forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNASOSv5_antipump.py
453 lines (372 loc) · 17.1 KB
/
NASOSv5_antipump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# --- Do not remove these libs ---
from logging import FATAL
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import numpy as np
import freqtrade.vendor.qtpylib.indicators as qtpylib
import datetime
from technical.util import resample_to_interval, resampled_merge
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
from freqtrade.strategy import stoploss_from_open, merge_informative_pair, DecimalParameter, IntParameter, CategoricalParameter
#import technical.indicators as ftt
# @Rallipanos
# @pluxury
# @volk (antipump)
# with help from @stash86 and @Perkmeister
# Buy hyperspace params:
buy_params = {
"low_offset": 0.981,
"base_nb_candles_buy": 8, # value loaded from strategy
"ewo_high": 3.553, # value loaded from strategy
"ewo_high_2": -5.585, # value loaded from strategy
"ewo_low": -14.378, # value loaded from strategy
"lookback_candles": 32, # value loaded from strategy
"low_offset_2": 0.942, # value loaded from strategy
"profit_threshold": 1.037, # value loaded from strategy
"rsi_buy": 78, # value loaded from strategy
"rsi_fast_buy": 37, # value loaded from strategy
}
# Sell hyperspace params:
sell_params = {
"base_nb_candles_sell": 16, # value loaded from strategy
"high_offset": 1.097, # value loaded from strategy
"high_offset_2": 1.472, # value loaded from strategy
}
def EWO(dataframe, ema_length=5, ema2_length=35):
df = dataframe.copy()
ema1 = ta.EMA(df, timeperiod=ema_length)
ema2 = ta.EMA(df, timeperiod=ema2_length)
emadif = (ema1 - ema2) / df['low'] * 100
return emadif
class NASOSv5(IStrategy):
INTERFACE_VERSION = 2
# ROI table:
minimal_roi = {
# "0": 0.283,
# "40": 0.086,
# "99": 0.036,
"360": 0
}
# Stoploss:
stoploss = -0.15
# SMAOffset
base_nb_candles_buy = IntParameter(
2, 20, default=buy_params['base_nb_candles_buy'], space='buy', optimize=False)
base_nb_candles_sell = IntParameter(
2, 25, default=sell_params['base_nb_candles_sell'], space='sell', optimize=False)
low_offset = DecimalParameter(
0.9, 0.99, default=buy_params['low_offset'], space='buy', optimize=True)
low_offset_2 = DecimalParameter(
0.9, 0.99, default=buy_params['low_offset_2'], space='buy', optimize=False)
high_offset = DecimalParameter(
0.95, 1.1, default=sell_params['high_offset'], space='sell', optimize=True)
high_offset_2 = DecimalParameter(
0.99, 1.5, default=sell_params['high_offset_2'], space='sell', optimize=False)
# Protection
fast_ewo = 50
slow_ewo = 200
lookback_candles = IntParameter(
1, 36, default=buy_params['lookback_candles'], space='buy', optimize=False)
profit_threshold = DecimalParameter(0.99, 1.05,
default=buy_params['profit_threshold'], space='buy', optimize=False)
ewo_low = DecimalParameter(-20.0, -8.0,
default=buy_params['ewo_low'], space='buy', optimize=False)
ewo_high = DecimalParameter(
2.0, 12.0, default=buy_params['ewo_high'], space='buy', optimize=False)
ewo_high_2 = DecimalParameter(
-6.0, 12.0, default=buy_params['ewo_high_2'], space='buy', optimize=False)
rsi_buy = IntParameter(10, 80, default=buy_params['rsi_buy'], space='buy', optimize=False)
rsi_fast_buy = IntParameter(
10, 50, default=buy_params['rsi_fast_buy'], space='buy', optimize=False)
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.001
trailing_stop_positive_offset = 0.016
trailing_only_offset_is_reached = True
# Sell signal
use_sell_signal = True
sell_profit_only = False
sell_profit_offset = 0.01
ignore_roi_if_buy_signal = False
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
# Optimal timeframe for the strategy
timeframe = '5m'
inf_15m = '15m'
inf_1h = '1h'
process_only_new_candles = True
startup_candle_count = 200
use_custom_stoploss = True
plot_config = {
'main_plot': {
'ma_buy_8': {'color': 'orange'},
'ma_sell_16': {'color': 'orange'},
},
'subplots': {
'rsi': {
'rsi': {'color': 'orange'},
# 'mfi': {'color': 'blue'},
'rsi_fast': {'color': 'red'},
'rsi_slow': {'color': 'green'},
},
'ewo': {
'EWO': {'color': 'blue'}
},
'ps': {
'pump_strength': {'color': 'yellow'}
},
}
}
slippage_protection = {
'retries': 3,
'max_slippage': -0.02
}
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
if (current_profit > 0.3):
return 0.05
elif (current_profit > 0.1):
return 0.03
elif (current_profit > 0.06):
return 0.02
elif (current_profit > 0.04):
return 0.01
elif (current_profit > 0.025):
return 0.005
elif (current_profit > 0.018):
return 0.005
return self.stoploss
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
current_time: datetime, **kwargs) -> bool:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
if (last_candle is not None):
if (sell_reason in ['sell_signal']):
if (last_candle['hma_50']*1.149 > last_candle['ema_100']) and (last_candle['close'] < last_candle['ema_100']*0.951): # *1.2
return False
# slippage
try:
state = self.slippage_protection['__pair_retries']
except KeyError:
state = self.slippage_protection['__pair_retries'] = {}
candle = dataframe.iloc[-1].squeeze()
slippage = (rate / candle['close']) - 1
if slippage < self.slippage_protection['max_slippage']:
pair_retries = state.get(pair, 0)
if pair_retries < self.slippage_protection['retries']:
state[pair] = pair_retries + 1
return False
state[pair] = 0
return True
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '15m') for pair in pairs]
return informative_pairs
def informative_1h_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
assert self.dp, "DataProvider is required for multiple timeframes."
# Get the informative pair
informative_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_1h)
# EMA
# informative_1h['ema_50'] = ta.EMA(informative_1h, timeperiod=50)
# informative_1h['ema_200'] = ta.EMA(informative_1h, timeperiod=200)
# # RSI
# informative_1h['rsi'] = ta.RSI(informative_1h, timeperiod=14)
# bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
# informative_1h['bb_lowerband'] = bollinger['lower']
# informative_1h['bb_middleband'] = bollinger['mid']
# informative_1h['bb_upperband'] = bollinger['upper']
return informative_1h
def informative_15m_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
assert self.dp, "DataProvider is required for multiple timeframes."
# Get the informative pair
informative_15m = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_15m)
# EMA
# informative_1h['ema_50'] = ta.EMA(informative_1h, timeperiod=50)
# informative_1h['ema_200'] = ta.EMA(informative_1h, timeperiod=200)
# # RSI
# informative_1h['rsi'] = ta.RSI(informative_1h, timeperiod=14)
# bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
# informative_1h['bb_lowerband'] = bollinger['lower']
# informative_1h['bb_middleband'] = bollinger['mid']
# informative_1h['bb_upperband'] = bollinger['upper']
return informative_15m
def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Calculate all ma_buy values
for val in self.base_nb_candles_buy.range:
dataframe[f'ma_buy_{val}'] = ta.EMA(dataframe, timeperiod=val)
# Calculate all ma_sell values
for val in self.base_nb_candles_sell.range:
dataframe[f'ma_sell_{val}'] = ta.EMA(dataframe, timeperiod=val)
dataframe['hma_50'] = qtpylib.hull_moving_average(dataframe['close'], window=50)
dataframe['ema_100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['sma_9'] = ta.SMA(dataframe, timeperiod=9)
# Elliot
dataframe['EWO'] = EWO(dataframe, self.fast_ewo, self.slow_ewo)
#pump stregth
dataframe['ema_50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)
dataframe['pump_strength'] = (dataframe['ema_50'] - dataframe['ema_200']) / dataframe['ema_50']
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# informative_1h = self.informative_1h_indicators(dataframe, metadata)
informative_15m = self.informative_15m_indicators(dataframe, metadata)
dataframe = merge_informative_pair(
dataframe, informative_15m, self.timeframe, self.inf_15m, ffill=True)
# The indicators for the normal (5m) timeframe
dataframe = self.normal_tf_indicators(dataframe, metadata)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dont_buy_conditions = []
dont_buy_conditions.append(
(
# don't buy if there isn't 3% profit to be made
(dataframe['close_15m'].rolling(self.lookback_candles.value).max()
< (dataframe['close'] * self.profit_threshold.value))
)
)
dataframe.loc[
(
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
(dataframe['EWO'] > self.ewo_high.value) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (
dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
),
['buy', 'buy_tag']] = (1, 'ewo1')
dataframe.loc[
(
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset_2.value)) &
(dataframe['EWO'] > self.ewo_high_2.value) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
(dataframe['rsi'] < 25)
),
['buy', 'buy_tag']] = (1, 'ewo2')
dataframe.loc[
(
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
(dataframe['EWO'] < self.ewo_low.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (
dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
),
['buy', 'buy_tag']] = (1, 'ewolow')
if dont_buy_conditions:
for condition in dont_buy_conditions:
dataframe.loc[condition, 'buy'] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions.append(
((dataframe['close'] > dataframe['sma_9']) &
(dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset_2.value)) &
(dataframe['rsi'] > 50) &
(dataframe['volume'] > 0) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
|
(
(dataframe['close'] < dataframe['hma_50']) &
(dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
(dataframe['volume'] > 0) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
)
if conditions:
dataframe.loc[
reduce(lambda x, y: x | y, conditions),
'sell'
]=1
return dataframe
class NASOSv5_antipump(NASOSv5):
antipump_threshold = DecimalParameter(0, 0.4, default=0.113, space='buy', optimize=True)
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dont_buy_conditions = []
dont_buy_conditions.append(
# don't buy if there isn't 3% profit to be made
(dataframe['close_15m'].rolling(self.lookback_candles.value).max()
< (dataframe['close'] * self.profit_threshold.value))
)
dataframe.loc[
(
(dataframe['pump_strength'] < self.antipump_threshold.value) &
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
(dataframe['EWO'] > self.ewo_high.value) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (
dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
),
['buy', 'buy_tag']] = (1, 'ewo1')
dataframe.loc[
(
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset_2.value)) &
(dataframe['EWO'] > self.ewo_high_2.value) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
(dataframe['rsi'] < 25)
),
['buy', 'buy_tag']] = (1, 'ewo2')
dataframe.loc[
(
(dataframe['rsi_fast'] < self.rsi_fast_buy.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
(dataframe['EWO'] < self.ewo_low.value) &
(dataframe['volume'] > 0) &
(dataframe['close'] < (
dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
),
['buy', 'buy_tag']] = (1, 'ewolow')
if dont_buy_conditions:
for condition in dont_buy_conditions:
dataframe.loc[condition, 'buy'] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions.append( # 4 consecutive equal highs, a whale gets rid off a fortune, go away before is too late
(dataframe['high'] == dataframe['high'].shift(1)) &
(dataframe['high'].shift(1) == dataframe['high'].shift(2)) &
(dataframe['high'].shift(2) == dataframe['high'].shift(3))
)
conditions.append(
((dataframe['close'] > dataframe['sma_9']) &
(dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset_2.value)) &
(dataframe['rsi'] > 50) &
(dataframe['volume'] > 0) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
|
(
(dataframe['close'] < dataframe['hma_50']) &
(dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
(dataframe['volume'] > 0) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
)
if conditions:
dataframe.loc[
reduce(lambda x, y: x | y, conditions),
'sell'
]=1
return dataframe