-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuzzynew-1.py
101 lines (70 loc) · 2.9 KB
/
fuzzynew-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import matplotlib.pyplot as plt
import skfuzzy as fuzz
import os, cv2
from time import time
def change_color_fuzzycmeans(cluster_membership, clusters):
img = []
for pix in cluster_membership.T:
img.append(clusters[np.argmax(pix)])
return img
def readimage(filepath):
list_img = []
img = cv2.imread(filepath)
shape = img.shape
rgb_img = img.reshape((img.shape[0] * img.shape[1], 3))
list_img.append(rgb_img)
return [list_img, shape]
##################################################################
######################## Code starts here ########################
##################################################################
def RunFuzzyKnn(filepath) :
list_img, org_shape = readimage(filepath)
n_data = len(list_img)
clusters = np.arange(2,15,1)
currDir = os.getcwd()
dir = currDir + "/" + "FuzzyClusters/"
FPC = []
filename = (filepath.split("/") )[-1]
filename = (filename.split("."))[0]
os.mkdir(dir+filename) # create directroy for image clusters
for index,rgb_img in enumerate(list_img):
img = np.reshape(rgb_img, org_shape).astype(np.uint8)
shape = np.shape(img)
# looping every cluster
print('Image '+str(index+1))
for i,cluster in enumerate(clusters):
# Fuzzy C Means
new_time = time()
print("i: ",i," cluster: ",cluster)
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
rgb_img.T, cluster, 2, error=0.005, maxiter=1000, init=None,seed=42)
FPC.append(fpc)
print("FPC",fpc)
new_img = change_color_fuzzycmeans(u,cntr)
print("Length of clusters: ", len(cntr))
fuzzy_img = np.reshape(new_img,shape).astype(np.uint8)
thresh = np.max(fuzzy_img) - 1
# ret, seg_img = cv2.threshold(fuzzy_img, thresh, 255, cv2.THRESH_BINARY)
ret, seg_img = cv2.threshold(fuzzy_img,128,255,cv2.THRESH_BINARY)
print('Fuzzy time for cluster',cluster)
print(time() - new_time,'seconds')
cv2.imwrite(dir+filename+"/Cluster"+str(cluster)+".png",fuzzy_img )
x_axis = np.arange(2,15,1)
y_axis = np.array(FPC)
fig = plt.gcf()
plt.plot(x_axis,y_axis)
plt.title("FPC Plot")
plt.xlabel("Number of clusters")
plt.ylabel("FPC")
plt.savefig(dir+filename+"/FPC.png")
plt.cla()
plt.clf()
plt.close
################################################
############## Run Fuzzy KNN Function ##########
################################################
filenames = ["Squall1.jpeg","Squall2.jpeg","Squall3.jpeg","Squall4.jpeg","Squall5.jpeg","Bird1.jpg","Bird2.jpg","Bird3.jpg","ThermalInfrared1.jpg","ThermalInfrared2.jpg"]
currDir = os.getcwd()
for i in range(len(filenames)) :
RunFuzzyKnn(currDir +"/" + filenames[i])