-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdeCoder.py
130 lines (97 loc) · 3.6 KB
/
deCoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.nn.functional as F
def down_conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
stride=1,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(),
nn.Conv2d(
output_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
stride=2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def depth_layer(input_channels):
return nn.Sequential(
nn.Conv2d(input_channels, 1, 3, padding=1), nn.Sigmoid())
def refine_layer(input_channels):
return nn.Conv2d(input_channels, 1, 3, padding=1)
def up_conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def get_trainable_number(variable):
num = 1
shape = list(variable.shape)
for i in shape:
num *= i
return num
class deCoder(nn.Module):
def __init__(self):
super(deCoder, self).__init__()
self.upconv5 = up_conv_layer(512, 512, 3)
self.iconv5 = conv_layer(1024, 512, 3) #input upconv5 + conv4
self.upconv4 = up_conv_layer(512, 512, 3)
self.iconv4 = conv_layer(1024, 512, 3) #input upconv4 + conv3
self.disp4 = depth_layer(512)
self.upconv3 = up_conv_layer(512, 256, 3)
self.iconv3 = conv_layer(
513, 256, 3) #input upconv3 + conv2 + disp4 = 256 + 256 + 1 = 513
self.disp3 = depth_layer(256)
self.upconv2 = up_conv_layer(256, 128, 3)
self.iconv2 = conv_layer(
257, 128, 3) #input upconv2 + conv1 + disp3 = 128 + 128 + 1 = 257
self.disp2 = depth_layer(128)
self.upconv1 = up_conv_layer(128, 64, 3)
self.iconv1 = conv_layer(65, 64,
3) #input upconv1 + disp2 = 64 + 1 = 65
self.disp1 = depth_layer(64)
def forward(self, conv5, conv4, conv3, conv2, conv1):
upconv5 = self.upconv5(conv5)
iconv5 = self.iconv5(torch.cat((upconv5, conv4), 1))
upconv4 = self.upconv4(iconv5)
iconv4 = self.iconv4(torch.cat((upconv4, conv3), 1))
disp4 = 2.0 * self.disp4(iconv4)
udisp4 = F.upsample(disp4, scale_factor=2)
upconv3 = self.upconv3(iconv4)
iconv3 = self.iconv3(torch.cat((upconv3, conv2, udisp4), 1))
disp3 = 2.0 * self.disp3(iconv3)
udisp3 = F.upsample(disp3, scale_factor=2)
upconv2 = self.upconv2(iconv3)
iconv2 = self.iconv2(torch.cat((upconv2, conv1, udisp3), 1))
disp2 = 2.0 * self.disp2(iconv2)
udisp2 = F.upsample(disp2, scale_factor=2)
upconv1 = self.upconv1(iconv2)
iconv1 = self.iconv1(torch.cat((upconv1, udisp2), 1))
disp1 = 2.0 * self.disp1(iconv1)
if self.training:
return [disp1, disp2, disp3, disp4]
else:
return disp1