forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMacheteV8bRallimod2.py
550 lines (432 loc) · 24.5 KB
/
MacheteV8bRallimod2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from typing import Dict, List, Optional, Tuple
from datetime import datetime, timedelta
from cachetools import TTLCache
from pandas import DataFrame, Series
import numpy as np
## Indicator libs
import talib.abstract as ta
from finta import TA as fta
import technical.indicators as ftt
from technical.indicators import hull_moving_average
from technical.indicators import PMAX, zema
from technical.indicators import cmf
## FT stuffs
from freqtrade.strategy import IStrategy, merge_informative_pair, stoploss_from_open, IntParameter, DecimalParameter, CategoricalParameter
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.persistence import Trade
from skopt.space import Dimension
### @Rallipanos mod
"""
NOTE:
docker-compose run --rm freqtrade hyperopt -c user_data/config-backtesting.json --strategy IchimokuHaulingV8a --hyperopt-loss SortinoHyperOptLossDaily --spaces roi buy sell --timerange=1624940400-1630447200 -j 4 -e 1000
"""
class MacheteV8bRallimod2(IStrategy):
# Buy hyperspace params:
buy_params = {
"buy_should_use_get_buy_signal_offset_strategy": True,
"buy_should_use_get_buy_signal_bbrsi_strategy": False,
"ewo_high": 2.327,
"rsi_buy": 45,
"base_nb_candles_buy": 14,
"low_offset": 0.965
}
# Sell hyperspace params:
sell_params = {
"cstp_bail_how": "roc",
"cstp_bail_roc": -0.032,
"cstp_bail_time": 1108,
"cstp_bb_trailing_input": "bb_lowerband_neutral_inf",
"cstp_threshold": -0.036,
"cstp_trailing_max_stoploss": 0.054,
"cstp_trailing_only_offset_is_reached": 0.09,
"cstp_trailing_stop_profit_devider": 2,
"droi_pullback": True,
"droi_pullback_amount": 0.01,
"droi_pullback_respect_table": False,
"droi_trend_type": "any",
"base_nb_candles_sell": 24,
"high_offset": 0.991,
"high_offset_2": 0.995
}
# ROI table:
minimal_roi = {
"0": 0.279,
"92": 0.109,
"245": 0.059,
"561": 0.02
}
# Stoploss:
stoploss = -0.05#-0.046
# Trailing stop:
trailing_stop = False
#trailing_stop_positive = 0.0247
#trailing_stop_positive_offset = 0.0248
#trailing_only_offset_is_reached = True
use_custom_stoploss = False
# buy signal
buy_should_use_get_buy_signal_offset_strategy = CategoricalParameter([True, False], default=buy_params['buy_should_use_get_buy_signal_offset_strategy'], space='buy', optimize=True)
buy_should_use_get_buy_signal_bbrsi_strategy = CategoricalParameter([True, False], default=buy_params['buy_should_use_get_buy_signal_bbrsi_strategy'], space='buy', optimize=True)
# Dynamic ROI
droi_trend_type = CategoricalParameter(['rmi', 'ssl', 'candle', 'any'], default=sell_params['droi_trend_type'], space='sell', optimize=True)
droi_pullback = CategoricalParameter([True, False], default=sell_params['droi_pullback'], space='sell', optimize=True)
droi_pullback_amount = DecimalParameter(0.005, 0.02, default=sell_params['droi_pullback_amount'], space='sell')
droi_pullback_respect_table = CategoricalParameter([True, False], default=sell_params['droi_pullback_respect_table'], space='sell', optimize=True)
# Custom Stoploss
cstp_threshold = DecimalParameter(-0.05, 0, default=sell_params['cstp_threshold'], space='sell')
cstp_bail_how = CategoricalParameter(['roc', 'time', 'any'], default=sell_params['cstp_bail_how'], space='sell', optimize=True)
cstp_bail_roc = DecimalParameter(-0.05, -0.01, default=sell_params['cstp_bail_roc'], space='sell')
cstp_bail_time = IntParameter(720, 1440, default=sell_params['cstp_bail_time'], space='sell')
cstp_trailing_only_offset_is_reached = DecimalParameter(0.01, 0.06, default=sell_params['cstp_trailing_only_offset_is_reached'], space='sell')
cstp_trailing_stop_profit_devider = IntParameter(2, 4, default=sell_params['cstp_trailing_stop_profit_devider'], space='sell')
cstp_trailing_max_stoploss = DecimalParameter(0.02, 0.08, default=sell_params['cstp_trailing_max_stoploss'], space='sell')
cstp_bb_trailing_input = CategoricalParameter(['bb_lowerband_trend', 'bb_lowerband_trend_inf', 'bb_lowerband_neutral', 'bb_lowerband_neutral_inf', 'bb_upperband_neutral_inf'], default=sell_params['cstp_bb_trailing_input'], space='sell', optimize=True)
fast_ewo = 50
slow_ewo = 200
ewo_high = DecimalParameter(2.0, 12.0, default=buy_params['ewo_high'], space='buy', optimize=True)
rsi_buy = IntParameter(30, 70, default=buy_params['rsi_buy'], space='buy', optimize=True)
base_nb_candles_buy = IntParameter(5, 80, default=buy_params['base_nb_candles_buy'], space='buy', optimize=True)
base_nb_candles_sell = IntParameter(5, 80, default=sell_params['base_nb_candles_sell'], space='sell', optimize=True)
high_offset = DecimalParameter(0.95, 1.1, default=sell_params['high_offset'], space='sell', optimize=True)
high_offset_2 = DecimalParameter(0.99, 1.5, default=sell_params['high_offset_2'], space='sell', optimize=True)
# nested hyperopt class
class HyperOpt:
# defining as dummy, so that no error is thrown about missing
# sell indicator space when hyperopting for all spaces
@staticmethod
def indicator_space() -> List[Dimension]:
return []
custom_trade_info = {}
custom_current_price_cache: TTLCache = TTLCache(maxsize=100, ttl=300) # 5 minutes
# run "populate_indicators" only for new candle
process_only_new_candles = False
# Experimental settings (configuration will overide these if set)
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
startup_candle_count = 200#149
use_dynamic_roi = True
timeframe = '5m'
informative_timeframe = '1h'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, self.informative_timeframe) for pair in pairs]
return informative_pairs
#
# Processing indicators
#
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.custom_trade_info[metadata['pair']] = self.populate_trades(metadata['pair'])
if not self.dp:
return dataframe
dataframe = self.get_buy_signal_indicators(dataframe, metadata)
informative_tmp = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.informative_timeframe)
informative = self.get_market_condition_indicators(informative_tmp.copy(), metadata)
informative = self.get_custom_stoploss_indicators(informative, metadata)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, self.informative_timeframe, ffill=True)
dataframe.rename(columns=lambda s: s.replace("_{}".format(self.informative_timeframe), "_inf"), inplace=True)
# Slam some indicators into the trade_info dict so we can dynamic roi and custom stoploss in backtest
if self.dp.runmode.value in ('backtest', 'hyperopt'):
self.custom_trade_info[metadata['pair']]['roc_inf'] = dataframe[['date', 'roc_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['atr_inf'] = dataframe[['date', 'atr_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['sroc_inf'] = dataframe[['date', 'sroc_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['ssl-dir_inf'] = dataframe[['date', 'ssl-dir_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['rmi-up-trend_inf'] = dataframe[['date', 'rmi-up-trend_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['candle-up-trend_inf'] = dataframe[['date', 'candle-up-trend_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['bb_lowerband_trend_inf'] = dataframe[['date', 'bb_lowerband_trend_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['bb_lowerband_trend_inf'] = dataframe[['date', 'bb_lowerband_trend_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['bb_lowerband_neutral_inf'] = dataframe[['date', 'bb_lowerband_neutral_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['bb_lowerband_neutral_inf'] = dataframe[['date', 'bb_lowerband_neutral_inf']].copy().set_index('date')
self.custom_trade_info[metadata['pair']]['bb_upperband_neutral_inf'] = dataframe[['date', 'bb_upperband_neutral_inf']].copy().set_index('date')
return dataframe
def get_buy_signal_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['sma_9'] = ta.SMA(dataframe, timeperiod=9)
dataframe['EWO'] = EWO(dataframe, self.fast_ewo, self.slow_ewo)
for val in self.base_nb_candles_buy.range:
dataframe[f'ma_buy_{val}'] = ta.EMA(dataframe, timeperiod=val)
for val in self.base_nb_candles_sell.range:
dataframe[f'ma_sell_{val}'] = ta.EMA(dataframe, timeperiod=val)
dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['hma_5'] = hull_moving_average(dataframe, 5, 'close')
dataframe['ema_25'] = ta.EMA(dataframe, timeperiod=25)
dataframe['ema_60'] = ta.EMA(dataframe, timeperiod=60)
dataframe['uptrend_5m'] = dataframe['ema_25'] > dataframe['ema_60']
return dataframe
def get_market_condition_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
displacement = 30
ichimoku = ftt.ichimoku(dataframe, conversion_line_period=20, base_line_periods=60, laggin_span=120, displacement=displacement)
dataframe['chikou_span'] = ichimoku['chikou_span']
dataframe['tenkan_sen'] = ichimoku['tenkan_sen']
dataframe['kijun_sen'] = ichimoku['kijun_sen']
dataframe['senkou_a'] = ichimoku['senkou_span_a']
dataframe['senkou_b'] = ichimoku['senkou_span_b']
dataframe['leading_senkou_span_a'] = ichimoku['leading_senkou_span_a']
dataframe['leading_senkou_span_b'] = ichimoku['leading_senkou_span_b']
dataframe['cloud_green'] = ichimoku['cloud_green'] * 1
dataframe['cloud_red'] = ichimoku['cloud_red'] * -1
ssl = SSLChannels_ATR(dataframe, 10)
dataframe['sslDown'] = ssl[0]
dataframe['sslUp'] = ssl[1]
#dataframe['vfi'] = fta.VFI(dataframe, period=14)
# Summary indicators
dataframe['future_green'] = ichimoku['cloud_green'].shift(displacement).fillna(0).astype('int') * 2
dataframe['chikou_high'] = ((dataframe['chikou_span'] > dataframe['senkou_a']) & (dataframe['chikou_span'] > dataframe['senkou_b'])).shift(displacement).fillna(0).astype('int')
dataframe['go_long'] = ((dataframe['tenkan_sen'] > dataframe['kijun_sen']) & (dataframe['close'] > dataframe['leading_senkou_span_a']) & (dataframe['close'] > dataframe['leading_senkou_span_b']) & (dataframe['future_green'] > 0) & (dataframe['chikou_high'] > 0)).fillna(0).astype('int') * 3
dataframe['max'] = dataframe['high'].rolling(3).max()
dataframe['min'] = dataframe['low'].rolling(6).min()
dataframe['upper'] = np.where(dataframe['max'] > dataframe['max'].shift(),1,0)
dataframe['lower'] = np.where(dataframe['min'] < dataframe['min'].shift(),1,0)
dataframe['up_trend'] = np.where(dataframe['upper'].rolling(5, min_periods=1).sum() != 0,1,0)
dataframe['dn_trend'] = np.where(dataframe['lower'].rolling(5, min_periods=1).sum() != 0,1,0)
return dataframe
def get_custom_stoploss_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
bollinger_neutral = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1)
dataframe['bb_lowerband_neutral'] = bollinger_neutral['lower']
dataframe['bb_middleband_neutral'] = bollinger_neutral['mid']
dataframe['bb_upperband_neutral'] = bollinger_neutral['upper']
bollinger_trend = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband_trend'] = bollinger_trend['lower']
dataframe['bb_middleband_trend'] = bollinger_trend['mid']
dataframe['bb_upperband_trend'] = bollinger_trend['upper']
dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)
dataframe['roc'] = ta.ROC(dataframe, timeperiod=9)
dataframe['rmi'] = RMI(dataframe, length=24, mom=5)
ssldown, sslup = SSLChannels_ATR(dataframe, length=21)
dataframe['sroc'] = SROC(dataframe, roclen=21, emalen=13, smooth=21)
dataframe['ssl-dir'] = np.where(sslup > ssldown,'up','down')
dataframe['rmi-up'] = np.where(dataframe['rmi'] >= dataframe['rmi'].shift(),1,0)
dataframe['rmi-up-trend'] = np.where(dataframe['rmi-up'].rolling(5).sum() >= 3,1,0)
dataframe['candle-up'] = np.where(dataframe['close'] >= dataframe['close'].shift(),1,0)
dataframe['candle-up-trend'] = np.where(dataframe['candle-up'].rolling(5).sum() >= 3,1,0)
return dataframe
#
# Processing buy signals
#
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(self.get_buy_signal_offset_strategy(dataframe) == True)
|
(self.get_buy_signal_bbrsi_strategy(dataframe) == True)
)
#(dataframe['sslUp_inf'] > dataframe['sslDown_inf'])
,'buy'] = 1
return dataframe
def get_buy_signal_offset_strategy(self, dataframe: DataFrame):
signal = (
(self.buy_should_use_get_buy_signal_offset_strategy.value == True) &
(dataframe['sma_9'] < dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'])&
(dataframe['rsi_fast']< dataframe['rsi_slow'])&
(dataframe['rsi_fast'] <35)&
(dataframe['rsi_fast'] >4)&
(dataframe['EWO'] > self.ewo_high.value) &
(dataframe['close'] < ta.EMA(dataframe['close'], timeperiod = 14) * 0.970) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['volume'] > 0)
)
return signal
def get_buy_signal_bbrsi_strategy(self, dataframe: DataFrame):
signal = (
(self.buy_should_use_get_buy_signal_bbrsi_strategy.value == True) &
(dataframe['sslUp_inf'] > dataframe['sslDown_inf'])&
(dataframe['uptrend_5m'] == 0)&
(dataframe['rsi'] < 40) &
(dataframe['rsi_fast']< dataframe['rsi_slow'])&
(dataframe['close'].shift(1) < dataframe['bb_lowerband']*1)&
(dataframe['EWO'] > self.ewo_high.value) &
(dataframe['volume'] > 0)
)
return signal
#
# Processing sell signals
#
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(qtpylib.crossed_above(dataframe['sslDown_inf'], dataframe['sslUp_inf']))
& (
(qtpylib.crossed_below(dataframe['tenkan_sen_inf'], dataframe['kijun_sen_inf']))
|(qtpylib.crossed_below(dataframe['close_inf'], dataframe['kijun_sen_inf']))|
(
(dataframe['close']>dataframe['sma_9'])&
(dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset_2.value)) &
#(dataframe['rsi']>150)&
(dataframe['volume'] > 0)&
(dataframe['rsi_fast']>dataframe['rsi_slow'])
)
) #&
# NOTE: I keep the volume checks of feels like it has not much benifit when trading leverage tokens, maybe im wrong!?
#(dataframe['vfi'] < 0.0) &
#(dataframe['volume'] > 0)
,'sell'] = 1
return dataframe
#
# Custom Stoploss
#
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime, current_rate: float, current_profit: float, **kwargs) -> float:
trade_dur = int((current_time.timestamp() - trade.open_date_utc.timestamp()) // 60)
if self.config['runmode'].value in ('live', 'dry_run'):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
sroc = dataframe['sroc_inf'].iat[-1]
bb_trailing = dataframe[self.cstp_bb_trailing_input.value].iat[-1]
# If in backtest or hyperopt, get the indicator values out of the trades dict (Thanks @JoeSchr!)
else:
sroc = self.custom_trade_info[trade.pair]['sroc_inf'].loc[current_time]['sroc_inf']
bb_trailing = self.custom_trade_info[trade.pair][self.cstp_bb_trailing_input.value].loc[current_time][self.cstp_bb_trailing_input.value]
if current_profit < self.cstp_threshold.value:
if self.cstp_bail_how.value == 'roc' or self.cstp_bail_how.value == 'any':
# Dynamic bailout based on rate of change
if (sroc/100) <= self.cstp_bail_roc.value:
return 0.001
if self.cstp_bail_how.value == 'time' or self.cstp_bail_how.value == 'any':
# Dynamic bailout based on time
if trade_dur > self.cstp_bail_time.value:
return 0.001
if current_profit < self.cstp_trailing_only_offset_is_reached.value:
if current_rate <= bb_trailing:
return 0.001
else:
return -1
desired_stoploss = current_profit / self.cstp_trailing_stop_profit_devider.value
return max(min(desired_stoploss, self.cstp_trailing_max_stoploss.value), 0.025)
#
# Dynamic ROI
#
def min_roi_reached_dynamic(self, trade: Trade, current_profit: float, current_time: datetime, trade_dur: int) -> Tuple[Optional[int], Optional[float]]:
minimal_roi = self.minimal_roi
_, table_roi = self.min_roi_reached_entry(trade_dur)
# see if we have the data we need to do this, otherwise fall back to the standard table
if self.custom_trade_info and trade and trade.pair in self.custom_trade_info:
if self.config['runmode'].value in ('live', 'dry_run'):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=trade.pair, timeframe=self.timeframe)
rmi_trend = dataframe['rmi-up-trend_inf'].iat[-1]
candle_trend = dataframe['candle-up-trend_inf'].iat[-1]
ssl_dir = dataframe['ssl-dir_inf'].iat[-1]
# If in backtest or hyperopt, get the indicator values out of the trades dict (Thanks @JoeSchr!)
else:
rmi_trend = self.custom_trade_info[trade.pair]['rmi-up-trend_inf'].loc[current_time]['rmi-up-trend_inf']
candle_trend = self.custom_trade_info[trade.pair]['candle-up-trend_inf'].loc[current_time]['candle-up-trend_inf']
ssl_dir = self.custom_trade_info[trade.pair]['ssl-dir_inf'].loc[current_time]['ssl-dir_inf']
min_roi = table_roi
max_profit = trade.calc_profit_ratio(trade.max_rate)
pullback_value = (max_profit - self.droi_pullback_amount.value)
in_trend = False
if self.droi_trend_type.value == 'rmi' or self.droi_trend_type.value == 'any':
if rmi_trend == 1:
in_trend = True
if self.droi_trend_type.value == 'ssl' or self.droi_trend_type.value == 'any':
if ssl_dir == 'up':
in_trend = True
if self.droi_trend_type.value == 'candle' or self.droi_trend_type.value == 'any':
if candle_trend == 1:
in_trend = True
# Force the ROI value high if in trend
if (in_trend == True):
min_roi = 100
# If pullback is enabled, allow to sell if a pullback from peak has happened regardless of trend
if self.droi_pullback.value == True and (current_profit < pullback_value):
if self.droi_pullback_respect_table.value == True:
min_roi = table_roi
else:
min_roi = current_profit / 1.5
else:
min_roi = table_roi
return trade_dur, min_roi
# Change here to allow loading of the dynamic_roi settings
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
trade_dur = int((current_time.timestamp() - trade.open_date_utc.timestamp()) // 120)
if self.use_dynamic_roi:
_, roi = self.min_roi_reached_dynamic(trade, current_profit, current_time, trade_dur)
else:
_, roi = self.min_roi_reached_entry(trade_dur)
if roi is None:
return False
else:
return current_profit > roi
# Get the current price from the exchange (or local cache)
def get_current_price(self, pair: str, refresh: bool) -> float:
if not refresh:
rate = self.custom_current_price_cache.get(pair)
# Check if cache has been invalidated
if rate:
return rate
ask_strategy = self.config.get('ask_strategy', {})
if ask_strategy.get('use_order_book', False):
ob = self.dp.orderbook(pair, 1)
rate = ob[f"{ask_strategy['price_side']}s"][0][0]
else:
ticker = self.dp.ticker(pair)
rate = ticker['last']
self.custom_current_price_cache[pair] = rate
return rate
#
# Custom trade info
#
def populate_trades(self, pair: str) -> dict:
# Initialize the trades dict if it doesn't exist, persist it otherwise
if not pair in self.custom_trade_info:
self.custom_trade_info[pair] = {}
# init the temp dicts and set the trade stuff to false
trade_data = {}
trade_data['active_trade'] = False
# active trade stuff only works in live and dry, not backtest
if self.config['runmode'].value in ('live', 'dry_run'):
# find out if we have an open trade for this pair
active_trade = Trade.get_trades([Trade.pair == pair, Trade.is_open.is_(True),]).all()
# if so, get some information
if active_trade:
# get current price and update the min/max rate
current_rate = self.get_current_price(pair, True)
active_trade[0].adjust_min_max_rates(current_rate, current_rate)
return trade_data
#
# Custom indicators
#
def RMI(dataframe, *, length=20, mom=5):
"""
Source: https://github.com/freqtrade/technical/blob/master/technical/indicators/indicators.py#L912
"""
df = dataframe.copy()
df['maxup'] = (df['close'] - df['close'].shift(mom)).clip(lower=0)
df['maxdown'] = (df['close'].shift(mom) - df['close']).clip(lower=0)
df.fillna(0, inplace=True)
df["emaInc"] = ta.EMA(df, price='maxup', timeperiod=length)
df["emaDec"] = ta.EMA(df, price='maxdown', timeperiod=length)
df['RMI'] = np.where(df['emaDec'] == 0, 0, 100 - 100 / (1 + df["emaInc"] / df["emaDec"]))
return df["RMI"]
def SSLChannels_ATR(dataframe, length=7):
"""
SSL Channels with ATR: https://www.tradingview.com/script/SKHqWzql-SSL-ATR-channel/
Credit to @JimmyNixx for python
"""
df = dataframe.copy()
df['ATR'] = ta.ATR(df, timeperiod=14)
df['smaHigh'] = df['high'].rolling(length).mean() + df['ATR']
df['smaLow'] = df['low'].rolling(length).mean() - df['ATR']
df['hlv'] = np.where(df['close'] > df['smaHigh'], 1, np.where(df['close'] < df['smaLow'], -1, np.NAN))
df['hlv'] = df['hlv'].ffill()
df['sslDown'] = np.where(df['hlv'] < 0, df['smaHigh'], df['smaLow'])
df['sslUp'] = np.where(df['hlv'] < 0, df['smaLow'], df['smaHigh'])
return df['sslDown'], df['sslUp']
def SROC(dataframe, roclen=21, emalen=13, smooth=21):
df = dataframe.copy()
roc = ta.ROC(df, timeperiod=roclen)
ema = ta.EMA(df, timeperiod=emalen)
sroc = ta.ROC(ema, timeperiod=smooth)
return sroc
def EWO(dataframe, ema_length=5, ema2_length=35):
df = dataframe.copy()
ema1 = ta.EMA(df, timeperiod=ema_length)
ema2 = ta.EMA(df, timeperiod=ema2_length)
emadif = (ema1 - ema2) / df['low'] * 100
return emadif