Tcw!Dl%1;lmc3TRwv^&vx>>lcF;~> z1~LxQzNu#`^80i9O8Tz!-yYa4_fqUsE>l-h#?rrOl`+DYA29Ygb1h>uJw>xqX)X62 zI6rVrUZ}`bUREtrM`(&DJ88-Er&@CvuNaMtCyb+7D`>xJ!jv?*;eh`@q&!XGtXi$M z(U?)9sOM={=uTRXA#D_6J42?mi%z3XR^L-_k&n?A(kr<(6-E%iRt9Mu|C2XL+nQDOOqGMmbyPM}56qG>iXF*TCffO_se z%`rkc5(oi(s>L047DuwE% z+8edneUvuJ9BKr07xfr*Bh?=G-W*`yOelAOsoSfjW9D+z0<}#2uVyVpO<6&GL@lC9 zs0q{~RBLJnnr63P_2%rsu9*3V^oqXQ4#u}iP2bSY&5HZEE@*w z+jAgF9{}CwfhtzbAUfm+=(BCjx0;JPMAeT;{nx#Y)@%SLJPy)2U0-(PZ zpla3#%*baT=#ByzXG+WxQ8~nsgxQ!BbHis~a477q!T-sQMlResm{n zkq-pkG2l#}qe4l;-?pf?wO~bGq0w@@5< zI8e6JH13*%SoaXjx(l8igL{)owjVt6EafG1;15512^^?{#tL435%t%}@R;AA#~Apc z)gTgTC9d58gwI6a-Y){>YX=!(fC??vOhmOm9F@}WL2STCcy%DO8-bdl20pw4SaK81 zOyEo}!kb2*GEI<()1h_3*f;{C7NV{_9!R%O$OwxxGa&Krs6lHqj*x39a)1ZyLHZ$0 zf!uR(hv@qWms6g${m&{RyWl;f^J2gQTlkGd%TQ z-1`jh$q#`#Fo2%+!beVGZdZ&YT;T-asfQ|i5#shP5WLrbx8*^CDVX&PkiI9Nqp6UV zuooNQrv_e1Sb0A~&VPVy$cGMQLzBNEBSa#mry?%Me?NH$NmV}^9{3eHE=GKrVdOS= z%5RXs9bQ8)SA<`hu&>r&F2afS3A2|V_f13Q*ou`AoGYoW6Fe?qhb8zY!XTWDk%_35 z_rn*b4`KoRkOK(|*v~ElWf&#K7eT zSq88TIf!sQc*<FN0_S! z$1%ZyreWqhtW1cj`*8Ze86GnaQO1CM2!4s6l?b|vU@L#%O2TqnH;6lNMx{R#dYTFZ zL^tFlT$uy``4h*H2dqLSuIfU3EkY!2MU1*&-fp}`aHB1QvbEyg1%r|kT!$sBxdQ0v zBZx?ApeFhT*G#Z?1cOLWeg%WGOOg9sF=hkMG%F!7!Bmk9`U9v7l1~Yigz$(KBco{J zo}NI;ZG~lhU{M9`FMxFj=A?XZeT4OsuyzteoEM^X3o?%{Vw8hCLy%!2{1icA!u(14 zOOT$v-LUG6!Pp`wI3w&d1Yi0Mqf@anC`74^g z;h!Hcq73UwMzj(vZ!LBu3;2r%e39_OXCXo!!1G_gN3-!)3g-QZmLeU{jUWTDtizz6 zmSIdX?wO2r5fm)xlt8-E65d8FM4dNcCJLElGISup`gyQ@G4%DbS1IAMB<$~mM=uJt ziorL*eHg-G#I6cN65+-i3D2B>JVIEQ=RgD75L-L21GzxA1UX6A*nYC(6Ar|mY@(x( zN&JB?`~^`M1E2AP9)9-YCjC!H4|C$jq+2Fo?YF>Ok&tx-@{1L8OK_&7vk1Yk5;+Lo zgdnX54rmB;<&9h!gs36?TnHw&5I;#DZNg;S3SS^7@=73l2;ZUy@)5!QkiLX`XzB-k z6UJ@AXD5N}zT%Z~tbp{=u)%0cWRyDS{4?zE1#wEanF+S46gDFk7QwcpVph`ikYIud-Z>q2$^)`(IPUF$nuh2m z8OstHAsufjac{zfO3s9kZe*lS4q@O^1I6zIOUy$=Si*V)xlTGB{^Wuu=*}Ljjv$l? z{%axPB?5a*ApC)_wv&FUr1K?V!#0NfNO#PiXK1Wp1%izagny5Lz6q-yVJiLE5s~0r z2?rm+)9YbgPwaI8u!0rlBZ%QDyi0JHgw2xR+=vcHFHjkt#asq)MiYURB7L+8(mNme zAzY-S`$sYICJ*B);BTZ0$@oDj$?1i3Uqsu;A!YCp8TF8a#E37KjX@O2k%e| zpCM1Kq>qjqwn@R$&^^5S@qbTlKN*MPu{y#CJ`>(D2j7!{L?oG$JR@~r?Ui^}4T})e z9Km!Chg}J7b3OdPe$eX)yEN$rL;AzoVIFesh_GJT8h2o6H(s z>;w;;fh!2N<(xt6@BuvcUc*z?cI^00u&))O*A%-{07kpQn}2djJ78=a&a&LbH#t>f z2N?+WBVn_(hG&xQF{FnXVeuV<*jfomH^LJaLmtwhk@Ny0orehDJ2?eH{EhSn9D}>W zLE->dmz<(dLAxUO0zv8#_RmUKH5Jw_hevQAO%Nm_cvv~~mxI{KMBI>bWrLf>@yp{#;>cx{T>3=f@G21=pM^9j{ml#2^ zVFhM?gHIJ{kU@l8KMJdzjuog78>#S^7w{5-Sgygmq(A!`ctQ%YK?|O@%#rU1imwB6 z5G3S1eEo~)CEe@@;_?YzCFk3y(6{rT22o&#U%!A~eHh%YtB|)k5ZMH4EW%YSgUIx` zhy{YlCg+G=;koHM)=>#>A=#}FQsfM3kPWLWMgH{0%%tbG2-@Oet{SY8^hzP;bx4OC z3Zj2D>=X*!y2JLQLl^!D2YHSldr3DFV`zpjV>ZEFQ?b{DUE1v(oD&{b!dy+duaMo| z9C<4oUru<(2%0T|6>|r*MPw!YXQ&uS&f!hKtRaXT^2ys6DwPx_?M5J7fW)nZ6G6W29h&TsI-GQ3ah zH5Q&h*qBMjs)0c(%!3q;kfk3Z6JV`mL`^O7Bw?{7{G$?RhU9rO#EcE*G{I_Hp#Pij z=8sq#VPz&~N=WBW^2A7@b|!p~uon|1Z$5nR3C1Tu2c%ag=~qMYIO#DV#kB;HI&sji zM40al{E);b!EBSgpY+E3+4)t0J&D9D>2)N<>fa*{9$?lMSeA4|A`H9aiLnDwL0IUG zp_lQ{DLJb|vULJ{ydU=`jJGPRkMw*c=yTGE(j3A||& zpu>sC4{q>}FiJ1w9<5&MB=aV-knX1Xr)QPSyv?G0OP6xsFs)r*IdtpD^~S9nFYT+U zW4-2G-CgJVwKRLR1X}OZuD!nPdz!6V#&s~{Y0NRh-ab@_9LKdk@5%KzF=O`7 z13iWnar}6JR@J$Vqm-LWUuu2#!iMb1!%7@CT4!~AzHio)!Zo$O4S4G`=`Pj0YwxRy zksK^P(riWJOz?EO7~~rG-D%p0BON=0-kB4#hKfb4rZlEOiuPXvD;pn_-7lF?J-hon z`_CBzegz?a`JS=l(Mzi+xhvDSxh0jweYbS<4LoS$JMC&pO9D&3HWX?SOg^~n3T_F$ zV8ptYIucHg-VPm(;VUhE*QXl&lAw~Vx)$Z8vFBWULb}2d=g~|&ddG@prFo}>7kq56 zr2NO~(dVn)HAj@a6Lpt5wz=z3tTOzTM6?Etu}{#qmUiX{ldLk_B`3OdbO+eCwOxD9 z)s8RD5zVdsxBt(PQ=J!wypLG1plRYrd6!s_YMnG9Z%f@K^-x14>nJ6^l~R62$S7en z)iVmF*84_B-U+pxbHZp|)B3z)iPDtmqE6XnZ82w*-td7XQl&Uk@T&Y&_t#;I9CLzW zqYf3ztLov(&#c{S1O_$5hP^rQ6`##)X@Z@xUZespmYzpu2g#ek!GMjWpf^#Of zqH5rZfrxFWwH%OQfuKOht=*_OGx5@V?a1ngr5*z#tJ>WQ)+fG5%qh6i+zMn@Gnj9g zjgw05qJk%F-^PAsw_`~~bZ?NA&1Z&Fr8IqFd~Mo;(p7zb=&$CKF}8L6Qspe{7Tm3N zQns38%nMk4Au`RYf2>89b5T;FS3*#}q@kMnkp0r&ch&7CJIQ^1eDR@{^ZIvff`i7# z&I}2)_t&+n_Rg5elct!KOzT;v_l`48o8A*&ohjTVFsd3Ne?3+-_esRGXcM1j6Er;! z`P3x0cxldLsWIgjb~(#YGp}Vz=>xt=u}E-p-^fL8WZAj+fCx-PQfa>xPQI@@vYb z^h_{b;xcpDzp=rKE={da(u$8HPv%u*##Xzk+6|eU*R-&9?eZf21W|+Z5}h?w%YSi9 zZ$!A8aOm!)Nx9DP(!@yqu=dYP6=%2Jwt=(K1aTr?zs#}g`mjQ$Ct>Dsp92|IaTK0p zOsX?)ZANEBx_k#q$UZ_pBP%MW2o4H^>RhRFr=+OSs*T*dnzF?crcvs<*K9ct=wMsIj@1g!u&K5>l=jF=Xf;hpZYNjdyJXo~ouITOF z`^W9?yjdWPkLSha4baT#zp57PVszlDfJzc zHg+{jrA}*3l^WX5h#d#8n$wFy8hRi?u<%qP_mi$&#pVVa!#){t#^M- zoA5jTV8!VEr=yR#e~rk9(e}SRN!k}FxRYqYJCOabmZF)>K47?r!friPdI`9L!p2hV z`&J(p{T=JFZ2FuA!(XL;Wc71LB^3x*9i}?XoB{A)t*#9eZRA^&f9uIGX1m^7b|7|E zz&kS&MZQRyMCVy#byh!6eKS-WMp2ix?JsNMKNYF!mowH|UJandxh((3_4N?XMsc=? zo00IN$hf_SS;;BU{iFYvx@6G^zEPP`cg}Eo=f~kw;{IHmVv(gfT)Yo>)PFN3qKi=r1h<6owL2-_ zCl~o_jkz3EFfV1KXPa^U==fdnr+(}J?%)P0zEc$H`ensdd~=DJOu{)bt0P1lm%7x; zW{wuMoSV9WJ2h=i*~9)E0|_u#8#|*bzX_CrJwUs~PQ2~CFnVfqrq_ZoM`c%jq{YvU z56#bQWYcGI<`~2(?HbKXcJc3&#JA-cTH4PGei>&Ha(w15%rzBWY5H7l%6v(2?-l(5 zjtBEdmrm7tcwu<;H|3NGXS_nAN}}_;Gsk`Jv?%-|p_r%0HEqbJRE^w=DTYaeeoEy~`XK_?PEaM+l7sb(Ndt_s1Qd zcP275CenAb>A9Y?qV|NzyhSL4Xj5X?Z&@|!znV8mrtlw%E1Fj79+~bHNQtuxpYC|X zz_M16v5A|U^jYN5^}B8XN2p!fGrOi#*uZ~KF}t5J#&7QX<%zK(|KQ1M`WFf~iSxK$ zvwUj{)l=E`4OdXITKXka{zs8p<0S*$H{M8J zH@I(EZK&u9e}8#c@3)at+^$AM#!(j8np-O_h|VS*HUx)hb{l{sc|hvLV(_!M4ho@?W6S|@wGLB8_u#=|AI_}5FK+jI?g*a?@O zj@uNn&@NniS!HXQ9Z>X7N{V|5^ddM@nMqyys)h?!3yP}B6x+wEJPRUEM>lxenW#GL z3XdgJ@&vgT>piK3Y-g5IRn@d!lFjcbrnb&C*kbFqWLsQoXoV!G=sw7#2Egq zv1u_v)_N*_*R)vo{q%&u|Kj?>yBtTe{;W039Km%=DiLn$^wqU7y07zh@3NWzVO`Pv z@?(9MM_0M;SuTw|xp486#RKbvu1Pa^q1kV0<23PX1NJQ(be~#E<4Z)l8~@aPXEk~8 zwm7$lKxYZNP(;408R2wDwz<*Zm)w_43%=Pz(@Hopw$IQbN zM@7ey(z&^rA=Q?u-wpNIF;t^A_p;~w6QW)q0qK?%3opdlFaO|rd&soLWjTCaZsJA$ z<@Wj7QqC*gx&1Ti9*eB`OUj(PYloXU9}hQ$IdF*~5 z0X@sp_#cInq<_&=W}E#U$4rZ~pZmvf|K^xnO8odl+am2Y1!E`2Q7?F415nZYB7r2m zW602S#~op{aTAstv|dP+Ny<{ba$l#rSFDnUvD(;wV@J*_f5gugYzMbEZ}LT-j_7Go z2j^`W`J?qlo`jbgZ&zU3GK!((yw#^DF4R92A20e;lGy%~^T(`dp*}0-1mCl<(E6<` zKV|-R_tbNx!Trw+;*kqOI!!7a1j_{Z)io;fi7&k`M?a6=G(Ty~KAFyse4Z~aH!r>M z4Sj*pF4hv&rN+YI$3^wUW7_--+w5$E3*w?eKFxf{d|Y9h_V{~n%G;8qy_@vgIe#(7 zb^oZc7WxZ5RJAHn#y|JsMY+X9E_h+Gw#%fjFy5ATH8;6FgSweBz^YbXZhn9#xIcT;4o|~Jzrnsa#LhmZaKzm$IMfCtqh}^5J8)z6S@o$L;z`Y?bbp(!TKp~6E_{^{T{n!S@)a{_L%xFS@*fWBsvI=$R5B82XwCY z_17ARM+^QdukCqlEOXhl>~d^PK%4nqa8C*EPWvU&R<+s)a5_?%$)Jz z!{deo=2-rxt|`8l?9A26aIADw>}5@6ucRGszgd1#5GcAWt))4dOZ-O1UW+_7w|jU> z^SoRaUQfJn;f&VTj7H8d{SdiJ{j}md{)^I}&M`wbI0{3<<0L^dt<9;8lDw4DT;24D z@>}539blKxD`YMeF@m!~RqaK}&B+ISCdHhJ>Yq1vR9)MR{G;*l@rgeUfloJwqts7O zTx$4Qe2jlsvP|}YL!Y%Y0z4<*pW}A%D&%7eNx)rH_zZG$BeO~)1xv@@Jz72 z=D6B@;tB8V(RZU?&yN}#)}dQ45N{tpAwQ<^Dy;)drW93bV@Qb=->Kvnu=!#3H-gPp zq=Z=8P15eIh)VnT-6G{|iA}Gc{twOxrdIdvsuqE(pt8z9xpTao*Q%(1m`e-Zo2=}z zE(}UY;c4eB!nrmjy8%0LOp~hQ6#w7iyDfZuTiZEH4#deqPdX&&npHnZZ~Y#VtP$_% z9<6tjL(`tpQ&3$dv=bbw{5}vr_ML}TBrhh#muqU%YtFYwoXcB~qpTZA`GZ}?qH69m zuaWc=MTyIsPUv2p?h)7;>lwb?QEhO(wjpC8cU_XL=v}9^ZVzXPj$iMBnpeUP{M3q@ z{T^ei=DIJBiWT~wntZZ9Sm2l#$32xLtvRYTU|%rwqkL=8DV@u=5LY*rX&<$^x#)fD z!)1~==h&~Mhmi}j6VD62$zEz7<`nCk?2E7EihB4Z<=1=fj}*9iMd-)X1gtkduJ|t6 zm$Z=UpE9iT#Osw(VM3FF##m*5JY5Tl}%mI5sQ7#nop>U4tmwm1mr&E;4F= z!+gXM=oa@+k_yEe1cBwH-Ru!;=egmM*l&vu!3$X>cam+m1?itE{*g~$1+aT*vt`ZY z7X^Dn*-}Hgt@&ENGco?~!ighnTa>vP-roru3Yo0|j9VNAxT4q8TNd;AHKi{)cMiSm z$P4X`T@_?vJ&pR0#51M;J2!1ux$eLkgRg8`t%{EAmBB(w(JyuVl5Q7q53 zquScG=9|R_#E<`x(Ud}8$6*=hDh(PvN?!4UC1ve>Y;%Vb!F{oJmOive)Y@MDBUSv} zI+a!Wp>Mr`rO^&%TUSEWBVoAkM2)X{?8NWhvS?0B_I$^&Wiq25*LWhXD)(8#b=q!@ z5o@`M*(5G0<%>$5As61T6D&O+cQVA)ZnCyjWkwo@dn)B+$)sLaeH_+cp6uRPZ7kX= z99^SPI#0OmjQ_Y7lK&Rxb^V6E99$-|N2g|!$U=CeYNOm^oW>(Ck`g=FZ{@_a z-k1Ei!~t$p_Qu-v>K@h|gSqOs=4X;yIHxqN`B&Xt(@g^>#TA9mbt+?>MqiEw@ab+5 z?(S&UREBA<(B=>XAX0}uXDYvpL4HcBxZ8yp~`M-(|)kkParhfE4 z74srO?OHH2yXi#k%J}NU82+sGugrs-%essEH`GlQ=YXZxwA*+1j5#aATw`}H&bGX! z*(R|}y~u0KxLFye*v8Ufo6vgO9+n;AXW^Vu9c`}pKEFpX!I8J;UIR;SZr;=Q#)LhE zsuq=26`QHIdEig!6|pQ3s z`Ya3q!~Lv6vqZCm=lLfa_tB!+-}G1G^!=rhoqXGpSFIMTL-;g1EpBnhR=Xzc8CB}^ zxx96$VS4ogaG8p+om#_0){8?^hD4idMH3GyH}e<2Y)0 zbWf7jlqXdObnQ13STFOQ8F0b<`$VzEyUI7WH1%_KpTtHMLXFh>OD|9>O&-vp(^A|% zTb(%cUyGJmha9e%$=Lh*uhu;+el6%M?yEiDX{x@&aMW4G^r8AHI{I&^?&-`mUOQ>8 zndkTt4tNziX4aclzpc7gcdmunb5$j#`!Tf`PSgeJY|Uz>A!ppEy0H&O7P3B2e(Rav z#%zAybh*V-X3%3H7pmE`D7rUYhwi0StsTW0J#^=Y`@>od%BW}ip36S8wzbOJd7b$^ zy9aKn#!$!6&(W9DhiU!El;~Yy`wW?Gv`hagEob0Z*A>}1nO5hW?(=;W^1bTA)L-aR zw1#W#&|)x8>)g=SGL*2U=v|;sQJVGEcFyZ`>Z0`c^mPvmQSG8ErN7q_Yo+4@R1?!s z_lDjbJ#U?V==$p5fyiF>o_9TEy@CBs@|Vglns(X(#ssF4p~Za7yrFHUlcOzQETpm2 zyXB$%Yx*MlCiIUOaFMqtMyM+&cj)1aG0ZULZ_KyM9OiuHajl0`V|B0GZ6LmX;z0jE zg}g)|QaY)fDVu0%$Lk^=2Ir0(MKOa{i1p;SMw;xy~f2z2x+^<@yexdo5 zs!g}oqBAZ-0&`{}W0_Vm^%797Zw96eydKDs`zxQQ9;qK|?o$4v=FpBnPbaj5T1JdQ ztrGeG)n9X1xmfNz5HMgTzo!@tjO`iC3(7U>W*VCwOg~8fNbjPz(j)1XG}MRG3zahY zUAc~;L1C{tq)yN%DGXX6Z8qJWuAwEVN zk@f`0*`t&+4OjhKB~}J0{gf%n-&Bj#=BQ3&P+n5E(5Q4*VcWO&; z&&pNNYPI?h&>45Y1v(Ynt23yRspa6V+>09CEL45c!5dkpehG~0ceMlRj{acxR8eM9 z{irrn1~m(usEbgY;h_4&1x9VMCRKe?eNA1YUX03`oC^e=A<(PGQHu))im;5*hwlfd(7U5XMHtHRP(A$tG{Gv(I8C2g3%r;wP(50K z_2*#5+rTv~Moo%}swfrJB6HM=WvFd-Gr6>gZByhVG`80IIM0!;Q}=q0zcRUJPYZJ*@^LlKP&|j z%Qa4enBdQ_w>_m0lKR8Dyuf?<5cmgOR6XUWz}53;`Z>7xdN#2H^$p!pZQYURcBm_4FN( zVhbwE6`D)H4^P&N&@6@)im)zMAOi^glyqsGfLdrU&?<+3GO_{}62T7#0r9;H-rJy= zh1G^ZMq5;D2@2F4_=BDB&AF(trU5g$3^>=-;0rE?hqwWEvJn-3f*K`w5l`4`JHDME z?HlMdPO}z1^8_oOfLXR-mZf-)bWojvYt{~82rW?$z6(D*0)P34Sw~^cU9iqkU|;+Z z5v031;dJysWqlY{b{}JpV|_1Rry)S9?SRd9V?9>L7^J(lIj|V^@Ou&;Pq6xZ`2Gkx z4F{%cBlPndG%*%6Wx^Rq`p_C-m8}?i7voL>pPY&)84Yy6X2kev#5BPd&`|kSBF8BvB zlY!YGh{sQeKpO1nf}BlIizI6kDSu!T;gKW=(|D}yC1%Y=?$w4hJs__YvJwOL=cC?E zka{JUCv$Kt!Dwa-Vh*Ok?q0B~9V8%FFa_k7A=*feAU%%>d!Yb1c^GU+xbyt5yAW6M`lph`vtD)&yw@vWjrKv7r5+L8SLm+3=j#ehCovU zlSB|y#F_-POYn$9S43vQZ#M;+4?_MS_%|)YKnX??#Pknnq6;f(#Jzvw(fXlV8~Dl+ zte;>pi;xqO{Gti4XAvD_iEKn^JR~3tp(4yj8N{;G58i_? zdD_DZ306-B8JJ*MzQdQu(*cPE0jxqgtrL&oAj4Y08slL3W~_^#g$p2u7&;~#sXsX- z35(rNHo94Z*dHD2R)v_4U`NH6lW@Zl#28^VC-|DNKplC&u2ztQ1$z(gJR9JNWQT8t4#r|#^AWjZ)*%E5 z0waOzBHYu4gP6NAj3aEWr1Lio{#J{tDj|z8W{iMd2}`&Y{F}&6qK2^ik#6@S&YNL7 z5(y;3E=49J+FZf=46gxi|z-{WA*9z-DF?IZ|Z@>Ej^Ns6%BB#Jk@E0F= z;TX(I)=o}P6b{;fplu1#o16k@$NgtO|A81uI;T^S;|S)RAO`#JbYlb`YR6y1yU3}B zg|KWKatA@I5&m8>55ck#JUhYh5@u{E)~|y#`M_3Qkark-y92M+U`6B|Em*G)^Ajmb z2P0u7?jMP@jYWhL^cOjoP%$_U6=NF)qrDW@lf833e82}0qmOq;-XiA=2*Y?Y*3tlN z{Z3eIQM&_IgA5%kC z!c?Asl@ZoSHGHob-jjycYp~l8r1BCxJvu^LO_=j5K5Hbw@(s`r1+Nq%=iwisaU~1U zx&WiCAwdsT`w34L1hbb9>Butz!P%0t6=~2S12&z5d@uyMs=zBR@htodGm+ROsKy5T ze?II@b{;mobuQ*Mg~e;2sekZ%MNU%?9?fp(p$$@{LT{bG?ahK-9iRzQ$R@PpAZKO~H9g!a}daQ!8P_b;C2*5J*Cp zp}p~R8;9NgB%TdP_W-hARw6($1pNX)ljl_bAR#FrhS%L=(b1r6j6 zVpj=AZ6ho|_L(a9pa8ZYpCu+i57VH-ZutBMJl#FTUi$$aPEG(c!BYquZytX4A|L5P zE^>|`6Qi!;Q^9F?0vFd+W9~fo#an!R#ovt>s|&dm_&**#cVES4s53xkCm>qL*&p)U z_Z^=M3m`K=h>}kc!{DAbHCUGf`oMX4r*f)3I2q9psz{+fT&r zDfoK&jJa z*Z(}~%j8?;pC&9EvW$`<%d0n$u4sYc9-PtSEvK--Uc4tPt z^>x$Xh6V%wH83mfDw7-L_tdDbQRMQz&grdRnqAt`yK%CDbA4j9%_;jQ(}W{`p^k6$ zuQV+Us;X{L^cUa+xTbej`>H0Lrk1uq`4#{+qs0W6M`Uu2q?I5i@3E;#4U=7$g*l3 zb=5Al*3nk$w!>=Gs#R-iYqeTy)yiIiq6i6uz4zWLx%u8V{=X*=5bizq+;e{WobwwC z&F&U8YcexV>2VlT4?zZLljHQ;=1ZT)ROi?yd6NH&@|3d)$m(UhV3<#i<8U zyK?u{+erGEe@2FH39L+mi`m%MgV(-wFnR6Gdo^^BZ2$MDC?P+I{O;tNes@pf1 zbei4Mw=|q6HpzXQf3*6B{jF zazoye?1-XIo0rR%4m<6AV)@TL+F{pC8%tND{P6tBtEB~p+TJ()*wWYNa?|}{r);;J zr{(|ZR8BW0w=XMRzG`}1uwx+rHX3Pm*~rucm&ZWxz1w z`JSuImi#&TGYffHeR5>%cS#F#y<4Z7mCEg8OIwZ=_sERX^eO4veZF`2WSbQQtDI+# z?>nHwMRO{CRcwzp@(NVlkq@+5E^e#2n>!`rcD7fIshKeJuussMxy!%wdaSryG2vBP z^tyzC%+{tV)AQE;Tf>T=kkD0wV!2Oh@TjJCONib zfmov0YF#3ns7uH_u0E=fS9~XZe_)IE;egDQy(Zu6VO^d1Dmv=1JNCWYJt?V{5gkJG}gF&C@jF>>uhkTeptw z^7RhBw#;?pLF2FUt)ACL_&k3b(o-Q>D#){THYYnRLp z?DKU~ed<@yUeVESj#lq9_ObDi_tYJ!bk5SC=J1)C)0W?jvRHO6`2LDt$6huQii)0Z zj93-_efF8QOO~J71epHOA{M5pzf^rykk|QZACno?YrKP|&&%oCzfDkUqLU-rUk$Cu z6YeR$QH<6vtFFlUHqBr2Yn9gQ_Hd&mDZxEf?H+%_YE8iUNH+5BWaphH>ub;d?jMQ&TmJ^RO# z-&-9XJZaIdgEndJ)<<5{9ORGFKNgieU#YKe2 zJ$Egz>n@bSV<4k@l&XH5+9O z$^(`+x@^jwHTG$dS)L6pHeYz{_A3mT>ib}XmGn}sZ~UF`-xIdxg?46Htx;Yx{-g0i zex_=J+N;=4^mW@fw>WTPV8g7G-p3jyzj+gR2X!`kSBFV$m48|O(Y>+4J#$RjE zGALuN)TMXxsno8>nuztU{VT(b9F_i7{@S971DPw+hGl+RBZm)`r>_v&?Dx#m&wO&x zjpuj6m&KjRy4(7~;-qq=Nn-QYg>~w3RZ4+xSAui)OuNA8A>aC}>(|~oNp&bn88JRN zyzD>8x7LAj6Y;~UlUd)Ty{n0@`op~E$bXj33w2ptJN|vEk4pYZTpoTaW`gF6<_L4S zO|5BK>)7J2(l@G>wAh0{kWR< zviGMQ&Ty#=HT_|j`I42Px&BWlO}7p%^Giw$n-je~y{WO$%+}^-v+%ZtVz&&`)6SE( zZF4Z27PsbDsLkS!;CE1;@iO{B*xkgfMFG0QiZ+F>5K((IN1_sN6#kLy$k1Jj+CwG> zoQ5Z$U*(RMXT$xX#;SJI&oZr7{%UU4@up-(h7>+nb6W=3AD?XEzbEwklBOZUL~UkU zOk~)}=jRHpbRU<$MqZ;|>SA;AR5lqW${eH_gAOhDBP4(Ay?4Cq9c!*79|_+Wc`$V+ zB*A{=W{X9g^0M}f3u%96cQi)W?wy#ksw1>=+34XNl0UOw$L57)B+N!Ow$1Vu>(8a{ zH9X5Zr;1bGEwM#i*5f`c!D67ztRx4gy2@8k;X@utSDGwt?MGSbort)i}3)bP5S>2Z_KF)lYHZ1Fdy1x|@JvXngS@*l&nz5Tr zj~0X`yb7BV=aC)IHq>&7^0DllW<_C&`mB0U(H^bN_1oDgfk%TQy$86KG)JXwh+G>! zBiX3@rlel6&T65qSJm;X@v1*FuhisQE*!nbH#Kzns!?9v7VC-{6Xu2G$IL|?-!}8L z$|RE;Ei;Nj({0re1q-|WbUryVZ>@ib`+Rq|t!>*>o1(r6|M2C#(m#-m%~U>LbgZ_> zPDdOJ|4fUVUgnzSYH&wTZun^^8f*nBM$>`F&-VseRkt;{F*n>OVn+ zVZ9rsZw$B`(y$<^e@#cS`s=9sVR1>d#hb;0iWK=#{hXSnY%%RlhI8dk)8t`;mV|`* zta&o|sxr2G$BX&l%IIA6!p4uy#@Z|}Kh^$C$;6EDDyO`dRy&77QwOaX9qO}KKPaI) zE@Myhim(q7mlt{Jf)yExd4fyb9Asmgnz6e)%J{{Q>V=w+{QJU9$EYGJL;Z4AwQ~1_>+h?ZyakgWW8)wS+44eDVwf| zN_(9h)hL5Ms&Z9q=muY>5lW-KbLPc84%?bgm^ZEKlKhVHknw~@zx-y^&+4Cx+e9Dt z3*J8m`35%5)H`f~S9EUp)QC+fJFAZw+u1y^TB|j$w91;HD$F`uKUC@FHDG1*y7m>H zjP5VnkheGP*0V`*lXDu{XISl4y2~7zF6XaQ`Kn$NmTTSnmCZR5G&gwD-0nUJjr-or ziaZeU==H`bnQ^Gir}B4n*D7UMchk;i9;ywKe>-;2ivH_5{Em$6VfrxNGk)c>jF?qf zecRSsb}A2=ylmcpe7a8RZwrgMU%P5%?+iK=QZrB1cXCTg>bH@p;jPJ%iswRtb-L9t zoj0SiEr}MX$iIB6O;!AH#xr$o zK~ZOBpQkgB7&Bzc{M~NX+vck-L{11B@}jcjtbT*Fjp8eP|C%4NU!-@ z(!$US{+fw>6bDQ1C(aIYjgCzJw&|$(S({Pj^V>IaeDEP(0A9gPd=`Er~GA7 zMA(5SQ8ljNi0Mt`Nb@J{FG@CKxT=21?brH2uaYTG{GCGAEuMjz<|{R~qBYN^K5s4v z(5_YdY`w#1V!dl#i)wO)d3l92d9dTc4I#$^wom)sHmox9#o92_NVl}4I;}}Ro5L3C zI;WM5)-rBj(XA=^p=HKZ$Apg(WU%I}bG;gr_ za{BJli-P^YM4ywvC)XO!XtFo2J@cv|ye;C?n`1R&WG9uzs8PMX+&*)R>i6s(jn+L9 z#y?wmH#EXGZ$yfbeeTRS|FFN})wzzH=imvr*!bhd)ci~8!1Tb9zxC1U_1A_u* zf8P6Mz3%mnh;0!LDX*$V8P_QTt&Fr+E567qPy0Npqwbvb=5agyCa-(4V)y7?vg>(+ z<7b3@7q==$-~N%+-^wp!|27>cSf}o0VIi^8v;J#!w-jue zP2O!eS@?l^v+7xazN^xuc~)NFp^)i5yZSzB@lLxJ=^L(lXKOg-heOl9C^W`@6W^HY47JRTG zO`j-xn19%Q6uQ$$<)8ai%Psp+Q^xwg2|2p>;o#@mRLz8#6JZvKTM9$8lN6s=uQal& ze~`OI^=EoS*=uR!;E4+#h1jq4m_FTZZ&k$0G2s^?UDDRq-7tBkG`IM>V_E5ej2me) za*~?fv+FU*YxQZkFSU7G*MFK79kU{A;PVj$f!(e0LCSBX2OB){KUO!PB0{m?H?Yy? zx8S(7jx)~L53cz^%}S73UQjJ<2s8afsW;ouzN^GNqb2Qp z?!4BLUKgjHUDF&oa!K>xIPEo!O-xAGi|6|aqqRE~bF7PnXLXNq@2T7}CYSFuJ}~6= z!n+|S1AL~fw@s|{d+8AVPvq6KarKK$ZEWNgzjtgXJ(iK0_Bdxtvv*Ik$!7lj))g%c z^f1;}W%i3X`D|xGM*ghsX!#}Un?_^mFXWC@txIn$eQ6XmC}=@k$fCfRGg9q;shRw$ zC46zDOKOkWtFm0BgXQ=xP1#q-Sgy;iXdG|*BdG9hsHd;(2uq_AIrXuMuuJjIc}F^n ztm>@Ij7K21_y%=A`qPrrl3oKQ`-s6G1W9KrdOOzJzup?25dQG>J5}D&JnOxdLES4W zZfCAh4bFa2AE@;7YViwLcX7p{(I&E>yqj^c&xXY*a>Cn}TU9HwWIdYI1>dQ+s}qVU zbyM74&s7F*3EnVQ>ik3FgA}6(n{dxp^%bc`KPhL*Pw5m@{#jC0apuL^5czjw3ViKC zKlFQjX+T^25Is=4RU^%+h8j|Bz&(>hmYOpkGi$b9ilNs8!beN*w9>K~RDNjg*|DdzpXQS4QLeh>g}ucT_3F<; zK3rTd*jgvg{5fV;_}_`mh4-{h3Rmk&A+jzx_qnPy{bgB=^w!`j2;tZm@N8PM?V_r| z$?g#cqwYW!_Azl#-Y}2p=q}x>xu%+$d$rl5r_ZFERW6~|mufuf^pfnQvEPN&B_!vo zx+cmuSxcqk8!TY)56;LbjS~6~jPW@Te1GjOtY$COy1zaVu_N-|H{LZ@kk#44@>$od z^5vP|t9s_lZ|u|K?D&-{7lr!x?jI3t6q1`5_jB0c_&vGzJG`wrte+XrMlO1r^jqm$ zOU~)&V)tL8raTlUNAW&RSK zqRGlb^r=qD?o!2M_O2?-ah?iTn@MqJZ65H+u`=T>Zehvu&Sh{;;EveVyfI*zqw{ZPP?i{=BcVZ zX3K^zTGALYz<>Cp!PZ4(OJ4Mf(8Snk7B%OXSJ*r?U)(XOEGg3~V_{*>&N)v0?+jln zSvPd?G-On-pCw-RSExjbolCF}4nmx5D zRj%scZ|z{#CAPO!H_m8~HTG#vZjJBo)Lzw(GrB3&NxP+K#!V)b=BDynigK$vrmH0$ zo!%`In*5tGnrmBUb||`Mh)ad5(i6s~jMI!&vT)Nx^WQ9PnLC?AN+PAejw#Fhu zY)nT|*XO$HlB3d*vcs~ivX`>ECf}PDo5q{i8IPAZYMncex7W7~ZLezAcf8-_qm2^3 z5;CQpvN%~UlR$XSCYa>Nj!1h;KGZ(x{HSAnhgD~Lr@HHQH*}2nm!!(*E8|nLo+e98 zj=+OwF&EbRQC ztE@XjcUwfR8suob4UgDG(w)+;rDvs+r8|%z_Kvtkd!p+~XISU)u9WVzx)w1|@|*C+ z=zugFS!8{sw$d2*xmF74k_Gw@U1WD!*NLvouCv__we31j{RK%ZJYsuD9i;ynjW$X~ z-qjSGWenC=>Jqi>-H*CUyH9J6!*lns{yciUVq_y-AhnS0F{&55gyX0Wo-Y>Z-e~Q# zh21jk*V?(d5uyuDCtgc#36qS@8GUKwX_O=k6MlfV%qab8@r15T`=7Q-8?0;B#fv|n zHv2=#aN(LzDHI4l3GWCw@WLt3&(eP-{;4z3#iHdVojWqG{;8jY?4)MGM&Y_}LpUhR z5W3*4H$@VoAE@6cX6e4v1?rCJ2EuptclcwTmsCmm2>k>X!AQu)bGvaaQjXlAj{0NB z`dXlC)~ysf#ryi%k}ydRVG7>sB-Ekq{Kq)evA|hdGJN!!#4km6(N0_}Mu@>U_t_3_ z$}IS!s*z*#C{C1`;WxmVyAP4$v5!7M{8_vwwu+y?SK(vHYl##&aVy}5dmiWB=I{>S z$!#=F&;s<0X!)ZU4e!+>@B;CMN9vF8yIh7-Av1X0U4zFL&-!1&lgt~wf`YzMbjSHz zv!31o{($sEz97cA(2GEEAAljTKXba z<|CXu&WFE%J5I7LAd~H4qj_`%SXTakx@e2jypQny)1bw^@Q3{zV_g7j z9K;zZJxVGtKMkN+5ByEXx$imnbYFw_lny7J`;Z}ZGoJVZ@S-;uYdXf`EG`%Qj)cd~ zQFxjK;j}gl9*A4uUHQJjXYn=qDnak8D#{aeXPgo50cC8$X`Tl8W}R7rwaDk@s~q&UAl5?x0tA^F4Sa9>tT7F-KNQo`s(NQ12}CaV8&{qiDWGCWs24I7my0$S@pfRS6mWW*jqwsVr3OBHA@GY^fwN1(bs9Wk zd+W!8KK}w_~6<7r=8>xJd!;Oy&ghe7MSs3d}f1Am^W-9&T@T$haKQcDKhHrz<9^PBlZBO zPYQXm1bvLf=v;BeI|Apyn=r2-I3-R2Y>uI4KTz}Upzi+g*IR=gna7phs6)WXOE3l> zobjuWpLZ*0J`^yz1$-LegxCjjd7F!lIjN@O|G7A=m4iR;px+Ik!z;kOEAIFKLf&{k z{U2Eebu=W>ufYCP;L8U*765g4M`m9a&~71ob^1WAeh&(> z!tAm^I}zZdPMq>T0WPyad#RxOMWA^r!9y?;a3+M=^nnjQPqCTV?q5L4Ro@HV{8svA z$U2>P!r-Z54_wwF*Y@x5)-RSg2ww?VLY{CRnY<4mqxN3md*O)iF7kBC5bJOrn2Lim z@&r%M)m!Q}h&o-0E?SqZOVB-q1RpK#6H`TdK;$aC6)r%+9RN+Q2aS5cD}5JW)hwPB zL&X3wL|i0J5#JYY;Il~_Cr%P4i*v*+;wR$g;x}TLs22w#r|?Wb?mD~~9>B}t419UF z!dLq<(MGJ*73&`ALUcW#j~3`Y(QVOf(;e4k>ZXao;(jqj9D=v4(ht`6Lmv)$wRlDR zQ2bcDC91_5F-I(fMBWA|rvSVz!pA;c5&^IDi^$VC9`rRDvRn#SU&Q#&;S&ZdTH(4E z=&3I}qQ02>eo*aEPRkz2{`KV+c3{o&3KK>VxoBAN| z&<}ne<&b0dadir0_d#IpIJC%XSPpk2MUrvCc4UH|fw-F$h?7ylg4l{&*$)BBmEdAZ z=KXjt^A~$SK6t@fasY7K8+Ow!M7lJIrDB;_f=|9!2YPu7EFTr)MLD4GIke#;$l9y; z&dk)aKnb%EBeNC~gBg=6;8!yUI-*uGLrdX6ff((P!T@M+340g^X zaDy72Q3FA}yMYB?jBh3Uu08<7XF*=hLj1&4KzkOm7zp*uf>_S^^koC2F+8z|vV$$zlqDnMVxusUlb z&4{)tmT16v|A3pX!g{-oze%8p-{J8c1WEhWL*5Uq1g<&@ zfAeqfBx|5A!wjx~FTxS6lZe0H!}2(W`%fih5;?Hw1x_?ap(L45Es+T$aHTJJ)De{r z8YFKJHS-~CLVs8QYteHksBQ$PObzWF7BP$maW?;|I{JD#&m%=pHlJq3~0Y*%#HmC z27fpyBv%Y%#94e8Y4I_lc|HXWmV$!EU==VKmg8Q~7&9jR3m(3O@8^Lh=2fQGTsJI= zE?A&ajG!;1#tztb-ykw(9kjP6;K!QX1K>NwY~+scmC`~E(&N+(oHZNw-2nA;_^VpNUc1W5gn6VGi20gM~a4erN8Op*`ru3ozafnQ{YkaR#GUhEdGK zeNRvht*%ADz*LN@Kkz;UeeQxxIEHbo$Mt^j98_Y&qalHO@SzW!9me5+-j_jQpMsV> z3hJAIdG^M;%?zJDxXTQ=v|dRE{Xx%+_W1;Sw+1~hi?J1~5_@2Q9{y7>1N!1y0|F~B z!f!y$M`33y#sAFDX!<`3X)xf>7teCt#5xGmG5Kg1 zTa3o2ccRDp;124}^B4!CmImS70kF^y;9Va=!Vn5eAzR)BwcLhm-UEAQ0a}?r*42Tc z93lOOq0MM$9YT2!VCat-y=$Q4DVPzz>`tX*662}1Qp%^K1w2lB) zi}0Z(L{EBCP@>MjNz5_M8WZ$&Wq#aypuZKc3p^lgCLls95Sr#)Sa2&KXJ&yC13{tp z4C_5cFnx_x(H2|_hDH7qmKO7s-vwtJM?~O#=t*W;XC?Yl*kQk7wYCeieG)C0(>4{F z_6g|tmciS&72biv@L@*GT=3XQ^l=%S_6#%Bp&$B&r{Z@Vyl2M&id!H%{GgRdp*6s| z9?!F?dx*O%yZCp>F6p!Gq-^Cd{)VHv4WBjqrj-43j*g5A9j>#AQMSJMes6o39SnZDB2wSw|Iw~D&qy|VD1!%ev)W?kJS3osCVFk;mCkf<{ zgF$u);3Q^YT>xl|H%K0O_`im(O-Cy$aQ7I@#sTzUgdgqzF!wGqybr)##$T0#g5}`r zDVXU5aOzmJp@i{5OXky^0~uuvPG+p52J~)@CnuowM9@<|V1==KGl7ZuXgvnw;=TbR zGfMy^Mp;ZiJ1_Lu6Y|Ls-x#a50CYAA@_`XwYK*iD(Bz!@14d@hDH(u5IiM#+i$-V) zdduI2t$7@cmYd}D@M32^9z*^^QRLVmem-ebTU3qc2CF?xDNGwPrLyy=9N(*S|- zm^&fm1xmrDFZ5&xT8{)i#sW&rwe1HEIS=~&9FmKx)|r4Z?eH~dzZ^IljpzBkiFi*C zdUy}5XeX>eyLsr9Yq>!DKfwT-F7Pyc%iZwIP~dF50b7GGZ&neRg=d&kn3Zji;Ru#d zF2-vFUhe@Y2zZY9treIH^Z7EbcsDQ_0fP15JT7_`_0XeXo9 zLr5Y@musNKXNKOH3Hl9aGXju~L)$uFu^RY%jsEVTH8Y7bDy9W}Sm6B`z(6J1(Jx(Q z7$u_^xCihD`p5;{ zb_-(PH;u~m$WVm%cJew#vrvOW;=DmMdOg=iTEn}^ZV(SXPs zL;sAROu^H+fIv6syAAMe0<4QM+9b@3yLP6SjRh#0kx=yhryW6QV~klb3V^)u4A?3J zEsD@x991KFV4M|_%z|g90$$kF1$2z?j6HBY$RH_a0RqhY&Hav^2I?M;c{zfA1Oo?= z+mzrUXS8F~2HOq+T@3@I78|&BBJTABOeByS3dovKxZ{mB#2M`wOFTUeH25}Vq7!sf z2s&ZJR~JU=iZPKBxrd^_=o|oJHv{|_{mDu!te{bdPc3FoOtYRwIsRwXXJ$obot1n@ zVb=LzBm(2hNOO!%O$B7tXxji;+J$S4=phrkSAT)F!a(6Uz(6HnRRRcRp*?qLD*-_* z;KmI1tTYjC(6BFo5ng2#i7o@&8No)JGPbri@s z)H(``LIT}IJBM>*WT^rz1!zdt2O;lTff8s__6OE_g3HWskFhAdAiF$)S!ZC>8uM`g z<@d=E*XRlgNDCt{|k>~*pawX$-hT->M(4H~+WmGoxo&!c^Yv6=tjDb>* z(T;?H4IqHyC(Jqpuw`7C8LqWqe${|m6}XuFb2N;yVT6PV6z~G;Lq?=j0rI7w7DoHA zN&+jNbbtaFQ%u@mF7zB+C4X~eUn%VYsY_bPJ61sAzAj_< z7<0V*z}0T-K=%by7aL+kDEEk8);*#ebA$e1gbVHS z4)n-6Iqu*#Lfr)W_!{)wi0dZ!f2cu|i~`(@(B29V@c=J!ZNaF~R#1oLTOil zkw;@hFVIH~AV?d+1M-kDQI>!uY1Ixm8IGT!z_=57p(N=G{BzCXVwhPmc!2vBj67uB zF~;i^<1LI^EX2rI(SUK-ow%#PwM1a79Jn;Xh#1Sl9VSK;tMC*nBe6CNM->OD`2^!F z1HLRUqjro?k5QKbSG3Ql8whX8P3}}C;#&^p#5Yp^qyPsA_@o1l)u3u>e#Qbvfx}Ax zb7NqUbZ>!iaP`@aE4GmQuApT*gB)XYFY!MB^B)8#xZ*zBvfhCuW)Bd%lgCWSl8aVi>=rhLmDFCL?~!44D20a+9_~8KBOr3bg;obJW$$oWSVc zYK))>S6P#!2>i{paSzNv2D`ffcX^*yA6KE4plrr}vqo4WX3Y880DdNj=;eBj{6X4QB|%H)%u<2N`luA|V?G5&saN1HD;2!~B~;?0LobZz<~~(5?odNh`T_80Uk93@hNs*u$M3hg zlhi}3Ql1lrtXVXDccA?P2gkNTC`7C6Nobv0VnRk zu+ANAd`dW1KvBR`q#nvTXYjKNU}K3Zq@8|%eNWtT1jGqL8J?#kHT~bH7?EFxaWxs} zh`B{fVO0_*wC*^z7L26JFizSXZ=prKpao>~m`gsSRW^RqxW@gwZu}a4w&V)(EMRttKhO`yUR;vfY*v0jOYw)MaOBemb2B5{9* zI}NP{JaeRszL$b0s8vmYVNx~qzY-MG$3QREn28DQngJ#Q3_7AW{$rIxQkv3ml{SDI zXp}Xui~-MHc-jrpaG-&nDZ^n?By?J=$uDPP{w2yGM6yw>oBHoUzHZ=qF7dC0g`6JWd(J&>1Jzmf91-9UH7=*1MW zjaf%5fqlwvN+vUmn=4Z%Tw%2&+T5%k!}>6+21E*C<`=f&YKB!hX<3;Y=JVq!=mXB`sxUf#Hf!hf#_c8TnlfsSz6&6_bvM2ngah(j&lXaQPTSB0)Fd(Jyrl>q%Z3N zTHqbrwV*XD#q(^(Oa8{5o3}9e%#5Y1ZI6KBVdC)QVZ2!1hkQu3x=HCivP)*tN}?+6B+25b7WSbazHf; zaNzuy0ips>VSW@=sN!0^)X*F27;*>sHLlW&fjWU19jG6fCx+{OYB@%dm*B&EEQPq% z3J#`@WyT0f2||k6N5K3f;3HZbqyySETC{bAbmpFg8UCkccZSyD-gaO7b_VrwcY~{Y zo<)y=4N0q&7Ds=`+SypkPs7L4U}@0WVeW%**sGcf+jA^d2Z&9EZ95LusJCGki|c%@ z+y9)p%FarVTDefLC(fA!!R}%{BTF7C-CHs_U;%Nt9?0O45V%DxiBjf z`J)5yr&gj2Q-B9pFOh53a=`tqToizxVSJG8LMWtD00$4>Nou;4gD<5xyGS zqt6R>4igRbYAT*(jx6Rsio#!JsAGj!W(i^4Lgv_t#oct^j5`a=kd=y-yq}4FSznnt z;1zmJ!1ZUafK$*%vH`1Ec#eBwiMYb-K(u2@45MJ(Je8qW@G#a;FC3=S5wgP|DOm_M^LsH1FGar z)=I0zHBt#P91y~^llYq_CDh%-iXCJUHIRtj=$WDfj<|!%)gkw9tbp|)(B2~r-|fJc zTpzxrsWpC>q`Q}( zsYFl`vw_5e-ZDTbSq3U#jb-i^ai@Vb9_jtX%EvLF-Is>{DQjLE`i#Kumxlg$+M9#_ z$SW`K1oK?d#(bNZBHbX(U*lRaM$F1@^%y^?Rf9XUf=F-FF7!$x{d0vW0VUBQ|Y)M+B-W>*NV9pJDT%jfCg738HS+kEdJ^O+B#(^HVw@+Fk<+(#X zF+&Gs80nCCJ-8ZkGDtJ-t}|~5PXY$uI_Zcz>^zAbjSqLNM&gbKo+fRxNABGW#E6(1 zMS&mM#REWRTt`qAn}c_lJLK(&3H3j1Yz1ghf~Vec5Hsg>fhQICpR2#OR*_(kf3$#U zy-FbWs9#$^VYDt;UzYi1xT>S>r&g!drEX+4OV-S##s5|Y5vyE(aQ)34R?_C%iii@} z5#)GQd~QYm)XvnTZ}W>$jxg^Sr3p_JTYz`UWUjDFK@S`UGbEPdf7WKDCgmPE>47?$ zJVTjITc`=2YP6&zYP`n zo7SmW^X?g$w5rmwM$ZAmGsh4@IJ~OwBjlgf9N|d}>E2~{mtA;IqL551DK-_GiG@W; z3<(ju5`-_p3*nA%OZX(1!VlrHa6-5)TorZ+JB4$?CZV^`QHm z{3Ujj{z}W`Jjy18DlOHMYDBfvFX|a}rrJ%drlwFiHI-ULovc1kb7_k-L(A^*c%Eys zwM6{9v9e!Il5$D&#AM=r9Py*jNi@Y>QX5%R)+#C0>FOsnla^C6)w}9WwSyW~<|tle zl>Aw0DqR-yi}QsPg2`tUY75PT0m52*#tFh8VY)C|=p+;ratNh`T0(Pt=H~(@CJ7gW zM#5VD9ao(@LR`0j`-1IcOV~nonk9E9x!>J(wX=nJjm+xF^_5wiN#|o@K|8M!9F*U8+`<)GnJC9w=u3#6k^V==#W%fDyxoz2A=ZihtPGN7g%3F!% zD>GnbvBp@AHNpO2w|8`B9rdxYtUAlb-p~Qmc4j)R-OGMv4YBH3jjWDVFKfJY$O>60 z?Vz>RYGPHf3R)-3KSl#1)^PO%UDu zOuMmI_n|wV6yo-BjH||P<)eiejomYBIBUpMwvD!;1+ZS~(iSuY zJ>>LoYC6@OcFt1gnsd`R<{Wk&IVosYx{sQ)3LC(NvbL-U3)Ay-0WCylIgjj8_CBkq z_0n8qRy2PZ`;F;FccYat%s6kPH~%rCt!36ni`d2O9d=FUr_+PZqNV9x$M5vAA6uQR zZ)QF7H10)6Kc&Ca8yH88kWtB8YTh<~m|ooRu2u&topsrqYSuF2jb%n{F<^TR!`;#P%XLMwu$f~kV7gRg=;L-C7k~F0|^{ z&+H1$5vL)}<{x&OZDko*KYGd$oLcrg>xyX`Ba9kG2_u(L(KuxEGksP=tBp0v+G9Pp zB%DJ7@2+!oH#dnQN8S4FSJsRDrpswV`VH4} zx*cyFw;tjc$?RX&0j&9b)>o^Lz0oe`T){C~(RXwXE9^dYCy-dKKevEe&#mExaJ9Hn zToiYZ6eD}xD7PjXLf<&6o$*d5r?8{jXYHx>Fnq7>Ja@X&U$h5%#>%;~+>36KYr5y% z!ES4JDppNqGM|{FFjt;y$t~u7b3OS4zAY-?4q=f{T{z2U;g52oxkg+j?khP%E)yQ_ zTfpt%UUPZ)`aI8%;=J5rvW0XZ$;n~2y8D4mV>MWD7Q@z4p3ZhkI-l(A_I~@d9p|)g z<~WBO*O^HF(z0w76WuCqM|Y1~jNBs)xdWV^AAxngi|@ooW7l-!;>kqRu>5Wc453YPMRk#Q%0+?S}Sdqc0v27nOdBOX)Cl4YP6#~RQ^+*DtDA) z%1ULJ(pKrD3|Gc06O_fuVda@pN)4#*w1=Lv-Yvel{t;1~q6@{`h{+qa>Cg>Qh%?2XVi{?Kv|idPEtmR8rKOO#T+Ax25`ug&z7Kbr6ej<= zb=|vc81~T~rr?}8a*_<=esMZ?i(AW$+36;C zJG1N9<(r(RsI3+4diG%Zv%SixM!(V>Y?xb@)ZuFLX@o06cQHoVC#9E%%ctf4f&VNpD*322XKMqV`BTsV&i_YAf;I z2U?<*&Qry&y&Nu%^UD)zF1!xUn*ZFUm0HoUmjm^Uq9b!-$vge-zZ-*Us0ci zW7YM(_q6gX)b^`?ln%;Id74~KcBJFdNU5<@PwFnsmmW%GAm|nb%J+g>@%;n>jVEx~Bx4I48C%A{T zST^>99;S=wI68_h!k->cgXUzlSqC-tCNjKE<8v_Hgq7BTQtKnZPE|OAhChwCh_P&4orlpQ7i}gOMANS&`b2w2_zL zx#8B~hT#FId~?Gy!fV1W!%ZSTBK`GedI@8Y(Zi@>R5yki$Bi`Rb~Cfp#hPiIM~AIv zcfy^oY8SCf+Rf}ys6CJDR8CbVopac3gpOOn&V?#U^?+EDBJLwiWjFzE)ob^s`rc1JtbernyeZlTX) z$5n6agq!UNg6u`*Ex?)-3Cw zwcpxoUAOYuE9@7xZKrW^JDT&#POw{{pF2((S`jb9+2IUz>f-NI=e>Oy>mZFY#(Cyc zr{{3)9oa5+lU-!5SwVN4JJ%iHR&?L9YU~oa*+`n69s$BS;Dns~v=g06SJH)aEUkjO zu-NJE9CzAK9-VI#Yt34+No+T}!0xe^>@hou9Z`d&VFmHid(2?@aqM;IP$k{MZg2On zd&QmY7I#hdADhD}vEYJ|b(l7`_~zjgN4DI3J&rPtAYe z=5m#}6x;_go0K57d)r-wPjbOcPo@)t^al!i#C-&vDb5e$kMbs8SD1>|U}27MTcAQl zv7R_p+#_BSzl-^$by5!blH6aB)qhl`j?o0qXwM`JD7!%q*@GS_t`s3_>|!lJHh&BmNM3NY|ufa$|X+d`nK03!|s?SHkj0 zIgR{8Iwn0seav--F$JkxH;VotOCoxvf!?( z%)kmx0S?r`{q2?ml9-A9`I)5R>TvD3R$P5xk4vNj$wP{h(c~Lx&F$pAaXG+-?sG%A zjNA&6fEroe)v=c1na)0AMg7OFVV(YDxxlAq0(X%ch#DRSjwwfey64=}?lr8y?CuN}q3cn@d()~kntpcf;q}b1up5@s>)3gp z!7tJ?lRl+q>2$m&C(QwN^~^bgcky6Zz3CddmCmP2=nvWv>v0e(#5g9hyr}-SS!3{q z?4$yzLTaPxRRV8YNNy3EWZ=?pAzT3s=YJZ^?fT-F@KovAjFAB#8luA&86#7C3&zs zLS8Jtmm4T&l{mGvdR(mm?6uvK!dt;x+MC0h(VNYi-J8`L>;2)m;@Rlw<|*jO=_&7N z>*?gF>PhYSrd`+W;A^>7S-YjyQ6DHZmCN!FxuX0{sw@o^UkDS0G{OeH7GH&5&Zhv+ zKP%`$Wvso^*iVzh`$8gLgx?4Rvjcs%r+b5S!#dX3CmIhXvX7Z8wHxie0yAF9ezSb2 zzh_u0_5~f`ESOghC(c=B7q$I%8uYua_Ho+}oLb+R4nC8N)}k}$Yg!6*Y74uB+O!%g z^C^494&t80(>g#&>A`Fc0Oc36pIdz`+dOTaG{2jbtnFZ)wd_Uq2cYil&KLBe)bt(r z(mq?W_geG8I-7wrGy?bRYyE4Lv`^W2oDtyPKb>N9BD&~ZdH^_}0?kA@8g^3Bp7aR4 ziLc4{Ou4B_Z#ip$?+ZFNQNj1wpX}652j`TN5gl&@ZB290lC&{xgDSX_hN(lZVC7E1 znv7sI{^Qhg66|&0zRm0gV9}ZEL~92=i)9`*C!1}}tmX%F)H%i;!v?eYV~$1Vxo(%i z6*=zQcRo4aoDU9%WA(%5>rKZ1uRO#x`hq&ku(J2imNb@raCSN4@S28N-vdm~zKcWX5x2JRv_3*MZ4ZFfGy%P6|eWCXp78(eG@D#j#B;S`G$`1fK z9?DO{r>e^rKwV40-{MMgYe-)5#2xNBY&xsQ8nODU1k1!ibOWtKqi7tJ!0DSg1)Lhr zKxd=#1}rBLXyl@^$SLa_v(w@JkFrKuo6yCdSTC&vbm6(^tvBq+Kv(aq>6U7BHcuLj zpga7l57g`EMfCJ~X??fe!Z3`nreSuo=34X6!GBr0bp$IYgjKiF90T-l4T$KwK3xA3 znHgys$sD;6t`$BTDj!M+ehP9>SN4aZ!ehg!B4;Ai_3L^?>R}Fi&GJ2$+NC(BRkCgWiIQ7j{MrakIp>aZQ{0a zN4sa-;^Y|dLD6c@^#niVaP6w`B7cP&#=Ql{Sb*xBlhvcE9pcQf>)V;Zbgw{pS#Axo zYFpWH_L;2(mJcjC9rlW33wBDotX!ukX=E8k5W`RLrzv(n-4bL_7)Pa#p-2ZWn8d3Bnp7udow);Skq^OUB_8 z@d@6dSDlC6w1~_l`^kUg-2Y?uOe7O2gl^Ui_;(?G{+;AN@5;$(+<&AY*$1w<7Q%EyJ4sW$qJqmm<*)PC(2EA} zG5iZCqFcC0(7zUQv$%TDAik2jU=JbEp8Jn0&F|q;3S)$LVXBx(+JG8z3%mZcM5PRJ z9eK1oPo6Aym9xobrApE*v99FO`Dgfz?Svlqq?+)SKfq7t`=DET_}Ae2m4Fb+fsZ!9n(hqscQEy! zK8Ky$v=_Zf3xa>1XAjwBe1F3@sKoi8O7(&|^cbu5DQN>_`-@A?SLgfl6ZjSUC%(Ec z5GrJtU(FXqHSECs!aeUm8k0u&Y7Fh6G_Xh!(u9iIxA%-2jH0<^OxP$}ZF0z)RF&K@(P<$W;#5__BsjO5=YAsEWM&q4|bVBSd<`JXCjACMej_?!d%ihe6AULiR_AxD^S}Hy{`YMH&u@9>$7P^*+s&<<6NA;j?g1g)G zxV6|i`o*!Kik7#UoBtT;jClQ=zEEGQ2laKvc(W#$|1=<|?ap;@{Ndnran5u5puHP) zm^kH~v*=sHp(r1K`uRWQr8C&$5q2FqXqXjqmq1M%NOqxq?I91~vb@K7?E)=t0`T}# zx0Cyn)nQ5W4gE$ftjSC)C0^N>#P-t4^e&W_)BbDujc4IK~y>`To$M1FRwy4}& zfSR5A$RaI}O3IR=D~|e8+vln6z3FY} zyW{iu75{mtZiBsxJ!dsbEv~kOPqqiU;28E>a?!zF%O~~+hs+|i!v47`d7#DBmW#=* zbP{{0l=K;_Iky-T93iJz7A{2>?A=Y`c(F77R8=&DQ>d+};h$CIHQuk5ttFo5jq^o9o`u(h=12zPX_%bpLxriX63dQ!r>~1Rh$Vv!FVw8hQMAq z-Twct2o82@gWud>ZP8T44VI&_eezFL3iI_oZvO zWwGbFlA5F*dPPI9-VE>zin))V`{ag0w+$*?6usyy0E$}e{Bd&760|nXsTM7QJ9)-w z>6rFOdliuLAiJ>r$NCRDrIK~jtYJPf3K(2ch4RzGW@_04JuZ!rqIZiVvz$ovpg z(qX{e`@lm#LKm9^73D7UlgjRMwu5a0n%j?R@&}mi1~AD-CPQl(?S6!ca+FNrX7h7} z`r=cuGZ4^U={eBHe5o_`e>!P5I?fTW{A$1~Wrdb-)W<-zS_000Lij9H5buk%q`}fy z^s*Rf64?dmd-g5&DqdJA|Z1r=%@|AlMLx#TbKX=bhk zx19UHW#>Ead*NLy5(ISD5#n6&46evCF#4|hGZ)$eQr9E0+#3$AuCsG@h=DnRX%xf1+6et=L)<-Y zFM&mthykcM*@etPCVU=)C%DI>fhQh9#VLpio*9V4gbREL=W-hN`~d2G6LA{QesbWL zY;rYtYIC%~p7P%B-p;;jzRdng{&fC_zBaxa-g@3&o+X}^aAv+~9kdVXSok}=m8WuD z`GvFwZt{9yo8nR|81_2phIAjO`=`W!yK~Dq<&tuJxwYI~9w^U|@5pIzh0iFOno&)s zmR5VHBh}t&E48s&N=;DKDMOWJO004Y@Ab+{q!N-V-VmpY!_k!_iI*^(?7ti$f8G=s4hUV|Bw!d*ztcg1S>3TJ*DbgegFCda@H zzW|d4vFBsh0-B7Tha&UdsZ38$8Cu;dutW#SOfTqq=iu3=b3*oMySjbaDq~$Y`xX<0uU{-su ze#-J0`B<#B@7w^6k_%)TSqXGL6|YT%0}A8$Cj1fbp{mgLo(L1feA0L6th`F;qk6O+ z+8C`3^ycSk3-yeWQ&|V)_&PEzf5fZeIdK`*d;*YVCqWX<cA^+;I2ilaNvJNpa=iN>mAgFkQ>3zzk{DM=ezwD`bRbM ztdZN;rVrI;>!*>`$cMW7)2L{+Gks<~W3av>axI(~8WPGK`WieHJQO?|d=UH@ltYC= zBamsS9^Mho7P%dntv4}Jn{Uj`R!=*ZbHSm&YcJ4!ibG}V1b3*p^%v^iT4*hY@U9eA zOKSr(m<&)4n?p~F*wui){&UKqW1hq39}X9_EtG|qz->9%c<9j4Zd>;_)R8ab7&iy% z>|ddSxDi_Fc5w_e=#9b){s7mN)N-4#mb8x3#GY;aGUr3*=x7#cK9U^uK&SG{hQhCKzpugStmwADIwY6uB3vqkq)>Fd7%t>e*4wR3Qo`Zb z&DTPeeJA`v0xO@ekq<$4Z9rDIHrD4mXn*lgioOADFNGo=gMKBs)1axO!75D6{mU)k z`-6#l#1x`e+yOe3`s@=x%LWIlkOWaj#i#qN33 zjXTZ>`@Pk}%4H?D@>zAEb1~eNn@EowgR++tiPrDyIn5nbj5D5EYydgPZRINn%Y~C* zdyRxxK^0f}v2W$NY`bABCBzGRD zAQ=!PBj>oO$e=V6n@ch}Mn}1td<%JrEaC=e9qVvr&qzEpi@xj%s`U(TpUP0hw*tu? zch({MGTi>hT5FzzSA0xYj1xvrGp&^z7_UEV0@pGlj=z|@k6yfi%Z3!)bN412Msqll zO{_Ag939N(=1gmnJ%hSYm7kuIz2iuqQe@ zX0hmI_-GfFC-4C zhQNQqZfeg8(+*A{XP6Uoe$zJYJXG%pbhWYMu6q?(tUb;Hphnw_GAm=xch{ThgY=F1 ze&Ei{dS2s=(GmH#k(OdFvFpJ**hNzzMbO1<=k{kY^t3(2nqYnd625F!u#3}1Zbj}E zzYS}xk+6;5fi+vr9m8Z?(U~+At>_q5TeE|nJ6s^RBWZpjO^8jro|qvJ4Bijt(jP-Z zK5HoE4I_=wR(}{75y=wK!^t9zBO4-F^)$vxvzR>zuIeE+6PcX@tQ0+NH?cJHiyost zj#SZe8J*3u)@3^@aty2N`__5$i!sJ1WyBy)c+Z$=zC|+Zijk<7)%QhOL^?#?MdI}x z<~{oj9RdYbCwbu1`QVSaMB!e7u^Vn_Hx)bMG`7E+JB-KrBmI(*-BH=yMgqE zp0T}>CH9n>An!3o&Mp^(I#N{$D+krK+8=GQCylqNcf7|`ODlt< zV?q%=4L1uoViT0bLwsK`pL|@2s1LPro+h3Yo*~*mHG{HIY9x*p(xO@&6;6txTwm#~ z*3_PAU$u$acO;QsD0P&(@(THld_*~^R?>)82}i#xabiJ!1!)f*IXjXN2e`394ylt| zS~;T3QkKbir8CHuI9ypim(W|hB2`gb^{Z!|Z;9U<)i7#kRJW*9QN8`ueD6KuaJ*K^ z0XZFd_b;i7{7BBGv{ULUw}73ROaJr!`ijrR9nx=kg!*0k=!x?7^HkODC_cHY_=@ia zmGzWZMak&7>bn~CB|0BcPbZ^3`c`?4t4DE^EJ{ixwPMIq<)uzOPfF=8i|B9Q%%HkWOUpEQw;nvL+FN5VDhV$J>ZU@cv4!r7l%5o)*QdIU! zkAy?~Bd!fx-pNoKxASL(t70k11QMMgyx}+Sw|Fm7v%7^nP_k^Xo>W2l2#i`(w2`Np zf^=>d;Fu+{j2!MQc{bed3HXH5;Y=o%D@k94%siMWZEH_7vls*PP5OSLg7wTULF=*i zz|y7JAgC`4y|lLdKgKo3*+}=Zr*3903%`Z`02QPYYUW@hfa7JV+(5$YInZe$u0|`l zj8sBwCQRk;B6pRVOU|W(y4{>R11xut{{ug(G+&)7LPYmpBp?sii;*c@L6^9Hxsqaj zq}8gcL)1QMA@v`njVw!L!AYt~ePj>L;gK{>^a-1}3}g=L3q~JouON0FpX(F-6@4!~CAE!8L-`*hrrJZNX(DYFrwU#8m0V%&JsAlX_5!$IQ>edyz+44f zohn=^xcB?Hv*0x~q10>qCO!jJ##r%zR9oq(rqZUv12(jfHd*^eZLY-1dvX31xOGU$ zHe_*ZD%My{rx(<;QBHD4L{9cD^|=x`L;`R=z9AdZl6`UV+Xdhu9knOYx$Y(Iw{Tl( zsmxI`!Xx~K>+nW;DjpD)^2?CVD&^**YprZX-pHm<@8G6Dzre%5y*=)sr0N?bW^$z;Xd%FnT#~!%{ z$QUk`&jc2doYY{;oz`|MAhT5FSQDuwdyO-jKA~x7KRcD#KXNa4A!&W$%*5GA`+~zF zS zSo&UQr!TC@&S`kJ!{BCLvA}abGT<~G$4RfF6*cIR*K1M!i5s^)r!Dk$jQ=B2|rAR&J*O@Z$ec9RJg&OF0)%MNZf)z+V<2Ni>N}=O<$_p$*jg ziQsg1xq)Q9+XrcqgYFymE&0l;QoNK~Y9mB(tyyP#rBO37HM9^6<$TB+8HlTO$tniz zn9v*0awpsUtbXPZvAy2hqhARh3a&}IoX{)&+~3cCL-7|A9|r!03hTX1X051&phmYz7tpmYS&}TqI5#WtPXsJMqKkcT_Z`Z{s8Zq2rlkE1=@?W8R*ngNHI*5PD|D0 za!Ny0L9%wBHcU&Vo=n;ulp+-k zVimVdtb#67WTlXed52U;Z>UHfas(Nw6v$o-6D*-29I=$*4?aN7vk%T@I|P2)(#mSJ zveE#dC8tN>o;*S}b`Bb5h2Xj$hn6!68T$FG1MTNzbKW`?*(7))Ex335 zJ#m429erh?x?H`88J|B|b#F2MnCP{!DU+>FRwUVn*nQC(e6HF{8p$t1W^6e5iJqKA z`Jip}HurV$rSnbjj`Q@>4yk$6&PsE6i!>D~R&8+=e}v?7MBjij*2cB)z|;l_sCbz|IVK}D&GIdUoh%pRQKra(I2A%{#Cwj z9#zYvl$T}*W%yM<4DF!IO%Rgc%Or}6rPgvw<(m4;GsvGZCS6?0WI2*`k2@OED{8#& zqBobXlHZM*9NRB>(^PNLEJ>%NFPg4Tn$)R!Chr*AElLAc`>xHy>L{Y_k=u)NxDQOB zB{8}10tp5UxyuReWv)2XG86vrB65p0rk#=ed}kkbI7V!aZlu|MWH_f4`co%mGGoeQKmkqN$*SW_jlodqj4C>Hl&+(DHUO<4kyOFl%6DQp-T=(7i|rv$LI# zc3|g_t2^Zkw?62L!Y_kQ1Cs;a1GPf8BZ5_t)+0y^%1hK&T7AzMt%mwaE)OSfpxi@l zD%X>LNUOx6JTxNvhrT@|1*RpIP4p*)1KYwKjn!6B=Q~o^hLz0R6S*DCl2kUKRD8Ag zrU}~;Cnlv0g-?c-1j`1#Ctgo5^_W!>okC%==% z`RrU|Rk*c6HL19~OFvVXf~^8p($7GqaAo6weUkl0PC)l-nG73{%w9W z>O$1w=o`^5qTcv2c>a?+3p2S)!J)$wEF4>xwn{! zPXpA{0iR?%y~k#g>im157+k;^QaiC5|J&U}??IF4Wo|K3+ZE|Rw;h*7xFFt<^2@{I zuW-1~&*dkER3zR>70OFe`= z++%k$?P3Q_4hq_Rnt^=dY6+di>zM0}=Nh->Lns`kr zr+iSacncgwybjwt@GWNOpX1zi|(QhEjt3TOI4U;Mt`eSK3Rw@Rzg!doJoq+%93XENMBs z|M|lHUQrk$^d)&Sc-wpCY2Vb1>NGWrT1Z(cRTavTUCt+?d^mN0OYEMIJMni?jnK`A zZH%#M!1%k=eANyNFvS>=Jv3zj#zL=dv*~bU!go{D40zeh>Lw;!mOY+(}hK zt0M38?${@#jf;8*y^VfPUv5l5jrw8zfoHPHoNN$1M|e=MM<7RFEYcdigC&C(13dy_ zpm9>|#4-sJ<7>zFk6#miIzA9TIpKa{v0&54IP;*>h4dAFDT-&kC#%P!tyA7g!-Tqo zr_HUAMsa<2q#`t>Uzi70tvlvb^OCs=IHiVp#e8ekaQ4wNEQPy_<)TlmPx_`%fuu=) zAN_pzt=!k8UoU)r_DhPdo^&Zx$PjJI$poJ$9UDS3VuD~3%SEnpZ3RPIA^)qmm|E;E zKM~LH706ne)vjvhGCJzRBh$lMLW6_fleQ-62?rA%C7ewh7T6IAM}8PlRvqhvIn>w| znHXvw*pzrV;bp?D#IAwqAwj=r-f`}@pSWv$JK>c$N$KPn>YL@y9d$J7UepDDW^Vyy zBEO!VHGT*8B^>$_^}Erp62E@@>iQ=`d`ldqdScO}se!k_+2NeVLA!<9gzpSRvAldk z@`ydT_N=7c(^!ZJv|o|QMrW%u)P-&A0ZYqfJF~49hM|Ac2O3k&()KYLPuhy5lvY}l zx2|uTuderp`cT@!zjt@iH}-r>#9Z$?>!n?lzGRg#clZfe$Mu+e{0K*XFISvj%D;k_ zsR)huXXG*~;gm7s!_RT1ixVa!lumq>G%J+dh<28^rTFWZer_tNa6}3VdHGGmVM}Ry zaMyBHfAbLfT{+{H5pB*hcEUf~7KwzVaDz~~P*3E2l7*j#dW4=L-*YQzd*Z2t=!Ce0 z=82mF#lkQ2wU*)ZVqdUVCr}afj0b8>Wv8dv$!VdUGR*VFmp`g~)OG)S-x$vU<(62P zPf4<~+RhN`lu=&47`_*5pOh3&{;vLg^4F|i`F`*C^FDrRQi0IU$PO^JN_H}6^BItQ z{DADn9ViIAFa&rV9ggmq+p}9;Bi9v0{*k+zZnBeGJ&|kK zXNI9-gzUa_EV5>oFb7o;^N2m!0(J+w$2%lN0+{J+L963WCHS`8g>KAETHMy zJkMS{7h$vdSPqJu@QWN`%N*5iZS}DpTZ4dfJ*+qq-wV;3i#d0#k>+J1ySdxC?@*SC z%ZeV-4Jz$Y;V)N;++jZSvd(T4OnPC>CFUdmmsrK>^#6kl?K+Bq5R51$=a&-QL`;qL`!j>j1_R#y60I>QZ#b z=iZLqKiUrEuQ-hViK*k=z^TyPl?5KvHxSdWExqluesT^}^-63G@?6E;$>b;(f|^?u zpDho9^@Dhq_;4*BqWk8OS}U*A6Pm|!U3;iDP!>w>aF4Qa6VYqla;JrK@^W>6r!!Dm zeXqw;R81*w6Aq9j)N5_juSQnrUCc>#8a9;6BTZ71JZ*g+d=Idr)B8;9>|eef{{H^d z{tLbdzC`a4PcE&HnoZpUHCptX@p!$*Y$Vyl6u(o@oot#pR`#LLLXbgp;NsZ9P|v z7q?3ns zpPwm=6mw&exUzg-ZjFi^tu6AT_BHeOj#?jmIwoiA%9y&*bNtP{ht%YKA$hWx4P%Crg%8-B3}g@wR`lx{;i(na!&pUjka>@ z8K54{33d&+;U7A&@;Fu51QO(%Nu!imT37EuUnl=Q{~7-<|5jgCuc0oHSBY(ey~xAQ z#4{|S@H~KO;w!N!CJHtA1Du#4&~`=&9$^78n6ZAYS9XZ7G@9p#n*o2-;O zD*G@`{Xp5KYCzC$yqSE}u|}_Xw|f4lI(SciVL3O06Q7%W5>l ztDF%BM)(91H~Y*Nc5n8R2I*4!ZzmXM0*bjcbvEc=|+{pcq)3lqIk_xH5cQ&u3k9f-D9VZ8x5M zP!f|A2e@hcG+~W+Q~D+kgVWYciV+Txr)((wX&*Gb`tQ)s;Ok(0JVE7gSO8yrW>uvJ z-0NI6B*W_nC-{bVt-#EK%k3l6k(~a7>`)at#}1h}FxULrJZ3dOTIGaw(41~m(*K5E zh6aSbheF|B*uzbXW@dk@J0{jj(Lu;IyyAwy->)m3Kw|KTluf!IyyITFKd8@XYPm*T zBfC)+Pr!JrkJszz#dSNWpN4UC}K|S6YYk z1EIr7B;mrJ(!U@6>h!z*pNxNx{w)}PD86LEfrMWP*AiMLyog^Ge=~kc!t}(JNtco` z1=a>G21*CoBpps%l9(bXUtnvnO}Mju&@}BZ?d%ey6H2?8*hVL44K>R^rF|d%78)Fy z6Z#su7rGWq78sD2H=#s)&%ek1wE467&*8sY62=7nglCu^oy~4v_*e(HFPKK%h-5$% zrib!zTZR1cWjt+Sq+CE8%FSehp{9%smk9a;g#x95(?Z9>A0v&?-FMq@G!A*#znCoC zK?g!L_1UAXh2{d|mR=Q!5FMIWSifh;@Jlp2AtM`RgAS4Pz}&Zyx6jQVgoE7^vs8zf z4hNzo=0|&x<=jKw5T1zTF?*02I^A%w1*RLWN`7Ue`d3rDMZ7IMFVs9rN2!P~mK+C4 zm}M118hVL!8c$y-YaKD~8JqP{k=fx-p-v$cKGU#p3B9aY+ipX9yUn;LVWv1xnkiis zTM8SwH*O4T;Ow`mnk6u&_Cud)^fnJ!!<|vA1{sGeS_5R!(sDK3f;7Kf(Hx@75ns4S zs7`QcU|@g`mJR(IPN(~j!PSjw<^wzn;EFxcx#bkaRq5yYxCQ)jAv2Oc9g#85AzH#b zWGRR7=lEqvR4kJ6Vq&M0ltnxOM}DyT9SY_nYX|aojW7jQ%3NTI+RB9)sL&!(~LOi-1GdlS$18O3ejuL(26&zQd+E=QD2T7PdT|LCYsK+w6PYWaz; zk!P6tLcWLR>1>f2f?xJkG^Gff?yW)!elaQS=4Gpp6Eo;WcHJGqH4_TMk?#o{a@cdt zd(Ai5|J(2SkNdOvYx!jF0Bw;nOBx|80Frvyr*bSGk#%+}AkjR`kl4-!UI!+Qnpx?%?0(qm<- zw#E|zCaB`;;;$8TD(ZC9;HbC$v%asMlPWR}QhCgs3(&FGd&>H%`p5aR`=|Nlduw}= z)Xhp$INqy;A6!~8gB7P?`;nztXW=_;w8Hjr+SOe|l5;;vKBBo>X?15JwCnv&LG}q6 zC=o`8L206rTwCRN>ul|?(gE;iBL}n)>dgYM3TT$?wuoucD zWtUP+v84=RJ)UA#Z#|yxaNXTQvhtGnRLZZU#uHC+YMrzS+B_h~vGOzNlXOLnMWV8) zR!sY$=2p+jcf`&7ZqnM_g{)ZvOcRelsxAR%b7{snY(<{wG+bad-h=tXFGNlvhm!?n#XIAYzC|0XewAxRVT3xSu1x^>*dZ(IgNUb&#Z;4;2ZKE;sQ?i@m4vLG@9d9z8CJu ziRw*t9=1_+^b7h1ID+Er+0JF+EZioi=&Q_Jq)*zi`IzohN1`{*gLJ)?mS4@Q7Sy)r zf@zpPK^R+V?$*FN3zm0|IN&qH8m@re|X?gsFU1OzhKQFbgCr#koya? zA(5}mUZ;u^?=5)!;TISRj!Jv0lk*SRhxx`;5@na3WLP_u703G)OY0q2`5X;i+|qbBBa(*Tgh+@cRd!nfl60d zJdFg-1L-e!MNczN1&{3R;I1ZJ6Wu})t^iY!dI;}vRcIwGs1Ut_t;XLL%DHk$`K6q$ zg2Gs~C)M6LZEnzg+VARSEyf(}w4+b(lig;_z=Vd`)@R$A_$q#1Y%X6VcQLUNH;>Lm z=7nO=(Q;cikt?4I$7~z>Fma2{8LrAgdA2i^hd2Q*M=q%8r<^?G z4k|*YVsB6%D#2Iw8q*nC(*>fPv)fXQ_4;z{tvVkhlu@9Btyk-69rO#v5UZY396ygq zOcAyOYaqci2T7#z_}<2m^+4qa5jCiEI?U!0{9>#$QpzR?E?)36g-OiLT4Q-}xOH%c z|5}!uRUwcV`YF;xUZu7-CfNPS74&0fBCD~}xeMHUxNrVs%F~m`Gfpx4gjv%Wk-)jv46FI-&ysGc-N+1H@{zruUh zi|xj~X0qtJNOXQ8auDU5%JvAT6f5Aw-Ddv)jbRs29l6zX&|-QMZ^620YsHy$jdw_e ztk(zWdG&`#=BH@IaaOndk532A+G6+%`dWn5#w=n?)FvvEqBp}QLc>D$Lg&K+qMwyC zU9;vB{ivJtU3{B4whhyVo=BZSHg+g9h(bd(k$ZBm!(lr`JANIsxfvBx<#|0jnm1rtlB<6S9EoN#&~?>i3L*fcn#FCgdl7iNO< z+D2_Z7=v|S=9=QO7ESr#VM`1lg=BlME+Z1@;1S2=|;_&PZ#J z(O27`^pLkkhefsMkIHhD)LX+@_Q1>whU0Pbv2h%;Y+=OmBN_ZYpDCxB3d2o75tVACf{d~tZb0#x@__PbGvxXX5yF{bbG2axyiW-$E;+u)6c;%n?rppH;rx#-wE=8by*WLcVu+W zh-6I2+8byYZZ1#OHkh*=g8D+2V6)+--jDx`bcshSFYbq%tqM1l8A5d>{=jqoi=n~c z9%H;WLT0RO*lV3P&cDdE&jlqe1XZjrP6HFJxbolxN$^*1#cX#K-l0Cu17Z!;jk(Bf zr?O=X-< z(Df^m!$?pZp$5g_#xu|K8uzsqYNql;o)~pSPKPE2n+FE^DSr)rTwq~vNjNRq2e*}l zaKdc2b0W?33hv^bP@7v3Db7+Pn|9$lU%>2bR5SV_$v@XrtOQ~a^_*GD9p~!`6NKf$ zQX!il@gG>4oyp{4&e6T-ilEZ0f$MP>k~uok8nfX2TMngRhb!H+&b3A?Eqp-6CqH`> zZtq>pP}a*g6{kwYJypHCy}x>YM1hf%)`~XNjksCzt1r zyR3VJblWxF)fN8LhT;i+3Y(3NC)YRw?H<;CaJ1G~b)9mgpX$N<$tLiVg+Ij$uG7%z zI(T%?dhcy-KJQldT31&gCuh?=sZF5M&7kTbGj^8khIjTRXfCDso9r^?67u3vICcL( zF8d474BGe#sx@7Pslztm9IgivOOyEdd_JL2QRpx1Fp%xroxoam3> zeRZfupw7Ky#^JxB`6_%8e4azOd))8*EWsAq`_ zYqdB@5coQ5aoP{ZLx#B-q>UR!S*w&YlQij>+y!BTs~Nn$`&<#Rm-q!Lng@!{3T`Xz z`8SZz_!m!?GhCujRZMj4a~*N?%D0?v{plzgpmV){;7mEP7ke zAr63UJI1lV$>y{7$Sx`dB1W$o$xlK4&Vi z7ua^#XEg(3ZZcCJ4yB)|9Q1VTASUtmg(Kn}G!Xj_b$PI8;kPBD3ssG}j%36skOw{@Z*mgM#5zuKXs|=^Z7vUI|7D!2G#nP|zzLnI7sofSzMbqi z#3XVhPNyzZDe#56;pe`J9SO~|0Q{nTxDeYOZtlEv8QiwplP8J4oF&li$C&4g?#SJA zfa_uy(hS3~&tNbir#j=EcbI#pfY?JIt=a)B9@y6p7wq_DV2a*Wx}gL|dS~#aU4d4*j2$h1iFYny9P#ad--sV#52` z{Ax5X`s*vTY}kO8(k^TB^n9SWlrU^C>2^Y8tD^_O`m3Uzk*`Mvhm!rnGxMka@;(3e z+G!Uvss)-yPN{jVH$;6pFA`6MDUR4`)iWAuhSEnVt<+FvgHFgI%e5WZfuKI#d~F%H zk?tpI!5Q9-41;dvB1Sl;kPBxmi%8%Aj^q$-s5)9A;C8Ztl1%Ub?{Gf!U5RcNwjC0NzihJ=pPNu z+DTlb|K(_3?w(hL20udVYB$7 z>pt=cOZn|=33?DQ#hR=iRc1y#kv8Fy;qBowk*e|wWu{iv*bf5E4iIw+fkE}g+=P6# zZ9c))Ai)^~V#o+02J_wxq%6iGmEk5{*(dN6*~CgV%E0s%ehbud9=leR5s7 zw_I2$tES^~R0>&^i`XY#RwgU+lGYq>X`m=f!n49a+Peza)SZlb#!%$F zYS_)3L3pIDJ(lN^r;kVQ9CbH#pO;>^c8L9jBK$w>c%~qIha5;Wbxzpp@J)+z zIwG?52JU{d#m>&EX z+7Yqkm0BKislAQ(&*k|XWEd~iot%R`(yzz^N$@hh#*^wPvVTEiD|oMlUIY7*7MNnP z5tqo(^jo+UByWHb!4ihAv?e%WKWVSux7IZh{hxMD`lo zYLc)i>x<0KN2@is#U!$?)1={swKmrzQ7o5Zng?KpNNH&Ne^Wo z!JF}dC;2ltG5gV#sW-%*$f75MYSR#W%Ey?E?4Y6-!V@?sj+Z|eM4WNnp54u zV5I1q;5Yt2KEla;k{n45g_bmnTa2W}Ie3FU_(sL#kBRfm_RNre5MOW_bAWzI4MgUA zFuYO~sT0t^>Jv*ahrF?i7+PWSj)e|6gHnT;ZFXE7vSox#)haS#3ieTQBoVCG?l+bbI6C~ zsmc(w1IT!djX$u{e?s)8pR?J7=B^p;9^M(gJ-&eVl&3IUOg{);+12z2@;r!(r@;2+#5f2JC`0ZRn_BidMW)ko0%GN6*9l42?`bGVd zvBsL?)FoR{<0uswl&SycDuc@F+#-C`db%B38+X~MED@i zU+t>ux$bT4E91N3t>eAm$>SO6PLh@(ZJ!`Lay4@ef>-Dym&gvMDM|xTb{43b6~U<7 zO8i6$&;e~n$!Vi6rbDG#{CNZoM`?)Uc~r9nC`^1kW%kn^iI4 z%*F)q3_RjOxMO8$J=M-oFKlG{79!JHS-k;oa3%e#J{h~O6!W9?+};A6YacdHCcce+ zJIfrQ?@)3?%ZIaqU4uu1cS1izW=ErPceOvf3)yk2e1Kf{HMy3|?%Y>Ov`n#Ihcer(S0NY=3oZAMm%$Z@ZC+o22av1$Wo+yaA{V@j5BHB@6FR5rRUAs z9teakMs7tVcsAce@`K@WG*VtJr#8@Ynfu|cYJgd|G4a;EWA@cklm*fD;hw=Xe;I!y z>pgs(cd}Blo@Y(Ts+!e0>p|8h|AOEk5^Y8E*{z-w1K!e~f!2`jo!FRz@p}#{r!JDNWVe zs;$OrIW(V^Q){CwL`%a|tvIy4FUnWtl*;H^;RQ)_Y7@^vNT>q7{}s^J7Q$~f2+GF4 z*bOg7MtderfrGUNERdgZr^yLbu_?GsP2lz-!6;t@)~Z8vARb~yxsE+XbE_({>Ph-{ z?2(3>A#0hFN_-@HuZ^VXuqdcozi}_v5 z50s1OWY-2O^{83foMg-c;dz1jTv@H$QMRf>_3G9_Vm^JF9STzTTCt?7Ib3&}g`)g* z_73vgLs*M*gxpfpUDbQdJKF2G=exG?-?r?cjn*rMWPJ8$#tMG5!5H*Gxqz>oRuOyuSkfE-x}3HOGCg8TGPqo$Sz zGu6e&ZS2ckaxvu>^^Hat`;0$vzp7`H#sqy*U#Wl7-x{59Z+b@TqFR8g5Ms}>e&$a) zC)I;U0aY76ahy^~p!(GTi)I3{U;V5H_AX)|b&*bI>T*LcA5?^*F^gGCZ6pFn_!KnH z>N_y4FIT&%UDPRDd!euwhD$V= z-NCKpOM}g^n@@zkagd$F{6htaTuyiEu+dWA4;I3DeTq>B#DoW+C?ADGp$v5O7xEnW zjC@A9r%g3e>{~=>%rg<3JUsYeVfZ=vaI=LwuF{@9zJFuN#&(D~>V1Jd_-G*m$)QA? zR1$KeuNZ>+0`+V%*NV-Je_M>ILk@v{Uzx~HRs(~$CsTsm01AD5wkYO@?YIHfBbUGx z^p0{fGuTyN%-7=Du*H}U)NP#H7Iev%R5fH2db`to|HQcyS7rMl`}k~Q6Gp^po@1`; zaEeYtUbZH@!^>TYYaD#8vHT@w1T}!j1ea!pJ<3TVc2H%R!QkF5=ZbO_Sec$q{Y{i{ z^4jmM-)x3>4o}f}<_dhy)%nrbQJe?G;3v#_l+XbuO((c^C^zMPFO8D^a%tjk;xh2% zJ=eV7$~NSZC%S;b6i#62Wc*j5Ncq*RE3G9#yOiz zN-wBtav`~DG%uVM9fJe?V>0t+TuU#VQ7-dtmJ_%YzACrZau|J)9V_hcpr~9X#=@QO zo*u>WXw}Itjt~ck9K1Xq;P_3Tf53^I3<|_hyBLU@8hMDG#$M;L@#nCk%FVPUGp)<| zFl0AIDIL^h+9CK1ZW|0ZZO=frdW7`JDJ)iuM|)S z{)GZP0X*ZmXecQ{e_3X$b{+ID~<78cL|A@QSX#FjA=XbS| zpsfC6-nYs*SFjoQW{(2nx`s6kT=QZe?$)*o6SFbSRpT`w3{O%ov9_?2+t0kkc`};3 zh3#@h?3@~5BHhK^WOp-e5E6Re$@7h=&MrkxCJe&gKqPi^(e=r&-PByKjY^D!`<5?CQi8q+y%9CR-lWj)E ze+Rxve)O8W)(UG))VWHETp7F78IdNDwGllsDOz8ypj=n}LiYc&JWbX?C38jE;Y^qv zxf*4Z{_vwtFrJu(l@GVFRB|MIqm zW$=7$0ZDl{aSNy4BE6Q{QKq6w*b_b&DifX%VdTL|X|)2JF=s)yY6G4^6Rm;%#Q0)m zC!*v4+*IDMH@S+q)#T#;LiTzjYcUTn2~A;N!kgSwYULU3o#wsknT{!s=Eu|HiLQ2G zkhGV84{**Y0)q8U(Dt6-j<^ie)y=peS4Bo`HW4IaK_+?#)=VtO9Y^7T+zpb=7OE9C zh(CaGevBOtAJQ&nFr6Dy)jT|V`~BZD*#}RDzmN<+0q;r|=u6qCV?;lvr+p1P`gZvF z?lQjWbKx<~1Q~ybR$CLm{ny|cFjPxFW_=^NGmm*r+Ttnbo9erTb7iFKEw8a5@KB4f zCNc(jgy~|$)!N%264#!Jgs23+Ke9*lXSue-YksX9Q~m7Y0uFCA_8u zne8%0qz_6To6#X_L?Cx)Zn$Z5zA_p2rM|`#Z1p1!QY|#a(ZWh`qpOC~Dke zrWj39nZzyUtGyCrvzK-n=<^#vY}^eVTY0+`(rk5&QF>=gL)W5%BProC;iln~P=oNe z$iLB?N?-Mk7HUz7~EjMb(1hOAMJ;`va|df?F1eY!ZC3*6V~oD1%%?aX~Bb3@2| z&VFl(QAkUYW1=bH@!@XaY~dxL`k_;yHQ_3eIT0#aRhE?#n%l69W8m9N$ChuSv0b~T z{DPF(u;`O$mb^?|p{KxSwiZg{B@l2s5ZR#TeF2^6Ir%qznEl8N;t%on_&&UcOQ(k+ znYYl~qW`S*SMMpUl*@8TbZ;a*^d=C_+LC!ZBb>fBJx4}~%nMn3uz2K*lEVmF`HA1i zpQvQ=IL`H-Ey~OVM$iJim0_Aaomb=|x(wTbD+#A~nDcTou|dAX#R;v&-mdOa4tFVV z7-L=Kgy(EYdJD1I?qwAQE4%=Ht`_!!U*IqsWlYlUD)VI$POgPYX(ZAgT6vJ`SWF)Q znV<%Hh}lPvphl7k*z@B^26xF(xJ$mK2xdJJ4N1a7*AsU?BzxBS7Wiy0>rHY$m5#fb zi2ZqrolX@bzF9krL0Su?AJSvrLrak#+ZU<;$M0mhnl{V?+lj6$baih=I?jrl5?>?! zr?>_&4?HWSBDnK}(BXDbOm*FnesGs_XG#|C)ydo#W)xMMe2V6fPDtxy1H)`HJ(s#i z2+kI31QNL;v=_=bIX7}QgQJflr^2;Dp99bQqW@mjM1M-)SZGt^rrb=+X5O%mV@f;- zIsr=-1zYD4I7WStnM^U}V^6%DSWfkUYS@a360|eHJg=R>uCjvKN&m^}PfVi~b_?GG z(@|gc0lC8(qpgpw4P^%Wf!{;(qph`HtOMlF>_z^)K#ALgb9_y(4L;Llu>)$yP34aY z8^pKbA5iWm3N84R@ODV#1Kc;GpwX{{b~zd3r|w!nyNR85X>29BnFFwKOF;|NbLdQc zoc7KIdks<|?~#c46wMuZimtU&;knT!%5gPZWs&t=K_X$o4Hv$-7J72U z)QtN*-ieEyw zTB`0kApBzR#+)95idYPIPM{J@z z>=Wd?%LoO8YJ5vpqdMZbc$Ngwj+x0fa=mch@ILmv#8dj!|5+vb`Tk&w#H0DI1Gp0R zL|Qz`m*swCno=vAH|7+*soF|@6(MmRZw>7W77UIHb_kUY`@>vxfm}k3(Px;2kY~?L zw_)PJ>3zrG?19o5XT8E?TSa{hvQ07VnT{S4Y^QU8eB9GXv;H!_gZ}CT2X?WU%c(=P zWD|r6u2?uj6NULqEuxZHUV}>#{PiQyuiq-))i|x6T1~kfEgrcY@`j3sMEC=n$k|j` z3mI>$zR-nkfK*V#N&#si9{$KW=mqNy?|NIZHWTEAh-;+k9=BKa4Dn>RSGmK|Emw0f zg&&UB*^VkppRi?tO>C;3g(AMFcvPK;7S(UgeR3C{g2`chlo@FNG#p2tV&daJ>#^XEFa$??I?pfPLQ+Ycd#Ojma@o98w9b zC}@P(7}dA-8GE!*%FgJDh#fu^-Wh%oZV6Iq8}tqphdMgY`kClV&*P?ve(8ee9QJ>m zyjMIf&wa`5>Mi8qn}PdUfm;J|+*SUb@COp$M+KWJ&d#9klF3dJWZ^b|3O&`n&bm5xIEeb&w4d_0RK5!5v{%*{)|;LE;5npL@VB#uQG$xwTNFTyE*ByR@%( zY^k`Caie16V;FC4X)wQtZcIo}Bk!A~tr1{bb~cL{Yqi}B7ZZ`*sga&rg{~co=iPAzPC~23vL?w%-dEF3Ds06N-Xx>)u~g|KKcoB z6=b9*&{x+86G6W2f|jjr?#-UdUd1;p_IX^B_>I_1PViOqR`DddqpsPmveJ1t&eOb8 zy)8YA+XNTsA2CyC$j7oI-owstlU;RAAz`e;chOGnB6n4)YR`=lPD#2OUr=i5Js#ta z-4~lThW4J9>WX{dt8tO`-W#=4~!0cuV@VSI>LQ$a;-`A1LadUt0=Y{^_MJTJ|#2dm*B&UBuqr`nKH+0^;%mC1t`Z}eNf9`Gkffj;@G0HlP z`^r`4Z~LKHQcsf4hxn``-^(QL`dajh_IcvhW66cnb^qQ-oL0uVLM%jr@HOZ6-zpWHC|Fj6nFJ^VCu7|gArft7*A@Qe?_ ztN2+Ns>K*D;30^j?QpufSn*RBD3V&8gAx} z2xm)4-X}~3-ElD=&lSQpV;rH`eL&>uitG-f#cC(C@A_tQyZwQvL=R*|{vx*4X>1?* zyW=%msZ4Z3s7tVLaCxvxXm@ydR8e;89WYV($z}9Z@IqgM`1FZhOz}v5CSsoW#rY9# z=;>S=@r!iNv(q~n$+C~ge|&S@5^o7HU=uO?d@c{S1-am4s5WD%Pw)t}$Bvz)D$^gC zsoYk+IGE(OFcJ2m4mo$tH(G5ZoaaQ|L>kDysrQVcL|wM2>#p}kT!CzJa@@}OL$2dF zTjdBRQt`I0q~|xd&PL+)znA%mIYnonMerXqjMv)}X0?Q=Jm>bkxP1Njs1!G8nErMa^ZjKssx z2R=cc>`z`q4`V-Kt=+=>s?AqwMQeor4wen>2)+y@Mm|NRNBhe=6-OPf8^%cMitQt+ zkAr6de%R6fP0YhiCWr=ypZbI-BQg zxUA_#tj5jbf8+zW&F7`M6AqlL^T351PqZUnfp_o)Y&ru8vnZOlrl6DT9(ro7KqHxo zjqn9NuOM8#3KAE<~n)XK5D3HRb`-@SMDbFSDI=OW2AF} zZYKQUUK~?0Ay@W|IR@qUmTg7C=2+4DNu19+JzO)kIbEIH>+G?=pC!`d&v{Y!2|4?S}%$J!n{m+66A|sTcdMRsw zgX$2p(F`XkFs6Pow`$kr&*5&tt4KZm7PuNpiZ0PAT8D{0=`-vcZUL7c>6$V0ANbun zk*t~m##2}1Qdnb*z6goOxwyaFi7tq4hdZ~5{3}RN*`fX~R~8`W_F1Wdj9a>T4msAJ z;g_94OsBtbU0icKKgO7`$KtZbO^C_vEh%O4`&NO_RE-8t!8QC03jx3E1lJ_VRwN=JoYcX_(R+u428-Hrq)N}G~Y*v%QO`un= z3X74Vm_U4y=b#h}P^%$ZPz~(-ZD^TTX{Vdzj9J=ErM^5r`aRl4>8(99mf0)Gg^Y(U zEw+-zc?92TUtQlmFYV3l*(*H}|AC^opC*vR+6A`g3uJ9}GVQsXP|f$d+DaRxu~Isk z+inOixlYUi%(V;6zx2guqJ5>8w`vft=?{EBI^dfhCnOY2XcPZEwnR)z?>P5L*LLVQ z1oCJb&|2LABOL{XjzCvVT3ahK+vBUm`d>JXtn0zg3G`&TVj&@p@uY<7UL~ zkGqR}**JG~*FpX=vyL2Q&oq+MIdYfCuF(2m^WcqOX6P^I#?`d>`UJhZwoNG)%?xJG zs+RURx!||vUq*d?|M|n$nkn_tTlrgt$0&!4gAPykVLQWNl)yYByE`|Kd4DB0jC=@P z4lM|Oi(HU1)cW8V48V4;7dm4yo!0giQ$q@4GPe8!l?rIC?4$0)t$h{r1KpnDjDqWK zKlmLj@QkT~UELD&SyjX{We!y2R_KlzPh=qT?q`1#+PfCI-+Bwhvhnp2b|rj_zY@FI zTTr^gpJnn<24hNfmRUU4(p2FXFn1<=yYSonmLiUr#ulurod(E?3MbPj=T- zE{j^{%rS3izadxCExIncT8=8?p(gxc=CKQa=z81!)w*FE)+#A8LEz~eSn6Nk9~syd z;$%xRtZQUW_A)<9Z0RcNY9YoTftQDC%Wgz6*QSr5&2|WN4>{`&AoYB+%fd&07WcHx zppFcb{|d(jFJxtAB&9!1Kbsw$zOMUxjFIpxhd=j+yv_5K&8y{VpW{kmo%jVYOFfTV4~5C#J(fqFq&jH2NJo?7 z;Yp|m6@C#^)NkW5~F1 z@tqUCCS*%Ip0FW4HTJfzmnZBx2hP-f+_A0^HJ$!&R*bcJnI$n(Cg@$!=e--f>~r9- z+GxLWQb1OFg>=p^Yp~H-Yp?8z?m;?bcJv8mgA(9rpVeL1+3nXqVb`!;DJ36>4!6xWt9kajC@fR8Hept(BVr^8>rdTMDmR@3th)=;4!M`c;MWr z3$9C5k|rKm=k@GLudwY;$Xt}xCG~9br=%}QJCf5=R(v0o{(EMjKt4E=r)yWu0>lV< zG#4ZOgw$+f&nZs~)c2g;m7dL*{IZbaX)Zhh{WOHn#(L@jkstKIVrCTg^0nB}{H86} zh9M=;SM8)UkVi%DN7_ZYMA}EkDXaC~_Gqd<=NI3&fAkTt)8mH4?}~2||0J$%+?d#o zG0lB@;mGaeDTl0WGuL7ncKA!D@?I~t4ZNZi14sR8zR1MFVTI3%`T(;bl$?}5`Szpqiuw-_~MP)tGJK+iAI zTyY`)8ZONx^b+bESsT>Sf@CFEb=%S#*95VX@EY9+&H1ySxt8J{v+Xc-s$jf!VZLBr{D!JUT|&ZoB3e@)U>o0= zp2F;4L)`B|Q#fOmNUvR->sN8I7#2^uI!Z64*>Du+hM%~yFY4XyX&@CA<}u5NX6Aim zQaI$_n%N~IIlWp&x6B6q+reKWMUdaDYs&V&S9sBm#PamDSr?t?yO*ks~2J5QZAB`L_gy1@nf6hAM~l1V4bFLHMmq zGP7ewtBkK1FEcCp%Lh+|yU5Q}5nhN&b~SM5XQJ`MankKYP`w)%r{H%ir61K^s&}zx z+!!qy=@R-Skk>ydt8bRezc{cdbT+aFJN-p^C3LpkK}X^XaHCtBx4{#rE~kX)(AvOJ zoY##47lV&M0iC4%X0COnQ>n}bZWZ3+ocwIIGku*n4u(n{&GK zs~5!U+6JwCj2;fblALuWV`N5~%o=_=G%6ae%`&??y`YmmAzKqU?d?V*tsZtWgCmQ< zj%*t)5$PG7DK|oo5({GI1a+Hw9=(rM)s4`F&ntJ-3VPT`w0|Yy=q>CC{+uvR7y)OS zA2i)h#6;XlmXS-TUGyzxD-@U{Xmpdvr}jBxhk8013M~)Z%$kxpEyJIlJ0p-$I%}7| zaj;mpZSb$C?eD!PGGJHlGcQ!#{t(qMD8a|ATasTiS(O;G7deE%pod2&E7F3ECrf3Y-;?zOPL#3y7(HLjPlhx@H z%slo08)c@`2gtk5D~mLD>mGf8zTPMYeqlc12-%JPjFeqVE(uTk?93giCNix7urY4K zJ3|v=(IV#%$B>cRW@YN%6*{^wbUyIbk9|)tS9pJPg?iZdWJk&C%#S=Rj&&W8F1km0 zc6j=F*1BnFuW*DNO;vT!Fsv6wzw-)xpt;$;M;xG<;V0IVE5LPOOES->E4cA4hO2iw zNYpWKn%6^D*gdW@-x7_MOQFt`;!1MGIU62;gKXk|jp<`hUFdvFLwU2yIbCE~O7{JBzs{JRzJA;>7FNSASv8(rw_e z9$-G#sw!giQg|G4h~=VZ!EM>5Cz&9d5ap@w^h_uhm4wxz;%epYWJr6uZJ#VBG zs9Oiwam+osC*1FE=xp%Fj|C6AlS_sh{}X?l+s>|M7Sk8dfU*^O{w}mQHHMRB0$Vx`GFSY$T=W7dVId^7MdzF>mc2{KZDbc(jcKjp-e<&nJs8G}mbV;W7KL9g=; zyzYnauU-HX|dvl=*E$eP$hRp-j^&-kWDqVy8R z^VitJ^cD2{Bq5)E)U09FLYL_@a967l*N|6EV&-wq=E|3M&W#+zk)*e7o+;*pt&c_(t(IIeTqCeGb9H*}wD`1+Y2VVgj8JB|K-mz`HXsr% z(04AsU7#fn1Lyl=G*{#aJkhm+J%i0c{%|Szxw^(^ZdWCTG9&owVtpwj z-N#hY46klA18LWJi_ViH@Ul!oc6YxXr&U&(M+b-N1T(Ve%meA$((LbI+TOH@>8&%$ zWCk<0XASXJ45)$BVD|8U$m3{Zr5$psLzQhHKlBVN%&d^U=KKEC@u@~?xil-iM%Ix) z-tg?`8->AV;z#t;`!QQY(SQEL9A+3=dv%KZDDr#wN@!My54Vk!lP9T*GxHg}^(shTv;%v$u(j1*LcE}=vc33<;#t=zNs~56J6+ku zR{SH7+K1EmDV4At+VP{8WD}^Wy|tNYZ#WB=W7;0-FPF75^K|Bdth|99p~PrdIjGmN zZaFR_c#ean^M%VT_~DQ8xqd}%%r7<&2cf?}hJPReg>)qv1n*Lt;mf*=4_r(32zoF2 z0b7I)13sRw&iw?c(g&P*x54kOMSLer-~M4UsK@DOezeYJdWd2E4OrKeTJNk>w+J2(Qv+3ehKZWuQG&%w2rgn1zZj@dl! zFx&x8+1r?Eve5Xj6Dn(0XFu+WK57ZQ4@8u{*h>b`j~UBcM?!BL-3IOH`>A~J`ZXia zac_6W-#TKvMrJ05)z_wo1LQL*J3W|6!_#!F8K-Yjwnn=~p1{57L+Ud@rSt^zlhxii zN93p4(!H56&|O||ZTXVuj%eqqDt(a3yO+Bwdmeg{Je@u9?xwCff{RO|t5Ot+O$GSa zedyiHzbwgz`SD;LUlUr2ZaBYAxV9n#*9G3PNpP1nba`F*kX{=m`K1CNGYyhPyIP7S z-j{q(1Gb{8<_lc#-JIVD8XSOl_|tQ6lh_)VFnr`HbcftWo6#9CD`q2SIRURJObN_6 z=0~FRRFH$?{0#u;+2#~h0* zl<+cPcfz{(jMzdktG$&ywEKf=uh>h-;NsY?)CuCQJ=nU9=D$l;ZimDEIl@|eSFxC@ zg=>kJUFZi*#s{BB8q$f6;Ek&&7L)e=M_YDJkQ$4RaM!&}l_!ro?Vxa=Mii|~FRlCV zGH*g-+F?qjYq8t8(!v=rQEKNN0ygsw?_;D9D#M-hU!Eh`ExU_*=6Jq&@_OUFkFljV z<4%L=A&N)dTkv|Y4Ow0CrFbaeDd zWOn#;@UfrHnwPOX{cyUHG1Gr9)JjHc48A>&&?)&GPpMbRl&Ba^33T^2%NmfmBI9v- z!Ss1)MB2>nuTu-9?n(JGWlE|$t$xPytZl*Rkr<_-M&i$G2@Z>hPU@nT*Nivn>zlN8 z=t{ex`SdpWRNSWG^`2T8^%QivwQ#x(h@6S!j82KZi*}M<$mOw_UVwB^H${>A!PDW5 zmW{-Op9lX8{Ndl8l`E@lRu%slkQfGoeXHpet-Z+2ZL^zNzZ;@%;&~jevhXkzNAkC~ zao$wnAs+zJ>wh|2C)y4EiXy~FUQd#DX3WXhX>lLolH-1hdlQ=)^M~)gXS+0C+y`G~ zb}$tB;Ip~FT4~-liWnEr0O9CcjCE!z=768bB&so!!1iLhvp=BqY%v%-qtWhlk|_-* zS~5Bp|75ztfBY{JBx{XZ+F5lN{PyFtklxseAqG*uqMh#%x!n0=Cg`n{hmk<&d+<^4 zuh7iMDOu2ZW9z-krk(fbTx^g2g74sCe@7#gXcR<4Q3pG>vkmRAP2fZ>gY?<2&Mvq% z&*9Y-rpGf!kZbRXE*TnrwEWB&Y8SZ!JwrQ@{wZKpGcA3oCM$9BxA3XpO@HI8Ntu%~ zf6n^L|9fz8_~+<$d52P6?TcGllCne@4ENt^cuW2<(ya{V1X%?stCP$SW))qK%0;}e z_8Ysj&&nRzK?ABsJ|d4(8mld}UV5C-+{kOJ(ywSwkiz~4Ge3!5fip^HZMN}){Tgai z5>uXw;d}5Q?lgOm9!M4h_31nuP6zPp{-O%nX)U5J2P1O`HXLY!z$WVzwVUckwV-}M zPxoee9^BFmxNB&gqmd=AN9}b&W<7nU(k{9r+&DBNSS2_%$cA2qK86cnU&^XOwadES z_++j|Khh{951pGH4t_PwWY8;+%sotP0}-w{e3ToodFe0J^xXHdAosM5off+$c6031 z*qX6lW2(jE^=`@!(Ma?Q8X1b_f=v7Q7)`x6P zC1IzSLs||d$2?zBj2(MDu1LHQmosiv%oOiy>8n6;+vp(NPoK~g`jI-%{K5SwG!zA# z9DU$2oG#4cDl(t(JiTZYHBC@wE@(mRuI^x~-`AN;_M!cZhns-i>2J&*R6l~W_oMTn zpxRc+uMARR)I3^mxGEMv4XS~xhzAL*-|dQEfmFuMGpCbC3JM;4f?r>Ucr@^Xo2`ACECq|j3|o4g2Y4V(_d1`h?7gpP!*NEdmFau_)iMxU=2 zHR91=`xdik9dJb4`fBB1q+9TIX5X}RDJzqPe{1)xeNx+$;%S>Qiw3(yKFaOYChB)N z1JmL0z=Nz^nF}*}X375gq2kej>SkkvjqY;tGRWw0L;-t;VXOP`d;bYn50?%f49|%i zi}qDkY2S_7_A#O*O>k$0{?b>dW3ISX@mJy(#+z{kE-gXL zRxC%e9F4R0NPHKU16n{4sfFn0Yw>M(m47Q75R1ENx{}}`Kf`Zi9cm;|(;kj*cVWGl zUJ^Xfoerog?0RvgXI5<2#B(`1=Jw^)^JdGJJ@5HkC9?k$=Xg?t`*fVs3i?DtBuNCL z0QT;`uocA@?h-L?;|?S&Ogxe}HZhP8oA4m6aqJOaoOhUeiK{mD_cN%!kYzrGZ16Gd zvG!P>X|A&O5d)~BpxOO|J9%5SGTVZ^4rlyIzM`;9Fz|`2;#%a|?V5)9;EXVgx7fb; z^jsyr+U2a9Xdr2%l~zY6MbYZmQoW#^F(|tn=HDII+WgmDTZ<`9HFP4z4K=r1BI1M| zhEl_QpA(E9U~TSpYw>`kM3r!16*I~4{MZ~C!9Cy$@fOd3%_3a%ztk8dCHf* z->8&MX+5(1q3g;N^9)guxxAr(ccp$y&6$=bV|tblJQU6$yVO6l0>%lmp`GHKhTrZTTT8g?a@>D_!`RkW z*c*`I#DCd=RB`8$Sp%=}5i-u%9gcd&)ZumEsrX1#h2eZV_AwHj$E;_@A+%0D)UP6a z-^ZRzWKgTv--W-W4c@evLh+tNGx2)j=7c?Qu9)hcMJ`f!iR5W1hGGBa>VpqH!q+qI zOv3PNqqA?zo|rvvwp$5yTx{$_-%zjR$>&`FTAAbvd3Sp2d0&DQ)YpALijyXSEp$)J z<9dgVlgsW3o_?OSo>v~m>-7p=+rxTCc_;him>F?5;@>4aOB|DJe75U}y%YMxCHpk@ zez7LU&=ir=8lqQFcgcT8Pez9zH+(^RWfa8j>lVF(`!4*7^z0Prl53lILZ~TJ6L!M^ zSz7AgIp_1ou8wb!kQzTej)~dh-Yg7a$`h%^S*1i|dGLmRcUIY~R#{K8F8gZ)dxiDr zWpystJr_uty~N)X8%oXH=g`#fPU_+!gwFq;Ah+3<%_>GzyR6Pq>dBtyUAXVVfp`8U z{se4#-TsCCeSvDBr=UnRmH(FK%lo2RBhS(2Jvtl;_l$m3${Ks@6J!cau|BpQa}aD2 zbo&{UHd8q&pOD8ZOV!cfmv_K>C>am+T5!?yP+8?fbY^5)SPOLwuZXmhYpMlx1|5Fy zoV(;a`V)v@(?CAi%57#}fq41VzH97OUqwfTM+I{P_JLabAoyeCwR}puV4ib|QrqFh zybZ!}0V;uf;!LwUTZ>HA+-npvn&^qz9>pV%j*#I@JQJm0)u0pH5>}$O)K5mDlLMcq z!Tbl2c5m@)^_KJv@pVCJQ}SxygSJPvNoO%Z_zG588WW`VP;NLQeny|qOS6T!!$>p| zz@Pfl{1<$TlSD7dhmGYs?oV)duk%y6NoWS!iUzG3cDgkaJ!xmjoXiWZr&t^wF8qC_keG`ZZMF6BY}K=5BqZni;(rD(LT$?oItWY2CLL-~RnpBY9|Qsr1TOU4lcP zQXf_Oq8at3D&wS?2uGP4nZx>^@>oc^oiy?o2ee|!_wa_mip=Y2jZ;@7yOWcWzoq_? z{!`YCK-F-Y=zVM)_bYBCJ^E{e2=5QR4Lrm)?*<~l*MjlEp99A@$S?IK%$=s5*BehM6KlzW8g5P7(U74v_3j@1?KIn^l z=!a0rP~p(n(3o(A=me-9{fw^WRBzY7+=k5bUqoRv4k^e~JBflrxlGHPV*$$Ax77rrHT)IIi5Qexln>0)DvaL2fJNco_Z{r79O z>!3JQFtPtAKr>{1XEXW$2~#v@nv<=((AxrVuiu9Es0SRs+2BfBWR=3NU#*bU!rly4 z2kE4NpnlQ5ZdY+SB3t!ClR-}`xsI|=f&N6Ja z(LM^_?gmURYmF5kJ?+tcHyq?CtJ2xI$3i7(n5VUGCD_EZV_(O-@)h;om#zshEJ?bp zmD+PWGu!-+qq6{#;#|9Mdr$Z1DvP_jyF0<%-61#x4HDelo#5^+AxLm{x3!rapXu&t z`_KK0O5If53JJSA-QV}V=R8k%W7rdEDtA+l8*x+{wxneA$ma160mw6zvbgMU&O zJ?LcmK2x6e3V+yofWaAYR&h48PZbOCQ)$_3rawV9dWiau`b7I|EF{Y^k3p7;*feL~ z_{78#NlTJSB{fO(#v87ANOIVP(Og+jyX#Y4sy9=M>ttCbey{}`4P6^tUS~DODr+T6 z9fl#QXsuxy8yRg7Jr_MH31~0UutzcaFHCDPz_*ML9DRxXV$rN2$L6@E3A6A>$Sp5ouhVD#zpp+StXhdUN6ll-aFc~awwcb7@rM$N zXIq$kOwPl(l5_u+>syX`Df<(vy82jGa}0G`PmXPq?%-xSKpq_%j_mLrri!JN^{t(8 z9gABYKQsRKxOL7Am{czU-|uhXArc!Et<^A{sAYG7D}T|tTFfc5;@iR0RERo45N1t% zsagl@_cL(bZUoQxF@E3Qv_eKnJjaVO72)YF##QDLxNoqtkHBUWwkNg`COA{r!>r0q z#|FUU1K{Uv0-1Y(SW;YthW%W=GIx*ZLzeL1_zMmYim;M|#Q)J3C3Q<7I#LG8c7^AQqb2Kpfp6n`AC=uj|;_xo&^U6#|85FdEX>& ze(#N}d7vZL_7c7{SRp##bWkoNh3iT&Mbb#{zL&Fe_=VVQko-KRE6Erk^!-vJ1;fqo z4Cw>9^joQ0>=Ri2_lUmK3HmX^bKUtmmdZG%59WsAq}~Lal*8mkq*(JKfg#Z6=~0Y; zpQQS%#CVv3u($d!pRA0PdOLN6Tqrs=JTde=I6XK!*e|4px4{ZeV`@D^eXeyw zs{bQA1U11GS!Px+ifd<-`BDv7Bq~T#lmkd-v_p5Lp=CW9vz%oqOVDr8^7$L)LQX#l z6ZgM_Np)mr@-4Ab*k|p9oI*((Z*30J!5TVXF3?sgDrV|cLSuvTg2h9H!V4murEbb> z^@rXB&FLOYTP_EBXwSqq)Big??ibeOL`q`7+nZLf0v2F%I1OgQ1J+&n80(}>!Q^nRuBl6v z7173_=f2aPeVM5lfsF2%ZQRbR?!IGzk0E#DnKVZE5^IHh;6Z(+HZ9gxc0{{}D*0Vm z%`>&M!KuMtmr}>1zs1?k1f0LwIFz@gqUH zH*jK_3l?5$c%R=0r34Fp4oVSs)IQSrQ29W}r}-lO9>KKG=Ezv70p=s$)$`g4{gly> z=ts?E7IAAW+eOl5vF#GuTmAvTV+KiJU%;EAK@dBOZeMrm6-?`h_mX8n!TbliT$#8F zQ{+85z<>kCYD@|-NAsZpjKZGA3yb*t(H@AzkBBzO5k)EiwRJKb(R1cpHd%}Gpd{mC+1Er-WerH~N zfSyPt5ns>-pV#(q9HM?OW1o zr6|7dqX?E-4+GeCb|IUOU5xBO1*!n~2z;DtP7qu?l8BEUo7OXopd~O9f-T&>gDKdjq(MUrbJMi8*2d;Oet`BMryM_p6_df^msj> zX2JtH0nNWj`glU3>+z?Bx>gYk*a#TndH7$e65@nHLP4=2@&-HNCL~6auczG19?I^@UNGCv#QSlV9a&ZxPl>$n zf?u~R5O>?gJ51-nxJe1O5}zj4OK9NgXB%kAi?`NCvJKgnoJ4J6%JQ3p{njq_nV=-k zaWt^Ev)Y6#ZW#NTX@lKVUrPd7yFAi%jjVaa@0R5}%PnEf(%0w~AU8_P4s;Ty;WG}u zmyumBq_xJ*{Dpc$A4Me4lUUAjTHI@EZ`W+B?JkTi9fcNPO*9h!wEApC9Y-8x9iMGE ztx-!aZVx>c>A}&&5b``45sQ#LDvn&xcIuX1U(N{T^13o}q>cQ={d)0hY1*TVk)BSz za>1G5?9o=z0{I>KLet?C&87D+G#G_M;~A2lV-y(%hdogN1bzeWqnvV*d`0p`=SO;k z_V~4|Ecc?!QyD!nW@N-=R(9L72Kp|6nk+>8k-gEul2aZcPnCP&K3@(~-{KKx_;qk& z;E;czzja_{@I)vcY@o7AWA&wW0>svOAmn`jz2>ggEjCrU6P_QO=x^ce;HmE(>K^ZT zl2zZA>GuWeMz%>$kn-ORs>*(I5|Xxf>uZYALwX)Q7)%ai_iuyMDksiIBO~>tJ@PBu zm4$V)k0J5Hq21Gr3nkmUm`@Hv>n}=2}hF#z%w{KrGK{ONz3E^a(1)z7vQX8%d^ul zPr3*uorQ>cy z##&o^!hc{skd@3_`cY7F%BwBmLV9U-AvaUk>9Zhr7spJE=4WvG+1#*GT%-$=7QGD^ zjoW_wL8KDJ?uI^d4+jIq*D?5PBD> zue8y&8^06P(A`g9?=!V%KQc{6)lteb>3j6Q=zWRAMzS@z5p(ozpoNTZwTVBMP&9E* z!p!&|uD=~?tf%-wbb|3f_Jx}H>v&gZ{gbua8}IKEEE36-hQv;2AC1d!DkmZli;hY6$fd9kC*!^HT(zh%j#xpBVlqLe`OHtZ zq*_Q2Z;oKEwb`_*MWb9Gheu9Res=va`p2|iH8P@Ea`2rrRy#!?@xy-?%iBLY0?yH{ zdakCD9mt?p-wf*%&>5&}rdZlWt1@>iNUrYamn*^PK(rE zPcX~^&IdnBG0S&u1Ji>Xt(Q<A71ZrRC9VYa}YDSCR{u+3N_gz zCPKb8>}n|b0#ntIo;CcIQ6Z8{szhoVu%zk?)0?`kmfpSx)aLf8p?YIln%K zT+hY}C#=8OZ`y0w+u3$lyI5OTyIW6ypQ+eqI5)byu8OX!+}D^g$gV&7qPk>zg6DD=<*Mk~t4{v~AC2-oKL?TK9Sf#e#=yAv((M;zb8 zT>KUK7qQ1EjVWwHeJ0xZugP=t33fK9$(@88LLtj^co2AUxPD8S5S2uxTxTRj;ME0$YkHd@=M$OJHKMle1WA3-^RnffcifPlZI`8($VK zuY<5E_tx*K6=F-|7MSN;jlPWfL2+vzbwbxOes{VpGmawbgC%k)S(k ze&)yY3+YQU2zPGuInRcUNIBHr$TYu$eJ&?9$Y-dn)B&mtQdn`Au;`W!f@JAtdCxCK zk8w7)k)6j>qnCm5Jz9@byU8;nNui|yufIs3axfaAk^fs68?5)jeY!Nu^8GAtLGdog z2hfo`NS~l8Q+2@b-vicEH?A5#l`qfFMP{=Jvjv$l0<^V~M1EqbIUZ@OGB`=@mg`H` zqoUMBuAnY6r!skkY4#s+Ws|pLACz-Z&Z{~8&R#90c=C#bkn4&gY+GtwAifhi31`68 z?#3m8*;5he37Pqa9nJ0Le&c3>T{V=dPq>VDPy^e8r~5@Ipn}wi8_*s4Cg%VjWTtJ5 zy_)?a46KwT%ATVC1v9uS*@_xRhnTnA9m^2Bf5zFoHUW0C$JPhpX<<6J8;!V<>;stC z=Mg*L(|&>u(nINXba}J{vJ2~#SFw-kfADxV0R!xT-c(Q02k7-MuP8!2VwZ`}o!=A7 zWuKMnZXPpliF_UNPRuogJ^d7X=C`CDpi2!4bq@9p`1}n5jf1B{f8c38RDEWy zXBrAO>_*()q$(-3v(HIspFAL;hU>g-y5%O_-n^|=Qo2e(G}*3(?}jtNB_p25TXARf?doA-3>pBg&vgPHq9^in_QV(hI=5lHv zmnM9+)rR>{!t_1Pk!GDO+~OqqJh_w@g*os=@(gzQ9hfW31Ev*|jqXn#H)|P+c2B*A z?wC*cEf$9~YdihD5h9M$=eauqZ=c}0l<;5jt?avUmC9Q`|GNT4!Hb2oLTd{xEtsc3 zO1?m@`6)vax;Rz{G3ElHYiY`2=|N;wI1+M)I);Z~gVr)ONk4>UXI{Rdcp05GoAab| zoGU4AVBBAEPveHhCnWrpFeiaZ_!6feVbk0ySz2)vUD~Xto|9gO&jm*YiUr;W3WTnN z7e>3uB644O^vTF0odpHnZ7elv8=1OjusG8UqzW@n*lzqLOF8%iviMV6O?DQVD0k3A zv1kV|6TS+vZY`LUHb)MJ8;1La@1c1y7q_4-(b>{Q(Ay@eE2U(^ang0Zh|_n z1PrbWg_ZsZ4-TCOb_sR}jt8UaKp-w~1v8c<{;B?!U_Wg3R|*V;A*rtaI{XyPyl&5N zWb-P!7rS$Lx@C>>oeH!G)d^>XTfy_T7d!E*fxiP+0tJKBkc+w`J&5Hs8j*MCne1fl z3apw1u&I85xrGDipUP-Y-&KdgQCcsW6s{B;=%45v>FJl*I=ysiqo3jLExzaa-uHX0 zA0K}fOxu-F#FNeE4NjAaYqyB;Y>L>4^O9-^8Dw<-GvY zeJAk%tU~XgZ`biQ`5~i>Q-rZXos(rXMM((w6)x>P7D0cmrxml)zP~4OI zjoCp?F?e-@v^3l>DErU*hXlOAk`YesrGlSJM(HB#T(&TqNgpBi8{Je*S`bbNc(V$* zzot)5Yn)a*{ar>b&l~Tfz{>EIXfZh*<`!8V4HnT;>9V{yRzRPD)7b}puh;>stI$z8J*N|~K8`hi5OD{Y19giFaIeY-9QS zR8VzB>Uw*mzx?t3>xwV_FE_v4{`oxpSk{N&73m*!z0nD?Di_d~!^updE?T-B=)=r5 zyp7_lpKU`Ovz#xTJ)A=vrR=|3{UCr|q2`)BwLcZRL_|7;iU&6ZZU%M+x$w(~DpieD z(KOv}Hm9DWMZ8kTvUYXMbrp-RoA5oMOk&5xsfnW#-zA)kFA-PU`OWr+INWjzQ z750KFsxV!ME&~t6FuEgH3rnf0)EBZh834EbHQdDKnU!2;%T3{s=oROQOR#Bhv!iG? zvBa1KYQVSH5|!2?#&e{{+tV$XY@m3bL*GcH2T+@dwZ<^5ORT@#KRP^oI9Mmp%3lI! zs!pL%Xk4GsN29%bkv|~pg+JuJFw~OCZDMyYiA;Vbj3!NYi(klP{bg-n>tfqr8)cUr zWL%*HPog7vPI9T_orw$L6733~Nfk5pVP-HhP|CZ?eKX^B`poq6>2)D|&@$_J{>_@? z8xfF0Q>0WimH3SdT7Qo#pX|>*H`n&umfTEEYs#3!U9Kwjk;o}_WlvM3h<*CI*deKS zc#waECtt?#)Lp-9sTa~JXBNtu?5`5eA)mmfAs2ZE7NR$>CS9QJp(om!43V#>FW_SI z;C~3iZL=KtU6bQh#y14h_gK6oZh*rlrgLMc!@4d5H5K^gE9>3v8RkyQtmLi>aMF0} z%IiuDh!=Z_d{l%gL0_keP%b13(&!qn_C)zFmd}>e{C6fBxn4UU-3p%cGM)#S?=!1- zetAy>8%xO4leO69mUiM}Yl7WpcRE(ty|!8S<*-ZkXO7>U51rSXoO7dn4fa1R_$ZQR z!`MH-J^LmuxA${(N|=;_3Q7~vP#);OYghd5mYoV>#d-p4#l zQr6gE-*GN>?Tu?0UpszCoZCq|-dZOLK5hh)PS!L#X(K=yEQ^eD*~s_kaAlp=o!HM5 z5(e0N#WhY+Qs`Xe^IXh(A)l0QM85fXALeP1XM64mxo+lIlcFYNPx$Dx+Kyv_lx8TH zdi@<<7^DKaZ=bJ?zkYCRWR$W;Uqyaoa`7rZ5GlYaG>_?2z;MDKx{%DqbmdQov+Sdt ztz7}>VMbAWAME6GShku2NhE@c#1$}{0!4IL<(cQ`f zy*F8by<(YXEr88`etXnfSxmOv$1cN3KEWKWu$ly4OD!cPKa<}ev)fTwr)*FNPc(V#zdcsv5g5Dq%&K=1eEexxCC6MZoHX-U!<>)8$C%OZ& zd*zVb+YjISA|#vg;+Cu+!(Iwjqt)_e} zlEY7N1)cydnkOD=9~ARTW1`+j9Wd86$g|MeT5fpE>qHT<6*-KYKo$qdzOi{xpR1mbuSH6Rk^*yl zo4vEVHeb5W?N3CyZcX@Aq^<-iA?PlqR?!%1ZiE@NF-`=B%;CmKZCz}f{Co6|@UdXS zfW?2vTR*F$XT5up`@FlMCnamRx4-{Ia6sghR46u6OEF)P1DQkIHOpV(4eUz3*eLtI zwiH`oYXLEr@Cr2Tr*sptx$!F2L+Tp-7WjmWeBrD;p2V!aUZ1Z;U`;R~d?b>E4a6|% zany!09T{CCm4cb_DKVBwwv4q_bL4Zqc9nKjbriPN;~Dx35<9J>CgJ$tGXGTHId26o zfPWw;lCIB5^15F(Fzkiz?LK}d(q<3u*+#Btl?*aLS%qW-%cN|1=Vfpa`;Wx zYxDF!jppVfGdGN5InlT;kL^izY|zHCrMcPM7I?A*t_oX;8A!9VLfOz)a?_8n$E*a$ z(P?HQrJLvzsI!&*a%cHZ*jPHnZh}6Q49}WJzpqtN$11y}+mTr4EF6OkLe(QVw&L(aB*a; z@KGVTCt*fn-lSOKorL*udmT%yEiAv7&E($(sjX4kOMN5Xz>PT*IPWjx|I7b2 zP$*nax)Cd73?XMTP5JghFL9`NRk&_B0-{v`_AK3pYDA7E&SDGk3Eq`s>crR>U@1L@f)Ub zb$APGwjC|4EX6Hn;S8C@HN#D#9#;S+oSp1G_9D#gO)+tEV*+HS*OMRM%yhyW)C?20 zMxX{Q2O(x&yc9)Djk&F$~&}9^Jy=&rI_|ak>;9bwleo& znzav{rKeIf(k%Q9&(({8UBSKKQPLC;@O1MYb)Kz(6PzY4v5o`xxg7FBTiM&N=awQG z8I83fF*``wB_nggL*Z^pj!u`}%98RSc2xZnB;izjsZk%4_dH}-IEIR%{m=_t?QG;! zA{7n(SH>7)f?+ii!O*%*4PqK|11%fGIkuPfaSq&c?Z4TMi-#0@JY(8Ki2lMJ$u7_i+E}o_HwvQOfQd?{k*OH7e)L?0;p8PZ|(k%sJH> zz}II0<3662-!#%QHw%!D-z7nRR9W8J8 zykK_@WP88~nVS;H((tT2F@GZ}kb|fRw7}G4Iy2*#L5v?RiAvxfzCjkN1~C`5`!UEp z()1ZTjn32K>GgC+W;Xklt7I7^^uQBulyw(o#nZ(i!d$eLcxE43OFO}jDQ2wFr|DDm zN#H`Q(f`!f;ZHiy*lvW43#JCb!T=D*CxeWVhi(V|IHymEos}9ywuCMOM+Wbrr(Yc0 zi$l_R`GB$jo#dbDKrIoBT#Fep(Y^;)HjZ!`XLLB})Hv+I|CYPRQ{bIDDW8=y<(A4T zWl5|V?1A@TKq;l>R4b|t)b8qWwFSJV^Fh7)poic<>SxSE!l$2EkqF?f8YZWKf3OH| z@=i=^<}`hkI!n$3!?}&FszF%0dnf_0H`>buXKB|BXNDumF&ebS z_O?gX+Q=CG6eoOcTt1k$!1sOhezkqWRF=jh4|)P^~Hu4UmiZq0hn;cP}>AW6hl) zBkPzal!e1~hVd27_pI1|u#eRSt?IUM!kkJZku}I)$R`~}_s)aU&3?60EDEk+^~k;8 z4F5{6n8kXQxJSAdx#M9^cn^ER+)y6ag|pC|u8UL6YjQ5UDKEh79%Q=p`r68vNA4x% zi%yLUKr-rVPGD#dO`Q~WWB03QRUQdtQ1`6 zBeV+eo&LgSV5s&sRsnm-@6k%p|01sJOx8}vUu0nTE6?V^?geaqXJ zyN09FBSiRZaA@#G@FtinHKb0;LAAb-fd*3@_Bgi$-`COnG8i{L(oLz|L?M$f>LDAe zYjgDxFgN!l8>1UMiK~jHUJlrv?y_G%%PK+F0zaiK@*c;G^ZH@!2J#5YV!dN8V=;A@ zegV6QC&(C#294t|`ia$H)tvy=!k=Is?qX7qK^=~#ekPh~6ex1j*c|X`p2yjJCQ;fr z32sfY)EaE-ZK3~=Ol%Ul9;KE4)R~4#OrX)v8hawG-CA+UC8q5+Hsw+gCTgy&mzVcEDDkl_CDJeIUIz{V5 ze4!n|odE}04>$a7|J1;~;OekNTBQ7|{?uy_`>1_jIK^{)SvPte?TGe9s@g)yj^0Sc z$eqY&=^=Kre;F3+IeQY*L9lzHl1fVSdZ=aaSYTmbGnxrR=tekBI-~T}?i-(ovs6Qz zeiGOOrahHv`amZ?5KRm>3ib+g3NXQ@uq9WK7ATk1t$HrAJu!mpMY-W&Swh_)ClIrY zfa;YON74hWyeaP0=^3eQQ$wlu)0ew5ylaCMqr;R!+DhX*F_TJ%lj9k@#^t!H>~m%q zeGH$KOk)Gus9(&hL`l+12-uxG)V3mo+bl9R81m)vMm)_upWR2@Kiz+OzGMyc6%IH+ z?-?ycl+jujqdn*}Bod5*eh-tC5lCHSi|s`(`Ik<>_%MZD2D?TdbO=tt+aSOuHU$5r z<)Xbqm;5cg72$LGo^di`R^|%NDqpEkN9m*5n5fEZ=X;6cZFwENoc|%^aM^yrT2RP? z32q9p35@iCYIUtJJZ-n=mE1AQOMw>0U=mY;zr*%r>VXWihrED4#Y6L^dD6UWW`pO{ zPj;j8|L^H5T(q{dPj)z*ryOJLN35HKc6=dr5H?2d$OTk>^j3#jwu$R(@s6mYjPruy zBzRuc#VCKA9ScYLC1a&_F;-t0EiVV|j_*P)B z*QNI(WnBe{{|;tPn3T@Z=h#Dh1>wCgOrR}6Fz-$iym3lBr+h?X_fOcMsstwong_lj zzmgakDdmhM>Ya(}w8H(36HqM>;I`vky-`R(+UFwkH{GAU3meh|G-cOwy}4A7yQX7@ zQiS?NOf#P#vHXwHQ96oy3E|K5`n?|Cj==p;`)E7moR*H6TNd2|U7-GGs<}Xh8*964 zdu^MK)4+SNA9{Qdq~KcG8rXX{a^sz|%${g{!e`Nk%u#4@y$z=Yqu3pIVEFny@+#U( z4k&BYzIt=BD%qZX%>H4yEw;mE?wpOVDdI4p2LF{w1KDjEe6$6yD|o`V_yl3Qc+EP; z_SiPo*4Ww(27n<<8rj%frR9uOlPgGtrBtb~ax%6M^ptGmJo*{?lpiRZ6^q)Q*(*42 zJNG$jJC8eF+Lzm8aX7quI$zpy!7>Sbx0Ya86cB#!1(A)+A~|B9kzbzzzUxC+M0e?( z;maI?2FwBK2CX2s$DkYg3(56IdD8;g~1XQ=*6Q1R2hw(T^cMFu^+n;l#$7|7I-C z_?U4dbFsTQ`YD^e^li-MVreR(N)#48Q4>EFZh5A;; z7H?~6y(p~XZ!?9+kakI?Bd*{pUsZ4atQ}cTy{r9ag89J(w#K@`I`rNQA)i`{>HwO| zb*ejUM}xNuSO^=~>g+Y96UfW+m`UK(O|}dYSKF349yrUm9^o?t1flgCY)g}w!PFiY z_B0qW$Cy?^B-c|9nO*!n(QE(eTAuJMXqY2WSFGP>!33ra! zO)VxC8#lFb_>9b!51^N-OAVEh>Lz^z@dv$?+bLLW!|gZh9qjeNmLF}Y!{tKG^b%14 zsl(M?=0l*aaQ4>N`0;lG`uo>FLeV3ddy3+E2M35#$g7FPdU&^^o4dTxLoz3RRdqZ9G!1 zgHbUw?1HgqQ{+~(FeXz?V(XBH?TOAB?k=#W#sXyncl^iwcl^44J{XuvXhh^$w7z^o zxs2Z3AF-LR02YvbMt+2whs{t%$Ppfal+Kz+6EGZ#fcN@TS}7k@WMtWS{eoV_m||>1 z_r9s|7N_~{`Zetxa>dQmV`>9*a@_hagC#n_SM!wK%hY5Su|sg)=*pDEts)-ph6(gs z`YGKRoWJKFxlQCMazog9AcH(3hY$|4obg15NlEwVD~;daWG{@Qqd?lge))(=e+SDa zK^3=xaoN~9K~ z^Mk-R2aJM;>^eBE{$x!NOdyK<`LGGraR82VQ z&QZ6>w?qlz68z33(4=_>BjzC7<2TV~a35HW|EDf7i+F@>%T8<{yRa895t&aXler8j zM#u{z*F$T9j{>~|0|GAte+4^-I)yhN$*0TjVr#V`um}u7zcQ18HEpUvy{wDt7&)Xuu$J?1|h>=y16 zc^-+2eu;R(T|+YhvwgF&Ub zlfd?43ecU%I%a85p&P`ODJHU{ygUyxIk2H3z0m)-9!T@u%lhKpm`P<8&aCJzp0x*w z);(cT>aOfp4}vwr5NqK^d<8>d3b}&x!zPzPwShZ#EbXJS;6(fjU5x{vy=&;^!@Emu zA`cRxc|)reQ>7;Odd$Q*etdX(#DckIeC(EbOMhuzCzsI8*ci9PVnOb2ll7}ru%%ja zTGt3``JrrY+K1e+4T+s&%orrT#|qWNKX9V`WhsSIhD^OAtmaRBpgvPCX|%!fx)2<~ zz3A7-SBGIcA7wn(uBvO*VpE2O9l^zCriy^ z-?Xx3F}y!F(&_XVG=~JtciW>|xt3^1Hpidm5becZOQ@YhC1We{Bvqtk5o}e1O@k@u zzzz$Z#IMT1o`Dhmy}nw$ddOnTMOS(*=)j89KDJ0ZXO#t181gmi(vyU!E=R!thA@&LlK|1Zra@<1XPA&XcaGI(J3&pqA2ew}JL-w6$ z)6cS6MB#R+0tv6y%l{eGKe43b!dz{I*^*)5*7EyuelDJ~dyB%Vw- z5uXv4J#G>DtLZK|E@y&2VS8fLq^?Pq5~n8Yi>u`vY#S*o;QaWBxd}={f3h;Yo&Cj6 z74qYE-fH3a%B+Q+O*oCt+EaC%Ho&+`^rd6$G|MTmr7eO}({-_hVOjc z9#fMw#$ohPo2gfoN79Xm2JTq-V2@y8s9`vWeQWMm5A7`4`?aW?^uP2{^iWRY{4-ui z6|30_*e4*@x575k>H`t>2X~mA&vd4HQ|V}hy+x8fFNkyx$)cDp=7g7aHyqe4!L%@` z74SM1M~u4p%@3UY9VmjyJ7y z|Aepa3Jijkz!_`+a_L|$KR*SW)fn3W&6<_OG2?`GCRS9bFW;2bfn1Us&+}4hZtbl` z=;O4$YAv`)+b9b`E4HZ%wNb_lVlVX#tyCRdx;vH!mOm}e`JZ^UPh{(`)!34Fx;H`# zdL{Lo7;bpfXG(7Qel%CKbo5xX16(|FWWQWTDF8-wVbF=%!S*^L_OF&@ZlQbd|BB=6 zWt@3khg|V-jpFFI!LHZvYBh9zcJz1rvbVN(wLKK?Sk0FRtIw z>lnr00jQ>yQHn^H!a^|9_se_KyV2XmYw;RcoHs4&Sk|_z2ux}bpDkD^@?5T_^)-i4 zajeO4mYSBYuv+BjTx><0vNur2$p|r$h=HMA&p4!giwR0LNe`b0cK0{*F72wl3G9$wa4lql|qwvubv&#$n~Z{3`I`h0IX#1@a8y!R?`7c ziKApgG6zxLIH>NI_eK5-Ci`Dyb@m){A9iz|2cAmaeEzb*O5ud)f6@-+v)a?RMm(UF zF;%(q{9l$jVC@;~17)Y2)(8Dw_05N8asr^*JAWBn;F;4 ze&i5(1jy*k_`zT@O=dNUC6e^fv0<29wU&OOFSSEC6nm)dLU!!7_ChO%vsM#hpQ)19 zm?nHFp_VvJbcyN6It+z@h(XtNlTiUyt2AOF`5BhRp=2-c@JzIWrpW`M*TP#v>A_9G z)SxANEizG3N@p;I!EmQN9Zs0yLwc;3Io<;B%IHh?}#u=+wJKbOlvSc8(6Li zeXJqdX?rrV+apTbfWhPcjxgz(GpTl(^q2%}OR`=?~{%4&xqWWNbCo8FB%rBehWiE!vu%xmJeYCBycc5YBP=~2!)Dl`4 zMzmt^Kuy6-@H}}H%*+rvnEBP}v7#|r9it_I6`z;ZSPR@|t;7dnM=@DAiH1`hb`7%` zW;c>+$fsMzi}kFzt!2cOmho_br%>~WTjo=kzRwYj!Hmr$`;jH_GkQRMEN_Xv1ubi^ zoF3b(=O;!`RTvGf$j0;(vanfI^U9ARWwGV^<~!w^=${m*9=sPE6O*IaZoN8fs#RkOr% zh3VGBDSeXqPzlNrur;cwl>VRb7ts(LN`Yxg&!(>6R6Yz2mvNXIrhqt+3QKY}`U$ZK zKBm>`E8JLqD)*Fvu~V_?>OmNj)~JM96b^%3(HEg>{&!g$+=DU)W;S(i`u`?rmr(iW zC%KTiSL>!9(H~(lTw3p|HCFS)S}7s<43bmhr3=wOM2wWe9CB*tbZBb0V)VNlP#+jA z$iL`6&^ie4BA#{w_*!U`Z2<{z5^Qzz__y%b#4`d_me^+S$iC)QYD?21b3&y9SG~JD z`P_{%oteuszqx<&ehTQ3Gs<%9jd7JoBU@5Ek-B?A95gCxbgT*Hwy%-Mpu+b;;ZUw{ z)$qh{Ap9k=46N83+AC}n8Ld;?F|?aw5~6*g|PE?TPNFc z*i`iI*5Jf93s$^&>@e;wUqq-QI*{sLFW$6Fv#;=elE*$v#n23fYkz2#$;##payx#+ad3fWLw{ErNfzSR3I{J$oMeIW`3v%*VjDeJ5F>|}VR!dVC zf*a9BEvM#CEh?+FR0%DrW#~_gUuI7-g?`A4=Gt01iDxmznr>ySyD zc&8E4La_v84SM>I!$U$9gB=50U{v5Yq)yI+YK99(E=AYMw-qnQtFz&u@2d=ii}^sz z38wFUGm-p?G zYlKmdI78)QKXJUJurOKtVy$3r?a1zYf~H*Y_(lmzLbF6E;adDZuIY|uwn8xWwq$2e zOU?7}z|255V>?`Fw<4wBUAY`7CdK3$>NC9oQJy-D*02XXgN9rMO!HV|Fvo-Yy8#Ui zO-WD}<8D0E{DkxCJv@2ak_psXN?`87q0$;%kn#ALt;rWahx9a|54%>pO&eyi&!8vcIxYzpC_RU_w@ycGn-q2RUdQ-@5S;DQx ztS<+e=@NeW)0tV!HrhsIm?!l6YR*_?S&a4wmkOVVRFw;;lZ;W+YmTv&aC~z1bmez- zajNznw(R)qJ;BZNob|Y^IktzVTx(sLlW>l~dpt#0!+oZUkvEOJ`W7t@-ju(YHNX^K z0G@kZ@P^YV9!>Gvn19@)XV73!P#M@LMVUdI!%|e-WP9bP3h%`nq|Z0o>R8VU_xXcJ z*yfxDkxz(dFn^IGn5cwY39ZU{B4HA*Yav5y{(SkiAl(4sRCc5T2osOxtLDqEfD_YCX zt!-?JZ3As{u{ZdSn?k=dU#gd+JmLM=5N!=C2>BxWC`?tJE);)%o=tI z*AdSQir>Xb=s2t;?ixw@O>{$oN?V0hoJiH}Rkp(0Hx+Eo|KuU)Y*&FnDT1x>6l0`b zMEe&z%9GJ8;eGg+J_?VC6pc2L#(|T#97&1(pv6}}^SUawL5u0P^a;8hzA8RUIxeCK zcu1|Ll#m`q21kBGoRT3wRqL8ZsADYn8_3P?a@28Mj%$@5B`!%mmyJ(pm+e8)f`lfn z0=6A|n2I<0D{J6@7>Y#9YQNu42j^j5H7UYGZ$+&#flvQP^!}=uqlkXkx(=sSQ|)o) zzE9jYpTXmkq~F%I=vU35)I_E?JBu9&>cKtS-S6P%(2s2BX5p4lS~$%A#!jZ*{{LpO zjXoXr%uae|-KLk);_#`vr7Tb;Da-KO3B)dFiqV(lkNO+u z{O!bdxK8$i@b-u;f|lG8t~nChgVFR>#irl~9(KIJ=6s#)i?D^8Mn51{8sD@JXgI7? z*Q*^>8+M$P)a>f}SaIxWBj6L=re|R@t@B-lEn;13b!#$=Jo~Nht+T;?yaQU$CP5KC z3MVZ+x#n~{QC9yE>k3j2uat}aJRp$6H$JPlr?I=Z`+<9%Cr8%Qtj}3;R^O~j9@Tiv@%EqZv_qnRt8$3 zQ;_bHyl=BQcs67<%Gi0ozy6!ev2Yoq%Gs3TYHRcCY@^} z{3nXmD&kd3D))j}MI{h_=xtP2>^DrfpF}E#e)u(Sv8-P1N}1I&tGcIq_GjJkzVe;( zj}CYOZvu&UvmNxU@J&Z=;fz<#>XTIy-QB79-_2RKyaKXSU!_`FjF`ht76R!14U3o2 zIlh!ACjJ|rJ+7*=lD$0W&wcr7>^f?wc}opR#(rjB74v#bB>#7$tmWrHn(Pozk^3M z7AKIlwi))>jwa4U&L@tKHWg1QFV(_)s_vE>MVCa*L}mF;P!BcY8C{sW%AY_FWUdet zrit&wv*I_Qzoi`)z>VUdd0HQY(TnNT|EMiQ6wclf*a6!0-n|Tj?ftBu$?y4TIr?~gIZ%?3KNDdE* zE|Yp;D=sUX`U(EOEDhaM{gScU%#R7sSK}w_Y2VfKSi_hFWTe&TxsBJ#8C{4`pbQpc z*RvLOAbpRhr@xX*hP(Pd;b*U#JE!{}x8@n`&Fjw|ED~10Tx~C_@*^d$dI$H^Zb&_T zCQgz)sO4b3%V>qHBZJs&SxwSN)e`VYs;~V6ChTIpzR}q{L$n14s~{&>whJf3n%2Jf zjFuK3SeD_OJ`+@kjhvNl%ttw%YtF1D8yLmaH}Vka5oiV+=pZ@OzFJj~xwpcnUBf(V ze8W?xx6XmQJODnKSJYS9!#raRRzw~;A5vUa>Ik(N&5kwvRng^mgPgX@dF`7NqGJe+5^R+jgcF_wwEgKNc%0Y9o7X1?)y5E+zooSsdbc`|Wg9Vs*r z&wwab%393ku{UttigzV3+18}=$^JPdnCwWr;HqtZEbQQZ(3i;qI5+%&H!lIt$FRQ8 zsA4`hedZJxYi(eLKT-dMlWnOwT3=$8AuHnUP?Y{m!DmD4#rNp|Ondo=cjTXphwo*L z+Q&FW7wsDB90AW*0$Tltc|X^HtIF14(&&855T*gLr8nWoZl;%4A1Ol>MQNrwkUvW& zQt0aJQcmJ(@(=i8mM8e<-lMhm8}++s)5giK!_xv+ydOOu-6!1rJnyr<`uYa{h!j#v z=uWZ*Q;PeHCx3tL4SXIq!IOKBiQ;kUHdPds@Dip?e;+#_507>UzYOLKw)j7e&H_lP zGws6HrF9(lAOV8ATObf1xVr_11c#u3pus|LcXtU6!QCYg2tEum(|TS1vwu<9t=igx zq0@c)``-7Q=ZQ^?FP1H}Ht5H%?Gvs-j%M~@$1_IEILY>ZOe60q-O>vzHJ zYzB&i;#7g>dk31by^tqrCLYE!x)}VlkMK(W23F53|J=Y4cvx!r+KV07gT#BYsaiW; zA~GOUG*mMDF~Y?+%UiXz==`)K-jk=PnUqB|aR~E)nj)8uuZ~TMca+zwnYv=`u@hVs zI~&P;f~4*;x1GBR?D5W2OQsE&v&THL?`Yt3uoU&4yNE!rTuJDsii@HE#q zmw<3o&B|@JaJIT*VE}*0@AcLXb^~9|N}ZTiH?2YHwdA@})PtJ=J{=LmC+DZvB&8Qx}M9lkHSmZrc9O+@!RnVt@33@`jF*1%jTpQjO`f(N+2 za7(zsEM|7X$()H>aTTGk_*gs)veqZx1pgr9s_%K9dtQn6F_HWeC(v*CW!w-}h8^Js zp*oJ$#av))FzTDB)^#h*PO%HYck_+C+bW4q@&@b$33ESO7hzr2&!Yi+0?(S4`g5Zw zsFp5r_~~Q{x+;_D`Sfx6BL4dwRgDVcT{Dw#wcw**rRuWCYDC~@_#bJ6P^N=meXY*P79GuI_ai^KJ zRCywT_PyVDqb`###Q%#uiqla#8K4EkYh^p>_^)%UPh_RIpnUztgR_ zM#5k*gjeR15aj=06mpOI02!}zql59>C}6F&X}2!Xf^1C527l=Xwe?* zuvEvv%)1?aeUF>LF6X_I1IF65uHl{_9-=)^nYqm#;(rlio^0>ezCLJP&fq3dSM3aK zuyj8%H8d!@T=ul=YN0ylzDy(^O-1UuhTP?*79-brLa6CbUgFoOm_yOyZTq=lD-Cv41er zm)r9_KY;m;tl>N~Cm7X@YsOkwLhqXoVfp!8b5u>8rybSXo3-su?nd$zay=p@Mp#ID zbk8I2BwyIq5**D*Ag;{!T;Z27Kaho;yykdqmqIJQDxcINdNZU<|3y!C12`I9@XhaH z=GWGU8bi%vm<$qjL1zHo0Z-7Sc}wM|E5mwS72W9ia5b;6+gQELS8xSLW2;#;oXLSLm2 z2)n0{3fPX!+d5^Cd_lzgJ)AVasw&O5ipLNuYY25KjqX`4sLdvx*)?N zU2MUurJa^GMy6(^Wt{yq;$#1huRi^h(I=}#xDL4M$JDLx4R$!iB5jvag z&bJe`3m^C_wjAAu5S#=nq|Z=0%BSLOuqR#_nvnI!mx>wJKQGQ0ocSqxain3~k5dq1 z-mpeEKN72On>Y^pnTM|rQhI5A99q64c}733P1SPf<&9}(*lLcPOS<#P?r+^OHtFTzjofH-uogM>$<9n)q`}Hy zGJghn>Z<%aZUB3q&P8n_F5sIY0STE2IJ*p|S}DjOJJ`(2-L=@!)8R*r@a`93gnb!sBh5NDPZp3lB;phrR=F)?uxER^?r zo5cif5mnX=nctwpo=;hcz8M6Iy^*027dFM_;hy2O;q&1;;jh3k7z8T(BE73M z&nZjPBuA3l2+cWbwM9;`uQE=qDgP`>@-Y}LMrj%7mt6*zV6?hS@hY{^Od6-X*PED2 z(XZKMKd?ICWV0Q4f=8-Pdjgj7Rr9p{)LnxF;7Y0%PJ5Z~^7J(HwN98awlW*{uueE=}u9YRd8-LzA;ysr_7G# za3iF>QnsUco)EnnZWO*3t`Th$*X0oA&K&Ltwb(@5$XEDY`B&g3;s$#qBqziIY5tJs zHMTA`Qw&+ce~1S}8L|(Vh89RW*Y9++njvK}Qt2kwm1`&^wOPh-Yp#=*_!VB9({v(x zAJ&UR%s+?tO8P7Ncl%!9&XX-R7E9otO5!=;9d>-ZFt<0 zeGI%i&wS(Hv^d7s+ic-aehYh)`pP|S7D5vV_&N28I$8HxA!i+V z0*So3un?}N@)E=CxRI{SSL>*?w3bGewZkoeIb8q^&=i;{9?)KT4s{R{mSlD+w;$cV zVqiE95e#sdtD!4!&RyqNIL)61nUf_;B5zZk@v}0{-J5tHeu^RDZO<<-XuJ(P4pa!# z@jvr^#%5(STaPY4@-A5O#sl@Vyf;20x+pA!{>utx-Nl*qT=wGd0wfjsms{y1KLNARlolc+jfTcNaDMla;O@cr z*oAILbt9hI^^gmxuQkyU^t$-mWZP$mCD>25!ajaGlR~c{=MY7)7YT>utgr;FwM!;w5>GZV$fk0KO{xmy3m`{89YA2dItiQ0p-Gsb$rmnorH4 zY6`1%1w-(*`j2{5ovAj1ZRj$lW{vcKam?symcbPAH7I4(;hw(%rtw;G9Gw$M&ERQ%9?_wL1B3ca&;HuQ^9m)q|ed|`6XzZzo7YP zU~<<5^wJ-3!fj`5w+FbD$!zKvvyjUJj@2b0i{Hf+VkgttczV5ekGn}kGX5QxVe(+R zkb`~6%wsa?|EM1^(InlEXgmDwzHo!M1OJ6BHi2(|H+VJ1+k!LSElhP~y9wiA;VtjI zi@SXrW(jd0UW@r^JEgLsD2ZBKy)BGJ#X#Yh0ZR63X*&pc`6CCznc+9^hZCS^%+(8- zd8|QJVXKEZ)VQm^(l;2H$d_+)ACeONnyrn~@ha{g<_Oi4I0>R{Gu>6Yt98}6st3Ny zv08EMfLb3ZuklKnBFR;8w;ri|ZM=s|Ca3#}h*1`^nj6C(<9UHb6MwAlFMnQij*9w! z@YVGm5Pt+mDF+jr4{aic+NY{NBaJO0b(y-3ys3Ucn4L3 znd%V?v#)WB?}L7N8|1(f%?o%RyfVFZF`Qb~!hl!Txr78xhCV|}RL{sCa2o$fuB;@g z-y+E^n?C1@TZ6m=>u6c>9&r%&2bnlZmZW>IErs>orGY^S+Y@R8`}oER*XdIjgRa)IU>alRo{JjK^ANl5NY=kg-M zHAz??E`&!Uzi*XqpRc)ZlD7i#w!^vJOd2w6AHhWaq)k&tqk-5)E+LnZzmcb>WU@i+^x}FS&Q>r?li84^zh{H%%Dp z>n}`XUV^$?(VUHwyrLdfGu8FlB7KmNAMd{Lb|v)A9#EOsv{Vpbck*<>eB?Phl-WVI zM^cYty0AJoN7yUMVqNhb9|JGG5xF0^%D>UzT&~37Nx3PPP}V86)u!47y|?+q`e6U( zbcYeFKdgQyv9TY_$GMM4SEbPN$-8b&=cUyjH-RP~jf}xv{0^nQS8164ZXzmz5p{r#@(n$$eDC~s0&1XBpe(Gu z<2@C`mhhc&$O*Ls>+C*ut_P7K?98oV##4ES+xBU*n9)O@hzZITvpVjn`-x{{N2(Cc ziRau@=Vvri@9CxWeEK523*N<(towFFoLvXw@A3>3AJx}7;qT-;Iik5%=2@F3p6hH{ zj-;=A_1S8UrZ$QXiWCVagc)R&he>JpnX4jQvcsP1%ya)D%1}I06!+%J9^@ze)BS^C z>RajSkypPsiu5}&|cquLUTQ`Rz!E=CbFOOlO%K^l+r0s22$FYPIw z_Fa_1N(W_=5>u9_bMO?dYCQShPYX+#WgIsq8GVhbXrn~z(nKF>I=02x{5qkSFqm6K z=OMngdTM`3ucP09pYjVf9QCApYC|xbc7VzE6IG3_!mMGx;&%(>J%4z&_`ZX)@wjig z_qMnklj(8vUE~yNW9nRh2eVVG?m6#yO+y~D z6Vs4xL57?a)I>TOmLQ&d$c6wK|B^+gt>i#@SO0hh!$NL z|5naYCTeeV$~=v|dp0sWGtFM+Jad}$yEB12!tCc$J@33l{14EO80FvK+v)|~7X;`M za9Y>Kh9(22`4vtHoe?-=t1QZk>druJp@I{w3r z*@6|a68VzcO)bUW(!)+bfR?>WRzWNMN5o%(QY%~j9BL!>In+97?4nbR%`rqr*XO8sr;wg*@@&7Nis z+zu`pXN?)gRsB!xYjwBWRB9D>F#8NiB~@E*W4|IobeO%w{m#v1^DyVB9q0wv$n`dZ zqwOGaQku|M_?lzszV1qMmRd7DCj266Xr?doK&Fs=IJ64i@lB1j`&lg%tuQXmC<^V)dlYN>f}5ye-mUpx1CZ%xi}U&P=_^zOzp)DU1Gj|x6*=c->~y$q3R6kMH}*|^wsJ6DE7~BeXRpnk8hRa>Af4B$ z+fztC{(jXlRZsH}qMyIdyrcdg(~-CRpOf(u{IyH|e8AW%cJ@i&sih7U_h(jPd zeI^N{%X@<|w-+tdbM9d4jkZ(%5?dBI655k(XWtBOkCDnuowgehiS!`$dw!`?r-s`Z+vhR zs6Y9V`Xr7|=n|Ct{d~{C+;7akN4ws3_u6yJXE@Of)$VA9{>Chau4zwj@G3Gi(n}S| zTMln^!Ayiu=ExVpP1vX2(5~u7jaitn6tTiM?d~+Mn4~oT)a?#VWdbQUwvW&gUHR=^ z+f!aF!BwL^+iUf;a^2XyaI4V5>|xnXcERw-$f2kbYa{KG4a~8=GA3GM+y_(vc;d<+ z8S+(dV&J}SprpT|*3_ zmNH%W-#wH4mx9d_vl9PIoRIJ^u-C_VUU0SOy>7bI&df44!FU>Rk5g6IWZ1__3jNXV zCBd*g;+C{`8mF{l>RxrV)&xYbf9=-}=1H(h7PphEddUAN;OVrmbGwfTu>O&ygWJ+6 zW>rDb=^N>AtXAwm>|DH-Tu`lme9y1eFifr{IEFI>O{@Ay&hCWqNuy0LQrd7S{A0d8 z{`8}m%e{fS?PqQPSBKlrocUdntnte*wA>Z1$jIqk1`0=O~sTUm; z8zp_Ewle0}ok2A&!4zc2B8~losen9oNjgB+N1nI_vz7UmdClx*>M^J2@4z#AKv|gK zq_Eexjlw3+G2f)X=HT}UPZEYEzDazI6nP+_a^NBiZ3oy{)NgJE>LQdO>)VYF$gUP6 z^3!d(uHr54Lfnkb1fK`52bTIyiO;x-%sp}oa)UB90Zr}N&K9=;82MG;XSmO0fgbQ$ z@CrS-&PWrtCLa=S(LGv8wPn({CP+cj{2=xcRnGlrR93db!|BU>nbG7+fvoc3mhnur zvUR{6O3h`W?4S6y9L|;H0$d_j9IeMwTpny#ylBuhCy&|VbW6&N+{u2EStIjR=E3aQ zks8umjkc?h0(^+qy*~sV2CF6f8ocbU?5!ma$o`L*Zj zb9In*P0wRhbVpPDSeY;B$?)d!@ANmrY5TbN6W~b zdV7uA#&zW!bmHeQVfe!zI_IsYMjw5+wqK3HKjcx8m1#dGk+Wu(1(Sfe+>}-;F@C;N-v`zTKjqYfk;=NPzDj@{P89BLU%V@vtDLP*#z$mlveU?(tN(io&V~_e52-R)*1L!nQa);Y1%pe#)<@Gwo z*B}BsA-wcg>>|7;y0R?&&@E-1&?u#WG%mg+epu?Qd=F;mQDnuv2DrM~VVvq;NIyxe zbQO8wxzcnz_a&{mdCXo-Jft6U--!*q*L*Ym`TWbhgTy5MEIz#}& z9>E20@7&HGM{7jp5956_-}}LTFCm(2rJc;RFwgZoKjfZ}V|#MGAkG5pd7`=fi&0)X zq4ZQfE0@$W+Cx3t$in=7lhqa5+ve6=>w$gAS?UghB}AZ#QUrLAZSc(6j5g~(Y#zQf zzIAtttHro*3#XDvAWlzVR>6jGkvl4^^yKu_^Jn`{`3L$Oxc_=1MfZ($Mk}HGBW;mN z$Q3Zb@25{P*V~QJG0IQ6XpCl25>=6Y4a&$AuCtKev)FseHx>P?>i)(cyA>1j@lVkC z=|p@+{$6y3!D=7I_kSZa9unc439wD*(&RH|u=Oow${n?wxHV2uzfui_QeEY_vRApK z%vRrOM~#Rz5w6a2Ogc_#gm_oTiIzrB?h4wSkJ!;%1D+L*3#G*Wuuu6F%z#PAU|+@d zZM^**K1bDXd(Ka7pxd!2{CKpL&xwb`wxH@9;;V2C(3)80wz8+^F9S z96m%pqTZK>NPopo#5+jck+WT^1>tEN4EDmOl(q*ZXTvYy7nhE#%73qdNQeCg-vM__j zl>Z17A*T^1&^OF)(jeG=Yi_lFCK}Rj*lhkQaS65qGSVxl%n-^TPP$p>l??@frLA)X zJdm>H2>i@Ll?!rb`J*&P>WrrImv{;3AL)dA8!X-S#vnMrQa~%3Nrs73Vx-G}>be0F z%TZ*UzQUas&%ma)C-H95iloAcF9WRap>T?=Pj3Tx;ytqMt;ogb!e*dT(huqP&Q5dN zHisCy;30}j5@QYa?tQBZsr8;(Fib;Gv`iDRiood?E2|V4?R7pPQLa zjIvp?zrGeb`zKmMbY1W2dGNX)F;>F2^v+mi{)mRaYD|>3!rfJs2KkKX7t2UR~H+pvaUxU|tAoZs-GVPC)eo4!M zHGNA374E6l?mWAvbrDI*IymLMFc>p#j4(8D=JY~$~oP%L?IYN;GYb5zgqCH3Fr`iYwZ<9v%f^Mw^$IduB()8EsFsi))- zVl@)Y#~l$oDwCLocYla&!sijX3OcWITk!uJO8>~y1B3; zoNoRMUuX{PnPSMpWnRvfzQas4Q|YC(FdA6d_GsMREb1asO6}0G>nE-e!@?8(5AGQZ zxf9$4R#-2sT|mb#q(3kn`-2-Ia+9a=X}s<9w2R>Tv5Oft%h*}yoDy_D_7#6ee1h!c zSWlwZ4SlpV>`0vW9Nb#k&?BgmFthJ*>pP@9)cVKD=Ul{I{2*PB+aqLprub_5^ZSE7 zS1g6|`yHHohMS{wNA;_NmAmk+HIf>|OTxs}H&P<9D6%~|E#5?t^;E|tOJY_Z#JRQ; zSCxs7V~{g#L6)JDI9D7Tn2@wGbv=@0({oPBF(q|E(usiITUe0UmP{FX8B!HFsUzeT zV!iX)ysqt*)mVOP3GRgJfo8Ek_B>u(&QNqMVyv}5ZbLKoF|!(Mma}lX4hxx0;L%)GReyIiqw}w}a?ro7e0O?w{lWx(Ucccle3I2qg6$ zv)|B5+&bn7f*d7@13g)uzTP?DS+>Gmb|X`Sn&dvVrWn6!|0-AHQSxT_sr*@v z%P-~sr5vnyb5KV+#unjeQb}Uug)$9GKt#!}Zc&e+r8E~4(LUhKUqg#>BfSwO?sqtw zGjswu)EREB(HbgSrLxGCmsP76tdm0R!riTy=OdT?+ zV^^a^qHQ8W!~cf3aABk$$4dK^HRyqRjZ0|f-z>t2PW5mnS_|~m%8B^?NRRAhU(!Bb`J{b3{ITVy51{_a zSz5Swysy$$A7GZp#AUBhSHGujPza^1az(9&n@DAHIpgK$3q8eo;$=bMdNRYvY0gb> zktVC7l$uI&rHgVxIj$DdR~m0XM(^v4bw#9z?z=AX=mpIt+6O6LbY*t&OwX5pGAex0 zzU0d~n_WAyJ6=J3j_>X>mV}dQ7EXK*t+D1}WJG^8I-rr2==5-R5(-%YeXj&0`_skF z-d(=jfziPdpot6!)JC3Q4R?*YV;9qW@z&wHSxqwaFHR;Kx)PzJ#%d{Jxit!X#v{Zu zGK%&@kSvMsh~MzNRNCe+jj8KoVms6T;j`vxf6G_mQ)8#2Rin2fvm<{-@`nJn^vr+}=$i1GxY7G5a4P9{(3%(IZIQoWff@x) zeC3ZC47boCo=%uw$+bR|1!qSZRnE2!P7^$V)OWC28)?LH2wmB=@ zkeip71oGZcsugpD%Lk&%5B^2L*NJ4v$7_{94t+=TmK~PTygAw=~xv-sNCvq>&1aWsD_^?;W z5!5o8V+(P+xc4B@4dd2=NHq?(;6xalST?|RVE@;?&cw#3F7q1AkfBUPY)A}m?cm^~ zf~lSyA9D1_(IE8%nA+?3t>g|E1bqCHh^%Wou3>Ja}o_8`_8@0G{#HSq&+pR^u--dGU9R+-DuSFK4V(We-b zwLso}BrFvtdX9R(_FoDNO}LiWJE>gKyu|GZeS+J-ym}_q6Ap0#+nbJ)Pho1mf^V@) zrle=7lDt|PDLs_;Y9p*3grAv??s^~ps(|jl>fI-N#ePq=uvhAP6-W9H^vi$MwR$(R z3T8<|h_!HAjzuQ39dn&&&z@%AB0K#9myWLUeBoddkk z-=}*&jsH0PWAdl3(l>pc_+>|yKfEg1Mk=K~&#yN|?MwER^%nJ{3!nJ~=;F`j8}hTbY-SF1-xcfvMh*2iSjBYo zayUo$R%mL-8ycSdN7nev9$yY-+{_5U`NZ&U? zh`B>OB#*=Yvl>b6Qy^(a$@*k7qM}>X8D`(JT47t>1O&xhpg-HeLD6Xy}|ECFUNV#}oEW_TNP-?0LfM z#N&y56VD`E3r>S4!0QvdUQcClv2X|Z;dG`Ty^`#VebE`am8BR*^=+`cKUUhvZR4$? zyTffmX4az2U%s^X63Fb6RVXwz(k@<8IjHS1hFg^!inv0qr2k_-3;TW1ga)bJT+j1t z$+tZJqWo3zHOjp`b#pLVXhk)&0%|1oF}y!JPnMWj_sfQiHW@QBDt;M|8OS~s`W$`~ zc@e!GD;c-(c@x02nIcU=Z~6jAPP949E=$~_av1D8qd^1AgE_bU!zx&Q(3L_Q)g;fVBEa7-xJ%J zDZ)e$?YaaqV1sPq&*@zZvRodz0`Ugj*{InEM7|qFRr4+Krj*5*=kzh4tCdua%eUo% z%HQyBx78mQ-@$F$3n`e~?o`n7a)WW12hNL&{2{R=%o&$`1AINaaj}zdiW|jdfT^;d zD=04XO-#t0@;2>M&Q-a}=4zLtVM>97Q=S4$%*v_Mi0sZB{<-0&iyw}^Z~6ZD`|m$C zNbi%eH?v`=K-7=zOc5Wr;iTj`sdLkw z!w9CNBqgs)F#J=zWyLsmf|*4vAq;1deaPIX?^IJ1O{$G7&aC*#_}h2`>9kZ*t|af4 zK4G);HqIcKGggmV^~hwdgttn<-jt6y_UEdZ`%JFVIeVpkpV-M)gC9iYaON4jHc^>@ zUUof6klIRVvMJwDPO9&;xIWOxV|3PsY1Pzu@}{^MeHCdMsTf%pX&UVfquOUszIv%q zt*g=7m={!zZaJ-3C0T!?N$y4b?hF^?e;vP8XwS!4;hHs(?9;fy;QD~4CL1`;Ao)p@!f zd*4Oa&M4GPdN7QG30zC;SpE^~cwhVYpq$tw^{bpzZasI8JdN^n$eo~E zb^ctwC!V`vOsEBl%UOOQf0_G(-OQvhGeGV*Og4;%rrVFq!WD z=k$dmG#4mk3+&ByOE5#Kkf*5YII+BAD&h>2&9q{s(K9d&NC)d{JF*1{u!X+`MR+3Y z>aVCLWEB#wXiPo=^i8mI4-5Z^vpoNKo_a=s8Gc?|F3!c?ECV#3iYV`2(z<^QVwZhJREBjTNXVM86Eb7;#m{2HfA-}gF^#@eNDs~>^Wkz^$^|P>Qei-5<3~Y z6WbZDAm3FAXf5@1Xg6F(=cp%H4V;-Mn}&OM0@9gz&?_%YcR?$D2k{j_qXV9TvtAi$ z26**X(7Y(Z-e=pPS6>SqmBCy;@E*MELpmo#BCX%nns1EN`YR8mG4mEWa4}ou_0o_6FZf6g-*YLm`oG$Q}gG^Cs^8vyjlf zW4Ci!fts)nGqZB&;_gGQe>2yZEkTbU8rzJKp#CkjfCI8|Y%TiMf6EKB*JfFlMz?G$ zyMr5sSLiZ7ifhd9R2?Gbglq#7@g!5zuW2{cnrabsG3Y5fje_=7w+Ypc$;oZtyk(Q$ z^=qYpJVR#PsHO5C$4MyTIURXhii*#y~58 z#PdYe6~qA|Xh%I2+Y1ipffc!D*p6!aNB$3< z;R|y4*>ACTo(xK14rUHGtK*4duv0WPHmQZ>g!sznmq@8-`&eD+ys}$AWQ}uokvzSc zK22|>JE6a^o4N*zXJMugdz-z+)?jxt%NQRT(LZsAxNk9|E=MPkvUA32W!zS$$S>nm zd}nNB>{hH%ysUIY-lOi_ccyD zw_~;Ot(ikQ8}AZt9RC(ild7-?u8$OlpL=JtrKG7h&6raLd%xL$CWL%$6V_)5GBre@7OhE>NB5%QTO@`aT$+c7T{r1`O^J^cisc&d`nV zRP9WD#Ap31woK2QK7@@VZ#vVJyTN}HTH$G4Rp9x**!|4+%n78qMsgNchfjg+IVWyF zezKC&6xpXWN_V{Hv*h9Gw|ZqWm%Rg9vqi{3)IgWA1Czn7=gW(SJOzBE{j2>;{GI(0 z$ayzCf>?>4$=;w}kdC{;xqx2PuQ1{STnUMnoxrtiN zd@IF_>J9WNdWw;4c6M$MZ>eALnaqcrNon>lZIbrgoVb8H$xQ|>XJcCJiPru_Ea2uI&l<7<}u>+RBj|~f}S!FXDd})OHz)x8nLQ^7h zVm+ivN^b45zTZ4(XQDUIn}I1-P=t#}oeahf`<+|XHjFX)TuoL_s;YWPBaN15FORc} zAPs)Y_S==L@68$pr9V}@>P_W{GDP9=eUo2#q3l<$Y154r)_BKoJAqnNoSDV0;|imT zv;`G498RyP+-(rH+1_?1bG*a_=f0#NWDm-$X)nI8pkE+A0-C};0K(mg*d5zs#Y1NdQz~$Lkz9!FsCm}ByK5eW+_A-!! z1h)vdR`ZYo%L0Rgq()I^sVzu;?#1?H7Wo|+0m~(opwaPaXV%t7tA&*c@;S+oLTKHW z*4An3!N97Z&C!PHJq+3CZd&FQs|gyO6|MWmIuI?2>I?M}X!a%9``m3*GuGjT@Jm46 zElX8!pQ8zPTBf8@@xt+(QVMQwKbW&%pDaxlrdzP%(RQo`GIS^ZQy9Uhz-GVbAL@JN zZRL%@p>o4h9DETP`6&=%aQ@qx0#?x=8z9406g~LFmhEto!m-vpJJ_?{S$q0OLv@I!MhWGMoz74Vp+ZFgSk?0FQW$ zx>IeZUQz}qvz78{Rjn~z%}eO~86d0YfqSZ;wn%v^jf~F);jwNElkB)xIw*~jM`Hd2 zI=Oz`cy8`O-zwc+2uk!@Hw}d79xmlpf}f-vIhmRY6Dh;yVuv#%tr9Do7S<4>EdKnK z`eDPcWVb%ukNb$U+67N8&l%wg&Od|6e$H07b^2)kqW^dd)2go62=}+|?u8ZL3oXR?q}kGJe9}wGDHZE<|@kqvJVpKiu2Uj>3$(f zVZ)n5yHqM&l@{n+IXQ~)_WQ!F|}zz z6ru}pme9)k*f-2y&fniR(mUNVOmwk#?ZiB$;^@c?14VB#0ne{%|376Q5jmz9rPC_2 z7*E$;m^5C*-0^GXJ$)5F^Kej8`?3qzDASwnK>p@da*Ei6VMI+d+hDxru^T$W@RN-r zW)Z&;V~EX_hk{wv@r-CA9mlv6s1Wd|{B_8!;8hS9TU0$_3PE$_*t1 z8t?%tgCMYxc8>xj|JSY-TYezbNuk~;(Q-$&>Om$OOhEHZUB)qgO- zudSSdk*bsSR;z+`{%=Tc3wjaFry|rN6_@VCn@Bt5b?O@ZN3)py1lH`Wpo@CpT3O-T zw`n{Z`dFvXU%P4rkrPQVHtQe2dd@Pt*`+C!5kD`HK@ax9V%uYw|GZRs2!> zVf<;lzSKxQ0rp%yqdv0kexfyqG0D_E(noeBM!031FP3VyG_M)Gi~>k^YdYW%FgPV6 z#}d^Ikn-36I6Ex8XUF=Ezf*h)3e{C7(P(K8ej?ijq&MrVPa_<`Pk5T{s$d%>N>lzk#sihB$Dd3&6%>tni} z2+s0c`Tvs28GD)P4jR@KFgkZTgJGqf z#V!-pc&R{tu=x9d#9uOy5@;Q`8CW0uC!v2*@suyAHFK=X@iFb&R4b`!LN5PpaX#|) z0rHx2*piK1`fe>-U9BEh%V_oWp5_Xt1ND)8EhKx}_?Gx`_$qm6&!0jqWH0J*VXn1M z9nATA0t4eyTb4liR3An5nM9xn({3 z4R({?c$Rx}_(ufV2fqZnCiF}g5$x%o?y13Vqp!P`c}Z)ftdq{i@5DFaZGKeUtWP!* z!8Gx>t3e7VM~p{%$q9AXUbvvILn-=S3>e`zuExPnZ0_lvCJ4`cCd<~ zA)MR&6^WPQICpZ~C9VXjm)hf^fS_Ox-S zo0FR)&J9fV77=DJPl!48En}coQTbjv9qSoQi+qGX?^^c2(2H`H!w_>V{SIxtF950nmUM-E)`PVlzFynmOM@D2B! z@%`*8g^cBKwlLM(*=5vJF&B&-jdYBBj1-N<<7JdTv<$;%XF7Y49vj1S;?Q~Uczpdp zP1qW^9ykza5NPgy;{Db`iFt(Y`05$eu4#d<0~G@s1FeHu z!Q2TCgL#pfTvd-EE-8bY1dK5d9+k%{F542f+V9GN^m?*sh)2IF*6f|)C_FAK+ z)<8Kf{T4qHs}p-4Jso`%O~t+X_jszDUu~{8zzNmk)&chu^9ZgvUxA;_^6J_y-UlC^ zLTAybtBy?TR_xoV!}&BHOz*Lte%_)mu$=I%@%9#{a8>DTu5J#~O3O=Pu}JL*9|?tb zh7F|V&u5O#&_7N7(DmKtH(lQlZ<+VaKJEFE8Qvg|Gb@qZu@z4DQGxP-EdLn47sU8g zzSX`of0lnoAQspaIPTBqV?0av$4nT_>Bg3<*VZ`oJEgdCQK^6|*m5uth7mte8<~6D zPC-JyNdRGV8BC=YIGJfg+hjR13n{`y=)fMq{k0$82e-vR>}q--ncw}|era|EEBKhz zz$s0%q>W0bf%o-$nRd2)> z^bZ5o&@0a32xdDu#@%U8va-xi=Fir8yFVJkujyy(0KS(nS2)Lq*aW)2JK9{Orb_Li z8^fOPk}!j$eyaSP+F5^X>;Uy=nc3Q`W_B|FGv8Y^olLg^^$$~ySB2r8n_#Vc_SX*7 z3KS2x{?q<${%gKB-o2h0;u`$UUEuV%N4~=>^#<&Tq+rcTE$%8#0LR^Ae#ZBE1#~7-xFn%1`Yx{nWfGbsBnLnHih9m~-5@x( z^yW%NJUvz_-d(DUe8jKDPk1F-fZsV8RR4)Y2i&SIx?|nZ?lCujUH&y92R0eg;g5b! z6=Sxu`S_8-2AEAxc&GZZd@9~^?a@m;;;rPJ;W>qG(~clr=S7<(!cO3eiu*jYFTekt zKPfO2yT5^+7s5DxG;+}o*~#n&*gzJ+jnNr%oo|>K%z361>*G4`$6)fV<0yk)!rKnAUyZ?Y!_b(A^sp(U6<)`Na(kLRqQnGsj}sm9n6yEZ{}DlY+rHj zk{R?}HYX+$&G`1*cBTV$$otoXfxT!o~x5X*FvQ>}bbf zpBa5D)MEiJgY;0u zy|2HBtJ#M?FZ+=1-H5ln-#z{?=ktfG647Jm(9P5gZHKlErZ-y}fyDPT=sW>I6 zSIjL=M@qN3FrRP7UBy!*2bs%lU|%=a7&G-b+J9&n3{ab@`PBzXOJ$neL3$tS5d9Fo z8mby<8hRW02zTxM*f^ zg$(W}@iDf(D?td+JGkr&x{;&@-tz@fm*z<>TMUpmYbNuCAxtmhSHfUPlzli}J$73Ydbu&Hb4ok@8-FX53AoFu#FeK=5pZ-PZ*t zPVA%`a8rcRo^r6G%=CWc{R`ak_u@3MomfWPA}r*SxYEo%a+Z@})KO_^U9@y$M>ua} zSG0?ys|Bov#AA9s8rHIS1AZ0MM!dPbRgfF0=so3OJhjA%!WwQdGnaZpY(#FQqto1( zjCRswoSR<|MaeqYpdoGR4sy02`PWG6q}-JH#C@@MxY4x>KMwT_Wo9qP?w>s`J0X-e z{5VoQURl|uH@0sP2~2=rFD~-F^!?@^=ih?%bup3UIS|*zkvq{Y9B#b<&3&#yNJpb* z!}&wG5s1H--8#HCdQ##vuQ?FOiUPQ+|7KUP<{@*~Q`sv$iC>B5m$t)eJ5YJ6p3qmD z_3Vr2f(NLz*mgfej)j23{Z(4-6aO>zQ*3)oho89xwgA&(TJ+cG z57EQ;F3Bl>R%@C6Im4)FtifLs|MXPxC_)pyEpn8}__tmIx#Vu3M!bPRgT}qO@BguM zmeEyYX%{Z9x*EkLxVyW%LkEHfcXw#qEy3LycXti00fK9=CIkYJE9Lg>p7pJ)p7}97 z$h}qPyt4PRt$e1WX9tIEu2u(G0HO9SvJr9=cMG3zp1y?2H51=H5+bqfu-Wrq2P|U; zL2uQVIRh2#S^63?jO!s(b{=ufbWcDY*LKHeZVG+Rjxges>0&MH!XNmq_+JLk%a61L z<_bHR*oK7E_hc;kYJt2=exO=2Ci{fn;wbL|h1I>=-Q0cLwackNbC{2PLFcCvsaupr zwWddc=<FOUjoNw^m-SV3dMGrGj07XiaXQ zGUzC59iMVdG1ZIVo&0%j5f{(B1pzRfFDTqaXLkfy5W}f*#6)wZc2(XlE(uP8((Z|L zR!P#*jWgDMdyuU|{ZvpLBNYg4@kjaZ`*#Hw$ch$cm7%_}lN>9+)_WM599A#95q_G6 zmkC$G&W6RjGeS4ooNA{$n=>>E%5chRw-qFcE6tbD2Z0AbZ(Gv5)tuGe9d@ z4%YNsJB-xHveW^n;yYSP^=Zmpad3cyLh+@)HW=Sg#vQu{{f48Q^W0UvwLz{}5OU1h z8EUV4j(_+v&|Cdw|I}IKNT6|M&)+?NPX6&EWyp`xKcA-&IA5INA%!vCgMMC?ehz1T z1$=&^Ku)xTcyx(x*b2~GWDx7@c{m?VnsHWB@T(5MkC!N*jy-@`>)7rs9dS2%-dsg<>$xuH zT$}w-#Np71p1#iY$VzfUlW-cDnJ(j@x(`8lg7`Gp9@EX-N^z~Jp_>^K!^yG` z8}9maaSGO3B8Q#bvW>6$53PVUO5KG{xt-(-%6Rkp1eb{f^3h6ZSHaJ`0TR$0!>2{7 zhFlQI5o_gi^p5@TjGUmVu&dxhzvnFI+T!ej9I1cUOLSpMK&A!*l|ox$Cw_{7BKi_Z z#?>(+i_m>w`@ON^iQH5-x;^umd5wI&Q2GjV-z)9*$h=%cTqg(8o!DG_H)OmFchq%s zKrOfiG{+^#JL-?b$lUx6{wUH7@^X<(J93&;+c*l2S*Ti2O;-ni0$dwRl*5>k(ol)D zBQK%qyG4j3#oXj%M_14O(9IFIvfatPJ^Six84-c7w2%nzT6Y}w-7{Px+&4XKLav2A z3L6%FI{ZL*$M8pC&alTJkx=)}c3yynXe~37xYoRD*Kil7QxT7=4pn zCd_m7_x=g}7Oq7|5jVr9hIaLwaeQIj)Oc*BmZ&o^$G;(Oho|+X94C|Vbg7^887zQ; zn$M_5+@~A!9g#7b$F9qb$dHD?3Tbo{z1|DkNv+vFh4mp=x+Q#n5j0BWc>l%}BkOGDB4Sx3Vr}ocnV*?c2}h zsY;47<@Wc5DT7lhr=3Vo@YRx1wfXjIdMo_fBi*Gj0qcWI!vWlIx-nrJsVb-x!KQva z^G*7P-zC%1erErBsGH#I%@@;x zg@W}0)&2E+N3!;3d3_&zsD#8l@?&+8o(MXu2u)jVGehsLEmMw2m*D|Fp7kYTaQeVM z8NaDN^Zt}gzm%RgV|B*J%*Rl9^wUS$p&@;gPTBd zhF$<|$7t#*xrQibKZmx*36G@PoMLq%R#E~xk{{=I>g?uPQd_}X0W?s!8K|Xw(<@P5AWU(^5N==QDRu~Zq zb!KgDg`heMdR}_{$a!xaGTl?iwNOZAd(tIQ2mUtS8WqtMmcwb%9aE->)+%hcWw85RP%kD4IGR4?Z}BML5;=~w4+tl>Tc}=Z6yrbxg_hhC0f1k>AoU1;$-hc zEx~7d5^R73ym z*78B=umbKYg{jN@g-Ov7asqjf348F6O z&KsW9p$Egs$c2$5BdLhuVcU^3n+#W)gp|)5jK*}~-tZF~tShg3io2=%kZUpWvGPNE zR-Wd_vi2!6#wZ8p%MvXSsdLY<8QNj>#0@%^22+^}flA<#;00-KA6puJ-4{fpUC$f` zf}o`QrKI5Im@lsan@R%9Qd4TEQBY?kDEmMjE}_1F%YU6d7JJAErr$hbZL=Q`4JnqP zxol9+Hg`vR--S#GZ5lc;g!PK9NsfD55#}RV55!2rDvI2bjl^11&NGp=)s1P$B+{u+ zrtPwano&Bd){|4k3SwQ+gHv>bI$z&xuCz;&g{Y>~bTZLiY?jaiiW9`Jv0_^(zp_fJ zhO==tw4fRt!=%u6sUc)jV!hqiE^arqw;%<0D&Cmm(3qdFs+dV2(7sgXVsE<-JHR+- zh<4G3KyaHTG;!>Q=hTMg@)D+h9zKCv!A<4<<_>cfCbIval1~*_=SbIkq;ls7`5sa+ z^i)W5Z;I=bkds|Vwzf{{e$;<5l4x_F6MtuIBmQ8+os&989I}=g=uDs?Z=hUOrfSWh z5cAP-e1z+xCoZIN=$nwy-iq!uj$|$mGmsSQSaX%J)F=VP;2(P@S&?4HNbE2?U7elB zUHLsEh%%w`JyTsyY()1UiSL!e;Tq$XJi|f` zgzgV(65cc189pfNuh3`SMjpQ_0g0VE;44n!H6$V(6vkj~*4G{3T@!LKG&-z(*q6{w znB;d2x#a!mNpin-Rdq$U`nz6(kJi$?zPrCo99ZKhRpdAbpXSA&vFAyh5VI zo|sik^zHDC_V4>2hpHkttDW_QaJBWbo>*V4!&VV1#vEV_1Yd9)teT_2Q>`og2?hgy z2c`tx2lfR;@vfYz7Bz;0bZ~&$!Yt>a@ix1hXB^jr0sL3^oAb~DRS}7jgNa2T(M?1u zq?gJ^{ULjklZiq00BflUzPK@8FRt6#51jAgwaVIOHAX$EWLNIWujHcO_P#`&Q3lCv zqyiQaQXLp<%SXU*^#!S0b&Y?meqq*StOj{@%7uuobMs2KeTIwTC2OCBUj7HM= z7iqt;TRVo`{48i2=b`2t!W9xYXPRq`=Z$wIG9A}@AG&KeIerCQo9JRz&`oteyxs*s zr+;c)0t0Rj-Hd64B%psNj%;ABG9!$q+G91pnxRxi67N3s21tir)dT8G&=E^o7{uH&^08^}X-^o>e=uc1F#N zW|`xBZ-aGIpV@jBkU!oxf6VH* z6A$eQVJXDmi?>OtI$+q3~1t1mLTSS(1o`>2|jM_;DKVw*JDh*4`wy#f_{MAnbY z-&wN%jo3mJ%qK)$CY{@il)es*2iU82huXXqk`C&#UE4em1~1Bxn99j|%y7y4mij#=CqU^T)!+8xxX8Q_o4 z)@Etnu}j!yB$$QlOGFIy07};TY$Glj+9Eg9P$j6b#A*006VMxk$^o&F_$+t`eA&n7 zM&p(F+6^PWy@M>x^yOT_Uyi=;H!X6FfbM;-BSgr}F;HlIf~GKtT={Hd2mI>w*y>2m zZOAU8W5`6SsIgt`C!Yl~GMiWo^o-uf?s#ofhN6tcw23i8^+?bGvg0D_3SRyT(2^x& zea(RO;(;EA z)OAd!0L7T6aF^k!Q$z#az zHK9GNEzA;zL$g?fKZ&=Z2e*kU$6w@aya_)s;f}}l>KF~(6OnG0MNe?R%CctJMTmXK z)J!2R5{C&D_jDJkF5QS}g({^!5_X3R6L51Z=Veg74&mwYvOzHJ#*Jpt0>v7en^#IV5CHLKgcsW24?$3n(Y>{zglS zr5SPvk{jk3kKyOZWjC;&r}vQB3<&7?EmWSq}flhHKedV0O| zu=I}UuhJ)FRL;zmRovIe57K*ZV=y`RG&n1mH+UqFBhcS}#3yGB%4(POHtVAAp#N^5 zs(4v)C}HZW|8@vCIeSAvvqI`DR>GXu8K@q(0{zn|xOc{jOF#=<1g^$a|32hb70P;- zc?p}c-0{uDW=9n1>WFzC~! zQqSq@OfFCaUFbc3kavmG_Hk%hrugg!B8PMX_hD&Gx>7hF?7F0rUaD|ki zBdKFVE4z#}+RTfedPsjcX*#XNRt!}C-Ea#|{vRoMDmjP9W$!n)8_)D4ko@;3&p-_5 zCuN8)#Fo(He^)kYV~p0;Lwg(Xf_MbQXDk^-m8Ab>M0Ny!M|kRJ3?F?w>gRg=X0{5` zo_<4ZN8LS(`U|wLC^8C))Zr#&+`zAWOX-g6_}7?aCxA1x9sA3j+;4Q~dEm7vDZJs@ zvez-Y8vS2Ftohm4gwODVS;}VMYH7QXo0jFUpnS-21 zBqRAE3o5#fRsky+{ns>e4YcCmoLhU5hC2ZI{Y3i)G%^$IarS(B9%$?5?P#Q&j-js8 zG^?^}xeTzT3gZ4M#77~|yc16e0U^zi>^$mny6?Iq)D)peu_((_r#ch+txo7n7wMbe zen`iRBqwx@mV6!ioUaB+OrT5fU!9aUXK3NDs$p$Imw1b~$2q=mkC>V?N#!Ru5PuQv zh^^qUe<4>>rRcqMVdfZ<8#$4Ep@(b9#^Bz|g;ep}P@G;8RyxW%hdFyYTfr&rbrQ%~ zZh%B4*)i6!2D*^LtiWuBLVg1=fcT7@s-ILx=3jOw{}@%T&l%@ZT~*wTF*$GIuIMi8 zF6J)iCeTR@cRj|Gs-$DB5RF@Vf$&g>bd-1agzmyHz9e^zX-$77w-Wp8Pf&kvGdCbV zRI{2OQ6iQ;1ubeD{y3b5vym#B=-lcYjz3S9V~Qg?{{QKMEi`u^L&Ler`P-QTo5vE^ zNG2Z9AP2>DG_tqFEc@-uaiiRHfWxg5V8O`Nrzf1m~#BaG&UaHH8-P(=pF zQP}dn2QM=PNpMwFm#QIU+XeEgPn`*(@kIR{I@~45e5h;2n~CNxoNL`MQ;b16Qcb9V z_Yqx*UG{aPW4t$B>*-oURE3xoX@`-c7H#dc@52*RohnQHO^zkH*p-mUSKs)gUqc#6 zxIRbAQm3P0BviNBU)9y8nuND_5125VM)#EeCOmiS#ylev8tp=! zc&I{-xhuI!IsDuM<~(&9bLy5>q*c`#XZ?cSsxG*VVbI@R0>`NZwUjzatw0v86a1Rq zmSoIA>Ps&*4O;3c>S3+FG1gi`jHC|IC73AY9?jEdNRnt_9W$!wELd1;m4osOsfCz3 zNCv|F^?fU|8fFc_%`nS1!GAFjB@Rc|I$mj|mIU3bj8WQ*u^!uP;Izw5_eBlSpMFXu zksFCx_C=_9S3*x)Lg^;omJUcr50$SeW7JyESKmYy{1kIM9Ag}@k%$7_FBcrxanuOv zBb<9@@TX2STIwg&zm-?=d09|)Dcw|$wh|<=8d?qYrp!qBf`$D(v)q{#Gp?mSOP`jp z9UH7a{+q#BQgN_gZBT?h;v4-3Q_1G$zs7u{GPVaNv8io`4SP!v>AP9$tT?MHyo4V? zv`9iqrL5U%Q28PUr2*1VDMBu*%u=2DHE7S@+HNE~cc)^h5NZ)L@ZrQLyAsYv30V$D zL6%=dG9b~d1Mgrhm4sbED07FY&30#tuuGXZI+n^o?zi(;Td~&`xw$1+`KNLqwwUy$hdfs%_hy zK%(nGrjospDfXRGs8@K(I#Y$HM6xp2!+q>Hq%6gmJhr(1>ce$XzltpB8`>lAihgO= zw3^xkb+!^CJERA}JAs0zBTl2v7%S)1f=04^5)-C!d?O*R@PvED>;bXVM#5`%b0qu$ zG&0(U5F6ldJZ5jSikcJj{c19_VrP*-TH9aE_gB{O%%PbB@lU_ZVVN5<{h2eN{`lzY z1DzP#`Z?()YFSMUmv%*dD6T-C8i0Z)R(vQmRCcHz&@Be_+sGRKqqWp7gW>%F z70yOIU~IA$;pX1Y%z$Qtc8qYea4Z!B{u6Rzy~F{t1NhtF0jD$0YL6_K#!%6|q$biNSkIB{R@PvfbKBth$>2^Q z#rFtHvptx7^n0o>bpZsCbaE8FV}d@6ggf|n?R;hy81dQV17af5sG5npq)Ey&(26px zwqzT6BU1=faydLXDP%HH4Vepjk()Qu-eW(sKjDegz$F%;3xBO0R#TO8xLuOfFntbk zHb>wcN+t4P%T$i&Xs^W+wAP%7JzhPyE~nUjyBY4Z&BRPhB{qRt_KdtueWXcj){gQH zN2K$Pvx;kyYme(LGGnj1*0@HyCPP~q;VR^ODpcT0u&1d|Vk)IGMMQF4%)_3nkYfZWCLV`Ar=r|HkIIHflaMX2Lhg z?^G01l6}Qi{X95|X0lfmU=0$>~e@ z!yp145O(scJya%1Yc(}3rPpC)AxsouytmCc$y;5ygM`vY+pTExCfb07d^NKl&4Z&$gUpE`l zIV>_FPh|f{CE`bTMcuzo0>G5=Sm31uU#?V!Xa^@_pCi0S^#CE|F!Ng!eDG5Y_ zu6lpa{%NWQGX)%g!HzD@fU~&EaISW~a_klI@g3Q=bWifEUCsK0iPJ&-kABtQttIwP z{4Hat36zs6Nrr$tc^_3~4`a09g?8!#_S*m2qJ0`Q?<0@_qCm!;ft(T5ehY?jJ~+*0 zQ}w8AU?FX^&sZfb>`KgNRK`6~_niQ-YZQpcA0$p36{zE%>dWrS>D%c`@Yf376l=q+ zSPzu!LP&f6X?zEfv#hZ}m$Y`;8uh)>6uW~xayLAaPPwc+3MpJQ)mu<9R<%kYk@^6= z0iX8_W;vY+AJs+knO;|uF%cajSCjL|rj#PRLbCH^>9rJvWT0vafol1uCh83GW*A+hVk#;gULjw#x4a59?6{iS!}B{7f0U@KTkYh#?Z z!pN_b6V*q3b}9(Cf8hyx52fxDWHL?RNPaT>7ZE~jp{3AESSmcit(4ml1~S=az7O<^ zKKQkPCSdb_-eh9o(K70>H1~kA9I;C8hgk* z;PTG_|9LMuwcG3fZaEjjU1D!C^Js-EOgOBw`XF_v{7w9X>_t+niPWh4+CU`!Eg~W) znw~^&rzgT2Je1PNO=MNlg@4B3`#KLj)>)*we8W^Hf@+AZ z*Tf|1snriE-%W%MG|m=8KG18&=-t)U@(i(ZaA{y}AT(H0{2^Ub)@pM>n+#yrZQD!n zTy!U|LHl)L4u^LB7ScIFK{=a`z9jHL9E6EtFw?itzS@kY<>g%z~|A3UD8gQ(Q(WhyBaAOvir%9Eh%F;N= zEtf!5-3-;~J@X&DVa>6KGJ27TvWgd6AVF))$mfS%u#euQeMEwR1ADhs<+KGZU!N-!SClhW zIKdTSSI~Yk7VqCAbF^_=?+u@MF@36@3peR1^Sha8dace#d+TYJB?_ZH%!}D_UqN&B z^5g>DuTAK*ko_LY^@tzI^dWy*^~~u;Ph*jhX-ot;VGZ2*iAGi9lzvXHhF|ZES<7Ba ztRkCJJJ46HL^9r0D;>Ms$EvEFg%9Pd`Vm`-vu0uY6jX3oNSsfGQ>G$+p06nM5y}b| zz={Zix8VR?lDbGNvX@(*;q-V5{`DQ`(ni>S+kNnacCs3orHw9_8&1*|X$bg*PPY#3 z*LBoIx)W1}83UKlbmERR1bc%{$eXxoj57bSs@RY4dAf-RIOuB=UQoKCiRVNivN<-_ znK%JUV^;XV=&!fbHmDIGlw4O7r7BR($Y~%~the7_*KvrbN@ihe9ETHpJLw@;;L}|L#m+`}r*q)b zW}&8?W7Rje>Ic9{3l{+KZA<} z+oLPC3^loMj^ZTjVTZ8<8;kFEC?4{ZLyvbUbrKEqUK2v8Y4Y%5_H6`K@nI@MM8Pm z7u{?gqlG?Gd#H{ za0lEg+*e(3&a#dZyn~y>bjAJI94^xd)J@7p(|HlSc^6RLT7iYO1E6E5Sj35=^7B!M36yUI&NVrB1}}7iU(mlZal_3Hk!a=85cmb~^iz*$Q$( zez@wI*@La0riGid9FmthAp!R#R3sn4om@anu%oT6$PU_wjaw(U=<7q9u|pq*J>gAI z7iqhI{Shh5JIs7I_XdF1&=LE!F{lfxgJQ7+)qj462kh_Z!f)(E7bDqn2Q#1Uh5Nn_ ze&yNL1F%0fnrY@3(DT39E^H2GG0_|$%y4{wC-9M*^t^IUbf>s-xk^LF-c0x}9SQOg zrUe~GUBfLs1Jj#yTfno{7n7&ggcG+4ffR-{L@VU~$B0=B8&PFINOjt&c)DsE**Y4YwC$^@5)J?)vWat`C?ZO2U39YpSqN58_;_ zLMK3%rtseGv`##>K zOW3yl#HV}!$vIu2JP5J2S`CrgbQ0Z7Zrn^Q!ON+`d}VgB9pOza1Fwr0GnYhSxmCm< z;S;SZk4L4pMCt*ma96FLamsR&`RJEWjn+WD0CK1x(yP?;oyhL=Qh&) z3eewh$91-ASgp;2IE(9m)XRgyI8}e7rK*)wpF*pR)obb;Or$3n{mcTmwPUT*=1Ei< zhcI*QuZ~p9X}6#uPJ;R*nqTb9>-pln7xFEnLr7llIQLX%xKNjE1|sGVW3u{K+VEe7 zSJsxy=NTI^-e!!?jLq8V%N9rq8d4`U4s3YazDqK6D!mDu)Z$1I>BziCN_t1y0nUz( ztU)e=TkD?n!pwno zQ1?tFx8OEh$};~kNwACfCQQOEd@|pk`^+?@Pm{Wx+ln<*Xn+Xyh;m-}sJL;iY=E9A zL(QSB*VgDI%trPq(nk;Eo(T?DvfJs6_P#csBv6P4WVLdQNeFHS3 ze)uwTDod3D>PvigqE>=be>L%Tr*@yH; zmIU2Tp}yoFxDtYrI$uGDZS!7Aa?Jc2FUJmM6z5CyGX<`SHe z30g6D;S%vYBunL_<)Tx(AKZhSq%OheU`tE|zXm=Ae1Qt+q!YzZBrH?VC6qLK!8u5v z9^8oOSaklZTwlN-x*h^{1+m8TJw@hxw0Q zP}`w&mzPU!X}7pQ%oI;aOOYh_TfM3OGTRVo)Dd=?P{0-AafGxAbz&d*J+xM69eB_` zx)VTo|0NXQi?S{{6H|cSh6z?=9-LF3BtwdZ0$h|UD?OAtN)o1gq|E%+ohz{_36>WU z7VXhQ8sR6lp{AQ)yKKMJ7^*oB7?GW*NmLIigDg$f!kneF)dib?E=Gc08nf&9+C*(C zRIH~pS|5Z{)?+M(2KWpnG`zhJQ?eGQ$3uvQc7E%Cp+KqA0jVcJq+Fbr6tF}8z{%ef z`8o5H+~|Hds59!rlXRJ?%Wj5Gr;MwlySMwiYl!oda0WS%yC@5@?d4WHG*&#`n{BFJ zt}i_eJ_rm9qz8tI^W`sUv~kh8N;Jh}sxq^SdCMd-FVQ6gL2Z6bzXju?HgVKy3?I^6 z?Hx{@lQ?%eppvMo-cna<*Yx7(k+%@*s3FWV_BpqlcL+_v^%yKn73K>YkhhU6;4pv| ztPZ?m^TF(zgHB)#u?e5nR_uvyVDmQ!dxWLXf6dl@srSL$e5Xw`f)+{DV0#E{U6!X- z=+&_4;s1oU4nGt|g-s5XLq>!odNq#$E!_ife!;K{%S zkkIyF=91%oguhG1W%OQ?(X(}Bn?RYkg_rnud^dQGvT=h!rn^lSrT0<7|B{ogVvqX_ zv+w1^CoshPA$ynhF z_X=ze0%V`YP=;(~&w`+}n3b58xFe3y+vwx87vE7O5a_0GIrx$MJP=4*^FeMM*Om+A z9>Y8RmMP6lg@ZOo{!P{-9};222-}VM_ifDje!@#O2;bsF+-b)^B)W=e>H*`GDd7CS zjw#1M<_9viZy`hBvG9*T!W&o>d&M+731gUc*y$zE*aDEh?CWNG{gjeZx)pfm>zy?^ zvqI*vOew2iz%6xE-y4UBlgu`untNaf6`mAvA@Xr#fykHP5n<`x5$+d`Y5W*=C7lEv z*E;K+kzbF4;$kA+thZ3hkCH>6mu;vW)E^rwpo%|@j%Ocng}hANfv@QVri25z`rJ!4 z58DI|w>apBHqbBV9?Wm1I9zWXn3dSEjKv0{6g85%K@|n9awSuOZ35r zEw_W{G=HF?aYHZu6Hd>M^hu^K`<@NQ3G;#N1@HM$Kd}L%xMZgkK6j7H)^V3N0HF?n!n&5mHd`h;$UaipoR9BYigw&v|1g z92xUFv?*C;Rof&A(}UTGybXGO7dTzkI~O|pI7>oJkbud3l2Asd&7Wd7f&A9cZUon6 zl6qBXri@oAVQ1dWIBGQ{Z_&B9u0mI5x~rKd-n$|sE969oDYzLdDxlX_$@k2cBVY%+%GtEa<`iNX-GGZ1 z#yI~4VfM18y?4Ji!MgxX)nD!_P@~@AUowwL%W7@hRge5f<42|~5qRm>{j~za0xNKv zEJeD}axm7?lvpj=NU$1_`)H9ZD)=3RT@PHG`xmsZZ9s+@$XWDSvXp(pSgKvc{Bobv zTN*DNlz2HwPC}Y*6?mkw^!ezaTEa=w&(xvFPtkg)599{YCv3BN1%^X=x)|x09;lbj zV2+d`wh&hbuYiC!2Z?fd{Z;(4{WttS{ZYvH4uK}=Uz`F{6brhSDD3I+yxWbCuv8h^ zvNQ0-mQ{-@gD^q8Ep0{iZvy^%rWAt2j;G=?@rbw;ze^E$3!clI1`QQX2XX~+g61#| zwj?XVkrkk;AzQr&`4j%pvSxzbQDamSx!TvIb&@Li<^F1OeGd{1k5Px20o)hfgwD(1 zq~YKE$I%Pa#Kyu*WR-Mh9n2rzO$b+JY*k!%Q&x;_lsu`O^q!rg}l6 zlpWi^yP()5S)<8zOgO*LaUXe5OG4&`s-aZahS0>2Ti#8cShwNq<2b~tY;C3mRg%bU z)iNe)7Zp+-4?6G=upv|YeF9yBtHB=rOL?W%)h8GmknW<|O`#hrkGgs`7sLMo0k9X3 zGm_ax{UQd!x6}#Af?tdrn7njFkJTM&q&Ad_?esP}KsN=4Yb~;(reX$?NpGaf(W{aE zQkgtQ^dy=Pvxxw)fNYF2uqg8c+J%Me9FPTKnZa~hOyNu7r1}88WT@pg!_Z^Qx2{1E zm=^@7fIR~Y+E?TSYC3+8yv$c@#aN_d1;N%D0u{$$C0Xt$|B-e{qojslJLQu)fzvfn zZlVlEw;X41)(Lw%Igb99QQ1exaBj(eKrOlyld>$RNx$LQ^23KU90{&lz*N~Cn2w5Q zyxatJNEdS-I3@S!mf(~WK?dDup5^m#pO_x>dh(q;(He|OD^YI&-Dz1Jx@r9`wo^0k z+%`nc`y(VTwu7!Q%sOQXW|)zIT%CY2U0I+MM8@%Yy%K7_x5Q?uEHj;*$_ac<=uXRl zUNWAEM>269DjE*L8nzcYi$73CSBFb-0rpk5kux_){1wbVUwuvNAi3nP@)PB;`USo9 zSK}zAjy|wNk0MRtI;K@$vAbwuPBO0RIrP<9KU5v5+629+(F%;?iqIMS176WOOn$#& zhuaX^k)PxtFdkKGe$%a*W^;X*dRgu!#Y2zxUA!&%&{J&C67*5VbfcJY5uUG=(AmV} zJ~^s(z*gguQP#R_*CcyDQ5B#cFeBKb>;>Fm@!+LiWdx=oQa@erV^_A08>MlwB`W2W zf90pxy}g&e%U{6a6_9fhE9H?siJ!$9@Nm77E2^Khg$9Gny2S)Vek2B=Ce4jrB+a-6 zPWLsnCia7iktWCJ&-B%B%jC2kV=p)idyWHSFRBooi25-PvxELlg;5PKMfh&Fgm$5m zRl(|EDb`Qa(7C8qbPMd6|A6H>m&?i3W}VDV%1aKl6HHAnqn$*4ZhkpK>MnOt?x;KT z_hxrwo|8h;)Lpa2-lQ7&g91L)*6Yc^{E};d;V+xKt;YDUcgJn zH0)o$!QYq1IuDMW4>L2LeHosPx8T~Q;oIPes>B##6j2(f4o5M&T4T=!wc|XzVe3HS z`@p>9o(e~uwLvi*>1pDT-Lu`dTz8zC9eu&t%E!IK9aoclYE3jI;Z$uSZGTUg7H`ie!TMZR#46;Eu@MRY; zDQqFIeB&Jx;O9IFRnt3%B&>%gAQ#h^YD4t1&Ke!{=Gr-RHs;-_s-+z_u37@Qh<0+N zg)@$a&hf4-t{B&O=Xpne;VJsR=Ja&(4k)xNQfg~~zT8W%Zw$kZcCB5N=tR6h@3R+q zPA|2O@WGykx;+G)`z^JMwo@wy9rFw0xS3>?1#fvT^_kAcR^fbHBP5B+aH@31bnh)v z?U#b9mdKREhO!rSJV(F|Txq1j^_wZbmjtOc?#>Jl@!lZuxKFUDxK~;W7jQeA5l`R@ zN&rhGfJwwSY_twzs}N1*!elp*+(a#;$1p9SznYJ?d-GhUfR=NZIoO;9^=W1F7$5C*nAH{l^DGv+ z#|?N^?@&5f2yTp2JKBDa?{NjTNHI|R{DQOn8MTjYh@SZabC>DFY=IhK0n|D9XdV8E zhwLFFaXx_;M&=Xwb|4WbYyx|Sb#kjged#T%ajbWib&bJKAxsnRfmcuyuKxYtR+L2Y zSG1t;CHPmM09_=@*qeg9K+XKvg|I2_ljm-AH{oQo1O-J+8O<`F~KSXx@Hsl0CRyI#$89k>R>K|or_t}5lpadQ3FVVxL_?YI~qZ4 zEqI+><=#>(?xrSz9{%CrAT7)C`24;qfycqQQbA>-`Ut9^EImcv1}{R2wi(;7P4FMA zzziYA*o=ACG`*x2uOvx%#T9{;*bU_Kb@C~`pZ?sz!{P)vn;Neb!}cv3lvpufVvYdS zpoIO+Y;9adI$jMhFBvI_jKD2{{()|RNl<7P4W0>hg45F@<$`DTfY?V2Am6fNuy$}k z@HAEem6(5-uzbBxIZn9JyHHqt*p z;+sVdAsXXse~*b!8|^z-TA##)!D&bh-{ueaUBTPpQ`v*5;Wq0s@t8UX7iA;#aM=W> z@Bzt~%W$t}a_6vD3+HR{_4v;GVtz9}16-l4*iY+VrF6wRw}{_}elHdC=IO*jYp+pX z?~fVZ0=1Lc0q!;e8@H8udm|^5eAg`t^Q>NUe>fD2Iz~8`x#HY8J$aBH)7?GV)yV0> zJn}R5o;{2D#YLSZ#$$_q5z4Y|n2VB7g8pNlMbhJC>KXl(*@m9e!QX_dU>YXSrG-`e z1MW6El1ZTkf?}JRlY`x$U(?`mKI5IjO7y4Kz#5OImq9(115W-+sG)L! zl(Ll!$An=B$dpB){l87#Ab*fiPz!FNu3!$knaWO8$8@hec&p=)Rx(tx)W>QHn5#MT zNBT%3%gAkBHv%|AqqKRLfwqV0r4pXaN7g4o2480gx0vrDh@i*47b1l0IHj)OREt3- zKss?1$qRJ}1^3redkC1cH}Iy7heveFhkL^zM+?Z zVo%ZmBnxfaZ+PyHkD4LsZdNZ`4NvpLGzW3{$5WNH^BCz5@kp=*is z%tN>z4?rtg2736a(4}rCG;#`^huz10=P!VF5DqS1jIfnI%FTu5>m9WlwQ^4Ao@?8g zRx(^U?NG<{L#E4Xau&tFM>8MWFYKGCy<`LI7ydvc+6y%sO^u`e1uJ7A)V_D2FI-7i zqR*lNc~6dj7i0~xej7kNR~Gx-p13KqFl`)ZAGg~fpR6<{Y(1eWJ;}afkFy2XM!4S} zf>Kh$9tP!SZtI}+#9o0u?mT;jzwSr?(Q>la2V&zYQ2*O|mcu!F9Xj^$jyj-JbVf&0 z3=GZyTuI$sOI-_G1zla8)f}1pEhr!!qEjjg@>L=19+Jr=WNUn?3s7~$P@kyT&Zl}h84C7$AU{7RXOd&_t4x7P z;w>>2wV?t1^;WYyrssd7(;IJpB_@K$*_15{e(D{Z<%`*7a8EX-=HYX>g3b01Vj;PJ zS^zDz!SrNfS)GZ-HtGkmDoSA=brM^sPpH$*5`U95pj%vp`e-VX#6+RKG%kO!2SUn5nL4{P`1UhB@&&X z;Tb{cR8!2CUQ%7*jy?sY-7d?((-<&EVCNrC$VlcX$Uf%W!UfP^3OFJh>xBdSGHx2X zneo#j=pfkHd#N<49Tcgpz#-|+rn0fzeJ(rS1gB{vzZt)89P^7J$OyZK`BI+%{l-1z zgc6}zxG5W$747U$25o0bVZT{N2t^*@WJf-v=90o^XuTZFMJQ9wV$Zz>ih_5@px=y* z-ec&lK2U>biSEU0Wo|K7m|@HdI*e|JG=jaTD~rN!JO|wF9##kF(7$8TG!IJi9$Gmy zAM&!kOS*JWz5!+33M9=`f(t+A}!Vko(L=pTnf|(hKaeQ zD##4qsvgmfKsT0R{;>W=f^P^29xU;}zJ@A&3+nW*HWxupKIMm-K>q^F%^ls@l(}~Pr zR-ZtK^g-FB*MqiV1a|%hFv+TmDOYahE_Sa)h!FdexeIv&o%HegExnTQ+Bj^Evr?^W zc138&f58#C9sA@C##vMawnplW^zEn!dg0{Xjc21FX8aq8Qur=n;1#+8eQywHWy7fi zsL*dA7quduB9B$wT5EMd;zkX!C>05{Ng|$@4BR>+NC(l=iZ||qIeuS0h`GCf$;l-#kVTmM|@TjeO&Z%>i?JylIoi)cfjg-J(-!F(k_ek0u!ZwA#s$v}PoY~*r= zBY(V`Pxoc`^99d}`{j*lcRkB!Yqhjr+5de@W$X_o2Y#MgnJwiJ&j(ic1HNBA&_w(!Vl=yRkh|)lVT=xUV)vJEDDnhcp7W<8#bN?`u3ZGA?7SQO#tLven97XJ51r zL7Dc-a$0qf(?uAYk>K0H@IVo98Lq<)IF-+0UeSmw|3BAWBJSVvY909PrpUwOCCDte zqC8Z+NH9JC0>BvLO_V0G6F2RWcp6)QW*r9daWmz()I@XzDf}(J_-x;L|Jp!WaF|3W zC)Ap78{oS|t?}J(8*TMOC^H^|Cf-0Dh+SYs?I>6ob-|sfq&xB5=R~$|J)PHI;BRsU z>G1&-8dqhBQcelOBtK0#t&Y?t||e!6>{6&NW7!`Av7GMi(L7EL`eKm?0%k|&zZ#UAKYg@E>y4N6aD-N@d5=+QT zX!q`s1V@#PD5CGt*TR+d#A1k6a9DoD3HTC9pEcw~ypw(Ght^VX+`rp}p$6fZT`bAF zh1&w_I4cBso{!?{KwkHbVPLRcjz0fFy8GX>B zuGIS&JE3^^gAL76rW`kj=Y$-%?f>D1AdRLnou4X)eQy*_qIhthYJ$2ZLVuD#Ut|)H zUetq6Mn+s;na=btxE0&m)2*V`AiQBuP>273-hGRZ?)c=~>f+rQ zu4$MS0+_y*Y>5|Ml`Xl`k zXUtxDAN`oF#9U?SvU}M`Zau2`0epYZ;Z|@4G*2!lhiX%kp?B;;R3O?BJ5UW@CzpVD z!b6L9k{!=^(P1Zoo~dD1FcRH$JTk*xliA@NS`PPQK5{MDjLJp-ptqwEya)HK15^KY z>=dw48c+dbI}gC*Yb1OoOQS%OdIJKhWdRQbb%psDVzQO4er)O zOb9#~A26*xYVWfSVj{dAiujS{OzXYfANt^%g(bn|s)x+x`fyf`rOz;(;I8_^@oQT^04AGuE10@rib3MHVe)Ff)d@6=2295F;RH0d9UUVc*>N;5+dZIpd zJFADe(IRLXvZUdxfXJ_q4a0H`epq_0TbzH~!ys=(2`FMIUCt zeNLRE&NG|2@@s6t@|8Rt{q;ItZCc7cpro!LkXVa$deE*n0fanP_*sLw8djT$6hQdcnBYR-uCIQj;9 ziQ~xGNHS-kW@@WP>Oswf`u03-{$a)~sP*3)Yv430rq>6Nrhw|iZTnd@wCP5a^}wD> z)<$~ob$BuRaLMdxs7s2HMeROjs(xJy0X1TVHdbE(>UlZ{2a5@sEKc4)$2kVok%WKa zjGC!zP#(aG7@;L=n{^~jndi*xa2904HE^CU(fJ%?D~6YRO{_XrcIz$t-%U`{t;OuE4OGqFl|%Aw>5UjGb`u|q z`=!tFXtjiX(a?}Sd<;+gZs;EwY&sJ4#ac~pMRrLe#n|9@OzHajTlu5?+x;~IR^U&t zmh?`Z2<1#Pbi*?&+j7|JtXoj@f5LQ4QvYB-!b^*S?E(Y+XM7&tw5+OG9kR}5Rr4M7 z74u*44+#_sJ`b)Dmq~l%=Sm4JPXBJy1%Zhp|4Xv2$#iCZp(C14UW6L^uI|w?lo@b{ zw!)`-Q6G(7V?8pkFOW~jlVlaLE78gBgU;S<4nu8n2ye@3xb-SP>08^}iuun}i-Tq^ zl87dj5Q$KFD*wmPSw>q`u5EaBtX{k5?(PN&0Rd^GyBk!xrCVA;Qjn06?iLB@mPTr` zWA*I%?(+@DIX@iZcyRBv=6v7hx$o-&pKK43BFjNl8cQt28#swvMb@M4g4wf;?gHb; z8|?JU@j<~9PN8q!$`y1iMQ&mpa)t{SOvlJ|IPs4%`x)EyGP;3u_%vkQi=nS_-r~S( zsAug!MlcyC{#@2Vdl%7)F2QNSL3erZ!aD|M1tWpC{!YFYp8v$b;B(fe|A8gA0I>-B z=|lDkH1rR_N>>v%{+#$NrelNBlPE*l>peOJOYwc{f#2CPyq_DxD4!o4 z+nD{#E`*zXFQOos3a0W&ywy%3H&_fm<;}3ZUBk?!AaR-KkN4wAu<4VKznTXsMoarC zlBK0FOZR|{bl6!)>?E^6v0cRk@Jy0n#azHG=X&6o^a32BJTU281W#p%d@|l7+7>>~ zrP(L58-y}LXTzT&Eo0N-EfNnC<)x9*7U{9{4SLMe)kbGrky;R@Sb7PQ@6rDssmTPX9HL6Bwi&18pmxIzr8- z<<+|z7tEUWX{SDUnaT}c>{0OC8JviZF$&$D{sZlMFaElP9O*H9s_PT!&SIyd)5lql z3~fVVJFJ2YaLSa(F;sP&>1wl8a3c5)+?ocix-b*3_pbAm_s{Up_xq8?TIjjw$|tVJ zCjzGxuy9C_u09~exrOP2Q}!+TE?pnYH-)Xs-w|54`ny@s6pp&jxVni?kWx%yAJH3; zfjf-pRs-i>`>CA=j0xMBjyGf`nhy^4B}-riuY!DIK#Yq=T!Y;?JbS>A@916T-RYg~ zE$rRxaU(;~#Pzk78 zy$uUDp(JY|K8-)v%k2$tN^S*3M?sRAu$Gy_&Et3@^v342A5u)is2cP#^zA0nP3Qpq z4xREG)JSqR@vTGKSIr675xBI{ApPEx`^qJ;K_4pTK|ekPWSox18gQCgBja0)Iz*@7 zOn#SZh3WcRoP!fc9uCIYK8f6l@68GP<|$`C-T)Io_H=`*xl|3{vouq!rcKfJnZG-K zP=#0(>6JR-H)3bu1UHk}N_MwB#(PCiw27JF9-&{dr)Fnoe-1T|Jcy2r3sQHGh+3%a zwSM{pVXzadnX|AH~y4YfE2gSdIaDe-d@zMQo)B6Sc&PK!navQynOBY*ve+amf<0)m+ zHl;OB8x7lW&7^Do9NuBB8+>*4HT4FB$%}Z0*EL6hZaTp#0e{+X>|N@iU9*U|j_=AN zau$eH>*()khTcqd!>LLluab9>9B&Nv*kjz4p5gCPBn+I$Q^VvY^+=>)tCK4>HC8@O zByvfs<;JR^%|lanFFu!b(ASxdO#E`QCT0qIK$gj)ESKxZg^;+(f`=>zzUTWf14z?~ zpmFj=-KLg6f`7O?SCSLwK;k)@$V|+Up36^FMZav8v^zR22%K?|PK;sh;poM*YDxpC zUc6qkQ+Qo=ZMfanWPZw=lNHZy9Fb$Yq|!)vryy;h;p|z)PFTNV6FC($Q84!7kUkKv~)f8cVtfZUFdb_ zr|>-R!E47$NyU{QvX^1=klljVj(zgiI6+oG6W|*72B}0dOfbvY|5}pO9~rilIKR2E zvDWo;?Idi$S#n)@k@PN6Ix!;tC3ZRXAXYeDCXq)Tqu$q>TA!U+)On^0deq}FgO#|G z+&Hj5z(=N6k=LBU_FOZL1mAS+rglJYVGgoO5ihWhd5MYN0jrQXRKKMzQ$EV?q{SReFa>LBS;jE?4vl!@q(?y+u(sQd=q zsQQ+ zx8iv}gHge)&%*!fR@g%hGTo6mG^kqCPdJ;e0jqnI$r)~RV$NwtVL7>L&jJrWldCFj zaNTp^%p^8|`|AoEM+F@nJj_mVQesx@V)U12I;MjU5;K&udOkZJxrm+*&sS^VkT6b& z!+UiQ696Cf_U~v4N%uzRVQsSeVS>69?a1A@tB55mI|XRDsECfvYL_Dy=+iJPO!5*g5jz&7 zqt=+}xOX!eX=ilF|(naOx9(#@YUS&d|F^p(uCwK$p@151>Sh) zxg>5QeUzwfmobm&7m=kNk3{YZHMjo2$goxupXnd@jjpQRiTc$`(Pf#xZp%IM1@&LE)9_2hRcTW?yc9eSbZ_?Hl1c<;@Ad=v+7> zH;JE-JFbNm-*3Wx?0OIIr@>6`jZga`avXvs*i1VlVA*Og-II&Bns9bOX1P zP~x{lB(VZ_q3!B6Bd^n&D#%XfH;QB3w>+JY?Rnw;%GFY+%e4c)K?1p^uCv-%j@-vC z*S?ZlNJua|K@LZW0SSQH8-XwR^3 zTt=0nt1c23^YrMfDeBvSUB*)d)<}H=cEfceT=wbCXUCZMR!HZ#1Bfk z%3IsW9$coYs2`N|)P_0gd4tNVXVT;||yl39C+B!YS3v_kvve3hQ%sUq?!_6oPg@X-(6$3Hf zLhl#1;0p0q!7+=H{fL%MCR&@%FsBUQCNmfRQtwSvMOK0^{xAZD@jb|@=-Ib`|6L00g=O57r%V|9Qge4Q=QMQ^jcrGWmL}6 zv&%+kI1!5IgRLAyOPn%`vj4GtxL>*9+)AVjrjQ%$Q$}^I15)Wdr3;C6nBhzZmt}Q4 z7;6_<9=ezn$(aAeN}v5Dl<_z#GgLSFDZX2l)ropbOvj%XzZfED0-v;+T0osHze$vi zha=vQmeC=7+Nb3ocYeI{DW3j1vtjsJteDJcX-09g7S3{|!J#IUi6AZIi0_QOh%H37 z;zS}@`d4bG#KFo4mRj0Q*4JaXgsj7X`_biBQrWKPeloV76fa`;tjxSXvO zv0TI;_l2-H5}%6M;zXepoDxsyuH+%Rp4ndaX=TyA*eiEMv+JHDC7#9K#JHzCbn|N)hyJBgd%=OMyvMHSh6ZD((Wa>BK0Nm-j^!{pD zxoP59?7L{LNa^si(D&hJBzOEzX|sCPSYZD^48g2-J2D7soG@mzozSM(jL!E{BOlma z9SIlJ7t`e)m=7<3Kk~kgZDIUaBs=?jX7!A=UrKyA`QY-2J7Q^?i~A``9NKETALj;M(HTcN?Zfuc9Ei~nl>Ljr)OGiwShb?5svMO z-il0!%!quB$kD^`?QopLl8j3{RDW`jvk-g|5*yE^T0Q-PLBqi&Qzc;_KF#ID z`|TyQhv;fcu(Tdf^2(PJTjKx38pMQH^H|RK?8GLyHJG^NK%)7PT_gnD7d&gcC%r|z zZ{2NO=Y$X3Xl4f)be@=Z^nBWTC0$ODuSzZD`3k4C(*+~H@gA<$A;^WiMYpT4o~5_K zjkFh04*igk%nsJg7Z83D%HuN-2j8VL)eQ`zkg-_vDgzU5qGBW^d^mI@)H}>YC&$al zM^#nNZIyD~qG9?5+m;5n!z5b`KF|8@aHwp?2#dV5i^!&^v`Ub)gXIeXlx{J9J~j8ww*>V=Ft`OWd_a$mx7o1ZQyTT zO-~0=;o7q$kkNfk4a0=;6u1$;k)_C%nC>k{yR?|q34PVB@Jk;+XRNuo!HU}p(G1zn zM7eUJ>hh!gdJG;@&XdC(14D%86U=U~TIM^nbKSmTS9aCuSpOc#qx8biqA-Gx0ydcx(99kD>|m zy?#g^2xgHALsnO+7TXXW)uG;I{zPC!5|JXO6ic0*GCH|*Qis6L-nuTC`$!jntM37r zbEVOLkJ)`Nh4`Dgi+zS0iI!7LKFl5lQwPZJ!HUR5>r734j(E}i#Vg@`6iKR_JTmEh z;Eivyr=82>e_|c#G`@Qe%_+t!eY@UYZ-6d#Z)2+Y+?tC?eqnkXZtY9iEokW$1QjsI zOu#K`7cDbe(a;+wu5fj8k8v+_trbkRFdZcJnYFcH^8UngI4Qfve~Mf2S&8$B_ld#M zG&xnRgU`Y)Vgge_IO}fZUzqePC7$Y}mPwtQ{3$TnTTQ&kWD_IoCZOL>M(SsTIoopV zlAttpCdOfZQVTufmByc#e$~QWmO;~>B+{sCdI=lmQUp!dEaq`dL;7SAoY&h$Myw<> z<}0DSxP<-%2H*0SU}oU=5#`1RUByviintdv)--+uoAf?{*f+6Bv5E1Vl7Mbu2V<<&3KokV*zw$gy`r8y8s6Ug`Z-Xl|I_;GG5vdF5Q>^_ zjQe^feCOZAyG71tpUs?@k({wE<8$Vv>}TNz(JAp;iJelG6bCDKKIj2W)am+s>lX2a zUeB!*{uC|H3y0!t`;^{Etg?z3^O3q;rv9yV(dOX{JJ0$S6NxwWcKf2$15car+BUT@ zb`m(RY8!MNK9uWL8%*M+!p5CJ+ytNFKK+z&*gX7M{s3Q$uMM-?E3h$MfkIIbv$#g| z&nyE*{!Fmt@_5F<$Iwui&jnZqQ;jF|VCExJ4A!}c*xh)^Q|QjU*9(KQ;*v{98xu_u zT;d`+D$nAN6JMi?-bj0>?=o5EDS43T1Z;_m!Iu86 zp4P$$`k_78@M<#@S~;my*XkG#tUW{(x*OYxj|+c`>EgfQP0VV(5l!I=nDCjx5%HXB zCv1u{y+8Oq`yTto`)Jq_$9t-SA2wHPg}?fXUB#!uYW@sPSKpz@_&re?li^LI7Zh`i zt;yFHZed$if*;E^U@UqdqcLmI#t89;#dhw6p1$5=Fs0vhXTjk;m2FP9C&xQ8ttrL@ zkn*dk)zOKqt2NW-8tLXP`z_IdzQy(xYPh@mb_K7bbk9*H*OOdjbG6FRFeTf6&^49K zO`E6kiuDJqSvfV;;!BoM!6rc!A+wNQZq@@S%!p3 zJ8Krw>}8#wh$FZKH^sg13!0BLz=Tc1B&H&s9{ss5!eaMcFXi9qKaIxpeBXF4#U>Nlr`r9IF(& z7YpJ1F;=0r>b8zbE~RoS7Y>-(**i5b*kM&hDERggTlxGLe~n3uoHyrIUCO)>H7 zZetb&($h}t2=*918gKBF-2u0?PaOf9R2}6u5;3DemMo0zn;TQBRDFxmQo0*&3?^ww zDYqIo@)4DoV|)o$9kjQHh@JT`Qi1~sv9#*VrN=~ghQqJoz1N)boEzWd*?alI?@^k(MaOu<*+w&9I zGxSfeMu4(`jPlR?U|0@{xR1j7dWJ8=x~Q_So82%r=$Ev&+I@YRk=OX7byU}*SIWdI zL??y2go=gkhuo1l(Y)~+iGlKKrHl4hH_^{{iH1f|`*~7Ruug1o% zHj+r)v?yAHO>v63XdJP}lCS8$Ssnc)im$+3XUl zcW7p0nt81Cur7_TW}5SixB3(PM?8ghBJHK%lRciujrUJ?eD0=F0Y#4|-CP({`l&n0hIR@b`2X zOe^O~c7j*dXyweoc5UJ|nT7@=i}!L%<{~o&^X)pgiGPC~du4FS$H5=kk~v3~ za{fh&;T!F~GDn^xg%WoXNzzVfp!`|B1`g9%u)eaS2T19*lI|fT*IVtN&ormw&ASb> zz7w>L)+t~f(Aw|h#XRW&wHI6BaY&b@+M+eiyl!S#<8b~}sN(DuzP+ogr- z?;6MfO}#Tb-+HQg?z#)OJL1-HQphFj=iBim_%-}*!WXfG`&&;_ZwX&cf1yC0;DO+R z;N`&I{>Q%8-h-a9?k-|GP#W)1{fWxE0zQjPqrXS0Mz(~_(3w!Ta7H8${~j*zBpv&A`-)S6oQVd2IB6W0R6c+83`IpBtZ^XeOUjn-~MFuqa`8^Mc|3~Uj&ssn`D>NcM<6{fn`^A+*jR@^y%NlX z5i|>9Gif93HO@GoUj~JIs`6NpF#V6d!4bzlbx72IpQ zE&QtgS8P0MdB%yexeqwwRU|U7-`rsRZC$XxA(kRh{S~S%SE^|8ce!EgCVDiiLb5qZZ=n1c?-x0keIoNk#+b|o*$=`g z@j}X5gCYxZPh9`_{t9kPZjnN#lt~T;bHJzA)>WUsi5uiU$gh`Yrs1r+8x7qt;LvOp zH}P%QN7OlDH8Qi$!7O=!JAG06dt`z3g4a;d7_OaH=7Z&TP!i;G@M*cKSbgkGiXi>$yB={Ql_Vujq`bv1<_)IgMV#bYeBO2)B`4!}JHkZzD0?{?iz*mXX9*n{c=65n1!I)@3gacZ#J; zue51a7h*j17@4(EU>NRU<}fSiOypR%!O1Y(+=U(3e=t1c)Q4z&K-8QqB_|TGwy{C6 zt#MQOqH0E}Q-pfPINTW!DJ!~%x!<`SV>_Nli15Gj%ekMKWNMoOBD4OBI$wU6xD$T> z;>t+5r@CHmV3j2T^fPuo?!w)?mHhn!4+4_|Yw+1v?y2G0$MC9bOxkGX|S8QHlpmG7T>I+0~ssi1Mj$(Ft5xKjk*yQ|R6w%Kj zpIKAwguHEG%n#<1W9THd16Ppm0v|10rQl<{rRGu1sSjjjvKjFMZltEQ(Hx`ypJ+d$remqxVlNtSa`XwdtSNz7XIZvGPiJM zGVR46`DK|`(bcO3AKMAEJN}6GIYshSeFlk)GBOPkgf+Zu~}?g^u~WrGWRn?_GoSnYb}dE&d_zvA!g-|rjZZQ|}L1li-{al53sLR&4* zjQ<{aoULS3OW*LZ{`+6v*>4BGTlQa{5AM$wGx~;?CsOqf&T;mo>%MP((4Ra$Ih1rF zX!?(P&$}A)8oiMmiNxe$;xO3-W}JRtKP(j92t#1LUC4|eJD{d;8Z@Shu#G&@CL$-~ zpo@41Pq%{Fa3zH8*|bF4#J~h0&5zId4bmF)(bbvfrF&LykN>gG_hku}p+ox|jPx-{2I=nd1~R9}Wa z5J>f}@a}Mz6zg#%Kt~P37`Y5w%NuqnQe^zREuQmK@mCLSPx=P`W+#JX0}p)Ly|ibR zIGwvdA4GoTceq9gY&weDORRrD*#A{;gVgaBSREJOo>$7MLoBBY@#kHJcU0h0a8S~# zV7b5_-uEsaXh)l<=0s^b6{+fXN|Jm5{V+CB1ZKHBQfc{y@=5cVvh|jT$}E>GM?R;`;Zs|D4l@|F4y)a&BNc~{0Wz(ni#J}BII zV-=z+A_XD^BeBS+SW05PbV~jUo2}ydOXIZF7)k5qMW%CIi!~*Uw?y{cW-CbQfgd5yL%mfF)P5lWI$otqmOPJS{K?2RsKY@v1uh`kO z#C05Gkeu$tuJU3@{wM>NDBhISjNi4cNF|-a&vbys>vMI&m|%>UN7kqrwT;S6odo~9we`@r z4Gv8iW4T!so}LcKXOzO;&A{gQ7pf;Hr2=+AHDUEzqI-K>9Vq(}YP5S~X81{XcC>0@wo=h}4{Q4)hT|3C zlB>1n2e0M*=pEr@z58&!E9$cO+wAX{l^=4BA-_=D?q$2svAB)o&__6Xid#JlQJW;s zNxX`0#O>XI*K<5rMPbupZ?R|Dm#wYlHiJWQtf21Et0RA&&{+^3Upvjw5sYBVf6-OL zljg1My@`$2Ay*6p@3ZW9raoPqY6eo^X>?{PSxpR6JumACGVwJ2b%Mc(I2mS_B%_Pf z#MwbqN3y9eF%`*C)f{8!;B0MH4PilC^xGtOI`(L)i@V`>A=`!Vz*l8F%hTx-l5 z_-%JX&a@hcj-xPpd87RUH`r~}4M*u8(pNAc#G*uW1UjALq6OkzrK8GaZM31HBf1gk zI}m%F|ByL)Z{{(37*q8r+7Pv`vPurfpQW<$e$Z1pC{IA9Xrdhi=L#E9W2_kkgZvz( zlWp18TxFrGxD%F=k-|S*7Q^EvpBwM;mIkdig|#7y|6OZsu}Uj%676I6!)LO~Wev%^ znAsH5{}-{6au02``ImE*I?9x0e@2pd5;kA~Bt|4>3;Zq9oTbht*tcHcrXI9Ag56pN zZL%wH4vW+uAR`xdT3RiPp>RSSz#Y4@bVXW@K6)diCC+xFIs~Ncsag|I!%kVvh`!V@ zdNpWh5hNB%AxpoO>4B+-OxHo?{sMiOnoPPef9r;cKpSlO=QJElDXjdY7qEIbF0wlH znZg7J1e$C3Yavpx-IJrQ@>gh|&GR^{WD?NohiUfaxy#_kpcq%7(8NcG{=T(%g8}7$4gZI}=|hy;g?kxj<2yNhQOBc@vhAJD~Y&K<@f0 zY`dQcZ^ZuY>Yjhxw~(qm%H^h4I1|lz+7tOdFq5t&*2w{FtFaN;$_Z!!d}Zd*=1WZc zCCFv(qAl=G|D;sXpPF+Vo483VbPnM8wn|+jHt_sMJ=H6fnt~sZGjE+RQzW>otG{`-6rZe8$hyV zvBmC-C*1d-6o;*nuyI_m9-HTooL#H`uEB|+KG4phLH5GzVNY|0qwA2HI*0jVRpiXO zper1K_v;Khk`7=NQB@l+*MXm^bwZIAD@V1ESq8oIx@;LCr)#y#ah-CnanExl#Hp_B z?ytP#{f~luleZ^JN$Z1d|7VxR_9Hu5E3}_v6SwXUQZ`y>h4d!yIwTuA^yk_sHS2%V zD3n?|So56`8GrX>Y-dne(0$cZUlCHi+}H}^~^;-2U&>Tlyu zc<;FviKY2c%qSuZ*2GQq5j^YH;JzCOr(lNKQ!~}pYJRmRvPA>b|4~#(G|nCpTbRwl zA*bFU*Y(2k?H}{zl@A+k@;*{^IO0i{gg)FEV+}taeUgvKWo0 z9xQc5xKqp#syOJ>7xB5?1(dY&u5_7^-%6#W_VH)fazBguVwK_@q`As|ZHd{3n8l)4k{1Y1^0;dIBPZMU9O+p zdy#Q0hBV4O-eQL`$;hicWFGPxT#Y?NytBPaJuO9ro^P3QpXjXY$(ds2f~@6{p>h$k zB)Oc^+@<|-|I)zZVB=uvz*+xR|2E$b-d4zA65gC{gt&6E2F8~XkeQ@Hj_Nf-qiU~bZpO#xAwX{AA8k=Ox-i_l75gA4I%~ z=4v-nbw*QLVO`Dw3;lz!Ok>n5n6us1Uf6T!`+Ng$MpEvyE@{7{_Dbm;S-;fX!?}*f#E22a&g1L4HC%=MGuYX#$E{68Him?fgzVr#SLZAB{!o z$#}C+<&0YC*FQf=zn8fZP;DDj(QzW zFIOLK9<>sEf``Tw7y?Tuhqd8mA=t?-;kOfaRr1{rTny$6p7$T}PIissCQuS?3V&&~ z(nqO?_x|6?Y3ZB9Ke1wwuGxXC23b|JzY8<*qRMW)kzIqji2O%sdIo;qIUN&Rz@Lq3 zNO4vK?=z@wk}oCb#Dc^csl4*5hHk5UhvR4qv?gw?TvD#<{z;jp(_vSS)tbbux+63XPF_=WBLGW3OXX`Qa z5LsfN^$*?|Mey%9B<77DPW&aeP^W9NK(HQUpN7$%wyqcy%qD()zm}%nQ3h+HVVY*l zKka;IJiaC_ktXPUwTUkF6_BtCn?-QPx5?Zf8E+9TVy_uy7L%}o>rK?})tvfAqboDM;*2 zCeNXJP?R1;>C}4k$~quzcNnCk9R!7UP9<{=Y@wBuQtATDWriG@`I&#_s^m@a=5|jO z>k5z97a-S6M5Ayckp~8#@9E!3pWR1uOIxEqh2ojDGCOB|71|j|k3UmR8n5gwdNXxkXQeL1-@fBj&09Yu7!X`Vu+q`(`t9x49II_$D9~ zRdzmu)H=nyt>u#1NBf0+p@rG+L%XB##D2B2sUfHEC&=H;aDJ)+gTo}d9odGd$A9nM z6S$o+HLXV4iIld%R_>h4GfUK}O5Ks{EFZ0zSfO4sc3Ib)mmpy=&X0zr{E+x7`c1T6 zY<&Efv`{N+nRbdZ2ygK%2{!UMvtjy~kIg>Jc%S3L>QA4(e4TAYwj}x}HS|38De^5n zlMR4zGZ*9$gL?-bQeXVs6Wk?!6W-B7+1mIvOgGZh_0le6|6j-hw2J07xaMaOQP8a! ztEJf+eWCA60XMI)R1)(G(+lPZhOA>{XzP@}rP@-ad|n%B?sx9e2e~4=kN?287aC#H zJrRkt7}p-2Uy;c}{qAftZ(wJ+NO}n#O#sBw^VTfV0=s5B(y1d%{QE1(*gQSbHkpq7 zH`$&|;Y+bYN!o6v_mS>JPGpOjQ__F^{5Cx^qh|K`NC%0~${1~|?jTj=CT1cNITMZB zYh*E|FCTMF@;>z4^0)VAx`X^yYPj`I=40c5G=CPJ5v3Bm)Kq#YchC;%v%xp2j|tro zsRt4#w^hn0Zhu7{rTeg@IS1^lIn+)xQLES;K`c9KeI~BZE}nH?^49e2@P6m%D)weM zY7aVf9l)A;>l~*l@_AfsVajXl3JM*lRYq>5lyow_GPW=NO8%rRHJ>@3s6UzKY-h~%_y(RUu17GMd=%!1 z8(lBJd))7@=naZq?liNLI&1gF3A41(0|tO;nkny&XGbezc3oI5A)itj8U>u& z6V}(jK zwTwCw08?b3kg%C4LYSLLROV zJqVVaA$k)K^}bRhX_9-DdvT;YuZQ(4MJgmo+yMtwOLigs1ChsCZ5%=ia<5(wlf2Pr!_Bu&A`LzY z?Vdw0@*dZ2!K2+vU8N1gsT|TQsyh>9JECXMkIg~nBMaD9wIfo^cxLow4(FD+2KhfFJxH1t$nPuWCirIbdh{?^`Y795?B^-!t?%x~AE6S6yjDpR zfj{<5e1#m-GVD)Of24$T?5SH&QE=tHvnRns`4751&B;CVZZ;o37*oFiFf7f1nezR)*5{vuz{el{Nxg)M}Ju7R$Su1uKS{{x?RDoABxh;n2t?3g6x7j6@O z0B6^ng20t#(=dBT0X_0pE{ivXQQ}r%CO4O!LVSU{t-o4I?uYLAxv1DVEqRPtz*kn{<+{#U4P8dn4PDsg65l7Fm>e$@Rf+t3MLEU->)uY;PDzS{bR& zZhSJ=jJZyorNT(Cone}CkA#x0Z(OqI5s*hEY;&mEGGT#a-AwvNi5L%^QRE=>>HA<8 zbI+KlZ3mrlrP1A7Xi-jGP#_B8c{9uStZh&XX=I{c>{?`J^hsYtPJo2?d1f_EdYKyERHJ6PLoTLi<8p!c6p4>`CGr zrsVa^MW$|kvI@W+G8y!q9kcRL zGaDhza#CHPP&kuphCOtS6qlFDZRJZ!DR@V>X#Gu*e8C;{wn%xN)5-lRciWuLl5_Yx z{B0+yFV+U=q*ay*35$IXgWo2vPs;M;7Ee%H&CB>xr6%Sl!txpYv^4?w>$UW1`bXp> zs+*hD&C;X90i@}VYnQDARa2PYIpE)&l$yFI^=R_>z$EV)@fFjEcxL{Mgj5S-gW1!X z>GZ)T^g8u5an;u;>vn>-=Ko7~ttoxN+%)*^{1(V>we zF`qI~Z*OX7rnrr%IOj8wHJO*v=YQ#uwI;Gj`9v%gGyNq}+NEWt{+zVQvzcw;4AU1V zC6#VC4-_D8FcG0NJb4G0CU%y3Ar{XXmGM``r>uj~@6}%R3o=UWr)E$VS;zTZx8Re` zkY8$J?261EqSxEr*Vx}O@X$Zg`^?o(IK%D&3;zUI&DY7_aEJQQo$hl5e)ga8lm3hi2+g zbFwuWCbqK74(^m#0DGXb_p;SO0lG9G1=&AJ+1D3vr`;Jq@9tHd2)Dp9A+I#M9qKcm z*_oakNy%wP(;lXbN;>V^Ej*(#oeFjgZ0r(nR5b&Q$!&{B86PA6L~o#)u?M^AU5RRm z4N`6Gj@^v4T`T-=lRM{llH*}Y#Xt*pZT6w{S{W>@PRxt{8gC{~*E`r?cu_}bjj7G_ zqderF_9dM}S3C)xBZefnU&RUT(cZbf-#z<%`VeD|A1Zm#^o3kGxMl??z!7HN>bRHH+1aRY?4( zWs;R#rvv$OtjU|1Z%&>QId7)k4s3QcXNMD~4MgSDP5J_BAGw!3Ewpqm^JuOW{5@tK zbUO})U4XDGOI z3AEH>_%^iqUt1B}iaPdDBSkqD`x5b@9W+*bY!zT5?sfrJa^95A!ENqh{0lnM8Yuq} z>kw}Sx*;K3*uGp>&L}yRD$?xuAF(^pkCDm9fJf0*ybwDS&rCd$4ok`Co9T(0iFb+T z(hB7ME5y&lx+YTP-;{6lD^@c32a`kSDNYsY^UK(cRBxw~d0%ZT7gM(42E2wW$+TeF zQgx81{6*~%JCpq&vkGoe?W5HtR{v~wrAmO!pPRWvtiVm-rheBvKzz@?_TNaGk-JQu z(m6wcU3{`LKxq|emU;He+RT;VDeGqD4#bI+(hoCRP{^)?pk z|KS;`g2LJc*{lQf|0p=Cz|kK?TsEI-V=x$LgFA>RS< zJzdGluUKGh)k0>yvvCnqWep71Q<$AERvIKYv;ZE*2FdUAU!Bv;ui_#&C}V;~e{W~2 zeG}KBCn7~6yCUKEUahB-Nk11R`SK?XOX?j=_&0n0<(Fd`)Ro#v?PgbtoTrEPk++Jc zjo5*o2UANa^yr?UFaI-4Z4x?kTfoUVZ12aEufJYfb(9_25hHG;k-suD|B`=zmevjM zizhLqnGtA-({yiacuJ7hh~xGLeUh9T_l;c%RrYCUsbgDwnrz_AH_NHt#g|96hKq%p zM9L?Uv~t!L;u+nFc@4tfdSZs%!$?4M~G`<8jZAdFsmStHpliLQ8vF3Zgo65M!gnR5|@)mY5z4Q$IS2Ghvq*P}V;d8F)^TAOsn-~`z7daYP6wM`FH-=Jad{@_H z_eR$b!g}sKZ8<$LD;x~RZ;)KUJ#$C>f#f5}&jU?8xA^OCzY{lx(>-grLm3TwD z{Ik4&dRDl1q1C$-x0Q3kL}8aW4%GJru5ZLId@c4jsw?t@gD9Kyz+-)v$;JQbDg}4# zaZeihMvOP%{nq=$)7n$pRYI_E(t1Iw=(s*MPJ*VsO6{mg+Ijtf8Fw_i>xVGquw7ki zR?s@jq`XEo%%$X2<_z~zAlzHrF*svraXS}aYJvvW6505I>}}za&!5&IZ;yg=3jbaB zQ-K`0j`;oDa%+gvLaMIhHmVWT_z}L5N&AwX1WtH1v8Sya%E0)PXu$+&9H!2SWbky3 zK;BFFmgilTV^W~Fd%Vzw>ke{A5w4~%QhY4BTzOr41)hBZ9!l5$rO7~CEQtB>O3DO@X|ldG*KA9~?7j5q}MJ^BJW2sd?r+C$IbD|<%yn)tK*miLxWnVA6| z-gxJNO_IC7bi9iO@V|6NDhr0&Pu5SMxjaV``YAbxeJZqfkM)l6rv`0L2|XCSqh1Ts<_3^a+;xKdWLC8t#zhY7xc|arqoC7s1`B4 zwL6g4=~2uXva(rI?isBfx|!W1A|$G-tE_4C9)2i@j9vJK)OxcOJSnUGN7Xk z?pgi@!8iVuo>f8tW{=}GN1?OyMXhesLCXBCdC-1jh4ra0k)_M+5~bqzW4mIVkT0Jp z4+mNQh0)rYW2r_3xD}6rL)FucgP!^t9Jv?tM$o8liMf1@gO!laXykw8dCR3ZhVn3a zIx9~`*^J|v7el|sN2oK5XVwPdFUrEsMeiUtvVt3HL zVVm@kF3!?0dN$&VaueyU#7FalI#3cNS+1q+GuGRm2!~t=kHkA7hx6WUKvbae!n>hj zLe-O@Y11LB4SHC~LZ0@iy2vES`mA3lEw&R1u#E`N(xhuqEpj&AOI>KLa#U~{(H+qi z$UPH%BO9}}WTk~WN6RF-s}s#m#9L;&a9V6Gz86OGN9e0|dA*&SKYl#2J3KcsGWII| zlVqwMi*>r8$L|5*)eqOCU>`Kzt233INEWPm}$r_Z+gyig%q2iI5k?x_(nddTAW^6zUn-4t*hohEsO5bSxZNCQ@r~`QjjM2v+ z?7Kj#IKxEH66p=Y@M>`18Zn=QV%`V7F1}+PTUbpkH+D(Cg*Sc~@p*T~u5e0Xw?+{M z>BCG0dl@NNT|!emiBE!Q2FKr00w0jq4=;BmL4^ zrH+ywCl<(E^y^NH-RoZKKNxuL^ShyGBP8v!hux{nDb=!W(y zZK_O5HRK*@V|4yblLN7l9(6))=W%Vujg`x&`bFlu7mEGo>bpO z-#X7WVFHuwOfxbt^=&P;k-~BmpSGpuCFJNQAP-g{u^?)O4uy6_IP^jinvXcoO>@8X ztVWY~vG^Uk1hkFK92P$~mh%=bQ&TmF}^;Ke7{AA+16paB1M5KnwqMx6MyyXM^?m9h(9l?-Qmw+ni}bkzjR}wcM}*3eJ6 zpM(`zSnd&3E@kJ}Ak3 z*xkqT(0v6xfkWa$_5o4O>Zjx53hT&iPyzl;{1A7CJ7grMXMIZlaQc1v$AuYLp*^ty z$}o$hBivi@H_unTY)^ji0^5RdK&&f+8yHKU0bk`I95;W$a4^C4TQ2(n@jG>rF2j8i z4hs3$(L{c8vKp82qlp#Jui35Wm)tPC>-UqI(OwxDzZ2e-og*|1JFJP?I!C3W*r!aP z7uaRAJ&BKz)i9y$j2@Ma>Iq^sU(iE&Ke%pj1xdxf+#$;xxEJ+-i37%rt#%pcyH-6iZ#T-PFYQ+g0Lp6|<*VAhaxFrNs3 z7%~Fhu3FA|>Q}ZUT3u%`)f!K2AZlCNv}N*}_`mR@S65}@j5C7@QDZQ@rh~U8X6E%8mDYa{**K<@X?cw{rqzNAbr)zXYN)vN-F#}N1{^fPQ0B| z6bXcC>T78|tXON}OQmI6dAl6_Qux=`H>E(%Svl9F#sYBKvb&rCXiL>Z$G#vt#yu%e zGFZhw$n%7w?Qf(np)DER(+i}>(tBq}S(hSzCe|u*v{lAyt0g%4qmVTpMY`=YbUF`c z%T-g3$fLCss{&FeEm?t=xeVqT@;}q3ot9tX_p?e{{(6-Ni&As&dq>lB*8|R{LCAAC3{fZ>)V&qJGEqvHaS+LpiwVur2a52C3;4_iX_D+ z%MY|NR<^Sb{G?J&B|SUgi&V?%n^iS-UVldIb6rZBlIwEb<9Q-!Fa6K?mc(oDBwolx zaFe;Mk97u6FJYm|O*}MTt7&*h8fS%dl+ezhI!<@{+(VFRG9f@ z(EQHWVi1{$jAdo zAj^CS2C$D-f3hW;E#&jw4%`Z^4&3%Fb025xITiKl^6!}J6X<}%rHX1R?EM5}pQ7=8 zu@2E0Fg*C!C`L`ls*7k z@m!Hn;o4y#nksEnCumpE5)Z|zhI?ea$vl~PIE#&TSDILT=~UNWzJ&ir|9xLsU)0;v zcfhyI*UwkP7xOOi&G7U7Yn~Y{UhKthWNWaS*-PL#w1b0})+#0RWJI#2-O4DAefmh;>10PD9l9J?n2pVWW#yM81}IBahPWS?`GF)DUpscESH}6Nwg)2w1hilhceeT~VsTJGcpLorqf9 z9P4bM44gHG^8J{?&RXS6_{5h#K7M$g{4sC(_^kQy6x02G9GzpBU1!^dm$|*i$;7s; z#x|SAcG9@9&Bk^c+nCs9V~l58%lPj1`_n%?njD?kd#&fW@9R2GtS^C*1E8C|81j?r z%m*;#O{0g|l(;b|)l>K8|B(DVzJucg3*=T67j8$M#@5Q?^(EMA=9cxeeW|^h?JaCe zQqhLW^yr!(y|cW5}moe zjxX^YlIkV?9oNqBiCJbI70-aiVMTDeLM1Yd&O{B zl_F5z(Xp=Q8}?iXnYR*Uii3-kTQ zVj=Z~aSC$bm545MOU9&@lj(RG(pmqi-iGv14Q+|J9DhQNgFN3Yya{q%L*#a`e9_Kg zbv+e-$`rMs&bbbUtri=PoQM|pkQuwa)%<$+XYV{C`rYK%k@kzOkaL7pri4n`lz%k=UH zN}Qz^G25uF_&c);bWwRZ4ZKk`qi4gdBbQ_4#05ZHtfNkVmf|tsG}OT7;>|G!azeMO zg{2R%fxwuGlMAb3bSqK}J!r1c8I6-yM#qO^5nt@1SPka3xt6c?kfWOOgl#bM!_)*i z&?Yx6t7GM^skI ze@O)eGMw)7cvMfW2WDixZ=q4KTcWJY0-|a%G8}n_6h?aJkE9FHV0d@HyvaP=L(QWDr#6cEguG6dVKE}WD)#&ly>p;Cw zk?{Jk35npZ(HW6ik#az-#H4)MI^;3_kUUOpAUk6%jgLU@_)Xd*Pt+D7D+rXH&ur$N z@m<)<_-8#=IvX7nsvel?e;-JRtcD!VUrMg}M5_;6_inIFlE9y=hPh6VTdZQ5Ldu)+EbF z*g!6Z?Rnb&8z>yGvz%=I&sNe(^W&L05$3Y8JgL7E|w- zqsSKAUdvAY4IPJDjmpx+ushg0=nw6V)|We(1;|nCT1z~%;u_c^mR1~3<9HAAqP`EN z^?h)b>_%0jS5sEl8&1*R%5g&J$cE60Q0GVq=)Sy=cS6s4jCw#U7RAF!z?zyLSuT`^ zo_s%KHol0;p(VOBn`T+yd>7v}xp@9nsg3hDOuFvM1(n@1tb z^99m6kEu~in3=$wVU}|1EOo8-ElVu4b&r*|;r3yUat_XVkr_n7+r>B!zBoT{@^jRZ zMm!KOYU#ja0@`kM*tMRvpX8nBIl-;C%#p-@w2Qe!E zZR`}bhC;sfo|hh1a8is@b{iG(#b9sjfR90+!cP@}J;^gjIo}B{fWC53NrLQqC9@dx zsyMo@MnHaf196;sNdLj~W81*zInUy@^xz2E#G04`)$8KA z*tO`TXe8ECidQQdBxaCp*~NS#%O}1jznwix&V}U$D(`_D{a10HbP2Xf#lh212CR{w zWKn-fHfXyi!nPtS`dJX<_F8L0L^?tPv=FeZ^YHh`TK%5VUy2iPsjK?j%)qD9t@(Dg zwl;*XPn|%Q=so1JK&2iipN3tM#+0*nb03T!oA7tsJV(s(gL?&pwJ`W|+LO153c&Q* ziOe*9*XAnim36S0jMM(t1S^XFhd+neqn+@hjewwf5ggWsuo=*xH_>KDoN-Azs}cH5 zxLE+L71(qq=<)1Rx(87X-KzJK=LkgvR(vY{B`uaG1CgYioFerS`wKULEJVjSEL8Aiypw?mXVf;mTQ)`mhF}b*2}U2twa z#%7X(@#W@NrKLDa5TQk}RSKz#jHAdUtO&R~+v0CcpYkGhHMrT^)$`PQ+n*fT8C#>4 z0*lOZXgJ2yh)^xEF4!Z`J-8G;EBA#8vI5zdFwh8!3JH-x!QuY7z8}8SKt_;^)POhF zboHk(0NALBNO|M4oExnh>g;dn>6g1XZ@d4`$UbSaQJ#25_hN4{|B^e9YU*5JL3mnV ziT}^w@F*>B)*qvB*YPK1zna~jZDx9k6EYxNmGvz=-TM~2}As7cIp zZUm3JH7vODx)3%Fk%)9`G-E@par$YaO#)?w#dbOi* z7ve9(EpYa*>>#fiZDbuNS8Za0MMkZRJR^UxtN7vkLpGP<2no!=ll9SRd*E5+LfU7r zd{3SR6p$x+0yuA$Vy%GWLb1#FBbJ#~!dAtqa3s5uxdr=#g5YjIA^$X6!+0X4`d$Rw6G3QTe zIrvXAffhU&TlGH%Dmet711z|6*lENC^WhgpqOljeJ7@LZ^pC(~NK-n3PYfo+Kw{ef zjg({1>`x*h)M~b!CDB&e*3_ELe_)%_Gl@(fLsbVOWg6W5J{bb^jO&>NP#n)k{zhj4 z6`>+Gfa}KP=4YQ-obY2E?QkLE5DBY0Svey0;7FE z)2Z?>_r7Igt@+pxHdieb%LqBbonx8GNVE>K-d-)CPcoY{-@Vr|2R|cQ!d_plH#tx< zmS}9DVwQ!@p!=h%f^8I?iaeFS#=1b8F&x`3w=pJQxnz(T!_Tr_w^?i_`I#)iOroli zGf0}A%lyTz<;q$~E$^RU?Oe6LLOh*2=ExSre=#);3&3TSfdOQ7Yg+6|M%z{&-Eu+6YvD=SP5{+Bl|>qPo*zmEOtoq0d^nSXvH zPTVPFfUW0bWM6QM_gT)w+(7tCo}d+iW?*+nJhYVliVX9|<*v@?{p;^v z|7P6DIqUBeJFm`1wqUb>Dp?CA3kAiFu(ACuR#12^9+sP^2ec;oE+9(yfoPQ&y5KM5 z``cT>|2lLjc3!%omVue+6f_wU^9NzhcmXermw`6uJLQ(JFtRS3KXN$|i~7VcGN#e247+)pNXOA41F6`G2 z5qG$QwtS9MM|;~fwj6O291rDTn?W#t+x+g{NsaP1D=;%D#>d@Iq1tWqA4HFeI0`2+6mi(5(d@(+Q zbuiKlZla5&gM9F8`Ss%kBfCPZn*%CF*zC?Z5!&4}Q9nYMkC3 z{+#mAYdqzf|We?vze^+nRM37+^&JWvA$|oq!y6rA0h_~QG2MKQTISwVI86n!?||$V(uOB zyW`)x*4uuvn}|5`x{@Oj@W=mQqz)ZdBo>%3mAdy zLC&X&GJZD7U$9=W?Xx9VTXCzYlW0fnPstB?wxZ%JB^ybncUmjE0&)4`KG}EVy6F#5D>yfglIyVF^n#)h%J9$i&kb!6XPNKmo_1ec$E2>wO%r># z8d`=@3(zOfR!_u=Q7UKHx4X~BHE>t84`E7}gQA;rxBSTc=^Mafb+w8_0e-E$vNPV%#xj@6HMh&J zqTj=|=oxX8o=sG=E{|WFI=*PV;$MrbPpzDQ**w%9RM0PKbBsG^O`;%7OG*%bVSa>Vodft|yUE`lU6W-VXH z-qAJDJ;_B=Rsx9AoWLw%># z(p#9){21FUhXHd~-8s(Tw>5_IW}2;!-R7w4EarY1*ExP&eEWnk33+i1T@!4O+{Bit zcS^8`%YN$NP>(7wH!$yZz7jw#mCv&L$T~-0FT}pKW;!+qL&L%H1jP?|hvK z_9a--y;#Q9$~7{suDg`ursWaSjyMC{f;#49bS~A*^4U2mF_eFJ;o-%Klz3eHR1rsk z=E+!G8CzNQA}K(oW&ors8|WL=YD#bEYpij!ENrM2M=!-_>6)VJCR&c_%&oPRa`lLt z9)B}_Z(L8;7kdM1JB|ly!B(a-H^;KWcEUczKHj#(QkRv8%gA@_9PG~vN*|={@&rgq z4gq@iQ@M>g9&Uh*fmwJA$o{?2!{`a*vZ1RJfSR#KDl2o!9r&;=L&(c z$4=xTt@L~H3t@V+ZzK{K5<4kug7(d~SflVf-{$O1Ke~Rp{r<+gJMW)sEl5Ld@JFrji%gG2=;FPEwOrbYS{8sfW~H!gQ} z?j+Aie<1WcnqMTPR52;GHoP>@-Mb-oVfMAG(K)BQRl=2}>&9JTF_XpKVDHeI@f}8A z<)*MNGBYR@T$+|apr2-=dyR^to57-mJ$0KiPQqC?&=f&IWFitV0lT_Gk3@*qa8!h z;Fd^pi7`H7y@=*mx;|9&``c&z_TBYq{s+s)q2G>WX8L{!CrpM;h9=%vel0Z-4QOt8 zv``}!0&3q$vA^D{4s-9LmswfnI-b4TtcZ;wFHVEe!mU$*CUZoizu zIkj@_-q*orLTSAU9-;4XUx6Vxne9g@u&o`gCQE09-r_77(-G_}{l>D!G064aSpW7rib3OT&TVl!nCr0wPs z523ZR(7N8<%t6^FTlTOosWL=epzi6257Nhz$qul)u7n*h^J}A};&4tL<*)4d4BNaz zxg~vFLbYSBB}J`j95(G}8A$YQKpdtBE#!1&=}Z*Y}1|U5P635T^uZ0#pht%`7Ra!<8Xr73Ep0#h&JqDTXFZ8 z1U;!rO1b3Q34P=8xpvrFT9@-xI44_?sYq`l=i^n;zm1t{Rmq5c2)*_<@lMQ3%RQXe z7#cdwqG@6e^_x)~t3j&t2#&T6bg*$`BAQ%0Wpv7!WF>KA{AkxGdtJ*hW-d7kFN57i zW`N7*CQL96A^<*s#Ht6_QzfwX$Z^9^0-5Jbq}A>qJavLd(u>M236Baxj!VlObo}LbKc{dkbjyD)qZlS zQbaF?Wig7qQoNZsKiQgMB<)K`j(g{PY_Dc3ZmnnegWt?8XVZX&*c8%fwGF%aQhX9! z6@CmPAX8A8VOr&9ohGJai?; zzf35a7>hsXUIufoGwgG!BP7*Uf!!}ZvH;SNgQ*H^1HOu-7O=&~FjI&GFdz6p%9OL?G=MF&DYw>?*zZ9o^yF&&q06fa9?4X za!tPq4P~E6nr(pCwN~q=PFBEBqW0ChA}_F(kN}KgOA&{$L-j(NtUL7Tw@bTpoUn6S zY*U;kVcWafKA3+??lto%-Gz(5CKxNF>NBzPw9RtOmS9&b`Pm!96J(V>OPvC|gS*HU z;04a4M*=^7I9P92kni9I(G0l;e$NWP4LGHO0ZQGWyqA6Q3ow_?&>m~MVK35GU94=9 zdDyh40N<@QI)&WGcC!BFc;YfH@}(%#n|Y`osmi4?Yxs z4E*a&_$IWyaY!j5PLA{r6!75Lb}`O;}0w zWjLBwHnZ2SA-{YXTXGKtUdF=8b|Zx32kTNMn8G*feSrR-2q%m`v?KaWGYDfXTd_gI$|(RC*KH5F7y$wv1>6MK{UY@MW9U%)jT=+}eujCm+@rm?gj>DmEkQH}!AncZ-y1I6}{LV=B*{keB?UwK*t zCPp@hqEcP|3v$D0hN3x@Z-PDAFMK3S#U@IsI?UV#to+;5H1I@MCGVl7^knIBqjd@&eg+G|yu=$>23(96u{VMr zEFo{8i@8z=0UsZa+>Hcdm0;Jf3pt3VkteAlR0M}pm$qKc6u8*VXp+!So~BpBK2Te@ z+mJ|F#fPDhoQct>iTs0kh#cw$bAuZOnZKr%AcwL;sX=%bWPpA^X)28nio`lbuSJGN zhDYW{+DBs0(|!|S;ZwU*3M+^89mq2L6$;5jryccd1PRfx&hCSXloQ>F+t!x#Lkz4^VLytjPo{4WC=fqK6-S{HnKouZD& z_fU~g&yW_Th0Ah5U}XJ{oghX~rRV}cvD-)9CH^K7$hYJSDg?eYKlLB=gPH)D)oWM+ z+*>LDpRkl%SiUV6Q{QNH;C6BYEW~Au>)LT(ur^Zr!gT44DM8*yMs|bQ;hC1GO;PuP zU$BYnm#?bT4IcuQQ<9@1V6Pnj#?h^46RaElfVd0OoWlHb%XetnKDCaq&>TwxyagqV zL+VAPv^qxXWxPUccpYLs^u#6+pMgiX2AzdeKngC@1xR*o-xT_k0BnQ94RnMXz{P?xr`w z8qjn2UAC5v1&+7&pD<^|ZAWb#9He_)LW7jfsgnz?D72u^_<|c#7=rVr0r7OOTZbCr)BL&|*LoiNn_8kKpFpAD(}Iu`wnWh?8l=Lp%-Uzbqs0o9wBs z9_|EpZ|5=_&DWq+d^Xk=uS%WcKG-Y7T}hagcp;&2TpLFkzYuObchLFh0Q?5^i|c5g z=AN4{I&n|@QfDs6d_LK1lC@&L)2`BA3Q51y=uUNIy(4$E#^@Vhl*9)a|AZ zKT8+kG;ThZ%qG$wi9DD{yRh>30m4a*ppP)e*alp0t_=5s{ga)@?58FXldv_&bZ`cB zRf_^$9DEPp@p^~!z~zoH#`e8gmwd6!gqWytmhI6gMv=-*Z zkxLP~Hd*3@AJHYz)ln__Id)h$B>WM(9qtj}y(e-va1#&c%Iq&@ z4LzECf!#tH!wq*bo=81qIDRJV$rS!JTL8Gq8PHQH4gSUI#zyUe@?EMdo{1HS77M=% zuEsNse;S9nvntBnET0VSYWw+JoCnW|%#c z%0eT!udfuo$-3^syu<=>GydM3sE!x=Mc0Ir!aso$CyVD)-s}hj>@PsWU1hqp4Ungt z9Hn8`b~QFsY#>LVi~0-nFgd^bG9&IJvjnHm(ReiDL2X<}Gc#@=_WK4iOi4NO!3rBZ|@l z2NuA0L@Thf(qMxksXj~z{x9oiTSNOnTMcVZzBYS{Y6kzOChEWjVGg_q(S~e8Y4F^v zM@=RgVtv7GnF3TcmK?=Y;kR0r!uDq~JD#?YTOk=W*lc57g{k^bqzm#CD08PYw~`>1 zh+Yac3g!#W4%LYs72WDjI0vl*Hp3@#m+?WP)u(bLS(e(%ZGc?%UMpkFHYWpH?;d&+ z+lv<_=D?e6*swVPMX>4cG%I7=RhP=8q&#t+ z)CEpS8Q?IfrnOXy$fbot;hKSG-Ym~9ZCPlhN zoH0r&qjm$X`#Sx+dQd7EYZ#svv;=PkhlYjdG-VQX-zznOn` zplbMDtRPG_LooTAO8x@|_p;!td1=z7#oTUgKuGK|K8W;FHJC?CcP59rNF-ppO&_ob zI9&!VcxypS%k#%41M$pJP)26({IOqWqr>!l2n8Vfz6!y+#uLt~r7 zEx<)AMCF>)7MnJdTr#g=7y!7L&J zeQj1T%7W!IQ9lj@-y-07tfOH{IPc$V*#e|69d=fw)kOSMO48*C*$1@8hh z$MHZdxL|%ps$;kD&E#^r0*i1D*|SWH+6Wo?DMnkhrxb#2>ey(-SZC;n-WR8e2Zc0f zx*U#XM+*sarT^4DW+J|hyhoh__jXyl1JYA}q~LNT*lBl`e<&S*f80~sqaYF=n;({g zcY-wVX_tt-lr!2`qZg2f#u`rjmMTFPa3pLdP8lQ6R)mi#$!_6}0S$8;^%(1E{2}j) zT0-RlLj(TMXdy!_jkY0I&;#iA#3H1I`XE*>G{>Lms~cz*z9BfYF{qtt#7^cWv3;mp z=pn7GbThUcSOXK(O{O33!4TjKdtlAxyE7f|i2ew2DNn^#@Z)a%%p_qe)Ml}-fghe@x$SaC z=JofU_Pat%gpZbt{*3gD^awW#*+Q0ZdStBdRaW(in1foxjaJ4|c{O+WGT>;A$`VagPveUe6 zMv?p20^%S%$Cp9^xiHoal00v~+I=5+jyGXuS$DfK;C8<)rG0WVzJXJO_XvgE1lIdT zt&tAA4P+*^33_Ss@C-B`@&tI?yip3s@FVabxdF&&&n!i4muw?!7pyL8Mav=XZ^lk# zVRg){YCq{}tSAhrI>he5PN|L28U2E9C(BZMp-)l@cVf@cOW0E4GKs#OM)Ze7HKUV>XeF1-Qh&b|1p{2IO+pU$=AveI-WsEvny9u1p!e}CJWrEaUCWkEpT>QV8 zE3`~4rVdiY=^gYB`a3J0?mkY@x6qqgN++lEqXP_TQuGaiR#1D zE}|1Sb5}z0m>}O#SD+7ey=#LbSs6(_sK zIx1MNvOlPA#29=CmX7A2&A|}f6VC+`axXGJwS(FUu6Bm}j4uKk^E#t|)=hZ{4s=|L z>X*&0NFA7=jx;VR?S+Qn(SePAELb}-RjjUY=sYrsZOQ-Q+wfJn>g)ri7&v`K@ztz{ z?DJi9;~OTrlg1@>j8Av|Y3;-O!W!wRQp2bk>J*wDJ{p^(JT{LKW0|eoE6&c|hP2i% z?T2(;Z~)`zpy44V@;Q!;arF}p#9ww@wl<`9BPZ0I@%st-nl>VLB9E^J@b!B z>g-DAFnpc*cT5Sr2-XU132V{cq#NoD<0MiKy5j@QV?f?p2@Iz|*cuuTv;wu(Aq9ld=8GxO>EWDkG#U|is*fRGxRI(w?-%!G_TGUIZ2e_nWuI0qP# z-OSHMZ`}dh&nrS!EE>Bil#2+JT=P)?Y0y#|_2ZL=Xv3@QWhwuLqd*-b71 z6GjVre_IW{G1V4HRZc|F&|iV9fHgcO7M4z{o%JD*8rH>25s&{(?(EF?bnO?Dc{!(v zPYewb(q%=BY8~{qT6J-bh{n&oS@1!0^a@v8&bw$-r#HIeZX0N!O)q(Hz)n%nB}rlawEb z6(z9ySRP85UU^vr^YzTWpWZV4S?0LBgy4}_A?38j>NVA#;+oLEc?B|>e1Gx9_SO6S zbH?YqUBN=JIH@jtPfNv?hu-^&=IzWrncX;VmOo$gu#$m%C0l_{=rOyBT8>^&I|yp% ztpBw)=+*sO!;8iGdH}mkU*X#F_t+NH6{LzXH`*?E%D2i_F<3ELT)L%RHTobfWS4$G z-V^&hd@?Z5e>C6;?-SCLG3GdY7m(OSlWF*Uv=fqqY)97to8SW2xjMP3gL`auoW6lWT2Zth@NF%s1jXQbd2HZqN&0jo7ZP0r^H0*;-;@$xFrh z73dlNitCIl5I2SD2F?Y0$JVMF(Nv(&bfrDef;%qu3ogpLkS%8am1hqujh)r{;Q3g$ zRkcR>-pnOD*|;s$fgNAv$jj(nsjq$>olKr(Qu*I3+xW6? zYHZbZ!&6z(dYA{Xl~gBgqjipBr|XNWgL45eoZQxJ&{3Lf*=>93$Z~Cs>lR-iJ~b}R z6>tB_KVbeOb+oJL(Z}nXA!oK)U#9)3it>7KK4Sb z_lo}`F5Vq>s*XyILH4z_&bCy0KZojA=9q6UY#bjGx0`5K-cRsG5dy#zwcLOrKJ@rmXs*(kEvSY@1XurM2?jZw>1=PrwQ_)7*$u0Jq6uVgO7y zGpX6s6oSL{Bkv&zJJom%CWGtf2J`|J!702QvO))|kElj=gk}f32Frz%a39#tA6F`Y z;j#%hS;Axh{*=q)OF|=}VD0Mxnbg{R6`+%UWu8(x+_`d$mfAR_4K&WS>zPOz%r*}J z`}ZP8I3`{AXCy<{6Yo9;;s$8G3hc)JaPvqmv= z5OEsX;bF&Wx9G;)D;=kAwkXOsY^fZfE#&qXE}U9|uZorkNsMuJzaAmWEvN;X(=7`>J{Pp%<9 zSG-_^-h-x-$z0g7*S6ih*FGEakGCxUSy$M;S{qrnS_fOd^2@jNqHUeYI`pFmIY6T7sTGmKXoV42c3iyF!35o{R6h2k}#dA#*E`` zT8la|?E9?U`5x?bDhL0F4nq2wlYyygn%j&U`Zm2WkovC14u=1P`F#z~)x5rWCv)%Q zSaQB+*Uu@Fdp7T;w|syNqryJ*5Lj|G_NWE5cH=2-Ae0)K_P0;yNQT=XY?nZ1m&gyWiJ3j;hmET8!R2${W574J*81p}kbJb<}Q zH@&_zC^jszBGd@j;iH6FkoH}xS2W8&=lh~kRQ@0~6rRT3h&AA@qav+{sdNWcWOLav zOnE{!FX;&6ls#GnBVe9F2SG~w3e}G(0BO^aWO3}6zE6ArWZ{pwv$9e%$*jHED{@zP z+XNRx#>C#nO2)QFzXM&fa%`fY$xn?@#B4t3x}4-nJzJ^+&YGUsH?%KIKHC#LFUU?)_Xk;u~6 zE`6HZLck&CF-iEY*1&jnjiXND*_1CSEtBgely=tVdr_mYLq-|xAWR|~pqsFx_$s_1 zx)$!MO@));G=F|ii`=of_42NJ$_F+?P6{j#D+?nNfXF-uZG#R*3L*K>H|SvW6cR#K zVnL!aeVLtMiP$9jATacd;=9n}v9{p3oh?p`HH{sMErCCwh4vYoW`DzdsbK{5{mOd! z)AOy^_s2g!WnS}4h}>8F<|dqn&e{|-N$V}%4VU%L_Hf=G{wk5FaxyB>yDbN73#?_> zE!cm`M)h?q&a`&_<=#7+iU2u+ZY_Xi6`XFC{+;%lO2P}LkvDRRC zTPdUom12cqKDW#p$Q_we4l*KzbE@Q?^^^;^A{&K0QVDsWoKN|ojD@7Hrk_CGN@8iweI_BBFkiW*cG=>Hm@jETlONLO7~ zSeWe^av5lWj?jNc5+Og{n(;D~*i}p$x;9mpY(i8b8k0Fxb9Sa>v3-IwpR0|NusbZb znDfL;WT{SrZ6F;Sz7tiSI!mc4wHNLJU4V|{f%|xhSXf!1zeZZ&Im8(-V$0+haMIUf zbQZDnu+4I=j=K{dAD`jw=xS&G!qtP60AcP|mrC!1lR^&k*XxK&MOw58pJG?QEHzl# zB~Q{c^EtMW9M0CT-m<@TqH#kZ>vk}HXI#`d$F>~0D=(R^48}HPqig`YSdGazygV{a zeJu0`x_(OdbdV1|44D2`zR%uwo}@f7=VjK6?6!Fe{Qj_8{G_bc&l&R!ME@+Giix3E zU}*67NCWAJQI5)Q9qYX9;$6$_zqqZ$Pra>JB=o{t&YS5!6#h%7p~g%eS_?ajyUNyR znlG3W%Q~K2+Vf|ynBY^(qwNVd*@h^KqH6JIA(&{M$-R}=G>{hiTi;Aowx`9HOIehk z%0Dvch^w7t6V(DsgD2Qbq$$3bD#i}suCmLiCg=mzDheT|w{3QA#^LmDztr@O*@yFP zct85n619(_$xL7hyu3XH+KgxaW>Wai`;# z#Q*MYXiwta5vI9C-7emWV$sI2z2bL8GfsdMq#`oCX{{m{@}R4Lzy( z+9>Usu^!t=C)z&6MN>8vx>M{x@hU}o7pR;#)>fN}ne)^W(lyw6jnFosTdBe9YPLDF z3u|H(wE4p7Nb~TA;H;n=&Jrpr`Sha5AJ}z#DA|%;$Nb68=JH#v+ZH=#xgI)4Ix9H4 z+r5_GExc8*OoFpdCF?-TR_-HHgT78YMkZ>d6b#5YEzA~ZJK{2!0%{WvP?)+XE5##1 zJ!nCt$_LEi^lj@M_q(KS`QE3jN{YrUvzKH2_$*|i(b%YlR0Q6@Y4#)Ef#1bMh?)oo z?6Pix4o2-w(tB+@BtrgUqFfH=XADRkD~3(`L!rU-JIfe?ZopSkL%7Re0UU3+VVMtp z*nO~xtVG4*P0X6w8>Jh}e&#D-Z5U9EC`hOsMK_^+&>HYgXoWjq##xI-n4xShn6cKN z+Tv5tD@b)<8+Ru@lK;>ffkM!fGwEtX1Ed%bMhLKN2ueY75x$XmX(?xWW1VQ-z{^w? z`ocJ&#~Edjfzabz3HI6@G({T7e6@uzDiR8B1N-_)r3?Cr`VZPP&Fw$!mn_Yh@5Bu3 zB;>#rGApf@oEh#0?!JyW{9XJnrFca5`@Q3RTSJI6(D;R41g6UoY9jVV`(1nno|5#? z!^kP=qHz{aWGYxzSU+>$C=~LbYxS;LU2{Iso}20Do{*5TH04g>Aon#pZmq-aBUWR@ ziHQ_OAEs_l8>!nwKJ>m8kaA!*W)D{gyP^YxTH(-AKY7#v7kIKEpdO|3+KDI6PUg#td zawhcOYQUs_43In8d6s6i$P8qc^i~a7q;&HUd717&RmLwHFQq1t!NK2yF94(W3;SWQ z#dS&=lzcXRytNhnRxTHQz z5&9FdL|>s!mTyUS+w&956HVb(%%ZmXgF&pP-LZJ&Z?&$lH@ql#0DP09!|$XnW+!L`H?d6MCQ=^M)PiCya1Nf16c+lZ z&G5I}PCMetasIL<(=yUeD=Y1erHJ3vPslogWj;XH9|0A7Ds{xrB?!eVjI~jKucJ-E#!!oWe?cDJ}YkU{~nQj&@uHWJ~>_!rpIZ zxKp6H_jIl^N668ccA%(?d2T{EcNLEc+kwRFVJYS7Nn1R0^_bT^Ba|iJuo^corNlq zmZ3914lEI>7I`3i1Xki;__Y6L&O>IQEwBgJLVOYNmb^$WV8?RpdBY-G8(U^FKL`g# z!yNyI)Lpy_O{<=25}b}60;O{{)r$OyRYlqvU$qYEFtwXGg>1`>vYxPSwXd^GV|UYK ziKBWV>>DeEe}q@ZMkyPSjnoi6pKX}+4>$t?0ZP3fJ`m4pgYaeSCi~?0-;(DhcTc$E zxXW6xf0RLBHC+;0th_^6_K5YEop781!o@*)IC@P^i5?9%kG7P$nq%nwmM7NJmgQUy z)dfAET#7yq(t*3cBrPG=HNK!cK@qLcW7-t)LpUk;ATT@hF}g}lHFe?@Ftls30#Ojz ztUQjc47Lt@2zG&gHv^eZd-!XXntT&xA>KwGAwG??gHDTId5CskFw08I4L;2FBA@9_ zVLcc@LtevoH;BiELI-=MUQ(+k?g<|9#(BGWTl(k3&LCyDgZ7o~iwP$Z2D-Xi+R|@u zA37iSmPgo0)@4p-e2e%C&eB#F+m~o-{;lSde+b88V<2O^2|5H;dA;;iSRXaR&%zxe zizA03-=pWms_G}5FegE#a|L2YdYetmRlt-uA&FuY<%GT+oks29CEGpwT=44lv2>uz zqL_A0`a|p?U016iK71FofmsLB4+Pz&eHQ125BO_=?V)-!Bu-PC0Ktz#>tlCer(51= zqvfeX)aS}mwVE*$ay+H+-gq3g%nYl)#0Sy$k=xOHu$$Zn8{~hGc34Zi7`VMQKvQiE z@r@`?cenh240wMxnJ_Q0QCw5&Z`2*+fm&6x$I^v6>N0c>)tc*M>1#R3t|4l|XY7ic z1|$7;_;J>2UGFIC>f)Shy~I=|mK(U#H~J#>MSi5W!iFo@y!+f4oeRT;^zWW$vH zsd!T@g{@<&IDWLsl)Vj(Z^eO+A=ZYK^&w8mk!^GtVYE}2Xo zq)PMm98%n*#Ma48Q_dt+i~DG6!6j2Iv1Ujq_>HWE%u`SBUbRA|>$}xlDHwG{r07W4 zPW6LciJ@)K%NS7;+CBIxaxPO87?dTr4*V=jbIUwFADnqKZVfrz93uY=JuTFC{u1pZt|8O(iRwFG^zBCiXgW3(Cb=3pmApe-!B=A+(NAbU>>W6a zo8e`NsYDoW15>7F`pzHIKnZGzHT&PI<2NRbPyFF7V!O`9(Z>VF)_NXy`|z|No^Tp64e{2q*k)JSfO7l%v3l*ejKZI_m=4br};6mZbzD5v2B zel zGNQHD=c!Z0=FvN0A-LGLDsQHzUQmn`)=t4&>z(bH{l0A>-<(0 zbb@8ReWblEkCTOr6GDyPF7EaFtFsGriZ~54qNn%= zd^)j#908`0T1-tAVJ|^TV>+0&IAt5$cKtvYd#fyiPS7*pe16t%8u?7ae2xr6W*Aez za?&`~EP{sL0BP+})Fr-GdLqYxX7Gk@Y|Y|-(gW}(1_?~{sZvp;q;?T4$z667jcbw6 zJE63z7q=Q6CYK49_8!ienKLmj**6T>beo0#;uYag^#3?I$0)nfZVPYwu#k#v+fF(i z+qRR6ZQC|FM#b!y9otsvc$;^9_iy(Y8HH1OzwcUeKF_Ae?_lmg*-S2QEIeF3Y3{^| zGwoa@eF@O3>Mq=3HW0axeP(lgsM=T=0j!2~kSITb7A2biOX3i1kW+CSoofFJPJ#v+ z3GBD5U`Q?w8RoLFE0MdQ0l~LHcer_YPpEhZ4b=}Cnb$Hm21iA*iAxk1q2ueR+4Lj2 z8=Z<5wm)k(m3C70ST6C6(#jZUPr)WoQ6RgHM-M^gx>T@nYQbOqfA0OorLna+|z$fVe)Lh~{-jqBEeFu(9 zf$h~)wM-0P ze8EjpVTSp5jh`vM8lAy$WkO9l7U>ud(pGl$7}+(i_6WPA}%{L_;PVch>a0* zsSVBN$O3XMbDDWgwZ~i8Ei?xHQot#wTsOv}7*o@=#^ds4_iW;>V(CUJm6D%`rd--= zhE@cg!(m||(DRlE&$#2vb8<8M)N@-03{AhT9|yY04P+FygP2RNV184Zz=Lzcey?{^ zhbcdlvHE8FDJD|&_zCXSFz-Cxw>38>8k`vde?Pqf%X-s(Gwb=U+8u9tvNVzUptC zhTuZk1^M#F&Q5)Y=mZC3lukdI{yH-$a$1&*yUr}M4|3OxSEXpSV1AUTvF=281ueF&MW>nY)T;QiuC zU#{6G`i7PSCxjkHo2#AeIQ$^FlsXORxI9KaQ4Ib}@A#+K?<{FMgS_}r{cKeP zeqeT@EItd3vsY-<0f!ame(GJzoY})4k57~p&x)kjK0!AJ9B$bCL!%b&CWFZUdNy=$)ODrGUz}ZM3a$hX3E`elH1Ed3z%lU2A zhjiRO;OMBTCK-yo8{LJ~!9{#1{tgMk%_7~nrZ)vY>H@W$PT9xc^iU3xbx%+)@(6Z` z6Xk)ioRL%EtlbD#J$T49u4g>JyMkq?gIgWpahtLS#E+ z5u6Ec#{P|1kyT=4tBs)r?|c^wkOam{Yd(7@O4F`qgEHXfHyhuS+?al zcjP>qtyQAzd*#Z*wPZ@OF8(fm3Fru{(3@$3EwYyBDRQM~>+s%4H|Q&rkm{(5pw$vn zgIb31!g_`jCo`E&Tp2bQvV24FWpG~WZ@;zsp_Ry=?7wc=|0>}#xX0wUN1lRQXX1~O zX*IQ?d0{kg_7K1LPI0x9)@0qDR4}o!?*v;7>uoQv_X20UJ?5cCup{|pLaOjwpj>TT z{appzZ#*}>0ndGRO?L|P|9avjoc%Bzo~0*R1iA~SsV_jls>45kEYwZB1iIF~VpqjH zbaz4YPt966N4IQ|#P9wELLpLyiGDZZnX%BRNdDydc`*MPe*<40_a62-G1*zJRRqpw zJ9VV-$j(pLtm+!+&FdfIo8lVDbb)s7M=NSHG@im=eg$k0)s`&^{L)Kg1@xUUPd*=c z8gMdN27bZz{h9s|agocxuickAfQjaQ@E)%OTi7umD5PK$$&HKycgvpO{@TO!W&eRr zL36eUn-yGE0d^_tkh9RS_FJQudO>;vKId~$T5PK1fV=i&ZLPLg9vE34933hVsS~X) z%`l6Rhq$ML;Er=&=eNO5^awr^9R$75|7cQJ=k1XYpLJK(k%_#o7FP;I6d}|qJ^s&> zU)rBjK}GtYkFxKgo3J6yLH)hFF7{ujZ)PmxUg(}w%qWT+AXl*~*$Y$%dumxS8{V0| z`_Iom^D=ftlC&d8RWMl&^$hkD5Zv@3AYC+8=SjE31JYjQf{rc zd##8%M=Ty`8hn!RA^m7Zm%zHvt>|p|nfAwAgDk*X;>C~|W_~SE8WgS=m>+OO)=RQh z&?!P@XFoEh$dgC`?MK*`NoHUfD>D7j&stTaFyXih=i5i&LgrdyOyiUSLR-mgB-tBH5LLw_U-6lb*%jn z|H51rs=KGU>I>(%bc#n4%_Eu*^6DQ99`Tanm<8-m?j4_#_t3quxps#3QWT=wqGhD^ z>Q}vhIlz1eG_@6)OM9Z^ky=N|NS{cjCJjyUR!j>h!_@(L9Qb=qIc33q_=uQAT*R(BlG)EVp|66w&q}zn>?an`{n$d> z5N;4F!>#c*`H@7(@sQVhLd_>T5)Ht5TncT5n2v!=!={5ryC(%_T;P>uWiqLU7-PNA z3Tcg$3*s5^mgJS1i3MP4cuy=Z24nu%`A9TWJ?IW@2@Q;A^+Og-UKK zFM0<(?i@0G8X@h7R*2melcm?vJ!qT(;9q?M4DVBNE#&~v&01Qc?N|0Kk}o<4i2a5(n>M6 zyg=(^k05w1!`0i{)OXJ_O8Cx9Ca<9$d!{iLawRUk4j8GAT0@bFL%omf$bh6xV!6MXX>46Qk`)>agg?;G*CvnA+skZdxaiPtXp* znBPo2XhgP!PSkrcg+$4>SU+bcWa23+r}GP|%@lGi^i=b-bQR+!l5d>D`W*RBY?8P} z&2O9d0Z#E&i!T`8&p!ih0X%gR1yi__ADxTY_*shNe(*^!`6|b4qeN&5yl@KI)veMN zV?mz9*@~9JpA)OdBg83uBus4&Irq#uFgcoJ#@pkOk5~r&6P|UcNIi3@Qd`^`ITjif z`X2rnC8eIq63E|U#sz(a-cp~bZ2`x6X=ut#)l-e3RvEjleZ=Z$<^Y2CPW^yZQ_E_U zwG+Wxnip*WzO0gVR@h2qH@BD->|V&f*hiuz<)VFbGL=apaP#0v8{dKV0Or?Mv={ah z(rbIMH+UIf5pTl`Y#`PPl14V%Z6+gA(DryTIPBf9o85z($PVixcyipva-)V7=PU=e zYc=c?x(*rPjI{Gui;R_Em3<0kkQ!`6XzcmpzA2nw=a3$7yXP?}@L}|`)**#(3^H?%?RbAU-Bza-g1Ay5iL*5rgiS3P*Rx19c3!hWx&m~8q0z9LSEa4%{gGgYzVou0@gvu{!K*o zqcm0pzRSkwS8OUFP{(PTS~0d*Ie3)Qf8SOC3&cEWC8J+QV|GG37wgCD}m z;Fp0D*bS?XWr2ijLG%bPjGsH{;I7yX9UB}nT07`Opek%6M`Ec?oW<#@lns(9ep3e6 z$H*ak8P5{$PxnvmDLDz@%!k@h4Xk(05V9*@-;?G$7ne1zsR!q>lmFX<*47UIKXtw~ zz&z}vVmql1>`pF@#b}ybhAnX>nYLC?YpV}17uXFU3)O@=OpT?Qlhd)RPHUKdRMqmB zxv&xRL2jGty=SJ|&4tNiNQFFAODbDc2KG5E(J@3hdMA69!?-2PNQ%SPItwhHIYqCm zCxSa|3L3+IlJ6*m%1iCRcRJUNdD=JV1JyDv*fnAD-Ws0sD$b(4?6+pJ`OPW>tfk^~ zeQtm&&NJO}%G1&F)s+Bj`($ncCvoM3Rqk!R%W;q6y8A156I>!=5oNHU$S!9tY^x7b z*&yjNj?K=TBqw9joc>k@G&WF}->on;bDcHP&H;45f1P278>>uQBG&@P`YO{Kc6U37 zMp!ej$!5Uc(NO0vnC;|3$6&4Sfp|guAeIfQiEV>VUoPm(za-WXKk!`GQlu&J$4P~m zWk<;Q*vb;MrQXq?&7)vt-|N(LHb9$ruz;_kkGsEBqh$kdL4F&RYAM}828tc`U;+*Ie01~E$ zvDhG)f~R%BIA}c5+AEF3NKR3T(E%17|2szh;Ng()bYkHMRgPj%fBL zs~2?Wzgtu7t6&Mr>oCxwd8B_;ufaCyjWR_Wp}UQehNaC^20(WvCGa)9R@$_*&lx!& ziHR{fy`O~1UOfP#Ggt}{e;yVt4aFFk@y`%Fq7qa(OIFTfiZy_ zp>?sN>LU9KHkQ~*{J~eFlWmtdOQYr5u@u;S^@B|0I-`sOHb$7if5W~YBkY)dNUjna z64?>{9Nr0it$XqS)zQ3$$Lw$IvoLcsJaLnZ`}#~EnY=QxncdBJ>zkDqZs{GY-qs?^ zYZ(R$6Ol3Cx-P4v%7f&K(oX5Slqk!v(VVFj))=j`wn5e9j&MHuB~_6KI3u-FJW4B= z+ZBiB&s_NQKQbp+AFT{4Y)MuTd#hc}{%xeH5&5YkNQHVygyno!?lbd& zJcib^JDKB*^+s;13fMyvp{Li=xdv9T&uV{Vhg2S1n!RFHtR7@S`zzJe_Ud2Carw65 zs4X?G-pQy2JTp-{09J#bx<~Dzu9Lfo6=OG}tD<>tnN2+&T_#_T0FRo&c{s3B(5A zm6`j|!c1%T_PFI)>LwLSXzzW;5kwEGfIb4=nFH(~)|lBVM zX~-sLxAn*vp&gT(NS~znN=ysF&OZrw+ax*xI@d#x4{&bYV8689T9*9-`GSpxZ0}RD zG#IpZ(`A`b%r^QKHIXcdcR@PXxuGwxRJ*9gYb&(c`e(zjmN@wk-D&0Yw?{!!z+?IB z>dtdAn&levb-1_m zSs-qgM+-QkY{8xhJ^$J0NBF;mxOqYd2nq4rEqWv#wwh>_c2L;`yu%d-$Lj~}?V{Ahji>q|-PEs{C7ev8EjkpYbeoN!x=FTT&%$YerkPDM zw+EhvRzT}@s8-Kb^hj|soI^XxRHC0(Ds#5Cu2bEUWgY)vK?*%S?1tM#e!mgtUf zt%w=Rs(P#hEJOzA4a`|)I#Y#7VHmCh-$8inn(wLTJ?xp~9xK565=cnLfF|HU*CY3w z8$i)MWQ>J(^Jb}|$cbIRm$AKlyJR!)S+-;=4d!62-MISKBl3$Q&1;K%SS_51Y{mMs}Um zGmUfhd&sAK#7{u;Xc`)^Z<+`6@sOgNB3D+%s8#h#@C4k51mL9n4gG*h&|cVTA2+M( z71ZA{CkLc&avdON(fYr-q3?$`Z7<`wIl-=iJVrx6Z=Xu6CH^M%!gGBAa2g&P^|gj_ zVbK$t9-SKf9&Hh;F4A&yRD3NM$=_#A`jJ!qHLTccJ8Ptr(-$v)W?A=$ZTvVJ`Gf29x>Fs%93|CD)QQWd$TU zXCqg!r}#L0E!x2zsr!{$5-IuReJTbGosrOzz0Rw`0U;mXo83YiLp71}!K3W$$6T@g1*Op(*{X-YTYuQJ%9pIS18k;0P)lwiMpp#ypxBY@Mc$~FV zy(=Dz=89g8-WC(pBb7#a z02&R~oi`5Vl(H`AepQfmMZN?Rf&)VZqqXJ7#!_?{IRbn$)95K=2XOJ8(IfIv@vt~V zPSRSLC!K3pB3Xm_K(-=sW7(X7MoFckNWx}efz(E0A?ubw|Ku9-Fr}nsV2`b2%@5pF zJ31qlUwW+^G717gsv}SrvIuqg4Db^^pu18P$kJqQDvp^54fZnJ3U)8^j4lfQy*?P- zZsQYh1MUMAQ4uCz*X?*`5fB!7qBho&_zs?;g2WMwL_EChp>` zq1|*6%&2{lF3xJZu-(Nj0k@Wk*f+?^?PR{P?>Il-1zMdu>3mdW;vu@nA^9Z-(y{p~WqDS1G5Wbd;Sq-*Pv`SChv7K8zA_EmH$UY{z> zmgidtdxVA18>>ZJ1@d4|*r^|jPLGa^^_G4p)pX17TZ63J)-0f0$(p3Jly68wb9@?L7J@3t#q$SU|&<|%OK9EPUDJjXDb>27tqTtt2%r@+Qc zv%jE+@jp0?F?Oo@Z|rmMM0!)m0MHq+V9VGJWur0EKIV*ZCfZNUP5N>bS7u7N#aOJe zlmc0YrqB#6u0EF^NcE-bz%#8O>Cgl$2OM^nvkBfHZ?I?ZiMx#-#oD5kklm1ZItb^@ z6Xp*+1)jL8;9t5NEfk#}-5%>Hby8NV$JMMVqV$#ii~WeEMe~Wj_i3V`7Fx~0Sf+ex-c}M-qY>b(cC?5 z5qAT4kdMgh_y(l5{ma;{9aO5r*B+6kE5EhwW<7h2QwQE8ZS7{Jrd3g9LsDc(w79ra z2^&Y8dXSd>h!4TeJ3jN0vN3i(JS?;&)Gabw?5=h-{z~)OZXWB!s^7Iz|kh`gOzBh-bztD@FMs2`J z`2DVOMxYGYp1lI6nuTs%xWQf~>tU9o0Xu?12jD-*(!e%(%q`~nK`-krRg(Hd-T~*z zGI|Mfg!!9UMJK{$mcxR`O>m6nB#u)X;prnXKPVBrOM+EblVn2qrsgsCAl-m|n1fr* zy1}t^(R!~Q6K_QBgtbV1>4dh@zJV11M{rY4hD>fx@b`WM63=sdCwYUO2s51N-mU(V zab4mX`gXhCFum}oRZ{CMd4WXMK>DD50Qb%x%#W{uQ$lCc0;W-Mab;|k*iD&kY(nNx z^@JAQY(O_I>`fOuEJ1!m{<3ly<@M*#fZnSAGzNm5ZYjLwRiGz!vdftJw7SaQQXqCH zc1=W-h59CE26>%p>%Qb!>;4AT^|kgUj{B1s0arqH2YXzy244Ye^4m>dn*vst-kach9 zNC<*6&=Yw_^`jhODwYefcCgEk6XnZtb}b3=%f+Z$z!HiR6i5y)!^%5NtO?dlXBA$I z$>zH4(_ykcJMN%+4qeH~t$Yg+>5qT6_%kA-b#%P`26fTD*=AfOogYs(o5>Ht?qHYT z({OR=urUJ|w2i%a;{yKuo;=)cXqMGglch;uZhT=r07pqJ_YL2_{$bvDzBG~3+9bD& zgaWHG8wbcRB36gbbQWOe*T)B9Es&-b4R6Re@pq&`q)>F4m>>RyvuG3?LuH|BdYi8a zR(p~ti+nXV=tH%(T50{5vCKN{yhrEb8;AsQA8;qjA$!egYL{42sAXo$jNzG?p-$39 zV*=`)>MU0aH_6zM+BfZWponBzXQ%}(udkXf;>P)(WE-Tn@l7cs_mLZ@ zn~gF^SCZluxVCvdda}8*^N;EN#8>2lmCuZWtD@#jtOoMYE(j!&8?<=8LmV>nN~X?!o!6nA}5_z_|si zOJkwg)BIy>glw>)H`d>4A#FVLKzBh$^_{&M$%`jY`PmRZ*Hz9nfIrNn63dY!U~wA; z0VJB9kU`;vvhM%fRa~3dTf}vzw;`y8G)}rLKi0xl7pxk!ow)@j)VY{$ev~&y>I4Is zvjYXgU&Rqd8C>Pc_%6qfNZ1m0%u|GWfSUQG{vKo3h+dY%LbKKRq$;4n= zQ@4tzA~zuWmn2boUL>9LaSer0LMyHW@?~lABdR@!EX=* z*Ds!g48v&jux*>;fhPRI9)#W?)-tVxt{#u?y?3R1BA1t}i;zo@))!r^-0fZU`4&umasbvD8RtwvX5mZeQT!tJa_@LwA75|pD)$Vy6FTf7 zwh^11^#c!Y73UTPx@Nf-cshD_d;j*<@YHaX=MGZ?@Z0doyJ;PO?_fIGn@nMMyOw)T z`SyC>xyo?0sm1Vn9%~2fMrb~;k5+Nl^Vdi?n|LL0M8YC}y!$O<;60HYc9Js|=630H zHGYJ9thcuJr0XyCKYX@5NZ+CqmUqb=v{%*$yapSET^j2(g==&-lr(NjQ=?lVRIHa= z6V73r?rQDLd;f8=3{E6pa+waGJh zC2;Syb=ue;VIEN0If)F!S`#g(2XslM8Kf#M0Nc8iF+?dMwUw4DeGGUPP;>Ypp5i{* z>lNZC+fD!_+mi66@R8^Qd9$$*JwVSD1W&|0Maaf1#lDz`I$hisJrG?XW>^0;@1SsI z=iILMu0z5awlG;2IcIc)c_^m#F?t{rHHbg&8R9P$7xw*eALGhW&9N!YYpa!Y%X(~o z2HtZyG#QnV_0DRmwh@Ex{20*RH^&m-Zg5%bp`__w?fV#bp6D4&BjzzUc&8(!txftM zEeGsF<^iwuI5~m-3Fg|j#5Z)JjTzb1$?|CVnNk57S>GK5JR>2TfScldbeseAc_6K1 zs<@T{Y|?ecZ*!&H28p7T@CUF}i-T=X9rU8}m)*(AYdx~sIt9`3&?6`UIow>%Y17aa zDk;)Y@t4?HuBl!F{_Z;Cn6X=br?yoVz%w+9avl7dUh|XbvO1d{BMF`mS@eC-9sOhu zvTr*55f;whOU+Swg0=)sT4!|@_(>{JovzC~q>EAq@Ycv0v!~V=s1em=Q*NZb)Ak$N zttMdZz2+=|yG6Q|CifPpSSd(kHBxg}Z?S#MDOaLT_SNtn5JY+&##!rCQR*hm0H4$= z{jj;;Y6+&Jdg@@X`P~i386`6oWmE~22y3y|$_IUkDFZS5h3?fxC?uG1pNb=;u3*i* zrSyhr=5wu&eoL=syn_k*8{?XhZoDvt8co3Z(aWrAwYR4^Ws&^I1fXsO&AVXo8X}{T z6ZB`7YB9thtG`NM-FOJja$vSu?_Yl_vxT&~lQ9w;fDjqQ&u7I#W7p7iblUiAErvn6tJP9+TVi8Ja`rIK7jyb~D`ni}jEY85#dJ0`c( zv%wRmGI+^);@8l^&Mb3|eoy@c?yz1`H~9hVTBgD*>2I)r4@Xuwd##81Fr~D3EixI> z+$Ez`B~nw&_efPDp4vhFz~S0t&P#{Yo5o^$5s(6}IIm1e4T=*YcY+r(du8O$7@xT%G+b<=cS98NFjv4G z0|V<>A)eWRRkil1v!yKJBypvjsp(cdEGu=C`G?KV)}@;fG-_HE4MTOSlx7)&km}?y zcDk#wx4v(Ww~yOmZ{w@2Otpx7NouNgw;td>xNE*&i3_rR$QlJ7LT=A`?gGr1hk|E{ zW7_ho-GzNM{o8z(JcMfvyNXon)5$Ko@Pe)bfru-yomjZdM+^BdjAyrh4Jzl?vp zx4Wwa+my_Y-E)3hbIsMp4*fV-Twdxuq4#pg?g5;=t5^-Z6FwGGkyeNgeTemd7Uf-G zyZ3wC)r8FnTjOlcdoCMU3R!K2fvCS*{jKdY{PtI51D1?cLVG#w&0=Z}k&P4z{SF=p z*A^>ipMdf-o(?bsbC|g64Ab*~4mtnw^e1X5(FCE4LGt?8wCMh5 z1+lNP%Q)%`!dgSBZ!9=oQ?;Q=J^4SlX_ZsnsaLfDdI~(vj>G1m2{awA^R+#*d`H0! z+(XDu=SO4UHvLzcA?;UcKxQv1euOMYT_iHlPjH5CL?u!-Ts&MidRkhbjkU_5Pw*6? z0&xTOP!5<^>qvt5FEHdVX`MVrZLe=LdYVto^X4n#jLyI=Z4yv#YbcnKpmbF?!ZW!E z>=A2%k+Y*+-udpNI~;U+t|3GI$2M^4*s~z#Jl^`x&I_E@OJpv(F`Y?X#9N>j?9ZlS zZnZlijWLE?M$cl(Fm>pfB!NA)A3#cTqS4GqG@IGk{@>|W1uuZ^v#M%?#GRq08TbDz z{FV0e%&(Sz?xl?m9F6=d#k8SzW$XfR2i$;%(a%;dy`?fi`XhBvi-!vSG2@xN;{a*EeO(mCd?VGqH~cwc2(=0bC7J_S2(XU z2V9H?q@n6{GauNWQP%~}drzkOi>r|EjI9A#`&)D;`WXEgOpee!rUz10;5&arE~2Zk zb@|$^kgE;&C`WM$eVn9;0G1!uiPE%}ZNPVTJ$J1ZPIC>I4@6G%mbC?Ptyjf$khgv# z@7E5R^AMUm$&`W=yFrb_kJ`(%1bLuDD1YlQyDpK7T_=ol72t1D2T{R1F1G~6AQw9& zO$SGJH(~+vke@ANauMbeG;2qqJ7BxE9i4~u!wUoNHye`GS?##6>tqjhl91|t>3QLv zE!1ZdAceUArUqp(iZqz=Ko!#bFXE5I15IDpz_cKBw4{^8zF;RKGWLU9$eiHvLOymn z&~ZA_{}2*V(avt2H*bLdkworezabG@o-3PQ^RgfcccOK z3C}@pr&=?c*eTpLJ|Y}+J$3!e zT2uBkIFlumhl+K)fFoLc2rDqf?Xwi-!61bmlm-g<6fTL8e05 zV5oXc-KBf2Qb;OZg+9)H=Rdom?sx8Mt`Pq>*N{Cy-z4&5#n6MuVMu$FM6(j*X*ZWB zj2E78qv?`(id|ICD;E(5OLMd_&H$>g%k8J)D}WOTh1)}Jd!M#dej#3#a_N?XkStqH z(1kDDa=J9|CdQgW)DGh2FcCbMSrQsE&4PKutD;@y>iQmY7C4Dk0DB8jN5`Ip(lXa& zyvy7bE+{WFY23>$c3pFifK%>$?4>zU$q)JNNz!YT0dLYnsv~=gSwf}Z1(5rCN2ze6 zNw9Vx6g&i6hoM?^vzN0Py@}og*Iz+vt^QGMs*YAMt&TQRU8n3;G$jgD<|i$xG~D{^qv}V_o%J>-ZqE4-~R(?7jLNrH(uh zCao?Xoh@&KDUz~S;eVY zfcb^$y{s_OmAFHX!1-D1)DEF-QcpCGL-^T}-AW;VyYdln%$uq&*JzO7aw}muIUwR?a zi)lz7B*)^7kblffttT*B3j>oSNgHIU&KP_Uba=V}CD~-&Q~PkuxoD1umReYzBo9{( zsknaHJc2xjZA%O49NmG5(H-e?RB7rr*@GNOa;!UqyW)r;O0An3L^J$ZGUIREJ&S zGAtRLh5Ur{$avVu9kzzqx#68x0a|rU(Ua(6Y(2Q{fl^P@fDT(WdlTGA8Zhe~ zuYA{iKzEvmU_gE6fjxO$xgc!?La`JbF6L5xX_^^;HtH8Tg)!)zRDejuN}vex$i8Tu zw^rHfoMPx(yc3P`Vb^reK9A~p#Ev88BQ2R611K+|gB$v4YI($DV zfsUst5rfeN_9-Jnn+hGj+j2dnoq9#njO+G3ghtOHwUB|%KsyC&tV4|=`eU$SjM4UL zcfcAu2spG)9SZiPd(3Ob2K|Hn!MtmCKqg?l36}JbS0H;T;5CUZ)C@4r+K{L$1&Nbo z$UN(-7L&HbdWyxAu(kz0aV*?$v*UNs$IdCE3H0}$N6th`OW(Ej&T#xPnM5@rwu0&C zCuClpXvuJ1Yph&Qen56g(sZ?-+Dd(<%vLt4HS|2jJ>#Ppwl>&(?4nj1Gq+XG&Sfu! zyKs4Xp>-S#NZ*u*QVuN0US%EJzP><)I#tQ3?bc=(mYo+XPE;ZH5c{xG$Xh#y*+Ofm z7SUelnwbYFMHFM)JR;oTiZQ+6`Mp#M2VSMosoHNLb$;f+=yau&xf15ugRzg!U1OiT zC$cY4EaP=L8OR%%CYQHZvaxW{o89-+bq7*2OKln&^SvUkBAhf8CVvQilX}M_u{$Uc z$pC}c@Zi_9!hhobyiVPfQ7LpadO@0{_SHw}nOa@_2;^Aag2yu*y6BYtPA_Q;HtR#9 zx*?GQO||M&W1=nE*j{bq(ON3aOQU6C!% z-DdmH@j&bNY4jm zZ?U6ra(!#X89u!s^bFQ2oiy1P1XI_ej9+-}D(>C_uHl{BTKYHqMUQlLK_>nfOyDp` zV6JDjGYjc=#95@SnL`EGWW)(aVx(FDo+pi<-SC__MV-W}BWd7(>ZVN9lFdcVzxYXJ zlu*z;!TsFTMOe*35c7wYXbSyk27keJSC ztOe(IIWQn3Q4#P*^hFvv&uz@<;-ok>G)+zd;r<<77vDvEA?9FRkXguCbUM}&uRzWM zVMryaE`bvz!PZiR$;ovRnz%QB<56`7_}laWJQ0{wFU(qYQH7*Zz(jr^CWd zZw236&vaoWoNTw?Q_(NhOkjdHwbwd_keBEPY#-)e431-;o%itfR0s%F(bynyxUB2_ z;U3f974J**clYLY{a{%9lvzRhqmkBn@G8IYJWUvqb!hgg+1qDH@UEkWI&o^x=EmSPHV4CETVa2|RM*2_K$yrDjlEWVf5>$2Sd2kSC_)HU5*5hkWr zsGZO$jT(aXRNbl91~*4VFc!2!%VY6q%x(`Z&t=MOkrZzLdvrl8r<4ply;n#(Y6@F~ zE5bgY+TjJAe)=paJ(4R@DE3lrVQfY=QM6D9(!+nbma+ATA~qrdzM^B3u>^?rZAZ6FCGDSWjdz3obdz+*(_aV z-@n4&U{84kiIP0x(`bsAtPIlfnhffqhBAYgTXZ|>8aCJ(2nM%@u+xnbH>$hrX=E)y z_Kt9~zsu|&?V{3lF(NzLlxxnAB!N6r*F`2~?oMlvW@h{y z>8o<+PWFapLtMYaJ&6nb6@(5{Jn~CTjrEI-k(#Jgtjk1_Fv~Y9u}AicIZh{e{crgw zxxksB{R1q*Y^q^uXaXetYw&&f1?(a!4>)Y|8q?I6(h!=EmiENzj@2bk!QJ&Z@G&n^ z^@$2t0q2H(PHrf+kFAf*6MMph5z(puM|(G<61IUMpmDTrXne3`sAIISy2P1B4dg!x z@$lES4XK_v+szV6c{_hPYrVhBh!)Q zXhl3X`5m6>Teu1QXKp(44Xjx8fm(H4Pu3snUyLF4OY9`Qg?q|fgDn3cvLfm;t11;@ zeIom!U0||(T$^OxwC6hQAjdJyG}YG9#pu~cQ)u87kcX;$jb=^@AOWs}_5hClHpgix z@?mkTI7i;2%{719pO9p%9$pYT3#sFOR7UwvIwiYw-5QOZVv2jR#4V2B6TiV9b{%I@ zh!yBw`xzJ$vcYZkB6*9A3NH6=AwRc>YJ!E#Odu@Yh|G^lvF>U=JLObce3d7xL)9$NzztvB3IZZW1>}tfL^bn+#K2jbC9jn~(L9Kz^ z7jiZV*BLk$Gr7V{5ArV76OwRA;038Z7j+e_VedBg0O2ziP;8TJ2OGhdt|k86@j2ptxWBWN z3DM-GohH7?o&oM{UKV>ch9N%NVlj2_^fdZK2?|4O=;AU%*%v=Y_~G>Iz6eqsLrBdt36 zNk1p%40j9W2=^6LZ6ETRp5qS04bEaF{`58Dx?%P79nqPAw;3-oABNhACAFcJAF|wM z&?eRkwX4)VVq|_zznH-US4M8i3FbbyNw&Zypp~8CW;dY92g756M>9(Vj)ZTD>y>0( zwgw=zA#;skiqp_6tL;?I$hV{g(rh^Oc0`+#jhS)0<7(=jB=lsD5*zJG+HYxcY?n}I%>44QW_W=zJi42c4fy3Z;G=Z(}Ugv%7UF?o$hheYGM(QrH zMr^S7kL=Oj8eL$EaSoWfRj?xHKTZ+5km=H|sneBd((Bk?u?NvL(UGECmGqfroShXZ zfMw$4iGAo=tD;^Ph{yS&7_ebYIj5f2ev5oTH)2wcnwVd|j>>FfZ|(S1iE9!s#r5?x;7;S2<{x#i>ef40 zg|NbODZYSvu4jS!G9RG>SUpQpSIP&(g^;01(|X$+)`GeYt(7~j*}?;MAk_!2j~p|T z^&R?5qqce9UJb0V1{}rb=I&DQm=1fU+R8QYFR`)oOfIesG+9S=GGMA%4Ec>j&`+3x zKPB%#qi7vljV($KB35C~kj8eBwF0{KY0h_~HG$HnsP5!0q9gtanPYDR)9`2OpfwQY zpZSP<Kw&hHM zWYv90er$o%E4W$hTV^Gzvg1a^K+-)QbZMqJhPA;wWBg_GGVYk`oo*OKB*QG4WqQ*l zb(CHLyTb!mJEV^_SvxBYi;fSy5A+Fs3)PC`kG+v}Wji>ccS7cKeWVRogKnl18I=R8 zLbIb&l|hibEKc2FzA=A*2C@j;ici!M(z?j-V241S;Dyj1FdQ$i;$gD83;zdly@RS*&RJ3?KO5{mzYV=^tJ>-L}-74d< zJr?bW?<6i0`@s=YQd=eFjeHND4crNA3(bq|RV!I_knLD=avZ>_&*MD&}A{O|GiA zwMJHBd>b=QDDCYPw>5rS+ZPf@Ou21FTeXU_n7_y^lQ#8Z-iloJkP#^ z#E2biAK|bo!9AG&MTD*U>g(9Mpq_ao#7WnT8@S5*;=UwJ$?-e;tHeT{UDRl@zLxxU*XytF(emGxSQk``grR4?YNKr^_~|nZBC#C46#$e1$P;`FH^urb{hXcx8U~) zF__~Wf!R`jVhYj$`mR;wWy&(+AH*R`@=ZKLe4Bj_y`wz;2uElOW)6qUyXJcP4b}j< zz_VOaT@!_lYzCgoKBFC#--=764_XIg6?LD_>2>^l;_D{tNazwj+;_&+fL%-sLLb03 z&jUQ|AzZ3^r2hmsMY_c=_L^)bY`2kHZXCgbX@NqKb#fOgM(BK3Zv)?B&j;Z%-39$+ z+)#sX66~hEu`uAln=>i=GtaoVg$ZvHhR3h-Wp%gb04joE!0q^o zEWoyrkC{JgMfMUilt~ApT`OpvoYf1O^R25$Q>vzL75M1qiO9&migY>eW8(X!{K!e{8zomZoP&Vkk486;<@z3LC`cT(Z zprj)BCv-5{6#q^&;|ja}@}#+Q!8vj+Dp)6!1+hQTE#NxYj=Z2OKH%~A`}yj-Wwr(R z4QXNht9R2LYn9C@PHyZrUW_bE^#-HUF*GZB&-r8xF-sZ~^ex6!YnxroM(l^yX>+pf zRlY|LhHk;Gln*zI{1U@@6SU+1adggMa-?4yE~C5J|yWBt%5yeXCSV0fxXyLerBwFY&AaxY#xvFI_74yD)|@ln!OIG{G-IbSSEB{ zR~nnaq?L?@!4>kIoJVq`2I*-I8-vs~E9+a8SCR|3Ij5xe%2RM~-hlp(n`%$5rMFNl zQO%4?I+n`IRt{*1P+RnLG zd%8I9vop{`Qi0HuoIzPjvIqMLM&GLh@s+jPHo_cr16>_!svQ%iM6QL-hoxwY-y)8Y z3#x52Tz{yQ0wQHuaiY)|HaBvlScnfS3}yoBWr8qQo}%8;u7HE#gQkNc-os{P)+q5NMJ8X)sM^cdw#(7{rSC(2Ry|p67K%_sm z0a`ML$gki{TVV)FOR;9m7ugoQ%e!GyJ{RHeIN~-o)65Grm(t=TevnXHDlb=3MC}mx zoAco<@U8erth`wX{MYxQW+)bH6Dl4)ADP2{m;P0c={;Z$)J(5FS(m@%$yFs zSZK6($LI%^oK?&~@-ebNc^}F3F3rmPt!7Fluruf!^PW~$Zoub>oD0ng z7mL|NkNjJCuQ`na@Kee)FPZDjh2~gexmHabr!aDsa5Hu>@+m|D)lv;#j?9i;;rGj* z^%}5~{Y3Vsy!a2JzdS2eEVRZyJ1{#kU(C`f;cMBLt-GV3y}M;9K1Jyjsph|$tL7rX zLp-9TqY_z;?Z9SJzp$cud!cd2?OU8PKAX$=?o~oJgfVJ;^Dm5qOkX;*XgeXYQc!#? zY?m&oyWw+P*2Z{dB#uljl{Cz=&e|8thRoePaN7@!{uJ)2`_S`LTlN;yge;HvlnZ=D zhzYm?{X?%}&D2e3TQZ)$&8%kY&;#JuS5Yl4zY^z5zm-DzN8>ZH9y^CULVG~=XB2t_ z9gA@|f*-~#*lT3HnPU_(?r5^QOS`OhHljvj#D*QlPY_Y!3_%iQvA4!ywYoA!&JQ$% zYw~SvGh(B9TQ`DNVIx=2+Mm|YW7<+FKiIhIL0%zf79lg~vKAjSfe7vpJD8qGRDs!c z37Azrp}w#~xyM{x?uxavBFOF3{3#n8xZW^lv7O3C-suL zDi^hr#!jRzW?(Jw<+vaFiOe%}ZIjwr{zF=!bT-f70r~~^9qfyHY=3Yb_65Gc@I$7% ztkwb9MwDf5+B8Qe$A7joD?BIvh#W?N;o1oGc|*h+K+KZ|VEoYFA9H=hNBFWel7=a3=j`*mVp5x0$f@-u!~ zbY9ft3oGr-`^0GWEH~HgwC}K#1pebId30=dxMWlm@+nr`i!>y*LXYk#nU^RH?@XIM zRLxdQRn$7`TOdvO7(I)<2gmJwbc$J5|5GU@$wFIUv%tuUv>s+oC@>Im5n+qc+OSwoOL z6qrMn!S>$nN%5BxyCscISmt)x9+6h#y|_N=2zx{E(XYZRZ3x(TZh}R31M?9R)dXR9 z_>Ot4%wHb{3RSK`aD^T=%Do<6|PjU2NoR*@`07h;;RO)ZrzyTIu3iA}SNXHjM( zou4VoM8Oo@mOe#~0uK5YOGEBG*Uh$`JI!)b68;+5Vsz1>N((hvZ)2`Smk`*+bR}-@BKy^!;yr#L%vTh?k(^(Djw)m&Xa=o?)X8M6zd(jB`ikZD$hG>b!#Q#R zYU;k@j6?znF~N;N@7%74V(g&RkQNt4a|)E?_$ z$6ZKo^|HK#si95U64@P6!ga(_W=ATSlU!XBxymgTNc0-JO>KFf)*!_27Q3uXI90}r7P zzgl^Oo@Pec#ybi31LrgDJQIc|Zz7rq_gRB*Gnv*}j#?I4*NlFI9Wov(Kg2)z zdC}(4M*Mei3rt2Tpat+V_;aiZa!Fev?-MG5WkQ9V#BjYAeuNpuVU8z|BfbSYatrsF ziKlPT>FhIR5p)PHlQgu)c&Z{@kp4=U)O_kZu^StX6xX4iB+ZnE%1dQN`_HV2srVUk z8@U3Sj<1oAdM(&1FO%byIBg2Dka$C#V*j-bcP?>?_HWki^fz!-q1 z?1@|G&epMz&l_xgNF6s{2s45cy{~e5cSD)J-oCQII{Fm1vR|D^23*#&*uqYZVHY|k;SlAeh3 zwbce0;BI2!XzA$5Xf*mmFx8i4Gc*o5))lm$keciwVEkIhgl&l!kwxI$3SzglH-uEn6k3Xceg%iL=Yz8`08^@Oj z*s}&@1ise%RyRZX{m@@QXrQOzQ>iB8PGp^u5UuYWmg)Po`&S^dPe2hTnm5Q!TyZDv z_-UC*t}rr%4WWAeih=ymt}ZLS;hHxDE5gCvC1J>IM zVl-A8b|RZ%rG*QkDVNt7vhE-6h3X@prG zU4oy+o1(YD$-GUqDm&y%XqojyMuTOwACX4-iCI{>!71Z~6_L!qPhYmL4&*tm$X4Vc zz1P0QdC_KLn`85(OTiD`e{z@PoXyoj2}(TXW~RdiaisM>qQ6!=_R%*gEB*JY%<cwdDp@19d_<0rSvcG7Pm7M1dKwmT2%Et!WTsF9uvyw7QHVW_4vx-^ zO%QvlC4ic+96F+tu!Bem{jB&be9Yg@*U7&v_$_ix{09E=L3%Z{n*5F57#SYf7%L(a z5ogPnwVB`yDW~ocpGN(mozOg~8LrOnQ0|x~h`ww=?yi+(TN6$7-h5o}khi5bEsz~e z(h9-z`q{xbOWMv;+w?lI>)uYkwtc($?e4Eu{v*;p@|JUWV#kz5DJ2pP+51oyV+emK zFwr-~e?0ggnySu&ZovlYeQRBI7VgvoVpc@+$NAa?PDIX$-Sy8{Wg0l~+@H3|+&7+SV1;8P-;o+0;Drt^N}xH^ce;LV3k*P9Se^c|A80 zDkr{=-{WcI=*SF22WiKp1;QS&kZLh9%new6U`sq^Ix@h{gLVwKe~52DHrWAGsp~`$ z`k3V%cNeUv9bKKAF`H<;$h5-$fO}YV`I}@@K{8G;*2DIZu7aN8p1v-|K9Kzz-=VLO zvLK_*LCT_{Qd1jbj6nMlJ*X_&%Oo*#$kkXqbAxh#Pl?`&9uh99OYxIj`8aRVtJF7n z(o>ds7FZnUEop9aUZg8OLz#mVp@-Vr#Z6CW7eCQG$hM6vs;?I^Bby@c_(ZKgvC=j# zp?}^b1zm-j=KnW&qjL#)S{=zZjZ};55&ke6vH3m6Qa2W;TW~IN`ib&$MM_DYuk6{K<77Z zDflIK>bh8lKNow==av21E@PN^3N`SCL2?wH{hK?Gfx6e?ebn7TJy2Y`tci#6_8ba04g@$(<9(QkXeY`vRE#_cjp32?cjbM3k zERt#&@0#uz@3dNL5xZ3Qr1-yjEBp2YA-#*{vp#bL;$sQDJ?Yi~=vL`v=u=MY_rAYGH-YE9f|IHh&>!lS}c($e+eE?WkNx93*a6Mu6vb zBTqe|o;&B94xfkKTmo5Es}jrbpU7F8Q!CJe z4{IvXk$dah;;!Q!YR72B(8amo&c224%;pLGjI~!rAsz~03o$#0_vQd)aqLN;X>P;p zxST@1Bm{owK7gJk6rmMNwKw2j^Ru-uv_1Z=!V;S-hD00*3T)H7-Gxp%8 z&3^g`B>?mICBVw}%T5Z+%IIpRPDTQQD`FrPsbdC zn8;8p9jHZHFdKFqT%rT@y;_ELP~U1`NPqMN`T+fmrlIL(oW4xSBYuru4{r-)g?>jW z@h!zM%6KrS`~ok#iCNH*V78v8%#+_pe@copQu&~nz}U+q4SFYYl3qvA_Y&DSgk%nDDDo&g9TWm@FMeQ^@c5W_=sK zDiF;^erNpjW*+nZ;NuLQtjN6w9{4_XHI^oK4xP(Q&7PJ$-KRwUkuWZlbQlTZA#b#Zau~@=Zl}L7qv&MJR0{Fq z!(D9Th?&1GK-cZ-H-e01GdUh>^}wdu&H+ zW9&c-6Yfjj)R#ti>=>A`HqZ|#Cp8fAg!_QinxWnW-qJ3$qh1{-Un0;VQqe7_jvP17 z8F%%v+A(Dg*t^bXV~lFhK)4KihrHM~^Z?SqK-7Zb-B^2my0}-qqsAFakV0T;e@%XY zH+e4D-DGSpjuJbuOK2u`pQud@WhkzWgLS$b*|s!pE^`Ig=2w71>44A94wW?afIsCb zK9f2NJ9RJeO3zZ>NFStp>M>(F_K1|}OAO06sf&0LRtvp{WFzg+4yca4Akvxn>=c*` zl(xL43y|*#o}5e-r)RMXx#jkBM}~b7GzV%kGs&X(6ch+1#2ZU*S9W~Sq!&p?664}N z+ZVHkiL*!rvl@Dc+z448+5I*CQ^MD{;?BQ-o0w%(mo`NQMjAxRL!RoJz7G9}d9fMT zf5;HMwS0(Q6WtN*#o~>i{goEI#jpaCQtV0){@ z)}r^~tIUwvQ+_3FRakw3al~wdSzxnp0PBf*(TeC2BVEsLBpT_k{WznJR|kTVX)Qkj zSh#JXb;JLLu7+<%tBNaN7kS@oZywY)D+NR;Rx@@qdL~+2n4vTWM$RYL0d-}v$l-W@ zxa0nkdrDWubZMom!bCgE#NmDW+hmPNY71$la9%J3MC8R=;N&`_UDOd^vR%{aDYe8i z!Zm525>&Qo$Ia_#7MhKg##N#&Re+YDXXyun3(hsP6|p6AKP<1=0?YxT98fA(stc4> zK!)9{wb43j^YsNl>!^>6Maw`dsT}!~>PbJMx|1{TmFP3`hH=(NG258^%o(P|T%>PS z>nf>W3;W5Z3Y|qp8ZHf%XDb$UfojoGpkKa3I|Z4GQOcp6HPbJ0%PBI!SIrIe^t)H|RH ziIG$;J)QZBa$yIwZqiF$i3Y=&p+S+J{6}$}a?vP-ZHM{(P_zUhXtR`A3ZdRmI;(H> zb4VU619%>9U_YD=zuEobGW8#r&i0@m1EbpOc;KjNtHNdz@Ai6 z+oK9Z1*|SKY`nY+T%SLpv-xbW=;l>xYFqT(#w2JO_E7pjZ}^dl>7NW}3&5v786S&o zHvcthzz)HxY=`XRdqvjUqOI_^_#3=5-U9s#vaEfj54?-N!4DO8DxZx_=snbh=72k; zlQ=XoGgu{{_&37Mb6~`XeHS_dU%4qT>q^7>)pb zdJI?*7ogY8dM0kdn^$jaQow%60EW$VrXCncROo>(;o4b_&axigtpW zO%aS_zHsFo?`%WZwfI-Pto#x7XW!t4eaU!+O{ZG0E!fUfGF}}u&Dmx-G>3?1_t{>! zha`NDf8wgiIjCQztZ-6S$mo95XW`qKeb&v^rQia@U^bBj&Hsx+1+klaQb+J~<_)*r z(ZlhLyUkkZSHx?qFxnB`T+fl;=u7+onF>FPR3-u~=|Aau)Ni04ZNh)zHK=ZEPiq>a zDrDzYr{Ngvr~#9YZuAoJ7M5+)SD#C`^iukwlr^%kcXVy5#n#pS&E5l&pfSou3_>-t zHc}LQjQXliTYDD-Rou@tceEQ{G;aKBO{IY1Q*|j9+c- zjnY!hup@XW+)12kG@@5ICnnlc4kzV_>tgehv&@+CS}F_<>h)$-Qn9SCABSlq3aR!T z@N>G0bs$sdp==j!pRE}eV3*Qf{3Gm+O3MGrZ+@aQ$$>Qf?8;sb);<-bl3JJLwC^F`4C?$Nq#e^=0 zLck5&n!^>h`K)QoDRh9EE=w(z|1mkVo6>vXn6O2pfhS%-y9-&+IA}XQ(*M(I ztM8%7flCF&h2ksus8#^d4YM&n9wqnCtLR2#8FaJOMP{Weaia8(yjacBYojnZU@Eiq z>D_p;xdQS^FT(XBC8O73Z>7pc8_XnHQ74H~2&v=pAo6ZjqB{lP~;OQea=Ne!Fn#4kF^^rx1i8R|@dk2DJ(56%gAgWaPigirEI z?Uf$YY5~7=fLuEWPN_$)qoUU0)6PlsFRpQx~SLqaAS;I zT-?cPz&`jTUD6r>KWY=%3%Y6*sHgZCWEf25w#eJ%^J-x*wI9VsQB9di^fsy{Rh(Fk zOw<|mv9v*)DgGz^D{WB1YIUu&HdY-ZPZOKM{C2HW4j4O4lmhZV>5OzvN|COKwZ-8A z3yu6D>N}+e{FzI>4o0DLpcm$kz@A>bqFgXnko%a<&^EY!{Y`E8y36 zM@M28u$Nd1Vi26;ic-Ju{K$57F7SEk$vxG{MhZTjslVHBb z0t1@I9;}tQ6=qx8#BZ_qXyI59ajJqD2hmgb18{e))l*>KusLup_hrs7Z}H&I*eNv; zS{fN_XKOO}FPq|BjeJUD{$OZwum*TbDytKa>qJwk4jIBM$Y?E7>=6AcR02*i#lwF_ zAB+3db9xpyMPp{n_(S(A5!j$D5be@@X@|5_PSU2Do3IAtUvz!88T*SWf^RpEslx<0 z+#;+*&x)T^7Clb&v3h`_`pEi>z7Bj2Rw}~ZjfI7lst3u77a(>J)yb>GGWfs88x3Hi z-$CDHrXjn{QNY!B4`k`v!an{bKVG~H6eHHSY4Rp*j8nh?8&bX3z0HF?VhKtm^dXbi z?sddNlVk`}4!@xvmums7)2kjd-(!bx1^a-FguHNu)&-0n@8vr(s{T}qsk7umz^q>v zO^*x@XZnM*Pg;Tt*iJ4&_tFQ9_$ZtH+0G|%O93IOg%Ci zEMdKrpVC+*4mORG2oF=%(x06GzT$Rhf7Jps+q0ozq0NzW;gW1>Ip#LhgB?IWng#Uw zK%9%g?edvE1q~9HsH>12OuL1O{*jjue&f=NqC}2hJffL0Wy*2V2 zufv?Q*0i0o-QudV-*Mj9p`Mfj(rLM;HV(N*Two4D^WXrNW8H4q$#ekr+Z?32QCUZT zEMEn?Mq$>*&N2znH>l5d?IzW}76D2lSM!0+lf#g=n&*OBi0^VGy8>=0n0{;Zx@kNc{^f%|?#5~Dt;(52z+7FTW zM}ZUGL%tE<^XZM%v~F>Iidz`J&vV2v!CC|ygdfbi>M`Xd5F+mBhFJo9Z6BzTOn>NX z1qloB4;liFn3eAxc?DbE*|A%~1mzM^fj(#5U>6*u*@aBZUEEE)A&EyYG}{q6Q@frl)>P=%#Y_MuakCgpbw>%QFgizcphh% z%e9A)L_ZX115J_F!ZoENGL5uYw%YF4Cv%hOGU#rl1aFU|g~jj^p4B?ydD!nm$sO4EYH-pt?tSfwFB}8QInd-ve9o?ILHh45z-J^YvxwEVYjM40^`%$X?dP&Ove2<5#$OTNX1N zH}$g00=bV`!`Oy?Cq3{q7xnb=)Nu8;RcF>?ZNM5A>g=jZcd>s_hs_!^{ue&B!P6tS{YQyvTX#;?W(v?CCNO9O+8C)>g)&;e<|1bvfQ zNv@m4(Iwyc)a6cFfrdm@#=QSCMu?KHv49k zvhR>K{582&x*cc&Ur`~h8x{e!JYFT~nt6Cj^F!?!(q zH(0#dMP2H9q$_pY`q1XJj%FU?kF|HPD*+*w%lVX(?SCBICr>e2V-v_`FyHb)r)i(E zj(--c1+;DoS}TxCR4-#aSlPbc-NaqRzKdCgo)e$@{{5AbaWEs4=?Zt!moUd%y^_YI zI#Tk+6}QwiLXj3ZJ$~%|9{+o}zmYV7EbKX+=SaSeX;}$PY|F5S*w)|b7yG?>#@fu8 z!HTMr&gaDAr^N4YO|#rXFG;mSU2}!(YhHJ_sMG*CO50#>Qw^AeQT9IGPd_Xc0P}8< z=z89+E<~+<$rFbqUv{zFy82#eiGi!9gW?(9cfRL2P5Y~D{q4h zhIJa<7xx!SF-Z^*MGIPCb(#7x)lM!gFvZ*_ccq_d_1E zIrWCHVJFOVGs*03>@`glvSK2!x1#c@OZq`bp2#^~fed1Y77Eay4-mt&em^n`8aaJg_}% z4hHVAzz0~WZxVY&x&(^^x&`Y-Z%Zr9qVy*2yluC28ud!+9&Vb``ggaV&wicow&ha| znapde={oA{$Xz07W4SOq^wQT2l6NnpO5kdqstU{VPLmaP}alGrXRP|t~rvNh^;Ym6LwXcWJc>jd-${1&lo{2 zw#>E{a7l3bnM>_P-P#HGT@(gODW}{q%3=}`qyuapiys`-Ie^NUV9eDX%5TN)aLyVB zS<074FR~iD({|ET+%wEQ*!jWwH}PD*C0*ku3+vP-*a&8#J?uG}usi;W>xT6?j;r0H z*ZnhdeYwYjw}dpK0LfYB*w5HcT02rHNJPFKtrHmNOAO5i%V{$-nX%h>=Sx=!S1J2E zwk*-c=nZ7yrqU#7nKT-nNmZ|466kN_mGKrP>Yw$EkYLZ%KFeo>NwK)dwqOEKPY%aQ zNng~0<~O7b(nyboeN$HCV$kak24}?%OM^5ZNReIXp41;iUu2w`EzTC^@|*ZK(guAl zasqYwF~l#s7(*2CsWnIY1m);B@GnsNOQD_sGZ&oDb|y&3yv1t z6?!Z>OEsk(@;!ARa)plAou2xh4~{47S6D_E6^jz`;WVrr9@*BIgAx1}Z4Biw-kV|b#?Ry=KUFTe>uCTMYv!Cr1Q=C|5 zHd9|nR=K>o&sc_6XI*yLnc?aR8<`PYTdJekUa0~W*P*cqQW^6uIf}dD`H{3E>87Wf zZ5H*|_#uoAHT6#mL?ZL0t;PwmEEvQ~I9yzH3NbG5LxRn{1#-9eH^w6BG`t13*0Vgm zjc2%{3Huw_AfM#>$EE_;u&Q`dDFxq7Rj3{m4jj(IMmObwa4*s}_|E^u|2xnN0NTm& zBfSLfVO+rAQQ7yf>+$P%rC2l&!oy_juJqdAsGD4ptAi)g)5RrQj$ru|Gd#gNB{jv(-Vt2@1fns(zBw8E1e_r`a$Krptixu5x9)&-KbSCU zS+_CA$aaJeD}o%+4`>@<4)+jP47BBd4Qgq&iyi8;sf>rR_C==(E&a9}DyN$_E7VsZ$p^N=ahZu+(yF*I_J`CT=1pmLbbm17ZyUTA z`6k>}Pop>Ka@<j{R0^ONW3i@<455e!(u1@yvb8W-is5L9M{584kG~FUIx=OQj|1Q8R)qAX)=w zem^;w>`W$-SHLL#kT{QLqic~5=1%h;WIH~P{>wVwSw8+-;_f6Y>26$m`!ov94t(pt zRIlXA3<0$US!}Vn=Oh+M>6m2m?B^PgBXvnk5_&9? z?gFmm+)e5P)(XstGmJK7Z-m1>5hf&9T3QFN^+*vR_2E)dY)K?aSc<>`lLS)-v=8A$2pkaa{qW;D=p zuhV%6)VwJ71EWYUzMc3;Ijom3Yaw}%Y<;^r6b#9?d4azw4>ct06`gLiTXX0ExT=?t z=0yvE%dCEMoV3*31e~p!mMrE1(al__IKbt#3tTpn__A6ZVv%K>J;7Dewa(_J1$371~N-x!@5{xke2`ao!}d@vT`VJekV(}!uLI=pf}rp zA+kpKiJ8nWTYra}n@1ei8uQ!y<+A%^eaWd5_#L~i7oeLsZ1MXNU5Q^k)9n}NIP{U4 zDgMPz5yq({u#0pmkeAb)18f&yN-!5OaOYr$P}SID>9zhEzs%gU7?vbpQO?D- z8YQ$NN;_q%dS8EU7Q*_Hx0%vbH+){#IZWGs*1nd$>`B@QJ>a=Ut{SiOlVxST@dRvp z#hGMoq3tC1()t4C?(fu4tX!y(zpTGN=v%C;8p5hsra6wdWjE`XNB1^3-s9hvP2}_n zl#(Ws*`5OVPZxbs{8{0}smE*skiLA-*D~jg?~ag0ym9SLTUz8z$yz1b6x@_>mHDi+ z2;9%?pSi*tiCM7`j+RLSQa>kWdpcSa^Px~8cq6x!_axk6j~iVWuVc06u_xDA$7&L( zh+W$Q4dA=#cVq}Ll{!zm>Fq#`Scq86Nw8nLW=?|1Wp6WVbkXn1X|bb$fOnc#^9ufZ z;Wk140aiH>5}} z`u7Hv$Od7kGEYBbwCh%5=T_MZ-Hh(x5d$QJq=x7-o4zqPVJ4E%w%1@p^IqO;|vBimz3 zU=#9s#@iNCC(H$MPrf4GMLue}DK{5!u5zDoY-V-zzT7yn!e7$9 z^X<$NN%&}=L{`!}iW{Q~!E0Pd-H-LKY;u)^{@9Vk3+}_#3iuLbY%~_==9dD0M|&v$ zp@Z3nj+O3xt{`yBNvxg}4C%gZ-p9U9kv&QbUtoI>KQpC&N;E#hPSJVHGoliSMNSI& zH4O_`Cb}xct?`hq=Nv6R8`y5h)Nu_|>stu};D?dAE8;duUui58$ncp3p6&$WCZ+W0=-P znIk^ueL$QVDs50b=4hm`Swf$xU+Y8svTSsebZ5BI?P<&#q@w&WvO8EVI69OV+ohaDFHqCi>z4DD zT&5Da1(~PCq$m93*na-Am;~*{x=1Eoi!Q{bupCpH(y^Du4Q0KsG*UU#I5Yrwi5cn> zqy$lvx=BqSJ=ko$888gyK{~r4KMKA-8X76c3iJ?Ak8Yz$<`WUqR(#)44s)vvElYi{g$tL+l7-s(3!)g01j*F{)P}!`4@>+6jFVMNeUy zlboTAiEi=k&Z?iCrJy_GnyFpQ4*aak8&vEWG3PS?91JFsAfIdjO-oJIu2&suW$A3DEb+ zb=YOF5cknjwM1ot6cZ=IZELBzN8bi9qfEJlbP{%*wIMgtQOyqt>t1RBvm#cGj4)>) zb^rP1MoXEL=BTM5g_2SZ@=&(?kVEd3ix>cTul%@AsS8#hRU#Sw%S{W`};g^fe z)W6WH>_``y*g2(rYSHA4o`PH@av4$s%%oqL>8|3*ku*MU!8~mf9@wW+2}TF879{Tu z$(xaM_Puj|T)ntw&Z)q-=^)++R`Sj95h0K8Ngqztw;%Md34Ht@PYb(3*X2f1E!8|;Sh9}u30LKC7Fwvv3#9N=m@7q|&emMg{C z(T;O9SehBa{%8GZ;~m9a1D)gT2e_DpXTC#k=Q|N4Pt)z#o0dY>o3Q(Mu9Xp1hRXO) z`+f#qMxhad|7&?=ALW?J9fmIIIt7u=h?+D&tAbT!FFEGMAqibQt?XynG%&YJge}+v z^Cyyq-N*NmwJA4w3cp8Nu7l~xOxiyeSj@fQ-M_7Z(D z6nUr5)O2kSoFNk6pZ=sLfZ62^5SDV8I&==n5rfgC#x(V{WRqq|5wWU>$iK8D2#;T) zpFx@=1-ENIqs4u74lHDeRDpl~q)>rPY3892@o>8{F#ACG;pD+9(Fg`dS>XY^w zd*CFz$Uexi%~scvLOnpk`ajAkaaXKJq*}OEA>EZ@su2^=Fokk=>`m22{Fxq~!GEDE>%dTJrVKvxjA zi3a!^^NLJFlD*wBbAI0YbvoD1uR`3`9dU- zj-JDgv2Njlkhz(NUDjGl2V*58a^$plQD2Acqy|_d>lvVXp3~Vk~|ht%P{t6#QN- zrLIx)>SayMd}tij(v=C~SbhlKRMeGTu-%GhJWLCU!5xLmG}W-40G#R;A$W*oFClgKn8KFcW-y+ zu`hvBYei{jv}U+u1C zR11i;qB}xEB0lkgF`aB}eQCEkmpB@7S!6SV6#Imk;FRF*(9Y;ir9Qro#qDdsse9H| zhx)4L;TQW0-_ zy6AbNFA_BdXl<1eayzM^G+jQSxKvE5YSf2*(r#QP@6b)zMz96Zm=N=co=ucPH<(_1 zm|95Lq^wZtD!;V-*c-Yp(BTd-2DVf!%ufw%^$&xS{2+B8e%+Gk*yQTw{K+k*m!eBG zhde_hW8|{^pCia75a!Vqk=%s5A6e`WLkW7;`q{o$(y<&9kX@ zY!9o*eTJ6(VyYMVNNX>Z;1l^#KwoZT?809#Uh7Gl!*K|_!7G@tWzy+-BE;_}U4rBBFX`W~4eTC=}`972TQmZ*UnXyODEUqL&ew8oQN;hM(K~;wp?-Mx`(>XbEC-&4dssq?Sa9e zJVJtDr>{8%C!9^%8{gBB&76h_TvQm%FBVoxg~1$Ao_=eo%Js5-VkVLra#$TCuHiTE zt$-H&2t5SbfL6{SK!0Co?MNi*pM;~4_Th<IGxsOYzwXk` zO5#thIlUBS0mqH+kg9A0p8yrFqb74h#E5fWJ;! z{e4_qzPOmLCOAL-V}_BhtfIz1{i=~@r;zuU*Wy)oE1%^5?9b&b;pok5!8`PQ%1~vO zcEZw8HNLL%qucQ8a!(c?(*l040aHfqpdK`85eu0w!cJ#d_YGG!aETNJGH_OXffh8j z6IJ0Ya7HNZDDFJus3mM=>LLem*6s?83=RPbo@vCKp=VLa=q~ZwHqBymv8-zU1DhCniE%&p@7WlMuGbRN8UYMcG7LpTk+XUB`H zo#&i8#a3)@;waqte3@ce&$Jnt1)}YZUvvxCHh;_bdj3JqAhq5&1>M-fk$lozV*}N| zF~-*-%MC~f%yT}W$C-afb3+BdvgwW$(=zPYba!E*bE9*b(2PE8U(&uwL!v^oinL1O z@LGDeFvm6DQ_ce!2DSlis&dh{L1!>2tV{jPlGG)kp~v*C^Zs_sWV+bRmDI2l7#K7n z8LEmGur(b8Tv?rW_=5Cnd!IH<${Gzt{*n$sCo+-F$8Qt&IyyUk25-5aXs0AbW!phyz$CPWx*fkj}=n38()bv zOgX+6&vUcsy)fxYRgz+B!db(wBYWfx=6PzqaKw4l_1;-Pu+dDofnABt2~P-Dj%@-W z-$MKnlKNR-5?z64Y)w<6kuib2=}BoTehX>q(>Db?Q9>;S=98y(ij}4pP%p(MhBpM; z2J?lY;p&pDRRoT*&8~#zP6AU6o>}{~VX_=ekBG6Ka&0}Uji_5(6LG9qOW4l#N5ich zYLD1R;E#Nbw3gfJPwmIlJ$|86aeZ=r5Xv(}aBXe1bSRb%e(shy7hBZX#;3(ISrU9b z956d4Mw*TEvl?q;vs;q=sFl#%{z5BMJgSX3YY}*@=2^By+g>Zxc&{hG9khtHR>$T# zyaAPDIbo#GfLjZl_2*!6YA@$jb^`Z09#QNa{)Zq6huKY3VPdLTOZyYJ;rY~ve$C#5 zwu3Xf1GGIlfa@pSj+qpkclW4uwF!m|{;m|@ywv5oaAmkV>~>m)P2O*9zuY2rINCh6 zNGhcMFo&XzY#CvmxJ2m1)Wq?c5IYvC5F8(zA5NAoX!XDf2*yf!EU8*Qwac*!!2+3G zGuH+K(E<7vvOIs%<@cp|$GIx=6;O6F1exIv;YE=p(j`dUS0o>z_vD}WhA~VT9mx}@ zoF4eSI4v%7SEy5Ljgk(=+Wx>~9jU&K>7n9*z8MA62V9$<*4h>;;F#j_?!TWHOv?f|Aax+{tVn$BFcDBCMT`r((k(Jmc z;3$`i6_>Wl?bRLH8hx(8m|G0OxB%120qQ5{6P{LXD_xbH;1nPrOIO{3(>VTYcd=f9 zjjOeMB~~+*7P~ENmdmLt_4j5~JIT&&mQ?`}5%`wYA*~|7k;+TWjG|;QW*|F?`GA($ z!?bQ-r7jgcDTVYH@eh;6jpc2&Cl#~$D3!uVnfuZYXH*OAlo}Z=iOqBuZW`xieiI4i zL`90ui+qW;Rd&PXvNp`$COa+wqjf0yZK_I(Sf9w?h#YM!ch=fk2gvD6fIG^~qe~L; zW>s)WUyja<9fLXUW4x6K3x%8^=LKgG$8)Y6wbPz!WYaS>w*f{8B9rRDEfCfULwFJr z&DE*0WIXm;xq(eE%RWt%0lWPQW*l9G%8D8gh3$>-M0^Vl4lg7PpX&qkRr)Z4wsgBQ zoQWEuRP>hgLOZ!KIz?6^X>^L(%8USFl^`_WhjWd&h1@R4*Is9jF^Ry3tIghJ+j0Re z27HkB%o2JIhlAO-}<8pcn0TbaaPob5% z2(yn1!ALkQ))GGN1<)FHwIDjCis!lRu+_h#W=7s*{z&ts-A~(=StYs*=5vT!BxLf- zn87exEEW3_7?9p7?R@&QU^Z#8ah6Qtia9E~W;-AA9!fGzB@SkHC!`)~6JVkx)BD-( z{6HZE_7Dr1Ec7a>HI<5jkj34A2icU}-!2TU@HJ$1=(u;~T8hP;e>(>_o(uE2C3H!$ zyuI7hO&1=D+OZLsz?N_aT;Ciy`5aUQI45U<*UpwsD4UHp#2w~}P|9@(C?P>75b!A4 zYNhOp4vvhAj#38N|FDBxx&7DT9{N5wN%oUDi<=qFoDZX{Uw)w;osEx&IA?bW<2;_A38$*e;On33F ztDtANJBPC;-<~>a71K<)jq+0C?b6gP{-x`oZ*E-3|H)e(?y)JnhkZ#)R8Pu9=VK4? zs`$lO!+qBM%XJKB2S=Fm$VIfZ&syiL?)FVE42!TGzsR=d=Lz}5>B4oc4BMWupocZj zu5S&n9QJ8@Di|~ZaB3gOo#L|#9r=swR+>ObI0(s~5#|wV32p)|&{^VQ*Ii&A9dgxl z+~;mkhwxdmx|wWGCu=c-g}Y$*m=_m|^TieNjdM?T9OaWB@jVpvLL!~Wy%GDl4R3va z34cFty0al)n_6mTHRfo=^fJ~|6fcbPq{fd*B(sMTJ7tM@P6-z%1G2}B%vN|SeO65N zR*5&VG{|zq|H5qw0&^J5O`qX!{tb*;)qy8_NnyS?-eJK$ z`?Q!xAUGf=fiuYi8PFPhG8hd~;?~4Bj_=^#=3XxJrP~v^Vb4>L$VUh7i@8dFr5`jG<85df^EaO=1|2_vZaz=M{9AT6bfS&`Yfd3QqX*Oopu9%t*31xQ zEaa}25dpiFH3cTB=e39W0P6tp7j>TggSkiFrz)b~Sg>a3eYF=_17oH&1d=ynn8qv# zEh>x>iFM{AoS+Z%}u z(9`S*ip9S6a*MN^W^ksdwDiY7fw-uo zE16mmD+iGs4W}fSJQXH$;?CAJqYN~l5@D)5-Kb_)A|{dLP#o|vx7sz0R*EOqG!hIi zjWmO)RXZa)-b!vnDQGW|ZjI7i%E*{MN=9?WD$Av{3ubRHGOT90vEP^?&<(2&Gqs+Y zqLflXvRB!!054N72LCTs*z2%`%VLl9UMnt-hwMe)%#=)LFc>+f_5vD7x-iIj*12A+ z$R-e?RwvRjvuFB=3@Nl!>55OXg`Mx+Tiur9Jl775G8-xun9yHDC(D%}p;?~V2=46i zj?u86-pxj+CUBNGZNAY{wfkB&qn}lW7)*VH$^1NL(AmlHKik4fvX-3yw5-+YKUxc8 zk@X%jZE4g2x)}J<5zMvg>rK_4au&IS+)f#yVPm%ak@#OrwkOk%Cc(bF4HvhNaS%>G zYqY9Hs+B^}=m&Cu)ADbU!VeAb!OOj3FQPAF%akTYR=fkf1ftn&{xJ8N`Hb$`jBY@p z`)$VB^dT9cz@dmO7c;ilYlunk+h1!`R;GksrF(we{E_3={*30ayq1G$=@{h6<$dEk z#nO1I93LEz*7J9@^!mZV(l;YJ!mLjmC0^map;^{TbqH{=LNFKo4P5o=XT| z^C=HEuCUo2o;2mnvG9%GZWJ?y8}-cQ)^~dySpqCxi$s^hCGLTq;X+&z?9k>D(nAH3u{W?Ss{qX$#<&h{ z!=3tkXjycY^GIr}klayyr_p_ zljY50%I;WvjF$h=I$A2>q}#FsxZ7+EXl$P`%Bs!epRf)5p@xk{xE`uaXV8=2CiII; zBDUBOu=}*dtBC>dI}egm$!^2|+ztQ4D~KoL6{;VT&Wwc}(0X(euQN;Pd4Pd-8aR|X zu)7|CA@M1BgiIzo5&iH)IB^y-|Ao_OPb)9ZBnG3JR2S+Sx=j`&CfSXF-!j}>Y@RYV zf=~J#SlmN+A-N8fpjuGpQC;9$oHaLUDe`{U8gGi+jFy&PYej*FT%A$bJ=_eg0egcQ zMdYwb=mABRBg#h|LuTX#7Z58uhr@nh4BZ#&aBouN3d%&alrEZW>;$k&&SH)NZQuc$ z$)wResmG8vtz_KN8fkB}CB|dRf_H2-W;3@9W*2=KOqQ|lz+dK~)F4(nc1;?t#+f~d zXY@+`xY$!X%Uz_V;3#lpO#@Pw}XU+M$t~7yVs!<;x$k@D3wsADJ0~R zDSI@T3cKWF;V_tP4hrMA^2}>gh!|&eFmmc{eVQ@C?t;3qON2d+v(5_6Lc${Iskv2_ z!+C-Q0v&@LqiNazQsMSG8+&$phPjsV)5(R}_{gzLEB$I_Fmh1eOjUJ$_PetBvvl)1 zgi%CCbz)>iux8K~4#ZmNPQs=~!t7uszlaHt6=8jjOhaBrc1K^IZWO>n=}U#~&<1{x<*8=RnuBrahioEF^ez|Iheza7kS7 zlyxY~De}eNU3{>_G+D>yDahWd6Hx%nT z<~p#rTnGSN<2qwdTY*SC1c=jZ?EOST+QBz;EOC`}W9KL_on3{h*gNzzr5xCtGt|;n z7i4gSU01v*{vEzl_kLjr^^f&TEe@W#SCHDzMHLd(x=Z<+#1->19#%A|Y<6yKf^;uB zD5lE~^8hR4()iEKH^8HB2k+A)g|A;w$paxkc<&b|^Q3KP@CU zRswbNGGB&$g4*H2kZGN4-zG=1I~*;%>*CJE4~Z+|J?FT{CIf?FzSYqBYGfi);w$wm5 z;CY|yT|_7HglW&3)iuOFw-i`^b^CLzv52=AMAUUFaG)N7Q#j90yswm zJqi@e31~D|)G2!&`Tq1}@tkzl6K``2yOhbtjsx#xQRfe^vUhi%a*c3)62}Uo`8RN% zdca;_n$s;%H=JhJDx+MLrc1x&t=eJp1`eRXOe1zYGlZ%K?DuVIR#^uB<87sc86kIZ zXB-n<^<6!|mAVBn&=F`B^@V$eH$}@TmCZ_M3m50e>-;9(v3x@8oWC~l`G1l|N7xA6)ym!>& zdcY)x)6Pqqqe~;JB6FjhlqTob{xs&9xh$X64xZ=h)S6Ph@IbJf{hQW5Jw9+Ca#Z(Ge%jZmM%-KBF<8iciW4~( z)z6-$H&aWi`E|igp)P|t@PTh(Tor$c`y8K&##^tnc(s7qLZ4zEq%!$yt{T1~{tn(d z&RVcrKL+Qg9_kG_2kbO2THR3zZkFSOd$jkMw%wv@i#E=xL#_hKn?d%mE$v@0Sv(1-naRP5k@50U z;|Vbo9MLPpB(XlX2_*v);#%}lXdz5P|BiN6ej3Aw{?JtE0^f!kOeYkvzNv?ziNQZJ zF2i&EK=_F~-TX=>u+zb}_KvAcoKnArd}%qqZ~x-_`p=Kk8B$EL`mix)UGE;xF~?@6 zuWic@L)A02j8Jfcq?;G%U5-`Wjs6zCEUw#ZQ@lk<3YX7pnsG7nMkv43PhWu7Qu*2Y z&;mJ0wy_Fn`=qMTfsuL9+Hg+sKu@Lsvz*NZDLdfs8jqCB=&8{2!2H0{;Fa*J*mp(J zY;ca;(r;?d)ECf9ZXG)snHt^|>Kb|zDgqqM394)+lbH7LlF(L61mf>-vb`Bnp2em{ zhsRbc&CSOo%`FlS!Bg%wSBdItB`c%Cr!ubm&iF;Ap-ddkul}_9pt{fliKn*^E6mEO z7S%)9Le;}k^f1^cenHRl8v2f8@^7My{q=v}KdrhtR>`ZRC_R;R%1pH%5PRBTjvPUe>dj=gqn1b>j>Wy7Gd7{W`RAtH&n921y^} zm1=o?vN6YOVhyrxn)i$s`UfqKmaO%HTTClE0JOTgY;As)Fhlsk6=N!+FZhmK0zU-` zU3Km+@WCZ`hk6fs4!U-TMYzkh>P}j#62sKzV*^YvrV5=* z^#=0IFG9t6@g*SatimmT`P7AcMb<<`fjm+L$IR!tON%Hq)lT{;YazLkX(POKEOE|r zeBqzct%&JxYiK)yzd@@U*_3V1# zffx{qaaq75HbP64*jNhiXJYC#a~d&}n#`oKAJ{p}cT@%6*4xQ%B6CB@!ScaJq0`Y$ z${6Dy9stjs9b8>55A%j3?GKtQr2~0vY4CM$d$?t+t1?&b1>W=sF&OSgetV7nFK`)# z1{@ia(l2K`4jzrY)T@)9*-Y`A({{Y)Pf-=DgYv)OF@dd_{eot6i|#?Cg;(yYz8Stp z?rA`#O2)6W_tKN-^=M0pQ#Tq9aaQ^&#{w(6Am5&zj*IGcObw}l!NH!9fy!X3H09uT zINAfXBPhhPXUG(*rS@EI{XYh$KF3-K+vWoNd44IElUYf2w34)`(%Zd|1z_443lDGqn_)mwo1JK6>4QVKJgFgyIl<24W^$SA z3C5%vp$y^)m>*8r59|QA9RJ37iHb0btw`md9n2@DAsf#&WPU;}W*zLF`&#j^vr>S@ z6lBi<-K7iPlpRAwpbK7HtE=3Vv2sE$YQH4MF@1PN$SMBf>#~GD`jpv`yGx{Ldx@(jff74HMdb*kv+-_e)Ik=Sj|1rK=)OulUyle2|8 zq9SbLn$iP^R_0l?zkE;{B%f60nsvc2v!1UhoaO$dlL%G+C56M^f}KNCqRZ57_IIi+ zPXb{+UX0^%QWJFrg{6t40A^`ezkv^b&Y!ZZ|%31TOX>Q z&}F@Y@!0s&++q%byXq}`h^R!)CO^ZBC_vp{-gCc&la8#e=dOn?!L`}3QV6j&Rg=tt zFIxSrzicmIk#nhDbOZQrPavn+mtgCYpx#oZ06)2=b(7dnF9RD+XV*s8LZ>M9X7{2W z_%fKK2cQLPK1VZ8ZvO@7iQILK7k1GGE@yt##%raGefD?sf_*CVa3nZ>@_Cp9qOBf` zxxzJrtAdG@}-Va;!8G-9B)2Vj>Kw5Q={c%S<|de2BT({Uccoe*g z{n9t3qIHJqFIMy3jPu90_W`qno;yynBh6>FCAAJZ1okniew&h zqB=@0BBv^Xk%YfMQ)W6B22;&3>MLGvG*m7`SA>EG9}@2)jdMCgkClQz ztv(aYj7f5JZHM8o%Myv`6V;tbVaI_9cOLT(-Gge39uj-(ICC=4+v353mrZsmD}b3q znboah)*JJnep|T}%NZFQsuNlqCSv`SVa8~zLGx`On}^9Dk6FE75ZlH^!>bMFJLqCBXaw$yUb7_l>3id)G4y{J{&>q;~{M73x3!<$;V*|Yc zmx4^hEuBZmBlVbC_|~8MC1ATI~WY+jhW(I|xSN|BM6BO706@r5eB&i~*hP zr&brd>C=cEOgvbmvcwI9bo>nOQAZB;2eHqbr#%7cULF07b&qVy+~>{$&v`BV3?rS6 zJqy%LkN$3)-YwnE>EcHBH?Z$56w5Pz<4XE1xu?_&yqMSRg|sZxazFG|@oo3a z1k%VOY65O=7B#Y)H|^NGW!YDyiW=D}&` zDx1U?fgN*RVLtze3qce67wqxVfNU}z$!Hm+LQnh;x*FXW=5V9IvgRk&TP=*MS_y5o zc1WKFXZz>iotZ$zQT51m_I-FxZdTIe@k(_~F`RfC>4Yu)eYpK5f$egR@>Z@1HM*K+ z6lbG`FfMKznEWQu2o)xLcq+K*6+4dTNcKhVQ6G4#U9iiU>$I+lOTI1Dlba}S)T4SE zvp0}np?hjB*Q5AaI@iU zvlh}Z4XpcM{u~WSuBzmCAl7aX`ic((oh!?HAqU#Ij6UiQ_%=RO1#<*3hS7zfGvdnY zS}87LRr0%)%kb)d7_;mvlq&eVq4>;%SBY~He#LEbr}KNL4)}{%!pcSLrJoB|-Ocqzl5e3|s`p&qAYg1R4`)oG$4CN>G8=5>K zaw5FjjH$sx(6`pC8|W-sMYt%`<*PG)Kzi`JnoD*`V6svQ8%yy^isKgW@%&)s zBhkmmFK-PCfv4#^)3;~#2zQZx7$1lP`Yp`#zt}avMEWWN{p#{P=l8omn6w3fozZN- zF`sPiG6zF{b+YtNWM=4n@ZV6Y$m7^-C8ypQ=+%4diuQf;nBGvmFI9@J3-t?B&TN*s zB=9iwINC^g2N{it#4d6u`2v48zp6uH^+IH3eEQk6SLyiz9mDOUsoGgH(>i8W)4oI# zGe3Rb_HpXlY;TUdb$=TB!yhOnKeV<|E7;|1SNb>c#k{5_NXsL4!tWvjq^oK!^NO7d zOf_xnBSwEU7`qd$9?X&1Dt&xfq4c_$okNvl$JEA<<%HQ3vw^+>l$&PeSoK=$9GoB) z2X}>DN4`k&wb5WCy-xAWUiux%Lu8nzwM1o`v|joM*3Yj-K3oCiqYKeZQAK>jn5mYN zpU1ky^w>jrqxRMG6Pv-Mw2qEZb2ctF?4T;K+YxunT_Bj0G{0)6BPb=pP zAdq)p`hp7~iQY~(WA-x*!Bx~9l_KU_cl0glVr7BSQoX3{GA>z{a3`_=dQ6@qI^aaR zv$e-E?8n3*REb4kh5zuWmuY3=!(=`g0shf&FPs^ zS9z(7*4_h`Asgufe`+gw9*}AU;<9xcOtjbZN5(;`9?_3l#1<94iNhR|;dVEku1@4I z9{?+=KK#}j>!+=vWIcK!Tav5H60{Sj|E69^Beb!QhNDnU@G*AqO8$v)iT;wFl8#sG zZ?pyHvTj1x5}SMN*2E5SBJxt3s6=`&_-gtx518xBM5YMymi|dUWX^LV#Wk)&-kNbz zeCsS}aSy#Goo#pzaL#H2m$;`ji?~785$d>-y{CM&d}rO`;7&9WZ`F4z*X7&FSiP0K z6pdzU3Jt{pz^hzG4af0DGVpm$LkH!#?9W0=^PcpwlBFJWBVWX?Kx2$irH>*2YyakQRBDjlv9QUS@gioHiS&QU6m#0h8W600f z_l*;#q6JnFqXV3YZPY;sd6s9XlC6671&JNwi@Wo1%ZQoA9(Af(#^^(|0{4=X?J^ zb`G2);vs`@*nUf>)F!T;qrZEOw=fXfM!W6^LxBF>z$CS4%5&w3*3f!I-e3zmYPwH( zx_Gj@|>a(MZ0x8gDoE3^n%}j8Sa)ual91%Zrt?3m&+*zjg)_!O&jAiy2 zvH+6|jIdM@rsdp!w4dy57138K_oO80y>wj3uHP}o<5MI<`KdHAf+tz2dNH-4oFsW9 zuY3!*hLCf$n~`6kjt?X+R-rxI)}5}bjjv3J;F z?0N7-E+lROZ8pE{gk9MY^pW1iKHzHdC%JS;O#Nqf*T>3dqYWaS2p5e)Tl)rhf;L!g zyCI~DOKZB^NtysGpFUDa<%0GLPOke3XbXm!v}sbkfHV0v2! zWUr0vMq#Bxb37LpgGnO?(jW!Z+n5RDukzrdn+wz7JKSZiCA$SWk+j)MeJJgV6_AQ5 zHT134X`&kSlKw!`z`$8!rfWGMQ_~N8Q5B6>us@GSj}W};2^ROa8ki@HW5!=*KkJ^| zka$CmqCU|ZnCi>}YAtEogUwp{a!Ih^1!m?4CVku zk+bZ7A)^KFWZ>hxqP}no9k*RB_atX+;U9XBy;Ut4rGqyzuEBm>iWF71S#?neoj^AT@!YN@m9(3Mm0S@I)!0s8oz&4_kKsVZNRR>|kobYmwjO&QEa zXoc2buThtY0bsL!5A@w#@@8d=*3e{dZy<$DrM97u#0MZ3f70)%Pvv4#T9ku4lP}_k z%!7SdbxDLXVP`!z@b^Bz9&u4PZzlKq=lAa4&U}0LqfZ(a{1z>&)-`^aZ_WHh5%m~& zl)D701$qS7kPnP`S&V=kfJR0^>IHGsT%bIRtP6Gx)D6~)aEfYnr)mlNUGO6CE_7LZ zJhjKXD)*1%59JQ6jMP>rYZL0t9TFcnQpFs6bNV_iVzgDh#Ab=HL2bl)!C1Z4en{-1Ub9#j;hg6pT)BaibDsH)auE}( zn#M+LsrrXHQQe?bgeL4~YqEV0oYouduhx3=2JmpZ$_HZ?qN}5|W0$2TN@0Dbxy|+v zbBU5fF5KM8W|Y-Rs}+FwY3nnsO+*F|!U_t@L`i%rByq`*9X}1X&T3M2>9w4!f3;KS z5`YN!PS#cr8=LQP<=2b@a}2wG_6&{H8yc{I$NV3?kdb(2;rgb@Pj@JjH|t>6Z*4E>haW@R^aL87FZ zwo0oE{_h8{%btu`B8tc0L-uBCklEF^s$bQ+8|%#x;80&cm4r>f5b?0%z2mh=3fI_1 zK=Ydg-lqk205VaD)<9X(vn-KKk(>n|}2yPVu=J%YyO|IY72jfvp7sLoyxEXRCj zT}L;5EZvq^Z|;G+VpZjiGD>R;?6n5;Z*I5vm-DhS$$3^h%4cEo11YMd-NV{znKlU= zJ)5b_4*)Om9d0d?jXDlb%Z=7ptDjwkScaV7!#mEe5;&M`RRNpeKR})%n7&Lib`p1i zKQ1JSzl9FM2L1+j3wSd;oe4fC1WCJt%o*?k?r@ZFHF6(xtFEx)3ePd?NCJuH9C*t5vjS z`U#_=waHG!Q;9u5RL+Zg+cj*+!5yL#?3^^OP3o zA80-q#G?HMe9eryO(_l}sTTTM*aRTEsqM70T1Sjtu*Hy6Sv{=PHa1(shz?X4_B20A zBplVms(ceB0XD9OtTI**rjb+88HN#VIV!lGIM0hCxGvNOdy76pA>};sQKgyQ!Ky}# zLS3jCC<4Z}56Y6L96Sw;|7n50!f{eXEt}Pln2n}`h4cfV!47nv+67V%e(kKG+GWuT zdL`SPs|38i?DQyd8*m)LdKbMPv}v#rXXUZ;r2q!T+U-}GhgWi z!B9x6kJV;+Q%LlV0zdZ>60&pl2y2h|0*EGm;Xldl)FNig|C&+)E5-?baXLKe7XaeV@Pmb zp5;m~tp*_16U9syM)8L)31oGOM+77b@t^;#} z@jy4Lh^w2rnqAHr%NC`gzrkAEN$qTmw~LZd^o-)@{?tu!KHd!u=bT`D&YIjMK2C58xA_|UT<{+bWmDL?Y-cdtoo1fV``~8x z6_Q97ut*#R?_~-Kqpnm6)fL?)PS`M4(N}9NHBx_IthIlTxtPn`IH8F6R2a_ZW4lt< zh%5FcYns&@(y?pEMbva)HnT!6v7_TGFpRDUL%3&Npuk=-PxFf z^fM|S^%iD2=}1Bx<)OZ#C8!-52hSvd-Uo9tNf_Wb;RuT3gr1OJFAD$b4s)d8GiO)} zu^U~XD{+;Dd*W9|iu0D^jhI!;fT{6h$6IGNcfixdH_(5`|HyaK^VPXtXv2=Cnv)DM zAAi9Vxfc281m-C7l4;I-r`C}-Y{}RIv~G`*Dwk6ltHfQGu>pR+*u#&-Uc1 z@xS>T!Ww=ZH;m24oTWyhnUHj?L-Ob=kVHAUEe&i$)R63pXIpQLD`3Vb3fb1uxDp!6 zwBpN(S4B~5&VOWVXflno&KvEF-sW0pJb$LM@+-v*FunH_S8@_n8SI0LbiX!P{jRpu zN14a%Erc6oqH0uL>LKb2#w3*-fI7mK)WMWzzSGI{REniufK_@pqEUOGnq07#n}6!L z)sZqFf}<~^%OKa4N13edg%~_D?jDGVd_3kZVFrHyRfGAn0|OC&a#%6 zL0wjJC?BQW(s9V3WHq(%BxH#%TXE0OP!fX<= z1hS1~@F{b)PH4^Hgfkd?;Tz2c_7eOj5l>{tO)bvYpw^Jv0v*&5ngGy7H%WQV{hav(43fW4uv`7I;)y>*(_)dF}CZ^Gz_HpkMd3FLo9!6 za`a=QLS#_5Z>Ui4SEi78C!-P2Vk~HHomLJR(}7vM5XhlNU<3Syu7m2~O6Fj#mQorV zv1Q+Bgc?WVxkiS?0gNX6;i3 z%Q1yRm ztV6hO=7HZ|e)Rp`_j|dYU(((LD@r|e07+OJJI>kaj|;xYBd0N z%8SrjDsAdo8)a9lVx(TERB&LhVAvPCs5~=bcndY2t;wI`k8>56P2?uauOC!y%OjK- z+DY>gQH5zDq&o&W4~j3??qnn5j&viuC%7ayGdxs!q%SAtGr#%f;!5EG3w$RlPTMbi zjs668OI7ud(G_1qe=)1rNo+|bJDiN_*@eyXdU<`HUctO?Q)nWSLzwGK@U-)G@mBMg z(9o&}clkp2j(NjKGS9-Cr#p3n{X=}|Ea^^kUvOp-TeJC49(%oRE6-)HtZCKZHh+e7 zJ94|bdiJ?1IS0T@z8z-GC2)FdZC9mIgsz^Y@z)YcC+^QO*ZZ$ge>;ZwmK!DV5Ov{D;yJE@oKcA>fBAl&B<@wHeQJaz-f ze}Fzbjy}qM;@^tBocUd}tBUiD_<%3V_Mo;9b?v)g@~LD+z#vnd{=iajww~a)=;-g5 z2?XDVFxBb9zGf5n_recHUiTnxNB@|(sc|Fyy}ZL+kAx>okUV3rhtx%9v!Pv$TuJZc zz6z(r$3k;%C6ya*(iQmyz6>yz7}@0tdS`kRDy~3F(DgMym$S;?D5hQ(<3F8m-1x%)Gj(Oq8+oRi~hzwAp*wwsGd?4-+X9(N5=FDD5f^@eA z7zz45t&g6|Y-ism8d6=E0niwzKo5n~@-;oAWRv?yAEd3yZhf*n5`AJC@NET^ug^_| z&UJ13FtqHZ;2Ts$;kEl!86~8xk`7XXVd){ zXf^RCg-+rJp*>%MokgvM6J2q$lku-{+w=g-;2KSGHK6%8id)VkQ1gj?whX!PViu3D zlEC8NY3FSBYtL8DLH86VY$o9T!2$Ej#^Z>~?xIOGct|0f4o=9G@is?Yfle$VB<)LZ|W4N6Jl&99zTEvkq955sLOf5~# zuO;dWfGgkBu7NXgVd4$0iPzeaHQ35#rJJ|ljM31%X5@kU`8Bv-jWj=6^Kde`1m&VO zqsnA0EP-LKhgwmoqYPG;KrZ7Q@r^3V4&-`(Fzg5wBkF*IFSqf~_}lJ=vU8&ygWYvJ zCtMCOMi;`}wE3~i;Va>pu?pHro1h!;Z^V)gkMNn^fv4yl<@D&~Xi%c`reJU>C?0VY z_iS=^bruHa`3p3f2-(x^LU=!M59s?%xZFZ#@wn&}AM*{k5lmwWk=Nkca#7y{O^0eQ ziT+Mhrjxl|LbAA4xX79GDpIoo;NDuL{;7S?`&;#iPv{N!I9s##nJsj7YCc(sXo6qZ zmm!fc1@9r6A~$`78OtRJ1H>ON5vah|W1J`pxC1iaU7go{MDUPbTP!RWHE1{0pe203 zXsPazgR-IyF`p7G7(!^{@HiFG;^tGM>}^_D${rgUyCP53HG2rvp6e`Hjz`cjn9Y5r zJD?h{PqXZocpw;Jt}`cr;oKF@q2;&(^k}jKu&`~lsWMhxEO%7qLd)?#cuQA;pD_Ua zvpe)pY8tvktOnj;Nqw{WTB)vn(*~N|pnsNwdB_&!oa_*4IZQifL2=8t0(Fs}sekAYF?MvzOTKOoXmQr&GVFa`Xwh z3G9(2wBAxfhca34KPB-l&zK60hV%D{#6@4s9Aj!R=QG6Jn5tEA%U z7ww`Rfk{C{y^&T|-LD*03c~sDh4u=P9nHYCw$m&NEu`Ukf;LP!B*n*mMp{Q&LOSkz z^a*Uyi^wD8J@O?vRlXtLmfy(PmC1^t?1Z+`WW5P&dlmBm*c4XVnO09=j^$PB$hoDb zv4+wld7|nwPFvq`1LzcNB!3V`a9KNIR)Mq5JfpQS1#E9ypaU?~++d8-+i2s#r}#{X zDxJVvwnS5)3$;k+jD1EQvncQ)p`T+nvC5ly;k*Sd3-DQFf%#c;b3QP@8Up1WPTu-^ zb+}Sn9xK(BE=XtO34(-XnwVh!nP>G{tPn#7LUUbI8(JHdJs*Ce1w88!@ZmUPRmos`F+Qq zh!5m-w1b)e{pkM8V5U3Mm1)WpU`QrPr$fu_7(IY?0JD4!l}vp_TTvTy5(peU@ImW< zaY@Unu8~_v+hZBAe6p=n&{vw0orTIPpsq&t*U1DWRZlivNWWxosytUi(8Ee$-(w)fkkT-ZR@NaNi_;u{H zs+$Xm6zV@Z2HWOd^7!aCcwRk$ zZ_FzBqnc=(HrrdIWkBCKSxbl05i5U_Cdwz2PGHB`W)88&z$WcC{HOVW`;jVDie-;3 zh+K#~j2@GUs6qXVRgU-z=@bLEn_SFM*r$!6o}+%K9@>OPPy^}OjKYj!=d(rF)(k_} zMgs`VE^8Nn-*$bX13E^B*=Kw~@scvf z=?*EiVbK1+Ouo0rnGR!`4&83!gE_{2hVKwnNDnZ{1JGtUX!OySKt^i3R#Y!&v^1Am zsrFNRf#^)`gxOCKv=RBK>C|27GW@$QH39x|Xw|*x8xQbp^;VErkPYCfr`D z5zlZNV7D9ueq04UCRB#}`xGbPJSpZEQo(z)o{?w*njKf!m7J5$2YHWi>~Q)Vxz-+J zEL7{t>9I#}hN`LdG|qub@I2h#Xq1x}Y^~Rus9vQD{ACY7A9x?_1h-ziV~O~jufleR zx6K^vfS)Zd(4HwcJNU(@cw5{Axi!S(MeE>v^x7O^t}ts`MeHlEZw>s=TrAPf5UTfk~z)pPdp_Tqm{@eHR33c`Qoh< zFjDR^=UId8GWan(4Z0F72$7f!9nSACk(ms3)R|fA`AK29%F)Y0vxer^gQ6kqfsI=kINx!629^Rw}}2l{tbzb z?q;TW&@NAAhm$iYloYeWCg%*3gqqstb)=q?3o5y_+GbAJ^U>T<{vAJy+e@z@vYVVr zNt>dDV*}*}+Cggs?0S|!t~f88PBuVWJr^|wev?6F4>0Tfupbhj1(_iJ!yC}ptjf^9 zOm?z|+3)NOwiDBza+4W$2beau1RKXkc;nAN+bIHk=C6=RP9iUZH})MpjO!%Uc0KZ( z@GbIFevjAbS|#*>CkUbnP-Ea{_lirQITP_8ic9sE_s(`6=9e-fsmdr!UO^-2`Rp7% zn@Bs-#f3sat{Pp9>+)Y%3 z4(=YJ9pp7zQ90?|kk%~E)M5rO=NW^^1{1HD>}s|f8)JGg*Xf#&X!wu1L~Wt|rhcIb z$c-kFSKzta7}Bdig|Xk-1MnxDNC=SIYL4H5zu_lLxn{$jun~R@9J-s-V0s^YobC@D z`l@Iy@xX2dJwAugRxhTH(z6;x&27N89Zl>c55P2SJ2jemhq3`rJw`NvspBD-CGRGi zQSF(z+z?@hD2p9MBvgVMYDsD)B-_J4oIgsn0HdzLM!=L)oT))!m;j8o9AGJ`g1zKh z)Q)b+tYHu{iONluv@01e;9Xfj`2n}aI1?})4gqYm@eEXcym6Tgl<*pOJ;({E^F1 zzx-OgZj80h!+bcEDhV!%Qq)IC>ldLuQ3aUQzgToS*5XYMg*VAn$q`Vb`V3vjmIhBT2pjwp&(xuYT2BMme*dRo~7F zZkvaAEiMG7i3}k5?1Q$YhHUByy?`mo_Jz0bAIwGSHrWqy^f&cfS_##oo>sH!hGALz zaVk+3s1;*~1$dO*2_{Y5P1>4a?;~+bw}9He1hiECu1QvpLm>= z2*Kz6Ii&lyn;W!$?Taalh0#CAn>QL!=@TVuS;y{R+*9AmcVPy{D*wmPS%z1YWli|F zT#MpvjU~9dTX2WQ-Q7LG-66QUG#=bF!8N!;AbRb%d^O+0kD2M|rpcAF_o`L(R%JB@ zavQU#5cV8b8aLxD^e20@-a~!^2JVk62U5hZm44<$vK~91Zz`$3R(XN6BMi)Lg+FQ-RnC(vnC580X;-qV@6GnZxhvTFM4Nw?815>4j8 zeC1`mOi?-mbfy~Sb~ro_fl#V3SA?HVzx$S_m*h2b`=0S3ozFqPf4SZeV0^Af6VlWtZ|m z&L-!RB7*q>Q~W*r5B$3WAA|km5cLaQ!G~5$!b!?RA!3^~-w4-^gUvHD@W_A9KRU2F z_yUfFFr}W{E%?yaKPx@sUdE5i0>0M4?CLKg54xRKQY*<>_Cq75)=>E%Co0>tpGGM> zWpYt1sej=idW+Q58Gm%viu6EgY-;7Shv^xaoqZ1iVREGURQtzBH42-Q`O)wjZOrdr z;GRXN<7#w`d|~>rb8$O<&Xi$R&;{r)dH|h7JMq72)m#3k%1 zkJ??K6qL5wnnR5P=nu@JC+XeH^>{X?GIROm;sy|Vm!mIy6`bEX-H`7Eo~VTy1Fh`1cN^?iqyl&-Y{k%_`jHuqGp(St&giVS z)}G>yR}pjU0rRp|0o{?^tz~9E<27|NdIrO&8*G zI-7b*g{}x)7qZO#!{HGIKvimpPx^NdcmL&|;K|ZJB!zZdEVGu{PKb6hYYldJlSw!3 zgy^rNk5S9XEd);-v8Q29-a#Z{dnqtKnA&Us^i*wSw{aKwWFgW~`~Np*S#S^>qar{zua7IsBkKh${$%*{%CWN1R2k~<(oQ&I-{N2ML)NVE=3du zC+(*CQZ217HYXF^=(X&5?gY1$-9u{xXEoNNkmu`%p1)Khix|o76kYC#A)7-7g_0l+ z-xWGDX?AJ&;U_5$>}(!_?mmYp3@<`?ak8)njxs-JK6j0NMwofQiX=DEH`sQ3cHtYg zA0o@rnQ)DcH*dnF)6Cp$CYd+PWoB2iojJ!0nkTGLb~2urr|j8wUTpXmnd!zWqoBFN zoMdI#eo}zHJvU!cxGAg^mh(<-3tqc0Q0eYcmFZ9>$Sh*d;TiCmc?&MWOR_UrpPY={ z-jqbNu{p73_oi(s7fK^Z>za+ zNxdPzm72>Ksf~QZN_eM+JC>t+a1(RRKB=j}0zSlQGEaEp0^g9ZOR;W|3uu*YOQ(~S zh-p>|C}p3ZWyx9*JR@@GKeae5LVKc~QJ27rpP;l+DD*a;lOJI|Kd&rR7iq_Jhq=;H zY!$t)h0$J?pKkI0Q}biW2Fqrv-50NUUbupCTdyrN#oHzAz1Aahz2VS@sg;oATBqDl zYv{Smf9)f9$6hm4;dL&Aj&U!1**S6J-lJUsy(bCm$<_2s<|{LwDM=f6{$DXp>qGQi zI8y?~b~Mw+SbyL&IH|=eCa5Q=!OGaZ)_}8aHTq@Ba&5tzU+DQ8vLN)o(EeyDf9HPV z+$>Jxk7K@wp>7as?5)-f&_=%L*f1(xq-KFjz9erY?}x0s-cG*7fl2U!uS5^uQuZGI z3(wzt!e;QS31%lA!UAVGPnXb}VRgdSh8+$GxN18{VG{Z$=W<^DlUUpJ%~Kog z-BNh&@NuD4&~fJxROSrTp4>xhC8FRy2IYdOkGlXO)ci$$Hb0Q>%a7ta@d-%sbYqg} zRJsI{lS#oQdn&V&31a zsggu@>lfzliTYd3t+iDzD=c#V*`x_UKKLv^1Nr_~xMF70vy{)WD*sjL zLAQNiY&L(G0C5(P!tRQKp{MoA+M+1qgehu2JxO?~vo@h3CoSIX^_ z%PD(PqEgoV?)rP??`OX!rd<5ZtXls=8dROXr2_i5GsR*T16bQ7eXPuNa(onuZDkOFgY22 zu8V4Xa2ME}?u?X-I^L0ibMgl5lJUeGU}o19>94nB`tCnpe%DF4@;57^eBi$N!@5j; zWID0qn8o0d^fb%qwkm1`bOJNo4eA@)Q+NuG$vH7hJSZ#@M&bE9kL$~L$rW~K^Rbpw zy{=pWLGmz8@R^|A6lK3N)95nro7Tc^{)V=#GBkXw4t@9exjj(qnqJ(ox+ZTG8LrDp*y~? zSskq8HR=r2P$i^|{#rru1CyISA>0yYIPy9#JM+2nyCPiUT{GNb$nj7$Y4)+^-!cxCrWoSy-DP z=anewGIaK-YLvdmn2)n9)NGFw{VF|G*Np{MJt7CiFfZ6r{C)lh&%jSqN?6A4H}5cO zsHgUGgVwIgouuqiIqc;R8>#jZstrCLGuSgs96g_UhfK#3aw#={Im&TjS*PS`>8Tbn z1$(rOuCwA`t|%QvOfqxo-PFEH10}C|OWR_Uw#M20;J$lj*RsNm9mu@=3heTq_2&xC zkmIzUW?ym*6W}zy4PS>{OZ~LlnF{>pNXbBta=o2|A}f2d2bC45g#WOoZWod;aS-EpqV zj!b?ilSDi=zw7z*e)=vX>f*@*%s74_)So+W5+w^$`CZ&2E|p&oW>5`}5Y{vzDso>$ z?6o!&f#kbsl3Ep zVV7Xin@j0rL3q1Y(Al6>O=coN6z)wwpu00)m=kO?UsjB8_HaqAcdlQ~e;hCPT;LrX zweOfyjSKLAk1}SM)sei|fypnYT^atx^>!Q)Lj6Dn_%{Da-0%G1YUtkWYU#X+xu7f8 z1^$6;#6Wwc_08;J%En%!HCSZ2{#>80H`B}Lekg$Vp{jOP-P%%YGiMNk=}@keut>}l z+loK=A5f%xM5eU>6ulD2=cXDP&2;msS;ky#SKd3 z!Q;Uv(o(pPHtR9QZes_yt?yK~+%eF{SHjyYYfom!%(0mvSutLhp9`8&qEZ_-|D*Z| zJ-2=houY4o!vhceieC=wly)muvy5SDdTWj|YG~(WZ*XAnUGS$=RavI)(p-8| z?9<)`K4)D`EB5E)uM0o>|2mOUEv;cz*}xt&-EaT@yqSrcW+_liuThs7134fTPwXgn z5BFEs4(EP&BL70g@PKaokNwR0V|BJ4*uU*K`=;eVgD7LRfxF}^*zbdlkH#uwMp_b; zsoYSsHo=$oTuc|I<0kx?dkiAfCQ#Y;!f!jkY-}w@?`UV}ruXPaaJ!!X$?YB9#qs6_ zqll3myYmDv{w`!F}wf+14CojL=)a36@8>FBeq4D3`&upMfpu zIjaqPp7Y4v*fX{Rt*17TX@9k|!J&AEEClU!IlGCQ#Q)-d@(1{O{8DZX?m!jjpP-!G zwknwWK$ShJY?dp?OXU8_O!bjg!NyhZ7U4B6x zq@6eaV9T@--P_x^99%WF9y5TxNR`AU=p~eh>Gm5dzg5L7f&HDNepOt`VR^CKO#UNX zf`Yh7$|cPU{u9g>j1T_L2{lg}YV<}*E0fHD2`rvj4W+sW*a|(!1w={k0~dfnx{5i) zPUAvAPHx2qxMAFSwkIazQDkERt-1Dnt3EiC(dHjxi}6d}u6;n~SybSecXHMkbVJC# zPH0mpX*{%_W6GGvRHJi~!>qZOj7xwX;*fet9=V3{N8O?yF}@pppgrj7VP&p-Q93QH zLuU4l_8*>Jr-@MNKWYc2)x4zNzHVJLvzxz-y7*3}SeMXv_<#r!KZz#<(rL*1v|zTu zDPByh<}B&{;pq`tH!NRRa>#vmZ{+xQaQm1~RCjU?5l@UJcToYlBFl35;TIplw5I#x z*)NeMr80N^&p;*Oen%jxLH+T&eJTi_=m`|q=ETO zq%M#h$UI~Wc^Mk%X!0ibr&oy`#2w_Odz-h6Yeq@T&4cg^o(UCeiapfcW`Blqz=OsZ zVV*D^!LOKPeFV?B1KWgefc(TZR|j`<_bl+e)(KD8`_uvZFci4#%3kR~a7VB(GSKPr zP-TQtUCFORDjD*7xuU|TCABU3FmtobP~G7;$}TL#Hf^zZi|@rQr&`$GbyF!M&y+;a zvvcad%`3zR`Z2qjABxS#HJ;)Bt)EI>A%Y69I zD~Qh=ZCqvCyqk4xbwrDl(1RbqHx#nO&(02*$_qfXk{s3fCDbGHwfa~31f{WQAYS@c z+h$dw8ZimbmJDe92hhwBRMHf;mWsae7eol%1o`)A@PFsBFX)|=*};K+-CN%~(tFvL z5$Gb%Qv2v7%v5V3v6~E~@>58>Q7x$dumfFXjfPXHk(#U|E3cHh%5SBCdP$w6CFzNn zZ^luV7>chZ76Ab))wRL3!s&5L5kmO)>~E$mIO&7YDD)U<+HkrP*#?Q-kx0pRkbeb7 z1-}FXQY|ohdTVaIkiJ&CqUKSN5?5EN=drs!uf^$~^c#8)cz(-i*|g!>C#^I7N+08$ zG1;tX{kEFfEo|DxX=BC1r|?|o&{j}bxf}fK`ZZYA|(A+NkvA8C5c!S@*Lp zdBgpQ0iQGnnZKhTIu@rpFuj=RNa&BYKN@Fn6N^ReEx+0X%JY7swb{~)GxF+_;PFV1 z!liD~R(XS3$cV5XlX3J%x*k1%`hZM;i|PXRI^Y$|82B~P=;`DK^B9Qu8Qxr(Ytm<> zf6dtCEgO8U6g2Kzy$S5upgnXjN^5Nu4b;CUK_$3f+Kz_pE6Qi(kN$++2Plm6jF<^9O$g76Yf2V&wwC=~= zrdgLWlG6R@F_|sB75%9JuQXh>^kUWuyA{4?`N@CDTKLXI5-xkB*-rPUUnE~(zW<@` zkngRpt-n0{J)h;#+D)j6ZlXVS?D=SenndNMuzO)nA%A$ol_%tAXlFcu#n7+rnU03s zXY#Z8pSDRkFZ<+V(Ga)B;o5!Tn~!nDz8X zdKTE~r=eSPhNmW)jbX>LcfpPb=f<&7%x1W}Q-~I1MQR#Nv+$$U0+swp%qYQnIdBzUp;<(D(aTdlf`VduuoMwM8*BBG@?%FKX ztHdfLluCGiRW-L>+-P8qKnANNk$~5BE3p!1(0=rrQ~@c6uyZ&SsqL!V7Dd@Ns zuU1v_<9B$jlu@f`r}Y?oLlZ!H=*KqTLxq0?xA2EQ2a?2N-XoNNC!?e=Q=rk4*hWak z4t5(2^?{(!{CZLCA%_P$`1|^b`zHH3`9B5n%U{%OI8}2HtC3=RXMHf9Yc6$~+*K+I zKJh)(X&wg6awa<4dpbute~LNzg_vgV=(iPKUM;netE)QFIZMfG*sxy1GyaY3HOCqs z_0dL_`Nlp#=A}zAC(%!}jV@39!A`XR*^1gu2bm!tH>?oS;D&pQec)oyN=}&n^QV0w z8dJyVYnU~j(5u10d#}AfA6sQ9S?;D4G;R9}wU}MT_r#M_lgUc&(Tnj zY8|r{f}l~-+GD;kiW?P-^5#=(KJGK=R42^3b*PqPbE2UA*xY1%)<5f~jHXsYkZC&8 zFX{F46>RcrfL^=MD6ZvD4oT0@4pT}xByUrX>6zw4f}~5bN4cf^ExrK=BB*jQQLw{_%N9ypDHN%>O9ahkqhiPCrxrnL{ zA5RHvUvA-+nS(4xddWR>QSJ}8p=Vq{R|(fJM>78eJSW9EWcaoG=ov`VKbsD8SbE8} zWO3rRb;^vzPN0YOS+&$@T0#6os|=Sp!OU+}v`>Sc@Q}HS?b?4Jz@_k$xhBjyq(3-g zyxLWkf-Qo1aqkm@=K{{aKmPH)PQE+7IsW+p2^{?a>UnLZzE7{MkJL7)4dFz2s=YIg z*a_&&Xw456S_v09lm18)wfY-gJ>6(vFQEMFR^gj?U7Ubyj)OjEuQP^gNos^%(i%p6 z=2kkMyJoo)T<0Bc`7z8lbmSC73*a%Mwbh>(fQ^1VEQGq!gQ&^mLy*l664l9UNXqnw zTDyx{Ko%f2TTRS=jRd`@{zj{mI zMU*wlWn}>zmP61Eun0uy##z@hg6S#g3o?#pmiJ0NZ$Oovf$H~6cbT9yTk|nr472)L z)vWhs4BXgfbqoDewb4x+s{Sr>Q`i#BVZ{p3fB$M>=!5FS|>+$2rdk1=*71AhVx#P??AQRzdxo(am~q zUm^AqhtTc09Jl3ta5)yh8PN=T`(<<@$2k7FdWSR*>mUAacv#pLPYowL8OU}wL8k05 z&Q8*nZ7;Ec97|3|wsMZ~TxH~4foA?O{#L<9%3|{&b%r0~9O)kF9t*7OJu zAP3e<1Jy|Mn1r+MuqAqn`&vC_4}tv~sGi^C@#-j}C=tSZ<)fTK-R+RF-0!;SxFV!+ ztMFd^VurKrx&3@!v5_+a{V_Q`E!+p4EyYpXGCG=EWnab?G8>#hyV!X`d&gTe(2Npy z!EgMKJYtnL&cZLy%{XI6Fmr^~t^znu?t~5sxrW}zK_C%k!1vZ2PSAs9L%S$xQRkTQ zTm>lBdH718VeFt+QAOamSwxp&qxj}HG3HoE9UcT3L6|TDB=T}n+m%mf#(j;9jJzw z>>5Ksve}0qx`SJ0mC-9GF6myNXJA*Lbnr~D1MZcJcC$Q&% z>i?XWfXrG8yF9j{7l>-qb$Th2MJsTMcQ+QQv>e24dbRI3h}MgO!{i%EQT3$qMt+SO zt1qxB5Ff}2#0K+93*c;ymSzUy1C#xEeLu1~WX;IR?al6+3}WnD>7|^BJL7 z(MqC)Z5cehn>9|Wr1nuB%a7%y$|rDmJ{sk$u3+hP1(h+{E^AdbXBjn(X$G7-)=%q~ zRo2Rc*Da{NRTR0k+)8eu&{|2bh365mBtzD;?;72-9>@b_lm3@^FJcse$GZ}oY172f zLMLtpU6iYym4b|Do&9&W-~v|alq-;XJR6y9QJGF8;u zY6rbHl6bqw3iLaACS8$=CcY!SrfTVUE~J=VBFL;qJIKiJ(%Gx!ipujiPpLc|bB)RV zEL`?XaJ~}a_|^P<;iTgf@_O?^9)ui6(`hSV7SoBuJ<|MYp0SJ2tN9q$!O*mbVcFhc z*6Qr(A+}&N+l?NxZpLCuBH=9&6P?rCY3@|lDe(AXnaZGGEznK%srpenVm!5qAq9Dq z{lX=1m5>-2V4u^&mDB)Qy1fB!vj3-aTDyiV(K!$m{xV6_O?#E`Sp6C>e|Z}p5iX*JWjWK{Eo%h`-QL^Y-tl)~BUX*6S0)&YZ()&+k{ z`_!W5Zej}Ek*&r#xjD>HvWK-$-=Q8;ZYx=;g7oG-@+#AncZ&PPY$AH(S(+X}Y&73! zXO;Ex4!9jswEgB*WQ$|jD`;&>FciF@rP%7;u|n)F z)@#EBBF;VejPym?ru5dQTX)GKY)N6VBiUKZ)!w-p`|f{{s`+U7jo12iy@9a?&y%mj zSLgxd$y-SMUe|A_*%UvvA#3D@>UjOOdCg|Ywd7nfkr-@mGjHfc;3TP{j@FhL(a4B? zf#YC~@JVQcXQ0M-=p|%FBF5eawa#HLhqm;HNI)Val5RqG$1S1&o>S||lEh-GD4u40 z;phmphmnPtFPtgdM&DHdzA2MH=*SkIL0YReI9)^W8lMJuqZnI|&B-*QA_&6TYShE_ zF&;dij?4}Ijzfo{T;EgPUCKE}*vKYPeTfxTXUsOQ_0D>T{zW^j9oIB%6_nQ_W(zwP z6oSf3Yc%6J_!;~#{ySHgs{`*vPU@Zg2rjLlHcoqq-BtmdiEucPyQ#@kSuzX>!|fWY zMk&LP6qt(Vq(y({Y3Dmvg!`^DPR!tzF;6g6o#>x~vA&qO;&y6?OHWH6UPVxk>HD)dLTBDjQ< zFc%xiH!Kf5?m3ji5%dJ;&2D-b6(pOGV~F`69Z=S2WOCw-gHQ^bRw=taA)ue&FWCr$ z*~a95_GxpCzFlpmB+8)*rykN0jR5Z17vYLnLA*y3o~rqjd2$0Z<^EO&8-whcR5f@- z9xzMkYveuqlsQA6rFK)sD+%fe+!>>ZqSR3MJg-u(h-5QUy%I%ayth4qdo7M~48IyK zirx%QzrtR)4Y?gmEJEn!TX+44dlWQ4Kl7$H&iI}g zPRTz+DrkQ}dO35CS zmk2koulnYg*|Kdm-6KzqFP{T~AxrAf*(Z10A`BfbrD zd`V)QrRmXXN9mrQ^EL5y_j-Kw{FefiBy>&6W8^W?hrl;qTGs5$9~se^qp}ub9(g4l zkn785(WW70t;Ck5#jj02=KgU0`jc`hEjjB_;J$oR?G94zG^MQ6!@o5vHlug?$n+x_ zXR{Q%-`k`z@&svrAe--PMx#_JW$Dk1@72H0_`dXq=huhd(x2LCy)x237%Z9)zd&YI@%EwxA78&)V&K9`H*qmEu|= zcHFi)Tq!2S`n_4-GS;M%>DAI>GF({^zJCHmrDO77Y+Li-8F?OBSz2(UbOH?j{Ki7` zR2PTGtOZq*+-MI0+rzI6l~+p3rC}gcozfa$r*_ty4gIc~-dO!A4GPTlo%N=Azxc)k z#z^r>f_BkZX`#WCgqB3d(6#8_)Bx%US(AK1T!!m1o@|U=&^u)JI}_!sjrvukqO>BA zH}E}hMH;Q1F>(-o>L#3!znGpNO(vS#v@qoXTofx62hN!WWIv=)HwxEU-~06V84cAZ4@og0(F^) zv$t6_tX23Fyd_67+4<3!a^hV1+(B2WGs=-)P|<6aOwNVF#IXAk1X{U{gL7G%{lQ%k z_B+O-g?2^Al+anw|4)17x@)_NI;T2vIIiNxJW8A>mJ;&`MYy^2ZFtEh8@2WSwENml zeV}RC1f9-y5)wtXqq|r@Sjk;yyvP--BBF_w#5-sPJXM@ZB}_lBF;&-CXu^H*>mI_Ws?{N?hyk0Om-KIFNF_54N#rHx4P@0slMEo?<%@ojHO z?7^q!6SbC^$E^VoVwfx7&K+_iL<)HqGCE|FXPCRLYnC&{xxmSwbGf_wm%F;Bjfe95 z<9_8F<7f>x$VFj~SkW1REz-=;!(lPuJ;UFGUHV_j7*vq=jzr|3M+>)jmT$}L#~!5> z+#5NV?aWYi3})S*g6If!D$XOWChh{Bz9C7WO!yz%WaA_1A)j77Y;VXp_i$&ru#-z- z2Gc{SU*KJrqh7$he~ewk*A-7=$5hYN(N!O;q<7BoPQkg@aZkL0xgsaGmMIN=FO=+$ z6iNc|0qN)p*z2&uE1{s6BJ>lk^KQN`2Wu4Dmixvn;`0e(gnxx(-r|0-(?O&@MTFuO zUD?b+wo0&mST~VMlSm%#)*_}1{;7OO1C4O}cKTh5-Aml}U5%V|#k_oZ_Befzsz!}L z-%>$_Wv{|h(F)JcL?lDv*)Qx=t`4t*(6m}y;Hczm;=BZh_)4J+|D1gbk60D9H}tV%9BIUCY2Ghpk@i+)>&mcLM`bHI}htvPjUhEI=GL6_} z>|!LDcy=lCovw`Bb|kfd>_qm(jXw!nlCIPo(4~G*^We98&NO2mvopBL{B^igRDLQS z$BklFGr!?Gd`!hr<3V&!rW(^v=q_-h7iZ6~3(!VYUM%h$;7$l}g#Qz{C7UbzfNW1A z4un+++3#{YcJc?|a7l-b`U3qv)wvbiSndNpVLDwE-p!pz!5pQZFd{mJd0`$Lpk0L^ zKZTdMq1*Bs$K4e~@g>{-a8ji4!f8uIW_d>3v9(~&|qm)S?3ik8tI z*lilGavaG_k3M zA9D{}7Q8k|^(*I;*Vqp|Q-?v9%x(063t|M}hVrtFY0MsHEw&O@l}ll3vu)6ERgQ`x zdlR?p{B~zNcSZ9eI=v`!vDw`^Zm)w9wuT!ZW^*<6oDFFiN{9aP6m&DrufivI9QVN^ z9F7d^3UWDSuQud2q8vD>$E<;9U3&uONE_U_8W?T$G4OtDP&3pgS~Wv8Z=f-5Dy33O zD1sb;{E`!Qg~ooD@3VK0@3+4mx^(NwQ{>$8IO#=jSg>92JQ#_Cl!@A6BM(|OYr(}k zPfL+bb(6%kA^}`=Uo~wC*wQnkUWt=;4`-?e`aTBG};f)K1!0t&M(6PuFki z+4M5-sP6$;X_peK9?-tPU0T*stihnkez%UBwq8?9P`1m093kI>N&|uzRG2Jtp0(I2 zZp}qkaukU6bLC~h6aHep5bx-$HXyL~^Bo9Gmp5uVLC~5=g)=l;4@}it^cQl1Eto&G zylSFM$=jsvQem`oz-k_>#?oH+iMDG;<#NHz$U)2vBuIl*kI~1f1j1Mwavd?;_L&_G zR&R#e%4zk4nuK5H)dY37+CV+6)K!)5g*sikivHbE_7KvETR+1TrpJ@T?7`5e zw@bAH%Y6ynhu*usp@9a{SD90nt9{f(N|Zb)IN!g<8_4{Vu_7ZIZZwO1I|6aYvAj}b zr7tq3k-^KpsaZ!e64KwKzt3o%^~yU6+boZCR(dVIy2ww3|4lD_-m-@*$u-WUTu2bj1ol+2K z%@t}>Z3-O9r=VuPBhx5_`b!GLOmnDKR4y6#={=Tp1?@L?0%6K%eVUbq%s_8SAkSH^ z^e0L#DJ+oTd*nOn?;M;cpHz>)&EF8L=S_M;?TxYnpP%};ao<&)#(V1{iKHf10#Bkp zOgwa-m+%MGR%*#{$g_3QBxsKVtSQzxX!5(!9>3n-&}(HfS+%_b{T-#}>TvTE(ERsDlvg9MeT-raWndjbP%ojAxn7#ez169l~7SQ z%6qW)o(r!?BDO$0SSI=KDsIvHBjJ76YDScz-qQux{9F=d{bHaMWzumJjg(k7`?Q@* zOri=hOW6VN4^LyWGm~)3im-Q^OAK4D1<&v*w90HG3X=msi%KR2B2n@O>B&pPJh&-m zQm?4nl!i=qWxF?gl+o%c_*IjGYVfJl0O^2mGYpF3bNJ^6u;1w`WPfm`ziZ{y4oaM| zS#7CzGDq6w$u`shOmSZc(k9JTdLA&Y&S66`)>vWfBI;0X+D8f0K%$cMR6neSfX{@E z6=b?%wZTTvq~Y1`ZC|i9ndy3}8Udcgj-V%4JoqwrQ+j|#zdqV}y*u1$Bj7RHfb_vO zsIsN>XGWNPnOun}w+ZyfL`QqaVB9W}aiW@NpjBNBLt2F04PPJeAfj7@Bm5ye-Hc-> zznHy?S*AZ1g=BSY*8}%1Pn@TQ`>A6&pF(#bN@LU7Sgo$k)}9#e>?pb+_fdH2c(^OP``aXc9LbMAdHOUh6Bgjk9P!p`^)DHf5Ps2M&lH z@KC2ypjVJRY&hn$XUZkHvwRGy^kndtTy{P39{hioLE3LcMPg_54js=T*?}_YRQ3lS zEB15raKwtDP=%|Hl#7=jiR*R)Vl)|`Iv~4$hrQ26vb(XFcM?b7%U^1~G$+8Jc8hRQ z7r^#+Q8$Ul)(+z+yve&|St>1uDE(A$Z9#IVYW)kfLNYe%(V7YWhAj_N8X-+KMqh8N zH5*!s@Eo5Cr~e*(ik4e_CO?+)O0O~3PLN~OXlQm7DL+$=zafkli;FH{FcLJwscXav z`-^qYYG?N$4wEUE|9fJ_|4R)b@7qPJB}Pkdw7+P#^yX-*d;!Pz7V0e3mYM=)m~Nd$ zk}nP}ayS<3PtdGP_6UDixQ4SjmOISc!l!+MonY;@M%zB(8x_em;w|BYxI5*t_i~#4hR(?%jLw`@~@bJBa(j#M0~GZ_0y&Ks3KwyyfiUZs;lO zkzF~QH-xg>O*)C}ON_POTXR9y$Y(j=M(bfcwMK%}m`V7N=Xpf$WG1pv+#c=+mxFJ? z_vc&kk^E<<%my;VKls8(ll|nAxjyV~>{ezGr>!Ay`kXfMU|uYbo!wb$ztzWzwB8|| z{2A8f zAB5lZuN8|wQxW5f^hOYTD07u|OKb&M5WvlHow zWUBqtVysxCNY0_})niS@jpGQ^UmeQ2ERB{gDCfbdZ)-OO3t~g)Bog!uO7JjucxW&bZR@Xt^o4EN%2`*syQ2Q$cBHZta8ueORd}FOl|vBl1eUXQ;MJ zEnsKh`}RjDi)_q5<~`ZlZem{1A88%6yc(fps&CXCpyQsz&15rv?hDvt)x+(qBkGd| zK_xy)Y#<)lBdu$Oq;*s)BB41=DWknIe%nvbDHqL;6$ETHZX%0F@Q>LfhG6=F@yO8< zb&*<*bMZVi4}Qfe^0ZZ{tJw=HZP5gY82nc#_VT$E=*heCY0zXbrR4Z>kr$8anVF z{gPG&JL@cX0;2KLRRNQ4lv)d0{LSiWt*+6(Y9C%M2S+a^`JN2hMR0Vy8x{PanwdQbb1kA z;q$9(t8fK}+Z*j}L|^hERhQYtF5~W_F(iZqC57x}=QcI1mD)uqgG|^9bs`!gKiIjb zJj@yPG>1J8-<GW6p5PoIb_Kt996l2R zaH2*FUdICW+K|Vg?y#|;(IKtfsg52(kbOo=fL^!QPy&_V(vyfA&p#OzeYcdhQDV0cH zhr9R{*@BpFoiqgftojITqYpuZ*sR|-OA@ivVP-tH8b0;){0Ag9H{zKznMxtIkh8J# znn{i$$KXFtk;SMl)MNTHqp@CYIe(OI!nfr1;o+}6%DlWDOv5a`ebGIj`Fn#43rjOGhpc# zaBi1}PEb$#3eVyxNefO54#FgQUV1G@sSmZO#w8HAnp#WE+Qv>TQ)wXY57rN~fSd7% zFUyzcj}E?*mMDVOLT_d~F>V=6G41?-cj1g0g}mSf`2zM3%RwHk6>tZp2Nnk_%PrI~ z`T}#IU52bm?WYz}cd&_BV68C{wPtETY$e9R-!KkUc|2vN zd_`I)5pq?K(T3_*jWhUr*O`;CH7%kR2LnL&7xq8$rTRwtYXwRM3rW#(E2K06+7R&1 z3fPS?%{(BxU~=(-$OhIpRJO6ybo{rAm_%ArkICL3fqz0GVK4C(X^k!9Co+O6LA@nY z@ol+d7B$vs4b=I{W@QaD3BvkA{G^|A{lVv10xr&Eu^XSx9HjPRn|8wNYuaX0`x)NZ zq4WTzAhg=qY)v+q8ON~9Vp^ovB1>=&&d*2KXl#YU|0o<84DRCROw&AIt+p3p;y+E& zR5X>Hx<-~Jhk})qgeUoCa|+TiE_5|{2oL`Mw`k&up);tOVE8sAYT9M2o=6E?Fb*4= zaJL9Eb|9nkUAwD2(<1fV`e0zgq{N3KSV#U12^wg5TYd$=)HG)tKZD3d3^9m%il zMr!yCJf=&vW0+)5YlDy**{n2yCpkVa*MAx0TCX?D8|^!X7TXDdcENH|3Awh?POYpx z)N<<4dJ#DM6z#Y61nN#ZUDdbY^RonJ^B^M`6yGqpVepWDitnlSwzn-dKfRzeBug`J z3k^#1r5w_&;N4(tsgyhlyW-EtrCc(e8(oZza5;OCTq%h;aHr-%8dJ6}kw3shUrhg@ zK9MJh5q2)?J2=gK^#1xceW^j4QKrLOgnx3Z)(`Ck<&>fDE*I0*=xxjZ^cV&ku}0+X z|Ia!XHA9WkdM|B*`b;UN?34T8{^XTYlonc;k;^IwGD2Cp5mT9c25Qk$b{5+biheux zAGk#hL%+|0*SQ&JQ|Ijg)&Mifm<7%Sbkx*(-^UplAuq zTxL92g`xCsavl+F7qX_CO_5~%ja~)X?qDwl`8yf6y3fehoVSPArIEiLgmh0uVjB^O zr_^mSlO(DCrDA)M8nGKa3r~p2*Z^Ik-!VIo)X>=;XvLgIEhI)*6QEU%SJx>Ol!|a~ z+c@bTVG`SAw1hvT76_C{_@2%sS5U9$B5X5oV7Btp_-{C6HnUa1#%RSHpH+zi z_+j71xi`aDt3QS}s-|{C8w;J`i!lXHh9jWt%s~U`68Lnl;LoN*0bUF?R4kk{Z=_;@ z#=dUef4xn80e>E8n(|1yVx(dceQA1)ExG`ndN1Xj@=G0|cQ>ophma?l1^u=@-1U*< zHu!Hv@&efzI&v@MTZhw;^m(cVQmzAt$@W^DB_4-AG0?8VnNiePFe6`^9gwaFw^Ip&D$5S#XNq;4 zbCC|qM#;Y=2n2-ElL?vW~zfScjPb#XT3hgdRy|vv1&YutD934f$E4sojy9$W{{CIktkDKgc;9 z+bmX`E>PIh?BFY4E7G0~V>aP+nQK=Dm#itY?B+;6??dvKX5-i~>`mqjxKT$)52+A? z(IJ<_w$^V&TgjSCq}8NAV&*f@{E@Mk`ZI z!VRk4cZ((7kU?4jKV`LWLU_+daX~ts>}ziT6ZD)u5E<43xTDU+jN1k0^$Rn*H3mG# zo^~-J0CrM1HY}^qtI-hZ(02H$Phd`9cqILX{z|U`dF(yXb!7;{E<)TQ zM0C2hW)rw~NcdD2`turY<@~t4(2Oe7P+#IxNV*x8en7l*A6A>;O`%eU1&bg z=Dygwpz6@jKXTelKrE*1LsnfhedPq5@14E_jTU*(2*8`HRn;y_Boak&ia5#9#5%aB z-eWIx*;r$oFi3MMo{G=m+h?(TEJA$4L?(fDu@oMliAE2c?G2#GD0UoqoT?61;8yAj zezMxo*~8FAlnQcCUt@!rVKpKe{;v;!*pKPfs~5utBva0*^ienIZLIv{8#;#jN607U z5W|G*+#q^15pNdKYpQ}WA1TYX=mX!Z{HHWkT0(WN6-e-H^>W_NS*5+Ix1@i6V7_!- z320x97^{dq7JKVOR#!7cU#YEC3#mQSmfAc04)|wP$evUqyua`1uJk@6&DN21uroVE z%psN&R|pfgtX^bSe4?|6rT9!F*zGW<-LzI%J+02rwr*Sb?fY=+&L!WYrR4-!7u*`l zjtASdtGx`pE0^IJ??h#z4}nq@k6U{ysDhV4ee4Ox&=0Z^(kq!i_E%uef6NcS!xUKjbA>fKGSnqMTleIray<;eTm#l z^s;MO3z0vr271h9C@0C#6d&8Uh=1|!dvJf)2BrTR)aD6VA9cSH1@G`Pxv`QD?vFwG z4seCgR)@60T;!?pSYGp+$yr^kt5yLpV|UH0tLB8`_PN#BrTreQCt ziw@EeNbJaZ6o}4^^mbZ%bqr{^tL2i)YITu**A$W5JV@_ClKc-{nR*Vz_@$a5%?rHs zW%K3mZSW2B_XyMoCI$&)FB%3HqFth`-|)Tn1$_PdQGvoiIXFj3K-)<+X%>3hz6OlI z7AE^yAFil94m`Vef=m1< zEJo5MjXT5+Wg5``P-VffiXL(oAGgVM3D^_ zqe^CN6S-cagI-d5qRf`(qT8XWlp_5fM`r;hRk_CT(^EUUq)0a?ARsB-9n#(1-QC?? zA|2A*APpiZT}mUdIeGH_t`Cp;T&}FUGiScdbHa8iI_Qr$exVp=ZFgrLy!LpQbb-X$Y>{m+BqjL7)zHTp z{XxV8c#6B6m7_?{u52}hfn6?wMX=TECk14tJXOq&R=cb|D{?+;g^NYM$9+1?5yTWc zC@;|2=Mctot8{gG3K^MPT%@pd^5j7^RGsE5RqLUoll`EBJ~6~OmIJp@H#DaX_-;Iy^9_k4$ILXnx$;v zUFr@8I!ih&SyCyvFv{Am;uqnQqq39a135TAMr1MO=q2I>JelvrWbW;XB z7wt~B|MS{c@g{nvc;ZmdY{VTk#I3l0cGc8gD;4Dt;<^7f+>q|@m;I4*VF&(;A^6u` z$wy(iWZ|)$5sWjdeahbDoDvR;qv-R=KpM?>DNcGLe$RJSN8ZFweMKH6e`Z&IOh)Jw zZiH%5ZuCGJlWK7-HxunBHBqUqES8_5C8-62!7ZL^QSYI47NgLK9LGPC0#O#l26?(EuE3%k4FADqZ2m(%LtehxgG* zF`VbqvBvRQ6q94son*Lva`kn!=GAH@M|q~&3AM>hE=M9>25pq9Z}4 zO6@B+a5nRxIfaw-U)lyjc4xb{Rm@Ch)YOkgyG4gYA4iAkrMWfQ@*Vp~4R~c_Ft3?{ zz1A5gPLg|(NtxGu+P%x|c1OvZdV@Nuf!Iel%Kn(od5xzoH7G_F++mlQx33sA&D>T; z`;{|C{7xQB5B6lW2AN%d$;IS-Qb90;?aUc@#p>i8p0|3Mb!oi|=}(L%Rs%AXAItOA z;o3qitX{@Z2IJ;D;vOACYIaumu+8#wIJW9)b>$Zt2fP!O>zKnF}k47WwoxMWnM6yi< zcJ3D1P_2uWPV1)*Rocm2@TF8?^T;O7rWq@(9H2vUKA${4|AvWQbq4u5uaq8~U2fd< zRe9EWN_|N_kBGaOyW5F|uo6dUb+NqEk4}R++EBcqMce{g+G=ejpU~NO#CxE^Yw2#~ z?HrRKwn*HxxYTj){l#LccpJDoX^WH`csAGLOuQ)!6=+RnGq3A(w;Nj>IkAV6L{bY( zrHH+b$~3#Owsd-WD4Ei7t7WieW-MdUxz zx}kJ|WnT;ieFGiA#z?1dd(yLZ2f``CQ!1paNjVm17RpSrm(NUZUvd)ZsoN&@WQ#c@ zR3Qhk1Uq^$_=!i-BYCe|ZcmYH;ybrdJOfZ||Dq*=H% zJqD`-cT&ov=*cBg5>ko=<3o{%qn`z@9$B{)8h*2x^}SPC{E@7?3+i#c z-`euGVh4M)@gZV|qD*E_Lf=Lvl9%cjTWO-~1e*Jv&dW`q0l}StUV$}qzNQWJM7K0p zKWF>~zHrq1%pm~0{ol1E%G91y;N zF)b^>k&-Q}ritSvPS4-a=6(<^h`pt=uyPN@cfuu5%|z>( zRhN6eulQV^qvi9o^xck`?4RgAO~TL|&vANXC$pLD0fpTx{UKfB?={F+nJNtB=BZ0> z?J}d5(b3oo%W|0aeluC{uPxJxvvZLYGy|MibQXB1O?#`Hle|J2E0tb1tOwerY)gKVY^Pieehuf+OPH@YQU0HL zkRRsxy}5}*fOXbedx}sRHL;g>?jxGT>B_%SityHsHw&OlSsY0fDIfVrzDjc=9o_P0 z=>e#SE2f&g2)uYT?{5Lp4aS9=MSn3|b|oQJY62UwU;azlE)EeUI=P*`u=ZKSw$euV zJlP>JC6=~ zilc;sj>p+S=XyuGCW-HiB_|7(02=c%1Zqj&?dQ(l=)$T~}d$ON1jzgTD3s@96}l1f_DR8HNj z;7|=vUar=@YLiJD|IM8dF1`xghKJlE8F*$o}@HR})is}l>_c24riQMifJbOF^9MmV=%{XSaLt;$wDtGczDc0;do z2Ypi&7={?hC2bRfLUy65Q_;@CtGo#B)@~GNQ>>A8AAFjfKrNPo7XA!Nc|_mCOq@PC ziN>gXMpkR4{m%J8EG+FtIWt(wBJKWfn>B@6y!LhY-Sxc2CFlcfWgj&=8Z-6k`X+sW zam2ic!z(-U$V@(^+s*ZC8`JcodVb@kvC|x8JphAwLvq!AeP8rmq(H<9Plt85rpFs^ zNzjU=N3@IG!){<3)+{TXwa|RWiCJCm8l4~chb?SAxepT~dZYsR22V*xC`?!AvA~d& zcFDVw<|e7hxl=v{3Wu*n=g=}eo{WXs%0pDM3RvKI_>aoWI~TwZR}0;EZ6@=1UPOl8 zC${sZcG!Gugh`WVuRmlH=ter%Lte{+c8pVtTg>Y$;5!;?Wry7~(U2WP{ac)Vhs&f& zRb`^A#=BV7&SB+)X{bcQOleTpOC&Lc?WXKZ-#Q;{+pg(sbIJ*6#OEX$%%Yv6xwJz( z3Hvb~J#1<|lUb}OoB<{5ZXg6cdm+q2Iqs*+(bAERp%S6up$q6}Gs8UXF#ohKk!-eE zIs`k?5+&?tXA`X~cj1iIfUI00p`fHJDifKG7bsrzvOT1k;!z<#NyK}FrlN{d{=Q6t ziPBaP(fgK>6!C8-kx$15a%9i)v%SN~;3gfuhmeoNpe%HB-WF@|y%r}qXDi$7KH-q~ zSo&5O$j*4o)zZDfJ=fioB)4j=fn+BiRPM+r^de>vtI#QV-%e$Zhvk@v-o{1KY)ult zYND?H$P`%(ed-r;vAL7Pu5sXabHszvD7p@Y%8jIBf@RmR))~3-3m1uPZBkSi}1*zylrcVS#;a{RaGx!T>gIo{v@Eutl>y`Q_q1(b^c12ZH z1=O~RHITcjtP!tY()Z~*cs8AAO!QTFPiRhXOQ3k5W1x6&0-4B-qF2%Wb|EL<^;1*COfl zX~^(8+4Y&&D+^=jnav?wL*s{2(0)SG)m~E19?O&1W45{Td*`G1@8aJ;%FuwAdOp)L z)h)ZWkz(>d-Y7qjTPtofZiBSXT2+wxKCW`4=k29gq7s`{J#D@g)K<6#xEp!g-Wec6 znosck?Y-zdg(C2!_Z1B(<$e2ng&)Ki;40FYCYM%jF&8 zUaKuvUZA%)NMF%tK@(5Ggs+gApbNVqJfg8=4zJ#Rqp2~~sA!h6n&H+S&CD4Vr=d!F zAnoF$X(J7hc1pU`Kprd413eus=fmH+LtHMbbsnS8_VGy+?E>~N(lJihm%*#v;4S~c z2HlIi&$hxY;S0L`s#0OPTkk9Hal{oyZ8O3%l_^<&-fCjg7Xk1L}?h$(wu%x&8lX1^SJ3FPwF*W$^~;W8%svxXMKOPb+jQI{h!ec zdRzU7{++Ruj)H#XHz>mU+oeE?Kk!q06bJp^)gj3+tEJ=xaw1Rm4kf6h<-6ad6d;=> zNh(b8ZeMPKvE)4OG!u;haE+ymRj5QqS#RtCxR7(RQ&+%i9p~EU`sxa}j=Nf+_x}|| zU{x)@mY%tGr6!_l>F6rpTB%*8>-m5@TpBILb6zYK)^N(DaBgJ+-&`i7XD-U`oZ&v5 z%d6fTTzHKzoNVZ>a(a0F3reE$QMrjO?Vj=hmxrV5RZ8;gZkHFz6Xn5j4HQntaQ=P~ zvxwF3Sd_6#liSx0UN8-3pP$J;FN%RRq#^u<|-R= zoif*R1MEk^R0K!XO<}fJL^{K>HUp%#JWiEoL^|1%2IRjt}sg&hjKB2DRZH6 zjePL$U7D+vmPZ{S_aLR;YZWx+(yzKNypvuuUo;)LA^VNq=<*WGnWjWm@gu#7UPj-h z_cg{b`!wP1TEv~)0*`W0c(Ko@8{Zn^^&-(sbYH&@?V_KpSvZ8+&K2zv-3VVDN2gPH zJ(r$BDof4i$H?+Xvq;5Axk!e{o$$19$?$7Z{rZH4hwg=XhjWn)u|XeU{tN;?NZcs3 zmRFN=)1H3q4$=Yfxe(@X^uA8~#}t$a*hJFM@mL$p(5G^?36%sEzj7}8Tt8rZPs&IwS4n@-TF zDEtOyxd^XnPw|HEfN6W3^^E+g?&d&qJIzU-Q19i(F}jW{$+FIEl)C|ItF@fppU)>} zJDZgVuRQ1d>{(7$@u}26si(eH zWoBlqS#yCEl|@q15~PZqf?D3qTp^jl^r<6-n=qz4(7k5RCsB}24` zwI7A_3MS7QW)F0s!=o1?4Pa6>hTDbJ@S;$<&=Fi8RY?ge8k`Vxg1?8Zl7^o{kJsB9 zhYi_`7!5(9+eLbX>IJ?g%}==Y_0KQ8znuL-5NblZIIed+Nyq7R66iEIwH40jG64EKl(jc&s4Qi$_#iZg^p z`&UfsJ3uyC$#dicd9Bh@Ev7vKZ=UFCLYGfPb+LR$EQG@QUs&qz$azZ=-buHVp4w>F zeNH?@Gvx8&1G~N1ndjFGuMBUYgQ#R=Qsi1BH_n@xoW}dv#@Fi&K)ohdzcZ1vN9Fa8 z{2TAnBa(yqXs5L-Bw3DhwQ(hDO|<=F344@V(o%S?woXTT1b9Gg5a?D+G`;XS{7OsC z3iK%1B@x_VuW*~s&kQEqK5%FQglr^;>{r{kcDNUKJYEgub;w=HJsgI!ASd)J_X^KC zZ!upjUy3&ixrpWIJ-tM(eScv$+J_e04X>odNHW=n11)YH z?>Kx1<6K9yC@E)3q+14Ct9xw}80qd!Kz?sYp zeozdGW$+c4QX_c`w@qqgEqCM;)l}Pn&;8ErR?9Wa)y@^wrf6C5xxJvptvfgW4s|Wt zSy3{t-n$pNm%B1+)k##k0LobfR5b(BGI_CdyKU6^yFR#bNtJEIgQ+x01FbH6#$oDC>dD#3;h5i>|D!Fq?15&ADvv0;JU z8_U^lXW{g!VCDl&cxE-BJL(KgnA^fLLVpI|1@nYUMCThCh+j~8pcK?Hx{i=r@xpc1 zwZqlh71X+Fo7A;RM_G~%2s=n_73?C`FT6VKQKy%Khcn34t1NDjN`TGi+6LDpQe`ad z1Dx@8Qrf3GqwIgkbvlBEt-gJYHrhqxwEZiQBp{*$@5PLp*7`#l0TyF;7j;c^XRlxejWH zs;cU26`#dh!a{O|-f=fBGU}3=c27SG0|a`Y-_n0!2VIL_>?${5B&gE5^J7Ybij zONN5iyryR{z+@87pIB}!qvd``2rDpFac#_0D-=5WC1f&ONr9H^N>tkDXEPEfA**K^t|M{x*Cd z_$Xyc^8KVMNk1ifQ}PE!1rLP!g_nl=hVzE^Jh#i$*kuy{zPlx zWxwA6!{;Sgy*Ap%Whh#Yb9dh`lJxp|R=up=4|FF8!;lJ2f3bcGHE`>2u~0J{hI;~f z;An7vXkQpkKU&(TVP>Tw&bCtvKfqoUkYCGPl#R-2w9z?~^Jq%jNFCYiiaMJ8lDxMa zv}}zgvwIL3NB#KvzZiE=2j(=ol6St9ruqMOebkSni|RD42&Q3fW!HURt+dKmH&GRS z%lAFO_}&QWwqDfeW-LdCUdUX|W`4_>fr2Uy^}}U*ylv4t))ma7vEC}$gYUdzsC=+h zU`)#Hbn({E^TFT6nhAE9xR;Bm@#{=hsmBK}%6OGT7i+s27JVym2ld1cAQr@ofQ?`n{ z!7FtkvX^A=X=tgso2BSh*#LIFKU_IfG`KX-KX5uQB-of<>;Wh&nniX+?vv4VHhMsR zWPHn%x5C*f^kN$v03w&knQz4#z4c1bd6Altaj?7V^eF$oJiVt7JMd!(B7Uib6QjB)7;1ZGs&E3tkb_n z=kcdkf*TA%2Ym(oX9Na$p^+YiZUy~IbXfE)uD!95y^*((j3D)a=ydjZ+58Jkdk9R# zHhN^^j5H*sswj(Jhg{4><0Ac|L&$mE&U9A^l|v>JI(_jHd_sdeOE}KwYBEgIT)Q&v zy%p#S|Bd8`ex;${g4q?-_&Y&Io7sq|Y%m=-TXC)Vyg z+WPWHmhhe6$H4wT(O|{Uj&Skl9^Eq1((Eyh6YD6B#a?KMioz6TCaK{V{CWdw6|#5NF#l{Wb3F z2DFimMTj-w-gR^sw2b={mn+p@aeu@X^mp~$@vL$mcI9CTO6O|t z+U9!YGF@k2g5yDdMw8_41D_luWs>tL3)MI}x5|1RdSbnMJiFbENcioAbD|Iaom}@Y&HK0`uq~L9Lh{_ z2CP>N+p#MMXT|#Ra$2{Ckh9f9NiUxkR}0sj&NP#B5T1*dNRUhGp6*rr-^R60bv4zB zRPWPYObF}=M*-Ji54YBRMCyt*G2 zzoNU8XNza9$L*<$TJIs9kLA$)*H!wGo#3dcNC>#(&gpU7_1$h)CscP0Nko0lOfiNW ztIXPa*A&kK?^@p$rbojw+x-{Wv0-ux%5Vp@#Q$5BG^jp&Z&mpEgWXG9%Tdp+RL0BW zqy%{O9nxABkEKUy!|LIk=9x<$ zy2Px%8ofb%yo;B8t^9>zza^z?gKxGc8(r;_rK`+BZP_C0iUy8`a@t**WcGSn_&WPu zc;7Hl+;pXJ4QHYlMUcjJ{slJSfpUJf z`ik^oWzecH`7fgX^N6c432i-jwTFVW<@XiAJ$Vgu|Cy_Y>nB%6{B4J|HQFXru|qXU z>&=cg7&LMeh*LSZ*oSISet*6;TFZjk_NY>v48wBDzseK!y;k0x;5q6m;V%|DKel4* z3^=7E-zV<`p1pk91?4zQW?Hh!H088%RDD3FSw;5*_c(W9k~_M(;>HX$X37KXd5_n9{RM9Emi9?M6>4g6s~)9q2qvT(bRwq797?m(HA#-9yvWc#cx1J+1 zBDx#J(gFC>8G385gx#S#!J5IOz%_cXV}c#nxC;d52ezlQO@5rXBH>B=qWDws!xHu; z)=n-Qs1zz3*&jVaiok8|vdu>W$dCX6j;j`{UywNAoZ;iz$MACrI&O~jcq5kivJK^7g$5UD)PbJNM zRnn;BlPMK~4@31ME20mGWq)OMuujq^bt6n;${Pe?8i`3_liCz4=`^e5LP0?A~{jJ?9`7N31)T>ulG(H;e?P8E~Xe8 zL0cHmUQ$zewNimznpp3zq%obKZS$7@V9ej%CFDL`m)D4Q;CxGfN1vuCF%513oFSkY z*VOD<8*P-f6lU`W^f?|+Id2}{C0~=6+cBd50xItYzG~h)p3Lrw?BkMlLA|O5)N0x( z(3Xp?*RCn9on))$VUNs6H|k9AzNmHF{^T@=7iy{OR`-xDV``PP(xgjz<$^S>w1%Ip zjoYBJvRwUxGyNI8S&vEV%kQsEZ&9DP9^BniaOf?F8R4r-e?d1gq&lJD^>GIu^i7Lt z>HpxDVvqZ)`|rfGiTTGj+1J=tfiA{;zB;~*K5tCdn0+x{V>Ev}X-rk{!&%<)oS4tJ zxz4*fxmvpxxUSMZ-`%|quBsO4=ksVsSmx462H)#WaToLSr=g;S=d}Ae-A1F-i753; z$*buIAIV*`g2czFOe>w`?)1`q?;7N8={e*11#f`QeHtfdYk7faf)J--pRNdBloluU zKgaSJwX!oyW>1r(UZB|MO>vcQ<)&Y5*v~Qp4vWa zEwL8R9=94absCP{meL)PK3+;I*vEd`q`$;{~n?_RDHQlKB!JgM>-)Eqrm*4=*l;0K{b|!%8SacN^>~Q zf8_Jq{0ffz`?Us zSVV?+EFQW)BsWfoJxn&=dFqjS(B0Pw{4J9=>VD~p;ge9ChVyS+%}D3U9n&v%ZmJ*B z@BY7W=igEb(E~7HHxOYq0U91CUKJyPUXcrqBz+LN_`$#V3JaY2EdEb}%C{cAN z>0;%*KlmonK1f!ar<|*VT3YTS2GRCv;4`Nzzukm{$qe9EkKneRSexzL=*lnC{4^D` zd5rND{9t4BGv4gs;X~Y;4+DXeCMjVw-@)VxDd$o)1p>iI>WM9Ev8$YZa2?lalFnpjvzy_Mxb+`8 z*AcgKKDL~O+;rLSuZ$JrQPy6jZ)uN~;CkZjMFUY+&ue!%u;v4rs%_x3Xs7m3cdP$0 zS@%*;gGfqpIcb#`0~39eZl`HD-eyT2d~&va zdvJ-`#vib@mtf1DpbG0|9tNqX%!K$l)Ff1%PsiO*rSN`Ip}Iy!M9M}klGt=FG=<;) ziyY7gkt+IM#xRhwpM<~ZwDNM7{AE3XXIpAiHi{Wb(9UN8?N#V2C}3YhtFVwfq+gjj z78@G>z4ul+ScS=AXDLL#MF%;+em(^q;a@0l^W)z<3g($)+%_lZnYOA#m9$RM!rVIGL< zE8d2Gh%6v^V>D=9Piu_b#EFHoPA_JKJtzoMT?$R~E@zPNGig(===7K-_d$F8ued?@ z2|aInvnn%q4%%Q#kxqS#&tQJzFqulfp}4#DBZ0cGu_)>Lb;$EbaeM{&DTQeG4d0qXp>x* z+(o_1e0y*Ol5;%M&&_gGgQtq%HSICS+JvT)neYSq?z(tC*PsokE>Fj-sRTuN~U zes%S5ALcw7=~msHT#K~RqpD&Lc0`C2+pLRxO1N#Zi_j${8RZ$^@g zFw5$M3#Bm)(?jtuXGWLUgCyK|v5eS2814|(LZ($)@cP2c{#Vtx+6iq4d|L%Ij(L2r zxPl(#56%y4^LOdrtFN?EbCXT|m3*W(FkzQLE>^foxT9{v^PR6*Ob!19ehu-zi7|W^ zyxl!fQs2_6Y!2Y+A-n-^&8fzZ`V-Foe{fPA4pj}8kF1SWHeQ>};5TpMN$!Ov@ghEp zGw4O4AmkC69ixV14A6_{DtUfJw5Z+*K&6?(5ltU>J#y06!FgTzVVi#2_>Dc zrMHad5e<4JmGWqRhw}*<1Uft0nM!lcIZ42s`-}P%4g5gT2=Aa$dCc$R!l@po9#Q_5 zH%c|cME0c3;u;w%;&ist*Wtf(Y=kXisp^( z2f_X`oIYGUG$mL)I3}2b?RsfMk9H-6u_f%}AHoFs8{NErlcg=veLjmNVJ(uRfheNR zkf-v8ebPE;9w3?bT+|(1h2y(TWGS6-i#Z)Lk)?4vx)&Y!%SiUfPvJ_TrokbB87b?M z-_gI8Gs&OSEa^p3r{w*~kCHzne@%Xvydk+|vOoD@(t)I9N#m2+C3%x(B>EGtC2UAo zm~b>9HnCsgrNlx>o07cA9r;s{CD8$T_X#Qdr zCrzf9F_Ee33T^4tX&J*+7t9@$f+grX`Vy?e8QDC1Kb$t=rOD-1_yOqu-(h#8He2k> z$iavZEgLP$#5SKMD~opB@{zmfB+k(S_r}a=x5T@@MmUEr{kkxgEIE~Cnu_=Z4uWNr z;g%_7bcVmVW}Gml88z`o^rgFKKZ^Q|`VbOsE?W)he`-kYR!ilLl1hEAEahZ*gBIsI z`3@?hSQHi0$@eS`=FkHNV_oi&;;5~c(VWsu>?A!$b2eSdC5;o8!uaNLHrQG0->eqo zBdjss!U9F25!4W=!`nhDL)$~~p#$L$k!qwvY#{|^m0i_YiUMU6YN%t}*zM#nKQ;!qc>TKyQ1qNTf)~u8c$vK;QF8x8U^FC zDcp@7yt24s^3dz#Melu<{JiP#1W$zf!W|NPB+*R*c30su>7kF|QRZ0&PkaXR5xiY$ zb0L3fG;B=(d(p@&|97vdq)(=Aj%-Q`B$kcXtqXs<>H)yN6R z!fPBf{$Yap&8%X*AQ5O5THYkQzonQ07IM#jft5>vm&;4%t4P+zEnKi!;r6G{$W_+b zYj$8xZw;@S4iC*@^mAiDaaQPic^5WBwxL8H86B+eHtv`=tRr?eXDZo8jqLf%IE_u! ze1&?h1*#iTr|c@6$tl7l@eZnhY<$vQ;N9CJ|ESow6HV=?E06mpcM=Txe(jRFlSI6_ zc2+)(GB!NosSfYp2G!v934)5W1mr! zWSQBd(A1#8d5!pwR0_|{1)O8AX)^Rew-_QY)$D)$D3K3dd)#!2#tm2`#b85u7l`|MS;Z z<_4q{)HTU9%T>~~MSF*%t|_XICt&lb$aPduYhFTKn@G~bP+3_VkTN#dOG6v2(8}sy6)Btz6(?z!Y*I?;~t?cFr=KofazT6!*LODoD>mA7+eHvYh zekc{m6j{jjSZIv{2WyWepqdp+{!v+`Qj%fOzpaAl+sjQiTv#YhgiGo~kIpit_ltBw zFD89s5?g#>DJ>~BN5p$#K6L*wsQ7bSn#GlT$~Syp8ZBWOxP++G0!63->V6vB>!9|t z>tEM2x8iBU-)o>kU zS2~W*E4^3(=#Ch$kx=-1J3+K2b%3bIcOu(zP2~2-1%9>K*I`qt|g*Y@V+oUgYb#;U` z0jA-B+vUmVp|#30!86OV!ZX?9_f&Crajjt9ybZcBQy$5uvo=W%lVSeXkmvg+`3cYI zjH@e`kekUDzos<;Hz8UG5}}0T(%mH^dNskSEf(TVGqE4dN#mLpo+X@fXK!KQptN zdr;C}LQB8L%!GdYJWT!HXvjyCj4%|9$r1W@E0W;V7)5I>w%rNniK@C^pkp1&cX*hD zh^#_u`>Z+LIFG8ozP^fcF_v>DnYs99p6oj8n8TRVa&j_sLCGF*eRPlZJoWtO?c=TQ z-R7AE_8G@4)Ev&O6kUY_q)ME2$)wE8;9Ux!@>q&GbSu8gb?m##tl=OUhPB^b=nNEE z(aX9_zNq|8y6S07CZ}=)9>`p-^_qf0zCK>guF54jquf&ZMI<4IefuI=HYe~?9!6)- zf^2|3D7KGJ~eM!Dq4G(-oJU|}I z13J{Nk}$DdS)ne}rn>sOyLwuCT_n{v_LcU%_x|i12G{pM%ca&M?e3A&*Un4FOMiC6 z7RE|uuGO@R%(hRH9G4dtfs2jf8xo$LlejsStd`!cEbe#i{d`5ZF7o~#d0x0zxnlmG zkch`%0oeb~!Zo3z__vr}YRbejjoWn)j=O^R&)?8rkdDUMSs)}6XgzJH{jIrNUzts- zYnFNsZ%_#}H9DWis5?3<9&#;z<+QvEAGIItZ$UE_R{KVDIh=k!96@DtzmaHsHvh3U z*@e-9?ne7v9L4!@!B4_X73q!CO+Lue*@d)}zscz+DhvaqD1&x99d~YbT zFNUgpgBc+C=R9}Tb6etl$ZYq71uVzepNGV-4|);y-kD|-aGoV-_qNk-YT#CQ%JZ9# z`{f|Y^;>AyXG;C04pM!5F<0Sdj|zL7;UrgT=1qNZbXw$Pcp)j_E5o%6FQKc!48hZZbtnS920X!p zz{9}Rz@fmVz~n%#z@n63a?j*c$yt&IC4Wesn^Gqb49p5Dq2_3ND~1w-hiE6>M}pLY zU@WstEs{+~M{eM%_!Q3iUqWx&;K4wrdRHF~BJubgG#sd8aoMK((#+7J_g5i~s7SRHFlKz`9)ocxqQ;DhQC0hHV zUr@f4c(FE_@%VY;a0hNi&r`~*2xhw7 zyk+Lab(9?qVPD+dpM{lTW%S@KIMM#nB{I-_LUXdXv$CzXLHCi~N@Zmvlc$@x*7!@0 z)4z|Vj@%3lBUx^4%4`_SOMx%J8R2YT4u_3L=HHwqx$(Lc2Q7UA`_+w8VILFiQ&5-{ zG{Ju$$+?C3o$(+#J~A-8HRK9yBE_x~n%aZp&RtIFno^of_0}nqQ?94{9LOImPd}G| zqIzv~jXsiT^*R{|rLA7pP3vd-4EyG3kj9Vj18J;!U{as->Fid^@N2&yZ>|vzX`MNH zGWxfsq!X_R?h1P7+i3`DbeHGuFfD?u!rz3?h9-rUhF*le50Ax9H8zqIsX_ADjc7rA z23oopvbmCtKD?HjaVu0bpBbacE?c56i4G;FZY~{xBLlysWJ)=nye|25@`#iYfoR}t za2wO{cJe67qYm!Fsr?=P%wk~sQ*m)uafX7#%q6YGn(w9 zxyCbg#WK+&U|XdkJtJo108P>3jKk(_Yq#C~KVI?w2|KwtNov!5o0m`C7wNgY4ri{2 z<|LO=RK6$%95`bzxmA$?;W44(@Ti{y-r(S%i|(PJVU4}2842n?85y_*V(oh5R@VSi zd_m{NTsFfTxNHvcTn%6s+-83w3#F%3jy%h?4-N=f0OYyR1+Hzt1m1ywICH{)4oRw8%a*o(vPD+sR5`|U#8OEN%^iMA7#>P z#Edvbsj4Kv&h(PY%Gq!eOqNo>JWAl3nhq zNLN5fG6^+E8>)g5zZ>eXhgLf~g4=nMP>0*3I}Y#da+s-4m&frZDswKRVtVO9&cIM! z`J22mKjD@QigV#g^D!TNB_SZ^HN8jEqRh;~y`T?;VN51}U;ljncK=cT zasO5S1OFZWpZ=%*&v2GE{Kx#;Xhe;VsUNe+C-T}4_pC;PV&K?qrmjbQl3t!EWtWcf z)HEiwsUfe-Z4~44$v@JRQ*`C5#e;fM>*&(lJ7{S6zlT)xj6+pBT+5{1BjLg;&8M%f zkk~~`1S9V!=VdO>t6o&wYJ0RNq;Zu+_q@RMkE;$$=X3WX_n&Z}UUv<2Odr(D>MT&f za@@Cf=vZl`R)u%kptzOqBo$5+5ejNl6SG2n~$H>b>B#D#PFxvv*p%QL$vyZ$##WTZBpl z8Z!4!-`(b!1(kQ7Kun?=Kf8S%N} z8>6JCLZew*v<+WE%_2+5s9tRJHS=4$m{kj*Y8V997i4z*%4wX@ypL{oy3wB7e6OCF z+j&SdEtyYsB5^Qor%@gCqo6h3 zzUpMb<4_zY&0@}se4KPU$=;hF&xSE7BjiIFo6XXVfAkN0osD#}dRUXi=`i=g|PQo&|-JQ-)osCKwR1|e}0Slqcf?0bxDcN1{YGB zT_qa|p?1tN@9;FmIt`r;PAAeD-jlPHn~CC?nGS8qLUPCtM8l|OhZ&>LcpgXN@hhKH z1w896pMkDC!7oUk-GK{hzb@+4!533S&cNjT9iB$U);axeBi@X+E`mMGb5@Xq^$q@% z7gkOF)KasgxeuRgR#1-FxP5N&u3s`v^Y^IXLMPqa_*Xxy&(!PadUPWAWcx@~rpYbg zk>Q@<65)@b+o4FPNciV)-Ei4(g>W6_+;&X6z3Hf#961ziV^p#-I7eW@H^{G*7wUX= z%MDr`?W;N-&)^W{rkqBuCiMe#Eskz}vQyvb#(O_Y7)t_X4-yp%&>wb^tnKk=Pp_jr zt?xeTZi^4*xc5ij4xbbg@XhqSBD3dr_hLBEcW^U5s##PIolyOiBphu=P^gX*^N9u6 zn6^p-WY7YdOG~)Ufeh@&MbnV}fDUXRyP4%r;ejqm7RUr{vwv`mwAV_3AYF0W?oaN? z?t`v%+Gw<$vb>G7_4GWanaFVJ%+H#RYvB*?d<^S1V+wb-b&t!a1;$aO+BqVb+`uyc=mdZ z^E)5i&D}TXt9YOd)Joymo`WxGg6jgmcDV-AS#eVxsiczclAjY#lFUnT#mc}E7j@#$ zcKn1R>09R>8j`7?1lR2HPBx*h_y)Dr5m=@Rd;Y{cc`0 z3L1&*zmM21R_iNq%a_$}qG!8AA5}we>5kFP`XR$KbJ&$Ynm3cke!^L6kF!>p0b?g; zMF(!0TzF2J(?n8-DJ78%sT0i2Q`qUgvWu+~vT#1P6rYgj?{zk^<)c2!YM(s$4 zXeE6*EI}T$0#Ro^tnM&zu{f2)kF)<}*9gv35bP8-yXH95C!kH7WBttb7BY4GRDDrq zY$6Zit@RU5@%GH~KZ7tEq%$lcX{2`aTBJXkgb2BQv%@vR@i;KXhPH5GDd_a3z}r_e z8kwEx7WffgPgHm+?v>io?>2)cxR5j!H%7&9}RnXKjnwyNJr zX-=Vipz7qa9 za-4S4(zIT!f<2l>VpK7s2Jhg%aBd22i<*(*;XI*6!7qVupla|`aAc@`xKzX@`*@w6 zfqi@wJWDKh`f%KnlkNQ=QJu)7JLNRzJ-udq16tAnyre3BziN)g)4}`5Cf1h8wUw9? zT>DqtPX^hMm-*{C3hX%iOx=W+WDupn{a8^rkN(FdTUq3p9^~wIVo2Z_g0dsGR7dJZ zUem8AH1fb>S7bBTL^D%Slv986@AY@8!{cjcVCs^{(++-Q8J>?FMi%2JnIjkVdw9R@ z=;uIVi{LLU$yWKw>|>>+(QQ7M&|(~EP028Q>8x>jv#Bp-e;#DzvF@7l@DVoP?kz(P zPd)u4x7gM2DN>6@2V;VV$R;`#cpk`#yQvB(gq6el&VBR)n@U?UD9*jaY5i~lI7S#<5a~LeqWj4n}LID&= zgK_wq;8lY`yG*9n8#o?o*%RULSCW69Kq5eHt0H}ab?v|L+rM!7vMbd?`IQm2JHIp$ zzV{GVQL^R0;|%7%*WLJte)>E;SGkX#yGLvt$TdQyQz!XifMT z?AHS$KN()3lR6fb^cUI~Z>lxWh2}&xxxtmrz0+L;hrk0*Hg9dv!>-;1-qqgD-Y=YN z%SnmsL{8)w@Vh14+}G6#+9UM#ZjTD?o!K|uciMN=x5QV~r-D4b@_t4qzZ^GfD_Tj1 zX^WK&XouF4eR$Oll8$!Hi1w5dQ?NIoS(DE=3{69&j6{@?R**TlDm3p*Oa2(5( zhjKMEOJhj58H`7~9Pa;VWHzMZ87Xg@;B?hVYxoIg+j!gx`K4@f2+VP(vIRVI6A22_ z6`#`gzbt}nAVKe?JyL6Q1mjRyb_9(dfrq~xcbpH-xfaPLe)`B-GZnl5qkf9gXsCKg zZ3(J7h0ewobPk<%HE^v3)qjW*aUomi4mSEx(llcL-> zezFZ8tI6tOG>qw$UfgcOP(plBHmLnkOcns`o$Iz-e{rw&l82%l6YY5wZ^goNAR zCdHKLl%p5C5GxP*_XwUjT?Vbn6a90M-q zAc+rUNxlfuxiydUC@cosh~)RZt$Tv)k~Ad5jY2B6;xX+2#h4DN%~aV+1;`xttH} z&=_oJT|rLA26mguu&L|8YwmF3 z48VumS)3^?mN(;uJw>|Reb*k)=ksbmB~IQYHWwN?2T;iUz@0J?o#qPiJqp3Yl*j8l zm(I5CWW9dE@jQ{Kp_p=>F3sg+Ff9HLfiF%L!vygp2>fz%99Kxqoe!7TozteRQF{CZ3xZM@xCh>CM$S#7S>W-j;#2Jk!A z0PTj_P)#PwCJej=gg>c)|>_MQgAMyL{K)as`z2-AC51GNCEAjnZ7Wawk z#Qvg;?)MG8k19@ic!vA@oZrK`{(!>mK3mlmX98(sc^sGXl#O}`srBz*W^1z(M8NEK zlc!Qi+)TE^6@5?;mZWPXSG!S#IKw>f>u>UUzD&Zsgfq51sL z>~7H66a6bvGI9{iJ{7LY^rRC!3-^bQ&V{yNeDq_qA#T=KqX9cnV;mU28plDo-x+C0 zx!4Z!e9o%L#NW`q%@j5tkLnTqEGb)`BlV(bP`TtY%UiX;5^r%^CbHuVw`Ya>`&VV25+GH@H5 zSs}Jd8a_!RnU3eV16#;uT*o)bwEEK?YZs=wau@H-Y;&jaKrg00An9-w86z*ErO0h7 zYk%{%-9TXy!l%N+!ZXA9@RAJFj~VC9P5gYh`7i$D zpjfpxTAj_7yr-MtT6XF;nd;_{l-kf-z-OcFfB4Qep3Mv-R2(-ap`s{68vHxywCtgE zV>cM?d-%;0!Wy(t|5^jdGL2zU%}?iH3QuCM=<3LIG^gdlXTqBzm!oNnuI2{oiJeNw zh2pIu32_V9&uTj_t>I<~T1B_uuKFFtMsX5N7xR?Ax2B^j>BhO3ohQM6gB9Bz&_u%+`jlKkBxhSYsvXhDHDRLJ3KL$>D}bVW@%;pH{ecFnX`Y8vN03Uv?`O> zaF@Aum(vu6?R)l)IiTfPq_I*OrjXaTMLY1l-|(FER`SU{i|&r+=x!AGr4S`c=Wlex z=k#ZKgk*rGv%UVWK!O5|+&+d9ts5rhMt&NERD+5JRvb-h3g)Aj9ThhJTE_xa=k%GR%*ew zrks7gAUHfQM!P|2oT` z{uAxXaP1K9dLDGSnrkk&{3Yc*Dvmd75_>@nJ8}9PXFLBNM`r;hWx0monfYUSc9-su z?oO2s0V(P3?hXNIL|VF}OS+_6y1Tn$cci?PlA{r@%#uydIRAhUBi^!g<;O)%~S*6rRI*-DiA{hw6~U zD-@CX%a^S+$$7tb-f|6cA91gM@Kwzfq5*EE^(9`D-Y~lR(3bTX{+?aRCWqz2)?qe} zeW-nh{h)oEJ&*k*I^PFd0lqK4+IQN&pfHwp{0N)mS3F%cY|rQfN^d>HyEY4K(**fv zUf*GI73kz`q%G)Yui=#x#Me8BPPiUS%#-kWWWdkRKK_XlG&6VExW3HT9Cw))T5{m9 ziOG4`$HD#KE7!Hv#p9e$IwSl9ll2n5v>dc;^yGJ13AfZzRQA05KMtH~zmYsS0P(Yj zSvQa5CNt5Ji-z+8OnfIfi|X)%TEIy(!Lo*i-bT`VX_M4n+E0r334Zef=HBe#Y&_Wv za)s&4XHBJ;T^|`S^hp)Eiou=uDb41~!i`D2cE`o_XXJA97bR6416!^vd4ZFbGr}yf z0y(SKFx!&o4N_noortH9ew+wloW z(8Bs_IEXLeHc|_2I0m$W^NMxB8T!RkiZ;nrJgd*pNuQTI!jCX0JH<;g`^@8Zmkokx zKVH?QriP|(cnM9$0`0l-V=PLa^`LOW@Dkj(Kf}~mtTxyE^rq@KwMUXGIgYCQ&Pb21 z#G|L+mCuKlAq_q3ZOFF{({qu2T}&s>Lb4!s{Gi+QM97-u*@I>0>o?;2IUi@#AikF? znVLVbsd&!aXaU^6K}NIx-$3RWi%^}~!t$-mEu=Gklkbc(>@^1Io%G`5J!)#dt2gmE zTk+MV!yA$&dNwjW(lPQgdU;a_8n+|UqrGBnl(uvv{K`gwPbG{mGvBEvxH9vb2F8aN zgGkuWPN|%Tg`x$>99O{|{0L9TmSBURJ(wlfgLLwsPzENZ`nXHVkZ&#!>k%6eYX^6* zN-Te@Sgc>{I-LT#l0bV}4Y;w>Vabmr{apc-#DjAIX1#Hh?L!^z472!@z0*qa6%UdD z%S9voH1xmk@par%TG3Nqmu|#1?127YN866y>0ve(xnY^k;B$-SRM= z5wbBE`A+pG9j@UG>-T@%I}hod%J`Mj>&v(YU4qfLg`~?>QWP2SS2xF1xQ^L;2C2B& zaF>5zBT}EgyGQ0KkyPDm?E+b`I8Kpn+ACbbIUugrP@a-He~lme9pu@}kwYYH>M@V@ z58sD+TsHbGdO3DmNmi4|s()aTdk#DGZxW3~Q6S&46U##nZGtg}x!c3%a29_Q!CBN5 zn&fe`$?f`W&Y1f!Pd@WmenEpQ8qlm@ZgY*q3^pR@h@5~+rlx=~D0 zR>3;*@;$4@WYiDR{xIf=Y&e=47#5?aK0%wV9#`@zhhuGHuhF8lOfpB{zL=OYmUU!~;A+OM(3ViM`WSK9k+ms=VvA8A~8O@59Y93m#D) za%gEeA6~M5dkgu{!PI-7cT75_w)qzH>3wVur>wiN zkf%d?qYrnd;VAbDPyq6o*P8QMdXri?i7xIX$E)fV{XU!52WY_s;T=q5J2?fG(ahLB z?p1a+vPt|=2(9uDMN`J8_u(9b zyiW|MbTweF=2hP?t4vh0;_|ECAJ|pAjYF`FbOr5iklcu~uR58EW}<;Bqb;<}RqTU8 zcv)+Zb|_|=5dVkw|9m|+pUK~txl-ZiEHsYN9dnhev5YUEqc8F!y z$)vC8Ij^;W$}kg6VT7^O_{vn$G(Mb^;(DgRozRLmp|bRa)L9sNU%e&VRy&^ivM_7KP)^{t=LROd)035uy$Tr4Hd zpqc&$+}t~HoTNCGI^C{juJ*1nF4+}w25DBexoWxAx%{qN?sD$pZjpTZ->&hl9Ii>u zJ1DO2`1;RmMd-*#XZ=_Hovl$2opm4Q_-u627EJ6}t;g^O<+AUC!uN+`yd!4MWOvvM zIv;#^pXuCSD!Xk-zz5tKg{3F@J};*LL1^ z)%FtZZhQMN|`|t}C>{XnxHhr>| zsI67os)Oi|-l7d<5AY{?-guOzP24^O=EaQMzW*d$*MiT)25kTv@}oH1#<7h}A6twA zBM;~4L^k?iND$}MLy%xRXinL9ztkYf{F$9qLwX!Pa_`7N#w0DQtmbr048X;mB*yq( ztC$A2OJ-)^H^NO^D_41S9{&H&L6W<(*snf8>y0q)e#iZ+AI{fl(nx74`J~)1d1s=% zm$Lq2t!~?Adx{eLhz)B2c^FjQGIUv|$3ZnuC7YT)gb1=>~b1$fj{xF)o`6+Gz1?5z_<5o%Q_`0R>+wKyt(g3xJwBK_w zf6wq#+vq#2X-l>ZLJPJ#nmIZ-%#K#}?Y62mCmjj=imc^qoAJ3zj;W44j%khzj)nH3 z5Gc3X#-b?a=9YTa)|gw(Q~Lt$cQ}u%g{-^f{PM5#XSAUQu@jrxZahIQ;?F&3Id0x< zS`%Mpyr<2(p;3dp=4z7o#l*|f&(`s_w)Wfh=d?es=kr&Pox>Y$FPr5O@_s3wG@Yd7 zR;FFIc`{GXwyv$_w zXJY@%ci|N-wHXkgSDQzf#<6{!#Ocb$YlUzg$z*_% znL^ufw|&V3J&!zQTYODpa5mk>4LFwedLPR6P9=BjJ^R7);frB8GCwjZx;l0oj##o9 zAOm-RjzSC1{b5XmT}Z}tRg1D=E5>cKHtxx0D3a^r({PwR;MS1N*v;&dl~eM+e%j{D z7@J5F?a)^-d3Dicw7a@m3;F}{>KD+KKGED`MO&!E{;snA8~r|g@#;>49@C8Wj8U9S zEpRg?(=}5f9yL}QHAsB_N5i|u#Pk_IcxSbgswj_@muQgb)J!C>PS9Z9NqH5s#hlSh zkqY4nAzSENa6|B3a9n6<*c$yElEhtfsWE7OlSu*&;%lZsLoKHiCk0gpud2jW%!RwQ zGoRBHq@KAY&_p{gIx^Ba+&eTbI4^L|U&DXdx6Y^fPWpES4g|l3x>@YvCUY`!0un zsZa22@Q(Ag^_KV6_Ac>8ysdqYd`f1_>U?cxk zfAhfGz}#T1&}|w{is8qd7XBxE13%ZNP$2j|km4`sU+Bx}JLDbeo#g%KUFPfO&lxx! z7#d6;S{jm=GxLY{gtXw#!TW*vfp&pBfw(_&U|Jv--E?}eVCZN5tz7(kgUH-nMG-8+ z4*O{M557(!|6To%2cpnPXiFypKL^SNS_OIr@&y+AANvx0-Mn8@7o-+X-IG!##g@_} zC6Mwi)#l6LFC3T=>>O?#4aPhu*okaLr;`Tgs2x|2DqBeLmy7O*cp_b40&Bsag69I= z1K<2j{8xPQeH(qUev3Ad@`(t?GbmRTI3GC_PV&%8j%oxio+wuZRQXO zD=&N8?OIlLqb78C4ja}xC@=bY%b-68%J)iv_+imMHPK-XB!t=x=vMPs#;$kxFmUbvh zqxrlyk^hn($k*h#P;g)2XIUaGlzK^Na1t-a?bVBI=C8QOmWi3j!?YLjF^lZ5EVkT4 z7fu#B&{15QCw!c~VuiCb#?${HUbMA*`U}vmo}2w|3+P#4wJ5pCqDoVg%oJ5*Q_%`i zJ#&ibBFT=1LLDJOruZiqGi}XdOzr6=Xiokq!uDdkax>N`Rwh=HE|mAo(<78DY9`dF zwD^wS8TasiG$b2v1z-4nJa{=sG<*+Ft_MlgrwLY+GN20JH1D9Ivpl)79~->g`M&-xukWORmV$n2YqWCJh~E` z0TEk4ysOpdKk?df()#+|e$-yb-qAL|I#2#Y^5`^4va6hug~XlgUV~COxiloRYBZ>v zlMUG`zm|(b8N6xRPg;F4?FOS9zd2Sp*5X_~XK!vFYtK#=c#$)wYr5-SJiQM1fi2y2 z+-CP~*G$(&SBk5!yP!Mln&o=vOmen$Ot$y6)q&?SiDtP!tvPM`Z7oRtRCH`}WOin8 z?sU{5`_-5JgjDBC*GhL?PyU2biKUa?CfU4N@fw|Vu68bUPIne{)^RxP@2yYdH&S}3FZ0&VxL+p-nNiVh;X>Qa z>+%y5XE$qOl2xbW@g!-|@pp3}F{WCb{0eg0GTYwb@oB{D_)Sj5ZS+VU0PjB}rAVph zgBPS3yz3`QC$Qj_m&?cjX&V#%Hah1%(3V{t9d;U>6gTY09gUs8JAZYyWPZ!yJPZ$~ zvHdq&qOFu|HXNg+G~$KPi-Y!(j<5C#_QAGm);jF22g_;MnyhCld|EzXonX6;`}iZQ zrElz;Rc7a$>QvT9G5h*mR8uNOX98sm^? zW^PPc-pu)(o-K1Zp%I>(i$XR$gR8{VOfoip#=dfT>m+iGjrc0Ft$u47TZnD%UA*k` zZ8do3mBAt3z%c|T!)!+>M}50wyC5GS7yd>#OY1>f_8&zcb(fBhz#W7WlH1}Vz&#}JB5x5fT*+$mo zq#s0{qJ>t0j^Ar|Dt}OqDb)${zee%s$mVLT(wYp!gV?KB2BkUMu<4L6Z1iM^T2Jnv z?b*W=XCL$i3R_E*=>yCL0sJ}j5a)@Q@D8eM7V5ZWMnzsry|jdJe@m`!ts+Ck;9!sUxM?36@#Ax-vVQTZ9+xq zPyGO2WIx`hjbxzzf`9ird$*U7YB1TdXtnh!sQ%sIYkV_TM0fng=6ScJE-v2)KHo$f zvu(x6VsCPYLHd>dyW`hjb8L!thE<&a5vc%MO!z|V#M9#CwG;O2omCRcsEm zEJ)sDJNup;^b3^ZwE6>$`3bJwairoe!bZ%3N2`qDik*ur3hxO05XwtJO9_4q77nF^ z)UX~oz>fGz^dTJFnz5qnJRe7I;r0F}wh2z0i}%lIG?!c`O<~lq;n0acM=G(EOvG~? z;orRyeG~m0?Gx?JT(mq?4M+LrkUx|VE*U-*z8*;*>qzJlp_FC|{KCp%7$3e{6tqc$?SuC6pc&zjaz% z^R4y!T48cnW;!;fv2*SdyH7@ZB;wVl_N5aN>MI&-LQf7HVg+diVRiOlgLQlzPwS#tC z0Zr)&l&&N+(bEu-JHs~Wtv2TlvIweAI#PTNo;&-Xh%JILS&cbx4}9efB(=tBE6_@7 z;9YKq_x&(hWFA}(bGT2qcz0xiYW`M#h^A@Bad`&avlQN!^$^ED@t*jvA!jr`qHAQ` zOR(c^j6Y^0@1q~sj2vMO84HbkIeDEB`(#qb=4v=bn{bB;LAu+GOKc?X0 zU*3@kx|vOLUf4o&@v|S$hQY0>&hulXepeH;L440!q2R68w(6&iZ}E&~A8CM^mJi(g zcaUWVjE^%G;N{5=y`m9Rvo|o(4&Xm&4&S^SyK`&wFuHyP zKH>FZ(U_<WwmCY6(~I|$8gI_jVuoHTr}+=Kv{$5`*bNqdxRcg8SAGCD?hl)%wQPP$Y}}8i(+CYdQOR$35p`*K_w} z&wzx~gkKY%B|c8vnYcIcY2vrU2Z{R<2PXOxh9?wD@Oq|rKDvuSaO~mw!}Y5x50pkP z^yEXXf~3>}?o4E>cDV<+6WzbLZo_Td?pWrqJ0Cj#b~S_a+`zNW^WIZ1p&%Q=FlBx=W%+Dzo(<(I^60~*4);|Y@FNhYE-~! zm1?!w^4Y4e*{f{Jj_xvsx$3F>FA855`6YBQ8=ZZB<0-$utNL2}j(t}%T#}`2wd`TO z#tul8J`xB&(&Q1h&9!wTv3<_=+4j};z;*%x(sWyt*T1$r18=$&O2brM;oQu(G8qPk ztt`KbA-0`t_Ir~#+v>158#{M7bGa6{4!ByoPQb06>hQ6b+=Ch-z*u_exakbKKDY;Y z=6V`<4lwEVb3Jnwa!z&>;&)h#%-UkdBK(?BbiwZS6kG(ym;x8^yIm>YM>8C2y~Iqk z%R1N^mut&YBuTm>-oQP74tL~wHnT0zkJ{rhn_ymr3wH}!;TE_|rp9kV7TQA6>Ne{8 z9TIi#gb|$2tg+iUO+f$&U~2(8bTU&1V`Fi*z;$ht_)%u_&xf>ema)(vc+7CHnf0Qr6K;m&TJ3A zGrft=Bv+RXEj*x`^(5M2FF^1;tR(U*&ZRxXyL-Xd2jS@w{@`_d;x|~Hu)`=~+0O52 zGQF-#;xRUhTiIG(=0v`UMsp2s{xa^Flho{NF8$g_yvdpAq{zmza|hjc9ibLD*nqs@ zckr4gZ9Lu}-rMM>|IV}Sh57%9SC*X z*==?sgIqnN1^oW%{ujQ3G)2Ag<@E3MuMZpxZVcrJ*AF)h=L$a#9e|@$C*)_k83n_- zFKNL+K_NIU@WI~{y=Js8t#7lpiT6kEC~vCwS9njNKd*m?|AW6*;3I0066_ax7V5^7 zUL!Js9R1mdD>|56??$*(_akG;dyk52#x-^>qC_S~i?Z?Uqr{XEY6?8(v!wX*;HGZ^ z$?&+6Q|S~N6I~oR8_pVj8p;oCa6zPXv?3{tk?KrMB1f`=u7#h}$#mCUf!8@XJT!D7 zSUdPB@K>N$phln~N>lSdeg3yx!0SH)k!n<+YA_g_AF31fL@q%OI2(N%Jr(T|b-{}2 zL+jFo=#?P(AKdv@IKHzD2G0TibeKC zvnZ9-EI5=a>r-*t9>7bs8)if{S_pqZjSR+}q?tF9RrrQC>&VPbTeHl$%T=l&@YmqbmsY1SgD}JLVs_HMPS} z`zIRkUcA?}$ysQopV?a0f^Hec6_Ad^#9}se>q-As6H~3U-#SAs#@$E3!_r1RNv`gs^+(RE-|QV6 zaYqYhD`zJD{naGIOF0r9Pwmr4Hcf=jmxgnuHYZJI{``jLb0Pa$TiDtZuFMy-i6EK2 z<4h&*!|(h|Z^fY#N@L63}d#a5jy#k3ltfYP(E-a~sm=X&raSuJ@w3 zLGaA-obs≪hlwxjmi~_XD@p)5WvN^Vk#jeD*B#)bwQYd~uI;e{r>P9dcH5%5ZiL zI{H8{+{$TD$ld~8oN6CL?jVEn7v~{oURNhqS63tQZ$pQDu57{mYtd`d7#WO%N%1Z+LmK2o3)@!!O_6kgk61>7qo^=WC#2Se$6Ms%@ zoLDaLXu?;|H}dt>U5fL%v%mA5V+{IT8}?E!98(;}?2k~vmY@U$>0&5>mXwB^#x-#Y z^Gyfg5#3CUNl#3M1mcDqaEzAkTEa2miC|_MG+Vqyi|lGTxA)Tw-IzV}etfDI@!HT!S!D33ov=^C_4#lS~uXF*l_lh6YV@KT9i; ziW9}ts2X$O-fU)0x=to>B%Zg??2C7ilU$3YT%1J5a@xW&n8vgFp3SDa2RYc`Okm~F zZ0ne>ko;)Qj(h`&|3dJ$!f4@3gkOXL!UN`$R_6Z_24~{EaPn+mBj(p%;|?fbl*chv z%xKMaOv8mb9|G?lGS;inU+SAP(MEk4JzzV8+jne}Zo@+CiMrs?XL5Ugq(38To}zEY zDOE`;t(JxhEX7XpJikdQEf9VkKF0Yt4oc*#@NePk;UzrrFGVF>Myd1%G*%1XG5;@@ zcb44wGJHi#$Z>k0#D@6%bc1S=gdb}hS$;o17P9A>$34ibpJO6Zzgc=L<%Lx6np;jm=KNanDze4( z#m+))OS0+b_-4JHR*lxf{hTA!$S^;FQ`rvpxLuhR^F|kNiVlcQik^?wi5anwlE`y9 z4X?-~tvVg6Q+S#$=EQsx(_&5O9otM+ucJ~$u_@c|bG45C5!pvaMDvg{6b+{EN2bsK zw41fz@|-!7Bg4r1{vC;+zLn#T@1td+-=P+KA1w*(?0(*!cq6C+Fb z`_^>QZmclbZ~(z3l;?g6#gqzVCc{y>+|}=#X{2=e(nQ75wl0a{|?ZpMzc4EG?n$ z;zMX8vi&@Ip9Vy?MpKx%`lCh^<9mKLx`T835!9Fq%zK4#?Pq3!oQyX1g_J-p{9ont z1KiLXsI8Q?u@TWVs5k|~|3VWg6;8|Vdwx{F*)kS__)cvNT$>NZXmo(@O-)Sca34M~ zTt+#42EN*H%*8)&`nOZI)9>a`bCTX1NT=7oILbA$LfLR@T}6k5W!{c;-AIBeZ3cu7d9Qcda^?*uZ-}kN$#9O()d4ru4^p$qr`0Ut3Nef);d+P3>uRy}f9z>Zs3W zpZgcd)iZFEtFgCD<*$3Q=}D(M;Swe3+4LWoESlqfn? zY-j$-0`L4gd~vJL0UN?4OJNrrHhv|~GYp00Kla)nQ)aT%CX(YV^+j4Ls&#+f)w5AU z{zmi3iL&iN-}*?G`!rJI1I_K|Ub`+74lrzGP>g(b(*e2 zw*HR1Xg*vPE!m;Z!Z|UDeSA(n(ND;W41lWiiA>8S*b+T)H!X+zoSmI_U3I@|Mjd|u z_ir&T!J37;+aBCRSIL#`GnL@%by!9~>KVZkeHY2| zCOpxfa;tB}R;(|b+!}ipFUhzXQaiDVP|Q-F%$Aj`;!Cpp7BE$1W0 zReVV*te2a#I$uQdDGHAd*9ab;Eck2o%d{R@!Yn$tpb_+Xl13gVJI z!JR)5%Ig$-sA=^Ncs}cK!Y=!NcCZU-Lv>3@I$$ESHt$;&(qz zj%Ytx;(c;*7jVh8;S&A>0>(Dc={qOLw)F zDwBq&qHa_(h8>@tC(3E;WFB9InNEGK5oBF_$gb!+uO+0F_d4CfXjLa%E$?vekOBv+?n?O zzk^P|mN-dTcBQb5u34XuC`KWRKEM^)0=C;|lJbwCgHGZZogH7#QNu9Gp{sm}_rN__ z9Yv!)jhElS&Z@`LAVI3cd*?GVTNR#An_w)TWRCuCt_(8O?J^H0Q@G4j$+VQz#%?09fZNy*$?92V6c10<_i8=Ps&2ZjPlO{D zGV;?_KQx{zz7L=HWD?MhcDE|=U_y0asuwhl{c6ZejaI?AI%B)7KU3|SvuiIe8z;Gf-d<@{FP_=AM#c_ zb(Q4}(l?$@lGqIDW(V_BW@88EK}KVf{vC7OH#$FLV*q@OGqkyGj~C=UzKl8hBAlU} zu%gfNUTX#|FbBL9HQs>^n?Zb5UlEw|74TiS?i--VVCkpEC4g$ zE8M-Qkz~j>TC^cFhf8=m7C_YqDi_Hpeo>k*(Nsn$$jSa>qS1j3+5_hO?|3duVJ2?E zZr7t;itVC(twZEtxInlz-B&FGd;IzR%Y6lWDPF<1$!7`N3C;=2(ay2e%0YE69Wix{ ze`yE*fuHFMZ6do&R(Ln%$txekOLL6p&UH8x!?l0;3~Xd?d<^GyA9||9=#p^S(DA?~ zf7JKDR{%p-z!?a<=z{mAKP8xnmEw%eVR`Oqa=(;aaL+CW;~^O?xK{fUe6qw+@C z10OwmEO)d?naf^`!KbM0% z#X9nJADKNe8AbRsjA7pC!%mXdfr;m(-kiPnahkB^@g2%T*Ix)$vqiVlN%p7GR>8%| zyQzbkz^mDVXUB0#tYZQh;V9&sPY2QySa|vDPpwVlL)@OaGg1B5OLNyG^8Bx48HJ)g zkv79ea#wb5|61>$^o+Oekgt&jY9!9#6#WPRYdD{tn*16k@ZTOJ1)raETw_$|x+DiH z!vcDQQ=tmo>Akgk+FX4U*@J+ov_;3oKV2Bb-tIL|^BxcsY@7}qd9EKJxpmNdkyrQ` zGqR1($X$AQ#>1+dg!_Iq35fU68YDM9v2oiK?ZLLQCaT~q?W}%+CRU%RKJAka#E5iB zF3l#WGToHjrGJFI<_+;AqXXOTtR$eSlFV2Kt7AT#$Cr>dZgN|$hxXpZXhyne9J|Br zBwt!-h2eiciFY%vwJZ`!^Zj^3k~W`E7=mGA_(usO^9JC&z5}1(7v|-S zhJpjv%2jp_X0awzxwSqFzjWwj zHtU~B8DueDGVkYPI{5<*LPj=~4>@Z}7|Yo+{K_`+rQ%cT zLmCL18VIwcEY>+}fIg7M6UCWADI74(V6n6mHsijXi9s{{nvSY9%4!em8h6tf(-SQ9LIVlmv2l32Aycn48^!XSJHCGFAiq*%VY!6#O=l^ zt*!b%Nuw^K!}y){501Q(czDY&-E<+jy&46!ig|(MAK@>tKXdyR=F!2TRY){nHXh@H z>AzoJp;R=eU(XCLjwxFxd1$muG06AF?zt> z$c+-U($Y~F0BNe6^}4ORqo8xLv%52c^ReR)9;&L2i=*|@qDF3RmwVW__k*GF3rXhjmQq3;@f4kA+3fAvnU;5! zbUt%Pj$@=JgQ&Q5aUR_fT8JgMl{w`XH1zDIk*|_82$J7IeCHnK01Xe)B(ed?@ja%D zbm~45@6f^ej@IHNTWf0vxt8?3I2w&o5Jcey48Imo>6)0<#p@Y3g2<6|;)&A+uV+6d zNln{BuR}Q!#Pf7J`MgEYp}bI=mgCpB3v+KOd3cG_>7lxvg!y{z3h(hX6y$!qlN6_i zyl^hkceQyxHo#Hi2%6N0BhweWy6 zj-_QMHUtf7HA>Ca*c`h>Fg;>S*8dpaNoVc*M9)AP8CZxb2-y3V-%d?3Tg($hqhHcay`5#d@$S~Qad^! z_DCtC^+x@93+1diY{R1bsKwK@mvM?*UpB2d42l+LY{lRq=2s5D*qRgB5?UXK`@XUb z+nQP;wL)s5_kizFARO8mNf#SVr^pMGzz--Uci~|es0;^V&REWdbG;3-R>xTVNZL^KKm~}}5Bt4X*kLtjJ2GG zI&m$2$+$t1EQS*=uhNQE@W1I@of!RrU-L=zUp$1P(2gJLjUZ-PA#{wTrSx@ttLcUL zZy_pGrVTh3&ekON8+R4YR=4haYPZ||mg`7kgu3Q8Mhk65Y;t&8poedHYI5@8Z$Et- zmHamKv)>Ue7;CT1kB_um5L@F6&581!7M*?({Xa|ah$i8YIbgfQ7W}%cn{9%%fozu6 z2qsH;(=4MZJvTvgpc|a0K6cAvnACq}V|7KDiq5xO-)ltZfGZ&^6<3h?sUiDO)fWgK z$vPLL11K|^&_44o0_~U9EZoTdvYZo_)I{l4L4`PiMB>aEPwuI7AHh zD^G=lt)5@qO^SEWg}C{OX;}QS zo~YeH;qJ^yJV*PccZ`2DRkdW{zbY<%MdP>)&+4|6EPan#=6m)*3sH2|N$JEbbUh3; z{l>=Rq%j2gL2pZ1ai^39cJQyZ6}<0mpfF8D)te+16EZU&eWlZ0HU9xEbusgUW_d)W zb35l-XCV(gVcppUy|??F|F|D{eoV-kFvU~d-QHQ8Kwmhux+S03 zM%pVU*{ay1_PmaOeTsbr4Xu-<1Hx;bXFj8Wk%7msxP3l#bWeE}l0p zpjon>){*;kRPC-C5Tq8G|FU?PC-;~p8+EjPN)zsNS!0J{H{@T*7t?!l2Pk19*`y{hGt{HA z-T~n}MqB+&>7jhhy4ThSMnn$#Je%D%hMUe+sU^9(2l5m4sn4vLtZC&>&@YZ#7SY$% znj39ZzQb9$ffv9>^a5w|SQ;tzas!m(6LBg(Gk>z&7Z%fC^)C~0L7eXUEOpI`;$QTo z%$!BlrHVy)9XqNl&@LFWO*6SU)Q5VUhEAWB%;ejpI1MokxGheH3Ua}o7aquJxuWC{ z@4-~=4M(A{xdknQJB6vV3eA@t)@tMhGFuO#d!Cfv&;sp{wxg8i7e=FbmSRf3#m_7< zDO_NBngnC-f~7PBqus)62tifxdbQ;AKSN{RMfy6fvm;-O=k5!;;Vs;I%UiOVx5QWJ z5v5@CQ0RVOgnt!zs@neZfy1E>5sPwGwZc$2#Mbl&eJbup0ot&kKQxA#n(-PuhOXO+ zRE`JbeTp0x&sheW1{s&M+UmhrnW!UDD}02VT0-b-uxapi;P=4EKp#9pGeeGWj>weg zY&<~=NUyut8g(OS){n-yc}h<8h*l~7(Ogu#CLMtAahAl-5UHsc#95Jvr|C{O2j6(d zrz-Vg?IQl*2!A*4&6LNyejY~=n_i42OAQ1}A)E zWJb7BxK;Rkcthk+bZd-HInz&(_*C=v@C!dkN35;w6CB-~4@jEaaNM-7w3WB+mr9H8 zITcRh-g9%OTrZr311nh5+kCdsWSy(o$J-iOw@DWSk@m`JBr+{DZ-mT03QcL2S}tXh zJ_{Wzb4~1y(dEi$o%AK~HJ0LXz`nt4OS+MEWcnxR^QLc^c0{7!zG^RMO%}bD^5$*i zp+@jo&Y;YXRf=6_%lR8wgSMp9vW1F;Duq8sX2(7#eYM|=&!(UyI~rX^v92%;s^LG- z1#i;3qoP@TH7L)Vs0EkstZWIbluMV(*k*+V`+y&vNVh99tR57~0_P>Ybl5 zCb?YlmgK)ve)M+pe++hwjE$uzTJvbT)coANZ;|UyjQQD{7E$W4qwCDRYwCY|DhRjD zXh!~xt(g^SMGu_LlXR>8fV{zEUg^ouulk^rK2YYU1G&SkrlYMbv*-y3TFJOG%Nc_; zztSw$Hqs*WfG|93 za8GoVcjY1lHP^Y^k%#_ill00`mGk7V@drtkwR)-eP_s*1FJG}0U{mG6)%w)&%HD#R zH>Y$1K3i=Xs@AY|_}!8gPQYvPh4{~UdG&eh2b^~$po4vHtTWG$irddP-?{>>#VBW2 zoY|ZSj$QO+h2%q4*&f49qS;5;r`pn3>q!HI^X6`*ALDb#Ks=2PH*1#sY!r@>^D7~K zqL1Pw_wc=@k?mCFjCZ9-?feq4;d5b+A?-ExyWdFexlX(ntS^Mb)0hPSZonEwR6R#+uu{%aMy7 zi%srC&mPa>gjR`vC9Y4rn3y%Gev+D4J8?Q0w;w!jnbVtjy5h$w=x*+6>D27iY<1-B zVg#l(723Avngwe2N||B{Y${3u1^>J>asDjAJKX&YKYR)>&5%!nzS)sD& znpTf&bXHuG<<+M8*Z4`xXlXqv!&Us()8wMkAt7kaVA^ivg|PF3set90;1^djXS%r; zEQGQo3TI3;3|+0Q zmhNcAQ<*wu8kn(shAQd$CUx_?a29l=v;WA~$xH&tj6(ekvg~T8@>a1s?AAe$-Ac#P zLq|HmIWv`=_fhFDd8M@~?y9d=RXz?iybaUdMY9#xU`V_p_qC0+Uq+MZW*yJH$Y4Wl zv;4)a$;J-9A^FOC!fEptBSD)V>lB$6ni3oqOcyeROGTbW&nu-!5>3MOGl$H_Nf6gU;RPM7HU$W1)FOM;%@w?HuPU2u6Ycc^Pjh1@EG5JN@_1WzM^Wb--o0%cw`_K6CuzU%)?CnJ zKxW<>-^BI@#0|(>7C>vkMX#|nU=wPa6c_q}R75*2v2~p{h z@RNDIVW>8xOzd)Ogu0l?<{LW0E!eUfgb$`p`rcU0@brK|hirDgHE=pOKjKzP8|B#_ zX(V*Evn9Epm(;#j*3#!XF8VmOR-LIYh#xlZ5pJ^G=z?xHiwUrx))Q?kk19dM8?TKr z4w>3pF5_lA4TpLZojxsawC;+}r9o9Rtuvi9{mTt=rRpX5HX!PO!+nr*y+o{ya#<;$ zoQS$2y+h9fef-URFTESQ8N5SN2d9?tYF@8bNxhlkNja4~Ke=o2;N(}yOH;O{_VRrS z+z-Ex8QQaW9@-C9(#UyA?jz9=Wm;_P)yk;DlsQUTZp78e@D=84zKzdl0{xx`BD=#g zLYsq|gHuBL!&+o?EVp`F>uVgr+qsS%QG|2(kosq=b7WnpYp_k=tiM&DYp7RrncB!G zLGN7!k~t^Lbxo>K(zp!!aSnTd%4F83k|Nk=YHbu$r$@d9c6igL4FBf-7XEf4eO8HTeS;yeIS4Gdd$o?!fmR5UbTrf8h zN6Wo!HhM-sI^twrbcxFAO9EtV}4+yphln=}f+zq4){t+w@x)Lf)|9r7<2AuHCBK@Mb zW4qL^dMDFUi(OhN@1;re33SSiRBa9vS6H^0p3}0@jr4nE97HP9Q6HX-2Q?km)>*X% zuDS8#7F+9G*ugk)bes~r+$(AcN15^}nrG9WVM5#e$?{2P^#5+h;vBcf zT5CvW#fsu^aw$8=i1nhG;~FlcL$Kd=(inMAnI4@T{uEppxJesw&Y&e6kDQ8CR2OPN z-OV#Jvq4%?DaI=pj*f+oKU(`Pe$;$e$jx1PEL4CsJ6`(ZF{(lBlfE9vf94Ypsvt`%=nBZUsO1`}tzt55D7pg5iF# zN%~y#U~x0)nGWJ`%k#KbtD0n3pphNU0+ZtZU=C%?rW#)3)4|hIw8qSr@YK||~0@7N` zI#U#aSZOHS|1}E*>3>UySF4{o0guEW=)mvU8{mA#QF_|=ljO(+rqU^~!ra4csN3#X zZ#BVafwnYD$VtO@UvQ@KwCl#^G zGHxh~Bh^A7=96>5Md8%w4)vlTF_}!Hp}iQLq1!B%Or4 zb1@AZ(OrCzGI$wgg+m3mUTAg8k>!V`$#h@NSUN$Z7r=GSEWEGYitO_|6KeG&6m z=aWu4jbd0(eg=W^F>XRLp2Z9C=E6?vX=lTPPH6_GyOgef+IZp(_j3DGaeDlKx|kGA zdu6^hF#fmYoivRumdW;AR#i+fpENeA39(r;AUa}MRln8_H)JPvtCh`naeXJmOB!X^ z-bA#ud|Jy1W2Ji5#&oh3hK4i1e$lp+Jx4^K;S#3sk0fd9e(&z#(Q%3;x$4^|$ZLfmregX?sEXuBP^_*1Y)9FWP!J{&MwB zD4!;Oy3Og1q}`YF*>lV3x9ySBNp5(WH^uVSevVe|S_!oicOb z^nc@xEp4Txwo=ZKr0r52Ic$>nOZ=lUAu=L#E!ZG*HC#GYLmM40f=ba_%q^A{Zt;}g zY<$($(@*Zw^To@X1z{!RuwUuf$!~85C9DHlP=8xV$5L0B1UXGYdO1^-Rem`4h7|2+@2t`NlB{ics`GbFlHV>t@aUxrh^ z&S_enR?0FYV$!O4^(pa%<}N}d>9ed^yFev7N#fwBV}&!|EbF@ITF1VigXaN6vE$Ac zFq$&h7g&2s4=qhhg^Zz^Lwy)ai5`vaik(&m7xI+BPHEdrgT))x-VWWl3AV@!R{?i1cQ4mx zM^0|8zewYSspjnQ1zI0vceGICMd)QPTkvUM4l{9~RpFj=j$Ds?hj%KA+6VVZ7qzd_ zGb)D51gi&PWa!QZQi7+#527=b)oK@<=`-;DWzsunt4VRUXUF74r(s|$2*i$s2WWp$q)&1Nt&^A&oAZ6se z*&Y3_xM-4hkrQ5r1NFFl6GRuktqlB>eDWJ{Ay0}yrn$xr?Va*VEL*ezt@IOc{Ok{} ziO7G~oQ1L*}TP8JoN-TLp%J9_W)Lh=~-h1B0zQ18T z{owcde+c#r?~Zx(KP=DX(T;Dfd+sc5tJ7hdC0;Py(ym3*g%bR-H(jcp(l52XcdW0O zzkt88Z@9OicZIjMZ=hcY-VR-le2cwObD~A})($A6qK@#@z&l@W@4?jK-qpVTfli@$ zk^8ax>QMa*&;1>2Si9qWT!s>`js~0N=HE=e$2%B3aIiJhvZz&K6(UPQ8-rDX*5K8^ z!9elg_|W7C3c1=?-(-A>SHuevfC;@&o=%_0NNX4Qo>)RSWNvCYX1wHeRiZT`pF;UV zbwgdlg`(w@4%$lNo2jpmU0!ah=6L5wb=-0+<-TpUSG7vg4$BY}y4iYp$Yq&ewoZgq zag@fpDexr%bhOG!IjvNDk>$Kp*LKdHXEj0QkPhiskwG=P~f*f^WfOf`Ec3jPf!g?NBe}^1*f4DKlUB-yhlr%jDv3-KGE^G+@BjO>4I^Zqe6D;9{V-t6Zb0gjZ+ClJn3Eg?0)&7aLkm> z$fKzcR~oBFwZ%p|(-8bOYfPQuISs3x0|mN^vV(@e(s=fMS6`{O)Sqa7@28Yij&MsX z2BGtFEJzpM>R2V-(=GHNaliSl_{O@^vBovTJ;0sOy^-AALNaJ$oj_Bcy8CfL046PVdf(smo^^0LtJnci{PDZ3lF@4J3^)i)kT! zTj%tRcu*b~1L9ZWK3cgvP^6}iCm4kftb%YuY-*k3xaaPYxG(8+QY`Ux!V%9%_Y*cS zm8@sQD>Uxy!Lhdq$Mb3O%ggjXwT5b8@;AkmZt5qkkFhcStI1=YWZnkP@oqeyu}JH# z?pJ1#jQ$FLE+0(>NA=96Zm4tPq+4ifHjkEf)O?Fgtc5>x#H+8pn&veglKX*-c z{*R-x0Jf@Z+wjW0*6ujPp;JNuK{}+7?h>TCmF`Xj5s>bdlm_We=`P9ByJL0y_xF!8 zj*g>)hrQQ&-{-mS>w@cuUxS?XX}S_s5c~V~$eDCwHdv1Gt!x|Y|9h{VfF-t#qn+Kf zcH-w){$}n{SBSrj*V+usn3jQTykE=}x(Q7MPFyN&RD8H&ucRtruJy`#!Tz=LK7Mzu z+ILu+bMJ9mb7Jy20QsXhGCw^?_*JN5^jNg;n=`}ERB8y9V+wHvd4Mh033Q^Hvq!jm zwrBPQIH#PjU$C{txA!z#7i^qGNT@Ex+4lgu$}$O)tu&C(2Epz(2wVN)RAcnM=fJyC z4E)R1xVH>2nixE$YEE+x(UZDOXEA?+zqH-*6Krs0__FBkS*=c6Z~GRSmLw|> zrOdj8pA;Q-fC_&Os$Rj9wzEX!dHoHv1ZW*k(+q>*NEJY^o>4>j*s1q2ZS~9 zKn+=O(hWAo0yYad&Hc#NeFE2Zlxa7j;P}L~e0V~1B3_vlj3mviSfwKg7_Gx}s8#Sx zuwr;nG+%<2Txu8NKKYW_j9h@u_F-yK>&@-jZdnqJ#F^OSXvx@D@lEkGd&4#cO%k07`EDzXT_-T~31SfzL;VYNJ7 zZ$?gJW?1T@pKzVMLw`j|`e5aWa5mN>ay?Wov@cXT(mR%wC<{aUOXaZI7Ss3+pa;oH z7j)mRfE2U~<}I>4(IL=#%h-(6V5a;KX2)(Clz2 z>_!5X4-QWotGloWBI{!-*Bh$=m&5tbG9Jm1qd7qM^KQen#9nq{AiT+Dp z>aj`db(CjfMPU|PxEqBeDW9@fGmZbbSGuCJbBt1n9Y%__UtTA=g#L;1iJREr3{w{9 zJXxAKVR^w1vlX--wt21nEhOE@Y^_!ko5VhaItNzfb}9u~x!Rxs28dbp6H17g%+lnjzg53McA; zwlpH43!A07N~YRG7xi*Tj%uh81?xyb$K$yhC%YgBBU9)bS2K0ZFNS$HRk(mVMQc#ox#?+O~P;O#qzWWhw7 zgQs90)>*wR50on6j9)rlJvueq0yDhQp&!G;qFoX}>8>`9_&{&9^hS?3!I74d^kQ?d zxc~nW@A<8dGs0(!dsySTo)YSM{qR^B5IjuknNa*WWrMr zm^NYp*$NE)Df)UCfnN{<;Mx9#I1H}Qw{V?2Bg-(qS-@7YuW{CQr+B`&m$*tfBz`X2 zpL%b;(tCrW(HJZa!n{Nvjl*u@`r1l5x4H*<9lnj;$sQfg!oBv<*2b2pl*fFaWuSLg zQr~CnAxhAX*>X6Y4FbRAIA4t0#CB))!(rDQiK=!{}u6Yl*H#$$- zQ*a*{U?uEhoNiA~U&Z8KQgTy9rj$tT;B$C-IS<*EAQ72snZ|{9hkd&9mHU|YiLYYP zKfdAKY3>G2r@aNuh05SZ>j?$?2fH%p>82V|($% z?fsk^U42~p9J-a}iZWBlpKzX0^n*s&TtrT$U$SHPx3*V~nJ$}WomcXmOFEFG`AqL; zPqw?FyRYjj=VN=Cy}bQ`eVn5Ntn$e&murdh28iLgw$1R+w#N*Qv);E-_8%P8oNt`d zT^-zQJypC>?{l9kxm8N>)JdrmQ@=?)m{KX_RPytrroIlI#jdhW$-Wi4ra!nJv0Zuq zj`n0`0B+DLt*;#0JT;R&X?ng$`t$S?`L?DmOWN=L({AF1dl}yD?o3}x2kSk@51uYb z=Tg2(OH1pP@`G=SD`6YUne+kTuD(Vsq_mgQ(CO^1e1IL~pt0H91moT~xaZb^e$yA! ziq2$zsy7(f_n0D1{Lnx#D4LBvQV!} zB++RW_*Cq}of};3+?(BF+{avsr%pe;u^}*A;3rf*&wlf_gdKg)1QQXv5;~Dix+iWuQ zF-v1xOXo=Ua1ZAx?kZ)!!hvN)9MVR~0pWOjOmtkhMo0~A4V?(Th@{09fQ#HvJR*6N z;%Yfpj@^od05J!^DY&dQ{mUPm&ucGcl*U zZ+uvOR5 z^QkFv8!-!fpOT>L9272zH>4c7rMg+01ggqhn8)g%sdg3}=*~#zEjPD=n~*_ng_}S! z>tTB}PmT)<;#;HbB3;7ILfyj+qHPmzq?+0%;}=7hl+*zgx-e!2{X~fF;8N@FcT;Hr`jP*J7dHhvL1*~OVB+Sh@1Z}MrnPo zT1m+O@olB>b7EwCXUrEnA6*w65v>+&7S*G(82_%lR#h%F;?0`6x4nf zOUM2U6%72BNBMUK)`#cCE%Lwm&s1B>F{D;!z_zrC{?}ZhHWPcr@`tYke)d!Trv9`* zk6>=7H|8Jpqthe3upe`W(n8;dW`wGQ|A^F#-HA64P9gCk!x}doS&~_B!@1Q`uvIJr zKcOs|;)GUM^&_2gTpS`4Nz{&C#s=tDkbV9^`tU;hW5bwt+5V?Q35G86pMqX zP)-2z8mXbRiMlWmH5Av1D@0ScpQsss7(E|Z5iW=PbNj$w0eh%Tgp0ow9?N;!c{7vz z0qNF4^bT^0c^y0N;zEg7N~CbOQn*}1j4nwWm3$h~_S8nEttA`Q*?jCf?0Nd?er2lU z6>7y>AcLvJhTzPVB3sm%;A&n)Up`mKg=zT?<{VRzIrvYRg~nY9Iu*N-1fGqQ$3n6@ zy__w?r`c<{{_#BbZt?E*)OJ^MZm?a&w#815K?-;`5`Y773oDP#;To8Plc~e>M79f8 z1kS3L=zT3j(t8)zo^{drFi)LqevcXJ6{a}<(mv2V-Df0kNlm1_PFbI{)lrN5NVv_=PKCpV-FQV zI`N!&%!uGy*9dNe=IG+RHRlrqnGTM~By%QaZ}p_CL^Red+AzXK-be1mmIxHw$wJ$I)dBI z)F7woGPZb^<3(fjqe;<8(ay2u@xsCvafQ4e9oDavG}$G!5#PX5*%>zRiDD~xmU-=rDJ2l66r|?oKoXnkxG$Bpes#MpP zne$1LVnKT@h+N8f?kb!lt9ce}`JZ6RyJ(q)ornqs6zm0J2u!S+6q}k^wC~%z4-^|Abzs$wk@%rchq!k1b6a*=eQ@$Be@PZhdB&eHER{F z1e-w(A`owbAu}v@QLd`G9wZhq&G=dNEazf(Ur!59Nw?xCWh>2fVD6I7%v}cZEa+Y@ zLyCG6-HNqvJuv5J3U(dv8rzZfB{Q@IQn`cyu3b&M6V@b>B)7WR_=#G?Zr~P!<~WF3#b0+nO=?v=l3!bq#?LJ3c=XKY0Pjb?@lz-9=q`%1jH2=o*PH9roJa=1L8as!$ zhxx=@sWmt>->5Hjjqow&EfPM#ckLWF;>GRX+RpI=H=1pLGx2!p2AsrYr~~u|wgMlp zKC#*DF=Xhb+1^_J=H1*+Y?MxdL!#U zgz=q}68kaKFfiMH(tjgxJk%^&Bw>+?s~e5{l**Wv!93pf=)82b7qXARiB#mb@{{<^ zdgeF74tjnEPFBy;ns;_64n5uhF73hRsqvvJCfiM_zZAsecl%YPW>mA>ij_T{=1;V9xb#M$@3#+8+ z>VAD2@{$*cg605isJvW|V$UNT!m~q1L&YOQV~-N7WK}+@YxVZ#d$ebUlO2g2;U8FjeH&ZJK>ZMVV~lmv)S+Xv2dwWz;>@Z{GspAg#Hf=)Btmn-G)xiAKW*f zYWB1)0y*uAwIgV1%WUXCa5VdoY-&_e{z`->XrnCvatmvf&5&O~MiXVgPPCR2;w zY-{fL)!D~2&-KZ9#j)Cc##Y8Q!8(AigXZu|b`HA3EkHo&M)Wny8|yVjC6v{2LAjdL zN31J;5`B1z{;vIM%q5Oc3)!01_D;X&=cEV8RLaq$1D@uNueqyaH?4_ikL3%`gt=l> zuvBWsp!cB3mbZ4d%%ch!6XhH6A>p9^dagG&FZbI(t?*B=nZhOc zGn{#yNRU}x4>I^73~qd87UW89d3jz6cx!AT^TC`|HVSs){26nI3RI0 z-Z(xcJ|vMY&XQMZZHcuEXSF*EdhUDQdCPguIbL&U^=KawLqn15BA<8tm-i<6y5E}* zZ%4kb`?*^7)j*XPDcw*T7>mL39EjA^3-nZPnjeT_R0%pp?`K-$v)Ruw4TO=Z*c~iD zx5B_6z6HK|KDYOc>!5uGH2em%Iuoqk6OL=P(nu=&#ayJHQyld#?nA?9p7r9qcg+^DAA?sl<{0Cs zU=Q(lG0}~Q*?K*tg%FRt3v|kDo+W%yKi~T@ENgDwh43L^o0dzW^Tb{g@ifhT< zqz_R#Sb&4Ur41kvb;h^}QpP>CxH3ViC;os_{hipx=&=YBxezWEsTR!_*MuF)NW(>) zVaHj|JCfatJ^Q_Pe9MwnCFS`xd;7UR+RJda$a&fuF)cnU@;LNOXlUqYxJay_Fj8)Z z-?gTg78b(pH>x(0vSYu64&_bH&dhLq>HPWW=N~gpWIfG&7~C3rE=l@v>MzSKYuJ9q zc^H)F`OY4Wo_KH6M{lb%yP7&@Zq@FQ$+jxC*@0cG5;UR~dw-VHx!Bw}FiDt#nVgm{^)<1Rpq#^wMkPh@M5{(pxMetvekN z_f=nJa<|lCX+zSgq*YI?oLtuHacbNwDxbbxWTN-{SF)>TYG2-bDU?|@=S84f?5cD` zFF;*mTl2$UMeE8bOegBRc@nhUZ}dNnDZ~tF9<$oAk}qMaXph=dtZbBz91c&5EQ!ZcYD2n_>u;uQMU$ifny;jILGU6!J5jnI8PZg_uyP5T#sZkI|3F`{ zl(C(0HuM%uKA-X-Wp?s=??Bfon{2sFeLmp{tT-r+2-tP}1_G z=E*t|Ra}zCbIei6YGd!2x8<9$Nx@0EowJ)~7s+iNs216m*r41oCo+4uD2SHHyoH;@ zwxo{|8G1`~pFBeztGrg5>35BJL|rsr_MnYZ*mB6y5$`((C|gNz!o20?v5)X+EUTqR zTVmxyL-Vd>x5=uPm6fgMoes^5wG>OL?~NGwmY#`j)FV(ax6lPZA!E_2Jq0_>YVMdN ziQPz{OQ;D*#{D5k$bwu&lBA*Vm)I00(TCDcN>nRBY^Pgsx^0z9^;S&rb2#jIRYenHf>S9&*@7Gj4I?P;wt)Q(ep(uMb8&{m;PjXFhxC#C!+R=co6`w>R~9vf<;r<=qdQryPB-P2I(fW0UA<#AZwyz98os z#}=TIa9Nxu$JBIlGBt|5!yUCYz~*#@)932!8t*#hs^`vixARoTeI?aZ+40d@p6k!V z$b?ziXrT>JK1$`JTGFr5Wl2U}bg;4!Q?Cuid*WZZD)-nn*mcC)Ke<}!;nbf~{`HM^ zZ?li(D${Mv+S+vZIU8wjjU}XyS!=0g9f=L|M*CRnB1>mFg%Gs{N_nQ$H|`(8O5D=R=;c4W^@m9Y>rFcWKXI&v{Q*Pi1#AWZlYIS#Bd!lM0zT z^gq?c$YK%dQSEob3Ag)hGDQB5Qo9#!;~$W8C$v-e=Y^1M{vcPD7fS}HliQFpE+_ua z6BZO2B1gPV?WKP(C(?JgHjdq%^T{{!y)U@7XtxqKOWr8iuEd_AH42SM-u3Zkd&C1=S=MYQu zDe59Pv%<<+HK>NvZ^5o6jdkE=Y&I8=Gng6N9xDkJa!W^T$1*!_yU&eci_*`DQ%087 z8##|rc&<7@qFMwp7nttadu5|k2>tq&k+;D={DIsuxkYl{=g#u)!nEso)QlGtW$B30 z5hTk&#!I6T92e)ovQ&tZWJ64c4`W(f6}K{mq;a0FgC@#2t)>>yzQcy$CbI9}6Z;5o zSOsGC|Xy<>B8jr#AvZd>+r15Kf#{CSHS_{zoXtn zQ*om_LOWun(Df{=^#`OxMmw81$2tnw=UX>%uNgb}REtW35)UE;f=hFUWktUX`~2dQ z{OO<1DH+=`PiNK1{w@1P_O|S+S#>kte7W?cLFR$%^?B<;Y@&qvj(EtX+NL-Ux?g&_ zc#C?IJw07r9o=lF`2Add?mVmkZP|siLS*W_l)gg!=;UD4ydl~BGFNBBGG1oh%=(nQ zKDR;OUid-$fpkb~PPC?vuxq%Byu_d7H}Z>+d3$L2$kd?T7;ltC!n|m^P_{pjJ2+=w z_E(tJ4)dQ6%ne3@6+`_(*D&$k6P=N$E2W}S{7O4+6eYd`TjHtKQ0)T7Lqqv%7)|U- zx;jofq%Xt-?!6%)xiv(gu>1Zo+CSv?@5_6b_sE|V{5fQX_eML%^~56aU+Hf!UnjuR z;Z#*+7*dTn=mhS-H}_kz7W$f_(67D5^hO4Fr}0>=FDHrh5+~7VT^31?RE~&|KCy<0 z7NQp>p2lDgxmCQC#jf$+BF#dM;PpTtkP<8sGy}T=B?B}4^Yg0ahO?_@kIVj))4|^} zq(%FSZ8VceW1sQk9q-)teUaqU)IU-~sZG-IrDdh;NV@2G>-^f@mVeJYCzfJ5xWv@g(Vr+QIBg{mnG6G(oPp3!cv-LA8Et z$z!va&Gc0C*#1S{;taV5%<#XE#Ji(35`)oR!Tz~xv+8G#$TYI1=5`4T3?Gdt!awp3 z^#NE+UmJhp<}(XviT-dtl%^&6I(+ZXkmoK*E;jC~pCvi*YwR5EvSmWEf_s9KLgT`{ zU_fkzJXT)fTPdWR*H;q5>DTN!?iGI;-Mg{YiFjJ<0B^hldjAvYPSj9RBF@6TJl2?^ z-Bq^86QqMerTG3xJk%Sx(VrquVt)t`DWL4v^5gCwH9HVLVcXUobc8W<6VM8}gYPl~ zwDGg>`%V9Ur{5-+?{XP}*+#uaj+xcxt0O?CE2OAOb?uV=&fG(-W51yFHVJPtnx6*t z#dg|G{XpC>b|6JLUl}g#7aAu1j^#$Sg*%5Ygy%&P(G`iV@>RVGRnPLwn$PL*Z1vqs zUYhzL?RLJ}=}GBb^L?APCZ$`_D$jf89D6zII7=;hrD@k@%ax>_VoQO-^t4T^0_+20 zKs*ka8-mPWs~fI}6k(SgWAFz<>e=@{8%U z(^K>Pl-eb^wXdd!cipwmw(1rqbA?!}zfqn^1H~I?wBD08pe0_y+)3TAe6Y=M&Gsru z`BKAa)zU|&&(3!{bz5?>ub}&xy%WEhSx>aoc8Ood?uB^tU6%x^1uuq_NG+uAoYE7e zpOHa+W*&33?5|yfuYU5@l!>Y3(srlyN-L5&EcvRhns=YOxNEh8xBr6-`XjJ^b~3rt zBJwYy7g*OWX~YNlSmO8cte+VVN0*8RA)P3}@vQSR_z4U$DC@ z`?xLqChIL*$bQB_IJY?(+h6f6%WOKCTy2a44RM4bfnab2`MN%82mORufNBp4`Du7r zuF;*yX66iioLW{+MxX6iyh}V1qhlW728;1B-lxfiqFX8oEK z&a&q0&AsoR5Na3oC9aF}6|f%6y;Mi+_S;!of`&8zMEudVUAAtv6zgY8VWt@QopD;# zWkDJY!&e(5gfGVGMCJt_? z?`!5O<^9Ed%o(y@vlizjGG9?uh@XvJc&{Iq9txEbXJX$(7lwZb3BgUFSXhik60hYl zMn7ti<&mwZTk{zye7+LtW75A%Uz2Y|nwg>{1-u14>s_6lsg6yyr~F;ZB<3SI-n;}q z*ao$PvI#WEvtU3);GYYk9pZ&D04iFs(7G__3Rx7a#3c7em5>ZaX_Yn;2b z=LBp$pWpym;M(G(9BZxjEybA&-iY^YF@OQ~QkzF!7Gn>n65gZb&CU((EkhRz+d?&|2_W++Gd28~B zwmF%lu9)0Zb{-1X{-VJ`==u?>tIcr$n z_0ZJ#d+CXGk?^r=twWqA+`oDHdd9jV&Pt9Bw$}V)OB+zy4l+BLmP|Ri09ngep$rwK zM*D=yU|V=8@1Wlr929yI{uSHB&Tw~>l-f!)B~~gTNzysoA5uvlHoAswo}-X+4LT09 z_|G8THKY2Fi^0NNj5Esw@@Hx#6#)4)6`YDs)Hr%3`WrW?rc^354S#nE428;|U0h~p zdJNGYX|b{5)%daK2H0}zMMfhn^(?X~qJ~R`>xC8szYksuP6+pj)eujsCx`$`*$=qS zCOOmoOs`hpQ~{zu{q$|Ab&^K9Z`yz7cd{ZilgQGKDwl*#(Q|tqjme(+KDnk)1bw}hAu?1cls_~gSTs;GkIpHcC1y0wxb|iK7kkEo%+%Zu z!DsO~>K5v*wVWrMET#=fFOyy)txmGbTi%sp?*sbK15ZlYElB7J+E0edGF8mDpMVxiRF4g(M{tw@k z?Ln19TkAb?xV4CpWNW%5ThsD8`vEg;)0FhaphVE@#+Xc#n&O{cVLKKn=(A--}y@VW`GNxf-=@fU$v-Gu8Q~s25h_7<0 zC4G1P-T5!(bEL%FlJy+@QokUbi))eL;VmIP)F9YAFx(%=dz5!CZ%JOcybgJj{6&Lv zLhHlP$c>m)cr0;RK65Aenf6#L{1~`H-ogL^whnsFi(p;c%FyVJ)}ow5NZTww5Z1*1 ziu%L5Lu}|x&>w6W`Z_!}QXy6iq^|+U(=IiyqqjGUZHkWG6vB`FTW6g3bmxQme#D1&A6;K6WSz;&h}4n)BZ6F( z^H<-YltO9SQ|lxT_M|#$5UfNIIG1s88 zvu>Z?nVO8v4N9mMOM>rWx4(|+(z}YP~ay-#Pscq)a4f#~ZTUVyr z<1XkdWxr&703O~hSVF$Cwy}S5e(hQAed;+JzZWAkr(!^u4G~xMw!^(c7Ve(V&h&*GD zwig+k^U^u#d%2EsK|QH6pt^aZCEK`kz8|;}`&?zb zeSLXe#hvW@&ANhJN_vdV>Rhm%Jz7Vj5_zBg5k#N{>_4YRZ)bs_ zQi#^*-`VqAW#p!&xOTd~_6+g#^lWhloKx&O@#I}cy*0!71MR802b8_x$UL3~3HTli zO(&%ZauE=9?rAJho%zJiaL)9ePwtc^eAS zNxOYFye6#5_1wv>wT>OO0eopooPL2McpdX2?4niS6U9DU#owTEtO-ACpIO9etJqHu=e&}-7(}$>g z@ywee_6H}{FV)2cdAeQ!H=R`=ye}~(Xqx=9XvFVCQz9wh4@kVWjjoRG5)^TfG)%fG z<_SH8Q9>87rtH)fo9*aiZi%gn)9GICZshLcD&ag}FKk=Q7XhX9EOU~cN97RPj791L z@lNbe=wM#C>_ZuUeW{QU%-oVQATTo8Q9@RhX03IcMLk2kagXY1>$qv1#C^}sM~~5i zE@ceNw?Xtpsx&nmeD$IxGP^pfU(o(Wt0SOwfHUG1%)m>uQtD6gX>k`C+XOr;kE9D~ z%#g?x%o9thb&35y=Q8(n&nJ)9Th{x=v%}rqSF_*)sHS0SEJW7%eW8T&$KE%yq~67P2JV$T%UQF}N36q7<8 zMZPN&d!vXVs4l&Qam(CK9;d%$PqItl6PgJEvPli6L@={e@afipw_6Q#4n{dDv&uv8 zPZK(a)TcyaH^2&PwxuF+2VJn!YT_*HI`7Qy7;i0M*-Je{63hpy#YCbAwU*As$#fKK zL~SjL=sfc~En6xl{2RL(=^VZmvWJ<-(&)nYb)h(Def5nP$hZG8O>iepW@;dx^Z}gx z;p}tniS3>fY8gJjqUu5@Cr_D}!Gqr%cS11v`7s&Co#MdubxZ%%G^T|Wrb~p zbq7}u-`M}mZhAv?r~I?D6TRCi;#c@AE)~8K?j=?w<|ig4swFPOyT)t%zfZ1tJQ4dN z_I<2itZr;i?0>oM%U~CckjE%#YF+TzqDVM@r!CMWqZpAzEGL^I8+{Jc;rRb^bQi;w z(Zl!;{*f%OOjk>!I3jTjw~mpRK-7+Yh%Stcjvq=C6*ovJXhub}DIiWPr1mrG(4^kW zr}0NDF^s-m5L=98+BK!8JQb#!mQtQXBJtG>MB2SDr~Cn9VKLl5{!)7@y3|8#op_Fh zp5)hawrBmA*(!5L*7%&_{tBVtm;r%-j@`!|m{%rh|LJwXcqu}D27_lk+IN>J4(W#D z)PEojwlt=xBc-JYDLONp6pZ8z&OMSN=Ty#f1*(O{MP|neB&G|cq!Nl(+o!8W1vHp~ zR1+}RM#3I>5{cyTuqL&Dy~GPb#V}$zSp_8Kj$|$3kpY(O7&7A%KD z#J7nzv1^eg;W*|?C1bgXkmS{>nI&=l`q9#z)44BvFI%c(lCz}iwR4ms)4JYLk#3Gz zY9+0g@=&@j{wOvTJBT*XBP@!`(Yp~xWPNxz<__;7H)BnN6!{Yf6YYpHu#1(%477}; zKlp94Ed?yiS%Rrel_FZ>TeMVPgf`*_Vh{N}rGWbJ3utn7dM)`Qs2xl3N3t2xf6;Q3 zX7W&wqKd}y!l|L}gO7rD!?&^9c&pSldXq)L#GYYc(GlIrG-OIL?U5Xt00&1J?V)TS z@i=f-Y^51+R#%X({lCw;02udgrE5|Pv=kpCQsT9vv%|GQ7jb6W5H=ze(S3O*9FebT z$IW8Y1Nt2DOhdr;ilSH58tLs>_G6@zoN&J$Iburx9Vm2vDjJY2hz+!m=@Q@DR>||3SWz5LG45cgL(!o=GOmDdEKu()KZcC5XleJWqJuyfb9vc!)_2WCAPZdz2y;}6MOk~{0nXd zSnPhxuVg%z#v_@v2{x{U#(wZ@%WJ3MT(+yvz_S^tuGjh)8;HX6K{m>5vu?IIU~Fk= z9||_jH9O_-Io{a&*>}K0JB}aEZ2*tw2(y~rOEsr9QbWL@pUdvGoZ-&$+d&M}zzq39 z9Wz=gfy9@{#9$zAWA4M;`Tk*{v{(c2Z?zE7ka@)Yg2q{{-ESLgwS%EG88oM|d`r0F z;(SwUKI=F9bW1(v0Xf9fv_F*%(pb?VGU!0H6T85BP*WNv?^OO$&uR6+8|aQU@dD6j zW^)_(7uHmJ8HeIn>b&h7hHd^n%uIOxZ;s?M_!_pOcGF=vkGNR(Yf!GPIb>UD>wd16 zBqm0Ngcohb!*mDMuuSEDv!>XR z@cbSO+Ik1HQQyJ&`xAb4oGl2iO+9;Id$Ro_($5uaGePL#9lFEfy5h=%PiHjFS10)4 z>}hh9UP1m6FB)kPyz0N|&mU|bW@80~S@JvWG}5U@>2cs{AID_03z8^*+x?C~uKn%? zXafA@+UZEQjo{+ULy91GnlFqQ$V1mge{Zi*(rjvOH!5PcIY2&(%^tj-7R8?3J^rI_!* zt^b?6K+R#!S)%-L+berdM^(pgdj;DT{t5P>SLnhp+D)fTx<8&Jz3>iPKqZJa=03f; zHc5Srj?llxG@>kZfvyU3VQXHo{%Oy0Y;peP%!Z4|WB*|Ni~ozWaQ}haTZNx*{l@Ng zX1khru6usMIdP@4nw{l~FmKFd>Q?c$_@QWWbPOm1#p8ML#|d~^k!vUZw?V=4b-4IF zCjN`nr~0470Qv-5oqG?{rDl1=j$%aWH!?pl0EC#$@=;-0%nS|iYuTxpFF*JH^!j7B zPkEoWWe&_eAGF1SLKEeT_DR2qcGM%J`qnEI;0fPu>?5jC1fG*Skp8z4J>+fNz97 zya5pEHD)M_^Q*Py)#W_FZT@B0#_l(UFKFG!NXXb12 zJJ8%0(^shvXeGTSn#1o%uur%twuX+6j+u^ncFy{Or71;sDzhl^a?Yvl$vk=cog)6ga6O z*sYbP>oRLV-Scq$EVr3IsVsA&wneHIe-kR?pP5rT``helISunl1p7x8$4iSbDI)h! zx+yj|Y)8xGC8bFK+`xZ|xq z|NnDlCEC=3K}P#RR0f|bS<8e;#RtFLcObS5mw%PEBi~XvaXt1Zx)l5(KPUr!p`Ub1 zHk4;-ORc}A;H)-W-i2vt&BTF32l2V=)g9y-mbFcC4sh>uS8-LcJGft|rp9nZ6_Vqx zBXz<=$Qc|Ps2->ks2r#t*b1uUwD6ng*hFQ?z&%kku9_u?!QjhJBu7xg>H5q+%zEZE z&QRl!)7uSd%D?79;sjZhzRJ|KEJ3Sy9DjkEgT38ZN&}O~4Q|hj#0TWy8blvN7DkpK z-_atvK6*TQDjJJ!jLnL-hqZaP@SA8#Mbtz3V4@^_fu;DD)++Wa`x)>b=ka^k;Z%Ne zmnw=a;@M$6a3^nFZl~N;xoz`4`{#tLu|8r~tumRyUgd^a3EK?oPkaqLiLbNQK?nGn z%jJII7s6ip(Xs$OiUidMCeJU_UiuUGk*E0UnD2ISrsDoC^LyF7B%za1^;pqREkB=k zH1A&EWH^p_u%tXS=24wkWOBI4{7YmUO7ep_0~?DlwlWo6-8|R4bA7#hIi3vXOlxbV zgt=EKD9(%LMr%i_z!-foDnwoIHUAzR63vM=iq905%Wl0f@rb(3q`*5_jJ45gi3Y|1 zt+7h0m%t27m>Z~quoi5v{$w8mw+rc5ZcDfR$oJ#_2HR&PUyk31CxyxoR7_tjpH5tf z9u6-Foes^7Y>qFGoH|cEwVbx~a&AYOs)kds<#0ooZ^#G6a&Y9A7+r}A)HZe@f5f)l z?z9)T_Ogtm&!BJAMq8_lkt@p2WC3%EXIfqO4?7x*%t!dK6rl;++}9(AWDpx+-pbHt z!T^X6Rjrk4<{;}qfZJ|2BI)NAdY=3&7MPPHFO>loG8nGniNKy5k zv4!{*d~=0tMOGn(n(fUzvk1A7`j0*fra?W+bC4*nfkBzZ*X9JAV4u?k>2bKvbSH0N zJL)wH8kKQZX4Iv!Ag&NjfM%t|r^nwR{qqH;PdZ*EQ9~Fkew3;yPn2EYMz=Dr3Cj4SHRMhc~A9#pK&)cfxB%31kUp=DSs-LHb3=d@;h&~bAUC9 z@68gUJ{+R2@Q)i1`N_>-4gW(PBu?Y|QUKYHcksJhg*)AbOi!k>8GTxNQDs>rd95yp!9*P}HC1&-zKQZtjDczgV3KPe?@&EtY|5 zJ{v?!Z(?6ODPB1?EIKoKJ9ZIFnLMeaa!W03NJJm{D3i)o#TL6en~nGCIc5vCq(kt$ z>(Bf7Cdeg5xVjde8BM-6ZfH&Mk-7-#ga;m8Q}|E#6~5Ioi5`jH68nXP(rKlJ?jl}M zCD{*_3UF_y;aSiOQx6Q4L{S~)TMihA*t6Y*`2h(GsIciR+4MT z%q6>-{Xt0f5Ov5faxRzP34BRbA`*Hlb&T{lA;w01^e!?zjS@#wpy5viNpZ!}{8`(Vpt4gx14oTW!7(8-bVSE3H2Gv9lz<*bJ1>3&I?j z>um8s(e9DDAd6m)H4<9NLvU^=OdVscpmn;7pT?izvMjqSh0rtU!f)nFf_2gpevMSe zJdm4fZnJ&pQ!#65vSJH7`4bL=30scGsqCQlr z6<-*67y1&s8N3p@78w%%O57%&Q-9G{8xi<&n!*0I#7rf3QY9Fj{gZ!fZ|836Yn!|z zrBUj%)C#HFQoc!fnLH6&g`G+LlenaDzS~~Xd(yqrnQDhw!BT~h$r{95^Pzc$u%abY zon3?eDFFiDExro&@Yk&Y+eJqgS7rBo_iax;U#+CONr#h)Cyn;)^&a%}aX)qzbdF{QHK;?(}q@y@Z&-ox6+QkEvk zW`sbzrcSf%tSy|$-khXTDNB=k_(HBfY;)KK#9FnLvTX`j@7M-=3+V|RS z(9KdXUAUvv*H-JTklP~7gXo2;#CZ6f!X!lv!A7PaNM&>QPPSuUtErxI-kaXR-qoHT z+zXsN?9ceGEQdfKTSm+c@ zfpAq=E3TE+$rF?S_(2Ec{8DQqbt=VQ#K(ZI&{&;hP*h{|zaCiU+i$^Yp9ylydwX}> z&(Gmz(}~-`uBE$?N#tuZfC=kUq0*jqVF`)*q<|K2i#sYop#GQe5WNQKU1r*UikcgyGJ zSrT-ZIHHeM7K)=2J>xawX^EInPL`DtXr?p)A;~X~mN@Vi_9k-Bm0T&W)*72_NE_bB zdo5u!x(f0;xFH}xe-E!6Wq<5g85vl#ta(;QT)DaV?hw?q;n0j0L#n?*} zq<=-)a~n2nW$i<3$N9csO&2E58{4#bXg~H9Q$(j&21&?PQZ2AN5=x3%NF9y+T@&?+ z@(RqvRAi+sWHYoxo^sXk4W90*?&<9P&HL0d%sm~ngm(O0D5 ztqDzd9)A!m9bwTTJ`f@!>tZS5VdXkDu{FrUaLCTZ#QQavHWxIPwq9#sOeM}!TbTem z(^A;-foVcdCVw<_ZN1W28Yg^{=z+AC5Y3G&4kv=O0t551avJ9Rl~XqFY#=!z##_io z^#SB280U7-8>um5K4O{C2}WqzW=#KpvY@r*nhS=VQvg4m2vdJAo*@Ej$(-@=csGf0Tzy<;1Iry7Al5 zVB{_cZPCbgQ7zgrZYH*h3ivNo;RY#V>@tgz&FLR4$E^n(R`-36;XUf3k~aA)-tMk0 z_SHxN{ely00kC?CsJn1?n=gIF?_NMyn+V31NB@f458n=1Lf?fZg{MZHiK5alut5fr z`7x0wYAtLZ>Nx2b>hL%w*elyQ@pW)22;d!b3n@z(9kT24TJdC}MEuw2-0*;4dcYY_ z0)0cT!Y!hgK)vw^JK$K@2nWetVKkDS!_?!(ChEH7pe@yv@SOA=M9!n3>sxyregRvJ z-b4OJtRxl_{m}j|V7yVi^2g~XGn!e?a{Lop4X4jt(DTTxI(ORMvZaYGiYM_YJT+J`I4^W5@@M?L_^le$kH8D| z8)mUR)r(Ri@Q8NCZzV>E9px$NCU}FY!vndOm`Xea$K|Y1-29q2O}@by`vag(JKcS~ zMSO3(4?W}DPS>xFJWTaU@@2W{7N2Du_`1tzFI5)1?#D30EyJF%8;o07ktb0$UNdo3 z*dXO6= z;svpp_}zq;SZk#`5Q&68vNQNo-mL5;nRyxU%$+$K1Dm3wrTIpA<_$l=(cC@7o8fDp zblBJ1>vyjMxgpQq+m;0q#AYy(UXc~e?dlz|UL0&Bq^VZsRLE|XeL81so;C11SUU17 zwoIrc`_);-A4C{rq-3T7n`)`V$$V9NNoQ5e!sa;N*!x>+TTW7K&3;;bWtH?^d?Cu> zdT<{KBc*j9x;;`MJRw*lu+IO?e>gBQUw(V)Lr-yg8#bA!qE%A zPb~fyP<4KVBx%RU%h+}yQ~3i)2J_$qatWkP8{!x`S=$Tj=R4|Wp!ntzJ?KA;GnjVl z2d0JTS4aarCQa0KiUglaYuLTEf!R`F*naJX{Q50zojghC8Q&jy9eNV<1=zq!{|qwaRh0o+ha|fZ%|Ak*I zj1<#>_*O`sq@2`xp<#SJHQPAQoa7J^H>RB^oKx&-38_S^xT9F(!n4v^CiQXtux?=c z8&6UHK>qLy;sL_Z2B9u@J<5jX23Grad$YaG{B45|!nSy4(XWbVN%C*tU7j(uX0E}U za;CX~^^yIf>#wA)DT`BzCAUwgX|KXwq{^U@{D7x{Io>%|hr`4VavDrZ64A22SZjj4 zLf&gDl%Md#y9Ku8Ke==P`cM)k=Rj^eMcWEzmOEgm{f;^z+q;G>XG?OmNKQ)kWh^Oj ztH_zcXAAX6E1c3GX-q;D=SEv8%W`%mQ_r-?aFA+D6hW7(O{5UN0Oq;H<1gbM`8`rg zbrm=nPhzw2--tP6oH}f{W%|WD(K^#U*;zTED=+~1CJjlto47eab&?Lh^;b)>c_e#~ zd1P8_8ppISbCvIELsb|U|E^5Vv)W{6~QctX41mxiM zdPeyVh0aH3aec)n$|+<4A<$-KnE9M#qcvvZ9R;rDiN>Uqq@={_&SJI~OegvQR$co= zYQ-;(4~iX&PK+Lm+JIU8GWIiOjlYVQ;+G4(#nC|Np2}~GpMcv@X81sOOn4*AH+RN5 z@O7l}YHQ>_{2E<`J!f0$x|CQqDGbT!uL-2{gIpt$TBT;DpUU{P@NXHl(mSSPCp2&z zvovQU`WaCY>x8`3UMasw+xQjnB~dlR`5$=-7l?V`{H2~Z{xjj>+*7$Lx}7S*477B& z{ccZm7##KNH?5D%516thld+}YDcueBB^%)$@K9?iABVgC%}}*KQ-AS5=}_-T-Pp1!qK`2sUjomPOhPqTxT7u$6$E7DcTl>yQk& z0+_5*(Wbz?ttxhm&C!M`^&JNB!v zRj#Bv@Ws%wOE7hU{mmvCZu;1CeWlVutis)o-VbL1>#weVrti4-qUWOfb3wa;;sw(S zR=D?hUj}|g>hUQ+vhIpx!#4jVFn)#uEo?aCA=3yq(SZC!G$JhEkM4t~Vpoub`ercq z)X>&y={gJKj}!Pv3O;8{yNv(Pg~=>*kJ?%o8_Dr4D0q~M=T^)!xI6pZk-;K^bfNsr zDx2gSm53xiPHvdeDRpEzUbuVFr^T@1*NVQ*sFq5(ja!;v<{Bgq;{c+fmdO{5 zT=GXei`|vnNuJ6+e_&hq7T60e0>L6rxGFA?YC=zNJ~%2pQXToYd_c~T{u56F5#|Ut zKRzuM1KUI#+4@>+0BrG$FooSh%*2l9cY&BjiEsD|Trq9{%pV?bC*#|rfzY_X z4Ik^P>r3=E4{Qo{48MqO=57hirT^r9YA@!yu_TF zS#`7KW{uCjkb~!~$iM79>Wc>pN4@dsf)VyUUy-`NPZ`AyvrTo5P53P_lF-c6!j72d z(kfz?Rz+I{UV0FB$AXT~Zog5`sbF+|>pXMrx9sNGM9$c}ve0KO8Os&_(4P~tjD5`+ zw$1kc>_==>EC)x@`Un+-SLAcx_74>N@m4V{dL-UUT&c|<2AM`!uQ+V3yUwPLC)SJXGouL-^R0{& z^vH_Brc_|-F*d_J{J54bzKebg-h})<7JL+*8h<0|+G?VmaV_h%bg=Jn>aH>glU%~B3J(1qvDnzyTwrZw zZ(`@HZ_HB|;A4QJu?5u%oX?|)wU9RWsN56o#7=}m!3WUJI1sBWj?m8Ie;M-F?luvg z_|+1>Cx#N2B(6{JI1kuqYiD+eaT!$$U#Opy#|k*7Ms1Oep}&Ipfx&?{fh{3ZbbEY= za97?ADXK*iS#2D_Xu<%2+pAnw#%1b4*)|A7OV} z3rv$W>38%%!+yh3LyBPzy@vvpGJXcVr^9_!t|6A;2gOIkBC(SED(R7yiT`PAWmTLF zld7cDOWl~-JN38J9%*|EjW1HXc#o0;OD!(BxmaGIcS--)?ipGjZ}@*gNxr6@GoDYr zUZLBu9b!kVB~}zDn-YD>u-JIflnndpIo5%Wl8Kd4a|-=iqRu!n`Vk|5?P4<&Hq~S&Sw!1XXU&As3FTb(?Gr7N zO--o&SY^Gqxt?~X3Q)$4EOwera!QRpD@qal9pyxpLMaVoL#lOx9l^u zCv$X3if~D>MUg6zI??m-Nup0(gT12Kn*Lx%n18Z8n0m$>Y6;OB`vkXyH|TU?9bMk! zV#k^b%o_U+&X!}zhA?sMDi;wmgwK3AVX8dU{HRvGBNzr1Y-I zC!Lcmn+!5qR<_04g`WF5cs>?vD(L3k=dt;A`r8C!p^=eDv;}ul`EScr%WiX9<^ru@N7Xq(xme-wqTsAxO1Nrlu5eCmhtD*eVKZ#9BMI1h6%w~4 z+;E+BwsUN@S*`8Bm(aixGM6^rXU-S}ssMk1_@JYBMf3>8;oR5(OfI`ooKVQs^c0|| zyoSwFf2t%fpl8yZjeD6M=4IwIcC}F?2cs>N6}%Ab4CL9N+z7cA`j+a>jI;E!b+s3> zU$bsE|IVn!TE=&V2?hk5DO2dj;52DS+=0)it7?+;2X`zwDVzx`vv$F^p+(Vc+;Fgf z?b0$(9(*gQ(7LUI9|2~s4{Jtrq7J}a^gLV5Qpq|JIL<@NubE^M4@RlV_zbiPQW}hf zL$x#7aqY2MK^Y7grp5eFZg_k`tO=yUxrMXqv%q3Klyt}0Pl6$_lU%(Ri6u%&p zmX1n5yp^xYQxp@J%UI$fJ(~Go8D~H27~*(qOSCjKy(FihH`Sjot;poR0>9$Duvj?7 zf8@$>XMi|6lluY{P{CN1&M_iFxxI-d#GNfN#_meS_RYh{iw13dOH- z{lrDe8@&SFl$vU2Wc+GSz%TrgtV-;|E}*NSfrn%BuHOjN z{^DEL@3}vQXN}A~TF}NfB}B%risLmWK7@V;o3wvmf7%j~*;&LFVkDiF}O3GVot$i`rM-$nQSg1YVk5AN?5BqIf}>wL0wNnQt&uD|4|VngmgWPGrL zf4c9Ij}06Q^^N^0TvbfSzu^6Op{-MU$iU*d%VZ_(*B3pG0mTzv~s%G-*C} z0eUVe{$yWg-#-7r;OB4*X71hiUxmMflA>QMkW!QtYB4#YUnSSj z+rj5hg-XMAD+{@4A=$GeuYdNj%=wuGS%2on3wrnt2c6Nq95235D(OSfzwk4VGipM= z0xzhGx&@@_O_&GnAU)(W;%cFc&`Ve-G=uy~B3}H|lxhBSbU zzK=M7S3%>dR}93u1}TpxcR{v43(IMom*7tDk-;c z{p!k0_&tGhEQja!33RoT7abBf;i>38>>ldHA!!khJ>zGI4dEVtRw@Pb-FE6j?JY76 zN2y;8X{P^}r|f06Gjq(4LzG3l63%suln%`f)($m_l#I_67-fw96TJsK#l1*p{Wuuc ztLoWE60y?I!d%O~-`UV*at5rKrltg=&f|85&j-%>rv?5CCB;7R$K_Og5xNo^0L;Mv z_#6w=b}-@p4Q+~7BVSRE=(qHJ>LQVftT~3~qJ!@iD-V0<`r#4L4ty`AC-$q+V>Kl_Pa2Xu zC~0ZJOy^d+&DPAi(0a<&*Wq;@a+zEyj>6VH3_~BnE@(SpE&bP*&ZsGjU9cA#GsVj?|OMClit#D=bZ!HHK$YDR3bTpe9p52_XI8S!si9 zL-MuV>aXf|wUz!28HDBF%fM>b&-l~Sm-!FodOhd`1o&>$_p%_>hs5k{tu{7^nra#V z+xyv;f7yJ?qlvEdq zXZQ#=lZ(a|#XH1@$Ft%LpC-PSpK5V*7kSFK)BMmDafr?fPS#P=`i$9Vu!BP=8?Qyo zBRA41rgg9x(=013{mnm^lBULnWpJk4LDT~G&mv+o*`JR?Y<+Ec&h9hzCpRN5WxQ}Q zejLnpl_IU9d*WM!aq@b2f3`y?c=lJJKbu-v%eiW&G|0G7%us4~>4efrB~EATO!{Cg zZ>W#nklO>l)dVT#hsprGKI#Sb+eu`uj%bUO({fZUqTbL}A_uTiqJ1KPNN%i{P(rDWY{4&*yCIKirmN7UXcOInE@!xA+{rl2{h&dS zVw8ylc)zA{ROCvao3E$W?vwo1(2?+^NFU%el#bQ{Lc#D*f8c69jZ}%3gbn{IbvtaU zWPOg-SjiL5^Y`N$fhIbg>n}2@4Sh-+0AllP;8yp52KHsV6ylcK@P;TBnh@~%O9X^~ zIrK5~J@g>Bz~9_6FYkEPj2~ORjrx}GJg6pA0$r3|MO`3kk*moI zRBgjh`k8a4X2x9lUwGa)A??Bw1HkOkiuePV z-3j_pwXSklN)t`O7JezX#oCF_!rh@@gS{F-pMcy_})5@jN7R78!pxt}%W# zUV+YbZ}{66Lz-Q+PqQzxm9-8q*JFMddQi9U{^(e}06f^`m3hi;^|Dr=-BX9jl;Dl7 z3GVcs2MW@i{9inc0)IvG#Lm#=Ep7T0Xg@vdQ{a1B;IKQ=9jJ4f>liTSGhI6zeXY|O zjndFhN-v>9ym71+?E0oiqEZb^xIe%q-xQj6*L4L>B)EPZxsR`-`!jnjub@Y?+m>qS zWeSt~QB++?=PVyJ^6`Ttu(0`c9n|7p2T00 zDklzir90MJ5%WV+Q{b|1He4{QF))VtbS1hZY-C=84Q_$)w&_=PzIm|ao5gH(19_;6 z*~0|EkG=)&3{~U;?q#HWu&%Fyr>Xm)`-b;xK#Yj|X!S5QhW^Zax4N9o6AmUGPP&&| zGPQNusI;o7ACqPSsdJ*KG_h0_xYFTUzUrR+?o*zzzK_swo)X*>dK4ZQnH4z}861to zUh_?qPv}YdF}uJv&2iar(Ef+@I6Td}km(qW#I?rYscNOzWnN5yZEcAE$X65&3q`~n zv9P>W$$?bVGqC;mAZtEQn$EooGye4j-*aYUt;w`!S#p-NMNGdl%@@s?f z+H|(D2xDb1Q(wcX|K%--%Q#K!C4Pa0^VGd+R2e4^6l?JIcsa1!)P-7WU#S<&8>g9G zSzEb=CPkA2$zziCyRvP|SdMlBUA8;iVos~$AZxCuY1$rj6y%CO04ZY^Z1?M^CNPw~ zP^*L2V7fA1IjD3~pKEo{O~gLKYj%ijrz6G5+mBfPVoMl1k~2}WHc@^eeih8%V!H+8 z`^m8u;Ik`;J^;H18ygqPiH(SxIF>&rm}Ow>>1k*cbQt&*YARQRJ+T=f#DBpv*Zs5L zY(ahZznH{}Kx zd0Bb1WE4+vm!bus8-cd|3%+jt5y9J$;(T*uE82<5gfrk3mWQ9CM9s%#J*+&0Jitb= zywnA@Zv&xEfdSdAGqoFhv2DoWz?nV`*16icAMSYrWfvIaYI5tM(?c%*12>UhB6mSf zzucqwWnoh>D}F-0i4LOIvZd^AT*Z=(Cv{Ie?%Zq3Hm_i68P8HU(F@(L?UlO-YAicE zIA{UF!P($9cnycRZemyPY&O&O>*dkU*cGA#UC*@IyxBIu8A>>p#3s9vYA397NS6Di zIn;FQ6KpbFDA4WE6d}7>nb8XNP2a~@8YNM1iTj38$E&4gLdRP-3t_|sme2{ z4rD%^{9!H!S{`1pk#a>Fgmxqv(?^YEnTO1u%r?_PU`=d-_GJ@k1HTIr4W5V;o)=yO zwC)iRTNDN7+F$%IX@WWsd4$yg_S z+kj8@RCIP!i`wF6xfnD_^R)_CX>vAQ3>@j{%rJ$8Xup+4c=(CW~V>>|6wo!ph^ zgiureC(jIbH8*T$d_RIMV_U?rdL44HDP(EonBtn7Ffc)L_ObtG{$v~gImY66C;U8k z3wq%!z8EWyMzt==2Qi<&%{ArhoCJRIV0;F6-abWJN3$chBORidu|E6|>9INjeMzjK zhZ|RzXeQTG*mMs#$CKa`u@`TF+wmZ5Z)QWAev6){?v)k_*SKzw;wu!Z1dIc3Y)gC> z5aLD(F5xRzAFM!Spu1i+v>?A@^Xa&e{^^BKOp_zBnQxs z4ZDr2j4RN6pa{d z;8wZBRABEhv%t`}ihP6qrH&Cd0)_uw=xit>@+P)Wz||sHJ$gB_(K6Up)c(Nst92>c z&Dfl}3%koFXbEgR2DBP%0L;d3t2^Z3u)|&zH^*`!H6tSM83%`70W)|TwD*TcrFc^@ zSLuq3!h29Y!x$jiyfZYRf>=#`m%K;V$nA;0jkn`bX|viGZAR1pH^)P23|R)qAaB$& zayiK<^88k=2=EF2j)BtSptnWdcVoK3e@wOj+j`b5%>QTj|}g)~<@Ee?_A!UX>t`P878 zdb2s~1GWjfiaBViZp?(&;Z^h~r0e>F4eO}(8lK0m)MM%;rIDO3W{8M5NgM@vw_I%< zHk8^1)59xlcebA?jqZitgWic*>M!i)SMkpwS9V=EFI0uu<03v6ya6V;3_N#3`UNC} z3_*U?ud8E~*>GyxE8Uak$cGeE>!CMCx*`+w0L&OyODUqtx902cW-u5%miuc1;g-{n zUT%C~DljR=iH393V`3I|Qx5>+Y`V~ZU(6kX4c)HjE_h1+78@RW4!hk#{ABTxG9IZ) zR5$#|inhO9(~`!f3`$K){VTam;-Aj(_KCI)HVU>p?d(?jck3_a+Qw|+GqOZYmCuVk zMO+#NpGix=#vv)cD6_yoYEp)%Lv<0&Bv8X>=9Z<9-RQ75g7!;xziqxXXuiS*n2}61 zW+s!terEeZf_pDpj45L@(;DPyr$XlUU%863R{U3-CXIr;=ND-IX2Vb6me^kSz-7l@ z$K%{_FLO;eg_wxKn38&5}% z!mDGC3|#}c8a%(wz^CAFAeIeA+F@%6gq~+S$J8?4H4im!g4_B?Q$K?MzPv5?a{Lf< z9v%<~wVNIVESb}6Pm96U*&enNj+gey_Sd$b)*HZnn8{9KuE7pDXdGlbVYor}rREb& zvA^|aU{YX#>*R$VDym<=E>bwt&-&hRz!h~(aP@M&vj1kQV4Y>@Y*8#EFb&>Vy0gcP zb?7IA3md4fQ%!0jxUhD?J7otrv`=u)xrzL1VU#RrFR`6eE64~Gvz@aScl5Jwur@Q7 zV*WLjHMWBL+DB%(<%j)w!pan5`swsBY0Z**I%}KXQ3c37c{Y#5CWN`*&Y&Tb2jrF8 zkzizXBrlv1ZW1~W{3m!H=)IZTH+d0Sm%h#B+iN6RQc_a~q>xDqoc~yRvsaC8p}&*? zKj*nX1+NOb`KNMwzHIbUFw?)xzX9m#Um|JobpDmVN;jlmHyte`P=IPxAlpKMrb< zn!G4KKv*&z{9Ff2Et##b$@*-Z1iMccl}bJ$+LFbo*U&S+3!Vs$YD*r&e$k7_9G4ok zhROum`Mdjj2S$h5MbB_WC03QRtI!?|sNI#^=6HaCEC= zTjK(@n6-}mk>jGXxT~&_4y=WV^A=^F;BSxRCmTCj@wl4YzpG$6rmQ@DEAZ@hrs-_Uy7$h5?2q#?!dmr-SA!8r< z528D|TJ0=;i0una^>6VW^0fAh_AuZh92LOBm!loIIl^-wPt=mvC^Y!qx+4>y|Nj8b zCER3~vV+rXrm+V+Wn0o_vI$mBKOx`Zyg&6>RcZGMW`s&5p#jv zayjmd_6X5|p}q>;*b$U$xcx54{J_6fkyAn|tQx56a)}&hR_JiSfAbyD}LjEVEH3!f4}^ z7jhG2n7U8fr4K?9(EI3c>;<^&Qt@~AQF4i46IhU6T83E8vFWD5v=?uS^jB^R25wYL ziXM$|@#;J)Yy~FLNQsBL+h1x;b+b}QF)IcoLz$)2Qo+lmUq%t4HU+I@LoJ{J3K?}0qg zOJAl|SIQ`3z|2-1`%HACcLEt_F`LO8F%G5nVcWF1(!bm*U`Pf+Y`9%yRO~MI6}t5g z%*d9@>!ljfNol!UOF06*zz6C;?Vd*H?R5;Id3h9V^b`j>H_XtFi9fLLnxtQ;Q&F;kWV@+m4>l7r}<9u{<31iPKbzz7yst zLx{oPbDd@Q+i((i1&>W*%~2bjkdy3AE0d8^_-2uu!Y9%zBn`JMGv;DVl&tvq&@BIW z-y;8vkUzFqx`s&9Wp<2xf$L*}BQZZ=Uqa`EQVBH@{z|x-xHI`~YNzxE>0Q%%q&-R* zoRs0}2Q!5)hJ_?#BK70ybs6j&yf=0)`UUPN;;S_H+5gC zGj&t)FNyt~k8OJ`x$IHqsVQuPi8Ht+4+C{$AmJcifd^(IwTh;VOHFN<-KK7avScp0 zO^ZkY?%&A0z!UE=&lvAy|AHyg%dE~F)TrP~}!7dQPPXGhgrnR z7+~$dETn8GEANf<3M9Gb=ibh~o?SY3O@3X^86N|$zi{jW9~2wQjo|lIO&3Q`R9rh#f%4ns5GS*=`M3 zaobyKTj0YNGH+&bjShpAstP{o5SD@`<2Kl)?}3xD8NZ6Y)gP$eWLD}Z1i0E$$??1O5bHDcqXh!m%g8CsrQVWjNu?nz_5>I$<+(BZbm5k` zOm3pi(tZbCx`g#41N39lX>(QE0Qh?bCHYglX_E>a%@|vFZDBQId7-@2Vo9SNUm(xD z40$E_;wh0G!8O2?J`oxZQz@gQD1-GJ!9|6rW~ zF&#CPW*V}D<%ad0ZKr*=V}jG?SZ#a3_A&IspQ#u5QQ?!`cKMTXu4S3CE@k<11{93) z?G2&v&Ek7C8F+VbVi_dbyuiD=Zy9Xg>MWXYB_SiBpYxGzo7rb9Ngcx$>ywq)Vm_A} zs~_DKeiJMbIPUw~yUSb1uLeg)tMLW$8nguch#6t6<|yj&xqfq{IrdqWo7PaJ@$Seg zb*NlHoCSBlQQ%Xk10;i^QkGm3TADu)1iapZsJe7Tx+?Vt(HHBlZVb@zXshdwn>HQXBvRxqL!-$-kuxcHwK6^l!Cq#4q0@@HkM_P35AJCMe}Gg?B8 z0S?}ubWJ*oT!|ln+kQW}mv{jf$I0mx5~eP%O;vmb>Yt@dWy;X_}MqqDg$BKU!k z(Rg?A1<+|YsuXz#SQWnlA>$LgpJ_-E-(`kc7J>KfbzBkzS6qwj z>+I&3X}e_}Xj(+o!H$F0ZA9!_aI^PlzB{|n&mCXQpFk>*4uZT>d z6u1J5(!CA0j8hql`Hs1;c{(%Hs8Pr8>slvaX1JTTNgkDT;d}6F%WwC8ICGx3SB1{= zQ?-i3Gs9%oX59i**p_y}zQGo^I<3#mb=bCGUpzwWK^yB!)hwA4UqCmlcq|%mhqFVK zLp4GOSlLI!YV+@f26ol?EU{3^?9@%Ey;FRN zeVn%~bBr>+K|3N^xzWI}S{=X1eTM15QE{N;k%~ai^R1Kt_Jgm=44?w0X?a>TfReT866>7zJz84e)s7U`0rgVqm+QMQ@=- z5)aWT`diotv=V0mZ@YsyTAmMCjALYy@jOGCE1P$+jhRH_bt;VGnA1$X&m!x#Dxw6Mkl4ImS*gdf0zL=T{x4l!mi?=7$FJ6%5$YbH-mz6mXuPR`ZV z#!NP~4I8HQkos{GA}<2(y))c{@(<^}%W08&J?~vXS1%cO5&9Nw&HpL=rcMFc?MmQU z)HU`om1pei4fwASoK>GQ#~2bw@b4%FhrFKnFml?vIH%h8NuSof-}&zE_m4ll{$4DX z@coR~#faJtodc)n%4B&$K`-hDfgrU8F~Gj=61c6;;9oGog{wC$7i;;6I6nz?O9k z&!@YxJ8TPGpOQwTs%cx&8>N3wbtZpsKD6vHt|gA^z2tX%EcPW*Ho`*V4pO$U!-s@b?TrC7MJ$B-807hE&K+xtzjQtO&cYAjJ)u7av#WTo;@<_-z-18C$s}Tn^1{jK)hQ*isU4qZghe^avex?AA`9y_+*q%5+{7* zHpX(pQv%&Q!}4BbugHFso8-9}oWu$01@aj?!yzRUPFkL*x%N1!Sc@{1=$E(?jexVd zy5f^+i?#Un@dHsVTmdpKdHw@%YHAXF4-}I*@=k3%Y9(%y8>r8aNvQ`7BMd91PXiLe zI$PNjt1V+IB_C09Rq}Hn8GGlKij_BpV|xC z7;^{X0CGB7NIMGC=T|`J%LhY(UF;3Eq-Qurzc$Wb;}+T0$I-(1+4<6Gh1^zC`*~YA z+jgsJnPO>d*KQs*Z7sHo z_Y4pBFLlRqld=nECjPAT^K#~loF)b7em}fZmTTLv_V8ru2(F;Z?4RbzmM7L1_G+$q ziB*%$DOxg-TrzQ`bGYp?+t)A_FQe@go<$1zz4=qK>;0_uBmZY4XOqVn{+s_(y@Msv zznOeYE|^ULX$q}Cx$orXL?Q)lrH#QAbDB@k|N*Y{ly;25{*Qf zp^IQ^6DAKEe!|(-<@`O7OQupcq+Cn-?iyepX1)h=s#)q&{#-=!Pjj!x&B(r*RVe3t zUaF^j;C!SH|5*;{)$j%+3;AY^^njsr3i*~O2g%6eK+F9N_X62?keBFfyaFW~7BUsgM$2R{S3NdYW)B#LQ!4fto^9i#vO+w5Kk5#@ z4qXY22zQAXqJyKofQ!>VG9oe@jFi3jane?;0sb2#qdcZPrp3k_`Yu@qY)lWG*eH35H_Y&*Ltol*=f=tK1Q%6m1Fm7*Vwl?54yIwZaRlK{cjfKOd6O+=Kh3F-rx=nlZ{Yw`N;cS&LdLSa4Nsj33NVC90wCyiLbK z-zdzdOX4x0BxYk*u&o%5?Lc;F)0FDcRo)ff8u=%5H+VNVHuN8)`!{eo!d+=7Shdo% z(m=vlt%s5J*gE_@QHCl{FQzNgr-AdDPc4UpO%6Sbo#+NJx~fXo#IvGH-lx7q z8W9iZ6y}P#4@^1gfeE^e@jEdMnXDvrwj(>9kZIbWZGlwY`8$JC%mXhcPJ&rC0x~*FMJ({ zVcGD1z6qWS7mfM2&p-yXfTLC*kJBB%()%~>OXz)Y zV(?IKIBX5%NbmRup{TkA{YY9&qbvs&KMRaz*JlkRsj# zb>=izoKxZiw}a~|^pz!TGxmmDWY}VA%HA@2EQ764%OUeV1~dLkol* z`s$hCdF+wA=D@K~-Dqi;1)YXn={w=7^hQA-_dFe63isRMhSG*obW>oCNx;p$q(#)K z>H_78d{eq9CW=n+lQ>;|r~ZRn#V=4JjZ1*VQ`MXe`=V~fpJX2D)ILbvg?(HOa4jqG zpCJWzfiEu92CDp9WfYt*f0Dh8?b*hb^42ESo0dYB?`GQKw9GfV*r&!F)G(~2`hfo{ z(m8;8E$-Zc?Viv6rjddCEk#9F0@*H|>B2C~LsQK3of&IxX{~E#oV8r7T!mq7+Sgpd zc#N2Yd{-(ADbC+ zhqr*~`HKF99zyLQ`;xcG{?uNoGG&3uOeJh2S`lpwl=UINQg23u4L6u+mJPO2_AAyC z>>a}-fZEZ5b{$X=ci(v?u9%3rU5J z6iP|YOs?Yk&(g!#m4GCTTmyEnHz5x?FY+~3Sa2!*kfDT^ZVS20PL9qAZ<30n&P@NA zQM{;7tXPSTB`OxbTjW@wb*a0PPPi`HRm)}ek?DZp8Mz3iVQ&;0ygn-d(WH~IM)RVx zsI$ypw$ZLri93>}Bz1wOa@5wr%$okBL*!4QCy@yB!Xx+vc*o>JbL$E|1DJzZXfyOT zXmr)VvM~i8N$#am;N7YcU9eZ$Cop1+jxG$f4;1yc^$UTjk?Y($c{j3|*h%k(T;N~K zST@F10t-ZI%Q0(f`zS{m7(%WvHRuI6kCfE+ssok&a&sV|;(Vca_2}TR61)JdLnQWu zucZt}i_uruq4w#np$WxZ)$EPTpAGwoM6?HFr%K2lfYS01d>OTb-Q1FR&-fg!qF7eF zjMk^tnf|fNcI-*`ki;kZl3ye}PcS=ITB|a@QW3s}G^i5!IQ{X4PsV`Rh z%1y+1{C3X6jS@~tMxZLC!?yko+8lFX*O9^6TiEdL<{v}S@PBD{mAk`F6cF*CctIMY z@Y)!x0W}}8;t}?=SvG$&?=zn=3+AuphwNU{F!)@at+wNZkm6BuPh>62T$1I=-Bs|; z_eZ!3w@S)Z?Z`_=^4O5_@GtJctYj5~%FMP=3C`qR$$SE5PcUzzLudf}h+E?mBbS5u zuy4QUJLC&OJ8ep+aBQi-sKd~Mq}v!Z8|(`qwIJEn0G;7DJ&cH;r+^W=5qx;PuuVXP zAE=d3z5^p}HYY;g`!AuhyjdHMZK0-_Zkgx6bo!Db&HmZE&lo3KAS~?6A95|ZOzsBX zSXc_Xal2SooGyM4%Sj!;?Q$B}GJh%^wG1Qc>!oVqK;bL@gzqHKVo_1!m&UD;x`8~885)E;y;Fi)V&|nIsEszVORYz2 zs-*-ooVtl_R+FV=z&`sE_;SFDfyr-5G$Gso+HIQdO~}+ ze0*zsCHIE^UA!-!g){OPIPExOvlE9o4Ypxs#)g@hnVFfH zpI|2>C)8@h;>LOOStQ|2Bp#8}0Su{)_A7SZeX;RuOKwEmtMf-doSrvap}a z>3tmdH}ZhX7Aql@iMCV=ZB<=m-2osp57Cx~-W+QvH04@m*t*&K*|*!Y*59UGhO;`W zwjmWETElk+CMELjh%T7!`_HoplC8Da7UEr`D>+7+1b3BRK(u>jI6{{q(vdc@UFsp7 zmJg^KA^rIUJCD{@?~CR6scco|9#fsOiHG4_eqFo9G{sgY?z59|R*TzU9cSpE`A3!c z*Wo$vS^1WKH2-ShC@&o{My=v|H69XBGr_rx=;F2Ss58(RtqoKw4q6GbO-HQt92esB z&iiqexaan_*5&4PM#NA}SDyk~iu67j3vuAXYUHmHY#Z6gHIw}~uB&4jX}M;h%!A=M z&O`2r-?>|C3Of?)82{^yK3CSF&+*&jTq;HTuWqp6jB%Igthtl5v%PU#hSL-8jql{t zL683lO<}WRe0Yere?iaOl{wdQ=M=2;>3o=6JuN%+uVhnvJKH9sMthvNhHR4uiRRccVX%-QoZxRjI_K&C_OYVG&n3oB(@2E6q*S8)MnTjVyPw{CfiMPBlT+x zYmD_x%S?4lHI3_G)@q|l6B=}pQd|BaEs;zk)(;; z<|;?qvsrKxY8>q(e30*8qo|<10ephu;{J7%wg0k=G4%rqKd?5nzv+C+r=h^|#N)Rh zukZji@d;=KwuSsi$MlU&4b3L=S>t=%V$A^5Ble6YLRX}i$LlE`xEZ<6XUktOlw!1Z z;b*$f(AKaLSOs1nc^3fne;l2sduK$gtsO1mXC^L8qLXssXTqmXA<5OF;_|HjXsxvh{nTtQ<=w^+FdwWCOU%GQJEnlGT z0o1rXFr8{dtOgcc1(ZdD_;t+{?RG;G^9Ac!`zFUe`v*&op$U!PQ{^H2XeJkCY)q&E zQ;F*zYbd``dtyHcx8^T88xk1%v@>)c;0#~Xtg|+<-;V2&a4@N8%A%B4$tg)20>b zSmdjJsppMLaXs*K@P7*$VA?a5D;28&to8YD>OV?n>be;#S`7B};FaBy_&g~;=|^II ze51J1wp`N}eP8Wj>J9l3XelGr`O-e#$qWh*9uB(YReRVucY?IP7 zR4PPzO= z?mvS|qQ|AmkRaX%E|(6vqgo?mJ9DVpR6V+_cChZNuA`2H97t<&G44b6z~mSM`q(Y3 zA2EsSN}jeJ6_&T&Ju)!DhJao@; zzwyNUdm~+iSL$F*dBY6LN83GH4ND2b3+f&oP$x*&ffzG|YX}_b&Cz-6?Z~Up>|jE$ zOYleVQ)pzQBOAwEDad23LeHurzLP1sm=33^i z=bhqj9a_rR_$pEkGM@ZGpM!6^j)peI@}}3O@#bQdL%`!mwuDSQj38(Lc>0=zG0(*0)bGUeWYIN{F?%Ta1DE zlU>MV2q(nnQVDq=kXLSSo!L8)AUGFFMK;6ScBn7|Ocs-r2kLo*M)Q&7a0gnehLtqM zB+KHTa4&oXW;VSTiRHxV!;ZM2v<5u$JGmt+#dL{`h}2}Zu~oVAd{`(dj+Cy+kCX*! zN#q-{6`hIQ#1*0|nLsQ@J1DN$Vr~@k7ua9(!x?Nqn5?|OE^FF=G5&zrX?b8m4U_3i zA{X7Eo|P+0XT<-c1L|k|DgDA&!!|vxdHjO-cW@f?>h)DFIDRU(?gPa3~dN)vuXGfF5mweA$@AA9nea)Lu81~)?JA^;f8^j6i zX|P$AvW~Q#wtB6ywXE%p?Vi1p!{9L4?_2AGEwig(H|(`5YUgWL>F(+~0KNHd-EK-p zEJt?BWyD6XYpxB+@%hRh7z$bD!}_U)B*PnBJ-QVks5_;3v1Y;{FhM!^x_nJRjFpo| zsQu7$SS8$tmB(763&76xRap4wuf4>gy#jue-t!|(AdxLkUH_j?{WlCG+Is1vo9sma7Y z=p&>&wvN1^n`6yR7*OO}akSLilBvb@X`SL3bA&F6XDMOvlrWJi&SH_$p;mz=zC9kr zy~b19S1UM-3Gh|rzUVpfh<1$OnX#Iwx9K(*qsIX`?T+n&eWs&HTyEU!xR;J$_6l&n zZfd?^7^YoJ_D9>u3x)d8P(%~y7ir7XWZiJ*o6gRUyo3HIoCr$sD-kJuO5{-?)ozp_|9=ol~ zirtH*F=F^(7MA4 z_1$y^dOU$4ZNzQS^zaD3&fDH&^2Yfq0BuDh6om~_Ch(BLbah&cM3G0z45d zjH>>+ZiLoH;hF(>X(UxHF3yg<2R2H7pm0_~8SF1&Hl+FQBPnuMVRjT{movA(?!<8~ z;YRO4w%|j^*3i!0r+H1j$2HK{Z7y-KIzT8MDD;FTtHLtu?WmK-A*^q7h+0}q z-fwj;_sTkVL zt`x6hm32!kn;fs=dOK)quHhaHT`{ziT2k&Lc8(2>d16IGKREA(iQA>+N+~oO&mhl1 zKfIELA`yHz@)aCSbz;|qT`@)KhrGd8XHJ8pj5AjeeOV)G!FiMB^t z$KEnCf~S4&yy^ZUaB_v4SS39RhNRD?W58H`GH;3 z%+z3$ z3v_u(@SlLr#Q|G!z5k%^o6qZ)f-9Npf=lJeknW7>ptX|YFXzDcf$`;?svDAbnUSIviV#S0_3V%YhK`le|IV#0_MQ#Bw_$R8aA~2aa;NaM$Pp(TH}@cyzl= zcB{j7&pOjG#k5WDqAY}hG*d6YH(3|Or1VfuK&QV5(OffxKBLnZtD0G$y8mS}K;~tf z?T3xCEw?SVrde8=PUuDIAihi;D=mzz0bT$Z>nUpF1xg(iR~sw4pu2uoBB7N+KrVim zG)6upf0o*aTLcHNZzgh8gl3Wxu>*5>xxTh(gL$^Ov8jbY2XD)Rniv_US)kdg>7a>_ z8_63)I<7~Z>T9`$Y>-z;YsFfzEIywb$_df2(GJlWT*KH5V5w0-mjj;UbnAb z;AXHOv?$y;JU=ujI24TYC{VEuvB!l|a%*%wv6L#*4$}Y9&(ycmoupI2DeEKq!k+ae zJwc~{Q{j=Jm?2)@4-#&}@V9DX=?-rN`oU%I>B7vsNG_ANyl|a2F8q{#p_bRw)6al+ z!bFpzmuQvjiYI{C0$0k(r=_{lGMH^Nf^OzN;(BqiI9+@$&XV@YmDS70X7J;nXjG+D z6imzqP!#{0_yw)znsg>rT+{PypIURaU9r+*)=PGmxpmeu-8U zG?JhkM)%>5iB@Dk*d?2Y30Pw!2%G#X;xwtg@(XD~w4yH?$ z7MJCd1-EXs>Y?ZAw*Ispv*uY=o6j3(!#lGYRh+zyIgv5);n-a6d*ox_gJ*5w^8Cwr zYTnO+pr>s3h!BU)r*;_DS*F_?#hIPOofCkEYO@`)ZVALrKo68dBGNuCtALOCyQqPIAXg%dG zNRG#W0q+Rx;?4-F_(_=v`{0ZCC43*W=SyIvkp1$N*etFmb3HUS(8t%;6Lj5lmGp#t z149CHgI^&TA!A+^*hK5#llHG>0yUIA37w1_LuJz!(-PA|!x-&v;;h;>)&bZ;HT}Om zf4J*`uY8EBsk^6V5%8m!K<{t|wxuvt=|vRP5$3hF%?=sPa7QeY4J)ZsY_Zgilf#b# zQ+)q;O1ZNNKNOe?KIacD*j`x1UE5nZfJL-ipV&G;Om|ctA|A9T*yFpa>tzeL<X* zZDY95$G{^08{aeEUH^PwirQdSUJLdwi`jUlM|gj*QlN?7>7VOY{DT8u1Dk`ZL(9VD zBYh&{BIhDpgk}mN-y=PlS1ix@1b>VKTgDl%6pokr$a(TqrK);XJ)(96&%#ZGR!%`f z@df8&=7nzsX9l+WTlqiw{|*Mjhoc&CiR#BY(lrc+O!rKi3@U9W+oP9Y^3#*c1Iw)k zNDV_mEkg;RukZ<}5Ih*b19^TLc>PP*y8P_eU1^HiAA3o3)|8;GgI9>ByKBp6yU`ht zY(I^bR<;A}a5Hl!bQ=0Jr@@8rAKY_(=4i5?WyzUCGo{RfSv#}U{CVE};TL=#MTMJM zOKm^h2kmR<@OH__he4{1_tBHxqi3N(XTLWY>2*pO@J zZ>%1^0lNd8fv#ZCd&Z1_Y0UVrHImNG;NztNWiZV5+afR3WR+AT>AiGY{zKh{Tt;_6 zZ=??X3iT?*#3#|5(7)c?f=fB;e%<(q{S-1c{4D*eWX`REGrs0bMyw^en2H&`TJG3z z`!w5kYg_A|mb#`4{YRjTrBg4-H~1yw8tmXkv**G)gF6C3U~H&iglGPjN~jsj7stSR z?gGrLH*5Qw;(-#}G3i%wEIB)AMZzgZAG2LM9~&+W=gvo(hl&P+fo4GzvUqzVR`zAo z0=M$NlYH!tni0BdG8+BFx z!Tb$wL+fpAErX4PkbgLV&|*bsE1e5DLVU0$m{Z~+eb{FFVDY2!9J5jh`WB}7mM*rI z4!g5Me7l70iB*%orL;)Hi%d`Jo$@rHxPvwA(l#IlsV~JWp#$9Qt^l{-0PrM6s2sRD zP5@1Ki`H!1V#VV}rkpKWz4$$FDo8**o^AO?pFlT>6}gwp-%Lw36wQa0+Fj|lyiDn! zo<+`J&B^WbF++LliMaiV4^x~)P8MyEzNP50v~9`#6S~CRu`RO{HR<)Msp-TZtPPrq z=AmP7jyOa1Bo~5Ta2VDb*(y85T%ks65%6j1sLRpM_$?BJM#+AvJ>-U001Iu7wz1x0 zEMbjvSe!_FTKpoXG47ykoEbCt>2aEg;KS{NzE=+_MHNXNA(xe|#kvXzuLt5^9+wS` z(0K5>3YvlXj+T#((Fuu=Bq*ACK6ymKOM9W|xNbbvku(q$@h#XD{_IdbjSXR)&tw4Y074#QWi!iEWy%^fO&m@I?`(zNRza&2ZBdAmLu0SWB*? z)@rxuj~o9-e!gN>OrMMz!y@e>&15_W+9z?UU)_P`<4-g?T~nhUGHq|+wBOZKO@D^! z3fb?z=zeS%*+Bc;INLVUNkH~LHPPiwr_WGkIZ3zZ7F~ zBw>d0kiC;-ngOQ`_zyXczsVGaP6spK^jn&#AJy_JAz`yy6vg4vQD{-fcyAgp`m8UV z|0PvQ%}ixe_9vyrpR-*yexa`rd(bCpJN35O6}gY_NC0^XhYGNh*u0uQk!eO2GmY_RFh ziH03|Njs48!dc?Dc4sXIPTsMAMOq82oPc@zO7tI~* zv*M1&4YXe~ouH>;^QA-45usncMc&umUp~d38JHbB6HE;P^WLxV&+$JC+z8L$jPf+B zAGKD$!BoaF3Z^9!3^nLo_$f65oPDxTL)gN1;*atTggHRn8p>DZO0X5eXZ6iOb!K`Ju^r*155gj@P4p|!I8)d#lf>3yy-Wi0A>1gmC(zqp*1s`uA>5vODrqn` zS%V(04QXd_3ZFbAvN5ReP;@DcH1!}>E5=rD9;tLRZ+`z56sGdQ)fJJgV+{l_6hZ$dkkNgI; z5*L-BF)V5gXMx*0)5Cb4cuV*n1{%N_{#axNvzB=rSs7j(S{q6Ll2<@DEZ+ia`w4JG z-oTycSh<1F6#P)fgDrx5@KJaLdzoJfW`rwndKu17jg<6f7oN{4{MqWq&~JUdvEL75 z9{sgDXLf!Qm)o-%Zlc|oV_X?=pz;P;0DOiNvN%v3pJ=L)6sA|uScp9y>fxK=YMU?Q zJj=G_6yy?xs;5VA5Hpt>C3K0cho0Y)*g>(q{9YyT)0!>1VW!bmkL{LCv0OJQbVt0i zyqp^nZtoxBS>#$+SiP`&;jY40g@|jL>zX^sdmJ(+ufs*7Q-#uSHz`M^)0pnO&a9hA zch$Uw)9h_%+KuM7MW+F;+QM#O|BZg(pNKi&RcnD>Qj;JtaX$JIp3ZD&2Zr;n6g+XY z@(O+=T#L2vm17y=K6xdaVf$l4@VP`!@*ugJyg=R|+mRKC9$;E{EcFylvYyaC{+U1` z{Q}PVQ=X$RahwTkkC8CBNrSV+gnMf1df!De@3u<q}YMcemsBHQ< zQ5Ers)4*OCil7l)WJ{z7^ANmgH@IfPdEpumbB8liL;w2zaoO@e<&4hJ=WQx%>}wFN z!?lo#qK(M8bX2$5P}Nw%m;prAJ$gu4fD7;i{YZ}<8O0Q>t^eI%RaeB)NY-N+oJoJ2tk;T^nXU7;eOZy^)2fb)pQ zkr!}-Z>8I$pRO;WO9QgYKD-!K5vcS(G`(~$jW;bhwm%)09W5N^Z9C1l{v3G}87f`i zOM^q~exQ9|WiTsT$W9ZA%Oj8`c!DMd&4ee$>E^qZA6B!ytmCMonWL8dj`fYXp^?+3 zXi~9p$|h(RUxJ%MDcJbmCG+Ud&|`a`C8>dUe|0?AsC&ZSZW2RAI|v4O5>gj@BcC)F z_~)PM_n4+wKiRj&{pVa1e>c8Id}U`H$5Lwz(?#7{DhhrK3^^)O^-D`v3`n6O+=F0B$rCs8Nb0^#bkr4^$3`ZE z`Ua~9yTi@d9$vr%I7IpjX$CZ>$_AZfzI~q4pU^*PL{i1X((!j4wQR?LBvMNE6uiML zh<@03cxxfb1G$;9R$YdQ_&7~9`ZL|1u0;Jql0-$UI&vQP{oB=CbTM%UJihO=8}*}& zj490`!>s9u^}KbTHOWdq4y?AZ1vpo|hSSCk#?giw;HhRIZ(Wm$hmL=yrX+P4@@e&< z^LGGp-k*Sd8`7Mlp3;Bo+8Cahwp#P-&EqOLi^czpKN-)*9k)46CA5o)zQ_q_KiK8w zL|aFb;m&$htO-n-(nv9Ikyk?7VL5mg&2sHcLwEC3Yi)Zs$5_Wg`+qQLtY_5e-_Qdz z0Xzd8k30u1Wh$}?&H`!Za)eV>NfU%jwp{qDf1Q{2^zfAkc8k=Fe&;8Mamp5C4fYyZ zQ&~i1pse&JOOp`-g@11*Q^~Kmie6An@}}5hAcHLAIzwBRkqb~C+yUAeF8rL|+A7vPfdYCG?=`l6y+IKy~aXED=h^28l!D zE$T<)CL%)z-mOdm-sU~HFO>s+K?CqRJc94Zoj}cMs7LhOfrg6%+iNkI3A@SqWHT}d zvp6f!3O8U&kZh%*JW$*xko@LoE4Cf%q5YB7%melww>;*OFT;*yl{UxF*L=?61Fjcm zc9`!P6Ai<4S7}~jA-_WR=$AZ4EGx9+4o25;hlDziu-pmr)O%zrpp?$l*3f0?Zt0Ci z$ut1WF%~em&4o|!8@t1nV;*K)rYl1o01rX3k|ACY>hfCtD_=3@72Wb-^#o!;o1oLt zf;v!L9GRF#m zPAsfem%GK@bLZK$kp`i}z#896?_+O0U%Y=@U|7f(xeNr#gvn@Cncz9Y*zCm6{^MyEWB-@yo23w~p;clTJ!TVsAp9w8^C;KnIThb$! zv8BW@QlsezZ{h1`7i6hgS3RxzkxSSrqPFG|^%nTrGqjboL+MAFIz&ZOmVd@{{7Z0u zG-SH7&ER|pa}w#CWR+9p-9ToW9;**c>*3MmY*V%$`xS1=F75)K%P-T0AA?T#NLc9J&D zFY*JN(e%i3X{3-ARl{Y2dA_CIIPVB=9bYwnz~3!!Jm3hf43-Lw3*Tpca7OW}d`LB* z^{@tb9Q0Ink=0>yL{eR-?a)@9Pv_BJ;a>JxGY$wnC!~&i6J~gDm$!s#K|YhaIk!gM z^nA4Nvn$;j_Jf6-J0exWlBgy6edZGOV{s8@VtifaI!7N{$lS(QMRySTSx43Lzy