-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathro_kf_mean.py
291 lines (231 loc) · 11.8 KB
/
ro_kf_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
# encoding = utf-8
'''
ro_kf_mean.py
author:alvin
create dayno: 20210716
Function: Outlier Rejection + Kalman Filter + Phone Mean.
功能: 异常值剔除 + 卡尔曼滤波 + 平均路径。
History:
version contributor comment
v1.0 alvin 第一版
Reference:
1。 Kalman filter - hyperparameter search with BO(Trinh Quoc Anh): https://www.kaggle.com/tqa236/kalman-filter-hyperparameter-search-with-bo
'''
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib_venn import venn2, venn2_circles
import seaborn as sns
from tqdm.notebook import tqdm
import pathlib
import plotly
import plotly.express as px
from shapely.geometry import Point
from scipy import spatial
import geopandas as gpd
from math import sin, cos, atan2, sqrt
import pyproj
import simdkalman
import warnings
warnings.filterwarnings("ignore")
def calc_haversine(lat1, lon1, lat2, lon2):
"""Calculates the great circle distance between two points
on the earth. Inputs are array-like and specified in decimal degrees.
计算地球上两点之间的距离。
"""
RADIUS = 6_367_000
lat1, lon1, lat2, lon2 = map(np.radians, [lat1, lon1, lat2, lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = np.sin(dlat/2)**2 + \
np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
dist = 2 * RADIUS * np.arcsin(a**0.5)
return dist
def visualize_trafic(df, center, zoom=14):
fig = px.scatter_mapbox(df,
# Here, plotly gets, (x,y) coordinates
lat="latDeg",
lon="lngDeg",
#Here, plotly detects color of series
color="phoneName",
labels="phoneName",
zoom=zoom,
center=center,
height=600,
width=800)
fig.update_layout(mapbox_style='stamen-terrain')
fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.update_layout(title_text="GPS trafic")
fig.show()
def visualize_collection(df, collection):
target_df = df[df['collectionName']==collection].copy()
lat_center = target_df['latDeg'].mean()
lng_center = target_df['lngDeg'].mean()
center = {"lat":lat_center, "lon":lng_center}
visualize_trafic(target_df, center)
def add_distance_diff(df):
'''Add the 1st differences of distance, duration and velocity. 增加前后 一阶差分 的 距离、时间和速度。'''
df['latDeg_prev'] = df['latDeg'].shift(1)
df['latDeg_next'] = df['latDeg'].shift(-1)
df['lngDeg_prev'] = df['lngDeg'].shift(1)
df['lngDeg_next'] = df['lngDeg'].shift(-1)
df['phone_prev'] = df['phone'].shift(1)
df['phone_next'] = df['phone'].shift(-1)
df['time_prev'] = df['millisSinceGpsEpoch'].shift(1)
df['time_next'] = df['millisSinceGpsEpoch'].shift(-1)
# distance
df['dist_prev'] = calc_haversine(df['latDeg'], df['lngDeg'], df['latDeg_prev'], df['lngDeg_prev'])
df['dist_next'] = calc_haversine(df['latDeg'], df['lngDeg'], df['latDeg_next'], df['lngDeg_next'])
# duration
df['du_prev'] = (df['millisSinceGpsEpoch'] - df['time_prev']) / 1000
df['du_next'] = (df['time_next'] - df['millisSinceGpsEpoch']) / 1000
# velocity
df['vel_prev'] = df['dist_prev'] / df['du_prev']
df['vel_next'] = df['dist_next'] / df['du_next']
df.loc[df['phone']!=df['phone_prev'], ['latDeg_prev', 'lngDeg_prev', 'dist_prev', 'time_prev', 'du_prev']] = np.nan
df.loc[df['phone']!=df['phone_next'], ['latDeg_next', 'lngDeg_next', 'dist_next', 'time_next', 'du_next']] = np.nan
return df
def make_shifted_matrix(vec):
'''Define shifted matrix'''
matrix = []
size = len(vec)
for i in range(size):
row = [0] * i + vec[:size-i]
matrix.append(row)
return np.array(matrix)
def make_state_vector(T, size):
'''Define state vector'''
vector = [1, 0]
step = 2
for i in range(size - 2):
if i % 2 == 0:
vector.append(T)
T *= T / step
step += 1
else:
vector.append(0)
return vector
def make_noise_vector(noise, size):
'''Define noise vector'''
noise_vector = []
for i in range(size):
if i > 0 and i % 2 == 0:
noise *= 0.5
noise_vector.append(noise)
return noise_vector
def make_kalman_filter(T, size, noise, obs_noise):
'''Define kalman filter'''
vec = make_state_vector(T, size)
state_transition = make_shifted_matrix(vec)
process_noise = np.diag(make_noise_vector(noise, size)) + np.ones(size) * 1e-9
observation_model = np.array([[1] + [0] * (size - 1), [0, 1] + [0] * (size - 2)])
observation_noise = np.diag([obs_noise] * 2) + np.ones(2) * 1e-9
kf = simdkalman.KalmanFilter(
state_transition = state_transition,
process_noise = process_noise,
observation_model = observation_model,
observation_noise = observation_noise)
return kf
def apply_kf_smoothing(df, kf_):
unique_paths = df[['collectionName', 'phoneName']].drop_duplicates().to_numpy()
for collection, phone in unique_paths:
cond = np.logical_and(df['collectionName'] == collection, df['phoneName'] == phone)
data = df[cond][['latDeg', 'lngDeg']].to_numpy()
data = data.reshape(1, len(data), 2)
smoothed = kf_.smooth(data)
df.loc[cond, 'latDeg'] = smoothed.states.mean[0, :, 0]
df.loc[cond, 'lngDeg'] = smoothed.states.mean[0, :, 1]
return df
def make_lerp_data(df):
'''
Generate interpolated lat,lng values for different phone times in the same collection. 插值。
'''
org_columns = df.columns
# Generate a combination of time x collection x phone and combine it with the original data (generate records to be interpolated)
time_list = df[['collectionName', 'millisSinceGpsEpoch']].drop_duplicates()
phone_list =df[['collectionName', 'phoneName']].drop_duplicates()
tmp = time_list.merge(phone_list, on='collectionName', how='outer')
lerp_df = tmp.merge(df, on=['collectionName', 'millisSinceGpsEpoch', 'phoneName'], how='left')
lerp_df['phone'] = lerp_df['collectionName'] + '_' + lerp_df['phoneName']
lerp_df = lerp_df.sort_values(['phone', 'millisSinceGpsEpoch'])
# linear interpolation
lerp_df['latDeg_prev'] = lerp_df['latDeg'].shift(1)
lerp_df['latDeg_next'] = lerp_df['latDeg'].shift(-1)
lerp_df['lngDeg_prev'] = lerp_df['lngDeg'].shift(1)
lerp_df['lngDeg_next'] = lerp_df['lngDeg'].shift(-1)
lerp_df['phone_prev'] = lerp_df['phone'].shift(1)
lerp_df['phone_next'] = lerp_df['phone'].shift(-1)
lerp_df['time_prev'] = lerp_df['millisSinceGpsEpoch'].shift(1)
lerp_df['time_next'] = lerp_df['millisSinceGpsEpoch'].shift(-1)
# Leave only records to be interpolated
lerp_df = lerp_df[(lerp_df['latDeg'].isnull())&(lerp_df['phone']==lerp_df['phone_prev'])&(lerp_df['phone']==lerp_df['phone_next'])].copy()
# calc lerp
# 当前经纬度 = 历史经纬度 + v * t增量 = 历史经纬度 + ((未来经纬度-历史经纬度)/(未来时间点-当前时间点) * (当前时间点-历史时间点))
lerp_df['latDeg'] = lerp_df['latDeg_prev'] + ((lerp_df['latDeg_next'] - lerp_df['latDeg_prev']) * ((lerp_df['millisSinceGpsEpoch'] - lerp_df['time_prev']) / (lerp_df['time_next'] - lerp_df['time_prev'])))
lerp_df['lngDeg'] = lerp_df['lngDeg_prev'] + ((lerp_df['lngDeg_next'] - lerp_df['lngDeg_prev']) * ((lerp_df['millisSinceGpsEpoch'] - lerp_df['time_prev']) / (lerp_df['time_next'] - lerp_df['time_prev'])))
# Leave only the data that has a complete set of previous and next data.
lerp_df = lerp_df[~lerp_df['latDeg'].isnull()]
return lerp_df[org_columns]
def calc_mean_pred(df, lerp_df):
'''Make a prediction based on the average of the predictions of phones in the same collection. 平均轨迹。'''
add_lerp = pd.concat([df, lerp_df])
mean_pred_result = add_lerp.groupby(['collectionName', 'millisSinceGpsEpoch'])[['latDeg', 'lngDeg']].mean().reset_index()
mean_pred_df = df[['collectionName', 'phoneName', 'millisSinceGpsEpoch']].copy()
mean_pred_df = mean_pred_df.merge(mean_pred_result[['collectionName', 'millisSinceGpsEpoch', 'latDeg', 'lngDeg']], on=['collectionName', 'millisSinceGpsEpoch'], how='left')
return mean_pred_df
def ro_for_trn(base_train, ro_verbose):
'''Based on the moving distance, do outlier rejection for the train dataset. 基于平移距离,对训练集剔除异常值'''
print("Outlier Rejection for Train:")
base_train['collectionName'] = base_train['phone'].apply(lambda x: x.split('_')[0])
base_train['phoneName'] = base_train['phone'].apply(lambda x: x.split('_')[1])
cn2pn_trn_df_tst = base_train[['collectionName', 'phoneName']].drop_duplicates()
train_ro = add_distance_diff(base_train) # 加入平移距离
train_ro1 = []
for cname in cn2pn_trn_df_tst['collectionName'].unique():
for pname in cn2pn_trn_df_tst[cn2pn_trn_df_tst['collectionName']==cname]['phoneName'].unique():
# Based on Velocity
tmp_df = train_ro[(train_ro['collectionName']==cname) & (train_ro['phoneName']==pname)]
next_95 = tmp_df['vel_next'].mean() + (tmp_df['vel_next'].std() * 2)
prev_95 = tmp_df['vel_prev'].mean() + (tmp_df['vel_prev'].std() * 2)
# for SJC
if cname in ['2021-04-22-US-SJC-1', '2021-04-28-US-SJC-1', '2021-04-29-US-SJC-2']:
ind = tmp_df[(tmp_df['vel_next'] > 20)&(tmp_df['vel_prev'] > 20)][['vel_prev','vel_next']].index
else:
ind = tmp_df[(tmp_df['vel_next'] > next_95)&(tmp_df['vel_prev'] > prev_95)][['vel_prev','vel_next']].index
# fill nan at outlier point
tmp_df.loc[ind, ['latDeg', 'lngDeg']] = np.nan
train_ro1.append(tmp_df)
if ro_verbose == True:
print('{:<20} | {:<15} | Outlier Number (velocity): {}/{}={}%'.format(cname, pname, len(ind), len(tmp_df), np.round(len(ind)/len(tmp_df)*100,4)))
base_train = pd.concat(train_ro1, axis = 0)
print('Done.\n')
return base_train
def ro_for_tst(sub, ro_verbose):
'''Based on the moving distance, do outlier rejection for the test dataset.基于平移距离,对测试集剔除异常值'''
print("Outlier Rejection for Test:")
sub['collectionName'] = sub['phone'].apply(lambda x: x.split('_')[0])
sub['phoneName'] = sub['phone'].apply(lambda x: x.split('_')[1])
cn2pn_trn_df_tst = sub[['collectionName', 'phoneName']].drop_duplicates()
test_ro = add_distance_diff(sub)
test_ro1 = []
for cname in cn2pn_trn_df_tst['collectionName'].unique():
for pname in cn2pn_trn_df_tst[cn2pn_trn_df_tst['collectionName']==cname]['phoneName'].unique():
# Based on Velocity
tmp_df = test_ro[(test_ro['collectionName']==cname) & (test_ro['phoneName']==pname)]
next_95 = tmp_df['vel_next'].mean() + (tmp_df['vel_next'].std() * 2)
prev_95 = tmp_df['vel_prev'].mean() + (tmp_df['vel_prev'].std() * 2)
# for SJC
if cname in ['2021-04-22-US-SJC-2', '2021-04-29-US-SJC-3']:
ind = tmp_df[(tmp_df['vel_next'] > 20)&(tmp_df['vel_prev'] > 20)][['vel_prev','vel_next']].index
else:
ind = tmp_df[(tmp_df['vel_next'] > next_95)&(tmp_df['vel_prev'] > prev_95)][['vel_prev','vel_next']].index
# fill nan at outlier point
tmp_df.loc[ind, ['latDeg', 'lngDeg']] = np.nan
test_ro1.append(tmp_df)
if ro_verbose == True:
print('{:<20} | {:<15} | Outlier Number (velocity): {}/{}={}%'.format(cname, pname, len(ind), len(tmp_df), np.round(len(ind)/len(tmp_df)*100,4)))
sub = pd.concat(test_ro1, axis = 0)
print('Done.\n')
return sub