forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApollo11.py
201 lines (165 loc) · 7.75 KB
/
Apollo11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from datetime import datetime
from datetime import timedelta
from functools import reduce
import freqtrade.vendor.qtpylib.indicators as qtpylib
import talib.abstract as ta
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy
from pandas import DataFrame
def to_minutes(**timdelta_kwargs):
return int(timedelta(**timdelta_kwargs).total_seconds() / 60)
class Apollo11(IStrategy):
timeframe = "15m"
# Stoploss
stoploss = -0.16
startup_candle_count: int = 480
trailing_stop = False
use_custom_stoploss = True
use_sell_signal = False
# signal controls
buy_signal_1 = True
buy_signal_2 = True
buy_signal_3 = True
# ROI table:
minimal_roi = {
"0": 10, # This is 10000%, which basically disables ROI
}
# Indicator values:
# Signal 1
s1_ema_xs = 3
s1_ema_sm = 5
s1_ema_md = 10
s1_ema_xl = 50
s1_ema_xxl = 240
# Signal 2
s2_ema_input = 50
s2_ema_offset_input = -1
s2_bb_sma_length = 49
s2_bb_std_dev_length = 64
s2_bb_lower_offset = 3
s2_fib_sma_len = 50
s2_fib_atr_len = 14
s2_fib_lower_value = 4.236
@property
def protections(self):
return [
{
# Don't enter a trade right after selling a trade.
"method": "CooldownPeriod",
"stop_duration": to_minutes(minutes=0),
},
{
# Stop trading if max-drawdown is reached.
"method": "MaxDrawdown",
"lookback_period": to_minutes(hours=12),
"trade_limit": 20, # Considering all pairs that have a minimum of 20 trades
"stop_duration": to_minutes(hours=1),
"max_allowed_drawdown": 0.2, # If max-drawdown is > 20% this will activate
},
{
# Stop trading if a certain amount of stoploss occurred within a certain time window.
"method": "StoplossGuard",
"lookback_period": to_minutes(hours=6),
"trade_limit": 4, # Considering all pairs that have a minimum of 4 trades
"stop_duration": to_minutes(minutes=30),
"only_per_pair": False, # Looks at all pairs
},
{
# Lock pairs with low profits
"method": "LowProfitPairs",
"lookback_period": to_minutes(hours=1, minutes=30),
"trade_limit": 2, # Considering all pairs that have a minimum of 2 trades
"stop_duration": to_minutes(hours=15),
"required_profit": 0.02, # If profit < 2% this will activate for a pair
},
{
# Lock pairs with low profits
"method": "LowProfitPairs",
"lookback_period": to_minutes(hours=6),
"trade_limit": 4, # Considering all pairs that have a minimum of 4 trades
"stop_duration": to_minutes(minutes=30),
"required_profit": 0.01, # If profit < 1% this will activate for a pair
},
]
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Adding EMA's into the dataframe
dataframe["s1_ema_xs"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xs)
dataframe["s1_ema_sm"] = ta.EMA(dataframe, timeperiod=self.s1_ema_sm)
dataframe["s1_ema_md"] = ta.EMA(dataframe, timeperiod=self.s1_ema_md)
dataframe["s1_ema_xl"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xl)
dataframe["s1_ema_xxl"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xxl)
s2_ema_value = ta.EMA(dataframe, timeperiod=self.s2_ema_input)
s2_ema_xxl_value = ta.EMA(dataframe, timeperiod=200)
dataframe["s2_ema"] = s2_ema_value - s2_ema_value * self.s2_ema_offset_input
dataframe["s2_ema_xxl_off"] = s2_ema_xxl_value - s2_ema_xxl_value * self.s2_fib_lower_value
dataframe["s2_ema_xxl"] = ta.EMA(dataframe, timeperiod=200)
s2_bb_sma_value = ta.SMA(dataframe, timeperiod=self.s2_bb_sma_length)
s2_bb_std_dev_value = ta.STDDEV(dataframe, self.s2_bb_std_dev_length)
dataframe["s2_bb_std_dev_value"] = s2_bb_std_dev_value
dataframe["s2_bb_lower_band"] = s2_bb_sma_value - (s2_bb_std_dev_value * self.s2_bb_lower_offset)
s2_fib_atr_value = ta.ATR(dataframe, timeframe=self.s2_fib_atr_len)
s2_fib_sma_value = ta.SMA(dataframe, timeperiod=self.s2_fib_sma_len)
dataframe["s2_fib_lower_band"] = s2_fib_sma_value - s2_fib_atr_value * self.s2_fib_lower_value
s3_bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
dataframe["s3_bb_lowerband"] = s3_bollinger["lower"]
# Volume weighted MACD
dataframe["fastMA"] = ta.EMA(dataframe["volume"] * dataframe["close"], 12) / ta.EMA(dataframe["volume"], 12)
dataframe["slowMA"] = ta.EMA(dataframe["volume"] * dataframe["close"], 26) / ta.EMA(dataframe["volume"], 26)
dataframe["vwmacd"] = dataframe["fastMA"] - dataframe["slowMA"]
dataframe["signal"] = ta.EMA(dataframe["vwmacd"], 9)
dataframe["hist"] = dataframe["vwmacd"] - dataframe["signal"]
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# basic buy methods to keep the strategy simple
if self.buy_signal_1:
conditions = [
dataframe["vwmacd"] < dataframe["signal"],
dataframe["low"] < dataframe["s1_ema_xxl"],
dataframe["close"] > dataframe["s1_ema_xxl"],
qtpylib.crossed_above(dataframe["s1_ema_sm"], dataframe["s1_ema_md"]),
dataframe["s1_ema_xs"] < dataframe["s1_ema_xl"],
dataframe["volume"] > 0,
]
dataframe.loc[reduce(lambda x, y: x & y, conditions), ["buy", "buy_tag"]] = (1, "buy_signal_1")
if self.buy_signal_2:
conditions = [
qtpylib.crossed_above(dataframe["s2_fib_lower_band"], dataframe["s2_bb_lower_band"]),
dataframe["close"] < dataframe["s2_ema"],
dataframe["volume"] > 0,
]
dataframe.loc[reduce(lambda x, y: x & y, conditions), ["buy", "buy_tag"]] = (1, "buy_signal_2")
if self.buy_signal_3:
conditions = [
dataframe["low"] < dataframe["s3_bb_lowerband"],
dataframe["low"] > dataframe["s1_ema_xxl"],
dataframe["volume"] > 0,
]
dataframe.loc[reduce(lambda x, y: x & y, conditions), ["buy", "buy_tag"]] = (1, "buy_signal_3")
if not all([self.buy_signal_1, self.buy_signal_2, self.buy_signal_3]):
dataframe.loc[(), "buy"] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# This is essentailly ignored as we're using strict ROI / Stoploss / TTP sale scenarios
dataframe.loc[(), "sell"] = 0
return dataframe
def custom_stoploss(
self, pair: str, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, **kwargs
) -> float:
if current_profit > 0.2:
return 0.04
if current_profit > 0.1:
return 0.03
if current_profit > 0.06:
return 0.02
if current_profit > 0.03:
return 0.01
# Let's try to minimize the loss
if current_profit <= -0.10:
if trade.open_date_utc + timedelta(hours=60) < current_time:
# After 60H since buy
return current_profit / 1.75
if current_profit <= -0.08:
if trade.open_date_utc + timedelta(hours=120) < current_time:
# After 120H since buy
return current_profit / 1.70
return -1