This repository has been archived by the owner on Nov 29, 2024. It is now read-only.
generated from 360-info/quarto-scaffold
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDecrimanalizing_suicide.Rmd
627 lines (534 loc) · 14.3 KB
/
Decrimanalizing_suicide.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
---
title: "Decriminalizing Suicide- Internship rmd for practice"
author: "Nishtha Arora"
output: html_document
date: "2023-03-19"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
message = FALSE,
warning = FALSE,
fig.width = 12,
fig.height = 8
)
```
```{r libraries}
library(readr)
library(themes360info)
library(readxl)
library(tidyverse)
library(hrbrthemes)
library(ggthemes)
library(lubridate)
library(sf)
library(rgeos)
library(pdftools)
```
# Visualization 1
## WORLD SUICIDE RATE'S COMPARISON WITH DEVELOPMENT STATUS.
### Data sources
- Worldwide suicide rates OWID (filtering from 2008-2019, i.e. 10 years)
https://ourworldindata.org/suicide
- HDI Data-UNDP- Values recorded in 2021, rank (2020).
http://hdr.undp.org/en/composite/HDI
```{r HDI_data}
read_data <- function(range, development_status) {
read_excel("data/InitialA1/HDIstatus.xlsx",
range = range,
col_names = FALSE) |>
rename(
HDI_rank_2021 = ...1,
Country = ...2,
HDI_Value = ...3,
Life_expectancy = ...5,
Expected_years_of_schooling = ...7,
Mean_years_of_schooling = ...9,
GNI_per_capita = ...11,
GNI_rank_minus_HDI_rank = ...13,
HDI_rank_2020 = ...15
) |>
select(
HDI_rank_2021,
Country,
HDI_Value,
Life_expectancy,
Expected_years_of_schooling,
Mean_years_of_schooling,
GNI_per_capita,
GNI_rank_minus_HDI_rank,
HDI_rank_2020
) |>
mutate(Degree_of_Human_Development = development_status)
}
very_high_hdi <-
read_data("A9:O74", "VERY HIGH HUMAN DEVELOPMENT")
high_hdi <-
read_data("A76:O128", "HIGH HUMAN DEVELOPMENT")
medium_hdi <-
read_data("A130:O166", "MEDIUM HUMAN DEVELOPMENT")
low_hdi <-
read_data("A168:O200", "LOW HUMAN DEVELOPMENT")
hdi <- bind_rows(very_high_hdi, high_hdi, medium_hdi, low_hdi)
write_csv(hdi, "data/InitialA1/HDIStatus2.csv")
tidied_hdi_data <- read_csv("data/InitialA1/HDIStatus2.csv") |>
rename("Entity" = Country)
```
```{r suicide_data}
suicide_rates <- read_csv("data/InitialA1/suicide-death-rates.csv")
# setdiff(data2$Entity, data3$Entity)
# rename countries to align with other dataset
change <- suicide_rates |>
mutate(
Entity = recode(
Entity,
"American Samoa" = "Samoa",
"Bolivia" = "Bolivia (Plurinational State of)",
"Brunei" = "Brunei Darussalam",
"Cape Verde" = "Cabo Verde",
"Cote d'Ivoire" = "Côte d'Ivoire",
"Democratic Republic of Congo" = "Congo (Democratic Republic of the)",
"Eswatini" = "Eswatini (Kingdom of)",
"Iran" = "Iran (Islamic Republic of)",
"Laos" = "Lao People's Democratic Republic",
"Micronesia (country)" = "Micronesia (Federated States of)",
"North Korea" = "Korea (Republic of)",
"Northern Ireland" = "Ireland",
"Palestine" = "Palestine, State of",
"Russia" = "Russian Federation",
"South Sudan" = "Sudan",
"Syria" = "Syrian Arab Republic",
"Timor" = "Timor-Leste",
"Venezuela" = "Venezuela (Bolivarian Republic of)",
"Vietnam" = "Viet Nam"
)
)
# calculate the average death rate over 2008 to latest
selected_suicide_rates <- change |>
filter(Year > 2007) |>
group_by(Entity) |>
summarise(avg_rate = mean(`Deaths - Self-harm - Sex: Both - Age: Age-standardized (Rate)`))
join <- full_join(selected_suicide_rates, tidied_hdi_data) |>
arrange(desc(avg_rate)) |>
na.omit() |>
rename(`Development status` = Degree_of_Human_Development) |>
mutate(avg_rate = round(avg_rate, digits = 2))
plot1 <- join |> head(30)
```
```{r plot1}
ggplot(plot1,
aes(
x = reorder(Entity,-avg_rate),
y = avg_rate,
fill = `Development status`
)) +
geom_col() +
geom_text(
aes(label = avg_rate),
vjust = 2,
colour = "white",
size = 3
) +
theme(
legend.position = "bottom",
axis.text.x = element_text(
angle = 45,
vjust = 0.5,
hjust = 1
),
plot.title = element_text(face = "bold")
) +
labs(title = "Top 30 countries by average suicide rate (2008-2019)",
x = substitute(paste(bold("Country"))),
y = substitute(paste(bold(
"Suicide rate per 100,000 people"
)))) +
scale_fill_manual(values = c("#A0331C", "#1C56A0", "#4B902F", "#635A61"))
```
# Visualization 2
## SUICIDE RATE BEFORE AND AFTER 2017 (INDIA'S MENTAL HEALTH ACT 2017).
### Data source:
- WHO- https://www.who.int/data/gho/data/themes/mental-health/suicide-rates
```{r who_data}
who_data <- read_csv("data/InitialA1/data-2.csv") |>
filter(Dim1 == "Both sexes") |>
select(SpatialDimValueCode, Location, Period, Dim1, FactValueNumeric)
india_who_data <- who_data |> filter(Location == "India")
```
```{r plot2}
india_who_data |>
ggplot(aes(x = Period, y = FactValueNumeric)) +
geom_line() +
geom_point(color = "brown", size = 1.5) +
geom_vline(xintercept = 2017, linetype = "dashed") +
scale_x_continuous(breaks = seq(from = 2000, to = 2019, by = 1)) +
theme(
legend.position = "none",
axis.title = element_text(face = "bold"),
plot.title = element_text(size = 14, lineheight = .8)
) +
xlab(NULL) +
ylab(substitute(paste(bold(
"Rate per 100,000 people"
)))) +
ggtitle("Time-series for India, 2000-2019") +
theme(plot.title = element_text(size = 14, lineheight = .8)) +
geom_vline(xintercept = 2017, linetype = "dashed") +
scale_color_manual(values = c('Brown', 'Purple', 'Black')) +
theme(legend.position = "none")
```
# Visualization 3
## 2019 STATE/UT INDIA'S SUICIDE RATES
### Data sources:
- Data.gov- https://data.gov.in/catalog/stateut-wise-distribution-suicides-causes
- http://www.diva-gis.org/datadown
```{r reading_region_wise_data_mapfiles}
options(scipen = 999)
region_cases_2019 <-
read_csv("data/InitialA1/RS_Session_253_A_211.1.csv") |>
filter(str_detect(`State/UT`, "Total ", negate = TRUE)) |>
rename(wrong_total = Total) |>
rowwise() |> # total cases, wrong data
mutate(Total = sum(Male, Female, Transgender)) |>
select(`State/UT`, Total)
states_shape_sf <- read_sf("data/InitialA1/IND_adm/IND_adm1.shp")
#Correcting the data by manually looking at Id's as geometry was matching with wrong id's.
df_newid = data.frame(
id = c(
2,
3,
4,
5,
7,
11,
12,
13,
14,
15,
16,
17,
18,
20,
21,
22,
23,
24,
25,
26,
28,
29,
30,
31,
32,
33,
34,
35,
36,
1,
6,
8,
9,
10,
19,
27
)
)
join_newid <- cbind(region_cases_2019, df_newid) |>
mutate(id = as.numeric(id))
states_merged <- inner_join(states_shape_sf, join_newid,
by = c("ID_1" = "id"))
```
```{r plot3}
write_csv(states_merged, "data/presentation/visualization3.csv")
colors <- c('#C6B7F7', "#744BF7", "#6B96EC", "#103E99")
b <- c(0, 1000, 10000, 18000)
ggplot() +
geom_sf(
aes(fill = Total),
data = states_merged,
color = "black",
linewidth = 0.25
) +
geom_sf_text(
data = states_merged,
aes(label = NAME_1),
size = 3,
color = "black",
fontface = "bold"
) +
coord_sf() +
scale_fill_fermenter(
palette = "YlGnBu",
direction = -1,
# trans = "log10",
labels = scales::label_number_si()
) +
theme(
axis.title = element_text(face = "bold"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
) +
labs(title = "Region-wise 2019 data:India")
```
# Visulaization 4
## OUTLIERS(DATA GAP) IN SUICIDE RATES GLOBALLY
### Data source:
- WHO- https://www.who.int/data/gho/data/themes/mental-health/suicide-rates
```{r outliers_indatacollection_plot4}
viz4_who_data <- who_data |> filter(
Location %in% c(
"Kiribati",
"Central African Republic",
"Latvia",
"Republic of Korea",
"Fiji",
"Rwanda",
"Poland",
"Comoros",
"Uzbekistan",
"Bosnia and Herzegovina",
"Grenada",
"Niger",
"Cuba",
"Equatorial Guinea",
"Burkina Faso",
"Samoa",
"Latvia",
"Sao Tome and Principe",
"Honduras",
"Lebanon",
"Maldives",
"Bahamas",
"Timor-Leste",
"Iraq",
"Dominican Republic",
"Iran (Islamic Republic of)",
"Brazil",
"Bolivia (Plurinational State of)",
"The former Yugoslav Republic of Macedonia",
"Portugal",
"Belize",
"Serbia",
"Mali",
"Argentina",
"United Republic of Tanzania",
"Democratic People's Republic of Korea"
)
)
write_csv(viz4_who_data, "data/presentation/visualization4.csv")
viz4_who_data |>
ggplot(aes(x = Location, y = FactValueNumeric, fill = Location)) +
geom_boxplot() +
theme(legend.position = "none") +
scale_fill_viridis_d(alpha = 0.6) +
theme(
text = element_text(size = 8),
axis.text.x = element_text(angle = 45, hjust = 1),
axis.title = element_text(face = "bold"),
plot.title = element_text(
size = 14,
lineheight = 8,
face = "bold"
)
) +
labs(x = "Country",
y = "Suicide rate",
title = "Irregularity in Data Collection")
```
# Visulaization 5
## SOUTH ASIAN COUNTRIES:SUICIDE RATES
### Data source
- WHO- https://www.who.int/data/gho/data/themes/mental-health/suicide-rates
```{r data_plot5}
filtered <- who_data |>
filter(
Location %in% c(
"India",
"Maldives",
"Afghanistan",
"Nepal",
"Bangladesh",
"Bhutan",
"Sri Lanka",
"Pakistan"
)
)
write_csv(filtered, "data/presentation/visualization5.csv")
ggplot(filtered, aes(colour = Location, y = FactValueNumeric, x = Period)) +
geom_line() +
geom_point() +
ylab("Suicide rate") +
ggtitle("South Asian Countries") +
scale_colour_brewer(type = "seq", palette = "Dark2") +
theme_classic()
```
# SHORT-LISTED VISHUALIZATIONS: ADDING 360 THEME
## TIME SERIES
```{r final_article_plot6}
india_suicide_rates <- who_data |> filter(Location == "India") |>
filter(Period > 2009) |>
mutate(year = as.Date(as.character(Period), format = "%Y"),
year = year(year))
write_csv(india_suicide_rates, "data/presentation/visualization6.csv")
plot_india <-
ggplot(india_suicide_rates, aes(x = year, y = FactValueNumeric)) +
geom_line(color = "brown") +
geom_point(color = "brown", size = 1.5) +
geom_vline(xintercept = 2017, linetype = "dashed") +
labs(
x = NULL,
y = "Rate per 100,000 people",
title = "SUICIDE IN INDIA",
subtitle = "Suicide rates in India have declined from 2010 to 2017 and then a sudden hike is observed",
caption = paste(
"**CHART:** Nishtha Arora & James Goldie, 360info",
"**DATA:** Our World in Data",
sep = "<br>"
)
) +
scale_x_continuous(breaks = 2010:2021) +
ylim(9, 16) +
theme_360() +
theme(
legend.position = "none",
axis.title = element_text(face = "bold"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
) +
annotate_360_light(
x = 2016.9,
y = 19,
label = paste(
"Suicide rates slightly increased",
"after the introduction of the ",
"Mental Healthcare Act in 2017.",
sep = "<br>"
) ,
hjust = 1,
size = 5
)
save_360plot(plot_india, "graphs/indiatimeseries.png")
knitr::include_graphics("graphs/indiatimeseries.png")
```
## Map
```{r plot7}
india_map <- ggplot() +
geom_sf(
aes(fill = Total),
data = states_merged,
color = "black",
linewidth = 0.25
) +
geom_sf_text(
data = states_merged,
aes(label = NAME_1),
size = 3,
color = "black",
fontface = "bold"
) +
coord_sf() +
scale_fill_fermenter(
palette = "YlGnBu",
direction = -1,
# trans = "log10",
labels = scales::label_number_si()
) +
labs(
title = "REGION-WISE: SUICIDE IN INDIA 2019",
subtitle = "No. of suicides were maximum in Andhra Pradesh and Arunachal Pradesh",
caption = paste(
"**CHART:** Nishtha Arora & James Goldie, 360info",
"**DATA:** Our World in Data",
sep = "<br>"
)
) +
theme_360() +
theme(
axis.title = element_text(face = "bold"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
) +
xlab(NULL) +
ylab(NULL)
save_360plot(india_map, "graphs/indiamap.png")
knitr::include_graphics("graphs/indiamap.png")
```
# FINAL VISUALIZATION OF NEED
## TIME SERIES WITH NCRB DATA
### Data source:
- National Crime Records Bureau: https://ncrb.gov.in/sites/default/files/adsi_reports_previous_year/Table%202.1.pdf
```{r ncrb_data_pdf_extract}
ncrb_pdf <-
pdftools::pdf_text(pdf = "https://ncrb.gov.in/sites/default/files/adsi_reports_previous_year/Table%202.1.pdf") |>
str_split("\n")
for (i in 1) {
#sets the iteration to go through all 17 pages
ncrb_pdf[[i]] <- ncrb_pdf[[i]][11:41]
} |>
str_squish()
numbers_ex = list()
k = 1
for (i in 1) {
numbers <- ncrb_pdf[[i]]
numbers_df <- data.frame(numbers)
while (k <= 1000) {
numbers_ex[[k]] <- numbers_df
k <- k + 1
break
}
NH_numbers <- dplyr::bind_rows(numbers_ex)
}
new <- NH_numbers |>
separate(
numbers,
into = c("extra", "id", "year", "count", "population", "rate"),
sep = "\\s+"
) |>
na.omit() |>
select(year, rate, count) |>
mutate(
year = str_remove(year, "[#@$]"),
# year = as.Date(paste0(year, "-07-01")),
count = as.numeric(count),
rate = as.numeric(rate),
year = as.numeric(year)
)
```
```{r plot8}
write_csv(new, "data/presentation/visualization8.csv")
plot_ncrb <- ggplot(new,
aes(x = year, y = rate)) +
geom_line(color = "brown") +
geom_point(color = "brown", size = 1.5) +
geom_vline(xintercept = 2017, linetype = "dashed") +
labs(
x = NULL,
y = "Rate per 100,000 people",
title = "SUICIDE IN INDIA (data.gov)",
subtitle = "Suicide rates in India have rapidly fallen till 2016.",
caption = paste(
"**CHART:** Nishtha Arora & James Goldie, 360info",
"**DATA:** NCRB",
sep = "<br>"
)
) +
scale_x_continuous(breaks = 2010:2021) +
ylim(9, 16) +
theme_360() +
theme(
legend.position = "none",
axis.title = element_text(face = "bold"),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
)
annotate_360_light(
x = 2015,
y = 10.2,
label = paste("Suicide rates have rapidly increased after 2017.",
sep = "<br>") ,
hjust = 1,
size = 5
)
save_360plot(plot_ncrb, "graphs/indiatimeseries2.png")
knitr::include_graphics("graphs/indiatimeseries2.png")
```