forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBBRSIoriginal.py
110 lines (89 loc) · 3.57 KB
/
BBRSIoriginal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
import pandas
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy.interface import IStrategy
pandas.set_option("display.precision",8)
class BBRSIoriginal(IStrategy):
"""
Default Strategy provided by freqtrade bot.
You can override it with your own strategy
"""
# Minimal ROI designed for the strategy
minimal_roi = {
"0": 0.09638,
"19": 0.03643,
"69": 0.01923,
"120": 0
}
# Optimal stoploss designed for the strategy
stoploss = -0.36828
# Optimal ticker interval for the strategy
ticker_interval = '1h'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Optional time in force for orders
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc',
}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicator
# ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=4)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
dataframe['bb_lowerband3'] = bollinger3['lower']
dataframe['bb_middleband3'] = bollinger3['mid']
dataframe['bb_upperband3'] = bollinger3['upper']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
#(dataframe['rsi'] > 12) &
(dataframe["close"] < dataframe['bb_lowerband3'] )
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['rsi'] > 75) &
(dataframe["close"] > dataframe['bb_middleband'] )
),
'sell'] = 1
return dataframe