forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClucHAnix_hhll.py
732 lines (608 loc) · 33.2 KB
/
ClucHAnix_hhll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import talib.abstract as ta
import time
import logging
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy import merge_informative_pair, DecimalParameter, stoploss_from_open, RealParameter
from pandas import DataFrame, Series
from datetime import datetime, timedelta, timezone
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
def bollinger_bands(stock_price, window_size, num_of_std):
rolling_mean = stock_price.rolling(window=window_size).mean()
rolling_std = stock_price.rolling(window=window_size).std()
lower_band = rolling_mean - (rolling_std * num_of_std)
return np.nan_to_num(rolling_mean), np.nan_to_num(lower_band)
def ha_typical_price(bars):
res = (bars['ha_high'] + bars['ha_low'] + bars['ha_close']) / 3.
return Series(index=bars.index, data=res)
class ClucHAnix_hhll(IStrategy):
"""
Please only use this with TrailingBuy
"""
#hypered params
buy_params = {
##
"max_slip": 0.73,
##
"bbdelta_close": 0.01846,
"bbdelta_tail": 0.98973,
"close_bblower": 0.00785,
"closedelta_close": 0.01009,
"rocr_1h": 0.5411,
##
"buy_hh_diff_48": 6.867,
"buy_ll_diff_48": -12.884,
}
# Sell hyperspace params:
sell_params = {
"pPF_1": 0.011,
"pPF_2": 0.064,
"pSL_1": 0.011,
"pSL_2": 0.062,
# sell signal params
"high_offset": 0.907,
"high_offset_2": 1.211,
"sell_bbmiddle_close": 0.97286,
"sell_fisher": 0.48492,
}
# ROI table:
minimal_roi = {
"0": 0.103,
"3": 0.05,
"5": 0.033,
"61": 0.027,
"125": 0.011,
"292": 0.005,
}
# Stoploss:
stoploss = -0.99 # use custom stoploss
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.001
trailing_stop_positive_offset = 0.012
trailing_only_offset_is_reached = False
"""
END HYPEROPT
"""
timeframe = '5m'
# Make sure these match or are not overridden in config
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Custom stoploss
use_custom_stoploss = True
process_only_new_candles = True
startup_candle_count = 168
order_types = {
'buy': 'market',
'sell': 'market',
'emergencysell': 'market',
'forcebuy': "market",
'forcesell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': False,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
}
# buy params
is_optimize_clucHA = False
rocr_1h = RealParameter(0.5, 1.0, default=0.54904, space='buy', optimize = is_optimize_clucHA )
bbdelta_close = RealParameter(0.0005, 0.02, default=0.01965, space='buy', optimize = is_optimize_clucHA )
closedelta_close = RealParameter(0.0005, 0.02, default=0.00556, space='buy', optimize = is_optimize_clucHA )
bbdelta_tail = RealParameter(0.7, 1.0, default=0.95089, space='buy', optimize = is_optimize_clucHA )
close_bblower = RealParameter(0.0005, 0.02, default=0.00799, space='buy', optimize = is_optimize_clucHA )
is_optimize_hh_ll = False
buy_hh_diff_48 = DecimalParameter(0.0, 15, default=1.087 , optimize = is_optimize_hh_ll )
buy_ll_diff_48 = DecimalParameter(-23, 40, default=1.087 , optimize = is_optimize_hh_ll )
## Slippage params
is_optimize_slip = False
max_slip = DecimalParameter(0.33, 0.80, default=0.33, decimals=3, optimize=is_optimize_slip , space='buy', load=True)
# sell params
is_optimize_sell = False
sell_fisher = RealParameter(0.1, 0.5, default=0.38414, space='sell', optimize = is_optimize_sell)
sell_bbmiddle_close = RealParameter(0.97, 1.1, default=1.07634, space='sell', optimize = is_optimize_sell)
high_offset = DecimalParameter(0.90, 1.2, default=sell_params['high_offset'], space='sell', optimize = is_optimize_sell)
high_offset_2 = DecimalParameter(0.90, 1.5, default=sell_params['high_offset_2'], space='sell', optimize = is_optimize_sell)
is_optimize_trailing = False
pPF_1 = DecimalParameter(0.011, 0.020, default=0.016, decimals=3, space='sell', load=True, optimize = is_optimize_trailing)
pSL_1 = DecimalParameter(0.011, 0.020, default=0.011, decimals=3, space='sell', load=True, optimize = is_optimize_trailing)
pPF_2 = DecimalParameter(0.040, 0.100, default=0.080, decimals=3, space='sell', load=True, optimize = is_optimize_trailing)
pSL_2 = DecimalParameter(0.020, 0.070, default=0.040, decimals=3, space='sell', load=True, optimize = is_optimize_trailing)
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '1h') for pair in pairs]
return informative_pairs
# come from BB_RPB_TSL
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# hard stoploss profit
PF_1 = self.pPF_1.value
SL_1 = self.pSL_1.value
PF_2 = self.pPF_2.value
SL_2 = self.pSL_2.value
sl_profit = -0.99
# For profits between PF_1 and PF_2 the stoploss (sl_profit) used is linearly interpolated
# between the values of SL_1 and SL_2. For all profits above PL_2 the sl_profit value
# rises linearly with current profit, for profits below PF_1 the hard stoploss profit is used.
if current_profit > PF_2:
sl_profit = SL_2 + (current_profit - PF_2)
elif current_profit > PF_1:
sl_profit = SL_1 + ((current_profit - PF_1) * (SL_2 - SL_1) / (PF_2 - PF_1))
else:
sl_profit = -0.99
# Only for hyperopt invalid return
if sl_profit >= current_profit:
return -0.99
return stoploss_from_open(sl_profit, current_profit)
## Confirm Entry
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, **kwargs) -> bool:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
max_slip = self.max_slip.value
if(len(dataframe) < 1):
return False
dataframe = dataframe.iloc[-1].squeeze()
if ((rate > dataframe['close'])) :
slippage = ( (rate / dataframe['close']) - 1 ) * 100
if slippage < max_slip:
return True
else:
return False
return True
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
previous_candle_1 = dataframe.iloc[-2]
previous_candle_2 = dataframe.iloc[-3]
max_profit = ((trade.max_rate - trade.open_rate) / trade.open_rate)
max_loss = ((trade.open_rate - trade.min_rate) / trade.min_rate)
# stoploss - deadfish
if ( (current_profit < -0.063)
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['bb_width'] < 0.043)
and (last_candle['close'] > last_candle['bb_middleband2'] * 0.954)
and (last_candle['volume_mean_12'] < last_candle['volume_mean_24'] * 2.37)
):
return 'sell_stoploss_deadfish'
# stoploss - pump
if (last_candle['hl_pct_change_48_1h'] > 0.95):
if (
(-0.04 > current_profit > -0.08)
and (max_profit < 0.005)
and (max_loss < 0.08)
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['sma_200_dec_20'])
and (last_candle['ema_vwma_osc_32'] < 0.0)
and (last_candle['ema_vwma_osc_64'] < 0.0)
and (last_candle['ema_vwma_osc_96'] < 0.0)
and (last_candle['cmf'] < -0.25)
and (last_candle['cmf_1h'] < -0.0)
):
return 'sell_stoploss_p_48_1_1'
elif (
(-0.04 > current_profit > -0.08)
and (max_profit < 0.01)
and (max_loss < 0.08)
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['sma_200_dec_20'])
and (last_candle['ema_vwma_osc_32'] < 0.0)
and (last_candle['ema_vwma_osc_64'] < 0.0)
and (last_candle['ema_vwma_osc_96'] < 0.0)
and (last_candle['cmf'] < -0.25)
and (last_candle['cmf_1h'] < -0.0)
):
return 'sell_stoploss_p_48_1_2'
if (last_candle['hl_pct_change_36_1h'] > 0.7):
if (
(-0.04 > current_profit > -0.08)
and (max_loss < 0.08)
and (max_profit > (current_profit + 0.1))
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['sma_200_dec_20'])
and (last_candle['sma_200_dec_20_1h'])
and (last_candle['ema_vwma_osc_32'] < 0.0)
and (last_candle['ema_vwma_osc_64'] < 0.0)
and (last_candle['ema_vwma_osc_96'] < 0.0)
and (last_candle['cmf'] < -0.25)
and (last_candle['cmf_1h'] < -0.0)
):
return 'sell_stoploss_p_36_1_1'
if (last_candle['hl_pct_change_36_1h'] > 0.5):
if (
(-0.05 > current_profit > -0.08)
and (max_loss < 0.08)
and (max_profit > (current_profit + 0.1))
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['sma_200_dec_20'])
and (last_candle['sma_200_dec_20_1h'])
and (last_candle['ema_vwma_osc_32'] < 0.0)
and (last_candle['ema_vwma_osc_64'] < 0.0)
and (last_candle['ema_vwma_osc_96'] < 0.0)
and (last_candle['cmf'] < -0.25)
and (last_candle['cmf_1h'] < -0.0)
and (last_candle['rsi'] < 40.0)
):
return 'sell_stoploss_p_36_2_1'
if (last_candle['hl_pct_change_24_1h'] > 0.6):
if (
(-0.04 > current_profit > -0.08)
and (max_loss < 0.08)
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['sma_200_dec_20'])
and (last_candle['sma_200_dec_20_1h'])
and (last_candle['ema_vwma_osc_32'] < 0.0)
and (last_candle['ema_vwma_osc_64'] < 0.0)
and (last_candle['ema_vwma_osc_96'] < 0.0)
and (last_candle['cmf'] < -0.25)
and (last_candle['cmf_1h'] < -0.0)
):
return 'sell_stoploss_p_24_1_1'
return None
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# # Heikin Ashi Candles
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
# Set Up Bollinger Bands
mid, lower = bollinger_bands(ha_typical_price(dataframe), window_size=40, num_of_std=2)
dataframe['lower'] = lower
dataframe['mid'] = mid
dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
dataframe['closedelta'] = (dataframe['ha_close'] - dataframe['ha_close'].shift()).abs()
dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()
dataframe['bb_lowerband'] = dataframe['lower']
dataframe['bb_middleband'] = dataframe['mid']
# BB 20
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband2'] = bollinger2['lower']
dataframe['bb_middleband2'] = bollinger2['mid']
dataframe['bb_upperband2'] = bollinger2['upper']
dataframe['bb_width'] = ((dataframe['bb_upperband2'] - dataframe['bb_lowerband2']) / dataframe['bb_middleband2'])
dataframe['ema_fast'] = ta.EMA(dataframe['ha_close'], timeperiod=3)
dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=50)
dataframe['ema_24'] = ta.EMA(dataframe['close'], timeperiod=24)
dataframe['ema_200'] = ta.EMA(dataframe['close'], timeperiod=200)
# SMA
dataframe['sma_9'] = ta.SMA(dataframe['close'], timeperiod=9)
dataframe['sma_200'] = ta.SMA(dataframe['close'], timeperiod=200)
# HMA
dataframe['hma_50'] = qtpylib.hull_moving_average(dataframe['close'], window=50)
# volume
dataframe['volume_mean_12'] = dataframe['volume'].rolling(12).mean().shift(1)
dataframe['volume_mean_24'] = dataframe['volume'].rolling(24).mean().shift(1)
dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()
# ROCR
dataframe['rocr'] = ta.ROCR(dataframe['ha_close'], timeperiod=28)
# hh48
dataframe['hh_48'] = ta.MAX(dataframe['high'], 48)
dataframe['hh_48_diff'] = (dataframe['hh_48'] - dataframe['close']) / dataframe['hh_48'] * 100
# ll48
dataframe['ll_48'] = ta.MIN(dataframe['low'], 48)
dataframe['ll_48_diff'] = (dataframe['close'] - dataframe['ll_48']) / dataframe['ll_48'] * 100
rsi = ta.RSI(dataframe)
dataframe["rsi"] = rsi
rsi = 0.1 * (rsi - 50)
dataframe["fisher"] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# RSI
dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
# sma dec 20
dataframe['sma_200_dec_20'] = dataframe['sma_200'] < dataframe['sma_200'].shift(20)
# EMA of VWMA Oscillator
dataframe['ema_vwma_osc_32'] = ema_vwma_osc(dataframe, 32)
dataframe['ema_vwma_osc_64'] = ema_vwma_osc(dataframe, 64)
dataframe['ema_vwma_osc_96'] = ema_vwma_osc(dataframe, 96)
# CMF
dataframe['cmf'] = chaikin_money_flow(dataframe, 20)
# 1h tf
inf_tf = '1h'
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=inf_tf)
inf_heikinashi = qtpylib.heikinashi(informative)
informative['ha_close'] = inf_heikinashi['close']
informative['rocr'] = ta.ROCR(informative['ha_close'], timeperiod=168)
informative['sma_200'] = ta.SMA(informative['close'], timeperiod=200)
informative['hl_pct_change_48'] = range_percent_change(informative, 'HL', 48)
informative['hl_pct_change_36'] = range_percent_change(informative, 'HL', 36)
informative['hl_pct_change_24'] = range_percent_change(informative, 'HL', 24)
informative['sma_200_dec_20'] = informative['sma_200'] < informative['sma_200'].shift(20)
# CMF
informative['cmf'] = chaikin_money_flow(informative, 20)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, inf_tf, ffill=True)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
( dataframe['rocr_1h'].gt(self.rocr_1h.value) )
&
( (
(dataframe['lower'].shift().gt(0)) &
(dataframe['bbdelta'].gt(dataframe['ha_close'] * self.bbdelta_close.value)) &
(dataframe['closedelta'].gt(dataframe['ha_close'] * self.closedelta_close.value)) &
(dataframe['tail'].lt(dataframe['bbdelta'] * self.bbdelta_tail.value)) &
(dataframe['ha_close'].lt(dataframe['lower'].shift())) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift()))
)
|
(
(dataframe['ha_close'] < dataframe['ema_slow']) &
(dataframe['ha_close'] < self.close_bblower.value * dataframe['bb_lowerband'])
)
)
&
(dataframe['hh_48_diff'] > self.buy_hh_diff_48.value)
&
(dataframe['ll_48_diff'] > self.buy_ll_diff_48.value)
,'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
( (
(dataframe['fisher'] > self.sell_fisher.value) &
(dataframe['ha_high'].le(dataframe['ha_high'].shift(1))) &
(dataframe['ha_high'].shift(1).le(dataframe['ha_high'].shift(2))) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift(1))) &
(dataframe['ema_fast'] > dataframe['ha_close']) &
((dataframe['ha_close'] * self.sell_bbmiddle_close.value) > dataframe['bb_middleband'])
)
|
(
(dataframe['close'] > dataframe['sma_9']) &
(dataframe['close'] > (dataframe['ema_24'] * self.high_offset_2.value)) &
(dataframe['rsi'] > 50) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
|
(
(dataframe['sma_9'] > (dataframe['sma_9'].shift(1) + dataframe['sma_9'].shift(1) * 0.005 )) &
(dataframe['close'] < dataframe['hma_50']) &
(dataframe['close'] > (dataframe['ema_24'] * self.high_offset.value)) &
(dataframe['rsi_fast'] > dataframe['rsi_slow'])
)
)
&
(dataframe['volume'] > 0)
,'sell'] = 1
return dataframe
# Volume Weighted Moving Average
def vwma(dataframe: DataFrame, length: int = 10):
"""Indicator: Volume Weighted Moving Average (VWMA)"""
# Calculate Result
pv = dataframe['close'] * dataframe['volume']
vwma = Series(ta.SMA(pv, timeperiod=length) / ta.SMA(dataframe['volume'], timeperiod=length))
vwma = vwma.fillna(0, inplace=True)
return vwma
# Exponential moving average of a volume weighted simple moving average
def ema_vwma_osc(dataframe, len_slow_ma):
slow_ema = Series(ta.EMA(vwma(dataframe, len_slow_ma), len_slow_ma))
return ((slow_ema - slow_ema.shift(1)) / slow_ema.shift(1)) * 100
def range_percent_change(dataframe: DataFrame, method, length: int) -> float:
"""
Rolling Percentage Change Maximum across interval.
:param dataframe: DataFrame The original OHLC dataframe
:param method: High to Low / Open to Close
:param length: int The length to look back
"""
if method == 'HL':
return (dataframe['high'].rolling(length).max() - dataframe['low'].rolling(length).min()) / dataframe['low'].rolling(length).min()
elif method == 'OC':
return (dataframe['open'].rolling(length).max() - dataframe['close'].rolling(length).min()) / dataframe['close'].rolling(length).min()
else:
raise ValueError(f"Method {method} not defined!")
# Chaikin Money Flow
def chaikin_money_flow(dataframe, n=20, fillna=False) -> Series:
"""Chaikin Money Flow (CMF)
It measures the amount of Money Flow Volume over a specific period.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf
Args:
dataframe(pandas.Dataframe): dataframe containing ohlcv
n(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
mfv = ((dataframe['close'] - dataframe['low']) - (dataframe['high'] - dataframe['close'])) / (dataframe['high'] - dataframe['low'])
mfv = mfv.fillna(0.0) # float division by zero
mfv *= dataframe['volume']
cmf = (mfv.rolling(n, min_periods=0).sum()
/ dataframe['volume'].rolling(n, min_periods=0).sum())
if fillna:
cmf = cmf.replace([np.inf, -np.inf], np.nan).fillna(0)
return Series(cmf, name='cmf')
class ClucHAnix_hhll_TB(ClucHAnix_hhll):
# Original idea by @MukavaValkku, code by @tirail and @stash86
#
# This class is designed to inherit from yours and starts trailing buy with your buy signals
# Trailing buy starts at any buy signal and will move to next candles if the trailing still active
# Trailing buy stops with BUY if : price decreases and rises again more than trailing_buy_offset
# Trailing buy stops with NO BUY : current price is > initial price * (1 + trailing_buy_max) OR custom_sell tag
# IT IS NOT COMPATIBLE WITH BACKTEST/HYPEROPT
#
process_only_new_candles = True
custom_info_trail_buy = dict()
# Trailing buy parameters
trailing_buy_order_enabled = True
trailing_expire_seconds = 1800
# If the current candle goes above min_uptrend_trailing_profit % before trailing_expire_seconds_uptrend seconds, buy the coin
trailing_buy_uptrend_enabled = False
trailing_expire_seconds_uptrend = 90
min_uptrend_trailing_profit = 0.02
debug_mode = True
trailing_buy_max_stop = 0.02 # stop trailing buy if current_price > starting_price * (1+trailing_buy_max_stop)
trailing_buy_max_buy = 0.000 # buy if price between uplimit (=min of serie (current_price * (1 + trailing_buy_offset())) and (start_price * 1+trailing_buy_max_buy))
init_trailing_dict = {
'trailing_buy_order_started': False,
'trailing_buy_order_uplimit': 0,
'start_trailing_price': 0,
'buy_tag': None,
'start_trailing_time': None,
'offset': 0,
'allow_trailing': False,
}
def trailing_buy(self, pair, reinit=False):
# returns trailing buy info for pair (init if necessary)
if not pair in self.custom_info_trail_buy:
self.custom_info_trail_buy[pair] = dict()
if (reinit or not 'trailing_buy' in self.custom_info_trail_buy[pair]):
self.custom_info_trail_buy[pair]['trailing_buy'] = self.init_trailing_dict.copy()
return self.custom_info_trail_buy[pair]['trailing_buy']
def trailing_buy_info(self, pair: str, current_price: float):
# current_time live, dry run
current_time = datetime.now(timezone.utc)
if not self.debug_mode:
return
trailing_buy = self.trailing_buy(pair)
duration = 0
try:
duration = (current_time - trailing_buy['start_trailing_time'])
except TypeError:
duration = 0
finally:
logger.info(
f"pair: {pair} : "
f"start: {trailing_buy['start_trailing_price']:.4f}, "
f"duration: {duration}, "
f"current: {current_price:.4f}, "
f"uplimit: {trailing_buy['trailing_buy_order_uplimit']:.4f}, "
f"profit: {self.current_trailing_profit_ratio(pair, current_price)*100:.2f}%, "
f"offset: {trailing_buy['offset']}")
def current_trailing_profit_ratio(self, pair: str, current_price: float) -> float:
trailing_buy = self.trailing_buy(pair)
if trailing_buy['trailing_buy_order_started']:
return (trailing_buy['start_trailing_price'] - current_price) / trailing_buy['start_trailing_price']
else:
return 0
def trailing_buy_offset(self, dataframe, pair: str, current_price: float):
# return rebound limit before a buy in % of initial price, function of current price
# return None to stop trailing buy (will start again at next buy signal)
# return 'forcebuy' to force immediate buy
# (example with 0.5%. initial price : 100 (uplimit is 100.5), 2nd price : 99 (no buy, uplimit updated to 99.5), 3price 98 (no buy uplimit updated to 98.5), 4th price 99 -> BUY
current_trailing_profit_ratio = self.current_trailing_profit_ratio(pair, current_price)
default_offset = 0.005
trailing_buy = self.trailing_buy(pair)
if not trailing_buy['trailing_buy_order_started']:
return default_offset
# example with duration and indicators
# dry run, live only
last_candle = dataframe.iloc[-1]
current_time = datetime.now(timezone.utc)
trailing_duration = current_time - trailing_buy['start_trailing_time']
if trailing_duration.total_seconds() > self.trailing_expire_seconds:
if ((current_trailing_profit_ratio > 0) and (last_candle['buy'] == 1)):
# more than 1h, price under first signal, buy signal still active -> buy
return 'forcebuy'
else:
# wait for next signal
return None
elif (self.trailing_buy_uptrend_enabled and (trailing_duration.total_seconds() < self.trailing_expire_seconds_uptrend) and (current_trailing_profit_ratio < (-1 * self.min_uptrend_trailing_profit))):
# less than 90s and price is rising, buy
return 'forcebuy'
if current_trailing_profit_ratio < 0:
# current price is higher than initial price
return default_offset
trailing_buy_offset = {
0.06: 0.02,
0.03: 0.01,
0: default_offset,
}
for key in trailing_buy_offset:
if current_trailing_profit_ratio > key:
return trailing_buy_offset[key]
return default_offset
# end of trailing buy parameters
# -----------------------------------------------------
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_indicators(dataframe, metadata)
self.trailing_buy(metadata['pair'])
return dataframe
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, **kwargs) -> bool:
val = super().confirm_trade_entry(pair, order_type, amount, rate, time_in_force, **kwargs)
if val:
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
val = False
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
if(len(dataframe) >= 1):
last_candle = dataframe.iloc[-1].squeeze()
current_price = rate
trailing_buy = self.trailing_buy(pair)
trailing_buy_offset = self.trailing_buy_offset(dataframe, pair, current_price)
if trailing_buy['allow_trailing']:
if (not trailing_buy['trailing_buy_order_started'] and (last_candle['buy'] == 1)):
# start trailing buy
# self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_started'] = True
# self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'] = last_candle['close']
# self.custom_info_trail_buy[pair]['trailing_buy']['start_trailing_price'] = last_candle['close']
# self.custom_info_trail_buy[pair]['trailing_buy']['buy_tag'] = f"initial_buy_tag (strat trail price {last_candle['close']})"
# self.custom_info_trail_buy[pair]['trailing_buy']['start_trailing_time'] = datetime.now(timezone.utc)
# self.custom_info_trail_buy[pair]['trailing_buy']['offset'] = 0
trailing_buy['trailing_buy_order_started'] = True
trailing_buy['trailing_buy_order_uplimit'] = last_candle['close']
trailing_buy['start_trailing_price'] = last_candle['close']
trailing_buy['buy_tag'] = last_candle['buy_tag']
trailing_buy['start_trailing_time'] = datetime.now(timezone.utc)
trailing_buy['offset'] = 0
self.trailing_buy_info(pair, current_price)
logger.info(f'start trailing buy for {pair} at {last_candle["close"]}')
elif trailing_buy['trailing_buy_order_started']:
if trailing_buy_offset == 'forcebuy':
# buy in custom conditions
val = True
ratio = "%.2f" % ((self.current_trailing_profit_ratio(pair, current_price)) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f"price OK for {pair} ({ratio} %, {current_price}), order may not be triggered if all slots are full")
elif trailing_buy_offset is None:
# stop trailing buy custom conditions
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because "trailing buy offset" returned None')
elif current_price < trailing_buy['trailing_buy_order_uplimit']:
# update uplimit
old_uplimit = trailing_buy["trailing_buy_order_uplimit"]
self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'] = min(current_price * (1 + trailing_buy_offset), self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'])
self.custom_info_trail_buy[pair]['trailing_buy']['offset'] = trailing_buy_offset
self.trailing_buy_info(pair, current_price)
logger.info(f'update trailing buy for {pair} at {old_uplimit} -> {self.custom_info_trail_buy[pair]["trailing_buy"]["trailing_buy_order_uplimit"]}')
elif current_price < (trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy)):
# buy ! current price > uplimit && lower thant starting price
val = True
ratio = "%.2f" % ((self.current_trailing_profit_ratio(pair, current_price)) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f"current price ({current_price}) > uplimit ({trailing_buy['trailing_buy_order_uplimit']}) and lower than starting price price ({(trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy))}). OK for {pair} ({ratio} %), order may not be triggered if all slots are full")
elif current_price > (trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_stop)):
# stop trailing buy because price is too high
self.trailing_buy(pair, reinit=True)
self.trailing_buy_info(pair, current_price)
logger.info(f'STOP trailing buy for {pair} because of the price is higher than starting price * {1 + self.trailing_buy_max_stop}')
else:
# uplimit > current_price > max_price, continue trailing and wait for the price to go down
self.trailing_buy_info(pair, current_price)
logger.info(f'price too high for {pair} !')
else:
logger.info(f"Wait for next buy signal for {pair}")
if (val == True):
self.trailing_buy_info(pair, rate)
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because I buy it')
return val
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_buy_trend(dataframe, metadata)
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
last_candle = dataframe.iloc[-1].squeeze()
trailing_buy = self.trailing_buy(metadata['pair'])
if (last_candle['buy'] == 1):
if not trailing_buy['trailing_buy_order_started']:
open_trades = Trade.get_trades([Trade.pair == metadata['pair'], Trade.is_open.is_(True), ]).all()
if not open_trades:
logger.info(f"Set 'allow_trailing' to True for {metadata['pair']} to start trailing!!!")
# self.custom_info_trail_buy[metadata['pair']]['trailing_buy']['allow_trailing'] = True
trailing_buy['allow_trailing'] = True
initial_buy_tag = last_candle['buy_tag'] if 'buy_tag' in last_candle else 'buy signal'
dataframe.loc[:, 'buy_tag'] = f"{initial_buy_tag} (start trail price {last_candle['close']})"
else:
if (trailing_buy['trailing_buy_order_started'] == True):
logger.info(f"Continue trailing for {metadata['pair']}. Manually trigger buy signal!!")
dataframe.loc[:,'buy'] = 1
dataframe.loc[:, 'buy_tag'] = trailing_buy['buy_tag']
# dataframe['buy'] = 1
return dataframe