forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBbandRsiRolling.py
68 lines (55 loc) · 2 KB
/
BbandRsiRolling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from typing import Dict, List
from functools import reduce
# --------------------------------
class BbandRsiRolling(IStrategy):
"""
author@: Michael Fourie
This strategy uses Bollinger Bands and the rolling rsi to determine when it should make a buy.
Selling is completley determined by the minimal roi.
"""
# Minimal ROI designed for the strategy.
# This has been determined through hyperopt in a timerange of 270 days.
minimal_roi = {
"0": 0.03279,
"259": 0.02964,
"536" : 0.02467,
"818": 0.02326,
"965": 0.01951,
"1230": 0.01492,
"1279" : 0.01502,
"1448": 0.00945,
"1525" : 0.00698,
"1616": 0.00319,
"1897" : 0
}
# Optimal stoploss designed for the strategy
stoploss = -0.08
# Optimal timeframe for the strategy
timeframe = '5m'
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'].rolling(8).min() < 37) &
(dataframe['close'] < dataframe['bb_lowerband'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
),
'sell'] = 1
return dataframe