-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.Rmd
255 lines (184 loc) · 7.75 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
title: "EMMA Prototype"
description: Modeling vegetation postfire recovery data
editor_options:
chunk_output_type: console
output:
html_document:
toc: true
toc_depth: 2
---
```{r, echo=F, message=F,include=F, results="hide"}
library(targets)
library(tidyverse)
library(doParallel)
library(raster)
library(lubridate)
library(sf)
library(plotly)
library(leaflet)
# load data saved in the pipeline
tar_load(c(envdata, stan_data, model_results, spatial_outputs,model_prediction))
```
# Model Overview
We estimate the age of a site by calculating the years since the last fire. We then fit a curve to model the recovery of vegetation (measured using NDVI) as a function of it's age. An additional level models the parameters of the negative exponential curve as a function of environmental variables. This means that sites with similar environmental conditions should have similar recovery curves.
## Input data
```{r, echo=FALSE}
#get useful stats
tar_load(envdata_predict)
tar_load(stan_data_predict)
fitting_domain_pixels <- length(which(envdata$model_domain))
fitting_domain_long_pixels <- length(which(!is.na(envdata$long)&
envdata$model_domain))
predicting_domain_pixels <- length(which(envdata_predict$model_domain))
predicting_domain_long_pixels <- length(which(!is.na(envdata_predict$long)&
envdata_predict$model_domain))
rm(envdata_predict)
```
The model was last fit on `r now()`.
This version of the model was fit with `r filter(envdata,training) %>% nrow()` pixels including data from `r as_date(range(stan_data$y_date))[1]` to `r as_date(range(stan_data$y_date))[2]`. `r stan_data$J` out of `r predicting_domain_pixels` predicting domain pixels were used in model fitting (`r round(stan_data$J/predicting_domain_pixels,digits = 2)*100`%). Predictions were made for `r stan_data_predict$J` out of `r predicting_domain_pixels` prediction domain pixels (`r round(stan_data_predict$J/predicting_domain_pixels,digits = 2)*100`%).
## Workflow
This repository was developed using the Targets framework.
```{r, echo=F, eval=T, message=F, include=F, results="asis"}
#tfile=paste0(tempfile(),".html")
test<-targets::tar_visnetwork() #%>%
# htmlwidgets::saveWidget(file = tfile)
#webshot::install_phantomjs()
#webshot::webshot(tfile, "network.png")
#![targets_network](network.png)
```
```{r, echo=FALSE}
test
```
## Results
### Environmental Drivers
These parameters represent the relationship of the following environmental variables to the recovery trajectory.
```{r p1, echo=F, eval=T, warning=F, message=FALSE}
betas <- model_results %>%
filter(type=="beta")
p1 <- ggplot(betas, aes(y=xname, xmin=q5,x=median,xmax=q95))+
geom_pointrange(fill="grey")+
facet_wrap(~parameter,nrow=1)+
geom_vline(xintercept=0,col="grey")+
xlab("Beta (regression coefficient +/- 95% CI)")+
ylab("Environmental Variable")
ggplotly(p1)
```
## Recovery Trajectories
The plot below illustrates some example recovery trajectories. It currently just shows the top 20 cells with the most observations.
```{r plot, echo=F, eval=T, message=FALSE,fig.height=12}
cells_with_long_records<-
model_prediction %>%
group_by(cellID) %>%
summarize(n=n()) %>%
arrange(desc(n)) %>%
slice(1:20) # top 20 cells with the most observations
model_prediction %>%
filter(cellID%in%cells_with_long_records$cellID) %>%
ggplot(aes(x=age)) +
geom_ribbon(aes(ymin=q5,ymax=q95),alpha=0.5)+
geom_line(aes(y=y_obs),colour="darkred",lwd=0.5) +
geom_line(aes(y=median),colour="blue") +
facet_wrap(~cellID) +
labs(x="time since fire (years)",y="NDVI") +
theme_bw()
```
```{r, echo=F, eval=F}
cells_with_fires<-
model_prediction %>%
filter(date>as_date("2010-01-01"),date<as_date("2015-01-01")) %>%
group_by(cellID) %>%
summarize(minage=min(age),n=n()) %>%
filter(minage<1) %>%
arrange(desc(n)) %>%
slice(1:20) # top 20 cells with the most observations
model_prediction %>%
filter(cellID%in%cells_with_fires$cellID) %>%
ggplot(aes(x=date)) +
geom_ribbon(aes(ymin=q5,ymax=q95),alpha=0.5)+
geom_line(aes(y=y_obs),colour="darkred",lwd=0.5) +
geom_line(aes(y=median),colour="blue") +
facet_wrap(~cellID) +
labs(x="time since fire (years)",y="NDVI") +
theme_bw()
```
## Model Performance
Compare estimated vs observed values for all pixels. This is not true validation - these pixels were included in the model fitting.
```{r, message=F, echo=F}
model_prediction %>%
ggplot(aes(x=median,y=y_obs)) +
geom_hex(bins=30)+
geom_smooth(method = "lm",col="red")+
geom_abline(color="blue")+
# facet_wrap(~cellID) +
scale_fill_viridis_c()+
labs(x="Estimated NDVI",y="Observed NDVI",
caption = "Blue line is 1:1, Red line is least squares regression. Count is the number of pixels in that location",
title = "Estimated vs. Observed NDVI"
) +
theme_bw()+
coord_equal()
```
```{r, echo=FALSE}
tar_load(model_w_pred_summary_postfire_season_predict)
# Generating a plot of the alphas
model_w_pred_summary_postfire_season_predict %>%
filter(grepl(pattern = "alpha[",fixed = TRUE,x=variable))-> alphas
alpha_rast <- spatial_outputs[[1]]
alpha_rast[1:ncell(alpha_rast)] <- NA
alpha_rast[stan_data$x_cellID] <- alphas$mean
names(alpha_rast) <- "alpha"
spatial_outputs <- stack(spatial_outputs,alpha_rast)
rm(model_w_pred_summary_postfire_season_predict)
```
## Spatial Predictions
Maps of spatial parameters in the model.
```{r, leaflet_map, echo=F, eval=T, warning=FALSE, message=FALSE, results='asis'}
rast=projectRaster(spatial_outputs,crs = "+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs")
library(leafem)
leaflet() %>%
setView(lng = 18.577, lat = -33.998707, zoom = 10) %>%
addProviderTiles(providers$Esri.WorldImagery) %>%
addRasterImage(rast[[1]],
group=names(rast)[1],
layerId = names(rast)[1]) %>% #, color = ~pal(values(rast)[,1])
addImageQuery(rast[[1]],
layerId = names(rast)[1]) %>%
addRasterImage(rast[[2]],
group=names(rast)[2],
layerId = names(rast)[2]) %>%
addImageQuery(rast[[2]],
layerId = names(rast)[2]) %>%
addRasterImage(rast[[3]],group=names(rast)[3],
layerId = names(rast)[3]) %>%
addImageQuery(rast[[3]],
layerId = names(rast)[3]) %>%
addRasterImage(rast[[4]],group=names(rast)[4],
layerId = names(rast)[4]) %>%
addImageQuery(rast[[4]],
layerId = names(rast)[4]) %>%
addRasterImage(rast[[5]],group=names(rast)[5],
layerId = names(rast)[5]) %>%
addImageQuery(rast[[5]],
layerId = names(rast)[5]) %>%
addLayersControl(
baseGroups = names(rast),
options = layersControlOptions(collapsed = FALSE))
# addLegend("bottomright", pal = pal, values = ~,
# title = "Est. GDP (2010)",
# labFormat = labelFormat(prefix = "$"),
# opacity = 1
# )
```
# Park Reports
See the links below for park-level reports on vegetation status.
[Addo-Elephant_National_Park](reports/report.Addo-Elephant_National_Park.html)
[Agulhas_National_Park](reports/report.Agulhas_National_Park.html)
[Bontebok_National_Park](reports/report.Bontebok_National_Park.html)
[Garden_Route_National_Park](reports/report.Garden_Route_National_Park.html)
[Karoo_National_Park](reports/report.Karoo_National_Park.html)
[Namaqua_National_Park](reports/report.Namaqua_National_Park.html)
[Richtersveld_National_Park](reports/report.Richtersveld_National_Park.html)
[Table_Mountain_National_Park](reports/report.Table_Mountain_National_Park.html)
[Tankwa-Karoo_National_Park](reports/report.Tankwa-Karoo_National_Park.html)
[West_Coast_National_Park](reports/report.West_Coast_National_Park.html)