-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathjoint_translate.sh
69 lines (56 loc) · 2.16 KB
/
joint_translate.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/bin/bash
echo `date`
infname=$1
outfname=$2
src_lang=$3
tgt_lang=$4
exp_dir=$5
ref_fname=$6
SRC_PREFIX='SRC'
TGT_PREFIX='TGT'
#`dirname $0`/env.sh
SUBWORD_NMT_DIR='subword-nmt'
model_dir=$exp_dir/model
data_bin_dir=$exp_dir/final_bin
### normalization and script conversion
echo "Applying normalization and script conversion"
input_size=`python scripts/preprocess_translate.py $infname $outfname.norm $src_lang true`
echo "Number of sentences in input: $input_size"
### apply BPE to input file
echo "Applying BPE"
python $SUBWORD_NMT_DIR/subword_nmt/apply_bpe.py \
-c $exp_dir/vocab/bpe_codes.32k.${SRC_PREFIX} \
--vocabulary $exp_dir/vocab/vocab.$SRC_PREFIX \
--vocabulary-threshold 5 \
< $outfname.norm \
> $outfname._bpe
# not needed for joint training
# echo "Adding language tags"
python scripts/add_tags_translate.py $outfname._bpe $outfname.bpe $src_lang $tgt_lang
### run decoder
echo "Decoding"
src_input_bpe_fname=$outfname.bpe
tgt_output_fname=$outfname
fairseq-interactive $data_bin_dir \
-s $SRC_PREFIX -t $TGT_PREFIX \
--distributed-world-size 1 \
--path $model_dir/checkpoint_best.pt \
--batch-size 64 --buffer-size 2500 --beam 5 --remove-bpe \
--skip-invalid-size-inputs-valid-test \
--user-dir model_configs \
--input $src_input_bpe_fname > $tgt_output_fname.log 2>&1
echo "Extracting translations, script conversion and detokenization"
# this part reverses the transliteration from devnagiri script to target lang and then detokenizes it.
python scripts/postprocess_translate.py $tgt_output_fname.log $tgt_output_fname $input_size $tgt_lang true
# This block is now moved to compute_bleu.sh for release with more documentation.
# if [ $src_lang == 'en' ]; then
# # indicnlp tokenize the output files before evaluation
# input_size=`python scripts/preprocess_translate.py $ref_fname $ref_fname.tok $tgt_lang`
# input_size=`python scripts/preprocess_translate.py $tgt_output_fname $tgt_output_fname.tok $tgt_lang`
# sacrebleu --tokenize none $ref_fname.tok < $tgt_output_fname.tok
# else
# # indic to en models
# sacrebleu $ref_fname < $tgt_output_fname
# fi
# echo `date`
echo "Translation completed"